The L^2-torsion is a variant defined for compact L^2-acyclic manifolds of determinant class, for example odd dimensional hyperbolic manifolds. It was introduced by John Lott [Lot92] and Varghese Mathai [Mat92] and computed for hyperbolic manifolds in low dimensions. Our definition of the L^2-torsion coincides with that of John Lott, which is twice the logarithm of that of Varghese Mathai.

In this paper you will find a proof of the fact that the L^2-torsion of hyperbolic manifolds of arbitrary odd dimension does not vanish. This was conjectured by John Lott in [Lot92, p.484, Proposition 16 infra]. Some concrete values are computed and an estimate of their growth with the dimension is given. The values we compute for dimensions 5 and 7 differ from those published in [Lot92, Proposition 16]. The result has been independently achieved by both authors and will be part of the dissertation of Eckehard Hess at the university of Mainz. For an introduction into L^2-theory see [Lü97].

We are indebted to Prof. Dr. Lück, Münster, for permanent support and encouragement.

1. Definition. Following [Lot92, p.482] we define the analytic L^2-torsion of an L^2-acyclic Riemannian $(d = 2n + 1)$-dimensional manifold of determinant class by

$$\text{Tor}_{(2)}(M) = 2 \sum_{j=0}^{n} (-1)^{j+1} \log \det_G(\Delta_j)$$

Here G is the fundamental group of M, Δ_j is the Laplacian restricted to coclosed forms on the universal covering \tilde{M} and the logarithm of the G-determinant is computed from the local trace of the heat kernel as follows

$$\log \det_G(\Delta_j) = \int_{F} \left\{ \frac{d}{ds} \left|_{s=0} \left[\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \text{tr}_{C} e^{-t\Delta_j}(x,x) dt \right] \right. \right.$$

$$\left. + \int_{1}^{\infty} t^{-1} \text{tr}_{C} e^{-t\Delta_j}(x,x) dt \right\} dx$$
Here F is a fundamental domain of M in \tilde{M}, the first integral exists for s sufficiently large and one has to take the meromorphic extension at 0. M being of determinant class ensures the second integral to converge.

2. Theorem. There is a constant $\alpha_d > 0$, such that for every $(d = 2n + 1)$-dimensional closed hyperbolic manifold

$$\text{Tor}(M) = (-1)^n \alpha_d \text{Vol}(M)$$

The values for α_d have been computed as follows. Although exact values were computed for $d \leq 251$, we will give only exact numbers for $d \leq 11$ and approximate numbers for $d \leq 39$:

d	α_d	$\approx \alpha_d$	d	$\approx \alpha_d$
3	$\frac{1}{3\pi}$	0.106103	13	1.61885
5	$\frac{62}{45\pi^2}$	0.139598	15	4.22925
7	$\frac{221}{35\pi^2}$	0.203645	17	12.3578
9	$\frac{32204}{2193\pi^4}$	0.349847	19	39.9606
11	$\frac{1339661}{6237\pi^6}$	0.701891	21	141.729
			23	547.188

3. Lemma. Let $\Delta_j = \delta_j d_j|_{\ker(\delta_j+1)}$ be the Laplacian, restricted to coclosed L^2-forms on the $(d = 2n + 1)$-dimensional hyperbolic space H^d. Then for every closed d-dimensional hyperbolic manifold M with fundamental group G and $j \neq n$

$$\log \det_G(\Delta_j) = \text{Vol}(M)C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K^n_{k,j} (-1)^{k+1} \frac{2\pi}{2k+1} (n - j)^{2k+1}$$

with $C = \frac{(4\pi)^{-(n+\frac{1}{2})}}{\Gamma(n+\frac{1}{2})}$ and $a = n - j$

Here $K^n_{k,j}$ is the coefficient of ν^{2k} in the polynomial

$$P(\nu) := \prod_{i=0}^{n} \frac{(\nu^2 + i^2)}{\nu^2 + (n - j)^2} \quad (*)$$

Note that $P(\nu)$ indeed is a polynomial rather than a rational function, as $|a| \in \{1...n\}$. In addition

$$\log \det_G(\Delta_n) = 0$$

Proof. Following [Lot92] prop. 15 the local trace of the heat kernel of Δ_j is

$$\text{tr} e^{-t\Delta_j}(x,x) = C \left(\frac{2n}{j} \right) \int_{-\infty}^{\infty} e^{-t(\nu^2 + a^2)} \prod_{k=0}^{n} \frac{(\nu^2 + k^2)}{\nu^2 + a^2} d\nu$$

According to the above remark let

$$\prod_{k=0}^{n} \frac{(\nu^2 + k^2)}{\nu^2 + a^2} = \sum_{k=0}^{n} K^n_{k,j} \nu^{2k}$$
Evaluation of the above integral yields
\[\text{tr}_C e^{-t\triangle_j}(x,x) = C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n e^{-\frac{1}{2}a^2 t^{k + \frac{1}{2}}} \Gamma \left(k + \frac{1}{2} \right) \]

Now we have to compute
\[L_j := \frac{\log\det(\triangle_j)}{\text{Vol}(M)} \]
\[= \frac{d}{ds} \bigg|_{s=0} \left[\frac{1}{\Gamma(s)} \int_0^1 t^{s-1} \text{tr}_C e^{-t\triangle_j}(x,x) dt \right] + \int_1^\infty t^{-1} \text{tr}_C e^{-t\triangle_j}(x,x) dt \]

John Lott showed in [Lot92, Lemma 13, p.481] that
\[L_n = 0 \]

For \(j \neq n \), that is \(a = n - j \neq 0 \)
\[L_j = C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n \Gamma \left(k + \frac{1}{2} \right) \frac{d}{ds} \bigg|_{s=0} \left(\frac{1}{\Gamma(s)} \int_0^\infty e^{-\frac{1}{2}a^2 t^{s-k-\frac{3}{2}}} dt \right) \]

\(J \) exists for \(s \) sufficiently large. Its meromorphic extension leads to
\[L_j = C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n \Gamma \left(k + \frac{1}{2} \right) \Gamma \left(-k - \frac{1}{2} \right) a^{2k+1} \]
\[= C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n (-1)^{k+1} \frac{2\pi}{2k+1} a^{2k+1} \]

4. **Corollary.** For any closed hyperbolic manifold of dimension \(d = 2n+1 \) we have by Definition 3
\[\frac{\text{Tor}(2)(M)}{\text{Vol}(M)} = 2 \sum_{j=0}^{n-1} (-1)^{j+1} C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n (-1)^{k+1} \frac{2\pi}{2k+1} (n-j)^{2k+1} \]

The numerical values were computed using this formula and Mathematica.

5. **Lemma.** Let \(M \) be a closed \((d = 2n+1)\)-dimensional manifold. Then
\[(-1)^{j+1} \log\det_G(\triangle_j) = (-1)^n \log\det_G(\triangle_j) \]

with
\[|\log\det_G(\triangle_j)| > 0 \text{ for } j \neq n \]

In particular
\[(-1)^n \text{Tor}(2)(M) > 0 \]
Proof. Let \(j \neq n \). Then we have

\[
L_j = -2\pi C \left(\frac{2n}{j} \right) \sum_{k=0}^{n} K_{k,j}^n (-1)^{k} \frac{1}{2k+1} a^{2k+1}
\]

\[
= -2\pi C \left(\frac{2n}{j} \right) \int_0^a \sum_{k=0}^{n} K_{k,j}^n (ix)^{2k} dx
\]

Using the definition (*) of the coefficients \(K_{k,j}^n \) in Lemma 3 one gets

\[
L_j = -2\pi C \left(\frac{2n}{j} \right) \int_0^a \prod_{k=0}^{n} \frac{a^{2k+1}}{a^{2} - x^2} dx
\]

One has

\[
\int_0^a \prod_{k=0}^{n} \frac{(k^2 - x^2)}{a^2 - x^2} dx
\]

\[
= (-1)^{n+1} \int_0^a \frac{x}{(a+x)(a-x)} \prod_{k=-n}^{n} (x+k) dx
\]

\[
= (-1)^{n+1} \sum_{r=0}^{a-1} \int_0^1 f_r(t) dt
\]

where for \(t \in]0,1[\), \(r \in \{0, \ldots, a-1\} \) we define

\[
f_r(t) = \frac{(a+t+r)(a-t-r)}{(a-t-r)_{>0}} \prod_{k=-n+r}^{n+r} (t+k) \]

\[
< 0 \text{ for } k < 0
\]

\[
> 0 \text{ otherwise}
\]

\[
= (-1)^{n-r} |f_r(t)|
\]

For \(t \in]0,1[\) and \(0 \leq r < r + 1 \leq a - 1 \) one computes

\[
\left| \frac{f_{r+1}(t)}{f_r(t)} \right| > 1
\]

Hence

\[
\int_0^1 |f_{r+1}(t)| dt \geq \int_0^1 |f_r(t)| dt
\]

Now the sum

\[
L_j = -2\pi C \left(\frac{2n}{j} \right) \sum_{r=0}^{a-1} (-1)^{r+1} \int_0^1 |f_r(t)| dt
\]

is an alternating sum and the absolute values of the summands are strictly increasing. So it is not 0 and the sign is that of the last summand. One concludes

\[
\log \det G(\triangle_j) = (-1)^{n-j-1} |\log \det G(\triangle_j)|
\]

This also finishes the proof of Theorem 4. \(\square \)
6. Proposition. The constants α_d of Theorem 4 strictly increase and

$$\alpha_{2n+1} \geq \frac{n}{2\pi} \alpha_{2n-1}$$

In particular

$$\alpha_{2n+1} \geq \frac{2}{3} \frac{n!}{(2\pi)^n}$$

Proof. An elementary computation shows

$$\left| \frac{f_{a-1}(t)}{f_{a-2}(t)} \right| \geq 2$$

Now one has

$$\int_0^a \frac{\prod_{k=0}^n(k^2 - x^2)}{a^2 - x^2} \, dx \geq \frac{1}{2} \int_{a-1}^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-j)^2 - x^2} \right| \geq \int_0^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-j)^2 - x^2} \right| \, dx$$

and

$$\alpha_{2n+1} \geq 2\pi \sum_{j=0}^{n-1} \frac{(4\pi)^{(n+\frac{1}{2})}}{\Gamma(n + \frac{1}{2})} \left(\begin{array}{c} 2n \\ j \end{array} \right) \frac{\prod_{k=0}^{n-j}(k^2 - x^2)}{(n-j)^2 - x^2} \int_{a-1}^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-j)^2 - x^2} \right| \, dx$$

$$\geq 2\pi \sum_{j=1}^{n-1} \frac{(4\pi)^{(n+\frac{1}{2})}}{\Gamma(n + \frac{1}{2})} 2n(2n-1) \left(\begin{array}{c} 2n-2 \\ j-1 \end{array} \right) \frac{\prod_{k=0}^{n-j}(k^2 - x^2)}{(n-j)^2 - x^2} \int_{a-1}^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-j)^2 - x^2} \right| \, dx$$

$$= 4\pi \sum_{j=1}^{n-1} \frac{2n}{4\pi} \frac{(4\pi)^{(n+\frac{1}{2})}}{\Gamma(n - 1 + \frac{1}{2})} \left(\begin{array}{c} 2n-2 \\ j-1 \end{array} \right) \frac{\prod_{k=0}^{n-j}(k^2 - x^2)}{(n-j)^2 - x^2} \int_{a-1}^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-j)^2 - x^2} \right| \, dx$$

$$\geq \frac{n}{2\pi} \sum_{l=0}^{n-2} \frac{(4\pi)^{(n+\frac{1}{2})}}{\Gamma(n - 1 + \frac{1}{2})} \left(\begin{array}{c} 2(n-1) \\ l \end{array} \right) \frac{\prod_{k=0}^{n-1-l}(k^2 - x^2)}{(n-1-l)^2 - x^2} \int_0^a \left| \frac{\prod_{k=0}^{n-1}(k^2 - x^2)}{(n-1-l)^2 - x^2} \right| \, dx$$

$$\geq \frac{n}{2\pi} \sum_{l=0}^{n-2} \frac{(4\pi)^{(n+\frac{1}{2})}}{\Gamma(n - 1 + \frac{1}{2})} \left(\begin{array}{c} 2(n-1) \\ l \end{array} \right) \int_0^a \left| \frac{\prod_{k=0}^{n-1-l}(k^2 - x^2)}{(n-1-l)^2 - x^2} \right| \, dx$$

$$= \frac{n}{2\pi} \alpha_{2n-1}$$

For $n \leq 7$ the growth follows from the table. \qed

References

[Lü97] W. Lück. L^2-invariants of regular coverings of compact manifolds and CW-complexes. In R.B. Daverman, and R.J. Sher, editors, Handbook of Geometry. Elsevier, to appear.

[Lot92] John Lott. Heat kernels on covering spaces and topological invariants. Journal of Differential Geometry, 35:471–510, 1992.

[Mat92] Varghese Mathai. L^2-analytic torsion. Journal of Functional Analysis, 107(2):369–386, 1992.