Predicting the Behavior of the Supreme Court of the United States: A General Approach

Daniel Martin Katz¹, Michael J Bommarito II², and Josh Blackman³

¹Michigan State University - College of Law
²Michigan State University - College of Law
³South Texas College of Law

ABSTRACT

Building upon developments in theoretical and applied machine learning, as well as the efforts of various scholars including Guimerà and Sales-Pardo (2011), Ruger et al. (2004), and Martin et al. (2004), we construct a model designed to predict the voting behavior of the Supreme Court of the United States. Using the extremely randomized tree method first proposed in Geurts et al. (2006), a method similar to the random forest approach developed in Breiman (2001), as well as novel feature engineering, we predict more than sixty years of decisions by the Supreme Court of the United States (1953-2013). Using only data available prior to the date of decision, our model correctly identifies 69.7% of the Court’s overall affirm/reverse decisions and correctly forecasts 70.9% of the votes of individual justices across 7,700 cases and more than 68,000 justice votes. Our performance is consistent with the general level of prediction offered by prior scholars. However, our model is distinctive as it is the first robust, generalized, and fully predictive model of Supreme Court voting behavior offered to date. Our model predicts six decades of behavior of thirty Justices appointed by thirteen Presidents. With a more sound methodological foundation, our results represent a major advance for the science of quantitative legal prediction and portend a range of other potential applications, such as those described in Katz (2013).

Keywords: Supreme Court, Machine Learning, Law & Social Science, Quantitative Legal Prediction

INTRODUCTION

Each October, as the leaves begin to fall, the first Monday marks the beginning of another term of the Supreme Court of the United States. Like the years past and the years that will follow, each term brings with it a series of challenging and substantively important cases covering a wide range of legal questions. In a given year the Court might consider topics as diverse as tax law, freedom of speech, patent law, the law of searches and seizures, administrative law, due process, the proper scope of the takings clause, freedom of assembly, equal protection, environmental law, and many other legal questions. In most instances, the Court’s decisions are meaningful not only for the litigants, but also for broader range of individuals, entities and social and political institutions.

Predicting its decisions and attendant rationales is one of the great pastimes for observers of the Supreme Court. Every year, the authors of countless law reviews, journals, magazines, newspapers, television and radio pundits, blog posts, and tweets try to answer the questions that are on everyone’s minds: How will the Court rule in a particular case? Will the Justices vote based on the political party of the President who appointed them? Will the Justices surprise us with an unexpected ruling? In these and other related fora, individual commentators offer various theories about what the Court will do and why it will choose to do so.

The sheer number of qualitative explanatory and predictive theories is significant. As a matter of scientific forecasting, however, the quality of many of these theories is unclear. It is hard to measure how a particular approach predicts earlier cases, and, more importantly, how accurately the model will predict future cases. Without a robust, general model that has been subjected to proper validation, it is difficult
to determine how any given forecasting method will perform over a period of time. Most non-normative theories offered in traditional legal scholarship designed to forecast the Court’s behavior have not been tested in any manner that could demonstrate their forward predictive validity, either out-of-sample or forward prediction. That is, nearly all models have been designed ex post to review or explain cases already decided, rather than used ex ante to predict future cases. As noted in Martin et al. (2004), “the best test of an explanatory theory is its ability to predict future events. To the extent that scholars in both disciplines [social science and law] seek to explain court behavior, they ought to test their theories not only against cases already decided, but against future outcomes as well.”

Building on recent developments in theoretical and applied machine learning, as well as the efforts of various scholars including Guimerà and Sales-Pardo (2011), Ruger et al. (2004), and Martin et al. (2004), we construct a model designed to predict the voting behavior of the Supreme Court of the United States. Using the extremely randomized tree method first proposed in Geurts et al. (2006), a method similar to a random forest approach developed in Breiman (2001), as well as novel feature engineering, we apply our method to predict more than sixty years of decisions by the Supreme Court of the United States (1953-2013). Using only data available prior to the date of decision, our model correctly identifies 69.7% of the Court’s overall affirm / reverse decisions and correctly forecasts 70.9% of the votes of individual justices across 7,700 cases and more than 68,000 justice votes. Our performance is consistent with the general level of prediction offered by prior scholars. However, our model is distinctive as it is the first robust, generalized, and fully predictive model of Supreme Court voting behavior offered to date. Our model predicts six decades of behavior of thirty Justices appointed by thirteen Presidents. With a more sound methodological foundation, our results represent a major advance for the science of quantitative legal prediction and portend a range of other potential applications, such as those described in Katz (2013).

PREDICTING THE VOTING BEHAVIOR OF THE SUPREME COURT OF THE UNITED STATES

Every year thousands of petitioners appeal to have their case considered by the United States Supreme Court. In most situations, the Court will decide to hear a case by a granting a petition for a writ of certiorari. If that petition is granted, each of the parties to the litigation will then submit written materials on the relevant issues and later provide oral argument before the Court. Based upon the weight of the arguments before the Court and other factors, each participating justice (typically nine) ultimately cast his or her vote whether to affirm or reverse the decision of the lower court. From a prediction standpoint, there are two related but distinct prediction questions: (1) Will the Court affirm or reverse the lower Court’s judgment? (2) How will each individual Justice vote on the question before him or her? As these are typically questions considered in both academic and popular circles, these are the questions we seek to predict using the methodological approach we outline herein.

Properties of General Supreme Court Prediction Model

There are at least three basic goals that should animate the construction of any Supreme Court prediction model or method. As a general matter, a model should strive to be general, to be robust and to be fully predictive. We are mindful of each of these goals when developing our method of Supreme Court decision-making.

i. General

Starting with the first of these goals, we aim to develop a method of Supreme Court prediction that is general. Specifically, a method should not only work for a single year or short period but also should be generalized such that it might work for any year. This is important because it is unclear when making predictions ex ante whether performance in a given year is systematic or the byproduct of unique features of a given docket or some other latent features. In other words, it is impossible to know in advance if a given year will be similar to previous years, or significantly different. At a theoretical level, the effort to produce a general model can involve a tradeoff between local and global optimization whereby we must sacrifice some local performance at a specific time period for overall performance over a wide window of time. It is far easier to make accurate predictions for a given year and a known group of Justices, rather than to develop a model that works consistently over six decades.
As the first major effort in this direction, more than ten years ago, political scientists and legal scholars (Ruger et al. 2004) held a tournament that pitted expert predictors against a prediction algorithm based upon a classification tree. The goal was straightforward – predict the votes of the individual justices as well as the ultimate decisions of the Supreme Court prior to the release of the Court’s decision. For each case, a classification tree generated its predictions while the experts (law professors and practitioners) simultaneously submitted their selections. With respect to predicting outcomes (i.e. affirm / reverse) for the 78 cases in the 2002-2003 term (the "October 2002 Term," as it is called), the prediction model correctly forecasted 75% of the cases while the human experts correctly identified 59%. For the votes of individual justices, the model was correct for 66.7% of the justice votes while the human experts properly identified 67.9%.

Ruger et al. (2004) represented a major contribution to the science of legal forecasting. Their approach not only performed well in absolute terms but also matched or outperformed subject matter experts. However, like all efforts it had important limitations. Namely, their model was not general and it is now relatively clear that the methodological approach they employed is not well specified toward a general model of Supreme Court prediction. Namely, their approach was conducted during a “natural court,” which existed during one of the longest extended periods where there were no personnel changes on the Court, following Justice Stephen G. Breyer’s appointment in 1994. It is unclear how their model would perform in periods prior to 1994 or after 2005, following the replacements of Chief Justice William H. Rehnquist and Justices Sandra Day O’Connor, David H. Souter, and John Paul Stevens. A general model would continue to offer accurate predictions, even with the appointment of different justices and across a wide range of social, economic and political contexts.

ii. Robust

While there is a reasonable level of temporal stability in the decisions of the Court, one cannot know in advance whether the upcoming Court will behave in a manner similar to its predecessors. As such, the potential for overfitting remains ever present. Over wider windows of time, various factors such as justice retirements, justice and court level ideological shifts, doctrinal shifts, a changing docket composition as well as a changing macro-level social, economic and political environment likely all impact the task of judicial prediction. The ultimate performance of a prediction is a function of the system variability and the overall diversity of the case space. Therefore, it is important to select a method that is known to be robust. That is, it tends to neither overfit nor underfit the respective data.

While the results of the Ruger et al. (2004) tournament were very promising, in the decade that followed this initial tournament, there was little subsequent Supreme Court prediction scholarship. Other than a few notable exceptions such as Blackman et al. (2012) and Guimerà and Sales-Pardo (2011), there were few extensions or improvements of this initial approach. In reviewing Ruger et al. (2004), it appears that the classification method undertaken was not well suited to the task of robust generalization. Specifically, in an effort to support model transparency for a non-technical audience (i.e. lawyers and law professors) the authors used a standard single classification tree in order to generate their predictions. Specifically, they note “[O]ur choice to use classification trees is motivated by the transparency of the model; i.e., trees are produced that can be graphically represented and easily studied.”

One well-known problem with the standard classification tree approach applied in Ruger et al. (2004) is its tendency toward overfitting. As noted by Hastie et al. (2009), a single classification tree is notoriously noisy. Individual classification trees typically feature high levels of variance. As such, the variance of the final estimator is typically very high. Thus, results are sensitive to small changes in the data and can even significantly vary across various model runs. Several developments in the theoretical machine learning literature partially alleviate this issue. Specifically, in the years following Breiman et al. (1984), significant work on classification and regression trees (CART) has improved their general performance and helped avoid the problem of overfitting. Breiman (2001) refines Breiman et al. (1984) and offers a substantial modification of his prior work on bagging “by building a large collection of de-correlated trees, and then averaging them.” Rather than relying on a single decision tree for a small period of time, the random forest approach and other related ensemble methods are designed to rely on many randomized decision trees in order to reduce the variance of the respective predictive estimator. Given their relative simplicity, random forests and other related methods such as extremely randomized trees, have
proven to be highly effective on real world data.

iii. Fully Predictive
In addition to being general and robust, any complete model of Supreme Court prediction should also be fully predictive. In an important recent paper on Supreme Court prediction, Guimerã and Sales-Pardo (2011) engage a very particular form of prediction of the Court’s behavior from 1953–2005. They note “[W]e want to predict the vote of a justice in case n (without loss of generality we set this justice to be number 1), given the complete voting record of the court up to case n - 1 and the votes of the other eight justices in case n.” In other words, the authors are predicting the ninth row/column of a matrix given the values of the other eight rows/columns. Or stated differently, given the votes of all Justices in all previous cases, and the votes of the eight other Justices in the current case, their model forecasts the vote of the ninth Justice in the current case. While this approach provides some important insights about the nature of inter-justice voting patterns, it is not a fully predictive model like that undertaken in Ruger et al. (2004). It does not allow the prediction of how all nine Justices, currently on the Court, will vote.

At best, it can be characterized as a partially predictive model of Supreme Court behavior. The goal of Supreme Court prediction faced by scholars and litigators is to forecast an individual justice as well as the overall Court’s decision without any prior knowledge of the votes of his or her fellow justices. Thus, a complete model should rely upon a similar information set and undertake the same substantive task that is typically faced by human subject matter experts.

iv. Toward a General, Robust and Fully Predictive Method
In sum, none of the existing approaches applied to question of Supreme Court prediction simultaneously achieve the three basic goals of being general, robust and fully predictive. Ruger et al. (2004) is fully predictive but unfortunately, their approach is not general and their method is not robust. By contrast, Guimerã and Sales-Pardo (2011) is general and robust, however, it is not fully predictive. As described below, our approach is the first offering in the literature that satisfies all three of these important criteria and thus represents a significant advance in the science of quantitative legal prediction.

TREES, FORESTS AND EXTREMELY RANDOM TREES: ADVANCES IN THE SCIENCE OF BINARY PREDICTION

The applied case of Supreme Court prediction presents a problem of binary classification where we seek to forecast whether an individual justice, as well as the Supreme Court as a whole, will decide to either affirm or reverse the judgment of a lower court. In this instance of binary classification, we take the matrix of observable prior data to learn / construct a prediction function. Using that function, we evaluate a future case and try to predict its corresponding outcome (i.e. affirm or reverse). In our taxonomy, y=0 if the Court, or a Justice, will affirm the lower court’s decision. y=1 if the Court, or a Justice, will reverse the lower court’s decision. We use the individual justice vote predictions to forecast the overall decision of the Supreme Court.

A wide variety of supervised machine learning methods have been developed to learn or recover the best performing function f(x). One popular approach commonly used for binary classification problems is the classification and regression trees (CART) methods first offered in Breiman et al. (1984). The standard CART approach was the method relied on by Ruger et al. (2004). Using a single decision tree, the authors forecast the respective votes of Supreme Court justices for the October 2002 Term. As noted earlier, the performance of the tree outperformed human experts, including notable law professors and well-regarded appellate lawyers. Of important note, in the only tournament ever conducted using highly renowned lawyers, the experts properly classified 59% of the Court’s overall affirm / reverse rate correctly, while properly forecasting 67.9% of the votes of individual Justices. In terms of case level prediction, the accuracy rate for the experts was only slightly better than chance (Blackman et al. (2012)).

The classification tree, by contrast, correctly forecasted 75% of the case level outcomes and 66.7% of the Justice level votes. The performance of this group of experts is illustrative of the difficulty of the prediction problem. While a small number of the Court’s decisions are relatively straightforward, the full docket–on average about 80 cases per year–contains a number of complex questions that are challenging to forecast even for well-respected Supreme Court experts.
The individual trees generated using the CART approach are high variance objects. As a function of the random perturbations of the model an individual tree may underfit or overfit the data. Building upon the work of Ho (1998), Breiman (2001) proposed an ensemble method that leverages two forms of randomness - the Breiman (1996) idea of bagging (bootstrap aggregation) with random substrates. One simple manner in which to understand random forests, extremely randomized trees and other related ensemble methods is to consider the ideas underlying the wisdom of the crowds (Surowiecki (2005), Page (2008), Fisher (2009), Rauhut and Lorenz (2011)). Ensemble methods leverage the wisdom of the statistical crowds by generating a number of diverse trees and then averaging across the entire forest. While an individual statistical learner (a single tree) might offer an unrepresentative prediction of a given phenomena, under certain conditions, the crowdsourced average of a larger group of learners is often better able to forecast various sets of outcomes. By generating many different decision trees and then averaging over the results, ensemble methods can convert a set of otherwise weaker learners into a collectively strong learner.

As highlighted in important investigations such as Caruana and Niculescu-Mizil (2006), Díaz-Uriarte and De Andres (2006) and Caruana et al. (2008), ensemble methods have proven to be highly effective for a large number of classification tasks. In addition, through Caruana and Niculescu-Mizil (2006) and Caruana et al. (2008) random forests and related methods have been shown to be more robust than both the standard (CART) approach and a wide variety of other competing methods.

Ensemble methods have been applied by various scholars in a wide variety of contexts (e.g. Irrthum et al. (2010), Moosmann et al. (2008), Díaz-Uriarte and De Andres (2006), Shi et al. (2004), Svetnik et al. (2003)). In the years following Breiman (2001), several alternative but allied methods have been developed. Building upon the highly influential work on random forests offered in Breiman (2001), Geurts et al. (2006) offers an alternative ensemble which embeds even more randomness into the tree construction process. Namely, “[W]ith extremely randomized trees, randomness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias.”

In order to remain robust against the temporal changes present in the Court’s behavior over the past sixty years, we generate a set of extremely randomized trees (extra-trees) in the analysis that follows.

DATA AND VARIABLES

In order to build our prediction model, we rely on data from the Supreme Court Database (SCDB). The SCDB features more than six decades of high-quality expertly coded data on the Court’s behavior. A product of years of dedication by Professor Harold Spaeth as well as others, the database has been consistently subjected to reliability analyses and has been used in hundreds, if not thousands of academic studies (e.g. Segal and Spaeth (2002), Bailey and Maltzman (2008), Benjamin and Desmarais (2012), Epstein et al. (2007a), Segal and Spaeth (1996)). While there are important limits (i.e. Shapiro (2008)), the SCDB features up to two hundred and forty seven variables for each case including background variables, chronological variables, substantive variables, outcome variables, voting variables and opinion variables.

We define the outcome of our prediction variable based on the decision of the lower court. We consider whether in a given case the Supreme Court of the United States will either affirm or reverse the decision of the lower court. Thus, our left hand side variable is the binary outcome variable 0 = affirm, 1 = reverse. As noted earlier, for cases with multiple issues (the Court affirms in part, reverses in part) we consider the primary issue as set forth in SCDB. In addition, we exclude decisions that do not contain

1See “1.9.1.2. Extremely Randomized Trees” available at http://scikit-learn.org/stable/modules/ensemble.html

2Harold J. Spaeth, Sara Benesh, Lee Epstein, Andrew D. Martin, Jeffrey A. Segal, and Theodore J. Ruger. 2013. Supreme Court Database, Version 2013 Release 01. URL: http://supremecourtdatabase.org Last accessed: July 5, 2014.
actual justice votes (such as per curiam decisions).

In order to predict our dependent variable, we leverage a wide number of features that have been previously shown to be meaningful in the existing explanatory theories of Supreme Court decision-making. The full list of these variables is offered in Figure 1. In the feature selection process, we employ a mixture of variables including those drawn directly from the Supreme Court Database denoted as [S], the Segal-Cover Scores [SC] and those we developed through various feature engineering [FE]. Each time the model is retrained, we allow the learner to explore the space and identify the optimal configuration that best predicts the Court’s behavior based on the large number of features presented in Figure 1.

i. Court and Justice Level Information

As displayed in Figure 1, we include several forms of variables in our model. These include court level and justice-level variables such as party of appointing president, segal-cover nomination score, year of birth and natural court (the Court era in which the decision was authored). Along with other variables, the first two features capture some of the ideological dimensions that explain at least some of the Court’s decisions. The year of birth and natural court are control variables that we believe might capture an underlying time dynamic or age dynamic in the vote space.

ii. Case Information

In addition, we include various case-centric features that we have some theoretical basis for believing might impact the propensity of various judges to vote in a certain manner. As coded by Spaeth, these include the issue, issueArea, lawType, certReason, respondent, petitioner, caseOrigin, caseSource and leDispositionDirection. In addition, we conduct some basic feature engineering that allows us to consider the monthArgumet and monthDecision (which tracks the current month of the model). At first glance, this last variable would appear to be using out of sample information, as this information is only known after the case is decided. However, our reported predictions are derived from predictions generated each day until the day of decision. Thus, including this variable still places us on equal footing with any human predictor who might attempt to forecast the Court’s decision, and later decide to shift the forecast at some point prior to the Court’s decision. Given the granularity of the respondent and petitioner variables (i.e., more than 300 discrete values), we aggregate the relevant categories into higher order bins under the general belief that it might better aid prediction. These are labeled as respondentbinned and petitionerbinned, respectively.

iii. Historical Justice & Court Information

Historical information forms the basis for all predictions. In order to aid our prediction model, we engage in some basic feature engineering regarding baseline trends in the Court’s behavior. As new Justices have joined, the court’s average ideology has shifted over the years (Martin and Quinn (2002), Bailey (2013)). Thus, variables such as courtDirectionMean and courtDirectionStd are designed to track the average and standard deviation in the Court’s historical behavior on an ideological scale of (0,1) where 0=max liberal and 1=max conservative.

An additional source of temporal variation in the Court’s behavior is the ideological shift of various individual justices (Epstein et al (2007a), Martin and Quinn (2007), Epstein et al (2007b)). Thus, through the justiceDirectionMean, and justiceDirectionStd features we account for any time varying shift in the average ideology of individual justices. The justiceCourtDifference-z variable tracks differences as measured in z-scores between an individual justice and the overall court.

Our method is designed to identify and leverage features that contribute to prediction. Thus, we are somewhat over-inclusive with respect to adding model features. As displayed in Figure 1, we include more than ninety total variables in our model. Taken together, we believe that all of these variables might meaningfully contribute to predicting individual justices as well as the overall Court’s behavior in the cases they collectively consider.

\footnote{Our complete dataset and associated code is all publicly available on Github: https://github.com/mjbommar/scotus-predict}
Justice and Court Background Information
Justice [S]
Justice Gender [FE]
Is Chief [FE]
Party President [FE]
Natural Court [S]
Segal Cover Score [SC]
Year of Birth [FE]

Case Information
Admin Action [S]
Case Origin [S]
Case Origin Circuit [S]
Case Source [S]
Case Source Circuit [S]
Law Type [S]
Lower Court Disposition Direction [S]
Lower Court Disposition [S]
Lower Court Disagreement [S]
Issue [S]
Issue Area [S]
Jurisdiction Manner [S]
Month Argument [FE]
Month Decision [FE]
Petitioner [S]
Petitioner Binned [FE]
Respondent [S]
Respondent Binned [FE]
Cert Reason [S]

Overall Historic Supreme Court Trends
Mean Court Direction [FE]
Mean Court Direction 10 [FE]
Mean Court Direction Issue [FE]
Mean Court Direction Issue 10 [FE]
Mean Court Direction Petitioner [FE]
Mean Court Direction Petitioner 10 [FE]
Mean Court Direction Respondent [FE]
Mean Court Direction Respondent 10 [FE]
Mean Court Direction Circuit Origin [FE]
Mean Court Direction Circuit Origin 10 [FE]
Mean Court Direction Circuit Source [FE]
Mean Court Direction Circuit Source 10 [FE]
Mean Court Direction by Issue [FE]
Mean Court Direction by Issue Z Score [FE]

Current Supreme Court Trends
Mean Agreement Level of Current Court [FE]
Std. Dev. of Agreement Level of Current Court [FE]
Mean Current Court Direction Circuit Origin [FE]
Std. Dev. Current Court Direction Circuit Origin [FE]
Mean Current Court Direction Circuit Source [FE]
Std. Dev. Current Court Direction Circuit Source [FE]
Mean Current Court Direction Issue [FE]
Z-Score Current Court Direction Issue [FE]
Std. Dev. Current Court Direction Issue [FE]
Mean Current Court Direction [FE]
Std. Dev. Current Court Direction [FE]
Mean Current Court Direction Petitioner [FE]
Std. Dev. Current Court Direction Petitioner [FE]
Mean Current Court Direction Respondent [FE]
Std. Dev. Current Court Direction Respondent [FE]

Individual Supreme Court Justice Trends
Mean Justice Direction [FE]
Mean Justice Direction 10 [FE]
Mean Justice Direction Z Score [FE]
Mean Justice Direction Petitioner [FE]
Mean Justice Direction Petitioner 10 [FE]
Mean Justice Direction Respondent [FE]
Mean Justice Direction Respondent 10 [FE]
Mean Justice Direction for Circuit Origin 10 [FE]
Mean Justice Direction for Circuit Source 10 [FE]
Mean Justice Direction by Issue [FE]
Mean Justice Direction by Issue 10 [FE]
Mean Justice Direction by Issue Z Score [FE]

Differences in Trends
Difference Justice Court Direction [FE]
Abs. Difference Justice Court Direction [FE]
Difference Justice Court Direction Issue [FE]
Abs. Difference Justice Court Direction Issue [FE]
Z-Score Difference Justice Court Direction [FE]
Z-Score Difference Justice Court Direction Issue [FE]
Difference Justice Court Direction Petitioner [FE]
Abs. Difference Justice Court Direction Petitioner [FE]
Difference Justice Court Direction Respondent [FE]
Abs. Difference Justice Court Direction Respondent [FE]
Z-Score Justice Court Direction Difference [FE]
Z-Score Justice Court Direction Difference Issue [FE]
Justice Lower Court Direction Difference [FE]
Justice Lower Court Direction Difference Issue [FE]
Justice Lower Court Direction Abs. Difference [FE]
Justice Lower Court Direction Abs. Difference Issue [FE]
Z-Score Justice Lower Court Direction Difference [FE]
Z-Score Justice Lower Court Direction Difference Issue [FE]
Agreement of Justice with Majority [FE]
Agreement of Justice with Majority 10 [FE]
Difference Court and Lower Ct Direction [FE]
Abs. Difference Court and Lower Ct Direction [FE]
Z-Score Difference Court and Lower Ct Direction [FE]
Z-Score Abs. Difference Court and Lower Ct Direction [FE]

Figure 1. Variables Employed by the Model
METHODS

Formalizing a Set of Extremely Randomized SCOTUS Trees

The search for the optimal tree configuration is an \textit{NP-complete problem} \cite{Hyafil:1976}. Thus, the optimal solution to such tree configuration problems cannot be determined in advance. For anything other than a trivial problem, this implies that we must rely upon some sort of heuristic solution in the tree construction process. Luckily, there exist a number of well performing heuristics designed to solve for the optimal tree configuration using various approximate solution methods \cite[e.g.][]{Murthy:1998, Chou:1991, Safavian:1991}.

In recent years, there have been major advances in classification tree methods. In empirical investigations such as \cite{Caruana:2006, Caruana:2008}, ensemble methods have been shown to be unreasonably effective on real world data. Ensemble methods such as random forests, extremely randomized trees and fully random trees leverage several forms of randomness – (1) randomness in the data and (2) randomness in the features (potential splits). For example, the \cite{Breiman:2001} random forest method applies bootstrapping aggregation to the row of our training data while also sampling random substrates of the variables listed in the columns. A final ensemble create using such an approach is thus theoretically grounded and typically produces a robust method prediction with much lower variance than that produced using the CART approach.

A close analog of random forests are extremely randomized trees (ERT). We apply ERTs \cite{Geurts:2006} in our analysis. Despite its similarity to random forests, there are important differences. First, extremely randomized trees do not rely on the bagging procedure as outlined in \cite{Breiman:1996}. Instead, the same input training set is used to train all of the trees in question \cite{Geurts:2006}. In addition, ERT selects the split by indexing randomly across both the variable index and variable splitting value. By contrast, the random forest select the optimal splitting condition among a random subset of variables. As noted in \cite{Geurts:2006}, “[F]rom the bias-variance point of view, the rationale behind the Extra-Trees (extremely randomized trees) method is that the explicit randomization of the cut-point and attribute combined with ensemble averaging should be able to reduce variance more strongly than the weaker randomization schemes used by other methods. The usage of the full original learning sample rather than bootstrap replicas is motivated in order to minimize bias.”

The full pseudo-code of the extremely randomized trees (extra-trees) algorithm as outlined in \cite{Geurts:2006} is offered below:
Pseudo-Code of the Extra Trees Algorithm - Geurts, et al. (2006)

Build an extra tree ensemble(S).
Input: a training set S.
Output: a tree ensemble $T = \{ t_1, ..., t_M \}$.
-For $i=1$ to M
 - Generate a tree: t_i = **Build an extra tree(S);**
-Return T.

Build an extra tree(S).
Input: a training set S.
Output: a tree t
-Return a leaf labeled by class frequencies in S if
 (i) $|S| < n_{\text{min}}$, or
 (ii) all candidate attributes are constant in S, or
 (iii) the output variable in constant in S
-Otherwise:
 1. Select randomly K attributes, $\{a_1, ..., a_K\}$, without replacement, among all (non constant in S) candidate attributes;
 2. Generate K splits $\{s_1, ..., s_K\}$, where s_i = **Pick a random split(S, a), \forall i = 1, ..., K;**
 3. Select a split s_* such that $\text{Score}(s_*, S) = \max_{i=1,...,K} \text{Score}(s_i, S)$
 4. Split S into subsets S_l and S_r according to the test $s_*;
 5. Build t_l = **Build an extra tree(S_l) and t_r = Build an extra tree(S_r) from these subsets;**
 6. Create a node with the split s_*, attach t_l and t_r as left and right subtrees of this node and return the resulting tree t.

Pick a random split(S, a)
Input: a training set S and an attribute a.
Output: a split.
-If the attribute a is numerical:
 - Compute the maximal and minimal value of a in S, denoted respectively by a_{min}^S and a_{max}^S;
 - Draw a cut-point a_c uniformly in [$a_{\text{min}}^S, a_{\text{max}}^S$];
 - Return the split [$a < a_c$].
-If the attribute a is categorical (denote by A its set of possible values):
 - Compute A_S the subset of A of values of a that appear in S;
 - Randomly draw a proper non empty subset A_1 of A_S and a subset A_2 of $A \setminus A_S$;
 - Return the split [$a \in A_1 \cup A_2$].

Using the extra-trees algorithm, we store a time-ordered subset of the Supreme Court Database (SCDB) and other derived features in a feature matrix for all cases prior to the current case. This includes data for each case and each justice indexed up to the $n - 1$ case. From this feature matrix, we derive the individual trees and overall ensemble following the protocol outlined in the pseudocode. We apply the default settings of the ExtraTreesClassifier (Extremely Randomized Trees) with limited exceptions. Given the data available up to the $n - 1$ case (the last case decided before the case we are attempting to predict), we apply the latest instance of our extremely randomized tree ensemble. In other words, using the derived ERT, we pass the justice, case and overall court level features for the current case to the current set of extremely randomized trees and output a prediction each Justice. Then using this set of justice level forecasts, we can then construct a case level prediction using majority rule.

In order to validate our model, we apply stratified k-fold cross-validation with 10 folds per training.

4See Pedregosa et al. [2011], in particular, 3.2.3.3.3, sklearn.ensemble.ExtraTreesClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html]. The parameters used to train the classifier are as follows: ‘classify min_samples_leaf’: 2, ‘classify max_depth’: 32, ‘classify max_features’: 24, ‘classify n_estimators’: 4000.
At each training step, we divide our training data into ten samples. We then train 9 models on each of the nine subsets of nine folds, testing these models on the remaining “holdout” sample. We select the model that performs best on the holdout sample as determined by its F_1 score. Using the resulting final model at each training step, we can predict how each individual justice, and therefore the entire Court, will vote for a specific case. This determination is based on all previous decisions for that Justice, the Court, and all previous cases. This mimics the type of methodology that a Supreme Court expert would rely on when making their own ex ante predictions.

RESULTS

The Supreme Court Database offers coverage from 1946-2013 (the end of the most recent Supreme Court term). We train our model on the period from 1946 -1953, under the leadership of Chief Justice Fred Vinson (known as the Vinson Court). We begin making forward prediction starting with the first case of the Warren Court in 1953, through the end of the 2012-2013 term. For each of the predictions, offered over 60 years—7,700 cases and in excess of 68,000 individual justice votes—we only rely on data that would have been available prior to the Court’s decision. We depart from Guimera and Sales-Pardo (2011) by not leveraging information about the votes of other Justices in the current case in order predict any other justice’s votes. In other words, we construct a fully predictive model, which relies entirely on information available prior to the decision of the Court. No future information is relied on.

We restrict our analysis to cases with an actual written decision and assigned justice votes. Thus, our analysis does not include per curiam decisions or decisions that were dismissed on procedural grounds. Following the convention used by Harold Spaeth and his successors, we seek to predict the cases’ primary issue dimension as defined in the respective database. This follows the basic logic of issue-based voting outlined in the formal modeling literature by Anderson IV and Tahk (2007). Although we could in principle disaggregate any cases respective of its issue dimensions and feed them into the model, for purposes of consistency with prior scholars, we restrict our analysis to standard cases.

There are two forms of prediction that we undertake in this study – (1) justice level vote prediction, and (2) the prediction of the overall case outcome. Applying the extremely randomized trees approach to each case from 1953-2013, our model correctly forecasts 69.7% of Case Outcomes and 70.9% of Justice Level Vote Outcomes over the sixty year period. While the results are close, somewhat surprisingly our model performs slightly better for the justice votes than on the cases themselves. We believe that this

5 Additional details regarding our model implementation is publicly available on Github - https://github.com/mjbommar/scotus-predict
partly due to our success at forecasting the behavior of those distant from the Court’s ideological center.

Seen from a year over year perspective, there is a reasonable amount of variability in the model performance. This is likely a function of changing predictability of the Supreme Court case space. It is also likely a function of the inherent complexity of the forecasting problem. The intermittent variability of our performance, however, does not provide the whole story. To provide a more complete perspective, Figure 2 plots both the yearly performance (blue) our model together with local polynomial regression (loess) (Cleveland and Devlin (1988)). This loess regression fit provides a perspective on the performance of our model over time. While the performance of our model varies from year to year, the trend remains relatively consistent over the sixty year period.

Importantly, our method performs against a backdrop of justice transitions, shifting size and composition of the docket, as well as different macro political and economic conditions. Our results compare favorably to those presented in prior work (Guimerà and Sales-Pardo (2011), Ruger et al. (2004)) but are based upon the first generalized, robust and fully predictive model offered to date.

Exploring the Confusion Matrices and the Asymmetry in Affirm / Reversal Rates

The case level confusion matrix displayed in Table 1 highlights the case level performance of the overall model from 1953-2013. The primary diagonal represents the true positive (we predicted an affirm, and the Court affirmed) and true negative (we predicted a reverse, and the Court reversed) elements. The off-diagonal elements are the false positive (we predicted an affirm, and the Court reversed) and false negatives (we predicted a reverse, and the Court affirmed). A review of the matrix reveals an important property of the Court’s decision making. Namely, the Court reverses a majority of the cases it accepts for review. As displayed in Figure 3 below, over the past sixty years, it is quite common for the Court to reverse in excess of 60% of the cases it considers in any given year. Our model properly identifies a significant percentage of these reversal decisions correctly.

	Predict Affirm	Predict Reverse	Total
Court Affirms	767	1,856	2,623
Court Reverses	474	4,603	5,077
Total	1,242	6,458	7,700

Table 1. Case Level Confusion Matrix

By contrast, false positives, where we predict an affirm and the Court reverses, drive a significant percentage of the error in our model. The performance of our Supreme Court extremely randomized trees approach suffers most on the difficult task of determining when the Court will affirm the decision of the lower court (false positives). On average, when the Court grants certiorari, it does so to reverse a lower court decision, not to affirm it.

In 1,856 of the cases, the model incorrectly predicts that the court will reverse when it actually affirmed the lower court’s decision. These false positives are likely generated in part from the underlying asymmetry in the Court’s affirm / reversal rates as displayed in Table 1 and Figure 2. Our model also likely struggles with the time varying nature of this asymmetry. Namely, the reversal percentage shifts from year to year and is, of course, not guaranteed to remain consistent going forward. Consider Figure 3, which displays the annual percentage of case reversed from 1953-2013. The percentage fluctuates widely from as high as 77.5% to as little as 50%. In the most recent years, since the start of Chief Justice Roberts’s tenure, the percentages of cases that are reversed have dipped but thus far remain well within historic averages.

The justice vote confusion matrix displays a similar pattern to the case confusion matrix. In terms of overall error, we generate roughly four and a half times as much total error from instances where we
predict a reversal and the court affirms the lower court (false negative) than instances where we predict affirm and the court reverses (false positive). In other words, false positives far outstrip false negatives. In terms of precision and recall, however, the results are far more balanced.

Table 2. Justice Vote Confusion Matrix

	Predict Affirm	Predict Reverse	Total
Justice Affirms	11,751	13,816	22,567
Justice Reverses	6,233	37,164	43,397
Total	17,984	50,980	68,964

THE RELATIVE CONTRIBUTION OF PARTICULAR FEATURES TO THE OVER-ALL PREDICTION

What features actually contribute to forecasting the behavior of the Supreme Court? What is the relative contribution of these factors to overall prediction? There exists a long-standing debate about the subset of the feature space that actually assists in predicting judicial decision making. Traditional legal scholars tend to emphasize the legal features and legal questions presented in individual cases. They tend to downplay weighted non-legal factors such as judicial ideology and its contribution to the shape of the law, and focus on jurisprudence and formal legal doctrine. Legal realists and social scientists who study judicial behavior have demonstrated the incompleteness of this traditional description of the Court decision-making. While there is likely merit in elements of many existing theories, the challenging question is how to properly characterize the ensemble of legal, political and social factors which collectively drive observed outcomes.

Figure 4 presents the final feature weights as of June 2013. While these feature weights have adapted over time to take stock of changes in Court’s behavior, the June 2013 feature weights provide useful insight into how our model operates. It is important to note that many of these features are highly correlated. This ultimately complicates their interpretation ([Tolosi and Lengauer, 2011](#), [Strobl et al., 2008](#)). Although we present the marginal predictive contribution of each feature, we are mindful of the inherent issues associated with their estimate / interpretation. That said, the seven larger categories we present in *Figure 4* provide a more reliable (albeit less granular) perspective regarding the contribution of various classes of features. Collectively, individual case features account for approximately 23% of predictive power while Justice and Court level background information account for just 4.4%. Much of the predictive power of our model is driven by tracking a variety of behavioral trends. This includes tracking...
Justice and Court Background Information

Feature	Weight
Justice [S]	0.00784
Justice Gender [FE]	0.00205
Is Chief [FE]	0.00283
Party President [FE]	0.00604
Natural Court [S]	0.00764
Segal Cover Score [SC]	0.00971
Year of Birth [FE]	0.00793
TOTAL	**0.04403**

Case Information

Feature	Weight
Admin Action [S]	0.00978
Case Origin [S]	0.00977
Case Origin Circuit [S]	0.00348
Case Source [S]	0.00953
Case Source Circuit [S]	0.00105
Law Type [S]	0.00137
Lower Court Disposition Direction [S]	0.01190
Lower Court Disposition [S]	0.01125
Lower Court Disagreement	0.00768
Issue [S]	0.00541
Issue Area [S]	0.00469
Jurisdiction Manner [S]	0.00359
Month Argument [FE]	0.00214
Month Decision [FE]	0.001349
Petitioner [S]	0.001406
Petitioner Binned [FE]	0.001199
Respondent [S]	0.001490
Respondent Binned [FE]	0.001179
Cert Reason [S]	0.001408
TOTAL	**0.22814**

Overall Historic Supreme Court Trends

Feature	Weight
Mean Court Direction [FE]	0.00988
Mean Court Direction 10 [FE]	0.01997
Mean Court Direction Issue [FE]	0.01546
Mean Court Direction Issue 10 [FE]	0.00938
Mean Court Direction Petitioner [FE]	0.00863
Mean Court Direction Petitioner 10 [FE]	0.00904
Mean Court Direction Respondent [FE]	0.00675
Mean Court Direction Respondent 10 [FE]	0.00925
Mean Court Direction Circuit Origin [S]	0.00791
Mean Court Direction Circuit Origin 10 [FE]	0.00864
Mean Court Direction Circuit Source [SC]	0.00951
Mean Court Direction Circuit Source 10 [FE]	0.01017
TOTAL	**0.12663**

Lower Court Trends

Feature	Weight
Mean Lower Court Direction Circuit Source [FE]	0.00962
Mean Lower Court Direction Circuit Source 10 [FE]	0.01017
Mean Lower Court Direction Issue [FE]	0.00134
Mean Lower Court Direction Issue 10 [FE]	0.00933
Mean Lower Court Direction Petitioner [FE]	0.00949
Mean Lower Court Direction Petitioner 10 [FE]	0.00874
Mean Lower Court Direction Respondent [FE]	0.00973
Mean Lower Court Direction Respondent 10 [FE]	0.00900
TOTAL	**0.07946**

Current Supreme Court Trends

Feature	Weight
Mean Agreement Level of Current Court [FE]	0.00955
Std. Dev. of Agreement Level of Current Court [FE]	0.00936
Mean Current Court Direction Circuit Origin [FE]	0.00789
Std. Dev. of Current Court Direction Circuit Origin [FE]	0.00850
Mean Current Court Direction Circuit Source [SC]	0.00945
Std. Dev. of Current Court Direction Circuit Source [SC]	0.01021
Mean Current Court Direction Issue [FE]	0.01149
Z Score Current Court Direction Issue [FE]	0.00832
Std. Dev. Current Court Direction Issue [FE]	0.01266
Mean Current Court Direction [FE]	0.00918
Std. Dev. Current Court Direction [FE]	0.00942
Mean Current Court Direction Petitioner [FE]	0.00863
Std. Dev. Current Court Direction Petitioner [FE]	0.00894
Mean Current Court Direction Respondent [FE]	0.00882
Std. Dev. Current Court Direction Respondent [FE]	0.00888
TOTAL	**0.14456**

Individual Supreme Court Justice Trends

Feature	Weight
Mean Justice Direction [FE]	0.01248
Mean Justice Direction 10 [FE]	0.01530
Mean Justice Direction Z Score [FE]	0.00826
Mean Justice Direction Petitioner [FE]	0.00732
Mean Justice Direction Petitioner 10 [FE]	0.01027
Mean Justice Direction Respondent [FE]	0.00724
Mean Justice Direction Respondent 10 [FE]	0.01030
Mean Justice Direction for Circuit Origin [FE]	0.00792
Mean Justice Direction for Circuit Origin 10 [FE]	0.00945
Mean Justice Direction for Circuit Source [SC]	0.00891
Mean Justice Direction for Circuit Source 10 [FE]	0.00970
Mean Justice Direction by Issue [FE]	0.01981
Mean Justice Direction by Issue 10 [FE]	0.00950
Mean Justice Direction by Issue Z Score [FE]	0.00771
TOTAL	**0.14323**

Differences in Trends

Feature	Weight
Difference Justice Court Direction [FE]	0.01210
Abs. Difference Justice Court Direction [FE]	0.00929
Difference Justice Court Direction Issue [FE]	0.01167
Abs. Difference Justice Court Direction Issue [FE]	0.00968
Z Score Difference Justice Court Direction Issue [FE]	0.01053
Difference Justice Court Direction Petitioner [FE]	0.00705
Abs. Difference Justice Court Direction Petitioner [FE]	0.00708
Difference Justice Court Direction Respondent [FE]	0.00690
Abs. Difference Justice Court Direction Respondent [FE]	0.00699
Z Score Justice Court Direction Difference [FE]	0.01280
Justice Lower Court Direction Difference [FE]	0.01922
Justice Lower Court Direction Abs. Difference [FE]	0.02294
Justice Lower Court Direction Z Score [FE]	0.01126
Z Score Justice Lower Court Direction Difference [FE]	0.00992
Agreement of Justice with Majority [FE]	0.00866
Difference Court and Lower Ct Direction [FE]	0.01483
Abs. Difference Court and Lower Ct Direction [FE]	0.01522
Z Score Abs. Difference Court and Lower Ct Direction [FE]	0.01199
Justice Lower Court Direction Z Score [FE]	0.01150
TOTAL	**0.23391**

Figure 4. Final Feature Weights as of June 2013
the ideological direction of overall voting trends as well as the voting behavior of various justices. Differences in these trends prove particular useful for prediction. These include general and issue specific differences between individual justices and the balance of the Court as well as ideological differences between the Supreme Court and lower courts.

Notwithstanding a few notable efforts, Guimerà and Sales-Pardo (2011), Blackman et al. (2012), Ruger et al. (2004), and Martin et al. (2004), to date, almost all legal and social science scholarship has been backward looking whereby scholars seek to interpret, explain or harmonize prior court behavior. Even fewer efforts have sought to identify the marginal forward predictive contribution of various case, justice, and other temporal features. We identify features that matter for forward-looking predictions and the relative extent to which they aid in ex ante prediction. Our approach is also replicable and modular so future scholars can substitute or amend our feature set to determine its impact upon model performance.

JUSTICE AND COURT LEVEL TEMPORAL PREDICTABILITY

Figure 5 is heatmap that tracks the temporal performance of our model by Justice. Each column represents a year and each row represents an individual justice. For each \{justice, year\} pairing corresponding to a year of service, the cell of the heatmap is colored according to the Justice level performance of our model. The more green the cell, the more predictable the Justice in that year. In a few instances where an outgoing and incoming Justice overlapped in a given year the column for that year features with ten colored cells instead of the standard nine. Although we generally err on the side of visualizing all of the data, we do not display cells for Justices that participated in a small fraction of cases in that given term. For example, a Justice who was appointed late in a term, or a Justice who stepped down early in the term.

Reviewing Figure 5, our method performs well at predicting certain Justices and not as well on others. For example, Justices Harlan, Frankfurter, and Burton prove relatively difficult to predict. By contrast, our method is fairly accurate at predicting the behavior of Justices Douglas, Brennan, and Thomas. This
perhaps can be explained by their status as fairly far from the ideological center.

From an overall perspective, one trend that is immediately apparent is the general level of stability in the quality of our predictions. Following a short learning period, our ability to predict a given Justice tends to follow a regularized pattern. In other words, whether we are able to predict a specific case accurately or not, our long run performance is relatively stable for most Justices within a small window of time. There are, of course, notable exceptions. Justice Stevens begins as a difficult to predict justice but over time becomes increasingly easier to predict. In his years as an Associate Justice our performance in predicting William Rehnquist is relatively strong. This changes almost immediately following his elevation to Chief Justice in 1986 when our performance begins to decline.

ALGORITHM PERFORMANCE BY VOTE CONFIGURATION

![Algorithm Performance by Vote Configuration](image)

Figure 6. Algorithm Performance by Vote Configuration

In addition to exploring the overall and justice level performance of our model, we also seek to explore how the ultimate decision (affirm / reverse) and vote breakdown (9-0 through 5-4) might impact a case’s predictability. Our naïve assumption was that our model would perform best on cases where the Court was in agreement and would perform worst in cases with high levels of disagreement among members of the Court. *Figure 6* supports this basic proposition. It also once again highlights the strengths and weakness in our model, which performs better for reverse judgments than for affirm judgments.

With respect to cases that ultimately lead to reversals, our model tracks the commonplace intuition that 9-0 reversals are easier to forecast than 5-4 reversals. While our performance between these categories is somewhat close in certain years, we consistently perform better in unanimous reversal cases than in cases which feature disagreement between justices. We also perform better on cases with a vote of 9-0 to affirm than in cases that affirm through a divided court. However, as demonstrated earlier, it is clear that our model struggles to identify in advance cases that the Court ultimately decides to affirm. Since 1953, the Court has affirmed 2,623 cases or 34.1% of its fully argued cases. On this subset of cases, our model does not perform particularly well. In some years, we are able to forecast less than 25% of these cases correctly.

An open question for future research is whether this failure to accurately predict affirmed decisions
is a permanent fixture of underlying stochasticity in Court’s behavior or a failure of the model or available feature set to identify some latent dimension that would allow for better forecasting of the reversal / affirm decision.

CONCLUSION

Using only information known prior to the Court’s decision, case by case and term by term, we construct a model that predicts each decision of the Supreme Court of the United States from 1953 - 2013. Leveraging extremely randomized trees, a particular form of ensemble tree model, we correctly forecast 69.7% of the Court’s overall affirm / reverse decisions and 70.9% of the votes of individual justices across the 7,700 cases and more than 68,000 justice votes. We offer a major contribution to the science of quantitative legal prediction by generating the first general, robust and fully predictive model of Supreme Court decision making offered to date.

REFERENCES

Anderson IV, R. and Tahk, A. M. (2007). Institutions and equilibrium in the united states supreme court. American Political Science Review, 101(04):811–825.
Bailey, M. A. (2013). Is today’s court the most conservative in sixty years? challenges and opportunities in measuring judicial preferences. The Journal of Politics, 75(03):821–834.
Bailey, M. A. and Maltzman, F. (2008). Does legal doctrine matter? unpacking law and policy preferences on the us supreme court. American Political Science Review, 102(03):369–384.
Benjamin, S. M. and Desmarais, B. A. (2012). Standing the test of time: The breadth of majority coalitions and the fate of us supreme court precedents. Journal of Legal Analysis, 4(2):445–469.
Blackman, J., Aft, A., and Carpenter, C. (2012). Fantasyscouts: Crowdsourcing a prediction market for the supreme court. Northwestern Journal of Technology and Intellectual Property, 10(3).
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression trees. CRC press.
Caruana, R., Karampatziakis, N., and Yessenalina, A. (2008). An empirical evaluation of supervised learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pages 96–103. ACM.
Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning, pages 161–168. ACM.
Chou, P. A. (1991). Optimal partitioning for classification and regression trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4):340–354.
Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403):596–610.
Díaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC bioinformatics, 7(1):3.
Epstein, L., Martin, A. D., Quinn, K. M., and Segal, J. A. (2007a). Ideological drift among supreme court justices: Who, when, and how important. Nw. UL Rev., 101:1483.
Epstein, L., Quinn, K., Martin, A. D., and Segal, J. A. (2007b). On the perils of drawing inferences about supreme court justices from their first few years of service. Judicature, 91:168.
Fisher, L. (2009). The perfect swarm: the science of complexity in everyday life. Basic Books.
Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1):3–42.
Guimerà, R. and Sales-Pardo, M. (2011). Justice blocks and predictability of us supreme court votes. PloS one, 6(11):e27188.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer.
Ho, T. K. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–844.
Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is np-complete. Information Processing Letters, 5(1):15–17.
Irrthum, A., Wehenkel, L., Geurts, P., et al. (2010). Inferring regulatory networks from expression data using tree-based methods. PloS one, 5(9):e12776.

Katz, D. M. (2013). Quantitative legal prediction – or – how i learned to stop worrying and start preparing for the data driven future of the legal services industry. Emory Law Journal, 62(4).

Martin, A. D. and Quinn, K. M. (2002). Dynamic ideal point estimation via markov chain monte carlo for the us supreme court, 1953–1999. Political Analysis, 10(2):134–153.

Martin, A. D. and Quinn, K. M. (2007). Assessing preference change on the us supreme court. Journal of Law, Economics, and Organization, 23(2):365–385.

Martin, A. D., Quinn, K. M., Ruger, T. W., and Kim, P. T. (2004). Competing approaches to predicting supreme court decision making. Perspectives on Politics, 2(04):761–767.

Moosmann, F., Nowak, E., and Jurie, F. (2008). Randomized clustering forests for image classification. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(9):1632–1646.

Page, S. E. (2008). The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (New Edition). Princeton University Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Rauhut, H. and Lorenz, J. (2011). The wisdom of crowds in one mind: How individuals can simulate the knowledge of diverse societies to reach better decisions. Journal of mathematical Psychology, 55(2):191–197.

Ruger, T. W., Kim, P. T., Martin, A. D., and Quinn, K. M. (2004). The supreme court forecasting project: Legal and political science approaches to predicting supreme court decisionmaking. Columbia Law Review, 104(4).

Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674.

Segal, J. A. and Spaeth, H. J. (1996). The influence of stare decisis on the votes of united states supreme court justices. American Journal of Political Science, pages971–1003.

Segal, J. A. and Spaeth, H. J. (2002). The Supreme Court and the attitudinal model revisited. Cambridge University Press.

Shapiro, C. (2008). Coding complexity: Bringing law to the empirical analysis of the supreme court. Hastings LJ, 60:477.

Shi, T., Seligson, D., Beldegrun, A. S., Palotie, A., and Horvath, S. (2004). Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Modern Pathology, 18(4):547–557.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional variable importance for random forests. BMC bioinformatics, 9(1):307.

Surowiecki, J. (2005). The wisdom of crowds. Random House LLC.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of chemical information and computer sciences, 43(6):1947–1958.

Tolosi, L. and Lengauer, T. (2011). Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics, 27(14):1986–1994.