Masses and decay modes of charmonia using a confinement model

J N Pandya*, Ajay Kumar Rai† and P C Vinodkumar**

*Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, INDIA.
†Applied Physics Department, Faculty of Technology & Engineering, The M S University of Baroda, Vadodara 390 001, INDIA.
**Department of Physics, Sardar Patel University, Vallabhbhi Vidyanagar 388 120, INDIA.

Abstract. The masses of charmonium s and p-states, pseudoscalar and vector decay constants, leptonic, hadronic as well as radiative decay widths for charmonia have been computed in the framework of extended harmonic confinement model without any additional parameters. The outcome in comparison with other contemporary theoretical and experimental results is presented.

Keywords: charmonia, meson spectroscopy, masses and decay modes
PACS: 12.39.Pn; 12.40.Yx; 13.30.Ce; 13.30.Eg

The experimental investigations in charmed quark sector has opened up a vast data bank for the hadronic decays into various channels [1, 2, 3]. A hadronic transition or decay between quarkonium levels is understood as a two-step process in which gluons first are emitted from the heavy quarks annihilating each other and then recombine into light hadrons. Perturbative QCD is not directly applicable because the energy available to the light hadrons is small and the emitted gluons are soft. Nevertheless, the final quarkonium state is small compared to the system of light hadrons and moves nonrelativistically in the rest frame of the decaying quarkonium state.

Decay rates of heavy quarkonium states in the non-relativistic limit with some QCD radiative correction have been studied through various phenomenological models subjected to substantial relativistic corrections [4]. In the heavy flavour sector, the nonrelativistic expressions in accordance with the factorizable assumption for the long-distance part and the short-distance part of the decay amplitudes, are proportional to the square of the radial wave function at the origin. We employed there a relativistic harmonic confinement model with scalar plus vector potential [5].

HADRONIC MASSES FROM ERHM

The mass of a hadron having p number of quarks in ERHM can be obtained as [5],

$$M_N(q_1q_2........) = \sum_{i=1}^{p} \epsilon_{N}(q_i, p)_{conf} + \sum_{i<j=1}^{p} \epsilon_{N}(q_iq_j)_{coul} + \sum_{i<j=1}^{p} \epsilon_{N}^{J}(q_i, q_j)_{SD}$$ (1)

where the first sum is the total confined energies of the constituting quarks of the hadron, the second sum corresponds to the residual colour coulomb interaction energy between the confined quarks and the third sum is due to spin dependent terms.
The intrinsic energies of the quarks in charmonium system is given by

$$\varepsilon(N)_{\text{conf}} = \left[(2N + 3)\Omega_N(q) + M_q^2 - 3M_q\Omega_0(q)/\sum_{i=1}^{2} M_q(i) \right]^{1/2}$$ \hspace{1cm} (2)

The coulombic part of the energy is computed using the residual coulomb potential given by [6],

$$V_{\text{coul}}(qiqj) = \frac{k \alpha_s(\mu)}{\omega_n r}$$ \hspace{1cm} (3)

where ω_n represents the colour dielectric “coefficient” [6]. ω_n is found to be to be state dependent [5], so as to get consistent coulombic contribution to the excited states of the hadrons. It is a measure of the confinement strength through the nonperturbative contributions to the confinement scale at the respective threshold energy of the given flavour production.

We construct the wave functions for charmonia by retaining the nature of single particle wave function but with a two particle size parameter instead of $\Omega_N(q)$ [7].

Now coulomb energy is computed perturbatively using the confinement basis with two particle size parameter defined above for different states as,

$$\varepsilon_{N}(qiqj)^{\text{coul}} = \langle N|V_{\text{coul}}|N \rangle$$

The fitted parameters to obtain experimental ground state mass are $m_c = 1428$ MeV, $k = 0.19252$ and the confinement parameter $A = 2166$ MeV$^{3/2}$.

The confined gluon propagator derived in the current confinement scheme (CCM) for gluons has been employed in the derivation of one gluon exchange potential using RHM wave functions for quarks under the Breit formalism [8]. This COGEP has central, tensor and spin-orbit terms in addition to many momentum dependent terms.

From the centre of weight masses, the pseudoscalar and vector mesonic masses are computed by incorporating the residual two body chromomagnetic interaction through the spin-dependent term of the COGEP perturbatively as,

$$\varepsilon_{N}(qiqj)^{\text{S.D.}} = \langle NJ|V_{\text{SD}}|NJ \rangle$$ \hspace{1cm} (4)

where $|NJ\rangle$ is the given hadronic state. For mesons $|NJ\rangle$ becomes the $|qi\bar{q}j\rangle$ states. We consider the two body spin-hyperfine interaction of the residual (effective) confined one gluon exchange potential (COGEP) as [8],

$$V_{\sigma_i\sigma_j} = \frac{\alpha_s(\mu)N_i^2N_j^2}{4} \frac{\lambda_i \cdot \lambda_j}{[E_i + m_i][E_j + m_j]} \left[4\pi \delta^3(r_{ij}) - C_{\text{ccm}}^4 r^2 D_1(r_{ij}) \right] \left(-\frac{2}{3} \sigma_i \cdot \sigma_j \right)$$ \hspace{1cm} (5)

The spin-orbit interaction of the residual (effective) confined one gluon exchange potential (COGEP) is given as [8]

$$V_{LS}^{qiqj} = \frac{\alpha_s}{4} \frac{N_i^2 N_j^2}{(E_i + M_i)(E_j + M_j)} \frac{\lambda_i \cdot \lambda_j}{2r_{ij}} \left[4\bar{L} \cdot \overrightarrow{S} (D_0'(r_{ij}) + 2D_1'(r_{ij})) \right]$$ \hspace{1cm} (6)

In the case of mesonic states, \bar{L} and \overrightarrow{S} correspond to the orbital and spin operators of the relative co-ordinates. Where $D_0'(r_{ij})$ and $D_1'(r_{ij})$ appeared in Eqns (5) and (6) are derivatives of the confined gluon propagators of CCM [8].
TABLE 1. Masses of $c\bar{c}$ in comparison with PDG and other theoretical models

State	J^PC	Present	[1]	[17]	[18]	[19]	[20]	[21]pert	[21]nonpert
$\eta_c(1^3S_0)$	0$^+$	2985	2980	2981	2990	2979	3093	2980	2982
$\eta_c(2^1S_0)$	0$^-$	3626	3638	3625	3627	3588	3096	3597	3619
$\eta_c(3^1S_0)$	0$^-$	4047	-	4032	-	3991	-	4014	4053
$\eta_c(4^1S_0)$	0$^-$	4424	-	4364	-	-	-	-	-
$J/\psi(1^3S_1)$	1$^-$	3096	3097	3089	3097	3096	3096	3097	3097
$\psi(1^3S_1)$	1$^-$	3690	3686	3666	3685	3686	3476	3686	3686
$\psi(2^3S_1)$	1$^-$	4082	4040	4060	4050	4088	3851	4095	4102
$\psi(3^3S_1)$	1$^-$	4408	4415	4386	3443	-	4223	4433	4447
$\chi_c(0^3P_0)$	0$^+$	3497	3526	3524	-	3526	3467	3527	3524
$\chi_c(1^3P_0)$	1$^-$	3891	3800	3851	-	3854	3814	3844	3864
$\chi_c(1^3P_1)$	2$^+$	3899	3800	3923	-	3929	3815	3940	3950
$\chi_c(2^3P_2)$	1$^-$	3907	3904*	3941	-	3945	3815	3961	3963

DECAY PROPERTIES OF MESONS

Without any additional free parameters, using the Van-Royen-Weisskopf formula for computing leptonic decay widths [9] without radiative correction term, we have computed leptonic decay widths and are tabulated in Table 2 along with other theoretical as well as experimental values.

The Van Royen - Weisskopf formula used for the meson decay constants is obtained in the two-component spinor limit [10]. f_P and f_V are related to the ground state radial wave function $R_{1S}(0)$ at the origin, by the Van Royen - Weisskopf formula modified for the colour as,

$$f_{P/V} = 3|R_{1S}(0)|^2/\pi M_{P/V}$$

where $M_{P/V}$ is the ground state mass of the pseudoscalar/vector meson. In the present computations, $f_P = 410.34$ MeV which is closer to the experimental value of 410 ± 15 MeV, while the other results are 496.42 [9], 357 [11], 498.90 [13], 549.61 [14] and 663.06 [15] (all values in MeV).

We employ radial wave functions to compute the hadronic as well as radiative decay widths of the vector and pseudoscalar mesons of $c\bar{c}$ system based on the treatment of perturbative QCD as [16].

$$\Gamma(n^3S_1 \rightarrow \text{hadron}) = \frac{40}{81\pi}(\pi^2 - 9)\alpha_s^3\frac{|R_{nS}(0)|^2}{M_n^2}$$

$$\Gamma(n^1S_0 \rightarrow \text{hadron}) = 8\alpha_s^3\frac{|R_{nS}(0)|^2}{M_n^2}; \quad \Gamma(n^1S_0 \rightarrow \gamma\gamma) = 12\alpha_s^4e^4\frac{|R_{nS}(0)|^2}{M_n^2}$$

Here, symbols have their usual meanings. The computed decay widths in comparison with other theoretical predictions are tabulated in Table 3.
TABLE 2. Leptonic decay widths (in keV) of $c\bar{c}(n^3S_1)$

State	Present	[1]	[23]pert	[23]nonpert	[9]	[15]	[22]
$J/\psi(1^3S_1)$	5.469	5.55 ± 0.14	4.28	1.89	4.80	7.82	6.72 ± 0.49
$\psi(2^3S_1)$	2.140	2.48 ± 0.06	2.25	1.04	1.73	3.83	2.66 ± 0.19
$\psi(3^3S_1)$	0.796	0.86 ± 0.07	1.66	0.77	0.98	2.79	1.45 ± 0.07
$\psi(4^3S_1)$	0.288	0.58 ± 0.07	1.33	0.65	0.51	2.19	0.52 ± 0.02

TABLE 3. $\eta_c \rightarrow \gamma \gamma$ (in keV) with correction terms and light hadron decay (in MeV) of $c\bar{c}$ meson

Models	Γ	Γ_{NRQCD}	Γ_{EXP}	$\Gamma(a)$	$\Gamma(b)$
ERHM[5, 7]	7.67	7.06	10.90	0.79	
BT[13]	11.19	7.5 ± [24]	19.55	1.44	
PL(Martin)[14]	13.81	0.8	38.20	3.36	
Log[9]	11.26	9.02 ± [25]	20.84	1.58	
Cornell[15]	20.09	2.3	34.86	2.21	
CPP $\nu = 1.4 - VS[26, 27]$	8.36	13.72	0.84		
N Fabiano [28]		14.38±			
$a(\eta_c \rightarrow LH)$		1.07±0.55			

REFERENCES
1. Y M Yao et al [Particle Data Group]; J. Phys. G 33 (2006) 1
2. R. A. Briere et al [CLEO Collaboration]; Phys. Rev. D 74 (2006) 031106
3. Zhi-Gang Wang, Wei-Min Yang and Shao-Long Wan; Physics Letters B 615 (2005) 79
4. Olga Lakhina and Eric S. Swanson; Phys. Rev. D 74 (2006) 014012 and references therein.
5. P C Vinodkumar, J N Pandya, V M Bannur and S B Khadkikar; Eur. Phys. Jnl. A 4 (1999) 83
6. K Gottfried and V F Weisskopf, Concepts of Particle Physics (1986) 397
7. J N Pandya and P C Vinodkumar, Pramana J. Phys. 57 (2001) 821
8. P C Vinodkumar, K B Vijaya Kumar and S B Khadkikar, Pramana Jnl. of Phys. 39 (1992) 47
9. C Quigg and J L Rosner, Phys. Reports 56 (1979) 222
10. R Van Royen and V F Weisskopf, Nuovo Cimento A 50 (1967) 617
11. Cvetic et al, Phys. Lett. B 596 (2004) 84
12. Z Wang et al, Phys. Lett. B 615 (2005) 79
13. W Buchmüller and S H H Tye, Phys. Rev. D 24 (1981) 132
14. A Martin, Phys. Lett. B 92 (1980) 338; Phys. Lett. B 100 (1980) 511
15. Eichten et al, Phys. Rev. D 17 (1978) 3090
16. F E Close,“An introduction to quarks and partons”, Academic Press, London (1979)
17. T Barnes, S Godfrey and E S Swanson, Phys. Rev. D 72 (2005) 054026
18. J Vijande, N Barnea and A Valcarce, Int. J. Mod. Phys. A 22 (2007) 561
19. D Ebert, N Faustov and V O Galkin, Phys. Rev. D 67 (2003) 014027
20. A E Bernardini and C Dobrigkeit, J. Phys. G 29 (2003) 1439
21. S Ranford and W W Repko, Int. J. Mod. Phys. A 20 (2005) 3774
22. S M Ikhdair and R Sever, Int. J. Mod. Phys. A 21 (2006) 3989
23. S F Radford and W W Repko, Phys. Rev. D 75 (2007) 074031
24. E Braaten and J Lee, Phys. Rev. D 67 (2003) 054007
25. G T Bodwin, E Braaten and G P Lepage, Phys. Rev. D 51 (1995) 1125
26. Ajay Kumar Rai, J N Pandya and P C Vinodkumar, J. Phys. G 31 (2005) 1453
27. Ajay Kumar Rai, R H Parmar and P C Vinodkumar, J. Phys. G 28 (2002) 2275
28. N Fabiano and G Pancheri, Eur. Phys. J. C 25 (2002) 421