One-pot regioselective C-H activation iodination - cyanonation of 2,4-diarylquinazolines using malononitrile as a cyano source

Ziqiao Yan, a Banlai Ouyangb, Xunchun Maoa, Wei Gaoa, Zhihong Denga and Yiyuan Peng* a

a Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Province’s Key Laboratory of Green Chemistry, and Jiangxi Normal University, Nanchang 330022, PR China
b Department of Chemistry, Nanchang Normal University, Nanchang 330032, PR China

1. General experimental methods
2. General procedure for the preparation of substrate 3 and 4
3. 1H and 13C NMR spectra of compounds 3 and 4

1. General experimental methods

1a

(1) [RhCp*Cl2]2-AgSbF6
NIS, DCE, 85 °C

(2) Malononitrile, Cu2O,
Bathocuproine, t-BuOK,
KF, DMF:H2O=2:1, 120 °C

3a

Experimental section.

General experimental methods: Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, or other commercial suppliers, and were used as received. All solvents were dried and distilled according to standard procedures before use. Reactions were conducted in standard schlenk techniques on vacuum line. Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (60-Å pore size, 32-63 μm, standard grade). Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25-35 °C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million (ppm) from internal standard tetramethylsilane (TMS) on the δ scale.

General procedure for the preparation of substrate 3
A mixture of 2,4-phenylquinazolines 1a (0.2 mmol, 1.0 equiv), NIS (0.3 mmol, 1.5 eq), [RhCp*Cl$_2$]$_2$ (1 mol%), AgSbF$_6$ (8 mol%) and in DCE (2.0 mL) was stirred at 85°C under for 0.5 h, until 1a was completed consumed. The solvent was removed under reduced pressure. A mixture of malononitrile (2.0 eq), Cu$_2$O (10 mol%), Bathocuproine (20 mol%), t-BuOK (2.0 eq), KF (2.0 eq) in DMF and water (3 mL, 2:1) was stirred at 120°C. After completion of the reaction as indicated by TLC, the mixture was cooled to room temperature. The solvent was evaporated, residue was diluted with EtOAc (10 mL), washed with H$_2$O (10 mL), dried by anhydrous Na$_2$SO$_4$. Evaporation of the solvent followed purification by column chromatograph over silica gel provided the corresponding product 3a.

General procedure for the preparation of substrate 4

A mixture of 2,4-phenylquinazolines 1aa (0.2 mmol, 1.0 eq.), NIS (0.6 mmol, 3.0 eq.), [RhCp*Cl$_2$]$_2$ (2.0 mol%), AgSbF$_6$ (16 mol%) and in DCE (2.0 mL) was stirred at 85°C under for 0.5 h, until 1aa was completed consumed. The solvent was removed under reduced pressure. A mixture of malononitrile (4.0 eq.), Cu$_2$O (20 mol%), Bathocuproine (40 mol%), t-BuOK (4.0 eq.), KF (4.0 eq.) in DMF and water (3.0 mL, 2:1) was stirred at 120°C. After completion of the reaction as indicated by TLC, the mixture was cooled to room temperature. The solvent was evaporated, residue was diluted with EtOAc (10 mL), washed with H$_2$O (10 mL), dried by anhydrous Na$_2$SO$_4$. Evaporation of the solvent followed purification by column chromatograph over silica gel provided the corresponding product 4a.
1H and 13C NMR spectra of the products

2-(2-cyano-6-methylphenyl)-4-(p-tolyl)quinazoline(3a)
2-(2-cyano-6-methylphenyl)-4-(4-methoxyphenyl)quinazoline(3b)
2-(2-cyano-6-methylphenyl)-4-phenylquinazoline (3c)
2-(2-cyano-6-methylphenyl)-4-(4-fluorophenyl)quinazoline (3d)
2-(2-cyano-6-methylphenyl)-4-(3-methylphenyl)quinazoline(3e)
2-(2-cyano-6-methylphenyl)-4-(2-methylphenyl)quinazoline (3f)

2-(2-cyano-6-methylphenyl)-4-(naphthalen-1-yl)quinazoline (3g)
2-(2-cyano-6-chlorophenyl)-4-(p-tolyl)quinazoline

(3h)
2-(2-cyano-6-chlorophenyl)-4-(3-methylphenyl)quinazoline (3i)
2-(2-cyano-6-chlorophenyl)-4-(2-methylphenyl)quinazoline(3j)
2-(2-cyano-6-methylphenyl)-4-(p-tolyl)-6-methoxylquinazoline (3k)
2-(2-cyano-6-methylphenyl)-4-(3-methylphenyl)-6-methoxylquinazoline(3l)
6-chloro-2-(2-cyano-6-methylphenyl)-4-(p-tolyl)quinazoline (3m)

6-chloro-2-(2-cyano-6-methylphenyl)-4-(3-methylphenyl) quinazoline (3n)
6-chloro-2-(2-cyano-6-methylphenyl)-4-(2-methylphenyl)quinazoline (3o)
6-chloro-2-(2-cyano-6-methylphenyl)-4-(naphthalen-1-yl) quinazoline (3p)
2-(2-cyano-6-chlorophenyl)-4-(2-methylphenyl)-6-methoxylquinazoline (3q)
6-chloro-2-(2-cyano-6-methylphenyl)-4-(4-fluorophenyl) quinazoline (3r)

2-(2, 6-dicyano-4-methylphenyl)-4-(p-tolyl)quinazoline (4a)
2-(2, 6-dicyano-4-methoxyphenyl)-4-(p-tolyl)quinazoline (4b)
2-(2, 6-dicyanophenyl)-4-(p-tolyl)quinazoline (4c)

2-(2, 6-dicyano-4-chlorophenyl)-4-(p-tolyl)quinazoline (4d)
2-(2,6-dicyano-4-fluorophenyl)-4-(p-tolyl)quinazoline(4e)
2-(2,6-dicyano-4-methylphenyl)-4-(4-methoxyphenyl)quinazoline(4f)
2-(2,6-dicyano-4-methylphenyl)-4-(4-chlorophenyl)quinazoline(4g)
2-(2,6-dicyano-4-methylphenyl)-4-(4-fluorophenyl)quinazoline(4h)
2-(2,6-dicyano-4-methylphenyl)-4-(p-tolyl)-6-methoxyquinazoline(4i)
2-(2, 6-dicyano-3-methylphenyl)-4-(p-tolyl)quinazoline (4j)
2-(2, 6-dicyano-3-chlorophenyl)-4-(p-tolyl)quinazoline (4k)
2-(Pyridin-2-yl)isophthalonitrile (4l)