Review Article
Prognostic Significance of MicroRNAs in Glioma: A Systematic Review and Meta-Analysis

Yanming Zhang,1 Jigang Chen2, Qiang Xue2, Junyu Wang2, Liang Zhao2, Kaiwei Han2, Danfeng Zhang2, and Lijun Hou2

1 Second Sub-Team, Fourth Team, Undergraduate Management Team, Second Military Medical University, Shanghai, China
2 Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China

Correspondence should be addressed to Liang Zhao; zhaoliangsmmu@126.com, Kaiwei Han; toi@163.com, Danfeng Zhang; dfzhangsmmu@163.com, and Lijun Hou; lijunhoucz@126.com

Received 17 October 2018; Accepted 6 January 2019; Published 26 March 2019

Copyright © 2019 Yanming Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. Different microRNAs (miRs) have been demonstrated to relate with the outcome of glioma patients, while the conclusions are inconsistent. We perform a meta-analysis to clarify the relationship between different miRs and prognosis of glioma. Methods. Related studies were retrieved from PubMed, Embase, and Cochrane Library. Pooled hazard ratios (HRs) of different miRs expression for survival and 95% confidence intervals (CIs) were calculated using random-effects model. Results. A total of 15 miRs with 4708 glioma patients were ultimately included. Increased expression of miR-15b (HR, 1.584; 95% CI, 1.199-2.092), 21 (HR, 1.591; 95% CI, 1.278-1.981), 148a (HR, 1.122; 95% CI, 1.023-1.231), 196 (HR, 1.877; 95% CI, 1.033-3.411), 210 (HR, 1.251; 95% CI, 1.010-1.550), and 221 (HR, 1.269; 95% CI, 1.054-1.527) or decreased expression of miR-106a (HR, 0.809; 95% CI, 0.655-0.998) and 124 (HR, 0.833; 95% CI, 0.729-0.952) was correlated with poor outcome of glioma patients. Conclusions. miR-15b, 21, 148a, 196, 210, 221, 106a, and 124 are valuable biomarkers for the prognosis of glioma which might be used in clinical settings.

1. Introduction

Central nervous system cancer accounts for 2.3% of all cancer-related mortality worldwide and the annual incidence is reported to be 35 per million individuals [1]. As the most prevalent type of central nervous system cancer, glioma comprises nearly half of malignant brain cancers in adult population [2, 3]. Glioma can be categorized into grades I to IV pathologically according to the World Health Organization (WHO) grading system, and the majority belongs to grade IV, which is known as the most deadly type [4, 5]. In spite of currently available treatment strategies such as surgical resection, adjuvant radiotherapy, and combined radio-chemotherapy, the prognosis of glioma remains pessimistic with its 5-year survival rate being only 2% to 10% [6, 7]. Therefore, identification of prognostic factors is important to clinical decision for proper treatment modality and improvement of long-term outcome.

Advances in studies of genetic biomarkers, such as microRNAs (miRs), have promoted the application of biomarkers in the prognosis of glioma. miRs are a group of short and noncoding RNA molecules and have been identified as the regulators of gene expression [8]. They can work as tumor-suppressing genes as well as oncogenes and thus mediate the progression of cancers [9–11]. Studies show that miRs may be related to the prognosis of different cancers such as lung cancer, gastric cancer, and breast cancer [12–14]. Moreover, the relationships between different kinds of miRs, such as miRNA-15b [15, 16], 21 [17, 18], and 222 [19, 20], and prognosis of glioma have been investigated, while their results are conflicting due to the variability in study design, size of sample, or specimens. Additionally, no systematic review has been performed to explore the role of all pertinent miRs in evaluating glioma prognosis as a whole. In this study, relevant literatures investigating the relationship between numerous kinds of miRs and glioma were systematically reviewed, and
2. Materials and Methods

2.1. Search Strategy. The meta-analysis was conducted in line with the recommendations of Meta-Analysis of Observational Studies in Epidemiology group (MOOSE) [21] and Preferred Reporting Items for Systematic Reviews and Meta-Analysis: The PRISMA Statement [22]. Three databases including PubMed, Embase, and Cochrane Library were searched for studies examining the relationships between microRNAs (miRs) and prognosis of glioma by two authors (Danfeng Zhang and Qiang Xue) independently on August 8th, 2017 without date limit. We restricted the language to English. The Mesh terms were defined as “miRNA/miRNAs/miR/miRs” with “gliomas/glioblastoma” in the search process. The reference lists of retrieved articles were also checked for pertinent literatures. The complete search strategy for PubMed and Cochrane Library was presented in Supplementary Material.

2.2. Inclusion Criteria. Studies were included in this meta-analysis if they (1) recruited patients of glioma; (2) measured the expression of microRNAs in tumor tissue, serum, or plasma, as well as the survival prognosis of patients; (3) reported the survival curves for overall survival (OS) or disease-free survival (DFS) or cause-specific survival (CSS) or recurrence-free survival (RFS) with or without the hazard ratio (HR) and its 95% confidence intervals (CIs).

2.3. Exclusion Criteria. We excluded studies if (1) they were letters, reviews, or experimental studies; (2) the number of articles examining the relationship between miRs and glioma was less than three; (3) the original data could not be pooled. If one cohort was reported in two or more articles, we included the study most fully adjusted in order to prevent the disturbance of confounders.

2.4. Data Extraction and Quality Assessment. Study characteristics and original data were collected by three authors (Yanming Zhang, Qiang Xue, and Jigang Chen), including first author’s name, publication year, study design, study population, size of population, age and sex of participants, follow-up duration, type of sample, method of measuring miRs expression, and HRs and their 95% CIs. If HRs and 95% CIs were not reported in the included articles, we estimated them from Kaplan-Meier survival curves with methods described by Tierney et al. using Engauge Digitizer version 4.1 [23]. If only HRs and P values were reported, we estimated the 95% CIs using previously described method [24]. Studies were included according to the following checklist on the basis of the criteria provided by MOOSE group [21]: clearly defined study design; clearly described study population (country); sufficiently large sample (N>30); clearly described outcome (OS, CSS, DFS, or RFS); clear defined miRs measurement, including quantitative real-time polymerase chain reaction (qRT-PCR) or in situ hybridization (ISH); clear definition of cut-off values; miRs measurement in tumor tissue, plasma, or serum; sufficiently long follow-up. Studies were excluded if they did not meet these criteria. Quality of included studies was systematically evaluated according to Newcastle-Ottawa Scale by two reviewers (Liang Zhao and Danfeng Zhang) independently [25]. Disagreement was solved by joint review.

2.5. Statistical Analysis. HRs and their 95% CIs extracted from studies were pooled using Stata version 12.0 (StataCorp, College Station, Texas, USA) and random-effects model. We used Chi-square test and I² statistic in the assessment of heterogeneities among studies, and I² values of <40%, 40%-75%, and >75% were defined as low, moderate, and high, respectively [26]. Subgroups analysis was conducted according to the type of survival prognosis (OS versus DFS) and data sources (direct extraction versus calculation from HR and P versus calculation from survival curve). In the pooled analysis, Egger’s test was employed in the analysis of publication bias. Sensitivity analysis was conducted by the removal of individual study by turns. P<0.1 was considered as significant in the analysis of publication bias and heterogeneity, while a significant level of 0.05 was used in other analyses.

3. Results

3.1. Study Selection. The study selection process was shown in Figure I of Supplementary Material. A total of 2470 records were available in the initial search, including 1160 records from PubMed, 1294 from Embase, and 16 from Cochrane Library. 1837 studies remained for full texts review after removing the duplicates and reviewing the abstract. No eligible study was detected by screening the reference lists. Finally, 31 studies met the inclusion criteria and were included in our meta-analysis.

3.2. Study Characteristics. The quality assessment of each study was shown in Table I of Supplementary Material. The number of literatures evaluating the association between microRNAs and the prognosis of glioma were listed in Table II of Supplementary Material. The main characteristics of included articles were described in Table I. All of them were retrospective and published between 2010 and 2017. A total of 4708 glioma patients were evaluated for the prognostic value of 15 different microRNAs, with a median sample size of 109 patients (range, 38–548 patients). Expression of microRNAs was mainly measured in tumor tissues, while four studies examined microRNAs in serum or plasma [36, 41, 47, 49]. Most studies used qRT-PCR to detect microRNAs, while three employed ISH and microarray [18, 31, 41]. HRs and 95% CIs were not reported in 14 studies [15, 16, 20, 27, 30, 32, 33, 37, 39, 42, 43, 45, 46, 48], and we estimated them by methods described above. The cutoff value was not reported in 11 articles [15, 18, 33, 36, 38, 40, 45–48, 50]. The reported HRs were adjusted for related variables such as pathological grade, Karnofsky performance score (KPS) and tumor size in nine studies [17–19, 28, 29, 34, 38, 41, 49] (Table I).
microRNA	Study	Country	Study design	Sample	Number	Stage	Cut-off	Follow-up (months)	Result	HR(H/L)	95%CI	p
10b	Ji, Y 2015	China	R Frozen	95	I-IV	Median	>60	OSm	4.71	1.45-8.32	<0.001	
10b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.09	0.98-1.21	0.12	
10b	Zhang, X 2016	China	R Frozen	128	I-IV	None	80	OSu	3.42	2.08-5.62	<0.001	
10b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.30	0.53-3.2	0.58	
10b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.06	0.97-1.15	0.18	
15b	Guan, Y 2010	Japan	R Frozen	39	I-IV	Mean	>60	OSm	1.87	0.68-5.16	0.227	
15b	Pang, C 2015	China	R Frozen	76	II-IV	None	>60	OSu	5.68	2.81-11.50	<0.001	
15b	Sun, G 2015	China	R Frozen	92	I-IV	Mean	>60	DFSu	1.07	0.31-3.52	0.65	
15b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.67	0.51-0.87	0.003	
15b	Zhao, H 2017	America	R Serum	106	I-IV	Median	24	OSu	0.76	0.40-1.52	0.028	
15b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.80	0.65-0.99	0.04	
15b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.76	0.63-0.91	0.003	
17	Lu, S 2012	China	R Tissue	108	I-IV	Median	>100	OSm	2.14	1.06-4.30	0.034	
17-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.934	0.76-1.16	0.54	
17-5b	Zhao, H 2017	America	R Serum	106	I-IV	Median	24	OSu	1.7	1.05-4.01	0.043	
17-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.16	0.95-1.42	0.15	
17-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.01	0.80-1.28	0.94	
17-5p	Srinivasan, S 201	TCGA	R Tissue	111	I-IV	60th percentile	>120	OSm	0.68	0.54-0.85	0.0008	
20a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.95	0.79-1.14	0.59	
20a	Sun, C 2017	China	R Tissue	548	I-IV	Median	>100	OSm	0.6517	0.50-0.85	0.002	
20a	Zhao, H 2017	America	R Serum	106	I-IV	Median	24	OSu	1.7	1.05-4.01	0.043	
20a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.05	0.87-1.27	0.63	
20a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.93	0.80-1.08	0.35	
21	Guan, Y 2010	Japan	R Frozen	39	I-IV	Mean	>60	OSm	0.57	0.21-1.52	0.264	
21-5b	Srinivasan, S 201	TCGA	R Tissue	111	I-IV	60th percentile	>120	OSm	0.66	0.52-0.83	<0.001	
21-5b	Zhao, S 2013	China	R FFPE	114	I-IV	None	>110	OSu	1.26	1.06-1.48	0.007	
21-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.73	0.58-0.91	0.006	
21-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.54	0.37-0.80	0.002	
21-5b	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.72	0.56-0.92	0.009	
21-5b	Zhi, F 2010	China	R Tissue	124	I-IV	Median	100	OSm	1.882	1.07-3.308	0.028	
106a	Srinivasan, S 201	TCGA	R Tissue	111	I-IV	60th percentile	>120	OSm	0.66	0.52-0.83	<0.001	
106a	Zhao, S 2013	China	R FFPE	114	I-IV	Median	>50	OSm	0.504	0.297-0.854	0.01	
106a	Zhao, S 2013	China	R FFPE	103	I-IV	Median	>50	OSm	0.452	0.255-0.800	0.006	
106a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.94	0.73-1.20	0.62	
106a	Sun, C 2017	America	R Serum	106	I-IV	Median	24	OSu	1.71	1.07-3.63	0.038	
106a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.96	0.80-1.15	0.67	
106a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.97	0.81-1.17	0.76	
106a	Zhi, F 2010	China	R Tissue	124	I-IV	Median	100	OSm	0.6139	0.34-1.11	0.018	
microRNA	Study	Country	Study design	Sample	Number	Stage	Cut-off	Follow-up (months)	Result	HR (H/L)	95% CI	p
---------	-------	---------	--------------	--------	--------	-------	---------	-------------------	--------	----------	--------	---------
124	Chen, T 2015	China	R Frozen	137	I-IV	None	>60	OSm	2.37	1.24-4.528	0.009	
124	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.19	1.06-1.33	0.003	
124	Zhao, H 2017	America	R Serum	106	I-IV	Median	24	OSu	0.65	0.26-1.03	0.062	
124	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.33	1.08-1.64	0.007	
124	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	1.23	1.11-1.36	<0.001	
148a	Srinivasan, S 2011	TCGA	R Tissue	111	I-IV	60th percentile	120	OSm	1.21	1.08-1.356	0.001	
148a	Kim, J 2014	TCGA	R Tissue	482	I-IV	None	>60	OSu	1.19	1.10-1.29	<0.001	
148a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.9	0.79-1.03	0.13	
148a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	2.44	0.77-774	0.13	
148a	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.99	0.90-1.09	0.85	
155	Qiu, S 2013	TCGA	R Tissue	480	I-IV	50th percentile	>100	OSm	0.796	0.646-0.982	0.033	
155	Barbano, R 2014	TCGA	R Tissue	191	I-IV	None	>110	OSu	1.23	1.06-1.44	0.008	
155	Sun, J 2014	China	R Tissue	131	I-IV	Mean	80	OSu	2.05	1.5-3.12	<0.001	
155	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.91	0.77-1.07	0.27	
155	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.70	0.58-2.73	0.62	
155	Zhao, H 2017	America	R Serum	50	I-IV	Mean	50	OSm	0.974	0.61-1.554	0.912	
182	Jiang, L 2010	China	R FFPE	119	I-IV	Median	80	OSm	3.39	1.98-5.80	<0.001	
182	Xiao, Y 2016	China	R Blood	112	I-IV	None	>60	OSm	1.25	0.89-2.53	0.03	
182	Zhao, S 2013	China	R FFPE	114	I-IV	Median	50	OSm	0.974	0.61-1.554	0.912	
196	Guan, Y 2010	Japan	R Frozen	39	I-IV	Mean	>60	OSm	3.37	1.29-9.46	0.021	
196	Lakomy, R 2011	Czech	R FFPE	38	I-IV	Median	>60	OSu	0.547	0.277-1.076	0.049	
196a	Zhao, S 2013	China	R FFPE	114	I-IV	Median	50	OSm	2.252	1.321-3.841	0.003	
196a	Zhao, S 2013	China	R FFPE	103	I-IV	Median	50	OSm	1.906	1.108-3.281	0.021	
196a	Guan, Y 2015	China	R Frozen	63	I-IV	None	>60	OSu	3.17	1.82-5.53	0.007	
200b	Srinivasan, S 2011	TCGA	R Tissue	111	I-IV	60th percentile	120	OSm	1.21	1.067-1.372	0.003	
200b	Liu, Q 2014	China	R Tissue	73	I-IV	None	40	OSu	0.3	0.09-0.96	0.05	
200b	Men, D 2014	China	R Frozen	266	I-IV	Median	60	OSm	2.9	1.16-7.21	0.022	
210	Qiu, S 2013	TCGA	R Tissue	480	I-IV	50th percentile	>100	OSm	0.749	0.59-0.949	0.017	
210	Barbano, R 2014	TCGA	R Tissue	191	I-IV	None	>110	OSu	1.16	1.01-1.33	0.038	
210	Lai, N 2014	China	R Frozen	125	I-IV	Mean	>100	OSu	2.3	1.47-3.61	0.0003	
210	Lai, N 2015	China	R Serum	126	I-IV	Mean	>80	OSu	3.84	2.09-7.08	<0.001	
210	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.97	0.83-1.14	0.71	
210	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.53	0.20-1.43	0.21	
210	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.93	0.84-1.03	0.17	
221	Srinivasan, S 2011	TCGA	R Tissue	111	I-IV	60th percentile	120	OSm	1.27	1.097-1.471	0.001	
221	Chen, W 2016	TCGA	R Tissue	109	I-IV	Median	>60	DFSu	0.92	0.79-1.06	0.26	
221	Li, X 2016	China	R Tissue	45	I-IV	Mean	36	OSu	1.28	1.02-4.65	0.044	
221	Zhang, R 2016	China	R Blood	50	I-IV	None	50	OSu	2.4	1.42-4.05	0.001	
microRNA	Study	Country	Study design	Sample	Number	Stage	Cut-off	Follow-up (months)	Result	HR(H/L)	95%CI	p
---------	-------	---------	--------------	--------	--------	-------	---------	------------------	--------	---------	-----------	------
221	Chen, Y 2017	China	R	Tissue	114	I-IV	None	72	OSm	2.039	1.06-3.91	0.032
221	Sun, C 2017	TCGA	R	Tissue	548	I-IV	Median	130	OSu	0.6856	0.53-0.88	0.003
221	Xue, L 2017	China	R	Tissue	165	I-IV	Median	60	OSu	1.656	1.135-2.486	0.009
221	Chen, W 2016	TCGA	R	Tissue	109	I-IV	Median	>60	DFSu	0.80	0.19-3.30	0.77
221	Chen, W 2016	TCGA	R	Tissue	109	I-IV	Median	>60	DFSu	0.88	0.74-1.04	0.14
221	Srinivasan, S 2011	TCGA	R	Tissue	111	I-IV	60th percentile	120	OSm	1.26	1.11-1.43	0.0004
221	Chen, W 2016	TCGA	R	Tissue	109	I-IV	Median	>60	DFSu	1.04	0.92-1.18	0.53
222	Li, X 2016	China	R	Tissue	45	I-IV	Mean	36	OSu	2.13	1.01-4.48	0.043
222	Zhang, R 2016	China	R	Blood	50	I-IV	None	50	OSu	2.81	1.70-4.65	0.0004
222	Chen, Y 2017	China	R	Tissue	114	I-IV	None	72	OSm	0.899	0.559-1.447	0.661
222	Sun, C 2017	TCGA	R	Tissue	548	I-IV	Median	130	OSu	0.5947	0.44-0.81	0.001
221	Zhao, H 2017	America	R	Serum	106	I-IV	Median	24	OSu	1.71	1.07-3.63	0.038
222	Chen, W 2016	TCGA	R	Tissue	109	I-IV	Median	>60	DFSu	1.41	0.91-2.17	0.12
222	Chen, W 2016	TCGA	R	Tissue	109	I-IV	Median	>60	DFSu	0.90	0.80-1.01	0.07

CI: confidence interval; DFS: disease free survival; FFPE: formalin-fixed paraffin-embedded; HR (H/L): hazard ratio (High/Low); OS: overall survival; R: retrospective; TCGA: The Cancer Genome Atlas; m: multivariate analysis; u: univariate analysis.
3.3. Meta-Analysis. The pooled HRs together with the heterogeneity for all miRs were demonstrated in Table 2.

3.4. High Expression of miR-15b, 21, 148a, 196, 210, and 221 Predicts Poor Prognosis in Glioma Patients. Five studies were included to investigate the relationship between high expression of miR-15b and DFS/OS [15, 16, 34, 37, 41]. The pooled results indicated that high miR-15b expression was significantly associated with the poor prognosis in glioma (HR, 1.584; 95% CI, 1.199-2.092, P=0.001, Figure 1(a)).

Six studies examined the prognostic value of miR-21 in glioma [17, 18, 29, 34, 37, 38], suggesting that miR-21 overexpression significantly predicted poor prognosis in glioma (HR, 1.591; 95% CI, 1.278-1.981, P<0.001, Figure 1(b)).

Three literatures focused on the relationship between high expression of miR-148a and OS/DFS [30, 34, 50]. The summary results suggested that miR-148a was correlated with shorter DFS/OS (HR, 1.122; 95% CI, 1.023-1.231, P=0.015, Figure 1(c)).

Pooled results also demonstrated significant relationship between miR-196, 210, and 221 and poor prognosis in glioma (HR, 1.877; 95% CI, 1.033-3.411, P=0.039 for miR-196; HR, 1.251; 95% CI, 1.010-1.550, P=0.04 for miR-210; HR, 1.269; 95% CI, 1.054-1.527, P=0.012 for miR-221; Figures 1(d)–1(f)).

3.5. Low Expression of miR-106a and 124 Predicts Poor Prognosis in Glioma Patients. There were six [20, 29–31, 34, 41] and three [34, 41, 45] studies investigating the prognostic value of
Table 2: Summary of the HR for microRNA expression in glioma.

microRNA	Survival analysis	Number of articles	Included references	HR	95% CI	P value	*H* Heterogeneity	Total patients	Figure	Publication bias
10b	OS/DFS	3	[27–29]	1.349	0.984-1.849	0.063	89.7%, p<0.001	550	4A	0.16
15b	OS/DFS	5	[15, 16, 26, 28, 30]	1.584	1.199-2.092	0.001	74.9%, p=0.001	640	2A	0.263
17	OS/DFS	5	[20, 26, 28, 31, 32]	0.933	0.759-1.149	0.516	75.8%, p<0.001	1200	4B	0.368
20a	OS/DFS	4	[20, 26, 28, 31]	0.919	0.755-1.119	0.399	77.9%, p<0.001	1092	4C	0.925
21	OS/DFS	6	[18, 28, 30, 33–35]	1.591	1.278-1.981	<0.001	82.6%, p<0.001	1022	2B	0.536
106a	OS/DFS	6	[20, 26, 28, 31, 34, 36]	0.809	0.655-0.998	0.048	77.9%, p<0.001	1433	3A	0.177
124	OS/DFS	3	[26, 28, 37]	0.833	0.729-0.952	0.007	66.6%, p=0.018	570	3B	0.516
148a	OS/DFS	3	[28, 31, 38]	1.122	1.023-1.231	0.015	60.5%, p=0.038	920	2C	0.254
155	OS/DFS	4	[28, 33, 39, 40]	1.143	0.942-1.387	0.175	74.9%, p<0.001	1129	4D	0.586
182	OS	4	[26, 36, 41, 42]	1.206	0.709-2.051	0.489	81%, p<0.001	554	4E	0.955
196	OS	4	[30, 36, 43, 44]	1.877	1.033-3.411	0.039	77.5%, p<0.001	357	2D	0.893
200b	OS	3	[31, 45, 46]	1.113	0.451-2.744	0.816	77.5%, p<0.001	450	4F	0.923
210	OS/DFS	5	[28, 33, 40, 47, 48]	1.251	1.010-1.550	0.04	84.7%, p<0.001	1249	2E	0.181
221	OS/DFS	7	[19, 20, 26, 31, 49-51]	1.269	1.054-1.527	0.012	77.0%, p<0.001	1360	2F	0.194
222	OS/DFS	7	[19, 20, 26, 31, 49, 50]	1.104	0.907-1.343	0.325	83.5%, p<0.001	1301	4G	0.765

DFS: disease free survival; HR: hazard ratio; OS: overall survival; *H* Higgins I^2 statistic.
miR-106a and miR-124 in glioma, respectively. The summary HRs indicated these two miRs were negatively associated with poor prognosis in glioma (HR, 0.809; 95% CI, 0.655-0.998, P=0.048 for miR-106a; HR, 0.833; 95% CI, 0.729-0.952, P=0.007 for miR-124, Figures 2(a)-2(b)).

3.6. No Significant Relationship between Overexpression of miR-10b, 17, 20a, 155, 182, 200b, and 222 and Poor Prognosis in Glioma Patients. Several different studies were included to examine the prognostic value of miR-10b, 17, 20a, 155, 182, 200b, and 222 in glioma. However, pooled HRs suggested no statistical relationships between these miRs and prognosis of glioma. The detailed results were illustrated in Table 2 and Figure 3.

3.7. Subgroups Analysis. In the subgroup of OS outcomes, we found high expression of miR-10b predicted poor prognosis in glioma patients (HR, 3.70; 95% CI, 2.40-5.70, P<0.05) (Table III in Supplementary Material). For data calculation from HR and P value, we detected that low expression of miR-17 and 20a was associated with poor prognosis in glioma patients (HR, 0.67, 95% CI, 0.56-0.79, P<0.05 for miR-17; HR, 0.68, 95% CI, 0.57-0.80, P<0.05 for miR-20a, Table III in Supplementary Material). For data calculation from survival curve, overexpression of miR-10b and 182 was detected to be related to poor prognosis after glioma (HR, 3.42, 95% CI, 2.08-5.62, P<0.05 for miR-10b; HR, 3.39, 95% CI, 1.98-5.80, P<0.05 for miR-182, Table III in Supplementary Material).

3.8. Publication Bias. Publication bias was assessed for the meta-analysis of all miRs and we found no publication bias by Egger’s test, which was shown in Table 2.

3.9. Sensitivity Analysis. We have done the sensitivity analysis through removing studies one by one in the analysis of all miRs. Our results were roughly not altered suggesting that our pooled HRs and the 95%CIs were basically stable. However, when it went to miR-10b, the result turned to be significant, suggesting that high miR-10b expression was associated with the poor prognosis in glioma if we removed data from Chen et al.’s article (HR, 1.428; 95% CI, 1.022-1.995, P=0.037) [34]. For miR-155, high miR-155 expression was associated with the poor prognosis in glioma (HR,1.22; 95% CI, 1.044-1.425, P=0.012) after removing Qiu et al.’s study [28].

4. Discussion

Mounting evidences have shown that various miRs are related to the survival outcome in glioma patients. However, different studies present with inconsistent conclusions. For example, three studies investigate the association between miR-10b and glioma prognosis, and the results are significant in Zhang et al. and Ji et al. [46,82] and insignificant in Chen et al. [34]. Similar conflicting results are also demonstrated in researches exploring other miRs [13,36,83–85]. Therefore, it is crucial to perform current meta-analysis to have an overall understanding of relationships between miRs expression and prognosis of glioma patients.

A total of 15 miRs and their ability in predicting prognosis of glioma are investigated in this study. Patients with high levels of miR-10b, 17, 20a, 155, 182, 200b, and 222 in glioma. Among the miRs whose overexpression is indicated to be associated with poor DFS/OS, miR-21 is the first discovered microRNA and known to be widely expressed in human tissues. It is also the most studied tumor-related biomarkers and might play an essential role in many different cancers [86]. Increased expression level of miR-21 has been discovered to be related to dismal outcome in cancer patients [13]. miR-21 is indicated to be overly expressed in glioma in a WHO-grade specific manner [54]. Several literatures assure that miR-21 can induce the tumor growth, invasion, and migration and inhibit cell apoptosis [35,87]. miR-21 has been
Figure 3: Forest plots of miR-10b (a), 17 (b), 20a (c), 155 (d), 182 (e), 200b (f), and 222 (g) and glioma prognosis.
identified to target at the tumor suppressing genes, such as the protein tyrosine phosphatase (PTEN), programmed cell death 4 (PDCD4), and B cell translocation gene 2 (BTG2). Inhibition of miR-21 would lead to the upregulation of these genes, which ultimately affect the cancer progression and prognosis [13, 66, 88–90].

Only two miRs (miR-106a and miR-124) are proved in this study that their downregulations are connected with poor prognosis. As a protective microRNA, miR-106a is located at Xq26.2 and the length of mature miR-106a is 23 nucleotides. Previous study has shown that miR-106a has a cancer suppressing effect through antiproliferation and inducing apoptosis in glioma cells. This effect might arise from E2F1 inhibition via posttranscriptional regulation [91]. Similarly, miR-124 is reported to have effects of tumor suppression via the regulation of cell proliferation, apoptosis, migration, and invasion in certain cancer diseases [67, 92, 93]. Study also indicated that miR-124 works through the inhibition of STAT3 signal to enhance the T cell mediated clearance of glioma cells [70].

The relationships between overexpression of seven miRs (miR-10b, 17, 20a, 155, 182, 200b, and 222) and DFS/OS for glioma patients were not proved in our study. This might attribute to the nature of miRs themselves. For example, miR-17 is extensively studied, and it proves to have both the tumor suppressing and oncogenic functions. Upregulation of miR-17 can promote cancer growth via aiming E2F1 and increase angiogenesis through thrombospondin-1 [71]. Contrastively, overexpression of miR-17 can also lead to the decreased cell migration and proliferation by the repressing of fibronectin expression [94]. Moreover, different sample size, type of specimens, and prognosis assessment might also produce the inconsistent conclusions which ultimately lead to the insignificant results in our meta-analysis. Summary of miRs along with altered expression and potential targets as well as pathways in this study is listed in Table 3.

Though the measurement of miRs expression levels is a convenient way in predicting the glioma prognosis, difficulties still exist before applying miRs in the clinical settings. First, cell-free miRs would release from some normal human tissues as well and might interfere the final results to some degree [95]. Therefore, it is important to determine the source of tumor-specific miRs and create a method which could differentiate cancer population from healthy group. Second, no standard procedure for the measurement of miRs has been confirmed, which might be the source of contradictory results. Moreover, a single microRNA can be associated with different tumor tissues. For example, the prognostic value of miR-21 has been established among the patients of breast cancer [96], pancreatic ductal adenocarcinoma [97], and gastric cancer [98]. Therefore, a group of miRs specific to glioma is useful and might significantly improve the prognostic accuracy [35].

To our knowledge, though some meta-analyses regarding the prognostic value of several miRs in glioma patients have been published [36, 83–85], these studies are incomplete and avoid assessing some other available miRs. We include all of the miRs which have been explored previously, and a total of 15 miRs are investigated ultimately. Among these 15 miRs, eight of them have established the prognostic significance with glioma. However, relationship between the remaining miRs and prognosis of glioma patients should be validated by further large-scale prospective studies in future. Our study also has advantages in including the newly published trials from different places and times, which are representative enough.

Limitations of our meta-analysis should be noticed before interpreting the results. Firstly, as we mentioned above, there is no single microRNA which is specific to glioma exclusively, and the panel of miRs which can be used to distinguish glioma from other cancers and satisfactorily predict the prognosis has not been discovered yet. Therefore, the clinical application of miRs is restricted. Secondly, the heterogeneity among studies is generally significant. Thirdly, the prognosis is evaluated by different indicators, such as the overall survival and disease-free survival, which might be the source of heterogeneity. Fourthly, all the included literatures are retrospective and there lack relative high-quality trials. Lastly, the number of available studies is limited for some miRs and it might be insufficient to draw a definite conclusion.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Disclosure

Yanming Zhang, Jigang Chen, and Qiang Xue contributed equally to this work and should be considered co-first authors.

Conflicts of Interest

All authors declared that they had no conflicts of interest.

Authors’ Contributions

Yanming Zhang and Jigang Chen were responsible for study design and statistical analysis. Qiang Xue and Danfeng Zhang were responsible for data interpretation, image analysis, and data acquisition. Junyu Wang, Kaiwei Han, and Lijun Hou prepared the manuscript. Liang Zhao revised the manuscript. All authors critically reviewed the manuscript. All authors contributed equally to this work and should be considered co-first authors.

Supplementary Materials

Supplemental Method: the complete search algorithm for PubMed and Cochrane. Supplemental Table I: quality scores of included studies using Newcastle-Ottawa Scale (maximum score of 9). Supplemental Table II: numbers of studies evaluating prognostic value of microRNAs in glioma.
Table 3: Summary of miRs with altered expression, their potential targets, and pathways entered this study.

miRNA	Expression	Potential targets	Pathways	Reference
15b	Up	cyclin D1, MMP-3, NRP	Angiogenesis, cell apoptosis, cell cycle progression, cell invasion	[52, 53]
21	Up	BTG2, PDCD4, PTEN	Cell apoptosis, invasion, migration, tumor growth	[54–56]
148a	Up	BIM, MIG6	Cell apoptosis	[38]
196	Up	HOXA7, HOXB8, HOXC8, HOXD8, Ix␛	Malignant transformation, tumorigenesis,	[57–60]
210	Up	FGFRL1, HIF-1a	Angiogenesis, cell migration, cell proliferation,	[61–63]
221	Up	AKT, p27Kip1, Growth factor signaling pathways	Cell proliferation, cell apoptosis, malignant phenotype	[64, 65]
106a	Down	E2F1, TIMP-2	Cell apoptosis, cell invasion, cell proliferation,	[66]
124	Down	STAT3	T cell mediated clearance of glioma	[67]
10b	Up	RhoC, uPA	Cell invasion, cell migration	[68, 69]
17	Up or down	E2F1, TSP-1	Angiogenesis, cell growth, cell migration	[70, 71]
20a	Up	E2F1, TIMP-2	Cell invasion, cell proliferation	[72–75]
155	Up	FOXO3a, p53	Cell invasion, cell migration	[76–78]
182	Down	FOXO3, MITF-M	Cell migration, cell survival	[79]
200b	Up or down	cyclin D1, EGFR, RND3	Cell migration, epithelial-to-mesenchymal transition	[80, 81]
222	Up	p27Kip1	Cell cycle progression, cell invasion, cell proliferation	[19, 65]

AKT, AKT serine/threonine kinase; BTG2, B cell translocation gene 2; E2F1, E2F transcription factor 1; EGFR, epidermal growth factor receptor; FGFRL1, fibroblast growth factor receptor-like 1; FOXO3a, forkhead box O3; HIF-1a, hypoxia-inducible factor 1a; HOX, homeobox; MIG6, mitogen-inducible gene 6; MITF-M, microphthalmia-associated transcription factor-M; MMP-3, matrix metalloproteinase-3; NRP, nitrogen regulatory protein; PDCD4, programmed cell death 4; PTEN, protein tyrosine phosphatase; RHOC, ras homolog family member C; RND3, rho family GTPase 3; STA3, signal transducers and activators of transcription; TIMP-2, tissue inhibitor of metalloproteinases-2; TSP-1, thrombospondin-1; uPA, urokinase-type plasminogen activator.

Table III: subgroup analyses of microRNAs and prognosis of glioma. Supplemental Figure 1: flow diagram of the search process. (Supplementary Materials)

References

[1] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, "Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008," International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010.

[2] R. G. Verhaak and H. Kapurdom, "Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRα, IDH1, EGFR, and NF1," Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010.

[3] J. A. Schwartzbaum, J. L. Fisher, K. D. Aldape, and M. Wrench, "Epidemiology and molecular pathology of glioma," Nature Clinical Practice Neurology, vol. 2, no. 9, pp. 494–503, 2006.

[4] Z. Fan, Y. Wu, J. Shen, and R. Zhan, "Glutathione S-transferase Mi, Ti, and Pi polymorphisms and risk of glioma: A meta-analysis," Molecular Biology Reports, vol. 40, no. 2, pp. 1641–1650, 2013.

[5] S. Nie, T. Chen, X. Yang, P. Huai, and M. Lu, "Association of Helicobacter pylori infection with esophageal adenocarcinoma and squamous cell carcinoma: A meta-analysis," Diseases of the Esophagus, vol. 27, no. 7, pp. 643–653, 2014.

[6] R. Stupp, M. E. Hegi, W. P. Mason et al., "Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial," The Lancet Oncology, vol. 10, no. 5, pp. 459–466, 2009.

[7] R. Stupp, W. P. Mason, M. J. van den Bent et al., "Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma," Clinical Medicine Oncology, vol. 2, no. 10, pp. 421–422, 2005.

[8] J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, "Many roads to maturity: microRNA biogenesis pathways and their regulation," Nature Cell Biology, vol. 11, no. 3, pp. 228–234, 2009.

[9] H. Schwarzenbach, N. Nishida, G. A. Calin, and K. Pantel, "Clinical relevance of circulating cell-free microRNAs in cancer," Nature Reviews Clinical Oncology, vol. 11, no. 3, pp. 145–156, 2014.

[10] H. Yoshino, N. Seki, T. Itakos, T. Chiyomaru, M. Nakagawa, and H. Enokida, "Abrupt expression of microRNAs in bladder cancer," Nature Reviews Urology, vol. 10, no. 7, pp. 396–404, 2013.

[11] H. Heremekin, "MicroRNAs in the p53 network: micromanagement of tumour suppression," Nature Reviews Cancer, vol. 12, no. 9, pp. 613–626, 2012.

[12] T. Katada, H. Ishiguro, Y. Kuwabara et al., "MicroRNA expression profile in undifferentiated gastric cancer," International Journal of Oncology, vol. 34, no. 2, pp. 537–542, 2009.

[13] Y. Wang, X. Gao, F. Wei et al., "Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis," Gene, vol. 533, no. 1, pp. 389–397, 2014.

[14] L. Wang, J. Yu, J. Xu, C. Zheng, X. Li, and J. Du, "The analysis of microRNA-34 family expression in human cancer studies comparing cancer tissues with corresponding pericarcinous tissues," Gene, vol. 554, no. 1, pp. 1–8, 2015.
[15] C. Pang, Y. Guan, K. Zhao et al., “Up-regulation of microRNA-15b correlates with unfavorable prognosis and malignant progression of human glioma,” *International Journal of Clinical and Experimental Pathology*, vol. 8, no. 5, pp. 4943–4952, 2015.

[16] G. Sun, S. Yan, L. Shi et al., “Decreased expression of miR-15b in human gliomas is associated with poor prognosis,” *Cancer Biotherapy and Radiopharmaceuticals*, vol. 30, no. 4, pp. 169–173, 2015.

[17] L. Wu, G. Li, D. Feng et al., “MicroRNA-21 expression is associated with overall survival in patients with glioma,” *Diagnostic Pathology*, vol. 8, no. 1, p. 200, 2013.

[18] S. Andreas, “Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses,” *British Medical Journal*, vol. 343, pp. 1–2, 2007.

[19] X. Li, J. Zheng, L. Chen, H. Diao, and Y. Liu, “Predictive and prognostic roles of abnormal expression of tissue miR-125b, miR-221, and miR-222 in glioma,” *Molecular Neurobiology*, vol. 53, no. 1, pp. 577–583, 2016.

[20] C. Sun and X. Zhao, “Joint covariate detection on expression profiles for selecting prognostic miRNAs in glioblastoma,” *BioMed Research International*, vol. 2017, Article ID 3017948, 10 pages, 2017.

[21] D. F. Stroup, J. A. Berlin, S. C. Morton et al., “Meta-analysis of observational studies in epidemiology: A proposal for reporting,” *Journal of the American Medical Association*, vol. 283, no. 15, pp. 2008–2012, 2000.

[22] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” *British Medical Journal*, vol. 339, Article ID b2535, 2009.

[23] J. F. Tierney, L. A. Stewart, D. Ghersi, S. Burdett, and M. R. Sydes, “Practical methods for incorporating summary time-to-event data into meta-analysis,” *Trials*, vol. 8, no. 1, p. 16, 2007.

[24] D. G. Altman and J. M. Bland, “How to obtain the confidence interval from a P value,” *British Medical Journal*, vol. 343, pp. 681–681, 2011.

[25] S. Andreas, “Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses,” *European Journal of Epidemiology*, vol. 25, no. 9, pp. 603–605, 2010.

[26] J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” *British Medical Journal*, vol. 327, no. 7414, pp. 557–560, 2003.

[27] N. Lai, Q. Dong, H. Ding, Z. Miao, and Y. Lin, “MicroRNA-210 overexpression predicts poorer prognosis in glioma patients,” *Journal of Clinical Neuroscience*, vol. 21, no. 5, pp. 755–760, 2014.

[28] S. Qiu, S. Lin, D. Hu, Y. Feng, Y. Tan, and Y. Peng, “Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients,” *Journal of Translational Medicine*, vol. 11, no. 10, 2013.

[29] F. Zhi, X. Chen, S. Wang et al., “The use of hsa-miR-21, hsa-miR-18b and hsa-miR-106a as prognostic indicators of astrocytoma,” *European Journal of Cancer*, vol. 46, no. 9, pp. 1640–1649, 2010.

[30] S. Srivivasan, I. R. P. Patric, and K. Somasundaram, “A ten-microRNA expression signature predicts survival in glioblastoma,” *PLoS One*, vol. 6, no. 3, Article ID e17438, 2011.

[31] S. Zhao, G. Yang, Y. Mu et al., “MiR-106a is an independent prognostic marker in patients with glioblastoma,” *Neuro-oncology*, vol. 15, no. 6, pp. 707–717, 2013.

[32] D. Men, Y. Liang, and L. Chen, “Decreased expression of microRNA-200b is an independent unfavorable prognostic factor for glioma patients,” *Cancer Epidemiology*, vol. 38, no. 2, pp. 152–156, 2014.

[33] Q. Liu, H. Tang, X. Liu et al., “MiR-200b as a prognostic factor targets multiple members of RAB family in glioma,” *Medical Oncology*, vol. 31, no. 3, p. 859, 2014.

[34] W. Chen, Q. Yu, B. Chen, X. Lu, and Q. Li, “The prognostic value of a seven-microRNA classifier as a novel biomarker for the prediction and detection of recurrence in glioma patients,” *Oncotarget*, vol. 7, no. 33, pp. 35392–35413, 2016.

[35] W. Wang, “Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis,” *International Journal of Cancer International Du Cancer*, vol. 130, no. 7, pp. 1620–1628, 2012.

[36] R. Zhang, B. Pang, T. Xin et al., “Plasma miR-221/222 family as novel descriptive and prognostic biomarkers for glioma,” *Molecular Neurobiology*, vol. 53, no. 3, pp. 1452–1460, 2016.

[37] Y. Guan, M. Mizoguchi, K. Yoshimoto et al., “MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance,” *Clinical Cancer Research*, vol. 16, no. 16, pp. 4289–4297, 2010.

[38] R. Barbano, O. Palumbo, B. Pasculli et al., “A MiRNA signature for defining aggressive phenotype and prognosis in gliomas,” *PLoS One*, vol. 9, no. 10, Article ID e80950, 2014.

[39] S. Lu, S. Wang, S. Geng, S. Ma, Z. Liang, and B. Jiao, “Increased expression of microRNA-17 predicts poor prognosis in human glioma,” *Journal of Biomedicine and Biotechnology*, vol. 2012, Article ID 970761, 6 pages, 2012.

[40] Y. Y. Chen, C. Y. Hsu, and D. M. T. Ho, “Upregulated MIR-125, MIR-181D and MIR-221 expression levels are associated with poor prognosis in glioblastoma patients with unmethylated mgmt promoter,” *Laboratory Investigation*, vol. 97, pp. 428–440, 2017.

[41] H. Zhao, J. Shen, T. R. Hodges, R. Song, G. N. Fuller, and A. B. Heimberger, “Serum microRNA profiling in patients with glioblastoma: A survival analysis,” *Molecular Cancer*, vol. 16, no. 1, 2017.

[42] J. Sun, H. Shi, N. Lai, K. Liao, S. Zhang, and X. Lu, “Overexpression of microRNA-155 predicts poor prognosis in glioma patients,” *Medical Oncology*, vol. 31, no. 4, article no. 911, 2014.

[43] L. Jiang, P. Mao, L. Song et al., “miR-182 as a prognostic marker for glioma progression and patient survival,” *The American Journal of Pathology*, vol. 177, no. 1, pp. 29–38, 2010.

[44] S. K. Hermansen, R. H. Dahlrot, B. S. Nielsen, S. Hansen, and B. W. Kristensen, “MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas,” *Journal of Neuro-Oncology*, vol. 111, no. 1, pp. 71–81, 2013.

[45] T. Chen, X. Wang, C. Li, and S. Xu, “Downregulation of microRNA-124 predicts poor prognosis in glioma patients,” *Neurological Sciences*, vol. 36, no. 1, pp. 131–135, 2015.

[46] X. Zhang, J. Cheng, L. Fu, and Q. Li, “Overexpression of tissue microRNA10b may help predict glioma prognosis,” *Journal of Clinical Neuroscience*, vol. 29, pp. 59–63, 2016.

[47] Y. Xiao, L. Zhang, Z. Song et al., “Potential diagnostic and prognostic value of plasma circulating mirorna-182 in human glioma,” *Medical Science Monitor*, vol. 22, pp. 855–862, 2016.

[48] Y. Guan, L. Chen, Y. Bao et al., “High miR-196a and low miR-367 cooperatively correlate with unfavorable prognosis of high-grade glioma,” *International Journal of Clinical and Experimental Pathology*, vol. 8, no. 6, pp. 6576–6588, 2015.
[81] H. Xia, Y. Qi, S. S. Ng et al., "microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs," *Brain Research*, vol. 1269, pp. 158–165, 2009.

[82] Y. Ji, Y. Wei, J. Wang, K. Gong, Y. Zhang, and H. Zuo, "Correlation of microRNA-10b upregulation and poor prognosis in human gliomas," *Tumor Biology*, vol. 36, no. 8, pp. 6249–6254, 2015.

[83] X. Wei, D. Chen, T. Lv, G. Li, and S. Qu, "Serum microRNA-125b as a potential biomarker for glioma diagnosis," *Molecular Neurobiology*, vol. 53, no. 1, pp. 163–170, 2016.

[84] X. He, Y. Liao, X. Guo, R. Wang, Z. Xiao, and Y. Wang, "Prognostic role of microRNA-21 expression in brain tumors: a meta-analysis," *Molecular Neurobiology*, vol. 53, no. 3, pp. 1856–1861, 2016.

[85] J. Wu, L. Li, and C. Jiang, "Identification and evaluation of serum microRNA-29 family for glioma screening," *Molecular Neurobiology*, vol. 52, no. 3, pp. 1540–1546, 2015.

[86] S. R. Pfeffer, C. H. Yang, and L. M. Pfeffer, "The Role of MIR-21 in Cancer," *Drug Development Research*, vol. 76, no. 6, pp. 270–277, 2015.

[87] M. Ling, Y. Li, Y. Xue et al., "Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation," *Free Radical Biology & Medicine*, vol. 52, no. 9, pp. 1508–1518, 2012.

[88] S. A. Ciafrè, S. Galardi, A. Mangiola et al., "Extensive modulation of a set of microRNAs in primary glioblastoma," *Biochemical and Biophysical Research Communications*, vol. 334, no. 4, pp. 1351–1358, 2005.

[89] J. T. Huse, C. Brennan, D. Hambardzumyan et al., "The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo," *Genes & Development*, vol. 23, no. 11, pp. 1327–1337, 2009.

[90] S. A. M. Rao, V. Santosh, and K. Somasundaram, "Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma," *Modern Pathology*, vol. 23, no. 10, pp. 1404–1417, 2010.

[91] G. Yang, R. Zhang, X. Chen et al., "MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status," *Journal of Molecular Medicine*, vol. 89, no. 10, pp. 1037–1050, 2011.

[92] S. Hunt, A. V. Jones, E. E. Hinsley, S. A. Whawell, and D. W. Lambert, "MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1," *FEBS Letters*, vol. 585, no. 1, pp. 187–192, 2011.

[93] S. M. Wilhelm, R. A. A. van Boerdonk, F. E. Henken et al., "Methylation-mediated silencing and tumour suppressive function of has-miR-124 in cervical cancer," *Molecular Cancer*, vol. 9, no. 1, p. 167, 2010.

[94] S. W. Shan, D. Y. Lee, Z. Deng et al., "MicroRNA MiR-17 retards tissue growth and represses fibronectin expression," *Nature Cell Biology*, vol. 11, no. 8, pp. 1031–1038, 2009.

[95] X. Chen, Y. Ba, L. Ma et al., "Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases," *Cell Research*, vol. 18, no. 10, pp. 997–1006, 2008.

[96] L. Lu, X. Mao, P. Shi et al., "MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis," *Medicine*, vol. 96, no. 22, Article ID e7085, 2017.

[97] G. Y. Hu, F. Tao, W. Wang, and K. W. Ji, "Prognostic value of microRNA-21 in pancreatic ductal adenocarcinoma: a meta-analysis," *World Journal of Surgical Oncology*, vol. 14, no. 82, 2016.