2017-10

Provably safe cruise control of vehicular platoons

Sadraddini, Sadra

Sadra Sadraddini, S. Sivarajani, Vijay Gupta, Calin Belta. 2017. "Provably Safe Cruise Control of Vehicular Platoons." IEEE Control Systems Letters, v. 1, issue 2, pp. 262 - 267.
https://hdl.handle.net/2144/29607
Boston University
Abstract—We synthesize performance-aware safe cruise control policies for longitudinal motion of platoons of autonomous vehicles. Using set-invariance theories, we guarantee infinite-time collision avoidance in the presence of bounded additive disturbances, while ensuring that the length and the cruise speed of the platoon are bounded within specified ranges. We propose (i) a centralized control policy, and (ii) a distributed control policy, where each vehicle’s control decision depends solely on its relative kinematics with respect to the platoon leader. Numerical examples are included.

Index Terms—Autonomous vehicles; Constrained control; Robust control

I. INTRODUCTION

Platooning strings of autonomous vehicles equipped with sensing, communication and computation capabilities has two promising benefits. First, there is a potential to dramatically increase traffic flow capacity since autonomous vehicles can move with small separations at high velocities [1], a behavior that cannot be safely executed by human drivers. Second, platooning with tight spacing impacts the aerodynamics of vehicles in a manner that decreases fuel consumption [2].

Control-theoretic aspects of platoons have been studied for several decades (see [3] and [4] for a survey). The typical control objective has been asymptotic string stability, that is, the convergence of inter-vehicular spacings to desired setpoints, specified in terms of constant spacing [5], [6] or a constant time headway [9], [10]. String stability has been studied for various information architectures such as predecessor following [11], leader and predecessor following [8], [13], and nearest neighbor interaction [14]–[16]. H_∞ methods have also been proposed to deal with exogenous disturbances [14], [17]. Recently, multi-agent control paradigms have been employed to analyze vehicular platoons from a scalability perspective for various information topologies [18] and design distributed controllers to enhance stability margins in large platoons [19].

While asymptotic string stability is important to guarantee that small disturbances do not propagate along the platoon, it is more important to guarantee the safety of the platoon in the sense that vehicles do not collide with each other. Early works on safe longitudinal platooning [20]–[22] focused on simple two-car scenarios where the input to the leader vehicle is considered as an adversarial input and the objective of the follower vehicle is to avoid collision with the leader for all allowable behaviors of the leader. Such a formalism may be too conservative since it does not assume intelligent control over the leader. A similar paradigm was considered in [23], [24] for platooning of heavy duty trucks, where the platoon is considered safe, if for all possible behaviors of a vehicle in the platoon, there exist control inputs for other vehicles to avoid collisions. A control invariant set was synthesized to restrict the evolution of the system accordingly.

Instead of considering driver behavior of the predecessor vehicle as adversarial, a more realistic and less conservative approach is to consider platooning when fast, time varying disturbances act in an adversarial manner on the vehicles. Disturbances are physically attributed to hard-to-model nonlinear effects such as changes of gears, side wind effects and actuator imperfections. Further, adversarial disturbances may also be used, to an extent, to capture the effect of communication delays and other delays in the platoon dynamics. The objective, then, is to design controllers such that collisions are avoided for all times and all allowable disturbances. It is well known that such a formulation is closely related to l_∞ optimal control [25], viability theory [26] and set-invariance methods [27]. Controllers satisfying set-invariance specifications are often nonlinear even if the system is linear [28], while no invariance inducing linear controller may exist. Therefore, stabilizing linear controllers may not be sufficient for platoon safety. While recent works like [29], [30] guarantee safety by designing controllers to bound the spacing error of vehicles, these methods do not provide specific bounds on the control inputs. Therefore, exhaustive simulations and tuning of parameters are required to verify whether the platoon operation is collision-safe and actuator limits are respected.

We provide a formal correct-by-design approach to synthesize platoon safety control policies using set-invariance methods. We model each vehicle as a discrete-time double integrator subject to bounded additive disturbances and bounded control inputs. We specify the system requirements as infinite-time collision avoidance while restricting the length and the cruise speed of the platoon to user-defined ranges. We propose both centralized and distributed optimal control policies. For the centralized case, we compute a robust control invariant (RCI) set inside the safe set corresponding to the platoon specifications. We use the computational methods from [31] to synthesize RCI sets by solving a single linear program, which has polynomial complexity in the size of platoon. However, this method is still not scalable to large platoons. Therefore, using ideas from separable RCI sets [32], we propose a (conservative) distributed control policy with $\mathcal{O}(1)$ complexity, where each vehicle’s control decision depends solely on its relative kinematics with respect to the platoon leader.

This paper is organized as follows. In Sec. I, we formulate
Note that $\mathbb{U} \subset \mathbb{R}^{N+1}$ and $\mathbb{W} \subset \mathbb{R}^{2(N+1)}$, and both are hyper-rectangles in their respective domains. The bounds in \mathbb{W} may depend on the vehicle velocities, leading to nonlinearities in (1). For simplicity, we assume that the bounds in \mathbb{W} are constant and known given a nominal operating point of (1). While the determination of these bounds is out of scope of this paper, a suitable experimental setup can be used to compute a (tight) hyper-rectangle \mathbb{W} containing all measured disturbances. The exact knowledge of \mathbb{W} is not required. As it will be clear from subsequent discussion, over-approximating \mathbb{W} retains collision avoidance guarantees, but is conservative. Under-approximation, on the other hand, may lead to collision.

We assume that the vehicles do not have (accurate, real-time) access to their absolute positions, but have real-time access to relative distances using on-board radars and relative velocities. Vehicles can measure their absolute velocities using on-board speedometers. Relative velocities can then be computed from data acquired by Vehicle-to-Vehicle (V2V) communication. We define the relative position and velocity of the i-th vehicle with respect to the leader to be

$$\tilde{x}_i := x_0 - x_i, \quad \tilde{v}_i := v_0 - v_i, \quad i = 1, \ldots, N.$$

Substituting (4) in (1), we obtain:

$$\tilde{x}_i = \tilde{x}_i^0 + \tilde{v}_i \Delta t + (u_0 - u_i) \Delta^2 + w_{i,x} - w_{i,v},$$

$$\tilde{v}_i = v_0 + u_0 \Delta t + w_{i,v}.$$

The platoon state is defined as the vector $y := (\tilde{x}_1, \tilde{v}_1, \tilde{x}_2, \tilde{v}_2, \ldots, \tilde{x}_N, \tilde{v}_N, v_0, \Delta^T), y \in \mathbb{R}^{2N+1}$. The evolution of the platoon state is given by:

$$y^+ = Ay + Bu + Ew,$$

where A, B and E are constant matrices obtained from (5).

Remark 1 (Information Structure): The requirement that all vehicles possess information about the leader’s position and velocity may lead to performance issues in large platoons due to communication delays. However, taking into account imperfections through disturbances can potentially allow the use of larger sampling times Δt, thereby accommodating greater communication times and hence, longer platoons. Future work will involve relaxing the V2V communication demand on the platoon by considering local information from preceding and following vehicles.

We now state the problem addressed in this paper.

Problem 1: Given a platoon of $N + 1$ autonomous vehicles whose dynamics is described by (6), a desired upper-bound for platoon length $L > \sum_{i=0}^{N} l_i$ and a desired range of platoon speed $[v_{0,\text{min}}, \ v_{0,\text{max}}]$, find a feedback control policy $\mu : \mathbb{R}^{2N+1} \rightarrow \mathbb{U}, u = \mu(y)$, such that:

- collisions are avoided:

$$\tilde{x}_i > \tilde{x}_{i-1} + l_{i-1}, \quad i = 1, \ldots, N, \quad \tilde{x}_0 = 0,$$

- the platoon length is bounded:

$$\tilde{x}_N \leq L,$$

1Theoretically, collision-avoidance inequality constraints are strict. However, our computational methods (e.g., linear programming) can only handle non-strict inequalities. In practice, due to over-approximations of the disturbances, inequality constraints are satisfied with some margin and non-strict formulation does not raise a problem.
• the platoon velocity is bounded:

\[v_0 \in [v_{0,\text{min}}, v_{0,\text{max}}], \]

(9)

for all times and for all allowable sequences of admissible disturbances acting on the platoon. Denote by \(M \) the set of all control policies such that (7)-(9) are satisfied. If \(|M| > 1 \), select an optimal control policy \(\mu^* \) such that \(J(\mu^*) \leq J(\mu), \forall \mu \in M \), where \(J : M \rightarrow \mathbb{R} \) is a cost function.

Note that we have not specified desired speed ranges for the follower vehicles, as these naturally follow from the bounds on the platoon length and the collision avoidance requirements. Nevertheless, speed specifications for individual vehicles can be easily accommodated in our framework. Constraints (7)-(9) define a convex safe set \(S \subset \mathbb{R}^{2N+1} \). The problem of finding a safe control policy is equivalent to finding a robust control invariant set inside \(S \), which is formalized in Section III-A.

III. SAFE CRUISE CONTROL

We provide two solutions to Problem 1. First, we propose a centralized solution where \(u = \mu(y) \) is computed by a central coordinator (which can be placed on one of the vehicles, say, the leader). Even though the computation of this solution has polynomial complexity in the size of platoon, it is not applicable to very large platoons. Second, we provide a distributed solution in which the control decision for each of the following vehicles is computed solely using their kinematics with respect to the leader.

A. Controlled Invariance

Definition 1: A set \(\Omega \subset \mathbb{R}^{2N+1} \) is a robust control invariant (RCI) set for system (6) if

\[\forall y \in \Omega, \exists u \in U, \text{ s.t. } Ay + Bu + EW \subseteq \Omega. \]

Given a RCI set \(\Omega \subseteq S \), it is well known that there exists a unique, maximal RCI \(\Omega_\infty \subseteq S \) which contains all the RCI sets in \(S \). The computation of \(\Omega_\infty \) requires implementing the well known fixed-point algorithm \([28] \):

\[\Omega_\kappa = S, \Omega_{k+1} = \Omega_k \cap \text{rPre}(\Omega_k), \]

(10)

where \(\text{rPre}(\Omega_k) = \{ y \in \mathbb{R}^{2N+1} \mid \exists u \in U, \text{ s.t. } Ay + Bu + EW \subseteq \Omega_k \} \). We have \(\Omega_k \subseteq \Omega_{k-1} \subseteq \cdots \subseteq \Omega_0 = S \). The algorithm terminates at \(k^* \in \mathbb{N} \) if \(\Omega_{k^*} = \Omega_{k^*-1} \), which concludes \(\Omega_\infty = \Omega_{k^*} \). Then, we have:

\[M := \{ \mu : \mathbb{R}_+ \rightarrow U | Ay + Bu(\mu) + EW \subseteq \Omega_\infty \}. \]

Notice that \(M = \emptyset \) if and only if \(\Omega_\infty = \emptyset \). There is no guarantee that there exists a finite \(k^* \) to terminate (10).

Therefore, determining a safe control policy belongs to the semi-decidable class of decision problems in the sense that the corresponding algorithm eventually terminates if a safe control policy exists, but may run indefinitely if one does not exist. In addition to the termination issue, implementing (10) is computationally difficult even for small dimensions due to the quantifier elimination process and numerical issues that arise from handling a large number of constraints with many potential redundancies \([28] \). Therefore, we follow a different approach to find a RCI set for (6).

The idea is to find a RCI set \(\Omega \subseteq \Omega_\infty \subseteq S \) instead of the maximal RCI set. Therefore, safety is guaranteed (soundness) but completeness may be lost. There exist methods that (under-)approximate the maximal RCI set \([27], [33] \). We use the method introduced by Raković et al. \([31] \) to compute a RCI set. Due to space limitations, we briefly explain the method to find a RCI set for a linear system characterized by the pair \((A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}) \) and the additive disturbance set \(D = EW \subset \mathbb{R}^n \). For system (6), we have \(n = 2N + 1 \) and \(m = N + 1 \). Consider the following set:

\[\Omega(M_\kappa) = \bar{x} + (1 - \alpha)^{-1} \bigoplus_{i=0}^{k-1} (A^i + \xi_i M_\kappa) D, \]

(11)

where \(\bar{x} \in \mathbb{R}^n \) is an offset vector, \(M_\kappa = (M_\kappa^T, M_\kappa^T, \ldots, M_{\kappa-1}^T) \in \mathbb{R}^{km \times n} \) is the matrix of parameters and \(\xi_i = (A^{i-1} B, A^{i-2} B, \ldots, A B, 0, \ldots, 0) \in \mathbb{R}^{n \times km}, i = 0, \ldots, \kappa \), \(\xi_0 = 0 \in \mathbb{R}^{n \times km} \), where \(\kappa \) is an integer, greater than the controllability index of the pair \((A, B) \), that determines the number of parameters characterizing the RCI set, and \(\alpha \in [0, 1] \) is the contraction factor.

Proposition 1: \([31] \) The set \(\Omega(M_\kappa) \) is a RCI set in \(S \) if there exists \(M_\kappa \) such that

\[(A^\kappa + \xi_\kappa M_\kappa) D \subseteq \alpha D, \]

(12a)

\[\bar{u} + (1 - \alpha)^{-1} \bigoplus_{i=0}^{k-1} (M_i D) \subseteq U, \]

(12b)

where \(\bar{u} \) is an offset vector for the controls.

It can be shown that checking the feasibility of the constraints in (12), alongside \(\Omega(M_\kappa) \subseteq S \), is equivalent to feasibility checking of a linear program (LP). Moreover, by solving the corresponding LP with a zero cost vector or some ad-hoc cost criteria\(^2\), numerical values for \(\bar{x}, \bar{u} \) and \(M_\kappa \) that characterize the RCI set are found\(^3\). In many cases, the RCI sets computed using this method finely under-approximate, or are exactly equal to, the maximal RCI set. However, this method has the disadvantage of not providing an explicit representation for the RCI set, instead providing an implicit representation in high dimensions. Nevertheless, the invariance-inducing controller can be computed in high dimensions and mapped back to the original dimensions. The details of this method are not provided here as they are well documented in \([31] \).

In this paper, the admissible disturbance set \(W \) plays a major role in determining whether a safe control policy exists. We let

\[W = \lambda W_0, \]

(13)

where \(W_0 \subset \mathbb{R}^{2(N+1)} \) is a fixed set (assumed to be a hyper-rectangle, as previously stated), and \(\lambda > 0 \) is a scalar that is used to scale the set. Using the bisection method over \(\mathbb{R}_+ \), we search for the largest \(\lambda \), denoted by \(\lambda^* \), such that a RCI set exists. In this context, \(\lambda^* W_0 \) is the largest set of admissible disturbances that the platoon can accommodate. We denote the corresponding RCI set by \(\Omega^* \).

\(^2\)See \([31] \) for some useful cost vector suggestions.

\(^3\)Our software implementing the method in \([31] \) is publicly available at https://github.com/sadraddini/PARCIS
B. Centralized Control

We compute a RCI set \(\Omega \subseteq \mathbb{S} \). Define

\[
\mathcal{M} := \left\{ \mu : \Omega \rightarrow \mathbb{U} \mid Ay + B\mu(y) + EW \subseteq \Omega \right\}.
\]

For all \(\mu \in \mathcal{M} \), constraints (7)-(9) are satisfied for all times if \(y_0 \in \Omega \), where \(y_0 \) is the initial state. We select the suboptimal invariance-inducing control policy \(\mu^\ast \) such that

\[
J(\mu^\ast) \leq J(\mu), \forall \mu \in \mathcal{M} \quad \text{(global optimality is achieved if } \mathcal{M} = \mathbb{M}, \text{ or } \Omega = \Omega_\infty). \]

It can be shown that the resulting control policy is a piecewise affine function of state, which can be computed explicitly in an offline manner using parametric programming [34] or solved online using a linear/quadratic program. This control policy is centralized and the control decision is computed using the full knowledge of the state of the system.

Example 1: Consider a platoon of \(N + 1 \) vehicles. Let \(l_i = 4.5 \text{m} \), \(i = 1, \ldots, N \), and the desired platoon speed range be \([13, 17] \text{m/s}\). We assume \(\Delta t = 0.5s \), \(\mathcal{U} = \prod_{i=0}^{N} [-3, 3] \text{m/s}^2 \), and \(\mathcal{W}_0 = \prod_{i=0}^{N} [-0.25, 0.25] \text{m/s} \). We use the method in [31] with \(\alpha = 0 \) and \(\kappa = 10 \).

1) Let \(N = 2 \) and let the upper-bound for platoon length be \(L = 10 \text{m} \). Note that the platoon length cannot be smaller than 9m. The projection of the safe set \(\mathbb{S} \) onto the \(x_1-x_2 \) space is the following triangle:

\[
\left\{ (\tilde{x}_1, \tilde{x}_2) \mid \tilde{x}_1 + 4.5 \leq \tilde{x}_2, \tilde{x}_2 \leq 10, \tilde{x}_1 \geq 4.5 \right\}.
\]

We found \(\lambda^\ast = 0.23 \) (with 0.01 precision). The projection of \(\Omega^\ast \) on \(x_1-x_2 \) is shown in Fig. 2.

2) Let \(N = 6 \) and \(L = 30 \text{m} \). We found \(\lambda^\ast = 0.29 \). We simulated the system for 120 time steps, which equals 60 seconds. The initial conditions were the centers of the intervals for allowed spacings and speeds. The disturbances at each time were selected randomly from the set \(\mathcal{W} \), with a bias toward the boundary of \(\mathcal{W} \) (to simulate the system under heavy disturbances). We used \(J(\mu) = \| \mu(y) \|_2^2 \), which penalizes the total control effort. Thus, the control inputs at each time were computed using the following optimization problem:

\[
\begin{align*}
\min_{u(y)} & \; \| u \|^2, \\
\text{s.t.} & \; Ay + Bu \oplus EW \subseteq \Omega^\ast,
\end{align*}
\]

which is mapped into a quadratic program and is feasible by construction for all \(y \in \Omega^\ast \). The results in Fig. 2 show that the system specifications are met. The headways (the distances of the fronts of the vehicles from the backs of the vehicles immediately preceding them) are always greater than zero. Thus, collision avoidance is ensured. The platoon speed, length and controls are bounded within their specified ranges. The bottom plot in Fig. 2 shows the trajectory of the vehicles in the leader frame, where the vertical axis is time and the horizontal axis is space. Each vehicle is depicted by a black rectangle. The leader, which is the vehicle on the right, is fixed in this frame and the follower vehicles move due to the disturbances.

3) We study how \(\lambda^\ast \) and the computation time of \(\Omega^\ast \) vary with \(N \). We keep the density \(\rho = N/L \) constant and vary \(N \). We used the Gurobi [35] LP solver on a dual core 2.8GHz iMac. The results, shown in Table I, indicate that \(\lambda^\ast \) grows with \(N \), even though \(\rho \) is constant. For example, 4 vehicles following a leader within 20m can accommodate larger disturbance magnitudes than 8 vehicles within 40m. This is attributed to the advantage gained from coordinating the vehicles in a centralized manner. We also empirically observe that \(\lambda^\ast \) converges to a particular value as \(N \) increases.

C. Distributed Control

In this section, we propose a distributed solution to Problem [1]. As discussed earlier, our approach requires V2V communication to measure relative distances and velocities. Note that distributed sensing is usually much cheaper than distributed decision making. We follow a divide and conquer approach to distributed control. We impose restrictions on the evolution of each vehicle such that control decisions can be made without a central coordination. The main advantage of our distributed framework is that the computation of control policies has \(\mathcal{O}(1) \) complexity.

We make the following observations from inspecting (5). The state of each vehicle is not directly influenced by other vehicles (matrix \(A \) is block-diagonal). However, the control decision and disturbances of the leader affects all the follower vehicles. Define \(\tilde{u}_i := u_0 - u_i \) and \(\tilde{w}_{s,i} := w_{s,0} - w_{s,i}, s = 1, 2 \).
no centralized coordination. Note that the computations of \hat{u}_i’s are independent, but the computation of each u_i, $i = 1, \cdots, N$ (actual control input) requires the control input of the leader, $u_i = u_0 - \hat{u}_i$. Hence every vehicle has to communicate with the leader. Having fully decoupled the dynamics and all constraints for each follower vehicle, we compute separate RCI sets Ω_i, $i = 1, \cdots, N$, where $\Omega_i \subseteq S_i$, $S_i = \{ (\hat{x}_i, \hat{v}_i) | i(i-1)L - NL \leq \hat{x}_i \leq i(i+1)L - NL \}$. and we have

$$\forall \hat{x}_i, \hat{v}_i \in \Omega_i, \exists u_0 \in \text{Proj}_i(\mathcal{R}_H), \quad \{ \hat{x}_i + \hat{v}_i \Delta t + \hat{u}_i \Delta x^2 + \hat{w}_x, i + \hat{u}_i \Delta \tau + w_{i,v} \} \in \Omega_i,$$

$$\forall w_{i,v} \in \text{Proj}_i(\mathcal{W}), \forall \hat{w}_{i,x} \in \text{Proj}_i(\mathcal{R}_H).$$

We then define the invariance inducing control policy $\mu_1 : \Omega_1 \rightarrow \text{Proj}_1(\mathcal{R}_H)$, $u_1 = \zeta_1, \cdots, N$. Finding the RCI set $\Omega_0 \subseteq S_0$ for the leader, where $S_0 = [v_{0,\min}, v_{0,\max}]$, we have:

$$\forall u_0 \in \Omega_0, \exists v_0 \in \text{Proj}_0(\mathcal{R}_H),$$

$$v_0 + u_0 \Delta \tau + [w_{0,v,\min}, w_{0,v,\max}] \in \Omega_0.$$

Similarly, we define the invariance inducing control policy $\mu_0 : \Omega_0 \rightarrow \text{Proj}_0(\mathcal{R}_H)$.

Proposition 2: We have $S \subseteq \mathbb{S}$, where $S = \bigcap_{i=0}^{N} S_i$, and $\prod_{i=0}^{N} \Omega_i$ is a RCI set in S.

Proposition 3: We have $\mu_i > i = 0, \cdots, N \in \mathbb{N}$. We implement the procedure explained in this section to design a distributed control policy. For every vehicle $i = 0, 1, \cdots, N$, the admissible set for \hat{u}_i is $[-3/2, 3/2]m/s^2$ - ranges halved as compared to U in Example 1. and the admissible sets for $\hat{w}_{i,x}$ and $\hat{w}_{i,v}$ are $[-2, 2]m/s$ and $[0.5, 0.5]m$, respectively - ranges doubled as compared to W in Example 1. The computation time is negligible as the dimension of each RCI set is 2 (1 for the leader). We vary the density N/L, find the corresponding λ^* and compare the result to the one obtained using the centralized control policy (Fig. 6). It is observed that the distributed control architecture can accommodate a smaller magnitude of disturbances. We expect the ranges in Ω to have an increasing relationship with average speed of the platoon. Therefore, Fig. 6 suggests that platoons that move faster should have wider inter-vehicular spacings to be considered safe.

We end this section with a final remark. Since the control inputs and disturbances of the leader affect all the vehicles in the platoon, a perfect leader with zero disturbances (and
subsequently controls, as explained shortly) will eliminate the dynamical coupling between the vehicles in the platoon. This observation leads to the following statement.

Proposition 4 (Perfect Leader): Consider a platoon with identical follower vehicles and disturbances as described in Section III. If there are no disturbances acting on the leader, that is, \(w_{0,x} = w_{0,y} = 0 \), then the \(\lambda^* \)'s for the centralized and distributed control policies are equal.

Proof: (sketch) If there are no disturbances acting on the leader, then \(w_0 = 0 \) is a valid control policy that maintains the platoon speed within the desired range, provided that it is initially within the range. With \(w_{0,x} = w_{0,y} = 0 \), the only coupling between the vehicles is through the collision constraints in (7), which are replaced by (16) in the distributed architecture. We need to show that centralized controllers cannot handle larger \(\lambda^* \) by violating (16). Suppose a valid centralized control policy violating (16). It follows from Fig. 4 that at least one vehicle (e.g., the last vehicle) has to remain in its envelope when other vehicles move out of theirs. As the dynamics are independent, there exists a control policy to keep the (last) vehicle inside its envelope. Since the vehicles are identical and the disturbances are independent of each other, such a control policy should be valid to keep any vehicle in its envelope. Therefore, the existence of any centralized policy implies the existence of distributed control policies. Hence, a distributed control policy must exist for the same \(\lambda^* \).

\[\text{IV. CONCLUSION AND FUTURE WORK} \]

We utilized results in set-invariance to formally synthesize platoon cruise control policies subject to collision avoidance requirements. We found a centralized policy as well as a computationally attractive (but conservative) distributed policy. We will consider more relaxed platoon information structures such as predecessor-following in future work.

REFERENCES

[1] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on automatic control, vol. 38, no. 2, pp. 195–207, 1993.

[2] A. Al Alam, A. Gattami, and K. H. Johansson, “An experimental study on the fuel reduction potential of heavy duty vehicle platooning,” in Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, 2010, pp. 306–311.

[3] M. R. Jovanović, “Vehicular chains,” Encyclopedia of Systems and Control, pp. 1524–1531, 2015.

[4] S. E. Li, Y. Zheng, K. Li, and J. Wang, “An overview of vehicular platoon control under the four-component framework,” in Intelligent Vehicles Symposium (IV), 2015 IEEE. IEEE, 2015, pp. 286–291.

[5] R. Caudill and W. Garrard, “Vehicle-follower longitudinal control for automated transit vehicles,” Journal of Dynamic Systems, Measurement, and Control, vol. 99, no. 4, pp. 241–248, 1977.

[6] D. Swaroop and J. Hedrick, “Constant spacing strategies for platooning in automated highway systems,” Journal of dynamic systems, measurement, and control, vol. 121, no. 3, pp. 462–470, 1999.

[7] J. Hedrick, M. Tomizuka, and P. Varaiya, “Control issues in automated highway systems,” Control Systems, IEEE, vol. 14, no. 6, pp. 21–32, 1994.

[8] S. Sheikholeslam and C. A. Desoer, “Control of interconnected nonlinear dynamical systems: The platoon problem.” Aut. Control, IEEE Trans. on, vol. 37, no. 6, pp. 806–810, 1992.

[9] P. A. Ioannou and C.-C. Chien, “Autonomous intelligent cruise control,” Vehicular Technology, IEEE Trans. on, vol. 42, no. 4, pp. 657–672, 1993.

[10] P. Y. Li and A. Shrivastava, “Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles,” Transportation Research Part C: Emerging Technologies, vol. 10, no. 4, pp. 275–301, 2002.

[11] L. Peppard, “String stability of relative-motion pid vehicle control systems,” Aut. Control, IEEE Trans. on, vol. 19, no. 5, pp. 579–581, 1974.

[12] S. S. Stankovic, M. J. Stanojcic, and D. D. Siljak, “Decentralized overlapping control of a platoon of vehicles,” Control Systems Technology, IEEE Trans. on, vol. 8, no. 5, pp. 816–832, 2000.

[13] Ş. Sabah, C. Oară, S. Warnick, and A. Jadabbaie, “Optimized distributed control for platooning via sparse coprime factorizations,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 305–320, 2017.

[14] P. J. Seiler, “Coordinated control of unmanned aerial vehicles,” Ph.D. dissertation, University of California, Berkeley, 2001.

[15] P. Barooah, P. G. Mehta, and J. P. Hespanha, “Mistuning-based control design to improve closed-loop stability margin of vehicular platoons,” Aut. Control, IEEE Trans. on, vol. 54, no. 9, pp. 2100–2113, 2009.

[16] Y. Zhang, E. H. Kosmatopoulos, P. A. Ioannou, and K. Chien, “Using front and back information for tight vehicle following maneuvers,” Vehicular Technology, IEEE Trans. on, vol. 48, no. 1, pp. 319–328, 1999.

[17] Y. Zheng, S. E. Li, K. Li, and W. Ren, “Platooning of connected vehicles with undirected topologies: Robustness analysis and distributed h-infinity controller synthesis,” arXiv preprint arXiv:1611.01412, 2016.

[18] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 1, pp. 14–26, 2016.

[19] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, “Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control,” IEEE Transactions on Control Systems Technology, vol. 24, no. 4, pp. 1253–1265, 2016.

[20] J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers for automated vehicles,” IEEE transactions on automatic control, vol. 43, no. 4, pp. 522–539, 1998.

[21] J. Alvarez and R. Horowitz, “Safe platooning in automated highway systems part i: Safety regions design,” Vehicle System Dynamics, vol. 32, no. 1, pp. 23–55, 1999.

[22] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach to controller design for hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949–970, 2000.

[23] A. Alam, A. Gattami, K. H. Johansson, and C. J. Tomlin, “Guaranteeing safety for heavy duty vehicle platooning: Safe set computations and experimental evaluations,” Control Engineering Practice, vol. 24, pp. 33–41, 2014.

[24] V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 12–28, 2017.

[25] M. Vidyasagar, “Optimal rejection of persistent bounded disturbances,” IEEE Transactions on Automatic Control, vol. 31, no. 6, pp. 527–534, 1986.

[26] J.-P. Aubin, Viability theory. Springer Science & Business Media, 2009.

[27] F. Blanchini, “Set invariance in control–a survey,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.

[28] E. C. Kerrigan, “Robust Constraint Satisfaction: Invariant Sets and Predictive Control,” Ph.D. dissertation, University of Cambridge, 2000.

[29] J. Huang, Q. Huang, Y. Deng, and Y.-H. Chen, “Toward robust vehicle platooning with bounded spacing error,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016.

[30] C. K. Verginis, C. P. Bebis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Robust distributed control protocols for large vehicular platoons with prescribed transient and steady-state performance,” IEEE Transactions on Control Systems Technology, 2017.

[31] S. Raković, E. C. Kerrigan, D. Q. Mayne, and K. I. Koumara, “Optimized robust control invariance for linear discrete-time systems: Theoretical foundations,” Automatica, vol. 43, no. 5, pp. 831–841, 2007.

[32] P. Nilsson and N. Ozay, “Synthesis of separable controlled invariant sets for modular local control design,” in 2016 American Control Conference (ACC), July 2016, pp. 5656–5663.

[33] M. Rungger and P. Tabuada, “Computing robust controlled invariant sets of linear systems,” IEEE Transactions on Automatic Control, 2017.

[34] V. Kvasnica, P. Grieder, M. Baetici, and M. Morari, “Multi-parametric toolbox (mpt),” in International Workshop on Hybrid Systems: Computational and Control. Springer, 2004, pp. 448–462.

[35] Gurobi optimizer reference manual, 2016. http://www.gurobi.com