Myelodysplastic syndrome with clonal karyotype evolution associated with trisomy 8 and ASXL1 mutation in well-controlled HIV patient: Case report and literature review

To the Editor

Nonspecific myelodysplastic features (MDF) due to hematopoietic effects of the human immunodeficiency virus (HIV) were frequent before the antiretroviral therapy (ART) era. Pronounced hypocellularility, plasmacytosis, and eosinophilia were observed and are referred to as HIV myelopathy [1,2]. These MDF alterations generally resolve with the institution of ART. They should be separated from myelodysplastic syndrome (MDS), a heterogeneous group of myeloid clonal diseases. Myelodysplastic syndromes can have a primary cause, also called de novo MDS, or secondary (sMDS), both with the risk of progression to acute myeloid leukemia (AML). Some case reports and small case series of MDS in well-controlled HIV patients were described [3-6]. Herein, a new case of a long-stand well-controlled HIV infected patient with MDS is reported. The MDS status evolved with clonal karyotype associated with trisomy 8 and ASXL1 mutation.

A 61-year-old black woman was diagnosed with HIV in 2002, and ART—Zidovudine, Lamivudine (3TC), and Efavirenz—was initiated. She remained on this treatment for 16 years with long-term suppressed viral load, and CD4 cell counts >600 cells/mm³. In January 2018, she presented with progressive anemia and mental depression and the scheme was switched to Tenofovir, 3TC, and Dolutegravir. In September 2018, she developed severe anemia and thrombocytopenia (hemoglobin [Hb] 4.3 g/dL, leucocyte 8.7 × 10⁹/L, neutrophils 2.2 × 10⁹/L, and platelets 45 × 10⁹/L, reticulocyte 0.13%, and serum ferritin 1225 µg/L) with red blood cell transfusion dependency. The polymerase chain reaction for Parvovirus B19 was negative on the blood sample. Bone marrow (BM) aspiration and biopsy were performed. The morphology disclosed a BM hypercellular with multilineage dysplasia (80%) and blast cells (5%). The histology was characterized by erythroid reduction and granulocytic hyperplasia with increased precursor cells and abnormal localization of immature precursors (ALIP). No acid-fast or fungal microorganisms were observed. The G-banding of BM cells identified the karyotype: 47,XX,+8[10]/46,XX[9] (Figure 1A), and the fluorescence in situ hybridization (FISH) analysis confirmed the trisomy 8 (Figure 1B). ASXL1 and DNMT3A somatic mutations were tested by Sanger sequencing [7,8]. DNMT3A was wild type, and ASXL1 mutation in exon 12 (c.1772dup; p.Y591*A) was detected (Figure 1C). Additionally, two nonpathogenetic single nucleotide polymorphisms were identified in exon 12 of ASXL1 (c.3973C>A p.L1325F; c.1965 C>T p.T655T) (Figure 1C). The patient was diagnosed with refractory anemia with excess of blasts 1 (MDS-EB-1) and at very high risk according to the revised International Prognostic Scoring System [9,10]. The patient was under supportive treatment care with ART, red blood cell and platelet transfusions, erythropoietin, and one cycle of Azacitidine (75 mg/m²/day for 7 days) without improvement. Her renal function was preserved, and 7 months later the karyotype of the BM cells demonstrated a clonal evolution: 47,XX,+8[7]/48,XX,+8,+21[6]/49,XX,+8,+10,+21[9]/46,XX[4] (Figure 1D). FISH analysis using the probe LSI RUNX1 break apart (RUNX1 21q22 spectrum green/RUNX1T1 8q21 spectrum orange) identified cells with both trisomy 8 and trisomy 21 (Figure 1E). BM analysis maintained the MDS-EB-1 pattern, showing a pleomorphic and hyperplastic bone marrow, absence of megakaryocytic sector, erythroid aplasia, hyperplasia myeloid with dysplasia, and 5% of blasts. The biopsy of bone marrow depicted ALIP and erythroid aplasia. Despite all efforts, the hematological parameters disclosed low Hb level (3.5 g/dL), increasing white blood cell count (19.8 × 10⁹/L), and deficient platelet levels (7 × 10⁹/L) with circulating myeloblasts (3%) and the patient expired in July 2019.

A broad scientific review disclosed that only 23 cases of well-controlled HIV patients with MDS were described (Table 1). HIV portends a poor prognosis in MDS and patients have an increased prevalence of complex karyotypes characterized by monosomy 7 or deletion 7q at cytogenetic level, whereas at the molecular level, the most frequent alterations are somatic mutations in the ASXL1 exons 11-12, P53, and DNMT3A [3-6]. Our patient developed a very high-risk MDS with ASXL1 mutation and trisomy 8 followed by clonal karyotypic evolution after 16 years of well-controlled HIV infection. Age and time to HIV diagnosis are compatible with what was previously described in HIV/MDS patients [6] and she had no history of classically therapy-related MDS drugs.

Hypothetically, MDS development in HIV patients can be related to chronic viral infection, with the inflammatory cytokines environment affecting immune system regulation. ART may also accelerate BM...
Cytogenetic and molecular alterations in a well-controlled HIV patient with MDS. A, G-banded showing the karyotype 47,XX,+8. B, FISH analysis using LSI MYC SpectrumOrange, red signal, with interphase nuclei counterstain with DAPI, Vysis. The arrows show an extra copy of the c-myc gene, showing the gain of chromosome 8. C, Electropherogram of ASXL1 sequencing showing a frameshift mutation in exon 12 (c.1772dup;p.Y591*) and two single nucleotide polymorphisms identified in exon 12 of ASXL1 (c.3973C>A p.L1325F; c.1965 C>T p.T655T). Arrows indicate the point of the mutation and polymorphisms. D, G-banded showing the karyotype 49,XX,+8,+10,+21. E, FISH analysis using the probe LSI RUNX1 break apart (RUNX1 21q2 spectrum green/RUNX1T1 8q21 spectrum orange) showing a metaphase with three red signals demonstrating the trisomy 8 and three green signals showing the trisomy 21.

The chromosomes are frequently missegregated during mitosis in cancer cells. This process is known as whole-chromosome instability (W-CIN) and leads to aneuploidy. W-CIN induces tumorigenesis and treatment resistance. The mitotic stress associated with W-CIN is generally induced by oncogenes and suppressor tumor genes rather than mutations in genes involved in chromosome segregation [16]. Our patient was characterized cytogenetically by an aneuploidy. The ASXL1 mutation and an extra copy of c-myc, located at 8q24 seem to be possible factors associated with the increase in W-CIN, leading to clonal evolution and refractoriness to treatment.

Our case report and the literature review highlight the importance of cytogenetic and molecular tests to monitoring HIV-positive
HIV	Time from HIV (years)	ART	CD4+ count (cells/mm³)	Viral load	MDS	Subtypes	IPSS	Karyotype	Gene mutations	Progression to AML	MDS treatment	Reference
1	63/M	13	DDC, AZT, 3TC, ABC, EFV, TDF, TFC	296	< 40	RAEB 2/AML	>Int 2	Complex with monosomy 7	NA	Yes	Palliative	Rieg et al., 2009 [3]
2	56/F	NA	ABC, 3TC, EFV	206	ND	RAEB	≥Int 2	Complex with del(5q) and monosomy 7	NA	Yes	NA	Takahashi et al., 2012 [4]
3	60/M	NA	ABC, 3TC, LPV	500	NA	RAEB (t-MDS)	≥Int 2	Complex with del(5q) and monosomy 7	NA	Yes	NA	Takahashi et al., 2012 [4]
4	43/M	NA	NA	223	ND	RAEB	Int-1	46,XY	NA	No	NA	Takahashi et al., 2012 [4]
5	55/M	23	RTV, DRY, TFC, TDF	500	ND	RA	Int-2	Complex with monosomy 7	NA	Yes	NA	Takahashi et al., 2012 [4]
6	65/M	26	EFV, TFC, TDF	300	ND	RA	Int-2	Complex with monosomy 5 and 7	NA	No	NA	Takahashi et al., 2012 [4]
7	50/M	NA	ABC, 3TC, TFC, TDF	231	NA	RA	Int-2	46,XY, del(20)(q11)	NA	No	NA	Takahashi et al., 2012 [4]
8	51/M	NA	T20, FTC, TDF, RTV, CRV	254	>75,000	RAEB	Int-2	47,XY, +21	NA	Yes	NA	Takahashi et al., 2012 [4]
9	56/F	NA	ATV, TFC, TDF	1,310	<40	RCMRD	Int-2	del(5q), del(7q), dic(9;12)	NA	Yes	Aza	Williamson et al., 2016 [5]
10	66/F	28	NA	573	52	MDS	Int-1	46,XX	ASXL1, DNMT3A	No	Len, El	Kaner et al., 2019 [6]
11	45/M	4	NA	840	ND	t- MDS	Int-2	NA	NA	Yes	Aza	Kaner et al., 2019 [6]

(Continues)
Table 1 (Continued)

Case	HIV Treatment	Time from HIV (years)	ART	CD4+ count (cells/mm³)	Viral load	MDS Subtypes	IPSS	Karyotype	Gene mutations	Progression to AML	MDS Treatment	Reference*
12	66/M	13	NA	383	73	MDS	Int-2	del(7q)	ASXL1	No	Aza	Kaner et al., 2019 [6]
13	70/M	20	NA	76	247	t- MDS/AML	Int-2	−5, del(7q),−2	TP53	Yes	Aza	Kaner et al., 2019 [6]
14	49/M	11	NA	40	ND	MDS/AML	Int-2	NA	NA	Yes	Aza	Kaner et al., 2019 [6]
15	54/M	NA	NA	NA	NA	MDS	Int-2	del(7q)	NA	Yes	Aza, Dec	Kaner et al., 2019 [6]
16	58/F	18	NA	484	ND	MDS	>Int 2	−7	NA	Yes	7+3/HiDAC	Kaner et al., 2019 [6]
17	66/M	NA	NA	304	ND	t- MDS/AML	Int-2	del(20q)	ASXL1	No	Aza	Kaner et al., 2019 [6]
18	66/F	17	NA	781	ND	MDS	>Int 2	−7, −5, +8, +9	ASXL1, DNMT3A	Yes	Aza	Kaner et al., 2019 [6]
19	52/F	12	NA	140	NA	t- MDS/AML	Int-2	NA	TP53	Yes	Aza	Kaner et al., 2019 [6]
20	56/M	NA	NA	390	ND	MDS	Int-1	Normal	NA	No	Len, Elt	Kaner et al., 2019 [6]
21	64/F	15	NA	931	<40	MDS/AML	Int-2	del(7q)	ASXL1, TET2, DNMT3A, U2AF1	Yes	7+3	Kaner et al., 2019 [6]
22	55/M	24	NA	275	<40	t- MDS/AML	>Int 2	Complex with −7	ASXL1, TP53, ETV6	Yes	7+3/HiDAC, Dec	Kaner et al., 2019 [6]
23	65/F	2	NA	148	5.599	MDS	Int-1	del(13q)	ND	No	Palliative	Kaner et al., 2019 [6]
24	61/F	16	AZT, 3TC, EFV	929	ND	MDS-EB-1	Int-2	+8 with clonal karyotypic evolution hyperdiploidy with +8, +10, +21	ASXL1	No	Aza	This report

Abbreviations: 3TC, Lamivudine; ABC, Abacavir; AML, Acute myeloid leukemia; ART, Antiretroviral treatment; Aza, Azacitidine; AZT, Zidovudine; Dec, Decitabine, del, deletion; EFV, Efavirenz; Elt, Eltrombopag; F, Female; FTC, Emtricitabine; Int, Intermediate; IPSS, International Prognostic Scoring System; Len, Lenalidomide; LVR, Lopinavir; M, Male; MDS-EB-1, myelodysplastic syndrome with excess of blasts 1; NA, Not available; ND, Not detected; RA, Refractory anemia; RAEB, Refractory anemia with excess of blasts; RCMD, Refractory cytopenia with multilineage dysplasia; RTV, Ritonavir; T20, Enfuvirtide; t-MDS, Therapy-related myelodysplastic syndrome.

*In this table, the patient collection included 2 case reports and 2 case series, beyond our case.
patients under long-stand treatment and the occurrence of MDS. Often, these patients are not eligible for hematopoietic stem cell transplantation due to their poor clinical condition [6]. Because of the lack of specific treatment for HIV/MDS patients, it is essential to unveil the mechanisms involved in its pathogenesis to led promissory therapy.

ACKNOWLEDGMENTS

The authors thank the patient who made samples available. This study was supported by the Brazilian Ministry of Health (National Institute of Cancer/INCA, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; M.S.P.O. is supported by Conselho 135 Nacional de Desenvolvimento Científico e Tecnológico-CNPq[#301594/2015-5]. The authors also thank the director of Evandro Chagas National Institute of Infectious Diseases- FIOCRUZ Dr. Valdívelia Veloso for publication support and Michelle Roesler for the English revision. We also are grateful to Alexandre Vizzoni for the transfusion and laboratory support, and the many physicians who attended the patient, especially Adriana Pinto and Juliana Netto.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Informed consent was obtained from the case in accordance with the Declaration of Helsinki, and ethics was approved by the Ethics and Research Committee of Evandro Chagas Institute for Clinical Research (reference number CAAE #0032.0.009.000-10).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The documentation is available on a reasonable request to the corresponding author.

AUTHOR CONTRIBUTIONS

DPMA and MTS attended the patient, collected and analysed clinical data. TSF, EAAK, and VLL performed genetic tests. EPN and BGJG revised the manuscript. MSPO and TSF supervised the study and reviewed the manuscript. MSPO and TSF provided funding. All authors contributed significantly to the work and have seen and approved the manuscript and its submission.

REFERENCES

1. Ryu T, Ikeda M, Okazaki Y, Tokuda H, Yoshino N, Honda M, Kimura S, Miura Y. Myelodysplasia associated with acquired immunodeficiency syndrome. Intern Med. 2001;40:795–801.
2. Katsarou O, Terpos E, Patsouris E, Peristeris P, Viniou N, Kapsimali V, Karafoulidou A. Myelodysplastic features in patients with long-term HIV infection and haemophilia. Haemophilia. 2001;7:47–52.
3. Rieg S, Lübbert M, Kern WV, Timme S, Gärtner F, Rum JA. Myelodysplastic syndrome with complex karyotype associated with long-term highly active antiretroviral therapy. Br J Haematol. 2009;145:670–3.
4. Takahashi K, Yabe M, Shapira I, Pierce S, Garcia-Manero G, Varma M. Clinical and cytogenetic characteristics of myelodysplastic syndrome in patients with HIV infection. Leuk Res. 2012;36:1376–9.
5. Williamson BT, Leitch H. Higher risk myelodysplastic syndromes in patients with well-controlled HIV infection: clinical features, treatment, and outcome. Case Rep Hematol. 2016;2016:1–7.
6. Kaner JD, Thibaud S, Jasra S, Wang Y, Janakiram M, Sharma A, et al. HIV portends a poor prognosis in myelodysplastic syndromes. Leuk Lymphoma. 2019;60:3529–35.

7. Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.

8. Pezzi A, Moraes L, Valim V, Amorin B, Melchiades G, Oliveira F, et al. DNMT3A mutations in patients with acute myeloid leukemia in South Brazil. Adv Hematol. 2012;2012:697691.

9. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

10. Arber DA, Orazi A, Hasserkjær R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405.

11. Moraes Filho AV, Carvalho CJ, Carneiro CC, et al. Genotoxic and cytoxic effects of antiretroviral combinations in mice bone marrow. PLoS One. 2016;11:e0165706.

12. Guimarães NN, de Andrade HHR, Lehmann M, Dihl RR, Cunha KS. The genetic toxicity effects of lamivudine and stavudine antiretroviral agents. Expert Opin Drug Saf, 2010;9:771–81.

13. Inoue T, Cronkite EP, Hirabayashi Y, Bullis JE, Mitsui H, Umemura T. Lifetime treatment of mice with azidothymidine (AZT) produces myelodysplasia. Leukemia. 1997;11(Suppl 3):123–7.

14. Bayram S, Topaktaş M. Confirmation of the chromosome damaging effects of lamivudine in in vitro human peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49:328–33.

15. Hosono N. Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol. 2019;24:885–92.

16. Duijf PHG, Benezra R. The cancer biology of whole-chromosome instability. Oncogene. 2013;32:4727–36.