The Prothrombotic Predominance in Metabolic Syndrome: A Complex Pathomechanism

Fahmy Rusnanta, Mohammad Saifur Rohman

1 Brawijaya Cardiovascular Research Center, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
2 Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.

ARTICLE INFO

Keywords:
Metabolic syndrome;
Thrombosis;
Fibrinolysis;
Blood clot;
Cardiovascular disease

ABSTRACT

Patients with metabolic syndrome (MS) have many cardiovascular complications related to atherothrombotic complications. MS contributes premature atherosclerosis, increases platelet activation, promotes coagulation factors, and reduces fibrinolytic activity. The last step in the atherothrombotic cascade is blood clot formation, and altered clot structure is a key role to determine cardiovascular complications. The MS, caused in part by an excess of atherosclerosis and in part by fibrinolytic dysfunction, is profoundly related to an excess of CVD. These combinations of factors involved in MS parameters contribute the increased propensity of people with MS to develop atherothrombosis and fibrinolysis. Awareness and preventive measures are important to improve outcomes in patients with MS.

1. Introduction

The incidence of cardiovascular disease (CVD) is increased in people with metabolic syndrome (MS), including abdominal adiposity, elevated triglycerides, hypertension, low high-density lipoprotein (HDL) cholesterol level, and glucose intolerance. In the past decade, most patients with MS have accelerated thrombosis events due to premature atherosclerosis. Atherosclerosis is increased, and fibrinolytic function is abnormal in this population. Several studies stated that plasminogen activator inhibitor-1 (PAI-1) was increased and predicted myocardial infarction among patients with hyperglycemia.1

Other findings, including elevated endogenous tissue-type plasminogen activator (tPA), also predict myocardial infarction and high mortality. Therefore, it is likely that MS reveals an imbalance of hemostasis due to high PAI-1 and tPA. Arterial thrombosis leading to increase CVD in people with metabolic syndrome has been accelerated due to fibrinolytic disturbances. This stetting is supported by Grundy et al. and Tsai et al., showing that abdominal obesity and diabetes are risk predictors of thrombosis in arteries and veins.2,3

This review highlights the understanding of the relationship between MS and fibrinolysis. It could elaborate how the impact of MS on the clinical outcome of patients with myocardial infarction.

2. Discussion

2.1 The Hemostatic Balance

Hemostasis imbalance directing to a procoagulant state induces the risk of thrombosis. Tissue factor (TF) is a cornerstone of blood coagulation activation.4 TF is a transmembrane glycoprotein mostly found in monocytes and subendothelial cells. The TF pathway of blood coagulation will be activated by acting as a receptor for factor VIIa (FVIIa) after TF is exposed to blood. This coagulation pathway generates thrombin when the prothrombinase complex converts the proenzyme prothrombin. Then, thrombin cleaves fibrinopeptide and converts fibrinogen into fibrin polymers. Activated factor XIII (FXIIIa) forms cross-linked fibrin mesh into an insoluble fibrin clot.5,6

Fibrinolytic enzymes are responsible for anticoagulation effects, and the endothelial-derived protein t-PA is the main component in this pathway. It activates plasminogen into plasmin on the fibrin clot surface, cleaving soluble fibrin degradation products. PAI-1 inhibits t-PA, so that fibrin clearance is impaired.6,7 Figure 1 presents a simplified overview of coagulation and fibrinolysis. There are complex mechanisms of enhancing the prothrombotic state and reducing fibrinolytic activity.

2.1.1. Obesity enhances prothrombotic factors

Several reviews focus on the association between biomarkers of hemostatic balance and obesity. Adipose tissue secretes the proinflammatory cytokines contributing to promoting a prothrombotic state. Interleukin-6 (IL-6), tumor necrosing factor-α (TNF-α), and leptin...
2.1 The Hemostatic Balance

Hemostasis imbalance directing to a procoagulant state induces the risk of thrombosis. Tissue factor (TF) is a cornerstone of blood coagulation activation.4 TF is a transmembrane glycoprotein mostly found in monocytes and subendothelial cells. The TF pathway of blood coagulation will be activated by acting as a receptor for factor VIIa (FVIIa) after TF is exposed to blood. This coagulation pathway generates thrombin when the prothrombinase complex converts the proenzyme prothrombin. Then, thrombin cleaves fibrinopeptide and converts fibrinogen into fibrin polymers. Activated factor XIII (FXIIIa) forms cross-linked fibrin mesh into an insoluble fibrin clot.5,6

Fibrinolytic enzymes are responsible for anticoagulation effects, and the endothelial-derived protein t-PA is the main component in this pathway. It activates plasminogen into plasmin on the fibrin clot surface, cleaving soluble fibrin degradation products. PAI-1 inhibits t-PA, so that fibrin clearance is impaired.6,7 Figure 1 presents a simplified overview of coagulation and fibrinolysis. There are complex mechanisms of enhancing the prothrombotic state and reducing fibrinolytic activity.

2.1.1. Obesity enhances prothrombotic factors

Several reviews focus on the association between biomarkers of hemostatic balance and obesity. Adipose tissue secretes the proinflammatory cytokines contributing to promoting a prothrombotic state. Interleukin-6 (IL-6), tumor necrosing factor-a (TNF-a), and leptin are the cornerstone of activating the endothelial synthesis of the PAI-1 and TF.8 Next, circulating monocytes results in TF-expression related to IL-6, TNF-a, and leptin. The proinflammatory cytokines contribute to coagulation factors, e.g., FVIII, FVII, fibrinogen, and PAI-1. Additionally, PAI-1, TF, and tissue factor pathway inhibitor (TFPI) are further increased because of the increased synthesis of these proteins in adipose tissue.8,9

Many hemostatic biomarkers in people with average weight and obesity have been studied. Enhanced biomarkers of hemostatic...
dysfunction are seen in obesity, e.g., von Willebrand factor (vWF), t-PA, D-dimer, and impaired fibrinolysis. Interestingly, elevated concentrations of coagulation inhibitors have been suggested in patients with obesity. However, an increased thrombin level is the most commonly seen as the net effect. Chronic low-grade inflammation-inducing endothelial dysfunction, platelet activation, impaired fibrinolysis, and hypercoagulability are the consequences of obesity (see figure 2). Therefore, this shifts the hemostatic balance to the prothrombotic predominance, especially PAI-1 and TF, which inhibit fibrinolysis and activate the coagulation pathway, respectively.13

2.1.2. Hypertriglyceridemia reduces fibrinolytic activity

Increased coagulation factors have been commonly found in high blood lipid levels. Increased coagulation factor VII is found in high fat intake conditions. This evidence supported that lipid-lowering drugs (statins) reduce hypercoagulability. Patients with high triglyceride levels (200 mg/dL) revealed profoundly shorter prothrombin time (PT) values than normal levels.13

Interestingly, postprandial triglycerides contribute to blood coagulation and are closely associated with coronary heart disease. Several studies investigated the acute postprandial effect of dietary fat on postprandial factor VII levels. The fat contents of the meal are significantly related to the postprandial increase in VIIa. The higher the fat contents of the meal, the greater the factor VII activation. Additionally, very-low-density lipoprotein (VLDL) triglyceride is associated with PAI-1. Experimental studies revealed that VLDL enhanced PAI-1 secretion from endothelial cells.14 Reduced fibrinolytic capacity is also associated with hypertriglyceridemia. In addition to hypercoagulability (increased factor VII, VIII, X, and fibrinogen), Simpson et al. found significantly lower fibrinolytic activity in patients with severe hypertriglyceridemia than with severe hypertriglyceridemia controls.15

2.1.3. HDL cholesterol (HDL-C) modulates the coagulation cascade

A higher incidence of CVD is generally related to low levels of circulating HDL particles. HDL is well-known recognized as a multifunctions component in the cardiovascular system. HDL exhibits anti-inflammatory, immunomodulatory, antioxidative, antiapoptotic, and antithrombotic effects.16 HDL modulates the coagulation pathway at different levels (see figure 3). Plasma apolipoprotein A-I (apoA-I) levels are positively related to anticoagulant effects, and HDL is inversely associated with prothrombin fragments F1+2. The formation of the prothrombinase complex is prevented by cleaving apoA-I into anionic vesicles because FVa could not bind to the vesicles.17,18

HDL enhances anticoagulant effects by activating the protein C pathway. This pathway generates the proteolytically active vitamin K-dependent zymogen protein C (APC) form, which can inactivate FVa and FVIIIa. As a cofactor of APC, protein S (vitamin K-dependent protein) is needed in this pathway. Purified HDL, but not low-density lipoprotein (LDL), increases protein S, which act to inhibit FVa.16,19

Enhanced fibrin clot permeability and decreased clot lysis time are found in elevated HDL-C. Moreover, the levels of PAI-1 are inversely related to both HDL size and HDL-C, suggesting that HDL particles diminish the prothrombotic state by activating plasmin generation and thus fibrinolysis. In addition, D-dimer levels associated with HDL size and HDL-C.20

On the other hand, HDL is known to be more susceptible than LDL to oxidation. However, the relevance of blood ox-HDL levels remains unclear. HDL-C and ox-HDL levels are shown to be associated with D-dimer.21 Ebara et al. Stated that ox-HDL was associated with thrombin-antithrombin complex (TAT) and plasmin-a2 plasmin inhibitor complex (PIC). Low CVD risk is thought to be related to high ox-HDL level.16

2.1.4. Hypertension: prothrombotic paradox

Hypertension is considered the main contributor to increased CVD, including circulating lipoprotein levels, homocysteine, and fibrinogen.22 Thrombotic events represent a significant complication, even though hypertension increases pulsatile stress to the vessel wall. This setting is known as the thrombotic paradox of hypertension or “Birmingham paradox.”23 Increased plasma concentrations of C-reactive protein (CRP) are found in hypertensive patients. CRP may enhance inflammation as well as coagulation. Proinflammatory cytokines potentially stimulate vascular endothelial cells to generate PAI-1 and TF. The balance between PAI-1 and t-PA modulates the fibrinolytic system.24

In hypertensive patients, vessel walls are exposed to cyclic strain and shear stress. Transmural pressure induces cyclic strain leading to augmented wall stress and dilated vessel. Endothelium-derived nitric oxide synthase (eNOS) expression and nitric oxide (NO)
The kallikrein-kinin system counteracts the effects of the renin-angiotensin system. In addition to activating the kinin system, kallikrein enhances the intrinsical pathway by stimulating FXIIa. Increased t-PA antigen production and bradykinin are significantly associated with kallikrein generation, and several convincing data reveal that FXIIa is an activator of plasminogen. Hence, fibrinolysis.

2.1.5. Hyperglycemia alters clot structure

Hyperglycemia and insulin resistance are associated with a significantly increased prothrombotic state. Impaired fibrinolysis, in particular, due to elevated levels of PAI-1, is primarily found in diabetic patients. In addition, TAT is elevated in this population. Stegenga et al. stated that enhancement of coagulation and simultaneous inhibition of fibrinolysis mainly were found in patients with hyperglycemia and hyperinsulinemia.29 Hyperglycemia contributes to the increased coagulation factors, including FVII, TF, thrombin, and fibrinogen. In addition, hyperglycemia modulates coagulation proteins involved in fibrinolysis. Haemoglobin A1c (HbA1c) negatively correlated with tPA and positively with PAI-1 levels, implying glucose levels modulate fibrinolysis. In addition to hyperglycemia, hyperinsulinemia also enhances PAI-1 levels.30 Jornsok et al. first reported that the structure of the fibrin network in diabetic patients was altered. They found that reduced permeability was observed in the blood cot of diabetic patients, compared with controls, suggesting a more compact structure. They found that blood clots made from pooled plasma-purified fibrinogen have a more compact structure compared with controls (see figure 4).30,31

2.2. Metabolic Syndrome

The National Cholesterol Education Program-Adult Treatment Panel (NCEP-ATP) III published the definition of MS is like the presence of the following criteria: (1) central obesity: waist circumference >80 cm (women), >90 cm (women); body mass index (BMI) ≥25 kg/m²; (2) hypertension: blood pressure ≥130/85 mmHg or taking antihypertensive medication; (3) elevated fasting triglyceride level ≥150 mg/dL; (4) low high-density lipoprotein (HDL) cholesterol: <50 mg/dL (women), <40 mg/dL (men); or (5) elevated fasting glucose ≥110 mg/dL or history of type 2 diabetes mellitus or taking medication. MS is confirmed if ≥3 of criteria are present.33

Centers for Disease Control and Prevention (CDC) in 2017 published that about 30.2 million adults (12.2%) aged 18 years or older of United States adults had type 2 diabetes. The prevalence of metabolic syndrome increased up to three times more.35

In the global survey of obesity in 195 countries (2015), 108 million children and 604 million adults were obese. The mortality rate related to high body mass index generally increased by 28.3% between 1990 and 2015.33

The prevalence of metabolic syndrome was 39% in Indonesia. Hypertension was the most prominent component in Indonesia (61%), followed by hyperglycemia (51%). Abdominal obesity was higher in women (57.5% vs 16.8%), followed by low HDL-C (45.3% vs 28.6%), and hypertension (64.6% vs 56.2%).24

2.2.1. Clinical Implications

Coronary artery disease is very commonly found in patients with MS because this condition is strongly associated with advanced vascular damage. Lee et al. also found that MS was a significant predictor of in-hospital mortality in patients with STEMI. There is a higher rate of non-fatal stroke, non-fatal MI, and all-cause death, and the composite of cardiovascular death was recently found in patients with MS. Incidence of heart failure following acute MI is also higher in this population.35 Hallmarks of MS include disturbances in coagulation and fibrinolysis resulting in developing myocardial infarction (OR 1.8 [95% CI 1.67-1.97], p<0.05), stroke (OR 2.05 [95% CI 1.21-2.54], p<0.05), and peripheral arterial disease (RR 1.76 [95% CI 1.01-2.91], p = 0.04) in 10-years follow up.36,37

3. Conclusion

The metabolic syndrome, caused in part by an excess of atherosclerosis and in part by fibrinolytic dysfunction, is profoundly related to an excess of CVD. These combinations of factors involved in metabolic syndrome contribute to the increased propensity of people with metabolic syndrome to develop vasculothrombosis and fibrinolysis. Awareness and preventive measures are important to improve clinical outcomes in patients with MS.

4. Declarations
4.1. Ethics Approval and Consent to participate
Not applicable.

4.2. Consent for publication
Not applicable.

4.3. Availability of data and materials
Data used in our study were presented in the main text.

4.4. Competing interests
Not applicable.

4.5. Funding source
Not applicable.

4.6. Authors contributions
Idea/concept: SR. Design: FR. Control/supervision: SR. Data collection/processing: FR. Analysis/interpretation: SR. Literature review: FR. Writing the article: FR. Critical review: SR. All authors have critically reviewed and approved the final draft and are responsible for the content and similarity index of the manuscript.

4.7. Acknowledgements
We thank to Brawijaya Cardiovascular Research Center.

References
1. Anand SS, Yi Q, Gerstein H, Lonn E, Jacobs R, Vlaksan V, et al. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation. 2003;108:420-5.

2. Grundy S. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696-8.

3. Tsai AW, Cushman M, Rosamond WD, et al. Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med. 2002;162:1182-9.

4. Bladborg EM, Stolberg CR, Juul CB. Effects of obesity surgery on blood coagulation and fibrinolysis: a literature review. Thromb Haemost. 2020;120:579-91.

5. Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(04):709-25.

6. Sidellman JJ, Gram J, Jespersen J, Klutt C. Fibrin clot formation and lysis: basic mechanisms. Semin Thromb Hemost. 2000;26(06):605-18.

7. Gaffney PJ, Edgell TA, Whitton CM. The haemostatic balance – Astrup revisited. Haemostasis. 1999;29(01):58–71.

8. Napoleone E, Di Santo A, Amore C, et al. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: a possible link between obesity and cardiovascular risk? J Thromb Haemost. 2007;5(07):1462-8.

9. Pergola GD, Pannacciuoli N. Coagulation and fibrinolysis abnormalities. J Endocrinol Invest. 2002;25:899-904.

10. Michalska M, Iwan-Ziędtek I, Gnilk W. PAI-1 and α2-AP in patients with morbid obesity. Adv Clin Exp Med. 2013;22(06): 801-7.

11. Lind L, Siegbahn A, Ingelsson E, Sundström J, Arnlov J. A detailed cardiovascular characterization of obesity without the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2011;31(08):e27–e34.

12. Prüller F, Raggam BB, Posch V, et al. Trunk weighted obesity, cholesterol levels and low grade inflammation are main determinants for enhanced thrombin generation. Atherosclerosis. 2012;220(01):215-8.

13. Kim JA, Kim JE, Song SH, Kim HK. Influence of blood lipids on global coagulation test results. Ann Lab Med. 2015;35:15-21.

14. Silveira A. Postprandial triglycerides and blood coagulation. Exp Clin Endocrinol Diabetes. 2001;109:S527-32.

15. Andersen P. Hypercoagulability and reduced fibrinolysis in hyperlipidemia: relationship to the metabolic cardiovascular syndrome. Journal of Cardiovascular Pharmacology. 1992;20(08):S29-31.

16. Stoep MVD, Korporeal SJA, Miranda MV. High-density lipoprotein as a modulator of platelet dan coagulation responses. Cardiovascular Research. 2014;103(3):362-71.

17. Mac Callum PK, Cooper JA, Martin J, Howarth DJ, Meade TW, Miller GJ. Haemostatic and lipid determinants of prothrombin fragment F1.2 and D-dimer in plasma. Thromb Haemost. 2000;83:421-6.

18. Osalkovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlback B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem. 2009;284:5896-904.

19. Dahlback B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol. 2005;25:1311-20.

20. Zabczyn M, Hondo L, Krzek M, Undas A. High-density cholesterol and apolipoprotein A1 as modifiers of plasma fibrin clot properties in apparently healthy individuals. Blood Coagul Fibrinolysis. 2013;24:50-4.

21. Ebara S, Marumo M, Mukai J, Ohki M, Uchida K, Wakabayashi J. Relationship of oxidized HDL with blood coagulation and fibrinolysis in patients with type 2 diabetes mellitus. J Thromb Thrombolys. 2018;45(2):200-5.

22. Catena C, Zingaro L, Casaccio D, Sechi LA. Abnormalities of coagulation in hypertensive patients with reduced creatinine clearance. Am J Med. 2000;109:556-61.

23. Dieli AWJM, Smid M, Sprokn HMH, Hamulyak K, Kroon AA, Cate HT, et.al. The prothrombotic paradox of hypertension role of the renin-angiotensin and kallikrein-kinin systems. Hypertension. 2005;46:1296-42.

24. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, et.al. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res. 2005;96:714-6.

25. Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney Int Suppl. 1998;67:S100-8.

26. Pearson JD. Endothelial cell function and thrombosis. Baillieres Best Pract Res Clin Haematol. 1999;12:329-41.
27. Yoshizumi M, Tsuji H, Nishimura H, Masuda H, Kunieda Y, Kawano H, Kimura S, Sugano T, Kitamura H, Nakagawa K, Nakagawa M. Natriuretic peptides regulate the expression of tissue factor and PAI-1 in endothelial cells. Thromb Haemost. 1999;82:1497-503.

28. Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE. Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension. 1998;32:65-71.

29. Steegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, et.al. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes. 2006;55:1807-12.

30. Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diabetes and Vascular Disease Research. 2010;7(4):260-73.

31. Jöreskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H, et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia. 1996;39:1519-23.

32. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et.al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005; 112: 2735-52.

33. Saklayen MG. The global epidemic of the metabolic syndrome. Current Hypertension Reports. 2018;20(12):1-8.

34. Sigit FS, Tahapary DL, Trompet S, Sartono E, van Dijk KW, Rosendaal FR, et.al. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population—based studies. Diabetol Metab Syndr. 2020;12(2):1-11.

35. Lee MG, Jeong MH, Ahn Y, Chae SC, Hur SH, Hong TJ, et.al. Impact of the metabolic syndrome on the clinical outcome of patients with acute ST-elevation myocardial infarction. J Korean Med Sci. 2010;25:1456-61.

36. Kazlauskiene L, Butnoriene J, Norkus A. Metabolic syndrome related to cardiovascular events in a 10-year prospective study. Diabetol Metab Syndr. 2015;7:1-7.

37. Vidula H, Liu K, Criqui MH, Szklo M, Allison M, Sibley C, et.al. Metabolic syndrome and incident peripheral artery disease—the multi-ethnic study of atherosclerosis. Atherosclerosis. 2015;243:198-203.