Screening of Secondary Metabolites Produced by Streptomyces Species from a Soil Sample that Can Produce Anti-Nematodal and Antiprotozoal Avermectins

Rajesh Sharma¹*, Poonam Magdum¹, Tejashree Jadhav¹, Samruddhi Berge¹ and Bharat Shinde²

¹Department of Biotechnology, VPASC College, Baramati -413 133, Maharashtra, India. ²VPASC College, Baramati-413 133, India.

Authors’ contributions

The work was carried out at department of Biotechnology. Author PM is a PG student and Authors TJ and SB assisted author PM. The work was carried out under the Guidance of author RS and the finances were borne by college.

Article Information

DOI:10.9734/JPRI/2021/v33i631192

Editor(s):
(1) Dr. Vasudevan Mani, Qassim University, Kingdom of Saudi Arabia.

Reviewers:
(1) Sawicka Barbara, University of Life Sciences in Lublin, Poland.
(2) Benjamin Valladares Carranza, University of the State of Mexico, Mexico.

Complete Peer review History: http://www.sdiarticle4.com/review-history/65484

Received 10 December 2020
Accepted 13 February 2021
Published 03 March 2021

Original Research Article

ABSTRACT

Avermectins are a group of secondary metabolites produced by Streptomyces avermitilis, which act on invertebrates. They activate glutamate-gated chloride channels in their nerves and muscles which in turn disrupt pharyngeal function and locomotion. Avermectin ingested insects are paralyzed and starve to death. Ten isolates identified as avermectin producers were characterized by morphological, colony characters and biochemical tests. Secondary screening leads to the identification of four isolates PM2; PM4; PM7 and PM10 which produced 10, 8.4, 3.8 and 6.9mg respectively as identified by HPTLC. Bio-autography illustrated their anti-nematodal and antiprotozoal activity; the zone of clearance (turbid) was recorded 43, 24, 32 and 37 mm respectively for PM2 through PM10.

*Corresponding author: E-mail: rajeshsharma@vpascollege.edu.in;
Keywords: Avermectins; HPTLC; bio-autography.

1. INTRODUCTION

Soil is the habitat for several microorganisms which include bacteria, actinomycete, fungi, and algae. Soil microbes are an outstanding source for the isolation and identification of therapeutically important products [1].

Actinomycetes produce a large number of antibiotics. These Antibiotics have been reported to possess bactericidal, fungicidal, neuritogenic, anticancer, antipyretic, analgesic, anti-protozoal and anti-nematodal activities. These antibiotics can be purified from a single genus Streptomyces [2]. The genus Streptomyces was introduced by Waksman and Henrici in 1943 [3]. This Genus belongs to the Streptomycetaceae family [4]. More than 500 species of the genus Streptomyces have been described and most if not all Streptomyces’s Species are antibiotic producers [5].

Streptomyces species are chemoorganotrophic, filamentous, Gram-positive organisms that are present in a wide variety of soil in rhizosphere, dead and decay litter containing soil [6]. These are non-acid-alcohol fast; since these are present in dead and decay containing soil they share habitat with fungi, and appear very similar to fungi [7].

The colonies are slow-growing, having high G+C content 69-78% in their DNA [8]. These organisms have a soil-like odor due to the production of a volatile metabolite, geosmin. Streptomyces produces Avermectin. The avermectins are a potential candidate for the anti-helminthic and insecticidal agent. The same genus is also reported producing herbicidal, insecticidal, and nematocidal activities [9].

The avermectins were discovered in the early 1980s. Their selective toxicity towards nematodes and arthropods at very dilute doses, but relatively low or no toxicity to mammals make them potential future drugs. In invertebrates, they activate glutamate-gated chloride channels in their nerves and muscles and disrupt pharyngeal function and locomotion thereby causing paralysis. Avermectin ingested insects are paralyzed and starve to death. The selective toxicity that is, they do not harm vertebrates, has led to the conclusion that avermectins affect a specific cellular target which is either missing or out of reach in the resistant organisms [10].

Avermectin B1a is an indispensable drug in mass treatment programs to eradicate two widespread serious diseases namely river blindness and lymphatic filariasis, caused by nematodes, that affect millions of people worldwide [10].

2. METHODOLOGY

2.1 Isolation

Isolation of Streptomyces species was done from agricultural soil sample situated 18.150663 and 74.576782 with a GPS coordinates of 18° 9' 2.3868" N and 74° 34' 36.4152" E. The soil sample was collected at least 3-5 cm deep from the soil.

The isolation and enumeration of Streptomyces were performed by serial dilution and spread plate method, yeast malt extract glucose agar medium (YMG agar) was used. Incubation was done at 28°C. Individual colonies growing on YMG agar were transferred on Streptomyces isolation agar medium for purification of Streptomyces [11].

2.2 Identification

The classification and identification of microorganisms are based on morphology, colony and biochemical characteristics [12]. This includes colony characters, detailed morphology, Gram’s staining, motility, biochemical characteristics.

To identify the organisms’ morphology, colony characters, biochemical tests viz: fermentation of Carbon source - glucose, lactose, maltose, manitol, potato starch hydrolysis, utilization of yeast extract, malt extract, peptone, urea hydrolysis, gelatin liquefaction, catalase, H2S test was performed.

2.3 Fermentation Process

2.3.1 Seedmedium

The cultures were maintained on the YMG agar medium. Loop full culture of the different species was streaked on agar slant and inoculated into 50mL of yeast malt glucose (YMG) medium. The fermentation broth was incubated in an orbital shaker at 150rpm for 16-18 hours at 30°C [7].
2.3.2 Avermectin production

Production of avermectin from the soil isolates was studied in synthetic medium 2 (SM2) growths medium. Each production medium was inoculated with 5 mL of inoculum separately. After transferring the seed medium, each growth medium was incubated at 30°C in shaker for 10days at 150rpm [6].

2.4 Elicitation

Since avermectins are secondary metabolites and produced in very low quantity and intracellular (Periplasmic space). Avermectins are produced in response to nematode growth in the territory of Streptomyces species. The nematodes were immobilized in 0.8% agarose and these beads were introduced in fermentation broth to elicit the production of Avermectins.

2.4.1 Extraction of avermectin

The fermentation broths were centrifuged at 4°C for 20 minutes at 6000rpm, the cell biomass was separated. The cell biomass in the form of the pellet was mixed with an appropriate amount of methanol to completely dissolve it. The mixture was centrifuged again and the supernatant was collected for avermectin analysis by high-performance thin-layer chromatography HPTLC [11].

2.5 Determined of Avermectin Concentration by High-performance Thin-layer Chromatography

The ten purified samples were analyzed for avermectin drug content. The sample Application was done by Linomat 5. Five microliters of the ten samples were spotted onto the plate of pre-coated with silica gel 60F-254 (20cm×10cm) was used as a stationary phase. The Mobile phase was n-hexane: acetone: ethyl acetate (13:7: 0.2 v/v/v). The plates were developed in Twin trough chamber (CAMAG) Denitometric scanning was done from 190nm to 500nm in absorbance mode with Camag TLC scanner III, using deuterium and tungsten lamp operated by win CATS software (Version 1.2.0). The slit dimension of 8.00 mm × 0.60 mm and a scanning speed of 20 mm s⁻¹ were set [13].

2.6 Bio-autography

To evaluate the anti-nematode and antiprotozoal activity of avermectins the TLC plate was overlaid by 1% agarose containing the nematodes and protozoa and incubated at 37°C. the appearance of turbid spot indicated the death of nematodes and protozoa. The zone of turbidity was measured.

3. RESULTS

3.1 Isolation

Initially, colonies were relatively smooth-surfaced but later they develop a mesh of aerial mycelium and appear floccose, granular.

Ten isolates were identified as Streptomyces these were coded as PM1, PM2, PM3, PM4, PM5, PM6, PM7, PM8, PM9, and PM10 respectively till further identification.

3.2 Identification

Physical parameters such as their tolerance to pH, temperature were evaluated. The organisms’ best grow at neutral pH ranging from 7 to 7.4 and temperature 28°C to 35°C. The other physical parameters and their results are tabulated.

Image 1: Streptomyces growing on YMG agar plates (Primary Screening)
Table 1. Physical parameters of *Streptomyces* growing on YMG agar plates

Selected isolates	Spore morphology	Color of aerial mycelium	Color of substrate mycelium	Gramstaining
PM1	Round shaped	Light Grey	Grey	Gram-positive
PM2	Ovalshaped	Dark Grey	Light Grey	Gram-positive
PM3	Spiral	Pale Yellow	Yellowish	Gram-positive
PM4	Spiral	Dark Grey	Grey	Gram-positive
PM5	Branched	Yellowish	Whitish	Gram-positive
PM6	Roundshaped	Light Grey	Light Grey	Gram-positive
PM7	Ovalshaped	Grey	Grey	Gram-positive
PM8	Spiral	Pale Yellow	Whitish	Gram-positive
PM9	Branched	Whitish	Whitish	Gram-positive
PM10	Spiral	Offwhite	Whitish	Gram-positive

Table 2. Biochemical test of *Streptomyces* species

Biochemical Characteristics of the selected *Streptomyces* species	Nitrogen source utilization									
	PM1	PM2	PM3	PM4	PM5	PM6	PM7	PM8	PM9	PM10
Yeastexctract +	+	+	+	+	+	+	+	+	+	+
Malteextract +	+	+	+	+	+	+	+	+	+	+
Peptone +	+	+	+	+	+	+	+	+	+	+
Urea +	+	+	+	+	+	+	+	+	+	+

C-source utilization:

	Glucose	Lactose	Maltose	Mannitol
	+	+	+	+

Other tests:

	Citrate utilization	Gelatin liquefaction	Catalase test	H2S production test
	_	+	+	_

Similarly in an attempt to classify the organisms following biochemical tests were performed – carbohydrate namely, glucose, lactose, maltose, potato starch. The ability to utilize citrate, liquefy gelatin. Catalase test, which evaluate the ability of organism’s respiration using oxygen, and protects them from toxic byproducts of oxygen metabolism i.e. reactive oxygen species (ROS). If the microorganism is capable of reducing the Sulphur compound to sulfides was determined by the H2S production test.

A positive test was denoted by + sign and negative test by – sign, ++ was strongly positive and + sign within circle indicated the organism can ferment the sugar aerobically i.e. by producing acid and gas (in form of a bubble in
Durham's tube). Standard protocols were performed as mentioned in Bergey's Manual.

3.3 Fermentation Process

50 ml of synthetic medium 2 (SM2) was seeded by 5ml YGM media containing PM1 to PM10 isolates in previously sterilized 330ml glass bottles. These were incubated at 30°C in orbitek shaker incubator at 105rpm. Turbidity indicated growth which was assessed spectrophotometrically at 600nm.

HPTLC:

The HPTLC plate was scanned from 190 nm – 500 nm with 20mm s⁻¹. A peak at 247nm indicated the presence of avermectins. PM2, PM4, PM7, and PM10 exhibited the Rf values of 0.66, 0.47, 0.49 and 1.57 that of avermectins.

The area under the curve as obtained by densitometry for pure avermectin and that of an obtained peak was 875.8, 736.1, 334.0 and 550.1mm squared for PM2, PM4, PM7, and PM10 respectively. Thus the concentrations of avermectins for the four isolates in the same sequence were 0.200, 0.168, 0.076 and 0.125mg/ml.

Thus 50ml broth contained 10, 8.4, 3.8 and 6.9mg avermectins for PM2, PM4, PM7, and PM10 respectively. As shown in the graph.
Image 4. HPTLC of PM2 avermectins resolved at Rf value 0.66

Image 5. HPTLC of PM4 avermectins resolved at Rf value 0.47

Image 6. HPTLC of PM7 avermectins resolved at Rf value 0.49
Image 7. HPTLC of PM$_{10}$ avermectins resolved at Rf value 0.57

Table 3. HPTLC analysis of isolates, Rf value, the area under curve and concentration

Sr. no.	Isolates	RF value	Area under curved	Total avermectin accumulated mg/ml	Total avermectin of 50ml in broth
1	PM$_2$	0.66	875.8	0.200	10
2	PM$_4$	0.47	736.1	0.168	8.4
3	PM$_7$	0.49	334.0	0.076	3.8
4	PM$_{10}$	0.57	550.1	0.1258	6.29

Image 8. Concentration of avermectins accumulated in 50 ml broth
Image 9. Bio –autography results

Table 4. Inhibition of nematodes and protozoa by avermectins

The TLC plate was overlaid by 1% agarose containing nematodes and protozoa and zone of clearance was measured, which was 43, 24, 32, and 37mm for PM2, PM4, PM7, and PM10 respectively.	Zone of clearance (turbid) mm indiameter
PM2	43
PM4	24
PM7	32
PM10	37

4. CONCLUSION

Ten isolates of Streptomyces were obtained after primary screening of soil, post fermentation process and HPTLC analysis revealed that isolates PM2, PM4, PM7, and PM10 produced 10 mg, 8.4 mg, 3.8 mg and 6.9 mg of Avermectins/50 ml of fermentation medium. The anti-nematodal activity was evaluated by Bioautography.

ACKNOWLEDGMENTS

We are grateful to the Principal, Dr. Bharat P. Shinde, for allowing us to do the project.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pathalam Ganesan, Rajendra Appadurai Daniel Reegan, Host Antony David, Munusamy Rajiv Gandhi, Michele Gabriel Paulraj, Naif Abdullah Al –Dhabi. Savarimuthu ignacimuthu antimicrobial activity of some actinomycete from…
Western Ghats of Tamil Nadu, India. Alexandria Journal of Medicine. 2017;53(2):101-110.

2. Akansha Saxena, Ramraj Upadhyay, Dhaneshwar Kumar, Naveen Kango. Isolation, antifungal activity and characterization of soil actinomycetes. Journal of Scientific & Industrial Research. 2013;72:491-497.

3. Akio Iwasaki, Hisakatsu Itoh, Toshihito Mori GY. Streptomyces sannansensis sp. International journal of systematic bacteriology. 1981;31(3):280-284.

4. Amin Hasani, Ashraf Kariminik, Khosrow Issazadeh. Streptomyces: Characteristics and their antimicrobial activities. International Journal of Advanced Biological and Biomedical Research. 2014;2(1):63-75.

5. Samia Siddique, Quratulain Syed, Ahmad Adnan, Muhammad Nadeem, Muhammad Irfan, Fahim Ashraf Qureshi. Isolation production of avermectin producing streptomyces avermitilis strains from soil samples, Jundishapur. J Microbiol. 2014;7(6):10366. DOI:10.5812/jjm.10366

6. Haruo Ikeda, Jun Ishikawa, Akiharu Hanamoto, Mayumi shiose, Hisashi Kikuchi, Toyayoshi Shiba, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermectilis. Nature Biotechnology. 2003;21:526-531.

7. Samia Siddique, Quratulain Syed, Ahmad Adnan, Fahim Ashraf Qureshi. Isolation, characterization, and selection of avermectin-producing streptomyces avermitilis strains from soil samples, Jundishapur. J Microbiol. 2014;7(6):10366. DOI:10.5812/jjm.10366

8. Angel Manteca, Jesus Sanchez. Streptomyces development in colonies and soils. Applied and Environmental Microbiology. 2009;75(9):2920-2924.

9. Amin Hasani, Ashraf Kariminik, Khosrow Issazadeh. Streptomyces: Characteristics and their antimicrobial activities. International Journal of Advanced Biological and Biomedical Research. 2014;2(1):63-75.

10. Alexander N, Glazer, Hiroshi Nikaido. Microbial Biotechnology Fundamentals of Applied Microbiology. Second Edition; 1981.

11. Annalies S, Anderson, Elizabeth M, Wellingto nH. Thethaxonomyofstreptomycessand relatedgenera. International Journal of Systematic and Evolutionary Microbiology. 2001;51:797-814.

12. George M Garrity, John G Holt. The road map to Manual, Bergey's Manual of Systematic Bacteriology. 2001;119–166.

13. Saravana Kumar, Duraipandiyan V, Ignasimuthu S. Isolation screening and partial purification of antimicrobial antibiotics from soil streptomycetes spaces SCA7. Kaohsiung Journal of medical science. 2014;30:435-446.

© 2021 Sharma et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/65484