Evaluating the Effectiveness of Iranian and Korean Injectable Intracanal Calcium Hydroxide on Candida albicans, In vitro

Neda Rafiei¹, Behrooz Eftekhar¹, Abdollah Rafiei²,³, Mahdi Pourmahdi Borujeni⁴, Majid Zarrin²

¹Dentistry Faculty, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
²Faculty of Medicine, Department of Parasitology and Mycology, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
³Infectious Diseases and Tropical Medicine Research Center, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
⁴Statistical and Epidemiology Department, Veterinary Faculty, Shahid Chamran University, Ahvaz, IR Iran

ARTICLE INFO

Article type: Original Article

Article history:
Received: 06 Nov 2011
Revised: 15 Jan 2012
Accepted: 17 Jan 2012

Keywords:
Candida albicans
Calcium Hydroxide

ABSTRACT

Background: Candida albicans is one of the mouth normal flora which may cause failures in endodontics. The resistance of C. albicans to intracanal medicaments such as calcium hydroxide could reduce success rate root canal treatments.

Objectives: Due to receiving some reports regarding resistance of C. albicans to calcium hydroxide from different parts of the world, the aim of this study was to evaluate anti candidal effects of Iranian and Korean made injectable calcium hydroxide and to compare the results.

Materials and Methods: In the present research, the antifungal effects of calcium hydroxide on seven clinical isolates and one standard strain of C. albicans were evaluated. For this evaluation, two methods were used including: inhibition zone and colony count. In all experiments distilled water and clotrimazole were used as negative and positive controls, respectively. In order to evaluate the effects of exposure time of calcium hydroxide on C. albicans growth, 30’, 5’, 1 and 24 hours of incubation periods were applied. In addition, to evaluate role the effect of calcium hydroxide concentration samples with saturated, 1/10, 1/100 and 1/1000 dilutions and also a saturated one were used.

Results: According to inhibition zone method, the mean diameters of C. albicans for Iranian and Korean made calcium hydroxide and clotrimazole were 17, 13 and 22 mm, respectively. Iranian and Korean calcium hydroxide did not show any anti candidal effects. By colony counting method, it was found that in longer exposure time, Iranian and Korean calcium hydroxide have more anti candidal effects, but no significant difference was observed between the two. Saturated and all other dilutions of calcium hydroxide base material indicated a significant statistical difference in anti candidal effect after 24 hours exposure in comparison with other periods.

Conclusions: The Current study, confirmed that the inhibitory effect of Iranian and Korean calcium hydroxide on C. albicans, up to 24 hours is within low range. Higher concentrations of base calcium hydroxide, showed greater inhibition zone on C. albicans.

Copyright © 2012 Kowsar Corp. All rights reserved.
1. Background

Yeasts are opportunistic microorganisms of oral cavity which may be exposed to root canal in aseptic situation (1, 2). Isolation and identification of yeasts from failed teeth root canals in which previous treatment has failed is notable (1, 3). Yeasts consists of different candida spp but, Candida albicans is the most common yeast isolated from skin, superficial mucosal and oral cavity of either healthy or medically compromised cases (3). C. albicans have been isolated from dental plaque, subgingival flora, dental caries, and root canals. These oral flora organisms may become pathogenic and cause disease in the presence of predisposing factors such as, different types of malignancies, HIV infection, poor oral hygiene, diabetes and immunosuppressing situations (3-5). Calcium hydroxide has been widely used for its anti-inflammatory and antimicrobial effects in endodontic therapies in order to stimulate apification, repair perforations, promote healing by hard tissue formation in root fractures, and stop inflammatory root resorption (1-9). Calcium hydroxide is also one of the main components of some root canal sealers and several pastes which are used as intracanal dressings in periapical lesions (10).

There is an indistinct role for oral yeasts in the etiology and pathogenesis of periodontal inflammations. However, C. albicans has been isolated from oral cavities of patients with severe periodontal inflammation, but recent studies have shown that C. albicans can colonize the periodontal pockets and is significantly associated with oral mucosal inflammation in females (11).

Despite its excellent bacteriocidal and antifungal activities, it has been observed that colonization of oral C. albicans is markedly increased in some patients which is caused by resistance species. Different brands of calcium hydroxide pastes, have various chemical compositions (12) which may have different effects on candidal infections. Injectable types of calcium hydroxide as intracanal medicament are also commercially available. Recently an Iranian calcium hydroxide formula was registered (13), to make calcium hydroxide injectable, other materials as a vehicle should be added to it. This procedure may affect its anti-candidal effectiveness. On the other hand, there is a controversy regarding susceptibility of C. albicans to calcium hydroxide, therefore current study was conducted to evaluate in vitro effectiveness of Iranian and Korean intracanal calcium hydroxide vials on C. albicans.

2. Materials and Methods

The current research was conducted as an experimental study to evaluate the following items in vitro conditions:

2.1. Microorganisms and Culture Media

In current study seven C. albicans strains isolated from patients referred to dental clinic of Ahvaz Jundishapur University of Medical Sciences. To this purposes swab samples were taken from oral cavity and cultured on Sabouroud’s dextrose agar plate, incubated overnight at 37°C. C. albicans characterization and identification were confirmed by germ tube formation, chlamidoconidia formation on cornmeal agar and growth inhibition at 45°C. Reference strain was obtained from industrial and research standard institute PTCC5027. Sabouraud dextrose agar and tryptic- soy broth were used for the primary isolation of yeasts (Merck company).

2.2. Candida albicans Suspension Preparation

To get final concentration as ~ 10^7 c.f.u. ml^-1 C. albicans were suspended in distilled water , according to 0.5 McFarland turbidity standard (3).

2.3. Preparation of Medicaments

Korean sample of calcium hydroxide intracanal paste, which was used in the present study, is a product of Meta Biomed ,made by a , South Korean company. The Iranian sample was obtained from Pharmacy Faculty of Ahvaz Jundishapur University of Medical Sciences. The calcium hydroxide was purchased from Fluka-Chemika, Germany (14). In addition 1% clotrimazole and distilled water were used as positive and negative controls, respectively.

2.4. Inhibition Zone Method

Holes (5 mm in depth, 6 mm in diameter) were punched into the Sabouroud’s dextrose agar plates. A loop of each C. albicans strain suspension was cultured on sabouraud-dextrose agar. Holes were filled with calciumhydroxide, and clotrimazole as control and then incubated at 37°C for 24 hours. Then the diameter of inhibition growth zones were measured for each sample.

2.5. Colony Count Method

10 µl of C. albicans suspension was added to all test tubes, those containing one ml of medicaments, control positive and negative agents and then incubated at 37°C for periods of 5 seconds, 1 minute, 1 and 24 hours. Consequently, 10 µl of each suspension was inoculated on Sabouraud’s dextrose agar plates and incubated at 37°C for 24 hours. The total numbers of colony forming units were calculated. The data were analyzed using one way analysis of variances, repeated measures analysis of variances and tukey test.
3. Results

3.1. Evaluation of Anti-candidal Effects With Inhibition Zone Method

Evaluation of anti-C. albicans effects of Iranian and Korean calcium hydroxide indicated an inhibitory growth zone range from 13-20 mm. Mean diameter zones of 17 mm and 13 mm were obtained for Iranian and Korean medicaments samples, respectively. Clotrimazole which was used as positive control positive showed an inhibition growth zone of 22 mm diameter (Figure 1).

3.2. Evaluation of Anti-Candida Effects With Colony Count Method

In this experiment both calcium hydroxides indicated an anticandidal effect within 30 seconds, 5 minutes, 1 hour and 24 hours period of exposure. Anti-C. albicans effect of both medicaments indicated significant correlation with time of exposure, therefore more anticandidal effects were obtained with longer time of incubation with calcium hydroxide (P value < 0.05) (Table 1).

3.3. Comparison of Anti-candida Effects of Both Calcium Hyroxides

Statistical analysis showed that there was significant correlation inhibition growth zone of in all experiments and Iranian sample was more effective than the Korean one (P value < 0.05). Although the results obtained from colony count method was not the same, the mean colony formation in Iranian sample was highly lower than the Korean one was less lower, which may indicate more anti-candidal effect of Iranian medicament (Table 2).

4. Discussion

Is elimination of microorganisms and prevention of reinfection in root canal treatments is an important consideration of endodontical treatments (14-17). C. albicans has been reported as one of the resistant microorganisms to intracanal antiseptic agents (6, 14-19). The results of present study revealed that all tested C. albicans strains were susceptible to calcium hydroxide. In recent years, complete or partial resistance to calcium hydroxide have been reported (2-5, 8). On the other hand, most experiments showed susceptibility of C. albicans strains to calcium hydroxide which is inconformity with our present finding (20-23). Although there is no clear explanation regarding these controversies, but it may be a result of differences among distributed C. albicans strains in different regions. Additionally, regular and prolonged application of calcium hydroxide may induce resistance strain of C. albicans.

Our research showed that there is a significant differences between the average 0 inhibition growth zone made by Iranian and Korean calcium hydroxide samples after
24 hours, and Iranian samples showed more antican
didal effects, with 17 mm inhibition growth zone. Balal et
al reported an inhibition growth zone of 21 mm diameter
which is close to our findings (24). According to the ob-
tained results from colony count method, both medica-
ments showed acceptable anti candidal effects.

In the present study, both medicaments were tested by
colony count formation method, showed anti candidal ef-
fects in different periods of exposures, but there were
significant differences between 1 and 24 hours incuba-
tion time of exposure to calcium hydroxide. Therefore
it seems that the Iranian samples showed more anti-
candidal effects in both applied. Al-Nazhan reported no
antican didal effects of calcium hydroxide after 1 hour
incubation, but complete inhibitory growth after 24 and
72 hours exposure were observed (18). In another experi-
ment, Balal et al reported anti-candidal effect of calcium
hydroxide after 24 hours, but suprisingly this effectiveness
was reduced after a 72 hours incubation (24).

Among 16 C. albicans strains, tested for calcium hydrox-
ide susceptibility, only 3 strains have revealed anti-candidal
effects after 20 minutes, and 2 hours of incubation at 37°C,
and after 24 hours exposure to calcium hydroxide, 6 strains
showed inhibitory growth zone (3). Fabiane et al.
reported complete C. albicans resistance to calcium hydrox-
ide after 24,48, and 72 hours of exposure (5). In contrast, Bar-
bosa results were similar to our findings, which indicated
acceptable anti-candidal effect of calcium hydroxide after a
5 minutes exposure (17). According to the current study and
most previous trials, calcium hydroxide indicated accept-
able anti-candidal effect in short time exposure and highest
effectiveness obtained after 24 hours of exposure.

In conclusion, present study indicated anti C. albicans
effects of calcium hydroxide even in on short term expo-
sure and sometimes better effectiveness were observed in
Iranian samples. Hence, due to incomplete compat-
ibility and even controversy regarding susceptibility and
resistancy of different C. albicans strains to calcium hy-
droxide, it seems that continious evaluation is necessary in
different geographical regions.

Acknowledgments
None declared.

Financial Disclosure
None declared.

Funding/Support
The study was financially supported by the Iran Zamin
foundation center Ahwaz, Iran.

References
1. Siren EK, Haapasalo MP, Ranta K, Salmi P, Kerosuo EN. Microbio-
logical findings and clinical treatment procedures in endodon-
tic cases selected for microbiological investigation. Int Endod J.
1997;30(2):291-5.
2. Waltimo TM, Sen BH, Meurman JH, Örstavik D, Haapasalo
MP. Yeasts in apical periodontitis. Crit Rev Oral Biol Med.
2003;14(4):218-37.
3. Waltimo TM, Siren EK, Örstavik D, Haapasalo MP. Susceptibility
of oral Candida species to calcium hydroxide in vitro. Int Endod J.
1999;32(2):284-8.
4. Bystrom A, Claesson R, Sundqvist G. The antibacterial effect of
camphorated monochlorophenol, camphorated phenol and
calcium hydroxide in the treatment of infected root canals. Dental Traumatic. 1985;45(3):270-5.
5. Fabiane P, Faraco Junior IM, Estrella C. Antimicrobial activity of
different root canal filling pastes used in deciduous teeth. Muter
Res. 2008;63(3):371-3.
6. Martin M, Dinsdale R. Nystatin–Resistance of candida albicans
isolates from two cases of oral candidiasis. Brit J Oral Surg.
1982;20(4):294-8.
7. Nair P, Sjögren U, Krey G, Kahnberg KE, Sundqvist G. Intrarad-
cular bacteria and fungi in root-filled, asymptomatic human teeth with therapy-resistant periapical lesions: a long-term
light and electron microscopic follow-up study. J Endodont.
1990;16(12):580-8.
8. Örstavik D, Haapasalo M. Disinfection by endodontic irrigants
and dressings of experimentally infected dentinal tubules. Dent
Traumatic. 1989;9(3):132-9.
9. Siqueira JF, Rôças IN, Lopes HP, Elias CN, de Uzeda M. Fungal infec-
tion of the radicular dentin. J Endodont. 2002;28(3):770-3.
10. Ray N, Trope M. Periapical status of endodontically treated teeth
in relation to the technical quality of the root filling and the
coronal restoration. Int Endodont J. 1995;28(2):112-8.
11. Urbano R, Hermosilla G, Gamonal J, Morales-Bozo I, Canals M, Bara-
bona S, et al. Yeast diversity in the oral microbiota of subjects with
periodontitis: Candida albicans and Candida dubliniensis
colonize the periodontal pockets. Med Mycol. 2008;46(8):783-93.
12. Torabinejad M, Chivan N. Clinical applications of mineral triox-
ide aggregate. J Endodont. 1999;25(3):297-205.
13. Behrouz N, Eftekhari B. Hydrolyzation of 2 different in-
tracanal calcium hydroxide pastes compared to a new injectable
formulation in human extracted tooth [DMD Thesis]: 2010.
14. Burket L, Greenberg MS, Glick M. Red and white lesions of the
oral mucosa. Burket’s oral medicine: diagnosis & treatment. 10th ed:
Pmpm Bc Decker; 2003. p. 94-01.
15. Gasparotho TR, Dionisio TJ, de Oliveira CE, Porto VC, Gelani V,
Santos CF, et al. Isolation of Candida dubliniensis from denture
wearers. J Med Microbiol. 2009;58(1):959-62.
16. Lynch MA, Brightman VJ, Greenberg MS. Burket’s oral medicine:
diagnosis and treatment. Lippincott:1994.
17. Shen S, Samarayanaye IF, Yip HK, Dyson JE. Bacterial and yeast
flora of root surface caries in elderly, ethnic Chinese. Oral Dis.
2002;8(4):207-27.
18. Al-Nazhan S, Al-Otaba M. Effectiveness of a 2% chlorhexidine so-
lution mixed with calcium hydroxide against Candida albicans.
Aust Endod J. 2008;34(3):333-5.
19. Bodey GP, Fainstein V. Candidiasis. Raven press;1985.
20. Barbosa SW, Spangberg LS, Almeida D. Low surface tension cal-
cium hydroxide solution is an effective antiseptic. Int Endod J.
1994;27(3):6-10.
21. Estrella C, Rodrigues de Araujo Estrella C, Bamann LL, Pecora JD. Two
methods to evaluate the antimicrobial action of calcium hy-
droxide paste. J Endod. 2001;27(2):720-3.
22. Law A, Messer H. An evidence-based analysis of the anti-
bacterial effectiveness of intracanal medicaments. J Endod.
2004;30(10):689-94.
23. Şen BH, Safavi KE, Spangberg LSW. Antifungal effects of sodium
hypochlorite and chlorhexidine in root canals. J Endodont.
1999;25(2):238-5.
24. Ballal V, Valladobala M, Acharya S, Ballal M. Antimicrobial action
of calcium hydroxide, chlorhexidine and their combination on
endodontic pathogens. Aust Dent J. 2007;52(2):118-21.
Surf and download all data from SID.ir: www.SID.ir

Translate via STRS.ir: www.STRS.ir

Follow our scientific posts via our Blog: www.sid.ir/blog

Use our educational service (Courses, Workshops, Videos and etc.) via Workshop: www.sid.ir/workshop