Odintsov, S. D.; Oikonomou, V. K.
Singular deformations of nearly R^2 inflation potentials. (English) Zbl 1329.83162
Classical Quantum Gravity 32, No. 23, Article ID 235011, 44 p. (2015).

Summary: We investigate in which cases a singular evolution with a singularity of type IV can be consistently incorporated into deformations of the R^2 inflationary potential. After demonstrating the difficulties that the single scalar field description is confronted with, we use a general two scalar fields model without other matter fluids, to describe the type IV singular evolution, with one of the two scalar fields being canonical. By appropriately choosing the noncanonical scalar field, we show that the canonical scalar field corresponds to a potential that is nearly the R^2 inflation potential. If the type IV singularity occurs at the end of inflation, the Universe’s dynamical evolution near inflation is determined effectively by the canonical scalar field and at late-time the evolution is effectively determined by the noncanonical scalar. We also discuss the evolution of the Universe in terms of the effective equation of state and we show that the type IV singularity that occurs at late time, this might affect the inflationary era. We also investigate which Jordan frame pure $F(R)$ gravity corresponds to the nearly R^2 inflation scalar potentials we found. The stability of the solutions in the two scalar fields case is also studied, and we investigate how type IV singularities can be incorporated in certain limiting cases of $R + R^2$ gravity in the Einstein frame. Finally, we briefly discuss a physical appealing scenario triggered by instabilities in the dynamical system that describes the evolution of the scalar fields.

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.

Keywords:
singular deformations; inflation

Full Text: DOI arXiv

References:
[1] Hawking S W and Penrose R 1970 Proc. Ry. Soc. Lond. A 314 529 - Zbl 0954.83012 - doi:10.1098/rspa.1970.0021
[2] Barrow J D, Galloway G J and Tipler F J 1986 Mon. Not. Ry. Astron. Soc. 223 835 - Zbl 0603.53047 - doi:10.1093/mnras/223.4.835
[3] Barrow J D 2004 Class. Quant. Grav. 21 L79
[4] Barrow J D 2004 Class. Quant. Grav. 21 5619
[5] Nojiri S and Odintsov S D 2004 Phys. Lett. B 595 1 - doi:10.1016/j.physletb.2004.06.060
[6] Keresztes Z, Gergely L Á , Kamenshchik A Y, Gorini V and Polarski D 2013 Phys. Rev. D 88 023535 - doi:10.1103/PhysRevD.88.023535
[7] Bouhmadi-Lopez M, Kiefer C, Sandhofer B and Moniz P V 2009 Phys. Rev. D 79 124035 - doi:10.1103/PhysRevD.79.124035
[8] Sahni V and Shtanov Y 2003 J. Cosmol. Astropart. Phys. JCAP11(2003)014
[9] Lake K 2004 Class. Quantum Grav. 21 L129
[10] Barrow J D and Tsagas C G 2005 Class. Quantum Grav. 22 1563
[11] Dabrowski M P 2005 Phys. Rev. D 71 103505 - doi:10.1103/PhysRevD.71.103505
[12] Dabrowski M P 2005 Phys. Lett. B 625 184 - Zbl 1247.83141 - doi:10.1016/j.physletb.2005.08.080
[13] Fernandez-Jambrikina L and Lazkoz R 2004 Phys. Rev. D 70 121503 - doi:10.1103/PhysRevD.70.121503
[14] Fernandez-Jambrikina L and Lazkoz R 2006 Phys. Rev. D 74 064030 - doi:10.1103/PhysRevD.74.064030
[15] Tret'yakov P, Toporensky A, Shtanov Y and Sahni V 2006 Class. Quantum Grav. 23 3259
[112] Odintsov S D and Oikonomou V K 2015 \textit{Phys. Rev.} D 92 024058-2 · doi:10.1103/PhysRevD.92.024058
[113] Liddle A R, Parsons P and Barrow J D 1994 \textit{Phys. Rev.} D 50 7222 · doi:10.1103/PhysRevD.50.7222
[114] Kaiser D I, Mazenc E A and Sfakianakis E I 2013 \textit{Phys. Rev.} D 87 064004 · doi:10.1103/PhysRevD.87.064004
[115] Ashtekar A and Singh P 2011 \textit{Class. Quantum Grav.} 28 213001
[116] Ashtekar A 2007 \textit{Nuovo Cim.} B 122 135
[117] Bojowald M 2009 \textit{Class. Quantum Grav.} 26 075020
[118] Cailleteau T, Barrau A, Grain J and Vidotto F 2012 \textit{Phys. Rev.} D 86 087301 · doi:10.1103/PhysRevD.86.087301
[119] Quintin J, Cai Y F and Brandenberger R H 2014 \textit{Phys. Rev.} D 90 063507 · doi:10.1103/PhysRevD.90.063507
[120] Cai Y F, Brandenberger R and Zhang X 2011 \textit{Phys. Lett.} B 703 25 · doi:10.1016/j.physletb.2011.07.074
[121] Cai Y F, Brandenberger R and Zhang X 2011 \textit{J. Cosmol. Astropart. Phys.} JCAP03(2011)003
[122] Bamba K, de Haro J and Odintsov S D 2013 \textit{J. Cosmol. Astropart. Phys.} JCAP03(2013)008
[123] de Haro J 2012 \textit{J. Cosmol. Astropart. Phys.} JCAP11(2012)037

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.