A necessary and sufficient condition for the existence of \(\{p, p + 1, q - 1, q\} \)-orientations in simple graphs

MORTEZA HASANVAND

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
morteza.hasanvand@alum.sharif.edu

Abstract

Let \(G \) be a simple graph and let \(p \) and \(q \) be two integer-valued functions on \(V(G) \) with \(p < q \) in which for each \(v \in V(G) \), \(q(v) \geq \frac{1}{2}d_G(v) \) and \(p(v) \geq \frac{1}{2}q(v) - 2 \). In this note, we show that \(G \) has an orientation such that for each vertex \(v \), \(d^+_G(v) \in \{p(v), p(v) + 1, q(v) - 1, q(v)\} \) if and only if it has an orientation such that for each vertex \(v \), \(p(v) \leq d^+_G(v) \leq q(v) \) where \(d^+_G(v) \) denotes the out-degree of \(v \) in \(G \). From this result, we refine a result due to Addario-Berry, Dalal, and Reed (2008) in bipartite simple graphs on the existence of degree constrained factors.

Keywords: Orientation; out-degree; factor; degree; bipartite graph.

1 Introduction

In this note, graphs have no loops, but multiple edges are allowed, and a simple graph have neither multiple edges nor loops. Let \(G \) be a graph. The vertex set and the edge set of \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively. We denote by \(d_G(v) \) the degree of a vertex \(v \) in the graph \(G \), whether \(G \) is directed or not. If \(G \) has an orientation \(D \), the out-degree and in-degree of \(v \) are denoted by \(d^+_D(v) \) and \(d^-_D(v) \); when \(D \) is clear from the context, we only write \(d^+_G(v) \) and \(d^-_G(v) \). We denote by \(G[A] \) the induced subdigraph of \(D \) with the vertex set \(A \) containing precisely those edges of \(G \) whose ends lie in \(A \). Likewise, we denote by \(D[A] \) the induced subdigraph of \(D \) with the vertex set \(A \) containing precisely those edges of \(D \) whose ends lie in \(A \). Let \(L : V(G) \rightarrow 2^\mathbb{Z} \) be a function. An orientation of \(D \) of \(G \) is said to be (i) \(L \)-orientation, if for each vertex \(v \), \(d^+_D(v) \in L(v) \), (ii) \((p, q) \)-orientation, if for each vertex \(v \), \(p(v) \leq d^+_D(v) \leq q(v) \), where \(p \) and \(q \) are two integer-valued functions on \(V(G) \). Likewise, a factor \(F \) of the graph \(G \) is said to be \(L \)-factor, if for each vertex \(v \), \(d^+_F(v) \in L(v) \), (ii) \((g, f) \)-factor, if for each vertex \(v \), \(g(v) \leq d^+_F(v) \leq f(v) \), where \(g \) and \(f \) are two integer-valued functions on \(V(G) \).

In 1976 Frank and Gyárfás formulated the following a criterion for the existence of \((p, q) \)-orientations
which generalizes a result of Hakimi [6] who gave a criterion for the existence of orientations with given upper bound on out-degrees.

Theorem 1.1. ([4]) Let G be a graph and let p and q be two integer-valued function on $V(G)$ with $p \leq q$. Then G has a (p, q)-orientation if and only if for all $S \subseteq V(G)$,

$$e_G(S) \leq \min \{ \sum_{v \in S} q(v), \sum_{v \in S} (d_G(v) - p(v)) \}.$$

Recently, the present author introduced the following criterion for the existence of (p, q)-orientations in highly edge-connected graphs. In this note, we prove that under some conditions, as mentioned in the abstract, a simple graph has a $(p, p + 1, q - 1, q)$-orientation if and only if it has a (p, q)-orientation.

Theorem 1.2. ([7]) Let G be a $8k^2$-edge-connected graph and let p and q be two integer-valued functions on $V(G)$ in which for each vertex v, $p(v) \leq d_G(v)/2 \leq q(v)$ and $|q(v) - p(v)| \leq k$. Then G has a (p, q)-orientation if and only if there is an integer-valued function t on $V(G)$ such that $|E(G)| = \sum_{v \in V(G)} t(v)$ and $t(v) \in \{p(v), q(v)\}$ for each $v \in V(G)$.

As an application, we refine the following result in bipartite simple graphs which is due to Addario-Berry, Dalal, and Reed (2008). More precisely, we conclude that under simpler conditions, a bipartite simple graph has a $(g, g + 1, f - 1, f)$-factor if and only if it has a (g, f)-factor.

Theorem 1.3. ([2]) Let G be a simple graph and let g and f be two integer-valued functions on $V(G)$ satisfying $f \leq d_G$. If for each $v \in V(G)$, $\frac{1}{2}f(v) - 2 \leq g(v) \leq \lfloor \frac{1}{4}d_G(v) \rfloor < f(v) \leq \frac{1}{2}(d_G(v) + g(v)) + 2$, then G has a factor F such that for each $v \in V(G)$,

$$d_F(v) \in \{g(v), g(v) + 1, f(v) - 1, f(v)\}.$$

2 \ $(p, p + 1, q - 1, q)$-orientations of simple graphs

The following theorem gives a criterion for existence of $(p, p + 1, q - 1, q)$-orientations in simple graphs.

Theorem 2.1. Let G be a simple graph and let p and q be two integer-valued functions on $V(G)$ with $p < q$ in which for each $v \in V(G)$, $q(v) \geq \frac{1}{4}d_G(v)$ and $p(v) \geq \frac{1}{4}q(v) - 2$. Then G admits a (p, q)-orientation if and only if it has an orientation such that for each $v \in V(G)$,

$$d_C(v) \in \{p(v), p(v) + 1, q(v) - 1, q(v)\}.$$

Proof. Consider an orientation for G such that for each vertex v, $p(v) \leq d_C(v) \leq q(v)$. Now, among such orientations, consider D with the minimum $\sum_{v \in W_D} |d_D(v) - p(v)|$, where $X(D) = \{v \in V(G) : p(v) + 1 <
\(d_D^+(v) < q(v) - 1\). If \(X(D) = \emptyset\), then the proof is completed. Suppose, to the contrary, that there is a vertex \(x \in X(D)\). Define \(S\) to be the set of all vertices \(v\) such that there is a directed path from \(x\) to \(v\). Note that we must have \(d_D^+(v) \notin \{p(v), q(v) - 1\}\); otherwise, we can reverse the orientation of that path to obtain a better orientation, which derives a contradiction. Obviously, \(x \in S\). By the definition of \(S\), there is no directed edge from \(S\) to \(V(G) \setminus S\). Therefore,

\[
\sum_{v \in S} d_D^{-|S|}(v) = \sum_{v \in S} d_D^+(v).
\]

This implies that \(d_D^{-|S|}(x) \geq d_D^+(x)\) or there is a vertex \(y \in S \setminus \{x\}\) such that \(d_D^{-|S|}(y) \geq d_D^+(y) + 1\). In the first case, since \(d_D^+(x) \geq p(x) + 2 \geq \frac{1}{2}q(x)\), we must have \(d_D^{-|S|}(x) \geq d_D^+(x) \geq q(x) - 1 - d_D^+(x) \geq 1\). Thus, we can reverse the orientation of \(q(x) - 1 - d_D^+(x)\) edges of \(D[S]\) incident to \(x\) which is directed toward it. In the second case, since \(d_D^-(y) \geq p(y) + 1 \geq \frac{1}{2}q(y) - 1\), similarly we must have \(d_D^{-|S|}(y) \geq d_D^-(y) + 1 \geq q(y) - 1 - d_D^-(y)\).

In addition, the inequality \(q(y) \geq d_G(y)/2\) implies that \(d_D^+(y) \neq q(y)\) and hence \(q(y) - 1 - d_D^+(y) \geq 1\).

Therefore, we can first reverse the orientation of a directed path from \(x\) to \(y\), and next reverse the orientation of \(q(y) - 2 - d_D^+(y)\) edges incident to \(y\) which is directed toward it.

Let \(D_0\) be the new orientation of \(G\) and let \(X(D_0) = \{v \in V(G) : p(v) + 1 < d_{D_0}^+(v) < q(v) - 1\}\). Since \(G\) has no multiple edges, each \(v \in S \setminus \{x, y\}\) is incident to at most one modified edge of the last step. This implies that \(d_{D_0}^+(v) - d_D^+(v) \in \{-1, 0\}\) and \(p(v) \leq d_{D_0}^+(v) \leq q(v)\). Recall that \(d_D^+(v) \notin \{p(v), q(v) - 1\}\) for all \(v \in S\). For the first case, we have \(d_{D_0}^+(x) = q(x) - 1\) and hence \(X(D_0) \subseteq X(D) \setminus \{x\}\). For the second case, we have \(d_{D_0}^+(x) - d_D^+(x) \in \{-2, -1\}\) and \(d_{D_0}^+(y) = q(y) - 1\), and hence \(X(D_0) \subseteq X(D) \setminus \{y\}\). Therefore, \(D_0\) is a \((p, q)\)-orientation of \(G\) while \(\sum_{v \in X(D_0)} |d_{D_0}^+(v) - p(v)| < \sum_{v \in X(D)} |d_D^+(v) - p(v)|\). This is a contradiction and consequently the theorem is proved.

\[\square\]

Corollary 2.2. Let \(G\) be a simple graph and let \(p\) and \(q\) be two integer-valued functions on \(V(G)\) with \(p < q\). If for each \(v \in V(G)\), \(\frac{1}{2}d_G(v) - \frac{4}{3} \leq p(v) \leq \frac{1}{2}d_G(v) \leq q(v) \leq \frac{2}{3}d_G(v) + \frac{4}{3}\), then \(G\) admits an orientation such that for each \(v \in V(G)\),

\[
d_G^+(v) \in \{p(v), p(v) + 1, q(v) - 1, q(v)\}.
\]

Proof. Obviously, the graph \(G\) has an orientation such that for each vertex \(v\), \(|d_G^+(v) - d_G^-(v)| \leq 1\) which implies that \(q(v) \leq \lfloor \frac{1}{2}d_G(v) \rfloor \leq d_G^+(v) \leq \lceil \frac{1}{2}d_G(v) \rceil \leq p(v)\). Since \(p(v) \geq \frac{1}{3}d_G(v) - \frac{4}{3} \geq \frac{2}{3}q(v) - 2\), the proof can be completed by Theorem 2.1.

\[\square\]

Remark 2.3. Theorem 2.1 can be reformulated by replacing the conditions \(q(v) \leq (d_G(v) + q(v))/2 + 2\) and \(p(v) \leq d_G(v)/2\). To see this, it is enough to work with restricted in-degrees in the proof. By the same arguments in the proof, one can also develop Theorem 2.1 to multigraphs \(G\) provided that for each vertex \(v\), \(p(v) - q(v)/2 + 2 \geq d_G(v) - |N_G(v)|\), where \(N_G(v)\) denotes the set of all neighbours of \(v\) in \(G\).
3 Applications to degree constrained factors

Addario-Berry, Dalal, McDiarmid, Reed, and Thomason (2007) established the following theorem on the existence of degree constrained factors in simple graphs. This result was a prototype of Theorem 1.3. In this section, we are going to introduce a new stronger version for both of Theorems 1.3 and 3.1 in bipartite simple graphs based on Theorem 2.1.

Theorem 3.1. ([1]) Let G be a simple graph and let g and f be two integer-valued functions on $V(G)$. If for each $v \in V(G)$, $\frac{1}{3}d_G(v) - \frac{1}{3} \leq g(v) \leq \frac{1}{3}d_G(v) \leq f(v) \leq \frac{2}{3}d_G(v) + \frac{2}{3}$, then G has a factor F such that for each $v \in V(G)$,

$$d_F(v) \in \{g(v), g(v) + 1, f(v) - 1, f(v)\}.$$

For this purpose, we need the following lemma that provides a useful relation between orientation and factors of bipartite graphs. A special case of this lemma was also used by Thomassen (2014) [9] to form a result on modulo factors of edge-connected graphs.

Lemma 3.2. Let G be a bipartite graph with bipartition (X, Y) and $L : V(G) \to 2^\mathbb{Z}$ be a function. Then G admits an L-orientation if and only if G admits an L_0-factor, where for each vertex v,

$$L_0(v) = \begin{cases} L(v), & \text{when } v \in X; \\ \{d_G(v) - i : i \in L(v)\}, & \text{when } v \in Y. \end{cases}$$

Proof. If D is an orientation of G, then the factor F consisting of all edges of G directed from X to Y satisfies $d_F(v) = d_D^+(v)$ for each $v \in X$, and $d_F(v) = d_G(v) - d_D^-(v)$ for each $v \in Y$. Conversely, from every factor F, we can make an orientation D whose edges directed from X to Y are exactly the same edges of F. \hfill \square

The following theorem is an equivalent version of Theorem 2.1 in bipartite graphs in terms of factors. Note that every bipartite graph G has a factor F such that for each vertex v, $[d_G(v)/2] \leq d_F(v) \leq [d_G(v)/2]$. To see this, it is enough to apply Lemma 3.2 along with an orientation of G such that for each vertex v,

$$|d_G^+(v) - d_G^-(v)| \leq 1.$$

Theorem 3.3. Let G be a bipartite simple graph with bipartition (X, Y) and let g and f be two integer-valued functions on $V(G)$ with $g < f$. Assume that for each $v \in X$, $f(v) \geq d_G(v)/2$ and $g(v) \geq f(v)/2 - 2$, and for each $v \in Y$, $g(v) \leq d_G(v)/2$ and $f(v) \leq (d_G(v) + g(v))/2 + 2$. Then G has a (g, f)-factor if and only if it has a factor F such that for each $v \in V(G)$,

$$d_F(v) \in \{g(v), g(v) + 1, f(v) - 1, f(v)\}.$$

Proof. Apply Lemma 3.2 and Theorem 2.1 by setting $p(v) = g(v)$ and $q(v) = f(v)$ for each $v \in X$, and setting $p(v) = d_G(v) - f(v)$ and $q(v) = d_G(v) - g(v)$ for each $v \in Y$. \hfill \square
Remark 3.4. Note that one can use Lemma 3.2 to rediscover Theorem 4 and Lemma 6 in [3], which gave sufficient conditions for the existence of list orientations, from Theorem 1 in [5] and Theorem 2 in [5], which gave sufficient conditions for the existence of list factors.

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, and A. Thomason, Vertex-colouring edge-weightings, Combinatorica 27 (2007) 1–12.

[2] L. Addario-Berry, K. Dalal, and B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168–1174.

[3] S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati, Orientations of graphs avoiding given lists on out-degrees, J. Graph Theory 93 (2020) 483–502.

[4] A. Frank and A. Gyárfás, How to orient the edges of a graph? in Combinatorics, Coll Math Soc J Bolyai 18 (1976) 353–364.

[5] A. Frank, L. C. Lau, and J. Szabó, A note on degree-constrained subgraphs, Discrete Math. 308 (2008) 2647–2648.

[6] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (1965) 290–308.

[7] M. Hasanvand, The existence of \{p, q\}-orientations in edge-connected graphs, arXiv:2205.09038.

[8] H. Shirazi and J. Verstraëte, A note on polynomials and f-factors of graphs, Electron. J. Combin. 15 (2008), Note 22, 5.

[9] C. Thomassen, Graph factors modulo k, J. Combin. Theory Ser. B 106 (2014) 174–177.