On the supersolubility of a finite group with NS-supplemented Sylow subgroups

V. S. Monakhov, A. A. Trofimuk

January 15, 2019

Abstract

A subgroup A of a group G is said to be NS-supplemented in G, if there exists a subgroup B of G such that $G = AB$ and whenever X is a normal subgroup of A and $p \in \pi(B)$, there exists a Sylow p-subgroup B_p of B such that $XB_p = B_pX$. In this paper, we proved the supersolubility of a group with NS-supplemented non-cyclic Sylow subgroups. The solubility of a group with NS-supplemented maximal subgroups is obtained.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [1]. The set of all prime divisors of the order of G is denoted by $\pi(G)$. The notation $Y \leq X$ means that Y is a subgroup of a group X. The semidirect product of a normal subgroup A and a subgroup B is denoted by $[A]B$.

By the Zassenhaus Theorem ([1, IV.2.11]), a group G with cyclic Sylow subgroups has a cyclic Hall subgroup H such that the quotient G/H is also cyclic. In particular, G is supersoluble.

A group G with abelian Sylow subgroups may be non-soluble (for example, $PSL(2, 5)$) and the compositional factors of G are known [2].

In some papers, the sufficient conditions of solubility and supersolubility of a group in which Sylow subgroups permute with some subgroups are established. For example, the supersolubility of a group G such that every Sylow subgroup P of G permutes with subgroups of some supplement of P in G is obtained in works [3–4].

The following concept is introduced in [5].

Definition 1.1. Two subgroups A and B of a group G are said to be NS-permutable, if they satisfy the following conditions:

1. Whenever X is a normal subgroup of A and $p \in \pi(B)$, there exists a Sylow p-subgroup B_p of B such that $XB_p = B_pX$;
2. Whenever Y is a normal subgroup of B and $p \in \pi(A)$, there exists a Sylow p-subgroup A_p of A such that $YA_p = A_pY$.

Moreover, if $G = AB$, we say that G is an NS-permutable product of the subgroups A and B.

The totally permutable [6] and totally c-permutable [7] subgroups are NS-permutable [5, Lemma 2]. The supersolubility of a group $G = AB$ which is the NS-permutable product of supersoluble subgroups A and B is obtained in [5].

We introduce the following
Definition 1.2. A subgroup A of a group G is said to be NS-supplemented in G, if there exists a subgroup B of G such that:

1. $G = AB$;
2. whenever X is a normal subgroup of A and $p \in \pi(B)$, there exists a Sylow p-subgroup B_p of B such that $XB_p = B_pX$.

In this case we say that B is a NS-supplement of A in G.

In this paper, we proved the supersolubility of a group in which every non-cyclic Sylow subgroup is NS-supplemented. The solubility of a group with NS-supplemented maximal subgroups is obtained.

2 Preliminaries

Definition 1.2 implies the following result for $X = A$.

Lemma 2.1. Let A be an NS-supplemented subgroup of G and B is its NS-supplement in G. Then for every $p \in \pi(B)$ there exists a Sylow p-subgroup B_p of B such that $AB_p = B_pA$.

Lemma 2.2. Let K be a normal subgroup of G. If A is NS-supplemented in G and B is its NS-supplement in G, then AK/K is NS-supplemented in G/K and BK/K is its NS-supplement in G/K.

Proof. It’s obvious that $G/N = (AK/K)(BK/K)$. Let X/K be a normal subgroup of AK/K and $p \in \pi(BK/K)$. Then $X = (A \cap X)K$ and $A \cap X$ is normal in A. By the hypothesis, for every $p \in \pi(B)$ there exists a Sylow p-subgroup B_p of B such that $(A \cap X)B_p = B_p(A \cap X)$. Hence $((A \cap X)K)B_p = B_p((A \cap X)K)$ and X/K permutes with Sylow p-subgroup $B_pK/K = (BK/K)_p$ of BK/K. \hfill \Box

Lemma 2.3. ([8, Theorem 2]) Let G be a group with $p \in \pi(G)$ and $p \neq 3$. If G has a Hall $\{p, r\}$-subgroup for every $r \in \pi(G)$, then G is p-soluble.

Lemma 2.4. ([9, Corollary 3]) Let G be a group such that every maximal subgroup has prime power index. Then $G = S(G)$ or $G/S(G) \simeq \text{PSL}(2, 7)$.

Here $S(G)$ is the maximal normal soluble subgroup of G.

3 Groups with NS-supplemented subgroups

Theorem 3.1. If a Sylow p-subgroup P of G is NS-supplemented in G, then G is p-supersoluble in each of the following cases:

1. $p \neq 3$;
2. $p = 3$ and G is 3-soluble.

Proof. Let B be an NS-supplement of P in G. By Lemma 2.1 for any $q \in \pi(B) \setminus \{p\}$ there exists a Sylow q-subgroup Q of B such that $PQ = QP$. The subgroup PQ is a Hall $\{p, q\}$-subgroup of G. Since q is an arbitrary prime of $\pi(G) \setminus \{p\}$, it follows that by Lemma 2.3 G is p-soluble for $p \neq 3$ and by the hypothesis, G is 3-soluble for $p = 3$.

We use induction on the order of G. Let N be an arbitrary non-trivial normal subgroup in G. Then by Lemma 2.2 a Sylow p-subgroup PN/N is NS-supplemented in G/N. By induction, G/N is p-supersoluble, $O_p'(G) = 1$ and $N = O_p(G) \neq 1$.\hfill \Box
We choose a subgroup X of G such that $X \leq N \cap Z(P)$ and $|X| = p$. Since X is normal in P, it follows that for every $r \in \pi(B)$ there exists a Sylow r-subgroup R of B such that $XR = RX$. If $p \neq r$, then the subgroup $N \cap XR = X(N \cap R) = X$ is normal in XR. This is true for any prime r, hence X is normal in G. Since the quotient G/X is p-supersoluble by induction, G is p-supersoluble.

\begin{proof}
Let p be the smallest prime of $\pi(G)$ and P be a Sylow p-subgroup of G. If P is cyclic, then G is p-nilpotent [11, IV.2.8]. If P is non-cyclic, then P is NS-supplemented in G and by Theorem 3.1, G is p-nilpotent. In particular, G is soluble and we apply Theorem 3.1 for each $r \in \pi(G)$. Let R be a Sylow r-subgroup of G. If R is cyclic, then R is r-supersoluble. If R is non-cyclic, then R is NS-supplemented in G and G is r-supersoluble by Theorem 3.1. Thus, G is r-supersoluble for any $r \in \pi(G)$. Consequently, G is supersoluble.
\end{proof}

Example. The group $PSL(2,7)$ is an NS-supplement of its Sylow 3-subgroup. Hence we can not omit the condition \llgroup is 3-soluble\gg in Theorem 3.1.

\begin{proof}
We use induction on the order of G. By Lemma 2.2, all non-trivial quotients are soluble, hence $S(G) = 1$. Let M be a maximal subgroup of G and B is its NS-supplement in G. By the hypothesis, for every $p \in \pi(B)$ there exists a Sylow p-subgroup B_p of B such that $B_pM = MB_p$. Since $M \neq G$, there exists $r \in \pi(B)$ and a Sylow r-subgroup B_r such that $MB_r = G$. Hence $|G : M| = r^b$. Consequently, every maximal subgroup of G has prime power index. By Lemma 2.3 G is either soluble, or $G \simeq PSL(2,7)$. The group $PSL(2,7)$ has a maximal subgroup $H \simeq [Z_7]Z_3$ and it has not a subgroup of the order $7 \cdot 2^3$. Hence H is not NS-supplemented in $PSL(2,7)$. Consequently, G is soluble.
\end{proof}

The following example shows that the group that satisfies the hypotheses of Theorem 3.3 can be non-supersoluble.

\begin{example}
In the group (10, IdGroup=[72,39])
\[G = \langle a, b, c \mid a^3 = b^3 = c^8, \ ab = ba, \ a^c = b, \ b^c = ab \rangle \]
all maximal subgroups are the following subgroups:
\[M_1 = [(\langle a \rangle \times \langle b \rangle)]\langle c^2 \rangle, \ M_4 = \langle c^x \rangle, \ x \in \langle a \rangle \times \langle b \rangle. \]
Moreover, all maximal subgroups are NS-supplemented in G and the subgroup M_1 is non-supersoluble.
\end{example}

\section*{References}

[1] B. Huppert, \textit{Endliche Gruppen I}, Springer, Berlin-Heidelberg-New York, 1967.

[2] J.H. Walter, \textit{Characterization of finite groups with abelian Sylow 2-subgroups}, Annals of math. 89:3 (1969), 405-514.

[3] V.S. Monakhov, \textit{Finite groups with seminormal Hall subgroups}, Mathematical notes 80:4 (2006), 542-549.
[4] W. Guo, *Finite groups with seminormal Sylow subgroups*, Acta Mathematica Sinica **24**:10 (2008), 1751-1758.

[5] M. Arroyo-Jorda, P. Arroyo-Jorda, A. Martinez-Pastor, M. D. Perez-Ramos, *On finite products of groups and supersolubility*, J. Algebra **323** (2010), 2922-2934.

[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of finite groups*, Walter de Gruyter, Berlin-New York, 2010.

[7] W. Guo, K. P. Shum, A. N. Skiba, *Criteria of supersolubility for products of supersoluble groups*, Publ. Math. Debrecen **68**:3-4 (2006), 433-449.

[8] V. N. Tyutyanov, V. N. Kniahina, *Finite groups with biprimary Hall subgroups*, J. Algebra **443** (2015), 430-440.

[9] R. M. Guralnick, *Subgroups of prime power index in a simple group*, J. Algebra **81** (1983), 304-311.

[10] The GAP Group: GAP — Groups, Algorithms, and Programming. Ver. GAP 4.9.2 released on 4 July 2018. http://www.gap-system.org