Right time–right location–right move
TRPs find motors for common functions

Rakesh Majhi,1,† Puspendu Sardar,1,† Luna Goswami2 and Chandan Goswami1,*

1National Institute of Science Education and Research; Institute of Physics Campus; School of Biotechnology; KIIT University; Bhubaneswar, Orissa India
2School of Biotechnology; KIIT University; Bhubaneswar, Orissa India

*These authors contributed equally to this work.

Key words: TRP channels, filopodia, cilia, myosin, kinesin, motor proteins, cytoskeleton

TRP channels are localized at specialized sub-cellular compartments like filopodial tips, ciliary structures, growth cones and spines that have importance in the context of several sensory functions. Several motor proteins largely regulate these localizations. Recent studies indicate that both physical and genetic interactions exist between TRP channels with actin and microtubule-based motor proteins. These two groups of proteins share specialized and fine regulation underlying physiological functions. Indeed, mutations causing loss of these interactions and regulations result in development of pathophysiological disorders and syndromes. In this review we analyze the recent progress made in cell-biological, biochemical, electrophysiological and genetic studies and summarize the multi-dimensional crosstalk between TRP channels with different motor proteins.

Introduction

So far TRP channel research in the context of pathophysiological disorders was exclusively focused on the ionic conductivity mediated by these channels. It was not until recently that regulation of TRP channels localization and non-ionic functions of TRP channels in the context of different pathophysiological disorders has emerged. A handful studies have characterized physical and other functional interactions of TRP channels with different cytoskeletal components. For example, several TRP channels show physical interaction with tubulin, actin and other cytoskeletal associated components like MAPs, actinin, different motor proteins, other scaffold proteins and regulatory proteins.1–3 Interestingly, many of these interactions are regulated by phosphorylation or other modifications and are Ca2+-independent in nature. Therefore, these interactions have important roles in executing the non-ionic functions and regulations of TRP channels per se. In this context, motor proteins not only play an important role in recruiting the TRP channels in proper subcellular locations, but they also regulate recycling as well as other functions of TRP channels. Thus motor proteins play an important role in maintaining the proper function of TRP channels.

Apart from coexpression and colocalization, the physical and functional crosstalk between TRPs and motors is evident from several genetic studies, too. In many cases, the development and the function of these specialized cellular structures like cilia, filopodia, spine etc., are regulated by both TRP channels and cytoskeletal proteins. Notably, mutations in either TRP channels or specific cytoskeletal proteins often lead to similar, if not same cellular phenotype, as well as same pathophysiological disorders like deafness, blindness, and other syndromes. Taken together, involvement of these two groups of proteins in common functions and occurrence in the same cell (even in the same sub-cellular locations) are highly indicative of physical, functional and genetic interactions.4 Based on the available data, in this review we critically analyze the latest understanding of the multi-dimensional relationship between TRP channels and motor proteins. We also summarize how different motor proteins and TRP channels regulate one another. We also point out how these two groups of proteins are involved in important cellular and physiological processes as well as in common functions.

Clue from Expression and Co-Localization

The importance of different cytoskeleton and associated motor proteins in the context of function and regulation of TRP channels came from the common observation that these channels and the specific motor proteins are co-expressed in some specialized cells. In addition, TRPs and the motor proteins are located at distinct subcellular structures that are characterized not only by the presence of these specialized cytoskeletal proteins, but also by the intricate organization and specific localization of the TRP channels there. This strongly suggests that TRP channels either interact with some of the cytoskeletal proteins and/or are involved with the development as well as function of these subcellular structures. Indeed, evidences suggest so. For example, both PC1 and PC2 (alternatively known as TRPP channels) are present in the primary cilium of kidney cells.5 PC2 channel is also localized at the primary cilia of renal epithelial cells.6 In addition, PC2 channel co-localizes with polyglutamylated tubulin at the basal bodies/cilia of the ciliated epithelial cells from mouse trachea.7 PC2 also forms a complex with pericentrin (a marker for centrosome and basal body), and this interaction is required for primary cilia assembly.7 Involvement of PC2 in the

www.landesbioscience.com Channels 375
ciliary function has been demonstrated in agreement with these reports. The localization of PC channels at the tip (plus end of microtubule), as well as at the basal body (minus end of microtubules) of the cilium in general, suggest that PC channels recycle within the cilium; and this localization is involved in the proper development and function of the cilium in addition to recycling.

Like PC channels, Xenopus TRPN1 localizes at the tip of microtubule-based cilia in epithelial cells (kinocilial bulb) and at the tip of the inner-ear hair cells. There TRPN co-localizes with cytoskeletal components like actin, tubulin and Cdh23. In Drosophila melanogaster, NOMPC (a member of the TRP channel family) localizes to the tubular body and distal cilium of Campaniform and Chordotonal receptor cells and is involved in ciliary functions. TRPN (=NOMPC) localizes at the distal end of mechanosensory cilia and localizes with EYS (an extracellular protein that marks the proximal end of the sensory cilium) in Drosophila. TRPC6 localize in podocytes where they interact with podocin and nephrin, components which belong to the actin cytoskeleton. These examples strongly suggest that the localization of TRP channels in polarized and differentiated cells are specific in nature and that TRP channels share a special relation with the cytoskeletal organization.

Recently we have demonstrated that when expressed, TRPV1 is localized at the tip of filopodia in both neuronal and non-neuronal cells. Similarly, TRPV4 is also located at the filopodial and lamellipodial structures; and in a same manner, endogenous TRPV4 is also present in the cholangiocyte cilium. Expression of TRPV1 induces filopodial structures which reveal the presence of a characteristic bulbous head. Interestingly, these heads often contain negligible amounts of F-actin but accumulate TRPV1 there. This phenotype and localization of TRPV1 resemble well with the dominant-negative effect of non-conventional myosin motors. This is mainly due to the fact that overexpression of myosin II, III, V, X and XV is known to induce filopodial structure of same morphology, and these myosin motors also localize at the bulbous head regions. Such similarities suggest that overexpression of TRPV1 may alter the function of these myosin motors. Indeed, we have demonstrated changes in the expression pattern as well as distribution of non-conventional myosin IIa and IIa after the ectopic expression of TRPV1. Overexpression of TRPV1 in F11 cells results in more expression as well as reorganization of endogenous myosin IIa and IIa. In agreement with this observation another study has also confirmed that overexpression of TRPC6 in transgenic mice resulted in an increased expression of beta-myosin heavy chain in cardiac tissues. However, the exact mechanisms and reasons behind these altered expression and distribution of non-conventional myosin motors are not yet known.

So far several TRP channels have been detected in the spines, which is consistent with the localization of TRP channels at the filopodial tips. This is due to the fact that spines and filopodial structures share structural, morphological and functional similarities. Endogenous localization of several TRPV and TRPC members have been detected at the spines, which are involved in the neuronal network formation. Therefore, the crosstalk between TRP channels and non-conventional myosin motors are relevant in terms of spine development and maintenance of spine and growth cone organization (discussed later).

Genetic, Functional and Physical Interaction and Effect of Mutations

Conclusive examples have yet to come from genetic studies that establish multi-dimensional crosstalk of TRP channels with different motor proteins. Most of these examples highlight the common involvement of TRP channels and motor proteins in different sensory functions that are mediated by cilia, filopodia and/or other polarized cellular structures. For example, study of Polycystic Kidney Disease (PKD) mutants reveals that many ciliary proteins as well as PCI and/or PC2 are involved with this disease. Mutations in PCI and PC2 results in defective localization of these channels, impaired cilia formation, and/or loss of flow-induced Ca2+-signaling, which are relevant in the context of PKD. These results are also consistent with the fact that PC channels are regulated by microtubule-based motor proteins like KIF3a and KIF3b. In a similar context, both KIF1b and TRPV4 are involved in some common functions like mechanosensation suggesting a strong genetic link between them. This is also supported by the fact that mutations in either kinesin (Kif1b) or TRPV4 results in same pathophysiology and development of Charcot-Marie-Tooth disease type 2 (CMT2).

Like kinesins, myosin motors are also involved in the regulation of TRP channels. Mutations in TRP channels as well as in different non-conventional myosin motors develop similar pathophysiological disorders and other syndromes like deafness, blindness, and other sensory defects. For example, both development and proper function of the stereocilia of hair cells are important for hearing. In normal conditions, the ciliary tips of hair cells contain several endogenous TRP channels as well as several non-conventional myosin motor proteins, indicating that the function of these cells is largely dependent on these two group of proteins at the ciliary tips. Several reports suggest that in case of deafness, non-conventional myosin motors (myosin I, IIA, IIIA, VI, VIIA and XV) are important for either development of the stereocilia of hair cells in the inner ear or proper localization of TRP channels at the tip of these stereocilia. In a reciprocal manner, so far, TRPN1, TRPV4, TRPML3 and TRPA1 have been detected in the vertebrate inner ear. Consistent with these reports, either mutation, deletion or abnormal expression and function of these TRP channels (namely TRPA1, NompC, TRPML1, TRPML2, TRPML3, TRPV4, TRPV5 and TRPV6) result in the development of deafness.

Comparable to auditory defects, development, polarization of retinal cells and proper trafficking of pigments in the retinal cells are involved in proper light-sensing mechanisms. Both TRP channels and non-conventional myosins are involved in blindness. Retrospectively, the TRP channel was first discovered by Minke et al. in Drosophila melanogaster as the trp-mutant reveals defective light-sensing mechanisms. Indeed, so far several TRP channels have been reported to express in retinal cells. Some of these TRP channels are involved in photo-response and are essential for light sensation, as mutations in these TRP...
channels cause different forms of blindness. \(^5\)
For example, mutation in TRPM1 is responsible for blindness because it is involved in retinal ON bipolar function. \(^5\) In agreement with the involvement in common function, mutations in myosin motors are also involved in blindness. For example, mutation in myosin VIIa is involved in the development of “Usher-syndrome type 1B”. \(^4\) In Drosophila, \(Ca^{2+}\)-activated myosin V is involved with the closure of the pupil, and thus, is involved with light sensation. \(^6\) It has also been reported recently that translocation of eGFP-tagged TRP-like channels to the rhabdomeral membrane in Drosophila photoreceptors is myosin III dependent. \(^7\) These reports indicate genetic as well as functional interactions between TRP channels and myosin motors and suggest possible physical interactions, too. In fact, a recent proteomic screen has identified myosin as an interacting partner for TRPC5 and TRPC6. \(^8\) Another recent study showed that myosin IIa is directly phosphorylated by TRPM7, a cation channel fused to an alphakinase. \(^9\) TRPM7 phosphorylates positively charged coiled-coil domain of myosin II, and this phosphorylation in turn regulates cell contractility and adhesion. \(^1\) In the same notion, a recent proteomic screen has identified Myosin 10 as an interacting protein of TRP5. \(^2\) All these results suggest that TRP channels and some of the specific cytoskeletal proteins such as non-conventional myosin motors and other kinesins are involved in the same functions. However, further studies are needed to understand these interactions and their significance in detail.

TRP and Motors in the Transition of Cell Morphology

A significant understanding of the common function between TRP channels and motor proteins can be derived from the observation that expression as well as activation of TRP channels often result in changes in the cellular structure, morphology and causes major transitions. For example, ectopic expression of TRPV1 results in induction of excessive filopodial structures and elongation of neurites. \(^2\) By contrast, activation of TRPV1 by RTX results in retraction of growth cone and varicosity formation. \(^4\) This cellular retraction and varicosity formation is largely due to the disassembly of microtubules caused by activation of TRPV1. \(^4\) Due to the sudden loss of microtubules, the retrograde force mediated by the actin cytoskeleton, (mainly produced by the myosin motors) overrides the anterograde force produced by the microtubule cytoskeleton. The growth cone retracts and neurites develop multiple varicosities or “beads-in-a-string” morphology as a result of this unbalanced force (Fig. 1). \(^2\) Activation of TRPV1 by RTX results in rapid elongation of filopodial structures as well. \(^2\) Similarly, activation of TRPV1 by NADA, an endogenous component, also results in rapid elongation of filopodial structures and dendritic spines. \(^2\) As filopodial and/or dendritic spine elongation need supplies of extra membrane, these results strongly suggest that activation of TRPV1 leads to vesicle fusion at the filopodia and/or spine. We actually confirmed vesicle fusion at the base of the filopodial structures after activation of TRPV1. \(^2\) We also confirmed active movement and trafficking of vesicles carrying TRPV1 within the growth cone and filopodial structures. \(^2\) Though the identities of such motors are still unknown, these studies strongly suggest the involvement of different motor proteins that are required for several specific jobs relevant for growth cone turning or elongation (Fig. 2). This notion is supported by several facts. First, the movement of cytoplasmic transport packets (CTPs) towards the C- and T-zone of the growth cone is mainly based on microtubule cytoskeleton. In addition, movement of vesicles (and
processes. However, it seems that TRP channels also regulate such processes in a Ca\(^{2+}\)-independent manner by regulating unconventional motor proteins and Ca\(^{2+}\)-independent kinases, an area which is still not well understood. In normal scenario, Ca\(^{2+}\)-dependent processes often overshadow non-ionic functions of TRP channels. However, there are several examples that support regulatory roles of TRP channels, which are primarily independent of Ca\(^{2+}\)-influx activity. For example, TRPV1-ΔNt (truncated channel which cannot conduct Ca\(^{2+}\)-influx) induces massive filopodial structures from all over the cells (Fig. 3).\(^{12}\) In addition, estrogen-induced cytoskeletal reorganizations are TRPV1-dependent, but they are independent of TRPV1 channel activity.\(^{68}\) Often TRPV1-dependent cytoskeletal reorganization cannot be blocked by the presence of extracellular EGTA and \(5'I\)-RTX.\(^{12,64,68}\) These facts suggest that TRPV1-mediated reorganization of cytoskeleton is at least partially Ca\(^{2+}\)-independent. It seems that different Ca\(^{2+}\)-dependent and -independent kinases are involved in such processes. Taken together, recent results indicate that TRPV1 acts as a scaffold at the plasma membrane, and this scaffolding act is important for Ca\(^{2+}\)-independent functions and critical for certain signaling events. However, further studies are needed to understand the exact mechanisms behind these transitions and dissect the role of different types of myosin motors in that context.

Regulation of TRP Channels Conductivity by Cytoskeletal Proteins

A number of previous studies have demonstrated that the ionic conductivity via TRP channels is altered if the integrity and/or...
dynamics of different cytoskeleton are altered by means of pharmacological agents. For example, Ca\(^{2+}\)-influx via TRPV4 is altered if actin or microtubule cytoskeletons is/are altered.\(^{13,60}\) These changes in most cases reflect the alteration in the number of TRP channels present in the membrane. This is mainly due to the fact that alteration of cytoskeleton simply affects the localization, trafficking and recycling of TRP channels. Thus, these results do not indicate if there is any change in the properties at the level of single channel complex.

However, in recent time very few studies have addressed this problem and attempted to establish a direct regulatory role of the cytoskeleton on the channel activity. In this aspect, the best characterization has been done on TRPP channels.\(^{32,70}\) PC2 channels isolated from vesicles were reconstituted on lipid bilayers, and subsequently single-channel recordings were performed. This system arguably eliminates all other regulatory and cellular factors except the channel-associated complex. Interestingly, actin, the actin-related components such as α-actinin and gelsolin, tubulin including acetylated α-tubulin, and the kinesin motor proteins (KIF3A and KIF3B) are present in these membranes, suggesting direct interaction of these components with PC2 channels.\(^{32,70}\) It has been demonstrated that cytoskeletal components indeed regulate the properties of PC channels. Disruption of actin filaments by addition of actin-severing protein like gelsolin or by addition of cytochalasin-D activates PC2 channel. This actin-mediated activation of PC2 can be inhibited by inducing actin polymerization, especially by addition of soluble monomeric G-actin with ATP. This indicates that actin filaments—not soluble actin—are an endogenous negative regulator of PC2 channels. Similarly, microtubules also regulate PC2 channel function but in an opposing manner. Depolymerization of microtubules with colchicine rapidly inhibits the basal level of PC2 channel activity. In contrast polymerization and/or stabilization of microtubules by addition of GTP and taxol\(^*\) to soluble tubulin stimulate(s) PC2 channel activity.\(^{70}\) Involvement of the microtubule cytoskeleton in the regulation of PC2 channel has also been described in vivo in primary cilia of renal epithelial cells.\(^{6}\) In that system, addition of microtubule destabilizer (colchicine) abolishes channel activity rapidly, whereas the addition of microtubule stabilizers (taxol\(^*\)) increases channel activity.\(^{6}\) Similar results were obtained using reconstituted lipid bilayer system, revealing that both spontaneous activity and the opening probability of TRPP3 ion channels are increased by the addition of α-actinin, thereby demonstrating that the channel properties can be modulated by cytoskeletal components.\(^{71}\)

Figure 3. TRPV channels regulate filopodia development and function. Shown are the confocal images of filopodial structures of different length, shape and structures developed from cells expressing TRPV1-GFP (A–E) as well as truncated version (F) TRPV1-ΔCt that is defective in Ca\(^{2+}\)-conductance. TRPV1-induced filopodial structures can form even in the presence of 5′I-RTX (E) indicating that development and regulation of such entities need TRPV1 but are independent (at least in part) of Ca\(^{2+}\)-influx mediated by TRPV1.

Conclusion and Future Direction

The multidimensional crosstalk between TRP channels and different motor proteins is just emerging. So far only a few motor proteins have been identified that can interact with these TRP channels directly. Until now the interacting regions, their binding kinetics and the precise regulations are not known. However, such information will be beneficial to understand how TRPs and...
different motor proteins join hand-in-hand for common functions. This may in turn have significant relevance in different pathophysiological disorders as TRP channels can be targeted by different physical and chemical stimuli at pharmacological doses. Such strategies may prove useful against different neurodegenerative diseases where TRPs and different motor proteins control neuronal migration, spinal development and functions. In the same context, such an understanding may also be useful for other immunological diseases where cellular migration, attachment, and morphological changes of immune cells are involved in several functions. In different cellular systems, how TRP channels actually regulate the motor proteins and induce cytoskeletal reorganization, thereby coordinating different functions, remains to be explored in future.

Acknowledgments

We acknowledge support and intellectual inputs from all the labs members and colleagues. Chandan Goswami acknowledges previous research support from Prof. F. Huchu (FU, Berlin) and Dr. T. Huchu (Max Planck Institute for Molecular genetics, Berlin). Financial support from NISER and KIIT is appreciated. We regard not being able to include all the scientific works due to space limitations. This review reflects the views and interpretation of the data available in the literature.

References

1. Goswami C, Huchu T. Novel aspects of the submembrane microtubule cytoskeleton. FEBS J 2008; 275:4653.
2. Goswami C, Huchu T. Submembrane microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99.
3. Chen XZ, Li Q, Wu Y, Liang G, Lara CJ, Cantello HF. Submembrane microtubule cytoskeleton: interaction of TRP2 with the cell cytoskeleton. FEBS J 2008; 275:4679-83.
4. Avraham KB. Motors, channels and the sounds of silence. Nat Med 1997; 3:608-9.
5. Nault SM, Alegiau FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystin 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33:129-37.
6. Li Q, Montalbetti N, Wu Y, Ramos A, Raychowdhury MK, Chen XZ, et al. Polycystin-2 channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 2006; 281:37666-75.
7. Jurczyk A, Gromley A, Redick S, San Agustin J, Wittman G, Paurosu GJ, et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilium assembly. J Cell Biol 2004; 166:637-43.
8. Shin JB, Adams D, Paskett M, Shi M, Sidi S, Levin M, et al. Xenopus TRP1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner ear hair cells. Proc Natl Acad Sci USA 2005; 102:12572-7.
9. Liang X, Madrid J, Sahs HS, Howard J. NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton (Hoboken) 2011; 68:1-7.
10. Lee J, Moon S, Cha Y, Chung YD. Drosophila TRPN (+NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 2010; 5:11012.
11. Dryer SE, Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 2010; 299:F699-701.
12. Goswami C, Huchu T. TRPV1 expression-dependent initiation and regulation of filopodia. J Neurochem 2010; 103:1319-33.
13. Goswami C, Kuhn J, Heppenstall PA, Huchu T. Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 2010; 5:11655.
14. Gradilone SA, Masuyak AI, Splinter PL, Banales JM, Huang BQ, Lee SO, et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 2010; 107:19338-43.
15. Loudon RP, Silver LD, Yee HF Jt, Gallo G. RhoA kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 2006; 66:847-67.
16. Medeiros NA, Burnette DT, Fochscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 2006; 8:215-26.
17. Les Erickson F, Corts AC, Dose AC, Burnside B. Localization of a class III myosin to filopodia tips in transfected HEK 293 cells requires an actin-binding site in its tail domain. Mol Biol Cell 2003; 14:4173-80.
18. Bridgman PC, Dave S, Anees CJ, Tuillo AN, Adelstein RS. Myosin IB is required for growth cone motility. J Neurosci 2001; 21:6159-69.
19. Bridgman PC, Eiken LL. Axonal myosin-I. J Neurocytol 2008; 29:831-41.
20. Berg JS, Derleth BH, Penzien CM, Cotey DP, Cheney RE. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 2000; 113:3439-51.
21. Berg JS, Cheney RE. Myosin-X is a unconventional myosin that undergoes intraflagellar motility. Nat Cell Biol 2002; 4:246-50.
22. Sousa AD, Berg JS, Robertson BW, Meeker RB, Cheney RE. Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci 2003; 116:184-94.
23. Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell Biol 2005; 15:339-45.
24. Bohil AB, Robertson BW, Cheney RE. Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci USA 2006; 103:12411-6.
25. Bennett RD, Mauer AS, Steehler EL. Calmodulin-like protein increases filopodia-dependent cell motility via upregulation of myosin-10. J Biol Chem 2007; 282:5025-32.
26. Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 2003; 100:13958-63.
27. Kuwahara K, Wang Y, McAnally J, Richmond JA, Basile-Duby R, Hill JA, et al. TRPC6 fulfills a calcium signaling circuit during pathologic cardiac remodeling. J Clin Invest 2006; 116:3114-26.
28. Goswami C, Rademacher N, Smalla KH, Kalscheur V, Libbey TP, Steel KP. The roles of unconventional myosins in hearing and deafness. Essays Biochem 2008; 45:159-74.
29. Redowicz MJ. Myosins and pathogenesis: genetics and biology. Acta Biochim Pol 2002; 49:789-804.
30. Corey DP. What is the hair cell transduction channel? J Physiol 2006; 576:23-8.
31. Cuaungco MP, Grimm C, Holler S. TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 2007; 1772:1022-7.
32. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, et al. TRPA1 is a candidate for the mechanosensory transduction channel of vertebrate hair cells. Nature 2004; 432:723-30.
33. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noreen-Trauth K. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitintwaddler (Va) mice. Proc Natl Acad Sci USA 2002; 99:14994-9.
34. Grimm C, Cuaungco MP, van Aken AF, Schnee M, Jots S, Korn CJ, et al. A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitintwaddler mouse. Proc Natl Acad Sci USA 2007; 104:19583-8.
46. Lee KP, Nair AV, Grimm C, van Zeeland F, Heller S, Bindels RJ, et al. A helix-breaking mutation in the epithelial Ca(2+)-dependent inactivation. Cell Calcium 2010; 48:275-87.
47. Nagata K, Duggan A, Kumar G, García-Atovoros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 2005; 25:4052-61.
48. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, García-Atovoros J. The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci USA 2008; 105:353-8.
49. Nilius B, Voets T, Peters J. TRP channels in disease. Sci STKE 2005; 2005:295.
50. Pauwels R, Perrelet V, Krylov K. TRPMLin in sickness and in health. Am J Physiol Renal Physiol 2009; 296:1245-54.
51. Ribelhue G, Porte J, Vialat S, Kottmers J, Hubschle G, Piazza V. Proteome analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na/K-ATPase. Pflugers Arch 2005; 451:87-98.
52. Richardson GP, et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 2009; 85:730-6.
53. Sohoni AK, Li BX, Xia H, Ready DF. Calcium-activated Myosin V closes the Drosophila pupal. Curr Biol 2008; 18:951-5.
54. Meyer NE, Joel-Almagor T, Frechter S, Minke B, Huber A. Subcellular translocation of the eGFPagged TRP1 channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci 2006; 119:2592-603.
55. Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP. Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na/V/K-ATPase. Pflugers Arch 2005; 451:87-98.
56. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 2006; 25:290-301.
57. Clark K, Middelbeek J, Morrice NA, Figdor CG, Laaender E, van Leeuwen FN. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE 2008; 3:1876.
58. Lockwich T, Pant J, Makusky A, Jankowska-Stephens E, Kowalak JA, Marley SP, et al. Analysis of TRPC3-interacting proteins by tandem mass spectrometry. J Proteome Res. 2008; 7:979-89.
59. Goswami C, Dregi M, Otta H, Schwappach B, Huch F. Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 2006; 96:254-66.
60. Goswami C. Structural and functional regulation of growth cone, filopodia and synaptic sites by TRPV1. Commun Integr Biol 2010; 3:614-8.
61. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide-3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 2006; 128:509-22.
62. Goswami C, Kuhn J, Dina OA, Fernández-Ballester G, Levine JD, Ferrer-Montiel A, et al. Estrogen destabilizes microtubules through an ion-conductivity-independent TRPV1 pathway. J Neurosci 2011; 31:995-1008.
63. Suzuki M, Hirao A, Mizuno A. Micrornbule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vaniloid 4 (TRPV4). J Biol Chem 2005; 278:51448-53.
64. Montalbetti N, Li Q, Timpanano GA, Gonza lea-Pert rett S, Dai XQ, Cen XZ, et al. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelolin. J Physiol 2005; 566:309-25.
65. Li Q, Dai XQ, Shen PY, Wu Y, Long W, Chen CX, et al. Direct binding of alpha-actinin enhances TRPP3 channel activity. J Neurochem 2007; 103:2391-400.