A NOTE ON THE GAGLIARDO-NIRENBERG INEQUALITY IN A BOUNDED DOMAIN

CONGMING LI AND KAI ZHANG

Abstract. The classical Gagliardo-Nirenberg inequality was established in \(\mathbb{R}^n \). An extension to a bounded domain was given by Gagliardo in 1959. In this note, we present a simple proof of this result and prove a new Gagliardo-Nirenberg inequality in a bounded Lipschitz domain.

1. Introduction

In this short note, we prove two kinds of the Gagliardo-Nirenberg inequalities in a bounded domain based on the Gagliardo-Nirenberg inequality in \(\mathbb{R}^n \). First, we introduce some notations. Denote by \(|E| \) the Lebesgue measure of \(E \subset \mathbb{R}^n \). Let \(\Omega \subset \mathbb{R}^n \) be a domain and \(u : \Omega \to \mathbb{R} \). For \(0 < \alpha \leq 1 \), define

\[
[u]_{C^\alpha(\overline{\Omega})} = \sup_{x,y \in \Omega, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^\alpha}.
\]

For \(0 < p \leq \infty \), denote

\[
\|u\|_{p,\Omega} = \left(\int_{\Omega} |u|^p \right)^{1/p}.
\]

For \(-\infty < p \leq +\infty \), set

\[
|u|_{p,\Omega} = \begin{cases}
\|u\|_{p,\Omega} & p > 0; \\
\|\nabla^k u\|_{\infty,\Omega} & p < 0, -n/p = k \in \mathbb{N}; \\
[\nabla^k u]_{C^\alpha(\overline{\Omega})} & p < 0, -n/p = k + \alpha, k \in \mathbb{N}, 0 < \alpha < 1.
\end{cases}
\]

If \(|u|_{p,\Omega} < \infty \), we say that \(u \in L^p(\Omega) \). For simplicity, we also write \(\|u\|_p \) and \(|u|_p \) instead of \(\|u\|_{p,\Omega} \) and \(|u|_{p,\Omega} \) if \(\Omega \) is clearly understood.

The famous Gagliardo-Nirenberg inequality was first proved by Gagliardo [7] and Nirenberg [13] independently restricted in Sobolev spaces \(W^{k,p}(\mathbb{R}^n) \) where \(k \in \mathbb{N} \) (i.e. nonnegative integers) and \(1 \leq p \leq \infty \). More precisely (see [10, Theorem 12.87]),

Theorem 1.1. Let \(1 \leq q, r \leq +\infty, k, j \in \mathbb{N} \) with \(j < k \), \(j/k \leq \theta \leq 1 \) and \(p \in \mathbb{R} \) such that

\[
\frac{n}{p} - j = \theta \left(\frac{n}{r} - k \right) + (1 - \theta) \frac{n}{q}.
\]

Date: October 1, 2021.

2020 Mathematics Subject Classification. Primary 26D10, 35A23, 46E35.

Key words and phrases. Gagliardo-Nirenberg inequality, Interpolation inequality, bounded domain.

This research is supported by the National Natural Science Foundation of China (Grant No. 12031012 and 11831003) and the Institute of Modern Analysis-A Frontier Research Center of Shanghai.
Then there exists a constant C depending only on n, k, q, r and θ such that for any $u \in W^{k,r}(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$,
\[
|\nabla^j u|_p \leq C\|\nabla^k u\|_r^\theta \|u\|_q^{1-\theta}
\]
with the exception that if $1 < r < +\infty$ and $k - j - n/r \in \mathbb{N}$, we must take $j/k \leq \theta < 1$.

Remark 1.2. The relation (1.1) is a necessary requirement of the scaling consideration in (1.2).

The Gagliardo-Nirenberg inequality has been extended greatly in different directions, such as inequalities in other function spaces [8, 9, 12, 17], involving fractional derivatives [3, 4], aim at best constants [5, 11], in bounded domains[2, 3, 4] and manifolds [1, 6] ect.

Our main results are the following:

Theorem 1.3. Let Ω be a bounded Lipschitz domain. Assume that $1 \leq q, r \leq +\infty$, $k, j \in \mathbb{N}$ with $j < k$, $j/k \leq \theta \leq 1$ and $p \in \mathbb{R}$ such that
\[
\frac{n}{p} - j = \theta \left(\frac{n}{r} - k\right) + (1 - \theta)\frac{n}{q}.
\]
Then there exists a constant C depending only on n, k, q, r, θ and Ω such that for any $u \in W^{k,r}(\Omega) \cap L^q(\Omega)$,
\[
|\nabla^j u|_p \leq C\|\nabla^k u\|_r^\theta \|u\|_q^{1-\theta} + C\|u\|_q
\]
with the exception that if $1 < r < +\infty$ and $k - j - n/r \in \mathbb{N}$, we must take $j/k \leq \theta < 1$.

Remark 1.4. Theorem 1.3 is proved in [7] and stated in [14]. Here, we give a simple proof.

Theorem 1.5. Let Ω be a bounded Lipschitz domain. Assume that $1 \leq q, r \leq +\infty$, $k, j \in \mathbb{N}$ with $j < k$, $j/k \leq \theta \leq 1$ and $p \in \mathbb{R}$ such that
\[
\frac{n}{q} > \frac{n}{r} - k
\]
and
\[
\frac{n}{p} - j = \theta \left(\frac{n}{r} - k\right) + (1 - \theta)\frac{n}{q}.
\]
Then for any $E \subset \Omega$ with $|E| > 0$, there exists a constant C depending only on n, k, q, r, θ, E and Ω such that for any $u \in W^{k,r}(\Omega)$,
\[
|\nabla^j u - \nabla^j P_E|_p \leq C\|\nabla^k u\|_r^\theta \|u - P_E\|_q^{1-\theta}
\]
with the exception that if $1 < r < +\infty$ and $k - j - n/r \in \mathbb{N}$, we must take $j/k \leq \theta < 1$. The P_E is the unique polynomial of degree $k - 1$ such that for any multi-index $0 \leq |\gamma| \leq k - 1$,
\[
\int_E \nabla^\gamma u = \int_E \nabla^\gamma P_E.
\]

Remark 1.6. The (1.5) is a technical assumption and we don’t know whether it can be removed or not.
2. Proof of the main results

To prove Theorem 1.3, we need the following two lemmas. The first lemma (see [15] and [16, Theorem 5, Chapter IV]) deals with extension from a bounded domain to the whole space. This allows us to use the Gagliardo-Nirenberg inequality in the whole space.

Lemma 2.1. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain. Then there exists a bounded linear extension operator \(T : W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^n) \) \((k \geq 0, 1 \leq p \leq \infty) \) such that

\[
\|T f\|_{W^{k,p}(\mathbb{R}^n)} \leq C \|f\|_{W^{k,p}(\Omega)}, \quad \forall f \in W^{k,p}(\Omega),
\]

where \(C \) depends only on \(n, k, p \) and \(\Omega \).

The next is an interpolation in a bounded domain.

Lemma 2.2. Let \(\Omega \) be a bounded Lipschitz domain and \(u \in W^{k,r}(\Omega) \) \((k \geq 0, 1 \leq r \leq \infty) \). Then for any \(\varepsilon, q > 0, 0 \leq j < k \) and \(p \in \mathbb{R} \) with

\[
\frac{n}{p} - j > \frac{n}{r} - k,
\]

there exists a constant \(C \) depending only on \(n, k, q, \varepsilon \) and \(\Omega \) such that

\[
\|\nabla^j u\|_p \leq \varepsilon \|\nabla^k u\|_r + C \|u\|_q.
\]

Proof. We prove the lemma by contradiction. Suppose that the conclusion is false. Then there exist \(\varepsilon_0 > 0 \) and a sequence of \(\{u_m\} \subset W^{k,r}(\Omega) \) such that

\[
\|\nabla^j u_m\|_p \geq \varepsilon_0 \|\nabla^k u_m\|_r + m \|u_m\|_q.
\]

Without loss of generality, we assume that \(\|u_m\|_{W^{k-1,r}(\Omega)} + |\nabla^j u_m|_p = 1 \). Then

\[
1 \geq \varepsilon_0 \|\nabla^k u_m\|_r + m \|u_m\|_q.
\]

Hence, \(\|u_m\|_{W^{k,r}(\Omega)} \leq 1 + 1/\varepsilon_0 \). By (2.2), \(W^{k,r} \) is compactly embedded into \(L^p \).

Thus, there exist a subsequence (denoted by \(\{u_m\} \) again) and \(\bar{u} \in W^{k,r}(\Omega) \) such that as \(m \to \infty \),

\[
\|u_m - \bar{u}\|_{W^{k-1,r}(\Omega)} + |\nabla^j u_m - \nabla^j \bar{u}|_p \to 0.
\]

Therefore, \(\|\bar{u}\|_{W^{k-1,r}(\Omega)} + |\nabla^j \bar{u}|_p = 1 \). However, from (2.3),

\[
\|\bar{u}\|_q = \lim_{m \to \infty} \|u_m\|_q = 0.
\]

That is, \(\bar{u} \equiv 0 \) and we arrive at a contradiction. \(\square \)

Now, we can give the

Proof of Theorem 1.3. Extend \(u \) to \(Tu \in W^{k,r}(\mathbb{R}^n) \cap L^q(\mathbb{R}^n) \). By the Gagliardo-Nirenberg inequality in \(\mathbb{R}^n \) (see Theorem 1.1) and Lemma 2.2 with \(\varepsilon = 1 \),

\[
|\nabla^j u|_{p,\Omega} \leq |\nabla^j Tu|_{p,\mathbb{R}^n}
\]

\[
\leq C \|\nabla^k Tu\|_{r,\mathbb{R}^n} \|Tu\|_{q,\mathbb{R}^n}^{1-\theta}
\]

\[
\leq C \left(\sum_{i=1}^{k} \|\nabla^i u\|_{r,\Omega} \right)^{\theta} \|u\|_{q,\Omega}^{1-\theta}
\]

\[
\leq C (\|u\|_{q,\Omega} + \|\nabla^k u\|_{r,\Omega})^{\theta} \|u\|_{q,\Omega}^{1-\theta}
\]

\[
\leq C \|\nabla^k u\|_{r,\Omega}^{\theta} \|u\|_{q,\Omega}^{1-\theta} + C \|u\|_{q,\Omega}.
\]
To prove Theorem 1.5, we need the following lemma.

Lemma 2.3. Let Ω be a bounded Lipschitz domain, $E \subset \Omega$ with $|E| > 0$ and $u \in W^{k,r}(\Omega)$ ($k \geq 0, 1 \leq r \leq \infty$). Then there exists a unique polynomial P_E of degree $k - 1$ with

\begin{equation}
\int_E \nabla^\gamma u = \int_E \nabla^\gamma P_E, \quad \forall \ 0 \leq |\gamma| \leq k - 1
\end{equation}

such that for any $0 \leq j < k$ and $p \in \mathbb{R}$ with

$$\frac{n}{p} - j > \frac{n}{r} - k,$$

we have

$$|\nabla^j u - \nabla^j P_E|_p \leq C\|\nabla^k u\|_r,$$

where C depends only on n, k, r, Ω and E.

Remark 2.4. Lemma 2.3 can be regarded as an extension of the Poincaré inequality.

Proof. The proof is similar to that of Lemma 2.2. Suppose that the conclusion is false. Then there exist a sequence of $\{u_m\} \subset W^{k,r}(\Omega)$ and $\{P_m\}$ such that (2.4) holds and

$$|\nabla^j u_m - \nabla^j P_m|_p \geq m\|\nabla^k u_m\|_r.$$

Let $v_m = u_m - P_m$. Without loss of generality, we assume that $\|v_m\|_{W^{k-1,r}(\Omega)} + |\nabla^j v_m|_p = 1$. Then

\begin{equation}
1 \geq m\|\nabla^k v_m\|_r.
\end{equation}

Hence, $\|v_m\|_{W^{k,r}(\Omega)} \leq 2$. By the compact embedding, there exist a subsequence (denoted by $\{v_m\}$ again) and $\bar{v} \in W^{k,r}(\Omega)$ such that as $m \to \infty$,

$$\|v_m - \bar{v}\|_{W^{k-1,r}(\Omega)} + |\nabla^j v_m - \nabla^j \bar{v}|_p \to 0.$$

Thus,

\begin{equation}
\|\bar{v}\|_{W^{k-1,r}(\Omega)} + |\nabla^j \bar{v}|_p = 1.
\end{equation}

However, from (2.5),

$$\|\nabla^k \bar{v}\|_r = 0.$$

That is, \bar{v} is a polynomial of degree $k - 1$. From (2.4), $\int_E \nabla^\gamma v_m = 0$ for any $m \geq 1$ and $0 \leq |\gamma| \leq k - 1$. Let $m \to \infty$, we have the same equalities for \bar{v}. Hence $\bar{v} \equiv 0$, which contradicts with (2.6). □

Now, we can give the **Proof of Theorem 1.5.** Since $n/q > n/r - k$, by Lemma 2.3,

$$\|u - P_E\|_q \leq C\|\nabla^k u\|_r.$$

Hence, from Theorem 1.3,

$$|\nabla^j u - \nabla^j P_E|_p \leq C\|\nabla^k u\|_r^\theta\|u - P_E\|_q^{1-\theta} + \|u - P_E\|_q \leq C\|\nabla^k u\|_r^\theta\|u - P_E\|_q^{1-\theta}.$$

□
References

[1] Nadine Badr. Gagliardo-Nirenberg inequalities on manifolds. *J. Math. Anal. Appl.*, 349(2):493–502, 2009.
[2] Rafael D. Benguria, Cristobal Valdejos, and Hanne Van Den Bosch. Gagliardo-Nirenberg-Sobolev inequalities for convex domains in \mathbb{R}^d. *Math. Res. Lett.*, 26(5):1291–1312, 2019.
[3] Haım Brezis and Petru Mironescu. Gagliardo-Nirenberg inequalities and non-inequalities: the full story. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 35(5):1355–1376, 2018.
[4] Haım Brezis and Petru Mironescu. Where Sobolev interacts with Gagliardo-Nirenberg. *J. Funct. Anal.*, 277(8):2839–2864, 2019.
[5] Manuel Del Pino and Jean Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. *J. Math. Pures Appl. (9)*, 81(9):847–875, 2002.
[6] Jérôme Demange. Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature. *J. Funct. Anal.*, 254(3):593–611, 2008.
[7] Emilio Gagliardo. Ulteriori proprietà di alcune classi di funzioni in più variabili. *Ricerche Mat.*, 8:24–51, 1959.
[8] Agnieszka Kamajewska and Katarzyna Pietruska-Pałuba. Gagliardo-Nirenberg inequalities in weighted Orlicz spaces equipped with a nonnecessarily doubling measure. *Bull. Belg. Math. Soc. Simon Stevin*, 15(2):217–235, 2008.
[9] Tengiz Kopaliani and George Chelidze. Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. *J. Math. Anal. Appl.*, 356(1):232–236, 2009.
[10] Giovanni Leoni. *A first course in Sobolev spaces*, volume 181 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2017.
[11] Howard A. Levine. An estimate for the best constant in a Sobolev inequality involving three integral norms. *Ann. Mat. Pura Appl. (4)*, 124:181–197, 1980.
[12] Yoichi Miyazaki. A short proof of the Gagliardo-Nirenberg inequality with BMO term. *Proc. Amer. Math. Soc.*, 148(10):4257–4261, 2020.
[13] L. Nirenberg. On elliptic partial differential equations. *Ann. Scuola Norm. Sup. Pisa (3)*, 13:115–162, 1959.
[14] L. Nirenberg. An extended interpolation inequality. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)*, 20:733–737, 1966.
[15] Luke G. Rogers. Degree-independent Sobolev extension on locally uniform domains. *J. Funct. Anal.*, 235(2):619–665, 2006.
[16] Elias M. Stein. *Singular integrals and differentiability properties of functions*. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
[17] P. Strzelecki. Gagliardo-Nirenberg inequalities with a BMO term. *Bull. London Math. Soc.*, 38(2):294–300, 2006.

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China

Email address: congming.11@sjtu.edu.cn

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China

Email address: zhangkaizfz@gmail.com