Molecular characterization of novel *Ehrlichia* genotypes in *Ixodes auritulus* from Uruguay

María L. Félix, Sebastián Muñoz-Leal, Luis A. Carvalho, Diego Queirólo, Susana Remesar Alonso, Santiago Nava, María T. Armúa-Fernández, José M. Venzal

ARTICLE INFO

Keywords: Anaplasmataceae, *Ehrlichia*, Novel genotypes, Phylogeny, *Ixodes auritulus*, Birds

ABSTRACT

Ehrlichia are small intracellular Gram-negative bacteria transmitted by ticks. These microorganisms cause ehrlichiosis, a complex of life-threatening emerging zoonoses and diseases of global veterinary relevance. The aim of this study was to investigate the presence of *Ehrlichia* in free-living *Ixodes auritulus* collected in Uruguay. Ticks were collected from vegetation in five localities from the southeast and northeast of the country between 2014 and 2017. Detection of *Ehrlichia* DNA was performed in pools of adults or nymphs grouped according to the collection site and date. A total of 1,548 *I. auritulus* ticks were collected in four of the five locations sampled. Fragments of three loci (*16S rRNA*, *dsb* and *groEL*) were obtained by PCR, and phylogenies inferred using Bayesian inference analysis for each gene independently. DNA of *Ehrlichia* spp. was found in 15 out of 42 tick pools. Based on the topology of the phylogenetic trees, our sequences represent two novel genotypes for the genus named as *Ehrlichia* sp. Serrana and *Ehrlichia* sp. Laguna Negra. Both genotypes were closely related to *Ehrlichia* sp. Magellanica, a species detected in *Ixodes uriae* and Magellanic penguins. Considering that all stages of *I. auritulus* and *I. uriae* are parasites of birds, their phylogenetic relationships, and common eco-epidemiological profiles, it is reasonable to state that these genotypes of *Ehrlichia* spp. may represent a natural group likely associated with birds. Our results constitute the first characterization of *Ehrlichia* spp. in Uruguay. Future studies on birds reported as hosts for *I. auritulus* are needed to further understand the epidemiological cycles of both *Ehrlichia* genotypes in the country. Finally, *I. auritulus* does not feed on humans, so the two *Ehrlichia* species reported herein might have no implications in human health.

1. Introduction

The order Rickettsiales (Alphaproteobacteria) includes obligate intracellular parasites that infect a variety of invertebrate and vertebrate hosts. Rickettsiales comprises the families *Anaplasmataceae*, *Midichloriaceae* and *Rickettsiaceae* (Montagna et al., 2013; Szokoli et al., 2016). The family *Anaplasmataceae* is currently divided into five established and two *Candidatus* genera: *Anaplasma*, *Aegyptianella*, *Ehrlichia*, *Neorickettsia*, *Wolbachia*, “*Candidatus* Neoehrlichia”, and “*Candidatus* Xenohaliotis” (Thomas et al., 2016).

Ehrlichia are small Gram-negative tick-transmitted bacteria that form microcolonies within membrane-bound cytoplasmic vacuoles called morulae (Popov et al., 1998). These bacteria are the agents of ehrlichiosis, a complex of life-threatening emerging zoonoses and diseases of veterinary importance worldwide (Esemu et al., 2011). *Ehrlichia* species differ in their target cells both in mammals (monocytes, neutrophils or endothelial cells) and ticks (salia glands, intestinal epithelium, and hemolymph) (Brouqui & Matsumoto, 2007; Aguiar, 2017). In contrast to *Rickettsia* spp., there is no evidence of transovarial transmission in *Ehrlichia* spp. in ticks (Ismail & McBride, 2017). Instead,
ticks become infected with *Ehrlichia* spp. while feeding on infected vertebrate reservoirs and the infection is perpetuated transstadially (i.e. larva-nymph-adult) (Ismaïl & McBride, 2017). Human and animal ehrlichiosis are caused worldwide by six *Ehrlichia* species, namely *Ehrlichia canis, Ehrlichia chaffeensis, Ehrlichia muris, Ehrlichia ewingii, Ehrlichia ruminantium,* and *Ehrlichia minasensis* (see Aguiar, 2017). In the Southern Cone of South America, *E. canis*, the etiological agent of canine monocytic ehrlichiosis, is the most commonly reported species of this genus (Lopez et al., 2012; Lasta et al., 2013; Cicuttin et al., 2015).

Additionally, different strains closely related to *E. chaffeensis* were detected in *Amblyomma parvum, Amblyomma tigrinum* and in marsh deer (*Blasocaster dichotomus*) in Argentina (Tomassone et al., 2008; Cicuttin et al., 2017). *Amblyomma sculptum* (Sacchi et al., 2012), and some *Amblyomma* sp. strain Cordoba was detected in *A. tigrinum* ticks (Cicuttin et al., 2017). Recently, also in Argentina, *A. tigrinum*, *Amblyomma arboreum* and *Amblyomma neumannii* were found positive after molecular screenings targeting this bacterium, and three novel strains (*Ehrlichia* sp. strain Iberia, *Ehrlichia* sp. strain Delta, and *Ehrlichia* sp. strain La Dormida) were identified (Cicuttin et al., 2020; Eberhardt et al., 2020; Fargnoli et al., 2020).

In Brazil, reports include the detection of *Ehrlichia cf. chaffeensis* in *B. dichotomus* (Sacchi et al., 2012), and some *Ehrlichia* spp. strains pending further molecular characterization were detected in wild carnivores (Widmer et al., 2011; Almeida et al., 2013) and a horse (Vieira et al., 2016). Cattle and *Rhipicephalus microplus* ticks maintain *E. minasensis* infections in Brazil (Cabezas-Cruz et al., 2016; Aguiar, 2017) and recently, *Ehrlichia* sp. was detected in *Amblyomma scapularis* in the Brazilian Pantanal (Muraro et al., 2021).

In Chile, a novel genotype, *Ehrlichia* sp. Magellanica, seems to represent a bird-associated lineage within the genus, since it was

Collection site	Date	Stage	No. of ticks	Pools	Positive pools	Positive pools code	Ehrlichia genotype	GenBank accession numbers
Gruta de los Cuervos (T)	August 2016	Nymph	1	1	0			
	December 2016	Female	1	1	0			
Amarillo (Ri)	October 2016	Nymph	1	1	1	S12IaH14	Serrana	MW628647; MW650903
	June 2017	Female	1	1	1	S17laH1	Serrana	MW628649; MW650901; MW650909
	May 2017	Larva	6	3	0			
Lunarejo (Ri)	October 2016	F-N-L	0	0	0			
	May 2016	Nymph	48	1	1	S10laN9	Serrana	MW650902; MW650910
	May 2017	Nymph	5	1	1	S17laN33	Serrana	MW650904
Reserva Natural Salus (La)	May 2016	Nymph	54	4	0			
	December 2016	Female	6	1	0			
	July 2017	Nymph	12	2	1	S17laN33	Serrana	MW650904
Laguna Negra (Ro)	March 2014	Female	4	1	1	S5laH4	Serrana	MW650901
	May 2014	Nymph	30	3	2	S6laN9; S6laN11	Serrana	MW650902 (2)
	August 2014	Nymph	144	2	2			
	May 2014	Female	4	1	1	S6laH12	Laguna Negra	MW628646; MW650906
	November 2015	Female	4	1	1	S6laH12	Laguna Negra	MW650908
	August 2014	Nymph	47	5	1	S7laN19	Serrana	MW650907
	November 2014	Female	665	10	5	S8laH27; S8laH28; S8laH31; S8laH33; S8laH34	Laguna Negra (1); Serrana (4)	MW650907
		Nymph	16	2	1	S8laN38	Serrana	MW650905
		Larva	30	0	#			
Total			1548	42	15			

Abbreviations: T, Tacuarembo; Ri, Rivera; La, Lavalleja; Ro, Rocha; #, larvae are not included in pools; F, Female; N, Nymph; L, Larva.

Table 1

Primer name	Targeted gene	Sequence	Amplicon size (bp)	Reference
EHR165D	16S rRNA	GATACCACTCATGTTCTAGCC	345	Parola et al. (2000)
EHR16SR	16S rRNA	TAGACATCTCATGTTCTAGCC	345	Parola et al. (2000)
fD1	groEL	TAGGCTTGTGTTGTTCTAGCC	1,500	Weisburg et al. (1991)
R2	groEL	ACTGCCCTTCCTGTTCTCTATCCT	1,500	Weisburg et al. (1991)
HS1a	groEL	GATGCGGTGTTGTTGTTCTAGCC	1,500	Weisburg et al. (1991)
HS5a	groEL	CTACCAGGCAGCTCTCTGACGC	1,500	Weisburg et al. (1991)
HS43	groEL	TGCCAGCTCTGTTGTTGTTCTAGCC	1,500	Weisburg et al. (1991)
HS42	groEL	GGCGGCTCTGTTGTTGTTCTAGCC	1,500	Weisburg et al. (1991)
Dsb-330	dsb	GATGACAGGATTATTTGTTTAAAATT	401	Doyle et al. (2005); Almeida et al. (2013)
Dsb-720	dsb	CATTCTATGCTACGTTGTTGTTCTAGCC	401	Doyle et al. (2005); Almeida et al. (2013)
Dsb-380	dsb	ATTTTTAGGTTTTTACATCATTGCC	401	Doyle et al. (2005); Almeida et al. (2013)

* Primers used in the initial PCR screening.

1 Primers used in the first and second round.
detected in *Ixodes uriae* collected on Magellanic penguins (*Spheniscus magellanicus*) (Muñoz-Leal et al., 2019).

While the occurrence of ehrlichiae in Uruguay is uncertain, Conti-Díaz (2001) referred to possible cases of ehrlichiosis in humans. Although the disease is listed as emergent in the country, infection in animals and vectors has not been investigated.

Ixodes auritulus is a cosmopolitan tick species distributed through the Afro-tropical, Australasian, Nearctic, and Neotropical Zoogeographic Regions and all stages parasitize mainly birds (Nava et al., 2017; Guglielmone et al., 2020). The presence of *Borrelia burgdorferi* (*sensu lato*) was recently reported in *I. auritulus* from Argentina and Uruguay (Cicuttin et al., 2019; Carvalho et al., 2020); however, information about the presence of other pathogens is scarce.

As *Ixodes* spp. also can transstadially maintain bacteria of the family *Anaplasmataceae*, the aim of this study was to investigate the presence of *Ehrlichia* in free-living *I. auritulus* ticks collected in Uruguay.

2. Materials and methods

2.1. Study area

Fieldwork was conducted at five localities in Uruguay between 2014 and 2017. Three localities, Gruta de los Cuervos (31.618888, -56.046389), Tacuarembó Department; Amarillo (31.663611, -55.050555) and Lunarejo (31.141388, -55.900277), Rivera Department, are located in the northeast region of the country, within the

Fig. 1. Bayesian phylogenetic analysis inferred for partial fragments of the 16S rRNA gene. Bayesian posterior probabilities > 0.95 are indicated above or below the nodes. The positions of *Ehrlichia* sp. genotype Serrana and *Ehrlichia* sp. genotype Laguna Negra are highlighted within red and blue boxes, respectively. The scale-bar indicates the number of substitutions per nucleotide position. Genbank accession numbers are in parentheses.
Uruguayan ecoregion Gondwanic Sedimentary Basin (Brazeiro et al., 2012). The other two localities, Reserva Natural Salus (−34.421111, −55.315000), Lavalleja Department, and Laguna Negra (−34.085833, −53.738055), Rocha Department, are in the southeast part of the country, and belong to the ecoregion Sierras del Este sensu Brazeiro et al., (2012).

2.2. Tick collection and identification

Questing ticks were collected from vegetation using the flagging method. The collection was carried out for a period of 2 h in the samplings in each visit to the sites. Ticks were picked up from the cloth at 5–10-m intervals and stored in plastic tubes with 95% ethanol. In the laboratory, each arthropod was identified using a stereomicroscope following the morphological keys for larval, nymph and adult stages by Kohls (1960), Webb et al. (1990), and Nava et al. (2017).

2.3. DNA extraction and detection of Ehrlichia spp.

Only free-living nymphs and adult ticks were used in this study. Since Ehrlichia spp. are not maintained by transovarial transmission, larvae were not analyzed.

Detection of Ehrlichia DNA was performed into pools of adult or nymphs (1–10 ticks per pool) separated according to site and collection date. Briefly, ticks were rinsed with distilled water to remove ethanol and bisected longitudinally using sterile scalpels and forceps. Finally, each pool was homogenized cutting thoroughly the ticks with dissecting scissors. DNA was extracted using the commercial kit GeneJET Genomic DNA Purification Kit (Thermo Scientific, Lithuania) following the manufacturer’s instructions. The concentration and purity of DNA was determined using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Molecular screening was carried out using primers EHR16SD/EHR16SR with PCR conditions described by Parola et al. (2000). This PCR enables detection of a 16S rRNA gene fragment of members of the family Anaplasmataceae including the genera Anaplasm, Ehrlichia, Neorickettsia and Wolbachia. Positive samples were subjected to four additional PCR protocols. Two overlapping fragments were obtained using primers fD1/EHR16SR and EHR16SD/Rp2 (Weisburg et al., 1991; Inokuma et al., 2001) to amplify nearly full-length sequence of the 16S rRNA gene. In addition, a semi-nested and nested PCRs targeting dsb (disulfide oxidoreductase) and groEL (60 kDa chaperonin) genes, respectively, were performed (Sumner et al., 1997; Lotric-Furlan et al., 1998; Nicholson et al., 1999; Doyle et al., 2005; Almeida et al., 2013). All primers used and fragment sizes are listed in Table 1. Distilled water and an Ehrlichia canis DNA-positive sample were included as negative and positive controls in all runs. Five microliters of PCR products were analyzed by electrophoresis into 1.5% agarose gels, stained with GoodView™ Nucleic Acid Stain (Beijing SBS Genetech Co., Ltd.), and examined under UV transillumination. Amplicons were purified using GeneJET PCR purification kit (Thermo Scientific, Lithuania) and sent for sequencing to Macrogen (Seoul, Korea). BLASTn analyses (www.ncbi.nlm.nih.gov/blast) were performed with E. canis DNA sequences from Sin et al. (2005).
performed in order to infer closest identities with microorganisms available on GenBank database (Altschul et al., 1990), and to include these sequences into a phylogenetic analysis. Nucleotide identities of obtained sequences were calculated using the Sequence Identity and Similarity (SIAS) calculator (http://imed.med.ucm.es/Tools/sias.html).

2.4. Phylogenetic analyses

Independent alignments using obtained sequences for 16S rRNA, dsb and groEL loci were constructed with CLUSTAL W (Thompson et al., 1994) including homologue sequences downloaded from GenBank. Three phylogenetic trees were inferred using Bayesian inference analysis as implemented in MrBayes 3.2.5. (Huelsenbeck & Ronquist, 2001), using 1,000,000 generations. The general time reversible (GTR) model was chosen to run all the trees. Each tree was sampled every 100 generations, begun with random seeds and ran four times. The first 25% of the trees was discarded as “burn-in”, and the remaining subset of trees was used to calculate Bayesian posterior probabilities. Sequences of “Candidatus Neoehrlichia mikurensis” (EU810406; AB213021) and *Ehrlichia ruminantium* (AF308669) were used to root the phylogenetic trees.

3. Results

3.1. Tick collection

A total of 1,548 *I. auritulus* ticks (73 females, 185 nymphs and 1,290 larvae) were collected on vegetation at four of the five locations sampled (Table 2). Other tick species such as *Amblyomma aureolatum*, *Haemaphysalis juxtakochi*, and *Ixodes fuscipes* were also collected but not included in this study.

Table 3

Pairwise comparison matrix for 16S rDNA sequences of *Ehrlichia* sp. Serrana, *Ehrlichia* sp. Laguna Negra, and *Ehrlichia* sp. Magellanica
Species
Ehrlichia sp. Laguna Negra S6laH12 (LN)
Ehrlichia sp. Serrana S10laN9 - Salus (MW650902)
Ehrlichia sp. Serrana S17laH1 - Amarillo (MW650901)
Ehrlichia sp. Serrana S17laN33 - Salus (MW650904)
Ehrlichia sp. Serrana S12laH4 - Amarillo (MW650903)
Ehrlichia sp. Magellanica (MK049840)

Fig. 3. Bayesian phylogenetic analysis inferred for partial fragments of the dsb gene. Bayesian posterior probabilities > 0.95 are indicated above or below the nodes. The positions of *Ehrlichia* sp. genotype Serrana and *Ehrlichia* sp. genotype Laguna Negra are highlighted within red and blue boxes, respectively. The scale-bar indicates the number of substitutions per nucleotide position. GenBank accession numbers are in parentheses.
Table 4
Pairwise comparison matrix for *dsb* sequences of *Ehrlichia* sp. Serrana, *Ehrlichia* sp. Laguna Negra, and *Ehrlichia* sp. Magellanica

	1	2	3	4	5	6	7
1	Ehrlichia sp. Laguna Negra S6LaH12 (LN)	–	–	–	–	–	–
2	Ehrlichia sp. Serrana S8Lan38 (LN)	88.47	–	–	–	–	–
3	Ehrlichia sp. Serrana S10LaN9 (Salus)	88.47	100	–	–	–	–
4	Ehrlichia sp. Serrana S12LaH4 (Amarillo)	88.47	100	100	–	–	–
5	Ehrlichia sp. Serrana S17LaH1 (Amarillo)	88.16	99.68	99.68	99.68	100	–
6	Ehrlichia sp. Serrana S17LaN33 (Salus)	88.16	99.68	99.68	99.68	98.02	91.83
7	Ehrlichia sp. Magellanica (MK049838)	88.78	87.22	87.22	87.22	86.91	86.91

Table 5
Pairwise comparison matrix for *groEL* sequences of *Ehrlichia* sp. Serrana, *Ehrlichia* sp. Laguna Negra, and *Ehrlichia* sp. Magellanica

	1	2	3	4	5
1	Ehrlichia sp. Laguna Negra S6LaH12 (LN)	–	–	–	–
2	Ehrlichia sp. Serrana S8Lan38 (LN)	99.78	–	–	–
3	Ehrlichia sp. Serrana S10LaN9 (Salus)	96.05	95.83	–	–
4	Ehrlichia sp. Serrana S17LaH1 (Amarillo)	95.61	95.39	98.02	–
5	Ehrlichia sp. Magellanica (MK049839)	92.85	92.51	92.17	91.83

3.2. Detection of *Ehrlichia* DNA in ticks

Ticks were processed and analyzed in 42 pools (17 containing females and 25 containing nymphs). Of these, 15 (9 containing females and 6 containing nymphs) were positive for DNA of *Ehrlichia* spp. Geographically, *Ehrlichia* sp. DNA was detected in Amarillo (two pools of females), Reserva Natural Salus (two pools of nymphs) and Laguna Negra (seven pools of females and two of nymphs) (Table 2).

3.3. Phylogenetic analyses and nucleotide comparisons of sequences

Trees inferred by Bayesian analysis were constructed to define the phylogenetic position of the generated sequences. With the exception of the *groEL* tree, our sequences clustered into a monophyletic group including *Ehrlichia* sp. Magellanica from Chile (Figs. 1–3). However, sequences for all three loci were obtained from only two pools (S6LaH12 and S17LaH1) (Table 2). Based on the topology of the phylogenetic trees, two genotypes of *Ehrlichia* with different haplotypes appear in all processed pools; these are referred to as *Ehrlichia* sp. genotype Serrana and *Ehrlichia* sp. genotype Laguna Negra. The genotype Serrana was identified in 13 pools (86.7%), and the genotype Laguna Negra in 2 (13.3%) positive pools of ticks. The sequences generated in this study were deposited in the GenBank database and the accession numbers are listed in Table 2. The percent nucleotide identities among 16S rDNA, *dsb* and *groEL* sequences between *Ehrlichia* sp. genotype Serrana, *Ehrlichia* sp. genotype Laguna Negra and the most similar sequence available on GenBank, *Ehrlichia* sp. Magellanica (MK049840, MK049838, MK049839), are shown in Tables 3–5.

4. Discussion

In the present study, we performed molecular screening of *Ehrlichia* spp. in *I. auritulus* and revealed the occurrence of two genotypes of *Ehrlichia* provisionally named Serrana and Laguna Negra. Genetic comparisons conducted for the three studied genes are consistent to consider them as separate organisms. This assumption was confirmed by the topologies of phylogenetic trees since Serrana and Laguna Negra genotypes formed well-defined and separated clades within the genus *Ehrlichia*. Interestingly, *Ehrlichia* sp. Magellanica seems to correspond to a closely related species, because it grouped with both genotypes in all phylogenies. In addition, *Ehrlichia* sp. Magellanica and both genotypes herein characterized were similar when performing nucleotide pairwise comparisons, and all three were detected in ticks that parasitize birds.
Methodology, Resources, Formal Analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Methodology, Formal Analysis, Investigation, Writing - Original Draft, Writing - Review & Editing. All authors read and approved the final manuscript.

Funding

This research was partly supported by the Comisión Sectorial de Investigación Científica (Programa Iniciación a la Investigación 2017 - Project ID 160) for the financial support to MLF.

Declaration of competing interests

The authors declare that they have no competing interests.

Acknowledgements

We would like to thank Gustavo de Souza and Fernando Ramos (Colonia Don Bosco, Laguna Negra, Rocha); Eduardo Méndez, Alejandro Rodríguez and Andreu de Mello (Reserva Natural Salus, Lavalleja); Hugo Pereda and Ricardo Palle (Gruta de los Cuervos, Tacarembó); Daniel Casal, Winderhondt Rodriguez da Cunha, and Lorena Ojeda (Amarillo, Rivera) for their collaborations during the fieldwork.

References

Aguir, D.M., 2017. Ehrlichiosis. In: Bayry, J. (Ed.), Emerging and Re-emerging infectious diseases of livestock. Springer, Cham, Switzerland, pp. 365–375.
Almeida, A., Souza, T., Marcili, A., Labruna, M., 2013. Novel Ehrlichia and Hepatozoon agents infecting the fawning-bovid (Cerdocyon thous) in southeastern Brazil. J. Med. Entomol. 50, 640–646.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
Brazeiro, A., Panario, D., Soutullo, A., Gutierrez, O., Segura, A., Mai, P., 2012. Novel Hepatozoon species in blood and feces of the Ornithorhynchus anatinus. J. Clin. Microbiol. 50, 334–335.
Cicuttin, G.L., De Salvo, M.N., Nava, S., 2017. Two novel species of Amblyomma (ticks) with the heat shock operon of Ehrlichia chaffeensis. Comp. Immunol. Microbiol. Infect. Dis. 53, 40–44.
Cicuttin, G.L., Tarragona, E.L., Salvo, M.N., Mangold, A.J., Nava, S., 2015. Infection with Ehrlichia canis and Anaplasma platys (Rickettsiales: Anaplasmataceae) in two lineages of Rhinoceros spheniscus semen lat fo (Acariformes: Ixodida). Ticks Tick Borne Dis. 6, 724–729.
Conti-Díaz, I.A., 2001. Enfermedades emergentes y reemergentes en el Uruguay. Rev. Med. Urug 17, 180–199.
Dove, K.L., Labruna, M.B., Breniere, E., Fangqiong, L., Beldomenico, P.M., Monie, L.D., 2020. A putative novel strain of Ehrlichia infecting Amblyomma tigrinum associated with Pampas fox (Lycalopex gymnocercus) in Estero de la Isla ecoregion, Argentina. Ticks Tick Borne Dis. 11, 101318.
Esmu, S.N., Ndp, I.M., Ndp, R.N., 2011. Ehrlichia species, probable emerging human pathogens in sub-Saharan Africa: Environmental exacerbation. Rev. Environ. Health 26, 269–279.
Fargnoli, L., Fernandez, C., Monje, L.D., 2020. Novel Ehrlichia strain infecting cattle tick Amblyomma neumanni, Argentina. 2018. Emerg. Infect. Dis. 26, 1027–1030.
Gogfston, A.W., Koh, S., Balog, A., Paparini, A., Gilletti, A., Macgregor, J., et al., 2018. A novel Ehrlichia species in blood and Ixodes ornithorhynchi ticks from platypuses (Ornithorhynchus anatinus) in Queensland and Tasmania, Australia. Ticks Tick Borne Dis. 9, 435–442.
Guglielmone, A.A., Petney, T.N., Robbins, R.G., 2020. Ixodes (Acariformes: Ixodidae): Descriptions and redescriptions of all known species from 1758 to December 31, 2019. Zootaxa 4671, 1–322.
Guilleni, E.C., Orozco, M.M., Argibay, H.D., Farber, M.D., 2019. Evidence of Ehrlichia chaffeensis in Argentina through molecular detection in mash deer (Blastocerus dichotomus). Int. J. Parasitol. Parasites Wild. 8, 45–49.
Hornok, S., Balog, A., Takács, N., Juhász, A., Kotschian, J., Földi, D., et al., 2020. Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. Antonie van Leeuwenhoek 110, 1067–1073.
Huebner-Beck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 774–775.
Inokuma, H., Parola, P., Raoult, D., Brouqui, P., 2001. Molecular survey of Ehrlichia infection in ticks from animals in Yamaguchi Prefecture Japan. Vet. Parasitol. 99, 325–339.
Ismail, N., McBride, J.W., 2017. Tick-borne emerging infections: Ehrlichiosis and anaplasmosis. Clin. Lab. Med. 37, 317–340.
Kohls, G.M., 1960. Records and new synonymy of New World Haemaphysalis ticks, with descriptions of the nymph and larva of H. juvencula Cooley. J. Parasitol. 46, 355–361.
Lesta, C.S., Santos, A.P.D., Messick, J.B., Oliveira, S.T., Biondo, A.W., Vieira, R.F.C., et al., 2013. Molecular detection of Ehrlichia canis and Anaplasma platys in dogs in southern Brazil. Rev. Bras. Parasitol. Vet. 22, 360–366.
López, J., Abacar, K., Mundaca, M.I., Caballero, C., Valiente-Echeverría, F., 2012. Clasificación y delimitación de las eco-regiones de Uruguay. Informe Técnico. Convenio MGP/PPR-Facultad de Ciencias/Vida Silvestre/Sociedad Zoológica del Uruguay/CEDUR. March 2021. http://vidasilvestre.org.uy/wp-content/uploads/2021/02/5Ecroregiones.pdf.
Lote-Echenique, M., Casas, E., Bazzocchi, C., Vannini, C., Lo, N., et al., 2013. Candidatus Midichloriafontis nov. fam. (Rickettsiales), an ecologically widespread clade of intracellular alphaproteobacteria. Appl. Environ. Microbiol. 79, 3241–3248.
Montagna, M., Sassera, D., Epis, S., Guglielmone, A.A., Petney, T.N., Robbins, R.G., 2020. Ixodidae (Acari: Ixodoidea): Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect. Genet. Evol. 1005.
Nicholson, W.L., Castro, M.B., Kramer, V.L., Sumner, J.W., Childs, J.E., 1999. Dusty-footed wood rats (Neotoma fuscipes) as reservoirs of granulocytic ehrlichiae (Rickettsiales: Ehrlichiae) in northern California. J. Clin. Microbiol. 37, 3323–3327.
Nava, S., Zunel, J.M., Gomes-Acuna, D., Martins, T.F., Guglielmone, A.A., 2017. Ticks of the Southern Cone of America. Elsevier Academic Press, London, San Diego, Cambridge, Oxford.
Nicolson, W.L., Castro, M.B., Kramer, V.L., Sumner, J.W., Childs, J.E., 1999. Dusty-footed wood rats (Neotoma fuscipes) as reservoirs of granulocytic ehrlichiae (Rickettsiales: Ehrlichiae) in northern California. J. Clin. Microbiol. 37, 3323–3327.
Parola, P., Roux, V., Camills, J.L., Baradji, I., Brouqui, P., Raoult, D., 2000. Detection of Ehrlichia in African ticks by polymerase chain reaction. Trans. R. Soc. Trop. Med. Hyg. 94, 707–708.
Popov, V.V., Han, V.C., Chen, S.M., Dumler, J.S., Fung, H.M., Andreadis, T.G., et al., 2019. Novel Ehrlichia sp. detected in Magellanic penguins (Spheniscus magellanicus) and in the seabird tick Ixodes uriae from Magdalena Island, southern Chile. Ticks Tick Borne Dis. 10, 101256.
Pinto, I.S., Nogueira, M.F., Barros, M.C.M., Souza, A.O., Vieira, T.S.W.J., Aguai, D.M., 2021. Detection of Ehrlichia sp. in Anaplasma sculpum parasitizing horses from Brazilian Pantanal wetland. Ticks Tick Borne Dis. 12, 101658.
Rivera, R., Gómez, M., Petney, T.N., Robbins, R.G., 2020. Ixodidae (Acari: Ixodoidea): Descriptions and redescriptions of all known species from 1758 to December 31, 2019. Zootaxa 4671, 1–322.
Thomas, S., Alexander, W., Gilligan, J., Rikihisa, Y., 2016. Chapter 1. The importance of Rickettsiales infections. In: Thomas, S. (Ed.), Rickettsiales. Biology, molecular genetics, and vaccine development. Springer International Publishing. Cambridge, Oxford.
Widmer, C.E., Azevedo, F.C., Almeida, A.P., Ferreira, F., Labruna, M., 2011. Tickborne bacteria in free-living jaguars (Panthera onca) in Pantanal, Brazil. Vector Borne Zoonotic Dis. 11, 1001–1005.

Current Research in Parasitology & Vector-Borne Diseases 1 (2021) 100022