Observation of the new emission line at \(\sim 3.5 \) keV in X-ray spectra of galaxies and galaxy clusters

D. A. Iakubovskyi\(^1,2\)

\(^1\)Discovery Center, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
\(^2\)Bogolyubov Institute of Theoretical Physics, Metrologichna Str. 14-b, 03680, Kyiv, Ukraine

iakubovskyi@nbi.ku.dk

The detection of an unidentified emission line in X-ray spectra of cosmic objects would be a 'smoking gun' signature for particle physics beyond the Standard Model. More than a decade of its extensive searches results in several narrow faint emission lines reported at 3.5, 8.7, 9.4 and 10.1 keV. The most promising of them is the emission line at \(\sim 3.5 \) keV reported in spectra of several nearby galaxies and galaxy clusters. Here I summarize its up-to-date status, overview its possible interpretations, including an intriguing connection with radiatively decaying dark matter, and outline future directions for its studies.

Key words: X-rays: general, dark matter, line: identification.
INTRODUCTION

The origin of dark matter – the major (yet of unknown origin) gravitating substance in the Universe \[1,23\] – still has to be revealed. If dark matter is made of elementary particles, the corresponding particle should be massive (to form over-densities in process of gravitational collapse), long-lived (to be stable for at least the age of the Universe) and neutral with respect to strong and electromagnetic interactions (to be sufficiently ‘dark’). The only known massive, long-lived and neutral particles are the usual (left-handed) neutrinos, but they are too light to form small dark matter haloes \[24,27\]. As a result, the hypothesis of dark matter particle implies an extension of the Standard Model of particle physics. Dozens of the Standard Model extensions proposed so far to contain a valid dark matter particle candidate. However, as Fig. 1 of \[28\] demonstrates, the masses of dark matter particle candidates and their interaction strengths with Standard Model particles cover a huge region of parameter space. This results in a large variety of observational methods developed to search for dark matter particles.

The specific example considered in this review is radiatively decaying dark matter. If a dark matter particle interacts with electrically charged particles, it may \[1\] possess a radiative decay channel. If a non-relativistic dark matter particle decays to a photon and another particle, slight \((v/c \lesssim 5 \times 10^{-3})\) Doppler broadening due to non-zero velocities of dark matter particles in halos would cause a narrow dark matter decay line. Such a decay line possesses several specific features allowing to robustly distinguish it from emission lines of astrophysical origin (see e.g. \[29,30\]) or from instrumental line-like features:

- its position in energy is solely determined by the mass of dark matter particle and the redshift of dark matter halo (i.e. if one neglects the mass of the other decay product, the line position is \(m_{\text{DM}}c^2/2(1+z)\), having different scaling with halo redshift \(z\) compared with instrumental line-like features;
- its intensity is proportional to dark matter column density \(\rho_{\text{DM}} = \int \rho_{\text{DM}} dl\); due to different 3D distributions of dark and visible matter, comparison of the new line intensity within the given object and among different objects would allow to choose between its decaying dark matter and astrophysical origins;
- it is broadened with the characteristic velocity of dark matter different from that of visible matter.

The above-mentioned characteristics allow to directly detect the radiatively decaying dark matter relying on astrophysical measurements. This motivates the extensive search for new lines in X-ray spectra of cosmic objects proposed about 15 years ago \[31,33\], see Table 1. An example is the analysis of the line candidate at \(\sim 2.5\) keV initially reported by \[34\] in X-ray spectrum of the Willman 1 dwarf spheroidal at 2.5σ level. Further non-observation of this line candidate in central part and outskirts of Andromeda galaxy, Fornax and Sculptor dwarf spheroidal galaxies \[35\] excludes the decaying dark matter origin of the \(\sim 2.5\) keV signal at high significance level (above 14σ). This result is further strengthened by the authors of \[36\] who reanalyzed the same observations of Willman 1 as \[33\] (and did not find the \(\sim 2.5\) keV line) and the authors of \[37\] who analysed another dwarf spheroidal, Segue 1. Finally, the authors of \[38\] ruled out the dark matter origin of the \(\sim 2.5\) keV feature by looking at Willman 1 with better statistics. The probable origin of the \(\sim 2.5\) keV line, according to \[38\], is purely instrumental, being the result of under-modelling of the time-variable soft proton background (see e.g. \[34\]) in some observations combined with an apparent dip at \(\sim 2.5\) keV in the effective area of existing X-ray instruments.

OBSERVATIONAL EVIDENCE FOR THE LINE AT \(\sim 3.5\) KEV

The new emission line at \(\sim 3.5\) keV is reported by two different groups \[70,71\] in February 2014. In \[70\], the authors combine X-ray emission from the sample of nearby galaxy clusters observed by the European Photon and Imaging Camera (EPIC) on-board the XMM-Newton X-ray cosmological observatory \[71\] with the largest number of counts (\(> 10^5\) counts for redshifts \(z < 0.1\) and \(> 10^4\) counts for redshifts \(0.1 < z < 0.4\)). The stacking is made in the cluster’s rest frame. As a result, the emission from instrumental lines is smeared out, while cosmic lines appear more prominent. This method allows \[70\] to detect 28 emission lines of astrophysical origin in 2-10 keV band, much more than in individual galaxy clusters, see e.g. \[72\]. Apart of them, \[70\] identify the new line located at \(3.57\pm0.02\) keV in XMM-Newton/MOS \[72\] cameras and at \(3.51\pm0.03\) keV in XMM-Newton/PN \[73\] camera at the level \(\gtrsim 10\) larger than predicted by two complexes of nearby astrophysical emission lines located at 3.51 keV (K XVIII).
Ref.	Object	Instrument	Cleaned exposure, ks
[40]	Diffuse X-ray background	HEAO-1, XMM-Newton/EPIC	224, 1450
[41]	Coma, Virgo	XMM-Newton/EPIC	20, 40
[42]	Large Magellanic Cloud	XMM-Newton/EPIC	20
[43]	Milky Way	Chandra/ACIS-S3	Not specified
[44]	M31 (central 5')	XMM-Newton/EPIC	35
[45]	Abell 520	Chandra/ACIS-S3	67
[46]	Milky Way, Ursa Minor	XMM-Newton/EPIC	547, 7
[47]	Milky Way	Chandra/ACIS	1500
[48]	1E 0657-56 (“Bullet cluster”)	Chandra/ACIS-I	450
[49]	Milky Way	X-ray micro-calorimeter	0.1
[50]	Milky Way	INTEGRAL/SPI	5500
[51]	M31 (central 5 – 13')	XMM-Newton/EPIC	130
[52]	Milky Way	INTEGRAL/SPI	12200
[53]	Ursa Minor	Suzaku/XIS	70
[54]	Draco	Chandra/ACIS-S	32
[55]	Willman 1	Chandra/ACIS-I	100
[56]	M31, Fornax, Sculptor	XMM-Newton/EPIC, Chandra/ACIS	400, 50, 162
[57]	Willman 1	Chandra/ACIS-I	100
[58]	Segue 1	Swift/XRT	5
[59]	M33	XMM-Newton/EPIC	20-30
[60]	M31 (12 – 28' off-centre)	Chandra/ACIS-I	53
[61]	Willman 1	XMM-Newton/EPIC	60
[62]	Ursa Minor, Draco	Suzaku/XIS	200, 200
[63]	Stacked galaxies	XMM-Newton/EPIC	8500
[64]	M31	Chandra/ACIS-I	404
[65]	Stacked dSphs	XMM-Newton/EPIC	410
[66]	Stacked galaxies	XMM-Newton/EPIC, Chandra/ACIS-I	14600, 15000
[67]	Perseus	Suzaku/XIS	520
[68]	Milky Way, Draco	Fermi/GBM, Suzaku/XIS	4600, 31500
[69]	Milky Way	XMM-Newton/EPIC	87
[70]	1E 0657-56 (“Bullet cluster”)	NuSTAR	266
[71]	Draco	XMM-Newton/EPIC	1660

Table 1: Summary of searches for dark matter decay line in X-ray observations conducted so far. This Table is an update of Table 1 in [69].
and 3.62 keV (Ar XVII). The new line is also detected at > 3σ local significance in several different sub-samples of their combined XMM-Newton/EPIC cluster dataset, see e.g. Fig. 1 and in Chandra/ACIS spectrum of Perseus cluster, see Table 2 for details.

![Fig. 1](image1.png)

Fig. 1: The combined MOS spectrum of Perseus cluster scaled to 3-4 keV energy range. On top of their best-fit model, the series of the single-bin residuals corresponding to the extra emission line at 3.57 keV is shown in red. (Adapted from Figure 7 in [70]).

The authors of [71] detect the new line at 3.53 ± 0.03 keV in the central part of Andromeda galaxy (see Fig. 2), and in the outskirts of Perseus cluster, see Table 2. [71] exclude the central part of Perseus cluster (analysed in [70]) because of its rather complex structure in X-rays, so the two datasets used in [70, 71] are totally independent enhancing the statistical significance for the new line. Another important result of [71] is the radial dependence of the new line flux in Perseus that appears more consistent with decaying dark matter profile than with astrophysical emission.

The encouraging results of [70, 71] have stimulated several groups to look on other dark matter-dominated objects. The following searches report the presence of the line at ~3.5 keV, see Table 3.

1. The central part of the Virgo cluster observed by Chandra/ACIS [71], Suzaku/XIS [83] and XMM-Newton/EPIC [85], as well as other 10 galaxy clusters from [85].
2. Combined spectrum from dwarf spheroidal galaxies [60].
3. Outskirts of galaxies [61, 71].
4. Combined blank-sky observations [63, 71].
5. Prolonged XMM-Newton/EPIC observations of Draco dwarf spheroidal galaxy [68, 89]; although the authors of [89] report a line-like excess at 3.54 ± 0.06 keV with Δχ^2 = 5.3 in PN camera, see Table 2 this finding is not supported by an independent analysis of [68] and is not accompanied with similar excess in Draco spectra seen by MOS camera [68, 89].
| Ref. | Object | Redshift | Instrument | Exposure, Ms | Line position, keV | Line flux, 10^{-6} ph/s/cm² |
|------|--------|----------|------------|--------------|-------------------|-----------------------------|
| [70] | Full stacked sample | 0.009-0.354 | MOS | 6 | 3.57±0.02 | 4.0±0.8 |
| [70] | Full stacked sample | 0.009-0.354 | PN | 2 | 3.51±0.03 | 3.9±0.6 |
| [70] | Coma+Centaurus+Ophiuchus | 0.009-0.028 | MOS | 0.5 | 3.57^a | 15.9±3.4 |
| [70] | Coma+Centaurus+Ophiuchus | 0.009-0.028 | PN | 0.2 | 3.57^a | < 9.5 (90%) |
| [70] | Perseus (< 12') | 0.016 | MOS | 0.3 | 3.57^a | 52.0±24.1 |
| [70] | Perseus (< 12') | 0.016 | PN | 0.05 | 3.57^a | < 17.7 (90%) |
| [70] | Perseus (1-12') | 0.016 | MOS | 0.3 | 3.57^a | 21.4±10.3 |
| [70] | Perseus (1-12') | 0.016 | PN | 0.05 | 3.57^a | < 16.1 (90%) |
| [70] | Rest of the clusters | 0.012-0.354 | MOS | 4.9 | 3.57^a | 2.1±0.4 |
| [70] | Rest of the clusters | 0.012-0.354 | PN | 1.8 | 3.57^a | 2.0±0.3 |
| [70] | Perseus (> 1') | 0.016 | ACIS-S | 0.9 | 3.56±0.02 | 10.2±3.7 |
| [70] | Perseus (< 9') | 0.016 | ACIS-I | 0.5 | 3.56^a | 18.6±4.8 |
| [70] | Virgo (< 500') | 0.003-0.004 | ACIS-I | 0.5 | 3.56^a | < 9.1 (90%) |
| [71] | M31 (< 14') | -0.001^b | MOS | 0.5 | 3.53±0.03 | 4.9±1.6 |
| [71] | M31 (10-80') | -0.001^b | MOS | 0.7 | 3.50-3.56 | < 1.8 (2σ) |
| [71] | Perseus (23-102') | 0.017^b | MOS | 0.3 | 3.50±0.04 | 7.0±2.6 |
| [71] | Perseus (23-102') | 0.017^b | PN | 0.2 | 3.46±0.04 | 9.2±3.1 |
| [71] | Perseus, 1st bin (23-37') | 0.017^b | MOS | 0.2 | 3.50^a | 13.8±3.3 |
| [71] | Perseus, 2nd bin (42-54') | 0.017^b | MOS | 0.1 | 3.50^a | 8.3±3.4 |
| [71] | Perseus, 3rd bin (68-102') | 0.017^b | MOS | 0.03 | 3.50^a | 4.6±4.6 |
| [71] | Blank-sky | — | MOS | 7.8 | 3.45-3.58 | < 0.7 (2σ) |

Table 2: Properties of the ~3.5 keV line reported by [70, 71]. For their analysis, the authors of [70, 71] use different X-ray datasets observed by MOS [73] and PN [72] cameras on-board XMM-Newton observatory [74] and ACIS instrument [76] on-board Chandra observatory [77]. All error bars are at 1σ (68%) level.

^a The line position is fixed at given value.

^b The redshift is fixed at NASA Extragalactic Database (NED) value.
Table 3: Properties of ∼3 keV line searched after February 2014 in different X-ray datasets observed by MOS [73] and PN [72] cameras on-board XMM-Newton observatory [74], ACIS [76] instrument on-board Chandra observatory [77] and XIS instrument [91] on-board Suzaku observatory [92]. All error bars are at 1σ (68%) level.

Ref.	Object	Redshift	Instrument	Exposure, Ms	Line position, keV	Line flux, 10^-6 ph/s/cm^2
78	Galactic centre (2.5-12')	0.0	ACIS-I	0.8	3.51	≃ 10^a
79	Galactic centre (0.3-15')	0.0	MOS	0.7	3.51	45 ± 4^c
79	Galactic centre (0.3-15')	0.0	PN	0.5	3.51	39 ± 7^e
79	M31	0.0	MOS	0.5	3.53±0.07	2.1±1.5^c
80	Galactic centre (< 14')	0.0	MOS	0.7	3.539±0.011	29±5
83	Perseus core (< 6')	0.0179b	XIS	0.74	3.510±0.023	32.5±3.7
83	Perseus confined (6-12.7')	0.0179b	XIS	0.74	3.510±0.008	32.5±4.3
83	Coma (< 12.7')	0.0231b	XIS	0.164	≃ 3.45^d	≃ 30^d
83	Ophiuchus (< 12.7')	0.0280b	XIS	0.083	3.45^d	≃ 40^d
83	Virgo (< 12.7')	0.0036b	XIS	0.09	3.55^a	< 6.5 (2σ)
85	Abell 85 (< 14')	0.0551b	MOS	0.20	3.44±0.06	6.3±3.9
85	Abell 2199 (< 14')	0.0302b	MOS	0.13	3.41±0.04	10.1±3.1
85	Abell 496 (< 14')	0.0329b	MOS	0.13	3.55±0.06	7.5±5.1
85	Abell 496 (< 14')	0.0329b	PN	0.08	3.45±0.03	16.8±6.4
85	Abell 3266 (< 14')	0.0589b	PN	0.06	3.53±0.03	8.7±4.5
85	Abell S805 (< 14')	0.0139b	PN	0.01	3.63±0.06	17.1±5.1
85	Coma (< 14')	0.0231b	MOS	0.17	3.49±0.05	23.7±10.5
85	Abell 2319 (< 14')	0.0557b	MOS	0.08	3.59±0.05	18.6±7.4
85	Perseus (< 14')	0.0179b	MOS	0.16	3.58±0.08	25.2±12.5
85	Virgo^c (< 14')	0.0036b	PN	0.06	—	< 9.3
89	Draco (< 14')	0.0	PN	0.65	3.54±0.06	1.65±0.67±0.70
84	Perseus (< 8.3')	0.0179b	XIS	1.67	3.54±0.01	27.9±3.5
84	Perseus (< 2')	0.0179b	XIS	1.67	3.51±0.02	9.3±2.6
84	Perseus (2'-4.5')	0.0179b	XIS	1.67	3.55±0.02	16.7±2.9
84	Perseus (4.5'-8.3')	0.0179b	XIS	1.67	3.58±0.02	16.1±3.3
90	Stacked clusters	0.01-0.45	XIS	8.1	3.54f	1.0±0.5

Table 3: Properties of ∼3 keV line searched after February 2014 in different X-ray datasets observed by MOS [73] and PN [72] cameras on-board XMM-Newton observatory [74], ACIS [76] instrument on-board Chandra observatory [77] and XIS instrument [91] on-board Suzaku observatory [92]. All error bars are at 1σ (68%) level.

a Best-fit line flux at fixed position 3.51 keV coinciding with the brightest K XVIII line.

b Redshift was fixed at NASA Extragalactic Database (NED) value.

c The line is detected at < 90% confidence level. Such a low flux (compared with [71]) is because of non-physically enhanced level of continuum in 3-4 keV band used in [70], see [93] for details.

d Parameters estimated from Fig. 3 of [88].

e Given an example of the new line non-detection, see Table II of [55] for more details.

f Line position is fixed at the best-fit energy detected in Suzaku observations of the Perseus cluster by [84].
6. Combined dataset of 33 galaxy clusters observed by Chandra/ACIS [94].

At the moment, it is unclear whether these negative searches rule out the decaying dark matter hypothesis of the new line. While the bounds obtained in [68] are mildly consistent with the decaying dark matter origin of the detections in [70, 71], the results of [60] formally exclude the decaying dark matter hypothesis of the ~3.5 keV line imposing the very strict 3σ bound, \(\tau_{\text{DM}} > 1.8 \times 10^{28} \) s. Taking into account systematic effects in spectra (e.g., causing significant negative residuals) obtained by [61] and the apparent uncertainty in their dark matter distributions [63] would result in much weaker bound, see e.g., \(\tau_{\text{DM}} > 3.5 \times 10^{27} \) s [65] using the stacked dataset of nearby galaxies of [55] with comparable exposure, still consistent with existing detections. The uncertainty in dark matter distributions also helps to reconcile the results of the other negative searches [56, 59, 65] with ~3.5 keV line detections using the decaying dark matter paradigm. There is also no clarity with the new prolonged (~1.4 Ms) XMM-Newton/EPIC observation of Draco dwarf spheroidal galaxy – the object having both well-measured dark matter distribution [97] and proven low X-ray background [54, 60, 82, 98]. While [68] reports an exclusion of dark matter hypothesis at 99% level having 2σ upper bound on radiative dark matter decay lifetime \(\tau_{\text{DM}} > 2.7 \times 10^{27} \) s, the results of [89] suggest \(\tau_{\text{DM}} \approx (7-9) \times 10^{27} \) s, the value still compatible with all existing observations.

"STANDARD" EXPLANATIONS OF THE LINE AT ~3.5 KEV

There are three possible "standard" explanations of the new line detections at ~3.5 keV:

1. statistical fluctuations;
2. general-type systematic effects;
3. astrophysical emission line.

With recent increase of positive detections reported by [89], it is very hard to explain all of the detections with purely statistical fluctuations. Nevertheless, statistical fluctuations may be responsible for new line detections or non-detections in some individual objects, as well as for variations of the detected line position up to \(\sim 110 \text{ eV} \) [89], see Fig. 5—the effect that should be properly taken into account when searching for the new line (unlike [60, 61, 83]).

The systematic origin of the line is carefully investigated because of the previous study of the line-like residual at ~2.5 keV in the Willman 1 dwarf...
Fig. 5: The position of new line detected in [85] (in the frame of emitting galaxy cluster) as a function of cluster redshift. The red and black dashed lines show the expected behaviour in case of purely systematic and cosmic line origins (assuming the line position 3.52 keV in the detector frame expected from [71, 80], respectively. (Adapted from Figure 3 in [85]).

spheroidal, see Sec. 4 for details. However, the explanation of the ∼3.5 keV line with general-type systematics suggested in [70] is unlikely. For example, its position (in the frame of emitting object) remains remarkably constant with redshift [71, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74].

On the other hand, the explanation of the new line with the K X VIII line complex at ∼3.5 keV suggested by [79] (see also an extensive discussion in [71, 73]) is still possible, at least for Galactic Centre region and galaxy clusters, contrary to initial claims of [70, 74]. The reason is that the emission flux from the K XVIII line complex at ∼3.51 keV suggested by [73] is highly uncertain due to large uncertainties of the Potassium abundance, see e.g. [101, 102] for a potential level of uncertainty. Moreover, unlike other possible emission lines of astrophysical origin near ∼3.5 keV such as Cl XVII lines

2 The results of [102] indicate an order of magnitude over-abundance of Potassium in solar corona compared to solar photosphere. Based on this result, [102] suggested that the Potassium abundance in hot plasma in galaxies and galaxy clusters may have also been enhanced compared to the solar photospheric values. However, because at the moment there is no established mechanism that could effectively provide such an enhancement, the results of [102] only indicate the potential level of uncertainty, similar to the measurements in [101].

at 3.51 keV found largely sub-dominant in Galactic Centre region [79] and in galaxy clusters ([99]), K XVIII line complex does not have stronger counterparts at other energies and can hardly be excluded by measurements of other lines, the strongest of them is the K XIX line complex at 3.71 keV of comparable strength [103]. The same is true about the charge exchange of S XVI ions recently suggested by [104].

An alternative approach is to study the line morphology. At the moment, two different methods have been used. The first method [71, 74] is to split the region covered by astrophysical sources onto several independent subregions, large enough to detect the line at in each of them, and to model their spectra separately looking for a line-like excess in each of them. As a result, [70] show that the ∼3.5 keV line in Perseus cluster is somewhat more concentrated compared to decayed dark matter distributed according to Navarro-Frenk-White [80, 81] profile. By studying the ∼3.5 keV line emission from Perseus cluster outskirts [71], we obtain that such distribution is better consistent with radiatively decaying dark matter distributed according to the well-established Navarro-Frenk-White profile than with astrophysical continuum emission distributed according to the isothermal β-model of [105]. The recent detailed study [81] confirms this result and expands it to the central region of Perseus cluster.

The second method to study the line morphology [81] deals with spatial distribution of the ‘line plus continuum’ X-ray emission in Perseus cluster and Galactic Centre region with further eliminating continuum component by either assuming it spatially smooth or cross-correlating the ‘line plus continuum’ images in several energy bands (including those dominated by astrophysical line emission). By using the second method, the authors of [81] show that adding decaying dark matter distribution from a smooth dark matter profile (Navarro-Frenk-White, Einasto, Burkert) does not improve the fit quality in both objects, and demonstrate that distribution of the events in 3.45-3.6 keV bands correlates with that in the energy bands of strong astrophysical emission, rather than with that in line-free energy bands. Based on these findings, Ref. [81] claims the exclusion of decaying dark matter origin of 3.5 keV in Galactic Centre and Perseus cluster.

To ultimately check the astrophysical origin of the ∼3.5 keV line, new observations with high-resolution imaging spectrometers such as Soft X-ray Spectrometer (SXS) [105] on-board the recently launched Hitomi (former Astro-H) mission [111]. Micro-X sounding rocket experiment [112] and the X-ray Inte-

3 Grating spectrometers such as Chandra/HETGS [108] have excellent spectral resolution for point sources; however, for extended (>1 arcmin) sources their spectral resolution usually degrades to that for existing imaging spectrometers, see e.g. [102].

4 Although Hitomi is now broken apart, it had observed Perseus cluster before the break-up [104, 110].
Possible Implications for New Physics

If none of “conventional” explanations discussed in the previous Sec. were valid, the existence of the new line at ~3.55 keV will be an indication of a new physics beyond the Standard Model.

Historically, the first model discussed in connection with ~3.5 keV detection is the neutrino minimal extension of the Standard Model with three right-handed (sterile) neutrinos (the νMSM) \([121, 123]\). In this model, the lightest sterile neutrino with mass in keV range forms the bulk of dark matter while two heavier sterile neutrinos are responsible for two other established phenomena beyond the Standard Model – neutrino oscillations and generation of asymmetry between baryons and anti-baryons in the early Universe. Sterile neutrinos decay possess the 2-body radiative channel \(N \to \gamma + \nu\), so the observation of ~3.5 keV decay line would imply the existence of light sterile neutrino dark matter particles with mass ~7.1 keV.

The simplest production scenario of sterile neutrino dark matter – via non-resonant oscillations of usual (active) neutrinos in the early Universe \([31, 33, 124, 126]\) – is already excluded by the combination of X-ray measurements \([31]\), measurements of Lyman-\(\alpha\) forest \([127, 132]\) and the phase-space bound from dwarf spheroidal galaxies \([20, 133, 136]\). The realistic scenario of dark matter production within the νMSM now involves resonant oscillations of active neutrinos in hot primeval plasma with significant lepton asymmetry generated by decays of heavier sterile neutrinos \([137–141]\). The parameters of observed ~3.5 keV line are consistent with νMSM predictions, see Fig. 7 for details. Because the interaction of sterile neutrino dark matter with Standard Model particles is orders of magnitude weaker than that of ordinary neutrinos, its prospects for direct detection in a particle physics experiment are very far from the existing experimental technique, see \([112, 149]\).

To confirm the νMSM, a search for heavier sterile neutrinos in GeV range is needed, handled by e.g. planned Search for Hidden Particles (SHiP) experiment \([147, 148]\) and Future electron-positron \(e^+e^-\) Circular Collider (FCC-ee) \([149]\).

However, the confirmation of decaying dark matter origin of the new line does not imply the existence of νMSM sterile neutrinos as there are plenty of other alternatives which can potentially explain the ~3.55 keV line, see e.g. \([80, 96, 146]\) and the references therein. Differences among these models can be further probed by:

- changes in the new line morphology because of non-negligible initial dark matter velocities, see e.g. \([150, 151]\).

Fig. 6: Line emissivities (in arbitrary units) broadened with energy resolution of Soft X-ray Spectrometer (SXS) on-board Hitomi (former Astro-H). \(\sigma_{SXS} = 5\) eV as functions of energy for three-component model of [72] of Galactic Centre. The relative S, Ar, Cl and K abundances are set to 1/3 : 1 : 1 : 3, according to Sec. 2.2 of [72]. Thin dashed line shows the total line emissivity. (Adapted from Figure 2 in [103]).

Other Extra Line Candidates in X-ray Range

Although the line at ~3.5 keV receives the largest attention of the community, there are three other line candidates in X-rays which origin is also not established:

1. According to [117], intensity of the \(\text{Fe XXVI Ly-\(\gamma\) line} at 8.7\) keV observed in Suzaku/XIS spectrum of the Milky Way centre [118] cannot be explained by standard ionization and recombination processes, and dark matter decay may be a possible explanation of this excess.

2. According to Sec. 1.4 of [119], two faint extra line-like excesses at 9.4 and 10.1 keV are detected in the combined Suzaku/XIS spectrum of Galactic Bulge region. Notably, positions of these excesses do not coincide with any bright astrophysical or instrumental line and their intensities can be explained in frames of decaying dark matter origin, see right Fig. 8 of [119].

\(5\) The newest available atomic database AtomDB v.3.0.2 [120] contains several faint Ni XXVI - Ni XXVIII emission lines at 10.02-10.11 keV.
Fig. 7: Constraints on sterile neutrino dark matter within the v-MSM model \[121-123\]. In every point in the white region sterile neutrinos constitute 100% of dark matter and their properties agree with the existing bounds. The blue point corresponds to the observed line from Andromeda galaxy, while the error bars indicate statistical errors (thick) and uncertainty in dark matter distribution at the central part of Andromeda galaxy (thin). (Adapted from Figure 4 in \[71\]).

- other astrophysical and cosmological tests, see e.g. \[63, 153, 154, 152, 162\];
- search for “smoking gun” signatures in future dedicated particle physics experiments, such as SHiP \[147, 148\] and FCC-ee \[149\] experiments.

Recently proposed alternatives to radiatively decaying dark matter include: decay of excited dark matter states \[166, 173\], annihilating dark matter \[174, 175\], dark matter decaying into axion-like particles with further conversion to photons in magnetic field \[179, 182\]. These models predict substantial difference in ~3.5 keV line morphology compared to the radiatively decaying dark matter. For example, the spatial distributions of the new line in these models should be more concentrated towards the centres of dark matter-dominated objects compared to radiatively decaying dark matter, e.g. due to larger dark matter density (for excited and annihilating dark matter) or larger magnetic fields (for magnetic field conversion of axion-like particles). Further non-observation of the ~3.5 keV line in outskirts of dark matter-dominated objects would agree in favour of these models.

CONCLUSION AND FUTURE DIRECTIONS

The origin of the new emission line at ~3.5 keV reported by \[70, 71, 80, 83, 85\] remains unexplained. The observed properties of the new line are consistent with radiatively decaying dark matter and other interesting scenarios (such as, exciting dark matter, annihilating dark matter and dark matter decaying into axion-like particles further converted in cosmic magnetic fields) motivated by various particle physics extensions of the Standard Model. In case of radiatively decaying dark matter, further detections would lead to direct detection of new physics. Specially dedicated observations using existing X-ray missions (such as XMM-Newton, Chandra, Suzaku) still allow such detections although one should take detailed care on various systematic effects that could mimic or hide the new line.

The alternative is to use new better instruments. The basic requirements for such instruments – higher grasp (the product of field-of-view and effective area) and better spectral resolution – have first formulated in \[49\]. Both the soft X-ray Spectrometer \[108\] on-board the new X-ray mission Hitomi (former Astro-H) \[111, 184\] and the planned Micro-X sounding rocket experiment \[112\] meet only second requirement having the energy resolution by an order of magnitude better (~5 eV) than existing imaging spectrometers. Before being broken apart, Hitomi has already observed Perseus cluster \[169\]. It is expected \[70\] that such an observation would allow Hitomi to precisely determine the new line position in bright objects with prolonged observations and to detect the K XIX emission line complex at ∼3.71 keV. Another possible option is to resolve the intrinsic width of the new line because of its Doppler broadening in galaxies and galaxy clusters \[70, 185\]. As a result, Hitomi/SXS is able to check whether the new line comes from new physics or from (anomalously enhanced) astrophysical emission. The same is expected from the Micro-X rocket-based microcalorimeter (to be launched in 2017) which will observe the central region of our Galaxy. Another possibility is to use the planned eROSITA instrument on-board Spektrum-Röntgen-Gamma mission \[186\] and the planned LOFT mission \[187\] which high grasp and lower energy resolution would allow to detect the new line at much smaller intensities \[63, 188\]. Finally, an “ultimate” imaging spectrometer proposed in e.g. \[189\] (an example is the X-ray Integral Field Unit (X-IFU) \[113, 114\] on-board the planned Athena mission \[115, 116\]) would reveal the detailed morphology structure of the ~3.5 keV line \[190\].

ACKNOWLEDGEMENT

This work was supported by a research grant from VILLUM FONDEN. The author also acknowledges partial support from the Swiss National Science Foundation grant SCOPE IZ7370-152581, the Program of Cosmic Research of the National Academy of Sciences of Ukraine, the State Fund for Fundamental Research of Ukraine and the State Programme of Implementation of Grid Technology in Ukraine dur-
ing early stages of this work.

REFERENCES

[1] Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6, 110–127 (1933).

[2] Sarazin, C. L. X-ray emission from clusters of galaxies. Reviews of Modern Physics 58, 1–115 (1986).

[3] Evrard, A. E., Metzler, C. A. & Navarro, J. F. Mass Estimates of X-Ray Clusters. ApJ 469, 494 (1996). astro-ph/9510058

[4] Einasto, J. & Einasto, M. Dark Matter in Groups and Clusters of Galaxies. In Valtonen, M. J. & Flynn, C. (eds.) IAU Colloq. 174: Small Galaxy Groups, vol. 209 of Astronomical Society of the Pacific Conference Series, 360 (2000). astro-ph/9909437

[5] Bergström, L. Non-baryonic dark matter: observational evidence and detection methods. Reports on Progress in Physics 67, 793–841 (2004). hep-ph/0002126

[6] Corbelli, E. Dark matter and visible baryons in M33. MNRAS 342, 199–207 (2003). astro-ph/0302318

[7] Refregier, A. Weak Gravitational Lensing by Large-Scale Structure. ARA&A 41, 645–668 (2003). astro-ph/0307212

[8] Dekel, A. et al. Lost and found dark matter in elliptical galaxies. Nature 437, 707–710 (2005). astro-ph/0501622

[9] Massey, R. et al. Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007). astro-ph/0701594

[10] Gilmore, G. et al. The Observed Properties of Dark Matter on Small Spatial Scales. ApJ 663, 948–959 (2007). astro-ph/0703308

[11] Noordermeer, E., van der Hulst, J. M., Sancisi, R., Swaters, R. S. & van Albada, T. S. The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties. MNRAS 376, 1513–1546 (2007). astro-ph/0701731

[12] Fu, L. et al. Very weak lensing in the CFHTLS wide: cosmology from cosmic shear in the linear regime. A&A 479, 9–25 (2008). 0712.0884

[13] Coccato, L. et al. Kinematic properties of early-type galaxy haloes using planetary nebulae. MNRAS 394, 1249–1283 (2009). 0811.3203

[14] Einasto, J. Dark Matter. ArXiv e-prints (2009). 0901.0632

[15] Rozo, E. et al. Cosmological Constraints from the Sloan Digital Sky Survey maxBCG Cluster Catalog. ApJ 708, 645–660 (2010). 0902.3702

[16] Reid, B. A. et al. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. MNRAS 404, 60–85 (2010). 0907.1659

[17] Chemin, L., Carignan, C. & Foster, T. H I Kinematics and Dynamics of Messier 31. ApJ 705, 1395–1415 (2009). 0909.3846

[18] Corbelli, E., Lorenzoni, S., Walterbos, R., Braun, R. & Thilker, D. A wide-field H I mosaic of Messier 31. II. The disk warp, rotation, and the dark matter halo. A&A 511, A89 (2010). 0912.4133

[19] Massey, R., Kitching, T. & Richard, J. The dark matter of gravitational lensing. Reports on Progress in Physics 73, 086901 (2010). 1001.1739

[20] Tinker, J. L. et al. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters. ApJ 745, 16 (2012). 1104.1535

[21] Roos, M. Astrophysical and Cosmological Probes of Dark Matter. Journal of Modern Physics 3, 1152–1171 (2012). 1208.3662

[22] Frenk, C. S. & White, S. D. M. Dark matter and cosmic structure. Annalen der Physik 524, 507–534 (2012). 1210.0542

[23] Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. ApJS 208, 19 (2013). 1212.5226

[24] Walker, M. Dark Matter in the Galactic Dwarf Spheroidal Satellites, 1039 (2013).

[25] Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints (2015). 1502.01589

[26] Tremaine, S. & Gunn, J. E. Dynamical role of light neutral leptons in cosmology. Physical Review Letters 42, 407–410 (1979).

[27] White, S. D. M., Frenk, C. S. & Davis, M. Clustering in a neutrino-dominated universe. ApJ 274, L1–L5 (1983).

[28] Gardner, S. & Frenk, C. M. Dark matter studies entrap nuclear physics. Progress in Particle and Nuclear Physics 71, 167–184 (2013). 1303.4758

[29] Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI - an atomic database for emission lines. A&AS 125, 149–173 (1997).

[30] Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions. ApJ 556, L91–L95 (2001). astro-ph/0106478

[31] Dolgov, A. D. & Hansen, S. H. Massive sterile neutrinos as warm dark matter. Astroparticle Physics 16, 339–344 (2002). hep-ph/0009083

[32] Abazajian, K., Fuller, G. M. & Patel, M.
Sterile neutrino hot, warm, and cold dark matter. Phys. Rev. D 64, 023501 (2001).
[33] Abazajian, K., Fuller, G. M. & Tucker, W. H. Direct Detection of Warm Dark Matter in the X-Ray. ApJ 562, 593–604 (2001).
[34] Boyarsky, A., Neronov, A., Ruchayskiy, O. & Markevitch, M. Constraints on Parameters of Radiatively Decaying Dark Matter from the Galaxy Cluster. MNRAS 387, 1361–1373 (2008).
[35] Boyarsky, A., den Herder, J., Neronov, A. & Ruchayskiy, O. Search for the light dark matter with an X-ray spectrometer. Astroparticle Physics 28, 303–311 (2007).
[36] Boyarsky, A. et al. Searching for dark matter in X-rays: how to check the dark matter origin of a spectral feature. MNRAS 407, 1188–1202 (2010).
[37] Boyarsky, A., Yüksel, H., Beacom, J. F. & Watson, C. R. Constraints on Parameters of Radiatively Decaying Sterile Neutrino Dark Matter from the Ursa Minor Dwarf Spheroidal Galaxy. ApJ 700, 426–435 (2009).
[38] Boyarsky, A., Neronov, A., Ruchayskiy, O. & Savchenko, V. Constraints on decaying dark matter from XMM-Newton observations of M31. MNRAS 387, 1345–1360 (2008).
[39] Boyarsky, A., Iakubovskyi, D., Ruchayskiy, O. & Savchenko, V. Constraints on decaying dark matter from XMM-Newton observations of M31. MNRAS 387, 1345–1360 (2008).
[40] Boyarsky, A., Neronov, A., Ruchayskiy, O. & Shaposhnikov, M. Constraints on sterile neutrinos as dark matter candidates from the diffuse X-ray background. MNRAS 370, 213–218 (2006).
[41] Boyarsky, A., Neronov, A., Ruchayskiy, O. & Shaposhnikov, M. Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters. Phys. Rev. D 74, 103506 (2006).
[42] Boyarsky, A., Neronov, A., Ruchayskiy, O., Shaposhnikov, M. & Tkachev, I. Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters 97, 261302–+ (2006).
[43] Boyarsky, A., Neronov, A., Ruchayskiy, O., Shaposhnikov, M. & Tkachev, I. Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters 97, 261302–+ (2006).
[44] Boyarsky, A., Neronov, A., Ruchayskiy, O., Shaposhnikov, M. & Tkachev, I. Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters 97, 261302–+ (2006).
[45] Boyarsky, A., Neronov, A., Ruchayskiy, O., Shaposhnikov, M. & Tkachev, I. Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters 97, 261302–+ (2006).
[46] Boyarsky, A., Neronov, A., Ruchayskiy, O., Shaposhnikov, M. & Tkachev, I. Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters 97, 261302–+ (2006).
bounds from galaxies of the Local Group. *Phys. Rev. D* 89, 025017 (2014). [1311.0282]

[60] Malyshev, D., Neronov, A. & Eckert, D. Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies. *Phys. Rev. D* 90, 103506 (2014). [1408.3531]

[61] Anderson, M. E., Churazov, E. & Bregman, J. N. Non-detection of X-ray emission from sterile neutrinos in stacked galaxy spectra. *MNRAS* 452, 3905–3923 (2015). [1408.4115]

[62] Tamura, T., Mizuka, T., Maeda, Y., Mitsuda, K. & Yamasaki, N. Y. An X-ray spectroscopic search for dark matter in the Perseus cluster with Suzaku. *PASJ* 67, 23 (2015). [1412.1869]

[63] Horiuchi, S., Ng, K. C. Y., Gaskins, J. M., Smith, M. & Preece, R. Improved limits on sterile neutrino dark matter from full-sky observations by the Fermi-GBM. *ArXiv e-prints* (2015). [1502.03399]

[64] Ng, K. C. Y., Horiuchi, S., Gaskins, J. M., Smith, M. & Preece, R. Improved limits on sterile neutrino dark matter using full-sky Fermi Gamma-ray Burst Monitor data. *Phys. Rev. D* 92, 043503 (2015). [1504.04027]

[65] Sekiya, N., Yamasaki, N. Y. & Mitsuda, K. A search for a keV signature of radiatively decaying dark matter with Suzaku XIS observations of the X-ray diffuse background. *PASJ* (2015). [1504.02826]

[66] Sonbas, E. et al. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco. *ApJ* 821, 54 (2016). [1505.00216]

[67] Riemer-Sørensen, S. et al. Dark Matter Line Emission Constraints from NuSTAR Observations of the Bullet Cluster. *ApJ* 810, 48 (2015). [1507.01378]

[68] Jeltema, T. & Profumo, S. Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line. *MNRAS* 458, 3592–3596 (2016). [1512.01239]

[69] Neronov, A., Boyarsky, A., Iakubovskyi, D. & Ruchayskiy, O. Potential of the Large Observatory for X-ray Timing telescope for the search for dark matter. *Phys. Rev. D* 90, 123532 (2014). [1512.5178]

[70] Bulbul, E. et al. Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters. *ApJ* 789, 13 (2014). [1402.2301]

[71] Boyarsky, A., Ruchayskiy, O., Iakubovskyi, D. & Franse, J. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. *Physical Review Letters* 113, 251301 (2014). [1402.4119]

[72] Strieder, L. et al. The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera. *A&A* 365, L18–L26 (2001).

[73] Turner, M. J. L. et al. *The European Photon Imaging Camera on XMM-Newton: The MOS cameras* : The MOS cameras. *A&A* 365, L27–L35 (2001). [astro-ph/0011498]

[74] Jansen, F. et al. *XMM-Newton* observatory. I. The spacecraft and operations. *A&A* 365, L1–L6 (2001).

[75] de Plaa, J. et al. Constraining supernova models using the hot gas in clusters of galaxies. *A&A* 465, 345–355 (2007). [astro-ph/0701553]

[76] Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A. & Ricker, G. R., Jr. Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory. In Truemper, J. E. & Tananbaum, H. D. (eds.) *X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy.*, vol. 4851 of Proc. SPIE, 28–44 (2003).

[77] Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck, L. P. & O’Dell, S. L. Chandra X-ray Observatory (CXO): overview. In Truemper, J. E. & Aschenbach, B. (eds.) *X-Ray Optics, Instruments, and Missions III*, vol. 4012 of Proc. SPIE, 2–16 (2000). [astro-ph/0004127]

[78] Riemer-Sørensen, S. Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre. *A&A* 590, A71 (2016). [1405.7943]

[79] Jeltema, T. & Profumo, S. Discovery of a 3.5 keV line in the Galactic Centre and a critical look at the origin of the line across astronomical targets. *MNRAS* 450, 2143–2152 (2015). [1408.1699]

[80] Boyarsky, A., Franse, J., Iakubovskyi, D. & Ruchayskiy, O. Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center. *Physical Review Letters* 115, 161301 (2015). [1408.2503]

[81] Carlson, E., Jeltema, T. & Profumo, S. Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus. *JCAP* 2, 9 (2015). [1411.1758]

[82] Lovell, M. R., Bertone, G., Boyarsky, A., Jenkins, A. & Ruchayskiy, O. Decaying dark matter: the case for a deep X-ray observation of Draco. *MNRAS* 451, 1573–1585 (2015). [1411.0311]

[83] Urban, O. et al. A Suzaku search for dark matter emission lines in the X-ray brightest galaxy clusters. *MNRAS* 451, 2447–2461 (2015). [1411.0050]

[84] Franse, J. et al. Radial Profile of the 3.55 keV line out to R200 in the Perseus Cluster. *ArXiv e-prints* (2016). [1604.01759]

[85] Iakubovskyi, D., Bulbul, E., Foster, A. R., Savchenko, D. & Sadova, V. Testing the origin of ∼3.55 keV line in individual galaxy clusters
observed with XMM-Newton. *ArXiv e-prints* (2015).

[86] Navarro, J. F., Frenk, C. S. & White, S. D. M. The Structure of Cold Dark Matter Halos. ApJ 462, 563 (1996). *astro-ph/9508025.*

[87] Navarro, J. F., Frenk, C. S. & White, S. D. M. A Universal Density Profile from Hierarchical Clustering. ApJ 490, 493–+ (1997). *astro-ph/9611107.*

[88] Smith, M. C. *et al.* The RAVE survey: constraining the local Galactic escape speed. MNRAS 379, 755–772 (2007).

[89] Ruchayskiy, O. *et al.* Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal. MNRAS 460, 1390–1398 (2016). [arXiv:1512.07217](https://arxiv.org/abs/1512.07217).

[90] Bulbul, E. *et al.* Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters. *ArXiv e-prints* (2016). [arXiv:1605.02034](https://arxiv.org/abs/1605.02034).

[91] Koyama, K. *et al.* X-Ray Imaging Spectrometer (XIS) on Board Suzaku. PASJ 59, 23–33 (2007).

[92] Mitsuda, K. *et al.* The X-Ray Observatory Suzaku. PASJ 59, 1–7 (2007).

[93] Boyarsky, A., Franse, J., Iakubovskyi, D. & Ruchayskiy, O. Comment on the paper "Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line" by T. Jeltema and S. Profumo. *ArXiv e-prints* (2014). [arXiv:1408.4388](https://arxiv.org/abs/1408.4388).

[94] Hofmann, F., Sanders, J. S., Nandra, K., Clerc, N. & Gaspari, M. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS. *ArXiv e-prints* (2016). [arXiv:1606.04091](https://arxiv.org/abs/1606.04091).

[95] Boyarsky, A., Ruchayskiy, O., Iakubovskyi, D., Maccio’, A. V. & Malyshev, D. New evidence for dark matter. *ArXiv e-prints* (2009). [arXiv:0911.1774](https://arxiv.org/abs/0911.1774).

[96] Iakubovskyi, D. A. New emission line at ~3.5 keV - observational status, connection with radiatively decaying dark matter and directions for future studies. *Advances in Astronomy and Space Physics* 4, 9–14 (2014). [arXiv:1410.2852](https://arxiv.org/abs/1410.2852).

[97] Geringer-Sameth, A., Koussipas, S. M. & Walker, M. Dwarf Galaxy Annihilation Inhibition and Decay Emission Profiles for Dark Matter Experiments. ApJ 801, 74 (2015). [arXiv:1408.0002](https://arxiv.org/abs/1408.0002).

[98] Jeltema, T. E. & Profumo, S. Searching for Dark Matter with X-Ray Observations of Local Dwarf Galaxies. ApJ 686, 1045–1055 (2008). [arXiv:0805.1054](https://arxiv.org/abs/0805.1054).

[99] Bulbul, E. *et al.* Comment on "Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line". *ArXiv e-prints* (2014). [arXiv:1409.4143](https://arxiv.org/abs/1409.4143).

[100] Jeltema, T. & Profumo, S. Reply to Two Comments on "Dark matter searches going bananas the contribution of Potassium (and Chlorine) to the 3.5 keV line". *ArXiv e-prints* (2014). [arXiv:1411.1759](https://arxiv.org/abs/1411.1759).

[101] Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields. A&A 522, A32 (2010). [arXiv:1006.5863](https://arxiv.org/abs/1006.5863).

[102] Phillips, K. J. H., Sylvester, B. & Sylvester, J. The X-Ray Line Feature at 3.5 keV in Galaxy Cluster Spectra. ApJ 809, 50 (2015). [arXiv:1507.04619](https://arxiv.org/abs/1507.04619).

[103] Iakubovskyi, D. Checking the potassium origin of the new emission line at 3.5 keV using the K XIX line complex at 3.7 keV. MNRAS 453, 4097–4101 (2015). [arXiv:1511.06557](https://arxiv.org/abs/1511.06557).

[104] Gu, L. *et al.* A novel scenario for the possible X-ray line feature at ~3.5 keV. Charge exchange with bare sulfur ions. A&A 584, L11 (2015). [arXiv:1511.06557](https://arxiv.org/abs/1511.06557).

[105] Cavaliere, A. & Fusco-Femiano, R. X-rays from hot plasma in clusters of galaxies. A&A 49, 137–144 (1976).

[106] Canizares, C. R. *et al.* The Chandra High-Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight. PASP 117, 1144–1171 (2005). [arXiv:astro-ph/0507035](https://arxiv.org/abs/astro-ph/0507035).

[107] Dewey, D. Extended Source Analysis for Grating Spectrometers. In Branduardi-Raymont, G. (ed.) *High Energy Spectroscopy with the Hitomi Satellite*. In *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, vol. 15 of *SPIE* Conference Series, 117–121 (2016).

[108] Mitsuda, K. *et al.* Soft X-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H. In *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, vol. 9144 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, 2 (2014).

[109] Kelley, R. L. & Mitsuda, K. Progress report on the Astro-H Soft X-Ray Spectrometer. In *AAS/High Energy Astrophysics Division*, vol. 15 of *AAS/High Energy Astrophysics Division*, 206.02 (2016).

[110] Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster. *Nature* 535, 117–121 (2016).

[111] Takahashi, T. *et al.* The ASTRO-H X-ray astronomy satellite. In *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, vol. 9144 of *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, 25 (2014). [arXiv:1412.1356](https://arxiv.org/abs/1412.1356).

[112] Figueroa-Feliciano, E. *et al.* Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets. *ArXiv e-prints* (2015). [arXiv:1506.05519](https://arxiv.org/abs/1506.05519).

[113] Barret, D. *et al.* The Hot and Energetic Universe: The X-ray Integral Field Unit (X-IFU) for Athena+. *ArXiv e-prints* (2013).
[114] Ravera, L. et al. The X-ray Integral Field Unit (X-IFU) for Athena. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2 (2014).

[115] Nandra, K. et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. ArXiv e-prints (2013). 1306.2307

[116] Barret, D. et al. Athena+:: The first Deep Universe X-ray Observatory. In Cambresy, L., Martins, F., Nuss, E. & Palacios, A. (eds.) SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 447–453 (2013). 1310.3814

[117] Prokhorov, D. & Silk, J. Can the Excess in the He XXVI Lyγ Line from the Galactic Center Provide Evidence for 17 keV Sterile Neutrinos? ApJ 725, L131–L134 (2010). 1001.0215

[118] Koyama, K. et al. Iron and Nickel Line Diagnostics for the Galactic Center Diffuse Emission. PASJ 59, 245–255 (2007). astro-ph/0609215

[119] Koyama, K. et al. ASTRO-H White Paper - Plasma Diagnostic and Dynamics of the Galactic Center Region. ArXiv e-prints (2014). 1412.1170

[120] Foster, A. et al. Using the new AtomDB 3.0: Non-Equilibrium Plasma Analysis. In AAS/High Energy Astrophysics Division, vol. 14 of AAS/High Energy Astrophysics Division, #115.06 (2014).

[121] Asaka, T. & Shaposhnikov, M. The @nMSM, dark matter and baryon asymmetry of the universe [rapid communication]. Physics Letters B 620, 17–26 (2005). hep-ph/0505013

[122] Asaka, T. & Shaposhnikov, M. The mMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17–26 (2005). hep-ph/0505013

[123] Boyarsky, A.; Ruchayskiy, O. & Shaposhnikov, M. The Role of Sterile Neutrinos in Cosmology and Astrophysics. Annual Review of Nuclear and Particle Science 59, 191–214 (2009). 0901.0011

[124] Dodgson, S. & Widrow, L. M. Sterile neutrinos as dark matter. Physical Review Letters 72, 17–20 (1994). hep-ph/9303287

[125] Abazajian, K. Production and evolution of perturbations of sterile neutrino dark matter. Phys. Rev. D 73, 063506 (2006). astro-ph/0511630

[126] Asaka, T., Laine, M. & Shaposhnikov, M. On the hadronic contribution to sterile neutrino production. Journal of High Energy Physics 6, 53 (2006). hep-ph/0605209

[127] Viel, M., Lesgourgues, J., Hahnelt, M. G., Matarrese, S. & Riotto, A. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with wmap and the Lyman-alpha forest. Phys. Rev. D71, 063534 (2005). astro-ph/05051562

[128] Viel, M., Lesgourgues, J., Hahnelt, M. G., Matarrese, S. & Riotto, A. Can sterile neutrinos be ruled out as warm dark matter candidates? Phys. Rev. Lett. 97, 071301 (2006). astro-ph/0605706

[129] Seljak, U., Mǎšarov, A., McDonald, P. & Trac, H. Can Sterile Neutrinos Be the Dark Matter? Physical Review Letters 97, 191303 (2006). astro-ph/0602430

[130] Viel, M. et al. How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest. Phys. Rev. Lett. 100, 041304 (2008). 0709.0131

[131] Boyarsky, A., Lesgourgues, J., Ruchayskiy, O. & Viel, M. Lyman-alpha constraints on warm and on warm-plus-cold dark matter models. Journal of Cosmology and Astro-Particle Physics 5, 12– (2009). 0812.0010

[132] Boyarsky, A., Lesgourgues, J., Ruchayskiy, O. & Viel, M. Realistic Sterile Neutrino Dark Matter with keV Mass does not Contradict Cosmological Bounds. Physical Review Letters 102, 201304–+ (2009). 0812.3256

[133] Boyarsky, A., Ruchayskiy, O. & Iakubovskyi, D. A lower bound on the mass of dark matter particles. Journal of Cosmology and Astro-Particle Physics 3, 5–+ (2009). 0808.3902

[134] Gorbunov, D., Khmelitsky, A. & Rubakov, V. Constraining sterile neutrino dark matter by phase-space density observations. JCAP 0810, 041 (2008). 0808.3910

[135] Angus, G. W. A lower limit on the dark particle mass from dSphs. JCAP 3, 26 (2010). 0907.1526

[136] Shao, S., Gao, L., Theuns, T. & Frenk, C. S. The phase-space density of fermionic dark matter haloes. MNRAS 430, 2346–2357 (2013). 1209.5563

[137] Shi, X. & Fuller, G. M. New Dark Matter Candidate: Nonthermal Sterile Neutrinos. Physical Review Letters 82, 2832–2835 (1999). astro-ph/9810076

[138] Laine, M. & Shaposhnikov, M. Sterile neutrino dark matter as a consequence of mMSM-induced lepton asymmetry. Journal of Cosmology and Astro-Particle Physics 6, 31–+ (2008). 0804.4543

[139] Abazajian, K. N. Resonantly Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites. Physical Review Letters 112, 161303 (2014). 1403.0954

[140] Ghiglieri, J. & Laine, M. Improved determina-
tion of sterile neutrino dark matter spectrum. *Journal of High Energy Physics* **11**, 171 (2015).

[141] Vennumadhav, T., Cyr-Racine, F.-Y., Abazajian, K. N. & Hirata, C. M. Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch. *ArXiv e-prints* (2015).

[142] Liao, W. keV scale ν_R dark matter and its detection in β decay experiments. *Phys. Rev. D* **82**, 073001 (2010). [1005.3351]

[143] Liao, W., Wu, X.-H. & Zhou, H. Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter. *Phys. Rev. D* **89**, 093017 (2014).

[1311.6079]

[144] Mertens, S. *et al.* Wavelet approach to search for sterile neutrinos in tritium β-decay spectra. *Phys. Rev. D* **91**, 042005 (2015). [1411.7684]

[145] Dragoun, O. & Venos, D. Searches for Active and Sterile Neutrinos in Beta-Ray Spectra. *ArXiv e-prints* (2015).

[1504.07496]

[146] Adhikari, R. *et al.* A White Paper on keV Sterile Neutrino Dark Matter. *ArXiv e-prints* (2016). [1602.04816]

[147] Bonivento, W. *et al.* Proposal to Search for Heavy Neutral Leptons at the SPS. *ArXiv e-prints* (2013). [1310.1762]

[148] Alekhin, S. *et al.* A facility to Search for Hidden Particles at the CERN: the SHIP physics case. *ArXiv e-prints* (2015).

[1504.04855]

[149] Blondel, A., Graverini, E., Serra, N., Shaposhnikov, M. & for the FCC-ee study team. Search for Heavy Right Handed Neutrinos at the FCC-ee. *ArXiv e-prints* (2014).

[1411.5230]

[150] Macciò, A. V., Ruchayskiy, O., Boyarsky, A. & Munoz-Cuartas, J. C. The inner structure of halos in cold–warm dark matter models. *MNRAS* **428**, 882–890 (2013).

[1202.2858]

[151] Lovell, M. R. *et al.* The properties of warm dark matter haloes. *MNRAS* **439**, 300–317 (2014).

[1308.1999]

[152] Viel, M., Becker, G. D., Bolton, J. S. & Hachnelt, M. G. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. *Phys. Rev. D* **88**, 043502 (2013).

[1306.2314]

[153] Schneider, A. Structure formation with suppressed small-scale perturbations. *MNRAS* **451**, 3117–3130 (2015).

[1412.2133]

[154] Merle, A. & Schneider, A. Production of Sterile Neutrino dark matter and the 3.5 keV line. *Physics Letters B* **749**, 283–288 (2015).

[1409.6311]

[155] Bozek, B. *et al.* Resonant sterile neutrino dark matter in the local and high-z Universe. *MNRAS* **459**, 1489–1504 (2016).

[1512.04544]

[156] Lovell, M. R. *et al.* Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter. *MNRAS* (2016).

[1511.04078]

[157] Bose, S. *et al.* The Copernicus Complexio: statistical properties of warm dark matter haloes. *MNRAS* **455**, 318–333 (2016).

[1507.01998]

[158] Wang, M.-Y., Strigari, L. E., Lovell, M. R., Frenk, C. S. & Zentner, A. R. Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy. *MNRAS* **457**, 4248–4261 (2016).

[1509.04308]

[159] Li, R. *et al.* Constraints on the identity of the dark matter from strong gravitational lenses. *MNRAS* (2016). [1512.06507]

[160] Bose, S. *et al.* Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. *ArXiv e-prints* (2016).

[1604.07409]

[161] Ludlow, A. D. *et al.* The mass-concentration-redshift relation of cold and warm dark matter haloes. *MNRAS* **460**, 1214–1232 (2016).

[1601.02624]

[162] Schneider, A. Astrophysical constraints on resonantly produced sterile neutrino dark matter. *JCAP* **4**, 059 (2016).

[1601.07553]

[163] Kamada, A., Inoue, K. T. & Takahashi, T. Constraints on mixed dark matter from anomalous strong lens systems. *ArXiv e-prints* (2016).

[1604.01489]

[164] Rudakovskyi, A. & Iakubovskyi, D. Influence of ≈7 keV sterile neutrino dark matter on the process of reionization. *JCAP* **6**, 017 (2016).

[1604.01341]

[165] Bose, S., Frenk, C. S., Jun, H., Lacey, C. G. & Lovell, M. R. Reionisation in sterile neutrino cosmologies. *ArXiv e-prints* (2016).

[1605.03179]

[166] Finkbeiner, D. P. & Weiner, N. An X-Ray Line from eXciting Dark Matter. *ArXiv e-prints* (2014).

[1402.6671]

[167] Cline, J. M., Liu, Z., Moore, G. D., Farzan, Y. & Xue, W. 3.5 keV x rays as the “21 cm line” of dark atoms, and a link to light sterile neutrinos. *Phys. Rev. D* **89**, 121302 (2014).

[1404.3729]

[168] Okada, H. & Toma, T. 3.55 keV X-ray line signal from excited dark matter in radiative neutrino model. *Physics Letters B* **737**, 162–166 (2014).

[1404.4795]

[169] Cline, J. M. & Frey, A. Nonabelian dark matter models for 3.5 keV X-rays. *JCAP* **10**, 13 (2014).

[1408.0233]

[170] Boddy, K. K., Feng, J. L., Kaplinghat, M., Shadmi, Y. & Tait, T. M. P. Strongly interacting dark matter: Self-interactions and keV lines. *Phys. Rev. D* **90**, 095016 (2014).

[1408.6532]

[171] Schutz, K. & Slatyer, T. R. Self-scattering for...
Dark Matter with an excited state. JCAP 1, 21 (2015). [1409.2867]

[172] Cline, J. M. & Frey, A. R. Consistency of dark matter interpretations of the 3.5 keV x-ray line. Phys. Rev. D 90, 123537 (2014). [1410.7766]

[173] Berlin, A., DiFranzo, A. & Hooper, D. 3.55 keV line from exciting dark matter without a hidden sector. Phys. Rev. D 91, 075018 (2015). [1501.03496]

[174] D’Eramo, F., Hambleton, K., Profumo, S. & Stefaniak, T. Dark matter inelastic upscattering with the interstellar plasma: A new source of x-ray lines, including at 3.5 keV. Phys. Rev. D 93, 103011 (2016). [1603.04859]

[175] Dudas, E., Heurtier, L. & Mambrini, Y. Generating x-ray lines from annihilating dark matter. Phys. Rev. D 90, 035002 (2014). [1404.1927]

[176] Frandsen, M. T., Sannino, F., Shoemaker, I. M. & Svendsen, O. X-ray lines from dark matter: the good, the bad, and the unlikely. JCAP 5, 33 (2014). [1403.1570]

[177] Baek, S., Ko, P. & Park, W.-I. The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model. ArXiv e-prints (2014). [1405.3730]

[178] Mambrini, Y. & Toma, T. X-ray lines and self-interacting dark matter. European Physical Journal C 75, 570 (2015). [1506.02032]

[179] Cicoli, M., Conlon, J. P., Marsh, M. C. D. & Rummel, M. 3.55 keV photon line and its morphology from a 3.5 keV axionlike particle line. Phys. Rev. D 90, 023540 (2014). [1403.2370]

[180] Conlon, J. P. & Day, F. V. 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31. JCAP 11, 33 (2014). [1404.7741]

[181] Conlon, J. P. & Powell, A. J. A 3.5 keV line from DM \(\rightarrow a + \gamma\) predictions for cool-core and non-cool-core clusters. JCAP 1, 19 (2015). [1406.5518]

[182] Alvarez, P. D., Conlon, J. P., Day, F. V., Marsh, M. C. D. & Rummel, M. Observational consistency and future predictions for a 3.5 keV ALP to photon line. JCAP 4, 13 (2015). [1410.1867]

[183] Berg, M. et al. Searches for Axion-Like Particles with NGC1275: Observation of Spectral Modulations. ArXiv e-prints (2016). [1605.01043]

[184] Kitayama, T. et al. ASTRO-H White Paper - Clusters of Galaxies and Related Science. ArXiv e-prints (2014). [1412.1176]

[185] Speckhard, E. G., Ng, K. C. Y., Beacom, J. F. & Laha, R. Dark Matter Velocity Spectroscopy. Physical Review Letters 116, 031301 (2016). [1507.04744]

[186] Merloni, A. et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. ArXiv e-prints (2012). [1209.3114]

[187] Zane, S. et al. The large area detector of LOFT: the Large Observatory for X-ray Timing. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2 (2014). [1408.6539]

[188] Zandanel, F., Weniger, C. & Ando, S. The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter. JCAP 9, 060 (2015). [1505.07829]

[189] Boyarsky, A., Takubovskyi, D. & Ruchayskiy, O. Next decade of sterile neutrino studies. Physics of the Dark Universe 1, 136–154 (2012). [1306.4954]

[190] Neronov, A. & Malyshov, D. Toward a full test of the \(\nu\) MSM sterile neutrino dark matter model with Athena. Phys. Rev. D 93, 063518 (2016). [1509.02758]