Tangles are decided by weighted vertex sets

Jakob Kneip
Universität Hamburg

joint work with Christian Elbracht and Maximilian Teegen

November 16, 2020
$G = (V, E)$ a graph. A *separation* is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \setminus B$ and one in $B \setminus A$.

A separation is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \setminus B$ and one in $B \setminus A$.

The order of a separation is the size of its separator $A \cap B$.

Tangles are decided by weighted vertex sets.
$G = (V, E)$ a graph. A *separation* is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \setminus B$ and one in $B \setminus A$.

![Diagram of a separation](image)

The order of a separation is the size of its separator $A \cap B$. Tangles are decided by weighted vertex sets.
$G = (V, E)$ a graph. A *separation* is a pair (A, B) of vertex sets with $A \cup B = V$ such that no edge of G has one endpoint in $A \setminus B$ and one in $B \setminus A$.

The *order* of a separation is the size of its separator $A \cap B$.

![Diagram](image_url)
A k-tangle is a set τ of separations of order $< k$ such that:

$$G[A_1] \cup G[A_2] \cup G[A_3] \neq G.$$
A \(k \)-tangle is a set \(\tau \) of separations of order \(< k \) such that:
- \(\tau \) contains exactly one of \((A, B)\) and \((B, A)\) for all \((A, B)\) of order \(< k \)

Motivation

A large cluster in a graph orients all the low order separations of a graph, the second condition (tangle property) ensures that we point to something substantial.
A \(k \)-tangle is a set \(\tau \) of separations of order \(< k \) such that:

- \(\tau \) contains exactly one of \((A, B)\) and \((B, A)\) for all \((A, B)\) of order \(< k \)
- if \(\tau \) contains \((A_1, B_1), (A_2, B_2)\) and \((A_3, B_3)\), then

\[
G[A_1] \cup G[A_2] \cup G[A_3] \neq G.
\]
A \textit{k-tangle} is a set τ of separations of order $< k$ such that:

- τ contains exactly one of (A, B) and (B, A) for all (A, B) of order $< k$
- if τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3), then

$$G[A_1] \cup G[A_2] \cup G[A_3] \neq G.$$

Motivation

A large cluster in a graph \textit{orients} all the low order separations of a graph,
A k-tangle is a set τ of separations of order $< k$ such that:

- τ contains exactly one of (A, B) and (B, A) for all (A, B) of order $< k$
- if τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3), then

\[G[A_1] \cup G[A_2] \cup G[A_3] \neq G. \]

Motivation

A large cluster in a graph *orients* all the low order separations of a graph, the second condition (tangle property) ensures that we point to something substantial.
Examples

cliques

grids

Tangles are decided by weighted vertex sets
Examples

cliques

grids

Tangles are decided by weighted vertex sets
Examples

cliques

grids

Tangles are decided by weighted vertex sets
The tangles in these examples have a set of vertices which determines their orientation by majority vote:
The tangles in these examples have a set of vertices which determines their orientation by majority vote:

there is a \textit{decider set} \(X \subseteq V \) such that for every separation \((A, B)\) of order \(< k\) we have

\[
(A, B) \in \tau \text{ if and only if } |B \cap X| > |A \cap X|.
\]
The tangles in these examples have a set of vertices which determines their orientation by majority vote:

there is a decider set $X \subseteq V$ such that for every separation (A, B) of order $< k$ we have

$$(A, B) \in \tau \text{ if and only if } |B \cap X| > |A \cap X|.$$

Do we always have such a decider set?
The tangles in these examples have a set of vertices which determines their orientation by majority vote:

there is a decider set $X \subseteq V$ such that for every separation (A, B) of order $< k$ we have

$$(A, B) \in \tau \text{ if and only if } |B \cap X| > |A \cap X|.$$

Do we always have such a decider set? Maybe.
We can show that weighted deciders exist:

Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite graph and τ a k-tangle in G.
Then there exists a function $w : V \rightarrow \mathbb{N}$ such that a separation (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$, where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

Tangles are decided by weighted vertex sets
We can show that *weighted deciders* exist:

Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite graph and τ a k-tangle in G. Then there exists a function $w: V \to \mathbb{N}$ such that a separation (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$, where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

How did we prove this?
First observation

The separations come with a natural partial order:

\[(A, B) \leq (C, D) \iff A \subseteq C \text{ and } B \supseteq D.\]
First observation
The separations come with a natural partial order:

$$(A, B) \leq (C, D) :\iff A \subseteq C \text{ and } B \supseteq D.$$
Second observation
Let \((A, B)\) and \((C, D)\) be two distinct maximal separations in a \(k\)-tangle. Consider the separators \(A \cap B\) and \(C \cap D\).

The separation \((A \cup C, B \cap D)\) cannot be of order \(< k\).

Taken together, the separator vertices are 'more often right than wrong':

\[
|B \cap (C \cap D)| + |D \cap (A \cap B)| - (|A \cap (C \cap D)| + |C \cap (A \cap B)|) > 0
\]
Second observation
Let \((A, B)\) and \((C, D)\) be two distinct maximal separations in a \(k\)-tangle. Consider the separators \(A \cap B\) and \(C \cap D\).

The separation \((A \cup C, B \cap D)\) cannot be of order \(< k\).
Second observation
Let \((A, B)\) and \((C, D)\) be two distinct maximal separations in a \(k\)-tangle. Consider the separators \(A \cap B\) and \(C \cap D\). The separation \((A \cup C, B \cap D)\) cannot be of order \(< k\).

Taken together, the separator vertices are ‘more often right than wrong’:

\[
(|B \cap (C \cap D)| + |D \cap (A \cap B)|) - (|A \cap (C \cap D)| + |C \cap (A \cap B)|) > 0
\]
Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.
Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.
We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
Idea: Find a weighting of the separators, and derive the weighting of the vertices from it.

We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i), by setting
 \[m_{ij} := |B_i \cap (A_j \cap B_j)| - |A_i \cap (A_j \cap B_j)|. \]
We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i), by setting

$$m_{ij} := |B_i \cap (A_j \cap B_j)| - |A_i \cap (A_j \cap B_j)|.$$

Now if x is a vector of weights for the separators, then

$$w(B_i) - w(A_i) = \sum_j m_{ij} \cdot x_j,$$
We can phrase this problem as a linear program:

- Enumerate the maximal separations of τ as $(A_1, B_1), \ldots, (A_m, B_m)$.
- Define an $m \times m$ matrix M where m_{ij} specifies how well $A_j \cap B_j$ decides (A_i, B_i), by setting

$$m_{ij} := |B_i \cap (A_j \cap B_j)| - |A_i \cap (A_j \cap B_j)|.$$

Now if x is a vector of weights for the separators, then

$$w(B_i) - w(A_i) = \sum_j m_{ij} \cdot x_j,$$

so Mx is the vector of the ‘net scores’ of the (A_i, B_i) in the weighting x.

Tangles are decided by weighted vertex sets.
We need to find a weight vector $x \geq 0$ with $Mx > 0$.

By the second observation we have $m_{ij} + m_{ji} > 0$, so $M + M^T$ has positive off-diagonal entries.

Lemma (Farkas' Lemma) Given A and b, either $Ax \geq b$ has a solution with $x \geq 0$, or there exists a $y \geq 0$ such that $A^T y \leq 0$ and $b^T y > 0$.

Apply Farkas with $A = M$ and $b = (1, \ldots, 1)^T$. Two possible outcomes: there is $x \geq 0$ with $Mx \geq (1, \ldots, 1)^T > 0$. there is $y \geq 0$ with $M^T y \leq 0$ and $y \neq 0$.

But then $0 \leq (M + M^T)y \leq My$.

Jakob Kneip, Universität Hamburg

Tangles are decided by weighted vertex sets
We need to find a weight vector $x \geq 0$ with $Mx > 0$.
By the second observation we have $m_{ij} + m_{ji} > 0$, so $M + M^T$ has positive off-diagonal entries.

\[\text{Diagram:} \]

Tangles are decided by weighted vertex sets.
We need to find a weight vector $x \geq 0$ with $Mx > 0$.
By the second observation we have $m_{ij} + m_{ji} > 0$, so $M + M^T$ has positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given A and b, either $Ax \geq b$ has a solution with $x \geq 0$, or there exists a $y \geq 0$ such that $A^T y \leq 0$ and $b^T y > 0$.

Tangles are decided by weighted vertex sets
We need to find a weight vector $x \geq 0$ with $Mx > 0$. By the second observation we have $m_{ij} + m_{ji} > 0$, so $M + M^T$ has positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given A and b, either $Ax \geq b$ has a solution with $x \geq 0$, or there exists a $y \geq 0$ such that $A^T y \leq 0$ and $b^T y > 0$.

Apply Farkas with $A = M$ and $b = (1, \ldots, 1)^T$. Two possible outcomes:
We need to find a weight vector $x \geq 0$ with $Mx > 0$.

By the second observation we have $m_{ij} + m_{ji} > 0$, so $M + M^T$ has positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given A and b, either $Ax \geq b$ has a solution with $x \geq 0$, or there exists a $y \geq 0$ such that $A^T y \leq 0$ and $b^T y > 0$.

Apply Farkas with $A = M$ and $b = (1, \ldots, 1)^T$. Two possible outcomes:

- there is $x \geq 0$ with $Mx \geq (1, \ldots, 1)^T > 0$.

Jakob Kneip, Universität Hamburg

Tangles are decided by weighted vertex sets
We need to find a weight vector \(x \geq 0 \) with \(Mx > 0 \).
By the second observation we have \(m_{ij} + m_{ji} > 0 \), so \(M + M^T \) has positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given \(A \) and \(b \), either \(Ax \geq b \) has a solution with \(x \geq 0 \), or there exists a \(y \geq 0 \) such that \(A^T y \leq 0 \) and \(b^T y > 0 \).

Apply Farkas with \(A = M \) and \(b = (1, \ldots, 1)^T \). Two possible outcomes:

- there is \(x \geq 0 \) with \(Mx \geq (1, \ldots, 1)^T > 0 \).
- there is \(y \geq 0 \) with \(M^T y \leq 0 \) and \(y \neq 0 \).
We need to find a weight vector \(x \geq 0 \) with \(Mx > 0 \). By the second observation we have \(m_{ij} + m_{ji} > 0 \), so \(M + M^T \) has positive off-diagonal entries.

Lemma (Farkas’ Lemma)

Given \(A \) and \(b \), either \(Ax \geq b \) has a solution with \(x \geq 0 \), or there exists a \(y \geq 0 \) such that \(A^T y \leq 0 \) and \(b^T y > 0 \).

Apply Farkas with \(A = M \) and \(b = (1, \ldots, 1)^T \). Two possible outcomes:
- there is \(x \geq 0 \) with \(Mx \geq (1, \ldots, 1)^T > 0 \).
- there is \(y \geq 0 \) with \(M^T y \leq 0 \) and \(y \neq 0 \). But then

\[
0 \leq (M + M^T)y \leq My.
\]
Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite graph and τ a k-tangle in G. Then there exists a function $w : V \to \mathbb{N}$ such that a separation (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$, where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

We never made use of the graph’s edges, so the same result holds for k-tangles of hypergraphs.
Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite graph and τ a k-tangle in G. Then there exists a function $w : V \rightarrow \mathbb{N}$ such that a separation (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$, where $w(U) := \sum_{u \in U} w(u)$ for $U \subseteq V$.

We never made use of the graph’s edges, so the same result holds for k-tangles of hypergraphs.
Similar to tangles, we can define k-edge-tangles of a graph $G = (V, E)$:

For a cut (A, B), a bipartition of V, we define its order as the number of cross-edges $|E(A, B)|$.

A k-edge-tangle is a set τ of cuts of order $< k$ such that:

1. For every cut (A, B) of order $< k$, either (A, B) or (B, A) is in τ.
2. If τ contains (A_1, B_1), (A_2, B_2), and (A_3, B_3), then $A_1 \cup A_2 \cup A_3 \neq V$.
3. For every (A, B) in τ there are at least k edges incident with vertices in B.

Tangles are decided by weighted vertex sets.
Similar to tangles, we can define \textit{k-edge-tangles} of a graph $G = (V, E)$: For a \textit{cut} (A, B), a bipartition of V, we define as \textit{order} the number of cross-edges $|E(A, B)|$.
Similar to tangles, we can define k-edge-tangles of a graph $G = (V, E)$: For a cut (A, B), a bipartition of V, we define as order the number of cross-edges $|E(A, B)|$.

A k-edge-tangle is a set τ of cuts of order $< k$ such that:

- For every cut (A, B) of order $< k$ either (A, B) or (B, A) is in τ.

Jakob Kneip, Universität Hamburg

Tangles are decided by weighted vertex sets
Similar to tangles, we can define k-edge-tangles of a graph $G = (V, E)$: For a cut (A, B), a bipartition of V, we define as order the number of cross-edges $|E(A, B)|$.

A k-edge-tangle is a set τ of cuts of order $< k$ such that:

- For every cut (A, B) of order $< k$ either (A, B) or (B, A) is in τ.
- If τ contains $(A_1, B_1), (A_2, B_2)$ and (A_3, B_3) then

$$A_1 \cup A_2 \cup A_3 \neq V.$$
Similar to tangles, we can define \(k \)-edge-tangles of a graph \(G = (V, E) \):
For a cut \((A, B)\), a bipartition of \(V \), we define as order the number of cross-edges \(|E(A, B)| \).

A \(k \)-edge-tangle is a set \(\tau \) of cuts of order \(\leq k \) such that:

- For every cut \((A, B)\) of order \(\leq k \) either \((A, B)\) or \((B, A)\) is in \(\tau \).
- If \(\tau \) contains \((A_1, B_1), (A_2, B_2)\) and \((A_3, B_3)\) then
 \[A_1 \cup A_2 \cup A_3 \neq V. \]

- For every \((A, B)\) in \(\tau \) there are at least \(k \) edges incident with vertices in \(B \).
Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite (multi-)graph and τ a k-edge-tangle in G. Then there exists a function $w : V \rightarrow \mathbb{N}$ such that a cut (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$.

Tangles are decided by weighted vertex sets
Theorem (Elbracht, K, Teegen, 2020)

Let $G = (V, E)$ be a finite (multi-)graph and τ a k-edge-tangle in G. Then there exists a function $w : V \rightarrow \mathbb{N}$ such that a cut (A, B) of G of order $< k$ lies in τ if and only if $w(A) < w(B)$.
The edge-tangle result does not extend to hypergraphs.

Consider the hypergraph $H = (V,E)$ where V is the set of 3-element subsets of \{1,...,7\}; for each $i \in \{1,...,7\}$ we have a hyperedge $e_i = \{v \in V | i \in v\}$.

In this hypergraph we have an edge-tangle $\tau = \{(A,B) | \exists e_i \in E \text{ with } B \supset e_i\}$.

This edge tangle has no weighted decider: consider

$$\sum_{1 \leq i \leq 7} w(B_i) - w(A_i).$$
The edge-tangle result does not extend to hypergraphs. Consider the hypergraph $H = (V, E)$ where
- V is the set of 3-element subsets of \{1, \ldots, 7\};
The edge-tangle result does not extend to hypergraphs. Consider the hypergraph \(H = (V, E) \) where

- \(V \) is the set of 3-element subsets of \(\{1, \ldots, 7\} \);
- for each \(i \in \{1, \ldots, 7\} \) we have a hyperedge \(e_i = \{v \in V \mid i \in v\} \).

This edge tangle has no weighted decider: consider \(\sum_{1 \leq i \leq 7} w(B_i) - w(A_i) \).
The edge-tangle result does not extend to hypergraphs.
Consider the hypergraph $H = (V, E)$ where

- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \ldots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

In this hypergraph we have an edge-tangle $\tau = \{(A, B) \mid B \supseteq e_i$ for some $e_i\}$.

Tangles are decided by weighted vertex sets.
Consider the hypergraph $H = (V, E)$ where
- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \ldots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

In this hypergraph we have an edge-tangle
\[\tau := \{(A, B) \text{ of order } < 7 \mid B \supseteq e_i \text{ for some } e_i\} . \]
Consider the hypergraph $H = (V, E)$ where
- V is the set of 3-element subsets of $\{1, \ldots, 7\}$;
- for each $i \in \{1, \ldots, 7\}$ we have a hyperedge $e_i = \{v \in V \mid i \in v\}$.

In this hypergraph we have an edge-tangle
\[\tau := \{(A, B) \text{ of order } < 7 \mid B \supseteq e_i \text{ for some } e_i\} . \]

This edge tangle has no weighted decider: consider
\[\sum_{1 \leq i \leq 7} w(B_i) - w(A_i) . \]
Thank you!