NON-NEGATIVE CURVATURE AND TORUS ACTIONS

CHRISTINE ESCHER AND CATHERINE SEARLE

Abstract. Let M^n_0 be the class of closed, simply-connected, non-negatively curved Riemannian manifolds admitting an isometric, effective, almost maximal or maximal torus action. We prove that if $M \in M^n_0$, then M is equivariantly diffeomorphic to the free linear quotient of a product of spheres of dimensions greater than or equal to three. As an immediate consequence, we prove the Maximal Symmetry Rank Conjecture for all $M \in M^3_0$. Finally, we show the Maximal Symmetry Rank Conjecture holds for dimensions less than or equal to nine without assuming the torus action is almost maximal or maximal.

1. Introduction

There are no known obstructions distinguishing closed, simply-connected, Riemannian manifolds of non-negative sectional curvature from those which admit a metric of positive curvature (cf. [66, 67]). One approach to better understand both of these classes of manifolds has been the introduction of symmetries (cf. [23]) and an important first case to understand is that of maximal symmetry rank, where the symmetry rank of a manifold is defined as the rank of the isometry group of M, that is, symrk$(M) = \text{rk}(\text{Isom}(M))$. By work of Grove and Searle [24], the positive curvature case is completely understood. More recently, Galaz-García and Searle [20, 21] have obtained results for the non-negative curvature case, but only in low dimensions. Based on our results here, we reformulate and sharpen the conjecture for non-negative curvature (cf. [20]).

Maximal Symmetry Rank Conjecture. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Then

1. $k \leq [2n/3]$;
2. When $k = [2n/3]$, M is equivariantly diffeomorphic to $$Z = \prod_{i \leq r} S^{2n_i + 1} \times \prod_{i > r} S^{2n_i}, \text{ with } r = 2[2n/3] - n,$$

or the quotient of Z by a free linear action of a torus of rank less than or equal to $2n \mod 3$.

As a first step towards proving the Maximal Symmetry Rank Conjecture in general, we give an equivariant diffeomorphism classification for the class of closed, simply-connected, non-negatively curved manifolds admitting an isometric torus action that is either maximal or almost maximal. We then obtain the Maximal Symmetry Rank Conjecture as a corollary for this class of manifolds.

Theorem A. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Assume that the action is almost maximal or maximal. Then M is equivariantly diffeomorphic to the free linear quotient of Z, a product of spheres of dimensions greater than or equal to three and with $n \leq \dim(Z) \leq 3n - 3k$.

Date: April 14, 2016.
2000 Mathematics Subject Classification. Primary: 53C20; Secondary: 57S25, 51M25.
One defines a T^k action on a smooth manifold, M^n, to be maximal when $2k - n$ is equal to the dimension of the smallest orbit and almost maximal when $2k - n + 1$ is equal to the dimension of the smallest orbit. In fact, we will show in Theorem 5.4 that on a closed, simply-connected, non-negatively curved Riemannian manifold an almost maximal T^k-action must actually be maximal, so we only need to prove Theorem A for the case when the T^k-action is maximal. Note that for a maximal action, $k \geq \lfloor n/2 \rfloor$. Theorem A combined with Theorem 5.4 then yields the following corollary.

Corollary B. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Assume that the action is almost maximal or maximal. Then $\lfloor n/2 \rfloor \leq k \leq \lfloor 2n/3 \rfloor$.

It follows directly from Theorem A that if an action of rank $\lfloor 2n/3 \rfloor$ is maximal or almost maximal, then Part (2) of the Maximal Symmetry Rank Conjecture holds. Moreover, Lemma 2.2 from Ishida [31] (Lemma 2.3 in this article) tells us that for a maximal torus action of a given rank, no higher rank torus can act effectively, so Part (1) of the Conjecture holds, as well. Hence, we obtain the following theorem.

Theorem C. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Assume that the action is almost maximal or maximal for $k = \lfloor 2n/3 \rfloor$. Then the Maximal Symmetry Rank Conjecture holds.

In fact, the proof of Theorem C tells us that we may reformulate the Maximal Symmetry Rank Conjecture as follows.

Maximal Symmetry Rank Conjecture. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Then the action is maximal for $k = \lfloor 2n/3 \rfloor$.

Recall that the free rank of a T^k action is the dimension of the largest subtorus that can act almost freely. Observe that a rank k maximal action has free rank equal to $2k - n$. Vice versa, when the free rank of the action is equal to $2k - n$ then the action is maximal. A similar statement is true for almost maximal actions. In particular, in Proposition 5.2 we show that the lower bound for the free rank of an isometric T^k-action, $k \geq \lfloor (n + 1)/2 \rfloor$, on an Alexandrov space with a lower curvature bound is $2k - n$. Since a maximal or almost maximal action is equivalent to an action with free rank equal to either $2k - n$ or $2k - n + 1$, we can reformulate Theorem A as follows:

Theorem A’. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Suppose that the free rank of the action is less than or equal to $2k - n + 1$. Then M is equivariantly diffeomorphic to the free linear quotient of Z, a product of spheres of dimensions greater than or equal to three and with $n \leq \dim(Z) \leq 3n - 3k$.

Our results also relate to the class of rationally elliptic manifolds. Recall that a rationally elliptic space is defined as follows.

Definition 1.1 (Rationally Elliptic). A simply connected topological space X is called rationally elliptic if $\dim\mathbb{Q}H^*(X;\mathbb{Q}) < \infty$ and $\dim\mathbb{Q}(\pi_*(X) \otimes \mathbb{Q}) < \infty$.

The following conjecture for non-negatively curved manifolds was made by Bott (see, for example, Grove [23]).

Bott Conjecture. A closed, simply-connected, non-negatively curved manifold is rationally elliptic.
Galaz-García, Kerin and Radeschi [18] recently showed that a simply-connected, smooth, rationally elliptic manifold, M^n, satisfies Part (1) of the Maximal Symmetry Rank Conjecture and found an upper bound of $\lfloor n/3 \rfloor$ for the free rank of the action. In particular, the upper bound, in combination with the lower bound found in Proposition 5.2, implies that the action is maximal or almost maximal when $k = \lfloor 2n/3 \rfloor$. As mentioned above, Theorem 5.4 tells us that for this class of manifolds an almost maximal action must actually be maximal. This allows us to reformulate Theorem C as follows:

Theorem C'. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold that is rationally elliptic. Then the Maximal Symmetry Rank Conjecture holds.

Observe that if the Bott Conjecture were true, then we would no longer need to assume rational ellipticity in Theorem C nor that the action is maximal or almost maximal in Corollary B. That is, the Maximal Symmetry Rank Conjecture would hold for all manifolds, M^n, that are simply-connected, closed, non-negatively curved and admit an isometric T^k action. Moreover, Theorem A would then strengthen the rational homotopy type classification obtained in Galaz-García, Kerin, Radeschi and Wiemeler [19] for rationally elliptic manifolds admitting a maximal torus action to an equivariant diffeomorphism classification with the rationally elliptic hypothesis replaced by a hypothesis of non-negative curvature.

As closed, simply-connected, non-negatively curved manifolds of maximal symmetry rank have been classified up to diffeomorphism in dimensions less than or equal to 6 in Galaz-García and Searle [20] and up to equivariant diffeomorphism in dimensions 4 through 6 by Galaz-García and Kerin [17], it is of interest to extend this classification to higher dimensions. The next set of dimensions to consider is then 7 through 9. In order to apply Theorem A to obtain such a classification, we must first prove the following proposition.

Proposition D. Let M^n be a closed, simply-connected, non-negatively curved Riemannian manifold admitting an isometric, effective cohomogeneity three torus action. If $n \geq 7$, then the action is maximal.

Observation. The same result holds trivially without any curvature assumptions for a cohomogeneity one torus action on a closed, simply-connected manifold of dimension $n \geq 1$. It also holds for a cohomogeneity two torus action on a closed, simply-connected n-manifold, for $n \geq 4$ (see Theorem 1.3 in Kim, McGavran and Pak [33]).

Combining Theorem C with Proposition D we obtain the following theorem which gives us a classification up to equivariant diffeomorphism of closed, simply-connected, non-negatively curved Riemannian manifolds of dimensions 7, 8 and 9, admitting an isometric cohomogeneity three torus action, without any assumption on the maximality of the action.

Theorem E. Let M^n, $n = 7, 8, 9$ be a closed, simply-connected, non-negatively curved manifold admitting an effective, isometric torus action. Then the Maximal Symmetry Rank Conjecture holds.

As an immediate consequence of Corollary B and Proposition D, we confirm Part (1) of the Maximal Symmetry Rank Conjecture for dimensions less than or equal to 12.

Corollary F. Let M^n, $n \leq 12$, be a closed, simply-connected, non-negatively curved Riemannian manifold admitting an effective, isometric torus action. Then Part (1) of the Maximal Symmetry Rank Conjecture holds.

One notes that in order to extend these classification results to higher dimensions, it suffices to show that an action of maximal symmetry rank must be either almost maximal or maximal. One possible course of action would be to establish the existence of an upper
bound on the free rank of the action that is strictly less than the rank of the action; that is, show that some circle has non-empty fixed point set. However, to date, there are no known obstructions for a cohomogeneity \(m\) torus action, \(m \geq 4\), on an \(n\)-dimensional closed, simply-connected, non-negatively curved Riemannian manifold with \(n \geq 10\) to be free (see \([35], [1]\)).

As mentioned above, in \([20]\) and \([17]\) the classification up to equivariant diffeomorphism of closed, simply-connected, non-negatively curved Riemannian manifold of maximal symmetry rank in dimensions less than or equal to 6 was obtained. Combining Theorem C with the above Observation, we re-obtain the Maximal Symmetry Rank Conjecture in dimensions less than or equal to 6, giving us a significantly streamlined proof of the result (cf. \([20], [17]\)).

Theorem G. Let \(M^n, 2 \leq n \leq 6\) be a closed, simply-connected, non-negatively curved manifold admitting an effective, isometric torus action. Then the Maximal Symmetry Rank Conjecture holds.

It is also of interest to classify closed, simply-connected, non-negatively curved Riemannian \(n\)-dimensional manifolds of almost maximal symmetry rank, that is, admitting a \(T^k\) isometric, effective action of rank \(k = \lfloor 2n/3 \rfloor - 1\). In a separate article \([12]\), the authors will use Theorem A in combination with results about \(T^3\) actions with only circle isotropy to obtain a classification of 6-dimensional, closed, simply-connected, non-negatively curved manifolds of almost maximal symmetry rank, thereby extending the almost maximal symmetry rank classification work of Kleiner \([31]\) and Searle and Yang \([58]\) in dimension 4 and work of Galaz-García and Searle \([21]\) in dimension 5. We expect that Theorem A should admit a number of similar applications and should be particularly useful for any classification of closed, simply-connected, non-negatively curved manifolds of higher dimension of almost maximal symmetry rank.

1.1. **History.** We now give a brief outline of the history of the setting of this work. In a series of papers by Raymond \([53]\) and Orlik and Raymond \([54, 55, 56]\), the general study of manifolds with continuous abelian symmetries was initiated from a purely topological perspective with the study of circle and torus actions on 3-manifolds and 4-manifolds, respectively. A key ingredient in the classification obtained was the Equivariant Cross-Sectioning Theorem, which permitted the classification of the manifold up to equivariant homeomorphism via a classification of the 2-dimensional weighted orbit spaces. Subsequent work by Pak \([46]\), Kim, McGavran and Pak \([33]\), Oh \([44, 45]\), McGavran \([37]\), and McGavran and Oh \([39]\) generalized the work of Orlik and Raymond to cohomogeneity one, two and three torus actions on higher dimensional manifolds and involved generalizing the Equivariant Cross-Sectioning Theorem for \(G\)-manifolds with orbit spaces of dimension 1, 2 and 3. More recently, the work of Raymond and Orlik and Raymond has been generalized to Alexandrov spaces of dimension 3 by Núñez-Zimbrón \([43]\).

From a more geometric perspective, Hsiang and Kleiner \([32]\) showed that in the presence of an isometric circle action, a closed, simply-connected, positively curved 4-manifold must be homeomorphic to \(S^4\) or \(\mathbb{C}P^2\). Their work relied heavily on the existence of fixed point sets of the circle action and the classification of 4-manifolds due to Freedman \([14]\). In particular, this result gives some insight into the Hopf conjecture: if \(S^2 \times S^2\) were to admit a metric of strictly positive curvature then its isometry group would be finite.

The results of \([32]\) were extended in \([24]\), where a diffeomorphism classification of positively curved Riemannian manifolds with maximal symmetry rank was obtained. This work again relies on the existence of fixed point sets of isometric circle actions, but also uses techniques of Alexandrov geometry in the positive curvature setting. We note that the
maximal symmetry rank theorem was generalized to closed Alexandrov spaces of curvature greater than or equal to 1 by Harvey and Searle [28] and we will make use of their result later.

Rong [57] then showed that in the almost maximal symmetry rank case, that is, for \(k = \lfloor (n-1)/2 \rfloor \), in dimension 5 the manifold must be homeomorphic to a sphere, which, with the proof of the Poincaré conjecture, can be improved to diffeomorphism, and he found a number of topological restrictions in higher dimensions. Wilking [65] significantly improved these results, showing that an \(n \)-dimensional Riemannian manifold with an isometric action of rank approximately \(n/4 \) is homeomorphic to a sphere or a quaternionic projective space or has the cohomology ring of a complex projective space. Fang and Rong [13], using Wilking’s connectivity lemma [65], were then able to show that in the almost maximal symmetry rank case the manifold must be homeomorphic to the sphere, the complex projective space or the quaternionic projective space. It should also be noted that recently Grove and Wilking [26] improved the results of [32] to show that the 4-dimensional classification obtained is actually up to equivariant diffeomorphism.

As mentioned previously, the results of [32] were extended to non-negative curvature independently by Kleiner [34] and Searle and Yang [58]. They showed that in the presence of an isometric circle action, the only closed, simply-connected, non-negatively curved Riemannian manifolds in addition to \(S^4 \) and \(CP^2 \) are \(S^2 \times S^2 \) and \(CP^2 \# \pm CP^2 \). More recently, Galaz-García and Searle [20] extended the symmetry rank results to non-negative curvature in low dimensions, classifying closed, simply connected, non-negatively curved Riemannian manifolds of maximal symmetry rank up to diffeomorphism in dimension less than or equal to 6 and confirming Part (1) of the Maximal Symmetry Rank conjecture in dimensions less than or equal to 9 [20], as well as extending Rong’s results in dimension 5 to non-negative curvature [21].

We note that the classification of closed, simply connected, non-negatively curved Riemannian manifolds of maximal symmetry rank up to equivariant diffeomorphism in dimensions 2 and 3 is well-known and the equivariant classification in dimensions 4, 5 and 6 was obtained by Galaz-García and Kerin in [17], so, as mentioned earlier, the Maximal Symmetry Rank conjecture was already known to be true for dimensions less than or equal to 6.

1.2. Organization. We have organized the paper in general so as to present the topological tools and results first, followed by their geometrical counterparts. In Section 2, we describe the topological and geometrical tools we will need to prove Theorem A, Corollary B and Proposition D. In Section 3, we prove a generalization of the Equivariant Cross-Sectioning Theorem of Orlik and Raymond and thereby obtain an Equivariant Classification Theorem. In Section 4, we generalize results on torus manifolds of non-negative curvature to the class of almost non-negatively curved torus manifolds with non-negatively curved quotient spaces. In Section 5, we find a general lower bound for the free rank of an action on an Alexandrov space with a lower curvature bound and also show that an almost maximal action is actually maximal in the presence of non-negative curvature. In Section 6, we prove Theorem A. In Section 7, we prove Corollary B and Proposition D.

Acknowledgements. Both authors would like to thank Fernando Galaz-García, Martin Kerin and Marco Radeschi for helpful conversations. Both authors would like to express their gratitude to Mark Walsh for his generous help with the figures. C. Escher would like to acknowledge partial support from the Oregon State University College of Science Scholar Fund. C. Searle would like to acknowledge partial support from a Wichita State University ARCs grant #150353 and partial support from a Simons Foundation grant #355508. This material is based in part upon work supported by the National Science Foundation under
2. Preliminaries

In this section we will gather basic results and facts about transformation groups, torus actions, torus manifolds, torus orbifolds, as well as results concerning G-invariant manifolds of non-negative and almost non-negative sectional curvature.

2.1. Transformation Groups. Let G be a compact Lie group acting on a smooth manifold M. We denote by $G_x = \{ g \in G : gx = x \}$ the isotropy group at $x \in M$ and by $G(x) = \{ gx : g \in G \} \simeq G/G_x$ the orbit of x. Orbits will be principal, exceptional or singular, depending on the relative size of their isotropy subgroups; namely, principal orbits correspond to those orbits with the smallest possible isotropy subgroup, an orbit is called exceptional when its isotropy subgroup is a finite extension of the principal isotropy subgroup and singular when its isotropy subgroup is of strictly larger dimension than that of the principal isotropy subgroup.

The ineffective kernel of the action is the subgroup $K = \cap_{x \in M} G_x$. We say that G acts effectively on M if K is trivial. The action is called almost effective if K is finite. The action is free if every isotropy group is trivial and almost free if every isotropy group is finite. As mentioned in the Introduction, the free rank of an action is the rank of the maximal subtorus that acts almost freely. In order to further distinguish between the case when the free rank corresponds to a free action and the case when it corresponds to an almost free action, we make the following definition.

Definition 2.1 (Free Dimension). Suppose that the free rank of a T^k-action is equal to r, then we say that the free dimension is equal to the dimension of the largest subtorus of T^r that acts freely.

We will sometimes denote the fixed point set $M^G = \{ x \in M : gx = x, g \in G \}$ of the G-action by $\text{Fix}(M; G)$ and define its dimension as

$$\dim(\text{Fix}(M; G)) = \max\{ \dim(N) : N \text{ is a connected component of } \text{Fix}(M; G) \}.$$

One measurement for the size of a transformation group $G \times M \to M$ is the dimension of its orbit space M/G, also called the cohomogeneity of the action. This dimension is clearly constrained by the dimension of the fixed point set M^G of G in M. In fact, $\dim(M/G) \geq \dim(M^G) + 1$ for any non-trivial action. In light of this, the fixed-point cohomogeneity of an action, denoted by $\text{cohomfix}(M; G)$, is defined by

$$\text{cohomfix}(M; G) = \dim(M/G) - \dim(M^G) - 1 \geq 0.$$

A manifold with fixed-point cohomogeneity 0 is also called a G-fixed point homogeneous manifold.

Let $G = H \times \cdots \times H = H^l$ act isometrically and effectively on M^n. Let N_1 denote the connected component of largest dimension in M^H and let $N_k \subset N_{k-1}$ denote the connected component of largest dimension in N_{k-1}^H, for $k \leq l$. We will call a manifold nested H-fixed point homogeneous when there exists a tower of nested H-fixed point sets,

$$N_l \subset N_{l-1} \subset \cdots \subset N_1 \subset M$$

such that H acts fixed point homogeneously on M^n, and all induced actions of G/H^k on N_k, for all $1 \leq k \leq l - 1$, are H-fixed point homogeneous.
2.2. Torus Actions. In this subsection we will recall notation and facts about smooth G actions on smooth n-manifolds, M, and in particular for their orbit spaces, M/G, and then consider the special case when G is a torus. We first recall the definition of a maximal torus action, see for example Ishida [31] and Ustinovsky [62].

Definition 2.2 (Maximal Action). Let M^n be a connected manifold with an effective $G = T^k$ action.

1. We call the G action on M^n maximal if there is a point $x \in M$ such that the dimension of its isotropy group is $n - k$: $\dim(G_x) = n - k$.
2. The orbit $G(x)$ through $x \in M$ is called minimal if $\dim(G(x)) = 2k - n$.

Note that the action of T^k on M is maximal if and only if there exists a minimal orbit $T^k(x)$. The following lemma of [31] shows that a maximal action on M means that there is no larger torus which acts on M effectively.

Lemma 2.3. [31] Let M be a connected manifold with an effective T^k action. Let $T^l \subset T^k$ be a subtorus of T^k. Suppose that the action of T^k restricted to T^l on M is maximal. Then $T^l = T^k$.

A similar statement about almost maximal actions is also true. That is, if M admits an almost maximal action of rank k, then at most a torus of rank $k + 1$ can act on M effectively.

Lemma 2.4. Let M be a connected manifold with an effective T^k action. Let $T^l \subset T^k$ be a subtorus of T^k. Suppose that the action of T^k restricted to T^l on M is almost maximal. Then $l = k$ or $l = k - 1$.

We also obtain the following properties of a maximal action.

Lemma 2.5. [31] Let M be a connected manifold with a maximal $G = T^k$ action. Let $G(x)$ be a minimal orbit. Then

1. The isotropy group G_x at x is connected.
2. $G(x)$ is a connected component of the fixed point set of the action of T^k restricted to G_x on M.
3. Each minimal orbit is isolated. In particular, there are finitely many minimal orbits if M is compact.

Observation 2.6. It is easy to see that Properties (1) and (2) also hold for an almost maximal action.

Now, to any orbit space, M/G, we may assign isotropy information, in the form of weights. We recall the definition of a weighted orbit space for a smooth G action on M.

Definition 2.7 (Weighted Orbit Space). Let G act smoothly on an n-manifold M with orbit space $M^* = M/G$. To each orbit in M^* there is associated to it a certain orbit type which is characterized by the isotropy group of the points of the orbit together with the slice representation at the given orbit. This orbit space together with its orbit types and slice representation is called a weighted orbit space.

Letting $G = T^k$ act maximally on M^n, we note that it is enough to specify the weights of the facets, that is, of the codimension one faces, as these will correspond to circle isotropy groups and together with a description of the orbit space, one then obtains a complete description of all orbit types.

Let

$$p : \mathbb{R}^k \rightarrow T^k, (x_1, \ldots, x_n) \mapsto (e^{2\pi x_1 i}, \ldots, e^{2\pi x_k i})$$
be the universal covering projection and let \(G \) be a circle subgroup of \(T^k \). Since each component of \(p^{-1}(G) \) is a line containing at least two integer lattice points of \(\mathbb{R}^k \), it is natural to parametrize \(G \) as follows: Let \(a_1, \ldots, a_k \) be relatively prime integers and let \(a = (a_1, \ldots, a_k) \in \mathbb{Z}^k \). We call the \(a_i \in \mathbb{Z} \) the weights of the corresponding circle isotropy subgroup \(G(a) \). Then \(G(a) = G(a_1, \ldots, a_k) = \{ (x_1, \ldots, x_k) \mid x_i = a_i t \mod \mathbb{Z}, 0 \leq t < 1, i = 1, \ldots, k \} \). With this notation \(G(a) \) is the image of a line in \(\mathbb{R}^k \) through the origin and the lattice point \(a = (a_1, \ldots, a_k) \) under the projection \(p \). We define the matrix of \(m \) isotropy groups \(G(a_1), \ldots, G(a_m) \) to be the following \(m \times k \)-matrix:

\[
M(a_1, \ldots, a_m) = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{k1} & a_{k2} & a_{k3} & \cdots & a_{km}
\end{bmatrix}
\]

We will denote the weights of a torus action via the matrix \(M(a_1, \ldots, a_m) \).

The following proposition and corollary are straightforward generalizations of Theorem 1.6 and Corollary 1.7 in [33], respectively. We leave the proofs to the reader.

Proposition 2.8. Let \(T^k \) act on \(M^n \) effectively, where \(M^n \) is a simply-connected, closed manifold of dimension \(n \). Suppose further that all isotropy subgroups are connected, all singular orbits correspond to points on the boundary of the quotient space, there are no exceptional orbits and \(M^n/T^k = D^{n-k} \). Then no subgroup \(T^l \) \((k > l \geq 1)\) can contain all nonfree elements of \(T^k \).

Corollary 2.9. With the same hypotheses as in Proposition 2.8, all isotropy subgroups must generate the whole group \(T^k \) and there are at least \(k \) different circle isotropy subgroups of \(T^k \).

We recall the following facts about circle subgroups of a \(T^k \)-action on a manifold, \(M^n \), see, for example, Oh [34] for more details.

Proposition 2.10. [34] Let \(T^k \) act on \(M^n \). The following are true.

1. Two circle subgroups \(G(a_1) \) and \(G(a_2) \) of \(T^k \) have trivial intersection if and only if there exist \(a_3, \ldots, a_k \in \mathbb{Z}^k \) such that the determinant of the corresponding \(k \times k \)-matrix, \(M(a_1, \ldots, a_k) \), is equal to plus or minus one, that is, \(\det(M(a_1, \ldots, a_k)) = \pm 1 \).
2. The \(k \) circle subgroups generate \(T^k \), that is \(G(a_1) \times \cdots \times G(a_k) = T^k \) if and only if \(\det(M(a_1, \ldots, a_k)) = \pm 1 \).

With the hypotheses as in Proposition 2.8, we obtain the following information about the quotient space \(M^n/T^k = D^{n-k} \): Corollary 2.9 tells us that \(M/T \) has least \(k \) facets and Part (2) of Proposition 2.10 tells us that the matrix of weights for \(M/T \) must have determinant \(\pm 1 \).

Note that the slice representation at a fixed point is just the action of the isotropy group on the normal disk. For a circle orbit of type \(G(a_1, \ldots, a_k) \) we have the standard representation described in terms of relatively prime integers. Let \(M_1^* \) and \(M_2^* \) denote the orbit spaces of a smooth action of \(G \) on the closed oriented smooth \(n \)-manifolds \(M_1 \) and \(M_2 \). A diffeomorphism (homeomorphism) of \(M_1^* \) and \(M_2^* \) which carries the weights of \(M_1^* \) isomorphically onto the weights of \(M_2^* \) is called a weight-preserving diffeomorphism (homeomorphism).

For classification purposes it is convenient to fix orientations. We start with a fixed orientation of the group \(G \). Then an orientation of \(M \) determines an orientation of \(M^* \) and vice versa, assuming there are no isotropy groups which reverse the orientation of a slice. When the orbit map \(\pi : M \to M^* \) has a cross-section \(s \), that is, \(s : M^* \to M \) is a continuous
map such that \(\pi \circ s \) is the identity on \(M^* \), we always assume that the orientation of \(s(M^*) \) is the one induced by the cross-section and the orientation of \(M \) is compatible with it.

We now recall the definition of a conical orbit structure of a \(G \)-action on a space \(X \).

Definition 2.11 (Conical Orbit Structure). Denote by \(C(Y) = (Y \times I)/(Y \times \{0\}) \) the closed cone over a space \(Y \) and by \(C(Y) = Y \times [0,1)/(Y \times \{0\}) \) the open cone. The orbit structure of \(X \) is called conical, if \(X^* \) is homeomorphic to an open cone \(C(Y) \) with constant orbit type along rays, less the vertex, \(p^* \).

For the case of a \(T^k \)-action on a closed manifold \(M^n \) we obtain the following classification of a neighborhood of point in \(M \) with isotropy group \(T^l, l \leq k \).

Theorem 2.12. \([37]\) (see also \([38]\)) Suppose \(T^k \) acts locally smoothly on a closed manifold \(M^n \). Suppose \(p \in M^n \) has isotropy group \(T^l, 0 \leq l \leq k \). Let \(X \) be a closed invariant neighborhood of \(p \) in \(M \) such that \(X^* = C(Y) \). Suppose \(C(Y) \) is an open subspace of \(M^* \) with conical orbit structure with vertex \(p^* \). Then \(X \) is equivariantly homeomorphic to \(T^{k-l} \times D^{n-k+l} \).

2.3. Torus Manifolds.

An important subclass of manifolds admitting an effective torus action are the so-called torus manifolds. For more details on torus manifolds, we refer the reader to Hattori and Masuda \([29]\), Buchstaber and Panov \([5]\), and Masuda and Panov \([36]\).

Definition 2.13 (Torus Manifold). A torus manifold \(M \) is a \(2n \)-dimensional closed, connected, orientable, smooth manifold with an effective smooth action of an \(n \)-dimensional torus \(T \) such that \(M^T \not= \emptyset \).

Note that torus manifolds satisfy the following properties. The action of \(T^n \) on \(M^{2n} \) is an example of a maximal action. Further, \(M^{2n} \) is an example of a \(S^1 \)-fixed point homogeneous manifold and moreover, the action on \(T^n \) on \(M^{2n} \) is an example of a nested \(S^1 \)-fixed point homogeneous action, as defined in Section 2, that is, we can find a tower of nested fixed point sets as follows for each \(p \in M^T \):

\[
p \subset F^2 \subset \cdots \subset F^{2n-2} \subset M^{2n}.
\]

We will also make use of the following refinement of a torus manifold.

Definition 2.14 (Locally Standard). A torus manifold \(M^{2n} \) is called locally standard if each point in \(M \) has an invariant neighborhood \(U \) which is weakly equivariantly diffeomorphic to an open subset \(W \subset \mathbb{C}^n \) invariant under the standard \(T^n \) action on \(\mathbb{C}^n \), that is, there exists an automorphism \(\psi : T^n \rightarrow T^n \) and a diffeomorphism \(f : U \rightarrow W \) such that \(f(ty) = \psi(t)f(y) \) for all \(t \in T^n \) and \(y \in U \).

Observe that not all torus manifolds are locally standard. In fact, being locally standard imposes strong topological restrictions: Masuda and Panov \([36]\) show that the odd degree cohomology of a torus manifold, \(M \), is generated by its degree two part and if only if \(M \) is locally standard and the orbit space \(M/T \) is acyclic with acyclic faces.

The quotient space \(P^n = M^{2n}/T^n \) of a torus manifold plays an important role in the theory. Recall that an \(n \)-dimensional convex polytope is called simple if the number of facets meeting at each vertex is \(n \). An \(n \)-manifold with corners is a Hausdorff space together with a maximal atlas of local charts onto open subsets of the simplicial cone, \([0,\infty)^n \subset \mathbb{R}^n \), so that the overlap maps are homeomorphisms which preserve codimension. A manifold with corners is called nice if every codimension \(k \) face is contained in exactly \(k \) facets. Clearly, a nice manifold with corners is a simple convex polytope.

Let \(\pi : M^{2n} \rightarrow P^n = M^{2n}/T^n \) be the orbit map of a torus manifold and let \(\mathcal{F} = \{F_1,\ldots,F_m\} \) be the set of facets of \(P^n \). Denote the preimages by \(M_j = \pi^{-1}(F_j), 1 \leq
Proposition 2.16. \[4\] Let \(T^n \) be a smooth manifold of dimension \(m \). Hence \(M_j \) is a connected component of the fixed point set of the circle subgroup \(T_{F_j} \subset T^n \). This implies that \(M_j \) is a \(T^n \)-invariant submanifold of codimension 2 in \(M \), and \(M_j \) is a torus manifold over \(F_j \) with the action of the quotient torus \(T^n/T_{F_j} \cong T^{n-1} \). Following \[9\], we refer to \(M_j \) as the characteristic submanifold corresponding to the \(j \)th face \(F_j \subset P^n \). The mapping \(\lambda : F_j \to T_{F_j}, 1 \leq j \leq m \), is called the characteristic function of the torus manifold \(M_2 \). Now let \(G \) be a codimension-\(k \) face of \(P^n \) and write it as an intersection of \(k \) facets: \(G = F_{j_1} \cap \cdots \cap F_{j_k} \). Assign to each face \(G \) the subtorus \(T_G = \prod_{k \subset G} T_{F_i} \subset T^F \). Then \(M_G = \pi^{-1}(G) \) is a \(T^n \)-invariant submanifold of codimension \(2k \) in \(M \), and \(M_G \) is fixed under each circle subgroup \(\lambda(F_{j_p}), 1 \leq p \leq k \).

To each \(n \)-dimensional simple convex polytope, \(P^n \), we may associate a \(T^n \)-manifold \(Z_P \) with orbit space \(P^n \), as in Davis and Januszkiewicz \[9\].

Definition 2.15 (Moment Angle Manifold). For every point \(q \in P^n \) denote by \(G(q) \) the unique (smallest) face containing \(q \) in its interior. For any simple polytope \(P^n \) define the moment angle manifold

\[
Z_P = (T^F \times P^n)/\sim = (T^m \times P^n)/\sim,
\]

where \((t_1, p) \sim (t_2, q)\) if and only if \(p = q \) and \(t_1 t_2^{-1} \in T_{G(q)} \).

Note that the equivalence relation depends only on the combinatorics of \(P^n \). In fact, this is also true for the topological and smooth type of \(Z_P \), that is, combinatorially equivalent simple polytopes yield homeomorphic, and, in fact, diffeomorphic, moment angle manifolds (see Proposition 4.3 in Panov \[47\] and the remark immediately following it).

The free action of \(T^m \) on \(T^F \times P^n \) descends to an action on \(Z_P \), with quotient \(P^n \). Let \(\pi_Z : Z_P \longrightarrow P^n \) be the orbit map. The action of \(T^m \) on \(Z_P \) is free over the interior of \(P^n \), while each vertex \(v \in P^n \) represents the orbit \(\pi^{-1}_Z(v) \) with maximal isotropy subgroup of dimension \(n \).

In Buchstaber and Panov \[4\] the following facts about the space \(Z_P \) are proven.

Proposition 2.16. \[4\] Let \(P^n \) be a combinatorial simple polytope with \(m \) facets, then

1. The space \(Z_P \) is a smooth manifold of dimension \(m + n \).
2. If \(P = P_1 \times P_2 \) for some simple polytopes \(P_1 \) and \(P_2 \), then \(Z_P = Z_{P_1} \times Z_{P_2} \). If \(G \subset P \) is a face, then \(Z_G \) is a submanifold of \(Z_P \).

Lastly, we describe properties of the Borel construction of a locally standard torus action on a smooth manifold. Let \(T = T^n \) and let \(M_T := ET \times_T M \) be the Borel construction, that is the quotient of the product of \(M \) with the total space of the \(T \)-universal principal bundle \(E_T \) by the diagonal action of \(T \) on both. Thus \(M_T \) is a bundle over the classifying space \(BT \) with fiber \(M \). Recall that as mentioned above, \(M \) locally standard and \(P := M/T \) acyclic with acyclic faces is equivalent to the cohomology of \(M \) being generated by degree 2 classes \[29\]. Hence the Leray-Serre spectral sequence collapses at \(E_2 \) and we obtain that \(H^*(M_T) \cong H^*(BT) \oplus H^*(M) \). In particular for \(n = 2 \), there is a short exact sequence:

\[
(2.1) \quad 0 \longrightarrow H^2(BT) \longrightarrow H^2(M_T) \longrightarrow H^2(M) \longrightarrow 0.
\]

In analogy with a torus manifold, we may define a torus orbifold, as follows.

2.4. Torus Orbifolds. In this subsection we gather some preliminary results about torus orbifolds.

We first recall the definition of an orbifold. For more details about orbifolds and actions of tori on orbifolds, see Haefliger and Salem \[27\], and \[19\].
Definition 2.17 (Orbifold). An n-dimensional (smooth) orbifold, denoted by O, is a second-countable, Hausdorff topological space $|O|$, called the underlying topological space of O, together with an equivalence class of n-dimensional orbifold atlases.

In analogy with a torus manifold, we may define a torus orbifold, as follows.

Definition 2.18 (Torus Orbifold). A torus orbifold, O, is a $2n$-dimensional, closed, orientable orbifold with an effective smooth action of an n-dimensional torus T such that $O^T \neq \emptyset$.

We recall the following theorem from [19], which will be of use in the proof of Theorem A.

Theorem 2.19. [19] Let O^{2n}, a rationally elliptic, simply-connected torus orbifold. Then there is a product Z of spheres of dimension ≥ 3, a torus T^l acting linearly and almost freely on Z, and an effective, linear action of T^n on $\hat{O} = Z/T^l$, such that there is a T^n-equivariant rational homotopy equivalence $O \simeq \mathbb{Q}\hat{O}$.

2.5. Alexandrov Geometry. Recall that a finite dimensional length space (X, dist) is an Alexandrov space if it has curvature bounded from below (see, for example, Burago, Burago and Ivanov [6]). When M is a complete, connected Riemannian manifold and G is a compact Lie group acting on M by isometries, the orbit space $X = M/G$ is equipped with the orbital distance metric induced from M, that is, the distance between p and q in X is the distance between the orbits Gp and Gq as subsets of M. If, in addition, M has sectional curvature bounded below, that is, $\text{sec} M \geq k$, then the orbit space X is an Alexandrov space with $\text{curv} X \geq k$.

The space of directions of a general Alexandrov space at a point x is by definition the completion of the space of geodesic directions at x. In the case of orbit spaces $X = M/G$, the space of directions $\Sigma p X$ at a point $p \in X$ consists of geodesic directions and is isometric to S^+_p / G_p, where S^+_p is the unit normal sphere to the orbit Gp at $p \in M$.

A non-empty, proper extremal set comprises points with spaces of directions which significantly differ from the unit round sphere. They can be defined as the sets which are “ideals” of the gradient flow of $\text{dist}(p, \cdot)$ for every point p. Examples of extremal sets are isolated points with space of directions of diameter $\leq \pi/2$, the boundary of an Alexandrov space and, in a trivial sense, the entire Alexandrov space. We refer the reader to Petrunin [52] for definitions and important results.

2.6. Geometric results in the presence of a lower curvature bound. We now recall some general results about G-manifolds with non-negative and almost non-negative curvature which we will use throughout. Recall that a torus manifold is an example of an S^3-fixed point homogeneous manifold, indeed of an nested S^3-fixed point homogeneous manifold. Fixed point homogeneous manifolds of positive curvature were classified in Grove and Searle [23] and more recently Spindeler [61] proved the following theorem which characterizes non-negatively curved G-fixed point homogeneous manifolds.

Theorem 2.20. [61] Assume that G acts fixed point homogeneously on a complete non-negatively curved Riemannian manifold M. Let F be a fixed point component of maximal dimension. Then there exists a smooth submanifold N of M, without boundary, such that M is diffeomorphic to the normal disk bundles $D(F)$ and $D(N)$ of F and N glued together along their common boundaries;

$$M = D(F) \cup_\partial D(N).$$
Further, N is G-invariant and contains all singularities of M up to F.

Spindeler also proves the following two facts when M is a torus manifold of non-negative curvature, which will be important for what follows.

Proposition 2.21. [61] Let M, N and F be as in Theorem 2.20 and assume that M is a closed, simply connected torus manifold of non-negative curvature. Then N has codimension greater than or equal to 2 and F is simply-connected.

For a torus manifold that is non-negatively curved, Wiemeler [64] shows in Proposition 4.5 that the quotient space, $M^{2n}/T^n = P^n$, is described as follows: P^n is a nice manifold with corners all of whose faces are acyclic and P^n is of the form

$$ P^n = \prod_{i < r} \Sigma^{n_i} \times \prod_{i \geq r} \Delta^{n_i}, $$

where $\Sigma^{n_i} = S^{2n_i}/T^{n_i}$ and $\Delta^{n_i} = S^{2n_i+1}/T^{n_i+1}$ is an n_i-simplex. The T^{n_i}-action on S^{2n_i} is the suspension of the standard T^{n_i}-action on \mathbb{R}^{2n_i} and it is easy to see that Σ^{n_i} is the suspension of Δ^{n_i-1}. Note that each n_i-simplex has $n_i + 1$ facets and each Σ^{n_i} has n_i facets. The number of facets of P^n in this case is bounded between n and $2n$.

Using this description of the quotient space, the following equivariant classification theorem is obtained in [64].

Theorem 2.22. [64] Let M be a simply-connected, non-negatively curved torus manifold. Then M is equivariantly diffeomorphic to a quotient of a free linear torus action of

$$ Z_P = \prod_{i < r} S^{2n_i} \times \prod_{i \geq r} S^{2n_i-1}, \quad n_i \geq 2, $$

where Z_P is the moment angle complex corresponding to the polytope in Display (2.2).

The following Lemma was important for the proof of Theorem 2.22 and will be useful for the proof of Theorem A.

Lemma 2.23. [61] Let M^{2n} be a simply-connected torus manifold with an invariant metric of non-negative curvature. Then M^{2n} is locally standard and M^{2n}/T^n and all its faces are diffeomorphic (after-smoothing the corners) to standard discs D^k. Moreover, $H^{\text{odd}}(M; \mathbb{Z}) = 0$.

We will also make use of the following theorem from [19].

Theorem 2.24. [19] Let M be a closed, simply-connected, non-negatively curved Riemannian manifold admitting an effective, isometric, maximal torus action. Then M is rationally elliptic.

We note that combining Theorem 5.4 with Theorem 2.24 allows us to prove the following corollary:

Corollary 2.25. Let M be a closed, simply-connected, non-negatively curved Riemannian manifold admitting an effective, isometric, almost maximal torus action. Then M is rationally elliptic.

In Section 6 we will need to consider generalizations of Theorem 2.20, Proposition 2.21 and Lemma 2.23 to manifolds of almost non-negative curvature, so we recall the definition of almost non-negative curvature here, as well as an important result of Fukaya and Yamaguchi that allows us to determine under what conditions the total space of a principal torus bundle will admit a metric of almost non-negative curvature.
Definition 2.26 (Almost Non-Negative Curvature). A sequence of Riemannian manifolds \(\left\{ (M, g_\alpha) \right\}_{\alpha=1}^{\infty} \) is almost non-negatively curved if there is a real number \(D > 0 \) so that

\[
\text{Diam} (M, g_\alpha) \leq D,
\]

\[
\sec (M, g_\alpha) \geq -\frac{1}{\alpha}.
\]

A large source of examples of almost non-negatively curved manifolds can be constructed by the following result of Fukaya and Yamaguchi [15].

Theorem 2.27. [15] Let \(F \hookrightarrow E \rightarrow B \) be a smooth fiber bundle with compact Lie structure group \(G \), such that \(B \) admits a family of metrics with almost non-negative curvature and the fiber \(F \) admits a \(G \)-invariant metric of non-negative curvature. Then the total space \(E \) admits a family of metrics with almost non-negative curvature.

3. The Equivariant Classification

In this section we will prove a Cross-Sectioning Theorem, which will then give us an Equivariant Classification Theorem. We will also show that when the number of facets equals the rank of the torus action, there exists a weight preserving diffeomorphism between the quotient spaces.

3.1. Cross-Sectioning Theorem and the Equivariant Classification Theorem

The main tool for an equivariant diffeomorphism classification is giving by the existence of smooth cross-sections as proven in the following theorem:

Theorem 3.1. Let \(T^k \) act smoothly on a smooth, closed, \(n \)-dimensional manifold, \(M^n \) such that \(M^* = M^n/T^k \) is an \((n-k) \)-dimensional disk, \(D^{n-k} \). Suppose further that all interior points of \(M^* \) are principal orbits and that points on the boundary, \(\partial M^* \), correspond to singular orbits with connected isotropy subgroups. Then the orbit map \(\pi : M^n \rightarrow M^* \) has a cross-section.

The proof is a direct generalization of the equivariant classification theorem for \(T^3 \)-actions on \(M^6 \) by McGavran [37]. Similar techniques are also used in work of Raymond [53] and Orlik and Raymond [54, 55, 56]. The main topological tool in the proof comes from obstruction theory, that is, the obstruction to extending a map \(A \rightarrow X \) to a map \(W \rightarrow X \) where \(X \) is a connected CW-complex and \((W, A) \) is a CW-pair. Such an extension always exists, that is the obstruction vanishes, if \(H^{n+1}(W, A, \pi_n(X)) = 0 \) for all \(n \). For more details on obstruction theory see for example [10].

In the following two lemmas, required for the proof of Theorem 3.1, we will be considering a closed \(T^k = T_1 \times \cdots \times T_k \)-invariant subset \(C \) of the closed manifold, \(M \), with \(M \) as in Theorem 3.1. We choose \(C \) so that its orbit space under the torus action, \(C^* \subset M^* = D^{n-k} \), is a closed conical section of \(M^* \), with conical orbit space, as in Definition 2.11. That is, \(C^* \) is a closed cone over \(D^{n-k-1} \) and is homeomorphic to an \((n-k) \)-disk, itself. Moreover, we choose \(C \) so that \(C^* \cap \partial M^* \) is homeomorphic to \(D^{n-k-1} \). This intersection with the boundary of \(M^* \) will be denoted by \(S^+ \) and we will denote the \((n-k-1) \)-disc which we cone over by \(S^- \). The vertex, \(p^* \in S^+ \), will correspond to the north pole. See Figure 3.1 for an illustration of the orbit space, \(C^* \) and its homeomorphic image, \(D^{n-k} \).

Since isotropies are constant along rays from \(p^* \), \((S^+, p^*) \) is partitioned into cells of dimension \((n-k-1) \), provided they all intersect in \(p^* \). This gives us a decomposition of \((S^+, p^*) \) into lower dimensional cells with weights as follows.

Let \((S^+, p^*) \) be decomposed into \(i \) cells, \(1 \leq i \leq k \), each of dimension \((n-k-1) \), denoted by, and after possible reordering of indices, \(U_{k-i+1, \ldots, U_k} \), such that \(\bigcap_{j=k-i+1}^{k} U_k = p^* \).
We will denote this weighted decomposition of \((S^+, p^*)\) by
\[
\{\{U_{k-i+1}, \ldots, U_k\}, T^i = T_{k-i+1} \times \cdots \times T_k\}.
\]
Note that the inverse image of the interior of any \((n-k-1)\)-dimensional cell, say \(U_j\),
corresponds to points with circle isotropy corresponding to the subgroup \(T_j\). The intersection of any two of these \((n-k-1)\)-cells, say \(U_j\) and \(U_i\), with circle isotropies \(T_j\) and \(T_i\), respectively, results in an \((n-k-2)\)-cell that we will denote by \(U_{ji}\) with isotropy \(T_j \times T_i \cong T^2\). By analogy, we will denote by \(U_{li} \ldots l_i\) the \((n-k-j-1)\)-cell resulting from the intersection of two \((n-k-j)\)-cells, denoted by \(U_{li} \ldots l_i \cap U_{li} \ldots l_j\). We note that the interior of any \((n-k-j)\)-cell will have isotropy \(T^j\) and the non-empty intersection of two such \((n-k-j)\)-cells will have \(T^{j+1}\) isotropy.

Further, for this weighted decomposition, we have a partially ordered set of intersections containing \(p^*\). For example, and after possible reordering of indices, the following inclusions may occur:
\[
p^* \in U_{k-i+1-k} \subset U_{k-i+2-k} \subset \cdots \subset U_{k-1-k} \subset U_k.
\]
These inclusions correspond to the following containments in isotropy subgroups:
\[
T^i = T_{k-i+1} \times \cdots \times T_k \supset T^{i-1} = T_{k-i+2} \times \cdots \times T_k \supset \cdots \supset T^2 = T_{k-1} \times T_k \supset T^1 = T_k.
\]

The simplest possible decomposition is as in Lemma 3.2, where the decomposition of \((S^+, p^*)\) is given as \(\{U, T_k\}\) and is illustrated in the right hand figure of Figure 3.1. The next simplest is given as \(\{\{U_{k-1}, U_k\}, T^2 = T_{k-1} \times T_k\}\) and is illustrated in Figure 3.2. The most general decomposition will be the one where \(p^*\) corresponds to an orbit with \(T^k\) isotropy, and whose weighted decomposition is \(\{\{U_1, \ldots, U_k\}, T^k = T_1 \times \cdots \times T_k\}\). Note that by construction all non-trivial isotropies are connected and correspond to points on \(S^+\), all other orbits are principal.

In the following lemma, we begin with the simplest decomposition possible and show that we can construct a cross-section for \(C^*\).

Lemma 3.2. Let \(T^k = T_1 \times \cdots \times T_k\) act smoothly on a smooth, closed \(n\)-dimensional subspace \(C \subset M\), where \(M\) is a smooth, closed \(n\)-dimensional closed manifold, and \(C\) has quotient space, \(C^*\), as described above. Suppose \((S^+, p^*) = \{U_k, T_k\}\). Then there exists a cross-section. Further, suppose a cross-section is given on an \((n-k-1)\)-cell \(A \subset S^+\). Then it can be extended to all of \(D^{n-k}\).

Proof of Lemma 3.2. Recall that the orbit space is a closed cone with vertex \(p^*\), the north pole of \(D^{n-k}\). Since the orbit structure is conical and \(G_p = T_k\), by Theorem 2.12 \(C\) is equivariantly homeomorphic to \(T^{k-1} \times D^{n-k+1}\) with \(T_k\) acting orthogonally on \(D^{n-k+1}\).
Construct a cross section from D^{n-k} to D^{n-k+1} using the “inverse” of the projection map given via the orthogonal action of T_k on D^{n-k+1} and then we construct a section from D^{n-k+1} to $T^{k-1} \times D^{n-k+1}$ by sending an arbitrary point $x \in D^{n-k+1}$ to $(t, x) \in T^{k-1} \times D^{n-k+1}$ for some $t \in T^{k-1}$.

Now suppose a cross-section s is given on a $(n-k-1)$-cell $A \subseteq S^-$. Let $A' = A \cap (D^{n-k} \setminus S^+)$ and let $\pi : C \to C^*$ be the orbit map. Then $\pi^{-1}(D^{n-k} \setminus S^+)$ is a principal T^{n-k}-bundle over $(D^{n-k} \setminus S^+)$. Using the long exact sequence for relative cohomology and excision, it follows that $H^i((D^{n-k} \setminus S^+), A') = 0$ for all $i > 0$. Thus, by obstruction theory, we may assume that s is defined on $(D^{n-k} \setminus S^+) \cup A$.

We now obtain the following diagram, where $\pi_1 : C \to \mathring{C}_1 = C/T^{k-1}$ and $\pi_2 : \mathring{C}_1 \to C^* \cong D^{n-k}$.

Let $s_2 = \pi_1 \circ s$. Then s_2 is a cross-section to π_2 defined on $(D^{n-k} \setminus S^+) \cup A$. But S^+ corresponds to the set of fixed points of the T_k action on C_1, so we can define s_2 on all of D^{n-k}. In order to show continuity of s_2 we first describe D^{n-k} as $I \times S^+$, where I is an interval. Note that $\pi_2^{-1}(S^+) \cong D^{n-k-1}$ and $\pi_2^{-1}(I) \cong \mathring{C}(T_k) \cong D^2$ and the T_k-action on $\pi_2^{-1}(I)$ is rotation. Hence the T_k action on $C_1 \cong D^{n-k+1} \cong D^2 \times D^{n-k-1}$ is rotation on the first factor and trivial on the second. An orbit can be described as $\{re^{i\theta}, re^{i\theta}\} | 0 \leq \theta < 2\pi, 0 \leq \Theta < 2\pi\}$ where

$$Re^{i\theta} = \begin{cases} (r_1 e^{i\theta_1}, \ldots, r_{n-k-1} e^{i\theta_{n-k-1}}) & \text{if } n-k-1 \text{ is even}, \\ (r_1 e^{i\theta_1}, \ldots, r_{n-k-2} e^{i\theta_{n-k-2}}, 1) & \text{if } n-k-1 \text{ is odd}. \end{cases}$$

Note that the fixed point set of T_k on $D^2 \times D^{n-k-1}$ is $\{0\} \times D^{n-k-1}$. Now let $q = (0, Se^{i\Theta}) \in \text{Fix}(T_k, D^2 \times D^{n-k-1})$ and let $\{q_n^*\} = \{(r_n e^{i\theta_n}, R_n e^{i\Theta_n})^*\}$ be a sequence in M' converging to q^*. Then $r_n \to 0, R_n \to S$ and $\Theta_n \to \Sigma$. But then the sequence $\{s_2(q_n^*)\}$ will be of the form $\{r_n e^{i\theta_n}, R_n e^{i\Theta_n}\}$ which converges to $q = (0, S e^{i\Sigma})$. Hence s_2 is continuous.

Next we need a cross-section s_1 defined on $s_2(C^*) \cong D^{n-k}$. Let $s_1 = s \circ \pi_2 : s_2(C^*) \setminus s_2(S^+ \setminus A) \to C$. Now $\pi_1^{-1}(s_2(C^*))$ is a principal T^{k-1}-bundle over $s_2(C^*) \cong D^{n-k}$ and we obtain that s_1 is in fact a cross-section of π_1 defined on $s_2(C^*) \setminus s_2(S^+ \setminus A)$. Since $s_2(S^+ \setminus A)$ is a homology $(n-k-1)$-cell on the boundary of $s_2(C^*)$, it follows that $H^i(s_2(C^*), s_2(C^*) \setminus s_2(S^+ \setminus A)) = 0$ for all $i > 0$. Again by obstruction theory this implies that s_1 can be extended to all of $s_2(C^*)$. Thus $s_1 \circ s_2$ extends s to all of C^*.

We are now ready to construct a cross-section for a general decomposition of C^*.

Lemma 3.3. Let $T^k = T_1 \times \cdots \times T_k$ act smoothly on a smooth, closed n-dimensional subspace $C \subseteq M$, where M is a smooth, closed n-dimensional closed manifold, and C has quotient space, C^*, as described above. Let the decomposition of (S^+, p^*) be given by $\{\{U_{k-i+1}, \ldots, U_k\}, T_i = T_{k-i+1} \times \cdots \times T_k\}$, with $1 \leq i \leq n-k \leq k$. Then there exists a cross-section. Further, suppose a cross-section is given on an $(n-k-1)$-cell $A \subseteq S^-$. Then it can be extended to all of D^{n-k}.

\qed
Consider the following decomposition of \((S^+,p^*)\) given by \(\{\{U_{k-i+1},\ldots ,U_k\},T^n = T_{k-i+1} \times \cdots \times T_k\}\). The orbit structure is conical with vertex \(p\) where \(G_p = T_{k-i+1} \times \cdots \times T_k\). By Theorem \[2.12\] \(C\) is equivariantly homeomorphic to \(T_1 \times \cdots \times T_{k-i} \times D^{n-k+i} \cong T^{k-i} \times D^{n-k+i}\) and \(T_{k-i+1} \times \cdots \times T_k \cong T^i\) acts orthogonally on \(D^{n-k+i}\). It is easy to construct a cross-section in this case, following the proof of Lemma \[3.2\]. First, we construct a section from \(D^{n-k}\) to \(D^{n-k+i}\) via the inverse of the orthogonal action of \(T^i\) on \(D^{n-k+i}\) and then we construct a section from \(D^{n-k+i}\) to \(T^{k-i} \times D^{n-k+i}\) by sending an arbitrary point \(x \in D^{n-k-i}\) to \((t,x) \in T^{k-i} \times D^{n-k+i}\) for some \(t \in T^{k-i}\).

Now suppose a cross-section \(s\) is given on a \((n-k-1)\)-cell \(A \subseteq S^-\). As in Lemma \[3.2\], we may assume that \(s\) is defined on \((D^{n-k} \setminus S^+) \cup A\). Then we have the following diagram, where \(\pi_1 : C \to \tilde{C}_1 = C/T^{k-i}\), \(\pi_j : \tilde{C}_{j-1} \to \tilde{C}_j = \tilde{C}_{j-1}/T_{k-i-j+2}\), for \(j \in \{2,\ldots ,i\}\) and \(\pi_i : \tilde{C}_i \to C^* \cong D^{n-k}\).

Let \(s_{i+1} = \pi_i \circ \pi_{i-1} \circ \cdots \circ \pi_1 \circ s\). Then \(s_{i+1}\) is a cross-section to \(\pi_{i+1}\) defined on \((D^{n-k} \setminus S^+) \cup A\). Now \(\pi_{i+1}^{-1}(D^{n-k} \setminus U_k)\) is a principal circle bundle over \(D^{n-k} \setminus U_k\), and since \(H^q(D^{n-k} \setminus U_k,(D^{n-k} \setminus S^+) \cup A) = 0\) for all \(q > 0\), \(s_{i+1}\) can be extended to all of \(D^{n-k} \setminus U_k\). But \(U_k\) corresponds to the set of fixed points of the \(T_k\) action on \(\tilde{C}_i\), so \(s_{i+1}\) can be extended continuously to all of \(D^{n-k}\), exactly as in the proof of Lemma \[3.2\].

We assume then that we have a cross section to \(\pi_{i+1}\) defined on \(s_{i+2} \circ \cdots \circ s_{i+1}(D^{n-k}) \cong s_{i+2}(D^{n-k})\). Next we need a cross-section to \(\pi_l\) defined for any \(l\), \(2 \leq l \leq i\) and on \(s_{i+1}(D^{n-k})\). Let \(s_l = \pi_{l-1} \circ \cdots \circ \pi_1 \circ s \circ \pi_{i+1} \circ \cdots \circ \pi_{l+1}\).
As before, $\pi^{-1}_i(s_{i+1}(D^{n-k}) \setminus s_{i+1}(U_{k-1}))$ is a principal circle bundle over $s_{i+1}(D^{n-k}) \setminus s_{i+1}(U_{k-1})$ and s_l can be extended to all of $s_{i+1}(D^{n-k}) \setminus s_{i+1}(U_{k-1})$. Then $s_{i+1}(D^{n-k}) \cong D^{n-k}$, $s_{i+1}(U_{k-1}) \cong D^{n-k-1} \cong \partial(s_{i+1}(D^{n-k}))$, and $\pi^{-1}_i(s_{i+1}(U_{k-1}))$ is the fixed point set of the T_{k-1} action on $\pi^{-1}_i(s_{i+1}(D^{n-k}))$. Hence exactly as before we may extend s_l continuously to all of $s_{i+1}(D^{n-k})$.

We now arrive at $\pi^{-1}_i((s_2 \circ s_3 \circ \cdots \circ s_{i+1})(D^{n-k}))$ is a principal T^{k-i}-bundle over $(s_2 \circ s_3 \circ \cdots \circ s_{i+1})(D^{n-k}) \cong D^{n-k}$ and $s_l = s \circ \pi_{i+1} \circ \cdots \circ \pi_2$ is a cross-section defined on $(s_2 \circ s_3 \circ \cdots \circ s_{i+1})(D^{n-k}) \setminus (D^{n-k} \setminus S^+) \cup A$. As before this can be extended to all of $(s_2 \circ s_3 \circ \cdots \circ s_{i+1})(D^{n-k})$. Hence $s_l \circ s_2 \circ s_3 \circ \cdots \circ s_{i+1}$ is an extension of s to all of D^{n-k}. □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 As stated earlier, the proof is a direct generalization of the equivariant classification theorem for T^3-actions on M^n by McGavran [37], which we include for the sake of completeness. First decompose the orbit space $M^* \cong D^{n-k}$ into a collection of conical sections $\{C^*_i\}_{i=1}^m$, with $C^*_i \cong D^{n-k}$ for each $i \in \{1, \ldots, m\}$, and such that the orbit structure for each $C^*_i \subset M^n$ is conical as in Definition 2.11. As we saw in the proof of Lemma 3.3, each $C^*_i \cong T^{k-i} \times D^{n-k+l}$ for some $l \in \{1, \ldots, k\}$ and therefore a cross-section exists on each C^*_i. An obstruction theory argument shows that a cross-section given on an $(n-k-1)$-cell $A \subset S^- \subset C^*_i$ can be extended to all of C^*_i.

In order to create a cross-section on all of M^*, we start by defining a cross-section s on C^*_1. We then attach C^*_2 to C^*_1 along an $(n-k-1)$-cell A and so we have a cross section s defined on C^*_1 and on $A \subset S^- \subset C^*_2$. By Lemma 3.3 we can then extend the cross-section s to all of C_2^*. Continuing this process we can extend s to all of M^*. Figure 3.3 illustrates this process for a partial decomposition of M^*. □

It is clear that if M^*_1 is equivariantly diffeomorphic to M^*_2 then the corresponding orbit spaces will be weight-preserving diffeomorphic. Vice versa, one can use the weight-preserving diffeomorphism and the existence of a cross-section to construct a G-equivariant diffeomorphism between M^*_1 and M^*_2. Note that smoothness of the action implies that that orbit map is smooth, and hence we may choose a smooth cross-section and obtain the following equivariant diffeomorphism classification.

Theorem 3.4. Let G act smoothly on smooth, closed, n-dimensional manifolds, M^n_1 and M^n_2 and suppose that the orbit maps $\pi : M^n_i \to M^* = M^n_i/G$ have cross-sections for $i = 1, 2$. Then there exists an equivariant diffeomorphism h from M^n_1 onto M^n_2 if and only if there exists a weight-preserving diffeomorphism h^* from M^*_1 onto M^*_2. Furthermore, if
Proof. Recall that we may assign a weight to each facet, corresponding to the circle isotropy
normal form, it can always be diagonalized. After diagonalizing, we obtain a
k-vector and we may group all the weights
in a $k \times k$ matrix with determinant equal to ± 1 as described in Subsection 2.2. Since the
$k \times k$ matrix of the weights has integer entries and non-zero determinant, using the Smith
regular form, it can always be diagonalized. After diagonalizing, we obtain a $k \times k$ matrix
with ± 1 entries on the diagonal, as desired. \qed

Lemma 3.5. Let T^k act isometrically, effectively and maximally on a closed, simply-connected, n-dimensional Riemannian manifold, whose quotient space M/T is

$$P^{n-k} = \prod_{i < r} \Sigma^{n_i} \times \prod_{i \geq r} \Delta^{n_i},$$

and the number of facets of P^{n-k} is equal to k. Suppose that all singular isotropies are
connected and correspond to points on the boundary and all other orbits are principal. Then
there exists a weight preserving diffeomorphism $\phi : P^{n-k} \rightarrow P^{n-k}$ taking the weight vectors,
$\{a_i\}$, of P^{n-k} to $\{\phi(a_i)\}$, where $\phi(a_i)$ is the unit vector with the value ± 1 in the i-th position.

Proof. Recall that we may assign a weight to each facet, corresponding to the circle isotropy
subgroup of T^k. Each weight may be written as a k-vector and we may group all the weights
in a $k \times k$ matrix with determinant equal to ± 1 as described in Subsection 2.2. Since the
$k \times k$ matrix of the weights has integer entries and non-zero determinant, using the Smith
normal form, it can always be diagonalized. After diagonalizing, we obtain a $k \times k$ matrix
with ± 1 entries on the diagonal, as desired. \qed

Lemma 3.6. With the same hypotheses as in Lemma 3.5, suppose that the matrix of weights of P^{n-k} is the matrix with ± 1 entries along the diagonal. Then the T^k action has $2k - n$ freely acting circles.

Proof. By assumption the matrix of weights of P^{n-k} is the matrix with ± 1 entries along
the diagonal. Hence all circle isotropy subgroups are mutually orthogonal. In order to show
that the T^k action has $(2k - n)$ freely acting circles, we claim that it suffices to find $(2k - n)$
pairs of opposing faces on the polytope. For each such pair of opposing faces, we consider
the diagonal circle in the subgroup of T^k generated by the corresponding isotropy subgroup
of each face. Since the faces are opposing, they will not intersect in any lower-dimensional
face and hence the diagonal circle in this subgroup will intersect all isotropy subgroups
trivially and corresponds to a circle subgroup of T^k that acts freely.

Recall that Σ^{n_i} has n_i facets and Δ^{n_i} has $n_i + 1$ facets and that the number of facets in a
product of polytopes equals the sum of the facets in each polytope. It is clear that Σ^{n_i}, since it is the suspension of a Δ^{n_i-1}, has no pairs of opposing faces that do not intersect in a lower dimensional face. Further, in order to have the correct free rank, P^{n-k} must contain the product of exactly $(2k - n)$ simplices of dimension n_i, Δ^{n_i}. Thus, in order to find the $(2k - n)$ pairs of opposing faces, it suffices to first show that for any product of $(2k - n)$ Δ^{n_i}, that we can find $(2k - n)$ opposing faces. The product of these pairs of opposing faces
with the remaining product of Σ^{n_i}‘s in P^{n-k} will then form the desired set of $(2k - n)$ pairs
of opposing faces.

We will use barycentric coordinates for the n-simplex, $\Delta^n = \sum_{i=0}^n s_i v_i$ with vertices
v_0, \ldots, v_n where $(s_0, \ldots, s_n) \in \mathbb{R}^{n+1}$, $\sum_{i=0}^n s_i = 1$ and $s_i \geq 0$ for $i = 0, \ldots, n$. We define the set

$$\Delta^{n-1} = \{(s_0, \ldots, s_{i-1}, 0, s_i, \ldots, s_n) | \sum_{i=0}^n s_i = 1, s_i \geq 0 \text{ for } i = 0, \ldots, n\}$$
corresponding to the \((n-1)\)-simplex to be *opposite* the vertex

\[v_i = (0, \ldots, 0, 1, 0, \ldots) \]

with 1 in the \(i\)-th coordinate.

Consider the following two canonical examples:

Example 3.7. Consider the simplex, \(\Delta^{n-k}\), with \(n-k+1\) facets, arising as the quotient of a \(T^{n-k+1}\) action on \(M^n\), with free rank equal to 1. Consider the pair of opposing faces given by

\[\{\Delta^{n-k-1}_i, v_i\}. \]

Let \(T_i^1\) be the isotropy subgroup corresponding to \(\Delta^{n-k-1}_i\) and let \(T_i^{n-k}\) be the isotropy subgroup corresponding to \(v_i\). Then it is clear that \(T_i^1 \cap T_i^{n-k}\) intersect trivially in \(T^{n-k+1}\). The diagonal circle in \(T^{n-k+1}\) generated by \(T_i^1\) and \(T_i^{n-k}\) intersects all isotropy groups trivially and hence acts freely.

Example 3.8. Consider the simplex, \(\Delta^{n-k-1} \times \Delta^l\), with \(n-k+2\) facets, arising as the quotient of a \(T^{n-k+2}\) action on \(M^n\), with free rank equal to 2. Consider the two pairs of opposing faces given by

\[\{\Delta^{n-k-l-1}_i \times \Delta^l, v_i \times \Delta^l\} \text{ and } \{\Delta^{n-k-l}_i \times \Delta^{l-1}_j, \Delta^{n-k-l} \times v_j\}. \]

Let \(T_i^1\) be the isotropy subgroup corresponding to \(\Delta^{n-k-l-1}_i \times \Delta^l\) and let \(T_i^{n-k-l}\) be the isotropy subgroup corresponding to \(\Delta^{n-k-l} \times \Delta^{l-1}_j\) and \(T_j^1\) be the isotropy subgroup corresponding to \(\Delta^{n-k-l} \times v_j\). Then it is clear that \(T_i^1 \cap T_i^{n-k-l}\) intersect trivially in \(T^{n-k+2}\) and so do \(T_j^1\) and \(T_j^{l+1}\). The diagonal circles in \(< T_i^1, T_i^{n-k-l} > = T^{n-k-l+1}\) and in \(< T_j^1, T_j^{l+1} > = T^{l+1}\) intersects all isotropy groups trivially and hence act freely.

For the sake of simplicity of notation, we will prove only the case when \(P^{n-k} = \prod_{i=1}^{2k-n} \Delta^{n_i}\). We will proceed by induction on the number of simplices contained in the product. The base case is covered by Example 3.7. Let \(\prod_{\Delta} = \prod_{i=1}^{l} \Delta^{n_i}\) with \(\sum_{i=1}^{l} n_i + l = k\) facets arising as the quotient of a \(T^k\)-action on \(M^n\), with free rank equal to \(2k-n\), and assume by the induction hypothesis that on any subproduct \(\prod_{\Delta}^{-1} \subset \prod_{\Delta}^{k}\) we can find \((l-1)\) pairs of opposing faces. Consider, for example, \(\prod_1^{j} = \prod_{i=1}^{j} \Delta^{n_i}\). We let \(\prod_1^{j}\) denote \(\Delta^{n_1} \times \cdots \times \Delta^{n_j} \times \Delta^{n_i}\).

Then we get \(l\) freely acting circles from opposing faces given by \(\{\prod_{\Delta}^{-1} \times \Delta^{n_j-1}_i, \prod_{\Delta}^{j} \times v_i\}\) for \(j = 1, \ldots, l-1\) and one additional one by the construction in Example 3.8 with the pair of opposing faces given by \(\{\prod_{\Delta}^{l-1} \times \Delta^{n_i-1}_i, \prod_{\Delta}^{l-1} \times v_i\}\). Hence we get \(l\) pairs of opposite faces, as desired and the lemma is proved.

We now establish some preliminary facts about the quotient space \(P^{n-k} = M^n/T^k\), when \(M^n\) is a closed, non-negatively curved manifold and the \(T^k\) action is maximal. By work in [19], it follows that \(P^{n-k}\), is a polytope of the form as in Display (2.2), with corresponding moment angle manifold equal to a product of spheres of dimension greater than or equal to three, as in Display (2.3).

The following Lemma gives us information about the structure of the quotient space, \(P^{n-k}\) as well as a complete description of the corresponding isotropy groups.

Lemma 3.9. Let \(T^k\) act isometrically, effectively and maximally on \(M^n\), a closed, non-negatively curved Riemannian manifold. Then the following hold for the quotient space \(P = M/T\):
(1) All singular orbits correspond to boundary points on \(P \) and the corresponding isotropy subgroups are connected; and

(2) All interior points correspond to principal orbits.

Proof. Recall that the inverse image of each codimension \(m \) face of the boundary of \(P \) is a fixed point set of \(T^m \) of codimension \(2m \). In particular, this implies that the singular isotropy corresponding to any boundary point is connected.

Any singular or exceptional isotropy that does not correspond to a boundary point must correspond to an interior point, and whose image will be contained in an extremal set of \(P \). Let \(F \subset M \) correspond to any facet \(\bar{F} \) of \(P \). The points of \(\bar{F} \) correspond to orbits with circle isotropy. By concavity of the distance function \(\text{dist}_{\bar{F}}(\cdot) \), it follows that any point belonging to an extremal set must lie at maximal distance from \(\bar{F} \) and therefore must lie on the boundary of \(P \). So the interior of \(P \) must consist entirely of principal orbits. \(\Box \)

The following lemma then follows by a direct application of Theorem 3.1.

Lemma 3.10. The map \(\pi : Z_{\phi(P^n-k)} \to \phi(P^n-k) \) admits a cross-section.

By Lemmas 3.10 and the Equivariant Classification Theorem 3.4, we obtain the following Proposition 3.11.

Proposition 3.11. Let \(T^k \) act isometrically and effectively on \(M^n \), a closed, simply-connected, \(n \)-dimensional Riemannian manifold with free rank equal to \(2k-n \), whose quotient space \(M/T \) is

\[
P^{n-k} = \prod_{i<r} \Sigma^{n_i} \times \prod_{i\geq r} \Delta^{n_i},
\]

and the number of facets of \(P^{n-k} \) is equal to \(k \). Suppose that all singular isotropies are connected and correspond to points on the boundary and all other orbits are principal. Then there exists an equivariant diffeomorphism between \(M \) and \(\bar{M} \), where \(\bar{M} = Z_{\phi(P^n-k)} \) admits a freely acting torus of rank \(2k-n \) and \(\phi \) is the weight-preserving diffeomorphism of Lemma 3.9.

Observe that if we strengthen the hypotheses of Proposition 3.11 to make the torus action maximal and assume that \(M^n \) is non-negatively curved, we can then drop the hypotheses on the isotropy groups, as Lemma 3.9 guarantees that they will be satisfied.

4. Almost non-negative curvature and locally standard actions

In this section, using a generalization of work of [61], we extend a result of [64] that allows us to decide when a torus manifold with non-negatively curved quotient space is locally standard.

It follows from the proof of Theorem 2.20 in [61], in fact, that we only need assume that \(M \) is complete and the quotient \(M/G \) is a non-negatively curved Alexandrov space to obtain the same result, so we reformulate the theorem as follows.

Theorem 4.1. Assume that \(G \) acts fixed point homogeneously on a complete Riemannian manifold \(M \) such that \(M/G \) is a non-negatively curved Alexandrov space. Let \(F \) be a fixed point component of maximal dimension. Then there exists a smooth submanifold \(N \) of \(M \), without boundary, such that \(M \) is diffeomorphic to the normal disk bundles \(D(F) \) and \(D(N) \) of \(F \) and \(N \) glued together along their common boundaries;

\[
M = D(F) \cup_B D(N).
\]

Further, \(N \) is \(G \)-invariant and contains all singularities of \(M \) up to \(F \).
It also follows from the proof of Proposition 2.21 in [61], that we may weaken the hypotheses to assume only that M is complete and the quotient M/G is a non-negatively curved Alexandrov space as follows.

Proposition 4.2. Let M, N and F be as in Theorem 4.1 and assume that M is a closed, simply connected torus manifold. Then N has codimension greater than or equal to 2 and F is simply-connected.

Remark 4.3. Using Theorem B of Searle and Wilhelm [59] which allows one to lift a metric of almost non-negative curvature on a G-manifold M, provided M/G is almost non-negatively curved, we note that M as above admits a G-invariant family of metrics of almost non-negative curvature, so Theorem 4.1 and Proposition 4.2 hold for the class of G-invariant almost non-negatively curved manifolds with non-negatively curved quotient spaces.

We can then prove the following generalization of Wiemeler’s result, Lemma 6.3 of [64], for non-negatively curved torus manifolds.

Let $F_i = \text{Fix}(M^n; T^i)$ be the fixed point set of any subtorus $T^i \subset T^n$, $1 \leq i \leq n$. We now introduce the following condition on the components of fixed point sets of almost non-negatively curved manifolds with non-negatively curved quotient space.

Condition F. Let T^k act on M^n, a closed, simply-connected, manifold admitting a family of metrics of almost non-negative curvature and assume that M^n/T^k is a non-negatively curved Alexandrov space. Then for any component $F \subset F_i$, the quotient F/T is a non-negatively curved Alexandrov space.

Theorem 4.4. Let M^{2n} be a closed, simply-connected, torus manifold admitting a family of metrics of almost non-negative curvature and assume that M^n/T^k is a non-negatively curved Alexandrov space. Suppose that the manifold satisfies Condition F. Then M^{2n} is locally standard.

Proof. We follow Wiemeler’s proof of Lemma 6.3, [64], using induction on the dimension of M. The base case is the case of dimension 2 which is clear. We then use complete induction and assume that the theorem is proved in all dimensions less than the dimension of M. We first use Theorem 4.1 to obtain a double disk bundle decomposition just as in the non-negative curvature case, that is, we write $M = D(F) \cup_k D(N)$, where F is a characteristic manifold and N is a T^n-invariant submanifold. Proposition 4.2 then gives us that F is simply connected and N has codimension greater or equal to 2. Since F is a closed, totally geodesic submanifold it admits a metric of almost non-negative curvature. Hence F is a closed, simply connected, almost non-negatively curved torus manifold. It is also a characteristic submanifold of M, so it satisfies the induction hypothesis. Therefore F is locally standard.

Let $\pi_F : E \to F$, $\pi_N : E \to N$ be the bundle maps and consider $x \in M^T \cap F$, as in the proof of Lemma 6.3 of [64]. The remainder of the proof is divided into two cases, as in [64]:

1. $\dim \pi_N(\pi_F^{-1}(x)) = 0$; and
2. $\dim \pi_N(\pi_F^{-1}(x)) = 1$.

In the first case one shows that N is the fixed point component of some subtorus $T' \subset T$ with $2\dim(T') = \text{codim}(N)$ and hence N is a torus manifold. As it is the fixed point component of some subtorus it is totally geodesic and hence admits a metric of almost non-negative curvature and satisfies Condition F. One can also show that N is simply connected, hence N is locally standard by induction hypothesis. It follows that the T-actions on $D(N)$ and $D(F)$ are locally standard which implies that M is locally standard and the Theorem is proven in case (1).
In the second case one shows that \(N/\lambda(F) \) is locally standard using the fact \(F \) is locally standard. Here \(\lambda(F) \) is the circle subgroup of \(T \) which fixes \(F \). Again \(M \) is locally standard in a neighborhood of \(N \) as well as in a neighborhood of \(F \), so \(M \) is locally standard and the Theorem follows in case (2).

\[\square \]

5. General lower bound for free rank and almost maximal is maximal

In this section we will establish two important facts about torus actions. We will first find a lower bound for the free rank of an isometric, effective torus action on a closed Alexandrov space with a lower curvature bound and then we will show that for closed, simply-connected, non-negatively curved manifolds an almost maximal action is actually maximal.

5.1. Lower bounds for the free rank. In order to establish the lower bound for the free rank, we first need the following proposition, which establishes the existence of a fixed point when the torus actions has no circle subgroup acting almost freely.

Proposition 5.1. Let \(T^k \) act isometrically on \(X^n \), a closed \(n \)-dimensional Alexandrov space with a lower curvature bound. Suppose that every circle subgroup has a nonempty fixed point set, or equivalently, no circle subgroup acts almost freely. Then \(T^k \) has a fixed point.

The proof is a slight modification of the proof of Lemma 3.8 of Harvey and Searle [28]. Since it is short, we repeat it here for the sake of completeness.

Proof. Consider an infinite cyclic subgroup \(G = \langle g \rangle \) of a dense 1-parameter subgroup of \(T^k \). Then \(G \) fixes some point \(x_0 \in X \) since the dense 1-parameter subgroup does by hypothesis. Now consider a sequence of infinite cyclic subgroups \(G_i \) such that the distance between the generators \(g_i \) and the identity element of the torus converges to 0. The corresponding sequence of fixed points \(x_i \in X^n \) then converges to a fixed point \(x \in X \) of \(T^k \).

The following proposition establishes a lower bound of the free rank of a general torus action.

Proposition 5.2. Let \(T^k \) act isometrically and effectively on \(X^n \), a closed Alexandrov space with a lower curvature bound, with \(k \geq \lfloor (n+1)/2 \rfloor \). Then the free rank of the \(T^k \) action is greater than or equal to \(2k - n \).

Proof. Let \(T^l \subset T^k \) be the largest subtorus that acts almost freely, and suppose that \(l < 2k - n \). Then \(T^{k-l} \cong T^k/T^l \) acts on \(X^{n-l} = X^n/T^l \), a closed Alexandrov space with the same lower curvature bound, and no circle subgroup of \(T^{k-l} \) acts almost freely on \(X^{n-l} \). By Lemma [5.1] there is a point \(\tilde{p} \in X^{n-l} \) fixed by \(T^{k-l} \). A connected component of the inverse image in \(X^n \) of this fixed point corresponds to an orbit of \(T^k \) with isotropy subgroup isomorphic to \(T^{k-l} \). So, there is an action of \(T^{k-l} \) on the unit normal space of directions to this orbit, \(\Sigma_{\tilde{p}} \). Since \(\Sigma_{\tilde{p}} \) is itself a closed Alexandrov space of dimension \(n - l - 1 \) with curvature bounded below by 1, and since \(l < 2k - n \), it follows that

\[
k - l > \frac{n - l}{2} \geq \lfloor \frac{n - l}{2} \rfloor.
\]

However, the Maximal Symmetry Rank Theorem for positively curved Alexandrov spaces in [28] states that for a rank \(j \) torus-action on \(X^m \), as is also true in the manifold case, \(j \leq \lfloor (m+1)/2 \rfloor \). But then,

\[
k - l \leq \lfloor \frac{n - l}{2} \rfloor,
\]

a contradiction. Hence the bound holds. \(\square \)
The following corollary follows directly from Proposition 5.1 and Proposition 5.2 combined with Corollary 6.3 of Ch. II of Bredon [3].

Corollary 5.3. Let T^k act isometrically and effectively on M^n, a closed, simply-connected, non-negatively curved Riemannian manifold. Suppose that the free rank of the action is equal to $2k - n$. Then, the following hold:

1. If the free dimension is equal to the free rank, the quotient space, $M^{2n-2k} = M^n / T^{2k-n}$, admits a T^{n-k} action and is a closed, simply-connected, non-negatively curved torus manifold.
2. If the free dimension is not equal to the free rank, then the quotient space, $X^{2n-2k} = M^n / T^{2k-n}$, admits a T^{n-k} action and is a closed, simply-connected, non-negatively curved (in the Alexandrov sense) torus orbifold.

5.2. Almost Maximal Is Maximal. In Theorem 5.4 below, we will now establish on closed, simply-connected, non-negatively curved manifolds that an almost maximal action is actually maximal. As mentioned in the Introduction, having proven Theorem 5.4, it then follows that in order to prove Theorem A it suffices to consider the case where the action is maximal.

Theorem 5.4. Let T^k act isometrically, effectively and almost maximally on M^n, a simply-connected, closed, non-negatively curved Riemannian n-manifold. Then the action is maximal.

Before we begin the proof of Theorem 5.4, we first need the following Lemma.

Lemma 5.5. [12] Let M be a manifold with $\text{rk}(H_1(M;\mathbb{Z})) = k$, $k \in \mathbb{Z}^+$. If M admits a disk bundle decomposition

$$M = D(N_1) \cup_E D(N_2),$$

where N_1, N_2 are smooth submanifolds of M and N_1 is orientable and of codimension two, then both $\text{rk}(H_1(N_1;\mathbb{Z}))$ and $\text{rk}(H_1(N_2;\mathbb{Z}))$ are less than or equal to $k + 1$.

Here $\text{rk}(G)$ denotes the number of \mathbb{Z} factors in the finitely generated abelian group G.

Proof. It follows from the Mayer Vietoris sequence of the decomposition and the simple-connectivity of M that the following sequence is exact

$$H_1(E) \rightarrow H_1(N_1) \oplus H_1(N_2) \rightarrow H_1 \rightarrow 0,$$

where Γ is a finite abelian group. Since E is a circle bundle over N_1, it follows from the Gysin sequence for homology that $\text{rk}(H_1(E)) \leq 1 + \text{rk}(H_1(N_1))$. The same statement follows for $\text{rk}(H_1(N_2))$ since E is either a circle or sphere bundle over N_2. Using these facts and the exactness of the sequence in Display (5.1), it follows that

$$\text{rk}(H_1(N_1)) + \text{rk}(H_1(N_2)) \leq \text{rk}(H_1(E)) \leq \text{rk}(H_1(N_1)) + 1,$$

and the lemma is proven. □

Proof of Theorem 5.4. Suppose that there is an orbit of dimension $2k - n + 1 = m$. The isotropy subgroup of this orbit is of rank $k - m = n - k - 1$. Consider the action of the T^{n-k-1} on the unit normal $S^{2n-2k-2}$. Observe that the isotropy action is maximal and of maximal symmetry rank. Hence there is a codimension two submanifold, N^{n-2}, of M^n fixed by some circle subgroup of the isotropy subgroup T^{n-k-1} and there is an induced action of T^{k-1} on N^{n-2}, of cohomogeneity $n - k - 1 = k - m$. That is, M^n is S^1-fixed point
homogeneous and in fact, it is nested S^1-fixed point homogeneous and there is a nested
tower of fixed point sets containing the smallest orbit T^m, as follows:

$$T^m \subset N^{m+1} \subset \cdots \subset N^{n-2} \subset M^n,$$

and T^m and N^{m+1} are both fixed by T^{k-m}. Note that since M^n is nested S^1-fixed point
homogeneous, each N^l is a non-negatively curved S^1-fixed point homogeneous manifold.
So it follows by Theorem 2.20 that each N^l admits a disk bundle decomposition as in the
statement of Lemma 5.5.

The induced action of T^m on N^{m+1} is by cohomogeneity one. We claim that the action
must have circle isotropy. If it does not, then by the classification of cohomogeneity one
torus actions (see [41], [42], [48]), N^{m+1} is equivariantly diffeomorphic to T^{k-m+1} and has
first integer homology group \mathbb{Z}^{m+1}. However, applying Lemma 5.5 m times, we see that
the number of \mathbb{Z} factors in $H_1(N^{m+1}; \mathbb{Z})$ must be less than or equal to m.
Thus there is an orbit with T^{k-m+1} isotropy and the smallest dimensional orbit must
have dimension $m-1$, a contradiction. □

6. The Proof of Theorem A

We first give a brief outline of the proof of Theorem A. We have shown in Theorem 5.4
that an almost maximal action is actually maximal for this class of manifolds, so we only
need to prove Theorem A for maximal actions, that is, when the free rank is equal to $2k-n$.
To prove the equivariant classification we split the proof into two cases: Case (1), where
the free dimension equals the free rank, and Case (2), where the subtorus corresponding
to the free rank acts almost freely but not freely. In both Case (1) and Case (2) there are
two further subcases: Subcase (a), where the rank of the action is equal to the number of
facets of the orbit space M^n/T^k and Subcase (b), where the rank of the action is strictly
less than the number of facets of the orbit space M^n/T^k.

In Cases (1a) and (1b), we show that the quotient of M^n by the freely acting subtorus,
M^n/T^{2k-n}, is a torus manifold of non-negative curvature and the result will follow in each
case by Corollary 6.2 and Corollary 6.4 respectively. For Case (2), the quotient of M^n is a
torus orbifold of non-negative curvature. In Case (2a), we use Proposition 3.11 to show that
M^n is equivariantly diffeomorphic to an n-dimensional manifold \tilde{M} which admits a freely
acting torus of rank $2k-n$, such that \tilde{M}/T^{2k-n} is a torus manifold admitting a family of
metrics with almost non-negative curvature and the quotient \tilde{M}/T^k is weight-preserving
diffeomorphic to M/T^k. By Theorem 2.23, we see that the torus manifold \tilde{M}/T^{2k-n} is
locally standard and then we can once again use Theorem 6.2 to obtain the result.

For Case (2b), one can show that there is a closed, principal T^l bundle over M^n, with
simply-connected total space, N^{n+l}, admitting a T^{l+k}-invariant family of metrics of almost
non-negative curvature and such that the rank of the torus action on N is equal to the
number of facets of the orbit space $M^n/T^k = N^{n+l}/T^{k+l}$. We then appeal to Proposition
3.11 as in Case (2a), to find \tilde{N} such that \tilde{N}/T^{2k-l-n} is a torus manifold admitting a family
of metrics of almost non-negative curvature and proceed in a similar fashion as in Case (2a).

6.1. Proof of Case (1) of Theorem A. Recall that we assume here that the free dimension
of the torus action is equal to the free rank. As detailed above, we will break the proof
into two cases as follows.

6.1.1. Case (1a): The number of facets of M/T is equal to the rank of the torus
action. Part (1) of Corollary 5.3 tells us that the quotient of M by the free action is a
torus manifold, that is, M is a principal torus bundle over a torus manifold. We will show
in this subsection that \(M \) is equivariantly diffeomorphic to the corresponding moment angle manifold of the simple polytope \(P = M^{2n-2k}/T^{n-k} = M^n/T^k \).

We will change super-indices for the following theorem to simplify its statement. We assume that the manifold \(N \) is of dimension \(2n + p \), admits a \(T^{n+p} \) action and is a \(T^p \) principal bundle over the torus manifold \(M^{2n} \). We will first show in Theorem 6.1 that if the number of facets of the simple polytope \(P^n = N^{2n+p}/T^{n+p} \) is equal to \(m = n + p \), then \(N \) is equivariantly diffeomorphic to the moment angle manifold \(\mathcal{Z}_P \).

Theorem 6.1. Let \(N^{n+m} \) be a simply connected principal \(T^{m-n} \)-bundle over \(M^{2n} \) where \(M^{2n} \) has a locally standard, smooth \(T^n \) action with orbit space \(P^n \), where \(P^n \) is an acyclic manifold with acyclic faces, with \(m \) facets. Then \(N^{n+m} \) is equivariantly diffeomorphic to the moment angle manifold \(\mathcal{Z}_P \).

Proof. The proof is based on work by Davis [8]. Let \(N^{n+m} \) be a principal \(T^{m-n} \)-bundle over \(M^{2n} \). Such bundles are classified by homotopy classes of maps of \(M^{2n} \) into \(BT^{m-n} \), denoted by \([M^{2n}, BT^{m-n}]\). But

\[
[M^{2n}, BT^{m-n}] \cong [M, BS^1] \times \cdots \times [M, BS^1] \cong \bigoplus_{i=1}^{m-n} H^2(M^{2n}; \mathbb{Z}).
\]

By the short exact sequence in Display (2.1) we know that \(H^2(M_T) \rightarrow H^2(M) \) is onto, hence so is \([M_T, BT^{m-n}] \rightarrow [M, BT^{m-n}]\). Thus any principal \(T^{m-n} \)-bundle over \(M^{2n} \) is the pull-back of a principal \(T^{m-n} \)-bundle over \(M_T \). Note that this statement also holds for subgroups \(H \) of \(T^{m-n} \). Using a result of Hattori and Yoshida [30], this implies that the \(T^n \) action on \(M^{2n} \) lifts to a \(T^n \times T^{m-n} \) action on \(N^{n+m} \). Now let \(L_i \subset T^n \times T^{m-n} = T^m \) be the isotropy subgroup at a point in the interior of a facet \(F_i \).

To get a \(T^m \) action on \(N \) that is modeled on the standard representation we will need the homomorphism \(T^m \rightarrow T^n \times T^{m-n} \rightarrow T^m \) that takes the coordinate circles \(T_{1i} \) to \(L_i \) to be an isomorphism. In general if we have given a collection \(L_1, \cdots, L_m \) of circle subgroups of \(T \times H = T^n \times T^{m-n} = T^m \), we say that the \(L_i \) span \(T \times H \) if the homomorphism \(T^m \rightarrow T^n \times H \) that takes \(T_{1i} \) to \(L_i \) is an isomorphism.

We now use Lemma 6.5 of Davis [8] which says that the \(L_i \) span \(T^n \times H \) if and only if \(H_1(N) = 0 \). Since \(N \) is simply connected by assumption, we obtain that the \(L_i \) span \(T^n \times T^{m-n} \) which implies that \(N \) is modeled on the standard representation. By [64] we know that we can assume that all faces of \(P^n \) are contractible, hence the bundle of principal orbits is trivial. We can now apply Proposition 6.2 of [8] to conclude that \(N \) is equivariantly diffeomorphic to the moment angle manifold \(\mathcal{Z}_P \). The following diagram illustrates this case.

\[
\begin{array}{ccc}
N^{n+m} & \xrightarrow{\cong} & \mathbb{Z}^{n+m} \\
\downarrow /T^m & & \downarrow /T^m \\
M^{2n} & \xrightarrow{\cong} & \mathbb{Z}^m \\
\downarrow /T^n & & \downarrow /T^n \\
P^n & & \\
\end{array}
\]

Lemma 2.23 in [64] tells us that a closed, simply-connected, non-negatively curved torus manifold is locally standard and thus allows us to apply Theorem 6.1 to the case at hand. We may then reformulate Theorem 6.1 for the special case where the principal torus bundle is non-negatively curved.
Corollary 6.2. Let N^{n+m} be a closed, simply-connected, non-negatively curved principal T^{m-n}-bundle over M^{2n}, where M^{2n} is a torus manifold with orbit space P^n as in Display (2.2), with m facets. Then N^{n+m} is equivariantly diffeomorphic to the moment angle manifold Z_P, which is itself a product of spheres.

6.1.2. Case (1b): The number of facets is strictly greater than the rank of the torus action. Here we consider the case where the number of facets of $P^n = M/T$ is strictly greater than the rank of the torus action. In Theorem 6.3 we will show that with this hypothesis N is equivariantly diffeomorphic to the quotient by a free, linear torus action of Z_P. We will once again change super-indices to simplify the statement of the theorem.

Theorem 6.3. Let N^{2n+p} be a simply connected principal T^p-bundle over M^{2n} where M^{2n} has a locally standard, smooth T^p action with orbit space P^n, where P^n is an acyclic manifold with acyclic faces, with m facets and with $p < m - n$. Then there is a smooth principal T^{m-n-p}-bundle $\pi: Y \to N^{2n+p}$ and if Y is simply connected, it is T^{m-n-p} equivariantly diffeomorphic to the moment angle manifold Z_P/T^{m-n-p}. Hence N^{2n+p} is diffeomorphic to Z_P/T^{m-n-p}.

Proof. Let Y be a principal T^{m-n-p}-bundle over N. Such bundles are classified by homotopy classes of maps of N into BT^{m-n-p}, hence by $[N, BT^{m-n-p}]$. But

$$[N, BT^{m-n-p}] \cong [N, \mathbb{B}S^1] \times \ldots \times [N, BS^1] \cong \bigoplus_{i=1}^{m-n-p} H^2(N; \mathbb{Z}).$$

Since N is a principal T^p-bundle over M^{2n}, and $H^2(M^{2n}) \cong \mathbb{Z}^{m-n}$, (see for example Theorem 7.4.35 in [3]), using the Leray-Serre spectral sequence or the homotopy sequence for the bundle we obtain that $H^2(N; \mathbb{Z})$ contains \mathbb{Z}^{m-n-p} as a subgroup. We now use the fact that Y is a T^{m-n}-principal bundle over M^{2n} since in the category of finite dimensional manifolds the composition of two principal bundles is again a principal bundle (see, for example, [40]). This means that we are now in the setting of Theorem 6.1 if Y is simply connected. Hence Y^{m+n} is equivariantly diffeomorphic to the moment angle manifold Z_P as claimed. The following diagram illustrates this case.

\[
\begin{array}{c}
\vdots \\
N^{2n+p} \downarrow \pi \downarrow \pi \\
M^{2n} \downarrow \pi \downarrow \\
P^n
\end{array}
\]

As in Case (1a), we now apply Theorem 6.3 to the case of a closed, simply-connected, principal T^p-bundle admitting a family of metrics of almost non-negative curvature over M^{2n}, where M^{2n} is a torus manifold with non-negatively curved orbit space P^n and this principal bundle satisfies Condition F. We obtain the following corollary of Theorem 6.3 by applying Theorem 4.4.
Corollary 6.4. Let N^{2n+p} be a closed, simply-connected, principal T^p-bundle admitting a family of metrics of almost non-negative curvature over M^{2n}, where M^{2n} is a torus manifold with non-negatively curved orbit space P^n as in Display (2.2), with m facets with $p < m - n$ and N^{2n+p} satisfies Condition F. Then there is a smooth principal T^{m-n-p}-bundle $π : Y → N^{2n+p}$. Further, if Y is simply connected, then it is T^m-equivariantly diffeomorphic to the moment angle manifold Z_p, which is itself a product of spheres. Hence N^{2n+p} is diffeomorphic to Z_p/T^{m-n-p}.

We note that we may state Corollary 6.2 for this class of manifolds as well, but do not, as we will not need it here. We are now ready to prove Case (1) of Theorem A.

Proof of Case (1) of Theorem A. We must show that given an isometric, effective, maximal rank k torus action, M^n is equivariantly diffeomorphic to a product of spheres of dimension greater than or equal to three, with the additional hypothesis that the free dimension is equal to the free rank.

By Corollary 5.3 it follows that $M^{2n-2k} = M^n/T^{2k-n}$ admitting a T^{n-k} action is a closed, simply-connected, non-negatively curved torus manifold. Now if $P = M^{2n-2k}/T^{n-k}$ has k facets, then we may apply Corollary 6.2. If it has strictly greater than k facets, we may apply Corollary 6.4 to obtain the result. Hence Case (1) is proven.

6.2. The proof of Case (2) of Theorem A. In this section we will prove Case (2) of Theorem A, namely when the free dimension does not equal the free rank. Recall that by Corollary 5.3 $M^n/T^{2k-n} = X^{2n-2k}$ is a non-negatively curved torus orbifold admitting a T^{2n-2k} isometric action.

Observation 6.5. Let M be a closed, rationally elliptic manifold admitting an effective, isometric almost free torus action. Then M/T is a closed, rationally elliptic orbifold.

The simple-connectivity of M/T follows directly from [3]. The torus action on M induces a fibration, $T → M → M/T$, and the long exact sequence in homotopy tells us that $π_i(M) ≅ π_i(M/T)$ for all $i ≥ 3$ and then we have

$$0 → π_2(M) → π_2(M/T) → π_1(T) → 0.$$

Since the quotient space is closed, the condition on the cohomology groups is automatically satisfied.

6.2.1. Case (2a): The number of facets of M/T is equal to the rank of the torus action. Applying Theorem 2.24 we see that M^n is rationally elliptic. By Lemma 6.5 $M^n/T^{2k-n} = X^{2n-2k}$ is a simply-connected, non-negatively curved, rationally elliptic torus orbifold. Using the proof of Theorem 2.19 in [19], it follows that $P = M/T$ is of the form as in Display (2.2).

By Lemma 3.9 we see that all singular isotropies are connected, all singular orbits correspond to boundary points on M/T and all other orbits are principal. It follows by the Equivariant Cross Sectioning Theorem 3.1 that a cross section for the action on M exists. Further, by Proposition 3.11 it follows that M is equivariantly diffeomorphic to M, a closed, simply connected non-negatively curved (with the pullback metric) Riemannian manifold admitting an isometric, effective action of T^k with free dimension $2k - n$. This in turn tells us that $M^{2n-2k} = M/T^{2k-n}$ is a torus manifold of non-negative curvature and such that $P = M/T$ is of the form as in Display (2.2).

The following diagram illustrates this case.
6.2.2. Case (2b): The number of facets of M/T is strictly greater than the rank of the torus action. Let $k + l = r$, with $l > 0$ be the number of facets of P. As in Case (2a), $M^n / T^{2k-n} = X^{2n-2k}$ is a simply-connected, non-negatively curved, rationally elliptic torus orbifold and $P = M/T$ is of the form as in Display (2.2).

In particular, using the long exact sequence in homotopy, this tells us that $H^2(M^n; \mathbb{Z})$ is isomorphic to \mathbb{Z}^l. Note that principal T^l-bundles over M are classified by l elements $\beta_1, \ldots, \beta_l \in H^2(M; \mathbb{Z})$. Here each β_i can be described as the Euler class of the oriented circle bundle $N/T^{l-1} \to M$ where N is the total space and $T^{l-1} \subset T^l$ is the subtorus with the i-th S^1-factor deleted. It follows that there exists a T^l-principal bundle over M^n with total space N^{n+l}, a closed, simply-connected Riemannian manifold. Further by Theorem 2.27, N^{n+l} admits a family of almost non-negatively curved metrics and by construction, its quotient space is non-negatively curved and N^{n+l} satisfies Condition F.

As in Case (2a), using Lemma 3.9, the Equivariant Cross Sectioning Theorem 3.1 and Proposition 3.11, it follows that N^{n+l} is equivariantly diffeomorphic to \tilde{N}^{n+l} and \tilde{N}^{n+l} admits an isometric and effective T^{k+l}-action with free dimension equal to $2k + l - n$. Moreover, \tilde{N}^{n+l} (with the pullback metric) admits a family of almost non-negatively curved metrics, its quotient space is non-negatively curved and \tilde{N}^{n+l} satisfies Condition F. Hence $M^{2n-2k} = N^{n+l} / T^{2k-l+n}$ is a torus manifold admitting a family of almost non-negatively curved metrics, with non-negatively curved quotient space, satisfying Condition F.

The following diagram illustrates this case.

![Diagram](image_url)

We are now ready to prove Case (2) of Theorem A.
Proof of Case (2) of Theorem A. We must show that given an isometric, effective, maximal rank \(k \) torus action, \(M^n \) is equivariantly diffeomorphic to a product of spheres of dimension greater than or equal to three.

In case (2a), \(\tilde{M}^{2n-2k} \) is a torus manifold of non-negative curvature, and in case (2b), \(M^{2n-2k} \) is a torus manifold admitting a family of almost non-negatively curved metrics, with non-negatively curved quotient space, and satisfying Condition F.

Thus, in case (2a) we may apply Corollary 6.2 to show that \(\tilde{M} \) is equivariantly diffeomorphic to the moment angle manifold \(\tilde{Z}_P \) as in Display (2.3) and hence \(M \) itself is equivariantly diffeomorphic to \(Z_P \) as desired.

Likewise, in case (2b), we can apply Corollary 6.4 to conclude that \(\tilde{M}^{2n-2k} \) is the quotient of a free torus action on \(\tilde{N}^{n+l} \), which in turn is equivariantly diffeomorphic to the moment angle manifold \(Z_P \). Since \(\tilde{N}^{n+l} \) is equivariantly diffeomorphic to \(N^{n+l} \), by commutativity of the diagram, we can then conclude that \(M \) is equivariantly diffeomorphic to the quotient of a free torus action on the moment angle manifold \(Z_P \), a product of spheres of dimensions greater than or equal to three.

It remains to show that the \(T^l \) action is linear. The following diagram illustrates the proof. Use the cross-sections \(c_1 \) and \(c_2 \) to construct a diffeomorphism from \(M^n \) to \(\tilde{M}^{2n-2k} \). Then \(M^n \cong \tilde{M}^{2n-2k}/T^l \) and \(T^l \) is a free linear action since it is sub-action of the free linear action of \(T^{2k-n+l} \) on \(\tilde{Z}_{\rho_{n-k}} \).

7. The Proofs of the Remaining Results

We now present proofs of Corollary B and Proposition D. We begin with a proof of Corollary B.

Proof of Corollary B. Note that while we can simply appeal to results in [18] to prove the upper bound on the rank, we will give a constructive proof, as it is straightforward and quite simple.

We assume then that \(k = [2n/3] + s, \) with \(s > 0 \) to obtain a contradiction. Since the action is maximal, the free rank is equal to \(2k - n \) and in particular, we see that \(X^{2n-2k} = M^n/T^{2k-n} \) is a torus orbifold. By Theorem A, \(M^n \) is equivariantly diffeomorphic to the free linear quotient by a torus of a product of spheres of dimension greater than three. This product of spheres can have dimension at most \(3n - 3k \). In particular, \(n \) must be less than or equal to \(3n - 3k \). However, a simple calculation shows that for \(s \geq 1 \),

\[
3n - 3k \leq n + 2 - 3s < n,
\]

which gives us a contradiction. Hence \(k \leq [2n/3], \) as desired.
We now proceed to prove Proposition D.

Proof of Proposition D. We first recall the following lemma and corollary from [21].

Lemma 7.1. [21] Let T^n act on M^{n+3}, a closed, simply-connected smooth manifold. Then some circle subgroup has non-trivial fixed point set.

Corollary 7.2. [21] Let M^{n+3} be a closed, non-negatively curved manifold with an isometric T^n action. Suppose that $M^* = S^3$ and that there are isolated T^{n-1} orbits. Then there are at most four such isolated T^{n-1} orbits. In particular, if $n \geq 7$, then there are none.

Lemma 7.1 tells us that a cohomogeneity three torus action on a closed, simply-connected manifold must have isotropy subgroups of rank at least 1. An effective cohomogeneity k torus action can have isotropy subgroups of rank at most k, and an action with isotropy T^k or T^{k-1} will be maximal or almost maximal, respectively. In order to prove that a cohomogeneity three action must be maximal or almost maximal, it suffices to show that there can be no action with only isolated circle isotropy.

Recall from Corollary 4.7 of Chapter IV of [3] that the quotient space, M^*, of a cohomogeneity three G-action on a compact, simply-connected manifold with connected orbits is a simply-connected 3-manifold with or without boundary. Note that when there is only isolated circle isotropy for a cohomogeneity three torus action, the quotient space will not have boundary and thus, by the resolution of the Poincaré conjecture (see Perelman [49, 50, 51]), we have that $M^* = S^3$. Therefore, we may apply Corollary 7.2 and Proposition D follows. □

References

[1] Angulo-Ardoy, P., Guijarro, L., Walschap, G., Twisted submersions in non-negative curvature, Archiv Math., vol. 101 2 (2013), 171–180.
[2] D. Barden, Simply connected 5-manifolds, Annals of Math., 2nd ser., 82, no. 3 (1965), 365–385.
[3] G. Bredon, Introduction to compact transformation groups, Academic Press 48 (1972).
[4] V. Buchstaber and T. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, 24, American Mathematical Society, Providence, RI (2002).
[5] V. Buchstaber and T. Panov, Toric Topology, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI (2015).
[6] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, (2001).
[7] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971/72), 119–128.
[8] M. Davis, When are two Coxeter orbifolds diffeomorphic?, Michigan Math. J., 63 (2014), 401–421.
[9] M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 62 (1991), no. 2, 417–451.
[10] J. F. Davis and P. Kirk, Lecture Notes in Algebraic Topology, Graduate Studies in Mathematics, 35, American Mathematical Society, Providence, RI, (2001).
[11] H. Duan and C. Liang, Circle bundles over 4-manifolds, Archiv der Mathematik, 85, no. 3 (2005), 275–282.
[12] C. Escher and C. Searle, Non-negatively curved 6-dimensional manifolds of almost maximal symmetry rank, in preparation.
[13] F. Fang and X. Rong, Homeomorphism Classification of Positively Curved Manifolds with Almost Maximal Symmetry Rank, Math. Ann. 332 no. 1 (2005) 81–101.
[14] M. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (3) (1982) 357–453.
[15] K. Fukaya and T. Yamaguchi, The fundamental groups of almost nonnegatively curved manifolds, Ann. Math. (2) 136 (2) (1992), 253–333.
[16] F. Galaz-García 4-dimensional Alexandrov manifolds
[17] F. Galaz-García and M. Kerin, Cohomogeneity two torus actions on non-negatively curved manifolds of low dimension, Math. Zeitschrift 276 (1-2) (2014), 133–152.
[18] Galaz-García, F., Kerin, M. and Radeschi, M., Torus actions on rationally-elliptic manifolds, arXiv preprint arXiv:1511.08383 (2015).
[19] Galaz-García, F., Kerin, M., Radeschi, M., Wiemeler, M., Torus orbifolds, slice-maximal torus actions and rational ellipticity, arXiv preprint arXiv:1404.3903v2 (2015).

[20] F. Galaz-García and C. Searle, Low-dimensional manifolds with non-negative curvature and maximal symmetry rank, Proc. Amer. Math. Soc. 139 (2011) 2559–2564.

[21] F. Galaz-García and C. Searle, Nonnegatively curved 5-manifolds with almost maximal symmetry rank, Geom. Topol. 16 (2012) 1397–1435.

[22] F. Galaz-García and C. Searle, Cohomogeneity one Alexandrov spaces, Transform. Groups. 16 no. 1 (2011) 91–107.

[23] F. Galaz-García and C. Searle, Orientation and symmetries of Alexandrov spaces with applications in positive curvature, arXiv preprint arXiv:math.DG/1209.1366v1 (2012).

[24] A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. 2, no. 1 (1976), 13–25.

[25] H. Ishida, Complex manifolds with maximal torus actions, arXiv preprint arXiv:1302.0633v3 (2015).

[26] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, Indiana University Math. J., 32 no. 3 (1983), 129–142.

[27] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, II, Indiana University Math. J., 32 no. 3 (1983), 139–142.

[28] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, III, Indiana University Math. J., 32 no. 3 (1983), 151–164.

[29] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, IV, Indiana University Math. J., 32 no. 3 (1983), 165–176.

[30] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, V, Indiana University Math. J., 32 no. 3 (1983), 177–186.

[31] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, VI, Indiana University Math. J., 32 no. 3 (1983), 187–196.

[32] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, VII, Indiana University Math. J., 32 no. 3 (1983), 197–206.

[33] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, VIII, Indiana University Math. J., 32 no. 3 (1983), 207–216.

[34] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, IX, Indiana University Math. J., 32 no. 3 (1983), 217–226.

[35] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, X, Indiana University Math. J., 32 no. 3 (1983), 227–236.

[36] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XI, Indiana University Math. J., 32 no. 3 (1983), 237–246.

[37] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XII, Indiana University Math. J., 32 no. 3 (1983), 247–256.

[38] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XIII, Indiana University Math. J., 32 no. 3 (1983), 257–266.

[39] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XIV, Indiana University Math. J., 32 no. 3 (1983), 267–276.

[40] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XV, Indiana University Math. J., 32 no. 3 (1983), 277–286.

[41] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XVI, Indiana University Math. J., 32 no. 3 (1983), 287–296.

[42] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XVII, Indiana University Math. J., 32 no. 3 (1983), 297–306.

[43] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XVIII, Indiana University Math. J., 32 no. 3 (1983), 307–316.

[44] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XIX, Indiana University Math. J., 32 no. 3 (1983), 317–326.

[45] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XX, Indiana University Math. J., 32 no. 3 (1983), 327–336.

[46] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XXI, Indiana University Math. J., 32 no. 3 (1983), 337–346.

[47] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XXII, Indiana University Math. J., 32 no. 3 (1983), 347–356.

[48] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XXIII, Indiana University Math. J., 32 no. 3 (1983), 357–366.

[49] H. S. Oh, Toral actions on 5– and 6–dimensional manifolds, XXIV, Indiana University Math. J., 32 no. 3 (1983), 367–376.
[52] A. Petrunin, *Semiconcave functions in Alexandrov geometry*, Surveys in Differential Geometry, **XI**, no. 11 (2007), Int. Press, Somerville, MA, pp. 131–201.

[53] F. Raymond, *Classification of the actions of the circle on 3-manifolds*, Trans. Amer. Math. Soc., **131** (1968), 51–78.

[54] P. Orlik, F. Raymond, *Actions of SO(2) on 3-manifolds*, Proc. Conf. Transformation Groups, Springer, New York, 297–318 (1968).

[55] F. Orlik, F. Raymond, *Actions of the torus on 4-manifolds, I*, Trans. Amer. Math. Soc., **152** (1970), 531–559.

[56] F. Orlik, F. Raymond, *Actions of the torus on 4-manifolds, II*, Topology, **13** (1974), 89–112.

[57] X. Rong, *Positively curved manifolds with almost maximal symmetry rank*, Geom. Ded. **95** (2002), 157–182.

[58] C. Searle and D. Yang, *On the topology of non-negatively curved simply-connected 4-manifolds with continuous symmetry*, Duke Math. J. **74**, no. 2 (1994), 547 – 556.

[59] C. Searle, F. Wilhelm, *Lifting positive Ricci curvature*

[60] S. Smale, *On the structure of 5-manifolds*, Ann. of Math., **75**, no. 2 (1962), 38–46.

[61] W. Spindeler, *S^1-actions on 4-manifolds and fixed point homogeneous manifolds of nonnegative curvature*, PhD Thesis, Westfälische Wilhelms-Universität Münster (2014).

[62] Y. M. Ustinovsky, *Geometry of compact complete manifolds with maximal torus action*, Tr. Mat. Inst. Steklova **286** (2014), 219D230; translation in Proc. Steklov Inst. Math. 286 (2014), 198D208.

[63] C. T. C. Wall, *Classification problems in differential topology - IV*, Topology **6** (1967) 273–296.

[64] M. Wiemeler, *Torus manifolds and non-negative curvature*, J. Lond. Math. Soc., II. Ser. 91 no. 3 (2015), 667–692.

[65] B. Wilking, *Torus actions on manifolds of positive sectional curvature*, Acta Math., **191** no. 2 (2003) 259–297.

[66] B. Wilking, *Nonnegatively and positively curved manifolds*, Surv. Diff. Geom., **11**, Int. Press, Somerville, MA, (2007) 25–62.

[67] W. Ziller, *Examples of Riemannian manifolds with non-negative sectional curvature*, Metric and Comparison Geometry, Surv. Diff. Gem. **11**, ed. K.Grove and J.Cheeger, International Press (2007), pp. 63–102.

(Escher) Department of Mathematics, Oregon State University, Corvallis, Oregon
E-mail address: tine@math.orst.edu

(Searle) Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas
E-mail address: searle@math.wichita.edu