Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound?

Dear Editor,

The rapidly spreading COVID-19 pandemic resulted in more than 8.5 million cases diagnosed and 450,000 deaths on June 20th, 2020. As described with other coronaviruses, SARS-CoV-2 was first expected to induce a monophasic disease with at least transient immunity. Nevertheless, rare cases of suspected COVID-19 “re-currence” or “reactivation” have been reported, including the description by Ye & Colleagues in this journal of 5 patients with suspected SARS-CoV-2 reactivation after home discharge. Similarly, the COCOREC (Collaborative study COVID REcurrents) study aimed at summarizing clinical and virological data of patients presenting a second confirmed COVID-19 episode, at least 21 days after the first onset, and after a symptom-free interval [oxygen-free and discharge from acute-care unit (ACU), or return to usual clinical state]. Cases were collected retrospectively at a multicenter observational level through the COCLICO (Collaborative CLinicians COVID-19) French study group meeting. A COVID-19 episode was defined by (i) at least one recent major clinical sign of COVID-19 including fever or chills, febrile flu-like-syndrome, dyspnoea, anosmia, or dyseusia; and (ii) a positive SARS-CoV-2 RT-PCR test. Patients were not included if a differential diagnosis (amongst which bacterial, fungal or other viral superinfection, thrombo-embolic complication, secondary organizing pneumonia or interstitial lung disease) could explain the symptom recurrence. After information, all patients agreed with the use of their anonymous medical data. The study has been approved by the Ethic Committee of French Speaking Society of Infectious Disease (CERMIT, number 2020-0503 COVID).

Between April 6th and May 14th, 2020, 11 patients were identified (sex ratio M/F 1.2, median age 55, range [19–91] years). The median duration of symptoms was 18 [13–41] days for the first episode and 10 [7–29] days for the second one for the 7 patients who eventually recovered. Epidemiological and clinical data are summarized in Table 1.

Four healthcare workers (patients 1–4, median age 32.5 [19–43] years) without significant comorbidity had a first mild COVID-19 episode with a complete recovery: three returned to work in COVID units, one had possible COVID re-exposure at home (patient 2). All of them experienced a clinical relapse requiring sick-leave but no hospitalization after a median symptom-free interval of 9 [7–14] days.

In contrast, 7 older comorbid patients (patients 5–11, median age 73 [54–91] years) required ACU hospitalization for both episodes, with a clinical recovery of 11 [4–27] days in the interval. During the first episode, one patient received lopinavir, and three corticosteroids. Six of them required oxygen therapy again during the second episode. Two patients died of ARDS recurrence and another of chronic right heart failure worsening.

All patients had a positive SARS-CoV-2 RT-PCR test in respiratory samples for both episodes (Table 2). They all showed CT scan signs of acute COVID-19 during the second episode, worsening for 4 in 7 when comparison available, including a case of pulmonary embolism without sign of superinfection and no differential diagnosis (supplementary Table). A SARS-CoV-2 serology was available after D21 for nine patients: five were positive, one slightly positive and three negative. A viral culture was performed on Vero E6 cells from naso-pharyngeal swabs of two patients during the second episode; one was positive with a typical cytopathic effect of SARS-CoV-2 and confirmed by RT-PCR; after sequencing, the strain was shown to belong to the B2 European lineage (Rambaut et al., bioRxiv preprint, doi: https://doi.org/10.1101/2020.04.17.046086).

Immunity to SARS-CoV-2 involves both cell-mediated and humoral responses, but its protective role from re-infection along with definitive viral clearance is uncertain. Our case series of 11 patients having experienced two separate symptomatic COVID-19 episodes, associated with viral detection and no evidence for a differential diagnosis, raises two pathophysiological hypotheses underlying these recurrences: viral reactivation or viral reactivation from sanctuaries. In the case of healthy healthcare workers with mild symptoms at both episodes, a re-infection due to the prolonged exposition can be supposed, given the fact that the immune response may fail in this young population with no invasive infection. The second group included vulnerable persons less likely to have met the virus again and having presented two repeated episodes of hypoxemic pneumonia, fatal in three cases. Recurrence might have occurred due to a suboptimal control of the SARS-CoV-2 infection, allowing a second episode of viral replication.

COVID-19 recurrences should be differentiated from secondary complications such as pulmonary embolism or super infection or persistence of traces of viral RNA that can be detected in respiratory samples up to 6 weeks after onset of symptoms in clinically-cured patients.

Immunosuppressive factors such as drugs or pathological conditions could contribute to impair viral clearance and favour SARS-CoV-2 reactivation. Three of the 7 severe patients of our series, and 3 of 4 patients reported by Ye received corticosteroids during the first episode. Furthermore, from our 3 patients who developed no SARS-CoV-2 antibodies more than 21 days after severe symptoms, two received recent chemotherapy and/or rituximab.

An inflammatory rebound triggered by an inappropriate immune response could constitute an alternative explanation to the recurrence of clinical symptoms. Yet, the facts that viral RNA was detected in all patients –some of them with low cycle threshold- and that a viral strain could be cultured during the second episode for one of them rather support re-infection or virus replication's rebound.

https://doi.org/10.1016/j.jinf.2020.06.073
0163-4453/© 2020 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Table 1
Clinical characteristics of COVID 19 first and 2nd episodes, from onset of first episode (D1) to last follow-up (home-care patients: patients1–4; hospitalized patients: patients 5–11).

Case	Age	Sex	Past medical history	First episode Clinical characteristics	Treatments	1st Clinical cure	2nd episode Clinical characteristics	Treatments	Duration of 2nd episode (days)	Outcome
1	19	F	None (HCW)	FLS with no fever-cough-dyspnoea-AO-DG	None	D18	FLScough-dyspnoea-chest pain	None	on-going	home care
2	32	F	None (HCW)	Cough-AO-myalgia-headache	None	D29	FLS	None	10	cured
3	33	F	First trimester pregnancy (HCW)	Myalgia-headache-fatigue-nasal congestion-sore throat	None	D13	Fatigue-nasal congestion-sore throat-chills	None	8	cured
4	43	M	None (HCW)	FLS-AO- headache	None	D14	Cough-dyspnoea-fatigue	None	29	cured
5	85	M	Bronchiectasis - CHD - pace maker - arrhythmia	Fever-cough-dyspnoea-fatigue-confusion-falls	O2, ATB	D17	Cough-dyspnoea-fatigue-chest pain-confusion-acute heart failure	O2	6	cured
6	54	M	HT	Fever-cough-dyspnoea-severe ARDS-fatigue	ICI, OTI, ATB, LPV/rtv, CTS	D41	Cough-dyspnoea-diarrhoea-ARDS-fatigue	ICI, OTI, ECMO, ATB	34	death
7	91	F	CHD - HT-CVD-atherosclerosis-arrhythmia - DM CLD, cirrhosis Child C	Fever-dyspnoea-fatigue-pleureal & pericardial effusion	O2, ATB, CTS	D13	Dyspnoea-fatigue	none	9	cured
8	55	M	DM	Fever-dyspnoea-pleural & pericardial effusion	O2, ATB, CTS	D21	Dyspnoea-headache-diarrhoea-fatigue	ICU-HFNIV-OTI, ATB	20	cured
9	72	M	Anti MAG neuropathy (rituximab, bendamustine) DLBCL (chemotherapy n-22)	Fever-cough-dyspnoea-worsening neuropathy	O2, ATB	D21	Fever-cough-dyspnoea -fatigue – worsening neuropathy	ICU-HFNIV-OTI, ATB	29	death
10	73	M	LBCL/DLBCL	Fever-fatigue-abdominal cutaneous rash	ATB	D13	Fever-dyspnoea-fatigue	O2, ATB, CTS	17	cured
11	84	F	CLD / O2T – mild CRD - CHD arrhythmia/ATC - valvulopathy - atherosclerosis - DM	Fever-cough-dyspnoea-AO-fatigue	O2, curative ATC, ATB, CTS	D23	Fever-cough-dyspnoea-fatigue	O2, HFNIV, ATB, tocilizumab, CTs curative ATC	30	death

Abbreviations: ATB: antibiotics - AO: anosmia – ATC: anticoagulation - CHD: Chronic Heart Disease- CLD: Chronic Lung Disease- CRD: Chronic Renal Disease – CVD: CerebroVascular Disease – CTS: corticosteroids DM: Diabetes Mellitus – DG: dysgeusia - DLBCL: Diffuse Large B Cell Lymphoma – ECMO: extra-corpooreal membrane oxygenation – FLS: Flu Like Syndrome (= fever + myalgia + fatigue +/- sore throat, nasal congestion) – HT: hypertension – HCW: Health Care Worker - HFNIV: High Flow Non Invasive Ventilation - ICU: Intensive Care Unit -LPV/rtv: lopinavir/ritonavir – NA: Non Available - OTI: Oro-Tracheal Intubation - O2: oxygen therapy.

* No improvement after 7 days of piperacillin-tazobactam; apyrexia 4 days after pip-taz stop and before linezolid.
Table 2
Laboratory findings of COVID-19 first and 2nd episodes, from onset of first episode (D1) to last follow-up.
(home-care patients: patients 1–4; hospitalized patients: patients 5–11).

Case	Blood tests	SARS CoV2 PCR	No symptom CRP if available	Blood tests	SARS CoV2 PCR	Serology		
		Days from onset	CT if available °		Days from 1st onset	CT if available °	Days from 1st onset	Results
1	NA	D2	E 18 - N22 - RdRP 19	NA	D29	E 35 - IP2 37 - IP4 42	D58	POSITIVE total Ig
2	NA	D18	E 23.9 - N NA - RdRP 23.6	NA	D36 D55	E 31.5 - N NA - RdRP 30.3 NEGATIVE	NA	NA
3	NA	D3	30.5	NA	L 1800	IP2 38.3 - IP4 36.2	D27	POSITIVE IgG IgM
4	NA	D3	POSITIVE, CT NA	NA	L 1300 Eo	90CRP 1	D31, 45	slightly POSITIVE IgG, NEGATIVE IgM
5	L 290 Eo 0 CRP 33	D1	E8 - N11 - RdRP 12	L 1870 CRP 17 PCR D36 : + E35	D46	E 33 - N 33 - RdRP 32 Viral culture NEGATIVE	NA	POSITIVE IgG IgM
6	L 690 CRP 365	D16 D 38, 44	IP2 29.4 - IP4 29.9 NEGATIVE	L 2750 CRP 28	D45	IP2 38.3 - IP4 36.2	D31	POSITIVE IgG IgM
7	L 720 Eo 10 CRP 143	D3	ORF1 18.7 - N 18.1	L 1500 CRP 34	D26	ORF1 29.7	D27	POSITIVE IgG IgM
8	L 629 Eo 0 CRP 74	D6	16	L 1400 CRP 33	D31	POSITIVE, CT NA	D27 D47	Ambiguous POSITIVE IgG
9	L 630 Eo 260 CRP 39	D7	POSITIVE, CT NA	L 750 Eo 90 CRP 8	D31, 32, 36	POSITIVE, CT NA	D41	NEGATIVE
10	L 60 Eo 0 CRP 112.8	D6	17 Cutaneous PCR neg	L 80 CRP 18	D35	18	D25	NEGATIVE
11	L 770 CRP 88	D11	IP4 31	L 1180 CRP 4.2	D50	IP4 16.7 Viral culture POSITIVE	D53	NEGATIVE

L: lymphocytes (per mm³); Eo: Eosinophils polymorphonuclear leukocytes (per mm³); CRP: C Reactive Protein (mg/l); NA: Non Available.
° SARS CoV2 Polymerase Chain Reaction: cycle threshold (CT), envelope gene (E), nucleocapsid gene (N), ARN polymerase gene (RdRP, IP2, IP4), specific Open Reading Frame (ORF).
This work has some limitations. In addition to the limited number of observations, the cure between episodes was only clinically-defined (except for patient 6) because iterative RT-PCR controls were not recommended by French guidelines. Finally, viral culture could be performed only for two patients, with no phylogenic sequence comparison at this time.

In conclusion, the fact that patients could experience reactivation of a long-lasting virus carriage or might be re-infected, as well as potential long-term effects of drugs or diseases that hamper the immune response, constitutes a substantial point of vigilance for the management of the pandemic at the individual and collective levels. Studies including genomic comparisons of viral strains involved in both episodes, determination of RNA infectivity by viral culture, as well as assessment of innate and adaptive immunity and monitoring inflammatory targets, would be of great value for further understanding the underlying pathophysiology of these COVID-19 recurrences.

Declaration of Competing Interest

None of the authors has any conflict of interest to declare regarding this subject. This work had no financial support.

Acknowledgements

We thank Mr. Nicolas Dumeges and Mrs Alison Mac Lean for the proofreading.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jinf.2020.06.073.

References

1. Kiyuka PK, Agoti CN, Munywoki PK, Njeru R, Bett A, Otieno JR, et al. Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya. J Infect Dis 2018;217(11):1728–30 05.
2. Tang F, Quan Y, Xin Z-T, Wrammert J, Ma M-J, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol Bacteriol Md 1950 2011;186 (12):7264–8 Jun 15.
3. Ye G, Pan Z, Pan Y, Deng Q, Chen L, Li J, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect 2020;80(5):e14–17.
4. Ravioli S, Ochsner H, Lindner G. Reactivation of COVID-19 pneumonia: a report of two cases. J Infect 2020 [published online ahead of print, 2020 May 7]. doi: 10.1016/j.jinf.2020.05.008.
5. Loconalde D, Passerini F, Palmieri VO, Centrone F, Sallustio A, Pugliesi S, et al. Recurrence of COVID-19 after recovery: a case report from Italy. Infection 2020;1-3 [published online ahead of print, 2020 May 16]. doi:10.1007/s15127-020-01444-1.
6. Zhou L, Liu K, Liu HG. [Cause analysis and treatment strategies of “recurrence” with novel coronavirus pneumonia (COVID-19) patients after discharge from hospital]. Zhonghua jie he he xi zhong hua jie he hui za zhi. Chin J Tuberc Respir Dis 2020;43(4):281–4 Apr 12.
7. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Modrablecher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020;181(7):1489–501 e15. doi: 10.1016/j.cell.2020.05.015.
8. Zhao J, Yuan Q, Wang H, Liu W, Xiao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis Off Publ Infect Dis Soc Am [Internet] 2020. Mar 28 [cited 2020 Jun 26]; Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184337.
9. Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. Chin Infect Dis. 2020;ciaa460 [published online ahead of print, 2020 Apr 19]. doi:10.1093/cid/ciaa460.
10. Ling Y, Xu S-R, Lin Y-X, Tian D, Zhu Z-Q, Dai F-H, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020;133(9):1039–43 May 5.
Elisabeth Botelho-Nevers
Infectious Diseases Department, University Hospital of Saint-Etienne, 42055 cedex 02 Saint-Etienne, GIMAP (EA 3064), France
University of Saint-Etienne, University of Lyon, Faculty of Medicine of Saint-Etienne, 42023 cedex 02 Saint-Etienne, France

*Corresponding authors.

E-mail addresses: marie.gousseff@ch-bretagne-atlantique.fr (M. Gousseff), pauline.penot@ght-gpne.fr (P. Penot), laure.gallay@chu-lyon.fr (L. Gallay), nicolas.benech@chu-lyon.fr (N. Benech), kbouiller@chu-besancon.fr (K. Bouiller), rocco.collarino@aphp.fr (R. Collarino), anne.conrad@chu-lyon.fr (A. Conrad), joseph.cedric@chu-amiens.fr (C. Joseph), adrien.lemaignen@univ-tours.fr (A. Lemaignen), xavier.lescure@aphp.fr (F.-X. Lescure), matthieu.mahevas@aphp.fr (M. Mahevas), bruno.pozzetto@chu-st-etienne.fr (B. Pozzetto), benjamin.wyplosz@aphp.fr (B. Wyplosz), dominique.salmon@aphp.fr (D. Salmon), f.goehringer@chru-nancy.fr (F. Goehringer), elisabeth.botelho-nevers@chu-st-etienne.fr (E. Botelho-Nevers)

1 all the authors contributed equally to this article.