Magnetic resonance imaging for prostate cancer before radical and salvage radiotherapy: What radiation oncologists need to know

Felipe Couñago, Gemma Sancho, Violeta Catalá, Diana Hernández, Manuel Recio, Sara Montemuiño, Jhonathan Alejandro Hernández, Antonio Maldonado, Elia del Cerro

Abstract

External beam radiotherapy (EBRT) is one of the principal curative treatments for patients with prostate cancer (PCa). Risk group classification is based on prostate-specific antigen (PSA) level, Gleason score, and T-stage. After risk group determination, the treatment volume and dose are defined and androgen deprivation therapy is prescribed, if appropriate. Traditionally, imaging has played only a minor role in T-staging due to the low diagnostic accuracy of conventional imaging strategies such as transrectal ultrasound, computed tomography, and morphologic magnetic resonance imaging (MRI). As a result, a notable percentage of tumours are understaged, leading to inappropriate and imprecise EBRT. The development of multiparametric MRI (mpMRI), an imaging technique that combines morphologic studies with functional diffusion-weighted sequences and dynamic contrast-enhanced imaging, has revolutionized the diagnosis and management of PCa. As a result, mpMRI is now used in staging PCa prior to EBRT, with possible implications for both risk group classification and treatment decision-making for EBRT. mpMRI is also being used in salvage...
radiotherapy (SRT), the treatment of choice for patients who develop biochemical recurrence after radical prostatectomy. In the clinical context of biochemical relapse, it is essential to accurately determine the site of recurrence - pelvic (local, nodal, or bone) or distant - in order to select the optimal therapeutic management approach. Studies have demonstrated the value of mpMRI in detecting local recurrences - even in patients with low PSA levels (0.3-0.5 ng/mL) - and in diagnosing bone and nodal metastasis. The main objective of this review is to update the role of mpMRI prior to radical EBRT or SRT. We also consider future directions for the use and development of MRI in the field of radiation oncology.

Key words: Prostate cancer; Staging; Radical radiotherapy; Multiparametric magnetic resonance imaging; Biochemical failure; Radical prostatectomy; Salvage radiotherapy

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Multiparametric magnetic resonance imaging (mpMRI) has revolutionized the management of prostate cancer, including external beam radiotherapy (EBRT). mpMRI has also improved local staging and recurrence detection after radical prostatectomy, even in patients with low prostate-specific antigen levels, and it has increased the accuracy of EBRT, potentially improving survival outcomes while reducing side effects. For these reasons, mpMRI is an essential tool in the evaluation and treatment of prostate cancer.

Couñago F, Sancho G, Catalá V, Hernández D, Recio M, Montemuiño S, Hernández JA, Maldonado A, del Cerro E. Magnetic resonance imaging for prostate cancer before radical and salvage radiotherapy: What radiation oncologists need to know. *World J Clin Oncol* 2017; 8(4): 305-319. Available from: URL: http://www.wjgnet.com/2218-4333/full/v8/i4/305.htm DOI: http://dx.doi.org/10.5306/wjco.v8.i4.305

INTRODUCTION

In the last decade, the growing use of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and treatment of prostate cancer (PCa) has revolutionized patient management. Numerous studies confirm the emerging and increasingly important role of mpMRI in PCa in a wide range of clinical contexts, including: Tumour screening and detection[1]; prostate biopsy guidance[2]; staging[3]; assessment of tumour aggressiveness[4]; active surveillance protocols[5]; treatment planning (surgery, radiotherapy, and focal therapies)[6-8]; and detection of recurrence after radical prostatectomy (RP) or external beam radiotherapy (EBRT)[9,10].

There are two main indications for radiotherapy in PCa: (1) the initial treatment of patients with a recent diagnosis of PCa; and (2) salvage treatment in patients with recurrent disease after RP. In both of these clinical scenarios, conventional diagnostic strategies [digital rectal examination (DRE), transrectal ultrasound (TRUS) with “blind” biopsies, computed tomography (CT), and bone scintigraphy] all have a low yield for establishing the T stage and in detecting recurrences post RP, all of which could result in undertreatment. In this context, the objective of this review is to update the role of mpMRI in the radical treatment of PCa with EBRT and in salvage radiotherapy (SRT) after RP. In addition, we discuss future directions for the use and development of MRI in the field of radiation oncology.

WHAT IS PROSTATE MPMRI?

mpMRI is an imaging technique that allows for the non-invasive assessment of the prostate gland. It is called multiparametric because various pulse sequences (i.e., multiple parameters) are used to help detect and characterize the prostate lesions. Currently, mpMRI includes both morphologic (T1 and T2) and functional sequences [diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging with gadolinium]. Spectroscopy no longer plays an important role and is thus not included in current MRI guidelines[11,12].

MORPHOLOGIC IMAGING

T1-weighted pulse sequence

The T1 sequence consists of a T1-weighted (T1W) Fast Spin Echo (FSE) from the aortic bifurcation to the symphysis pubis, assessed on the axial plane (Figure 1). The T1W sequence cannot discriminate various prostate gland zones and therefore its main utility is in detecting the presence of post-biopsy bleeding (a common cause of false positives in PCa diagnosis) (Figure 2), nodal disease, and bone metastasis[12].

T2-weighted pulse sequence

The T2 sequence consists of a T2-weighted (T2W) FSE sequence that includes the prostate gland and seminal vesicles (Figure 1B-D). The T2W sequence is normally performed in three spatial planes (axial, coronal, and sagittal). T2W sequence is capable of discriminating various anatomic zones of the prostate, including the peripheral, central, and transitional zones, as well as the anterior fibromuscular stroma, neurovascular plexus, surgical pseudocapsule, and the prostate capsule. In normal prostates, the peripheral zone is homogeneous and hyperintense on MRI (Figure 1B). In adults, the transitional zone is larger, with a heterogenous signal and hyperplastic nodules of varying appearance, thus this zone can sometimes present diagnostic difficulties[13].

Cancerous prostate lesions usually appear as nodules or hypointense areas on T2W images, with less well-defined margins at the transitional zone. A
limitation of the T2W sequence is that benign and malignant alterations often overlap. According to the Prostate Imaging Reporting and Data System (PIRADS) v2 model (see PIRADS reporting and interpretation model, version 2), the T2W sequence is key to the diagnosis of PCa in the transition zone\(^1\)(Figure 3A). It is also useful in the diagnosis of local dissemination\(^1\)4\).

FUNCTIONAL SEQUENCES

Diffusion sequences

Diffusion sequences [diffusion-weighted MRI (DW-MRI) and apparent diffusion coefficient (ADC)] are performed in the axial plane and include the prostate and seminal vesicles (Figure 3B and C). These sequences are used primarily to evaluate the movement of the free water molecules in the interstitial space and through the cellular membrane. The behavior of lesions on DW-MRI and ADC is conditioned by cell density, the extracellular space, the integrity of cell membranes, and the extent of glandular organization. A correct assessment is based on a qualitative (high b-value DWI) and quantitative (ADC map) evaluation of the images. In PCa, the presence of impeded diffusion appears as a high signal intensity on the DWI and low intensity on the ADC map\(^1\)3\).

PCa presents architectural changes that restrict water diffusion. The more aggressive the tumour, the more pronounced these changes tend to be. For this
reason, diffusion sequences are valuable not only to characterise lesions likely to be malignant, but also to help to predict the Gleason score of the lesions\cite{15,16} (Figure 3). Benign lesions, such as those occurring secondary to prostatitis, usually present less diffusion restriction \cite{17}.

According to the PIRADS v2 model, diffusion sequences are crucial to the diagnosis of PCa in the peripheral zone and in characterising indeterminate lesions in the transition zone\cite{12} (Figure 5B and C).

Dynamic contrast-enhanced sequences

Dynamic contrast-enhanced (DCE)-MRI is performed in the axial plane and includes the prostate and seminal vesicles. This sequence is performed prior to endovenous gadolinium administration and up to 4 min afterwards (Figure 5D).

In malignant lesions, the most common phenomenon observed on DCE-MRI is early uptake of the contrast material and early washout (Figure 5D). However, this behaviour is relatively variable and sometimes overlaps with that of benign lesions. According to PIRADS v2, although DCE sequences have a secondary value, their main value is in their contribution to the characterization of indeterminate lesions in the peripheral zone\cite{12}.

Pharmacokinetic models of DCE-MRI perfusion allow us to quantify various parameters to evaluate contrast perfusion, including k_{trans} (the volume transfer constant, which reflects the efflux rate of gadolinium contrast from the vascular compartment through the endothelium to the interstitial space), k_{ep} (rate of return to the vascular space), and V_{e} (the fractional volume of the extracellular tumour space). Using these data, it is possible to build parametric maps that represent the intratumoral heterogeneity of the spatial distribution of these parameters. However, at present, no conclusive results are available to support the use of these parameters for diagnostic purposes.

PIRADS ACQUISITION, INTERPRETATION, AND REPORTING MODEL, VERSION 2.0

A consensus-based model - PIRADS v2 - has been developed for interpreting and scoring mpMRI results. Several organizations, including the European Society of Urogenital Radiology (ESUR), American College of Radiology (ACR), and the AdMeTech Foundation, participated in the development of this model. The main objective of the model - aside from standardizing acquisition, interpretation and reporting protocols - is to predict the probability of clinically significant PCa by hierarchically organizing the information obtained in each MRI sequencing modality according to whether the lesion is located in the peripheral or transitional zone\cite{11,12}. Although this model has some limitations, its implementation has served to reduce intra- and inter-
observer variability as well as to increase the diagnostic yield of mpMRI.

EQUIPMENT

The minimum technological requirements necessary to guarantee that mpMRI assessment is performed to an acceptable quality standard have been defined by consensus agreement[11]. This consensus establishes, as a minimum requirement, that MRI equipment should be at least 1.5T magnetic field strength. The use of endorectal coil is only essential in older 1.5T equipment because newer MRI equipment at 1.5T and 3T are both capable of obtaining reliable image quality without the need for coils. The elimination of the need for endorectal coils is beneficial because it reduces imaging time, thus increasing patient comfort[11].

STAGING

Local staging

MRI is the imaging technique of choice to determine whether the tumor is organ-confined or extra-glandular. In the year 2012, the ESUR proposed a 5-point scale to establish the probability of extracapsular extension (ECE) based on direct and indirect signs[14] (Table 1 and Figure 6).

Schieda et al[18] evaluated the ability of this 5-point scoring system to predict ECE compared to a “non-standardized” reporting modality. Those authors concluded that the optimal sensitivity/specificity was achieved with a score of “≥ 3”. In addition, the scale was more sensitive than the non-standardized modality (59.5% vs 24.5%, P = 0.01) without significant differences in specificity (68.0% vs 75.0%, P = 0.06).

Several clinical nomograms are available to predict the likelihood of ECE. The two most common nomograms are the Partin tables (which include several variables: PSA, biopsy-based Gleason score, and clinical stage)[19] and the nomogram developed at the Memorial Sloan-Kettering (MSK) Cancer Center (which adds prostate biopsy results - specifically, the percentage of positive cylinders)[20]. Recently, Feng et al[21] conducted a retrospective study of 112 patients who underwent mpMRI prior to RP to determine if mpMRI could improve the predictive capacity of the Partin tables and the MSK nomogram for ECE. The authors found that the area under the curve (AUC) for the Partin and MSK nomograms for predicting ECE was 0.85 and 0.86, respectively. When mpMRI was added, the AUC increased, respectively, to 0.92 and 0.94.

In the most recent guidelines published by the European Society of Urology, mpMRI has been included as a local staging technique in the following patient risk groups: High-risk disease; intermediate risk disease with predominantly Gleason pattern 4; and low-risk disease if mpMRI is considered necessary for treatment planning[11].

Staging of distant disease

The diagnosis of metastatic disease is essential to ensure proper therapeutic management and MRI has proven its value as a diagnostic tool for metastasis (Figure 7). In a recently published meta-analysis, Shen et al[22] compared the relative utility of choline PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastasis in patients with PCa. The authors reported sensitivity values, respectively of 91%, 97%, and 79% and specificity values of 99%, 95%, and 82%. These differences between these imaging modalities concluded that the optimal sensitivity/specificity was achieved with a score of “≥ 3”. In addition, the scale was more sensitive than the non-standardized modality (59.5% vs 24.5%, P = 0.01) without significant differences in specificity (68.0% vs 75.0%, P = 0.06).

Several clinical nomograms are available to predict the likelihood of ECE. The two most common nomograms are the Partin tables (which include several variables: PSA, biopsy-based Gleason score, and clinical stage)[19] and the nomogram developed at the Memorial Sloan-Kettering (MSK) Cancer Center (which adds prostate biopsy results - specifically, the percentage of positive cylinders)[20]. Recently, Feng et al[21] conducted a retrospective study of 112 patients who underwent mpMRI prior to RP to determine if mpMRI could improve the predictive capacity of the Partin tables and the MSK nomogram for ECE. The authors found that the area under the curve (AUC) for the Partin and MSK nomograms for predicting ECE was 0.85 and 0.86, respectively. When mpMRI was added, the AUC increased, respectively, to 0.92 and 0.94.

In the most recent guidelines published by the European Society of Urology, mpMRI has been included as a local staging technique in the following patient risk groups: High-risk disease; intermediate risk disease with predominantly Gleason pattern 4; and low-risk disease if mpMRI is considered necessary for treatment planning[11].

Staging of distant disease

The diagnosis of metastatic disease is essential to ensure proper therapeutic management and MRI has proven its value as a diagnostic tool for metastasis (Figure 7). In a recently published meta-analysis, Shen et al[22] compared the relative utility of choline PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastasis in patients with PCa. The authors reported sensitivity values, respectively of 91%, 97%, and 79% and specificity values of 99%, 95%, and 82%. These differences between these imaging modalities concluded that the optimal sensitivity/specificity was achieved with a score of “≥ 3”. In addition, the scale was more sensitive than the non-standardized modality (59.5% vs 24.5%, P = 0.01) without significant differences in specificity (68.0% vs 75.0%, P = 0.06).

Several clinical nomograms are available to predict the likelihood of ECE. The two most common nomograms are the Partin tables (which include several variables: PSA, biopsy-based Gleason score, and clinical stage)[19] and the nomogram developed at the Memorial Sloan-Kettering (MSK) Cancer Center (which adds prostate biopsy results - specifically, the percentage of positive cylinders)[20]. Recently, Feng et al[21] conducted a retrospective study of 112 patients who underwent mpMRI prior to RP to determine if mpMRI could improve the predictive capacity of the Partin tables and the MSK nomogram for ECE. The authors found that the area under the curve (AUC) for the Partin and MSK nomograms for predicting ECE was 0.85 and 0.86, respectively. When mpMRI was added, the AUC increased, respectively, to 0.92 and 0.94.

In the most recent guidelines published by the European Society of Urology, mpMRI has been included as a local staging technique in the following patient risk groups: High-risk disease; intermediate risk disease with predominantly Gleason pattern 4; and low-risk disease if mpMRI is considered necessary for treatment planning[11].

Staging of distant disease

The diagnosis of metastatic disease is essential to ensure proper therapeutic management and MRI has proven its value as a diagnostic tool for metastasis (Figure 7). In a recently published meta-analysis, Shen et al[22] compared the relative utility of choline PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastasis in patients with PCa. The authors reported sensitivity values, respectively of 91%, 97%, and 79% and specificity values of 99%, 95%, and 82%. These differences between these imaging modalities concluded that the optimal sensitivity/specificity was achieved with a score of “≥ 3”. In addition, the scale was more sensitive than the non-standardized modality (59.5% vs 24.5%, P = 0.01) without significant differences in specificity (68.0% vs 75.0%, P = 0.06).

Several clinical nomograms are available to predict the likelihood of ECE. The two most common nomograms are the Partin tables (which include several variables: PSA, biopsy-based Gleason score, and clinical stage)[19] and the nomogram developed at the Memorial Sloan-Kettering (MSK) Cancer Center (which adds prostate biopsy results - specifically, the percentage of positive cylinders)[20]. Recently, Feng et al[21] conducted a retrospective study of 112 patients who underwent mpMRI prior to RP to determine if mpMRI could improve the predictive capacity of the Partin tables and the MSK nomogram for ECE. The authors found that the area under the curve (AUC) for the Partin and MSK nomograms for predicting ECE was 0.85 and 0.86, respectively. When mpMRI was added, the AUC increased, respectively, to 0.92 and 0.94.

In the most recent guidelines published by the European Society of Urology, mpMRI has been included as a local staging technique in the following patient risk groups: High-risk disease; intermediate risk disease with predominantly Gleason pattern 4; and low-risk disease if mpMRI is considered necessary for treatment planning[11].
were statistically significant, with bone scintigraphy significantly less sensitive and less specific than the other two techniques. By contrast, MRI presented the highest diagnostic sensitivity for detecting metastasis. Lecouvet et al\[23\] evaluated 100 patients at a high risk of metastasis to compare the diagnostic yield of whole-body DW-MRI vs CT and bone scintigraphy with Technetium Tc 99m (supported by simple X-ray when necessary) in the diagnosis of bone and nodal metastasis. Bone scintigraphy (± X-ray) plus CT had a sensitivity of 84% vs 91%-94% for whole-body DW-MRI ($P < 0.05$); specificity values were, respectively, 94%-97% vs 91%-96% ($P > 0.05$). The authors conclude that one-step, whole-body MRI can effectively assess nodal and bone metastasis in patients with high-risk PCa, thus eliminating the need for multimodal diagnosis (Figure 8).

Conde-Moreno et al\[24\] compared whole-body DW-MRI to choline PET/CT in the diagnosis of metastatic disease, finding that choline PET/CT had a greater sensitivity whereas whole-body DW-MRI had a greater specificity. Given these findings, the authors conclude that these techniques are complementary.

The value of MRI in the diagnosis of bone and nodal metastasis has been recognized by the ESUR\[14\]. The European Society of Urology also contemplates the use of MRI as an alternative technique to detect possible metastasis in intermediate and high-risk patients\[13\].

Re-staging following recurrence after radiotherapy

Reported 5-year biochemical relapse rates after radiotherapy range from 15% in low-risk patients to 67% in high-risk cases\[9\]. Both DW-MRI and DCE-MRI allow us to detect recurrences after radiotherapy. In a group of 24 patients who developed biochemical relapse following radiotherapy, Kim et al\[25\] performed prostate mpMRI at 3T (phased array coil), followed by TRUS-guided biopsy. They assessed the diagnostic performance of both DW-MRI and DCE-MRI to detect recurrent disease. The sensitivity, specificity, and diagnostic accuracy of DW-MRI were 49%, 93%, and 82%, respectively, vs 49%, 92% and 81% for DCE-MRI. Combined DW-MRI and DCE-MRI resulted in a sensitivity, specificity, and diagnostic accuracy of 59%, 91% and 83%, respectively.

Tamada et al\[26\] demonstrated the diagnostic value of mpMRI to assess recurrence after brachytherapy, reporting a sensitivity of 77%, specificity of 92%, and diagnostic accuracy of 90%.

IMPACT OF MPMRI ON TREATMENT DECISIONS FOR RADIOTHERAPY

Impact on the therapeutic strategy (EBRT)

Several studies have evaluated the impact of mpMRI staging on PCa risk group classification and on treatment decisions for EBRT (Table 2). Couñago et al\[6\] assessed...
274 patients staged initially by DRE and TRUS and subsequently by 3T mpMRI prior to the final EBRT treatment decision. The risk group classification shifted after mpMRI in 32.8% of cases after all factors (PSA, Gleason score and T-stage) were considered. In addition, in 43.8% of cases (52.5% depending on criteria used to indicate or not ADT in intermediate-risk patients), this led to a change in some aspect(s) of the radiotherapy treatment (treatment volume, dose, and ADT). Finally, the mpMRI results were validated in the subgroup of surgical patients, showing a 70.0% sensitivity and 93.8% specificity for ECE.

Panje et al. evaluated 122 patients staged using 1.5T or 3T (38% of sample) phased-array-body coil MRI. Most (53.3%) patients had received ADT prior to the mpMRI. The authors found that the use of mpMRI resulted in risk group modification in 28.7% of cases. Because the influence of 1.5T MRI and the use of ADT prior to mpMRI on the results is not known, it is difficult to perform a direct comparison with other studies.

Liauw et al. evaluated the role of endorectal coil mpMRI at 3T prior to EBRT in a group of 122 PCA patients, finding that mpMRI resulted in a change in therapeutic approach (indication for active surveillance, brachytherapy in monotherapy and dose modification, treatment volume, and use of ADT in EBRT) in 18% of patients. Recently, Pullini et al. prospectively evaluated 44 patients with PCA to determine the impact of mpMRI at 3T on staging and treatment decisions for EBRT, finding that staging by mpMRI resulted in a change in risk group classification in 41% of patients, thus potentially impacting the EBRT treatment decision.

Based on the studies described above, it is clear that mpMRI staging has a significant impact on radiotherapy treatment decisions, with risk group modifications ranging from 18% to 41% of patients, depending on the study. This wide variability may be attributable to numerous different factors, including the following: The MRI (magnet and coil, protocol used, experience of the radiologist); the initial clinical staging (experience of the clinician with DRE/TRUS, the use of CT to evaluate pelvic lymph nodes, etc.); the clinical characteristics of the patient cohort; the treatment protocol at each centre (dose, fractionation, target volume, indication for ADT, use of brachytherapy, etc.); the use of ADT prior to MRI; and finally the inclusion (or not) of metastatic patients in the final results.

Despite this heterogeneity, one finding common to all these studies is that a large percentage of patients staged by mpMRI are upstaged compared to conventional clinical staging. As a consequence, mpMRI staging implies that more patients will be classified as intermediate risk, high-to-very high risk, or metastatic patients. Nevertheless, it is worth noting that risk group downgrading has been reported in a small percentage (4%-12%) of patients.

Despite the clear influence of mpMRI staging on EBRT treatment decisions, numerous questions remain unresolved. For instance, we do not know which patient groups would benefit most, in terms of cost-effectiveness, from mpMRI staging. Nor is it clear if changes in therapeutic management based on MRI findings will increase survival and/or quality of life in these patients. The clearest example of this can be seen in low-risk patients in which upstaging after mpMRI is common (20%-50%) even though long-term biochemical control
in this risk cohort (staged exclusively by conventional DRE) and treated with EBRT is excellent (93% at 10 years’ follow up)\(^{(29)}\). Therefore, we must exercise caution with regard to the changes in tumour stage that can result from the use of these newer, more precise imaging tests. In this sense, more prospective, multicentric studies are needed to better clarify the role of mpMRI prior to EBRT.

Contouring and treatment planning in EBRT

MRI has proven to be highly useful in radiation oncology in improving the accuracy of treatment volume delineation. The use of MRI allows for more precise identification of the prostate gland location and thus more accurate contouring, especially of the prostate apex, which can help to avoid over- or under-estimation of the microscopic volume that commonly occurs with CT-based contouring\(^{(30)}\).

mpMRI can also help to rule out the presence of high-grade disease in the transition zone at the anterior base, thus allowing for lower doses to the bladder neck. In addition, MRI is highly useful in identifying the anatomic structures involved in ejections: The internal pudenda artery, the peri-prostatic nerve fibers, and the penile bulb. The improved anatomic definition of these structures with mpMRI could help to limit the radiation dose to these areas, which could potentially lead to higher rates of erectile function preservation and, consequently, better quality of life\(^{(30)}\). Therefore, compared to CT-based treatment volumes, MRI allows for the delineation of a smaller clinical target volume (CTV), distinguishing the CTV from normal tissue, suggesting that MRI-based contouring can reduce treatment-related toxicity in PCA\(^{(31)}\).

The reliability of mpMRI in tumour staging plays an increasingly important role in advanced radiotherapy techniques such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In these highly-conformal techniques with narrow treatment margins, it is vitaly important to accurately detect the presence of extracapsular disease or seminal vesicle invasion and to include these areas within the treatment volume to avoid geographic loss and, consequently, underdosing\(^{(32)}\).

DETECTION OF RELAPSE AFTER RADIOTHERAPY

PSA levels become undetectable after RP; however, depending on the pathological stage and other risk factors, up to 60% of patients with PCA will eventually develop biochemical relapse (defined as PSA > 0.2 ng/mL with two consecutive rises)\(^{(33)}\).

Current cancer treatment guidelines recommend SRT after RP if the PSA remains elevated or if biochemical relapse is detected during follow-up\(^{(34)}\). In both of these clinical scenarios, the elevated PSA may be secondary to local disease (associated or not with a significant risk of metastasis) and/or distant disease. Although SRT is one of the potentially curative treatments in these cases, with cause-specific survival rates up to 3 times greater than observation alone\(^{(35)}\), up to 50% of patients will develop a recurrence in the 10 years following SRT. These poor outcomes may be due to a variety of factors, including: (1) tumour-related factors associated with a greater risk of biochemical progression and worse disease-free survival, including the following: Initial PSA; Gleason 8; involvement of the seminal vesicles; infiltrated resection margins; early biochemical relapse; and PSADT; (2) delayed initiation of SRT when the PSA is > 1 ng/mL and palpable disease is evident on DRE; and (3) SRT-related factors (which merit more research to define the optimal therapeutic strategy for disease control): If the exact location of the relapse site is unknown, this can result in an inadequate CTV, underdosing, and the need for systemic treatment.

SRT is most effective when administered before the PSA reaches 0.5 ng/mL\(^{(36)}\). However, with such low PSA levels, conventional imaging tests – TRUS, bone scintigraphy, and CT - are of little use in detecting the recurrence. In recent years, mpMRI has become more widely used in the detection of local recurrences. Indeed, it is the only imaging technique recommended by the ESUR to evaluate pelvic recurrences in patients

Table 2 Studies evaluating the impact of the staging using magnetic resonance imaging in prostate cancer patients treated with radiotherapy

Ref.	Year	Type of MRI	No. of patients	Field strength	Coil	Tumor stage shift (%)	Risk group changes (%)	Change in RT (CTV, doses, HT) (%)	Technique validation
Jackson et al\(^{(27)}\)	2005	Morphological	199	1.5T	PAB	55	NR	32.6\(^{27}\)	No
Courthage et al\(^{(24)}\)	2014	Multiparametric	103	3T	PAB	94.1	33.9	33.9	Yes
Chang et al\(^{(27)}\)	2014	Morphological	115	1.5T	PAB	68.6	7	20\(^{(27)}\)	No
Panje et al\(^{(41)}\)	2015	multiparametric	122	1.5T and 3T	PAB	55.7	21.7	30	No
Horsley et al\(^{(30)}\)	2015	Morphological	509	1.5T	PAB	20	9	18	No
Yamaguchi et al\(^{(26)}\)	2015	Morphological	157	1.5T	PAB	25	9	8\(^{(26)}\)	No
Courthage et al\(^{(24)}\)	2015	Multiparametric	274	3T	PAB	90.4	32.8	43.8 or 52.5\(^{(2)}\)	Yes
Pullini et al\(^{(27)}\)	2016	Multiparametric	44	3T	PAB	65.9	40.9	NR	No
Liauw et al\(^{(27)}\)	2016	Multiparametric	122	3T	PAB	NR	18	22	No

1Exclusive assessment of the CTV change; 2Data from T1-T2 to T3-T4 upstaging; 3Values according to the HT criteria in intermediate-risk patients. PAB: Phased-array-bodycoil; NR: Not reported; CTV: Clinical target volume; HT: Hormonal therapy.
Although no protocol has yet been established for the use of MRI in SRT, in most published studies the approach does not differ from that used to assess the prostate in cases with a suspected tumour or local dissemination.

In local relapse, the most common patterns observed on MRI are slightly hyperintense lesions on T2W sequences and hypervascular lesions on the DCE-MRI. Cirillo et al. showed that adding DCE to T2W sequences improved detection rates for local relapse after RP: Unenhanced and contrast-enhanced MRI yielded, respectively, the following outcomes: Sensitivity (61.4% vs 84.1%), specificity (82.1% vs 89.3%), positive predictive value (84.4% vs 92.5%), negative predictive value (57.5% vs 78.1%), and accuracy (69.4% vs 86.1%). In diffusion imaging, the radiological appearance of local recurrence may be similar to the tumour, with high signals in the diffusion sequences and low signals in the ADC map (Figure 9). PIRADS v2 is not applicable in local relapses, although it may be in the future.

Incidence of recurrences detected by mpMRI

Multiple authors have investigated the capacity of mpMRI to detect post-prostatectomy relapses, with detection rates ranging from 84%-95% in series that use endorectal coil MRI in patients with median PSA > 1 ng/mL, many of whom also had palpable disease on DRE. Other studies carried out in patients with lower PSA levels (median PSA, 0.3-0.59 ng/mL) by endorectal coil MRI and/or pelvic MRI have reported recurrence rates ranging from 24%-91% (38-42) (Table 3). This variability among studies is likely due to several factors, including: Retrospective study design; sample size and sample heterogeneity; differences in the radiologists’ experience level; the use of different MRI sequencing modalities; and difference in relapse criteria.

Results from a retrospective study and from a meta-analysis suggest that the 11C or 18F-choline PET/CT has a higher detection rate for local, nodal, or metastatic recurrences post RP when the PSADT is < 6 mo and PSA values are > 1 ng/mL. By contrast, in patients with lower PSA values, mpMRI has proven to be more sensitive in detecting local recurrences and in small-sized (< 10 mm) local relapses. Other authors have found that diagnostic rates for visible pelvic relapses are higher when mpMRI and PET/CT are combined vs MRI or choline PET/CT alone. Recently, studies that investigated the use of PET/CT with PSMA (prostate-specific membrane antigen) ligands have reported higher detection rates for local relapse compared to choline PET/CT, even in cases with low PSA levels. However, other authors, including Freitag et al., have found that adding MRI to PET provides additional value even when 68Ga-PSMA-11 is used as a tracer in PET/CT.
Clinical factors associated with mpMRI findings
Several factors, including PSA levels at recurrence, the PSADT, and the presence of compromised resection margins, have all been significantly associated with mpMRI findings. Several authors have defined pre-radiotherapy PSA cut-off values, ranging from > 0.3 to > 0.5 or > 0.54 ng/mL, as clinical predictors of MRI positivity. Eifler et al. reported a higher probability of visible local relapse in patients with PSADT > 14 mo. In addition, a PSADT < 6 mo has been associated with higher incidence of nodal relapse, even with PSA levels < 1 ng/mL. Hernández et al. reported a median PSADT of 5.12 mo in patients with nodal recurrence vs 12.7 mo in patients without evidence of nodal disease on MRI (P = 0.17). Finally, a study that used MRI lymphography (ferumoxtran-10) to assess nodal involvement found that patients with positive lymphography presented a median PSADT of 3.8 mo.

Topography of recurrences
Most local recurrences occur in the peri-anastomotic and retrovesical regions, although up to 22% of recurrences have been diagnosed at the resection site of the vas deferens.

Efficacy of mpMRI to detect nodal relapse
Data on the efficacy of MRI to detect nodal relapses after RP are scant, particularly in patients with low PSA values. However, an incidence between 5%-10% has been estimated, most commonly involving the external iliac lymph node chains. It has been suggested that DW-MRI could increase the detection of nodal relapses, with a reported 90% efficacy rate in nodes < 1 cm (Figure 10).

The two studies that used MRI with ferromagnetic contrast (ferumoxtran-10) to evaluate patients with biochemical relapse after RP reported positive nodes (< 1 cm) in 72% and 20% of patients, respectively, even with low PSA levels. The main limitation of these studies is that ferumoxtran-10 was authorized only for research purposes.

Detection of bone metastasis
Recent research suggests that the use of whole-body MRI (WB-MRI), together with WB-DW-MRI, may allow assessment of nodal recurrence and bone metastasis with a single imaging modality. These approaches show greater sensitivity and specificity than conventional imaging and will facilitate the evaluation and monitoring of response to systemic treatments.

IMPACT OF MPMRI ON SRT TREATMENT DECISIONS
The impact of mpMRI on the efficacy of SRT is not known, but use of mpMRI is becoming increasingly
common in the evaluation of disease dissemination in patients with biochemical relapse after RP. The information provided by mpMRI is integrated into the decision-making process for SRT planning, as follows.

Definition of the CTV
Individualized treatment planning should assure that the relapse site is included within the CTV in accordance with published guidelines.

Irradiation (or not) of the lymph node stations:
The benefits of elective pelvic irradiation in SRT is controversial since currently available data include only retrospective studies; however, findings from those studies suggest that pelvic irradiation increases both biochemical control[61] and biochemical relapse-free survival[62]. It has been suggested that RP may lead to changes in the lymphatic drainage pattern and that these are not adequately included in the CTV when contoured according to current recommendations[63,64].

Irradiation of oligometastatic bone disease:
Currently, the decision to irradiate oligometastatic bone lesions is considered on an individual basis by consensus at multidisciplinary urological tumour boards, or in the context of a clinical trial.

It would be interesting to investigate the impact of irradiating only the nodal stations in patients with a short PSADT whose mpMRI images indicate the presence of nodal disease without prostate bed involvement. Similarly, it would also be interesting to conduct a study in which patients with a long PSADT (>10 mo) and local disease alone received irradiation only to the local disease site. In both of these scenarios, the impact of ablative RT techniques such as stereotactic body radiotherapy (SBRT) should be investigated.

Dose escalation
We hypothesize that treating the prostatectomy bed at conventional doses while simultaneously increasing the dose to the relapse site detected on MRI could improve outcomes without increasing toxicity[65]. In fact, high dose irradiation delivered exclusively to the relapse site could be curative and this approach would also minimize irradiation of healthy tissue, thus reducing the risk of side effects.

Adjuvant systemic treatment
The addition of hormonotherapy to SRT remains controversial. In clinical practice, the trend is to administer combined treatment in patients with high-risk disease and/or poor prognostic factors. The RTOG 9601 study showed a significant increase in overall survival at 10 years in patients with post-RP biochemical relapse who were treated with SRT (64.8 Gy) plus bicalutamide 150 mg for 2 years vs patients who received RT alone [82% vs 78%, hazard ratio: 0.75 (95%CI: 0.58-0.98), P = 0.036][66]. The results of studies currently underway, such as RADICALS and RTOG 0534, should definitively determine the benefit of hormonotherapy in patients...
who undergo postoperative radiotherapy. However, it should be pointed out that none of the aforementioned trials have included mpMRI or PET/CT for the purpose of diagnosing and locating tumour recurrences. As we have suggested above, more intensive treatment at the relapse site could improve SRT outcomes, with or without hormonotherapy.

FUTURE DIRECTIONS

The future of MRI in radiotherapy includes the following:

Monitoring response to radiotherapy

Various studies have shown the potential utility of ADC and K^trans to monitor response to radiotherapy in patients with PCa[65,68]. This application of MRI could be used to investigate the impact of new focal therapies administered early in patients with persistent disease or local relapse.

Technological advancements that increase detection rates [PET/MRI and new radiotracers (PSMA)]

PET/MRI is a new multimodal imaging technique that improves diagnostic imaging, with a promising future in the evaluation of PCa. In addition to diagnosis and staging, PET/MRI plays an important role in detecting recurrences in patients with biochemical relapse. In bone metastasis, the use of PET/MRI improves the detection and characterization of bone lesions, especially with the use of new radiotracers (18F-FNa, PSMA, choline), providing functional information as well as greater anatomic information due to the incorporation of MRI[60,65,70]. These data are essential for ablative radiotherapy.

The future of imaging in PCa will be marked by improvements in equipment and in the sequences and antennas used, especially 3T equipment, diffusion sequences, and multichannel surface coils (\geq 128 channels).

Implementation of MRI in the workflow of radiation oncology departments

It is worth highlighting the incipient but growing use of MRI in radiation oncology departments. MRI is used not only for simulations, workflow, and treatment planning, but it is also being incorporated into linear accelerators to guide radiotherapy treatment[21].

Genetic testing and MRI

At least one study has been conducted showing that MRI and genetic testing can improve the reliability for risk stratification in patients with PCa[72].

Guidelines for focal treatments

Several studies have assessed the role of MRI-guided dose escalation (EBRT or brachytherapy) to the dominant intraprostatic lesion[73,74].

CONCLUSION

The data obtained from mpMRI imaging are increasingly being integrated into PCa staging, recurrence detection, and therapeutic management. mpMRI is also being incorporated into the workflow of radiation oncology departments due to its capacity to help define target volumes for radical radiotherapy and SRT after prostatectomy. Technological advances, such as PET/MRI combined with new radiotracers such as PSMA, can improve staging and recurrence detection, and assist in planning more accurate treatments.

REFERENCES

1. Füttner JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, Tanaka SS, Thoeny H, Villers G, Villers A. Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. *Eur Urol* 2015; 68: 1045-1053 [PMID: 25656808 DOI: 10.1016/j.eururo.2015.01.013]
2. Nassiri N, Natarajan S, Margolis DJ, Marks LS. Targeted Prostate Biopsy: Lessons Learned Midst the Evolution of a Disruptive Technology. *Urology* 2016; 80: 432-438 [PMID: 26166671 DOI: 10.1016/j.urology.2015.07.001]
3. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. *Eur Urol* 2016; 70: 233-245 [PMID: 26215604 DOI: 10.1016/j.eururo.2015.07.029]
4. Loffroy R, Chevallier O, Moulin S, Favelier S, Gerson PY, Pottecher P, Crehange G, Cochet A, Cormier L. Current role of multiparametric magnetic resonance imaging for prostate cancer: *Quant Imaging Med Surg* 2015; 5: 754-760 [PMID: 26682144 DOI: 10.3978/j.issn.2223-2922.2015.10.08]
5. Guo R, Cai L, Fan Y, Jin J, Zhou L, Zhang K. Magnetic resonance imaging on disease reclassification among active surveillance candidates with low-risk prostate cancer: a diagnostic meta-analysis. *Prostate Cancer Prostatic Dis* 2015; 18: 221-228 [PMID: 25989515 DOI: 10.1038/pcan.2015.20]
6. Couñago F, Del Cerro E, Díaz-Gavela AA, Marcos FJ, Recio M, Sanz-Rosa D, Thiaudier I, Olaciregui K, Mateo M, Cermeo L. Tumor staging using 3.0T multiparametric MRI in prostate cancer: impact on treatment decisions for radical radiotherapy. *Springerplus* 2015; 4: 789 [PMID: 26702378 DOI: 10.1186/s40064-015-1596-0]
7. Marshall S, Tanaka S. Focal therapy for prostate cancer: The current status. *Prostate Int* 2015; 3: 35-41 [PMID: 26157765 DOI: 10.1016/j.pri.2015.03.007]
8. Panje C, Panje T, Putura PM, Kim SK, Haile S, Aebersold DM, Plasswilm L. Guidance of treatment decisions in risk-adapted primary radiotherapy for prostate cancer using multiparametric magnetic resonance imaging: a single center experience. *Radiat Oncol* 2015; 10: 47 [PMID: 25808035 DOI: 10.1186/s13045-015-0338-3]
9. Barchetti F, Panebianco V. Multiparametric MRI for recurrent prostate cancer post radical prostatectomy and postradiation therapy. *Biomed Res Int* 2014; 2014: 316272 [PMID: 24967355 DOI: 10.1155/2014/316272]
10. Murray JR, McNair HA, Deamaley DP. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care? *Cancer Manag Res* 2015; 7: 331-344 [PMID: 26635484 DOI: 10.2147/CMAR.S51955]
11. Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, Padhani AR, Margolis D, Macura KJ, Haider MA, Comud F, Choyke PL. Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. *Eur Urol* 2016; 69: 41-49 [PMID: 26361169 DOI: 10.1016/j.eururo.2015.08.030]
Locally recurrent prostate cancer after high-dose-rate brachytherapy: the value of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging in localizing tumors. *AJR Am J Roentgenol* 2011; 197: 408-414 [PMID: 21785078 DOI: 10.2214/AJR.10.5772]

Liuw SL, Kropp LM, Hess RT, Oto A. Endorectal MRI for risk classification of localized prostate cancer: Radiographic findings and influence on treatment decisions. *Urol Oncol* 2016; 34: 416.e15-416.e21 [PMID: 27241167 DOI: 10.1016/j.urolonc.2016.04.014]

Pullini S, Signor MA, Panoct M, Zuiian C, Bazzocchi M, Fengione S, Gironnetti R. Impact of multiparametric magnetic resonance imaging on risk group assessment of patients with prostate cancer addressed to external beam radiation therapy. *Eur J Radiol* 2016; 85: 764-770 [PMID: 26971421 DOI: 10.1016/j.ejrad.2016.01.008]

Kuban DA, Levy LB, Cheung MR, Lee AK, Choi S, Frank S, Polack A. Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? *Int J Radiat Oncol Biol Phys* 2011; 79: 1310-1317 [PMID: 20934642 DOI: 10.1016/j.ijrobp.2010.01.006]

Moghani D, Turkbey B, Vapiwala N, Ehdaiha B, Frank SJ, McLaughlin PW, Harisenthani M. Advances in Prostate Cancer Magnetic Resonance Imaging and Positron Emission Tomography-Computed Tomography for Staging and Radiotherapy Treatment Planning. *Semin Radiat Oncol* 2017; 27: 21-33 [PMID: 27986208 DOI: 10.1016/j.smradonc.2016.08.008]

Pfister D, Bolla M, Brugnati A, Carroll P, Cozzarin C, Joniau S, van Poppel H, Roach M, Stephenson A, Wiegel T, Zelefsky MJ. Early salvage radiotherapy following radical prostatectomy. *Eur Urol* 2014; 65: 1034-1043 [PMID: 23972524 DOI: 10.1016/j.eururo.2013.08.013]

Valicenti RK, Thompson JS, Albertsen P, Davis BJ, Goldberg SL, Wolf JS, Sartor O, Klein E, Hahn C, Michalski J, Roach M, 3rd, Faraday MM; American Society for Radiation Oncology/American Urological Association. Adjutant and salvage radiation therapy after prostatectomy: American Society for Radiation Oncology/American Urological Association guidelines. *Int J Radiat Oncol Biol Phys* 2013; 86: 822-828 [PMID: 23845839 DOI: 10.1016/j.ijrobp.2013.05.029]

Trock BJ, Han M, Freedland SJ, Humphries EB, DeWeese TL, Partin AW, Walsh PC. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. *JAMA* 2008; 299: 2760-2769 [PMID: 18586003 DOI: 10.1001/jama.299.23.2760]

Ohri N, Dicker AP, Trabulsi EJ, Showalter TN. Can early implementation of salvage radiotherapy for prostate cancer improve the therapeutic ratio? A systematic review and regression meta-analysis with radiobiological modelling. *Eur J Cancer* 2012; 48: 837-844 [PMID: 21945099 DOI: 10.1016/j.ejca.2011.08.013]

Cirillo S, Petracchini M, Scioni L, Gavioli T, Macera A, Bona MC, Ortega C, Gabriele P, Regge D. Endorectal magnetic resonance imaging at 1.5 T: a test to assess local recurrence following prostatectomy with T2-weighted and contrast-enhanced imaging. *Eur Radiol* 2009; 19: 761-769 [PMID: 18825386 DOI: 10.1007/s00330-008-1174-8]

Sella T, Schwartz LH, Swindle PW, Onyebuchi CN, Scardino PT, Scher H, Hricak H. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. *Radiology* 2004; 231: 379-385 [PMID: 15064390 DOI: 10.1148/radiol.2312030011]

Liuw SL, Pitroda SP, Eggenner SE, Stadler WM, Pelizzari CA, Vannier MW, Otto A. Evaluation of the prostate bed for local recurrence after radical prostatectomy: American Society for Radiation Oncology/American Urological Association. *Radiology* 2011; 260: 408-414 [PMID: 21945099 DOI: 10.1148/radiol.2312030011]

Linder BJ, Kawashima A, Woodrum DA, Tolleson MK, Barnes J, Davis BJ, Ramlawi B, King BF, Mynderse LA. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging. *Can J Urol* 2014; 21: 7283-7289 [PMID: 24978358]

Rischke HC, Schäfer AO, Nestle U, Volegovs-Nerh N, Henne K, Benz MR, Schulze-Seemann W, Langer M, Gross AL. Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast-enhanced MRI without endorectal coil. *Radiat Oncol* 2012; 7: 185 [PMID: 23114282 DOI: 10.1186/1748-717X-7-185]
Couñago F et al. Multiparametric MRI before radiotherapy in Nuclear Medicine: Clinical Translation of Chelator Containing Prostate-Specific Membrane Antigen Ligands Into Diagnostics and Therapy for Prostate Cancer. Semin Nucl Med 2016; 46: 405-418 [PMID: 27553466 DOI: 10.1053.j.semnucmed.2016.04.004]

Freitag MT, Rakho JP, Afshar-Oromieh A, Roethke MC, Hadaschik BA, Gleave M, Bonekamp D, Kopka K, Eder M, Heusser T, Kachelriess M, Wiegzoerk K, Sachpekidis C, Fleischp G, Fiesel G, Hohenfellner M, Haberkorn U, Schlemmer HP, Dimitrokapoulou-Stauss A. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in ⁶⁸Ga-PSMA-11-PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging 2017; 44: 776-787 [PMID: 27988802 DOI: 10.1007/s00259-016-3594-6]

Meijer HJ, van Lin EN, Debatis OA, Wijts JA, Span PN, Kaanders JH, Barents JO. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with biochemical recurrence after radical prostatectomy. Int J Radiat Oncol Biol Phys 2012; 82: 1405-1410 [PMID: 21604507 DOI: 10.1016/j.ijrobp.2011.04.054]

Poortmans P, Bossi A, Vandeputte K, Bossert M, Miralbell R, Maingon P, Bohmer D, Dibuddo T, Synom Z, van den Beigh AG, Scrase C, Van Poppel H, Bolla M; EORTC Radiation Oncology Group. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol 2007; 84: 121-127 [PMID: 17067308 DOI: 10.1016/j.radonc.2007.07.017]

Park JS, Park W, Pyo HR, Park BK, Park SY, Choi HY, Lee HM, Jeon SS, Seo SI, Jeong BC, Jeon HG. Suggestion for the prostatic fossa clinical target volume in adjuvant or salvage radiotherapy after a radical prostatectomy. Radiother Oncol 2014; 110: 240-244 [PMID: 24485354 DOI: 10.1016/j.radonc.2014.01.001]

Nguyen DP, Giannarini G, Seiler R, Schiller R, Theoey HC, Thalmann GN, Studer UE. Local recurrence after retroperitoneal lymph node dissection for prostate cance does not exclusively occur at the anastomotic site. J Urol Int 2013; 112: E243-E249 [PMID: 23186631 DOI: 10.1111/j.1464-410X.2012.11506.x]

Thoeye HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 2014; 273: 125-135 [PMID: 24893049 DOI: 10.1148/ radiol.14132921]

Heesakkers RA, Jager GJ, Hövels AM, de Hoop B, van den Bosch HC, Raat F, Wijtes JA, Mulders PF, van der Kaa CH, Barents JO. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology 2009; 251: 408-414 [PMID: 19401573 DOI: 10.1148/radiol.2510701018]

Pasoglou V, Larbi A, Collette L, Annet L, Jamar F, Machiels JP, Michoux N, Vande Berg BC, Tombal B, Lecouvet FE. One-step TNM staging of high-risk prostate cancer using magnetic resonance imaging (MRI): toward an upfront simplified “all-in-one” imaging approach? Prostate 2014; 74: 469-477 [PMID: 24375774 DOI: 10.1002/pros.22764]

Moghani D, Koontz BE, Karlin JD, Wan W, Mukhopadhyay N, Hagan MP, Cheung A. Elective irradiation of pelvic lymph nodes during post-prostatectomy salvage radiotherapy. Cancer 2013; 119: 52-60 [PMID: 22736478 DOI: 10.1002/cncr.27712]

Spinotto MT, Hancock SL, King CR. Radiotherapy after prostatectomy: improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients. Int J Radiat Oncol Biol Phys 2007; 69: 54-61 [PMID: 17495606 DOI: 10.1016/j.ijrobp.2006.06.035]

Lawton CA, Michalski J, El-Naqi I, Kuban D, Lee WR, Rosenthal SA, Zietman A, Sandler H, Shipley W, Ritter M, Valicenti R, Catton C, Roach M 3rd, Pisansky TM, Seidner M. Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2009; 74: 377-382 [PMID: 18947941 DOI: 10.1016/j.ijrobp.2008.08.003]

Harris VA, Staffurth J, Naismith O, Esmail A, Guilford S, Khoo V, Lewis R, Littler J, McNair H, Sadoyze A, Serace C, Sohaila A,
Syndikus I, Zarkar A, Hall E, Dearnaley D; PIVOTAL Trialists. Consensus Guidelines and Contouring Atlas for Pelvic Node Delineation in Prostate and Pelvic Node Intensity Modulated Radiation Therapy. *Int J Radiat Oncol Biol Phys* 2015; 92: 874-883 [PMID: 26104940 DOI: 10.1016/j.ijrobp.2015.05.021]

(S010) A Phase III Randomized Trial of MRI-Mapped Dose-Escalated Salvage Radiotherapy Post-Prostatectomy: The MAPS Trial-Feasibility and Acute Toxicity. *Oncology* (Williston Park) 2015; 29: 204961 [PMID: 25930776]

Shiple WU, Seiferheld W, Lukha H, Major P, Heney NM, Grignon D, Sartor O, Patel M, Bahary JP, Zitman AL, Pisansky TM, Zeitzer K, Lawton CAF, Fung FY, Lovett RD, Balogh A, Souharni L, Rosenthal SA, Kerlin KJ, Sandler HM. Report of NRG Oncology: RTOG 9601. A Phase 3 Trial in Prostate Cancer: Anti-androgen Therapy (AAT) With Bicalutamide During and After Radiation Therapy (RT) in Patients Following Radical Prostatectomy (RP) With pT2-3pN0 Disease and an Elevated PSA. *Int J Radiat Oncol Biol Phys* 2015; 94: 3 [DOI: 10.1016/j.ijrobp.2015.10.048]

Song I, Kim CK, Park BK, Park W. Assessment of response to radiation for prostate cancer: value of diffusion-weighted MRI at 3 T. *AJR Am J Roentgenol* 2010; 194: W477-W482 [PMID: 20489065 DOI: 10.2214/AJR.09.3557]

Low RN, Fuller DB, Muradyan N. Dynamic gadolinium-enhanced perfusion MRI of prostate cancer: assessment of response to hypofractionated robotic stereotactic body radiation therapy. *AJR Am J Roentgenol* 2011; 197: 907-915 [PMID: 21940578 DOI: 10.2214/AJR.10.6356]

Sovatzoglou M, Eiber M, Takei T, Fürst S, Maurer T, Gaertner H, Nekolla SG, Rummeny EJ, Schaiger M, Beer AJ. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. *Eur J Nucl Med Mol Imaging* 2013; 40: 1486-1499 [PMID: 23817684 DOI: 10.1007/s00259-013-2467-y]

Lee MS, Cho JY, Kim SY, Cheon GJ, Moon MH, Oh S, Lee J, Lee S, Woo S, Kim SH. Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: Comparative study of multiparametric MRI and PET/CT. *J Magn Reson Imaging* 2017; 45: 597-609 [PMID: 27586519 DOI: 10.1002/jmri.25384]

Torresin A, Brambilla MG, Monti AF, Moscato A, Brockmann MA, Schad L, Attenberger UJ, Lohr F. Review of potential improvements using MRI in the radiotherapy workflow. *Z Med Phys* 2015; 25: 210-220 [PMID: 25779877 DOI: 10.1016/j.zemedi.2014.11.003]

Porpiglia F, Cantiello F, De Luca S, Manfredi M, Veltri A, Russo F, Sottile A, Damiano R. In-parallel comparative evaluation between multiparametric magnetic resonance imaging, prostate cancer antigen 3 and the prostate health index in predicting pathologically confirmed significant prostate cancer in men eligible for active surveillance. *BJU Int* 2016; 118: 527-534 [PMID: 26350955 DOI: 10.1111/bju.13318]

Arrayeh E, Westphalen AC, Kurhanewicz J, Roach M 3rd, Jang AJ, Carroll PR, Coakley FV. Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRI study. *Int J Radiat Oncol Biol Phys* 2012; 82: e787-e793 [PMID: 22331003 DOI: 10.1016/j.ijrobp.2011.11.030]

Gomez-Iturriaga A, Casquero F, Urreosola A, Eguerra A, Lopez JI, Espinoza JM, Minguzeit P, Liarena R, Irasardi A, Bilbao P, Crook J. Dose escalation to dominant intraprostatic lesions with MRI-transrectal ultrasound fusion High-Dose-Rate prostate brachytherapy. Prospective phase II trial. *Radiother Oncol* 2016; 119: 91-96 [PMID: 26900090 DOI: 10.1016/j.radonc.2016.02.004]

Jackson AS, Parker CC, Norman AR, Padhani AR, Haddart RA, Horwich A, Husband JE, Dearnaley DP. Tumour staging using magnetic resonance imaging in clinically localised prostate cancer: relationship to biochemical outcome after neo-adjuvant androgen deprivation and radical radiotherapy. *Clin Oncol (R Coll Radiol)* 2005; 17: 167-171 [PMID: 15901000]

Couñago F, Recio M, Del Cerro E, Cerezo L, Diaz Gavela A, Marcos FJ, Murillo R, Rodriguez Luna JM, Thuisiand LJ, Martin JL. Role of 3.0 T multiparametric MRI in local staging in prostate cancer and clinical implications for radiation oncology. *Clin Transl Oncol* 2014; 16: 993-999 [PMID: 24865628 DOI: 10.1007/s12094-014-1186-6]

Chang JH, Lim Joon D, Nguyen BT, Hieu CY, Esler S, Angus D, Chao M, Wada M, Quong G, Khoo V. MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer. *J Med Imaging Radiat Oncol* 2014; 58: 237-243 [PMID: 24690247 DOI: 10.1111/j.1754-9485.2012.12017]

Horsley PJ, Aherne NJ, Edwards GV, Benjamin LC, Wilcox SW, McLachlan CS, Assareh H, Welshman R, McKay MJ, Shakespeare TP. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy and local recurrence. *Clin Transl Oncol* 2014; 11: 15-21 [PMID: 25272777 DOI: 10.1007/s12094-012-1226-6]

Yamaguchi S, Ohguri T, Fuji M, Yahara K, Hayashida Y, Fujimoto N, Korogi Y. Definitive 3D-CRT for clinically localized prostate cancer: modifications of the clinical target volume following a prostate MRI and the clinical benefits. *Springerplus* 2015; 4: 347 [PMID: 26191474 DOI: 10.1186/s40064-015-1138-9]

P-Reviewer: Cihan YB, Shoji S **S-Editor:** Kong JX **L-Editor:** Wang TQ **E-Editor:** Lu YJ
