Extremal problem of Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds

Shutao Zhang Yazhou Han

Department of Mathematics, College of Science, China Jiliang University, Hangzhou 310018, China

Abstract

This paper studies the existence of extremal problems for the Hardy-Littlewood-Sobolev inequalities on compact manifolds without boundary via Concentration-Compactness principle.

keywords: Hardy-Littlewood-Sobolev inequalities, Existence of extremal, Concentration-compactness principle, Compact manifold.

1 Introduction

It is well known that classical Sobolev inequalities and Hardy-Littlewood-Sobolev(HLS) inequalities are basic tools in analysis and geometry, and their sharp constants play essential role on certain geometric and probabilistic information. In fact, in past decades, these sharp inequalities were applied extensively in the study of curvature equations, see, e.g. [1, 3, 4, 14–16, 26] and references therein. Recently, there have been some interesting results concerning the globally defined fractional operators such as fractional Yamabe problems, fractional prescribing curvature problems, fractional Paneitz operators, etc. (see, e.g. [11–13, 20–23] and references therein), which are closely related to singular integral operator. In particular, the sharp HLS inequality is immediately applied to discuss a class of prescribing integral curvature problems by Zhu [30] and integral equations on bounded domain in [6, 7]. So, HLS inequalities play essential role in the global analysis of some operators of geometric interest.

Motivated by these studies, there are some extensions of classical HLS inequalities, such as HLS inequality on the upper half space, HLS on compact manifolds, reversed HLS inequality, or HLS inequality on the Heisenberg group, see [3, 8, 10, 17, 28, 29] for details. This paper is mainly devoted to discuss the sharp HLS inequality on compact manifolds without boundary.

Let \((M^n, g)\) be a given compact Riemannian manifold without boundary, \(\alpha \in (0, n)\) be a parameter and \(|x - y|_g\) represent the distance from \(x\) to \(y\) on \(M^n\) under metric \(g\). In [17], Han and Zhu have introduced the following integral
operator
\[I_\alpha f(x) = \int_{M^n} \frac{f(y)}{|x-y|^{n-\alpha}} dV_y \]
(1.1)
and got the following Hardy-Littlewood-Sobolev inequalities:

Proposition 1.1 (Proposition 1.1. in [17]). Assume that \(\alpha \in (0, n) \), \(1 < p < \frac{n}{\alpha} \) and \(q \) is given by
\[\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}, \]
(1.2)
then there is a positive constant \(C(\alpha, p, M^n, g) \), such that
\[\| I_\alpha f \|_{L^q(M^n)} \leq C(\alpha, p, M^n, g) \| f \|_{L^p(M^n)} \]
(1.3)
holds for all \(f \in L^p(M^n) \). Moreover, for \(1 \leq r < q \), operator \(I_\alpha : L^p(M^n) \to L^r(M^n) \) is a compact embedding.

As is well known, it is important to study the extremal problems of (1.3), which can be stated as follows:

\[N_{p,\alpha,M} := \sup \left\{ \| I_\alpha f \|_{L^q(M^n)} : \| f \|_{L^p(M^n)} = 1 \right\} \]
:= \sup \left\{ \frac{\| I_\alpha f \|_{L^q(M^n)}}{\| f \|_{L^p(M^n)}} : f \in L^p(M^n) \backslash \{0\} \right\}, \quad (1.4)

Equivalently, we can stated also as
\[N_{p,\alpha,M} := \sup \left\{ \left| \int_{M^n} \int_{M^n} f(x)g(y)|x-y|^{\alpha-n} dV_x dV_y \right| : \| f \|_p = \| g \|_t = 1 \right\} \]
(1.5)
\[:= \sup_{\| f \|_p > 0, \| g \|_t > 0} \frac{\left| \int_{M^n} \int_{M^n} f(x)g(y)|x-y|^{\alpha-n} dV_x dV_y \right|}{\| f \|_p \| g \|_t}, \quad (1.6)
where \(t = \frac{q}{q-1} \). In particular, we denote \(N_{p,\alpha,R^n} \) as \(N_{p,\alpha} \).

In [17], Han and Zhu have discussed the extremal problems (1.4) for the conformal case, i.e. the case \(p = t \) and \(f = g \). Then as an application, they studied a class of integral curvature problems. Particularly, they give a new proof for the Yamabe problem on compact locally conformally flat manifold.

This paper will deal with the remaining cases. Firstly, we will get the following estimate to the sharp constant.

Proposition 1.2 (Estimate). \(N_{p,\alpha,M} \geq N_{p,\alpha} \).

Then, similar to the existence criteria of classical Yamabe problem, we will give the following the existence criteria of the extremal problems (1.4) by the Concentration-Compactness principle introduced by Lions (see [24, 25]).

Theorem 1.3 (Criteria of Existence). Under the assumption of Proposition 1.1 and if \(N_{p,\alpha,M} > N_{p,\alpha} \), then the supremum is attained, i.e., there exists some function \(f(x) \in L^p(M^n) \) such that \(N_{p,\alpha,M} = \frac{\| I_\alpha f \|_{L^q(M^n)}}{\| f \|_{L^p(M^n)}} \).
Remark 1.4. Let \(G^2_\gamma(y) = n(n-2)\omega_n\Gamma^2_\gamma(y) \), where \(\Gamma^2_\gamma(y) \) is the Green’s function with pole at \(x \) for the conformal Laplacian operator \(-\Delta_\gamma + \frac{n-2}{4(n-1)} R_\gamma \)
and \(\omega_n \) is the volume of the unit ball. As discussed in \cite{17}, for the operator \(I_{M^n,g,\alpha} = \int_{M^n} G^2_\gamma(y) \), we can also get the similar results of estimate (Proposition 1.2) and existence criteria (Theorem 1.3). Since the details of the proof is similar, so we omit it for conciseness.

The plan of the paper is following. In Section 2, we introduce some known facts and give a new proof of the compactness of operator (1.1) for convenience. Then, we present our Concentration-Compactness Lemma in the Section 3. Finally, Section 4 is devoted to get the estimate (Proposition 1.2) and prove the existence of extremal problem (Theorem 1.3).

2 Preliminary

Firstly, we recall the existence of the extremal problem of Classical Hardy-Littlewood-Sobolev inequalities on \(\mathbb{R}^n \) as follows.

Theorem 2.1 (Theorem 2.3 of \cite{27} & Theorem 2.1 of \cite{25}). There exist a pair of nonnegative functions \(f \in L^p(\mathbb{R}^n) \) and \(g \in L^t(\mathbb{R}^n) \) such that
\[
\begin{align*}
\int_{\mathbb{R}^n} |f|^p dx = \int_{\mathbb{R}^n} |g|^t dy = 1, \\
N^p_{p,\alpha} = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)g(y)|x-y|^{\alpha-n}dxdy.
\end{align*}
\]
Hence, Extremal pair satisfies the Euler-Lagrange equation
\[
\begin{align*}
|x|^{\alpha-n} * g = N^p_{p,\alpha} f^{p-1}(x), \\
|x|^{\alpha-n} * f = N^p_{p,\alpha} g^{t-1}(x).
\end{align*}
\]
Furthermore, by scaling, we know that function pairs
\[
f_\lambda(x) = \lambda^{-p/n} f(x/\lambda), \quad g_\lambda(y) = \lambda^{-t/n} g(y/\lambda), \quad \forall \lambda > 0
\]
also satisfy (2.1) and (2.2).

For convenience, we introduce the following Young’s inequality.

Lemma 2.2 (Young’s inequality, Lemma 2.1 of \cite{17}). For a given compact manifold \((M^n, g) \), define
\[
g * h(x) = \int_{M^n} g(y)h(|y-x|_g)dV_g.
\]
Then, there is a constant \(C > 0 \), such that
\[
||g * h||_{L^r} \leq C||g||_{L^p} \cdot ||h||_{L^q},
\]
where \(p, q, r \in (1, \infty) \) and satisfy \(1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \).
Following, we give a new proof of the compactness about the operator (1.1).

Proposition 2.3 (Compactness). For all $r \in [1, q)$, where q is defined as (1.2), operator $I_\alpha : L^p(M^n) \to L^r(M^n)$ is compact.

Proof. Take any bounded sequence $\{f_m\}$ in $L^p(M^n)$. Then, there exists a subsequence (still denoted by $\{f_m\}$) and some function $f \in L^p(M)$ such that

$$f_m \rightharpoonup f \quad \text{weakly in} \quad L^p(M^n).$$

It is known that the proof will be completed if it holds that

$$I_\alpha f_m \to I_\alpha f \quad \text{strongly in} \quad L^r(M^n).$$

Denoted by $K_\rho^\alpha(t) = t^{\alpha-n} \chi_{\{t>\rho\}}$ and $K_\rho^\alpha(t) = t^{\alpha-n} - K_\rho^\alpha(t)$ for $t > 0$, where $\rho > 0$ is a parameter to be chosen later. Then, we decompose the integral operator as

$$I_\alpha f_m(x) = K_\rho^\alpha f_m(x) + K_\rho f_m(x) \triangleq I_\alpha^1 f_m(x) + I_\alpha^2 f_m(x).$$

Since, for any fixed $x \in M^n$, $K_\rho^\alpha(|x-y|_g) \in L^p(M^n)$ with respect to y, then weak convergence implies that $K_\rho^\alpha f_m \to K_\rho^\alpha f$ pointwisely. Notice also that

$$|K_\rho^\alpha f_m(x)| \leq \|K_\rho^\alpha\|_{L^p} \|f_m\|_p \leq C(\rho),$$

where $C(\rho)$ is independent of x and m. So, by dominated convergence theorem, we have that

$$K_\rho^\alpha f_m \to K_\rho^\alpha f \quad \text{strongly in} \quad L^r(M^n).$$

Since

$$\int_{M^n} K_\rho(|x-y|_g)^s dV_g \leq C_\rho^{(\alpha-n)s+n},$$

where $0 < s < \frac{n}{\alpha-n}$, then we take parameter $s > 1$ satisfying $\frac{1}{r} + 1 = \frac{1}{p} + \frac{1}{s}$ and get from the Young’s inequality (see Lemma 2.2) that

$$\|K_\rho^\alpha (f_m - f)\|_r \leq C_\rho^{(\alpha-n)+n/s} \|f_m - f\|_p \leq C_\rho^{(\alpha-n)+n/s}.$$

By now, through choosing first ρ small and then m large, we deduce the claimed convergence in $L^r(M^n)$.

Based on the Proposition 2.3, we have the following conclusions.

Remark 2.4. For any bounded sequence $\{f_m\} \subset L^p(M^n)$, there exists a subsequence (still denoted by $\{f_m\}$) and some function $f \in L^p(M^n)$ such that

$$f_m \rightharpoonup f \quad \text{weakly in} \quad L^p(M^n),$$

$$I_\alpha f_m \to I_\alpha f \quad \text{weakly in} \quad L^q(M^n),$$

$$I_\alpha f_m \to I_\alpha f \quad \text{strongly in} \quad L^r(M^n)$$

for all $r \in [1, q)$. Furthermore, $I_\alpha f_m \to I_\alpha f$ pointwisely a.e. in M^n.
3 Concentration-Compactness Lemma

Lemma 3.1. Let \(\{f_m\} \subset L^p(M^n) \) be a bounded nonnegative sequence and there exists some function \(f \in L^p(M^n) \) such that

\[f_m \rightharpoonup f \mbox{ weakly in } L^p(M^n). \]

After passing to a subsequence, assume that \(|I_\alpha f_m|^q dV_x \), \(|f_m|^p dV_x \) converge weakly in the sense of measure to some bounded nonnegative measures \(\nu, \mu \) on \(M^n \). Then we have:

i) There exist some countable set \(J \), a family \(\{P_j : j \in J\} \) of distinct points in \(M^n \), and a family \(\{\nu_j : j \in J\} \) of nonnegative numbers such that

\[\nu = |I_\alpha f|^q dV_x + \sum_{j \in J} \nu_j \delta_{P_j}, \]

where \(\delta_{P_j} \) are the Dirac-mass of mass 1 concentrated at \(P_j \in M^n \);

ii) In addition we have

\[\mu \geq |f|^p dV_x + \sum_{j \in J} \mu_j \delta_{P_j} \]

for some family \(\{\mu_j > 0 : j \in J\} \), where \(\mu_j \) satisfy

\[\nu_j^{1/q} \leq N_{p,\alpha,M}(\int_{M^n} |\phi|^p d\mu)^{1/p} \mbox{ for all } j \in J. \]

In particular, \(\sum_{j \in J} \nu_j^{p/q} < +\infty \).

Proof of i). By the conditions of the sequence \(\{f_m\} \subset L^p(M^n) \), we know from the Remark 2.4 that

\[I_\alpha f_m \rightharpoonup I_\alpha f \mbox{ weakly in } L^q(M^n), \]
\[I_\alpha f_m \to I_\alpha f \mbox{ strongly in } L^r(M^n), \]
\[I_\alpha f_m \to I_\alpha f \mbox{ pointwisely a.e. in } M^n, \]

where \(r \in [1, q) \). Then, Brézis-Lieb Lemma leads that

\[0 = \lim_{m \to +\infty} \int_{M^n} |I_\alpha f_m|^q - |I_\alpha (f_m - f)|^q - |I_\alpha f|^q dV_x = \int_{M^n} d\nu - \int_{M^n} |I_\alpha f|^q dV_x - \lim_{m \to +\infty} |I_\alpha (f_m - f)|^q dV_x. \]

So, it is sufficient to discuss the case \(f \equiv 0 \). By the classical argument of Lions (see [24, 25]), it is sufficient to prove

\[\left(\int_{M^n} |\phi|^q d\nu \right)^{1/q} \leq N_{p,\alpha,M}(\int_{M^n} |\phi|^p d\mu)^{1/p}, \forall \phi \in C_0^\infty(M^n). \]

(3.4)

Since, for any \(\phi(x) \in C_0^\infty(M^n) \),

\[\left(\int_{M^n} |\phi(x)I_\alpha f_m|^q dV_x \right)^{1/q} \]
\begin{align*}
&\leq \left(\int_{M^n} |I_\alpha(\varphi f_m)|^q dV_x\right)^{1/q} + \left(\int_{M^n} |\varphi(x) I_\alpha f_m - I_\alpha(\varphi f_m)|^q dV_x\right)^{1/q} \\
&\leq N_{p,\alpha,M} \left(\int_{M^n} |\varphi f_m|^p dV_x\right)^{1/p} + \left(\int_{M^n} |\varphi(x) I_\alpha f_m - I_\alpha(\varphi f_m)|^q dV_x\right)^{1/q},
\end{align*}
then we get as $m \to +\infty$ that
\begin{align*}
\left(\int_{M^n} |\varphi|^q d\nu\right)^{1/q} &\leq N_{p,\alpha,M} \left(\int_{M^n} |\varphi|^p d\mu\right)^{1/p} \\
&+ \lim_{m \to +\infty} \left(\int_{M^n} |\varphi(x) I_\alpha f_m - I_\alpha(\varphi f_m)|^q dV_x\right)^{1/q}.
\end{align*}
So, we can obtain (3.4) if
\begin{equation}
\lim_{m \to +\infty} \left(\int_{M^n} |\varphi(x) I_\alpha f_m - I_\alpha(\varphi f_m)|^q dV_x\right)^{1/q} = 0. \tag{3.5}
\end{equation}
Notice that
\[|\varphi(x) I_\alpha f_m - I_\alpha(\varphi f_m)| = \left|\int_{M^n} (\varphi(x) - \varphi(y))|x - y|^{\alpha - n} f_m(y) dV_y \right| \]
\[\leq C \int_{M^n} |x - y|^{\alpha + 1 - n} |f_m(y)| dV_y \]
and
\[R(x, y) := (\varphi(x) - \varphi(y))|x - y|^{\alpha - n} \in L^r(M^n), \]
where $r \leq +\infty$ if $\alpha + 1 - n \geq 0$ and $r < \frac{n}{n - \alpha -}$ if $\alpha + 1 - n < 0$. If $\alpha + 1 - n \geq 0$, we can prove (3.5) by dominated convergence theorem. While for the case $\alpha + 1 - n < 0$, we obtain through the Hardy-Littlewood-Sobolev inequalities (2.9) that
\[\int_{M^n} R(x, y) f_m(y) dV_y \in L^s(M^n), \]
where $s = (\frac{1}{q} - \frac{\alpha + 1}{n})^{-1} > q$. Furthermore, repeating the proof of Proposition (2.9) we have
\[\int_{M^n} R(x, y) f_m(y) dV_y \to \int_{M^n} R(x, y) f(y) dV_y = 0 \quad \text{strongly in} \quad L^q(M^n). \]
So, we get (3.5) and complete the proof of i). \hfill \square

Proof of ii). Since
\[f_m \rightharpoonup f \quad \text{weakly in} \quad L^p(M^n), \]
then, $\mu \geq |f|^p dV_x$. So, we just have to show that for each fixed $j \in J$,
\[\nu_j^{1/q} = \nu\{P_j\}^{1/q} \leq N_{p,\alpha,M}(\{P_j\})^{1/p} = N_{p,\alpha,M_j}^{1/p}. \]
For point $P_j \in M^n$, choose a neighbourhood $\Omega_{P_j} \subset M^n$ so that for $\delta > 0$ small enough, in a normal coordinate, $\exp(B_\delta) \subset \Omega_{P_j}$ and
\[(1 - \epsilon)I \leq g(x) \leq (1 + \epsilon)I, \quad \forall x \in B_\delta. \]
Take \(\varphi(x) = \varphi(\frac{x}{\delta}) \), where \(\varphi(x) \in C_0^\infty(\mathbb{R}^n) \) satisfies \(0 \leq \varphi(x) \leq 1 \), \(\varphi(0) = 1 \), \(\text{supp} \varphi \subset B_1 \) and \(\lambda \in (0, \delta) \). Then,

\[
I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m) = \int_{M^n} (\varphi \circ \exp^{-1})(y) f_m(y) |x - y|^{\alpha - n} dV_y(y)
\]

\[
= \int_{B_\delta} \varphi \lambda(y)(f_m \circ \exp)(y) |x - y|^{\alpha - n} \sqrt{\det g(y)}dy
\]

\[
\leq \frac{(1 + \epsilon)^{n/2}}{(1 - \epsilon)^{n-\alpha}} \int_{B_\delta} \varphi \lambda(y)(f_m \circ \exp)(y) |x - y|^{\alpha - n} dy
\]

and

\[
\left(\int_{\exp(B_\delta)} |I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m)|^q dV_x \right)^{1/q}
\]

\[
\leq (1 + \epsilon)^{n/(2q)} \left(\int_{B_\delta} |I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m)|^q dx \right)^{1/q}
\]

\[
\leq \frac{(1 + \epsilon)^{\frac{n}{2}(1 + \frac{1}{q})}}{(1 - \epsilon)^{n-\alpha}} \left(\int_{B_\delta} \int_{B_\delta} \varphi \lambda(y)(f_m \circ \exp)(y) |x - y|^{\alpha - n} dy \right)^{1/q} dx
\]

\[
\leq \frac{(1 + \epsilon)^{\frac{n}{2}(1 + \frac{1}{q})}}{(1 - \epsilon)^{n-\alpha}} N_{\alpha} \left(\int_{\exp(B_\delta)} |\varphi \lambda(y)(f_m \circ \exp)(y)|^p dV_y \right)^{1/p}
\]

\[
\leq \frac{(1 + \epsilon)^{\frac{n}{2}(1 + \frac{1}{q})}}{(1 - \epsilon)^{n-\alpha}} N_{\alpha} \left(\int_{\exp(B_\delta)} |(\varphi \circ \exp^{-1}) \cdot f_m|^p dV_y \right)^{1/p}
\]

So,

\[
\left(\int_{M^n} |(\varphi \circ \exp^{-1}) \cdot I_\alpha f_m|^q dV_x \right)^{1/q}
\]

\[
\leq \left(\int_{\exp(B_\delta)} |I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m)|^q dV_x \right)^{1/q}
\]

\[
+ \left(\int_{\exp(B_\delta)} |(\varphi \circ \exp^{-1}) \cdot I_\alpha f_m - I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m)|^q dV_x \right)^{1/q}
\]

\[
\leq \frac{(1 + \epsilon)^{\frac{n}{2}(1 + \frac{1}{q})}}{(1 - \epsilon)^{n-\alpha}} N_{\alpha} \left(\int_{\exp(B_\delta)} |(\varphi \circ \exp^{-1}) \cdot f_m|^p dV_y \right)^{1/p} + I, \tag{3.6}
\]

where

\[
I := \left(\int_{\exp(B_\delta)} |(\varphi \circ \exp^{-1}) \cdot I_\alpha f_m - I_\alpha((\varphi \circ \exp^{-1}) \cdot f_m)|^q dV_x \right)^{1/q}
\]

Repeating the argument of (3.5), we have, as \(m \to +\infty \),

\[
I \to \left(\int_{\exp(B_\delta)} |(\varphi \circ \exp^{-1}) \cdot I_\alpha f - I_\alpha((\varphi \circ \exp^{-1}) \cdot f)|^q dV_x \right)^{1/q}
\]
So, letting $m \to +\infty$ leads

\[
\left(\int_{M^n} |\varphi_\lambda \circ \exp^{-1}|^q d\nu \right)^{1/q} \\
\leq \frac{(1 + \epsilon)^{\frac{n}{2}(1 + \frac{1}{p})}}{(1 - \epsilon)^{\frac{1}{q} + \alpha}} N_{p, \alpha} \left(\int_{M^n} |(\varphi_\lambda \circ \exp^{-1})|^p d\mu \right)^{1/p} \\
+ \left(\int_{\exp(B_\delta)} |(\varphi_\lambda \circ \exp^{-1}) \cdot I_\alpha f - I_\alpha ((\varphi_\lambda \circ \exp^{-1}) \cdot f)|^q dV_x \right)^{1/q}.
\]

(3.7)

Since

\[
\int_{\exp(B_\delta)} |(\varphi_\lambda \circ \exp^{-1}) \cdot I_\alpha f|^q dV_x \to 0 \quad \text{as} \quad \lambda \to 0^+
\]

and

\[
\left(\int_{\exp(B_\delta)} |I_\alpha ((\varphi_\lambda \circ \exp^{-1}) \cdot f)|^q dV_x \right)^{1/q} \\
\leq C \left(\int_{B_\delta} |(\varphi_\lambda \circ \exp^{-1}) \cdot f|^q dV_y \right)^{1/p} \to 0 \quad \text{as} \quad \lambda \to 0^+,
\]

then we can complete the proof by letting $\lambda \to 0^+$ and $\epsilon \to 0^+$.

\[\Box\]

4 Estimate and criteria of existence

Proof of Proposition 1.2. For small positive constant $\lambda > 0$, recall that $f_\lambda(x)$ and $g_\lambda(y)$ are given in (2.3). Take

\[
\hat{f}(x) = \begin{cases} f_\lambda(x), & \text{in } B_\delta(0) \\ 0, & \text{in } \mathbb{R}^n \setminus B_\delta(0) \end{cases} \quad \text{and} \quad \hat{g}(y) = \begin{cases} g_\lambda(y), & \text{in } B_\delta(0) \\ 0, & \text{in } \mathbb{R}^n \setminus B_\delta(0) \end{cases}
\]

where $\delta > 0$ is a fixed constant to be determined later. Then, for small enough λ and by (2.2),

\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(x) \hat{g}(y) |x - y|^{\alpha - n} dx dy = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_\lambda(x) g_\lambda(y) |x - y|^{\alpha - n} dx dy \\
- \int_{|x| > \delta} \int_{\mathbb{R}^n} f_\lambda(x) g_\lambda(y) |x - y|^{\alpha - n} dx dy \\
- \int_{\mathbb{R}^n} \int_{|y| > \delta} f_\lambda(x) g_\lambda(y) |x - y|^{\alpha - n} dx dy \\
+ \int_{|x| > \delta} \int_{|y| > \delta} f_\lambda(x) g_\lambda(y) |x - y|^{\alpha - n} dx dy = N_{p, \alpha} - N_{p, \alpha} \int_{|x| > \delta} f_\lambda^\gamma(x) dx - N_{p, \alpha} \int_{|y| > \delta} g_\lambda^\gamma(y) dy
\]
\[
+ \int_{|x| > \delta} \int_{|y| > \delta} f_\lambda(x)g_\lambda(y)|x - y|^{\alpha-n} \, dx \, dy \\
:= N_{p,\alpha} - I - II + III, \tag{4.1}
\]

where, for fixed \(\delta > 0\) and as \(\lambda \to 0^+\),
\[
I := N_{p,\alpha} \int_{|x| > \delta} f_\lambda^p(x) \, dx = N_{p,\alpha} \int_{|x| > \delta/\lambda} f^p(x) \, dx \to 0,
\]
\[
II := N_{p,\alpha} \int_{|y| > \delta} g_\lambda^t(y) \, dy \to 0,
\]
\[
III := \int_{|x| > \delta} \int_{|y| > \delta} f_\lambda(x)g_\lambda(y)|x - y|^{\alpha-n} \, dx \, dy \\
\leq C \left(\int_{|x| > \delta} f_\lambda^p(x) \, dx \right)^{1/p} \left(\int_{|y| > \delta} g_\lambda^t(y) \, dy \right)^{1/t} \to 0.
\]

So, for small enough \(\lambda\),
\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \tilde{f}(x)\tilde{g}(y)|x-y|^{\alpha-n} \, dx \, dy \\
\geq \frac{N_{p,\alpha} - I - II}{\|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^t(\mathbb{R}^n)}} = N_{p,\alpha} - I - II. \tag{4.2}
\]

For any given point \(P \in M^n\), choose a neighbourhood \(\Omega_P \subset M^n\) so that for \(\delta > 0\) small enough, in a normal coordinate, \(\exp(B_\delta) \subset \Omega_P\) and
\[
(1 - \epsilon)I \leq g(x) \leq (1 + \epsilon)I, \quad \forall x \in B_\delta.
\]

Thus,
\[
(1 - \epsilon)|x - y| \leq |x - y|_g \leq (1 + \epsilon)|x - y|, \quad \forall x, y \in B_\delta.
\]

In the normal coordinates with respect to the center \(P \in M^n\), let
\[
\begin{cases}
 f_\lambda(\exp^{-1}(x)), & \text{in } \exp(B_\delta) \\
 0, & \text{in } M^n \setminus \exp(B_\delta)
\end{cases}
\]
and
\[
\begin{cases}
 g_\lambda(\exp^{-1}(y)), & \text{in } \exp(B_\delta) \\
 0, & \text{in } M^n \setminus \exp(B_\delta)
\end{cases}
\]

Then
\[
\begin{align*}
\int_{M^n} |u|^p \, dV_x & \leq (1 + \epsilon)\frac{2}{p} \int_{B_\lambda(0)} |f_\lambda(x)|^p \, dx, \\
\int_{M^n} |v|^t \, dV_y & \leq (1 + \epsilon)\frac{2}{t} \int_{B_\lambda(0)} |g_\lambda(y)|^t \, dy, \\
\int_{M^n} \int_{M^n} u(x)v(y)|x - y|^{\alpha-n} \, dV_x \, dV_y & \leq C \left(\int_{|x| > \delta} f_\lambda^p(x) \, dx \right)^{1/p} \left(\int_{|y| > \delta} g_\lambda^t(y) \, dy \right)^{1/t} \to 0.
\end{align*}
\]
\[
\begin{align*}
\int_{B_x(0)} \int_{B_y(0)} \frac{\mu(x)}{|x-y|^{n-\alpha}} \sqrt{\det g(x)} \sqrt{\det g(y)} \, dx \, dy \\
\geq \int_{B_x(0)} \int_{B_y(0)} (1 + \epsilon)^{n-\alpha} (1 - \epsilon)^{n} \, dx \, dy \\
= \frac{(1 - \epsilon)^n}{(1 + \epsilon)^{n-\alpha}} \int_{B_x(0)} \int_{B_y(0)} f(x) g(y) \, dx \, dy.
\end{align*}
\]

Thus
\[
N_{p,\alpha, M} \geq \frac{\int_{M^n} \int_{M^n} u(x) v(y) |x-y|^{n-\alpha} \, dx \, dy}{\|u\|_{L^p(M^n)} \|v\|_{L^q(M^n)}} \\
\geq \frac{(1 - \epsilon)^n}{(1 + \epsilon)^{n-\alpha}} \frac{\int_{B_x(0)} \int_{B_y(0)} f(x) g(y) |x-y|^{n-\alpha} \, dx \, dy}{\|f\|_{L^p(B_x(0))} \|g\|_{L^q(B_y(0))}} \\
\geq \frac{(1 - \epsilon)^n}{(1 + \epsilon)^{n-\alpha}} (N_{p,\alpha} - I - II).
\]

Sending \(\epsilon\) and \(\lambda\) to 0, we obtain the estimate. \(\square\)

Prof of Theorem 1.3. Take a maximizing nonnegative sequence \(\{f_m(x)\} \subset L^p(M^n)\) satisfying \(\int_{M^n} f_m \, dV_x = 1\) and
\[
\|I_m f_m\|_{L^q(M^n)} \to N_{p,\alpha, M}, \quad m \to +\infty.
\]

Then, there exist a subsequence of \(\{f_m\}\) (still denoted by \(\{f_m\}\)) and some function \(f \in L^p(M^n)\) such that
\[
f_m \rightharpoonup f \quad \text{weakly in} \quad L^p(M^n).
\]

Because of the Hardy-Littlewood-Sobolev inequalities (1.3), we know that
\[
\mu_m = |f_m|^p \, dV_x, \quad \nu_m = |I_m f_m|^q \, dV_x
\]
are two families of bounded measures. So, there exist two nonnegative bounded measures \(\mu\) and \(\nu\) on \(M^n\) such that
\[
\mu_m \rightharpoonup \mu, \nu_m \rightharpoonup \nu
\]
weakly in the sense of measures.

Applying the Concentration-Compactness Lemma (see Lemma 3.1), we have
\[
\nu = |I_m f|^q \, dV_x + \sum_{j \in J} \nu_j \delta_{P_j}, \quad \mu \geq |f|^p \, dV_x + \sum_{j \in J} \mu_j \delta_{P_j},
\]
and \(\nu_j^{1/q} \leq N_{p,\alpha, \mu_j^{1/p}}\) for all \(j \in J\). Since \(\int_{M^n} d\mu = \lim_{m \to +\infty} \int_{M^n} |f_m|^p \, dV_x = 1\), then \(\int_{M^n} |f|^p \, dV_x \leq 1\) and \(\mu_j \leq 1, \quad j \in J\).

We claim that \(\mu_j = 0, \quad j \in J\), which deduce that \(\nu_j = 0, \quad j \in J\).

In fact, otherwise, combining (4.6) and the fact \(\frac{q}{p} > 1\), we have
\[
N_{p,\alpha, M}^q = \lim_{m \to +\infty} \int_{M^n} |I_m f|^q \, dV_x = \int_{M^n} d\nu
\]
\[\begin{align*}
= & \int_{M^n} |I_\alpha f|^q dV_x + \sum_{j \in J} \nu_j \\
\leq & N_{p,\alpha,M}^q \|f\|_{L^q(M^n)}^q + \sum_{j \in J} N_{p,\alpha,M}^{q/p} \\
< & N_{p,\alpha,M}^q \left(\int_{M^n} |f|^p dV_x \right)^{q/p} + \sum_{j \in J} N_{p,\alpha,M}^{q/p} \\
\leq & N_{p,\alpha,M}^q \left(\int_{M^n} |f|^p dV_x + \sum_{j \in J} \mu_j \right)^{q/p} \\
= & N_{p,\alpha,M}^q \left(\int_{M^n} d\mu \right)^{q/p} = N_{p,\alpha,M}^q,
\end{align*}\]

which is a contradiction.

Repeating the process of (4.7), we have that

\[N_{p,\alpha,M}^q = \int_{M^n} |I_\alpha f|^q dV_x \quad \text{and} \quad \int_{M^n} |f|^p dV_x = 1,\]

i.e., f is a maximizer. \qed

References

[1] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math. 158(1) (2003), 323-343.

[2] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.

[3] S. -Y. Chang, M. Gursky, P. C. Yang, An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. 155(3) (2002), 709-787.

[4] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168(3) (2008), 813-858.

[5] J. Dou, Q. Guo, M. Zhu, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space, Advances in Mathematics, 312(2017): 1-45. Corrigendum to "Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space" [Adv. Math. 312(2017) 1-45], Advances in Mathematics, 317 (2017): 640-644.

[6] J. Dou, Q. Guo, M. Zhu, Negative power nonlinear integral equations on bounded domains, submitted.

[7] J. Dou, M. Zhu, Integral equations on bounded domains, J. Fun. Anal., online.

[8] J. Dou, M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Notices 2015 (2015): 651-687.
[9] J. Dou, M. Zhu, Reversed Hardy-Littewood-Sobolev inequality, Int. Math. Res. Notices 2015 (2015): 9696-9726.

[10] R.L. Frank and E.H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Annals of Mathematics, 176(2012), 349-381.

[11] M. González, R. Mazzeo, Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal. 22(2) (2012), 845-863.

[12] M. González, J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Analysis & PDE 6(7) (2013), 1535-1576.

[13] C.R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (1) (2003), 89-118.

[14] P. Guan, C. S. Lin, G. Wang, Application of the method of moving planes to conformally invariant equations, Math. Z. 247(1) (2004), 1-19.

[15] M. Gursky, J. Viaclovsky, A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63(1) (2003), 131-154.

[16] M. Gursky, J. Viaclovsky, Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann. of Math. 166(2) (2007), 475-531.

[17] Y. Han, M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications, J. Differential Equations, 260(2016), 1-25.

[18] F. Hang, X. Wang, X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré Analyse Non Linéaire 26 (2009), 1-21.

[19] F. Hang, X. Wang, X. Yan, Sharp integral inequalities for Harmonic functions, Comm. Pure Appl. Math., 61(1)(2007): 54-95.

[20] T. Jin, Y. Y. Li, J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16(2014), 1111-1171.

[21] T. Jin, Y. Y. Li, J. Xiong, On a fractional Nirenberg problem, part II: existence of solutions, Int. Math. Res. Notices (2013), DOI: 10.1093/imrn/rnt260.

[22] T. Jin, Y. Y. Li, J. Xiong, The Nirenberg problem and its generalizations: A unified approach, arXiv:1411.5743v1.

[23] T. Jin, J. Xiong, A fractional Yamabe flow and some applications, arXiv:1110.5664v1

[24] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1(1)(1985), 145-201.

[25] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoamericana, 1(2)(1985), 45-121.
[26] A. Li, Y.Y. Li, On some conformally invariant fully nonlinear equations. II. Liouville, Harnack and Yamabe, Acta Math. 195 (2005), 117-154.

[27] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374.

[28] Q.A. Ngô, V.H. Nguyên, Sharp reversed Hardy–Littlewood–Sobolev inequality on \mathbb{R}^n, Israel Journal of Mathematics, 220(2017): 189-223.

[29] Q.A. Ngô, V.H. Nguyên, Sharp reversed Hardy–Littlewood–Sobolev inequality on the half space \mathbb{R}^n_+, International Mathematics Research Notices, 2017 (2017): 6187-6230.

[30] M. Zhu, Prescribing integral curvature equation, Differential and Integral Equations 29(9/10) (2016): 889-904.