TWISTED K THEORY INVARIANTS

JOUKO MICHELSSON

Department of Mathematics, University of Helsinki,
FIN-00014, Finland, and Mathematical Physics, Royal
Institute of Technology, SE-106 91, Stockholm, Sweden

January 13, 2004

Abstract An invariant for twisted K theory classes on a 3-manifold is intro-
duced. The invariant is then applied to the twisted equivariant classes arising from
the supersymmetric Wess-Zumino-Witten model based on the group $SU(2)$. It is
shown that the classes defined by different highest weight representations of the loop
group $LSU(2)$ are inequivalent. The results are compatible with Freed-Hopkins-
Teleman identification of twisted equivariant K theory as the Verlinde algebra.

0. Introduction

Twisted K theory classes arise in a natural way in two dimensional conformal
field theory and can be described in terms of Verlinde algebra, [FHT1-2], [AtSe].
In this paper I shall describe a rather elementary method for a construction of
numerical invariants for the twisted K theory classes in the case of an oriented,
connected, simply connected 3-manifold. The method is then applied to the case
of the group manifold $SU(2)$ and it is shown that indeed the result matches the
prediction in [FHT1-2]. The computations are based on the construction of twisted
K theory classes in terms of the supersymmetric Wess-Zumino-Witten model as
described in [M]. The result, Theorem 2, shows that indeed the equivariant twisted
K theory classes constructed from different highest $SU(2)$ weights are different.

Ordinary complex K theory on a space X can be defined as the abelian group
(with respect to direct sums of Hilbert spaces) of homotopy classes of maps from X
to Fredholm operators in a complex Hilbert space H. There is a grading mod 2 in
complex K theory. The group $K^0(X)$ is defined by using the space of all Fredholm operators in H whereas $K^1(X)$ is defined with the help of self-adjoint Fredholm operators which have both positive and negative essential spectrum.

To define twisted K theory one needs as an input a principal $PU(H)$ bundle P over X. Here $PU(H)$ is the projective unitary group $PU(H) = U(H)/S^1$ in the Hilbert space H. These principal bundles are classified by $H^3(X, \mathbb{Z})$; an element $\omega \in H^3(X, \mathbb{Z})$ is called the Dixmier-Douady class of the bundle P and it plays the role of the (first) Chern class for circle bundles. A bundle P is called a gerbe over X. Usually a gerbe is equipped with additional structure, the gerbe connection which is a Deligne cohomology class on X with top form ω.

Given P we can define an associated vector bundle

\begin{equation}
Q = P \times_{PU(H)} \mathcal{F},
\end{equation}

where \mathcal{F} denotes the space of (self-adjoint) Fredholm operators in H and the action of $PU(H)$ on \mathcal{F} is defined by conjugation, [BCMMS]. The twisted K theory $K^*(X, \omega)$ is then the set of homotopy classes of sections of the bundle Q. It is again an abelian group with respect to direct sums.

As in the case of ordinary K theory, it is sometimes useful to have an alternative equivalent definition. In the case of $K^1(X)$ one can replace self-adjoint Fredholm operators by unitary operators using the trick in [AS]. First one can contract to space of (unbounded) self-adjoint Fredholm operators (with positive and negative essential spectrum) to bounded self-adjoint operators with essential spectrum at the points ± 1. Then one can map these operators to unitaries by $F \mapsto g = - \exp(i\pi F)$. The operator g belongs to the group $U_1(H)$ of unitary operators such that $g - 1$ is a trace-class operator. The advantage with this method is that we can explicitly produce the generators $H^*(U_1(H), \mathbb{Z})$ as differential forms

\begin{equation}
\omega_{2k+1} = \alpha_{2k+1} \text{tr} (g^{-1}dg)^{2k+1}
\end{equation}

where α_{2k+1} is a normalization coefficient. The K^1 theory classes on X are then classified, modulo torsion, by the pull-backs of classes ω_{2k+1} with respect to a mapping $X \to U_1(H)$.

In the case of twisted K theory we can use the same trick simply by replacing in (0.1) the space \(F \) by \(U_1(H) \); this gives an alternative definition for \(K^1(X, \omega) \). The case \(K^0(X, \omega) \) has to be dealt differently. There is a different unitary group \(U_{\text{res}}(H) \) which has the same homotopy type as the space of all Fredholm operators in \(H \). To define \(U_{\text{res}}(H) \) one needs a polarization \(H = H_+ \oplus H_- \) to a pair of infinite-dimensional subspaces and a grading operator \(\epsilon \), such that \(H_\pm \) has grade \(\pm 1 \). The group \(U_{\text{res}}(H) \) consists the of unitaries \(g \) such that \([\epsilon, g]\) is compact. In fact, instead of compactness one can as well require that \([\epsilon, g]\) belongs to some fixed Schatten ideal \(L_p \) of bounded operators \(A \) such that \(|A|^p \) is trace-class, with \(1 \leq p < \infty \), [P].

This work was partially supported by the Erwin Schrödinger Institute for Mathematical Physics in Vienna. I want to thank Alan Carey for many useful discussions.

1. Invariants for twisted K theory classes over a 3-manifold

Let \(M \) be an oriented compact connected 3-manifold. Fix a triangulation of \(M \) by a finite number of closed sets \(\Delta_\alpha \subset M \), where each \(\Delta_\alpha \) is parametrized by a standard 3-simplex (tetraed). We may assume without restriction that when the closed sets \(\Delta_\alpha \) are slightly extended to open sets \(U_\alpha \) then \(\{U_\alpha\} \) is a good cover of \(M \), i.e., all the multiple intersections of the open sets are contractible. A gerbe over \(M \) is given in terms of transition functions \(\phi_{\alpha\beta} : U_\alpha \cap U_\beta \to PU(H) \). Here \(H \) is a complex (in general, infinite-dimensional) Hilbert space. Since the open sets are contractible, we may lift these functions to maps \(\phi_{\alpha\beta} : U_{\alpha\beta} = U_\alpha \cap U_\beta \to U(H) \). The lifts satisfy

\[
\phi_{\alpha\beta}(x)\phi_{\beta\gamma}(x)\phi_{\gamma\alpha}(x) = f_{\alpha\beta\gamma}(x),
\]

where \(f_{\alpha\beta\gamma} : U_{\alpha\beta\gamma} \to S^1 \). Denote by \(\tau \) the Dixmier-Douady class of the gerbe, given by the above system of local functions satisfying

\[
f_{\alpha\beta\gamma}f_{\alpha\beta\eta}f_{\alpha\gamma\eta}f_{\beta\gamma\eta}^{-1} = 1
\]
on quadruple overlaps. For the logarithms of these functions we get

\[a_{\alpha\beta\gamma\eta} = \log f_{\alpha\beta\gamma} - \log f_{\alpha\beta\eta} + \log f_{\alpha\gamma\eta} - \log f_{\beta\gamma\eta} = 2\pi in \]

for some integer \(n \). The sum of \(a_{\alpha\beta\gamma\eta} \)'s evaluated at the vertices \(\Delta_{\alpha\beta\gamma\eta} \) is then equal to \(2\pi i \) times the integral of the Dixmier-Douady class over the 3-manifold \(M \). This can be written as \(2\pi ik \), where \(k \) is an integer depending only on the Dixmier-Douady class.

A twisted \(K^1 \) theory class with a gerbe as input is then given by a family of functions \(g_\alpha : U_\alpha \to U_1(H) \). Here \(U_1(H) \) is the group of unitaries \(g \) in \(H \) such that \(g - 1 \) is trace-class. On the overlaps \(U_{\alpha\beta} \),

\[g_\alpha = \phi_{\alpha\beta} g_\beta \phi_{\alpha\beta}^{-1}. \]

We want to determine a homotopy invariant for this class \([\omega] \in K^1(M,\tau)\).

First let us recall that an untwisted \(K \) theory class is the homotopy class of a globally defined function \(g : M \to U_1(H) \). A homotopy invariant for this is

\[I_M(g) = \frac{1}{24\pi^2} \int_M \text{tr} (g^{-1}dg)^3, \]

i.e., the Witten action. This is an integer depending on the homotopy class of \(g \).

In the twisted case we could try to use the formula

\[\sum_\alpha \int_{\Delta_\alpha} \text{tr} (g_\alpha^{-1}dg_\alpha)^3. \]

However, this fails to be homotopy invariant due to boundary terms in integration by parts. Instead, we can add correction terms

\[r_{\alpha\beta} = \int_{\Delta_{\alpha\beta}} \omega_{\alpha\beta} \]

with

\[\omega_{\alpha\beta} = \frac{1}{8\pi^2} \text{tr} (d\phi_{\alpha\beta} \phi_{\alpha\beta}^{-1})[dg_\alpha g_\alpha^{-1} + g_\alpha^{-1}dg_\alpha + g_\alpha d\phi_{\alpha\beta} \phi_{\alpha\beta}^{-1}g_\alpha^{-1} - d\phi_{\alpha\beta} \phi_{\alpha\beta}^{-1}]. \]
Note that the second and the third term in the brackets are not trace-class operators but their difference is. These correction terms are chosen such that

\[(1.7) \quad d\omega_{\alpha\beta} = \frac{1}{24\pi^2} \text{tr} [(g_{\beta}^{-1}dg_{\beta})^3 - (g_{\alpha}^{-1}dg_{\alpha})^3].\]

Suppose for a moment that all $f_{\alpha\beta\gamma} = 1$. Then

\[(1.8) \quad \omega_{\alpha\beta} + \omega_{\beta\gamma} + \omega_{\gamma\alpha} = 0\]
on triple overlaps of open sets. Define

\[(1.9) \quad I'_M(g) = \sum_{\alpha} I_{\Delta_{\alpha}} + \sum_{\alpha < \beta} r_{\alpha\beta}\]

where we have chosen the finite index set to be $\{1, 2, \ldots, p\}$ so that we have a natural ordering $\alpha < \beta$. Then it is a direct consequence of Stokes’ theorem, the Čech - de Rham cocycle relations (1.7), (1.8), and closedness of the forms $\text{tr} (g^{-1}dg)^3$ that $I'_M(g)$ is a homotopy invariant.

However, in the case of a nontrivial gerbe the functions $f_{\alpha\beta\gamma} \neq 1$ and the cocycle relation (1.8) does not hold. The correct relation is

\[(1.10) \quad \omega_{\alpha\beta} + \omega_{\beta\gamma} + \omega_{\gamma\alpha} = d\omega_{\alpha\beta\gamma},\]

where $\omega_{\alpha\beta\gamma}$’s are 1-forms on triple overlaps. A solution of (1.10) is given by

\[(1.11) \quad \omega_{\alpha\beta\gamma} = \frac{1}{4\pi^2} h^{-1} dh \log f_{\alpha\beta\gamma},\]

where $h: M \to S^1$ is the globally defined function $h = \det g_{\alpha}$. The choice of the index α is unimportant, since $g_{\alpha} = \phi_{\alpha\beta}g_{\beta}\phi_{\alpha\beta}^{-1}$ so that the determinant is well defined. However, we have to make a choice of the logarithm $\log f_{\alpha\beta\gamma}$. Two different choices differ by the locally constant function $n \cdot 2\pi i$ and give two different solutions to (1.9). In any case, the cocycle property (1.2) shows that

\[(1.12) \quad \omega_{\alpha\beta\gamma} - \omega_{\alpha\beta\eta} + \omega_{\alpha\gamma\eta} - \omega_{\beta\gamma\eta} = a_{\alpha\beta\gamma\eta} h^{-1} dh\]
on quadruple overlaps. Now we make the additional assumption that the function $h : M \to S^1$ is contractible (which would be automatic if M is simply connected). Then we can write

$$a_{\alpha\beta\gamma\eta}h^{-1}dh = d(a_{\alpha\beta\gamma\eta} \log h) \equiv d\omega_{\alpha\beta\gamma\eta}$$

with some choice of logarithm of h. Different choices of the logarithm lead to expressions for $\omega_{\alpha\beta\gamma\eta}$ which differ by $(2\pi i)^2$ times an integer.

From this we reduce, by Stokes’ theorem:

Theorem 1. Let the determinant function h defined above be contractible. Then the expression

$$I(g) = \sum_\alpha \int_{\Delta_\alpha} \omega_\alpha - \sum_{\alpha < \beta} \int_{\Delta_{\alpha\beta}} \omega_{\alpha\beta} + \sum_{\alpha < \beta < \gamma} \int_{\Delta_{\alpha\beta\gamma}} \omega_{\alpha\beta\gamma} + \sum_{\alpha < \beta < \gamma < \eta} \omega_{\alpha\beta\gamma\eta}$$

is a homotopy invariant; the last term is evaluated at the points $\Delta_{\alpha\beta\gamma\eta}$.

Remark 1 The quantity $I(g)$ is only well defined modulo $k \times$ an integer. This is because of the arbitrary choice of the branch of the logarithm of h. The difference between two choices gives a contribution

$$\delta = 2\pi i \cdot \frac{1}{4\pi^2} \sum a_{\alpha\beta\gamma\eta}.$$

The sum of the numbers $a_{\alpha\beta\gamma\eta}$ is equal to $2\pi ik \times$ an integer, where k is an integer depending only on the Dixmier-Douady class τ of the gerbe. Thus δ is equal to $k \times$ an integer and $I(g)$ is well defined mod k.

Remark 2 In the case when h is not contractible we can still use it to define the winding number invariant for the K theory class,

$$w(h) = \frac{1}{2\pi i} \int_{S^1} h^{-1}dh,$$

where $S^1 \subset M$ represents any element of $\pi_1(M)$.

Example Take $M = S^3 = SU(2)$. Then $H^3(M, \mathbb{Z})$ is one dimensional, the Dixmier-Douady class τ is represented as k times the basic 3-form $\frac{1}{24\pi^2} \text{tr} (g^{-1}dg)^3$ on $SU(2)$. The map I takes values in $\mathbb{Z}/k\mathbb{Z}$.
2. Calculations in the case \(G = SU(2) \)

We study the twisted K theory class over the group \(G = SU(2) \). The Lie algebra of \(G \) is denoted by \(\mathfrak{g} \). Let \(A \) denote the space of smooth \(\mathfrak{g} \) valued vector potentials (1-forms) on the unit circle \(S^1 \). Let \(LG \) be the group of smooth loops in \(G \) and let \(\Omega G \subset LG \) be the group of based loops, i.e., loops \(f \) such that \(f(1) \) is the neutral element in \(G \). Then \(A/\Omega G \) is the group \(G \) of holonomies around the circle. The right action on \(A \) is defined by \(A f = f^{-1} A f + f^{-1} df \). The twisted K theory classes are constructed using the family of hermitean operators \(Q_A \) for \(A \in A \) constructed in [M].

The operator \(Q_A \) is a sum of a 'free' supercharge \(Q \) and an interaction term \(\hat{A} \). The Hilbert space \(H \) is a tensor product of a 'fermionic' Fock space \(H_f \) and a 'bosonic' Hilbert space \(H_b \). The space \(H_b \) carries an irreducible representation of the loop algebra \(Lg \) of level \(k \) where The highest weight representations of level \(k \) are classified by the \(SU(2) \) representation of dimension \(2j_0 + 1 \) on the 'vacuum sector'. We denote the generators of the loop algebra by \(T^a_n \), where \(n \in \mathbb{Z} \) is the Fourier index and \(a = 1, 2, 3 \) labels a basis of \(\mathfrak{g} \). The commutation relations are

\[
[T^a_n, T^b_m] = \lambda_{abc} T^c_{n+m} + \frac{k}{4} \delta_{ab} \delta_{n,-m},
\]

where \(a, b, c = 1, 2, 3 \) are the structure constant of \(\mathfrak{g} \); in this case when \(\mathfrak{g} \) is the Lie algebra of \(SU(2) \) the nonzero structure constants are completely antisymmetric and we use the normalization \(\lambda_{123} = \frac{1}{\sqrt{2}} \). (This comes from a normalization of the basis vectors \(T^a_0 \in \mathfrak{g} \) with respect to the Killing form.) In addition, we have the hermiticity relations \((T^a_n)^* = -T^a_{-n} \). With this normalization of the basis, \(k \) is a nonnegative integer and \(2j_0 = 0, 1, 2 \ldots k \). The case \(k = 0 \) corresponds to a trivial representation and we shall assume in the following that \(k \) is strictly positive.

The Fock space \(H_f \) carries an irreducible representations of the canonical anticommutation relations (CAR),

\[
\psi^a_n \psi^b_m + \psi^b_m \psi^a_n = 2 \delta_{ab} \delta_{n,-m},
\]
and \((\psi_{n}^{a})^{*} = \psi_{-n}^{a}\). The representation is fixed by the requirement that there is an irreducible representation of the Clifford algebra \(\{\psi_{0}^{a}\}\) in a subspace \(H_{f,vac}\) such that \(\psi_{n}^{a} v = 0\) for \(n < 0\) and \(v \in H_{f,vac}\).

The central extension of the loop algebra at level 2 is represented in \(H_{f}\) through the operators

\[
K_{n}^{a} = -\frac{1}{4} \sum_{b,c=1,2,3;m \in \mathbb{Z}} \lambda_{abc} \psi_{n-m}^{b} \psi_{m}^{c},
\]

that is,

\[
[K_{n}^{a}, K_{m}^{b}] = \lambda_{abc} K_{n+m}^{c} + \frac{1}{2} n \delta_{ab} \delta_{n,-m}.
\]

We set \(S_{n}^{a} = T_{n}^{a} + K_{n}^{a}\). This gives a representation of the loop algebra at level \(k + 2\) in the tensor product \(H = H_{f} \otimes H_{b}\).

Next we define

\[
Q = i \psi_{n}^{a} T_{-n}^{a} + \frac{i}{3} \psi_{n}^{a} K_{-n}^{a}.
\]

This operator satisfies \(Q^{2} = h\), where \(h\) is the hamiltonian of the supersymmetric Wess-Zumino-Witten model,

\[
h = -\sum_{a,n} : T_{n}^{a} T_{-n}^{a} : + \frac{k+2}{8} \sum_{a,n} : n \psi_{n}^{a} \psi_{-n}^{a} : + \frac{1}{8},
\]

where the normal ordering :: means that the operators with negative Fourier index are placed to the right of the operators with positive index, \(: \psi_{-n}^{a} \psi_{n}^{b} : = -\psi_{n}^{b} \psi_{-n}^{a}\) if \(n > 0\) and \(AB := AB\) otherwise. In the case of the bosonic currents \(T_{n}^{a}\) the sign is + on the right-hand-side of the equation. See [KT] for details on the supersymmetric current algebra.

Finally, \(Q_{A}\) is defined as

\[
Q_{A} = Q + i \tilde{k} \psi_{n}^{a} A_{-n}^{a}
\]

where the \(A_{n}^{a}\)'s are the Fourier components of the \(g\)-valued function \(A\) in the basis \(T_{n}^{a}\) and \(\tilde{k} = \frac{k+2}{4}\). All the formulas above can be generalized in a straight-forward
way to arbitrary simple Lie algebras, with the modification that the last term $1/8$ in (2.6) is replaced by $\dim g/24$ and the level k is quantized as integer times twice the length squared of the longest root with respect to the dual Killing form.

The basic property of the family of self-adjoint Fredholm operators Q_A is that it is equivariant with respect to the action of the central extension of the loop group LG. Any element $f \in LG$ is represented by a unitary operator $S(f)$ in H but the phase of $S(f)$ is not uniquely determined. The equivariantness property is

$$S(f^{-1})Q_A S(f) = Q_{Af}$$

with $Af = f^{-1}Af + f^{-1}df$. The infinitesimal version of this is

$$[S_n^a, Q_A] = i\tilde{k}(n\psi^n_a + \sum_{b,c;m} \lambda_{abc} \psi^b_m A^c_{n-m})$$

which can be checked directly from (2.1), (2.2), and (2.4).

The group LG can be viewed as a subgroup of the group $PU(H)$ through the projective representation S. The space A of smooth vector potentials on the circle is the total space for a principal bundle with fiber $\Omega G \subset LG$. Since now $\Omega G \subset PU(H)$, A may be viewed as a reduction of a $PU(H)$ principal bundle over G. The ΩG action by conjugation on the Fredholm operators in H defines an associated vector bundle Q over G and the family of operators Q_A defines a section of this vector bundle. Thus $\{Q_A\}$ is a twisted K^1 theory class over G where the twist is determined by the level $k+2$ projective representation of LG.

Using the method in [AS] we replace the family of unbounded hermitean operators by a family of bounded operators $F_A = Q_A/(|Q_A| + e^{-Q_A^2})$ which represent the same K theoretic class. The perturbation in the denominators is introduced to avoid singularities with zero modes of Q_A. The operator F_A differs from the sign operator $Q_A/|Q_A|$ by a trace-class perturbation. For this reason the unitary operators $g_A = -e^{i\pi F_A}$ differ from the unit by a trace-class operator.

We shall now study the twisted K theory class represented by the family g_A of unitary operators. Note that this family is still gauge equivariant,

$$S(f)^{-1}g_A S(f) = g_{Af}$$
where \(f \in LG \).

Since \(S^3 = A/\Omega G \), we write the K theory class as a function from the three dimensional unit disk \(D^3 \) to unitaries of the form \(1 + \text{trace-class operators} \) such that on the boundary \(S^2 \) the operators are gauge conjugate. Concretely, this is achieved as follows. For each point \(\mathbf{n} \in S^2 \) we define a constant \(SU(2) \) vector potential \(A(\mathbf{n}) = \frac{1}{2i} \mathbf{n} \cdot \sigma \). Pauli matrices satisfy \(\sigma_1 \sigma_2 = i \sigma_3 \) (and cyclic permutations) and \(\sigma_j^2 = 1 \). The holonomy around the circle \(S^1 \) is equal to \(-1\) for each of the potentials \(A(\mathbf{n}) \), thus they belong to the same \(\Omega G \) orbit in \(A \). Next we define a disk \(D^3 \) of potentials \(A(t, \mathbf{n}) = tA(\mathbf{n}) \) where \(0 \leq t \leq 1 \) is the radial variable in the disk \(D^3 \) and \(\mathbf{n} \) are the angular coordinates. This disk projects to a closed sphere \(S^3 \) in \(G = A/\Omega G \). For each \(A \in D^3 \) we have the corresponding supercharge
\[
Q_A = Q + \frac{k+2}{4} t \cdot \sqrt{2} \psi_0^a n^a
\]
where the factor \(\sqrt{2} \) comes from the normalization of the basis \(T^a \) of \(g \) relative to the Pauli matrix basis.

Now we have a family of unitaries \(g(t, \mathbf{n}) = g_{A(t,\mathbf{n})} \) which are gauge conjugate on the boundary through the projective unitary representation of \(LG \) of level \(k + 2 \). This means that the homotopy class of the functions \(g(t, \mathbf{n}) \) gives an element in \(K^1_G(S^3, k + 2) \). In the language of section 1, we may replace the triangulation \(\{ \Delta_\alpha \} \) by two sets: the disk \(D^3 \) as the southern hemisphere of \(S^3 \) and a second disk \(D^3 \) as the northern hemisphere. On the southern hemisphere we have the unitary matrix valued function \(g(t, \mathbf{n}) \) whereas on the northern hemisphere we have a constant function \(g_0 = -\exp(\pi i F_0) \). On the equator parametrized by \(\mathbf{n} \in S^2 \) they are all gauge conjugate.

The \(G \) equivariantness follows from the fact that the family \(Q_A \) is gauge equivariant with respect to the full group \(LG \) of gauge transformations and not only with respect to the based gauge transformations \(\Omega G \).

We want to compute the quantum invariant for the class \([g]\) by evaluating the Witten functional
\[
I(g) = \frac{1}{24\pi^2} \int_{D^3} \text{tr}(g^{-1}dg)^3.
\]
Note that in the present setting the correction terms are absent since g_0 is constant (which can be deformed to the unit matrix since the group of unitaries $U_1(H)$ is connected). A direct computation of the integral of the trace in an infinite-dimensional Hilbert space H is difficult. Instead, we shall apply first various homotopy deformations to g to bring the trace into more manageable form.

First deformation. We need first a Lemma:

Lemma 1. The spectral projections P_Λ of $|Q|$ commute with Q_A when $A = \frac{1}{2i} t n \cdot \sigma$.

Proof. Now Q_A is given by (2.11). Using the canonical anticommutation relations for ψ^a_n's we observe that

$$[Q_A - Q, Q]_+ = -2\tilde{k} S^a_0 A^a_0.$$

On the other hand, $[S^a_0, Q] = 0$ so that

$$[Q_A, Q^2] = [Q_A - Q, Q^2] = 2\tilde{k} (-S^a_0 A^a_0 Q + Q S^a_0 A^a_0) = 0$$

from which follows $[Q_A, |Q|] = 0$ and thus also $[Q_A, P_\Lambda] = 0$ where P_Λ is the spectral projection $|Q| \leq \Lambda$.

The Lemma implies that the spectral subspaces $H_\Lambda = P_\Lambda H$ and H^\perp_Λ are invariant under $Q_A, F_A, \text{and } g_A$.

Since $(Q_A - Q)^2 = 2t^2 \tilde{k}^2$ we see that the restriction of Q_A to the subspace H^\perp_Λ is invertible if we choose $\Lambda > \sqrt{2}\tilde{k}$.

Let us deform the denominator $|Q_A| + e^{-Q_A^2}$ in F_A. Define $D(s) = |Q(t, n)| + st(1 - t)e^{-Q^2} + (1 - s)e^{-Q(t,n)^2}$ for $0 \leq s \leq 1$. For any fixed s these operators are gauge conjugate at the boundary $t = 1$ because at $t = 1$ we have $D(s) = |Q(1, n)| + (1 - s)e^{-Q(t,n)^2}$. At $s = 0$ this is the original family of denominators whereas for $s = 1$ we get $D(1) = |Q(t, n)| + t(1 - t)e^{-Q^2}$. This is our first deformation: We replace the original $g(t, n)$ by the homotopy equivalent family

$$g(t, n) = -e^{i\pi F(t, n)} \text{ with } F(t, n) = \frac{Q(t, n)}{|Q(t, n)| + t(1 - t)e^{-Q^2}}.$$
Second deformation By a similar s dependent family as above we can replace the denominator $D(n)$ by $|Q(t, n)| + t(1 - t)P_{\Lambda}$ for any $\Lambda > \tilde{k}$. This is because $Q(t, n)$ is invertible in the complement of H_{Λ} and is invertible in the whole space H for $t = 0, 1$. (For $t = 0$ this is clear since $Q^2 \geq 1/8$ and for $t = 1$ one observes that the spectrum of $Q(1, n)^2 = Q^2 + \frac{1}{8}(k + 2)^2 + i\sqrt{2}(k + 2) \mathbf{n} \cdot \mathbf{S}_0$ is of the form $\frac{1}{8}[1 + (k + 2)p]$ where p is an integer.) For the intermediate values $0 < t < 1$ both $t(1 - t)e^{-Q^2}$ and $t(1 - t)P_{\Lambda}$ are strictly positive in H_{Λ}. So after the second deformation

\begin{equation}
(2.13) \quad g(t, n) = -e^{i\pi F(t, n)} \text{ with } F(t, n) = \frac{Q(t, n)}{|Q(t, n)| + t(1 - t)P_{\Lambda}}.
\end{equation}

In particular, since the eigenvalues of $Q/|Q|$ are ± 1, the restriction of g to H_{Λ}^\perp is equal to the unit operator. Thus

\begin{equation}
(2.14) \quad I(g) = \frac{1}{24\pi^2} \int_{D^3} \text{tr}_{H_{\Lambda}}(g^{-1}dg)^3.
\end{equation}

We need now to compute the trace of $(g^{-1}dg)^3$ only in the finite-dimensional subspace H_{Λ}. We use the formula

\begin{equation}
(2.15) \quad \text{tr}(g^{-1}dg)^3 = d\text{tr} \, dX \eta(ad_X) dX,
\end{equation}

where $X = \log(g)$ and $\eta(x) = \frac{\sinh(x) - x}{x^2}$. By Stokes’ theorem the integral defining $I(g)$ is then equal to the integral of the 2-form $dX \eta(ad_X) dX$ over $S^2 = \partial D^3$. But on the boundary $t = 1$ we have $F(1, n) = Q(1, n)/|Q(1, n)|$. This simplifies $\eta(ad_X)$ so that the 2-form becomes

\[\frac{i}{16\pi} \text{tr} FdFdF \text{ for } F = F(1, n).\]

Summarizing we obtain

\begin{equation}
(2.16) \quad I(g) = \frac{i}{16\pi} \int_{S^2} \text{tr}_{H_{\Lambda}} FdFdF.
\end{equation}
Third deformation We use the fact that the parameter Λ is free except for the constraint $\Lambda > \sqrt{2k}$. Since the spectrum of Q is discrete (the eigenvalues of Q^2 are quantized in units $(k + 2)/2$), we can choose $\Lambda - \sqrt{2k}$ so small that the eigenvalues of $|Q|^2$ which are smaller or equal to Λ^2 are also strictly smaller than $2k^2$. With this choice Q_A becomes invertible in H_A. Furthermore, also $Q_s(n) = sQ + \sqrt{2k}n \cdot \psi_0$ is invertible in H_A for all $0 \leq s \leq 1$. We use the homotopy Q_s to replace $F = Q(1, n)/|Q(1, n)|$ in the integral $I(g)$ by the operator $F = n \cdot \psi_0$. Now

$$\text{(2.17)} \quad \text{tr}_{H_A} FdFdF = n \cdot dn \times dn \text{tr}_{H_A} \psi_0^1 \psi_0^2 \psi_0^3.$$

The integral of $n \cdot dn \times dn$ over S^2 is equal to twice the volume of S^2 and so

$$\text{(2.18)} \quad I(g) = -\frac{i}{2} \text{tr}_{H_A} \Gamma \text{ with } \Gamma = \psi_0^1 \psi_0^2 \psi_0^3.$$

The trace is essentially the Witten index. The operator Γ almost anticommutes with the supercharge Q. Define

$$\text{(2.19)} \quad Q_+ = i \sum_{n \neq 0} \psi_n^a T_{-n}^a + \frac{i}{12} \sum_{n, m, n + m \neq 0} \lambda_{abc} \psi_n^a \psi_m^b \psi_{-n-m}^c.$$

We have $Q_+ \Gamma = -\Gamma Q_+$ since ψ_0^a anticommutes with ψ_n^b for every $n \neq 0$.

Lemma 2. The operator Q_+ commutes with the spectral projections P_Λ.

Proof. Write $Q = Q_0 + Q_+$. Then Q_0 commutes with Γ. Now

$$Q^2 = Q_0^2 + Q_+^2 + [Q_0, Q_+] = h$$

is even with respect to Γ. The first two terms on the right are even, so the third term which is odd has to vanish and so $h = Q_0^2 + Q_+^2$. This implies $[h, Q_+] = [Q_0^2, Q_+] = Q_0[Q_0, Q_+] + [Q_0, Q_+] Q_0 = 0$ and so the spectral projections of h commute with Q_+. Since $|Q|^2 = h$, the same is true for the spectral projections P_Λ of $|Q|$.

Lemma 3. $Q_+^2 = Q_0^2 - \sum_a (T_{0}^a + K^a_{0}^2) - \frac{N}{2}$ where $K^a_{0} = -\frac{1}{4} \sum_{n \neq 0; b, c} \lambda_{abc} \psi_n^b \psi_{-n}^c$. The K^a_{0}’s satisfy the same commutation relations as the T^a’s.

Proof. By a direct computation.
Lemma 4. Let $G = SU(2)$. Then the kernel of Q_+ in H_Λ is equal to the vacuum sector $H_0 \subset H$ consisting of eigenvectors of h associated to the minimal eigenvalue $1/8$.

Proof. Clearly $H_0 \subset \text{ker} Q_+$ since $\psi^a_n v = T^a_n v = 0$ for any $v \in H_0$ for $n < 0$. We have to show that $|Q_+|$ is strictly positive in the orthogonal complement H_0^\perp in H_Λ.

Let d be the derivation in the affine Lie algebra based on $SU(2)$. By definition, $[d, T^a_n] = nT^a_n$ and $[d, \psi^a_n] = n\psi^a_n$. From the weight inequalities for lowest weight representations of affine Lie algebras, [K], Prop. 11.4, follows that in a $SU(2)$ subrepresentation with angular momentum ℓ,

$$\ell_0(\ell_0 + 1) - d_0(k + 2) \geq \ell(\ell + 1) - d(k + 2),$$

where ℓ_0 is the angular momentum of the lowest weight vector and d_0 is the eigenvalue of d for the lowest weight vector.

We first apply the inequality to the bosonic representation in H_b. The bosonic hamiltonian is

$$h_b = -\sum_{a,n} : T^a_n T^a_{-n} := \frac{k + 2}{2} d_b.$$

Now the lowest eigenvalue of d_b is equal to the eigenvalue of the Casimir operator $-\sum_a T^a_0 T^a_0$ which is equal to $\frac{1}{2} j_0(j_0 + 1)$ where $j_0 = 0, \frac{1}{2}, 1, \ldots k/2$ labels the vacuum representation of $SU(2)$. Thus we obtain

$$h_b - \frac{1}{2} j(j + 1) \geq 0$$

for any $SU(2)$ representation j contained in H_b.

Similarly, on the fermionic sector H_f we have

$$d_f \geq \frac{1}{2} \ell(\ell + 1)$$

since the vacuum eigenvalue of $d_f = \frac{k + 2}{2} h_f$ is zero; here $h_f = \frac{k + 2}{8} n : \psi^a_n \psi^a_{-n} :$ and $\frac{1}{2} \ell(\ell + 1)$ is the eigenvalue of the invariant $-\sum_a K'^a_0 K'^a_0$ in a given irreducible.
representation. This inequality follows from the anticommutation relations of the
fermion operators ψ^a_n: In order to increase the value of ℓ from zero (in the vacuum)
to a given value ℓ one must apply the fermion operators at least for energies $n = 1, 2, \ldots, \ell$ which leads to the eigenvalue $\frac{1}{2}\ell(\ell + 1)$ for d_f.

Thus we have

$$h_f = \frac{k+2}{2}d_f \geq \frac{k+2}{4}\ell(\ell + 1).$$

Now by Lemma 3, in a given (j, ℓ) subrepresentation of the commuting algebras
(T^a_0) and (K'^a_0),

$$Q_+^2 = h_b + h_f - \frac{1}{2}(j + \ell)(j + \ell + 1) \geq h_f - \frac{1}{2}\ell(\ell + 1) - j\ell$$

(2.21)

$$\geq \frac{k+2}{4}\ell(\ell + 1) - \frac{1}{2}\ell(\ell + 1) - j\ell \geq \ell\left(\frac{k}{4}(\ell + 1) - j\right).$$

In the subspace H_Λ we have $\frac{(k+2)^2}{8} \geq h \geq h_b \geq \frac{1}{2}j(j+1)$ so that $j \leq (k+1)/2$.

For $\ell \geq 2$ the right-hand-side of (2.21) is strictly greater than zero. In the case
$\ell = 0$ we have $Q_+^2 = h_f + h_b - \frac{1}{2}j(j+1) - \frac{1}{8}$ and the claim follows from the fact
that $h_b - \frac{1}{2}j(j+1)$ vanishes only on the vacuum sector. The remaining case $\ell = 1$
is clear from (2.21) if $j < k/2$. But since we restrict to the subspace H_Λ where
$h \leq (k+2)^2/8$ the cases $j \geq k/2$ are excluded by the energy inequalities

$$h = h_b + h_f + \frac{1}{8} \geq \frac{1}{2}j(j+1) + \frac{k+2}{4}\ell(\ell + 1) + \frac{1}{8} = \frac{1}{2}j(j+1) + \frac{k+2}{2} + \frac{1}{8}$$

for $\ell = 1$.

Theorem 2. The family of operators Q_A defined by the weight (k,j_0) of a highest
weight representation of LG defines an element in $K^1_G(G, k + 2)$ for $G = SU(2)$.
The value of the invariant $I \mod k + 2$ for this K theory class is equal to $2j_0 + 1$
and therefore they are inequivalent for the allowed values $2j_0 = 0, 1, 2, \ldots, k$.

Proof. By (2.18) the value of the invariant $I(g)$ is given as

(2.22)$$I(g) = -\frac{i}{2}\text{tr}_\ker Q_+\Gamma$$

since Q_+ anticommutes with Γ. But since the kernel of Q_+ is equal to H_0 and
$\Gamma = \psi_0^1\psi_0^2\psi_0^3 = \sigma_1\sigma_2\sigma_3 = i$ on the vacuum sector, we get $I(g) = \frac{1}{2}\dim H_0 = 2j_0 + 1$,
where we have taken into account that the dimension of $H_{f,vac}$ is two. In particular, it follows that the trivial one dimensional representation $j_0 = 0$ gives the generator in $\mathbb{Z}/(k+2)\mathbb{Z}$.

Remark The construction of the operators Q_A works for any semisimple compact group G, [M]. However, the twisted K theory classes are not parametrized by a single invariant $I(g)$. Instead, one should study reductions of the K theory classes to various $SU(2)$ subgroups corresponding to a choice of simple roots of G.

References

[AtSe] M.F. Atiyah and G. Segal: Twisted K theory, in preparation.

[AS] M.F. Atiyah and I. Singer: Index theory for skew-adjoint Fredholm operators. I.H.E.S. Publ. Math. **37**, 305 (1969)

[BCMMS] P. Bouwknegt, A.L. Carey, V. Mathai, M. Murray: Twisted K-theory and K-theory of bundle gerbes. \texttt{hep-th/0106194}.

[FHT1] D. Freed, M. Hopkins, and C. Teleman: Twisted equivariant K-theory with complex coefficients. \texttt{math.AT/0206257}.

[FHT2] D. Freed, M. Hopkins, and C. Teleman: Twisted K theory and loop group representations. \texttt{math.AT/0312155}.

[K] V. Kac: *Infinite Dimensional Lie Algebras*. Third edition. Cambridge University Press, Cambridge (1990)

[KT] V. Kac and I. Todorov: Superconformal current algebra and their unitary representations. Commun. Math. Phys. **102**, 337 (1985)

[M] J. Mickelsson: Gerbes, (twisted) K-theory, and the supersymmetric WZW model. \texttt{hep-th/0206133}. To be publ. in the proceedings of “La 70eme Rencontre entre Physiciens Theoriciens et Mathematiciens” in Strasbourg, May 23-25, 2002.

[P] R. Palais: On the homotopy type of certain groups of operators. Topology 3, 271–279 (1965)