Importance of context in entrustable professional activities on surgical undergraduate medical education

Samuel Eloy Gutiérrez-Barreto[1], Verónica Daniela Durán-Pérez[2], Felipe Flores-Morones[3], Ricardo Iván Esqueda-Nuñez[4], Carlos Abilio Sánchez-Mojica[5], Alicia Hamui-Sutton[6]

Corresponding author: Prof Samuel Eloy Gutiérrez-Barreto samy@gutzba.com
Institution: 1. National Autonomous University of Mexico, 2. National Autonomous University of Mexico, 3. National Autonomous University of Mexico, 4. National Autonomous University of Mexico, 5. National Autonomous University of Mexico, 6. National Autonomous University of Mexico
Categories: Students/Trainees, Teachers/Trainers, Teaching and Learning

Received: 18/05/2018
Published: 28/05/2018

Abstract

Objective: The aim of this study was to emphasize the importance of integrating the context to the construction of the specific Entrustable Professional Activities (EPA) for Undergraduate Medical Education (UME). Design: Mixed study with three phases: 1) Exploratory, we searched context with focus groups technique. 2) Construction, we analyzed academic program of our faculty and the national epidemiology. Therefore, we selected the contents and generated each EPA with its milestones and competence levels. 3) Implementation, we conformed a formative assessment tool which was tested at surgery rotation. Setting: We worked with 10 public and private health institutions of secondary and tertiary health care levels which were used as clinical settings for surgery rotation of fifth year medicine course at the Faculty of Medicine of Universidad Nacional Autónoma de México in Mexico City. Participants: In exploratory focus groups, were involved 10 surgeons and 12 medical students. At implementation 64 students participated and 25 gave feedback. All participants were involved voluntary for this study. Results: We constructed eleven surgery specific EPAs for UME, within specific context of the clinical environment of our faculty. Conclusions: We propose these EPAs because they reflected the most important topics or diseases in our country and as educative developers we support the idea that our graduates should be able to attend the population needs of health.

Keywords: Entrustable professional activities, Hospital Surgery Department, undergraduate medical education, educational assessment, clinical competence
Introduction

The competency based education is a global trend for medical education and other disciplines, the Accreditation Council for Graduate Medical Education (ACGME) in the Outcome Project (Swing, 2007) identified six domains of general competencies for the medical education. Years later ACGME developed the "Milestone Project" (Nasca, Philibert, Brigham, & Flynn, 2012) for the postgraduate medical programs, these milestones contain behavioral descriptors for the competencies of each specialty or subspecialty. A milestone is "a point along a continuum of a competency or subcompetency: milestones are clearly described and are usually specialty specific" (Klink, Holmboe, & Carraccio, 2015). Later the concept of Entrustable Professional Activities (EPA) was described by Ten Cate (O. Ten Cate, 2005), to integrate the competencies by linking them with a specific clinical event, and allow their assessment.

The tendency of developing EPAs for medical students, at the beginning was exclusive for residents of different specialties, but also it is useful and could be applied for Undergraduate Medical Education (UME). Chen et al (Chen, van den Broek, & ten Cate, 2015), proposed three types of EPA for UME; core basic EPAs, core specialty-specific EPAs and individual elective EPAs. Ten Cate explained EPAs are "units of professional practice, defined as tasks or responsibilities to be entrusted to the unsupervised execution" (O. Ten Cate, 2005). For UME, we cannot expect the full entrustment for unsupervised activities. Therefore, we reviewed the Dreyfus model of skill acquisition (Dreyfus & Dreyfus, 1980), we identified that students can reach the "competent" performance level when they achieve the MD degree. The EPAs' use in UME serves to: encourage the students to achieve certain performance level in the clinical competences, increase their motivation, promote an objective assessment at the workplace.

Thus, we consider the opportunity to develop EPAs for early years of medical training to support the continuum of medical education. In a previous study Hamui et al propose the methodology for the development of core specialty-specific EPA (Hamui-Sutton et al., 2017), in this article we describe the General Surgery (GS) specific EPAs at UME. To develop a EPA the context is important, Ten Cate specifies EPAs' attributes, one of them is "are part of essential professional work in given context" (O. Ten Cate, 2005). The context has many variables: health care system, institutional culture, clinical settings, operative program, academic program, educational organization, hidden curriculum, epidemiology, among others. We contextualized the general surgery specific EPAs for UME in Mexican context. The aim of this study focus on context relevance and its variables for constructing EPAs and the use of analyzing the context to adoption of EPAs by other institution or country for UME.

Methods

A mixed method study was performed with three phases: 1) Exploratory, 2) Construction, 3) Implementation, with different settings, we will describe each one in the next paragraphs.

Exploratory

This was a qualitative phase, in individual sessions were four focus groups performed with medical students (12) and professors (10), the sessions were audio-recorded and literally transcribed to categorize and classified the testimonies with a priori construct, using grounded theory.

Construction
The triangulation of the information was the next step to construct the EPA we use the next documents: analysis of the previous focus groups, academic program for the fifth-year, hospital’s program of surgical clerkship (operative program) and the university program (Facultad de Medicina, 2009), ACGME core competencies and surgery milestones, our national epidemiological profile, and the Dreyfus (Dreyfus, 2004) first three levels. The work team were integrated by three medical education experts, one surgeon and two medical students, who initially developed five EPA. For the validation of content, we used a modified Delphi technique (Varela-Ruiz, Díaz-Bravo, & García-Durán, 2012) with six surgeons of five different hospitals and the comments generated made the team members reconstruct the five EPA to eight.

Implementation

For the implementation, we used a printed version of the eight EPA for students in 10 hospitals and for two months we visit each week in the surgery rotation, for any doubts and for data collect. In the final week, we gather all the printed EPA and perform a qualitative and quantitate assessment of the quality of the content and the usability in their hospitals with the professors and students. Once with all the data analyzed we reconstructed the EPA and finally ended with 11 for the surgery rotation.

Contextual variables in addition to those mentioned above were used in each phase such as the clinical settings for surgical clerkship: Consulting Room (CR), Emergency Room (ER), Hospitalization (H) and Operating Room (OR), the competence of the ACGME that is developed during the realization of the EPA this data set is shown in the appendix.

This work is registered with number 033-2013 before the Ethics and Investigation Committee of the UNAM Medicine School. Consent was obtained from participants. This work has been developed in 2016 and the delay of publication is because the lack of time.

Results

For all the construction of the eleven EPA-specific, we consider the Bloom taxonomy, the Dreyfus model, the national Guideline for clinical practice. The table 1 shows an example, of one EPA.

Provide care to the patient with lower limb vascular disease.
Level 1
Identify through the interrogation of symptoms and predisposing factors, perform incorrectly the exploration of lower limbs, include some maneuvers and specific signs. Suggest the request for paraclinical studies, initial management incompletely and some preventive measures according to presumptive diagnosis. Look for the most frequent complications, without identifying them and recognize some indications of surgical treatment. Makes the referral to the patient for specialized care without considering the criteria established in the current normative framework.

Discussion

Many authors (Aylward, Nixon, & Gladding, 2014; Carraccio & Burke, 2010; Chen, van den Broek, et al., 2015; Hauer et al., 2015; O. T. J. ten Cate, 2013) consider the context for milestones EPA and practice competencies is important but do not describe the variables for analysing the context, we propose these variables to consider: faculty academic program topics, clinical settings, focus groups and the epidemiology of the diseases. The interactions of these variables are context indicators that function for the students in the real clinical setting.

The faculty academic program is a referral to construct the EPA because it establishes a relation between the knowledge and the real practice. Several authors (Brown Jr. et al., 2016; Chen, McNamara, et al., 2015; Deitte et al., 2016; El-Haddad, Damodaran, McNeil, & Hu, 2016; Hauer et al., 2013; Myers et al., 2015; Shumway et al., 2015) use this source to support the construct validation.

Considering the place where EPA can be developed and assessed the milestones could be a guide for the student and the clinical professor because this could determinate the type of patient or disease and the level of competence that could be achieved in a specific environment. If we suggest the clinical settings to evaluate the EPA this can contribute to increase the number of assessments and feedbacks.

The use of the focus groups works to know the reality in which the students and the clinical professors are placed and thus to realize a construction of EPA more attached to the possible reality. Chen et al used this first phase to know the relevance and adequacy of the levels of competence appropriate to the context in which students develop (Chen, McNamara, et al., 2015).

Epidemiology is an aspect that can be considered to know the relevance of diseases that are considered in each EPA it becomes relevant if you want to adopt or appropriate in other places where morbidity and mortality are different.

The interaction of these contextual variables for the application in real clinical situations allows to adapt the EPA to achieve a level of competence suitable for the students considering all variables making possible for their daily use.

We raise these variables in a specific context, however they are only some of which can be considered when
developing EPA so cautions should have been taken when moving them to other places. There are several reported types of methodology for the development of EPA. The methodology used here is reported in another study in detail by one of the authors Hamui (Hamui-Sutton et al., 2017).

Conclusions

This specific - EPA for UME in surgery service could be applied in other contexts, for medical students at the same grade, but considering the faculty academic program topics, clinical settings, focus groups and the epidemiology of the diseases of the place where it could be used.

Take Home Messages

Notes On Contributors

Samuel Eloy Gutiérrez-Barreto

Medical degree, Master’s in education of health sciences, collaborator on the Department of Research in Medical Education of the Secretariat of Medical Education, Professor of the Faculty of Medicine of the National Autonomous University of Mexico.

Verónica Daniela Durán Pérez

Specialty on Education Management, Diplomate on Public Health, Medicine Degree at Faculty of Medicine, Universidad Nacional Autónoma de México, México City, Professor of Biomedical Informatics and Health Promotion, Researcher in the Department of Research in Medical Education and collaborator of the Academic Development Unit

Felipe Flores-Morones

Medical Degree at Faculty of Medicine, Universidad Nacional Autónoma de México, México City. Collaborator in the Department of Medical Internship at Faculty of Medicine.

Ricardo Iván Esqueda Núñez

Resident of the specialty of General Surgery at Hospital Juárez de México. Diplomate on Advanced Laparoscopic Surgery by Mexican Association of Endoscopic Surgery. Diplomate on Educational Model to Develop Entrustable Professional Activities, Medicine Degree.

Carlos Abilio Sánchez Mojica.

Resident of the specialty of Orthopaedics at Hospital Juárez de México. Diplomate on Educational Evaluation in Health Sciences. Diplomate on Educational Model to Develop Entrustable Professional Activities. Medicine Degree at Faculty of Medicine, Universidad Nacional Autónoma de México, México City, México. Professor of Biomedical Informatics in Faculty of Medicine
Alicia Hamui-Sutton

Sociologist, MSc, PhD in Social Sciences, Secretariat of Medical Education and Professor, in the Faculty of Medicine, National Autonomous University of Mexico. Named National Investigator with medical education and health anthropology.

Acknowledgements

For their support and advice to members of team MEDAPROC internship: Ana María Monterrosas Rojas, Tania Vives Varela, Andrea Navarrete Martínez, Sahira Eunice García Téllez, Araceli Arrioja Guerrero, Manuel Millán Hernández, Armando Ortiz Montalvo, Adrián Garduño Vera, Maritza Hernández Torres, José Luis Castellanos Suárez, Julio César Sánchez Robledo, Michael Sandoval Torres and Jorge Enrique Pereyra Arzate.

Bibliography/References

1. Swing SR. The ACGME outcome project: retrospective and prospective. Med Teach. 2007; 29(7):648–54.
 https://doi.org/10.1080/01421590701392903

2. Nasca TJ, Philibert I, Brigham T, Flynn TC. The Next GME Accreditation System — Rationale and Benefits. N Engl J Med. 2012; (366):1051–6.
 https://doi.org/10.1056/NEJMsr1200117

3. Klink K, Holmboe E, Carraccio C. Competencies, Milestones, and Entrustable Professional Activities Webinar. Competencies, Milestones, Entrust Prof Act Webinar. 2015; 90(4):395–7.

4. Ten Cate O. Entrustability of professional activities and competency-based training. Med Educ. 2005; 39(12):1176–7.
 https://doi.org/10.1111/j.1365-2929.2005.02341.x

5. Chen HC, van den Broek WESES, ten Cate O. The Case for Use of Entrustable Professional Activities in Undergraduate Medical Education. Acad Med [Internet]. 2015; 90(4):431–6.
 https://doi.org/10.1097/ACM.0000000000000586

6. Dreyfus SE, Dreyfus HL. A five stage model of the mental activities involved in direct skill acquisition. Research Paper. University of California, Berkeley; 1980. p. 1–17.

7. Hamui-Sutton A, Monterrosas-Rojas AM, Ortiz-Montalvo A, Flores-Morones F, Torruco-García U, Navarrete-Martínez A, et al. Specific entrustable professional activities for undergraduate medical internships: a method compatible with the academic curriculum. BMC Med Educ [Internet]. 2017; 17(1):143.
 https://doi.org/10.1186/s12909-017-0980-6
8. Facultad de Medicina. Plan de estudios 2010 y programas académicos de la licenciatura de médico cirujano [Internet]. México; 2009.

9. Dreyfus SE. The ethical implications of the Five-Stage Model of Adult Skill Acquisition. Bull Sci Technol Soc [Internet]. 2004; 24(3):177–81.

https://doi.org/10.1177/0270467604265023

10. Varela-Ruiz M, Díaz-Bravo L, García-Durán R. Descripción y usos del método Delphi en investigación del área de la salud. Investig en Educación Médica [Internet]. 2012; 1(2):90–5.

11. Ten Cate OTJ. Nuts and Bolts of Entrustable Professional Activities. J Grad Med Educ [Internet]. 2013 Jun 21 [cited 2016 Dec 23]; 157–8. Available from: http://link.springer.com/10.1007/s11606-012-2193-3

12. Hauer KE, Boscardin C, Fulton TB, Lucey C, Oza S, Teherani A. Using a Curricular Vision to Define Entrustable Professional Activities for Medical Student Assessment. J Gen Intern Med [Internet]. 2015 Sep 15 [cited 2016 Dec 23]; 30(9):1344–8. Available from: http://link.springer.com/10.1007/s11606-015-3264-z

13. Aylward M, Nixon J, Gladding S. An Entrustable Professional Activity (EPA) for Handoffs as a Model for EPA Assessment Development. Acad Med [Internet]. 2014; 89(10):1335–40.

https://doi.org/10.1097/ACM.0000000000000317

14. Carraccio C, Burke AE. Beyond Competencies and Milestones: Adding Meaning through Context. J Grad Med Educ [Internet]. 2010 [cited 2017 Apr 17]; 419–22.

15. Brown Jr. CR, Criscione-Schreiber L, O’Rourke KS, Fuchs HA, Putterman C, Tan IJ, et al. What Is a Rheumatologist and How Do We Make One? Arthritis Care Res (Hoboken). 2016; 68(8):1166–72.

https://doi.org/10.1002/acr.22817

16. El-Haddad C, Damodaran A, McNeil HP, Hu W. The ABCs of EPAs - an overview of "Entrustable Professional Activities” in medical education. Intern Med J [Internet]. 2016; Early Online/a-n/a.

17. Chen HC, McNamara M, Teherani A, Cate O Ten, O’Sullivan P, O’Sullivan P. Developing Entrustable Professional Activities for Entry Into Clerkship. Acad Med [Internet]. 2015 Feb [cited 2016 Dec 23]; XX(X):1. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001888-201602000-00031

18. Shumway NM, Dacus JJ, Lathrop KI, Hernandez EP, Miller M, Karnad AB. Use of Milestones and Development of Entrustable Professional Activities in 2 Hematology/Oncology Training Programs. J Grad Med Educ [Internet]. 2015 Mar [cited 2016 Dec 23]; 7(1):101–4.

19. Myers J, Krueger P, Webster F, Downar J, Herx L, Jeney C, et al. Development and Validation of a Set of Palliative Medicine Entrustable Professional Activities: Findings from a Mixed Methods Study. J Palliat Med [Internet]. 2015 Aug [cited 2016 Dec 23]; 18(8):682–90.

20. Hauer KE, Soni K, Cornett P, Kohlwegs J, Hollander H, Ranji SR, et al. Developing Entrustable Professional Activities as the Basis for Assessment of Competence in an Internal Medicine Residency: A Feasibility Study. J Gen
Appendices

Appendix: Data used for triangulate and construction of the Entrustable Professional Activities

GS-EPA	Academic program topics	Clinical settings	Focus group	ACGME competency	Epidemiology (ICD 10-number of cases in Mexico)
GS1. Provide care to the patient with surgical wound.	Management of surgical wounds	CR	"In the hospital, in the outpatient area, we followed patients who had surgery for revision of their wounds, removal of stitches, we also performed cures of diabetic foot", Student	PC, MK, ICS, PBLI	L90.5 - Scar conditions and fibrosis of skin (1,111) L91.0 - Hypertrophic scar (2,261) T81.3 - Disruption of operation wound (5,500) T81.4 - Infection following a procedure (7,782)
GS2. Assess the need for surgical management in patients with gastroesophageal disease.

Gastric diseases	Gastroesophageal reflux disease	Hiatal hernia	CR, ER H
"I would expect the inmate in the outpatient clinic, is to perform diagnoses of pathologies that are surgical, so that in their social service they can refer and can have the correct impression. Diagnostic criteria for reflux disease, initial management for peptic acid disease and reflux, and knowing when to refer to specialized consultation", *Professor*			

K20 – Oesophagitis (1,495)
K21 - Gastro-oesophageal reflux disease (6,970)
K22 - Other diseases of oesophagus (3,154)
K25 - Gastric ulcer (3,303)
K26 - Duodenal ulcer (965)
K27 - Peptic ulcer, site unspecified (878)
K29 - Gastritis and duodenitis (11,309)
K44 - Diaphragmatic hernia (hiatus) (4,687)
C15 - Malignant neoplasm of esophagus (1,671)
C16 - Malignant neoplasm of stomach (6,123)

GS3. Assess the need for surgical management in patients with pancreatic or biliary tract disease.

Diseases of the bile duct	Pancreatitis	CR, ER H
"The outpatient hospital, we had many patients, we saw the frequent pathologies, gallbladder, hernias, the doctors let us explore, practically everything, and in the end the doctor supervised us", *Student*		

K80 – Cholelithiasis (140,122)
K81 – Cholecystitis (70,452)
K83.0 - Cholangitis (1,574)
K83.1 - Obstruction of bile duct (jaundice) (1,108)
C23 - Malignant neoplasm of gallbladder (1,016)
C24 - Malignant neoplasm of other and unspecified parts of biliary tract (908)
K85 - Acute pancreatitis (22,145)
K86.0 y K86.1 - Chronic pancreatitis (1,010)
GS4. Assess the need for surgical management in patients with intestinal disease.	Appendicitis Intestinal occlusion	CR, ER H	"Emergency inmates, talk to surgery to tell you we have an acute abdomen then you went and reviewed it alone. Then you would go and tell the surgeon and check the patient and say I think if you need surgery and then go and check it again and he decided", Student	PC, MK, ICS, PBLI	K25 - Acute appendicitis (82,109) K56 - Paralytic ileus and intestinal obstruction without hernia (19,991) K91.3 - Postoperative intestinal obstruction (172)
GS5. Assess the need for surgical management in patients with abdominal wall hernia.	Abdominal wall hernias	CR, ER H	"They should learn to read an ultrasound, make a touch of the abdominal wall looking for how the abdominal wall is or how the abdominal wall is normal and if you have a pathology as that pathology is detected. They will be the first contact either at the private or institutional level", Professor	PC, MK, ICS, PBLI	K40 - Inguinal hernia (82,109) K41 - Femoral hernia (1,440) K42 - Umbilical hernia (43,676) K43.0, K43.1 y K43.2 - Incisional hernia (2,037) K43.6 - Ventral hernia (Epigastric) (186) K43.9 – Eventration (15,388)
GS6. Provide care to the patient with diabetic foot.	Diabetic foot	CR, ER H	"In the morning during the rotation of surgery you do the tasks, get the laboratories go ask for imaging studies, informed consent, probes, diabetic foot cures ...", Student	PC, MK, ICS, PBLI	E10.4, E11.4, E12.4, E13.4, E14.4 - Diabetes mellitus with neurological complications (neuropathy) (1,375) E10.5, E11.5, E12.5, E13.5, E14.5 - Diabetes mellitus with peripheral circulatory complications (angiopathy) (41,858)
GS7. Provide care to the patient with lower limb vascular disease.	Lower limb vascular disease	CR	"In angiology, we see diabetic foot, peripheral vascular disease, venous insufficiency", *Student*	PC, MK, ICS, PBLI	I73.9 - Peripheral vascular disease, unspecified (1,219)
I74.3 - Embolism and thrombosis of arteries of lower extremities (391)					
I80 - Phlebitis and thrombophlebitis (4,053)					
I83 - Varicose veins of lower extremities (4,369)					
GS8. Provide care to the patient with thyroid disease.	Surgical thyroid disease	CR H	"We don't see a lot of patients with thyroid diseases, we only see them in the consulting room and for a checkup" *Student*	PC, MK, ICS, PBLI	E04.1 - Nontoxic single thyroid nodule (3,255)
E04.2 - Nontoxic multinodular goiter (1,311)					
C73 - Malignant neoplasm of thyroid gland (4,865)					
GS9. Provide care to the patient with colonic or anorectal disease.	Anorectal disease				
Colonic disease	CR, ER H	No data	PC, MK, ICS, PBLI	K57 - Diverticular disease of intestine (5,391)	
D12.6 - Colon, unspecified (Polyposis) (290)					
C18 - Malignant neoplasm of colon (9,342)					
K60 - Fissure and fistula of anal and rectal regions (8,888)					
K61 - Abscess of anal and rectal regions (5,838)					
K64 - Haemorrhoids and perianal venous thrombosis (7,920)					
GS10. Provide care to the patient with urologic disease.	Urological diseases	CR, ER H	No data	PC, MK, ICS, PBLI	D29.1 - Benign neoplasm: Prostate (126)
C61 - Malignant neoplasm of prostate (7,533)
N40 - Hyperplasia of prostate (24,137) |
GS11. Participate in patient care in the surgical area.

Hydroelectrolytic and acid-base disorders in the surgical patient

OR

When they start, it is always under supervision, when they are advanced sometimes they can do things by themselves. What we have noticed, in our hospital, are always first assistant during the surgery... ”, *Professor*

SBP, P and ICS

ICD Code	Description	Frequency
E83.5	Hypocalcemia	(740)
E86	Volumen depletion	(6,101)
E87.0	Hyponatremia	(1,063)
E87.1	Hyponatremia	(1,499)
E87.2	Acidosis	(5,774)
E87.3	Alkalosis	(41)
E87.4	Mixed disorder of acid-base balance	(120)
E87.5	Hyperkalemia	(550)
E87.6	Hypokalemia	(644)
E87.7	Fluid overload	(130)
E87.8	Electrolyte imbalance, Hypochloremia and Hyperchloremia	(4,929)

Notes: GS: General surgery, EPA: Entrustable Professional Activity, CR: Consulting Room, ER: Emergency Room, H: Hospitalization, OR: Operating Room, PC: patient care, MK: medical knowledge, PBLI: practice-based learning and improvement, ICS: interpersonal and communication skills, P: professionalism and SBP: systems-based practice. ICD: International Statistical Classification of Diseases and Related Health Problems

Declaration of Interest

The author has declared that there are no conflicts of interest.