Convergence Rates in Periodic Homogenization of Systems of Elasticity

Zhongwei Shen∗ Jinping Zhuge†

Abstract

This paper is concerned with homogenization of systems of linear elasticity with rapidly oscillating periodic coefficients. We establish sharp convergence rates in L^2 for the mixed boundary value problems with bounded measurable coefficients.

1 Introduction and main results

This paper is concerned with convergence rates in periodic homogenization of systems of linear elasticity with mixed boundary conditions. More precisely, we consider the operator

$$L_\varepsilon = -\text{div}(A(x/\varepsilon)\nabla) = -\frac{\partial}{\partial x_1}\left\{a_{ij}(x/\varepsilon)\frac{\partial}{\partial x_j}\right\}, \quad \varepsilon > 0.$$

(The summation convention is used throughout this paper). We will assume that the coefficient matrix $A(y) = (a^{ij}_{\alpha\beta}(y))$ with $1 \leq i, j, \alpha, \beta \leq d$ is real, bounded measurable, and satisfies the elasticity condition,

$$a^{\alpha\beta}_{ij}(y) = a^{\beta\alpha}_{ji}(y) = a^{ij}_{\alpha\beta}(y),$$

$$\kappa_1|\xi + \xi^T|^2 \leq a^{ij}_{\alpha\beta}(y)\xi^\alpha_i \xi^\beta_j \leq \kappa_2|\xi|^2,$$

for $y \in \mathbb{R}^d$ and matrix $\xi = (\xi^\alpha) \in \mathbb{R}^{d \times d}$, where $\kappa_1, \kappa_2 > 0$. We also assume that A satisfies the 1-periodic condition:

$$A(y + z) = A(y) \quad \text{for} \quad y \in \mathbb{R}^d \text{ and } z \in \mathbb{Z}^d.$$

We shall be interested in the mixed boundary value problems (or mixed problems) for the elliptic system $L_\varepsilon(u_\varepsilon) = F$ in a bounded Lipschitz domain Ω. Let D be a closed subset of $\partial \Omega$ and $N = \partial \Omega \setminus D$. Denote by $H^1_D(\Omega; \mathbb{R}^d)$ the closure in $H^1(\Omega; \mathbb{R}^d)$ of the set $C^\infty_0(\mathbb{R}^d \setminus D; \mathbb{R}^d)$ and $H^{-1}_D(\Omega; \mathbb{R}^d)$ the dual of $H^1_D(\Omega; \mathbb{R}^d)$. Assume that $F \in$
\[H^{-1}_D(\Omega; \mathbb{R}^d), \quad f \in H^1(\Omega; \mathbb{R}^d) \text{ and } g \in H^{-1/2}(\partial\Omega; \mathbb{R}^d) \] (the dual of \(H^{1/2}(\partial\Omega; \mathbb{R}^d) \)). We call \(u \in H^1(\Omega; \mathbb{R}^d) \) a weak solution of the mixed boundary value problem

\[
\begin{aligned}
&\mathcal{L}_\varepsilon(u_{\varepsilon}) = F \quad \text{in } \Omega, \\
u_{\varepsilon} = f \quad \text{on } D, \\
n \cdot A(x/\varepsilon)\nabla u_{\varepsilon} = g \quad \text{on } N,
\end{aligned}
\]

(1.4)

if \(u_{\varepsilon} - f \in H^1_D(\Omega; \mathbb{R}^d) \) and

\[
\int_{\Omega} A^\varepsilon \nabla u_{\varepsilon} \cdot \nabla \varphi = \langle F, \varphi \rangle_{H^1_D(\Omega) \times H^1_D(\Omega)} + \langle g, \varphi \rangle_{H^{-1/2}(\partial\Omega) \times H^{1/2}(\partial\Omega)}
\]

(1.5)

holds for any \(\varphi \in H^1_D(\Omega; \mathbb{R}^d) \). Here and throughout this paper, we define \(h_{\varepsilon}(x) = h(x/\varepsilon) \) for any function \(h \) and use \(n \) to denote the outward unit normal to \(\partial\Omega \).

The existence and uniqueness of the weak solution to the mixed problem (1.4) follow readily from the Lax-Milgram theorem, with the help of Korn’s inequalities. It can also be shown that under the elasticity condition (1.2) and the periodicity condition (1.3), the weak solutions \(u_{\varepsilon} \) converge to some function \(u_0 \) weakly in \(H^1(\Omega; \mathbb{R}^d) \) and thus strongly in \(L^2(\Omega; \mathbb{R}^d) \), as \(\varepsilon \to 0 \). Furthermore, the function \(u_0 \) is the weak solution to the mixed problem:

\[
\begin{aligned}
&\mathcal{L}_0 u_0 = F \quad \text{in } \Omega, \\
u_0 = f \quad \text{on } D, \\
n \cdot \hat{A} \nabla u_0 = g \quad \text{on } N,
\end{aligned}
\]

(1.6)

where

\[
\mathcal{L}_0 = -\text{div}(\hat{A} \nabla) = \frac{\partial}{\partial x_i} \left\{ \alpha_{ij} \frac{\partial}{\partial x_j} \right\}
\]

(1.7)

is a system of linear elasticity with constant matrix \(\hat{A} = (\hat{a}_{ij}) \), known as the homogenized (or effective) matrix of \(A \).

The primary purpose of this paper is to establish the optimal rate of convergence of \(u_{\varepsilon} \) to \(u_0 \) in \(L^2(\Omega; \mathbb{R}^d) \). More precisely, we are interested in the estimate,

\[
\|u_{\varepsilon} - u_0\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{H^2(\Omega)},
\]

(1.8)

for the mixed problem (1.4) with nonsmooth coefficients, where \(C \) depends at most on \(d, \kappa_1, \kappa_2, \Omega, \) and \(D \). The problem of convergence rates is central in quantitative homogenization and has been studied extensively in various settings. We refer the reader to [1, 7, 10] for references on earlier work in this area. More recent work on the problem of convergence rates in periodic homogenization may be found in [17, 4, 5, 13, 11, 8, 9, 12, 15, 16, 14, 6] and their references. In particular, the estimate (1.8) was proved by Griso in [4, 5] for scalar elliptic equations with either Dirichlet or Neumann boundary conditions, using the method of periodic unfolding [2, 3]. In [15, 16] the results were extended by Suslina to a broader class of elliptic systems in \(C^2 \) domains, which includes the systems of elasticity considered in this paper, with either Dirichlet or Neumann boundary conditions. We mention that for
the results were further extended by the first author in [14], where the estimate \(\|u_\varepsilon - u_0\|_{L^p(\Omega)} \leq C \varepsilon \|u_0\|_{L^2(\Omega)} \), with \(p = \frac{2d}{d-1} \), was proved in Lipschitz domains for solutions with either Dirichlet or Neumann boundary conditions. As far as we know, there are no results on the estimate (1.8) for the mixed boundary value problems, even for scalar elliptic equations.

The following is our main result.

Theorem 1.1. Let \(\Omega \) be a bounded \(C^{1,1} \) domain and \(D \) a closed subset of \(\partial \Omega \) with a nonempty interior. Let \(u_\varepsilon, u_0 \) be the weak solutions of mixed boundary value problems (1.4) and (1.6), respectively. Assume that \(u_0 \in H^2(\Omega; \mathbb{R}^d) \). Then the estimate (1.8) holds for solutions with either Dirichlet or Neumann boundary conditions. As far as we know, there are no results on the estimate (1.8) for the mixed boundary value problems, even for scalar elliptic equations.

Let \(\chi = (\chi^{\alpha\beta}_{ij}) \) denote the correctors for the operator \(L_\varepsilon \). Let \(S_\varepsilon \) be a smoothing operator at \(\varepsilon \)-scale and \(\tilde{u}_0 \) an extension of \(u_0 \) from \(H^2(\Omega; \mathbb{R}^d) \) to \(H^2(\mathbb{R}^d, \mathbb{R}^d) \). The key step in the proof of Theorem 1.1 is the following estimate,

\[
\left| \int_\Omega A^\varepsilon \nabla \left(u_\varepsilon - u_0 - \varepsilon \chi^\varepsilon S_\varepsilon (\nabla \tilde{u}_0) \right) \cdot \nabla \psi \right| \leq C \varepsilon \left\{ \| \nabla \psi \|_{L^2(\Omega)} + \varepsilon^{1/2} \| \nabla \psi \|_{L^2(\Omega_2 \varepsilon)} \right\} \| u_0 \|_{H^2(\Omega)},
\]

where \(\psi \in H^1_D(\Omega; \mathbb{R}^d) \) and \(\Omega_2 \varepsilon = \{ x \in \Omega : \text{dist}(x, \partial \Omega) < 2\varepsilon \} \) (see Lemma 3.5). We point out that some analogous estimates were proved in [5] by the method of periodic unfolding, which is not used in this paper. Our approach to (1.9), which involves a standard smoothing operator at the scale \(\varepsilon \), is much more direct and flexible and allows us to handle different boundary conditions in a uniform fashion. We also mention that the use of smoothing operators as well as the duality argument in our proof of Theorem 1.1 is motivated by the work [5] [15] [16]. However, in comparison with [15] [16], our proof does not rely on the sharp convergence estimates for the whole space \(\mathbb{R}^d \) and thus avoids the estimates of terms that are used to correct the boundary discrepancies. As a result, this significantly simplifies the argument.

As a bi-product, we also obtain an \(O(\varepsilon^{1/2}) \) estimate in \(H^1(\Omega) \) as well as an interior \(O(\varepsilon) \) estimate in \(H^1 \).

Theorem 1.2. Under the same conditions as in Theorem 1.1 we have

\[
\|u_\varepsilon - u_0 - \varepsilon \chi^\varepsilon S_\varepsilon (\nabla \tilde{u}_0)\|_{H^1(\Omega)} \leq C \varepsilon^{1/2} \|u_0\|_{H^2(\Omega)},
\]

where \(C \) depends at most on \(d, \kappa_1, \kappa_2, D, \) and \(\Omega \).

Theorem 1.3. Under the same condition as Theorem 1.1 we have

\[
\|\delta \nabla (u_\varepsilon - u_0 - \varepsilon \chi^\varepsilon S_\varepsilon (\nabla \tilde{u}_0))\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{H^2(\Omega)},
\]

where \(\delta(x) = \text{dist}(x, \partial \Omega) \) and \(C \) depends at most on \(d, \kappa_1, \kappa_2, D, \) and \(\Omega \).

We mention that our argument also yields the estimates in Theorems 1.1, 1.2 and 1.3 for the Neumann problem, where \(D = \emptyset \). We further point out that the approach works equally well for the strongly elliptic systems \(-\text{div}(A(x/\varepsilon)\nabla u_\varepsilon) = F \), where \(A(y) = (a_{ij}^{\alpha\beta}(y)) \) with \(1 \leq i, j \leq d \) and \(1 \leq \alpha, \beta \leq m \) is real, bounded measurable, 1-periodic, and satisfies the ellipticity condition \(a_{ij}^{\alpha\beta}(y)\xi_i^{\alpha}\xi_j^{\beta} \geq \mu|\xi|^2 \) for \(y \in \mathbb{R}^d \) and \(\xi = (\xi^\alpha_i) \in \mathbb{R}^{m \times d} \).
2 Preliminaries

In this section we give a brief review of the solvability and the homogenization theory for the mixed problem (1.4). We begin with a Korn inequality.

Lemma 2.1. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^d \) and \(D \) a closed subset of \(\partial \Omega \) with a nonempty interior. Then for any vector field \(u \in H^1_0(\Omega; \mathbb{R}^d) \),

\[
\|u\|_{H^1(\Omega)} \leq C \|\nabla u + (\nabla u)^T\|_{L^2(\Omega)},
\]

where \(C \) depends only on \(d, D, \) and \(\Omega \).

Proof. Since \(D \) has a nonempty interior in \(\partial \Omega \), there exist \(x_0 \in \partial \Omega \) and \(r_0 > 0 \) such that \(B(x_0, r_0) \cap \partial \Omega \subset D \subset \partial \Omega \). As a result, the inequality (2.1) follows from [10, Theorem 2.7].

Theorem 2.2. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^d \) and \(D \) a closed subset of \(\partial \Omega \) with a nonempty interior. For \(F \in H^{-1}_0(\Omega; \mathbb{R}^d) \), \(f \in H^1(\Omega; \mathbb{R}^d) \) and \(g \in H^{-1/2}(\partial \Omega; \mathbb{R}^d) \), there exists a unique weak solution \(u_\varepsilon \in H^1(\Omega; \mathbb{R}^d) \) to the mixed problem (1.4). Moreover, the solution \(u_\varepsilon \) satisfies

\[
\|u_\varepsilon\|_{H^1(\Omega)} \leq C \left\{ \|F\|_{H^{-1}_0(\Omega)} + \|f\|_{H^1(\Omega)} + \|g\|_{H^{-1/2}(\partial \Omega)} \right\},
\]

where \(C \) depends only on \(d, \kappa_1, \kappa_2, \Omega, \) and \(D \).

Proof. By considering the bilinear form

\[
\int_\Omega A^\varepsilon \nabla \psi \cdot \nabla \varphi
\]

and the bounded linear functional

\[
\langle F, \varphi \rangle_{H^{-1}_0(\Omega) \times H^1_0(\Omega)} + \langle g, \varphi \rangle_{H^{-1/2}(\partial \Omega) \times H^{1/2}(\partial \Omega)} = \int_\Omega A^\varepsilon \nabla f \cdot \nabla \varphi
\]

on \(H^1_0(\Omega; \mathbb{R}^d) \), Theorem 2.2 follows readily from the Lax-Milgram theorem, using the elasticity condition (1.2) and the Korn inequality in Lemma 2.1.

Assume that \(A \) satisfies (1.2) and (1.3). Let \(\chi = (\chi_1^\alpha) = (\chi_j^\alpha_\beta) \) denote the correctors for \(\mathcal{L}_\varepsilon \), where \(1 \leq j \leq d \) and \(1 \leq \alpha, \beta \leq d \). This means that \(\chi_j^\alpha \in H^1_\text{loc}(\mathbb{R}^d; \mathbb{R}^d) \) is the 1-periodic function such that \(\int_Q \chi_j^\beta = 0 \) and

\[
\mathcal{L}_1(\chi_j^\beta + P_j^\beta) = 0 \quad \text{in} \quad \mathbb{R}^d,
\]

where \(Q = [-1/2, 1/2]^d \), \(P_j^\beta(y) = y_j e^\beta \), and \(e^\beta = (0, \cdots, 0, 1, \cdots, 0) \in \mathbb{R}^d \) with 1 in the \(\beta \)th position. For the existence of correctors \(\chi \), see e.g. [7, 10]. The homogenized operator \(\mathcal{L}_0 \) is given by (1.7), where the homogenized matrix \(\hat{A} = (\hat{\alpha}_{ij}^\alpha_\beta) \) is defined by

\[
\hat{A} = \int_Q A(I + \nabla \chi) \quad \text{or precisely} \quad \hat{\alpha}_{ij}^\alpha_\beta = \int_Q \left\{ \alpha_{ij}^\alpha_\beta + \alpha_{ik}^\alpha_\gamma \frac{\partial}{\partial y_k} (\chi_j^\gamma) \right\}.
\]

It is known that \(\hat{A} \) satisfies the elasticity condition (1.2) (with possible different \(\kappa_1, \kappa_2 \)) [7].
Theorem 2.3. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^d \) and \(D \) a closed subset of \(\partial \Omega \) with a nonempty interior. For \(\varepsilon > 0 \), let \(u_\varepsilon, u_0 \) be the weak solutions of the mixed boundary value problems (1.4) and (1.6), respectively, where \(F \in H_D^{-1}(\Omega; \mathbb{R}^d) \), \(f \in H^1(\Omega; \mathbb{R}^d) \), and \(g \in H^{-1/2}(\partial \Omega; \mathbb{R}^d) \). Then

\[
\begin{align*}
 u_\varepsilon &\rightharpoonup u_0 \quad \text{weakly in } H^1(\Omega; \mathbb{R}^d), \\
 A^\varepsilon \nabla u_\varepsilon &\rightharpoonup \hat{A} \nabla u_0 \quad \text{weakly in } L^2(\Omega; \mathbb{R}^{d \times d}),
\end{align*}
\]

(2.5)
as \(\varepsilon \to 0 \).

Proof. The proof is the same as in the case of the Dirichlet problem \([7]\). By Theorem 2.2 the solutions \(u_\varepsilon \) are uniformly bounded in \(H^1(\Omega; \mathbb{R}^d) \). Let \(\{u_{\varepsilon}\} \) be a subsequence such that

\[
\begin{align*}
 u_\varepsilon &\rightharpoonup w \quad \text{weakly in } H^1(\Omega; \mathbb{R}^d), \\
 A^\varepsilon \nabla u_\varepsilon &\rightharpoonup G \quad \text{weakly in } L^2(\Omega; \mathbb{R}^{d \times d}).
\end{align*}
\]

Since \(u_\varepsilon - f \in H_D^1(\Omega; \mathbb{R}^d) \), we have \(w - f \in H_D^1(\Omega; \mathbb{R}^d) \). Next we will show that \(G = \hat{A} \nabla w \). To this end we consider identity

\[
\int_{\Omega} A^\varepsilon \nabla u_\varepsilon \cdot \nabla \left(P^\beta_j + \varepsilon' \chi_j^\beta(x/\varepsilon') \right) \phi = \int_{\Omega} \nabla u_\varepsilon \cdot A^\varepsilon \nabla \left(P^\beta_j + \varepsilon' \chi_j^\beta(x/\varepsilon') \right) \phi,
\]

(2.6)
where \(\phi \in C^\infty_0(\Omega) \) and we have used the symmetry condition \(a_{ij}^\alpha = a_{ji}^{\alpha} \). By the Div-Curl lemma (see e.g. \([7\), p.4]), the LHS of (2.6) converges to

\[
\int_{\Omega} G \cdot (\nabla P^\beta_j) \phi = \int_{\Omega} G^\beta_j \phi,
\]

(2.7)
as \(\varepsilon \to 0 \), where \(G = (G^\alpha_i) \). Similarly, by the Div-Curl lemma, the RHS of (2.6) converges to

\[
\int_{\Omega} \nabla w \cdot \left(\int_{\Omega} A(\nabla P^\beta_j + \nabla \chi_j^\beta) \right) \phi = \int_{\Omega} \frac{\partial w^\alpha}{\partial x_i} \cdot \tilde{a}_{ij}^\alpha \phi,
\]

(2.8)
as \(\varepsilon \to 0 \). Since \(\phi \in C^\infty_0(\Omega) \) is arbitrary, we obtain

\[
G^\beta_j = \frac{\partial w^\alpha}{\partial x_i} \tilde{a}_{ij}^\alpha = \hat{a}_{ij}^\alpha \frac{\partial w^\alpha}{\partial x_i};
\]
i.e. \(G = \hat{A} \nabla w \) in \(\Omega \).

Finally, note that for any \(\varphi \in H_D^1(\Omega; \mathbb{R}^d) \),

\[
\int_{\Omega} \hat{A} \nabla w \cdot \nabla \varphi = \int_{\Omega} G \cdot \nabla \varphi = \lim_{\varepsilon \to 0} \int_{\Omega} A^\varepsilon \nabla u_\varepsilon \cdot \nabla \varphi = \langle F, \varphi \rangle_{H^{-1}_D(\Omega) \times H^1_D(\Omega)} + \langle g, \varphi \rangle_{H^{-1/2}(\partial \Omega) \times H^{1/2}(\partial \Omega)}.
\]

This shows that \(w \) is a solution of the mixed problem (1.6) for the homogenized system. By the uniqueness of (1.6) it follows that the whole sequence \(u_\varepsilon \) converges weakly to \(u_0 \) in \(H^1(\Omega; \mathbb{R}^d) \). The argument above also shows that the whole sequence \(A^\varepsilon \nabla u_\varepsilon \) converges weakly to \(\hat{A} \nabla u_0 \) in \(L^2(\Omega; \mathbb{R}^{d \times d}) \).

\[\Box\]
3 Convergence rates in $H^1(\Omega)$

In this section we give the proof of the estimate (1.9) and Theorem 1.2. Let S_ε be the operator on $L^2(\mathbb{R}^d)$ given by

$$S_\varepsilon u(x) = u \ast \phi_\varepsilon(x) = \int_{\mathbb{R}^d} u(x - y)\phi_\varepsilon(y)dy,$$

where $\phi_\varepsilon(x) = \varepsilon^{-d}\phi(\varepsilon^{-1}x)$, $\phi \in C^\infty_0(B(0,1/2))$, $\phi \geq 0$, and $\int \phi = 1$. We will call S_ε the smoothing operator at ε-scale. Note that

$$\|S_\varepsilon u\|_{L^2(\mathbb{R}^d)} \leq \|u\|_{L^2(\mathbb{R}^d)},$$

and $D^\alpha S_\varepsilon u = S_\varepsilon D^\alpha u$ for $u \in H^s(\mathbb{R}^d)$ and $|\alpha| \leq s$.

Lemma 3.1. Let $u \in H^1(\mathbb{R}^d)$. Then

$$\|S_\varepsilon u - u\|_{L^2(\mathbb{R}^d)} \leq C\varepsilon \|\nabla u\|_{L^2(\mathbb{R}^d)},$$

for any $\varepsilon > 0$.

Proof. This is well known. See e.g. [17] or [14] for a proof.

Lemma 3.2. Let $f \in L^2_{\text{loc}}(\mathbb{R}^d)$ be a 1-periodic function. Then for any $u \in L^2(\mathbb{R}^d)$,

$$\|f^\varepsilon S_\varepsilon u\|_{L^2(\mathbb{R}^d)} \leq C\|f\|_{L^2(Q)}\|u\|_{L^2(\mathbb{R}^d)},$$

where $f^\varepsilon(x) = f(x/\varepsilon)$ and $Q = [-1/2, 1/2]^d$.

Proof. See e.g. [17] or [14] for a proof.

Let $\tilde{\Omega}_\varepsilon = \{x \in \mathbb{R}^d : \text{dist}(x, \partial\Omega) < \varepsilon\}$.

Lemma 3.3. Let Ω be a bounded Lipschitz domain in \mathbb{R}^d. Then for any $u \in H^1(\mathbb{R}^d)$,

$$\int_{\tilde{\Omega}_\varepsilon} |u|^2 \leq C\varepsilon \|u\|_{H^1(\mathbb{R}^d)}\|u\|_{L^2(\mathbb{R}^d)},$$

where the constant C depends only on d and Ω.

Proof. This is known. See e.g. [12]. We provide a proof for the reader’s convenience. Note that the desired estimate is invariant under Lipschitz homeomorphism. By covering $\partial\Omega$ with coordinate patches, it suffices to prove a local estimate for the upper half-space with $0 < \varepsilon < 1$.

Let $\theta \in C^\infty(\mathbb{R})$ such that $0 \leq \theta \leq 1$, $\theta(t) = 1$ for $t \leq 1$, and $\theta(t) = 0$ for $t \geq 2$. For any (x', t) with $x' \in \mathbb{R}^{d-1}$ and $-\varepsilon < t < \varepsilon < 1$, we have

$$u^2(x', t) = -\int_t^2 \frac{\partial}{\partial s} [\theta(s)u^2(x', s)] \, ds$$

$$= -\int_t^2 \frac{\partial}{\partial s} [\theta(s)]u^2(x', s) \, ds - 2\int_t^2 \theta(s)u(x', s)\frac{\partial}{\partial s}u(x', s) \, ds.$$
It follows that
\[u^2(x', t) \leq C \int_{-2}^2 u^2(x', s) \, ds + 2 \int_{-2}^2 |u(x', s)||\nabla u(x', s)| \, ds. \tag{3.6} \]

Let \(\Delta \) be a surface ball in \(\mathbb{R}^{d-1} \). Then
\[
\int_{-\varepsilon}^\varepsilon \int_{\Delta} u^2(x', t) \, dx' \, dt \\
\leq C \varepsilon \int_{-2}^2 \int_{\Delta} u^2(x', s) \, dx' \, ds + 4\varepsilon \int_{-2}^2 \int_{\Delta} |u(x', s)||\nabla u(x', s)| \, dx' \, ds \\
\leq C \varepsilon \|u\|_{L^2(\Delta \times [-2, 2])}\|u\|_{H^1(\Delta \times [-2, 2])}.
\]

This completes the proof. \(\square \)

Lemma 3.4. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^d \) and \(f \in L^2_{\text{loc}}(\mathbb{R}^d) \) a 1-periodic function. Then for any \(u \in H^1(\mathbb{R}^d) \),
\[
\int_{\tilde{\Omega}_\varepsilon} |f^\varepsilon|^2 |S_\varepsilon u|^2 \leq C \varepsilon \|f\|_{L^2(\Omega)}^2 \|u\|_{H^1(\mathbb{R}^d)}^2 \|u\|_{L^2(\mathbb{R}^d)}, \tag{3.7}
\]

where \(C \) depends only on \(d \) and \(\Omega \).

Proof. This is known and similar estimates may be found in [17, 12]. Note that
\[
S_\varepsilon u(x) = \int_{B(0,1/2)} u(x - \varepsilon y) \phi(y) \, dy. \tag{3.8}
\]

By Minkowski's integral inequality and Fubini's theorem,
\[
\int_{\tilde{\Omega}_\varepsilon} |f^\varepsilon(x)|^2 |S_\varepsilon u(x)|^2 \, dx \leq C \int_{\tilde{\Omega}_\varepsilon} \int_{B(0,1/2)} |f^\varepsilon(x)|^2 |u(x - \varepsilon y)|^2 \, dy \, dx \\
\leq C \int_{B(0,1/2)} \int_{\tilde{\Omega}_\varepsilon} |f^\varepsilon(x + \varepsilon y)|^2 |u(x)|^2 \, dx \, dy \\
\leq C \int_{B(0,1/2)} \int_{\tilde{\Omega}_\varepsilon} |f^\varepsilon(x + \varepsilon y)|^2 |u(x)|^2 \, dx \, dy \\
\leq C \int_{\tilde{\Omega}_\varepsilon} |u(x)|^2 \, dx \sup_{x \in \mathbb{R}^d} \int_{B(0,1/2)} |f^\varepsilon(x + \varepsilon y)|^2 \, dy \\
\leq C \varepsilon \|f\|_{L^2(\Omega)}^2 \|u\|_{H^1(\mathbb{R}^d)}^2 \|u\|_{L^2(\mathbb{R}^d)},
\]

where we have used Lemma 3.3 for the last inequality. \(\square \)

Let \(u_0 \) be the solution of (1.6). Suppose that \(u_0 \in H^2(\Omega; \mathbb{R}^d) \). Since \(\Omega \) is Lipschitz, there exists a bounded extension operator \(E : H^2(\Omega; \mathbb{R}^d) \to H^2(\mathbb{R}^d; \mathbb{R}^d) \) so that \(\tilde{u}_0 = E u_0 \) is an extension of \(u_0 \) and \(\|\tilde{u}_0\|_{H^2(\mathbb{R}^d)} \leq C \|u_0\|_{H^2(\Omega)} \). Let
\[
w_\varepsilon = u_\varepsilon - u_0 - \varepsilon x^\varepsilon S_\varepsilon \nabla \tilde{u}_0, \tag{3.9}
\]
where \(u_\varepsilon \in H^1(\Omega; \mathbb{R}^d) \) is the solution of (1.4). Then \(w_\varepsilon \) satisfies

\[
\begin{align*}
\mathcal{L}_\varepsilon w_\varepsilon &= F_\varepsilon = \mathcal{L}_0 u_0 - \mathcal{L}_\varepsilon (\varepsilon \chi S_\varepsilon \nabla \tilde{u}_0) & \text{in } \Omega, \\
w_\varepsilon &= h_\varepsilon = -\varepsilon \chi S_\varepsilon \nabla \tilde{u}_0 & \text{on } \partial \Omega, \\
n \cdot A^\varepsilon \nabla w_\varepsilon &= g_\varepsilon = n \cdot \nabla \tilde{u}_0 - n \cdot A^\varepsilon \nabla u_0 - n \cdot A^\varepsilon (\varepsilon \chi S_\varepsilon \nabla \tilde{u}_0) & \text{on } N.
\end{align*}
\]
(3.10)

Recall that \(\Omega_{2\varepsilon} = \{ x \in \Omega : \text{dist}(x, \partial \Omega) < 2\varepsilon \} \). The following lemma plays a key role in this paper.

Lemma 3.5. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^d \) and \(D \) a closed subset of \(\partial \Omega \). For any \(\psi \in H^1_D(\Omega; \mathbb{R}^d) \), we have

\[
\left| \int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla \psi \right| \leq C \| u_0 \|_{H^2(\Omega)} \left\{ \varepsilon \| \nabla \psi \|_{L^2(\Omega)} + \varepsilon^{1/2} \| \nabla \psi \|_{L^2(\Omega_{2\varepsilon})} \right\},
\]
where \(w_\varepsilon \) is given by (3.9) and \(C \) depends only on \(d, \kappa_1, \kappa_2, D, \) and \(\Omega \).

Proof. By a density argument we may assume \(\psi \in C_0^\infty(\mathbb{R}^d \setminus D; \mathbb{R}^d) \). Using

\[
\int_\Omega A^\varepsilon \nabla u_\varepsilon \cdot \nabla \psi = \int_\Omega \nabla \tilde{u}_0 \cdot \nabla \psi,
\]
we obtain

\[
\int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla \psi = \int_\Omega \left[\nabla \tilde{u}_0 - A^\varepsilon \nabla u_0 - \varepsilon A^\varepsilon \nabla (\chi S_\varepsilon \nabla \tilde{u}_0) \right] \cdot \nabla \psi. \tag{3.11}
\]

A direct calculation shows that

\[
\begin{align*}
\nabla \tilde{u}_0 - A^\varepsilon \nabla u_0 - \varepsilon A^\varepsilon \nabla (\chi S_\varepsilon \nabla \tilde{u}_0)
&= B^\varepsilon S_\varepsilon \nabla \tilde{u}_0 + \left[(\nabla \tilde{u}_0 - \chi S_\varepsilon \nabla \tilde{u}_0) - (A^\varepsilon \nabla u_0 - A^\varepsilon S_\varepsilon \nabla \tilde{u}_0) - \varepsilon A^\varepsilon \chi S_\varepsilon \nabla^2 \tilde{u}_0 \right] \\
&= B^\varepsilon S_\varepsilon \nabla \tilde{u}_0 + T_\varepsilon,
\end{align*}
\]

where \(B(y) = \nabla A(y) - A(y) \nabla \chi(y) \). As a result, we have

\[
\int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla \psi = \int_\Omega B^\varepsilon S_\varepsilon \nabla \tilde{u}_0 \cdot \nabla \psi + \int_\Omega T_\varepsilon \cdot \nabla \psi = J_1 + J_2. \tag{3.12}
\]

For \(J_2 \), it follows from Lemmas 3.1 and 3.2 that

\[
\| T_\varepsilon \|_{L^2(\Omega)} \leq C \varepsilon \| u_0 \|_{H^2(\Omega)}. \tag{3.13}
\]

Thus,

\[
| J_2 | \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \nabla \psi \|_{L^2(\Omega)}. \tag{3.14}
\]

To handle \(J_1 \), we write

\[
J_1 = \int_\Omega B^\varepsilon (1 - \theta_\varepsilon) S_\varepsilon \nabla \tilde{u}_0 \cdot \nabla \psi + \int_\Omega B^\varepsilon \theta_\varepsilon S_\varepsilon \nabla \tilde{u}_0 \cdot \nabla \psi = J_{11} + J_{12}, \tag{3.15}
\]
where \(\theta \in C_0^\infty(\mathbb{R}^d) \) is a smooth function such that \(\theta(x) = 1 \) if \(x \in \tilde{\Omega}_\varepsilon \), \(\theta(x) = 0 \) if \(x \notin \tilde{\Omega}_\varepsilon \), and \(|\nabla \theta| \leq C\varepsilon^{-1} \). Since \(B(y) \) is \(1 \)-periodic and locally square integrable, by Lemma 3.4 we obtain

\[
|J_{12}| \leq \int_{\Omega_{2\varepsilon}} |B^\varepsilon S_\varepsilon \nabla \tilde{u}_0 \cdot \theta \nabla \psi| \\
\leq C \varepsilon^{1/2} \|u_0\|_{H^2(\Omega)} \|\nabla \psi\|_{L^2(\Omega_{2\varepsilon})}.
\] (3.16)

It remains to estimate \(J_{11} \). To this end we let \(B = (b_{ij}^\alpha \beta(y)) \). Note that \(b_{ij}^\alpha \beta \) is \(1 \)-periodic and \(b_{ij}^\alpha \beta \in L^2_{\text{loc}}(\mathbb{R}^d) \). Also, by (2.3) and (2.4),

\[
\frac{\partial}{\partial y_i} b_{ij}^\alpha \beta = 0 \quad \text{and} \quad \int_Q b_{ij}^\alpha \beta = 0.
\]

It follows that there exist \(1 \)-periodic functions \(\phi_{kij}^{\alpha \beta} \in H^1_{\text{loc}}(\mathbb{R}^d) \), where \(1 \leq \alpha, \beta, i, j, k \leq d \), such that

\[
b_{ij}^\alpha \beta = \frac{\partial}{\partial y_k} \phi_{kij}^{\alpha \beta} \quad \text{and} \quad \phi_{kij}^{\alpha \beta} = -\phi_{ikj}^{\alpha \beta}.
\] (3.17)

(see [7] or [8]). Using integration by parts, this allows us to write \(J_{11} \) as

\[
J_{11} = \int_\Omega \frac{\partial}{\partial x_k} \left(\varepsilon \phi_{kij}^{\alpha \beta} \right) (1 - \theta \varepsilon) S_\varepsilon \left(\frac{\partial \tilde{u}_0^\beta}{\partial x_j} \right) \cdot \frac{\partial \psi^\alpha}{\partial x_i} \\
= -\varepsilon \int_\Omega \phi_{kij}^{\alpha \beta} \frac{\partial}{\partial x_k} (1 - \theta \varepsilon) S_\varepsilon \left(\frac{\partial \tilde{u}_0^\beta}{\partial x_j} \right) \cdot \frac{\partial \psi^\alpha}{\partial x_i} - \varepsilon \int_\Omega \phi_{kij}^{\alpha \beta} (1 - \theta \varepsilon) S_\varepsilon \left(\frac{\partial \tilde{u}_0^\beta}{\partial x_j \partial x_k} \right) \cdot \frac{\partial \psi^\alpha}{\partial x_i}
\]

where \(\phi_{kij}^{\alpha \beta}(x) = \phi_{kij}^{\alpha \beta}(x/\varepsilon) \). Note that the last term vanishes in view of the second equation in (3.17). Therefore, by Lemmas 3.2 and 3.4 we obtain

\[
|J_{11}| \leq C \int_{\Omega_{2\varepsilon}} |\Phi^\varepsilon S_\varepsilon \tilde{u}_0 \nabla \psi| + C \varepsilon \int_{\Omega} |\Phi^\varepsilon S_\varepsilon \nabla^2 \tilde{u}_0 \nabla \psi| \\
\leq C \varepsilon^{1/2} \|u_0\|_{H^2(\Omega)} \|\nabla \psi\|_{L^2(\Omega_{2\varepsilon})} + C \varepsilon \|u_0\|_{H^2(\Omega)} \|\nabla \psi\|_{L^2(\Omega)},
\]

where \(\Phi = (\phi_{kij}^{\alpha \beta}) \). Thus, in view of (3.16), we have proved that

\[
|J_1| \leq C \varepsilon^{1/2} \|u_0\|_{H^2(\Omega)} \|\nabla \psi\|_{L^2(\Omega_{2\varepsilon})} + C \varepsilon \|u_0\|_{H^2(\Omega)} \|\nabla \psi\|_{L^2(\Omega)}.
\] (3.18)

The lemma now follows by combining (3.12), (3.14), and (3.18).

We are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let \(w_\varepsilon \) be defined by (3.9). Set \(r_\varepsilon = \varepsilon \theta \chi^\varepsilon S_\varepsilon (\nabla \tilde{u}_0) \) and \(\psi_\varepsilon = w_\varepsilon + r_\varepsilon \), where \(\theta \in C_0^\infty(\mathbb{R}^d) \) is the same as in the proof of Lemma 3.4. Then

\[
\psi_\varepsilon = u_\varepsilon - u_0 - \varepsilon (1 - \theta \varepsilon) \chi^\varepsilon S_\varepsilon (\nabla \tilde{u}_0) \in H^1_D(\Omega; \mathbb{R}^d).
\]
It follows from Lemma 3.5 that
\[
\left| \int_{\Omega} A^\varepsilon \nabla w_\varepsilon \cdot \nabla \psi_\varepsilon \right| \leq C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)} \| \nabla \psi_\varepsilon \|_{L^2(\Omega)}. \tag{3.19}
\]
This, together with the observation \(w_\varepsilon = \psi_\varepsilon - r_\varepsilon \) and
\[
\| r_\varepsilon \|_{H^1(\Omega)} \leq C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)}, \quad (3.20)
\]
gives
\[
\left| \int_{\Omega} A^\varepsilon \nabla \psi_\varepsilon \cdot \nabla \psi_\varepsilon \right| \leq C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)} \| \nabla \psi_\varepsilon \|_{L^2(\Omega)}. \tag{3.21}
\]
By the Korn inequality (2.1), the elasticity condition (1.2), and (3.21), we obtain
\[
\| \psi_\varepsilon \|_{H^1(\Omega)} \leq C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)} \tag{3.22}
\]
Finally, by (3.20) and (3.22),
\[
\| w_\varepsilon \|_{H^1(\Omega)} \leq \| \psi_\varepsilon \|_{H^1(\Omega)} + \| r_\varepsilon \|_{H^1(\Omega)} \leq C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)}. \tag{3.23}
\]
This completes the proof. \(\square \)

Remark 3.6. If \(D = \partial \Omega \), Theorem 1.2 gives the \(O(\varepsilon^{1/2}) \) error estimate in \(H^1 \) for the Dirichlet problem. In the case of the Neumann problem where \(D = \emptyset \), Lemma 3.5 as well as the estimate (3.21) continues to hold. We now use the second Korn inequality,
\[
\| u \|_{H^1(\Omega)} \leq C \left\{ \| \nabla u \|_{L^2(\Omega)} + \sum_{j=1}^{m} \left| \int_{\Omega} u \cdot \phi_j \right| \right\}, \tag{3.24}
\]
for any \(u \in H^1(\Omega; \mathbb{R}^d) \), where \(m = d(d+1)/2 \), \(\{ \phi_j : j = 1, \ldots, m \} \) is an orthonormal basis of \(\mathcal{R} \), and \(\mathcal{R} = \{ u = C x + D : C^T = -C \in \mathbb{R}^{d \times d}, D \in \mathbb{R}^d \} \) denotes the space of rigid displacements. This, together with (1.2) and (3.21), gives
\[
\| \psi_\varepsilon \|_{H^1(\Omega)} \leq C \left\{ \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)} + \sum_{j=1}^{m} \left| \int_{\Omega} \psi_\varepsilon \cdot \phi_j \right| \right\}.
\]
Thus, if we require that \(u_\varepsilon, u_0 \perp \mathcal{R} \) in \(L^2(\Omega; \mathbb{R}^d) \), the estimate (3.23) still holds.

4 Convergence rates in \(L^2(\Omega) \)

In this section we give the proof of Theorem 1.1. We begin by considering the Neumann boundary value problem
\[
\begin{aligned}
&\mathcal{L}_\varepsilon \rho_\varepsilon = G \quad \text{in } \Omega, \\
&n \cdot A^\varepsilon \nabla \rho_\varepsilon = h \quad \text{on } \partial \Omega,
\end{aligned} \tag{4.1}
\]
where $G \in L^2(\Omega; \mathbb{R}^d)$, $h \in L^2(\partial\Omega; \mathbb{R}^d)$, and

$$
\int_{\Omega} G + \int_{\partial\Omega} h = 0.
$$

(4.2)

Recall that a function $\rho_\varepsilon \in H^1(\Omega; \mathbb{R}^d)$ is called a weak solution of (4.1) if

$$
\int_{\Omega} A^\varepsilon \nabla \rho_\varepsilon \cdot \nabla \psi = \int_{\Omega} G \cdot \psi + \int_{\partial\Omega} h \cdot \psi
$$

(4.3)

for any $\psi \in H^1(\Omega; \mathbb{R}^d)$. Under the elasticity condition (1.2), it is well known that the Neumann problem (4.1) has a unique solution $\rho_\varepsilon \in H^1(\Omega; \mathbb{R}^d)$ such that $\rho_\varepsilon \perp \mathcal{R}$ in $L^2(\Omega; \mathbb{R}^d)$.

The homogenized problem for (4.1) is given by

$$
\begin{cases}
L_0 \rho_0 = G & \text{in } \Omega, \\
\hat{n} \cdot \hat{A} \nabla \rho_0 = h & \text{on } \partial\Omega.
\end{cases}
$$

(4.4)

If Ω is $C^{1,1}$, $G \in L^2(\Omega; \mathbb{R}^d)$ and $h \in H^{1/2}(\partial\Omega; \mathbb{R}^d)$, it is known that the unique weak solution of (4.4) in $H^1(\Omega; \mathbb{R}^d)$ with the property $\rho_0 \perp \mathcal{R}$ in $L^2(\Omega; \mathbb{R}^d)$ satisfies

$$
\|\rho_0\|_{H^1(\Omega)} \leq C \left\{ \|G\|_{L^2(\Omega)} + \|h\|_{H^{1/2}(\partial\Omega)} \right\}.
$$

(4.5)

For the proof of Theorem 1.1 we will need to construct a function $h \in H^{1/2}(\partial\Omega; \mathbb{R}^d)$ satisfying (4.2) and

$$
h = 0 \quad \text{on } N = \partial\Omega \setminus D,
$$

(4.6)

for each $G \in L^2(\Omega; \mathbb{R}^d)$. This is done in the following lemma.

Lemma 4.1. Let Ω be a bounded Lipschitz domain and D a closed subset of $\partial\Omega$ with a nonempty interior. Let $G \in L^2(\Omega; \mathbb{R}^d)$. Then there is a function $h \in H^{1/2}(\partial\Omega; \mathbb{R}^d)$ such that h satisfies (4.2), (4.6), and

$$
\|h\|_{H^{1/2}(\partial\Omega)} \leq C \|G\|_{L^2(\Omega)},
$$

(4.7)

where C depends only on Ω and D.

Proof. By our assumption on D there exist $x_0 \in D$ and $r_0 > 0$ such that $B(x_0, r_0) \cap \partial\Omega \subset D$. We fix a nonnegative function $h_0 \in C^\infty_0(\mathbb{R}^d)$ satisfying $\text{supp}(h_0) \subset B(x_0, r_0)$ and $h_0 \geq 1$ in $B(x_0, r_0/2)$. Note that $h_0 \in H^1(\partial\Omega)$, $\int_{\partial\Omega} h_0 > 0$, and $h_0 = 0$ on N. Now define

$$
h = -h_0 \left(\int_{\partial\Omega} h_0 \right)^{-1} \int_{\Omega} G.
$$

(4.8)

Clearly, the function h satisfies (4.2) and (4.6). Moreover,

$$
\|h\|_{H^{1/2}(\partial\Omega)} \leq \|h_0\|_{H^{1/2}(\partial\Omega)} \left(\int_{\partial\Omega} h_0 \right)^{-1} |\Omega|^{1/2} \|G\|_{L^2(\Omega)} = C \|G\|_{L^2(\Omega)},
$$

(4.9)

where C depends only on Ω and D.

□
Suppose that Ω is $C^{1,1}$. By Lemma 4.1 and (4.5), for each $G \in L^2(\Omega; \mathbb{R}^d)$, we can construct h so that the weak solution ρ_0 of (4.4) with the property $\rho_0 \perp \mathcal{R}$ in $L^2(\Omega; \mathbb{R}^d)$ satisfies

$$\|\rho_0\|_{H^2(\Omega)} \leq C\|G\|_{L^2(\Omega)}.$$ \hspace{1cm} (4.10)

Let $\tilde{\rho}_0 = E\rho_0$ be an extension of ρ_0 in $H^2(\mathbb{R}^d; \mathbb{R}^d)$ and set $\eta_\varepsilon = \rho_\varepsilon - \rho_0 - \varepsilon \chi_\varepsilon S_\varepsilon \nabla \tilde{\rho}_0$. By Remark 3.6 we see that

$$\|\eta_\varepsilon\|_{H^1(\Omega)} \leq C\varepsilon^{1/2}\|\rho_0\|_{H^2(\Omega)} \leq C\varepsilon^{1/2}\|G\|_{L^2(\Omega)}.$$ \hspace{1cm} (4.11)

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ψ_ε, w_ε, and r_ε be the same functions as in the proof of Theorem 1.2. Note that $\psi_\varepsilon = w_\varepsilon + r_\varepsilon = u_\varepsilon - u_0 - \varepsilon(1 - \theta_\varepsilon)\chi_\varepsilon S_\varepsilon \nabla \tilde{u}_0$. Clearly, by Lemma 3.2

$$\|\varepsilon(1 - \theta_\varepsilon)\chi_\varepsilon S_\varepsilon \nabla \tilde{u}_0\|_{L^2(\Omega)} \leq C\varepsilon\|u_0\|_{H^2(\Omega)}.$$ \hspace{1cm} (4.12)

Thus, to prove Theorem 1.1 it suffices to show $\|\psi_\varepsilon\|_{L^2(\Omega)} \leq C\varepsilon\|u_0\|_{H^2(\Omega)}$. This will be done by a duality argument, using Lemma 3.5.

Fix $G \in L^2(\Omega; \mathbb{R}^d)$ and let $h \in H^{1/2}(\partial \Omega; \mathbb{R}^d)$ be the function given in Lemma 4.1. Let ρ_ε, ρ_0 be the weak solutions of (4.1) and (4.4), respectively, such that $\rho_\varepsilon, \rho_0 \perp \mathcal{R}$ in $L^2(\Omega; \mathbb{R}^d)$. Since $\psi_\varepsilon \in H^1_0(\Omega; \mathbb{R}^d)$ and $n \cdot A^\varepsilon \nabla \rho_\varepsilon = h = 0$ on N, by (4.3),

$$\int_\Omega \psi_\varepsilon \cdot G = \int_\Omega A^\varepsilon \nabla \psi_\varepsilon \cdot \nabla \rho_\varepsilon.$$ \hspace{1cm} (4.13)

Write

$$\int_\Omega A^\varepsilon \nabla \psi_\varepsilon \cdot \nabla \rho_\varepsilon = \int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla \rho_\varepsilon + \int_\Omega A^\varepsilon \nabla r_\varepsilon \cdot \nabla \rho_\varepsilon = J_3 + J_4.$$ \hspace{1cm} (4.14)

We estimate J_4 first. Note that,

$$J_4 = \int_\Omega A^\varepsilon \nabla r_\varepsilon \cdot \nabla \eta_\varepsilon + \int_\Omega A^\varepsilon \nabla r_\varepsilon \cdot \nabla \rho_0 + \int_\Omega A^\varepsilon \nabla r_\varepsilon \cdot \nabla (\varepsilon \chi_\varepsilon S_\varepsilon \nabla \tilde{\rho}_0)$$
$$= J_{41} + J_{42} + J_{43}.$$ \hspace{1cm} (4.15)

In view of (3.20) and (4.11), we obtain

$$|J_{41}| \leq C\|\nabla r_\varepsilon\|_{L^2(\Omega)}\|\nabla \eta_\varepsilon\|_{L^2(\Omega)} \leq C\varepsilon\|u_0\|_{H^2(\Omega)}\|\rho_0\|_{H^2(\Omega)}.$$ \hspace{1cm} (4.16)

For J_{42}, note that r_ε is supported in $\tilde{\Omega}_2\varepsilon$. Hence,

$$|J_{42}| \leq C\|\nabla r_\varepsilon\|_{L^2(\Omega)}\|\nabla \rho_0\|_{L^2(\Omega_2\varepsilon)}$$
$$\leq C\varepsilon\|u_0\|_{H^2(\Omega)}\|\rho_0\|_{H^2(\Omega)};$$

where we have used Lemma 3.3 for the last inequality. Similarly,

$$|J_{43}| \leq C\|\nabla r_\varepsilon\|_{L^2(\Omega)}\|\nabla (\varepsilon \chi_\varepsilon S_\varepsilon \nabla \tilde{\rho}_0)\|_{L^2(\Omega_2\varepsilon)}$$
$$\leq C\varepsilon\|u_0\|_{H^2(\Omega)}\|\rho_0\|_{H^2(\Omega)};$$ \hspace{1cm} (4.16)
where we have used Lemma 3.4. As a result, we have proved that

\[|J_4| \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \rho_0 \|_{H^2(\Omega)}. \]

(4.17)

It remains to estimate \(J_3 \). Again, we write

\[
J_3 = \int_{\Omega} A^e \nabla w_e \nabla \eta_e - \int_{\Omega} A^e \nabla w_e \nabla \rho_0 - \int_{\Omega} A^e \nabla w_e \nabla (\varepsilon^e S_e \nabla \tilde{\rho}_0)
\]

\[= J_{31} + J_{32} + J_{33}. \]

Note that \(J_{31} \) can be easily handled by the \(H^1 \) estimates of \(w_e \) and \(\eta_e \). Since the estimate of \(J_{32} \) is similar to that of \(J_{33} \), we will only give the estimate for \(J_{33} \). To this end, we write

\[
\int_{\Omega} A^e \nabla w_e \nabla (\varepsilon^e S_e \nabla \tilde{\rho}_0)
\]

\[= \int_{\Omega} A^e \nabla w_e \nabla (\theta_{2e} \varepsilon^e S_e \nabla \tilde{\rho}_0) + \int_{\Omega} A^e \nabla w_e \nabla ((1 - \theta_{2e}) \varepsilon^e S_e \nabla \tilde{\rho}_0), \]

(4.18)

where \(\theta_{2e} \in C^\infty_0(\mathbb{R}^d) \) is a smooth function such that \(\theta_{2e}(x) = 1 \) if \(\text{dist}(x, \partial\Omega) \leq 2\varepsilon \), \(\theta_{2e}(x) = 0 \) if \(\text{dist}(x, \partial\Omega) \geq 4\varepsilon \), and \(\nabla \theta_{2e} \leq C\varepsilon^{-1} \). It follows by Theorem 1.2 and Lemma 3.4 that

\[
\left| \int_{\Omega} A^e \nabla w_e \nabla (\theta_{2e} \varepsilon^e S_e \nabla \tilde{\rho}_0) \right| \leq C \varepsilon \| u_0 \|_{H^1(\Omega)} \| \theta_{2e} \varepsilon^e S_e \nabla \tilde{\rho}_0 \|_{H^1(\Omega)}
\]

\[
\leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \rho_0 \|_{H^2(\Omega)}. \]

(4.19)

For the second term in the RHS of (4.18), note that \((1 - \theta_{e}) \varepsilon^e S_e \nabla \tilde{\rho}_0 \in H^1_D(\Omega; \mathbb{R}^d)\). This allows us to apply Lemma 3.5 and obtain

\[
\left| \int_{\Omega} A^e \nabla w_e \nabla ((1 - \theta_{2e}) \varepsilon^e S_e \nabla \tilde{\rho}_0) \right|
\]

\[
\leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \nabla ((1 - \theta_{2e}) \varepsilon^e S_e \nabla \tilde{\rho}_0) \|_{L^2(\Omega)}
\]

\[+ C \varepsilon^{1/2} \| u_0 \|_{H^2(\Omega)} \| \nabla ((1 - \theta_{2e}) \varepsilon^e S_e \nabla \tilde{\rho}_0) \|_{L^2(\Omega_{2e})}. \]

(4.20)

Note that the second term vanishes, as \(1 - \theta_{2e} \) is supported in \(\mathbb{R}^d \setminus \Omega_{2e} \). Also,

\[
\| \nabla ((1 - \theta_{2e}) \varepsilon^e S_e \nabla \tilde{\rho}_0) \|_{L^2(\Omega)} \leq C \| \rho_0 \|_{H^2(\Omega)}. \]

(4.21)

This, together with (4.19) and (4.20), leads to

\[
|J_{33}| \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \rho_0 \|_{H^2(\Omega)}. \]

(4.22)

Combining this with the estimates of \(J_{31}, J_{32} \), we obtain

\[
|J_3| \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \rho_0 \|_{H^2(\Omega)}. \]

(4.23)

Hence, in view of (4.13), (4.14), (4.17) and (4.23), we have proved

\[
\left| \int_{\Omega} \psi_e \cdot G \right| \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| \rho_0 \|_{H^2(\Omega)} \leq C \varepsilon \| u_0 \|_{H^2(\Omega)} \| G \|_{L^2(\Omega)}, \]

(4.24)
where C depends only on d, κ_1, κ_2, D, and Ω. Therefore, by duality,

$$
\|\psi_\varepsilon\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{H^2(\Omega)},
$$

(4.25)

which completes the proof of Theorem 1.1.

Remark 4.2. If $D = \partial \Omega$, Theorem 1.1 gives the sharp $O(\varepsilon)$ estimate in L^2 for the Dirichlet problem. In the case of the Neumann problem, our proof also gives the estimate (1.8), if we further require that $u_\varepsilon, u_0 \perp \mathcal{R}$ in $L^2(\Omega; \mathbb{R}^d)$. To see this, we consider the Neumann problem (4.1) with $G \in L^2(\Omega; \mathbb{R}^d)$, $\mathcal{R} \perp \mathcal{R}$, and $h = 0$ on $\partial \Omega$. The same argument as in the proof of Theorem 1.1 gives the estimate (4.24). By duality this implies that

$$
\|\psi_\varepsilon\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{L^2(\Omega)},
$$

from which the estimate (1.8) follows.

5 Interior H^1 estimates

In this section we study the interior H^1 convergence and give the proof of Theorem 1.3.

Lemma 5.1. Let w_ε be defined by (3.9). Let $\zeta \in W^{1,\infty}(\Omega)$ be a nonnegative function in Ω such that $\zeta = 0$ on $\partial \Omega$. Then,

$$
\|\zeta \nabla w_\varepsilon\|_{L^2(\Omega)} \leq C \varepsilon \|u_0\|_{H^1(\Omega)} \left\{ \varepsilon \|\zeta\|_{W^{1,\infty}(\Omega)} + \varepsilon^{1/2} \|\zeta\|_{L^\infty(\Omega_2\varepsilon)} + \varepsilon^{3/4} \|\zeta \nabla \zeta\|_{L^3(\Omega_2\varepsilon)}^{1/2} \right\},
$$

where C depends only on d, κ_1, κ_2, D, and Ω.

Proof. Since $\zeta w_\varepsilon \in H^1_0(\Omega; \mathbb{R}^d)$, it follows from the elasticity condition and the first Korn inequality that

$$
\|\zeta \nabla w_\varepsilon\|_{L^2(\Omega)}^2 \leq 2\|\nabla (\zeta w_\varepsilon)\|_{L^2(\Omega)}^2 + 2\|w_\varepsilon \nabla \zeta\|_{L^2(\Omega)}^2 \\
\leq C \int_\Omega A^\varepsilon \nabla (\zeta w_\varepsilon) \cdot \nabla (\zeta w_\varepsilon) + 2\|w_\varepsilon\|_{L^2(\Omega)}^2 \|\nabla \zeta\|_{L^\infty(\Omega)}^2 \\
\leq C \int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla (\zeta^2 w_\varepsilon) + C \|w_\varepsilon\|_{L^2(\Omega)}^2 \|\nabla \zeta\|_{L^\infty(\Omega)}^2,
$$

(5.1)

where we also used the identity

$$
A^\varepsilon \nabla (\zeta w_\varepsilon) \cdot \nabla (\zeta w_\varepsilon) = A^\varepsilon \nabla w_\varepsilon \cdot \nabla (\zeta^2 w_\varepsilon) + A^\varepsilon (w_\varepsilon \nabla \zeta) \cdot (w_\varepsilon \nabla \zeta).
$$

Note that by Lemma 3.5

$$
\int_\Omega A^\varepsilon \nabla w_\varepsilon \cdot \nabla (\zeta^2 w_\varepsilon) \\
\leq C \varepsilon \|u_0\|_{H^2(\Omega)} \|\nabla (\zeta^2 w_\varepsilon)\|_{L^2(\Omega)} + C \varepsilon^{1/2} \|u_0\|_{H^2(\Omega)} \|\nabla (\zeta^2 w_\varepsilon)\|_{L^2(\Omega_2\varepsilon)}.
$$

(5.2)
Lemma 5.1. Proof of Theorem 1.3.

This, together with (5.1), gives

Corollary 5.2. By the Cauchy inequality with an

conditions as in Theorem 1.1, we have

continue to hold for the Neumann boundary value problems, if we further require

Remark 5.3. The estimates in Lemma 5.1 and Theorem 1.3 as well as in Corollary 5.2
depend only on \(\kappa \), where \(\kappa \) depends only on \(\Omega \). Theorem 1.3 now follows readily from Lemma 5.1.

As a corollary, we obtain the following interior estimate.

Corollary 5.2. Let \(\Omega' \) be an open subset of \(\Omega \) such that \(\text{dist}(\Omega', \partial \Omega) > 0 \). Under the same conditions as in Theorem 1.3, we have

\[
\| u_{\varepsilon} - u_0 - \varepsilon \chi \nabla u_0 \|_{H^1(\Omega')} \leq C \varepsilon \| u_0 \|_{H^2(\Omega)},
\]

where \(C \) depends only on \(d, \kappa_1, \kappa_2, D, \Omega' \) and \(\Omega \).

Remark 5.3. The estimates in Lemma 5.1 and Theorem 1.3 as well as in Corollary 5.2 continue to hold for the Neumann boundary value problems, if we further require \(u_{\varepsilon}, u_0 \perp R \) in \(L^2(\Omega; \mathbb{R}^d) \). The proof is exactly the same.

Acknowledgement. Both authors are supported by NSF grant DMS-1161154.

References

[1] A. Bensoussan, J.-L. Lions, and G.C. Papanicolaou, *Asymptotic Analysis for Periodic Structures*, North Holland, 1978.
[2] D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and homogenization, C. R. Math. Acad. Sci. Paris 335 (2002), no. 1, 99–104.

[3] , The periodic unfolding method in homogenization, SIAM J. Math. Anal. 40 (2008), no. 4, 1585–1620.

[4] G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal. 40 (2004), 269–286.

[5] , Interior error estimate for periodic homogenization, Anal. Appl. (Singap.) 4 (2006), no. 1, 61–79.

[6] S. Gu, Convergence rates in homogenization of stokes systems, arXiv:1508.04203 (2015).

[7] V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, Translated from the Russian by G. A. Yosifian [G. A. Iosif’yan].

[8] C. Kenig, F. Lin, and Z. Shen, Convergence rates in L^2 for elliptic homogenization problems, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 1009–1036.

[9] , Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math. 67 (2014), 1219–1262.

[10] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian, Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992.

[11] D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients, Asymptot. Anal. 54 (2007), 103–123.

[12] M.A. Pakhnin and T.A. Suslina, Operator error estimates for the homogenization of the elliptic Dirichlet problem in a bounded domain, Algebra i Analiz 24 (2012), no. 6, 139–177.

[13] S.E. Pastukhova, Some estimates from homogenized elasticity problems, Dokl. Math. 73 (2006), 102–106.

[14] Z. Shen, Boundary estimates in elliptic homogenization, arXiv:1505.00694 (2015).

[15] T.A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: L^2-operator error estimates, Mathematika 59 (2013), no. 2, 463–476.

[16] , Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal. 45 (2013), no. 6, 3453–3493.

[17] V.V. Zhikov and S.E. Pastukhova, On operator estimates for some problems in homogenization theory, Russ. J. Math. Phys. 12 (2005), no. 4, 515–524.