THE BETTI NUMBERS FOR A FAMILY OF SOLVABLE LIE ALGEBRAS

THANH MINH DUONG

ABSTRACT. We give a characterization of symplectic quadratic Lie algebras that their Lie algebra of inner derivations has an invertible derivation. A family of symplectic quadratic Lie algebras is introduced to illustrate this situation. Finally, we calculate explicitly the Betti numbers of a family of solvable Lie algebras in two ways: using the cohomology of quadratic Lie algebras and applying a Pouseele’s result on extensions of the one-dimensional Lie algebra by Heisenberg Lie algebras.

0. INTRODUCTION

Let \(g \) be a complex Lie algebra endowed with a non-degenerate invariant symmetric bilinear form \(B \). \(\{X_1,\ldots,X_n\} \) be a basis of \(g \) and \(\{\omega_1,\ldots,\omega_n\} \) be its dual basis. Denote by \(\{Y_1,\ldots,Y_n\} \) the basis of \(g \) defined by \(B(Y_i,.) = \omega_i \), \(1 \leq i \leq n \). Pinczon and Ushirobira discovered in [5] that the differential \(\partial \) on \(\bigwedge (g^*) \), the space of antisymmetric forms on \(g \), is given by \(\partial : \bigwedge (g^*) \to \bigwedge (g^*) \) where \(I \) is defined by:

\[
I(X,Y,Z) = B([X,Y],Z), \quad \forall X, Y, Z \in g
\]

and \(\{.,\} \) is the super Poisson bracket on \(\bigwedge (g^*) \) defined by

\[
\{\Omega,\Omega'\} = (-1)^{k+1} \sum_{i,j} B(Y_i, Y_j) t_{X_i}(\Omega) \wedge t_{X_j}(\Omega'), \forall \Omega, \Omega' \in \bigwedge^k (g^*), \Omega', \Omega \in \bigwedge (g^*).
\]

In Section 1, by using this, we detail a result of Medina and Revoy in [4] that there is an isomorphism between the second cohomology group \(H^2(g, \mathbb{C}) \) and \(\text{Der}_a(g)/\text{ad}(g) \) where \(\text{Der}_a(g) \) is the vector space of skew-symmetric derivations of \(g \) and \(\text{ad}(g) \) is its subspace of inner ones.

Involving in the well-known theorem by Jacobson on the invertibility of Lie algebra derivations that a Lie algebra over a field of characteristic zero is nilpotent if it admits an invertible derivation, we are interested in Lie algebras having an invertible derivation. We prove that the Lie algebra \(\text{ad}(g) \) of a symplectic quadratic Lie algebra has that property. In particular, we have the following (Proposition 1.5).

THEOREM 1. Let \((g,B,\omega)\) be a symplectic quadratic Lie algebra. Consider the mapping \(\mathcal{D} : \text{ad}(g) \to \text{ad}(g) \) defined by \(\mathcal{D}(\text{ad}(X)) = \text{ad}(\phi^{-1}(tx(\omega))) \) with \(\phi : g \to g^*, \phi(X) = B(X,.), \) then \(\mathcal{D} \) is an invertible derivation of \(\text{ad}(g) \).

The reader is referred to [2] for further information about symplectic quadratic Lie algebras. A family of such algebras is given to illustrate this situation.

In Section 2, motivated by Corollary 4.4 in [3], we give the Betti numbers for a family of solvable quadratic Lie algebras defined as follows. For each \(n \in \mathbb{N} \), let \(g_{2n+2} \) denote...
The Lie algebra with basis $\{X_0,\ldots, X_n, Y_0,\ldots, Y_n\}$ and non-zero Lie brackets $[Y_0, X_i] = X_i$, $[Y_0, Y_i] = -Y_i$, $[X_i, Y_j] = X_0, 1 \leq i \leq n$. Denote by $B^k(\mathfrak{g}_{2n+2}) = B^k(\mathfrak{g}_{2n+2}, \mathbb{C})$, $Z^k(\mathfrak{g}_{2n+2}) = Z^k(\mathfrak{g}_{2n+2}, \mathbb{C})$, $H^k(\mathfrak{g}_{2n+2}) = H^k(\mathfrak{g}_{2n+2}, \mathbb{C})$ and $b_k = b_k(\mathfrak{g}_{2n+2}, \mathbb{C})$. By computing on super Poisson brackets, our second result is the following.

THEOREM 2. The k^{th} Betti numbers of \mathfrak{g}_{2n+2} are given as follows:

1. If k is even then one has

 $$b_k = \left\lfloor \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) - \left(\frac{n}{k+1} \right) \left(\frac{n}{k-1} \right) \right\rfloor.$$

2. If k is odd then one has

 - if $k < n+1$ then

 $$b_k = \left(\frac{n}{k-1} \right) \left(\frac{n}{k-1} \right) - \left(\frac{n}{k} \right) \left(\frac{n}{k} \right),$$

 - if $k = n+1$ then

 $$b_{n+1} = 2 \left(\frac{n}{n} \right) \left(\frac{n}{n} \right) - 2 \left(\frac{n+1}{n+1} \right) \left(\frac{n+1}{n+1} \right),$$

 - if $k > n+1$ then

 $$b_k = \left(\frac{n}{k-1} \right) \left(\frac{n}{k-1} \right) - \left(\frac{n}{k+1} \right) \left(\frac{n}{k+1} \right).$$

Our method is direct and different from the Pouseele’s method given in [6] that we shall recall in Appendix 1. In the Pouseele’s method, the Betti numbers of the 2n + 1-dimensional Lie algebra \mathfrak{g} defined by $[x, x_i] = x_i$ and $[y, y_i] = -y_i$ for all $1 \leq i \leq n$.

Other results of Betti numbers for some families of nilpotent Lie algebras, we refer the reader to [1], [5] or [7].

1. **A Characterization of Symplectic Quadratic Lie Algebras**

Let \mathfrak{g} be a complex Lie algebra endowed with a non-degenerate invariant symmetric bilinear form B. In this case, we call the pair (\mathfrak{g}, B) a quadratic Lie algebra. Denote by $\text{Der}_u(\mathfrak{g})$ the vector space of skew-symmetric derivations of \mathfrak{g}, that is the space of derivations D satisfying $B(D(X), Y) = -B(X, D(Y))$ for all $X, Y \in \mathfrak{g}$, then $\text{Der}_u(\mathfrak{g})$ is a Lie subalgebra of $\text{Der}(\mathfrak{g})$.

Proposition 1.1. There exists a Lie algebra isomorphism T between $\text{Der}_u(\mathfrak{g})$ and the space $\{\Omega \in \wedge^2(\mathfrak{g}^*) \mid \{I, \Omega\} = 0\}$. This isomorphism induces an isomorphism from $\text{ad}(\mathfrak{g})$ onto $t_\mathfrak{g}(I) = \{t_\mathfrak{g}(I) \in \wedge^2(\mathfrak{g}^*) \mid X \in \mathfrak{g}\}$.

Proof. Let $D \in \text{Der}_u(\mathfrak{g})$ and set $\Omega \in \wedge^2(\mathfrak{g}^*)$ by $\Omega(X, Y) = B(D(X), Y)$ for all $X, Y \in \mathfrak{g}$. Then D is a derivation of \mathfrak{g} if and only if

$$\Omega([X, Y], Z) + \Omega([Y, Z], X) + \Omega([Z, X], Y) = 0$$

for all $X, Y, Z \in \mathfrak{g}$. It means $\{I, \Omega\} = 0$. Define the map T from $\text{Der}_u(\mathfrak{g})$ onto $\{\Omega \in \wedge^2(\mathfrak{g}^*) \mid \{I, \Omega\} = 0\}$ by $T(D) = \Omega$ then T is a one-to-one correspondence.
Definition 1.4. If Corollary 1.3. That means set $T(\mathfrak{g})$. Indeed, set $\Omega = T(D), \Omega' = T(D')$ and fix an orthonormal basis $\{X_j\}_{j=1}^n$ of \mathfrak{g}. One has

\[
\{\Omega, \Omega'\}(X,Y) = -\left(\sum_{j=1}^n t_{X_j}(\Omega) \wedge t_{X_j}(\Omega')\right)(X,Y)
\]

\[
= -\sum_{j=1}^n \left(\Omega(X_j, X)\Omega'(X_j, Y) - \Omega(X_j, Y)\Omega'(X_j, X)\right)
\]

\[
= -\sum_{j=1}^n B\left(B(D(X_j), X)D'(X_j) - B(D'(X_j), X)D(X_j), Y\right))
\]

\[
= -\sum_{j=1}^n B\left(D'(D(X)) - D(D'(X)),Y\right)) = -B([D', D](X), Y).
\]

That means $T([D, D']) = \{T(D), T(D')\}$ and then T is a Lie algebra isomorphism.

If $D = \text{ad}(X_0)$ then $T(D)(X, Y) = B([X_0, X], Y) = I(X_0, Y, Z) = t_{X_0}(I)(X, Y)$. Therefore, $T(D) = t_{X_0}(I)$. □

Corollary 1.2. $\{t_X(I), t_Y(I)\} = t_{[X,Y]}(I)$.

Corollary 1.3. \[\text{The cohomology group } H^2(\mathfrak{g}, \mathbb{C}) \simeq \text{Der}_\alpha(\mathfrak{g}, \mathfrak{B})/\text{ad}(\mathfrak{g}). \]

Definition 1.4. A non-degenerate skew-symmetric bilinear form $\omega : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ is called a symplectic structure on \mathfrak{g} if it satisfies

\[
\omega([X, Y], Z) + \omega([Y, Z], X) + \omega([Z, X], Y) = 0
\]

for all $X, Y, Z \in \mathfrak{g}$.

A symplectic structure ω on a quadratic Lie algebra (\mathfrak{g}, B) is corresponding to a skew-symmetric invertible derivation D defined by $\omega(X, Y) = B(D(X), Y)$, for all $X, Y \in \mathfrak{g}$. As above, a symplectic structure is exactly a non-degenerate 2-form ω satisfying $\{I, \omega\} = 0$. If \mathfrak{g} has a such ω then we call $(\mathfrak{g}, B, \omega)$ a symplectic quadratic Lie algebra.

For symplectic quadratic Lie algebras, the reader can refer to [2] for more details. Here we give a following property.

Proposition 1.5. Let $(\mathfrak{g}, B, \omega)$ be a symplectic quadratic Lie algebra. Consider the mapping $\mathcal{D} : \text{ad}(\mathfrak{g}) \to \text{ad}(\mathfrak{g})$ defined by $\mathcal{D}(\text{ad}(X)) = \text{ad}(\phi^{-1}(t_X(\omega)))$ with $\phi : \mathfrak{g} \to \mathfrak{g}^*, \phi(X) = B(X, \cdot)$, then \mathcal{D} is an invertible derivation of $\text{ad}(\mathfrak{g})$.

Proof. As above we have $\{I, \omega\} = 0$ and then $t_X(\{I, \omega\}) = 0$ for all $X \in \mathfrak{g}$. It implies $\{t_X(I), \omega\} = \{I, t_X(\omega)\}$ for all $X \in \mathfrak{g}$. Note that if X is nonzero, since ω is non-degenerate then $t_X(\omega)$ is non-trivial. Set $Y = \phi^{-1}(t_X(\omega))$ then $\{I, t_X(\omega)\} = I_Y(I)$ and therefore this defines an inner derivation. Let D be the derivation corresponding to ω then one has $[\text{ad}(X), D] = \text{ad}(Y)$.

Let $\text{ad}(X) \in \text{ad}(\mathfrak{g})$. Set $\alpha = \phi(X)$. Since ω is non-degenerate then there exists an element $Y \in \mathfrak{g}$ such that $\alpha = t_Y(\omega)$. In this case, $\mathcal{D}(\text{ad}(Y)) = \text{ad}(X)$. That means \mathcal{D} onto and therefore it is bijective. □

Next, we give a family of symplectic quadratic Lie algebras that has been defined in [3] as follows.
Example 1.6. Let $p \in \mathbb{N} \setminus \{0\}$. We denote the Jordan block of size p by $J_1 := (0)$ and for $p \geq 2$,
\[
J_p := \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{pmatrix}.
\]

For $p \geq 2$, we consider $q = \mathbb{C}^{2p}$ with a basis $\{X_i, Y_i\}, 1 \leq i \leq p$, and equipped with a bilinear form B satisfying $B(X_i, X_j) = B(Y_i, Y_j) = 0$ and $B(X_i, Y_j) = \delta_{ij}$. Let $C : q \to q$ with matrix
\[
C = \begin{pmatrix} J_p & 0 \\ 0 & -J_p \end{pmatrix}
\]
in the given basis. Then $C \in \mathfrak{o}(2p)$.

Let $\mathfrak{h} = \mathbb{C}^2$ and $\{X_0, Y_0\}$ be a basis of \mathfrak{h}. Define on the vector space $i_{2p} = q \oplus \mathfrak{h}$ the Lie bracket $[Y_0, X] = C(X) \cdot [X, Y] = B(C(X), Y)X_0$ and the bilinear form $B(X_0, Y_0) = 1$, $B(X_i, Y_0) = B(Y_0, Y_i) = B(X_0, X_i) = B(Y_0, X_i) = 0$ and $B(X, Y) = B(X, Y)$ for all $X, Y \in q$. So i_{2p} is a nilpotent Lie algebra and it will be called a $2p + 2$-dimensional nilpotent Jordan-type Lie algebra.

Denote by $\{\alpha, \alpha_1, \ldots, \alpha_p, \beta, \beta_1, \ldots, \beta_p\}$ the dual basis of $\{X_0, \ldots, X_p, Y_0, \ldots, Y_p\}$ then $I = \beta \wedge \sum_{i=0}^{p-1} \alpha_i \wedge \beta_i$. In this case, we choose $\omega = \alpha \wedge \beta + \sum_{i=1}^{p} i \alpha_i \wedge \beta_i$ then $\{I, \omega\} = 0$ and therefore (i_{2p}, B, ω) is a symplectic quadratic Lie algebra. Notice that if we define $D(\text{ad}(Y_0)) = -\text{ad}(Y_0), D(\text{ad}(X_i)) = i\text{ad}(X_i)$ and $D(\text{ad}(Y_i)) = -i\text{ad}(Y_i)$ then D is an invertible derivation of $\text{ad}(i_{2p})$.

2. The Betti numbers for a family of solvable quadratic Lie algebras

For each $n \in \mathbb{N}$, let \mathfrak{g}_{2n+2} denote the Lie algebra with basis $\{X_0, \ldots, X_n, Y_0, \ldots, Y_n\}$ and non-zero Lie brackets $[Y_0, X_i] = X_i$, $[Y_0, Y_i] = -Y_i$, $[X_0, X_i] = X_i, 1 \leq i \leq n$. Then \mathfrak{g} is quadratic with invariant bilinear form B given by $B(X_i, Y_j) = 1$, $0 \leq i \leq j \leq n$, zero otherwise.

Let $\{\alpha, \alpha_1, \ldots, \alpha_n, \beta, \beta_1, \ldots, \beta_n\}$ be the dual basis of $\{X_0, \ldots, X_n, Y_0, \ldots, Y_n\}$ and set $V = \text{span}\{\alpha_i\}, W = \text{span}\{\beta_i\}, 1 \leq i \leq n$. It is easy to check that the associated 3-form of \mathfrak{g}_{2n+2}:
\[
\Omega := \sum_{i=0}^{n} \alpha_i \wedge \beta_i.
\]

Denote by $\Omega_n := \sum_{i=1}^{n} \alpha_i \wedge \beta_i$ then one has
\[
B^2(\mathfrak{g}_{2n+2}) = \{tX(I) \mid X \in \mathfrak{g}_{2n+2}\} = \text{span}\{\beta \wedge \alpha_i \wedge \beta_i, \Omega_n \mid 1 \leq i \leq n\}.
\]

If $n = 1$ then by we can directly calculate that $H^2(\mathfrak{g}_4) = \{0\}$. If $n > 1$, we have the non-zero super Poisson brackets:
(i) $\{I, \alpha \wedge \alpha_i\} = \alpha_i \wedge \Omega_n - \alpha \wedge \beta \wedge \alpha_i$ and $\{I, \alpha \wedge \beta_i\} = \beta_i \wedge \Omega_n + \alpha \wedge \beta \wedge \beta_i$,
(ii) $\{I, \alpha \wedge \beta\} = I$,
(iii) $\{I, \alpha_i \wedge \alpha_j\} = 2 \beta \wedge \alpha_i \wedge \alpha_j$ and $\{I, \beta_i \wedge \beta_j\} = -2 \beta \wedge \beta_i \wedge \beta_j$.

It results that $\mathfrak{z}^2(\mathfrak{g}_{2n+2}) = \text{span}\{\beta \wedge \alpha_i \wedge \beta_i, \alpha_i \wedge \beta_i \mid 1 \leq i, j \leq n\}$ and then the second cohomology group $H^2(\mathfrak{g}_{2n+2}) = \text{span}\{\alpha_i \wedge \beta_j\} / \text{span}\{\sum_{i=1}^{n} \alpha_i \wedge \beta_i\}$, where $1 \leq i, j \leq n$. So we recover the result of Medina and Revoy in [4] obtained by describing the space $\text{Der}_n(\mathfrak{g}_{2n+2})$ that $b_2 = n^2 - 1$.

To get the Betti numbers b_k for $k \geq 3$, we need the following lemma.
Lemma 2.1. The map \(\{ \Omega_n \} : \Lambda^k(V) \otimes \Lambda^m(W) \to \Lambda^j(V) \otimes \Lambda^l(W) \) with \(k, m \geq 0 \) is a vector space isomorphism if \(k \neq m \) and \(\{ \Omega_n, \Lambda^k(V) \otimes \Lambda^l(W) \} = \{ 0 \} \).

Proof. We have \(\{ \Omega_n, \alpha_{t_1} \wedge \ldots \wedge \alpha_{t_k}, \beta_{t_1} \wedge \ldots \wedge \beta_{t_m} \} = k \alpha_{t_1} \wedge \ldots \wedge \alpha_{t_k}, \Omega_n, \beta_{t_1} \wedge \ldots \wedge \beta_{t_m} \} = -m \wedge \beta_{t_1} \wedge \ldots \wedge \beta_{t_m} \) and \(\{ \Omega_n, \alpha_{t_1} \wedge \ldots \wedge \alpha_{t_k} \wedge \beta_{t_1} \wedge \ldots \wedge \beta_{t_m} \} = (k - m) \alpha_{t_1} \wedge \ldots \wedge \alpha_{t_k} \wedge \beta_{t_1} \wedge \ldots \wedge \beta_{t_m} \) then the result follows.

By a straightforward computation on super Poisson brackets we have the following corollary.

Corollary 2.2. The restrictions of the differential \(\partial \) from \(\alpha \wedge \Lambda^i(V) \otimes \Lambda^j(W) \) onto \(\Omega_n \wedge \Lambda^i(V) \otimes \Lambda^j(W) \) and from \(\Lambda^i(V) \otimes \Lambda^j(W) \) onto \(\beta \wedge \Lambda^i(V) \otimes \Lambda^j(W) \) with \(i, j \geq 0 \) are vector space isomorphisms.

Let us now give the cases for which \(\ker(\partial) \) can be obtained. The following lemma is easy:

Lemma 2.3. We have \(\partial(\Lambda^i(V) \otimes \Lambda^j(W)) = \partial(\beta \wedge \Lambda^i(V) \otimes \Lambda^j(W)) = \{ 0 \} \) with \(i, j \geq 0 \).

Moreover, \(\partial(\Lambda^i(V) \otimes \Lambda^j(W)) \subset \partial(\Lambda^{i+1}(V) \otimes \Lambda^{j+1}(W)) \) for all \(i, j \geq 0 \) and \(i \neq j \).

By the reason shown in (i) and (ii) of Lemma 2.3, we set the map

\[
\phi_{k_1, k_2, n} : \Lambda^{k_1}(\alpha_1, \ldots, \alpha_n) \otimes \Lambda^{k_2}(\beta_1, \ldots, \beta_n) \to \Lambda^{k_1+1}(\alpha_1, \ldots, \alpha_n) \otimes \Lambda^{k_2+1}(\beta_1, \ldots, \beta_n)
\]

defined by \(\phi_{k_1, k_2, n}(\omega) = \Omega_n \wedge \omega \) then we have the following result.

Proposition 2.4.

(i) If \(k \) is even then

\[
\dim \ker(\partial_k) = \binom{n+1}{k} - \sum_{i=0}^{k-1} \binom{n}{k-i} - \dim \ker \phi_{k-1, k-2, n} \wedge \Omega_n.
\]

(ii) If \(k \) is odd then

\[
\dim \ker(\partial_k) = \dim \ker \phi_{k-1, k-2, n} + \sum_{i=0}^{k-1} \binom{n}{k-i} - \binom{n+1}{k-1}.
\]

Using the formula \(b_k(\mathfrak{g}_{2n+2}) = \dim \ker(\partial_k) + \dim \ker(\partial_{k-1}) - \binom{2n+2}{k-1} \), the binomial identity

\[
\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
\]

and the formula

\[
\sum_{i=0}^{k} \binom{n}{k-i} = \binom{2n}{k}
\]

we obtain the following corollary.

Corollary 2.5. The \(k \)th Betti numbers of \(\mathfrak{g}_{2n+2} \) are given as follows:

(i) If \(k \) is even then

\[
b_k(\mathfrak{g}_{2n+2}) = \binom{n}{k} + 2 \dim \ker \phi_{k-1, k-2, n} - \binom{n}{k-2}.
\]
(ii) If k is odd then

$$b_k(g_{2n+2}) = \left(\begin{array}{c} n \\ \frac{k-1}{2} \end{array} \right) + \dim \ker \phi_{k-1,k,n} + \dim \ker \phi_{k-3,k,n} - \left(\begin{array}{c} n \\ \frac{k-3}{2} \end{array} \right).$$

Hence, it remains to compute $\dim \ker (\phi_{k,k,n})$. Consider the power $\phi_{k,k,n}^m$ of the map $\phi_{k_1,k_2,n}$ and let

$$K(m,k_1,k_2,n) = \dim \ker (\phi_{k_1,k_2,n}^m)$$

then one has:

Lemma 2.6.

(i) The map

$$\theta_{k_1,k_2,n+1}^m : \ker (\phi_{k_1-1,k_2-1,n}^m) \oplus \ker (\phi_{k_1-1,k_2,n}^m) \oplus \ker (\phi_{k_1,k_2-1,n}^m)$$

defined by

$$\theta_{k_1,k_2,n+1}^m (\omega_1, \omega_2, \omega_3, \omega_4) = \alpha_{n+1} \wedge \beta_{n+1} \wedge \omega_1 + \alpha_{n+1} \wedge \omega_2 + \beta_{n+1} \wedge \omega_3 + \omega_4 - \frac{1}{m} \phi_{k_1-1,k_2-1,n}(\omega_1)$$

is a vector space isomorphism.

(ii) $K(m,k_1,k_2,n) = K(m+1,k_1-1,k_2-1,n-1) + K(m-1,k_1,k_2,n-1) + K(m,k_1,k_2-1,n-1) + (m-1,k_1,k_2,n-1)$.

Proof.

(i) The map $\theta_{k_1,k_2,n+1}^m$ is clearly injective. To prove $\theta_{k_1,k_2,n+1}^m$ surjective, let us consider $\omega \in \wedge^{k_1}(\alpha_1, \ldots, \alpha_{n+1}) \otimes \wedge^{k_2}(\beta_1, \ldots, \beta_{n+1})$ such that $\Omega_{n+1}^m \wedge \omega = 0$. Observe that ω can be written in the form $\omega = \alpha_{n+1} \wedge \beta_{n+1} \wedge \omega_1 + \alpha_{n+1} \wedge \omega_2 + \beta_{n+1} \wedge \omega_3 + \omega_4$ where $\omega_i \in \wedge^{k_1}(\alpha_1, \ldots, \alpha_n) \otimes \wedge^{k_2}(\beta_1, \ldots, \beta_n)$, $\omega_2 \in \wedge^{k_1}(\beta_1, \ldots, \beta_n)$ and $\omega_4 \in \wedge^{k_2}(\alpha_1, \ldots, \alpha_n)$.

Moreover, $\wedge_{n+1}^m \wedge \omega = 0$ we obtain $\wedge_{n+1}^m \wedge \omega_2 = \wedge_{n+1}^m \wedge \omega_3 = \wedge_{n+1}^m \wedge \omega_4 = 0$.

(ii) The assertion (2) follows (1).

To calculate $K(m,k_1,k_2,n)$, we use the following boundary conditions from the definition of $\phi_{k_1,k_2,n}^m$ in which we assume $\phi_{k_1,k_2,n}^0$ is the identity map:

1. $K(0,k_1,k_2,n) = 0$ for all $k_1, k_2, n \geq 0$.
2. $K(m,0,0,n) = \begin{cases} 0, & \text{if } m \leq n, \\ 1, & \text{if } m > n. \end{cases}$
3. $K(m,0,1,n) = K(m,1,0,n) = \begin{cases} 0, & \text{if } m = 0 \text{ or } n > m, \\ n, & \text{if } 1 \leq n \leq m. \end{cases}$
(4) \(K(m, k_1, k_2, 0) = \begin{cases} 1, & \text{if } m \geq 1, k_1 = k_2 = 0, \\ 0, & \text{otherwise}. \end{cases} \)

By the condition (2) we extend \(K(m, k_1, k_2, n) = 0 \) for negative \(k_1 \) or \(k_2 \) and by the condition (1) we set the condition (5) by \(K(-m, k_1, k_2, n) = -K(m, k_1 - m, k_2 - m, n) \).

Lemma 2.7.

\[K(m, k, n) = \sum_{p=0}^{m} \sum_{q=0}^{n} \binom{n}{p} \binom{n}{q} K(m + n - p - q, k - n + p, k - n + q, 0). \]

Proof. By induction on \(l \), we prove that

\[K(m, k, n) = \sum_{p=0}^{m} \sum_{q=0}^{n} \binom{l}{p} \binom{1}{q} K(m + l - p - q, k - l + p, k - l + q, n - l). \]

Let \(l = n \) to get the lemma. \(\square \)

The Betti numbers of \(\mathfrak{g}_{2n+2} \) is in the case \(m = 1 \). By the conditions (4) and (5) we reduce the following.

Corollary 2.8.

\[K(1, k, k, n) = \begin{cases} 0, & \text{if } k < \frac{2}{3} n, \\ \left(\binom{n}{k} - \binom{n}{k+1} \right), & \text{if } k \geq \frac{2}{3} n. \end{cases} \]

Finally, by applying this formula we obtain the Betti number of \(\mathfrak{g}_{2n+2} \) according to Corollary 2.5.

3. Appendix 1: Another Way to Get the Betti Numbers of \(\mathfrak{g}_{2n+2} \)

In this part, we shall give another way to get the Betti numbers of \(\mathfrak{g}_{2n+2} \). It is based on the following result.

Proposition 3.1. [6]

Let \(\mathfrak{g} \) be an extension of the one-dimensional Lie algebra \(\langle z \rangle \) by the Heisenberg Lie algebra \(\mathfrak{h}_{2n+1} \), for some \(n \),

\[1 \longrightarrow \mathfrak{h}_{2n+1} \longrightarrow \mathfrak{g} \longrightarrow \langle z \rangle \longrightarrow 0 \]

such that \(\mathfrak{g} \) acts trivially on the center \(\mathfrak{z} = \langle w \rangle \) of \(\mathfrak{h}_{2n+1} \). Let \(\mathfrak{f} = \mathfrak{g} / \mathfrak{z} \). Then

\[b_k(\mathfrak{g}) = \begin{cases} b_k(\mathfrak{f}) & \text{for } k = 0 \text{ or } k = 1, \\ b_k(\mathfrak{f}) - b_{k-2}(\mathfrak{f}) & \text{for } 2 \leq k \leq n, \\ 2 [b_{n+1}(\mathfrak{f}) - b_{n-1}(\mathfrak{f})] & \text{for } k = n + 1, \\ b_{k-1}(\mathfrak{f}) - b_{k+1}(\mathfrak{f}) & \text{for } n + 2 \leq k \leq 2n, \\ b_{k-1}(\mathfrak{f}) & \text{for } k = 2n + 1 \text{ or } k = 2n + 2. \end{cases} \]

It is easy to see that \(\mathfrak{g}_{2n+2} \) is an extension of the one-dimensional Lie algebra \(\langle Y_0 \rangle \) by \(\mathfrak{h}_{2n+1} \). To calculate the Betti numbers of \(\mathfrak{g}_{2n+2} \) it needs to find the Betti numbers of the \(2n + 1 \)-dimensional Lie algebra \(\mathfrak{f} \) with a basis \(\{ y, x_1, \ldots, x_n, y_1, \ldots, y_n \} \) and the Lie bracket

\[[y, x_i] = x_i, \quad [y, y_i] = -y_i \]

for all \(1 \leq i \leq n \).

Let \(\{ y^*, x^*_1, \ldots, x^*_n, y^*_1, \ldots, y^*_n \} \) be the dual basis of \(\{ y, x_1, \ldots, x_n, y_1, \ldots, y_n \} \).
Proposition 3.2.

(1) One has
\[\partial_k \left(y^k \wedge \left(\bigwedge^{k-1}(x_1^*, \ldots, x_n^*, y_1^*, \ldots, y_n^*) \right) \right) = 0. \]

(2) Assume \(j + l = k \) then we have
- if \(j = l \) then
 \[\partial_k \left(\bigwedge^j(x_1^*, \ldots, x_n^*) \otimes \bigwedge^l(y_1^*, \ldots, y_n^*) \right) = 0, \]
- if \(j \neq l \) then
 \[\partial_k \left(\bigwedge^j(x_1^*, \ldots, x_n^*) \otimes \bigwedge^l(y_1^*, \ldots, y_n^*) \right) = y^k \wedge \left(\bigwedge^j(x_1^*, \ldots, x_n^*) \otimes \bigwedge^l(y_1^*, \ldots, y_n^*) \right). \]

Proof. The assertion (1) is obvious. For (2), we use the following computation:
\[\partial_k \left(x_{i_1} \wedge \ldots \wedge x_{i_j} \wedge y_{r_1} \wedge \ldots \wedge y_{r_l} \right) = (j - k)y^k \wedge x_{i_1} \wedge \ldots \wedge x_{i_j} \wedge y_{r_1} \wedge \ldots \wedge y_{r_l} \]
for all \(1 \leq i_1 < \ldots < i_j \leq n \) and \(1 \leq r_1 < \ldots < r_l \leq n \).

It results the following corollary.

Corollary 3.3. The Betti numbers of \(\mathfrak{f} \) is given as follows:
\[b_k(\mathfrak{f}) = \left(\begin{array}{c} n \\ \left[\frac{k}{2} \right] \end{array} \right) \left(\begin{array}{c} n \\ \left[\frac{k}{2} \right] \end{array} \right) \]
where \([x] \) denotes the integer part of \(x \).

Applying this corollary, we have
\[b_k(\mathfrak{g}_{2n+2}) = \left\{ \begin{array}{ll}
1 & \text{for } k = 0 \text{ or } k = 1, \\
\left(\begin{array}{c} n \\ \left[\frac{k}{2} \right] \end{array} \right) \left(\begin{array}{c} n \\ \left[\frac{k}{2} \right] \end{array} \right) & \text{for } 2 \leq k \leq n, \\
2 & \left(\begin{array}{c} n \\ \left[\frac{k+1}{2} \right] \end{array} \right) - 2 & \text{for } k = n + 1, \\
\left(\begin{array}{c} n \\ \left[\frac{k-1}{2} \right] \end{array} \right) \left(\begin{array}{c} n \\ \left[\frac{k-1}{2} \right] \end{array} \right) & \text{for } n + 2 \leq k \leq 2n, \\
1 & \text{for } k = 2n + 1 \text{ or } k = 2n + 2.
\]

and then Theorem 2 is obtained.

4. APPENDIX 2: THE SECOND COHOMOLOGY GROUP OF A FAMILY OF NILPOTENT LIe ALGEBRAS

In this appendix, in the progress of our work, we give the second cohomology of a family of nilpotent Lie algebras that are double extensions of an Abelian Lie algebra (see \[\] for more details about these Lie algebras).

Let us denote \(\mathfrak{g}_{4n+2} \) a 2-nilpotent quadratic Lie algebra of dimension \(4n + 2 \) spanned by \(\{X, X_1, \ldots, X_{2n}, Y, Y_1, \ldots, Y_{2n}\} \) where the Lie bracket is defined by \([Y, Y_{2n-1}] = X_{2n}, [Y, Y_1] = -X_{2n-1}, \) \([Y_{2n-1}, Y_1] = X \) and the bilinear form is given by \(B(X, Y) = B(X, Y) = 1, \) zero otherwise. Let \(\{\alpha, \alpha, \beta, \beta\} \) be the dual basis of \(\{X, X_1, Y, Y_1\} \). We can check that the associated 3-form \(I \) of \(\mathfrak{g}_{4n+2} \) is \(I = \beta \wedge \Omega \) where \(\Omega = \beta_1 \wedge \beta_2 + \beta_3 \wedge \beta_4 + \ldots + \beta_{2n-1} \wedge \beta_{2n} \). Therefore, it is easy to see that \(\iota_{\mathfrak{g}_{4n+2}}(I) = \text{span}\{\Omega, \beta \wedge \beta\} \) for all \(1 \leq i \leq 2n \). We have the following proposition.
Proposition 4.1. \(\dim(H^2(g_{4n+2}, \mathbb{C})) = 8 \) if \(n = 1 \) and \(\dim(H^2(g_{4n+2}, \mathbb{C})) = 5n^2 + n \) if \(n > 1 \).

Proof. First we need describe \(\ker(\partial_2) \). Let \(V \) be the space spanned by \(\{\beta, \beta_1, ..., \beta_{2n}\} \) then \(\{I, \alpha\} = 0 \) for all \(\alpha \in V \oplus V \). By a straightforward computation, we have

1. \(\{I, \beta \land \alpha\} = \{I, \alpha_{2i-1} \land \beta_{2i}\} = \{I, \alpha_{2i} \land \beta_{2i-1}\} = 0 \),
2. \(\{I, \alpha \land \beta\} = I \),
3. \(\{I, \alpha \land \beta_{2i-1}\} = \beta_{2i-1} \land \Omega \), \(\{I, \alpha \land \beta_{2i}\} = \beta_{2i} \land \Omega \),
4. \(\{I, \alpha \land \beta_{2i-1}\} = \alpha_{2i-1} \land \Omega + \beta \land \beta_{2i} \land \alpha \), \(\{I, \alpha \land \beta_{2i}\} = \alpha_{2i} \land \Omega - \beta \land \beta_{2i-1} \land \alpha \),
5. \(\{I, \alpha_{2i-1} \land \alpha_{2i}\} = -\beta \land \beta_{2i} \land \alpha_{2j} - \beta \land \beta_{2j-1} \land \alpha_{2i-1}, \{I, \alpha_{2i} \land \alpha_{2j}\} = \beta \land \beta_{2i-1} \land \alpha_{2j} - \beta \land \beta_{2j-1} \land \alpha_{2i} \),
6. \(\{I, \alpha_{2i-1} \land \beta_{2j}\} = -\{I, \alpha_{2j-1} \land \beta_{2i}\} = -\beta \land \beta_{2i} \land \beta_{2j}, i \neq j \),
7. \(\{I, \alpha_{2i-1} \land \beta_{2j-1}\} = \{I, \alpha_{2j-1} \land \beta_{2i}\} = -\beta \land \beta_{2i} \land \beta_{2j-1} \),
8. \(\{I, \alpha_{2i} \land \beta_{2j-1}\} = -\{I, \alpha_{2j} \land \beta_{2i-1}\} = \beta \land \beta_{2i-1} \land \beta_{2j-1}, i \neq j \).

As a consequence, if \(n = 1 \) then it is direct that

\(\ker(\partial_2) = V \land V \oplus \span\{\beta \land \alpha_1, \beta \land \alpha_2, \alpha \land \beta - \alpha_1 \land \beta_1, \alpha_1 \land \beta_2, \alpha_1 \land \beta_1 - \alpha_2 \land \beta_2, \alpha_2 \land \beta_1\} \).

Therefore, we obtain \(\dim(H^2(g_{4n+2}, \mathbb{C})) = 8 \).

In the case \(n > 1 \) then \(\Omega \) is indecomposable. Hence,

\[
\ker(\partial_2) = V \land V \oplus \span\{\beta \land \alpha_{2i-1}, \beta \land \alpha_{2i}, \alpha \land \beta - \sum_{i=1}^{n} \alpha_{2i-1} \land \beta_{2i-1}, \alpha_{2i-1} \land \beta_{2j} + \alpha_{2j-1} \land \beta_{2i} - \beta_{2j} \land \alpha_{2i-1} + \alpha_{2j} \land \beta_{2i-1}\} \]

with \(1 \leq i, j \leq n \) and it is easy to check that \(\dim(H^2(g_{4n+2}, \mathbb{C})) = 5n^2 + n \).

REFERENCES

[1] G. F. Armstrong, G. Cairns and B. Jessup, Explicit Betti numbers for a family of nilpotent Lie algebras, Proc. Amer. Math. Soc. 125 (1997), 381-385.
[2] I. Bajo, S. Benayadi and A. Medina, Symplectic structures on quadratic Lie algebras, J. Algebra 316 (2007), 174-188.
[3] M. T. Duong, G. Pinczon and R. Ushirobira, A new invariant of quadratic Lie algebras, Alg. Rep. Theory 15 (2012), 1163-1203.
[4] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. Éc. Norm. Supér. 4 (1985), 553-561.
[5] G. Pinczon and R. Ushirobira, New Applications of Graded Lie Algebras to Lie Algebras, Generalized Lie Algebras, and Cohomology, J. Lie Theory 17 (2007), 633-668.
[6] H. Pouseele, On the cohomology of extensions by a Heisenberg Lie algebra, Bull. Austral. Math. Soc. 71 (2005), 459-470.
[7] L. J. Santharoubane, Cohomology of Heisenberg Lie algebras, Proc. Amer. Math. Soc. 87 (1983), 23-28.

DEPARTMENT OF PHYSICS, HO CHI MINH CITY UNIVERSITY OF PEDAGOGY, 280 AN DUONG VUONG, HO CHI MINH CITY, VIETNAM.

E-mail address: thanhdmi@hcmup.edu.vn