The interrelationships between Src, Cav-1 and RhoGD12 in transitional cell carcinoma of the bladder

T Qayyum1, G Fyffe1, M Duncan1, PA McArdle2, M Hilmy2, C Orange3, G Halbert4, M Seywright3, PG Horgan4, MA Underwood2 and J Edwards*1

1Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK; 2Department of Urology, Royal Infirmary, Glasgow G4 0SF, UK; 3Department of Pathology, Western Infirmary, Glasgow G11 6NT, UK; 4School of Medicine, College of MVLS, University of Glasgow, Royal Infirmary, Glasgow G4 0SF, UK

BACKGROUND: The aim of this current study was to assess the expression and activity of Src family kinases, focal adhesion kinase (FAK), caveolin (Cav-1) and RhoGD12 in bladder cancer.

METHODS: Fifty-eight patients with a new diagnosis of bladder cancer undergoing transurethral resection were included. Immunohistochemical staining was utilised to assess expression of c-Src, dephosphorylated (SrcY530), phosphorylated Src (Y419), phosphorylated FAK (FAK Y861), Cav-1 and RhoGD12. Expression was assessed using the weighted histoscore method.

RESULTS: High expression of dephosphorylated Y527, phosphorylated Y416 and phosphorylated FAK Y861 in the membrane were associated with increased cancer-specific survival (P = 0.01, P = 0.001, P = 0.008, respectively) and expression of Y416 in the membrane was an independent factor on multivariate analysis when combined with known clinical parameters (P = 0.008, HR 0.288, 95% CI 0.11 – 0.72).

CONCLUSION: These results demonstrate that in contrast to other solid tumours, activation of the Src family members and downstream signalling proteins are associated with a good prognosis in transitional cell carcinoma of the bladder, and activated Src has a positive relationship with RhoGD12.

British Journal of Cancer (2012) 106, 1187 – 1195. doi:10.1038/bjc.2012.52 www.bjcancer.com

Published online 21 February 2012. © 2012 Cancer Research UK

Keywords: Src kinase; Cav-1; RhoGD12; bladder cancer; survival

Worldwide, there are around 360,000 new cases of bladder cancer diagnosed each year (www.cancerresearchuk.org). In the UK alone, bladder cancer is the fifth most common solid non-cutaneous malignancy with approximately 10,000 new cases and 5,000 deaths annually (www.cancerresearchuk.org). Overall survival is variable; those with non-muscle invasive disease have an 80–90% 5-year survival, whereas in those with muscle invasive disease, the 3-year survival is between 25–50% depending on the degree of invasive disease (www.cancerresearchuk.org).

In those with non-muscle invasive disease, the recurrence and progression rate is strongly associated with tumour stage and grade. These factors can be categorised to show the likelihood for recurrence and progression using EORTC risk tables (Sylvester et al, 2006). Even in those considered low risk, the 5-year recurrence is 31%, increasing to 78% in those considered to be in the risk high category (Sylvester et al, 2006). The 5-year progression rate in those at high risk is 45% (Sylvester et al, 2006).

In those with muscle invasive disease undergoing radical cystectomy, the 5-year survival is only 50% (Dalbagni et al, 2001; Stein et al, 2001; Stein and Skinner, 2006). Despite neoadjuvant chemotherapy in this patient group, published data has only shown a 5% absolute improvement in survival at 5 years (Advanced Bladder Cancer (ABC) Meta-analysis Collaboration, 2005). The role of neoadjuvant radiotherapy has shown a significant increase in survival in randomised studies (Slack et al, 1977; Smith Jr et al, 1997). For those with non-resectable disease, palliation of symptoms is the only treatment option.

One potential molecular target is the non-receptor tyrosine kinase Src, the first identified human proto-oncogene. Src kinase has a role in signal transduction of multiple oncogenic cellular processes, including migration, adhesion, invasion, angiogenesis, proliferation and differentiation, and has significant interactions with other cellular proteins such as growth factor receptors (Kopetz et al, 2007). The C-Src (commonly referred to as Src) is the prototypical member of the Src kinase family (SKF), with a total of eight members expressed in mammalian cells (c-Src, Blk, Fgr, Fyn, Yes, Hck, Lck and Lyn). Src is composed of a C-terminal tail, kinase domain, two protein–protein interaction domains (SH2, SH3) and a unique amino-terminal domain that varies between the Src family members. Src is activated by a number of pathways. Src kinase activation involves dephosphorylation of a conserved tyrosine residue in the C-terminal negative regulatory tail region (Y530) and subsequent autophosphorylation of the Y419 site in the kinase domain (Cooper and Howell, 1993; Engen et al, 2008). Consequently, antibodies to the dephosphorylation of Y530 and phosphorylation of Src kinase at the Y419 sites can be used as markers for activated Src kinase (Campbell et al, 2008). Activated Src kinase translocates to the cell membrane (Frame, 2002), and therefore, cellular location may also be employed as a surrogate marker of...
Role of Src, Cav-1 and RhoGD12 in bladder cancer
T Qayyum et al

Molecular Diagnostics
1188

literature regarding RhoGD12 expression; it has been reported to
et al (2002), lung (Ho et al, 2002; Moon et al, 2004; Cho et al, 2009). Given that Src is still inactive in this state, this would
suggest that RhoGD12 expression has a positive relationship with Src inactivity and not Src activity as previously reported.

We hypothesise that it is the activity of Src that drives the relationship with Cav-1 and RhoGD12 expression. The aims of this study were to assess expression of Src, Cav-1 and RhoGD12 in relationship to cancer-specific survival, and to examine the potential interrelationships between these markers.

PATIENTS AND METHODS

Patients with organ-confined bladder cancer were included for this study. All patients had transitional cell carcinoma. These patients had undergone resection based on investigations in the North Glasgow NHS Trust. Only those patients were included, whose initial CT scans at the time of diagnosis showed no evidence of regional or metastatic disease, patients who had undergone instillation of intravesical chemotherapy post operation, and whose only subsequent treatment was transurethral resection of recurrences and intravesical therapy. Those patients that subsequently underwent further treatment by way of radical surgery or radiotherapy were excluded. Patients were staged pathologically according to the TNM classification and graded according to the World Health Organisation/International Society of Urological Pathology criteria (Epstein et al, 1998). Cancer-specific survival rate was the time from diagnosis until time of death or last follow-up. The cause of death was determined by linkage through the Scottish Cancer Registry. In those who were deceased, if the primary cause of death was of bladder cancer, these were classed as cancer specific, and all other causes were non-cancer specific deaths. The Research Ethics Committee of West of Scotland has approved the study.

Immunohistochemical staining was utilised to assess the expression of c-Src, dephosphorylated Src at Y530, phosphorylated Src at Y419, FAK at Y861, Cav-1 and RhoGD12. Both antibodies for dephosphorylated Src (Y530) and phosphorylated Src (Y419) are not specific for c-Src because of sequence homogeneity between family members, and can therefore also detect other family members, including Fyn, Yes and Fgr.

Src kinase and activated Src kinase expression (c-Src and Src Y419) were investigated using antibodies for c-Src (36D10, Cell Signalling Technology, Beverly, MA, USA) and Y419 (Cell Signaling Technology). Dephosphorylated Src and phosphorylated FAK were investigated using antibodies for Src dephosphorylated at Y272 (dephosphorylated Y272) and FAK Y861 (Invitrogen, Paisley, UK). In humans, the activated phosphorylations that were investigated in the current study are amino acids Y530 and Y419. Antibodies used relate to the rabbit sequence and not the human sequence. Expression for Cav-1 and RhoGD12 were investigated using an anti-Caveolin 1 antibody (Abcam, Cambridge, UK) and D4-GDI (Spring Bioscience, Pleasanton, CA, USA), respectively.

Tissue sections were dewaxed and rehydrated through graded alcohol. Antigen retrieval was performed by heating tissue sections under pressure for 5 min in a pressure cooker, using citrate buffer pH 6 for c-Src, dephosphorylated Y27, FAK Y861, Cav-1, RhoGD12 and EDTA buffer pH 9 for Src Y416. Endogenous peroxidase activity was blocked by incubation in hydrogen peroxide (H2O2). To reduce non-specific binding, the tissue sections were then incubated with 5% normal horse serum (Vector Laboratories, Burlingame, CA, USA) in antibody diluent (DAKO Cytomation, Glostrup, Denmark) for 20 min at room temperature. Incubation with primary antibody was performed with c-Src (1:200) for 60 min at room temperature and overnight at 4 °C for antibodies for dephosphorylated Src Y27 (1:3000), phosphorylated Src Y416 (1:25), FAK Y861 (1:200), Cav-1 (1:500) and RhoGD12 (1:200). Signal was amplified and visualised using the DAKO Envision Kit (DAKO Cytomation) and the chromagen 3,3′-diaminobenzidine (Vector Laboratories).

Sections were counterstained, dehydrated and mounted. In each run, a positive and negative isotype-matched control was included to ensure no false-positive staining.

Scoring

Protein expression was assessed using the weighted histoscore method (H score method; Kirkegaard et al, 2006). The weighted histoscore grades staining intensity as negative (0), weak (1), moderate (2) and strong (3), then multiplication of the percentage of tumour cells within each category. Agreement between observers was excellent and measured in interclass correlation coefficient, respectively.

Statistical analysis was undertaken using SPSS (Chicago, IL, USA). Cancer-specific survival rates were generated using the
Kaplan–Meier method. The log rank test was utilised to compare significant differences between subset groups using univariate analysis. Multivariate analysis was carried out based on the results of the univariate analysis. Multivariate Cox regression analysis was performed to identify those factors that were independently associated with cancer-specific death. A stepwise backward procedure was utilised to ascertain which of the variables had a significant independent relationship with survival. A χ^2-analysis was utilised to assess relationships between pathological parameters and the biomarkers at the various locations. Pearson’s correlation was utilised to assess if relationships could be identified between the various proteins at the various cellular locations. P-values < 0.0003 were deemed significant according to Bonferroni correction.

RESULTS

Analysis was based on 58 bladder transitional cell carcinoma patients with full clinical follow-up. Median age at diagnosis was 69 years (range 43–91). Median follow-up was 33 months (range 1–180). In all, 27 patients died of their disease.

Initial analysis was based on known clinicopathological features, which are known to be prognostic indicators for survival in bladder cancer. T-stage (Figure 1A) and tumour grade (Figure 1B) were significantly associated with poor prognosis, thus validating our cohort for use in a biomarker study (Table 1).

Each cellular location was independently assessed for expression levels (Figure 2). Tumours were divided into those with high (above median) or low (below or equal to the median) expression.

c-Src kinase

Of the tumours investigated, 74% showed some nuclear expression, 100% cytoplasmic expression, and 93% membrane expression. Tumours were subdivided into with high (above median) and low (below median) expression. The χ^2-analysis demonstrated that membrane c-Src negatively correlated with tumour grade ($P = 0.024$, Table 2), but no correlation was demonstrated with age, T-stage, recurrence or metastases. These results suggested that when located in the membrane, c-Src conferred a good prognosis; however, on univariate analysis, expression of c-Src at the different cellular locations did not show significance (Table 1), therefore no correlation with cancer-specific survival was observed for this marker. Pearson’s correlation demonstrated that membrane c-Src expression positively correlated with cytoplasmic c-Src ($P<0.0001$, Table 3).

Table 1 Impact of clinicopathological factors and protein expression/activation on patient survival

	Numbers	Univariate analysis	Multivariate analysis	
		P-value	P-value	
Age (<60) > 60	23/35	0.287		
T-stage (Ta/T1/T2/T3/T4)	27/20/10/1/0	<0.0001	<0.001	3.22 (1.97–5.24)
Grade (1/2/3)	11/25/22	<0.001		
c-Src nuc (negative/positive)	37/21	0.418		
c-Src cyto (negative/positive)	31/27	0.308		
c-Src mem (negative/positive)	30/28	0.22		
γ^{127} Src nuc (negative/positive)	37/21	0.008		
γ^{127} Src cyto (negative/positive)	26/32	0.01		
γ^{116} Src nuc (negative/positive)	30/28	0.647		
γ^{116} Src cyto (negative/positive)	30/28	0.264		
γ^{116} Src mem (negative/positive)	33/25	0.001	0.008	0.288 (0.11–0.72)
γ^{416} FAK nuc (negative/positive)	38/20	0.995		
γ^{416} FAK cyto (negative/positive)	25/33	0.732		
γ^{416} FAK mem (negative/positive)	25/33	0.008		
Cav nuc (negative/positive)	57/1	0.042		
Cav cyto (negative/positive)	31/27	0.689		
Cav mem (negative/positive)	44/14	0.177		
Rho nuc (negative/positive)	29/29	0.186		
Rho cyto (negative/positive)	30/28	0.712		
Rho mem (negative/positive)	31/27	0.425		

Abbreviations: Cav = caveolin; cyto = cytoplasmic; FAK = focal adhesion kinase; HR = hazards ratio; mem = membrane; nuc = nuclear. Each clinical and pathological parameter was correlated to survival (P-values). Figures in bold denote significant values.
Y\(^{527}\) Src kinase

Of the tumours investigated, 3% showed some degree of nuclear expression, 98% cytoplasmic expression, and 93% membrane expression. The \(\chi^2\)-analysis demonstrated that expression of membrane-dephosphorylated Y\(^{527}\) negatively correlated with T-stage and grade (\(P = 0.021, P = 0.011\), Table 2), but no correlation was demonstrated with age, recurrence or metastases. On univariate analysis, high expression of membrane-dephosphorylated Y\(^{527}\) was associated with increased cancer-specific survival (\(P = 0.01\), Table 1). In contrast, high expression of nuclear-dephosphorylated Y\(^{527}\) was associated with decreased cancer-specific survival, \(P = 0.008\); however, this result should be viewed with caution, as only 3% of tumours exhibited high nuclear-dephosphorylated Y\(^{527}\) expression, (Table 1). Pearson’s correlation demonstrated expression of membrane Y\(^{527}\) positively correlated with membrane c-Src expression (\(P < 0.0001\), Table 3), suggesting that both surrogate markers of c-Src activation correlate with each other, and therefore validating their use in this manner.

![Image of immunohistochemistry for bladder cancer of Src kinase, Src Y\(^{527}\), Src Y\(^{416}\), Cav-1, and RhoGD12. Membrane staining denoted by M, cytoplasmic staining by C, and nuclear staining N.]

Table 2 Interrelationships between clinicopathological characteristics of patients and protein expression/activation with bladder cancer using \(\chi^2\)-analysis

Variable	Numbers	Age	T-stage	Grade	Recurrence	Metastases at follow-up
c-Src nuc (negative/positive)	37/21	0.139	0.814	0.706	0.75	0.159
c-Src cyto (negative/positive)	31/27	0.49	0.515	0.689	0.563	0.563
c-Src mem (negative/positive)	30/28	0.956	0.066	**0.024***	0.448	0.416
Y\(^{527}\) Src nuc (negative/positive)	56/2	0.763	0.097	0.544	0.198	0.113
Y\(^{527}\) Src cyto (negative/positive)	37/21	0.197	0.269	0.706	0.822	0.388
Y\(^{527}\) Src mem (negative/positive)	26/32	0.483	**0.021***	**0.011***	0.162	0.078
Y\(^{416}\) Src nuc (negative/positive)	30/28	0.557	0.693	0.094	0.416	0.773
Y\(^{416}\) Src cyto (negative/positive)	29/29	0.79	0.21	0.109	0.192	0.295
Y\(^{416}\) Src mem (negative/positive)	33/25	0.304	0.054	**0.005***	0.14	**0.001***
Y\(^{416}\) FAK nuc (negative/positive)	52/6	0.588	0.825	0.21	0.553	0.79
Y\(^{416}\) FAK cyto (negative/positive)	38/20	0.602	0.936	0.295	0.569	0.955
Y\(^{416}\) FAK mem (negative/positive)	25/33	0.963	0.083	0.125	**0.026***	**0.045***
Cav nuc (negative/positive)	57/1	0.418	0.245	0.267	0.367	0.267
Cav cyto (negative/positive)	31/27	0.49	0.352	0.689	0.638	0.957
Cav mem (negative/positive)	44/14	0.335	0.09	**0.026**	0.658	0.292
Rho nuc (negative/positive)	29/29	0.425	0.21	0.593	0.601	**0.036***
Rho cyto (negative/positive)	30/28	0.956	0.693	0.547	0.814	0.814
Rho mem (negative/positive)	31/27	0.363	0.851	0.689	0.32	0.957

Abbreviations: Cav = caveolin; cyto = cytoplasmic; FAK = focal adhesion kinase; mem = membrane; nuc = nuclear. Figures in bold denote significant values. *Negative correlation.
Table 3: Interrelationships between protein markers at the various cellular locations using Pearson’s correlation

Protein/Marker	c-Src nuc	c-Src cyto	c-Src mem	Y527 Src nuc	Y527 Src cyto	Y527 Src mem	Y416 Src nuc	Y416 Src cyto	Y416 Src mem	Y861 FAK nuc	Y861 FAK cyto	Y861 FAK mem	Cav nuc	Cav cyto	Cav mem	Rho nuc	Rho cyto	Rho mem
c-Src nuc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sig	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PC	0.5792	-	-	P < 0.0001	NS	NS	NS	NS	NS	NS	NS	NS						
Cav nuc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cav cyto	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cav mem	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rho nuc	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rho cyto	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rho mem	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Role of Src, Cav-1 and RhoGD12 in bladder cancer

T Qayyum et al.

British Journal of Cancer (2012) 106, 1187–1195

© 2012 Cancer Research UK Molecular Diagnostics
Table 3 (Continued)

c-Src	Rho	Cav	FAK						
	nuc	cyto	mem	nuc	cyto	mem	nuc	cyto	mem
NS	NS	NS	NS	0.500	P < 0.0001				
NS	NS	0.6728	NS	0.3000	P < 0.001				
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Abbreviations: Cav = caveolin; cyto = cytoplasmic; mem = membrane; nuc = nuclear; NS = non-significant P-values; PC = Pearson’s correlations; Sig = significance (2-tailed). Figures in bold denote significant values.

DISCUSSION

To our knowledge, this is the only study investigating the role of Src kinase, dephosphorylation status (Y536), autophosphorylation status (Y419), the downstream signalling protein FAK Y861, Cav-1 and RhoGD12 expression in one cohort of bladder cancers. This study demonstrates that when c-Src is active (utilising membrane expression as a surrogate marker of activation), an
inverse correlation with tumour grade is observed. These results are consistent with those that have previously reported a negative correlation of Src expression with bladder aggressiveness (Fanning et al., 1992; Blaveri et al., 2005; Sanchez-Carbayo et al., 2006; Wu et al., 2009; Thomas et al., 2011), and further reiterates that Src inhibitors should be utilised with much caution for cancer prevention in transitional cell carcinoma.

It has been suggested that a biomarker for prediction of Src kinase activity would be to measure phosphorylation of the protein at a site associated with activity (Bolen et al., 1987; Masaki et al., 1998), and Src kinase, when active, translocates to the membrane (Frame, 2002). When examining the expression of various phosphorylated statuses of Src, we demonstrated that expression of dephosphorylated Src (dephosphorylated Y527) and autophosphorylated Src (Y416) negatively correlated with tumour grade. Furthermore, increased expression of membrane Src Y416 was an independent predictor of improved cancer-specific survival. The antibody for Y416 is not specific for one particular Src family member, but because of sequence homogeneity, cross reacts with all Src family members that are phosphorylated at this site. Therefore, as c-Src itself in this study is not associated with clinical outcome measures, we hypothesise that expression of another of the SFK members is driving the association with improved outcome observed in the current study. Further evidence supporting the observation that activation of Src family members confers an improved prognosis is by assessing the relationships of the downstream signalling protein FAK Y861 to outcome. Expression of FAK Y861 was observed to be negatively associated with recurrence, presence of metastases and increased cancer-specific survival. Cav-1 expression can have both a positive and negative effect on cancer progression. In this study, when assessing expression of Cav-1, it was shown that presence in the membrane positively correlated with nuclear grade. This is also in keeping with previous work which has shown that Cav-1 expression was associated with grade (Rajjayabun et al., 2001; Fong et al., 2003; Kunze et al., 2006). It has also been demonstrated that Cav-1 expression was more membranous in those with ovarian cancer and had short-term survival (Fine et al., 2001), which is a similar finding to what we have shown that membranous expression has a positive correlation with grade, and this factor is associated with poorer survival. Previous work has shown that Cav-1 and Src have a reciprocal relationship in bladder cancer (Thomas et al., 2011). In this study, no such relationship reached significance, but it was demonstrated that Cav-1 and c-Src had a positive correlation and Cav-1 had a negative correlation with Y416. This also suggests that it is another of the SFK member, which is associated with a reciprocal relationship with Cav-1. It has been suggested that Cav-1 inhibits Src through recruitment of the C-terminal (Li et al., 1996; Ca o et al., 2002), but in this study, there was no correlation between Cav-1 and Y527.

RhoGD12 expression has been thought of as being a suppressor of cancer progression and metastases, but has also been shown to positively correlate with cancer progression in various malignancies (Tapper et al., 2001; Zhang and Zhang, 2006; Cho et al., 2009). We have observed that nuclear expression of RhoGD12 negatively correlated with the presence of metastases at follow-up, which is consistent with work showing that RhoGD12 is a metastases suppressor in bladder cancer (Gildea et al., 2002; Theodorescu et al., 2004). Previous work has reported that expression of Src and RhoGD12 confers improved prognosis in bladder cancer (Fanning et al., 1992; Theodorescu et al., 2004; Blaveri et al., 2005; Sanchez-Carbay o, 2006; Thomas et al., 2011). It has also been reported active Src (Y530) results in elevated levels of RhoGD12 (Wu et al., 2009). Given that, when Src is dephosphorylated at Y530, it is not active yet, and this would suggest a relationship between inactive Src and RhoGD12. This study does demonstrate that expression of RhoGD12 is associated with less likelihood of metastases, and shows a positive relationship between RhoGD12 and membrane c-Src. As c-Src is active when located in the membrane, we have therefore shown that it is active c-Src that has a relationship with RhoGD12.

This current study further reinforces that expression of Cav-1 confers poor prognosis. This study reports that RhoGD12 confers improved prognosis, but has a positive correlation with active c-Src. It has also been demonstrated that expression of dephosphorylated Src (Y527), autophosphorylated Src (Y416) and the downstream marker FAK Y861 confer improved cancer-specific survival. Furthermore, expression of Src Y416 is an independent factor associated with increased cancer-specific survival, suggesting that expression of another SFK member other than Src itself confers improved prognosis.

ACKNOWLEDGEMENTS

This work was supported by Think Pink.

REFERENCES

Advanced Bladder Cancer (ABC) Meta-analysis Collaboration (2005) Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol 48(2): 202 – 205

Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, Devries S, Koppie T, Pejavan S, Carroll P, Waldman FM (2005) Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res 11(11): 4044 – 4055

Role of Src, Cav-1 and RhoGD12 in bladder cancer
T Qayyum et al

Molecular Diagnostics

Figure 3 (A) Shows a Kaplan–Meier plotted for high and low membrane Y416 expression against cancer-specific survival, log rank test P = 0.001. (B) Shows a Kaplan–Meier plotted for high and low membrane FAK Y861 expression against cancer-specific survival, log rank test P = 0.008.
Stein JP, Skinner DG (2006) Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol 24(3): 296–304
Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49(3): 466–465
Tapper J, Kettunen E, El-Rifai W, Seppala M, Andersson LC, Knuutila S (2001) Changes in gene expression during progression of ovarian carcinoma. Cancer Genet Cytogenet 128(1): 1–6
Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J (2009) SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin Cancer Res 15(10): 3540–3549
Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson Jr HF (2004) Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10(11): 3800–3806
Thomas S, Overdevest JB, Nitz MD, Williams PD, Owens CR, Sanchez-Carbayo M, Frierson HF, Schwartz MA, Theodorescu D (2011) Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res 71(3): 832–841
Volonte D, Zhang K, Lisanti MP, Galbiati F (2002) Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13(7): 2502–2517
Wu Y, Moissoglu K, Wang H, Wang X, Frierson HF, Schwartz MA, Theodorescu D (2009) Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci USA 106(14): 5807–5812
Zhang Y, Zhang B (2006) D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness. Cancer Res 66(11): 5592–5598

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.