Emerging collaborative research platforms for the next generation of physical activity, sleep and exercise medicine guidelines: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

Galileo Galilei’s quote ‘measure what is measurable, and make measurable what is not so’ has particular relevance to health behaviours, such as physical activity (PA), sitting and sleep, whose measurement during free living is notoriously difficult. To date, much of what we know about how these behaviours affect our health is based on self-report by questionnaires which have limited validity, are prone to bias and inquire about selective aspects of these behaviours. Although self-reported evidence has made great contributions to shaping public health and exercise medicine policy and guidelines until now, the ongoing advancements of accelerometry-based measurement and evidence synthesis methods are set to change the landscape. The aim of this editorial is to outline new directions in PA and sleep-related epidemiology that open new horizons for guideline development and improvement; and to describe a new research collaboration platform: the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS) (figure 1).

FEASIBLE RESEARCH TECHNOLOGY AT SCALE, BIG CONSORTIA
Measurement technology used in epidemiology has made measurable what was not so until recently. Several population-based studies use accelerometers that are worn by participants for 24 hours a day for a whole week, offering unprecedented insights into the health attributes of PA, sitting and sleep. One of the most exciting aspects of accelerometers is that they show great promise for capturing nearly complete accounts of movement behaviour, including posture and activity type detection.

However, advanced measurement methods and optimal evidence synthesis are not synonymous. Individual accelerometry studies have limited generalisability beyond the specific country, population and setting, and usually have low statistical power to address detailed research questions. For example, none of the National Health and Nutrition Examination Survey (NHANES) accelerometry studies1 have been able to study potentially metabolic health-enhancing sporadic short (<2–3 min) bursts of higher intensity incidental PA, likely because of the sparsity of such data. Like any other field, classic systematic reviews of accelerometry inherit the problems of source studies and their conclusions may not be robust.2 We need to think differently when it comes to consolidating, analysing and interpreting new formats of accelerometry data. As John Ioannidis’ BJSM editorial succinctly put it, the next generation of evidence in exercise medicine and PA involves large consortia of individual participant data that are harmonised retrospectively or prospectively.3 Prospective harmonisation (ie, agree on same or similar measurements across different studies prior to data collection), in particular, is an extremely powerful tool as it can overcome heterogeneity, which is one of the largest obstacles for rigorous evidence synthesis.4 The value of consortia goes beyond producing more robust and generalisable knowledge, there is also a strong economic argument. The value of every dollar, pound or euro tax payers and research funders invested in the original studies is multiplied through further use of the data resources to inform better public health and clinical practice guidelines.

A NEW CONSORTIUM
The momentum generated by successful accelerometry consortia (eg, International Children’s Accelerometry Database5) and large epidemiological studies like NHANES6 and the UK Biobank7 that used waist or wrist mounted accelerometers inspired the genesis of the ProPASS.8 ProPASS is a research collaboration platform that aims to bring together existing and future observational studies of thigh-worn accelerometry. Although each accelerometer placement site has both strengths and challenges, the ProPASS choice of site was far from accidental: the unique appeal of the thigh-worn method is that it provides information on multiple dimensions of movement behaviour, including movement intensity (eg, light, moderate and vigorous PA) and posture (eg, sitting/lying, standing). Activity types such as cycling, running and stair climbing can also be extrapolated by thigh-attached sensors8 and integration with other important behaviours such as duration and timing of sleep can provide unique insights on lifestyle and health.9 Information about such tangible aspects of human behaviour has immediate relevance to people’s daily lives; and is easier for clinicians, policymakers and the public alike to understand, ‘digest’ and hopefully seek to improve.

The ultimate scientific objective of ProPASS is to produce evidence on the associations of PA, sitting, and sleep and long-term health outcomes and longevity. As of February 2019, ProPASS is supported by 12 international cohorts totalling over 70 000 participants (table 1). To safeguard consortium feasibility, longevity and faster growth, ProPASS is not restricted to one specific model of accelerometer; any triaxial device that outputs raw acceleration and is worn on the thigh is suitable—an approach we have validated empirically.9 The ProPASS cohorts are rich in health data, many contain genotypic information, and most can be linked to administrative health and mortality records, opening up a huge variety of possibilities to generate new knowledge.
In this editorial we invite researchers from any discipline who have collected or are considering to collect thigh-worn accelerometry data in observational studies to contact us. We also invite scientists with an interest in health-related data consortia, as well as health professionals and policymakers to help us form a ProPASS research agenda with maximal relevance to patients, the public and health policy. There is no question in our mind that such a research agenda is a prerequisite for the success of ProPASS and any other effort aimed at shaping the next generation of PA, sitting and exercise medicine guidelines.

Get in touch to discuss opportunities for your existing or future studies to join ProPASS (email: propass.consortium@sydney.edu.au). Join our mailing list (www.propassconsortium.org) to stay updated about future events and activities.

Emmanouil Stamatakis 1, Annemarie Koster 2, Mark Hamer 3,4, Vega Rangul 5, I-Min Lee 6, Adrian E Bauman 7, Andrew J Atkin 8, Mette Aadahl 9, Charles E Matthews 10, Paul Jarle Mork 11, Lisa Askie 12, Peter Cistulli 13, Malcolm Granat 14, Peter Palm 15, Patrick Joseph Crowley 16, Matthew Stevens 13, Nidhi Gupta 14, Anna Pulakka 16, Sari Stenholm 17, Daniel Arvidsson 18.

Table 1 Accelerometry studies supporting the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS)

Main study Name/country	Leading institution	Geographical coverage of the study	Participants (n)	Sex	Population/age range (accelerometry measurement)	Accelerometry device	Years (accelerometry measurement)
Australian Longitudinal Study on Women’s Health/Australia	The University of Queensland and The University of Sydney	Australia	(target) =3250	Women	General population/45–50 years	ActivPAL3 and ActivPAL4 micro	2019–2020
1970 British Birth Cohort Study/UK	Loughborough University and University College London	UK	≥5500	Both	General population/47–49 years	ActivPAL3 micro	2016–2018
Copenhagen City Heart Study/Denmark	Frederikensborg Hospital, Copenhagen	Two districts of Copenhagen	≥2000	Both	General population/18 years or older	Actigraph GT3X	2011–2015
Danish Physical ACTivity cohort with Objective measurements (DPhACTo) Study/Denmark	National Research Centre for the Working Environment, Copenhagen	Denmark	≥1000	Both	Workers in manufacturing, cleaning and transportation companies/18–67 years	Actigraph GT3X	2012–2014
Danish Observational Study of Eldercare work and musculoskeletal disorders (DOSES) Study/Denmark	National Research Centre for the Working Environment, Copenhagen	Greater Copenhagen region	≥500	Both	Eldercare workers/18–67 years	Actigraph GT3X	2013–2014
Finnish Retirement and Aging Study (FIREA)/Finland	University of Turku	Southwest Finland	≥280	Both	General population/occupational cohort/59–65 years, 60–64 years	ActivPAL3	2015–2020
Health 2016 Study/Denmark	Centre for Clinical Research and Prevention, Frederikensborg	Western part of Greater Copenhagen	≥800	Both	General population/18–69 years	Axivity	2016–2017
The Nord-Trøndelag Health Study (HUNT 4)/Norway	Norwegian University of Science and Technology	Northern part of Trøndelag region	40 000	Both	General population/18 years or older	Axivity 3	2017–2019
The Maastricht Study/The Netherlands	Maastricht University	South of The Netherlands	≥9000	Both	General population (oversampling of people with type 2 diabetes)/40–75 years	ActivPAL3	2010–2019
Swedish Cardiopulmonary bioImage Study (SCAPIS) Ad-On Gothenburg/Sweden	University of Gothenburg	Gothenburg region	≥500	Both	General population/50–64 years	Axivity AX3	2017
Swedish Cardiopulmonary bioImage Study (SCAPIS) Ad-On Umeå/Sweden	Umeå University	Umeå region	≥2500	Both	General population/50–64 years	ActivPAL3	2016–2018
Swedish Cardiopulmonary bioImage Study (SCAPIS) Ad-On Uppsala/Sweden	Uppsala University	Uppsala region	≥5000	Both	General population/50–64 years	Axivity AX3	2015–2018

CALL FOR COLLABORATION

New research collaboration platforms have paved the way for the next generation of evidence on PA-related behaviours and health. Recording detailed and accurate objective accounts of daily movement behaviour and posture is now feasible in large epidemiological studies. To fully capitalise on the opportunities offered by such methodological progress at least two essential conditions need to be met: breaking down silos to integrate research paradigms across PA domains, and tight interdisciplinary collaboration. Meeting ProPASS’ objectives is dependent on these conditions.
Gita Mishra,19 Patrick Wennberg,20 Sebastian Chastin,21,22 Ulf Ekulund,23 Andreas Holtermann16
1 Prevention Research Collaboration, Charles Perkins Centre, Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
2 Department of Social Medicine, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
3 Department of Epidemiology and Public Health, University College London, London, UK
4 School of Sport Exercise and Health Sciences, Loughborough University, Loughborough, UK
5 Department of Public Health and Nursing, HUNT Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
6 Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
7 Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
8 Faculty of Medicine and Health Sciences, School of Health Sciences, University of East Anglia, Norwich, UK
9 Research Centre for Prevention and Health, Copenhagen, Denmark
10 Metabolic Epidemiology Branch, Division of Cancer Prevention Research Centre for Prevention and Health, University of Sydney, Sydney, New South Wales, Australia
11 Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
12 National Research Centre for the Working Environment, Copenhagen, Denmark
13 Department of Public Health, University of Turku, Turku, Finland
14 Department of Food and Nutrition and Sport Science, Centre for Health and Performance, University of Gothenburg, Gothenburg, Sweden
15 School of Public Health, University of Queensland, Brisbane, Queensland, Australia
16 Family Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
17 School of Health and Life Science, Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, UK
18 Department of Movement and Sports Sciences, Universiteit Gent, Gent, Belgium
19 Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway
Contributors ES conceived the idea and drafted the first draft of the manuscript and carried out all revisions. AH, AK, MH and VR contributed to the idea.

All authors reviewed critically the manuscript and provided detailed suggestions for revisions. AP, VR, AH, MA, PP, PW, DA, AK, GM and ES provided the data presented in table 1.

Funding The ProPASS consortium has received financial support from the following organisations: an unrestricted grant by PAL Technologies, Scotland, UK; a grant by the Worldwide Universities Network–Research Development Fund 2018; an internal seed grant by the University of Sydney; a National Health and Medical Research Council (Australia) equipment grant; in-kind support by the National Research Centre for the Working Environment, Copenhagen; and financial support by Loughborough University.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Stamatelakis E, Koster A, Hamer M, et al. Br J Sports Med 2020;54:435–443.
Received 5 March 2019
Revised 6 April 2019
Accepted 9 April 2019
Published Online First 10 May 2019
Br J Sports Med 2020;54:435–443. doi:10.1136/bjsports-2019-100786

REFERENCES

1 2018 Physical Activity Guidelines Advisory Committee. 2018 physical activity guidelines Advisory Committee scientific report. Washington, DC U.S. Department of Health and Human Services; 2018.
2 Skotte J, Korshøj M, Kristiansen J, et al. Detection of physical activity types using triaxial accelerometers. J Phys Act Health 2014;11:76–84.
3 Fujiwara E, Engroff T, Banzer W. Health benefits of light-intensity physical activity: a systematic review of Accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sports Med 2017;47:1769–93.
4 Stamatelakis E, Johnson NA, Powell L, et al. Short and sporadic bouts in the 2018 us physical activity guidelines: is high-intensity incidental physical activity the new HIIT? Br J Sports Med 2019;53:1137–9.
5 Ioannidis J. Next-generation systematic reviews: prospective meta-analysis, individual-level data, networks and umbrella reviews. Br J Sports Med 2017;51:1456–8.
6 Doherty A, Smith-Byme K, Feneira T, et al. GIVAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun 2018;9.
7 ProPASS consortium. Prospective physical activity, sitting, and sleep consortium, 2019. Available: www. propassconsortium.org
8 van der Berg JD, Vilems PJ, van der Velde JHMP, et al. Identifying waking time in 24-h accelerometer data in adults using an automated algorithm. Journal of Sports Sciences 2016;34:1867–73.
9 Crowley P, Skotte J, Stamatelakis E, et al. A comparison of movement behavior estimates from three different thigh-worn accelerometer models: a proof-of-concept for the ProspectivePhysical Activity, Sitting, and Sleep consortium (ProPASS). Under review.
10 Aguib Y, Al Suwaidi J. The Copenhagen City Heart study (Støberbundsekselen). Global Cardiology Science and Practice 2015;2015.
11 Jørgensen MB, Gupta N, Korshøj M, et al. The DPafato cohort: an overview of technically measured physical activity at work and leisure in blue-collar sectors for practitioners and researchers. Appl Ergon 2019;77:29–39.
12 Karstad K, Jørgensen ABF, Greiner BA, et al. Danish observational study of eldercare work and musculoskeletal disorders (doses): a prospective study at 20 nursing homes in Denmark. BMJ Open 2018;8:e019670.
13 Pulakka A, Leskinen T, Koster A, et al. Daily physical activity patterns among aging workers: the Finnish retirement and aging study (FIREA). Occup Environ Med 2019;76:33–9.
14 Kroksstad S, Langhammer A, Hveen K, et al. Cohort profile: the HUNT study, Norway. Int J Epidemiol 2013;42:968–77.
15 Schram MT, Sap SJ, van der Kallen CJ, et al. The Maastricht study: an extensive phenotyping Danish observational study of eldercare work and musculoskeletal disorders (doses): a prospective study at 20 nursing homes in Denmark. Eur J Epidemiol 2014;29:459–51.
16 Bergström G, Berglund G, Blomberg G, et al. The Swedish cardiaciopulmonary Biodmage study: objectives and design. Journal of Internal Medicine 2015;278:645–59.
17 Sherar LB, Grieve R, Esler DW, et al. International children’s accelerometer database (ICAD): design and methods. BMC Public Health 2011;11.
18 Deboyton AJ, Hockley R, Brown WJ, McLaughlin D, et al. Cohort profile update: Australian longitudinal study on women’s health. Int J Epidemiol 2015;44:1547–5147.
19 Elliott J, Shepherd P. Cohort profile: 1970 British birth cohort (BCS70). Int J Epidemiol 2006;35:836–43.