Novel Alanine-based Antimicrobial and Antioxidant Agents: Synthesis and Molecular Docking

Melford C. Egbujor1,*, Uchechukwu C. Okoro2 and Sunday N. Okafor3

1Department of Industrial Chemistry, Renaissance University, Ugbawka, Enugu, Nigeria
2Synthetic Organic Chemistry Division, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
3Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Nigeria

Abstract

Objective: To synthesize new alanine-based phenyl sulphonamide derivatives with significant antimicrobial and antioxidant activities.

Methods: The reaction of alanine with benzenesulphonyl chloride afforded compound 3a. The ammonolysis of its N-acylated derivative gave the carboxamide which yielded the aryl/heteroaryl derivatives compounds 3d, 3e, and 3f via Buchwald–Hartwig nickel catalyzed amidation reaction. Structures agreed with the spectra data. Their antimicrobial activities, antioxidant activities, and molecular docking interactions were evaluated.

Findings: Compounds 3f and 3a were the best antimicrobial agents with minimum inhibitory concentration (MIC) range of 0.5–1.0 µg/ml while compound 3a displayed the highest in vitro antioxidant percentage inhibition of 95.70% and the best 50% inhibitory concentration (IC50) value of 1.072 ± 0.002 µg/ml comparable to ascorbic acid of 96.38% antioxidant percentage inhibition and 0.999 ± 0.001 µg/ml IC50 value. Compounds 3c, 3a, and 3f had the highest in silico antibacterial, antifungal, and antioxidant binding energies of −10.03, −11.79, and −13.13 kcal/mol, respectively.

Novelty/improvement: Alanine was found to potentiate the antimicrobial and antioxidant actions of benzenesulphonamide and carboxamide derivatives.

Keywords: Alanine, Antimicrobial, Phenylsulphonamide, Molecular Docking, Antioxidant.

1. Introduction

The world is faced with the enormous challenge of combating microbial and oxidative stress-related diseases; these two disease conditions have brought untold misery to millions
of individuals around the world [1–3]. Their relationship is based on the fact that oxidative stress causes a decline in immunity thereby making the body vulnerable to microbial infections [4]. Amino acids possess antimicrobial and antioxidant abilities and therefore could be explored as antimicrobial and antioxidant agents [5–6]. Obviously, alanine is an excellent target for the design of antimicrobial drugs because of its ability to be metabolized by bacteria and alanine being an α-amino acid is utilized in protein biosynthesis and glucose–alanine cycle [7–8]. Alanine plays a central role in the conversion of simple sugar to energy [9], processing of vitamin B [7, 10], and as a precursor of numerous biomolecules [11].

Interestingly, the combining sulphonamide molecule being a basis for drug development [12], possesses antimicrobial [13], anticancer [14], antimalarial [15], and antiretroviral [16] activities. The carboxamide molecules are present in numerous drug molecules acting as a bioactive moiety [17] while the coupling partners such as aniline, pyridine, and pyrimidine exhibit numerous pharmacological activities [18–19] are therefore used in the production of paracetamol [20], CNS stimulants [21–22], and antifolates [23], respectively that amino acid-based sulphonamide and carboxamide derivatives exhibited excellent antimicrobial and antioxidant activities [24–26].

The ability of microorganisms to resist the preventive and curative effect of drugs that were previously efficacious is worrisome and the increasing dominance of these pathogenic microorganisms is a matter of concern. The global report on surveillance by the World Health Organization (WHO) in 2014 showed that more than 700,000 deaths caused by microbial infections occur annually across the globe of which 23,000 is found in the United States [27–28]. Obviously, the intake of natural antioxidants reduces the risk of oxidative stress-related cases [29–30], yet these diseases are still prevalent. The best solution to these disease conditions is to synthesize drug compounds working on new and strategic target drug sites [31]. The increasing public demand for global effort to combat antimicrobial recalcitrance and effectively tackle oxidative stress-related ailments [32] necessitates the need for the development of new alanine-based antimicrobial and antioxidant agents with enhanced drug properties. This study exploited the synergistic drug actions offered by the coupling of alanine, benzenesulphonamide, carboxamide and aryl/heteroaryl moieties into single drug compounds in order to enhance drug potency to eliminate or minimize the antimicrobial resistance.

2. Materials and Method

2.1. Instrumentation

The basic chemicals were imported from Sigma Aldrich. Melting point was ascertained by melting point apparatus. The infrared spectra were obtained with 8400s Fourier Transform Infrared in Ahmedu Bello University, Nigeria. Both 1H-NMR and 13C-NMR spectroscopy were conducted with 400 MHz NMR spectrophotometer at Chemistry Department, Indian Institute of Technology, Kanpur. Chemical shifts were determined with reference to tetramethylsilane. Inert conditions were provided with nitrogen gas. Compounds were obtained in analytical grade. The antimicrobial and antioxidant studies were done at the Microbiology and Biochemistry Departments, respectively, University of Nigeria, Nsukka.
2.2. Chemistry

2.2.1. *Synthesis of Benzenesulphonamoyl Carboxylic Acids*

Using a 50 ml beaker, alanine (25 mmol) and Na₂CO₃ (5.58 g, 52.50 mmol) were dissolved in distilled water (30 ml). It was cooled to −5 °C and benzenesulphonyl chloride (5.12 g, 30 mmol) was added in two portions for 1 hour period. Thorough stirring was carried out for 4 h and recrystallization was done with 2 M hydrochloric acid, filtered and washed with tartaric acid (pH 2.2) to obtain 2-[[phenylsulphonyl]amino]propanoic acid (3a) in good yields (82.7%).

2.2.1.1. 2-[[Phenylsulphonyl]amino]propanoic acid (3a)

Yield 4.84 g (82.7%), mp 115–116 °C, IR (KBr) cm⁻¹: 3401 (N–H), 3074 (C–H aromatic), 2902 (CH aliphatic), 1726 (C=O), 1660, 1657 (C=C), 1168, 1032 (SO₂), 738 (Ar–H).

¹H-NMR (DMSO) δ: 10.52 (s, IH, OH), 8.15–8.13 (d, J = 8.4 Hz, 1H, NH–CH), 7.85–7.82 (d, J = 8.54 Hz, 2H, Ar–H), 3.79–3.74 (dd, J₁ = 7.30 Hz, J₂ = 8.38 Hz, 1H, NH–CH–CH₃), 1.15–1.13 (d, J = 7.21 Hz, 3H, CH₃–CH).

¹³C-NMR (CD₃N, 400 MHz) δ: 170.244 (C=O), 149.212, 141.333, 131.669, 129.991, 64.772, 45.101. Anal. calcd. for C₉H₁₀NO₄S (228.00): C, 47.00, H, 4.44, N, 6.31. Found: C, 46.96, H, 4.49, N, 6.29.

2.2.2. Acylation of 2-[[Phenylsulphonyl]amino]propanoic acid (3a)

2 g of compound 3a was transferred to a 100 ml beaker containing 9 ml HCl, 25 ml distilled water and 13 ml acetic anhydride. A solution of 16.0 g of Na₂CO₃ and 50 ml distilled water was added to the solution of compound 3a stirred, cooled to 0 °C and filtered to obtain compound (3b) in 94.3% yield.

2.2.2.1. 2-[Acetyl(phenylsulfonyl)amino]propanoic acids (3b)

Yield 2.19 g (94.3%), mp. 209–211 °C, IR (KBr) cm⁻¹: 3454 (N–H), 1750, 1688 (C=O), 1670, 1666 (C=C), 1277, 1165 (S=O), 1116 (SO₂), 1098 (C=N), 925 (Ar–H). ¹H-NMR (DMSO, 400 MHz) δ: 7.322 (d, J = 7.8 Hz, 2H, ArH), 6.277 (d, J = 6.3 Hz, 2H, ArH), 3.295 (s, 2H, NH₂), 2.534 (s, 3H, CH₃–C=O), 2.014 (s, 3H, CH₃–CH). ¹³C-NMR (DMSO, 400 MHz) δ: 173.121, 170.231, 131.908, 128.926, 125.958, 123.241, 122.789, 120.443 (aromatic carbon) 78.911, 78.782, 78.584 (aliphatic carbon). Anal. calcd. for C₁₁H₁³NO₅S (270.32): C, 48.83, H, 4.81, N, 5.18, S, 11.84. Found: C, 48.79, H, 4.78, N, 5.21, S, 11.86.

2.2.3. Chlorination and Aminolysis of 2-[Acetyl(phenylsulfonyl)amino]propanoic acids (3b)

2.2.3.1. Chlorination

2 g of 2-[acetyl(phenylsulfonyl)amino]propanoic acids was dissolved in acetone (10 ml) in three-necked flask and cooled to 0 °C. Stirring was carried out for 3 h under reflux at 80 °C, taken to water bath to evaporate excess thionyl chloride at 80 °C. 20 ml of acetone was introduced and evaporated twice in order to eliminate any remaining thionyl chloride to obtain acid chloride reactive intermediate.
2.2.3.2. Aminolysis

Instantly, acid chloride intermediate was dissolved in 20 ml acetone and cooled to 0 °C. 2 ml of was then added with 1 M NaOH and allowed for 12 h and filtered to afford compound 3c in excellent yield (91.8%).

2.2.3.2.1. 2-[Acetyl(phenylsulfonyl)amino]propanamide (3c)

Yield 3.32 g (91.8%), mp. 224 °C. IR (KBr) cm\(^{-1}\): 3400 (N–H), 1728, 1689 (C=O), 1644, 1635 (C=C), 1287, 1163 (S=O), 1117 (SO\(_2\)), 1092 (C–N), 929 (Ar–H). \(^1\)H-NMR (CD\(_3\)CN, 400 MHz) \(\delta\): 7.956 (d, \(J = 8.2\) Hz, 2H, ArH), 7.519 (d, \(J = 8.5\) Hz, 2H, ArH), 6.569 (s, 1H, ArH), 4.679 (s, 2H, NH\(_2\)), 2.722 (s, 3H, CH\(_3\)–C=O), 2.480 (s, 3H, CH\(_3\)–Ar), 1.977–1.955 (m, IH, CH), 1.945 (d, \(J = 1.8\) Hz, 3H, CH\(_3\)–CH). \(^13\)C-NMR (DMSO, 400 MHz) \(\delta\): 170.332, 170.113 (C=O), 131.908, 128.926, 125.958, 123.786, 120.677, 118.963 (aromatic carbon) 78.911, 78.782, 78.584, (aliphatic carbon). Anal. calcd. (%) for C\(_{11}\)H\(_{14}\)N\(_2\)O\(_4\)S (270.30): C: 48.83, H: 5.18, N: 10.36, S: 11.89. Found C: 48.86, H: 5.15, N: 10.41, S: 11.85.

2.2.4. Nickel Catalyzed Amidation for the Synthesis of Alanine-based Sulphonamide Derivatives

2.2.4.1. Bis(triphenylphosphine)nickel(II)chloride

Venanzi method [33] of reaction protocol was employed it involves combining a solution of Nickel(II)chloride hexahydrate (10 mmol) in 2 ml distilled water and 50 ml glacial acetic and triphenylphosphine (20 mmol) dissolved in 25 ml glacial acetic acid. The crystals were filtration and dried in desiccators.

2.2.4.2. Procedure for the Synthesis

Bis(triphenylphosphine)nickel(II)chloride (10 mmol) and triphenylphosphine (30 mmol) were dissolved in t-butanol (4 ml) and distilled water (2 ml). It was stirred for 10 min under inert nitrogen gas atmosphere. It was further heated at 80 °C for 1.5 min. The 2-[acetyl(phenylsulfonyl)amino]propanamide (3c) (10mmol), K\(_2\)CO\(_3\) (1.38 g, 10 mmol), and various substituted aryl and heteroaryl halides (4-chloroaniline, 4-amino-3-chloropyridine and 5-chloro-4,6-diaminopyrimidine) were added under nitrogen atmosphere. It was stirred under reflux for 1 h at temperature of 110 °C, allowed to cool to room temperature and recrystallized with ethyl acetate to obtain alanine-based benzenesulphonamide and carboxamide derivatives (3d–f) in excellent yield.

2.2.4.3. 2-[Acetyl(phenylsulfonyl)amino]-N-(4-aminophenyl)propanamide (3d)

Yield 3.34 g (987.3%), mp. 84–86 °C. IR (KBr) cm\(^{-1}\): 3490, 3409 (N–H), 3081 (C–H aliphatic), 1980 (C–H aromatic), 1729, 1689 (C=O), 1671, 1660 (C=C), 1372, 1173 (S=O), 1121 (SO\(_2\)), 1090 (C–N), 749 (Ar–H). \(^1\)H-NMR (DMSO, 400 MHz) \(\delta\): 7.503–7.485 (d, \(J = 0.02\) Hz, 2H, ArH), 7.286 (m, 2H, ArH), 7.158–7.128 (d, \(J = 12.3\) Hz, 2H, ArH) 7.107–7.030
(d, J = 31.7 Hz, 2H, ArH), 3.855 (s, H2, NH2), 2.485 (s, 3H, CH3–C=O), 2.479 (s, 3H, CH3–Ar), 2.269 (s, IH, CH). 13C-NMR (CDCl3, 400 Hz) δ: 171.234, 170.445, 2 (C=O), 147.986, 143.533, 142.358, 130.299, 130.219, 129.700, 129.176, 127.998, 126.341, 125.579 (aromatic carbons), 77.439, 77.120, 76.801, 21.823, 01.613 (aliphatic carbons). Anal. calcd. (%) for C17H19N3O4S (361.42): C: 56.44, H: 5.26, N: 11.63, S: 8.85. Found C: 56.48, H: 5.31, N: 11.59, S: 8.88.

2.2.4.4. 2-{[Acetyl-[(phenylsulfonyl)amino]-N-(4-aminopyridin-3-yl)]propanamide (3e)

Yield 3.05 g (91.8%), mp. 83–85 °C, IR (KBr) cm−1: 3449, 3420 (N–H), 3069 (C–H aliphatic), 1984 (C–H aromatic), 1727, 1687 (C=O), 1657, 1654 (C=O), 1643 (C–N), 1434 (C–H), 1380, 1157 (S=O), 1120 (SO2), 1099 (C–N), 847 (Ar=H). 1H-NMR (DMSO, 400 MHz) δ: 7.324 (m, 2H, ArH), 6.279 (m, 2H, ArH), 4.138 (s, 1H, NH), 3.300 (s, 2H, NH2), 2.528 (s, 3H, CH3–C=O), 2.015 (s, 3H, CH3–CH). 13C-NMR (DMSO, 400 MHz) δ: 173.223, 172.896, 2 (C=O), 165.321 (C=N), 137.204, 133.615, 128.963, 117.90, 128.364, 127.416, 125.852, 123.765, 118.962, 116.831 (aromatic carbon), 49.618, 38.334, 37.881, 33.112, 30.3445, 29.234, 25.667, 21.778. Anal. calcd. (%) for C16H16N3O4S (362.40): C; 52.98, H; 4.97, N; 15.45, S; 8.83 .Found C; 52.95, H; 4.99, N; 15.42, S; 8.79.

2.2.4.5. 2-{[Acetyl-[(phenylsulfonyl)amino]-N-(6-diaminopyrimidin-3-yl)]propanamide (3f)

Yield 2.91 g (89.89%), mp. 108–110 °C, IR (KBr) cm−1: 3456, 3429 (N–H), 3149 (C–H aliphatic), 1194 (C–H aromatic), 1733 (C=O), 1681 (C=O), 1673, 1668 (C=O), 1666, 1651 (C=N), 1277 (S=O), 1232 (SO2), 1103 (C–N), 749 (Ar–H). 1H-NMR (DMSO, 400 MHz) δ: 7.267 (m, 2H, ArH), 6.387 (m, 2H, ArH), 6.013 (m, IH, Ar), 5.746 (s, IH, NH), 3.467 (s, 2H, NH2), 2.470 (s, 3H, CH3–Ar). 13C-NMR (DMSO, 400 MHz) δ: 173.343, 169.118 (C=O), 137.137, 133.707, 133.517, 132.283, 131.947, 129.010, 128.782, 125.787, 123.442, 120.233 (aromatic carbons), 93.094, 76.253, 78.919, 78.583 (aliphatic carbons). Anal. calcd. for C16H17N6O4S (377.50): C, 28.61, H, 4.50, N, 22.25, S, 8.48. Found: C, 28.63, H, 4.49, N, 22.25, S, 8.50.

3. Biological Studies

3.1. Antimicrobial Evaluation

Wiegand et al agar dilution method [34] was used. Test microbes were various bacteria and fungi obtained from the Department of Pharmaceutical Microbiology and Biotechnology laboratory, University of Nigeria, Nsukka.

3.1.1. Standardization of the Test Microbes’ Suspension

The test microbes were standardized using 0.5 McFarland turbid equivalents.
3.1.2. **Control Test (Standard)**

Ofloxacin and Fluconazole were the standard antimicrobial agents.

3.1.3. **Experimental**

Various concentrations of the compound used were 0.9 mg/ml, 0.8 mg/ml, 0.7 mg/ml, 0.6 mg/ml, 0.5 mg/ml, 0.4 mg/ml, 0.3 mg/ml, 0.2 mg/ml, and 0.1 mg/ml. The sample containing molten agar plates were allowed to gel and the plates were divided into seven. Microorganisms were streaked on the divisions and the culture plates incubated at 37 °C for 24 h, and at 25 °C for 2 days. The results were recorded.

3.2. **Antioxidant Studies**

3.2.1. **Antioxidant Activity by DPPH Method**

Using Blois method [35], the compounds’ inhibition of stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical [37] informed their antioxidant activities. The DPPH solution was obtained by dissolving 1.9 mg of DPPH in 100 ml of methanol. Then 50, 100, and 200 µg/ml concentrations of the DPPH solution were also prepared. Similarly, 50, 100, and 200 µg/ml of the title compounds were prepared. Using the same method, standard solution of ascorbic acid was prepared. Then, 1 ml of DPPH solution was added to 2 ml solution of the title compounds and ascorbic acid. The reaction mixture was stirred and left in the dark at room temperature for 30 min after which the absorbance was recorded at the wavelength of 517 nm against the corresponding blank solution spectrophotometrically in triplicate. The percentage inhibitions of scavenging DPPH free radical were calculated using the following formula:

$$\text{DPPH radical scavenging activity (\%) = } \frac{\text{Abs}_{\text{control}} - \text{Abs}_{\text{sample}}}{\text{Abs}_{\text{control}}} \times 100$$

\(\text{Abs}_{\text{control}}\) = the absorbance of DPPH radical and n-hexane/methanol,

\(\text{Abs}_{\text{sample}}\) = the absorbance of DPPH radical and sample/standard.

3.3. **In silico Evaluation**

3.3.1. **Physicochemical Properties**

Number of hydrogen bond donor (HBD), number of rotatable bond (NRB), octanol/water partition coefficient logP(o/w), aqueous solubility (SlogP) and topological polar surface area (TPSA), Molecular weight (MW) and number of hydrogen bond acceptor (HBA) were generated in silico. The descriptors calculator in Swiss dock online servers was used in the computation of these parameters and Lipinski’s rule of five was used for the investigation of their drug-likeness.
3.4. Molecular Docking

The molecular docking studied some bacterial infections, fungal infections, and oxidative stress using their appropriate drug target whose 3-dimensional structures have gotten from the Protein Data Bank (PDB), (http://www.pdb.org) database. The drug targets for antibacterial was (PDB code: 5MMN); antifungal was (PDB code: 1WS3), and antioxidant was (PDB code: 1HD2). The prepared compounds interacted with each of the receptors through molecular docking using PyRx. The best conformation for each compound was selected and visualized using the Discovery studio.

4. Results

4.1. Chemistry

The synthetic route of alanine-based sulphonamide derivatives is shown in Scheme 1.

SCHEME 1. The synthetic route of alanine-based antimicrobial and antioxidant agents.
5. Discussion

5.1. Chemistry

As shown in Scheme 1, the acylation was a protection strategy to prevent the amino group from side reactions with oxidizing agents and electrophiles and ensure regioselectivity. Chlorination was to generate a reactive intermediate and ammonolysis was carried out in order to form the carboxamide from the carboxylic acid end of the alanine amino acid [36].

5.2. Results of Biological Studies

5.2.1. Antimicrobial Activities

The antimicrobial activities (Table 1) show that all the title compounds exhibited considerable antimicrobial activities. Compounds 3f and 3a possessed the best antimicrobial activities. The best antimicrobial activities displayed by compound 3f could possibly be due to the coupled aminopyrimidine moiety because aminopyrimidines are known to possess good antimicrobial activities [23]. Moreover, amino acids such as alanine were found to potentiate the antimicrobial activities of sulphonamide derivatives [37].

Compounds	E. coli	S. typhi	S. aureus	B. sub	Ps. aerug	C. albicans	A. niger
3a	–	0.9	1.0	0.5	–	0.7	0.9
3b	0.7	0.7	–	0.7	–	0.7	–
3c	0.9	0.8	0.9	0.6	–	–	–
3d	0.7	0.6	0.6	0.6	–	–	–
3e	0.8	0.6	0.9	0.8	–	–	–
3f	0.7	0.8	0.6	0.5	0.8	0.8	–
Ofloxacin	0.005	0.005	0.010	0.020	0.025	–	–
Fluconazole	–	–	–	–	0.020	0.005	–

Key: – represents no inhibition. Ofloxacin = antibacterial drug, Fluconazole = antifungal drug.

5.2.2. Antioxidant Activities

Table 2 shows that the compounds possessed antioxidant activities. For example, compound 3a had an excellent percentage inhibition of 95.70 ± 0.002 at its highest concentration of 200 µg/ml comparable to the antioxidant inhibition of ascorbic acid (96.83 ± 0.001 inhibition at 200 µg/ml). Similarly, compound 3a displayed an IC\textsubscript{50} value (1.072 ± 0.002 µg/mg) very close to that of ascorbic acid (0.999 ± 0.001 µg/ml). This suggests that compound 3a was the most potent antioxidant agent.

5.3. MOLECULAR DOCKING RESULTS

5.3.1. Drug-likeness and Oral Bioavailability of Compound

From Table 3, with the knowledge of Lipinski’s rule of five (ro5) and topological polar surface area (TPSA) properties, drug-likeness property and oral bioavailability of the
compounds was evaluated. Compounds with TPSA ≤140 Å² can penetrate the cell [38], and compounds with TPSA ≤90 Å² can penetrate the blood-brain-barrier (BBB) and affect the central nervous system (CNS). The results showed that while all the title compounds 3a–3e can penetrate the cell, only compound 3a of TPSA 83.47 Å² can penetrate the blood-brain-barriers and therefore could be utilized in treatment of cerebral malaria and Alzheimer’s diseases which are CNS-related diseases. Lipinski’s ro5, stipulated that the drug-likeness of a drug candidate ascertained if the number of hydrogen bond donor (HBD) ≤ 5 lipophilicity (logP) ≤ 5, number of hydrogen bond acceptor (HBA) ≤ 10, molecular weight (MW) ≤ 500. The results in Table 3 revealed that the compounds satisfy Lipinski’s rule of 5 (Ro5). Similarly, Van de waterbeemd et al. [38] also stated that the NRB greatly determine the oral bioavailability in rats and NRB ≤10 is a requirement for good oral bioavailability. Summarily, in compliance with these principles earlier mentioned, all the compounds were qualified as likely drugs compounds with good oral bioavailability.

TABLE 2. The antioxidant activities of the title compounds

Sample	200 µg/ml% inhibition	100 µg/ml% inhibition	50 µg/ml% inhibition	IC₅₀ values (µg/ml)
Ascorbic acid	96.83 ± 0.001	97.68 ± 0.001	97.31 ± 0.001	0.999
3a	95.70 ± 0.002	92.38 ± 0.001	81.07 ± 0.000	1.072
3b	93.42 ± 0.001	87.68 ± 0.001	84.93 ± 0.001	1.113
3c	83.89 ± 0.000	81.15 ± 0.000	78.34 ± 0.001	1.221
3d	53.24 ± 0.001	48.35 ± 0.001	40.66 ± 0.001	2.113
3e	74.54 ± 0.002	64.84 ± 0.001	57.94 ± 0.003	2.013
3f	84.37 ± 0.002	85.17 ± 0.001	60.81 ± 0.001	1.178

Key: Ascorbic acid = antioxidant drug.

TABLE 3. The physicochemical parameters

Compounds	HBA	HBD	NRB	logP (o/w)	SlogP	TPSA	MW	Lip violation
3a	4	3	4	0.97	0.44	83.47	228,00	0
3b	5	2	5	0.92	0.70	91.75	270.32	0
3c	5	3	5	2.53	1.77	101.68	361.42	0
3d	4	2	6	0.59	1.54	122.47	362.41	0
3e	5	2	6	0.58	1.55	122.47	362.41	0
3f	6	3	8	0.61	0.12	200.18	377.51	0

5.3.2. In silico Antibacterial, Antifungal, and Antioxidant Activities Results

The free binding energy is given in Table 4. Compounds had binding affinities with all the receptors employed in this study. Compound 3c displayed the best antibacterial binding affinity (−10.03 kcal/mol) comparable to penicillin (−10.89 kcal/mol). Compound 3a possessed higher binding affinity (−11.79 kcal/mol) than ketoconazole (−10.85 kcal/mol). Compound 3f possessed the highest binding affinities (−13.14 kcal/mol) comparable to α-tocopherol (−14.82 kcal/mol).
TABLE 4. *In silico* antibacterial, antifungal, and antioxidant activities of the title compounds

Compound	Antibacterial	Antifungal	Antioxidant
	5MMN	1WS3	1HD2
3a	−9.63	−11.79	−12.41
3b	−9.07	−9.93	−10.56
3c	−10.03	−9.49	−10.75
3d	−9.99	−9.03	−11.72
3e	−9.63	−9.75	−11.41
3f	−9.90	−10.03	−13.13
Standard drug	−10.89	−10.85	−14.82

Key: Standard drugs for 5MMN = Penicillin; 1WS3 = Ketoconazole; 1HD2 = α-Tocopherol.

6. Conclusion

A facile synthesis of alanine-based antimicrobial and antioxidant agents was successfully accomplished. The assigned structures complied with the spectral data. Compound 3f and 3a were found to be the best antibacterial and antifungal agents, respectively. Compound 3a was found to exhibit the best antioxidant activities, could penetrate the blood brain barrier and outperformed Ketoconazole in the *in silico* antifungal assessment. Compounds 3c and 3f exhibited excellent *in silico* antibacterial and antioxidant activities comparable to penicillin and α-tocopherol, respectively. The title compounds were found to be likely drugs with good oral bioavailability properties and confirmed to be potential antimicrobial, antioxidant agents.

Financial Disclosure/Conflict of Interest

The authors declare that there was no financial aid received and no conflict of interest associated with this research work.

References

1. The infectious disease challenges of our time. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854861/. Date accessed: 22/03/2013.
2. Halliwell B. Oxidative stress and cancer: have we moved forward? *Biochemical Journal*. 2007, 401(1), 1–11.
3. Hwang O. Role of oxidative stress in Parkinson’s disease. *Experimental Neurobiology*. 2013, 22(1), 1–7.
4. Kock MD, Jessup DA, Clark RK, Franti CE. Effects of capture on biological parameters in free-ranging bibhorn: evaluation of drop-net, drive-net, chemical immobilization and the net-gun. *Journal of Wildlife Diseases*. 1987, 23(4), 641–651.
5. Rowley D, Cohen G. Amino acid utilization in bacterial growth. 2. A study of threonine – isoleuine relationships in minutes of *Escherichia coli*. *Biochemical Journal*. 1954, 57, 338–340.
6. Amos H, Cohen G. Amino acid utilization in bacterial growth. 2. A study of threonine-isoleucine relationships in mutants of Escherichia coli. Biochemical Journal. 1954, 57, 338–342.
7. Reeds PJ. Dispensable and indispensable amino acids for humans. Journal of Nutrition. 2000, 130(7), 1835–1840.
8. Principles of biochemistry. https://www.amazon.in/gp/bestsellers/books/?ie=UTF8&ref_=sv_ba_3. Date accessed: 21/11/2012.
9. Lehninger principle of biochemistry. https://www.worldcat.org/title/lehninger-principles-of-biochemistry/oclc/191854286. Date accessed: 2008.
10. Holden JT, Wildman RB, Snell EE. Growth promotion by keto and hydroxy-acids and its relation to vitamin B₆. Journal of Biological Chemistry. 1951, 191, 559–610.
11. Biochemistry. https://www.ncbi.nlm.nih.gov/books/NBK21154/. Date accessed: 2002.
12. Shet PM, Vaidya VP, Mahadevan KM, Shivananda MK, Sreenivasa S, Vijayakumar GR. Synthesis, characterisation and antimicrobial studies of novel sulphonamides containing substituted naphthofuroyl group. Research Journal of Chemical Sciences. 2013, 3(1), 15–20.
13. Henry RJ. The mode of action of sulphonamides. Bacteriological Reviews. 1943, 7(4), 175–262.
14. Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulphonamides and sulfonylated derivatives as anticancer agents. Current Cancer Drug Targets. 2002, 2(1), 55–75.
15. Marealle AL. A decade since sulphonamide-based antimalarial medicines was limited for intermittent preventive treatment of malaria among pregnant women in Tanzania. Malaria Journal. 2018, 17(2), 409–415.
16. Lohet B. Inhibition of HIV 1 replication by isoxazolidine and isoxazole sulphonamides. Chemical Biology & Drug Design. 2010, 75(5), 461–474.
17. Montalbetti CAGN, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005, 61, 10852.
18. Ju Y, Kuma D, Verma RS. Revisiting nucleophilic substitution reactions: microwave-assisted synthesis of azides, thiocyanats and sulfones in an aqueous medium. Journal of Organic Chemistry. 2006, 71(17), 6697–6700.
19. Ju Y, Verma RS. Aqueous N-herocyclization of primary anuries and hydrazines with dihalids microwave-assistant synthesis of N-azacycloalkanes, isoinole, pyrazole, pyrazolidine and phthalazine derivatives. Journal of Organic Chemistry. 2006, 71(1), 135–141.
20. The Biochemistry of foreign compounds. https://www.elsevier.com/books/the-biochemistry-of-foreign-compounds/parke/978-0-08-012202-1. Date accessed: 01/01/1968.
21. Occupational health guideline for chemical hazards. https://www.cdc.gov/niosh/docs/81-123/default.html. Date accessed: 1981.
22. Toxicity and metabolism of industrial solvents. https://www.worldcat.org/title/toxicity-and-metabolism-of-industrial-solvents/oclc/519562. Date accessed: 1965.
23. Jain KS, Chitre, TS, Miniyar PB. Biological and medical significance of pyrimidine. Current Science. 2006, 90(6), 793–803.
24. Egbujor MC, Okoro UC. New methionine-based p-toluene sulphonamoyl boxamide derivatives as antimicrobial and antioxidant agents: design, synthesis. Journal of Pharmaceutical Research International. 2019, 28(1), 1–12.
25. Egbujor MC, Okoro UC, Okafor SN, Nwankwo NE. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo American Journal of Pharmaceutical Sciences. 2019, 6(6), 12232–12240.
26. Egbujor MC, Okoro UC, Okafor SN, Nwankwo NE. Synthesis, characterization and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as
potential antimicrobial and antioxidant agents. *International Journal of Pharmaceutical and Phytopharmacological Research.* 2019, 9(3), 89–97.

27. Calls to rein in antibiotic use after study shows 65% increase worldwide. https://www.theguardian.com/science/2018/mar/26/calls-to-rein-in-antibiotic-use-after-study-shows-65-increase-worldwide. Date accessed: 26/03/2018.

28. Antimicrobial resistance; global report on surveillance 2014. https://www.who.int/drugresistance/documents/surveillanceresults/en/. Date accessed: 2014.

29. Bioshield II: responding to a disease ever-changing threat. https://www.judiciary.senate.gov/meetings/bioshield-ii-responding-to-an-ever-changing-threat. Date accessed: 06/10/2004.

30. Sun, J, Chu YF, Wu XZ, Liu RH. Antioxidant and antiproliferative activities of common fruits. *Journal of Agricultural and Food Chemistry.* 2002, 50(25), 7449–7454.

31. Coates AR, Hu Y. Novel approaches to developing new antibiotics for bacterial infections. *The British Journal of Pharmacology.* 2007, 152(8), 1147–1154.

32. Antimicrobial resistance CDC. https://www.cdc.gov/drugresistance/index.html. Date accessed: 2016.

33. Venanzi LM. Tetrahedral nickel (11) complexes and the factors determining their formation. *Journal of Chemical Society.* 1958, 719–724.

34. Wiegand I, Hilpert K, Hancock RE. Agar and Broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nature Protocols.* 2008, 3, 163–170.

35. Blois MS. Antioxidant determinations by the use of a stable free radical. *Nature.* 1958, 181, 1199–1200.

36. Verber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. *Journal of Medicinal Chemistry.* 2002, 45(12), 2615–2623

37. Explore encyclopedia Britannica. https://www.britannica.com/. Date accessed: 2011.

38. Van de waterbeemd H, Carter, RE, Grassy G, Kubinyi H, Martins YC, Tute MS, Willet P. Glossary of terms used in computational drug design. *Pure and Applied Chemistry.* 1997, 69(5), 1137–1152.