Hybridization driven gap in U$_3$Bi$_4$Ni$_3$: a 209Bi NMR/NQR study

S.-H. Baek,¹ N. J. Curro,² T. Klimczuk,¹,³ H. Sakai,¹,⁴ E. D. Bauer,¹ F. Ronning,¹ and J. D. Thompson¹

¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA
²Department of Physics, University of California, Davis, CA 95616, USA
³Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
⁴Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

(Dated: May 21, 2009)

We report 209Bi NMR and NQR measurements on a single crystal of the Kondo insulator U$_3$Bi$_4$Ni$_3$. The 209Bi nuclear spin-lattice relaxation rate (T_1^{-1}) shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

I. INTRODUCTION

Strong electron correlations arising from the interactions between localized spins and conduction electrons are the origin of the unusual physical properties of heavy fermion systems. Among them, Kondo insulators (or heavy fermion semiconductors) are characterized by the emergence of a novel ground state with a small gap driven by the hybridization between the localized f-electrons and the conduction electrons. Typically these materials exhibit behavior similar to other heavy fermion metals at high temperatures and are well described by the single impurity Kondo model. However at low temperature, the semiconducting or insulating behavior arises as a result of the periodic array of the local moments, and can be described by the periodic Anderson model. In a Kondo insulator, the chemical potential lies within the gap driven by the hybridization, leading to insulating behavior at sufficiently low temperatures.

Whereas there are a number of rare-earth (4f) based Kondo insulators, which include Ce$_2$Bi$_4$Pt$_3$, CeRhPn (Pn=As,Sb), SmB$_6$, and YbB$_{12}$ actinide-based Kondo insulators are less well studied. To date, there are reports of Kondo insulating behavior in U$_3$Sb$_4$X$_3$ (X=Ni,Pt,Pd) and U$_2$Ru$_2$Sn. The recently discovered uranium ternary compound U$_3$Bi$_4$Ni$_3$ is another potential candidate that might be considered as the uranium counterpart of the well-known Kondo insulator Ce$_3$Bi$_4$Pt$_3$. These compounds are not only isostructural, but also iso-electronic assuming the valence state of U is $> 3+$ but $< 4+$, U$_3$Bi$_4$Ni$_3$ has a body-centered cubic Y$_3$Sb$_4$Au$_2$-type structure with the lattice parameter $a = 9.5793$ Å (space group: $I\bar{4}3d$). In this crystal structure, the U and Ni atoms occupy unique crystallographic sites with four-fold inversion symmetry. The single Bi site has a three-fold axial symmetry along the [111] direction. Each Bi atom has three U (and Ni) nearest neighbors that form an equilateral triangle on a plane perpendicular to its axis of symmetry. A fully gapped ground state was inferred by specific heat and photoemission measurements, in which specific heat showed a Sommerfeld coefficient $\gamma_0 \sim 0$ and the photoemission measurements revealed an electronic gap of 840 K. However, because Th$_3$Bi$_4$Ni$_3$, which is non-magnetic with Th$^{4+}$, is also an insulator, these initial studies were unable to establish the origin of the gapped state in U$_3$Bi$_4$Ni$_3$.

In this paper, we report 209Bi NMR and NQR results on a single crystal of U$_3$Bi$_4$Ni$_3$. The high temperature magnetic susceptibility exhibits Curie-Weiss behavior, with an effective moment of 3.44 μ_B consistent with either a 5f^2 (U$^{4+}$) or 5f^3 (U$^{3+}$) electronic configuration at the U site. The Weiss temperature $\Theta = -117$ K suggests the presence of antiferromagnetic correlations, yet the ground state is non-magnetic. In fact, the suppression of χ from the Curie-Weiss behavior at low temperature is consistent with the presence of a hybridization gap. The 209Bi Knight shift K scales linearly with the magnetic susceptibility χ down to a temperature $T^* \sim 100$ K. Below this temperature, we find a Knight shift anomaly which differs from that observed in the isostructural Ce$_3$Bi$_4$Pt$_3$ Kondo insulator. We also find the electric field gradient (EFG) as probed by the nuclear quadrupole frequency ν_Q exhibits a strong T-dependence, which probably reflects a decrease in the unit cell volume. The strongest evidence for the presence of a gap is found in the spin-lattice relaxation rate, T_1^{-1}, which exhibits Arrhenius behavior between 25 K to 150 K. We find an activation energy of 220 K, which we identify with the hybridization gap.

II. SAMPLE PREPARATION AND EXPERIMENTAL DETAILS

Single crystals of U$_3$Bi$_4$Ni$_3$ were grown as described in detail in Ref. 13 209Bi (nuclear spin $I = 9/2$) nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) were performed using a conventional phase-coherent pulsed spectrometer. Knight shift measurements were carried out at the central transition of the 209Bi at 29 MHz (~ 4.2 T). The temperature dependence of the nuclear quadrupole frequency (ν_Q) and the nuclear
spin-lattice relaxation rate, T_1^{-1} were measured in zero field (NQR). The Bi atoms are located at axially symmetric sites, and thus the NQR spectrum consists of four equally spaced transitions. T_1^{-1} was measured by saturation recovery at the highest NQR transition, $4\nu_Q = 38.13$ MHz ($\pm \frac{7}{2} \leftrightarrow \pm \frac{9}{2}$). The relaxation data was then fit to the following equation appropriate for this transition:

$$1 - \frac{M(t)}{M(\infty)} = \frac{16}{715} \exp \left(\frac{36t}{T_1} \right) + \frac{49}{165} \exp \left(\frac{21t}{T_1} \right) + \frac{80}{143} \exp \left(\frac{10t}{T_1} \right) + \frac{4}{33} \exp \left(\frac{3t}{T_1} \right). \quad (1)$$

III. RESULTS AND DISCUSSION

A. Magnetic Susceptibility and Knight Shift K

Fig. 1 shows the magnetic susceptibility χ measured at 0.1 T. For temperatures above 250 K, a Curie-Weiss fit yields a magnetic moment of 3.44 μ_B and a Weiss temperature $\Theta = -117$ K. As seen in the Figure and the inset, K tracks the bulk susceptibility χ down to approximately 100 K, and below 100 K, the Knight shift passes through a weak maximum. Plotting K versus χ, we obtain the hyperfine coupling constant $A_{hf} = 94(5)$ kOe/μ_B and the temperature-independent shift $K_0 = -9(0.3) \%$. K_0 most likely represents both orbital and Van-Vleck contributions to the magnetic susceptibility of the U atoms, whereas the remaining temperature dependent part reflects the contribution from local 5f moments. As a result of the hybridization between the 5f electrons and the itinerant conduction electrons, the linear K-χ relationship breaks down below $T^* \approx 100$ K, as observed in a number of other heavy fermion compounds. This Knight shift anomaly arises because there are different hyperfine couplings to the conduction electron spins, S_c and to the f-electron spins, S_f. Below a characteristic temperature T^*, which reflects the scale of the inter-site correlations, the correlation function $\chi_{cf} = \langle S_c S_f \rangle$ begins to dominate the susceptibility and gives rise to the difference between K and χ. In Fig. 2 we plot the difference, $K_{cf} = K - K_0 - A\chi$ versus temperature, and compare with that observed in Ce$_3$Bi$_4$Pt$_3$. The solid and dotted lines are fits to the two-fluid expression $K_{cf} = K_{cf}^0(1 - T/T^*)^{3/2}(1 + \log(T^*/T))$ with $T^* = 110(3)$ K for U$_3$Bi$_4$Ni$_3$ and $T^* = 110(5)$ K for Ce$_3$Bi$_4$Pt$_3$ that has been used successfully in several other heavy fermion compounds. In both cases, $|K_{cf}|$ grows with decreasing temperature below T^*, reflecting the growth of correlations, yet below approximately 40 K, K_{cf} no longer scales with the universal behavior observed in other heavy fermions. The origin of this discrepancy is not known, but we speculate that in the Kondo insulating state there are no excited heavy quasiparticles and hence χ_{cf} is modified. The fact that K saturates at a finite value at low temperature strongly suggests that a hyperfine field due to the 5f electron spins remains present in the hybridized, insulating state.

B. Electric Field Gradient

For nuclei with spin $I > 1/2$, the nuclear quadrupole moment, Q, interacts with the surrounding electric field
If the nucleus sits in a site with axial symmetry (and lower than cubic) then the quadrupolar Hamiltonian is given by:

\[H = \frac{e^2qQ}{4I(2I-1)} [3I_z^2 - I^2]. \]

In this case the splitting between adjacent sublevels \(\pm m \) and \(\pm(m+1) \) is given by \((m+1/2)\nu_Q \), where \(\nu_Q = 3e^2qQ/[I(2I-1)] \) is the NQR frequency, \(m \) is the \(I_z \) eigenvalue, \(\hbar \) is Planck’s constant, \(e \) the electron charge, and \(q \) the principal eigenvalue of the EFG tensor.\(^{22}\) In U\(_3\)Bi\(_4\)Ni\(_3\), the \(^{209}\)Bi nucleus has \(I = 9/2 \) and sits in an axially symmetric site (16c) (see inset Fig. 3). We find three well separated NQR lines at the frequency of \(\nu_Q \) with \(n = 2, 3, 4 \) and \(\nu_Q = 9.531 \) MHz at low temperature. As expected, our results are consistent with axial symmetry (anisotropy parameter \(\eta = 0 \)). Fig. 3 shows the temperature dependence of \(\nu_Q \) measured at the 4\(\nu_Q \) transition, in which \(\nu_Q \) increases with decreasing temperature and reaches a plateau below 100 K.

There are two principle contributions to the EFG: the onsite asymmetric orbitals, and the off-site charges in the lattice. In most solids, the temperature dependence arises from the lattice vibrations (phonons) in which the phenomenological relation \(\nu_Q \propto T^{3/2} \) generally holds.\(^{22}\) In fact, we find \(\nu_Q \sim T^{3/2} \) down to roughly 170 K, as shown in Fig. 3. However, below this temperature, \(\nu_Q \) acquires a different temperature dependence. We find that the suppression of \(\nu_Q \) is qualitatively similar to that of the isostructural Ce\(_3\)Bi\(_4\)Pt\(_3\). If we adopt the same analysis as made in Ref.\(^{20}\), the suppression of \(\nu_Q \) at low temperature can be ascribed to the change of the lattice parameter. In this case, \(\nu_Q \) may be written as the following form:

\[\nu_Q = \nu_Q^0 - a/V(T) - bT^{3/2}, \]

where \(V \) is the cell volume, \(\nu_Q^0 \) the temperature independent term, and \(a, b \) the positive constants. In this case, our data suggest that below 170 K, the cell volume \(V(T) \) decreases with decreasing temperature. Although there is no available data of the lattice parameter at low temperatures yet, we suggest that this apparent decrease of the cell volume is related to the onset of hybridization of 5\(f \) electrons with the conduction band. This onset correlates well with our Knight shift measurements showing \(T^* \sim 100 \) K.

C. Nuclear spin-lattice relaxation rate

The nuclear spin-lattice relaxation rate \(T_1^{-1} \) is shown as a function of \(T \) in Fig. 4.\(^{21}\) \(T_1^{-1} \) drops dramatically between 150 K and 25 K, and is well fit by an Arrhenius expression: \(T_1^{-1} = A \exp(-\Delta/T) \), with \(\Delta = 220(10) \) K. This result reveals the gapping of excited quasiparticles at low temperature, in agreement with resistivity measurements that show this material to be non-metallic, and specific heat measurements that reveal a vanishing Sommerfeld coefficient.\(^{23}\) We would not expect these behaviors to arise from only depopulation of an excited crystal field level, such as found in U\(_3\)Sb\(_4\)Ni\(_3\).\(^{24}\) Furthermore, the high quality of the Arrhenius fit rules out the possibility of an impurity band near the chemical potential. Photoemission results have revealed a gap in the density of states of 840 K,\(^{15}\) roughly four times the gap measured by NMR. The origin of this difference is not clear.
clear, but may be related to spin versus charge excitations. Similar results were found in Ce$_3$Bi$_4$Pt$_3$, and we argue that this behavior is a signature of a Kondo insulating ground state in U$_3$Bi$_4$Ni$_3$. It is curious that the Knight shift reveals a large hyperfine field at low temperatures, whereas T_1^{-1} indicates the absence of any substantial fluctuating hyperfine fields. A priori, these results appear somewhat contradictory, as the same hyperfine field is responsible for both phenomena. However, if the electronic system is described by a periodic Anderson lattice with two dispersing bands of partial f-character and a chemical potential lying in the hybridization gap, then the occupied band may consist of a significant f-character that will contribute to a static magnetization. Scattering of heavy mass quasiparticles, on the other hand, will not be present for temperatures much less than the gap value.

We note that this gap value is smaller than the value reported in ref. 13 but still larger than the gap values of most Ce-based Kondo insulators. This difference between the 4f and 5f gap values may indicate the better hybridization between U 5f electrons and conduction electrons from Bi 6p and/or Ni 3d bands in U$_3$Bi$_4$Ni$_3$. We note that $T^*/\Delta \sim 0.48$ for U$_3$Bi$_4$Ni$_3$, whereas $T^*/\Delta \sim 0.61$ for Ce$_3$Bi$_4$Pt$_3$. The origin of this discrepancy is unclear, but suggests that the energy scales determining Δ (T_K) and T^* differ, as argued recently in ref. 17.

IV. CONCLUSION

We presented 299Bi NMR/NQR measurements on a single crystal of U$_3$Bi$_4$Ni$_3$, Knight shift and susceptibility measurements reveal a Knight shift anomaly that probably arises due to different hyperfine couplings to the 5f electron spins and to the itinerant conduction electrons. The Knight shift anomaly is in reasonable agreement with the two-fluid model, and is similar with observations in Ce$_3$Bi$_4$Pt$_3$. The temperature dependence of the EFG suggests a reduction of the unit cell volume at low temperatures, and may be related to the onset of hybridization between the lattice of nearly localized 5f electrons and the conduction band. The most striking result is the spin lattice relaxation rate, which exhibits activated behavior between 150 K and 25 K, with an activation energy $\Delta = 220$ K. Our results suggest that U$_3$Bi$_4$Ni$_3$ is a 5f-based Kondo insulator, and that strong correlations play an important role in this structural class of U-based compounds. Detailed electronic structure calculations should help to shed light on the role of correlations in these materials. Finally, our results provide new constraints on the interpretation of NMR in f-electron systems in the limit of vanishing quasiparticles.

Acknowledgments

We thank H. Lee, S. Savrasov, Y.-F. Yang, and T. Durakiewicz for discussions. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Science.

1 F. Steglich, C. Geibel, K. Gloos, G. Olesch, C. Schank, C. Wassilew, A. Loidl, A. Krimmel, and G. R. Stewart, J. Low Temp. Phys. 95, 3 (1994).
2 Z. Fisk, J. L. Sarrao, J. D. Thompson, D. Mandrus, M. F. Hundley, A. Migliori, B. Bucher, Z. Schlesinger, G. Apell, E. Bucher, et al., Physica B 206-207, 798 (1995).
3 Z. Fisk, J. L. Sarrao, S. L. Cooper, P. Nyhus, G. S. Boebinger, A. Passner, and P. C. Canfield, Physica B 223-224, 409 (1996).
4 P. S. Riseborough, Adv. Phys. 49, 257 (2000).
5 M. F. Hundley, P. C. Canfield, J. D. Thompson, Z. Fisk, and J. M. Lawrence, Phys. Rev. B 42, 6842 (1990).
6 A. Severing, J. D. Thompson, P. C. Canfield, Z. Fisk, and P. Riseborough, Phys. Rev. B 44, 6832 (1991).
7 T. Takabatake, T. Sasakawa, J. Kitagawa, T. Suemitsu, Y. Echizen, K. Umeo, M. Sera, and Y. Bando, Physica B 328, 53 (2003).
8 A. Menth, E. Buehler, and T. H. Geballe, Phys. Rev. Lett. 22, 295 (1969).
9 T. Kasuya, Europhys. Lett. 26, 277 (1994).
10 T. Takabatake, S. ichi Miyata, H. Fujii, Y. Aoki, T. Suzuki, T. Fujita, J. Sakurai, and T. Hiraoka, J. Phys. Soc. Jap. 59, 4412 (1990).
11 T. Endstra, G. J. Nieuwenhuyys, J. A. Mydosh, and K. H. J. Buschow, J. Magn. Magn. Mater. 89, L273 (1990).
12 L. Menon, P. de V. du Plessis, and A. M. Strydom, Solid State Comm. 106, 519 (1998).
13 V. H. Tran, S. Paschen, A. Rabis, N. Senthilkumaran, M. Baenitz, F. Steglich, P. de V. du Plessis, and A. M. Strydom, Phys. Rev. B 67, 075111 (2003).
14 A. K. Rajarajan, A. Rabis, M. Baenitz, A. A. Gippius, E. N. Morozova, J. A. Mydosh, and F. Steglich, Phys. Rev. B 76, 024424 (2007).
15 T. Klimczuk, H.-O. Lee, F. Ronning, T. Durakiewicz, N. Kurita, H. Volz, E. D. Bauer, T. McQueen, R. Movshovich, R. J. Cava, et al., Phys. Rev. B 77, 245111 (2008).
16 N. J. Curro, B.-L. Young, J. Schmalian, and D. Pines, Phys. Rev. B 70, 075117 (2004).
17 Y.-F. Yang, Z. Fisk, H.-O. Lee, J. D. Thompson, and D. Pines, Nature 454, 611 (2008).
18 C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1990).
19 E. N. Kaufmann and R. J. Vianden, Rev. Mod. Phys. 51, 161 (1979).
20 A. P. Reyes, R. H. Heffner, P. C. Canfield, J. D. Thompson,
and Z. Fisk, Phys. Rev. B 49, 16321 (1994).
21 B. D. Rainford, D. T. Adroja, G. J. Bowden, I. M. Benson, and R. S. Eccleston, Physica B 223-224, 231 (1996).