A GEOMETRIC INEQUALITY ON HYPERSURFACE IN HYPERBOLIC SPACE

HAIZHONG LI, YONG WEI, AND CHANGWEI XIONG

Abstract. In this paper, we use the inverse curvature flow to prove a sharp geometric inequality on star-shaped and two-convex hypersurface in hyperbolic space.

1. Introduction

The classical Alexandrov-Fenchel inequalities for closed convex hypersurface $\Sigma \subset \mathbb{R}^n$ state that

$$\int_{\Sigma} \sigma_m(\kappa)d\mu \geq C_{n,m}(\int_{\Sigma} \sigma_{m-1}(\kappa)d\mu)^{\frac{n-m-1}{n-m}}, \quad 1 \leq m \leq n-1 \quad (1)$$

where $\sigma_m(\kappa)$ is the m-th elementary symmetric polynomial of the principal curvatures $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ of Σ and $C_{n,m} = \frac{\sigma_m(1, \cdots, 1)}{\sigma_{m-1}(1, \cdots, 1)}$ is a constant. When $m = 0$, (1) is interpreted as the classical isoperimetric inequality

$$|\Sigma|^{\frac{n-1}{n}} \geq \bar{C}_n Vol(\Omega)^{\frac{1}{n}}, \quad (2)$$

which holds on all bounded domain $\Omega \subset \mathbb{R}^n$ with boundary $\Sigma = \partial \Omega$. Here $|\Sigma|$ is the area Σ and \bar{C}_n is a constant depending only on dimension n.

Inequality (1) was generalized to star-shaped and m-convex hypersurface $\Sigma \subset \mathbb{R}^n$ by Guan and Li [8] using the inverse curvature flow recently, where m-convex means that the principal curvature of Σ lies in the Garding’s cone

$$\Gamma_m = \{ \kappa \in \mathbb{R}^{n-1} | \sigma_i(\kappa) > 0, i = 1, \cdots, m \}.$$

Recently, Huisken [11] showed that in the case $m = 1$, the assumption star-shaped can be replaced by outward-minimizing.

In this paper, we consider the hyperbolic space $\mathbb{H}^n = \mathbb{R}^+ \times S^{n-1}$ endowed with the metric

$$\tilde{g} = dr^2 + \sinh^2 r g_{S^{n-1}},$$

where $g_{S^{n-1}}$ is the standard round metric on the unit sphere S^{n-1}. It’s a natural question to establish some analogue inequalities of (1) for closed hypersurface in \mathbb{H}^n. In the case of $m = 1$, $\sigma_1 = \sigma_1(\kappa)$ is just the mean curvature H of Σ. Gallego and Solanes [6] have obtained a generalization of (1) to convex hypersurface in hyperbolic space using integral geometric methods,

2010 Mathematics Subject Classification. 53C44, 53C42.

Key words and phrases. Inverse curvature flow; Inequality; Hyperbolic space.

The research of the authors was supported by NSFC No. 11271214.
however, their result does not seem to be sharp. Denoting $\lambda(r) = \sinh r$, then $\lambda'(r) = \cosh r$. Recently, Brendle, Hung and Wang [3] proved the following inequality for star-shaped and mean convex (i.e., $H > 0$) hypersurface $\Sigma \subset \mathbb{H}^n$:

$$
\int_{\Sigma} (\lambda'H - (n-1)\langle \nabla \lambda', \nu \rangle) d\mu \geq (n-1)\omega_{n-1}^{-1} |\Sigma|^\frac{n-2}{n-1}
$$

(3)

where $|\Sigma|$ is the area of Σ and ω_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^n$. de Lima and Girao [4] also proved the following related inequality independently.

$$
\int_{\Sigma} \lambda'H d\mu \geq (n-1)\omega_{n-1} (-\frac{|\Sigma|}{\omega_{n-1}})^{\frac{n}{n-1}} + (\frac{|\Sigma|}{\omega_{n-1}})^{\frac{n}{n-1}}),
$$

(4)

Both inequalities (3) and (4) are sharp in the sense that equality holds if and only if Σ is a geodesic sphere centered at the origin. Here, we say a closed hypersurface $\Sigma \subset \mathbb{H}^n$ is star-shaped if the unit outward normal ν satisfies $\langle \nu, \partial_r \rangle > 0$ everywhere on Σ, which is also equivalent to that Σ can be parametrized by a graph

$$
\Sigma = \{ (r(\theta), \theta) | \theta \in S^{n-1} \}
$$

for some smooth function r on S^{n-1}. We note that inequalities (3) and (4) have some applications in general relativity, see [3, 4, 14].

In this paper, we consider the case $m = 2$. We prove the following sharp inequality for star-shaped and two-convex hypersurface $\Sigma \subset \mathbb{H}^n$, where two-convex means that the principal curvature lies in the Garding’s cone Γ_2 everywhere on Σ.

Theorem 1. If $\Sigma \subset \mathbb{H}^n$ is a star-shaped and two-convex hypersurface, then

$$
\int_{\Sigma} \sigma_2 d\mu \geq \frac{(n-1)(n-2)}{2} \left(\frac{2}{\omega_{n-1}} |\Sigma|^\frac{n-1}{n-2} + |\Sigma| \right),
$$

(5)

where ω_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^n$ and $|\Sigma|$ is the area of Σ. The equality holds if and only if Σ is a geodesic sphere.

Note that there exists at least one elliptic point on a closed, connected hypersurface Σ in hyperbolic space \mathbb{H}^n. Proposition 3.2 in [1] shows that if σ_2 is positive, then σ_1 is automatically positive. So our assumption two-convex can also be replaced by $\sigma_2 > 0$ on Σ.

The proof of Theorem 1 follows a similar argument as in [3, 4, 8]. We evolve Σ by a special case of the inverse curvature flow in [7], and consider the following quantity defined by

$$
Q(t) = |\Sigma|^{-\frac{n-3}{n-1}} \left(\int_{\Sigma} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma| \right).
$$

We show that $Q(t)$ is monotonically decreasing under the flow. Then we use the convergence result of the flow proved by Gerhardt to estimate a lower
bound of the limit of $Q(t)$:
\[
\liminf_{t \to \infty} Q(t) \geq \frac{(n-1)(n-2)}{2} \frac{\omega_{n-1}^2}{\omega_{n-1}^2}.
\]
In order to estimate this lim inf, we also use a sharp version Sobolev inequality on S^{n-1} due to Beckner [2] as in [3]. Finally Theorem 1 follows easily from the monotonicity and the lower bound of $\liminf_{t \to \infty} Q(t)$.

Acknowledgment. The authors would like to thank Professor Ben Andrews for helpful discussions and his interest in this work. The second author also thank Frederico Girão for communications regarding Appendix A of [4].

2. Preliminaries

Let $\Sigma \subset \mathbb{H}^n$ be a closed hypersurface with unit outward normal ν. The second fundamental form h of Σ is defined by
\[
h(X, Y) = \langle \nabla_X \nu, Y \rangle
\]
for any two tangent fields X, Y. The principal curvature $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ are the eigenvalues of h with respect to the induced metric g on Σ. For $1 \leq m \leq n-1$, the m-th elementary symmetric polynomial of κ is defined as
\[
\sigma_m(\kappa) = \sum_{i_1 < i_2 < \cdots < i_m} \kappa_{i_1} \cdots \kappa_{i_m},
\]
which can also be viewed as function of the second fundamental form $h^j_i = g^{jk}h_{ki}$. In the sequel, we will simply write σ_m for $\sigma_m(\kappa)$. We first collect the following basic facts on σ_m (see, e.g, [9, 12, 13]):

Lemma 2. Denote $(T_{m-1})^j_i = \frac{\partial \sigma_m}{\partial h^j_i}$ and $(h^2)^j_i = g^{ij}g^{pk}h_{ki}h_{ip}$. We have
\[
\sum_{i,j} (T_{m-1})^j_i h^j_i = m\sigma_m,
\]
(6)
\[
\sum_{i,j} (T_{m-1})^j_i \delta^j_i = (n-m)\sigma_{m-1}
\]
(7)
\[
\sum_{i,j} (T_{m-1})^j_i (h^2)^j_i = \sigma_1 \sigma_m - (m+1)\sigma_{m+1}
\]
(8)

Moreover, if $\kappa \in \Gamma^+_m$, we have the following Newton-MacLaurin inequalities
\[
\frac{\sigma_{m-1}\sigma_{m+1}}{\sigma_m^2} \leq \frac{m(n-m-1)}{(m+1)(n-m)}
\]
(9)
\[
\frac{\sigma_1\sigma_{m-1}}{\sigma_m} \geq \frac{m(n-1)}{n-m},
\]
(10)
and the equalities hold in (9), (10) at a given point if and only if Σ is umbilical there.
We now evolve $\Sigma \subset \mathbb{H}^n$ by the following evolution equation
\[\partial_t X = F \nu, \]
where ν is the unit outward normal to $\Sigma_t = X(t, \cdot)$ and F is the speed function which may depend on the position vector, principal curvatures and time. Let g_{ij} be the induced metric and $d\mu_t$ be its area element on Σ_t. We have the following evolution equations.

Proposition 3. Under the flow (11), we have:
\[
\begin{align*}
\partial_t g_{ij} &= 2Fh_{ij} \\
\partial_t \nu &= -\nabla F, \\
\partial_t h_{ij} &= -\nabla^i \nabla_j F - F(h^2)_i^j + F\delta_i^j, \\
\partial_t d\mu &= F\sigma_1 d\mu, \\
\partial_t \sigma_m &= -\nabla^i((T_{m-1})^i_j \nabla_j F) - F(\sigma_1 \sigma_m - (m + 1)\sigma_{m+1}) \\
&\quad + (n - m)F\sigma_{m-1},
\end{align*}
\]
where in the last equality we used (7),(8) and the divergence free property of $(T_{m-1})^i_j$ (see [13]). □

Proposition 4. Under the flow (11), we have
\[
\frac{d}{dt} \int_{\Sigma} \sigma_m d\mu = (m + 1) \int_{\Sigma} F\sigma_{m+1} d\mu + (n - m) \int_{\Sigma} F\sigma_{m-1} d\mu.
\]

Proof. This proposition follows directly from (12), (13) and the divergence theorem. □

In [7] Gerhardt studied general inverse curvature flow of star-shaped hypersurface in hyperbolic space. For our purpose, we will use a special case of their result for the following flow
\[\partial_t X = \frac{n - 2}{2(n - 1)} \frac{\sigma_1}{\sigma_2} \nu. \]

Theorem 5 (Gerhardt [7]). If the initial hypersurface is star-shaped and strictly two-convex, then the solution for the flow (14) exists for all time $t > 0$ and the flow hypersurfaces converge to infinity while maintaining star-shapedness and strictly two-convex. Moreover, the hypersurfaces become
strictly convex exponentially fast and more and more totally umbilical in the sense of
\[|h^i_j - \delta^i_j| \leq Ce^{-t^{n-1}}, \quad t > 0, \]
i.e., the principal curvatures are uniformly bounded and converge exponentially fast to one.

3. Monotonicity

We define the quantity
\[Q(t) = |\Sigma_t|^{-\frac{n-3}{n-1}} \left(\int_{\Sigma_t} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t| \right), \]
where \(|\Sigma_t|\) is the area of \(\Sigma_t\). In this section, we show that \(Q(t)\) is monotone decreasing along the flow (14).

Proposition 6. Under the flow (14), the quantity \(Q(t)\) is monotone decreasing. Moreover, \(\frac{d}{dt}Q(t) = 0\) at some time \(t\) if and only if the surface \(\Sigma_t\) is totally umbilical.

Proof. Under the flow (14), Proposition 4 and (12) imply that
\[
\frac{d}{dt} \int_{\Sigma} \sigma_2 d\mu = \frac{3(n-2)}{2(n-1)} \int_{\Sigma} \frac{\sigma_1 \sigma_3}{\sigma_2} d\mu + \frac{(n-2)^2}{2(n-1)} \int_{\Sigma} \frac{\sigma_1^2}{\sigma_2} d\mu \tag{15}
\]
and
\[
\frac{d}{dt} |\Sigma_t| = \frac{(n-2)}{2(n-1)} \int_{\Sigma} \frac{\sigma_1^2}{\sigma_2} d\mu. \tag{16}
\]
Combining (15), (16) and (9), we have
\[
\frac{d}{dt} \left(\int_{\Sigma} \sigma_2 d\mu - (n-2)|\Sigma_t| \right) \leq \frac{n-3}{n-1} \int_{\Sigma} \sigma_2 d\mu. \tag{17}
\]
By applying the Newton-MacLaurin inequality (10) in (16), we also have
\[
\frac{d}{dt} |\Sigma_t| \geq |\Sigma_t|. \tag{18}
\]
Then combining (17) and (18) gives that
\[
\frac{d}{dt} \left(\int_{\Sigma} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t| \right) \leq \frac{n-3}{n-1} \left(\int_{\Sigma} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t| \right). \tag{19}
\]

From Proposition 8 in the next section and (19), we know that the quantity
\[
\int_{\Sigma} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t|
\]
is nonnegative along the flow (14). Then inequalities (18) and (19) implies that
\[
\frac{d}{dt} Q(t) \leq 0.
\]
If the equality holds, the inequalities (9) and (10) assume equalities everywhere on \(\Sigma_t \). Then \(\Sigma_t \) is totally umbilical. \(\square \)

4. The Asymptotic Behavior of Monotone Quantity

In this section, we use the convergence result of the flow (14) proved in \([7]\) to estimate the lower bound of the limit of \(Q(t) \). First we need the following sharp Sobolev inequality on \(S^{n-1} \) (\([2]\)).

Lemma 7. For every positive function \(f \) on \(S^{n-1} \), we have
\[
\int_{S^{n-1}} f^{n-3} \, d\text{vol}_{S^{n-1}} + \frac{n-3}{n-1} \int_{S^{n-1}} f^{n-5} |\nabla f|^2 \, d\text{vol}_{S^{n-1}} \\
\geq \omega_{n-1}^{\frac{2}{n-1}} \left(\int_{S^{n-1}} f^{n-1} \, d\text{vol}_{S^{n-1}} \right)^{\frac{n-3}{n-1}}.
\]
Moreover, equality holds if and only if \(f \) is a constant.

Proof. From Theorem 4 in \([2]\), for any positive smooth function \(w \) on \(S^{n-1} \), we have the following inequality
\[
\frac{4}{(n-1)(n-3)} \int_{S^{n-1}} |\nabla w|^2 \, d\text{vol}_{S^{n-1}} + \int_{S^{n-1}} w^2 \, d\text{vol}_{S^{n-1}} \\
\geq \omega_{n-1}^{\frac{2}{n-1}} \left(\int_{S^{n-1}} w \frac{2(n-1)}{n-3} \, d\text{vol}_{S^{n-1}} \right)^{\frac{n-3}{n-1}}.
\]
Moreover equality holds if and only if \(w \) is constant. For any positive function \(f \) on \(S^{n-1} \), by letting \(w = f^\frac{n-1}{n-3} \), we have
\[
\int_{S^{n-1}} f^{n-3} \, d\text{vol}_{S^{n-1}} + \frac{n-3}{n-1} \int_{S^{n-1}} f^{n-5} |\nabla f|^2 \, d\text{vol}_{S^{n-1}} \\
\geq \omega_{n-1}^{\frac{2}{n-1}} \left(\int_{S^{n-1}} f^{n-1} \, d\text{vol}_{S^{n-1}} \right)^{\frac{n-3}{n-1}}
\]
and equality holds if and only if \(f \) is a constant. \(\square \)

Proposition 8. Under the flow (14), we have
\[
\liminf_{t \to \infty} Q(t) \geq \frac{(n-1)(n-2)}{2} \omega_{n-1}^\frac{2}{n-1}.
\] (20)

Proof. Recall that star-shaped hypersurfaces can be written as graphs of function \(r = r(t, \theta) \), \(\theta \in S^{n-1} \). Denote \(\lambda(r) = \sinh(r) \), then \(\lambda'(r) = \cosh(r) \).

We next define a function \(\varphi \) on \(S^{n-1} \) by \(\varphi(\theta) = \Phi(r(\theta)) \), where \(\Phi(r) \) is a positive function satisfying \(\Phi' = 1/\lambda \). Let \(\theta = \{\theta^j\}, j = 1, \ldots, n-1 \) be a coordinate system on \(S^{n-1} \) and \(\varphi_i, \varphi_{ij} \) be the covariant derivatives of \(\varphi \) with respect to the metric \(g_{S^{n-1}} \). Define
\[
v = \sqrt{1 + |\nabla \varphi|_{S^{n-1}}^2}.
\]

From \([7]\), we know that
\[
\lambda = O(e^{-\lambda r}), \quad |\nabla \varphi|_{S^{n-1}} = O(e^{-\lambda r}) \quad (21)
\]
Since $\lambda' = \sqrt{1 + \lambda^2}$, we have

$$\lambda' = \lambda(1 + \frac{1}{2} \lambda^{-2} + O(e^{-\frac{4t}{n-1}})) \quad (22)$$

From (21) we also have

$$\frac{1}{v} = 1 - \frac{1}{2} |\nabla \varphi|^2_{g_{S^{n-1}}} + O(e^{-\frac{4t}{n-1}}) \quad (23)$$

In terms of φ, we can express the metric and second fundamental form of Σ as following (see, e.g, [3, 5])

$$g_{ij} = \lambda^2 (\sigma_{ij} + \varphi_i \varphi_j)$$

$$h_{ij} = \frac{\lambda'}{v \lambda} g_{ij} - \frac{\lambda}{v} \varphi_{ij},$$

where $\sigma_{ij} = g_{S^{n-1}}(\partial_{\theta_i}, \partial_{\theta_j})$. Denote $a_i = \sum_k \sigma_{ik} \varphi_{ki}$ and note that $\sum_i a_i = \Delta_{S^{n-1}} \varphi$. By (21), the principal curvatures of Σ_t has the following form

$$\kappa_i = \frac{\lambda'}{v \lambda} - \frac{a_i}{v \lambda} + O(e^{-\frac{4t}{n-1}}), \quad i = 1, \cdots, n-1.$$

Then we have

$$\sigma_2 = \sum_{i < j} \kappa_i \kappa_j$$

$$= \frac{(n-1)(n-2)}{2} \left(\frac{\lambda'}{v \lambda} \right)^2 - (n-2) \frac{\lambda' \Delta_{S^{n-1}} \varphi}{v^2 \lambda^2} + O(e^{-\frac{4t}{n-1}}).$$

By using (22) and (23),

$$\sigma_2 = \frac{(n-1)(n-2)}{2} (1 + \lambda^{-2} - |\nabla \varphi|^2_{g_{S^{n-1}}})$$

$$- (n-2) \lambda^{-1} \Delta_{S^{n-1}} \varphi + O(e^{-\frac{4t}{n-1}}).$$

On the other hand,

$$\sqrt{\det g} = (\lambda^{n-3} + O(e^{\frac{(n-3)t}{n-1}})) \sqrt{\det g_{S^{n-1}}}. $$
So we have
\[
\int_{\Sigma_t} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t| \\
= \int_{S^{n-1}} \lambda^{n-1} (\sigma_2 - \frac{(n-1)(n-2)}{2}) dvol_{S^{n-1}} + O(e^{\frac{(n-5)t}{n-1}}) \\
= \frac{(n-1)(n-2)}{2} \int_{S^{n-1}} (\lambda^{n-3} - \lambda^{n-1} |\nabla \varphi|_{S^{n-1}}^2) dvol_{S^{n-1}} \\
- (n-2) \int_{S^{n-1}} \lambda^{n-2} \Delta_{S^{n-1}} \varphi dvol_{S^{n-1}} + O(e^{\frac{(n-5)t}{n-1}}) \\
= \frac{(n-1)(n-2)}{2} \int_{S^{n-1}} (\lambda^{n-3} - \lambda^{n-1} |\nabla \varphi|_{S^{n-1}}^2) dvol_{S^{n-1}} \\
+ (n-2)^2 \int_{S^{n-1}} \lambda^{n-3} \nabla \lambda \nabla \varphi dvol_{S^{n-1}} + O(e^{\frac{(n-5)t}{n-1}}). \\
\]

Since \(\nabla \lambda = \lambda \nabla \varphi \), by using (22), we deduce that
\[
\int_{\Sigma_t} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma_t| \\
= \frac{(n-1)(n-2)}{2} \int_{S^{n-1}} (\lambda^{n-3} - \frac{n-3}{n-1} \lambda^{n-5} |\nabla \lambda|^2) dvol_{S^{n-1}} + O(e^{\frac{(n-5)t}{n-1}}). \tag{24}
\]

Moreover,
\[
|\Sigma_t|^{\frac{n-3}{n-1}} = \left(\int_{S^{n-1}} \lambda^{n-1} dvol_{S^{n-1}} \right)^{\frac{n-3}{n-1}} + O(e^{\frac{(n-5)t}{n-1}}). \tag{25}
\]

Using Lemma 7 we can complete the proof of Proposition 8 by combining (24) and (25).

We now complete the proof of Theorem 1

Proof of Theorem 1 Since \(Q(t) \) is monotone decreasing, we have
\[
Q(0) \geq \liminf_{t \to \infty} Q(t) \geq \frac{(n-1)(n-2)}{2} \omega_{n-1}^{\frac{2}{n-1}}.
\]
This gives that the initial hypersurface \(\Sigma \) satisfies
\[
\left(\int_{\Sigma} \sigma_2 d\mu - \frac{(n-1)(n-2)}{2} |\Sigma| \right) \geq \frac{(n-1)(n-2)}{2} \omega_{n-1}^{\frac{2}{n-1}} |\Sigma|^{\frac{n-3}{n-1}},
\]
which is equivalent to the inequality (5) in Theorem 1. Now we assume that equality holds in (5), which implies that \(Q(t) \) is a constant. Then Proposition 6 implies \(\Sigma_t \) is umbilical and therefore a geodesic sphere. It is also easy to see that if \(\Sigma \) is a geodesic sphere of radius \(r \), then the area of \(\Sigma \)
is $|\Sigma| = \omega_{n-1} \sinh^{n-1} r$ and the integral of σ_2 is

$$\int_{\Sigma} \sigma_2 d\mu = \frac{(n-1)(n-2)}{2} \omega_{n-1} \coth r \sinh^{n-1} r$$

$$= \frac{(n-1)(n-2)}{2} \omega_{n-1} (\sinh^{n-1} r + \sinh^{n-3} r)$$

$$= \frac{(n-1)(n-2)}{2} \left(|\Sigma| + \omega_{n-1} \frac{2}{n-1} |\Sigma| \frac{n-3}{n-1} \right).$$

Hence the equality holds in (5) on a geodesic sphere. This completes the proof of Theorem 1.

□

References

[1] J. L. M. Barcosa and A. G. Colares, Stability of Hypersurfaces with Constant r-Mean Curvature, Annals of Global Analysis and Geometry 15(1997), 277-297.

[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. 138(1993), 213-242.

[3] S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold, arXiv: 1209.0669.

[4] L.L. de Lima and F. Girão, An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a penrose inequality, arXiv: 1209.0438.

[5] Q. Ding, The inverse mean curvature flow in rotationally symmetric spaces, Chinese Annals of Mathematics, Series B, 1-18 (2010)

[6] E. Gallego and G. Solanes, Integral geometry and geometric inequalities in hyperbolic space, Differential Geom. Appl. 22(2005), 315-325

[7] C. Gerhardt, Inverse curvature flows in hyperbolic space, J. Differential Geom. 89 (2011), no. 3, 487-527.

[8] P. Guan and J. Li, The quermassintegral inequalities for k-convex starshaped domains,Adv. Math. 221(2009), 1725-1732.

[9] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.

[10] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237-266.

[11] G. Huisken, in preparation

[12] G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999) 45-70.

[13] R. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20 (1973) 373-383.

[14] M.-T. Wang, Quasilocal mass and surface Hamiltonian in spacetime, arXiv:1211.1407

Department of mathematical sciences, and Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P. R. China E-mail address: hli@math.tsinghua.edu.cn

Department of mathematical sciences, Tsinghua University, 100084, Beijing, P. R. China E-mail address: wei-y09@mails.tsinghua.edu.cn

Department of mathematical sciences, Tsinghua University, 100084, Beijing, P. R. China E-mail address: xiongcw10@mails.tsinghua.edu.cn