Membrane-Tethered Metalloproteinase Expressed by Vascular Smooth Muscle Cells Limits the Progression of Proliferative Atherosclerotic Lesions

Richard H. Barnes, II, BS; Takeshi Akama, PhD; Miina K. Öhman, MD, PhD; Moon-Sook Woo, PhD; Julian Bahr, BS; Stephen J. Weiss, MD; Daniel T. Eitzman, MD; Tae-Hwa Chun, MD, PhD

Background—The MMP (matrix metalloproteinase) family plays diverse and critical roles in directing vascular wall remodeling in atherosclerosis. Unlike secreted-type MMPs, a member of the membrane-type MMP family, MT1-MMP (membrane-type 1 MMP; Mmp14), mediates pericellular extracellular matrix degradation that is indispensable for maintaining physiological extracellular matrix homeostasis. However, given the premature mortality exhibited by MT1-MMP-null mice, the potential role of the proteinase in atherogenesis remains elusive. We sought to determine the effects of both MT1-MMP heterozygosity and tissue-specific gene targeting on atherogenesis in APOE (apolipoprotein E)–null mice.

Methods and Results—MT1-MMP heterozygosity in the APOE-null background (Mmp14+/−/Apoε−/−) significantly promoted atherogenesis relative to Mmp14+/+/Apoε−/− mice. Furthermore, the tissue-specific deletion of MT1-MMP from vascular smooth muscle cells (VSMCs) in SM22a-Cre(+)Mmp14+/−/Apoε−/− (VSMC-knockout) mice likewise increased the severity of atherosclerotic lesions. Although VSMC-knockout mice also developed progressive atherosclerotic aneurysms in their iliac arteries, macrophage- and adipose-specific MT1-MMP-knockout mice did not display this sensitized phenotype. In VSMC-knockout mice, atherosclerotic lesions were populated by hyperproliferating VSMCs (smooth muscle actin– and Ki67–double-positive cells) that were characterized by a proinflammatory gene expression profile. Finally, MT1-MMP-null VSMCs cultured in a 3-dimensional spheroid model system designed to mimic in vivo–like cell–cell and cell–extracellular matrix interactions, likewise displayed markedly increased proliferative potential.

Conclusions—MT1-MMP expressed by VSMCs plays a key role in limiting the progression of atherosclerosis in APOE-null mice by regulating proliferative responses and inhibiting the deterioration of VSMC function in atherogenic vascular walls. (J Am Heart Assoc. 2017;6:e003693. DOI: 10.1161/JAHA.116.003693.)

Key Words: aneurysm • atherosclerosis • inflammation • matrix metalloproteinases • muscle • smooth

Vascular smooth muscle cells (VSMCs) constitute the major cellular component of the tunica media, where they play key roles in regulating vascular tone and blood flow. Under physiological conditions, the number of VSMCs within the arterial wall is tightly controlled, as is arterial wall thickness. In marked contrast, during the progression of atherosclerosis, VSMCs proliferate and transition from a contractile to a synthetic phenotype, thereby depositing excess extracellular matrix (ECM) molecules that lead to arterial wall thickening and stiffening, namely, arteriosclerosis. However, the molecular mechanisms that underlie VSMC proliferation and arteriosclerosis during the pathological process of atherosclerosis remain largely undefined.

ECM remodeling is mediated by members of the MMP (matrix metalloproteinase) gene family, a group of structurally related proteolytic enzymes that are broadly characterized as either secreted or membrane tethered. Consistent with their potential roles in vascular wall pathology, recent studies have characterized the roles of secreted MMPs, particularly MMP-2, MMP-8, and MMP-13, in promoting atherogenesis or plaque rupture. With regard to the membrane-tethered MMPs, MT1-MMP uniquely serves as a pericellular collagenase that...
VSMC MT1-MMP Limits Atherogenesis and Aneurysm

Barnes II et al

Clinical Perspective

What Is New?

- The molecular mechanisms underlying proliferative atherosclerosis have not been fully defined.
- This animal study suggests that a pericellular collagenase called MT1-MMP (membrane-type 1 matrix metalloproteinase), expressed by vascular smooth muscle cells, plays a critical role in limiting the progression of proliferative atherosclerotic lesions.
- The loss of vascular smooth muscle cell MT1-MMP leads to advanced proliferative atherosclerosis and atherosclerotic iliac artery aneurysm formation.

What Are the Clinical Implications?

- The functional impairment of vascular smooth muscle cells in regulating vascular wall extracellular matrix remodeling may contribute to the pathogenesis of proliferative atherosclerosis and atherosclerotic iliac artery aneurysm formation.

Material and Methods

Animals

Apoe^{−/−} mice¹⁶ were purchased from the Jackson Laboratory. MT1-MMP heterozygous Mmp14^{+/+}/ Apoe^{−/−} mice were maintained on a C57BL6/J background with >5 generations of backcrossing.^{14,17} Mmp14^{−/+}/ Apoe^{−/−} mice were crossed to Apoe^{−/−} mice to generate Mmp14^{−/+}/ Apoe^{−/−} breeders. Mmp14^{−/−}/ Apoe^{−/−} mice were used for breeding with Apoe^{−/−} mice to generate Mmp14^{−/−}/ Apoe^{−/−} mice and their littermate Mmp14^{−/+}/ Apoe^{−/−} mice for this study. Mmp14^{−/−}/ mice were generated as described previously.¹⁸ These mice were crossed to SM22α-Cre (Tg[Tagln-cre]1Her/J),¹⁹ Csf1r-Cre, or Fabp4-Cre-ERT2 transgenic mice (gift from Pierre Chambon, Institute of Genetics and Molecular and Cellular Biology, France),²⁰ and then further crossed to Apoe^{−/−} mice.

Atherosclerosis Study

The atherosclerotic Western diet, composed of 17% (kcal/kcal) protein, 43% carbohydrate, and 41% fat with 1.5 g/kg cholesterol, was purchased from Research Diets. Male and female mice were fed a Western diet for 12 weeks beginning at 8 weeks of age. All procedures were approved by the University of Michigan committee on the use and care of animals, conforming to the guidelines of the International Association for Assessment and Accreditation of Laboratory Animal Care.

Morphometric Analysis of Atherosclerosis

After euthanasia by CO₂ asphyxiation, blood was collected through portal veins. Animals were perfused with PBS and then 10% formalin in PBS through their left ventricles at a rate...
of 1 mL/min, as described previously. Arterial trees were carefully dissected to include the brachiocephalic, left common carotid, and subclavian arteries as well as the descending thoracic and abdominal aortas with the bilateral iliac arteries. Adipose tissues attached to the arteries were carefully removed under a dissecting microscope. After Oil Red O staining and repeated washing in ethanol and water, aortic trees were pinned against a black background, and the aortic trees were digitally photographed under a dissecting microscope. Oil Red O-positive areas were quantified as the percentage of plaque area per total arterial tree or abdominal aorta.

Collagen Staining and Histologic Analysis

Sections were stained with hematoxylin and eosin and sirius red. The atheroma area and vascular wall area were quantified in cross-sections using ImageJ software (National Institutes of Health), and the average plaque and vascular wall areas were determined. Immunostaining was performed using the ABC system. The primary antibodies used were rabbit polyclonal anti-α-smooth muscle actin (anti-α-SMA) antibody, anti-F4/80 antibody, and anti-Ki67 antibody.

Vascular Smooth Muscle Cells

Mouse aortic smooth muscle cells were isolated with collagenase digestion, as described by others. Isolated primary mouse VSMCs were cultured in high-glucose DMEM with 10% FBS and passed twice before experiments. Mouse primary VSMCs immortalized with the SV40 large T antigen – often associated with obesity in humans. As such, we crossed MT1-MMP heterozygous (Mmp14+/−) mice with APOE-null mice to generate Mmp14+/−Apoe−/− mice and examined the effects of MT1-MMP heterozygosity on weight, fat mass, blood glucose, and insulin levels as well as cholesterol profiles. As expected, heterozygous (HT) Mmp14+/−Apoe−/− male mice on a Western diet were leaner than littermate wild-type (WT) Mmp14+/+Apoe−/− mice (WT 33.0±1.0 g, HT 29.0±0.9 g, n=9 each, P=0.009; Figure 1A). When fat mass was assessed at the end of the 12-week Western diet, the total and epididymal fat masses were significantly smaller in the Mmp14+/−Apoe−/− than Mmp14+/+Apoe−/− male mice (percentage of total fat mass per weight: WT 5.1±0.3%, HT 3.6±0.6%, n=9 each, P=0.03; percentage of epididymal fat per weight: WT 3.4±0.2%, HT 2.2±0.3%, n=9 each, P=0.007; Figure 1B). Fasting blood glucose levels were similar between the groups (WT 162±43 [n=8] versus HT 161±27 mg/dL [n=9], P=0.5); however, the fasting insulin concentration was substantially lower in the MT1-MMP heterozygous mice (WT 11.8±4.3 [n=8] versus HT 3.8±0.6 mU/L [n=9], P=0.04), suggesting an increased insulin sensitivity of Mmp14+/−Apoe−/− mice that occurs in parallel with their leaner phenotype. Of note, MT1-MMP heterozygosity did not change the blood cholesterol levels in APOE-null mice fed a Western diet (total cholesterol: WT 8±27 mg/dL [n=9], P>0.05; Figure 1C). We previously demonstrated that MT1-MMP heterozygosity renders mice resistant to obesity induced by a high fat diet. Based on this finding, we hypothesized that the allelic reduction of the MT1-MMP gene would protect mice from hypercholesterolemic atherosclerosis, a disease process that is often associated with obesity in humans.
1021±59 [n=8] versus HT 1012±52 mg/dL [n=9], P=0.9; direct low-density lipoprotein: WT 359±27 versus HT 349±23 mg/dL, P=0.8; Figure 1C). Consistent with their leaner phenotype and relative insulin sensitivity, the blood triglyceride content tended to be lower in HT mice, but this difference did not reach statistical significance (WT 142±10 mg/dL [n=8], HT 118±11 mg/dL [n=9], P=0.1).

Whole-Body MT1-MMP Heterozygosity Accelerates Atherogenesis

MT1-MMP WT and HT mice were fed a Western diet for 12 weeks beginning at 8 weeks of age. Contrary to our prediction, atherogenesis was more advanced in Mmp14+/−Apoe−/− mice compared with Mmp14+/+Apoe−/− littermate controls (Figure 1D). Particularly, advanced atherogenesis was notable in the abdominal aorta and iliac/femoral arteries of Mmp14+/−Apoe−/− mice (Figure 1D arrows). The percentage of total plaque area was increased by 21% in male mice (Mmp14+/−Apoe−/− 14.9±0.9% versus Mmp14+/+Apoe−/− 18.1±0.8%, n=7 each, P=0.04; Figure 1E, left), whereas the abdominal percentage of plaque area was increased by 200% (2.3±0.5% versus 6.9±0.5%, n=7 each, P<0.0001; Figure 1E, right). In female mice, the total plaque area in Mmp14+/−Apoe−/− animals was increased by 56% (15.1±1.3% [n=4] versus 23.6±1.6% [n=10], P=0.002; Figure 1F, left), with the

Figure 1. MT1-MMP (membrane-type 1 matrix metalloproteinase) heterozygosity promotes atherosclerosis. A, Mmp14+/+Apoe−/− mice and Mmp14+/−Apoe−/− mice were fed a Western diet for 12 weeks beginning at 8 weeks of age. Body weight (g) at the end of study. B, Percentage of fat mass (wt/wt) of total (epididymal plus inguinal) and epididymal fat pads. C, Fasting serum cholesterol (total and direct low-density lipoprotein) levels. Mean±SEM, n=8 and n=10, respectively; *P<0.05. D, Atherosclerotic lesions detected with Oil Red O staining in Mmp14+/−Apoe−/− and Mmp14+/+Apoe−/− male mice. Arrows point to the increased atherogenesis distributed in abdominal aorta and iliac arteries specifically, as found in Mmp14+/−Apoe−/− mice. E and F, Oil Red O–positive atherosclerotic plaque areas quantified in all aortic trees and abdominal aortas in male mice (n=7 each) and female mice (n=4 and n=10). Mean±SEM, *P<0.05, **P<0.005, ***P<0.0005. a. indicates artery.
abdominal plaque area increasing by 171% relative to the Mmp14+/−/Apoe−/− female controls (3.5±0.2% [n=4] versus 9.5±1.8% [n=10], P=0.002; Figure 1F, right).

We next examined left carotid artery sections to assess the structure of the atherosclerotic plaque and the associated level of vascular wall remodeling. Interestingly, the average plaque area of the Mmp14+/−/Apoe−/− mice was 3 times as large as that of the Mmp14+/+/Apoe−/− mice, but this was not statistically significant given the variable severity of atherosclerosis in the heterozygous group (WT 59±7×10³ μm² versus HT 189±84×10³ μm², n=6 each, P=0.15; Figure 2A). Concurrent with a trend of increased atherosclerosis, we observed a 1.7-fold increase in the vascular wall area, underscoring the presence of outward vascular wall remodeling in MT1-MMP heterozygous APOE-null mice (133±16×10³ μm² versus 234±19×10³ μm², n=6 each, P=0.004). Furthermore, both the atherosclerotic plaques and the vascular walls of MT1-MMP HT mice displayed an increased collagen fiber content relative to WT mice, as assessed by sirius red staining (sirius red–positive area: WT 26.6±3.3% versus HT 44.0±4.7%, n=6 each, P=0.009; Figure 2B), suggesting that MT1-MMP heterozygosity promoted vascular wall arteriosclerosis along with plaque formation in the APOE-null background. MT1-MMP HT mice also displayed an apparent loss of a contractile phenotype (ie, loss of SMA staining) coupled with disrupted elastic lamina,

Figure 2. MT1-MMP (membrane-type 1 matrix metalloproteinase) heterozygosity promotes plaque formation and outward vascular remodeling. A, Representative histology sections of left common carotid arteries. Hematoxylin and eosin (H&E) and sirius red staining. Scale=100 μm. B, Sirius red–positive area (%). C, Immunostaining of smooth muscle actin (SMA) in vascular walls and atherosclerotic plaques (orange). Nuclei were counterstained (blue). Lower panels are of higher magnification. Scale=100 μm. D, SMA-positive area (percentage). Mag indicates magnification. *P<0.05, **P<0.005

DOI: 10.1161/JAHA.116.003693
which in turn elicited more complex and advanced atherosclerotic lesions (Figure 2C and 2D).

MT1-MMP Gene Targeting in VSMCs Accelerates Atherosclerosis Progression

Although MT1-MMP heterozygosity was found to promote atherogenesis, the cellular mechanisms underlying the aggravated atherogenesis were unclear. In obesity, perivascular adipose tissues play a key role in atherogenesis.28 In contrast, dysfunctional VSMCs might also be responsible for inducing inflammatory atherogenesis.4 Because MT1-MMP is highly expressed in both adipocytes9,10 and VSMCs,15 we sought to use tissue-specific knockout mice in an effort to determine the cell type responsible for the MT1-MMP–dependent regulation of atherogenesis. When male mice in each group were fed a Western diet, we observed markedly augmented atherogenesis and aneurysm formation only with VSMC-specific MT1-MMP gene targeting (ie, SM22α-Cre(+)/Mmp14F/FApoel−/− mice), but not following adipocyte MT1-MMP gene targeting (ie, aP2-Cre-ERT2(+)Mmp14F/FApoel−/− mice; Figure 3A). Atherogenesis in SM22α-Cre(+)/Mmp14F/FApoel−/− mice.

![Figure 3](image_url)

Figure 3. Vascular smooth muscle cell MT1-MMP (membrane-type 1 matrix metalloproteinase) gene targeting promotes atherosclerosis and aneurysm formation. A, Whole arterial trees assessed for Oil Red O–positive atherosclerotic plaque area (red). Arrows point to atherosclerotic aneurysms. Representative arterial trees from SM22α-Cre(−)/Mmp14F/FApoel−/− and SM22α-Cre(+)/Mmp14F/FApoel−/− mice are shown; n=13 and n=20, respectively. B, Higher magnification of aortic aneurysms found in SM22α-Cre(+)Mmp14F/FApoel−/− mice. C, Percentage of plaque area in Cre(−)/Mmp14F/FApoel−/−, SM22α-Cre(+)Mmp14F/FApoel−/−, aP2-Cre-ERT2(+)Mmp14F/FApoel−/− mice, males and females (n=8, n=13, and n=4 in male mice, and n=5, n=7, and n=7 in female mice, respectively). *P<0.05, ***P<0.0005.
mice frequently extended to femoral arteries with significant outward remodeling having been noted, in tandem with aneurysm formation in the iliac arteries (Figure 3A and 3B). Importantly, total plaque area was increased by 190% in SM22α-Cre(+)Mmp14+/−/ApoE−/− male mice compared with Cre(−)Mmp14+/−/ApoE−/− male mice (8.0±1.4% [n=8] versus 23.5±1.4% [n=13], P<0.0001) and 210% in female mice (4.9±0.9% [n=5] versus 15.5±3.5% [n=7], P<0.03). In contrast, significant differences were not observed between Cre-negative controls and the adipose-specific MT1-MMP deletion model (Figure 3C and Figure S1), suggesting that the VSMCs are the primary cell type that mediates MT1-MMP–dependent modulation of atherogenesis progression.

The Loss of VSMC MT1-MMP Leads to Proliferative Atherosclerotic Lesions and Aneurysm Formation

After 12-week Western diet feeding, SM22α-Cre(+) Mmp14+/−/ApoE−/− mice developed extensive atherosclerosis in their common iliac arteries followed by aneurysm formation (Figure 4A and 4B). No aneurysm formation was observed in the Cre(−)Mmp14+/−/ApoE−/− mice (8 male and 5 female mice), whereas 11 of 12 male and 6 of 7 female SM22α-Cre(+) Mmp14+/−/ApoE−/− mice developed strikingly enlarged aneurysms that were readily observable on dissection (Figure 3B). These dysmorphic lesions displayed significant vascular wall thickening as well as atheroma formation (Figure 4A). Masson’s Trichrome and Verhoeff–Van Gieson staining demonstrated the disruption and loss of elastic laminae (Figure 4A). SMA staining showed an increased number of SMA+ cells in vascular walls as well as within atheroma, where Ki67 staining confirmed that large numbers of SMA+ cells existed in a proliferative state (Figure 4A and 4D). Infiltration of F4/80-positive cells was observed in the atheroma and the vascular walls of affected vessels (Figure 4A, F4/80 staining) but to a lesser extent compared with VSMCs. Image quantification of the lesions confirmed an increased atheroma area (Figure 4B) and outward remodeling (Figure 4C), which were coupled with an increased number of proliferating VSMCs (Figure 4D). Because macrophages are potentially targeted by SM22α promoter-driven Cre expression,29 we specifically targeted these cells using Csf1r-Cre(+) Mmp14+/−/ApoE−/− mice and examined atherosclerosis and aneurysm formation. Neither littermate control Csf1r-Cre(−) Mmp14+/−/ApoE−/− mice nor Csf1r-Cre(+) Mmp14+/−/ApoE−/− mice developed atherosclerotic iliac aneurysm after 12 weeks of Western diet (n=7 for each group tested), and no significant differences in the sizes of atherosclerosis lesions were observed (n=4 each).

Proinflammatory and Metabolically Dysfunctional MT1-MMP–Null VSMCs

To assess the role of MT1-MMP in VSMC function, we isolated primary VSMCs from descending aortas. As expected, VSMCs isolated from SM22α-Cre(+) Mmp14+/−/ApoE−/− mice demonstrated specific Cre expression along with the suppression MT1-MMP gene expression (Figure S2). In vitro, MT1-MMP–null VSMCs displayed a flattened, spread shape with higher stress fiber formation (Figure 5A), whereas the expression of other MMPs (eg, MMP-2, MMP-8, MMP-9, MMP-13, and MT2-MMP [MMP15]), were not significantly different between control and MT1-MMP–deleted cells (Figure S2). The Acta2 gene, which encodes α-SMA, was expressed equally in primary VSMCs isolated from SM22α-Cre(−) Mmp14+/−/ApoE−/− and SM22α-Cre(+) Mmp14+/−/ApoE−/− mice (Figure S2). To gain further insight into the effects of MT1-MMP gene targeting in VSMCs, whole-genome transcriptome analysis was performed. Using a minimum 2-fold difference as a cutoff, 414 genes were found to be differentially expressed between the 2 groups (the top 70 genes are shown in Figure 5B, and all differentially expressed genes are listed in Table S1; the microarray data is available at NCBI Gene Expression Omnibus [GSE] as GSE100661). Interestingly, the genes upregulated in SM22α-Cre(+) Mmp14+/−/ApoE−/− mice (>2.3-fold change) were aggregated in the pathways of inflammation and cell killing (Figure 5C), suggesting the acquisition of a proinflammatory phenotype in MT1-MMP–null VSMCs.

MT1-MMP Gene Targeting Promotes VSMC Proliferation in 3-Dimensional Cell–Cell and Cell–ECM Contexts

To gain insights into the mechanism by which MT1-MMP–null VSMCs engage in the formation of proliferative atherosclerotic lesions, we developed an in vivo–like 3-dimensional (3-D) spheroid culture system in which in vivo–like cell–cell and cell–ECM interactions could be recapitulated. Using Ki67 as an index of proliferative responses, MT1-MMP–null primary VSMCs displayed markedly higher activity relative to WT cells (Figure 6A and 6B). To determine whether the observed differences in cell proliferation were a direct consequence of MT1-MMP gene targeting (ie, as opposed to a secondary response of VSMCs recovered from the advanced atherogenic lesions found in VSMC-knockout mice), we used immortalized mouse primary VSMCs to further define the role of MT1-MMP in regulating VSMC proliferation. In 3-D spheroid culture, similar to the findings obtained with freshly isolated VSMCs, small interfering RNA–mediated MT1-MMP gene silencing in mouse VSMCs induced a marked increase in the number of Ki67-positive VSMCs (Figure 6C and 6D). Of note, under 2-D culture...
conditions, MT1-MMP silencing exerted minimal effects on mouse VSMC proliferation (Figure 6E and 6F). Taken together, these results support a model in which MT1-MMP plays a required role in regulating VSMC proliferative activity but only under 3-D conditions that more closely recapitulate the in vivo environment.
Discussion

MMP family members play a key role in ECM turnover in a wide variety of developmental and disease processes. Among the collagen-degrading MMPs, secreted (MMP-3, MMP-8, MMP-13) and membrane-type MMPs (MT1- and MT2-MMP) display distinct temporospatial differences in their patterns of expression and activity. Unlike other MMPs, MT1-MMP (MMP14) is the only family member whose activity is indispensable for postnatal development. Because of the premature morbidity and mortality displayed by MT1-MMP–null mice, the role of the proteinase in cardiovascular disease has remained elusive. To date, the only MT1-MMP–expressing cellular compartment tested in a mouse atherogenesis model was bone marrow–derived myeloid cells; however, no substantial impact on atheroma size was observed following bone marrow reconstitution with Mmp14−/− cells. In our study, we identified the critical role played by VSMC-derived MT1-MMP in regulating the progression of atherosclerotic lesions and the associated formation of vascular aneurysms.

Previously, we demonstrated that MT1-MMP heterozygosity protects C57BL/6 mice from diet-induced adipose tissue expansion. Similarly, in this study, heterozygous Mmp14+/− mice displayed a leaner phenotype relative to WT mice. Given the metabolically improved status of Mmp14+/− mice, we initially hypothesized that MT1-MMP heterozygosity would protect mice from hypercholesterolemic atherosclerosis, which is often associated with increased adiposity. Contrary to our expectations, MT1-MMP heterozygous APOE-null mice developed more extensive atherosclerotic lesions than MT1-MMP–sufficient APOE-null mice, suggesting a potentially beneficial role for MT1-MMP in limiting disease progression. The results also

Figure 5. Proinflammatory gene expression in MT1-MMP (membrane-type 1 matrix metalloproteinase)–null vascular smooth muscle cells (VSMCs). A, Primary aortic VSMCs isolated from Cre(−)/Mmp14+/−Expressing APOE−/− and SM22α-Cre(+/−)/Mmp14+/−Expressing APOE−/− mice. F-actin (green), nuclei (blue). B, Representative genes differentially expressed in VSMCs from 2 independent pairs of Cre(−)/Mmp14+/−Expressing APOE−/− and SM22α-Cre(+/−)/Mmp14+/−Expressing APOE−/− mice. C, Gene Ontology (GO) biological processes represented by the genes upregulated in VSMCs isolated from the SM22α-Cre(+/−)/Mmp14+/−Expressing APOE−/− mice.
Figure 6. MT1-MMP (membrane-type 1 matrix metalloproteinase) limits vascular smooth muscle cell (VSMC) proliferation in 3-dimensional (3-D) organoids. A, Primary VSMCs isolated from Cre(−) Mmp14F/F Apoe−/− mice and Cre(+)Mmp14F/F Apoe−/− mice were cultured as a 3-D spheroids for 48 hours and stained for Ki67 (red), nuclei (DAPI, blue), and actin (phalloidin, green). B, Quantified intensity of Ki67 staining per spheroid. n=5 to 7. *P<0.05. C, Immortalized mouse VSMCs (MOVAS) transiently transfected with small interfering RNA (siRNA) control (siControl) and MT1-MMP siRNA (siMmp14). Ki67 (red), nuclei (blue), actin (green). D, Ki67 staining intensity per spheroid of MOVAS. **P<0.005. E, 2-D cultured MOVAS transfected with control and MT1-MMP siRNA. Ki67 (red), nucleus (blue), and actin (green). F, Ki67-positive nuclei per total nuclei count.
suggest that the inverse relationship observed between fat mass and atherosclerosis—the so-called obesity paradox in humans—may reflect the independent biological effects exerted by a cohort of modifier genes, including MT1-MMP, on adipose tissue and vascular function.

To define the cellular mechanisms by which MT1-MMP exerts its antiatherogenic effects, we embarked on a series of studies aimed at tissue-specific MT1-MMP gene targeting in APOE-null mice. In the early stages of our efforts, we focused on 2 cell types: adipocytes and VSMCs. We initially hypothesized that the loss of adipocyte MT1-MMP would modify atherogenesis via the potentially causal links that exist between adipose tissue and the vascular wall. In APOE-null mice, however, we were unable to observe a significant impact on atherogenesis following gene targeting of adipocyte-derived MT1-MMP. In contrast, the SM22α-Cre-mediated loss of VSMC MT1-MMP strikingly aggravated atherosclerosis progression in APOE-null mice. Whole-genome transcriptome analyses indicated that a series of proinflammatory genes were upregulated in MT1-MMP–null VSMCs, a finding consistent with the proatherogenic phenotype of SM22α-Cre(+)/Mmp14fl/fl/Apoel/− mice. Furthermore, our in vitro studies demonstrated that MT1-MMP targeting in either primary or immortalized VSMCs promotes cell proliferation under 3-D spheroid culture conditions. As such, 3-D spheroid culture appears to reflect a set of conditions that better reflect our in vivo findings and, as such, can be used to more faithfully address cellular behavior in tissue-like contexts by re-creating cell–cell and cell–ECM interactions ex vivo. Indeed, previous work has demonstrated that VSMC proliferative activity can be regulated by cell–cell adhesion and cell–ECM interactions. Of note, the enhanced proliferative responses displayed by MT1-MMP–null VSMCs were not observed under conventional 2-D culture conditions in which the cell–cell and cell–ECM interactions that are encountered in vivo are replaced by cell culture atop a nonphysiologic, planar, and rigid substratum. Finally, it is interesting to note that the proliferative effects of MT1-MMP gene silencing were not observed in other cell types, for example, 3T3-L1 preadipocytes (data not shown), reinforcing the unique role played by MT1-MMP in VSMC biology.

In considering the mechanisms by which MT1-MMP might control proliferative activity, efforts are complicated by the proteinase’s broad substrate repertoire, ranging from type I collagen to CD44 and cadherins. As such, MT1-MMP can potentially regulate VSMC proliferation by degrading any number of membrane-associated protein targets as well as pericellular ECM molecules, thereby modifying both cell–cell adhesion and cell–ECM interaction. In atherosclerosis, the expression of adhesion molecules and ECM proteins is highly upregulated; as such, a decrease in MT1-MMP activity would be predicted to trigger the excess accumulation of ECM macromolecules as well as cell-surface adhesion molecules. At this juncture, we posit that changes in the dynamics of ECM turnover and cell-surface molecule expression occurring within the vascular wall lead to the unregulated proliferation of VSMCs and the development of a proinflammatory phenotype. Interestingly, at least in terms of proliferative responses, the use of a 3-D spheroid model allowed us to recapitulate the MT1-MMP–dependent biological processes ex vivo. Nevertheless, it remains unclear how the cleavage of MT1-MMP substrate(s) accelerates VSMC proliferation in APOE-null mice. This caveat notwithstanding, our data clearly highlight the role played by VSMC-derived MT1-MMP in limiting the progression of proliferative atherosclerotic lesions. Because MT1-MMP is a membrane-bound proteinase, the physical proximity of substrates with the enzyme is likely critical for the protective effects exerted by VSMCs in limiting the expansion of atherosclerotic lesions. Our study also suggests that other atherosclerosis-associated MMPs (eg, MMP-2, MMP-8, MMP-13) do not compensate for the genetic loss of MT1-MMP and are unable to limit atherosclerosis progression. Although MT2-MMP (MMP15) was also expressed in mouse VSMCs (Figure S2), as reported previously in rat VSMCs, the biological phenotypes conferred by MT1-MMP gene loss were not rescued by the presence of MT2-MMP. Differences in the hemopexin domain structure, posttranslational modification, or protein trafficking may underlie the specific effects mediated by MT1-MMP versus MT2-MMP.

Although increased collagen content within atheroma might be predicted to play a protective role against plaque rupture, collagen accumulation in arterial walls could also accentuate vascular sclerosis and stiffening. In turn, stiff and sclerotic blood vessels could increase luminal shear stress, thereby increasing the chance of plaque rupture. In future studies, an assessment of hemodynamic changes and plaque instability in our model will be required to more accurately define the role of MT1-MMP in cardiovascular disease. Interestingly, in APOE-null mice, arterial wall stiffness is known to be increased through VSMC lysyl oxidase activity. In turn, increased tissue stiffness could control VSMC proliferation through the activation of a mechanotransduction pathway, for example, YAP/TAZ transcription activity. As such, we posit that the pathologic accumulation of ECM macromolecules secondary to the loss of MT1-MMP activity may further promote vascular wall rigidity in the APOE-null mice, leading to hyperproliferative vascular lesions and aneurysm formation. Given that we observed severe atherosclerosis and aneurysm formation in iliac and femoral arteries, site-specific increases in vascular wall thickening and arteriosclerosis are likely related to the distinct mechanical properties of vessel walls observed along the arterial tree. Indeed, femoral arteries as well as the abdominal aorta are known to display higher wall thickness with lower content of
elastic lamina compared with carotid arteries and thoracic aortas. Together, differences in mechanical stress and ECM composition may render VSMCs in abdominal aorta and femoral arteries more vulnerable to atherogenic proliferation. Finally, it remains to be determined whether the inflammatory gene expression profile observed in MT1-MMP–null VSMCs is restricted to atherogenic milieu encountered in vivo. Interestingly, in our hands, the increase in inflammatory gene expression of MT1-MMP–null VSMCs was coupled with decreased mitochondrial activity (T. Akama, PhD, unpublished data, 2016). Furthermore, recent studies have demonstrated a critical role played by a VSMC phenotypic switch to macrophage-like cells in atherogenesis. Because MT1-MMP also regulates inflammatory responses in macrophages, the proteinase may well play a key role in controlling a complex set of metabolic and phenotypic switching programs that are engaged in atherogenic VSMCs. Although further work is needed to delineate MT1-MMP function during atherogenesis, our work highlights the previously unsuspected vessel wall–protective effects exerted by this membrane-anchored metalloproteinase in the VSMC compartment.

Acknowledgments
We like to thank Dr Pierre Chambon (Institute of Genetics and Molecular and Cellular Biology, France) for sharing Fabp4-Cre-ERT2 transgenic mice. Current affiliation of Ohman is Duke-Nus Medical School, Singapore.

Sources of Funding
Funding was provided by the McKay Research Grant from University of Michigan Cardiovascular Center, NIH R21HL106332, and R01DK102656 to Chun. NIH R01AI105068-01 to Weiss. NIH Cancer Biology Training Program Grant T32-CA009676 supported Bahr.

Disclosures
None.

References
1. Olivetti G, Anversa P, Mellisari M, Loud AV. Morphometric study of early postnatal development of the thoracic aorta in the rat. Circ Res. 1980;47:417–424.
2. Wagenknecht JE, Mecham RP. Vascular extracellular matrix and arterial mechan- ics. Physiol Rev. 2009;89:957–989.
3. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.
4. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702.
5. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–233.
6. Kuzuya M, Nakamura K, Sasaki T, Wu Cheng X, Itohara S, Iuchi A. Effect of MMP–2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:1120–1125.
7. Laxton RC, Hu Y, Duchene J, Zhang F, Zhang Z, Leung KY, Xiao Q, Scotland RS, Hodgkinson CP, Smith K, Willeit J, López-Otin C, Simpson IA, Kiechl S, Ahluwalia A, Xu Q, Ye S. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res. 2009;105:921–929.
8. Quillard T, Araujo HA, Franch G, Tesenitsky S, Libby P. Matrix metalloproteinase-13 predominates over matrix metalloproteinase-8 as the functional interstitial collagenase in mouse atheroma. Arterioscler Thromb Vasc Biol. 2014;34:1179–1186.
9. Sabeht F, Li XY, Saunders TL, Rowe RG, Weiss SJ. Secreted versus membrane-anchored collagenases: relative roles in fibroblast-dependent collagenolysis and invasion. J Biol Chem. 2009;284:23001–23011.
10. Chun TH, Holmbeck K, Liberf, Babiott GB, Allen ED, Weiss SJ. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 2006;125:577–591.
11. Holmbeck K, Blanco P, Caterina J, Yamada S, Kromer M, Kuznetsova NS, Manikani M, Robey PG, Poole AR, Piedbo P, Ward JM, Birkedal-Hansen H. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999;99:81–92.
12. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA. 2000;97:4052–4057.
13. Schneider F, Sukhova GK, Aikawa M, Canner J, Gerdes N, Shi GP, Apte SS, Libby P. Matrix metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques. Circulation. 2008;117:931–939.
14. Chun TH, Inoue M, Morisaki H, Yamanaik A, Miyamoto Y, Okamura T, Sato- Kusubata K, Weiss SJ. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes. 2010;59:2484–2494.
15. Filippov S, Koenig GC, Chun TH, Holtry KB, Ota I, Bugge TH, Roberts JD, Fay WP, Birkedal-Hansen H, Holmbeck K, Sabeht F, Allen ED, Weiss SJ. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med. 2005;202:663–671.
16. Piedrahta JA, Zhang SH, Hamarajon JA, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA. 1992;89:4471–4475.
17. Yana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M. Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci. 2007;120:1607–1614.
18. Tang Y, Rowe RG, Botvnick EL, Kurup A, Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, Begun D, Saunders T, Weiss SJ. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/ YAP/TAZ signaling axis. Dev Cell. 2013;25:402–416.
19. Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science. 2003;300:329–332.
20. Imai T, Takakawa R, Marchand S, Dentsiz E, Bornert JM, Messaddeq N, Wenzel M, Mark M, Desvergne B, Wahl W, Chambon P, Metzger D. Peroxisome proliferator-activated receptor gamma is required in mature white adipocytes for their survival in the mouse. Proc Natl Acad Sci USA. 2004;101:4543–4547.
21. Ohman MK, Wright AP, Wikenheiser KJ, Luo W, Russo HM, Eitzman DT. Monocyte chemoattractant protein-1 deficiency protects against visceral fat-induced atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1151–1158.
22. Magnato-Garcia E, Tarrillo M, Lichtman AH. Mouse models of atherosclerosis. Curr Protoc Immunol. 2001;Chapter 15:Unit 15.2.1–1.23.
23. Chun TH, Inoue M. 3D adipocyte differentiation and peri-adipocyte collagen turnover. Methods Enzymol. 2014;538:15–34.
24. Lyon Ray J, Leach R, Herbert J-M, Benson M. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 2001;23:185–188.
25. Afroz T, Hussein M. C-Myc-binding sites mediate G1/S-associated repression of the plasma membrane Ca²⁺-ATPase 1–promoter. J Biol Chem. 2000;275:9062–9069.
26. Moreas G, Labuz JM, Leung BM, Inoue M, Chun TH, Takakawa S. On being the right size: scaling effects in designing a human-on-a-chip. Integr Biol (Camb). 2013;5:1149–1161.
27. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;288:2466–2474.
28. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou R, Zhang J, Wu J, Zeng R, Chen YE. Loss of perivascular adipose tissue on peroxisome proliferator-
activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:

1067–1078.

29. Shen Z, Li C, Frierl RA, Gerasimova AS, Lee SJ, Wu J, Wang MM, Lumeng CN, Brosius FC, Duan SZ, Mortensen RM. Smooth muscle protein 22 alpha-Cre is expressed in myeloid cells in mice. Biochem Biophys Res Commun. 2012;422:

639–642.

30. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004;16:

558–564.

31. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17:

332–341.

32. Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ. Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation. Circ Res. 2003;92:

1314–1321.

33. Koutsouki E, Beeching CA, Slater SC, Blaschuk OW, Sala-Newby GB, George SJ. N-cadherin-dependent cell-cell contacts promote human saphenous vein smooth muscle cell survival. Arterioscler Thromb Vasc Biol. 2005;25:

982–988.

34. Hou R, Liu L, Anees S, Hiroyasu S, Sibinga NES. The FAT1 cadherin integrates vascular smooth muscle cell growth and migration signals. J Cell Biol. 2006;173:

417–429.

35. Schlosser A, Pilecki B, Hemstra LE, Kejling K, Kristmannsdottir GB, Wulf-Katz S, Hansen PB, Stubbe J, Wrede C, Hegermann J, Ochs M, Rathkolb B, Schrewe A, Bekereldjian R, Wolf E, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Lindholt JS, Holmskov U, Sorensen GL. MFAP4 promotes vascular smooth muscle cell survival. Arterioscler Thromb Vasc Biol. 2016;36:

122–133.

36. Ikese M, Matsui Y, Ohta D, Danzaki K, Ito K, Kanayama M, Kurotaki D, Morimoto J, Kojima T, Tsutsui H, Uede T. Syndecan-4 deficiency limits neointimal formation after vascular injury by regulating vascular smooth muscle cell proliferation and vascular progenitor cell mobilization. Arterioscler Thromb Vasc Biol. 2011;31:

1066–1074.

37. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 1997;272:

2446–2451.

38. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kino H, Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol. 2001;153:

893–904.

39. Covington MD, Burghardt RC, Parrish AR. Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol. 2006;290:

F43–F51.

40. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res. 2001;52:

372–386.

41. Shofuda K, Yasumitsu H, Nishihashi A, Miki K, Miyazaki K. Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMP with and without transmembrane domain. J Biol Chem. 1997;272:

9749–9754.
SUPPLEMENTAL MATERIAL
Table S1. List of genes differentially expressed in Cre(-) and SM22α-Cre(+)Mmp14^{F/F} VSMCs

ENTREZ ID	SYMBOL	GENE NAME	Cre(-) 1	Cre(-) 2	Cre(+1)	Cre(+2)	Cre(AVG)	Cre(+AVG)	Log2 (pos-nega)	Fold-change			
379043	Raet1e	retinoic acid early transcript 1E	3.4	3.2	5.6	6.7	3.3	6.2	2.8	7.1			
57266	Ccld14	chemokine (C-X-C motif) ligand 14	5.4	4.7	8.6	6.4	5.0	7.5	2.5	5.7			
20210	Saa3	serum amyloid A 3	3.4	6.0	7.3	7.0	4.7	7.1	2.5	5.5			
14941	G2md	granzyme D	2.0	2.2	6.8	2.1	2.1	4.4	2.4	5.1			
57781	Cd200r1	CD200 receptor 1	4.1	3.8	6.0	6.5	3.9	6.3	2.4	5.1			
17533	Mrc1	mannose receptor, C type 1	4.9	5.7	7.0	7.7	5.3	7.4	2.1	4.2			
80891	Fcrls	Fc receptor-like S, scavenger receptor	6.0	3.7	8.2	5.6	4.8	6.9	2.1	4.2			
232413	Clec12a	C-type lectin domain family 12, member a	4.8	5.3	7.3	6.8	5.0	7.0	2.0	4.1			
56744	Pf4	platelet factor 4	4.3	5.2	5.5	8.1	4.8	6.8	2.0	4.1			
21810	Tgfbi	transforming growth factor, beta induced	6.0	6.7	8.2	8.5	6.3	8.3	2.0	4.0			
72318	Cyth4	cytohesin 4	5.8	5.7	7.6	7.9	5.8	7.7	2.0	3.9			
15951	Ifi204	interferon activated gene 204	3.2	4.3	6.1	5.3	3.8	5.7	2.0	3.9			
320292	Rasgef1b	RasGEF domain family, member 1B	3.7	3.9	5.8	5.7	3.8	5.8	2.0	3.9			
12774	Ccr5	chemokine (C-C motif) receptor 5	3.4	3.0	4.8	5.4	3.2	5.1	1.9	3.7			
14276	Folr2	folate receptor 2 (fetal)	5.0	4.5	8.0	5.4	4.8	6.7	1.9	3.7			
20556	Slfn2	schlafen 2	6.2	5.9	7.9	8.0	6.0	7.9	1.9	3.7			
15109	Hal	histidine ammonia lyase	2.4	2.8	2.5	6.5	2.6	4.5	1.9	3.7			
243277	Gpr133	G protein-coupled receptor 133	2.9	4.1	6.1	4.7	3.5	5.4	1.9	3.6			
68774	Ms4a6d	membrane-spanning 4-domains, subfamily A, member 6D	5.7	5.6	7.5	7.5	5.6	7.5	1.8	3.6			
17916	Myo1f	myosin IF	5.6	5.7	7.3	7.7	5.7	7.5	1.8	3.6			
107321	Lpxn	leupaxin	3.2	3.7	5.5	5.0	3.4	5.2	1.8	3.5			
246177	Myo1g	myosin IG	3.3	3.3	4.4	5.8	3.3	5.1	1.8	3.5			
20452	St8sia4	ST8 alpha-N-acetylneuraminide alpha-2,8-sialyltransferase 4	4.0	4.5	5.7	6.3	4.3	6.0	1.8	3.4			
109648	Npy	neuropeptide Y	8.0	7.5	8.9	10.1	7.7	9.5	1.8	3.4			
17084	Ly86	lymphocyte antigen 86	4.3	5.5	6.2	7.0	4.9	6.6	1.8	3.4			
19264	Ptprc	protein tyrosine phosphatase, receptor type, C	6.6	6.7	8.3	8.5	6.6	8.4	1.8	3.4			
13733	Emr1	EGF-like module containing, mucin-like, hormone receptor-like sequence 1	6.1	6.0	7.9	7.6	6.0	7.8	1.7	3.3			
14727	Gp49a	glycoprotein 49 A	6.6	5.9	7.8	8.2	6.3	8.0	1.7	3.3			
23845	Clec5a	C-type lectin domain family 5, member a	4.4	4.7	5.8	6.8	4.6	6.3	1.7	3.3			
20568	Slpi	secretory leukocyte peptidase inhibitor	5.0	4.7	6.2	6.9	4.9	6.6	1.7	3.3			
Gene Symbol	Description	Value											
-------------	--	---------											
Ccl9	Chemokine (C-C motif) ligand 9	5.2 6.0 6.9 7.7 5.6 7.3 1.7 3.2											
Pib	Paired Ig-like receptor B	5.5 5.9 7.1 7.7 5.7 7.4 1.7 3.2											
Bnk	B cell linker	6.1 6.1 7.8 7.8 6.1 7.8 1.7 3.2											
AF357355	snoRNA AF357355	3.2 3.2 6.1 3.6 3.2 4.9 1.7 3.2											
Msr1	Macrophage scavenger receptor 1	6.4 6.7 8.1 8.4 6.6 8.2 1.7 3.2											
Tspan13	Tetraspanin 13	4.0 5.3 6.4 6.2 4.6 6.3 1.7 3.2											
Adam8	A disintegrin and metallopeptidase domain 8	6.6 6.5 8.3 8.0 6.5 8.2 1.7 3.1											
Dpep2	Dipeptidase 2	5.3 3.9 6.6 5.9 4.6 6.3 1.7 3.1											
Igap2	IQ motif containing GTPase activating protein 2	5.4 4.9 6.3 7.3 5.2 6.8 1.6 3.1											
Tnfaip8l2	Tumor necrosis factor, alpha-induced protein 8-like 2	4.6 4.9 6.1 6.8 4.8 6.4 1.6 3.1											
Cd48	CD48 antigen	5.8 5.3 6.9 7.5 5.6 7.2 1.6 3.1											
AB124611	cDNA sequence AB124611	5.1 5.1 6.3 7.1 5.1 6.7 1.6 3.1											
Irf8	Interferon regulatory factor 8	5.5 5.2 6.6 7.3 5.4 7.0 1.6 3.1											
Ccl22	Chemokine (C-C motif) ligand 22	2.7 3.3 2.6 6.7 3.0 4.6 1.6 3.0											
Selplg	Selectin, platelet (p-selectin) ligand	5.5 5.1 6.3 7.5 5.3 6.9 1.6 3.0											
Vav1	Vav 1 oncogene	4.5 3.8 5.6 5.9 4.2 5.8 1.6 3.0											
Fabp5	Fatty acid binding protein 5, epidermal	8.5 8.0 9.4 10.2 8.2 9.8 1.6 3.0											
Mpeg1	Macrophage expressed gene 1	6.9 6.6 8.0 8.7 6.8 8.3 1.6 3.0											
P2ry6	Pyrimidinergic receptor P2Y, G-protein coupled, 6	6.9 6.6 8.5 8.2 6.7 8.3 1.6 3.0											
Ptpn6	Protein tyrosine phosphatase, non-receptor type 6	5.0 5.3 6.4 7.1 5.2 6.7 1.6 3.0											
Trem2	Triggering receptor expressed on myeloid cells 2	7.4 7.0 8.6 9.0 7.2 8.8 1.6 3.0											
Alox5ap	Arachidonate 5-lipoxygenase activating protein	7.7 7.4 9.1 9.1 7.6 9.1 1.6 2.9											
C1qa	Complement component 1, q subcomponent, alpha polypeptide	6.6 6.9 8.2 8.4 6.7 8.3 1.6 2.9											
Ccl3	Chemokine (C-C motif) ligand 3	6.4 7.1 7.7 9.0 6.8 8.3 1.6 2.9											
Psm9	Proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2)	4.6 4.8 5.8 6.7 4.7 6.3 1.6 2.9											
Fcgr3	Fc receptor, IgG, low affinity III	6.3 6.7 7.8 8.3 6.5 8.1 1.5 2.9											
Ccr1	Chemokine (C-C motif) receptor 1	3.3 3.4 4.0 5.7 3.3 4.9 1.5 2.9											
Cdt4	CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated)	3.9 3.4 3.7 6.6 3.6 5.1 1.5 2.9											
Ncf2	Neutrophil cytosolic factor 2	5.2 5.6 6.5 7.4 5.4 7.0 1.5 2.9											
Ncf4	Neutrophil cytosolic factor 4	3.6 4.3 5.2 5.8 4.0 5.5 1.5 2.9											
Fcgr1	Fc receptor, IgG, high affinity I	4.6 4.6 6.4 5.8 4.6 6.1 1.5 2.9											
1700054O19Rik	RIKEN cDNA 1700054O19 gene	2.5 4.0 4.8 4.7 3.2 4.7 1.5 2.8											
gene	description	row_1	row_2	row_3	row_4	row_5	row_6	row_7	row_8	row_9	row_10		
--------	--	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------		
12767	Cxcr4	chemokine (C-X-C motif) receptor 4	6.8	6.6	8.1	8.3	6.7	8.2	1.5	2.8			
23900	Hcst	hematopoietic cell signal transducer	5.1	5.7	6.2	7.6	5.4	6.9	1.5	2.8			
54712	Plxnc1	plexin C1	6.5	5.6	7.4	7.7	6.0	7.5	1.5	2.8			
19354	Rac2	RAS-related C3 botulinum substrate 2	6.9	6.9	8.1	8.7	6.9	8.4	1.5	2.8			
668218	Bin2	bridging integrator 2	3.0	2.9	3.9	5.0	2.9	4.4	1.5	2.8			
217305	Cd300ld	CD300 molecule-like family member d	4.8	5.2	6.2	6.7	5.0	6.5	1.5	2.8			
12984	Csf2rb2	colony stimulating factor 2 receptor, beta 2, low-affinity (granulocyte-macrophage)	6.3	6.0	7.3	8.0	6.1	7.6	1.5	2.8			
13618	Ednrb	endothelin receptor type B	4.4	4.3	5.2	6.4	4.3	5.8	1.5	2.8			
14130	Fcgr2b	Fc receptor, IgG, low affinity IIb	5.4	5.4	6.4	7.5	5.4	6.9	1.5	2.8			
14544	Gda	guanine deaminase	4.8	5.9	6.3	7.4	5.4	6.8	1.5	2.8			
14744	Gpr65	G-protein coupled receptor 65	5.8	4.9	7.1	6.7	5.4	6.9	1.5	2.8			
66857	Plbd1	phospholipase B domain containing 1	3.2	4.9	3.2	7.8	4.0	5.5	1.5	2.8			
16534	Kcnn4	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4	4.0	4.3	5.8	5.5	4.2	5.7	1.5	2.8			
320207	Pik3r5	phosphoinositide-3-kinase, regulatory subunit 5, p101	5.9	5.7	7.2	7.4	5.8	7.3	1.5	2.8			
216869	Arrb2	arrestin, beta 2	5.5	5.5	6.8	7.1	5.5	7.0	1.5	2.8			
19735	Rgs2	regulator of G-protein signaling 2	5.3	4.4	6.2	6.5	4.9	6.3	1.5	2.8			
217203	Tmem106a	transmembrane protein 106A	6.9	6.8	8.4	8.2	6.8	8.3	1.5	2.8			
215632	Psd4	pleckstrin and Sec7 domain containing 4	4.1	2.9	4.7	5.1	3.5	4.9	1.5	2.7			
226652	Arhgap30	Rho GTPase activating protein 30	4.8	4.6	5.8	6.4	4.7	6.1	1.4	2.7			
12047	Bcl2a1d	B cell leukemia/lymphoma 2 related protein A1d	7.6	7.5	8.9	9.1	7.5	9.0	1.4	2.7			
76933	Ifi27l2a	interferon, alpha-inducible protein 27 like 2A	3.5	3.4	5.4	4.4	3.5	4.9	1.4	2.7			
16197	Il7r	interleukin 7 receptor	6.7	7.2	7.8	9.0	7.0	8.4	1.4	2.7			
17085	Ly9	lymphocyte antigen 9	4.1	4.3	5.2	6.1	4.2	5.7	1.4	2.7			
105855	Nckap1l	NCK associated protein 1 like	6.9	6.8	8.2	8.4	6.8	8.3	1.4	2.7			
239849	Cd200r4	CD200 receptor 4	6.6	6.2	7.7	8.0	6.4	7.9	1.4	2.7			
16409	Itgam	integrin alpha M	5.7	5.9	6.4	8.0	5.8	7.2	1.4	2.7			
50934	Slc7a8	solute carrier family 7 (cationic amino acid transporter, y+ system), member 8	5.9	5.8	7.2	7.4	5.9	7.3	1.4	2.7			
107769	Tm6sf1	transmembrane 6 superfamily member 1	5.4	5.5	6.6	7.2	5.5	6.9	1.4	2.7			
94176	Dock2	dedicator of cyto-kinesis 2	4.4	4.6	5.7	6.1	4.5	5.9	1.4	2.7			
223433	Fam105a	family with sequence similarity 105, member A	5.1	5.0	6.1	6.8	5.1	6.5	1.4	2.7			
279572	Tlr13	toll-like receptor 13	6.6	6.2	7.5	8.1	6.4	7.8	1.4	2.7			
Symbol	Description	Gene Name	Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8	Value9	Value10	
----------	--	--------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	---------	---------
Hpgds	hematopoietic prostaglandin D synthase		5.0	4.9	6.3	6.4	4.9	6.3	1.4	2.6			
Htr2b	5-hydroxytryptamine (serotonin) receptor 2B		3.8	4.2	5.3	5.6	4.0	5.4	1.4	2.6			
Apobec1	apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1		7.3	7.4	8.8	8.7	7.3	8.7	1.4	2.6			
Cd180	CD180 antigen		6.9	6.7	8.3	8.0	6.8	8.2	1.4	2.6			
Emb	embigin		7.0	6.9	7.9	8.8	7.0	8.3	1.4	2.6			
Gatm	glycine amidinotransferase (L-arginine:glycine amidinotransferase)		4.8	4.9	5.7	6.8	4.9	6.2	1.4	2.6			
Sly	Sycp3 like Y-linked		4.4	4.9	6.3	5.9	4.7	6.1	1.4	2.6			
Aoah	acyloxyacyl hydrolase		3.4	3.2	4.4	5.0	3.3	4.7	1.4	2.6			
Cc5	chemokine (C-C motif) ligand 5		4.7	5.3	5.1	7.6	5.0	6.4	1.4	2.6			
Cd14	CD14 antigen		5.6	5.8	7.1	7.0	5.7	7.1	1.4	2.6			
Myo1g	myosin IG		4.3	4.0	5.1	6.0	4.1	5.5	1.4	2.6			
Ncf1	neutrophil cytosolic factor 1		5.1	4.5	5.9	6.5	4.8	6.2	1.4	2.6			
H2-Aa	histocompatibility 2, class II antigen A, alpha		2.8	2.7	2.6	5.6	2.8	4.1	1.4	2.6			
Pid1	phosphotyrosine interaction domain containing 1		4.4	4.3	6.1	5.3	4.3	5.7	1.4	2.6			
AF251705	cDNA sequence AF251705		6.2	6.0	7.1	7.9	6.1	7.5	1.4	2.6			
Mir24-1	microRNA 24-1		3.3	4.0	5.6	4.5	3.7	5.0	1.4	2.6			
Rtp4	receptor transporter protein 4		3.1	2.7	5.4	3.0	2.9	4.2	1.4	2.6			
C3ar1	complement component 3a receptor 1		8.0	8.0	9.4	9.3	8.0	9.3	1.4	2.5			
Ctsc	cathepsin C		6.5	6.6	7.5	8.3	6.6	7.9	1.4	2.5			
Mir680-1	microRNA 680-1		4.4	5.8	6.7	6.2	5.1	6.4	1.3	2.5			
Rgs1	regulator of G-protein signaling 1		4.2	4.6	6.1	5.4	4.4	5.7	1.3	2.5			
Hpse	heparanase		5.4	5.7	6.3	7.4	5.5	6.9	1.3	2.5			
Aldh1a3	aldehyde dehydrogenase family 1, subfamily A3		4.6	4.0	6.2	5.0	4.3	5.6	1.3	2.5			
Bcl2a1b	B cell leukemia/lymphoma 2 related protein A1b		7.4	7.1	8.8	8.4	7.3	8.6	1.3	2.5			
Mir5123	microRNA 5123		3.2	3.5	4.5	4.8	3.3	4.7	1.3	2.5			
Pld4	phospholipase D family, member 4		6.0	4.4	5.7	7.3	5.2	6.5	1.3	2.5			
1700040F15Rik	RIKEN cDNA 1700040F15 gene		4.4	5.6	6.5	6.1	5.0	6.3	1.3	2.5			
Acss1	acyl-CoA synthetase short-chain family member 1		2.7	3.4	3.8	4.9	3.1	4.4	1.3	2.5			
Lair1	leukocyte-associated Ig-like receptor 1		5.5	5.2	6.9	6.4	5.3	6.7	1.3	2.5			
Naglu	alpha-N-acetylgalcosaminidase (Sanfilippo disease IIIB)		5.5	4.9	6.0	7.0	5.2	6.5	1.3	2.5			
Nfam1	Nfat activating molecule with ITAM motif 1		4.4	4.0	5.2	5.9	4.2	5.5	1.3	2.5			
Pik3cg	phosphoinositide-3-kinase, catalytic, gamma polypeptide		4.2	3.9	5.0	5.6	4.0	5.3	1.3	2.5			
Tlr8	toll-like receptor 8		4.8	4.6	5.6	6.4	4.7	6.0	1.3	2.5			
Gene ID	Gene Name	Description	Value1	Value2	Value3	Value4	Value5	Value6	Value7				
--------	-----------	--	--------	--------	--------	--------	--------	--------	--------				
210293	Dock10	dedicator of cytokinesis 10	5.9	5.7	6.5	7.7	5.8	7.1	1.3	2.5			
212937	Tifab	TRAF-interacting protein with forkhead-associated domain, family member B	3.6	3.3	4.2	5.4	3.5	4.8	1.3	2.5			
16411	Itgax	integrin alpha X	5.5	6.9	6.3	8.8	6.2	7.5	1.3	2.4			
407790	Ndufa4l2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2	3.6	6.2	6.3	6.1	4.9	6.2	1.3	2.4			
16790	Anpep	alanyl (membrane) aminopeptidase	8.8	9.0	10.0	10.4	8.9	10.2	1.3	2.4			
12044	Bcl2a1a	B cell leukemia/lymphoma 2 related protein A1a	6.0	6.3	7.2	7.6	6.2	7.4	1.3	2.4			
18187	Nrp2	neuropilin 2	6.7	6.2	7.6	7.9	6.5	7.7	1.3	2.4			
71653	4930506M07Rik	RIKEN cDNA 4930506M07 gene	6.1	5.5	6.4	7.7	5.8	7.1	1.3	2.4			
60533	Cd274	CD274 antigen	4.7	4.5	4.6	7.1	4.6	5.8	1.3	2.4			
18726	Lilra6	leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 6	3.7	3.8	4.8	5.2	3.7	5.0	1.3	2.4			
228026	Pdk1	pyruvate dehydrogenase kinase, isoenzyme 1	3.8	4.7	5.5	5.4	4.2	5.5	1.3	2.4			
13034	Ctse	cathepsin E	3.0	4.3	3.2	6.7	3.7	4.9	1.3	2.4			
15163	Hcls1	hematopoietic cell specific Lyn substrate 1	6.1	5.7	7.1	7.2	5.9	7.2	1.3	2.4			
16822	Lcp2	lymphocyte cytosolic protein 2	5.3	5.3	6.2	6.9	5.3	6.5	1.3	2.4			
237542	Osbpl8	oxysterol binding protein-like 8	7.6	7.1	8.6	8.7	7.4	8.6	1.3	2.4			
12523	Cd84	CD84 antigen	6.8	7.1	7.8	8.7	7.0	8.2	1.3	2.4			
56619	Clec4e	C-type lectin domain family 4, member e	5.4	3.8	5.5	6.2	4.6	5.8	1.3	2.4			
211228	Lrrc25	leucine rich repeat containing 25	3.9	4.3	5.0	5.7	4.1	5.3	1.3	2.4			
12508	Cd53	CD53 antigen	8.5	8.5	9.6	10.0	8.5	9.8	1.2	2.4			
83490	Pik3ap1	phosphoinositide-3-kinase adaptor protein 1	5.5	5.5	6.8	6.6	5.5	6.7	1.2	2.4			
56193	Plek	pleckstrin	7.7	7.6	8.6	9.3	7.7	8.9	1.2	2.4			
78591	A430104N18Rik	RIKEN cDNA A430104N18 gene	4.5	3.2	4.4	5.7	3.8	5.1	1.2	2.3			
72042	Cotl1	coactosin-like 1 (Dictyostelium)	6.7	6.2	7.2	8.2	6.4	7.7	1.2	2.3			
101056121	LOC101056121	Y-linked testis-specific protein 1-like	4.2	4.5	5.6	5.6	4.4	5.6	1.2	2.3			
56857	Slc37a2	solute carrier family 37 (glycerol-3-phosphate transporter), member 2	5.2	4.7	6.2	6.2	5.0	6.2	1.2	2.3			
170743	Tlr7	toll-like receptor 7	4.9	4.8	5.7	6.4	4.8	6.1	1.2	2.3			
436467	Trav14-1	T cell receptor alpha variable 14-1	2.9	3.9	4.7	4.5	3.4	4.6	1.2	2.3			
53314	Batf	basic leucine zipper transcription factor, ATF-like	3.8	3.7	4.5	5.4	3.7	4.9	1.2	2.3			
12493	Cd37	CD37 antigen	4.9	4.7	5.9	6.2	4.8	6.1	1.2	2.3			
16414	Itgb2	integrin beta 2	7.3	7.1	7.8	9.1	7.2	8.4	1.2	2.3			
56792	Stap1	signal transducing adaptor family member 1	3.4	3.7	5.0	4.6	3.6	4.8	1.2	2.3			
239393	Lrp12	low density lipoprotein-related protein 12	6.6	6.4	7.2	8.2	6.5	7.7	1.2	2.3			
Gene ID	Gene Name	Description	Values										
--------	-----------	-------------	--------										
22368	Trpv2	transient receptor potential channel, subfamily V, member 2	6.1 5.6 7.0 7.1 5.8 7.0 1.2 2.3										
100504230	AU020206	expressed sequence AU020206	8.0 7.0 8.5 8.8 7.5 8.7 1.2 2.3										
212032	Hk3	hexokinase 3	3.8 4.0 5.0 5.2 3.9 5.1 1.2 2.3										
80719	Igsf6	immunoglobulin superfamily, member 6	6.0 6.3 6.8 8.0 6.2 7.4 1.2 2.3										
78771	Mctp1	multiple C2 domains, transmembrane 1	5.4 4.9 6.1 6.6 5.2 6.3 1.2 2.3										
20564	Slit3	slit homolog 3 (Drosophila)	6.3 5.8 7.7 6.8 6.1 7.3 1.2 2.3										
216991	Adap2	ArfGAP with dual PH domains 2	4.2 3.8 5.0 5.4 4.0 5.2 1.2 2.3										
54725	Cadm1	cell adhesion molecule 1	6.9 5.7 7.4 7.6 6.3 7.5 1.2 2.3										
18106	Cd244	CD244 natural killer cell receptor 2B4	3.0 2.8 3.3 4.9 2.9 4.1 1.2 2.3										
16154	Il10ra	interleukin 10 receptor, alpha	3.8 4.0 4.8 5.3 3.9 5.1 1.2 2.3										
101056060	LOC101056060	Y-linked testis-specific protein 1-like	4.8 5.5 6.4 6.2 5.1 6.3 1.2 2.3										
23833	Cd52	CD52 antigen	7.1 6.9 7.7 8.7 7.0 8.2 1.2 2.3										
12825	Col3a1	collagen, type III, alpha 1	5.5 5.4 7.0 6.2 5.4 6.6 1.2 2.3										
66102	Cxcl16	chemokine (C-X-C motif) ligand 16	6.8 6.4 7.7 7.9 6.6 7.8 1.2 2.3										
16331	Inpp5d	inositol polyphosphate-5-phosphatase D	5.8 5.3 6.6 6.9 5.6 6.7 1.2 2.3										
68279	Mcoln2	mucolipin 2	5.3 4.4 6.0 6.1 4.9 6.0 1.2 2.3										
109225	Ms4a7	membrane-spanning 4-domains, subfamily A, member 7	8.8 8.1 9.9 9.5 8.5 9.7 1.2 2.3										
100034251	Wfdc17	WAP four-disulfide core domain 17	9.0 9.3 9.6 11.1 9.2 10.4 1.2 2.3										
73149	Clec4a3	C-type lectin domain family 4, member a3	3.1 3.9 4.2 5.1 3.5 4.7 1.2 2.3										
16658	Mafb	v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian)	4.9 4.7 5.9 6.1 4.8 6.0 1.2 2.3										
245945	Rbm47	RNA binding motif protein 47	4.1 3.9 5.0 5.3 4.0 5.1 1.2 2.3										
21938	Tnfrsf1b	tumor necrosis factor receptor superfamily, member 1b	6.8 6.5 7.3 8.4 6.7 7.8 1.2 2.3										
57257	Vav3	vav 3 oncogene	3.4 3.0 4.3 4.4 3.2 4.3 1.2 2.3										
219144	Arl11	ADP-ribosylation factor-like 11	4.9 4.6 5.7 6.1 4.7 5.9 1.2 2.2										
12260	C1qb	complement component 1, q subcomponent, beta polypeptide	8.3 8.1 9.3 9.4 8.2 9.4 1.2 2.2										
381654	C87414	expressed sequence C87414	2.3 4.2 4.3 4.6 3.3 4.4 1.2 2.2										
108101	Fermt3	fermitin family homolog 3 (Drosophila)	4.6 4.6 5.7 5.9 4.6 5.8 1.2 2.2										
207839	Galnt6	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminytransferase 6	4.9 4.5 5.4 6.3 4.7 5.9 1.2 2.2										
18826	Lcp1	lymphocyte cytosolic protein 1	7.9 7.9 8.9 9.2 7.9 9.1 1.2 2.2										
73656	Ms4a6c	membrane-spanning 4-domains, subfamily A, member 6C	4.3 3.8 4.6 5.8 4.1 5.2 1.2 2.2										
ID	Gene	Description	Score 1	Score 2	Score 3	Score 4	Score 5	Score 6	Score 7	Score 8	Score 9	Score 10	
-------	----------	---	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	
22368	Trpv2	transient receptor potential cation channel, subfamily V, member 2	6.3	6.1	7.5	7.3	6.2	7.4	1.2	2.2			
54445	Unc93b1	unc-93 homolog B1 (C. elegans)	6.6	6.2	7.3	7.8	6.4	7.6	1.2	2.2			
12721	Cor1a	corin, actin binding protein 1A	5.1	5.2	6.3	6.3	5.1	6.3	1.2	2.2			
12978	Csf1r	colony stimulating factor 1 receptor	6.7	6.3	7.7	7.7	6.5	7.7	1.2	2.2			
20311	Cxcl5	chemokine (C-X-C motif) ligand 5	3.5	4.3	4.6	5.5	3.9	5.1	1.2	2.2			
13058	Cybb	cytochrome b-245, beta polypeptide	7.6	7.2	7.9	9.2	7.4	8.6	1.2	2.2			
17948	Naip2	NLR family, apoptosis inhibitory protein 2	5.1	4.8	5.8	6.4	5.0	6.1	1.2	2.2			
11468	Actg2	actin, gamma 2, smooth muscle, enteric	8.1	7.6	9.4	8.5	7.8	9.0	1.1	2.2			
12491	Cd36	CD36 antigen	6.4	7.6	7.1	9.2	7.0	8.2	1.1	2.2			
14017	Evi2a	ecotropic viral integration site 2a	5.7	5.7	6.8	6.8	5.7	6.8	1.1	2.2			
23880	Fyb	FYN binding protein	5.5	5.0	6.7	6.2	5.3	6.4	1.1	2.2			
70719	Hmha1	histocompatibility (minor) HA-1	4.8	4.0	5.6	5.5	4.4	5.5	1.1	2.2			
64099	Parvg	parvin, gamma	3.5	3.9	3.7	5.8	3.7	4.8	1.1	2.2			
23078	Themis2	thymocyte selection associated family member 2	4.5	4.3	5.1	6.0	4.4	5.5	1.1	2.2			
57425	U90926	cDNA sequence U90926	3.9	5.3	4.8	6.7	4.6	5.7	1.1	2.2			
12489	Cd33	CD33 antigen	6.0	5.7	5.7	8.2	5.8	7.0	1.1	2.2			
14191	Fgr	Gardner-Rasheed feline sarcoma viral (Fgr) oncogene homolog	3.1	3.0	3.0	5.3	3.0	4.2	1.1	2.2			
15117	Has2	hyaluronan synthase 2	5.3	5.3	6.4	6.5	5.3	6.5	1.1	2.2			
14728	Lirlb4	leukocyte immunoglobulin-like receptor, subfamily B, member 4	9.1	9.5	10.3	10.6	9.3	10.4	1.1	2.2			
69189	Memp1	mast cell expressed membrane protein 1	3.4	3.1	3.2	5.6	3.3	4.4	1.1	2.2			
257662	Olfr1290	olfactory receptor 1290	2.3	3.4	4.7	3.4	2.9	4.0	1.1	2.2			
241452	Dhrs9	dehydrogenase/reductase (SDR family) member 9	4.0	4.2	5.2	5.3	4.1	5.3	1.1	2.2			
56743	Lat2	linker for activation of T cells family, member 2	6.3	6.3	7.4	7.4	6.3	7.4	1.1	2.2			
11846	Arg1	arginase, liver	3.8	3.4	4.3	5.2	3.6	4.7	1.1	2.2			
665521	BC080696	cDNA sequence BC080696	3.5	4.0	4.7	5.0	3.7	4.8	1.1	2.2			
18830	Pltp	phospholipid transfer protein	5.4	5.5	7.1	6.1	5.5	6.6	1.1	2.2			
218442	Serinc5	serine incorporator 5	5.2	5.0	5.7	6.7	5.1	6.2	1.1	2.2			
171209	Asic3	acid-sensing (proton-gated) ion channel 3	3.1	3.3	5.1	3.5	3.2	4.3	1.1	2.1			
232975	Atp1a3	ATPase, Na+/K+ transporting, alpha 3 polypeptide	5.6	5.3	6.0	7.2	5.5	6.6	1.1	2.1			
20305	Ccl6	chemokine (C-C motif) ligand 6	6.6	7.8	6.5	10.1	7.2	8.3	1.1	2.1			
329679	Fnip2	folliculin interacting protein 2	6.2	6.5	7.1	7.7	6.3	7.4	1.1	2.1			
83924	Gpr137b	G protein-coupled receptor 137B	6.4	5.8	6.8	7.6	6.1	7.2	1.1	2.1			
Gene ID	Description	Expression 1	Expression 2	Expression 3	Expression 4	Expression 5	Expression 6						
--------	-------------	--------------	--------------	--------------	--------------	--------------	--------------						
15950	IIf203	interferon activated gene 203	3.4	3.1	5.0	3.7	3.2	4.3	1.1	2.1			
21391	Rasf4	Ras association (RalGDS/AF-6) domain family member 4	4.6	3.4	4.9	5.3	4.0	5.1	1.1	2.1			
76408	Abcc3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	5.0	4.2	5.9	5.5	4.6	5.7	1.1	2.1			
620551	LOC620551	PRAME family member S-like	3.3	3.9	4.8	4.5	3.6	4.7	1.1	2.1			
20354	Sema4d	sema domain, immunoglobulin domain (lg), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4D	4.3	4.1	5.1	5.4	4.2	5.3	1.1	2.1			
20612	Siglec1	sialic acid binding Ig-like lectin 1, sialoadhesin	4.6	4.0	5.0	5.8	4.3	5.4	1.1	2.1			
65221	Scl15a3	solute carrier family 15, member 3	7.3	7.4	8.1	8.8	7.3	8.4	1.1	2.1			
320148	B430306N03Rik	RIKEN cDNA B430306N03 gene	4.2	4.1	4.7	5.7	4.1	5.2	1.1	2.1			
12229	Btk	Bruton agammaglobulinemia tyrosine kinase	4.3	4.0	5.1	5.4	4.1	5.2	1.1	2.1			
17474	Clec4d	C-type lectin domain family 4, member d	8.4	8.2	9.1	9.6	8.3	9.3	1.1	2.1			
100316820	Mir1970	microRNA 1970	3.8	3.7	4.9	4.8	3.8	4.9	1.1	2.1			
100628621	Mir3961	microRNA 3961	4.9	4.0	5.6	5.4	4.4	5.5	1.1	2.1			
20611	Ssty1	spermiogenesis specific transcript on the Y 1	5.0	5.9	6.6	6.4	5.4	6.5	1.1	2.1			
226409	Zranb3	zinc finger, RAN-binding domain containing 3	4.3	4.6	5.2	5.9	4.5	5.6	1.1	2.1			
232201	Arhgap25	Rho GTPase activating protein 25	4.8	5.4	5.7	6.7	5.1	6.2	1.1	2.1			
380732	Mir1	mast cell immunoglobulin like receptor 1	4.5	4.4	5.5	5.4	4.4	5.5	1.1	2.1			
320024	Nceh1	neutral cholesterol ester hydrolase 1	8.0	7.9	8.9	9.2	8.0	9.0	1.1	2.1			
14051	Eya4	eyes absent 4 homolog (Drosophila)	3.3	2.8	4.4	3.8	3.1	4.1	1.1	2.1			
67731	FbX32	F-box protein 32	4.3	4.3	4.7	6.0	4.3	5.4	1.1	2.1			
14176	Fgf5	fibroblast growth factor 5	4.1	3.8	4.4	5.6	3.9	5.0	1.1	2.1			
237436	Gas2i3	growth arrest-specific 2 like 3	5.2	5.7	6.1	6.9	5.4	6.5	1.1	2.1			
16114	Igk-V28	immunoglobulin kappa chain variable 28 (V28)	4.9	4.3	5.8	5.5	4.6	5.7	1.1	2.1			
319480	Itga11	integrin alpha 11	4.0	4.0	6.1	4.0	4.0	5.1	1.1	2.1			
320024	Nceh1	neutral cholesterol ester hydrolase 1	8.0	7.9	9.0	9.1	8.0	9.1	1.1	2.1			
20846	Stat1	signal transducer and activator of transcription 1	5.9	5.6	7.2	6.5	5.8	6.8	1.1	2.1			
12053	Bcl6	B cell leukemia/lymphoma 6	6.4	6.1	7.6	7.0	6.2	7.3	1.1	2.1			
12606	Cebp	CCAAT/enhancer binding protein (C/EBP), alpha	4.6	4.3	5.3	5.7	4.4	5.5	1.1	2.1			
19141	Lgmn	legumain	8.4	8.3	9.3	9.4	8.3	9.4	1.1	2.1			
241633	Atp8b4	ATPase, class I, type 8B, member 4	3.2	3.1	4.1	4.3	3.2	4.2	1.0	2.1			
12362	Casp1	caspase 1	5.5	5.8	6.8	6.6	5.7	6.7	1.0	2.1			
100628574	Mir28b	microRNA 28b	4.0	5.3	6.1	5.2	4.6	5.7	1.0	2.1			
Gene ID	Gene Symbol	Gene Name	Fold Change										
---------	-------------	-----------	-------------										
19200	Pstpip1	proline-serine-threonine phosphatase-interacting protein 1	5.0 5.3 5.9 6.4 5.1 6.2 1.0 2.1										
18173	Slc11a1	solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1	5.0 4.9 5.5 6.4 4.9 6.0 1.0 2.1										
18636	Cfp	complement factor properdin	5.1 4.4 5.1 6.4 4.8 5.8 1.0 2.0										
14127	Fcer1g	Fc receptor, IgE, high affinity I, gamma polypeptide	9.6 9.2 10.4 10.5 9.4 10.5 1.0 2.0										
16186	Il2rg	interleukin 2 receptor, gamma chain	6.4 6.1 6.6 8.0 6.2 7.3 1.0 2.0										
17101	Lyst	lysosomal trafficking regulator	5.5 5.6 6.3 6.9 5.6 6.6 1.0 2.0										
66742	Piezo2	piezo-type mechanosensitive ion channel component 2	3.6 4.2 5.4 4.4 3.9 4.9 1.0 2.0										
19332	Rab20	RAB20, member RAS oncogene family	4.4 4.1 5.4 5.2 4.3 5.3 1.0 2.0										
11980	Atp8a1	ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1	3.6 3.4 4.2 4.8 3.5 4.5 1.0 2.0										
14247	Flt1	Friend leukemia integration 1	5.4 5.4 6.2 6.7 5.4 6.4 1.0 2.0										
211401	Mtss1	metastasis suppressor 1	6.6 6.5 7.7 7.4 6.5 7.6 1.0 2.0										
17951	Naip5	NLR family, apoptosis inhibitory protein 5	4.1 3.5 4.1 5.5 3.8 4.8 1.0 2.0										
241062	Pgap1	post-GPI attachment to proteins 1	5.2 5.4 5.6 7.1 5.3 6.3 1.0 2.0										
19850	Rnu3a	U3A small nuclear RNA	3.2 3.3 4.2 4.3 3.2 4.3 1.0 2.0										
69583	Tnfsf13	tumor necrosis factor (ligand) superfamily, member 13	6.0 6.0 6.8 7.3 6.0 7.0 1.0 2.0										
20303	Ccl4	chemokine (C-C motif) ligand 4	5.7 6.1 6.9 6.9 5.9 6.9 1.0 2.0										
12483	Cd22	CD22 antigen	3.7 3.8 4.1 5.5 3.8 4.8 1.0 2.0										
234356	Csgalnact1	chondroitin sulfate N-acetylgalactosaminyltransferase 1	3.5 3.4 5.2 3.7 3.5 4.5 1.0 2.0										
100041034	LOC100041034	Sp110 nuclear body protein-like	5.8 5.3 6.4 6.7 5.5 6.5 1.0 2.0										
320139	Ptpn7	protein tyrosine phosphatase, non-receptor type 7	4.2 4.1 5.1 5.3 4.2 5.2 1.0 2.0										
57319	Smpd3a	sphingomyelin phosphodiesterase, acid-like 3A	6.7 6.4 7.3 7.9 6.6 7.6 1.0 2.0										
652925	Tmem243	transmembrane protein 243, mitochondrial	3.8 4.2 4.8 5.3 4.0 5.0 1.0 2.0										
12262	C1qc	complement component 1, q subcomponent, C chain	7.1 7.2 8.1 8.1 7.1 8.1 1.0 2.0										
101056308	LOC101056308	Y-linked testis-specific protein 1-like	3.5 3.9 4.9 4.5 3.7 4.7 1.0 2.0										
140795	P2ry14	purinergic receptor P2Y, G-protein coupled, 14	3.2 3.7 3.6 5.3 3.5 4.5 1.0 2.0										
11835	Ar	androgen receptor	5.1 4.9 3.8 4.1 5.0 4.0 -1.0 -2.0										
19716	Bex1	brain expressed gene 1	5.7 6.4 3.2 6.9 6.1 5.1 -1.0 -2.0										
241520	Fam171b	family with sequence similarity 171, member B	4.3 4.8 3.5 3.6 4.5 3.5 -1.0 -2.0										
18481	Pak3	p21 protein (Cdc42/Rac)-activated kinase 3	4.8 4.7 3.8 3.7 4.7 3.7 -1.0 -2.0										
Gene Symbol	Description	Log2 Fold Change											
------------	--	-----------------											
Chst1	carbohydrate (keratan sulfate Gal-6) sulfotransferase 1	4.6 4.6 3.9 3.2 4.6 3.6 -1.0 -2.0											
Pdgfd	platelet-derived growth factor, D polypeptide	6.6 5.9 5.6 4.8 6.2 5.2 -1.0 -2.0											
Scx	scleraxis	3.4 4.8 2.8 3.3 4.1 3.1 -1.0 -2.0											
Tjp2	tight junction protein 2	6.6 6.2 5.3 5.4 6.4 5.4 -1.0 -2.0											
Hid1	H1D1 domain containing	4.7 5.0 3.7 3.9 4.8 3.8 -1.0 -2.0											
Lrrc8c	leucine rich repeat containing B family, member C	8.2 8.1 6.6 7.7 8.2 7.1 -1.0 -2.0											
Mecom	MDS1 and EVI1 complex locus	4.1 4.1 3.1 3.0 4.1 3.1 -1.0 -2.0											
Cd109	CD109 antigen	7.0 8.2 6.4 6.7 7.6 6.6 -1.0 -2.1											
Cdo1	cysteine dioxygenase 1, cytosolic	7.9 8.6 7.1 7.3 8.2 7.2 -1.0 -2.1											
Ereg	epiregulin	8.7 8.3 7.2 7.8 8.5 7.5 -1.0 -2.1											
Zfpm2	zinc finger protein, multitype 2	5.7 5.4 4.7 4.3 5.5 4.5 -1.0 -2.1											
Ddr2	discoidin domain receptor family, member 2	7.5 7.4 6.9 6.0 7.5 6.4 -1.1 -2.1											
Dhc24	24-dehydrocholesterol reductase	7.4 7.5 6.7 6.1 7.5 6.4 -1.1 -2.1											
Lce1m	late cornified envelope 1M	5.3 4.6 3.9 3.9 4.9 3.9 -1.1 -2.1											
Ptgis	prostaglandin I2 (prostacyclin) synthase	7.5 8.2 6.7 6.9 7.8 6.8 -1.1 -2.1											
Rab3ip	RAB3A interacting protein	7.4 7.5 6.6 6.1 7.4 6.4 -1.1 -2.1											
Sgcd	sarcoglycan, delta (dystrophin-associated glycoprotein)	5.7 5.7 4.5 4.8 5.7 4.7 -1.1 -2.1											
Syt4	synaptotagmin IV	5.9 3.3 3.5 3.5 4.6 3.5 -1.1 -2.1											
Anxa8	annexin A8	4.6 4.6 3.7 3.4 4.6 3.6 -1.1 -2.1											
Gas7	growth arrest specific 7	6.1 5.8 4.4 5.4 5.9 4.9 -1.1 -2.1											
Cxcl12	chemokine (C-X-C motif) ligand 12	9.1 10.1 8.6 8.5 9.6 8.5 -1.1 -2.1											
Igf11	immunoglobulin superfamily, member 11	6.8 6.6 5.0 6.3 6.7 5.6 -1.1 -2.1											
Lrmt2	leucine rich repeat transmembrane neuronal 2	4.2 4.6 3.2 3.5 4.4 3.3 -1.1 -2.1											
Ppp1r14a	protein phosphatase 1, regulatory (inhibitor) subunit 14A	4.6 3.4 3.2 2.8 4.0 3.0 -1.1 -2.1											
Sulf1	sulfatase 1	9.3 9.5 8.7 8.0 9.4 8.4 -1.1 -2.1											
Cgref1	cell growth regulator with EF hand domain 1	6.3 6.0 4.9 5.3 6.2 5.1 -1.1 -2.1											
Htr1b	5-hydroxytryptamine (serotonin) receptor 1B	6.2 5.6 4.7 5.0 5.9 4.8 -1.1 -2.1											
S100a7a	S100 calcium binding protein A7A	6.1 4.9 4.1 4.8 5.5 4.4 -1.1 -2.1											
Tsln6	tetraspanin 6	8.3 7.6 7.1 6.6 7.9 6.8 -1.1 -2.1											
Tll7	tubulin tyrosine ligase-like family, member 7	5.5 6.1 4.8 4.7 5.8 4.7 -1.1 -2.1											
Gene ID	Gene Name	Description	Log2 Ratio										
--------	-----------	--	------------										
14266	**Aff2**	S100 calcium receptor type, K protein tyrosine phosphatase, 5' nucleotidase, ecto	5.5										
10493	**Fam110c**	family with sequence similarity 110, member C	4.6										
14205	**Figf**	c-fos induced growth factor	6.3										
20378	**Frb2**	frizzled-related protein	6.6										
16447	**Ivl**	involucrin	6.5										
21956	**Tnt2**	troponin T2, cardiac	5.7										
12269	**C4bp**	complement component 4 binding protein	4.9										
12389	**Cav1**	caveolin 1, caveolae protein	8.1										
73379	**Dcbld2**	discoidin, CUB and LCCL domain containing 2	7.4										
67350	1700084E18Rik	RIKEN cDNA 1700084E18 gene	4.8										
66175	**Mustn1**	musculoskeletal, embryonic nuclear protein 1	9.8										
269233	**Fam171a1**	family with sequence similarity 171, member A1	6.3										
329628	**Fat4**	FAT tumor suppressor homolog 4 (Drosophila)	5.2										
77446	**Heg1**	HEG homolog 1 (zebrafish)	7.7										
10053380	**Sngh4**	small nuclear RNA host gene 4	4.7										
23876	**Fbln5**	fibulin 5	8.4										
16008	**Igfbp2**	insulin-like growth factor binding protein 2	6.5										
233726	**Ipo7**	importin 7	7.9										
13642	**Efnb2**	ephrin B2	7.8										
67374	**Jam2**	junction adhesion molecule 2	8.8										
68404	**Nrn1**	neuritin 1	7.1										
71720	**Osbp3**	oxysterol binding protein-like 3	4.8										
19243	**Ptp4a1**	protein tyrosine phosphatase 4a1	6.4										
72780	**Rspo3**	R-spondin 3 homolog (Xenopus laevis)	6.2										
217410	**Trib2**	tribbles homolog 2 (Drosophila)	5.9										
12064	**Bdnf**	brain derived neurotrophic factor	5.6										
14677	**Gna1**	guanine nucleotide binding protein (G protein), alpha inhibiting 1	6.3										
22160	**Twist1**	twist basic helix-loop-helix transcription factor 1	6.1										
73720	**Cst6**	cystatin E/M	5.4										
319146	**Ifnz**	interferon zeta	5.2										
23959	**Nt5e**	5' nucleotidase, ecto	4.7										
19272	**Ptpkr**	protein tyrosine phosphatase, receptor type, K	7.0										
20197	**S100a3**	S100 calcium binding protein A3	5.3										
ID	Gene	Description	R1	R2	R3	R4	R5	R6	R7	R8			
----------	---------	---	----	----	----	----	----	----	----	----			
100217453	Snord16a	small nucleolar RNA, C/D box 16A	7.0	6.5	5.3	5.8	6.7	5.6	-1.2	-2.3			
11421	Ace	angiotensin I converting enzyme (peptidyl-dipeptidase A) 1	3.4	4.8	2.9	2.9	4.1	2.9	-1.2	-2.3			
170757	Eltd1	EGF, latrophilin seven transmembrane domain containing 1	5.1	3.6	3.1	3.2	4.4	3.2	-1.2	-2.3			
53614	Reck	reversion-inducing-cysteine-rich protein with kazal motifs	6.9	7.4	6.1	5.8	7.2	6.0	-1.2	-2.3			
58994	Smpd3	sphingomyelin phosphodiesterase 3, neutral	5.4	4.4	3.8	3.7	4.9	3.7	-1.2	-2.3			
13797	Emx2	empty spiracles homeobox 2	5.2	4.0	3.7	3.1	4.6	3.4	-1.2	-2.3			
16773	Lama2	laminin, alpha 2	6.2	6.3	5.0	5.1	6.3	5.1	-1.2	-2.3			
17386	Mmp13	matrix metalloproteinase 13	8.3	9.1	6.8	8.1	8.7	7.5	-1.2	-2.3			
22329	Vcam1	vascular cell adhesion molecule 1	8.2	8.3	7.2	6.9	8.2	7.0	-1.2	-2.3			
217887	BC022687	cDNA sequence BC022687	6.7	6.6	5.4	5.4	6.6	5.4	-1.2	-2.3			
19224	Ptgs1	prostaglandin-endoperoxide synthase 1	7.1	7.8	5.9	6.5	7.4	6.2	-1.2	-2.3			
14611	Gja3	gap junction protein, alpha 3	5.1	3.5	3.2	2.8	4.3	3.0	-1.2	-2.3			
13876	Erg	avian erythroleukemia virus E-26 (v-ets) oncogene related	4.6	4.4	3.2	3.3	4.5	3.3	-1.2	-2.3			
16669	Krt19	keratin 19	4.5	4.6	3.4	3.3	4.6	3.3	-1.2	-2.3			
216459	Myl6b	myosin, light polypeptide 6B	5.6	5.5	4.5	4.2	5.6	4.3	-1.2	-2.3			
18788	Serpinb2	serine (or cysteine) peptidase inhibitor, clade B, member 2	7.8	6.1	4.1	7.3	6.9	5.7	-1.2	-2.3			
20042	Rps12	ribosomal protein S12	4.9	4.6	3.3	3.7	4.7	3.5	-1.2	-2.3			
97848	Serpinb6c	serine (or cysteine) peptidase inhibitor, clade B, member 6c	7.1	5.7	5.7	4.5	6.4	5.1	-1.3	-2.4			
23967	Osr1	odd-skipped related 1 (Drosophila)	7.9	9.0	7.6	6.8	8.5	7.2	-1.3	-2.4			
16367	Irs1	insulin receptor substrate 1	6.2	5.7	4.8	4.6	6.0	4.7	-1.3	-2.4			
13395	Dlx5	distal-less homeobox 5	3.0	5.2	3.0	2.6	4.1	2.8	-1.3	-2.4			
110454	Ly6a	lymphocyte antigen 6 complex, locus A	8.1	10.1	8.1	7.6	9.1	7.9	-1.3	-2.4			
73904	4833412C05Rik	RIKEN cDNA 4833412C05 gene	5.9	4.9	3.9	4.3	5.4	4.1	-1.3	-2.4			
14461	Gata2	GATA binding protein 2	4.7	4.3	3.3	3.1	4.5	3.2	-1.3	-2.5			
279653	Pcdh19	protocadherin 19	7.3	6.7	5.9	5.6	7.0	5.7	-1.3	-2.5			
109294	Prex2	phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2	5.5	5.5	4.3	4.1	5.5	4.2	-1.3	-2.5			
229672	Bcl2l15	BCL2-like 15	5.4	4.9	3.1	4.7	5.2	3.9	-1.3	-2.5			
216616	Efemp1	epidermal growth factor-containing fibulin-like extracellular matrix protein 1	7.9	9.6	7.8	7.1	8.8	7.5	-1.3	-2.5			
11668	Aldh1a1	aldehyde dehydrogenase family 1, subfamily A1	7.8	7.0	6.6	5.5	7.4	6.1	-1.3	-2.5			
407828	BC023969	cDNA sequence BC023969	3.8	5.7	3.3	3.5	4.7	3.4	-1.3	-2.5			
216831	Arhgap4	Rho GTPase activating protein 44	6.4	6.4	5.3	4.9	6.4	5.1	-1.3	-2.5			
211323	Nrg1	neuregulin 1	6.6	5.6	4.8	4.7	6.1	4.8	-1.3	-2.5			
Gene	Description	Fold Change 1	Fold Change 2	Fold Change 3	Fold Change 4	Fold Change 5	Fold Change 6						
-----------	--	---------------	---------------	---------------	---------------	---------------	---------------						
Itga2	integrin alpha 2	6.5	6.7	4.6	5.8	6.6	5.2						
Kpp	keratinocyte expressed, proline-rich	7.2	5.5	5.0	4.8	6.3	4.9						
Pdk4	pyruvate dehydrogenase kinase, isoenzyme 4	7.5	6.6	5.5	5.8	7.1	5.6						
Tinagl1	tubulointerstitial nephritis antigen-like 1	6.7	7.3	5.5	5.7	7.0	5.6						
Ghr	growth hormone receptor	7.7	7.4	6.3	6.1	7.6	6.2						
Haus7	HAUS augmin-like complex, subunit 7	5.6	6.4	4.7	4.5	6.0	4.6						
Hsd11b1	hydroxysteroid 11-beta dehydrogenase 1	5.3	7.2	5.0	4.6	6.2	4.8						
Hspb7	heat shock protein family, member 7 (cardiovascular)	7.6	8.1	6.4	6.4	7.9	6.4						
Ang2	angiotensin, ribonuclease A family, member 2	7.4	7.7	5.9	6.2	7.5	6.0						
Bmp6	bone morphogenetic protein 6	5.0	4.8	3.6	3.2	4.9	3.4						
Pcdh18	protocadherin 18	6.8	6.1	5.2	4.8	6.4	5.0						
Rnd1	Rho family GTPase 1	5.8	6.1	4.5	4.5	6.0	4.5						
Syt17	synaptotagmin XVII	7.0	7.0	5.2	5.9	7.0	5.5						
Gucy1b3	guanylate cyclase 1, soluble, beta 3	6.2	5.3	4.1	4.4	5.8	4.3						
Procr	protein C receptor, endothelial	8.0	6.8	5.8	6.1	7.4	5.9						
Sdr39u1	short chain dehydrogenase/reductase family 39U, member 1	7.1	4.8	4.1	4.9	6.0	4.5						
Dpt	dermatopontin	6.9	5.8	4.4	5.3	6.4	4.8						
Gpr116	G protein-coupled receptor 116	4.9	4.3	3.0	3.1	4.6	3.1						
Mapk13	mitogen-activated protein kinase 13	6.6	6.6	4.8	5.4	6.6	5.1						
Tnfrsf11b	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	7.6	7.9	6.5	6.0	7.8	6.2						
Ctl2a	cytotoxic T lymphocyte-associated protein 2	9.5	8.7	7.9	7.2	9.1	7.6						
Pbp2	phosphatidylethanolamine binding protein 2	5.7	4.6	4.0	3.2	5.1	3.6						
Sdcbp2	syndecan binding protein (syntenin) 2	7.0	5.4	4.7	4.6	6.2	4.7						
Serpinb9b	serine (or cysteine) peptidase inhibitor, clade B, member 9b	9.4	9.1	8.0	7.4	9.2	7.7						
Cd24a	CD24a antigen	9.4	8.5	6.3	8.6	9.0	7.4						
Gsta2	glutathione S-transferase, alpha 2 (Yc2)	5.7	6.1	4.4	4.2	5.9	4.3						
Sox9	SRY (sex determining region Y)-box 9	5.1	6.6	3.9	4.6	5.8	4.2						
Plagl1	pleiomorphic adenoma gene-like 1	5.6	6.3	3.5	5.2	6.0	4.4						
Car2	carbonic anhydrase 2	6.1	5.2	3.8	4.3	5.7	4.0						
Ltbp1	latent transforming growth factor beta binding protein 1	6.7	7.4	5.2	5.6	7.0	5.4						
Edn1	endothelin 1	8.8	7.8	6.6	6.8	8.3	6.7						

- Fold Change indicates the change in expression relative to the reference sample.
| ID | Gene | Description | Value1 | Value2 | Value3 | Value4 | Value5 | Value6 | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 13640 | Efna5 | ephrin A5 | 6.2 | 6.6 | 4.3 | 5.1 | 6.4 | 4.7 | -1.7 | -3.2 |
| 11459 | Acta1 | actin, alpha 1, skeletal muscle | 8.8 | 7.7 | 5.6 | 7.6 | 8.2 | 6.6 | -1.7 | -3.2 |
| 232431| Gprc5a | G protein-coupled receptor, family C, group 5, member A | 4.6 | 4.8 | 2.6 | 3.4 | 4.7 | 3.0 | -1.7 | -3.2 |
| 68178 | Cgn1 | cingulin-like 1 | 7.7 | 7.3 | 5.6 | 6.1 | 7.5 | 5.8 | -1.7 | -3.2 |
| 68052 | Rps13 | ribosomal protein S13 | 4.3 | 4.5 | 2.6 | 2.8 | 4.4 | 2.7 | -1.7 | -3.2 |
| 11435 | Chrna1 | cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle) | 3.7 | 5.1 | 2.7 | 2.7 | 4.4 | 2.7 | -1.7 | -3.3 |
| 14368 | Fzd6 | frizzled homolog 6 (Drosophila) | 5.8 | 4.7 | 3.4 | 3.6 | 5.2 | 3.5 | -1.7 | -3.3 |
| 16400 | Itga3 | integrin alpha 3 | 5.4 | 5.1 | 3.3 | 3.7 | 5.2 | 3.5 | -1.7 | -3.3 |
| 64058 | Perp | PERP, TPS3 apoptosis effector | 6.2 | 5.0 | 3.9 | 3.9 | 5.6 | 3.9 | -1.7 | -3.3 |
| 17389 | Mmp16 | matrix metallopeptidase 16 | 4.7 | 5.1 | 3.3 | 3.1 | 4.9 | 3.2 | -1.7 | -3.3 |
| 320092| E030003E18Rik | RIKEN cDNA E030003E18 gene | 5.9 | 5.1 | 4.5 | 3.1 | 5.5 | 3.8 | -1.8 | -3.4 |
| 224093| Fam43a | family with sequence similarity 43, member A | 6.3 | 6.6 | 5.2 | 4.2 | 6.5 | 4.7 | -1.8 | -3.4 |
| 20324 | Sdpr | serum deprivation response | 8.9 | 9.5 | 7.5 | 7.4 | 9.2 | 7.4 | -1.8 | -3.4 |
| 13717 | Eln | elastin | 5.1 | 6.6 | 4.0 | 4.1 | 5.8 | 4.0 | -1.8 | -3.5 |
| 67718 | Lce1h | late cornified envelope 1H | 7.7 | 3.3 | 3.7 | 3.7 | 5.5 | 3.7 | -1.8 | -3.5 |
| 20708 | Serpinb6b | serine (or cysteine) peptidase inhibitor, clade B, member 6b | 8.3 | 7.9 | 6.7 | 5.9 | 8.1 | 6.3 | -1.8 | -3.5 |
| 14725 | Lrp2 | low density lipoprotein receptor-related protein 2 | 5.2 | 4.1 | 2.8 | 2.9 | 4.7 | 2.8 | -1.8 | -3.5 |
| 16891 | Lipg | lipase, endothelial | 5.0 | 4.6 | 2.7 | 3.2 | 4.8 | 3.0 | -1.8 | -3.6 |
| 67828 | Lce1f | late cornified envelope 1F | 7.2 | 3.1 | 3.3 | 3.2 | 5.1 | 3.3 | -1.9 | -3.6 |
| 18104 | Nqo1 | NAD(P)H dehydrogenase, quinone 1 | 7.3 | 7.4 | 5.0 | 5.9 | 7.3 | 5.5 | -1.9 | -3.7 |
| 105450| Mmrn2 | multimerin 2 | 6.3 | 5.3 | 3.7 | 4.1 | 5.8 | 3.9 | -1.9 | -3.8 |
| 71690 | Esm1 | endothelial cell-specific molecule 1 | 8.1 | 8.2 | 5.9 | 6.5 | 8.2 | 6.2 | -1.9 | -3.8 |
| 94253 | Hecw1 | HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 | 6.1 | 4.9 | 3.8 | 3.2 | 5.5 | 3.5 | -2.0 | -4.1 |
| 105349| Akr1c18 | aldo-keto reductase family 1, member C18 | 5.6 | 8.0 | 4.0 | 5.3 | 6.8 | 4.7 | -2.1 | -4.3 |
| 101772| Ano1 | anoctamin 1, calcium activated chloride channel | 5.1 | 4.7 | 2.7 | 2.8 | 4.9 | 2.7 | -2.1 | -4.4 |
| 21892 | Tli1 | tolloid-like | 8.4 | 8.0 | 5.6 | 6.5 | 8.2 | 6.1 | -2.1 | -4.4 |
| 69325 | 1700012B09Rik | RIKEN cDNA 1700012B09 gene | 5.8 | 6.9 | 3.7 | 4.5 | 6.4 | 4.1 | -2.3 | -4.9 |
| 12159 | Bmp4 | bone morphogenetic protein 4 | 7.5 | 7.8 | 6.6 | 4.1 | 7.7 | 5.4 | -2.3 | -5.1 |
| 319154| Hist2h3b | histone cluster 2, H3b | 6.2 | 4.5 | 2.5 | 3.5 | 5.4 | 3.0 | -2.4 | -5.2 |
| 22268 | Upk1b | uroplakin 1B | 9.2 | 5.8 | 4.3 | 5.9 | 7.5 | 5.1 | -2.4 | -5.2 |
| 12490 | Cd34 | CD34 antigen | 7.0 | 5.8 | 3.5 | 4.5 | 6.4 | 4.0 | -2.4 | -5.3 |
| 114301| Palmd | palmdelphin | 6.1 | 5.2 | 3.3 | 3.1 | 5.6 | 3.2 | -2.4 | -5.4 |
| 20344 | Selp | selectin, platelet | 6.3 | 6.5 | 3.9 | 4.1 | 6.4 | 4.0 | -2.5 | -5.5 |
| 59308 | Emcn | endomucin | 9.3 | 8.1 | 6.0 | 6.5 | 8.7 | 6.2 | -2.5 | -5.6 |
| 18613 | Pecam1 | platelet/endothelial cell adhesion molecule 1 | 6.7 | 6.3 | 3.9 | 4.1 | 6.5 | 4.0 | -2.5 | -5.6 |
| Gene ID | Gene Name | Description | FPKM 1 | FPKM 2 | FPKM 3 | FPKM 4 | FPKM 5 | FPKM 6 | FPKM 7 |
|---------|--------------------|---|---------|---------|---------|---------|---------|---------|---------|
| 12562 | Cdh5 | cadherin 5 | 8.7 | 7.0 | 5.0 | 5.7 | 7.8 | 5.3 | -2.5 | -5.7 |
| 18812 | Prl2c3 | prolactin family 2, subfamily c, member 3 | 9.5 | 9.0 | 6.4 | 6.6 | 9.2 | 6.5 | -2.7 | -6.6 |
| 18812 | Prl2c3 | prolactin family 2, subfamily c, member 3 | 9.3 | 9.0 | 6.2 | 6.6 | 9.1 | 6.4 | -2.7 | -6.7 |
| 223272 | Itgb1I | integrin, beta-like 1 | 7.6 | 7.7 | 4.5 | 5.2 | 7.6 | 4.9 | -2.8 | -6.7 |
| 76294 | Asb5 | ankyrin repeat and SOCs box-containing 5 | 7.8 | 6.9 | 3.7 | 5.4 | 7.3 | 4.6 | -2.8 | -6.8 |
| 240873 | Tnfsf18 | tumor necrosis factor (ligand) superfamily, member 18 | 9.1 | 7.0 | 4.5 | 6.0 | 8.0 | 5.2 | -2.8 | -7.1 |
| 20753 | Sprr1a | small proline-rich protein 1A | 8.6 | 9.6 | 5.4 | 7.1 | 9.1 | 6.2 | -2.8 | -7.2 |
| 19263 | Ptprb | protein tyrosine phosphatase, receptor type, B | 6.5 | 6.4 | 3.7 | 3.5 | 6.4 | 3.6 | -2.9 | -7.4 |
| 228576 | Mall | mal, T cell differentiation protein-like | 8.2 | 5.7 | 4.4 | 3.6 | 7.0 | 4.0 | -3.0 | -7.9 |
| 72381 | 2210409E12Rik | transcription elongation factor B (SIII), polypeptide 2 | 6.4 | 6.0 | 4.0 | 2.3 | 6.2 | 3.2 | -3.0 | -8.1 |
| 12319 | Car8 | carbonic anhydrase 8 | 7.3 | 7.2 | 4.4 | 4.0 | 7.2 | 4.2 | -3.0 | -8.1 |
| 68632 | Myct1 | myc target 1 | 7.4 | 6.7 | 3.9 | 4.2 | 7.1 | 4.0 | -3.0 | -8.1 |
| 74175 | Crtc1 | cysteine-rich C-terminal 1 | 6.6 | 6.4 | 3.1 | 3.8 | 6.5 | 3.4 | -3.1 | -8.3 |
| 224796 | Clic5 | chloride intracellular channel 5 | 6.4 | 6.9 | 2.9 | 3.1 | 6.7 | 3.0 | -3.7 | -12.6 |
Figure S1. Arterial trees dissected from *Cre(-)*, *SM22α-Cre(+)*, and *aP2-Cre(+) MMP14F/F ApoE−/−* male and female mice after a 12-week Western diet.

	Male	Female	
Cre(-)	![Arterial tree](cre_neg.png)	![Arterial tree](cre_neg_female.png)	
SM22α-Cre(+)	![Arterial tree](sm22a_cre_pos.png)	![Arterial tree](sm22a_cre_pos_female.png)	
aP2-Cre(+)	![Arterial tree](aP2_cre_pos.png)	![Arterial tree](aP2_cre_pos_female.png)	
Figure S2. Gene expression of Acta2(α-SMA), Cre enzyme, MT1-MMP (MMP14), MMP2, MMP8, MMP9, MMP13, and MT2-MMP (MMP15) in primary VSMCs isolated from Cre(-) and SM22α-Cre(+) MMP14^{F/F} Apoe^{−/−} mice. Almost complete suppression of MT1-MMP expression in primary VSMCs was confirmed coupled with SM22-dependent Cre expression. Expression of other MMPs was not affected. *** P<0.001