On open flat sets in spaces with bipolar comparison

Nina Lebedeva

Abstract

We show that if a Riemannian manifold satisfies (3,3)-bipolar comparisons and has an open flat subset then it is flat. The same holds for a version of MTW where the perpendicularity is dropped.

In particular we get that the (3,3)-bipolar comparison is strictly stronger than the Alexandrov comparison.

1 Introduction

We say that a metric space X satisfies the (k,l)-bipolar comparison if for any $a_0, a_1, \ldots, a_k; b_0, b_1, \ldots, b_l \in X$ there are points $\hat{a}_0, \hat{a}_1, \ldots, \hat{a}_n, \hat{b}_0, \hat{b}_1, \ldots, \hat{b}_n$ in the Hilbert space \mathbb{H} such that

$$|\hat{a}_0 - \hat{b}_0|_\mathbb{H} = |a_0 - b_0|_X, \quad |\hat{a}_i - \hat{a}_0|_\mathbb{H} = |a_i - a_0|_X, \quad |\hat{b}_i - \hat{b}_0|_\mathbb{H} = |b_i - b_0|_X$$

for any i, j and

$$|\hat{x} - \hat{y}|_\mathbb{H} \geq |x - y|_X$$

for any $x, y \in \{a_0, a_1, \ldots, a_k, b_0, b_1, \ldots, b_l\}$.

This definition was introduced in [5]. The class of compact length metric spaces satisfying $(k,0)$-bipolar comparison with $k \geq 2$ coincide with the class of Alexandrov spaces with nonnegative curvature, (for $k = 2$ it is just one of the equivalent definitions, for arbitrary k see [1], [3]). In general (k,l)-bipolar comparisons (with k or $l \geq 2$) for length metric spaces are stronger conditions than nonnegative curvature condition and they describe some new interesting classes of spaces. In particular, we prove in [5] that for Riemannian manifolds $(4,1)$-bipolar comparison is equivalent to the conditions related to the continuity of optimal transport. Also in [5] we together with coauthors describe classes of Riemannian manifolds satisfying (k,l)-bipolar comparisons for almost all k, l excepting $(2,3)$ and $(3,3)$-bipolar comparisons. In particular it was not known if $(3,3)$-bipolar comparison differs from Alexandrov’s comparison. In this note the affirmative answer is obtained as a corollary of some rigidity result for spaces with $(3,3)$-bipolar comparison. To formulate exact statements we need some definitions and notations.

Partially supported by RFBR grant 17-01-00128.
Let M be a Riemannian manifold and $p \in M$. The subset of tangent vectors $v \in T_p$ such that there is a minimizing geodesic $[p,q]$ in the direction of v with length $|v|$ will be denoted as TIL_p. The interior of TIL_p is denoted by IL_p; it is called tangent injectivity locus at p. If at TIL_p is convex for any $p \in M$, then M is called CTIL.

Riemannian manifold M satisfies MTW if the following holds. For any point $p \in M$, any $W \in \operatorname{TIL}_p$ and tangent vectors $X, Y \in T_p$, such that $X \perp Y$ we have

\[\frac{\partial^4}{\partial^2s \partial^2t} |\exp_p(s \cdot X) - \exp_p(W + t \cdot Y)|^2_M \leq 0 \]

at $t = s = 0$.

This definition was introduced by Xi-Nan Ma, Neil Trudinger and Xu-Jia Wang in [7], Cedric Villani studied a synthetic version of this definition ([9]). If the same inequality holds without the assumption $X \perp Y$ Riemannian manifold M satisfies MTW$^\perp$ [2].

MTW and CTIL are necessary condition for TCP (transport continuity property). In [2], Alessio Figalli, Ludovic Rifford and Cédric Villani showed that a strict version of CTIL and MTW provide a sufficient condition for TCP. A compact Riemannian manifold M is called TCP if for any two regular measures with density functions bounded away from zero and infinity the generalized solution of Monge–Ampère equation provided by optimal transport is a genuine (continuous) solution.

Let us denote by $\mathcal{M}(k,l)$ the class of smooth complete Riemannian manifolds satisfying (k,l)–bipolar comparison and by $\mathcal{M}_{\geq 0}$ the class of complete Riemannian manifolds with nonnegative sectional curvature.

It was mentioned above, that

$\mathcal{M}_{\geq 0} = \mathcal{M}_{(k,0)}$

for $k \geq 2$ and it is obvious from definition, that

$\mathcal{M}_{(k',l')} \subset \mathcal{M}_{(k,l)}$

if $k' \geq k$ and $l' \geq l$. It is proven in [5] that

$\mathcal{M}_{\geq 0} = \mathcal{M}_{(2,2)} = \mathcal{M}_{(3,1)}$

and

$\mathcal{M}_{(4,1)} = \mathcal{M}_{(k,l)}$

for $k \geq 4$ and $l \geq 1$. The most interesting fact proven in [5] is that

$\mathcal{M}_{(4,1)} = \mathcal{M}_{\operatorname{CTIL}} \cap \mathcal{M}_{\operatorname{MTW}^\perp}$,

where $\mathcal{M}_{\operatorname{CTIL}}$, $\mathcal{M}_{\operatorname{MTW}^\perp}$ are classes of smooth Riemannian manifolds satisfying CTIL and MTW$^\perp$ correspondingly. In particular this implies that $\mathcal{M}_{(4,1)} \neq \mathcal{M}_{\geq 0}$.
In this paper we prove the following two results.

1.1. **Theorem.** Let M be a complete Riemannian manifold that satisfies $(3,3)$-bipolar comparison and contains a nonempty open flat subset. Then M is flat.

1.2. **Theorem.** Let M be a complete Riemannian manifold that satisfies $MTW \neq \perp$ and contains a nonempty open flat subset. Then M is flat.

1.3. **Corollary.** We have that $\mathcal{M}_{(3,3)} \neq \mathcal{M}_{\geq 0}$.

Theorem 1.1 follows from Proposition 2.2 and Theorem 1.2 follows from Proposition 2.3, proved in the next section.

As a related result we would like to mention a rigidity result for manifolds with nonnegative sectional curvature with flat open subsets by Dmitrii Panov and Anton Petrunin [8].

2 Proofs

For points a, b, c in a manifold we denote by $\angle[a_b_c]$ the angle at a of the triangle $[abc]$.

2.1. **Key lemma.** Let M be a complete Riemannian manifold that satisfies $(3,3)$-bipolar comparison. Assume that for the points x, p, q, x_q in M there is a triangle $[\tilde{p} \tilde{q} \tilde{x}]$ in the Euclidean plane \mathbb{E}^2 such that

$$|x_p - p|_M = |\tilde{x} - \tilde{p}|_{\mathbb{E}^2}, \quad |p - q|_M = |\tilde{p} - \tilde{q}|_{\mathbb{E}^2}, \quad |q - x_q|_M = |\tilde{q} - \tilde{x}|_{\mathbb{E}^2}$$

and moreover a neighborhood $N \subset \mathbb{E}^2$ of the base $[\tilde{p} \tilde{q}]$ admits a globally isometric embedding ι into M such that $\iota([\tilde{p} \tilde{x}] \cap N) \subset [px_p]$ and $\iota([\tilde{q} \tilde{x}] \cap N) \subset [qx_q]$. Then $x_p = x_q$ and the triangle $[px_q]$ can be filled by a flat geodesic triangle.

![Diagram](image)

Proof. Set $p_- = p$ and $q_- = q$.

Choose points $p_0, p_+ \in [p_-, x_p] \cap (N)$ so that the points $p_- = p_0, p_+ = x_p$ appear in the same order on $[p_-, x_p]$. Analogously, choose points $q_0, q_+ \in [q_-, x_q] \cap (N)$ so that the points $q_- = q_0, q_+ = x_q$ appear in the same order on $[q_-, x_q]$. Denote by $\tilde{p}_-, \tilde{p}_+, \tilde{q}_-, \tilde{q}_0, \tilde{q}_+$ the corresponding points on the sides of triangle $[\tilde{p} \tilde{q} \tilde{x}]$; so $\tilde{p}_- = \tilde{p}$ and $\tilde{q}_- = \tilde{q}$.

Applying the comparison to $a_0 = p_0, a_1 = p_- = a_2 = p_+, a_3 = x_p; \quad b_0 = q_0, b_1 = q_-, b_2 = q_+, b_3 = x_q$, we get a model configuration $\tilde{p}_0, \tilde{p}_-, \tilde{x}_p, q_0, \tilde{q}_-, \tilde{q}_+, x_q$ in the Hilbert space \mathbb{H}.
Note that from the comparison it follows that the quadruple $\hat{p}_-, \hat{p}_0, \hat{p}_+, \hat{x}_p$ lies on one line and the same holds for the quadruple $\hat{q}_-, \hat{q}_0, \hat{q}_+, \hat{x}_q$.

Since

$$|\hat{p}_0 - \hat{q}_+|_{\|} \geq |\hat{p}_0 - \hat{q}_+|_{M}, \quad |\hat{p}_0 - \hat{q}_0|_{\|} = |\hat{p}_0 - \hat{q}_0|_{M}, \quad |\hat{q}_0 - \hat{q}_+|_{\|} = |\hat{q}_0 - \hat{q}_+|_{M},$$

we have $\angle[\hat{q}_0 \hat{p}_0] \geq \angle[\hat{q}_0 \hat{p}_0]$. The same way we get that $\angle[\hat{q}_0 \hat{p}_0] \geq \angle[\hat{q}_0 \hat{p}_0]$. Since the sum of adjacent angles is π, these two inequalities imply that

$$\angle[\hat{q}_0 \hat{p}_0] = \angle[\hat{q}_0 \hat{p}_0].$$

The same way we get that

$$\angle[\hat{p}_0 \hat{p}_0] = \angle[\hat{p}_0 \hat{p}_0].$$

From the angle equalities, we get that

1

$$|\hat{p}_- - \hat{q}_+|_{\|} \leq |\hat{p}_- - \hat{q}_+|_{M}$$

and the equality holds if the points \hat{p}_-, \hat{q}_+ lie in one plane and on the opposite sides from the line $\hat{p}_0 \hat{q}_0$. By (3,3)-bipolar comparison the equality in 1 indeed holds.

It follows that configuration $\hat{p}_0, \hat{p}_- \hat{p}_+, \hat{x}_p, \hat{q}_0, \hat{q}_- \hat{q}_+, \hat{x}_q$ is isometric to the configuration $\hat{p}_0, \hat{p}_- \hat{p}_+, \hat{x}_q, \hat{q}_0, \hat{q}_- \hat{q}_+$; in particular, $\hat{x}_q = \hat{x}_p$.

By (3,3)-bipolar comparison $|x_p - x_q|_{M} \leq |\hat{x}_q - \hat{x}_p|_{\|}$; therefore $x_p = x_q$; so we can set further $x = x_p = x_q$.

Note that we also proved that the angles at p and q in the triangle $[pqx]$ coincide with their model angles; that is,

$$\angle[p \hat{q}] = \angle[p \hat{q}], \quad \angle[q \hat{p}] = \angle[q \hat{p}].$$

By the lemma on flat slices (see for example [4]), there is a global isometric embedding ι' of the solid model triangle $[\hat{p}\hat{q}\hat{x}]$ to M which sends $[\hat{p}\hat{q}]$ to $[pq]$ and $[\hat{p}\hat{x}]$ to $[px]$. Note that ι' has to coincide with ι on N. It follows that ι' maps $[\hat{q}\hat{x}]$ to $[q\hat{x}]$, which finishes the proof.

Theorem 1.1 and Theorem 1.2 follow from the propositions below.

2.2. Proposition. Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar comparison. Then any point $p \in M$ admits a neighborhood $U \ni p$ such that if U contains a nonempty open flat subset, then U is flat.

Proof. Given a point p consider a convex neighborhood $U \ni p$ such that injectivity radius at any point of U exceeds the diameter of U; in particular any two points $p, q \in U$ are connected by unique minimizing geodesic $[pq]$ which lies in U. Denote by F an open flat subset in U; we can assume that F is convex.

Note that by the key lemma we have the following:

Claim. For any $x \in U$ and any $p, q \in F$ the triangle $[pqx]$ admits a geodesic isometric filling by a flat triangle.
Indeed, set \(x_p = x \). Consider a plane triangle \([\tilde{p}\tilde{q}\tilde{x}]\) that has the same angle at \(\tilde{p} \) and the same adjacent sides as the triangle \([pqx]\). Since \(F \) is flat and convex there is a flat open geodesic surface \(\Sigma \) containing \([pq]\) and a part of \([px]\) near \(p \). Choose a direction at \(q \) that runs in \(\Sigma \) at the angle \(\angle[\tilde{q}\tilde{x}\tilde{p}] \) to \([qp]\). Consider the geodesic in this direction of the length \(|\tilde{q}\tilde{x}| \). Since diameter of \(U \) exceeds the injectivity radius at \(q \), this geodesic is minimizing. It remains to apply the key lemma.

From the claim, it follows that the sectional curvature \(\sigma_x(X, Y) \) vanishes for any point \(x \in U \) and any two velocity vectors \(X, Y \in T_x \) of minimizing geodesics from \(x \) to \(F \). Since the set of such sectional directions is open, curvature vanish at \(x \); hence the result. \(\square \)

2.3. Proposition. Let \(M \) be a complete Riemannian manifold that satisfies MTW\(^K\). Then any point \(p \in M \) admits a neighborhood \(U \ni p \) such that if \(U \) contains a nonempty open flat subset, then \(U \) is flat.

Proof. For a given \(p \in M \) let us take a neighborhood \(U \ni p \) as in the proof of the previous proposition. The same proof as (Thm 1.2 [5]) shows that \(U \) satisfies (4,1)-bipolar comparison (CTIL condition is not necessary, because we stay away from cut-locus). Again, same proof as (the Thm 1.2 [5]) shows that inside this neighborhood (4,1)-bipolar comparison is equivalent to (4,4)-bipolar comparison. Further note that (4,4)-bipolar comparison implies (3,3)-bipolar comparison. Now we can follow the same lines as in the proof of Proposition 2.2, because (3,3)-bipolar comparison is used only locally in the proof. \(\square \)

References

[1] Alexander, S.; Kapovitch, V.; Petrunin, A., Alexandrov meets Kirszbraun. Proceedings of the Gökova Geometry-Topology Conference 2010, 88–109, Int. Press, Somerville, MA, 2011.
[2] Figalli, A.; Rifford, L.; Villani, C., Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds. Tohoku Math. J. (2) 63 (2011)
[3] Lang, U.; Schroeder, V., Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal. 7 (1997), no. 3, 535–560.
[4] Lebedeva, N., Alexandrov spaces with maximal number of extremal points Geom. Topol. Volume 19, Number 3 (2015), 1493-1521.
[5] Lebedeva N.; Petrunin A.; Zolotov V., Bipolar comparison. (2017) https://arxiv.org/abs/1711.09423
[6] Loeper, G., On the regularity of solutions of optimal transportation problems. Acta Math. 202 (2009), no. 2, 241–283.
[7] Ma, X.-N.; Trudinger, N.; Wang, X.-J., Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177 (2005), no. 2, 151–183.
[8] Panov, Dmitri; Petrunin, Anton *Sweeping out sectional curvature*. Geom. Topol. 18 (2014), no. 2, 617–631.

[9] Villani, C., *Stability of a 4th-order curvature condition arising in optimal transport theory*. J. Funct. Anal. 255 (2008), no. 9, 2683–2708.

Nina Lebedeva,
Math. Dept. St. Petersburg State University, Universitetsky pr., 28, Stary Peterhof, 198504, Russia.
Steklov Institute, 27 Fontanka, St. Petersburg, 191023, Russia.
Email: lebed@pdmi.ras.ru