Diagnostic utility of axial imaging in the evaluation of hematuria: A systematic review and critical appraisal of the literature

Christopher J.D. Wallis, MD, PhD, FRCSC1,4; Rashid K. Sayyid, MD, MSc2; Roni Manyevitch, BS3; Nathan Perlis, MD, MSc4; Vinata B. Lokeshwar, PhD5; Neil E. Fleshner, MD, MPH4; Martha K. Terris, MD2,5; Matthew E. Nielsen, MD, MS6; Zachary Klaassen, MD, MSc2,5

1Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States; 2Section of Urology, Department of Surgery, Medical College of Georgia-Augusta University, Augusta, GA, United States; 3School of Medicine, St. George’s University, University Centre Grenada, West Indies, Grenada; 4Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; 5Georgia Cancer Center, Augusta, GA, United States; 6University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States

Previously presented at the American Urologic Association Northeast Section Meeting 2018

Funding: Drs. Lokeshwar and Klaassen are funded by 1R01CA227277-01A1, an NIH grant assessing novel biomarkers for the clinical management of bladder cancer.

Cite as: Can Urol Assoc J 2020 July 27; Epub ahead of print. http://dx.doi.org/10.5489/cuaj.6522

Published online July 27, 2020

Abstract

Introduction: Increasing severity of hematuria is instinctively associated with higher likelihood of urological malignancy. However, the robustness of the evidentiary base for this assertion is unclear, particularly as it relates to the likelihood of upper urinary tract pathology. Thus, the value of axial imaging in the diagnostic workup of hematuria is unclear due to differences in the underlying patient populations, raising concern for sampling bias. We performed a systematic review to characterize the literature and association between severity of hematuria and likelihood of upper urinary tract cancer based on axial imaging.

Methods: MEDLINE, EMBASE, and Cochrane were systematically searched for all studies reporting on adult patients presenting with hematuria. We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for reporting of this systematic review and meta-analysis and the Newcastle-Ottawa Scale for risk of bias assessment. Degree of hematuria was classified as “microscopic,” “gross,” or “unspecified.” Three urologic malignancies (bladder, upper tract urothelial, and renal cancer) were considered both individually and in aggregate. Random effects model with pairwise comparisons was employed to arrive at the axial imaging diagnostic yields.
Results: Twenty-nine studies were included, of which six (20.7%) reported on patients with gross hematuria only, four (13.8%) reported on patients with microscopic hematuria only, seven (24.1%) included both, and 12 (41.4%) did not define or specify the severity of hematuria. Of 29 studies, two (6.9%) were at high-risk of bias, 21 (72.4%) at intermediate-risk, and six (20.7%) at low-risk of bias using the Newcastle-Ottawa criteria. Based on axial imaging, rates of diagnoses of renal, upper tract urothelial, and bladder cancers differed with differing severity of hematuria. Notably, rates of renal and upper tract urothelial carcinoma were higher in studies of patients with unspecified hematuria severity (3.6% and 10.4%, respectively) than among patients with gross hematuria (1.5% and 1.3%, respectively). When all urological malignancies were pooled, patients with unspecified hematuria were diagnosed more frequently (19.5%) compared to those with gross (15.3%) and microscopic hematuria (4.5%, difference = 1.51%; 99% confidence interval 3.6–26.5%).

Conclusions: Lack of granularity in the available literature, particularly with regards to patients with unspecified hematuria severity, limits the generalizability of these results and highlights the need for future studies that provide sufficient baseline information allowing for firmer conclusions to be drawn.

Introduction
Hematuria is one of the most common causes for referral to urologic practice, accounting for approximately 6% of all new urologic visits.\(^1\) Hematuria is classically defined as either gross or microscopic, with reported prevalence ranging from 0.9% to 18% in the adult population.\(^2,3\) While hematuria may be due to benign causes such as urinary tract infections or nephrolithiasis, evaluation is most targeted at identifying malignant etiologies.

It seems instinctively obvious that the more severe a patient’s hematuria, the higher likelihood of underlying malignancy. However, the robustness of the evidentiary base for this assertion is somewhat unclear, particularly as it relates to the likelihood of upper urinary tract disease. While nearly all international guidelines recommend cystoscopy in the evaluation of patients with hematuria, guidelines vary on their recommendations for abdominal imaging, particularly among those with microscopic hematuria.\(^4,5\) The American Urological Association guidelines, which recommend multi-phasic computed tomography urography or magnetic resonance urography in all patients over 35 with microhematuria,\(^4\) are based on 16 studies of which 4 included patients specifically with microhematuria, 8 comprised mixed populations with both gross and microhematuria, 3 with gross hematuria alone, and 1 with unspecified hematuria type. Such heterogenous literature raises the possibility of a sampling bias, whereby applying the same test to different populations changes its...
diagnostic performance. This affects the external validity of these results and their applicability to clinical practice.

To better understand the effect that differing patient populations may have on the apparent value of abdominal imaging in patients with hematuria, we performed a systematic review to estimate the diagnostic yield of axial imaging in patients according to their severity of hematuria.

Methods

Research question

Does the diagnostic rate of urologic malignancy on axial imaging for patients presenting with hematuria differ according to whether they present with gross or microscopic hematuria?

Types of studies

We included cohort, case-control, and cross-sectional studies. Case series lacking comparator groups were excluded. Other publications including editorials, commentaries, review articles, and those not subject to peer-review (i.e. reports of data from Vital Statistics and dissertations or theses) were excluded. Where there was more than one publication resulting from the same patient cohort, we selected a single representative study, with a preference for more contemporary publications, larger patient populations and more reliable methods of outcome ascertainment.

Types of participants

We considered any studies reporting on adult patients presenting with hematuria, without a known association with recent trauma.

Exposure

We considered the degree of hematuria and classified this as “microscopic”, “gross”, or “unspecified” (i.e. severity not defined in the study) according to the original report.

Outcome

We considered three urologic malignancies with known associations with hematuria: renal cancer, upper tract urothelial carcinoma, and bladder cancer (though imaging is not the diagnostic choice of test for bladder cancer). These were considered individually and then in aggregate. We considered the diagnostic yield of a radiological investigation on the basis of the number of patients diagnosed with a relevant cancer among those who underwent the radiologic test (number diagnosed/number imaged).

Methods of systematic review

We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for reporting of this systematic review and meta-analysis.6
Search strategy
We performed a search of MEDLINE (OvidSP), EMBASE (OvidSP), and Cochrane (Wiley) databases from inception as of October 23, 2017. We used both subject headings and textword terms for hematuria AND diagnostic imaging AND variants of renal cancer, upper tract urothelial cancer, and bladder cancer or Prognosis or Diagnosis or Risk search filters (Appendix). No limitations were placed with respect to publication language or year. All duplicates were excluded. References from review articles, commentaries, editorials, included studies and conference publications of relevant medical societies were hand-searched and cross-referenced to ensure completeness.

Study review methods
Two authors performed study selection independently. Disagreements were resolved by consensus with the assistance of a third author. Titles and abstracts were used to screen for initial study inclusion. Full-text review was used where abstracts were insufficient to determine if the study met inclusion or exclusion criteria. One author performed all data abstraction including evaluation of study characteristics, risk of bias and outcome measures with independent verification performed by another author.

Risk of bias assessment
We used the Newcastle-Ottawa Scale for risk of bias assessment. This scale assesses risk of bias in three domains: 1) selection of the study groups; 2) comparability of groups; and 3) ascertainment of exposure and outcome. Studies with scores of <4, 4-6, and ≥7 were considered having a high, intermediate, and low risk of bias, respectively.

Assessment of heterogeneity
We quantified heterogeneity using I² values. Further, we employed random-effects models for each of our analyses given the identified clinical heterogeneity.

Data synthesis/statistical analysis
Quantitative meta-analysis was performed to assess the association between the degree of hematuria and the diagnostic yield of axial imaging (computed tomography and magnetic resonance imaging). Insufficient data were present to allow for such analysis among patients undergoing ultrasonography. We performed meta-analysis of the diagnostic yield for each diagnosis (bladder, upper tract urothelial, renal, and aggregate urological cancers) stratified according to degree of hematuria (“micro”, “gross”, or “unspecified”) with random effects models using the procedure of Neyeloff, Fuchs, and Moreira. Where zero events were reported, we performed a continuity correction to allow for computational processing.

We then performed pairwise comparison of the resulting pooled diagnostic yields among patients with “micro”, “gross”, and “unspecified” hematuria for each diagnosis by calculating the difference in diagnostic yields and calculated the pooled
standard error. 95% and 99% confidence intervals of the difference in diagnostic yield were calculated. All analyses were performed using SAS Enterprise Guide 7.1 (SAS Institute Inc).

Results

Study selection
We initially retrieved a total of 5321 references from the database search. Seven citations were retrieved via a manual search, for a total of 5328 references. All references were saved in an EndNote library used to identify the 1338 duplicates. The remaining 3990 unique references underwent abstract review, of which 3899 were excluded. After full text review of the remaining 91 manuscripts, 29 were selected for inclusion (Figure 1).

Study characteristics
The characteristics of all included studies (N=29) are presented in Table 1. Nine of the 29 studies (31.0%) were prospective and two were multicenter (6.9%). Six studies (20.7%) included patients with gross hematuria only, four (13.8%) with microscopic hematuria only, seven (24.1%) with either gross or microscopic hematuria, and 12 (41.4%) with unspecified hematuria (i.e. not defined if microscopic, gross or both). Patients were recruited between 1992 and 2017 and sample size varied from 53 to 1,608. The axial imaging of choice was CT-based in 25 (86.2%), MR-based in two (6.9%), and CT- or MR-based in two (6.9%) studies. Reported outcomes were urothelial carcinoma of the bladder and upper tracts, kidney cancer, or urinary tract neoplasms (unspecified). Reported outcomes range from 0.0% to 80.0% (Table 1).

Risk of bias assessment
The risk of bias assessment is tabulated in Table 1. There were 6 studies at low-risk for bias, two studies at high-risk for bias, and the remainder were at intermediate-risk of bias according to the Newcastle-Ottawa criteria. The primary risk of bias was not specifying gross or microscopic hematuria, and poor comparison analysis between groups.

Quantitative analysis

a) Renal cancer
With respect to renal cancer, we pooled data from five studies reporting on 2505 patients with gross hematuria (including those from studies reporting outcomes of both gross and microscopic hematuria patients), seven studies reporting on 2190 patients with microscopic hematuria (including those from studies reporting outcomes of both gross and microscopic hematuria), and six studies reporting on 1435 patients with unspecified degrees of hematuria. The diagnostic yield was generally quite low – 1.5% (95% Confidence Interval 0.6-2.3%; I² = 61%) among patients with gross hematuria, 0.98% (95% CI 0.30-1.7%; I² = 73%) among patients with microscopic
hematuria, and 3.6% (95% CI 1.5-5.6%; $I^2 = 84\%$) among patients with unspecified hematuria. Heterogeneity was high, as noted, in all three groups. No differences were found between these proportions on pairwise testing (Table 2).

b) Upper tract urothelial carcinoma
Assessing the diagnostic yield for upper tract urothelial carcinoma, we pooled results from 3196 patients (five studies) with gross hematuria, 2462 patients (six studies) with microscopic hematuria, and 2317 patients (six studies) with unspecified hematuria. The diagnostic yield varied according to the degree of hematuria: gross hematuria 1.3% (95% CI 0.7-1.9%; $I^2 = 25\%$), microscopic hematuria 0.18% (95% CI -0.06-0.42%; $I^2 = 70\%$), and unspecified hematuria 10.4% (95% CI 5.9-15.0%; $I^2 = 91\%$). There were significant differences among all three pairwise comparisons: diagnostic yield was higher among patients with gross than microscopic hematuria (difference = 1.11%, 99% CI 0.23-1.99%), among patients with unspecified than gross hematuria (difference = 9.2%, 99% CI 3.2-15.1%), and among patients with unspecified than microscopic hematuria (difference = 10.3%, 99% CI 4.3-16.2%; Table 2).

c) Bladder cancer
We identified seven studies (3509 patients) that reported data on the diagnostic yield of axial imaging for bladder cancer in patients with gross hematuria, six (2132 patients) in patients with microscopic hematuria, and five (3250 patients) in those with unspecified degrees of hematuria. The diagnostic yield of axial imaging differed depending on the degree of hematuria, with pooled rates of 17.6% (95% CI 11.9-23.3%) in patients with gross hematuria, 2.4% (95% CI 0.95-3.7%) in patients with microscopic hematuria, and 11.6% (95% CI 4.3-18.8%) in patients with unspecified hematuria. Perhaps unsurprisingly, heterogeneity was highest among patients with unspecified hematuria ($I^2=98\%$), though it was also high in patients with gross ($I^2=82\%$), but not microscopic hematuria ($I^2=18\%$). Pairwise comparisons demonstrated a significant difference in the diagnostic yield among patients with gross and microscopic hematuria (difference = 15.3%, 99% CI 7.6-23.0; Table 2).

d) All hematuria-related urologic malignancies
Finally, we assessed aggregate rates of hematuria-associated urological malignancies. We examined 5 studies reporting on 2859 patients with gross hematuria, 6 studies reporting on 2335 patients with microscopic hematuria, and 5 studies reporting on 3118 patients with unspecified hematuria. The pooled rates of diagnostic yield were as follows: 15.3% (95% CI 4.4-26.4) among patients with gross hematuria, 4.5% (95% CI 1.7-7.2%) among patients with microscopic hematuria, and 19.5% (95% CI 11.2-27.8%) among patients with unspecified hematuria. Pairwise testing identified a significant difference at the alpha = 0.01 for the comparison of microscopic and unspecified hematuria (difference = 15.1%, 99% CI 3.6-26.5%).
Discussion

In this systematic review and meta-analysis, we found significant limitations in the evidentiary base assessing the relationship between the severity of hematuria and the likelihood of underlying malignant etiology, as diagnosed based on axial imaging. A significant proportion of relevant studies (12 studies, 41%) did not clearly specify the presenting characteristics (gross or microscopic hematuria) of the patients included in their analysis. Further, a meaningful proportion of the remainder of the identified studies were at high risk of bias due to methodologic limitations. Thus, despite a relatively intuitive hypothesis, the data underpinning the assumption that patients with more severe hematuria are more likely to have an underlying malignant cause is poor. Interesting, in this pooled analysis, we found that cohorts with unspecified hematuria (i.e. not characterized in the manuscript), reported the highest rates of urologic malignancies.

Given that unspecified hematuria likely represents a mixture of gross and microscopic hematuria, it would have been expected that this cohort have a malignancy risk that falls in between those reported for patients with gross and microscopic hematuria. With regards to bladder cancer, this assumption held with studies reporting on patients with unknown hematuria having a risk (11.6%) that approximates the combined mean of those reported in patients with gross (17.6%) and microscopic hematuria (2.4%). However, the higher risk of upper tract urothelial, renal and aggregate urologic cancers in these patients with unspecified hematuria raises the concern for a spectrum bias. The various study populations are likely to have differed with regards to their baseline risk of malignancy, specifically known risk factors such as increasing age, positive family history, and smoking status that increase the pre-test probability of malignancy and thus influenced the cancer detection rate.

While this is perhaps clinically intuitive that the severity of hematuria would be associated with the likelihood of underlying malignancy, it highlights the potential for spectrum bias when we consider the use of the same diagnostic tests (e.g. CTU) in different populations (e.g. gross and microhematuria). Spectrum bias refers to inherent differences in the study population characteristics affecting the performance of the diagnostic tests, and thus limiting the generalizability of these results. While sensitivity and specificity are well known characteristics of diagnostic tests, clinical utilization relies much more heavily on positive and negative predictive values. Unlike sensitivity and specificity, positive and negative predictive values are meaningfully affected by the underlying prevalence of disease in the population under study. Thus, changing the characteristics of a study population, or applying a test to a differing population, may change the performance of a diagnostic test resulting in spectrum bias or the spectrum effect, a form of sampling bias.

The implications of these findings, while almost intuitive, are potentially profound. Guideline development, as with nearly every clinical decision, is premised on the balance of risk and benefits. Applying data that are subject to this sampling
bias is highly likely to overestimate the accuracy of a diagnostic test, particularly when evaluation of a diagnostic test occurs among patients with more severe disease than the target population. Thus, extrapolation of data from mixed populations or patients with gross hematuria to those with asymptomatic microhematuria, as is described in the current American Urological Association guideline on the Diagnosis, Evaluation and Follow-up of Asymptomatic Microhematuria in Adults, overestimates the benefit of axial abdominal imaging. Further, recent evidence has emerged highlighting the potential risks of this approach in patients with asymptomatic hematuria including radiation-induced malignancies and diagnosis of incidentalomas. Thus, to best guide care for these patients, it is imperative that patients included in studies used to guide treatment decisions are explicitly defined and comparable to those for whom the guidelines are applied. The NICE clinical guidelines are the only to specifically recognize the issues with the evidence underlying guidelines on this topic, noting that they “merged all urinary tract cancers making it difficult to tease out specifics” related to bladder or renal cancer, and did not distinguish between visible and non-visible hematuria, but largely grouped these two together as “hematuria”.

Despite strengths, there are limitations to this review, most notably due to limitations of the underlying literature. Available studies were predominantly retrospective in nature, which inherently introduces an element of selection bias. This is exemplified by the occasional reluctance of primary care physicians to refer patients with hematuria for a urologic work up, with studies suggesting that the referral rate for such patients may only be 49-64% or lower. This invariably introduces selection bias, with referred patients likely to have had additional worrisome features that prompted referral. The lack of granularity in the literature, both with regards to underlying type of hematuria and baseline patient characteristics, at least in part, explains some of the unanticipated variability seen in this study’s results. Microscopic hematuria reports included patients with varying numbers of red blood cells per high-power field and thus varying microscopic hematuria severities. Additionally, the degree of heterogeneity, as quantified by the I^2 value, was consistently higher in those studies with unspecified type of hematuria. It is also important to emphasize that the reported risks of malignancy are based only on axial imaging, which is not sufficient for a complete hematuria work up. While the absolute incidence of bladder cancer is likely underestimated by the exclusion of cystoscopic diagnosis, this was beyond the scope of this study, which specifically sought to assess spectrum bias within the context of axial abdominal imaging. Lastly, no a priori protocol was published for this systematic review, which exposes this study to inherent biases with regards to study selection.
References

1. Yafi FA, Aprikian AG, Tanguay S, Kassouf W. Patients with microscopic and gross hematuria: practice and referral patterns among primary care physicians in a universal health care system. Can Urol Assoc J 2011;5: 97-101.
2. Woolhandler S, Pels RJ, Bor DH, Himmelstein DU, Lawrence RS. Dipstick urinalysis screening of asymptomatic adults for urinary tract disorders. I. Hematuria and proteinuria. JAMA 1989;262: 1214-19.
3. Moyer VA, Force USPST. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2012;157: 120-34.
4. Davis R, Jones JS, Barocas DA, et al. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol 2012;188: 2473-81.
5. Wollin T, Laroche B, Psooy K. Canadian guidelines for the management of asymptomatic microscopic hematuria in adults. Can Urol Assoc J 2009;3: 77-80.
6. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62: 1006-12.
7. Deeks JJ, Dinnes J, D'Amico R, et al. Evaluating non-randomised intervention studies. Health Technol Assess 2003;7: iii-x, 1-173.
8. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available from URL: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp [accessed Sept 14, 2014].
9. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327: 557-60.
10. Neyeloff JL, Fuchs SC, Moreira LB. Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res Notes 2012;5: 52.
11. Abou-El-Ghar ME, El-Assmy A, Refaie HF, El-Diasty T. Bladder cancer: diagnosis with diffusion-weighted MR imaging in patients with gross hematuria. Radiology 2009;251: 415-21.
12. Aguilar-Davidov B, Ramirez-Mucino A, Culebro-Garcia C, et al. Performance of computed tomographic urography for the detection of bladder tumors in patients with microscopic hematuria. Actas Urol Esp 2013;37: 408-11.
13. Albani JM, Ciaschini MW, Streem SB, Herts BR, Angermeier KW. The role of computerized tomographic urography in the initial evaluation of hematuria. J Urol 2007;177: 644-8.
14. Blick CG, Nazir SA, Mallett S, et al. Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int 2012;110: 84-94.
15. Cauberg EC, Nio CY, de la Rosette JM, Laguna MP, de Reijke TM. Computed tomography-urography for upper urinary tract imaging: is it
required for all patients who present with hematuria? J Endourol 2011;25: 1733-40.

16. Chen CY, Tsai TH, Jaw TS, et al. Diagnostic Performance of Split-Bolus Portal Venous Phase Dual-Energy CT Urography in Patients With Hematuria. AJR Am J Roentgenol 2016;206: 1013-22.

17. Commander CW, Johnson DC, Raynor MC, et al. Detection of Upper Tract Urothelial Malignancies by Computed Tomography Urography in Patients Referred for Hematuria at a Large Tertiary Referral Center. Urology 2017;102: 31-7.

18. Cowan NC, Turney BW, Taylor NJ, McCarthy CL, Crew JP. Multidetector computed tomography urography for diagnosing upper urinary tract urothelial tumour. BJU Int 2007;99: 1363-70.

19. Eisenhardt A, Heinemann D, Rubben H, Hess J. Haematuria work-up in general care-A German observational study. Int J Clin Pract 2017;71.

20. Elmussareh M, Young M, Ordell Sundelin M, Bak-Ipsen CB, Graumann O, Jensen JB. Outcomes of haematuria referrals: two-year data from a single large university hospital in Denmark. Scand J Urol 2017;51: 282-9.

21. Gandrup KL, Logager VB, Bretlau T, Nordling J, Thomsen HS. Diagnosis of bladder tumours in patients with macroscopic haematuria: a prospective comparison of split-bolus computed tomography urography, magnetic resonance urography and flexible cystoscopy. Scand J Urol 2015;49: 224-9.

22. Gray Sears CL, Ward JF, Sears ST, Puckett MF, Kane CJ, Amling CL. Prospective comparison of computerized tomography and excretory urography in the initial evaluation of asymptomatic microhematuria. J Urol 2002;168: 2457-60.

23. Helenius M, Brekkan E, Dahlman P, Lonnemark M, Magnusson A. Bladder cancer detection in patients with gross haematuria: Computed tomography urography with enhancement-triggered scan versus flexible cystoscopy. Scand J Urol 2015;49: 377-81.

24. Klein LT, Fraser D, Subramanium A, Lowe FC. Use of magnetic resonance urography. Urology 1998;52: 602-8.

25. Lang EK, Thomas R, Davis R, et al. Multiphasic helical computerized tomography for the assessment of microscopic hematuria: a prospective study. J Urol 2004;171: 237-43.

26. Lisanti CJ, Toffoli TJ, Stringer MT, DeWitt RM, Schwope RB. CT evaluation of the upper urinary tract in adults younger than 50 years with asymptomatic microscopic hematuria: is IV contrast enhancement needed? AJR Am J Roentgenol 2014;203: 615-9.

27. Lokken RP, Sadow CA, Silverman SG. Diagnostic yield of CT urography in the evaluation of young adults with hematuria. AJR Am J Roentgenol 2012;198: 609-15.

28. Mace LR, Galloway TL, Ma A, et al. Diagnostic yield of CT urography in the evaluation of hematuria in young patients in a military population. Abdom Radiol (NY) 2017;42: 1906-10.

29. Rheaueme-Lanoie J, Lepanto L, Fradet V, Billiard JS, Tang A. Diagnostic performance of ultrasound for macroscopic hematuria in the era of multidetector computed tomography urography. Can Assoc Radiol J 2014;65: 253-9.
30. Sudakoff GS, Dunn DP, Guralnick ML, Hellman RS, Eastwood D, See WA. Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria. J Urol 2008;179: 862-867; discussion 867.

31. Tan WS, Feber A, Sarpong R, et al. Who Should Be Investigated for Haematuria? Results of a Contemporary Prospective Observational Study of 3556 Patients. Eur Urol 2018;74: 10-14.

32. Turney BW, Willatt JM, Nixon D, Crew JP, Cowan NC. Computed tomography urography for diagnosing bladder cancer. BJU Int 2006;98: 345-8.

33. Wang LJ, WongYC, Huang CC, Wu CH, Hung SC, Chen HW. Multidetector computerized tomography urography is more accurate than excretory urography for diagnosing transitional cell carcinoma of the upper urinary tract in adults with hematuria. J Urol 2010;183: 48-55.

34. Arfeen F, Campion T, E G. Diagnostic yield of CT IVU in haematuria screening. Cancer Imaging Conference: 16th Annual Teaching Course of the International Cancer Imaging Society. 2016;16.

35. Bhuvanagiri A, Kannan S, Lock H, et al. One Stop Haematuria Clinic-how do we assess? European Urology, Supplements 2017;16: e2250.

36. Bretlau T, Hansen RH, Thomsen HS. CT urography and hematuria: a retrospective analysis of 771 patients undergoing CT urography over a 1-year period. Acta Radiol 2015;56: 890-6.

37. Devlin CM, Hull G, Coupland A, Gill K, Browning A. CT urography as the first line investigation for haematuria: is it truly indicated? A single centre analysis of the use of CT urography in the haematuria clinic. Journal of Clinical Urology 2015;8: 390-5.

38. Bromage SJ, Liew M, Moore K, Raju B, Shackley D. The evaluation of CT urography in the haematuria clinic. Journal of Clinical Urology 2012;6: 153-7.

39. Zriek A, Basu I, Langleys, Nigam R. CT UROGRAPHY FOR HAEMATURIA: INCIDENTAL DETECTION OF EXTRAURINARY TUMOURS. Journal of Urology 2013;189: e827.

40. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Group Q-S. A systematic review classifies sources of bias and variation in diagnostic test accuracy studies. J Clin Epidemiol 2013;66: 1093-104.

41. Yecies T, Bandari J, Macleod L, Fam M, Davies BJ, Jacobs BL. Evaluation of the Risks and Benefits of Computed Tomography Urography for Assessment of Gross Hematuria. Urology 2019;133: 40-5.

42. Yecies T, Bandari J, Fam M, Macleod L, Jacobs B, Davies B. Risk of Radiation from Computerized Tomography Urography in the Evaluation of Asymptomatic Microscopic Hematuria. J Urol 2018;200: 967-72.

43. Georgieva MV, Wheeler SB, Erim D, et al. Comparison of the Harms, Advantages, and Costs Associated With Alternative Guidelines for the Evaluation of Hematuria. JAMA Intern Med 2019.

44. Suspected cancer: recognition and referral. In: (UK) aCCfC, editor. London, UK: National Institute for Health and Care Excellence (UK), 2015.
Figures and Tables

Fig. 1. Study flow chart.
Table 1. Characteristics of included studies

Study	Hematuria	Years	Study setting	Sample size (n)	Imaging modality	Outcome Evaluated	Frequency of diagnosis (%)	ROB Score
Abou-El-Ghar et al17	Gross	2007–2008	Single-center, prospective	130	MRI	Bladder cancer	80.0%	6
Aguilar-Davidov et al18	Micro	2006–2009	Single-center, retrospective	112	CTU	Bladder cancer	1.8%	6
Albani et al19	Unspecified	2003–2004	Single-center, retrospective	259	CTU	UTUC Kidney cancer	2.3% 1.5%	5
Arfeen et al20	Unspecified	2015	Single-center, retrospective	256	CT IVU	Bladder cancer Kidney cancer	1.6% 1.2%	N/A
Bhuvanagiri et al21	Unspecified	2014–2016	Single-center, retrospective	536	CTU	Kidney cancer	0.9%	N/A
Blick et al22	Unspecified	2004–2007	Single-center, retrospective	747	CTU	Bladder cancer	16.9%	5
Bretlau et al23	Unspecified	2015	Single-center, retrospective	771	CTU	Urinary tract Neoplasm	17.8%	5
Bromage et al24	Gross	2008–2010	Single-center, retrospective	457	CTU	Bladder cancer UTUC Kidney cancer	14.2% 1.1% 2.0%	6
	Micro	2008–2010	Single-center, retrospective	529	CTU	Bladder cancer UTUC Kidney cancer	3.4% 0.8% 1.1%	6
Cauberg et al25	Gross	2006–2010	Single-center,	479	CTU or MRU	UTUC	1.9%	8
Wallis et al

Review: Hematuria spectrum bias

Reference	Type	Study Design	Sample Size	Procedure	Site	Diagnosis
Chen et al²⁶	Micro	Single-center, prospective	362	CTU or MRU	Kidney cancer	1.4%
Gross	Micro	Single-center, retrospective	457	CTU	Bladder cancer	0.7%
Gross	Micro	Single-center, prospective	234	UTUC	UTUC	3.8%
Gross	Micro	Single-center, prospective	113	CTU or MRU	UTUC	4.4%
Gross	Micro	Single-center, prospective	688	CTU	Urinary tract Neoplasm	3.3%
Gross	Micro	Single-center, prospective	150	CTU or MRU	Bladder cancer	0.9%
Gross	Micro	Single-center, prospective	115	CTU	Bladder cancer	0.9%

© 2020 Canadian Urological Association
Study	Type	Study Period	Study Design	N	Study Tool	Outcome	%	Rank		
Helenius et al\(^\text{34}\)	Gross	2005–2008	Single-center, retrospective	435	CTU	Bladder cancer	11.0%	7		
Klein et al\(^\text{35}\)	Unspecified	1992–1995	Single-center, unspecified	100	MRU	Kidney cancer	6.0%	5		
Lang et al\(^\text{36}\)	Micro	1999–2002	Multicenter, prospective	600	CTU	Bladder cancer, UTUC, Kidney cancer	2.5%	2.7%	2.2%	8
Lisanti et al\(^\text{37}\)	Micro	2006–2012	Single-center, retrospective	442	CTU	UTUC	0.0%	8		
Lokken et al\(^\text{38}\)	Gross	2000–2009	Single-center, retrospective	142	CTU	Kidney cancer	0.7%	5		
Lokken et al\(^\text{38}\)	Micro	2000–2009	Single-center, retrospective	181	CTU	Kidney cancer	0.0%			
Mace et al\(^\text{39}\)	Gross	2012–2013	Single-center, prospective	53	CTU	Kidney cancer	0.0%	6		
Mace et al\(^\text{39}\)	Micro	2012–2013	Single-center, retrospective	84	CTU	Kidney cancer	0.0%			
Rheume-Lanoie et al\(^\text{40}\)	Gross	2007–2009	Single-center, retrospective	86	CTU	Urinary tract Neoplasm	19.8%	7		
Sudakoff et al\(^\text{41}\)	Unspecified	2002–2005	Single-center, retrospective	468	CTU	Bladder cancer	4.9%	5		
Tan et al\(^\text{42}\)	Gross	2016–2017	Multicenter, prospective	1374	CT	Bladder cancer, UTUC, Kidney cancer	13.8%	1.3%	2.3%	9
Study	Type	Year	Setting	N	Test	Cancer	Percentage			
-------	------	------	---------	---	------	---------	-------------			
Turney et al⁴³	Gross	2004–2005	Single-center, prospective	161	CTU	Bladder cancer	26.1%			
Wang et al⁴⁴	Unspecified	2004–2006	Single-center, retrospective	60	CTU	UTUC	38.3%			
Zreik et al⁴⁵	Unspecified	2009–2012	Single-center, prospective	1608	CTU	Bladder cancer UTUC	16.8%			

CT: computed tomography; CTU: computed tomography urography; MRU: magnetic resonance urography; N/A: not able to be assessed, as data is presented in abstract form; NR: not reported; ROB: risk of bias; UTUC: upper tract urothelial carcinoma.
Table 2. Pairwise comparison of diagnostic yield of axial imaging for hematuria-related urologic cancers based on the severity of hematuria

Pairwise comparison	Pooled diagnostic yield – group 1 (%)	Pooled diagnostic yield – group 2 (%)	Difference in diagnostic yield (%)	95% CI of difference (%)	99% CI of difference (%)
Bladder cancer					
Gross vs. micro	17.61	2.351	15.26	9.412 to 21.11	7.574 to 22.95
Gross vs. unknown	17.61	11.55	6.058	-3.162 to 15.23	-6.059 to 18.17
Micro vs. unknown	2.351	11.55	-9.202	-16.60 to -1.808	-18.92 to 0.516
Upper tract urothelial carcinoma					
Gross vs. micro	1.289	0.179	1.110	0.438 to 1.782	0.227 to 1.993
Gross vs. unknown	1.289	10.44	-9.154	-13.71 to -4.600	-15.14 to -3.166
Micro vs. unknown	0.179	10.44	-10.26	-14.78 to -5.745	-16.20 to -4.324
Renal cancer					
Gross vs. micro	1.453	0.979	0.474	-0.594 to 1.542	-0.930 to 1.877
Gross vs. unknown	1.453	3.554	-2.101	-4.323 to 0.121	-5.021 to 0.818
Micro vs. unknown	0.979	3.554	-2.575	-4.747 to -0.403	-5.430 to 0.280
Aggregate urologic malignancies					
Gross vs. micro	15.38	4.452	10.93	-0.440 to 22.29	-4.012 to 25.86
Gross vs. unknown	15.38	19.51	-4.132	-17.92 to 9.655	-22.25 to 13.99
Micro vs. unknown	4.452	19.51	-15.06	-23.78 to -6.338	-26.52 to -3.597

CI: confidence interval.