ON THE GLOBAL 2-HOLONOMY FOR A 2-CONNECTION ON A 2-BUNDLE

WEI WANG

Abstract. A crossed module constitutes a strict 2-groupoid G and a G-valued 2-cocycle on a manifold defines a 2-bundle. A 2-connection on this 2-bundle is given by a Lie algebra g valued 1-form A and a Lie algebra h valued 2-form B over each coordinate chart together with 2-gauge transformations between them, which satisfy the compatibility condition. Locally, the path-ordered integral of A gives us the local 1-holonomy, and the surface-ordered integral of (A, B) gives us the local 2-holonomy. The transformation of local 2-holonomies from one coordinate chart to another is provided by the transition 2-arrow, which is constructed from a 2-gauge transformation. We can use the transition 2-arrows and the 2-arrows provided by the G-valued 2-cocycle to glue such local 2-holonomies together to get a global one, which is well defined.

Contents

1. Introduction 1
2. (Differential) crossed modules and 2-categories 8
 2.1. Crossed modules and differential crossed modules 8
 2.2. Strict 2-categories 9
 2.3. The strict 2-groupoid G associated to a crossed module 10
 2.4. The local 2-connections 12
3. The local 1-holonomy 12
 3.1. The local 1-holonomy along a loop and its variation 12
 3.2. The transformation law of local 1-holonomies under a 2-gauge transformation 15
4. The local 2-holonomy 16
 4.1. The local 2-holonomy: the surface-ordered integral 16
 4.2. The transformation law of local 2-holonomies under a 2-gauge transformation 18
 4.3. The compatibility cylinder of transition 2-arrows 23
5. The global 2-holonomy 24
 5.1. The invariance of the global 2-holonomies under the change of coordinate charts 24
 5.2. The independence of reparametrization 29
References 32

1. Introduction

Higher gauge theory is a generalization of gauge theory that describes the dynamics of higher dimensional extended objects. See e.g. [3] [4] [9] [17] for 2-gauge theory and [14] [18] [23] for 3-gauge theory. It involves higher algebraic structures and higher geometrical structures in...
mathematics; higher groups, higher bundles (gerbes) and higher connections, etc. (cf. e.g. [11][12][13][14][15] and references therein). An important physical quantity in 2-gauge theory is the Wilson surface [8][17]. This is a 2-dimensional generalization of Wilson loop or holonomy in differential geometry. We will discuss the global 2-holonomy for a 2-connection on a 2-bundle.

Let us recall definitions of 2-bundles and 2-connections. Suppose that \((G, H, \alpha, \triangleright)\) is a crossed module, where \(\alpha : H \rightarrow G\) is a homomorphism of Lie groups and \(\triangleright\) is a smooth left action of \(G\) on \(H\) by automorphisms. Similarly, \((g, h, \alpha, \triangleright)\) is a differential crossed module, where \(\alpha : \mathfrak{h} \rightarrow \mathfrak{g}\) is a homomorphism of Lie algebras and \(\triangleright\) is a smooth left action of \(\mathfrak{g}\) on \(\mathfrak{h}\) by automorphisms. A local 2-connection over an open set \(U\) is given by a \(g\)-valued 1-form \(A\) and a \(h\)-valued 2-form \(B\) over \(U\) such that

\[
dA + A \wedge A = \alpha(B).
\]

A 2-gauge-transformation from a local 2-connection \((A, B)\) to another one \((A', B')\) is given by a \(G\)-valued function \(g\) and a \(h\)-valued 1-form \(\varphi\) such that

\[
g \triangleright A' = -\alpha(\varphi) + A + dg \cdot g^{-1},
\]

\[
g \triangleright B' = B - d\varphi - A \triangleright \varphi + \varphi \wedge \varphi.
\]

Given a crossed module \((G, H, \alpha, \triangleright)\), there exists an associated strict 2-groupoid denoted by \(G\). A 2-bundle over a manifold \(M\) is given by a nonabelian \(G\)-valued 2-cocycle on \(M\). This is a collection of \((U_i, \rho_{ij}, f_{ijk})\), where \(\{U_i\}_{i \in I}\) is an open cover of the manifold \(M\), \(\rho_{ij} : U_i \cap U_j \rightarrow G\) and \(f_{ijk} : U_i \cap U_j \cap U_k \rightarrow H\) are smooth maps satisfying

\[
\alpha\left(f_{ijk}^{-1}\right) \rho_{ij} \rho_{jk} = \rho_{ik},
\]

and the 2-cocycle condition

\[
g_{ij} \triangleright f_{jkl} f_{jkl} = f_{ijk} f_{ikl}.
\]

A 2-connection on this 2-bundle over \(M\) is given by a collection of local 2-connections \((A_i, B_i)\) over each coordinate chart \(U_i\), together with a 2-gauge transformation \((\rho_{ij}, a_{ij})\) over each intersection \(U_i \cap U_j\) from the local 2-connection \((A_i, B_i)\) to another one \((A_j, B_j)\). They satisfy the following compatibility condition:

\[
a_{ij} + g_{ij} \triangleright a_{jk} = f_{ijk} a_{ik} f_{ijk}^{-1} + A_i \triangleright f_{ijk} f_{ijk}^{-1} + df_{ijk} f_{ijk}^{-1},
\]

over each triple intersection \(U_i \cap U_j \cap U_k\). Note that minus signs in (1.2) become plus if \(\varphi\) is replaced by \(-\varphi\). See also Remark 2.1 and 4.4 for this form of 2-gauge-transformations and the compatibility condition.

Given a \(g\)-valued 1-form \(A\) on an open set \(U\), the 1-holonomy \(F_A(\rho)\) along a Lipschitzian path \(\rho : [a, b] \rightarrow U\) is well defined. It is given by the path-ordered integral. More precisely, \(F_A(\rho)\) is the unique solution to the ODE

\[
\frac{d}{dt} F_A(\rho_{[a,t]}) = F_A(\rho_{[a,t]}) \rho^* A_t \left(\frac{\partial}{\partial t} \right)
\]

with the initial condition \(F_A(\rho_{[a,t]})|_{t=a} = 1_G\), where \(\rho_{[a,t]}\) is the restriction of the curve \(\rho\) to \([a, t]\) and \(\rho^* A_t\) is the value of the pull back \(g\)-valued 1-form \(\rho^* A\) at \(t \in [a, b]\). Moreover, we can
integrate the 2-connection \((A_i, B_i)\) along a surface \(\gamma : [0, 1]^2 \rightarrow U_i\) to get a 2-arrow in \(\mathcal{G}\), called the \textit{local 2-holonomy}. It is a surface-ordered integral. If we denote the boundary of \(\gamma\) as follows

\[
\begin{array}{c}
\gamma^u \\
\gamma^l \\
\gamma^r \\
\gamma^d
\end{array}
\]

(1.7)

the local 2-holonomy is a 2-arrow in \(\mathcal{G}\):

\[
\begin{array}{c}
F_{A_i}(\gamma^u) \\
F_{A_i}(\gamma^l) \\
F_{A_i}(\gamma^r) \\
F_{A_i}(\gamma^d)
\end{array}
\]

(1.8)

It was proved by Schreiber and Waldorf \cite{20} that there exists a bijection between 2-connections on the trivial 2-bundle and 2-functors (play the role of 2-holonomy):

\[
\{\text{smooth 2-functors } \mathcal{P}_2(M) \rightarrow \mathcal{G}\} \cong \{A \in \Lambda^1(M, g), B \in \Lambda^1(M, h); dA + A \wedge A = \alpha(B)\},
\]

where \(\mathcal{P}_2(M)\) is path 2-groupoid of manifold \(M\). The local 1- and 2-holonomies are well defined.

See also Martins-Picken \cite{12} for the theory of local 1- and 2-holonomies. The problem is how to define the global 2-holonomy for a 2-connection on a nontrivial 2-bundle. This is known for Abelian 2-bundles by Mackaay-Picken \cite{11}. Schreiber and Waldorf \cite{21} proved the equivalence of several 2-categories associated a 2-connection to show the existence of the transport functor, which plays the role of global 2-holonomy. Parzygnat \cite{16} studied its generalization, explicit computations and application to magnetic monopoles. On the other hand, Martins and Picken \cite{13} introduced the notion of parallel transport by using the language of double groupoids. They also give the method of glueing local 2-holonomies to get a global one for the cubical version. This is a cubical description, rather than a simplicial description (see also Soncini-Zucchini \cite{22} for this approach). A cubical 2-bundle does not seem to be a direct generalization of the ordinary case of (principal) bundles and connections. Recently Arias Abad and Schätz \cite{2} compared these two approaches locally. In this paper we will give an elementary approach to this problem, including an algorithm to calculate the global 2-holonomy.

As a model, let us consider first how to glue local 1-holonomies to get a global one. Recall that a 1-\textit{connection} on \(M\) is given by a collection of local 1-forms \(A_i\) over coordinate charts \(U_i\), together with transition functions \(g_{ij}\) on \(U_i \cap U_j\), which satisfy the 1-cocycle condition. They satisfy the following \textit{compatibility condition}:

\[
A_i = g_{ij}^{-1} A_j g_{ij} + g_{ij}^{-1} dg_{ij}
\]
over $U_i \cap U_j$. Let $\rho : [0,1] \to M$ be a loop, i.e., $\rho(0) = \rho(1)$. We divide the interval $[0,1]$ into several subintervals $I_i := [t_i, t_{i+1}]$, $i = 1, \ldots, N$, such that the image $\rho(I_i)$ is contained in a coordinate chart denoted by U_i. We have local 1-holonomies $F_{A_i}(\rho_{I_i})$. We glue $F_{A_{i-1}}(\rho_{I_{i-1}})$ with $F_{A_i}(\rho_{I_i})$ by the gauge transformation $g_{(i-1)}(x)$ at point $x = \rho(t_i)$ to get the following path:

\begin{equation}
F_{A_i}(\rho_{I_i})
\end{equation}

The composition of elements of G along this path is the global 1-holonomy of the connection along the loop ρ. Its conjugacy class is independent of the choice of the open sets U_i containing the paths $\rho(I_i)$. This is because that if we use U'_φ and A'_φ instead of U_i and A_i, respectively, we have the following commutative diagram

\begin{equation}
F_{A_{i-1}}(\rho_{I_{i-1}})
\end{equation}

where $x = \rho(t_i)$, $y = \rho(t_{i+1})$. Here the 1-cocycle condition implies the commutativity of two triangles, and g_{φ_i} as a gauge transformation provides the commutative quadrilateral. The wavy path is what we obtain when U_i and A_i are replaced by U'_{φ} and A'_{φ}, respectively. So the 1-arrows represented by the wavy and dotted paths coincide. When $U_i = U_N$ is replaced by U'_{φ}, we get the conjugacy of the global 1-holonomy by the element $g_{\varphi'_{1}}(\rho(0))$.

To construct the the global 2-holonomy, we consider a surface given by the union of the mapping γ in (1.7) and a mapping $\tilde{\gamma} : [0, 1]^2 \rightarrow U_j$, such that the left path $\tilde{\gamma}^l$ above coincides with the right path γ^r in (1.7). Then we also have the following 2-arrow

$$F_{A_j}(\tilde{\gamma}^l) \rightarrow F_{A_j}(\gamma^r)$$

(1.11)

in G by the surface-ordered integration of the 2-connection (A_j, B_j) over U_j. The path $\tilde{\gamma}^l$ coincides with γ^r, but the local 1-holonomy $F_{A_j}(\tilde{\gamma}^l)$ in (1.11) is usually different from $F_{A_i}(\gamma^r)$ in (1.8). So we can not glue the 2-arrows in (1.8) and (1.11) directly. But we can integrate the 2-gauge transformation (g_{ij}, a_{ij}) along the path $\rho = \gamma^r = \tilde{\gamma}^l$ in $U_i \cap U_j$ to get the 2-arrow

$$\psi_{ij}(\rho)$$

(1.12)

in the 2-groupoid G. We call this 2-arrow (1.12) the transition 2-arrow along the path ρ. It can be used to connect two arrows (1.8) and (1.11) to get
Now consider 4 adjacent rectangles $\gamma^{(a)} : [0, 1]^2 \rightarrow U_\alpha$, $\alpha = i, j, k, l$,

\[
\begin{array}{cccc}
\gamma(i) & \gamma(k) \\
\gamma(j) & \gamma(l)
\end{array}
\]

(1.13)

in four different coordinate charts. We can connecting the local 2-holonomies by using the transition 2-arrows along their common boundaries to get the following diagram:

(1.14)

We add the following 2-arrow in \mathcal{G} in the central rectangle:

(1.15)
where \(f_{ikj}(y_2) \) and \(f_{ij}(y_2) \) are provided by the \(G \)-valued 2-cocycle of the 2-bundle. Note that diagrams (1.14), (1.15) are similar to figure 3 in [13], p. 3358, for the cubical 2-holonomy, where the 2-arrow in the central rectangle in (1.14) is provided directly by the definition of 2-cubical bundles. It is not a composition.

Now fix coordinate charts \(\{U_i\} \) of \(M \). Let \(\gamma : [0,1]^2 \to M \) be a Lipschitzian mapping. To define the global 2-holonomy, we divide the square \([0,1]^2\) into the union of small rectangles \(\Box_{ij} := [t_a, t_{a+1}] \times [s_b, s_{b+1}], \ a = 0, \ldots, N, \ b = 0, \ldots, M, \) where \(0 = t_0 < t_1 < \cdots < t_N = 1, \ 0 = s_0 < s_1 < \cdots < s_M = 1 \). We choose the rectangles sufficiently small so that \(\gamma(\Box_{ab}) \) is contained in some coordinate chart \(U_i \) for each small rectangle \(\Box_{ab} \). We also require \(\gamma(\Box_{ab}) \) and \(\gamma(\Box_{aM}) \) are in the same coordinate chart for each \(a \). For any two adjacent rectangles whose images under \(\gamma \) are contained in two different coordinate charts, we use the transition 2-arrow along their common path to glue these two local 2-holonomies (the transition 2-arrow is the identity when they are in the same coordinate chart). In this construction, there exist an extra rectangle for any 4 adjacent rectangles as in (1.14). We use the 2-arrows provided by the \(G \)-valued 2-cocycle as in (1.15) to fill them. The resulting 2-arrow is denoted by \(\text{Hol}(\gamma) \) and its \(H \)-element is denoted by \(\text{Hol}_\gamma \). We will assume \(\gamma \) to be a loop in the loop space \(\mathcal{LM} \), i.e., \(\gamma(0, \cdot) \equiv \gamma(1, \cdot), \gamma(\cdot, 0) \equiv \gamma(\cdot, 1) \). Denote \(H/ \sim \) by \(H/[G,H] \), where \(h \sim h' \) when \(h = g \circ h' \) for some \(g \in G \). In fact, \(H/[G,H] \) is commutative (cf. [21], Lemma 5.8).

Theorem 1.1. For a loop \(\gamma \) in the loop space \(\mathcal{LM} \), the global 2-holonomy \(\text{Hol}_\gamma \) constructed above, as an element of \(H/[G,H] \), is well-defined. In particular when \(\gamma \) is a sphere, \(\text{Hol}_\gamma \) is in \(\ker \alpha \).

See theorem 4.15 of [21] for the existence theorem of the transport functor, and [13] [16] for the cubical version. When \(\gamma \) is a sphere, \(\gamma(\cdot, 0) \equiv \gamma(\cdot, 1) \equiv * \) is a fixed point. So if we write \(\text{Hol}(\gamma) \) as the 2-arrow \((g, \text{Hol}_\gamma) \) in \(\mathcal{G} \) for some \(g \in G \), its target is also \(g \). This implies that \(\alpha(\text{Hol}_\gamma) = 1_H \).

To show the well-definedness of \(\text{Hol}_\gamma \), we have to prove that it is independent of the choice of the coordinate charts \(\{U_i\} \), division of the square \([0,1]^2\) into the union of small rectangles \(\Box_{ab} \), the choice of the coordinate chart \(U_i \) for each rectangle \(\Box_{ab} \) such that \(\gamma(\Box_{ab}) \subset U_i \) and reparametrization of the loop \(\gamma \) in the loop space \(\mathcal{LM} \).

In Section 2, we recall definitions of a crossed module, a differential crossed module, a strict 2-category and the construction of the strict 2-groupoid \(\mathcal{G} \) associated to a crossed module. In Section 3 and 4, we develop the theory of path-ordered and surface-ordered integrals. We use the method in [20] (and similarly that in [12]), where the authors only consider the local 2-holonomies for bigons. A **bigon** is a mapping \(\gamma : [0,1]^2 \to M \) such that its left and right boundaries degenerate to two points. In our case, after division of the mapping \(\gamma : [0,1]^2 \to U \), we have to consider general Lipschitzian mappings \(\Box_{ab} \to U \). In Section 3, we discuss the local 1-holonomy along the loop as the boundary of a mapping \(\gamma : [0,1]^2 \to U \) and obtain its differentiation in terms of 1-curvatures. We also give the transformation law of local 1-holonomies under a 2-gauge transformation. In Section 4, we construct the local 2-holonomy along a mapping and give the transformation law of local 2-holonomies under a 2-gauge transformation, which is a commutative cube. We also introduce the transition 2-arrow along a path in the intersection \(U_i \cap U_j \), which is constructed from a 2-gauge-transformation \((g_{ij}, a_{ij})\). The compatibility cylinder of three transition 2-arrows along a path in the triple intersection \(U_i \cap U_j \cap U_k \) is commutative.
The G-valued 2-cocyle condition gives us a commutative tetrahedron. The commutative cubes, the compatibility cylinders and the 2-cocyle tetrahedra are used in the last section to show the well-definedness of the global 2-holonomy. From 3-cells (5.6)-(5.9) as a 3-dimensional version of (1.10), it is quite intuitionistic to see that the global 2-holonomy is independent of the choice of the coordinate chart U_i for each rectangle \square_{ab} such that $\gamma(\square_{ab}) \subset U_i$.

2. (Differential) crossed modules and 2-categories

2.1. Crossed modules and differential crossed modules. A crossed module $(G,H,\alpha,\triangleright)$ of Lie groups is given by a Lie group map $\alpha : H \to G$ together with a smooth left action \triangleright of G on H by automorphisms, such that:

(1) for each $g \in G$ and $h \in H$, we have
\[
\alpha(g \triangleright h) = g\alpha(h)g^{-1};
\]
(2) for any $f,h \in H$, we have
\[
\alpha(f) \triangleright h = fhf^{-1}.
\]

Here the smooth left action \triangleright of G on H by automorphisms means that we have
\[
(gg') \triangleright h = g \triangleright (g' \triangleright h) \quad \text{and} \quad g \triangleright (hh') = g \triangleright h \cdot g \triangleright h',
\]
for any $g,g' \in G$, $h,h' \in H$. In particular, we have
\[
g \triangleright 1_H = 1_H, \quad (g \triangleright h)^{-1} = g \triangleright (h^{-1}).
\]

A differential crossed module is given by Lie algebras \mathfrak{g} and \mathfrak{h} and a homomorphism of Lie algebras $\alpha_* : \mathfrak{h} \to \mathfrak{g}$, together with a smooth left action \triangleright of \mathfrak{g} on \mathfrak{h} by automorphisms, such that:

(1) for any $x \in \mathfrak{g}$, $u \in \mathfrak{h}$, we have $\alpha_*(x \triangleright u) = [x,\alpha_*(u)]$;
(2) for any $v,u \in \mathfrak{h}$, we have $\alpha_*(v) \triangleright u = [v,u]$.

Here the smooth left action \triangleright of \mathfrak{g} on \mathfrak{h} by automorphisms means that for any $x,y \in \mathfrak{g}$, $u,v \in \mathfrak{h}$, we have
\[
x \triangleright [u,v] = [x \triangleright u,v] + [u,x \triangleright v] \quad \text{and} \quad [x,y] \triangleright u = x \triangleright (y \triangleright u) - y \triangleright (x \triangleright u).
\]

Without loss of generality, we assume that groups G and H are matrix groups. In this case, a product of group elements is realized as a product of matrices. Moreover, their Lie algebras \mathfrak{g} and \mathfrak{h} also consist of matrices. The smooth left action \triangleright of G on H induces an action of G on \mathfrak{h} and an action of \mathfrak{g} on H by
\[
g \triangleright y = \frac{d}{dt}|_{t=0} \exp(ty), \quad x \triangleright h = \frac{d}{dt}|_{t=0} \exp(tx) \triangleright h,
\]
where $y \in \mathfrak{h}$, $x \in \mathfrak{g}$, respectively. And $\alpha_*(x) = \frac{d}{dt}|_{t=0} \alpha(\exp(tx))$. By abuse of nations, we will also denote α_* by α. In particular, for any $x \in \mathfrak{g}$, it follows from (2.4) that
\[
x \triangleright 1_H = 0.
\]

Let $G \ltimes H$ be the wreath product of groups G and H given by the action \triangleright, i.e.
\[
(g_1,h_1) \cdot (g_2,h_2) := (g_1g_2,g_1 \triangleright h_2 \cdot h_1).
\]

This product is associative since we have
\[
[(g_1,h_1) \cdot (g_2,h_2)] \cdot (g_3,h_3) = (g_1g_2g_3,g_1g_2 \triangleright h_3 \cdot g_1 \triangleright h_2 \cdot h_1) = (g_1,h_1) \cdot [(g_2,h_2) \cdot (g_3,h_3)],
\]
by using \((2.9)\), and
\[(g,h)^{-1} = (g^{-1},g \triangleright h^{-1}) .\]
Set \(g_j = \exp(sX), h_j = \exp(sX)\) in \((2.7)\), \(j = 1,2\), where \(X \in \mathfrak{g}, Y \in \mathfrak{h}\). Then differentiate it with respect to \(s\) at \(s = 0\) to get
\[(2.10) \quad (X,Y) \cdot (g,h) = (Xg,X \triangleright h + hY), \quad (g,h) \cdot (X,Y) = (gX,g \triangleright Y \cdot h).\]
Similarly, we have
\[(2.11) \quad (X,Y) \cdot (X',Y') = (XX',X \triangleright Y' + Y'Y),\]
which provides the wreath product \(\mathfrak{g} \ltimes \mathfrak{h}\) the structure of a Lie algebra.

Lemma 2.1. For any \((g,h) \in G \ltimes H\) and \((X,Y) \in \mathfrak{g} \ltimes \mathfrak{h}\), we have
\[(2.12) \quad Ad_{(g,h)}(X,Y) = \left(Ad_gX, (Ad_gX) \triangleright h^{-1} \cdot h + Ad_{h^{-1}}(g \triangleright Y) \right).\]

Proof. Note that by using the multiplication law \((2.7)-(2.9)\), we have
\[\text{Ad}_{(g,h)}(\exp(sX),\exp(sY)) = (g,h)(\exp(sX),\exp(sY))(g^{-1},g \triangleright h^{-1}) = (g\exp(sX)g^{-1},(g\exp(sX)g^{-1}) \triangleright h^{-1} \cdot g \triangleright \exp(sY) \cdot h).\]
Then take derivatives with respect to \(s\) at \(s = 0\) to get \((2.12)\). \(\square\)

2.2. Strict 2-categories

A 2-category is a category enriched over the category of all small categories. In particular, a strict 2-category \(\mathcal{C}\) consists of collections \(\mathcal{C}_0\) of objects, \(\mathcal{C}_1\) of arrows, and \(\mathcal{C}_2\) of 2-arrows, together with
- functions \(s_n,t_n : \mathcal{C}_i \to \mathcal{C}_n\) for all \(0 \leq n < i \leq 2\), called the \(n\)-source and \(n\)-target,
- functions \(\#_n : \mathcal{C}_{n+1} \times \mathcal{C}_{n+1} \to \mathcal{C}_{n+1}\), \(n = 0,1\), called the \((vertical) n\)-composition,
- a function \(\#_0 : \mathcal{C}_2 \times \mathcal{C}_2 \to \mathcal{C}_2\), called the \((horizontal) 0\)-composition,
- a function \(1_s : C_i \to C_{i+1}\), \(i = 0,1\), called the identity.

Two arrows \(\gamma\) and \(\gamma'\) are called \(n\)-composable if the \(n\)-target of \(\gamma\) coincides with the \(n\)-source of \(\gamma'\). For example, two 2-arrows \(\phi\) and \(\psi\) are called \(1\)-composable if the 1-target of \(\phi\) coincides with the 1-source of \(\psi\). In this case, their vertical composition \(\phi \#_1 \psi\) is \(x \begin{array}{c} \phi \\ \psi \end{array} y\), where \(A = s_1(\phi), B = t_1(\phi) = s_1(\psi), C = t_1(\psi), x = s_0(\phi) = s_0(\psi), \text{ etc.}\)

Two 2-arrows \(\phi\) and \(\psi\) are called \(\text{(horizontally) 0-composable}\) if the 0-target of \(\phi\) coincides with the 0-source of \(\psi\). In this case, their horizontal composition \(\phi \#_0 \psi\) is \(x \begin{array}{c} \phi \\ \psi \end{array} y \begin{array}{c} \phi \\ \psi \end{array} z\). In particular, when \(\phi = 1_A\), we call \(1_A \#_0 \psi\) whiskering from left by the 1-arrow \(A\), and denote it by \(A \#_0 \psi\):
\[x \begin{array}{c} A \\ B \end{array} y \begin{array}{c} \psi \\ C \end{array} \begin{array}{c} \phi \\ \psi \end{array} z\]. Similarly, we define whiskering from right by a 1-arrow.
The identities satisfy
\[(2.13) \quad 1_x\#_0 A = A = A\#_1 1_y, \quad 1_A\#_1 \phi = \phi = \phi\#_1 1_B,\]
for any 1-arrow \(A : x \rightarrow y \) and any 2-arrow \(\phi : A \Rightarrow B \). The composition \(\#_p \) satisfies the associativity
\[(2.14) \quad (\phi\#_p \psi)\#_p \omega = \phi\#_p (\psi\#_p \omega),\]
if they are \(p \)-composable, for \(p = 0 \) or 1.

The horizontal composition satisfies the interchange law:
\[(2.15) \quad (A\#_0 \psi)\#_1 (\phi\#_0 D) = \phi\#_0 (\psi\#_0 B)\#_1 (C\#_0 \psi),\]
\[\begin{array}{ccc}
\xymatrix{
& A \\
\downarrow^\phi & & \downarrow^\psi \\
\downarrow^\gamma & B \ar[u] & C \\
\downarrow^\alpha (h^{-1})g & \psi \downarrow & \psi \downarrow \\
& D
}\end{array}
\begin{array}{ccc}
\xymatrix{
& A \\
\downarrow^\phi & & \downarrow^\psi \\
\downarrow^\gamma & B \ar[u] & C \\
\downarrow^\alpha (h^{-1})g & \psi \downarrow & \psi \downarrow \\
& D
}\end{array}
\]

namely, the vertical composition of the left two 2-arrows coincides with the vertical composition of the right two 2-arrows. They are both equal to the horizontal composition \(\phi\#_0 \psi \). The interchange law allows us to change the order of compositions of 2-arrows, up to whiskerings.

The interchange law (2.15) is a special case of the following more general compatibility condition for different compositions. If \((\beta, \beta'), (\gamma, \gamma') \in C_k \times C_k \) are \(p \)-composable and \((\beta, \gamma), (\beta', \gamma') \in C_k \times C_k \) are \(q \)-composable, \(p, q = 0, 1 \), then we have
\[(2.16) \quad (\beta\#_p \beta')\#_q (\gamma\#_p \gamma') = (\beta\#_q \gamma)\#_p (\beta'\#_q \gamma'),\]
\[\begin{array}{ccc}
\xymatrix{
& \beta \\
\downarrow^\gamma & \downarrow^\beta & \downarrow^\gamma \\
& \beta
}\end{array}
\begin{array}{ccc}
\xymatrix{
& \beta \\
\downarrow^\gamma & \downarrow^\beta & \downarrow^\gamma \\
& \beta
}\end{array}
\]
Here \(p = 0, q = 1 \) in the right diagram. The first identity of the interchange law (2.15) is exactly the condition (2.16) with \(p = 0, q = 1, \beta = 1_A, \beta' = \psi, \gamma = \phi, \gamma' = 1_D \), by using the property (2.13) for identities. It is similar for the second identity in (2.15), (2.13), (2.14) and (2.16) are the axioms that a strict 2-category should satisfy.

A 1-arrow \(A : x \rightarrow y \) is called invertible, if there exists another 1-arrow \(B : y \rightarrow x \) such that \(1_x = A\#_0 B \) and \(B\#_0 A = 1_y \). A strict 2-category in which every 1-arrow is invertible is called a strict 2-groupoid. A 2-arrow \(\varphi : A \Rightarrow B \) is called invertible if there exists another 2-arrow \(\psi : B \Rightarrow A \) such that \(\psi\#_1 \varphi = 1_B \) and \(\varphi\#_1 \psi = 1_A \). \(\psi \) is uniquely determined and called the inverse of \(\varphi \).

2.3. The strict 2-groupoid \(G \) associated to a crossed module.

Proposition 2.1. A crossed module \((G, H, \alpha, \triangleright)\) constitutes a strict 2-groupoid with only one object \(\bullet \), 1-arrows given by elements of \(G \) and 2-arrows given by elements \((g, h) \in G \times H\)
\[\begin{array}{ccc}
\xymatrix{
& \alpha(h^{-1})g \\
\downarrow^h & & \\
& \alpha(h^{-1})g
}\end{array}
\]
We denote this strict 2-groupoid by G. Any two 1-arrows $g : \bullet \rightarrow \bullet$ and $g' : \bullet \rightarrow \bullet$ are 0-composable and $g \#_0 g' = gg'$. The 1-source of 2-arrow (g, h) is g, while its 1-target is $\alpha(h^{-1})g$.

The vertical composition of two 2-arrows (g, h) and (g', h') is

$$
(2.17) \quad (g, h) \#_1 (g', h') := (g, hh')
$$

if they are 1-composable, i.e., $g' = \alpha(h^{-1})g$. This composition is well defined since their targets are equal, i.e. $\alpha(h'^{-1})\alpha(h^{-1})g = \alpha(hh'^{-1})g$. The horizontal composition is

$$
(2.18) \quad (g, h) \#_0 (g', h') := (gg', g \triangleright h' \cdot h)
$$

This is exactly the multiplication of the wreath product $G \ltimes H$ in (2.7). So it satisfies the associativity (2.14) by (2.8). Note that for any two 2-arrows, their horizontally composition always exists. When $h = 1_H$ or $h' = 1_H$ in (2.18), we have 2-arrows

$$
(2.19) \quad (gg', g \triangleright h') : \bullet \quad g \quad g' \quad \bullet
$$

respectively. They are whiskering from left or right by a 1-arrow, respectively. From above we see that whiskering from right by a 1-arrow is always trivial in G. We have identities $1_1 = 1_G, 1_g = (g, 1_H)$. The horizontal composition satisfies the interchange law:

$$
(2.20) \quad (gg', g \triangleright h' \cdot h) = (gg', h \cdot [\alpha(h^{-1})g] \triangleright h').
$$

This is because

$$
g \triangleright h' \cdot h = hAd_{h^{-1}}(g \triangleright h') = h \cdot \alpha(h^{-1}) \triangleright (g \triangleright h') = h \cdot [\alpha(h^{-1})g] \triangleright h',
$$

by (2.2) and left action \triangleright of G on H.

It is easy to check that G satisfies axioms (2.13) (2.14) and (2.16). So it is a strict 2-category. Moreover, it is a strict 2-groupoid.

Remark 2.1. Proposition [2.1] is well known. But here we write compositions of 1- or 2-arrows in the natural order, which is different from that in [12] [20] [21]. It has the advantage that the order of a product of group elements is the same as that of corresponding arrows appear in the diagram. But this makes our formulae of 2-gauge-transformations in (1.2) and the compatibility conditions (1.7) a little bit different from the standard ones.

The condition (1.3) in the definition of a nonabelian G-valued 2-cocycle is equivalent to say that f_{ijk} defines a 2-arrow

$$
(g_{ij}g_{jk}, f_{ijk}) :
$$
in G, while the 2-cocycle condition (1.4) is equivalent to commutativity of the following tetrahedron:

\[\begin{align*}
\sum_{a,b} K^a X_a \text{ and elements } X_a \text{'s of } \mathfrak{t} \text{. Since } \mathfrak{t} \text{ is assumed to be a matrix Lie algebra, we have } [X, X'] = XX' - X'X \text{ for any } X, X' \in \mathfrak{t}.
\end{align*} \]

For $K = \sum_a K^a X_a, M = \sum_b M^b X_b \in \Lambda^2(U, \mathfrak{g}),$ define

\[(2.22) \]

\[K \wedge M : = \sum_{a,b} K^a \wedge M^b X_a X_b, \quad dK = \sum_a dK^a X_a, \]

and for $\Psi = \sum_b \Psi^b Y_b \in \Lambda^s(U, \mathfrak{h}),$ define

\[(2.23) \]

\[K \triangleright \Psi := \sum_{a,b} K^a \wedge \Psi^b X_a \triangleright Y_b. \]

The 1-curvature 2-form and 2-curvature 3-form are defined as

\[\Omega^A := dA + A \wedge A, \quad \Omega_2^{(A,B)} := dB + A \triangleright B, \]

respectively. Under the 2-gauge transformation (1.2), these curvatures transform as follows:

\[\Omega^A' - \alpha(B') = g^{-1} \triangleright (\Omega^A - \alpha(B)) , \quad \Omega_2^{(A',B')} = g^{-1} \triangleright \Omega_2^{(A,B)} + [\Omega^A' - \alpha(B')] \triangleright \varphi, \]

(cf. [3, 23]). The fake 1-curvature is $\Omega^A - \alpha(B)$. We only consider 2-connections with vanishing fake 1-curvatures, i.e. (1.3) holds. In this case the 2-curvature 3-form is covariant under 2-gauge transformations (1.2).

3. The Local 1-Holonomy

3.1. The local 1-holonomy along a loop and its variation. By the definition of 1-holonomy in (1.6), it is easy to see that

\[(3.1) \]

\[F_A(\rho \# \tilde{\rho}) = F_A(\rho) F_A(\tilde{\rho}), \]
where \(\# \) is the composition of two paths. We use the natural order, i.e. we write \(\rho \# \tilde{\rho} \) if the endpoint of \(\rho \) coincides with the starting point of \(\tilde{\rho} \).

Now consider a surface given by a Lipschitzian mapping \(\gamma : [0,1]^2 \rightarrow U \). We denote by \(\gamma_{[t_1,t_2],s} \) the curve given by the mapping \(\gamma \) restricted to the horizontal interval \([t_1, t_2] \times \{s\}\), and denote by \(\gamma_{t,[s_1,s_2]} \) the curve given by the mapping \(\gamma \) restricted to the vertical interval \([t] \times [s_1, s_2]\). Also denote by \(\gamma_{t,s} \) the point \(\gamma(t,s) \). In the following we will also use the notations

\[
\gamma_{t:s}^\pm := \gamma_{[0,t]:0}^\pm \# \gamma_{[0,t]:s},
\]

for the lower and upper boundaries of the surface \(\gamma \) restricted to \([0, t] \times [0, s]\), respectively.

The 1-holonomy along the loop as the boundary of the surface \(\gamma : [0, t] \times [s_0, s] \rightarrow U \) is

\[
u_{A,s_0}(t,s) := F_A(\gamma_{[s_0,s],s}) \cdot F_A(\gamma_{[t,s],s})^{-1} \cdot F_A(\gamma_{[0,t]:s})^{-1},
\]

for \(s \geq s_0 \). When \(s_0 = 0 \), denote

\[
u_{A}(s,t) := u_{A,0}(s,t) = F_A(\gamma_{t:s}^-) F_A(\gamma_{t:s}^+)^{-1}.
\]

From the above diagram (3.3), \(u_A(t,s) \) is the composition of 1-holonomies of two loops. Namely,

\[
u_{A}(t,s) = Ad_{F_A(\gamma_{[s_0,s],s})} u_{A,s_0}(t,s) \cdot u_A(t,s_0).
\]

The following proposition tells us how the 1-holonomy \(u_{A,s_0}(t,s) \) changes as \(s \) increase for fixed \(t \) (cf. lemma B. 1 of [19]).

Proposition 3.1. \(u_{A,s_0} \) satisfies the following ODE of second order:

\[
\frac{\partial^2 u_{A,s_0}}{\partial t \partial s} \bigg|_{(t,s_0)} = Ad_{F_A(\gamma_{[0,t],s_0})} \gamma^* \Omega^A_{(t,s_0)} \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial s} \right).
\]

Proof. Differentiate (3.3) with respect to \(s \) to get

\[
\frac{\partial}{\partial s} u_{A,s_0}(s,t) = F_A(\gamma_{[s_0,s],s}) \left[\gamma^* A(0,s) \left(\frac{\partial}{\partial s} \right) F_A(\gamma_{[t,s],s}) + \frac{\partial}{\partial s} F_A(\gamma_{[0,t],s}) \right]
\]

\[-F_A(\gamma_{[0,t],t}) \cdot \gamma^* A(t,s) \left(\frac{\partial}{\partial s} \right) F_A(\gamma_{[t,s],s})^{-1} F_A(\gamma_{[0,t],s})^{-1},
\]

where the notation \(\gamma^* \) is as in [19].
by using the ODE (1.6). Note that by definition, we have

\[FA(\gamma_{t;[s_0, s]}) \big|_{s=s_0} = 1G, \quad \frac{\partial}{\partial t} FA(\gamma_{t;[s_0, s]}) \big|_{s=s_0} = 0. \]

Then differentiate the above identity with respect to \(\alpha \)

\[(3.10) \]

Then, it is easy to see that

\[(3.9) \]

corresponding \(h \) by applying \(\alpha \) with \(\Box \). The result is proved.

Differentiate both sides of (3.5) with respect to \(s \) if we use the notation

\[(3.8) \]

\[(3.7) \]

\[\gamma^* \cdot \gamma A_{(t, s_0)}(\partial_s F) \gamma^* \Omega^A_{(t, s_0)} \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial s} \right). \]

The result is proved.

The proposition implies that

\[\frac{\partial}{\partial s} u_{A, s_0} \bigg|_{(t, s_0)} = -\int_0^t Ad_{FA}(\gamma_{(0, \tau; s_0)}^* \gamma \Omega^A_{(\tau; s_0)}) \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau. \]

Differentiate both sides of (3.5) with respect to \(s \), then take \(s_0 = s \) and use the above formula to get

\[(3.7) \]

\[\frac{\partial}{\partial s} u_A(t, s) = -\mathcal{A}_t(s) u_A(t, s), \]

with

\[(3.8) \]

\[\mathcal{A}_t(s) := \int_0^t Ad_{FA}(\gamma_{(\tau; s)}^* \gamma \Omega^A_{(\tau; s)}) \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau, \]

if we use the notation \(\gamma_{(\tau; s)} \) in (3.2) and \(Ad_{FA}(\gamma_{(0, \tau; s)}) \gamma \Omega^A_{(\tau; s)} = Ad_{FA}(\gamma_{(\tau; s)}) \). Now define a corresponding \(h \)-valued 1-form

\[(3.9) \]

\[\mathcal{B}_t(s) := \int_0^t FA(\gamma_{(\tau; s)}^* \gamma B_{(\tau; s)}) \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau. \]

Then, it is easy to see that

\[(3.10) \]

\[\alpha(\mathcal{B}_t(s)) = \mathcal{A}_t(s), \]

by applying \(\alpha \) to (3.9) and using (1.1), (2.1).
3.2. The transformation law of local 1-holonomies under a 2-gauge transformation. Suppose that \(\rho : [a, b] \rightarrow U \) be a Lipschitzian curve. Let \((A, B)\) and \((A', B')\) be two local 2-connection over \(U \) such that \((g, \varphi)\) is a 2-gauge-transformation \((1.2)\) from \((A, B)\) to \((A', B')\). To construct the 2-arrow relating 1-holonomies \(F_A(\rho) \) and \(F_{A'}(\rho) \), we define an \(H \)-valued function \(h(\rho_{[a,b]}) \) satisfying the following ODE

\[
\frac{d}{dt} h(\rho_{[a,t]}) = F_A(\rho_{[a,t]}) \triangleright \rho^* \frac{\partial}{\partial t} \cdot h(\rho_{[a,t]})
\]

with initial value \(1_H \). Then \((F_A(\rho_{[a,t]}), h(\rho_{[a,t]})) \) is a 2-arrow in \(\mathcal{G} \) by the following proposition. We call it the 2-gauge-transformation along the curve \(\rho_{[a,t]} \) associated to the 2-gauge-transformation \((1.2)\) (cf. the pseudonatural transformation in \([21]\)).

Proposition 3.2. Suppose that \((g, \varphi)\) is 2-gauge-transformation \((1.2)\) from \((A, B)\) to \((A', B')\). Then \(h(\rho_{[a,t]}) \) satisfies the target-matching condition

\[
\alpha \left(h(\rho_{[a,t]})^{-1} \right) F_A(\rho_{[a,t]}) g(\rho(t)) = g(\rho(a)) F_{A'}(\rho_{[a,t]}),
\]

and satisfies the following composition formula

\[
h(\rho_{[a,t+t']}) = F_A(\rho_{[a,t]}) \triangleright h(\rho_{[t,t+t']}) \cdot h(\rho_{[a,t]}),
\]

which corresponds to the diagram

\[
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
F_A(\rho_{[a,t]}) & F_A(\rho_{[t,t+t']}) \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{cc}
\rho(\rho(a)) & \rho(\rho(t)) \\
\bullet & \bullet \\
F_{A'}(\rho_{[a,t]}) & F_{A'}(\rho_{[t,t+t']}) \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{cc}
\cdot & \cdot \\
\rho(\rho(a)) & \rho(\rho(t)) \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{cc}
\cdot & \cdot \\
\rho(\rho(a)) & \rho(\rho(t)) \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{cc}
\cdot & \cdot \\
\rho(\rho(a)) & \rho(\rho(t)) \\
\end{array}
\end{array}
\]

Proof. Set

\[
\beta(t) := \frac{g_a^{-1} \alpha (h_t^{-1})}{F_A(t) g_t},
\]

where \(h_t = h(\rho_{[a,t]}), F_A(t) := F_A(\rho_{[a,t]}) \) and \(g_t = g(\rho(t)) \). Differentiating it with respect to \(t \), we get

\[
\beta'(t) = -g_a^{-1} \alpha (h_t^{-1}) \alpha \left(\frac{dh_t}{dt} \right) \alpha(h_t^{-1}) F_A(t) g_t + g_a^{-1} \alpha (h_t^{-1}) F_A(t) \rho^* A_t \left(\frac{\partial}{\partial t} \right) g_t
\]

\[
+ g_a^{-1} \alpha (h_t^{-1}) F_A(t) \frac{dg_t}{dt}
\]

\[
= \alpha \left(g_t^{-1} \triangleright \rho^* \varphi_t \left(\frac{\partial}{\partial t} \right) \right) + g_t^{-1} \rho^* A_t \left(\frac{\partial}{\partial t} \right) g_t + g_t^{-1} dg_t \left(\frac{\partial}{\partial t} \right)
\]

\[
= \beta(t) \rho^* A' \left(\frac{\partial}{\partial t} \right)
\]
by the 2-gauge-transformation (1.2) at the point \(\rho(t) \), and
\[
\alpha \left(\frac{d h_t}{d t} \right) \alpha \left(h_t^{-1} \right) F_A(t) g_t = \alpha \left(F_A(t) \triangleright \rho^* \varphi_t \left(\frac{\partial}{\partial t} \right) \cdot h_t \right) \alpha \left(h_t^{-1} \right) F_A(t) g_t
\]
\[
= F_A(t) \alpha \left(\rho^* \varphi_t \left(\frac{\partial}{\partial t} \right) \right) g_t = F_A(t) g_t \alpha \left(g_t^{-1} \triangleright \rho^* \varphi_t \left(\frac{\partial}{\partial t} \right) \right),
\]
by using the ODE (3.11) satisfied by \(h_t \) and (2.1). And \(\beta(a) = 1_G \). So \(\beta(t) \) and \(F_A(\rho(a,t)) \) satisfy the same ODE with the same initial condition. They must be identical. (3.12) is proved.

To show (3.13), set
\[
\sigma(\tau) := F_A(\rho(a,t)) \triangleright h(\rho_{[t,t+\tau]} \cdot h(\rho(a,t)).
\]
Then \(\sigma(0) = h(\rho_{[a,t]}) \) and
\[
\frac{d}{d\tau} \sigma(\tau) = F_A(\rho_{[a,t]} \triangleright h(\rho_{[t,t+\tau]} \cdot h(\rho_{[a,t]}))
\]
\[
= F_A(\rho_{[a,t+\tau]} \triangleright \rho^* \varphi_{t+\tau} \left(\frac{\partial}{\partial \tau} \right)) \sigma(\tau),
\]
by using (3.1) and (3.11). So \(\sigma(\tau) \) and \(h(\rho_{[a,t+\tau]} \cdot h(\rho_{[a,t]}) \) satisfy the same ODE with the same initial condition. They must be identical. (3.14) is proved. \(\square \)

Remark 3.1. (1) Differentiating (3.13) with respect to \(\tau \) at \(\tau = 0 \), we get (3.11). Here \(\frac{d}{d\tau} \bigg|_{\tau=0} h(\rho_{[t,t+\tau]} \cdot h(\rho_{[a,t]})) = \rho^* \varphi_t \left(\frac{\partial}{\partial \tau} \right) \). On the other hand, differentiating (3.12) with respect to \(t \) at \(t = a \), we get the first formula of the 2-gauge-transformation (1.2).

(2) By the natural order of compositions, the Lie algebra element in ODE (1.1) for the local 1-holonomy and that in ODE (3.1) for the local 2-holonomy are on the right of products, but the Lie algebra element in ODE (3.11) for \(h \) is on the left of a product. This is because that the horizontal composition (2.13) (i.e. the wreath product) change the order of H-elements.

4. The local 2-holonomy

4.1. The local 2-holonomy: the surface-ordered integral. Given a 2-connection \((A,B) \) over an open set \(U \), to construct the local 2-holonomy along a Lipschitzian mapping \(\gamma : [0,1]^2 \rightarrow U \), we define an \(H \)-valued function \(H_{A,B}(t,s) \) satisfying the ODE

\[
(4.1) \quad \frac{d}{ds} H_{A,B}(t,s) = H_{A,B}(t,s) \mathcal{B}(s)
\]
for fixed \(t \), with the initial condition \(H_{A,B}(t,0) \equiv 1_H \), where \(\mathcal{B}(s) \) is the \(h \)-valued function given by (3.9). Denote \(\text{Hol}(\gamma|_{[0,t] \times [0,s]} : (F_A(\gamma_{t,s}^+) , H_{A,B}(t,s)) \), which is called the local 2-holonomy along the mapping \(\gamma|_{[0,t] \times [0,s]} \).

Lemma 4.1. (1) \((F_A(\gamma_{t,s}^+) , H_{A,B}(t,s)) \) is a 2-arrow with target \(F_A(\gamma_{t,s}^-) \) in \(G \). Namely the \(H \)-element \(H_{A,B}(t,s) \) satisfies the target-matching condition

\[
(4.2) \quad \alpha(H_{A,B}(t,s)^{-1}) F_A(\gamma_{t,s}^+) = F_A(\gamma_{t,s}^-).
\]

(2) \(H_{A,B}(t,s) \) satisfies the following composition formulae:

\[
(4.3) \quad H_{A,B}(t + t', s) = F_A(\gamma|_{[0,t']}) \triangleright \hat{H}_{A,B}(t', s) \cdot H_{A,B}(t,s)
\]
which corresponds to the diagram

\[\begin{array}{c}
\text{Diagram 1} \\
\end{array} \]

where \(\tilde{H}_{A,B} \) is the \(H \)-element of the local 2-holonomy associated to the mapping \(\tilde{\gamma}(\cdot, \cdot) = \gamma(t+\cdot, \cdot) \) for fixed \(t \); and

\[H_{A,B}(t, s + s') = H_{A,B}(t, s) \cdot F_A(\gamma_{0,0,s}) \triangleright \tilde{H}_{A,B}(t, s') \]

which corresponds to the diagram

\[\begin{array}{c}
\text{Diagram 2} \\
\end{array} \]

where \(\tilde{H}_{A,B} \) is the \(H \)-element of the local 2-holonomy associated to the mapping \(\tilde{\gamma}(\cdot, \cdot) = \gamma(\cdot, s+\cdot) \) for fixed \(s \).

Proof.

(1) It is sufficient to show that \(\alpha(H_{A,B}(t, s)^{-1}) = u_A(t, s) \). By (4.1), we have

\[\frac{d}{ds}H_{A,B}(t, s)^{-1} = -\mathcal{A}_t(s)H_{A,B}(t, s)^{-1}. \]

So \(\alpha(H_{A,B}(s)^{-1}) \) satisfies the ODE

\[\frac{d}{ds}\alpha(H_{A,B}(t, s)^{-1}) = -\mathcal{A}_t(s)\alpha(H_{A,B}(t, s)^{-1)), \]

with \(H_{A,B}(t, 0)^{-1} = 1_H. \) Comparing it with (4.7), we see that \(\alpha(H_{A,B}(t, s)^{-1}) \) and \(u_A(t, s) \) satisfy the same ODE with the same initial condition. So they must be identical.

(2) We denote by the right hand sight of (4.8) as \(\beta(s) \). Then,

\[\begin{align*}
\beta'(s) &= F_A(\gamma_{0,0,s}) \triangleright \tilde{H}_{A,B}(t', s) \int_0^{t'} F_A(\gamma_{t,0,s} \# \gamma_{t, t+\tau,s}) \triangleright \gamma^* B(t + \tau, s) \left(\frac{\partial}{\partial \tau} \frac{\partial}{\partial s} \right) d\tau \\
&\quad \cdot H_{A,B}(t, s) + \beta(s) \int_0^t F_A(\gamma_{t,s} \# \gamma_{t, t+\tau,s}) \triangleright \gamma^* B(\tau, s) \left(\frac{\partial}{\partial \tau} \frac{\partial}{\partial s} \right) d\tau =: I_1 + I_2,
\end{align*} \]
and

\[
I_1 = \beta(s) A d_{H_{A,B}(t,s)}^{-1} \int_0^t F_A \left(\gamma_{[0,t];0} \# \gamma_{[0,s]} \# \gamma_{[t,t+\tau];s} \right) \triangleright \gamma^* B_{(t+\tau,s)} \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau
\]

\[
= \beta(s) \int_0^t \left[\alpha \left(H_{A,B}(t,s)^{-1} \right) F_A \left(\gamma_{t,s}^0 \right) \cdot F_A \left(\gamma_{[t,t+\tau];s} \right) \right] \triangleright \gamma^* B_{(t+\tau,s)} \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau
\]

\[
= \beta(s) \int_t^{t+\nu} F_A \left(\gamma_{t,s}^0 \right) \triangleright \gamma^* B_{(t,s)} \left(\frac{\partial}{\partial \kappa}, \frac{\partial}{\partial s} \right) d\kappa,
\]

by using target-matching condition (4.2) for \(H_{A,B} \). Thus the sum of \(I_1 \) and \(I_2 \) is exactly \(\beta(s) \circ \gamma \). The result follows. The proof of (4.1) is similar. \(\square \)

Remark 4.1. Differentiating (4.2) with respect to \(t \) and \(s \) at \(t = s = 0 \), we get the vanishing (4.1) of the fake 1-curvature.

4.2. The transformation law of local 2-holonomies under a 2-gauge transformation.

Proposition 4.1. Under the 2-gauge-transformation \((g, \varphi)\) from a 2-connection \((A, B)\) to another one \((A', B')\) in (1.3), the \(H \)-elements of the local 2-holonomies satisfy the following the transformation law:

\[
g(\gamma_{0,0}) \triangleright H_{A',B'}(t,s) = h(\gamma_{t,s}^+)^{-1} H_{A,B}(t,s) h(\gamma_{t,s}^-),
\]

i.e., the following cube

\[
\begin{array}{c}
\begin{array}{c}
F_A(\gamma_{[0,t];0}) \\
F_A(\gamma_{[0,s]}) \\
\end{array} \\
\begin{array}{c}
H_{A,B}(t,s) \\
H_{A',B'}(t,s) \\
\end{array} \\
\begin{array}{c}
F_A(\gamma_{[0,t];s}) \\
F_A(\gamma_{[0,s]}) \\
\end{array}
\end{array}
\]

is commutative, where \(g_0 := g(\gamma_{0,0}), F_a := F_A(\gamma_{t,[0,s]}), h_a := h(\gamma_{t,[0,s]}), h_b := h(\gamma_{0,[0,s]}), \) and \(F_c := F_A(\gamma_{[0,t];s}) \). The front face represents the 2-arrow given by \(h(\gamma_{[0,t];s}) \).

Remark 4.2. (1) By the composition formula in (2.15), we have

\[
\begin{align*}
& h(\gamma_{t,s}^+) = F_A(\gamma_{[0,t];0}) \triangleright h(\gamma_{t,[0,s]}) \cdot h(\gamma_{0,[t];0}), \\
& h(\gamma_{t,s}) = F_A(\gamma_{[0,t];s}) \triangleright h(\gamma_{[0,t];s}) \cdot h(\gamma_{0,[t];s}),
\end{align*}
\]
correspond to the following diagrams:

respective. For example, \(h(\gamma_{t,s}^+) \) is the \(H \)-element of the composition of the following two arrows:

The left one is whiskered from left by 1-arrow \(F_A(\gamma_{[0,t],0}) \), corresponding to the wavy path, while the right one is trivially whiskered from right by a 1-arrow.

(2) Differentiating \(h(\gamma_{t,s}^+)g(\gamma_{0,0}) \triangleright H_{A',B'}(t,s) = H_{A,B}(t,s)h(\gamma_{t,s}^-) \) in \([4.7]\) with respect to \(t \) and \(s \) at \(t = s = 0 \), we get the second formula of the 2-gauge-transformation \([4.2]\) (cf. subsection 3.3.2 of \([20]\)).

To prove Proposition \([4.1]\) set

(4.8) \[F(s) := h(\gamma_{t,s}^+)^{-1}H_{A,B}(t,s)h(\gamma_{t,s}^-). \]

To show \(F(s) = g(\gamma_{0,0}) \triangleright h_{A',B'}(s) \), it is sufficient to check that they satisfy the same ODE with the same initial condition. To find the ODE satisfied by \(F(s) \), we take derivatives with respect to \(s \) on both sides of \([4.8]\). So we have to know two derivatives \(\frac{d}{ds}h(\gamma_{t,s}^+) \). To simplify it, we rewrite \(F(s) \) in the following form:

(4.9) \[F(s) = H_{A,B}(t,s)F_s \quad \text{with} \quad F_s = h(\gamma_{t,s}^-) Ad_{\{H_{A,B}(s)h(\gamma_{t,s}^-)\}^{-1}}(h(\gamma_{t,s}^+)^{-1}). \]

Note that by the target-matching conditions \([3.12]\) and \([4.2]\) for \(h(\gamma_{t,s}^-) \) and \(H_{A,B}(t,s) \), respectively, we see that

(4.10) \[\alpha(H_{A,B}(t,s)h(\gamma_{t,s}^-)) = F_A(\gamma_{t,s}^-) \cdot g(\gamma_{t,s}) \cdot F_{A'}(\gamma_{t,s}^-)^{-1}g(\gamma_{0,0})^{-1} = \tilde{g}_{t,s}^{-1}. \]

where

(4.11) \[\tilde{g}_{t,s} = g(\gamma_{0,0}) \cdot F_A(\gamma_{t,s}^-) \cdot g(\gamma_{t,s}^-)^{-1} \cdot F_A(\gamma_{t,s}^-)^{-1} \]
corresponds to the dotted loop in the following cube:

```
\[ \begin{array}{c}
\cdots \quad F_A(\gamma_{[0,t],s})^{-1} \\
\quad \\ \\
\quad \\ \\
\quad \\ \\
\cdots \quad F_A(\gamma_{[t,0],s})^{-1} \\
\end{array} \]
```

So we only need to find the derivative of the term \(F_s \). This term has a good geometric interpretation in terms of the 1-holonomy of the \(g \ltimes h \)-valued connection

\[(4.12) \quad \mathfrak{A} = (A, \varphi).\]

See Lemma 3.19 in [20] for this method. As before, let \(u_\mathfrak{A}(t, s) \) be the 1-holonomy for the loop as the boundary of the image of the rectangle \([0, t] \times [0, s]\) under the mapping \(\gamma \), with respect to the \(g \ltimes h \)-valued 1-form \(\mathfrak{A} \). Write

\[(4.13) \quad u_\mathfrak{A}(t, s) = \left(g^\tau_1(s), h^\tau_1(s) \right).\]

Lemma 4.2. We have \(h^\tau_1(s) = F_s \) with \(F_s \) given by (4.9).

Proof. Recall that for a Lipschitzian curve \(\rho: [a, b] \rightarrow U \) and the \(g \ltimes h \)-valued 1-form \(\mathfrak{A} \) on \(U \), \(F_\mathfrak{A}(\rho) \) is the 1-holonomy satisfying

\[
\frac{d}{dt}F_\mathfrak{A}(\rho_{[a,t]}) = F_\mathfrak{A}(\rho_{[a,t]}) \rho^* \mathfrak{A}_\tau \left(\frac{\partial}{\partial \tau} \right).
\]

If we write \(F_\mathfrak{A}(\rho_{[a,t]}) := \left(g(\tau), h(\tau) \right) \), then this ODE can be written as

\[
\begin{cases}
\frac{d}{d\tau}g(\tau) = g(\tau)\rho^* A_\tau \left(\frac{\partial}{\partial \tau} \right), \\
\frac{d}{d\tau}h(\tau) = g(\tau) \triangleright \rho^* \varphi_\tau \left(\frac{\partial}{\partial \tau} \right) \cdot h(\tau),
\end{cases}
\]

by using (2.10). By comparing ODE’s in (4.14) with (3.11) and (1.6), we see that \(g(\tau) = F_A(\rho_{[a,t]}), h(\tau) = h(\rho_{[a,t]}), \) i.e.,

\[(4.15) \quad F_\mathfrak{A}(\rho) = (F_A(\rho), h(\rho)).\]

Apply (4.15) and the composition formula (3.11) of 1-holonomies to the boundary of the square \([0, t] \times [0, s]\) to get

\[(4.16) \quad \left(g^\tau(s), h^\tau_1(s) \right) = u_\mathfrak{A}(t, s) = \left(F_A(\gamma_{t,s}^-), h(\gamma_{t,s}^-) \right) \left(F_A(\gamma_{t,s}^+), h(\gamma_{t,s}^+) \right)^{-1}.\]

Consequently, by the multiplication law (2.7) and (2.11) of \(G \ltimes H \) and the interchange law (2.20), we see that \(h^\tau_1(s) \) as the \(H \)-element of \(u_\mathfrak{A}(t, s) \) is equal to

\[(4.17) \quad h^\tau_1(s) = h(\gamma^-_{t,s}) \cdot \left[\alpha \left(h(\gamma^-_{t,s}) \right)^{-1} F_A(\gamma^-_{t,s}) F_A(\gamma^+_{t,s}) \right] \triangleright h(\gamma^+_{t,s})^{-1} = h(\gamma_{t,s}^-) \cdot g_{t,s} \triangleright h(\gamma^+_{t,s})^{-1},\]
where \(\tilde{g}_{t,s} \) is given by (4.11). Then the result follows from (4.9)–(4.10) and the formula of \(h_t^1(s) \) in (4.17).

Remark 4.3. In definition (4.8), \(F(s) \) is the \(H \)-element of the vertical composition of three 3-arrows in the cube (4.6). Here we reinterpret the part \(F_s \) as the \(H \)-element of the horizontal composition

\[
(F_A(\gamma_{t,s}^-), h(\gamma_{t,s}^-)) \#_0 (F_A(\gamma_{t,s}^+), h(\gamma_{t,s}^+))^{-1},
\]

e.g., the horizontal composition of 2-arrows corresponding to the left, front, right and back face in the cube (4.6).

Proof of Proposition 4.1. Now we can write

\[
F(s) = H_{A,B}(t,s)h_t^1(s)
\]

by (4.9) and Lemma 4.2. We need to find the ODE satisfied by \(h_t^1(s) \). Note that by (3.7)–(3.8), we see that \(u_\alpha(t,s) = (g_t^\dagger(s), h_t^1(s)) \) satisfies the ODE

\[
\frac{d}{ds} u_\alpha(t,s) = -\mathcal{D}_t u_\alpha(t,s), \quad \text{with} \quad \mathcal{D}_t(s) = \int_0^t Ad_{F_A(\gamma_{t,s})} \gamma^* \Omega^A(t,s) \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau,
\]

where \(\Omega^A \) is the curvature of the \(g \times h \)-valued connection \(\mathfrak{A} \), i.e.

\[
\Omega^A = d\mathfrak{A} + \mathfrak{A} \wedge \mathfrak{A} = (dA, d\varphi) + (A, \varphi) \wedge (A, \varphi) = (dA + A \wedge A, d\varphi + A \triangleright \varphi - \varphi \wedge \varphi),
\]

by using (2.11) and the definition of wedges in (2.22)–(2.23). Then we can write

\[
\Omega^A = (\alpha(B), Y) \quad \text{with} \quad Y_p = B_p - g_p \triangleright B_p,
\]

at a point \(p \), by the 2-gauge-transformations (1.2).

If we write \(\mathcal{D}_t(s) := (\mathcal{D}_t^g(s), \mathcal{D}_t^h(s)) \in \mathfrak{g} \times \mathfrak{h} \), (4.20) implies that

\[
\frac{d}{ds} \left(g_t^\dagger(s), h_t^1(s) \right) = - (\mathcal{D}_t^g(s), \mathcal{D}_t^h(s))(g_t^\dagger(s), h_t^1(s)) = - (\mathcal{D}_t^g(s)g_t^\dagger(s), \mathcal{D}_t^g(s) \triangleright h_t^1(s) + h_t^1(s)\mathcal{D}_t^h(s))
\]

by using (2.10), i.e. we have

\[
\frac{d}{ds} g_t^\dagger(s) = -\mathcal{D}_t^g(s)g_t^\dagger(s),
\]

\[
\frac{d}{ds} h_t^1(s) = -\mathcal{D}_t^g(s) \triangleright h_t^1(s) - h_t^1(s)\mathcal{D}_t^h(s).
\]

The second equation is ODE for \(h_t^1(s) \) if we know \(\mathcal{D}_t \). To calculate \(\mathcal{D}_t \), note that

\[
F_A(\gamma_{t,s}) = (F_A(\gamma_{t,s}^-), h(\gamma_{t,s}^-))
\]

by (4.15) and that it follows from Lemma 2.1 that for any \(G \times H \)-valued function \((\tilde{g}, \tilde{h}) \),

\[
Ad_{(\tilde{g}, \tilde{h})} \Omega^A = Ad_{(\tilde{g}, \tilde{h})}(\alpha(B), Y) = \left(Ad_{\tilde{g}} \alpha(B), \alpha(\tilde{g} \triangleright B) \triangleright \tilde{h}^{-1} \cdot \tilde{h} + Ad_{\tilde{h}^{-1}}(\tilde{g} \triangleright Y) \right)
\]

\[
= (\alpha(\tilde{g} \triangleright B), \tilde{g} \triangleright (B - \tilde{h}^{-1} \cdot \tilde{g} \triangleright B \cdot \tilde{h} + Ad_{\tilde{h}^{-1}}(\tilde{g} \triangleright Y))
\]

\[
= (\alpha(\tilde{g} \triangleright B), \tilde{g} \triangleright B + Ad_{\tilde{h}^{-1}}(\tilde{g} \triangleright (Y - B)))]
\]

\[
= (\alpha(\tilde{g} \triangleright B), \tilde{g} \triangleright B - Ad_{\tilde{h}^{-1}}(\tilde{g} \triangleright g_p) \triangleright B_p)
\]

\[
(4.24)
\]
at point \(p = \gamma_{\tau,s} \), by 2-gauge-transformations (1.2), (1.21) and
\[
\alpha(\tilde{g} \triangleright B) \triangleright \tilde{h}^{-1} = \tilde{g} \triangleright B \cdot \tilde{h}^{-1} - \tilde{h}^{-1} \cdot \tilde{g} \triangleright B.
\]
Apply (4.23)-(4.24) to \(\mathcal{D}_t \) in (4.20) to get
\[
\mathcal{D}_t(s) = \int_0^t \text{Ad}(F_\alpha(\gamma_{\tau,s}) \triangleright h(\gamma_{\tau,s}))^* \Omega^e_{(\tau,s)} \left(\frac{\partial}{\partial \tau} \cdot \frac{\partial}{\partial s} \right) d\tau
\]
\[
= \int_0^t \left(\alpha(F_\alpha(\gamma_{\tau,s}) \triangleright \gamma^* B), F_\alpha(\gamma_{\tau,s}) \triangleright \gamma^* B \right.
\]
\[
- \text{Ad}_{h(\gamma_{\tau,s})}^{-1} \left[(F_\alpha(\gamma_{\tau,s}) g(\gamma_{\tau,s}) \triangleright \gamma^* B') \right] d\tau,
\]
(here 2-forms \(\gamma^* B \) and \(\gamma^* B' \) take value at \((\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s})\)). Consequently, we see that
\[
\mathcal{D}_t^e(s) = \int_0^t \alpha \left(F_\alpha(\gamma_{\tau,s}) \triangleright \gamma^* B \right) \left(\frac{\partial}{\partial \tau} \cdot \frac{\partial}{\partial s} \right) d\tau = \alpha(\mathcal{B}_t(s)) = \mathcal{B}_t(s),
\]
\[
\mathcal{D}_t^a(s) = \mathcal{B}_t(s) - \int_0^t \text{Ad}_{h(\gamma_{\tau,s})}^{-1} \left[(F_\alpha(\gamma_{\tau,s}) g(\gamma_{\tau,s}) \triangleright \gamma^* B') \right] d\tau.
\]
Now apply (4.20) to (4.22) to get the ODE satisfied by \(h^i_1(s) \):
\[
\frac{dh^i_1(s)}{ds} = -\mathcal{B}_t(s) \triangleright h^i_1(s) - h^i_1(s)
\]
\[
\cdot \left\{ \mathcal{B}_t(s) - \int_0^t \text{Ad}_{h(\gamma_{\tau,s})}^{-1} \left[(F_\alpha(\gamma_{\tau,s}) g(\gamma_{\tau,s}) \triangleright \gamma^* B') \right] d\tau \right\}.
\]
This integrant can be simplified to be
\[
\text{Ad}_{h(\gamma_{\tau,s})}^{-1} [(F_\alpha(\gamma_{\tau,s}) g(\gamma_{\tau,s}) \triangleright \gamma^* B')_{(\tau,s)}] = [\alpha(h(\gamma_{\tau,s})^{-1}) F_\alpha(\gamma_{\tau,s}) g(\gamma_{\tau,s}) \triangleright \gamma^* B']_{(\tau,s)}
\]
\[
= [g(\gamma_{0,0}) F_\alpha'(\gamma_{\tau,s})] \triangleright \gamma^* B'_{(\tau,s)};
\]
by the target-matching condition. At last differentiate (4.19) with respect to \(s \) and use the ODE (4.27) satisfied by \(h^i_1(s) \) and (4.28) to get
\[
\frac{d}{ds} F(s) = H_{A,B}(t,s) \mathcal{B}_t(s) h^i_1(s) - H_{A,B}(t,s) \alpha(\mathcal{B}_t(s)) \triangleright h^i_1(s)
\]
\[
- H_{A,B}(t,s) h^i_1(s) \left\{ \mathcal{B}_t(s) - \int_0^t \left[g(\gamma_{0,0}) F_\alpha'(\gamma_{\tau,s}) \triangleright \gamma^* B' \left(\frac{\partial}{\partial \tau} \cdot \frac{\partial}{\partial s} \right) \right] d\tau \right\}
\]
\[
= H_{A,B}(t,s) h^i_1(s) \cdot g(\gamma_{0,0}) \triangleright \mathcal{B}_t(s) = F(s) \cdot g(\gamma_{0,0}) \triangleright \mathcal{B}_t(s)
\]
by
\[\alpha(\mathcal{B}(s)) \triangleright h_t^1(s) = \mathcal{B}(s) h_t^1(s) - h_t^1(s) \mathcal{B}(s), \]
\[\mathcal{B}(s) = \int_0^s F_A'(\gamma_{\tau,s}) \triangleright \gamma^* B'_{\tau,s} \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s} \right) d\tau. \]

Now \(F(s) \) and \(g(\gamma_{0:0}) \triangleright H_{A',B'}(s) \) satisfy the same ODE with the same initial condition. So they must be identical. \(\Box \)

4.3. The compatibility cylinder of transition 2-arrows. For a Lipschitzian curve \(\rho : [a, b] \rightarrow U_i \cap U_j \), define \(\psi_{ij}(\rho_{[a,b]}) \) to be the \(H \)-element of the 2-gauge-transformation along the curve \(\rho \) (with \(\varphi \) replaced by \(a_{ij} \) in (3.11)),

constructed from the the 2-gauge-transformation \((g_{ij}, a_{ij}) \). Namely, it is the unique solution to the ODE
\[\frac{d}{dt} \psi_{ij}(\rho_{[a,t]}) = F_A_i(\rho_{[a,t]}) \triangleright \gamma^* a_{ij} \left(\frac{\partial}{\partial t} \right) \psi_{ij}(\rho_{[a,t]}), \]
with initial condition \(1_H \). We call \(\Psi_{ij}(\rho) := (F_A_i(\rho) g_{ij}(\rho(b)), \psi_{ij}(\rho)) \) the transition 2-arrow along the path \(\rho \).

Proposition 4.2. Let \(\rho \) be as above, \(x = \rho(a) \) and \(y = \rho(t) \). If the 2-gauge-transformation \((g_{ij}, a_{ij}) \) satisfies the compatibility condition (1.5), then \(\psi_{ij}(\rho) \) satisfies
\[g_{ij}(x) \triangleright \psi_{jk}(\rho) = \psi_{ij}^{-1}(\rho) \cdot F_A_i(\rho) \triangleright f_{ijk}(y) \psi_{ik}(\rho) f_{ijk}^{-1}(x). \]
i.e., the following cylinder

(4.31)

The cylinder \(C_{ijk} \)
is commutative. The front face represents the transition 2-arrow given by \(\psi_{ik}(\rho) \).
Remark 4.4. Follows.

Then,

\[\mu(t) := \psi_{ij}^{-1}(t) \cdot g_i(t) \triangleright f_{ijk}(t) \cdot \psi_k(t) \cdot f_{ij}^{-1}(x). \]

Proof. Denote \(\psi_{ij}(t) := \psi_{ij}(\rho_{[a,b]}), g_i(t) := F_{Ai}(\rho_{[a,b]}), g_{ij}(t) := g_{ij}(\rho(t)) \) and \(y := \rho(t) \). Set

\[
\mu(t) := \psi_{ij}^{-1}(t) \cdot g_i(t) \triangleright f_{ijk}(t) \cdot \psi_k(t) \cdot f_{ij}^{-1}(x).
\]

Then,

\[
\mu'(t) = \psi_{ij}^{-1}(t)g_i(t) \triangleright \left[- \gamma^*a_{ij} \left(\frac{\partial}{\partial t} \right) f_{ijk}(t) + \gamma^*A_i \left(\frac{\partial}{\partial t} \right) f_{ijk}(t) + f_{ijk}'(t) \right. \\
\left. + f_{ijk}(t)\gamma^*a_{ik} \left(\frac{\partial}{\partial t} \right) \psi_k(t)f_{ij}^{-1}(x) \right]
\]

by using the equation (4.29) satisfied by \(\psi_{ij}(t) \), the compatibility condition (1.5) and the target-matching condition (3.12). This is the same ODE satisfied by \(g_{ij}(x) \triangleright \psi_k(t) \cdot f_{ij}^{-1}(x) \). The result follows.

Remark 4.4. (1) Differentiating (4.30) with respect to \(t \) at \(t = a \), we get the compatibility condition (1.5).

(2) The gauge transformation (1.4), if \(\varphi \) is replaced by \(-\varphi\), coincides with that in proposition 3.10 of [20], but with primed and unprimed terms interchanged.

(3) The union of any 3 compatibility cylinders \(C_{ijk}, C_{jkl} \) and \(C_{ijl} \) as in (4.31) over the intersection \(U_i \cap U_j \cap U_k \cap U_l \) gives us the 4-th compatibility cylinder \(C_{ikl} \) by their commutativity and commutative tetrahedra (5.3). Hence, the 4 compatibility conditions (4.30) over this intersection are consistent, and so are their differentiations (1.5).

5. The global 2-holonomy

5.1. The invariance of the global 2-holonomies under the change of coordinate charts.

The 2-cocycle condition (1.4) implies that

\[
\int_{ikj} f_{ij}^{-1} f_{ij}^{-1} = f_{ik}^{-1} f_{ikj}
\]

by permutation \((i, j, k, l) \rightarrow (l, i, k, j)\), which corresponds to the following diagrams:

\[
\text{(5.2)}
\]
namely, the following tetrahedron is commutative.

\[
\begin{array}{c}
\text{(5.3)} \\
\end{array}
\]

The tetrahedron \(T_{ijk}^b \)

 Fix a rectangle \(\square_{ab} \) such that \(\gamma(\square_{ab}) \subset U_k \). Suppose that the image \(\gamma(\square_{ab}) \) is also contained in the coordinate chart \(U_q \). Let us show that the global 2-holonomy is invariant if we use the 2-connection \((A_q, B_q)\) on \(U_q \) instead of the 2-connection \((A_k, B_k)\) over \(U_k \), when calculating the local 2-holonomy for \(\gamma|_{\square_{ab}} \). Now consider 9 adjacent rectangles in the above. By our construction, the corresponding 2-holonomy is represented by the following diagram:

\[
\begin{array}{c}
\text{(5.4)} \\
\end{array}
\]
where \(H_\alpha := H_{A_{\alpha}, B_{\alpha}}(\gamma^{(\alpha)}) \). We do not draw the \(H \)-elements of corresponding to \(\gamma^{(l')}, \gamma^{(k')}, \gamma^{(p')} \). Now consider the eight rectangles adjacent to \(H_k \) in \((5.1)-(5.2)\). We apply the 2-cocycle condition \((5.1)-(5.2)\) to change two rectangles (corresponding to the dotted ones in the following diagram) to get the following diagram (we denote \(\gamma^j := \gamma^{(k)j}, \# = u, d, l, r \)):

\[
\begin{array}{c}
g_{P_{ik}}(\gamma) & F_{A_{ik}}(\gamma^u) & g_{P_{ik}'}(\gamma^u) \\
g_{P_{kj}}(\gamma) & F_{A_{kj}}(\gamma^d) & F_{A_{kj}'}(\gamma^d) \\
F_{A_{ik}}(\gamma^u) & F_{A_{kj}}(\gamma^d) & H_k \\
g_{P_{ij}}(\gamma) & F_{A_{ij}}(\gamma^d) & F_{A_{ij}'}(\gamma^d) \\
g_{P_{jm}}(\gamma) & F_{A_{jm}}(\gamma^u) & g_{P_{jm}'}(\gamma^u) \\
\end{array}
\]

\((5.5)\)

If we use the local 2-connection \((A_p, B_q)\) over the coordinate chart \(U_q \) instead of the local 2-connection \((A_k, B_k)\) over the coordinate chart \(U_k \), we claim that the 2-holonomies are the same.

\((5.6)\)
Namely in (5.6) the 2-arrow in \(\mathcal{G} \) represented by the bottom 2-cells (i.e. diagram (5.5)) is the same as the 2-arrow represented by the upper 2-cells, which is the same as the diagram (5.5) with subscript \(k \) replaced by \(q \). In (5.6) there is only one cube

\[
\begin{array}{c}
\text{(5.7)}
\end{array}
\]

which is the commutative cube (4.6) of the 2-gauge transformation from the local 2-holonomy \(H_{A_q,B_q} \) to \(H_{A_k,B_k} \) by Proposition 4.1, where

\[
g_2 = g_{qk}(y_2), \quad g_3 = g_{qk}(y_3), \quad g'_2 = g_{qk}(z_2), \quad g'_3 = g_{qk}(z_3),
\]

and the front face represents the 2-arrows given by \(\psi_{qk}(\gamma^d) \). There are four compatibility cylinders in (5.6)

\[
\begin{array}{c}
\text{(5.8)}
\end{array}
\]

which are commutative by Proposition 4.2. Here the front face of the first cylinder represents the 2-arrow given by \(\psi_{qj}(\gamma^d) \) and the front triangle of the second cylinder represents the 2-arrow...
given by \(f_{qkp}^{-1}(y_3) \). There are four 2-cocycle tetrahedra in (5.6)

![Diagram](image_url)

which are commutative by the 2-cocycle condition (5.3) at points \(y_2, y_3, z_2, z_3 \), respectively (the front triangle of the second tetrahedron represents the 2-arrows given by \(f_{qkp}^{-1}(y_3) \)). The commutativity of a cube, a cylinder or a tetrahedron means that the bottom 2-arrow is equal to the composition of the remaining 2-arrows. By (5.7)–(5.9), it is easy to see that 2-arrows represented by vertical 2-cells in (5.6) appear twice and in reverse directions, and so they are cancelled. Hence, 2-arrows represented by the upper and bottom 2-cells in (5.6) must coincide.

If a rectangle \(\square_{a0} \) is contained in \(U_k \), which is adjacent to the upper boundary of \([0,1]^2\), and the local 2-connection \((A_k, B_k) \) over the open set \(U_k \) is replaced by the local 2-connection \((A_q, B_q) \) over the open set \(U_q \), we have the following commutative 3-cells:

![Diagram](image_url)

In this case, we have an extra 2-arrow:

![Diagram](image_url)
whose H-element is denoted by h_0. Meanwhile, \Box_{aM} is in the same open set U_k, which is adjacent to the lower boundary of $[0,1]^2$. When the local 2-connection A_k, B_k over the open set U_k is replaced by the local 2-connection A_q, B_q over the open set U_q, we have the following 3-cells:

$$\gamma$$

(5.12)

with an extra 2-arrow represented by the front 2-cells, which is the inverse of the 2-arrow in (5.11). Its H-element is h_0^{-1}. Thus after U_k replaced by U_q, Hol_γ is changed to

$$g_1 \triangleright h_0 \cdot \text{Hol}_\gamma \cdot g_2 \triangleright h_0^{-1} \sim h_0 \cdot \text{Hol}_\gamma \cdot h_0^{-1} = \text{Ad}_{h_0} \text{Hol}_\gamma = \alpha (h_0) \triangleright \text{Hol}_\gamma \sim \text{Hol}_\gamma$$

in $H/[G,H]$, for some $g_1, g_2 \in G$. Here $g_1 \triangleright$s represent whiskering by some 1-arrows.

If a mapping $\gamma : \Box_{ab} \longrightarrow U_\alpha$ is divided into four 4 adjacent rectangles $\gamma^{(i)}, \gamma^{(j)}, \gamma^{(k)}$ and $\gamma^{(l)}$ as in (1.13). We have a local 2-holonomy associated to each small rectangle in U_α. The local 2-holonomy $\text{Hol}(\gamma|_{\Box_{ab}})$ is the composition of four local 2-holonomies $\text{Hol}(\gamma^{(\alpha)})$’s by using composition formulae (4.3)-(4.4) in Lemma 4.3. So Hol_γ is invariant under the refinement of a division. For any two different divisions of the square $[0,1]^2$, we can refine them to get a common refinement. Therefore Hol_γ is independent of the division we choose.

If we choose another coordinate charts $\{U'_i\}$, then $\{U_i \cup U'_i\}$ are also coordinates charts. By the above result, the global 2-holonomy constructed by coordinate charts $\{U_i\}$ is the same as that by $\{U_i \cup U'_i\}$. So it is the same as that constructed by $\{U'_i\}$.

5.2. **The independence of reparametrization.** We sketch the proof. A loop γ in the loop space LM is given by a family of loops $\gamma_s : [0,1] \rightarrow M$ with $\gamma_s(0) = \gamma_s(1)$, for $s \in [0,1]$, and $\gamma_0 \equiv \gamma_1$. A reparametrization of such a loop is given by a mapping

$$\Xi : [0,1]^2 \rightarrow [0,1]^2, \quad (t', s') \mapsto (\alpha(t', s'), \beta(s'))$$

We must have

$$\frac{d\beta}{ds}(s') > 0, \quad \frac{\partial \alpha}{\partial t'}(t', s') > 0,$$

since Ξ must map a loop to a loop. Here we assume first that the starting points of loops γ_s are fixed for each s. Namely, Ξ maps the left and right boundaries of $[0,1]^2$ to themselves.

Let $[0,1]^2$ be divided into rectangles \Box_{ab}’s. The pull back quadrilateral $\Box_{ab} : = \Xi^* \Box_{ab}$ may have curved left and right boundaries, but its upper and lower boundaries must be straight.

(5.14)
where $\square_1 := \tilde{\square}_{ab}$ and $\square_2 := \tilde{\square}_{(a+1)b}$. Denote the composition $\tilde{\gamma} := \gamma \circ \Xi$. If $[0,1]^2$ is divided into sufficiently small rectangles \square_{ab}’s, we can assume the left and right boundaries of $\tilde{\square}_{ab}$ are describe by functions $t' = \kappa_j(s'), j = 1, 2$, such that κ_j is monotonic function of s' by \((5.13)\). Then we have

$$\tilde{\square}_{ab} := \{(s', t'); s' \in (s_a', s_b'), t' \in (\kappa_1(s'), \kappa_2(s'))\}.$$

For $\gamma|\square_1 : \square_1 \to U_i$, we have the H-element of local 2-holonomy $H_{A,B}^\gamma|\square_1 (s), s \in (s_a, s_b)$, satisfying ODE \((4.1)\). Define $H_{A,B}(s') = H_{A,B}^\gamma|\square_1 (\beta(s')), s' \in (s_a', s_b')$. Then it directly follows from the ODE satisfied by $H_{A,B}^\gamma|\square_1 (s)$ that

$$\frac{d}{ds'} \tilde{H}_{A,B}(s') = \tilde{H}_{A,B}(s')\tilde{\mathcal{B}}(s'), \tag{5.15}$$

by changing variables, where

$$\tilde{\mathcal{B}}(s') := \int_{\kappa_1(s')}^{\kappa_2(s')} F_A(\gamma_{s',t'}; s') \mathcal{B}(\gamma_{s',t'}; s') \left(\frac{\partial}{\partial \tau}, \frac{\partial}{\partial s'} \right) d\tau', \tag{5.16}$$

$\gamma_{s',t'}$ is defined similarly, and the pull back of 1-holonomy is well defined. Namely, we have

$$\frac{d}{dt'} F_A(\gamma_{[s_1(t'),t']}; s') = F_A(\gamma_{[s_1(t'),t']}; s') \gamma^* A \left(\frac{\partial}{\partial t'} \right),$$

and

$$\frac{d}{ds'} F_A(\gamma_{s'}^l) = F_A(\gamma_{s'}^l) \gamma^* A (X_{s'}),$$

where $\gamma_{s'}^l$ is the restriction of γ to the curved left boundary $\partial_s \square_1$ of the quadrilateral \square_1, and $X_{s'} = \kappa_1(s') \partial_{t'} + \partial_s$ is its tangential vector. The above equations imply that

$$H_{A,B}^\gamma|\square_1 (s') = \tilde{H}_{A,B}(s').$$

So it is sufficient to show that we can use the pull back quadrilaterals $\tilde{\square}_{ab}$’s instead of rectangles to calculate the global 2-holonomy of $\tilde{\gamma}$.

Suppose that the images of $\tilde{\gamma}$ over \square_1 and \square_2 are in the same coordinate chart U_i. Exactly as Lemma \((4.1)\) by using the ODE \((5.15)-(5.16)\) satisfied by $H_{A,B}$, we can prove the curved quadrilateral version of composition formulae for local 2-holonomies, similar to \((4.3)\).

\begin{equation}
\text{ Hol} \left(\tilde{\gamma}_1 \right) \#_1 \text{ Hol} \left(\tilde{\gamma}_2 \right) = \text{ Hol} \left(\tilde{\gamma}_1 \right), \tag{5.17}
\end{equation}

namely, we have

$$\text{ Hol} \left(\tilde{\gamma}_1 \square_1 \right) \#_1 \text{ Hol} \left(\tilde{\gamma}_1 \square_1 \right) = \text{ Hol} \left(\tilde{\gamma}_1 \square_1 \right),$$

$$\text{ Hol} \left(\tilde{\gamma}_2 \square_2 \right) \#_1 \text{ Hol} \left(\tilde{\gamma}_2 \right) = \text{ Hol} \left(\tilde{\gamma}_2 \right) \#_1 \text{ Hol} \left(\tilde{\gamma}_2 \right). \tag{5.18}$$

Here we omit the whiskering parts. Thus we can use $\tilde{\square}_1$ and $\tilde{\square}_1 \cup \tilde{\square}_2$ to calculate 2-holonomy, whose common boundary is straight.
Now suppose the images of of $\tilde{\gamma}$ over $\tilde{\square}_1$ and $\tilde{\square}_2$ are in different coordinate charts U_i and U_j, respectively. We have to add a transition 2-arrow $\Psi_{ij}(\partial_t \tilde{\square}_1)$. Note that the transition 2-arrow along the interval $\partial_t \tilde{\square}_1$ in (5.14) under the map γ satisfies

$$\frac{d}{ds}\psi_{ij}(s) = F_A(\gamma'(s)) \triangleright \gamma^*a_{ij}(\frac{\partial}{\partial s})\psi_{ij}(s),$$

where $\gamma'(s)$ is the restriction of γ to the right boundary $\partial_t \tilde{\square}_1$ of \square_1. By pulling back Ξ, we get $\tilde{\psi}_{ij}(s') := \psi_{ij}(\beta(s'))$ satisfying

$$\frac{d}{ds}\tilde{\psi}_{ij}(s') = F_A(\tilde{\gamma}'(s')) \triangleright \tilde{\gamma}^*a_{ij}(Y_{s'}) \cdot \tilde{\psi}_{ij}(s')$$

where $\tilde{\gamma}'(s')$ is the restriction of $\tilde{\gamma}$ to the curved right boundary $\partial_t \tilde{\square}_1$ of $\tilde{\square}_1$, and $Y_{s'} = k'(s')\partial_{s'} + \partial_{\nu'}$ is its tangential vector. Let $\Psi_{ij}(\partial_t \tilde{\square}_1)$ be the 2-arrows given by $\tilde{\psi}_{ij}(\beta(s'))$.

We claim that

$$\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1) \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1) = \text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1') \#_1\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1') \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1'),$$

i.e. the composition of left two 2-arrows in (5.20) is equal to the composition of the following three 2-arrows

$$\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1) \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1') = \text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1') \#_1\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1') \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1'),$$

where $h'' := \text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1')$. The transition 2-arrow along $\partial_t \tilde{\square}_1$ in (5.20) is replaced by the transition 2-arrow along the straight interval $\partial_t \tilde{\square}_1'$ in (5.22). To prove this claim, we divide $\tilde{\square}_1'$ in (5.17) repeatedly to get the diagram

$$\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1') \#_1\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1) \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1')$$

where $\tilde{\square}_1^{(4)}$ is the part between the dotted path and the left boundary $\partial_t \tilde{\square}_2$. To prove the claim (5.21), note that we can use (5.6) to replace the local 2-holonomy of small rectangles in $\tilde{\square}_1^{(3)}$ for 2-connection over U_i instead of 2-connection over U_j. So we have

$$\text{RHS of (5.21)} = \text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1^{(4)}) \#_1\Psi_{ij}^{-1}(\partial_t \tilde{\square}_1^{(4)}) \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1^{(3)}) \#_1\text{Hol} (\tilde{\gamma}_{ij}|\tilde{\square}_1')$$
corresponding to the diagram

Note that the dotted path $\partial_t \bar{\square}_1^{(4)}$ in (5.23) converges to the curved path $\partial_t \bar{\square}_2$ if we divide $\bar{\square}_1^n$ repeatedly in (5.17). So the transition 2-arrow $\Psi_{ij} \left(\partial_t \bar{\square}_1^{(4)} \right)$ converges to $\Psi_{ij} \left(\partial_t \bar{\square}_2 \right)$, meanwhile $\text{Hol} \left(\bar{\gamma}_j | \bar{\square}_1^{(4)} \right)$ converges to the identity. So the left-hand side of (5.21) converges to the left-hand side of (5.24). The claim is proved. In summary, in our algorithm to calculate the global 2-holonomy of the mapping $\bar{\gamma}$, we can use the pull back quadrilaterals $\bar{\square}_{ab}$’s instead of rectangles, and consequently, $\text{Hol} \left(\bar{\gamma} \right) = \text{Hol} \left(\gamma \right)$.

If Ξ does not fix the starting points of loops γ, then $\Xi : [0, 1]^2 \to \square \cup \square''$ in the following diagram:

$\text{Hol} \left(\bar{\gamma} | \square'' \right)$ can be replaced by $\text{Hol} \left(\bar{\gamma} | \square \right)$ in the expression of $\text{Hol} \left(\bar{\gamma} \right)$ by conjugacy. We omit the details.

References

[1] Aschieri, P., Cantini, L. and Jurco, B., Nonabelian bundle gerbes, their differential geometry and gauge theory, Comm. Math. Phys. 254(2) (2005), 367-400.
[2] Arias Abad, C. and Schätz, F, Higher holonomies: comparing two constructions, Differential Geom. Appl. 40 (2015), 14-42.
[3] Baez, J. and Huerta, J., An invitation to higher gauge theory, Gen. Relativity Gravitation 43 (2011), no. 9, 2335-2392.
[4] Baez, J. and Schreiber, U., Higher gauge theory, Categories in algebra, geometry and mathematical physics, Contemp. Math. 431, 7-30, Amer. Math. Soc., Providence, RI, 2007.
[5] Breen, L., On the classification of 2-gerbes and 2-stacks, Astérisque 225 (1994), 160 pp.
[6] Breen, L. and Messing, W., Differential geometry of gerbes, Adv. in Math. 198 (2005), 732-846.
[7] Breen, L., Notes on 1- and 2-gerbes, in Towards higher categories, IMA Vol. Math. Appl., 152, 193-235, Springer, New York, 2010.
[8] Cattaneo, A. and Rossi, C., Wilson surfaces and higher dimensional knot invariants, Comm. Math. Phys. 256 (2005), 513.
[9] Girelli, F. and Pfeiffer, H., Higher gauge theory-differential versus integral formulation, J. Math. Phys. 45 (2004), no. 10, 3949-3971.
[10] Jurco , B., Nonabelian bundle 2-gerbes, Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 1, 49-78.
[11] Mackaay, M. and Picken, R., Holonomy and parallel transport for abelian gerbes, Adv. in Math. 170 (2002), 287-219.
[12] Martins, J. F. and Picken, R., On two-diemsional holonomy, Trans. Amer. Math. Soc. 362 (2010), 5657-5695.
[13] Martins, J. F. and Picken, R., Surface holonomy for non-abelian 2-bundles via double groupoids, *Adv. in Math.* **226** (2011), no. 4, 3309-3366.

[14] Martins, J. F. and Picken, R., The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module, *Differential Geom. Appl.* **29** (2011), no. 2, 179-206.

[15] Nikolaus, T. and Waldorf, K., Four equivalent versions of nonabelian gerbes, *Pacific J. Math.* **264** (2013), no. 2, 355-419.

[16] Parzygnat, A., Gauge invariant surface holonomy and monopoles, *Theory Appl. Categ.* **30** (2015), 1319-1428.

[17] Pfeiffer, H., Higher gauge theory and a non-abelian generalization of 2-form electrodynamics, *Ann. Physics* **308** (2003), no. 2, 447-477.

[18] Sämann, C. and Wolf, M., Six-dimensional superconformal field theories from principal 3-bundles over twistor Space, *Lett. Math. Phys.* **104** (2014), no. 9, 1147-1188.

[19] Schreiber, U. and Waldorf, K., Parallel transport and functors, *J. Homotopy Relat. Struct.* **4** (2009), 187-244.

[20] Schreiber, U. and Waldorf, K., Smooth functors vs. differential forms, *Homology, Homotopy, and Applications* **13** (1) (2011) 143-203.

[21] Schreiber, U. and Waldorf, K., Connections on non-abelian gerbes and their holonomy, *Theory Appl. Categ.* **28** (2013), 476-540.

[22] Soncini, E. and Zucchini, R., A new formulation of higher parallel transport in higher gauge theory, *J. Geom. Phys.* **95** (2015), 28-73.

[23] Wang, W., On 3-gauge transformations, 3-curvatures and *Gray*-categories, *J. Math. Phys.* **55** (2014), 043506.

Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China, Email: wwang@zju.edu.cn.