Interval-valued Fuzzy SA-ideals with Degree (λ, κ) of SA-algebra

Dr. Areej Tawfeeq Hameed1 and Narjis Jalil Raheem1.

1Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

areej.tawfeeq@uokufa.edu.iq

areej238@gmail.com

Abstract. In this paper, the notion of interval-valued fuzzy SA-ideals (briefly i-v fuzzy SA-ideal) in SA-algebras is introduced. Several theorems are stated and proved. The image and inverse image of i-v fuzzy SA-ideals are defined and how the homomorphic images and inverse images of i-v fuzzy SA-ideals become i-v fuzzy SA-ideals in SA-algebras is studied as well.

Keywords. SA-algebras, fuzzy SA-ideals, interval-valued fuzzy SA-subalgebras, interval-valued fuzzy SA-ideals in SA-algebras.

2010 Mathematics Subject Classification: 06F35, 03G25, 03B52, 94D05.

1. Introduction

Areej Tawfeeq Hameed and et al ([1]) introduced a new algebraic structure, called SA-algebra. They have studied a few properties of these algebras, the notion of SA-ideals on SA-algebras was formulated and some of its properties are investigated. The concept of a fuzzy set, was introduced by L.A. Zadeh [3]. In [5], S.M. Mostafa and A.T. Hameed made an extension of the concept of fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-valued fuzzy KUS-ideals on KUS-algebras is referred to as an i-v fuzzy KUS-ideals on KUS-algebras. They constructed a method of approximate inference using his i-v fuzzy KUS-ideals on KUS-algebras. In this paper, using the notion of interval-valued fuzzy set, we introduce the concept of an interval-valued fuzzy SA-ideals (briefly, i-v fuzzy SA-ideals) of a SA-algebra, and study some of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy SA-ideals. We prove that every SA-ideals of a SA-algebra X can be realized as an i-v level SA-ideals of an i-v fuzzy SA-ideals of X. In connection with the notion of homomorphism, we study how the images and inverse images of i-v fuzzy SA-ideals become i-v fuzzy SA-ideals.

2. Preliminaries

Now, we give some definitions and preliminary results needed in the later sections.

Definition 2.1([1]). Let $(X;+,-,0)$ be an algebra with two binary operations $(+)$ and (\cdot) and constant (0). X is called a SA-algebra if it satisfies the following identities: for any $x, y, z \in X$,

$\lambda, \kappa, \mu, \nu \in [0,1]$ represent the degree of membership.
\((SA_1)\) \(x - x = 0\),
\((SA_2)\) \(x - 0 = x\),
\((SA_3)\) \((x - y) - z = x - (z + y)\),
\((SA_4)\) \((x + y) - (x + z) = y - z\).

In X we can define a binary relation \((\leq)\) by: \(x \leq y\) if and only if \(x - y = 0\).

Example 2.2((1)). Let \(X = \{0, 1, 2, 3\}\) be a set with the following tables:

	0	1	2	3
+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Then \((X;+,-,0)\) is a \(SA\)-algebra.

Lemma 2.3((1)). Let \((X;+,-,0)\) be a \(SA\)-algebra. Then for any \(x, y \in X\),

\[
\begin{align*}
(L_1) & \quad x + y = x - (-y), \\
(L_2) & \quad x - y = x + (-y), \\
(L_3) & \quad x - y = y + x.
\end{align*}
\]

Proposition 2.4((1)). Let \((X;+,-,0)\) be a \(SA\)-algebra. Then the following holds:

for any \(x, y, z \in X\),

\[
\begin{align*}
(a_1) & \quad (x - y) - z = (x - z) - y, \\
(a_2) & \quad 0 - (x - y) = (y - x), \\
(a_3) & \quad x - y \leq z \implies x - z \leq y, \\
(a_4) & \quad x \leq y \implies z + y \leq z + x, \\
(a_5) & \quad (x - y) - (y - z) \leq x - z \quad \text{and} \quad (x - y) - (x - z) \leq z - y, \\
(a_6) & \quad x \leq y \quad \text{and} \quad y \leq z \implies x \leq z.
\end{align*}
\]

Definition 2.5((1)). Let \((X;+,-,0)\) be a \(SA\)-algebra and let \(S\) be a nonempty set of \(X\). \(S\) is called a \(SA\)-subalgebra of \(X\) if

\[
\forall x, y, z \in X.\quad \begin{array}{l}
0 \in S, \\
x - y \in S, \\
x + y \in S, \\
x \leq y \implies x \leq y.
\end{array}
\]

Definition 2.6 ((1)). A nonempty subset \(I\) of a \(SA\)-algebra \(X\) is called a \(SA\)-ideal of \(X\) if it satisfies: for \(x, y, z \in X\),

\[
\begin{align*}
(1) & \quad 0 \in I, \\
(2) & \quad (x + y) \in I \quad \text{and} \quad (y - z) \in I \implies (x + y) \in I.
\end{align*}
\]

Proposition 2.7((1)). Every \(SA\)-ideal of \(SA\)-algebra \(X\) is a \(SA\)-subalgebra of \(X\) and the converse is not true.

Lemma 2.8((1)). A \(SA\)-ideal \(I\) of \(SA\)-algebra \(X\) has the following property:

1- for any \(x \in X\), for all \(y \in I\), \(x \leq y \implies x \in I\).

2- if for any \(x \in I \implies -x \in I\).

Definition 2.9((3)). Let be a nonempty set, a fuzzy subset \(\mu\) in \(X\) is a function \(\mu: X \rightarrow [0,1]\).
Definition 2.10 ([3]). Let X be a nonempty set and μ be a fuzzy subset in X, for $t \in [0,1]$, the set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$ is called a level subset of μ.

Remark 2.11 ([1]). Let λ and κ be members of $(0,1]$, and let n and r denote a natural number and a real number, respectively, such that $r < n$ unless otherwise specified.

Definition 2.12 ([1]). Let $(X;+,\cdot,0)$ be a SA-algebra, a fuzzy subset μ of X is called a fuzzy SA-ideal with degree (λ,κ) of X if it satisfies: for all $x, y, z \in X$,

- $(FI1)$ $\mu(0) \geq \lambda \mu(x)$,
- $(FI2)$ $\mu(x + y) \geq \kappa \min\{\mu(x + z), \mu(y - z)\}$.

Example 2.13 ([1]). Let $X = \{0, 1, 2, 3\}$ be a set with the following tables:

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Then $(X;+,\cdot,0)$ is a SA-algebra. Define a fuzzy subset by:

$$\mu(x) = \begin{cases} 0.7 & \text{if } x \in \{0,1\} \\ 0.3 & \text{otherwise} \end{cases}$$

$I_1 = \{0, 1\}$ is a SA-ideal of X. Routine calculation gives that μ is a fuzzy SA-ideal with degree $(\frac{4}{7}, \frac{4}{7})$ of SA-algebras X.

Proposition 2.14 ([1]). Let A be a SA-ideal of SA-algebra X. Then for any fixed number t in an open interval $(0,1)$, there exists μ is a fuzzy SA-ideal with degree (λ,κ) of X such that $\mu_t = A$.

Theorem 2.15 ([1]). Let A be a nonempty subset of a SA-algebra X and μ be a fuzzy subset of X such that μ is into $\{0, 1\}$, so that μ is the characteristic function of A. Then μ is a fuzzy SA-ideal with degree (λ,κ) of X if and only if A is a SA-ideal of X.

Proposition 2.16 ([1]). Let μ be a fuzzy SA-ideal with degree (λ,κ) of X, then the following hold: for all $x, y, z \in X$,

- $a)$ $x \leq y \Rightarrow \mu(x) \geq \lambda \kappa \mu(y)$,
- $b)$ $\mu(x + y) \geq \lambda \kappa \min\{\mu(x + z), \mu(y - z)\}$.

Proposition 2.17 ([1]). Let μ be a fuzzy SA-ideal with degree (λ,κ) of a SA-algebra X and let μ_{t_1}, μ_{t_2} be level SA-ideals of μ, where $t_1 < t_2$, then the following are equivalent.

- $E1)$ $\mu_{t_1} = \mu_{t_2}$.
- $E2)$ There is no $x \in X$ such that $t_1 \leq \mu(x) < t_2$.

Definition 2.18 ([1]). Let $(X;+,\cdot,0)$ be a SA-algebra, a fuzzy subset μ in X is called a fuzzy SA-subalgebra of X if for all $x, y \in X$, $\mu(x + y) \geq \min\{\mu(x), \mu(y)\}$.

Theorem 2.19 ([1]). Let μ be a fuzzy subset of SA-algebra X. If μ is a fuzzy SA-subalgebra of X if and only if for every $t \in [0,1]$, μ_t is a SA-subalgebra of X, when $\mu_t \neq \emptyset$.
Theorem 2.20([1]). Let μ be a fuzzy subset of SA-algebra X. μ is a fuzzy SA-ideal with degree (λ, κ) of X if and only if, for every $t \in [0,1]$, μ_t is a SA-ideal of X, when $\mu_t \neq \emptyset$.

Proposition 2.21([1]). Every fuzzy SA-ideal with degree (λ, κ) of SA-algebra X is a fuzzy SA-subalgebra of X.

The converse of proposition (2.21) is not true as the following example:

Example 2.22([1]). Let $X = \{0, 1, 2, 3\}$ in which $(+)$ and (\cdot) is defined by the following table:

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

It is easy to show that $(X;\cdot,-,0)$ is a SA-algebra. $I=\{0, 2\}$ is a SA-subalgebra of X but I is not a SA-ideal of X.

Define $\mu: X \rightarrow [0,1]$ by $\mu(x) = \begin{cases} 0.5 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}$. μ is a fuzzy SA-subalgebra of X, but μ is not fuzzy SA-ideal with degree (λ, κ) of a SA-algebra X.

Definition 2.23([1]). Let $(X;\cdot,-,0)$ and $(Y;\cdot',-,0')$ be SA-algebras, the mapping $f : (X;\cdot,-,0) \rightarrow (Y;\cdot',-,0')$ is called a homomorphism if it satisfies:

$f(x+y) = f(x) + f(y)$, $f(x-y) = f(x) - f(y)$, for all $x, y \in X$.

Definition 2.24([2,4]). Let $f : (X;\cdot,-,0) \rightarrow (Y;\cdot',-,0')$ be a mapping nonempty sets X and Y respectively. If μ is a fuzzy subset of X, then the fuzzy subset β of Y defined by:

$$f(\mu)(y) = \begin{cases} \sup \{ \mu(x) : x \in f^{-1}(y) \} & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

is said to be the image of μ under f.

Similarly if β is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \circ f)$ in X (i.e the fuzzy subset defined by $\mu(x) = \beta(f(x))$ for all $x \in X$) is called the pre-image of β under f.

Theorem 2.25([1]). An into homomorphic pre-image of a fuzzy SA-ideal with degree (λ, κ) is also a fuzzy SA-ideal with degree (λ, κ).

Definition 2.26 ([2,4]). A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_0) = \sup \{\mu(t) | t \in T\}$.

Theorem 2.27([1]). Let $f : (X;\cdot,-,0) \rightarrow (Y;\cdot',-,0')$ be a homomorphism between SA-algebras X and Y respectively. For every fuzzy SA-ideal μ with degree (λ, κ) of X and with sup property, $f(\mu)$ is a fuzzy SA-ideal with degree (λ, κ) of Y.

3. Interval-Valued fuzzy SA-subalgebra of SA-algebra

In the section, the notion of the interval-valued fuzzy SA-subalgebras.

Remark 3.1 [6]. An interval-valued fuzzy subset (briefly i-v fuzzy subset) A of the set X is defined by $A = \{[\mu_0^L(x), \mu_0^U(x)] | x \in X\}$. (briefly, it is denoted by $A = [\mu_0^L, \mu_0^U]$ where μ_0^L and μ_0^U are any two fuzzy subsets of X such that
\[\mu_A^l(x) \leq \mu_A^u(x) \text{ for all } x \in X. \]

Let \(\tilde{\mu}_A(x) = [\mu_A^l(x), \mu_A^u(x)] \), for all \(x \in X \) and let \(D[0,1] \) denotes the family of all closed sub-interval of \([0,1]\). It is clear that if \(\mu_A^l(x) = \mu_A^u(x) = c \), where \(0 \leq c \leq 1 \), then \(\tilde{\mu}_A(x) = [c, c] \) in \(D[0,1] \), then \(\tilde{\mu}_A(x) \in [0,1] \), for all \(x \in X \). Therefore the i-v fuzzy subset \(A \) is given by: \(A = \{(x, \tilde{\mu}_A(x))\} \), for all \(x \in X \) where \(\tilde{\mu}_A : X \rightarrow D[0,1] \).

Now, we define the refined minimum (briefly r min) and order \(\leq \) on the elements \(D_1 = [a_1, b_1] \) and \(D_2 = [a_2, b_2] \) of \(D = [0,1] \) as follows:

\[
\text{r min}(D_1,D_2) = [\min(a_1,a_2), \min(b_1,b_2)], D_1 \leq D_2 \iff a_1 \leq a_2
\]

and \(b_2 \leq b_2 \). Similarly, we can define \((\geq) \) and \((=) \), [8].

Definition 3.2.
An i-v fuzzy subset \(A \) of \(S_A \)-algebra \(X \) is called an interval-valued fuzzy \(S_A \)-subalgebra of \(X \) (briefly i-v fuzzy \(S_A \)-subalgebra) if for all \(x, y \in X \),

1) \(\mu_A^l(x + y) \geq \text{r min}\{\mu_A^l(x), \mu_A^l(y)\} \)
2) \(\mu_A^l(x - y) \geq \text{r min}\{\mu_A^l(x), \mu_A^l(y)\} \).

Remark 3.3.
Since \(\mu_A^l(x + y) \geq \text{r min}\{\mu_A^l(x), \mu_A^l(y)\} \),

\[
= \text{r min}\{\min\{\mu_A^l(x), \mu_A^u(x)\}, \min\{\mu_A^l(y), \mu_A^u(y)\}\}
\]

\[
= \text{r min}\{\min\{\mu_A^l(x), \mu_A^l(y)\}, \min\{\mu_A^u(x), \mu_A^u(y)\}\}.
\]

Example 3.4.
Let \(X = \{0, 1, 2, 3\} \) in which \((+) \) be defined by: Table 3.

+	0	1	2	3
0	0	0	0	0
1	1	0	3	0
2	2	3	0	1
3	3	0	1	0

Table 3.

Then \((X, +, -, 0) \) is a \(S_A \)-algebra. Define \(\tilde{\mu}_A(x) \) as follows:

\[
\tilde{\mu}_A(x) = \begin{cases}
(0.3, 0.9) & \text{if } x = \{0,1\} \\
(0.1, 0.6) & \text{otherwise} \end{cases}
\]

It is easy to check that \(A = [\mu_A^l, \mu_A^u] \) is an i-v fuzzy \(S_A \)-subalgebra.

Proposition 3.5.
If \(A = [\mu_A^l, \mu_A^u] \) is an i-v fuzzy \(S_A \)-subalgebra of \(S_A \)-algebra \(X \), then \(\tilde{\mu}_A(0) \geq \mu_A(x) \), for all \(x \in X \).

Proof:
For all \(x \in X \), we have

\[
\tilde{\mu}_A(0) = \tilde{\mu}_A(x - x) \geq \text{r min}\{\tilde{\mu}_A(x), \tilde{\mu}_A(x)\} \geq \mu_A(x).
\]

Hence \(\tilde{\mu}_A(0) \geq \mu_A(x) \), for all \(x \in X \).

Proposition 3.6.
Let \(A = [\mu_A^l, \mu_A^u] \) be an i-v fuzzy \(S_A \)-subalgebra of \(S_A \)-algebra \(X \), if there exist a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} \tilde{\mu}_A(x_n) = [1,1] \), then

\[
\mu_A(0) = [1,1].
\]

Proof:
By Proposition (3.5), we have \(\tilde{\mu}_A(0) \geq \mu_A(x) \), for all \(x \in X \). Then \(\tilde{\mu}_A(0) \geq \mu_A(x_n) \), for every positive integer \(n \). Consider the inequality

\[
[1,1] \geq \mu_A(0) \geq \lim_{n \to \infty} \tilde{\mu}_A(x_n) = [1,1].
\]

Hence \(\mu_A(0) = [1,1] \).

Theorem 3.7.
An i-v fuzzy subset \(A = [\mu_A^l, \mu_A^u] \) of \(S_A \)-algebra \(X \) is an i-v fuzzy
If μ_A^I and μ_A^U are fuzzy SA-subalgebra of SA-algebra X, then

$$\bar{\mu}_A(x + y) = [\mu_A^I(x + y), \mu_A^U(x + y)]$$

$$\geq \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

$$= r \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

Thus we can conclude that A is an i-v fuzzy SA-subalgebra of X.

Conversely, suppose that $\bar{\mu}_A(x - y) = [\mu_A^I(x - y), \mu_A^U(x - y)]$. And

$$\bar{\mu}_A(x - y) = [\mu_A^I(x - y), \mu_A^U(x - y)]$$

$$\geq \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

$$= r \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

Therefore,

$$\mu_A^I(x + y) \geq \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

$$\mu_A^U(x + y) \geq \min\{\mu_A^I(x), \mu_A^U(x), \mu_A^I(y), \mu_A^U(y)\}$$

Hence, we get that μ_A^I and μ_A^U are fuzzy SA-subalgebras of X.

Theorem 3.8.

Let $\{|i| \in \Lambda\}$ be a family of i-v fuzzy SA-subalgebras of X, then $\bigcap_{i \in \Lambda} \mu_i$ is also an i-v fuzzy SA-subalgebra of X.

Proof.

Let $\{|i| \in \Lambda\}$ be a family of i-v fuzzy SA-subalgebra of X, then $x, y \in \bigcap_{i \in \Lambda} \mu_i$, for all $i \in \Lambda$. Suppose, $x, y \in X$, such that

$$\bar{\mu}_{\bigcap_{i \in \Lambda} \mu_i}(x + y) = [\mu_{\bigcap_{i \in \Lambda} \mu_i}^I(x + y), \mu_{\bigcap_{i \in \Lambda} \mu_i}^U(x + y)]$$

$$\geq \min\{\mu_{\bigcap_{i \in \Lambda} \mu_i}^I(x), \mu_{\bigcap_{i \in \Lambda} \mu_i}^I(y), \mu_{\bigcap_{i \in \Lambda} \mu_i}^U(x), \mu_{\bigcap_{i \in \Lambda} \mu_i}^U(y)\}$$

$$= r \min\{\mu_{\bigcap_{i \in \Lambda} \mu_i}^I(x), \mu_{\bigcap_{i \in \Lambda} \mu_i}^I(y), \mu_{\bigcap_{i \in \Lambda} \mu_i}^U(x), \mu_{\bigcap_{i \in \Lambda} \mu_i}^U(y)\}$$

Hence $\bigcap_{i \in \Lambda} \mu_i$ is an i-v fuzzy SA-subalgebra of X.

Remark 3.9.

The union of i-v fuzzy SA-subalgebras of SA-algebra X is not necessary in general, an i-v fuzzy SA-subalgebra of X as seen in the following example.

Example 3.10.

In Example (3.4), we defined i-v fuzzy SA-subalgebra.

A$_1$: $X \rightarrow [0,1]$ by $\bar{\mu}_{A_1}(0) = [0.7, 0.8]$, $\bar{\mu}_{A_1}(1) = [0.3, 0.8]$, $\bar{\mu}_{A_1}(3) = [0.2, 0.8]$

A$_2$: $X \rightarrow [0,1]$ by $\bar{\mu}_{A_2}(0) = [0.7, 0.8]$, $\bar{\mu}_{A_2}(1) = [0.3, 0.8]$, $\bar{\mu}_{A_2}(3) = [0.2, 0.8]$.

\[\text{doi:10.1088/1742-6596/1804/1/012068}\]
\[\tilde{\mu}_A(1) = \tilde{\mu}_A(2) = \tilde{\mu}_A(3) = [0.5, 0.6], \tilde{\mu}_A(4) = [0.5, 0.8]\]

By routine calculation union of \(\mu_{A_1 \cup A_2} \) not be i-v fuzzy \(SA \)-subalgebra, since \(\tilde{\mu}_{A_1 \cup A_2}(0) = [0.7, 0.8] \), \(\tilde{\mu}_{A_1 \cup A_2}(1) = [0.3, 0.8] \), \(\tilde{\mu}_{A_1 \cup A_2}(3) = \tilde{\mu}_{A_1 \cup A_2}(4) = [0.5, 0.8] \).

Theorem 3.11.

Let \(\{\mu_i : i \in \Lambda\} \) be a family of i-v fuzzy \(SA \)-subalgebras of \(SA \)-algebra \(X \), then \(\bigcup_{i \in \Lambda} \mu_i \) is an i-v fuzzy \(SA \)-subalgebra of \(X \), where \(\mu_i \subseteq \mu_{i+1} \), for all \(i \in \Lambda \).

Proof:

Since \(\{\mu_i : i \in \Lambda\} \) be a family of i-v fuzzy \(SA \)-subalgebra of \(X \) and \(\mu_i \subseteq \mu_{i+1} \), for all \(i \in \Lambda \), then for any \(x, y \in X \),

\[
\tilde{\mu}_{\bigcup_{i \in \Lambda} \mu_i}(x + y) = \left[\min \left(\mu_{\bigcup_{i \in \Lambda} \mu_i}(x), \mu_{\bigcup_{i \in \Lambda} \mu_i}(y) \right) \right] \min \left(\mu_{\bigcup_{i \in \Lambda} \mu_i}(x), \mu_{\bigcup_{i \in \Lambda} \mu_i}(y) \right) = r \min \left(\mu_{\bigcup_{i \in \Lambda} \mu_i}(x), \mu_{\bigcup_{i \in \Lambda} \mu_i}(y) \right) = r \min \left(\mu_{\bigcup_{i \in \Lambda} \mu_i}(x), \mu_{\bigcup_{i \in \Lambda} \mu_i}(y) \right).
\]

Hence \(\bigcup_{i \in \Lambda} \mu_i \) is an i-v fuzzy \(SA \)-subalgebra of \(X \).

Proposition 3.12.

Let \(X \) be a \(SA \)-algebra, \(Y \) be a subset of \(X \) and let \(A \) be an i-v fuzzy subset on \(X \) defined by :

\[
\tilde{\mu}_A(x) = \begin{cases} [a_1, a_2] & \text{if } x \in Y \\ [0, 0] & \text{otherwise} \end{cases}
\]

Where \(a_1, a_2 \in (0, 1] \) with \(a_1 < a_2 \). If \(A \) is an i-v fuzzy \(SA \)-subalgebra of \(X \), then \(Y \) is a \(SA \)-subalgebra of \(X \).

Proof:

Since that \(A \) is an i-v fuzzy \(SA \)-subalgebra of \(X \). Let \(x, y \in Y \), then

\[
\tilde{\mu}_A(x + y) \geq r \min \{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} = r \min \{[a_1, a_2], [a_1, a_2] = [a_1, a_2] \}.
\]

And \(\tilde{\mu}_A(x - y) \geq r \min \{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} = [a_1, a_2] \),

this implies that \(x + y \in Y \) and \(x - y \in Y \).

Hence \(Y \) is a \(SA \)-subalgebra of \(X \).

Definition 3.13.

Let \(X \) be a \(SA \)-algebra and \(A \) be an i-v fuzzy subset of \(X \), the nonempty set \(\overline{U}(A; [\delta_1, \delta_2]) \) is called the i-v level set of \(A \), where

\[
\overline{U}(A; [\delta_1, \delta_2]) := \{ x \in X | \tilde{\mu}_A(x) \geq [\delta_1, \delta_2], \text{ for every } [\delta_1, \delta_2] \in D[0, 1] \}.
\]

Theorem 3.14.

Let \(X \) be a \(SA \)-algebra and \(A \) be an i-v fuzzy subset of \(X \). Then \(A \) is an i-v fuzzy \(SA \)-subalgebra of \(X \) if and only if, the nonempty set \(\overline{U}(A; [\delta_1, \delta_2]) \) is a \(SA \)-subalgebra of \(A \), for every \([\delta_1, \delta_2] \in D[0, 1] \).

Proof:

Assume that \(A \) is an i-v fuzzy \(SA \)-subalgebra of \(X \) and let \([\delta_1, \delta_2] \in D[0, 1] \) be such that \(x, y \in \overline{U}(A; [\delta_1, \delta_2]) \), then

\[
\tilde{\mu}_A(x + y) \geq r \min \{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} = r \min \{[\delta_1, \delta_2], [\delta_1, \delta_2] = [\delta_1, \delta_2] \}, \text{ so } (x + y) \in \overline{U}(A; [\delta_1, \delta_2]).
\]

And \(\tilde{\mu}_A(x - y) \geq r \min \{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} = r \min \{[\delta_1, \delta_2], [\delta_1, \delta_2] = [\delta_1, \delta_2] \}, \text{ so } (x - y) \in \overline{U}(A; [\delta_1, \delta_2]). \)

Therefore \(\overline{U}(A; [\delta_1, \delta_2]) \) is \(SA \)-subalgebra of \(A \).

Conversely, assume that \(\overline{U}(A; [\delta_1, \delta_2]) \neq \emptyset \) is a \(SA \)-subalgebra of \(X \), for every
\[[\delta_1, \delta_2] \in D[0,1]. \quad \text{In the contrary, suppose that there exist } x_0, y_0 \in X \text{ such that } \]
\[\mu_A(x_0 + y_0) < r \min \{ \mu_A(x_0), \mu_A(y_0) \}. \]
\[\text{Let } \bar{\mu}_A(x_0) = [y_1, y_2], \bar{\mu}_A(y_0) = [y_3, y_4] \text{ and } \bar{\mu}_A(x_0 + y_0) = [\delta_1, \delta_2]. \]
\[\text{If } [\delta_1, \delta_2] < r \min \{ \{ y_1, y_2 \}, \{ y_3, y_4 \} \} = \min \{ \min \{ y_1, y_2 \}, \min \{ y_3, y_4 \} \}. \]
\[\text{So } \delta_1 < \min \{ y_1, y_2 \} \quad \text{and} \quad \delta_2 < \min \{ y_3, y_4 \}. \]
\[\text{Now, consider } [\lambda_1, \lambda_2] = \frac{1}{2} \{ [\lambda_1, \lambda_2] + r \min \{ y_1, y_2 \}, [y_3, y_4] \} \]
\[= \frac{1}{2} \{ \delta_1 + \min \{ y_1, y_3 \}, \delta_2 + \min \{ y_2, y_4 \} \}. \]
\[\text{Therefore, } \min \{ y_1, y_3 \} > \lambda_1 = \frac{1}{2} (\delta_1 + \min \{ y_1, y_3 \}) > \delta_1, \quad \text{and } \min \{ y_2, y_4 \} > \lambda_2 = \frac{1}{2} (\delta_2 + \min \{ y_2, y_4 \}) > \delta_2. \]

\section{4. Interval-Valued fuzzy SA-ideal with degree \((\lambda, k)\)}

In the section, the interval-valued fuzzy \(SA\)-ideals (briefly i-v fuzzy \(SA\)-ideals) with degree \((\lambda, k)\) of \(SA\)-algebra is introduced. Some theorems and properties are stated and proved.

\textbf{Definition 4.1.}

An i-v fuzzy subset \(A = \{(x, \bar{\mu}_A(x))\} \), \(x \in X \) of \(SA\)-algebra \(X \) is called an interval-valued fuzzy \(SA\)-ideal with degree \((\lambda, k)\) (i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\), in short) if it satisfies the following conditions:

(A1) \(\bar{\mu}_A(0) \geq \lambda \bar{\mu}_A(x) \), for all \(x \in X \),

(A2) \(\bar{\mu}_A(x + y) \geq k r \min \{ \bar{\mu}_A(x + z), \bar{\mu}_A(y - z) \} \), for all \(x, y, z \in X \).

\textbf{Example 4.2.}

If \(X = \{0, 1, 2, 3\} \) and \((+)\) and \((-)\) is defined as in Example (3.1.4).

Define \(\bar{\mu}_A(x) \) as follows: \(\bar{\mu}_A(x) = \begin{cases} [0.3, 0.9] & \text{if } x = 0, 1, \\ [0.1, 0.6] & \text{otherwise}. \end{cases} \)

It is easy to check that \(A \) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(X \).

\textbf{Theorem 4.3.}

An i-v fuzzy subset \(A = [\mu_A^L, \mu_A^U] \) of \(SA\)-algebra \(X \) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(X \) if and only if, \(\mu_A^L \) and \(\mu_A^U \) are fuzzy \(SA\)-ideals with degree \((\lambda, k)\) of \(X \).

\textbf{Proof:}

Suppose that \(A \) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(X \), the
\[\bar{\mu}_A(0) \geq \lambda \bar{\mu}_A(x), \quad \text{for all } x \in X, \]
then \(\bar{\mu}_A(0) = [\mu_A^L(0), \mu_A^U(0)] \geq \lambda [\mu_A^L(x), \mu_A^U(x)] = \lambda \bar{\mu}_A(x). \)

Hence, \(\mu_A^L(0) \geq \lambda \mu_A^L(x) \) and \(\mu_A^U(0) \geq \lambda \mu_A^U(x). \) For all \(x, y, z \in X \), we have
\[\mu_A^L(x + y), \mu_A^U(x + y) = \bar{\mu}_A(x + y) \]
\[= k r \min \{ \bar{\mu}_A(x + z), \bar{\mu}_A(y - z) \} \]
\[= k r \min \{ [\mu_A^L(x + z), \mu_A^U(x + z)], [\mu_A^L(y - z), \mu_A^U(y - z)] \} \]
\[= k \min \{ \mu_A^L(x + z), \mu_A^U(x + z) \}, \min \{ \mu_A^L(y - z), \mu_A^U(y - z) \} \].

Therefore, \(\mu_A^L(x + y) \geq k \min \{ \mu_A^L(x + z), \mu_A^L(y - z) \} \) and \(\mu_A^U(x + y) \geq k \min \{ \mu_A^U(x + z), \mu_A^U(y - z) \} \).

Hence, we get that \(\mu_A^L \) and \(\mu_A^U \) are fuzzy \(SA\)-ideals with degree \((\lambda, k)\) of \(X \).
Conversely, if μ^+_A and μ^-_A are fuzzy SA-ideals with degree (λ, k) of X, then $\mu^+_A(0) \geq \lambda \mu_A(x)$ and $\mu^-_A(0) \geq \lambda \mu_A(x)$ implies that $\bar{\mu}_A(0) \geq \bar{\lambda} \bar{\mu}_A(x)$, for all $x \in X$.

For all $x, y, z \in X$. Observe :

$$\bar{\mu}_A(x + y) = [\mu^+_A(x + y), \mu^-_A(x + y)]$$

$$\geq k \min \{ \mu^+_A(x + z), \mu^-_A(y - z) \}, \min \{ \mu^+_A(x + z), \mu^-_A(y - z) \}$$

$$= k r \min \{ [\mu^+_A(x + z), \mu^-_A(x + z)], [\mu^+_A(y - z), \mu^-_A(y - z)] \}$$

$$= k r \min \{ \bar{\mu}_A(x + z), \bar{\mu}_A(y - z) \}.$$

Thus we can conclude that A is an i-v fuzzy SA-ideal with degree (λ, k) of X.

Theorem 4.4.

The intersection of any set of i-v fuzzy SA-ideals with degree (λ, k) of SA-algebra X is also an i-v fuzzy SA-ideal with degree (λ, k) of X.

Proof:

Let $\{\mu_i \mid i \in \Lambda\}$ be a family of i-v fuzzy SA-ideal of X, then $x, y \in \cap_{\mu_i}$ for all $i \in \Lambda$.

$$\bar{\mu}_{\cap \mu_i}(0) = [\mu^+_{\cap \mu_i}(0), \mu^-_{\cap \mu_i}(0)]$$

$$\geq \lambda \min \{ \mu^+_{\mu_i}(x), \mu^-_{\mu_i}(x) \}$$

$$= \lambda \bar{\mu}_{\cap \mu_i}(x).$$

Suppose $x, y, z \in X$ such that $x + z \in \cap \mu_i$ and $y - z \in \cap \mu_i$.

Since μ_i are i-v fuzzy SA-ideals with degree (λ, k) of X, then we get

$$\bar{\mu}_{\cap \mu_i}(x + y) = [\mu^+_{\cap \mu_i}(x + y), \mu^-_{\cap \mu_i}(x + y)]$$

$$= k \min \{ \mu^+_{\mu_i}(x + z), \mu^-_{\mu_i}(y - z) \}, \min \{ \mu^+_{\mu_i}(x + z), \mu^-_{\mu_i}(y - z) \}$$

$$= k \min \{ \bar{\mu}_{\cap \mu_i}(x + z), \bar{\mu}_{\cap \mu_i}(y - z) \}.$$

Hence $\cap \mu_i$ is an i-v fuzzy SA-ideal with degree (λ, k) of X.

Remark 4.5.

The union of an i-v fuzzy SA-ideal with degree (λ, k) of SA-algebra X, is not necessarily an i-v fuzzy SA-ideal with degree (λ, k) as seen in the following example.

Example 4.6.

Let $X = \{0, 1, 2, 3\}$ in which (\ast) be defined by:

0	1	2	3
0	1	2	3
1	1	0	3
2	2	3	0
3	3	0	1
3	3	2	1

Then $(X, +, -)$ is a SA-algebra. Define $\bar{\mu}_A(x)$ as follows:

$$\bar{\mu}_A(x) = \begin{cases} [0.3, 0.9] & \text{if } x = \{0, 1\} \\ [0.1, 0.6] & \text{otherwise} \end{cases}$$

Let $I_1 = \{0, 1\}$ and $I_2 = \{0, 2\}$ it is easy to check that is I_1 and I_2 an i-v fuzzy SA-ideal but $I_1 \cup I_2$ not SA-ideal since if $x = 2$ & $y = 1$ & $z = 3$, then $\bar{\mu}_A(2 + 1) \geq k r \min \{ \bar{\mu}_A(2 + 3), \bar{\mu}_A(1 - 3) \}$ is not true.

Theorem 4.7.

Let $\{\mu_i \mid i \in \Lambda\}$ be a family of i-v fuzzy SA-ideals with degree (λ, k) of SA-algebra X, then \cup_{μ_i} is an i-v fuzzy SA-ideal with degree (λ, k) of X, where $\mu_i \subseteq \mu_{i+1}$, for all $i \in \Lambda$.

Proof:
Since \(\{ \mu_i : i \in \Lambda \} \) be a family of i-v fuzzy \(S_A \)-ideals with degree \((\lambda, k)\) of \(X \) and \(\mu_i \subseteq \mu_{i+1} \), for all \(i \in \Lambda \), then for any \(x, y, z \in X \),
\[
\mu_{\cup \lambda \in \Lambda} (0) = \left[\mu_{\cup \lambda \in \Lambda} (0), \mu_{\cup \lambda \in \Lambda} (0) \right] \geq \lambda \left[\mu_{\cup \lambda \in \Lambda} (x, \mu_{\cup \lambda \in \Lambda} (x) \right] = \lambda \mu_{\cup \lambda \in \Lambda} (x).
\]
Suppose \(x + z \in U_{\cup \lambda \in \Lambda} \) and \(y - z \in U_{\cup \lambda \in \Lambda} \).
\[
\mu_{\cup \lambda \in \Lambda} (x + y) = k \min \left[\mu_{\cup \lambda \in \Lambda} (x + z), \mu_{\cup \lambda \in \Lambda} (y - z) \right] = k \min \left[\mu_{\cup \lambda \in \Lambda} (x + z), \mu_{\cup \lambda \in \Lambda} (x + z), \mu_{\cup \lambda \in \Lambda} (y - z), \mu_{\cup \lambda \in \Lambda} (y - z) \right] = k \min \left[\mu_{\cup \lambda \in \Lambda} (x + z), \mu_{\cup \lambda \in \Lambda} (y - z) \right].
\]
Hence \(U_{\cup \lambda \in \Lambda} \) is an i-v fuzzy \(S_A \)-ideal with degree \((\lambda, k)\) of \(X \).

Theorem 4.8.
Let \(X \) be a \(S_A \)-algebra and \(A \) be an i-v fuzzy subset of \(X \). Then \(A \) is an i-v fuzzy \(S_A \)-ideal of \(X \) if and only if the nonempty set \(\bar{U}(A; [\delta_1, \delta_2]) \) is a \(S_A \)-ideal of \(A \).

Proof:
Assume that \(A \) is an i-v fuzzy \(S_A \)-ideal of degree \((\lambda, k)\) of \(X \) and
\[
\bar{U}(A; [\delta_1, \delta_2]) = [\lambda \left[\mu_{\cup \lambda \in \Lambda} (x), \mu_{\cup \lambda \in \Lambda} (x) \right], \lambda \mu_{\cup \lambda \in \Lambda} (x), \forall x \in X \),
\]
then \(\bar{U}(A; [\delta_1, \delta_2]) \neq \varnothing \) is a \(S_A \)-ideal of \(X \), for all \(x \in X \), then
\[
\bar{U}(A; [\delta_1, \delta_2]) = \lambda \left[\mu_{\cup \lambda \in \Lambda} (x), \mu_{\cup \lambda \in \Lambda} (x) \right], \forall x \in X \).
\]
Let \(\delta_1, \delta_2 \in D \) such that \(x \in \bar{U}(A; [\delta_1, \delta_2]) \), then
\[
\bar{U}(A; [\delta_1, \delta_2]) = \lambda \left[\mu_{\cup \lambda \in \Lambda} (x), \mu_{\cup \lambda \in \Lambda} (x) \right], \forall x \in X \).
\]
Therefore, \(\lambda \bar{U}(A; [\delta_1, \delta_2]) = [\lambda \left[\mu_{\cup \lambda \in \Lambda} (x), \mu_{\cup \lambda \in \Lambda} (x) \right], \forall x \in X \).

Theorem 4.9.
Every \(S_A \)-ideal of a \(S_A \)-algebra \(X \) can be realized as a \(S_A \)-ideal of an i-v fuzzy \(S_A \)-ideal with degree \((\lambda, k)\) of \(X \).

Proof:
Let Y be a SA-ideal of X and let A be an i-v fuzzy subset on X defined by:
\[
\tilde{\mu}_A(x) = \begin{cases}
[\alpha_1, \alpha_2] & \text{if } x \in Y \\
[0,0] & \text{otherwise}
\end{cases}
\]

Where $\alpha_1, \alpha_2 \in [0,1]$ with $\alpha_1 < \alpha_2$. It is clear that $\tilde{\mu}(A; [\alpha_1, \alpha_2]) = Y$.

We show that A is an i-v fuzzy SA-ideal with degree (λ, k) of X.

Let $x, y, z \in X$. If $(x + z), (y - z) \in Y$, then $(x + y) \in Y$, therefore
\[
\tilde{\mu}_A(x + y) = [\alpha_1, \alpha_2] = k r \min ([\alpha_1, \alpha_2], [\alpha_1, \alpha_2])
\]

If $(x + z), (y - z) \notin Y$, then $\tilde{\mu}_A(x + z) = \tilde{\mu}_A(y - z) = 0,0$.

Similarly, for the case $(x + z) \notin Y$ and $(y - z) \in Y$, we get
\[
\tilde{\mu}_A(x + y) \geq k r \min \{\tilde{\mu}_A(x + z), \tilde{\mu}_A(y - z)\},
\]

Therefore A is an i-v fuzzy SA-ideal with degree (λ, k) of X. ■

Proposition 4.10.

Let X be a SA-algebra, Y be a subset of X and let A be an i-v fuzzy subset on X defined by:
\[
\tilde{\mu}_A(x) = \begin{cases}
[\alpha_1, \alpha_2] & \text{if } x \in Y \\
[0,0] & \text{otherwise}
\end{cases}
\]

Where $\alpha_1, \alpha_2 \in (0,1]$ with $\alpha_1 < \alpha_2$ and $x \in X$. If A is an i-v fuzzy SA-ideal with degree (λ, k) of X, then Y is a SA-ideal of X.

Proof:

Since that A is an i-v fuzzy SA-ideal with degree (λ, k) of X, it is clear that $0 \notin Y$.

Let $(x + z), (y - z) \notin Y$, then $\tilde{\mu}_A(x + z) = \tilde{\mu}_A(y - z) = 0,0$.

Therefore A is an i-v fuzzy SA-ideal with degree (λ, k) of X. ■

Theorem 4.11.

If A is an i-v fuzzy SA-ideal with degree (λ, k) of X, then the set
\[
X_{\tilde{\mu}_A} := \{x \in X : \tilde{\mu}_A(x) = \tilde{\mu}_A(0)\}
\]

is a SA-ideal of X.

Proof:

Since $X_{\tilde{\mu}_A} := \{x \in X : \tilde{\mu}_A(x) = \tilde{\mu}_A(0)\}$, then $0 \in X_{\tilde{\mu}_A}$.

Let $(x + z), (y - z) \in X_{\tilde{\mu}_A}$, implies that
\[
\tilde{\mu}_A(x + z) = \tilde{\mu}_A(0) = \tilde{\mu}_A(x) = \tilde{\mu}_A(y - z), \text{ so we have}
\]

Therefore $X_{\tilde{\mu}_A}$ is a SA-ideal of X. ■

Proposition 4.12.

Every i-v fuzzy SA-ideal with degree (λ, k) of SA-algebra X is an i-v fuzzy SA-subalgebra of X.

Proof:

Since μ is an i-v fuzzy SA-ideal with degree (λ, k) of SA-algebra X, then by Theorem (4.8), $\tilde{\mu}(A; [\delta_1, \delta_2])$ is a SA-ideal of X. By Proposition (2.9) $\tilde{\mu}(A; [\delta_1, \delta_2])$ is a SA-subalgebra of X. Hence μ is an i-v fuzzy SA-subalgebra of SA-algebra X, by Theorem (3.14). ■

Remark 4.13.

The converse of Proposition (4.12) is not true as show in the following example.

Example 4.14.
In the Example (3.1.4), It is easy to show that \((X; +, - , 0)\) is a \(SA\)-algebra.

Define a fuzzy subset \(\mu: X \rightarrow [0, 1]\) by:
\[
\mu(x) = \begin{cases}
0.7 & \text{if } x \in [0, 2] \\
0.3 & \text{otherwise}
\end{cases}
\]

Routine calculations give that \(\mu\) is a fuzzy \(SA\)-subalgebra of \(X\).

Define \(\tilde{\mu}_A(x)\) as follows:
\[
\tilde{\mu}_A(x) = \begin{cases}
[0.3, 0.9] & \text{if } x = [0, 2] \\
[0.1, 0.6] & \text{otherwise}
\end{cases}
\]

It is easy to check that \(A\) is an i-v fuzzy \(SA\)-subalgebra, but not i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\).

5. Image (Pre-image) Interval-valued Fuzzy \(SA\)-ideals with degree \((\lambda, k)\) under Homomorphism of \(SA\)-algebras.

In this section, we study the homomorphic images and inverse images of i-v fuzzy \(SA\)-ideals with degree \((\lambda, k)\) become i-v fuzzy \(SA\)-ideals with degree \((\lambda, k)\) of \(SA\)-algebra is studied as well.

Definition 5.1 [2,4]:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be a mapping from set \(X\) into a set \(Y\). Let \(B\) be an i-v fuzzy subset of \(Y\). Then the inverse image of \(B\), denoted by \(f^{-1}(B)\) is an i-v fuzzy subset of \(X\) with the membership function given by \(\mu_{f^{-1}(B)}(x) = \tilde{\mu}_B(f(x))\), for all \(x \in X\).

Proposition 5.2 [6]:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be a mapping from set \(X\) into set \(Y\), let \(m = [m^L, m^U]\) and \(n = [n^L, n^U]\) be i-v fuzzy subsets of sets \(X\) and \(Y\) respectively. Then:

1. \(f^{-1}(n) = [f^{-1}(n^L), f^{-1}(n^U)]\),
2. \(f(m) = [f(m^L), f(m^U)]\).

Theorem 5.3:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be homomorphism of \(SA\)-algebras. If \(B\) is an i-v fuzzy \(SA\)-subalgebra of \(Y\), then the inverse image \(f^{-1}(B)\) of \(B\) is an i-v fuzzy \(SA\)-subalgebra of \(X\).

Proof:

Since \(B = [\mu_B^L, \mu_B^U]\) is an i-v fuzzy \(SA\)-subalgebra of \(Y\), it follows from Theorem (3.7), that \(\mu_B^L\) and \(\mu_B^U\) are fuzzy \(SA\)-subalgebras of \(Y\). Using theorem (4.1.3.3) in [5], we know \(f^{-1}(\mu_B^L)\) and \(f^{-1}(\mu_B^U)\) are fuzzy \(SA\)-subalgebras of \(X\). Hence by Proposition (5.2(1)) and Theorem (3.7), we conclude that \(f^{-1}(B) = [f^{-1}(\mu_B^L), f^{-1}(\mu_B^U)]\) is an i-v fuzzy \(SA\)-subalgebra of \(X\).

Theorem 5.4:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be a homomorphism of \(SA\)-algebras. If \(A\) is an i-v fuzzy \(SA\)-subalgebra of \(X\) with sup property, then \(f(A)\) is an i-v fuzzy \(SA\)-subalgebra of \(Y\).

Proof:

Assume that \(A = [\mu_A^L, \mu_A^U]\) is an i-v fuzzy \(SA\)-subalgebra of \(X\), it follows from Theorem (3.7), that \(\mu_A^L\) and \(\mu_A^U\) are fuzzy \(SA\)-subalgebras of \(X\). Using theorem (4.2.3.2) in [5], the images \(f(\mu_A^L)\) and \(f(\mu_A^U)\) are fuzzy \(SA\)-subalgebra of \(Y\). Hence by Proposition (5.2(2)) and Theorem (3.7), we conclude that \(f(A) = [f(\mu_A^L), f(\mu_A^U)]\) is an i-v fuzzy \(SA\)-subalgebra of \(Y\).

Theorem 5.5:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be homomorphism of \(SA\)-algebras. If \(B\) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(Y\), then the inverse image \(f^{-1}(B)\) of \(B\) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(X\).

Proof:

Since \(B = [\mu_B^L, \mu_B^U]\) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(Y\), it follows from Theorem (4.3), that \(\mu_B^L\) and \(\mu_B^U\) are fuzzy \(SA\)-ideals of \(Y\). Using theorem (4.2.3.2) in [5], we know \(f^{-1}(\mu_B^L)\) and \(f^{-1}(\mu_B^U)\) are fuzzy \(SA\)-ideals with degree \((\lambda, k)\) of \(X\). Hence by Proposition (5.2(1)) and Theorem (4.3), we conclude that \(f^{-1}(B) = [f^{-1}(\mu_B^L), f^{-1}(\mu_B^U)]\) is an i-v fuzzy \(SA\)-ideal with degree \((\lambda, k)\) of \(X\).

Theorem 5.6:

Let \(f: (X; *, 0) \rightarrow (Y; *, 0)\) be a homomorphism of \(SA\)-algebras. If \(A\) is an i-v fuzzy
SA-ideal with degree (λ, k) of X with sup property, then $f(A)$ is an i-v fuzzy SA-ideal with degree (λ, k) of Y.

Proof:
Assume that $A = [\mu_A^1, \mu_A^U]$ is an i-v fuzzy SA-ideal with degree (λ, k) of X, it follows from Theorem (4.3), that μ_A^1 and μ_A^U are fuzzy SA-ideals with degree (λ, k) of X. Using theorem (4.2.3.2) in [5], the images $f(\mu_A^1)$ and $f(\mu_A^U)$ are fuzzy SA-ideal with degree (λ, k) of Y. Hence by Proposition (5.2(2)) and Theorem (4.3), we conclude that $f(A) = [f(\mu_A^1), f(\mu_A^U)]$ is an i-v fuzzy SA-ideal with degree (λ, k) of Y.

References
[1] A.T. Hameed, Fuzzy ideal of some algebras ,PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt, 2015.
[2] K. Is’eki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. , vol.21 (1976), 351-366.
[3] L.A. Zadeh, Fuzzy sets, Inform. and control, vol.8 (1965), 338-353.
[4] O.G. Xi, Fuzzy BCK-algebras, Math. Japon., vol.36 (1991), 935-942.
[5] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, Interval-valued fuzzy KUS-ideal ,IOSR Journal of Mathematics (IOSR-JM), vol.5, Issue 4 (2013), 61-66.
[6] Y.S. Hwang and S.S. Ahn, Fuzzy ρ-ideals of BCI-algebras with degrees in the interval (0,1], Commun Korean Math. Soc., vol.27, no.4 (2012), 701-708.