Data Article

RNA sequencing data describing transcriptional changes in aorta of ApoE-/mice after alpha 7 nicotinic acetylcholine receptor (α7nAChR) stimulation

Marcus A. Ulleryd, Filip Mjörnstedt, Dimitra Panagaki, Li Jin Yang, Kajsa Engevall, Saray Gutierrez, Yixin Wang, Li-Ming Gan, Holger Nilsson, Erik Michaëlsson, Maria E. Johansson

A R T I C L E I N F O

Article history:
Received 29 October 2019
Revised 8 January 2020
Accepted 5 March 2020
Available online 12 March 2020

Keywords:
Alpha 7 nicotinic acetylcholine receptor
α7nAChR
Chrna7
α7nAChR agonists
Cholinergic signaling
Atherosclerosis
Cardiovascular disease
RNA sequencing

A B S T R A C T

This manuscript is a companion paper to Ulleryd M.U. et al., “Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells” Atherosclerosis, 2019 [1]. Data shown here include RNA sequencing data from whole aorta of ApoE-/mice fed high fat diet and treated with the alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonist AZ6983 for 8 weeks using subcutaneously implanted osmotic minipumps. Here we present the top gene networks affected by treatment with AZ6983, as well as the up- and down-regulated genes in aorta after treatment. Further, a URL link to the RNA sequencing datasets submitted to GEO is included.
Specifications table

Subject	Medicine
Specific subject area	Physiology, Experimental atherosclerosis
Type of data	Table
Figure	
How data were acquired	RNA sequencing (Nextseq500)
Data format	Raw
Analyzed	
Parameters for data collection	ApoE-/- mice were treated with alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonist AZ6983 or vehicle for 8 weeks using subcutaneously implanted osmotic minipumps. RNA from whole aorta were extracted and used for RNA sequencing analysis. n=6 per group.
Description of data collection	Data shown here includes top gene networks affected by treatment with AZ6983, identified with IPA software, and a table with Complete list of up- and down-regulated genes in the aorta after treatment with AZ6983, ranked by q-value. We also supply a URL link to the RNAseq datasets submitted to GEO. GEO accession numbers: GSE131162, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131162
Data source location	Gothenburg, Sweden
Data accessibility	Repository name: NCBI (http://www.ncbi.nlm.nih.gov/geo/)
Data identification number: GSE131162	
Direct URL to data:	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131162
Related research article	Ulleryd, M.A., Mjörnstedt, F., Panagaki, D., Yang, L.J., Engevall, K., Gutierrez, S., Wang, Y., Gan, L., Nilsson, H., Michaelsson, E., Johansson, M., E. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 2019 Aug;287:122–133 PMID: 31260875 DOI: 10.1016/j.atherosclerosis.2019.06.903

Value of the data

- These data provide information on the transcriptional effects on whole aorta after treatment with alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonist AZ6983 in the atherosclerosis-prone ApoE-/- mouse.
- Researchers interested in atherosclerosis, as well as, α7nAChR signaling will find these data a valuable resource.
- The information provided here may be used for future studies on how α7nAChR stimulation influence the vascular transcriptome.
- These data can generate hypothesis for new studies investigating the α7nAChR-related transcriptomic profiles, as well as signaling pathways, in other tissues
- The present data on α7nAChR signaling is predominantly available from cell culture experiments, using cell lines, this data set provides additional information on the signaling pathways in tissue from long-term treatment in vivo.

1. Data description

To investigate the effects of alpha 7 nicotinic acetylcholine receptor (α7nAChR) stimulation on atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice, mice were treated with α7nAChR
agonist AZ6983 for 8 weeks. Thoracic aortas were used for RNA sequencing analysis. Fig. 1 describes the top two networks identified with Ingenuity Pathway Analysis (IPA) software for differently expressed genes in aorta of ApoE-/- mice treated with AZ6983 compared with controls. Major functions of the networks are indicated in A and B, followed by the network score. Networks are ranked according to their degree of relevance to the eligible network molecules in the data set and the score is calculated with an algorithm based on p-scores derived from q-values.
Table 1 shows the complete list of up- and down-regulated genes in the aorta after treatment with AZ6983 ranked by q-value.

2. Experimental design, materials, and methods

2.1. Experimental animals

Male apoE/- mice (C57BL/6 background, B6192P2-Apoetm1UncN1, Taconic, Denmark) were kept at the Laboratory for Experimental Biomedicine, Gothenburg, Sweden. At 10 weeks of age, mice were anesthetized using isoflurane and subcutaneously implanted with osmotic minipumps

Symbol	Entrez Gene Name	Up/down	Expr Log Ratio	Expr p-value	Location	Type(s)
IMPDH1	inosine monophosphate dehydrogenase 1	Up	1.427	3.24E−07	Cytoplasm	enzyme
SREBF1	sterol regulatory element binding transcription factor 1	Up	1.010	6.13E−07	Nucleus	transcription regulator
LPCAT3	lysophosphatidylcholine acyltransferase 3	Up	0.594	2.36E−04	Plasma Membrane	enzyme
Scd2	stearoyl-Coenzyme A desaturase 2	Up	0.962	1.22E−03	Cytoplasm	enzyme
MBD6	methyl-CpG binding domain protein 6	Up	0.779	5.23E−03	Nucleus	other
LTF	lactotransferrin	Up	1.647	6.54E−03	Extracellular Space	peptidase
SLC22A23	solute carrier family 22 member 23	Up	0.674	7.01E−03	Other	transporter
Apoc1	apolipoprotein C-I	Up	1.295	7.78E−03	Extracellular Space	other
PXN	paxillin	Up	0.240	7.78E−03	Cytoplasm	other
UTP14C	UTP14C small subunit processome component	Up	0.665	7.78E−03	Nucleus	other
IGHG1	immunoglobulin heavy constant gamma 1 (G1m marker)	Up	3.965	8.95E−03	Extracellular Space	peptidase
Cmah	cytidine monophospho-N-acetylmuraminic acid hydroxylase	Up	0.551	1.36E−02	Cytoplasm	enzyme
SPON2	spondin 2	Up	0.979	2.09E−02	Extracellular Space	other
Ngp	neutrophil granule protein	Up	1.934	2.68E−02	Extracellular Space	other
PTGES	prostaglandin E synthase	Up	0.857	3.03E−02	Cytoplasm	enzyme
ABCA1	ATP binding cassette subfamily A member 1	Up	0.514	3.16E−02	Plasma Membrane	transporter
Scd4	stearoyl-Coenzyme A desaturase 4	Up	0.902	3.62E−02	Cytoplasm	enzyme
GP1BA	glycoprotein Ib platelet alpha subunit 3 receptor	Up	2.025	4.58E−02	Plasma Membrane	transmembrane receptor
CSF3R	colony stimulating factor receptor	Up	1.122	4.72E−02	Plasma Membrane	transmembrane receptor
H2-M1/H2-M9	histocompatibility 2, M region locus 1 adrenocorticotropin	Up	0.950	4.72E−02	Other	other
ADRB2	adrenocorticotropin	Up	0.711	4.87E−02	Plasma Membrane	G-protein coupled receptor

(continued on next page)
Symbol	Entrez Gene Name	Up/down	Expr Ratio	Log p-value	Location	Type(s)
MXD1	MAX dimerization protein 1	Up	0.314	5.85E−02	Nucleus	transcription regulator
NPAS2	neuronal PAS domain protein 2	Up	0.780	5.89E−02	Nucleus	transcription regulator
SYTL1	synaptotagmin like 1	Up	1.214	5.89E−02	Cytoplasm	enzyme
LENG	leukocyte receptor cluster member 8	Up	0.365	6.06E−02	Other	other
WNT2	Wnt family member 2	Up	0.656	6.66E−02	Extracellular	cytokine
NAV2	neuron navigator 2	Up	0.667	6.73E−02	Nucleus	other
STIL	STIL centriolar assembly protein	Up	1.388	6.73E−02	Nucleus	other
ESM1	endothelial cell specific molecule 1	Up	0.560	6.86E−02	Extracellular	growth factor
CD177	CD177 molecule	Up	1.525	6.94E−02	Cytoplasm	other
CLK1	CDC like kinase 1	Up	0.297	6.94E−02	Nucleus	kinase
PABPC1	poly(A) binding protein cytoplasmic 1	Up	0.345	6.94E−02	Cytoplasm	translation regulator
PITPNM1	phosphatidylinositol transfer protein membrane	Up	0.187	7.12E−02	Cytoplasm	transporter
MGAM	maltase-glucoamylase	Up	1.396	7.24E−02	Plasma Membrane	enzyme
PGLYRP1	peptidoglycan recognition protein 1	Up	1.271	7.24E−02	Plasma Membrane	transmembrane receptor
DENND1A	DENN domain containing 1A	Up	0.330	7.26E−02	Plasma Membrane	other
Stfa2/Stfa2I	stefin A2	Up	2.402	7.26E−02	Cytoplasm	other
BLVRB	biliverdin reductase B paired box 1	Up	0.183	7.67E−02	Cytoplasm	enzyme
PAX1	interferon induced transmembrane protein 6	Up	0.593	7.74E−02	Nucleus	transcription regulator
PC	pyruvate carboxylase	Up	0.601	7.85E−02	Cytoplasm	enzyme
CYP26B1	cytochrome P450 family 26 subfamily B member 1	Up	0.482	8.03E−02	Cytoplasm	enzyme
Acaa1b	acetyl-Coenzyme A acyltransferase 1B	Up	0.708	8.11E−02	Other	enzyme
CAMP	cathelicidin antimicrobial peptide	Up	2.056	8.11E−02	Cytoplasm	other
SCARB1	scavenger receptor class B member 1	Up	0.573	8.11E−02	Plasma Membrane	transporter
Ifitm6	interferon induced transmembrane protein 6	Up	0.923	8.27E−02	Other	other
VWF	von Willebrand factor	Up	0.369	8.27E−02	Extracellular	other
PACS1	phosphofurin acidic cluster sorting protein 1	Up	0.382	8.34E−02	Cytoplasm	other
SLC12A7	solute carrier family 12 member 7	Up	0.386	8.34E−02	Plasma Membrane	transporter
KLHL4	kelch like family member 4	Up	0.442	9.12E−02	Cytoplasm	other
GIGYF1	GRB10 interacting GYF protein 1	Up	0.392	9.62E−02	Extracellular	other
DENND2D	DENN domain containing 2D	Up	0.819	9.78E−02	Cytoplasm	other
PRKDC	protein kinase. DNA-activated. catalytic polypeptide	Up	0.259	9.92E−02	Nucleus	kinase
Table 1 (continued)

Symbol	Entrez Gene Name	Up/down	Expr Log Ratio	Expr p-value	Location	Type(s)
GGACT	gamma-glutamylamine cyclotransferase neuronatin	Down	-0.361	2.36E-04	Cytoplasm	enzyme
NNAT		Down	-1.894	2.36E-04	Plasma Membrane	transporter
ATP6V1C1	ATPhase H+ transporting V1 subunit C1	Down	-0.248	1.33E-03	Cytoplasm	transporter
COL2A1	collagen type II alpha 1 chain	Down	-4.419	6.54E-03	Extracellular Space	other
2210407C18Rik	RIKEN cDNA 2210407C18 gene	Down	-0.642	9.13E-03	Other	other
IBSF	integrin binding sialoprotein	Down	-3.005	2.01E-02	Extracellular Space	other
OTUD6B	OTU domain containing 6B	Down	-0.266	2.68E-02	Other	Other
PDE1C	phosphodiesterase 1C	Down	-0.464	4.62E-02	Cytoplasm	enzyme
CAP	titin-cap	Down	-0.747	4.65E-02	Cytoplasm	Other
HEPHL1	hephaestin like 1	Down	-1.625	5.07E-02	Other	enzyme
NUDT4	nudix hydrolase 4	Down	-0.301	5.07E-02	Cytoplasm	phosphatase
CRISPLD1	cyssteine rich secretory protein LCCL domain containing 1	Down	-0.570	6.07E-02	Cytoplasm	Other
CLEC3A	C-type lectin domain family 3 member A	Down	-3.948	6.41E-02	Other	Other
S100B	S100 calcium binding protein B	Down	-0.853	6.41E-02	Cytoplasm	Other
LAPT4B	lysosomal protein transmembrane 4 beta	Down	-0.233	6.66E-02	Cytoplasm	Other
CTSZ	cathepsin Z	Down	-0.475	6.81E-02	Cytoplasm	peptidase
EFR3A	EFR3 homolog A	Down	-0.265	6.84E-02	Cytoplasm Membrane	Other
GLDN	gliomedin	Down	-0.553	6.86E-02	Cytoplasm	Other
ATP6V1A	ATPhase H+ transporting V1 subunit A	Down	-0.228	6.94E-02	Cytoplasm Membrane	Other
MED10	mediator complex subunit 10	Down	-0.234	6.94E-02	Nucleus	Other
PON1	paraoxonase 1	Down	-0.775	6.94E-02	Extracellular Space	phosphatase
HFC1R1	host cell factor C1 regulator 1	Down	-0.196	8.11E-02	Nucleus	Other
MSI2	musashi RNA binding protein 2	Down	-0.154	8.25E-02	Cytoplasm	Other
AK4	adenylyl kinase 4	Down	-0.559	9.69E-02	Cytoplasm	kinase
DPP10	dipeptidyl peptidase like 10	Down	-0.750	9.92E-02	Extracellular Space	peptidase

All differentially expressed genes, after p-value adjustment (q-values) using Benjamini Hochberg [2] and a FDR-q of 10%, in the aorta of AZ6983 treated mice compared with controls. Genes are sorted by up or down regulation, followed by the adjusted p-value.

(Alzet model 2004, DURECT Corporation, ALZET Osmotic Pumps, Cupertino, CA, USA) delivering vehicle (28% cyclodextrin in saline), or α7nAChR agonist AZ6983 (50μmol kg-1 per day) for 8 weeks. Due to the duration of the minipumps, they were replaced after 4 weeks. From 10 weeks of age and throughout the experiment, mice were fed a high fat, cholesterol enriched diet (21% fat, 0.15% cholesterol; R638, Lantmännen, Sweden). All animals were housed at 21–24 °C in a room with 12 h light/ 12 h dark cycle. Water and food were available ad libitum. All procedures involving mice were approved by the Regional Animal Ethics Committee at the University of Gothenburg, in accordance with the European Communities Council Directives of 22 September 2010 (2010/63/EU).
2.2. RNA isolation, RNA sequencing and ingenuity pathway analysis

RNA of thoracic aorta was extracted by using the RNAeasy® Fibrous Tissue Mini Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s protocol. Concentration and quality was analyzed using a NanoDrop (NanoDrop Products, DE, US) and electrophoresis (Experion, Bio-Rad Laboratories, CA, USA).

Aortic RNA from mice treated with AZ6983 (n=6) or controls (n=6) was isolated as described above and Stranded Total RNA Sample preparations were performed using the Illumina TrueSeq Stranded Total RNA Sample Preparation Kit with Ribo Sero Gold according to the TruSeq Stranded Total RNA Sample Preparation Guide (15031048 Rev. E). Sequencing of the enriched libraries was performed on Illumina Nextseq500 (2x75bp). The quality of the data was analyzed with FastQC and reads with an average quality score of >30 were included in the sequencing. Differentially expressed genes (DEGs) were identified using the DESeq2-method with Benjamini Hochberg adjusted p-values (q-values) [2] and a FDR-q of 10%.

QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, content version 42012434) was used to study potential functions of AZ6983 treatment in the aorta [3–5]. Network analysis was generated by overlaying the eligible network molecules in the data set with the global gene network contained in the Ingenuity® Knowledge Base. Networks are ranked according to their degree of relevance to the genes in the data set. Functional analysis identified the top ranked biological functions and diseases that were enriched in the dataset by calculating the number of molecules that cohere to a functional category and was estimated by Fisher’s exact test (q<0.05). Activation Z-score predicts if a specific function is activated (≥2) or inhibited (≤−2) and is supported by one or more references from Ingenuity® Knowledge Base.

Top two networks identified with Ingenuity Pathway Analysis (IPA) software for genes that were differently expressed in aorta of ApoE−/− mice treated with AZ6983 compared with controls. Major functions of the networks are indicated in A and B, followed by the network score. Networks are ranked according to their degree of relevance to the eligible network molecules in the data set and the score is calculated with an algorithm based on p-scores derived from q-values. The up- (red) or down- (green) regulation of genes are indicated by the intensity of node color, and the functional class of the gene product is indicated by different symbols. Relationship between genes are supported by one or more references and illustrated with a connecting line.

Acknowledgments

We are grateful for the excellent technical and administrative assistance from Ms Sansan Hua, Mr Peter Micallef, Mrs Margareta Behrendt and dr. Ann-Cathrine Jönsson-Rylander. The authors would like to acknowledge data analysis support from the Bioinformatics Core Facility at the Sahlgrenska Academy.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Financial support

Our work was supported by grants from The Swedish Heart Lung foundation, The Swedish Research Council, The Swedish Society of Medicine, Magnus Bergvall foundation, Stiftelsen Längmanska kulturfonden, Stiftelsen Gamla tjänarinnor, Lars Hiertas foundation, Åke Wiberg foundation, OE and Edla Johanssons vetenskapliga stiftelse, Stiftelsen Tornspiran, Emil and
Wera Cornells foundation, Dr. Felix Neuberghs Foundation, Emelle Foundation, Mary von Sydow foundation, Wilhelm and Martina Lundgren foundation and grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF GBG-723131).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: [10.1016/j.dib.2020.105415](https://doi.org/10.1016/j.dib.2020.105415).

References

[1] M.A. Ulleryd, et al., Stimulation of alpha 7 nicotinic acetylcholine receptor (alpha7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells, Atherosclerosis 287 (2019) 122–133.

[2] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. B 57 (1995) 289–300.

[3] S.A. Ramsey, E.S. Gold, A. Aderem, A systems biology approach to understanding atherosclerosis, EMBO Mol. Med. 2 (2010) 79–89.

[4] M. Sulkava, et al., Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques - Tampere Vascular Study, Sci. Rep. 7 (2017) 41483.

[5] S.S. Wang, et al., Identification of pathways for atherosclerosis in mice: integration of quantitative trait locus analysis and global gene expression data, Circ. Res. 101 (2007) e11–e30.