Objective evaluation of chondrocyte density & cloning after joint injury using convolutional neural networks

Linjun Yang1,2 | James A. Martin1,2 | Marc J. Brouillette1 | Joseph A. Buckwalter1 | Jessica E. Goetz1,2

1Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, Iowa, USA
2Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA

Correspondence
Jessica E. Goetz, Orthopedic Biomechanics Lab 2181 Westlawn Building, Iowa City, IA 52242-1100, USA. Email: jessica-goetz@uiowa.edu

Funding information
U.S. Department of Defense, Grant/Award Numbers: W81XWH-10-1-0864, W81XWH-11-1-0583, W81XWH-15-1-0642; National Institute of Arthritis and Musculoskeletal and Skin Diseases, Grant/Award Number: P50 AR055533; Centers for Disease Control and Prevention, Grant/Award Number: R49 CCR721745

Abstract
Variations in chondrocyte density and organization in cartilage histology sections are associated with osteoarthritis progression. Rapid, accurate quantification of these two features can facilitate the evaluation of cartilage health and advance the understanding of their significance. The goal of this work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization. The U-net and “you-only-look-once” (YOLO) models were trained and validated for identifying chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed 1 week, 3, 6, and 12 months after fixation of an intra-articular fracture of the hock joint. There was excellent/good agreement between expert researchers and the developed models in identifying chondrocytes/clones (U-net: $R^2 = 0.93$, $y = 0.90x-0.69$; median F1 score: 0.87/YOLO: $R^2 = 0.79$, $y = 0.95x$; median F1 score: 0.67). Average chondrocyte density increased 1 week after fracture (from 774 to 856 cells/mm²), decreased substantially 3 months after fracture (610 cells/mm²), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm², respectively). Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm²) was higher than the 4–5 clones/mm² detected in normal tissue or 1 week after fracture and show local increases in clone density that varied across the joint surface with time. The accurate evaluation of cartilage cellularity and organization provided by this deep learning approach will increase objectivity of cartilage injury and regeneration assessments.

KEYWORDS
articular cartilage histology, chondrocyte, deep learning, U-net, YOLO
1 | INTRODUCTION

In research settings, histological analysis is a commonly used technique for evaluation of cartilage health, determining severity of osteoarthritis (OA), and evaluating efficacy of therapeutic approaches. It is common practice with this approach to evaluate cartilage cellularity and chondrocyte organization. Chondrocyte density estimated from histologic sections has been accepted as a measure of articular cartilage health. Previous work indicates that optimal chondrocyte density is necessary to maintain cartilage tissue, while declining chondrocyte density is associated with degeneration of articular cartilage in OA and with aging.1 In contrast, chondrocyte cloning—formation of nonlinear clusters of chondrocytes—is considered one of the markers of OA,1 although the significance and events responsible for cloning are not well understood. Semi-quantitative, subjective, categorical evaluations of cartilage cellularity, such as those performed during application of Mankin1 and OARSI2 scoring, have limitations including uncertain accuracy and reproducibility.3 For these reasons, the ability to rapidly quantify chondrocyte density and cloning could help advance understanding of these phenomena in the pathophysiology of OA and in articular cartilage regeneration, repair, and aging.

One previously reported approach uses image analysis algorithms to automatically identify chondrocyte density and red intensity values of pixels within the segmented cartilage and assigns cellularity and PG depletion Mankin sub-scores based on deviation of those quantitative values from predefined normative values.4,5 While that program achieved good agreement with human experts for the Mankin structural sub-score (linear regression; \(R^2: 0.87, \text{slope: 0.84}\)) and the PG depletion sub-score (\(R^2: 0.63, \text{slope: 0.70}\)), there was poor agreement with human experts on the cellularity sub-score (\(R^2: 0.07, \text{slope: 0.21}\)).6 This poor agreement may result from the simple thresholding segmentation and edge detection used to identify chondrocytes,4 two image analysis techniques which are far from being robust to the huge variation in tissue appearance during cartilage degeneration. Erroneous chondrocyte density calculations could artificially elevate the assigned cellularity subscore by classifying it as either hypercellular or hypocellular.1 Furthermore, difficulty in accurately segmenting chondrocytes substantially reduces the ability to automatically identify chondrocyte cloning. To accurately quantify cartilage cellularity and/or accurately assign cellularity scores, more sophisticated image analysis algorithms that can accommodate the wide variety of chondrocyte appearances and organization in degenerating cartilage are required.

Conveniently, modern deep-learning-based approaches have been reported to have achieved great success in a variety of computer vision tasks.6–10 A convolutional neural network (CNN) is one common deep learning method in which the model is trained to analyze a given image type by using pairs of similar input images and the corresponding correct output data (ground truth)—a technique called supervised learning. With this technique, a CNN model is able to learn inter-related hierarchical features from the image, which allows it to accurately classify, detect, and segment objects with variable appearances.8,9 CNN-based approaches have previously been applied very successfully in orthopedic research to perform tasks such as grading/classifying radiographic knee images11,12 and segmenting bone and soft tissues from MR images.13–15 CNN-based approaches have also achieved tremendous success in a variety of digital pathology applications. For example, Bejnordi et al.16 have assessed different CNN models for detecting lymph node metastases in women with breast cancer, and achieved a model that outperforms expert pathologists. Similarly, Nagpal et al.17 developed and validated a CNN model to stage prostate cancer, which resulted in higher accuracy than a group of pathologists. There are also CNN-based studies ranging from detecting sub-cellular (nuclei) components18,19 to segmentations of glandular structures20,21 in histology images.

However, applications to cartilage analysis have been more limited. Recent work by Powel et al.22 describes using a CNN-based image classifier to automatically assign a Bern score to evaluate chondrogenicity of engineered cartilage.23 and Rytky et al.24 has developed a CNN model to automatically segment calcified cartilage to study its modification during OA progression. Based on this previous success, our goal in this work was to develop and implement methods to accurately map chondrocyte density and chondrocyte cloning across the entire articular cartilage surface using a combination of CNN models and spatial information. We aimed to adapt our previously trained U-net model25 and a “you only look once” (YOLO)8 model to segment individual chondrocytes and identify chondrocyte clones in cartilage. We hypothesized that fully automated chondrocyte density and clone detection achieved with CNN models would have excellent agreement with gold-standard human expert cell/clone identification. Further, we hypothesized that application of the trained models would be able to identify subtle progressive changes in chondrocyte cellularity and organization associated with development of posttraumatic OA after a joint injury.

2 | METHODS

2.1 | CNN models—U-net and YOLO

To accurately identify individual chondrocytes through the full depth of articular cartilage, we retrained our previously reported U-net model from scratch.25 The previous model had been developed by adding one batch normalization layer26 between each convolutional layer and its following ReLU activation function27 in the original U-net architecture.9 Zero-padding was used for all the convolutional layers, allowing the output segmentation image to share the same size as the input image. The sigmoid activation function27 was used after the last convolutional layer to output values between 0 and 1 at each pixel. Under this adaption, the model takes the input image of size 512 \(\times 512 \times 3\) (pixel \(\times\) pixel \(\times\) RGB) and outputs a single channel probability image (512 \(\times\) 512), with each output pixel representing the probability of it being a chondrocyte. Pixels with predicted probability values higher than 0.5 were labeled as cell pixels. To emphasize segmentation accuracy for smaller and more closely packed cells, such as would be found in the superficial zone or in a clone, additional images
of superficial zone cartilage were included in the training set. The previous U-net model was then retrained to optimize a modified binary cross entropy loss function that was weighted to emphasize smaller superficial zone chondrocytes and chondrocytes that were closely adjacent Figure 1.

To identify chondrocyte clones, the YOLO object detection model was used. YOLO predicts a set of bounding boxes to localize objects, with a label for each box representing the “class” of the detected object. To build our YOLO model, the contracting path of our retrained U-net was copied, which allowed the YOLO model to utilize previously learned chondrocyte features (a method termed transfer learning). Additional convolutional layers and max pooling layers were stacked after the copied path to allow the YOLO model to learn local image context for the existence of a clone. To detect multiple clones that can appear within a single image, our YOLO model was implemented to predict one bounding box in each cell of an 8 × 8 grid defined over the 512 × 512 pixel input image (Figure 2). The bounding box information predicted in each grid cell included bounding box size, centroid coordinates, and a probability value (between 0 and 1) of detecting a clone centered within the grid cell (Figure 2). Bounding boxes with a probability value >0.5 were considered clones. Training the YOLO was achieved by optimizing a previously described loss function which forces clone detection with high-probability, closely fitting bounding boxes.

The U-net and YOLO models were trained using previously generated Safranin-O and fast green-stained histological sections of rabbit articular cartilage with varying degrees of arthritic changes induced by ACL transection and medial meniscus destabilization. Sections were digitized using a stage scanner microscope (Olympus VS110, Olympus).
The validated CNN models were then applied to existing sets of histological sections of articular cartilage to document the natural history of changes in chondrocyte density and organization after an intra-articular fracture (IAF) in a Yucatan minipig PTOA model. In this model, impact-induced IAFs in the hock joint (ankle analog) of skeletally mature minipigs (average 24 months of age at fracture) are surgically fixed using open reduction internal fixation. From previous and ongoing studies, 5-μm-thick Safranin-O/fast green/Wiegert’s hematoxylin-stained sagittal histological sections of the medial talus were available from animals sacrificed 1 week, 3, 6, and 12 months after fracture fixation. Histological tissue sections from joints of breed and age-matched healthy, unfractured pigs were also available. All sections had been prepared according to the same histological processing protocol and digitized as described above.

A continuous, 15-mm cartilage span centered within the weightbearing area was selected for analysis and segmented using a previously developed semi-automated segmentation algorithm (Figure 3). A sliding-window approach was then used to automatically divide the entire 15-mm cartilage span into 512 × 512-pixel image tiles (Figure 3B), each of which was analyzed using the validated U-Net and YOLO models to segment individual chondrocytes and detect chondrocyte clones, respectively. Given that a chondrocyte or a clone may be split into adjacent image tiles by sliding-window locations and hence missed by the U-Net or YOLO, the process was repeated on additional image tiles of the same size acquired after shifting the sliding window by an offset of half the window size in the horizontal and then again in the vertical direction (Figure 3B). Cell segmentations and clone bounding boxes in each image tile were projected back to the associated window location within the full cartilage geometry (Figure 3C). Chondrocyte segmentations from all the regular tiles were projected first, then segmentations from the center span of the horizontally offset tiles were added, and finally segmentations from the center span of the vertically offset tiles were added. This method preserved the more accurate cell segmentations from the center of each tile and covered the seams between regular tiles (Figure 3B). In contrast, all chondrocyte clone bounding boxes from both the regular and additional tiles were projected back to the cartilage segmentation, and subjected to non-maximal suppression to remove any redundant, less accurate bounding boxes.

Three different metrics were calculated to evaluate cartilage cellularity: chondrocyte density, clone density, and percentage of chondrocytes that reside in a clone. To calculate densities, the number of chondrocytes or clones whose centroid was within the segmented cartilage were divided by the cartilage area. Clone chondrocytes were defined as those whose centroids were located within the bounding box of a clone (Figure 3C). The number of clone chondrocytes was divided by the total number of chondrocytes identified in the cartilage. These three metrics were calculated for the entire joint, as well as mapped in 1.5 mm increments across the weightbearing cartilage. The 30%–40% positions articulated with the healing fracture line. These data were normally distributed (Shapiro-Wilk test; Prism 9, GraphPad Software LLC) and are reported as medians with 95% confidence intervals (CIs).

2.2 Cellularity changes after joint injury

The validated CNN models were then applied to existing sets of histological sections of articular cartilage to document the natural history of changes in chondrocyte density and organization after an intra-articular fracture (IAF) in a Yucatan minipig PTOA model. In this model, impact-induced IAFs in the hock joint (ankle analog) of skeletally mature minipigs (average 24 months of age at fracture) are surgically fixed using open reduction internal fixation. From previous and ongoing studies, 5-μm-thick
3 | RESULTS

The optimal U-net was selected at the 82nd epoch with a median F1 score of 0.89 (95% CI: 0.88–0.93) on the training validation images, and the optimal YOLO was selected at the 105th epoch with a median F1 score of 0.80 (95% CI: 0.67–1.00) on the training validation images. Those F1 score values indicated good detection accuracy (good = 0.70–0.90) by each model. In the secondary validation, the U-net achieved an excellent agreement with the average counts by the experts (Figure 4; $R^2 = 0.93$, $y = 0.90x - 0.69$) and a close-to-excellent median F1 score (median: 0.87; 95% CI: 0.84–0.89). The average IOU between the U-net segmentation and manual segmentation of each chondrocyte was 0.849, indicating high accuracy of U-net chondrocyte segmentations.34 The three expert researchers’ agreement identifying clones was good (ICC = 0.76).35 Despite relatively a lower median F1 score (median: 0.67; 95% CI: 0.57–0.89) for clone detection, the YOLO still achieved good agreement with the average counts by the experts (Figure 4; $R^2 = 0.79$, $y = 0.95x$). Both models were found to be able to identify chondrocytes/clones of variable size, shape, and appearance (Figure 4).

Differences in cellularity were found between the normal and the different postoperative timepoints. Average chondrocyte density 1 week after fracture (mean: 856 cells/mm²; 95% CI: 748–963 cells/mm²) was slightly higher than normal chondrocyte density (mean: 774 cells/mm²; 95% CI: 742–806 cells/mm²; $p = 0.573$) and significantly higher than at 3 months (mean: 610 cells/mm²; 95% CI: 491–729 cells/mm²; $p = 0.006$), 6 months (mean: 638 cells/mm²; 95% CI: 470–806 cells/mm²; $p = 0.016$), and 12 months (mean: 683 cells/mm²; 95% CI: 556–810 cells/mm²; $p = 0.077$) after fracture (Figure 5A). Clone density and percentage of chondrocytes in clones 3, 6, and 12 months after fracture was higher than in normal cartilage or at 1-week postoperatively, however, these differences did not reach statistical significance (Figure 5B,C; $p > 0.1$ for all pairwise comparisons).

Local cellularity differences were noted among the different postinjury timepoints. At the anterior positions, chondrocyte densities were lower 3, 6, and 12 months after fracture than after 1 week or in normal tissue. Cell density was the lowest 3 months after fracture and was significantly lower than densities in normal tissue or 1 week after fracture at the 10% ($p = 0.032/0.012$), 20% ($p = 0.107/0.024$), and 30% ($p = 0.006/0.039$) positions (Figure 6A). One week after fracture, chondrocyte densities in the posterior locations were significantly lower than densities in normal tissue or 1 week after fracture (10%, $p = 0.137, 0.049, 0.649$ for 3, 6, 12 months, respectively), 20% ($p = 0.164, 0.096, 0.556$), 30% ($p = 0.108, 0.010, 0.428$), 90% ($p = 0.023, <0.0001, 0.046$), and 100% ($p = 0.002, <0.0001, 0.067$) Chondrocyte densities 3, 6, and 12 months after fracture were also lower than the normal group at the posterior positions, although these differences did not reach statistical significance (Table 1).

Locally, significantly higher clone density/percentages of chondrocytes in clones was found 3, 6, and 12 months after fracture (Figure 6B,C and Table 2). Local clone density at 3 months was...
significantly higher than the normal group at the 70% position ($p = 0.013$) which is moving into weightbearing tissue that was not directly affected by the fracture. By 6 and 12 months after fracture, significantly higher clone densities than in the normal and/or 1-week groups were found more peripherally in the joint (the 20% and 80% positions). Clone density at 6 months was significantly higher than in normal or 1 week at the 20% position ($p = 0.026, 0.021$) and at 12 months clone density was higher than in the normal ($p = 0.057$)

FIGURE 4 (Upper) The trained U-net was able to accurately detect chondrocytes of different size, shape, appearance and zonal origin. It has achieved an excellent agreement with expert researchers on counting chondrocytes. (Lower) The trained YOLO model was able to accurately detect clones of different sizes and geometry, with few false positives (red box) or false negatives (blue boxes). The trained YOLO model achieved good agreement with expert researchers on identifying clones on 30 images not used to train the model.

FIGURE 5 This figure shows the plots of chondrocytes density, clone density, and percentage of chondrocytes in clones at different postoperative timepoints from the entire cartilage region. (A) Chondrocyte densities in the entire cartilage span demonstrated a slight increase 1 week after fracture and then decreased after 3 months. The asterisk (*) indicates level of significance: * for $p < 0.05$ and ** for $p < 0.01$. (B,C) Clone densities/percentages of chondrocyte in clone were low in the normal and early (1 week) after fracture and increased after 3 months, although this increase was not significant.
FIGURE 6 Maps of chondrocyte density, clone density, and percentage of chondrocytes in clones plotted in 1.5 mm increments along the weightbearing cartilage surface. The gray bar indicates the part of the talus in direct contact with the fracture line during the fracture-inducing impact. The curve for each timepoint represents the mean cellularity metric value among the five different animals at that timepoint. Color-filled circles represent pair-wise comparisons with $p < 0.05$. (A) Chondrocyte densities in normal and 1-week postfracture tissue were higher than at later postfracture timepoints, particularly the 3-month time point and along the anterior portion of the weightbearing cartilage. (B,C) Significantly higher values of clone density and the percentage of chondrocytes in clones were found 3, 6, and 12 months after fracture. Compared to the relative uniformity of clone distribution over the weightbearing cartilage in the normal and 1-week postfracture groups, the local increases in clone density adjacent to the tissue damaged by the fracture indicate the pathological nature of the clones detected by our model.

TABLE 1 This table summarizes chondrocyte density values (cells/mm²) at different postoperative timepoints.

	Anterior	Posterior										
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Entire surface	
Normal	Mean	868	848	903	814	708	701	673	729	719	730	774
	Lower	1035	987	1149	914	797	886	789	798	824	876	742
	Upper	701	709	656	715	618	517	557	660	615	584	806
1 Week	Mean	899	903	846	795	810	837	816	864	923	918	856
	Lower	1027	979	942	936	966	997	933	959	1015	977	748
	Upper	772	826	750	654	654	678	698	768	830	859	963
3 Months	Mean	583	609	568	600	626	609	595	625	627	545	610
	Lower	661	694	715	716	772	891	822	823	807	958	491
	Upper	506	524	421	483	479	327	368	426	447	131	729
6 Months	Mean	782	795	769	669	731	568	572	540	505	470	638
	Lower	862	975	1135	947	1151	730	774	776	701	818	470
	Upper	701	615	402	391	311	405	369	304	310	121	806
12 Months	Mean	759	745	739	685	643	704	668	696	650	660	683
	Lower	1048	991	888	821	803	1122	861	832	815	818	556
	Upper	470	498	590	548	483	285	475	560	486	502	810

Note: Values are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean with lower and upper 95% confidence interval bounds. The articular surface between 30% and 40% (bolded columns) was the portion of the talus that articulated with the fracture line in the tibia.
and 1-week (p = 0.047) groups at the 80% position. Variations in the percentage of chondrocytes in a clone were very similar to the local variations of clone density (Figure 6C).

4 | DISCUSSION

Histological analysis remains among the most commonly used research techniques to evaluate the health of cartilage. In this work, we trained, validated, and implemented two different CNN models to quantify the progressive chondrocyte cellularity changes after joint/cartilage injury. The trained U-net and YOLO models developed for this purpose were validated to be accurate for identifying chondrocytes and clones by achieving good agreement with manual assessment by expert researchers. These algorithms proved to be extensible for use identifying chondrocytes and chondrocyte clones in degenerating minipig cartilage, and they were able to identify progressive cellularity changes with time after joint injury.

While there are several CNN models that could be suitable for chondrocyte identification,7,10 the U-net was selected for chondrocyte detection because it has demonstrated state-of-the-art performance on a similar cell detection task,9 and it provides boundary information from chondrocyte segmentation that can be useful for future studies related to co-localization of functional cellular stains and specific morphological structures. In contrast, as relatively little is known about the importance of the morphology of clones, a simple bounding-box-based detection method was used for clone detection in this work. The YOLO was selected over other bounding-box-based methods for its developmental and implementation simplicity. Specifically, it is a single CNN model that can be developed and trained end-to-end to predict bounding box probability and coordinates simultaneously.8 Similar methods have two stages, requiring independent development of a bounding box generator and an image classifier,7,36 which can be more laborious and slower. If clone morphology, rather than simple detection, becomes more important in future work, adapting the U-net trained to segment chondrocytes using transfer learning would likely be successful for that purpose.

TABLE 2
This table summarizes clone density (clone count), with values expressed as clones/mm² (number clones) at different postoperative timepoints

	Anterior										Entire surface
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
Normal											
Mean	5 (2)	4 (1)	4 (2)	4 (2)	5 (2)	6 (2)	2 (1)	2 (1)	3 (1)	5 (2)	5 (14)
Lower	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (1)	1 (5)
Upper	12 (4)	12 (3)	10 (5)	15 (7)	11 (4)	15 (5)	5 (2)	5 (2)	6 (3)	8 (3)	8 (23)
1 Week											
Mean	2 (1)	4 (1)	2 (1)	3 (1)	2 (1)	4 (1)	6 (2)	1 (0)	3 (1)	7 (3)	4 (11)
Lower	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Upper	8 (3)	12 (4)	8 (2)	10 (3)	5 (2)	7 (3)	14 (3)	4 (1)	9 (3)	16 (6)	5 (19)
3 Months											
Mean	10 (6)	8 (5)	9 (5)	5 (3)	2 (1)	21 (9)	20 (12)	10 (5)	11 (6)	8 (5)	11 (58)
Lower	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (3)
Upper	21 (12)	21 (13)	20 (11)	18 (11)	6 (3)	44 (19)	51 (30)	21 (11)	27 (14)	18 (10)	21 (113)
6 Months											
Mean	12 (7)	21 (12)	13 (7)	7 (5)	9 (6)	11 (7)	9 (5)	9 (6)	6 (5)	8 (7)	11 (68)
Lower	0 (0)	0 (0)	0 (0)	0 (0)	2 (3)	2 (2)	0 (0)	0 (0)	0 (0)	0 (0)	5 (44)
Upper	31 (17)	42 (26)	28 (18)	18 (13)	20 (15)	19 (11)	16 (9)	18 (12)	17 (14)	18 (15)	16 (92)
12 Months											
Mean	9 (4)	9 (3)	8 (3)	8 (4)	7 (4)	6 (4)	11 (7)	17 (13)	8 (5)	11 (8)	9 (58)
Lower	0 (0)	0 (0)	2 (1)	0 (0)	3 (3)	2 (0)	0 (0)	0 (0)	2 (1)	1 (0)	3 (12)
Upper	18 (7)	21 (4)	13 (8)	16 (5)	11 (8)	11 (8)	22 (16)	36 (29)	14 (9)	20 (17)	15 (98)

Note: Values are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean with lower and upper 95% confidence interval bounds. The articular surface between 30% and 40% (bolded columns) was the portion of the talus that articulated with the fracture line in the tibia.
The U-net model reported here is a retrained version of our previously reported model which had been selected based on providing the lowest average loss value during training. However, that model, chosen to minimize weighted loss at each pixel, did not correspond to the highest detection accuracy at the cell level. Therefore, in addition to modifications made to emphasize detection of small, closely packed chondrocytes, the retrained model was selected based on providing the highest F1 score, which reflected the best cell detection accuracy as compared with the gold-standard manual segmentations. To maximize functional accuracy, a similar process was followed during the training of the YOLO. This approach of selecting a model based on performance was used to avoid choosing an overfit model, while the secondary validation of the selected model (on different testing images) was intended to assess generalizability to unseen image data.

Estimated chondrocyte densities in pig cartilage were close in magnitude to previously reported values in a large animal (~1000 cells/mm²). Reduced chondrocyte density and more active cloning was found beginning 3 months after IAF, which corroborates the elevated histological scoring of PTOA previously reported in this animal model at the same time point. Chondrocyte density began to progressively increase, though not significantly, by 6 months (increased 28 cells/mm²; \(p = 0.716 \)) and 12 months (increased 73 cells/mm²; \(p = 0.5734 \)) after the fracture. Despite greater clone densities at 6 and 12 months, the progressive increases in chondrocyte density were found to be mainly from increases in chondrocytes not associated with clones (nonclone related collaborating regarding the chondrocyte density: 580, 596, 642 cells/mm² for 3, 6, and 12 months after fracture, respectively). At 6- and 12-month postoperative timepoints, the combination of lower than normal chondrocyte density, increased number of chondrocyte clones, and increasing chondrocyte cellularity outside clones indicate progressive arthritic changes, but not necessarily a linear progression through the stages of cellularity outlined in the Mankin scoring system. Local increases in clone density at 3 months were found close to the region that articulates with the healing fracture line, and then more anteriorly and posteriorly relative to that location by 6 and 12 months after fracture. These findings would indicate spatial progression of cartilage abnormalities through the joint that are associated with time after injury, however, determining the mechanism responsible for this would require a separate study.

There are several limitations in this work that need to be considered. The first is that we have trained the YOLO model to identify a chondrocyte clone based on our empirical definition of >3 non-linearly organized chondrocytes in a single lacuna. These criteria were chosen to provide a standardized morphological description of the appearance of a specific feature of osteoarthritic cartilage identified in the Mankin scoring scheme as “cloning.” This term “clone” has been used interchangeably with the term “cluster” or “proliferation” in other scoring schemes. A true clone would imply that all the chondrocytes present in any given instance of this feature were derived from a single cell, and such an assessment would require a detailed analysis of cell proliferation markers that is not feasible in the current study conditions. Another limitation was that the YOLO detected some false positive clones among sparsely distributed chondrocytes and some artificially small clones (Figure 4). A possible reason for the false positives is that the training images included mostly clustered chondrocytes, leaving the model without sufficient training to recognize sparser chondrocyte patterns. A possible reason for identifying artificially small clones was that the YOLO was trained using rabbit cartilage, and clones from rabbit cartilage are smaller than those that can develop in much thicker pig cartilage. Retraining using additional images of sparse chondrocytes, larger clones, and multiple species could potentially further improve performance over the good agreement with experts that was achieved with this version of the YOLO. Finally, there were few statistically significant differences in clone density associated with time after fracture in the minipig model of PTOA, which is attributed both to the presence of some clones in normal minipig talar cartilage, and to the small number of animals available for each study group (n = 5) in this secondary analysis of existing histological sections. As hypothesized, progressive chondrocyte/clone density changes were identified, although adequately powered future studies will be needed to fully document the natural history of chondrocyte activity in joints sustaining IAFs.

In conclusion, two CNN models were developed, validated, and implemented to document progressive changes in chondrocyte density & cloning in a minipig model of IAF, which is known develop posttraumatic OA. The accuracy of the resulting chondrocyte segmentation and clone identification was very similar to the gold-standard of expert chondrocyte/clone identification. This fully objectively obtained cellularity data could be incorporated into an automated image-analysis based histological scoring system for OA progression, or used as a stand-alone technique to quantify changes in cellularity and chondrocyte organization in articular cartilage. This deep-learning-powered approach provides objective and accurate
cartilage health information and can thus better facilitate studies of cartilage injury and regeneration.

ACKNOWLEDGEMENTS

We would like to thank Dr Stephen Baek from Department of Industrial Engineering at the University of Iowa for providing expertise knowledge and suggestions in deep learning model development and training. Department of Defense grants W81XWH-10-1-0664, W81XWH-15-1-0642, and W81XWH-11-1-0583 provided funding for the original minipig studies from which the histological sections analyzed in this work were taken. NIH/NIAMS grant P50 AR055533 and Centers for Disease Control grant R49 CCR721745 funded the rabbit study which yielded the histology sections that underwent secondary analysis in this work. The content is solely the responsibility of the authors and the funding sponsors did not have any role in study design, data interpretation, or in the writing of the manuscript. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army. In conducting research using animals, the investigators adhere to the laws of the United States and regulations of the Department of Agriculture.

AUTHOR CONTRIBUTIONS

Linjun Yang: developed the deep learning models, analyzed the data, and drafted the manuscript text. James A. Martin, Marc J. Brouillette, and Joseph A. Buckwalter: annotated images for model development and read and edited the manuscript. Jessica E. Goetz: supervised the project, annotated images for model development, performed the statistical analysis, and read and edited the manuscript.

ORCID

Linjun Yang @ http://orcid.org/0000-0003-1430-3355
James A. Martin @ http://orcid.org/0000-0001-5085-0108
Jessica E. Goetz @ http://orcid.org/0000-0002-7197-5978

REFERENCES

1. Mankin HJ. Biochemical and metabolic aspects of osteoarthritis. Orthop Clin North Am. 1971;2:19-31.
2. Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthrit Cartilage. 2006;14:13-29.
3. Pauli C, Whiteside R, Heras FL, et al. Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development. Osteoarthrit Cartilage. 2012;20:476-485.
4. Moussavi-Harami SF, Pedersen DR, Martin JA, Hillis SL. Brown TD Johannesburg. Automated objective scoring of histologically apparent cartilage degeneration using a custom image analysis program. 2009;27:522-528.
5. Pedersen DR, Goetz JE, Kurriger GL, Martin JA. Comparative digital cartilage histology for human and common osteoarthritides models. Orthop Res Rev. 2013;2013:13-20.
6. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012:1097-1105.
7. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Transactions on Pattern Analysis and Machine Intelligence. Vol 39(6). IEEE: 2017: 1137-1149. doi:10.1109/TPAMI.2016.2577031
8. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
9. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer: 2015:234-241.
10. Girshick R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision. 2015:1440-1448.
11. Tiulpin A, Klein S, Bierva-Zienstra S, et al. Deep learning predicts knee osteoarthritis progression from plain radiographs. Osteoarthrit Cartilage. 2019;27:S397-S398.
12. von Schacky CE, Sohn J, Foreman SC, et al. Development and performance comparison with radiologists of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs. Osteoarthrit Cartilage. 2020;28:S306-S308.
13. Perslev M, Pai A, Iglo C, Runhaar J, Dam EB. Validation of an open source, generic deep learning architecture for 3D MRI segmentation - with data from the OAI, PROOF, and CCBR. Osteoarthrit Cartilage. 2019;27:S393-S394.
14. Tibrewala R, Pedoia V, Kinnunen C, Popovic T, Souza R, Majumdar S. Deep learning-based automatic estimation of volume and fat fraction in abductor muscles and their associations with T1RHO and T2 in hip osteoarthritis patients. Osteoarthrit Cartilage. 2019;27:S384-S385.
15. Tibrewala R, Ozghisyki E, Shah R, Foreman SC, Pedoia V, Majumdar S. Detecting hip osteoarthritic degenerative changes in MRI using deep learning. Osteoarthrit Cartilage. 2019;27:S387-S388.
16. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017; 318:2199-2210.
17. Naggal K, Foote D, Liu Y, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ DigitMed. 2019;2:1-10.
18. Sormapudi S, Stanley RJ, Stoecker WV, et al. Deep learning nuclei detection in digitized histology images by superpixels. J Pathol Inform. 2018;9:5.
19. Wang H, Cruz-Roa A, Basavanahally A, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging. 2014;1:034003.
20. Sirinukunwattana K, Pluim JPW, Chen H, et al. Gland segmentation in colon histology images: the glass challenge contest. Med Image Anal. 2017;35:489-502.
21. Chen H, Qi X, Yu L, Dou Q, Qin J, Heng PA. DCAN: deep contour aware networks for object instance segmentation from histology images. Med Image Anal. 2017;36:135-146.
22. Power L, Acevedo L, Yamashita R, Rubin D, Martin I, Barbero A. Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization. Osteoarthrit Cartilage. 2021;29:433-443.
23. Rutgers M, Van Pelt M, Dhert W, Creemers LB, Saris D. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthrit Cartilage. 2010;18:12-23.
24. Rytky S, Tiulpin A, Frondelius T, et al. Deep learning-based segmentation from histology allows for automated quantification of calcified cartilage morphology in a rabbit model of post-traumatic osteoarthritis. Osteoarthrit Cartilage. 2020;28:S310-S311.
25. Yang L, Coleman MC, Hines MR, Kluz PN, Brouillette MJ, Goetz JE. Deep Learning for Chondrocyte Identification in Automated Histological Analysis of Articular Cartilage. Iowa Orthop J. 2019;39:1.
26. Ioffe S, Japa Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015.

27. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT press; 2016.

28. Tochigi Y, Vaseenon T, Heiner AD, et al. Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am. 2011;93(7):640-647.

29. Goetz JE, Coleman MC, Fredericks DC, et al. Time-dependent loss of mitochondrial function precedes progressive histologic cartilage degeneration in a rabbit meniscal destabilization model. J Orthop Res. 2017;35:590-599.

30. Van der Walt S, Schönberger JL, Nunez-Iglesias J, et al. scikit-image: image processing in Python. PeerJ. 2014;2:e453.

31. Goetz JE, Fredericks D, Petersen E, et al. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2015;23:1797-1805.

32. Coleman MC, Goetz JE, Brouillette MJ, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med. 2018;10(427):eaan5372.

33. Rothe R, Guillain M, Van Gool L. Non-maximum suppression for object detection by passing messages between windows. Asian conference on computer vision. Springer; 2014:290-306.

34. Cowton J, Kyriazakis I, Bacardit J. Automated individual pig localisation, tracking and behaviour metric extraction using deep learning. IEEE Access. 2019;7:108049-108060.

35. Koo TK, Li MY. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155-163.

36. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014:580-587.

37. Kamisan N, Naveen SV, Ahmad RE, Kamarul T. Chondrocyte density, proteoglycan content and gene expressions from native cartilage are species specific and not dependent on cartilage thickness: a comparative analysis between rat, rabbit and goat. BMC Vet Res. 2013;9:62.