Infinite-dimensional Grassmann-Banach algebras

V.D. Ivashchuk

Center for Gravitation and Fundamental Metrology, VNIIMS, 3/1 M. Ulyanovoy Str., Moscow 117313, Russia and
Institute of Gravitation and Cosmology, PFUR, Miklukho-Maklaya Str. 6, Moscow 117198, Russia

Abstract

A short review on infinite-dimensional Grassmann-Banach algebras (IDGBA) is presented. Starting with the simplest IDGBA over $K = \mathbb{R}$ with l_1-norm (suggested by A. Rogers), we define a more general IDGBA over complete normed field K with l_1-norm and set of generators of arbitrary power. Any l_1-type IDGBA may be obtained by action of Grassmann-Banach functor of projective type on certain l_1-space. In non-Archimedean case there exists another possibility for constructing of IDGBA using the Grassmann-Banach functor of injective type.

Infinite-dimensional Grassmann-Banach algebras (IDGBA) and their modifications are key objects for infinite-dimensional versions of superanalysis (see [1]-[5] and references therein). They are generalizations of finite-dimensional Grassmann algebras to infinite-dimensional Banach case (for infinite-dimensional topological Grassmann algebras see also [6]).

Any IDGBA is an associative Banach algebra with unit over some complete normed field K [7], whose linear space G is a Banach space with the norm $||.||$ satisfying $||a \cdot b|| \leq ||a|| ||b||$ for all $a, b \in G$ and $||e|| = 1$, where e is the unit. (For applications in superanalysis K should be non-discrete, i.e. $0 < |v| < 1$ for some $v \in K$, where $|.|$ is the norm in K.) It contains an infinite subset of generators $\{e_\alpha, \alpha \in M\} \subset G$, satisfying

$$e_\alpha \cdot e_\beta + e_\beta \cdot e_\alpha = 0, \quad e_\alpha^2 = 0,$$

$\alpha, \beta \in M$, where M is some infinite set. (The second relation in (2) follows from the first one if char$K \neq 2$, i.e. $1_K + 1_K \neq 0_K$.)

ivas@rgs.phys.msu.su
The simplest IDGBA over $K = \mathbb{R}$ with l_1-norm was considered by A. Rogers in [2]. In this case $M = \mathbb{N}$ and any element of $a \in G$ can be represented in the form

$$a = a^0e + \sum_{k \in \mathbb{N}} \sum_{\alpha_1 < \ldots < \alpha_k} a^{\alpha_1 \ldots \alpha_k}e_{\alpha_1} \ldots e_{\alpha_k},$$ \hspace{1cm} (2)

where all $a^0, a^{\alpha_1 \ldots \alpha_k} \in K$ and

$$||a|| = |a^0| + \sum_{k \in \mathbb{N}} \sum_{\alpha_1 < \ldots < \alpha_k} |a^{\alpha_1 \ldots \alpha_k}| < +\infty.$$ \hspace{1cm} (3)

All series in (2) are absolutely convergent w.r.t. the norm (3).

In [8] a family of l_1-type IDGBA over a complete normed field K was suggested. This family extends IDGBA from [2] to arbitrary K and arbitrary infinite number of generators $\{e_{\alpha}, \alpha \in M\}$. For linearly ordered set M the relations (2) and (3) survive, each sum in (2) and (3) contains not more than countable number of non-zero terms (AC) (here and below (AC) means that the axiom of choice [10] is used).

Here we outline an explicit construction of IDGBA from [8] for arbitrary (not obviously linearly ordered) index set M. Any element of this family $G(M, K, \langle \cdot \rangle)$ is defined by infinite set M and an ordering mapping $\langle \cdot \rangle: P_0(M) \setminus \{\emptyset\} \rightarrow S_0(M)$, where $P_0(M)$ is the set of all finite subsets of M and $S_0(M)$ the set of all ordered (non-empty) sets (s_1, \ldots, s_k) of elements from M ($k \in \mathbb{N}$). The ordering function $\langle \cdot \rangle$ obeys the relations

$$\langle \{\alpha_1, \ldots, \alpha_k\} \rangle = (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(k)}),$$ \hspace{1cm} (4)

where $\sigma \in S_k$ is some permutation of $\{1, \ldots, k\}, k \in \mathbb{N}$. The mapping $\langle \cdot \rangle$ does exist (AC). For linearly ordered M the canonical ordering function $\langle \cdot \rangle = \langle \cdot \rangle_0$ is defined by (3) with the inequalities $\alpha_{\sigma(1)} < \ldots < \alpha_{\sigma(k)}$ added.

The vector space of $G(M, K, \langle \cdot \rangle)$ is the Banach space $G = l_1(P_0(M), K)$ of absolutely summable functions $a: P_0(M) \rightarrow K$ with the norm

$$||a|| = \sum_{I \in P_0(M)} |a(I)| < +\infty.$$ \hspace{1cm} (5)

The operation of multiplication in G is defined as follows

$$(a \cdot b)(I) = \sum_{I_1 \cup I_2 = I} \varepsilon(I_1, I_2)a(I_1)b(I_2),$$ \hspace{1cm} (6)
a, b ∈ G, I ∈ P₀(M), where ε : P₀(M) × P₀(M) → K is ε-symbol:

\[\varepsilon(I_1, I_2) = \begin{cases} 0_K, & \text{if } I_1 \cap I_2 \neq \emptyset, \\ 1_K, & \text{if } I_1 = \emptyset, \text{ or } I_2 = \emptyset, \\ \varepsilon_\sigma, & \text{otherwise,} \end{cases} \quad (7) \]

where \(\varepsilon_\sigma = \pm 1_K \) is the parity of the permutation \(\sigma \): \(\langle I_1 \rangle \backslash \langle I_2 \rangle \rangle \mapsto \langle I_1 \cup I_2 \rangle \).

For any \(a \in G \) we get \(a = \sum_{I \in P_0(M)} a(I)e_I \), where \(\langle e_I, I \in P_0(M) \rangle \) is the Shauder basis in \(G \) defined by the relations: \(e_I(J) = \delta_{IJ}^J \) for \(I, J \in P_0(M) \).

The unit is \(e = e_\emptyset \) and generators are \(e_\alpha = e_{\{\alpha\}} \), \(\alpha \in M \). Decomposition (2) is valid for general ordering function \(\langle . . . \rangle \) if \(a^0 = a(\emptyset) \), \(a^{\alpha_1 \ldots \alpha_k} = a(\{\alpha_1, \ldots, \alpha_k\}) \) and relations \(\alpha_1 < \ldots < \alpha_k \) are understood as \(\langle a_1, \ldots, a_k \rangle \in \langle P_0(M) \rangle \), \(\langle P_0(M) \rangle \) depends essentially only upon the cardinal number \(|M| \) of the set \(M \), i.e. \(G(M_1, K, \langle . \rangle_1) \) and \(G(M_2, K, \langle . \rangle_2) \) are isomorphic (in the category of BA) if and only if \(|M_1| = |M_2| \) (AC) \(\S \). The Banach space of \(G(M, K, \langle . \rangle) \) may be decomposed into a sum of two closed subspaces

\[G = G_0 \oplus G_1, \quad (8) \]

where \(G_i = \{ a \in G | a(I) = 0_K, I \in P_0(M), |I| \equiv i + 1 \text{ (mod 2)} \} \), \(i = 0, 1 \). (The subspace \(G_0 \) \((G_1) \) consists of sums of even \(\text{(odd)} \) monoms in (2)). BA \(G(M, K, \langle . \rangle) \) with the decomposition (8) is a supercommutative (Banach) superalgebra

\[a \cdot b = (-1_K)^{ij} b \cdot a, \quad a \in G_i, \quad b \in G_j, \quad (9) \]

\[G_i \cdot G_j \subset G_{i+j} \text{ (mod 2)}, \quad (10) \]

\(i, j = 0, 1 \). The odd subspace \(G_1 \) has trivial (right) annihilator \(\S \)

\[\text{Ann}(G_1) \equiv \{ a \in G | G_1 \cdot a = \{0\} \} = \{0\}. \quad (11) \]

This relation is an important one for applications in superanalysis, since it provides the definitions of all superderivatives as elements of \(G \). Note that any non-trivial (non-zero) associative supercommutative superalgebra over \(K \), \(\text{char } K \neq 2 \), is infinite-dimensional \(\S \) (for \(K = \mathbb{R}, \mathbb{C} \) see also \(\S \)).

Another important (e.g. for applications in superanalysis) proposition is the following one \(\S \): in \(G(M, K, \langle . \rangle) \) the element \(a \) is invertible if and only
if $a^0 = a(\emptyset) \neq 0_K$. (In [9] an explicit expression for inverse element a^{-1} was obtained.)

IDGBA with l_1-norm forms a special subclass of more general family of IDGBA over K [12], namely,

$$G(M, K, \langle , \rangle) \cong \hat{G}(l_1(M, K)),$$

where $\hat{G} = \hat{G}_K$ is the Grassmann-Banach functor of projective type [12]. Here

$$\hat{G}(E) = \hat{T}(E)/\hat{I},$$

where $\hat{T}(E)$ is a tensor BA of projective type corresponding to infinite-dimensional projectively proper Banach space E over K and \hat{I} is a closed ideal generated by the subset $\{a^2, a \in E\}$. Banach space E over K is called projectively proper if all projective seminorms $p_k : E^{\otimes k} = E \otimes \ldots \otimes E$ (k-times) $\rightarrow R$, $k \geq 2$, are norms [12]. For $K = R, C$ any E is projectively proper [11]. Tensor Banach functor $\hat{T} = \hat{T}_K$ was defined in [12] (for tensor BA without unit over $K = C$ see [13]). The Banach space of $\hat{T}(E)$ is a l_1-sum of projective tensor powers of E

$$\hat{T}(E) = \hat{T}_0(E) \oplus \sum_{i=0}^{\infty} \hat{T}_i(E),$$

where $\hat{T}_0(E) = K$, $\hat{T}_1(E) = E$ and $\hat{T}_k(E) = E^{\otimes} \ldots \otimes E$ (k-times) are projective tensor products, $k \geq 2$. The norm of $a = (a_0, a_1, \ldots) \in \hat{T}(E)$ is $\|a\| = ||a_0|| + ||a_1|| + \ldots$, where $a_i \in \hat{T}_i(E)$ and $\|\|_i$ is projective norm in $\hat{T}_i(E)$, $i = 0, 1, \ldots$.

For non-Archimedean field K satisfying: $|x + y| \leq \max(|x|, |y|)$, $x, y \in K$, there exists another possibility for constructing of IDGBA [14]. The Grassmann-Banach functor of injective type $\hat{G} = \hat{G}_K$ is defined for certain subclass of injectively proper non-Archimedean Banach spaces over K. Banach space E over K is called injectively proper if the injective seminorms $w_k : E^{\otimes k} \rightarrow R$, $k \geq 2$, are norms [14]. In this case (13) is modified as follows

$$\hat{G}(E) = \hat{T}(E)/\hat{I},$$

where $\hat{T}(E)$ is tensor BA of injective type corresponding to E and \hat{I} is a closed ideal generated by the subset $\{a^2, a \in E\}$. The Banach space of $\hat{T}(E)$
is a l_∞-sum of injective tensor powers of E

\[
\tilde{T}(E) = \bigoplus_{i=0}^{\infty} \tilde{T}_i(E),
\]

(16)

where $\tilde{T}_0(E) = K$, $\tilde{T}_1(E) = E$ and $\tilde{T}_k(E) = E \hat{\otimes} \ldots \hat{\otimes} E$ (k-times) are injective tensor products, $k \geq 2$. The norm of $a = (a_0, a_1, \ldots) \in \tilde{T}(E)$ is $\|a\| = \sup(\|a_0\|_0, \|a_1\|_1, \ldots)$, where $a_i \in \tilde{T}_i(E)$ and $\|\cdot\|_i$ is injective norm in $\tilde{T}_i(E)$, $i = 0, 1, \ldots$. For l_∞-spaces we have an isomorphism of BA

\[
G_\infty(M, K, \langle \cdot, \cdot \rangle) \cong \tilde{G}(l_\infty(M, K)),
\]

(17)

where $G_\infty(M, K, \langle \cdot, \cdot \rangle)$ is the Grassmann-Banach algebra with the Banach space $l_\infty(P_0(M), K)$ and the multiplication defined in (13). Here $l_\infty(P_0(M), K)$ is the Banach space of bounded functions $a : P_0(M) \to K$ with the norm

\[
\|a\|_\infty = \sup(\|a(I)\|, I \in P_0(M)).
\]

(18)

For applications in superanalysis the following supercommutative Banach superalgebras may be also used: $B \hat{\otimes} G$. Here B is an associative commutative BA with unit over K, and G is IDGBA. For $G = G(M, K, \langle \cdot, \cdot \rangle)$ we have an isomorphism of BA: $B \hat{\otimes} G(M, K, \langle \cdot, \cdot \rangle) \cong G(M, B, \langle \cdot, \cdot \rangle)$, where $G(M, B, \langle \cdot, \cdot \rangle)$ is obtained from $G(M, K, \langle \cdot, \cdot \rangle)$ by the replacement $K \mapsto B$ (for $M = \mathbb{N}$ see also [13]).

For non-Archimedean B, G and K another Banach superalgebra may be also considered: $B \hat{\otimes} G$. In this case $B \hat{\otimes} G_\infty(M, K, \langle \cdot, \cdot \rangle) \cong G_\infty(M, B, \langle \cdot, \cdot \rangle)$, where $G_\infty(M, B, \langle \cdot, \cdot \rangle)$ is obtained from $G_\infty(M, K, \langle \cdot, \cdot \rangle)$ by the replacement $K \mapsto B$.

References

[1] B.S. De Witt, Supermanifolds, Cambridge, 1984.

[2] A. Rogers, J. Math. Phys., A Global Theory of Supermanifolds, 22, No 5, (1981) 939-945; J. Math. Phys., Super Lie Groups: Global Topology and Local Structure, 21, No 6 (1980) 724-731; J. Math. Phys., Consistent Superspace Integration, 26, No 3, (1985) 385-392.
[3] I.V. Volovich, Λ-supermanifolds and bundles, *Dokl. Akad. Nauk SSSR*, **269**, No 3 (1983) 524-528 [in Russian].

[4] V.S. Vladimirov and I.V. Volovich, Superanalysis I. Differential calculus. *Teor. Mat. Fiz.*, **59**, No 1 (1984) 3-27; Superanalysis II. Integral calculus. *Teor. Mat. Fiz.*, **60**, No 2 (1984) 169-198 [in Russian].

[5] A.Yu. Khrennikov, Functional superanalysis, *Uspekhi Matem. Nauk, Ser. Mat.*, **43**, No 2 (1988) 87-114 [in Russian].

[6] F.A. Berezin, Method of Second Quantization, Nauka, Moscow (1965) [in Russian].

[7] Z.I. Borevich and I.R. Shafarevich, Number Theory, Nauka, Moscow (1972) [in Russian].

[8] V.D. Ivashchuk, On Annihilators in Infinite-dimensional Grassmann-Banach Algebras, *Teor. Mat. Fiz.*, **79**, No 1, (1989) 30-40 [in Russian].

[9] V.D. Ivashchuk, Invertibility of Elements in Infinite-dimensional Grassmann-Banach Algebras, *Teor. Mat. Fiz.*, **84**, No 1, (1990) 13-22 [in Russian].

[10] N. Bourbaki, Set Theory [Russian translation], Mir, Moscow (1965).

[11] A.Ya. Khelemskii, Banach and Polynormed Algebras: General Theory, Representations, Homologies. Nauka, Moscow, 1989 [in Russian].

[12] V.D. Ivashchuk, Tensor Banach Algebras of Projective Type I. *Teor. Mat. Fiz.*, **91**, No 1, (1992) 17-29 [in Russian].

[13] N.V. Yakovlev. Examples of Banach Algebras with Radical, Non-Complemented as Banach spaces, *Uspekhi Matemat. Nauk*, **44**, 5 (269) (1989) 185 [in Russian].

[14] V.D. Ivashchuk, Tensor Banach Algebras of Projective Type II. l1 - case, *Teor. Mat. Fiz.*, **91**, No 2 (1992) 192-206 [in Russian].

[15] A.Yu. Khrennikov, Generalized Functions on Non-Archimedean Super-space, *Izv. Akad. Nauk SSSR, Ser. Mat.*, **55**, No 6 (1991) 1257-1286 [in Russian].