Learning with Noisy Labels for Sentence-level Sentiment Classification

Hao Wang †‡, Bing Liu †‡*, Chaozhuo Li †§, Yan Yang †§, Tianrui Li †§

‡School of Information Science and Technology, Southwest Jiaotong University
hwang@my.swjtu.edu.cn, {yyang; trli}@swjtu.edu.cn
†Department of Computer Science, University of Illinois at Chicago
liub@uic.edu
§State Key Lab of Software Development Environment, Beihang University
lichaozhuo@buaa.edu.cn

Abstract

Deep neural networks (DNNs) can fit (or even over-fit) the training data very well. If a DNN model is trained using data with noisy labels and tested on data with clean labels, the model may perform poorly. This paper studies the problem of learning with noisy labels for sentence-level sentiment classification. We propose a novel DNN model called NETAB (as shorthand for convolutional neural networks with AB-networks) to handle noisy labels during training. NETAB consists of two convolutional neural networks, one with a noise transition layer for dealing with the input noisy labels and the other for predicting ‘clean’ labels. We train the two networks using their respective loss functions in a mutual reinforcement manner. Experimental results demonstrate the effectiveness of the proposed model.

1 Introduction

It is well known that sentiment annotation or labeling is subjective (Liu, 2012). Annotators often have many disagreements. This is especially so for crowd-workers who are not well trained. That is why one always feels that there are many errors in an annotated dataset. In this paper, we study whether it is possible to build accurate sentiment classifiers even with noisy-labeled training data. Sentiment classification aims to classify a piece of text according to the polarity of the sentiment expressed in the text, e.g., positive or negative (Pang and Lee, 2008; Liu, 2012; Zhang et al., 2018). In this work, we focus on sentence-level sentiment classification (SSC) with labeling errors.

As we will see in the experiment section, noisy labels in the training data can be highly damaging, especially for DNNs because they easily fit the training data and memorize their labels even when training data are corrupted with noisy labels (Zhang et al., 2017). Collecting datasets annotated with clean labels is costly and time-consuming as DNN based models usually require a large number of training examples. Researchers and practitioners typically have to resort to crowdsourcing. However, as mentioned above, the crowdsourced annotations can be quite noisy.

Research on learning with noisy labels dates back to 1980s (Angluin and Laird, 1988). It is still vibrant today (Mnih and Hinton, 2012; Natarajan et al., 2013, 2018; Menon et al., 2015; Gao et al., 2016; Liu and Tao, 2016; Khetan et al., 2018; Zhan et al., 2019) as it is highly challenging. We will discuss the related work in the next section.

This paper studies the problem of learning with noisy labels for SSC. Formally, we study the following problem.

Problem Definition: Given noisy labeled training sentences \(S = \{ (x_1, y_1), ..., (x_n, y_n) \} \), where \(x_i \) is the \(i \)-th sentence and \(y_i \in \{1, ..., c\} \) is the sentiment label of this sentence, the noisy labeled sentences are used to train a DNN model for a SSC task. The trained model is then used to classify sentences with clean labels to one of the \(c \) sentiment labels.

In this paper, we propose a convolutional neural network with AB-networks (NETAB) to deal with noisy labels during training, as shown in Figure 1. We will introduce the details in the subsequent sections. Basically, NETAB consists of two convolutional neural networks (CNNs) (see Figure 1), one for learning sentiment scores to predict ‘clean’ labels and the other for learning a noise transition matrix to handle input noisy labels. We call the two CNNs A-network and

*Corresponding author

1Here we use clean with single quotes as it is not completely clean. In practice, models can hardly produce completely clean labels.
Ab-network, respectively. The fundamental here is that (1) DNNs memorize easy instances first and gradually adapt to hard instances as training epochs increase (Zhang et al., 2017; Arpit et al., 2017); and (2) noisy labels are theoretically flipped from the clean/true labels by a noise transition matrix (Sukhbaatar et al., 2015; Goldberger and Ben-Reuven, 2017; Han et al., 2018a,b). We motivate and propose a CNN model with a transition layer to estimate the noise transition matrix for the input noisy labels, while exploiting another CNN to predict ‘clean’ labels for the input training (and test) sentences. In training, we pre-train A-network in early epochs and then train Ab-network and A-network with their own loss functions in an alternating manner. To our knowledge, this is the first work that addresses the noisy label problem in sentence-level sentiment analysis. Our experimental results show that the proposed model outperforms the state-of-the-art methods.

2 Related Work

Our work is related to sentence sentiment classification (SSC). SSC has been studied extensively (Hu and Liu, 2004; Pang and Lee, 2005; Zhao et al., 2008; Narayanan et al., 2009; Täckström and McDonald, 2011; Wang and Manning, 2012; Yang and Cardie, 2014; Kim, 2014; Tang et al., 2015; Wu et al., 2017; Wang et al., 2018). None of them can handle noisy labels. Since many social media datasets are noisy, researchers have tried to build robust models (Gamon, 2004; Barbosa and Feng, 2010; Liu et al., 2012). However, they treat noisy data as additional information and don’t specifically handle noisy labels. A noise-aware classification model in (Zhan et al., 2019) trains using data annotated with multiple labels. Wang et al. (2016) exploited the connection of users and noisy labels of sentiments in social networks. Since the two works use multiple-labeled data or users’ information (we only use single-labeled data, and we do not use any additional information), they have different settings than ours.

Our work is closely related to DNNs based approaches to learning with noisy labels. DNNs based approaches explored three main directions: (1) training DNNs on selected samples (Malach and Shalev-Shwartz, 2017; Jiang et al., 2018; Ren et al., 2018; Han et al., 2018b), (2) modifying the loss function of DNNs with regularization biases (Mnih and Hinton, 2012; Jindal et al., 2016; Patrini et al., 2017; Ghosh et al., 2017; Ma et al., 2018; Zhang and Sabuncu, 2018), and (3) plugging an extra layer into DNNs (Sukhbaatar et al., 2015; Bekker and Goldberger, 2016; Goldberger and Ben-Reuven, 2017; Han et al., 2018a). All these approaches were proposed for image classification where training images were corrupted with noisy labels. Some of them require noise rate to be known a priori in order to tune their models during training (Patrini et al., 2017; Han et al., 2018b). Our approach combines direction (1) and direction (3), and trains two networks jointly without knowing the noise rate. We have used five latest existing methods in our experiments for SSC. The experimental results show that they are inferior to our proposed method.

In addition, Xiao et al. (2015), Reed et al. (2015), Guan et al. (2016), Li et al. (2017), Vett et al. (2017), and Vahdat (2017) studied weakly-supervised DNNs or semi-supervised DNNs. But they still need some clean-labeled training data. We use no clean-labeled data.

3 Proposed Model

Our model builds on CNN (Kim, 2014). The key idea is to train two CNNs alternately, one for addressing the input noisy labels and the other for predicting ‘clean’ labels. The overall architecture of the proposed model is given in Figure 1. Before going further, we first introduce a proposition, a property, and an assumption below.

Proposition 1 Noisy labels are flipped from clean labels by an unknown noise transition matrix.

Proposition 1 is reformulated from (Han et al., 2018a) and has been investigated in (Sukhbaatar et al., 2015; Goldberger and Ben-Reuven, 2017; Bekker and Goldberger, 2016). This proposition shows that if we know the noise transition matrix, we can use it to recover the clean labels. In other words, we can put noise transition matrix on clean labels to deal with noisy labels. Given these, we ask the following question: How to estimate such an unknown noise transition matrix?

Below we give a solution to this question based on the following property of DNNs.
Property 1 DNNs tend to prioritize memorization of simple instances first and then gradually memorize hard instances (Zhang et al., 2017).

Arpit et al. (2017) further investigated this property of DNNs. Our setting is that simple instances are sentences of clean labels and hard instances are those with noisy labels. We also have the following assumption.

Assumption 1 The noise rate of the training data is less than 50%.

This assumption is usually satisfied in practice because without it, it is hard to tackle the input noisy labels during training.

Based on the above preliminaries, we need to estimate the noisy transition matrix \(Q \in \mathbb{R}^{c \times c} \) (\(c = 2 \) in our case, i.e., positive and negative), and train two classifiers \(\hat{y} \sim P(\hat{y}|x, \theta) \) and \(\hat{y} \sim P(\hat{y}|x, \vartheta) \), where \(x \) is an input sentence, \(\hat{y} \) is its noisy label, \(\hat{y} \) is its ‘clean’ label, \(\theta \) and \(\vartheta \) are the parameters of two classifiers. Note that both \(\hat{y} \) and \(\hat{y} \) here are the prediction results from our model, not the input labels. We propose to formulate the probability of the sentence \(x \) labeled as \(j \) with

\[
P(\hat{y} = j|x, \theta) = \sum_i P(\hat{y} = j|\hat{y} = i)P(\hat{y} = i|x, \vartheta)
\]

where \(P(\hat{y} = j|\hat{y} = i) \) is an item (the \(ji \)-th item) in the noisy transition matrix \(Q \). We can see that the noisy transition matrix \(Q \) is exploited on the ‘clean’ scores \(P(\hat{y}|x, \vartheta) \) to tackle noisy labels.

We now present our model NETAB and introduce how NETAB performs Eq. (1). As shown in Figure 1, NETAB consists of two CNNs. The intuition here is that we use one CNN to perform \(P(\hat{y} = i|x, \vartheta) \) and use another CNN to perform \(P(\hat{y} = j|x, \theta) \). Meanwhile, the CNN performing \(P(\hat{y} = j|x, \theta) \) estimates the noise transition matrix \(Q \) to deal with noisy labels. Thus we add a transition layer into this CNN.

More precisely, in Figure 1, the CNN with a clean loss performs \(P(\hat{y} = i|x, \theta) \). We call this CNN the A-network. The other CNN with a noisy loss performs \(P(\hat{y} = j|x, \theta) \). We call this CNN the AB-network. AB-network shares all the parameters of A-network except the parameters from the Gate unit and the clean loss. In addition, AB-network has a transition layer to estimate the noisy transition matrix \(Q \). In such a way, A-network predict ‘clean’ labels, and AB-network handles the input noisy labels.

We use cross-entropy with the predicted labels \(\hat{y} \) and the input labels \(y \) (given in the dataset) to compute the noisy loss, formulated as below

\[
\mathcal{L}_{\text{noisy}} = -\frac{1}{|S|} \sum_{x \in S} \sum_i I(y = i|x) \log P(\hat{y} = i|x)
\]

where \(I \) is the indicator function (if \(y === i, I = 1 \); otherwise, \(I = 0 \)), and \(|S| \) is the number of sentences to train AB-network in each batch.

Similarly, we use cross-entropy with the predicted labels \(\hat{y} \) and the input labels \(y \) to compute the clean loss, formulated as

\[
\mathcal{L}_{\text{clean}} = -\frac{1}{|S|} \sum_{x \in S} \sum_i I(y = i|x) \log P(\hat{y} = i|x)
\]

where \(|S| \) is the number of sentences to train A-network in each batch.

Next we introduce how our model learns the parameters \((\vartheta, \theta \text{ and } Q)\). An embedding matrix \(v \) is produced for each sentence \(x \) by looking up a pre-trained word embedding database (e.g., GloVe.840B (Pennington et al., 2014)). Then an
Table 1: Summary statistics of the datasets. Number of positive (P) and negative (N) sentences in (noisy and clean) training data, validation data, and test data. The second column shows the statistics of sentences extracted from the 2,000 reviews of each dataset. The last three columns show the statistics of the sentences in three clean-labeled datasets, see “Clean-labeled Datasets”.

Domain	Noisy Training Data	Clean Training Data	Validation Data	Test Data
Movie	13539P, 13350N	4265P, 4265N	105P, 106N	960P, 957N
Laptop	9702P, 7876N	1064P, 490N	33P, 20N	298P, 175N
Restaurant	8094P, 10299N	1087P, 823N	39P, 14N	339P, 116N

In this section, we evaluate the performance of the proposed NETAB model. We conduct two types of experiments. (1) We corrupt clean-labeled datasets to produce noisy-labeled datasets to show the impact of noises on sentiment classification accuracy. (2) We collect some real noisy data and use them to train models to evaluate the performance of NETAB.

Clean-labeled Datasets. We use three clean labeled datasets. The first one is the movie sentiment polarity dataset from (Pang and Lee, 2005). The other two datasets are laptop and restaurant datasets collected from SemEval-2016. The former consists of laptop review sentences and the latter consists of restaurant review sentences. The original datasets (i.e., Laptop and Restaurant) were annotated with aspect polarity in each sentence. We used all sentences with only one polarity (positive or negative) for their aspects. That is, we only used sentences with aspects having the same sentiment label in each sentence. Thus, the sentiment of each aspect gives the ground-truth as the sentiments of all aspects are the same.

For each clean-labeled dataset, the sentences are randomly partitioned into training set and test set with 80% and 20%, respectively. Following (Kim, 2014), we also randomly select 10% of the test data for validation to check the model during training. Summary statistics of the training, validation, and test data are shown in Table 1.

Noisy-labeled Training Datasets. For the above three domains (movie, laptop, and restaurant), we collected 2,000 reviews for each domain from the same review source. We extracted sentences from each review and assigned review’s label to its sentences. Like previous work, we treat 4 or 5 stars as positive and 1 or 2 stars as negative. The data is noisy because a positive (negative) review can contain negative (positive) sentences, and there are also neutral sentences. This gives us three noisy-labeled training datasets. We still use the same test sets as those for the clean-labeled datasets. Summary statistics of all the datasets are shown in Table 1.

http://alt.qcri.org/semeval2016/task5/
Table 2: Accuracy (ACC) of both classes, F1 ($F1_{pos}$) of positive class and $F1_{neg}$ of negative class on clean test data/sentences. Training data are real noisy-labeled sentences.

Methods	Movie ACC	Movie $F1_{pos}$	Movie $F1_{neg}$	Laptop ACC	Laptop $F1_{pos}$	Laptop $F1_{neg}$	Restaurant ACC	Restaurant $F1_{pos}$	Restaurant $F1_{neg}$
NBSVM-uni (Wang and Manning, 2012)	0.6791	0.6663	0.6910	0.7637	0.8216	0.6500	0.7949	0.8478	0.6858
NBSVM-bi (Wang and Manning, 2012)	0.6416	0.6438	0.6394	0.7784	0.8320	0.6749	0.7154	0.7834	0.5853
CNN (Kim, 2014)	0.6667	0.6467	0.6844	0.7737	0.8381	0.6245	0.8329	0.8841	0.7007
Adaptation (Goldberger and Ben-Reuven, 2017)	0.6682	0.6708	0.6656	0.7272	0.7936	0.5981	0.8285	0.8872	0.6422
Forward (Patrini et al., 2017)	0.6864	0.6753	0.6969	0.7547	0.8170	0.6282	0.8329	0.8882	0.6965
Backward (Patrini et al., 2017)	0.6651	0.6160	0.6830	0.7124	0.7834	0.5723	0.7980	0.8485	0.6521
Masking (Han et al., 2018b)	0.6708	0.6631	0.6782	0.7188	0.7877	0.6144	0.8219	0.8789	0.6639
Co-teaching (Han et al., 2018b)	0.6150	0.5980	0.6306	0.7145	0.7867	0.5686	0.7978	0.8575	0.6515
NETAB (Our method)	0.7047	0.7076	0.7017	0.7928	0.8487	0.6711	0.8593	0.9056	0.7241

Figure 2: Accuracy (ACC) on clean test data. For training, the labels of clean data are flipped with the noise rates [0, 0.1, 0.2, 0.3, 0.4, 0.5] are shown in Figure 2. From the figure, we can see that the test accuracy drops from around 0.8 to 0.5 when the noise rate increases from 0 to 0.5, but our NETAB outperforms CNN. The results clearly show that the performance of the CNN drops quite a lot with the noise rate increasing.

5 Conclusions

This paper proposed a novel CNN based model for sentence-level sentiment classification learning for data with noisy labels. The proposed model learns to handle noisy labels during training by training two networks alternately. The learned noisy transition matrices are used to tackle noisy labels. Experimental results showed that the proposed model outperforms a wide range of baselines markedly. We believe that learning with noisy labels is a promising direction as it is often easy to collect noisy-labeled training data.
Acknowledgments

Hao Wang and Yan Yang’s work was partially supported by a grant from the National Natural Science Foundation of China (No. 61572407).

References

Dana Angluin and Philip Laird. 1988. Learning from noisy examples. *Machine Learning*, 2(4):343–370.

Devansh Arpit, Stanislaw K. Jastrzebski, Nicolas Blass, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon Lacoste-Julien. 2017. A closer look at memorization in deep networks. In *ICML*, pages 233–242.

Luciano Barbosa and Junlan Feng. 2010. Robust sentiment detection on twitter from biased and noisy data. In *COLING*, pages 36–44.

Alan Joseph Bekker and Jacob Goldberger. 2016. Training deep neural-networks based on unreliable labels. In *ICASSP*, pages 2682–2686.

Michael Gamon. 2004. Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In *COLING*, pages 841–847.

Wei Gao, Lu Wang, Yu-Feng Li, and Zhi-Hua Zhou. 2016. Risk minimization in the presence of label noise. In *AAAI*, pages 1575–1581.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017. Robust loss functions under label noise for deep neural networks. In *AAAI*, pages 1919–1925.

Jacob Goldberger and Ehud Ben-Reuven. 2017. Training deep neural-networks using a noise adaptation layer. In *ICLR*, pages 1–9.

Ziyu Guan, Long Chen, Wei Zhao, Yi Zheng, Shulong Tan, and Deng Cai. 2016. Weakly-supervised deep learning for customer review sentiment classification. In *IJCAI*, pages 3719–3725.

Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Tvor Tsang, Ya Zhang, and Masashi Sugiyama. 2018a. Masking: A new perspective of noisy supervision. In *NIPS*, pages 5836–5846.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. 2018b. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In *NIPS*, pages 8527–8537.

Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In *KDD*, pages 168–177.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *ICML*, pages 2309–2318.

Ishan Jindal, Matthew Nokleby, and Xuewen Chen. 2016. Learning deep networks from noisy labels with dropout regularization. In *ICDM*, pages 967–972.

Ashish Khetan, Zachary C Lipton, and Animashree Anandkumar. 2018. Learning from noisy singly-labeled data. In *ICLR*, pages 1–15.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In *EMNLP*, pages 1476–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li. 2017. Learning from noisy labels with distillation. In *CVPR*, pages 1910–1918.

Bing Liu. 2012. Sentiment analysis and opinion mining. *Synthesis lectures on human language technologies*, 5(1):1–167.

Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. 2012. Emoticon smoothed language models for twitter sentiment analysis. In *AAAI*, pages 1678–1684.

Tongliang Liu and Dacheng Tao. 2016. Classification with noisy labels by importance reweighting. *TPAMI*, 38(3):447–461.

Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah M Erfani, Shu-Tao Xia, Sudanthi Wijewickrema, and James Bailey. 2018. Dimensionality-driven learning with noisy labels. In *ICML*, pages 3361–3370.

Eran Malach and Shai Shalev-Shwartz. 2017. Decoupling “when to update” from “how to update”. In *NIPS*, pages 960–970.

Aditya Menon, Brendan Van Rooyen, Cheng Soon Ong, and Bob Williamson. 2015. Learning from corrupted binary labels via class-probability estimation. In *ICML*, pages 125–134.

Volodymyr Mnih and Geoffrey E Hinton. 2012. Learning to label aerial images from noisy data. In *ICML*, pages 567–574.

Ramanathan Narayanan, Bing Liu, and Alok Choudhary. 2009. Sentiment analysis of conditional sentences. In *EMNLP*, pages 180–189.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep Ravikumar, and Ambuj Tewari. 2018. Cost-sensitive learning with noisy labels. *Journal of Machine Learning Research*, 18:1–33.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels. In *NIPS*, pages 1196–1204.
