participated in a regional, cross-institutional virtual MOE. Over a single day, each resident was evaluated by 2 faculty from a separate institution on 6 clinical scenarios, including digitally interactive portions with photographs. An immediate post-exam debriefing with feedback between examiner and examinee was performed. All participants were subsequently invited to complete an anonymous survey regarding prior MOE experience, accuracy, usability, and stress of the virtual environment, with responses graded on a Likert scale (1-5).

Results: 23 participants (76.7%) completed the survey, with 87% having prior MOE experience and 69.6% specifically having plastic surgery MOE experience. However, only 26.1% of participants had experience with virtual MOE. Most found the virtual platform more convenient (4.18+/-.118; 5 – far more convenient, 1 – far less convenient) and less stressful (2.32+/-.65; 5 – far more stressful, 1 – far less stressful) than in-person, with no statistical difference between residents and attendings. All participants found the exam fair, and participants found the exam valuable (4.65+/-.057; 5 – extremely valuable, 1 – no significant value) in preparing residents for the ABPS oral examination, with 91.3% of participants strongly recommending future participation.

Conclusion: The majority of participants found the virtual MOE experience valuable and comparable to in-person. Interestingly, most faculty still preferred an in-person format, compared to only 30% of residents. These results reinforce that virtual MOEs provide an acceptable alternative with greater convenience and improved collaborative efforts between institutions.

14. Characterizing Diversity Features in Plastic Surgery Residency Program Websites

Sonali Biswas, BS¹, Tori Wickenheisser, MD², Holly Lewis, MD, PhD², Kristen Rezak, MD², Brett Phillips, MD, MBA²

¹Duke University School of Medicine, Durham, NC, USA; ²Duke Department of Surgery, Division of Plastic Surgery, Durham, NC, USA

Background: There continues to be an increased commitment in recruiting residency and faculty applicants from backgrounds that are underrepresented in medicine (URMs). These applicants have been shown to be more likely to attend programs where they perceive higher diversity. Because applicants rely most heavily on websites for program information, general surgery literature has identified 8 website elements used by programs to demonstrate diversity and inclusion. No study has examined how plastic surgery residency programs feature diversity and inclusion on their websites. This study aims to characterize how these programs’ websites demonstrate their commitment to diversity and inclusion, and assess whether trends vary by geographic region or rank.

Methods: All 82 accredited integrated plastic surgery residencies were reviewed. Website diversity elements were defined by prior general surgery literature and initial review of 10 plastic surgery websites. These elements included 1) non-discrimination statement, 2) diversity and inclusion message, 3) community demographics, 4) biographies of faculty and 5) residents, 6) photographs of faculty and 7) residents, 8) list of resources for trainees, 9) gender identity or pronouns of faculty and 10) residents, and 11) scholarships for underrepresented visiting medical students. We evaluated the impact of Doximity rank and geographic location per U.S. Census Bureau definitions on the diversity elements.

Results: Websites had a mean of 3.75 1.71 elements. Most programs had 0 - 4 elements (n = 54, 67.5%), some had 5 - 8 elements (n = 26.5, 32.5%), and none had greater than nine. Chi-squared test revealed no association with either rank (p = 0.40) or U.S. region (p = 0.458). The most common elements were resident photos (n = 73, 91.3%), pictures of faculty (n = 63, 78.8%), and extended faculty bios (n = 50, 62.5%). The least commonly included elements were gender identity or pronouns of residents (n = 0) and faculty (n = 3, 3.8%).

Conclusion: Most plastic surgery websites include very few elements related to diversity and inclusion. This research highlights opportunities through which plastic surgery residency program websites can further demonstrate their commitment to diversity and inclusion.

15. Utilization of Augmented Reality Smart Glasses for the Provision of Remote Surgical Training in the Resource-Constrained Setting

Marvee Turk, MD⁴; Eva Williams, MD²; Kylie Tanabe²; Edward Ray²; David Kulber²

Background: There continues to be an increased commitment in recruiting residency and faculty applicants from backgrounds that are underrepresented in medicine (URMs). These applicants have been shown to be more likely to attend programs where they perceive higher diversity. Because applicants rely most heavily on websites for program information, general surgery literature has identified 8 website elements used by programs to demonstrate diversity and inclusion. No study has examined how plastic surgery residency programs feature diversity and inclusion on their websites. This study aims to characterize how these programs’ websites demonstrate their commitment to diversity and inclusion, and assess whether trends vary by geographic region or rank.

Methods: All 82 accredited integrated plastic surgery residencies were reviewed. Website diversity elements were defined by prior general surgery literature and initial review of 10 plastic surgery websites. These elements included 1) non-discrimination statement, 2) diversity and inclusion message, 3) community demographics, 4) biographies of faculty and 5) residents, 6) photographs of faculty and 7) residents, 8) list of resources for trainees, 9) gender identity or pronouns of faculty and 10) residents, and 11) scholarships for underrepresented visiting medical students. We evaluated the impact of Doximity rank and geographic location per U.S. Census Bureau definitions on the diversity elements.

Results: Websites had a mean of 3.75 1.71 elements. Most programs had 0 - 4 elements (n = 54, 67.5%), some had 5 - 8 elements (n = 26.5, 32.5%), and none had greater than nine. Chi-squared test revealed no association with either rank (p = 0.40) or U.S. region (p = 0.458). The most common elements were resident photos (n = 73, 91.3%), pictures of faculty (n = 63, 78.8%), and extended faculty bios (n = 50, 62.5%). The least commonly included elements were gender identity or pronouns of residents (n = 0) and faculty (n = 3, 3.8%).

Conclusion: Most plastic surgery websites include very few elements related to diversity and inclusion. This research highlights opportunities through which plastic surgery residency program websites can further demonstrate their commitment to diversity and inclusion.
Background: Surgical mission trips constitute an important strategy by which the global surgery campaign addresses inequities in surgical disease worldwide. Travel restrictions related to the COVID-19 pandemic, however, impose a challenging limit on the reach and impact of surgical mission work. In this study, we demonstrate the utility of a remote surgical mentorship program equipped with cutting-edge augmented reality (AR) technology for sustaining global surgery capacity building efforts within the constraints of the COVID-19 pandemic.

Methods: Our remote surgical training program connects mentor and mentee surgeons via an AR-enabled digital headset and integrated smartphone application. The Vuzix® Smart Glasses system allows mentee surgeons to transmit a point-of-view livestream of activity in the operating room while receiving direct audio and visual feedback from their remote mentor in realtime. To facilitate their engagement, mentor and mentee surgeons interact using an integrated smartphone application that enables case scheduling, clinical documentation, and performance evaluation. Performance is assessed on the basis of three validated assessment tools that are well-established in the surgical education literature: the Objective Structured Assessment of Technical Skills, the Self-Confidence Scale, and the Student Evaluation of Educational Quality Survey. This survey is administered via the mobile application to both mentor and mentee surgeons at the time of their onboarding as well as after every subsequent three-month training quarter for the duration of the year-long program.

Results: To date, 83 mentor and mentee surgeons across 33 countries and 6 continents are enrolled and actively participating in our remote training program. Baseline survey data suggest a mentee surgeon cohort that stands to benefit greatly from inclusion in our training program. A majority of mentee surgeons report incomplete knowledge and anxiety in association with their specialty prior to initiating training.

Conclusion: The COVID-19 pandemic has created an urgent need for sustainable remote surgical capacity building strategies. Our remote surgical training program powered by AR-enabled telecommunication and smartphone technology constitutes a promising solution towards this end.

16. Reliability of a Case-Based Oral Examination by Case and Competency for Evaluation of Plastic Surgery Residents

Christine S. Wang, MD1; Jeffrey R. Kozlow, MD1; Jonathan P. Troost, PhD1; Julia F. Corcoran, MD, MHPE2

1University of Michigan, Ann Arbor, MI, USA; 2University of Illinois, Chicago, IL, USA

Background: An oral examination was developed for administration to integrated and independent residents in their final three years of training at multiple Plastic Surgery residency programs. Questions were designed to assess specific skills as outlined in the ACGME six core competencies. Using the combined scores for each case, residents were able to be given feedback on their performance. Our aim is to assess the reliability of our examination by case and by competency.

Methods: A unique 8-case oral examination was administered yearly from 2013 to 2019 at multiple Plastic Surgery residency programs. We evaluated one specific examination that was administered in Spring 2019 in 3 states to 38 Plastic Surgery residents from 8 programs. Each item in each case was labeled to target a specific core competency. There was a total of 48 patient care items, 10 medical knowledge items, 5 professionalism items, 4 practice-based learning and improvement items, 4 systems-based practice items, and 1 communication skills item. Reliability was assessed by cronbach's alpha coefficient calculated for the entire exam, for each unique case, and for each competency.

Results: The entire 72-item examination was highly reliable (cronbach’s alpha = 0.91). The cronbach’s alpha coefficients were higher by case than by competency. 7 of the 8 cases were reliable (cronbach’s alpha > 0.70, range 0.45 - 0.82). The competency with the highest reliability was patient care (cronbach’s alpha = 0.87) and the lowest reliability was systems-based practice (cronbach’s alpha = 0.14). Communication skills could not be assessed as there was only one item.

Conclusion: The reliability of the examination in total is excellent and it shows promise to be used on a broader scale in a standardized fashion. The reliability of the cases is good and may be used to assess resident knowledge of specific case content. While patient care and medical knowledge are