A REMARK ON $C^{1,\alpha}$-REGULARITY FOR DIFFERENTIAL INEQUALITIES IN VISCOSITY SENSE

ARMIN SCHIKORRA

Abstract. We prove interior $C^{1,\alpha}$-regularity for solutions

$-\Lambda \leq F(D^2 u) \leq \Lambda$

where Λ is a constant and F is fully nonlinear, 1-homogeneous, uniformly elliptic.

The proof is based on a reduction to the homogeneous equation $F(D^2 u) = 0$ by a blow-up argument – i.e. just like what is done in the case of viscosity solutions $F(D^2 u) = f$ for $f \in L^\infty$.

However it was not clear to us that the above inequality implies $F(D^2 u) = f$ for some bounded f (as would be the case for linear equations in distributional sense by approximation). Nor were we able to find the literature on $C^{1,\alpha}$-regularity for viscosity inequalities. So we thought this result might be worth recording.

Contents

1. Introduction 1
2. Ingredients and definitions 4
3. Proof of the main theorem 6
Acknowledgment 9
References 9

1. Introduction

It is a classical result in the regularity theory of viscosity solutions that viscosity solutions $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$ to a large class of fully nonlinear elliptic equation

(1.1) \[F(D^2 u) = f \quad \text{in } \Omega \]

actually have H"older continuous gradient, see e.g. [3, Theorem 8.3]. See Section 2 for the precise definition of F we consider here.
Let us recall that a viscosity solution to (1.1) is a map $u \in C^0(\Omega)$ such that

$$F(D^2u) \leq f, \quad \text{and} \quad F(D^2u) \geq f$$

both hold in viscosity sense. And $F(D^2u) \leq f$ holds in viscosity sense if for any $\varphi \in C^2(\mathbb{R}^n)$ such that $\varphi - u$ attains its maximum in some $x_0 \in \Omega$ we have

$$F(D^2\varphi(x_0)) \leq f(x_0).$$

Similarly, $F(D^2u) \geq f$ holds in viscosity sense if for any $\varphi \in C^2(\mathbb{R}^n)$ such that $\varphi - u$ attains its minimum in some $x_0 \in \Omega$ we have

$$F(D^2\varphi(x_0)) \geq f(x_0).$$

For an introduction to the theory of viscosity solutions we refer e.g. to [3, 8, 9].

In this small note we want to record that the $C^{1,\alpha}$-regularity theory for equations $F(D^2u) = f$ also holds for differential inequalities. More precisely we have

Theorem 1.1. Assume that $u \in C^0(\Omega)$ for some $\beta > 0$ solves in viscosity sense

(1.2) \quad $- \Lambda \leq F(D^2u) \leq \Lambda$ \quad in Ω,

where F is a uniformly elliptic operator and 1-homogeneous (see Section 2), and $\Lambda < \infty$ is a constant. Then $u \in C^{1,\alpha}(\Omega)$ for some $\alpha < 1$.

Let us remark that Theorem 1.1 does not seem to follow (even in the linear case $F(D^2u) = \Delta u$ and even with right-hand side in $f \in L^\infty$) only from considering incremental quotients and using Harnack inequality (as in [3, §5.3] where the right-hand side is zero). The incremental quotient of f is not uniformly bounded and blows up as $h \to 0$.

The problem that lead us to searching in the literature for Theorem 1.1 is the following: in [7] Khomrutai and the author study a geometric obstacle problem. In this geometric problem one is lead to consider obstacle problems for obstacles $\psi \in C^2$ where the energies is of the form

$$\int |\nabla u|^2 + u^2g \quad \text{where} \quad u \geq \psi.$$

For $g \geq 0$ and $g \in L^1$ one can show boundedness of u. If one has g bounded one obtains Hölder continuity of u. In particular, in the latter case one obtains in viscosity sense the following three inequalities.

$$\Delta u \leq ug \quad \text{in} \quad \Omega$$

$$\Delta u = ug \quad \text{in} \quad \{u > \psi\}$$

$$\Delta u \geq \Delta \psi \quad \text{in} \quad \{u = \psi\}.$$

That is, one can find Λ such that

$$\Delta u \leq \Lambda,$$

and

$$\Delta u \geq \Lambda,$$

where F is a uniformly elliptic operator and 1-homogeneous (see Section 2), and $\Lambda < \infty$ is a constant. Then $u \in C^{1,\alpha}(\Omega)$ for some $\alpha < 1$.

both hold in viscosity sense, but it is not obvious how to find a priori a function \(f \) such that \(\Delta u = f \in L^\infty \). If these inequalities were to hold for distributional solutions one easily gets \(C^{1,\alpha} \)-regularity, cf. Theorem 1.2. For this linear problem one might hope to use an argument as in [6] for the \(p \)-Laplacian to show that the inequality is actually true also in a weak sense.

Another approach to prove Theorem 1.1 might be to appeal to the relation between Viscosity solutions and pointwise strong solutions as in [4], and show this to hold for inequalities.

Our choice of proof for Theorem 1.1 is very similar to the usual arguments used for equations \(F(D^2u) = f \in L^\infty \), namely one uses a blow-up procedure to reduce the regularity theory to the homogeneous solutions. We saw similar arguments appear e.g. in [1, 11, 10, 2].

However, while Hölder continuity for solutions of viscosity inequalities are well-established and easily citable, e.g. in [3], we were not able to find in the literature a statement regarding Hölder continuity for the gradient of solutions to such inequalities. The author would have appreciated such a statement recorded somewhere, and thought it might be useful also for others.

Let us also remark that in the weak sense a theorem similar to Theorem 1.1 holds true – simply by approximation.

Theorem 1.2. Let \(A \in \mathbb{R}^{n \times n} \) be a symmetric positive definite matrix, and let \(u \in W^{1,2}(\Omega) \), \(\Omega \subset \mathbb{R}^n \) open, solve

\[
f_1 \leq \text{div}(A\nabla u) \leq f_2 \quad \text{in } \Omega
\]

that is we have for any \(\varphi \in C^\infty_c(\Omega), \varphi \geq 0, \)

\[
-\int \langle A\nabla u, \nabla \varphi \rangle \leq \int f_2 \varphi,
\]

and

\[
-\int \langle A\nabla u, \nabla \varphi \rangle \geq \int f_1 \varphi.
\]

Then for every Ball \(B(2r) \subset \Omega, \)

\[
\|\nabla^2 u\|_{L^p(B(2r))} \lesssim \|f_1\|_{L^p(B(2r))} + \|f_2\|_{L^p(B(2r))} + \|u\|_{L^2(B(2r))}.
\]

In particular, by Sobolev embedding, if \(p > n \) we obtain \(C^{1,\alpha} \)-regularity estimates for \(u \).

Proof. Let \(\eta \in C^\infty_c(B(0,1)), \eta \equiv 1 \) on \(B(0,1/2) \), and \(0 \leq \eta \leq 1 \) on \(B(0,1) \) be the usual mollifying kernel and set \(\eta_\varepsilon := \varepsilon^{-n}\eta(\cdot/\varepsilon) \). Denote the convolutions with \(\eta_\varepsilon \) by \(u_\varepsilon := \eta_\varepsilon * u \) and \(\varphi_\varepsilon := \eta_\varepsilon * \varphi \). Moreover we define

\[
(1.3) \quad g_\varepsilon := \text{div}(A\nabla u_\varepsilon) \in C^\infty(\Omega_{-\varepsilon}).
\]

Here

\[
\Omega_{-\varepsilon} := \{ x \in \Omega, \text{dist} (x, \partial \Omega) > \varepsilon \}.
\]
We have for any $\varphi \in C^\infty_c(\Omega)$, $\varphi \geq 0$,
$$\int g_\varepsilon \varphi = -\int \langle A \nabla u_\varepsilon, \nabla \varphi \rangle = -\int \langle A \nabla u, \nabla \varphi_\varepsilon \rangle \leq \int f_2 * \eta_\varepsilon \varphi.$$
and likewise
$$\int g_\varepsilon \varphi \geq \int f_1 * \eta_\varepsilon \varphi.$$
With the same argument that one uses to prove the fundamental theorem of calculus, namely letting φ approximate the dirac-function, we obtain
$$f_1 * \eta_\varepsilon \leq g_\varepsilon \leq f_2 * \eta_\varepsilon \quad \text{pointwise everywhere in } \Omega - \varepsilon.$$
In particular, for $\varepsilon < r$ and $B(2r) \subset \Omega$ we readily obtain for any $p \in (1, \infty)$
$$\|g_\varepsilon\|_{L^p(B(r))} \lesssim \|f_1\|_{L^p(B(2r))} + \|f_2\|_{L^p(B(2r))}.$$
Thus, from standard Calderon-Zygmund elliptic theory for the (constant coefficient-) equation (1.3) we find
$$\|\nabla^2 u_\varepsilon\|_{L^p(B(r))} \lesssim \|f_1\|_{L^p(B(2r))} + \|f_2\|_{L^p(B(2r))} + \|u\|_{L^2(B(2r))}$$
with constants independent of ε. Since $u_\varepsilon \xrightarrow[\varepsilon \to 0]{} u$ in $W^{1,2}_\text{loc}(\Omega)$ we obtain from the boundedness of the $W^{2,p}$-norm of u_ε that the weak limit $u \in W^{2,p}_\text{loc}(\Omega)$. Moreover, from weak convergence we have the estimate
$$\|\nabla^2 u\|_{L^p(B(r))} \lesssim \liminf_{\varepsilon \to 0} \|\nabla^2 u_\varepsilon\|_{L^p(B(r))} \leq \|f_1\|_{L^p(B(2r))} + \|f_2\|_{L^p(B(2r))} + \|u\|_{L^2(B(2r))}$$
□

2. Ingredients and definitions

Denote by $\mathcal{S}^n \subset \mathbb{R}^{n \times n}$ the symmetric matrices and let $F: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a uniformly elliptic operator, that is we shall assume there exists ellipticity constants $0 < \lambda_1 < \lambda_2 < \infty$ such that
$$\lambda_1 \text{tr}(N) \leq F(M + N) - F(M) \leq \lambda_2 \text{tr}(N) \quad \forall M, N \in \mathcal{S}^n, \quad N \geq 0.$$
Moreover, we shall assume that F is 1-homogeneous, i.e. that $F(\sigma N) = \sigma F(N)$.

For solutions u to the homogeneous equations $F(D^2 u) = 0$ we have by e.g. [3, Corollary 5.7.]

Theorem 2.1 ($C^{1,\alpha}$ for homogeneous equation). Assume that F is as above, $\Omega \subset \mathbb{R}^n$ is open and in viscosity sense $u \in C^0(\Omega)$ solves
$$F(D^2 u) = 0 \quad \text{in } \Omega.$$
Then $u \in C^{1,\alpha}(\Omega)$ for some $\alpha < 1$.

Theorem 1.1 is thus a consequence of the following
Theorem 2.2. Let $\alpha \in (0, 1]$ and assume that F is a homogeneous, uniformly elliptic operator as above such that every viscosity solution $v \in C^0(\Omega)$ of the homogeneous equation

$$F(D^2v) = 0 \quad \text{in } \Omega$$

satisfies $v \in C^{1,\alpha}$.

Assume that $u \in C^0(\Omega)$ solves in viscosity sense (1.2). Then $u \in C^{1,\beta}(\Omega)$ for any Hölder exponent $\beta \in (0, \alpha)$.

Hölder regularity of solutions u of differential inequalities in viscosity sense are standard, they follow from Harnack’s inequality. See, e.g., [3, Proposition 4.10].

Lemma 2.3 (Uniform Hölder regularity). Let u solve (1.2) for F as above. For some $\gamma \in (0, 1)$ we have C^γ-regularity, namely for any ball $B(2r) \subset \Omega$ we have

$$[u]_{C^\gamma(B(r))} \leq C(\Lambda, r, \|u\|_{L^\infty(B(2r))})$$

As a last ingredient we need the (standard) result about limits of uniformly converging viscosity (sub/super)-solutions.

Lemma 2.4. Let $\Omega \subset \mathbb{R}^n$ open, $u_k \in C^0(\Omega)$, and $\Lambda_k \in \mathbb{R}$ be a sequence of (viscosity) solutions to

$$F(D^2u_k) \leq \Lambda_k \quad \text{in } \Omega,$$

or

$$F(D^2u_k) \geq \Lambda_k \quad \text{in } \Omega,$$

respectively.

Assume that $\Lambda_k \to \Lambda_\infty \in \mathbb{R}$ and u_k converges locally uniformly to u_∞. Then u_∞ is a solution in viscosity sense of

$$F(D^2u_\infty) \leq \Lambda_\infty \quad \text{in } \Omega,$$

or

$$F(D^2u_\infty) \geq \Lambda_\infty \quad \text{in } \Omega,$$

Proof. This is of course well known, but we repeat the argument for the \leq-case.

Let $u_k \in C^0(\Omega)$ converge locally uniformly to $u_\infty \in C^0(\Omega)$, and assume that

$$F(D^2u_k) \leq \Lambda_k$$

in viscosity sense, for some constants $\Lambda_k \xrightarrow{k \to \infty} \Lambda$. We will show that then (also in viscosity sense)

$$F(D^2u) \leq \Lambda.$$

So let $\varphi \in C^2(\Omega)$ be a function testfunction for u, i.e. assume that $\varphi \leq u$ and $\varphi(x_0) = u(x_0)$. We need to show that

$$F(D^2\varphi(x_0)) \leq \Lambda.$$
Set
\[\tilde{\phi}(x) := \varphi(x) - |x - x_0|^4. \]

Now we observe that for any \(y \) satisfying
\[(2.4) \quad \tilde{\phi}(y) - u_k(y) \geq \tilde{\phi}(x_0) - u_k(x_0) \]
we also have
\[\tilde{\phi}(y) - u(y) \geq \tilde{\phi}(x_0) - u(x_0) - 2\|u - u_k\|_{L^\infty}. \]

Since \(u(y) \geq \varphi(y) \) and \(\varphi(x_0) = u(x_0) \) we obtain from the definition of \(\tilde{\phi} \),
\[-|y - x_0|^4 \geq \varphi(y) - u(y) - |y - x_0|^4 \geq -2\|u - u_k\|_{L^\infty}, \]
that is any \(y \) satisfying (2.4) also satisfies
\[|y - x_0|^4 \leq 2\|u - u_k\|_{L^\infty} \xrightarrow{k \to \infty} 0. \]

In particular we can find a sequence \(x_k \xrightarrow{k \to \infty} x_0 \) such that
\[\tilde{\phi}(x_k) - u_k(x_k) = \max_x (\tilde{\phi}(x) - u_k(x)) \geq \tilde{\phi}(x_0) - u_k(x_0) \]
That is, \(\tilde{\phi}(x) \) is a testfunction for \(u_k \) at \(x_k \), and from (2.2) we get
\[F(D^2\tilde{\phi}(x_k)) \leq \Lambda_k. \]

From the ellipticity condition (2.1) we also obtain (see [3, Lemma 2.2]) for \(M = D^2\tilde{\phi}(x_k) \) and \(N = D^2\varphi(x_0) - D^2\tilde{\phi}(x_k) \)
\[F(D^2\varphi(x_0)) \leq F(D^2\tilde{\phi}(x_k)) + C(\Lambda) |D^2\tilde{\phi}(x_k) - D^2\varphi(x_0)| \leq \Lambda_k + C(\Lambda) |D^2\tilde{\phi}(x_k) - D^2\varphi(x_0)|. \]

But since \(x_k \xrightarrow{k \to \infty} x_0 \) we have \(D^2\tilde{\phi}(x_k) \xrightarrow{k \to \infty} D^2\tilde{\phi}(x_0) = D^2\varphi(x_0) \). Thus, we obtain (2.3).

3. Proof of the main theorem

The heart of the matter is the following decay estimate for the oscillation, we found this kind of argument in [2, Lemma 3.4].

Proposition 3.1. Let \(F \) be as above, and \(\alpha \) as in Theorem 2.2. For any \(\beta < \alpha \) and any \(\lambda_0 \in (0, 1) \) there exists \(\varepsilon > 0 \) and \(\lambda \in (0, \lambda_0) \) such that the following holds.

Let \(u \in C^0(B(0, 1)) \) with \(\text{osc}_{B(0,1)} u \leq 1 \) and
\[-\varepsilon \leq F(D^2u) \leq \varepsilon \quad \text{in } B(0, 1) \]

Then there exists \(q \in \mathbb{R}^n \) such that
\[\text{osc}_{B(\lambda)} (u - \langle q, x \rangle) < \frac{1}{2} \lambda^{1+\beta}. \]
Proof. Assume the claim is false for some fixed $\beta < \alpha$ and $\lambda_0 \in (0, 1)$. Then we find for every $k \in \mathbb{N}$ functions $u_k \in C^0(B(0,1))$ with $\text{osc}_{B(0,1)} u_k \leq 1$ solving
\[-\frac{1}{k} \leq F(D^2 u_k) \leq \frac{1}{k},\]
but for every $\lambda \in (0, \lambda_0)$ we have
\[\inf_{q^* \in \mathbb{R}^n} \text{osc}_{B(\lambda)} (u_k - \langle q^*, x \rangle_{\mathbb{R}^n}) \geq \frac{1}{2} \lambda^{1+\beta}.\]
Without loss of generality we can assume that $u_k(0) = 0$ (since otherwise $u_k - u_k(0)$ satisfies the same assumptions), and since $\text{osc}_{B(0,1)} u_k \leq 1$ we have $\|u_k\|_{\infty} \leq 1$. By Lemma 2.3 the u_k are uniformly bounded in C^{α}, for some fixed $\alpha > 0$. By Arzela-Ascoli we thus may assume, up to taking a subsequence, that $u_k \rightarrow u_\infty$ locally uniformly in $B(0,1)$.

In view of Lemma 2.4 we find that u_∞ solves the homogeneous equation
\[F(D^2 u_\infty) = 0 \quad \text{in } B(0,1).\]
From the assumptions of Theorem 2.2 we know that $u_\infty \in C^{1,\alpha}$. From Taylor’s theorem we have thus for any $\lambda \in (0, 1/4)$,
\[\inf_{q^* \in \mathbb{R}^n} \text{osc}_{B(\lambda)} (u_\infty - \langle q^*, x \rangle_{\mathbb{R}^n}) \lesssim [u_\infty]_{C^{1,\alpha}(B(0,1/2))} \lambda^{1+\alpha}.\]
On the other hand, by locally uniform convergence of u_k we have for any $\lambda \in (0, \lambda_0)$.
\[\inf_{q^* \in \mathbb{R}^n} \text{osc}_{B(\lambda)} (u_\infty - \langle q^*, x \rangle_{\mathbb{R}^n}) \geq \frac{1}{2} \lambda^{1+\beta}.\]
That is, we have that for all $\lambda \in (0, 1/4)$, $\lambda < \lambda_0$.
\[\lambda^{\beta - \alpha} \leq [u_\infty]_{C^{1,\alpha}}\]
Since $\beta < \alpha$ this is impossible for very small λ. \qed

Iterating Proposition 3.1 we obtain

Corollary 3.2. Let F be as above, and α as in Theorem 2.2. For any $\beta < \alpha$ and any $\lambda_0 \in (0, 1)$ there exist $\varepsilon > 0$ and $\lambda \in (0, \lambda_0)$ such that the following holds.

Assume u solves
\[
\tag{3.1} -\varepsilon \leq F(D^2 u) \leq \varepsilon \quad \text{in } B(0,1)
\]
and
\[\text{osc}_{B(0,1)} u < 1.\]

Then for any $k \in \mathbb{N} \cup \{0\}$, there exists $q_k \in \mathbb{R}^n$ such that
\[\lambda^{-k(1+\beta)} \text{osc}_{B(\lambda^k)} (u(x) - q_k \cdot x) < 2^{-k}.\]
Proof. Let λ_0 w.l.o.g. be such that $2\lambda_0^{1-\beta} < 1$ and let $\lambda \in (0, \lambda_0)$ be from Proposition 3.1. For $k \in \mathbb{N} \cup \{0\}$ we set
\[u_k(x) := 2^k \lambda^{-k(1+\beta)} \left(u(\lambda^k x) - q_k \cdot \lambda^k x \right), \]
where $q_0 = 0$ and $q_k \in \mathbb{R}^n$, $k \geq 1$, remains to be chosen.

Regardless of the choice of the constant vector q_k we obtain from (3.1), for every $k \in \mathbb{N} \cup \{0\}$,
\[-2^k \lambda^{k(1-\beta)} \varepsilon \leq F(D^2 u_k) \leq 2^k \lambda^{k(1-\beta)} \varepsilon \quad \text{in } B(0, 1).\]
By the choice of λ_0 and since $\lambda \in (0, \lambda_0)$ we have in particular for every $k \in \mathbb{N} \cup \{0\}$,
\[-\varepsilon \leq F(D^2 u_k) \leq \varepsilon \quad \text{in } B(0, 1).\]

The claim follows, once we show
\[\text{osc}_{B(0, 1)} u_k < 1 \quad \text{for all } k \in \mathbb{N}. \]

We prove (3.3) by induction, for $k = 0$ this holds already by assumption. Fix $k \in \mathbb{N}$. As induction hypothesis we assume the following holds
\[\text{osc}_{B(0, 1)} u_{k-1} < 1. \]
In view of (3.2) we can apply Proposition 3.1, and find $\tilde{q}_k \in \mathbb{R}^n$ such that
\[2\lambda^{-1-\beta} \text{osc}_{B(\lambda)} (u_{k-1} - \langle \tilde{q}_k, x \rangle_{\mathbb{R}^n}) < 1. \]
That is
\[2\lambda^{-1-\beta} \text{osc}_{B(1)} (u_{k-1}(\lambda \cdot) - \langle \lambda \tilde{q}_k, x \rangle_{\mathbb{R}^n}) < 1. \]
By the definition of u_{k-1},
\[2^k \lambda^{-k(1+\beta)} \text{osc}_{B(1)} (u(\lambda^k x) - \langle q_{k-1} - 2^{1-k} \lambda^{(k-1)(1+\beta)} \lambda^{1-k} \tilde{q}_k, \lambda^k x \rangle_{\mathbb{R}^n}) < 1. \]
so if we set
\[q_k := q_{k-1} - 2^{1-k} \lambda^{(k-1)(1+\beta)} \lambda^{1-k} \tilde{q}_k, \]
we have obtained
\[\text{osc}_{B(1)} (u_k) < 1. \]
That is, by induction, (3.3) holds for any $k \in \mathbb{N} \cup 0$. \qed

Corollary 3.3. Let F be as above, and α as in Theorem 2.2. For any $\beta < \alpha$ let u solve for some ball $B(R) \subset \Omega$
\[-\Lambda \leq F(D^2 u) \leq \Lambda \quad \text{in } B(R)\]
Then
\[\sup_{r < R} r^{-1-\beta} \inf_{q \in \mathbb{R}^n} \text{osc}_{B(r)} (u - \langle q, x \rangle_{\mathbb{R}^n}) \leq C(\beta, \alpha, \Lambda, R, \text{osc}_{B(R)} u). \]
Proof. By otherwise considering $u_{\kappa,R} := \kappa^{-1} u(Rx)$ for

$$
\kappa := \frac{\Lambda}{\varepsilon} + R^2 + \text{osc}_{B(R)} u + 1,
$$

we can assume that $R = 1$, $\Lambda < \varepsilon$ and $\text{osc}_{B(1)} u < 1$. Here ε is from Corollary 3.2.

Denoting for the ball $B(r)$

$$
\Phi(B(r)) := r^{-1-\beta} \inf_{q \in \mathbb{R}^n} (u_\infty - \langle q, x \rangle_{\mathbb{R}^n}),
$$

we get from Corollary 3.2 for any $r \in (\lambda^{k-1}, \lambda^k)$

$$
\Phi(B(r)) \leq \lambda^{-1-\beta} \Phi(B(\lambda^k)) \leq C(\lambda) 2^{-k} \Phi(B(1)) \leq C(\lambda) r^{-\log \frac{2}{\log \lambda}} \Phi(B(1)).
$$

This implies for $\sigma := \frac{-\log 2}{-\log \lambda} > 0$

$$
\sup_{r < R} r^{-\sigma} \Phi(B(r)) \leq C(\lambda) \Phi(B(1)).
$$

Dropping the σ, the claim is now proven. □

Proof of Theorem 2.2. Let $K \subset \Omega$ be a compact set. By a covering argument for any $\beta < \alpha$ we obtain from Corollary 3.3

$$
\sup_{x \in K, r < \text{dist}(x, \partial \Omega)} r^{-1-\beta} \inf_{q \in \mathbb{R}^n} (u - \langle q, x \rangle_{\mathbb{R}^n}) < \infty
$$

This readily implies that $u \in C^{1,\beta}(K)$ for any $\beta < \alpha$, see, e.g. [5]. See also [12, Theorem 4.4]. □

Acknowledgment. Partial support by the Daimler and Benz foundation through grant no. 32-11/16 and Simons foundation through grant no 579261 is gratefully acknowledged.

The author would like to thank Quoc-Hung Nguyen, Cyril Imbert, Erik Lindgren, Qing Liu, Russel Schwab, and Pablo Stinga for helpful suggestions.

References

[1] A. Attouchi, M. Parviainen, and E. Ruosteenoja. $C^{1,\alpha}$ regularity for the normalized p-Poisson problem. J. Math. Pures Appl. (9), 108(4):553–591, 2017. 3

[2] I. Birindelli and F. Demengel. Hölder regularity of the gradient for solutions of fully nonlinear equations with sub linear first order term. In Geometric methods in PDE’s, volume 13 of Springer INdAM Ser., pages 257–268. Springer, Cham, 2015. 3,6

[3] L. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of AMS Colloquium Publications. AMS, Providence, RI, 1995. 1, 2, 3, 4, 5, 6

[4] L. Caffarelli, M. G. Crandall, M. Kocan, and A. Święch. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math., 49(4):365–397, 1996. 3

[5] S. Campanato. Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa (3), 18:137–160, 1964. 9
[6] P. Juutinen, P. Lindqvist, and J. J. Manfredi. On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. *SIAM J. Math. Anal.*, 33(3):699–717, 2001.

[7] S. Khomrutai and A. Schikorra. On $C^{1,\alpha}$-regularity theory for critical points of a geometric obstacle-type problem. *preprint*, 2018.

[8] S. Koike. *A beginner’s guide to the theory of viscosity solutions*. www.math.tohoku.ac.jp/~koike/evis2012version.pdf. 2012.

[9] N. Krylov. *Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations*, volume 233 of *AMS Mathematical Surveys and Monographs*. AMS, Providence, RI, 2018.

[10] E. Lindgren. On the regularity of solutions of the inhomogeneous infinity Laplace equation. *Proc. Amer. Math. Soc.*, 142(1):277–288, 2014.

[11] E. Lindgren and P. Lindqvist. Regularity of the p-Poisson equation in the plane. *J. Anal. Math.*, 132:217–228, 2017.

[12] H. Rafeiro, N. Samko, and S. Samko. Morrey-Campanato spaces: an overview. In *Operator theory, pseudo-differential equations, and mathematical physics*, volume 228 of *Oper. Theory Adv. Appl.*, pages 293–323. Birkhäuser/Springer Basel AG, Basel, 2013.