Pediatric Minimally Invasive Surgery—A Bibliometric Study on 30 Years of Research Activity

Boshen Shu, Xiaoyan Feng, Illya Martynov, Martin Lacher and Steffi Mayer*

Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
*Correspondence: steffi.mayer@medizin.uni-leipzig.de; Tel.: +49-341-97-26400

Abstract: Background: Pediatric minimally invasive surgery (MIS) is a standard technique worldwide. We aimed to analyze the research activity in this field. Methods: Articles on pediatric MIS (1991–2020) were analyzed from the Web of Science™ for the total number of publications, citations, journals, and impact factors (IF). Of these, the 50 most cited publications were evaluated in detail and classified according to the level of evidence (i.e., study design) and topic (i.e., surgical procedure). Results: In total, 4464 publications and 53,111 citations from 684 journals on pediatric MIS were identified. The 50 most cited papers were published from 32 institutions in the USA/Canada (n = 28), Europe (n = 19), and Asia (n = 3) in 12 journals. Four authors (USA/Europe) contributed to 26% of the 50 most cited papers as first/senior author. Hot topics were laparoscopic pyeloplasty (n = 9), inguinal hernia repair (n = 7), appendectomy, and pyloromyotomy (n = 4 each). The majority of publications were retrospective studies (n = 33) and case reports (n = 6) (IF 5.2 ± 3.2; impact index 16.5 ± 6.4; citations 125 ± 39.4). They were cited as often as articles with high evidence levels (meta-analyses, n = 2; randomized controlled trials, n = 7; prospective studies, n = 2) (IF 12.9 ± 22.5; impact index 14.0 ± 6.5; citations 125 ± 34.7; p > 0.05). Conclusions: Publications on laparoscopic pyeloplasty, inguinal hernia repair, appendectomy, and pyloromyotomy are cited most often in pediatric MIS. However, the relevant number of studies with strong evidence for the advantages of MIS in pediatric surgery is missing.

Keywords: bibliometrics; minimally invasive surgery; pediatric surgery

1. Introduction

The first pediatric laparoscopic operation was published by Jean-Luc Alain from France in 1991, describing a pyloromyotomy in hypertrophic pyloric stenosis using 3 mm trocars [1–4]. In the same year, laparoscopic cholecystectomy and ovarian detorsion were reported by George W. Holcomb and Eliezer Shalev [5,6]. The first pediatric thoracoscopic procedure, namely the evacuation of empyema in nine children, was published 2 years later by John A. Kern [7]. In 1999, Thom E. Lobe reported the first thoracoscopic repair of esophageal atresia (Type A) in an 8-month-old infant weighing 3.4 kg [8]. Finally, Klaus Heller described the first robotic fundoplication in 2002 [9].

Since then, minimally invasive surgery (MIS) has been widely accepted for better cosmesis, shorter recovery, less trauma, and better visualization, which are particularly important for infants and adolescents [10,11]. Its success has been documented in numerous case reports, clinical trials, and meta-analyses [12–14]. However, until today the research activity on pediatric MIS has not been studied in detail. Bibliometrics estimates the impact of scientific work using mathematical and statistical tools [15]. Research activity can be assessed by publication (quantity) and citation numbers (quality) [16]. Moreover, bibliometric studies can assess individual research interests and enable the identification of potential research collaborations [17].

Here, we aim to analyze the research activity as well as the 50 most cited papers on MIS for their topics as well as evidence levels over the last 30 years. We hypothesized that...
the trend of research activity as well as the evidence levels of publications on pediatric MIS has been increasing over time.

2. Materials and Methods

Original, peer-reviewed scientific publications published on pediatric MIS between 1991 and 2020 were identified using the Web of Science Core Collection™ (www.webofknowledge.com, Clarivate Analytics, Boston, MA, USA) by two independent reviewers (BS, XF) on 1 March 2021 according to the search items listed in Table 1. These inclusion and exclusion items were defined by the research group to allow the identification of as many and specific publications on pediatric MIS as possible. Additionally, to analyze only relevant search results, a “title” instead of “topic” search approach was used [16].

Table 1. Inclusion and exclusion items of the Web of Science search.

| “thoracoscopy” OR “thoracoscopic” OR “thoracoscopically” OR “laparoscopy” OR “laparoscopic” OR “laparoscopically” OR “minimal invasive surgery” OR “minimally invasive surgery” OR “robot assisted” | AND |
| “neonate” OR “neonates” OR “neonatal” OR “infant” OR “infants” OR “infancy” OR “preterm” OR “preterm” OR “newborn” OR “newborns” OR “pediatric” OR “pediatrics” OR “children” OR “child” OR “boy” OR “girl” OR “boys” OR “girls” OR “adolescent” OR “congenital” OR “atresia” OR “tracheoesophageal fistula” OR “necrotizing enterocolitis” OR “Hirschsprung disease” OR “anorectal malformation” OR “neuroblastoma” OR “hepatoblastoma” OR “nephroblastoma” OR “wilms” OR “orchidopexy” OR “pyloromyotomy” OR “Kasai” OR “imperforate anus” | NOT |
| “CHD” OR “patent ductus arteriosus” OR “PDA” OR “neurosurgery” OR “thalamic astrocytomas” OR “GAIT” OR “Palsy” OR “stereoelectroencephalography” OR “ASD” OR “Autism” OR “brain” OR “brainstem” OR “neuromotor” OR “attention-deficit hyperactivity disorder” OR “ADHD” OR “idiopathic scoliosis” OR “spinal” OR “spine” |

Key words were selected for age of patients, specific MIS procedures, and MIS-specific diseases in infants, excluding congenital heart disease and skeletal, neurologic, and mental diseases.

All identified articles reporting on minimally invasive interventions in children identified by this search were screened for the study. Papers reporting on diagnostic interventions only, e.g., diagnostic laparoscopy or endoscopy, or from other surgical fields such as neurosurgery or cardiac surgery were excluded from our dataset. There were no restrictions on the type of article or language.

Data on publications extracted from the Web of Science™ software included: publication year, country/continent, institution, author, and journal. Number of publications defined the particular research quantity. Research quality was defined as the total number of citations and impact index as well as impact factor of the corresponding journal. The impact factor was extracted from the Journal Citation Reports (Clarivate Analytics) for 2020. The impact index was calculated by dividing the number of citations by the number of years since publication and then multiplied by 100. The lower the impact index, the higher the citation rate since publication, thus indicating an augmented recognition [16].

To identify hot topics of pediatric MIS research, the 50 most cited papers were examined in detail. At first, the top 10 institutions, first/senior authors, and journals defined by the number of publications were recorded. Second, papers were screened manually by two independent authors (BS, XF) for the disease and/or operative procedure such as thoracoscopy, laparoscopy, thoracic operations, gastrointestinal or urological surgery. Evidence levels were classified according to Cashin et al. from high to low: meta-analyses (Level I), randomized controlled trials (RCTs) (Level I), prospective studies (Level II), retrospective studies (Level III), and case reports (Level IV) [18]. Level I and II were defined as high evidence levels.

Statistical analyses were performed with GraphPad Prism v. 7.0 (GraphPad, La Jolla, CA, USA). All tests were two-sided. The Spearman correlation coefficient was used to test
correlations between selected continuous variables. Unpaired t tests were used to compare two different groups for parametric data and the Wilcoxon test was used for non-parametric data. p-Values of <0.05 were considered statistically significant. Visualized analysis for country collaboration of the top 50 cited articles was performed using VOSviewer 1.6.16 (Leiden University, Leiden, The Netherlands). Here, the line thickness between the colored dots indicates the total link strength, while the size of dots represents the number of publications in bibliographic coupling.

3. Results
3.1. Overall Trends

A total of 4464 publications and 53,111 citations from 684 journals on pediatric MIS between 1991 and 2020 were included in the analysis. The first pediatric laparoscopic, SILS (single-incision laparoscopic surgery), thoracoscopic, and robotic operations were published in 1991, 1993, and 2002, respectively [1,2,7,9,19]. The number of publications and citations per year constantly increased from 1991 to 2020, from seven and three, respectively, to 321 and 4666 in a similar matter (r = 0.96, p < 0.001), with the steepest increase between 2002 and 2009 (Figure 1). The number of publications correlated well with the number of citations during the last 30 years (r = 0.91, p < 0.0001).

![Figure 1. Publication and citation trends on pediatric MIS between 1991 and 2020. The first pediatric laparoscopic, single-incision laparoscopic surgery (SILS), thoracoscopic, and robotic interventions were published in 1991, 1993, and 2002, respectively. The number of publications (red) and citations (blue) significantly increased over time, with the steepest increase between 2002 and 2009.](image)

3.2. 50 Most Cited Publications on MIS

The 50 most cited manuscripts were published between 1991 and 2013 and derived from 32 institutions in North America (n = 28), Europe (n = 19), and Asia (n = 3), as listed in Table 2. The United States of America holds the majority (27/50) of the global publication pattern (Figure 2) as well as the leading position in country-wise collaboration, owning eight total link strengths (Figure 3). The number of total citations ranged from 90 to 221 per paper (mean: 125 ± 38.1), with an average impact index of 15.9 ± 6.4. The most often cited article was published in 2006 by Richard S. Lee in the Journal of Urology (impact index: 6.8, IF: 7.5), comparing the safety and efficacy between robotic-assisted laparoscopic and open pyeloplasty in children, which showed comparable safety but longer operation time for the robotic procedure [20]. The second most often cited publication was from Keith E. Georgeson, published in 2000 in the Journal of Pediatric Surgery (impact index: 9.1, IF: 1.9), describing the laparoscopically-assisted anorectal pull-through (LAARP) as a new technique for the repair of high imperforate anus. The authors reported an excellent visualization of the rectal fistula and surrounding structures, accurate placement of the bowel through the anatomic midline and levator sling, and minimally invasive abdominal and perineal wounds [21].
Table 2. 50 most cited publications on pediatric MIS between 1991 and 2020 sorted by number of citations.

Publication	First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country	
1	Pediatric robot assisted laparoscopic dismembered pyeloplasty: Comparison with a cohort of open surgery	Lee RS	J Urol	221	2006	6.3	5.9	retrospective	USA
2	Laparoscopically assisted anorectal pull-through for high imperforate anus—A new technique	Georgeson KE	J Pediatr Surg	220	2000	9.1	1.9	retrospective	USA
3	Primary laparoscopic pull-through for hirschsprungs-disease in infants and children	Georgeson KE	J Pediatr Surg	212	1995	11.8	1.9	case report	USA
4	Laparoscopic versus open appendectomy in children—A meta-analysis	Aziz O	Ann Surg	205	2006	6.8	10.1	meta analysis	UK
5	Pediatric laparoscopic dismembered pyeloplasty	Peters CA	J Urol	193	1995	13.0	5.9	case report	USA
6	Single-port laparoscopic surgery: initial experience in children for varicocelectomy	Kaouk JH	BJU Int	182	2008	6.6	4.8	case report	USA
7	Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula—A multi-institutional analysis	Holcomb GW	Ann Surg	182	2005	8.2	10.1	retrospective	USA
8	Congenital cholelith: video-guided laparoscopic treatment	Farello GA	Surg Laparosc Endosc	167	1995	15.0	1.4	case report	Italy
9	Laparoscopic inguinal herniorrhaphy in children: A three-center experience with 933 repairs	Schier F	J Pediatr Surg	164	2002	11.0	1.9	retrospective	Germany
10	Thoracoscopic decortication vs. tube thoracostomy with fibrinolysis for empyema in children: a prospective, randomized trial	St Peter SD	J Pediatr Surg	157	2009	7.0	1.9	RCT	USA
11	Laparoscopic inguinal hernia repair—a prospective personal series of 542 children	Schier F	J Pediatr Surg	155	2006	9.0	1.9	prospective	Germany
12	Laparoscopic Anderson-Hynes dismembered pyeloplasty in children	Tan HL	J Urol	151	1999	13.9	5.9	retrospective	UK
13	Laparoscopic percutaneous extraperitoneal closure for inguinal hernia in children: clinical outcome of 972 repairs done in 3 pediatric surgical institutions	Takehara H	J Pediatr Surg	149	2006	9.4	1.9	retrospective	Japan
14	Early Experience with Single-Port Laparoscopic Surgery in Children	Ponsky TA	J Laparoendosc Adv Surg	141	2009	7.8	1.4	retrospective	USA
15	Laparoscopic vesicoureteroplasty in children: initial case reports	Ehrlich RM	Urology	136	1994	19.1	1.9	case report	USA
16	A multi-institutional analysis of laparoscopic orchidopexy	Baker LA	BJU Int	129	2001	14.7	4.8	retrospective	USA
Publication First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country		
--------------------------	---------	---------------------	------	--------------	----------------------	---------------	---------		
Laparoscopic treatment of congenital inguinal hernia in children	Montupet P	J Pediatr Surg	126	1999	16.7	1.9	retrospective	Italy	
Open versus laparoscopic pyloromyotomy for pyloric stenosis—A prospective, randomized trial	St Peter SD	Ann Surg	124	2006	11.3	10.1	RCT	USA	
Prospective, randomized, single-center, single-blind comparison of laparoscopic vs. open repair of pediatric inguinal hernia	Chan KL	Surg Endosc	123	2005	12.2	3.1	RCT	Peoples R China	
Initial comparison of robotic-assisted laparoscopic versus open pyeloplasty in children	Yee DS	Urology	120	2006	11.7	1.9	retrospective	USA	
Recovery after open versus laparoscopic pyloromyotomy for pyloric stenosis: A double-blind multicentre randomised controlled trial	Hall NJ	Lancet	113	2009	9.7	60.4	RCT	UK	
Retropitoneal laparoscopic versus open pyeloplasty in children	Bonnard A	J Urol	112	2005	13.4	6	retrospective	France	
Laparoscopic Sleeve Gastricctomy in 108 Obese Children and Adolescents Aged 5 to 21 Years	Alqahtani AR	Ann Surg	111	2012	7.2	10.1	retrospective	Saudi Arabia	
Experience with 220 consecutive laparoscopic Nissen funduplications in infants and children	Rothenberg SS	J Pediatr Surg	110	1998	20.0	1.9	retrospective	USA	
Laparoscopic renal surgery via a retroperitoneal approach in children	El-Ghoneimi A	J Urol	110	1998	20.0	5.9	retrospective	France	
Is there a role for laparoscopic appendectomy in pediatric surgery?	Gilchrist BF	J Pediatr Surg	109	1992	25.7	1.9	prospective	USA	
Thoracoscopic repair of tracheoesophageal fistula in newborns	Rothenberg SS	J Pediatr Surg	108	2002	16.7	1.9	retrospective	USA	
Laparoscopic dismembered pyeloplasty by a retroperitoneal approach in children	El-Ghoneimi A	BJU Int	108	2003	15.7	4.8	retrospective	France	
Robotic assisted laparoscopic pyeloplasty in children	Atug F	J Urol	108	2005	13.9	5.9	retrospective	USA	
Laparoscopic evaluation of the pediatric inguinal hernia—A meta-analysis	Miltenburg DW	J Pediatr Surg	109	1998	21.0	1.9	meta analysis	USA	
Pediatric laparoscopic splenectomy	Tulman S	J Pediatr Surg	103	1993	26.2	1.9	case report	USA	
Thoracoscopy in the management of empyema in children	Kern JA	J Pediatr Surg	103	1993	26.2	1.9	retrospective	USA	
Robotic Assisted Laparoscopic Ureteral Reimplantation in Children: Case Matched Comparative Study With Open Surgical Approach	Marchini Giovanni S	J Urol	101	2011	8.9	5.9	retrospective	USA	
Publication First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country		
--	--------------------------	---------------------	------	--------------	----------------------	----------------	---------		
Laparoscopic splenic procedures in children—Experience in 231 children	Rescorla FJ Ann Surg	100	2007	13.0	10.1	retrospective	USA		
Thoracoscopy Versus Thoracotomy Improves Midterm Musculoskeletal Status and Cosmesis in	Lawal Taiwo A Ann Thorac	100	2009	11.0	3.6	retrospective	Germany		
Infants and Children	Surg								
Laparoscopic heminephroureterectomy in pediatric patients	Janetschek G J Urol	100	1997	23.0	5.9	retrospective	Austria		
Laparoscopic transabdominal pyeloplasty in children is feasible irrespective of age	Metzelder ML J Urol	99	2006	14.1	5.9	retrospective	Germany		
Hypercapnia and Acidosis During Open and Thoracoscopic Repair of Congenital Diaphragmic	Bishay M Ann Surg	97	2013	7.2	10.1	RCT	Canada		
Hernia and Esophageal Atresia Results of a Pilot Randomized Controlled Trial									
Neonatal thoracoscopic repair of congenital diaphragmatic hernia: Selection criteria for	Yang EY J Pediatr Surg	95	2005	15.8	1.9	retrospective	USA		
successful outcome									
Extramucosal pyloromyotomy by laparoscopy	Alain JL Surg Endosc	94	1991	30.9	3.1	retrospective	France		
Retroperitoneal laparoscopic vs. open partial nephroureterectomy in children	El-Ghoneimi A BJU Int	93	2003	18.3	4.8	retrospective	France		
Laparoscopic pyloromyotomy for hypertrophic pyloric stenosis: A prospective, randomized	Leclair MD J Pediatr Surg	92	2007	14.1	1.9	RCT	France		
controlled trial									
Single-blind randomized clinical trial of laparoscopic versus open appendicectomy in	Lintula H Br J Surg	91	2001	24.2	5.7	RCT	Finland		
children									
Laparoscopic herniorrhaphy in girls	Schier F J Pediatr Surg	91	1998	20.9	1.9	retrospective	Germany		
One-trocar transumbilical laparoscopic-assisted appendectomy in children: Our experience	D'Alessio A Eur J Pediatr	91	2002	19.8	2.3	retrospective	Italy		
Experience with Modified Single-Port Laparoscopic Procedures in Children	Rothenberg SS J Laparoendosc Adv Surg Tech A	90	2009	12.2	1.4	retrospective	USA		
Complications in pediatric urological laparoscopy: Results of a survey	Peters CA J Urol	90	1996	26.7	5.9	retrospective	USA		
Laparoscopic pyeloplasty in the infant younger than 6 months—is it technically possible?	Kutikov A J Urol	90	2006	15.6	5.9	retrospective	USA		
Initial experience with laparoscopic transvesical ureteral reimplantation at the	Kutikov A J Urol	90	2006	15.6	5.9	retrospective	USA		
Children’s Hospital of Philadelphia									
Should laparoscopic appendectomy be avoided for complicated appendicitis in children?	Horwitz JR J Pediatr Surg	90	1997	25.6	1.9	retrospective	USA		
3.3. Top Cited Journals and Impact Factor

The 50 most cited manuscripts were published in 12 journals with an IF ranging from 1.4 to 79.3. The *Journal of Pediatric Surgery* (*n* = 17; 34%; IF = 2.5), *Journal of Urology* (*n* = 12; 24%; IF = 7.5), and *Annals of Surgery* (*n* = 6; 12%; IF = 13.0) hosted 70% of the top cited papers. More than 50% of the top 50 citations were published with an IF > 2.5, and 14% with an IF > 10. The publication with the highest IF (*The Lancet*, IF = 79.3) was an RCT by Nigel J. Hall from 2009 reporting the outcome of open versus laparoscopic pyloromyotomy, indicating that both procedures were equally safe [22]. Moreover, the requirement of analgesics was significantly higher and parental satisfaction significantly lower after the open procedure. Thus, the authors recommended the minimally invasive approach in centers with sufficient laparoscopic experience.

3.4. Evidence Levels

The majority of the top 50 citations were retrospective studies (Level III; 66%) and case reports (Level IV; 12%), while the minority were published with high levels of evidence (I/II; 22%) (Figure 4). As a result, retrospective studies (Level III) and case reports (Level IV) accounted for more than 75% of the top 50 citations on pediatric MIS (Figure 5). Neither the IF (12.9 ± 22.5 vs. 5.2 ± 3.2; *p* = 0.46) nor the average number of citations (*n* = 125 ± 39.4 vs. *n* = 125 ± 34.7; *p* = 0.63) or mean impact index (14.0 ± 6.5 vs. 16.5 ± 6.4; *p* = 0.20) of high- and low-evidence level studies differed significantly.
3.3. Top Cited Journals and Impact Factor

The 50 most cited manuscripts were published in 12 journals with an IF ranging from 1.4 to 79.3. The publication with the highest IF (86%) was an RCT by Nigel J. Hall from 2009 reporting the outcome of open versus laparoscopic pyloromyotomy, indicating that both procedures were equally safe [22]. Moreover, the requirement of analgesics was significantly higher and parental satisfaction significantly lower after the open procedure. Thus, the authors recommended the minimally invasive approach in centers with sufficient laparoscopic experience.

Figure 5. Evidence levels of the 50 most cited papers on pediatric MIS (1991 to 2020). The top 50 cited papers were published from 1991 to 2013. Manuscripts of high- (level I/II; red) and low-evidence level (level III/IV; blue) were distributed equally over time.

3.5. Hot Topics

The majority of the 50 most cited papers reported on laparoscopic procedures (86%) (Figure 6; Tables 2 and 3). Minimally invasive inguinal hernia repair (14%), appendectomy (8%), and pyloromyotomy (8%) dominated gastrointestinal interventions (50%). Pyeloplasty (18%), nephrectomy (6%), and ureteral reimplantation (6%) directed urological procedures (36%). Thoracoscopy was underrepresented (14%) and reported on the minimally invasive treatment of esophageal atresia (4%), congenital diaphragmatic hernia (4%), and empyema (4%).

Figure 4. Evidence levels of the top 50 cited papers in pediatric MIS (1991 to 2020). The minority of manuscripts provided high evidence (n = 11; level I/II) and was published at a comparable mean citation rate and impact index as the 39 papers with lower evidence level (p > 0.05). Meta: meta-analysis; RCT: randomized controlled trial; N: total number of publications; C: total number of citations; IF: impact factor; II: impact index.
Table 3. 50 most cited publications on pediatric MIS between 1991 and 2020 sorted by impact index. The lower the impact index, the higher the citation rate since publication, thus indicating an augmented recognition.

Publication First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country	
Pediatric Robot Assisted Laparoscopic Dismembered Pyeloplasty: Comparison with a Cohort	Lee RS J Urol	221	2006	6.3	5.9	retrospective	USA	
of Open Surgery								
Single-Port Laparoscopic Surgery: Initial Experience in Children for Varicocelectomy	Kaouk JH BJU Int	182	2008	6.6	4.8	case report	USA	
Laparoscopic Versus Open Appendectomy in Children—A Meta-Analysis	Aziz O Ann Surg	205	2006	6.8	10.1	meta-analysis	UK	
Thoracoscopic Decortication Vs. Tube Thoracostomy with Fibrinolysis for Empyema in	St Peter SD J Pediatr Surg	157	2009	7	1.9	RCT	USA	
Children: A Prospective, Randomized Trial								
Laparoscopic Sleeve Gastrectomy in 108 Obese Children and Adolescents Aged 5 to 21	Alqahtani AR Ann Surg	111	2012	7.2	10.1	retrospective	Saudi Arabia	
Years								
Early Experience with Single-Port Laparoscopic Surgery in Children	Ponsky TA J Laparoendosc Adv	141	2009	7.8	1.4	retrospective	USA	
Surg Tech A								
Thoracoscopic Repair of Esophageal Atresia and Tracheoesophageal Fistula—A Multi-	Holcomb GW Ann Surg	182	2005	8.2	10.1	retrospective	USA	
Institutional Analysis								
Robotic Assisted Laparoscopic Ureteral Reimplantation in Children: Case Matched	Marchini Giovanni S J Urol	101	2011	8.9	5.9	retrospective	USA	
Comparative Study with Open Surgical Approach								
Laparoscopic Inguinal Hernia Repair—A Prospective Personal Series of 542 Children	Schier F J Pediatr Surg	155	2006	9	1.9	prospective	Germany	
Laparoscopically Assisted Anorectal Pull-Through for High Imperforate Anus—A New	Georgeon KE J Pediatr Surg	220	2000	9.1	1.9	retrospective	USA	
Technique								
Laparoscopic Percutaneous Extraperitoneal Closure for Inguinal Hernia in Children:	Takeharu H J Pediatr Surg	149	2006	9.4	1.9	retrospective	Japan	
Clinical Outcome Of 972 Repairs Done In 3 Pediatric Surgical Institutions								
Recovery After Open Versus Laparoscopic Pyloromyotomy for Pyloric Stenosis: A Double-	Hall NJ Lancet	113	2009	9.7	60.4	RCT	UK	
Blind Multicentre Randomised Controlled Trial								
Laparoscopic Inguinal Herniorrhaphy In Children: A Three-Center Experience With 933	Schier F J Pediatr Surg	164	2002	11	1.9	retrospective	Germany	
Repairs								
Thoracoscopy Versus Thoracotomy Improves Midterm Musculoskeletal Status and Cosmesis in	Lawal Taiwo A Ann Thorac Surg	100	2009	11	3.6	retrospective	Germany	
Infants And Children								
Open Versus Laparoscopic Pyloromyotomy for Pyloric Stenosis—A Prospective, Randomized	St Peter SD Ann Surg	124	2006	11.3	10.1	RCT	USA	
Trial								
Publication First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country	
--------------------------	---------	---------------------	------	--------------	---------------------	----------------	---------	
17 Initial Comparison Of Robotic-Assisted Laparoscopic Versus Open Pyeloplasty in Children Yee DS Urology	120	2006	11.7	1.9	retrospective	USA		
18 Primary Laparoscopic Pull-Through for Hirschsprung’s Disease In Infants and Children Georgeson KE J Pediatr Surg	212	1995	11.8	1.9	case report	USA		
19 Prospective, Randomized, Single-Center, Single-Blind Comparison of Laparoscopic Vs. Open Repair of Pediatric Inguinal Hernia Chan KL Surg Endosc	123	2005	12.2	3.1	RCT	Peoples R China		
20 Experience with Modified Single-Port Laparoscopic Procedures in Children Rothenberg SS J Laparoendosc Adv Surg Tech A	90	2009	12.2	1.4	retrospective	USA		
21 Pediatric Laparoscopic Dismembered Pyeloplasty Peters CA J Urol	193	1995	13	5.9	case report	USA		
22 Laparoscopic Splenic Procedures in Children—Experience in 231 Children Rescorla FJ Ann Surg	100	2007	13	10.1	retrospective	USA		
23 Retroperitoneal Laparoscopic Versus Open Pyeloplasty in Children Bonnard A J Urol	112	2005	13.4	6	retrospective	France		
24 Laparoscopic Anderson-Hynes Dismembered Pyeloplasty in Children Tan HL J Urol	151	1999	13.9	5.9	retrospective	UK		
25 Robotic Assisted Laparoscopic Pyeloplasty in Children Atug F J Urol	108	2005	13.9	5.9	retrospective	USA		
26 Laparoscopic Transabdominal Pyeloplasty in Children Is Feasible Irrespective of Age Metzelder ML J Urol	99	2006	14.1	5.9	retrospective	Germany		
27 Laparoscopic Pyloromyotomy for Hypertrophic Pyloric Stenosis: A Prospective, Randomized Controlled Trial Leclair MD J Pediatr Surg	92	2007	14.1	1.9	RCT	France		
28 A Multi-Institutional Analysis of Laparoscopic Orchiopexy Baker LA BJU Int	129	2001	14.7	4.8	retrospective	USA		
29 Congenital Choledochal Cyst: Video-Guided Laparoscopic Treatment Farello GA Surg Laparosc Endosc	167	1995	15	1.4	case report	Italy		
30 Laparoscopic pyeloplasty in the infant younger than 6 months—Is it technically possible? Kutikov A J Urol	90	2006	15.6	5.9	retrospective	USA		
31 Initial experience with laparoscopic transvesical ureteral reimplantation at the Children’s Hospital of Philadelphia Kutikov A J Urol	90	2006	15.6	5.9	retrospective	USA		
32 Laparoscopic Dismembered Pyeloplasty by a Retroperitoneal Approach in Children El-Ghoneimi A BJU Int	108	2003	15.7	4.8	retrospective	France		
Publication	First Author	Journal	Total Citations (n)	Year	Impact Index	Impact Factor (2020)	Evidence Level	Country
--	-----------------------------	--------------------	---------------------	------	--------------	----------------------	----------------	-------------
Neostatal Thoracoscopic Repair of Congenital Diaphragmatic Hernia: Selection Criteria for Successful Outcome	Yang EY	J Pediatr Surg	95	2005	15.8	1.9	retrospective	USA
Laparoscopic Treatment of Congenital Inguinal Hernia in Children	Montupet P	J Pediatr Surg	126	1999	16.7	1.9	retrospective	Italy
Thoracoscopic Repair of Tracheosophageal Fistula in Newborns	Rothenberg SS	J Pediatr Surg	108	2002	16.7	1.9	retrospective	USA
Retroperitoneal Laparoscopic Vs. Open Partial Nephroureterectomy in Children	El-Ghoneimi A	BJU Int	93	2003	18.3	4.8	retrospective	France
Laparoscopic Vesicoureteroplasty in Children: Initial Case Reports	Ehrlich RM	Urology	136	1994	19.1	1.9	case report	USA
One-Trocar Transumbilical Laparoscopic-Assisted Appendectomy in Children: Our Experience	D'Alessio A	Eur J Pediatr Surg	91	2002	19.8	2.3	retrospective	Italy
Experience with 220 Consecutive Laparoscopic Nissen Fundoplications in Infants and Children	Rothenberg SS	J Pediatr Surg	110	1998	20	1.9	retrospective	USA
Laparoscopic Renal Surgery Via a Retroperitoneal Approach in Children	El-Ghoneimi A	J Urol	110	1998	20	5.9	retrospective	France
Laparoscopic Herniorrhaphy in Girls	Schier F	J Pediatr Surg	91	1998	20.9	1.9	retrospective	Germany
Laparoscopic Evaluation of the Pediatric Inguinal Hernia—A Meta-Analysis	Miltenburg DW	J Pediatr Surg	109	1998	21	1.9	meta-analysis	USA
Laparoscopic heminephroureterectomy in pediatric patients	Jansetschen G	J Urol	100	1997	23.0	5.9	retrospective	Austria
Single-Blind Randomized Clinical Trial of Laparoscopic Versus Open Appendicectomy in Children	Lintula H	Br J Surg	91	2001	24.2	5.7	RCT	Finland
Should Laparoscopic Appendectomy Be Avoided for Complicated Appendicitis in Children?	Horwitz JR	J Pediatr Surg	90	1997	25.6	1.9	retrospective	USA
Is There a Role For Laparoscopic Appendectomy in Pediatric Surgery?	Gilchrist BF	J Pediatr Surg	109	1992	25.7	1.9	prospective	USA
Pediatric Laparoscopic Splenectomy	Tulman S	J Pediatr Surg	103	1993	26.2	1.9	case report	USA
Thoracoscopy in the Management of Empyema in Children	Kern JA	J Pediatr Surg	103	1993	26.2	1.9	retrospective	USA
Complications In Pediatric Urological Laparoscopy: Results of a Survey	Peters CA	J Urol	90	1996	26.7	5.9	retrospective	USA
Extramucosal Pyloromyotomy by Laparoscopy	Alain JL	Surg Endosc	94	1991	30.9	3.1	retrospective	France
3.5. Hot Topics

The majority of the 50 most cited papers reported on laparoscopic procedures (86%) (Figure 6; Tables 2 and 3). Minimally invasive inguinal hernia repair (14%), appendectomy (8%), and pyloromyotomy (8%) dominated gastrointestinal interventions (50%). Pyeloplasty (18%), nephrectomy (6%), and ureteral reimplantation (6%) directed urological procedures (36%). Thoracoscopy was underrepresented (14%) and reported on the minimally invasive treatment of esophageal atresia (4%), congenital diaphragmatic hernia (4%), and empyema (4%).

Figure 6. Hot topics of the 50 most cited papers on pediatric MIS (1991 to 2020). The majority of papers reported on laparoscopy (n = 43; 86%), with urologic interventions playing an important role (n = 18; 36%) in contrast to thoracoscopic procedures (n = 7; 14%).

4. Discussion

The absolute number of publications and citations on pediatric MIS increased during the last 30 years, with a steep rise between 2002 and 2009. This is in line with publications on other pediatric surgical topics such as esophageal atresia, anorectal malformations, and biliary atresia, and can be explained by the enhanced ambitions to share medical findings with the research community [16,23,24]. Moreover, research activity represents one of the most important factors to rate one’s academic value. Accordingly, a higher h-index correlates with a higher academic faculty rank [25].

In total, 32 institutions from three continents contributed to the 50 most cited articles on pediatric MIS. North America provided the majority of citations, which was also seen in other research topics such as neurocritical care and meniscal injury [26,27]. Additionally, the United States of America had the leading position in co-authorship country-wise collaborations and contributed the largest number of publications. This might be explained by the impact of science and technology budgets of this country and the financial support of organizations [28–30]. In general, countries with a high-income society accomplish more output of their research, while low- and middle-income countries publish relatively less scientific work [31].

4.1. Scientific Quality of the Top 50 Citations

The impact factor of the top 50 citations ranged from 1.4 to 79.3, with more than half of the manuscripts published in journals with an impact factor above 2.5, which equals the highest impact factor of pediatric surgery specific journals, i.e., the Journal of Pediatric Surgery. Thus, the majority of top 50 citations were published in non-pediatric surgery journals. This is in line with other research fields such as oncology, reporting that top cited papers are preferentially published in high-impact journals [32]. One may speculate that the most cited papers have profound influence on clinical practice or future developments also beyond a specific research field and are therefore published in more generalized journals with higher impact factors due to a broader audience [32]. Conversely, papers from journals with higher IF are preferentially cited, which may induce a publication bias [33].
The evidence level of a published study may be a superior quality parameter of the scientific work [34]. In the top 50 citations on pediatric MIS, studies with high impact, i.e., meta-analyses, RCTs, and prospective trials, were underrepresented. One meta-analysis summarized 23 studies on 6477 appendectomies, reporting lower rates of wound infection and ileus, shorter postoperative stay, as well as comparable operative time and complications for the laparoscopic approach [14]. The other one investigated the laparoscopic diagnosis of inguinal hernia [35]. The majority (78%) of the top 50 citations were retrospective studies and case reports, which is comparable to other bibliometric studies such as in orthopedic surgery [36,37]. Both approaches are important to investigate rare diseases, manifestations, and outcomes. However, their scientific value is limited: Some information may be missing, selection and recall biases can affect the results, and reasons for differences in treatment or loss of follow-ups can often not be ascertained [38]. Nevertheless, retrospective studies and also case reports require less time and lower budgets and can pave the way to define new research questions and prospective trials [39]. However, to underline the advantages of MIS in pediatric surgery, prospective and RCT trials, as the gold standard of effective research, are required [40].

4.2. Hot Topics of the Top 50 Citations

Being the earliest established and widely performed approach, laparoscopic interventions dominated the top 50 citations in our bibliometric study on pediatric MIS, while thoracoscopic interventions were less common. In the subgroup of abdominal and urologic interventions, minimally invasive pyeloplasty and inguinal hernia repair accounted for one-third of the top 50 citations.

Ureteropelvic junction obstruction (UPJO) occurs in 1 per 1.000–2.000 newborns, of which 10–20% undergo surgery later in life [41,42]. In 1993, Tan and his team reported on the first six children with UPJO treated by laparoscopic pyeloplasty. Five of them had normal or significantly improved drainage times postoperatively [43]. Nowadays, the laparoscopic approach is comparable to the open procedure with regards to safety and effectiveness [44]. However, despite similar complication rates and shorter lengths of stay, especially in children ≤ 2 years, UPJO is treated only in 25% of German patients laparoscopically. This could be explained by the challenging surgical technique as well as the low utilization of laparoscopy in non-teaching hospitals in Germany [45–47].

The cumulative incidence of inguinal hernia before the age of 15 is up to 7% in males and 1% in females [48]. Since the first laparoscopic inguinal hernia was reported by Montupet et al. in 1993, various minimally invasive procedures have been published [49]. Nowadays, the extraperitoneal approach is preferred worldwide [50]. According to a guideline of the European Pediatric Surgeon’s Association in 2022, laparoscopic inguinal hernia repair is beneficial for children with bilateral hernia, incarceration, and recurrence [51–55]. Accordingly, a recent systematic review on 13 RCTs reported on a shorter operative time for bilateral hernias, fewer post-operative complications and metachronous inguinal hernia rates for laparoscopic herniorrhaphy. No significant differences were found for unilateral operative time, time to full recovery, length of hospital stay, recurrence, and postoperative hydrocele [56].

In contrast to laparoscopy, thoracoscopic procedures accounted for only 14% of the top 50 citations on pediatric MIS. These papers mainly reported on neonatal thoracoscopy in EA, CDH, and thoracic empyema. The incidences of these diseases are low, and the surgical skills required to carry out these procedures are much higher than for routine laparoscopy [57–59]. Similarly, thoracoscopic MIS faces more obstacles of limited space, demanding anesthesia, and specialized instruments, especially in neonates [60]. Although the first thoracoscopic intervention for acute empyema was described as early as 1993, the first thoracoscopic procedures in CDH, EA, and congenital lung malformations were reported almost one decade later [7,60–62].
4.3. Establishing New Techniques in Pediatric MIS

When establishing a new technique in (MIS) surgery, different aspects need to be taken into account. First, the incidence of the disease should be high enough to pass your learning curve quickly. Second, the intervention itself should be well-defined and not exceed your surgical skills. Third, in case of technical difficulties, conversion to open surgery needs to be easy to prevent harm to the patient. Similarly, the conversion rate is an important parameter when evaluating new MIS procedures. Based on a German nationwide cohort study published in 2016, 75% of pediatric appendectomies were performed minimally invasively with a conversion rate of 1.2% [63]. In contrast, the reported conversion rate of thoracoscopic CDH and EA repair can be as high as 33–75% [64,65]. Technical difficulties, but also the effects of increased abdominal pressure, intraoperative hypercapnia, and acidosis, may contribute to the higher conversion rate in those cases [66].

The establishment of a new technique also depends on technical refinements, experience, individual learning curves, as well as the growing number of patients operated upon, i.e., experience, as well as results published. Most learning curve studies report a significant decrease in operative time as well as perioperative and postoperative complications with increasing experience of the surgeon [67]. The number of procedures a surgeon needs to pass his/her learning curve for perioperative and postoperative complications, recurrences, and conversion rates varies in different interventions. Similarly, one should perform 30, 20, 51, and 37 cases of laparoscopic inguinal hernia repair, laparoscopic pyloromyotomy, laparoscopic appendectomy, and robotic-assisted pyeloplasty, respectively, to get over his/her learning curve [68–71]. Moreover, experienced surgeons have lower complication rates and need to perform fewer cases to reach their plateau [68].

Although the first SILS and robotic-assisted interventions in children were published as early as in 1993 and 2002, respectively, none of the top 50 citations published on pediatric robotics or SILS [19]. This underlines the results from a survey among International Pediatric Endosurgery Group (IPEG) members stating that 80% perform SILS for cases of lower complexity such as appendectomy, although 70% of respondents find the scientific evidence for the benefits of SILS is not convincing [72].

Robotic interventions also require advanced surgical skills as well as appropriate equipment. Similarly, the first robotic surgery in a child, a Nissen fundoplication, was published almost 10 years after the first adult cases, and the spread of this new technique is relatively slower than that of other MIS techniques [73,74].

4.4. Limitations

Our study has several limitations. At first, only the Web of Science™ database was used to search for publications, thus, other sources may have led to a different number of research items or citation counts. Second, we aimed to identify only related articles on pediatric MIS, thus “title” instead of “topic” searching strategy was used. This might exclude some, but most likely an insignificant number of related articles. Finally, bibliometric studies always reflect the current state of the literature at the time of analysis and cannot rule out the impact of time with new publications and citations.

5. Conclusions

Research activity on pediatric MIS increased over the last 30 years, with a golden decade in the early 21st century. Laparoscopic pyeloplasty and inguinal hernia repair accounted for most of the top 50 citations. Retrospective trials and case reports dominated the evidence circulated. Studies with strong evidence are missing, especially on advanced techniques in pediatric MIS.

Author Contributions: Conceptualization: B.S., X.F., S.M., I.M. and M.L.; methodology: X.F., I.M. and B.S.; software: B.S. and X.F.; validation: X.F. and I.M.; formal analysis: B.S., X.F. and S.M.; data curation: B.S. and X.F.; writing—original draft preparation: B.S., X.F. and I.M.; writing—review and
editing: S.M. and M.L.; visualization: B.S. and X.F.; supervision: S.M. and M.L.; project administration: S.M. and M.L. All authors have read and agreed to the published version of the manuscript.

Funding: B.S. received a scholarship from the Chinese government (Grant: 202108080166).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alain, J.L.; Grousseau, D.; Terrier, G. Extramucosal pyloromyotomy by laparoscopy. *Surg. Endosc.* 1991, 5, 174–175. [CrossRef] [PubMed]
2. Alain, J.L.; Grousseau, D.; Terrier, G. Extramucosal pyloromyotomy by laparoscopy. *J. Pediatr. Surg.* 1991, 26, 1191–1192. [CrossRef]
3. Blinnman, T.; Ponsky, T. Pediatric minimally invasive surgery: Laparoscopy and thoracoscopy in infants and children. *Pediatrics* 2012, 130, 539–549. [CrossRef] [PubMed]
4. Meinzer, A.; Alkatout, I.; Krebs, T.F.; Baastrup, J.; Reichig, K.; Meiksans, R.; Bergholz, R. Advances and Trends in Pediatric Minimally Invasive Surgery. *J. Clin. Med.* 2020, 9, 3999. [CrossRef]
5. Holcomb, G.W.; Olsen, D.O.; Sharp, K.W. Laparoscopic cholecystectomy in the pediatric patient. *J. Pediatr. Surg.* 1991, 26, 1186–1190. [CrossRef]
6. Shalev, E.; Mann, S.; Romano, S.; Rahav, D. Laparoscopic detorsion of adnexa in childhood: A case report. *J. Pediatr. Surg.* 1991, 26, 1193–1194. [CrossRef]
7. Kern, J.A.; Rodgers, B.M. Thoracoscopic in the management of empyema in children. *J. Pediatr. Surg.* 1993, 28, 1128–1132. [CrossRef]
8. Lobe, T.E.; Rothenberg, S.; Waldschmidt, J.; Stroedter, L. Thoracoscopic Repair of Esophageal Atresia in an Infant: A Surgical First. *Pediatr. Endosurg. Innov. Technol.* 1999, 3, 141–148. [CrossRef]
9. Heller, K.; Gutt, C.; Schaef, B.; Beyer, P.A.; Markus, B. Use of the robot system Da Vinci for laparoscopic repair of gastrooesophageal reflux in children. *Eur. J. Pediatr. Surg.* 2002, 12, 239–242. [CrossRef]
10. Cui, X.; He, Y.-B.; Huang, W.-H.; Chen, L.; Chen, J.-C.; Zhou, C.-M. Mini-laparoscopic pyloplasty to treat UPJO in infants. *Minim. Invasive Ther. Allied Technol.* 2022, 31, 473–478. [CrossRef]
11. Lacher, M.; Kuebler, J.F.; Dingemann, J.; Ure, B.M. Minimal invasive surgery in the newborn: Current status and evidence. *Semin. Pediatr. Surg.* 2014, 23, 249–256. [PubMed]
12. Sham, G.T.W.; Chung, P.H.Y.; Chan, I.M.C.; Leung, W.C.; Wong, K.K.Y. Thoracoscopic removal of a displaced thoracoamniotic shunt in a newborn with antenatal pleural effusion—a case report. *Transl. Pediatr.* 2020, 9, 702–706. [CrossRef] [PubMed]
13. Bishty, M.; Giacomello, L.; Retrosi, G.; Thyoka, M.; Garriboli, M.; Brierley, J.; Harding, L.; Scuplak, S.; Cross, K.M.; Curry, J.I.; et al. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: Results of a pilot randomized controlled trial. *Ann. Surg.* 2013, 258, 895–900. [CrossRef]
14. Aziz, O.; Athanasiou, T.; Tekkis, P.P.; Purkayastha, S.; Haddow, J.; Malinovski, V.; Parasekva, P.; Darzi, A. Laparoscopic versus open appendectomy in children: A meta-analysis. *Ann. Surg.* 2006, 243, 17–27. [CrossRef] [PubMed]
15. La Torre, G.; Sciarrà, I.; Chiappetta, M.; Monteduro, A. New bibliometric indicators for the scientific literature: An evolving panorama. *Clin. Ter.* 2017, 168, e65–e71. [CrossRef] [PubMed]
16. Feng, X.; Martynov, I.; Suttikus, A.; Lacher, M.; Mayer, S. Publication Trends and Global Collaborations on Esophageal Atresia Research: A Bibliometric Study. *Eur. J. Pediatr. Surg.* 2020, 31, 164–171. [CrossRef] [PubMed]
17. Gerdsri, N.; Kongthorn, A. Identify Potential Opportunity for Research Collaboration Using Bibliometrics. *Int. J. Bus.* 2018, 23, 248–260.
18. Cashin, M.S.; Kelley, S.P.; Douziech, J.R.; Varghese, R.A.; Hamilton, Q.P.; Mulpuri, K. The levels of evidence in pediatric orthopaedic journals: Where are we now? *J. Pediatr. Orthop.* 2011, 31, 721–725. [CrossRef]
19. GF, B. Appendectomy in children by simple port laparoscopy. *Chir. Endosc.* 1993, 2, 6–9.
20. Lee, R.S.; Retik, A.B.; Borer, J.G.; Peters, C.A. Pediatric robot assisted laparoscopic dismembered pyloplasty: Comparison with a cohort of open surgery. *J. Urol.* 2006, 175, 683–687. [CrossRef]
21. Georgeone, K.E.; Inge, T.H.; Albanese, C.T. Laparoscopically assisted anorectal pull-through for high imperforate anus—A new technique. *J. Pediatr. Surg.* 2000, 35, 927–931. [CrossRef] [PubMed]
22. Hall, N.J.; Facilli, M.; Eaton, S.; Reblock, K.; Gaines, B.A.; Pastor, A.; Langer, J.C.; Koivusalo, A.I.; Pakarinen, M.P.; Stroedter, L.; et al. Recovery after open versus laparoscopic pyloromyotomy for pyloric stenosis: A double-blind multicentre randomised controlled trial. *Lancet* 2009, 373, 390–398. [CrossRef]
23. Friedmacher, F.; Ford, K.; Davenport, M. Biliary atresia: A scientometric analysis of the global research architecture and scientific developments. *J. Hepatobiliary Pancreat. Sci.* 2019, 26, 201–210. [CrossRef]
4.2. Martynov, I.; Feng, X.; Duess, J.W.; Gosemann, J.-H.; Lacher, M.; Mayer, S. Global Development of Research on Anorectal Malformations over the Last Five Decades: A Bibliometric Analysis. Children 2022, 9, 253. [CrossRef]

4.3. Ence, A.K.; Cope, S.R.; Holliday, E.B.; Somerson, J.S. Publication Productivity and Experience: Factors Associated with Academic Rank Among Orthopaedic Surgery Faculty in the United States. J. Bone Joint Surg. Am. 2016, 98, e41. [CrossRef]

4.4. Ramos, M.B.; Koterba, E.; Rosi Júnior, J.; Teixeira, M.J.; Figueiredo, E.G. A Bibliometric Analysis of the Most Cited Articles in Neurocritical Care Research. Neurocrit. Care 2019, 31, 365–372. [CrossRef] [PubMed]

4.5. Damodar, D.; Plotsker, E.; Greif, D.; Rizzo, M.G.; Baraga, M.G.; Kaplan, L.D. The 50 Most Cited Articles in Meniscal Injury Research. Orthop. J. Sport. Med. 2021, 9, 2352967121994909. [CrossRef]

4.6. Rodwin, M.A. Reforming pharmaceutical industry-physician financial relationships: Lessons from the United States, France, and Japan. J. Law. Med. Ethics 2011, 39, 662–670. [CrossRef]

4.7. Tao, T.; Zhao, X.; Lou, J.; Bo, L.; Wang, F.; Li, J.; Deng, X. The top cited clinical research articles on sepsis: A bibliometric analysis. Crit. Care 2012, 16, R110. [CrossRef]

4.8. Heath, G.W.; Parra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C. Lancet Physical Activity Series Working Group Evidence-based intervention in physical activity: Lessons from around the world. Lancet 2012, 380, 272–281. [CrossRef]

4.9.全体における挙上孔ウレタロペリウム梗塞の治療法—文献評価—369–376. [CrossRef] [PubMed]

4.10. Qureshi, N.Q.; Mufarrih, S.H.; Bloomfield, G.S.; Tariq, W.; Almas, A.; Mokdad, A.H.; Bartlett, J.; Nisar, I.; Siddiqi, S.; Bhutta, Z.; et al. Disparities in Cardiovascular Research Output and Disease Outcomes among High-, Middle- and Low-Income Countries—An Analysis of Global Cardiovascular Publications over the Last Decade (2008–2017). Glob. Heart 2021, 16, 4. [CrossRef] [PubMed]

4.11. Tas, F. An analysis of the most-cited research papers on oncology: Which journals have they been published in? Tumour Biol. 2014, 35, 4645–4649. [CrossRef] [PubMed]

4.12. Tao, T.; Zhao, X.; Lou, J.; Bo, L.; Wang, F.; Li, J.; Deng, X. The top cited clinical research articles on sepsis: A bibliometric analysis. Crit. Care 2012, 16, R110. [CrossRef]

4.13. Heath, G.W.; Farra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C. Lancet Physical Activity Series Working Group Evidence-based intervention in physical activity: Lessons from around the world. Lancet 2012, 380, 272–281. [CrossRef]

4.14. Millenburg, D.M.; Nuchtern, J.G.; Jaksic, T.; Kozinetz, C.; Brandt, M.L. Laparoscopic evaluation of the pediatric inguinal hernia—a meta-analysis. J. Pediatr. Surg. 1998, 33, 874–879. [CrossRef]

4.15. Allahabadi, S.; Feeley, S.E.; Lansdown, D.A.; Pandya, N.K.; Feeley, B.T. Influential Articles on Pediatric and Adolescent Anterior Cruciate Ligament Injuries: A Bibliometric Analysis. Orthop. J. Sport. Med. 2021, 9, 2352967121101077. [CrossRef] [PubMed]

4.16. Allahabadi, S.; Efekhari, A.; Feeley, S.E.; Feeley, B.T.; Lansdown, D.A. Influential and Highest Cited Shoulder Instability Articles: A Bibliometric Analysis. Orthop. J. Sport. Med. 2021, 9, 2352967121992577. [CrossRef]

4.17. Talari, K.; Goyal, M. Retrospective studies—Utility and caveats. J. R. Coll. Physicians Edinb. 2020, 50, 398–402. [CrossRef]

4.18. Euser, A.M.; Zoccali, C.; Jager, K.J.; Dekker, F.W. Cohort studies: Prospective versus retrospective. Nephron. Clin. Pract. 2009, 113, c214–7. [CrossRef]

4.19. Hariton, E.; Locascio, J.J. Randomised controlled trials—The gold standard for effectiveness research: Study design: Randomised controlled trials. BJOG 2018, 125, 1716. [CrossRef]

4.20. Kohno, M.; Ogawa, T.; Kojima, Y.; Sakoda, A.; Johnin, K.; Sugita, Y.; Nakane, A.; Noguchi, M.; Moriya, K.; Hattori, M.; et al. Pediatric congenital hydronephrosis (ureteropelvic junction obstruction): Medical management guide. Int. J. Urol. 2020, 27, 369–376. [CrossRef] [PubMed]

4.21. Zhang, L.; Liu, C.; Li, Y.; Sun, C.; Li, X. Determination of the Need for Surgical Intervention in Infants Diagnosed with Fetal Hydronephrosis in China. Med. Sci. Monit. 2016, 22, 4210–4217. [CrossRef] [PubMed]

4.22. Tan, H.L.; Roberts, J.P. Laparoscopic dismembered pyeloplasty in children: Preliminary results. Br. J. Urol. 1996, 77, 909–913. [PubMed]

4.23. Huang, Y.; Wu, Y.; Shan, W.; Zeng, L.; Huang, L. An updated meta-analysis of laparoscopic versus open pyeloplasty for ureteropelvic junction obstruction in children. Int. J. Clin. Exp. Med. 2015, 8, 4922–4931. [PubMed]

4.24. Schmedding, A.; Rolle, U. Decentralized Rather than Centralized Pediatric Surgery Care in Germany. Eur. J. Pediatr. Surg. 2017, 27, 399–406. [CrossRef] [PubMed]

4.25. Knoedler, J.; Han, L.; Granberg, C.; Kramer, S.; Chow, G.; Gettman, M.; Kimball, B.; Moriarty, J.; Kim, S.; Husmann, D. Population-based comparison of laparoscopic versus open pyeloplasty in paediatric pelvi-ureteric junction obstruction. BJU Int. 2013, 111, 1141–1147. [CrossRef] [PubMed]

4.26. Goetz, G.; Klora, M.; Zeidler, J.; Eberhard, S.; Bassler, S.; Mayer, S.; Gosemann, J.-H.; Lacher, M. Surgery for Pediatric Ureteropelvic Junction Obstruction—Comparison of Outcomes in Relation to Surgical Technique and Operating Discipline in Germany. Eur. J. Pediatr. Surg. 2019, 29, 33–38. [CrossRef] [PubMed]

4.27. Chang, S.-J.; Chen, Y.C.-C.; Hsu, C.-K.; Chang, F.-C.; Yang, S.S.-D. The incidence of inguinal hernia and associated risk factors of incarceration in pediatric inguinal hernia: A nation-wide longitudinal population-based study. Hernia 2016, 20, 559–563. [CrossRef]

4.28. Ponsky, T.A.; Nalugo, M.; Ostlie, D.J. Pediatric laparoscopic inguinal hernia repair: A review of the current evidence. J. Laparoendosc. Adv. Surg. Technol. A 2014, 24, 183–187. [CrossRef]
50. Kostov, G.G.; Dimov, R.S. Total extra peritoneal inguinal hernia repair: A single-surgeon preliminary findings report. Folia Med. 2021, 63, 183–188. [CrossRef]
51. Schier, F. Laparoscopic inguinal hernia repair—a prospective personal series of 542 children. J. Pediatr. Surg. 2006, 41, 1081–1084. [CrossRef] [PubMed]
52. Montupet, P.; Esposito, C. Laparoscopic treatment of congenital inguinal hernia in children. J. Pediatr. Surg. 1999, 34, 420–423. [CrossRef]
53. Binet, A.; Bastard, F.; Meignan, P.; Braïk, K.; Le Touze, A.; Villemagne, T.; Morel, B.; Robert, M.; Lardy, H.; Barroso, C.; Correia-Pinto, J. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows. J. Pediatr. Surg. 2013, 48, 1306–1310. [CrossRef] [PubMed]
54. Thakkar, H.; Mullassery, D.M.; Giuliani, S.; Blackburn, S.; De Coppi, P. Thoracoscopic repair in children: A systematic review and guideline from the European Pediatric Surgeons’ Association Evidence and Guideline Committee. Eur. J. Pediatr. Surg. 2022, 32, 219–232. [CrossRef]
55. Lee, S.H.; Park, G.M.; Lee, S.R. Efficacy of laparoscopic herniorrhaphy for treating incarcerated pediatric inguinal hernia. Hernia 2018, 22, 671–679. [CrossRef] [PubMed]
56. Zhao, J.; Yu, C.; Lu, J.; Wei, Y.; Long, C.; Wei, G.; Kou, L.; et al. Laparoscopic versus open inguinal hernia repair in children—a German nationwide cohort analysis. Langenbecks Arch. Surg. 2016, 401, 651–659. [CrossRef]
57. Lee, S.R.; Park, P.J. Laparoscopic reoperation for pediatric recurrent inguinal hernia after previous laparoscopic repair. Hernia 2021, 25, 163–169. [CrossRef] [PubMed]
58. Dingeldein, M. Congenital Diaphragmatic Hernia: Management & Outcomes. Adv. Pediatr. 2018, 65, 241–247. [CrossRef]
59. Stocker, L.J.; Wellesley, D.G.; Stanton, M.P.; Parasuraman, R.; Howe, D.T. The increasing incidence of foetal echogenic congenital lung malformations: An observational study. Prenat. Diagn. 2013, 33, 148–153. [CrossRef]
60. Becmeur, F.; Jamali, R.R.; Moog, R.; Keller, L.; Christmann, D.; Donato, L.; Kaufmann, L.; Schwaab, C.; Carrenard, G.; Sauvage, P. Thoracoscopic treatment for delayed presentation of congenital diaphragmatic hernia in the infant. A report of three cases. Surg. Endosc. 2001, 15, 1163–1166. [CrossRef] [PubMed]
61. Bax, K.M.; van Der Zee, D.C. Feasibility of thoracoscopic repair of esophageal atresia with distal fistula. J. Pediatr. Surg. 2002, 37, 192–196. [CrossRef] [PubMed]
62. Johnson, S.M.; Grace, N.; Edwards, M.J.; Woo, R.; Puapong, D. Thoracoscopic segmentectomy for treatment of congenital lung malformations. J. Pediatr. Surg. 2011, 46, 2265–2269. [CrossRef] [PubMed]
63. Gosemann, J.H.; Lange, A.; Zeidler, J.; Blaser, J.; Dingemann, C.; Ure, B.M.; Lacher, M. Appendectomy in the pediatric population—a German nationwide cohort analysis. Langenbecks Arch. Surg. 2016, 401, 651–659. [CrossRef]
64. Costerus, S.; Zahn, K.; van de Ven, K.; Vlot, J.; Wessel, L.; Wijnen, R. Thoracoscopic versus open repair of CDH in cardiovascular stable neonates. Surg. Endosc. 2016, 30, 2818–2824. [CrossRef]
65. Thakkar, H.; Mullassery, D.M.; Giuliani, S.; Blackburn, S.; Cross, K.; Curry, J.; De Coppi, P. Thoracoscopic oesophageal atresia/tracheo-oesophageal fistula (OA/TOF) repair is associated with a higher stricture rate: A single institution’s experience. Pediatr. Surg. Int. 2021, 37, 397–401. [CrossRef] [PubMed]
66. Barroso, C.; Correia-Pinto, J. Perioperative Complications of Congenital Diaphragmatic Hernia Repair. Eur. J. Pediatr. Surg. 2018, 28, 141–147. [CrossRef]
67. Uecker, M.; Kuebler, J.F.; Ure, B.M.; Schukfeh, N. Minimally Invasive Pediatric Surgery: The Learning Curve. Eur. J. Pediatr. Surg. 2020, 30, 172–180. [CrossRef]
68. Esparaz, J.R.; Jeziorczak, P.M.; Mowrer, A.R.; Chakraborty, S.R.; Nierstedt, R.T.; Zumpf, K.B.; Munaco, A.J.; Robertson, D.J.; Pearl, R.H.; Aprahamian, C.J. Adopting Single-Incision Laparoscopic Appendectomy in Children: Is It Safe During the Learning Curve? J. Laparoendosc. Adv. Surg. Technol. A 2019, 29, 1306–1310. [CrossRef]
69. Tasian, G.E.; Wiebe, D.J.; Casale, P. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows. J. Urol. 2013, 190, 1622–1626. [CrossRef]
70. Binet, A.; Bastard, F.; Meignan, P.; Braïk, K.; Le Touze, A.; Villemagne, T.; Morel, B.; Robert, M.; Klipfel, C.; Lardy, H. Laparoscopic Pyloromyotomy: A Study of the Learning Curve. Eur. J. Pediatr. Surg. 2018, 28, 238–242. [CrossRef] [PubMed]
71. Zimmermann, P.; Martynov, I.; Perger, L.; Schohl, S.; Lacher, M. 20 Years of Single-Incision-Pediatric-Endoscopic-Surgery: A Survey on Opinion and Experience Among International Pediatric Endosurgery Group Members. J. Laparoendosc. Adv. Surg. Technol. A 2021, 31, 348–354. [CrossRef] [PubMed]
72. Navarrete-Arellano, M. Robotic-Assisted Minimally Invasive Surgery in Children. In Medical Robotics [Working Title]; IntechOpen: Vienna, Austria, 2021.