A host subtraction database for virus discovery in human cell line sequencing data [version 3; peer review: 2 approved]

Jason R. Miller, Kari A. Dilley, Derek M. Harkins, Timothy B. Stockwell, Reed S. Shabman, Granger G. Sutton

1 J. Craig Venter Institute, Rockville, MD, 20850, USA
2 Shepherd University, Shepherdstown, WV, 25443, USA
3 National Biodefense Analysis and Countermeasures Center (NBACC), Fort Detrick, MD, 21702, USA
4 American Type Culture Collection, Gaithersburg, MD, 20877, USA

Abstract
The human cell lines HepG2, HuH-7, and Jurkat are commonly used for amplification of the RNA viruses present in environmental samples. To assist with assays by RNAseq, we sequenced these cell lines and developed a subtraction database that contains sequences expected in sequence data from uninfected cells. RNAseq data from cell lines infected with Sendai virus were analyzed to test host subtraction. The process of mapping RNAseq reads to our subtraction database vastly reduced the number non-viral reads in the dataset to allow for efficient secondary analyses.

Keywords
RNAseq, human cell lines, HepG2, HuH-7, Jurkat, host subtraction

Open Peer Review
Invited Reviewers
1
2

Report

1 Caroline C. Friedel, Ludwig Maximilian University of Munich, Munich, Germany
2 Ravi Sachidanandam, Icahn School of Medicine at Mount Sinai, New York, USA

Any reports and responses or comments on the article can be found at the end of the article.
Introduction

Host subtraction is the bioinformatics process of filtering reads derived from host DNA and RNA (Daly et al., 2015). Host subtraction enriches the non-host component of sequence datasets and is especially attractive for assays involving high-throughput sequencing technologies that generate short reads in high volume, where data reduction can realize cost savings. Following host subtraction, remaining reads can be mapped to references and counted, or used as queries to sequence databases, or possibly assembled to reconstruct novel transcript or genome sequences.

Host subtraction resources are needed for human cell lines that are widely used for RNA virus propagation. This includes three human cell lines Jurkat, HuH-7, and HepG2 commonly used to grow viruses or to amplify viruses suspected to be present in clinical isolates. The Jurkat line, derived from human T cells, supports replication of HIV and some Herpesviruses. Jurkat cells have been described as a model to study virus-host interactions since it has a similar genomic organization to pathogenic viruses that include Ebola, Marburg, Hendra and Nipah Virus.

An ideal subtraction resource for any cell line would include a complete genome sequence. Less expensive alternatives are available for cell lines derived from humans. One subtraction alternative is a reference human genome supplemented with a collection of cell-line-specific sequences. To this end, we have developed a sequence subtraction database (SDB) that permits enrichment of viral sequences through the computational depletion of host sequences. We developed an SDB, named SDB1, representing three human tissue cell lines that are often used for the detection of RNA viruses that infect humans. Reducing the size of the NGS dataset by removing host background reads allows the researcher to perform subsequent analyses (e.g. de novo assemblies, read mapping, homology searches) more efficiently and with less computational requirements.

Methods

Cell line sequencing

Frozen HepG2 cells were obtained from ATCC, part number ATCC HB-8065, lot # 61983117. The HepG2 cell line is derived from a liver hepatocellular carcinoma of a 15-year-old Caucasian male. Frozen HuH-7 cells were obtained from JCRB Cell Bank, part number JCRB0403, lot # 08062010. HuH-7 is described as a well-differentiated human hepatocellular carcinoma cell line derived from the liver or gallbladder of a 57-year-old male Japanese patient, who died in 1985. Frozen Jurkat cells were obtained from ATCC, part number ATCC TIB-152, lot # 613515. This Jurkat cell line was derived from peripheral blood of a 14-year-old boy who was diagnosed with acute T cell leukemia. Cells were maintained following the standard recommended protocol per cell line.

A single genomic DNA library was prepared per cell line. Genomic DNA was isolated from the cell line using a Qiagen genomic DNA isolation kit. Bioanalyzer analysis confirmed high molecular weight DNA was recovered. After Blue Pippin size selection, fragments appeared to be 290bp. NextGen paired end barcoded genomic library construction was performed with a NEBNext whole genome library prep kit. NextGen Library quantification and normalization was performed by qPCR. Each library was test sequenced with one run on an Illumina MiSeq and then sequenced with two runs of an Illumina NextSeq 500 using the Illumina High Output Kit. Reads were demultiplexed, which removed barcodes and sequencing adapters.

Four RNA libraries were prepared per cell line. Cells were either mock infected or infected with SeV as previously described.
(Dilley et al., 2017). In each condition, libraries were either treated to deplete ribosomal RNA or total RNA was subjected to library construction. Libraries were multiplexed and sequenced using one run on an Illumina NextSeq 500 using the Illumina Mid Output Kit.

SDB construction

DNA and RNA sequence reads were trimmed of adapter using CutAdapt 1.8.1. RNA sequence reads were also trimmed of low quality bases, adapter sequences, and resulting short reads using Trimmomatic 0.35. The DNA read sets were not filtered based on length, quality, or number of ambiguous base calls.

Reads were mapped with bowtie2 (Langmead & Salzberg, 2012) version 2.2.5 with stringent parameters designed to identify and remove only those read pairs with full-length reference agreement. Reads were mapped to the NCBI GRCh38.7 human genome reference sequence using bowtie2 in global alignment mode (–end-to-end) with low sensitivity (–fast) and stringent output settings (–no-unal –no-mixed –no-discordant). This mapping selected at most one mapping per pair.

Cell line gDNA read pairs that did not map to the human genome reference were assembled per cell line with CLC NGS Cell (Qiagen Bioinformatics) version 3.22.55708 using de novo assembly with parameter “–p fb ss 200 400”. Contigs of minimum length 200 were retained and named CLCs to indicate Cell Line Contigs.

The UniVec database was downloaded from the NCBI FTP site (5456 sequences and 1,049,913 bp). Other references were downloaded from GenBank. The reference human assembly was GCA_000001405.22_GRCh38.p7_genomic (3,232,546,710 bp). Mycoplasma sequences were obtained by searching GenBank for Mycoplasma nucleotide sequences of length 500 Kbp or more (263 sequences and 232,800,861 bp). The PhiX genome sequence was NC_001422.1 (5,386 bp). The Sendai RNA reference sequences were AB855653.1 and AB855654.1 (15,384 bp each).

SDB tests

The RNAsseq subtraction step used a sensitive mapping strategy. Although it did not use a splice-aware aligner, it relied on sensitive local alignments, the selection of at most one best alignment per read, and the subtraction of both reads of a pair if either read mapped. The mapping used bowtie2 with parameters “--sensitive-local” and “--no-unal” to map read pairs to the subtraction database SDB1. The mapping step can be parallelized with one pair of input read files per job. Each job requires RAM approximately equal to twice the database size. Our runs against the 3.3 GB SDB1 reserved 8 GB RAM and 4 threads.

RNAsseq reads from the Hölzer et al. (Hölzer et al., 2016) experiments were kindly provided by the authors (Martin Hölzer, personal communication; NCBI SRA accession SRP128545).

For reads characterized by BLAST, BLASTN 2.2.31+ from the NCBI BLAST+ package was used to search the NCBI nt database. BLAST was run with parameters “-outfmt7 qseqid sseqid pident length mismatch gapopen evalue bitscore staxids” to capture taxon ID and “-max_target_seqs 1” to retain the top hit per query sequence.

Results

Construction of the Subtraction Database

To obtain cell line genomic sequence, each cell line was separately subjected to DNA sequencing. For each of three cultured human cell lines, one DNA sequencing library was created with a ~300 bp insert size. Each library was test sequenced on an Illumina MiSeq platform to generate small volumes of 2x300 bp read pairs; in these pairs, reads were expected to overlap. Each library was then sequenced on two runs of an Illumina NextSeq platform to generate high volumes of 2x150 bp read pairs. Reads were trimmed with CutAdapt. The result offered 105 Gbp of sequence in 346 M read pairs, or 28X average coverage of the human genome per cell line. Further details and public accessions are provided in Table S1. The reads were filtered to eliminate pairs that provide sequence that is already present within a standard human genome reference sequence. This was done by mapping the NextSeq genomic read pairs with stringent parameters. This step filtered 94% of read pairs.

To further characterize the mapped reads, the reference mapping was scanned for high-coverage and low-coverage areas. High coverage would indicate sequence present in the cell line at higher copy number than their representation in the reference sequence. For example, coverage over 100X would represent at least 3X higher representation in the cell line than the reference. With this criterion for high coverage, the number of reference bases at high coverage was 8.6 Mbp per cell line. The average high-coverage interval was 106 bp, which is shorter than the 150 bp read length, suggesting that short tandem repeats may be expanded in the cell lines. The mapping was also scanned for low-coverage areas. Low-coverage regions shorter than read pairs would indicate rearrangements within the cell line genomes. The combined span of reference bases with coverage less than 2X was 96 Mbp and the average low-coverage interval was 265 bp. Further details are provided in Table S2.

To capture sequences present in any of the three cell lines, but absent from the reference, the unmapped reads were assembled into Cell Line Contigs (CLCs). The assembly generated about 3 Mbp in 8 K CLCs for each cell line. CLC size statistics are provided in Table S3. The average CLC size was 380 bp though there were a few large CLCs from each cell line. The largest CLC from each cell line had a partial alignment to the largest CLC from the other two lines. Analysis of the two largest contigs per cell line showed similarity to other human or primate sequences in the public databases and redundancy between cell lines (Table S6).

The subtraction database named SDB1 was constructed by concatenating FASTA representations of the CLCs, the human genome reference, the PhiX genome, the UniVec database, and a collection of Mycoplasma complete genomes. The database construction process is summarized in Figure 1a. Table S4 shows the number of sequences and number of bases per data source.
Subtraction and detection of Sendai virus

The subtraction database SDB1 was used to filter host sequence from RNAseq data using the process summarized in Figure 1b. The subtraction process was assessed with a test designed to emulate a cell-based RNA virus detection assay. In this assay, environmental samples are analyzed to determine which RNA viruses are present, if any. To overcome the presumed low titer of viral RNA, this assay uses virus-permissive cell lines to amplify viral load. After exposure to environmental samples, the cells in culture are grown for sufficient time for viral replication. RNA is harvested, optionally depleted of rRNA, and sequenced. The rRNA depletion step is employed to enrich the non-host RNA and increase the number of non-host RNAseq reads generated. After sequencing, a sequence analysis step involves alignment of the RNAseq data to reference databases for taxonomic classification and quantification. Classification of host cell reads is uninformative so all computational investment in classifying them represents overhead cost. The goal of the subtraction step is to reduce the overhead without loss of sensitivity. Although the taxon of the virus was known a priori, the same process could be used to detect unknown viruses in an uncharacterized sample.

This test used SDB1, our subtraction database that includes genomic DNA sequence derived from the HepG2, HuH-7, and Jurkat human cell lines. This test also used RNAseq from those cell lines. RNAseq reads were generated from multiple samples and mapped to SDB1. This test used uninfected cells and cells infected with the Sendai virus (SeV). After the growth period, cells were treated for rRNA depletion, or left untreated as a control. Twelve libraries were generated in total, representing the three cell lines under four different conditions: infected-and-depleted, infected-and-not-depleted, mock-infected-and-depleted, and mock-infected-and-not-depleted. The libraries were barcoded, multiplexed, and sequenced on a NextSeq platform to generate 2x150 bp read pairs. RNAseq read counts per library are provided in Table S1.

The sequence data were subjected to a subtraction process by mapping to SDB1. The mapping used local alignments to allow host spliced RNA sequences to map to host genomic DNA sequence. The results are shown in Table 1. The read counts after trimming ranged from 19 to 27 million per library (Table 1, column A). The rate of subtraction ranged from 89% to nearly 100% per library (Table 1, column B). The relative contribution by each type of SDB1 sequence is shown in Table S5. As expected, the human genome reference sequence subtracted the most reads. The CLCs from the human cell lines subtracted 0.19% to 1.34% of reads per library. Contrary to expectation, the cell line origin of the RNAseq was not predictive of the cell line whose CLCs would subtract the most reads. Instead, the CLCs derived from HuH-7 consistently subtracted more RNAseq reads than those from HepG2 or Jurkat. It is possible that the CLCs derived from HuH-7 capture larger portions of transcriptional units that are partially represented in the other CLCs.

Next, the RNAseq reads that did not map to SDB1 were extracted for analysis. These “non-SDB” reads were mapped...
to SeV genome reference sequences. As expected, the libraries with the largest SeV complement were the libraries that had been infected with Sendai virus and depleted of rRNA. When expressed as a portion of initial reads, the SeV complement was 5% to 10% in infected samples and less than 1% in the controls. (D) Expressed as a percentage of non-SDB reads, the SeV complement was 78% to 95% in infected-but-not-depleted samples. The complement was larger in the infected-and-depleted samples, and smaller in the mock-infected samples. This suggests that analysis of non-SDB reads could support the detection of known viruses in an uncharacterized sample. The apparent false positive enrichments (e.g. 24.24% SeV in HEP/none/none) can be discounted by applying a minimum requirement for 0.10% viral reads out of initial reads.

Table 1. Enrichment of Sendai virus.
Three cell lines were grown with Sendai virus (SeV) infection or mock infection. Some samples were treated with Riboblock (Illumina) to deplete tRNA. (A) All cDNA libraries were sequenced on the Illumina NextSeq platform to generate over 19 million RNAseq reads per sample. (B) At least 99% of reads from every sample mapped to the subtraction database named SDB1. (C) Non-SDB reads were mapped to SeV references. Expressed as a fraction of initial reads, the SeV complement was 5% to 10% in infected samples. (D) Expressed as a percentage of non-SDB reads, the SeV complement was 78% to 95% in infected-but-not-depleted samples. The complement was larger in the infected-and-depleted samples, and smaller in the mock-infected samples. This suggests that analysis of non-SDB reads could support the detection of known viruses in an uncharacterized sample. The apparent false positive enrichments (e.g. 24.24% SeV in HEP/none/none) can be discounted by applying a minimum requirement for 0.10% viral reads out of initial reads.

Cell Line	Virus treatment to cells	rRNA treatment to library	Initial trimmed reads (millions)	Portion of initial mapped to SDB1	Portion of initial mapped to SeV	Portion of non-SDB mapped to SeV
HEP	SeV depletion		27.20	89.06%	10.38%	96.74%
HEP	SeV none		22.06	98.96%	0.96%	95.27%
HEP	none		24.44	99.94%	0.01%	24.24%
HEP	none depletion		26.70	99.89%	0.00%	4.01%
HUH	SeV depletion		23.44	91.44%	7.03%	84.14%
HUH	SeV none		25.79	99.30%	0.51%	77.59%
HUH	none		24.72	99.95%	0.00%	2.24%
HUH	none depletion		20.99	99.91%	0.00%	0.72%
JUR	SeV depletion		26.59	94.18%	5.65%	98.66%
JUR	SeV none		19.28	99.42%	0.47%	85.77%
JUR	none		19.06	99.94%	0.00%	1.68%
JUR	none depletion		25.10	99.92%	0.00%	1.33%

The viral taxon was known beforehand and mapping non-SDB reads to SeV references only confirmed a priori knowledge. In a discovery situation, the non-SDB reads could be characterized by BLASTn homology search against the NCBI nt database. With our data, SeV was the taxon with the most hits for all libraries. This result indicates that SeV could have
been detected de novo by BLAST analysis. After SeV, no single taxon was represented at over 0.01% of initial reads. The secondary taxa indicated by BLAST included Newcastle disease virus (concentrated in the one library of HuH-7 with viral infection and depletion), Ebola virus, Human ORFeome Gateway entry vector, Homo sapiens, Gorilla gorilla, and others. The virus hits are possibly indicators of contamination from simultaneous projects in the lab. The primate hits could be due to the higher sensitivity of the BLAST homology search compared to mapping.

The subtraction computation consumed 1,285 cpu sec per million reads. The BLAST analysis consumed 107,146 cpu sec per million reads. The total cost of subtraction-then-blast was approximately 20% of the hypothetical cost of running BLAST on every read.

Subtraction and detection of Ebola and Marburg viruses

The utility of SDB1 was tested on data from an independent source. Hölzer et al. (Hölzer et al., 2016) explored host cell expression changes in HuH-7 human cells and R06E-J cells from the bat Rousettus aegyptiacus. As part of the study, cells were infected with either the Ebola virus strain Zaire, Mayinga (GenBank: NC_002549), or the Lake Victoria Marburg virus, Leiden (GenBank: JN408064.1), or a mock infection. Cells were harvested at 3, 7, or 23 hours after infection and sequenced by RNAseq.

The RNAseq reads from the HuH-7 experiments of Hölzer et al. were downloaded and trimmed; see Table 2. From every library, a majority of reads were subtracted by mapping to SDB1 (Table 2, column B). After subtraction, the non-SDB reads were mapped to reference genome sequences for Ebola (EBOV) and Marburg (MARV). The EBOV complement of the non-SDB reads was 57% to nearly 100% in EBOV-infected libraries and lower in the other libraries (Table 2, columns C–D). The MARV complement of the non-SDB reads was 39% to 75% in MARV-infected libraries and lower in the other libraries (Table 2, columns E–F). These results confirm that SDB1 can provide effective enrichment of other viruses within independent cell cultures of HuH-7.

Discussion

The establishment of host sequence databases from commonly used cell lines, especially for lines often used to propagate viruses, is a critical control to ensure experimental results are attributed to the specific virus being tested. Therefore, we analyzed the human cell lines HepG2, HuH-7, and Jurkat in order to increase their utility for amplifying and detecting viruses in clinical or environmental samples. We developed a subtraction database (Daly et al., 2015) for the computational removal of host reads from RNAseq datasets. The database consists of the GRCh38 reference human genome sequence plus cell line specific sequences and potential contaminant sequences. The database contained DNA sequence from uninfected cells. We sequenced genomic DNA, rather than mRNA, in order to capture cell line genes whose expression may be limited to the viral propagation stage. We demonstrated utility by mapping RNAseq reads from cells infected with RNA viruses, as well as control cells, to the database. We were able to subtract host sequences and enrich each dataset for the non-host complement.

Table 2. Enrichment of Ebola and Marburg viruses. Data from an independent study (Hölzer et al., 2016) are derived from RNAseq of HuH-7 cells infected with Ebola virus (EBOV), Marburg virus (MARV), or none (Mock). The data were re-analyzed here using SDB1. Subtraction enriched the EBOV complement to at least 57% in the EBOV-infected samples. Subtraction enriched the MARV complement to at least 39% in the MARV-infected samples. The apparent false positive enrichments can be discounted by applying a minimum requirement for 0.10% viral reads out of initial reads.

Virus	Time	Initial trimmed reads (millions)	Portion of initial mapped to SDB1	Portion of initial mapped to EBOV	Portion of non-SDB mapped to EBOV	Portion of initial mapped to MARV	Portion of non-SDB mapped to MARV
EBOV	03h	32.87	99.70%	0.16%	57.17%	0.00%	0.12%
EBOV	07h	46.62	97.47%	2.34%	94.41%	0.00%	0.01%
EBOV	23h	50.41	62.18%	37.29%	99.56%	0.00%	0.00%
MARV	03h	41.81	99.76%	0.01%	3.62%	0.08%	38.96%
MARV	07h	45.81	99.06%	0.03%	3.03%	0.63%	69.49%
MARV	23h	34.37	97.61%	0.02%	0.87%	1.71%	75.45%
Mock	03h	38.55	99.82%	0.02%	10.79%	0.00%	0.20%
Mock	07h	36.03	99.86%	0.01%	7.59%	0.00%	0.18%
Mock	23h	36.99	99.80%	0.02%	9.84%	0.00%	0.16%
The subtraction process reduced the computational cost that would be incurred by characterization of every read. The subtraction process removed host reads which often represented 99% of the data. The subtraction process used mapping software which imposed approximately 1% of the computational cost compared to characterization by BLAST. However, the identification of known sequences could be accomplished at lower cost using alignment-free K-mer matching software such as Kraken (Wood & Salzberg, 2014). Our subtraction process relied on the Bowtie2 (Langmead & Salzberg, 2012) mapping software. The process could be modified to use instead a splice-aware aligner such as HiSat2 (Kim et al., 2015). Whereas our highly sensitive process subtracts all read pairs with even one partial alignment, a splice-aware process might achieve higher specificity by subtracting only those RNA pairs with full-length alignments including spliced alignments. Being a faster mapper, HiSat2 might also reduce the computational cost of subtraction.

Our subtraction database included novel sequences specific to the three cell lines. Since it is not yet economical to generate complete genome and transcriptome assemblies of each subject cell line, we generated short reads at low coverage and retained only those reads that did not map to the human reference. Subsequent de novo assembly of the retained reads yielded 8 Mbp of novel sequence per cell line. The resulting cell line contigs (CLCs) were included in the subtraction database.

The marginal value of the CLCs was low. The CLCs were responsible for only 0.19% to 1.34% of RNAseq subtraction per sequencing experiment. It thus appears that the cost of CLC construction outweighed the benefit, at least for the cells and viruses tested. Investigators constructing subtraction databases for other human cell lines should evaluate the utility of existing public sequences prior to cell line sequencing. CLCs could be more beneficial on cell lines harboring transcribed endogenous viral sequence, on cell lines derived from non-human species for which prior sequences are lacking, on human cancer cell lines harboring divergent genomes, and on cells suspected of harboring transfection-induced chromosomal rearrangements, as was reported for transfected HepG2 cells (Livezey et al., 2002). CLCs could inform the search for marker sequences for cell line authentication (Almeida et al., 2016).

Characterization of the CLCs remains for future work. The largest CLCs had full-length alignments to complete sequences of clones from chromosomes of human or other primates, (Table S6) and partial alignments to CLCs from the other cell lines used here. Our coverage analysis of reads that did map to the reference suggested copy number variation and structural variation in the cell line genomes. It is likely that many CLCs capture cell-line specific chromosomal breakpoints such as those reported in HepG2 (Wong et al., 2000) or cell-line specific retrotransposed insertions.

Data availability
The sequencing reads are available in NCBI with these SRA accessions: HepG2 DNA (SRR5296488, SRR5296494, SRR5296491) and RNA (SRR5296490, SRR5296492, SRR5296493, SRR5296495), HuH-7 DNA (SRR5297887, SRR5297975, SRR5297924) and RNA (SRR5297992, SRR5297976, SRR5297993, SRR5297994), and Jurkat DNA (SRR5294049, SRR5293982, SRR5293981) and RNA (SRR5293979, SRR5293983, SRR5295385, SRR5293984). Hyperlinked BioSample accessions are listed in Table S1. The subtraction database is available at GitHub (JCVenterInstitute): https://github.com/JCVenterInstitute/HumanSubtractionDB1/blob/master/SDB1.fasta.gz

Archived scripts as at time of publication: http://doi.org/10.5281/zenodo.1146104 (Miller et al., 2018)

License: GNU GPL v3.0

Grant information
JCVI staff was supported by DHS contract HSHQDC-15-C-B0059.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
The authors thank Martin Hölzer for the use of data and manuscript feedback.

Supplementary material
The following are provided as an Excel workbook (Click here to access the data):
Table S1: Characteristics and accessions of human cell line sequencing data.
Table S2: Human reference coverage by cell line reads.
Table S3: Size statistics for Cell Line Contigs (CLCs).
Table S4: Composition of the SDB.
Table S5: Contribution per cell line.
Table S6: Blast characterization of the largest CLCs per cell line.
Table S7: Top blastn hits for JCVI nonSDB reads.

References

Almeida JL, Cole KD, Plant AL: Standards for Cell Line Authentication and Beyond. PLoS Biol. 2016; 14(6): e1002476. PubMed Abstract | Publisher Full Text | Free Full Text

Cingöz O, Paprota T, Delviks-Frankenberry KA, et al.: Characterization, mapping, and distribution of the two XMRV parental proviruses. J Virol. 2012; 86(1): 328–338. PubMed Abstract | Publisher Full Text | Free Full Text

Daly GM, Leggett RM, Rowe W, et al.: Host Subtraction, Filtering and Assembly Validations for Novel Viral Discovery Using Next Generation Sequencing Data. PLoS One. 2015; 10(6): e0129059. PubMed Abstract | Publisher Full Text | Free Full Text

Dilley KA, Voorhies AA, Luthra P, et al.: The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing. PLoS One. 2017; 12(6): e0178717. PubMed Abstract | Publisher Full Text | Free Full Text

Dilley KA, Voorhies AA, Luthra P, et al.: The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing. PLoS One. 2017; 12(6): e0178717. PubMed Abstract | Publisher Full Text | Free Full Text

Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12(4): 357–60. PubMed Abstract | Publisher Full Text | Free Full Text

Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357–359. PubMed Abstract | Publisher Full Text | Free Full Text

Lin YL, Lu CC, Lei HY, et al.: Infection of five human liver cell lines by dengue-2 virus. J Med Virol. 2000; 60(4): 425–431. PubMed Abstract | Publisher Full Text

Lindenbach BD, Evans MJ, Syder AJ, et al.: Complete replication of hepatitis C virus in cell culture. Science. 2005; 309(5734): 623–626. PubMed Abstract | Publisher Full Text

Lindsey KM, Negorev D, Simon D: Increased chromosomal alterations and micronuclei formation in human hepatoma HepG2 cells transfected with the hepatitis B virus HBX gene. Mutat Res. 2002; 505(1–2): 63–74. PubMed Abstract | Publisher Full Text

Marozin S, Altomonte J, Stadler F, et al.: Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther. 2006; 16(11): 1789–1797. PubMed Abstract | Publisher Full Text

Marozin S, Altomonte J, Stadler F, et al.: Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther. 2006; 16(11): 1789–1797. PubMed Abstract | Publisher Full Text

Miller JR, Harkins DM, LaPointe M: JCVenterInstitute/HumanSubtractionDB1: SendaiExperiment (Version v1.0). Zenodo. 2018. http://www.doi.org/10.5281/zenodo.1146104

Ollier L, Caramella A, Giordanengo V, et al.: High permissivity of human HepG2 hepatoma cells for influenza viruses. J Virol. 2004; 78(12): 10861–10866. PubMed Abstract | Publisher Full Text | Free Full Text

Sainz B Jr, Barreto N, Uprichard SL: Hepatitis C virus infection in phenotypically distinct Huh7 cell lines. PLoS One. 2009; 4(8): e6661. PubMed Abstract | Publisher Full Text | Free Full Text

Wong N, LeP, Pang E, et al.: A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology. 2000; 32(5): 1060–1068. PubMed Abstract | Publisher Full Text

Wood DE, Salzberg SL: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014; 15(3): R46. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 3

Reviewer Report 04 June 2019

https://doi.org/10.5256/f1000research.21227.r48880

© 2019 Sachidanandam R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ravi Sachidanandam
Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

The figure helps immensely in understanding what was done. The clarifications have also made it easier to understand the scope of the work and its utility.

Competing Interests: As stated earlier, I have publications with one of the co-authors and was contacted by the first author to review the paper. I believe this has not implicitly or explicitly colored my judgement of this work.

Reviewer Expertise: Genomics, bioinformatics.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 20 March 2019

https://doi.org/10.5256/f1000research.16922.r45082

© 2019 Sachidanandam R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ravi Sachidanandam
Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
I offer some brief comments that could be addressed to make the paper more accessible and also justify the work.

1. A schematic of the process used in the study. There was a very detailed description that could have been shortened by providing a schematic. This would enhance the paper, by making it easier to read and understand.
2. What is the marginal advantage of the data in the paper? If one were to just use mapping to the reference human genome (hg38), I assume most of the host-derived reads would get eliminated. How many more reads are eliminated using the database provided in this paper? If this is not a big number, then maybe it is not worth the work?
3. There were some contigs assembled that do not map to the reference human genome? What are these? Some hints on where they come from?
4. Is the DNA or mRNA data most useful? It was not clear to me at the end if one or the other was more useful in the subtraction.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: I have published with 2 of the authors on this author list, however due to my large number of publications I do not feel this is a conflict of interest. I also wish for the readers to know that Jason Miller contacted me personally, requesting for me to review this article.

Reviewer Expertise: Genomics, bioinformatics.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
Caroline C. Friedel
Department of Computer Science, Ludwig Maximilian University of Munich, Munich, Germany

The authors appropriately addressed my concerns and I have no further comments to make.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
In this article, the authors present a host subtraction database for human cell line sequencing. The purpose of this approach is subtract non-viral reads from RNA-seq samples of virus-infected cells to improve efficiency of subsequent analyses. Their subtraction database is targeted specifically towards three commonly used human cell lines: HepG2, HuH-7 and Jurkat.

In brief, their approach was as follows:

For creation of the host subtraction database (SDB):
- Perform DNA sequencing for the cell lines considered
- Align reads to the human reference genome
- Assemble unaligned reads into contigs

The SBD was then created as a concatenation of FASTA sequences of the assembled contigs, the human reference genome, the UniVec Database (nucleic acid sequences which may be of vector origin), the PhiX genome (used as control in Illumina sequencing) and a collection of Mycoplasma genomes.

The subtraction process was then performed by aligning reads with bowtie2 against the SBD and then removing all read pairs if at least one read in the pair could be mapped with a local alignment to the SBD.

Evaluation of their approach was performed using RNA-seq data of the three cell lines either infected or not infected with Sendai Virus (SeV) as well as Huh-7 cells infected with Ebola or Marburg virus or not infected. They show that after host subtraction, virus reads make up the largest portion of the remaining reads. They also show that the combined runtime of first running bowtie2 and then BLAST on the remaining reads, e.g. to identify the virus, is only around 20% of the time that would be required if BLAST were run on all reads.

While the article is well written and the method is well described, there are a number of issues that need to be addressed:

1) The advantage of adding contigs assembled from DNA sequencing to the SDB is relatively small. Only between 0.19% and 1.34% of reads were subtracted in the SeV test case. However, the effort for obtaining these contigs is substantial as it requires DNA sequencing and contig assembly. Thus, the SDB cannot be easily extended to other cell lines without additional experiments. To show that this additional effort is warranted, the authors should at least show the following:
 • That removing reads mapping to the contigs before post SDB mapping has a substantial influence on the results by either resulting in reduced numbers of false positive mappings to the Sendai genome or substantially reducing runtime of the total pipeline (including SDB mapping and potentially BLAST analysis).
 • That a similar effect cannot be obtained by augmenting the human genome by publicly available human sequence data not part of the reference genome, e.g. transcript sequences from Ensembl or RefSeq or alternatively publicly available RNA-seq data for the considered cell lines. In particular, the latter might even outperform DNA sequencing for the cell lines as assembly of reads not mapping to the human genome would result in novel transcript sequences to which RNA-seq reads map better with the (unspliced) read aligner used in this approach. Furthermore, it would allow easily extending the SDB approach to other cell lines for which RNA-seq data already is/becomes available.

2) There should be some justification for the use of an unspliced read aligner, i.e. bowtie2, for mapping RNA-seq reads against the SDB, rather than a dedicated RNA-seq mapping program that also allows identifying spliced read alignments, such as STAR or HISAT2. In particular, the latter is both fast and requires relatively little memory. While removing reads for which bowtie2 identifies a local alignment likely
identifies all sequences originating from the SDB sequences, there is a potential that too many reads may be removed, e.g. in case of local similarities between SDB sequences and the virus in consideration. A safer approach would be to only exclude reads that can be aligned completely or almost completely (including gaps due to splicing). Regarding this point, the authors should show that:

- there is a substantial speedup of using local alignment with bowtie2 compared to fast RNA-seq alignment with HISAT2 or STAR
- that results do not differ much between the two approaches, i.e. the bowtie2 approach does neither miss many mappings a dedicated RNA-seq mapper would find nor reports many mappings not found using an RNA-seq mapper. If the latter is the case, they should show that these additional mappings missed by an RNA-seq mapper are valid mappings to the human cell lines and influence subsequent results.

Finally, DNA and RNA sequencing data for the considered cell lines should be submitted to a public database to ensure full reproducibility of their approach.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 03 Jul 2018

Jason Miller, Shepherd University, USA

Reviewer Comment #1.

This comment is focused on the cell line contigs (CLCs) that were constructed and added to the subtraction database (SDB). It notes that the CLC construction investment yielded relatively little benefit. It says the manuscript should contain at least two follow-up experiments to measure the effectiveness of SDBs constructed with and without CLCs. The additional experiments might
inform those constructing SDBs on other cell lines.

We agree that the manuscript should clearly convey the finding that the CLCs offered little advantage on these cells and these viruses. The manuscript already noted that the CLCs subtracted only 0.19% to 1.34% of RNA reads, providing “a small amount of mapping sensitivity.” However, the extensive treatment of CLCs in the Discussion seemed to emphasize their role. We deleted almost three paragraphs about CLCs from the Discussion. We inserted what is now the third paragraph of Discussion which includes the statement, “It thus appears that, for the cells and viruses tested, the cost of CLC construction outweighed the benefit.”

With this change incorporated, it is important to note the Huh7, HepG2, and Jurkat cell lines are commonly used for viral propagation. Cell lines often have genomic abnormalities not previously reported in public databases. From this standpoint, generation of sequence data and the corresponding CLCs provides a valuable reference dataset to the community, if only to show consistency with public domain data. The first sentence of the revised Discussion now says host sequence databases provide “a critical control to ensure experimental results are attributed to the specific virus being tested.”

One can question whether an essentially equivalent resource could be reproduced at lower cost. Performing that experiment would go beyond the scope of this F1000Research paper, which announces an existing resource that readers may download without charge. The question is certainly relevant for construction of future subtraction databases. Therefore, we modified the manuscript to raise the issue. The new third paragraph of Discussion includes the statement, “Investigators constructing subtraction databases for other human cell lines should evaluate the utility of existing public sequences prior to cell line sequencing.” It also lists types of cell lines for which sequencing could reasonably provide more benefit than it did for us.

Reviewer Comment #2.

This comment is focused on the mapping of RNA reads to genomic sequences. It says the process may remove too many reads because the Bowtie2 mapper is not splice-aware. It says the manuscript should demonstrate that Bowtie2 performs better than alternatives such as HiSat2.

Our process employs high sensitivity by design. It uses Bowtie2 parameterized for sensitive alignments and it subtracts both RNA reads of any pair that shows any detectable alignment, including pairs with only one partial alignment to one read. We considered HiSat2 during the design phase, but we reasoned that a HiSat2-based process would be less sensitive if it only subtracted reads with partial alignments explained by splicing. One could probably design and build several alternate processes, test them on our data, and characterize all the reads that subtract differentially. Such testing might be informative, but it would go beyond the scope of this F1000Research manuscript, which describes one process that is already functional, characterized, and available. Since many readers may wonder about our choice of mapper, we modified the manuscript to point out that one could implement a splice-aware variant of our process. The new text, added to the second paragraph in the revised Discussion, says, “Our subtraction process relied on the Bowtie2 mapping software. The process could be modified to use instead a splice-aware aligner such as HiSat2. Whereas our highly sensitive process subtracts all read pairs with even one partial alignment, a splice-aware process might achieve higher specificity by subtracting only those RNA pairs with full-length alignments including
spliced alignments. Being a faster mapper, HiSat2 might also reduce the computational cost of subtraction.”

Reviewer Comment #3.

This comment is focused on data availability of sequence reads.

All of the DNA and RNA reads were previously deposited at NCBI but the fact was easy to miss with accessions being given in the supplement only. The revised text says, “The sequencing reads are available at NCBI with these SRA accessions: HepG2 DNA (SRR5296488, SRR5296494, SRR5296491) and RNA (SRR5296490, SRR5296492, SRR5296493, SRR5296495), HuH-7 DNA (SRR5297887, SRR5297975, SRR5297924) and RNA (SRR5297992, SRR5297976, SRR5297993, SRR5297994), and Jurkat DNA (SRR5294049, SRR5293982, SRR5293981) and RNA (SRR5293979, SRR5293983, SRR5295385, SRR5293984).”

Competing Interests: Other than being an author of the article, I have no competing interests.