Torsions and Curvatures on Jet Fibre Bundle \(J^1(T, M) \)

Mircea Neagu and Constantin Udrişte

Abstract

The aim of this paper is twofold. On the one hand, to study the local representations of d-connections, d-torsions, and d-curvatures with respect to an adapted basis on the jet fibre bundle of order one. On the other hand, to open the problem of prolongations of tensors and connections from a product of two manifolds to 1-jet fibre bundle associated to these manifolds. Section 1 defines the notion of \(\Gamma \)-linear connection on the jet fibre bundle of order one and determines its nine local components. Section 2 studies the main twelve components of torsion d-tensor field, and Section 3 describes the eighteen components of curvature d-tensor field. Via the Ricci and Bianchi identities, Section 4 emphasizes the non-independence of the torsion and curvature d-tensors. Section 5 studies the problem of prolongation of vector fields from \(T \times M \) to 1-jet space \(J^1(T, M) \).

Mathematics Subject Classification: 53C07, 53C43, 53C99

Key words: 1-jet fibre bundle, nonlinear connection, \(\Gamma \)-linear connection, torsion d-tensor field, curvature d-tensor field.

1 Components of \(\Gamma \)-linear connections

Let us consider \(T \) (resp. \(M \)) a "temporal" (resp. "spatial") manifold of dimension \(p \) (resp. \(n \)), coordinated by \((t^\alpha)_{\alpha=1}^p \) (resp. \((x^i)_{i=1}^n \)). Let \(J^1(T, M) \rightarrow T \times M \) be the jet fibre bundle of order one associated to these manifolds.

The bundle of configuration \(J^1(T, M) \) is coordinated by \((t^\alpha, x^i, x^i_\alpha) \), where \(\alpha = 1, p \) and \(i = 1, n \). Note that, throughout this paper, the indices \(\alpha, \beta, \gamma, \ldots \) run from 1 to \(p \) and the indices \(i, j, k \ldots \) run from 1 to \(n \).

On \(E = J^1(T, M) \), we fix a nonlinear connection \(\Gamma \) defined by the temporal components \(M^{(i)}_{(\alpha)\beta} \) and the spatial components \(N^{(i)}_{(\alpha)j} \). We recall that the transformation rules of the local components of the nonlinear connection \(\Gamma \) are expressed by

\[
\begin{align*}
\tilde{M}^{(j)}_{(\beta)\mu} \frac{\partial t^\mu}{\partial t^\alpha} &= M^{(k)}_{(\gamma)\alpha} \frac{\partial \tilde{x}^i_\gamma}{\partial t^\beta} - \frac{\partial \tilde{x}^i_\beta}{\partial t^\gamma} \\
\tilde{N}^{(j)}_{(\beta)k} \frac{\partial \tilde{x}^k}{\partial x^i} &= N^{(k)}_{(\gamma)i} \frac{\partial \tilde{x}^i_\gamma}{\partial x^k} - \frac{\partial \tilde{x}^i_\beta}{\partial x^k}.
\end{align*}
\]

Let \(\left\{ \frac{\delta}{\delta t^\alpha}, \frac{\delta}{\delta x^i}, \frac{\partial}{\partial x^i_\alpha} \right\} \subset \mathcal{X}(E) \) and \(\left\{ dt^\alpha, dx^i, \delta x^i_\alpha \right\} \subset \mathcal{X}^*(E) \) be the dual adapted bases.
associated to the nonlinear connection $\Gamma = (M^{(i)}_{(\alpha)\beta}, N^{(i)}_{(\alpha)j})$, by the formulas

$$
\begin{align*}
\frac{\delta}{\delta t^\alpha} &= \frac{\partial}{\partial t^\alpha} - M^{(j)}_{(\beta)\alpha} \frac{\partial}{\partial x^j_{\beta}}, \\
\frac{\delta}{\delta x^i} &= \frac{\partial}{\partial x^i} - N^{(j)}_{(\beta)i} \frac{\partial}{\partial x^j_{\beta}}, \\
\delta x^i_\alpha &= dx^i_\alpha + M^{(i)}_{(\alpha)j} dt^\beta + N^{(i)}_{(\alpha)j} dx^j.
\end{align*}
$$

These bases will be used in the description of geometrical objects on E, because their transformation laws are very simple [10]:

$$
\begin{align*}
\frac{\delta}{\delta t^\alpha} &= \frac{\partial}{\partial t^\alpha} = \frac{\partial}{\partial \tilde{t}^\beta} \frac{\delta}{\delta \tilde{t}^\beta}, \\
\frac{\delta}{\delta x^i} &= \frac{\partial}{\partial x^i} = \frac{\partial}{\partial \tilde{x}^j} \frac{\partial}{\partial \tilde{x}^j}, \\
\frac{\partial}{\partial x^i_{\alpha}} &= \frac{\partial}{\partial \tilde{x}^j} \frac{\partial}{\partial \tilde{t}^\beta} \frac{\partial}{\partial \tilde{x}^j_{\beta}}.
\end{align*}
$$

In order to develop the theory of Γ-linear connections on the 1-jet space E, we need the following

Proposition 1.1

i) The Lie algebra $\mathcal{X}(E)$ of vector fields decomposes as

$$
\mathcal{X}(E) = \mathcal{X}(H_T) \oplus \mathcal{X}(H_M) \oplus \mathcal{X}(V),
$$

where

$$
\mathcal{X}(H_T) = \text{Span} \left\{ \frac{\delta}{\delta t^\alpha} \right\}, \quad \mathcal{X}(H_M) = \text{Span} \left\{ \frac{\delta}{\delta x^i} \right\}, \quad \mathcal{X}(V) = \text{Span} \left\{ \frac{\partial}{\partial x^i_{\alpha}} \right\}.
$$

ii) The Lie algebra $\mathcal{X}^*(E)$ of covector fields decomposes as

$$
\mathcal{X}^*(E) = \mathcal{X}^*(H_T) \oplus \mathcal{X}^*(H_M) \oplus \mathcal{X}^*(V),
$$

where

$$
\mathcal{X}^*(H_T) = \text{Span} \{dt^\alpha\}, \quad \mathcal{X}^*(H_M) = \text{Span} \{dx^i\}, \quad \mathcal{X}^*(V) = \text{Span} \{\delta x^i_{\alpha}\}.
$$

Let us consider h_T, h_M (horizontal) and v (vertical) as the canonical projections of the above decompositions. In this context, we have

Corollary 1.2

i) Any vector field X can be written in the form

$$
X = h_T X + h_M X + v X.
$$

ii) Any covector field ω can be written in the form

$$
\omega = h_T \omega + h_M \omega + v \omega.
$$
Theorem 1.3

In order to describe in local terms a Γ-linear connection ∇ on E, we need nine unique local components,

\[
\nabla = (G^\alpha_{\beta \gamma}, G^k_{\beta}, G^{(i)(\beta)}_{(\alpha)(j) \gamma}, L^\alpha_{\beta}, I^k_{\gamma}, L^{(i)(\beta)}_{(\alpha)(j)k}, C^\alpha_{\beta(k)}, C^j_{i(k)}, C^{(i)(\beta)(\gamma)}_{(\alpha)(j)(k)}),
\]

which are locally defined by the relations

\[
\begin{aligned}
\text{(h)} & \quad \nabla \frac{\delta}{\delta t^a} = C^\alpha_{\beta(j)} \frac{\delta}{\delta x^\alpha} = \nabla \frac{\delta}{\delta x^\alpha}, \\
\text{(h)} & \quad \nabla \frac{\delta}{\delta x^\beta} = L^\alpha_{\beta} \frac{\delta}{\delta t^a} = \nabla \frac{\delta}{\delta t^a}, \\
\text{(v)} & \quad \nabla \frac{\partial}{\partial t^a} = C^{(i)(\beta)_{(\alpha)(j)}} \frac{\partial}{\partial x^\alpha} = \nabla \frac{\partial}{\partial x^\alpha}.
\end{aligned}
\]

The transformation laws of the elements $\left\{ \frac{\delta}{\delta t^a}, \frac{\delta}{\delta x^\alpha}, \frac{\partial}{\partial x^\alpha} \right\}$ together with the properties of the Γ-linear connection ∇, imply

Theorem 1.3

i) The components of the Γ-linear connection ∇ modify by the rules

\[
\begin{aligned}
\text{h} & \quad G^\alpha_{\beta \gamma} = \frac{\partial \tilde{\xi}^\alpha}{\partial \xi^\beta} \frac{\partial \xi^\beta}{\partial t^\gamma} + \frac{\partial^2 \tilde{\xi}^\alpha}{\partial t^\alpha \partial t^\beta}, \\
\text{h} & \quad G^k_{\beta} = \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m} + \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m}, \\
\text{h} & \quad G^{(i)(\beta)}_{(\alpha)(j) \gamma} = \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m} + \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m} + \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m} + \frac{\partial k}{\partial t^m} \frac{\partial k}{\partial t^m}.
\end{aligned}
\]

ii) Conversely, to give a Γ-linear connection ∇ on the 1-jet space E is equivalent to give a set of nine local components $\left\{ \frac{\delta}{\delta t^a}, \frac{\delta}{\delta x^\alpha}, \frac{\partial}{\partial x^\alpha} \right\}$, whose local transformations laws are described in i.
Theorem 1.3 allows us to construct on the 1-jet space E a natural example of Γ-linear connection.

Example 1.1 Suppose that $h_{\alpha\beta}(t)$ (resp. $\varphi_{ij}(x)$) is a pseudo-Riemannian metric on T (resp. M). We denote $H^{i\alpha\beta}$ (resp. γ_{ij}^{k}) the Christoffel symbols of the metric $h_{\alpha\beta}$ (resp. φ_{ij}). The canonical nonlinear connection Γ_{0} associated to these metrics is defined by the local components.

\[(1.5)\]
\[
M_{(\alpha)\beta}^{(i)} = -H^{\gamma}_{\alpha\beta}x^{\gamma}_{i}, \quad N_{(\alpha)\beta}^{(i)} = \gamma_{m\alpha}^{i}x^{m}_{\beta}.
\]

In this context, using the well known local transformation rules of the Christoffel symbols $H^{i\alpha\beta}$ and γ_{ij}^{k} and setting

\[(1.6)\]
\[
G^{i\alpha\beta} = H^{i\alpha\beta}, \quad G^{(k)(\beta)}_{(\gamma)(\alpha)\alpha} = -\delta_{i}^{k}H^{\alpha\gamma}, \quad L_{ij}^{k} = \gamma_{ij}^{k}, \quad L_{(\gamma)(\alpha)\alpha}^{(k)(\beta)} = \delta_{\gamma}^{\alpha}\gamma_{ij}^{k},
\]

we conclude that the set of local components

\[
BG_{0} = (H^{\gamma}_{\alpha\beta}, \text{0}, G^{(k)(\beta)}_{(\gamma)(\alpha)\alpha}, \text{0}, \gamma_{ij}^{k}, L_{(\gamma)(\alpha)\alpha}^{(k)(\beta)}, \text{0}, \text{0}, \text{0})
\]

defines a Γ_{0}-linear connection. This is called the *Berwald connection attached to the metrics pair* $(h_{\alpha\beta}, \varphi_{ij})$.

Remark 1.1 In the particular case $(T, h) = (R, \delta)$, the Berwald connection reduces to that naturally induced by the canonical spray $2G^{i} = \gamma_{jk}^{i}y^{j}y^{k}$ of the classical theory of Lagrange spaces. For more details, see [3], [10].

Now, let ∇ be a Γ-linear connection on E, locally defined by [4]. The linear connection ∇ induces a natural linear connection on the d-tensors set of the jet fibre bundle $E = J^{1}(T, M)$, in the following fashion: starting with a vector field X and a d-tensor field D locally expressed by

\[
X = X^{\alpha}_{\sigma} \frac{\delta}{\delta t^{\alpha}} + X^{m}_{\sigma} \frac{\delta}{\delta x^{m}} + X^{(m)}_{\sigma} \frac{\partial}{\partial x^{m}},
\]
\[
D = D^{\alpha(i)(\delta)\ldots}_{\gamma k(\beta)(l)\ldots} \frac{\delta}{\delta t^{\alpha}} \otimes \frac{\delta}{\delta x^{i}} \otimes \frac{\delta}{\delta x^{j}} \otimes dt^{\gamma} \otimes dx^{k} \otimes dx^{l} \ldots,
\]

we introduce the covariant derivative

\[
\nabla_{X}D = X^{\varepsilon} \nabla_{\frac{\delta}{\delta t^{\varepsilon}}} D + X^{p} \nabla_{\frac{\delta}{\delta x^{p}}} D + X^{(p)}_{(\varepsilon)} \nabla_{\frac{\partial}{\partial x^{p}}} D = \left\{ X^{\varepsilon}D^{\alpha(i)(\delta)\ldots}_{\gamma k(\beta)(l)\ldots} / \varepsilon + X^{p}
\right\} \frac{\delta}{\delta t^{\alpha}} \otimes \frac{\delta}{\delta x^{i}} \otimes \frac{\delta}{\delta x^{j}} \otimes dt^{\gamma} \otimes dx^{k} \otimes dx^{l} \ldots,
\]

where

\[
(h_{\Gamma})
\]
\[
\begin{align*}
D^{ai(j)(\ldots)}_{\gamma k(\beta)(l)\ldots} / \varepsilon &= \delta D^{ai(j)(\ldots)}_{\gamma k(\beta)(l)\ldots} / \varepsilon + D^{ai(j)(\ldots)}_{\gamma k(\beta)(l)\ldots} G^{\varepsilon}_{\beta m} + \\
D^{ai(m)(\ldots)}_{\gamma k(\beta)(l)\ldots} G^{\beta}_{m} + D^{ai(m)(\ldots)}_{\gamma k(\beta)(l)\ldots} G^{\beta}_{m} + \ldots - \\
- D^{ai(j)(\ldots)}_{\gamma m(\beta)(l)\ldots} G^{\varepsilon}_{m} - D^{ai(j)(\ldots)}_{\gamma m(\beta)(l)\ldots} G^{\varepsilon}_{m} - D^{ai(m)(\ldots)}_{\gamma k(\beta)(l)\ldots} G^{\varepsilon}_{m} - D^{ai(m)(\ldots)}_{\gamma k(\beta)(l)\ldots} G^{\varepsilon}_{m} - \ldots .
\end{align*}
\]
i) In the particular case of a function $f(t^\gamma, x^k, x_\gamma^k)$ on $J^1(T,M)$, the above covariant derivatives reduce to

\[
\begin{align*}
D_{\gamma k(l)}^{\alpha i}(j)(\delta)\ldots l_{\mu p} & = \frac{\delta D_{\gamma k(l)}^{\alpha i}(j)(\delta)\ldots l_{\mu p}}{\delta x^p} + D_{\gamma k(l)}^{j(\mu)(\delta)\ldots l_{\mu p}} + D_{\gamma k(l)}^{i(\delta)\ldots l_{\mu p}} + \ldots, \\
D_{\alpha m(\gamma)}^{\alpha i}(j)(\delta)\ldots l_{\gamma p} & = D_{\gamma k(l)}^{\alpha i}(j)(\delta)\ldots l_{\gamma p} + D_{\gamma k(l)}^{i(\delta)\ldots l_{\gamma p}} + \ldots,
\end{align*}
\]

\[
\begin{align*}
D_{\mu k(l)}^{\alpha i}(j)(\delta)\ldots l_{\nu p} & = D_{\gamma k(l)}^{\alpha i}(j)(\delta)\ldots l_{\nu p} - D_{\gamma m(\beta)}^{\alpha i}(j)(\mu)(\delta)\ldots l_{\nu p} + \ldots,
\end{align*}
\]

The local operators "/" \(l\) and "\(\gamma\)" are called the T-horizontal covariant derivative, M-horizontal covariant derivative and vertical covariant derivative of the Γ-connection ∇.

Remarks 1.2 i) In the particular case of a function $f(t^\gamma, x^k, x_\gamma^k)$ on $J^1(T,M)$, the above covariant derivatives reduce to

\[
\begin{align*}
f_{/\varepsilon} & = \frac{\delta f}{\delta \varepsilon} - M_{(\gamma)\varepsilon}^{(k)} \frac{\partial f}{\partial x^\gamma_k}, \\
f_{p/} & = \frac{\delta f}{\delta x^p} - N_{(\gamma)\varepsilon}^{(k)} \frac{\partial f}{\partial x^\gamma_k}, \\
f_{(\varepsilon)/p} & = \frac{\delta f}{\delta \varepsilon}.
\end{align*}
\]

ii) Particularly, starting with a d-vector field X on $J^1(T,M)$, locally expressed by

\[
X = X^\alpha \frac{\delta}{\delta t^\alpha} + X^i \frac{\delta}{\delta x^i} + X^{(i)} \frac{\partial}{\partial x^i},
\]

the following expressions of above covariant derivatives hold good:

\[
\begin{align*}
X_{/\varepsilon}^\alpha & = \frac{\delta X^\alpha}{\delta \varepsilon} + X^\mu \tilde{G}_\mu \varepsilon, \\
X^i_{/\varepsilon} & = \frac{\delta X^i}{\delta \varepsilon} + X^m \tilde{G}_m \varepsilon, \\
X^{(i)}_{(\alpha)/\varepsilon} & = \frac{\delta X^{(i)}}{\delta \varepsilon} + X_{(\mu)} \tilde{G}^{(i)}(\mu)_{(\beta)(\varepsilon)}, \\
X_{/p}^\alpha & = \frac{\delta X^\alpha}{\delta x^p} + X^\mu \tilde{L}_\mu p, \\
X^i_{/p} & = \frac{\delta X^i}{\delta x^p} + X^m L^i_{mp}, \\
X^{(i)}_{(\alpha)/p} & = \frac{\delta X^{(i)}}{\delta x^p} + X_{(\mu)} L^{(i)}(\mu)_{(\alpha)(p)}.
\end{align*}
\]
Proposition 2.1

\[
\begin{align*}
X^{\alpha}(\varepsilon)_{\mu} &= \frac{\partial X^{\alpha}}{\partial \varepsilon_{\mu}} + X^{\mu}C_{\mu}^{\alpha}(\varepsilon) \\
X^{i}(\varepsilon)_{\mu} &= \frac{\partial X^{i}}{\partial x_{\mu}} + X^{\mu}C_{\mu}^{i}(\varepsilon) \\
X^{ij}(\varepsilon)_{\mu} &= \frac{\partial X^{ij}}{\partial x_{\mu}} + X^{\mu}C_{\mu}^{ij}(\varepsilon).
\end{align*}
\]

iii) The local covariant derivatives associated to the Berwald Γ_0-linear connection, will be denoted by $"/\varepsilon","/\mu$" and $"(\varepsilon)_{\mu}"$.

Denoting by $"A"$ one of the covariant derivatives $"/\varepsilon","/\mu$" or $"(\varepsilon)_{\mu}"$, one easily proves the following

Proposition 1.4 If D_{\cdots}^μ and F_{\cdots}^μ are two d-tensor fields on E, then the following statements hold good.

i) $D_{\cdots}^\mu A$ are the components of a new d-tensor field,

ii) $(D_{\cdots}^\mu + F_{\cdots}^\mu)A = D_{\cdots}^\mu A + F_{\cdots}^\mu A$,

iii) $(D_{\cdots}^\mu \otimes F_{\cdots}^\mu)A = D_{\cdots}^\mu \otimes A + D_{\cdots}^\mu \otimes F_{\cdots}^\mu A$,

iv) The operator $"A"$ commutes with the operation of contraction.

2 Components of torsion d-tensor field

Let us start with a fixed Γ-linear connection ∇ on $E = J^1(T, M)$, defined by the local components $[\mathcal{I}]$. The torsion d-tensor field associated to ∇ is

$$T : \mathcal{X}(E) \times \mathcal{X}(E) \to \mathcal{X}(E), \quad T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y], \quad \forall X, Y \in \mathcal{X}(E).$$

To characterize locally the torsion d-tensor T of the connection ∇, we need the next

Proposition 2.1 The following bracket identities are true,

\[
\begin{align*}
\begin{bmatrix} \delta \\ \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} &= R_{(\mu)\alpha\beta}^{(m)} \frac{\partial}{\partial x^\mu}, \quad \begin{bmatrix} \delta \\ \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} = R_{(\mu)\alpha\beta}^{(m)} \frac{\partial}{\partial x^\mu}, \\
\begin{bmatrix} \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} &= \frac{\partial M_{(\mu)\alpha}^{(m)}}{\partial x^\alpha}, \quad \begin{bmatrix} \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} = \frac{\partial M_{(\mu)\alpha}^{(m)}}{\partial x^\alpha}, \\
\begin{bmatrix} \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} &= \frac{\partial N_{(\mu)\alpha}^{(m)}}{\partial x^\beta}, \quad \begin{bmatrix} \delta \varepsilon^\alpha \delta \varepsilon^\beta \end{bmatrix} = \frac{\partial N_{(\mu)\alpha}^{(m)}}{\partial x^\beta},
\end{align*}
\]

where $M_{(\mu)\alpha}^{(m)}$ and $N_{(\mu)\alpha}^{(m)}$ are the local components of the nonlinear connection Γ while the components $R_{(\mu)\alpha\beta}^{(m)}$, $R_{(\mu)\alpha\beta}^{(m)}$, $R_{(\mu)\alpha\beta}^{(m)}$ are d-tensors expressed by

\[
\begin{align*}
R_{(\mu)\alpha\beta}^{(m)} &= \frac{\delta M_{(\mu)\alpha}^{(m)}}{\delta \varepsilon^\beta} - \frac{\delta M_{(\mu)\beta}^{(m)}}{\delta \varepsilon^\alpha}, \quad R_{(\mu)\alpha\beta}^{(m)} = \frac{\delta M_{(\mu)\beta}^{(m)}}{\delta \varepsilon^\beta} - \frac{\delta M_{(\mu)\alpha}^{(m)}}{\delta \varepsilon^\beta}, \quad R_{(\mu)\alpha\beta}^{(m)} = \frac{\delta N_{(\mu)\alpha}^{(m)}}{\delta \varepsilon^\beta} - \frac{\delta N_{(\mu)\beta}^{(m)}}{\delta \varepsilon^\beta}.
\end{align*}
\]
Consequently, the torsion d-tensor field T of the Γ-linear connection ∇ can be described locally by

Theorem 2.2 The torsion d-tensor T of the Γ-linear connection ∇ is determined by the following local expressions:

$$h_T T \left(\frac{\delta}{\delta t^\beta}, \frac{\delta}{\delta t^\alpha} \right) = T_{\alpha\beta}^\mu \frac{\partial}{\partial t^\mu}, \quad h_M T \left(\frac{\delta}{\delta t^\beta}, \frac{\delta}{\delta t^\alpha} \right) = 0,$$

$$v_T \left(\frac{\delta}{\delta t^\beta}, \frac{\delta}{\delta t^\alpha} \right) = R^{(m)}_{(\mu)\alpha\beta}(x), \quad h_T T \left(\frac{\delta}{\delta x^\beta}, \frac{\delta}{\delta x^\alpha} \right) = T^{m}_{\alpha\beta} \frac{\delta}{\delta x^m},$$

$$h_T T \left(\frac{\partial}{\partial x^\beta}, \frac{\delta}{\delta t^\alpha} \right) = 0, \quad h_M T \left(\frac{\partial}{\partial x^\beta}, \frac{\delta}{\delta t^\alpha} \right) = 0,$$

$$v_T \left(\frac{\partial}{\partial x^\beta}, \frac{\delta}{\delta t^\alpha} \right) = P^{(m)}_{(\mu)\alpha\beta}(x), \quad h_T T \left(\frac{\partial}{\partial x^\beta}, \frac{\delta}{\delta x^\alpha} \right) = 0,$$

$$v_T \left(\frac{\partial}{\partial x^\beta}, \frac{\delta}{\delta x^\alpha} \right) = P^{(m)}_{(\mu)\beta}(x), \quad h_T T \left(\frac{\partial}{\partial x^\beta}, \frac{\partial}{\partial x^\alpha} \right) = 0,$$

$$v_T \left(\frac{\partial}{\partial x^\beta}, \frac{\partial}{\partial x^\alpha} \right) = S^{(m)(\alpha)(\beta)}_{(\mu)(\nu)(\rho)}(x), \quad v_T \left(\frac{\partial}{\partial x^\beta}, \frac{\partial}{\partial x^\alpha} \right) = 0,$$

where $R^{(m)}_{(\mu)\alpha\beta}$, $R^{(m)}_{(\mu)\alpha\gamma}$, $R^{(m)}_{(\mu)\beta}$ are the d-tensors constructed above, and

$$T_{\alpha\beta}^\mu = C_{\alpha\beta}^\mu - G_{\beta\alpha}^\mu, \quad T_{\alpha\gamma}^\mu = L_{\alpha\gamma}^\mu, \quad P^{(m)(\beta)}_{(\mu)\alpha\beta} = C_{\alpha\beta}^\mu, \quad T_{\alpha\beta}^m = -G_{\beta\alpha}^m,$$

$$P^{(m)(\beta)}_{(\mu)\alpha\beta} = \frac{\partial M^{(m)}_{(\mu)\alpha\beta}}{\partial x^\beta} - G^{(m)(\beta)}_{(\mu)\alpha\beta}, \quad P^{(m)(\beta)}_{(\mu)\alpha\gamma} = \frac{\partial N^{(m)}_{(\mu)\alpha\beta}}{\partial x^\beta} - L^{(m)(\beta)}_{(\mu)\alpha\gamma}.$$
Corollary 2.3 The torsion T of the Γ-linear connection ∇ is determined by twelve effective d-tensor fields, arranged in the following table:

	h_T	h_M	ν
$h_T h_T$	$T^\mu_{\alpha \beta}$	0	$R^{(m)}_{(\mu)\alpha \beta}$
$h_M h_T$	$T^m_{\alpha j}$	$T^m_{\alpha j}$	$R^{(m)}_{(\mu)\alpha j}$
$h_M h_M$	0	T^m_{ij}	$R^{(m)}_{(\mu)ij}$
$v h_T$	$T^m_{\mu (\beta)}$	0	$P^{(m)}_{(\mu)\beta i j}$
$v h_M$	0	$P^{m (\beta)}_{i j}$	$P^{(m)}_{(\mu)ij}$
ν	0	0	$S^{(m)}_{(\mu)ij}$

(2.1)

Remark 2.1 In the particular case of the Berwald Γ_0-linear connection associated to the metrics $h_{\alpha \beta}$ and φ_{ij}, all torsion d-tensors vanish, except

$$R^{(m)}_{(\mu)\alpha \beta} = -H^\gamma_{\mu \alpha \beta} x^m, \quad R^{(m)}_{(\mu)ij} = r^{m}_{ij} l^\mu,$$

where $H^\gamma_{\mu \beta \gamma}$ (resp. r^{m}_{ij}) are the curvature tensors of the metric $h_{\alpha \beta}$ (resp. φ_{ij}).

3 Components of curvature d-tensor field

From the general theory of linear connections, we recall that the curvature d-tensor field associated to the Γ-linear connection ∇ is

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z, \quad \forall X, Y, Z \in \mathcal{X}(E).$$

Using an adapted basis and the properties of the Γ-linear connection ∇, one easily prove the following

Theorem 3.1 The curvature d-tensor R of the Γ-linear connection ∇ is determined by the following eighteen local expressions:

$$R \left(\frac{\delta}{\delta t^\gamma}, \frac{\delta}{\delta t^\beta} \right) \frac{\delta}{\delta x^\alpha} = R^\delta_{\alpha \beta \gamma} \frac{\delta}{\delta t^\delta}, \quad R \left(\frac{\delta}{\delta x^k}, \frac{\delta}{\delta t^\beta} \right) \frac{\delta}{\delta x^i} = R^l_{i \beta k} \frac{\delta}{\delta x^l},$$

$$R \left(\frac{\delta}{\delta x^k}, \frac{\delta}{\delta x^\alpha} \right) \frac{\delta}{\delta x^i} = R^l_{i \beta k} \frac{\delta}{\delta x^l}, \quad R \left(\frac{\delta}{\delta x^k}, \frac{\delta}{\delta t^\beta} \right) \frac{\delta}{\delta x^i} = R^l_{i \beta k} \frac{\delta}{\delta x^l}.$$
which we arrange in the following table

\[\begin{array}{|c|c|c|c|}
\hline
 & h_T & h_M & \nu \\
\hline
h_T h_T & R^\delta_{\alpha \beta \gamma} & R^i_{ijk} & R^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
h_M h_T & R^\delta_{\alpha \beta \gamma} & R^i_{ijk} & R^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
h_M h_M & R^\delta_{\alpha \beta \gamma} & R^i_{ijk} & R^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
\nu h_T & \delta \tilde{C}^\delta_{\alpha \beta \gamma} & \delta \tilde{C}^i_{\alpha \beta \gamma} & \delta \tilde{C}^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
\nu h_M & \delta \tilde{C}^\delta_{\alpha \beta \gamma} & \delta \tilde{C}^i_{\alpha \beta \gamma} & \delta \tilde{C}^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
\nu \nu & \delta \tilde{C}^{(1)(\alpha)(\beta)(\gamma)} & \delta \tilde{C}^{(1)(\alpha)(\beta)(\gamma)} & \delta \tilde{C}^{(1)(\alpha)(\beta)(\gamma)} \\
\hline
\end{array} \]

(3.1)

Moreover, using the properties of the d-tensor \(R \) and the expressions of local \(T^\alpha \), \(M \)-horizontal and vertical covariant derivatives attached to the \(\Gamma \)-linear connection \(\nabla \), we derive the following local components of the curvature d-tensor,

\[
\begin{align*}
1. \quad & \delta \tilde{C}^\delta_{\alpha \beta \gamma} = \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta x^\gamma} - \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta t^\gamma} + \bar{G}^\mu_{\alpha \beta} \bar{G}^\delta_{\mu \gamma} - \bar{G}^\mu_{\alpha \gamma} \bar{G}^\delta_{\mu \beta} + \bar{C}^{\delta(\mu)}_{\alpha(\beta)} R^{(m)}_{(\mu) \beta \gamma} \\
2. \quad & \delta \tilde{C}^\delta_{\alpha \beta \gamma} = \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta x^k} - \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta t^k} + \bar{G}^\mu_{\alpha \beta} \bar{L}^\delta_{\mu \gamma} - \bar{L}^\mu_{\alpha \beta} \bar{L}^\delta_{\mu \gamma} + \bar{C}^{\delta(\mu)}_{\alpha(\beta)} R^{(m)}_{(\mu) \beta \gamma} \\
3. \quad & \delta \tilde{C}^\delta_{\alpha \beta \gamma} = \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta x^\gamma} - \frac{\delta \tilde{C}^\delta_{\alpha \beta \gamma}}{\delta t^\gamma} + \bar{G}^\mu_{\alpha \beta} \bar{L}^\delta_{\mu \gamma} - \bar{L}^\mu_{\alpha \beta} \bar{L}^\delta_{\mu \gamma} + \bar{C}^{\delta(\mu)}_{\alpha(\beta)} R^{(m)}_{(\mu) \beta \gamma} \\
\end{align*}
\]

\[\{ h_T \} \]

\[
\begin{align*}
4. \quad & \delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)} = \frac{\delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)}}{\delta x^\gamma} - \bar{G}^{(\gamma)}_{\alpha \beta (k)} + \bar{C}^{(\gamma)}_{\alpha(\beta)} P^{(m)}_{(\mu) \beta (k)} \\
5. \quad & \delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)} = \frac{\delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)}}{\delta x^k} - \bar{G}^{(\gamma)}_{\alpha \beta (k)} + \bar{C}^{(\gamma)}_{\alpha(\beta)} P^{(m)}_{(\mu) \beta (k)} \\
6. \quad & \delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)} = \frac{\delta \tilde{C}^{(\gamma)}_{\alpha \beta (k)}}{\delta x^\gamma} - \bar{G}^{(\gamma)}_{\alpha \beta (k)} + \bar{C}^{(\gamma)}_{\alpha(\beta)} P^{(m)}_{(\mu) \beta (k)} \\
\end{align*}
\]

\[\{ h_M \} \]

9
Remark 3.1 In the case of the Berwald Γ_0-linear connection associated to the metrics pair $(h_{\alpha\beta}, \varphi_{ij})$, all curvature d-tensors vanish, except

$$R^l_{i\beta\gamma} = H^l_{i\beta\gamma}, \quad R^l_{i\beta jk} = r^l_{i\beta jk},$$

where $H^l_{i\beta\gamma}$ (resp. $r^l_{i\beta jk}$) are the curvature tensors of the metric $h_{\alpha\beta}$ (resp. φ_{ij}).
4 Ricci and Bianchi identities

Taking into account the local form of the $T-,M$-horizontal and vertical covariant derivatives defined in Section 1, by a direct calculation one proves

Theorem 4.1 If $X = X^\alpha \frac{\delta}{\delta x^\alpha} + X^i \frac{\delta}{\delta x^i} + X_{(\alpha)} \frac{\partial}{\partial x^i}$ is an arbitrary vector field on the 1-jet space E, then the following Ricci identities hold good:

\[
\begin{align*}
(X_1) & \left\{ X_{\beta\gamma} - X_{\gamma\beta} = X^\mu R_{\mu\beta\gamma} - X^\mu \bar{T}_{\mu\beta\gamma} - X_{(\mu)} R_{(\mu)\beta\gamma}, \\
X_{i\beta} - X_{i\gamma} & = X^m R_{m\beta\gamma} - X^m \bar{T}_{m\beta\gamma} - X_{(m)} R_{(m)\beta\gamma}, \quad X^i = X^m R_{m\gamma}\beta - X^m \bar{T}_{m\gamma}\beta - X_{(m)} R_{(m)\gamma}\beta, \\
X_{ij} - X_{ij} & = X^m R_{m\gamma\beta} - X^m \bar{T}_{m\gamma\beta} - X_{(m)} R_{(m)\gamma\beta}, \\
X_{i\gamma} & = X^m R_{m\beta\gamma} - X^m \bar{T}_{m\beta\gamma} - X_{(m)} R_{(m)\beta\gamma}. \end{align*}
\]

Theorem 4.2 If $X = X^\alpha \frac{\delta}{\delta x^\alpha} + X^i \frac{\delta}{\delta x^i} + X_{(\alpha)} \frac{\partial}{\partial x^i}$ is an arbitrary vector field on the 1-jet space E, then the following Bianchi identities hold good:

\[
\begin{align*}
(X_2) & \left\{ X_{\beta\gamma} - X_{\gamma\beta} = X^\mu \bar{T}_{\mu\beta\gamma} - X^\mu \bar{T}_{\mu\gamma\beta} - X_{(\mu)} \bar{T}_{(\mu)\beta\gamma}, \\
X_{i\beta} - X_{i\gamma} & = X^m \bar{T}_{m\beta\gamma} - X^m \bar{T}_{m\gamma\beta} - X_{(m)} \bar{T}_{(m)\beta\gamma}, \\
X_{ij} - X_{ij} & = X^m \bar{T}_{m\gamma\beta} - X^m \bar{T}_{m\beta\gamma} - X_{(m)} \bar{T}_{(m)\gamma\beta}, \\
X_{i\gamma} & = X^m \bar{T}_{m\beta\gamma} - X^m \bar{T}_{m\gamma\beta} - X_{(m)} \bar{T}_{(m)\beta\gamma}. \end{align*}
\]
Remark 4.1 For the arbitrary vector fields $X, Y, Z \in \mathcal{X}(E)$ and the arbitrary 1-form $\omega \in \mathcal{X}^*(E)$ on $J^1(T, M)$, the relations

$$\begin{align*}
\{ & R(X, Y)\omega = -\omega \circ R(X, Y), \\
& R(X, Y)(Z \otimes \omega) = R(X, Y)Z \otimes \omega + Z \otimes R(X, Y)\omega,
\end{align*}$$

(4.1)

are true. These relations allow us to generalize the Ricci identities to the d-tensors set of the 1-jet fibre bundle E. The generalization is a natural one, but the expressions of Ricci identities become extremely complicated. For that reason, we exemplify this generalization writing just one Ricci identity. For example, if $D = (D_{\alpha j}(\eta)(l))_{\gamma\beta}$ is an arbitrary d-tensor field on E, then the following Ricci identity

$$\begin{align*}
& D_{\alpha j}(\eta)(l)_{\gamma\beta} - D_{\alpha j}(\eta)(l)_{\gamma\beta} \gamma - \bar{D}_{\alpha j}(\eta)(l)_{\gamma\beta} + D_{\alpha j}(\eta)(l)_{\gamma\beta} = D^{\mu j}(\kappa)(\eta)(l)_{\gamma\beta} + D^{\mu j}(\kappa)(\eta)(l)_{\gamma\beta} + D_{\alpha j}(\eta)(l)_{\gamma\beta}
\end{align*}$$

holds good.

Now, let us consider the Liouville canonical vector field $\mathbf{C} = x^\alpha \frac{\partial}{\partial x^\alpha}$ and the deflection d-tensors associated to the Γ-linear connection ∇, defined by the local components

$$\begin{align*}
\bar{D}^{(i)}_{\alpha j} = x^i_{\alpha j}, \quad D^{(i)}_{\alpha j} = x^i_{\alpha j}, \quad d^{(i)}_{\alpha j} = x^i_{\alpha j}.
\end{align*}$$

By a direct calculation, we find

$$\begin{align*}
\bar{D}^{(i)}_{\alpha j} = -M^{(i)}_{\alpha j} + G^{(i)}_{\alpha j}(\mu)m x^m_{\mu} \\
D^{(i)}_{\alpha j} = -N^{(i)}_{\alpha j} + F^{(i)}_{\alpha j}(\mu)m x^m_{\mu} \\
d^{(i)}_{\alpha j} = \delta^{(1)}_{\alpha j}(\beta) + C^{(i)}(\mu)(\beta)m x^m_{\mu}.
\end{align*}$$

(4.2)

Applying the v-set of the Ricci identities to the components of the Liouville vector field, we obtain

Theorem 4.2 The deflection d-tensors, attached to the Γ-linear connection ∇, satisfy:

$$\begin{align*}
& \bar{D}^{(i)}_{\alpha j}/\gamma - \bar{D}^{(i)}_{\alpha j}/\gamma \beta = x^m_{\mu} R^{(i)}(\alpha)(\mu)m x^m_{\mu} - D^{(i)}_{\alpha j}/\gamma \beta - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta} \\
& \bar{D}^{(i)}_{\alpha j} / k - \bar{D}^{(i)}_{\alpha j} / k \beta = x^m_{\mu} R^{(i)}(\alpha)(\mu)m x^m_{\mu} - \bar{D}^{(i)}_{\alpha j}/k \beta - D^{(i)}_{\alpha j}/k \beta - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta} \\
& D^{(i)}_{\alpha j} / k - D^{(i)}_{\alpha j} / k \beta = x^m_{\mu} R^{(i)}(\alpha)(\mu)m x^m_{\mu} - D^{(i)}_{\alpha j}/k \beta - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta} \\
& \bar{D}^{(i)}_{\alpha j}/(\gamma) - \bar{D}^{(i)}_{\alpha j}/(\alpha)(\gamma) = x^m_{\mu} R^{(i)}(\alpha)(\mu)m x^m_{\mu} - \bar{D}^{(i)}_{\alpha j}/(\gamma) - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta} \\
& D^{(i)}_{\alpha j}/(\gamma) - D^{(i)}_{\alpha j}/(\alpha)(\gamma) = x^m_{\mu} R^{(i)}(\alpha)(\mu)m x^m_{\mu} - D^{(i)}_{\alpha j}/(\gamma) - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta} \\
& d^{(i)}_{\alpha j}/(\beta) = x^m_{\mu} S^{(i)}(\mu)(\beta)m x^m_{\mu} - d^{(i)}(\mu)m R^{(m)}(\mu)_{\gamma\beta}.
\end{align*}$$
Finally, note that the torsion T and the curvature R of the Γ-linear connection ∇ are not independent. They verify the general Bianchi identities

\[
\sum_{\{X,Y,Z\}} \{(\nabla_X T)(Y,Z) - R(X,Y)Z + T(T(X,Y),Z)\} = 0, \quad \forall X,Y,Z \in \mathcal{X}(E)
\]
\[
\sum_{\{X,Y,Z\}} \{(\nabla_X R)(U,Y,Z) + R(T(X,Y),Z)U\} = 0, \quad \forall X,Y,Z,U \in \mathcal{X}(E),
\]

where $\{X,Y,Z\}$ means cyclic sum.

In the adapted basis (X_A), we have sixty-four effective Bianchi identities, obtained by the relations

(4.3) \[
\begin{cases}
\sum_{\{A,B,C\}} \{R^F_{ABC} - T^E_{ABC} - T^G_{AB}T^E_{CG}\} = 0 \\
\sum_{\{A,B,C\}} \{R^F_{DABC} + T^G_{AB}R^F_{DAG}\} = 0,
\end{cases}
\]

where $R(X_A, X_B)X_C = R^D_{CBA}X_D$, $T(X_A, X_B) = T^P_{BA}X_D$ and "$\cdot\cdot\cdot$" represents one of the covariant derivatives "∂_{α}", "∂_{i}" or "$\partial^{(i)}_{\alpha}$". The large number and the complicated form of the above Bianchi identities associated to a Γ-linear connection determine us to study them, in a subsequent paper \cite{9}, in the more particular case of the h-normal Γ-linear connections. In that case, the number of Bianchi identities reduces to thirty.

5 Jet prolongation of vector fields

A general vector field X^* on $J^1(T,M)$ can be written under the form

\[
X^* = X^\alpha \frac{\partial}{\partial t^\alpha} + X^i \frac{\partial}{\partial x^i} + X^{(i)}_{\alpha} \frac{\partial}{\partial x^i_{\alpha}},
\]

where the components X^α, X^i, $X^{(i)}_{\alpha}$ are functions of $(t^\alpha, x^i, x^i_{\alpha})$.

The prolongation of a vector field X on $T \times M$ to a vector field on the 1-jet bundle $J^1(T,M)$ was solved by Olver \cite{12} in the following sense.

Definition 5.1 Let X be a vector field on $T \times M$ with corresponding (local) one-parameter group $\exp(\varepsilon X)$. The 1-th prolongation of X, denoted by $pr^{(1)}X$, will be a vector field on the 1-jet space $J^1(T,M)$, and is defined to be the infinitesimal generator of the corresponding prolonged one-parameter group $pr^{(1)}[\exp(\varepsilon X)]$, i.e.,

\[
[pr^{(1)}X](t^\alpha, x^i, x^i_{\alpha}) = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} pr^{(1)}[\exp(\varepsilon X)](t^\alpha, x^i, x^i_{\alpha}).
\]

In order to write the components of the prolongation, Olver used the α-th total derivative $D_\alpha f$ of an arbitrary function $f(t^\alpha, x^i)$ on $T \times M$, which is defined by the relation

(5.2) \[
D_\alpha f = \frac{\partial f}{\partial t^\alpha} + \frac{\partial f}{\partial x^i} x^i_{\alpha}.
\]

Thus, starting with $X = X^\alpha(t,x) \frac{\partial}{\partial t^\alpha} + X^i(t,x) \frac{\partial}{\partial x^i}$ like a vector field on $T \times M$, Olver introduced the 1-th prolongation of X as the vector field

(5.3) \[
pr^{(1)}X = X + X^{(i)}_{\alpha}(t^\beta, x^j, x^j_{\beta}) \frac{\partial}{\partial x^i_{\alpha}},
\]
where
\[
X^{(i)} = D_\alpha X^i - (D_\alpha X^\beta)x^i_\beta = \frac{\partial X^i}{\partial t^\alpha} + \frac{\partial X^i}{\partial x^j}x^j_\alpha - \left(\frac{\partial X^\beta}{\partial t^\alpha} + \frac{\partial X^\beta}{\partial x^j}x^j_\alpha \right)x^i_\beta.
\]

Let us use a geometrical approach for obtaining jet prolongations of vector fields. If we assume that is given a nonlinear connection \(\Gamma = (M_{(\alpha)}^{(i)} x^j, N_{(\alpha)}^{(i)} x^j) \) on \(J^1(T,M) \), then the \(\alpha \)-th total derivative used by Olver can be written as
\[
(5.4) \quad D_\alpha f = \frac{\delta f}{\delta t^\alpha} + \frac{\delta f}{\delta x^i}x^i_\alpha = f/\alpha + f^i_\alpha x^i_\alpha,
\]
and, consequently, \(D_\alpha f \) represents the local components of a distinguished 1-form on \(J^1(T,M) \), which is expressed by \(Df = (D_\alpha f) dt^\alpha \).

Now, let there be given a vector field \(X \) on \(T \times M \). If we suppose that \(J^1(T,M) \) is endowed at the same time with a \(\Gamma \)-linear connection \(\Gamma_0 \), we can define the geometrical 1-th jet prolongation of \(X \),
\[
(5.5) \quad \operatorname{pr}^{(1)} X = X^\alpha \frac{\delta}{\delta t^\alpha} + X^i \frac{\delta}{\delta x^i} + Y^{(i)}_{(\alpha)}(x^j, x^j_\alpha) \frac{\partial}{\partial x^i_\alpha},
\]
setting
\[
Y^{(i)}_{(\alpha)} = X^{(i)}_{(\alpha)} + M^{(i)}_{(\alpha)\mu} X^\mu + N^{(i)}_{(\alpha)m} X^m.
\]

Remarks 5.1

i) Our prolongation coincides with that of Olver. Moreover, we have the relation
\[
(5.6) \quad Y^{(i)}_{(\alpha)} = X^{(i)}_{(\alpha)} + M^{(i)}_{(\alpha)\mu} X^\mu + N^{(i)}_{(\alpha)m} X^m.
\]

ii) In the particular case of the Berwald \(\Gamma_0 \)-linear connection associated to the metrics \(h_{\alpha\beta} \) and \(\varphi_{ij} \), the expression of \(Y^{(i)}_{(\alpha)} \) reduces to
\[
(5.7) \quad Y^{(i)}_{(\alpha)} = X^{(i)}_{(\alpha)} + M^{(i)}_{(\alpha)\mu} X^\mu + N^{(i)}_{(\alpha)m} X^m,
\]
where \(\gamma^{i}_{jk} \) represent the Christoffel symbols of the metric \(\varphi_{ij} \).

Open problem.
Study the prolongations of vectors, 1-forms, tensors, \(G \)-structures from \(T \times M \) to \(J^1(T,M) \).

Acknowledgments. It is a pleasure for us to thank Prof. Dr. D. Oprea for many helpful discussions on this research. We also thank to the reviewers of Kodai Mathematical Journal for their valuable comments upon a previous version of this paper.
References

[1] G. S. Asanov, *Gauge-Covariant Stationary Curves on Finslerian and Jet Fibrations and Gauge Extension of Lorentz Force*, Tensor N. S., Vol 50 (1991), 122-137.

[2] L. A. Cordero, C. T. J. Dodson, M. de Léon, *Differential Geometry of Frame Bundles*, Kluwer Academic Publishers, 1989.

[3] M. J. Gotay, J. Isenberg, J. E. Marsden, *Momentum Maps and the Hamiltonian Structure of Classical Relativistic Fields*, http://xxx.lanl.gov/hep/9801019, 1998.

[4] N. Kamron et P. J. Olver, *Le Problème d’équivalence à une divergence prés dans le calcul des variations des intégrales multiples*, C. R. Acad. Sci. Paris, t. 308, Série I, p. 249-252, 1989.

[5] R. Miron, M. Anastasiei, *The Geometry of Lagrange Spaces: Theory and Applications*, Kluwer Academic Publishers, 1994.

[6] R. Miron, M. S. Kirkovits, M. Anastasiei, *A Geometrical Model for Variational Problems of Multiple Integrals*, Proc. of Conf. of Diff. Geom. and Appl., June 26-July 3, 1988, Dubrovnik, Yugoslavia.

[7] M. Neagu, *Harmonic Maps between Generalized Lagrange Spaces*, Southeast Asian Bulletin of Mathematics, Springer-Verlag, 2000, in press.

[8] M. Neagu, *Multi-Time Lagrangian Geometry of Physical Fields*, Workshop on Diff. Geom., Global Analysis, Lie Algebras, Aristotle University of Thessaloniki, Greece, Aug. 27-Sept. 2, 2000; http://xxx.lanl.gov/math.DG/0009117, 2000.

[9] M. Neagu, *Upon h-normal ϒ-linear connection on J¹(T, M)*, 2000, http://xxx.lanl.gov/math.DG/0009070.

[10] M. Neagu, C. Udriște, *Geometrical Objects on Jet Fibre Bundle of Order One*, Third Conference of Balkan Society of Geometers, Politehnica University of Bucarest, Romania, July 31-August 3, 2000; http://xxx.lanl.gov/math.DG/0009049, 2000; Sent to Journal of the London Mathematical Society, 2000.

[11] M. Neagu, C. Udriște, *The Geometry of Multi-Time Lagrange Spaces*, http://xxx.lanl.gov/math.DG/0009071, 2000.

[12] P. J. Olver, *Applications of Lie Groups to Differential Equations*, Springer-Verlag, 1986.

[13] D. Saunders, *The Geometry of Jet Bundle*, Cambridge University Press, New York, London, 1989.

[14] C. Udriște, *Nonclassical Lagrangian dynamics and potential maps*, Proc. of the Conference on Mathematics in Honour of Prof. Radu Rosca at the Occasion of his Ninetieth Birthday, Katolieke University Brussel, Katolieke University Leuven, Belgium, Dec. 11-16, 1999; http://xxx.lanl.gov/math.DS/0007060, 2000.
[15] C. Udriște, *Solutions of DEs and PDEs as potential maps using first order Lagrangians*, Centenial Vranceanu, Romanian Academy, University of Bucharest, June 30-July 4, 2000; http://xxx.lanl.gov/math.DS/0007061, 2000.

[16] C. Udriște, M. Neagu, *Geometrical Interpretation of Solutions of Certain PDEs*, Balkan Journal of Geometry and Its Applications, 4,1 (1999), 145-152.

University POLITEHNICA of Bucharest
Department of Mathematics I
Splaiul Independentei 313
77206 Bucharest, Romania
e-mail: mircea@mathem.pub.ro
e-mail: udriste@mathem.pub.ro