A multi-wavelength pipeline for pulsar searches

Maura Pilia1 · Alessio Trois1 · Matteo Bachetti1 · Alberto Pellizzoni1 · Giuseppe Atzeni2 · Elise Egron1 · Maria Noemi Iacolina3 · Sara Lorù1,2 · Antonio Poddighe1 · Valentina Vacca1

Received: 14 June 2018 / Accepted: 17 January 2019 / Published online: 7 February 2019
© Accademia Nazionale dei Lincei 2019

Abstract
Pulsar studies in the recent years have shown, more than others, to have benefitted from a multi-wavelength approach. The INAF-Astronomical Observatory in Cagliari (INAF-OAC) is a growing facility with a young group devoted to pulsar and fast-transient studies across the electromagnetic spectrum. Taking advantage of this expertise, we have worked to provide a suite of multi-wavelength software and databases for the observations of pulsars and compact Galactic objects at the Sardegna Radio Telescope (SRT). In turn, radio pulsar observations at SRT will be made available, in a processed format, to gamma-ray searches using AGILE and FERMI gamma-ray satellites and, in a near future, they will be complementary to polarimetric X-ray observations with IXPE.

Keywords
Astronomical databases: miscellaneous · Pulsars: general

1 Introduction

The primary aim of this project is to provide a quicklook suite for the observer using SRT (Bolli et al. 2015; Prandoni et al. 2017) for pulsars, compact objects or fast-transient studies. The observer will be provided with a set of online tools to be accessible during the observation at SRT, to look in real time for high-energy counterparts of the target(s) that they are pointing at. As a demonstrator of this package, which will be made available when SRT observations are up to speed later in the year, two offline independent pipelines have already been tested for radio and γ-rays, and a third one is in the making for the addition of X-ray data. After a first testing round at SRT, the tools will also be made available for outside facilities.

2 Outline of the infrastructure

We present a brief description of each pipeline, with the radio and γ-ray ones schematically illustrated in Fig. 1.

Radio pipeline Observations of pulsars and compact objects at SRT will be processed by the ROACH-2-based SARDARA backend (Melis et al. 2017). SARDARA will provide full-Stokes observations with different configurations (up to 16000 frequency channels and 16000 spectra per second) to optimally observe pulsars at all bands available at SRT (P-, L-, C-, and K-bands, soon also a 7-feed S-band) using coherent or partially coherent dedispersion. We have developed a python wrapper around the standard pulsar search software presto (Ransom 2001) which allows the standard and accelerated search plus single-pulse search for strong pulsars and fast transients. Alternative search algorithms, based on the use of the Karhunen–Loeve transform instead of the “classical” Fast Fourier Transform, are also under development. The pipeline is being optimized for RFI excision given the highly polluted interference environment surrounding the telescope, especially at the lowest frequencies. Candidate selection will be partly automatized through the application of machine learning techniques (either one
that seems optimal for SRT data or a combination of more than one to avoid the bias of a single classification). Pulsar gating is also implemented, to improve the search for underlying diffuse emission surrounding the compact object (e.g., pulsar wind nebulae, PWNe).

Gamma-ray pipeline Online archives are available for \(\gamma \)-ray observations of the two \(\gamma \)-ray telescopes in orbit: the AGILE-GRID and Fermi-LAT. We developed a simple command-line interface to the archives of the two telescopes, so that data from both can be directly downloaded on our servers for the requested position and time interval. Additional specifics, such as energy range, data quality, off-axis angle, and albedo filtering, can also be provided. Given the center position, the pipeline barycenters the data and, if so chosen, it can create a single fit file including the GTIs and barycentered times for the combined data set. After barycentering is performed, the standard folding can be carried out using a known ephemeris of the source (see Pellizzoni et al. 2009), and follow-up off-pulse analysis of nebular emission (as in Pellizzoni et al. 2010). Optimized tools for exposure calculation for each satellite are being tested, as is blind search on unidentified sources. A Bayesian approach combined with the already tested machine learning methods (Saz Parkinson et al. 2016) will be used to select candidate Galactic compact objects from \(\gamma \)-ray unidentified sources.

X-ray pipeline A similarly structured command-line pipeline has already been developed in-house to download and analyze NuSTAR data, and is available upon request (https://gitlab.com/matteobachetti/heasarc_pipelines). Because our group is part of the Italian team responsible for the development, calibration, and validation of the scientific software for the Imaging X-ray Polarimetry Explorer [IXPE, (Weisskopf et al. 2016)], future prospects include the development of a pipeline for the processing of IXPE public data as an important addition to our high-energy database. IXPE will be able to do polarimetry and timing analyses (time tagging accuracy of less than 100\(\mu \)s) at energies from 2 to 10 keV, thus opening an important new window on pulsars and PWNe.

Acknowledgements This paper is the peer-reviewed version of a contribution selected among those presented at the Conference on Gamma-Ray Astrophysics with the AGILE Satellite held at Accademia Nazionale dei Lincei and Agenzia Spaziale Italiana, Rome on December 11–13, 2017. The project “Development of a Software Tool for the Study of Pulsars from Radio to Gamma-rays using Multi-mission Data” is supported by the Autonomous Region of Sardinia (RAS), CRP-25476.

References

Bolli P, Orlati A, Stringhetti L et al (2015) Sardinia radio telescope: general description, technical commissioning and first light. JAI 4:50008
Melis A, Concu R, Trois A et al (2018) SArdinia Roach2-based digital architecture for radio astronomy (SARDARA). JAI 7(1):1850004
Pellizzoni A, Pilia M, Possenti A et al (2009) High-resolution timing observations of spin-powered pulsars with the AGILE gamma-ray telescope. ApJ 691:1618
Pellizzoni A, Trois A, Tavani M, Pilia M et al (2010) Detection of gamma-ray emission from the vela pulsar wind nebula with AGILE. Science 327:663
Prandoni I, Murgia M, Tarchi A et al (2017) The Sardinia radio telescope. From a technological project to a radio observatory. A&A 608:40
Ransom SM (2001) New search techniques for binary pulsars. Ph.D. thesis, Harvard University

Saz Parkinson PM, Xu H, Yu PLH, Salvetti D, Marelli M, Falcone AD (2016) Classification and ranking of fermi LAT gamma-ray sources from the 3FGL catalog using machine learning techniques. ApJ 820:8
Weisskopf MC, Ramsey B, O’Dell S et al (2016) The imaging X-ray polarimetry explorer (IXPE). SPIE 9905:17

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.