Comparisons with registry data in Denmark
Validity of self-reported diseases from health surveys:
Abstract citation ID: ckac129.426
The aim of the present study was to ultimately compromise the application of these survey data for public health purposes. The validity of self-reported disease prevalence estimates in health surveys may be low when compared to data from medical records in administrative registers. Such discrepancies are high, but PPV and kappa vary greatly between diseases. The latter findings reflect a low content validity of the applied survey question for specific diseases. This should be taken into account when interpreting similar results from surveys.

Results:
For all included diseases, the specificity was >92%, and the sensitivity varied between 59% (cancer) and 95% (diabetes). For diabetes (0.88). Sociodemographic variables were significantly associated with total agreement, educational level exhibiting the strongest associations.

Conclusions:
Innovative health economics methods.

Background:
Public Health Institutes need to build on the traditional value for money approach, to find ways to capture, measure and show the full range of their outcomes, impacts and related value. As part of a drive to undertake to populate a database of health economics evaluations of various public health interventions, focusing on Social Return on Investment (SROI). In addition, a simulated methodology was developed which allows the evidence to be manipulated and made relevant to individual contexts to help inform investment decisions at a local level.

Conclusions:
Innovative health economics methods.

Public Health
Presenting a Social Value Database and Simulator for evaluations of various public health interventions, across areas in both grey and academic sources, and are of varying quality.

Methods:
Scoping reviews of both academic and grey literature were undertaken to populate a database to capture and illustrate the social value of public health interventions. The Social Value Database and Simulator is a credible method for measuring the value of wider public health interventions.

Results:
To date, the database has accumulated an excess of 50 SROI evaluations of public health interventions, across areas.

Contact: c.dellacasa@cineca.it

Abstract citation ID: ckac129.427
European HPC cloud infrastructure for managing SARS-CoV-2 data in compliance with GDPR
Chiara Dellacasa
C Dellacasa1, M Ortali1, E Rossi1, M D’Antonio1, T Osma2, F Prasser4, M Puskaric3, E Rinaldi4, Orchestra Working Group4, G Scipione1
1HPC Department, CINECA Consorzio Interuniversitario, Casalecchio di Reno, Italy
2CINES Centre Informatique National de l’Enseignement, Montpellier, France
3High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
4Berlin Institute of Health (BIH), Charité, Berlin, Germany
5ORTCHESTRA Consortium, Verona, Italy
Contact: c.dellacasa@cineca.it

The Connecting European SARS-CoV-2 Cohorts to Increase Common and Effective Response to SARS-CoV-2 Pandemic (ORCHESTRA) consortium, led by University of Verona (Italy), brings together key European academic experts and research institutions in infectious diseases, data management and High Performance Computing (HPC) from 26 organizations (extending to 37 partners) from 15 countries. The project aims to create a new pan-European cohort built on existing and new large-scale population cohorts in European and non-European countries to significantly impact on the responsiveness to SARS-CoV-2. The integration and analysis of the very heterogeneous characteristics of SARS-CoV-2 data coming...
from many different sources such as EHR, retrospective and prospective patient registries, and related 'omics' data (incl. genomics, proteomics and transcriptomics) can benefit of data analytics enabled by HPC, where both high compute performance and fast storage capabilities are immensely important. During the first year of the project, a dedicated HPC cloud infrastructure have been designed and partially deployed to fulfill the functional requirements for data management ensuring healthcare data confidentiality/privacy, integrity and security in compliance with the European GDPR regulations. The result is an infrastructure for Data Management composed by three main layers: National Data Providers; National Hubs (one for each HPC center involved: CINECA - Italy, CINES - France and HLRS - Germany), to centralize data at national level and to support data storage, sharing and analysis on data ingested from the National Data Providers; ORCHESTRA Data Portal: the pan-European portal for sharing aggregated data and results. Currently data collection is on going; at the end of the project, clinical centers are expected to have enrolled more than 10.000 patients with about 50.000 samples for the prospective studies.

Key messages:
- The SARS-CoV-2 crisis made evident the need to manage and analyse very heterogeneous health data coming from many different resources across different countries.
- The HPC cloud infrastructure released for the Orchestra project can act as a model to manage future public health threats.