Spectrum of Disease Severity in Nonsyndromic Patients With Mutations in the CEP290 Gene: A Multicentric Longitudinal Study

Francesco Testa,1 Andrea Sodi,2 Sabrina Signorini,3 Valentina Di Iorio,1 Vittoria Murro,2 Raffaella Brunetti-Pierri,1 Enza Maria Valente,4,5 Marianti Karali,1,6 Paolo Melillo,1 Sandro Banfi,6,7 and Francesca Simonelli1

1Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
2Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, Florence, Italy
3Unit of Child Neurology and Psychiatry, IRCCS C. Mondino Foundation, Pavia, Italy
4Department of Molecular Medicine, University of Pavia, Pavia, Italy
5Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
6Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
7Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy

Correspondence: Paolo Melillo, Eye Clinic, Multidisciplinary Department of Medical, Surgical, and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, Naples 80131, Italy; paolo.melillo@unicampania.it. Sandro Banfi, Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, via Luigi De Crecchio 7, Naples 80138, Italy; banfi@tigem.it. Francesca Simonelli, Eye Clinic, Multidisciplinary Department of Medical, Surgical, and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, via Pansini 5, Naples 80131, Italy; francesca.simonelli@unicampania.it.

FT, AS, and SS contributed equally to this study.

Received: March 16, 2021
Accepted: May 29, 2021
Published: July 1, 2021

Citation: Testa F, Sodi A, Signorini S, et al. Spectrum of disease severity in nonsyndromic patients with mutations in the CEP290 gene: A multicentric longitudinal study. Invest Ophthalmol Vis Sci. 2021;62(9):1. https://doi.org/10.1167/iovs.62.9.1

The CEP290 gene, localized to chromosome 12q21.32, encodes a 290 kDa centrosomal protein called nephrocystin-6 (NPHP6), which is important for ciliary assembly and function.1,2 Due to the diverse functions of cilia in humans,3 biallelic mutations in CEP290 (OMIM entry: 610142) lead to a phenotypic spectrum that ranges from isolated retinopathies,4 such as Leber congenital amaurosis (LCA), to systemic disorders (e.g. Joubert syndrome, Senior-Loken syndrome, Bardet-Biedl syndrome, and Meckel syndrome).3,5

LCA is the most severe form among inherited retinal dystrophies, affecting children from birth and resulting in
spectrum of disease severity due to CEP290 gene

Methods

Patients

We identified a total of 32 patients of Italian origin with a clinical diagnosis of LCA, EOSRD, or retinitis pigmentosa (RP) harboring two candidate pathogenic variants in the CEP290 gene. Patients with neurologic or other systemic disorders were not included in this study. The patients included in the study were ascertained from three expertise centers for the care of patients with retinal dystrophy (i.e., 12 from the Referral Centre for Inherited Retinal Diseases of the University of Campania “Luigi Vanvitelli”; 9 from the Centre of Child Neuro-ophthalmology of the IRCCS C. Mondino Foundation; and 11 from the Department of Ophthalmology and Visual Science at the University of Florence). Medical records of all patients from 2008 to 2020 were reviewed. Data collection included date of birth, sex, self-reported age of onset of ocular symptoms (determined by the age at which patients or their parents first noticed nystagmus or visual abnormalities), age at diagnosis, presence of nystagmus, medical and ophthalmic history, extrarotinal symptoms, consanguinity, genetic testing results, and pedigree information.

As previously done,27 clinical diagnosis was performed relying on the diagnostic criteria of LCA/EOSRD, according to Chacon-Camacho and Zenteno28 and the diagnostic criteria of RP, according to Hamel.29 Moreover, the medical records were reviewed to extract the findings of the following ophthalmological examinations: best corrected visual acuity (BCVA) measurements, slit lamp anterior segment examination, fundus imaging and examination, spectral domain optical coherence tomography (SD-OCT), and ERG.

BCVA measurements were performed using either a Snellen projection chart or Teller Acuity Cards.

Full-field ERG was recorded using corneal contact lens electrodes with a Ganzfeld stimulator (LACE Elettronica Electrophysiology System, Pisa, Italy) according to the standards of the International Society for Clinical Electrophysiology of Vision.30

SD-OCT data were collected from scans acquired using the Cirrus HD-OCT (Carl Zeiss, Dublin, CA, USA). In particular, SD-OCT images with a satisfactory signal quality (i.e., strength higher than 9)31 were evaluated to determine the length of ellipsoid band (EZ) and to measure the central retinal thickness (CRT).

Patient data were reviewed and anonymized by the referring physician. All procedures of this retrospective observational study adhered to the tenets of the Declaration of Helsinki and were approved by the ethics board of each center.

Genetic Analysis

Total genomic DNA was extracted from peripheral blood using standard protocols or the DNeasy Blood and Tissue Kit (QIAGEN). Older analyses were performed by an Arrayed Primer Extension (APEX)-based genotyping microarray (www.asperbio.com; Asper Biotech, Ltd.) on different chip versions that comprised known mutations associated with LCA and EOSRD (LCA chip versions 2004–200932). Whenever single heterozygous variants were identified in CEP290, Sanger sequencing of all exons was performed. More recently, samples were screened by targeted next generation sequencing (NGS) using panels of known retinopathy related genes with increasing complexity (in terms of number of targeted genes; ranging from 14 to 285 genes) that also comprise the deep intronic variant c.2991+1655A>G.33 Finally, samples underwent either clinical exome sequencing (ClearSeq Inherited Disease Panel or Constitutional Panel enriched with the SureSelectQXT Target Enrichment system; Agilent Technologies) or whole-exome sequencing. The samples analyzed by clinical exome or whole-exome sequencing were also screened for the presence of the deep intronic variant c.2991+1655A>G by Sanger sequencing. When filtering the variants identified by NGS-based methods, only variants with a minor allele frequency (MAF) < 0.05 in the Genome Aggregation Database (gnomAD; http://gnomad.broadinstitute.org) were considered. Selected variants were validated by Sanger sequencing. Parents’ samples for segregation analysis were
Table 1. Clinical Findings in the Patients With Mutations in the CEP290 Gene

Parameters	Study Cohort (n = 32)†	Subgroup (n = 25)
Age (y)	19.0 ± 3.4	
Age at diagnosis (y)	4.2 ± 1.6	
Hyperopia (n = 23)	12 (52.1%)	
Myopia (n = 23)	7 (30.4%)	
BCVA (logMAR)	1.73 ± 0.20	1.65 ± 0.20
CRT (μm) (n = 12)	199.7 ± 16.7	203.3 ± 17.4
EZ-band width (μm) (n = 10)	1915.4 ± 569.5	1974.3 ± 557.7
ERG Findings		
Undetectable scotopic and photopic ERG	16 (64.0%)	
Undetectable scotopic with detectable photopic ERG	5 (20.6%)	
Detectable scotopic and photopic ERG	4 (16.0%)	

† Data are expressed as mean ± standard error of mean or counts (frequency).

available for 21 patients. In all analyzed cases (patient IDs: 2, 3, 5–7, 12, 13, 17, 20, 22, 23, and 25–34), segregation confirmed that the identified variants were present in trans in the proband. Variant positions are reported with reference to the NM_025114 transcript.

Statistical Analysis

Continuous variables are reported as mean ± standard error of the mean (SEM) and categorical variables are reported as counts (frequency).

The natural history of disease was analyzed using previously applied methods. Briefly, linear regression, estimated by a generalized estimating equation (GEE), was fitted on the data of the baseline visit to estimate the mean rate of change per year of age for each outcome measure. Moreover, GEE was fitted to estimate the decline over the follow-up period (i.e. using baseline values as offset). Asymmetry in BCVA between the 2 eyes was defined as a difference of 0.3 logMAR, which is the threshold for clinically significant changes. GEEs were applied because this method could accommodate the inter-eye correlation and the longitudinal correlation by adopting an appropriate covariance structure, as previously described. BCVs were converted to logMAR using the values of 2.7 for hand motion, 2.8 for light perception, and 2.9 for no light perception. All the other measures were also log-transformed to estimate the exponential rate of progression.

Differences in age at study entrance and age at diagnosis of the patients stratified according to their genotype were evaluated with analysis of variance with Bonferroni correction for multiple comparisons and t-tests. Fisher exact tests and Pearson χ² tests were performed to explore differences for dichotomous and categorical variables, respectively. P values lower than 0.05 were considered statistically significant.

RESULTS

Clinical Characterization of the Cohort of Patients With CEP290

A total of 32 patients (mean age = 19.0 ± 3.4 years) from 29 families with a clinical diagnosis of LCA/EOSRD (20/32; 62.5%) or RP (12/32; 37.5%) harboring disease-causing mutations in the CEP290 gene were recruited for this study.

The main clinical findings of the cohort are summarized in Table 1. The self-reported age at onset of the first symptom was 4.2 ± 1.6 years (median = 0.4 years). At disease onset, more than half of the patients presented nystagmus (12/32; 37.5%) or roving eye movements (7/32; 21.9%), whereas six patients (18.8%) showed a decreased visual acuity. Night blindness (2/32; 6.3%) and visual field constriction (3/32; 9.4%) were less frequently reported at disease onset.

Fundus examination showed 18 patients (56.3%) with RPE dystrophy (salt-and-pepper retinal dystrophy; i.e. fine pigment clumping and dispersion), and 9 patients (28.1%) with a typical RP fundus. RP with macular involvement (2/32; 6.4%) and pericentral RP (1/32; 3.1%) were less frequently observed. Finally, a normal fundus appearance was found in two patients (6.3%). We observed that patients with a typical RP fundus (aged 35.2 ± 5.7 years) were significantly older (P < 0.001) than patients with RPE dystrophy (aged 7.5 ± 2.4 years). We did not detect significant changes in fundus oculi over the follow-up period (mean = 5.9 years; 24 patients), particularly in patients with RPE dystrophy (mean follow-up = 5.8 years; 13 patients). Moreover, we observed a significantly delayed disease onset in patients with an RP fundus compared to those with RPE dystrophy (9.5 ± 3.8 years vs. 1.1 ± 2.7 years; P = 0.009).

Refraction data were available for 23 patients and the most recently measured mean spherical equivalent, averaged between eyes, was 1.6 ± 1.0 D (range = −7.75 D to +10 D). More than half (12/23; 52.1%) were hyperopic, with seven patients (30.4%) having high hyperopia (i.e. >5 D). Seven patients (30.4%) were myopic, one of whom (4.3%) with high myopia (i.e. <−6 D). The remaining four patients (17.4%) did not have significant refractive errors.

Most patients (26/32; 81.3%) had clear lens in both eyes. Only four patients (12.5%) developed subcapsular posterior cataract in both eyes, one (3.1%) was pseudophakic, and one (3.1%) had a nuclear opacity in one eye and a subcapsular posterior cataract in the other.

In the study cohort, mean BCVA was 1.73 ± 0.20 logMAR in the right eyes and 1.65 ± 0.20 logMAR in the left eyes. The analysis of inter-eye asymmetry values revealed a very low asymmetry in terms of BCVA (mean = 0.04 ± 0.02; median = 0.00 logMAR), as shown in Figure 1a. Measurements of BCVA in the best-seeing eye revealed no statistically (P = 0.400) significant association with age (Fig. 1b). Furthermore, a significantly worse BCVA correlated with...
the presence of nystagmus or roving eye movements ($\beta = 1.28$ logMAR; SE = 0.39; $P = 0.001$).

Longitudinal analysis of BCVA data collected in 24 patients over a mean follow-up period of 5.9 years (SEM = 0.9; range = 0.4 to 13.1 years; median = 5.2 years; average number of visits = 3.7) showed a nonsignificant decline of 0.004 logMAR/year (SE = 0.004; $P = 0.375$). Bilateral BCVA progression was observed only in four patients (16.7%), whereas one patient (4.2%) showed a worsening of BCVA in one eye, which developed subcapsular posterior cataract.

Measurements of CRT by SD-OCT imaging (available in 12 patients) showed a mean CRT of 199.7 ± 16.7 μm in the right eyes and 203.3 ± 17.4 μm in the left eyes. We observed a significant decrease of CRT with age at a linear rate of -2.0 μm/year (95% confidence interval $[-3.2$ to -1.2 μm/year; $P < 0.001$) and at an exponential rate of -1.0%/year (95% CI = -1.6 to -0.4%/year; $P = 0.001$), as shown in Figure 2a. SD-OCT scans of acceptable quality were also available for six patients with nystagmus (out of 19; 31.6%). By applying age-adjusted models, we found that nystagmus was associated with a significant CRT decrease ($\beta = -55.2$ μm; SE = 24.8; $P = 0.026$). We did not observe significant differences in CRT between patients with RP and patients with RPE dystrophy ($P = 0.161$).

The EZ band was detectable in 10 patients. The mean width of the EZ band was 1915.4 ± 569.5 μm in the right eyes and 1974.3 ± 577.7 μm in the left eyes. The EZ band width significantly decreased with age at a linear rate of -45.3 μm/year (95% CI = -75.7 to -14.9 μm/year; $P = 0.003$) and at an exponential rate of -1.7%/year (95% CI = -3.4 to 0%/year; $P = 0.046$), as shown in Figure 2b. Moreover, patients with nystagmus showed a significantly reduced EZ band width ($\beta = -2610.8$ μm; SE = 1158.4; $P = 0.024$).

ERG examinations, performed in 25 patients, showed undetectable scotopic and photopic responses in 16 patients (64.0%), undetectable scotopic with markedly reduced photopic in 5 patients (20.0%), and reduced scotopic and photopic responses in 4 patients (16.0%). Patients with undetectable photopic and scotopic ERG had a significantly worse BCVA compared to those with reduced scotopic and photopic responses ($\beta = +1.80$ logMAR; SE = 0.27; $P < 0.001$). Moreover, patients with undetectable photopic and scotopic ERG showed a significantly smaller EZ band width both compared to those with undetectable scotopic and markedly reduced photopic ($P < 0.001$) or
FIGURE 3. Example of a patient with reduced scotopic and photopic ERG, associated with diagnosis of RP, no nystagmus, pigment deposits visible at the color fundus image (a), a more preserved EZ band detectable by SD-OCT (b); and of a patient with undetectable photopic and scotopic ERG, associated with a diagnosis of LCA, nystagmus, RPE dystrophy shown by the color fundus image (c), associated with a less preserved EZ band as evaluable by SD-OCT (d).

to patients with reduced scotopic and photopic responses ($P < 0.001$). Undetectable ERG responses were associated with nystagmus/roving eye movements. In particular, almost all patients (14/16; 87.5%) with undetectable photopic and scotopic ERG presented nystagmus or roving eye movements, whereas all patients with detectable photopic and scotopic ERG responses (4/4; 100%) had no nystagmus or roving eye movements. Moreover, an undetectable photopic and scotopic ERG was observed in almost all patients with RPE dystrophy (12/15; 80%) and in only four of the seven patients with RP (57.1%). Figure 3 shows the comparison of fundus imaging and SD-OCT between a patient with detectable photopic and scotopic ERG responses and one with undetectable ERG.

Molecular Characterization of the CEP290 Cohort

The 32 patients of Italian origin included in this study were from unrelated families, with the exception of 2 pairs of siblings (IDs 6 and 7, and 14 and 15) and an aunt-nephew pair (IDs 22 and 23; Table 2). In the study cohort, we identified 35 different variants in CEP290. They comprised 15 frameshifts, 10 nonsense mutations, 5 splice site variants, 6 missense variants, and one in-frame deletion of a single amino acid. Twelve of the identified variants were novel (see Table 2) and included four missense variants whose pathogenicity was hypothesized based on in silico predictions and allele frequency criteria. Interestingly, almost all patients (97%) harbored at least one truncating mutation, whereas only one patient (ID 8) carried two missense variants (see Table 2). In particular, 25 patients (78%) were found to harbor 2 truncating variants, whereas 5 patients (IDs 2–4, 6, and 7; 16%) were compound heterozygous for a truncating and a missense variant. The most frequent mutation was the deep intronic variant c.2991+1655A>G, detected in 14 patients (44%). The second most recurrent variation, found in five patients (16%), was a single base pair deletion c.(1666del) causing a frameshift p.(Ile556Phesf*17) predicted to introduce a premature stop codon.

Genotype - Phenotype Correlation Analysis

To assess whether patients' genotypes associated with disease severity, we stratified the cohort according to the number of CEP290 loss-of-function (LoF) alleles identified in each subject. To this aim, we adopted a conservative approach and considered as bona fide LoF mutations only truncating mutations (namely, nonsense variants and frameshifts) predicted to produce no full-length product. We did not consider splice-site variants as bona fide LoF mutations because the impact of splice defects on the transcript and protein product cannot be reliably predicted in silico. Due to its relevance (i.e. high frequency and therapeutic opportunities), we also sought to assess the impact of the deep-intronic variant c.2991+1655A>G. This variant generates a strong splice donor site, leading to aberrant splicing, with the subsequent insertion of a cryptic exon and a premature termination codon at amino acid position 998 p.(Cys998*). A small amount of properly spliced mRNA is still produced in patients homozygous for c.2991+1655A>G, suggesting a hypomorphic CEP290 mutation. Based on this evidence, we classified the intronic variant c.2991+1655A>G as a separate category from the bona fide LoF mutations.

We divided our cohort into three genotypic categories. Group A comprised nine patients that harbored an LoF variant together with a presumed nontruncating change
Table 2. CEP290 Variants Identified in the Study Cohort

Family	Patient ID	Variant 1	Variant 2	Protein Change 1	Protein Change 2	Reference
F1	8	c.1298A>G	c.2252G>A	p.(Asp433Gly)	p.(Arg751Gln)	57
F2	6, 7	c.1466T>C	c.1666del	p.(Leu489Pro)	p.(Ile556His*17)	58
F3	2	c.1664A>T	c.7394_7395del	p.(Lys555Ile)	p.(Glu246Valfs*2)	58
F4	3	c.6401T>C	c.1666del	p.(Ile213Thr)	p.(Ile556His*17)	58
F5	1	c.180+1G>T	c.7031_7034del	p.(?)	p.(Leu254Hisfs*2)	58
F6	4	c.2723G>A	c.5493del	p.(Arg908Gln)	p.(Ala1832Profs*19)	58
F7	5	c.2991+1655A>G	c.1666del	p.(Lys998*)	p.(Ile556His*17)	18
F8	11	c.2991+1655A>G	c.1666del	p.(Lys998*)	p.(Ile556His*17)	18
F9	26	c.2991+1655A>G	c.5041_5046delAT	p.(Lys998*)	p.(Val1680fs*1683)	18
F10	29	c.2991+1655A>G	c.1860_1863delAGA	p.(Lys998*)	p.(Arg621Ilefs*2)	18
F11	30	c.2991+1655A>G	c.3292G>T	p.(Lys998*)	p.(Glu1098*)	18
F12	33	c.2991+1655A>G	c.180+1G>A	p.(Lys998*)	p.(?)	18
F13	21	c.2991+1655A>G	c.2991+1655A>G	p.(Lys998*)	p.(Cy908*)	18
F14	24	c.2991+1655A>G	c.5813_5817del	p.(Lys998*)	p.(Thr1938Asnfs*15)	18
F15	27	c.2991+1655A>G	c.1219_1220del	p.(Lys998*)	p.(Met407Glufs*13)	18
F16	28	c.2991+1655A>G	c.566C>G	p.(Lys998*)	p.(Ser189*)	18
F17	17	c.2991+1655A>G	c.1593C>A	p.(Lys998*)	p.(Tyr531*)	18
F18	22, 23	c.2991+1655A>G	c.2991+1655A>G	p.(Lys998*)	p.(Cys998*)	18
F19	25	c.2991+1655A>G	c.944G>T	p.(Lys998*)	p.(Glu312*)	18
F20	13	c.3012delA	c.4732G>T	p.(Lys1004fs)	p.(Glu1578*)	27
F21	32	c.4705G>T	c.3811C>T	p.(?)	p.(Arg1271*)	41
F22	18	c.4962_4963del	c.6004del	p.(Glu1566Asnfs*3)	p.(Ile2202Leufs*24)	14
F23	12	c.5799+2T>G	c.384_385del	p.(?)	p.(Asp128fs)	14
F24	9	c.5813_5817del	c.6196A>T	p.(Lys1938Asnfs*15)	p.(Arg2306*)	18
F25	10	c.6604del	c.6836T>A	p.(Lys2222Leufs*24)	p.(Leu2279*)	14
F26	14, 15	c.6916A>T	c.1987A>T	p.(Arg2306*)	p.(Lys663*)	27
F27	31	c.7341_7344dupACTT	c.1189+1G>A	p.(Ser249Thrfs*7)	p.(?)	42
F28	34	c.1187_1188del	c.7341_7344dupACTT	p.(Lys396Argfs*25)	p.(Ser249Thrfs*7)	27
F29	20	c.1219_1220del	c.4661_4663del	p.(Met407Glufs*13)	p.(Glu1554del)	14

† Variant reported for the first time in this study.

Table 3. Clinical Features of Patients Stratified According to the CEP290 Variants

Parameters	Group A* (n = 9)	Group B* (n = 6)	Group C* (n = 10)	P Value
Age (y)	25.7 ± 6.2	16.7 ± 7.3	17.7 ± 7.5	0.629
Age at diagnosis (y)	14.3 ± 7.1	7.4 ± 3.2	2.1 ± 0.9	0.083
Undetect. scotopic and photopic ERG†	2/6 (33.3%)	3/4 (75.0%)	7/8 (87.5%)	
Undetect. scotopic with detect. photopic ERG†	2/6 (33.3%)	1/4 (25.0%)	1/8 (12.5%)	0.181
Detect. scotopic and photopic ERG†	2/6 (33.3%)	0/4 (0%)	0/8 (0%)	

† Group A: an LoF and a nontruncating variant; group B: two LoF variants; Group C: an LoF and the deep intronic variant c.2991+1655A>G.

(i.e. missense, in-frame changes, and splice-site variants).

Group B consisted of six patients that carried biallelic LoF variants. Group C comprised 10 compound heterozygous patients for an LoF mutation and the deep-intronic variant c.2991+1655A>G. Groups of patients who were either homozygous for the variant c.2991+1655A>G (n = 2) or compound heterozygotes for missense variants (n = 1) were not analyzed further because of the low number of available cases. We then compared the clinical parameters of the patients in the three groups. Patients' age, age at diagnosis, and OCT measurements were not statistically different (Table 3). In terms of visual function, patients harboring an LoF mutation and the deep-intronic variant c.2991+1655A>G (group C) had a significantly worse BCVA.

Parameters	Right Eye	Left Eye	Right Eye	Left Eye	Right Eye	Left Eye	A vs. B	A vs. C	B vs. C
BCVA (logMAR)	1.3 ± 0.5	1.1 ± 0.3	1.4 ± 0.5	1.4 ± 0.5	2.6 ± 0.2	2.6 ± 0.2	<0.001	0.012	
CRT (μm)	202 ± 46	195 ± 48	206 ± 21	209 ± 18	161 ± 28	150 ± 41	0.837	0.337	0.076
EZ-band width (μm)	783 ± 416	894 ± 429	1466 ± 120	1487 ± 152	1341	1411	0.101	0.606	0.918

* Group A: an LoF and a nontruncating variant; group B: two LoF variants; Group C: an LoF and the deep intronic variant c.2991+1655A>G.
† Undetect.: undetectable; detect.: detectable.
compared to patients from groups A (P < 0.001) and B (P = 0.012; Fig. 4). Finally, detectable scotopic and photopic ERG responses were only present in group A (see Table 3).

Inter-Familiar and Intrafamiliar Phenotypic Variability

We observed a large inter-familiar variability in the two families (F13, F18; patients’ IDs 21–23) that were homozygous for the deep-intronic variant c.2991+1655A>G. One patient (ID 21) had a BCVA of 0.5 logMAR up to the last assessment (at 16 years of age) whereas the other case (ID 23) had a worse BCVA (1.5 logMAR) at baseline (6 years of age), which increased to 2.1 logMAR at the last assessment (18 years of age). The affected aunt of patient 23 (ID 22) also showed a severe phenotype. However, she was enrolled in the current study at 44 years of age and previous medical records were not available. The clinical presentation of the other two unrelated cases (IDs 5 and 11) that were compound heterozygous for 2 nonsense mutations (i.e. p.[Arg2306*], p.[Lys663*]) indicated a significant association of preserved ERG responses in most patients (20.8%) presenting a worsening of BCVA. Interocular asymmetry of the BCVA was also low.

Although severe nystagmus and patient compliance limited the quality of OCT imaging, we obtained acceptable quality SD-OCT scans for 12 patients, 6 of whom had nystagmus. SD-OCT imaging showed a slightly reduced CRT, in agreement with previous reports.22,25,26 Furthermore, an EZ band with a mean width of approximately 2.000 μm was detected in a high proportion of analyzed patients (83.3%). These findings revealed a better preserved EZ band compared to the cohort described by Feldhaus et al.26 with a mean width of about 1.000 μm. Furthermore, our data indicated a significant progression of the SD-OCT parameters with age. In particular, the EZ band width declined at a mean rate of about −2%/year, which is similar to the longitudinal estimates previously reported in RP cohorts (ranging from −4%/year to −9%/year).47–49

ERG examinations (available for 78% of patients) showed undetectable scotopic and photopic ERG responses in most cases (64.0%). Nevertheless, we observed detectable ERG with a rod-cone pattern in about 36% of cases, a percentage which is higher compared to other European cohorts that reported a range from 4% to 17.6%.22,26 Moreover, by exploring the relationship with the other clinical parameters, we observed a significant association of preserved ERG response with absence of nystagmus, better BCVA, larger EZ band width, and RP fundus.

The vast majority of the variants in our cohort were presumably truncating, predicted to introduce premature termination codons. Missense variants represented 10.3% (6/58) of the alleles. This percentage is similar to that reported by Sheck et al. (12.5%), whereas in other CEP290 cohorts missense variants were either not present22,25,26 or very rare.25 This is also in line with the small number of missense CEP290 mutations reported in variant databases (Coppieters et al.3 4 missense out of 189 pathogenic variants deposited in ClinVar; http://clinvarminer.genetics.utah.edu/; accessed October 2020). The deep-intronic variant c.2991+1655A>G was the most recurrent mutation, albeit with a lower frequency (44%) compared to recently reported European cohorts (55% - 87.5%)22,26 and a Brazilian cohort (50%).51
Considering the ongoing gene therapy clinical trials for patients carrying the c.2991+1655A>G variant,\(^5\) we sought to better define the clinical phenotype associated with this mutation. The composition of our cohort limits the strength of any comparisons between subjects that were homozygotes (\(n = 3\)) or compound heterozygotes (\(n = 10\)) for the c.2991+1655A>G variant. Such comparisons were recently reported by Feldhaus et al. and Valkenburg et al. with discordant conclusions.\(^{25,26}\) In particular, whereas Valkenburg et al.\(^{25}\) found a mild phenotype in patients homozygous for the c.2991+1655A>G variant, consistently with the in vitro studies showing a residual CEP290 protein in either lymphoblastoid or fibroblast cells derived from patients with LCA homozygous for the deep-intronic mutation,\(^{18,53,54}\) Feldhaus et al.\(^{26}\) observed a more severe phenotype in homozygous patients. In our cohort, we observed phenotypic variability in the 3 patients homozygous for the deep-intronic variant c.2991+1655A>G (belonging to 2 unrelated families). Despite sharing the same CEP290 genotype and the same age range (16–18 years), the 2 unrelated patients presented significant differences in BCVA. It remains to decipher the influence of modifier alleles\(^{15,17,19}\) and environmental factors to the pleiotropy of CEP290-associated disease.

We found that compound heterozygous patients harboring the deep-intronic c.2991+1655A>G variant in trans with an LoF mutation had a worse BCVA compared to patients that either carried two bona fide LoF variants or were compound heterozygotes for an LoF mutation and a mild, nontruncating variant. Nevertheless, the limited size of the analyzed cohort and the heterogeneity of the genotypes grouped within each category demands further comparisons to strengthen the herein described association. Moreover, our classification is based on a conventional prediction of the effect of DNA mutations on protein function (i.e. variants resulting in a premature stop codon were classified as LoF mutations), although basal exon skipping and nonsense-associated altered splicing have been also evoked to account for the pleiotropy of CEP290 disease.\(^{10}\) Finally, evidence to support the hypomorphic character of truncating mutations is only available for a very small proportion of variants under investigation (hence could not be systematically considered for the entire cohort).\(^{15,17,55}\)

This study presents some limitations mainly related to its retrospective design. First, the differences in follow-up time and visit frequency. Then, the fact that some exams, particularly SD-OCT, could not be performed due to severe nystagmus, poor visual acuity, and patient compliance. Finally, not all patients were willing to be re-examined in follow-up visits.

In conclusion, our study further delineates the natural course of nonsyndromic inherited retinal dystrophies due to CEP290 mutations confirming the wide spectrum of retinal phenotypes, for the first time in an Italian cohort. In particular, we observed a subgroup of patients with a mild phenotype, characterized by absence of nystagmus, slightly delayed disease onset, better visual acuity, better preserved retinal morphology, and detectable photopic and scotopic ERG responses. Finally, in contrast to the evidences of in vitro studies\(^ {18,53,54}\) regarding the hypomorphic features of the deep intronic variant c.2991+1655A>G, our findings suggest that this variant is associated with a more severe phenotype. Therefore, further studies are needed to clarify the impact of the deep intronic variant c.2991+1655A>G on the clinical phenotype across different cohorts.

Acknowledgments

The authors thank the participating patients and the patient association Retina Italia Onlus. They are also grateful to the European Reference Network dedicated to Rare Eye Diseases (ERN-EYE) for useful discussions. The authors also thank Mariateresa Pizzo for technical assistance and Annalaura Torella for support in NGS analysis.

Funded by the Italian Telethon Foundation and by the University of Campania “Luigi Vanvitelli” under the Research program “VALERE: VAnviteLli pEr la RicErca” (to S.B. and F.S.).

Disclosure: F. Testa, None; A. Sodi, None; S. Signorini, None; V. Di Iorio, None; V. Murro, None; R. Brunetti-Pierri, None; E. M. Valente, None; M. Karali, None; P. Melillo, None; S. Banfi, None; F. Simonelli, None.

References

1. Craige B, Tsao CC, Diener DR, et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol. 2010;190:927–940.
2. Kim J, Krishnaswami SR, Gleson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17:3796–3805.
3. D’Angelo A, Franco B. The dynamic cilium in human diseases. Pathogenetics. 2009;2:3.
4. Drivas TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123:4525–4539.
5. Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat. 2010;31:1097–1108.
6. Yzer S, Hollander AI, Lopez I, et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290. Mol Vis. 2012;18:412–425.
7. Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23:306–317.
8. Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49:379–398.
9. Stone EM. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144:791–811.
10. Kumaraz N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101:1147–1154.
11. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.
12. Wang S, Zhang Q, Zhang X, Wang Z, Zhao P. Clinical and genetic characteristics of Leber congenital amaurosis with novel mutations in known genes based on a Chinese eastern coast Han population. Graefes Arch Clin Exp Ophthalmol. 2016;254:2227–2238.
13. Coppieters F, Casteeels I, Meire F, et al. Genetic screening of LCA in Belgium: predominance of CEP290 and
51. Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R, Jr. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. *Am J Med Genet C Semin Med Genet.* 2020;184:728–752.

52. Xue K, MacLaren RE. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. *Expert Opin Investig Drugs.* 2020;29(10):1163–1170.

53. Garanto A, Chung DC, Duikers I, et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. *Hum Mol Genet.* 2016;25:2552–2563.

54. Parfitt DA, Lane A, Ramsden CM, et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. *Cell Stem Cell.* 2016;18:769–781.

55. Barny I, Perrault I, Michel C, et al. AON-mediated exon skipping to bypass protein truncation in retinal dystrophies due to the recurrent CEP290 c.4723A>T mutation. Fact or fiction? *Genes (Basel).* 2019;10(5):368.