A NEW BOUND FOR THE ERROR TERM IN THE APPROXIMATE FUNCTIONAL EQUATION FOR THE DERIVATIVES OF THE HARDY’S Z-FUNCTION

Philippe Blanc

Abstract. Lavrik and the author gave uniform bounds of the error term in the approximate functional equation for the derivatives of the Hardy’s Z-function. We obtain a new bound of this error term which is much better for high order derivatives.

1. Introduction and main result

Let \(\zeta \) be the Riemann zeta function, and \(Z \) the Hardy function defined by

\[
Z(t) = e^{i\theta(t)}\zeta \left(\frac{1}{2} + it \right)
\]

where

\[
\theta(t) = \arg \left(\pi^{-\frac{1}{2}} \Gamma \left(\frac{1}{4} + it \right) \right)
\]

and the argument is defined by continuous variation of \(t \) starting with the value 0 at \(t = 0 \). The real zeros of \(Z \) coincide with the zeros of \(\zeta \) located on the line of real part \(\frac{1}{2} \). The function \(\theta \) plays a central role in this paper and it is important to mention \([4]\) that

\[
\theta(t) = \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + O \left(t^{-1} \right)
\]

and

\[
\theta'(t) = \frac{1}{2} \log \frac{t}{2\pi} + O \left(t^{-2} \right).
\]

A weak form of the celebrated Riemann-Siegel formula \([4]\) asserts that

\[
Z(t) = 2 \sum_{1 \leq n \leq \sqrt{t}} \frac{1}{\sqrt{n}} \cos(\theta(t) - t \log n) + O \left(t^{-\frac{1}{4}} \right)
\]

2010 Mathematics Subject Classification. 11M06.

Key words and phrases. Riemann zeta function, Hardy’s function.
and, concerning the derivatives of Z, the approximate functional equation reads
\[Z^{(k)}(t) = 2 \sum_{1 \leq n \leq \sqrt{\frac{t}{n}}} \frac{1}{\sqrt{n}} (\theta'(t) - \log n)^k \cos(\theta(t) - t \log n + k \frac{\pi}{2}) + R_k(t) \]
where $R_k(t)$ is the error term. Of particular interest is the set of integers k, which depends on t, such that, uniformly in k,
\[R_k(t) = o(\theta'(t)^k) \text{ as } t \to \infty \]
which means that $R_k(t)$ is a true error term.
Lavrik [5] proved that (1.4) holds for $0 \leq k \leq c \theta'(t)$ where $c < \frac{1}{2 \log 3} = 0.4551...$, the author [1] extended this result to $c < 1.7955...$ and numerical experiments suggested that (1.4) is probably true for larger k. For example $|R_k(10^k)| \leq 0.05 \theta'(10^k)^k$ for $k = 1, \ldots, 117$.
In this paper, we prove that (1.4) holds for $0 \leq k \leq c \theta'(t)^2$ where $c < 3$, which is a consequence of Theorem 1.1. To simplify its proof, and since the case $0 \leq k < \theta'(t)$ is covered by [1], we restrict our attention to the case $k \geq \theta'(t)$.

Theorem 1.1. Let t be large enough and $c > 1$ be a fixed constant. Then, for $\theta'(t) \leq k \leq 3 \theta'(t)^2$, we have, uniformly in k,
\[R_k(t) = O \left(t^{-\frac{k}{2}} e^{\frac{k^2}{2} \theta'(t)^2} + t^{-\frac{k}{2}} e^{\frac{k}{2} \theta'(t)^2} k \theta'(t)^{k-1} \right) . \]

The notations used in this paper are standard: $[x]$ and $\lceil x \rceil$ stand for the usual floor and ceiling functions and $\{x\} := x - [x]$. We denote by $(x)_n$ the Pochhammer symbol defined by $(x)_0 = 1$ and $(x)_n = x(x + 1) \cdots (x + n - 1)$ for $n \in \mathbb{N}^*$.
In the next section, we recall some results of the author used in the proof of Theorem 1 of [1] and we state the lemmas needed in the proof of our main result. Section 3 is devoted to the proofs.

2. Preliminary results

The functions $\eta_p(d, s) := \sum_{n=1}^{\infty} n^{-s}(d - \log n)^p$ defined for $d \in \mathbb{R}$, $p \in \mathbb{N}$ and $\Re(s) > 1$ have a meromorphic extension to $\Re(s) > 0$ with a pole at $s = 1$ and, as a consequence of the Faà di Bruno formula [6], we have
\[Z^{(k)}(t) = e^{i \theta(t)} t^k \eta_k(\theta'(t), \frac{1}{2} + it) + e^{i \theta(t)} \sum_{p=0}^{k-2} q_p(t) i^p \eta_p(\theta'(t), \frac{1}{2} + it) \]
where
\[q_p(t) = \sum_{\substack{2p_2+3p_3+\cdots+k_p \leq k-p \\| p_2, p_3, \ldots, p_k \geq 0}} \frac{k!}{p! p_2! \cdots p_k!} \left(\frac{i \theta''(t)}{2!} \right)^{p_2} \left(\frac{i \theta'''(t)}{3!} \right)^{p_3} \cdots \left(\frac{i \theta^{(k)}(t)}{k!} \right)^{p_k} . \]

The first step in our proof is to get an approximate functional equation for the functions $\tilde{\eta}_p(\theta'(t), \frac{1}{2} + it)$. In [1], we proved that the functions $\tilde{\eta}_p(d, s) := (-1)^p \eta_p(d, s)$
satisfy, for \(d = \theta'(t) \) and \(s = \frac{1}{2} + it \), the relation

\[
\bar{\eta}_p(d, s) = \sum_{1 \leq n \leq N} \phi_p(n) + \frac{N^{1-s}}{s-1} \frac{1}{(\log N - d)^p} \sum_{l=0}^{p} \frac{((s-1)(\log N - d))^{-l}}{(p-l)!} + O\left((1 + |t|)N^{-\frac{1}{2}} \log^p N\right)
\]

(2.3)

where \(\phi_p(x) := x^{-s}(\log x - d)^p \).

In this paper, we fix a constant \(c > 1 \) and for \(t \) sufficiently large, we set \(N_0 = [ce^d] \), \(N_1 = [ce^{2d}] \) and for \(N > N_1 \) we split the sum

\[
\sum_{1 \leq n \leq N} \phi_p(n) = \sum_{1 \leq n \leq N_0} \phi_p(n) + \sum_{N_0 < n \leq N_1} \phi_p(n) + \sum_{N_1 < n \leq N} \phi_p(n).
\]

We use Lemmas 2.1, 2.2, and 2.4 to transform the second sum in a short sum (Lemma 2.3), and Lemma 2.4 to apply the Euler-MacLaurin formula to the third sum (Lemma 2.5).

Lemma 2.1. Let \(a < b \) be integers and let \(\varphi \in C^2[a, b] \) and \(f \in C^5[a, b] \) be real-valued functions possessing the following property: There exist constants \(H > 0 \) and \(\varphi(x) \leq H \), \(\varphi'(x) \leq HU^{-1} \), \(\varphi''(x) \leq HU^{-2} \) for all \(x \in [a, b] \).

Let furthermore \(\Theta \) be the function defined on \([0, \infty[\times [0, 1] \) by

\[
\Theta(\lambda, \mu) = \int_{0}^{\infty} \frac{\sinh(2\pi(\mu - \frac{1}{2})x)}{\sinh(\pi x)} e^{-i\lambda x^2} dx
\]

and \(x(\cdot) \) be the unique function defined by \(f'(x(y)) = y \) for all \(y \in [f'(a), f'(b)] \). Then

\[
\sum_{a < n \leq b} \varphi(n) e^{2\pi if(n)} = e^{\frac{1}{2}} \int_{f'(a) < n \leq f'(b)} \frac{\varphi(x(n))}{\sqrt{f''(x(n))}} e^{2\pi i f(x(n)) - nx(n)} + R(b) - R(a) + O(H)
\]

where

\[
R(l) = \varphi(l) e^{2\pi if(l)} \Theta(f''(l), \{ f'(l) \}).
\]

Lemma 2.2. For \(d \in \mathbb{R} \) and \(p \in \mathbb{N} \), let \(\varphi_p \) be the function defined by \(\varphi_p(x) = x^{-s}(\log x - d)^p \) for \(x \geq 1 \). Then, for \(2 < d \leq p \), \(e^d \leq a < ce^{2d} \) and \(x \in [a, (2a)^*] \) where \((2a)^* = \min(2a, ce^{2d})\), we have

\[
\varphi_p(x) \leq H, \varphi'_p(x) \leq Ha^{-1}, \varphi''_p(x) \leq Ha^{-2}
\]

where \(H = p^2\varphi_{p-2}((2a)^*) \).
Lemma 2.3. Let t be large enough and assume that $\theta'(t) \leq p \ll t^{\frac{2}{3}}$. Then
\begin{equation}
\sum_{N_0 < n \leq N_1} \phi_p(n) = e^{-2i\theta(t)} \sum_{n \leq N_0} \frac{(\theta'(t) - \log n)^p}{n^{\frac{1}{4} + it}} + O\left(t^{-\frac{1}{2}} e^{\frac{\pi}{4\theta}} \theta'(t)^{p-2}\right).
\end{equation}

The next lemma prepares the application of the Euler-MacLaurin formula to the third sum of (2.4). In [1], the bound we got for the third sum, which depends on an upper bound for $|\phi_p|$ on $[N_1, N]$, is not optimal for $p \geq d$.

Lemma 2.4. For $d \in \mathbb{R}$, $p \in \mathbb{N}$ and $s = \frac{1}{2} + it$, let g_p and ϕ_p be the function defined by $g_p(x) = (\log x - d)^p$ and $\phi_p(x) = x^{-s} g_p(x)$ for $x \geq 1$. Then, for $0 < d \leq p$, $x \in [e^{2d}, \infty[$ and $k \in \mathbb{N}$, we have
\begin{equation}
\left|\phi_p^{(k)}(x)\right| \leq k! \left(\frac{p}{d}\right)^k x^{-k} g_p(x).
\end{equation}
Further, for t large enough, let $d = \theta'(t)$, $K \gg t^{\frac{2}{3}}$, $N_1 = [e^{2d}]$, $N_2 = N_1 + 1$ and let $N > N_2$. Then, for $d \leq p \ll t^{\frac{2}{3}}$ and $0 \leq k \leq 2K$, we have
\begin{equation}
\phi_p^{(k)}(x) = (-1)^k (s)_k x^{-s-k} g_p(x) \left(1 + O\left(d^{-1}\right)\right)
\end{equation}
for $x \in [e^{2d}, \infty[$ and moreover
\begin{equation}
\phi_p^{(k)}(N_2) \ll \left(\frac{2\pi}{c}\right)^k t^{-\frac{1}{2}} e^{\frac{\pi}{4d} d^p},
\end{equation}
\begin{equation}
\phi_p^{(k)}(N) \ll \left(\frac{2\pi}{c}\right)^k N^{-\frac{1}{2}} \log^p N
\end{equation}
and
\begin{equation}
\int_{N_2}^{N} |\phi_p^{(2K)}(u)| du \ll \left(\frac{2\pi}{c}\right)^{2K} e^{\frac{\pi}{4d} d^p} + \left(\frac{t}{N}\right)^{2K-\frac{1}{2}} \log^p N.
\end{equation}

Lemma 2.5. Let t be large enough and assume that $\theta'(t) \leq p \ll t^{\frac{1}{2}}$. Then
\begin{equation}
\sum_{N_1 < n \leq N} \phi_p(n) = -N^{1-s} s^{-1} \log N - d)^p p! \sum_{l=0}^{p} \frac{(s-1)(\log N - d)^{-l}}{(p-l)!} + O\left(t^{-\frac{1}{2}} e^{\frac{\pi}{4d} d^p} + N^{-\frac{1}{2}} \log^p N\right).
\end{equation}

Finally, the next lemmas are needed to make use of relation (2.4).

Lemma 2.6. Let t be large enough, $c > 1$ be a fixed constant and assume that $\theta'(t) \leq p \ll t^{\frac{1}{2}}$. Then
\begin{equation}
\eta_p\left(\theta'(t), \frac{1}{2} + it\right) = \sum_{1 \leq n \leq \sqrt{\frac{t}{d}}} \frac{(\theta'(t) - \log n)^p}{n^{\frac{1}{4} + it}} + e^{-2\theta(t)} \sum_{1 \leq n \leq \sqrt{\frac{t}{d}}} \frac{(\log n - \theta'(t))^p}{n^{\frac{1}{4} - it}}.
\end{equation}

\begin{equation}
+ O\left(t^{-\frac{1}{2}} e^{\frac{\pi}{4d} \theta'(t)^p}\right).
\end{equation}
Lemma 2.7. Let \(\theta \) be the function defined by (1.7). Then, for \(\nu \geq 2 \) and \(t > 0 \) we have
\[
|\theta^{(\nu)}(t)| \leq \frac{(\nu - 2)!}{2^{\nu-1}} + \frac{2\nu!}{\nu t^\nu}.
\]
Further, let \(t \) be large enough and assume that \(k \ll t^{\frac{1}{\nu}} \). Then
\[
\sum_{\nu=1}^{k} \frac{|\theta^{(\nu)}(t)| t^\nu}{\nu!} \leq t\theta'(t) + \frac{t}{2} \quad \text{and} \quad \sum_{p=0}^{k-2} |q_p(t)| \theta'(t)^p \ll \frac{k}{t} e^{\nu \theta'(t)} \theta'(t)^{k-1}.
\]
where \(q_p \) are the functions defined by (2.4).

3. Proofs

Proof of Lemma 2.2. By computing \(\varphi'_p \) and \(\varphi''_p \) we see that
\[
\varphi'_p(x) \ll \max(p\varphi_{p-1}(x), x\varphi_p(x)) x^{-1}
\]
and
\[
\varphi''_p(x) \ll \max(p\varphi_{p-1}(x), \varphi_p(x) + p^2 \varphi_{p-2}(x)) x^{-2}
\]
for \(x \geq a \) and we complete the proof by noting that for \(p \geq d \) and \(x \in [e^d, ce^{2d}] \) we have
\[
\varphi_p(x) \ll p \varphi_{p-1}(x) \ll p^2 \varphi_{p-2}(x)
\]
and that
\[
\varphi_{p-2}(x) \leq a^{-\frac{1}{2}}(\log(2a)^* - d)^{p-2} \leq 2^{\frac{p}{2}} \varphi_{p-2}((2a)^*)
\]
for \(x \in [a,(2a)^*] \).

Proof of Lemma 2.3. We have
\[
\sum_{N_0 < n \leq N_1} \phi_p(n) = \sum_{0 \leq r \leq l} \sum_{a_r < n \leq a_{r+1}} \phi_p(n)
\]
where \(l \) is an integer such that \(2^l N_0 < N_1 \leq 2^{l+1} N_0 \), \(a_r = 2^r N_0 \) for \(r = 0, \ldots, l \) and \(a_{l+1} = N_1 \). We introduce the functions \(\varphi_p(x) = x^{-\frac{1}{2}}(\log x - d)^p \) and \(f(x) = -\frac{1}{2\pi} \log x \) so that \(\phi_p(n) = \varphi_p(n) e^{2\pi if(n)} \). Since \(e^d \leq N_0 < N_1 \leq ce^{2d} \) where \(d = \theta'(t) \) and thanks to Lemma 2.2, the assumptions of Lemma 2.1 are satisfied with \(a = a_r, b = a_{r+1}, H = H_r := p^2 \varphi_{p-2}(a_{r+1}), U = a_r, A = \frac{a^2}{2} \) and relation (2.5) reads
\[
\sum_{a_r < n \leq a_{r+1}} \phi_p(n) = e^{\frac{1}{2}} \sum_{f'(a_r) < n \leq f'(a_{r+1})} \frac{\varphi_p(x(n))}{\sqrt{f'''(x(n))}} e^{2\pi i(f(x(n))-nx(n))} + R(a_{r+1}) - R(a_r) + O(H_r)
\]
where \(x(n) = -\frac{1}{2\pi n} \). By definition \(\Theta(\lambda, \mu) = O(\lambda^{-\frac{1}{2}}) \) for \(\mu \in [0,1] \) and \(\Theta(\lambda, \mu) = O_\delta(1) \) for \(\mu \in [\delta,1-\delta] \) which imply that \(R(a_0) \) is a \(O(H_0) \) and \(R(a_{l+1}) \) is a \(O(H_l) \).
We sum the previous relations, noting that $|f'(a_{l+1})| = -1$ and setting $q = -f'(a_0)$, to get

$$\sum_{0 \leq r \leq l} \sum_{a_r < n \leq a_{r+1}} \phi_p(n) = \sum_{-q < n \leq -1} \frac{\varphi_p(x(n))}{\sqrt{f''(x(n))}} e^{2\pi i(f(x(n))-nz(n)+\frac{d}{2})} + O(\sum_{0 \leq r \leq l} H_r).$$

Further, using (1.3) and since (3.2) we get

$$\sum_{1 \leq n < q} \frac{\varphi_p(x(-n))}{\sqrt{f''(x(-n))}} e^{2\pi i(f(x(-n))+nz(-n)+\frac{d}{2})} + O(\sum_{0 \leq r \leq l} H_r).$$

Further, using (3.3) and $d = \theta'(t)$, we have for $1 \leq n \leq q$

$$\varphi_p(x(-n)) = (\log \frac{x}{2\pi m})^p = \left(\frac{\theta(t) - \log n}{n^2}\right) + O(p t^{-2} \theta'(t)^{p-1})$$

and making use of (1.2) we get

$$e^{2\pi i(f(x(-n))+nz(-n)+\frac{d}{2})} = e^{-2i(\frac{d}{2} \log \frac{x}{n} - \frac{d}{2} - \frac{d}{2}) + it \log n} = \frac{e^{-2t\theta'(t)}}{n^{-it}} + O(t^{-1}).$$

Further, for $m \geq d - 2$, the function φ_m is increasing on $[N_0, N_1]$ and we have

$$\sum_{r=0}^{l} \varphi_m(a_{r+1}) \leq \sum_{r=1}^{l-1} \varphi_m(2^r N_0) + 2\varphi_m(N_1) \leq \int_{l}^{0} \varphi_m(2^u N_0) du + 2\varphi_m(N_1)$$

and since

$$d \leq \log N_0 \leq \log(e^d + 1) = d + \log(1 + e^{-d}) \leq d + e^{-d}$$

and $e^{-d} = O(t^{-\frac{1}{2}})$, we get for $u \geq 1$ and $m \ll t^{\frac{1}{2}}$

$$(u \log 2 + \log N_0 - d)^m \leq (u \log 2)^m \left(1 + \frac{e^{-d}}{u \log 2}\right)^m \leq (u \log 2)^m e^{\frac{e^{-d}}{u \log 2}} \ll (u \log 2)^m$$

and therefore

$$\int_{l}^{0} \varphi_m(2^u N_0) du \ll e^{-\frac{d}{2}} \int_{0}^{l} (u \log 2)^m du \ll e^{-\frac{d}{2}} 2^m \int_{0}^{\frac{\log 2}{2}} e^{-y} y^m dy.$$

Moreover $2^l N_0 \leq N_1$ and thus $2^l \leq \frac{N_1}{N_0} \leq ce^d$ and $l \log 2 \leq d + \log c$ and this implies that

$$\int_{0}^{\frac{\log 2}{2}} e^{-y} y^m dy \leq \int_{0}^{\frac{\log 2}{2} + \frac{\log c}{2}} e^{-y} y^m dy = \gamma(m + 1, \frac{d}{2} + \frac{\log c}{2})$$

where $\gamma(m, x) = \int_{0}^{x} e^{-t} t^{m-1} dt$ is the lower incomplete gamma function. Setting $x = \frac{d}{2} + \frac{\log c}{2}$ and using integration by parts one checks that

$$\gamma(m + 1, x) = m! e^{-x} \sum_{n=m+1}^{\infty} \frac{x^n}{n!} = e^{-x} \sum_{n=m+1}^{\infty} \frac{x^n}{m+1} \sum_{k=0}^{\infty} \frac{x^k}{(m+2)_k} \ll e^{-x} \frac{2^{-m} e^{\frac{p}{2} d} d^{m+1}}{m}.$$

Using relations (3.5), (3.6), (3.7), (3.8) with $m = p - 2$ we get

$$\sum_{0 \leq r \leq l} H_r \ll e^{-d} p c \frac{p}{d} d^{p-1} + p^2 \varphi_{p-2}(N_1) \ll e^{-d} p^2 c \frac{p}{d} d^{p-2}.$$
where x since $(\log x)^p$.

By the general Leibniz rule we have

\[(2.7) \quad \text{by noting that} \]

\[\phi \]

\[\text{since (3.2), (3.3), (3.4), (3.9) and we observe that the sum over } n \text{ such that } 1 \leq n < q \text{ can be replaced by the sum over } n \text{ such that } 1 \leq n \leq N_0 \text{ without changing the order of the error term.} \quad \square \]

Proof of Lemma 2.4 One can check by induction that the derivatives of g_p are given by

\[g_p^{(k)}(x) = x^{-k} \sum_{l=0}^{k} c_{k,l} (p-l+1)! (\log x - d)^{p-l} \]

where the $c_{k,l}$ are integers defined recursively by

\[\begin{cases} c_{0,0} = 1, & c_{k,0} = c_{0,l} = 0 \quad \text{for } k,l \geq 1 \\ c_{k+1,l} = c_{k,l-1} - kc_{k,l} \quad \text{for } k \geq 0, l \geq 1. \end{cases} \]

This shows that $c_{k,l} = S_k^l$ where the S_k^l are the Stirling numbers of first kind. Hence

\[|g_p^{(k)}(x)| \leq x^{-k} (\log x - d)^p \sum_{l=0}^{k} |S_k^l| (p-l+1)! (\log x - d)^{-l} \]

\[\leq x^{-k} (\log x - d)^p \sum_{l=0}^{k} |S_k^l| \left(\frac{p}{d} \right)^l \]

since $(\log x - d)^{-l} \leq d^{-l}$ for $x \geq ce^{2d}$. Setting $y = \frac{x}{t} \geq 1$, we complete the proof of (2.7) by noting that

\[\sum_{l=0}^{k} |S_k^l| y^l = (y)_k = (1 + \frac{1}{y})(1 + \frac{2}{y}) \ldots (1 + \frac{k-1}{y}) y^k \leq k! y^k. \]

By the general Leibniz rule we have

\[\phi_p^{(k)}(x) = (x^{-s})^{(k)} g_p(x) + \sum_{l=1}^{k} \binom{k}{l} (x^{-s})^{(k-l)} g_p^{(l)}(x) \]

\[= (-1)^k (s)_k x^{-s-k} g_p(x) (1 + R) \]

where

\[|R| \leq \sum_{l=1}^{k} \frac{k!}{l! (s+k-l+1)!} \left(\frac{p}{d} \right)^l \leq \sum_{l=1}^{k} \left(\frac{kp}{ld} \right)^l \approx d^{-1}. \]

Since $N_2 = c e^{2d} (1 + O(t^{-1})) = c \frac{1}{2\pi} (1 + O(t^{-1}))$ and $k \ll t^{\frac{1}{2}}$ we deduce that

\[\phi_p^{(k)}(N_2) \ll t^k \left(\frac{1}{2t} + i \right) \left(\frac{3}{2t} + i \right) \ldots \left(\frac{2k-1}{2t} + i \right) \left(e^{\frac{t}{2\pi}} \right)^{-\frac{s-k}{2}} \ll c^{\frac{k}{2}} d^p \]

\[\ll \left(\frac{2\pi}{c} \right)^k t^{\frac{s-k}{2}} d^p \]
and similarly
\[\phi_p^{(k)}(N) \ll \left(\frac{t}{N}\right)^k N^{-\frac{1}{2}} \log^p N \ll \left(\frac{2\pi}{c}\right)^k N^{-\frac{1}{2}} \log^p N. \]

Finally
\[
\int_{N_2}^{N} |\phi_p^{(2K)}(u)| \, du \ll |(s)_{2K}| \int_{N_2}^{N} u^{-\frac{1}{2}-2K} (\log u - d)^p \, du \\
= |(s)_{2K}| \frac{u^{-\frac{1}{2}-2K}}{2-2K} (\log u - d)^p \sum_{l=0}^{p} \left(\frac{p}{(2K - \frac{1}{2})(\log u - d)}\right)^l \left(\frac{p!}{p^l (p-l)!}\right) \bigg|_{N_2}^{N} \\
\ll \left(\frac{2\pi}{c}\right)^{2K} c^{\frac{p}{2}} d^p + \left(\frac{t}{N}\right)^{2K-\frac{1}{2}} \log^p N.
\]

Proof of Lemma 2.3 We set \(N_2 = N_1 + 1 \) and we use the Euler-MacLaurin formula with \(K \simeq t^{\frac{1}{2}} \) to get
\[
\sum_{N_1 < n \leq N} \phi_p(n) = \int_{N_2}^{N} \phi_p(u) \, du + \frac{1}{2} (\phi_p(N_2) + \phi_p(N)) \\
+ \sum_{l=1}^{K} \frac{B_{2l}}{2l!} (\phi_p^{(2l-1)}(N) - \phi_p^{(2l-1)}(N_2)) + R_{2K}
\]
where
\[|R_{2K}| \leq \frac{2\zeta(2K)}{(2\pi)^{2K}} \int_{N_2}^{N} \left|\phi_p^{(2K)}(u)\right| \, du. \]

We have
\[
\int_{N_2}^{N} \phi_p(u) \, du = -\frac{u^{1-s}}{s-1} (\log u - d)^p \left(\frac{(s-1)(\log u - d)^{-t}}{(p-l)!}\right) \bigg|_{N_2}^{N} \\
\text{and we observe that}
\]
\[
\frac{N_2^{1-s}}{s-1} (\log N_2 - d)^p \left(\frac{(s-1)(\log N_2 - d)^{-t}}{(p-l)!}\right) \\
= \frac{N_2^{1-s}}{s-1} (\log N_2 - d)^p \sum_{l=0}^{p} \left(\frac{p}{(s-1)(\log N_2 - d)}\right)^l \left(\frac{p!}{p^l (p-l)!}\right) \\
= \frac{N_2^{1-s}}{s-1} (\log N_2 - d)^p \left(1 + O\left(t^{-\frac{1}{4}}\right)\right) \ll t^{-\frac{1}{4}} c^{\frac{p}{2}} d^p.
\]

Further, \(\phi_p(N_2) \ll t^{-\frac{1}{4}} c^{\frac{p}{2}} d^p, \phi_p(N) \ll N^{-\frac{1}{4}} \log^p N \) and since \(B_{2l} = (-1)^{l-1} \frac{2(2l)!}{(2\pi)^{2l}} \zeta(2l) \) we have thanks to (2.8) and (2.9)
\[
\sum_{l=1}^{K} \frac{B_{2l}}{2l!} (\phi_p^{(2l-1)}(N) - \phi_p^{(2l-1)}(N_2)) \ll \sum_{l=1}^{K} \left(\frac{1}{c^{2l-1}} \left(t^{-\frac{1}{4}} c^{\frac{p}{2}} d^p + N^{-\frac{1}{4}} \log^p N\right)\right) \\
\ll t^{-\frac{1}{4}} c^{\frac{p}{2}} d^p + N^{-\frac{1}{4}} \log^p N.
\]
since $c > 1$ is a fixed constant. Finally, since $K = t^{\frac{3}{4}}$, we have $c^{-2K} \ll t^{-\frac{1}{2}}$ and we deduce from (2.30) that $R_{2K} \ll t^{-\frac{1}{2}} c^{\frac{1}{2}} d^p + N^{-\frac{1}{2}} \log^p N$. □

PROOF OF LEMMA 2.6. We use the relations (2.28) and (2.30), (2.4) and (2.5) with c replaced by $c^\frac{1}{2}$, and we let N tend to infinity to get

$$
\bar{\eta}_p \left(\theta'(t), \frac{1}{2} + it \right) = \sum_{1 \leq n \leq N} \frac{(\log n - \theta'(t))^p}{n^{\frac{1}{2} + it}} + e^{-2t\theta(t)} \sum_{1 \leq n \leq N_0} \frac{(\theta'(t) - \log n)^p}{n^{\frac{1}{2} - it}} + O \left(t^{-\frac{1}{2}} p^2 c^\frac{1}{2} \theta'(t)^{-p - 2} \right).
$$

We note that N_0 can be replaced by $\sqrt{2\pi}$ without changing the order of the error term and to complete the proof, we use the relation $\eta(d, s) = (-1)\bar{\eta}_p(d, s)$ and the inequality $x^2 e^{-x} \leq C_1 e^{-x}$ which holds for $x \geq 0$ and $C_1 = 16 e^{-2(\log c)}$ to check that $p^2 c^\frac{1}{2} \theta'(t)^{p - 2} \leq C_1 c^\frac{1}{2} \theta'(t)^p$. □

PROOF OF LEMMA 2.7. The proof of this lemma is almost exactly the same as that of Lemma 7 of [1]. The only modification is at the end of the proof and it reads

$$
\sum_{p = 0}^{k - 2} |q_p(t)| \theta'(t)^p \leq \frac{k!}{t^k} \sum_{m = 1}^{k - 1} \frac{1}{m!} \left(\sum_{\nu = 1}^{k} \frac{\theta^{(\nu)}(t) t^\nu}{\nu!} \right)^m \leq \frac{k!}{t^k} \sum_{m = 1}^{k - 1} \frac{1}{m!} \left(t\theta'(t) + \frac{t}{2} \right)^m \leq \frac{k!}{t^k (k - 1)!} (t\theta'(t) + \frac{t}{2})^{k - 1} \left(\sum_{l = 0}^{k - 2} \left(\frac{k}{l} \theta'(t) - \frac{k}{l + 1} \right)^l \right)^{k - 1} \leq \frac{k}{t} e^{-c\sqrt{\pi} \theta'(t)} \theta'(t)^{k - 1}.
$$

□

PROOF OF THEOREM 1.1 Thanks to (2.12), the first term of the right hand side of (2.21) reads

$$
e^{i\theta(t) - k \log n} \sum_{1 \leq n \leq \sqrt{N}} \left(\theta'(t) - \log n \right)^k = e^{i\theta(t) - k \log n + k \frac{\pi}{2}} + e^{-i\theta(t) - k \log n + k \frac{\pi}{2}} + O \left(t^{-\frac{1}{2}} e^{\sqrt{\pi} \theta'(t)} \theta'(t)^k \right) = 2 \sum_{1 \leq n \leq \sqrt{N}} \frac{1}{\sqrt{n}} (\theta'(t) - \log n)^k \cos(\theta(t) - t \log n + k \frac{\pi}{2}) + O \left(t^{-\frac{1}{2}} e^{\sqrt{\pi} \theta'(t)} \theta'(t)^k \right).
$$

For $\theta'(t) \leq p \leq 3\theta'(t)^2$, a trivial estimate of the right hand side of (2.12), with the choice $c = e^\frac{1}{2}$, leads to

$$
\eta_p(\theta'(t), \frac{1}{2} + it) = O \left(t^{\frac{1}{2}} \theta'(t)^p \right) + O \left(t^{-\frac{1}{2}} e^{\sqrt{\pi} \theta'(t)} \theta'(t)^p \right) = O \left(t^{\frac{1}{2}} \theta'(t)^p \right).
$$
since $t^{-\frac{k}{2}}e^{2\theta'(t)} \leq t^{-\frac{k}{2}}e^{2\theta'(t)} \leq (\frac{t}{2})^k$. In [1], we proved that the same bound holds for $0 \leq p \leq \theta'(t)$ and Lemma 2.7 implies that the second term of the right hand side of (2.1) satisfies

$$e^{i\theta(t)} \sum_{p=0}^{k-2} q_p(t) t^p \theta'(t), \frac{1}{2} + it = O \left(t^{-\frac{k}{2}} e^{2\theta'(t)} k \theta'(t)^{k-1} \right).$$

□

References

[1] Ph. Blanc, Optimal upper bound for the k-th derivative of Hardy’s function, J. Number 154, (2015), 105-117.
[2] Ph. Blanc, Sommes exponentielles, splines quadratiques et fonction zêta de Riemann, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, Vol. 332, (2001), 91-94.
[3] Ph. Blanc, On the role of the quadratic splines in the study of some exponential sums, Rapport du département de mathématiques de l’EPFL, 2001. [http://math.heig-vd.ch/fr-ch/enseignement/Pages/ProfesseurPhilippeBlanc.aspx]
[4] A. Ivić, The Theory of Hardy’s Z-function, Cambridge University Press, 2013 (Cambridge tracts in mathematics 196).
[5] A.A. Lavrik, Uniform approximations and zeros in short intervals of the derivatives of the Hardy’s Z-function, (in Russian), Anal. Math., 17, no.4, (1991), 257-279.
[6] É. Goursat, Cours d’Analyse Mathématique, Dover, New-York, 1959.