Title
Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation.

Permalink
https://escholarship.org/uc/item/0pc2f7zj

Journal
Cell communication and signaling : CCS, 7(1)

ISSN
1478-811X

Authors
Resende, Rodrigo R
Adhikari, Avishek

Publication Date
2009

DOI
10.1186/1478-811x-7-20

Peer reviewed
Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

Rodrigo R Resende*1,2 and Avishek Adhikari3

Address: 1Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil, 2Institute of Learning and Research Santa Casa of BH (IEPSC – BH), Belo Horizonte, Brazil and 3Department of Biological Sciences, Columbia University, New York, NY, 10027, USA

Email: Rodrigo R Resende* - rrresende@hotmail.com; Avishek Adhikari - aa2369@columbia.edu

* Corresponding author

Abstract

Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.

Introduction

Acetylcholine (ACh) is an ancient signaling molecule, [1] and is present in both prokaryotes and eukaryotes [2-4]. Although ACh has been extensively studied for its role as a neurotransmitter, it also has autocrine functions [5] in diverse cell types. ACh has been shown to promote cytoskeleton organization, cellular proliferation, differentiation and apoptosis [2-4,6-8] throughout development [2,3,9]. Intriguingly nAChR signaling pathways have been preserved throughout evolution [10], suggesting that they have critical functions. We shall attempt to discuss the physiology of ACh as well as ACh’s relevant downstream pathways in apoptosis, cell proliferation and neuronal differentiation of embryonic stem cells.

Interestingly, nicotinic receptors are expressed in undifferentiated and differentiating cells, [8,11-13] suggesting that ACh-mediated signaling between neuronal and non-neuronal cells may influence cell fate [8,11,12,14]. Supporting this idea, ACh has been shown to modulate neuronal cell differentiation during development [15,16]. Moreover, transfecting a non-neuronal cell line such as a neuroblastoma with choline acetyltransferase induces expression of neuronal markers, muscarinic receptors and
production of ACh [14]. Lastly, ACh also regulates cell proliferation [17] and apoptosis [18]. These and other findings marked the beginning of a new field: the role of nAChRs in the development and progression of cancer and in stem cell physiology.

Nicotinic ACh receptors

ACh receptors can be nicotinic (nAChRs), which are ion channels, or G protein-coupled (GPCR) muscarinic receptors (mAChRs). In the central nervous system, nAChRs have been shown to regulate diverse processes such as neurotransmitter release and cellular excitability. Nicotinic receptors also influence physiologic processes such as arousal, sleep, fatigue, anxiety, pain processing, hunger and various higher cognitive functions. [19-22].

nAChRs structure and function

nAChRs are multisubunit proteins of neuromuscular and neuronal origins. These receptors form ligand-gated ion channels that mediate synaptic transmission both in the neuromuscular junction and between neurons. Since various neuronal nAChR subunits exist, nAChRs can be formed by different combinations of subunits. [23]. Nicotinic receptors of different compositions exhibit different specificities for various ligands and are thereby pharmacologically distinguishable. For example, the elapid alpha-neurotoxins that block activation of nAChRs at the neuromuscular junction do not block activation of other neuronal nAChR subtypes [24].

A functional nAChR consists of five subunits which may be different (certain combinations of α1–9 and β1–4, γ, δ, ε subunits) or identical (α7–9) i.e. subunits [25]. All subunits have a similar structure with one extended extracellular domain (N-terminal), four transmembrane domains (M1–M4), one intracellular domain of variable length which joins M3 and M4 domains and one small extracellular C-terminal domain [26]. The binding site for ACh and other agonists is located on the N-terminal extracellular domain at the boundary between α and non-α subunits. In heteromeric neuronal receptors the α and β subunits contribute to the binding site The amino acid sequence analysis of various subunits shows that nicotinic receptors can be divided into three sub-classes. The first family includes α-bungarotoxin-sensitive muscle-type heteromeric receptors, typically found in skeletal muscle and fish electrical organs, with (α1)β1γδ and (α1)β1γε pentamic structures in fetal and adult form, respectively. The second family includes nAChRs consisting of α-bungarotoxin-insensitive, heteromeric subunits. These receptors have various combinations of α2, α3, α4 and α6 with β2, β4, α5 and β3 subunits. The third family includes α-bungarotoxin-binding nicotinic neuronal receptors consisting of five identical subunits (α7, α8 or α9) [19].

Neuronal nAChRs are expressed in the autonomic nervous system ganglia, and in the CNS, in post- pre and extra synaptic locations. The α7 nAChR subtype is highly expressed in regions of the brain involved in learning and memory, such as the hippocampus and the neocortex [27]. This subtype has a particularly high permeability for calcium ions, increases glutamatergic neurotransmission, and modulates neuronal plasticity by influencing the growth of axons [28].

Studies on the structure, functions and pharmacology of nAChRs neuronal receptors are necessary because these receptors are involved in a large number of nervous system diseases (for review see Clementi and Adlkofer Special Issue on "nicotinic neuronal receptors" 2000).

Muscarinic ACh receptors

mAChRs structure and function

Muscarinic receptors are members of the G Protein-coupled receptors (GPCRs), and are composed of a family of five receptor subtypes (M1, M2, M3, M4 and M5). These receptors are widely distributed on multiple organs and tissues and are critical to the maintenance of central and peripheral cholinergic neurotransmission. The distribution of these receptor subtypes in the brain and other organs has been extensively studied. M1 is the predominant subtype found in the cerebral cortex and is involved in the control of cognitive functions. M2 is the main subtype in the heart and is believed to play a role in the control of heart rate. M3 is involved in gastrointestinal and urinary tract functioning as well as sweating. M4 is present in the brain and may have a role in locomotion. Lastly, M5, also present in the brain, modulates certain functions of the central nervous system associated with the dopaminergic system, such as dopamine release in the nucleus accumbens following mesopontine stimulation in mice [29]. The M5 subtype is also important for brain-stimulation reward [30], opiate reward [31], latent inhibition learning and amphetamine-induced locomotion [32-34].

As mAChRs are involved in such a wide array of processes, it is not surprising that muscarinic signaling has been shown to be abnormal in many diseases, such as overactive bladder [35,36], chronic obstructive pulmonary disease [36,37], neurodegenerative disease as Alzheimer’s disease [38], dementia [39], Sjogren’s disease [40], vascular dementia [41] and others. Consequently, there is considerable interest in finding pharmacological agents to selectively modulate each receptor subtype. Agonists such as muscarine and pilocarpine and antagonists such as atropine have been known for over a century; however, these drugs do not target specific subtypes. Unfortunately, little progress has been made in the discovery of subtype-
selective compounds making it challenging to study specific functions of individual receptor subtypes. The clinical utility of classic muscarinic antagonists such as atropine is limited due to the high incidence of both peripheral and central adverse effects such as tachycardia, blurred vision, dryness of mouth, constipation, dementia, etc. Atropine derivatives such as ipratropium bromide are better tolerated but most of them lack of selectivity for specific muscarinic receptor subtypes. [42-44]. Thus, the search for subtype selective muscarinic drugs remains an active area of research.

Muscarinic subtypes are coupled to different GPCRs, leading to activation of distinct downstream pathways. M1, M3 and M5 are G-protein coupled receptors (subunit α of the Gq/11 family), while M2 and M4 subtypes are coupled to the α subunit of Gq and G11. Consequently different second messenger dependent-pathways being activated by each muscarinic subtype. For example, phospholipase Cβ (PLC) is activated by M1, M3 and M5, while adenylate cyclase is activated by M2 and M4 subtypes [45]. Processes modulated by pathways involving these G-proteins include smooth muscle contraction (through M2 and M3 receptors), stimulation of glandular secretion (M3 receptors) and inhibition of cardiac voltage-dependent calcium channels (M2 subtypes) [45].

Expression and function of n- and mACHRs in embryonic cells
ACh [46] is present in the brain prior to axonogenesis and synaptogenesis, suggesting that it may mediate non-classical signaling. Furthermore, muscarinic receptors are widely expressed in embryonic cells [8,13,47-54], and have been shown to regulate neuronal cell proliferation and differentiation [47,50,51]. In neuronal progenitor cells, muscarinic receptor expression also occurs prior to the onset of synaptogenesis and neurotransmission [9,55], indicating that ACh may act via a local autocrine loop in the embryo. In early development, M2 receptors are expressed in the dorsal root ganglia neurons, as well as in non-neural cells such as Schwann cells, where they control sensory neuronal differentiation and axonal growth [56]. Intriguingly, muscarinic receptors are also expressed in primary and metastatic tumor cells in which ACh also acts in an autocrine fashion [57]. As discussed above, expression of muscarinic receptors is an embryonic trait. The expression of these receptors in tumor cells [8,13,58-63] likely arises from reactivation of embryonic genes during malignant growth [52]. Proliferation due to mAChR activation has been reported in many tumor cells. For example, activation of muscarinic M1, M3 or M5 muscarinic receptors (but not M2 or M4 receptors) induces foci of transformation in 3T3 cells [64,65]. Furthermore, activation of the Gqα11-coupled muscarinic receptors in various cell lines [59,66,67] or the α7 nicotinic subtype in P19 embryonic carcinoma cells [13,68,69] induces growth and proliferation. These effects of muscarinic receptor activation depend on the cellular phenotype [70,71]. Activation of M3 induces proliferation in human colon cancer cell lines and prostate carcinoma cells [72]. In contrast, activation of endogenous M3 inhibits DNA synthesis in several small cell lung carcinoma cell lines [72]. These contradictory responses also occur in cells transfected with mAChRs, as transfected M3 mAChRs have been reported to both inhibit and stimulate proliferation [73-75]. In cells deprived of trophic factors, muscarinic M3 receptor activation elicits anti-proliferative signals via activation of the small GTP-binding protein, Rac1 [72,76,77]. However, muscarinic agonists can also inhibit apoptosis. Pretreatment of tumor cell lines with muscarinic agonists inhibits apoptosis induced by DNA damage [78-81]. Moreover, agonists for M1, M3 and M5 subtypes showed a protective response against apoptosis in Chinese hamster ovary cells transfectected with these muscarinic receptors [82]. This effect occurs via a mechanism independent of Ca2+/PLC signaling that may involve upregulation of the anti-apoptotic protein Bcl-2 [6,83]. It is unclear whether muscarinic receptor activation is related to tumor growth and stem cell proliferation [84-87]. In addition to morphogenesis, non-neuronal muscarinic receptors also control cell migration, as M3, M4 and M5 subtypes were shown to control cell migration by facilitating fibronectin-induced movement [58,88-90]. Contraction and aggregation of cells in embryonic tissue is also induced by muscarinic receptor activation [91]. In this way, mAChRs could modulate cellular movement during morphogenesis [92,93].

Apoptotic signaling pathways
Apoptotic pathways associated with mAChRs
Many G-protein-coupled receptors protect cells from apoptosis induced by growth factors, DNA damage or cellular stress. Among those receptors, mAChRs have been shown to be protective in many cell lines and primary cell cultures [8,78-80,94,95]. These reports raise the possibility that damage to cholinergic pathways might contribute to the development of neurodegenerative disorders, such as Alzheimer and Huntington. In some neurodegenerative disorders losses of neuronal survival stimuli occur, leading to cell death. It is known that mAChRs inhibit apoptosis through activation of PI3-kinase (phosphatidylinositol-3-OH kinase) and its downstream targets, protein kinase B (PKB)/Akt and MAPK/ERK (Figure 1) [96]. These kinases activate pro-survival pathways in diverse cell types [96], including neurons [97,98]. Previous work [77,80,99-101] has demonstrated that Akt can be activated effectively through Gqα coupled to M1 and M3, and G11 coupled to M2. Activation of Akt occurs through βγ complexes and the α, Gαq, and Gαi subunits of Gs proteins. The cell survival effects mediated by mAChRs are
partially blocked by inhibitors of the PI3-kinase MAPK/ERK pathways [99]. Interestingly, Lindenboim et al., [78], have demonstrated that the protective effects of ACh in undifferentiated and neuronal PC12 cells require M1 receptors. In this condition, expression of M2 receptors decreases DNA synthesis, arresting the cell cycle at S and G2/M. Furthermore, activation of M1 and M3 receptors inhibits caspase 2 and 3, and this effect has been shown to be independent of PI3-kinase and MAPK/ERK pathways [77,79,102]. Previous reports have described cholinergic signaling in progenitor and tumoral cells. Gutkind and collaborators [73] showed how mAChRs exert oncogenic control in neuronal cell growth by regulating signaling of extracellular-1/2/MAP. Similar results were also obtained in non-neuronal cell types [103-105]. Although it is unclear if mAChR activation is related to oncogenic progression, there are reports suggesting that inhibition of mAChRs decrease cell proliferation [8,106]. In line with these results, previous work showed that apoptosis can be induced in Chinese hamster ovary cells transfected with the M3 receptor and exposed to toxic substances [83]. This effect might be related to caspase action, considering that M3 receptor activation did not prevent cell death. This process may be specific for \(G_{q/11} \) coupled muscarinic subtypes, specifically M1, M3 and M5 [79,83]. However, the use of a version of M3 truncated at its carboxyl end revealed that this protection is not mediated by PLC or by phosphorylation of its receptor. Moreover, these pathways are not involved in activation of ERK and JNK, so presumably, the anti-apoptotic actions of mAChRs are not mediated by these proteins, but through its own C terminal domain, which is rich in basic residues [83]. The mechanism through which mAChRs mediate cell survival is dependent on transcription of the anti-apoptotic protein Bcl-2, which can be induced by mAChRs [83]. This protective feature of mAChRs may be a conserved among other G-protein coupled receptors.

By targeting two signaling pathways, the MAPK/ERK pathway [107,108] and the PI3-kinase signaling pathway [109], it would be possible to gain new insights on the intracellular signaling pathways through which mAChRs inhibit apoptosis. It has been suggested that these pathways inhibit caspases [77,79,102]. To this end, it was shown that PKB/Akt, the downstream target of PI3-kinase, can inhibit both caspase-9, [110-112] and the pro-apoptotic protein Bad [112-115]. However, PKB/Akt can also be activated by other pathways. These are mediated by

Figure 1

Diagram depicting apoptotic pathways modulated by nAChRs and mAChRs in neuronal progenitor cells. See text for a better description.
protein kinase A (PKA), calcium/calmodulin-dependent kinase and Bad [114,116-119]. Interestingly, inhibitors of the PI3-kinase or MAPK/ERK pathways could not suppress the muscarinic effect on caspases, although all were able to inhibit the muscarinic-dependent phosphorylation of PKB/Akt and MAPK/ERK. Furthermore, previous studies in PC12 cells have shown that these inhibitors block survival effects and ERK and PI3-kinase signaling [120,121]. It has been suggested that the MAPK/ERK and PI3-kinase pathways are not essential for mediating the muscarinic effect on caspase activity in PC12 cells [79], but rather that this effect is mediated by an unidentified pathway. This finding is in line with recent studies showing that in some cases the survival effects of growth factors and cytokine receptors are mediated by pathways independent of both MAPK/ERK and PI3-kinase. For example, neither the survival effect of nerve growth factor (NGF) on sympathetic neurons [122] or rat-1/MycER cells transfected with TrkA [123], nor that of granulocyte/macrophage colony-stimulating factor on MC cells, is mediated by the PI3-kinase pathway [124]. Moreover, the MAPK/ERK and the PI3-kinase pathways are not essential for the survival effect of NGF on apoptosis induced by ceramide in PC12 cells [121]. However, the PI3-K/Akt pathway has an established role in NGF-promoted cell survival [125].

Activation of PI3-K by NGF initiates a cascade involving Akt, which leads to the phosphorylation and inhibition of the pro-apoptotic protein Bad and activation of the pro-survival inhibitor x kinase α (IKKα) [116,126]. Blockade of the PI3-K/Akt pathway by a dominant negative Akt mutant or treatment of cells with PI3-K inhibitors reveal that activation of this signaling pathway is required for NGF-promoted cell survival [127]. However, it was shown that pertussis toxin did not inhibit Akt phosphorylation. This finding is consistent with the previous observation of pertussis toxin having a more profound inhibitory effect during the early phase of NGF-induced Erk1/2 activation [128]. Upon activation, the TrkA receptor activates the PI3-K pathway, leading to activation of Akt in sympathetic neurons [125]. Previous studies have shown that TrkA forms complexes with GRK2 and GAIP/GIPC (GAIP-interacting protein, C terminus) [128,129], thereby providing a bridge to link TrkA and G protein signaling pathways. Furthermore, there is prior evidence pointing to a functional association between pertussis toxin-sensitive G proteins and growth factor receptors such as the insulin receptor tyrosine kinase [130]. In addition, some pertussis toxin-sensitive growth factor-induced responses have been reported. For example, insulin-like growth factor 1 has been shown to activate Gα and release Gβγ subunits [131,132], while TrkA is able to utilize Gα to stimulate Erk1/2 [128,133]. Increasing evidence shows that GPCRs often cooperate with RTKs (receptor tyrosine kinases) in the regulation of numerous signal transduction pathways [134-136]. More recently, a report has demonstrated that NGF and lysophosphatidate receptor signaling systems can interact to promote G protein-mediated activation of the Erk pathway [133]. These observations are consistent with the notion that TrkA can utilize pertussis toxin-sensitive Gα proteins to activate Akt, thereby inhibiting Bad and stimulating the NFκB regulator, IKK, via Gα activation [137,138] to allow cell survival through the M3 subtype [83,139,140].

One candidate for mediating the muscarinic effect on caspases is sphingosine-1-phosphate, which was shown to play an important role in the survival effect of NGF on PC12 cells [141]. Interestingly, sphingosine-1-phosphate can be induced by the M2 muscarinic receptor [142]. Intriguingly, inhibition of the PI3-kinase pathway partially attenuates the muscarinic survival effect on the viability of the cells but not on caspase inhibition. One possible explanation is that serum-deprived cells can die via both caspase-dependent and -independent pathways, as shown in some apoptotic paradigms such as Bax-induced cell death in the presence of caspase inhibitors [143-145]. Despite the fact that the caspase-dependent pathway seems to play a major role in the death of serum-deprived PC12 cells, it is possible that once this pathway is inhibited, the caspase-independent pathway has a major role. However, one cannot exclude the possibility that there are unknown caspases which are activated and involved in apoptosis induced by trophic-factor-deprivation and that these caspases are inhibited by the muscarinic receptor in a different mechanism than that used to inhibit the DEVDase caspases and caspase-2. It was shown that NGF withdrawal from differentiated PC12 cells induces expression of FasL, which in turn may contribute to the apoptotic process via activation of the CD95 receptor [146,147]. In this case, it is still possible that muscarinic receptors will inhibit the activation of caspase-8, the caspase which is directly activated when CD95 is activated [80,115,148] by a PI3-kinase-dependent mechanism as was shown for CD3 activation in Fas-treated Th2-type cells [80,115]. In some systems, one signaling pathway appears to be sufficient for mediating survival induced by trophic agents such as NGF (PI3-kinase) and N-acetylcysteine (ERK) [109,120]. However, in other systems, the survival effect may require the combined action of several signaling pathways. For example, insulin-like growth factor-1 inhibited apoptosis in differentiated PC12 cells requires both PI3-kinase and MAPK/ERK signaling pathways [127,149,150]. It has been suggested that the muscarinic survival effect could be mediated by the combined effect of at least two different pathways. One pathway may lead to caspase inhibition and be independent of PI3-kinase and ERK signaling. This pathway could be mediated by the Gα coupled receptors. The other pathway would act through Gβγ and may involve the PI3-kinase pathway, and could promote survival by a mecha-
nism that does not affect caspases and that could be mediated by the \(G_q\)-coupled receptors.

Previous reports showed that muscarinic receptor stimulation leads to activation of the Rho family of small G-proteins [151,152]. This pathway can lead to activation of Rho kinase [153] and is critical for the protective capacity of muscarinic receptors. It has been demonstrated that excitatory receptor agonist-induced Rho activation is \(Ca^{2+}\)-dependent [154]. The ability of mAChRs to activate SRF-mediated gene transcription and the involvement of G protein subunits in SRF activation were investigated in Jurkat T cells. It has been shown that \(G_{q/11}\)-coupled M1, but not \(G_{q/12}\)-coupled M2 receptors can activate SRF through a RhoA-mediated pathway [73,155]. In contrast, M3 mAChR failed to activate SRF even though M1 and M3 are thought to induce similar signaling pathways that involve \(G_{q/11}\). Yet, \(G_{q/11}\) coupling of both M1 and M3 remained intact, as revealed by a robust calcium response in Jurkat T cells. Moreover, use of the chimeric \(G\alpha\) protein construct \(G_{q/5}\), which allowed the M2 receptor to signal along \(G_{q/11}\)-mediated pathways, restored the \(Ca^{2+}\) response for M2, but not SRF activation. This suggests either that the activation of SRF through M1 involves a \(G_{q/11}\)-independent pathway or that \(G_{q/11}\) is insufficient in Jurkat T cells. The inhibition of M1-SRF signaling by co-transfection with the \(G_{q/11}\) suppressors, RGS2 and RGS4, indicated that \(G_{q/11}\) did play a role in M1-SRF activation, but it appeared to be insufficient \(per\ se\). However, an increase of M1-SRF signaling inhibition was observed when intracellular calcium was decreased.

Apoptotic pathways associated with nAChRs

Nicotinic receptors are expressed in neural and non-neuronal tissues; however, in the latter their function is not clear. Although nAChRs are primarily known for their action as ligand-gated ion channels transducing action potentials across synapses, they may have other actions as well, such as cell-to-cell communications in various non-neuronal tissues controlling important cell functions such as proliferation, adhesion, migration, secretion, survival and apoptosis in an autocrine, juxtacrine and paracrine manner [22]. Interestingly, nicotinic receptors in neurons protect against cell death in some settings [8,12,68,81]. In neurons, the \(\alpha_7\) nicotinic receptor activates PI3-kinase through a src-family kinase, activating the anti-apoptotic kinase AKT [156]. One pathway involved in AKT signaling involves phosphorylation of the forkhead transcription factor FKHL1, causing its retention in the cytoplasm associated with 14-3-3. This in turn blocks expression of the apoptotic protein fas [157]. The PI3-kinase/AKT pathway protects a broad range of neurons against apoptotic cell death and may block apoptosis triggered by beta-amyloid fragments, which contribute to progression of Alzheimer's disease. If so, nicotinic agents may prove useful in the treatment of this and other neurodegenerative conditions. Interestingly, removal of extracellular \(Ca^{2+}\) suppressed Akt phosphorylation induced by nicotine. It was shown that an inhibitor of Src tyrosine kinase also reduced Akt phosphorylation. In addition, PI3-K and Fyn are physically associated with \(\alpha_7\) nicotinic receptors. Therefore, nicotinic receptor stimulation might lead to phosphorylation of Akt through Fyn [157-159]. The \(\alpha_7\) subtype can mobilize \(Ca^{2+}\) from ryanodine-sensitive intracellular stores and promote cell survival [8,13]. This intracellular \(Ca^{2+}\) mobilization can lead to BDNF-induced Cdk5-mediated neuroprotection through increased Bcl-2 expression. (Figures 1 and 2). Nicotine has also been shown to regulate the Bcl-2 family of proteins. For example, nicotine induces phosphorylation of Bcl-2 leading to protection of human small cell lung carcinoma cells against cisplatin-induced apoptosis [160,161]. Moreover, nAChRs heterodimers containing \(\alpha_3\) and \(\alpha_4\) mediate their apoptotic activity in normal human bronchial epithelial cells through Akt [162]. Lastly nicotine also phosphorylates downstream targets of Akt, such as mTOR, FKHR, elf-4, GSK3b, tuberin and S6K [162].

Nicotine can also promote anti-apoptotic effects through activation of PKC, PKA and NF-kB, and downregulation of the tumor suppressor p53 [160,161]. Nicotine-induced NF-kB phosphorylation promotes the phosphorylation of the apoptotic protein Bad (Bcl-2 antagonist of cell death), which becomes inactivated and prevents cell death. Other pathways underlying the anti-apoptotic effects of nicotine include the MEK and PI3K pathways [163]. It was previously shown that ERKs, AKT, and PKA could function as a Bad Ser112, Ser136, or Ser155 kinase, respectively [164-167]. One interesting study demonstrated that nicotine-induced Bad phosphorylation is mediated by \(\beta\)-adrenergic receptors [163] (for a review see [168]), and that nicotine can also induce phosphorylation of Bax (another Bcl-2 antagonist of cell death) through PKCζ, thereby inactivating Bax and suppressing cell death [169,170].

The protective effects of nicotine have been studied in NSCLC and PC12 cell lines, as well as in other experimental systems [171-176]. Nicotine can protect A549 NSCLC cells against apoptosis induced by anticancer drugs through the upregulation of XIAP and survivin in a \(\alpha_3\)-nAChR-dependent manner [171]. Furthermore, administration of nicotine in the CNS can stimulate release of neurotransmitters [177,178] and neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF-2) and brain-derived neurotrophic factor (BDNF) [179]. In addition, nicotine exposure can lead to elevated cellular cAMP levels [180]. It was demonstrated that nicotine attenuates both arachidonic acid-induced caspase activation and apoptosis of spinal cord neurons [181]. However, controversy exists on the specific nAChR subunit
responsible for the anti-apoptotic effects of nicotine. The α7 and the α4β2 subtypes may play the most significant role in the central nervous system [180,182,183]. Data from some laboratories indicate that phosphorylation of ERK1/2 in nicotine-treated neurons can be specifically prevented by pre-exposure to the α7 blocker α-bungarotoxin, but not dihydro-β-erythroidine (an antagonist of the β2 subunit) [172,178,181], indicating an important role for the α7 receptor in nicotine-mediated neuroprotection. On the other hand, studies in tumor and tumoral stem cells have implicated the dihydro-β-erythroidine-sensitive α3 and α4 receptors. This finding implies that the proliferative effects (mediated by α7 nAChR) and pro-survival effects (mediated by α3 or α4 nAChR) of nicotine...
are mediated by two distinct classes of receptors [8,13,162,171]. These data demonstrate that during differentiation there are changes in nAChR activity and function. This could be due to β-adrenergic receptor activation through α7 nAChR, which has been found to mediate the anti-apoptotic effects of nicotine in some cell lines [184-186] (for a more detailed discussion see [168]). Such discrepancies can be partially explained by the pleiotropic nature of nAChR subunit inhibitors. It is also possible that the anti-apoptotic effects of nicotine are mediated by different nAChR subunits in a tissue-specific manner. These possibilities underscore the need for further studies to identify the nAChR subunits responsible for the anti-apoptotic effects of nicotine.

It is known that ERK1/2 signaling can participate in the neuroprotective effects of nicotine through a variety of different mechanisms. Previous reports showed that ERK2 can increase expression of bcl-2 and inhibit apoptosis [187]. In addition, the neuroprotective effects of ERK1 and ERK2 may be related to activation of a variety of transcription factors, which in turn can regulate transcription of neurotrophic factors, leading to overexpression of "survival" genes and enhanced neuronal viability. Among the transcription factors that are involved in the ERK-mediated cellular survival are Elk1, nuclear factor-κB (NF-κB), and cAMP response element (CRE)-binding factor (CREB) [188-190]. A role for NF-κB in neuronal survival has been suggested [191]. In addition, recent evidence indicates that CREB has a crucial role in regulation of cell viability [192], as it is required to induce transcription of BDNF [193]. Elk1 functions as a nuclear transcriptional activator through the interaction with the serum response element (SRE), which is present in the promoter of many immediate early genes [194]. Among others, Elk1 is involved in regulation of expression of FGF-2 [195,196].

Signaling pathways of mAChRs involved in proliferation and neuronal differentiation

Previous studies have demonstrated that proliferation and differentiation of neuronal precursor cells can be modulated by mAChR signaling [8,13,197,198]. The mechanism involved initially amplifies mAChR and nAChR signals, inducing calcium influx, which in turn activates MAPK-dependent pathways [8,13,199]. Transient calcium increases induced by ACh independently of MAPK activation has been shown to be necessary for differentiation and proliferation, as muscarinic antagonists and calcium chelating agents block these effects (Figures 3 and 4) [8,13].

Activation of M2 and M3 receptors has been shown to increase proliferation of tumoral cells in a dose-dependent manner. Cellular proliferation induced by the M3 subtype is mediated by production of inositol triphosphate, [8,66] and nitric oxide [for a review see [200]], while the effects of the M2 subtype were dependent on concomitant activation of M1, promoting the release of E2 prostaglandin and arginase catalysis. These events are related to tumoral cell growth [66], and inhibition of caspases [79,83].

In murine mammary adenocarcinoma cells, the M3 subtype is the most highly expressed muscarinic receptor. Stimulation of M3 receptors activates adenilate cyclase, phospholipase A2 (PLA2), IP3 and diacylglycerol (DAG) through PLC [201]. Each of these molecules in turn activates different pathways. DAG activates protein kinase C (PKC), while IP3 induces release of calcium from intracellular stores. It is known that both pathways regulate MAPK and ERK signaling. Free intracellular Ca2+ can modulate MAPK/ERK either through Ca2+-dependent protein tyrosine kinase (PYK2) [202] or by Ca2+/calmodulin kinase (Ca2+/CaM) [203]. PKC isoforms are also known to regulate MAPK/ERK through Raf-1 [204] or through transactivation of the epidermal growth factor receptor (EGFR) mediated by the Src/PYK2 complex (Figures 2 and 3) [205].

Recent evidence suggests that activation of MAPK/ERK through GPCRs occurs through PKC-dependent and -independent mechanisms, depending on the receptor activated and on the cell type [206,207]. It is known that activation of MAPK/ERK GPCR agonists mediate cell proliferation [55,208], and that pathways involving cholinergic receptors seem to depend on the cell growth [8,74].

Stimulation of mAChRs promotes an increase in [Ca2+]i and induces phosphorylation of MAPK/ERK in MCF-7 human breast cancer cells [105]. Activation of this pathway increases protein synthesis and cell proliferation through MAPK kinase, besides inducing DNA synthesis in neuronal progenitor cells during early neurogenesis [209]. Inhibition of PLC or incubation of cells in a calcium free medium did not alter MAPK/ERK phosphorylation; however, this phosphorylation can also be induced through treatment with phorbol 12-myristate acetate (PMA), a PKC activator. Activation of MAPK/ERK was not affected by PKC modulation or by its inhibition. Interestingly, phosphorylation of MAPK/ERK by mAChRs could be blocked by a PKC-ζ (a myristoylated pseudo substrate of PKC) inhibitor and by high doses of staurosporine (a relatively non-selective protein kinase inhibitor). This pathway involves PI3-K and tyrosine kinases, such as Src, and Erk 1/2 [105,209]. Cells in the neuroepithelial ventricular zone of the embryonic rat cortex also express the M2 receptor. The presence of M2 induces cell proliferation and accelerates neuronal differentiation.

Adrenergic receptors can transform fibroblasts when actively mutated [210]. Interestingly, transformation by mAChRs was ligand-dependent [211]. Furthermore, some
Muscarinic and nicotinic receptor-coupled signal transduction pathways mediating MAPK activity and proliferation. Both Erk1/2 activity and cell proliferation are activated by cholinergic (ACh) stimulation of mAChRs. ACh binds to M3, leading to a Gq-protein-mediated activation of PLC, which hydrolyses PIP2 to IP3 and DAG, subsequently mobilizing Ca2+ from organellar stores, leading to activation of PKC. Both ACh-induced MAPK activity and proliferation are reduced by the PKC inhibitor H7, indicating that PKC activity appears to be one of the upstream events critical to MAPK activation. mAChR stimulation induces increases in [Ca2+]i via both Ca2+ influx and mobilization from intracellular stores. Muscarinic stimulation of MAPK activity and proliferation is prevented both by BAPTA-AM and EGTA, demonstrating that elevation of [Ca2+]i is essential, and may stimulate Pyk2 phosphorylation and activate the MAPK. Muscarinic stimulation of MAPK activity is effectively eliminated by the MAPK kinase (MEK) inhibitor PD98059. M2 and M4 may provide parallel pathways to MAPK activation via pertussis toxin-sensitive G-proteins and Gβγ subunits. ERKII (MAPK) can serve as a convergence site for multiple extracellular signals known to induce plasticity in mature neurons. The best documented activation of the MAPK cascade occurs via ligand binding to RTK. Activation of RTK recruits the Shc-Grb2-SOS1 complex, which in turn activates Ras. Ras induces MAPK activation via an evolutionarily conserved pathway, which includes Raf, MEK (MAPKK), and ERKII (MAPK) (MAPK cascade). ERKII is known to have both cytoplasmic and nuclear targets and can translocate to the nucleus to modulate transcription in neurons. The block of proliferation induction by the MEK inhibitor PD98059 suggests that MAPK plays a role in the induction phase of proliferation. MAPK can also be activated in neural progenitor cells via nAChRs which increase [Ca2+]i, and may modulate the MAPK cascade via activation of a Ca2+-dependent tyrosine kinase (PYK2) or calmodulin (CaM).
viruses encode constitutively active GPCRs linked to cell proliferation (for a review see [212,213]), suggesting that signals initiated by GPCRs can be mitogenic.

MAPKs target numerous cellular proteins and transcription factors involved in cell growth and differentiation [214-216]. It is known that GPCRs activate MAPK through the small GTP-binding protein, p21Ras [217]. How p21Ras is activated is still controversial; however, it is likely that transactivation of EGFR upon stimulation of GPCRs participates in p21Ras activation [218,219]. Indeed, several types of GPCRs including thrombin, endothelin, and angiotensin II receptors have been shown to transactivate EGFR, leading to MAPK activation [220,221].

The vast majority of the currently described pathways leading to ERK stimulation have been considered as linear. While GPCRs coupled with Gi-protein activate the p21Ras-ERK pathway through the βγ subunit and PI-3 kinase, GPCRs with Gq-protein activate it in a PKC-dependent manner [222,223]. However, Blaukat et al. [223] recently showed that GPCRs mediate ERK activation through cooperation of Gi and Gq, suggesting that multiple G-proteins could act in concert to attain full activation of p21Ras-ERK pathway. Muscarinic receptors in many cells have been shown to activate ERK by carbachol, and this is not altered by treatment with pertussis toxin, indicating that Gq-, but not Gi-protein, may be involved in ERK activation [61,224-229]. Muscarinic receptor activation by carbachol rapidly and transiently stimulates ERK1/2 phosphorylation in many cells in a time- and dose-dependent manner [61,226-229], as observed in various cell lines [230,231]. It was shown that the inhibition of PLC led to a total blockade of Ca2+ mobilization induced by AChRs agonists [13,232]. A role of Ca2+ in this pathway is also supported by the finding that an increase in intracellular Ca2+ caused by thapsigargin [8,13,105,233] is sufficient to induce ERK phosphorylation up to levels similar to those induced by AChRs agonists. The mechanisms by which intracellular Ca2+ stimulates the phosphorylation of ERK1/2 are complex and appear to be dependent on the nature of mAChR subtype coupling to heterotrimeric G proteins. Intracellular Ca2+ can modulate the MAPK cascade, via activation of the monomeric G-protein p21ras [234-236], through two convergent mechanisms; one through the calcium-dependent tyrosine kinase (PYK2) and the other mediated by calmodulin [228,231,237]. In T84 colon epithelial cells, which express endogenous M3 mAChR subtypes, increases in [Ca2+]i in response to carbachol activate signaling mechanisms involving calmodulin-, PYK2-, and p60src-mediated transactivation of the EGF receptor [238]. Besides Ca2+, the other downstream pathway induced

Figure 4
Calcium signaling pathways in stem cells and neural progenitor cells. Left panel represents a embryonic or adult stem cells and right panel the neuronal progenitor cells. Ca2+ signaling depends on the increase of the intracellular Ca2+ levels [Ca2+]i, derived from extracellular calcium (Ca2+)o sources or intracellular stores of the endoplasmic reticulum (ER Ca2+). It can enter through calcium channels operated by voltage (voltage-operated Ca2+ channels, VOCCs) in excitable cells such as neurons and muscular cells, or through calcium channels operated by receptors (receptor-operated Ca2+ channels, ROCs) in response to neurotransmitters. SOC’s (store-operated Ca2+ channels, SOCs), open when internal Ca2+ stores are empty, and are generally present in non-excitable cells. Calcium from the ER is released by two types of channels, Inositol 1,4,5-trisphosphate (IP3) channels and ryanodine channels. The first is present in both neural progenitor and stem cells, while the latter is expressed only in neural progenitor cells. IP3 is generated by the action of the enzyme PLC in phosphatidylinositol 4,5-bisphosphate (PIP2). IP3 acts on receptors in the endoplasmic reticulum, promoting the release of Ca2+ from ER stores. IP3/IP2.
after PLC activation is the PKC transduction cascade. It was demonstrated that the direct activation of PKC, by the phorbol ester PMA, was sufficient to increase the phosphorylation of ERK1/2 reaching levels similar to those induced by carbachol in FRT cells [105]. However, the carbachol-induced ERK1/2 phosphorylation was not mediated by PKC. These data indicate that the mAChR-induced ERK phosphorylation is mediated by a Ca2+-dependent but PKC-independent mechanism.

Although some data suggest that intracellular Ca2+ partly mediates the activation of ERK1 and ERK2, other intracellular signaling pathways may be involved in the MAPK/ERK activation in undifferentiated cells. Activation of MAPK by GPCRs, including mAChRs, involves phosphorylation of one or more proteins, such as p125FAK, p130cas, or paxillin [239]. Moreover, the Src family of protein tyrosine kinases has been implicated in mAChR-induced ERK activation in different cell lines [240-242]. Further studies are needed to determine the connection between activation of these protein tyrosine kinases and the downstream effects of mAChR after G protein activation.

It has been suggested that carbachol’s effects on ERK1 and ERK2 phosphorylation were probably mediated through the activation of protein tyrosine kinases. Furthermore, it has been demonstrated that carbachol-induced ERK activation is dependent on the activity of cytoplasmatic Src-like tyrosine kinase family, since pharmacological inhibition of the Src family of tyrosine kinases with specific PP2 blocks the carbachol-induced MAPK/ERK activation [55]. The Src family of tyrosine kinases has been implicated in the ERK activation by various GPCRs agonists. Recent data suggests that activation of Src tyrosine kinases may lead to the phosphorylation of the adaptor protein Shc and the recruitment of Grb/Sos complex to the plasma membrane, resulting in the activation of the ERK pathway [223,243].

Signaling pathways of nAChRs involved in proliferation and neuronal differentiation

Previous reports have shown that nAChRs are expressed in non-neuronal cells within the nervous system [244,245], embryonic stem cells [8,13], neural stem cells [197], and embryonic tissues [246].

Microglia express α7 nAChRs [247], and stimulation of α7 nAChRs promotes anti-inflammatory pathways and blunts the response of microglia to lipopolysaccharide [247], suggesting that nAChRs may have a role in controlling localized brain inflammation. Nicotinic receptors are also expressed on O2A oligodendrocyte precursors, but are not detectable after induction of differentiation, indicating that nAChR expression is developmentally controlled in these cells [248]. Although the physiological functions of nAChRs in O2A oligodendrocyte precursors are not understood, data suggest that activation of nAChRs might control migration, survival and differentiation in these cells [248].

It has been found that in non-neuronal tissues nicotine induces the secretion of growth factors like bFGF, TGF-α, VEGF, and PDGF [249]. Nicotine also upregulates expression of the calpain family of proteins [250] as well as COX-2 and VEGFR-2 [251], activating the Raf/MAPK kinase/ERK pathway [252]. Since nAChRs do not have intrinsic tyrosine kinase activity [22], the molecular mechanisms underlying its effects on proliferation remain unclear. It was demonstrated that nicotine-mediated induction of cell proliferation involves recruitment of β-arrestin, which facilitates the activation of Src. This in turn leads to binding of Raf-1 kinase to Rb, leading to cell cycle entry [253]. Dasgupta and coworkers demonstrated that human non-small cell lung cancer (NSCLC) tumor tissues had high levels of Rb-Raf-1 complexes in tumors relative to adjacent normal lung tissue, suggesting that perhaps the Rb-Raf-1 pathway contributes to the genesis of these tumors. Furthermore, chromatin IP (ChIP) analysis of human NSCLC tumor samples demonstrated increased recruitment of E2F1 and Raf-1 to proliferative promoters like cdc6 and cdc25A. These results suggest that binding of β-arrestin to nAChRs is an early and critical event in the initiation of nicotine-induced mitogenesis. The subsequent steps resemble growth factor-induced cell proliferation, as they include activation of Src, association of Rb to Raf-1, inactivation of Rb, and enhanced recruitment of E2F1 and Raf-1 to promoters of genes that induce proliferation [253]. These events are likely to contribute to the growth and progression of tumoral cells.

Therapeutic uses of cholinergic receptor modulators in stem cell specification

In vivo proliferation, differentiation, and genetic modification of neural stem cell progeny

As previously demonstrated [8,13], AChRs have different roles on proliferation in embryonic and neural stem cells. In embryonic cells, nAChRs decrease proliferation. Conversely, neural stem cells and their progeny can be induced to proliferate in vivo by administering α7 agonists [13]. To initiate neuronal differentiation, agonists for the Gαi-coupled mAChRs, such as the M2 subtype, could be used for treatment. These pharmacological agents include any substance that acts through AChR activation or through pathways activated by them. The examples described here to modulate proliferation, differentiation, and genetic modification of neural stem cells in vitro can be adapted to in vivo techniques. Such in vivo manipulation and modification of these cells allows cells lost due to injury or disease to be endogenously replaced. This would abolish the need for transplanting foreign cells into...
a patient. Additionally, cells can be modified or genetically engineered in vivo so that they express various biological agents useful in the treatment of neurological disorders. However, fine control of muscarinic signaling requires compounds that selectively modulate specific muscarinic receptor subtypes. Unfortunately, such drugs have not been discovered yet. M1 muscarinic agonists such as arecoline have also been found to be weak agonists of M2 and M3 subtypes, and are not very effective in treating cognitive impairment, most likely because of dose-limiting side effects [254,255]. Selective muscarinic agonists for M5 and M2 subtypes could be used both as pharmacological tools and as therapeutic agents [8], as M5 and M2 mediate most of the muscarinic [Ca$^{2+}$]-response and seem to control proliferation and differentiation induction, respectively.

Treatment with nicotinic receptor agonists also has therapeutic potential, similarly to muscarinic agonists. However, nAChR agonists which bind the same site as ACh are not a viable solution, for ACh not only activates, but also blocks receptor activity through desensitization [256] and uncompetitive blockade [for review see [257]]. Furthermore, prolonged activation appears to induce a long-lasting inactivation. Therefore, agonists of ACh may reduce or enhance receptor activation. In nAChRs, desensitization generally limits the duration of current during agonist application [258]. However, positive allosteric modulators can enhance the efficacy of agonists at nicotinic receptors. It is believed that such compounds would be useful for treatment of conditions associated with decreased nicotinic transmission. In a therapeutic setting, these compounds could restore normal interneuronal communication without affecting the temporal profile of activation. In addition, they would not produce long-term inactivation, contrary to prolonged application of an agonist.

A naturally existing allosteric modulator of nicotinic transmission is the CGRP (Calcitonin Gene Related Peptide) neuropeptide [259,260]. Previous reports show that CGRP blocks nAChRs competitively. It is noteworthy to point out that this effect is not mediated by conventional G-protein-coupling [261], as it was demonstrated that this peptide's activity is contained within the 1–7 N-terminal fragment. Similarly to the native CGRP, CGRP 1–7 shows a rapidly developing, competitive antagonism which is readily reversible after washout [261]. Intriguingly, some CGRP fragments quickly and reversibly enhance responses mediated by the activation of native neuronal nAChRs [262]. Mutant versions of the CGRP peptide fragment can be used as neuronal nAChRs enhancers, as in the absence of nAChR activation these peptides were inactive [262].

The CGRP 1–6 peptide did not modify the muscle-type nicotinic receptor responses, indicating its selectivity for neuronal receptors. This finding suggests that certain peptide derivatives shorter than CGRP 1–7 exert an unusual action, involving an apparently competitive modulation of the agonist-binding site. CGRP 1–6 and its derivatives may be used for the treatment of symptoms of neurological diseases associated with functional deficits of nAChRs and may be used as stem cell neuronal differentiation enhancers.

Interestingly, nicotine has been shown to protect cells from apoptosis induced by anticancer drugs. The acquisition of drug resistance is a considerable challenge in cancer therapy, and nAChR antagonists could be potentially used in combination with established chemotherapeutic drugs to enhance the therapeutic response to chemotherapy. The bioactivity of nAChR antagonists, however, has yet to be tested in animal models. Carefully designed animal studies are essential to investigate the potential side effects of nAChR antagonists on the brain, central nervous system, immune cells and muscle cells, all of which express high levels of nicotinic receptors.

The study of the roles of nAChRs in development and progression of cancer and stem cells differentiation provides novel opportunities for the prevention and therapy of cancer and degenerative disorders. However, it is important to consider that vital cell and organ functions are regulated by these receptors. Antagonists for α_7 nAChR may successfully block cancer cells and promote proliferation of stem cells without cytotoxicity to normal control cells in vitro, but in vivo it would induce adverse effects on the control of inflammatory reactions and the regulation of respiratory and cardiovascular functions, and may also lead to psychiatric symptoms [22,168,263].

Blockers of Ca$^{2+}$ channels are known for their anti-proliferative properties and might be an alternative because they can desensitize the hyperactive α_7 nAChR (Figure 1). However, experimental findings appear to be divergent and depend on the cell type and mode of administration used. Among the calcium channel inhibitors, L- and T-type calcium blockers, were reported to inhibit neuronal differentiation [12,264-266], but have limited effect on other cell types. Mibebradil, a selective blocker of T-type channels, has significant anti-proliferative action in various cell types in vitro as well as in vivo [267,268]. The non-selective calcium blocker amlodipine is also a very effective protector of neuronal cells [269-271]. Calcium channel blockers induce a rapid decrease in intracellular Ca$^{2+}$, even in cells lacking depolarization-induced calcium flux [272,273]. These observations suggest that amlodipine inhibits cell proliferation through intracellular signaling.
pathways rather than through inhibition of Ca\(^2+\) entry channels.

Another possible pharmacological treatment is the use of SluRP1, a drug that reduces the responsiveness of α7nAChR to agonists. SluRP1 may have an effect similar to that of voltage-gated Ca\(^2+\) channels blockers [274]. However, any attempt to prevent or treat cancer by targeting nAChRs must be based on the identification of molecular markers. The goal of this strategy is the restoration of balance between stimulatory and inhibitory signaling and not complete blockade of a given pathway.

Nicotinic signaling in non-neuronal cells has huge implications for cell fate and survival. Research in nAChR signaling networks will be especially relevant to stem cell production in a large scale and cancer treatment. Future studies will need to define both the function of different nAChR subtypes in non-neuronal cells and the downstream signaling pathways that underlie the proliferative and anti-apoptotic activities of nicotine.

Similarly to nicotinic signaling, the mechanisms that underlie the pro-mitogenic effects of muscarinic receptor stimulation have not yet been studied in detail. However, several intracellular signaling pathways that regulate the synergistic mitogenic interaction of other GPCR agonists with growth factors in neural progenitor cells have been identified (Figures 1 and 3). These pathways are not the same for every GPCR agonist The GPCRs M1 and M3 increase EGF-induced proliferation through a pathway involving G\(\beta\gamma\), phosphatidylinositol-3-kinase, Akt and PKC [105,238]. Muscarinic stimulation of MAPK activity and proliferation is prevented both by the intracellular Ca\(^2+\)-chelator BAPTA-AM and by a reduction in extracellular Ca\(^2+\) with EGTA. This suggests that increases in intracellular calcium are essential, and may stimulate Pyk2 phosphorylation and then activate the MAPK signaling pathway [238]. PKC also regulates p42/p44 MAP kinase activation by muscarinic receptor agonists in neuronal progenitor cells [55].

Concluding remarks

There is a growing body of evidence indicating that nicotinic and muscarinic receptors play important roles in stem cell differentiation and physiology. The disruption of developmental patterns and of normal function is often correlated with pathological conditions. Therefore, the controlled manipulation of ACh function may lead to novel therapies. Strikingly, studies have revealed that drugs currently used to treat disorders such as Alzheimer’s disease and depression, increase adult neurogenesis, which may be the mechanism mediating the activity of these drugs. However, some of these studies are controversial, and remain to be confirmed. Hence, the role of neureogenesis in treating central nervous system disorders, as well as the effects of drugs on embryonic and adult stem cells' neuronal differentiation remain areas of active research. Discriminating specific contributions of nAChR and mAChR signaling for the control of phenotypic features as specialized structural and functional behaviors is a great challenge and has undeniable potential regarding future applications.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

RRR and AA wrote the manuscript. The authors read and approved the final manuscript.

Acknowledgements

This work was supported by Instituto do Milenio/CNPq-MCT and Instituto Nacional de Ciência e Tecnologia de Nanomateriais de Carbono, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. R.R.R is grateful for grants from CNPq, and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), Brazil. English editing has been performed throughout the text by native English speaker Dra. Elizabeth Speed.

References

1. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K: Evolutional study on acetylcholine expression. Life Sci 2003, 72:1745-1756.
2. Grando SA: Biological functions of keratinocyte cholinergic receptors. J Invest Dermatol Symp Proc 1997, 2:41-48.
3. Wessler I, Kirkpatrick CJ, Racke K: The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 1999, 26:198-205.
4. Kawashima K, Fujii T: Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 2000, 86:29-48.
5. Wessler I, Rainheimer T, Kilbinger H, Bittinger F, Kirkpatrick CJ, Saloga J, Knoop J: Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis. Life Sci 2003, 72:2169-2172.
6. Tobin AB, Budd DC: The anti-apoptotic response of the Gq/11-coupled muscarinic receptor family. Biochem Soc Trans 2003, 31:182-1185.
7. Kawashima K, Fujii T: Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 2004, 9:2063-2085.
8. Resende RR, Alves AS, Britto LR, Ulrich H: Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Exp Cell Res 2008, 314:1429-1443.
9. Williams BP, Milligan CJ, Street M, Hornby FM, Deuchars J, Buckley NJ: Transcription of the M1 muscarinic receptor gene in neurons and neuronal progenitors of the embryonic rat forebrain. J Neurochem 2004, 88:70-77.
10. Wessler I, Kirkpatrick CJ: Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008, 154:1558-1571.
11. Martins AH, Resende RR, Majumder P, Faria M, Casarini DE, Tarnok A, Colli W, Pesquero JB, Ulrich H: Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. J Biol Chem 2005, 280:19576-19586.
12. Resende RR, Majumder P, Gomes KN, Britto LR, Ulrich H: P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-D-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 2007, 146:1169-1181.
13. Resende RR, Gomes KN, Adhikari A, Britto LR, Ulrich H: Mechanism of acetylcholine-induced calcium signaling during neu-
rational differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 2008, 43:107-121.

14. Buzas EM, Shinmura YB, Laber JT: From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 1996, 16:537-559.

15. Levit P, Harvey JA, Friedman E, Simansky K, Murphy EH: New evidence for neurotransmitter influences on brain development. Trends Neurosci 1997, 20:269-274.

16. Bignami F, Bevilacqua P, Biagni S, De Jaco A, Casametti F, Felsani A, Augusti-Tocco G: Cellular acetylcholine content and neuronal differentiation. J Neurochem 1997, 69:1374-1381.

17. Schuller HM: Cell type specific, receptor-mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines. Biochem Pharmacol 1989, 38:3439-3442.

18. Maneekee R, Minna JD: Opioid and nicotine receptors affect growth regulation of human lung cancer cells. Proc Natl Acad Sci USA 1987, 84:3294-3298.

19. Lindstrom JM: Acetylcholine receptors and myasthenia. Muscle Nerve 2000, 23:453-477.

20. Changeux J, Edelstein SJ: Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr Opin Neurol 2001, 14:377-380.

21. Hogg RC, Raggenbass M, Bertrand D: Nicotinic acetylcholine receptors: from structure to function. Rev Physiol Biochem Pharmacol 2003, 147:1-66.

22. Gotti C, Clementi F: Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 2004, 74:363-396.

23. McGhee DS, Role LW: Presynaptic ionotropic receptors. Curr Opin Neurobiol 1996, 6:342-349.

24. Koh DC, Armugam A, Jeyaseelan K: Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006, 63:3030-3041.

25. Portugal GS, Gould TJ: Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 2008, 193:1-16.

26. Changeux JP, Edelstein SJ: Allosteric receptors after 30 years. Neuron 1998, 21:959-980.

27. Seguel P, Wadiche J, Dineley-Miller K, Dani JA; Patrick JW: Molecular cloning, functional properties, and distribution of rat brain alpha 7a nicotinic acetylcholine channel highly permeable to calcium. J Neurosci 1993, 13:536-604.

28. Broide RS, Leslie FM: The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol 1999, 20:1-16.

29. Forster GL, Yeomans JS, Takeuchi J, Blaha CD: M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 2002, 22:RC190.

30. Yeomans J, Forster G, Blaha C: M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 2001, 68:2449-2456.

31. Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J: Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 2002, 99:11452-11457.

32. Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J: Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuronpsychopharmacol 2004, 29:2126-2137.

33. Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomokos GG: M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of relapsing CNS pathologies. Faseb J 2004, 18:1410-1412.

34. Di Cara B, Panayi F, Gobernt A, Dekeyne A, Sicard D, De Groote L, Millan MJ: Activation of dopamine D1 receptor enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats. Int J Neuropsychopharmacol 2007, 10:383-399.

35. Hegde SS, Mammen M, Jasper JR: Antimuscarinics for the treatment of overactive bladder: current options and emerging therapies. Curr Opin Investig Drugs 2004, 5:40-49.

36. Racke K, Mathiesen S: The airway cholinergic system: physiology and pharmacology. Palm Pharmacol Ther 2004, 17:181-198.

37. Molina SM, Keating GM: Tiotropium bromide. Treat Respir Med 2004, 3:247-268.

38. Terry AV Jr, Buccionusso JJ: The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003, 304:821-827.

39. Bartus RT: On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000, 163:495-529.

40. Fox RI: Sjogren’s syndrome: evolving therapies. Expert Opin Investig Drugs 2003, 12:247-254.

41. Roman GC: Cholinergic dysfunction in vascular dementia. Curr Psychiatry Rep 2005, 7:18-26.

42. Felder CC, Bymaster FP, Ward J, Delapp N: Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000, 43:4333-4353.

43. Birdsal NJ, Lazarena S, Popham A, Saldanha J: Multiple allosteric sites on muscarinic receptors. Life Sci 2001, 68:2517-2524.

44. Eglan RM, Choppin A, Watson N: Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol Sci 2001, 22:409-414.

45. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehret FJ: Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 2004, 75:2971-2981.

46. Sliwiak TA, Cousins MJ, Seidler FJ: Administration of nicotine to adolescent rats evokes regionally selective upregulation of CNS alpha 7 nicotinic acetylcholine receptors. Brain Res 2004, 1030:159-163.

47. Zoll M, Le Novere N, Hill JA Jr, Changeux JP: Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 1995, 15:912-1939.

48. Aubert I, Cecyre D, Gauthier S, Quirion R: Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors, in the rat brain. J Comp Neurol 1996, 369:31-55.

49. Court JA, Lloyd S, Johnson M, Griffiths M, Birdsal NJ, Piggott MA, Oakley AE, Ince PG, Perry RK, Perry RH: Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. Brain Res Dev Brain Res 1997, 101:93-105.

50. Torrao AS, Carmona FM, Lindstrom J, Britto LR: Expression of cholinergic system molecules during development of the chick hindlimb. J Anat 2004, 204:141-92.

51. Adurri P, Fleck MW, Shen Q, Mah SJ, Stadfelt D, Barnes W, Goderie SK, Temple S, Schneider AS: Functional nicotinic acetylcholine receptor expression in stem and progenitor cells of the early embryonic mouse cerebral cortex. Dev Biol 2001, 240:143-156.

52. Oppitz M, Mobus V, Brock H, Dreier U: Muscarinic receptors in cell lines from ovarian carcinoma: negative correlation with survival of patients. Gynecol Oncol 2002, 85:159-164.

53. Hoogduijn MJ, Cheng A, Genever PG: Functional Nicotinic and Muscarinic Receptors on Mesenchymal Stem Cells. Stem Cells Dev 2008 in press.

54. Greco SJ, Zhou C, Ye JH, Rameshwar P: An interdisciplinary approach and characterization of neuronal cell differentiation transfected from human mesenchymal stem cells. Stem Cells Dev 2007, 16:81-182.

55. Zhao WQ, Alkon DL, Ma W: c-Src protein tyrosine kinase activity is required for muscarinic receptor-mediated DNA synthesis and neurogenesis via ERK1/2 and c-AMP-responsive element-binding protein signaling in neural precursor cells. J Neurosci Res 2003, 72:133-142.

56. Bernardini N, Levey AI, Augusti-Tocco G: Rat dorsal root ganglia express m1-m4 muscarinic receptor proteins. J Peripher Nerv Syst 1999, 4:222-232.

57. Williams CL, Hayes VY, Hummel AM, Tarara J, Halsey TJ: Regulation of E-cadherin-mediated adhesion by muscarinic acetylcholine receptors in small cell lung carcinoma. J Cell Biol 1993, 121:643-654.

58. Boss A, Oppitz M, Drews U: Muscarinic cholinergic receptors in the human melanoma cell line SK-Mel 28: modulation of chemotaxis. Clin Exp Dermatol 2005, 30:557-564.
Cell Communication and Signaling 2009, 7:20

http://www.biosignaling.com/content/7/1/20

59. Rimmaulte LE, de la Torre E, Sacerdotte de Lusteg E, Sales ME: Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis. Biochim Biophys Acta 2005, 1734:1359-1364.

60. Newman MB, Misita U, Willing AE, Zgoba T, Karl RC, Borlongan CV, Sanberg PR: Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and NT7 neural cells. Stem Cells Dev 2005, 14:29-43.

61. Wu EH, Wong YH: Activation of muscarinic M4 receptor augments NGF-induced pro-survival Akt signaling in PC12 cells. Cell Signal 2006, 18:285-293.

62. Pollet JB, Corsi KA, Weiss KR, Cooper GM, Barry DA, Gharabeh B, Huard J: Malignant transformation of multipotent muscle-derived cells by concurrent differentiation signals. Stem Cells 2007, 25:2032-2041.

63. Song P, Selkoe HS, Lu A, Arredondo J, Mark GP, Grando SA, Spindel ER: M3 muscarinic receptor antagonists inhibit M221 lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 2007, 67:3936-3944.

64. Janulis M, Silberman S, Ambegaokar A, Gutkind JS, Schultz RM: Role of mitogen-activated protein kinases and c-Jun/AP-1 transactivation in regulation of malignant phenotype in NIH 3T3 fibroblasts. J Biol Chem 1999, 274:801-813.

65. Blanco M, Robinson MJ: Muscarinic M3 acetylcholine receptor immunostaining in paraffin-embedded normal and neoplastic prostatic gland tissue. Ann Diagn Pathol 2004, 8:333-336.

66. Espanol AJ, Sales ME: Different muscarinic receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines. Int J Mol Med 2004, 13:311-317.

67. Metger M, Just L, Boss A, Drews U: Identification and functional characterization of the muscarinic receptor M3 in the human keratinocyte cell line HaCaT. Cells Tissues Organs 2005, 180:96-105.

68. Shin S, Dalton S, Stice SL: Human motor neuron differentiation from human embryonic stem cells. Stem Cells Dev 2005, 14:266-267.

69. Hoogduijn MJCA, Genever PG: Functional Nicotinic and Muscarinic Receptors on Mesenchymal Stem Cells. Stem Cells and Development 2008.

70. van Koppen C, Kainer B: Regulation of muscarinic acetylcholine receptor signaling. Pharmcol Ther 2003, 98:197-220.

71. Williams CL: Muscarinic signaling in carcinoma cells. Life Sci 2002, 72:1731-1738.

72. Gutkind JS, Crespo P, Xu N, Teramoto H, Coso OA: The pathway connecting m2 receptors to the nucleus involves small GTP-binding proteins acting on divergent MAP kinase cascades. Life Sci 1997, 60:999-1006.

73. Niche B, Bieker K, Logsdon CD: Muscarinic cholinergic receptors activate both inhibitory and stimulatory growth mecha- nisms in NIH3T3 cells. J Biol Chem 1999, 274:1701-21706.

74. Burdon D, Patel R, Challiss RA, Blank JL: Growth inhibition by the muscarinic M(3) acetylcholine receptor: evidence for p21(Cip1/Waf1) involvement in G(1) arrest. Biochem J 2002, 367:549-559.

75. Brown JH, Sah V, Moskowitz S, Ramirez T, Collins L, Post G, Gold- stein D: Pathways and roadblocks in muscarinic receptor-mediated growth regulation. Life Sci 1997, 60:1077-1084.

76. Maiter SH, Williams MB: Regulation and signaling by the M3 muscarinic acetylcholine receptor-mediated inhibition of proliferation to induction of cell death. Mol Pharmacol 2004, 65:1080-1091.

77. Lindbovin L, Pinkas-Kramarski R, Sokolovsky M, Stein R: Activation of muscarinic receptors inhibits apoptosis in PC12M1 cells. J Neurochem 1995, 64:2491-2499.

78. Lejou C, Michaelson DM, Fisher A, Hartmann T, Beyreuther K, Stein R: M1 muscarinic receptors block caspase activation by phosphoinositide 3-kinase- and MAPK/ERK-independent pathways. Cell Death Differ 2000, 7:825-836.

79. De Sarno P, Sheshopal SA, King TD, Zmiijewski A, Song L, Jope RS: Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J Biol Chem 2003, 278:11086-11093.

80. Serobyati N, Orlovskaya I, Kozlov V, Khaldoyanidi SK: Exposure to nicotine during gestation interferes with the colonization of fetal bone marrow by hematopoietic stem/progenitor cells. Stem Cells Dev 2005, 14:68-71.

81. Budd DC, Spragg EJ, Ridd K, Tobin AB: Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway. Biochem J 2004, 381:45-49.

82. Budd DC, McDonald J, Emsley N, Cain K, Tobin AB: The C-termi- nal tail of the M3-muscarinic receptor possesses anti-apop- totic properties. J Biol Chem 2003, 278:19565-19573.

83. Tipton DA, Dabbous MK: Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro. J Periodontal 1995, 66:1056-1064.

84. Peng X, Gerzanich V, Anand R, Wang F, Lindstrom J: Chronic nicot- ine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol Pharmacol 1997, 51:776-784.

85. Drews U, Nelson ME, Kuryatov A, Olale F, Cooper J, Keyser K, Lind- strom J: Chronic nicotine treatment up-regulates human alpha3 beta2 but not alpha3 beta4acetylcholine receptors stably transfected in human embryonic kidney cells. J Biol Chem 1998, 273:28721-28732.

86. Giannopoulou C, Roetherch NL, Mombelli A: Effect of nicotine-treated epithelial cells on the proliferation and collagen production of gingival fibroblasts. J Clin Periodontal 2001, 28:769-775.

87. Varkey KA, Williams CL: Involvement of the muscarinic acetyl- choline receptor in inhibition of cell migration. Biochem Pharma- col 1998, 56:757-764.

88. Chernyavsky AJ, Arredondo J, Wess J, Karlsson E, Grando SA: Novel signaling pathways mediating reciprocal control of keratino- cyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J Cell Biol 2004, 166:261-272.

89. Yoon SY, Kim HW, Roh DH, Kwon YB, Han HJ, Beitz AJ, Lee JH: Intrathecal clonidine suppresses zymosan-induced periph- eral leukocyte migration in a mouse air pouch model via activation of spinal muscarinic type 2 receptors and symp- pathoadrenal medullary activity. Neuropharmacology 2006, 51:829-837.

90. Opitz M, Mack A, Drews U: Ca2+-mobilization and cell con- traction after muscarinic cholinergic stimulation of the chick embryo lens. Invest Ophthal Vis Sci 2003, 44:4813-4819.

91. Drews U, Menga W: Contraction wave in the chick blastoderm induced by muscarinic stimulation. Anat Embryol (Berl) 1990, 182:447-454.

92. Sailer M, Oppitz M, Drews U: Induction of cellular contractions in the human melanoma cell line SK-mel 28 after muscarinic cholinergic stimulation. Anat Embryol (Berl) 2000, 204:27-37.

93. Koh YJ, Palmer E, Cotman CW: Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neu- rotoxicity in cortical cultures. Proc Nat Acad USA 1991, 88:9431-9435.

94. Yan GM, Lin SZ, Irwin RP, Paul SM: Activation of muscarinic cholinergic receptors blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 1995, 47:248-257.

95. Marte BM, Downward J: PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997, 22:355-358.

96. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME: Regulation of neuronal sur- vival by the serine-threonine protein kinase Akt. Science 1997, 275:661-665.

97. Kulpick G, Klippe A, Weber MJ: Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3- kinase, and Akt. Cell Mol Biol 1997, 17:1595-1606.

98. Muruga C, Lagune L, Wetzker R, Cuadraoa A, Gutkind JS: Activations of Akt protein kinase by G protein-coupled receptors. J Biol Chem 1998, 273:19080-19085.

99. Desdouits-Magnen J, Desdouits F, Takeda S, Syu Lj, Salieti AR, Bux- baum JD, Czernek AJ, Nairn AC, Greengard P: Regulation of secre- tion of Alzheimer amyloid precursor protein by the mitogen-activated protein kinase cascade. J Neurochem 1998, 70:524-530.

100. Ueda H, Morishita R, Narumiya S, Kato K, Asano T: Activation of muscarinic acetylcholine receptors induces apoptosis through two pathways involving reduction of Akt phosphorylation and activation of RhoA in HeLa cells. Exp Cell Res 2004, 298:207-217.
102. Novakova J, Mikasova L, Machova E, Lisa V, Dolezal V: Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells. through kinase C signaling. Brain Res 2005, 1062:101-110.

103. Kodaira M, Kajimura M, Takeuchi K, Lin S, Hanai H, Kaneko E: Functional muscarinic m3 receptor expressed in gastric cancer cells stimulates tyrosine phosphorylation and MAP kinase. J Gastroenterol Hepatol 1999, 14:163-171.

104. Ukegawa J, Takeuchi Y, Kusayangy S, Mitamura K: Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 2003, 129:272-278.

105. Jimenez E, Montiel M: Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol 2005, 204:678-686.

106. Song P, Skekson HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, Spindel ER: Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 2003, 63:214-221.

107. Xia Z, Dickens M, Ringaudeau J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 269:1326-1331.

108. Anderson CN, Tolkovsky AM: A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 1999, 19:664-673.

109. Yao R, Cooper GM: Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995, 267:2003-2006.

110. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science 1998, 281:1318-1321.

111. Song P, Lin H, Jin Y, Castle VP, Nunez G, Huang M, Lin J: Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 2000, 20:407-416.

112. Henshall DC, Araki T, Schindler CK, Lan JQ, Tiekotter KL, Taki W, Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis P, Prehn JH: p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and cell cycle progression of hippocampal neurons. J Neurochem 2002, 81:594-605.

113. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Sphingosine modulates c-Met redistribution in PC12 cell surface. Europ J Neurosci 2004, 19:2712-2720.

114. Zheng WH, Kar S, Quirion R, FKHR11 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem 2002, 80:1049-1061.

115. Rakhit S, Pyne S, Pyne NJ: Nerve growth factor stimulation of p44/42 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytotic processing. Mol Pharmacol 2001, 60:63-70.

116. Lou X, Yano H, Lee F, Chao MV, Farquhar MG: GIPC and GAP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol Biol Cell 2001, 12:615-627.

117. Janssens V, Goris J: Inhibition of Akt/AKT plays a central role in tumorigenesis. Nature Rev Cancer 2007, 9:105-119.

118. Pettigrew DB, Li YQ, Kuntz CT, Crutcher KA: Long-term protein-coupled receptors in pheochromocytoma 12 cells stimulate tyrosine phosphorylation and MAP kinase. J Cell Physiol 2007, 217:223-232.

119. Hartfield PJ, Bilney AJ, Murray AW: The activation of Akt/PKB signaling mediates oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 2006, 48:383-393.

120. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Interleukin-3-induced phosphorylation of Bad and activation of PKB/Akt: involvement of three Akts. Brain Res 2001, 879:163-171.

121. Hartfield PJ, Bilney AJ, Murray AW: The activation of Akt/PKB signaling mediates oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways. Neurochem Int 2006, 48:383-393.

122. Janssens V, Goris J: Inhibition of Akt/AKT plays a central role in tumorigenesis. Nature Rev Cancer 2007, 9:105-119.

123. Crowder RJ, Freeman RS: Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998, 18:2933-2943.

124. Tan N, Konig HG, Cumsew C, Bauerebach E, Poppe M, Kriegstein J, Prehn JH: p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and cell cycle progression of hippocampal neurons. J Neurochem 2002, 81:594-605.

125. Zheng WH, Kar S, Quirion R, FKHR11 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem 2002, 80:1049-1061.

126. Rakhit S, Pyne S, Pyne NJ: Nerve growth factor stimulation of p44/42 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytotic processing. Mol Pharmacol 2001, 60:63-70.

127. Lou X, Yano H, Lee F, Chao MV, Farquhar MG: GIPC and GAP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol Biol Cell 2001, 12:615-627.

128. Janssens V, Goris J: Inhibition of Akt/AKT plays a central role in tumorigenesis. Nature Rev Cancer 2007, 9:105-119.

129. Pettigrew DB, Li YQ, Kuntz CT, Crutcher KA: Long-term protein-coupled receptors in pheochromocytoma 12 cells stimulate tyrosine phosphorylation and MAP kinase. J Cell Physiol 2007, 217:223-232.
induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. *J Biol Chem* 2001, 276:17-44.128.

145. Li A, Harris DA: Mammalian prion protein suppresses Bax-induced cell death in yeast. *J Biol Chem* 2005, 280:17430-17434.

146. Faccinetti F, Furegato S, Terrazzino S, Leon A: H(2)O(2) induces upregulation of Fas and Fas ligand expression in NGF-differentiated PC12 cells: modulation by CAM. *J Neurosci Res* 2002, 69:178-186.

147. Ulloth JE, Casiano CA, De Leon M: Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. *J Neurochem* 2003, 84:655-668.

148. Liu XB, Masago R, Kong L, Zhang BX, Masago S, Vela-Roeh N, Katz MS, Yeh CK, Zhang GH, Talal N, Dang H: G-protein signaling abnormalities mediated by CD95 in salivary epithelial cells. *Cell Death Differ* 2000, 7:1119-1126.

149. Pugazhenkosh S, Bican TC, O'Connor D, Meintzer MK, Heidenreich KA, Reusch JE: Insulin-like growth factor I-mediated activation of the transcription factor cAMP response element-binding protein in PC12 cells. *J Biol Chem* 1999, 274:2829-2837.

150. Zheng WH, Kar S, Quirion R: Insulin-like growth factor I-induced phosphorylation of the forkhead family transcription factor FKHR1 is mediated by Akt kinase in PC12 cells. *J Biol Chem* 2000, 275:39152-39158.

151. Kozma R, Sarnes A, Ahmed S, Lim L: Rho family GTPases and neuronal growth cone reorientation: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatic acid. *Mol Cell Biol* 1997, 17:1201-1211.

152. Linezman DA, Heidenreich KA, Fisher SK: Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. *J Biol Chem* 2001, 276:5622-5628.

153. Kimura K, Ito M, Amano M, Chihara K, Fukuta Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, et al.: Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). *Science* 1996, 273:245-248.

154. Wang Y, Yoshioka K, Azam MA, Takuo N, Nakamura S, Kayaba Y, Sugimoto N, Inoki I, Kimura T, Kukawi T, Takuo Y: Class II phosphoinositide 3-kinase alpha-is oform regulates Rho, myosin phosphorylation and contraction in vascular smooth muscle. *Biochem J* 2006, 394:581-592.

155. Fromm C, Coso OA, Montaner S, Xu N, Gurtikind JS: The small GTP-binding protein Rho links G protein-coupled receptors and G alpha i to the serum response element and to cellular transformation. *Proc Natl Acad Sci USA* 1997, 94:10098-10103.

156. Shaw S, Bencherif M, Marrero MB: Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. *J Biol Chem* 2002, 277:44920-44924.

157. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Joo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. *Cell* 1999, 96:857-868.

158. Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexander-Bridges M: Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. *J Biol Chem* 2001, 276:13402-13410.

159. Retzlaff G, Proctor RR, Guo S, Cohen P, Unterman TG: Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targeting. *Biochem* 2001, 354:605-612.

160. Goad R, Albenmann K, Lang S: Nicotine and apoptosis. *Apoptosis* 2007, 12:1927-1943.

161. Mai H, May WS, Gao F, Jin Z, Deng X: A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. *J Biol Chem* 2003, 278:1886-1891.

162. West KA, Brogarden J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. *J Clin Invest* 2003, 111:81-90.
mitogen-activated protein kinase pathway. Cancer Res 2004, 64:135-143.

185. Schulte HM, Tietz FK, Williams M, Plummer H 3rd: The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol is a beta-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via beta-adrenergic receptor-mediated release of arachidonic acid. Cancer Res 1999, 59:4530-4535.

186. Gimonet D, Grailhe R, Coninx P, Antonicelli F, Haye B, Lautaud-Roger F: Functional role of nicotinic acetylcholine receptors in apoptosis in HL-60 cell line. Eur J Pharmacol 2003, 482:25-29.

187. Heusch WL, Maneciee R: Signalling pathways involved in nicotinic regulation of apoptosis of human lung cancer cells. Carcinogenesis 1998, 19:551-556.

188. Finkbeiner S: CREB couples neurotrophin signals to survival messages. Neuron 2000, 25:11-14.

189. Mazzucchelli C, Brambilla R: Nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 signaling pathways. Neuroscience 2004, 123:897-906.

190. Matsson MP, Culinse C, Yu Z, Camandola S: Roles of nuclear factor-kappaB in neuronal survival and plasticity. J Neurochem 2001, 74:645-658.

191. Mayr B, Montminy M: Transcriptional regulation by the phoshorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2:599-609.

192. Zhou Y, Culinse C, Kriegstein J: Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular signal-regulated kinase 1,2 signaling pathways. Proc Natl Acad Sci USA 2004, 101:53-58.

193. Wysslyk B, Hagan J, Gutierrez-Hartmann A: Ets transcription factors: nuclear effectors of the Ras-MAP kinase signalling pathway. Trends Biochem Sci 1998, 23:123-126.

194. Shibata F, Baird A, Florikiewicz RZ: Functional characterization of the human basic fibroblast growth factor gene promoter. Growth Factors 1991, 4:277-287.

195. Schweppe RE, Frazer-Abel AA, Gutierrez-Hartmann A, Bradford AP: Functional properties of fibroblast growth factor (FGF) signal transduction in pituitary cells. J Biol Chem 1997, 272:30852-30859.

196. Zhou C, Wen XZ, Shi DM, Xie ZP: Mousecinarin acetycholine receptors involved in the regulation of neural stem cell proliferation and differentiation in vitro. Cell Biol Int 2004, 28:65-67.

197. Jang YY, Sharkis SJ: Stem cell plasticity: a rare cell, not a rare event. Stem Cell Rev 2005, 1:45-51.

198. Chang L, Karin M: Mammalian MAP kinase signalling cascades. Nature 2001, 410:37-47.

199. Benard HH, Farias M, Ulrich H: The contribution of nitric oxide and carbon monoxide to neuronal function and development. Central Nervous System Agents in Medicinal Chemistry 2007, 7:85-96.

200. Felder CC: Muscarinic acetylcholine receptors: signal transduction through multiple effectors. Faseb J 1995, 9:619-625.

201. Iwasaki H, Shichiri M, Marumo F, Hirata Y: Adrenomedullin stimulates proline-rich tyrosine kinase 2 in vascular smooth muscle cells. Endocrinology 2001, 142:564-572.

202. Della Rocca GJ, Mikkelsen SY, Garnovskaya MN, Daaka Y, Clark GJ, Luttrell LM, Lefkowitz RJ, Sharaf ND: Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis. J Biol Chem 1999, 274:47497-47513.

203. Kolch W, Heintzke G, Kochs G, Herrmann R, Vahidi H, Mislich K, Finkenzeller G, Marme D, Raque UR: Protein kinase C alpha activates Raf1 by direct phosphorylation. Nature 1993, 364:249-252.

204. Shah BH, Catt KJ: Calcium-independent activation of extracellularly regulated kinases 1 and 2 by angiotensin II in hepatic C9 cells: roles of protein kinase Cdelta, Src/proline-rich tyrosine kinase 2, and epidermal growth receptor trans-activation. Mol Pharmacol 2002, 61:343-351.

205. Liebmann C, Bohmer FD: Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases: lessons from bradykinin signalling. Curr Med Chem 2000, 7:911-943.
oid receptor and the Gq-coupled m3 muscarinic receptor at the level of intracellular free calcium in SH-SY5Y cells. J Neuropathol Exp Neurol 2005, 64:169-170.

225. De Simone R, Ajmone-Cat MA, Carnevale D, Minnelli L: Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2005, 2:4.

226. Sharma G, Vijayaraghavan S: Nicotinic receptor signaling in non-excitable cells. J Neurobiol 2002, 53:524-534.

227. Conklin BS, Zhao W, Zhong DS, Chen C: Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells. Am J Pathol 2002, 160:413-418.

228. Xu L, Deng X: Protein kinase Cota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains. J Biol Chem 2006, 281:4457-4466.

229. Shin Y, Wu WK, Chu KM, Wong HP, Lam EK, Tai EK, Koo MV, Cho CH: Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res 2005, 3:607-615.

230. Kondo M, Ohno Y, Hatakeyama H, Takahashi A: Nicotine-induced cell proliferation in human non-small cell lung cancer cells via non-selective alpha7 nAChR. Thorac Cancer 2013, 4:125-131.

231. Konishi S, Watanabe M, Sakai Y, Oikawa M, Yasuda T, Nakamura T, Kondo M, Kyogoku T, Koya M, Hatakeyama H, Takahashi A: Nicotine increases cell proliferation and invasion in lung squamous cell carcinoma cells via alpha7 nAChR. Thorac Cancer 2013, 4:122-124.
activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. *J Neurochem* 2009, 108:676-684.

267. Hirooka K, Bertolesi GE, Kelly ME, Denovan-Wright EM, Sun X, Hamid J, Zamponi GW, Juhasz AE, Haynes LW, Barnes S: T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. *J Neurophysiol* 2002, 88:196-205.

268. Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S, Kelly ME: The Ca(2+) channel antagonists mibebradil and pimozide inhibit cell growth via different cytotoxic mechanisms. *Mol Pharmacol* 2002, 62:210-219.

269. Mason RP, Leeds PR, Jacob RF, Hough CJ, Zhang KG, Mason PE, Chuang DM: Inhibition of excessive neuronal apoptosis by the calcium antagonist amlodipine and antioxidants in cerebellar granule cells. *J Neurochem* 1999, 72:1448-1456.

270. Yamagata K, Ichinose S, Tagami M: Amlodipine and carvedilol prevent cytotoxicity in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. *Hypertens Res* 2004, 27:271-282.

271. Brinton RD, Wang JM: Preclinical analyses of the therapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in transgenic mouse model of Alzheimer's disease. *Curr Alzheimer Res* 2006, 3:11-17.

272. Liu JW, Tian SJ, de Barry J, Luu B: Panaxadiol glycosides that induce neuronal differentiation in neurosphere stem cells. *J Nat Prod* 2007, 70:1329-1334.

273. Yoshida J, Ishibashi T, Nishio M: Antiproliferative effect of Ca2+ channel blockers on human epidermoid carcinoma A431 cells. *Eur J Pharmacol* 2003, 472:23-31.

274. Arredondo J, Chernyavsky Al, Grando SA: SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes. *Life Sci* 2007, 80:2243-2247.