Suberin and cutin are fatty acid– and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPAT5, encoding a protein with acyl-CoA:glycerol-3-phosphate acyltransferase activity. RT-PCR and β-glucuronidase–promoter fusion analyses demonstrated GPAT5 expression in seed coat, root, hypocotyl, and anther. The gpat5 plants showed a 50% decrease in aliphatic suberin in young roots and produced seed coats with a severalfold reduction in very long chain dicarboxylic acid and ω-hydroxy fatty acids typical of suberin but no change in the composition or content of membrane or storage glycerolipids or surface waxes. Consistent with their altered suberin, seed coats of gpat5 mutants had a steep increase in permeability to tetrazolium salts compared with wild-type seed coats. Furthermore, the germination rate of gpat5 seeds under high salt was reduced, and gpat5 seedlings had lower tolerance to salt stress. These results provide evidence for a critical role of GPAT5 in polyester biogenesis in seed coats and roots and for the importance of lipid polymer structures in the normal function of these organs.

INTRODUCTION

Cutin and suberin are the two major types of lipid polymers found in plants. They are both fatty acid– and glycerol-based extracellular polymers that are insoluble in water and organic solvents. Although cutin is found mostly at the surface of the epidermis and constitutes the polymer matrix of the hydrophobic cuticle that covers higher plants, suberin is deposited in various inner and outer tissues at specific locations during plant growth (Kolattukudy, 2001; Bernards, 2002; Nawrath, 2002; Kunst et al., 2005; Stark and Tian, 2006). For example, suberin has been chemically identified in seed coat (Espelie et al., 1980; Ryser and Holloway, 1985; Moire et al., 1999), root and stem endodermis (Espelie and Kolattukudy, 1979a; Zeier et al., 1999; Enstone et al., 2003), bundle sheath of monocots (Espelie et al., 1980; Ryser and Holloway, 1985; Moire et al., 1999), and conifer needles (Wu et al., 2003). In addition to this wide deposition, suberin is also synthesized in response to stress and wounds (Dean and Kolattukudy, 1976). Regarding the subcellular location, cutin abuts the outer face of cell walls, whereas suberin is located within cell walls and also is found between the plasma membrane and the cell wall inner face to which it is attached (Bernards, 2002). Suberin is also distinguished from cutin by its very substantial hydroxyxymannic acid–derived aromatic domain (Bernards et al., 1995; Bernards, 2002) and the longer chain length (>20 carbons) of its fatty alcohol/acid and dicarboxylic acid monomers (Kolattukudy, 2001). The effect of the deposition of suberin and associated waxes is to reduce water and solute transport across and within suberized cell walls (Soliday et al., 1979; Vogt et al., 1983) as well as to provide a barrier to pathogens (Lulai and Corsini, 1998). A well-known example of suberin deposition is the root Casparian bands (Schreiber et al., 1994), which are involved in reducing the flow of water and ions through the apoplast, allowing the root endodermis to control water and ion uptake (Sattelmacher, 2001; Enstone et al., 2003; Ma and Peterson, 2003). Despite differences in subcellular and tissue localization as well as monomer composition, both the cutin-based epidermal cuticle and the suberin-based depositions of cell walls share a similar basic function as resistors/barriers for water, solutes, and pathogens.

Glycerol has been reported to be covalently bound to aliphatic and aromatic suberin domains (Moire et al., 1999; Graça and Pereira, 2000a) and to be esterified to fatty acid monomers in cutin (Graça et al., 2002) and suberin (Graça and Pereira, 2000b). These findings are structurally important because the aliphatic monomers of suberin can by themselves only form linear polymers, whereas the presence of glycerol allows the formation of a three-dimensional network or cross-linked polymer. Also, the presence of glycerol has begun to shed a different light on the pathways of synthesis, transport, and the assembly of polyester monomers.

The recent successes in the analysis of Arabidopsis thaliana polyester monomers (Bonaventure et al., 2004; Xiao et al., 2004; Franke et al., 2005) have opened the way to identifying Arabidopsis mutants affected in polyesters. The first mutant demonstrated to be specifically affected in polyester monomer synthesis was att1, in which a gene encoding a cytochrome P450

Fred Beisson,1 Yonghua Li,1 Gustavo Bonaventure,2 Mike Pollard, and John B. Ohlrogge3

Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824

The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis

1 These authors contributed equally to this work.
2 Current address: Department of Plant Molecular Biology, University of Lausanne, Lausanne 1015, Switzerland.
3 To whom correspondence should be addressed. E-mail ohlrogge@msu.edu; fax 517-353-1926.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: John B. Ohlrogge (ohlrogge@msu.edu).

Online version contains Web-only data.
Open Access articles can be viewed online without a subscription.
www.plantcell.org/cgi/doi/10.1105/tpc.106.048033
monooxygenase is altered (Xiao et al., 2004). The involvement of another type of oxidase (Kurdyukov et al., 2006a) and a hydrolase (Kurdyukov et al., 2006a) in cutin metabolism was proposed recently. The fatb and fad2 mutants are affected in polyester composition but are mutants of general fatty acid metabolism (Bonaventure et al., 2004). Other cuticle mutants have not been analyzed for polyester composition, but some are almost certainly (e.g., lacerata [Wellesen et al., 2001] and lacs2 [Schnurr et al., 2004]) or likely (e.g., wax2 [Chen et al., 2003]) affected in cutin. Mutants such as elongation defective 1 (Cheng et al., 2000) and scarecrow (Di Laurenzio et al., 1996) show unusual suberin deposition but are not known to be affected in suberin metabolism. To date, no gene has been identified or characterized as involved in the acyl transfer reactions required to assemble a polyester network.

The identification of glycerol as an important monomer, together with evidence for acyl-CoA incorporation into cutin of broad bean (Vicia faba) (Croteau and Kolattukudy, 1974), suggest that acyl-CoA-dependent glycerol acyltransferases may be a type of acyltransferase involved in polyester synthesis. In Arabidopsis, at least 30 such potential acyltransferases have been identified through sequence similarity and conserved motif searches (Beisson et al., 2003; The Arabidopsis Lipid Gene Database, http://www.plantbiology.msu.edu/lipids/genesurvey/front_page.htm), but only a few of them have been characterized and matched to major acyltransfer reactions (Nishida et al., 1993; Routaboul et al., 1999; Zou et al., 1999; Zheng et al., 2003; Kim and Huang, 2004; Yu et al., 2004; Kim et al., 2005). Knowledge of the specific functions of each of these might be useful in unraveling the complex movements and fates of acyl chains in plant cells and to help determine whether some are involved in the synthesis and transport of surface lipids. In animals, acyltransferases involved in extracellular lipid synthesis were identified recently. A multifunctional O-acyltransferase from skin that synthesizes in vitro acyl-glycerols, waxes, and retinyl esters (Yen et al., 2005) and a lysophosphatidylcholine acyltransferase from lung thought to be involved in the synthesis of pulmonary surfactant (Chen et al., 2006; Nakanishi et al., 2006) were also recently described.

In this study, we report the identification and characterization of Arabidopsis knockout mutants for the glycerol-3-phosphate acyltransferase-5 gene (GPAT5; At3g11430), which belongs to a plant-specific family. We show that the mutants gpat5-1 and gpat5-2 are affected in polyester synthesis in seed coats and roots. Several phenotypic characteristics of the gpat5 mutants, such as enhanced seed coat permeability, decreased seed germination, and abnormal root growth under salt stress conditions, suggest that GPAT5 plays a critical role in suberized cell wall biogenesis in seeds and roots and that this structure is required for normal seed and root function.

RESULTS

Identification of T-DNA Insertional Mutants and GPAT5 Expression in Organs

Two independent T-DNA insertion lines, SALK_018117 and SALK_142456 (Alonso et al., 2003), were selected and screened for disruption of the GPAT5 gene using PCR. As shown in Figure 1A, SALK_018117 has a T-DNA insertion in the first exon, whereas SALK_142456 has a T-DNA inserted in the only intron of GPAT5. Plants homozygous for the T-DNA insertion in GPAT5 that were obtained for the independent insertion lines SALK_018117 and SALK_142456 were named gpat5-1 and gpat5-2, respectively. When GPAT5 transcript was checked by RT-PCR in flowers from homozygous gpat5-1 and gpat5-2 plants, it could not be detected (Figure 1B), confirming that both T-DNA insertion lines generated a complete knockout of the GPAT5 gene. The phenotypes described in this article have been observed in both gpat5-1 and gpat5-2 independent alleles and therefore can be attributed to the disruption of the GPAT5 gene.

RT-PCR analysis showed that in wild-type plants, GPAT5 mRNA was detected in flowers, roots, and seeds but not in stems and rosette leaves (Figure 1C). To confirm these results and to more precisely identify the tissue specificity of GPAT5 expression, a fragment consisting of 1 kb upstream of the first exon of the GPAT5 cDNA together with the first exon (588 bp) of the gene was used to drive the expression of the β-glucuronidase (GUS) reporter gene. Consistent with the RT-PCR analysis, histochemical staining of transgenic plants expressing ProGPAT5:GUS (Figure 2) indicated GPAT5 expression in roots, flowers, and seeds but not in leaves and stems (Figures 2E and 2I). Dissection of GUS-stained

![Figure 1. Structure of the GPAT5 Gene Carrying a T-DNA Insertion, and Analysis of GPAT5 Expression by RT-PCR.](image)
Figure 2. Analysis of GPAT5 Expression in Arabidopsis Wild-Type Plants by ProGPAT5:GUS.

(A) and (B) Crushed GUS-stained seeds show that staining is limited to the seed coat/endosperm. The beginning (A) and end (B) stages of seed desiccation are shown. In (B), staining is limited to the funiculus attachment region only (arrow). em, embryo; en, endosperm; sc, seed coat.

(C) GUS staining in a 4-d-old seedling grown on agar.

(D) GUS staining is detected in the specialization zone but not in the meristem and elongation zone of the root in a 7-d-old seedling.

(E) GUS staining of a 3-week-old seedling. For arrows, see text.

(F) GUS staining in a seminal root and a first-order lateral root of a 3-week-old seedling.

(G) Patchy GUS staining is often observed in roots of 1- to 4-week-old seedlings.

(H) GUS staining is faint in roots of 6-week-old plants on soil and is restricted to the older parts.
developing seeds showed that GUS expression was detectable at the desiccation stage and only in the endosperm/seed coat fraction, not in the embryo (Figures 2A and 2B). At the beginning of the seed desiccation stage, GPAT5 expression was observed uniformly throughout the seed coat/endosperm fraction (Figure 2A), whereas at the end of the desiccation stage (Figure 2B), GUS staining was greater in the funiculus attachment region and possibly in some endosperm cells of this seed end.

In roots, the GUS staining pattern also varied with development. In the seminal roots of 4- to 7-d-old seedlings grown on agar (Figure 2C), staining was strongest at the junction of roots and hypocotyls, extended all along the differentiated (specialization) zone where suberin deposition is known to occur, but was never present in the elongation zone or the root apical meristem (Figure 2D). In 1- to 4-week-old roots grown on agar, which can still be elongating but whose older parts have entered the secondary state of growth (Dolan and Roberts, 1995; Baum et al., 2002), GUS staining was still present above (but never in) the division/elongation zones of the seminal root and the lateral roots (Figure 2E, black arrow), consistent with the staining in 4-d-old roots. Additional staining was seen in some older parts of the roots (Figure 2E, white arrows) and in hypocotyls (Figure 2E). Junctions to first and second order lateral roots were also almost always stained (Figure 2F). Closer examination of 1- to 4-week-old roots revealed that the additional staining along older parts of seminal and lateral roots was often made of small patches (Figure 2G). In 6-week-old roots, which were grown on soil and clearly in their secondary state of growth, GUS staining was much weaker and observed mostly at the periphery of older parts of the roots (Figure 2H). GUS staining in 1- to 4-week-old roots of control Progus::GUS plants was not patchy but, as expected, was strong and present all over the root.

In flowers, strong staining of GUS was observed in stamens but not in sepals, petals, and carpels (Figure 2J). Microscopic examination of GUS-stained flowers showed that GUS activity was detected only in the anthers and not in the filaments (Figure 2K). Dissection of anthers showed that GUS staining was present in the developing pollen (Figure 2L). Mature pollen did not show any staining (Figure 2M).

These GUS and RT-PCR expression data are in agreement with AtGenExpress microarray data (Schmid et al., 2005) showing that GPAT5 mRNA is only significantly expressed in hypocotyls, roots, seeds, and stamens.

**gpat5 Mutants Are Affected in the Composition and Amount of Lipid Polyesters but Not in Membrane and Storage Lipids**

Homozygous gpat5-1 and gpat5-2 mutant plants were morphologically identical throughout development and reached similar sizes compared with wild-type plants. No significant differences in root growth were observed when seeds were germinated on vertical agar plates. The fertility of gpat5 mutants was not affected (the number of seeds per silique was ~50, similar to that in the wild type). No differences in pollen grain size and shape between the wild type and gpat5 were observed under scanning electron microscopy. GPAT5 has been shown to have glycerol-3-phosphate acyltransferase activity in vitro (Zheng et al., 2003). Thus, to evaluate whether gpat5 mutants carried a biochemical defect in some lipids, we analyzed the fatty acids of lipid compounds in organs in which GPAT5 is expressed (seed, root, flower) and, as a control, in leaves. Analyses were performed on intracellular lipids extractable in organic solvents (membrane and storage lipids) and also on lipid polymers, which are nonextractable in organic solvents.

No differences in the amount of fatty acids derived from soluble lipids were detected in seeds, roots, and leaves of the mutants compared with the wild type (see Supplemental Figure 1 online). When soluble lipids of the manually dissected seed coat/endosperm fraction of mature seeds were analyzed, the amount of total fatty acids and the fatty acid composition were found to be the same in the wild type and gpat5 (Figure 3). The soluble lipids collected at the seed surface by chloroform dipping were typical Arabidopsis stem/leaf wax components, including alkane and fatty alcohols (see Supplemental Figure 2 online). The major component identified in seed coats was 29-carbon alkane, which is also the major wax component of Arabidopsis stems. Expressed per seed surface area, the wax coverage was ~0.3 μg/cm² for both the wild type and mutants. In contrast with soluble lipids, aliphatic monomers released from insoluble lipid polyesters were on average reduced by twofold in gpat5 seeds (Table 1). More than 90% of the total insoluble aliphatic polyester monomers found in seeds have been shown to come from the seed coat/endosperm fraction (Molina et al., 2006). The major aliphatic monomer (24:0 ω-hydroxy fatty acid), as well as 22:0 fatty acid, 22:0 ω-hydroxy fatty acid, and 22:0/24:0 dicarboxylic acids, were reduced by at least twofold in the mutants compared with the wild type (Figure 4A). All of these strongly reduced monomers were typical monomers of aliphatic suberin (Kolattukudy, 2001). In contrast with the aliphatic monomers, the amount of aromatic monomers released from the polyester by depolymerization was not different between mutants and the wild type. However, depolymerization by transesterification presumably underestimates total hydroxycinnamate derivatives, which may be cross-linked by nonester bonds (Bernards et al., 1995).

Similar to seed coats, roots of 1-week-old seedlings grown on agar (primary state of growth), showed significant changes in the aliphatic monomers of suberin in gpat5 compared with the wild type (Figure 4B). As with seeds, the change was not the same for...
Mature seeds were manually dissected, and total fatty acids of the membrane and storage lipids of the seed coat/endosperm fraction were analyzed as fatty acid methyl esters by gas chromatography. Values are means of six replicates. Error bars denote 95% confidence intervals.

Table 1. Quantification of Waxes, Other Soluble Lipids, and Polyesters in Wild-Type and gpat5-1 Seeds

| Seed   | Seed Weight (µg/Seed) | Fatty Acid Methyl Esters from Extractable Lipids (ng/Seed) | Surface Waxes (ng/Seed) | Aliphatic Polyester Monomers (ng/Seed) |
|--------|-----------------------|-----------------------------------------------------------|------------------------|---------------------------------------|
| Wild type | 16.9 ± 0.1             | 5230 ± 80                                                 | 1.3 ± 0.05             | 68.9 ± 5.1                            |
| gpat5-1  | 17.0 ± 0.7             | 4910 ± 370                                                | 1.4 ± 0.01             | 35.2 ± 1.2                            |

Values shown are means ± SE from two independent experiments.

Figure 3. Fatty Acids from the Seed Coat/Endosperm Fraction of the Wild Type and gpat5 Mutants.

Seed Coats of gpat5 Mutants Show Increased Permeability to Dyes and Darker Color

The mutant plants produced seeds of the same weight as wild-type plants (17.0 ± 0.7 compared with 16.9 ± 0.1 µg/seed). Closer examination of the seeds via scanning electron microscopy showed that the mutant seeds are in the same range of size, have the same oblong shape, and show the same surface structure, with similar columella heaps, as wild-type seeds (Figure 6A). Mucilage production of the mutant seeds is also the same as that of wild-type seeds, as demonstrated via staining with ruthenium red (Figure 6B).

Permeability properties of the seed coat of the mutants were tested using tetrazolium red, a cationic dye that is normally excluded by the Arabidopsis seed coat but that is reduced to red products (formazans) by NADPH-dependent reductases after penetrating the embryo (Debeaujon et al., 2000). As shown in Figures 6C and 6D, after staining for 24 h, gpat5-1 and gpat5-2 seed coats were much more permeable to tetrazolium red than were wild-type seed coats, suggesting that the seed coat is indeed affected in the mutants. Shorter incubation times with tetrazolium red showed that the staining first appeared in the region of the hilum and diffused outward from there (Figure 6E). Control staining experiments run on embryos whose seed coats had been manually removed showed that wild-type and mutant embryos had the same kinetics and intensity of staining and that the red products appeared at the same time in all parts of the embryo surface. Therefore, these controls ruled out a possible difference in the capacity to metabolize tetrazolium red between mutant and wild-type embryos or between the parts of the embryo close to the hilum region and other parts. Differences seen in Figures 6C and 6D could be attributed to a difference in the permeability of wild-type and mutant seed coats to tetrazolium red, especially in the hilum region. The hilum is the scar left on the seed coat after detachment from the funiculus. In mature seeds of Arabidopsis, it is adjacent to the micropyle (where the radicle will emerge) and faces the chalazal pole. When excited at 365 nm (Figure 6F), seed coats of the mutant revealed a decrease in autofluorescence in the hilum region (arrows), suggesting a decrease in suberin content. Furthermore, the seed coat surface of gpat5 mutants was clearly less stained in the hilum region (Figure 6G, arrows) when using the lipophilic suberin dye Sudan
Figure 4. Lipid Polyester Monomers from Seeds, Roots, and Flowers of Wild-Type and gpat5 Plants.

(A) Polyester monomers from mature seeds.
(B) Polyester monomers from roots of 1-week-old seedlings grown on agar.
(C) Polyester monomers from opened flowers.

The insoluble dry residue obtained after grinding and delipidation of tissues with organic solvents was depolymerized with sodium methoxide, and aliphatic and aromatic monomers released were analyzed by gas chromatography–mass spectrometry. Values are means of six data points (two independent experiments using different biological samples involving triplicate assays for the depolymerization reaction). Error bars denote 95% confidence intervals. DCAs, fatty dicarboxylic acids; FAs, fatty acids; fw, fresh weight; PAs, primary alcohols. The polyol fatty acids are 10,16-hydroxy 16:0 and 9,10,18-hydroxy 18:1.
Characterization of a Suberin Mutant 7 of 18

red 7B (which proved to be more efficient than Sudan black B for staining polyesters of wild-type Arabidopsis seed coats). A very localized area of strong Sudan red 7B staining was visible in the wild type, whereas in the mutant the staining was weak or not visible at all in this region. The seed coats of the mutant were more fragile, as they almost always broke when mounted between slide and cover slip. The permeability of wild-type seeds remained unaffected after the removal of surface waxes by chloroform dipping, excluding the possibility that seed surface waxes contribute to seed coat impermeability to tetrazolium salts.

Genetic analysis of the seed coat permeability phenotype in gpat5 mutants indicated that this phenotype segregated as a single recessive allele and that its inheritance was consistent with the expression of GPAT5 in the seed coat (tissue of maternal origin). Indeed, F1 seeds (i.e., on the F0 mother plants) were all nonpermeable when wild-type plants were fertilized by pollen from gpat5-1 knockout plants, whereas they were all permeable when gpat5-1 knockout plants were fertilized by wild-type pollen (Figure 6H). In addition, analysis of subsequent progeny of the F1 heterozygous plants showed that all F2 seeds were nonpermeable. Segregation analysis of F2 plants demonstrated that the seed permeability phenotype segregated in F3 seeds fitted a 3:1 ratio for a Mendelian single recessive mutation ($\chi^2 = 0.17; P = 0.68$). As expected, F2 plants giving permeable F3 seeds were homozygous and the F2 plants giving nonpermeable F3 seeds were either wild type or heterozygous, as determined by PCR. Furthermore, it was observed that gpat5-1 and gpat5-2 seeds had a darker appearance than wild-type seeds (Figure 7A) and that in the F1, F2, and F3 seeds this darker seed coat color was always associated with the nonpermeable seed coat permeability phenotype and never with the nonpermeable phenotype. The segregation analysis thus demonstrated that seed coat permeability and color cosegregated with the T-DNA insertions and that these genetic lesions in GPAT5 segregated as single recessive alleles.

Here, it is important to note that Arabidopsis seed coat color is conferred by the brown pigments formed during seed desiccation by the oxidation of colorless proanthocyanidins (PAs; also called condensed tannins) (Lepiniec et al., 2006). Analysis of soluble PAs and the cell wall–bound insoluble PAs by an acid hydrolysis method optimized for Arabidopsis seeds (Routaboul et al., 2006) showed that gpat5 mutant seeds have the same level of both types of PAs as wild-type seeds, ruling out an increase in PA amount (Figure 7B). This result suggests that the darker color may result indirectly from a higher degree of oxidation of PAs, although we cannot exclude other alternative explanations.

**gpat5 Mutants Show an Increased After-Ripening Requirement of Seeds and Higher Sensitivity of Seedlings to Salinity**

The effect of the knockout of GPAT5 on seed physiology was further analyzed in terms of dormancy release, germination rate under various conditions, and seedling establishment. Seed dormancy is defined as the temporary failure of an intact viable seed to complete germination under favorable conditions (Bewley, 1997) and is controlled by environmental factors such as light, temperature, oxygen availability, and time of dry storage (after-ripening requirement) as well as by genetic factors (Bentsink and Koornneef, 2002). We compared the dormancy release of mutant seeds and wild-type seeds, which had been harvested at the same time from plants grown together under identical conditions. As shown in Figure 8A, both wild-type and mutant seeds were dormant when harvested immediately after the end of seed maturation (no germination at day 0). Wild-type seeds increased germination to ~60% after 17 d of dry storage; by contrast, gpat5 germination remained low (<10%). However, with increasing length of postharvest storage, dormancy was gradually released, with 100% germination observed after 30 d of storage for both wild-type and mutant seeds. Thus, the difference between wild-type and mutant seeds is the kinetics of the dormancy release. Germination of dormant mutant seeds in light or dark after cold treatment was almost 100% when scored at day 7 after transfer to a growth chamber. Moreover, the increased after-ripening requirement of the gpat5 mutants was observed in seeds resulting from the fertilization of gpat5-1 plants by wild-type pollen but not in the seeds of wild-type plants fertilized by gpat5-1 pollen, which showed that the phenotype was not attributable to the embryo.

Interestingly, when cold-treated seeds were germinated on Murashige and Skoog (MS) medium with increasing salt concentrations, an average 50% reduction in the rate of germination of gpat5 seeds compared with wild-type seeds was observed at 150 mM NaCl (Figure 8B). Similar results were obtained with other ions, ruling out a specific effect of sodium or chloride (Figures 8C and 8D). These data show that seed coat control of ion uptake is critical for proper germination.

More than half of the seeds that germinated at 150 mM NaCl showed a development arrest before the establishment of green cotyledons (Figures 9A and 9B). A sensitivity of gpat5 seedlings to salt (100 to 150 mM) was also observed with KCl and K$_2$SO$_4$ (Figures 9C and 9D). To test whether a possible defect in young developing roots could be at least partially responsible for this salt-sensitivity phenotype of the seedlings, seeds were germinated for 3 d on MS plates and transferred to MS plates supplemented with 200 mM NaCl, where they were grown for an additional 5 d. The percentage of gpat5 seedlings showing bleaching was significantly higher than that of wild-type seedlings after 5 d at 200 mM NaCl, suggesting that the roots of gpat5 seedlings were severely impaired in their ability to control ion uptake (Figure 10). No significant difference between the wild
type and gpat5 was observed when seeds were germinated and seedlings were grown for 12 d on agar plates supplemented with up to 400 mM of the neutral organic osmoticum polyethylene glycol 8000 or mannitol.

**DISCUSSION**

The disruption of the GPAT5 gene caused several biochemical and physiological phenotypes, including reduction in seed and root suberin aliphatic monomer content, increased seed coat permeability, and increased sensitivity of germinating seeds and roots to salts. Here, we will consider the possible molecular functions of GPAT5 and other GPATs in the synthesis of aliphatic polyesters as well as the physiological roles of GPAT5 and aliphatic suberin monomers in the organs affected.

**Possible Functions of GPAT5 in Lipid Metabolism**

Analysis of the fatty acid derivatives found in seeds, roots, and flowers showed that GPAT5 was essential for the synthesis of lipid polyesters but not for the other lipids analyzed. Moreover, in these organs, the expression of the gene was restricted (e.g., in the root the gene was expressed in the differentiation zone but not in the division and elongation zones that must actively synthesize membrane lipids). These results indicated that GPAT5 is not likely to be a housekeeping gene of fatty acid metabolism that indirectly affects lipid polyester composition, like, for example, the FatB gene (Bonaventure et al., 2004). A specific role of a GPAT family member in lipid polyester synthesis is further supported by two other observations. First, a GPAT (GPAT6; At2g38110) is among the few genes upregulated by the

---

**Figure 6. Phenotype of gpat5 Seeds, and Permeability to Dyes.**

Similar results were obtained with gpat5-2.

(A) Scanning electron microscopy of the surface of wild-type versus gpat5-1 seeds. Bars = 40 μm.

(B) Ruthenium red staining of seed mucilage in wild-type versus gpat5-1 seeds.

(C) Tetrazolium salt staining (24 h) of wild-type versus gpat5-1 seeds.

(D) Seeds from (C) dissected after staining.

(E) Tetrazolium salt staining (4 h) of wild-type versus gpat5-1 seeds.

(F) Autofluorescence of wild-type versus gpat5-1 seeds (365-nm excitation).

(G) Sudan red 7B staining of wild-type versus gpat5-1 seeds.

(H) Tetrazolium salt staining (24 h) of seeds resulting from the fertilization of wild-type plants by gpat5-1 pollen (left) and of gpat5-1 plants by wild-type pollen (right).
assembly machinery of suberin synthesis. However, because
GPAT5 is to provide lysophosphatidic acid for the oxidation or
(Zheng et al., 2003), it is tempting to conclude that the function of
been shown to be able to catalyze the transfer of acyl chains from
ases and because most of the members, including GPAT5, have
by structural similarity to yeast glycerol-phosphate acyltransfer-
reactions. Glycerol 3-phosphate acyltransferase (EC 2.3.1.15)
acylglycerols are substrates for oxidation and/or polymerization
of glycerol in cutin and suberin raises the possibility that
oxidation steps, the monomers are assembled by the polyester
2001), but the in vivo substrates of the oxidation enzymes are not
chrome P450 monooxygenases, etc.) that may be involved in
oxidation and some partially characterized enzymes (cyto-
hydroxy and dicarboxylic acids. The reactions of fatty acid
oxidation to form fatty
v-1 position of
sn-
Arabidopsis
GPATs were isolated
Characterization of a Suberin Mutant
9 of 18
other acyl acceptors than glycerol-3-phosphate and other acyl
donors than acyl-CoAs have not been tested for GPAT5, it
cannot be excluded that in vivo glycerol could be an acyl
acceptor and hydroxy acyl-CoA could be an acyl donor. Direct
acylation of glycerol has indeed been observed in animal cells
(Hanel and Gelb, 1995; Lee et al., 2001). Thus, the reaction
catalyzed by GPAT5 could occur before and/or after the oxida-
tion steps. Other possibilities are more unlikely but cannot be
ruled out at this stage (e.g., that GPAT5 is a polyester synthase).
Therefore, based on the previous biochemical characterization
of GPAT5 and the results described here, the possibilities for the
molecular function of GPAT5 can be summarized as follows: (1)
formation of unsubstituted fatty acid–containing acylglycerols to
feed the oxidation machinery; (2) formation of oxidized fatty acid–
containing acylglycerols that will be used as acyl carriers and/or
substrates for the polymerization reactions; and (3) addition of
acyl chains to a growing glycerol-containing lipid polyester
network. These possibilities can be fitted into the tentative met-
abolic pathway for suberin biosynthesis described by Bernards
(2002).

Regarding the possible acyl chain specificity of GPAT5, the
common feature of the polyester monomer profiles in seeds, roots,
and flowers of the gpat5 mutants is the strong reduction (at least
twofold) observed in 22:0/24:0 fatty acids and derivatives (Figure
4). Therefore, we propose that the role of GPAT5 is to provide the
polyester synthesis pathway with acylglycerols containing 22:0
and 24:0 fatty acids (and possibly oxidized derivatives, if oxidation
steps precede GPAT5 activity). The hypothetical specificity of
GPAT5 for C22-C24 acyl chains is strongly supported by the fact
that the ectopic overexpression of GPAT5 in Arabidopsis results in
the accumulation of saturated very long chain fatty acids attached
to glycerol (Y. Li and F. Beisson, unpublished data).

The increase and decrease in various C16 and C18 monomers
that were also observed to different degrees in roots, seeds, and
flowers of the mutants are not unexpected given the nature of lipid
polymers. Indeed, the aliphatic monomers analyzed are not part of
independent simple lipid molecules but are structurally linked to
each other in a complex manner, possibly a network in which
glycerol and other monomers such as dicarboxylic acids allow
cross-linking. Therefore, the decrease in very long chain fatty acids
resulting from the loss of GPAT5 activity could influence the
incorporation of C16 and C18 monomers in a different way in
seeds, roots, and flowers, depending on (1) the respective struc-
tures and compositions of aliphatic suberin in these organs, (2)
the necessity of incorporation of GPAT5-provided long chain mon-
ers before some C16-C18 chain monomers (sequential order
requirement), and (3) the overincorporation of C16-C18 monomers
wherever possible to maintain some structural features of the
polymer (compensatory mechanism). Complex effects on polymer
composition involving a sequential order requirement and a com-
ensatory mechanism have been observed in xylolucan chains of
mutants affected in the incorporation of a specific sugar monomer
(Madson et al., 2003).

Given the complexity of lipid polyester assembly, the unknown
connectivity between monomers in suberin of different organs,
and the functional redundancy in the GPAT5 family (see below),
more complex interpretations of the polyester monomer profiles
of the mutants cannot be excluded. Further experiments will be
required to confirm our hypothesis and identify the precise in vivo substrates of GPAT5.

**GPAT5 and Seed Coat Permeability**

The polyesters of mature seed coats have been shown in several species to consist largely of cutin-type monomers, whereas typical suberin monomers have been found to be of lower abundance and thought to be restricted to a small region of the seed coat (Espelie et al., 1979). At the end of seed maturation, the import of nutrients from the mother plant via the funiculus ceases and the funiculus attachment region is sealed, leaving a scar on the seed coat, the hilum. In grapefruit (*Citrus paradisi*), it has been shown that the hilum region is indeed sealed by the deposition of aliphatic suberin in several cell layers (Espelie et al., 1980). Unlike *Arabidopsis* seeds, grapefruit seeds can be dissected and enough material from the hilum/chalazal region of the seed coat can be obtained for polyester analysis. The polyester monomers in this seed coat region are typical suberin monomers, with 22- and 24-carbon ω-hydroxy fatty acids and dicarboxylic acids representing ~37 mol% of the total. The rest of the grapefruit inner seed coat is enriched in cutin monomers. Therefore, based on the following lines of evidence, we propose that a major role of GPAT5 in *Arabidopsis* seeds is to seal the hilum region by providing aliphatic monomers for suberin deposition: (1) the typical suberin very long chain monomers found in the grapefruit hilum are abundant in *Arabidopsis* seed coat polyester monomers, and these monomers are the ones that are specifically reduced severalfold in *gpat5* mutants (Figure 4); (2) at the end of the desiccation stage, when suberin deposition in the hilum region is expected to occur, the expression of the GPAT5 gene is highest in this region (Figure 2B); (3) the kinetics and pattern of appearance of the red staining in the *gpat5* embryo suggest that the tetrazolium salts diffuse mostly or exclusively through the hilum region to the embryo (Figure 6E); and (4) the hilum region of the mutant seed coat had a lower amount of insoluble lipophilic material (Figure 6G).

GPAT5 expression was also detected more broadly throughout the seed coat, especially during early seed desiccation (Figure 2A). This observation suggests a role of GPAT5 in the synthesis of the polyesters in other parts of the seed coat than the hilum region (the extrahilar region), mostly by providing suberin-like monomers. However, the extrahilar region of the seed coat seemed to remain impermeable to tetrazolium salts, which suggests that a defect in GPAT5 may be compensated by functionally redundant GPATs.

---

**Figure 8.** Germination of *gpat5* Seeds under Various Conditions.

**A** Rate of germination after harvest and increasing periods of dry storage.

**B** Rate of germination on MS medium supplemented with increasing NaCl concentrations.

**C** Rate of germination on MS medium supplemented with increasing KCl concentrations.

**D** Rate of germination on MS medium supplemented with increasing K<sub>2</sub>SO<sub>4</sub> concentrations.

Seeds were germinated after cold treatment (except in [A]). Values are means of 9 data points (A) or 12 data points (B to D; i.e., from three or four independent experiments, respectively, which use different seed batches and involve three replicate lots of ~100 seeds for each seed batch). Error bars denote 95% confidence intervals. Similar results were obtained with *gpat5*-2.
The location of the lipid polyesters in the extrahilar region of *Arabidopsis* is unknown. At maturity, the *Arabidopsis* seed coat consists of dead cells corresponding to the five cell layers of epidermal origin differentiating from the ovule integuments (L1 to L5 from the outermost to the innermost). L1 (epidermis) has a preserved structure with the thick cell walls of the columella and the mucilage, whereas layers 2 to 5 are largely collapsed and crushed together and contain the brown pigments (Haughn and Chaudhury, 2005). In mature *Arabidopsis* seeds, an electron-dense cutin-like layer of polyesters cannot be observed clearly on transmission electron micrographs in the L1 cell layer (epidermis) and may be located in the thick electron-dense crushed cell layers L2 to L5. Interestingly, in developing seeds, an electron-dense layer bordering the inner cell wall of L5 (endothelium), which is in contact with the embryo sac, has been observed. This layer reacts positively with osmium tetroxide and therefore looks like a cuticle that is present throughout seed development until the mature embryo stage (Beeckman et al., 2000).

Figure 9. Rate of Seedling Establishment Under Increasing Salt Concentrations, and Phenotypes of Seedlings Germinated on 150 mM NaCl.

(A) Seedlings after 12 d at 150 mM NaCl. All seedlings were photographed at the same magnification.

(B) Rate of seedling establishment under increasing NaCl concentrations.

(C) Rate of seedling establishment under increasing KCl concentrations.

(D) Rate of seedling establishment under increasing K$_2$SO$_4$ concentrations.

After cold treatment, seeds were germinated for 12 d and seedling establishment was scored. Values are means of 12 data points (four independent experiments using different seed batches involving three replicate lots of ~100 seeds for each seed batch). Error bars denote 95% confidence intervals. Similar results were obtained with *gpat5-2*. 
The chemical analysis of 1- and 3-week-old roots grown on agar clearly shows that GPAT5 is required for suberin synthesis in roots. Thus, the expression of GPAT5 (as viewed by GUS staining) in the youngest part of the specialization zone (but not in the division and elongation zones) in 4-d-old roots and 1- to 4-week-old roots still elongating is consistent with a role in the initial deposition of Casparian and lamellar suberin, which occurs in the primary state of growth for all roots investigated (Enstone et al., 2003), including Arabidopsis (Di Laurenzio et al., 1996; Cheng et al., 2000). A transverse section of the differentiation zone of 4-d-old Pro\textit{GPAT5}-GUS roots showed that GUS staining was present in all cell layers (data not shown). This pattern of expression of GPAT5 was also observed in microarray data from root tissues (Birnbaum et al., 2003). Histochemical staining of Arabidopsis young roots (Di Laurenzio et al., 1996; Cheng et al., 2000; Franke et al., 2005) indicates an apparent restriction of suberized cell walls to the endodermis. The more widespread expression of the GPAT5 gene thus suggests that additional depositions of aliphatic lipid polyesters may occur in roots but might remain undetectable by the usual staining procedures, either because of a lower abundance than the endodermal suberin or a difference in structure (the usual dyes are thought to bind the aromatic domain of suberin, but their exact mode of action and their sensitivity/specificity for various lipophilic polymers remain unclear). Another possibility is that GPAT5 produces in the differentiation zone of roots a small pool of soluble glycerolipids.

The patchy expression of GPAT5 in some of the older parts of 1- to 4-week-old roots, in cells in which the initial suberin deposition has already taken place earlier during development, suggests that an additional deposition or a remodeling of suberin composition may occur later in root development before the formation of periderm. In this regard, the composition of aliphatic suberin in 3-week-old roots was changed compared with that in 1-week-old roots grown under the same conditions (Figure 4B; see Supplemental Figure 3 online). The later deposition/remodeling of suberin in apparently specific zones could have several nonexclusive causes. First, in 1- to 4-week-old roots grown on agar, the endodermis divides periclinally according to a complex helicoidal pattern and features of secondary growth are observed, which could also give rise to new suberin deposition.
Second, there are at least six other GPATs expressed in roots (Figure 11), and they could contribute to this additional suberin deposition/remodeling in other zones than GPAT5 (see below). Third, the formation of lateral roots could require the expression of GPAT5, as suggested by Figure 2F. Fourth, the synthesis of suberin could be induced by environmental conditions. Concerning this latter point, it is not likely that the GPAT5 GUS staining pattern results from induction by pathogens (the roots are grown on sterile medium), but it could result from local gradients of water or nutrients on the agar plates. The understanding of the contribution of GPAT5 and the other GPAT isoforms expressed in roots to the building of the suberin depositions at various stages of *Arabidopsis* root development will require detailed studies of tissue gene expression in conjunction with histochemical studies of the deposition of Casparian and lamellar suberin.

The fact that the transfer of 3-d-old germinated seedlings to a medium supplemented with 200 mM NaCl resulted on average in a fourfold higher rate of bleaching for *gpat5* compared with the wild type (Figure 10) suggests that *gpat5* roots are indeed

---

**Figure 11.** Gene Tree and Gene Expression Profiles of the Eight Putative GPATs of *Arabidopsis*.

(A) The cladogram shows the branching order of *Arabidopsis* GPATs according to a phylogenetic tree of protein sequences of plant acyltransferases (Kim and Huang, 2004). The original tree was built using the neighbor-joining method with 1000 bootstrap replicates. Bootstrap values are percentages. (B) Microarray expression data derived from AtGenExpress (Schmid et al., 2005). Expression levels in each tissue (root, leaf, stem, flower, and seed) at different developmental stages were averaged (bars represent means ± se). The expression profile for GPAT7 was determined in this study via RT-PCR analysis because its expression profile is not available at AtGenExpress.
affected in their ability to restrict ion movements and prevent a massive entry into the cortex, a role that has been ascribed to suberin depositions of Casprian bands (Sattelmacher, 2001; Enstone et al., 2003; Ma and Peterson, 2003). An effect attributable to osmotic stress could be ruled out by the absence of any difference in seed germination and seedling establishment between wild-type and mutant plants grown with up to 400 mM mannitol or polyethylene glycol 8000. The increased sensitivity to salt stress observed in a mutant affected in root suberin content thus confirms a role previously proposed for suberin in roots and shows that it can be critical for seedling survival at moderate salt concentrations.

Possible Roles of Other Plant GPATs

Among the eight Arabidopsis GPATs, GPAT1 has been most fully characterized, and it has been shown to be involved in pollen fertility (Zheng et al., 2003). All Arabidopsis GPATs have predicted transmembrane domains (ARAMEMON database, http://aramemnon.botanik.uni-koeln.de/; Schwacke et al., 2003). Three isoforms (GPAT1 to GPAT3) are predicted to be localized in mitochondria, and uptake of GPAT1 by mitochondria has been demonstrated (Zheng et al., 2003). For GPAT4 to GPAT8, there is no obvious predicted targeting signal. An additional protein (At3g11325) was found to be 57% similar to GPAT5 at the amino acid level. However, this is unlikely to be an active member of the GPAT family, because of the absence of conserved putative catalytic His and Asp residues (Lewin et al., 1999).

Expression data for each gene of the family (Figure 11) were obtained from AtGenExpress (Schmid et al., 2005), except for GPAT7, for which RT-PCR analysis was done. Although overlapping, the pattern of tissue-specific expression of each gene is distinctive and suggests strong candidates for the synthesis of cutin in leaves and stems. The three GPAT genes (GPAT2, GPAT4, and GPAT8) whose expression can be detected in Arabidopsis stems using microarrays are all upregulated in the epidermis (Suh et al., 2005). We recently obtained evidence that two GPATs are essential in leaves for cutin synthesis but not for intracellular lipid synthesis (Y. Li and F. Beisson, unpublished data). We are currently investigating the function of all Arabidopsis GPATs.

Homologs of Arabidopsis GPATs can be found in rice (Oryza sativa), poplar (Populus spp), maize (Zea mays), lettuce (Lactuca sativa), and other species, yet not in other nonplant organisms, suggesting that GPATs are plant-specific, which is consistent with a role in the formation of lipid polyesters unique to plants. In addition, a phylogenetic tree constructed with the 8 Arabidopsis and 16 rice GPAT sequences (Horan et al., 2005; http://bioweb.ucr.edu/databaseWeb/index.jsp) indicates that for each Arabidopsis GPAT group (e.g., GPAT5,7 group), there is at least one rice GPAT that clusters with it. Therefore, the subfamily organization of the different GPAT members observed in Arabidopsis is also found in rice, suggesting that the functional differences of various GPAT subfamilies have been conserved over 100 million years.

The identification of acyltransferases involved in suberin and cutin synthesis is an important step toward understanding the biosynthesis of surface lipid polyesters in plants and obtaining transgenic plants with a modified cuticle that may confer more resistance to pests or stresses. In addition, the main experimental model to date to study suberin deposition has been the potato (Solanum tuberosum) wounding system, and GPAT5 should provide a new molecular tool to dissect the pathway of synthesis and assembly.

METHODS

Plant Materials and Growth Conditions

All Arabidopsis thaliana plants (ecotype Columbia-0 and gpat5-5 T-DNA knockout lines in the Columbia-0 background) were grown in pots on a soil mixture (1:1:1 mixture of peat moss–enriched soil:vermiculite:perlite) or on solidified agar sucrose medium containing MS salts (Murashige and Skoog, 1962). 1% (w/v) sucrose, and 0.8% (w/v) Phytagl’s agar (Caisson Laboratories) adjusted to pH 5.7 using KOH. Seeds grown on agar sucrose plates were surface-sterilized for 5 min in 70% (v/v) ethanol and rinsed three times with sterile water. Unless indicated otherwise, seeds were cold-treated for 3 d at 4°C in the dark before being transferred to a controlled growth chamber (at 21 to 22°C, 40 to 60% RH, a 16/8-h light/dark cycle, and a light intensity of 80 to 100 μmol m⁻² s⁻¹ provided by fluorescent bulbs). For observation of root growth, seeds were grown on vertical agar plates.

Mutant Isolation

T-DNA insertional lines (SALK_018117 and SALK_142456) were identified using the SIGnAL T-DNA Express Arabidopsis Gene Mapping Tool (http://signal.salk.edu/cgi-bin/tdnaexpress) provided by the Salk Institute Genomic Analysis Laboratory (Alonso et al., 2003). SALK_018117 has a T-DNA insertion at the first exon, with the left border of the T-DNA pointing toward the 5‘ end of the gene; SALK_142456 has a T-DNA insertion in the first and only intron, with the T-DNA left border pointing to the 3‘ end of the gene. Individual seeds for these lines were obtained from the ABRC at Ohio State University. Plants were grown from these seeds, and for each line DNA was prepared and used for genotype screening. The gene-specific primers used for the screening of insertions into the GPAT5 gene were 5‘-GCTTTTTTCCATTGCGATACGT-3‘ (forward) and 5‘-ACA-TCTCGAGATTTTGTACATC-3‘ (reverse) for SALK_018117 and 5‘-CTA-AGGAGACCTTTAGGACATTAGA-3‘ (forward) and 5‘-TCCAGGAGAA- CCGCTATACAT-3‘ (reverse) for SALK_142456. These primers were used together with the T-DNA left border primer LBα1 (5‘-TGGTTACG- TAGTGGCGCATCG-3‘) to check for the presence of a wild-type or T-DNA mutant allele, respectively.

RNA Isoation and Gene Transcript Analysis by RT-PCR

Total RNA was prepared from rosette leaves, stems, open flowers, roots, and developing seeds of Arabidopsis plants by grinding these tissues in liquid nitrogen followed by RNA extraction with the Plant RNeasy Mini kit from Qiagen. Extracted RNA was quantified by spectrophotometer, and its integrity was verified by separating 1 μg of total RNA on a denaturing formaldehyde gel. RNA was stored at −80°C until use in reverse transcription reactions. To eliminate any contaminating DNA, RNA preparations were treated with DNase using the DNA-free kit from Ambion, and the treated RNA (1 to 5 μg) was subjected to reverse transcription using the SuperScript III first-strand synthesis system for RT-PCR (Invitrogen). The GPAT5 transcript was amplified using the gene-specific primers 5‘-CTAAAGGAGATCTTTAGGAGATGA-3‘ (forward) and 5‘-TCCAGG- GAACTCCCTATCTTCT-3‘ (reverse), and the GPAT7 transcript was amplified using the gene-specific primers 5‘-CTTCGGCCTACTTCTAGGTC-3‘ (forward) and 5‘-GGTCTGCGGTTATGAAAA-3‘ (reverse), with the initiation factor eIF4A-1 (At3g13920) as a control (forward, 5‘-GGTACGAGAACTTTTGTAGA-3‘, reverse, 5‘-TCACTATCAG-GGGTCGAGAAATG-3‘).
Promoter–GUS Fusion Analysis

A 1-kb sequence upstream of the first ATG in the GPAT5 cDNA, and 588 bp of the GPAT7 coding region, were cloned in-frame as a HindIII-XbaI fragment into the binary vector pBI101.1 carrying the GUS gene downstream of the inserted promoter. The primers used for amplification of the fragment from genomic DNA were 5′-CACACAGGTTAAACTGGTTATTAG-3′ (forward) and 5′-CACACTCTAGATCCACATAGACT-3′ (reverse) (inserted restriction sites are underlined). The construct \( \text{Pro}_{\text{GPAT5}}: \text{GUS} \) was used to transform Arabidopsis wild-type plants by Agrobacterium tumefaciens vacuum infiltration (Bechtold et al., 1993). T1 seeds of \( \text{Pro}_{\text{GPAT5}}: \text{GUS} \) transformants were selected on sterile plates (50 \( \mu \)g/mL kanamycin) from surface-sterilized seeds. Resistant seedlings were transferred to soil for continued growth and seed collection. The T3 progeny from several individual kanamycin-resistant plants were analyzed for GUS gene expression. Briefly, fresh tissues were suspended and vacuum-infiltrated in a staining solution (0.1 M NaH$_2$PO$_4$, pH 7.0, 10 mM Na$_2$-EDTA, 0.5 mM K-ferricyanide, 0.5 mM K-ferrocyanide, 1.0 mM X-glucuronide prepared freshly each time in DMSO, and 0.1% Triton X-100 for 30 min to 1 h depending on the tissue) (Jefferson, 1987). The samples were then incubated at 37°C for 2 to 18 h until staining was visible. Stained tissues were fixed in a mixture of ethanol:acetic acid:formaldehyde (50:5:3.7, v/v) for 10 min at 65°C and destained in 80% (v/v) ethanol until removal of chlorophyll. Images of whole mount tissues were taken with a Leica MZ 12.5 microscope coupled with a digital camera.

Seed Germination and Dormancy Tests

Germination rates of wild-type and gpat5 seeds were compared for both soil-grown seeds and seeds grown on agar plates supplemented with increasing concentrations of salts. Plates were transferred to a controlled growth chamber (see Plant Materials and Growth Conditions) after cold treatment in the dark for 3 d at 4°C. Germination was scored at 7 d after transfer to the growth chamber (12 d in the case of added salts). Seeds that showed penetration of the radicle through the seed coat were counted as germinated seeds. Seedling establishment was scored by observing that showed penetration of the radicle through the seed coat were counted as germinated seeds. Seedling establishment was scored by looking for the presence of two green cotyledons. The tests were repeated on at least three different batches of seeds harvested from plants grown at different times.

For dormancy release experiments, wild-type and gpat5 seeds harvested immediately after maturity from plants of the same age and grown under the same conditions were tested over a period of dry storage (0, 10, 17, 21, and 30 d at room temperature) (Bentsink and Koornneef, 2002). Mature seeds were sown in triplicate in Petri dishes (100 to 150 seeds per plate), incubated in a controlled growth chamber, and scored for germination as described above. The tests were repeated on three different batches of seeds harvested from plants grown at different times.

Staining Procedures

For seed coat permeability tests, tetrazolium red assays were used (Debeaujon et al., 2000). Briefly, Arabidopsis dry seeds were incubated in the dark in an aqueous solution of 1% (w/v) tetrazolium red (2,3,5-triphenyltetrazolium) at 30°C for 4 to 48 h. Mucilage of Arabidopsis mature seeds was stained in an aqueous solution of 0.03% (w/v) ruthenium red for 15 min at room temperature (Western et al., 2000). Seeds were rinsed in water before imaging.

For lipid polyester staining of roots, a solution of 1% (w/v) Sudan black in 75% ethanol was used. Roots were placed into this solution for 1 h, rinsed briefly in water, and imaged.

For lipid polyesters of seed coats, mature seeds were incubated for 24 h at room temperature in water containing 0.01% (w/v) Triton X-100 and 10% (v/v) commercial bleach to fade the seed coat pigments. After rinsing successively with distilled water and 100% ethanol, seeds were incubated for 30 min with chloroform:methanol (2:1, v/v), rinsed with 100% ethanol, and air-dried. Seeds were finally incubated at room temperature for 1 to 4 h with a solution of Sudan red 7B in polyethylene glycol 400:glycerol:water prepared as described by Bundrett et al. (1991), rinsed in water, mounted between slide and cover slip, and observed with a Leica M221.5 light microscope coupled to a digital camera.

Analysis of Fatty Acids and Cuticular Waxes

Total fatty acid content and composition in Arabidopsis seeds were quantified according to Li et al. (2006). The same method of direct methylation was used for total fatty acids of leaf, root, and flower. For cuticular waxes, the leaf tissue (1 g from 5-week-old plants) was dipped in chloroform (20 mL) for 30 s, with the addition of internal standards (20 \( \mu \)g/g n-octacosane, 10 \( \mu \)g/g docosanoic acid, and 10 \( \mu \)g/g fresh leaf 1-tricosanol). The epicuticular waxes were silylated to convert free alcohols and carboxylic acids to their trimethylsilyl ethers and esters, respectively, by heating the sample at 110°C for 10 min in 100 \( \mu \)L of pyridine and 100 \( \mu \)L of \( \text{N,O}-\text{bis(trimethylsilyl)}\text{trifluoroacetamide} \). After cooling, the solvent was evaporated under nitrogen and the product was resuspended in heptane:toluene (1:1, v/v) for gas chromatography–mass spectrometry analysis (Bonaventure et al., 2003). For seed surface wax analysis, mature seeds (100 mg) were soaked in chloroform for 2 min, and internal standards (5 \( \mu \)g/g n-octacosane, 5 \( \mu \)g/g docosanoic acid, and 5 \( \mu \)g/g seed 1-tricosanol) were added and processed as described above for leaf cuticular wax analysis. Seed surface areas were calculated assuming a prolate spheroid geometry and using semiaxes estimated from scanning electron microscopy images of seeds.

Analysis of Lipid Polyesters

Polyester monomers were obtained and analyzed according to Bonaventure et al. (2004). Briefly, the sodium methoxide depolymerization method was used with slight modifications described by Suh et al. (2005). Polyester monomers were separated, identified, and quantified by gas chromatography–mass spectrometry. Splitless injection was used, and the mass spectrometer was run in scan mode over 40 to 500 atomic mass units (electron impact ionization), with peaks quantified on the basis of their total ion current. Polyester monomer amounts are expressed per surface area for seeds and per gram of dry residue depolymerized for roots. Further details of aliphatic and aromatic monomer identifications, analytical methods, and seed coat and embryo polyester monomer localization experiments are presented by Molina et al. (2006).

Analysis of PAs

Analysis was performed on samples of 15 mg of mature seeds using acid-catalyzed depolymerization and spectrophotometric quantification as described previously (Routaboul et al., 2006).

Scanning Electron Microscopy and Fluorescence Microscopy

Arabidopsis pollen and mature seeds were coated with gold particles during 3 min at a coating rate of ~7 nm/min using an EMSCOPE SC500 sputter coater (Ashford). Scanning electron microscopy images were taken with a JEOL JSM-6400V microscope. Assuming prolate spheroid seed geometry, semiaxes were estimated from scanning electron microscopy images using Analysis PRO software version 3.2 (Soft Imaging System).

For seed coat autofluorescence, mature seeds were illuminated and observed with a Zeiss Axiohot microscope using epifluorescence interference and absorption filters (excitation filter, 365 nm; dichromatic beam splitter, 395 nm; long-pass emission filter, 435 nm) coupled to a digital camera.
Accession Numbers

Arabidopsis Genome Initiative locus codes are as follows: GPAT1, At1g05620; GPAT2, At1g02390; GPAT3, At1g01950; GPAT4, At1g01610; GPAT5, At3g11430; GPAT6, At2g38110; GPAT7, At1g06090; and GPAT8, At4g00400.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Fatty Acids from Intracellular Lipids.

Supplemental Figure 2. Wax Composition of the Arabidopsis Seed Surface.

Supplemental Figure 3. Lipid Polyester Monomers from Roots of 3-Week-Old Seedlings Grown on Agar.

Supplemental Figure 4. Lipid Polyester Monomers from Leaves of Wild-Type and gpat5 Mutant Plants.

ACKNOWLEDGMENTS

We thank Ewa Danielewicz (Center for Advanced Microscopy, Michigan State University) for performing scanning electron microscopy of Arabidopsis seeds, Abraham Koo and Alicia Pastor (Michigan State University) for their help with fluorescence and light microscopy, and Laurent Nussaume (Commissariat à l’Energie Atomique, Cadarache, France) for his help with Arabidopsis root sections and helpful comments. This work was supported in part by the Dow Chemical Company, Dow Agro-Sciences, and the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service (Grant 2005-35318-15419).

Received March 20, 2006; revised November 30, 2006; accepted January 3, 2007; published January 26, 2007.

REFERENCES

Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.

Baum, S.F., Dubrovsky, J.G., and Rost, L.T. (2000). Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am. J. Bot. 88: 908–920.

Bechtold, N., Ellis, J., and Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. 316: 1194–1199.

Beecman, T., De Rycke, R., Viane, R., and Inze, D. (2000). Historical study of seed coat development in Arabidopsis thaliana. J. Plant Res. 113: 139–148.

Beisson, F., et al. (2003). Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 132: 681–697.

Bentsink, L., and Koornneef, M. (April 4, 2002). Seed dormancy and germination. In The Arabidopsis Book. C.R. Somerville and E.M. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists), doi/10.1199/tab.0050, www.aspb.org/publications/arabidopsis/.

Bernards, M.A. (2002). Demyelinating suberin. Can. J. Bot. 80: 227–240.

Bernards, M.A., Lopez, M.L., and Zajicek, J. (1995). Hydroxycinnamnic acid-derived polymers constitute the polyaromatic domain of suberin. J. Biol. Chem. 270: 7982–7986.

Bethke, P.C., Libourel, I.G.H., and Jones, R. (2006). Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 57: 517–526.

Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell 9: 1055–1067.

Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., and Benfey, P.N. (2003). A gene expression map of the Arabidopsis root. Science 302: 1956–1960.

Bonaventure, G., Beisson, F., Ohhrogge, J., and Pollard, M. (2004). Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: Occurrence of octadecaca-cis-6,cis-9-diene-1,18-dioate as the major component. Plant J. 40: 920–930.

Bonaventure, G., Salas, J.J., Pollard, M.R., and Ohhrogge, J.B. (2003). Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15: 1020–1033.

Broun, P., Poindexter, P., Osborne, E., Jiang, C.Z., and Riechmann, J.L. (2004). WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 4706–4711.

Bundrett, M.C., Kendrick, B., and Peterson, C.A. (1991). Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 66: 111–116.

Chen, X., Hyatt, B.A., Mucenski, M.L., Mason, R.J., and Shannon, J.M. (2006). Identification and characterization of a lyso-phosphatidylcholine acyltransferase in alveolar type II cells. Proc. Natl. Acad. Sci. USA 103: 11724–11729.

Chen, X.B., Goodwin, S.M., Boroff, V.L., Liu, X.L., and Jenks, M.A. (2003). Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15: 1170–1185.

Cheng, J.C., Lerpriyapong, K., Wang, S., and Sung, Z.R. (2000). Biosynthesis of hydroxyfatty acid polymers—Enzymatic synthesis of cutin from monomer acids by cell-free preparations from epidermis of Vicia faba leaves. Biochemistry 13: 3193–3202.

Dean, B.B., and Kolattukudy, P.E. (1976). Synthesis of suberin during wound-healing in jade leaves, tomato fruit, and bean pods. Plant Physiol. 58: 411–416.

Debeaujon, I., Leon-Kloosterziel, K.M., and Koornneef, M. (2000). Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122: 403–414.

Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., and Benfey, P.N. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86: 423–433.

Dolan, L., and Roberts, K. (1995). Secondary thickening in roots of Arabidopsis thaliana: Anatomy and cell surface changes. New Phytol. 131: 121–128.

Enstone, D.E., Peterson, C.A., and Ma, F. (2003). Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 21: 335–351.

Espelie, K.E., Davis, R.W., and Kolattukudy, P.E. (1980). Composition, ultrastructure and function of the cutin- and suberin-containing layers in the leaf, fruit peel, juice-sac and inner seed coat of the grapefruit (Citrus paradisi Macf.) Planta 149: 498–511.

Espelie, K.E., Dean, B.D., and Kolattukudy, P.E. (1979). Composition of lipid-derived polymers from different anatomical regions of several plant species. Plant Physiol. 64: 1089–1093.

Espelie, K.E., and Kolattukudy, P.E. (1979a). Composition of the aliphatic components of suberin of the endodermal fraction from the first internode of etiolated Sorghum seedlings. Plant Physiol. 63: 433–435.
Espelie, K.E., and Kolattukudy, P.E. (1979b). Composition of the aliphatic components of suberin from the bundle sheaths of Zea mays leaves. Plant Sci. Lett. 15: 225–230.

Espelie, K.E., Sadek, N.Z., and Kolattukudy, P.E. (1980). Composition of suberin-associated waxes from the suberellanean storage organs of seven plants, parsnip, carrot, rutabaga, turnip, red beet, sweet potato and potato. Planta 148: 468–476.

Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., and Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues—A typical suberin and a particular cutin. Phytochemistry 66: 2643–2658.

Graça, J., and Pereira, H. (2000a). Methanolation of bark suberins: Analysis of glycerol and acid monomers. Phytochem. Anal. 11: 45–51.

Graça, J., and Pereira, H. (2000b). Suberin in potato periderm: Glycerol, long chain monomers, and glycerol and feruloyl dimers. J. Agric. Food Chem. 48: 5476–5486.

Horan, K., Lauricha, J., Bailey-Serres, J., Raikhel, N., and Girke, T. (2005). Genetic analysis of seed coat surfaces. In Plant Lipids—Formation and structure of epidermal surfaces. In Plant Lipids—Formation and structure of epidermal surfaces. In Plant Lipids—

Kunst, L., Samuels, A.L., and Jetter, R. (2005). The plant cuticle: Assembly and function of the lamellate cell wall. In Plant Cell Physiol. 46: 1263–1271.

Lee, D.P., Deonarine, A.S., Kienetz, M., Zhu, Q., Skrzypczak, M., Chan, M., and Choy, P.C. (2001). A novel pathway for lipid biosynthesis: The direct acylation of glycerol. J. Lipid Res. 42: 1979–1985.

Leon-Kloosterziel, K.M., Keijzer, C.J., and Koornneef, M. (1994). A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6: 385–392.

Lepinec, L., Debeaujon, I., Routaboul, J.-M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. (2006). Genetics and biochemistry of seed flavanoids. Annu. Rev. Plant Biol. 57: 405–430.

Lewin, T.M., Wang, P., and Coleman, R.A. (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38: 5764–5771.

Li, Y., Beisson, F., Pollard, M., and Ohlrogge, J. (2006). Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67: 904–915.

Lulai, E.C., and Corsini, D.L. (1998). Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol. Mol. Plant Pathol. 53: 209–222.

Ma, F., and Peterson, C.A. (2003). Current insights into the development, structure, and chemistry of the endoderms and exoderms of roots. Can. J. Bot. 81: 405–421.

Madson, M., Dunan, L., Li, X., Verma, R., Vanzin, G.F., Caplan, J., Shoue, D.A., Carpita, N.C., and Reiter, W.D. (2003). The MUR3 gene of Arabidopsis encodes a xyloligucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15: 1662–1670.

Moire, L., Schmutz, A., Buchala, A., Yan, B., Stark, R.E., and Ryser, U. (1999). Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol. 119: 1137–1146.

Molina, I., Bonaventure, G., Ohlrogge, J., and Pollard, M. (2006). The lipid polymer composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67: 2597–2610.

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

Murata, N., and Tasaka, Y. (1997). Glycerol-3-phosphate acyltransferase in plants. Biochim. Biophys. Acta 1348: 10–16.

Nakanishi, H., Shindou, H., Hishikawa, D., Harayama, T., Ogasawara, R., Suwabe, A., Taguchi, R., and Shimizu, T. (2006). Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J. Biol. Chem. 281: 20140–20147.

Nawrath, C. (April 4, 2002). The biopolymers cutin and suberin. In The Arabidopsis Book, C.R. Somerville and E.M. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists), doi/10.1199/ tab.0021. www.aspb.org/publications/arabidopsis/.

Nishida, I., Tasaka, Y., Shiraishi, H., and Murata, N. (1993). The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol. Biol. 21: 267–277.

Robb, J., Lee, S.-W., Mohan, R., and Kolattukudy, P.E. (1991). Chemical characterization of stress-induced vascular coating in tomato. Plant Physiol. 97: 528–537.

Routaboul, J.-M., Benning, C., Bechtold, N., Caboche, M., and Lepliniec, L. (1999). The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol. Biochem. 37: 831–840.

Routaboul, J.-M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J., and Lepliniec, L. (2006). Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Plant Physiol. 14: 96–107.

Ryser, U., and Holloway, P.J. (1985). Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163: 151–163.

Sattelmacher, B. (2001). The apoplast and its significance for plant mineral nutrition. New Phytol. 148: 167–192.
Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Scholkopf, B., Weigel, D., and Lohmann, J.U. (2005). A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37: 501–506.

Schnurr, J., Shockey, J., and Browse, J. (2004). The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16: 629–642.

Schreiber, L., Breiner, H.-W., Riederer, M., and Duggelin, M. (1994). The Casparian strip of Clivia miniata Reg. roots: Isolation, fine structure and chemical structure. Bot. Acta 107: 353–361.

Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W.B., Flugge, U.I., and Kunze, R. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131: 16–26.

Soliday, C.L., Kolattukudy, P.E., and Davis, R.W. (1979). Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L.). Planta 146: 607–614.

Stark, R.E., and Tian, S. (2006). The cutin biopolymer matrix. In Biology of the Plant Cuticle, Vol. 23, M. Riederer, ed (Oxford, UK: Blackwell Publishing), pp. 126–144.

Suh, M.-C., Samuels, A.L., Jetter, R., Kunst, L., Pollard, M., Ohirogge, J., and Beisson, F. (2005). Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol. 139: 1649–1665.

Vogt, E., Schonherr, J., and Schmidt, H.W. (1983). Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.). Planta 158: 294–301.

Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H., and Yephremov, A. (2001). Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc. Natl. Acad. Sci. USA 98: 9694–9699.

Western, T.L., Skinner, D.J., and Haughn, G.W. (2000). Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol. 122: 345–356.

Wu, X.Q., Lin, J.X., Zhu, J.M., Hu, Y.X., Hartmann, K., and Schreiber, L. (2003). Casparian strips in needles of Pinus bungeana: Isolation and chemical characterization. Physiol. Plant. 117: 421–424.

Xiao, F., Goodwin, S.M., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M.A., and Zhou, J.M. (2004). Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 23: 2903–2913.

Yen, C.-L.E., Brown, C.H.I., Monetti, M., and Farese, R.V., Jr. (2005). A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. J. Lipid Res. 46: 2388–2397.

Yu, B., Wakao, S., Fan, J., and Benning, C. (2004). Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell. Physiol. 45: 503–510.

Zeier, J., Ruel, K., Ryser, U., and Schreiber, L. (1999). Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Planta 209: 1–12.

Zheng, Z., Xia, Q., Dauk, M., Shen, W., Selvaraj, G., and Zou, J. (2003). Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15: 1872–1888.

Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G., and Taylor, D.C. (1999). The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 19: 645-653.
The Aroyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of

Arabidopsis

Fred Beisson, Yonghua Li, Gustavo Bonaventure, Mike Pollard and John B. Ohlrogge

Plant Cell; originally published online January 26, 2007;
DOI 10.1105/tpc.106.048033

This information is current as of August 13, 2017

Supplemental Data /content/suppl/2007/01/18/tpc.106.048033.DC1.html
Permissions https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
eTOCs Sign up for eTOCs at:
http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts Sign up for CiteTrack Alerts at:
http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information Subscription Information for The Plant Cell and Plant Physiology is available at:
http://www.aspblog.org/publications/subscriptions.cfm

© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY