Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

Beom-Su Jang, Joo-Sang Lee, Jong Kook Rho and Sang Hyun Park
Radioisotope Science Laboratory, Korea Atomic Energy Research Institute, Jeonbuk, Korea

(Received September 21, 2012; Revised November 30, 2012; Accepted December 3, 2012)

99mTc tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a 99mTc-tricarbonyl precursor with a low oxidation state (I). 99mTc(CO)$_3$(H$_2$O)$_3$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of 99mTc-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of 99mTc-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of 99mTc-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of 99mTc tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of 99mTc-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of 99mTc tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a 99mTc-tricarbonyl-based biomolecular imaging probe.

Key words: 99mTc-tricarbonyl precursor, Glycine oligomer, Imaging moiety, Biomolecule tracing

INTRODUCTION

Molecular imaging techniques can provide biological information at the molecular level in living systems. Advances in molecular imaging techniques have been brought about by significant developments in instruments and specific imaging probes. Various imaging modalities are all successfully employed in the field of molecular imaging. Computerized tomography (CT) and magnetic resonance imaging (MRI) are still the main tools for providing structure-oriented information, while nuclear and optical imaging with the appropriate probes and reporters allow additional layers of molecular information. Despite the rapid progress of a number of imaging modalities, nuclear imaging is a premier clinical method and an advantageous approach for the in vivo tracking of biomolecules.

Technetium-99m is an ideal radionuclide for diagnostic organ imaging due to its optimum γ-energy (140 keV), short half-life (6 hr), low cost, and wide availability.

After the introduction of a 99mTc-tricarbonyl precursor with a low oxidation state (I) (Alberto et al., 1998), many approaches have been attempted to label a 99mTc-tricarbonyl precursor to a biomolecule, from glucose to an antibody (Schibli et al., 2000; Alberto et al., 1996; Chen et al., 2008; Taylor et al., 2010).

An ideal imaging probe would have high affinity and specificity for the target of interest. Peptides that target a number of disease-related receptors, as well as biomarker and the angiogenesis and apoptosis processes are in place. Small peptides have favorable pharmacokinetic and tissue distribution patterns as characterized by rapid clearance from blood and non-target tissues.

Many attempts have been made for the labeling of small peptides with 99mTc (Park et al., 2005; Reubi, 1995; Fischman et al., 1993; McAfee and Neumann, 1996; Lee et al., 2010).

The peptide labeling approach with 99mTc-tricarbonyl precursor can provide the highest possible specific activities with a minimal influence on the biologic properties of the peptide, including receptor affinity and metabolism (Egli et al., 1999). A small peptide sequence can be added to the key amino acid sequence as bifunctional chelating moiety of various molecular-targeting biomolecules for molecular imag-
ing, such as RGD peptides, somatostatin, neurotensin, etc..

In this paper, we describe the evaluation of 99mTc-tricarbonyl labeled glycine monomer and oligomers as a bifunctional peptide moiety for nuclear imaging.

MATERIALS AND METHODS

Unless otherwise stated, all solvents, amino acids and their derivatives, and chemicals were of reagent grade. CO gas (99.5%) was obtained from the Daehan Gas Co. (Seoul, Korea) and prefiltered with an oxygen trap. 99mTc was obtained as pertechnetate by elution in an Unitech Tc-99m generator with 0.9% sodium chloride (Samyoung Unitech Co. LTD., Korea). Gly(1), Gly-Gly-Gly(Gly(3)), Gly-Gly-Gly-Gly-Gly (Gly(5)) were obtained from Sigma Chemical Co. (St. Louis, USA).

Synthesis of 99mTc-tricarbonyl precursor. The 99mTc(CO)3(H2O)3+(99mTc-tricarbonyl precursor) was prepared by adding 1 ml of 99mTcO4− (99mTc-tricarbonyl precursor) to 5 ml vial containing potassium boranocarbonate (5.9 mg), sodium tetraboratedecahydrate (2.85 mg), sodium tartrate dihydrate (8.5 mg), and sodium carbonate (7.15 mg). The solution was heated for 30 min in boiling water under N2. The labeling yield and stability of the 99mTc-tricarbonyl precursor were determined using reversed-phase high-performance liquid chromatography (HPLC). The 99mTc-tricarbonyl precursor was successfully prepared with a high radio-yields (> 95%).

HPLC conditions. Instrumentation consisted of an Agilent 1200 Series system (Agilent Technologies, Waldbronn, Germany) comprising a vacuum de-gasser, a dual pump, a column oven compartment, a UV-Vis detector, and a radiometric detector. HPLC was carried out on a Nucleosil C18 (5 micron, 3.0 × 250 mm, Supelco Inc., PA, USA) maintained at ambient temperature. The mobile phase consisted of methanol (solvent B) and 0.05 M phosphate-buffered saline (PBS) (pH 7.4) was mixed together with 500 µl of n-octanol. After adding 10 µl of 99mTc-tricarbonyl glycine monomer, trimer, and pentamer (or 99mTc-tricarbonyl precursor), the samples were vortexed for 3 min, centrifuged at 3,000 g for 5 min using a SORVALL FRESCO centrifuge (Asheville, NC, USA), and allowed to separate the two phases. Each two-hundred µl of the PBS and octanol phases were measured in a well-type NaI(Tl) scintillation detector. The calculation was performed according to the following equation.

\[\text{Log } p = \text{log} \left(\frac{\text{Octanol (cpm)}}{\text{Water (cpm)}} \right) \]

Animal studies. Female ICR mice (7 weeks old) were obtained from a specific pathogen-free colony at Orient, Inc. (Seoul, Korea). After quarantine and adaptation for three weeks, mice were used. The animals were housed in a room maintained at 23 ± 2°C with 50 ± 5% relative humidity, on a 12 h light/12 h dark cycle. The animals were fed a standard animal diet and water ad libitum. All animal studies were approved by the Institutional animal Care and Use Committee at Korea Atomic Energy Research Institute (KAERI).

Micro-SPECT/CT imaging studies. The mouse was scanned with an Inveon small-animal SPECT/CT system (Siemens Medical Solutions, Knoxville, TN, USA) equipped with a 1-pinhole mouse high sensitivity collimator. The mouse was anesthetized with 2% isoflurane (positioned prone in the cradle). The micro SPECT image was acquired at 30 min after intravenous injection of 37 MBq of 99mTc-tricarbonyl compounds. The CT scans were used for the anatomical reference. For the CT scans, the X-ray sources were used at 300 µA, and 60 kV for 15 min (one shot per projection). The CT resolution was 200 µm, and the number of acquired projections was 360.

Radiolabeling of Gly(3) added biomolecules with 99mTc-tricarbonyl precursor. For application of Gly(3) as an ending sequence for oligopeptides, Gly(3) added peptides were synthesized with their prototype peptides (AGT-GDS, and GGGAGRGDS; RRPYIL and GGGRRPYIL). Labeling was performed using the 99mTc-tricarbonyl Gly(3) protocols prepared as described above.

RESULTS

Radiolabeling with 99mTc-tricarbonyl precursor. A 99mTc-tricarbonyl precursor was successfully prepared using...
Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

A procedure described (Park et al., 2005). The yield was higher than 98%. An additional purification step was not required. The radiolabeling results of glycine and glycine oligomers with a 99mTc-tricarbonyl precursor are summarized in Table 1. The labeling yields of three 99mTc-tricarbonyl complexes with Gly, Gly(3), and Gly(5) were greater than 80%. Analysis by RP HPLC reveals a single peak at 10.3 min for 99mTc-tricarbonyl-Gly, while 99mTc-tricarbonyl core elutes at 4 min. Typical chromatograms of a 99mTc-tricarbonyl precursor and 99mTc-tricarbonyl-Gly are shown in Fig. 1. Glycine and glycine oligomers were simply labeled with the 99mTc-tricarbonyl precursor with a high labeling yield.

Lipophilicity of 99mTc-tricarbonyl glycines. The octanol-water partition coefficient of 99mTc-tricarbonyl glycine and oligomers are summarized in Table 2. The values of their n-octanol/buffer partition coefficients were in the range of −0.5 to −1.6. This result indicates that these complexes are hydrophilic.

Animal studies. The SPECT images of 99mTc-tricarbonyl glycine and glycine oligomers in normal female ICR-mice acquired at 30 min post injection are shown in Fig. 2.

Table 1. 99mTc labeling yields and retention time of 99mTc-tricarbonyl glycine oligomers

Compound	Labeling yield	Retention time (min)
99mTc-tricarbonyl-Gly(1)	> 98%	11.3
99mTc-tricarbonyl-Gly(3)	> 90%	12.4
99mTc-tricarbonyl-Gly(5)	> 80%	12.4

1: Reaction conditions of 99mTc-tricarbonyl complex: 5 mg/0.2 ml of ligand solution was reacted with 1 ml 99mTc-tricarbonyl precursor, and then reaction vial was heated at 75°C for 30 min.
2: HPLC conditions:
Mobile phase - gradient system based on 0.05 M TEAP buffer and 100% MeOH.
Column - NucleosilC-18 column (3.0 x 250 mm).
Flow rate -0.6 ml/min.

Table 2. Lipophilicity of 99mTc-tricarbonyl glycine oligomers

Compound	Lipophilicity 1 (Kow log P)
99mTc-tricarbonyl-Gly(1)	-0.48 ± 0.00
99mTc-tricarbonyl-Gly(3)	-1.53 ± 0.02
99mTc-tricarbonyl-Gly(5)	-1.50 ± 0.01

1: Octanol-water partition coefficient.

![Fig. 1.](image-url) The HPLC chromatogram of 99mTc-tricarbonyl Gly(1) (A), 99mTc-tricarbonyl Gly(3) (B), and 99mTc-tricarbonyl Gly(5) (C) on C-18 column. HPLC conditions: Mobile phase - gradient system based on 0.05 M TEAP buffer and 100% MeOH; Column - NucleosilC-18 column (3.0 x 250 mm); Flow rate −0.6 ml/min.
The ^{99m}Tc-tricarbonyl glycine trimmer had fast blood clearances and showed most activity in the bladder and some activity in the kidneys. Both ^{99m}Tc-tricarbonyl glycine and pentaglycine also showed fast blood clearance, but some radioactivity was retained in the liver. From these imaging studies, all three complexes of ^{99m}Tc-tricarbonyl glycines were cleared rapidly from the body by the renal excretion, particularly ^{99m}Tc-tricarbonyl-triglycine.

Radiolabeling of Gly(3) added biomolecules with ^{99m}Tc-tricarbonyl precursor. The labeling yields of ^{99m}Tc-tricarbonyl GGGRRPYIL was higher than 95%, whereas that of ^{99m}Tc-tricarbonyl RRPYIL was less than 10% at 18 min. Also, ^{99m}Tc-tricarbonyl GGGRGDS showed a higher labeling yield than ^{99m}Tc-tricarbonyl AGRGDS at 13 min. Typical chromatogram of ^{99m}Tc-tricarbonyl precursor and ^{99m}Tc-tricarbonyl-Gly are shown in Fig. 1. Glycine

Fig. 2. The Reverse-Phase HPLC Profiles of ^{99m}Tc-tricarbonyl precursor (A), ^{99m}Tc-tricarbonyl AGRGDS (B), ^{99m}Tc-tricarbonyl GGGAGRDS (C), ^{99m}Tc-tricarbonyl RRPYIL (D), and ^{99m}Tc tricarbonyl GGGRRPYIL (E). HPLC conditions: Mobile phase - gradient system based on 0.05 M TEAP buffer and 100% MeOH; Column - Nucleosil C-18 column (3.0 × 250 mm); Flow rate ~0.6 ml/min.
Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

and glycine oligomers were simply labeled with a 99mTc-tricarbonyl precursor with a high labeling yield.

DISCUSSION

The synthesis of peptide metalloconjugation has an important role in providing radiolabelled probes for molecular imaging and therapy (Egli et al., 1999; Psimadas et al., 2012). Modification of native amino acid side chains with bifunctional chelators was commonly used. This non-site-specific approach can lead to heterogeneously labeled products with a distribution of modified sites on the peptide, including the molecular recognition site. In attempt to overcome this undesirable conjugation, currently single amino acid chelate (SAAC) systems for the incorporation of the 99mTc-tricarbonyl-based radiopharmaceuticals have been successfully established into novel synthetic strategies (Maresca et al., 2010). During the past decade, the field of technetium coordination chemistry has seen a rising interest in the 99mTc-tricarbonyl core (Schibli et al., 1998; Schibli et al., 2001). But the hydrophobicity of the metal complexes resulted in poor pharmacokinetic profile. From the classic renal functional radiopharmaceutical, 99mTc-mercaptoacetyl-Gly(3) (MAG3), the strategy of conjugation of MAG3 to the biomolecules has been used for biomolecules’ imaging such as antibodies, affibodies, anti-sense DNA, and so on (Zhang et al., 2000; Vanderheyden et al., 2006; Liu et al., 2006; Wang et al., 2007).

In this study, the 99mTc-tricarbonyl labeled glycine monomer and oligomers was evaluated and addition of Gly(3) ending sequence to the biomolecules was investigated as a feasibility study. The preparation of 99mTc-tricarbonyl-glycine oligomers was well established. Gly(3) was showed that could be radiolabeled with a 99mTc-tricarbonyl precursor with radiochemical analysis. Also 99mTc-tricarbonyl-Gly(3) showed a good clearance property in vivo. Furthermore, 99mTc-tricarbonyl-Gly(3) revealed hydrophilic property in the lipophilicity test that may contribute to a rapid excretion from the body when released from a biomolecule. From the nuclear image of 99mTc-tricarbonyl-Gly(3) in normal mice, this rapid excretion property was observed with our prediction based on the lipophilicity test.

Since Gly(3) can be added to the peptide sequence of biomolecule(s) it can be used in the same manner as MAG3. Gly(3) added biomolecule (GGGAGRGDS and GGGR-RRPYIL) showed enhanced radiolabeling yield in comparison with unmodified one (AGTGDS and RRPYIL) as from 12 to 95% in case of GGGRRRPYIL.

In conclusion, a facile preparation of 99mTc-tricarbonyl glycine oligomers and Gly(3) modification of biomolecules was successfully established. The 99mTc-tricarbonyl Gly(3) described here shows a rapid renal excretion without retention in other organs, furthermore the addition of Gly(3) to peptides showed an improved radiolabeling yield. The small animal nuclear imaging study could be useful to investigate the biodistribution of the biomolecules in living animal. Gly(3) modified peptides with the rapid whole-body clearance pharmacokinetics warrant further studies on peptide-based biomolecule imaging.

ACKNOWLEDGMENTS

This work was supported by the Korean government (Korean Ministry of Education, Science and Technology)-Granted funded by Korea Atomic Energy Research Institute (Korea Atomic Energy Research Institute-2012-2012M2A2-A6011335).

REFERENCES

Alberto, R., Schibli, R., Schubiger, P.A., Abram, U. and Kaden, T.A. (1996). Reactions with the technetium and rhenium carbonyl...
nyl complexes (NEt$_4$)$_2$[MX$_3$(CO)$_3$]. Synthesis and structure of [Tc(CN-Bu)$_3$(CO)$_3$](NO$_3$) and (NEt$_4$)[Tc(M-SCH$_2$CH$_2$OH)$_3$(CO)$_3$]. *Poly.,* 15, 1079-1089.

Alberto, R., Schibli, R., Egli, A., Schubiger, P.A., Abram, U. and Kaden, T.A. (1998). A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of (99mTc(OH)$_2$(CO)$_3$)$^+$ from (99mTcO$_4$)$^{2-}$ in aqueous solution and its reaction with a bifunctional ligand. *J. Am. Chem. Soc.,* 120, 7987-7988.

Chen, W.J., Lai, C.L., Chen, K.T. and Lo, J.M. (2008). Synthesis and biological characteristics of 99mTc-I and radiolabeled peptides for potential use as tracers for in vivo imaging. *J. Nucl. Med.,* 36, 1825-1835.

Schibli, R., Alberto, R., Egli, A., Schubiger, P.A. and Abram, U. (2000). Structural and 99mTc-NMR investigations of complexes with fac-[Tc(CO)$_3$]$_2$ and macrocyclic ligands for potential use in nuclear medicine: synthesis and characterization of various ring size: synthesis and X-ray structure of the complex fac-[Tc(9-ane-S$_3$)(CO)$_3$]Br, fac-[Tc(tosylate)$_2$(18-ane-S$_3$)(CO)$_3$] and fac-[Tc$_2$(20-ane-S$_3$-OH)(CO)$_3$]$_2$[tosylate]$_2$. *Inorg. Chem.,* 37, 3509-3516.

Schibli, R., Katti, K.V., Volkert, W.A. and Barnes, C.L. (2001). Development of novel water-soluble, organometallic compounds for potential use in nuclear medicine: synthesis, characterization, and (1)H and (31)P NMR investigations of the complexes fac-[ReBr$_3$(CO)$_3$L]$_2$ and [Tc$_2$(tosylate)$_2$(18-ane-S$_3$)(CO)$_3$]$_2$[tosylate]$_2$. *Inorg. Chem.,* 40, 2358-2362.

McAfee, J.G. and Neumann, R.D. (1996). Radiolabeled peptides and other ligands for receptors overexpressed in tumor cells for imaging neoplasms. *Nucl. Med. Biol.,* 23, 673-676.

Park, S.H., Jung, B.S. and Park, K.B. (2005). Synthesis and biological characteristics of 99mTc(I) tricarbonyl cysteine, a potential diagnostic for assessment of renal function. *J. Labelled Compd. Radiopharm.,* 48, 63-73.

Psimadas, D., Fani, M., Gourni, E., Loudos, G., Xanthopoulos, S., Zikos, C., Bouziotis, P. and Varvarigou, A.D. (2012). Synthesis and comparative assessment of a labeled RGD peptide bearing two different 99mTc-tricarbonyl chelators for potential use as targeted radiopharmaceutical. *Bioorg. Med. Chem.,* 20, 2549-2557.

Reubi, J.C. (1995). Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. *J. Nucl. Med.,* 36, 1825-1835.