Design and Analysis Performance Solar Power Plant 15 kW
By Maximizing Final Yield and Performance Ratio
In Small-Medium Office

C H B Apribowo¹, M Nizam¹, S Pramono¹, H Maghfiroh¹ and K Hakim¹

¹Department of Electrical Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami
No.36A, Pucang Sawit, Kec. Jebres. Kota Surakarta, Jawa Tengah 57126
Corresponding author: chico@ft.uns.ac.id

Abstract. The 15 kW solar power plant (PLTS) is a new certain in the application of small-
medium solar energy usage, especially for the campus environment in Indonesia which can
support and become proof of realization green campus program. The existence of 15 kW PLTS
become an attention to do advanced analysis in order that production of the specific electric
energy or final yield (Y_f) and performance ratio (PR) from a PLTS can be monitored based on
installation location. The value of Y_f and PR can be used as reference to do identification, trouble
operation analysis, and developing of a PLTS. The optimum value of Y_f and PR on the 15 kW
PLTS resulted by doing simulation from a simulator software, which the value resulted from
location and configuration of the system installation without watch shading factor. And then the
simulation value compared with electric energy real production resulted on this 15 kW PLTS. The
15 kW PLTS divided be two lines, that are 5 kW and 10 kW line. From simulation result, showed
that in the 5 kW line have value of optimum production is 5264.8 kWh with PR 83.1% and in the
10 kW line have value of optimum production is 7687.2 kWh with PR 83.12%. Real production
in line 5 kW is 1326.9 kWh with difference 74.79% with simulation and in line 10 kW is 1643.3
kWh with difference 78.62% with simulation. The shading and existing disturbances resulted in
a decrease in electrical energy production and performance in the line 5 kW is Y_f 0.91 hours/day
with CF 2.79% and in the line 10 kW is Y_f 3.07 hours/day with CF 11.73%.

1. Introduction

The development of technology will increasingly encourage the increase in meeting the needs of
electrical energy to support the performance of a technology. In Indonesia itself has a 35,000 MW
electricity infrastructure development acceleration program (Kementerian ESDM, 2020) which must be
fulfilled immediately in order to support the pace of technological development. One way to meet these
targets is by building power plants using Renewable Energy (EBT), ranging from biofuel energy,
biomass energy, geothermal energy, water energy, wind energy, ocean wave energy and solar energy are
types of energy which can be updated. One of the most potential types of energy to be applied in
Indonesia is the type of solar energy [1].

Utilization of solar energy to meet the needs of electrical energy is often referred to as Solar Power
Generation (PLTS). Indonesia itself has a geographical location on the equator that makes it one of the
countries that is very suitable to establish a PLTS to meet an electrical energy needs. Many regions in
Indonesia are suitable for a PLTS, starting from a small to large scale PLTS. The scale starts from houses,
buildings and terrain that spreads throughout Indonesia [2]. To convert sunlight energy into electrical energy, a device that is often called a Solar Panel is needed.

Solar Panel itself is a component that can be used to convert sunlight energy into electrical energy using a principle called the photovoltaic effect. The photovoltaic effect itself is a phenomenon where an electric voltage arises because of a connection or contact of two electrodes, both of which are connected to a solid or liquid system when getting light energy [3]. For this reason, solar panels are often called photovoltaic (PV) cells. Solar panels themselves can be applied to meet a variety of needs with permanent and portable installation installations. The application of solar panels to meet the needs of permanent installations, for example, for making small and large scale solar power plants. Meanwhile, to meet the needs of the installation of a portable installation for example, namely as a source of power in electric vehicles, solar water pumps and others [4]. The application of solar panels to meet the needs of the permanent installation is an example of the PLTS at the Faculty of Engineering, Sebelas Maret University Surakarta (UNS) with 15 kW capacity.

PLTS in the Faculty of Engineering UNS itself is divided into two lanes, namely the 10 KW line which is installed in the parking area of the Faculty of Engineering UNS and the 5 KW line which is installed in the hallway near Building 3 of the Faculty of Engineering UNS. The installation of PLTS is also a form of support for realizing UNS as a green campus in Indonesia. But over time, the installation of PLTS at the UNS Faculty of Engineering has not had a real impact on meeting the electricity needs of the Faculty of Engineering, both when it is in the peak load phase and when it experiences a power failure. The PLTS has not been able to provide temporary supplies to overcome these conditions. Therefore, a further analysis is needed to determine the potential for electricity production, performance and obstacles faced in the operation of the PLTS in a certain period. The analysis is carried out by doing a simulation which is then compared with the real conditions.

In simulating the PLTS system, it can be done using the PVSyst software, where the parameters can be adjusted according to the system that has been installed and the system to be built. The results of this simulation will then be compared with the real conditions in order to know the real production of electrical energy, performance and constraints that exist in the PLTS system.

2. Theory

2.1 Solar Power Plant (PLTS)

PLTS is a power plant that converts sunlight energy into electrical energy through the process of energy conversion from a solar cell (photovoltaic). Solar cells contain thin layers made of pure silicon (Si) semiconductor material or other semiconductor materials which are then arranged into a unit that can be called a solar cell module. How solar cells work can be seen in Figure 1 below [5].

![Figure 1. Solar Cell Working System](image)

PLTS utilizes the energy of sunlight to produce DC electrical energy (can be converted into AC electrical energy if needed). In general, PLTS consists of several main components, namely solar cell
generators which are solar module arrays in a buffer system, inverters used to convert DC electricity into AC electricity in either single phase or three phase systems for large capacities, charge controllers used as a control system or monitoring PLTS operation, and also the battery used for storage.

Based on the location of installation, the PV-VP system is divided into two types of patterns namely the distributed PV system and the centralized PV plant. Meanwhile, based on the application and its configuration, it can be classified into two, namely the PV-system not connected network (off-grid PV plant) or standalone and the PV-connected PV plant system. If in its use, a PLTS system is combined with other types of power plants, it can be said as a hybrid system.

Some of the main factors that can affect variations in the production of electrical energy in solar power plants are the value of solar irradiation, temperature of solar modules, and shading in an operating time. The value of Irradiation will affect the value of the electric current generated by a solar power plant, the value of a module temperature will affect the value of the voltage generated by a solar power plant, while the value of the shading will affect the value of solar irradiation received by solar modules in the generation process which will indirectly affect the performance of a PLTS.

The performance or performance of a PLTS when viewed from the kWh meter itself is very easy to report, but when it is intended as an equal comparability between plants, it is not that simple. The first thing to consider is the climate of the sun, which values will differ from one location to another and weather data cannot always be estimated in more detail. Furthermore, the installed real energy is generally not precisely known due to the effects of unknown shading, overheating and network availability. However, the standard of evaluation for the performance or performance of PV-VPs differs from those that have been developed over time, and the most commonly used in general is to determine the energy output of a PV-VP during an annual or monthly period based on the following [7]:

1. Performance details in net kWh (net kWh) sent to the network per kW from the nominal power of the installed solar module is equal to the equivalent value of the total load for the plant.
2. The capacity factor is obtained as a result of the full load hour equation in% of the previous time.
3. Monthly and annual performance ratios are described as the actual amount of solar energy to the network in a period divided by the theoretical amount according to STC data from the solar module.

2.2 Analysis Performance PLTS

2.2.1 Final Yield \((Y_F) \)

The final yield \((Y_F) \) can be interpreted as a net output (net kWh) of AC energy in a system divided by the peak power value in a PV array that is installed with the provisions of the standard test conditions (STC) on solar irradiation \(1000 \text{ W/m}^2 \) and \(25^\circ \text{C} \) cell temperature or can be formulated as follows [8]:

\[
Y_F = \frac{E_{PV} \text{ kWh} \text{ AC} / \text{ kWp}_{\text{DC}}}{P_0} \tag{1}
\]

Note:
\(Y_F = \text{final yield} \)
\(P_0 = \text{peak power [kWpDC]} \)
\(E_{PV} = \text{energy to the network [kWhAC]} \)

2.2.2 Reference Yield \((Y_R) \)

The reference yield \((Y_R) \) is a total of solar insulation in a field \((H_T) \) in units \(\text{kWh/m}^2 \) which is divided by the irradiation of the reference array \((1 \text{ kW/m}^2) \), then the \((Y_R) \) can be interpreted as the sum of peak sun-hours or can be formulated as follows [8]:

\[
Y_R = \frac{H_T}{G_{\text{STC}}} (\text{kWh/m}^2/\text{kWp}) \tag{2}
\]

Note:
\(Y_R = \text{reference yield} \)
H_T = irradiation in the array field [kWh/m^2]
G_STC = reference irradiation STC [

2.2.3 Performance Ratio (PR)

Performance ratio (PR) can be interpreted as a ratio that shows the total loss in a PLTS system quality when converting from DC to AC output, which can be formulated as follows [9]:

\[\text{PR} = \frac{Y_F}{Y_R} \] \hspace{1cm} (3)

Note:

PR = performance ratio
Y_F = final yield
Y_R = reference yield

2.2.4 Capacity Factor (CF)

The capacity factor (CF) in a solar power plant can be interpreted as a ratio of actual energy output in a one-year period provided that it operates on nominal power for a full year (24 hours a day for a year) on its output or can be formulated as follows [10]:

\[\text{CF} = \frac{Y_F}{8760} \] \hspace{1cm} (4)

2.3 PVsyst

Figure 2. PVsyst Software Logo [17]

PVsyst is a software package used for the learning process, measurement (sizing), and data analysis of the complete PV mini-grid system. PVsyst was developed by the University of Geneva, which is divided into grid-connected systems, stand-alone systems, pump systems, and direct-current networks for public transportation (DC-grid). PVsyst is also equipped with a database of extensive and varied meteorological data sources, as well as PV-VP component data. Some examples of meteorological data sources that can be used on this PVsyst are from MeteoNorm V 6.1 (interpolated 1960-1990 or 1981-2000), NASA-SSE (1983-2005), PVGIS (for Europe and Africa), Satel-Light (for Europe), TMY2 / 3 and SolarAnywhere (for USA), EPW (for Canada), RetScreen, Helioclim, and SolarGIS (paid)

3. Research Method

3.1 Tools and Materials

In this research, some software is run on the laptop with the following specifications:

Operating System : Windows 7 Pro 64-bit
Processor : Intel (R) Core (TM) i3-7 @ 1.8GHz
Memory : 6 GB
VGA : NVIDIA GeForce
VGA Memory : 2GB

Then the software used to carry out this research is as follows:
1. Browser Google Chrome
2. PVsyst Versi 6.7.0
3. Microsoft Word
4. Microsoft Excel
3.2 Research Steps

The research methodology is a problem solving framework by processing and analyzing data. In general, the research methodology is structured to achieve the stated research objectives, then the entire research activity is designed to follow the flow chart as shown in Figure 2.

![Flowchart Simulation](image)

Figure 3. Flowchart Simulation

3.3 System Modelling

3.3.1 Location Coordinate

Geographically the 15 kW PLTS Faculty of Engineering UNS is located at coordinates -7.561328 South Latitude and 110.854319 East longitude with a height of ± 93 m above sea level can be seen in the following figure.

![Location of PLTS Faculty of Engineering UNS](image)

Figure 4. Location of PLTS Faculty of Engineering UNS

3.3.2 Modelling Solar Power Plant System

System modeling is carried out in accordance with the installed PV system specifications. The modeling step starts from filling in the location coordinates as in Figure 3.2, then selecting the type of...
installation of the PV system as in Figure 3.3, and filling in the component parameters according to the specifications as in Figure 3.4.

Figure 5. Input Location Coordinate

Figure 6. Choose Type Installation

Figure 7. Input Component Parameter

4. Results and Discussion

After the design and parameter filling, then run on the menu in the PVsyst application. Based on these treatments the following results were obtained:

4.1 Desain The Line of Solar Power Plant

4.1.1 Line 5 kW

Figure 8. Block Diagram Line 5 kW Of Solar Power Plant

Figure 8 shows a series of component installations in the PLTS system for a 5 kW line, where the system uses a monocrystalline 100 Wp Solarimba brand solar module with a total of 40 units installed in series-parallel. Each of the eight solar modules are arranged in series into one series and
then combined into a series of parallel strings connected to an inverter with a total capacity of 5.5 kW. The end of the system circuit is connected to the PLN grid system.

4.1.2 Line 10 kW

Figure 9. Block Diagram Line 10 kW Of Solar Power Plant

Figure 9 shows a series of component installations in the PLTS system for a 10 kW line, where the system uses a Canadian Solar 330 Wp polycrystalline type solar module with 16 units installed in series-parallel. Each of the four solar modules are arranged in series into one series then each of the two series is connected to one parallel series of strings connected to an inverter with a total capacity of 5.5 kW. Where the 10 kW line has two inverters and the end of the system circuit is connected to the PLN grid system

4.2 PVsyst Simulation

4.2.1 Line 5 kW

Based on the simulations that have been carried out, it can be obtained that the data on the 5 kW line has the optimum potential in producing electrical energy, which is 5264.8 kWh per year, with details as in table 1 and a performance ratio of 81.4% as in table 2 provided that no there is shading on the attached location.

Table 1. Optimum Potential of Electrical Energy Production on a 5 kW Line

Month	GloHor kWh/m²	DiffHor kWh/m²	T Amb °C	GlobInc kWh/m²	GlobEff kWh/m²	E Load kWh	E User kWh	E Grid kWh
January	128.2	75.92	27.20	144.2	109.5	155.7	50.83	322.8
February	120.2	73.68	26.93	112.0	87.8	140.7	42.94	323.8
March	143.4	81.62	27.38	141.0	136.3	155.7	51.84	407.1
April	144.5	75.35	27.69	151.1	146.5	150.7	53.49	438.0
May	159.1	71.50	28.30	178.8	173.9	155.7	58.96	522.7
June	150.6	58.69	27.53	175.6	171.0	150.7	57.95	514.8
July	162.5	66.38	27.55	186.9	182.0	155.7	58.11	551.4
August	165.4	73.58	27.71	197.5	194.5	155.7	57.95	524.8
September	170.0	73.30	27.93	171.9	166.8	150.7	51.11	495.6
October	170.5	89.84	28.57	161.9	156.4	155.7	60.25	463.3
November	136.9	87.29	27.79	123.8	118.9	150.7	56.49	349.8
December	139.3	89.32	27.45	122.9	117.7	155.7	54.01	350.5
Year	1790.4	916.47	27.68	1819.7	1761.4	1833.8	660.97	5264.8

Table 2. Normal Performance Coefficient on the Line 5 kW

Month	Vc kWh/m²/day	Le kWh/Wp/d	Le kWh/Wp/d	Lf kWh/Wp/d	Lcr	Lsr	PR	
January	3.68	0.632	3.05	0.038	3.01	0.172	0.010	0.818
February	4.00	0.686	3.31	0.038	3.27	0.172	0.009	0.819
March	4.55	0.811	3.74	0.038	3.70	0.178	0.008	0.813
April	5.04	0.905	4.13	0.037	4.10	0.180	0.007	0.813
The PV grid production chart with a period of one year on the 5 kW line can be seen in Figure 10 and the flow chart of PLTS losses on the 5 kW line can be seen in Figure 11.

4.2.2 Line 10 kW

Based on the simulations that have been carried out, it can be obtained that the data on the 10 kW line has the optimum potential in producing electrical energy, which is 7687.2 kWh per year with details as in table 3 and a performance ratio of 83.0% as in table 4 with the provision that there is shading on the attached location.

Table 3. Optimum Potential of Electrical Energy Production on a 10 kW Line

Month	GlobHor kWh/m²	DiffHor kWh/m²	T Amb °C	GlobInc kWh/m²	GlobEff kWh/m²	E Load kWh	E User kWh	E Grid kWh
January	128,3	75,89	27,20	144,5	111,0	62,74	24,64	480,9
February	120,2	73,67	26,93	112,2	109,0	56,67	21,43	474,0
March	143,3	81,64	27,38	141,1	137,6	62,74	24,17	594,9
April	144,4	75,39	27,69	151,1	147,6	60,72	23,78	637,9
May	159,0	71,57	28,30	178,8	175,0	62,74	24,80	756,4
June	150,6	58,69	27,53	175,4	172,1	60,72	24,33	745,3
July	162,4	66,49	27,55	186,7	183,0	62,74	25,12	793,3
August	165,7	73,43	27,71	179,8	176,1	62,74	25,13	760,1
September	169,9	73,37	27,93	171,9	168,2	60,72	24,33	722,3
October	170,4	89,92	28,57	162,0	158,0	62,74	25,71	680,0
November	136,7	87,30	27,79	124,0	120,3	60,72	25,39	522,0
December	139,2	89,33	27,45	123,2	119,2	62,74	25,09	520,1
Year	1790,2	916,69	27,68	1820,4	1777,2	738,76	293,93	7687,2

Table 4. Normal Performance Coefficient on the Line 10 kW

Month	Y_c kWh/m²/day	L_c kWh/kWp/d	Y_s kWh/kWp/d	L_s kWh/kWp/d	L_cr	L_sr	PR	
January	3,69	0,573	3,12	0,033	3,09	0,155	0,009	0,836
February	4,01	0,621	3,39	0,034	3,35	0,155	0,009	0,836
March	4,55	0,734	3,82	0,037	3,78	0,161	0,008	0,831
Month	PVsyst E Grid (kWh)	Real E Grid (kWh)	Difference E Grid (kWh)	Difference in %				
----------	---------------------	-------------------	-------------------------	----------------				
January	322,800	91,140	231,660	71.76				
February	323,800	89,088	234,712	72.48				
March	407,100	104,160	302,940	74.41				
April	438,000	136,800	301,200	72.48				
May	522,700	111,600	411,100	78.64				
June	514,800	122,760	392,040	76.15				
July	551,400	123,504	427,896	77.60				
August	524,800	122,760	402,040	76.60				
September	495,600	119,520	376,080	75.88				
October	463,300	102,300	361,000	77.91				
November	349,800	104,400	245,400	70.15				
December	350,500	98,952	251,548	71.76				
Total Production	5,264,8	1,326,9	3,937,816	74.79				

The performance of the PLTS system installed on the 5 kW line will also be affected due to the decrease in electrical energy production. The system has a specific performance value of 0.91
hours / day, which is lower than the simulation results of 4.06 hours / day. In addition, the capacity factor of the system in producing actual energy for a full day (24 hours) has a value of 3.79% which is lower than the simulation results. Details of specific performance and capacity factors on the 5 kW line can be seen in Table 6.

Table 6. Specific Performance and Capacity Factors on the 5 kW Line

Month	PVsyst E Grid (kWh)	Real E Grid (kWh)	\(Y_P\) (P) (h/d)	\(Y_P\) (R) (h/d)	CF (P) (%)	CF (R) (%)
January	322,800	91,140	3.01	0.73	12.54	3.06
February	323,800	89,088	3.27	0.78	13.63	3.19
March	407,100	104,160	3.70	0.83	15.42	3.49
April	438,000	136,800	4.10	1.14	17.08	4.75
May	522,700	111,600	4.69	0.93	19.54	3.87
June	514,800	122,760	4.77	1.02	19.88	4.26
July	551,400	123,504	4.92	0.99	20.50	4.15
August	524,800	122,760	4.70	0.98	19.58	4.12
September	495,600	119,520	4.61	0.99	19.21	4.15
October	463,300	102,300	4.22	0.82	17.58	3.43
November	349,800	104,400	3.39	0.87	14.13	3.62
December	350,500	98,952	3.26	0.79	13.58	3.32
Total Production	5,264,8	1,326,9	4.06	0.91	16.89	3.79

4.3.2 Line 10 kW

The comparison between the simulation results using PVSyst and the real conditions can be analyzed that the real production of electrical energy within a year on the 10 kW line from the installed PLTS system has a difference of 78.62% lower than the simulation results. The results obtained from the simulation results show a value of 7,687,200 kWh while the real production of electrical energy is 1,643,305kWh. Details of the comparison of electrical energy production on the 10 kW line can be seen in Table 7.

Table 7. Comparison of Electrical Energy Production on a 10 kW Line

Month	PVsyst E Grid (kWh)	Real E Grid (kWh)	Difference E Grid (kWh)	%
January	480,900	113,430	367,470	76.41
February	474,000	101,059	372,941	78.67
March	594,900	103,118	491,782	82.66
April	637,900	161,368	476,332	74.67
May	756,400	176,299	580,101	76.69
June	745,300	184,377	560,922	75.26
July	793,300	152,222	641,078	80.81
August	760,100	157,132	602,968	79.32
September	722,300	147,312	574,988	79.60
October	680,000	122,760	557,240	81.94
November	522,000	114,523	407,477	78.06
December	520,100	109,501	410,598	78.94
Total Production	7,687,200	1,643,305	6,043,895	78.62

The performance of the PLTS system installed on the 10 kW line will also be affected due to the decrease in electrical energy production. The system has a specific performance value of 3.07 hours / day, which is lower than the simulation results of 4.71 hours / day. In addition, the capacity factor of the system in producing actual energy for a full day (24 hours) has a value of 11.73% which is lower than the simulation results. Details of specific performance and capacity factors on the 10 kW line can be seen in Table 8.

Table 8. Specific Performance and Capacity Factors on the 10 kW Line

Month	PVsyst E Grid (kWh)	Real E Grid (kWh)	\(Y_P\) (P) (h/d)	\(Y_P\) (R) (h/d)	CF (P) (%)	CF (R) (%)
January	480,900	113,430	3.09	2.29	12.87	9.52
4.3.3 Analysis Performance

The production of electrical energy that is not optimal in this system is caused by several things, namely differences in irradiation climates, low solar irradiation values received by the PLTS system due to shading, dust and lack of periodic maintenance. This has an impact on decreasing the specific performance value within one year, which is 0.91 hours per day with a capacity factor of 3.79% for the 5 kW line and by 3.07 hours per day with a capacity factor of 11.73% for 10 kW line. The shading in the PLTS system causes the sun's rays to fall, either because of shadows from buildings or trees and dust sticking to the solar module. This condition can be seen in Figure 14 and Figure 15 below.

![Figure 14. Real Condition in Line 5 kW](image1)

![Figure 15. Real Condition in Line 10 kW](image2)

5. Conclusions

Based on the results and discussion, conclusions can be drawn, namely:

1. 15 kW PLTS Faculty of Engineering UNS has the optimal potential to produce electrical energy for one year on the 5 kW line of 5264.8 kWh with a performance ratio of 81.4% and on the 10 kW line of 7687.2 kWh with a performance ratio of 83.0% with notes without taking the shading factor.
2. The production of 15 kW PLTS electrical energy at the Faculty of Engineering UNS during a period of one year is smaller than the optimum potential for electrical energy production from the simulation results, which is 1,326.9 kWh with a difference of 74.79% to the simulation results of 5,264.8 kWh in 5 kW line and 1,643,305 kWh with a difference of 78.62% of the simulation results worth 7,687,200 kWh on the 10 kW line.
3. The non-optimum production of electrical energy is caused by several things, namely differences in irradiation climates, low solar irradiation values received by the PLTS system due to shading, presence of dust and lack of regular maintenance. This has an impact on decreasing the specific performance value within one year, which is 0.91 hours per day with a capacity factor of 3.79% for the 5 kW line and by 3.07 hours per day with a capacity factor of 11.73% for 10 kW line.

References

[1] KESDM RI, Blueprint Pengelolaan Energi Nasional (BP-PEN) 2006-2025, Jakarta, 2006.
[2] PT. PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) 2019-2028.
[3] BPPT, Indonesia Energy Outlook, Jakarta: Badan Pengkajian dan Penerapan Teknologi, 2019.
[4] Tetra Tech, Panduan Studi Kelayakan Pembangkit Listrik Tenaga Surya (PLTS) Terpusat, Jakarta Selatan: USAID, 2018.

[5] ABB QT, Technical Application Papers No. 10 Photovoltaic Plants, 2010.

[6] R. Sianipar, "Dasar Perencanaan Pembangkit Listrik Tenaga Surya," JETri, vol. XI, pp. 61-78, 2014.

[7] S. B. Mohamad, "Potensi Dan Peran PLTS Sebagai Energi ALternatif Masa Depan Di Indonesia," Jurnal Sains dan Teknologi Indonesia, vol. XIV, pp. 146-152, 2012.

[8] S. Sigit and H. Mohammad, "Perencangan Dan Analisis Pembangkit Listrik Tenaga Surya Kapasitas 10 MW On Grid Di Yogyakarta," Jurnal Energi & Kelistrikan, vol. VII, pp. 49-63, 2015.

[9] A. D. S. Thiago, C. S. J. Sandro, I. S. P. Renata and A. D. S. Solonildo, "Design And Construction Of A Didactic Standalone Photovoltaic Plant," International Journal Of Advanced Engineering Research and Science (IJAERS), vol. V, no. 10, pp. 29-38, 2018.

[10] P. T. M. Azis and Muhlizar, "Penentuan Kemiringan Sudut Optimal Panel Surya," Jurnal Optimalisasi, vol. III, 2017.

[11] Suriardi and S. Mahdi, "Perencanaan Pembangkit Listrik Tenaga Surya (PLTS) Terpadu Menggunakan Software PVsyst Pada Komplek Perumahan Di Banda Aceh," Jurnal Rekayasa Elektrika, vol. IX, pp. 77-80, 2010.

[12] S. I. K. Agus, K. I. N. Satya and I. S. Wayan, "Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) Satu MWp Terinterkoneksi Jaringan Di Kayubihi, Bangli," Teknologi Elektro, vol. XIII, 2014.

[13] K. Sujain, C. Deepika and K. D. Devendra, "A Comparative Analysis Of Different Thermal Parameter Arrangements With Silicon Polycrystalline Using PVsyst," International Journal Of Engineering And Applied Sciences (IJES), vol. IV, pp. 20-29, 2017.

[14] S. Eka Meilia, Rosmalati and F. C. Ida Bagus, "Analisis Unjuk Kerja Sistem Fotovoltaik On-Grid Pada Pembangkit Listrik Tenaga Surya (PLTS) Gili Terawangan," Dielektrika, vol. I, pp. 82-95, 2014.

[15] S. I. K. Agus, K. I. N. Satya and I. S. Wayan, "Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) Satu MWp Terinterkoneksi Jaringan Di Kayubihi, Bangli," Teknologi Elektro, vol. XIII, 2014.

[16] G. N. Surya, K. I. N. Satya and I. Rina, "Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) 26,4 kWp Pada Sistem Smart Microgrid Unud," Jurnal SPEKTRUM, vol. VI, pp. 1-9, 2019.

[17] PVsyst, "www.pvsyst.com," PVsyst, 14 Februari 2015. [Online]. Available: http://www.pvsyst.com/images/pdf/PVsyst_Tut. [Accessed 28 Januari 2020].

[18] G. Ashish, K. Anita and J. Dheeraj, "Design and Simulation of 20 MW Photovoltaic Power Plant Using PVsyst," Indonesian Journal Of Electrical Engineering And Computer Science, vol. XIX, pp. 58-65, 2020.

[19] U. Azis and S. Bintang, Buku Petunjuk Praktekum Mata Kuliah Pembangkitan Sistem Tenaga Listrik, Surakarta, 2019.

[20] A. Oday A, H. Waleed H, M. Dhai Y, J. Kanaan A and S. Hussain, "Design and Performance Analysis of 250 kW Grid Connected Photovoltaic System in Iraqi Environment Using PVsyst Software," Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. VII, pp. 415-421, 2019.

[21] D. Nibedita, P. Niti and K. S. Pradip, "Design of Interior Daylighting Shading Control Using LV and PVsyst Software," TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. XIV, pp. 388-401, 2015.

[22] G. B. Andre, C. d. O. N. Denise and J. A. Cristiane de, "Economic Feasibility Study Of Photovoltaic Panels Installation by PVsyst 6.73 Simulator," International Journal Of Advanced Engineering Research And Science (IJAERS), vol. V, no. 9, pp. 154-162, 2018.