Emergence of machine language: towards symbolic intelligence with neural networks

Yuqi Wang, Xu-Yao Zhang, Cheng-Lin Liu, Tieniu Tan and Zhaoxiang Zhang

Representational learning is a core issue in artificial intelligence (AI). Currently, there exists a disparity in the choice of representation between humans and machines. Humans rely on discrete language for communication and learning, whereas machines utilize continuous features for computation and representation. Discrete symbols are low-dimensional, decoupled and offer robust reasoning abilities, while continuous features are high-dimensional, coupled and possess remarkable abstracting capabilities. In recent years, deep learning [1] has developed the idea of continuous representation to the extreme, using billions of parameters to achieve high accuracies. Although this is reasonable from a statistical perspective, it has other major problems, such as a lack of interpretability, poor generalization and being easily attacked. Both paradigms have strengths and weaknesses, and a better choice is to seek reconciliation.

Inspired by the strengths of human language, we propose a novel approach that combines deep neural networks with symbolic intelligence to create a new form of representation called ‘machine language’. We aim to create a language specifically tailored for machines, combining deep neural networks with symbolic reasoning. Through this fusion, we aim to create a representation that inherits the reasoning abilities of discrete symbols and the abstracting capabilities of continuous features, thereby leveraging the advantages of both paradigms.

Human language is a highly complex and dynamic system that evolves along-side social and cultural changes. Our focus is primarily on the emergence of machine language, specifically from a semantic perspective. Drawing inspiration from the characteristics of human language, we propose three essential properties that machine language should possess. Similar to the early languages found in tribes, which may have been simple in form and grammar, these basic properties are fundamental for the development of a language.

1. **Spontaneous.** The process of language emergence should be spontaneous, resembling the natural evolution of language in early human communities. It should not depend on prior knowledge of human language or require additional data annotations. The development of machine language should be unsupervised or self-supervised [2], occurring through interactions with others and the environment.

2. **Flexible.** The form of machine language should exhibit flexibility, characterized by variable-length discrete symbol sequences. This variability is essential because different individuals may describe the same objects or concepts using varying lengths of language, ranging from concise to elaborate expressions.

3. **Semantic.** A language, in the context of machine language, should possess semantics that can be conveyed through the permutation and combination of basic symbols. It should enable machines to communicate and comprehend information, allowing them to perform specific tasks such as describing objects or providing instructions.

To achieve the aforementioned objectives, a basic idea is to leverage the cooperation among multiple agents to facilitate the automatic learning of a language. This process entails multiple agents working together to solve various tasks within complex environments [3–6]. We begin by simulating this process in the simplest scenario of a two-agent game, aiming to generate a language through their interactions. As depicted in Fig. 1, two agents, speaker A and listener B, engage in a collaborative game. The process of language emergence can be divided into three stages, represented by the three scenes illustrated as follows.

1. **Perception.** Agent A perceives a target image, which in this case is a bird sitting on a tree.

2. **Communication.** Agent A and agent B engage in a communication exchange, utilizing a sequence of symbols to convey information. Agent A, having observed the bird on the tree, attempts to describe what he saw using language. The symbols used in the communication are the targets that both agents aim to learn and understand.

3. **Cooperation.** Agent A and agent B collaborate to solve tasks based on their communication. In this scenario, agent B needs to interpret agent A’s description and identify the bird sitting on the tree based...
A,B. Let us consider a system where a machine model
rigorously translates spoken language into visual images. In this setup,
two agents, A and B, interact to achieve a common goal. Agent A,
acting as the speaker, talks into a microphone and emits spoken
language. The machine then processes this language and generates
images that are sent to Agent B, who is tasked with interpreting
these images. In a subsequent step, Agent B describes the
images back to the machine, and the accuracy of this description
validates the machine’s ability to capture and represent language
adequately.

The setup is hierarchical, with the machine acting as a
bipartite agent that translates between spoken and visual
domains. The machine’s performance is showcased through a
series of experiments involving N different agents. The machine
processes the input language in the form of tokens, which
are encoded into image sequences. The tokens are drawn from
the language’s vocabulary, which in this setup is denoted by
\(V \). The machine then generates these tokens into images,
which are then described by Agent B. The accuracy of these
interactions is measured across different sequence lengths
\(R \) and is depicted in Fig. 1(c).

Figure 1. (a) The emergence of language is facilitated through the
speak, guess and draw game, depicted from left to right. Given a random image,
agent A attempts to describe it using the novel machine language. Agent B, the
listener, must comprehend the language and accurately guess what A is describing.
Simultaneously, B draws the image based on their understanding. (b) The
network structure of the speaker and listener is based on an encoder–decoder architecture.
The speaker first perceives an image and generates a sequence of symbols representing
the machine language. Subsequently, the listener receives the machine language as input,
and outputs a query to make a guess for the correct target within a batch. Additionally, the listener
draws the image according to the comprehension of the machine language. (c) To evaluate the effectiveness of our
approach, we conduct experiments on five datasets. The left plot illustrates the training accuracy
across learning epochs, demonstrating a clear improvement in guessing accuracy with the aid of
machine language. The right plot compares the test accuracy compared to random guessing.

Rewards are provided for successful performance in the game, while punishments
are given for poor performance. This game is referred to as the speak,
guess and draw (SGD) game in this paper. The game can be characterized by
a tuple
\[G = (D, V, R, A, \{ A_i \}, M) \]
\[B = (T, \ldots) \]

Here, \(D \) represents the set of all images, \(V \) denotes the vocabulary
restricting the symbols that the agents can use (e.g., 26 characters in English) and
\(\{ A_i \} \) is a set of agents, and \(M \) represents the machine’s output.
The goal is to minimize the reconstruction error, defined as
\[L_{\text{draw}} \]

This generative task enhances the semantic understanding of the language. To
motivate language flexibility, a regularization task is introduced. The speaker can
draw an image multiple times with different sequence lengths, resulting in different
queries \(q \) from the listener. The consistency of these queries is measured
using a regularization loss \(L_{\text{regularization}} \). By incorporating these tasks, the model

on the communicated symbols. The successful cooperation between the
two agents allows them to complete tasks effectively. Specifically,
agent B’s tasks involve understanding
the language used in communication and making accurate guesses
about what agent A is describing. Additionally, agent B needs to visually
represent his understanding by drawing the original image.

Page 2 of 3
consumes the collaborative process of speaking, guessing and drawing.

Besides showing the emergence of machine language, we also verified its functionality by comparing discrete language with the continuous feature from three aspects of interpretability, generalization and robustness on diverse datasets and tasks. Discrete language offers inherent interpretability, allowing for the manipulation and modification of semantic meanings. Our experiments demonstrated that discrete language can be purposefully altered to convey different semantic interpretations. Robustness is a crucial characteristic in practical applications, and our experiment evaluated the robustness of discrete language and continuous features. We compared their classification accuracy under different conditions, including the presence of noise and adversarial samples [7]. The results revealed that continuous features suffered a significant decrease in performance when subjected to perturbations; discrete language remained more robust and stable. This can be attributed to the abstract nature of language, which focuses on conveying higher-level semantic information rather than relying on specific visual details. From the generalization perspective, continuous features have shown strong performance in independent and identical distribution settings. However, we argue that the compositionality of language enables better generalization, particularly in out-of-distribution scenarios. While there may be little difference in accuracy between discrete language and continuous features for known categories, language-based representations excel when dealing with new and unknown categories.

In conclusion, the study of machine language represents an exciting and valuable direction in AI research. As AI progresses towards cognitive intelligence, there is a growing interest in integrating symbolic intelligence with neural networks, as advocated by Yoshua Bengio et al. in their Turing lecture [8]. Recent advancements, exemplified by models like CLIP [9], DALLE-2 [10] and GPT-4, have demonstrated AI's potential to learn from cross-modal information, moving beyond traditional methods that rely on human language for learning visual concepts. Our work takes a different perspective, exploring whether machines can develop their own language, known as machine language, through cooperative visual tasks, without relying on human language. By harnessing the potential of visual big data in shaping machine language, we aim to reconcile symbolic intelligence with neural networks, paving the way for more advanced AI systems. This research direction aligns with the transition towards cognitive intelligence and offers a fresh perspective on language learning in AI, going beyond human language-driven approaches. We firmly believe that emphasizing visual information in language emergence can lead to significant progress in AI capability.

SUPPLEMENTARY DATA
Supplementary data are available at NSR online.

FUNDING
This work is supported in part by the 2035 Innovation Program of CAS, the National Key R&D Program of China (2022ZD010102), and the National Natural Science Foundation of China (61836014, U21B2042, 62072457 and 62006231).

Conflict of interest statement. None declared.

REFERENCES
1. Yan LC, Yoshua B, Geoffrey H. Nature 2015; 521: 436–44.
2. Liu X, Zhang F, Hou Z et al. IEEE Trans Knowl Data Eng 2021; 35: 857–76.
3. Lazaridou A, Pevsakhovich A, Baroni M. Multi-Agent Cooperation and the Emergence of (Natural) Language. ICLR 2017: 5th International Conference on Learning Representations, Toulon, France, 24–26 April, 2017.
4. Havrylov S and Titov I. Emergence of language with multi-agent games: learning to communicate with sequences of symbols. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates, 2017, 2148–56.
5. Lee J, Cho K, Weston J et al. Emergent translation in multi-agent communication. ICLR 2018: 8th International Conference on Learning Representations, Vancouver, Canada, 30 April–3 May, 2018.
6. Lazaridou A and Baroni M. arXiv: 2006.02419.
7. Szegedy C, Zaremba W, Sutskever I et al. Intriguing properties of neural networks. ICLR 2014: International Conference on Learning Representations, Banff, Canada, 14–16 April, 2014.
8. Bengio Y, Lecun Y, Hinton G. Commun ACM 2021; 64: 58–65.
9. Radford A, Kim JW, Hallacy C et al. Learning transferable visual models from natural language supervision. In: Meila M and Zhang T (eds) Proceedings of the 38th International Conference on Machine Learning. PMLR, 2021, 8748–63.
10. Ramesh A, Dhariwal P, Nichol A et al. arXiv: 2204.06125.

© The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.