On the unconstrained expansion of a spherical plasma cloud turning collisionless: case of a cloud generated by a nanometre dust grain impact on an uncharged target in space

F Pantellini1, S Landi2, A Zaslavsky1 and N Meyer-Vernet1

1 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot; 5 Place Jules Janssen, 92195 Meudon, France
2 Dipartimento di Fisica e Astronomia, Largo Enrico Fermi 2, 50125 Firenze, Italy
E-mail: Filippo.Pantellini@obspm.fr

Received 30 August 2011, in final form 1 February 2012
Published 16 March 2012
Online at stacks.iop.org/PPCF/54/045005

Abstract
Nano and micrometre sized dust particles travelling through the heliosphere at several hundreds of km s−1 have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporization and ionization of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached µm dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion–electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target, some 10⁷ electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. As such a cloud can be estimated to become collisionless when its radius has reached µm order dimensions, both the collisionless approximation and the in vacuum approximation are expected to hold during a long lasting phase as the cloud grows by a factor 10⁶. With these assumptions, we find that the transition from the collisional to the collisionless regime could occur when the electron Debye length λD within the cloud is much smaller than the cloud radius R₀, i.e. Λ ≡ λD/R₀ ≪ 1. This implies a quasi-neutral expansion regime where the radial electron and ion density profiles are equal through most of the cloud except at the cloud–vacuum interface. The consequence of Λ being much smaller than unity implies that the electrostatic fields within a cloud generated by a dust impact on a neutral target is ~100 times weaker than in the case of grains hitting a spacecraft, where the positive potential of the target is strong enough to strip-off all the electrons from the expanding cloud leading to a ‘Coulomb explosion’ like regime (e.g. Peano et al 2007 Phys. Plasmas 14 056704).

(Some figures may appear in colour only in the online journal)
1. Introduction

The problem of the expansion of a plasma into vacuum has received much attention in recent years, mainly in the context of understanding the expansion of plasma clouds generated by laser irradiated materials [2–6]. The expansion of negatively charged dust particles in cometary tails [7, 8] and the expansion of the solar wind plasma into the wake region of inert objects such as asteroids or the moon [9] has also stimulated theoretical and numerical studies on the problem of the expansion of a plasma into vacuum. The impact of fast moving clusters of atoms or molecules on a solid surface is also known to produce expanding plasma clouds. In particular, dust particles, typically in the micro to nanometre range, hitting spacecraft produce expanding plasma clouds. In particular, dust particles, typically in the micro to nanometre range, hitting spacecraft produce expanding plasma clouds. In particular, dust particles, typically in the micro to nanometre range, hitting spacecraft produce expanding plasma clouds. In particular, dust particles, typically in the micro to nanometre range, hitting spacecraft produce expanding plasma clouds.

The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified. The results of the simulation are discussed in detail in sections 4 and parameters for a simulation of a typical case are specified.

2. Definition of the problem

We consider a spherically symmetric electron–ion plasma cloud made of \(N/2 \) singly charged ions and \(N/2 \) electrons expanding into vacuum. During the first phase of the expansion the plasma is supposed to be sufficiently dense to be dominated by interparticle collisions. This phase is conveniently described by fluid dynamics [19, 21–23] and will not be treated in this paper. Under favourable conditions, however, the cloud radius \(R(t) \) may grow larger than the collisional mean free path of a thermal electron. At this particular radius \(R = R_0 \) the cloud plasma becomes collisionless and enters a new regime which is no longer tractable within the frame of a fluid theory. The reason for using electrons instead of ions to define the end of the collisional regime is that for a given temperature the collisionality of the latter may be substantially reduced as soon as the external shells of the cloud start moving faster than the ion thermal velocity, as under such circumstances ions can no longer approach each other. As we shall see below, the expansion velocity is indeed suprathermal for the ions after a short lapse of time roughly corresponding to the time required for the cloud to double its radius.
2.1. Initial state of the cloud

As the expansion is supposed to be collisional for $R < R_0$ we assume that electrons and ions are initially (at time t_0) in the state of thermodynamic equilibrium and confined within the spherical shell $R = R_0$. As the state of the plasma at the end of the fluid (collision dominated) phase is generally not known as it strongly depends on the cloud structure at the time of its formation and also on the adopted equation of state, we assume that ions and electrons are initially distributed according to a zero mean velocity Maxwell–Boltzmann distribution according to the equation (1) and during the remainder of the fluid velocity profile then converges towards a self-similar. Unlike the density and temperature profiles, the self-similar solutions from compressible gas dynamics (e.g. [19, 22]) will be discussed in a future publication.

Let us now estimate the parameter Λ at time $t = 0$, when the plasma becomes collisionless. To this end we use the Fokker–Planck expression for the mean free path of a thermal electron

$$l_e = 16\pi \varepsilon_0^2 \frac{T^2}{e^4 n \lambda}$$

where $\lambda \equiv \ln(\lambda_D/r_s)$ is the Coulomb logarithm and r_s the strong interaction radius, usually defined as the larger of the classical distance for a strong electrostatic interaction between thermal electrons $e^2/(2\pi\varepsilon_0 e T)$ or the de Broglie length for a thermal electron $h/(3m_e T)^{1/2}$, where h is the reduced Planck constant. For temperatures exceeding 9 eV the quantum mechanical definition should therefore be used to define the r_s.

As typical cloud temperatures are expected to be of the order of a few eV up to at most 20 eV and also because of the classical nature of the presented simulation, we stick to the classical definition throughout the paper. We emphasize that this assumption does not invalidate the subsequent discussions and the presented simulation for the case of temperatures higher than 9 eV since we only require r_s to be small with respect to the radius of the spherical shell r_{min} defining the inner boundary of the simulation domain (see section 3). Now, even for an exceedingly hot cloud at 81 eV, the quantum mechanical definition of r_s is just three times larger than the classical definition.

Equation (2) is a good estimate of the mean free path of a thermal electron $l_e(t = 0) = R_0$ in (2) that the dimensionless parameter Λ only depends on the total number of charged particles N in the cloud, namely

$$\Lambda \equiv \lambda_D R_0 \frac{N/2}{4\pi R^3} \frac{N}{6N}$$

It follows from (1) and by setting $l_e(t = 0) = R_0$ in (2) that the dimensionless parameter Λ only depends on the total number of charged particles N in the cloud, namely

$$\Lambda \equiv 0.75 \lambda e^{-3/4}$$

We note indeed, that given the constraint $R_0 = l_e(t = 0)$, the Coulomb logarithm λ is a function of the total number of particles N via $6N = (4/3)^{1/2} e^{4\lambda} \lambda^{-3}$ which leads to the relation $\lambda = 0.75 \lambda e^{-3/4}$. Equation (4) indicates that the dimensionless parameter Λ is independent of the temperature T_0 and much smaller than unity as N is generally a large number.
and \(\lambda \lesssim 6 \) for \(N \lesssim 10^8 \). We conclude that at the time an initially collisional plasma cloud becomes collisionless it finds itself in the quasi-neutral expansion regime \(\Lambda \ll 1 \). For example, in the case of a \(10^{-20} \) kg dust particle impacting on a spacecraft at solar wind speed the generated plasma cloud contains some \(N = 10^7 \) charged particles corresponding to a Coulomb logarithm \(\lambda \approx 5.5 \) and \(\Lambda = 0.017 \).

2.3. From collisional to collisionless

In this paper we restrict our discussion to the unconstrained expansion of a plasma cloud where the initial cloud’s radius \(R_0 \) increases by a large factor \(R(t)/R_0 \gg 1 \) before the dynamics of the expansion becomes affected by external factors, such as the ambient plasma. In the case of a dust impact generated plasma expanding into the ambient plasma (the interplanetary plasma) we can neglect the ambient plasma as long as the cloud density is much higher than the ambient plasma density. Indeed, for the nanodust impact considered above producing \(10^7 \) charged particles corresponding to a plasma cloud becomes collisionless it is strong enough to reduce \(\gamma \) below the critical value 4/3. In order to estimate the relative importance of the two terms in (7) we need an estimate of \(u' (0) \) and \(T'' (0) \). Using the available macroscopic parameters of the cloud, like its radius \(R \) and the expansion velocity \(u_0 \) at the front, it is natural to set \(u'(0) \approx u_0 \) and \(T''(0) \approx T_0/R^2 \). We can then estimate the departure from adiabaticity by comparing the adiabatic expansion to the adiabatic term, namely

\[
\frac{\text{non-adiabatic term}}{\text{adiabatic term}} \approx \frac{1.6 \, u_0 \, l_v}{3 \, u_0 \, R}.
\]

From (8) it appears that the expansion is adiabatic in the limit of very small free path \(l_v \to 0 \). However, given that the typical expansion velocity \(u_0 \) is of the order of a few km/s and the cloud expansion is highly supersonic, at least as long as standard adiabatic fluid equations are applicable. Let us estimate under which conditions the conductive heat flux is dominant by comparing the conductive term and the adiabatic term in the energy equation for a spherically symmetric collisional gas of point particles:

\[
\frac{3}{2} \frac{DT}{Dt} = - \frac{T}{r^2} \frac{\partial}{\partial r} (r^2 u) - \frac{1}{n \, r^2} \frac{\partial}{\partial r} (r^2 Q)
\]

where \(D/\text{Dt} \equiv \partial/\partial t + u \partial/\partial r \) is the material derivative. If the plasma in the cloud is collisional we can then use the Spitzer–Härm expression [33] for the conductive flux. Neglecting the contribution to the flux from the ions we therefore set

\[
Q = -1.6 \, p_e \, v_e \, \frac{l_v}{T} \frac{\partial T}{\partial r}
\]

where \(p_e = n_e T \) is the electron pressure. Let us concentrate on the centre of the cloud at \(r = 0 \). If the plasma was initially uniform, at rest and spherically symmetric, it follows that density, pressure and temperature must have an extremum at \(r = 0 \) and a vanishing first derivative at all times. On the other hand if the fluid velocity was initially zero at the centre it has to stay so forever given that the acceleration is \(\partial u / \partial r = - q^{-1} \partial p / \partial r = 0 \) by virtue of the vanishing first derivative of the pressure. One may Taylor expand the velocity near \(r = 0 \) as \(u(r) = u(0) + O(r^2) \), where \(\gamma \equiv \partial / \partial r \).

According to the above discussion, the Taylor expansion of the temperature up to the first non-constant term is \(T(r) = T(0) + T''(0) r^2 / 2 + \cdots \). Of course, the same expansion can be applied to both density and pressure. To lowest order in \(r \) we can then write the energy equation (5) for the central region of the cloud as

\[
\frac{3}{2} \frac{\partial T_0}{\partial t} = -3 T_0 u' (0) + 1.6 v_e l_v T'' (0)
\]

where \(T_0 \equiv T(0) \). The first term on the right in equation (7) corresponds to the adiabatic cooling due to the expansion while the second term corresponds to the non-adiabatic slowing due to heat conduction. For the expansion to be non-adiabatic the latter has to be of comparable order, or larger, than the former. In this case the effective polytropic index of the plasma is smaller than adiabatic \(\gamma < 5/3 \) and a transition from collisional to non-collisional becomes possible if conduction is strong enough to reduce \(\gamma \) below the critical value 4/3.
the ambient plasma while the cloud radius R grows from $R_0 \sim \mu$m up to $R \sim m$, which corresponds to an expansion factor $R/R_0 = O(10^6)$. Given such a large expansion factor it is justified to assume that all particles within the cloud have purely radial velocities $\vec{v} = v\hat{r}$ as the transverse velocity component v_\perp (perpendicular to the radial direction) rapidly decreases during expansion since the angular momentum of individual particles $L \equiv mrv_\perp$ is conserved in a collisionless and spherically symmetric field. Neglecting the centrifugal force due to the transverse component of the particle velocity, the equations of motion for a particle of mass m and charge q in a spherically symmetric force field reduce to

$$\frac{dv}{dr} = \frac{q}{m} E(r, t)$$

(9)

$$\frac{dr}{dt} = v$$

(10)

where $E(r, t)$ is the radial electric field experienced by a particle at distance r from the cloud’s centre. We shall verify \textit{a posteriori} that neglecting the centrifugal term $L^2/(m^2 r^3)$, which normally appears on the rhs of equation (9), is justified by the fact that the field at the particle’s position decreases asymptotically as $r(t)^{-2}$ (cf section 6), which is slower than the $r(t)^{-3}$ dependence from the centrifugal term.

Given the spherically symmetric field $E(r, t)$ assumed in (9) the particles must be interpreted as infinitely thin spherical shells rather than point particles. This approximation is justified as long as the number of particles within a given spherical shell is large with respect to unity, i.e. for radial distances $\gg (3/4\pi n)^{1/3}$ at time $t = 0$. Strict spherical symmetry reduces the original three-dimensional system to a one-dimensional system which can be treated much faster on a computer. The main drawback is an unrealistic description of the central part of the cloud which does not really matter as the small (and continuously decreasing) number of particles living in this region makes these particles statistically irrelevant anyway. Equations (9) and (10) must be supplemented by an equation for the electric field which for a distribution of thin spherical shells of radius $r_k(t)$ and charges q_k is simply

$$E(r, t) = \frac{Q(r, t)}{4\pi \varepsilon_0 r^2}, \quad \text{with } Q(r, t) = \sum_{r_k(t) < r} q_k.$$

(11)

3. Setup and parameters of a selected simulation

Figures 1 and 2 show the motion in phase space of a fraction of electrons and ions from a numerical simulation of a spherical cloud expanding into vacuum. Positions and velocities of N particles ($N/2$ electrons and $N/2$ ions) are time advanced according to equations (9) and (10) using a classical third order leap frog integration scheme [38]. The electric field is computed at every time step using the updated particles’ positions and the field equation (11).

The initial conditions consist in $N = 80000$ particles uniformly distributed within the spherical shell $r_{\text{min}} < r < R_0$ corresponding to $\Lambda \approx 0.0538$. Thus, even though the simulated number of particles N is much smaller than in a typical dust impact generated plasma cloud, it is still large enough for the key parameter Λ to be much smaller than unity so that the expansion is quasi-neutral.

The inner sphere $r < r_{\text{min}}$ cannot be penetrated by particles and is merely there to avoid the divergence of the Coulomb potential for $r \to 0$ when particles (actually thin spherical shells) approach the central region. In practice we chose $r_{\text{min}} = 0.1R_0$, which is both sufficiently small to minimize its influence on the overall system’s evolution and
sufficiently large with respect to the strong interaction radius r_s to rule out binary collisions and self-charge effects.

In the following, if not otherwise stated, we normalize charge to the elementary charge e, mass to the electron mass m_e, length to r_{min}, electric field to $E_0 \equiv e/(4\pi \varepsilon_0 r_{\text{min}}^2)$, velocities to $v_0 \equiv e/(m_e 4\pi \varepsilon_0 r_{\text{min}})^{1/2}$, time intervals to $t_0 \equiv r_{\text{min}}/v_0$ and temperatures to $T_0 \equiv m_e v_0^2$. With these normalizations, and by consistently normalizing density to r_{min}^3, the Debye length λ_D reads $\lambda_D = (T/4\pi n)^{1/2}$, the mean free path $\lambda = T^2/(\pi n \lambda_D)$, and the electric field of a point charge Q becomes $E = Q/r^2$. We then set the initial temperature, for both electrons and ions, to $T_0 = 34.76$ and the cloud radius to $R_0 = 10$. The resulting Coulomb logarithm is then $\lambda = 4.03$ and according to (2), the mean free path λ is equal to $R_0 = 10$ as postulated. In code units the thermal velocity of the electrons is $v_e = (2T_0/3)^{1/2} = 8.34$ and the strong interaction radius $r_s = 1/(3T_0) = 9.6 \times 10^{-3}$ which, as required, is much smaller than both $R_0 = 10$ and $r_{\text{min}} = 10$.

For convenience in figure 1 and in all subsequent figures we use normalized positions $\xi = r/R(t)$ with the temporal variation of the scale length defined by $R(t) \equiv R_0(1 + t/t_0)$. We choose to set the arbitrary constant $t_0 = 10$ in order to have $dR/dt = 1$. The ion to electron mass ratio is set to $m_i/m_e = 100$ so that t_0 actually turns out to be of the order of the ion sound crossing time $R_0/(3T/m_i)^{1/2} = 9.8$, a characteristic time for the initial system. As already stated, at $t = 0$ particles are uniformly distributed within the spherical shell $0 < \xi \leq 1$ following Maxwell–Boltzmann velocity distributions for both ions and electrons:

$$f_j(v) = \frac{n_0}{\pi^{1/2}} v_j e^{-(v/v_j)^2} \tag{12}$$

where $v_j = (2T_0/m_j)^{1/2}$ is the thermal velocity of the corresponding species $j = \{e, i\}$.

4. Asymptotic evolution, theoretical background

The particle trajectories shown in figures 1 and 2 illustrate two key aspects of the expansion which will be discussed in sections 4.1 and 4.2. First, as $t \to \infty$, all trajectories are seen to collapse towards the curve $v = \xi$. As a consequence the temperature at a given position ξ is seen to decrease with time as the particle velocities appear to be less and less scattered as time progresses. Second, whereas ions rapidly line up in a structureless ribbon along the $v = \xi$ curve, electrons converge towards a more complex structure, also aligned on the $v = \xi$ curve, but with a bulging of the ribbon in the region $\xi < 2$. As we shall see below the bulging is due to the bouncing motion of electrons trapped in an electrostatic potential well.

4.1. Asymptotic convergence of particle trajectories

In this section we show that for $t \to \infty$ all particle trajectories must end up on the $v = \xi$ curve provided the electric field decays sufficiently fast everywhere in the system. To this end we Taylor expand the asymptotic evolution of a particle velocity in terms of the small parameter $v = t_1/t \ll 1$, i.e. $v(\nu) = v(0) + v(\nu v/\nu v)_{\nu = 0}$, where $t_1 \gg t_0$ is just an arbitrary finite time level. From the equation of motion (9) we obtain the asymptotic evolution of a particle’s velocity

$$v(t \gg t_1) = v_\infty - \frac{q E(\xi,t)}{m\nu} \left(\frac{t_1}{t} \right) \tag{13}$$

where $v_\infty = v_t(t = \infty)$. The asymptotic evolution of the particle’s position is formally obtained by integrating (10), i.e. $r(t) = r_1 + \int_{t_1}^{t} v(\tau) d\tau$. Using $v(t)$ from equation (13), and for $t \gg t_1$ one obtains

$$\xi(t) = \frac{r_1}{t} + v_\infty - \frac{1}{t} \int_{t_1}^{t} d\tau \frac{q E(\xi,\tau)}{m\xi} \tag{14}$$

The last term on the right-hand side of equation (14) vanishes for $t \to \infty$ provided E at position ξ decays faster than t^{-1} in which case $\xi_\infty = \xi(\to \infty) = v_\infty$ confirming that the end point of a particle’s trajectory lies on the $\xi = v$ curve. For a time dependence of the electric field $E \propto t^{\alpha}$ it is possible to compute the slope of a particle’s trajectory in the phase space directly from equations (13) and (14). Indeed, assuming that for $t \to \infty$ the variation of the electric field at a given particle position is due primarily to the time dependence of E rather than to the particle’s motion, one obtains $(v - v_\infty)/(\xi - \xi_\infty) = 2 + \alpha$. Thus, for $\alpha = -2$, corresponding to the final, self-similar, evolution of our system (see figure 8), $(v - v_\infty)/(\xi - \xi_\infty) = 0$, i.e. trajectories approach the $\xi = v$ curve on horizontal trajectories with $v = \text{const}$. In the particular case where $E(\xi,t) = E_1(\xi)t_1^{\alpha}/t^{\alpha + 2}$ (which applies to the simulation for $t/t_0 \gg 1$) equations (13) and (14) reduce to

$$v = v_\infty - \frac{q E_1(\xi)}{m\xi} \frac{t_1}{t} \tag{15}$$

$$\xi = \xi_\infty + \frac{r_1}{t} - \frac{q E_1(\xi)}{m\xi} \frac{t_1}{t} \ln \left(\frac{t}{t_1} \right) \simeq \xi_\infty$$

$$- \frac{q E_1(\xi)}{m\xi} \frac{t_1}{t} \ln \left(\frac{t}{t_1} \right). \tag{16}$$

Equation (16) shows that for sufficiently late times $|\xi(t) - \xi_\infty|/\xi_\infty \ll 1$ confirming that the variation of the electric field at particle’s position is asymptotically dominated by the field decay and not by the particle’s motion. The interesting point about equation (16) is that it shows that for $t \to \infty$ (which allows neglecting the r_1/t term) particles approach their final position ξ_∞ from the left or the right depending on the sign of $q E_1$. Thus, in an overall positive electric field, which is indeed the case for the expanding cloud problem at hand (see figure 8), ions approach their final position from the left in (ξ, v) space while electrons approach their final position from the right. Thus, ions (electrons) which are initially on the right (left) of the $v = \xi$ curve will first cross the $v = \xi$ curve before converging towards their asymptotic position on horizontal $v = \text{const}$ trajectories. This behaviour is already visible in the early phase of the expansion shown in figures 3 and 4.

4.2. Shrinking of the volume occupied by particles in (ξ, v) space

The shrinking of the phase space volume occupied by the particles in the (ξ, v) phase space is merely the consequence of
the time dependence of the scaling length $R(t)$. The equations of motion for an individual particle (9) and (10) deriving from the general Hamiltonian of the system

$$H(r_1, \ldots, r_N, p_1, \ldots, p_N, t) = \sum_{j=1}^{N} \frac{p_j^2}{2m_j} + q_j \phi(r_j, t)$$

(17)

where $p_j = m_j v_j$ and $-\partial \phi / \partial r_j = E(r_j, t)$, it follows that any volume $\Gamma = \int dv \, dr$ must be conserved along particle trajectories in (v, r) space. Thus, $\Gamma = R(t) \int dv \, d\xi = \text{const}$ with the consequence that $\int dv \, d\xi \propto R(t)^{-1} \propto 1/t$, i.e. the volume covered by the particles in the (ξ, v) phase space shrinks in time as $1/t$. In the long term all particles must end up aligned on the $v = \xi$ curve with the spatial distribution of the charges being a function of the initial conditions, i.e. on the dimensionless parameter $\Lambda(N) \equiv \lambda_D / R_0$ only.

5. Trapping, bouncing and freezing of particle trajectories

Figures 3 and 4 show characteristic trajectories of selected electrons and ions in (ξ, v) phase space. From the figures it is immediately apparent that both species behave in a radically different way. Ions follow rather dull trajectories and are either accelerated outwards (in particular the outermost ones) or move at approximately constant velocity. The fastest electrons (in general the ones at largest radial distance ξ) are seen to steadily reduce their outflow velocity in the attractive field of the positively charged interior of the cloud. However, electrons, with sufficiently low initial energy (the ones with end velocity $v \lesssim 5$), do cross the $v = \xi$ curve and eventually bounce within an electrostatic trap. In order to understand the trajectories in the (ξ, v) space it may be useful to rewrite the equations of motion (9) and (10) by setting $v = v(\xi(t))$, namely

$$\frac{\partial v}{\partial \xi} = \frac{q}{m} E(\xi, t) t$$

(18)

and (19) shows that it satisfies the condition $\partial v / \partial \xi = \infty$ (cf figures 3 and 4) unless the electric field $E(\xi, t) = 0$. In this particular case the particle’s velocity is constant $v = v_\infty$ and (19) shows that it takes an infinite time for the particle to reach the $v = \xi$ curve as $\xi(t) - \xi(\infty) \propto 1/t$. Multiple reflections are associated with an equal number of crossings of the $v = \xi$ curve, from top to bottom for an inward directed force and from bottom to top for an outward directed force. Note that particles approaching the centre $\xi = 0$ make an artificial reflection there as their radial velocity must change from negative to positive. Given that in the simulations particles are not allowed to approach the centre at a distance less than $\xi_{\text{min}}(t) = 0.1 R_0 / R(t)$, reflection effectively occurs, at ξ_{min} instead. Electrons bouncing back and forth in an expanding potential well can be efficiently cooled by first order Fermi deceleration. Now, despite the fact that both bouncing and non-bouncing electrons lose kinetic energy, the phase space volumes occupied by the two populations evolve differently in time. Thus, whereas the velocity difference $\Delta v = |v_2 - v_1|$ between two electrons with initial velocities v_2 and v_1 increases in time for $v_1, v_2 \gtrsim 10$, the opposite is true for the trapped (and eventually bouncing) electrons with initial velocities $v_1, v_2 \lesssim 10$ (see figure 3). Loosely speaking, trapped electrons contribute to raising the particle concentration $f(\xi/v)$ in velocity space while non-trapped electrons, and basically all ions, contribute to reducing the particle concentration in velocity space. Both effects are visible in figure 5, which shows that $f(\xi/v)$ substantially grows.
the simulation at of the simulation. The reason is that the bouncing period are unable to perform a full bounce period during the time

\[\frac{v}{w} \approx \frac{t}{\tau} \]

The distribution function \(f_i(v) \) is the solution of the Vlasov equation

\[\nabla \cdot \left(\frac{v}{w} \nabla f_i(v) \right) = 0 \]

Fig. 6. Electron velocity distribution function \(f_e(v) \) at the end of the simulation at \(t = 100 t_0 \). Plotted as a reference, the initial distribution of the absolute value of the radial velocities \(f_e(|v|) \).

\[|v| \approx 10 \]

The asymptotic ion velocity distribution is shown in figure 7. The figure clearly shows that the ion distribution closely follows the electron distribution for \(v \lesssim 1.7 \), roughly twice the ion thermal velocity \((2T_0/m_i)^{1/2} = 0.83 \) while at higher velocities, up to the velocity of the fastest ions in the simulation \(v \approx 2.5 \), the ion density is in excess over the electron density. On the other hand, for \(v \lesssim 0.5 \) the asymptotic distribution \(f_i(v, \infty) \) falls below its initial value \(f_i(v, 0) \) while the opposite occurs for \(v \gtrsim 0.5 \). In principle, given that the mobile electrons tend to escape from the cloud, all ions should be accelerated outwards by the positive charge \(Q(\xi) \) of the remnant (see bottom panel of figure 9) and its associated, outward directed electric field (see figure 8). The outward directed force should produce a displacement towards larger radial velocities of the original velocity distribution \(f_i(|v|, 0) \) with \(f_i(|v|, t) = 0 \) below some minimum velocity. The displacement of \(f_i \) towards higher radial velocity is visible in figure 7 for the fastest ions with end velocities \(v \gtrsim 0.5 \). However, no region with \(f_i = 0 \) is visible at low velocities, though. The reason is that

8
the slow ions are kept in the inner part of the cloud by the inward falling, Fermi decelerated electrons. The coupling between ions and cold electrons is so efficient there that the electric field asymptotically goes to zero for $\xi \lesssim 1.5$ (see figure 8). Figure 7 also shows that up to $v \approx 1.7$ both electron and ion velocity distributions are conveniently fitted by a single Maxwellian distribution with thermal speed $v_\text{th} = (2T_0/\overline{m})^{1/2} = 1.17$ where $\overline{m} \equiv 0.5(m_i + m_e) = 50.5$ is the average particle mass. If we assume that the electron distribution is a Maxwellian sharply cut at an upper velocity v^*, such that the missing electrons are those in the outer Debye shell of the initial sphere $1.5A N = 6456$, we obtain the estimate $\text{Erf}(v^*/v_\text{th}) = 1 - 1.5A$ (where Erf(x) $\equiv 2\pi^{-1/2}\int_0^x \exp(-s^2) \, ds$ is the error function), which gives $v^* = 1.44$. Obviously, $1.5A N$ is an overestimate of the number of electrons in the electron precursor. From figure 9 we take that this number is roughly 5 times smaller than $1.5A N$ which allows for a more realistic estimate $\text{Erf}(v^*/v_\text{th}) = 1 - 1.5A/5$, i.e. $v^* = 1.99$.

6. Charge distribution and electric field

The spatial and temporal structure of the electric field is shown in figure 8. As expected, after a dynamic initial phase, when particles are close to their asymptotic position in the (ξ, v) space, the electric field intensity decays as $E(\xi, t) \propto t^{-2}$. The spatial structure $E(\xi, \infty)$ is characterized by a central region $\xi \lesssim 1$ where, apart from fluctuations due to the small number of particles, the field intensity is essentially zero, corresponding to the region where the electron and ion density are equal (see figure 9). For $\xi \gtrsim 1.6$ the field intensity rapidly rises towards the maximum $E_{\text{max}}(1 + t/t_0)^{1/2} \approx 2.5$ at $\xi = 2.1$, followed by a gentler negative slope over a much larger spatial scale.

The large scale is associated with the scale of the electron precursor, which is obviously forged by the initial electron velocity distribution, and scales as $\xi_{\text{fall}} \approx v_t t_0 / R_0 = 8.34$. The shorter scale of the rising part of the field profile is forged by the ions and scales as $\xi_{\text{rise}} \approx v_i t_0 / R_0 = 0.83$.

The charge distribution at the end of the simulation at $t = 100t_0$ is shown in the bottom panel of figure 9 where, again, $Q(\xi)$ represents the charge within the sphere of radius ξ. The maximum $Q_{\text{max}} \approx 1292$ is reached for $\xi \approx 2.7$. Thus $Q_{\text{max}} \approx 0.3N A$, corresponding to roughly 1/5 of the positive charge contained in the outermost Debye shell of the cloud.
expected to follow in case of an electric field declining as
bottom panel gives the trajectories
two different times (bottom panel). The grid of dashed lines in the
electrons at the end of the simulation (top panel) and
\(u_j \)

useful expression
\(E \)

of
section 4.1). The grid of dashed lines in the
bottom panel gives the trajectories \(v = \text{const} \) individual particles are expected to follow in case of an electric field declining as \(t \rightarrow 0 \) (see
section 4.1).

at \(t = t_0 \). On the other hand the charge at the position of the electric field maximum is \(Q(\xi = 2.1) \approx 1053 \approx 0.245N\Lambda \), giving a maximum field intensity \(E_{\text{max}}(t/t_0)^2 \approx 0.245N\Lambda/(2.1R_0)^2 \approx 2.4 \), as confirmed by the latest profiles of \(E \) shown in figure 8. Changing to SI units we obtain a more useful expression

\[E_{\text{max},\text{SI}} = 8 \times 10^{-11} \frac{N\Lambda}{R^2} \]

(21)

where \(E_{\text{max},\text{SI}} \) is expressed in \(\text{V m}^{-1} \) and \(R \) in metres.

7. Ion and electron fluid velocities

Figure 10 shows the spatial fluid velocity profiles \(u_{e,p} \) for both electron and ions at the end of the simulation. Not surprisingly, both populations have velocity profiles close to the \(v = \xi \) curve (top panel). Plotting the fluid velocities \(u_{e,p} - \xi \) versus \(\xi \) (bottom panel) shows that, while all ions and electrons located within \(\xi \lesssim 1.7 \) closely follow the \(v = \xi \) curve (meaning that they are already frozen), electrons with \(1.7 \lesssim \xi \lesssim 6 \) stay below the \(v = \xi \) curve. These electrons are still flowing (falling) inwards along the dashed lines, corresponding to the \(v = \text{const} \) trajectories predicted for a \(t \rightarrow 0 \) declining electric field (see section 4.1). The electron inflow velocity at \(t = t_0 \) peaks near \(\xi \approx 2.3 \) at about 10% of the absolute ion fluid velocity. The ion velocity will not evolve significantly after \(t = t_0 \) as it is already well approximated by \(u_i = \xi \). The asymptotic position of the electrons near \(\xi \approx 2 \) at \(t = t_0 \) will lie some 10% closer to the centre of the cloud. This late displacement of the electrons will not modify the final structure of the electric field significantly as the density of these inflowing electron is substantially lower than the ion density near \(\xi = 2 \) (see the top panel in figure 9). On the other hand, electrons at \(\xi(t_0) \gtrsim 3 \) are too fast for the ions to catch up with and constitute the final electron precursor.

8. Application to the case of clouds formed by interplanetary nanoparticle impacts

When dust particles travelling in interplanetary space hit a solid object at characteristic velocities of the order of tens to hundreds of km s\(^{-1}\), a plasma cloud is generated at the impact point. The cloud is formed due to the vaporization and partial ionization of the dust particle itself and the target material. The subsequent expansion of the cloud is hemispherical rather than spherical as assumed in the above model. In the case of a non-conducting and charge neutral target, the above results should not be modified in any substantial way. On the other hand, one should be extremely cautious when trying to interpret the electric signals measured on a spacecraft as spacecrafts are generally positively charged due to electrons being stripped from their metallic surface through photoionization by solar radiation. The associated electric field (typically of the order of a few V m\(^{-1}\)) exceeds the cloud’s internal electric field very early during the expansion, causing stripping of most of the cloud’s electrons \[17\]. Not only is the expanding cloud subject to charging so that the long term expansion is more like a Coulomb explosion \[1, 27\] rather than a quasi-neutral expansion as described above, but the role of the photoelectrons, continually emitted and recollected by the spacecraft, must be taken into account when trying to interpret the voltage pulses measured on spacecraft antennae. Indeed, in the scenario described in appendix A of \[39\], the voltage pulses measured on individual antennae in conjunction with the impact of nanodust on the STEREO spacecraft are not a direct measure of the field within the post impact expanding plasma cloud but are the consequence of the equilibrium photoelectron return current towards the part of the antenna within the plasma cloud being interrupted. The interruption of the photoelectron return current induces an accumulation of positive charges on the antenna which is then measured by on board detectors as a temporal variation of the potential between the antenna and the spacecraft.

Let us estimate the electrostatic potential through a real cloud generated by a nanoparticle hitting a target in interplanetary space using the above model. As we shall see the intrinsic field of the cloud is too weak to account for the impact associated potential pulses observed on STEREO.

The electrostatic potential through the simulated plasma cloud is shown in figure 11. The total drop in the electrostatic potential is \(\Delta V \approx 550 \) while, as already stated, the peak charge is \(Q_{\text{max}} \approx 1292 \) (see the bottom panel in figure 9). Assuming a linear relation between \(\Delta V \) and \(Q_{\text{max}} \) we find

\[\Delta V(N) \approx \frac{Q_{\text{max}}}{2.35} \approx 0.128 N\Lambda \]

(simulation units)

(22)

This relation can be interpreted as the electrostatic potential at the surface of a sphere of radius 2.35\(R \) enclosing a charge
electrons to the spacecraft. However, even in the case of a complete charge separation such that the electrostatic field outside the cloud is given by the Coulomb field Q/r, the latter is much too weak (at most a few mV) to account for the on board measured voltage pulses associated with nanodust impacts. As we shall explain in more detail in a forthcoming paper, but as already briefly exposed in the appendix A of [39], the strong potential pulses measured on individual antennas on STEREO are due to the perturbative effect of the expanding cloud on the photoelectrons surrounding the antenna.

9. Summary and conclusions

We have explored numerically the unconstrained spherically symmetric expansion of an initially uniform, overall neutral and at thermodynamic equilibrium cloud of immobile plasma. The initial temperature and density of the plasma are such that the cloud’s radius equals the Fokker–Planck collisional mean free path of a thermal electron, representing an admittedly crude model of an expanding cloud at the time it becomes collisionless. Consistently assuming that the ion and electron velocity distributions are Maxwellian at the time of the collisional to collisionless transition, it follows that the key parameter of the problem $\Lambda \equiv \lambda_D/R_0$ can be written as a function of the total number of ions and electrons in the cloud only. Due to the $\Lambda \propto N^{-1/4}$ dependence (see equation (4)) typical nano-size grain impacts which are expected to ignite plasma clouds with $N \approx O(10^4)$, Λ is always much smaller then unity, i.e. the collisionless expansion is quasi-neutral.

During the initial phase of the collisionless regime most electrons (the less energetic ones) lose nearly all of their kinetic energy thorough Fermi deceleration in the expanding potential (see figure 11). On the other hand the outermost ions near the electric field maximum (see figure 8), are accelerated outwards by the positive electric field. The net effect is that ions and electrons asymptotically tend towards having the same velocity distribution up to a threshold of the order of the ion thermal velocity (see figure 7). The fact that all particle trajectories converge towards the $v = \xi$ curve as $t \to \infty$ implies that electron and ion fluid velocities end up being simple linear functions of the distance r from the expansion centre.

At late times the ion density profile is conveniently described by $n_i(r) \propto \exp[-(r/\lambda_D)^4]$ where $\lambda_D \equiv (2T_0/m_i)^{1/2}$ is the thermal velocity based on the initial temperature T_0 and the mean mass $\bar{m} \equiv 0.5(m_i + m_e)$. Because of $\Lambda \ll 1$ the electron density n_e closely follows the ion density up to a distance r^\star solution of the equation $E(r^\star/\lambda_D) \approx 1 - 0.3A N$. Beyond this point the electron density is flat up to a radial distance of the order of $v_i t$ as observed in Vlasov simulations [29]. The electric field is essentially zero for $r \lesssim r^\star$ (see figure 8) but rises towards a maximum on the ion length scale $r_{\text{rise}} \approx v_i t$ and decreases slowly on the electron precursor length scale $r_{\text{fall}} \approx v_e t$. At late times the maximum field intensity E_{max} is essentially nailed down by the number of electrons in the outer shell of the cloud of thickness λ_D. This number can be expressed in terms of the total number of particles N and the dimensionless parameter $\Lambda \equiv \lambda_D/R_0$ to give $1.5N\Lambda$, implying that the electric field intensity must be

![Figure 11. Electrostatic potential $V(\xi)$ and total charge $Q(\xi)$ as in figure 9.](image)

Figure 11. Electrostatic potential $V(\xi)$ and total charge $Q(\xi)$ as in figure 9.

Q_{max}. Multiplication of equation (22) by $e/(4\pi \varepsilon_0 R)$ in SI units leads to the dimensional version of (22):

$$\Delta V_{\text{SI}}(N, R) \approx 1.84 \times 10^{-10} \frac{N\Lambda}{R}$$

(23)

where R is in meters and V_{SI} in volts.

Let us use equation (23) to estimate the voltage pulse ΔV due to the impact of a $m_d = 10^{-20}$ kg grain (size ~10 nm) travelling at $v = 300\text{km}\cdot\text{s}^{-1}$. The number of electrons and ions within the plasma cloud can be estimated via the semi-empirical formula $N/2 \approx 0.7m_d^{-1}v^{-4.8}/e$ (see [17, 31]), where $[e] = C$, $[m_d] = \text{kg}$ and $[v] = \text{km}\cdot\text{s}^{-1}$. With these parameters we obtain $N \approx 1.4 \times 10^7$ and, from the relation between Λ and N established in the discussion following equation (4) we find $\Lambda(1.4 \times 10^7) = 0.016$. Plugging this value into equation (23) leads to $\Delta V_{\text{SI}}(1.4 \times 10^7) \approx 4.1 \times 10^{-5}/R$. Thus, when the cloud’s radius has grown to $R = 50$ cm, i.e. when its density has fallen to a value comparable to the interplanetary density, $\Delta V_{\text{SI}} \approx 0.082\text{mV}$ only. Noting that the effectively measured voltage is obtained by averaging over the whole antenna length, i.e. by multiplying the above voltage by l/L, where L is the length of the antenna (6 m on STEREO) and l the length of the part of the antenna within the cloud, the voltage predicted by the model is far too weak to be directly detectable and in any case much too weak to induce the up to 100 mV pulses observed on STEREO. Previous estimates of the voltage pulse associated with nano-size dust impacts were based on the assumption that the charge separation within the expanding cloud is total, with $N/2$ electrons in the precursor [17]. The assumption, adopted here, that charge separation only occurs at the time when the expanding cloud becomes collisionless, without influence of potential external fields, reduces the number of electrons in the precursor to a much smaller number of order $0.3N\Lambda$. Using equation (21) we can estimate the maximum electric field within the above cloud to be of order $E_{\text{max, SI}} \approx 1.8 \times 10^{-2}R^{-2}$. Thus, when the cloud has reached $R = 4.2\text{mm}$ the maximum field is already down to 1 V m$^{-1}$, i.e. comparable to the spacecraft’s own field. Beyond this size, the cloud will start losing its
proportional to $N \Lambda / R^2$. In our representative simulation, we find $E_{\text{max}, \text{SI}} \approx 8 \times 10^{-11} N \Lambda / R^2$, which we expect to hold as long as $N \gg 1$ and provided the cloud has changed from collisional to collisionless during expansion. The electrostatic potential through the cloud has been found to be $\Delta V_{\text{SI}}(N, R) \approx 1.84 \times 10^{-10} N \Lambda / R$.

The electrostatic potential difference between the cloud’s centre and infinity predicted by the model is far too weak to be account for the voltage pulses, sometimes exceeding 100 mV, observed on the S/Waves TDS detector on the STEREO spacecraft following a nano-sized dust particle impact. One plausible reason for this discrepancy is that spacecraft are observed on the S/Waves TDS detector on the STEREO spacecraft: nanoparticles picked up by the spacecraft are positively charged due to photoelectron emission through their sunlit exposed surfaces. The resulting electric field, typically of the order of a few V m$^{-1}$ at 1 AU from the Sun, generally exceeds the maximum field intensity within the plasma cloud before its dilution in the ambient plasma. The late evolution of the cloud is therefore dominated by the spacecraft field, which strips most or all of the electrons from the cloud which then sees both its charge and its internal electrostatic potential field increase by a factor of order $\Lambda^{-1} \gg 1$. However, even in the case of an unrealistically large nanodust impact generated cloud with some $N = 10^8$ and with all electrons stripped-off, the total electrostatic potential difference would merely be a small 20 mV at the time of its maximum extension, when $R \approx 1$ m. Considering that the measured field is down by at least a factor R / L, where L is the total length of the antenna ($L \approx 6$ m on the STEREO spacecraft), one must conclude that the on board measured fields are not a direct measure of the cloud’s intrinsic field. Indeed, recent findings by Zaslavsky et al. indicate that nanodust impact associated clouds strongly affect the photoelectron environment of the antenna. In the scenario proposed by Zaslavsky et al. the photoelectrons emitted by the sunlight exposed surface of the antenna are temporarily hindered from falling back onto it because of the presence of the cloud’s perturbing field. The resulting net photoelectron current is strong enough to allow for a fast positive charging of the antenna, which is compatible with the measured field intensities. The bottom line is that the presented model is not directly applicable to the case of plasma clouds generated by nanodust impacts on spacecraft as neither the spacecraft potential nor the surrounding photoelectrons have been considered. The model is, however, expected to be applicable in the case of nanodust impacts on uncharged targets.

References

[1] Peano F, Martins J L, Fonseca R A, Silva L O, Coppa G, Peinetti F, and Mulas R 2007 Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions Phys. Plasmas 14 056704
[2] Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G and Wharton K B 1999 Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters Nature 398 489–92
[3] Ter-Avetisyan S, Schmier M, Stiel H, Vogt U, Radloff W, Karpov W, Sandner W and Nickles P V 2001 Absolute extreme ultraviolet yield from femtosecond-laser-exited Xe clusters Phys. Rev. E 64 036404
[4] Kishimoto Y, Masaki T and Tajima T 2002 High energy ions and nuclear fusion in laser–cluster interaction Phys. Plasmas 9 589–601
[5] Mora P 2005 Thin-foil expansion into a vacuum Phys. Rev. E 72 056401
[6] Breizman B N, Arefiev A V and Fomyts’kyi M V 2005 Nonlinear physics of laser-irradiated microclusters Phys. Plasmas 12 056706
[7] Longren K E 1990 Expansion of a dusty plasma into a vacuum Planet. Space Sci. 38 1457–9
[8] Pillay S R, Singh S V, Bharuthram R and Yu M Y 1997 Self-similar expansion of dusty plasmas J. Plasma Phys. 58 467–74
[9] Birch P C and Chapman S C 2002 Two dimensional particle-in-cell simulations of the lunar wake Phys. Plasmas 9 1785–9
[10] Gurnett D A, Grun E, Gallagher D, Kurth W S and Scarf F L 1983 Micron-sized particles detected near Saturn by the Voyager plasma wave instrument Icarus 53 236–54
[11] Aubier M G, Meyer-Vernet N and Pedersen B M 1983 Shot noise from grain and particle impacts in Saturn’s ring plane Geophys. Res. Lett. 10 5–8
[12] Utterback N G and Kissel J 1990 Attogram dust cloud a million kilometers from comet Halley Astron. J. 100 1315–22
[13] Zook H A, Grun E, Baguhl M, Hamilton D P, Linkert G, Liou J-C, Forsyth R and Phillips J L 1996 Solar wind magnetic field bending of jovian dust trajectories Science 274 1501–3
[14] McBride N and McDonnell J A M 1999 Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids Planet. Space Sci. 47 1005–13
[15] Mann I and Czechowski A 2005 Dust destruction and ion formation in the inner solar system Astrophys. J. Lett. 621 L73–L76
[16] Kempf S, Srama R, Horányi M, Burton M, Helfert S, Moragas-Klostermeyer G, Roy M and Grün E 2005 High-velocity streams of dust originating from Saturn Nature 433 289–91
[17] Meyer-Vernet N, Maksimovic M, Czechowski A, Mann I, Zouganelis I, Goetz K, Kaiser M L, Cyr O C St, Bougeret J-L and Bale S D 2009 Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? Solar Phys. 256 463–74
[18] Cyr O C St et al 2009 STEREO SECCHI and SWAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts Sol. Phys. 256 475–88
[19] Zel’dovich Ya B and Raizer Yu P 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Courier Dover Publications)
[20] Pack D C 1953 The motion of a gas cloud expanding into a vacuum Mon. Not. R. Astron. Soc. 113 43
[21] Stanyukovich K P 1960 Unsteady Motion of Continuous Media (New York: Pergamon)
[22] Tzuk Y, Barmashenko B D, Bar I and Rosenwaks S 1993 The temperature profile to the problem of ion acceleration Phys. Plasmas 10 849–53
[23] Sack C and Schamel H 1987 Plasma expansion into vacuum—a hydrodynamic approach Phys. Rep. 156 311–95
[24] Mora P 2003 Plasma expansion into a vacuum Phys. Rev. Lett. 90 185002
[25] Murakami M and Basko M M 2006 Self-similar expansion of finite-size non- quasi-neutral plasmas into vacuum: relation to the problem of ion acceleration Phys. Plasmas 13 012105
[26] Kumar N and Pukhov A 2008 Self-similar quasineutral expansion of a collisionless plasma with tailored electron temperature profile Phys. Plasmas 15 053103
[27] Beck A and Pantellini F 2009 Spherical expansion of a collisionless plasma into vacuum: self-similar solution and ab initio simulations Plasma Phys. Control. Fusion 51 015004

[28] Peano F, Peinetti F, Mulas R, Coppa G and Silva L O 2006 Kinetics of the collisionless expansion of spherical nanoplasmas Phys. Rev. Lett. 96 175002

[29] Manfredi G, Mola S and Feix M R 1993 Rescaling methods and plasma expansions into vacuum Phys. Fluids B 5 388–401

[30] Dorozhkina D S and Semenov V E 1998 Exact solution of vlasov equations for quasineutral expansion of plasma bunch into vacuum Phys. Rev. Lett. 81 2691–4

[31] Hornung K and Kissel J 1994 On shock wave impact ionization of dust particles Astron. Astrophys. 291 324–36

[32] Molmud P 1960 Expansion of a rarefield gas cloud into a vacuum Phys. Fluids 3 362–6

[33] Spitzer L and Härmi R 1953 Transport phenomena in a completely ionized gas Phys. Rev. 89 977–81

[34] Landau L D and Lifshits E M 1987 Fluid Mechanics (Course of Theoretical Physics vol 6) 2nd edn (Transl. from the Russian by J B Sykes and W H Reid) (New York: Pergamon)

[35] Shoub E C 1983 Invalidity of local thermodynamic equilibrium for electrons in the solar transition region: I. Fokker–Planck results Astrophys. J. 266 339–69

[36] Luciani J F, Mora P and Virmont J 1983 Nonlocal heat transport due to steep temperature gradients Phys. Rev. Lett. 51 1664–7

[37] Salem C, Hubert D, Lacombe C, Bale S D, Mangeney A, Larson D E and Lin R P 2003 Electron properties and Coulomb collisions in the solar wind at 1 AU: wind observations Astrophys. J. 585 1147–57

[38] Quinlan G D and Tremaine S 1990 Symmetric multistep methods for the numerical integration of planetary orbits Astron. J. 100 1694–700

[39] Zaslavsky A et al 2011 Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES J. Geophys. Res.—Space Phys. submitted