Osteoclast Cytosolic Calcium, Regulated by Voltage-gated Calcium Channels and Extracellular Calcium, Controls Podosome Assembly and Bone Resorption

Akimitsu Miyauchi,* Keith A. Hruska,* Edward M. Greenfield,† Randall Duncan,* Jose Alvarez,‡ Raniero Barattolo,§ Silvia Colucci,∥ Alberta Zambonin-Zallone,¶ Steven L. Teitelbaum,¶ and Anna Teti§

Departments of * Medicine and † Pathology, Jewish Hospital at Washington University Medical Center, St. Louis, Missouri 63110; and §Institute of Human Anatomy, University of Bari, Bari, Italy

Abstract. The mechanisms of Ca\(^{2+}\) entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca\(^{2+}\) channels (VGCC) were detected by the effects of membrane depolarization with K\(^+\), BAY K 8644, and dihydropyridine antagonists. K\(^+\) produced dose-dependent increases of cytosolic calcium ([Ca\(^{2+}\)]\(_i\)) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K\(^+\). The effects of K\(^+\) were completely inhibited by dihydropyridine derivative Ca\(^{2+}\) channel blocking agents. BAY K 8644 (5 \times 10^{-6} M), a VGCC agonist, stimulated Ca\(^{2+}\) entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca\(^{2+}\) entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_e\)) induced Ca\(^{2+}\) release from intracellular stores and Ca\(^{2+}\) influx. The Ca\(^{2+}\) release was blocked by dantrolene (10^{-5} M), and the influx by La\(^{3+}\). The effects of [Ca\(^{2+}\)]\(_e\) on [Ca\(^{2+}\)]\(_i\) suggest the presence of a Ca\(^{2+}\) receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca\(^{2+}\)]\(_e\) effect on [Ca\(^{2+}\)]\(_i\) was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca\(^{2+}\)]\(_i\), (membrane depolarization, BAY K 8644, and [Ca\(^{2+}\)]\(_e\)) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca\(^{2+}\)] lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

The cellular basis of bone remodeling is not completely understood. The osteoclast, the multinucleated cell involved in bone resorption, is a complex unit that develops a specialized apparatus for dissolving the bone matrix (King and Holtrop, 1975; Holtrop and King, 1977). Using cell culture systems, several advances have recently been made indicating the molecular events involved in osteoclast bone resorbing activity. For bone resorption to be initiated, the osteoclast polarizes (Baron et al., 1985) and directly attaches to the bone surface by a specialized area termed the clear zone (Holtrop and King, 1977), in which the contact with the substrate is established by specific adhesion structures called podosomes (Marchisio et al., 1984, 1987; Zambonin-Zallone et al., 1988). Morphologically, podosomes appear as short membrane protrusions with a core of microfilaments linked to the plasma membrane by talin and vinculin (Marchisio et al., 1984, 1987). Recent data suggest that podosomes play a pivotal role in substrate recognition by osteoclasts as a specific \(\beta_3\) integrin of the RGD-superfamily of matrix receptors is expressed on their cell membrane surface (Davies et al., 1989; Zambonin-Zallone et al., 1989). Substrate recognition is a necessary early step in the initiation of bone resorption, and it may induce phenotypic differences in cellular responses as the osteoclast changes from a motile cell seeking bone substrate to an actively resorbing cell.

The organization of the podosome-containing clear zone allows tight sealing of the resorbing compartment between the osteoclast plasma membrane and the bone surface. The acidification of this extracellular microenvironment (Baron et al., 1985; Blair et al., 1989) produces hydroxyapatite solubilization. Lysosomal enzymes, secreted into this space by a mannose-6-P receptor driven mechanism (Baron et al., 1988; Blair et al., 1988), and activated by the acid pH, digest the organic components of the bone matrix (Blair et al., 1986). Tight sealing of the compartment is needed to maintain the pH of 5 and the Ca\(^{2+}\) concentrations of up to 40 mM (Silver et al., 1988).

© The Rockefeller University Press, 0021-9525/90/12/2543/10 $2.00
The Journal of Cell Biology, Volume 111 (No. 6, Pt. 1), Dec. 1990 2543-2552 2543
While the mechanisms of osteoclast regulation are incompletely understood, we have recently reported that extracellular protons decrease cytosolic calcium ([Ca\(^{2+}\)]\(_i\)) and intracellular pH (pH\(_i\)) of osteoclasts attached to bone (Teti et al., 1989). Moreover, these changes in intracellular cation concentration directly stimulate podosome formation (Teti et al., 1989) leading to activation of bone resorption (Arnett and Dempster, 1986; Carano et al., 1990). In contrast, ionophore-enhanced enhancement in [Ca\(^{2+}\)]\(_i\) decreased expression of podosomes (Teti et al., 1989). While these findings are provocative, the mechanisms by which changes in osteoclast [Ca\(^{2+}\)]\(_i\) are mediated physiologically and their relevance to resorative activity are unknown.

In the studies reported herein, we focused on the mechanisms of [Ca\(^{2+}\)]\(_i\) regulation in osteoclasts and their relevance to the control of podosome organization and bone resorption activity. In our previous study of osteoclasts attached to bone (Teti et al., 1989), we noted that depolarization of the membrane potential by extracellular potassium chloride produced a prompt decrease in [Ca\(^{2+}\)]. However, Rizzoli, Schlegel, and Bonjour (personal communication) have noted that KCl addition to osteoclasts attached to glass resulted in increased [Ca\(^{2+}\)]. These conflicting studies prompted us to (a) identify and characterize voltage gated calcium channels (VGCCs) in the osteoclast plasma membrane; (b) study modulation of VGCCs during changes in osteoclast activity from an inactive to an active resorbing state; (c) further characterize a mechanism recently reported (Malgaroli et al., 1989) whereby extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_o\)) elicits changes in [Ca\(^{2+}\)]\(_i\); for its action on cell function and (d) analyze the role of [Ca\(^{2+}\)]\(_i\) regulation in podosome organization and osteoclast bone-resorbing activity.

Materials and Methods

Materials

The acetoxymethyl ester of fura-2 (fura-2 AM) was purchased from Molecular Probes (Eugene, OR). BAY K 8644 and nitrendipine were obtained from Miles Laboratories (West Haven, CT), and diltiazem hydrochloride from Marion Laboratories (Kansas City, MO). Ionomycin was from Calbiochem-Behring Corp. (La Jolla, CA), and all other reagents were of analytical grade from Sigma Chemical Co. (St. Louis, MO), Eurobio (Paris, France), and Carlo Erba (Milan, Italy).

Osteoclast Preparation

In our previous report (Teti et al., 1989) adherence of osteoclasts to bone particles was used as a purification technique. The objectives of the studies reported here required cells detached from bone, thereby excluding the use of the bone particle purification technique. Thus, osteoclasts were isolated by a modification of a previously described method (Zambonin-Zallone et al., 1982). Briefly, the medullary bone from femurs and tibias of calcium-deficient laying hens was removed and pressed through a 100-μm nylon sieve. The filtrate was centrifuged for 5 rain at 300 g and then suspended in a buffer containing 125 mM NaCl, 5 mM KCl, 1.2 mM KH\(_2\)PO\(_4\), 1.2 mM MgSO\(_4\), 2 mM CaCl\(_2\), 25 mM Hepes, 6 mM glucose (Krebs-Ringer Hepes [KRH]) and 10 μM fura-2-AM. In these loading conditions, resulting fura-2 fluorescence was diffuse and no punctate distribution was observed, as described in other cells (Malgaroli et al., 1987). Cells were then washed three times with KRH and used for the experiments. Fluoresentcence was measured in single cells using the fluorescent calcium indicator fura-2. Osteoclasts cultured on coverslips were loaded for 1 h at 25°C in a buffer containing 125 mM NaCl, 5 mM KCl, 1.2 mM KH\(_2\)PO\(_4\), 1.2 mM MgSO\(_4\), 2 mM CaCl\(_2\), 25 mM Hepes, 6 mM glucose (Krebs-Ringer Hepes [KRH]) and 10 μM fura-2-AM. In these loading conditions, resulting fura-2 fluorescence was diffuse and no punctate distribution was observed, as described in other cells (Malgaroli et al., 1987). Cells were then washed three times with KRH and used for the experiments. Fluorescence was measured in single cells excited with 340 and 380 nm light selected by dichromators and directed through the stage of a Nikon inverted microscope equipped with a 100× fluo objective. Emitted light was collected at 505 nm after being filtered through a cut-off filter (490 nm) and monitored photometrically (SPEX Industries, Edison, NJ). Coverslips were mounted at the bottom of a Sykes-Moore open chamber with 1 ml KRH within a climate box maintained at 37°C.

Fura-2 fluorescence was calibrated to [Ca\(^{2+}\)]\(_i\) at the end of each experiment, exposing the cells to 5 μM ionomycin to assess the Ca-saturated fluorescence (F\(_{Max}\)), followed by 5 mM EGTA to determine fluorescence at nominally Ca\(^{2+}\)-free condition (F\(_{Min}\)). 2 mM MnCl\(_2\) was finally added to estimate autofluorescence which was subtracted from the experimental values. [Ca\(^{2+}\)]\(_i\) was calculated using the formula published by Grynkiewicz et al. (1985).

Activation of VGCCs

VGCCs were activated in osteoclasts by depolarizing the cells with high K\(^+\).

1. Abbreviation used in this paper: VGCC, voltage-gated calcium channels.
Activation of Calcium-operated Regulation of [Ca2+]i.

Changes in [Ca2+]i were observed during changes in extracellular calcium concentrations. Osteoclasts, previously incubated in KRH containing 2 mM Ca2+, were treated with increasing extracellular calcium concentrations. To block release of calcium from intracellular stores, a series of experiments utilized normal cells pretreated with dantrolene (10-3 M) 10 min before CaCl2 additions. To block Ca2+ entry, LaCl3 and Ca2+ channel antagonists were studied for their effects on the changes in [Ca2+]i stimulated by adjustments in [Ca2+]o. Parallel experiments in the presence of bone particles were also performed to evaluate the effects of increasing extracellular calcium concentration on [Ca2+]i, during bone resorption.

Cytoskeletal Studies

The effect of membrane depolarization on podosome expression was evaluated in osteoclasts incubated for 90 min in MEM in which 30 or 50 mM NaCl was isotonically substituted with KCl. Control osteoclasts were incubated in regular MEM containing 50 mM KCl. The effect of extracellular calcium on podosome expression was evaluated by incubating osteoclasts in nominally calcium-free MEM and adding CaCl2 from 0 to 4 mM. Incubation times were 90 min unless otherwise indicated.

Microfilaments were detected by decoration of F-actin with rhodamine-conjugated phallloidin (R-PHD). Cells were fixed for 5 min at room temperature with 3% formaldehyde, 2% sucrose in PBS. They were then permeabilized for 3 min at 0°C with 50 mM NaCl, 300 mM sucrose, 20 mM Hepes (pH 7.4), 3 mM MgCl2, 0.5% Triton-X 100, and then they were incubated for 45 min at 37°C with 5 µg/ml R-PHD. Coverslips were then washed, mounted in 10% mowiol, and observed with a Leitz Duvet fluorescence microscope. Due to the presence of a core of microfilaments perpendicularly oriented with respect to the substrate, podosomes were recognized as fluorescent dot-like structures distributed at the level of the ventral surface of the cell.

To quantitate the results, the numbers of osteoclasts presenting podosomes in each treatment expressed as the percent of the total number of osteoclasts present. Data were expressed as mean percentage ± SE. The statistical significance was calculated by the t test. For each treatment, an average of 300 osteoclasts was counted. A decrease in podosome expression did not cause the cells to lift off the coverslip since the osteoclast has other mechanisms of substrate adhesion besides podosome expression (Zambonin-Zallone et al., 1989).

Bone Resorption

The effects of increasing [Ca2+]i, by activation of VGCC or changing [Ca2+]o, on the bone-resorbing activity of osteoclast cultures was determined. For this purpose, 2-d-old osteoclast cultures were incubated for 48 h with [3H]proline prelabeled devitalized rat or chicken bone particles (Blair et al., 1986) at a density of 400 µg of bone/50,000 osteoclasts in 1.5 cm 2 culture dishes. The cells were cultured in serum-free MEM in the presence of varying calcium concentrations, varying K+ concentrations or pretreatment with nicardipine (10-7 M) before depolarization with high K+ KRH (100 mM) or addition of BAY K 8644. A complete series of parallel experiments were performed using osteoclast cultures in which devitalized bone particles (38-63-µm-diam) were added 5 h before the experiments were performed.

Basal [Ca2+]i of osteoclasts on glass coverslips in KRH was 123 ± 9 (n = 41) (mean ± SE). The response of osteoclasts [Ca2+]i, to 100 mM K+ is shown in Fig. 1. The effect of K+ on [Ca2+]i, was directionally opposite to the response we previously reported in osteoclasts attached to bone particles (Teti et al., 1989). High K+ induced an immediate increase in [Ca2+]i, and a second slower rise to a new steady state of 267 nM within 300 s. High K+ increased [Ca2+]i, in a similar manner in 83% of examined cells attached to glass coverslips (n = 18). The other 17% of cells demonstrated a decrease in [Ca2+]i upon depolarization with K+. The increase in [Ca2+]i, from basal to peak levels achieved by various concentrations of K+ in high K+ KRH was dose-dependent with a half-maximal effect achieved by 66 mM (Fig. 2). When cells were placed in a Ca-free KRH (CaCl2 omitted from the buffer and 1 mM EGTA added), KCl additions failed to elevate [Ca2+]i, (not shown). This indicated that the increases in [Ca2+]i, stimulated by high K+ were due to calcium entry from the extracellular fluid. The effects of high K+ were almost completely inhibited by the dihydropyridine, nicardipine (Fig. 1 b).

The Effect of BAY K 8644 on [Ca2+]i.

BAY K 8644 is a dihydropyridine-derivative Ca2+ channel agonist that increases opening frequency of dihydropyridine-sensitive Ca2+ channels (Duncan and Misler, 1989; Guggino et al., 1989; Meier et al., 1988). After the addition of BAY K 8644 (5 × 10-4 M) in calcium containing KRH a

Figure 1. Effect of K+ on osteoclast [Ca2+]i. (a) A fura-2 loaded single osteoclast, bathed in KRH, responded to substitution with high K+ (100 mM) KRH with a sustained increase in [Ca2+]i. (b) The effect of pretreatment with nicardipine on high K+ (100 mM) KRH induced increase in [Ca2+]i. Nicardipine (10-7 M) inhibited the rise in [Ca2+]i after membrane depolarization.
Figure 2. Concentration dependence of the K+-induced changes in
\([\text{Ca}^{2+}]_i\) of single osteoclasts. The maximal increase in
\([\text{Ca}^{2+}]_i\) produced with increasing K+ concentrations is plotted against K'.
The number of experiments is indicated in parentheses. Results are the mean ± SE.

The rise in \([\text{Ca}^{2+}]_i\) of 78 ± 8 nM \((n = 3)\) was observed, reaching plateau levels in 7–8 min (Fig. 3 a). BAY K 8644 \((5 \times 10^{-6} \text{ M})\) had no effect on \([\text{Ca}^{2+}]_i\) in a Ca²⁺-free medium (not shown), and the increase of \([\text{Ca}^{2+}]_i\) induced by BAY K 8644 was completely abolished by nicardipine \((10^{-6} \text{ M})\) (Fig. 3 b). The effects of BAY K 8644 were slower in onset than high K⁺ KRH probably due to time for incorporation into plasma membranes in our system. The increase in \([\text{Ca}^{2+}]_i\), produced by \(5 \times 10^{-6} \text{ M} \) BAY K was similar to that of 70 mM K⁺. These findings suggest that BAY K 8644 stimulated Ca²⁺ influx through dihydropyridine-sensitive voltage-gated Ca²⁺ channels.

Effects of Ca²⁺ Channel Blocking Agent on the K⁺-induced Increase in \([\text{Ca}^{2+}]_i\)

The effects of the dihydropyridine Ca²⁺ channel blocker, nicardipine \((10^{-7} \text{ M})\), on the K⁺-stimulated changes in \([\text{Ca}^{2+}]_i\), are shown in Fig. 1 b. KRH with nicardipine \((10^{-7} \text{ M})\) was added for 2 min before high K⁺ with nicardipine. K⁺ had no significant effect on \([\text{Ca}^{2+}]_i\) in the presence of nicardipine. The K⁺-induced increase in \([\text{Ca}^{2+}]_i\), was restored after transfer to nicardipine-free KRH and a second addition of K⁺. The effects of various Ca²⁺ channel blockers on high K⁺ KRH- \((100 \text{ mM})\) induced elevations of \([\text{Ca}^{2+}]_i\) were compared, as shown in Fig. 4. Dihydropyridine Ca²⁺ channel blockers (nicardipine, nitrendipine at concentrations of \(10^{-9}–10^{-5} \text{ M} \) \((n = 3 \text{ or } 4 \text{ of each concentration})\) inhibited the K⁺-induced \([\text{Ca}^{2+}]_i\) increases in a dose dependent manner. The half-maximal inhibition was observed at \(5 \times 10^{-9} \text{ M}\). Verapamil was less potent than dihydropyridines, and diltiazem was less effective than verapamil.

Effects of Changing Extracellular Calcium on \([\text{Ca}^{2+}]_i\).

As we have previously reported (Malgaroli et al., 1989), increasing extracellular Ca²⁺ concentrations induced rapid dose-dependent increases in \([\text{Ca}^{2+}]_i\). As shown in Fig. 5, basal \([\text{Ca}^{2+}]_i\), of 108 nM was increased by addition of 2 mM CaCl₂ to KRH containing 2 mM CaCl₂ to KRH containing 2 mM CaCl₂.
Ca$$^{2+}$$ to a peak of 194 nM in 80 s, and then decreased to a steady state at 123 nM (Fig. 5). The threshold dose of CaCl$_2$ needed to increase [Ca$$^{2+}$$], was 0.25 mM. Half-maximal increases in [Ca$$^{2+}$$], 182 ± 16 nM, $n = 7$, were observed at addition of 4 mM CaCl$_2$ (final concentration 6 mM), and the increases in [Ca$$^{2+}$$], were maximal with addition of 8 mM CaCl$_2$. The Ca$$^{2+}$$ channel blockers (10$^{-5}$ M nifedipine, nitrrendipine, verapamil, and diltiazem) failed to inhibit the CaCl$_2$-induced changes, which, however, were partially blocked by LaCl$_3$ (10$^{-4}$-10$^{-5}$ M). As shown in Fig. 6 a, LaCl$_3$ (10$^{-4}$ M) did not alter basal [Ca$$^{2+}$$], levels, but reduced the CaCl$_2$-prompted increase in [Ca$$^{2+}$$], by 43% (40 ± 4% in three similar experiments). The increases in [Ca$$^{2+}$$], stimulated by external Ca$$^{2+}$$ were not affected by removing extracellular Na (Fig. 6 b). This and similar experiments also demonstrated the reproducible elevations in [Ca$$^{2+}$$], observed with repeated additions of CaCl$_2$ after washes. Dantrolene (10$^{-5}$ M), which inhibits mobilization of Ca$$^{2+}$$ from intracellular stores (Kojima et al., 1985; Reid et al., 1987), dampened the CaCl$_2$-induced rise in [Ca$$^{2+}$$], by 80% (55.4 ± 17% in three experiments) and eliminated the spike phase of the increases stimulated by CaCl$_2$ (Fig. 6 c). Together, Dantrolene (10$^{-5}$ M) and LaCl$_3$ (10$^{-4}$ M) were sufficient to completely inhibit stimulation of [Ca$$^{2+}$$], by additions of CaCl$_2$ (Fig. 6 d).

Effects of K$^+$ and [Ca$$^{2+}$$], on Osteoclasts Attached to Bone Particles

Osteoclasts cultured on glass coverslips attached to devitalized bone particles (38-63 μm diameter) as they settled. Basal [Ca$$^{2+}$$], levels in the particle-attached cells were 136 ± 7, $n = 28$, similar to osteoclasts not exposed to bone. Addition of 2 mM CaCl$_2$ increased [Ca$$^{2+}$$], by 100 ± 22 nM (mean ± SE), $n = 7$ (Fig. 7 a). In contrast to the effects of K$^+$ on osteoclasts not attached to bone, high K$^+$ KRH prompted a decrease in [Ca$$^{2+}$$], after 5 h of osteoclasts attaching to bone. As shown in Fig. 7 b, [Ca$$^{2+}$$], decreased from 125 to 75 nM in such a representative osteoclast. This 5-h contact with bone reduced the percentage of osteoclasts expressing VGCC from 83% without bone to 10%. Furthermore, osteoclasts attached to bone particles were insensitive to BAY K 8644, and this agent produced no change in [Ca$$^{2+}$$], in these cells. These findings indicate that, with osteoclastic bone attachment, the voltage-gated Ca$$^{2+}$$ channel is functionally lost, but the Ca$$^{2+}$$-induced Ca$$^{2+}$$ release mechanism was not inactivated. Furthermore, the effect of K$^+$ to decrease [Ca$$^{2+}$$], in osteoclasts attached to bone appeared to be a stimulation of Ca$$^{2+}$$ efflux since inhibition of Ca$$^{2+}$$ entry had no significant effect on the decrease stimulated by K$^+$ (Fig. 7 c).

Figure 6. Effects of La$$^{3+}$$ and dantrolene on external Ca$$^{2+}$$-elicited increases in [Ca$$^{2+}$$]. a illustrates the effect of CaCl$_2$ (2 mM) on [Ca$$^{2+}$$]-induced biphasic in a single osteoclast followed (after washings) by treatment with LaCl$_3$ (10$^{-4}$ M). La$$^{3+}$$ had no effect itself, but reduced the height of the Ca$$^{2+}$$ spike after stimulation with CaCl$_2$. In b, a control experiment is shown to demonstrate that a second addition of 2 mM CaCl$_2$, after removal of the first addition by washing, produces the same increment in [Ca$$^{2+}$$]. We have previously demonstrated (Teti et al., 1989; Malgaroli et al., 1989) that removal of Na$^+$ had no effect on osteoclast stimulated [Ca$$^{2+}$$]. c illustrates the effect of dantrolene (10$^{-5}$ M) on a 4 mM [Ca$$^{2+}$$]-elicited increase in [Ca$$^{2+}$$]. The [Ca$$^{2+}$$] spike was abolished, while the sustained phase still occurred. d illustrates that together, LaCl$_3$ and dantrolene were sufficient to completely inhibit the effect of CaCl$_2$ (4 mM).
Figure 7. Effects of increasing extracellular Ca\(^{2+}\) and K\(^{+}\) on \([Ca^{2+}]_i\) of osteoclasts attached to bone particles. (a) Increasing Ca\(^{2+}\) of KRH from 2 to 4 mM elicited a transient increase in \([Ca^{2+}]_i\), similar to the effect observed in osteoclasts on glass coverslips (Fig. 5). (b) High K\(^{+}\) (100 mM) KRH decreased \([Ca^{2+}]_i\). The mean decrease of \([Ca^{2+}]_i\) from baseline by high K\(^{+}\) (100 mM) KRH was 73 ± 12 nM (n = 9). (c) High K\(^{+}\) (100 mM) KRH decreased \([Ca^{2+}]_i\) in a LaCl\(_3\)-treated cell. The mean decrease of \([Ca^{2+}]_i\) of LaCl\(_3\)-treated cells was 65 ± 11 nM (n = 5). This was not significantly different from the effect of high K\(^{+}\) (100 mM) in cells not treated with LaCl\(_3\).

Cytoskeletal Studies

The distribution of microfilaments in osteoclasts at different times of culture was evaluated by decoration of F-actin with R-PH and observation by fluorescent microscopy. Podosomes, due to the perpendicular orientation of F-actin-containing microfilaments with respect to the substrate, appear as fluorescent dot-like structures located at the level of the ventral surface of the cell (Fig. 8). In osteoclasts cultured in standard conditions on glass coverslips, podosome number increased with time, and they were spontaneously organized into several concentric rows located at the cell edge, in an area resembling the actin-rich clear zone (Fig. 8, a and b). Membrane depolarization with K\(^{+}\) was a potent inhibitor of podosome expression. A [K\(^{+}\)] of 50 mM reduced podosome expression by 65%. However, this dose of K\(^{+}\) increased [Ca\(^{2+}\)] by only ~25% of maximal. Thus K\(^{+}\) may affect podosome expression by mechanisms other than opening VGCC. Further evidence for VGCC-regulated podosome expression came from the fact that as BAY K 8644 increased [Ca\(^{2+}\)], it inhibited appearance of these attachment structures (Fig. 9 a). Similarly, increasing [Ca\(^{2+}\)], from 0 to 4 mM led to a clear dose-dependent decrease in podosome expression (Figs. 8 c and 10 a). The specificity of the [Ca\(^{2+}\)], effect on osteoclast microfilaments was demonstrated by failure of the cation to impact on fibroblast focal adhesions and stress fibers (Fig. 8, d and e).

Bone Resorption

We examined the effects of depolarization by K\(^{+}\) or increases in [Ca\(^{2+}\)], on osteoclastic bone resorption and found that K\(^{-}\)-KRH (50 mM) elicited a 60% inhibition of \(^3\)H release from bone particles at 48 h of culture. However, as for podosome expression, this effect may represent actions other than opening VGCC. BAY K 8644 added prior to the addition of the labeled bone particles inhibited bone resorption in a dose dependent manner (Fig. 9 b). Similarly, increasing extracellular calcium reduced osteoclastic bone resorption. An increase in [Ca\(^{2+}\)], from 2 to 4 mM reduced resorption by 50% (Fig. 10 b). BAY K 8644 had no effect on bone resorption if the osteoclasts were allowed to adhere to bone particles for 24 h before its addition. On the other hand, increasing [Ca\(^{2+}\)], continued to inhibit resorptive activity of osteoclasts similarly preincubated with bone. Furthermore, the addition of bone particles to osteoclasts in 4 mM [Ca\(^{2+}\)], for 5 h before a return to 2 mM restored resorptive activity to that of cells maintained in 2 mM Ca\(^{2+}\) for the full 48 h, documenting reversibility of the inhibitory effects of [Ca\(^{2+}\)].

Discussion

Osteoclasts are cells involved in the manipulation of high calcium concentrations. This is due to their peculiar physiology which produces dissolution of the mineralized bone matrix and the release of calcium ions to the extracellular fluid. Silver et al. (1988) have shown that the calcium concentration achieved in the resorbing compartment during bone mineral dissolution is severalfold higher than in the extracellular fluid. This is possible because of the low pH (5.0) actively created by an outwardly directed H\(^{+}\)-pump mechanism located on the osteoclast ruffled border membrane (Baron et al., 1985; Blair et al., 1989). The low pH of the resorption space, on one hand, causes hydroxyapatite solubilization and, on the other hand, prevents calcium precipitation.

Very little is known of the mechanisms involved in calcium transport and storage by osteoclasts. A Ca\(^{2+}\) ATPase has been immunolocalized on the membrane opposite the ruffled border (Akisaka et al., 1988), and we have shown that this transport mechanism is responsible for the decrease in [Ca\(^{2+}\)], stimulated by metabolic acids (Teti et al., 1989).
Furthermore, we found that a divalent cation-operated mechanism present in both chicken and rat osteoclasts (Malgaroli et al., 1989) stimulates [Ca^{2+}], transients through both calcium entry and the release of calcium from intracellular stores. In rat osteoclasts, this system is potentiated by treatment with calcitonin, and we hypothesized that it could have an inhibitory role on osteoclast activity. In the present report, we demonstrate that inhibition of Ca^{2+} entry by La^{3+}, but not dihydropyridine Ca^{2+} channel antagonists, partially blocked enhancement of [Ca^{2+}], by increasing [Ca^{2+}]. Importantly, the early spike phase of the change in [Ca^{2+}], which is derived from intracellular stores, was not affected by La^{3+} treatment, indicating that the presence of Ca^{2+} entry blockade, the effect of increasing [Ca^{2+}], was derived from Ca^{2+} release. This was also supported by the observation that dantrolene, a more specific blocker of Ca^{2+} release from intracellular stores than TMB8 previously used (Malgaroli et al., 1989), diminished the response to changes in [Ca^{2+}], and removed the early spike phase of the transient. The resultant tonic elevation in [Ca^{2+}], to a higher plateau is consistent with stimulated Ca^{2+} entry. Altogether, our data indicate that increases in [Ca^{2+}], stimulate both Ca^{2+} entry and Ca^{2+} release. Moreover we have shown that Cd^{2+} stimulates transient elevations in [Ca^{2+}]; in the absence of extracellular Ca^{2+} (Malgaroli et al., 1989). Similar to the parathyroid glands, our data indicate that Ca^{2+} may act through a receptor-operated mechanism stimulating Ca^{2+} release from intracellular stores (Nemeth et al., 1986).

Figure 8. Fluorescence micrograph of osteoclasts and fibroblasts, cultured on glass coverslips, reacted with rhodamine-conjugated phaloidin to detect microfilaments. (a) 3-d-old control osteoclast microfilaments were organized in dot-like structures, corresponding to podosomes, clustered in small groups at the cell periphery (arrows). (b) 5-d-old control osteoclast: podosomes were numerous and organized in a multilayer ring, resembling the clear zone, at the cell edge (arrows). (c) 5-d-old osteoclast incubated for 90 min in the presence of 4 mM extracellular calcium; the fluorescent dots disappeared and microfilaments became organized at the level of membrane ruffles (arrows). (d) A control fibroblast, and (e) a fibroblast incubated in the presence of 4 mM extracellular calcium did not show differences in the distribution of microfilaments, which were organized in typical stress fibers connected to the ventral membrane at the level of focal adhesions (arrows). Magnification of a–e are the same. Bar: (e) 10 μm.
In this report, we also demonstrate that osteoclasts transiently express VGCC. Depolarization of the membrane potential elevated \([\text{Ca}^{2+}]_o\), in osteoclasts cultured without bone. The addition of bone produced a time-dependent disappearance of VGCC. Specifically, whereas 83% of the bone-free cells studied had increased levels of \([\text{Ca}^{2+}]_o\), after 5 h in the presence of bone, depolarization prompted a decrease in \([\text{Ca}^{2+}]_o\), as previously reported (Teti et al., 1989). The decrease in \([\text{Ca}^{2+}]_o\), is compatible with an increase of \(\text{Ca}^{2+}\) efflux produced by depolarization.

The VGCCs of the osteoclast exhibit the functional properties of those described in other cell types. They are more sensitive to dihydropyridine agonists (BAY K 8644) and antagonists (nicardipine and nitrendipine) than to phenylalkylamine (verapamil) and benzodiazepine (diltiazem) antagonists. These data are consistent with the presence of an L-type VGCC found in the plasma membrane of excitable and nonexcitable cells (Nowycky et al., 1985; Schramm and Towart, 1985; Miller, 1987; Meier et al., 1988).

The next phase of this study involved assessing the effects of increasing \([\text{Ca}^{2+}]_o\), on osteoclast activity. First, we studied the effects of membrane depolarization, BAY K 8644 and increasing external \(\text{Ca}^{2+}\) on podosome expression. We found that each mechanism of increasing \([\text{Ca}^{2+}]_o\), decreased podosome expression. The effect of \(\text{K}^+\) on podosome expression appeared more effective than other means of increasing \([\text{Ca}^{2+}]_o\). This suggests that \(\text{K}^+\) additions were affecting osteoclastic functions besides stimulating VGCC. However, BAY K 8644 is a specific VGCC agonist and thus indicates that VGCC stimulation decreases podosome expression. These results are consistent with the effects of \(\text{Ca}^{2+}\) ionophores on podosome expression previously reported (Teti et

Figure 9. Effect of BAY K 8644 on podosome expression and bone resorption.
(a) \(5 \times 10^{-6}\) M BAY K 8644 decreased podosome expression. (b) Dose-dependent inhibition of bone resorption in osteoclasts treated with increasing dose of BAY K 8644. Cells were preincubated for 30 min with BAY K 8644, then the bone particles were added. Bone resorption was evaluated as described in Materials and Methods. The data are expressed as mean ± SE in quadruplicate.

Figure 10. Effects of extracellular \(\text{Ca}^{2+}\) on podosome expression and bone resorption (a) increasing \([\text{Ca}^{2+}]_o\), from nominally absent to 4 mM resulted in dose-dependent inhibition of podosome expression in osteoclasts. 4 mM extracellular \(\text{Ca}^{2+}\) (final concentration) induced 42% inhibition of osteoclast presenting podosomes with respect to the cultures treated with 2 mM \(\text{Ca}^{2+}\). Data are mean ± SE of three experiments performed in triplicate. (b) Dose-dependent inhibition of bone resorption in osteoclasts treated with increasing doses of extracellular calcium. 4 mM extracellular calcium (final concentration) reduced osteoclast resorbing activity by 50% of the value obtained at 2 mM. Data are mean ± SE of at least three experiments performed in triplicate.
al., 1989), and indicate that podosomes are a calcium-regulated adhesion structure.

The main candidate for mediating the effect of [Ca²⁺] on podosomes is gelsolin, a calcium-dependent actin regulating protein present in the osteoclast podosomes (Marchisio et al., 1987). Gelsolin, after complexing calcium, is capable of fragmenting pre-existing microfilaments and nucleating new ones, thereby contributing to the rearrangement of the microfilament network of the cell (Yin and Stossel, 1979). Furthermore, gelsolin presents a site for binding membrane phosphatidylinositol 4,5-bisphosphate, which inhibits its activity (Janmey and Matsudaïra, 1988; Yin et al., 1988). We have only preliminary information concerning the metabolism of polyphosphoinositides in osteoclasts, suggesting that the PIP₂-gelsolin-calcium complex could contribute to their cytoskeletal organization and adhesion properties.

Finally, we studied the effect of VGCC-dependent and [Ca²⁺]-elicited [Ca²⁺] increase on osteoclastic bone resorption. We found a reduction of bone collagen degradation by osteoclasts exposed to BAY K 8644 or increases in [Ca²⁺]. These results suggest that increases in [Ca²⁺] negatively regulate osteoclastic resorptive activity. They also demonstrated a direct correlation between reduced podosome expression and decreased bone resorption.

It therefore appears that [Ca²⁺]-stimulated increase in cytosolic calcium may be a mechanism for inhibiting avian osteoclasts, an event reminiscent of the cation's ability to block parathyroid hormone secretion (Schoback et al., 1983; Nemeth and Scarpa, 1986; Wallfert et al., 1988). Calcitonin synergistically augments [Ca²⁺], enhanced [Ca²⁺], (Margaroli et al., 1989), further indicating that the Ca²⁺ signal may be a regulated osteoclast function. The inhibition of osteoclast adhesion and bone resorption by [Ca²⁺] through podosome disassembly is a potential feedback mechanism for signaling to the cell that the products of bone resorption have accumulated at the cell–matrix interface. Inhibition of adhesion, leading to leakage of the resorptive microenvironment could lead to release of these products into the extracellular fluid.

The role of the VGCC in bone resorption is more complex at this point than the modulation by [Ca²⁺]. The decrease in bone resorptive activity with BAY K 8644 pretreatment can be explained by the inhibition of podosome formation. However, osteoclasts allowed to attach to bone and begin resorption were resistant to BAY K 8644, consistent with the observed disappearance of functional VGCC after addition of bone particles. The possibility exists that, during the cell's motile phase, VGCC are expressed on the plasma membrane of osteoclasts and promote movement. Activation of these cells by BAY K 8644 would decrease their ability to promote their adhesive capacity, express podosomes, and resorb bone.

Addendum

While this manuscript was in review, Zaidi et al. (1989) reported that extracellular Ca²⁺ increases [Ca²⁺] in neonatal rat long bone osteoclasts and inhibits bone resorption in agreement with the results reported herein and our previous report (Margaroli et al., 1989).

We thank Dr. Harry Blair, for assistance with the osteoclast preparation, and Pat Harris and Betty Ytzaina for preparation of the manuscript.
parathyroid cells. FEBS (Fed. Eur. Biochem. Soc.) Lett. 203:15-19.
Nemeth, E. F., J. Wallace, and A. Scarpa. 1986. Stimulus-secretion coupling in bovine parathyroid cells. J. Biol. Chem. 261:2668-2674.
Nowycky, M. C., A. P. Fox, and R. Y. Tsen. 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (Lond.). 316:440-443.
Oursler, M. J., L. V. Bell, B. Clevinger, and P. Ossdy. 1985. Identification of osteoclast-specific antibodies. J. Cell Biol. 100:1592-1600.
Reid, I. R., R. Civitelli, L. R. Halstead, L. V. Avioli, and K. Hruska. 1987. Parathyroid hormone acutely elevates intracellular calcium in osteoblastlike cells. Am. J. Physiol. 253:E45-E51.
Schoback, D., J. Tharcher, R. Laombrouno, and E. M. Brown. 1983. Effects of extracellular Ca²⁺ and Mg²⁺ on cytosolic Ca²⁺ and PTH release in dispersed bovine parathyroid cells. Endocrinology. 113:4324-4326.
Schramm, M., and R. Towart. 1985. Modulation of calcium channel function by drugs. Life Sci. 37:1843-1860.
Silver, I. A., R. I. Murulli, and D. J. Etherington. 1988. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175:266-276.
Teti, A., G. Volletth, A. Carano, and A. Zambonin-Zallone. 1988. The effects of parathyroid hormone or 1,25-dihydroxyvitamin D₃ on monocyte-osteoclast fusion. Calcif. Tissue Int. 42:302-308.

Zaidi, M., H. K. Datta, A. Patchell, B. Moonga, and I. MacIntyre. 1989. Calcium-activated intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem. Biophys. Res. Commun. 163:1461-1465.
Zambonin-Zallone, A., A. Teti, and M. V. Primavera. 1982. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat. Embryol. 165:405-413.
Zambonin-Zallone, A., A. Teti, A. Carano, and P. C. Marchisio. 1988. The distribution of podosomes in osteoclasts cultured on bone laminae: effect of retinol. J. Bone Min. Res. 3:517-523.
Zambonin-Zallone, A., A. Teti, M. Grano, A. Rubinacci, M. Abbadiani, M. Gaboli, and P. C. Marchisio. 1989. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a B3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp. Cell Res. 182:645-652.