Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2022 (Volume 62): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY
Could phytoseiid mites impair biological control of the invasive plant, *Ailanthus altissima*?

Maicon Toldi a, Noeli Juarez Ferla a, Darliane Evangelho Silva a, Priscila de Andrade Rode a, Anderson de Azevedo Meira a, Enrico de Lillo b

a Laboratory of Acarology, University of Vale do Taquari – Univesit, Avelino Talini, 171, Lajeado, 95900-000, Brazil.
b Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, via Amendola, 165/a, 70126, Bari, Italy.

Original research

ABSTRACT

Aculus taihangensis is a potential biological control agent of *Ailanthus altissima* (Miller) Swingle. However, predatory mites found in Europe may affect the action of this eirophyid agent. The aim of the present study was to evaluate the biology of two predatory mites, *Euseius stipulatus* and *Typhlodromus* (*Typhlodromus*) *exhilaratus*, feeding on *A. taihangensis*. Rearing stocks were maintained in germination chambers at 25 ± 1 °C, with 12 hours of photophase and relative humidity 70 ± 5%. Of 40 individualized *T. (T.) exhilaratus* eggs, only 37.5% achieved adulthood, while viability of *E. stipulatus* was 87.5%. The mean fecundity was 18 eggs/ female. Both predatory mites evaluated in this study feed on *A. taihangensis*. However, only *E. stipulatus* seems to be an efficient predator, capable of controlling *A. taihangensis*.

Keywords *Aculus taihangensis*; IPM; *Euseius stipulatus*; *Typhlodromus* (*Typhlodromus*) *exhilaratus*

Introduction

Ailanthus altissima (Miller) Swingle (Simaroubaceae), commonly known as tree of Heaven, is a native tree to China and North Vietnam, thanks to its rapid global spread has become invasive in several places (Kowarik and Säumel 2007). With rapid growth, it invades natural areas establishing populations with high density, thus shading native species. It exhibits root allelopathy that inhibits growth and development of other plant species occupying the same environment (Heisey 1996). It is considered invasive in Europe and in all continents, except for Antarctica (Kowarik and Säumel 2007).

The introduction of herbivorous insects, mites and pathogens for the management of pests, weeds (or plants) and diseases that affect ecosystems, has been intensified over the years in order to decrease environmental impacts by controlling the density of invasive plants like tree of Heaven. Therefore, the biological control of weeds is aimed at reducing the population of some species with either ecological or economic importance (Seastedt 2015).

Aculus taihangensis Hong & Xue (Eriophyidae) described from Hebei Province, China (Hong and Xue 2005) as vagrant on *Ailanthus altissima*, has recently been reported also in Italy, Croatia, Greece, Serbia, Hungary, Romania, Bulgaria, Austria, Slovenia, and France on the same host (de Lillo et al. 2022). It seems to be an interesting candidate for the biological control of this exotic plant (de Lillo et al. 2017). Eriophyoidea generally causes damage to countless agricultural crops, foresting, and ornamental plants (Lindquist et al. 1996). The severity of the symptoms they induce consists of reduction of biomass production and
reproductive performance of the host plant, and they depend on mite population density and on the morphology of the plant attacked (Oldfield 1996; Smith et al. 2010; de Lillo and Skoracka 2010). Approximately 80% of Eriophyoidea are exclusively associated to unique host plant species (Skoracka et al. 2010), which means they are a possible candidate for the control of invasive plants (Smith et al. 2010), ensuring the protection of the native plants in places of introduction.

Among the predatory mites that might be associated with eriophyid mites, phytoseiid mites are the most common and abundant on plants (Tixier 2018). Several species are important control agents in greenhouses (Zhang 2003) and orchards (Parra et al. 2002). They feed on mites, insects, nematodes, fungi, pollen, and plant exudates (McMurtry et al. 2013). Amblyseius swirskii Athias-Henriot, for example, fed efficiently on Aculops lycopersici (Tryon) on tomato leaves in laboratory trials (Park et al. 2010). Typhlodromus (T.) exhilaratus was reported to be a type III generalist predator (McMurtry et al. 2013), feeding on tetranychids, eriophyids, and pollen (Ragusia 1981). Typhlodromus (T.) exhilaratus has already been reported associated with Aceria caulobia (Nalepa) inside the stem galls induced by this mite in Apulia (de Lillo 1987; de Lillo and Monfreda 2004), and it is a quite common species in Southern Italy. Mites of Euseius are commonly found associated with plants with smooth leaves or little pubescent surface (Seelmann et al. 2007, McMurtry et al. 2013). They have been reported on eucalyptus, coffee, and forest fragments (Queiroz and Flechtmann 2011), and have also been associated with grapevines (Tixier et al. 2013). Euseius stipulatus (Athias-Henriot) is a generalist species, capable of developing when feeding on pollen as alternative food (McMurtry et al. 2013). This species has already been reported in Italy (Ragusia and Swirski 1976), Spain (Ferragut et al. 1988), and Portugal (Silva et al. 2019) in environments with temperate climate environments, where it provides a significant level of control of Panonychus ulmi (Koch) (Rodrigues 2005).

To date, nothing has been found about predatory mites controlling A. taihangensis. The present study hypothesizes that predatory mites found in European natural environments could reduce the level of biological control of this weed by eriophyoid. Therefore, the aim is to evaluate the predation capacity of E. stipulatus and T. (T.) exhilaratus feeding on A. taihangensis.

MATERIAL AND METHODS

The experiments were carried out in the Acarology Laboratory of Università degli Studi di Bari Aldo Moro, Bari, Italy. Euseius stipulatus and Aculus taihangensis were collected from Ailanthus altissima in the city of Bari, Italy (41°06′33.3″N 16°53′04.3″E), while Typhlodromus (T.) exhilaratus was collected from Suaeda vermiculata Forsskål ex J. F. Gmelin (Amaranthaceae) in the city of Margherita di Savóia, Italy (41°22′23.5″N 16°07′38.6″E), where it was found inside the stem galls induced by A. caulobia. Rearing stocks of the predatory mites were maintained on A. altissima contaminated with A. taihangensis and A. caulobia populations. Rearing stocks were maintained in the laboratory throughout the period in a climate chamber at 25 ± 1 °C, 12 hours of photophase, and 70 ± 5% relative humidity.

The study of predator development was initiated with 40 eggs of each species, obtained from isolated females for a period of 6 hours, which were isolated in arenas on Petri dishes with 6 cm containing 4 cm diameter leaf disks of A. altissima, contaminated with more than 20 individuals of A. taihangensis per day. Each leaf disk was attached to a pin, surrounded by distilled water, and replaced daily. Three daily observations were conducted at 8 AM, 1 PM, and 6 PM, using a stereo microscope Zeiss Stemi 305, during immature period to determine the duration of each of the immature stages. During adulthood, females were paired with males obtained from the stock colonies and evaluations were conducted once a day at 1 PM, checking the number of eggs laid and mite survival. Eggs were collected and transferred to other arenas to determine sex ratio. The males were kept isolated in the arenas until death.

Toldi M. et al. (2022), *Acarologia* 62(4): 892-897. https://doi.org/10.24349/2o0d-2ri4
The data were compared using an ANOVA test and post-hoc Tukey’s test at a significance level of 5% using R Studio (R Development Core Team 2010). Life-table calculations were performed according to Silveira-Neto et al. (1976).

Net reproductive rate \((R_0 = \sum mx.lx, \text{ where } mx: \text{ the number of offsprings/female x sex ratio; } lx: \text{ specimens alive/total specimens}) \), mean generation time \((T = \frac{\sum mx.lx.x}{\sum mx.lx}) \), innate ability to increase \((r_m = \log R_0 / T \cdot 0.4343) \), and finite growth rate \((\lambda = e^{r_m}) \) were calculated.

Results

Only 37.5% of *Typhlodromus (T.) exhilaratus* reached adulthood, while 87.5% of *E. stipulatus* did (Table 1). In most stages, *E. stipulatus* had a shorter duration of stages than *T. (T.) exhilaratus*, except for the larval stage. The duration of the immature period of *Euseius stipulatus* was about 5.6 days. The deutonymph stage being the shortest of the stages. The duration of the immature period of *T. (T.) exhilaratus* was about 7.6 days with the larval stage being the shortest of the stages.

![Figure 1](https://example.com/figure1.png)

Figure 1 Specific fertility (mx) and survival of *Euseius stipulatus* feeding on *Aculus taihangensis* at 25 ± 1 °C, 12 hours of photophase, and 70 ± 5% relative humidity.

Life table parameters were calculated only for *E. stipulatus* since, as only 4 females of *T. exhilaratus* laid 14 eggs. The mean fecundity of *E. stipulatus* was 18 eggs/female (Table 2). The sex ratio was 0.66 and the number of the males was 17. The results showed that *E. stipulatus* feed on *A. taihangensis*, reaches adulthood and lays eggs.

Discussion

The study of the interactions of native predators with native introduced organisms is required when planning weed control programs using the introduced organisms as biological control agent. In our case we supposed the potential biological control of *A. altissima* using *A. taihangensis*. The present study showed that both *E. stipulatus* and *T. (T.) exhilaratus* fed on *A. taihangensis*, this one being a more suitable prey for *E. stipulatus*. *Aculus taihangensis* populations were not suitable to keep *T. (T.) exhilaratus* populations.
The development time of *E. stipulatus* feeding on *A. taihangensis* was similar to that of the same predator feeding on *Carpobrotus edulis* (L.) N. E. Brown (Aizoaceae) pollen (Ferragut et al. 1987). However, it was longer when feeding on apple, almond, pear, apricot, plum, walnuts and cherry pollen (Bouras and Papadoulis 2005). The same was the case when feeding on *Aleurothrixus floccosus* Maskell (Aleyrodidae), *Panonychus citri* (McGregor), *Tetranychus urticae* Koch (Tetranychidae), *Lorryia formosa* Cooreman (Tydeidae), and *Planococcus citri* Risso (Pseudococcidae) (Ferragut et al. 1987). However, this time was longer than when the same mite feeds on alternatives presented above. These pollen diets could be considered, in the future, as complementary diets that have been shown in other cases to increase predator fitness and, at the end, the control. To date, there has only been one study on the biology of *Typhlodromus (T.) exhilaratus* (Ragusa 1981) feeding on different diet types: *Borago officinalis* (L.) (Boraginaceae), *Salvia rosmarinus* Spenner (Lamiaceae), *Bougainvillea* spp. (Nyctaginaceae), *Jasminum* spp. (Oleaceae), *Oxalis* spp. (Oxalidaceae), and *Duranta ellisia* Jacquemin (Verbenaceae) pollen, and on *P. citri* and *T. urticae* in which the duration of the egg-adult period was between 5.5–8 days. The development time of this mite in this study is within this range reported above, suggesting that this predator is a generalist, surviving on a wide range of food sources. These results suggest that this predator is a generalist, surviving on a broad range of food.

The intrinsic rate, oviposition period and fecundity of *E. stipulatus* were higher when feeding on *C. edulis* pollen (0.19; Ferragut 1987), indicating that it is a suitable diet, while *A. taihangensis* could be considered as a complementary food.

The predator *T. (T.) exhilaratus* was expected to be an efficient biological control agent of *A. taihangensis*, since, according to Ragusa (1981), the diet of this predator includes tetranychids.

| Table 1 Mean duration, in days (±SE), of immature stages of *Euseius stipulatus* and *Typhlodromus (T.)* exhilaratus feeding on *Aculus taihangensis*, at 25 ± 1 °C, 12 hours of photophase, and relative humidity 70 ± 5%.

Immature stages	Egg	Larva	Protonymph	Deutonymph	Egg-adult
Euseius stipulatus	1.6 ± 0.3Ba*	1.8 ± 0.3Aa	1.4 ± 0.6Bab	1.1 ± 0.5Bb	5.6 ± 1.0B
Survival (%)	100	97.50	97.44	94.6	87.5
N	40	39	38	37	35
Typhlodromus (T.) exhilaratus	2.7 ± 0.9Aa	1.2 ± 0.4Bc	2.7 ± 1.2Aab	1.7 ± 1.0Abc	7.6 ± 1.2A
Survival (%)	77.50	100	75	83.33	37.5
N	31	31	24	18	15

*Same lowercase letters in the rows represent no significant difference; same uppercase letters in the column represent no significant differences; both according to Tukey’s test at a significance level of 5%.

| Table 2 Mean duration, in days (± SE), pre-oviposition, oviposition, longevity, and mean fecundity and eggs per female (± SE) of *Euseius stipulatus* feeding on *Aculus taihangensis* at 25 ± 1 °C, 12 hours of photophase and 70 ± 5% relative humidity.

N	*Euseius stipulatus*	
Pre-oviposition	18	2.17 ± 0.20
Oviposition	18	10.56 ± 1.75
Post-oviposition	18	2.8 ± 1.10
♀ Longevity	18	16.78 ± 1.88
♂ Longevity	17	11.53 ± 1.69
Fecundity	18	18 ± 2.77

N = number of mites evaluated
eriophyids, and pollen. However, the results obtained did not corroborate the initial hypothesis.

The potential of *E. stipulatus* for biological control increases in more humid environments and milder temperatures (Thurman *et al.* 2017). This mite is considered tolerant to pesticides compared to other species usually found in the same environment, such as *Neoseiulus californicus* (McGregor) and *Phytoseiulus persimilis* Athias-Henriot (Argolo *et al.* 2014). Nonetheless, *E. stipulatus* has only been found in preserved vineyards environments (Silva *et al.* 2019). Several studies provided information on the occurrence of predatory mites on plants. However, little is known about the parameters that explain this occurrence (Tixer 2018).

The biological control of *A. taihangensis* on *A. altissima* will be more efficient only under unfavorable conditions for *E. stipulatus*.

In conclusion, *A. taihangensis* was not a suitable prey for *T. (T.) exhilaratus*, suggesting that there is no risk of impairing the action of this eriophyid in the control of *A. altissima* in the field. On the other hand, *A. taihangensis* is a suitable prey for *E. stipulatus*, so it should be considered that this predatory mite may be a factor impeding the success of a biological control program using the eriophyid for biological control of *A. altissima*. However, further studies are needed to know the real risk in the field as this also depends on environmental conditions, and the ability of the predator to search for prey.

ORCID

Maicon Toldi https://orcid.org/0000-0003-4122-3908
Noeli Juarez Ferla https://orcid.org/0000-0003-0771-6864
Darliane Evangelho Silva https://orcid.org/0000-0002-3865-3248
Priscila de Andrade Rode https://orcid.org/0000-0001-9172-8483
Anderson de Azevedo Meira https://orcid.org/0000-0003-0201-1961
Enrico de Lillo https://orcid.org/0000-0003-0649-4963

References

Argolo, P. S., Jacas, J. A., Urbaneja, A. 2014. Comparative toxicity of pesticides in three phytoseiid mites with different life-style occurring in citrus: *Euseius stipulatus, Neoseiulus californicus* and *Phytoseiulus persimilis*. Experimental and applied acarology, 62(1): 33-46. https://doi.org/10.1007/s10493-013-9726-2

Bouras S.L., Papadoulis G.T. 2005. Influence of selected fruit tree pollen on life history of *Euseius stipulatus* (Acari: Phytoseiidae). Exp. Appl. Acarol., 36: 1-14. https://doi.org/10.1007/s10493-005-2381-5

de Lillo E. 1987. L’acarocecidio indotto da *Aceria caulobius* (Nalepa) n. comb. (Acari: Eriophyoidea) su Suaeda fruticosa Forsk., serbatoio naturale del predatore *Typhlodromus exhilaratus* Ragusa (Acari: Phytoseiidae). Entomologica, 22: 5-14.

de Lillo E., Monfreda R. 2004. ‘Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exp. Appl. Acarol., 34: 291-306. https://doi.org/10.1023/B:APPA.0000049219.93796.11

de Lillo E., Panzarino O., Loverre P., Valenzano D., Mattia C., Marini F., Augé, M., Cristofaro M. 2017. New eriophyoid mites from Italy. IV. Mites associated with weed plants. Syst. Appl. Acarol., 22: 2256-2272. https://doi.org/10.11158/saa.22.12.15

de Lillo, E., Skoracka, A. 2010. “What’s “cool” on eriophyoid mites?” Exp. Appl. Acarol. 51: 1-30. https://doi.org/10.1007/s10493-009-9297-4

Ferragut F., Costa-Comelles J., Garcia-Mari F., Laborda R., Roca D., Marziali C. 1988. Population dynamics of the phytoseiid *Euseius stipulatus* (Athias-Henriot) and its prey *Panonychus citri* (McGregor) (Acari: Phytoseiidae, Tetranychidae), in Spanish citrus (in Spanish). Bol. San. Veg. Plagas, 14: 45-54.

Ferragut F., Garcia-Mari F., Costa-Comelles J., Laborda R. 1987. In Xuea of food and temperature on development and oviposition of *Euseius stipulatus* and *Typhlodromus phialatus* (Acari: Phytoseiidae). Exp. Appl. Acarol., 3: 317-329. https://doi.org/10.1007/BF01193168

Heisey R.M. 1996. Identification of an allelopathic compound from *Ailanthus altissima* (Simaroubaceae) and characterization of its herbicidal activity. Am. J. Bot., 83: 192-200. https://doi.org/10.1023/j.1537-2197.1996.10417433

Hong, X.Y., Xue, X.F. 2005. Four new species of Aculeps keifer (Acari: eriophyoidae: eriophyidae) from China. Oriental Insects, v. 39, n. 1, p. 203-211. https://doi.org/10.1080/00305316.2005.10417433

Kowarik I., Säumel I. 2007. Biological flora of Central Europe: *Ailanthus altissima* (Mill.) Swingle. Perspectives in Plant Ecology, Evol. Syst., 8: 207-237. https://doi.org/10.1016/j.jpee.2007.03.002
Lindquist E.E., Sabelis M.W., Bruin J. (Eds.). 1996. Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, World Crop Pests, 6. pp. 790.

McMurtry J.A., Moraes G.J.de, Sourassou N.F. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 18: 297-320. https://doi.org/10.1016/S1572-4379(06)80011-X

Oldfield G.N. 1996. Diversity and host plant specificity. In: Eriophyoid mites. Their biology, natural enemies and control. Elsevier, Amsterdam, World Crop Pests, 6. p. 199-216. https://doi.org/10.1016/S1572-4379(96)80011-X

Park H.H., Shipp L., Buitenhuys R. 2010. Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J. Econ. Entomol., 103: 563-569. https://doi.org/10.1603/EC09161

Parra J.P.R., Botelho P.S.M., Corrêa-Ferreira B.S., Bento J.M.S. (Eds.). 2002. Controle biológico no Brasil. São Paulo: Manole. p. 225-238.

Queiroz D.L.de, Flechtmann, C.H.W. 2011. Ácaros associados ao eucalipto. Embrapa Florestas-Documentos (INFOTECA-E), 26.

Ragusa S. 1981. Influence of different kinds of food substances on the developmental time in young stages of the predacious mite Typhlodromus exhilaratus Ragusa (Acarina: Phytoseiidae). Redia, 64: 237-243.

Ragusa S., Swirski E. 1976. Notes on predacious mites of Italy, with a description of two new species and of an unknown male (Acarina: Phytoseiidae). Redia, 59: 179-196.

R Development Core Team. 2010. R: A language and environment for statistical computing. Computer program. http://www.R-project.org/ (Accessed 26 March, 2019).

Ripka G., Érsek L. 2014. A new Aculops species (Acari: Prostigmata: Eriophyoidea) on Ailanthus altissima from Hungary. Acta Phytopathol. Entomol. Hungarica, 49: 49-56. https://doi.org/10.1556/APhyt.49.2014.1.5

Rodrigues J.R.O. 2005. Os ácaros fitoseídeos na limitação natural do aranhiço-vermelho em fruteiras e vinha. Ponte de Lima: Instituto Politécnico de Viana do Castelo. Escola Superior Agrária de Ponte de Lima, D.L. pp. 179.

Seelmann L, Auer A, Hoffmann D, Schausberger P. 2007. Leaf pubescence mediates intraguild predation between predatory mites. Oikos, 116: 807-817. https://doi.org/10.1111/j.0030-1299.2007.15895.x

Silva D.E., Nascimento J.M.do, Meira A.A., Johann L., Corrêa L.L.C., Rodrigues R., Ferla N.J. 2019. Phytoseiid mites under different vineyard managements in the subregions of Lima and Câvado of the Vinho Verde region in Portugal. Syst. App. Acarol., 24(5): 918-928. https://doi.org/10.11158/saa.24.5.13

Silveira-Neto S., Nakano O., Barbin D., Nova N.A.V. 1976. Manual de ecologia dos insetos. São Paulo, Agronômicas Ceres. pp. 419.

Smith L., de Lillo E., Amrine J.W.Jr. 2010. Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp. Appl. Acarol., 51: 115-149. https://doi.org/10.1007/978-90-481-9562-6_7

Thurman J.H., Crowder D.W., Northfield T.D. 2017. Biological control agents in the Anthropocene: current risks and future options. Curr. Opin. Ins. Sci., 23: 59-64. https://doi.org/10.1016/j.cois.2017.07.008

Tixier M.-S., Baldassar A., Duso C., Kreiter S. 2013. Phytoseiidae in European grape (Vitis vinifera L.): biocological aspects and keys to species (Acari: Mesostigmata). Zootaxa, 3721: 101-142. https://doi.org/10.11646/zootaxa.3721.2.1

Xue, X.F., Hong, X.Y. 2006. Eriophyoid mite fauna from Henan Province, central China (Acaria: Eriophyoidea) with descriptions of five new species. Zootaxa, 1204, n. 1, p. 1-30-1-30. https://doi.org/10.11646/zootaxa.1204.1.1

Zhang, Z.Q. 2003. Mites of greenhouses: identification, biology and control. CABI Publishing, Biddles Ltd, Guildford and King’s Lynn, UK. pp. 244.