Biological foundations of successful bacteriophage therapy

Carola Venturini1,2,*, Aleksandra Petrovic Fabijan3,3, Alicia Fajardo Lubian1,3, Stefanie Barbirz4 & Jonathan Iredell1,3,5,**

Abstract

Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage–bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium–phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.

Keywords antimicrobials; bacteriophages; phage therapy; phage–bacterium dynamics

Subject Categories Microbiology, Virology & Host Pathogen Interaction

DOI 10.15252/emmm.202012435 | Received 16 March 2022 | Revised 13 April 2022 | Accepted 19 April 2022 | Published online 27 May 2022

EMBO Mol Med (2022) 14: e12435

See the Glossary for abbreviations used in this article.

Brief introduction to phage therapy

With the discovery of antibiotics and the development of vaccines, the 20th century saw an unprecedented steady decline in mortality attributable to bacterial infections (Armstrong et al, 1999). This progress built on advances in microbiology and sanitation in the 1880s led by Louis Pasteur and Ignaz Semmelweis (Cavaillon & Chrétien, 2019). In the late 1910s, following initial work by Ernest Hankin and Frederick Twort, Felix D’Herelle identified viruses that specifically and selectively kill bacteria, naming them bacteriophages (phages) [from “bacterium” + “phagēin” (Greek, to eat)], and immediately recognized their potential as antimicrobial agents (Sulakvelidze et al, 2001; Kutter & Sulakvelidze, 2004; Wittebole et al, 2014). In the following decades, however, the development of phage-based therapy was hampered by a poor understanding of phage biology, some early clinical failures and the meteoric rise of antibiotics (Sulakvelidze et al, 2001; Wittebole et al, 2014; Rohwer & Segall, 2015).

Regrettably, the use (and misuse) of antibiotics has since led to the emergence of globally disseminated bacterial pathogens that are resistant to last-line treatments, and antibiotic resistance now poses a significant global health and economic burden (Fair & Tor, 2014; O’Neill, 2016; WHO, 2017; Baker et al, 2018). As investment in the discovery and production of new antibiotics dwindles, the development of alternative antimicrobial therapies, including revaluation of phage therapy, is a primary goal (Moelling et al, 2018; Rohde et al, 2018; Petrovic Fabijan et al, 2020a).

In parts of eastern Europe (e.g. Georgia, Poland and Russia), phages have been in routine medical practice for over 70 years and this experience provides a rich source of empirical data (Sulakvelidze et al, 2001; Stone, 2002; Rohwer & Segall, 2013; Górska et al, 2020). Several reviews of recent progress in the development of phage therapy cover preclinical experimentation in animal models, compassionate use in critically ill humans and a few clinical trials (Wittebole et al, 2014; McCallin & Brüssow, 2017; Gordillo Altamirano & Barr, 2019; Nale & Clokie, 2021; Pirnay & Kutter, 2021). Most of the cited studies attest to the safety of phage therapy, but clinical effectiveness has not yet been conclusively demonstrated (McCallin & Brüssow, 2017; Gordillo Altamirano & Barr, 2019; Pirnay & Kutter, 2021). In addition, the results of experimentation in small animal models do not consistently translate into clinical success (Wittebole et al, 2014; Nale & Clokie, 2021), just as in vitro phage activity often fails to correlate with in vivo efficacy (Melo et al, 2020a). These inconsistencies complicate the design of clinical protocols, undermine confidence in phage application and hinder progress towards clinical implementation.
Bacteriophages
Bacteriophages, or phages, are viruses that specifically and selectively infect bacteria.

Enzymatics
Phage-derived antibacterial enzymes with therapeutic potential. Depolymerases catalyse the hydrolysis of the capsule polysaccharide of Gram-negative bacteria, while lysins (also endolysins or murein hydrolases) are hydrolytic enzymes capable of cleaving the cell wall (peptidoglycan) of both Gram-negative and Gram-positive species.

L-forms
Cell wall-deficient bacteria resistant to supra-therapeutic concentrations of cell wall targeting antibiotics.

Lysogenic conversion
Phage–bacterium interaction in which a prophage encodes proteins that enhance bacterial fitness or virulence.

Phage-directed cell lysis
Viruses that cannot undergo lysogeny. Preferred for therapeutic applications.

Temperate phages
Phages capable of undergoing lysogeny. These may lie in a latent state within the host cell without chromosomal integration, in an unstable, dormant state.

Phage life cycle
Infected phages replicate their genome and assemble new viral particles (virions) by hijacking host resources. Phage-directed cell lysis then releases this viral progeny ready to infect new cells, in an exponential growth cycle (productive lysis) limited only by availability of bacterial prey and their receptors to phage attack.

Obligate lytic phages
Phages that cannot undergo lysogeny. Preferred for therapeutic applications.

Temperate phages
Phages capable of undergoing lysogeny. These may lie in a latent state within the host cell without chromosomal integration, in an unstable, dormant state.

Figure 1. Phage whole genome sequencing.
Number of complete phage genomes deposited in GenBank in the past 5 years (with permission from Cook et al, 2021).

Phage adsorption
Molecular interactions between phage proteins and specific bacterial receptors that bind the phage to the bacterial cell surface allowing for infection (phage genome release into the cytosol) to occur.

Phage cocktail
Combination of multiple phages for therapeutic application. Phages in a cocktail ideally act synergistically against a bacterial target and limit the development of phage-resistant variants. Cocktails combining phages with different host specificity allow for broader therapeutic targeting.

Phage therapy
Medical use of phages as antimicrobials for treatment of bacterial infections.

Pseudolysogeny
Phage–bacterium interaction in which the phage genome resides within the host cell without chromosomal integration, in an unstable, inactive state.

Temperate phages
Phages capable of undergoing lysogeny. These may lie in a latent state within the host cell while integrated into the host chromosome as "prophages", but have the potential to enter a lytic infection cycle under certain conditions (e.g. host cell stress). Temperate phages are less preferred for therapy.

Phage cocktail
Combination of multiple phages for therapeutic application. Phages in a cocktail ideally act synergistically against a bacterial target and limit the development of phage-resistant variants. Cocktails combining phages with different host specificity allow for broader therapeutic targeting.

Phage therapy
Medical use of phages as antimicrobials for treatment of bacterial infections.

Pseudolysogeny
Phage–bacterium interaction in which the phage genome resides within the host cell without chromosomal integration, in an unstable, inactive state.

Temperate phages
Phages capable of undergoing lysogeny. These may lie in a latent state within the host cell while integrated into the host chromosome as "prophages", but have the potential to enter a lytic infection cycle under certain conditions (e.g. host cell stress). Temperate phages are less preferred for therapy.

Transduction
Phage-mediated horizontal transmission of genetic information from one bacterial cell to another, as opposed to genetic inheritance through reproduction ("vertical transmission"). Mainly associated with the lysogenic life cycle.

While the number of completely sequenced phage genomes has doubled in the last 5 years (Fig 1) (Cook et al, 2021), these represent a minuscule fraction of the prokaryotic virosphere, estimated to exceed 10^{31} particles (Hatfull, 2015). Phages are found in all bacterial habitats (Kutter & Sulakvelidze, 2004; Clokie et al, 2011) and are a key driving force of microbial ecology and evolution (Dion et al, 2020). Tailed double-stranded DNA phages (order Caudovirales) constitute the largest group described to date (Clokie et al, 2011) and are easily isolated with simple techniques from diverse environmental sources (Ackermann, 1998). Tailed phages have high target specificity, which can be redirected by forced evolution or genetic engineering (Pires et al, 2016a; Burrowes et al, 2019), and are the only phage type to have been trialled in therapy so far (Ackermann, 1998; Kutter & Sulakvelidze, 2004).

Phages eliminate target bacteria by bursting bacterial cells (lysis) within minutes of infection (Kutter & Sulakvelidze, 2004), thereby releasing newly formed phage particles (virions) that go on to infect new host cells in a self-perpetuating cycle (Kutter & Sulakvelidze, 2004; Kortright et al, 2019). Crucially, phage activity is unaffected by antibiotic resistance.

The highly specific virus–host pairing is central to microbial population dynamics and is deeply connected to environmental conditions and ecological niches. In therapeutic applications, the risk of undesirable adaptive outcomes of the phage–bacterium interaction is pragmatically addressed by the use of combinations of multiple phages (cocktails) with differing adaptive strategies (Chan & Abedon, 2012; Chan et al, 2013; Pirnay et al, 2018; Rohde et al, 2018). Combining phages into therapeutic cocktails (as opposed to monophage therapy), broadening their utility and commercialization potential, requires a clear understanding of phage–phage and phage–bacterium dynamics (Chan & Abedon, 2012; Schmerer et al, 2014; Gordillo Altamirano & Barr, 2019; Venturini et al, 2019a; Pirnay, 2020; Haines et al, 2021).
The key mechanisms that may allow prediction of in vivo pharmacokinetics and dynamics linked to therapeutic outcome have not yet been fully elucidated. Here, we provide an overview of the biological processes linked to phages’ antimicrobial potential and highlight some of the research challenges that remain.

Phage infection

Infection cycles

Phages depend on their bacterial hosts for survival and multiplication, but bacterial growth rates can fluctuate significantly even in nutritious habitats. Doubling times for wild-type Escherichia coli laboratory strains in optimal conditions are approximately 20 min (Gibson et al., 2018), while those measured in the mammalian gut can range from 40 min to 140 h (Abedon, 1989; Poulsen et al., 2022). Although one infective phage particle may yield as many as 20,000 new virions per infected bacterial cell in optimal conditions (Zinder, 1980), bacteria rarely encounter such habitats in nature (Lourenço et al., 2020; Attrill et al., 2021).

In exponentially growing bacteria, phages replicate typically via either a lytic or a lysogenic cycle (Fig 2A). Phage therapy traditionally uses “virulent” or “obligate lytic” phages (lytic cycle only) that lyse bacteria immediately upon infection in preference to “temperate” phages, which undergo a lysogenic cycle, integrating their genome into the bacterial host chromosome and replicating passively with it as “prophages” (Fig 2A–C) (Latino et al., 1989; Howard-Varona et al., 2017; Li et al., 2020). Therapeutic use of temperate phages risks transfer of genes (“transduction”) that may enhance bacterial fitness or virulence (e.g. toxins) or confer antibiotic resistance to the bacterial host (Brussow et al., 2004). This is known as “lysogenic conversion”, a process by which important pathogens have acquired cardinal virulence factors (e.g. Corynebacterium diphtheriae carrying the siphovirus β-phage that encodes the diphtheria toxin Tox (Holmes, 2000) or enterohaemorrhagic E. coli with the lambdoid phage encoding Shiga toxins (Schmidt, 2001)). Stable chromosomal integration is mainly a function of the phage itself (Brussow et al., 2004; Fortier & Sekulovic, 2013; Argov et al., 2019; Petrovic Fabijan et al., 2021) but also depends on host conditions; when these change (e.g. nutritional stress or DNA damage), prophages may excise from the chromosome and enter a lytic cycle that leads to bacterial cell death (Banks et al., 2003; Nanda et al., 2014; Balasubramanian et al., 2019; Chatterjee & Duerkop, 2019; Benler & Koonin, 2020; Filipiak et al., 2020). Importantly, quorum-sensing mechanisms and communication via signalling molecules are also increasingly implicated in phage-bacterium interactions, including switching between lytic and lysogenic lifestyles (León & Bastías, 2015; Silpe & Bassler, 2019).

Chronic infection is a distinct replication cycle characteristic of “filamentous” phages belonging to the family Inoviridae (single-stranded DNA phages; order Tubulavirales) (Fig 2B) (Secor et al., 2020; Mantynen et al., 2021). Unlike lytic and lysogenic cycles, chronic infection leads to continuous virion production without lysis of the bacterial cell (Loh et al., 2019). Filamentous phages are well suited for the horizontal exchange of DNA and many encode important virulence factors. The best understood filamentous phages involved in lysogenic conversion of their hosts are those that infect Vibrio cholerae (e.g. CTXφ, encoding the cholera toxin) (Waldor & Mekalanos, 1996; Karaolis et al., 1999) and Pseudomonas aeruginosa promoting biofilm production in infected bacteria (Secor et al., 2015). Filamentous phages are considered unsuitable for therapy.

While lytic and lysogenic lifestyles and their impact on therapeutic outcome have been extensively reviewed (Sulakvelidze et al., 2001), the impact of pseudolysogeny has not yet been defined. This additional phage infection mode (Fig 2A), which some propose should be defined altogether as a separate cycle (Mantynen et al., 2021), was first recognized in the early 1960s (Los & Wegzyn, 2012), but as yet there is no unanimous definition for this phenomenon and its molecular bases remain largely unexplored. Pseudolysogeny has been defined as a “phage carrier” state (Ripp & Miller, 1997) or, perhaps more accurately, as “stalled phage development” (Los & Wegzyn, 2012). In pseudolysogeny, neither multiplication nor synchronized replication of the phage occurs within the host cell, but when conditions allow, the phage enters either a “normal” lysogenic cycle or a lytic cycle.

Pseudolysogeny has been observed primarily in Gram-negative species, generally when bacterial growth was limited (Los et al., 2003; Cenens et al., 2013; Latino et al., 2016), suggesting a role in long-term phage survival in unfavourable conditions, perhaps by providing many of the advantages of the lysogenic state while avoiding chromosomal integration. Lytic phages are recognized by their efficient killing activity in vitro (high lytic efficacy) and the absence of classic lysogenic genes (integrases, repressor genes, etc.), but there is no established genetic marker of pseudolysogenic capacity, as it is not usually a feature of exponentially growing bacteria. Replication of obligate lytic T4-like phages is completely inhibited in nutrient-stressed E. coli, but it has been reported that under the same conditions, a T4RI mutant (defective in the function of the holin inhibitor) keeps producing viable virions (Los et al., 2003). Bryan et al. (2016) showed that T4 phages efficiently bind to and infect, but fail to successfully lyse, E. coli in the stationary phase. Under nutrient-limiting conditions in vitro, the lytic cycle still occurs in a small subpopulation of infected bacterial cells (“scavenger response”), fully resuming in the rest of the population only upon nutrient addition with restoration of logarithmic growth. P. aeruginosa and Yersinia enterocolitica can support pseudolysogenic infection with apparently obligate lytic myoviruses or podoviruses that provide bacteria with immunity from further phage infection (superinfection exclusion) (Latino et al., 2016; León-Velarde et al., 2016). Thus, it seems that not all virulent phages are truly obligate lytic viruses or, at least, that a replication pause may occur in the lytic cycle. This provides advantages for both the virus and the parasitized host cell, especially when the host bacterial population is stressed, by preventing extinction of vulnerable bacterial population on which the predating virus is dependent.
Figure 2. Phage replicative cycles.
(A) Modes of phage infection characteristic of tailed phages: (i) lytic cycle—phage replication immediately follows infection, with assembly and release of virions leading to cell lysis. Each virion is free to start a new lytic cycle leading to a burst of "productive" infection; (ii) lysogenic cycle—phages can integrate into the bacterial chromosome and replicate with it as prophages, until a lytic cycle is triggered; and (iii) pseudolysogeny—phage genomes persist in an episomal state within the host cell before resolving into a lytic or lysogenic cycle. Episomal phages typically segregate asymmetrically during cell division, while a small fraction undergoes a productive lytic cycle (scavenger response) favouring development of phage-resistant bacterial subpopulations. (B) Chronic infection cycles are characteristic of "filamentous phages" (family Inoviridae) that continuously produce progeny released by extrusion without cell death/lysis. (C) Phage types by replication cycle: tailed phages that always lyse bacteria upon infection are "virulent" or "obligate lytic", while "facultative lytic" phages may also undergo pseudolysogeny. "Temperate" phages may have a lysogenic or pseudolysogenic lifestyle until triggered to enter a lytic cycle, typically when the host bacteria experience stress conditions. Filamentous phages typically follow a chronic productive cycle, though some have the capacity to also enter a lysogenic cycle.
bacterial population stress. Other temperate phages, variably defined as “phage-like plasmids” (Pfeifer et al., 2021) or “phagemids” (Kittleson et al., 2012), are found in the host as extra-chromosomal elements that encode partitioning systems (Salje, et al., 2012), and replicate within the cell cycle. In the well-studied P1 E. coli myovirus (Lobocka et al., 2004) and its many variants (Walker & Anderson, 1970; Rosner, 1972; Venturini et al., 2019b), ATP-dependent post-segregational killing promotes symmetrical distribution of phage episomes via common plasmid partitioning and maintenance mechanisms (Lobocka et al., 2004).

Although much remains to be investigated, it seems plausible for pseudolysogeny to represent a route to both short- and long-term phage survival through (i) physical protection from harsh environmental conditions outside the host (e.g. UV-light, pH and temperature can drastically reduce the half-life of virions) (Jonczyk et al., 2011), and (ii) hibernation (replication pause) in unfavourable conditions that threaten the host population (e.g. stationary phase or persister populations) (Bryan et al., 2016).

A better understanding of the diversity and genetic regulation of phage life cycles is paramount for successful therapeutic applications. Future progress will likely benefit from “multimics” approaches and investigation of these complex phenomena at a single-cell level (Dang & Sullivan, 2014; Skurnik, 2022). Genetic engineering approaches may also prove useful for redirecting phage lifestyles to suit therapeutic goals (e.g. enhance lysis by elimination of lysogeny genes in temperate phages (Dedrick et al., 2019)).

Multiplication of infection and the concept of phage dosing

Self-amplification through progressive productive infection is a unique distinction between phages and traditional (drug) antibiotics with important clinical implications (Levin & Bull, 2004). Phage growth parameters such as adsorption rate, latent period (duration of infection cycle from replication to virion assembly) and burst size (number of released virions per lysed cell) are commonly used to quantify productive lytic infection in vitro (Levin & Bull, 2004; Dennehy & Abedon, 2021). These parameters are specific to each phage and can vary considerably, and as such have been the focus of theoretical studies attempting to model lysis outcomes of bacterium–phage pairs to inform therapeutic strategies (Bull et al., 2004; Levin & Bull, 2004; Wang, 2006; Heineman & Bull, 2007).

Modelling of in vivo dynamics, even for the simplest phage–bacterium interaction, must consider the availability of resources to bacterial prey populations (Weitz et al., 2013), other mobile genetic elements (Harrison et al., 2017), community effects (bystander microflora) (Blazanin & Turner, 2021) and the spatial structures at the site where predator and prey meet (Lourenço et al., 2020; Attirll et al., 2021). Bacterial density directly affects adsorption rate and phage replication duration, as well as opportunities for further viral propagation. If target bacteria are slow-growing and sparsely separated, the productive exponential infection may not proceed (Payne & Jansen, 2001; Kasman et al., 2002; Levin & Bull, 2004; Heineman & Bull, 2007; Abedon, 2011).

Multiplicity of infection (MOI) is the term used to indicate the ratio of phages to bacteria in in vitro testing and is often applied in vivo as a “dosing” concept. A MOI of > 10 may be more advantageous in murine sepsis models (Yuan et al., 2019; Hesse et al., 2020), and this has been used as a target for human dosing (Khatami et al., 2021), but this extrapolation is problematic because not all phages administered reach their target and not all phages that adsorb to a bacterial cell will infect it (Attachment mechanisms and receptor specificity) (Abedon, 2016). Direct measurement of phage and bacterial densities in vitro is not practical except for urine (Abedon, 1989; Khawaldeh et al., 2011; Dąbrowska & Abedon, 2019) or blood (Petrovic Fabijan et al., 2020b) so that even once the target MOI is defined and the amplification process can be monitored, these samples of convenience can only serve as surrogates for the site of infection in tissues. Therapy with antibiotic drugs leads to relatively predictable relationships between tissue and blood concentrations, which can be determined and used to optimize dosing. Evidence of phage amplification derived from samples of convenience might become a useful surrogate for successful delivery to site. However, in vivo amplification appears to subside quickly, likely due to both therapeutic “success” (i.e. elimination of prey populations) and host control of the administered therapeutic virus by innate and acquired immune responses (The eukaryotic host: phage-induced immune responses). The pharmacodynamics and pharmacokinetics of phage therapy are also subject to variable and possibly virus-specific tissue penetration (Gorski et al., 2015; Dąbrowska & Abedon, 2019). Careful monitoring of clinical sites and samples in the course of carefully structured therapeutic regimens will therefore be extremely important to lasting and robust therapeutic application (Abedon, 2011).

Attachment mechanisms and receptor specificity

Phage adsorption to the bacterial cell is a first and crucial step in the infection process (Bertozzi Silva et al., 2016; Letarov & Kulikov, 2017). For “best” phage therapy (optimal lytic efficiency = optimal bactericidal activity), the majority of virus–bacterium contacts should lead to productive infection (Multiplicity of infection and the concept of phage dosing), making the molecular interactions at the bacterial cell surface a key aspect of therapeutic success (Nobrega et al., 2018). Membrane-embedded proteins are common phage receptors, but phage access to these receptors is highly regulated by various protective glycan structures such as peptidoglycan, capsule or lipopolysaccharide (LPS) found on bacterial envelopes.

Phage tail machines as sophisticated infection deuices

Although phage–bacterium interactions via capsid proteins have been described (Casjens & Molineux, 2012), adsorption to the bacterial cell envelope is most commonly mediated by sophisticated phage tail machines that specifically recognize diverse bacterial cell surface structures and are implicated in other important infection-aiding processes (Chua et al., 1999; Letarov & Kulikov, 2017; Nobrega et al., 2018) (Fig 3). Three tail morphologies are known: short non-contractile tails in the Podoviridae; long non-contractile tails in the Siphoviridae; and long contractile tails in the Myoviridae (Ackermann & Prangishvili, 2012) (Fig 3A). Tailed phages have evolved to deliver much larger genomes to their hosts than non-tailed phages (Davidson et al., 2012) and are highly specialized in overcoming the protective layers of Gram-negative and Gram-positive bacterial envelope architectures (Fig 3B and C). For host recognition, tailed phages use fibres, longitudinal, multimeric protein assemblies, or shorter and more compact protein oligomers termed spikes.

Surface attachment and infection

Phage recognition of bacterial cell surface receptors is a well-orchestrated process comprising several individual sequential steps
(Broeker & Barbirz, 2017; Broeker et al, 2017). The diversity of bacterial cell envelopes (Fig 3) has required tailed phages to develop different strategies to initiate infection. This initial and often reversible interaction with the primary receptors preceeds subsequent “secondary receptor” binding, which leads to changes in the tail machine that are irreversible (Casjens & Molineux, 2012). Phages preferentially encounter as primary receptors all the exposed surface structures on host bacteria, i.e. capsule, exopolysaccharide, peptidoglycan or teichoic acids (Dunne et al, 2018), and in Gram-negative target also LPS (Broeker & Barbirz, 2017). Flagella and adhesins may also serve as primary receptors for some phages (Esteves et al, 2021; Montemayor et al, 2021). Many primary receptors are distal to the cell surface, and phages employ diverse active mechanisms to approach the bacterial membrane. “Flagellotropic” phages, for example, ride on flagella towards the host surface, harnessing bacterial motility for infection progression (Tittes et al, 2021), and many tailed phages produce tailborne depolymerases to specifically destroy the polysaccharide-based glycan protective shields (Knecht et al, 2020). Many of the initial fibre- or spike-mediated receptor interactions are reversible, which allows phage particles to dissociate from the cell surface until they reach a site for irreversible attachment.

Irreversible attachment to these secondary receptors can initiate a cascade of steps that lead to permanent conformational rearrangements in the phage tail assembly (Taylor et al, 2018), priming the phage for DNA release. Conserved transmembrane proteins (e.g. transporters and channels), efflux pumps and pilus portals often serve as secondary receptors (Bertozi Silva et al, 2016), with their extracellularly exposed parts providing highly specific phage attachment sites with numerous opportunities for bacterial adaptation to halt the phage infection cycle, for example by mutation of outer membrane extracellular loops (Porcek & Parent, 2015; Rocker et al, 2020). As shown for purified outer membrane proteins (Chiaruttini et al, 2010; Evilevitch, 2018), binding to secondary receptors can
trigger the phage molecular machine for DNA release in vitro, thus rendering phage particles non-infectious. Gram-negative host-specific phages incubated with protein-free LPS preparations typically lose their infectivity as contact with these receptor molecules induces particle opening and DNA loss (Jesaitis & Goebel, 1955; Lindberg, 1973; Andres et al., 2012; Broecker et al., 2019). How entirely protein-free LPS preparations trigger DNA release in the absence of a host cell remains to be elucidated (Andres et al., 2010; Broecker & Barbirz, 2017). Cryotomography studies of phages attached to bacteria have revealed the formation of channel-like structures spanning the envelope that ensure the integrity of the cell surface during phage genome transfer into the cytosol. However, the molecular composition of these channels is not yet fully understood (Hu et al., 2015; Farley et al., 2017; Wang et al., 2019); in some cases, phages seem to extend their tails to reach the interior of the cell, while in others, phage-synthesized ejection proteins recruit other protein components from the bacterial envelope to facilitate DNA movement.

Adsorption regulation—the unique role of bacterial surface glycans

In bacterial ecosystems, regulation of interactions with predatory viruses takes place both at extracellular and at intracellular levels (Hampton et al., 2020). As phage receptors, surface glycans (Fig 3) modulate phage entry and are important in evolutionary adaptations to phage infection (Phage–bacterium co-adaptation). Bacterial cell surface glycans also face the human immune system and are often described as important participants in so-called pathogen-associated molecular patterns (PAMPs). Changes induced by phages thus affect the innate immune response to pathogens (The eukaryotic host: phage-induced immune responses), and phage-encoded enzymes that remove protective glycan layers (e.g. depolymerases), exposing underlying PAMPs at the envelope (Majkowska-Skrobek et al., 2018; Liu et al., 2020; Volozhantsev et al., 2020), may directly enhance clearance of bacteria by the innate immune system (Oliveira et al., 2019a).

In the presence of actively infecting phages, bacteria may alter surface glycan structures through transcriptional control of glycosyltransferases. This “phase variation” is achieved by altered glycan composition or LPS chain length or even by complete abrogation of the assembly of protective capsule or O-antigens (Huan et al., 1997; Seed et al., 2012; Cai et al., 2019; de Sousa et al., 2020; Whitfield et al., 2020). Similarly, prophages may alter bacterial surface glycan composition via glycosylation or acetylation to exclude other phages from infection (Cenens et al., 2015; Schmidt et al., 2016; Teh et al., 2020).

Phages bind bacterial surface glycans using specific tail proteins (Broecker et al., 2017; Nobrega et al., 2018; Knecht et al., 2020). Many host adsorption proteins are depolymerases that facilitate surface access through O-antigen or capsular layers, this being an essential step for infection by some phages (Broecker & Barbirz, 2017). The glycan adsorptive capacity of these tail proteins also enables phages to persist in glycan-rich niches, for example by binding heparan sulphates of mucins in the mammalian gut (Green et al., 2021). Phage glycan depolymerases can strip off glycan coats without initiating cell rupture, thereby avoiding critical concentrations of microbial cell envelope fragments that may drive a damaging immune response in clinical sepsis (Ryu et al., 2017). LPS-mediated sepsis and septic shock are primary drivers of mortality in Gram-negative infection (Opal et al., 1999), and several studies have shown that pretreatment with phage depolymerases to degrade O-antigen polysaccharides reduces pro-inflammatory responses and protects mice from lethal sepsis (Liu et al., 2019; Oliveira et al., 2019b; Chen et al., 2020).

Outer membrane vesicles (OMVs) also play a unique role in controlling phages as they can effectively trap them, preventing host infection (Schwechheimer & Kuehn, 2015; Reyes-Robles et al., 2018), as shown for Salmonella phage P22 where only few phages eject their DNA into the OMV lumen, with the majority of particles stalling at the membrane (Stephan et al., 2020).

The specificity of these attachment mechanisms limits phage clinical range, when compared to traditional antibiotics with broad-spectrum activity against multiple bacterial species. This potential therapeutic limitation is mainly being obviated by the use of phage cocktails, but it can also be addressed via natural phage “training” to broaden host range by successive passage (Yu et al., 2015; Burrowes et al., 2019) or by formal synthetic biology approaches (Chen et al., 2019; Dedrick et al., 2019). The use of enzybiotics (depolymerases or endolysins) is also being considered (Pires et al., 2016b; Olsen et al., 2018). Phage endolysins attack the peptidoglycan layer of Gram-positive and Gram-negative envelopes (Fig 3), thus acting less specifically than depolymerases (Broendum et al., 2018; Sao-Jose, 2018; De Maesschalck et al., 2020; Mondal et al., 2020; Chen et al., 2021; Linden et al., 2021; Murray et al., 2021). Importantly, the development of bacterial resistance to externally applied endolysins is unlikely as these enzymes target cellular structures essential for bacterial survival (Roach & Donovan, 2015). However, all the outlined approaches crucially require the maintenance and accessibility of well-curated and diverse phage banks, which are still scarce (Nagel et al., 2022).

Phage–bacterium co-adaptation

The interaction between phages and bacteria is a major contributor to the diversity and evolution of microbial populations, involving fine-tuned, complex co-adaptation dynamics, with bacteria trying to minimize susceptibility to phage infection as phages strive to retain or regain it (Diaz-Munoz & Koskella, 2014; Koskella & Brockhurst, 2014; Seed et al., 2014). Bacterial adaptations are not without cost, and both mathematical models and experimental observations suggest that bacterial resistance to phage can be overcome (Levin & Bull, 2004), but the development of bacterial phage resistance in vivo has not been yet systematically researched (Hesse et al., 2020; Gordillo Altamirano et al., 2021; Salazar et al., 2021).

Alteration of cell surface phage receptors (“adsorption resistance”, through modification or masking or by synthesis of competitive inhibitors; Attachment mechanisms and receptor specificity) is arguably the most common adaptive response to phage predation; CRISPR/Cas may be a close second (Doron et al., 2018; Ofir & Sorek, 2018; Alseth et al., 2019; Rostøl & Møllgaard, 2019; Hampton et al., 2020). Bacterial susceptibility to phages may be modulated by horizontal exchange of receptors mediated by OMVs (Tzipilevich et al., 2017) or more often by genetic modification of cell surface structures targeted by phages, which may affect both pathogenic potential and overall survival of target bacteria (Verma et al., 2009; Capparelli et al., 2010; Chan et al., 2016; Markwitz et al., 2021). The resulting fitness cost can increase bacterial vulnerability to both the immune system and antibiotics (Ledn & Bastias, 2015).
Attempts to use phages to clear *Klebsiella pneumoniae* and *Acinetobacter baumannii* infection *in vivo* have resulted in phage-resistant capsular mutants that appear to be less virulent and more susceptible to antibiotics (Verma et al., 2009; Gordillo Altamirano et al., 2021), and therefore easier to eliminate. *E. coli* responds to phage challenge by modification of LPS biosynthesis with concomitant fitness loss and attenuation in a murine model of systemic infection (Salazar et al., 2021). In *K. pneumoniae*, mutations in the porin OmpK36 lead to increased antibiotic resistance and are poorly tolerated *in vivo* (reduced growth rates) (Fajardo-Lubian et al., 2019), while in *Shigella flexneri* Omp-targeting phages have been shown to lead to resistant mutants incapable of intracellular spread (Kortright et al., 2022). As such, Omp-specific phages, for example, might have particular value in managing these pathogens. Phage-insensitive variants appear to be rarely isolated after phage administration in the clinic, suggesting that the many varied outcomes predicted and observed *in vitro* may be transient *in vivo*, with few phage-resistant subtypes (“fittest” mutants) actually able to succeed in nature (Bohannan & Lenski, 2000; Lëon & Bastias, 2015; Hernandez & Koskella, 2019; Aslam et al., 2020; Petrovic Fabijan et al., 2020b).

Conversely, phages may counter-evolve to regain their infectivity by modification of their own host attachment receptors (tails), resulting in host range expansion (Salazar et al., 2021). In therapy, the use of cocktails of multiple phages acting in synergy (to optimize lysis of target bacteria) has been shown to both broaden target range and minimize the occurrence of phage resistance (Abedon et al., 2021a). While the development of cross-resistance is also a possibility (Wright et al., 2018), mixtures of phages with different receptor specificities are expected to exert multiple simultaneous selective pressures on the target host (Schmerer et al., 2014) that come at increased costs to bacterial fitness. Carefully “tailored” phage combinations using original and “evolved” phages against the one host have been shown to successfully target both the wild-type strain and its variants (Yu et al., 2018; Aslam et al., 2020; Abedon et al., 2021a; Salazar et al., 2021).

Phage attack can affect antibiotic susceptibility in target bacteria (Ryan et al., 2012; Segall et al., 2019; Gordillo Altamirano et al., 2021), and the careful use of antibiotic–phage combinations may also be useful in limiting the development of bacterial variants resistant to both (Gu Liu et al., 2020 et al., 2020; Gordillo Altamirano et al., 2021). As outlined in several recent exhaustive reviews (Segall et al., 2019; Tagliaferri et al., 2019; Morissette et al., 2020; Li et al., 2021), phage–antibiotic synergy (PAS) has been successfully demonstrated in both Gram-positive and Gram-negative bacteria, though many studies have focused on *E. coli* and *P. aeruginosa* (Comeau et al., 2007; Allen et al., 2017; Chaudhry et al., 2017; Gu Liu et al., 2020), and may have important clinical implications. However, synergy is not the only outcome of simultaneous exposure to phages and antibiotics with addition, neutrality and antagonism also possible.

The effects of phage–antibiotic combinations on target bacteria depend on many factors including the specific antibiotic tested (results obtained with one antibiotic are not always replicated with another antibiotic of the same class), the testing conditions (e.g. type of media, bacterial growth (planktonic cells versus biofilm), *in vitro* versus *in vivo* conditions), phage type (even very closely related phages can give different outcomes), and timing of administration (e.g. simultaneous or sequential) (Segall et al., 2019; Tagliaferri et al., 2019; Morissette et al., 2020; Li et al., 2021). Only recently, Gu Liu et al. (2020) presented the first in-depth analysis of the mechanisms underlying the efficacy of phage–antibiotic combinations against a highly virulent *E. coli* ST131 strain. Their work clearly demonstrates the complexity of these interactions and the urgent need for applying this type of comprehensive approach to other bacterial species and antibiotic–phage combinations for a clear understanding of possible outcomes to guide clinical application.

Phage–bacterium co-adaptation is predicted to drive a stalemate that favours bacterial survival in nature (Bohannan & Lenski, 2000; Koskella & Brockhurst, 2014; Fernández et al., 2018; Makalatia et al., 2021), and successful therapy requires us to contrive situations in which natural balances are tipped in favour of the phage (Levin & Bull, 2004), the specifics of which will depend on the interacting phage–bacterium pair and their immediate environment. Phage-resistant variants arising *in vivo* can be problematic (Schooley et al., 2017), but phage-resistant bacteria are sometimes less virulent (Olszak et al., 2019) or less antibiotic-resistant (Oechslin, 2018) than their parent (Ryan et al., 2012; Chaudhry et al., 2017). A detailed understanding of receptor specificities (Bertozzi Silva et al., 2016) and co-adaptation trajectories both *in vitro* and *in vivo* (Doron et al., 2018; Makalatia et al., 2021) must be developed in order to inform new mathematical models and “artificial intelligence” (AI) solutions (Schmerer et al., 2014; Cowley et al., 2018; Hesse et al., 2020; Pirnay, 2020; Haines et al., 2021; Maffei et al., 2021) to help deconvolute these natural biological and evolutionary complexities.

Bacterial targets

Reduced growth states: stationary phase bacteria and L-forms

Bacterial pathogens have evolved to defend themselves effectively against commonly encountered stressors in the mammalian host (e.g. oxidative, nutritional and antibiotic). Given the ubiquity of phages in nature and the aeons of co-evolution with bacteria, an array of finely tuned and well-established defences against phage attack are also to be expected. The physiological state of the bacterial host population is an important determinant of phage replication (*Infection cycles*), and the exponential growth conditions used for antibiotic and phage susceptibility testing in diagnostic laboratories are probably rare in nature, with “stationary phase” growth being common in chronic and relapsing infections (Gefen et al., 2014) (Fig 4).

The impact of bacterial stress on the lytic/pseudolysogenic pathways may be therapeutically important. Phages that ordinarily pseudolysogenize stressed bacteria (Bryan et al., 2016) may be poor choices for the management of some infections. Cell wall-deficient “L-forms” are more metabolically active and faster growing than stationary phase-walled cells (Mickiewicz et al., 2019) but divide more slowly than exponential phase bacteria (Fig 4), using a primitive mechanism that is independent of essential elements of binary fission (e.g. FtsZ) (Leaver et al., 2016). L-forms can be induced by innate immune effectors, such as lysozyme, and by exposure to cell wall targeting antibiotics (e.g. β-lactams), to which they are completely resistant. This is important
because cell wall targeting antibiotics are the mainstay of modern infection therapy (Care, 2021) and because biofilms (Special states: biofilms) and multi-drug-resistant infections, against which such antibiotics often fail, are key indications for phage therapy. Therefore, targeting L-forms with phages may be an important therapeutic option. However, L-form susceptibility to phages has not yet been well characterized except for a few reports, suggesting that the capacity for efficient lysis of L-forms is retained at least by some phages (Kawacka et al., 2020).

Special states: intracellular pathogens

Certain bacterial pathogens responsible for high rates of infection and mortality (GBD Tuberculosis, 2018; Khalil et al., 2018; GBD Non-Typhoidal Salmonella, 2019; GBD Antimicrobial Resistance, 2022) routinely replicate inside human cells including professional phagocytes such as monocye-derived macrophages (Ogawa & Sasakiwa, 2006) (Fig 5A). These bacteria are protected from the immune system and from bactericidal agents in their intracellular niche. In addition, intracellular bacteria can take advantage of the biology of the host cell to disseminate to tissues beyond the site of infection. Most antibiotics commonly used in medicine do not penetrate mammalian cells efficiently and are therefore ineffective against intracellular pathogens (Abedon & Couvreur, 2014; Kamaruzzaman et al., 2017). The few exceptions (e.g. quinolones, macrolides and tetracyclines) (Carryn et al., 2003; Kamaruzzaman et al., 2017) are widely used orally, and resistance to these is rising in target pathogens (WHO, 2017). Phages could therefore be of value for the treatment of intracellular infections.

The first evidence of phages crossing the euakartic cell barrier dates back more than 50 years (Monsur et al., 1970), and it is known that these viruses can penetrate human cells and even enter their nucleus (Nieth et al., 2015; Lehti et al., 2017; Nguyen et al., 2017; Zhang et al., 2017; Sweere et al., 2019). Phages may enter the euakartic cell non-specifically by phagocytosis or pinocytosis, or through receptor-mediated entry by binding specifically to cell surface structures like the neural cell adhesion moleucle (NCAM; a major poly-sialic acid carrier that mimics bacterial receptors) or to cell surface integrins, or by antibody-mediated uptake when phages are opsonized by circulating immunoglobulins (Bodner et al., 2021; Goswami et al., 2021) (Fig 5B).

Phages have been detected in early endosomes, endolysosomes and the Golgi apparatus (Nieth et al., 2015; Lehti et al., 2017; Zhang et al., 2017; Moller-Olsen et al., 2018), and can escape euakartic vacuoles to reach bacteria replicating in the cytosol (Nieth et al., 2015). Phage–bacterium interactions in subcellular compartments are expected to be heavily modulated by the host euakartic cell, potentially in ways that alter phage infectivity or bacterial susceptibility as bacteria respond to intracellular stress (e.g. low pH, reactive oxygen species and antimicrobial peptides) and to nutrient deprivation. Phages can certainly kill intracellular bacteria (Zhang et al., 2017; Moller-Olsen et al., 2018), but further investigation of how phages reach their intracellular targets will be essential for designing successful therapeutic protocols.

Special states: biofilms

In many natural niches, including human body sites (e.g. respiratory and urinary tract), both Gram-positive and Gram-negative bacteria live in complex sessile biofilm communities (Hall-Stoodley et al., 2004), often polymicrobial. Bacterial biofilms are common in chronic and persistent infections (Bjarnsholt, 2013) and on abiotic surfaces such as medical devices (prosthetic joints, catheters, heart valves) (Donlan, 2001; Petrovic Fabijan et al., 2019). Diverse components (Smirnova et al., 2010) make up an extracellular matrix in which bacteria are embedded, which gives stability and strength to the growing biofilm (Flemming & Wingender, 2010). Biofilm formation and maturation are guided by the coordinated activity of embedded bacteria, regulated by refined quorum-sensing mechanisms in response to population density variation (Parsek & Greenberg, 2005; Nadell et al., 2008). Bacteria in a biofilm exhibit different metabolic activity and physiological state depending on their position in the biofilm and on the age of the biofilm (Stewart & Franklin, 2008). Antibiotics are often ineffective against biofilm-mediated infections as bacteria are physically protected from external agents and more tolerant to antimicrobial challenge due to their modified metabolism and often reduced growth states (Lebeaux et al., 2014; Yan & Bassler, 2019).

The finger-like bacterial fimbriae and other adhesins that are important in biofilm initiation (Déziel et al., 2001; Pohlenschroder & Esquivel, 2015; Maldarelli et al., 2016; Delerue & Ramamurthi, 2021) are also common phage receptors (Phage tail machines as sophisticated infection devices). Phages have proven useful against bacteria in biofilms (Abedon, 2019; Patey et al., 2019; Melo et al., 2020b; Petrovic Fabijan et al., 2021), but the study of these systems is difficult (Abedon et al., 2021b; Pires et al., 2021). Although phages often exhibit potent in vitro activity against bacteria in biofilms, effective biofilm eradication may require combination strategies (Verma et al., 2009; Seth et al., 2013; Tkhilaishvili et al., 2018; Henrikson et al., 2019; Morris et al., 2019), with failures attributed to difficulties in accessing target cells and the development of phage-resistant subpopulations.

The biofilm matrix shields bacteria from phage attack by trapping phage particles and preventing diffusion (Sutherland et al,
and phage size and concentration have been shown to differentially impact biofilm disruption ability (González et al., 2018). A biofilm can protect phages from the eukaryotic immune system, and these trapped viruses may in turn limit biofilm growth (Simmons et al., 2018; Hansen et al., 2019; Bond et al., 2021) so that in a stabilized biofilm, bacteria and phages may coexist in dynamic equilibrium (Fernández et al., 2018; Hansen et al., 2019; Pires et al., 2021). Bacteria may produce matrix-degrading substances when challenged with phages (Alcock & Palmer, 2021; de Càssia Oliveira et al., 2021) and can also secrete phage-inactivating substances (Pires et al., 2021). E. coli can halt phage invasion of mature biofilms through expression of curli fibres that affect biofilm architecture, hinder phage diffusion and physically protect the bacterial cell surface (Price & Chapman, 2018; Vidakovic et al., 2018; Bond et al., 2021). Also relevant when considering phage therapy for chronic infections (Pires et al., 2017) is the fact that older biofilms are often characterized by thicker matrix and by subpopulations of bacteria that are less metabolically active (Testa et al., 2019), these two factors alone mitigating the potential impact of phage therapeutic intervention.

Phage-produced lysins and depolymerases (Attachment mechanisms and receptor specificity) are less sensitive to biofilm heterogeneity, bacterial metabolic state and physical barriers and may have a role in matrix degradation (Olsen et al., 2018; Wu et al., 2019; Rakov et al., 2021; Shahed-Al-Mahmud et al., 2021). Delivery of phages or their derived enzymes together with antibiotics and/or disinfectants may be synergistic, with disruption of the extracellular matrix by phage enzymes and/or chemical antimicrobials expected.
to allow better access to subsequent antibiotics and phages (Chan & Abedon, 2015; Ferriol-González & Domingo-Calap, 2020).

Bacteria in biofilms use much the same adaptation mechanisms as free-living bacteria (Phage-bacterium co-adaptation) (Azeredo et al., 2021). Added protection derived from the population density in biofilms comes from quorum-sensing signalling to manage receptor modulation (Moreau et al., 2017; Azeredo et al., 2021; León-Félix & Villicañá, 2021), e.g. in E. coli (Høyland-Kroghsbo et al., 2013) and P. aeruginosa (Høyland-Kroghsbo et al., 2017; Broniewski et al., 2021), and through modification of bacterial physiology (Qin et al., 2017).

The eukaryotic host: phage-induced immune responses

The natural immunogenicity of phages may result in both an innate immune response (Petrovic Fabijan et al., 2020b; Khatami et al., 2021) and an adaptive immune response (e.g. phage-specific antibodies) to viral nucleic acids (DNA or RNA) and proteins (capsid and tail) (Gonzalez-Mora et al., 2020). The sustained phage viremia arising from therapeutic infusion (Dąbrowska & Abedon, 2019; Petrovic Fabijan et al., 2020b) does not seem to present a safety risk but may be associated with modulation of the human immune response (Górski et al., 2017b; Petrovic Fabijan et al., 2020b; Khatami et al., 2021) by mechanisms that are as yet unclear. This topic has been well reviewed (Popescu et al., 2021), but key aspects to highlight include the following:

Phagocytosis

Non-specific phagocytosis of viral particles may play a major role in the rapid clearance or neutralization of phages through the mammalian host reticuloendothelial system (Merril et al., 1996) and promote the presentation of antigens to T cells for the development of specific or adaptive immune response against phages themselves (Dąbrowska & Abedon, 2019). Phage binding may also facilitate phagocytosis of bacteria by macrophages or dendritic cells. Early studies (D’Herelle, 1923; Nelson, 1928) showed that phage-resistant bacteria are protected from this effect, and it has been suggested that this “opsonization” process may be important for the eradication of pathogenic bacteria in vivo (Górski et al., 2017b) and may explain observations of reduced phage efficacy in neutropenic hosts (Roach et al., 2017).

Inflammation

Minor pro-inflammatory responses ex vivo (Van Belleghem et al., 2017) and in treated patients (Khatami et al., 2021) have been attributed to LPS release into the system following bacterial lysis. However, the use of highly purified therapeutic phage preparations has not been associated with significant inflammatory responses (Górski et al., 2012; Krut & Bekeredian-Ding, 2018) so it is thought that contaminating endotoxins in early therapeutic phage preparations may have been primarily responsible for activation of Toll-like receptor (TLR) signalling pathways and early reports of post-infusion fevers (D’Herelle, 1930; Hashiguchi et al., 2010; Krut & Bekeredian-Ding, 2018).

Anti-inflammatory immune response

Highly purified (“GMP-grade”) phage preparations may induce the expression of key anti-inflammatory genes, including IL-10 and IL-10 family cytokines (Van Belleghem et al., 2017). An apparent anti-inflammatory profile has been demonstrated both in vivo (Van Belleghem et al., 2017) and in vitro (Dhungana et al., 2021) and observed in critically ill patients with infective endocarditis and sepsis receiving adjunct phage therapy (Petrovic Fabijan et al., 2020b; Khatami et al., 2021). Other studies have shown a significant decrease in C-reactive protein values, erythrocyte sedimentation rates and white cell counts in patients treated with phage (Miedzybrodzki et al., 2009), although these could equally be simple responses to reduced bacterial burden. It is conceivable that phages evolved to attack human colonizers and pathogens might also be able to survive attack by the immune system, and while the immunomodulatory and anti-inflammatory mechanisms remain unclear, some studies suggest that phage interaction with immune cells may also be directly implicated (Górski et al., 2017a; Sweere et al., 2019).

Antiviral immune response

This has been well described in filamentous phages (Sweere et al., 2019). PI phages can trigger maladaptive innate viral responses via TLR3 and interferon-β production, and inhibition of TNF and phagocytosis, impairing bacterial clearance. It remains unclear, however, whether widely used therapeutic tailed phages can trigger similar antiviral responses.

Adaptive humoral immune response

Due to their immunogenic nature, phages can induce a strong humoral response (phage-neutralizing IgG, IgM and, to a lesser extent, IgA antibodies), which can impact phage bioavailability in vivo and potentially hamper therapeutic success. The timing and strength of the humoral antiphage immune response mainly depend on phage immunogenic properties based on different structural protein composition (e.g. capsid proteins are known to be highly antigenic, for example the major capsid protein and outer capsid protein (Hoc) in T4-like phages (Dąbrowska et al., 2014)), but are also affected by the route of administration, dose and the patient’s immune status (Zaczek et al., 2016; Lusiak-Szelachowska et al., 2017). Previous reports indicated that orally administered phages induce no or very weak humoral response in healthy volunteers (Sarker et al., 2012). In contrast, intravenously administered phages induce a strong humoral response, which usually arises within 10 days of phage therapy initiation (Pescovitz et al., 2011; Lusiak-Szelachowska et al., 2014; Petrovic Fabijan et al., 2020b), with strong IgM induction in the first days of therapy, and high IgG levels recorded between 7 and 14 days. While earlier studies from the Hirsfeld Institute for Experimental Therapy (Poland) and the Eliava Institute (Georgia) showed no significant correlation between clinical outcome and level of antiphage antibodies (Lusiak-Szelachowska et al., 2014), recent reports indicate that robust antibody response against certain phage types may limit phage efficacy in vivo and lead to therapeutic failure (Dedrick et al., 2021).

Although our understanding of the influence of the humoral immune response on phage bioavailability and therapeutic success is limited, genetic engineering approaches (e.g. modification of phage capsid proteins) may prove key to overcoming these immunogenicity barriers (Hodyra-Stefaniak et al., 2020).

Phages that have evolved to protect their prey populations by down-regulating the host immune response may prove to be difficult choices in therapy. Conversely, phage-mediated immunomodulation may be a good therapeutic trade-off in severe sepsis where
attenuation of a lethal cytokine-mediated inflammatory response may be the most important therapeutic goal.

Concluding remarks

In this review, we sought to highlight the main areas of phage and bacterial biology that may directly relate to therapeutic outcome and in need of further investigation (Table 1).

However, bringing phages into the pharmacopoeia requires attention to several other areas that we have not fully discussed. The limited host range of most therapeutic phages means that this precision therapy needs well-curated and accessible phage sources, which is a biobanking and information management challenge (Nagel et al., 2022). The prioritization of target infections is key in determining the content and purpose of such collections and will vary with the intended use and the balance of research and commercial sustainability agendas (commercial priorities in sustainable phage production will differ from research priorities).

Modification of phages to enhance their therapeutic potential (Pires et al., 2016; Brown et al., 2017; Chen et al., 2019; Kilcher & Loessner, 2019; Monteiro et al., 2019) is complicated by the presence of large proportions of uncharacterized genetic material (“dark matter”) in phage genomes, which must be experimentally addressed (Hatfull & Hendrix, 2011; Wittebole et al., 2014; Hatfull, 2015; Philipson et al., 2018; Moreno-Gallego & Reyes, 2021).

The complexities of variable penetration into eukaryotic cells, tissue layers and mammalian host compartments such as the gut have also not been addressed in this review, but readers are referred to others for this important topic (Barr et al., 2015; Dąbrowska & Abedon, 2019; Hofer, 2019; Huh et al., 2019). We have also set aside the difficulties of production and manufacturing protocols for GMP-grade phage preparations: safe phage therapy involves not only quality processing but also the careful selection of suitable production hosts to ensure efficiency and avoid inadvertent gene transduction. The ideal phages for formulation into therapy must not only behave predictably in complex microbial niches but must also be readily purified and stable in storage (Merabishvili et al., 2018; Moelling et al., 2018; Rohde et al., 2018; Pirnay et al., 2019). The safety of phages for compassionate use means that there may be some opportunities to “learn as we go”, but we must now proceed with eyes wide open, and we must be guided as much as possible by the basic physiology of the main actors, the phages and their bacterial hosts.

Acknowledgements

CV holds an SSVS Postdoctoral Research Associate position funded through the Mabs Melville Bequest (University of Sydney, Sydney, Australia). APF and AFL are supported by Office for Health and Medical Research (New South Wales, Australia) Phage Therapy Fellowships. JI is supported by a National Health Medical Research Council (Australian Government) Investigator Grant (Iredell, APP1197534). SB is funded by the German Science Foundation (BA 4046/4-1, SPP 2330 New Concepts in Prokaryotic Virus-host Interactions). The authors thank Dr. Andrew Millard and Mr. Ryan Cook from Millard’s laboratory at Warwick Medical School (University of Warwick, UK) for providing us with an updated number of complete phage genomes deposited in GenBank since 2017.

Author contributions

Carola Venturini: Conceptualization; Visualization; Writing—original draft; Writing—review & editing. Aleksandra Petrovic Fabijan: Conceptualization; Visualization; Writing—original draft; Writing—review & editing. Alicia Fajardo Lubian: Conceptualization; Visualization; Writing—original draft; Writing—review & editing. Stefanie Barbariz: Conceptualization; Visualization; Writing—original draft; Writing—review & editing. Jonathan Iredell: Conceptualization; Writing—review & editing.

In addition to the CRediT author contributions listed above, the contributions in detail are:

CV, JI, APF, AFL and SB conceptualized and wrote the manuscript. CV coordinated the preparation of the manuscript. CV and JI made final edits to the manuscript.

Table 1. Key biological aspects in phage–bacterium interaction that may affect clinical outcomes.

Biological mechanism	Biological role	Desired properties for therapy	Implications for therapy	Focus for improvement of clinical outcomes
Phage attachment	Infectivity (lytic activity)	High lytic activity: large burst size	Dosing and timing of administration	Diverse banks of characterized phages; genome engineering
Receptor specificity	Infectivity (lytic activity; host range)	Defined host range	Targeting; clinical spectrum of activity (target bacteria); resistance	Personalized therapy; curated phage/bacteria banks; AI/machine learning approaches; phage cocktails; phage "training"; genome engineering
Phage life cycle	Infectivity (lytic activity); transduction	High lytic activity; low transduction rates	Bacterial killing efficiency; transmission of virulence/resistance	Phage genomics; curated phage banks; genome engineering
Bacterial cell physiological state/density	Niche colonization and invasion	High lytic activity; high penetration	Dosing and timing of administration; phage/antibiotic synergy; target diseases	Smart delivery
Bacterial lifestyle	Communal (biofilms); intracellular	High penetration	Penetration (target availability); clinical spectrum of activity (type of disease)	Smart delivery
Co-adaptation	Microbial evolution	Poor ability to elicit resistance; stable high infectivity	Resistance development	Phage–phage and phage–antibiotic synergy
Pending issues

i Limited well-curated and accessible phage biobanks
ii Narrow host range
iii Exclusive reliability on obligate lytic phages
iv Occurrence of phage-resistant bacterial mutants
v Priority types of infection targeted
vi Application of phage cocktails vs monophage therapy
vii Therapeutic phage monitoring, dosing and administration protocols
viii Formulation and stabilization of phage therapeutics
ix Regulatory and intellectual property protection

Disclosure and competing interests statement
The authors declare that they have no conflict of interest.

For more information

Online links to relevant sources
i International Society for Viruses of Microorganisms (ISVM) (international non-profit organization dedicated to the advancement of the science and utility of the viruses of microorganisms, including archaeal viruses, bacteriophages and the viruses of microbial eukaryotes)—http://www.isvm.org/
ii Phage Directory (curated database of phage laboratories, phages and host strains to advance research and phage therapy)—https://phage.directory/
iii Phages for Human Applications Group Europe (international non-profit organization to support phage research and phage therapy in Europe)—P.H.A.G.E. vzw - Home (p-h-a-g-e.org)
iv Phage Australia (Australian national network of phage researchers and clinician-scientists to professionalize phage therapy)—https://phageaustralia.org/
v Center for Phage Biology and Therapy at Yale (newly established centre to advance phage biology and develop phage therapy into a safe, effective, scientifically sound and rational approach to infection control)—http://www.yalephagecenter.com/
vi Centre on Innovative Phage Applications and Therapeutics (first dedicated phage therapy centre in North America)—Center for Innovative Phage Applications and Therapeutics (ucsd.edu)

References

Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43: 485–496
Abedon ST (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb Ecol 18: 79–88
Abedon ST (2011) Phage therapy pharmacology: calculating phage dosing. Advs Appl Microbiol 77: 1–40
Abedon ST (2016) Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6: e1220348
Abedon ST (2019) Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv Drug Deliv Rev 145: 18–39
Abedon ST, Danis-Wilfodarczyk KM, Wozniak DJ (2021a) Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals 14: 1019
Abedon ST, Danis-Wilfodarczyk KM, Wozniak DJ, Sullivan MB (2021b) Improving phage-biofilm in vitro experimentation. Viruses 13: 1175
Ackermann H-W (1998) Tailed bacteriophages: the order caulovirales. Adv Virus Res 51: 135–201
Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157: 1843–1849
Alcock F, Palmer T (2021) Activation of a bacterial killing machine. PLoS Genet 17: e1009261
Allen RC, Pfunder-Cardozo KR, Meinel D, Egli A, Hall AR (2017) Associations among antibiotic and phage resistance phenotypes in natural and clinical Escherichia coli isolates. MBio 8: e01341-17
Aleshch EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER (2019) Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574: 549–552
Andres D, Hanke C, Baxa U, Seul A, Barbiz S, Seckler R (2010) Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem 285: 36768–36775
Andres D, Roske Y, Doering C, Heinemann U, Seckler R, Barbiz S (2012) Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol Microbiol 83: 1244–1253
Argov T, Sapir SR, Pasechnik A, Azulay G, Stadnyuk O, Rabinovich L, Sigal N, Borovok I, Herskovits AA (2019) Coordination of cohabiting phage elements supports bacteria-phage cooperation. Nat Commun 10: 5288
Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. JAMA 281: 61–66
Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT (2020) Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect Dis 7: ofaa389
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S (2021) Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 19: e3001406
Azeredo J, García P, Drulis-Kawa Z (2021) Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol 68: 251–261
Baker S, Thomson N, Weill F-X, Holt KE (2018) Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360: 733–738
Balasubramanian S, Osborne MS, Brinjokes H, Tai AK, Leong JM (2019) Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog 15: e1007494
Banks DJ, Lei BF, Musser JM (2003) Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect Immun 71: 7079–7086
Barr JJ, Auro R, Sam-Soon N, Kassengue S, Peters G, Bonilla N, Hatay M, Mourtada S, Bailey B, Youle M et al (2015) Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci USA 112: 13675–13680
Benler S, Koonin EV (2020) Phage lysis-lysogeny switches and programmed cell death: danse macabre. BioEssays 42: 2000114
Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363: fnw002
Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121: 1–58
Blazanin M, Turner PE (2021) Community context matters for bacteria-phage ecology and evolution. ISME J 15: 3119–3128
Bodner K, Melkonian AL, Covert MW (2021) The enemy of my enemy: new insights regarding bacteriophage-mammalian cell interactions. Trends Microbiol 29: 528–541
Bohannan BJ, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3: 362–377
Bond MC, Vidakovic L, Singh PK, Drescher K, Nadell CD (2021) Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 10: e65355
Broeker NK, Andres D, Kang Y, Gohike U, Schmidt A, Kunstmann S, Santer M, Barbizs S (2017) Complex carbohydrate recognition by proteins: fundamental insights from bacteriophage cell adhesion systems. Perspect Sci (Neth) 11: 45–52
Broeker NK, Barbizs S (2017) Not a barrier but a key: how bacteriophages exploit host’s O-antigen as an essential receptor to initiate infection. Mol Microbiol 105: 353–357
Brooker NK, Roske Y, Valleriani A, Stephan MS, Andres D, Koetz J, Heinemann U, Barbizs S (2019) Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail. J Biol Chem 294: 11751–11761
Brodendum SS, Buckle AM, McGowan S (2018) Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins. Mol Microbiol 110: 879–896
Broniewski JM, Chisnall MAW, Høyland-Kroghsbo NM, Buckling A, Westra ER (2017) Complex bacteriophage life histories: insights from studies of bacteria and bacteriophage. Cell Host Microbe 25: 175–176
Chaudhry WN, Concepcion-Acedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12: e0168615
Chen X, Liu M, Zhang PF, Leung SSY, Xia J (2021) Membrane-permeable antibacterial enzyme against multidrug-resistant Acinetobacter baumannii. ACS Infect Dis 7: 2192–2204
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P (2019) Genetic engineering of bacteriophages against infectious diseases. Front Microbiol 10: 954
Chen YB, Li XM, Wang S, Guan LY, Li XX, Hu DY, Gao DY, Song JY, Chen HC, Qian P (2020) A novel tail-associated O9L-specific polysaccharide depolymerase from a podophage reveals lytic efficacy of shiga toxin-producing Escherichia coli. Appl Environ Microbiol 86: e00145-20
Chiariuttini N, de Frutos M, Augarde E, Boulanger P, Letellier L, Viasnoff V (2010) Is the in vitro ejection of bacteriophage DNA quasistatic? A bulk to quasistatic transition. J Mol Biol 404: 772–782
Cisar J, Pfennig DW, Wang N (2004) Genetic details, optimization and phage life histories. Trends Ecol Evol 19: 76–82
Burrowes BH, Molinex J, Fralick JA (2019) Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses 11: 241
Cai R, Wang G, Le S, Wu M, Cheng M, Guo Z, Ji Y, Xi H, Zhao C, Wang X et al (2019) Three capsular polysaccharide synthesis-related glucosyltransferases, GT1, CT2 and Wcaj, are associated with virulence and phage sensitivity of Klebsiella pneumoniae. Front Microbiol 10: 1189
Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5: e11720
Carre AO, SoQuí (2021) AURA 2021: fourth Australian report on antimicrobial use and resistance in human health.
Carryn S, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM (2003) Activity of beta-lactams (ampicillin, meropenem), gentamicin, azithromycin and moxifloxacin against intracellular Listeria monocytogenes in a 24 h THP-1 human macrophage model. J Antimicrob Chemother 51: 1051–1052
Caspersen SR, Molinex J (2012) Short noncontractile tail machines: adsorption and DNA delivery by Podoviruses. In Viral mol machines, Rossmann MG, Rao VB (eds), pp 143–179. New York, NY: Springer
de Cássia Oliveira V, Steixner S, do Nascimento C, Pagnano VO, Silva-Lovato CH, Paranhos HFO, Willfingersdor D, Coraça-Huber D, Watanabe E (2021) Expression of virulence factors by Pseudomonas aeruginosa biofilm after bacteriophage infection. Microb Pathog 154: 104834
Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D, Kazmierczak Z, Letarov A, Gorski A (2014) Immunogenicity studies of proteins forming the T4 phage head surface. J Viral 88: 12551–12557
Dang VT, Sullivan MB (2014) Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol 5: 724
Davidson AR, Cardarelli L, Pell LG, Radford DF, Maxwell KL (2012) Long noncontractile tail machines of bacteriophages. Viral Mol Mach 726: 115–142
De Maesschalck V, Gutierrez D, Paeshuyse J, Lavigne R, Briers Y (2020) Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Crit Rev Microbiol 46: 548 – 564
Dedrick RM, Freeman KG, Nguyen JA, Bahadiri-Talbott A, Smith BE, Wu AE, Ong AS, Lin CT, Ruppel LC, Parrish NM et al (2021) Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat Med 27: 1357 – 1361
Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25: 730 – 733
Delerue T, Ramamurthi KS (2021) How bacteriophages block their own biofilms. J Biomed Sci 296: 100392
Denney J, Abedon ST (2021) Phage infection and lysis. In Bacteriophages, Harper DR, Abedon ST, Burrowes BH, McConville ML (eds), pp 341 – 383. Cham: Springer
Dészel E, Comeau Y, Vilemuru R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa S7PR correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183: 1195–1204
D’Herelie F (1923) The bacteriophage: its role in immunity. Am J Public Health 13: 406 – 408
D’Herelie F (1930) Studies upon asiatic cholera. Yale J Biol Med 1: 195 – 219
Dhungana G, Nepal R, Regmi M, Malia R (2021) Pharmacokinetics and pharmacodynamics of a novel virulent Klebsiella phage Kp_Pokaide_002 in a mouse model. Front Cell Infect Microbiol 11, 684704
Díaz-Munioz SL, Kostella B (2014) Bacteria–phage interactions in natural environments. Adv App Microbiol 89: 135 – 183
Dion MB, Oechslin F, Moineau S (2019) Phage diversity, genomics and phage interactions in natural environments. Adv App Microbiol 89: 135 – 183
Donlan RM (2001) Biofilms and disease-associated infections. J Emerg Infect Dis 7: 277
Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of anti-phage defense systems in the microbial panzome. Science 359: eaar4120
Dunne M, Hupfeld M, Klumpp J, Loessner MJ (2018) Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses 10: 397
Dunsing V, Irmscher T, Barbirz S, Chiantia S (2019) Purely polysaccharide-based biofilm matrix provides size-selective diffusion barriers for nanoparticles and bacteriophages. Biomacromol 20: 3842–3854
Esteves NC, Porwollik S, McClleland M, Scharf BE (2021) The multidrug efflux system AcrAB-TolC is essential for infection of Salmonella typhimurium by the flagellum-dependent bacteriophage Chi. J Viral 95: e03941-21
Evilevitch A (2018) The mobility of packaged phage genome controls ejection dynamics. eLife 7: e37345
Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medizin Chem 6: 25 – 64
Fajardo-Lubian A, Ben Zakour NL, Ayeekum A, Qi Q, Iredell JR (2019) Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 15: e1007218
Farley MM, Tu JC, Kearns DB, Molineux IJ, Liu J (2017) Ultrastructural analysis of bacteriophage Phi 29 during infection of Bacillus subtilis. J Struct Biol 197: 163–171
Fernández L, Rodríguez A, García P (2018) Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J 12: 1171 – 1179
Ferriol-González C, Domingo-Calap P (2020) Phages for biofilm removal. Antibiotics 9: 268
Filippak M, Los JM, Los M (2020) Efficiency of induction of shiga-toxin lambda prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet 61: 131 – 140
Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8: 623 – 633
Fortier LC, Sekulovic O (2013) Importance of prokaryotes to evolution and virulence of bacterial pathogens. Virulence 4: 354 – 365
GBD Antimicrobial Resistance C (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399: 629 – 655
GBD Non-Typhoidal Salmonella IDC (2019) The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 19: 1312 – 1324
GBD Tuberculosis C (2018) Global, regional, and national burden of tuberculosis, 1990–2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study. Lancet Infect Dis 18: 1329 – 1349
Gefen O, Friedman O, Ronin I, Balaban NQ (2014) Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc Natl Acad Sci USA 111: 556 – 561
 Gibson B, Wilson D, Feil E, Eyre-Walker A (2018) The distribution of bacterial doubling times in the wild. Proc Biol Sci 285: 20180789
González S, Fernández L, Gutiérrez D, Campello AB, Rodríguez A, García P (2018) Analysis of different parameters affecting diffusion, propagation and survival of staphylophages in bacterial biofilms. Front Microbiol 9: 2348
Gonzalez-Mora A, Hernandez-Perez J, Iqbal H, Palomares M, Benavides J (2020) Bacteriophage-based vaccines: a potent approach for antigen delivery. Vaccines 8: 504
Gordillo Altamirano FL, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32: e0066-18
Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kiely L et al (2021) Bacteriophage-resistant Acinetobacter baumannii are re sensitized to antimicrobials. Nat Microbiol 6: 157 – 161
Górski A, Dąbrowska K, Hodyra-Stefaniak K, Borysowski J, Międzybrodzki R, Weber-Dąbrowska B (2015) Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 10: 199 – 204
Górski A, Dąbrowska K, Międzybrodzki R, Weber-Dąbrowska B, Lusiak-Szelachowska M, Jonczyk-Matsyiak E, Borysowski J (2017a) Phages and immunomodulation. Future Microbiol 12: 905 – 914
Górski A, Jonczyk-Matsyiak E, Lusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J (2017b) The Potential of phage therapy in sepsis. Front Immunol 8: 1783
Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M, Korczak-Kowalska G, Olszowska-Zaremba N, Lusiak-Szelachowska M, Klak M et al (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83: 41 – 71
Górski A, Międzybrodzki R, Węgryn G, Jonczyk-Matsyiak E, Borysowski J, Weber-Dąbrowska B (2020) Phage therapy: current status and perspectives. Med Res Rev 40: 459 – 463
Combating intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 47: 461–478
Green SI, Gu Liu C, Xu Y, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF et al (2021) Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. MBio 12: 3356–3833
Gu Liu C, Green SI, Min L, Clark JR, Salazar KC, Terviliger AL, Kaplan HB, Trautner BW, Ramig RF, Maresso AW (2020) Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio 11: e01462-20
Haines ME, Hodges FE, Nale JY, Mahony J, Van Sinderen D, Kaczorowska J, Hatfull GF, Hendrix RW (2020) Bacteriophage delivery. Nat Rev Microbiol 18: 322–336
Henriksen K, Rørbo N, Rybtke ML, Martinet MG, Tolker-Nielsen T, Høiby N, Hesse S, Rajaure M, Wall E, Johnson J, Bliskovsky V, Gottesman S, Adhya S (2020) and their phage foes. Adv Drug Deliv Rev 145: 4–17
Høiby N, Wang S, St Jean J, Slavcev R (2019) Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev 145: 4–17
Hoeselbosho NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E, Bondy-Denomy J, Bassler BL (2017) Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc Natl Acad Sci USA 114: 131–135
Hu B, Margolin W, Molineux IJ, Liu J (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci USA 112: E4919–E4928
Huan PT, Bastin DA, Whittle BL, Lindberg AA, Verma NK (1997) Molecular characterization of the genes involved in O-antigen modification, attachment, integration and excision in Shigella flexneri bacteriophage SfV. Gene 195: 217–227
Huh H, Wong S, St Jean J, Slavcev R (2019) Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev 145: 4–17
Jesperatis MA, Goebel WF (1955) Lysis of T4 phage by the specific lipocarbohydrate of phase II Shigella sonnei. J Exp Med 102: 733–752
Jonczyk E, Klak M, Miedzybrodzki R, Gorski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56: 191–200
Kamaruzzaman NF, Kendall S, Good L (2017) Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 174: 2225–2236
Karakis DK, Somara S, Maneval DR, Johnson JA, Kaper JB (1999) A bacteriophage encoding a pathogenicity island, a type IV pilus and a phage receptor in cholera bacteria. Nature 399: 375–379
Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76: 5557–5564
Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A (2020) Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms 8: 1764
Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, Brewer TG, Engmann CM, Houpt ER, Kang G et al (2018) Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the global burden of disease study 1990–2016. Lancet Infect Dis 18: 1229–1240
Khatri A, Lin RC, Petrovic-Fabijan A, Alkalay-Oren S, Almuzam S, Britton PN, Brownstein MJ, Dao Q, Fackler J, Hazan R (2021) Bacterial lysis, autophagy and innate immune responses during adjunctive phage therapy in a child. EMBO Mol Med 13: e13936
Khawaldeh A, Morales D, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ, Dublanchet A, Smithyman A, Iredell JR (2021) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60: 1697–1700
Klucher S, Loessler MJ (2019) Engineering bacteriophages as versatile biologics. Trends Microbiol 27: 355–367
Kittleson JT, DeLeoaeche W, Cheng HY, Anderson JC (2012) Scalable plasmid transfer using engineered P1-based phagemids. ACS Synth Biol 1: 583–589
Knecht LE, Veljkovic M, Fieseler L (2020) Diversity and function of phage-encoded depolymerases. Front Microbiol 10: 2949
Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25: 219–232
Kortright KE, Done RE, Chan BK, Souza V, Turner PE (2022) Selection for phage resistance reduces virulence of Shigella flexneri. Appl Environ Microbiol 88: e0151421
Koskelo B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38: 916–931
Krut O, Bekerедин-Ding I (2018) Contribution of the immune response to phage therapy. J Immunol 200: 3037 – 3044
Kutter E, Sulakvelidze A (2004) Bacteriophages: biology and applications. Boca Raton, FL: CRC Press
Lamont I, Brumby AM, Egan JB (1989) UV induction of coliphage 186: prophage induction as an SOS function. Proc Natl Acad Sci USA 86: 5492 – 5496
Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C (2016) Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiol 162: 748 – 763
Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 460: 538
Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78: S10 – S43
Lehti TA, Pajunen MI, Skog MS, Finne J (2017) The fascinating biology behind phage therapy. EMBO Molecular Medicine 8: 1548 – 1555
Letarov AV, Kulikov EE (1973) Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun 8: 1915
León M, Bastías R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6: 343
León-Feliz J, Villicaña C (2021) The impact of quorum sensing on the modulation of phage-host interactions. J Bacteriol 203: e00687-20
León-Velarde CG, Haennon L, Pajunen M, Leskinen K, Kropinski AM, Mattinen L, Rajor M, Zur J, Smith D, Chen S et al (2016) Yersinia enterocolitica-specific infection by bacteriophages TC1 and φR1-RT is dependent on temperature-regulated expression of the phage host receptor Ompf. Appl Environ Microbiol 82: 5340 – 5353
Letarov AV, Kulikov EE (2017) Adsorption of bacteriophages on bacterial cells. Biochemistry 82: 1632 – 1658
Levin BR, Bull jj (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2: 166 – 173
Li G, Cortez MH, Dushoff J, Weitz JS (2020) When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol 6: vea042
Li X, He Y, Wang Z, Wei J, Hu T, Si J, Tao G, Zhang L, Xie L, Abdalla AE et al (2021) A combination therapy of phages and antibiotics: two is better than one. Int J Biol Sci 17: 3573 – 3582
Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27: 205 – 241
Lindb A, Alreja AB, Nelson DC (2021) Application of bacteriophage-derived endolysins to combat streptococcal disease: current state and perspectives. Curr Opin Biotechnol 68: 213 – 220
Liu YN, Leung SSY, Guo YT, Zhao LL, Jiang N, Mi LY, Li PY, Wang C, Qin YH, Mi ZQ et al (2019) The capsule depolymerase Dpo48 rescues Galleria mellonella and mice from Acinetobacter baumannii systemic infections. Front Microbiol 10: 545
Liu YN, Leung SSY, Huang Y, Guo YT, Jiang N, Li PY, Chen JC, Wang RT, Bai CQ, Mi ZQ et al (2020) Identification of two depolymerases from phage ME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae. Front Microbiol 11: 218
Lobocka MB, Rose DJ, Plunkett 3rd G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR (2004) Genome of bacteriophage P1. J Bacteriol 186: 7032 – 7068
Loh B, Kuhn A, Leptihn S (2019) The fascinating biology behind phage display: filamentous phage assembly. Mol Microbiol 111: 1132 – 1138
Los M, Wegryn G, Neubauer P (2003) A role for bacteriophage T4 gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Res Microbiol 154: 547 – 552
Los M, Wegryn G (2012) Pseudolysogeny. Adv Virus Res 82: 339 – 349
Lourenço M, Chaffinegeon L, Lamy-Besnier Q, Pedron T, Campagne P, Eberl C, Béard M, Stecher B, Debarbieux L, De Sordi L (2020) The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28: 390 – 401
Lusiak-Szelachowska M, Zacek M, Weber-Dabrowska B, Miedzybrodzki R, Klak M, Fortuna W, Letiewicz S, Rogoz P, Szufnarowski K, Jonczyk-Matsiak E et al (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol 27: 295 – 304
Majewska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z (2018) Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol 9: 2517
Malacalanta K, Kakabadze E, Bakuradze N, Grdzelishvili N, Stamp B, Herman E, Tapinos A, Coffey A, Lee D, Papadopoulos NG (2021) Investigation of Salmonella phage-bacteria infection profiles: network structure reveals a gradient of target-range from generalist to specialist phage clones in nested subsets. Viruses 13: 1261
Maladarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y, Achermann Y, Ernst RK, ShirEli ME, Sundberg EJ, Donnenberg MS et al (2016) Type IV pil promote early biofilm formation by Clostridium difficile. Pathog Dis 74: fow061
Mantynen S, Laanto E, Oksanen HM, Poranen MM, Diaz-Munoz SL (2021) Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 11: 210188
Markwitz P, Olszak T, Gula G, Kowalska M, Arabski M, Drulis-Kawa Z (2021) Emerging phage resistance in Pseudomonas aeruginosa PA01 is accompanied by an enhanced heterogeneity and reduced virulence. Viruses 13: 1332
McCallin S, Brussow H (2017) Clinical trials of bacteriophage therapeutics. In Bacteriophages, Harper D, Abedon S, Burrowes B, McConville M (eds), pp 1 – 29. Cham: Springer
Melo LD, Oliveira H, Pires DP, Dabrowska K, Azeredo J (2020a) Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 46: 78 – 99
Melo LD, Pinto G, Oliveira F, Vilas-Boas D, Almeida C, Sillankorva S, Cerca N, Azeredo J (2020b) The protective effect of Staphylococcus epidermidis biofilm matrix against phage predation. Viruses 12: 1076
MeraNivshili M, Pirnay J-P, De Vos D (2018) Guidelines to compose an ideal bacteriophage cocktail. In Bacteriophage therapy, Azeredo J, Sillankorva S (eds), pp 99 – 110. New York, NY: Springer
Mercier R, Kawai Y, Errington J (2014) General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 3: e04629
Merrill CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 93: 3188 – 3192
Mickiewicz KM, Kawai Y, Drage L, Gomes MC, Davison F, Pickard R, Hall J, Mostowy S, Aldridge PD, Errington J (2019) Possible role of L-form switching in recurrent urinary tract infection. Nat Commun 10: 4379
Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A (2009) A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med 9: 303 – 312
Moelling K, Broecker F, Willy C (2018) A wake-up call: we need phage therapy now. Viruses 10: 688
Oliveira H, Meio LDR, Santos SB (2019a) Bacteriophage proteins as antimicrobials to combat antibiotic resistance. In Antibiotic drug resistance, Capelo-Martínez JL, Igrejas G (eds), pp. 343 – 406. Hoboken, NJ: John Wiley & Sons, Inc.

Oliveira H, Mendes A, Fraga AG, Ferreira A, Pimenta AI, Mil-Homens D, Fialho AM, Pedrosa J, Azeredo J (2019b) K2 capsule depolymerase is highly stable, is refractory to resistance, and protects larvae and mice from Acinetobacter baumannii sepsis. App Environ Microb 85: e00934-19

Olsen N, Thiran E, Hasler T, Vanziegelhem T, Belibasakis GN, Mahillon J, Loessner MJ, Schmelcher M (2018) Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 10: 438

Olszak T, Danis-Wlodarczyk K, Arbasinski M, Guia G, Maciejewska B, Wasik S, Lood C, Higgins G, Harvey BJ, Lavigne R (2019) Pseudomonas aeruginosa PAgSct jumbo phage package impacts planktonic and biofilm population and reduces its host virulence. Viruses 11: 1089

O’Neill J (2016) Review on antimicrobial resistance: target drug-resistant infections globally: final report and recommendations. Opal SM, Scannon PJ, Vincent J-L, White M, Carroll SF, Paldary J, Parejo NA, Pribble JP, Lemke JH (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 180: 1584–1589

Parske MR, Greenberg E (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27–33

Patey O, McCallin S, Mazure H, Liddle M, Smythman A, Dublanchet A (2019) Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses 11: 18

Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208: 37–48

Pescovitz MD, Torgeron TR, Ochs HD, Ocheltree E, Mcgee P, Krause-Steinrauf H, Lachin JM, Canniff J, Greenbaum C, Herold KC et al (2011) Effect of rituximab on human in vivo antibody immune responses. J Allergy Clin Immunol 128: 1295–1302 e1295

Petrovic Fabijan A, Aleksic Sabo V, Gavric D, Doffkay Z, Rakhely G, Knezevic P (2021) Are Bordetella bronchiseptica siphoviruses (Genus Vovudainaurus) appropriate for phage therapy-bacterial allies or foes? Viruses 13: 1732

Petrovic Fabijan A, Ben Zakour NL, Ho J, Lin RCY, Iredell J, Westmead Bacteriophage Therapy T, AmpliPhI Biosciences C (2019) Polyclonal Staphylococcus aureus bacteremia. Ann Intern Med 171: 940–941

Petrovic Fabijan A, Khalid A, Maddocks S, Ho J, Gilbey T, Sandaradura I, Lin RC, Ben Zakour N, Venturini C, Bowring B (2020a) Phage therapy for severe bacterial infections: a narrative review. Med J Aust 212: 279–285

Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Westmead Bacteriophage Therapy T (2020b) Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 5: 465 – 472

Pfeiffer E, de Sousa JAM, Touchon M, Rocha EPC (2021) Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 49: 2655–2673

Philipson CW, Voegtl LJ, Luender MR, Long KA, Rice GK, Frey KG, Bisswas B, Cer RZ, Hamilton T, Bishop-Lilly KA (2018) Characterizing phage genomes for therapeutic applications. Viruses 10: 188

Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016a) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80: 523 – 543

Pires DP, Melo LD, Boas DV, Sillankorva S, Azeredo J (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39: 48 – 56
Poulsen LK, Melo LD, Azeredo J (2022) Understanding the complex phage-host interactions in biofilm communities. *Annu Rev Virol* 8: 73 – 94

Pires DP, Oliveira H, Melo LDR, Sil lingerova S, Azeredo J (2016b) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. *Appl Microbiol Biotechnol* 100: 2141 – 2151

Pirmay J-P (2020) Phage therapy in the year 2035. *Front Microbiol* 11:1171

Pirmay J-P, De Vos D, Verbeken G (2019) Clinical application of bacteriophages in Europe. *Microbiol Aust* 40: 8 – 15

Pirmay J-P, Kutter E (2021) Bacteriophages: it’s a medicine, Jim, but not as we know it. *Lancet Infect Dis* 21: 309 – 311

Pirmay J-P, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, Fauconnier A (2018) The magistral phage. *Viruses* 10: 64

Pohlschroder M, Esquivel RN (2015) Archaeal type IV pili and their involvement in biofilm formation. *Front Microbiol* 6: 190

Popescu M, Van Belleghem JD, Koskravi A, Bollyky PL (2021) Bacteriophages and the immune system. *Annu Rev Virol* 8: 415 – 435

Poreck NB, Parent KN (2015) Key residues of *S. flexneri* OmpA mediate infection by bacteriophage Sf6. *J Mol Biol* 427: 1964 – 1976

Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S (1995) Physiological state of *Escherichia coli* B4 growing in the large intestines of streptomycin-treated mice. *J Bacteriol* 177: 5840 – 5845

Price JE, Chapman MR (2018) Phaged and confused by biofilm matrix. *Nat Microbiol* 3: 2 – 3

Qin X, Sun Q, Yang B, Pan X, He Y, Yang H (2017) Quorum sensing influences phage infection efficiency via affecting cell population and physiological state. *J Basic Microbiol* 57: 162 – 170

Rakov C, Ben Porat S, Alkalay-Oren S, Yerushalmyi O, Abdalrhman M, Gronovich N, Huang LN, Pride D, Coppenhagen-Glazer S, Nir-Paz R et al (2021) Targeting biofilm of *MDR Providencia stuartii* by phages using a catheter model. *Antibiotics* 10: 375

Ray K, Marteyn B, Sansonetti PJ, Tang CM (2009) Life on the inside: the intracellular lifestyle of cytotoxic bacteria. *Nat Rev Microbiol* 7: 333 – 340

Reyes-Robles T, Dillard RS, Cairns LS, Silva-Va lenzuela CA, Housman M, Ali A, Wright ER, Camilli A (2018) *Vibrio cholerae* outer membrane vesicles inhibit bacteriophage infection. *J Bacteriol* 200: e00792

Ripp S, Miller RV (1997) The role of pseudosogynogen in bacteriophage-host interactions in a natural freshwater environment. *Microbiology* 143: 2065 – 2070

Roach DR, Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. *Bacteriophage* 5: e1062590

Roach DR, Leung CY, Henry M, Morello E, Singh D, Leung JP, Weitz JS, Debbarbieux L (2017) Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. *Cell Host Microbe* 22: 38 – 47

Rocker A, Lacey JA, Belousoff MJ, Wilksch JJ, Strugnell RA, Davies MR, Lithgow T (2020) Global trends in proteome remodeling of the outer membrane module modulate antimicrobial permeability in Klebsiella pneumoniae. *MBio* 11: e00603-20

Rohde C, Resch G, Pirmay J-P, Blasdel BG, Debbarbieux L, Gelman D, Gorski A, Hazan R, Huys I, Kakabadze E (2018) Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. *Viruses* 10: 178

Rohwer F, Segall AM (2015) A century of phage lessons. *Nature* 528: 46 – 47

Rosner JL (1972) Formation, induction, and curing of bacteriophage P1 lysogens. *Virology* 48: 679 – 689

Rostaf JT, Marraffini L (2019) Phighting phages: how bacteria resist their parasites. *Cell Host Microbe* 25: 184 – 194

Ryan EM, Alkaw areek M, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of *Escherichia coli* biofilms in vitro. *FEBS Immunol Med Microbiol* 65: 395 – 398

Ryu JK, Kim SJ, Rah SH, Kang JL, Jung HE, Lee D, Lee HK, Lee JO, Park BS, Yoon TY et al (2017) Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TL1R4-MD2 for efficient LPS recognition and transfer. *Immunity* 46: 38 – 50

Salazar KC, Ma L, Green SI, Zulk JJ, Trautner BW, Ramig RF, Clark JR, Terwilliger AL, Maresso AW (2021) Antiviral resistance and phage counter adaptation to antibiotic-resistant extraintestinal pathogenic *Escherichia coli*. *MBio* 12: e00211-21

Salje J (2010) Plasmid segregation: how to survive as an extra piece of DNA. *Crit Rev Microbiol Mol Biol* 45: 296 – 317

Sao-Jose C (2018) Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. *Antibiotics* 7: 29

Sarker SA, McCa llin S, Barretto C, Berger B, Pitt et A-C, Sultana S, Krause L, Huq S, Bibiloni R, Bruttn A (2012) Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. *Virology* 434: 222 – 232

Schmerer M, Molineux IJ, Bull J (2014) Synergy as a rationale for phage therapy using phage cocktails. *PeerJ* 2: e590

Schmidt A, Rabsch W, Broeker NK, Barbirz S (2016) Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in *Sal monella* O-antigens. *BMC Microbiol* 16: 207

Schmidt H (2001) Shiga-toxin-converting bacteriophages. *Res Microbiol* 152: 687 – 695

Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor B, Barr JJ, Reed SL, Rohwer F, Benler S et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant *Acinetobacter baumannii* infection. *Antimicrob Agents Chemother* 61: e00954

Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. *Nat Rev Microbiol* 13: 605 – 619

Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA et al (2020) PF bacteriophage and their impact on *Pseudomonas virulence*, mammalian immunity, and chronic infections. *Front Immunol* 11: 244

Secor PR, Sweere JM, Michaels LA, Malkovsky AV, Lazzarichi D, Katznelson E, Rajadas J, Birnbaum ME, Arrigoni A, Braun KR et al (2015) filamentous bacteriophage promote biofilm assembly and function. *Cell Host Microbe* 18: 549 – 559

Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in *Vibrio cholerae* O1. *PLoS Pathog* 8: e1002917

Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, Ivers LC, Bonyc J, Harris JB, Camilli A (2014) Evolutionary consequences of intra-patient phage predation on microbial populations. *eLife* 3: e03497

Segall AM, Roach DR, Strathdee SA (2019) Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. *Curr Opin Microbiol* 51: 46 – 50

Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2013) Bacteriophage therapy for *Staphylococcus aureus* biofilm-infected wounds: a new approach to chronic wound care. *J Plast Reconstr Aesthet Surg* 131: 225 – 234

Shahed-Al-Mahmud M, Roy R, Sugiko FG, Islam MN, Lin MD, Lin LC, Lin NT (2021) Phage phi AB6-borne depolymerase combats *Acinetobacter baumannii* biofilm formation and infection. *Antibiotics* 10: 279
Sulakvelidze A, Bassler BL (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176: 268 – 280 e213
Simmons M, Drescher K, Nadell CD, Bucci V (2018) Phage mobility is a core determinant of phage–bacteria coexistence in biofilms. ISME J 12: 531 – 543
Skurnik M (2022) Editorial of Viruses special issue on phage–host interactions 2021. Viruses 14: 236
Smirnova T, Didenko L, Azibekyan R, Romanova YM (2010) Structural and functional characteristics of bacterial biofilms. Microbiol 79: 413 – 423
de Sousa JAM, Buffet A, Haudiquet M, Rocha EPo, Rendueles O (2020) Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation. ISME J 14: 2980 – 2996
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S (2020) Cross-resistance is a novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10: 2768
Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M (2020) Structural dynamics of phage P22 inactivation by cryo-electron tomography. Nat Microbiol 4: 1049 – 1056
Van I-N (2006) Lysis timing and bacteriophage fitness. Genetics 172: 17 – 26
Weltz JS, Poisot T, Meyer JR, Flores CO, Valderse, Sullivan MB, Hochberg ME (2013) Phage–bacteria infection networks. Trends Microbiol 21: 82 – 91
Whitfield C, Williams DM, Kelly SD (2020) Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 295: 10593 – 10609
WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. Who 2017: 1 – 7
Wittebole X, De Rookk S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226 – 235
Wright RC, Friman V-P, Smith MC, Brockhurst MA (2018) Cross-resistance is modular in bacteria–phage interactions. PLoS Biol 16: e2006057
Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10: 2768
Yan J, Bassler BL (2019) Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26: 15 – 21
Yu L, Wang S, Guo Z, Liu H, Sun D, Yan G, Hu D, Du C, Feng X, Han W (2018) A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. App Microbiol Biotechnol 102: 971 – 983
Yu P, Mathieu J, Li M, Dai Z, Alvarez P (2015) Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol 82: 808 – 815
Yuan Y, Wang L, Li X, Tan D, Cong C, Xu Y (2019) Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Res 272: 197734
Zaczek M, Lusia-Szelachowska M, Janczyk-Matysiak E, Weber-Dabrowska B, Miedzybrodzki R, Owczarek B, Kopciuch A, Fortuna W, Rogoz P, Gorski A (2016) Antibody production in response to staphylococcal MS-variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother 64: 1212 – 1218

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.