Nonlinear excitation of finite-radial-scale zonal structures by toroidal Alfvén eigenmode

Zhiyong Qiu¹, Liu Chen¹,² and Fulvio Zonca¹,³

¹ Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou, People’s Republic of China
² Department of Physics and Astronomy, University of California, Irvine CA 92697-4575, United States of America
³ ENEA, Fusion and Nuclear Safety Department, C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma), Italy

E-mail: zqiu@zju.edu.cn

Received 9 December 2016, revised 7 February 2017
Accepted for publication 2 March 2017
Published 24 March 2017

Abstract

The set of equations describing nonlinear evolution of a single toroidal Alfvén eigenmode are derived, including both zero frequency zonal structure (ZFZS) generation and wave-particle phase space nonlinearities. The simplified case of neglecting wave-particle phase space nonlinearity is then investigated to focus on different roles of energetic particles and bulk plasmas on ZFZS generation. It is shown that energetic particles and bulk plasma play dominant roles in ZFZS generation in different nonlinear stages, and the corresponding processes are qualitatively different. Several properties of ZFZS generation, e.g. fine- versus meso-scale, forced driven versus spontaneous excitation, are clarified by the present analysis.

Keywords: zonal structure, nonlinear phenomena, energetic particle, Alfvén wave, transport

1. Introduction

Shear Alfvén waves (SAW) are expected to play an important role in future burning plasmas with energetic particle (EP) population such as fusion-α significantly contributing to the overall plasma energy density [1]. With frequency comparable to the characteristic frequencies of EPs, and group velocities mainly along magnetic field lines, SAWs could be driven unstable by EPs [2–5] via resonant wave-particle interactions; leading to EP transport and degradation of overall confinement, as reviewed in [1]. As a consequence, understanding the nonlinear dynamics and saturation spectrum of SAWs is of crucial importance for the understanding of future burning plasmas behavior.

There are two routes for the nonlinear saturation of Alfvén modes, i.e. nonlinear wave-particle and nonlinear wave-wave interactions [6]. Wave-particle phase space nonlinearity [7], e.g. wave-particle trapping, describes the nonlinear distortion of the EP distribution function; and leads to SAW saturation as the wave-particle trapping frequency, proportional to square root of the mode amplitude, is comparable with linear growth rate [8–11]. On the other hand, wave-wave coupling accounts for the transfer of wave energy from unstable modes to the stable part of the fluctuation spectrum [12, 13]. Thus, to correctly investigate the saturation of SAW, both wave-particle and wave-wave nonlinearities must be considered on the same footing, and the intrinsic nonuniformity associated with toroidal geometry properly accounted for [6].

Distinct by their different interactions with SAW continuum, there are two kinds of EP driven Alfvénic modes in toroidal devices, i.e. EP continuum modes (EPM) and discrete Alfvén eigenmodes (AE). We note that, the general equations for studying EPM nonlinear physics [5], including both zero frequency zonal structure (ZFZS) and phase space zonal structure (PSZS) generation, are presented in [7]; though [7] only treated PSZS to give a clearer picture and interpret the numerical simulations presented in [14]. Meanwhile, toroidal Alfvén eigenmode (TAE) [15, 16], excited inside the toroidicity-induced SAW continuum gap to minimize continuum damping, is one of most dangerous candidates for effectively scattering EPs. In this work, we take TAE as an example, and derive the set of nonlinear equations for a single-$$n$$ TAE, and
the \(n = 0 \) ZFZS [13, 17, 18] and EP phase space nonlinearity. Spectral transfers by nonlinear scattering of the TAE spectrum are not considered here [12]. Thus, the present theoretical framework provides a ‘minimum’ problem for self-consistent TAE studies.

Nonlinear excitation of ZFZS by SAWs is not favorable due to the properties of ‘pure Alfvénic state’: that is, in uniform plasmas under ideal MHD condition the two dominant nonlinear terms, i.e. Maxwell (MX) and Reynolds stresses (RS), cancel each other so that a finite amplitude SAW, satisfying \(\omega = \pm k_i V_A \), can exist for a long time without being affected by nonlinear processes. From the conditions to get ‘pure Alfvénic state’, it is readily noted that the pure Alfvénic state can be broken by, e.g. finite compressibility [19], violation of ideal MHD constraint [20] and/or inhomogeneity/geometry [13, 21]. In the case of EP driven TAE considered here, we show that ZFZS generation can be due to the breaking of Alfvénic state by EPs [22] and/or toroidicity [13].

ZFZS generation by TAE has been studied in several works. Numerical analyses of nonlinear dynamics of EP driven TAE are carried out by both hybrid code [23] and particle-in-cell code [24, 25] simulations, and found that zonal flow (ZF) is excited via essentially thresholdless forced driven process, with electrostatic ZF dominated electro-magnetic zonal current (ZC) and the ZF growth rate being twice the TAE growth rate [23]. On the other hand, Chen et al [13] investigated the nonlinear excitation of ZFZS by TAE with a prescribed amplitude, and found that finite amplitude TAE can excite ZFZS via modulational instability at a rate proportional to the amplitude of the pump TAE. Zonal scalar potential is described by nonlinear vorticity equation with the nonlinear drive from RS and MX unbalance, as the pure Alfvénic state is broken by toroidicity. However, this process is limited by two facts. First of all, the net drive from unbalance of RS and MX is weak \((O(\epsilon)) \) due to the small frequency mismatch of AE with respect to the SAW continuous spectrum; and, second, zonal scalar potential level is screen that enhanced neoclassical shielding due to magnetically trapped thermal plasma ions. As a result, ZC (zonal magnetic field) with lower excitation threshold could be preferentially excited in specific plasma equilibria, which, however, do not reflect typical experimental conditions of tokamak plasmas [13].

It is shown in [22] that there is no conflict between analytical theory [13] and numerical simulations [23, 24]. The forced driven process [23, 24] is dominated by resonant EP contribution in the linear growth stage of the pump TAE; while the modulational instability [13] with a much slower time scale dominates when wave-particle interactions are weak. This finding is novel, since it is usually believed that mode-mode coupling is dominated by bulk plasma non-resonant particles, while resonant particles play an important role in wave-particle nonlinearity. In this paper, it will be demonstrated that the forced driven process [22–24] and the modulational instability [13], which are respectively due to EP and thermal plasma nonlinear responses, dominate the TAE nonlinear dynamics at different stages, respectively earlier and later.

The rest of the paper is organized as follows. In section 2, the theoretical model is presented, while the set of nonlinear equations for the nonlinear dynamics of TAE is derived in section 3. In section 4, nonlinear generation of ZFZS is discussed in detail. Finally, a brief summary and discussions are given in section 5.

2. Theoretical model

To derive the governing equations for the nonlinear evolution of the system, we take \(\delta \phi \) and \(\delta A_k \) as the field variables. Here, \(\delta \phi \) and \(\delta A_k \) are, respectively, the scalar potential and component of the vector potential parallel to equilibrium magnetic field. An alternative field variable \(\delta \psi \equiv \omega \delta A_k / (ck_0) \) is also adopted for \(n = 0 \) TAEs, and one has \(\delta \psi = \delta \phi \) in the ideal MHD limit.

For the nonlinear interactions between TAE and ZFZS, we take \(\delta \phi = \delta \phi_Z + \delta \phi_T \), with \(\delta \phi_T = \delta \phi_0 + \delta \phi_T' \). Here, \(\delta \phi_0 \) is the TAE with positive real frequency, and \(\delta \phi_T' \) is its counterpart with negative real frequency. Note that, in previous papers, TAEs are often separated into a constant amplitude pump and its upper/lower sidebands with much smaller amplitude to study the linear growth stage of the modulational instability. The more general approach adopted here can be applied to recover earlier results obtained using pump and upper/lower sidebands as limiting case, as we will show in section 4.2. The well-known ballooning-mode decomposition in the \((r, \theta, \phi)\) field-aligned toroidal flux coordinates is assumed:

\[
\delta \phi_n = \hat{\delta} \phi_n e^{i k_n r} \int k_m d r \exp (i n \theta - m \phi - \omega t) \sum_j \sum_{\delta} e^{i \delta \phi} \Phi_0 (x - j). \tag{1}
\]

Here, \(n \) is the toroidal mode number, \((m = m_0 + j)\) is the poloidal mode number with \(m_0 \) being its reference value satisfying \(n_0 (r_0) = m_0 \). \(r_0 \) is the plasma radial coordinate about which the TAE mode is assumed to be localized, \(r = nq(r_0) \) \((r = r_0) \) is the fine scale structure due to \(k_0 \) radial dependence and magnetic shear, \(\hat{\delta} \phi_n \) is the envelope amplitude and \(k_0 \) is the radial envelope wavenumber accounting for the slowly varying radial structures, and is closely related to \(k_l \equiv k_0 / n(q') \) in the famous ballooning representation. For ZFZS with the scalar potential dominated by \(n = 0, m = 0 \) components, and \(n = 0, m \approx \pm 1 \) density perturbation [26], we take

\[
\delta \phi_Z = \hat{A}_Z e^{i k_Z d r - i \omega t} \sum_m \Phi_Z \tag{2}
\]

with \(\Phi_Z \) accounting for the fine radial structure [19] due to nonlinear mode couplings, and \(A_Z \equiv \hat{A}_Z \exp (i \int k_Z d r) \) being the usual ‘meso’-scale structure. Note that the summation of \(m \) in the expression of \(\delta \phi_Z \) indicates that the fine structure of \(\delta \phi_Z \) [19, 22] locates at the radial position of \(\Phi_0 (nq - m) \); i.e. \(|nq - m| \approx 1/2 \) for TAE considered here. In fact, it is induced by the fine radial structures of Alfvén modes, which, in turn, is connected with their parallel mode structure because of the dependence of \(k_l \) on \(r \).

The governing equations can be derived from nonlinear gyrokinetic vorticity equation [1]
\[
(c^2B)(4\pi \omega^2)\partial_\theta (k_0^2 B) \delta \varphi_k + (e^2/T_e)((1 - J_e^2)F_0) \delta \varphi_k
- \sum_k (\langle e_i e_o \rangle \omega \delta \omega H_k)_k
= -ic\Lambda_k \left[c^2(k_0^2 + k_0^2) \partial_\theta \delta \varphi_k / (4\pi \omega \omega_c) \right] + \langle \delta (J_b J_e - J_c^2) \delta B_c \delta H_c^2 \rangle / (\omega \omega_0),
\]
(3)

where the two explicitly nonlinear terms on the right hand side are, respectively, MX and RS, \(\cdots\) indicates velocity space integration, the subscripts \(s = i,e\) denote particle species (thermal ions, electrons and EPs), and \(\Delta_k \equiv \sum_{k+ \neq k} \delta \mathbf{k} \times \mathbf{k}'\). Here, \(\mathbf{k}\) are defined as the operators for spatial derivatives, and we have \(\delta \phi \equiv \{k \mathbf{b} + k \mathbf{d} \} \perp \mathbf{k}'\). Thus, \(\delta \mathbf{J} \perp \mathbf{k}\) is related to the radial derivative of the fine radial structure, while \(k'_r\) is the radial envelope wave number accounting for the typical ‘meso’-scale envelope structures. The nonadiabatic particle response is derived from the nonlinear gyrokinetic equation [27]:

\[
(-i\omega + v_\phi \partial_t + i \omega_d) \delta H_k = -i(e_i/m)QF_0 J_b \delta L_k
- (c/\omega_0) \Lambda_l \delta L_k \delta H_e^2.
\]
(4)

Here, \(QF_0 = (\omega_d - \omega_0) F_0\) with \(E = v^2/2\) and \(\omega_0 F_0 = \mathbf{k} \cdot \mathbf{b} \times \nabla F_0 / \Omega\). Furthermore, \(\omega_d = (v^2 + 2v^2)/2(2\Omega R_0)(k_0 \sin \theta + k_0 \cos \theta)\) \(\equiv \tilde{u}_i(k_0 \sin \theta + k_0 \cos \theta)\) for a circular section large aspect ratio tokamak, \(l\) is the length along the equatorial magnetic field line, \(J_b = J_b(k, \rho_l)\) with \(J_0\) being the Bessel function accounting for finite Larmor radius effects, \(\rho_l \equiv m c \gamma / (e \mathbf{B})\) is the Larmor radius, \(\delta L = \delta \mathbf{J} - v_\phi \delta \mathbf{A} / c\), and other notations are standard.

To close the system, we need another equation. Here, we take parallel component of Ohm’s law:

\[
\delta E_{0,k} + \sum_{k+ \neq k} \delta \mathbf{B}_{k'} \times \delta \mathbf{E}_{k'} / c = 0.
\]
(5)

Here, \(\delta \mathbf{u}\) is the \(\mathbf{E} \times \mathbf{B}\) drift velocity. Equation (5) is equivalent to the usual quasi-neutrality condition, neglecting \(O(k_0^2 \rho_l^2)\) terms. The nonlinear equations describing the self-consistent evolution of TAE can then be derived from equations (3)–(5).

3. Nonlinear TAE saturation by ZFZS and PSZS

In this section, based on the general equations (3)–(5), we will derive the nonlinear equations describing the self-consistent evolution of a single toroidal mode number TAE, including both \(n = 0\) ZFZS and PSZS generation, and the feedback of ZFZS and PSZS on TAE. For simplicity of discussion, well circulating EPs are assumed. However, the theoretical framework presented here is general, and can be applied to both circulating and trapped EPs. Extension to different Alfven modes, e.g., beta-induced AE (BAE) [28, 29] or EPM [5], is straightforward.

3.1. Nonlinear ZFZS equations

Due to the multiple scale properties of TAE mode structures [30] associated with SAW continuum, TAE constitutes both a radially fast varying inertial (singular) layer due to coupling with SAW continuum, and a slowly varying ideal (regular) region. As a result, EPs, thermal ions and electrons contribute to different terms in the vorticity equation due to their different drift orbit/Larmor radius sizes. Thus, our derivations can be greatly simplified with the guidance of the multiple scale properties of TAE mode structures [30]. Thermal plasma contribution in the inertial layer via RS and MX, and EP contribution in the ideal region are derived one by one in the following.

3.1.1. Thermal plasma contribution in inertial layer. MX is dominated by current-carrying electrons. From equation (3) applied to ZFZS, one has

\[
\text{RX} = -\frac{c}{\omega_0} \sum_k \frac{\delta \mathbf{J}}{\omega_0^2} \mathbf{b} \cdot \mathbf{k'} \times \mathbf{k}
- \frac{c^2}{\omega_0} \sum_k \left(\frac{k_0^2}{k_0^2} - k_0^2 \right) \delta \mathbf{J} / \omega_0^2.
\]
(6)

Here, \(\langle \cdots \rangle\) denotes surface averaging, and equation (6) is derived noting \(\| k_{\|} \| \approx 1/(2q R_0)\) for TAEs. Noting that \(k_0\) is the operator for radial derivative, we then have

\[
\text{MX} = -\frac{c}{\omega_0^2} \sum_k \frac{\delta \mathbf{J}}{\omega_0^2} \mathbf{b} \cdot \mathbf{k'} \times \mathbf{k}
- \frac{c^2}{\omega_0^4} \sum_k \left(\frac{k_0^2}{k_0^2} - k_0^2 \right) \delta \mathbf{J} / \omega_0^2.
\]
(7)

Here, \(\hat{k} \equiv k_{\perp} - k_{\perp} \hat{r}\) and \(\delta \mathbf{J}_0 = \delta \mathbf{J}_0 / \omega_0\) related with fine radial structures of TAE [19]. The occurrence of \(\partial_\rho^2\) in the MX expression demonstrates that the linearity becomes most important at radial locations where fine TAE radial structures are predominant; that is, in the inertial layer of AE.

Reynolds stress nonlinearity is also most important in the inertial layer, since it can be noted that RS contributes only when \(\| k_{\|} \| \approx 1\), which is dominated by thermal ions response, while EP \((\| k_{\|} \| \gg 1)\) and thermal electron contribution \((\| k_{\|} \| \ll 1)\) contribution to RS is negligible. Substituting into vorticity equation for the ZFZS, we then have [31, 32]

\[
\text{RS} = -\frac{c}{\omega_0^2} \sum_k \frac{\delta \mathbf{J}}{\omega_0^2} \mathbf{b} \cdot \mathbf{k'} \times \mathbf{k}
- \frac{c^2}{\omega_0^4} \sum_k \left(\frac{k_0^2}{k_0^2} - k_0^2 \right) \delta \mathbf{J} / \omega_0^2.
\]
(8)

For thermal ions with \(\| k_{\|} \| \approx 1\) in the inertial layer, the second term on the right hand side of RS dominates. Therefore,

\[
\text{RS} = \frac{c}{\omega_0} \sum_k \frac{\delta \mathbf{J}}{\omega_0^2} \mathbf{b} \cdot \mathbf{k'} \times \mathbf{k}
- \frac{c^2}{\omega_0^4} \sum_k \left(\frac{k_0^2}{k_0^2} - k_0^2 \right) \delta \mathbf{J} / \omega_0^2.
\]
(9)
In deriving equation (9), leading order thermal ion response to TAE being $\delta H_{TAE} \approx (e/T_i) F_0 b_0 \delta T$ is used, consistent with the $|\omega_i| \gg |k'\nu_i|$, $|\omega_i|$ ordering.

Combining equations (7) and (9), we then have

$$\text{RS + MX} = -\frac{1}{2} B_0 c m_e^2 \kappa_0^2 \omega_0^2 2 \frac{1}{\omega_0} \left(1 - \frac{k_0^2 \omega_0^2}{c^2}\right) \nabla^2 \left(\delta H_{TAE} \right) + \sum_i \frac{1}{\omega_i - k_i \nu_i - i \omega_i - i c k_0 \kappa_0 \omega_0} \nabla^2 \left(\delta H_{TAE} \right). \tag{10}$$

Note that equation (10) reproduces equation (5) of [13] if one neglects the resonant particle effects ($\partial_i \ln \phi_0 - \text{c.c. in } \hat{F}$), and separates TAE modes due to radial envelope modulation of ZFZS from the pump TAE. The finite coupling comes from toroidicity ($1 - k_0^2 \omega_0^2 \omega_0 = 0$, breaking of Alfvénic state) and $\hat{F} \neq 0$ due to either envelope modulation [13] or wave-particle resonances [22].

3.12. Energetic particle contribution in ideal region. Energetic particles, with $|k_0 \nu_0, E| \gg 1$ in the inertial layer [30], do not contribute to RS [13]. Here, ν_0, E is the magnetic drift orbit width. EP nonlinearity enters implicitly in the ideal region via the CCT contribution due to the nonlinear EP contribution to ZFZS. Another reason for EP contribution to be favored in the CCT is that it is related to the particle pressure instead of density. Noting $|\omega_q| \gg |\omega_i|$ for typical EP driven TAEs [16, 33], the nonlinear gyrokinetic equation for EP response to TAE can be written as [7]

$$\left(-i \omega_i + \nu_i \delta_i + i \omega_d - c k_0 \kappa_0 \omega_0 \delta \mathbf{L}_Z + 0 \hat{B}_0 = -i c \nu_0 (c) \hat{B}_0 \right). \tag{11}$$

Here, k_0 stands for k, of the ZFZS response, $J_z = J_i(k_0 \nu_0)$ and $\delta \mathbf{L}_Z = \delta \omega_0 - (c_0^2 \nu_0^2) \delta \mathbf{L}_Z$. Thus, $c k_0 \kappa_0 \omega_0 \delta \mathbf{L}_Z / \hat{B}_0$ corresponds to the scattering of EP orbit by slowly varying ZS. Meanwhile, $\hat{F}_0 = F_0 + \delta H_{NL}$ is the ‘time evol’ving equilibrium EP distribution function on transport time scale, and its expression will be derived in section 3.3. Note that, compared to equation (4), the current equation includes only the surface averaged component of δH_{NL}, since δH_{NL} dominates the principal series of secular terms in the perturbation expansion [7]. $\delta H_{NL}^*\partial_+ \omega_0 = \omega_i$ is the phase space zonal structure, and reproduces hole-clump pair creation in the adiabatic limit [9, 10, 34]. The free energy in velocity space (the first term in QF_0, defined below equation (4)) is neglected with respect to that in configuration space (the second term in QF_0), due to the $|\omega_{kq}| \gg |\omega_0|$ ordering. Equation (11) can be derived from equation (15) of [17], assuming $|\omega_q| \gg |\omega_i|$ ordering and circular cross section. EP response to TAE can be derived as [22, 33]

$$\delta H^\prime_0 = \frac{c}{B_0} k_0 \kappa_0 \omega_0 \delta \mathbf{L}_Z \hat{F}_0 \hat{e} \delta \mathbf{L}_Z \delta \mathbf{L}_Z / \hat{B}_0 \delta \mathbf{L}_Z, \tag{12}$$

Here, $\lambda_{\nu_0, q} = \lambda_{\nu_0} \sin(\theta - \theta_0) = k_i \nu_0 \sin(\theta - \theta_0)$ with $\theta_0 = 2 \lambda_{\nu_0, q} / (k_i \nu_0)$. $\omega_{\nu_0} = v_{\nu_0} / q R_0$, and $\hat{q} / \hat{q}_0 = q R_0 / v_{\nu_0}$. This expression has a form similar to the linear EP response to TAE derived in [22], but with a nonlinear propagator and a modified \hat{F}_0. This is the fully nonlinear EP response to a single toroidal mode number TAE, including the nonlinear scattering of EP orbit by ZS and EP ‘equilibrium’ distribution function modification by TAE (transport). It also bears the information of TAE frequency sweeping due to EP energy or P_0 variations by TAE and phase locking between TAE and resonant EPs [1, 7]. We note that, the $i c \kappa_0 \omega_0 \delta \mathbf{L}_Z / \hat{B}_0$ term in the nonlinear propagator may contribute to resonance detuning or resonance broadening, depending on the mechanism of ZS generation. The nonlinear TAE equation can then be derived by substituting equation (12) into vorticity equation, and this will be done in section 3.2.

Nonlinear EP contribution to ZFZS can be derived by transforming into the drift orbit center coordinates [35]. Taking $\delta H_{NL}^* = e^{i \omega_0} \delta H_{NL}^*$ with $\lambda_{\nu_0} = k_i \nu_0 \cos \theta = \lambda_{\nu_0} \cos \theta$, we then have

$$\partial_i \omega_i \delta H_{NL}^* = \frac{c}{B_0} e^{-i \omega_0} \frac{\lambda_{\nu_0}}{2} \delta H_{NL}^* \hat{e} \frac{\lambda_{\nu_0}}{2} \delta H_{NL}^*. \tag{13}$$

Separating $\delta H_{NL}^* = \delta H_{NL}^* + \delta H_{NL}^*$, with (\cdots) denoting poloidally varying component, and noting that $\delta_{\nu_i} H_{NL} / \delta H_{\nu_i} \sim |\omega_{\nu_i} / \omega_{\nu_i} | \ll 1$, we then have

$$\partial_i \omega_i \delta H_{NL}^* = -\frac{c}{B_0} e^{-i \lambda_{\nu_0}} \lambda_{\nu_0} J_{\nu_0} \delta \lambda_{\nu_0} \hat{e} \frac{\lambda_{\nu_0}}{2} \delta H_{NL}^*, \tag{14}$$

$$\omega_{\nu_i} \partial_i \omega_i \delta H_{NL}^* = -\frac{c}{B_0} (e^{-i \lambda_{\nu_0}} \lambda_{\nu_0} J_{\nu_0} \delta \lambda_{\nu_0} \hat{e} \frac{\lambda_{\nu_0}}{2} \delta H_{NL}^* \hat{e}). \tag{15}$$

Here, the subscript ‘AC’ denotes $m \neq 0$ component, and $(\cdots)_{AC} = (\cdots)$. Although $|\delta_{\nu_i} H_{NL} / \delta H_{\nu_i} \sim |\omega_{\nu_i} / \omega_{\nu_i} | \ll 1$, the dominant EP contribution to ZFZS generation comes from $\delta_{\nu_i} H_{NL} / \delta H_{\nu_i}$, since it enters vorticity equation via coupling with geodesic curvature. On the other hand, $\delta_{\nu_i} H_{NL} / \delta H_{\nu_i}$, which is the phase space zonal structure response, dominates the ZFZS feedback onto the AE fluctuation spectrum. That is, it will dominate the nonlinear wave-particle interaction [1, 7], as we discussed below equation (11) and we will further discuss it in section 3.3. Noting that $\omega_{\nu_i} = \omega_{\nu_i} / \omega_i$, the EP contribution to ZFZS generation via CCT, after integration by parts, can be rewritten as

$$\text{CCT} = \left(-i \omega_i \delta_{\nu_i} H_{NL}^* \right) \tag{16}$$

$$\partial_i \omega_i \delta_{\nu_i} H_{NL}^* = -\frac{i}{2} \omega_i \partial_i \omega_i \delta_{\nu_i} H_{NL}^* \hat{e}. \tag{16}$$

Substituting equation (15) into equation (16), and noting that $\overline{AB} = A B$ and $e^{i \lambda_{\nu_0}} = e^{i \lambda_{\nu_0}} - J_0(\lambda_{\nu_0})$, we then have

$$\text{CCT} = \frac{c}{2} \omega_i \partial_i \omega_i \delta_{\nu_i} H_{NL}^* \hat{e} \frac{\lambda_{\nu_0}}{2} \delta H_{NL}^* \hat{e}. \tag{17}$$
The \mathcal{A} and \mathcal{B} terms will be treated separately and rewritten more explicitly in the following, adopting a weak field perturbation expansion.

Using linearized EP responses in the nonlinear terms (i.e. the linear expression for $\partial \mathcal{H}_{\psi}$ in the expression above), and ignoring the weak non-local coupling between two poloidal harmonics located at different radial positions, we then have

$$
\mathcal{A} = -\frac{2\pi i}{m} \sum_k \Phi_0^2 \left\{ \left(1 - \frac{k_0^2}{\omega}\right)_0 \right. Q_0 F_0 \\
+ \sum_i \left[\frac{J_i^2(\hat{A}_{a0})}{\omega_0 - k_0^0 \omega_0 - i \omega_0 - i c k_2 Z_0 J_0 B_0} \left(k_0^0 \right) \right] \left[J_i(\hat{A}_{d0}) \right] \left(k_0^0 \right) \left(k_0^0 \right)
\right\}
$$

(18)

Here, $\hat{A} = k_0^0(k_0^0 + k_{r,0})$. In deriving equation (18), the ideal MHD condition for TAE ($\delta \phi_{0,0}^2 \approx k_0^2/\omega^2$) is applied to simplify $\delta \mathcal{L}_0$ and $\delta \mathcal{L}_0$ [21].

Assuming that dominant contribution comes from resonant EPs, we then have

$$
\mathcal{A} = -\frac{2\pi i}{m} \sum_k \Phi_0^2 \left\{ \left(1 - \frac{k_0^2}{\omega}\right)_0 \right. Q_0 F_0 \\
= \sum_i \left[\frac{J_i^2(\hat{A}_{a0})}{\omega_0 - k_0^0 \omega_0 - i \omega_0 - i c k_2 Z_0 J_0 B_0} \right] \left(k_0^0 \right) \left(k_0^0 \right) \left(k_0^0 \right)
\right\}
$$

(19)

In deriving equation (19), the resonance condition is applied to simplify $\delta \mathcal{L}_0$ (i.e. $\omega - k_0^0 \omega_0 \approx i \omega_0$). Equation (19) suggests that, in general, the effects of ZS scattering can be resonant scattering (nonlinear frequency shift) and/or resonance broadening. For example, as will be shown later, when $\delta \mathcal{L}_Z$ is imaginary and k_2^2 predominantly real, as in the linear growth stage where ZS is forced driven by resonant EP effects [22], ZS scattering on wave particle resonant interaction with TAE predominantly enhances resonance detuning. Similarly, as will be shown later, while the spontaneously excited ZFZS structures are real, and the effect on TAE resonances with EPs is predominantly resonance broadening. However, as we clarify in section 4 below, the CCT term due to EP contribution can be ignored with respect to MX and RS, when ZFZS are spontaneously excited. Thus, equation (19) suggests that EP contribute predominantly to ZFZS forced driven excitation and, thus, they enhance resonance detuning. Note that the CCT is due to resonant wave-particle interactions and the finite orbit width (FOW) effects via $\lambda = 0$ transit harmonics. One would then expect, compared to the well-circulating EPs assumed here, that trapped EPs may further enhance the nonlinear couplings due to their relatively large bounce orbits.

The \mathcal{B} term can be manipulated and rewritten similarly. Substituting EP response (as \mathcal{H}_{ψ}) into \mathcal{B}, and noting $k_Z = k_{r,0}^0 + k_{r,0}$, we obtain [22]:

$$
\mathcal{B} = \frac{H}{m} \int_0^1 d\theta e^{-\lambda \pi \omega L_\psi L_0 Q_0 F_0} \\
\times \left[e^{-\pi \omega \delta \mathcal{L}_Z \theta_0} \mathcal{H}_{\psi} \theta_0 \right] \\
+ \left[e^{-\pi \omega \delta \mathcal{L}_Z \theta_0} \mathcal{H}_{\psi} \theta_0 \right] \\
\right\}
$$

(20)

Collecting results from equations (19) and (20), assuming $|k_{r,0}| \ll 1$, and keeping only $l = \pm 1$ transit resonances, equation (17) finally becomes

$$
\text{CCT} = \frac{\pi}{4} \frac{e^{2} \nu_{\text{eg}} k_{2}^{2}}{B_0 \omega_{0}^{2}} \bar{G} \hat{A}_{0}^{2} \sum_{m} |\Phi_{0}|^{2}.
$$

(21)

Here, \bar{G} comes from resonant EP, and is defined as

$$
\bar{G} \equiv \left(\omega_{0,1} / \nu_{\text{eg}} \right) \\
\times \left((\delta \omega_{0} - k_0^0 \omega_0 - i \omega_0 - i c k_2 Z_0 J_0 B_0) \right)
$$

Ignoring the term related to ZS induced scattering $i c k_2 Z_0 J_0 B_0$, \bar{G} is proportional to the resonant EP contribution. Thus, the CCT term is proportional to the effective ‘linear’ growth rate of TAE, and is important only in the linear growth stage of TAE. In the expression of \bar{G}, the FLR effects are consistently ignored due to the $k_{r,0} \ll 1$ assumption.

The nonlinear vorticity equation for ZFZS can then be derived as

$$
\omega Z_{\chi,0} \delta \phi_{2} \equiv \frac{\pi}{4} \frac{e^{2}}{B_0} \left(k_0^2 \frac{1}{\omega_0} \omega_{0,1} \nu_{\text{eg}} \bar{G} - \frac{2 \pi}{4} \frac{k_0^2}{\omega_0} \right) \hat{A}_{0}^{2} \sum_{m} |\Phi_{0}|^{2},
$$

(22)

with the first term on the right hand side originating from resonant EP contribution to CCT in the ideal region (equation (21)), and the second term from RS&MX of thermal plasma contribution in inertial layer (equation (10)). Here, $\chi_{Z} \equiv \chi_{Z}(k_0^2 \rho_{1}^2) \approx 1.6 q_{\phi} / \sqrt{r}$, and χ_{Z} is the well known neo-classical polarizability of ZFZS [17]. The CCT by EPs is much larger than RS&MX by $O(n_{e,0}^{2} \omega_{0,1}^{2} \nu_{\text{eg}}^{2} / \omega_{0,1}^{2} \nu_{\text{eg}}^{2})$, and dominates in the linear growth stage of TAE. Here, $n_{e,0,1}$ increases with the number of resonant EPs. On the other hand, as $n_{e,0,1}$ decreases due to, e.g. wave-particle phase space nonlinearity, RS&MX may take over the long time scale nonlinear behavior. Thus, the physics investigated in [13] and [23, 24] occur at different stages of the nonlinear dynamics. We will discuss the differences between these two processes in more detail in section 4.

The equation for zonal magnetic field can be derived from the parallel component of nonlinear Ohm’s law [13]. Noting $\delta E_{Z} = - \delta \phi \delta Z - \delta \mathcal{A}, Z L / c$, $\delta \mathcal{B} = \nabla \times \delta \mathcal{A} / c$ and $\delta \mathcal{A}_{l} = \xi \nabla \delta \phi \times \mathbf{b} / B$, the zonal component of equation (5) is then

$$
\partial_{t} \delta \mathcal{A}_{Z} - c \frac{B_{0}}{B_{0}} \nabla_{l} \delta \phi \times \nabla_{l} \delta \phi
$$

$$
= \frac{c}{B_{0}} k_{0,0} \partial_{t} \delta \phi (\delta A_{Z,0} \delta \phi_{0} - \delta A_{Z,0} \delta \phi_{0})
$$

(5)
Taking $\delta \phi = \bar{\delta} \psi$ for TAEs in the inertial layer, and noting that $|\partial_z \ln k_2 | \ll |k_2|$ for TAEs, we then have
\[\partial_z \delta A_{gZ} = \frac{e}{B_0} k_0 x_0, \]
Noting that $\omega_0 = \omega_n + i\partial_z$, we obtain
\[\delta \psi_Z = -\frac{1}{B_0} \frac{\partial}{\partial \Omega} \left(|\delta A_{gZ}|^2 \right). \]
(23)
Here, $\delta \psi_Z \equiv (\omega_0/ck_0,\omega) \delta A_{gZ}$.

3.2. Nonlinear TAE equations

In the vorticity equation of TAE, the nonlinear terms contain the CCT dominated by EP response, and RS&MX responses due to bulk plasmas discussed in [13]. Substituting equation (12) into (3), one then obtains
\[-i \delta \psi_0 + \frac{\omega_0}{V_A} \delta \phi_0 - \frac{\omega_0}{V_A} \delta \psi_0 = 4 \frac{\omega_0}{c^2 k_{1,0}^2} (J_{\omega_0} \delta H_0^2) e^{i \Omega} = -i \frac{e}{B_0} k_0 \omega_0 \left(k_2^2 - k_{1,0}^2 \right) \omega_0 \delta \phi_0 (\delta \phi_Z - \delta \psi_z). \]
(24)
The last term on the left hand side is the nonlinear CCT, while the terms on the right hand side are RS&MX derived following the same procedure of equation (10). Note that equation (24) has the same structure as its counterpart without EP effects [13, 21], with the additional physics of the nonlinear CCT as is shown in equation (12). Ignoring all the nonlinear terms, equation (24) then describes linear TAE excitation by well circulating EP transit resonances [16].

The other equation of TAE, describing the breaking of ideal MHD condition by nonlinear effects, is derived from the parallel component of the nonlinear Ohm’s law
\[\bar{\delta} \phi_0 - \delta \psi_0 = \frac{c}{B_0} \frac{k_0}{\omega_0} \partial_z \delta \phi_0 (\delta \psi_Z - \delta \phi_Z). \]
(25)
Substituting equation (25) into (24), one then reproduces equation (7) of [13] in the proper limit, i.e. ignoring EP contributions including wave-particle resonances [19] and separating TAEs into finite amplitude pump and its lower/upper sidebands due to radial envelope modulation by ZFZS. We note that, in the linear growth stage of TAE, TAE nonlinearity is dominated by the scattering of EP orbit by ZFZS and modification of EP equilibrium (PSVS). While in the TAE saturation stage, RS&MX dominates. To understand the more general situations with all the nonlinearities acting on the same footing, nonlinear equations must be investigated numerically.

3.3. Nonlinear EP distribution function evolution

It is mentioned in section 3.1 that, δH^N_Z dominates the PSVS. Noting that $\tilde{F}_0 = F_0 + \delta H^N_Z$, we then have, from equation (14),
\[\partial_t F_0 = -i \delta \phi (\tau, \omega) \exp (-i \omega_0 (\tau)), \]
and F_0 can be solved for explicitly using Laplace transformation. Taking
\[F_0(\hat{\omega}) \equiv \frac{1}{2 \pi} \int_0^\infty e^{i \hat{\omega}_0 t} F_0(t) \, dt \]
with $\hat{\omega}$ being the variable for the slow temporal evolution of F_0, we then have
\[F_0(\hat{\omega}) = \frac{i}{2 \pi \omega} F_0(0) - \frac{c}{B_0} \frac{k_0}{\omega_0} J_{\omega_0}^2 k_0 \bar{\delta} \phi \left(\delta \psi_0 (\omega) - \delta \phi_0 (\omega) \right) \int \delta L_{\omega_0}(y) \delta L_{\omega_0}^* (y) \, dy. \]
(26)
Here, $F_0(0)$ is the initial value of F_0 at $t = 0$. The effects of collisions and external source can be included in equation (26) straightforwardly [7]. EP response to TAE can also be derived, and we obtain
\[\delta L_{\omega_0}(y) \delta L_{\omega_0}^* (y) = -\frac{e \omega_0}{m} \sum_l k_l (k_l^2 - 1) \omega_0 \delta \phi_0 (\delta \phi_Z - \delta \psi_z). \]
(27)
Substituting equation (27) into (26), we then obtain
\[F_0(\hat{\omega}) = \frac{1}{2 \pi \omega} F_0(0) - \frac{c}{B_0} \frac{k_0}{\omega_0} J_{\omega_0}^2 k_0 \bar{\delta} \phi \left(\delta \psi_0 (\omega) - \delta \phi_0 (\omega) \right) \int \delta L_{\omega_0}(y) \delta L_{\omega_0}^* (y) \, dy. \]
(28)
Note that this equation contains \tilde{F}_0 on both sides as well as wave-particle decorrelation due to ZS in the denominator, and describes the self-consistent evolution of EP equilibrium distribution (transport) due to emission and reabsorption of symmetry breaking TAEs. Thus, it corresponds to the Dyson equation in quantum field theory. Its solution provides the renormalized expression of \tilde{F}_0 and thus, \tilde{F}_0. The nonlinear TAE equation can then be derived, including the self-consistent interplay between TAE and the EP source, following the derivation for EPM [7].

For nearly periodic fluctuations, with $\omega_0(\tau) = \omega_0 + i \gamma_0(\tau)$, we can assume $\delta \phi_0(t) \equiv \lim_{\tau \to \infty} \delta \phi(t) \exp (-i \omega_0(\tau))$, with $\delta \phi(t) = \delta \phi_0 \exp (-i \int_0^t \omega(t') \, dt' + i \omega_0(\tau))$. Thus, one can show that the Laplace transform
\[\delta \phi(\omega) = \frac{1}{2 \pi} \delta \phi(\tau, \omega) \exp (-i \omega_0(\tau)). \]
Assuming coherent modes with $\gamma_0 \ll \omega_0(t)$, we obtain, after some tedious but straightforward algebra
\[\delta L_{\omega_0}(y) \delta L_{\omega_0}^* (y) = \frac{1}{2 \pi \omega} F_0(0) - \frac{c}{B_0} \frac{k_0}{\omega_0} J_{\omega_0}^2 k_0 \bar{\delta} \phi \left(\delta \psi_0 (\omega) - \delta \phi_0 (\omega) \right) \int \delta L_{\omega_0}(y) \delta L_{\omega_0}^* (y) \, dy. \]
(29)
This expression contains the information of EP radial transport and energy variation due to TAEs, and in the adiabatic limit, reproduces wave-particle trapping [7]. In the simple limits of EPM driven by deeply trapped particle precession resonance, the phase locking between the radially transported EPs and frequency sweeping mode leads to convective transport of EPs [7], as referred to as mode particle pumping [36].

A similar picture is also proposed for the nonlinear saturation of EP-induced geodesic acoustic mode (EGAM) [37], where phase locking between the pitch angle scattered EPs and the downward frequency chirping EGAMs eventually leads to EP loss due to scattering into lost orbits.

Equations (22)–(25) and (29), thus, provide the set of nonlinear equations describing the nonlinear evolution of a single toroidal mode number TAE, including both wave-wave nonlinearities and wave-particle phase space nonlinearities. For an in-depth understanding of the nonlinear process, active interactions between analytical theory and large scale simulations based on first principles are needed. As a simple application, in section 4, we will neglect the wave-particle nonlinearities, and focus on the nonlinear ZFZS generation. Several properties of ZFZS generation are discussed, i.e. fine- versus meso-scale radial structure, spontaneous excitation versus forced driven and electrostatic (e.s.) ZF versus electromagnetic (e.m.) ZC. This allows us to illuminate the underlying physics processes and to clarify the discrepancies between the analytical theory [13] and numerical simulations [23, 24].

4. Nonlinear ZFZS generation

In this section, a simplified model neglecting $F_{0,E}$ temporal evolution is considered to investigate the different roles played by EPs and thermal particles in ZFZS generation. The spontaneous excitation and forced driven process are discussed, respectively, in [13] and [22]. In this paper, equations (22)–(25) are derived as the governing equations for ZFZS generation, including both processes presented in [13, 22], with the δH_0^F in equation (24) replaced by its linearized expression. Here, we will show the two limiting cases discussed respectively in [13, 22]; that is forced driven excitation of ZFZS [22], which is expected to dominate the phase locking between the radially transported EPs and the spontaneous emission of ZFZS [13], which is expected to take over the nonlinear dynamics at later times, after TAE fluctuation amplitude has exceeded a critical threshold value. Wave particle phase space nonlinearities, meanwhile, are expected to be most important in between these two phases.

4.1. ZFZS forced driven by TAE in the linear growth stage

In the linear growth stage of TAE, with the CCT due to EP response dominating over RS&MX by thermal particles, one can neglect RS&MX in equation (22),

$$\partial_t \xi_Z \delta \phi_Z = \frac{i}{4} k_\perp^2 \hat{K} \hat{G} |\hat{A}_0|^2 \sum_m |\Phi_0|^2 e^{2\pi i l_m},$$

(30)

Here, $\omega_Z \equiv i \partial_t |\xi_Z|$ accounts for temporal evolution, and $\hat{K} \equiv \frac{i}{4} n_0 T_k \theta(B_0 n_0 m_i \rho_i^2 \omega_\perp^2)$. Noting that $\partial_t = 2\gamma_L$, we then have

$$
\delta \phi_Z = \frac{\pi}{8} k_\perp^2 \hat{K} \hat{G} |\hat{A}_0|^2 \sum_m |\Phi_0|^2 e^{2\pi i l_m}.
$$

(31)

Taking $\Phi_Z \equiv |\Phi_0|^2$ as the ZF fine-scale structure in equation (2), the meso-scale radial envelope of ZF is then

$$
\hat{A}_z = \frac{\pi}{8} k_\perp^2 \hat{K} \hat{G} |\hat{A}_0|^2.
$$

(32)

This is a typical forced driven process, with the growth rate of the zonal scalar potential being twice that of TAE, and its amplitude proportional to the TAE intensity. ZC can also be forced driven by TAE. It can be readily estimated from equation (22) of [13] that the amplitude of $\delta \phi_Z$ is much smaller than $\delta \phi_T$, in that, compared to the case considered in [13], the ZF term is enhanced due to EP response while the ZC term is weakened (frequency mismatch $|\Delta f|$ replaced by $2|\gamma_L|$ in the ZC term).

Note that, for the forced driven case, $|\omega_Z| = 2\gamma_L$ and $|k_\perp| = 2|\partial_t \ln \delta \phi_0|$ are fully determined by the linear spectrum of TAE, such that TAE nonlinear equations are not needed to close the system [22]. While for the spontaneous excitation case [13], both TAE sidebands and ZFZS equations are needed for taking into account the reinforcement by nonlinearity of the envelope modulation [18].

4.2. ZFZS spontaneous excitation by TAE via modulational instability

When TAEs are saturated due to wave-particle phase space nonlinearities, the CCT due to EP nonlinearities can be neglected (note that $\hat{G} \propto \gamma_L$), and RS&MX play the dominant role in the vorticity equation. Equations (22)–(25) can then recover the coupled nonlinear ZFZS&TAE equations derived in [13], leading to ZFZS spontaneous excitation when the conditions for modulational instability are satisfied. The finite coupling comes from radial envelope induced symmetry breaking [18, 38], and thus it is natural to separate the TAEs into a constant amplitude pump and its sidebands due to ZFZS radial envelope modulation [18]. The threshold condition for the modulational instability is determined by the frequency mismatch of TAE sidebands ($\Delta f \approx O(\varepsilon)$) associated with finite envelope modulation. Separating TAEs into fixed amplitude pump and sideband, i.e. $\delta \phi_0 = \delta \phi_p + \delta \phi_0$, $\delta \phi_0 = \delta \phi_p + \delta \phi_0$, $\delta \phi_p = A_0 e^{i \omega_0 x - \omega_0 t} \sum_j e^{i \omega_j x} \hat{\Phi}(x, \omega_j)$, $\delta \phi_p = A_0 e^{i \omega_0 x - \omega_0 t} \sum_j e^{i \omega_j x} \hat{\Phi}(x, \omega_j)$.

Here, $\delta \phi_p = 0$ is assumed for the pump TAE. Since the spontaneous excitation process dominates when EP resonant drive
is very weak, $\partial_t \ln \Phi_0 - \text{c.c. in } \hat{F}$ vanishes, and the only symmetry breaking mechanism (to have $\hat{F} \neq 0$) is finite envelope modulation. As a result,

$$\frac{\partial^2 \hat{F}}{\partial r^2} |A_0|^2 \sum_m |\Phi_m|^2 = \frac{\partial^2 \hat{F}}{\partial r^2} \langle \delta \rho \delta \phi + \delta \phi \rho^* \delta \phi \rangle = i k^2 \omega^2 \rho^2 (\delta \rho \rho^* \delta \phi - \delta \phi \rho^* \delta \rho)$$

and, thus, equation (10) becomes

$$\text{RS + MX} = -c \frac{n_{Qe} k}{T_i} k^2 \hat{z} \rho^2 \rho^2 \frac{1}{\omega^2} \left(1 - \frac{k_i^2 V_A\omega}{\omega^2} \right) \langle \rho^2 \rangle \sum_m |\Phi_m|^2.$$

(33)

Noting that $\omega_Z = i \partial_t$ and $k^2 = (k^2 - i \partial_r \sum_m \ln |\Phi_m|^2) / \omega_{\parallel}$ from the balance of the radial variations on both sides of the ZFJS vorticity equation, equation (33) can then recover equation (3) of [13] after averaging over parallel mode structures ($\sum_m |\Phi_m|^2 = 1$ normalization is assumed in [13], which applies to high/moderate ballooning drift waves [31], while it may not be generally valid for TAEs). Taking into account the fine-scale structure of ZFJS, and keeping only the dominant couplings between the poloidal harmonics of TAE pump and sidebands with the same poloidal mode number, we then obtain

$$i \omega_z \chi_{\omega} \delta \phi_z = -c \frac{k}{B_0} k_{\omega} \left(1 - \frac{k_i^2 V_A^2}{\omega^2} \right) \langle \rho^2 \rangle \sum_m |\Phi_m|^2.$$

(34)

The zonal current equation can be derived from equation (23), noting that $\partial_t |\delta \phi|^2 = \partial_r |\delta \psi|^2,$

$$\delta \psi_z = -c \frac{k}{B_0} k_{\omega} \langle \rho^2 \rangle \langle \rho^2 \rangle \sum_m |\Phi_m|^2.$$

(35)

Neglecting the contribution of EPs, we then obtain, from equations (24) and (25), the nonlinear equations for TAE upper/lower sidebands,

$$\left(k_i^2 V_A^2 \delta \psi - \omega^2 \delta \phi + \omega^2 \delta \psi \right)_{\pm} = c \frac{k_{\omega}}{k^2} \left(k^2 - k_{\omega}^2 \right) \omega_0 \left(\begin{array}{c} \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \end{array} \right) \langle \delta \phi_Z - \delta \psi_z \rangle,$$

(36)

$$\left(k_i^2 V_A^2 \delta \phi - \omega^2 \delta \phi + \omega^2 \delta \phi \right)_{\pm} = c \frac{k}{k^2} \left(k^2 - k_{\omega}^2 \right) \omega_0 \left(\begin{array}{c} \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \end{array} \right) \langle \delta \psi_Z - \delta \phi_z \rangle.$$

(37)

Substituting equation (37) into (36), noting that $k_i^2 V_A^2 \approx \omega^2$, $|k_{\omega} \approx |\partial_r \ln \Phi_0| > |k_{\omega}|$ for pump TAE in the inertial layer, $|k_{\omega} | \approx |\partial_r \ln \Phi_0| \approx |\partial_r \ln \Phi_0|$ and $k^2_{\pm, \pm} \approx (|\partial_r \Phi_0| + |\partial_r \Phi_0|)^2 \approx 9 |\partial_r \Phi_0|^2 \Phi$, we then have

$$\left(k_i^2 V_A^2 - \omega^2 + \omega^2 \right)_{\pm} \delta \phi_z = 6c \frac{k}{B_0} k_{\omega} \left(\begin{array}{c} \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \\ \delta \phi_p \end{array} \right) \langle \delta \psi_z - \delta \phi_z \rangle.$$

(38)

Note that, in the present work, (r, θ, ϕ) is assumed as a right-handed coordinate, and the nonlinear terms in equations (34), (35) and (38) have opposite sign to [13]. Assuming $\Phi_0 \equiv \exp(-x^2/2\Delta^2)^{(r/\Delta)^{1/2}}$ with $\Delta \sim \theta_t(r/T)$ being the characteristic scale length of the fine structure, $\Phi_Z = |\Phi_m|^2$, defining $\gamma_l \equiv \langle \langle|L_l|\rangle \rangle$, with $L_l \equiv k_i^2 V_A^2 + \omega^2 - \omega^2$, $\langle\langle\cdots\rangle\rangle \equiv \int \cdots |\Phi_m|^2 \text{d}x,$ and noting $\Phi_m = \Phi_0$ to the leading order, we then have

$$k_i^2 \omega^2 \gamma_{\pm} \langle L_l \rangle \langle \rho^2 \rangle \langle \rho^2 \rangle \sum_m |\Phi_m|^2.$$

(39)

$$\gamma_Z = -c \frac{k}{B_0} k_{\omega} \langle \rho^2 \rangle \langle \rho^2 \rangle \sum_m |\Phi_m|^2,$$

(40)

The radial envelope of $\delta \psi$ and $\delta \phi$ is $\langle\langle|\delta \psi| \rangle\rangle \langle\langle|\delta \phi| \rangle\rangle \sum_m |\Phi_m|^2$, with $\gamma_Z \sim \omega \omega_{\parallel}$, $\langle\langle\cdots\rangle\rangle \equiv \int \cdots |\Phi_m|^2 \text{d}x,$ and $\delta \psi \omega_{\parallel}$ and $\delta \phi \omega_{\parallel}$ play the role of a normalized potential energy [39–41]. Substituting A_{\pm} from equation (39) into equations (40) and (41), letting $\omega_z \equiv \omega_{\parallel}$ and noting $\Delta_s = (\partial |D_0|/\partial \omega_{\parallel})(\gamma_2 + \Delta^2) \Delta + \Delta^2 \approx \omega_{\parallel}$, $\langle\langle|\delta \psi| \rangle\rangle \langle\langle|\delta \phi| \rangle\rangle \sum_m |\Phi_m|^2$, we then obtain

$$\gamma_Z \sim \alpha_{\phi} \gamma_{\pm} \langle\langle|\delta \psi| \rangle\rangle \langle\langle|\delta \phi| \rangle\rangle \sum_m |\Phi_m|^2.$$

(42)

$$\gamma_Z \sim \alpha_{\phi} \gamma_{\pm} \langle\langle|\delta \psi| \rangle\rangle \langle\langle|\delta \phi| \rangle\rangle \sum_m |\Phi_m|^2.$$

(43)

Note that, equations (42) and (43) correspond, respectively, to equations (19) and (20) of [13]; and the coefficients α_{ϕ} and α_{ϕ} correspond to α_{ψ} and α_{ψ} of [13], with the enhanced coupling due to inclusion of ZFJS fine radial structure taken into account [19]. The equations in [13] can be recovered by replacing $\langle\langle|\delta \psi| \rangle\rangle \langle\langle|\delta \phi| \rangle\rangle$ with $k_i^2 k_{\omega}^2 \Phi$ and $k_i^2 \Phi$. The nonlinear dispersion relation of the modulational instability can then be derived as:

$$\gamma_Z^2 = \alpha_{\phi} \gamma_{\pm} - \alpha_{\phi} + \Delta^2.$$

(44)

The condition for the modulational instability is given by
Thus, the threshold condition on pump TAE amplitude is much lower due to the enhanced nonlinear coupling, while the conditions for e.s. ZF or e.m. ZC to be preferentially excited is exactly the same as that discussed in [13]. Assuming the condition for ZC excitation is satisfied ($\Delta f/\omega_0 > 0$) [13], the threshold on pump TAE amplitude for ZC spontaneous excitation is lower by $\sqrt{2/3} (|\partial \phi|^2) \sim O(\epsilon)$ due to the inclusion of ZFZS fine scale structures.

Note that, in equation (45), the threshold condition for modulational instability is determined only by frequency mismatch in the collisionless limit assumed here. However, collisions may be included as the damping mechanism of ZFZS, and also contribute to determine the threshold condition of the modulational instability discussed here. This effect of conditions adds to their contribution in evolving PSZS, as discussed following equation (26) [7].

5. Discussions and summary

5.1. Discussions

The different properties of the nonlinear processes, e.g. fine-versus meso-radial scale, forced driven versus spontaneous excitation, can be illuminated from our derivations and theoretical analysis in section 4. Below, we discuss them one by one.

5.1.1. Forced driven versus spontaneous excitation. In the linear growth stage of the pump TAE, there is an $e^{2\gamma t}$ factor in the nonlinear terms due to the coupling of the pump TAE to its complex conjugate. The operator for temporal evolution ω_Z is then $\omega_Z = 2i \gamma$, while the driven ZF amplitude is proportional to the intensity of pump TAE. This is a typical forced driven process. On the other hand, as TAE saturates due to wave-particle nonlinearities, the CCT contribution becomes negligible, and finite RS&MX requires finite radial envelope modulation [18] (i.e. the sidebands assumed in [13]). As a result, nonlinear equations for sidebands are needed to close the system; and for analyzing spontaneous excitation of ZFZS.

This clarifies the discrepancy of simulations [23, 24] and analytical theory based on modulational instability of a pump TAE with a prescribed amplitude [13]. In the simulations, the TAEs are driven by EPs, and the observed forced driven process occurs in the linear growth stage of TAE [23]. To observe the spontaneous excitation process, one has to wait long enough till RS&MX are comparable to/larger than the CCT; and one has to be careful in distinguishing the underlying nature of the different zonal components. One possible way to clearly demonstrate the spontaneous excitation process, is to get a stationary pump TAE with constant amplitude by antenna or by carefully posing an artificial dissipation to balance the EP drive.

Note that, as also discussed in [22], the forced driven and the spontaneous excitation processes happen at different stages of the nonlinear dynamics, and they may significantly change the nonlinear dynamics of a single-n TAE. For example, the forced driven ZFZF may regulate the saturation level of TAE below the threshold condition for modulational instability and thus, completely suppress it [22]. Interested readers may refer to [22] for a more detailed discussion.

5.1.2. Fine- versus meso-scale structures. The radial structure of the generated ZF component of the ZS is given in equation (22), and the radial variation can be from either the meso-scale radial envelope ($|A_0|^2$) or the fine-scale parallel mode structure ($\sum_m |\Phi|^2$) of pump TAE. Note that equation describing ZF excitation by drift waves (DWs) has a similar structure [18], but ZF excited by DWs typically has a meso-scale structure. In fact, for DWs characterized with moderate or strong ballooning structure, $\sum_m |\Phi|^2 = 1$ [18, 31], and radial variation comes from $|A_0|^2$. On the other hand, AEs are typically weakly ballooning due to the presence of SAW continuum, such that $\sum_m |\Phi|^2$ dominates radial variation. As a result, ZF driven by TAE (more generally, AEs) has a fine-scale radial structure, in addition to the well-known meso-scale envelope. The same argument and considerations apply for the ZC component of the ZS, expressed by equation (23).

5.1.3. Zonal flow versus zonal current. The condition for ZF or ZC spontaneous excitation has been discussed in detail in [13]. ZF and ZC generation are described by, respectively, vorticity equation and Ohm’s law. It is shown in equation (22) of [13] that, for pump TAE with given amplitude, ZF generation is screened by neoclassical shielding and limited RS&MX near-cancelation; while ZC generation is related to frequency mismatch. For certain plasma equilibria, ZC generation has a much lower threshold condition. On the other hand, with EP effect taken into account, ZF generation can dominate since CCT due to EP contribution is much larger than RS&MX, as we shown in section 3.1. This explains why e.s. ZF generation is always observed in the simulations [23, 24, 42]. Furthermore, note that in [23], the bulk plasma is treated by MHD model such that neoclassical shielding is not accounted for, and ZF is further enhanced. To observe ZC, one has to run the simulation longer till EP effects are weakened by, e.g. wave-particle trapping. Plasma equilibrium must also be compatible with ZC excitation conditions [13].

5.2. Summary

In conclusion, the set of equations describing nonlinear evolution of a single toroidal mode number TAE are derived, including both $n = 0$ ZFZS generation and $n = 0$ wave-particle phase space nonlinearities. A simplified case neglecting wave-particle phase nonlinearity is then investigated to study the different roles of EPs and bulk plasma on ZFZS generation. The EP and bulk plasma contribution are derived on the same footing, and we show that, due to their different orbit sizes, EP contribution dominates in the ideal region of TAE while bulk plasmas dominates in the inertial layer. On the other hand, due to their different mechanisms to break the Alfvénic state [6], EP contribution dominates in the linear growth stage of...
the pump TAE, while bulk plasma contribution takes over as the pump TAE saturates by wave-particle phase space non-linearity. Consequently, the different properties of ZFZS generation observed in numerical simulations, e.g. forced driven versus spontaneous excitation, fine- versus meso- scale radial structure and e.m. ZC versus e.s. ZF, can be understood and explained within the present theoretical analysis.

Acknowledgments

This work is supported by US DoE GRANT, the National Magnet Confinement Fusion Research Program under Grants Nos. 2013GB104004 and 2013GB110004, the National Science Foundation of China under grant Nos. 11575157 and Nos. 2013GB104004 and 2013GB111004, the National Magnet Confinement Fusion Research Program under Grants

References

[1] Chen L. and Zonca F. 2016 Rev. Mod. Phys. 88 015008
[2] Kolesnichenko Y.I. 1967 At. Energ 23 289
[3] Mikhailovskii A. 1975 Zh. Eksp. Teor. Fiz. 68 25
[4] Rosenbluth M. and Rutherford P. 1975 Phys. Rev. Lett. 34 1428
[5] Chen L. 1994 Phys. Plasmas 1 1519
[6] Chen L. and Zonca F. 2013 Phys. Plasmas 20 055402
[7] Zonca F., Chen L., Briguglio S., Fogaccia G., Vlad G. and Wang X. 2015 New J. Phys. 17 013052
[8] O’Neil T. 1965 Phys. Fluids 8 2255
[9] Berk H.L. and Breizman B.N. 1990 Phys. Fluids B 2 2226
[10] Berk H.L. and Breizman B.N. 1990 Phys. Fluids B 2 2246
[11] Zhu J., Ma Z. and Fu G. 2014 Nucl. Fusion 54 123020
[12] Hahm T.S. and Chen L. 1995 Phys. Rev. Lett. 74 266
[13] Chen L. and Zonca F. 2012 Phys. Rev. Lett. 109 145002
[14] Briguglio S., Wang X., Zonca F., Vlad G., Fogaccia G., Di Troia C. and Fusco V. 2014 Phys. Plasmas 21 112301
[15] Cheng C., Chen L. and Chance M. 1985 Ann. Phys. 161 21
[16] Fu G.Y. and Van Dam J.W. 1989 Phys. Fluids B 1 1949
[17] Rosenbluth M.N. and Hinton F.L. 1998 Phys. Rev. Lett. 80 724
[18] Chen L., Lin Z. and White R. 2000 Phys. Plasmas 7 3129
[19] Qiu Z., Chen L. and Zonca F. 2016 Nucl. Fusion 56 106013
[20] Chen L. and Zonca F. 2011 Europhys. Lett. 96 35001
[21] Qiu Z., Chen L. and Zonca F. 2013 Europhys. Lett. 101 35001
[22] Qiu Z., Chen L. and Zonca F. 2016 Phys. Plasmas 23 090702
[23] Todo Y., Berk H. and Breizman B. 2010 Nucl. Fusion 50 084016
[24] Wang Z., Lin Z. and Holod I. 2017 Generation of zonal fields by toroidal Alfvén eigenmode submitted
[25] Biancalani A., Cole M., Bottino A., Konies A., Lauber Ph., Mischenko A., Qiu Z., Scott B. and Zonca F. 2016 Gyrokinetic investigation of the nonlinear interplay of Alfvén instabilities and energetic particles in tokamaks Preprint: 2016 IAEA Fusion Energy Conf. (Kyoto, Japan, 16–22 October 2016) [TH/4-2] (https://conferences.iaea.org/indico/event/98/session/26/contribution/457/material/paper0.pdf)
[26] Chen L., Qiu Z. and Zonca F. 2014 Europhys. Lett. 107 15003
[27] Frieman E.A. and Chen L. 1982 Phys. Fluids B 5 502
[28] Heidbrink W., Strait E., Chu M. and Turnbull A. 1993 Phys. Rev. Lett. 71 855
[29] Zonca F., Chen L. and Santoro R.A. 1996 Plasma Phys. Control. Fusion 38 2011
[30] Zonca F., Chen L., Briguglio S., Fogaccia G., Milovanov A.V., Qiu Z., Vlad G. and Wang X. 2015 Plasma Phys. Control. Fusion 57 014024
[31] Zonca F., White R.B. and Chen L. 2004 Phys. Plasmas 11 2488
[32] Qiu Z., Chen L. and Zonca F. 2014 Phys. Plasmas 21 022304
[33] Berk H.L. and Breizman B.N. 1992 Phys. Fluids B 4 2385
[34] Biglari H., Zonca F. and Chen L. 2014 Phys. Fluids B 2 2235
[35] Zonca F., Briguglio S., Chen L., Fogaccia G. and Vlad G. 2005 Nucl. Fusion 45 477
[36] White R.B., Goldston R.J., McGuire K., Boozer A.H., Monticello D.A. and Park W. 1983 Phys. Fluids B 5 2958
[37] Qiu Z., Zonca F. and Chen L. 2014 Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas Presented at the 41st EPS Conf. on Plasma Physics (Germany, 23–27 June 2014) (http://ocs.ciemat.es/EPS2014PAP/pdf/P4.004.pdf)
[38] Hasegawa A. and Mima K. 1978 Phys. Fluids 21 87
[39] Zonca F. and Chen L. 1993 Phys. Fluids B 5 3688
[40] Zonca F. and Chen L. 2014 Phys. Plasmas 21 072120
[41] Zonca F. and Chen L. 2014 Phys. Plasmas 21 072121
[42] Hasegawa A. and Mima K. 1978 Phys. Fluids 21 87
[43] Zonca F. and Chen L. 1993 Phys. Fluids B 5 3688
[44] Zonca F. and Chen L. 2014 Phys. Plasmas 21 072120
[45] Zonca F. and Chen L. 2014 Phys. Plasmas 21 072121
[46] Zhang H. and Lin Z. 2013 Plasma Sci. Technol. 15 969