ONE-POT, CATALYST-FREE SYNTHESIS OF SPIROOXINDOLE AND 4H-PYRAN DERIVATIVES

Thanasekaran Ponpandian¹,² and Shanmugam Muthusubramanian¹

¹Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
²Department of Medicinal Chemistry, Orchid Chemicals and Pharmaceuticals Ltd., Chennai, India

GRAPHICAL ABSTRACT

Abstract The synthesis of biologically valuable spirooxindoles and 4H-pyrans is described under catalyst-free conditions through sequential Knoevenagel–Michael–cyclization reactions from isatin or aromatic aldehyde, malononitrile, and 1,3-dicarbonyl compounds. The reaction conditions are very simple, providing excellent yield.

Keywords Catalyst-free; isatin; malononitrile; 4H-pyrans; spirooxindoles

INTRODUCTION

Spirooxindole[1] and 4H-pyrans[2] are structural units of natural products and also display a wide range of biological activities such as anti-cancer, anti-HIV, antiviral, antiancaphylactia, antifungal, and antibacterial activities. A sequential Knoevenagel–Michael–cyclization reaction was one of the more convenient protocols for the construction of these skeletons from readily available starting materials such as isatin or aromatic aldehyde, malononitrile, and 1,3-dicarbonyl compounds. This class of reaction has been carried out in the presence of quaternary ammonium salt, base, Lewis acid, or ionic liquids such as InCl₃,[³a] 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),[³b] triethylbenzylammonium chloride,[³c] piperidine,[³d] NH₄Cl,[³e]...

Received June 21, 2013.
Address correspondence to Shanmugam Muthusubramanian, Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India. E-mail: muthumanian2001@yahoo.com
dimethylaminopyridine (DMAP), tetrabutylammonium bromide (TBAB), hexadecyltrimethylammonium bromide, S-proline, β-CD, ethylenediammonium diacetate (EDDA), hexadecyldimethylbenzyl ammonium bromide, K₃PO₄, hexamethyleneenetetramine, KF-alumina, nano-ZnO and ionic liquids such as [BMIm]BF₄, tetramethylguanidinium triflate, and [DMDBSI]·2HSO₄. The role of catalyst in this reaction was to catalyze the Knoevenagel as well as Michael addition reactions. Recently Elinson et al. and Khaksar et al. reported the noncatalytic thermal synthesis of 4H-pyran in isopropyl alcohol (IPA) or water and 2,2,2-trifluoroethanol under reflux condition respectively. Each of the protocols has its own merits, with at least one drawback such as poor yield, harsh reaction condition, long reaction time, and high catalyst loading. With this literature background, we planned to develop an improved, catalyst-free, and easy method to access the spirooxindoles and 4H-pyran derivatives, and the results are presented here.

DISCUSSION

For optimization of the conditions, the reaction of 4-fluorobenzaldehyde, malononitrile, and dinedone was considered as the model. Here all the starting materials were mixed together, and the reaction was performed in different solvents at room temperature. Initially water, the polar protic environmentally friendly solvent, was tried and the expected product 4a was obtained in 75% after 24 h (Table 1, entry 1) but ethanol yielded 72% of 4a after 15 h (Table 1, entry 2). Previously this class of reaction was performed with different catalysts or without

Entry	Solvent	Time (h)	Yield (%)
1	Water	24	75
2	EtOH	15	72
3	Cyclohexane	24	N/R
4	Toluene	24	N/R
5	THF	24	Trace
6	DCM	24	Trace
7	Acetone	24	Trace
8	CH₂CN	24	15
9	Dioxane	24	18
10	DMA	6	65
11	DMF	6	68
12	DMSO	1	98

Isolated yield.
any catalyst in polar protic solvents such as water, ethanol, and isopropanol with limited success. The nonpolar solvents (cyclohexane and toluene) and borderline polar-aprotic solvents (tetrahydrofuran and methylene dichloride) were totally ineffective in this sequential reaction (Table 1, entries 3 to 6), whereas polar aprotic solvents (DMF and DMA) gave moderate yields of 4a (Table 1, entries 10 and 11). Dioxane, acetonitrile, and acetone were not successful (Table 1).

The highly polar aprotic solvent dimethylsulfoxide (DMSO) worked well in this reaction, giving quantitative yield (98%) of 4H-pyran 4a in a short reaction time (Table 1, entry 12) and hence was identified as the solvent of choice. The mild basic character of the oxygen in DMSO facilitates the reaction efficiently and also the product was isolated in a pure form by simple filtration. DMSO is a versatile and powerful solvent for organic reactions involving displacement, elimination, condensation, and polymerization reactions, and it can facilitate a reaction without a catalyst.[5]

Recently, Xue et al.[5a] have reported the uncatalyzed Knoevenagel condensation of isatin and rhodanines in DMSO, and Dash et al.[5b] have reported the aldol reaction of thiazolidinedione in DMSO medium without the use of any catalyst.

The substrate scope was then explored with different aromatic aldehydes and 1,3-dicarbonyl components, and the results are presented in Table 2. The reaction has gone smoothly in the presence of strong electron-releasing (OCH\textsubscript{3}) and electron-withdrawing (NO\textsubscript{2}) groups in the phenyl ring (Table 2, entries 2 to 5). The reaction went well even with a free carboxylic acid group in the phenyl ring, requiring no protection (Table 2, entry 6). Heteroaromatic aldehydes also participated well in this reaction (Table 2, entries 7 and 8). When cyclohexan-1,3-dione and 4-hydroxycoumarin were employed instead of dimedone, the reaction took more time for completion with poor yield. When the reaction was carried out at 70 °C, the reaction was completed in 3–10 h in these cases (Table 2, entries 9 to 14).

The plausible mechanism of this uncatalyzed sequential reaction is given in Scheme 1. The mild basic nature of oxygen of DMSO may facilitate the Knoevenagel condensation and the Knoevenagel product can then undergo Michael addition with 1,3-dicarbonyl compound. The subsequent cyclization leads to the 4H-pyran skeleton 4.

The established protocol was extended to isatin, and the reaction of isatin, malononitrile, and dimedone or cyclohexan-1,3-dione was carried out in DMSO at 70 °C for 1 h. The desired products 6a and 6b were obtained in 85% and 74% respectively (Scheme 2). The reaction of isatin, malononitrile, and 4-hydroxycoumarin yielded the products 7a and 7b in good yield, but required more reaction time compared to that for 6.

EXPERIMENTAL

Typical Procedure for the Synthesis of 4H-Pyrans (4) as Exemplified for 2-Amino-4-(4-fluorophenyl)-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile (4a)

A mixture of 4-fluoro benzaldehyde (0.5 g, 4.0 mmol), malononitrile (0.29 g, 4.4 mmol), and dimedone (0.56 g, 4.0 mmol) in DMSO (5 mL) was stirred at room temperature for 1 h. The resulting mixture was poured into ice and stirred for
Table 2. Catalyst-free synthesis of 4H-pyran skeleton

Entry	Ar	3	Time (h)	Product	Yield (%)\(^a\)	Mp (°C) observed	Mp (°C) reported
1	Phenyl	3a	1.5	4b	96	228–230	226–228\(^{[3p]}\)
2	4-Chlorophenyl	3a	1.5	4c	98	238–240	237–239\(^{[3m]}\)
3	4-Nitrophenyl	3a	1	4d	90	177–179	178–180\(^{[3m]}\)
4	4-Methoxyphenyl	3a	5	4e	85	195–197	194–196\(^{[3m]}\)
5	4-Methylphenyl	3a	2	4f	86	217–219	218–220\(^{[3m]}\)
6	3-Carboxyphenyl	3a	1	4g	92	238–240	—
7	2-Thienyl	3a	2	4h	88	211–213	210–212\(^{[3n]}\)
8	1-Acetyl-indol-3-yl	3a	3	4i	87	206–208	—
9	4-Chlorophenyl	3b	10	4j	72\(^b\)	225–227	224–226\(^{[3m]}\)
10	4-Chlorophenyl	3c	3	4k	88\(^b\)	259–261	260–262\(^{[3b]}\)
11	4-Methylphenyl	3c	6	4l	78\(^b\)	254–256	253–255\(^{[3b]}\)
12	4-Hydroxy-3-methoxyphenyl	3c	10	4m	62\(^b\)	241–243	—
13	Phenyl	3c	10	4n	73\(^b\)	257–259	256–258\(^{[3b]}\)
14	2-Thienyl	3c	10	4o	69\(^b\)	229–231	228–229\(^{[3b]}\)

\(^a\)Isolated yield.
\(^b\)The reaction was carried out at 70 °C.

Scheme 1. Mechanism for the formation of 4H-pyran skeleton.
15 min, and the solid obtained was filtered and washed with water and diethyl ether to afford pure product (1.21 g, 98%) as a white powder. Mp 188–190°C; IR ν_{\max} (KBr) 3356, 3179, 2190, 1674, 1637, 1604, 1507, 1464, 1410, 1367 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 1.03 (s, 3H), 1.11 (s, 3H), 2.22 (d, $J = 6.6$ Hz, 2H), 2.45 (s, 2H), 4.40 (s, 1H), 4.56 (s, 2H), 6.97 (t, $J = 8.6$ Hz, 2H), 7.20 (dd, $J = 8.6$ Hz, 2.8 Hz, 2H); δ_C (100 MHz, DMSO-d_6) 26.8, 28.3, 31.8, 34.9, 50.0, 58.1, 112.6, 115.0, 119.6, 129.0, 140.9, 158.5, 159.7, 162.1, 162.5, 195.7. Anal. calcd. for C$_{18}$H$_{17}$FN$_2$O$_2$: C, 69.22; H, 5.49; N, 8.97. Found: C, 69.28; H, 5.51; N, 8.99%. ESI-m/z calcd. for [C$_{18}$H$_{17}$FN$_2$O$_2$+H]$^+$. [Scheme 2. Synthesis of spirooxindole skeleton.]

Typical Procedure for the Synthesis of Spirooxindoles (6 and 7) as Exemplified for 2-Amino-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]-3-carbonitrile (6a)

A mixture of isatin (0.6 g, 4.0 mmol), malononitrile (0.29 g, 4.4 mmol), and dimedone (0.56 g, 4.0 mmol) in DMSO (5 mL) was stirred at 70°C for 1 h. The resulting mixture was poured into ice and stirred for 15 min; the solid obtained was filtered and washed with water and diethyl ether to afford pure product (1.16 g, 85%) as a pale yellow solid. Mp 267–269°C (lit.$^{[31]}$ 268–270°C); IR ν_{\max} (KBr) 3378, 3315, 3143, 2926, 1722, 1683, 1657, 1621, 1605, 1472, 1349 cm$^{-1}$; δ_H (400 MHz, DMSO-d_6) 1.00 (s, 3H), 1.03 (s, 3H), 2.11 (q, $J = 16.1$ Hz, 2H), 2.54–2.61 (m, 2H), 6.78 (d, $J = 7.6$ Hz, 1H), 6.89 (t, $J = 7.4$ Hz, 1H), 6.97 (d, $J = 7.2$ Hz, 1H), 7.14 (t, $J = 7.6$ Hz, 1H), 7.22 (s, 2H), 10.39 (s, 1H); δ_C (100 MHz, DMSO-d_6) 27.4, 28.0, 32.3, 47.2, 50.4, 57.9, 109.6, 111.2, 117.7, 122.1, 123.4, 128.5, 134.8, 142.4, 159.1, 164.5, 178.4, 195.2. Anal. calcd. for C$_{19}$H$_{17}$N$_3$O$_3$: C, 69.05; H, 5.11; N, 12.53. Found: C, 69.11; H, 5.12; N, 12.55%. ESI-m/z calcd. for [C$_{19}$H$_{17}$N$_3$O$_3$+H]$^+$. [Found 334.1.]

SUPPORTING INFORMATION

Full experimental details, analytical data, and copies of 1H and 13C spectra can be found via the Supplementary Content section of this article’s Web page.
ACKNOWLEDGMENTS

The authors thank the Department of Science and Technology, New Delhi, for assistance under the IRHPA Program for the NMR facility at Madurai Kamaraj University and thank Orchid Chemicals and Pharmaceuticals Ltd. for providing facilities.

REFERENCES

1. For example, (a) Dandia, A.; Singh, R.; Khaturia, S.; Merienne, C.; Morgant, G.; Loupy, A. Bioorg. Med. Chem. 2006, 14, 2409–2417; (b) Khafagy, M. M.; El-Wahas, A. H. F. A.; El-Agrody, A. M. Farmaco 2002, 57, 715–722; (c) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666–5667; (d) Ma, J.; Hecht, S. M. Chem. Commun. 2004, 1190–1191; (e) Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzinol, L.; Rosen, N. J. Am. Chem. Soc. 1999, 121, 2147–2155.

2. For example, (a) Singh, K.; Singh, J.; Singh, H. Tetrahedron 1996, 52, 14273–15280; (b) Bonsignora, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517–520; (c) Wu, J. Y. C.; Fong, W. F.; Zhang, J. X.; Leung, C. H.; Kwong, H. L.; Yang, M. S.; Li, D.; Cheung, H. Y. Eur. J. Pharmaco 2003, 473, 9–17; (d) Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S. J. Chem Soc., Chem Commun. 1988, 1202–1204; (e) Li, J.; Zheng, M.; Tang, W.; He, P. L.; Zhu, W.; Li, T.; Zuo, J. P.; Liu, H.; Jiang, H. Bioorg. Med. Chem. Lett. 2006, 16, 5009–5013; (f) Ye, D.; Shin, W. J.; Li, N.; Tang, W.; Feng, E.; Li, J.; He, P. L.; Zuo, J. P.; Kim, H.; Nam, K. Y.; Zhu, W.; Seong, B. L.; No, K. T.; Jiang, H.; Liu, H. Eur. J. Med. Chem. 2012, 54, 764–770; (g) Sollis, S. L.; Smith, P. W.; Howes, P. W.; Cherry, P. C.; Bethell, R. C. Bioorg. Med. Chem. Lett. 1996, 6, 1805–1808; (h) Taylor, N. R.; Cleasby, A.; Singh, O.; Skarzynski, T.; Wonacott, A. J.; Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Bethell, R.; Colman, P.; Varghese, J. J. Med. Chem. 1998, 41, 798–807; (i) Aridoss, G.; Zhou, B.; Hermanson, D. L.; Bleeker, N. P.; Xing, C. J. Med. Chem. 2012, 55, 5566–5581.

3. (a) Shanthi, G.; Subbulakshmi, G.; Perumal, P. T. Tetrahedron 2007, 63, 2057–2063; (b) Khurana, J. M.; Nand, B.; Saluja, P. Tetrahedron 2010, 66, 5637–5641; (c) Zhu, S. L.; Ji, S. J.; Zhang, Y. Tetrahedron 2007, 63, 9365–9372; (d) Ye, Z. X.; Xu, R.; Shao, X.; Xu, X.; Li, Z. Tetrahedron Lett. 2010, 51, 4991–4994; (e) Dabiri, M.; Bahramnejad, M.; Baghbanzadeh, M. Tetrahedron 2009, 65, 9443–9447; (f) Khan, A. T.; Lal, M.; Ali, S.; Khan, M. Tetrahedron Lett. 2011, 52, 5327–5332; (g) Mobinikhaledi, A.; Fard, M. A. B. Acta Chim. Slov. 2010, 57, 931–935; (h) Jin, T. S.; Wang, A. Q.; Wang, X.; Zhang, J. S.; Li, T. S. Synlett 2004, 871–873; (i) Karimi, A. R.; Sedaghatpour, F. Synthesis 2010, 1731–1735; (j) Balalai, S.; Bararjanian, M.; Amani, M. A.; Movassagh, B. Synlett 2006, 263–266; (k) Sridhar, R.; Srinivas, B.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D.; Rao, K. R. Can. J. Chem. 2009, 87, 1704–1707; (l) Hari, G. S.; Lee, Y. R. Synthesis 2010, 453–464; (m) Jin, T. S.; Wang, A. Q.; Shi, Y.; Han, L. S.; Liu, L. B.; Li, T. S. Arkivoc 2006, 1, 78–86; (n) Pore, D. M.; Undale, K. A.; Dongare, B. B.; Desai, U. V. Catal. Lett. 2009, 132, 104–108; (o) Wang, H. J.; Lu, J.; Zhang, Z. H. Monatsh. Chem. 2010, 141, 1107–1112; (p) Wang, X. S.; Shi, D. Q.; Tu, S. J.; Yao, C. H. Synth. Commun. 2003, 33, 119–126; (q) Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A. R. Tetrahedron Lett 2012, 53, 4687–4691; (r) Moghadam, K. R.; Miqi, L. Y. Tetrahedron 2011, 67, 5693–5699; (s) Moghadam, K. R.; Kiasaraie, M. S.; Azimi, S. C. Tetrahedron 2012, 68, 6472–6476; (t) Chen, Z.; Zhu, Q.; Su, W. Tetrahedron Lett 2011, 52, 2601–2604.
4. (a) Elinson, M. N.; Ilovaisky, A. I.; Merkulova, V. M.; Zaimovskaya, T. A.; Nikishin, G. I.
Mendelev Commun. **2012**, *22*, 143–144; (b) Khaksar, S.; Rouhollahpour, A.; Talesh, S. M.
J. Fluorine Chem. **2012**, *141*, 11–15.

5. (a) Xue, F.; MacKerell, A. D.; Heinzl, G.; Hom, K. *Tetrahedron Lett.* **2013**, *54*, 1700–1703;
(b) Paladhi, S.; Chauhan, A.; Dhara, K.; Tiwari, A. K.; Dash, J. *Green Chem.* **2012**, *14*,
2990–2995.