Human Torovirus: A New Nosocomial Gastrointestinal Pathogen

Frances B. Jamieson, Elaine E. L. Wang, Cindy Bain, Jennifer Good, Lynn Duckmanton, and Martin Petric

Studies were undertaken to determine if human torovirus is associated with gastroenteritis and to examine the clinical features of torovirus illness in children. The fecal excretion of torovirus in patients with gastroenteritis was compared with that in matched asymptomatic controls in a case-control study. Toroviruses were identified in 72 (35.0%) of 206 gastroenteritis cases compared with 30 (14.5%) of 206 controls ($P < .001$). Clinical features of torovirus gastroenteritis in 172 patients positive for torovirus were compared with those of 115 patients infected with rotavirus or astrovirus. Persons infected with torovirus were more frequently immunocompromised (43.0% vs. 15.7%) and nosocomially infected (57.6% vs. 31.3%). They also experienced less vomiting (46.4% vs. 66.7%) but had more bloody diarrhea (11.2% vs. 1.8%). An antibody response to torovirus developed mainly in older, nonimmunocompromised children ($P < .01$). These studies demonstrate an association between torovirus excretion and gastroenteritis in the pediatric population among immunocompromised hospitalized patients and in previously healthy patients.

Acute viral gastroenteritis in family studies was second in prevalence only to the common cold and accounted for 16% of illnesses or 1.52 cases per person per year [1]. Despite advances in management that have reduced mortality, viral gastroenteritis continues to be a major cause of hospitalization, resulting in admissions of more than 200,000 children and almost 900,000 in-patient days per year in the United States [2]. In our pediatric setting, nosocomial diarrhea occurs in up to 10.3% of room contacts [3]. Viral agents known to cause gastroenteritis include rotaviruses, astroviruses, caliciviruses, and enteric adenoviruses [4–6]. However, the etiologic agent can remain undiagnosed in over half the cases of suspected infectious gastroenteritis despite advances in diagnostic technology [7].

Studies on animal gastroenteritis viruses have provided valuable insights into the discovery of new human pathogens, such as rotavirus [8]. Among the established agents of gastroenteritis in animals are the toroviruses, which include the Breda virus of cattle and Berne virus of horses [9–11]. These enveloped RNA viruses measure 100–140 nm at their largest diameter and contain a tightly coiled tubular nucleocapsid that generally assumes a donut or torus shape in the virion [9]. The particles have a fringe of peplomers on their surface that are ~10 nm long. Toroviruses were classified on the basis of the Berne virus genome sequence as members of the family Coronaviridae, which together with the family Arteriviridae are now classified in the order Nidovirales [12–14].

Torovirus-like particles were first documented in 1984 by electron microscopy of fecal specimens of persons with gastroenteritis [15]. Evidence that these were toroviruses came from their immunospecific cross-reactions with the Breda virus and the ability of nucleic acid probes based on the Berne virus sequence to hybridize with RNA extracted from stool specimens positive for toroviruses by electron microscopy [16, 17]. Studies of these viruses were limited because they cannot be grown in cell culture, they lack the distinct icosahedral structure of other gastroenteritis viruses, and their peplomers are less pronounced than those of coronaviruses [16].

In our diagnostic electron microscopy laboratory, pleomorphic fringed particles that resembled particles previously designated as toroviruses were observed in a substantial number of fecal specimens from children with gastroenteritis. These were shown to be toroviruses because of a high concordance between the identification of torovirus-like particles by electron microscopy and a positive enzyme immunoassay with Breda virus reference antiserum [18]. Torovirus-like particles purified from stool specimens were further shown to be toroviruses on the basis of their morphology, immunospecific interactions with Breda virus antiserum, ability to elicit an immune response following infection, and the high degree of homology of the 3' end of their genome with that of the Berne and Breda viruses [19]. These data support the hypothesis that these toroviruses are infectious agents, but better evidence is needed to establish that toroviruses actually cause gastroenteritis. We therefore conducted two epidemiologic studies to determine the role of these virus particles in gastroenteritis. The first study was a
case-control comparison of torovirus shedding in patients with gastroenteritis and in asymptomatic controls. The second compared the clinical features of symptomatic patients shedding torovirus and those shedding rotavirus or astrovirus.

Methods

Patients

The studies were conducted between 1 October 1993 and 30 September 1995 in patients admitted to the Hospital for Sick Children, a 410-bed primary, secondary, and tertiary care center. In this setting, fecal specimens are submitted for diagnostic virology for all patients admitted with symptoms of gastroenteritis or who develop these symptoms while hospitalized. Specimens from ~1500 patients are examined each year. In the first study, the frequency of torovirus identification in patients with gastrointestinal symptoms (cases) was compared with that of asymptomatic controls. Once this was accomplished, a second study was undertaken to establish a more complete microbiologic diagnosis, examine the serologic response, and describe the progress of the infection.

Study 1

Stool specimens from patients with gastroenteritis were examined for viruses by negative contrast electron microscopy [19, 20]. Case-patients were selected from among this symptomatic group using a table of random numbers. For each case, a control patient was selected and matched by ward and date of admission within 1 week of the case. These matching criteria were used to ensure that the two populations were comparable with respect to underlying illness and season and duration of hospitalization. Controls were not symptomatic for gastroenteritis and had experienced no changes in stool frequency or consistency on the day of selection. Patients were excluded from enrollment if they had an underlying gastro-

Table 1. Characteristics of case-control study patients.

Characteristic	Diarrhea patients (n = 206)	Asymptomatic controls (n = 206)
Age in years (mean, range)	3.3 (0.02–18.2)	3.2 (0.01–17.6)
Gender		
Male	133	122
Female	73	84
% immunocompromised (no./total)	19.9 (41/206)	16.0 (33/206)
% torovirus-positive (no./total)	35.0 (72/206)	14.5 (30/206)

* P < .001, χ² test.
conversion was defined as a rise in antibody titer to torovirus of ≥4-fold by hemagglutination-inhibition (HAI) assay. Seroconversion was defined as a rise in antibody titer to torovirus if they contained spherical or kidney-shaped particles (100–140 nm in diameter) with a characteristic fringe of peplomers ~10 nm long as shown in figure 1 [19]. Other viral pathogens, including rotaviruses, adenoviruses, astroviruses, and Norwalk virus-like agents, were identified by their morphologic features [20, 21]. All specimens were examined by an experienced electron microscopist blinded to specimen source. For patients participating in study 2, stool samples were also submitted for bacterial isolation [22] and tested for Escherichia coli O157:H7 [23], examined for ova and parasites [24], and tested for Clostridium difficile cytotoxin [25].

Serology. Antibody to torovirus was quantitated in acute and convalescent sera by HAI assay as described previously [19] by use of a purified torovirus preparation from a single patient. The test was done without knowledge of the clinical and demographic features of the cases. The HAI assay used a 0.5% suspension of rabbit erythrocytes and 4 hemagglutination units of virus per well. In the analysis of the results of these tests, age and immune status (immunocompromised vs. immunocompetent) were included in a logistic regression model to predict for seroconversion.

Statistical analysis. We used McNemar’s χ² test to compare concordance of matched pairs of gastroenteritis patients and asymptomatic controls described in study 1. Relative odds were calculated by dividing the number of cases with torovirus times the number of controls without torovirus by the number of controls with torovirus times the number of cases without torovirus. Unpaired Student’s t tests for continuous measures and χ² analysis or Fisher’s exact tests were used to compare clinical findings between patients positive for torovirus and patients positive for astrovirus or rotavirus. Descriptive statistics were used to express duration of symptoms and shedding of virus. Geometric means and 95% confidence intervals were used to describe serologic responses [26].

Results

Study 1: torovirus excretion in gastroenteritis patients and asymptomatic controls. Two hundred and six case-control
pairs were included in this analysis. Of the initial cases selected, 176 were excluded for one or more of the following reasons: underlying gastrointestinal disorder (5), lack of a control patient hospitalized at a comparable time (106), or lack of a stool specimen from the control patient (65).

Demographic characteristics were similar for cases and controls as summarized in table 1. Among the 206 cases, a virus was identified in 88: torovirus, 72; rotavirus, 8; and other viruses, including astrovirus, Norwalk-like viruses, and adenovirus, 8. In contrast, a virus was detected in 33 of the 206 matched asymptomatic patients: 30 had torovirus, 1 had rotavirus, and 2 had other viruses. Significantly more cases (35.0%) than controls (14.5%) were positive for torovirus infections not diagnosed in study 1, a retrospective analysis was performed on a subset of symptomatic patients whose stool specimens were submitted for bacteriologic testing as part of the study (35.0%) than controls (14.5%) were positive for torovirus. Since a substantial number of the patients were immunocompetent, cases and controls of this subset were independently analyzed for excretion of torovirus (table 2). In this subset, significantly more cases than controls were again positive for torovirus. This was also true among the immunocompetent patients. When controls were reassessed, 23 controls had developed gastroenteritis within 4 days of study enrollment. Of these, 10 were positive for torovirus. When these 10 controls were excluded, only 20 (10.2%) of 196 controls were positive for torovirus.

This study was designed to determine whether there was an association between torovirus excretion and gastroenteritis. Accordingly, the patient and control specimens were examined only for viruses with the understanding that other microbial pathogens would be tested for in study 2. To obtain an insight as to whether the symptomatic patients may have had bacterial infections not diagnosed in study 1, a retrospective analysis was performed on a subset of symptomatic patients whose stool specimens were submitted for bacteriologic testing as part of the routine investigation outside the study protocol. This analysis revealed no bacterial pathogens in stool specimens from 28 cases for whom bacteriologic testing was done.

Study 2: clinical features of torovirus-positive gastroenteritis patients. Between 1 October 1993 and 30 September 1995, clinical features were analyzed for 172 torovirus-, 102 rotavirus-, and 13 astrovirus-infected gastroenteritis patients. The monthly frequency distribution of viruses identified by electron microscopy in 1993 is shown in figure 2. While rotavirus infections were most frequent during the winter and spring, the incidence of torovirus infections remained relatively constant throughout the year. As shown in table 3, torovirus-positive patients were older, developed nosocomial infections more often, and were more frequently immunocompromised than were patients infected with rotavirus or astrovirus.

The clinical manifestations of torovirus were similar to those of rotavirus or astrovirus except that children infected with torovirus had less vomiting and more bloody diarrhea (table 4). Of the 19 torovirus-positive patients presenting with bloody diarrhea, 9 were immunocompetent, and 1 had a concomitant *C. jejuni* infection. Nine additional torovirus-positive patients developed bloody diarrhea within 2–15 days after study enrollment and had no other pathogen in the stool sample. Among those with rotavirus or astrovirus, only 2 presented with bloody diarrhea; another 6 developed bloody diarrhea after enrollment, 2 of whom were positive for *C. jejuni*.

Bacterial pathogens were detected in stool specimens from both groups of patients. Among those infected with torovirus, *Yersinia enterocolitica* was isolated from 1 and *C. jejuni* from 2. *C. difficile* cytotoxin was detected in 7 patients in a subset of 81 tested in the rotavirus-astrovirus group and in 8 of a subset of 128 torovirus-positive patients. One torovirus-positive patient (of 64 tested) had *Giardia lamblia* cysts, and 1 rotavirus-positive patient (of 61 tested) had *Dientamoeba fragilis* present in stool specimens.

The average duration of symptoms was similar, although torovirus-positive patients required parenteral hydration for a longer period (6.4 vs. 4.8 days). Stool specimens collected on a follow-up visit 2–6 months after study enrollment from 168 patients infected with torovirus showed that 14 were shedding the virus.

When immunocompromised patients were compared with previously healthy torovirus-positive patients, they were significantly older and more likely to have acquired the infection in the hospital (78% vs. 42%) (table 5). Three immunocom-

Table 3. Demographic features of torovirus and rotavirus/astrovirus cases (study 2).

Demographic feature	Torovirus cases (n = 172)	Rotavirus/astrovirus cases (n = 115)	P
Age in years			
Mean	4.0	2.0	.006
Range	0.02–18.6	0.05–16.5	
<2	91	81	
≥2	81	35	
Gender			
Male	102	76	NS
Female	70	39	
% nosocomial infections			
Mean days in hospital before illness	19.4	10.7	<.001
% immunosuppressed (no./total)	43.0 (74/172)	15.7 (18/115)	<.001

NOTE. NS = not significant.

Table 4. Clinical features of torovirus cases and rotavirus/astrovirus cases.

Clinical feature	Torovirus cases (n = 172)	Rotavirus/astrovirus cases (n = 115)	P
Vomiting	46.4 (78/168)	66.7 (76/114)	<.001
Diarrhea	87.6 (149/170)	80.0 (91/114)	NS
Blood in stool	11.2 (19/170)	1.8 (2/112)	.006
Abdominal pain/colic	51.3 (79/154)	53.9 (56/104)	NS
Temperature >38.5°C	36.1 (52/144)	33.8 (22/65)	NS
Duration of symptoms (days)	7.8 (n = 144)	7.9 (n = 99)	NS
Duration intravenous hydration (days)	6.3 (n = 139)	4.8 (n = 102)	<.005

NOTE. Data are % (no./total), except low duration. NS = not significant.
immunocompetent patients. The geometric mean titers of torovirus antibodies in acute and convalescent sera were signifi-
antly less likely to seroconvert than were controls, torovirus was detected at a lower rate in immunocom-
promised patients than in immunocompetent patients (9.0% vs. 15.6%; table 2), whereas among children with gastroenteritis, its prevalence was double those positive for rotavirus (7%) and for astrovirus and Norwalk-like viruses (2%). Toroviruses were present all year and had seasonal distribution similar to that described for corona-like viruses [33]. These findings compare favorably with our recent report on the role of bovine torovirus in diarrhea of calves [34]. In that study, toroviruses were the predominant viral agent associated with diarrhea.

Torovirus is the principal identifiable cause of nosocomial diarrhea in immunocompromised and older children in our institution. Although no deaths in the immunocompromised patients studied could be directly attributable to torovirus infection, enteric viral infections cause severe morbidity and mortality among such patients [35]. Among asymptomatic controls, torovirus was detected at a lower rate in immunocompromised patients than in immunocompetent patients (9.0% vs. 15.6%; table 2), whereas among children with gastroenteritis, it was more common among immunocompromised than in immunocompetent patients. This further suggests that the recovery of torovirus by the immunocompromised is related to the illness rather than to a proclivity of immunocompromised patients to carry this organism. Furthermore, this virus was a common cause of diarrhea in hospitalized patients who were previously healthy. An outbreak of gastroenteritis in a neonatal intensive care unit due to particles similar to toroviruses (coronavirus-like particles) has been described [36].

Two clinical features that distinguish torovirus-infected patients are the lower frequency of vomiting and high frequency

Table 5. Comparison of immunocompromised and nonimmunocompromised torovirus cases.

Patient group	Seroconversion	Nonimmunocompromised (n = 98)	Immunocompromised (n = 74)	P
Age (years)				
0-2		72	19	<.001
≥2		26	55	
Gender (no.)				
Male		62	40	NS
Female		36	34	
% nosocomial infections (no./total)	41.8 (41/98)	78.3 (58/74)	<.001	
% shedding torovirus in stool ≥8 days (no./total)	43.9 (18/41)	62.5 (35/56)	NS	

Note. NS = not significant.

promised patients required admission to the intensive care unit after developing severe diarrhea and vomiting.

Seroconversion. In paired sera from 88 patients, 51 demonstrated seroconversion with a 2-4-fold increase in antibody titer (table 6). Of the 44 patients ≤2 years old, half (22) experienced seroconversion, whereas of the 44 patients ≥2 years old, 29 (66%) seroconverted. Of the 30 immunocompromised patients, 11 seroconverted, and of the latter 11, 10 (91%) were older than 2 years. In the 30 immunocompromised patients, 11 seroconverted, and of the latter 11, 10 (91%) were older than 2 years. Half (22) experienced seroconversion, whereas of the 44 patients ≥2 years old, 29 (66%) seroconverted. Of the 30 immunocompromised patients, 11 seroconverted, and of the latter 11, 10 (91%) were older than 2 years. After controlling for age in the analysis, immunocompromised patients were significantly less likely to seroconvert than were immunocompetent patients (P < .001). The geometric mean titer of convalescent sera was also significantly lower for immunocompromised patients (17.61) than for immunocompetent patients (33.97).

Discussion

These studies provide strong evidence for a causative role for torovirus in gastroenteritis. First, the relative odds of torovirus among gastroenteritis cases was 3.1-fold that for controls. However, if the 10 control patients who became symptomatic within 4 days of sampling are excluded, the relative odds become 4.7, which approaches those described with enteric adenovirus and astrovirus [4, 27]. Secondly, over half of the torovirus-positive gastroenteritis patients developed an immune response to the virus. This suggests that the virus caused the infection rather than being a simple bystander or an electron microscopy artifact in patients with diarrhea. The higher frequency of seroconversion in older children in our study is similar to findings in animals reinfected with Breda virus and suggests a booster response to repeated infections [28, 29]. Finally, other known gastroenteritis pathogens were only sporadically identified in torovirus-positive patients. These were also found in children infected by rotavirus or astrovirus, established gastroenteritis viruses. The association of torovirus with acute and persistent diarrhea was recently reported in a smaller cohort of children in an urban Brazilian slum [30]. In that study, 33 children had acute diarrhea and 41 had persistent diarrhea. There were 17 controls.

Torovirus appears to be a common agent of gastroenteritis at our institution. Particles resembling toroviruses have been reported in stools of gastroenteritis patients, although in some cases they were designated “coronavirus-like particles” [15, 31–33]. During a 2-year period at our hospital, 20% of stool samples from gastroenteritis patients were positive for torovirus, more than double those positive for rotavirus (7%) and for astrovirus and Norwalk-like viruses (2%). Toroviruses were present all year and had seasonal distribution similar to that described for corona-like viruses [33]. These findings compare favorably with our recent report on the role of bovine torovirus in diarrhea of calves [34]. In that study, toroviruses were the predominant viral agent associated with diarrhea.

Table 6. Geometric mean titers of torovirus antibodies in acute and convalescent sera and occurrence of seroconversion in immunocompromised and nonimmunocompromised patients (study 2).

Patient group	Seroconversion	Titer (95% confidence interval)	Acute	Convalescent
Immunocompromised (n = 30)	11	6.5 (5.66–7.46)	17.61* (13.31–23.28)	
Nonimmunocompromised (n = 58)	40	7.62 (6.48–7.60)	33.97* (26.54–43.48)	

* P < .01.
of bloody diarrhea. Descriptions of illness in patients with enteric infection by coronavirus-like particles have indicated that diarrhea is the most prominent symptom, and patients often experienced frank or occult blood in stool [15, 32, 36]. A fatal case of gastroenteritis associated with coronavirus-like particles has also been reported [37]. Bloody diarrhea is generally not a feature of viral gastroenteritis and is more commonly associated with bacterial infections such as those caused by Campylobacter species or enterohemorrhagic E. coli [38]. Although low platelet counts in immunocompromised patients could predispose such patients to bloody diarrhea, almost half of the patients with this symptom were immunocompetent and did not have thrombocytopenia, suggesting that this symptom cannot be explained wholly by host factors. Studies of torovirus infections in calves (Breda virus) indicate that these viruses infect differentiating epithelial cells in the crypts of the intestinal villi, especially in the large intestine [10, 11]. Investigations of human torovirus infections are needed to compare the pathology of torovirus with that of other gastroenteritis viruses.

Because this study was of hospitalized patients, the importance of torovirus infection in the community is not known. While over half of the torovirus-positive gastroenteritis patients were considered to have a nosocomial infection, a substantial number were admitted for treatment of gastroenteritis. This suggests that torovirus causes gastroenteritis in the community. The Brazilian study identified torovirus in the community but other pathogens were also found, including enteropathogenic E. coli [30]. In our study, bacterial coinfections were predominantly with cytotoxin-producing C. difficile in both torovirus- and rotavirus-positive patients. Other microbial infections, namely Y. enterocolitica, G. lamblia, and D. fragilis, occurred singly and of the 2 C. jejuni isolates from torovirus-positive patients, 1 child had bloody diarrhea. These findings are consistent with our observation that nonviral microbial pathogens are likely to have been rare in the case and control specimens analyzed in study 1.

Our results support the hypothesis that human torovirus is an important cause of gastroenteritis. Further epidemiologic studies to determine its frequency in the community and to identify mechanisms of transmission of this organism are indicated as are further studies to explain the pathophysiology of illness due to this agent.

Acknowledgments

The technical efforts of Bo Luan and Maria Szymanski are gratefully acknowledged.

References

1. Dingle JH, Badger GF, Feller AE, Hodges AG, Jordan WS, Rammelkamp CH. A study of illness in a group of Cleveland families. Am J Hygiene 1953; 58:16–30.
2. Ho MS, Glass RI, Pinsky PF, Anderson LL. Rotavirus as a cause of diarrheal morbidity and mortality in the United States. J Infect Dis 1988; 158:1112–6.
3. Ford-Jones E, Mindorff CR, Gold R, Petric M. The incidence of viral-associated diarrhea after admission to a pediatric hospital. Am J Epidemiol 1990; 131:711–8.
4. Herrmann JE, Taylor DN, Echeverria P, Blacklow NR. Astroviruses as a cause of gastroenteritis in children. N Engl J Med 1991; 324:1757–60.
5. Jiang X, Wang M, Wang K, Estes M. Sequence and genomic organization of Norwalk virus. Virology 1993; 195:51–61.
6. Blacklow NR, Greenberg HB. Viral gastroenteritis. N Engl J Med 1991; 325: 252–64.
7. Kotloff KL, Losonsky GA, Morris JG, Wasserman SS, Singh-Naz N, Levine MM. Enteric adenovirus infection and childhood diarrhea: an epidemiologic study in three clinical settings. Pediatrics 1989; 84:219–25.
8. Mebus CA, Underdahl NR, Rhodes MB, Tweilhaus MJ. Calf diarrhea (scours) reproduced with a virus from a field outbreak. Univ Nebraska Res Bull 1969;233:1–16.
9. Weiss M, Horzinek MC. The proposed family. Toroviridae: agents of enteric infections. Arch Virol 1980; 68:201–3.
10. Woode GN, Reed DE, Runnels PL, Herrig MA, Hill TH. Studies with an unclassified virus isolated from diarrheic calves. Vet Microbiol 1982; 7: 221–40.
11. Woode GN, Saif LJ, Quessanda M, Winand NJ, Pohlenz JF, Kelso Gourley N. Comparative studies on three isolates of Breda virus of calves. Am J Vet Res 1985; 46:1003–10.
12. Snijder E, Horzinek MC. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like family. J Gen Virol 1993; 74: 2305–16.
13. Cavanagh D, Horzinek M. Genus Torovirus assigned to the Coronaviridae. Arch Virol 1993; 128:395–6.
14. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997; 142:629–33.
15. Beards GM, Green J, Hall C, Flewitt TH, Lamouliatte F, DuPasquier P. An enveloped virus in stools of children and adults with gastroenteritis resembles the Breda virus of calves. Lancet 1984; 1:1050–2.
16. Beards GM, Brown DW, Green J, Flewitt TH. Preliminary characterization of torovirus-like particles of humans: comparison with the Berne virus of horses and Breda virus of calves. J Med Virol 1986; 20:67–78.
17. Koopmans M, Herrewegh A, Horzinek MC. Diagnosis of torovirus infection [letter]. Lancet 1991; 337:859.
18. Koopmans M, Petric M, Glass R, Monroe SS. Enzyme-linked immunosorbent assay reactivity of torovirus-like particles in fecal specimens from humans with diarrhea. J Clin Microbiol 1993; 31:2738–44.
19. Duckmantion L, Luan B, Devenish J, Tellier R, Petric M. Characterization of torovirus from human fecal specimens. Virology 1997; 239:158–68.
20. Middleton PJ, Szymanski M, Petric M. Viruses associated with acute gastroenteritis in young children. Am J Dis Child 1977; 131:733–7.
21. Doane F, Anderson N. Methods for preparing specimens for electron microscopy. In: Electron microscopy in diagnostic virology. Cambridge, UK: Cambridge University Press, 1987:14–31.
22. Graunick A. Processing and interpretation of bacterial fecal cultures. In: Isenberg HD, ed. Clinical microbiology procedures handbook. 1992: 1:10.1–1:10.25.
23. March SB, Ratnam S. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J Clin Microbiol 1986; 23:869–72.
24. Melvin DM, Brooke MM. Laboratory procedures for the diagnosis of intestinal parasites. Washington, DC: US Government Printing Office; Department of Health and Human Services publication no. (CDC) 82–8282.
25. Qualman SJ, Petric M, Karmali MA, Smith CR, Hamilton SR. Clostridium difficile invasion and toxin circulation in fatal pseudomembranous colitis. Am J Clin Pathol 1990; 94:410–6.
26. Norman GR, Steiner DL. PDQ statistics. Toronto: BC Dekker, 1986:172.
27. de Jong JC, Weigand R, Kidd AH, et al. Candidate adenoviruses 40 and 41:
fastidious adenoviruses from human infant stool. J Med Virol 1983;11:215–31.
28. Koopmans M, Van den Boom U, Woode GN, Horzinek MC. Seroepidemiology of Breda virus in cattle using ELISA. Vet Res 1989;19:233–43.
29. Koopmans M, Cremers H, Woode GN, Horzinek MC. Bredavirus (Torriviridae) infection and systemic antibody response in sentinel calves. Am J Vet Res 1990;51:1443–8.
30. Koopmans M, Goosen ES, Lima AA, et al. Association of torovirus with acute and persistent diarrhea in children. Pediatr Infect Dis J 1997;16:504–7.
31. Mathan M, Mathan VI, Swaminathan SP, Yesudoss S, Baker SJ. Pleomorphic virus-like particles in human feces. Lancet 1975;1:1068–9.
32. Mortensen ML, Ray CG, Payne C. Coronavirus-like particles in human gastrointestinal disease. Am J Dis Child 1985;139:928–34.
33. Payne C, Ray CG, Borodouin V, Minnich L, Lebowitz MD. An 8 year study of the viral agents of acute gastroenteritis in humans: ultrastructural observations and seasonal distribution with a major emphasis on coronavirus-like particles. Diagn Microbiol Infect Dis 1986;5:39–54.
34. Duckmanton L, Carman S, Nagy E, Petric M. Detection of bovine torovirus in fecal specimens of calves with diarrhea from Ontario farms. J Clin Microbiol 1998;36:1266–70.
35. Yolken RH, Bishop CA, Townsend TR, et al. Infectious gastroenteritis in bone-marrow-transplant recipients. N Engl J Med 1982;306:1009–12.
36. Vaucher YE, Ray CG, Minnich LL, Payne CM, Beck D, Lowe P. Pleomorphic, enveloped, virus-like particles associated with gastrointestinal illness in neonates. J Infect Dis 1981;145:27–36.
37. Rettig PJ, Altschuler GP. Fatal gastroenteritis associated with coronavirus-like particles. Am J Dis Child 1985;139:245–8.
38. Pickering LK, Cleary TG. Approach to patients with gastrointestinal tract infections and food poisoning. In: Feigin RD, Cherry JD, eds. Pediatric infectious diseases. 3rd ed. Vol 1. Philadelphia: WB Saunders, 1992:565–96.