RESEARCH ARTICLE

A natural history museum visitor survey of perception, attitude and knowledge (PAK) of microbes and antibiotics

Julia Zichello¹, Preeti Gupta¹, Monique Scott¹,², Bella Desai¹, Ruth Cohen¹, Lauri Halderman³, Susan Perkins⁴, Ana Porzecanski⁵, Paul J. Planet⁶, Yael Wyner⁷, Martin Blaser⁸, Robert Burk⁹, Judy Diamond⁴,¹⁰, Rod Kennett¹¹, Jennifer Borland¹², Rob DeSalle*¹²

¹ Education Department, American Museum of Natural History, New York, NY, United States of America, ² Museum Studies Department, Bryn Mawr College, Bryn Mawr, PA, United States of America, ³ Exhibition Department, American Museum of Natural History, New York, NY, United States of America, ⁴ American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America, ⁵ American Museum of Natural History, Center for Biodiversity and Conservation, New York, NY, United States of America, ⁶ Division of Infectious Diseases, Perelman School of Medicine & Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States of America, ⁷ City College of New York, School of Education, New York, NY, United States of America, ⁸ Department of Medicine and Microbiology, RBHS, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America, ⁹ Department of Pediatrics, Albert Einstein University, New York, NY, United States of America, ¹⁰ University of Nebraska State Museum, Lincoln, NE, United States of America, ¹¹ Questacon, The National Science and Technology Centre of Australia, King Edward Terrace, Parkes, Australian Capital Territory, Australia, ¹² Rockman Et Al, Bloomington, IN, United States of America

* desalle@amnh.org

Abstract

A kiosk-based survey at the American Museum of Natural History in New York City in 2016–2018 allowed us to assess public knowledge of antibiotics and public attitudes toward microbes in museum goers. Over 22,000 visitors from 172 countries and territories answered several carefully designed questions about microbes and antibiotics. These visitors also entered age, gender, and country demographic data that allowed for stratification along these demographic and geographic divisions. Because museum goers are likely to be better informed about these and other science-based topics, the results described here can set a potential upper bound for public knowledge on these topics. Surprisingly, the results of our analysis of museum goers’ answers about microbes and antibiotics indicate a substantial lack of familiarity with both topics. For example, overall only about 50% of respondents can correctly identify penicillin as an antibiotic and less than 50% of museum visitors view microbes as beneficial. The results described here suggest that we are perhaps off target with our educational efforts in this area and that a major shift in approach toward more basic microbial topics is warranted in our educational efforts.
Introduction

Public perception, attitudes and knowledge (PAK) about the relationship between microbes and human health are a major focus of health professionals and health educators [1–8]. While public interest in microbiology and infectious disease has always been substantial, even more interest has been generated by the expanding research on human microbiomes (communities of microbes living in and on us) in the past decade [9–16]. And more recently with the Covid 19 (SARS Cov2) pandemic there is an important need for public education of viral biology [17–19]. Microbiome studies in particular have shifted the paradigm for how microbes shape human health away from the simplistic view that microbes act solely as pathogens (‘germs”, and ‘bugs’) in the human body towards a more sophisticated view that emphasizes ecological and community interactions amongst microbes in the human body. Health professionals and educators must inform the public of the human health impact of this new microbiome research [15,20–24]. Obtaining basic information on how a lay audience perceives and reacts to these topics is necessary for understanding where to direct educational efforts.

While the initial surveys we conducted for this study addressed a broad array of microbe related topics, here we examine specifically, and in detail, two aspects of public knowledge about microbes. The first addresses the public’s familiarity with antibiotics and the second focuses on how the public views microbes. The former—public knowledge about antibiotics—has been extensively addressed with copious published surveys (S1 File). The latter concerns general attitudes or familiarity toward microbes, a topic which has not been well-surveyed. While there has been some research in the area of PAK about microbes in general [25–33], the ratio in the literature of research surveys of PAK concerning antibiotics (nearly 100 peer reviewed publications) to microbes in general (on the order of ten) is about ten to one. In this study, we examine several hypotheses (Table 1) relevant to people’s PAK of microbes and antibiotics. Several sub-hypotheses can be generated from the four general ones listed in Table 1. Our approach to testing these hypotheses is also outlined in Table 1 and such tests aid us in approaching the objectives of the study. These objectives are twofold; first to assess the museum goer’s knowledge of and familiarity with microbes. Second, we wanted to add to the burgeoning literature concerning general knowledge of antibiotics.

Materials and methods

Survey design

Survey questions were administered using a kiosk positioned in the museum’s Hall of Biodiversity (S2 File). Questions were composed by members of the Education/Exhibition

Table 1. Hypotheses and tests of public knowledge and attitude to antibiotics and microbes.

Specific Hypothesis	Test
H1. There is no impact of native language on the answers given to the survey questions	Comparing results from countries where primary language is English with other countries’ answers
H2. The public perceives microbes as dangerous and pathogenic	Questions 1 and 2 to address this hypothesis
H3. The public perceives microbes as Having no beneficial qualities	Questions 1 and 2 to address this hypothesis
H4. The public can identify an antibiotic(s) in a list of medicinal compounds and antibiotics.	Use of Survey 1, Question 2 and Survey 2, Question 3 to address this hypothesis.
H5. Knowledge of antibiotics does not differ between countries	Use of Survey 1, Question 2 and Survey 2, Question 3 compared across countries

The hypothesis is given in the left column and the specific test we used in the right column.

https://doi.org/10.1371/journal.pone.0257085.t001
Evaluation team, the AMNH-SEPA (Science Education Partnership Award, NIH) team and the AMNH-SEPA scientific advisory committee. Polling question design was guided by preliminary verbal surveys and prior observations of user kiosk experiences at the AMNH. To compensate for language differences of the international audience of the AMNH, we made the prose of the questions and the physical interaction with the kiosks as simple as possible. We also suggest that if a visitor has enough understanding of the English language to begin interacting with the kiosk, they are more than likely capable of understanding the English in the questions.

Data were collected during a two-year period from February 2016 to January 2018 (Table 2). While the broader goals of the survey included questions about probiotics, hand sanitizer, antibiotics and other microbe related topics here we focus on antibiotics and general knowledge about microbes. The survey questions relevant to these topics are listed in Table 2 and posted on the SEPA kiosk website (http://sepakiosk.com/; S2 File) where the raw data for the survey are also available. The specific rationale for each question is given in the table below each question. Some of the questions were designed to have correct and incorrect responses, and others were designed to gain insight into the public’s attitudes with respect to microbes, meaning there were no right and wrong answers for these latter questions. Answers to questions in the first survey often guided the questions we asked in the second. For example, Question 2 from the first survey (Table 2) was designed to assess whether respondents recognized even one of the most basic antibiotics. If the results of the first survey had indicated advanced widespread ability to recognize basic antibiotics, we planned to delve into antibiotic resistance in the second survey. However, Survey 1 results showed poor public recognition of antibiotics. Therefore, the second survey further explored antibiotic recognition. The American Museum of Natural History Institutional Review Board (AMNH-IRB- FWA00006768) examined the proposed work and survey method and waived consent for all participants in the study.

Assessing language differences
The native languages of participants in the surveys is broad to say the least. To assess the impact of native language on the Survey answers, we examined in detail the answers to two questions from the surveys. We chose answers from respondents from two countries that are predominantly native English-speaking (United States of America [US; n = 3876] and Australia [AU; n = 329]) and two countries that are predominantly non-native English-speaking and non-Western language based (China [CH; n = 326] and Japan [JP; n = 97]) for comparison. These countries were chosen because of their relatively large sample size compared to other countries. The results of this analysis are in S3 File.

Data analysis
Data from the surveys were parsed into separate files for demographic patterns involving age, country of residence, geographic region of residence or gender (Table 3). There are two basic ways to assess the frequency of correct and incorrect responses to the objective questions that we explored. The first is a simple tally of the number of times the answer was chosen, regardless of whether several answers were chosen. For instance, for Survey 1 Question 2 a participant who answered aspirin, valium, Tylenol, penicillin and Benadryl would contribute one incorrect count to the total for each of the incorrect compounds (aspirin, valium, Tylenol and Benadryl) and one correct answer to the total for the correct answer (penicillin). These simple tallies can then be used for comparisons. The second way to count correct and incorrect answers is to recognize that for Survey 1 answering only aspirin is incorrect and answering
Table 2. Questions on Survey 1 and Survey 2 used in the current study.

Survey 1

Question 1. "Which two words come to mind when you hear the word microbe?"

1	"Germ"
2	"Disease"
3	"Tiny"
4	"Beneficial"
5	"Essential"
6	"Biodiversity"

This question was asked to gauge the initial impressions of microbes.

Question 2. "Which of these is an antibiotic? Select as many as you like!"

1	"Aspirin"
2	"Diazepam (e.g. Valium)"
3	"Acetaminophen (e.g. Tylenol/Paracetamol)"
4	"Penicillin"
5	"Antihistamine (e.g. Benadryl)"

This is an objective question with a clear correct answer–Penicillin. This question was posed to gauge the public’s knowledge of antibiotics at a very basic level. If we had obtained a sophisticated response to this question we planned to have proceeded in the second survey to ask a question about resistance.

Survey 2

Question 1. "Which of the following are true statements about microbes: (check all that apply).”

1	"Microbes are too small for the naked eye to see”
2	"Microbes only have one cell.”
3	"Microbes are only in dirty places.”
4	"Microbes are essential for life.”
5	"There are many types of microbes.”

This question was asked to follow up on questions from Survey 1 on the public’s general impression of microbes.

Question 2. "For human health, microbes are:”

1	"Mostly beneficial”
2	"About half of them beneficial and half of them harmful”
3	"Mostly harmful”
4	"Have no impact on human health”

This question was asked to gauge the public’s starting point on what they think a microbe is. This question follows up on one from Survey 1.

Question 3. "Which of these is an antibiotic? Select as many as you like!”

1	"Aspirin"
2	"Valium"
3	"Tylenol/Paracetamol”
4	"Penicillin”
5	"Benadryl”
6	"Neosporin”
7	“Azithromycin”

This question was asked to further assess the surprising result from Survey 1, that most respondents misidentified antibiotics.

Possible answers are also shown as well as a rationale (in italics) for the question. We present here only the questions on the survey relevant to the current study. Several other questions on the surveys about probiotics and hand sanitizer were also posed, but for clarity we omit them from this table and refer the reader to http://sepakiosk.com/ for a full list of the questions and responses.

https://doi.org/10.1371/journal.pone.0257085.t002
only penicillin is correct and so on for the other compounds. Any answer with multiple choices like aspirin + penicillin is also technically incorrect. Correct and incorrect answers can be tallied in this way too. We call the former way of counting “raw” and the latter way “accurate”.

Ranking countries for correct answers to antibiotic recognition questions

Responses to the antibiotic recognition questions (Survey 1, Question 2; Survey 2, Question 5) were scored as correct or incorrect for countries that had sample sizes greater than 95. Percentage of total number of respondents with correct answers was then calculated and the seventeen countries with $N > 95$ for Survey 1 and the nineteen countries with $N > 95$ for Survey 2 were ranked based on this percentage.

Results

Survey data analysis description

The numbers of participants by country are provided on the website (http://sepakiosk.com/) for this project and in Fig 1. In addition, subjects were characterized by geographic region of origin (Table 3). The data also can be stratified according to gender (Male [M], Female [F] and no answer) and age (age categories <13 years, 13–25 years, 25–45 years, 45–65 years, >65 years, and no answer). Distribution of the respondents’ age and sex in the sample are given in Table 2. Most surveys omit children from reporting of results, however for our analysis here

Kiosk visits	Survey 1	Survey 2
Total visits	18103	21300
Valid visits	9893	12721

Continent or region		
AF (Africa)	379	467
AS (Asia)	795	961
EU (Europe)	2338	3115
IND (India)	199	226
LA (Latin America)	1016	1503
ME (Middle East)	152	167
NA (North America)	4487	5711
PAC (Pacific Region)	472	568

Gender		
Male	3724	4443
Female	4828	6265
ND	1281	2014

Age Category (years)		
<13	2795	3005
13–25	2590	3348
25–45	2084	3100
45–65	1147	1622
>65	449	588
ND	771	1061

Counts for Survey 1 and Survey 2 are shown. ND indicates a respondent who did not enter gender or age.

https://doi.org/10.1371/journal.pone.0257085.t003
we retained data for respondents <13 years, as the answers for this age did not vary significantly from older respondents. We do, however, recognize the limitations of presenting this age category and so we clearly demarcate this age group in comparisons. For geographic abbreviations used in the figures and the text see the legend to Fig 1.

The effect of language on survey inferences

The results of the analysis of the effects of the use of English on the surveys are presented in S3 File. Briefly, the data and analysis show that there are small differences between the respondents from the different countries based on language. However, analysis of language usage also revealed greater variation of answers related to medical compound names, but less with choice of descriptive words (like beneficial or essential). This result is not surprising as the compounds we listed in the survey often times have different brand names in different countries. The disparity in correct responses between native English and non-native English speakers ranges from 10% (US compared to AU; significant at p<0.05 using Fisher Exact test) to 20% (JP compared to US; significant at p<0.05 using Fisher Exact test). All other comparisons of the four countries used in this comparison (US, AU, JP and CH) were not significant.
As such, we report an upper and lower boundary on the frequency of wrong answers to these kinds of questions in the context of language. There are of course other factors involved in potential language differences than those addressed here. We suggest that the general scale of all answers to questions in this survey are very similar regardless of the language of respondents. To further account for possible language effects, we report averages for the frequency of particular answers as ranges to provide estimates of the potential impact of language on the overall conclusions of the study.

Attitudes toward microbes and knowledge of antibiotics

We used the overall data set to examine the knowledge of respondents with respect to antibiotics (H2: Survey 1, Question 2 and Survey 2, Question 5). The Survey 1 question was "Which of these is an antibiotic? Select as many as you like!" with possible answers being Aspirin, Tylenol, Valium, Penicillin and Benadryl. The Survey 2 question (discussed above) included the same five compounds but added Azithromycin and Neosporin as possible answers. Both questions are objective with a well-defined correct answer (Survey 1, only penicillin is an antibiotic and in Survey 2 penicillin, Azithromycin and Neosporin [actually a combination of three antibiotics] are antibiotics).

In general, the surveys indicate that the public had difficulty identifying antibiotics by name. In other words, respondents had difficulty distinguishing antibiotics from other medicines. Because the respondents could give multiple answers to this question it is informative to report the percentage of respondents answering correctly that only penicillin is an antibiotic (rather than the number of respondents who picked penicillin along with other compounds) which was 49%. The overall percent of respondents answering incorrectly for aspirin, Tylenol, Benadryl and Valium (23%) as antibiotics are also shown (Fig 2A). Another way to look at the answers to these survey questions is simply by percentage of raw answers. These are recorded as overall averages for each compound as an antibiotic for Survey 1 in Fig 2A and are as follows: penicillin = 78%, aspirin = 28%, Tylenol = 20%, Benadryl = 23%, Valium = 24%. For Survey 2 the overall averages for identifying a compound as an antibiotic are aspirin = 21%, valium = 14%, Tylenol = 18%, penicillin = 63%, Benadryl = 63%, Neosporin = 33% and Azithromycin = 41% (Fig 2B).

In Survey 1 (Fig 2A), Europe (EU), Latin America (LA) and North America (NA) respondents were significantly different from Africa (AF) and Asia (AS), but no other pairwise comparison of these geographic regions were significant. In Survey 2, EU, India (IND), NA and Pacific area (PAC) were significantly different from AF and AS, and NA is significantly different from EU, PAC and LA. The lower frequencies of identification of antibiotics by Asian, African, and Middle Eastern (ME) respondents could relate to lack of familiarity with the American brand names for these medicines, although generic and specific names were also provided in the questions and when possible, we included generic names for these compounds that might be more familiar to the foreign visitors.

Survey 2 asked the same question, including the same five compounds as well as another antibiotic (azithromycin) and an antibiotic mixture (Neosporin). Respondents misidentified the following compounds, aspirin, acetaminophen, Valium and Benadryl, as antibiotics at an average rate of 22% for each, similar to Survey 1. Only 26% of respondents identified both azithromycin and penicillin as antibiotics (Fig 2B). For North American (NA) respondents, only 21% could correctly identify all three antibiotics (including Neosporin which is a local brand name and an antibiotic mixture) as such. The summaries of individual answers to this question on Survey 2 are shown in Fig 2C where it is evident that each of the wrong answers (aspirin, Valium, Tylenol and Benadryl) are given on average over 20% of the time.
To approach H2 (Table 1; understanding the role of microbes in modern human life) we examined respondents’ answers to Survey 1, Question 1 and Survey 2, Questions 1 and 2. In this way, we examined participant attitudes toward microbes using their preferences for
particular descriptive words for microbes. In the first survey, we compared three common terms that often are used to describe microbes (tiny, disease, and germ) with three terms that describe positive aspects of microbes (essential, biodiversity, and beneficial) and asked “Which words come to mind when you hear the word microbe?” Although participants were able to list as many words as they wanted, responses were less likely to use the positive terms (Fig 3A).

This finding is consistent with museum visitors having limited recognition of the benefits provided by microbes (Fig 3A). In Survey 1, few of the respondents used any of the terms beneficial, essential, or biodiversity to describe microbes (Fig 3B). We found that 53% entirely avoided the use of the three terms, and only <1% used all three terms together (Fig 3A). Use of any pair of the three positive terms was uncommon (<5%) as were single usages of the three terms (all three single usages added to <10%).

To better understand the reluctance of respondents to use positive terms to describe microbes, in Survey 2, we used two different questions (Table 2); one focused on biodiversity and the essential nature of microbes (Question 1), and the other focused on the health benefits of microbes (Question 2). For Question 1, 75% of the responses avoid use of beneficial and diversity (i.e., many kinds of microbes), while only 3% used both terms (Fig 3A). For Question 2, 63% avoided the response that indicated microbes can be beneficial for health, showing lack of appreciation of beneficial roles in the majority (Fig 3B).
Potential for comparing PAK trends across countries

Questions on these surveys can give us important information on the knowledge of antibiotics for a geographic region. We used the “accurate” counts for correct and incorrect answers to Survey 1, Question 2 and Survey 2, Question 5 to rank countries as to the ability of their respondents to correctly recognize antibiotic names. We used a cutoff for inclusion in these comparisons at N > 95 for both surveys. Table 4 shows the seventeen and nineteen countries with sample sizes greater than 95 for Survey 1 and Survey 2 respectively. The table shows that the United Kingdom ranks higher than any of the other countries using the approach for ranking that we employed. In addition, it is also clear that European countries rank higher than countries from elsewhere in the world at recognizing the names of antibiotics. Many of these are European Union countries that have benefit from programs on antibiotic resistance. We suggest that these analyses lean toward recognizing the United Kingdom as being perhaps the most informed population in the overall sample, indicating that we can reject H4 (Table 1; knowledge of antibiotics does not differ between countries).

The United Kingdom has recently instituted the second of its two five-year plans to educate their populace on antibiotic resistance [34,35]. While there have been efforts to educate about antibiotics in other European countries, such education has not been as intense as in the United Kingdom. To examine the efficacy of the British five year plans we posited a new hypothesis that British respondents would fare better at recognizing the names of antibiotics using the same questions discussed above (“Which of these is an antibiotic? Select as many as you like”) for Survey 1 and Survey 2. We parsed a subset of the total dataset for the responses from 2017 for this question by sorting the data by country with 95 or more respondents.

Table 4. Countries with >95 respondents answering for Survey 1 (S1) and Survey 2 (S2) used in the comparison of the United Kingdom to other countries.

Country	NS1	RS1	NS2	RS2
Argentina	155	5	342	7
Australia	329	13	368	9
Brazil	275	9	418	12
Canada	562	14	739	14
China	326	15	407	15
Columbia	108	8	128	11
France	328	11	439	6
Germany	169	2	205	2
India	186	4	188	8
Netherlands	98	3		
New Zealand	95			
Italy	206	7	342	4
Japan	99	16	94	16
Mexico	140	10	128	13
Russia	530	17	761	17
South Korea	103	12	113	10
Spain	246	6	295	5
UK	352	1	424	1
USA	3877	3	4930	3

The number of respondents for survey 1 (NS1) and the number of respondents for Survey 2 (NS2) are given. The relative rank of a country for correct answers for Survey 1 (RS1) and Survey 2 (RS2) are also given. See text for how countries were ranked according to correct answers.

https://doi.org/10.1371/journal.pone.0257085.t004
We used the raw count of the times that correct and incorrect answers were given by a respondent for initial analyses. Fig 4 shows the results for a subset of this comparison for Survey 1 for France, Germany, Canada and the United Kingdom. One striking result that is consistent with those described above for the overall analysis is that respondents from these countries answer that non-antibiotic medicinal compounds like aspirin, Tylenol, Benadryl and valium are antibiotics at a rate of about 22%. There are no significant differences between the UK answers and those from the other three countries for these non-antibiotics. However, with respect to our original hypothesis it is clear that the UK respondents do show up to a 30% higher frequency of identifying penicillin as an antibiotic relative to several other countries’ respondents. The UK respondents show only slightly better identification of penicillin as an antibiotic over German respondents.

Discussion

The results of this study are significant in two major areas– 1) Assessing public attitudes to microbes; 2) Testing knowledge of the public about antibiotics.

Public attitudes to microbes

The results of the two surveys based on >22,000 respondents to three simple questions (Survey 1, Question 1; Survey 2, Question 1, Question 2) and subsequent test of H2, H3, H4 and H5 (Table 1) provide a snapshot of museum visitors’ attitudes toward microbes and antibiotics.
To date very few survey studies have attempted to assess the attitude of the public to microbes on a as large a scale as here. The major focus in the literature on this topic is simply to state that we need to shore up the public’s take on microbes [23,24,36,37]. The current study provides solid evidence that a good proportion of museum goers do not fully understand the essential and beneficial role of microbes in health. The surveys demonstrate a predominantly negative attitude by the public toward microbes as based on our analyses above as only 53% of the respondents entirely avoided the use of the three positive terms describing microbes and only 1% used all three positive terms together to describe microbes (Fig 3). Such a lack of understanding could impact the acceptance of public health measures based on the beneficial properties of microbes [25,36,38]. Understanding the role of microbes in the environment and in the human body is critical to the success of future public health measures to better steward antibiotic use [24,37,39]. We point out that the results reported here are for museum goers, a category which is predominately better informed than others [40–53]. Hence the results we show here should give an upper bound of the general public’s attitudes.

Public recognition of antibiotics

The literature on public knowledge of antibiotics is substantial. Our canvassing of the literature revealed nearly a hundred surveys attempting to address PAK in a large number of different countries (S1 File). The inclusion of questions on these surveys are for the most part consistent from survey to survey. For instance, the following question appeared in almost all of these published surveys “Answer TRUE/FALSE: Antibiotics are effective in killing viruses”. Another kind of question that was relatively consistent across surveys in the literature involved correctly labeling a medicinal compound (Table 5) as an antibiotic such as “Answer TRUE/FALSE penicillin is an antibiotic” or Answer TRUE/FALSE aspirin is an antibiotic.” We compiled and summarized results from these surveys relevant to these two questions (S1 File and Table 5). The first compilation shows the percentage, method of survey and country where the study queried about the effectiveness of antibiotics on flu, viruses or the common cold. The data presented in S1 File show the literature survey for this kind of question. The percentage of wrong answers for this question when “viruses” are inserted into the question is 20% to 90%. When “flu” is inserted the range of percentage of wrong answers is 30% to 93%. Interestingly there is a general trend of lower percentage of wrong answers from developed countries versus developing countries for both kinds of questions (S1 File). The kiosk survey results here are not directly comparable to the antibiotics/viruses/flu question discussed above as we did not directly ask this question in our surveys. However, the public gives wrong answers for antibiotic recognition in our study at about the same rate as they answer that flu and viruses can be overcome with antibiotics. An overall average of 54% of respondents from the literature survey answer incorrectly that viruses and flu can be controlled by antibiotics. For Survey 1, 51% of total respondents answer incorrectly that penicillin is not an antibiotic. For Survey 2, 45% of the overall respondents answer incorrectly that penicillin was not an antibiotic. These results are somewhat similar to those of Li et al., [54] for Chinese respondents. Li et al., [54] developed an antibiotic knowledge scale and included nearly 13,000 respondents in their study. They showed that 67% of their respondents “had poor antibiotic knowledge”. While it is difficult to cross compare studies (discussed above) it is significant that the grand majority demonstrate over half of the public has poor understanding of antibiotics. This conclusion is discouraging as it demonstrates an overall and repeatable low knowledge level of the public concerning antibiotics.

Results of the literature survey for answers to the second category of questions on recognizing antibiotics is shown in Table 5 and S1 File. These results are directly comparable to the
results from our two kiosk surveys. When penicillin is the query word, the percent of correct answers in the literature survey ranges from 28% to 95%. When aspirin is the query word, the percent of correct answers in the literature survey ranges from 47% to 96%. These ranges can be compared to the ranges we infer from Survey 1 (Penicillin: 70% to 83%; average 78% +/- 4.2%; Aspirin: 24% to 46%; average 29% +/- 7.4%) and from Survey 2 (Penicillin: 70% to 83%; average 78% +/- 4.2%; Aspirin: 24% to 46%; average 29% +/- 7.4%). While the ranges in the literature are large there is general overlap and the overall conclusion that there is widespread poor understanding about antibiotics is sustained.

Potential for comparing PAK trends; the UK versus other countries

Table 4 shows the rankings of antibiotic recognition for several countries with sample sizes in our study with N>95. It is clear that the United Kingdom respondents fare better than any of the other countries with adequate sample size. The rankings appear to be consistent from Survey 1 to Survey 2, with the top three ranked countries the same in both surveys and the bottom four ranked countries the same in both surveys. In addition, the literature survey ranked the UK first, with EU countries Spain, France, Germany and Italy also ranked in the top six countries which is very similar to our kiosk surveys. In general, our surveys, like the relatively large literature on antibiotic recognition, clearly show that the public has difficulty identifying antibiotics by name and distinguishing them from other medicines.
Limitations

The two surveys over a two-year period (2016–2018) were conducted using a kiosk installed in the American Museum of Natural History. While kiosk surveys are commonly used to evaluate products for businesses they have in limited cases been used in health education and public knowledge assessment projects [74–76]. The utility of kiosks as a survey tool is not well known, but it is reasonable to suggest that kiosk interaction is mechanically similar to online surveying which has been considered very useful [77–79].

Another related issue was the location of the kiosk. While we placed the kiosk as far away as possible from any exhibits in the AMNH focused on microbes, there was still the potential for on-site learning of concepts immediately prior to the survey. Such on-site learning would inflate the results in the same direction as using museum goers as subjects and would inflate the degree of understanding of museum goers surveyed in this study.

The makeup of the participants (museum goers) in our surveys is complicated by being conducted in a science museum. Several studies have examined the level of PAK in museum goers for many different topics [40–53] and the consensus is that museum goers are better informed about a wide range of scientific topics than non-museum goers. In addition, the comparison of different geographic regions here might not be entirely valid for calling this study a global study. We point out that the participants in our study are probably at the more knowledgeable end of the general public PAK spectrum. Our results can therefore be interpreted as a best-case scenario with respect to the level of knowledge in regard to the survey questions. More than likely the level of knowledge of the general population is lower than what we observe here.

Any study using a survey is based on the reliability and validity of the questions posed. While no formal analysis of these survey parameters was accomplished prior to the survey we suggest that our pre-survey exploration addressed some of the validity concerns that surveys face. We also suggest that the consistency of similar answers from the survey done in 2017 with those from 2018 indicate a degree of reliability of those survey questions. Finally, we point out that several of the questions in our survey have been posed before in other surveys on antibiotics and microbial issues, which also suggesting a degree of validity of this study.

A final limitation of our study concerns the language we used to distribute the surveys—English. We examined this problem in some detail (S3 File), but a language barrier might be responsible for some of the patterns we observe when we compare results across different geographic areas of the globe. A problem specific to language usage concerns using brand names in the antibiotic questions in the survey. This complication would deflate our observation of the degree of understanding of museum goers surveyed in this study.

Conclusion and education policy issues

Together, the results on peoples’ attitudes to microbes and knowledge of antibiotics indicate a substantial lack of familiarity with both, which implies a need for better education of the general public and of museum goers about these subjects. With antibiotic resistance increasing [16], and the most recent global Covid 19 pandemic [17–19] we need to understand better what people know and hence assess better what they need to know both locally and globally. From the perspective of a natural history museum or a science center knowing where to focus efforts is a first step in developing functional and effective programs and exhibitions.

The current study was part of a larger initiative started at the AMNH in 2015 to educate the public about microbes and issues related to microbes that included two exhibitions on the microbiome and Science Cafe programming events as well. The surveys were designed by the museum’s educators, exhibition staff and scientific advisory panel to probe the museum goer’s
knowledge of certain issues connected to microbial diversity and microbial life. The data from
the surveys can inform the museum educators and exhibition staff as to what level materials
developed by the outreach and informal education arms of the museum should be targeted at.
The AMNH uses such information to create a system for gauging audience interest in particular
topics, as well as identify gaps in audience knowledge between cutting-edge research on
biodiversity and health and public perceptions of those intersections and their implications.
The current results indicate that in developing future programming.

We also suggest that the analysis here can be disseminated for the benefit of other formal
and informal science institutions, providing them with methodology and data they can use for
their own programming. This survey of public knowledge will be particularly valuable in influ-
encing critical conversations on national science education and science policy, and dissemina-
tion efforts aimed to reach these relevant audiences. These results then can help guide the
design of specific education programs. Public education programs about microbes often start
with the somewhat sophisticated topic of antimicrobial resistance. We demonstrate a lack of
general knowledge about microbes in the museum going public that suggest museum educa-
tors and perhaps even public health educators should reassess the level at which information
about microbes is initially presented [23,24].

Supporting information

S1 File. Comparison of antibiotic recognition in the literature. The literature on public
knowledge of antibiotics is substantial. The comparisons span a large number of countries and
demographics.

(S1 File)

S2 File. A description of the kiosk used in the surveys with information for access to survey
questions, data and information on the AMNH-SEPA project.

(S2 File)

S3 File. Analysis of the impact of language differences on survey responses.

(S3 File)

Author Contributions

Conceptualization: Julia Zichello, Preeti Gupta, Monique Scott, Bella Desai, Ruth Cohen,
Lauri Halderman, Ana Porzecanski, Paul J. Planet, Yael Wyner, Martin Blaser, Robert
Burk, Judy Diamond, Jennifer Borland, Rob DeSalle.

Data curation: Lauri Halderman, Jennifer Borland, Rob DeSalle.

Formal analysis: Susan Perkins, Yael Wyner, Martin Blaser, Jennifer Borland, Rob DeSalle.

Funding acquisition: Preeti Gupta, Monique Scott, Ruth Cohen, Rob DeSalle.

Investigation: Julia Zichello, Bella Desai, Lauri Halderman, Susan Perkins, Ana Porzecanski,
Paul J. Planet, Yael Wyner, Martin Blaser, Robert Burk, Judy Diamond, Jennifer Borland,
Rob DeSalle.

Methodology: Bella Desai, Lauri Halderman, Ana Porzecanski, Paul J. Planet, Yael Wyner,
Robert Burk, Judy Diamond, Jennifer Borland, Rob DeSalle.

Project administration: Julia Zichello, Preeti Gupta.

Resources: Monique Scott, Lauri Halderman, Yael Wyner, Rod Kennett.
Software: Lauri Halderman.

Validation: Susan Perkins, Paul J. Planet, Yael Wyner, Martin Blaser, Robert Burk, Judy Diamond, Rod Kennett, Rob DeSalle.

Visualization: Rob DeSalle.

Writing – original draft: Rod Kennett, Rob DeSalle.

Writing – review & editing: Rod Kennett.

References

1. Almond Paul, and Esbester Mike. "Recent Public Attitudes Towards Health and Safety." In Health and Safety in Contemporary Britain, pp. 21–42. Palgrave Macmillan, Cham, 2019.

2. Hahn Robert A., and Truman Benedict I. "Education improves public health and promotes health equity." International Journal of Health Services 45, no. 4 (2015): 657–678. https://doi.org/10.1177/0020731415589586 PMID: 25995305

3. Resnick Beth, Leider Jonathon P., and Riegelman Richard. "The landscape of US undergraduate public health education." Public Health Reports 133, no. 5 (2018): 619–628. https://doi.org/10.1177/0033354917874911 PMID: 30084738

4. Hornik Robert. "Public health education and communication as policy instruments for bringing about changes in behavior." In Social marketing, pp. 45–58. Psychology Press, 2018.

5. Zajacova Anna, and Lawrence Elizabeth M. "The relationship between education and health: reducing disparities through a contextual approach." Annual review of public health 39 (2018): 273–289. https://doi.org/10.1146/annurev-publhealth-031816-044628 PMID: 29328865

6. Sariola Salla, and Gilbert Scott F. "Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene." Microorganisms 8, no. 5 (2020): 746.

7. Verran Joanna, Redfern James, Moravej Haleh, and Adebola Yvonne. "Refreshing the public appetite for 'good bacteria': menus made by microbes." Journal of Biological Education 53, no. 1 (2019): 34–46.

8. Clarke Laurence J., Jones Penelope J., Ammitzboll Hans, Barmuta Leon A., Breed Martin F., Chariton Anthony, Charleston Michael et al. "Mainstreaming microbes across biomes." BioScience 70, no. 7 (2020): 589–596.

9. Cho Ilseung, and Blaser Martin J., 2012. "The human microbiome: at the interface of health and disease." Nature Reviews Genetics 13, no. 4 (2012): 260. https://doi.org/10.1038/nrg3182 PMID: 22411464

10. Blaser Martin J. "The microbiome revolution." The Journal of clinical investigation 124, no. 10 (2014): 4162–4165. https://doi.org/10.1172/JCI73836 PMID: 25271724

11. Blaser Martin J. "Antibiotic use and its consequences for the normal microbiome." Science 352, no. 6285 (2016): 544–545. https://doi.org/10.1126/science.aad9358 PMID: 27126037

12. Proctor Lita M., Creasy Heather H., White Owen, and Huttenhower Curtis. "The Integrative Human Microbiome Project." Nature (2019). https://doi.org/10.1038/s41586-019-1238-8 PMID: 31142853

13. Butler Mary I., Cryan John F., and Dinan Timothy G. "Man and the Microbiome: A New Theory of Everything?" Annual review of clinical psychology 15 (2019).

14. Murphy J. F. "The human microbiome: an emerging paradigm for better health." MOJ Immunol 6, no. 2 (2018): 54–55.

15. Savage Neil. "Spreading Knowledge and Wonder." Cell 164, no. 6 (2016): 1085–1088. https://doi.org/10.1016/j.cell.2016.02.051 PMID: 26967272

16. Klein Eili Y., Van Boeckel Thomas P., Martinez Elena M., Pant Suraj, Gandra Sumanth, Levin Simon A., et al. "Global increase and geographic convergence in antibiotic consumption between 2000 and 2015." Proceedings of the National Academy of Sciences 115, no. 15 (2018): E3463–E3470. https://doi.org/10.1073/pnas.1717295115 PMID: 29581252

17. Li Li, Xv Qianghong, and Yan Jing. "COVID-19: the need for continuous medical education and training." The Lancet. Respiratory Medicine (2020). https://doi.org/10.1016/S2213-2600(20)30125-9 PMID: 32192586

18. Ahmed Hanad, Allah Mohammed, and Elghazaly Hussein. "COVID-19 and medical education." The Lancet Infectious Diseases 20, no. 7 (2020): 777–778. https://doi.org/10.1016/S1473-3099(20)30226-7 PMID: 32213335
19. Leung Chi Chiu, Lam Tai Hing, and Cheng Kar Keung. "Mass masking in the COVID-19 epidemic: people need guidance." The Lancet 395, no. 10228 (2020): 945. https://doi.org/10.1016/S0140-6736(20)30520-1 PMID: 32142662

20. Stulberg Elizabeth, Frael Deborah, Proctor Lita M., Murray David M., Jonathan LoTempio Linda Chrisey, Garland Jay et al. "An assessment of US microbiome research." Nature microbiology 1, no. 1 (2016): 1-7. https://doi.org/10.1038/nmicrobiol.2015.15 PMID: 27571759

21. Aydin Solmaz. "High School Science Students’ Ideas About Microorganisms and Their Place in the Curriculum." International Journal of Biology Education 4, no. 2 (2015).

22. Pietrzak Barbara, Ward Adrian, Cheung Man Kit, Schwendimann Beat A., Mollaoglu Gurkan, Duong Michael Tran, Ulltveit-Moe Nils et al. "Education for the future." Science 360, no. 6396 (2018): 1409–1412. https://doi.org/10.1126/science.aau3877 PMID: 29954971

23. Barberán Albert, Hammer Tobin J., Madden Anne A., and Fierer Noah. "Microbes should be central to ecological education and outreach." Journal of microbiology & biology education 17, no. 1 (2016): 23. https://doi.org/10.1128/jmbe.v17i1.984 PMID: 27047584

24. Cirstea M, Radisavijevic N, Finlay BB (2018) Good Bug, Bad Bug: Breaking through Microbe Stereotypes. Cell Host & Microbe 23: 10–13. https://doi.org/10.1016/j.chom.2017.12.008 PMID: 29324224

25. Yeo Sara K., Sun Ye, McKasy Meaghan, and Shugart Erika C. "Disgusting microbes: The effect of disgust on perceptions of risks related to modifying microbiomes." Public Understanding of Science 28, no. 4 (2019): 433–448. https://doi.org/10.1177/0963662519832200 PMID: 30827192

26. Kurt Hakan. "Turkish Student Biology Teachers' Conceptual Structures And Semantic Attitudes Towards Microbes." Journal of Baltic Science Education 12, no. 5 (2013): 608.

27. McNeil J. N., Cotnoir P-A., Leroux T., Laprade R., and Schwartz J-L. "A Canadian national survey on the public perception of biological control." BioControl 55, no. 4 (2010): 445–454.

28. Loo Matthew, Heacock Helen, and Afshari Reza. "Evaluation of the public’s knowledge, attitude, and practice on seafood contaminants." BCIT Environmental Health Journal (2016).

29. Hamdiyati Y., Sudargo F., Redjeki S., and Fitriani Any. "Biology students’ initial mental model about microorganism." In Journal of Physics, Conference, vol. 812, no. 1, p. 012027. 2017.

30. Hamdiyati Yanti, Sudargo Fransisca, Redjeki Sri, and Fitriani Any. "CHANG ING OF STUDE NT’S MENTAL MODEL ABOUT VIRUS THROUGH MICROBIOLOGY COURSE PROGRAM BASED ON MENTALMODEL." EDUSAINS 10, no. 1 (2018): 74–82.

31. Jones Gail, Gardner Grant E., Lee Tammy, Poland Kayla, and Robert Sarah. "The impact of microbiology instruction on students’ perceptions of risks related to microbial illness." International Journal of Science Education, Part B, 3, no. 3 (2013): 199–215.

32. Beović Bojana, May Doušák Céline Pulcini, Guillaume Béraud Jose Ramon Paño Pardo, David Sanchez-Fabra Diamantis Kötteridis, et al. "Young doctors’ perspectives on antibiotic use and resistance: a multinational and inter-specialty cross-sectional European Society of Clinical Microbiology and Infectious Diseases (ESCMID) survey." Journal of Antimicrobial Chemotherapy 74, no. 12 (2019): 3611–3618. https://doi.org/10.1093/jac/dkz375 PMID: 31504568

33. Morgan M. S. "Perceptions of a medical microbiology service: a survey of laboratory users." Journal of clinical pathology 48, no. 10 (1995): 915–918. https://doi.org/10.1136/jcp.48.10.915 PMID: 8537489

34. HM Government (2019) Tackling antimicrobial resistance 2019–2024 –The UK’s five-year national action plan.https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773130/uk-amr-5-year-national-action-plan.pdf. Accessed 11 February 2019.

35. Courtenay Molly, Enrique Castro-Sanchez Matthew Fitzpatrick, Gallagher Rose, Lim Rosemary, and Morris Gary. "Tackling antimicrobial resistance 2019–2024—the UK’s five-year national action plan." The Journal of hospital infection 101, no. 4 (2019): 426–427. https://doi.org/10.1016/j.jhin.2019.02.019 PMID: 30826342

36. Dudo A, Besley J, Kahlor LA, Koh H, Copples J, and Yuan S. 2018. Microbiologists’ Public Engagement Views and Behaviors. Journal of microbiology & biology education 19, no. 1. https://doi.org/10.1128/jmbe.v19i1.1402 PMID: 29904524

37. Ewald HAS, and Ewald PW. 2018. Focus: Ecology and Evolution: Natural Selection, The Microbiome, and Public Health. The Yale journal of biology and medicine 91, no. 4: 445. PMID: 30588210

38. Thaler David S., Head Michael G., and Horsley Andrew. "Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health." BMC infectious diseases 19, no. 1 (2019): 120. https://doi.org/10.1186/s12879-019-3715-y PMID: 30727964

39. Timmis Kenneth, Cavicchioli Ricardo, José Luis García Balbina Nogales, Max Chavarría Lisa Stein, et al. "The urgent need for microbiology literacy in society." Environmental microbiology (2019).
40. Schneider M. (2017). People Trust Museums More Than Newspapers. Here Is Why That Matters Right Now (DATA). https://www.coleendilen.com/2017/04/26/people-trust-museums-more-than-newspapers-here-is-why-that-matters-right-now-data/.

41. Gunther Charles F. "Museum-goers: life-styles and learning characteristics." The educational role of the museum 2 (1999): 118–130.

42. Kirchberg Volker. "Museum visitors and non-visitors in Germany: A representative survey." Poetics 24, no. 2–4 (1996): 239–258.

43. Dickenson Victoria. "Museum visitor surveys: an overview, 1930–1990." In Cultural Economics, pp. 141–150. Springer, Berlin, Heidelberg, 1992.

44. Marty Paul F. "Museum websites and museum visitors: Before and after the museum visit." Museum management and curatorship 22, no. 4 (2007): 337–360.

45. Hein George E. "Museum education." A companion to museum studies (2006): 340–352.

46. Falk JH, Needham Mark D. Measuring the impact of a science center on its community. Journal of Research in Science Teaching, 2011; 48 (1): 1 https://doi.org/10.1002/tea.20394

47. Falk JH., and Needham MD. "Factors contributing to adult knowledge of science and technology." Journal of Research in Science Teaching 50, no. 4 (2013): 431–452.

48. Falk JH., and Dierking LD.. The museum experience revisited. Routledge, 2016.

49. Şentürk Eray, and Özdemir Örner Faruk. "The effect of science centres on students' attitudes towards science." International Journal of Science Education, Part B 4, no. 1 (2014): 1–24.

50. Falk, John H., Mark D. Needham, Lynn D. Dierking, and Lisa Prendergast. "International science centre impact study." Final report. John. H. Falk Research, Corvallis, Oregon 45 (2014).

51. Suter Larry E. "Visiting science museums during middle and high school: A longitudinal analysis of student performance in science." Science Education 98, no. 5 (2014): 815–839.

52. Jayabalan Nalinidevi, Selvaraj Nitya, Ganesan Suganya, Rajamohammad Meher Ali, and Anandan Isswariya. "A questionnaire based survey on knowledge, attitude and behaviour of antibiotic usage and resistance among undergraduates in South Indian teaching hospital." International Journal of Basic & Clinical Pharmacology 7, no. 10 (2018): 1991–1997.

53. Mouhieddine Tarek H., Olleik Zeinab, Itani Muhiieddine M., Kwaithar Soumayah, Nassar Hussein, Hassoun Rached, et al. "Assessing the Lebanese population for their knowledge, attitudes and practices of antibiotic usage." Journal of infection and public health 8, no. 1 (2015): 20–31. https://doi.org/10.1016/j.jiph.2014.07.010 PMID: 25154919

54. Sien Koo Hui, and Omar Marharis Salihah. "Knowledge and attitude towards antibiotic use and awareness of antibiotic resistance among older people in Malaysia." Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 55, no. 2 (2018): 1–9.

55. Lim Ka Keat, and Teh Chew Charn. "A cross sectional study of public knowledge and attitude towards antibiotics in Putrajaya, Malaysia." Southern med review 5, no. 2 (2012): 26. PMID: 23532680

56. Gonzales Ralph, Alma Ethelia López-Caudana Tulia González-Flores, Jayanthan Janaki, Corbett Kitty K., and Reyes-Morales Hortensia. "Antibiotic knowledge and self-care for acute respiratory tract infections in Mexico."Salud pública de México 54, no. 2 (2012): 152–157. https://doi.org/10.1590/s0036-38342012000200011 PMID: 22535174
62. Nepal Anant, Hendrie Delia, Robinson Suzanne, and Selvey Linda A. "Knowledge, attitudes and practices relating to antibiotic use among community members of the Rupandehi District in Nepal." BMC public health 19, no. 1 (2019): 1558. https://doi.org/10.1186/s12889-019-7924-5 PMID: 31771595

63. Norris Pauline, Lye Funn Ng Victoria Kershaw, Hanna Fady, Wong Angela, Talekar Meghna, et al. "Knowledge and reported use of antibiotics amongst immigrant ethnic groups in New Zealand." Journal of Immigrant and Minority Health 12, no. 1 (2010): 107. https://doi.org/10.1007/s10903-008-9224-5 PMID: 19139990

64. Auta Asa, Banwar Samuel B., David Shalkur, Dangwiwa Dauda A., Ogbole Esther, and Tor-anyin Amom J. "Antibiotic use in some Nigerian communities: knowledge and attitudes of consumers." Tropical Journal of Pharmaceutical Research 12, no. 6 (2013): 1087–1092.

65. Tadvi Naser Ashraf, Al Olaq Hamad Abdulaziz, AlMjlad Abdallah Bejad, Al Shammar Mazine Talal, Al Shammar Mishary Malik, Hussain Sajid, et al. "Knowledge, Attitudes and Practice Regarding Antimicrobial Resistance and Antimicrobial Use among Undergraduate Medical Students in Majmaah, Saudi Arabia." Journal of Research in Medical and Dental Science 7, no. 2 (2019): 75–81.

66. Zaide Syed Faisal, Alotaiabi Rakan, Nagro Abdulaziz, Alsalmi Muhammad, et al. "Knowledge and Attitude Towards Antibiotic Usage: A Questionnaire-Based Survey Among Pre-Professional Students at King Saud bin Abdulaziz University for Health Sciences on Jeddah Campus, Saudi Arabia." Pharmacy, no. 1 (2020): 5.

67. Ramchurren K., Balakrishna Y., and Mahomed S. "Patients' knowledge, attitudes and practices regarding antibiotic use at a regional hospital in KwaZulu-Natal, South Africa 2017." Southern African Journal of Infectious Diseases (2018): 1–6.

68. Mbwamb o Goodluck, Emidi Basiliana, Mgabo Maseke R., Sigalla Geoffrey Nimrod, and Kajeguka Debora C. "Community knowledge and attitudes on antibiotic use in Moshi Urban, Northern Tanzania: Findings from a cross sectional study." African Journal of Microbiology Research 11, no. 25 (2017): 1018–1026.

69. Parimi Neeta, Pinto Pereira Lexley M., and Prabhakar Parimi. "The general public's perceptions and use of antimicrobials in Trinidad and Tobago." Revista Panamericana de Salud Pública 12 (2002): 11–18. https://doi.org/10.1590/S0210-49892002000700003 PMID: 12202020

70. Baş Muhammed Kağan, Basturk Fatima Betul, and Övecoglu Hesna Sazak. "Awareness of Antibiotics and Analgesics Use In Marmara University Hospital." International Journal of Scientiﬁc Research in Dental and Medical Sciences 1, no. 4 (2019): 57–61.

71. Raupach-Rosin Heike, Nicole Rübsamen Gesa Schütte, Raschpichler Gabriele, Chaw Pa Saiddou, and Mikolajczyk Rafael. "Knowledge on antibiotic use, self-reported adherence to antibiotic intake, and knowledge on multi-drug resistant pathogens-results of a population-based survey in Lower Saxony, Germany." Frontiers in microbiology 10 (2019): 776. https://doi.org/10.3389/fmicb.2019.00776 PMID: 31031737

72. Rábano-Blanco Andrea, Dominguez-Martí Martí Eva María, Mosteiro-Miguéns Diego Gabriel, Freire-Garabal Manuel, and Novio Silvia. "Nursing Students' Knowledge and Awareness of Antibiotic Use, Resistance and Stewardship: A Descriptive Cross-Sectional Study." Antibiotics 8, no. 4 (2019): 203. https://doi.org/10.3390/antibiotics8040203 PMID: 31671525

73. Inácio João, Barnes Lara-Marie, Jeffs Simon, Castanheira Patrícia, Wiseman Myra, Inácio Sónia, et al. "Master of Pharmacy students' knowledge and awareness of antibiotic use, resistance and stewardship." Currents in Pharmacy Teaching and Learning 9, no. 4 (2017): 551–559. https://doi.org/10.1016/j.cplt.2017.03.021 PMID: 29233427

74. Oppenheimer Adam J., Pannucci Christopher J., Kasten Steven J., and Haase Steven C. "Survey says? A primer on web-based survey design and distribution." Plastic and Reconstructive surgery 128, no. 1 (2011): 299. https://doi.org/10.1097/PRS.0b013e3182174413 PMID: 21701347

75. Teolis M., 2010. A MedlinePlus® Kiosk Promoting Health Literacy. J Consum Health Internet.; 14(2): 126–137. https://doi.org/10.1080/15398281003780966 PMID: 20808715

76. Samal Janmejaya, Banuru Mudalidhara Prasad Subbanna Jonaladda, Vegendela Sripriya, and Chadha Sarabjit Singh. "Kiosk: An Innovative Client Centric Approach to Tuberculosis Prevention and Care." Journal of Tuberculosis Research 6, no. 02 (2018): 148.

77. Evans Joel R., and Mathur Anil. "The value of online surveys: A look back and a look ahead." Internet Research (2018).

78. Ha Louisa, Zhang Chenjie, and Jiang Weiwei. "Data quality comparison between computers and smartphones in different web survey modes and question formats." Internet Research (2020).

79. Dodemaide Paul, Joubert Prof Lynette, Hill Dr Nicole, and Merolli Dr Mark. "Online survey design and social media." In Proceedings of the Australasian Computer Science Week Multiconference, pp. 1–8. 2020.