Didelphis spp. opossums and their parasites in the Americas: A One Health perspective

Marcos Antônio Bezerra-Santos¹ · Raphael Antonio Nascimento Ramos² · Artur Kanadani Campos³ · Filipe Dantas-Torres⁴ · Domenico Otranto¹,⁵

Received: 17 September 2020 / Accepted: 26 January 2021 / Published online: 31 March 2021 © The Author(s) 2021

Abstract
Medium sized opossums (Didelphis spp.) are among the most fascinating mammals of the Americas, playing important ecological roles (e.g., dispersal of seeds and control of insect populations) in the environment they inhabit. Nevertheless, as synanthropic animals, they are well adapted to human dwellings, occupying shelters within the cities, peripheral areas, and rural settings. These marsupials can harbor numerous pathogens, which may affect people, pets, and livestock. Among those, some protozoa (e.g., Leishmania infantum, Trypanosoma cruzi, Toxoplasma gondii), helminths (e.g., Ancylostoma caninum, Trichinella spiralis, Alaria marcianae, Paragonimus spp.) and arthropods (e.g., ticks, fleas) present substantial public health and veterinary importance, due to their capacity to cause disease in humans, domestic animals, and wildlife. Here, we reviewed the role played by opossums on the spreading of zoonotic parasites, vectors, and vector-borne pathogens, highlighting the risks of pathogens transmission due to the direct and indirect interaction of humans and domestic animals with Didelphis spp. in the Americas.

Keywords Didelphis spp. · Public health · Reservoirs · Vectors · Wildlife · Zoonotic parasites

Introduction
Over history, uncontrolled environmental changes promoted by humans have led to irreversible outcomes, affecting natural resources and consequently the biotic populations of the modified landscape (Acevedo-Whitehouse and Duffus 2009; Dantas-Torres 2015). For example, the impact of deforestation to give place to productive activities (e.g., livestock system and cropping) and construction of large cities has resulted in the extinction of wildlife species due to habitat loss and fragmentation of their populations (Rands et al. 2010; Pereira et al. 2010; Haddad et al. 2015). However, some species, such as medium sized opossums of the genus Didelphis (from this point will be referred in the text only as opossums), can adapt to human-modified landscapes due to their ability to exploit a wide range of resources and environments (Cruz-Salazar and Ruiz-Montoya 2020). The presence of such animals within human dwellings across the American continent brings important consequences (i.e., disease transmission) not only for humans and domestic animals, but also for themselves as they are victims of domestic animal attacks, roadkill (Fig. 1a) or directly killed by humans (Gumier-Costa and Sperber 2009; Rangel and Neiva 2013; Barros and Azevedo 2014).

Opossums’ ability to thrive in different environments enabled them to become synanthropic species, benefiting from resources (e.g., food and shelter) available in human-modified areas (Oltiﬁers et al. 2005; Jansen and Roque 2010). These marsupials are compatible hosts and suggested reservoirs of important parasites (e.g., Leishmania infantum and Trypanosoma cruzi) that cause human disease, and along with
domestic animals, opossums are involved in the epidemiological cycle of such parasites within urban and periurban environments (Muller et al. 2005; Horta et al. 2010; Pena et al. 2011; Carreira et al. 2012). Additionally, opossums are also potential amplifiers of some pathogens, such as *Rickettsia rickettsii* (Horta et al. 2009).

Several pathogens present in wildlife are still unknown to science, and in many countries the illegal consumption of these animals exposes humans to infectious agents harbored by wildlife (Chomel et al. 2007; Júnior et al. 2010; Bezerra-Santos et al. 2021a, b). For example, opossums have been consumed by local communities as food or even as traditional medicine (e.g., opossum fat) in some regions of the Americas, which in many situations lead to local illegal trade of these animals (Júnior et al. 2010; Barros and Azevedo 2014; de Oliveira Carneiro et al. 2019). Such habits impose substantial health risks for people consuming or handling opossums’ meat/carcasses, due to lack of monitoring of the health status of these animals, poor hygienic conditions when manipulating their meat (e.g., cross contamination due to the contact of the animals’ feces, blood, saliva, urine with other food items such as raw vegetables) and inadequate cooking. Here, we reviewed the role played by opossums on the spreading of zoonotic parasites, vectors and vector-borne pathogens,

Fig. 1
a. Road killed *Didelphis aurita* female with its marsupium full of joeys;
b. *Didelphis aurita* trapped through Tomahawk livetrap;
c. *Didelphis aurita* female with joeys on its back;
d. *Didelphis aurita* female with joeys inside the marsupium.
highlighting the veterinary and public health consequences that the direct and/or indirect contact with these animals may bring for people and domestic animals.

The genus *Didelphis*: ecology and coexistence with domestic animals and humans

The genus *Didelphis* consist of six species generally known as “New World marsupials” or “opossums” (Voss and Jansa 2009). Except for *Didelphis virginiana*, these animals are classified in two groups: *Didelphis marsupialis*-group (i.e., *Didelphis marsupialis* and *Didelphis aurita*), and *Didelphis albiventris*-group (i.e., *Didelphis albiventris*, *Didelphis pernigra* and *Didelphis imperfecta*) (Gardner 2008; Faria and de Melo 2017). From the species up to date recognized, *D. albiventris*, *D. aurita*, *D. marsupialis* and *D. virginiana* are the most abundant and widely distributed (Fig. 2). Three of them are mostly restricted to South America: the white-eared opossum (*D. albiventris*) occurring in Argentina, Bolivia, Brazil, Paraguay, and Uruguay; the black-eared opossum (*D. aurita*), found in northeastern Argentina, eastern Brazil, and southeastern Paraguay; and the common opossum (*D. marsupialis*), which is distributed through Trinidad and Tobago, the Guianas, Mexico, and in the Amazon basin (including Bolivia, Brazil, Colombia, Ecuador, Peru, and Venezuela). Conversely, the Virginia opossum (*D. virginiana*) is widely distributed and abundant in North and Central America, being reported from Canada to Costa Rica (Gardner 2008). The other two species (i.e., *D. imperfecta* and *D. pernigra*) have a more limited distribution being the first restricted to small land range in Venezuela, Brazil, Surinam, and the Guianas, and the second found throughout the Andes region (Gardner 2008).

Species of the genus *Didelphis* have twilight and nocturnal habits and are considered synanthropic animals due to the high adaptation to human dwellings, being frequently found on the roof of houses, hollows of trees and other shelters within the cities and peripheral areas (Jansen 2002). Due to their circulation in urban and rural environments, opossums are considered potential reservoirs of many infectious agents (e.g., *Trypanosoma cruzi*, *Leishmania infantum*, *Rickettsia spp.*, *Ancylostoma caninum*, *Angiostrongylus cantonensis*, *Angiostrongylus costaricensis*) to humans and domestic animals (Miller et al. 2006; Horta et al. 2009, 2010; Carrero et al. 2012; Cantillo-Barraza et al. 2015; Dalton et al. 2017; Bezerra-Santos et al. 2020a). Additionally, ectoparasites (e.g., ticks and fleas) harbored by these animals have been reported as vectors of important arthropod-borne zoonotic pathogens (e.g., *Rickettsia* spp. and *Borrelia* spp.) (Hanincová et al. 2006; Horta et al. 2009; Abramowicz et al. 2012; Maina et al. 2016).

Opossums present omnivorous habit and opportunistic feeding behavior, with a diet consisting of small vertebrates, invertebrates, seeds, and fruits (Cáceres and Monteiro-Filho 2001). The feeding behavior of these animals varies according to the seasons of the year, depending on the availability of resource found in each period. For instance, during the rainy
season they have higher food intake of fruits and vertebrate animals. Additionally, the diet of these marsupials may differ according to the environment where they are mostly inserted, being possible to record fruits and garbage remnants of human consumption, as well as food only available inside forest fragments (Cáceres and Monteiro-Filho 2001). This opportunistic feeding behavior exposes them to diverse parasitic infections (Jiménez et al. 2011). For instance, by consuming contaminated food from garbage remnants (e.g., garbage contaminated with feces of infected dogs or cats) they may get gastrointestinal parasite infections (e.g., Ancylostoma caninum and Toxocara spp.), and the ingestion of insect vectors (e.g., kissing bugs) may expose them to blood protozoa such as Trypanosoma cruzi (Schweigmann et al. 1995; Teodoro et al. 2019; Bezerra-Santos et al. 2020a).

These marsupials live in close relationship with humans and domestic animals. In many South American countries, some people consider opossums as pests, frequently mistaken them as rats or by considering them dirty animals (Krause and Krause 2006; Barros and Azevedo 2014). This factor leads to their death within the cities using poison or even traps to capture and kill (Fig. 1b) (Stone et al. 2000; Barros and Azevedo 2014). Domestic animals (predominantly dogs) also use to attack opossums, especially during the reproduction period, in which females are slower due to the high number of baby opossums (known as “joeys”) they carry on their back or within the marsupium (Fig. 1c, d) (Rangel and Neiva 2013). In rural settings, mainly in poultry farms, opossums are also seen as a problem, since they have been considered important predators of domestic birds, leading to human and wildlife conflicts (Amador-Alcalá et al. 2013).

In their natural habitats, opossums have an irreplaceable ecological role acting in the control of pests (e.g., insects and venomous animals), as well as in the dispersion of seeds, which contribute to the ecology of various plant species because of their mutualistic association with humans. However, given their reservoir role of infectious agents, it is extremely important the establishment of human awareness regarding the prevention of diseases caused by pathogens transmitted by opossums.

Arthropods and vector-borne pathogens associated with Didelphis spp.

Ticks and tick-borne pathogens

Ticks are among the vectors of major importance in the transmission of pathogens (e.g., Babesia spp., Ehrlichia spp., Anaplasma spp., Rickettsia spp. and Borrelia spp.) (Dantas-Torres et al. 2012a; Otranto 2018). These blood-sucking arthropods feed on a great variety of vertebrate hosts, being recorded in humans, domestic animals, and wildlife, including opossums (Soares et al. 2015; Saracho-Bottero et al. 2018; Mendoza-Roldan et al. 2020a). It is known that the exchange of ectoparasites among these hosts has a central importance in the epidemiology of tick-borne diseases. In this perspective, opossums are suggested to play a central role in the epidemiological chain of some tick-borne pathogens, as one of their behaviors (i.e., movement among forests, urban, and rural locations) facilitates the spreading of different tick species from wild environments to urban sites (Bermúdez et al. 2016; Rojero-Vázquez et al. 2017). For example, opossums captured close to human dwellings have been reported harboring species of hard ticks (Amblyomma spp.) (Massini et al. 2019; Bezerra-Santos et al. 2020b), which are usually found in other wildlife species within forests areas of Brazil (Dantas-Torres et al. 2010). Moreover, the relevance of opossums as potential disseminators of tick-borne pathogens has been suggested by studies on the exposure of these marsupials to tick-borne zoonotic pathogens, such as *R. rickettsii, B. burgdorferi* and *Ehrlichia chaffeensis* (Horta et al. 2009; Castellaw et al. 2011; Melo et al. 2016). For instance, an experimental study demonstrated that *D. aurita* opossums get infected after being exposed to *R. rickettsii*-positive *Amblyomma sculptum* ticks, developing rickettsemia capable of causing infection in guinea pigs and ticks, and acting as amplifier hosts of this bacterium to ticks, although the infection rate (i.e., 5% to 18%) in ticks was considered low (Horta et al. 2009). On the other hand, despite seroprevalence of 27.5% for *B. burgdorferi* and 15.8% for *E. chaffeensis* have been demonstrated in opossums, the role of these animals in the epidemiology of these bacteria is unclear (Castellaw et al. 2011; Melo et al. 2016).

Despite the genus *Amblyomma* being the most diverse among the ixodid ticks reported on *Didelphis* spp. in South America (Table 1), most life stages detected are larvae and nymphs (Dantas-Torres et al. 2012b; Saraiva et al. 2012; Sponchiado et al. 2015; Lopes et al. 2018). In contrast, the genus *Ixodes* is mostly reported on these marsupials as adult stages (Fig. 3), with the species *Ixodes loricatus, Ixodes amarali, Ixodes luciae* and *Ixodes delphidis* having these animals as primary hosts (Labruna et al. 2004, 2009; Dantas-Torres et al. 2012b). Indeed, it is known that they are three host ticks feeding on small rodents at early life stages, and on opossums at the adult stage (Labruna et al. 2009; Nava et al. 2017; Tarragona et al. 2018). Up to date, there is no record on the vector role of these species or their parasitic association with humans. However, transovarial and transtadial transmission of *Rickettsia bellii*, a microorganism of unknown pathogenicity, have been demonstrated in engorged ticks, *I. loricatus*, collected from *D. aurita*, suggesting that this tick species could have a role in the maintenance of this bacterium in nature (Horta et al. 2006). Further studies...
Marsupial species	Tick species	Occurrence on humans	Associated zoonotic pathogens	Reference
Didelphis albiventris	Ixodidae	Yes	Spotted Fever Group Rickettsiae	Muller et al. (2005); Barbieri et al. (2015); Moraes-Filho et al. (2018); Reck et al. (2018)
	Amblyomma aureolatum	Yes	No record	Fontalvo et al. (2017); Szabó et al. (2020)
	Amblyomma auricularium	Yes	No record	Garcia et al. (2015); Sponchiado et al. (2015); De Sá et al. (2018)
	Amblyomma coelebs	Yes	Spotted Fever Group Rickettsiae	Sakai et al. (2014); Matias et al. (2015); Sponchiado et al. (2015); Lamattina and Nava (2016); Reck et al. (2018); De Sá et al. (2018)
	Amblyomma dubitatum	Yes	No record	Szabó et al. (2013)
	Amblyomma fasciatus	Yes	No record	Marques et al. (2006); Martins et al. (2009); Dantas-Torres et al. (2012b)
	Amblyomma ovale	Yes	Spotted Fever Group Rickettsiae	Sponchiado et al. (2015); Bitencourth et al. (2017); Polo et al. (2017); De Sá et al. (2018); Saracho-Bottero et al. (2018)
	Amblyomma sculptum	Yes	Rickettsia parkeri	Sponchiado et al. (2015); Zeringóta et al. (2017); Reck et al. (2018); Borsoi et al. (2019)
	Ixodes loricatus	No record	No record	Muller et al. (2005); Horta et al. (2007); Dantas-Torres et al. (2012b); da Silva et al. (2017); De Sá et al. (2018)
	Argasidae	Yes	No record	Labruna et al. (2014); Sponchiado et al. (2015); da Silva et al. (2017)
	Ornithodoros mimon	Yes	No record	Salvador et al. (2007); Barbieri et al. (2015); Luz et al. (2018); Moraes-Filho et al. (2018); Reck et al. (2018)
Didelphis aurita	Ixodidae	Yes	Spotted Fever Group Rickettsiae	Sponchiado et al. (2015); Bitencourth et al. (2017); Polo et al. (2017); Saracho-Bottero et al. (2018)
	Amblyomma aureolatum	Yes	No record	Szabó et al. (2013); Lamattina et al. (2018a, 2018b)
	Amblyomma coelebs	Yes	No record	Szabó et al. (2013); Lamattina et al. (2018a, 2018b)
	Amblyomma dubitatum	Yes	Spotted Fever Group Rickettsiae	Horta et al. (2007); Sakai et al. (2014); Matias et al. (2015); Lamattina and Nava (2016); Reck et al. (2018)
	Amblyomma fasciatus	Yes	No record	Marques et al. (2006); Martins et al. (2009); Dantas-Torres et al. (2012b); Szabó et al. (2013)
	Amblyomma geayi	No record	Rickettsia amblyommatis	Oliveira et al. 2014; Dolz et al. 2019
	Amblyomma incisum	Yes	No record	Szabó et al. (2006); Reck et al. (2018); Lamattina et al. (2018a, b)
	Amblyomma ovale	Yes	Spotted Fever Group Rickettsiae	Szabó et al. (2013); Barbieri et al. (2015); Lamattina et al. (2018a, b); Reck et al. (2018)
	Amblyomma sculptum	Yes	Spotted Fever Group Rickettsiae	Salvador et al. (2007); Saraiya et al. (2012); Szabó et al. (2013); Bitencourth et al. (2017); Polo et al. (2017); Saracho-Bottero et al. (2018)
	Amblyomma scutatum	No record	No record	Oliveira et al. (2014)
	Amblyomma yucumense	No record	No record	Labruna et al. (2014); Sponchiado et al. (2015); da Silva et al. (2017)
	Haemaphysalis juxtakochi	Yes	Rickettsia parkeri, Borrelia burgdorferi sensu lato	Lamattina et al. (2018a); Reck et al. (2018); Saracho-Bottero et al. (2018)
	Ixodes amarali	No record	No record	Oliveira et al. (2014)
	Ixodes auritulus	No record	No record	Oliveira et al. (2014)
	Ixodes didelphidis	No record	No record	Oliveira et al. (2014)
	Ixodes loricatus	No record	No record	Oliveira et al. (2014)
Didelphis marsupialis	Ixodidae	No record	Rickettsia amblyommatis	Costa et al. (2017); Binetruy et al. (2019)
	Amblyomma cajennense sensu stricto	No record	No record	Garcia et al. (2015); Witter et al. (2016); Binetruy et al. (2019)
	Amblyomma coelebs	Yes	No record	Guglielmone et al. (2006); Domínguez et al. (2019); Mendoza-Roldan et al. (2021)
	Amblyomma dissimile	Yes	Rickettsia monacensis	Guglielmone et al. (2006); Domínguez et al. (2019); Mendoza-Roldan et al. (2021)
	Amblyomma geayi	No record	Rickettsia amblyommatis	Soares et al. (2015); Dolz et al. (2019)
are advocated on the vector role and host range of these species, as some of them (e.g., *I. loricatus*) have been the main and most abundant ticks found on *Didelphis* spp. from urban and rural environments (Dantas-Torres et al. 2012b; Tarragona et al. 2018; Bezerra-Santos et al. 2020b). Thus, identifying their potential role on the epidemiology of tick-borne pathogens affecting humans and/or domestic animals is important from a One Health perspective. A single species of the genus *Haemaphysalis* (i.e., *Haemaphysalis justakochi*) has been recorded on *D. aurita* and *D. marsupialis* (Lamattina et al. 2018a, b; Domínguez et al. 2019). This species is known as the neotropical deer tick and has also been reported on other wildlife species, humans, and domestic animals (Costa et al. 2017; Saracho-Bottero et al. 2018).

Table 1 (continued)

Marsupial species	Tick species occurrence on humans	Associated zoonotic pathogens	Reference
Amblyomma			
Amblyomma	Yes Rickettsia rickettsii, Coxiella burnetii		Soares et al. (2015); Witter et al. 2016; Binetruy et al. (2019); Gruhn et al. (2019); Bermúdez et al. (2016); Noda et al. (2016); Rodríguez-Vivas et al. (2016); Domínguez et al. (2019)
Amblyomma	Yes Rickettsia amblyommatis		Bermúdez et al. (2012); Aguirre et al. (2018); Domínguez et al. (2019)
Amblyomma	Yes Spotted Fever Group Rickettsiae		Barbieri et al. (2015); Lamattina et al. (2018b); Reck et al. (2018); Domínguez et al. (2019)
Amblyomma	No record		
Amblyomma	Yes Rickettsia parkeri		Witter et al. (2016); Zeringóta et al. (2017); Reck et al. (2018); Borsoi et al. (2019)
Amblyomma	No record		Bermúdez et al. (2012); Domínguez et al. (2019)
Amblyomma	Yes Spotted Fever Group Rickettsiae		de Lemos et al. (1996); Bitencourth et al. (2017); Polo et al. (2017); Saracho-Bottero et al. (2018)
Amblyomma	Yes Rickettsia parkeri		de Lemos et al. (1996); Guglielmone et al. (2006); Melo et al. (2015)
Amblyomma	Yes Rickettsia rickettsi, Bartonella henselae, Rickettsia conorii		Flores et al. (2018); Souza et al. (2018); Reck et al. (2018); Saracho-Bottero et al. (2018); Domínguez et al. (2019)
Amblyomma	No record		Abel et al. (2000)
Amblyomma	No record		Dominguez et al. (2019); Binetruy et al. (2019)
Amblyomma	Yes Rickettsia rickettsi		Goddard (1989); Kollars (1993); Matsumoto et al. (2005); Dantas-Torres et al. (2006); Wikswo et al. (2007); Otranto et al. (2014); Bermúdez et al. (2016); Reck et al. (2018)
Amblyomma	No record		
Amblyomma	Yes Rickettsia parkeri		
Amblyomma	No record		
Amblyomma	Yes Rickettsia rickettsi		
Amblyomma	No record		

Didelphis virginiana

Amblyomma americana	Yes Ehrlichia chaffeensis, Ehrlichia ewingii, Rickettsia rickettsi, Coxiella burnetii, Francisella tularensis, Borrelia lonestari, Rickettsia parkeri	Fish and Dowler (1989); Fish and Dowler (1996); Oliver et al. (1999); Steiert and Gilfoy (2002); Stromdahl et al. (2011); Hecht et al. (2019); Whitten et al. (2019)
Isodes diciphitus	No record	Lavender and Oliver (1996); Maggi et al. (2019)
Isodes loricatus	No record	Fish and Dowler (1989); Hall et al. (1991); Scott et al. (2019)
Isodes luciae	No record	Kollars (1993); Lavender and Oliver (1996); Oliver et al. (1999); Eisen and Eisen (2018); Xu et al. (2019)
Rhipicephalus sanguineus senso lato	No record	Anderson et al. (1986); Fish and Dowler (1989); Hall et al. (1991); Ouellette et al. (1997); Tufts et al. (2020)

Rickettsia

Rickettsia parkeri	No record	
Rickettsia rickettsi, Coxiella burnetii	No record	

Didelphis imperfecta

| Amblyomma cajennense senso stricto | No record | Costa et al. (2017); Binetruy et al. (2019) |
addition, some zoonotic pathogens such as *Rickettsia parkeri* and *B. burgdorferi* sensu lato have been detected in *H. juvtakochi*, although its role in the transmission of these pathogens to humans is probable negligible (Souza et al. 2018; Flores et al. 2018).

Different tick species have been reported on the Virginia opossum due to its distinct geographical range as compared to other species of the same genus (Fig. 2). Up to date, *Amblyomma americanum*, *Dermacentor variabilis*, *Haemaphysalis longicornis*, and five species of the genus *Ixodes* have been recorded on this opossum (Table 1). However, despite the medical and veterinary importance of these ticks, their relationship with opossums needs further investigation, particularly regarding their ability to acquire pathogens from opossums, as well as the capacity of opossums to serve as amplifier hosts. Most recently, the Virginia opossum has been found commonly infested by *H. longicornis* (Table 1), an invasive Asian tick, in some states of the USA (Tufts et al. 2020; White et al. 2020). This tick species has been associated with several vector-borne pathogens (e.g., *Anaplasma* spp., *Rickettsia* spp., *Babesia* spp., *Theileria* spp., *Borrelia* spp.) in its native range. However, its potential to serve as vector for pathogens of medical and veterinary importance in USA is still poorly understood (Tufts et al. 2020). Indeed, under laboratory conditions, *H. longicornis* larvae and nymphs became infected with *R. rickettsii* after feeding on infected guinea pigs and were able to transmit them to naïve guinea pigs (Stanley et al. 2020). In addition, the same study also demonstrated the transstadial and transovarial transmission of *R. rickettsii* in the same tick species (Stanley et al. 2020). Lastly, *Rhipicephalus sanguineus* sensu lato (s.l.) infesting opossums are rare, being described only in *D. virginiana* and *D. marsupialis* (Kollars 1993; Bermúdez et al. 2016). Thus, the capacity of opossums to maintain this tick species population, as well as the sharing of pathogens have not been assessed and seem unlikely.

Fleas and flea-borne pathogens

Opossums harbor a great diversity of flea species (Horta et al. 2007; Pinto et al. 2009; Urdapilleta et al. 2019; Bezerra-Santos et al. 2020b; Canto-Osorio et al. 2020), with some of them being regarded as important vectors of zoonotic pathogens (e.g., *Ctenocephalides felis felis*, *Xenopsylla cheopis*, *Pulex irritans* and *Pulex simulans*), while others (e.g., *Adoratopsylla antiquorum*, *Polygenis occidentalis* and *Cediopsylla simplex*) presenting unknown vector role as studies on their ecology and epidemiology are scanty (Table 2). Among the pathogens transmitted by fleas reported on *Didelphis* spp., *R. typhi*, *R. felis* and *Y. pestis* are of major public health concern (Azad et al. 1997; Demeure et al. 2019; Oliveira et al. 2020). *Rickettsia typhi* is the etiological agent of the murine typhus, a worldwide distributed zoonosis with a life cycle involving rodents (*Rattus rattus* and *Rattus norvegicus*) as vertebrate hosts, and fleas (*X. cheopis*) as vectors (Peniche-Lara et al. 2015). This pathogen has also been reported through molecular methods in *C. felis felis*, *Leptopsylla segnis*, *Ctenophthalmus congeneroides* and *Rhadinopsylla insolita* (Peniche-Lara et al. 2015). The transmission occurs from rodents to humans through contaminated feces of infected fleas. Despite the rodents being the main hosts of *R. typhi*, opossums were infected with this bacterium in the USA and are believed to have important role on the epidemiology of the disease (Williams et al. 1992; Sorvillo et al. 1993; Brown and Macaluso 2016). Another important pathogen transmitted by fleas is the *R. felis*, a worldwide distributed rickettsia that causes the flea-borne spotted fever. This bacterium may be transmitted by several flea species but has the *C. felis felis* as its main vector (Angelakis et al. 2016). Just like in the murine typhus, opossums are suggested as potential reservoirs of *R. felis* (Boostrom et al. 2002; Brown and Macaluso 2016).

For instance, studies performed on *D. virginiana* reported high seroprevalence for *R. felis* (i.e., 22%) as well as the presence of the bacterium DNA in tissue (e.g., spleen, liver, and kidney) and in *C. felis felis* fleas collected on them (Boostrom et al. 2002; Karpathy et al. 2009; Panti-May et al. 2015). However, the role played by these animals as reservoir of *R. felis* may vary according to the opossum species and further investigations are needed, since undetectable rickettsemia was reported in *D. aurita* in Brazil following experimental infection (Horta et al. 2010). Fleas are also known as vectors of the deadly bacteria *Y. pestis* (Pechous et al. 2016). Up to date, this bacterium has been detected through serological and bacterial culture in *D. albiventris* in Brazil (Almeida et al. 1987; Almeida et al. 1995). Indeed, considering the infestation of the main vector of this bacterium (i.e., *X. cheopis*) on *D. aurita* (Bezerra-Santos et al. 2020b), it is worth to further investigate the role of these animals as reservoir of this pathogen.

Phlebotomine sand flies and leishmaniasis

Opossums have been identified as a blood source for several hematophagous arthropods, including phlebotomine sand flies (e.g., *Lutzomyia longipalpis* and *Lutzomyia evansi*), which are accounted as vectors of pathogenic *Leishmania* spp. (Adler et al. 2003; Guimarães-e-Silva et al. 2017) such as *L. infantum*, the etiological agent of American visceral leishmaniasis (Spiegel et al. 2016; Mejia et al. 2018). Indeed, natural and experimental infection with species of zoonotic *Leishmania* (e.g., *L. infantum*, *L. brasiliensis*) in *Didelphis* spp. confirm their participation in the sylvatic and peridomestic cycles of these protozoa (Schallig et al. 2007; Carreira et al. 2012; Humberg et al. 2012; Silva et al. 2016). Natural infection by different *Leishmania* spp. has been reported in these marsupials in the New World (Table 3).
(Santiago et al. 2007; Quintal et al. 2011; Carreira et al. 2012; Lima et al. 2013; Silva et al. 2016; Maia et al. 2018). For example, in urban and peri-urban areas of Southeastern Brazil, *D. albiventris* and *D. aurita* opossums displayed a high prevalence (i.e., 91.96%; *n* = 103/112) of *L. infantum* through PCR screening of DNA isolated from bone marrow, supporting their role as hosts of the causative agent of visceral leishmaniasis (Santiago et al. 2007). The role of marsupials in the epidemiology of this disease has been observed particularly in areas with peridomestic transmission, where phlebotomine sand flies may feed on opossums and eventually on other susceptible hosts, including people and domestic animals (e.g., dogs, cats), with opossums being suggested as a link in the transmission of visceral leishmaniasis to humans and dogs in rural and urban environments (Carranza-Tamayo et al. 2016). This has been further supported in an endemic area of Northeastern Brazil, where it was demonstrated that the months with higher opossum population density (rainy and colder) correlates with the peak of *Lu. longipalpis* population and with new cases of visceral leishmaniasis in humans (Sherlock 1996). In the same study *D. albiventris* capacity to infect *Lu. longipalpis* with *L. infantum* was confirmed through xenodiagnoses, in which 14% (*n* = 27/193) of the sand flies scored positive for this protozoan after feeding on a naturally infected opossum (Sherlock 1996). Data were confirmed through the experimental infection of *D. marsupialis* with *L. infantum*, which was able to infect *Lu. longipalpis* following blood feeding on this opossum species (Travi et al. 1998). In addition, though a small proportion (i.e., 2.6%; *n* = 8/312) of sand flies got infected after feeding on *D. marsupialis*, a high attraction rate for sand flies in trapped opossums was registered by the authors, strengthening their possible role as reservoirs for *L. infantum* (Travi et al. 1998). Finally, the detection of human and *D. albiventris* DNA in *Lu. longipalpis*, allowed to establish a link between these two hosts in an area of Brazil endemic for visceral and cutaneous leishmaniasis (Guimarães-e-Silva et al. 2017).

Triatomines and Trypanosoma cruzi

Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected tropical illness mostly associated to poor housing conditions of the population in developing countries (Barbosa-Silva et al. 2019). Opossums play an important role in the zoonotic cycle of *T. cruzi* (Legey et al. 2003; Cantillo-Barraza et al. 2015; Jansen et al. 2015, 2017). This protozoan may be transmitted to humans via fecal matter of its insect vectors (i.e., triatomines) or by the consumption of

Fig. 3 *Ixodes loricatus* adults collected on *Didelphis aurita* opossums. Female dorsal (a) and ventral view (b). Male dorsal (c) and ventral view (d).
Marsupial species	Flea species	Occurrence on humans	Associated pathogens
Didelphis albiventris	Ctenocephalides felis felis	Yes	Rickettsia felis, Bartonella spp., Dipylidium caninum
Didelphis aurita	Ctenocephalides felis felis	Yes	Rickettsia felis, Bartonella spp., Dipylidium caninum
Didelphis marsupialis	Ctenocephalides felis felis	Yes	Rickettsia felis, Bartonella spp., Dipylidium caninum
Didelphis virginiana	Cediopsylla simplex	No record	Bartonella spp.
Orchopeas howardi	Polygenis gwyni	No record	Bartonella spp.
Pulex irritans	Yes	Yersinia pestis, Bartonella spp.	
Pulex simulans	No record	Bartonella spp.	
Xenopsylla cheopis	Yes	Rickettsia typhi, Rickettsia felis, Yersinia pestis	

References:
Horta et al. (2007); Kumsa et al. (2014); Youssefi and Rahimi (2014); Abdullah et al. (2019); Urdapilleta et al. (2019); Pinto et al. (2009); Salvador et al. (2007); Pinto et al. (2009); Pegl et al. (2010); Parvaz et al. (2009); Danio-Santos et al. (2012); Beaucournu et al. (1998); Durden and Wilson (2016); Durden et al. (1994); Pung et al. (1994); Eremeeva et al. (2008); Durden and Wilson (2016); Durden et al. (1994).
contaminated food due to the presence of infected triatomines during the preparation of food items (e.g., açaí palm fruit, sugar cane, mango), ingestion of raw meat of infected animals, and through breast feeding (de Noya and González 2015; Santana et al. 2019). *Didelphis* spp. may be associated with both transmission routes in the epidemiological cycle of *T. cruzi* (Jansen et al. 2015, 2017). Indeed, the interaction of these opossums with triatomine insects (i.e., detection of opossums blood in triatomines, and infection of opossums after being exposed to infected triatomines), as well as the high prevalence of *T. cruzi* infecting the anal glands (optimal microenvironment for the development of infective metacyclic stages of this parasite) of these marsupials suggest their participation in the epidemiological cycle involving vector and oral transmission of *T. cruzi* (Steindel et al. 1988; Schweigmann et al. 1995; Urdaneta-Morales and Nironi 1996; Zecca et al. 2020). For example, bloodmeal analysis of *T. cruzi*-infected triatomin (Triatoma gerstaeckeri) collected in a dog shelter in South Texas, USA revealed the presence of canine, opossum, and human blood, suggesting the exchange of this protozoan among these hosts (i.e., opossums, dogs and humans) around urban dwellings, and the participation of opossums in the spreading of *T. cruzi* in endemic areas as these animals are known to circulate among different geographical sites (Zecca et al. 2020).

The presence of *T. cruzi* in opossum’s anal glands has been suggested as an oral transmission route since infective forms of this protozoan can be released in the environment, contaminate food, or directly, skin and mucosa of susceptible hosts (Steindel et al. 1988; Urdaneta-Morales and Nironi 1996). This has been demonstrated through the oral infection of mice with metacyclic forms obtained from the anal glands of *Didelphis* spp. (Steindel et al. 1988; Urdaneta-Morales and Nironi 1996), which led to the suggestion of the involvement of opossums in Chagas disease outbreaks via oral infection in areas where the presence of insect vectors was not detected (Steindel et al. 1988). Additionally, the use of these marsupials as food source for humans may also be implicated as a potential risk for the transmission of *T. cruzi* due to the consumption of undercooked opossum meat (Carvalho et al. 2020; Sangenis et al. 2015; Sangenis et al. 2016).

Endoparasites associated with *Didelphis* spp.

Helminths

Zoonotic helminths parasitizing opossums of the genus *Didelphis* have been reported throughout the American continent (Table 3), with some species being considered accidental parasitism (e.g., *Toxocara cati* in *D. albiventris*; Pinto et al. 2014) and others being recently identified with high prevalence rates (e.g., *Ancylostoma caninum* in *D. aurita*; Bezerra-Santos et al. 2020a). Among the helminth species harbored by opossums, *Trichinella spiralis*, *Angiostrongylus cantonensis*, *Angiostrongylus costaricensis*, *Paragonimus* spp., *Alaria marciannae*, and *Echinostoma* spp. (Table 3) present major public health importance due to the disease they cause in humans. *Trichinella spiralis* is a zoonotic nematode worldwide distributed and transmitted to humans by the ingestion of undercooked meat, especially pork (Diaz et al. 2020). The advances in hygiene in the pork industry has made the transmission of this parasite via commercial pork meat less prone to occur; therefore, the consumption of raw or undercooked meat of wildlife reservoirs (e.g., wild boar, bear, deer, moose, and walrus) is now the most frequent form of transmission (Diaz et al. 2020). In this perspective, the occurrence of *T. spiralis* in *Didelphis* spp. has a great epidemiological importance and should be considered for investigation, as these animals’ meat, usually from non-legalized game hunting, are consumed by humans in many regions of South America (Júnior et al. 2010; Barros and Azevedo 2014; de Oliveira Carneiro et al. 2019). Opossums have also been reported harboring *A. cantonensis* (Kim et al. 2002; Dalton et al. 2017), a zoonotic nematode recognized as a primary cause of eosinophilic menigitis in humans (Wang et al. 2008; Barratt et al. 2016). The biological cycle of this nematode involves rats as definitive hosts, snails, and slugs as intermediate hosts, and crustaceans, predacious land planarians, frogs, and lizards as paratenic hosts (Mendoza-Roldan et al. 2020b), as well as the transmission of infective L3 from an infested snail to another (i.e., intermediesis; Modrý et al. 2020). Humans become infected by ingesting third-stage larvae (L3) present in intermediate or in paratenic hosts, as well as contaminated vegetables (Wang et al. 2008). Up to date, this nematode has been detected only in *D. virginiana*; infected individuals present weakness, ataxia and neurological abnormalities such as circling due to the presence of adult worms in the brain tissue (Kim et al. 2002; Dalton et al. 2017). *Angiostrongylus costaricensis* has also been reported in a *D. virginiana* opossum causing localized peritonitis with adhesions from omentum and presence of adult worms (24 females and 12 males) in the mesenteric arteries (Miller et al. 2006). Similarly, to *A. cantonensis*, the life cycle of *A. costaricensis* also involves rats as definitive hosts, and snails and slugs as intermediate hosts, with human and other mammal infections happening through the ingestion of intermediate hosts containing L3, as well as of contaminated vegetables (Miller et al. 2006). The role of opossums in the biological life cycle of *A. cantonensis* and *A. costaricensis* is still unknown and deserves further studies.

Opossums have also been reported harboring zoonotic trematodes, such as lung flukes of the genus *Paragonimus*, with the species *Paragonimus caliensis*, *Paragonimus kellicotti*, and *Paragonimus mexicanus* being described in these marsupials in the Americas (Table 3) (Blair et al. 1999; López-Caballero et al. 2013). These parasites have a
Marsupial species	Endoparasites	Reference
Didelphis albiventris	**Helminths**	Pinto et al. (2014)
	Toxocara cati (Nematoda)	
	Trichinella spiralis (Nematoda)	Castaño Zubieta et al. (2014)
	Schistosoma mansoni (Trematoda)	Kawazoe et al. (1978)
	Paragonimus mexicanus (Trematoda)	Blair et al. (1999)
	Protozoa	
	Leishmania amazonensis	Maia et al. (2018)
	Leishmania braziliensis	Silva et al. (2016)
	Leishmania infantum	Humberg et al. (2012)
	Toxoplasma gondii	Formazari et al. (2011)
	Trypanosoma cruzi	Lima et al. (2012); Tenório et al. (2014); Drozino et al. (2019)

Didelphis aurita	**Helminths**	Bezerra-Santos et al. (2020a)
	Ancylostoma caninum (Nematoda)	
	Schistosoma mansoni (Trematoda)	Coelho et al. (1979)
	Protozoa	Carreira et al. (2012)
	Leishmania infantum	Pena et al. (2011); Bezerra-Santos et al. (2020c)
	Toxoplasma gondii	Teodoro et al. (2019)
	Trypanosoma cruzi	

Didelphis marsupialis	**Helminths**	Kuntz et al. (1971); Kuntz et al. (1975)
	Schistosoma haematobium (Trematoda)	Blair et al. (1999)
	Paragonimus caliensis (Trematoda)	Blair et al. (1999); López-Caballero et al. (2013)
	Paragonimus mexicanus (Trematoda)	
	Protozoa	Maia et al. (2018)
	Leishmania amazonensis	
	Leishmania guyanensis	
	Leishmania mexicana	
	Leishmania panamensis	
	Leishmania braziliensis	Schallig et al. (2007)
	Leishmania infantum	Travi et al. (1994);
	Toxoplasma gondii	Yai et al. (2003)
	Trypanosoma cruzi	Galaviz-Silva et al. (2017)

Didelphis virginiana	**Helminths**	Corkum (1966)
	Spirometra mansonoides (Cestoda)	
	Toxocara canis (Nematoda)	Blumenthal and Kirkland (1976)
	Trichinella spiralis (Nematoda)	Leiby et al. (1988)
	Angiostrongylus cantonensis (Nematoda)	Kim et al. (2002); Dalton et al. (2017)
	Angiostrongylus costaricensis (Nematoda)	Miller et al. (2006)
	Paragonimus kellicotti (Trematoda)	Blair et al. (1999)
	Paragonimus mexicanus (Trematoda)	Blair et al. (1999); López-Caballero et al. (2013)
	Alaria marcianae (Trematoda)	Shoop and Corkum (1981)
	Protozoa	Torres-Castro et al. (2016)
	Toxoplasma gondii	Parada-López et al. (2013); Cantillo-Barraza et al. (2015); Ruiz-Piña and Cruz-Reyes (2002)
	Trypanosoma cruzi	
life cycle comprised by two intermediate hosts (aquatic snails and crustaceans), and several mammal species as definitive hosts (Blair et al. 1999). In the Americas, opossums are among the definitive hosts for P. caliensis, P. kellicotti, and P. mexicanus, playing, along with intermediate hosts, a key role in the maintenance of these parasites in nature (Blair et al. 1999). Another parasite species associated with opossums is the trematode A. marcianae, reported on D. virginiana in Louisiana, USA (Shoop and Corkum 1981). The life cycle of this trematode involves two intermediate hosts (i.e., snails and amphibians) and a definitive host (i.e., canids, felids, or mustelids), with opossums being considered paratenic hosts (Möhl et al. 2009). Indeed, the consumption, or even manipulation (e.g., skinning, evisceration) of paratenic hosts have been implicated as a source of Alaria spp. infection to humans (Shoop and Corkum 1981; Möhl et al. 2009), highlighting the risks of the consumption of opossums by people. Finally, Gnathostoma spp. and Echinostoma spp. have been associated with opossums; however, although several species of these parasites are zoonotic, the ones reported (i.e., Gnathostoma turgidum and Echinostoma trivolvis) on these marsupials have not been proven to affect humans or domestic animals (Alden 1995; Maldonado and Lanfredi 2009; Torres-Montoya et al. 2018).

Protozoa not vectored by arthropods

Parasitic protozoa are particularly important due to their wide host range, which include humans, domestic and wild animals. Additionally, many of these parasites are responsible for important economic losses related to farmed animals, and for causing disease in humans (Sahinduran 2012; Kaltungo and Musa 2013). In opossums, most studies on zoonotic protozoa infecting these marsupials described blood and gastrointestinal species of public health importance, such as Trypanosoma, Toxoplasma, Leishmania and Cryptosporidium spp. (Table 3). In this section we will focus on the gastrointestinal protozoa of public health concern (for vector-borne protozoa see sections 3.3 and 3.4).

Several studies have speculated about the role of opossums as reservoirs of T. gondii (Yai et al. 2003; Formazari et al. 2011; Suzán and Ceballos 2005; Gennari et al. 2015). In fact, this protozoan has been molecularly and serologically detected in Didelphis spp. For example, T. gondii in these animals have been reported with seroprevalence of 37.3% (n = 148/396 by indirect immunofluorescent antibody test – IFAT) in D. marsupialis; 5.55% (n = 4/72 by modified agglutination test - MAT) in D. albiventeris; 10.34% (n = 3/29 by complement fixation test) in D. virginiana, and 12.5% (n = 5/40 by MAT) in D. aurita (Yai et al. 2003; Formazari et al. 2011; Suzán and Ceballos 2005; Gennari et al. 2015). Additionally, DNA of this protozoan has been isolated from heart and brain tissues of D. aurita and D. virginiana, respectively (Pena et al. 2011; Torres-Castro et al. 2016). Finally, these animals are considered a food source in some regions, and the consumption of undercooked meat of these animals have been implicated as a potential risk for the transmission of T. gondii (Alvarado-Esquivel et al. 2016). However, their role in the transmission cycle of T. gondii remains unclear.

Other gastrointestinal protozoa (e.g., Cryptosporidium spp., and Giardia spp.) may be spread through contaminated feces of opossums in food and water (Oates et al. 2012). Studies on both the protozoa above affecting Didelphis spp. are scant, and most of them rely on the identification to the genus level (Zanette et al. 2008; Oates et al. 2012), which makes difficult the assessment of their zoonotic potential. Indeed, up to date only one experimental study performed in D. virginiana has demonstrated the infection of the zoonotic protozoan Cryptosporidium parvum in these animals, with four out of seven infected nursing opossums presenting mild clinical signs, such as diarrhea (Lindsay et al. 1988); however, factors such as age (youngsters, which may not present a completely developed immune system), high doses of C. parvum oocysts inoculated (5 x 10⁶), and the lack of detection of natural infection of C. parvum in these marsupials make it unclear whether they are involved in the transmission of this parasite.

Opossums as a source of parasitic infections to domestic animals

The relationship between opossum and domestic animals has been recorded in several regions where these marsupials occur, with the direct and indirect contact among them, implicating in the transmission of parasites of animal health concern. For example, a high prevalence of A. caninum was detected in D. aurita in southeastern Brazil (Bezerra-Santos et al. 2020a), although the relative importance of opossums in transmitting this parasite to dogs and other susceptible hosts is unclear. Opossums have also been involved in the transmission of parasites of concern to farm animals. This is the case of D. virginiana, the definitive host of Sarcocystis neurona, a protozoan parasite known to cause severe and fatal neurologic disease in horses (Rossano et al. 2003). The above-mentioned examples are among the few studies investigating the importance of opossums in the epidemiology of parasitic diseases to domestic animals. Indeed, considering their circulation and contact with pets in urban environments, and with livestock in rural settings, these marsupials could be playing an underestimated role in the epidemiology of parasitic diseases affecting domestic animals and livestock.
Conclusions

The ecological role of native species is essential for the equilibrium of an ecosystem. Anthropogenic activities and invasion of natural habitats of endemic wild species have negative consequences not only for the wildlife, but also for the health of humans and domestic animals, as many wildlife species are involved in the transmission of different zoonotic pathogens. Opossums are good examples of such animals, due to the direct (e.g., hunting, manipulation and consumption of their meat, illegal trade in local markets) and/or indirect contact (e.g., ectoparasites, contaminated food and water) of people and domestic animals with these marsupials. This situation brings important risks from a “One Health” point of view, as infectious agents may cause disease in some species (e.g., R. rickettsii in humans), but use other hosts only as reservoirs (e.g., R. rickettsii in opossums). Despite presenting substantial importance in a One Health context, knowledge on infectious agents of public and veterinary importance associated with opossums are still scant, advocating further research on the role these animals play in the epidemiology of such pathogens. In addition, the education of the population about the risks brought by the direct contact with such animals is pivotal to reduce the risks of sharing pathogens among marsupials, domestic animals, and humans.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbot P, Aviles AE, Eller L, Durden LA (2007) Mixed infections, cryptic diversity, and vector-borne pathogens: Evidence from Polygonus fleas and Barottella species. Appl Environ Microbiol 73:6045–6052. https://doi.org/10.1128/AEM.00228-07

Abdullah S, Helps C, Tasker S, Newbury H, Wall R (2019) Pathogens in Domestic animals, and humans. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Aldo Moro within the CRUI-CARE Agreement.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Consulte el contenido que fue extraído para este documento, incluido el texto en su forma natural.
Parasitol Res (2021) 120:4091–4111

Dean KR, Krauer F, Walløe L, Lingjærde OC, Bramanti B, Stenseth NC, Costa FB, da Costa AP, Moraes-Filho J, Martins TF, Soares HS, Ramirez Corkum KC (1966) Sparganosis in some vertebrates of Louisiana and observations on a human infection. J Parasitol 52:444. https://doi.org/10.2307/3276305

Costa FB, da Costa AP, Moraes-Filho J, Martins TF, Soares HS, Ramirez DG, Dias RA, Labruna MB (2017) Rickettsia amblyomnatis infecting ticks and exposure of domestic dogs to Rickettsia spp. in an Amazon-Cerrado transition region of northeastern Brazil. PLoS One 12:1–17. https://doi.org/10.1371/journal.pone.0179163

Cruz-Salazar B, Ruiz-Montoya L (2020) Population viability analysis of common marsupials, Didelphis marsupialis and Didelphis virginiana, in a scenario of constant loss of native vegetation. Mammalia:1–8. https://doi.org/10.1515/mammalia-2019-0130

da Silva MRL, Fornazari F, Demoner LC, Teixeira CR, Langoni H, Dantas-Torres F (2015) Climate change, biodiversity, ticks and tick-borne diseases. Mammalia:1–9. https://doi.org/10.1515/mammalia-2015-0044

Dantas-Torres F, Chomel BB, Otranto D (2012a) Ticks and tick-borne diseases. Mammalia:1–11. https://doi.org/10.1515/mammalia-2012-0015

Dantas-Torres F, Aléssio FM, Siqueira DB, Mauffrey J, Marvulo MFV, de Lemos ER, Machado RD, Coura JR, Guimarães MA, Freire NM, Noya BA, González ON (2015) An ecological overview on the factors contributing to murine typhus in the Brazilian Atlantic Forest. Mammalia:1–11. https://doi.org/10.1515/mammalia-2015-0130

Dantas-Torres F, Durden LA, Richardson DJ (2013) Ectoparasites of the Virginia opossum (Didelphis virginiana), raccoon (Procyon lotor), and striped skunk (Mephitis mephitis) from Keith County, Nebraska. Trans Nebraska Acad Sci 33:21–24

Dantas-Torres F, Otranto D (2012a) Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol 28:437–446. https://doi.org/10.1016/j.pt.2012.07.003

Dantas-Torres F, Siqueira DB, Rameh-De-Albuquerque LC, Da Silva E, Souza D, Zanotti AP, Ferreira FRA, Martins TF, De Senna MB, Wagner PGC, Da Silva MA, Marulvo MFX, Labruna MB (2010) Ticks infesting wildlife species in Northeastern Brazil with new host and locality records. J Med Entomol 47:1243–1246. https://doi.org/10.1603/me10156

Dantas-Torres F, Figueredo LA, Brandoelho-Filho SP (2006) Rhhipcephalus sanguineus (Acari: Ixodidae), the brown dog tick, parasitizing medium-sized mammals in a Lyme disease endemic area of Recife, North-eastern Brazil. Parasitol 139:83–87. https://doi.org/10.1590/S0074-027620030000170

de Lemos ER, Machado RD, Coura JR, Guimarães MA, Freire NM, Noya BA, González ON (2015) An ecological overview on the factors contributing to murine typhus in the Brazilian Atlantic Forest. Mammalia:1–11. https://doi.org/10.1515/mammalia-2015-0130

Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdà J (2019) Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 21:202–212. https://doi.org/10.1016/j.micinf.2019.06.007

Diaz JH, Warren RJ, Oster MJ (2020) The disease ecology, epidemiology, clinical manifestations, and management of trichinellosis linked to consumption of wild animal meat. Wilderness Environ Med 31:235–244. https://doi.org/10.1016/j.wem.2019.12.003

Dolz G, Castro R, Jiménez-Rocha AE, Retamoso M, Albertí A (2019) Strain diversity of Rickettsia amblyomnatis in ticks infesting birds in the North Huétar conservation area of Costa Rica. Ticks Tick Borne Dis 10:1109–1112. https://doi.org/10.1515/ttbdis.2019.06.007

Domínguez L, Miranda RJ, Torres S, Moreno R, Ortega J, Bermúdez SE (2019) Hard tick (Acari: Ixodidae) survey of Oleoducto trail, Soberanía National Park, Panama. Ticks Tick Borne Dis 10:830–837. https://doi.org/10.1515/ttbdis.2019.04.001

Drozino RN, Omotuna FH, Gazarini J, Gomes ML, Toledo MJO (2019) Trypanosoma found in synanthropic mammals from urban forests of Paraná, Southern Brazil. Vector-Borne Zoonotic Dis 19:828–834. https://doi.org/10.1089/vbz.2018.2433

Durden LA, Richardson DJ (2013) Ectoparasites of the Virginia opossum (Didelphis virginiana), raccoon (Procyon lotor), and striped skunk (Mephitis mephitis) from Keith County, Nebraska. Trans Nebraska Acad Sci 33:21–24

Durden LA, Wilson N (2016) Ectoparasitic and phoretic arthropods of Virginia Opossums (Didelphis virginiana) in Central Tennessee. Published by: Allen Press on behalf of The American Society of Parasitologists Stable URL: http://www.jstor.org/stable/3282847 Accessed: 15-03-2016. 76:581–583

Ehlers J, Krüger A, Rakotondranary SJ, Ratovonamana RY, Poppert S, Ganzhorn JU, Tappe D (2020) Molecular detection of Rickettsia spp., Borrelia spp., Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar. Acta Trop 205:105339. https://doi.org/10.1016/j.actatropica.2020.105339

Eisen RJ, Eisen L (2018) The blacklegged tick. Isodes scapularis: an increasing Public Health concern. Trends Parasitol 34:295–309. https://doi.org/10.1016/j.pt.2017.12.006

Eremeeva ME, Warashina WR, Sturgeon MM, Buchholz AE, Olmsted GK, Park SY, Efller PV, Karpathy SE (2008) Rickettsia typhi and R. felis in rat fleas (Xenopsylla cheopis), Oahu, Hawaii. Emerg Infect Dis 14:1613–1615. https://doi.org/10.3201/eid1410.080571

Eremeeva ME, Karpathy SE, Krueger L, Hayes EK, Williams AM, Zaldivar Y, Bennett S, Cummings R, Tilzer A, Velten RK, Kerr N, Dasch GA, Hu R (2012) Two pathogens and one disease: detection and identification of flea-borne rickettsiae in areas endemic for Murine Typhus in California. J Med Entomol 49:1485–1494. https://doi.org/10.1603/me1291

Faria MB, de Melo F (2017) Didelphis imperfecta, Didelphimorphia, Didelphidae (Mondolfi & Pérez-Hernández, 1984); a new record in the Brazilian Amazon. Bol da Soc Bras Mastozool 79:74–46

Fish D, Dowler RC (1989) Host associations of ticks (Acari: Ixodidae) parasitizing medium-sized mammals in a Lyme disease endemic area of southern New York. J Med Entomol 26:200–209. https://doi.org/10.1093/jmedent/26.3.200

Flores FS, Muñoz-Leal S, Diaz A, Labruna MB (2018) Wild birds as hosts of Borrelia burgdorferi sensu lato in northwestern Argentina. Ticks Tick Borne Dis 9:1586–1589. https://doi.org/10.1515/ttbdis.2018.08.005

Fontalvo MC, Favacho ARM, Araujo AC, Santos NM, Oliveira GB, Aguilar DM, Lemos ERS, Horta MC (2017) Bartonella species pathogenic for humans infect pets, free-ranging wild mammals and their ectoparasites in the Caatinga biome, Northeastern Brazil: a
serological and molecular study. Braz J Infect Dis 21:290–296. https://doi.org/10.1016/j.bjid.2017.02.002

Fornazari F, Teixeira CR, da Silva RC, Leiva M, de Almeida SC, Langoni H (2011) Prevalence of antibodies against Toxoplasma gondii among brazilian white-eared opossums (Didelphis albiventris). Vet Parasitol 179:238–241. https://doi.org/10.1016/j.vetpar.2011.02.005

Gabriel MW, Henn J, Foley JE, Brown RN, Kasten RW, Foley P, Chomel BB (2009) Zoonotic Bartonella species in fleas on gray foxes (Urocyon cinereoargenteus). Vector-Borne Zoonotic Dis 9:597–602. https://doi.org/10.1089/vbz.2008.0134

Galaviz-Silva L, Mercado-Hernández R, Zárate-Ramos JJ, Molina-Garza ZZ (2017) Prevalence of Trypanosoma cruzi infection in dogs and small mammals in Nuevo León, Mexico. Rev Argent Microbiol 49: 216–223. https://doi.org/10.1016/j.ram.2016.11.006

Garcia MV, Matias J, Aguirre ADAR, Cursodas BG, Szabó MPJ, Andreotti R (2015) Successful feeding of Amblyomma coeles (Acari: Ixodidae) nymphs on humans in Brazil: skin reactions to parasitism. J Med Entomol 52:117–119. https://doi.org/10.1093/jme/jtu060

Gardner AL (2008) Mammals of South America, Volume 1. University of Chicago Press

Gennari SL, Ogzewalaska MH, Soares HS, Saraiva DG, Pinter A, Nieri-Bastos FA, Labruna MB, Szabó MPJ, Dubey JP (2015) Toxoplasma gondii antibodies in wild rodents and marsupials from the Atlantic Forest, state of São Paulo, Brazil. Braz J Vet Parasitol 24:379–382. https://doi.org/10.1590/S1984-2961201501545

Goddard J (1989) Focus of human parasitism by the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). J Med Entomol 26: 628–631. https://doi.org/10.1093/jmedent/26.6.628

Gruhn KD, Ogzewalaska M, Rozental T, Farikoski IO, Blanco C, Freitas LS, de Lemos ERS, Ribeiro VMF (2019) Evaluation of rickettsial infection in free-range capybaras (Hydrochoerus hydrochaeris Linnaeus, 1766) (Rodentia: Capividae) and ticks (Acari: Ixodidae) in the Western Amazon, Brazil. Ticks Tick Borne Dis 10:981–986. https://doi.org/10.1016/j.ttbdis.2019.04.007

Guglielmone AA, Beati L, Barros-Battesti DM, Labruna MB (2009) Experimental infection of opossums Didelphis aurita by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vector-Borne Zoonotic Dis 9:109–117. https://doi.org/10.1089/vbz.2008.0114

Humberg R, Osorio ET, Pires E, Cruz MS, Ribolla PEM, Alonso DP, Ferreira AMT, Bonamigo RA, Tasso N, de Oliveira AG (2012) Short report: Leishmania chagasi in opossums (Didelphis albiventris) in an urban area endemic for visceral leishmaniasis, Campo Grande, Mato Grosso do Sul, Brazil. Am J Trop Med Hyg 87:470–472. https://doi.org/10.4269/ajtmh.2012.11-0534

Jansen AM, Roque ALR (2010) Domestic and wild mammalian reservoirs. In: Andrade Júnior PCB, Guimarães DA, Le Pendu Y (eds) Non-legalized commerce of wildlife: insights from a comparative study. J Parasitol 96: s10493-009-1354-7. https://doi.org/10.1524/jpad.2010.1354

Jansen AM (2002) Marupia saundersi. Brazil. Ann N Y Acad Sci 992:285–300. https://doi.org/10.1111/j.1574-6963.2002.tb32944.x

Jansen AM (2002) Domestic and wild mammalian reservoirs. Second Edi, Elsevier Inc: wild hosts and reservoirs. Second Edi, Elsevier Inc

Jiang J, Maina AN, Knobel DL, Cleveland S, Lauudisio A, Wamburu K, Ogola E, Parola P, Breitman RF, Njenga MK, Richards AL (2013) Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitants, Asembo, Kenya. Vector-Borne Zoonotic Dis 13:550–558. https://doi.org/10.1089/vbz.2012.1123

Jiménez FA, Cazeteflis F, Gardner SL (2011) Structure of parasite component communities of dieldphid marsupials: insights from a comparative study. J Parasitol 97:779–787. https://doi.org/10.1645/GE-2711.1

Júnior PCB, Guimarães DA, Le Pendu Y (2010) Non-legalized commerce in game meat in the Brazilian Amazon: A case study. Rev Biol Trop 58:1079–1088. https://doi.org/10.15517/rbt.v58i2.5264

Kaltungs BY, Musa IW (2013) A review of some protozoan parasites causing infertility in farm animals. ISRN Trop Med 2013:1–6. https://doi.org/10.1155/2013/782609
em humanos. Cienc Rural 36:1328–1330. https://doi.org/10.1590/S0103-847820060004000048
Martins TF, Dantas-Torres FA, Nieri-Bastos FA, Marcili A, Siqueira DB, Aléssio FM, Mauffrey J, Marvalvo MFV, Silva JCR, Labruna MB (2009) Host records for the immature stages of the South American tick, Amblyomma fuscum (Acari: Ixodidae). Entomol News 120: 370–374. https://doi.org/10.3157/021.120.0404
Massini PF, Drozino RN, Otomura FH, Mongrul ACB, Valente JDM, Modrý D, Fecková B, Putnová B, Manalo SM, Otranto D (2020) Moraes-Filho J, Costa FB, Gerardi M, Soares HS, Labruna MB (2018) Rickettsiaickettsii co-feeding transmission among Amblyomma aureolatum ticks. Emerg Infect Dis 24:2041–2048. https://doi.org/10.3201/eid2411.180451
Morshed MG, Scott JD, Fernando K, Beati L, Mazzerolle DF, Geddes G, Durden LA (2005) Migratory songbirds disperse ticks across Canada, and first isolation of the Lyme Disease spirochete, Borrelia burgdorferi, from avian tick, Ixodes icuritus. J Parasitol 91:780–790. https://doi.org/10.1645/4e-3437.1
Muller G, Brum JGW, Langone PQ, Michels GH, Sinkoc AL, Ruas JL, Berne MEA (2005) Didelphis albiventris Lund, 1841 parasitado por Ixodes loricatus Neumann, 1899 e Amblyomma aureolatum (Pallas, 1772) (Acari: Ixodidae) no Rio Grande do Sul. Arq Inst Biol 72: 319–324
Nava S, Venzel JM, González-Acuña D, Martins TF, Guglielmino AA (2017) Genera and Species of Ixodidae. In: Nava S, Venzel JM, González-Acuña D, Martins TF, Guglielmino AA (eds) Ticks of the Southern Cone of America: Diagnosis, Distribution and Hosts with Taxonomy, Ecology and Sanitary Importance. Elsevier, pp 25–267. https://doi.org/10.1016/B978-0-12811075-1.00002-9
Noda AA, Rodrigue I, Miranda J, Contreras V, Mattar S (2016) First molecular evidence of Coxiella burnetii infecting ticks in Cuba. Ticks Tick Borne Dis 7:68–70. https://doi.org/10.1016/j.ttbdis.2015.08.008
Oates SC, Miller MA, Hardin D, Conrad PA, Meli A, Jessup DA, Dominik C, Roug A, Tinker MT, Miller WA (2012) Prevalence, environmental loading, and molecular characterization of Cryptosporidium and Giardia isolates from domestic and wild animals along the central California coast. Appl Environ Microbiol 78: 8762–8772. https://doi.org/10.1128/AEM.02422-12
Olivieri N, Gentile R, Fiszon JT (2005) Relation between small-mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Braz J Biol 65:495–501. https://doi.org/10.1590/S1984-29612005000300015
Oliveira IH, Gomes V, Amorim M, Gazêa GS, Serra-Freire NM, Quinelato IPF, Morelli-Amaral VF, Almeida AB, Carvalho RW, Carvalho AG (2014) Diversidade de ixodídeos em roedores e marsupiais capturados no Parque Estadual da Pedra Branca, Rio de Janeiro, Brasil. Arq Bras Med Vet e Zootec 66:1097–1104. https://doi.org/10.1590/1678-6532
Oliveira JCP, Reckziegel GH, Ramos CAN, Giannelli A, Alves LC, de Carvalho GA, Ramos RAN (2020) Detection of Rickettsia felis in ectoparasites collected from domestic animals. Exp Appl Acarol 81: 255–264. https://doi.org/10.1007/s10493-020-00595-2
Oliver JH, Magnarelli LA, Hutcheson HJ, Anderson JF (1999) Ticks and antibodies to Borrelia burgdorferi from mammals at Cape Hatteras, NC and Assateague Island, MD and VA. J Med Entomol 36:587–591. https://doi.org/10.1093/jmedent/36.5.578
Otranto D (2018) Arthropod-borne pathogens of dogs and cats: from pathways and times of transmission to disease control. Vet Parasitol 251:68–77. https://doi.org/10.1016/j.vetpar.2017.12.021
Otranto D, Dantas-Torres F, Giannelli A, Latrofa MS, Cazzin R, Ravagnan S, Montarsi F, Zanzani SA, Manfredi MT, Capelli G (2014) Ticks infesting humans in Italy and associated pathogens. Parasit Vectors 7:1–9. https://doi.org/10.1186/1756-3305-7-328
Ouellette J, Apperson CS, Howard P, Evans TL, Levine JF (1997) Tick-raccoon associations and the potential for Lyme disease spirochete transmission in the coastal plain of North Carolina. J Wildl Dis 33: 28–39. https://doi.org/10.7589/0090-3558-33.1.28
Pampiglione S, Fioravanti ML, Gustinelli A, Onore G, Mantovani B, Panti-May JA, Torres-Castro M, Hernández-Betancourt S, Dzul-Rosado Ortegón FJ, Medina-Peralta S, Panti-May JA (2013) Trypanosoma
Parasitol Res (2021) 120:4091–4111

Rands MRW, Sivaraman V, Stasulli NM, Goldman WE (2016) Pneumonic Plague: the darker side of *Yersinia pestis*. Trends Microbiol 24:190–197. https://doi.org/10.1016/j.tim.2015.11.008

Pena HFJ, Marvulo MFV, Horta MC, Silva MA, Silva JCR, Siqueira DB, Lima PACP, Vitaliano SN, Gennari SM (2011) Isolation and genetic characterisation of *Toxoplasma gondii* from a red-handed howler monkey (*Alouatta belzebul*), a jaguarundi (*Puma yagouaroundi*), and a black-eared opossum (*Didelphis aurita*) from Brazil. Vet Parasitol 175:377–381. https://doi.org/10.1016/j.vetpar.2010.10.015

Peniche-Lara G, Dzul-Rosado K, Pérez-Osorio C, Zavala-Castro J (2015) *Rickettsia typhi* in rodents and *R. felis* in fleas in Yucatan as a possible causal agent of undefined febrile cases. Rev Inst Med Trop Sao Paulo 57:129–132. https://doi.org/10.1590/S0036-46652015000200005

Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Mansfield LS, Scholes RJ, Sumaila UR, Matt W (2010) Scenarios – Trop Sao Paulo 57:129–132. https://doi.org/10.1590/S0074-02762010000200003

Pinto IS, Botelho JR, Costa LP, Leite YLR, Linardi PM (2009) *Didelphis virginiana* (*Ratti* et al. 2004) characterisation of *Ascarididae* em *Didelphis albiventris* (Marsupialia: Didelphidae) do Brasil: um caso de pseudoparasitismo. Braz J Vet Parasitol 23:522–525. https://doi.org/10.1590/S1984-2961201404074

Pinto HA, Mati VLT, de Melo AL (2014) *Toxocara cati* (Nematoda: Ascarididae) em *Didelphis albiventris* (Marsupialia: Didelphidae) do Brasil: um caso de pseudoparasitismo. Braz J Vet Parasitol 23:522–525. https://doi.org/10.1590/S1984-2961201404074

Polio G, Mera Acosta C, Labruna MB, Ferreira F (2017) Transmission dynamics and control of *Rickettsia rickettsii* in populations of *Hydrochoerus hydrochaeris* and *Ambylostoma sculptum*, PLoS Negl Trop Dis 11:1–12. https://doi.org/10.1371/journal.pntd.0005613

Pongpisut, Durden LA, Banks CW, Jones DN (1994) Ectoparasites of opossums and raccoons in southeastern Georgia. J Med Entomol 31:915–919. https://doi.org/10.1093/jme/31.6.915

Quintal APN, Ribeiro ÉS, Rodrigues FP, Rocha FS, Floeter-Winter LM, Nunes CM (2011) *Leishmania* spp. in *Didelphis albiventris* and *Micoceurus paraguayanus* (Didelphimorphia: Didelphidae) of Brazil. Vet Parasitol 176:112–119. https://doi.org/10.1016/j.vetpar.2010.11.011

Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329(80):1298–1303. https://doi.org/10.1126.119893

Rangel CH, Neiva CHMB (2013) Predação de vertebrados por caçar *Canis lupus familiaris* (Mammalia: Carnivora) no Jardim Botânico do Rio de Janeiro, RJ, Brasil. Biodiversidade Bras 3:261–269

Ratovonjato J, Rajejonson M, Rahelinirina S, Boyer S (2014) *Yersinia* in *Pulex irritans* fleas during plague outbreak, Madagascar. Emerg Infect Dis 20:1414–1415. https://doi.org/10.3201/eid2008.130629

Reck J, Souza U, Souza G, Kieling D, Dall’Agnol B, Webster A, Michel T, Doyle R, Martins TF, Labruna MB, Marks F, Ott R, Martins JR (2018) Records of ticks on humans in Rio Grande do Sul state, Brazil. Ticks Tick Borne Dis 9:1296–1301. https://doi.org/10.1016/j.ttbdis.2018.05.010

Rheeve WK, Rogers TE, Durden LA, Dasch GA (2007) Association of *Bartonella* with the fleas (Siphonaptera) of rodents and bats using molecular techniques. J Vector Ecol 32:118–122. https://doi.org/10.3376/1081-1710.200732[118:aobwtf2]o.2.e0

Rodriguez-Visas RI, Apanaskevich DA, Ojeda-Chi MM, Trinidad-Martínez I, Reyes-Novelo E, Estève-Gassent MD, Pérez de León AA (2016) Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Vet Parasitol 215:106–113. https://doi.org/10.1016/j.vetpar.2015.11.010

Rojo-Vázquez E, Gordillo-Pérez G, Weber M (2017) Infection of *Anaplasma phagocytophilum* and *Ehrlichia* spp. in opossums and dogs in Campeche, Mexico: The role of tick infestation. Front Ecol Evol 5:1–9. https://doi.org/10.3389/fevo.2017.00016

Rossano MG, Kaneene JB, Marteniuk JV, Banks BD, Schott HC, Mansfield LS (2003) A herd-level analysis of risk factors for antibodies to *Sarcocystis neurona* in Michigan equids. Prev Vet Med 57:7–13. https://doi.org/10.1016/S0167-5877(02)00192-7

Ruiz-Piña HA, Cruz-Reyes A (2002) The opossum *Didelphis virginiiana* as a synanthropic reservoir of *Trypanosoma cruzi* in Dzidziché, Yucatan, México. Mem Inst Oswaldo Cruz 97:613–620. https://doi.org/10.1590/S0070-27632002000500003

Sá EFG, Rodrigues VDS, Garcia MV, Zimmermann NP, Ramos VN, Blecha IMZ, Duarte PO, Martins TF, Bordignon MO, Andreotti R (2018) Ticks on *Didelphis albiventris* from a Cerrado area in the Midwestern Brazil. Syst Appl Acarol 23:935–945. https://doi.org/10.11158/saa.23.5.11

Sahinduran S (2012) Protozoan diseases in farm ruminants. A Bird’s-Eye View of Veterinary Medicine, In Sakai RK, Costa FB, Ueno TEH, Ramirez DG, Soares JF, Fonseca AH, Labruna MB, Barros-Battesti DM (2014)** Experimental infection with *Rickettsia rickettsii* in an *Amblyomma dubitatum* tick colony, naturally infected by *Rickettsia bellii*. Ticks Tick Borne Dis 5:917–923. https://doi.org/10.1016/j.ttbdis.2014.07.003

Salvador CH, Carvalho-Pinto C, Carvalho R, Graipel ME, Simões-lopes PC (2007) Interação parasito-hospedeiro entre ectoparasitos (*Ixodida* & *Siphonaptera*) e gambás *Didelphis aurita* Wied-Neuwied, 1826 (Mammalia: Didelphimorphia), no continente e em ilhas do litoral de Santa Catarina, Sul do Brasil. Biotemas 20:81–90

Sangenis LHC, Saratia RM, Georg I, Guglielmone AA, Nava S (2018) Ticks infesting cattle and *Anaplasma phagocytophilum* spp. from urban and peri-urban areas in Bauru (São Paulo, Brazil). J Vector Ecol 43:116. https://doi.org/10.1590/1984-2961201805.010

Santana RAG, Guerra MGVB, Sousa DR, Couceiro KV, Ortiz JV, Oliveira M, Ferreira LS, Souza KR, Tavares IC, Morais RF, Silva GAV, Melo GC, Vergel GM, Albuquerque BC, Arcanjo ARL, Monteiro WM, Ferreira JMBB, Apanaskevich DA, Ojeda-Chi MM, Trinidad-Martínez I, Reyes-Novelo E, Estève-Gassent MD, Pérez de León AA (2016) Ticks on humans in the Yungas Biogeographic Province of Argentina, with notes on the presence of tick-borne bacteria. Exp Appl Acarol 74:1081–1272. https://doi.org/10.1007/s10063-018-0876-z

Santana RAG, Guerra MGVB, Sousa DR, Couceiro KV, Ortiz JV, Oliveira M, Ferreira LS, Souza KR, Tavares IC, Morais RF, Silva GAV, Melo GC, Vergel GM, Albuquerque BC, Arcanjo ARL, Monteiro WM, Ferreira JMBB, Apanaskevich DA, Ojeda-Chi MM, Trinidad-Martínez I, Reyes-Novelo E, Estève-Gassent MD, Pérez de León AA (2016) Ticks on humans in the Yungas Biogeographic Province of Argentina, with notes on the presence of tick-borne bacteria. Exp Appl Acarol 74:1081–1272. https://doi.org/10.1007/s10063-018-0876-z
Saraiva D, da Silva Rocha Fournier G, Pimenta de Oliveira S, Ogrzewalska M, Valadares Calaca Camara EM, Guimaraes Costa C, Botelho JR (2012) Ectoparasites from small mammals from the Cerrado region in the Minas Gerais state, Brazil. UNED Research Journal 4:21–29

Saraiva DG, Fournier GFSR, Martins TF, Leal KPG, Vieira FN, Câmara EMVC, Costa CG, Onofrio VC, Barros-Battesti DM, Guglielmone AA, Labrana MB (2012) Ticks (Acari: Ixodidae) associated with small terrestrial mammals in the state of Minas Gerais, southeastern Brazil. Exp Appl Acarol 58:159–166. https://doi.org/10.1007/s10493-012-9570-9

Schallig HDFH, da Silva ES, Van Der Meide WF, Schoone GJ, Gontijo CMF (2007) *Dilophus marsupialis* (Common Opossum): A potential reservoir host for zoonotic leishmaniasis in the metropolitan region of Belo Horizonte (Minas Gerais, Brazil). Vector-Borne Zoonotic Dis 7:387–393. https://doi.org/10.1089/vbz.2006.0651

Schweigmann NJ, Pietrokovsksky S, Bottazzi V, Conti O, Wisnivesky-Colli C (1995) Interaction between *Dilophus albiventralis* and *Triatoma infestans* in relation to *Trypanosoma cruzi* transmission. Mem Inst Oswaldo Cruz 90:679–682. https://doi.org/10.1590/S0070-42801995006000003

Scott JD, Clark KL, Coble NM, Ballantyne TR (2019) Detection and transstadial passage of *Babesia* species and *Borrelia burgdorferi* sensu lato in ticks collected from avian and mammalian hosts in Canada. Healthcare 7:155. https://doi.org/10.3390/healthcare7040155

Sherlock IA (1996) Ecological Interactions of Visceral Leishmaniasis in the State of Bahia, Brazil. Mem Inst Oswaldo Cruz 91:671–683. https://doi.org/10.1590/S0070-42761996000600003

Scott JD, Clark KL, Coble NM, Ballantyne TR (2019) Detection and transstadial passage of *Babesia* species and *Borrelia burgdorferi* sensu lato in ticks collected from avian and mammalian hosts in Canada. Healthcare 7:155. https://doi.org/10.3390/healthcare7040155

Sherlock IA (1996) Ecological Interactions of Visceral Leishmaniasis in the State of Bahia, Brazil. Mem Inst Oswaldo Cruz 91:671–683. https://doi.org/10.1590/S0070-42761996000600003

Sillow WL, Corkum KC (1981) Epidemiology of *Alaria marcianae*. Exp Appl Acarol 65:389–393

Slovakia NC (2015) Association patterns of ticks (Acari: Ixodidae, argasidae) of small mammals in cerrado fragments, western Brazil. Exp Appl Acarol 58:125

Sommer JS, Brand A, Otto CB, Soares J, Martins JR, Trigo TC, Ott R, Jardim MMA, Reck J (2002) Infection Rates of *Amblyomma cajennense* (Acari: Ixodidae) in their southern ranges. Exp Appl Acarol 75:129–133

Steiert JG, Gilfoy F (2002) Infection Rates of *Amblyomma americanum* and *Dermacentor variabilis* by *Ehrlichia chafeensis* and *Ehrlichia ewingii* in Southwest Missouri. Vector-Borne Zoonotic Dis 2:53–60. https://doi.org/10.1089/153036602322113841

Steinadel M, Scholz AF, Toma HK, Schlemper BR Jr (1988) Presence of *Trypanosoma cruzi* in the anal glands of naturally infected opossum (*Dipetalogaster marsupialis*) in the state of Santa Catarina, Brazil. Mem Inst Oswaldo Cruz 83:135–137. https://doi.org/10.1590/S0070-2761988000100010

Stone WB, Okoniewski JC, Stedelin JR (2000) Poisoning of wildlife with anticoagulant rodenticides in New York. J Wildl Rehabil 23:13–17

Stromdahl EY, Jiang J, Vince M, Richards AL (2011) Infrequency of *Rickettsia rickettsii* in *Dermacentor variabilis* removed from humans, with comments on the role of other human-biting ticks associated with spotted fever group rickettsiae in the United States. Vector-Borne Zoonotic Dis 11:969–977. https://doi.org/10.1089/vbz.2010.0099

Suzán G, Ceballos G (2005) The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico City limits. J Zoo Wildl Med 36:479–484. https://doi.org/10.1638/04-078.1

Szabó MP, Labruna MB, Castagnolli KC, Garcia MV, Pinter A, Veronez VA, Magalhães GM, Castro MB, Vogliotti A (2006) Ticks (Acari: Ixodidae) parasitizing humans in an Atlantic rainforest reserve of Southeastern Brazil with notes on host suitability. Exp Appl Acarol 39:339–346. https://doi.org/10.1007/s10493-006-0013-7

Szabó MPJ, Nieri-Bastos FA, Spolidorio MG, Martins TF, Barbieri AM, Labruna MB (2013) In vitro isolation from *Amblyomma ovale* (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest *Rickettsia*, the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitol 140:719–728. https://doi.org/10.1017/S0031182012002065

Tenório MS, Oliveira e Sousa L, Alves-Martins MF, Paixão MS, Rodrigues MV, Starke-Buzetti WA, Araújo Junior JP, Lucheis SB (2014) Molecular identification of trypanosomatids in wild animals. Vet Parasitol 203:203–206. https://doi.org/10.1016/j.vetpar.2014.02.010

Tarragona EL, Mastropaulo M, Zavareza D, Beldomenico PM, Guiglumone AA (2018) Host-parasite association between *Dilophus albiventralis* (Dilophiphilomorpha: Ixodidae) and *Ixodes longicatus* (Acari: Ixodidae) in their southern ranges. Exp Appl Acarol 75:129–134. https://doi.org/10.1007/s10493-018-0248-9

Teodoro AKM, Cutolo AA, Matoie G, Meira-Strejevitch CS, Pereira-Chioccola VL, Mendes TMF, Allegretti SM (2019) *Toxoplasma gondii* in opossums (*Didelphis marsupialis*) and *D. virginiana* in opossums (*Didelphis marsupialis*). Parasitol Res (2021) 120:4091–4111

Teodoro AKM, Cutolo AA, Matoie G, Meira-Strejevitch CS, Pereira-Chioccola VL, Mendes TMF, Allegretti SM (2019) *Toxoplasma gondii* in opossums (*Didelphis marsupialis*) and *D. virginiana* in opossums (*Didelphis marsupialis*). Parasitol Res (2021) 120:4091–4111

Toro-Hernández M, Noh-Pech H, Puerto-Hernández R, Reyes-Hernández B, Pantí-May A, Hernández-Betancourt S, Yeh-Gorocica A, González-Herrera L, Zavala-Castro J, Puerto F (2016) First molecular evidence of *Toxoplasma gondii* in opossums (*Didelphis virginiana*) from Yucatan, Mexico. Open Vet J 6:56–71. https://doi.org/10.4314/ovj.v6i1.8

Torres-Montoya EH, Zazueta-Moreno JM, Osuna-Martínez LU, Castillo-Ureta H, Silva-Hidalgo G, López-Moreno HS, Osuna-Ramírez I, Noguera-Corona E, Rendón-Maldonado JG (2018)
Histopathological changes in the liver and stomach of \textit{Didelphis virginiana} (Didelphimorphia: Didelphidae) during natural infection with \textit{Gnathostoma turdism} (Nematoda: Gnathostomidae). J Helminthol 92:765–768. https://doi.org/10.1017/S0022149X17000980

Travi BL, Jaramillo C, Montoya J, Segura I, Zea A, Gonçalves A, Velez ID (1994) \textit{Didelphis marsupialis}, an important reservoir of \textit{Trypanosoma (Schizotrypanum) cruzi} and \textit{Leishmania (Leishmania) chagasi} in Colombia. Am J Trop Med Hyg 50:557–565. https://doi.org/10.4269/ajtmh.1994.50.557

Travi BL, Osorio Y, Guairín N, Cadena H (1998) \textit{Leishmania (Leishmania) chagasi}: Clinical and Parasitological Observations in Experimentally Infected \textit{Didelphis marsupialis}, Reserve of New World Visceral Leishmaniasis. Exp Parasitol 88:73–75. https://doi.org/10.1006/expr.1998.4214

Tufts DM, Goodman LB, Benedict MC, Davis AD, VanAcker MC, Diuk-Wasser M (2020) \textit{Association of the invasive Haemaphysalis longicornis} tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City. USA. Int J Parasitol In Press. https://doi.org/10.1016/j.ijpara.2020.08.008

Urdaneta-Morales S, Nironi I (1996) \textit{Trypanosoma cruzi} in the anal glands of urban opossums. I - Isolation and experimental infections. Mem Inst Oswaldo Cruz 91:399–403. https://doi.org/10.1590/S0074-02761996000400002

Urdapilleta M, Linardi PM, Lareschi M (2019) Fleas associated with sigmodontine rodents and marsupials from the Paranaense Forest in Northeastern Argentina. Acta Trop 193:71

Voss RS, Jansa SA (2009) Phyllogenetic relationships and classification of didelphid marsupials, an extant radiation of New World metatherian mammals. Bull Amer Mus Nat Hist 130:222. http://hdl.handle.net/2246/5975

Voss RS, Jansa SA (2012) Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev 87:822–837. https://doi.org/10.1111/j.1469-185X.2012.00222.x

Wang QP, Lai DH, Zhu XQ, Chen XG, Lun ZR (2008) Human angiostrongyliasis. Lancet Infect Dis 8:621–630. https://doi.org/10.1016/S1473-3099(08)70229-9

White SA, Bevins SN, Ruder MG, Shaw D, Vigil SL, Randall A, Deliberto TJ, Dominguez K, Thompson AT, Mertins JW, Alfred JT, Yabsley MJ (2020) Surveys for ticks on wildlife hosts and in the environment at Asian longhorned tick (\textit{Haemaphysalis longicornis})-positive sites in Virginia and New Jersey, 2018. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13722

Whitten T, Demontigny C, Bjork J, Foss M, Peterson M, Scheffel J, Neitzel D, Sullivan M, Smith K (2019) Prevalence of \textit{Franciscella tularensis} in \textit{Dermacentor variabilis} ticks, Minnesota, 2017. Vector-Borne Zoonotic Dis 19:596–603. https://doi.org/10.1089/vbz.2018.2388

Wikswo ME, Hu R, Metzer ME, Eremeeva ME (2007) Detection of \textit{Rickettsia rickettsii} and \textit{Bartonella henselae} in \textit{Rhipicephalus sanguineus} ticks from California. J Med Entomol 44:158–162. https://doi.org/10.1093/jmedent/41.5.158

Williams SG,acci JB, Schriever ME, Andersen EM, Fujioka KK, Sorvillo FJ, Barr AR, Azad AF (1992) Typhus and typhuslike rickettsiae associated with opossums and their fleas in Los Angeles County, California. J Clin Microbiol 30:1758–1762. https://doi.org/10.1128/jcm.30.7.1758-1762.1992

Witter R, Martins TF, Campos AK, Melo AL, Corrêa SH, Morgado TO, Wolf RW, May-Junior JA, Sinkoc AL, Strüßmann C, Aguiar DM, Rossi RV, Semedo TB, Campos Z, Desbiez AL, Labruna MB, Pacheco RC (2016) Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil. Ticks Tick Borne Dis 7:415–423. https://doi.org/10.1016/j.tbed.2015.12.019

Xu G, Pearson P, Dykstra E, Andrews ES, Rich SM (2019) Human-biting \textit{Ixodes} ticks and pathogen prevalence from California, Oregon, and Washington. Vector-Borne Zoonotic Dis 19:106–114. https://doi.org/10.1089/vbz.2018.2323

Yai LE, Cañon-Franco WA, Gerald VC, Summa ME, Camargo MC, Dubey JP, Gennari SM (2003) Seroprevalence of Neospora caninum and Toxoplasma gondii Antibodies in the South American Opossum (Didelphis marsupialis) From the City of São Paulo, Brazil. J Parasitol 89:870–871. https://doi.org/10.1645/GE-83R

Youssefi MR, Rahimi MT (2014) Extreme human annoyance caused by \textit{Coneocephalides felis felis} (cat flea). Asian Pac J Trop Biomed 4:334–336. https://doi.org/10.12980/APJTB.4.2014C795

Zanette RA, da Silva AS, Lunardi F, Santurio JM, Monteiro SG (2008) Occurrence of gastrointestinal protozoa in \textit{Didelphis albiventris} (opossum) in the central region of Rio Grande do Sul state. Parasitol Int 57:217–218. https://doi.org/10.1016/j.parint.2007.10.001

Zecca IB, Hodo CL, Slack S, Auckland L, Hamer SA (2020) \textit{Trypanosoma cruzi} infections and associated pathology in urban-dwelling Virginia opossums (\textit{Didelphis virginiana}). Int. J Parasitol Parasites Wildl 11:287–293. https://doi.org/10.1016/j.ijppaw.2020.03.004

Zeringóta V, Maturano R, Luz HR, Senra TOS, Daemon E, Faccini JLH, Zecca IB, Hodo CL, Slack S, Auckland L, Hamer SA (2020) \textit{Trypanosoma cruzi} infections and associated pathology in urban-dwelling Virginia opossums (\textit{Didelphis virginiana}). Int. J Parasitol Parasites Wildl 11:287–293. https://doi.org/10.1016/j.ijppaw.2020.03.004

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.