Modeling of 3D temperature field in butt welded joint of 6060 alloy sheets using the ANSYS program

M Matuszewski

1 Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 34-201 Częstochowa, Poland

E-mail: matuszewski@itm.pcz.pl

Abstract. In work, the modeling of a three-dimensional temperature field in a butt weld connection of two 6060 aluminum alloy sheets using Finite Element Method is presented. The calculations were performed for two welding methods: TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas). The Goldak's double ellipsoidal heat source model has been used in modeling. The thermal-mechanical properties of the material were assumed to depend on the temperature. The Workbench, DesignModeler, Mechanical, Fluent and CFD-Post modules of the ANSYS program were used for numerical simulations. In the description of the geometry of joints, cube type elements were used, with density of grid in the heat affected zone. The parabolic shapes of face and root were assumed based on the literature and results of the experiment. The temperature distributions in cross-sections of welded joints as well as welding thermal cycles at selected points were analyzed. The results of numerical simulations were verified experimentally. Comparison of calculated and obtained in the experiment the characteristic limits of heat affected zones showed satisfactory compatibility. The directions of heat propagation determined by vectors of cooling rates coincide with the longitudinal axis of dendritic grains determined on the basis of metallographic tests.

1. Introduction

Thermal phenomena are important in the technological processes of metals and their alloys. In many processes, such as casting [1, 2], heat and laser treatment [3, 4], welding [5, 6], welding coatings [7, 8], they are the essence of the technological process, i.e. calling the right temperature is to achieve the desired state of the material leading to a change in the state of focus or its properties. In other processes, the increase of the temperature of the processed material is aimed at determining such properties that enable the final technological method, eg. FSW (Friction Stir Welding) [9], coating [10]. In some processes, thermal effects are a secondary effect, such as in machining [11]. Depending on the material, thermo-mechanical properties change as the temperature changes [12], and in the case of steel (cast steel, cast iron), there are structural changes (phase transformations in solid state).

In modelling the temperature field of welding processes, the selection of the heat source model and the calculation method is very important. The analysis of models of heat sources used in the description of thermal phenomena in welding processes is presented, among others in the works [13, 14]. The first proposals were point heat source models [15, 16]. Because the point models did not allow for describing the temperature field near the weld axis, Eagar [17] proposed a Gaussian distributed surface source. The breakthrough moment was the double ellipsoid model of the heat source proposed by Goldak [18]. Goldak's proposal was the first model taking into account the volumetric nature of the welding source. In work [19] a volumetric model with Gaussian power distribution in the horizontal plane and parabolic change in the vertical direction was proposed.
A further direction of the search was to consider the inclination of the electrode (welding head) in heat source models [20, 21] and to analyze the influence of this inclination on the temperature distribution in welded joints [22, 23].

Because single-distributed models of heat sources only took into account the heat of the welding arc, disregarding the heat transferred to the weld pool through the molten additional material (e.g., electrodes), in works [24-27] two-distributed models were proposed. It allowed, among others, to obtain an irregular line of fusion (often observed in welding practice), impossible to reproduce with the use of single-modal source.

Despite many models and numerous publications on temperature field modelling, intensive search for models and algorithms is still in progress to describe the temperature field enabling to obtain temperature distributions as close as possible to real values [28-33].

In the descriptions of the temperature field during welding, analytical [34, 35], semi-analytical [36] and numerical [33, 37-39] solutions for the differential heat conduction equation are used.

The proposed solutions concern the possibility of describing the temporary temperature field during particular welding methods and related processes: GMAW (Gas Metal Arc Welding) [40, 41], SAW (Submerged Arc Welding) [42-45], GTA (Gas Tungsten Arc) [25], hardfacing [46] and surfacing [47], PAW Plasma Arc Welding) [48], PAC (Plasma Arc Cutting) [49], LBM (Laser Beam Welding) [50], hybrid laser-arc welding [51], hybrid laser-waterjet micro machining [52,53] and metallization [54].

This paper presents modelling of 3D temperature field in butt weld joint of 6060 alloy sheets using the ANSYS program. Numerical simulations have been carried out for two welding methods (GTA and GMA) verified experimentally.

2. Experimental work
Welding tests of single pass butt welded joint of 6060 aluminum alloy sheets were carried out in the Welding Laboratory of Czestochowa University of Technology. Welded joints were made using two methods (in the argon shield):
- GTA method (141) – PN-EN ISO 4063:2011 [55],
- GMA method (131) – PN-EN ISO 4063:2011 [55].

The scheme of single-pass butt welding of aluminum alloy sheets is presented in Figure 1. The chemical composition and thermomechanical properties of has been summarized in Tables 1 and 2.

![Figure 1. The scheme of single-pass butt welding process.](image)

The welding process involved the manufacture of a butt joint of two 6060 aluminum alloy sheets with dimensions 244x110x4 mm by GTA (141) method was carried out on the Faltig 315 welding device (OZAS, Opole, Poland) [56] (figure 2).
Table 1. Thermomechanical properties of Alloy 6060.

Property	Value
Density	2700 (kg/m³)
Specific heat	898 (J/kgK)
Thermal conductivity	209 (W/mK)
Solidus temperature	610 (°C)
Liquidus temperature	655 (°C)

Table 2. The chemical composition of Alloy 6060 (with accordance with EN 573-1[57]).

Element	Participation (%)
Mg	0.35 – 0.60
Mn	≤0.10
Fe	0.10-0.30
Si	0.30 – 0.60
Cu	≤ 0.10
Zn	≤ 0.15
Cr	≤ 0.05
Ti	≤ 0.10
other	≤ 0.05
Al	rest

Faltig 315 allows welding with a non-clay electrode (141) and coated electrode (111) direct current and alternating current. The parameters of the 6060 aluminum alloy GTA welding process are shown in Table 3.

Figure 2. Faltig 315 AC/DC. Figure 3. Synermig 400.
The welding process involved the manufacture of a butt joint of two 6060 alloy sheets with dimensions of 200x60x5 mm using the GMA (131) method. The welding process was carried out on the Synergine 400 welding device (OZAS, Opole, Poland) presented in Figure 3. The device is intended for joining construction steels, high-alloy steels of type 18-8 and alloys (AlMg5 and AlSi5) [56]. We can weld with direct current and alternating current. The welding parameters using GTA method is setting in Table 4.

Parameter	Value
Current type	Alternating
Voltage	15.2 A
Current	130 A
Welding speed	8.6 cm/min
Diameter of electrode	2.4 mm
Composition of additional material	AlMg5
Shielding gas	Ar 4.5
Intensity of shielding gas	15 l/min

Table 3. Welding parameters during GTA welding.

Parameter	Value
Current type	Alternating
Voltage	15.2 (A)
Current	130 (A)
Welding speed	8.6 (cm/min)
Diameter of electrode	2.4 (mm)
Composition of additional material	AlMg5
Wire feeding speed	8.5 (m/min)
Shielding gas	Ar 4.5
Intensity of shielding gas	15 (l/min)

Table 4. Welding parameters during GMA welding.

3. Examples of numerical simulations
The problem of modeling the temperature field in welding processes using the finite element method was made using Ansys packages (4 programs from Ansys software):
- Ansys DesignModeler used to make a solid geometry,
- Ansys Meshing used to divide the solid into finite elements,
- Ansys Fluent used to define the model and calculations,
- Ansys CFD-Post for the development and analysis of results,

Ansys Fluent uses the following equation to solve heat transfer problems for a solid:

\[
\frac{\partial}{\partial t} \left(\rho h \right) + \nabla \cdot \left(\rho \vec{v} h \right) = \nabla \cdot (k \nabla T) + Q
\]

(1)

where: \(\rho \) – density, \(h \) – enthalpy, \(k \) – conductivity, \(T \) – temperature, \(Q \) - volumetric heat source, \(\vec{v} \) - speed field. When modeling the three-dimensional temperature field in welding processes, the dual
ellipsoidal moving heat source proposed by Goldak presented in the figure 4 was used. The Goldak’s model consists of two semi-ellipsoidal volumes that create a heat flux. For points \((x, y, z)\) belonging to the semi-ellipse located in the front part of the source, the heat flux is described by the equation:

\[
q_f(x, y, \xi) = \frac{6 \sqrt{3} f_f Q}{abc \pi \sqrt{\pi}} \exp\left(-\frac{3x^2}{a^2}\right) \exp\left(-\frac{3y^2}{b^2}\right) \exp\left(-\frac{3\xi^2}{c_f^2}\right)
\]

(2)

However, for points \((x, y, z)\) belonging to the back of the source:

\[
q_r(x, y, \xi) = \frac{6 \sqrt{3} f_r Q}{abc \pi \sqrt{\pi}} \exp\left(-\frac{3x^2}{a^2}\right) \exp\left(-\frac{3y^2}{b^2}\right) \exp\left(-\frac{3\xi^2}{c_r^2}\right)
\]

(3)

where: \(a, b, c_f, c_r\) are the parameters of the ellipsoidal heat source, \(f_f, f_r\), proportionality coefficients corresponding to heat in the front and rear parts of the heat source, where \(f_f + f_r = 2\), \(\xi\) distance of current source position to point \((x, y, z)\) [18].

![Double ellipsoidal Goldak’s model of heat source.](image)

Figure 4. Double ellipsoidal Goldak’s model of heat source.

Boundary Conditions:

- First-type boundary condition (Dirichlet):
 \[T_s = f(x, y, z, t)\]

(4)

- Second-type boundary condition (Neumann):
 \[q_s = -k \frac{dT(x, y, z, t)}{dx}\]

(5)

- Convection boundary condition:
 \[q_{\text{conv}} = h(T_{\text{free}} - T_w)\]

(6)

- Radiative condition:
 \[q_{\text{rad}} = \varepsilon \sigma (T_{\text{ref}}^4 - T_w^4)\]

(7)
3.1. **Modeling of the temperature field during butt welding of 6060 aluminum alloy sheets using the GTA method (141).**

![Finite element mesh for temperature field modeling during GTA welding.](image)

Figure 5. Finite element mesh for temperature field modeling during GTA welding.

Arc power 1970 [W]	Efficiency	
Heat transfer coefficient [W/m²K]	Speed of welding [m/s]	External emissivity

| GTA | 0.6 | 25 | 0.0014 | 0.1 |

![Temperature distribution during welding of Al6060 alloy sheet with the GTA method at time t = 69 s from the beginning of welding in the cross-section.](image)

Figure 6. Temperature distribution during welding of Al6060 alloy sheet with the GTA method at time $t = 69$ s from the beginning of welding in the cross-section.

The cross-section shows the temperature distribution at time $t = 69$ s from the beginning of welding. The graph shows the temperature change with the change of distance from the heat source. It may observe a sharp drop in temperature in the initial phase of the graph, which presents densely arranged isotherms near the source. Figure 7 shows two points for which a diagram of thermal cycles was performed during the time of connecting the two butt-welded alloy plates using the GTA method.
The results obtained give satisfactory results. The red color on the left is the area in which we obtained a temperature above solidus where the material melts. The dimensions of the remelting zone obtained during modeling in relation to experimental studies show divergences less than 5%.

Figure 8. The remelting zone when modeling the temperature field when GTA welding (141) compared to the experimental study (metallographic fracture).

3.2. Modeling of the temperature field during butt welding of 6060 aluminum alloy sheets using the GMA method (131)
During the modelling of the temperature field during the butt welding using the GMA method, two sheets of 6060 alloy, the solid was divided into 444609 cubic elements and 487760 nodes with a densegrid in the joint area [57].
Figure 9. Finite element mesh for temperature field modeling during GTA welding.

Table 6. Parameters used in the simulation.

Arc power 1970 [W]	Efficiency 0.6	Heat transfer coefficient 25 [W/m²K]	Speed of welding 0.0014 [m/s]	External emissivity 0.1
GTA	1970			

Figure 10. Temperature distribution during welding of Al6060 alloy sheet with the GMA method at time t = 24 s from the beginning of welding in the cross-section.
Figure 11 shows two points for which a diagram of thermal cycles was made during the joining of two butt-welded alloy plates using the GTA method.

The result of numerical simulations gives satisfactory results. The red color on the left shows the area in which we reached the temperature above the solidus where the material melts. The difference in dimensions obtained in the simulation with respect to experimental tests is below 5%.

4. Conclusion
Numerical simulations of the temperature field in welding processes for sheets made of aluminum alloys:
- butt welded joint made with the GTA method (using a infusible (tungsten) electrode in the Argon shield with the addition of a deposited metal in the form of a wire),
- butt welded joint made with the GMA method (using a fusible electrode in the Argon shield), allowed to determine the fusion zone of welded sheets in the mentioned processes.
The numerical simulation results were verified experimentally by comparing the shapes and dimensions of remelting zones obtained theoretically (computationally) and experimentally (on the basis of metallographic specimen).

The obtained results are the origin point for the calculation of strain and stress states in the welding processes considered in the article.

References
[1] Sowa L, Skrzypczak T and Kwiatoń P 2018 Analysis of Temperature and Velocity Fields During Filling of Continuous Casting Mould, *Archives of Foundry Engineering* 18 115-118
[2] Skrzypczak T, Węgrzyn-Skrzypczak E and Winczek J 2015 Effect of Natural Convection on Directional Solidification of Pure Metal, *Archives of Metallurgy and Materials* 60 835 – 841
[3] Kumar U, Gope D K, Srivastava J P, Chattopadhyaya S, Das A K and Krolczyk G 2018 Experimental and Numerical Assessment of Temperature Field and Analysis of Microstructure and Mechanical Properties of Low Power Laser Annealed Welded Joints, *Materials* 11 1514, doi:10.3390/met8030169
[4] Winczek J, Modrzycka A and Gawrońska E 2016 Analytical Description of the Temperature Field Induced by Laser Heat Source with any Trajectory *Procedia Engineering* 149 553 – 558
[5] Jiang Z, Hua X, Huang L, Wu D and Li F 2017 Effect of Multiple Thermal Cycles on Metallurgical and Mechanical Properties during Multi-pass Gas Metal Arc Welding of Al5083 Alloy, *International Journal of Advanced Manufacturing Technology* 93(9-12) 3799-3811, doi:10.1007/s00170-017-0771-6
[6] Górka J 2018 Assessment of Steel Subjected to the Thermomechanical Control Process with Respect to Weldability, *Metals* 8 169, doi:10.3390/met8030169
[7] Berezhnaya O V, Gribkov E P and Kuznestov V D 2016 Investigation of Thermostressed State Coating Formation at Electric Contact Surfacing of Shaft Type Parts, *Advances in Materials Science and Engineering*, Article ID 6597317, 1-14, http://dx.doi.org/10.1155/2016/6597317
[8] Gućwa M, Winczek J, Bęczkowski R and Dospiał M, 2016 Structure and Properties of Coatings Made with Self Shielded Cored Wire, *Archives of Foundry Engineering* 16(3) 39-42
[9] Haghpanahi M, Salimi S, Bahemmat P and Sima S 2013 3D Transient Analytical Solution Based on Green’s Function to Temperature Field in Friction Stir Welding, *Applied Mathematical Modelling* 37(24) 9865-9884
[10] Golański D, Dymny G, Kujawińska M and Chmielewski T 2016 Experimental Investigation of Displacement/Strain Fields in Metal Coatings Deposited on Ceramic Substrates by Thermal Spraying, *Solid State Phenomena* 240 174-182
[11] Murčinková Z and Vasílik K 2016 Thermo-physical Aspects of Chip Machining, *High Temperatures - High Pressures* 45(4) 273-289
[12] Winczek J, Mičian M and Ivanov V 2018 The Modelling of Temperature-Dependent Stress-Strain Curves for Weldable Steels, *Journal of Applied Mathematics and Computational Mechanics* 17(3) 111-117
[13] Winczek J 2016 The Influence of the Heat Source Model Selection on Mapping of Heat Affected Zones During Surfacing by Welding, *Journal of Applied Mathematics and Computational Mechanics* 15(3) 167-178
[14] Rochalski D, Golański D and Chmielewski T 2017 Models of Welding Heat Sources in the Analysis of the Temperature Field, *Welding Review* 89 109-116
[15] Rosenthal D 1941 Mathematical Theory of Heat Distribution during Welding and Cutting, *Welding Journal* 20 220s-234s
[16] Rykaline N 1947 *Fundamentals of heat flow in welding*. AN SSSR, Moskva
[17] Eagar T W and Tsai N S 1983 Temperature Fields Produced by Travelling Distributed Heat Sources. *Welding Journal* 62 346-355
[18] Goldak J, Chakravarti A and Bibby M 1985 *A Double Ellipsoidal Finite Element Model for Welding Heat Source*, II W Doc. No.212-603-85
[19] Winczek J 2010 Analytical Solution to Transient Temperature Field in a Half-Infinite Body Caused by Moving Volumetric Heat Source, *International Journal of Heat and Mass Transfer*
[20] Hongyuan F, Qingguo M, Wenli X and Shude J 2005 New General Double Ellipsoid Heat Source Model, Science and Technology of Welding and Joining 10 361-368

[21] Parkitny R and Winczek J 2013 Analytical Solution of Temporary Temperature Field in Half-Infinite Body Caused by Moving Tilted Volumetric Heat Source, International Journal of Heat and Mass Transfer 60 469-479

[22] Ghosh A, Yadav A and Kumar A 2017 Modelling and Experimental Validation of Moving Tilted Volumetric Heat Source in Gas Metal Arc Welding Process, Journal of Materials Processing Technology 239 52-65

[23] Winczek J, Gucwa M, Mičian M and Makles K 2019 Numerical Analysis of the Influence of Electrode Inclination on Temperature Distribution during GMAW Overlaying, Mathematical Problems in Engineering, Article ID 9048025, https://doi.org/10.1155/2019/9048025

[24] Jeong S K and Cho H S 1997 An Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding Including the Effect of Molten Metal, Proceedings of the Institution of Mechanical Engineers 211 63-72

[25] Kang S H and Cho H S 1999 Analytical Solution for Transient Temperature Distribution in Gas Tungsten Arc Welding with Consideration of Filler Wire, Proceedings of the Institution of Mechanical Engineers 213B 799-811

[26] Winczek J 2011 New Approach to Modeling of Temperature Field in Surfaced Steel Elements, Int. International Journal of Heat and Mass Transfer 54 4702-4709

[27] Winczek J 2017 Modeling of Temperature Field during Multi-Pass GMAW Surfacing or Rebuilding of Steel Elements Taking into Account the Heat of the Deposit Metal, Applied Sciences 7(1) 6 1-19, doi:10.3390/app7010006

[28] Gu Y Y, Li Y D, Yong Y, Xu F L and Su L F 2019 Determination of Parameters of Double-Ellipsoidal Heat Source Model Based on Optimization Method, Welding in the World 63(2) 365-376, https://doi.org/10.1007/s40194-018-00678-w

[29] Jia X, Xu J, Liu Z, Huang S, Fan Y and Sun Z 2014 A New Method to Estimate Heat Source Parameters in Gas Metal Arc Welding Simulation Process, Fusion Engineering and Design 89 40-48

[30] Flint T F, Francis J A, Smith M C and Balakrishnan J 2017 Extension of the Double-Ellipsoidal Heat Source Model to Narrow-Groove and Keyhole Weld Configurations, Journal of Materials Processing Technology 246 123-135

[31] Sun J, Klassen J, Nitschke-Pagel T and Dilger K 2018 Effects of Heat Source Geometric Parameters and Arc Efficiency on Welding Temperature Field, Residual Stress, and Distortion in Thin-Plate Full-Penetration Welds, The International Journal of Advanced Manufacturing Technology 99 497–515, https://doi.org/10.1007/s00170-018-2516-6

[32] Lv C, Wang G, Chen H and Wan S 2019 Estimation of the Moving Heat Source Intensity Using the Multiple Model Adaptive Inverse Method, International Journal of Thermal Sciences 138 576-585

[33] Wu C S, Hu Q X and Gao J Q 2009 An Adaptive Heat Source Model for Finite-Element Analysis of Keyhole Plasma Arc Welding, Computational Materials Sciences 46 167-172

[34] Nasiri M and Enzinger N 2018 An Analytical Solution for Temperature Distribution in Fillet Arc Welding Based on an Adaptive Function, Welding in the World, 63(2) 409-419, https://doi.org/10.1007/s40194-018-0667-6

[35] Nasiri M B and Enzinger N 2019 Powerful Analytical Solution to Heat Flow Problem in Welding, International Journal of Thermal Sciences 135 601-612

[36] Flint T F and Smith M C 2019 HEDSATs: High Energy Density Semi-Analytical Thermal Solutions, SoftwareX 10 100243

[37] Sun Y L, Obasi G, Hamelin C J, Vasileiou A N, Flint T F, Francis J A and Smith M C 2019 Characterisation and Modelling of Tempering during Multi-pass Welding, Journal of Materials Processing Technology 270 118-131

[38] Mahiskar G I, Chadge R B, Ambade S P and Patil A P 2014 Thermo-mechanical Analysis of Multi-Pass Bead-on-Plate Welding, Procedia Materials Science 5 2522-2531
[39] Joshi S, Hildebrand J, Aloraier A S and Rabczuk T 2013 Characterization of Material Properties and Heat Source Parameters in Welding Simulation of Two Overlapping Beads on a Substrate Plate, *Computational Materials Science*, 69 559-565

[40] Winczek J 2016 Modeling of Heat Affected Zone in Multipass GMAW Surfacing S235 Steel Element, *Procedia Engineering* 136 108-113

[41] Frei J, Alexandrov B T and Rethmeier M 2019 Low Heat Input Gas Metal Arc Welding for Dissimilar Metal Weld Overlays, Part III: Hydrogen-Assisted Cracking Susceptibility, *Welding in the World* 63(3) 591-598, https://doi.org/10.1007/s40194-018-0674-7

[42] Winczek J, Gawronska E, Gucwa M and Sczygiol N 2019 Theoretical and Experimental Investigation of Temperature and Phase Transformation during SAW Overlaying, *Applied Sciences*, 9 1472 1-17, doi:10.3390/app9071472

[43] Ghosh A, Kroleczyk G, Saramdzic I and Mitra R K 2014 Thermal Transport Phenomenon of Submerged Arc Welding Process, *Tehnički vjesnik* 21(6) 1303-1306

[44] Winczek J and Parkitny R 2017 Modelling of Heat Affected Zone in Submerged Arc Welding Butt Joint with Thorough Penetration, *Procedia Engineering* 177C 241-246

[45] Winczek J, Makles K, Gucwa M, Gnatowska R and Hatala M 2017 Modelling of Strains during SAW Surfacing Taking into Heat of the Weld in Temperature Field Description and Phase Transformations, *IOP Conf. Series: Materials Science and Engineering* 225, 012038 doi:10.1088/1757-899X/225/1/012038

[46] Gucwa M, Bęczkowski R, Winczek J and Wyleciał T 2017 The Effect of Type of Welding Sequence During Hardfacing Chromium Cast Iron for Erosion Resistance. *Archives of Foundry Engineering*, 17(3) 51-54

[47] Winczek J 2012 Modelling of Heat Affected Zone in Cylindrical Steel Elements Surfaced by Welding, *Applied Mathematical Modeling* 36 1514-1528

[48] Li Y, Feng Y, Zhang X and Wu C 2018 An Evolutionary Keyhole-Mode Heat Transfer Model in Continuous Plasma Arc Welding, *International Journal of Heat and Mass Transfer* 117 1188-1198

[49] Moarrefzadeh A 2011 Numerical Simulation of Workpiece Thermal Profile in Plasma Arc Cutting (PAC) Process, *WSEAS Transactions on Applied and Theoretical Mechanics* 6(4) 160-166

[50] Franco A, Romoli L and Musacchio A 2014 Modelling for predicting seam geometry in laser beam welding of stainless steel, *International Journal of Thermal Sciences* 79 194-205

[51] Turichin G, Kuznetsov M, Pozdnakov A, Gook S, Gumenyuk A and Rethmeier M 2018 Influence of Heat Input and Preheating on the Cooling Rate, Microstructure and Mechanical Properties at the Hybrid Laser-Arc Welding of API 5L X80 steel, *Procedia CIRP* 74 748-751

[52] Feng S, Huang C, Wang J, Zhu H and Yao P 2017 An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro Machining, *Precision Engineering* 47 33-45

[53] Chmielewski T, Golański D, Włośiński W and Zimmerman J 2015 Utilizing the Energy of Kinetic Friction for the Metallization of Ceramics, *Bulletin of the Polish Academy of Sciences, Technical Sciences* 63(1), DOI: 10.1515/bpasts-2015-0023

[54] Chmielewski T, Golański D and Włośiński W 2015 Metallization of Ceramic Materials Based on the Kinetic Energy of Detonation Waves, *Bulletin of the Polish Academy of Sciences, Technical Sciences* 63(2), DOI: 10.1515/bpasts-2015-0051

[55] PN-EN ISO 4063:2011. *Arc welding process numbers*

[56] EN –731-1. *Aluminium and aluminium alloys - Chemical composition and form of wrought products*

[57] *Operation and maintenance manual documentation*, Device Faltig - 315 AC/DC

[58] *Dokumentacja Operation and maintenance manual documentation*, Device Synermig 400

[59] Kik T, Slavacek M, Wyględacz B 2016 Numerical Analysis of Multipass T-joint Welding and Post Welding Heat Treatment, *Welding Review* 88(5) 101-106