Cannabidiol, among Other Cannabinoid Drugs, Modulates Prepulse Inhibition of Startle in the SHR Animal Model: Implications for Schizophrenia Pharmacotherapy

Fernanda F. Peres¹,², Raquel Levin¹,², Valéria Almeida¹,², Antonio W. Zuardi³,⁴, Jaime E. Hallak³,⁴, José A. Crippa³,⁴ and Vanessa C. Abilio¹,²*

¹Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Escola Paulista De Medicina, Federal University of São Paulo, São Paulo, Brazil, ²Department of Pharmacology, Escola Paulista De Medicina, Federal University of São Paulo, São Paulo, Brazil, ³Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil, ⁴National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil

Schizophrenia is a severe psychiatric disorder that involves positive, negative and cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses the sensorimotor gating functioning and is impaired in schizophrenia patients as well as in animal models of this disorder. Recent data point to the participation of the endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia. Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain, and on the future prospects resulting from these findings.

Keywords: prepulse inhibition of startle reflex, animal models, schizophrenia, cannabidiol, endocannabinoid system, SHR strain

Schizophrenia is a debilitating neuropsychiatric disorder that affects 0.7% of the world's population (MacDonald and Schulz, 2009) and involves positive (i.e., delusions and hallucinations), negative (e.g., anhedonia, social withdrawal, affective flattening), and cognitive symptoms (such as impaired processing of information and deficits in working memory) (van Os and Kapur, 2009). Currently, schizophrenia's pharmacotherapy is mainly limited to the positive symptoms and associated with severe side effects and high rates of treatment resistance (Briles et al., 2012; Hasan et al., 2012; Abi-Dargham, 2014).

Sensorimotor gating is a physiological process that filters sensory information as it is transmitted to motor output systems, preventing information overload and cognitive...
Prepulse inhibition of startle reflex (PPI) is disrupted in schizophrenia patients and evidence show that PPI deficits are positively correlated to thought disorder (Perry and Braff, 1994; Perry et al., 1999), and associated with impaired functional status and with the presence of auditory hallucinations (Swerdlow et al., 2006; Kumar et al., 2008). PPI deficits are improved by treatment with antipsychotic drugs (Kumari et al., 1999; Weike et al., 2000; Leumann et al., 2002; Oranje et al., 2002; Minassian et al., 2007; Wynn et al., 2007; Martinez-Gras et al., 2009), and this improvement is associated with treatment-related amelioration of schizophrenia symptoms (Minassian et al., 2007). PPI is also disrupted in several animal models of this disorder (Swerdlow et al., 2008), being a useful paradigm to investigate the neurobiology and pharmacotherapy of information processing abnormalities in schizophrenia.

Recent data point to the involvement of the Endocannabinoid system in the pathophysiology of schizophrenia. The endocannabinoid system was described subsequent to the identification of the molecular target of Δ⁹-THC. It comprises the cannabinoid-1 and 2 receptors (CB₁ and CB₂), their endogenous ligands known as endocannabinoids (e.g., anandamide and 2-arachidonoylglycerol), and the enzymes involved in the endocannabinoid's metabolism.

The contribution of the endocannabinoid system in schizophrenia is suggested based on some compelling evidence. The exposure to Δ⁹-THC may induce a transient psychotic condition in healthy subjects (D’Souza et al., 2004; Morrison et al., 2009), whereas in schizophrenia patients, cannabis consumption provokes more and earlier psychotic relapses, even among those under antipsychotic treatment (Linszen et al., 1994; D’Souza et al., 2005; Grech et al., 2005). Moreover, cannabis use has been proved to be a risk factor for psychotic outcomes (Matheson et al., 2011). In accordance, several alterations in the endocannabinoid system are seen in schizophrenia: (1) levels of anandamide are increased in patients’ cerebrospinal fluid and peripheral blood (Leweke et al., 1999, 2007; De Marchi et al., 2003; Giuffrida et al., 2004); (2) post-mortem studies show increased CB₁ density in patients’ dorsolateral prefrontal, anterior cingulate and posterior cingulate cortices (Dean et al., 2001; Zavitsanou et al., 2004; Newell et al., 2006; Dalton et al., 2011); (3) in vivo studies using positron emission tomography (PET) reveal increased density of CB₁ in the brain in both medicated and non-medicated schizophrenia patients (Wong et al., 2010; Ceccarini et al., 2013); (4) polymorphisms of the genes that code the cannabinoid receptors CB₁ and CB₂ are associated to some schizophrenia phenotypes (Ujike et al., 2002; Chavarria-Siles et al., 2008; Ishiguro et al., 2010).

In addition, pre-clinical studies show that cannabinoid drugs are able to modulate schizophrenia-like behaviors, including PPI.

In the work that generated this focused review, we evaluated the effects of four cannabionid drugs on the PPI deficit displayed by the Spontaneously Hypertensive Rat (SHR) strain an animal model characterized by our group to study several aspects of schizophrenia (Levin et al., 2014; Table 1). Here, we will focus on the effects of these four cannabinoids drugs—WIN 55212,2 (WIN—cannabionid agonist), rimonabant (CB₁ antagonist/inverse agonist), AM404 (anandamide uptake

Table 1: Cannabinoid drugs as potential agents to treat prepulse inhibition of startle (PPI) deficits in schizophrenia.

Cannabinoid drug	Effect on SHR's PPI	Limitations/advantages
WIN 55212,2	Attenuates the deficit	Induces psychotomimetic effects in animal models.
Rimonabant	Worsens the deficit	Is associated with increased symptoms of depression and anxiety.
AM 404	Does not modify PPI	Displays antipsychotic properties in humans and in other behavioral abnormalities in animal models. Is safe in animals and humans.
Cannabidiol	Attenuates the deficit	

KEY CONCEPT 4 | Antipsychotic drugs
Drugs used primarily to treat psychotic states, in particular schizophrenia and bipolar disorder. The antipsychotic drugs are classified in typical and atypical compounds: the typical antipsychotic drugs are associated with motor side effects, and the atypical are linked to metabolic disturbances.

KEY CONCEPT 5 | Endocannabinoid system
System described subsequent to the identification of the molecular target of Δ⁹-THC. It comprises the cannabinoid-1 and 2 receptors (CB₁ and CB₂), their endogenous ligands (named endocannabinoids) and the enzymes involved in the endocannabinoid’s metabolism.

fragmentation (Cryan and Reif, 2012). This process is impaired especially in schizophrenia (Braff et al., 2001), but also in other neuropsychiatric disorders such as obsessive-compulsive disorder (Ahmari et al., 2012), Tourette’s syndrome (Swerdlow et al., 2001), Huntington’s disease (Swerdlow et al., 1995), and bipolar disorder (Perry et al., 2001). Prepulse inhibition of startle reflex (PPI) is considered an operational measure of sensorimotor gating and is extensively used in translational studies of schizophrenia, since it is seen in both rodents and humans (Braff et al., 2001). PPI is defined as a reduction of acoustic startle reflex to an intense stimulus (pulse) when immediately preceded by a low intensity stimulus (prepulse).
Inhibitor) and cannabidiol (CB₁ antagonist, anandamide uptake inhibitor, among other effects)—on PPI of animal models, mainly the SHR strain, and on the future prospects resulting from these findings.

SHR strain was developed by selecting rats from Wistar strain with hypertensive phenotype and brother-sister mating (Okamoto and Aoki, 1963). In addition to hypertension, the inbreeding selected some behavioral abnormalities—such as impulsivity, impaired sustained attention and hyperactivity—leading to the proposal of the SHR strain (mainly young animals) as an animal model for attention deficit/hyperactivity disorder (ADHD). It is noteworthy that most of the studies using SHR as ADHD model were performed using as control the Wistar-Kyoto strain (developed by inbreeding Wistar rats without hypertension). Wistar-Kyoto rats may be inappropriate as a control strain since they display inactivity and depressive-like behavior when compared to Wistar rats (WRs) (Overstreet, 2012), and do not show genetic similarities when compared to SHRs (Johnson et al., 1992; St Lezin et al., 1992). In addition, SHRs' predictive validity as ADHD model is inconsistent: several studies describe that the administration of psychostimulants (drugs used to treat ADHD) does not attenuate SHRs' behavioral abnormalities (Amini et al., 2004; Yang et al., 2006; van den Bergh et al., 2006; Bizot et al., 2007; Barron et al., 2009; Calzavara et al., 2009), and may even potentiate them (Amini et al., 2004; Yang et al., 2006; Barron et al., 2009; Calzavara et al., 2009).

Conversely, we reported that SHRs, when compared to WRs, display schizophrenia-like behavioral abnormalities. SHRs display increased locomotion (a model for the positive symptoms of schizophrenia—Lipska and Weinberger, 2000), decreased social interaction (that mimics the negative symptoms—File and Seth, 2003), and deficits in the contextual fear conditioning (associated with impairments in emotional memory seen in schizophrenia—Maren et al., 2013) and PPI. These abnormalities are reversed by antipsychotic drugs (with varied effects in WRs, depending on the drug, the dose, and the behavior), but not by psychostimulant drugs, mood stabilizers, dopaminergic antagonists without antipsychotic activity or drugs that modulate anxiety (Calzavara et al., 2009, 2011; Levin et al., 2011). In addition, psychotomimetic manipulations, such as sleep deprivation and administration of psychostimulants, potentiate the behavioral abnormalities displayed by SHRs and induce a schizophrenia-like behavioral phenotype in WRs (Calzavara et al., 2009, 2011; Levin et al., 2011)—as seen in other animal models of the disorder, as well as in patients (Laruelle et al., 1999; Jones et al., 2011). As a result, the SHR strain has been used to investigate genetic alterations related to schizophrenia as well as novel therapeutic strategies for this disorder, including cannabinoid drugs (Levin et al., 2012, 2014; Almeida et al., 2013, 2014; Diana et al., 2015).

WIN is an agonist of CB₁ and CB₂ receptors. The acute administration of WIN attenuates the SHRs' PPI deficit, and does not modify the PPI of WRs—although a trend to reduce the WRs' PPI is seen with the lowest dose (Levin et al., 2014). Accordingly, other studies demonstrate that WIN reverses the PPI impairment displayed by psychosocially stressed mice (Brzózka et al., 2011) and induced by chronic administration phenycyclidine (Spano et al., 2010), two other animal models of schizophrenia. The beneficial effect of WIN on the PPI of psychosocially stressed mice is prevented by pretreatment with the CB₁ antagonist rimonabant (Brzózka et al., 2011), suggesting an involvement of these receptors on the WIN's actions on sensorimotor gating functioning.

In rodents without PPI deficits some authors describe absence of WIN effect on PPI (Bortolato et al., 2005; Brzózka et al., 2011), but others show that WIN disrupts PPI when administered systemically (Schneider and Koch, 2002; Wegener et al., 2008; Brosda et al., 2011), intra-prefrontal cortex, or intra-ventral hippocampus (Wegener et al., 2008). In addition, repeated administration of WIN during puberty induces PPI deficits that last until adulthood (Schneider and Koch, 2003; Schneider et al., 2005; Wegener and Koch, 2009; Klein et al., 2013). Therefore, WIN seems to present a psychotomimetic profile (supported also by its effects on other schizophrenia-like symptoms—Schneider and Koch, 2002; Pamplona and Takahashi, 2006; Wegener et al., 2008; Spano et al., 2010; Almeida et al., 2014), being unsuitable for schizophrenia patients.

The administration of the CB₁ antagonist rimonabant worsens SHRs' PPI deficit, and does not alter PPI levels in WRs (Levin et al., 2014). The absence of rimonabant effects in WRs is corroborated by previous studies with animals without PPI impairments (Martin et al., 2003; Malone et al., 2004; Malone and Taylor, 2006; Ballmaier et al., 2007). In animal models of schizophrenia, while some studies show that rimonabant is able to counteract the PPI impairments (Malone et al., 2004; Nagai et al., 2006; Ballmaier et al., 2007), others show no effect (Martin et al., 2003; Malone and Taylor, 2006). In addition, clinical trials show that rimonabant induces significant psychiatric side effects, such as symptoms of depression and anxiety, and increases suicide-related adverse events (Christensen et al., 2007; Food and Drug Administration Advisory Committee, 2007; Topol et al., 2010). These data, thus, argue against the clinical use of this compound.

It should be noted that both a CB₁/CB₂ agonist and a CB₁ antagonist provoke differential effects in WRs and SHRs (Levin et al., 2014). This information suggests that these rat strains display distinct endocannabinoid system functioning. Indeed, our group observed that SHRs present higher CB₁ density in the prefrontal and anterior cingulate cortices when compared to WRs (Almeida et al., submitted), which is in accordance with data from schizophrenia patients (Dean et al., 2001; Zavitsanou et al., 2004; Newell et al., 2006; Wong et al., 2010; Dalton et al., 2011; Ceccarini et al., 2013).

AM 404 is a competitive and selective inhibitor of anandamide transportation, and therefore increases its extracellular levels. Anandamide is an endocannabinoid that acts as an agonist of CB₁ and CB₂ receptors and of vanilloid receptor 1 (TRPV1).
When administered to WRs and SHRs, AM 404 did not modify their PPI levels (Levin et al., 2014). No other study has investigated the effects of AM 404 on PPI of animal models of schizophrenia. In control animals, one study shows absence of AM 404 effects on PPI in Sprague-Dawley rats (Bortolato et al., 2006), but another reveals that AM 404, either injected acutely or chronically, disrupts PPI in Swiss mice (Fernandez-Espejo and Galan-Rodriguez, 2004). Evidence, therefore, do not support the

Reference	Results
Schneider and Koch, 2002	Acute administration of WIN (0.6 or 1.2 mg/kg) impairs PPI in a dose-dependent manner. The administration of haloperidol reverses the PPI deficit.
Schneider and Koch, 2003; Schneider et al., 2005	Treatment for 25 days with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood. This impairment is reversed by the administration of haloperidol.
Bortolato et al., 2005	Chronic (during 7 or 21 days) or acute treatment with WIN (0.5, 1, or 2 mg/kg) does not alter PPI levels.
Wegener et al., 2008	Acute systemic administration of WIN (1.2 mg/kg), as well as the administration intra-medial prefrontal cortex or intra-dorsal hippocampus (5 µg/0.3 µl) diminish PPI levels.
Wegener and Koch, 2009	Treatment for 25 days with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood. In addition, WIN treated animals display altered basal neuronal activity and respond differently to haloperidol and apomorphine.
Spano et al., 2010	Chronic WIN self-administration (12.5 µg/kg/infusion) as well as experimenter-given (0.3 mg/kg, i.v.) attenuates phencyclidine-induced impairments in PPI.
Brosda et al., 2011	Acute systemic administration of WIN (0.6 or 1.2 mg/kg) impairs PPI.
Brzózka et al., 2011	WIN (3 mg/kg) administration restores the PPI deficit induced by chronic psychosocial stress. This effect is antagonized by pretreatment with rimonabant.
Klein et al., 2013	Chronic treatment with WIN (1.2 mg/kg) during puberty induces PPI deficits that last until adulthood and are reversed by deep brain stimulation.
Levin et al., 2014	Acute administration of WIN (1 mg/kg) restores the PPI deficit displayed by the SHR strain. WIN (0.3, 1 or 3 mg/kg) does not alter the PPI of control animals.
Martin et al., 2003	Acute administration of rimonabant (5 mg/kg) does not alter PPI on its own or following disruptions by apomorphine, d-amphetamine or MK-801.
Malone and Taylor, 2006	Acute administration of rimonabant (5 mg/kg) is not able to counteract the PPI deficit promoted by social isolation. In addition, rimonabant does not alter the PPI of control animals.
Nagai et al., 2006	Acute administration of rimonabant (10 mg/kg) reverses the ∆9-THC-induced PPI deficit and increased dopamine release in the nucleus accumbens.
Ballmaier et al., 2007	Acute administration of rimonabant (0.75, 1.5, or 3.0 mg/kg) does not alter PPI on its own, and counteracts the PPI disruption induced by administration of phencyclidine, MK-801 or apomorphine.
Levin et al., 2014	Acute administration of rimonabant (0.75 mg/kg) worsens the PPI deficit displayed by the SHR strain. Rimonabant (0.75, 1.5, or 3 mg/kg) does not alter the PPI of control animals.
Fernandez-Espejo and Galan-Rodriguez, 2004	AM 404 either injected acutely (2.5 mg/kg) or chronically (5 mg/kg daily, 7 days) disrupts PPI. This effect is blocked by pretreatment with rimonabant.
Bortolato et al., 2006	Acute administration of AM 404 (2.5, 5, or 10 mg/kg) does not alter PPI levels.
Levin et al., 2014	Acute administration of AM 404 (1, 5, or 10 mg/kg) does not alter the PPI of SHRs or Wistar rats.
Long et al., 2006	Acute administration of cannabidiol (1, 5, or 15 mg/kg) does not alter PPI on its own, but reverses (5 mg/kg) the MK-801-induced disruption of PPI. Pretreatment with capsazepine (agonist of TRPV1 receptors) prevents cannabidiol effect.
Gururajan et al., 2011	Acute administration of cannabidiol (10, 30, or 50 mg/kg) disrupts PPI on its own, and has no effect on MK-801-induced PPI disruption.
Levin et al., 2014	Acute administration of cannabidiol (30 mg/kg) restores the PPI deficit displayed by the SHR strain. Cannabidiol administration also increases the PPI levels of control animals.
Gomes et al., 2015	Treatment with MK-801 for 28 days impairs PPI. Chronic treatment with cannabidiol (30 or 60 mg/kg) attenuates this impairment. Cannabidiol does not alter PPI on its own.
Pedrauzzi et al., 2015	Pretreatment with cannabidiol (15, 30, or 60 mg/kg) attenuates the amphetamine-induced disruption of PPI. Cannabidiol does not alter PPI on its own.

MK-801, dizocilpine; PPI, prepulse inhibition of startle; SHR, spontaneously hypertensive rats; ∆9-THC, delta-9-tetrahydrocannabinol; WIN, WIN 55212,2.
Acute administration of cannabidiol (60 mg/kg) diminishes the stereotyped behavior induced by apomorphine, without promoting catalepsy. Pretreatment with cannabidiol (3 mg/kg) counteracts the hyperlocomotion and the decrease in social interaction induced by MK-801. When administered to rats, acute or chronic administration of cannabidiol (50 mg/kg, 21 days) attenuates the dexamphetamine-induced hyperlocomotion. This effect is mainly seen when PPI levels are below 50%, which is our case. Therefore, the effects of cannabidiol on PPI of WRs are in accordance with the antipsychotic profile suggested for this drug.

The mechanisms whereby cannabidiol modifies PPI are still to be elucidated. Our data suggest that the increase in PPI promoted by this drug is not only due to an increase in anandamide levels, since the anandamide uptake inhibitor AM 404 does not modify PPI (Gomes et al., 2015). Acute or chronic administration of psychostimulant drugs such as MK-801 and amphetamine are used to model schizophrenia. The results, thus, point to an antipsychotic profile of cannabidiol and to the use of this compound on the treatment of sensorimotor gating impairments seen in schizophrenia.

In animals without PPI impairments, some authors describe that cannabidiol does not modify the PPI levels when administered acutely or chronically (Long et al., 2006; Gomes et al., 2015; Pedrazzi et al., 2015), while one study shows that it is able to disrupt PPI (Gururajan et al., 2011). Nonetheless, in our previous work, administration of cannabidiol increased PPI in WRs (Levin et al., 2014). Interestingly, typical and atypical antipsychotic drugs have been shown to increase PPI in WRs and Sprague-Dawley rats (Hoffman et al., 1993; Swerdlow and Geyer, 1993; Johansson et al., 1995; Depoortere et al., 1997a,b; Levin et al., 2011). This effect is mainly seen when PPI levels are below 50%, which is our case. Therefore, the effects of cannabidiol on PPI of WRs are in accordance with the antipsychotic profile suggested for this drug.

The mechanisms whereby cannabidiol modifies PPI are still to be elucidated. Our data suggest that the increase in PPI promoted by this drug is not only due to an increase in anandamide levels, since the anandamide uptake inhibitor AM 404 does not modify PPI (Levin et al., 2014). Likewise, it is unlikely that the cannabidiol’s antagonism of CB1 receptors is the mechanism responsible for its effect on the PPI deficit of SHRs, given that the CB1 antagonist rimonabant promoted an opposite outcome (Levin et al., 2014). Regarding cannabidiol’s action on CB1 receptors, it is noteworthy that although this compound is able to antagonize cannabinoid CB1/CB2 receptor agonists-induced stimulation in brain membranes, this effect is observed with Kᵦ values in the nanomolar range, way below...
the Ki for displacement of [3H]CP55940 from CB1 and CB2 (Pertwee, 2008). In addition, the effectiveness of cannabidiol in inhibiting [35S]GTP/Y binding to brain membranes of wild-type mouse is not different from CB1−/− mouse (Pertwee, 2008). On the other hand, Long et al. (2006) described that cannabidiol’s ability of restoring the PPI deficit induced by MK-801 is prevented by pretreatment with capsaicin, a TRPV1 antagonist. Thus, although other mechanisms of action cannot be disregarded, cannabidiol’s effects on PPI seem to be at least partially related to its action on the vanilloid system.

Other animal studies, investigating additional schizophreniaklike behavioral paradigms, support cannabidiol’s antipsychotic properties (Table 3). The administration of this compound is able to diminish the stereotyped behavior and the hyperlocomotion—behaviors that model the positive symptoms of schizophrenia—induced by psychotomimetic drugs (Zuardi et al., 1991; Moreira and Guimaraes, 2005; Long et al., 2010; Gururajan et al., 2012). Cannabidiol also restores drug-induced impairments in social interaction (Malone et al., 2009; Gururajan et al., 2012), and counteracts the deficit in contextual fear conditioning displayed by the SHRs (Levin et al., 2012).

The promising aforementioned pre-clinical data led to clinical studies (Table 3). In healthy volunteers, cannabidiol is able to attenuate the psychotic symptoms induced by the administration of psychotomimetic drugs (Karniol et al., 1974; Zuardi et al., 1982; Bhattacharyya et al., 2010). In a case-study, this cannabinoid significantly reduced schizophrenia symptoms in the Brief Psychiatric Rating Scale (BPRS), in a way superior to the typical antipsychotic drug haloperidol (Zuardi et al., 1995). Moreover, an open-label study with Parkinson’s disease patients showed that cannabidiol administration, in addition to their usual treatment, decreases psychotic symptoms—evaluated by BPRS and by the Parkinson Psychosis Questionnaire—without worsening their motor function (Zuardi et al., 2009). Also, several studies suggest that cannabidiol is safe in humans and animals, and does not alter physiological parameters (blood pressure, heart rate and body temperature) or induce motor and psychological side effects (Bergamaschi et al., 2011).

Thereafter, a double-blind controlled clinical trial with schizophrenia patients was performed: treatment with cannabidiol, for 4 weeks, decreased patients symptoms—evaluated by BPRS and Positive and Negative Syndrome Scale (PANSS)—in a way non-inferior to amisulpride, one of the most effective antipsychotic drugs currently in use. Interestingly, the cannabidiol induced fewer side effects (weight gain, changes in prolactin levels and extrapyramidal symptoms) than amisulpride, and treatment with cannabidiol, but not with amisulpride, led to an increase in the levels of anandamide in serum that was associated with the decrease of psychotic symptoms (Leweke et al., 2012).

All these encouraging clinical and pre-clinical data led to a recent proof-of-concept study by GW Pharmaceuticals. The phase IIa included 88 schizophrenia patients only partially responsive to standard antipsychotic treatment, who received cannabidiol or placebo in addition to their antipsychotic medication for 6 weeks. Cannabidiol was consistently superior to placebo in attenuating the schizophrenia symptoms, and did not induce serious adverse events (GW Pharmaceuticals, 2015).

Taken as a whole, data regarding the effects of cannabidiol drugs on PPI reinforce the involvement of the endocannabinoid system in the sensorimotor gating functioning and in the pathophysiology of schizophrenia. Among the drugs that act on the endocannabinoid system, pre-clinical and the subsequent clinical data point to cannabidiol as the most promising compound for treating schizophrenia symptoms without inducing significant side effects. Nevertheless, most of the clinical evidence that suggests cannabidiol as a new antipsychotic agent or adjunctive treatment does not investigate specifically sensorimotor gating/ PPI deficits. Accordingly, data from pre-clinical studies using animal models, like our previous one (Levin et al., 2014), are fundamental to support future clinical studies focused on these deficits in schizophrenia patients.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by grants of “Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP” and of “Conselho Nacional do Desenvolvimento Científico e Tecnológico–CAPES.”

REFERENCES

Abi-Dargham, A. (2014). Schizophrenia: overview and dopamine dysfunction. J. Clin. Psychiatry 75:e31, doi: 10.4088/JCP.13078tx2c
Almari, S. E., Rishbrough, V. B., Geyer, M. A., and Simpson, H. B. (2012). Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37, 1216–1223. doi: 10.1038/npp.2011.308
Almeida, V., Levin, R., Peres, F. F., Niigaki, S. T., Calzavara, M. B., Zuardi, A. W., et al. (2013). Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog. Neuropsychopharmacol. Biol. Psychiatry 41, 30–35. doi: 10.1016/j.pnpbp.2012.10.024
Almeida, V., Peres, F. F., Levin, R., Saiuma, M. A., Calzavara, M. B., Zuardi, A. W., et al. (2014). Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr. Res. 153, 150–159. doi: 10.1016/j.schres.2014.01.039
Amini, B., Yang, P. B., Swann, A. C., and Dafny, N. (2004). Differential locomotor responses in male rats from three strains to acute methylphenidate. Int. J. Neurosci. 114, 1063–1084. doi: 10.1080/0020745049075526
Ballmaier, M., Bortolato, M., Rizzetti, C., Zoli, M., Gessa, G., Heinz, A., et al. (2007). Cannabinoid receptor antagonists counteract sensorimotor gating deficits in the phencyclidine model of psychosis. Neuropsychopharmacology 32, 2098–2107. doi: 10.1038/sj.npp.13101344
Barron, E., Yang, P. B., Swann, A. C., and Dafny, N. (2009). Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin). Int. J. Neurosci. 119, 40–58. doi: 10.1080/00207450802330546
Depoortere, R., Perrault, G., and Sanger, D. J. (1997a). Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology (Berl.) 132, 366–374.

Depoortere, R., Perrault, G., and Sanger, D. J. (1997b). Some, but not all, antipsychotic drugs potentiate a low level of prepulse inhibition shown by rats of the Wistar strain. Behav. Pharmcol. 8, 364–372.

Diana, M. C., Santoro, M. L., Xavier, G., Santos, C. M., Spindola, L. N., Moretti, P. N., et al. (2015). Low expression of Gria1 and Grik glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR). Psychiatry Res. 229, 690–694. doi: 10.1016/j.psychres.2015.08.021

D’Souza, D. C., Abi-Saab, W. M., Madonick, S., Forsellius-Bielen, K., Doersch, A., Braley, G., et al. (2005). Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol. Psychiatry 57, 594–608. doi: 10.1016/j.biopsych.2004.12.006

D’Souza, D. C., Perry, E., MacDougall, L., Ammerman, Y., Cooper, T., Wu, Y. T., et al. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29, 1558–1572. doi: 10.1038/sj.npp.1300496

Fernandez-Espejo, E., and Galan-Rodriguez, B. (2004). Sensorimotor gating in mice is disrupted after AM404, an anandamide reuptake and degradation inhibitor. Psychopharmacology (Berl.) 175, 220–224. doi: 10.1007/s00213-004-1851-5

File, S. E., and Seth, P. (2003). A review of 25 years of the social interaction test. Eur. J. Pharmcol. 463, 35–53. doi: 10.1016/s0014-2999(03)01273-1

Food and Drug Administration Advisory Committee, U. (2007). FDA Briefing Document: Zimulti (Rimonabant) Tablets, 20 mg. Rockville, MD: FSA.

Giuffrida, A., Leweke, F. M., Gerth, C. W., Schreiber, D., Koethe, D., Faulhaber, I., et al. (2004). Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29, 2108–2114. doi: 10.1038/sj.npp.1300558

Giuffrida, A., Rodriguez de Fonseca, F., Nava, F., Loubet-Lescoulié, P., and Piomelli, D. (2000). Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404. Eur. J. Pharmacol. 408, 161–168. doi: 10.1016/s0014-2999(00)00786-x

Gomes, F. V., Issy, A. C., Ferreira, F. R., Viveros, M. P., Del Bel, E. A., and Guimarães, F. S. (2015). Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice. Int. J. Neuropsychopharmacol. 18, 1–10. doi: 10.1038/ijnppu041

Grech, A., Van Os, J., Jones, P. B., Lewis, S. W., and Murray, R. M. (2005). Cannabis use and outcome of recent psychosis. Eur. Psychiatry 20, 349–353. doi: 10.1016/j.eurpsy.2004.09.013

Gururajan, A., Taylor, D. A., and Malone, D. T. (2011). Effect of cannabis in a MK-801-rodent model of aspects of schizophrenia. Behav. Brain Res. 222, 299–308. doi: 10.1016/j.bbr.2011.03.053

Gururajan, A., Taylor, D. A., and Malone, D. T. (2012). Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague-Dawley rats. J. Psychopharmacology 26, 1317–1332. doi: 10.1177/0269881112441865

GW Pharmaceuticals (2015). GW Pharmaceuticals Announces Positive Proof of Concept Data in Schizophrenia. London: GWP Press Release.

Hasan, A., Falkai, P., Wobrock, T., Lieberman, J., Glenthoj, B., Gattaz, W. F., et al. (2012). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J. Biol. Psychiatry 13, 318–378. doi: 10.1503/wjbp.2012.696143

Hoffman, D. C., Donovan, H., and Cassella, J. V. (1993). The effects of haloperidol and clozapine on the disruption of sensorimotor gating induced by the noncompetitive glutamate antagonist MK-801. Psychopharmacology (Berl.) 111, 339–344.

Ihiguro, H., Horiochi, Y., Ishikawa, M., Koga, M., Imai, K., Suzuki, Y., et al. (2010). Brain cannabinoid CB2 receptor in schizophrenia. Biol. Psychiatry 67, 974–982. doi: 10.1016/j.biopsych.2009.09.024

Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., and Mechoulam, R. (2009). Non-psychoactive plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 30, 515–527. doi: 10.1016/j.tips.2009.07.006
Lipska, B. K., and Weinberger, D. R. (2000). To model a psychiatric disorder in
Linszen, D. H., Dingemans, P. M., and Lenior, M. E. (1994). Cannabinoids and
Klein, J., Hadar, R., Gotz, T., Manner, A., Eberhardt, C., Balsassari, J., et al. (2013).
Kumari, V., Peters, E. R., Fannon, D., Premkumar, P., Aasen, I., Cooke, M. A.,
Jones, C. A., Watson, D. J., and Fone, K. C. (2011). Animal models
increased dopamine transmission in schizophrenia: relationship to illness phases. Biol.
Psychiatry 46, 56–72.
Leumann, L., Feldon, J., Vollenweider, F. X., and Ludewig, K. (2002). Effects of
typical and atypical antipsychotics on prepulse inhibition and latent inhibition
in chronic schizophrenia. Biol. Psychiatry 52, 729–739. doi: 10.1016/S0006-
3223(02)01344-6
Levin, R., Almeida, V., Peres, F. F., Calzavara, M. B., da Silva, N. D., Suiama, M. A.,
et al. (2012). Antipsychotic profile of cannabidiol and rimonabant in an animal
model of emotional context processing in schizophrenia. Curr. Pharm. Des. 18,
4960–4965. doi: 10.2174/13811121280884735
Levin, R., Calzavara, M. B., Santos, C. M., Medrano, W. A., Niigaki, S.
T., and Abilio, V. C. (2011). Spontaneously Hypertensive Rats (SHR)
present deficits in prepulse inhibition of startle specifically reverted by
clozapine. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1748–1752.
doi: 10.1016/j.pnpbp.2011.08.003
Levin, R., Peres, F. F., Almeida, V., Calzavara, M. B., Zuardi, A. W., Hallak, J. E.,
et al. (2014). Effects of cannabinoid drugs on the deficit of prepulse inhibition of
startle in an animal model of schizophrenia: the SHR strain. Front. Pharmacol. 5:
doii: 10.3389/fphar.2014.00010
Leweke, F. M., Giuffrida, A., Koethe, D., Schreiber, D., Nolden, B. M.,
Kranaster, T., et al. (2010). A behavioural comparison of acute and chronic
Delta-9-tetrahydrocannabinol in chronic schizophrenia. Exp. Brain Res. 166,
101–109. doi: 10.1007/s00221-006-0503-x
Long, L. E., Malone, D. T., and Taylor, D. A. (2006). Cannabidiol reverses MK-801-
induced disinhibition of prepulse inhibition in mice. Neuropsychopharmacology
23, 223–239. doi: 10.1016/j.isprpj.2003011378
Long, L. E., Chewworth, R., Huang, X. F., McGregor, I. S., Arnold, J. C.,
and Karl, T. (2010). Behavioral comparison of acute and chronic
delta-9-tetrahydrocannabinol and cannabidiol in C57BL/6J mice. Int. J.
Neuropsychopharmacol. 13, 861–876. doi: 10.1017/S146154709990605
Long, L. E., Malone, D. T., and Taylor, D. A. (2006). Cannabidiol reverses MK-801-
induced disinhibition of prepulse inhibition in mice. Neuropsychopharmacology
39, 791–803. doi: 10.1038/sj.npp.1300838
MacDonald, A. W., and Schulz, S. C. (2009). What we know: findings that every
theory of schizophrenia should explain. Schizophr. Bull. 35, 493–508. doi:
10.1093/schbul/sbp017
Malone, D. T., Jongejan, D., and Taylor, D. A. (2009). Cannabidiol reverses the
reduction in social interaction produced by low dose Delta-
tetrahydrocannabinol in rats. Pharmacol. Biochem. Behav. 93, 91–96. doi:
10.1016/j.pbb.2009.04.010
Malone, D. T., Long, L. E., and Taylor, D. A. (2004). The effect of SR 141716
and apomorphine on sensorimotor gating in Swiss mice. Pharmacol. Biochem.
Behav. 77, 839–845. doi: 10.1016/j.pbb.2004.02.010
Malone, D. T., and Taylor, D. A. (2006). The effect of Delta-9-tetrahydrocannabinol
on sensorimotor gating in socially isolated rats. Behav. Brain Res. 166, 101–109.
doi: 10.1016/j.bbr.2005.07.009
Maren, S., Phan, K. L., and Liberzon, I. (2013). The contextual brain: implications
for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14,
417–428. doi: 10.1038/nrn3492
Martin, R. S., Secchi, R. L., Sung, E., Lemaire, M., Bonhaus, D. W., Hedley, L.
et al. (2003). Effects of cannabinoid receptor ligands on psychosis-relevant
behavior models in the rat. Psychopharmacology (Berl.) 165, 128–135. doi:
10.1007/s00213-002-1240-x
Martinez-Gras, I., Rubio, G., del Manzano, B. A., Rodriguez-Jimenez, R., Garcia-
Sanchez, F., Bagney, A., et al. (2009). The relationship between prepulse
inhibition and general psychopathology in patients with schizophrenia
treated with long-acting risperidone. Schizophr. Res. 115, 215–221. doi:
10.1016/j.schres.2009.09.035
Matheson, S. L., Shepherd, A. M., Laurens, K. R., and Carr, V. J. (2011). A
systematic meta-review grading the evidence for non-genetic risk factors
and putative antecedents of schizophrenia. Schizophr. Res. 133, 133–142. doi:
10.1016/j.schres.2011.09.020
Minassian, A., Feifel, D., and Perry, W. (2007). The relationship between
sensorimotor gating and clinical improvement in acutely ill schizophrenia
patients. Schizophr. Res. 89, 225–231. doi: 10.1016/j.schres.2006.08.006
Moreira, F. A., and Guimarães, F. S. (2005). Cannabidiol inhibits the
hyperlocomotion induced by psychotomimetic drugs in mice. Eur. J.
Pharmacol. 512, 199–205. doi: 10.1016/j.ejphar.2005.02.040
Morrison, P. D., Zois, V., McKeown, D. A., Lee, T. D., Holt, D. W., Powell,
J. F., et al. (2009). The acute effects of synthetic intravenous Delta-9-
tetrahydrocannabinol on psychosis, mood and cognitive functioning, Psychol.
Med. 39, 1607–1616. doi: 10.1080/0033291790005522
Nagai, H., Egashira, N., Sano, K., Ogata, A., Mizuki, A., Mishima, K., et al. (2006).
Antipsychotics improve Delta-9-tetrahydrocannabinol-induced impairment of
the prepulse inhibition of the startle reflex in mice. Pharmacol. Biochem. Behav.
84, 330–336. doi: 10.1016/j.pbb.2006.05.018
Newell, K. A., Deng, C., and Huang, X. F. (2006). Increased cannabidiol receptor
density in the posterior cingulate cortex in schizophrenia. Exp. Brain Res. 172,
556–560. doi: 10.1007/s00221-006-0503-x
Okamoto, K., and Aoki, K. (1963). Development of a strain of spontaneously
hypertensive rats. Jpn. Circ. J. 27, 282–293.
Oranje, B., Van Oel, C. J., Gispen-De Wied, C. C., Verbeten, M. N., and Kahn, R.
S. (2002). Effects of typical and atypical antipsychotics on the prepulse inhibition
of the startle reflex in patients with schizophrenia. J. Clin. Psychopharmacol. 22,
359–365. doi: 10.1097/00001474-20020080-00005
Overstreet, D. H. (2012). Modeling depression in animal models. Methods Mol.
Biol. 829, 125–144. doi: 10.1007/978-1-61779-458-2_7
Pampolna, F. A., and Takahashi, R. N. (2006). WIN 55212-2 impairs contextual fear
conditioning through the activation of CB1 cannabinoid receptors. Neurosci.
Lett. 397, 88–92. doi: 10.1016/j.neulet.2005.12.026
Pedrazzi, F. J., Issy, A. C., Gomes, F. V., Guimarães, F. S., and Del-Bel,
E. A. (2015). Cannabidiol effects in the prepulse inhibition disruption
induced by amphetamine. Psychopharmacology (Berl.) 232, 3057–3065. doi:
10.1007/s00213-015-3945-7
Perry, W., and Braff, D. L. (1994). Information-processing deficits and
thought disorder in schizophrenia. Am. J. Psychiatry 151, 363–367. doi:
10.1176/ajp.151.3.363
Perry, W., Geyer, M. A., and Braff, D. L. (1999). Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. *Arch. Gen. Psychiatry* 56, 277–281.

Perry, W., Minassian, A., Feifel, D., and Braff, D. L. (2001). Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. *Biol. Psychiatry* 50, 418–424. doi: 10.1016/S0006-3223(01)01184-2

Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabinvarin. *Br. J. Pharmacol.* 153, 199–215. doi: 10.1038/sj bj.6007542

Schneider, M., Drews, E., and Koch, M. (2005). Behavioral effects in adult rats of chronic prepubertal treatment with the cannabinoid receptor agonist WIN 55,212-2. *Behav. Pharmacol.* 16, 447–454. doi: 10.1097/00008877-200509000-00003

Schneider, M., and Koch, M. (2002). The cannabinoid agonist WIN 55,212-2 reduces sensorimotor gating and recognition memory in rats. *Behav. Pharmacol.* 13, 29–37. doi: 10.1097/00008877-200202000-00003

Swerdlow, N. R., Karban, B., Ploum, Y., Sharp, R., Geyer, M. A., and Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette's syndrome: in search of an "MRI-friendly" startle paradigm. *Biol. Psychiatry* 50, 578–585. doi: 10.1016/S0006-3223(01)01164-7

St Lezin, E., Simonet, L., Pravenec, M., and Kurtz, T. W. (1992). Hypertensive disease and normotensive 'control' strains. How closely are they related? *Hypertension* 19, 419–424.

Swerdlow, N. R., and Geyer, M. A. (1993). Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. *Pharmacol. Biochem. Behav.* 44, 741–744.

Swerdlow, N. R., Karban, B., Ploum, Y., Sharp, R., Geyer, M. A., and Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette's syndrome: in search of an "MRI-friendly" startle paradigm. *Biol. Psychiatry* 50, 578–585. doi: 10.1016/S0006-3223(01)01164-7

Swerdlow, N. R., Light, G. A., Cadenhead, K. S., Sprock, J., Hsieh, M. H., and Braff, D. L. (2006). Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. *Arch. Gen. Psychiatry* 63, 1325–1335. doi: 10.1001/archpsyc.63.12.1325

Swerdlow, N. R., Paulsen, J., Braff, D. L., Butters, N., Geyer, M. A., and Swenson, M. R. (1995). Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. *J. Neurol. Neurosurg. Psychiatry* 58, 192–200.

Swerdlow, N. R., Weber, M., Qu, Y., Light, G. A., and Braff, D. L. (2008). Realistic expectations of prepulse inhibition in translational models for schizophrenia research. *Psychopharmacology (Berl.)* 199, 331–388. doi: 10.1007/s00213-008-1072-4

Topol, E. J., Bousser, M. G., Fox, K. A., Creager, M. A., Despres, J. P., Easton, J. D., et al. (2010). Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. *Lancet* 376, 517–523. doi: 10.1016/S0140-6736(09)61935-X

Ujike, H., Takaki, M., Nakata, K., Tanaka, Y., Takeda, T., Kodama, M., et al. (2002). CNR1, central cannabinoid receptor gene, associated with susceptibility to hehephrenic schizophrenia. *Mol. Psychiatry* 7, 515–518. doi: 10.1038/sj.mp.4001029

van den Bergh, F. S., Bloemarts, E., Chan, J. S., Groenink, L., Olivier, B., and Oosting, R. S. (2006). Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. *Pharmacol. Biochem. Behav.* 83, 380–390. doi: 10.1016/j.pbb.2006.02.018

van Os, J., and Kapur, S. (2009). Schizophrenia. *Lancet* 374, 635–645. doi: 10.1016/S0140-6736(09)61993-8

Wegener, N., and Koch, M. (2009). Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. *Brain Res.* 1253, 81–91. doi: 10.1016/j.brainres.2008.11.081

Wegener, N., Kuhnert, S., Thüns, A., Roese, R., and Koch, M. (2008). Effects of acute systemic and intra-cerebral stimulation of cannabinoid receptors on sensorimotor gating, locomotion and spatial memory in rats. *Psychopharmacology (Berl.)* 198, 375–385. doi: 10.1007/s00213-008-1148-1

Weike, A. I., Bauer, U., and Hammad, A. O. (2000). Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. *Biol. Psychiatry* 47, 61–70. doi: 10.1016/S0006-3223(99)00229-2

Wong, D. F., Kowbahra, H., Horti, A. G., Raymont, V., Brasic, J., Guevara, M., et al. (2010). Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radiogand [11C]OMAR. *Neuroimage* 52, 1505–1513. doi: 10.1016/j.neuroimage.2010.04.034

Wynn, J. K., Green, M. F., Sprock, J., Light, G. A., Widmark, C., Reist, C., et al. (2007). Effects of olanzapine, risperidone and haloperidol on prepulse inhibition in schizophrenia patients: a double-blind, randomized controlled trial. *Schizophr. Res.* 93, 134–142. doi: 10.1016/j.schres.2007.05.039

Yang, P. B., Swann, A. C., and Dafny, N. (2006). Acute and chronic methylphenidate dose-response assessment on three adolescent male rat strains. *Brain Res. Bull.* 71, 301–310. doi: 10.1016/j.brainresbull.2006.09.019

Zavitsanou, K., Garrick, T., and Huang, X. F. (2004). Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 28, 355–360. doi: 10.1016/j.pnpbp.2003.11.005

Zuardi, A. W., Crippa, J. A., Hallak, J. E., Pinto, J. P., Chagas, M. H., Rodrigues, G. G., et al. (2009). Cannabidiol for the treatment of psychosis in Parkinson's disease. *J. Psychopharmacol.* 23, 979–983. doi: 10.1077/20098810800 96519

Zuardi, A. W., Morais, S. L., Guimarães, F. S., and Mechoulam, R. (1995). Antipsychotic effect of cannabidiol. *J. Clin. Psychiatry* 56, 485–486.

Zuardi, A. W., Rodrigues, J. A., and Cunha, J. M. (1991). Effects of cannabidiol in animal models predictive of antipsychotic activity. *Psychopharmacology (Berl.)* 104, 260–264.

Zuardi, A. W., Shirakawa, I., Finkelfarb, E., and Karniol, I. G. (1982). Action of cannabinoids, compositions and uses thereof. Pub. No.: WO/2014/108899. International Application No.: PCT/IL2014/050023.

Conflict of Interest Statement: JH, AZ, and JC are co-inventors of the patent "Fluorinated CBD compounds, compositions and uses thereof. Pub. No.: WO/2014/108899. International Application No.: PCT/IL2014/050023."

The Other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Peres, Levin, Almeida, Zuardi, Hallak, Crippa and Abilio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.