Lipid metabolism reprogramming and its potential targets in cancer

Chunming Cheng, Feng Geng, Xiang Cheng and Deliang Guo*

Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.

Keywords: Lipid metabolism, Cancer, SCAP, SREBPs, Fatty acids, Cholesterol, Lipid droplets

Background
Lipids, also known as fats, comprise thousands of different types of molecules, including phospholipids, fatty acids, triglycerides, sphingolipids, cholesterol, and cholesterol esters. Lipids are widely distributed in cellular organelles and are critical components of all membranes [1–6]. In addition to their role as structural components, lipids in membranes also serve important functions of different organelles. Lipids could function as second messengers to transduce signals within cells, and serve as important energy sources when nutrients are limited [7–10]. Dysregulation of lipid metabolism contributes to the progression of various metabolic diseases, including cardiovascular diseases, obesity, hepatic steatosis, and diabetes [11–16].

Mammalian cells acquire lipids through two mechanisms, i.e., de novo synthesis and uptake. Accumulating evidence has demonstrated that lipid metabolism is substantially reprogrammed in cancers [17–22]. Lipogenesis is strongly up-regulated in human cancers to satisfy the demands of increased membrane biogenesis [7, 8, 21, 23]. Lipid uptake and storage are also elevated in malignant tumors [24–33]. Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that regulate the expression of genes involved in lipid synthesis and uptake, and play a central role in lipid metabolism under both physiological and pathological conditions (Fig. 1). Dysregulation of SREBPs occurs in various metabolic syndromes and cancers [34–46]. Targeting the pathways regulating lipid metabolism has become a novel anti-cancer strategy. In this review, we summarize the recent progress in lipid metabolic regulation in malignancies, and discuss molecular targets for novel cancer therapy.

Nutrient sources for lipid synthesis
Glucose is the major substrate for de novo lipid synthesis (Fig. 1). It is converted to pyruvate through glycolysis, and enters mitochondria to form citrate, which is then released into the cytoplasm to serve as a precursor for the synthesis of both fatty acids and cholesterol [47, 48]. Multiple glucose transporters as well as a series of enzymes that regulate glycolysis and lipid synthesis are strongly up-regulated in cancer cells [20, 21, 28, 49–54].
Glucose also participates in the hexosamine biosynthesis pathway to generate essential metabolites for the glycosylation of numerous proteins and lipids [55–57]. In this way, glycosylation is linked to the regulation of lipid metabolism [55, 58]. Glutamine could also be used for energy production and lipid synthesis via the tricarboxylic acid cycle in mitochondria [59–62]. Glutamine is the most abundant amino acid in the blood and tissues [63, 64]. It is a major nitrogen donor essential for tumor growth. Glutamine transporters, such as SLC1A5 (also known as ASCT2), are up-regulated in various cancers [65, 66]. After entering cells, glutamine can be converted to glutamate and α-ketoglutarate in the mitochondria, and generate ATP through oxidative phosphorylation [59–61, 67, 68]. Under conditions of hypoxia or defective mitochondria, glutamine-derived α-ketoglutarate is converted to citrate through reductive carboxylation and thereby contributes to de novo lipid synthesis [34, 69–71]. Acetate can also serve as a substrate for lipid synthesis after it is converted to acetyl-CoA in the cytoplasm [72–74].
De novo lipid synthesis

Key regulators of lipogenesis—SREBPs, acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1) [27, 75–81]—are significantly up-regulated in various human cancers [20, 21, 28, 49–51]. Below we detail the roles of these proteins and discuss their potential as molecular targets in cancer treatment.

SCAP/SREBPs

SREBPs are a family of basic-helix-loop-helix leucine zipper transcription factors that regulate de novo synthesis of fatty acids and cholesterol as well as cholesterol uptake [11, 12, 82]. Mammalian cells express three SREBP proteins, SREBP-1a, -1c and -2, which are encoded by two genes, \(SREBF1 \) and \(SREBF2 \). \(SREBF1 \) encodes SREBP-1a and -1c proteins via alternative transcriptional start sites. The SREBP-1a protein is ~24 amino acids longer than -1c at its NH₂-terminus, and has stronger transcriptional activity. SREBP-1a regulates fatty acid and cholesterol synthesis as well as cholesterol uptake, whereas SREBP-1c mainly controls fatty acid synthesis [83–86]. \(SREBF2 \) encodes the SREBP-2 protein, and plays a major role in the regulation of cholesterol synthesis and uptake [87–92].

SREBPs are synthesized as inactive precursors that interact with SREBP cleavage-activating protein (SCAP), a polytopic transmembrane protein that binds to the insulin-induced gene protein (Insig), which is anchored to the endoplasmic reticulum (ER). The resulting Insig/SCAP/SREBP complex is retained in the ER [93–95]. Dissociation of SCAP from Insig, followed by a conformational change in SCAP, activates SREBP transcriptional activity. Conformational change in SCAP exposes a specific motif that allows SCAP to bind to Sec23/24 proteins, generating COPII-mediated translocation vesicles. SCAP mediates the entry of SREBPs into COPII vesicles that transport the SCAP/SREBP complex from the ER to the Golgi. In the Golgi, site 1 and 2 proteases (S1P and S2P) sequentially cleave SREBPs to release their N-terminal domains, which enter the nucleus and activate the transcription of genes involved in lipid synthesis and uptake (Fig. 1) [11, 12, 87, 88, 95, 96]. This process is negatively regulated by ER sterols, which are able to bind to SCAP or Insig and enhance their association, leading to the retention of SCAP/SREBP in the ER and reduction of SREBP activation [97–100]. Our research group recently showed that microRNA-29 (miR-29) participates in the negative feedback control of the SCAP/SREBP signaling pathway. We found that SREBP-1 up-regulates miR-29 transcription, and the microRNA binds to the 3′-untranslated region of SCAP and SREBP-1 transcripts and inhibit their translation [101, 102].

SCAP N-glycosylation

A recent series of studies in our laboratory showed that glucose could activate SCAP/SREBP trafficking and activation (Fig. 2) [55, 103, 104]. We tested the effects of glucose intermediate metabolites on different metabolic pathways, including glycolysis, oxidative phosphorylation, and hexosamine synthesis for glycosylation. We found that only N-acetylglucosamine (GlcNAc), an intermediate in the hexosamine biosynthesis pathway, activates SREBPs when glucose supply is limited. We found that inhibiting N-glycosylation, but not O-glycosylation, abolished glucose-mediated SCAP up-regulation and SREBP activation, indicating that glucose-mediated N-glycosylation of SCAP is essential for SCAP/SREBP trafficking and activation. These findings also demonstrated a coordinated molecular regulation mechanism that links glucose availability and the rate of de novo lipid synthesis (Fig. 2) [55, 58, 105].

Fig. 2 SCAP N-glycosylation is essential for SREBP trafficking and activation. SREBP activation is repressed by the ER-resident protein Insig, which binds to SCAP to prevent SREBP translocation and nuclear activation. The Nobel Prize-winning laboratories of Brown and Goldstein revealed that sterols modulate Insig interaction with SCAP to retain the SCAP/SREBP complex in the ER and inhibit SREBP [273, 274]. Our recent work has shown that glucose-mediated N-glycosylation stabilizes SCAP and promotes its dissociation from Insig, triggering the trafficking of the SCAP/SREBP complex from the ER to the Golgi, where SREBPs are cleaved to release their transcriptionally active N-terminal fragments to activate lipogenesis for tumor growth [55]. We further showed that EGFR signaling enhances glucose intake and thereby promotes SCAP N-glycosylation and SREBP activation.
SREBP activation in malignancy

The importance of SREBPs in cancer has begun to be recognized. Our group discovered that SREBP-1 is markedly up-regulated in glioblastoma [34, 106–108], the most common primary brain tumor and one of the most lethal cancers [34, 109–113]. Glioblastomas depend strongly on lipogenesis for rapid growth when they express the amplified tyrosine kinase receptor called epidermal growth factor receptor (EGFR) or its constitutively active mutant form EGFRvIII. This mutant lacks a portion of the extracellular ligand-binding domain [34, 106, 108, 111, 114, 115]. EGFR/EGFRvIII promotes lipid synthesis by activating SREBP-1 via PI3K/Akt signaling [12, 34, 87]. The nuclei of human glioblastoma cells display elevated levels of SREBP-1 [34], suggesting that the SCAP/SREBP complex may escape the tight repression of Insig, leading to high SREBP activation. Other groups have found elevated SREBP-1 in various cancers, and SREBP-1 levels in various cell lines are regulated by PI3K/Akt signaling and mTORC1 [116–122]. How SREBP-1 is activated in cancer cells is not entirely understood and requires further investigation.

Inhibiting SREBPs at the genetic level or with pharmacological agents significantly suppresses tumor growth and induces cancer cell death, making SREBPs promising therapeutic targets [28, 34, 123–137]. However, directly inhibiting SREBPs is challenging, as transcription factors often make poor drug targets. A more promising approach is to inhibit SREBP translocation from the ER to the Golgi. Along this line, fatostatin, betulin and PF-429242 have been shown to inhibit SREBP activation and have promising anti-tumor effects in pre-clinical studies [126–131].

SREBP-2 is up-regulated in prostate cancer [37, 138]. SREBP-2 regulates 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme for cholesterol synthesis. Inhibiting SREBP-2 has been explored as an anti-cancer therapy [139–144]. Statins are inhibitors of HMG-CoA reductase and are widely used to reduce circulating cholesterol levels. The anti-cancer effects of statins have been tested for various types of cancers, both pre-clinically and in patients [140, 142, 143, 145]. However, inhibition of cholesterol synthesis can lead to feedback activation of SREBPs, making the anti-cancer effects of statins less effective [144]. Thus, combination therapies that simultaneously inhibit cholesterol synthesis and SREBP activation are being developed [146, 147].

SLC25A1

A critical step for glucose-mediated de novo lipid synthesis is the release of citrate from mitochondria into the cytoplasm. Solute carrier family 25 member 1 (SLC25A1), also referred to as citrate carrier (CIC), functions as a key transporter to export citrate from mitochondria to the cytoplasm, providing a key precursor for both fatty acid and cholesterol synthesis [148, 149] (Fig. 1). SLC25A1 is regulated by SREBP-1 [150] and plays an important role in inflammation and tumor growth [151, 152]. In lung cancer cells, SLC25A1 is up-regulated by mutant p53 [151]. These findings, though preliminary, suggest that specific inhibitors of SLC25A1 may have anti-tumor effects.

ACLY

ATP citrate lyase (ACLY) converts cytoplasmic citrate to acetyl-CoA, a precursor of lipid synthesis (Fig. 1) [153–155] and a substrate for protein acetylation [155]. ACLY is a downstream target of SREBPs [156–158], and is up-regulated in many cancers, including glioblastoma, colorectal cancer, breast cancer, non-small cell lung cancer, and hepatocellular carcinoma [159–161]. Inhibiting ACLY at the genetic level or pharmacologically significantly suppresses tumor growth [162–164]. The ACLY inhibitor SB-204990 strongly inhibits tumor growth in mice with lung, prostate or ovarian cancer xenografts [162, 165]. These results suggest that ACLY may serve as an attractive anti-cancer target [155].

ACSS2

Acetate is converted to acetyl-CoA by acetyl-CoA synthetases (ACSSs), making acetate an important molecule for lipid synthesis and histone acetylation [7]. In mammalian cells, ACSS isoforms 1 and 3 localize to the mitochondria, whereas isoform 2 is found in the cytoplasm and nucleus [166]. Isoform 2 expression is regulated by SREBPs [167]. When each isoform was genetically knocked down in HepG2 cells, only ACSS2 down-regulation dramatically suppressed acetate-mediated lipid synthesis and histone modification [72]. In fact, ACSS2 expression correlates inversely with overall survival in patients with triple-negative breast cancer, liver cancer, glioma or lung cancer [72, 73, 168, 169]. Studies with patient-derived glioblastoma xenografts have shown that acetate contributes to acetyl-CoA synthesis in tumors [73]. Indeed, cancer cells rely mainly on acetate as a carbon source for fatty acid synthesis under hypoxic conditions [74]. Knocking down ACSS2 suppresses proliferation of several cancer cell lines as well as growth of xenograft tumors [74, 170–173]. ACSS2 also participates in autophagy when glucose supply is limited: it triggers histone acetylation in the promoter regions of autophagy genes, enhancing their expression [174, 175].
ACCs

Following the conversion of citrate and acetate to acetyl-CoA, the ACC enzymes catalyze ATP-dependent carboxylation of acetyl-CoA, generating malonyl-CoA for fatty acid synthesis (Fig. 1). Two ACC isoforms have been identified in mammalian cells, ACC-alpha (also termed ACC1) and ACC-beta (also known as ACC2) [176, 177]. ACC is up-regulated in several human cancers, including glioblastoma and head and neck squamous cell carcinoma [34, 178]. Inhibiting ACCs significantly reduces fatty acid synthesis and suppresses tumor growth in various xenograft models [179–186]. The ACC inhibitors TOFA, soraphen A and ND646 have shown significant anti-tumor effects in xenograft tumor models (Table 1) [179–184].

FASN

Fatty acid synthase (FASN), a key lipogenic enzyme catalyzing the last step in de novo biogenesis of fatty acids, has been studied extensively in various cancers [21, 187–191]. The early-generation FASN inhibitors C75, cerulenin and orlistat (Table 1) have been studied preclinically, but their pharmacology and side effects limited their potential for clinical use [34, 179, 188–203]. The later-generation inhibitor TVB-2640 has entered clinical trials in patients with solid tumors (Table 1) [21, 191, 204, 205].

SCD1

Stearoyl-CoA desaturase (SCD) is an ER-resident integral membrane protein that catalyzes the formation of the mono-unsaturated fatty acids oleic acid (18:1) or palmitoleic acid (16:1) from stearoyl-(18:0) or palmitoyl-CoA.

Table 1 Representative targets within the lipid metabolism pathway for anti-cancer drug development

Target protein	Inhibitor	Type of cancer	Preclinical model	Clinical trial	References
SCAP	–	GBM	Xenografts	–	[55]
SREBPs	Fatostatin, betulin, PF-429242, xanthohumol	GBM, prostate, liver, skin, melanoma, colorectal, bile duct, pancreatic, and breast cancer	Xenografts	–	[28, 125–138]
ACCs	TOFA, soraphen A, ND-646	Lung, ovarian cancer, head and neck squamous cell carcinoma	Xenografts	–	[179–185]
ACLY	SB-204990, bempedoic acid, BMS303141	Lung, prostate, and ovarian cancer	Xenografts	–	[152, 162, 165]
FASN	Cerulenin	Ovarian cancer, breast cancer	Xenografts	–	[179, 194–196]
C75	BEMP-2640	Breast, GBM, renal, and mesothelioma cancer	Xenografts	–	[34, 179, 188, 197–203]
TVB-2640	Solid malignant tumors	–	Phase I	Clinicaltrials.gov (NCT02223247), [191]	
TVB-3166	Lung, ovary, and pancreatic cancer	Xenografts	–	[264]	
C93	Ovarian and lung cancer	Xenografts	–	[265, 266]	
C247	Breast cancer	–	[267]		
Orlistat	Prostate cancer and melanoma	Xenografts	–	[192, 193]	
Triclosan	Breast cancer	Xenografts	–	[268, 269]	
LDLR	–	GBM	–	–	[27, 219]
SCD1	BZ36, A939572, MF-438	Prostate, renal cancer	Xenografts	–	[124, 212–215, 270]
LXR	GW3965, LXR-623	GBM	Xenografts	–	[27, 238, 239]
SR9243	Prostate cancer	Xenografts	–	[242]	
SOAT1 (or ACAT1)	K604, ATR-101, avasimibe	GBM, prostate and pancreatic cancer	Xenografts	–	[28, 230–232]
CPT1	Etomoxir, perhexilene	Leukemia, prostate and breast cancer	Xenografts, transgenic mice	–	[248–250, 271, 272]
CD36	Anti-CD36 antibodies	Oral cancer	Xenografts	–	[24–26]

ACCs: acetyl-CoA carboxylases, ACLY: ATP citrate lyase, CD36: cluster of differentiation 36, also known as fatty acid translocase (FAT), CPT1: carnitine palmitoyltransferase 1, FASN: fatty acid synthase, GBM: glioblastoma multiforme, LDLR: low-density lipoprotein receptor, LXR: liver X receptor, SCAP: SREBP cleavage-activating protein, SREBPs: sterol regulatory element-binding proteins.
pre-clinical xenograft models (Table 1) [212–215]. A939572 and MF-438 have shown anti-tumor effects in fatty acids into the cell [216, 217], and plays a critical role in the exogenous environment is another important route in addition to de novo synthesis, lipid uptake from the CD36

Lipid uptake

CD36

In addition to de novo synthesis, lipid uptake from the exogenous environment is another important route through which cells acquire fatty acids. CD36 transports fatty acids into the cell [216, 217], and plays a critical role in cancer cell growth, metastasis and the epithelial-mesenchymal transition [24–26]. An anti-CD36 antibody has shown significant anti-metastatic efficacy in oral cancer xenograft models [25].

LDLR

Cholesterol is an essential structural component of cell membranes [2, 218]. Cholesterol could be synthesized by cells de novo or through internalizing low-density lipoprotein (LDL). LDL binds to the membrane-bound LDL receptor (LDLR) and is internalized, after which it enters lysosomes, where free cholesterol is released [11, 76]. LDLR is up-regulated in glioblastoma via EGFR/PI3K/Akt/SREBP-1 signaling [27], and plays an important role in tumor growth [27, 76, 219]. LDLR has not been investigated as an anti-cancer target.

Lipid storage/lipid droplets

SOAT1/ACAT1

When cellular lipids are in excess, they are converted to triglycerides and cholesteryl esters in the ER, forming lipid droplets [220–222]. These droplets have been observed in various types of tumor, including glioblastoma, renal clear cell carcinoma, and cancers of the prostate, colon or pancreas [29–33]. Diglyceride acyltransferase 1/2 (DGAT1/2) could synthesize triglyceride from diacylglycerol and acyl-CoA (Fig. 1) [223, 224]. So far, the role of triglycerides in cancer cells has not been explored.

Cholesteryl esters are abundant in tumor tissue, while they are usually undetectable in normal tissue [225–229]. Sterol O-acyltransferase 1 (SOAT1), also known as acyl-CoA acyltransferase 1 (ACAT1), converts cholesterol to cholesteryl esters for storage in lipid droplets (Fig. 1). This enzyme is highly expressed in glioblastomas and in cancer of the prostate or pancreas; its expression level correlates inversely with patient survival [28, 29, 230–235]. Genetically silencing SOAT1/ACAT1 or blocking its activity using the inhibitors K604, ATR-101 or avasimibe effectively suppresses tumor growth in several cancer xenograft models [28, 230–232]. These results suggest that targeting SOAT1 and cholesteryl ester synthesis may be a promising anti-cancer strategy.

Cholesterol efflux

LXR/ABCA1

Cholesterol homeostasis is critical for maintaining cellular function, and is regulated by de novo synthesis, uptake, storage, and efflux [11, 76]. Increases in cholesterol levels can trigger feedback inhibition of cholesterol biosynthesis or conversion of cholesterol into cholesteryl esters stored in lipid droplets. Levels of 22- or 27-hydroxysterol can also increase, and these molecules bind to and activate the liver X receptor, which turns on expression of ATP-binding cassette proteins A1 (ABCA1) and G1 (ABCG1) [236]. Both proteins are plasma membrane-bound transporters that promote cholesterol export and thereby reduce intracellular cholesterol levels [237]. Synthetic liver X receptor agonists GW3965 and T0901317 significantly inhibit tumor growth in animal models of glioblastoma, breast cancer or prostate cancer [7, 27]. Activation of the liver X receptor by GW3965 up-regulates a ubiquitin ligase E3 that degrades LDLR [27, 62, 238]. The highly brain-penetrant liver X receptor agonist LXR-623 selectively kills glioblastoma cells and prolongs survival of glioblastoma-bearing mice [239]. Therefore, the combination of increasing cholesterol efflux by activating the liver X receptor and decreasing cholesterol uptake may be a promising anti-cancer strategy.

Activation of liver X receptor up-regulates transcription of glycolysis genes, such as those encoding PFK2 and GCK1, as well as of lipogenesis genes, such as those encoding SREBP-1c, FASN, and SCD [240, 241]. Conversely, inhibiting the liver X receptor using the inverse agonist SR9243 downregulates expression of PFK2 and SREBP-1c, thereby inhibiting glycolysis and fatty acid synthesis as well as suppressing xenograft tumor growth [242]. These results suggest that developing antagonists against liver X receptors may be a new anti-cancer direction. However, such an approach can be effective only if the liver X receptor shows high transcriptional activity in human tumors, which has not been clearly demonstrated yet. Moreover, inhibiting liver X receptors alone may be insufficient for reducing glycolysis and lipogenesis in human tumors, since these metabolic programs are up-regulated by multiple oncogenic signaling pathways [243–245]. Regardless, efforts to inhibit cancer growth by using liver X receptor agonists to activate cholesterol efflux can be undermined by the concomitant
up-regulation of glycolysis and lipogenesis. It may be more effective to simultaneously enhance cholesterol efflux and inhibit glycolysis and lipogenesis.

Fatty acid oxidation

CPT1

Fatty acids are an important energy source for cell growth and survival when nutrients are limiting. Carnitine palmitoyltransferase I (CPT1) converts fatty acids to acylcarnitines, which are shuttled into mitochondria, where they undergo β-oxidation and produce energy [21]. Fatty acid β-oxidation plays a critical role in tumor growth [246, 247], and the CPT1 inhibitors etomoxir and perhexiline have been tested for anti-cancer effects in various animal models [248–250].

Lipid peroxidation and cell death

Lipids, particularly polyunsaturated fatty acids, are susceptible to oxidation by oxygen free radicals, leading to lipid peroxidation that is harmful to cells and tissues [251–253]. Lipid peroxides are associated with many pathological states, including inflammation, neurodegenerative disease, cancer, and ocular and kidney degeneration [253, 254]. Lipid peroxidation triggers the propagation of lipid reactive oxygen species that can significantly alter the physical properties of cellular membranes, or degrade into reactive compounds that cross-link DNA or proteins, exerting further toxic effects [253, 255, 256]. Extensive lipid peroxidation can result in ferroptosis, a regulated form of iron-dependent, non-apoptotic cell death [255, 257]. Inducing ferroptosis may be an anti-cancer strategy [257–259]. For example, disrupting the repair of oxidative damage to bio-membranes by inhibiting the antioxidant enzyme glutathione peroxidase 4 (GPX4) could induce ferroptosis [257, 259–262]. This has emerged as an active area of research that may lead to new anti-cancer approaches, particularly against metabolically active tumors.

Summary

Extensive studies have provided strong evidence for reprogramming of lipid metabolism in cancer [27, 34, 55]. A variety of lipid synthesis inhibitors have shown promising anti-cancer effects in preclinical studies and early phases of clinical trials [7, 29, 55, 263]. However, major barriers exist in developing cancer treatment by targeting altered lipid metabolism, mostly due to incomplete understanding of the mechanisms that regulate lipid synthesis, storage, utilization and efflux in cancer cells.

Authors’ contributions

CC performed the literature search and drafted the manuscript. FG and XC assisted in the literature search and helped draft sections of the manuscript. DG designed and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank Dr. Martine Torres for critical review of the manuscript and editorial assistance.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data supporting the conclusions of this article are included within the article and Table 1.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

This work was supported by NIH Grant NS079701 (DG), American Cancer Society Research Scholar Grant RSG-14-228-01-CMY (DG), OSUCCC IDEA Grant (DG), an OSUCCC Translational Therapeutic Program seed grant (DG), a Pelotonia Postdoc Fellowship (CC) and an OSU Department of Radiation-Oncology Basic Research Seed grant (CC).

Received: 12 January 2018 Accepted: 12 May 2018

Published online: 21 May 2018

References

1. Maxfield FR. Plasma membrane microdomains. Curr Opin Cell Biol. 2002;14(4):483–7.
2. Mukherjee S, Maxfield FR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66. https://doi.org/10.1146/annurev.cellbio.20.010402.309541.
3. Pomorski T, Hrafnsvol S, Devaux PF, van Meer G. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol. 2001;12(2):139–48. https://doi.org/10.1006/scdb.2000.0231.
4. van Meer G. Membranes in motion. EMBO Rep. 2010;11(5):331–3. https://doi.org/10.1038/embor.2010.60.
5. van Meer G, Voelker DR, Feigenson G. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. https://doi.org/10.1038/nrm2330.
6. Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510(7503):48–57. https://doi.org/10.1038/nature13474.
7. Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol. 2013;2(3):289–99. https://doi.org/10.2217/cms.13.20.
8. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77. https://doi.org/10.1038/nrc2222.
9. Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R. Lipolysis: pathway under construction. Curr Opin Lipidol. 2005;16(3):333–40.
10. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517(7534):302–10. https://doi.org/10.1038/nature14190.
11. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72. https://doi.org/10.1016/j.cell.2015.01.036.
12. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124(1):35–46. https://doi.org/10.1016/j.cell.2005.12.022.
13. Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Monton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474):59–66. https://doi.org/10.1038/nature12709.
14. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44. https://doi.org/10.1016/j.cell.2013.12.012.

15. Perry RI, Samuel VT, Petersen KE, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91. https://doi.org/10.1038/nature13478.

16. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23. https://doi.org/10.1126/science.1204265.

17. Abramson HH. The lipogenesis pathway as a cancer target. J Med Chem. 2011;54(16):5615–38. https://doi.org/10.1021/jm2005805.

18. Grossi-Paoletti E, Paoletti P, Fumagalli R. Lipids in brain tumors. J Neurosurg. 1971;34(3):454–5. https://doi.org/10.3171/jn.1971.34.03.0454.

19. Podo F. Turnover phospholipid metabolism. NMR Biomed. 1999;12(7):413–39.

20. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279(15):2610–23. https://doi.org/10.1111/j.1742-4658.2012.08644.x.

21. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49. https://doi.org/10.1038/nrc.2016.89.

22. Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491(7424):364–73. https://doi.org/10.1038/nature11706.

23. Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem. 2007;282(36):26122–31. https://doi.org/10.1074/jbc.M702854200.

24. Zhao J, Zhi Z, Wang C, King H, Song G, Yu X, et al. Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep. 2017;38(4):2015–20. https://doi.org/10.3892/or.2017.5864.

25. Pascual G, Avgustinova A, Mejjeta S, Martin M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541(7635):41–5. https://doi.org/10.1038/nature20791.

26. Nath A, Li J, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752. https://doi.org/10.1038/srep14752.

27. Guo D, Reinitz F, Youssif M, Hong C, Nathanson D, Akhavan D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011;1(5):442–56. https://doi.org/10.1158/2159-8290.CD-11-0102.

28. Geng F, Cheng X, Wu X, Yao Y, Chen C, Guo JJ, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res. 2016;22(21):5337–48. https://doi.org/10.1158/1078-0432.CCR-15-0473.

29. Sun Y, He W, Luo M, Zhou Y, Chang G, Ren W, et al. SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol. 2015;36(6):4133–41. https://doi.org/10.1007/s13277-015-0407-5.

30. Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in hepatobiliary carcinoma. Int J Mol Sci. 2014;15(5):7124–38. https://doi.org/10.3390/ijms15057124.

31. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan M, et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metastasis. Cell. 2011;147(4):840–52. https://doi.org/10.1016/j.cell.2011.09.045.

32. Soyal SM, Neffziger C, Dossetta S, Paulmichl M, Patwch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci. 2015;36(6):406–16. https://doi.org/10.1016/j.tips.2015.04.010.

33. Muller-Wieland D, Knebel B, Haas J, Kotzka J. SREBP-1 and fatty liver. Clinical relevance for diabetes, obesity, dyslipidemia and atherosclerosis. Herz. 2012;37(3):273–8. https://doi.org/10.1007/s00059-012-3628-y.

34. Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):1161–80. https://doi.org/10.1016/j.chembiol.2017.08.028.

35. Min HY, Lee HY. Oncogene-driven metabolic alterations in cancer. Biomed Ther (Seoul). 2017. https://doi.org/10.4062/biomolther.2017.211.

36. Gopal K, Grossi E, Paoletti P, Usardi M. Lipid composition of human intracranial tumors: a biochemical study. Acta Neurochir (Wien). 1963;11:333–47.

37. Currie E, Schulze A, Zechner R, Walther TC, Farve RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. https://doi.org/10.1016/j.cmet.2013.05.017.

38. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Rev Endocrinol. 2017. https://doi.org/10.1038/nrendo.2017.91.

39. Schlosser HA, Drebber U, Urbanski A, Haase S, Balin C, Berth F, et al. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer. 2017;20(1):83–91. https://doi.org/10.1007/s10120-015-0577-x.

40. Sharen G, Peng Y, Cheng H, Liu Y, Shi Y, Zhao J. Prognostic value of glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer. 2017;20(1):83–91. https://doi.org/10.1007/s10120-015-0577-x.

41. Chen J, Shi M, Zheng L, et al. GLUT1 and ASC27 as predictors for prognosis of hepatocellular carcinoma. PLoS ONE. 2016;11(12):e0168907. https://doi.org/10.1371/journal.pone.0168907.

42. Cheng C, Pu P, Geng F, Liu J, Yao JJ, Wu X, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor
growth. Cancer Cell. 2015;28(5):569–81. https://doi.org/10.1016/j.ccell.2015.09.021.

56. Ryczko MC, Pawling J, Chen R, Abdel Rahman AM, You K, Copeland NK, et al. Metabolic reprogramming by hexosamine biosynthetic and galactitol-Y-glycan branching pathways. Sci Rep. 2016;6:23904. https://doi.org/10.1038/srep23904.

57. Adeva-Andany MM, Perez-Felipete N, Fernandez-Fernandez C, Donapetry-Garcia C, Pazos-Garcia C. Liver glucose metabolism in humans. Biosci Rep. 2016. https://doi.org/10.1042/bsr20160385.

58. Guo D. SCAP links glucose to lipid metabolism in cancer cells. Mol Cell Oncol. 2016. https://doi.org/10.23735/MCO.2016.75(13)/2016.1132120.

59. Dang CV. SCAP links glucose to lipid metabolism in cancer cells. Mol Cell. 2008;7(14):2257–67. https://doi.org/10.1016/j.molcel.2008.07.007.

60. Long QQ, Yi YX, Qu J, Xu CJ, Huang PL. Fatty acid synthase (FASN) levels in serum of colorectal cancer patients: correlation with clinical outcomes. Tumour Biol. 2014;35(4):3855–9. https://doi.org/10.1007/s13277-013-1510-8.

61. Dang CV. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:369–74. https://doi.org/10.1101/sqb.2011.76.01296.

62. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli MP, et al. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974;36(6):693–7.

63. Smart PK, Nathanson SM, Linnemann IN, Huntsman BD. Basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75(1):187–97. https://doi.org/10.1016/0092-8674(93)90013-Q.

64. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reduced carbohydrate support facilitates growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):380–4. https://doi.org/10.1038/nature10630.

65. Eriksson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget. 2010;18(18):734–40. https://doi.org/10.18632/oncotarget.208.

66. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Beyond aerobic glycolysis: transformed cells can engage in the pentose phosphate pathway and the citric acid cycle. J Clin Invest. 1993;92(6):2635–45. https://doi.org/10.1172/JCI119248.

67. Shimono I, Shimomura H, Horton JD, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99(5):846–54. https://doi.org/10.1172/JCI119248.

68. Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the low density lipoprotein receptor gene. Cell. 1993;75(1):187–97. https://doi.org/10.1016/0092-8674(93)90013-Q.

69. Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein in pancreatic ductal adenocarcinoma: implications for tumor progression and clinical outcome. Cell Cycle. 2008;7(19):3021–5. https://doi.org/10.1016/j.cell.2014.12.009.
94. Sun LP, Li L, Goldstein JL, Brown MS. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem. 2005;280(28):26483–90. https://doi.org/10.1074/jbc.M504014200.

95. Sun LP, Seemann J, Goldstein JL, Brown MS. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci USA. 2007;104(16):6519–26. https://doi.org/10.1073/pnas.0700970104.

96. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding of Scap from ER membranes. Cell. 2000;102(3):315–23.

97. Espenshade PJ, Li WP, Yabe D. Sterols block binding of COPII proteins to Scap, thereby controlling Scap sorting in ER. Proc Natl Acad Sci USA. 2002;99(18):1694–9. https://doi.org/10.1073/pnas.182417799.

98. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. Crucial step in cholesterol homeostasis: sterols promote binding of Scap to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002;110(4):499–509.

99. Adams CM, Goldstein JL, Brown MS. Cholesterol-induced conformational change in Scap enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc Natl Acad Sci USA. 2003;100(19):10647–52. https://doi.org/10.1073/pnas.1534833100.

100. Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, et al. Ru P, Hu P, Geng F, Mo X, Cheng C, Yoo JY, et al. Feedback loop regulation of Scap/SREBP-1 by miR-29 modulates EGFR signaling-driven glioblastoma growth. Cell Rep. 2016;16(6):1527–35. https://doi.org/10.1016/j.celrep.2016.07.017.

101. Ru P, Guo D. miRNA-29 mediates a novel negative feedback loop to regulate Scap/SREBP-1 and lipid metabolism. RNA Dis. 2017. https://doi.org/10.14800/rn1525.

102. Guo D. Scap links glucose to lipid metabolism in cancer cells. Mol Oncol. 2016. https://doi.org/10.1007/s12033-015-11321-0.

103. Shao W, Espenshade PJ. Sugar makes fat by talking to Scap. Cancer Cell. 2015;28(5):548–9. https://doi.org/10.1016/j.ccell.2015.10.011.

104. Cheng C, Guo JY, Geng F, Wu X, Cheng X, Li Q, et al. Analysis of Scap N-glycosylation and trafficking in human cells. J Vis Exp. 2016. https://doi.org/10.3791/54709.

105. Guo D, Hildebrandt U, Prins RM, Soto H, Mazzotta MM, Pang J, et al. The AMPK agonist AICAR inhibits the growth of FVEIIR-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA. 2009;106(31):12932–7. https://doi.org/10.1073/pnas.0906660106.

106. Ru P, Williams TM, Chakravarti A, Guo D. Tumor metabolism of malignant gliomas. Cancers (Basel). 2013;5(4):1469–84. https://doi.org/10.3390/cancers5041469.

107. Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1 driven lipid metabolism to treat cancer. Curr Pharm Des. 2014;20(16):2519–66. https://doi.org/10.2174/1381612816666160926.

108. Ru P, Guo D. Inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem. 1997;272(25):2972–35. https://doi.org/10.1074/jbc.272.25.2972.

109. Yoshimoto K, Dang J, Zhu S, Nathanson D, Huang T, Dumont R, et al. Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples. Clin Cancer Res. 2008;14(2):488–93. https://doi.org/10.1158/1078-0432.CCR-07-1966.

110. Du X, Kristiana I, Wong J, Brown AJ. Involvement of Akt in Erb-B2-Golgi transport of Scap/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell. 2006;17(6):2735–45. https://doi.org/10.1091/mbc.E05-11-1094.

111. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP Oncogene. 2005;24(13):6465–81. https://doi.org/10.1016/j.ijoc.2005.12.0802.

112. Ru P, Griffiths B, Yabe D, Wu M, Leevers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8(3):224–36. https://doi.org/10.1016/j.cmet.2008.07.007.

113. Duvet K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83. https://doi.org/10.1016/j.molcel.2010.06.022.

114. Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011;14(1):21–32. https://doi.org/10.1016/j.cmet.2011.06.002.

115. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTORC1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408–20. https://doi.org/10.1016/j.cell.2011.06.034.

116. Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Malignant astrocytic glioma: genetics, biology, and paths to treatment. J Neurosurg. 2016. https://doi.org/10.1093/jnci/djv138.

117. Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, et al. The sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology. 2017;65(6):1936–47. https://doi.org/10.1002/hep.29018.

118. Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol. 2009;16(8):882–92. https://doi.org/10.1016/j.chembiol.2009.07.007.

119. Li X, Chen YT, Hu P, Huang WC. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther. 2014;13(4):855–66. https://doi.org/10.1158/1535-7163.MCT-13-0790.

120. Li X, Wu JB, Chung LW, Huang WC. Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations. Oncotarget. 2015;6(38):41018–32. https://doi.org/10.18632/oncotarget.5879.

121. Krol SK, Kleibus M, Rivero-Muller A, Steppulik A. Comprehensive review on betulin as a potent anticancer agent. Biomed Res Int. 2015;2015:884189. https://doi.org/10.1155/2015/884189.

122. Gholkar AA, Cheung K, Williams KJ, Lo YC, Machamer CE, Espenshade PJ. Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples. Clin Cancer Res. 2008;14(2):488–93. https://doi.org/10.1158/1078-0432.CCR-07-1966.
in hepatocellular carcinoma. J Nucl Med. 2009;50(8):1222–8. https://doi.org/10.2967/jnumed.109.072703.

173. Yoshii Y, Waki A, Furukawa T, Kiyono Y, Morit T, Yoshii H, et al. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthase: implications for the mechanism of acetate PET. Nucl Med Biol. 2009;36(7):771–7. https://doi.org/10.1016/j.nucmedbio.2009.05.006.

174. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, et al. Nucleus-translocated ACS25 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66(5):684–97. https://doi.org/10.1016/j.molcel.2017.04.026.

175. Li X, Qian X, Lu L. Local histone acetylation by ACS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy. 2017;13(10):1790–1. https://doi.org/10.1080/15548627.2017.1349581.

176. Cang C, Rajput S, Watabe K, Liao DF, Cao D. Acetyl-CoA carboxylase-lase-a as a novel target for cancer therapy. Front Biosci (Schol Ed). 2010;2:251–26.

177. Zu X, Zhong J, Luo D, Tan J, Zhang Q, Wu Y, et al. Chemical genetics of acetyl-CoA carboxylases. Molecules. 2013;18(2):1704–19. https://doi.org/10.3390/molecules18021704.

178. Su YW, Lin YH, Pai MH, Lo AC, Lee YC, Fang IC, et al. Association between phosphorylated AMP-activated protein kinase and acetyl-CoA carboxylase expression and outcome in patients with squamous cell carcinoma of the head and neck. PLoS ONE. 2014;9(4):e96183. https://doi.org/10.1371/journal.pone.0096183.

179. Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, et al. Guseva NV, Rokhlin OW, Glover RA, Cohen MB. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, and induces human cancer cell apoptosis. Cancer Biol Ther. 2001;61(4):1572–5.

180. Li S, Qiu L, Wu B, Shen H, Zhu J, Zhou L, et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo. Mol Med Rep. 2013;8(2):1704–8. https://doi.org/10.3892/mmr.2013.1505.

181. Tan W, Zhong Z, Wang S, Sun Z, Yang X, Xu H, et al. Berberine regulated lipid metabolism in the presence of C75, compound C, and TOFA in breast cancer cell line MCF-7. Evid Based Complement Altern Med. 2015;2015:396035. https://doi.org/10.1155/2015/396035.

182. Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun. 2009;385(3):302–6. https://doi.org/10.1016/j.bbrc.2009.05.045.

183. Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Commun. 2015;6:7800. https://doi.org/10.1038/ncomms8000.

184. Luo J, Hong Y, Lu Y, Qiu S, Chaganty BK, Zhang L, et al. Acetyl-CoA carboxylase renews cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett. 2017;384:39–49. https://doi.org/10.1016/j.canlet.2016.09.020.

185. Jones JE, Esler WP, Patel R, Lanba A, Vera NB, Sobrado P, et al. Inhibition of acetyl-CoA carboxylase 1 (ACC1) and 2 (ACC2) reduces both cytostatic and cytotoxic effects modulated by p53. Cancer Res. 2015;21(24):5434–8. https://doi.org/10.1158/1078-0432.CCR-15-0126.

186. Kuhadaj PF, Brenner B, Wood FD, Hennig K, Jacobs LB, Dink J, et al. Fatty acid synthase: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA. 1994;91(14):6379–83.

187. Menendez JA, Vellon L, Colomer R, Lupu R. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 1996;56(6):1189–93.

188. Reczisz ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE. Kuhadaj PF. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996;56(12):2745–7.

189. Li JN, Gotospe M, Cresti FJ, Kumaramavel TS, Evans MK, Han WF, et al. Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res. 2001;61(4):1493–9.

190. Zhou W, Simpson PJ, McFadden JM, Townsend CA, Medghalchi SM, Vadlamudi R, et al. Fatty acid synthase inhibition triggers apoptosis during 5 phase in human cancer cells. Cancer Res. 2003;63(21):7330–7.

191. Menendez JA, Vellon L, Colomer R, Lupu R. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer. 2005;115(1):19–35. https://doi.org/10.1002/ijc.20754.

192. Gabreelsson EW, Pinn ML, Testa JR, Kuhadaj PF. Increased fatty acid synthase is a therapeutic target in mesothelioma. Clin Cancer Res. 2001;7(1):153–7.

193. Horiguchi A, Asano T, Asano T, Ito K, Sumimoto M, Hayakawa M. Pharmacological inhibitor of fatty acid synthase suppresses growth and invasiveness of renal cancer cells. J Urol. 2008;180(2):729–36. https://doi.org/10.1016/j.juro.2008.03.186.

194. Relat J, Blanchard A, Olivesa G, Cufi S, Haro O, Mamerof P, et al. Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer. 2012;12. https://doi.org/10.1186/1471-2407-12-280.

195. Chen HW, Chang YF, Chuang HY, Tai WT, Hwang JJ. Targeted therapy with fatty acid synthase inhibitors in a human prostate carcinoma LNCaP/RK-luc-bearing animal model. Prostate Cancer Prostatic Dis. 2012;15(3):260–4. https://doi.org/10.1038/pcan.2012.15.

196. Flavin R, Pelsso S, Nugle PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6(4):551–62. https://doi.org/10.2217/fon.10.11.

197. Mulliken GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett. 2015;25(20):4363–9. https://doi.org/10.1016/j.bmcl.2015.08.087.

198. Enoch HG, Catala A, Stittmatter P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem. 1976;251(16):5095–103.

199. Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, et al. X-ray structure of a mammalian stearyl-CoA desaturase. Nature. 2015;524(7564):252–6. https://doi.org/10.1038/nature14549.

200. Ntamji JM, Miyaizaki M. Regulation of stearyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004;43(2):91–104.

201. Ntamji JM, Miyaizaki M, Dobrzynek A. Regulation of stearyl-CoA desaturase expression. Lipids. 2004;39(11):1061–5.

202. Wu X, Zoe X, Chang Q, Zhang Y, Liu, Zhang L, et al. The evolutionary pattern and the regulation of stearyl-CoA desaturase genes. Biomed Res Int. 2013;2013. https://doi.org/10.1155/2013/856521.

203. Zhang Z, Dales NA, Winther MD. Opportunities and challenges in developing stearyl-Coenzyme A desaturase-1 inhibitors as novel
therapeutics for human disease. J Med Chem. 2014;57(12):5309–56. https://doi.org/10.1021/jm401516c.

212. Fritz V, Benfodda Z, Rodler G, Henniquet C, Ibarra F, Avances C, et al. Abrogation of de novo lipogenesis by stearyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010;9(6):1740–54. https://doi.org/10.1158/1535-7163.MCT-09-1064.

213. Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016;4:6. https://doi.org/10.1186/s40170-016-0146-8.

214. Yu DC, Bury JP, Tiernan J, Waby JS, Staton CA, Corfe BM. Short-chain fatty acid level and field cancerization show opposing associations with enteroredoxin cell number and neoplastic expression in patients with colorectal adenoma. Mol Cancer. 2011;10:27. https://doi.org/10.1186/1476-4587-10-27.

215. Noto A, Raffa S, Roscilli G, Malpicci D, Coluccia P, et al. Stearyl-CoA desaturase-1 is a key factor for lung-cancer-initiating cells. Cell Death Dis. 2013;4:e947. https://doi.org/10.1038/cdddis.2013.444.

216. Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell. 2005;16(1):24–31. https://doi.org/10.1091/mbc.E04-07-0061.

217. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in raft formation interferes with oncogenic signaling and blocks prostate cancer progression. Mol Cancer. 2017;16:4. https://doi.org/10.1038/s41598-017-01688-7.

218. Ohmoto T, Nishitsuji K, Yoshitani N, Mizuguchi M, Yanagisawa Y, Saito M. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in patients with colorectal adenoma. Mol Cancer. 2011;10:27. https://doi.org/10.1186/1476-4587-10-27.

219. Tugnoli V, Bottura G, Fini G, Reggiani A, Tinti A, Trinchero A, et al. Role for phosphatidic acid in the formation of "supersized" lipid droplets. PLoS Genet. 2011;7(7):e1002201. https://doi.org/10.1371/journal.pgen.1002201.

220. Rudiing MJ, Angelin B, Peterson CO, Collins VP. Low density lipoprotein receptor activity in human intracranial tumors and its relation to the cholesterol requirement. Cancer Res. 1990;50(3):483–7.

221. Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta. 2012;1817:687–714. https://doi.org/10.1016/j.bbala.p.2010.10.009.

222. Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, et al. A role for stearoyl-CoA desaturase 1 in lipid droplet metabolism. Cell Death Dis. 2013;4:e947. https://doi.org/10.1038/cdddis.2013.444.

223. Saraon P, Trudel D, Kron K, Dmitromanolakis A, Trachtenberg J, Bapat B, et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibi-...
252. Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, et al. Metabolic networks in ferroptosis. Oncol Lett. 2018;15(4):5405–11. https://doi.org/10.3892/ol.2018.8066.

253. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferroptosis. Biochim Biophys Acta. 2017;1861(8):1893–900. https://doi.org/10.1016/j.bbagen.2017.05.019.

254. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–25. https://doi.org/10.1016/j.bbrc.2016.10.086.

255. Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid homeostasis and regulated cell death. Cell. 2016;164(4):699–713. https://doi.org/10.1016/j.cell.2016.01.013.

256. Agmon E, Stockwell BR. Lipid homeostasis and regulated cell death. Curr Opin Chem Biol. 2017;39:83–9. https://doi.org/10.1016/j.cbpa.2017.06.002.

257. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76. https://doi.org/10.1016/j.tcb.2015.10.014.

258. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

259. Yang WS, Srinivasan R, Welsch ME, Shimada K, Skoura R, Viswanathan VS, et al. Regulation of ferroptotic cell death by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.

260. Shimada K, Skoura R, Kaplan A, Yang WS, Hayano M, Dixon SJ, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. https://doi.org/10.1038/nchembio.2079.

261. Weiwer M, Bittker JA, Lewis TA, Shinada K, Yang WS, MacPherson L, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22(4):1822–6. https://doi.org/10.1016/j.bmcl.2011.09.047.

262. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45. https://doi.org/10.1016/j.chembiol.2008.02.010.

263. Cheng CS, Wang Z, Chen J. Targeting FASN in breast cancer and the discovery of promising inhibitors from natural products derived from traditional Chinese medicine. Evid Based Complement Altern Med. 2014;2014:232946. https://doi.org/10.1155/2014/232946.

264. Ventura R, Mordac K, Waszcuk Z, Wang Z, Lai J, Friddl M, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):808–24. https://doi.org/10.1016/j.ebiomed.2015.06.020.

265. Zhou W, Han WF, Landree LE, Thupari JN, Pinn ML, Billington T, et al. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res. 2007;67(7):2964–71. https://doi.org/10.1158/0008-5472.CAN-06-3439.

266. Orita H, Couler J, Lemmon C, Tulley V, Vadlamudi A, Megdalchi SM, et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin Cancer Res. 2007;13(23):7139–45. https://doi.org/10.1158/1078-0432.CCR-07-1186.

267. Ali PI, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP, Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene. 2005;24(1):39–46. https://doi.org/10.1038/sj.onc.1208174.

268. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget. 2014;5(19):9362–81. https://doi.org/10.18632/oncotarget.2433.

269. Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol. 2014;27(5):834–42. https://doi.org/10.1021/tr5000156.

270. Pisanu ME, Noto A, De Vitis C, Mornone S, Scognamiglio G, Rotti G, et al. Blockade of stearyl-CoA desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett. 2017;406:93–104. https://doi.org/10.1016/j.canlet.2017.07.027.

271. Ren XR, Wang J, Osada T, Mook RA Jr, Morse MA, Barak LS, et al. Perhexiline promotes HER3 ablotion through receptor internalization and inhibits tumor growth. Breast Cancer Res. 2015;17:20. https://doi.org/10.1186/s13058-015-0528-9.

272. Schluepfer IR, Rider L, Rodrigues LU, Giono MA, Pac CT, Romero L, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13(10):2361–71. https://doi.org/10.1158/1535-7163.MCT-14-0183.

273. Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem. 2017;86:103–31. https://doi.org/10.1146/annurev-biochem-062917-011852.

274. Gao Y, Zhou Y, Goldstein JL, Brown MS, Radhakrishnan A. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. J Biol Chem. 2017;292(21):8729–37. https://doi.org/10.1074/jbc.M117.783894.