Valuing Ecosystem Services and Disservices Across Heterogeneous Green Spaces

Dr. Christie Klimas, Allison E. Williams, Megan Hoff, Beth Lawrence, Jennifer Thompson, and Dr. James Montgomery.

Department of Environmental Science and Studies, DePaul University, Chicago, IL, 60614; Department of Natural Resources and the Environment & Center for Environmental Sciences and Engineering, University of Connecticut, cklimas@depaul.edu

This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core). We quantified and valued natural capital (tree and soil carbon stocks) ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction) and disservices (greenhouse gas emissions and soil soluble reactive phosphorus). Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public) urban or suburban lots may benefit from careful consideration of small-scale variability.

Introduction

This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core). We quantified and valued natural capital (tree and soil carbon stocks) ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction) and disservices (greenhouse gas emissions and soil soluble reactive phosphorus). Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public) urban or suburban lots may benefit from careful consideration of small-scale variability.

Methods

- Used a field inventory and the i-Tree canopy model to calculate total tree carbon stock.
- Benefits from carbon storage and pollutant uptake (ex. annual CO, NO, O removal) were valued within i-Tree using the U.S. EPA’s Environmental Benefits Mapping and Analysis.
- Carbon stock was valued by multiplying carbon stock by $40.03/tonne of CO.
- Analyzed soil samples for percent soil organic matter using loss on ignition. Used bulk density to calculate soil organic carbon.
- Calculated soil soluble reactive phosphorus.
- Measured CO, CH, and N fluxes four times in 2013 (June, August, September, October) across a hydrological gradient that encompassed four green space types using vented, non-flow through chambers.
- Used ANOVA to test for differences.

Results

We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1,000+ per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual GHG emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie.

- **Soil carbon stocks** were not significantly different between green space types
- **highest in the forest**
- **lowest in the wetland**
- **indicates the value of soil carbon even in human-modified areas.**

Discussion

- **Analysis of Variance revealed that CO flux varied significantly among months (F= 12.17, p= 3.20e-05) and by green space (F= 12.66, p = 2.36e-05) in 2013. Note that no GHG samples were collected from the cattail marsh in August due to chambers being vandalized.**

- **Soil organic carbon per hectare (15 cm depth) for all green space types and accompanying per hectare valuation at different discount rates. Valuation was calculated using the social cost of carbon of US$40.03 to match valuations from i-Tree.**

Green space type	Tonnes of Carbon per hectare	Tonnes of CO per hectare	Value of carbon stock at US$40.03 per tonne CO2
Forest	62	228	$9,126.84
Prairie	54	198	$7,925.94
Cattail	60	220	$8,806.60

Reference

Klimas, C.A., Williams, A., Hoff, M., Thompson, J., Lawrence, B., Montgomery, J. 2016. Valuing ecosystem services and disservices across heterogeneous urban green spaces. Sustainability, file:///C:/Users/cklimas/Downloads/sustainability-08-00853.pdf