Fault-tolerant coloring of the asynchronous cycle

Pierre Fraigniaud Patrick Lambein-Monette Mikaël Rabie

IRIF, Université Paris Cité

DUCAT + ESTATE meeting
18 March 2022
Setup
Takeaway

Contributions

- define the **asynchronous k-coloring problem** for asynchronous networks
- propose a **wait-free** algorithm for any \((n \geq 3)\)-nodes cycle \(C_n\)
- using a **6-color** palette
- running in \(O(\log^* n)\) (asynchronous) rounds

Unifies

- synchronous **graph k-coloring**
 - **LOCAL model**
 - \(\sim \Omega(\log^* n)\) temporal lower bound
- asynchronous **k-renaming**
 - **immediate snapshot** shared-memory model
 - \(\sim\) coloring \(C_3\) **requires** \((k \geq 5)\) **colors**
Model

async-LOCAL
- n asynchronous **processes** p_1, \ldots, p_n
- connected **graph** $G = (V := [n], E)$
- **schedule** $\sigma = \sigma(1), \sigma(2), \ldots \in \Sigma \subseteq 2^V$
- $i \in \sigma(t) \iff p_i \text{ activated at } t$:
 1. **writes** a value
 2. **reads** values of $p_j, j \sim_G i$
 3. privately **computes** a next state

Within one step t
1. **first** activated process **all write**
2. **then** activated process **all read**
 - if $i \sim j$ and $i, j \in \sigma(t)$, then i reads j's **step t value**

no schedule constraints (σ arbitrary)

![Diagram of process activation and communication](attachment:diagram.png)

- **write**
- **read**
- **think**

time

instant t

Problem

async k-coloring

For a graph $G = (V, E)$ and scheduler $\Sigma \subseteq V^{\mathbb{N}}$.

- **uniform termination** $\exists B : |\sigma|_i \geq B \implies p_i$ outputs $c_i \neq \bot$
- **validity** if $p_i \sim p_j$ both output, then $c_i \neq c_j$
- **k-palette** $c_i = \bot \lor c_i \in \{1, \ldots, k\}$

Assuming initial unique identifiers $(X_u)_{u \in V}$.

\[\sim \text{round complexity} \text{ (# of activations before a process returns)} \]

Definition (wait-free)

An algorithm solves async-k-coloring **wait-free** over the graph G if it solves it for the complete scheduler $\Sigma = 2^{V(G) \times \mathbb{N}}$.

...also for a graph class \mathcal{G}:

- e.g., **cycles** $\mathcal{C} = \{C_n : n \geq 3\}$
- e.g., **cliques** $\mathcal{K} = \{K_n : n \geq 2\}$
Takeaway

Contributions

- Define the **asynchronous k-coloring problem** for asynchronous networks
- Propose a **wait-free** algorithm for any \((n \geq 3)\)-nodes cycle \(C_n\)
- Using a **6-color** palette
- Running in \(O(\log^* n)\) (asynchronous) rounds
Related works
The **LOCAL** model

- **LOCAL**
 - \(n \) nodes \(p_1, \ldots, p_n \) with **unique identifiers** \(X_1, \ldots, X_n \)
 - connected graph \(G = (V = [n], E) \)
 - in each round \(t \geq 1 \), every node \(p_i \):
 1. **sends** a message to its neighbors
 2. **receives** each neighbor’s **round** \(t \) message
 3. privately **computes** a next state
 - all nodes run for \(T \) rounds, then output

- **What can be computed **locally**
 \((\equiv T = o(n))\)
The k-coloring problem

graph k-coloring	**Fundamental results on C**
For a graph $G = (V, E)$	
▶ **termination** every node p_i outputs some color c_i	▶ 2-coloring **non-local**
▶ **validity** if $i \sim j$, then $c_i \neq c_j$	▶ 3-coloring C_n **requires** $\frac{1}{2} \log^* n + O(1)$ rounds (Linial 92)
▶ **k-palette** $c_i \in \{1, \ldots, k\}$	▶ 3-coloring C_n **can be solved** in $\frac{1}{2} \log^* n + O(1)$ rounds (Cole+ 86)

typically, $k = \Delta + 1$, $\Delta := \deg(G)$
Cole and Vishkin’s algorithm

Algorithm 1: 3-coloring, code for p_i

1. **Input**: $X_i \in \text{Poly}(n)$, unique identifier
2. **for** $T = \Theta(\log^* n)$ **rounds** **do**
 3. **write**(X_i) and **read** (X_{i-1}, X_{i+1})
 4. $X_i \leftarrow f(X_i, X_{i+1})$
5. **▷** Here $X_i \leq 5$
6. **for** $k \in (5, 4, 3)$ **do**
 7. **write**(X_i) and **read** (X_{i-1}, X_{i+1})
 8. **if** $X_i = k$ **then**
 9. $X_i \leftarrow \min \mathbb{N} \setminus \{X_{i-1}, X_{i+1}\}$
9. **return**(X_i)

$f(x, y) = 2\ell + x\ell$, $\ell := \min\{i : x_i \neq y_i\}$

$x = \sum_{i \geq 0} 2^i x_i$, $y = \sum_{i \geq 0} 2^i y_i$

- each application of f logarithmically reduces $\max|X_i|$
- ...as long as $X_i \geq 6$
- final phase in $O(1)$
The IS (*immediate snapshot*) model

immediate snapshot	Within one step t
n asynchronous **processes** p_1, \ldots, p_n	**1.** **first** activated process **all write**
shared-memory **array** M	**2.** **then** activated process **all read**
schedule $\sigma(1), \sigma(2), \ldots \subseteq [n]$	
$i \in \sigma(t) \iff p_i \text{ activated at } t$:	
1. **writes** in $M[i]$	**if** $i, j \in \sigma(t)$, **then** i reads $M[j](t)$
2. **reads** entire array M	
3. if $M \models \mathcal{P} \text{ terminates}$ with	**what can be computed** given (n, Σ)?
output $f(M)$	e.g., no wait-free consensus
4. else privately **computes** a next state	
The k-renaming problem

async k-coloring	Fundamental results		
For initial unique names $X_1, \ldots, X_n < M$ and scheduler $\Sigma \subseteq V^\mathbb{N}$.	k-renaming is impossible when $k < 2n - 1$ and $n = p^m$, p prime (Herlihy+ 99, Castañeda+ 10)		
- **uniform termination** $\exists B :$ $	\sigma	_i \geq B \implies p_i$ outputs $c_i \neq \bot$	- (2$n - 1$)-renaming can be solved for all $n \geq 2$ (Attiya+ 90, Attiya+ 04)
- **unicity** if $p_i \sim p_j$ both output, then $c_i \neq c_j$			
- **k-palette** $c_i = \bot \lor c_i \in \{1, \ldots, k\}$			
wait-free when $\Sigma = 2^{V \times \mathbb{N}}$			
Attiya and Welch’s algorithm

Algorithm 2: $2n - 1$ renaming, code for p_i

1. **Input:** $X_i \in \{0, 1, \ldots, M - 1\}$
2. **Initially:** $c_i \leftarrow 0$
3. **Forever:**
 - write(X_i, c_i)
 - read($((X_1, c_1), \ldots, (X_n, c_n))$)
 - if $c_i \notin \{c_j : j \neq i\}$ then return(c_i)
 - else
 - $r_i \leftarrow |\{j : X_j < X_i\}|$
 - $c_i \leftarrow r_i$-th min of $\mathbb{N} \setminus \{c_1, \ldots, c_n\}$

- $c_i \leq 2n - 1$
- active process p_i with smallest X_i cannot work forever
- all processes eventually terminate
A tale of two models

both problems inform our study:

LOCAL model
- coincides with our model when $\Sigma = (V, V, \ldots)$
- any async-k-coloring algorithm is a k-coloring algorithm
- $\Omega(\log^* n)$ **rounds** necessary to color the cycle C_n

IS model
- coincides with our model when $G = K_n$
- any async-k-coloring algorithm is a k-renaming algorithm for $G = C_3 = K_3$
- **5-color palette** necessary to color the cycle C_3
Takeaway

Contributions

▶ define the **asynchronous** k-**coloring problem** for asynchronous networks
▶ propose a **wait-free** algorithm for any ($n \geq 3$)-nodes cycle C_n
▶ using a **6-color** palette
▶ running in $O(\log^* n)$ (asynchronous) rounds

Unifies

▶ synchronous **graph** k-**coloring**
 ▶ **LOCAL** model
 ▶ $\sim \Omega(\log^* n)$ temporal lower bound
▶ asynchronous k-**renaming**
 ▶ **immediate snapshot** shared-memory model
 ▶ \sim coloring C_3 **requires** ($k \geq 5$) **colors**
Algorithmic contributions
async-6-coloring ("slow" worst-case)

Algorithm 3: async 6-coloring, code for p_i

1. **Input**: $X_i \in \mathbb{N}$, proper coloring
2. **Initially**: $c_i = (a_i, b_i) \leftarrow (0, 0)$
3. **Forever**:
 4. write(X_i, c_i) \textbf{immediate snapshot}
 5. read($((X, c), (X', c'))$)
 6. if $c_i \notin \{c, c'\}$ then return(c_i)
 7. else
 8. $a_i \leftarrow \min \mathbb{N} \setminus \{a_j : (X_j > X_i)\}$
 9. $b_i \leftarrow \min \mathbb{N} \setminus \{b_j : (X_j < X_i)\}$

- $a_i + b_i \leq 2 \implies 6$-colors palette
- local maxima/minima stubbornly keep $a_i = 0/b_i = 0$
- local extrema terminate in $O(1)$
- process terminate in $O(\ell)$, ℓ distance to a local extremum
Next?

- 5-coloration
- general graphs
- other problems
async-6-coloring ("fast" worst-case)

Algorithm 4: async 6-coloring, code for p_i

1. **Input:** $X_i \in \mathbb{N}$ > proper coloring
2. **Initially:** $c_i = (a_i, b_i) \leftarrow (0, 0), r_i \leftarrow 0$
3. **Forever:**
 - **Write**(X_i, c_i, r_i) > immediate snapshot
 - **Read**($((X, c, r), (X', c', r'))$)
 > update c_i as before
 - if $(r_i < \infty) \land (r_i \leq \min\{r, r'\})$ then
 - if $\min\{X, X'\} < X_p < \max\{X, X'\}$ then
 - $r_i \leftarrow r_i + 1$
 - $Y \leftarrow f(X_i, \min\{X, X'\})$
 - if $Y < \min\{X_q, X_{q'}\}$ then $X_p \leftarrow Y$
 - else
 - $r_i \leftarrow \infty$
 - if $X_i < \min\{X, X'\}$ then
 - $X_i \leftarrow \min\{X_i, \min(\mathbb{N} \setminus \{f(X, X_i), f(X', X_i)\})\}$