Improvement in the Frequency Characteristics of RF Magnetic Shielding: Effects of the Superposition of Two Ferrite Plates over a BPSCCO Plate

T Nishikubo¹, H Endo¹, K Itoh² and M Itoh¹

¹ Interdisciplinary Graduate School of Science and Engineering, Graduate School of Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
² Kasugai EMC Center, Kitagawa Industrial Co. Ltd., 1-27, Hikizawa, Kamiya-cho, Kasugai, Aichi, 480-0304, Japan

E-mail: t-nishikubo@hotmail.co.jp

Abstract. A high-critical temperature superconductor (HTS) is ideal for use as an RF electromagnetic shield. As one of the basic areas of research for the improvement of the electromagnetic environment by the use of a bulk HTS as an electromagnetic shield, the present paper has applied a Bi-Pb-Sr-Ca-Cu-O (BPSCCO) plate to the far field region. In the frequency region from 1 to 30 MHz, however, the RF magnetic shielding degree SD_H, with an average value of approximately 30 dB for the single BPSCCO plate, is not sufficient enough to shield electromagnetic waves. Accordingly, the present research has improved the frequency characteristics of SD_H for the single BPSCCO plate to realize shielding over a broadband frequency region of 1 MHz to 3 GHz by the superposition of two ferrite plates; termed the sandwiched plate. The frequency characteristics of SD_H for the sandwiched plate was improved by an average value of approximately 30 dB over the frequency region of 1 to 30 MHz. Experimental results revealed several characteristics of the sandwiched plate, which include the value of SD_H as a function of radio frequency, and the non-dependence of SD_H on the value of RF output power.

1. Introduction

Recently, with the rapid development in the field of information technology, there has been an increased need for electromagnetic shielding in the radio frequency (RF) region. Electromagnetic shielding plates are used to reduce the influence of environmental electromagnetic waves, and to protect the environment from the leakage of generated electromagnetic waves [1-5]. The present research has examined a bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO) plate, which employs perfect diamagnetism, as an ideal material for use as an RF shield [6-8]. Results indicate that the values of magnetic shielding degree SD_H for the BPSCCO plate increased as the applied frequency of the electromagnetic wave increased, over the RF range from 1 to 30 MHz, and then remained approximately constant in the region from 30 MHz to 3 GHz. The present authors have improved the frequency characteristics of the RF magnetic shielding of the BPSCCO plate, in the frequency region from 1 to 30 MHz, to realize shielding over a broadband frequency region of 1 MHz to 3 GHz. This was accomplished by the superposition of two ferrite plates [9] over a BPSCCO plate; termed the sandwiched plate. The present study examines three different sandwiched plates.

Experimental results revealed several characteristics of the three different sandwiched plates, including the RF magnetic shielding degree SD_H, as a function of radio frequency f, and the non-dependence of SD_H on the value of RF output power.
2. Experimental procedure
In present experiment, three different sandwiched plates were constructed, as illustrated in Fig. 1. In this figure, the constructed plates in (a), (b), and (c) are termed sample A the ferrite-BPSCCO-ferrite plates (FBF), sample B the BPSCCO-ferrite-ferrite plates (BFF), and sample C the ferrite-ferrite-BPSCCO plates (FFB), respectively. Here, the B and F represent the BPSCCO (Toshima, Lot. 7805-01, 50 mm square, 4 mm thickness) and ferrite (TDK, IB-015, 50 mm square, 6 mm thickness) plates, respectively. As depicted in this figure, the arrows represent the incident direction of the electromagnetic wave.

![Sketch of the geometry of the sandwiched plates. Here, (a), (b), and (c) illustrate sample A the ferrite-BPSCCO-ferrite plates (FBF); sample B the BPSCCO-ferrite-ferrite plates (BFF); and sample C the ferrite-ferrite-BPSCCO plates (FFB), respectively.](image)

The arrangement of the experimental system for measuring RF magnetic shielding effects in the far field region in the present study was previously described in Ref. [5]. The RF output in the frequency region from 1 MHz to 3 GHz of the tracking generator (HP, 8594E), which incorporates a spectrum analyzer, is amplified by 50 dB by the use of a broadband amplifier (Kalmus, 210LC-CE). The amplified output is then guided to a transmitting antenna in a metal cell. The signal is further transmitted to the receiving antenna in another metal cell, amplified by 38 dB by a preamplifier (Sonoma, 317), and then guided to the input terminal of the spectrum analyzer. The results from the spectrum analyzer are then transferred through a GPIB cable to a laptop computer. Figure 2 schematically illustrates the arrangement of the antennas and the two metal cells [10-12]. In the present research, the input power of the transmitting antenna and the distance between the two cells (17 mm) are held constant. In addition, loop antennas were used to measure the RF magnetic shielding effects.

The magnetic shielding degree SD_{m} can be specified in terms of the reduction in the magnetic field

![Schematic diagram of the two metal cells used to measure the RF magnetic shielding effects for the sandwiched plate.](image)
strength due to the shielding material [13]. In general, the value of \(SD_h\) is defined as

\[
SD_h = 10 \log \left(\frac{P_{H0}}{P_{H1}} \right)
\]

(1)

In this equation, \(P_{H0}\) and \(P_{H1}\) are the respective strength of the incident magnetic field and that of the magnetic field power of the transmitted wave, as it emerges from the sandwiched plate, i.e., the RF shield.

3. Results and discussion

Figure 3 shows the RF magnetic shielding degree \(SD_h\) for the BPSCCO, single-ferrite, and double-ferrite plates as functions of frequency \(f\), under a constant RF output power \(P_H\) of 10 dBm of the transmitting antenna. In this figure, the open circles, open squares, and open triangles demonstrate the shielding effects for the BPSCCO, single-ferrite, and double-ferrite plates, respectively, under temperature conditions of the boiling point of liquid nitrogen (77.4 K). For the BPSCCO plate, notable

![Figure 3](image)

Figure 3. Dependence of \(SD_h\) for the BPSCCO (open circles), single-ferrite (open squares), and double-ferrite (open triangles) plates on frequency \(f\), under temperature conditions of 77.4 K and a constant RF output power of 10 dBm.

![Figure 4](image)

Figure 4. Typical dependences of \(SD_h\) for the BPSCCO (solid circles), single-ferrite (solid squares), and double-ferrite (solid triangles) plates on frequency \(f\), under temperature conditions of 300 K and a constant RF output power of 10 dBm.
results of the characteristics of SD_H are displayed in the frequency region from 30 MHz to 3 GHz. On the other hand, the values of SD_H for the single- and double-ferrite plates remain constant in the frequency region from 1 to 40 MHz, and then decrease as the frequency f increases in the region from 40 MHz to 3 GHz. Furthermore, it is noted that the magnetic shielding characteristics of the single-ferrite plate exhibit characteristics similar to those of the double-ferrite plate.

The solid circles, solid squares, and solid triangles in Fig. 4 denote the values of SD_H for the BPSCCO, single-ferrite, and double-ferrite plates, respectively, under a constant P_H of 10 dBm and temperature conditions of 300 K (room temperature). As can be seen in this figure, the values of SD_H for the single- and double-ferrite plates decrease as the values of the frequency f increase, and have similar characteristics, in the frequency region from 1 MHz to 3 GHz. The characteristics of SD_H for the BPSCCO plate at room temperature were previously unknown, but are now revealed to increase from 18 to 38 dB in the frequency region from 1 MHz to 3 GHz. Namely, the BPSCCO plate can be

![Graph](image1)

Figure 5. Characteristics of SD_H for the BPSCCO plate (open circles), samples A (FBF, open diamonds), B (BFF, open triangles), and C (FFB, open squares) as functions of frequency f, under temperature conditions of 77.4 K and a constant RF output power of 10 dBm.

![Graph](image2)

Figure 6. Typical dependences of SD_H for the BPSCCO plate (solid circles), samples A (FBF, solid diamonds), B (BFF, solid triangles), and C (FFB, solid squares) on frequency f, under temperature conditions of 300 K and a constant RF output power of 10 dBm.
effective by employed as a magnetic shield over a wide frequency region.

To improve the frequency characteristics of the RF magnetic shielding effects for the BPSCCO plate, in order to realize broadband frequency characteristics, three different sandwiched plates were constructed, such as illustrated in Fig. 1. Figure 5 displays the RF magnetic shielding degree SD_h for the sandwiched plates as functions of frequency f, under a constant RF output power P_h of 10 dBm and temperature conditions of 77.4 K. In this figure, the open circles, open diamonds, open triangles, and open squares represent the shielding characteristics for the BPSCCO, samples A (FBF), B (BFF), and C (FFB), respectively. It can be seen that the values of SD_h for sample A (FBF) were improved over those of the BPSCCO plate in the frequency region from 1 to 30 MHz. Namely, the characteristics of SD_h for sample A have been improved by an average value of approximately 30 dB in this frequency region. Furthermore, it is found that the magnetic shielding characteristics of sample B (BFF) exhibit characteristics similar to those of sample C (FFB). However, the average values of SD_h for the samples B (BFF) and C (FFB) have been improved by only about 15 dB over that of the BPSCCO plate in frequency region from 1 to 30 MHz.

The sandwiched plates were then subjected to varying frequencies at room temperature (300 K). Figure 6 shows the dependence of SD_h for the three different sandwiched plates on frequency f, under a constant P_h of 10 dBm and temperature of 300 K. At this temperature, the values of SD_h demonstrate that the sandwiched plates were particularly effective as RF magnetic shields in the low frequency region, i.e., below 40 MHz. In particular, the values of SD_h for sample A remain fairly constant at approximately 65 dB over this frequency region.

On the different characteristics for three sandwiched plates such as shown in Figs. 5 and 6, it is assumed to be due to the boundary condition between plates. However, it is necessary to consider the order of the combination of the individual plates when constructing the sandwiched plate. The present authors are now investigating the physical meaning behind these results. Needless to say, however, these results demonstrate an important criterion for the fabrication of practical electromagnetic shielding.

Figure 7 displays the characteristics of SD_h for sample A (FBF) as functions of RF magnetic output power P_h of the transmitting antenna, under the temperature condition of 77.4 K. The open circles, solid circles, open diamonds, and solid diamonds represent the results for values of RF of 1 MHz, 10 MHz, 100 MHz, and 1 GHz, respectively. It can be seen that the values of SD_h for sample A (FBF) display no evidence of dependence on the values of output power P_h over the region between 5 to 30 dBm. Similar results were found for samples B (BFF) and C (FFB) (not shown).

Figure 7. Characteristics of SD_h for sample A (FBF) as functions of RF output power P_h, under temperature conditions of 77.4 K. The open circles, solid circles, open diamonds, and solid diamonds represent the results for values of RF of 1 MHz, 10 MHz, 100 MHz, and 1 GHz, respectively.
4. Conclusions
As part of development of RF magnetic shielding for a high-critical temperature superconductor (HTS) plate, the present paper has applied a superconducting BPSCCO plate in the far field. The characteristics of SD_H of a single-BPSCCO plate display notable results in the frequency region from 30 MHz to 3 GHz. The present study has, however, improved the frequency characteristics of the BPSCCO plate for realizing the RF magnetic shielding characteristics over a broadband frequency region of 1 MHz to 3 GHz. This was accomplished by constructing the sandwiched plate with the superposition of two ferrite plates over a BPSCCO plate. The values of SD_H for sample A (FFB), such as was shown in Fig. 5, have been improved by an average value of approximately 30 dB in this frequency region. In addition, the values of SD_H for samples B (BFF) and C (FFB) have been improved by an average value of approximately 15 dB, greater than those of the BPSCCO plate, in the frequency region from 1 to 30 MHz, with both samples exhibiting similar characteristics.

The dependence of SD_H for the three different sandwiched plates on frequency f, under temperature conditions of 300 K was also demonstrated, such as was shown in Fig. 6. It was found that, at room temperature, the characteristics of SD_H as a function of f revealed that the sandwiched plates were particularly effective as RF magnetic shields in the low frequency region, that is, less than 40 MHz.

From the results shown in Figs. 5 and 6, it was concluded that it is necessary to consider the order of the combination of the plates when constructing the sandwiched plate.

The authors are now investigating the physical meaning behind these results. It is noted that these results demonstrate an important criterion for the fabrication of practical electromagnetic shielding.

References
[1] Henry W O 1988 Noise reduction techniques in electronics systems (Canada: John Willy & Sons Inc.)
[2] John D K 1991 Electromagnetics (New York: McGraw-Hill, Inc)
[3] Umram S I and Aziz S I 1999 Electromagnetic waves (New Jersey: Prentice-Hall, Inc.)
[4] Itoh K, Hotta Y and Itoh M 2003 RF shielding characteristics of HTS plate: RF shielding improvement by changing the surface area of BPSCCO plate Physica C 386 438-43
[5] Norikane H, Nishikubo T, Gokyu S, Itoh K and Itoh M 2006 Improvement of frequency characteristics of a compound plate constructed from bincho- charcoal and ferrite plates IEEE Trans. on Applied Super. 16 1765-8
[6] Itoh K, Hotta Y, Itoh M, Munser N, Plewa J, Jaszcuk W and Altenburg H 2001 RF magnetic shielding effect of a sealed bottom HTS cylinder IEEE Trans. on Applied Super. 11 2394-7
[7] Altenburg H, Plewa J, Jaszcuk W, Itoh M, Brunets I, Buev A and Vilics T 2002 Superconducting materials for electronic applications Physica C 372-6 1046-50
[8] Itoh K, Sasai Y, Hotta Y and Itoh M 2002 Improvement of RF magnetic shielding effect of an HTS cylinder: the superposition a bincho-carbon square cylinder over a BPSCCO cylinder Physica C 372-6 1333-8
[9] Nicola A S 2003 Magnetic materials: Fundamentals and device applications (Cambridge: Cambridge University Press)
[10] Norikane H, Nishikubo T, Itoh K, Gokyu S and Itoh M 2006 Improvement of frequency characteristics in RF magnetic shielding effects of a bincho- charcoal plate by the superposition of a ferrite plate Trans. of the Mater. Res. Society of Japan 31 997-1000
[11] Nishikubo T, Norikane H, Endo H, Itoh K, Tojo F and Itoh M Improvement in the frequency characteristics of a bincho-carbon plate as an RF magnetic shield: The superposition of ferrite and BPSCCO plates on a bincho-carbon plate Trans. of the Mater. Res. Society of Japan 32 (in printing)
[12] Nishikubo T, Endo H, Norikane H, Itoh K, Tojo F and Itoh M RF magnetic shielding effects of an aggregated plate constructed from carbon tiles Trans. of the Mater. Res. Society of Japan 32 (in printing)
[13] Schelkunoff S A 1943 Electromagnetic waves (Princeton: Van Nostrand)