On R-matrix representations of Birman-Murakami-Wenzl algebras

A. P. Isaev
Bogoliubov Laboratory of Theoretical Physics, JINR
141980 Dubna, Moscow Region, Russia

O. V. Ogievetsky
Center of Theoretical Physics, Luminy
13288 Marseille, France

P. N. Pyatov
Bogoliubov Laboratory of Theoretical Physics, JINR
141980 Dubna, Moscow Region, Russia

Abstract. We show that to every local representation of the Birman-Murakami-Wenzl algebra defined by a skew-invertible R-matrix $\hat{R} \in \text{Aut}(V \otimes V)$ one can associate pairings $V \otimes V \to \mathbb{C}$ and $V^* \otimes V^* \to \mathbb{C}$, where V is the representation space. Further, we investigate conditions under which the corresponding quantum group is of SO or Sp type.

To the memory of Andrei Nikolayevich Tyurin

Let G be either orthogonal or symplectic Lie group, \mathfrak{g} its Lie algebra and $U_q(\mathfrak{g})$ the corresponding quantum group (i.e., the quantized universal enveloping algebra $[1, 2]$). Denote by V the space of the vector representation of G or $U_q(\mathfrak{g})$.

In [3] R. Brauer constructed centralizers $\text{End}_G(V \otimes V^n)$ of the action of G on tensor powers of the vector representation. He introduced a one-parametric family of algebras $Br_n(x)$; for certain values of the parameter $x = x_G$ 2, the algebras $Br_n(x_G)$ possess representations $Br_n(x_G) \to \text{End}(V \otimes V^n)$ commuting with the action of G. These representations are generated by the permutation $P \in \text{Aut}(V \otimes V^n)$:

$$P(u \otimes v) = v \otimes u, \forall u, v \in V$$

and the operation related to the G-invariant pairing $g : V \otimes V \to \mathbb{C}$.

In case of $U_q(\mathfrak{g})$ the role of the Brauer centralizer algebras is played by a two-parametric family of algebras $W_n(q, \nu)$ introduced independently by J. Murakami [4] and by J. Birman and H. Wenzl [5]. Centralizers $\text{End}_{U_q(\mathfrak{g})}(V \otimes V^n)$ are then realized by specific representations of the Birman-Murakami-Wenzl algebras $W_n(q, \nu_{G,q}) \to \text{End}(V \otimes V^n)$ which are generated by q-analogs of permutations called the R-matrices.

1On leave of absence from P. N. Lebedev Physical Institute, Leninsky Pr. 53, 117924 Moscow, Russia

2Values x_G and $\nu_{G,q}$ (introduced in a paragraph below) depend essentially on a particular choice of the group G.
In the present paper we study an inverse problem. Given an R-matrix representation of the Birman-Murakami-Wenzl algebra we find conditions under which the associated quantum group can be called an orthogonal or symplectic one. More precisely, we prove that for any R-matrix which generates representations of algebras $W_n(q, \nu)$ on spaces $V \otimes \mathbb{C}^n$ one can construct a unique, up to a multiplicative constant, nondegenerate pairing on the space V (see Theorem and Proposition 2). We further describe conditions under which this pairing is invariant (see Proposition 3 and comments after it). So in the q-case the information on both the permutation and the pairing is advantageously encoded in a single R-matrix.

An algebra $W_n(q, \nu)$ is a $(2n-1)!!$ dimensional quotient of the group algebra of the braid group B_n. It is given in terms of generators $\{e_i, \kappa_i\}_{i=1}^{n-1}$ and relations [7]

1. $e_i e_{i+1} e_i = e_{i+1} e_i e_{i+1}$, $e_i e_j = e_j e_i$, $|i-j| > 1$,

2. $e_i^2 = 1 + \lambda (e_i - \nu \kappa_i)$, $\lambda := q - q^{-1}$,

3. $e_i \kappa_i = \kappa_i e_i = \nu \kappa_i$,

4. $\kappa_{i+1} e_i \kappa_{i+1} = \nu^{-1} \kappa_{i+1}$, $\kappa_{i+1} e_i^{-1} \kappa_{i+1} = \nu \kappa_{i+1}$.

Here eqs. (1) define the Artin presentation of the braid group B_n and relations (2)-(4) extract an appropriate quotient. The domains of the algebra parameters $q \in \mathbb{C}\{0, \pm 1\}$ and $\nu \in \mathbb{C}\{0, q, -q^{-1}\}$ are chosen in such a way that the elements κ_i can be expressed in terms of e_i

$$\kappa_i = \lambda^{-1} \nu^{-1} (q - e_i) (q^{-1} + e_i) = \lambda^{-1} (e_i^{-1} - e_i + \lambda),$$

and satisfy relations

$$\kappa_i^2 = \mu \kappa_i$$

with a nonzero coefficient $\mu := \lambda^{-1} \nu^{-1} (q - \nu) (q^{-1} + \nu)$.

Note that for generic values of ν and q the set of defining relations (1)–(4) is not a minimal one. To show this, start with the first one of eqs.(4) and multiply both sides by $e_i^{-1} e_{i+1}^{-1}$ from the right

$$\kappa_{i+1} \kappa_i = \kappa_{i+1} e_i^{-1} e_{i+1}^{-1}.$$

Then, multiplying by $\lambda \kappa_{i+1}$ from the right and performing straightforward transformations we get

$$\lambda \nu^{-1} \kappa_{i+1} e_i^{-1} \kappa_{i+1} = \lambda \kappa_{i+1} \kappa_i \kappa_{i+1} =$$

$$= \kappa_{i+1} (e_i^{-1} - e_i + \lambda) \kappa_{i+1} = \kappa_{i+1} (e_i^{-1} \kappa_{i+1} - \nu^{-1} + \lambda \mu),$$

3Defining relations for Brauer centralizer algebra $Br_n(x)$ follow from relations (1)-(6) in a limiting case $\nu = q^{1-x}$, $q \to 1$; note that in this limit the generators κ_i and e_i become independent.
wherefrom it follows that \((\lambda \nu^{-1} - 1)(\kappa_{i+1}e_i^{-1}\kappa_{i+1} - \nu\kappa_{i+1}) = 0\). Thus, in case \(\nu \neq \lambda\) the two relations in (4) are algebraically dependent.

In the sequel we shall use a few more relations for the generators \(e_i\) and \(\kappa_i\):

\[
\begin{align*}
\kappa_i\kappa_{i \pm 1} &= \kappa_i e_{i \pm 1} e_i, \\
\kappa_i\kappa_{i \pm 1}\kappa_i &= \kappa_i, \\
\k_i^{\pm 1}\kappa_i &= \nu^{\mp 1}\k_i.
\end{align*}
\]
(8) (9) (10)

All these equalities follow easily from the defining relations (1)–(4).

We are aiming to study a specific family of representations of algebras \(W_n(q, \nu)\), the so-called local (or R-matrix) representations. We are using a compact matrix notation of [2]. Necessary explanations are given below.

Let \(V\) be a finite dimensional vector space. We label the component space \(V\) of the tensor power \(V \otimes V \otimes \ldots \otimes V\) from left to right in the ascending order starting from 1. For any element \(X \in \text{End}(V \otimes 2)\) and for all \(1 \leq k \neq l \leq n\) the symbol \(X_{kl}\) stands for an element of \(\text{End}(V \otimes n)\) whose action differs from the identity only on the tensor product of the \(k\)-th and \(l\)-th component spaces where it coincides with \(X\). In case \(l = k + 1\) a concise notation \(X_k := X_{k,k+1}\) is often applied. The symbols \(I\) and \(P\) are reserved for the identity and the permutation operators respectively.

An element \(\hat{R} \in \text{Aut}(V \otimes 2)\) is called an R-matrix if it satisfies the so called Yang-Baxter equation

\[
\hat{R}_1 \hat{R}_2 \hat{R}_1 = \hat{R}_2 \hat{R}_1 \hat{R}_2.
\]
(11)

With any R-matrix \(\hat{R}\) one associates a family of representations of the braid groups \(B_n, \rho^R_n : B_n \rightarrow \text{Aut}(V \otimes n), n = 1, 2, \ldots\), defined on the generators by \(\rho^R_n(e_i) := \hat{R}_i, i = 1, 2, \ldots, n - 1\).

An R-matrix \(\hat{R}\) whose minimal polynomial is cubic and which induces representations \(\rho^R_n\) of the quotient algebras \(W_n(q, \nu)\) (for some values of \(q\) and \(\nu\)) is called an R-matrix of BMW type.

An operator \(\hat{R} \in \text{Aut}(V \otimes 2)\) (not necessarily an R-matrix) is called skew invertible iff there exists some \(\hat{\Psi} \in \text{End}(V \otimes 2)\), called the skew inverse of \(\hat{R}\), such that relations

\[
\text{Tr}(1)\hat{R}_{12}\hat{\Psi}_{23} = \text{Tr}(2)\hat{\Psi}_{12}\hat{R}_{23} = P_{13}
\]
(12)

are satisfied. Here the subscript \(i\) in the notation of trace \(\text{Tr}_{(i)}\) indicates the label of the space where the trace is evaluated.

Denote

\[
C_2 := \text{Tr}(1)\hat{\Psi}_{12}, \quad D_1 := \text{Tr}(2)\hat{\Psi}_{12}.
\]

As a direct consequence of the definitions one has

\[
\text{Tr}(1)C_i\hat{R}_{12} = I_2, \quad \text{Tr}(2)D_2\hat{R}_{12} = I_1.
\]
(13)

In what follows while referring to relations (1)–(10) we always imply their images in the R-matrix representations, that is

\[
e_i \mapsto \hat{R}_i, \quad \kappa_i \mapsto K_i := \lambda^{-1}\nu^{-1}(qI - \hat{R}_i)(q^{-1}I + \hat{R}_i).
\]
(14)
Proposition 1 [8, 9]. For a skew invertible R-matrix \hat{R} the following relations hold

\begin{align}
C_1 \hat{\Psi}_{12} &= \hat{R}_{21}^{-1} C_2, \quad \hat{\Psi}_{12} C_1 = C_2 \hat{R}_{21}^{-1}, \quad (15) \\
D_2 \hat{\Psi}_{12} &= \hat{R}_{21}^{-1} D_1, \quad \hat{\Psi}_{12} D_2 = D_1 \hat{R}_{21}^{-1}. \quad (16)
\end{align}

Proof. First, we rewrite conditions (1) for the R-matrix \hat{R} in the form $\hat{R}_{12}^{\pm 1} \hat{R}_{23} \hat{R}_{12}^{\pm 1} = \hat{R}_{23}^{\pm 1} \hat{R}_{12} \hat{R}_{23}^{\pm 1}$. Multiplying by $\hat{\Psi}_{01} \hat{\Psi}_{34}$ and taking traces in spaces with labels 1 and 3 we get

\[
\text{Tr}(1)(\hat{\Psi}_{01} \hat{R}_{12}^{\pm 1} P_{24} \hat{R}_{12}^{\mp 1}) = \text{Tr}(3)(\hat{\Psi}_{34} \hat{R}_{23}^{\mp 1} P_{02} \hat{R}_{23}^{\pm 1}).
\]

Next, evaluating trace in space 0 or 4 we get four equalities

\[
\text{Tr}(1)(C_1 \hat{R}_{12}^{\pm 1} P_{24} \hat{R}_{12}^{\mp 1}) = C_4 I_2, \quad \text{Tr}(3)(D_3 \hat{R}_{23}^{\mp 1} P_{02} \hat{R}_{23}^{\pm 1}) = D_0 I_2,
\]

which can be further transformed to

\[
\text{Tr}(1)(C_1 \hat{R}_{12}^{\pm 1} \hat{R}_{14}^{\mp 1}) = C_4 P_{24}, \quad \text{Tr}(3)(D_3 \hat{R}_{23}^{\mp 1} \hat{R}_{03}^{\pm 1}) = D_0 P_{02}.
\]

Consider the left one of equalities in (18) with upper/lower signs. Multiply both its sides by $\hat{\Psi}_{23}/\hat{\Psi}_{43}$ and take trace in the space with label 2/4. Then, apply definition (12) and use the relation $\text{Tr}(2)(U_2 P_{12} W_2) = W_1 U_1$ which holds for any $U, W \in \text{End}(V)$ and follows from the properties of the trace and the permutation. The resulting equality is just the left/right formula in (15).

Derivation of relations (16) from the right equality in (18) proceeds similarly. □

Corollary. Evaluating traces of relations (15)/(16) in spaces with labels 2/1 one finds

\[
\text{Tr}(2)C_2 \hat{R}_{21}^{-1} = \text{Tr}(2)D_2 \hat{R}_{12}^{-1} = C_1 D_1 = D_1 C_1.
\]

Theorem. Let \hat{R} be a skew invertible BMW type R-matrix. Then the rank of the operator $\hat{K} \in \text{End}(V^{\otimes 2})$ (see eq.(14)) equals 1.

Proof. Consider an R-matrix version of the left equation in (4)

\[
\hat{K}_{23} \hat{R}_{12} \hat{K}_{23} = \nu^{-1} \hat{K}_{23}.
\]

Multiplying by $\hat{\Psi}_{01}$ and taking trace in space 1 we obtain

\[
\hat{K}_{23} P_{02} \hat{K}_{23} = \nu^{-1} D_0 \hat{K}_{23}.
\]

Evaluating traces in spaces 2 and 3 in the left hand side of relation (20) one finds

\[
\text{Tr}(23)(\hat{K}_{23} P_{02} \hat{K}_{23}) = \mu \text{Tr}(23)(\hat{K}_{23} P_{02}) = \mu \text{Tr}(23)(P_{02} \hat{K}_{03}) = \mu \text{Tr}(3) \hat{K}_{03},
\]

where (6) and the properties of the permutation were used. On the other hand, (6) implies

\[
\text{Tr}(12) \hat{K}_{12} = \mu \text{rank}(\hat{K}),
\]

4Here it is suitable to label component spaces in $V^{\otimes n}$ starting from 0.
and so, applying $\text{Tr}(\mathit{23})$ to the right hand side of relation (20), one gets

$$\nu^{-1} D_0 \text{Tr}(\mathit{23}) \hat{K}_{23} = \frac{\mu}{\nu} \text{rank}(\hat{K}) D_0.$$ \hspace{1cm} (23)

Equating the results of calculations in (21) and (23) we obtain

$$\text{Tr}(\mathit{2}) \hat{K}_{12} = \nu^{-1} \text{rank}(\hat{K}) D_1.$$ \hspace{1cm} (24)

In the same way the equality

$$\text{Tr}(\mathit{1}) \hat{K}_{12} = \nu^{-1} \text{rank}(\hat{K}) C_2.$$ \hspace{1cm} (25)

follows from relation (10) with the upper choice of signs.

Consider now an R-matrix version of the right formula in (4)

$$\hat{K}_{23} \hat{R}_{12}^{-1} \hat{K}_{23} = \nu \hat{K}_{23}.$$ \hspace{1cm} (26)

Taking traces of this equality in spaces 2 and 3 and using eq.(24) one obtains

$$\text{Tr}(\mathit{2}) D_2 \hat{R}_{12}^{-1} = \nu^2 I_1,$$ \hspace{1cm} (27)

which in view of (16) is equivalent to

$$CD = DC = \nu^2 I.$$ \hspace{1cm} (28)

Thus, in the conditions of the theorem, the matrices C and D are invertible and we can write relation (25) in a form

$$\text{Tr}(\mathit{1}) D_2 \hat{K}_{12} = \nu \text{rank}(\hat{K}) I_2.$$ \hspace{1cm} (29)

On the other hand, applying $\text{Tr}(\mathit{23})$ to an R-matrix version of eq.(9), that is $\hat{K}_{23} \hat{K}_{12} \hat{K}_{23} = \hat{K}_{23}$, and taking into account relations (22) and (24) we obtain

$$\text{Tr}(\mathit{2}) D_2 \hat{K}_{12} = \nu I_1.$$ \hspace{1cm} (30)

Finally, evaluating $\text{Tr}(\mathit{2})$ of the equality (28) and $\text{Tr}(\mathit{1})$ of the equality (29) and comparing the results we conclude that rank $\hat{K} = 1$. \hspace{1cm} \square

Remark. Although in this paper the matrices C and D are auxiliary, they play a conceptual role in the theory of quantum groups and are used, in particular, for the definition of quantum traces (more details on that can be found in [10, 8, 9, 12]). While proving the theorem we have derived a number of formulas — (29), (27), and (24), (25) (where one has to put rank$\hat{K} = 1$) — which are characteristic for matrices C and D corresponding to BMW type R-matrices. One more relation can be added

$$\text{Tr} D = \text{Tr} C = \nu \mu.$$ \hspace{1cm} (31)

It follows by evaluation of traces of relations (24) and (25).
From now on we shall fix some basis \(\{v^i\}_{i=1}^N \) in space \(V \) \((N := \dim V) \). Let

\[
\hat{K}_{ij}^{kl} = \bar{g}_{ij} g^{kl},
\]

be the matrix of the rank one operator \(\hat{K} \) in this basis. Define operators \(X, Y \in \text{End}(V) \) whose matrices in the chosen basis are

\[
X^j_i := \sum_k g^{ik} \bar{g}_{kj}, \quad Y^j_i := \sum_k g^{kj} \bar{g}_{ik}.
\]

Proposition 2. Let \(\hat{R} \) be a skew invertible BMW type R-matrix. Bivectors \(g^{kl} \) and \(g_{ij} \) (31) define nondegenerate bilinear pairings \(g : V \otimes V \to \mathbb{C} \) and \(\bar{g} : V^* \otimes V^* \to \mathbb{C} \)

\[
g(x, y) := \sum_{i,j=1}^N x_i y_j g^{ij}, \quad \bar{g}(z, t) := \sum_{i,j=1}^N z^i t^j \bar{g}_{ij}, \quad \forall \ x, y \in V, \ z, t \in V^*,
\]

where \(x_i, y_j \), and \(z^i, t^j \) stand for coordinates of vectors \(x, y \), and \(z, t \) in the basis \(\{v^i\} \) and the dual basis \(\{v^*_i\} \), respectively.

Operators \(X \) and \(Y \) are inverse to each other; the coefficients of the characteristic polynomial of \(X \):

\[
\det(xI - X) = \sum_{k=0}^N (-1)^k C_k x^{N-k}
\]

satisfy reciprocity relations

\[
C_k = \epsilon C_{N-k} \quad (\forall \ 0 \leq k \leq N), \quad \epsilon = \pm 1.
\]

Proof. Consider an R-matrix version of relation (9), \(\hat{K}_{12} \hat{K}_{23} \hat{K}_{12} = \hat{K}_{12} \). By a substitution of eq.(31) and by evaluation of traces in spaces 1 and 2 (note that \(\sum_{i,j}(g^{ij}\bar{g}_{ij}) = \text{Tr}(12)\hat{K}_{12} = \mu \neq 0 \)) the above equality acquires a form\(^5\)

\[
XY = I,
\]

wherefrom it also follows that pairings (33) are nondegenerate.

The definition of matrices \(X \) and \(Y \) implies that \(\text{Tr}(X^k) = \text{Tr}(Y^k), \forall k = 1, 2, \ldots \), and, hence, matrices \(X \) and \(Y = X^{-1} \) obey the same characteristic polynomial. Taking into account the identities \(C_N(X) C_k(X^{-1}) = C_{N-k}(X) \), we then conclude

\[
C_N(X) C_k(X) = C_{N-k}(X) \quad \forall \ 1 \leq k \leq N.
\]

For \(k = N \) this gives \(C_N(X) = \epsilon = \pm 1 \); substituting the expression for \(C_N(X) \) back to (36) one obtains (34). \(\square \)

Following [2] for any R-matrix \(\hat{R} \) we define an associative unital bialgebra \(\mathcal{F}(\hat{R}) \) generated by components of the matrix \(T := ||T^j_i||_{i,j=1}^N \) subject to relations

\[
\hat{R}_{12} T_1 T_2 = T_1 T_2 \hat{R}_{12}.
\]

The coproduct and the counit in the bialgebra are defined by

\[
\Delta(T^j_i) = \sum_{k=1}^N T^j_k \otimes T^j_k, \quad \varepsilon(T^j_i) = \delta^j_i.
\]

\(^5\)

It is this equation which was used in a classification of quantum groups in dimension 2 [11].
For the skew invertible BMW type R-matrix \hat{R} the eqs. (14), (37) and the rank one property of the matrix \hat{K} together imply
\[
\hat{K}_{12}T_1T_2 = \mu^{-1}\hat{K}_{12}T_1T_2\hat{K}_{12} = \tau\hat{K}_{12}
\]
for some $\tau \in \mathcal{F}(\hat{R})$.

The following proposition demonstrates the role of the matrix X for the algebra $\mathcal{F}(\hat{R})$.

Proposition 3. Under the assumptions of the theorem the element τ is group-like, i.e., $\Delta(\tau) = \tau \otimes \tau$, $\varepsilon(\tau) = 1$. It also satisfies relations
\[
\tau T_i^j = (XTX^{-1})^j_i \tau .
\]

Proof. The group-like properties of the element τ are directly checked by application of the coproduct and the counit operations to relation (38). Relation (39) is justified by a calculation
\[
\tau \hat{K}_{12}T_3 = \hat{K}_{12}T_1T_2T_3 = \hat{K}_{12}\hat{R}_{23}\hat{R}_{12}T_1T_2T_3\hat{R}_{12}^{-1}\hat{R}_{23}^{-1} =
\]
\[
\hat{K}_{12}\hat{K}_{23}T_1T_3\hat{R}_{12}^{-1}\hat{R}_{23}^{-1} = \hat{K}_{12}\hat{K}_{23}\hat{R}_{12}^{-1}\hat{R}_{23}^{-1} \tau =
\]
\[
= \hat{K}_{12}\hat{K}_{23}\hat{K}_{12} \tau = \hat{K}_{12}\hat{K}_{23}\hat{K}_{12}(XTX^{-1})_3 \tau = \hat{K}_{12}(XTX^{-1})_3 \tau .
\]
Here we have used relations (8), (7), (9), as well as formula
\[
T_1\hat{K}_{23}\hat{K}_{12} = \hat{K}_{23}\hat{K}_{12}(XTX^{-1})_3,
\]
which is checked by a substitution of expressions (31), (32) for \hat{K} and X with a subsequent use of (35).

Given a quantum group $U_q(g)$ (recall: g is an orthogonal or symplectic Lie algebra), its dual Hopf algebra G_q can be constructed as a quotient of the bialgebra $\mathcal{F}(\hat{R})$ (here the R-matrix \hat{R} is defined by a canonical element of $U_q(g)$) by an ideal $\tau = 1$. By duality, the left $U_q(g)$-module V admits the right coaction of G_q
\[
\delta(v^i) = \sum_{j=1}^{N} v^j \otimes T_j^i .
\]

As one can see from eq.(38) it is the condition $\tau = 1$ that makes the pairings g and \bar{g} (33) invariant with respect to the coaction (40).

One can start with an algebra $\mathcal{F}(\hat{R})$ defined by some skew invertible BMW type R-matrix \hat{R}. Then the factorization of $\mathcal{F}(\hat{R})$ by the relation $\tau = 1$ would imply linear dependencies among generators T_j^i (c.f., eq.(39)) unless the matrix X (32) is scalar. As it is seen from an example below this is not always the case.

The standard so_N and sp_N series of BMW type R-matrices (see [2])\(^6\) are
\[
\hat{R} = \sum_{i,j=1}^{N} q^{(\delta_{ij}-\delta_{ij'})} e_{ij} \otimes e_{ji} + \lambda \sum_{1 \leq j < i}^{N} e_{jj} \otimes e_{ii} - \lambda \sum_{1 \leq j < i}^{N} q^{(\rho_j-\rho_i)} e_i e_j e_{ij} \otimes e_{ij'} .
\]

\(^6\)To realize a representation of the Birman-Murakami-Wenzl algebra the R-matrices given in [2] are to be multiplied (in our case, from the left) by the permutation operator.
Here the following notation is used: \(i' := N + 1 - i; \| e_{ij} \|_k := \delta_{ik} \delta_{j}^{k} \) are matrix units; \(\epsilon_i = 1 (\forall i) \) for the \(so_N \) case and \(\epsilon_i = 1 = -\epsilon_i \) \(\forall i \leq n \) for the \(sp_{2n} \) case; the numbers \((\rho_1, \rho_2, \ldots, \rho_N) \) are chosen as \((n-1/2, n-3/2, \ldots, 1/2, 0, -1/2, \ldots, -n+1/2), (n-1, n-2, \ldots, 1, 0, 0, -1, \ldots, -n+1) \) and \((n, n-1, \ldots, 1, -1, \ldots, -n) \) in cases \(so_{2n+1}, so_{2n}, \) or \(sp_{2n} \) correspondingly. In calculations below we will use the relation \(\rho_i = -\rho_i' \) rather then the explicit expressions for \(\rho_i \). The R-matrices (41) generate representations of the Birman-Murakami-Wenzl algebras \(W_k(q, \nu) \) with specific values of their parameter \(\nu \), namely, \(\nu = q^{1-N} \) for the \(so_N \) case and \(\nu = -q^{-1-2N} \) for the \(sp_N \) case.

For the R-matrices (41) one calculates \(\bar{g}_{ij} = \delta_{ij} \epsilon_i q^{-\rho_i}, \) \(g^{ij} = \delta_{ij} \epsilon_i q^{-\rho_i} \), wherefrom it follows that \(X = I \). To construct R-matrices whose corresponding matrices \(X \) are not scalars we apply the twist procedure suggested in [13] (see also [12, 14]). Remind briefly that given a pair of R-matrices \(\hat{R} \) and \(\hat{F} \) one can produce a new R-matrix \(\hat{R}_F := (PF) \hat{R} (\hat{F}^{-1}P) \), called the twisted \(\hat{R} \), provided that additional relations on \(\hat{R} \) and \(\hat{F} \) are satisfied

\[
\hat{R}_{12} \hat{F}_{23} \hat{F}_{12} = \hat{F}_{23} \hat{F}_{12} \hat{R}_{23}, \quad \hat{F}_{12} \hat{F}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{F}_{12} \hat{F}_{23}.
\]

(42)

By construction the twist procedure preserves not only the Yang-Baxter equation (11) but all the additional relations (2)–(10) which characterize BMW type R-matrices.

Now we twist R-matrices (41). As a trial twisting R-matrix we use \(\hat{F} \) such that \(PF = \sum_{i,j} d_{ij} e_{ii} \otimes e_{jj} \) where \(d_{ij} \in \mathbb{C} \setminus \{0\} \). An easy check gives the conditions

\[
d_{ij} d_{ij}' = u_j, \quad d_{ij} d_{ij'} = w_i, \quad \forall i, j,
\]

under which relations (42) are satisfied. The latter in turn are consistent if

\[
u_i w_i' = w_i w_i' = \text{const}, \quad \forall i.
\]

The twisting procedure results in a usual family of multiparametric R-matrices (some of parameters here are inessential and can be removed by a linear change of basis in the space \(V \))

\[
\hat{R}_F = \sum_{i,j=1}^{N} q^{(\delta_{ij}-\delta_{ij'})} \frac{d_{ij}}{d_{jj}} e_{ij} \otimes e_{ji} + \lambda \sum_{1 \leq j < i}^{N} e_{jj} \otimes e_{ii} - \lambda \sum_{1 \leq j < i}^{N} q^{(\rho_i - \rho_j)} \epsilon_i \epsilon_j \frac{d_{ij}}{d_{jj'}} e_{ij} \otimes e_{ij'}.
\]

(43)

For these twisted R-matrices we have \(\bar{g}_{ij} = \delta_{ij} \epsilon_i q^{-\rho_i} d_{ii}, \) \(g^{ij} = \delta_{ij} \epsilon_i q^{-\rho_i} d_{ii}^{-1} \) which gives \(X_i^j = \delta_i^j d_{ii} d_{ii}^{-1} \). Thus, element \(\tau \) (38) is not necessarily central in the algebra \(\mathcal{F}(\hat{R}) \).

Acknowledgements. The work of A. P. Isaev and P. N. Pyatov was supported in part by the grant No. 03-01-0078 of the Russian Foundation for Basic Research. The work of A. P. Isaev was also supported by the INTAS grant No. 03-51-3350.
References

[1] V. G. Drinfel’d, “Quantum groups”, In Proc. Intern. Congress of Mathematicians. Berkeley, 1986, A.M. Gleason (ed.), vol. 1, pp. 798–820.

[2] N. Yu. Reshetikhin, L.A. Takhtajan and L.D. Faddeev, ”Quantization of Lie groups and Lie algebras”, (Russian) Algebra i Analiz 1 (1989) no. 1, 178–206. English translation in: Leningrad Math. J. 1 (1990) no. 1, 193–225.

[3] R. Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. Math. 38 (1937) 854–872.

[4] J. Murakami, ‘The Kauffman Polynomial of Links and Representation Theory’. Osaka J. Math. 24 (1987) 745–758.

[5] J. S. Birman and H. Wenzl, ‘Braids, Link polynomials and a new Algebra’. Trans. Amer. Math. Soc. 313 No. 1 (1989) 249–273.

[6] V. Chari and A. Pressley, “A guide to quantum groups”, Cambridge University Press, Cambridge, 1994.

[7] H. Wenzl, “Quantum Groups and Subfactors of Type B, C and D”, Commun. Math. Phys. 133 (1990) 383–432.

[8] N. Yu. Reshetikhin, “Quasitriangular Hopf algebras and invariants of links”, (Russian) Algebra i Analiz 1 (1989) no. 2, 169–188. English translation in: Leningrad Math. J. 1 (1990) no. 2, 491–513.

[9] O. Ogievetsky, “Uses of Quantum Spaces”, Contemp. Math. 294 (2002) 161–232.

[10] V. G. Drinfel’d, “Almost cocommutative Hopf algebras”, (Russian) Algebra i Analiz 1 (1989) no. 2, 30–46; English translation in Leningrad Math. J. 1 (1990) no. 2, 321–342.

[11] H. Ewen, O. Ogievetsky and J. Wess, “Quantum matrices in two dimensions”, Lett. Math. Phys. 22 (1991) 297–305.

[12] A. P. Isaev, O. Ogievetsky and P. Pyatov, “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A: Math. Gen. 32 (1999) L115–L121.

[13] N. Yu. Reshetikhin, “Multiparameter quantum groups and twisted quasitriangular Hopf algebras”, Lett. Math. Phys. 20 (1990) 331–335.

[14] A. P. Isaev, ‘Quantum groups and Yang-Baxter equations,’ Sov. J. Part. Nucl. 26 (1995) 501–526.