Activation of Receptor Gene Transcription Is Required to Maintain Cell Sensitization after Agonist Exposure

STUDY ON NEUROTENSIN RECEPTOR*

Mustapha Najimi‡§§, Frédérique Souazé§§, Milagros Méndez¶¶, Emmanuel Hermans***, Tsouria Barber, William Rostène, and Patricia Forgez‡‡

From INSERM U339, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France; *Laboratory of Pharmacology, Université Catholique de Louvain, 54.10, avenue Hippocrate 54, 1200 Brussels, Belgium; and **Instituto Mexicano de Psiquiatría, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D. F., Mexico

Neurotensin (NT) acts through specific G protein-coupled receptors to induce effects in the central nervous system and periphery. In this study we have shown that in the human neuroblastoma cell line CHP 212, an NT agonist, JMV 449, induced high affinity neurotensin receptor (NTR) gene activation. 125I-NT binding of cells challenged with JMV 449 rapidly decreased then reap- peared and subsequently stabilized at 50% of the control values after 48 h of agonist exposure. These receptors, which reappeared in the cell surface, are as active as those found in control cells as demonstrated by Ca2+ mobilization. Furthermore, the tyrosine hydroxylase (TH) gene, a known NT target gene, remained activated after prolonged NT agonist exposure in this cell line.

In the murine neuroblastoma cell line, N1E-115, NT did not stimulate NTR gene activation but induced NTR mRNA destabilization after long term agonist exposure. In this cell line, NT binding dropped to 15% of control values and remained at this value after agonist treatment. The TH expression, which was originally activated upon NT agonist exposure, decreased to control values after prolonged agonist exposure.

These observations combined with the data obtained from a complementary study with HT-29 cells (Souazé, F., Rostène, W., and Forgez, P. (1997) J. Biol. Chem. 272, 10087–10094) revealed the crucial role of agonist-in-induced receptor gene transcription in the maintenance of cell sensitivity. A model for G protein-coupled receptor regulation induced by prolong and intense agonist stimulation is proposed.

The G protein-coupled receptor constitutes a large family of plasma membrane receptors, representing 1% of the total genome, and are implicated in a diverse variety of cellular functions (1–3). The understanding of how the expression of these receptors are regulated should provide a better comprehension regarding agonist function.

Until now, most studies have reported on the effects of desensitization, receptor coupling, and second messenger stimulation of G protein-coupled receptors (4, 5). To elucidate these mechanisms, experiments were carried out on agonist-deprived cultured cells and then triggered with a rapid burst of high agonist concentrations. Under these conditions, cells would remain desensitized for long periods of time (6, 7). However, in vivo, cells are constantly surrounded by agonists, each possessing a characteristic basal level. In the stimulated state, receptors are triggered by “waves” of agonist such as the hormones released into the blood circulation, and the neurotransmitters released into the synaptic cleft, which are more or less intense or frequent.

The complete desensitization of a cell would have grave consequences in vivo, because the cell’s triggering mechanisms would be essentially inoperable for long periods of time. Rather it would seem required that the cell’s machinery would provide a means to remain sensitized to agonist during standard stimulated conditions. By examining the long term effect of agonist exposure on high affinity neurotensin receptor (NTR) expression, we were able to clarify a potential mechanism responsible for maintain of cell sensitization to neurotensin (NT) agonist.

NT acts as a neurotransmitter and a neuromodulator in the central nervous system and as a hormone in the periphery (8–10). The actions of NT are mediated by the stimulation of several specific receptors exhibiting low or high affinity for NT (11). These receptors have recently been cloned and belong to the G protein-coupled receptor family (12, 13). Second messenger pathways activated by NTR have been studied primarily in cultured cell lines expressing NTR. When murine neuroblastoma cells, N1E-115, are challenged with NT, phosphatidylinositols are hydrolyzed leading to Ca2+ mobilization and the formation of cyclic GMP (14, 15). In human colon adenocarcinoma cells (HT-29), NT also stimulates Ca2+ mobilization (16). In contrast to N1E-115 cells, stimulation by NT in HT-29 cells is not associated with protein kinase C activation (15, 17).

The mechanistic pathways through which NT acts are still unclear. Nevertheless, some of these pathways which provide the short or long term effects of NT are associated with the transactivation of gene transcription. Among the genes activated by NT through NTR are, c-fos, Zif 268, tyrosine hydroxylase (TH), and NTR itself (18–20). The activation of gene

* This work was supported in part by a fellowship from the Ministère de l’Enseignement Supérieur et de la recherche (to F. S.) and a fellowship from Association pour la recherche sur le Cancer. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Supported by a fellowship from the Moroccan government.

‡‡ To whom correspondence should be addressed. Tel.: 33-1-49-28-46-87; Fax: 33-1-43-40-82-70.

§§ These authors contributed equally to this work.

** Supported by an INSERM-Coopération Franco-Belge fellowship.

¶¶ Supported by a “Poste-Vert” from INSERM.

1 The abbreviations used are: NTR, neurotensin receptor; NT, neurotensin; CHP 212, human neuroblastoma cell line; HT-29, human colon cancer cell line; JMV 449, H-Lys4-WRCH5NH2Lys-Pro-Tyr-Ile-Leu-OH; N1E-115, murine neuroblastoma cell line; RT, reverse transcriptase; PCR, polymerase chain reaction; SR 49692, 2-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3-yl]carbonylaminotricyclic(3.3.1.1.3.7)-decane-2-carboxylic acid; TH, tyrosine hydroxylase; PBS, phosphate-buffered saline.

This paper is available on line at http://www.jbc.org

Vol. 273, No. 34, Issue of August 21, pp. 21634–21641, 1998
Printed in U.S.A.
transcription by NT relies on the presence, the quantity, and the coupling state of NTR at the cell membrane. Several studies have demonstrated that these receptor settings are regulated by the amount and duration to which cells are exposed to NT (16, 19–22). When cells are triggered by high concentrations of agonist, NTR becomes internalized and disappears from the cell surface (16) causing the cells to become desensitized from a few minutes to few hours (16, 20–22).

We have previously demonstrated that agonist-induced NTR expression is regulated at the transcriptional and post-transcriptional level (20) and that these mechanisms act independently of each other. In this study, our objective was to examine the effect of NTR expression variation due to NT agonist on cell sensitivity and on target gene stimulation (e.g. the tyrosine hydroxylase gene). For this purpose, two TH-expressing neuroblastoma cell lines, the murine-derived N1E-115 and the human-derived CHP 212, were used. These cell lines have the fortuitous advantage in that each line possesses only one of the two mechanisms previously described by Souazé et al. (20). In the present experiments, both cell lines were exposed to high concentrations of NT agonist for short and long term periods. We demonstrate that these cell lines react differently to NT depending on the state of NTR gene activation.

Cells which possess NTR gene activation capability remain sensitized, continue to express TH, and respond to agonist even after prolonged agonist exposure. In contrast, cells possessing only the destabilization mechanism for NTR mRNA, but lacking the transcriptional activation mechanism of NTR, lose their ability to bind NT, become desensitized, and cease to stimulate TH gene. We establish here, that the activation of receptor gene transcription is crucial to maintain cell sensitization. We propose a model of receptor expression regulation induced by intense or prolonged agonist exposure.

EXPERIMENTAL PROCEDURES

Cell Culture—Human (CHP 212) and murine (N1E-115) neuroblastoma cells were grown in Dulbecco's modified Eagle medium/F-12 (Life Technologies, Inc.). All media were supplemented with fetal calf serum (10%) and 1% dimethyl sulfoxide for 48 h. Cells were treated with 1 mM (22). et al. described previously in Boudin (25). For chronic treatment experiments, animals received a daily injection of NT (10 nmol) or vehicle (1% Tween) for 15 days and were sacrificed 24 h after the last injection. Tissue was removed and immediately frozen in liquid nitrogen and stored at -80°C.

Binding Studies—Binding assays on cultured cells were carried out in a humidified atmosphere of 5% CO₂-95% air. To induce the differentiation of agonist, NTR becomes internalized and disappears from the cell surface (16) causing the cells to become desensitized from a few minutes to few hours (16, 20–22).

Determiner of the [Ca²⁺]i—Determination of intracellular calcium was performed as described previously by Hermans et al. (24). Briefly, cells grown on glass coverslips were incubated for 1 h with 5 μM fura-2-AM and then examined using an inverted epifluorescent Nikon microscope. The [Ca²⁺]i was estimated from 4–5 cells, excited with the 340/380-nm wavelength pair. Emitted fluorescence intensity was measured at 510 nm.

Animals and Treatments—Adult male Wistar rats (200–250 g) (IFFA Credo, France) were maintained on a 12-h light/12-h dark cycle with lights on at 8:00 a.m. and were given food and water ad libitum. Rats were killed by decapitation, and the different brain structures or peripheral tissues were removed and immediately frozen in liquid nitrogen and stored at -80°C until use. Brain structure dissections were performed according to the stereotaxic atlas of Paxinos and Watson (25). For chronic treatment experiments, animals received a daily intraperitoneal injection of SR 48992 at a dose of 1 mg/kg (Sanofi Recherches, Toulouse, France) or vehicle (1% Tween) for 15 days and were decapitated 24 h after the last injection.

Binding Studies—Radioligand binding studies were carried out either on membranes or on cultured cells. Membranes were prepared as described previously in Boudin et al. (26). Binding studies were performed as follows. Membranes (500 μg of protein) were incubated with 0.1 nM 3H-NTR in a final volume of 250 μl of buffer A (50 mM Tris, pH 7.4, 0.2% bovine serum albumin and 0.8 mM 1,10-orthophenanthroline) for 1 h at room temperature. Binding assays on cultured cells were carried out in 12-well culture plates containing 10° cells/well. After the various treatments, the binding procedure was followed as described by Scarcériaux et al. (22).

To verify that JMV 449 was completely washed away before the binding was performed, cells were incubated for 30 min on ice with 1 μM JMV 449. Cells were washed three times with cold phosphate-buffered saline, membrane preparations or binding assays on cultured cells were performed as described above. Under these conditions, the recovery of binding from cells incubated with JMV 449 was 85–88% compared with control cells.

RNA Extraction and Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR)—Total RNA was extracted from cells by the acidic phenol/chloroform guanidine thiocyanate method (27). Additional details are described in Refs 20, 28, and 29. Quantitative RT-PCR was carried out according to the conditions previously described in Refs. 28 and 29. For N1E-115 RNA was quantified using cRNA606 (rat NTR coding region deleted by 96 base pairs between the site HincII-NcoI) as internal control, and total rat brain structures and peripheral tissues were quantified by using cRNA234 (rat NTR coding region deleted by 34 base pairs between the site NcoI-Nhel) as internal control (28, 29). 0.5–5 μg of the total RNA and various dilutions of internal control were reverse transcribed for 1 h at 37°C with 200 units of Moloney murine leukemia virus reverse transcriptase (Life Technologies, Inc.) in a mixture containing 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, 10 mM dithiothreitol, 1 unit/ml of RNasin, 50 pmol of the specific primer (RT-NTR), and 1 mM concentration of each dNTP in a 30-μl final volume. The PCR amplification was performed on 1.5% T/A of the RT reaction in a containing 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, 10 mM dithiothreitol, and was performed with a final concentration of each dNTP (29). For each primer (NTR-sense and NTR-antisense), 1 × 10⁶ copies of a 5′-end-labeled [γ-32P]ATP NTR-AS and 1 unit of Taq polymerase (Perkin-Elmer Cetus). The amplification profile consisted of denaturation at 94°C for 30 s, annealing at 55°C for 1 min, and extension at 72°C for 1 min 30 s. The 26–30 cycles of PCR were preceded by denaturation at 95°C for 5 min and were followed by a final extension at 72°C for 10 min. Amplification was performed in a DNA thermal cycler 480 (Perkin-Elmer Cetus). For the quantitative assay, total RNA was mixed with an exact number of internal control molecules, which were previously estimated from the titration assay and reverse transcribed, for details see Refs. 20, 28, 29. A series of 3-fold dilutions from RT reaction were amplified under the same conditions as described above. In all experiments, the difference between the internal control, cRNA380 or cRNA334, and NTR mRNA never exceeded 1.5-fold, providing an accuracy of at least 90% (28).

Western Blotting—N1E-115 and CHP 212 cell extracts were analyzed by 10% SDS-polyacrylamide gel electrophoresis according to Laemmli procedure (30). After electrophoresis, proteins were transferred to nitrocellulose membrane (Bio-Rad) (31). Following electrobolting, nitrocellulose membrane was probed with a polyclonal anti-NTR antibody (Jacques Boy, France) for CHP 212 and a monoclonal anti-TH antibody (Boehringer Mannheim) for N1E-115. The antigen-antibody complex was visualized with horseradish peroxidase-conjugated goat anti-mouse or goat anti-rabbit antibodies and the ECL system (Amersham Pharmacia Biotech). Relative amounts of proteins were quantified by scanning densitometry using the software program RAG (Biocom France).

Statistics—Statistical analysis were performed using the Student's t test. Data are expressed as the mean ± S.E.

RESULTS

NTR Binding Characteristics in CHP 212 and N1E-115

Cells—Binding studies were performed on membrane homogenates of N1E-115 and CHP 212 using 125I-NTR. The two cell lines exhibited a specific and saturable binding. In differentiated N1E-115, Scatchard analysis revealed a Kₐ value of 66.3 ± 26.2 pM and a Bₘax value of 52.8 ± 7.5 fmol/mg of protein membrane. These results are very similar to those found in the same cell line by Bozzo et al. (32). Binding characteristics in CHP 212 cells revealed a Kₐ value of 153 ± 30.6 pm, and a binding capacity value of 15.1 ± 7.6 fmol/mg of membrane was detected. The Kₐ values were similar to those obtained when Chinese hamster ovary cells were transfected with the human high affinity NTR (33).

NT Agonist Stimulates Intracellular Ca²⁺, Mobilization in CHP 212—In contrast to N1E-115, in which second messenger pathways have been extensively studied, no data are available for the transduction pathways associated with NTR in CHP 212. For this reason, we confirmed that NTR was efficiently coupled to G protein in CHP 212. When CHP 212 cells were
triggered with 1 μM of NT agonist, JMV 449, a rapid and large increase in the [Ca$^{2+}$] was observed after 15 s. As shown in Fig. 1A, the peak of [Ca$^{2+}$] is concentration dependent. A significant response was detected with 1 nM JMV 449 and a maximal stimulation was observed with 100 nM JMV 449. The EC$_{50}$ value (8.7 ± 0.73 nM) was in the same range as those observed in primary cultured neurons and PC-12 expressing NTR cells (34, 35).

The desensitization of NT to Ca$^{2+}$ mobilization was studied. As shown in Fig. 1B, after stimulation with 1000 nM JMV 449, [Ca$^{2+}$] rapidly returns to basal levels. No Ca$^{2+}$ mobilization was seen when cells were washed and exposed to a second JMV 449 stimulation. This desensitization phenomenon is partial, depending on the agonist concentration employed (Fig. 1B). A further challenge by 1000 nM of agonist did not elicit any response in those cells already treated with medium to high concentrations of agonist (10 and 1000 nM). Cells initially treated with 1 nM of agonist were responsive to this challenge. The desensitization of NTR is usually observed in cell lines that naturally express NTR in primary cell culture (34).

NTR mRNA Regulation Induced by Agonist Treatment Is Distinct in Both Neuroblastoma Cell Lines—The level of NTR mRNA was studied after short term (5 h) and long term (72 h) NT agonist treatment (1 μM JMV 449). The number of molecules of NTR mRNA was measured by quantitative RT-PCR as described by Souaza et al. (28). The basal level of NTR mRNA in both cells is very low, 204,000 ± 33,000 molecules/μg of total RNA in N1E-115, and 263,000 ± 58,000 molecules/μg of total RNA in CHP 212. Exposure of CHP 212 cells to JMV 449 resulted in a large increase (232%) of NTR mRNA after 5 h of treatment. This increase (281%) persisted after prolonged exposure with JMV 449 (Fig. 2). In N1E-115 the NTR mRNA regulation was very distinct. As shown in Fig. 2, no changes in NTR mRNA levels were detected after 5 h of treatment. A prolonged treatment (72 h) showed a decrease of 39% of NTR mRNA level.

To determine whether the decrease in NTR mRNA observed in N1E-115 cells was induced via the second messenger pathway, cells were treated with 1 μM JMV 449 for 0.5, 1, and 2 h, washed three times with PBS, and incubated with fresh medium for 48 h. Under these conditions, 30 min of JMV 449 treatment is sufficient to induce 48 ± 5.5% decrease of NTR mRNA 48 h later (Fig. 3). This finding indicates that the decrease of NTR mRNA levels after prolonged agonist treatment is the result of early cellular events occurring after the stimulation of the N1E-115 by NT agonist.

Mechanisms Underlying NTR mRNA Regulation Is Transcriptional in CHP 212 and Post-transcriptional in N1E-115—
NTR mRNA turnover was studied to determine the molecular mechanisms underlying the variations observed in NTR mRNA levels. For this purpose, transcription was inhibited with actinomycin D in control cells or in cells pretreated with JMV 449. As shown in Fig. 4, the half-life of NTR mRNA in N1E-115 was reduced by approximately 4 times when cells were treated for 72 h with JMV 449. This result indicates that post-transcriptional events are directly implicated in the down-regulation of NTR mRNA. In contrast, in CHP 212 a similar half-life was displayed in control cells and cells treated with JMV 449 for 5 h and 72 h (Table I). This result suggests that NTR mRNA stabilization was not responsible for NTR mRNA induction. The extremely low expression of NTR in CHP 212 limits the feasibility of a nuclear run-on study. Therefore, we could not directly demonstrate that the induction of NTR mRNA is because of the activation of the NTR gene. Nevertheless, concomitant treatment with JMV 449 and actinomycin D for 5 h prevents the increase of NTR mRNA levels indicating that a transcriptional event initiates the induction of NTR mRNA (control cells treated with actinomycin D 9,329 ± 1,832 molecules, cells treated with JMV 449 for 5 h, and actinomycin D 7,584 ± 1,887 molecules). We conclude that NTR mRNA is regulated by two distinct molecular mechanisms, transcriptional in CHP 212 and post-transcriptional in N1E-115.

NTR Binding upon Prolonged NT Agonist Treatment Is Different in CHP 212 and N1E-115—The time course of NT agonist treatment was studied on 125I-NT binding in the two cell lines. As shown in Fig. 5A, changes in 125I-NT binding occurred when cells were treated with JMV 449. When both cell lines were challenged with 1 μM JMV 449, 125I-NT binding rapidly decreased. After 2 h of treatment, 90% of 125I-NT binding was lost. Surprisingly, after a prolonged exposure to JMV 449, CHP 212 exhibited a 50% 125I-NT binding recovery, whereas in N1E-115, the 125I-NT binding remained at 10% of the control value. No additional changes in 125I-NT binding were detected after stabilization at 48 h (Fig. 5A). Similar experiments were performed on membrane homogenates and identical results were observed (data not shown). The loss of 125I-NT binding was also detected when N1E-115 cells were treated with 3 nM JMV 449 or NT (data not shown).

In CHP 212 cells, the 50% 125I-NT binding recovery is not in agreement with the level of NTR mRNA, which is increased approximately two-fold after prolonged JMV 449 exposure (Fig. 2). The degradation rate of JMV 449 is notably lower than NT (36), therefore, the continuous presence of agonist in cell media, even in small amounts, may mask the detection of a receptor exposed at the membrane surface. To answer this question, CHP 212 cells were incubated with 1 μM JMV 449 for 48 h, washed three times with cold PBS, then incubated with fresh media at 37 °C for different periods of time. The result of this experiment is shown in Fig. 5B. The recovery of 125I-NT binding, compared with the control value, is a long process because a 36-h incubation period is necessary to reach the control value. This result suggests that a regulatory mechanism limits the number of receptors exposed at the cell surface. The presence of receptor pools localized in vesicles inside the membrane and not accessible by the agonist was checked. For this purpose, binding experiments were performed on cells treated with 1 μg/ml of the detergent digitonin. As shown in Fig. 5C, the
Differential Regulation of Neurotensin Receptor Expression

125I-NT binding of digitonin-treated cells exposed for 48 h with JMV 449 is increased by 200% as compared with digitonin-treated control cells. This result indicates that the NTR mRNA increase is correlated with an increase of NTR synthesis and that the new receptors are inaccessible to the agonist, thus representing a reservoir of receptors.

Fig. 5. Effect of JMV 449 on 125I-NT binding on CHP 212 and N1E-115 cells. Panel A, time course of JMV 449 on 125I-NT binding. CHP 212 or N1E-115 were exposed to 1 µM JMV 449 for 2–72 h. 125I-NT binding was performed as described under "Experimental Procedures." Panel B, time course of 125I-NT binding recovery after JMV 449 exposure. CHP 212 cells were treated for 48 h with 1 µM JMV 449, washed 3 times with cold PBS, and incubated for 3, 24, 36, or 48 h with new medium. Binding assays were then performed as described under "Experimental Procedures." Panel C, effect of digitonin on 125I-NT binding after JMV 449 exposure in CHP 212. Cells were incubated for 48 h with 1 µM JMV 449, washed 3 times with cold PBS, and the binding assay was performed in the presence of 1 µg/ml of digitonin (D). Data, expressed as percent of control binding in untreated cells, are the mean ± S.E. of three to five independent experiments performed on separate cells. ***, p < 0.001 relative to control

In this study, we used two neuroblastoma cell lines, N1E-115 and CHP 212, which exhibited different NTR regulation mechanisms induced by agonist exposure. By analyzing the levels of NTR mRNA expression and NT binding capacity during agonist exposure, we established the key role of receptor gene transcription in the maintenance of cell sensitization following long term agonist exposure.

DISCUSSION

In a previous study, we demonstrated the presence of two distinct modes of NTR expression upon treatment with high concentrations of NT agonist in HT-29 cells. The initial mechanism detectable after 6 h of agonist exposure, resulted in the activation of the NTR gene transcription. The second mechanism could only be detected after prolonged agonist exposure (72 h), and was post-transcriptional, resulting in the destabilization of NTR mRNA (20). Similar results are also found for the β2-adrenergic receptor where a short term agonist exposure stimulated the rate of the receptor gene transcription and long term agonist exposure induced the destabilization of the
receptor mRNA (38, 39). In relation to this observation, one of the two mechanisms are detected independently for other G protein-coupled receptors in different cell lines. Indeed, the activation of receptor gene transcription after high concentration of agonist exposure was detected in the expression of 5-HT2 and β1-adrenergic receptors (40, 41). In a similar vein, receptor RNA destabilization is observed after prolonged agonist exposure in α1-adrenergic and M1 muscarinic receptors (42, 43).

The ability to separate transcriptional up-regulation from post-transcriptional destabilization in HT-29 cells peaked our interest previously, because these experiments suggested that these mechanisms were entirely independent (20). In this paper, we confirm this interpretation because only one of the two mechanisms is present in the two cell lines. In CHP 212, only the activation of NTR gene transcription is active, whereas in N1E-115 only the mRNA destabilization mechanism is present. In the latter cell line, only 30 min of agonist exposure was necessary to induce NTR mRNA destabilization at 48 h. This destabilization is therefore an early event occurring after the stimulation of the receptor by agonist, suggesting that it is the result of the activation of the second messenger pathway. In contrast, as described for HT-29 cells, the activation of NTR gene transcription mechanism required a high concentration and duration of agonist exposure, indicating that this reaction is triggered by different physiological pathways (20).

To establish that similar mechanisms exist in vivo, the regulation of NTR expression by NT was studied by chronic blockade of the neurotensinergic transmission with an NTR antagonist. This treatment resulted in increases or decreases in NTR mRNA levels depending on the brain structures or peripheral tissues studied (Fig. 7). These data indicated that, in vivo, distinct mechanisms inducing up and down NTR mRNA regulation are present and that they could potentially be the same mechanisms described in the cell lines.

Prolonged agonist exposure produced marked differences in the behavior of NTR in CHP 212 and N1E-115 cell lines. In the cell line capable of agonist-induced NTR gene activation, the binding of NT, after a rapid decline because of the down-regulation process, reappeared and stabilized at 50% of the control value. In contrast, N1E-115 cells lose NT binding capacity long before the RNA destabilization sets in. When both mechanisms are present, as in HT-29 cells, the binding stabilized at 50% of the control value after long term agonist exposure (20). These results strongly suggest that transcriptional gene activation is a required step for the reappearance of a receptor at the cell membrane in CHP 212 cells. Therefore, the lack of transcriptional activity leads to the desensitization of N1E-115 cells.

In CHP 212 cells, the apparent discrepancy between NTR mRNA levels and the NT binding capacity after long term agonist exposure (Figs. 2 and 5A) was noticed. In addition, the restoration of cell binding capacity was required 36 h after removal of agonist from the medium and never exceeded control values (Fig. 5B). This discrepancy was because of the storage of NTR in intracellular compartments as confirmed by digitonin treatment of CHP-212 cells (Fig. 5C). Similar intracellular pools of receptors have been reported for the thrombin receptor, which is not recycled after agonist stimulation (5). The presence of these intracellular receptor pools suggested that new receptor molecules were synthesized from the NTR mRNA.

FIG. 6. Effect of JMV 449 on expression of tyrosine hydroxylase. N1E-115 or CHP 212 cells were treated with 1 μM JMV 449 for 5 or 72 h. Fresh medium containing the same treatment was renewed every 24 h. Expression of TH was estimated from Western blots from cell extracts obtained as described under “Experimental Procedures.” Values are the mean ± S.E. of three separate experiments. ***, p < 0.01 relative to control.

FIG. 7. Effect of SR 48692 on NTR gene expression. SR 48692 or 1% Tween was administered intraperitoneally at a daily dose of 1 mg/kg for 15 days. Total RNA was extracted, and NTR mRNA quantities were determined as described under “Experimental Procedures.” Data are expressed as a function of controls (100%). VMes, ventral mesencephalon; Ht, hypothalamus; PfCx, prefrontal cortex; Str, striatum; Cer, cerebellum; Co, colon; D, duodenum; P, pancreas. Confidence levels were determined using the Student’s t-test; *, p < 0.05; **, p < 0.01.
molecules proceeding the activation of NTR gene transcription.

The primordial role of NTR gene transcription mechanism in the resensitization of the cells was a surprise finding and was established by two lines of evidence. First, Ca²⁺ mobilization is similar in CHP 212 cells treated with agonist for 48 h and in control cells. Additionally, we analyzed the expression levels of an NT target gene as a function of cell binding capacity and agonist exposure. The CHP 212 and N1E-115 lines were originally chosen for these studies because of their catecholaminergic phenotype and the fact that one of the transduction effects resulting from the binding of NT to NTR is TH gene stimulation (19). As expected, TH was activated after short term NT agonist exposure in both N1E-115 and CHP 212 cell lines. However, after prolonged agonist exposure, TH expression persisted and was enhanced in CHP 212 cells where NTR gene transcription was active (Fig. 6). In contrast, TH expression is no longer stimulated in N1E-115 cells after prolonged NT exposure. Therefore, the receptors that reappeared at the cell surface of the CHP 212 cells 48 h after NT agonist exposure were functional and able to trigger NT message. Thus, receptor gene transcription is directly implicated in maintaining agonist action on a target gene and in the maintenance of the cell-sensitized state.

TH gene transcription is also activated after the stimulation of G protein-coupled receptors such as angiotensin II, vasoactive intestinal polypeptide, nicotine, and muscarinic receptors. Two major promotor elements, an AP1 and a cyclic AMP/calcium regulatory element which can be independently activated, were implicated (47, 50). In the case of NTR, the increase of TH level in the cells is mediated by an AP1 element in a PKC-dependent pathway (data not published).

The results drawn from this article and other studies enable us to propose a model for NTR expression and regulation (4–6, 20). An illustration representing how cells maintain agonist sensitivity is shown in Fig. 8. At basal agonist levels (left), receptor expression is limited by the destabilization of receptor mRNA. In the stimulated state (right), the following chronological events occur. 1) The transduction pathway is activated leading to the activation of the agonist target genes. 2) The target proteins are produced. 3) If the agonist exposure is very intense, persistent, or chronic, receptor gene transcription is stimulated. 4) New receptors are synthesized; some restore the sensitivity of the cells, and others are stored in submembrane pools. During this process the mechanism of RNA destabilization is probably still active, because we showed that both mechanisms are independent. In the proposed model the cells are never desensitized, except under extreme agonist stimulation. The mechanisms, which cause the accumulation of the receptors in submembrane pools and the destabilization of mRNA, most likely protect the cell from a hyper-agonist stimulation.

In conclusion, we demonstrate the importance of receptor gene transcription in maintaining the cell sensitivity. The mechanism inducing this activation is still unclear, though it seems that the triggering of the second messenger is not the sole pathway involved.

Acknowledgments—We express many thanks to Dr. Neil Insdorf for precious help in the writing of the manuscript and for helpful discussions. We also thank Dr. D. Pêlaprat for helpful discussions on binding studies, Anne Marie Lhiaubet for providing 125I-neurotensin, and Dr. D. Gully for providing SR 48962 (Sanofi Recherches).

REFERENCES
1. Clapham, D. E. (1996) Nature (Lond.) 379, 297–299
2. Kardoor, V., Shih, M., Tholanikunnel, B., and Malbon, C. (1996) Prog. Neurobiol. 48, 555–568
3. Rens-Domiano, S., and Hamm, H. E. (1995) FASEB J. 9, 1059–1066
4. Chuang, T. T., Lacovelli, L., Sallese, M., and De Blasi A. (1996) Trends Pharmacol. Sci. 17, 416–421
5. Hein, L., and Koblika, B. K. (1995) Neurupharmacology 34, 357–366
6. Yu, S. S., Lefkowitz, R. J., and Hausdorff, W. P. (1993) J. Biol. Chem. 268, 357–341
7. Steel, M. C., and Buckley, N. J. (1993) Mol. Pharmacol. 43, 694–701
8. Carraway, R., and Leeman, S. E. (1976) J. Biol. Chem. 251, 7045–7052
9. Nemeroff, C. B., Bissette, G., Manberg, P. J., Osbahr, A. J., III, Breese, G. A.,
