Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways

Yinghong Pan, Todd P. Michael, Matthew E. Hudson, Steve A. Kay, Joanne Chory, and Mary A. Schuler*

Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801 (Y.P., M.A.S.); Department of Plant Biology and Pathology, Waksman Institute for Microbiology, Rutgers University, Piscataway, New Jersey 08854 (T.P.M.); Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801 (M.E.H.); Section of Cell and Developmental Biology, University of California, La Jolla, California 92093 (S.A.K.); and Plant Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037 (J.C.)

Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana). Comparison of four data sets analyzing seedlings harvested over a 2-d period of constant conditions after growth with varying photoperiods and thermocycles recorded a total of 98 P450 loci as circadian regulated for at least one of the four conditions. Here, we further describe the circadian-regulated pathways using, as reporters, individual P450 loci that are likely to be rate limiting in secondary metabolic pathways. Reverse transcription-polymerase chain reaction gel blot analyses have confirmed circadian regulation of P450s in phenylpropanoid, carotenoid, oxylipin, glucosinolate, and brassinosteroid biosyntheses and have shown that both P450 and non-P450 genes in the many branches of the phenylpropanoid pathway have similar circadian patterns of expression. In silico analyses of the subsets of coregulated promoters have identified overrepresented promoter elements in various biosynthetic pathway genes, including MYB and MYB4 elements that are significantly more abundant in promoters for the core and lignin sections of phenylpropanoid metabolism. Interactions with these elements important for circadian regulation do not involve the MYB transcription factor PAPI, as previously proposed, since the expression patterns of circadian-regulated P450s are the same in pap1-D mutant seedlings as in wild-type seedlings. Further analysis of circadian-regulated promoters in other biochemical pathways provides us with the opportunity to identify novel promoter motifs that might be important in P450 circadian regulation.

The biological clock controls many processes in organisms as diverse as cyanobacteria and humans. In higher plants, circadian rhythms regulate physiological events including growth and development, photosynthesis, metabolic adaptation, protein synthesis, carbohydrate transport and storage, leaf and cotyledon movements, and hormone signaling responses (Harmer et al., 2000; Covington and Harmer, 2007; Michael et al., 2008). Microarray and enhancer-trapping experiments have estimated that between 15% and 36% of the Arabidopsis (Arabidopsis thaliana) genome is under circadian regulation at the transcriptional level (Michael and McClung, 2003; Edwards et al., 2006; Michael et al., 2008). Promoter analysis using these large microarray data sets has identified several promoter elements involved in phase-specific light and circadian regulation of expression, including the Morning Element (ME), CCA1-Binding Site (CBS), GATA, Evening Element (EE), and Midnight Module (PBX/TBX/SBX; Wang et al., 1997; Harmer et al., 2000; Hudson and Quail, 2003; Harmer and Kay, 2005; Michael et al., 2008). However, it remains unclear how specific pathways downstream of the core circadian clock are regulated at specific times of the day.

Cytchrome P450 monooxygenases (P450s) play critical roles in the synthesis of lignin, pigments, defense compounds, fatty acids, hormones, and signaling molecules in all plant species (Schuler, 1996; Werck-Reichhart et al., 2002; Nielsen and Moller, 2005). Because of their wide distribution in diverse metabolic processes, P450s can serve as downstream reporters for many biochemical pathways in Arabidopsis, where 246 P450 full-length genes and 26 P450 pseudogenes have been annotated (Paquette et al., 2000; Werck-Reichhart et al., 2002; Schuler et al., 2006). With many studies detailing the responses of this highly diverse
gene family to biotic and abiotic stresses, the extent to which its members are regulated by circadian cues is unclear at present.

Carotenoids are the pigments responsible for many fruit and flower colors and some components of the light-harvesting complexes in photosynthesis (Bartley and Sc Olson, 1995; DellaPenna and Pogson, 2006). Carotenoids also serve as precursors in the synthesis of abscisic acid. The carotenoid pathway contains two P450s in its downstream lutein branch mediating β-ring hydroxylations on α-carotenes (CYP97A3; LUT5) and subsequent ε-ring hydroxylations (CYP97C1; LUT1; Tian et al., 2004; Kim and DellaPenna, 2006).

Oxylipins are acyclic or cyclic oxidation products derived from polyunsaturated fatty acids that regulate many defense and developmental pathways in plants (Creelman and Mullet, 1997). The oxylipin pathway in Arabidopsis contains allene oxide synthase (CYP74A1; AOS), mediating the synthesis of 12-oxo-phytodienoic acid, jasmonate (JA), and methyl jasmonate (MeJ) from their linolenic acid precursor (Laudert et al., 1996), and hydroperoxide lyase (CYP74B2; HPL), mediating the breakdown of this precursor into C₆-volatiles and octadecanoic acid (Bate et al., 1998; Matsui et al., 1999).

Glucosinolates are a class of naturally occurring thioglucosides responsible for some of the unique tastes of many condiments. Many P450s exist in the pathways branching to the production of these compounds, with CYP79F1 and CYP79F2 mediating distinct functions in the conversion of short- and long-chain Met derivatives to oximes (Hansen et al., 2001; Reintanz et al., 2001; Chen et al., 2003) prior to their modification by CYP83A1 to produce aliphatic glucosinolates (Bak and Feyereisen, 2001; Hemm et al., 2003; Naur et al., 2003). In a parallel pathway, CYP79B2 and CYP79B3 mediate steps in the conversion of Trp derivatives to indole-3-acetyldoxime (Hull et al., 2000; Mikkelsen et al., 2000) prior to its oxidation by CYP83B1 to produce indole glucosinolates (Bak and Feyereisen, 2001; Bak et al., 2001; Naur et al., 2003).

Brassinosteroids are steroidal plant hormones essential for many plant processes, including cell expansion and elongation, xylem differentiation, and pollen tube growth (Müssig et al., 2002; Asami et al., 2005; Baiguz, 2007). They have also been reported to improve resistance to chilling and drought stress (Clouse and Sasse, 1998). The brassinosteroid synthetic pathway, whose central CPD component is circadian regulated (Bancos et al., 2006), consists of a complex grid of metabolic reactions that includes CYP90A1 (CPD), CYP90B1 (DFW4), CYP90C1 (ROT3), CYP90D1, CYP85A1, and CYP85A2 (Bishop and Koncz, 2002; Fujioaka and Yokota, 2003). Brassinosteroid degradation is mediated by P450s in two other families, CYP72C1 (SOB7) and CYP73A1 (BSA1; Neff et al., 1999; Turk et al., 2003, 2005; Nakamura et al., 2005; Takahashi et al., 2005).

Phenylpropanoid synthesis represents one of the best-characterized pathways because it generates a wide variety of products found in most plants, including flavonoids that act as signaling molecules, protectants against UV light damage and microorganisms, lignins that are structural components of cell walls, and anthocyanins that act as floral pigments and attractants to insect pollinators (Dixon and Paiva, 1995; Whetten and Sederoff, 1995; Winkel-Shirley, 2001). Harmer et al. (2000) first reported that the circadian clock regulated a large number of genes in this pathway, resulting in the daily cycling of its transcripts. Within this collection, four P450s mediate the hydroxylation of t-cinnamic acid (CYP73A5; C4H), p-coumaroylshikimic/quinic acids (CYP98A3; REF8), coniferaldehyde/ferulic acid (CYP84A1; FAH1), and narigenin/dihydrokaempferol (CYP75B1; T7T). These are widely distributed in the core pathway and the lignin and flavonoid/anthocyanin branches, which are postulated to provide scaffolds for the assembly of multienzyme channeling complexes (Meyer et al., 1996; Mizutani et al., 1997; Urban et al., 1997; Ruegger et al., 1999; Schoenbohm et al., 2000; Schoch et al., 2001; Winkel, 2004). From this work, it was also proposed that phenylpropanoid metabolism is regulated by PAP1, a MYB transcription factor (Harmer et al., 2000). More recent analyses have shown that PAP1 itself cycles and also that it regulates late flavonoid and anthocyanin gene expression (Borevitz et al., 2000; Tohge et al., 2005; Gonzalez et al., 2008). To date, there has been no evidence directly tying PAP1 to circadian regulation of the phenylpropanoid pathway.

The analyses presented here of P450 expression patterns in four data sets, varying with respect to the thermal and photoperiod cycles used for entrainment, indicate that different combinations of these P450s display coordinated in-phase expression in the different entrainment conditions. The characterization of P450 responses to circadian regulation has potential to identify nodes that globally coordinate transcript abundance of many pathways to specific times of the day. Until now, the activities of specific pathways have, for the most part, only been inferred from analysis of genome-wide patterns. To better understand the coordination of the downstream synthetic and catabolic pathways conferring time-of-day-specific activities, we have utilized P450s as reporters for different nodes in the network emerging from the central circadian clock.

RESULTS
Circadian Variations in P450 Transcripts

Given the importance of P450s in many metabolic pathways, it is clear that they can serve as global reporters for cellular responses to internal and external cues. To analyze the extent to which P450s might be regulated by the circadian clock, four previously published circadian time courses (Michael et al., 2008) were compared for their patterns in P450 expression. The four circadian conditions represent plants grown under different conditions of light and temperature (Table I).
They are named to reflect how they were sampled: DD_DDHC, LL_LLHC, LL_LDHC, and LL_LDHH. The abbreviation DD (continuous dark, 22°C) or LL (continuous light, 22°C), before the underscore, represents the continuous circadian conditions under which the plants were harvested. Abbreviations after the underscore indicate the conditions under which plants were grown (entrained before being released into circadian conditions; these include light/dark cycles (LD), continuous light (LL), continuous dark (DD), continuous temperature (HH, 22°C), and/or thermocycles (HC, 22°C/12°C) as detailed by Michael et al. (2008). Samples were harvested at 4-h intervals over a 2-d period and compared on Affymetrix ATH1 Genechips. Expression for all genes on the ATH1 Genechips across these circadian conditions as well as other diurnal conditions can be accessed at http://diurnal.cgrb.oregonstate.edu/. Identification of cycling genes, the time of their peak expression over the day (phase, in hours from subjective dawn), and statistical analysis of the entire data set have been described by Michael et al. (2008). Briefly, all four time courses were gcRMA (see “Materials and Methods”) normalized together, and cycling genes were called using the pattern-matching program HAYSTACK (http://haystack.cgrb.oregonstate.edu/) using a 5% false discovery rate (FDR; Michael et al., 2008). All of the cycling genes described are statistically significant using these criteria. Expression for all genes on the ATH1 Genechips across these circadian conditions as well as other diurnal conditions can be accessed at DIURNAL (http://diurnal.cgrb.oregonstate.edu/).

Across the four circadian conditions, 233 of the 246 full-length P450 genes and 26 P450 pseudogenes in Arabidopsis were detected on Affymetrix ATH1 arrays, with 11 of these array elements representing closely related P450 genes. Using a 0.8 correlation cutoff for predicting cycling loci (all four time courses analyzed together; \(P = 0.05, \) FDR = 5%; Michael et al., 2008), 98 P450 loci listed in Table II showed statistically significant circadian phasing for at least one of the four array conditions. Between 4% and 22% of the 250 P450 transcripts were circadian regulated under any one of the four conditions, with 39% of the gene list overlapping with one of the other three conditions (Fig. 1). Between 33% and 42% of the genes were specifically circadian regulated under only one condition. The fewest genes displaying circadian rhythms were detected under DD_DDHC conditions, consistent with the fact that generally fewer genes cycle under this condition (Michael et al., 2008). The greatest numbers of genes showing circadian rhythms were detected under LL_LDHH and LL_LDHC conditions rather than LL_LLHC conditions, suggesting that entrainment by light/dark cycles plays a role in P450 expression.

Reverse transcription (RT)-PCR gel blot analyses of samples from the LL_LLHC and LL_LDHC time courses performed with gene-specific primers and probes confirmed the cycling of P450 transcripts distributed in many different pathways, including CYP73A5, CYP75B1, CYP98A3, and CYP84A1 in phenylpropanoid synthesis (nos. 1–4 in Table II; highlighted in red in Fig. 2A online), CYP97CI in carotenoid synthesis (no. 7 in Table II), CYP74A1 in jasmonate synthesis (no. 9 in Table II), CYP79B3 in glucosinolate synthesis (no. 15 in Table II), and CYP90A1 in brassinosteroid synthesis (no. 17 in Table II). Comparison of the UBQ10-normalized RNA levels shown in the left panels of Figure 3 with the gcRMA-normalized ATH1 array data shown in the right panels of Figure 3 indicates strong correlations for most of the transcripts analyzed. Analysis using the model-based pattern-matching HAYSTACK algorithm (Fig. 3K) indicates that the four P450s in the phenylpropanoid pathway are phased with a maximum at 22 h under the LL_LLHC conditions. Complementary analysis using semiquantitative RT-PCR gel blots on these same RNA samples (Fig. 3, A and F) indicates that these four P450s are phased at around 24 h. Comparisons between these two analytic methods indicate that, in some instances, the RT-PCR gel blots show obvious cycling variations and the ATH1 array data show much lower levels of variation. This is the case for CYP75B1 and CYP84A1 in the LL_LLHC time course (Fig. 3, F and K) as well as for CYP98A3 in the LL_LLHC time course, where RT-PCR gel blot signals show as much as a 10-fold difference between the initial time point and each day’s minimum and microarray data show only a 2.5-fold difference. This is also the case for CYP90A1 in the LL_LDHC time course, where RT-PCR gel blot signals decrease more dramatically than the microarray data to an extreme minimum at 16 to 20 h (Fig. 3, I and N). Differences in the magnitude of these variations likely arise from the greater sensitivity of the RT-PCR gel blots. It is well known that microarray data, especially oligonucleotide microarray data, suffer from poor dynamic range.

Table I. Plant growth and harvest conditions
Name

DD_DDHC
LL_LLHC
LL_LDHC
LL_LDHH
Table II. P450s showing circadian regulation

The 98 P450 loci shown to have statistically significant circadian phasing for at least one of the four array conditions (DD_DDHC, LL_LDHH, LL_LDHC, and LL_LLHC) are listed, with the numbers in columns 5 to 8 indicating the phasing time relative to subjective dawn. The first 27 P450s that have designated functions are sorted by biochemical pathway; the remaining 71 P450s (nos. 28 to 98) currently have no biochemically defined function.

No.	Affymetrix Identifier	Arabidopsis Genome Initiative No.	Locus	DD_DDHC	LL_LDHH	LL_LDHC	LL_LLHC	Pathway
1	267470_at	At2g30490	CYP73A5	1	20	22		Phenylpropanoid core
2	250558_at	At5g07990	CYP75B1	20				Phenylpropanoid/flavonol
3	253088_at	At4g36220	CYP84A1	1				Phenylpropanoid/lignin
4	245101_at	At2g40890	CYP98A3	21	23	22		Phenylpropanoid/lignin
5	267380_at	At2g26170	CYP711A1	20	23	22		Flavonoid
6	246268_at	At1g31800	CYP97A3	14		19		Carotenoid
7	251969_at	At3g33130	CYP97C1	13		20		Carotenoid
8	251979_at	At4g15110	CYP97B3	16				Carotenoid
9	249208_at	At5g42650	CYP74A1	19		22		Oxylipin
10	245253_at	At4g15440	CYP74B2	15		17		Oxylipin
11	262717_s_at	At1g16410	CYP79F1	1				Aliphatic glucosinolate
12	262717_s_at	At1g16400	CYP79F2	1				Aliphatic glucosinolate
13	254687_at	At4g37770	CYP83A1	22				Aliphatic glucosinolate
14	252827_at	At2g39950	CYP79B2	23				Indole glucosinolate
15	264052_at	At2g22330	CYP79B3	0	23			Indole glucosinolate
16	256598_at	At3g30180	CYP85A2	1				Brassinolide
17	250752_at	At5g05690	CYP90A1	5	8	9		Brassinolide
18	252184_at	At3g50660	CYP90B1	12		8		Brassinolide
19	246216_at	At4g36380	CYP90C1	3		6		Brassinolide
20	267614_at	At2g26710	CYP73A4	5		6		Degradation of brassinosteroids
21	25703S_at	At3g19270	CYP707A4	7				Degradation of abscisic acid
22	246864_at	At5g25900	CYP701A3	3		7		GAs
23	260241_at	At1g63710	CYP86A7	3				Fatty acid
24	258973_at	At3g01900	CYP99B2	1				Fatty acid
25	262820_at	At1g11680	CYP51G1	1		1		Sterols/steroids
26	264877_at	At2g17330	CYP51G2	5		5		Sterols/steroids
27	266996_at	At2g34490	CYP710A2	20		19	23	Sterols
28	267562_at	At4g30770	CYP71A13	2				Sterols/steroids
29	254767_s_at	At4g13310	CYP71A20	3				Sterols/steroids
30	256598_at	At2g30180	CYP71B2	22		0	3	
31	256735_at	At2g36280	CYP71B4	4	7	7		
32	267293_at	At1g13110	CYP71B7	8				
33	246947_at	At5g25120	CYP71B11	19				
34	246949_at	At5g25140	CYP71B13	4				
35	257636_at	At3g26200	CYP71B22	3				
36	257623_at	At3g26210	CYP71B23	13				
37	257625_at	At3g26230	CYP71B24	21		4		
38	257628_at	At3g26290	CYP71B26	5	7	9		
39	251988_at	At3g33300	CYP71B31	23				
40	256870_at	At3g26300	CYP71B34	1				
41	256873_at	At3g26310	CYP71B35	7				
42	252674_at	At3g42500	CYP71B38	2		1		
43	258063_at	At3g14620	CYP72A8	15	17	20		
44	258112_at	At3g14640	CYP72A10	6				
45	267505_at	At2g45560	CYP76C1	14	6	9	14	
46	267559_at	At2g45570	CYP76C2	8				
47	267560_at	At2g45580	CYP76C3	15				
48	250859_at	At5g04660	CYP77A4	0				
49	258962_at	At3g10570	CYP77A6	19				
50	250838_at	At5g04630	CYP77A9	19				
51	262819_at	At1g11600	CYP77B1	13				
52	266321_at	At2g46660	CYP78A6	1				
53	250509_at	At5g09970	CYP78A7	4				

(Table continues on following page.)
Although the results from these two methods differ in magnitude, both demonstrate circadian regulation of the P450s analyzed, and within each method, the circadian expression pattern of each gene appears to be highly reproducible.

Circadian Regulation of P450 Transcripts in Different Secondary Pathways

With P450s occurring at important nodes in many secondary pathways displaying circadian cycling, variations in their activities can impact an array of downstream synthetic and catabolic pathways and alter physiological functions over the course of a day. Comparison of the circadian phasing of the four P450 transcripts in the core and various branches of the phenylpropanoid pathway (CYP73A5, CYP75B1, CYP98A3, and CYP84A1; Fig. 2) indicates that the LL_LDHH arrays show similar phasing just before subjective dawn (20–21 h maxima) for three of these P450s, with the most profound increase for CYP75B1 in anthocyanin synthesis and slightly later phasing for CYP84A1 (1 h maximum; Table II). Two of these

Table II. (Continued from previous page.)

No.	Affymetrix Identifier	Arabidopsis Genome Initiative No.	Locus	DD_DDHC	LL_LDHH	LL_LDHC	LL_LLHC	Pathway
55	249673_at	At5g35920	CYP79A4P	2	2	2	2	
56	246620_at	At5g36220	CYP81D1	20	17	17	17	
57	253096_at	At4g37330	CYP81D4	20	17	17	17	
58	253097_at	At4g37320	CYP81D5	14	10	10	10	
59	256386_at	At1g66540	CYP81D10	3	2	2	2	
60	256589_at	At3g28740	CYP81D11	3	2	2	2	
61	253100_at	At4g37400	CYP81F3	22	22	22	22	
62	253052_at	At4g37310	CYP81H1	14	14	14	14	
63	253503_at	At4g31950	CYP82C3	4	4	4	4	
64	253502_at	At4g31940	CYP82C4	4	4	4	4	
65	249881_at	At5g23190	CYP86B1	4	4	4	4	
66	250576_at	At5g08250	CYP86B2	5	5	5	5	
67	265020_at	At1g24540	CYP86C1	4	4	4	4	
68	262882_at	At1g64900	CYP89A2	0	0	0	0	
69	247579_at	At5g61320	CYP89A3	0	0	0	0	
70	266155_at	At1g64950	CYP89A5	20	20	20	20	
71	262866_at	At1g64940	CYP89A6	4	4	4	4	
72	256651_at	At5g06900	CYP93D1	23	23	23	23	
73	248353_at	At5g23220	CYP96A4	16	17	17	17	
74	263894_at	At2g21910	CYP96A5	4	4	4	4	
75	262435_at	At1g47620	CYP96A8	2	2	2	2	
76	252896_at	At4g39480	CYP96A9	23	23	23	23	
77	252911_at	At4g39510	CYP96A12	0	0	0	0	
78	245550_at	At4g15330	CYP705A1	4	4	4	4	
79	248727_at	At5g47990	CYP705A5	16	16	16	16	
80	266308_at	At2g27010	CYP705A9	11	11	11	11	
81	263276_at	At2g14100	CYP705A13	12	12	12	12	
82	257112_at	At3g20120	CYP705A21	12	12	12	12	
83	261499_at	At1g28430	CYP705A24	4	4	4	4	
84	256801_at	At3g20940	CYP705A30	1	1	1	1	
85	256802_at	At3g20950	CYP705A32	0	0	0	0	
86	256803_at	At3g20960	CYP705A33	5	5	5	5	
87	254331_s_at	At4g22690	CYP706A1	6	6	6	6	
88	254331_s_at	At4g22710	CYP706A2	6	6	6	6	
89	254335_s_at	At4g12320	CYP706A6	18	18	18	18	
90	254335_s_at	At4g12310	CYP706A7	18	18	18	18	
91	248728_at	At5g48000	CYP708A2	17	17	17	17	
92	266251_s_at	At5g68300	CYP708A3	20	23	23	23	
93	252629_at	At3g44970	CYP708A4	20	23	23	23	
94	246726_at	At2g22500	CYP712A1	3	3	3	3	
95	246728_at	At5g24910	CYP714A1	5	5	5	5	
96	249684_s_at	At5g36110	CYP716A1	5	5	5	5	
97	245728_at	At1g73340	CYP720A1	23	23	23	23	
98	261134_at	At1g19630	CYP722A1	17	17	17	17	
also cycle with similar normalized profiles in the LL_LDHC arrays with peaks before subjective dawn (Fig. 3A). In addition, CYP711A1 (MAX1; no. 5 in Table II), which is reported to be a positive regulator of the flavonoid pathway (Lazar and Goodman, 2006) and to act downstream of carotenoid-derived hormones (Booker et al., 2005), shows circadian phasing (20–23 h maxima in LL_LDHH, LL_LDHC, and LL_LLHC arrays) similar to three of the four phenylpropanoid P450s.

In carotenoid synthesis (Fig. 4A), CYP97A3 and CYP97C1 occur in the lutein branch. Both of these (nos. 6 and 7 in Table II) show circadian phasing in the LL_LLHC arrays (19–20 h maxima) and the LL_LDHH arrays (13–14 h maxima; Fig. 5A). CYP97B3 (no. 8 in Table II), whose protein shares 45% to 46% amino acid identity with CYP97A3 and CYP97C1, shows circadian phasing at 12 h in the LL_LDHH arrays (below the cutoff used for Table II) and at 16 h in the LL_LDHC arrays, which is similar to the phasing of CYP97A3 and CYP97C1 on the arrays. The similarity of this phasing suggests that CYP97B3 may be under the same transcriptional regulation as the other CYP97 family genes. CYP711A1, which was previously mentioned as acting downstream of carotenoid cleavage dioxygenases (Booker et al., 2005), shows circadian phasing at 20 to 22 h in three of the time courses (LL_LDHH, LL_LDHC, and LL_LLHC); this is significantly later than the phasing of the other P450s in this carotenoid pathway.

In oxylipin synthesis (Fig. 4B), CYP74A1 in JA synthesis and CYP74B2 in C6-volatile production are...
Figure 3. Circadian-regulated transcripts in known pathways. A to E, RNAs from the LL_LLHC and LL_LDHC conditions were analyzed on RT-PCR gel blots for the transcripts listed above each panel or set of panels. The RT-PCR products for P450s in each
circadian regulated, with slightly different phasings in the LL_LLHC arrays (22 and 17 h maxima; nos. 9 and 10 in Table II). With many other loci mediating steps in JA synthesis, at least one locus at each step in the pathway is circadian regulated in the LL_LLHC and LL_LDHC arrays, with phasings between 13 and 18 h, at times slightly prior to the phasings seen for CYP74A1 and CYP74B2; among multiple loci coding for the same enzyme, those that are circadian regulated are indicated with boxes in Figure 4B. The only loci with noticeably different phasing from others in the JA synthetic pathway are one lipoxygenase (LOX1; no. 59 in Table III) mediating the synthesis of 9-hydroperoxides and not the 13-hydroperoxides needed for jasmonate production (Royo et al., 1996; Blee, 2002), one undefined 12-oxophytodienoate reductase (OPR; no. 66 in Table III), and S-adenosyl-L-Met:jasmonic acid carboxyl methyltransferase (JMT; no. 68 in Table III) catalyzing the last step in MeJ synthesis. As both LOX and OPR have many isoforms in Arabidopsis, it is likely that the individual members of these families are under different modes of transcriptional regulation. In the case of JMT, its phasing 2 to 11 h later than transcripts for previous steps in this pathway suggests that the proportions of JA and MeJ vary throughout these cycling periods.

Figure 4. Maps of four circadian-regulated pathways. These maps adapted from AraCyc Pathway correspond to the carotenoid (A), oxylipin (B), glucosinolate (C), and brassinosteroid (D) pathways. Black boxes indicate genes that are circadian regulated, and underlines indicate P450 loci. [See online article for color version of this figure.]
II) are circadian regulated, with similar phasings under LL_LLHC (21–1 h maxima) as a number of other enzymes in this branched pathway (Fig. 5B, top). Not surprisingly, CYP79B2 and CYP79B3 in the indole glucosinolate branch (nos. 14 and 15 in Table II) are circadian regulated, with exactly the same phasings as most other enzymes in its branch (Fig. 5B, bottom). The glucosinolate pathway has not previously been reported to have circadian rhythms.

In brassinolide synthesis (Fig. 4D), four of the six synthetic P450s have different circadian phasings depending on the array conditions (nos. 16–19 in Table II). For example, the LL_LDHH arrays show similar phasing for CYP85A2 and CYP90C1 (ROT3; 1–3 h maxima) and a slightly later phasing for CYP90A1 (CPD; 5 h maximum), which is considered the initial
Table III. Elements overrepresented in different branches of biosynthetic pathways

The numbers in the columns for the four circadian array conditions (DD_DDHC, LL_LDHH, LL_LDHC, and LL_LLHC) are the phasing of corresponding genes. EE, CBS, and ME are given; the numbers indicate the positions (bp) where they present in the promoter of each gene. The statistical significance (e-value) and ratio of overrepresented element frequency shown in the branch and in the 27,457 promoters of the Arabidopsis genome are also given.

Pathways and Subdivisions	Locus	Arabidopsis Genome Initiative No.	P450 DD_DDHC	LL_LDHH	LL_LDHC	LL_LLHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element	
Phenylpropanoid pathway									
Core pathway									
1 Phenylalanine-lyase	PAL1	At2g17040	20	23			CBS:363	MYB4:2.44e-12(54/77609)	
2 Phenylalanine-lyase	PAL2	At3g53260	21	0	0			MYB:1.84e-11(12/25/20163)	
3 4-Coumarate-CoA 4-hydroxylation	PAL3	At5g04230	4					GL-TRP5:4.26e-05(11/8446)	
4 4-Coumarate-CoA 4-hydroxylation	C4H	At2g10490 CYP73A5	1	20	22			WL:1.10e-04(53/61066) GL-MET:3.6.16e-04/19/33391	
5 4-Coumarate-CoA 4-hydroxylation	4CL1	At1g51680	19	22		CBS:1444	CAROT:2:1.36e-03(26/49795)		
6 4-Coumarate-CoA 4-hydroxylation	4CL2	At3g21240	22	22			GL-MET:1.64e-04(22/37935) GL-TRP2:9.71e-03/18/35624		
7 4-Coumarate-CoA 4-hydroxylation	4CL3	At1g65060	20	18	20		CBS:557		
8 4-Coumarate-CoA 3-hydroxylation	4CL4	At1g21230	0						
9 4-Coumarate-CoA 3-hydroxylation	4CL5	At5g63380	0	1	2	3		CBS:1497	
10 4-Coumarate-CoA 3-hydroxylation	4CL6	At1g20490	21	20			CBS:356		
Intermediate flavonoid branch									
11 Naringenin-chalcone synthase	CHS	At5g13930	21	20	22			SORLIP2:7.85e-04(12/22714) GL-TRP2:9.71e-03/18/35624	
12 Chalcone isomerase	TT5	At3g55120	21	20	22		CBS:1619	MOTIF8:2.86e-03(26/76487)	
13 Chalcone isomerase	CHI	At5g05270	20	23				ABRE-like:3.80e-03(8/121223) GL-MET:1.64e-04(22/37935)	
14 Naringenin 3-dioxygenase	F3H	At3g12240	23	20	22		CBS:544	GL-TRP2:8.50e-03/17/44906	
15 Flavanone 3-hydroxylation	F3H	At1g54530	1	3			CBS:601		
16 Flavanone 3-hydroxylation	F3H	At3g19000	19				CBS:815		
17 Flavanone 3-hydroxylation	F3H	At4g16330	7	12					
Flavonol branch									
18 Flavonol 3’-monooxygenase	TT7	At5g07990 CYP75B1	20					EE:6.15e-04(36/3608) GL-MET:2.85e-04/17/26923 SORLIP1:9.63e-04/24/42489	
19 Flavonol synthase	FS	At3g51020	9	13	10		EE:1037		
20 Flavonol synthase	F3H	At3g19010	9		9		EE:692		
21 Flavonol synthase	F3H	At5g63950	20						
22 Flavonol synthase	F3H	At5g08640	21	19	21		EE:270		
23 Flavonol 3-O-glucosyltransferase	F3OG1	At1g01420	23				EE:934,34		
24 Flavonol 3-O-glucosyltransferase	F3OG2	At1g01850	22				EE:881		
25 Flavonol 3-O-glucosyltransferase	F3OG3	At4q01070	17	18	21				
26 Flavonol 3-O-glucosyltransferase	F3OG4	At5g54060	22	21					
27 Anthocyanin branch									
28 Flavonol 3’-monooxygenase	TT7	At5g07990 CYP75B1	20				CBS:1847	G-box([LRE]:5.00e-06/8(8723) G-BOX EXTENDED:2.44e-04/5/4921 ABRE-like:1.97e-03(6/12125) SORLIP4:2.99e-03/2/627 BS2:9.98e-03/6/16468	
29 Dihydroflavonol 4-reductase	DFR	At5g42800	21	21			ME:1090,868,4		
30 Leucoanthocyanidin dioxygenase	ANS	At4q22870	20	21			ME:1701	EE:1069	
31 Leucoanthocyanidin dioxygenase	ANS	At4q22870	20	21			ME:1447,876,326,101		
Lignin branch									
32 Hydroxycinnamoyl-CoA:shikimate/quinine hydroxy-cinnamoyltransferase	CST/CQT	At5g48930	20	23		CBS:1225,364	MYB:1.14e-10/28/20163 MYB4:2.95e-07/63/77609 WLE1:2.78e-04/75/110661		

(Table continues on following page.)
Table III. (Continued from previous page.)

Pathways and Subdivisions	Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
33 Coumarate-3- hydroxylase	REF8	At2g40890	CYP98A3	21	23	22	ME:1311,221	GL-MET3:5.23e-03(25/33391)
34 Caffeoyl-CoA o-methyltransferase	At4g34050	18	21	CBS:1912	ME:234			
35 Caffeoyl-CoA o-methyltransferase	At1g24735	0	0	4	ME:903,452,61			
36 UDP-Glc 4-epimerase	At5g58490	14	18	18	CBS:592			
37 UDP-Glc 4-epimerase	At2g33590	20	2	ME:1528				
38 UDP-Glc 4-epimerase	At2g20400	2	ME:1727,1434, 772,294					
39 Cinnamyl-CoA reductase	At5g14700	19	16	18	CBS:226			
40 Cinnamyl-CoA reductase	At4g30470	20	21	0				
41 Cinnamyl-CoA reductase	At5g34230	1	CBS:1058					
42 Cinnamyl-CoA reductase	At3g19450	19	22	23	CBS:1628			
43 Cinnamyl-CoA reductase	At4g23910	19	18	ME:903,452,61				
44 Cinnamyl-CoA reductase	At1g15950	22	1	1	CBS:1541			
45 Ferulate 5-hydroxylase	At5g54160	0	0					
46 Flavonol 3′-O- methyltransferase	At2g23910	19	16	18	ME:1757			

Carotenoid pathway

Copathway

Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
47 Phytoene synthase	PSY	At3g17230	20	18	22	2	CAROT-CO:7.78e-05(21/106974)
48 Phytoene dehydrogenase	PDS	At4g14210	23				
49 7-Carotene desaturase	ZDS	At3g04870	16	19			

Zeaxanthin branch

Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
50 Lycopene cyclase	LYC	At3g10230	20	0	1	CBS:401	CAROT-A1:1.13e-08(35/96444)
51 β-Carotene hydroxylase	B2	At5g25270	5	21	1	2	CAROT-CO:7.78e-05(21/106974)
52 β-Carotene hydroxylase	B2	At4g25700	17	22	21	CBS:692,348	CAROT-A1:1.13e-08(35/96444)
53 Zeaxanthin epoxidase	ABA1	At5g67030	23	4	3		

Feedback of 7

Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
54 Violaxanthin deepoxidase precursor	NPQ1	At1g08550	19	10	12	14	

Lutein branch

Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
55 Lutein-deficient 2	LUT2	At5g37030	14	22	22	CAROT-B1:8.51e-08(25/106974)	
56 Lutein-deficient 2	LUT2	At3g10230	20	0	1	CBS:401	CAROT-A1:1.13e-08(35/96444)
57 β-Ring hydroxylase on carotenes	LUT5	At1g31800	14	19			
58 ε-Ring hydroxylase on carotenes	LUT1	At3g33130	13	20			

Oxylipin pathway

Jasmonate branch

Locus	Arabidopsis Genome Initiative No.	P450	DD-DHC	LL-LLDHC	LL-LLHHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
59 Lipoxigenase	LOX1	At1g355020	22				
60 Lipoxigenase	LOX2	At3g15140	18				
61 Lipoxigenase	LOX3	At1g17420	16	EE:263			
62 Allene oxide synthase	AOS	At5g42630	CYP74A1	19	22	EE:904	
63 Allene oxide cyclase 1	AOC1	At2g25760	13				
64 Allene oxide cyclase 2	AOC2	At2g25770	13	EE:1573			
65 Allene oxide cyclase 4	AOC4	At1g13280	7	13	AG/API BS IN SUP:4.08e-03/2/104		

(Table continues on following page.)
rate-limiting enzyme in this pathway. The LL_LDHC arrays show significantly earlier phasing for CYP90A1 (8 h maximum) than for CYP90B1 (DWF4; 12 h maximum). The LL_LLHC arrays show slightly earlier phasing for CYP90C1 (6 h maximum) than for CYP90A1 and CYP90B1 (8–9 h maxima).

In the inactivation of plant hormones, the catabolism of brassinolide and other brassinosteroids is mediated by CYP734A1 (BAS1) and CYP72C1 (SBO1; Neff et al., 1999; Turk et al., 2003, 2005; Nakamura et al., 2005; Takahashi et al., 2005) and the catabolism of abscisic acid is mediated by four members of the CYP707A family.

Table III. (Continued from previous page.)

Pathways and Subdivisions	Locus	Arabidopsis Genome Initiative No.	P450	DD_DDHC	LL_DDHC	LL_LDHC	LL_LLHC	EE/CBS/ME	e-Value and Overrepresented Ratio in Element
Hexenal branch	69	LOX1	At1g55020	22	18	EE:263	EE:904	ME:1391, 1134, 1197, 390, 376 CBS:1573	
Lipoygenase	70	LOX2	At3g45140	1				JA:2:1.9e-05(JT4520)	
Lipoygenase	71	LOX3	At1g17420	16	19	EE:1573		MYB4:5.3e-03(29/77609)	
Allene oxide synthase	72	AOS	At5g42650	19	19	EE:804		MYB1:1.8e-03(10/20163)	
Allene oxide cyclase 1	73	AOC1	At3g25760	13	13	EE:1573		MYB4:1.42e-03(25/77609)	
Allene oxide cyclase 2	74	AOC2	At3g25770	13	13	EE:1573		MYB4:1.1e-03(10/20163)	
Allene oxide cyclase 4	75	AOC4	At1g3280	7	7			MYB4:1.42e-03(25/77609)	
Hydroperoxide lyase	76	HPL1	At4g15440	20	20	EE:1383		JA:2:7.9e-08(011/5533)	
Glucosinolate pathway	77	Monoxygenase	CYP79F1	1 CBS:445				JA:2:1.9e-05(JT4520)	
Aliphatic glucosinolate branch	78	Monoxygenase	CYP79F2	1 CBS:1331				JA:2:1.9e-05(JT4520)	
Monoxygenase	79	Monoxygenase	CYP83A1	22	22			GL-TRP4:5.99e-04(14/14468)	
Alkylthiolydroximate C-S lyase	80	SUR1	At2g20610	19	22			MYB1:1.8e-03(10/20163)	
UDP- glycosyltransferase	81	UGT1	At1g24100	19	21	CBS:1867, 728, 576	GL-MET4.5e-00(14/37915)		
Sulfotransferase	82	ST2	At1g74090	17				IBOX:7.0e-03(12/30201)	
Indole glucosinolate branch	83	Monoxygenase	CYP79B2	23	23	CBS:1829, 810 EE:183	GL-TRP2:1.8e-09(21/35624)		
Monoxygenase	84	Monoxygenase	CYP79B3	0 CBS:917, 782				GL-TRP5:1.0e-05(8/8464)	
Allkylthiolydroximate C-S lyase	85	SUR1	At2g22330	19	22			GL-TRP4:3.61e-05(10/14468)	
UDP- glycosyltransferase	86	UGT1	At1g24100	19	21	CBS:1867, 728, 576	GL-TRP1:7.25e-05(11/19861)		
Desulfoglucosinolate sulfotransferase	87	DST	At1g74100	22				MOTIF3A:1.03e-03(5/5059) CBS:1.5e-03(7/12234)	
Brassinosteroid pathway	88	C-24 reduction	CYP90B1	7 8	EE:1577			ATMYB2 BS IN RD22:8.27e-03(3/7337)	
Brassinsteroid biosynthesis	89	DWF4	CYP90B1	12 8	CBS:1085, 177			ATMYB2 BS IN RD22:8.27e-03(3/7337)	
3-Oxo-5α-steroid-4-dehydrogenase	90	DWF4	CYP90B1	12 8	CBS:1085, 177			ATMYB2 BS IN RD22:8.27e-03(3/7337)	
Steroid	91	DWF4	CYP90B1	12 8	CBS:1085, 177			ATMYB2 BS IN RD22:8.27e-03(3/7337)	
6-Deoxo-cathasterone 23α-hydroxylation	92	CYP90B1	8 9					ATMYB2 BS IN RD22:8.27e-03(3/7337)	
C-2α-Hydroxylase	93	CYP90C1	3 6	CBS:280				ATMYB2 BS IN RD22:8.27e-03(3/7337)	
Brassinolide synthase	94	CYP90B1	8 9					ATMYB2 BS IN RD22:8.27e-03(3/7337)	
Degradation of brassinosteroid breakdown	95	CYP90B1	3 6	CBS:1796, 819				ATMYB2 BS IN RD22:8.27e-03(3/7337)	
Glucosyltransferase	96	CYP90B1	8 9					ATMYB2 BS IN RD22:8.27e-03(3/7337)	

Plant Physiol. Vol. 150, 2009 869
Identification of Circadian-Relevant Elements

To gain perspective on circadian controls over different pathways, circadian-regulated promoters in each branch of a pathway as well as in each overall pathway were searched for known elements that were overrepresented compared with their frequency in the 27,457 promoters of the Arabidopsis genome (annotated in the AGRIS sequence motif database [http://Arabidopsis.med.ohio-state.edu]; Davuluri et al., 2003; Palaniswamy et al., 2006). Promoters were also searched for novel elements using the Gibbs sampler program AlignACE (http://atlas.med.harvard.edu/; Hughes et al., 2000). These searches identified a number of five- to nine-nucleotide elements listed in Table III that are significantly overrepresented in these different pathways at a cutoff of \(P < 10^{-3} \); the sequences for elements identified in these searches are outlined in Supplemental Table S1.

In promoters of genes for different branches of phenylpropanoid metabolism, many circadian-relevant elements are evident. The CBS (AAAAATCT) is overrepresented in the core pathway and the intermediate flavonoid branch. The ME (AACCAC) is frequent in the lignin and anthocyanin branches. The EE (AAAAATCT) is overrepresented and has been identified as a separate motif (Kushiro et al., 2004; Saito et al., 2004). At the resolution of the 4-h time points evaluated in these arrays, CYP734A1 (no. 20 in Table II) displays any distinct circadian regulation (7 h maximum). Of the three P450s in GA synthesis (CYP88A3, CYP88A4, and CYP701A3), only the second multifunctional CYP701A3 (no. 22 in Table II) in this pathway (Hellriegel et al., 1998, 1999) is circadian regulated (3 h maximum LL_LDHC array, 7 h maximum in LL_LLHC array).

In the lutein branch of the carotenoid pathway, DPBF1&2 is the only previously described element that appears to be overrepresented; in the carotenoid intermediate pathway, ABFS and T-BOX are overrepresented. With few known elements overrepresented in these carotenoid intermediate and branched pathways, AlignACE algorithms identified a number of novel overrepresented elements in the promoters of the zeaxanthin/abscisic acid branch (designated A), lutein branch (designated B), and core pathway (designated CO). These elements are identified with alphabetic and numerical designations and correspond to CAROT-A1 (AGAGA[AG][AG]), CAROT-A2 (CCA AAN[CA]A), CAROT-A3 (GAGA[AT]GA[AG]), CAR OT-B1 ([CT][TG][AG]AAG), CAROT-B2 ([GA][AG]A GAAGCT), CAROT-B3 (GAAAGCT), and CAROT-C0 (AGAAAGA). Of these, CAROT-C0 is overrepresented in all three parts of this pathway, and the others are more specific for promoters in branches of this path-
way. Spacings of these elements in the CYP97A3 and CYP97C1 promoters are shown in Figure 6D. The promoter of CYP97B3, which codes for a P450 closely related to CYP97A3 and CYP97C1 in the lutein branch and shows intermediate phasing, contains CAROT-B1, CAROT-B2, and CAROT-CO as well as GL-MET2, GL-TRP3, CAROT-A3, and T-BOX. Notably, no EE exist in any of the carotenoid pathway promoters, and CBS exist in only two promoters.

In the oxylipin pathway, circadian-regulated promoters in the AOS branch have overrepresented MYB4, MYB, RAV1-A, AG/AP1 BS, ATMYC2 in RD22, GL-TRP1, and MOTIF8 (ATTACAA), and five of the 10 promoters in this branch have EE. AlignACE analysis of this entire pathway identified three novel overrepresented elements, JA1 (ATGTGAAT), JA2 (AAGAA[G]ANG), and JA3 (T[TC]GG[AG]CAA), that we had previously identified as overrepresented in MeJ-inducible promoters. Of these, JA2 is represented seven times in the AOC4 promoter, with six of these elements being present in short tandem direct repeats, indicating that its abundance is not uniform across promoters in the AOS branch. The circadian-regulated CYP74B2 promoter contains multiple ME, GATA [LRE], DPBF1&2, GL-TRP1, and MOTIF8, one each of the G-BOX [LRE], JA3, and CBS, and no EE; none of these, except possibly the ME, can be recorded as overrepresented, since this is the only locus in the HPL branch of oxylipin metabolism.

In the glucosinolate pathway, circadian-regulated promoters in the aliphatic glucosinolate branch contain MYB, MYB4, and I-BOX and the novel GL-MET3 (ANACCAAA), GL-TRP2 (ANNTTGAAA), GL-TRP4 (GTTG[AT]G), and GL-TRP5 (ACCA[AG]CNA[AG]). Circadian-regulated promoters in the indole glucosinolate branch contain STRE (Marchler et al., 1993) and MOTIF3A (TNG[AT]N[AG][AT]GGAA[AG]) and the novel GL-TRP1 (ACATATT), GL-TRP1 (ANNTTGAAA), GL-TRP4 (GTTG[AT]G), GL-TRP5 (ACCA[AG]CNA[AG]), and GL-MET4. Of these, MOTIF3A was previously identified as overrepresented in Arabidopsis P450 promoters induced by MeJ or salicylic acid (SA). CBS exist in five of eight promoters in these branched pathways.

Overrepresented elements in the collection of circadian-regulated brassinosteroid synthesis loci include the GATA [LRE] ([AT]GATA[GA]), ATMYZB BS in RD22 (CTAACCA), MOTIF1 (CT[GTNGATGTC]A), MOTIF8,
and novel BS1 (AAC[ACGT]CTTT) and BS2 (TATNT-TAG). MOTIF1 was originally found to be overrepresented in the promoter sequences of Arabidopsis P450s induced by MeJ, SA, or BION and their combinations; MOTIF8 was originally found to be overrepresented in promoters of root-specific P450s. The only overrepresented element in the two circadian-regulated brassinosteroid degradation loci is ATMYB2 BS in RD22.

Figure 7. Phenylpropanoid subnetwork. Genes networked in their expression profiles are shown with nodes corresponding to CHS (chalcone synthase; At5g13930), TT5 (chalcone isomerase; At3g55120), CHI (chalcone isomerase; At5g05270), F3H (naringenin 3-dioxygenase; At3g51240), TT7 (flavonoid 3'-monooxygenase; CYP75B1; At5g07990), F3OG2 (flavonol 3-O-glucosyltransferases; At4g01070), F3OG3 (At5g54060), and DFR (dihydrodihydroflavone 4-reductase; At5g42800). FS (flavonol synthase; At5g50210) is not connected to these. A, Genes at nodes in this network that contain G-BOX [LRE] have thick red circles; associated genes that also contain G-BOX [LRE] have thin red circles. B, Phasing of genes at nodes in this network. Values on the x axis indicate hours after each time-course sampling was initiated. White and gray bars on the x axis indicate subjective day and subjective night during the time course; blank and grid bars indicate high (22°C) and low (12°C) temperature maintained during the time course.
are present once in the DWF1 promoter, twice in the CYP85A2 (BR6ox2) promoter, and twice in the CYP734A1 (BAS1) promoter. CBSs are present in the 3-oxo-5α-steroid 4-dehydrogenase, CYP90C1, and CYP734A1 promoters. CYP72C1, another P450 involved in brassinosteroid degradation, is not circadian regulated but its promoter contains SORLREP3 and ATMYB2 BS in RD22, which are overrepresented in the CYP734A1 and UGT73C5 loci involved in brassinosteroid degradation as well as one CBS.

Analysis of a Hypothetical Node Controlling Circadian Cycling

To better understand the relationships between these pathways and some of their predicted transcriptional regulators, we analyzed the expression patterns of PAP1, one MYB transcription factor that had been proposed to control the circadian regulation of the anthocyanin and lignin branches (Harmer et al., 2000), and examined the downstream effects of perturbing its expression. Analysis of PAP1 transcript abundance throughout these circadian cycles indicates that, consistent with previous hypotheses, the PAP1 locus is under circadian regulation (Fig. 8B). Its phasings on both LL_LDHH and LL_LDHC arrays (19 h maximum) are very similar to the four circadian-regulated P450s in the phenylpropanoid pathway (Fig. 8, C–E) and other associated circadian-regulated transcripts (Table III). To directly determine whether PAP1 has a role in circadian regulation of these branched pathways, the circadian regulation patterns of several phenylpropanoid transcripts were compared in wild-type and PAP1-overexpressing (pap1-D) seedlings over a 48-h period starting at 7 d of growth under the LL_LDHH conditions (top versus bottom panels of each blot in Fig. 8). Of the four P450 loci in the phenylpropanoid pathway, only CYP75B1 transcripts appear to accumulate at any higher level in pap1-D seedlings compared with wild-type seedlings. However, most importantly, CYP75B1 and three other P450 transcripts in this pathway maintain their normal circadian cycling despite the constant overexpression of the PAP1 protein (Fig. 8B).

DISCUSSION

Our profilings of the four P450 transcripts responsible for rate-limiting steps in phenylpropanoid metabolism emphasize the similar circadian phasing of all transcripts in this pathway, even those in diverse branches (intermediate flavonoid branch, lignin branch, flavonol branch, and pelargonidin and cyanidin branches). Nearly all, including those needed in flavonoid and anthocyanin production, are expressed at their maximal levels just before subjective dawn, at a time when there is little light. Under some of these circadian regimes (LL_LDHC), the cycling of the CYP75B1 transcript is especially prominent, suggesting that its normal circadian cycling pattern is enhanced by exposure to light at subjective dawn. In Arabidopsis, regulation of the flavonoid and anthocyanin pathway transcripts such as CYP75B1 is controlled by a MYB and TTG1 complex with basic helix-loop-helix proteins (Dubos et al., 2008; Gonzalez et al., 2008). The light-dependent regulation of these genes by complex sets of regulators as well as circadian cycles highlights the complex regulatory mechanisms modulating each of the individual branches in this pathway.

One element likely to be involved in light induction of this promoter and others in the flavonoid/anthocyanin branch is the G-BOX [LRE]. This has previously been identified as a light-responsive element (Menkens and Cashmore, 1994; Chattopadhyay et al., 1998; Michael et al., 2008), and in this study, it has been seen as overrepresented throughout the entire downstream flavonoid pathway, including the intermediate flavonoid, flavonol, and anthocyanin branches (Fig. 6B). In a scale-free network of genes coexpressed with the flavonoid pathway (Fig. 7A), eight out of the nine promoters in the intermediate flavonoid pathway, flavonol, and anthocyanin branches that contain G-BOX [LRE] (circled in red) occur at significant nodes. The expression patterns of seven of these genes are highly connected, with only the FS gene not connected to any of the other nodal genes and the F30G2 gene isolated in a subnetwork. Analysis of the phasings of these last two genes indicates that F30G2 is phased up to 4 h earlier than the other seven genes and FS is phased 8 to 12 h earlier. Expression of the F30G2 transcript is correlated only with that of CHI in the nine genes. The coincidence of phasings for these seven other genes is very significant (Fig. 7B), making it likely that the multiple G-BOX [LRE] play a controlling role in the regulation of these promoters. Further comparisons between these simple G-BOX [LRE] motifs have indicated that a longer G-BOX EXTENDED element [CAGCTG/(G/T)(A/C)] exists within 900 bp of each of these seven similarly phased promoters. These seven promoters also all contain a minimum of one ABRE-like, two DPBF1&2, and two MYB4, suggesting that additional overrepresented elements are also important for coordinated regulation of these promoters. In contrast, the differently phased FS promoter contains only one G-BOX EXTENDED relatively far from its translation start site (–1,583 bp) and no additional simple G-BOX [LRE], making it likely that FS expression is under the control of another transcription factor. The very apparent shift in the phasing of the FS transcripts indicates that the flavonol branched pathway feeding off from the rest of the phenylpropanoid pathway is differentially regulated from the core and lignin and flavonoid branches.

Our promoter analyses have also indicated that MYB and MYB4 are significantly overrepresented in the core and lignin branch of this phenylpropanoid pathway. One potential MYB transcription factor, PAP1, which was proposed to control circadian regulation of the anthocyanin and lignin branches, is
indeed circadian regulated, with the same phasing as these branched pathways. However, direct analyses of phenylpropanoid pathway loci potentially targeted by this transcription factor in overexpressing pap1-D seedlings have indicated that the circadian-regulated \textit{FAH1} (\textit{CYP84A1}) and \textit{REF8} (\textit{CYP98A3}) loci in lignin synthesis and \textit{C4H} (\textit{CYP73A5}) in the core pathway are not modulated by PAP1. In contrast, the \textit{TT7} (\textit{CYP75B1}) locus, which is directly involved in flavonoid and anthocyanin syntheses, shows some degree of overall enhanced accumulation in pap1-D seedlings, suggesting that PAP1 can modestly enhance expression of the flavonoid branch of this pathway. And, contrary to the suggestion that PAP1 regulates circadian phasing of phenylpropanoid transcripts, these increases in \textit{CYP75B1} transcripts fluctuate, with a circadian rhythm that is unaffected by the high PAP1 levels in this mutant, providing further evidence that PAP1 does not control circadian fluctuations of these loci and indicating that other transcription factors modulate circadian cycles in this pathway. How PAP1 expression and these branched pathways are controlled certainly requires further investigation. These results also dramatically demonstrate that the relationships between cycling genes and the cycling network cannot be inferred from time-of-day information and that additional experiments are required to dissect cascades of regulation.

Since it has been demonstrated that the coordination of daily activities confers fitness for specific environments (Michael et al., 2003; Dodd et al., 2005), understanding how these branched pathways are coordinately as well as separately controlled can provide important information for optimizing plant growth.

Figure 8. Circadian regulation of P450s in the phenylpropanoid pathway in wild-type and PAP1-overexpressing (pap1-D) mutant seedlings. RT-PCR gel blots for constitutive \textit{UBQ10} (A), PAP1 (B), \textit{CYP73A5} (C), \textit{CYP75B1} (D), \textit{CYP98A3} (E), and \textit{CYP84A1} (F) were compared in wild-type and pap1-D seedlings over a 48-h period starting at 7 d of growth under LL_LDHH conditions (collected and analyzed in the Schuler laboratory). \textit{UBQ10} expression levels (A) under LL_LDHH were used for normalization, and each normalized transcript level is shown above each lane. The gRMA-normalized microarray data for PAP1 and these four phenylpropanoid P450s on the LL_LDHH arrays performed with wild-type seedling RNAs (collected and analyzed by the Millar laboratory) are shown in G. Values on the x axis indicate hours after each time-course sampling was initiated. White and gray bars on the x axis indicate subjective day and subjective night during the time course at continuous 22°C. [See online article for color version of this figure.]
and health. Interestingly, all of the genes involved in carotenoid synthesis exhibit circadian regulation, but with shifted phasings in the different branches of this pathway (nos. 47–58 in Table III; Fig. 5A). The phasings of the carotenoid intermediate pathway is 19 h on average, and that of the zeaxanthin branch is approximately 20 h relative to subjective dawn, except for NPQ1 (the violaxanthin deepoxidase precursor on the feedback loop), whose circadian phasing is opposite all other loci analyzed in carotenoid synthesis. The lutein branch shows phasing at 14 h prior to subjective dawn except for Lyc, the last common component shared between the lutein and zeaxanthin branches. This phasing of the lutein branch is 5 to 6 h earlier (or 18–19 h later) than that of the zeaxanthin branch, potentially producing maximum expression of lutein derivatives such as α-carotene at the beginning of dark and maximum expression of zeaxanthin derivatives such as β-carotene in the middle of night. With it known that light-harvesting complex II (Kim and DellaPenna, 2006) and β-carotene-containing photosystems are produced almost exclusively under high light conditions and that α-carotene-containing photosystems are produced primarily in shade-grown leaves (Thayer and Björkman, 1990; Demmig-Adams and Adams, 1992; Dall’Osto et al., 2007), these results indicate that the circadian-regulated accumulation of transcripts for these branched pathways precedes accumulation of these carotenoid components by as much as 12 h.

Recent research has indicated that multiple hormone responses are intertwined with circadian cycling, including abscisic acid, l-aminocyclopropane-1-carboxylic acid, brassinolide, cytokinin, indole-3-acetic acid, MeJ, and SA (S.L. Harmer, unpublished data). Auxin synthesis has been reported to be gated by the circadian clock, allowing a plant to respond to auxin at restricted times of day (Covington and Harmer, 2007). The key regulatory nodes, transcription factor/binding site relationships, and how time-of-day activities are maintained accurately in complex biochemical pathways remain to be established. Additional studies are also needed to determine whether these transcriptional variations manifest themselves in enzymatic and metabolic variations throughout the day. Initiated as an analysis of the factors affecting P450s in an array of synthetic and catabolic pathways, this study has provided, to our knowledge, the first glance at the varied range of biochemical pathways that are targeted by the circadian clock.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Arabidopsis (Arabidopsis thaliana) Columbia ecotype and pap1-D mutant seeds were sterilized in 70% ethanol for 30 s and 15% bleach for 15 min and then rinsed in distilled water two to three times. One hundred to 200 seeds per time point were sown on half-strength Murashige and Skoog agar plates containing 0.8% agar without Suc and were kept in the dark at 4°C for 3 d before transfer to a growth chamber. Seedlings were entrained with 12-h white-light/12-h-dark cycles at a continuous temperature (22°C) for 7 d prior to being released into continuous white light at 22°C (LL, LDHH conditions). After 1 d in continuous conditions, seedlings were harvested at subjective dawn and every 4 h over the course of the next 44 h.

Data Sources

The gene lists used for the analysis of different pathway promoters are derived from data available at The Arabidopsis Information Resource (http://www.arabidopsis.org). The circadian-regulated Arabidopsis P450 gene lists of four data sets are derived from analysis of Affymetrix Arabidopsis genome chips as described by Michael et al. (2008). Raw data and analyzed data for the entire gene set can be accessed at http://diurnal.cgrb.oregonstate.edu/. Growth conditions for DD_DDHC were constant dark and 22°C, those for LL_LDH were constant light and 22°C/12°C, and those for LL_LDH were 12 h of light/12 h of dark and 22°C/12°C. For LL_LHH, growth conditions were constant light and 22°C/12°C and samples were collected on the second and third days after switching to these conditions.

Microarray Data Analysis and Normalizations

All microarray experiments were described previously (Mockler et al., 2007; Michael et al., 2008). Briefly, all techniques were as described in the manufacturer-supplied protocols, with RNAs extracted from frozen tissues and labeled probes were prepared and hybridized to Affymetrix Arabidopsis ATH1 GeneChips. Array quality was checked using standard tools implemented in the Bioconductor packages simpleaffy and affyPLM. All microarrays described here were normalized together using gcRNA (robust multiarray average; Wu et al., 2003), and relative values are recorded as gcRNA/gcRNA in the microarray plots. Present/absent calls were made using the Affymetrix MAS5 program. The resulting gcRNA-normalized unlogged values were used to identify cycling genes with the HAYSTACK pattern-matching tool (http://haystack.cgrb.oregonstate.edu/). HAYSTACK, a model-based pattern-matching algorithm, compares a collection of diurnal/circadian models against microarray time-course data to identify cycling genes. HAYSTACK has been implemented in Perl and uses least-squares linear regression for each gene against all model cycling patterns with 24 possible phases. A series of statistical tests were used to identify the best-fit model and phase of expression and to estimate a P value and FDR for each gene. We selected cycling genes using a correlation cutoff of 0.8, which corresponds to a maximum FDR of 3.3% to 5.8% in different data sets. All microarray data can be accessed through the DIURNAL Web interface (http://diurnal.cgrb.oregonstate.edu/).

 Autoradiographs of the RT-PCR gel blots were scanned using an Epson Perfection 1250 scanner and quantified using ImageJ 1.41 software (http://rsbweb.nih.gov/ij/). RT-PCR signals for each sample were then background corrected and normalized against the RT-PCR signals for UBQ10 and reported relative to the RT-PCR signal for the first sample in each time course.

RT-PCR Verifications

Approximately 100 seedlings per time point were frozen under liquid nitrogen and powdered, and total RNA was extracted using a beadbeater (Biospec Products), a Plant RNeasy kit, and on-column Rnase-free DNase (Qagen) according to the manufacturer’s instructions. Quantitative RT-PCR gel-blot analysis of individual P450 transcripts was carried out by amplifying approximately 0.1 mg of total RNA from each sample in one-step RT-PCR containing 50 mKCl, 10 mTris-HCl (pH 8.4), 200 m each dNTP, 200 mg ml⁻¹ gelatin, 40 pmol of a 5′ gene-specific primer, 80 pmol of a 3′ oligo(dt) primer, 2 units of AMV reverse transcriptase (Promega), 8 units of RNAsin (Promega), and 1 unit of GoTaq polymerase (Promega). First-strand cDNAs were synthesized for 30 min at 42°C and subsequently PCR amplified for 18 to 26 cycles, with each cycle consisting of denaturation at 94°C for 1 min, annealing at 60°C for 1 min, and extension at 72°C for 1 min, followed by a final extension step of 72°C for 10 min. The numbers of PCR cycles used for each transcript (18 for CYP90A1 and UBQ10, 19 for CYP79B3, 20 for CYP73A5 and CYP84A1, 23 for CYP74A1, and 26 for CYP57B1 and CYP9BA3) were determined to be within the linear PCR amplification range for each transcript. PCR products were fractionated on 1.5% agarose gels, transferred to nitrocellulose, and hybridized to biotin-labeled probes corresponding to approximately 150 nucleotides derived from the 5′ untranslated region of each P450 locus or the Arabidopsis UBQ10 cDNA. The gene-specific primers used in this analysis were as follows:
Pan et al.

73A5-5', 5'-TTGCAATCTTTAACCCTTCC-3'; 75B1-5', 5'-GACTCGAGGGT-
CCGTTAAAAT-3'; 84A1-5', 5'-GGGTTTGGTATGTTGAAA-3'; 98A3-5', 5'-TTGACCGCATTTAACCAGG-3'; 74A1-5', 5'-AGAAAGACCTCCTAC-
CATCAATGT-3'; 90A1-5', 5'-CAGTCTGTCGCTGCAAGGC-3'; 79B3-5', 5'-ACGTTCGAGCTTATGGA-3'; PAPI-5', 5'-GACAAAGCAAAAGGG-
GGACA-3'; algalD-5', 5'-CGAAATT
new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55: 940–953

Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18: 639–650

Fujisaka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137–164

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TGT1/BHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53: 814–827

Hansen CH, Wittstock U, Olsen CE, Hickle JA, Pickett JA, Halkier BA, Menkens AE, Cashmore AR (2003) Identification of promoter motifs involved in specific circadian regulation of transcription in Arabidopsis. The Plant Cell 15: 209–224

Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestration of key pathways in Arabidopsis by the circadian clock. Science 289: 2110–2113

Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ERF2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179–194

Hudspeth AJ, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133: 1605–1616

Hughes JD, Estep PW, Tavaezoe S, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296: 1205–1214

Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379–2384

Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227: 1141–1150

Jin H, Cominelli E, Bailey P, Parr A, Mehrten F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AHA1/MYB controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19: 6150–6161

Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA 103: 3474–3479

Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Nishizuka T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A2 encodes ABA 8'-hydroxylase: key enzymes in ABA catabolism. EMBO J 23: 1647–1656

Laubert D, Pfannschmidt U, Lotspeich F, Hollander-Czytko H, Weiler M (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP74), the first enzyme of the octade cannabinoid pathway to jasmonates. Plant Mol Biol 32: 333–335

Lazar G, Goodman HM (2006) MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA 103: 472–476

Ma S, Gong Q, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17: 1614–1625

Marchler G, Scheller C, Adam G, Ruis HA (1993) Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12: 1997–2003

Matsui K, Wilkinson J, Hiatt B, Knauf V, Kajiwara T (1999) Molecular cloning and expression of Arabidopsis thaliana fatty acid hydroperoxide lyase. Plant Cell Physiol 40: 477–481

Menkens AE, Cashmore AR (1994) Isolation and characterization of a fourth Arabidopsis thaliana G-box-binding factor, which has similarities to Fos oncoprotein. Proc Natl Acad Sci USA 91: 2522–2526

Meyer K, Cusumano JC, Somerville C, Chapple CCS (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA 93: 6869–6874

Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132: 629–639

Michael TP, Mockler TC, Breton G, Meentec E, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, et al (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4: e14

Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049–1053

Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275: 33712–33717

Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cytochrome P450 from Arabidopsis thaliana. Plant Physiol 115: 753–763

Müüssig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129: 1241–1251

Nakamura M, Sato T, Tanaka S, Mochizuki N, Tokota T, Nagatani A (2005) Activation of the cytochrome P450 gene, CYP721C1, reduces the levels of active brassinosteroids in vivo. J Exp Bot 56: 833–840

Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP363A1 and CYP363B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133: 63–72

Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, et al (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96: 15316–15323

Nielsen KA, Moller BL (2005) Cytochrome P450s in plants. In PR Ortiz de Montellano, ed, Cytochrome P450: Structure, Mechanism, and Biochemistry, Ed 3. Kluwer Academic/Plenum Publishers, New York, pp 553–583

Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E (2006) AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140: 818–829

Paquette SM, Bak S, Feyerisen R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19: 307–317

Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) lus, a bushy Arabidopsis CYTYP71F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13: 351–367

Royo J, Vancanneyt G, Perez AG, Sanz C, Stormann K, Rosahl S, Sanchez-Serrano JJ (1996) Characterization of three potato lipoxigenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem 271: 21012–21019

Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sink apoplastic biosynthesis. Plant Physiol 119: 101–110

Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134: 1439–1449

Schoch G, Goepert S, Morant M, Henn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276: 36566–36574

Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381: 749–753

Circadian-Regulated P450 Monooxygenases
Pan et al.

Schuler MA (1996) The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112: 1411–1419

Schuler MA, Duan H, Bilgin M, Ali S (2006) Arabidopsis P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5: 205–237

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsu M (2005) shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J 42: 13–22

Thayer S, Bjorkman O (1990) Carotenoid distribution and deoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth Res 23: 331–343

Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid e-ring hydroxylation activity. Proc Natl Acad Sci USA 101: 402–407

Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42: 218–235

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, et al (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42: 23–34

Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272: 19176–19186

Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lich gene. Plant Cell 9: 491–507

Werk-Reichhart D, Bak S, Paquette S (2002) Cytochrome P450. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0028, http://www.aspb.org/publications/arabidopsis

Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7: 1001–1013

Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55: 85–107

Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126: 485–493

Wu Z, Iriarizy R, Gentleman R, Murillo F, Spencer F (2003) A Model Based Background Adjustment for Oligonucleotide Expression Arrays. Technical Report. Johns Hopkins University, Department of Biostatistics Working Papers, Baltimore, MD