Some Progeny and Milk Yield Characteristics of Kilis and Holstein Friesian x Kilis Crossbred Cattle

Numan KILIÇALP1,* Hatice HIZLI2

1Tokat Gaziosmanpaşa University, University, Agricultural Faculty, Department of Animal Science, Tokat
(orcid.org/0000-0003-1359-9369)
2East Mediterranean Agricultural Research Institute, Adana
(orcid.org/0000-0002-5451-1397)
*e-mail: numankilicalp@hotmail.com

Abstract: This study was carried out to determine some growth, milk and progeny yield characteristics of Southern Anatolian Red (Kilis), Holstein and Kilis cattle first crossbred generation (HFxKilis, F1) and backcross to the paternal breed (HFxF1, B1) crossbred in the GAP International Agricultural Research and Training Center in Diyarbakır. In this study, milk yield of lactation in Kilis, F1 and B1 cattle were determined as 2001.88 kg, 2686.31 and 3901.59 kg; respectively (P<0.001). Also, the lactation period of Kilis cattle and crossbreds were 222.55, 244.5 and 278.17 days, respectively. The lactation period of Kilis cattle was significantly shorter than that of crossbred cattle (P<0.05). Additionally, the birth and the weaning weights of the offspring were found at least in the Kilis calves and the highest value in the B1 crossbreed calves (P<0.05). As a result of this study, crossbreeding between Holstein and Kilis cattle, birth weight, weaning weight of calves, milk yield and lactation duration were increased in crossbred cows.

Keywords: Crossbreding, Holstein Friesian, Kilis cattle, milk yield, reproductive characteristics

1. Introduction

Kilis cattle is one of Turkey's indigenous cattle breeds of cattle in the country of South and Southeastern Anatolia Region that is the Taurus mountain, in particular, in the provinces of Gaziantep, Diyarbakır, Şanlıurfa and Adana are grown. The body color in these cattle ranges from light yellow to dark orange or even red. Kilis cattle are long-legged, high-structured milk cattle breed (FAO 2010). It is reported that this breed is resistant to hot and arid climatic conditions. Kilis cattle is a primitive variant of the cattle of Damascus and Aleppo (Yarkın et al. 1971). Also, Kilis is the highest milk yield among domestic cattle breeds in Turkey (Alpan 1993, FAO 2010). Lactation yield of Kilis cattle has been reported to be between 503 kg and 3054 kg and lactation duration between 198.35 and 279.9 days (Eker 1956, Aytuğ 1959, Yarkın et al. 1971, Yeniçeri and Özcan 1982, Ertuğrul 91
Due to conditions of high temperatures, it is uncomfortable for purebred Holstein cattle and will affect their performance. Therefore, in order to increase the milk yield of domestic animals, it is necessary to crossbreed with cattle breeds such as Holstein, which has high milk yield (Molee et al. 2011). Ertuğrul (1993) reported that the calf birth weight in Kilis cattle was 21.1 kg in males and 21.5 kg in females, however, cross-breeding continues to be an attractive option for livestock breeding and due to the rapid results that can be achieved, the country has improved its potential and potential benefits for farmers (Singh, 2016). Also, Hızlı et al. (2017) reported that the calving birth weight was 23.5 kg. Additionally, some reproductive characteristics and milk yield could be improved by crossing between native cattle and cultivated cattle breeds. The effect of crossbreeding on lactation milk yield has been examined by several researchers. Fahmy et al. (1976) reported that using Shorthorn and Egyptian native cattle and their crossbreds milk yield were 2112 kg, 2083 kg and 1120 kg per lactation for 1/2 and 3/4 dairy Shorthorn inheritance and pure Egyptian native cattle, respectively. Additionally, Asker et al. (1965) reflected that the first birth age; 35.7 months in F1 genotype, 38.5 months in B1 genotypes, 305 days corrected milk yield; 2192 kg in the F1 genotype, 1839 kg in the B1 genotype, lactation duration; 319 days in F1 genotypes, 498 days in B1 genotypes and service periods; 179 days in F1 genotypes, 224 days in B1 genotypes were found crossbreeding between Holstein Friesian and Kilis cattle. Furthermore, Kassir et al. (1969) found that in the Holstein Friesian and native cattle crossbreeds B1 genotypes grown in Iraq, the lactation yields were 2316.3 kg and the lactation yields were 2475.2 kg in their later breed crossbreeds. Kumlu et al. (1991), 305 days lactation milk yield was determined to be 2767.6 ± 7.6 for Kilis cattle and Holstein Friesian crossbreeds F1 and 3089.6 ± 128.3 kg for Holstein Friesian. Tropical and subtropical regions; By crossbreeding between Holstein and native cattle; crossbreds can withstand the high temperature of the subtropical and tropical regions in the humid climate (Tadesse and Dessie 2003 and Milazzotto et al. 2008). The aim of this study, was to improve progeny and lactation yield performance of Kilis cattle with crossing Holstein Friesian.

2. Methodology

2.1. Location characteristics and management

The research was carried out in the semi-arid area of the Diyarbakır region. An altitude of experimental area was 500 m above sea level. Average annual rainfall, temperature and relative humidity of experimental area were 481.6 mm 15.8 °C and 53.8%, respectively. Average temperature can reach 30 °C in summer months. The animal material of this study were F1 and B1 crossbreeds cattle obtained from the Kilis cattle with the Holstein Frisien bull the breeding in the GAP International Research and Training Center. In this study, the calves were weighed in the immediately after birth, colostrum was given for the first 3 days following birth, after the third day the calves were separated from their mothers and placed in their own calf divisions. Weaning weights were taken the end of 75th day. Fresh water, concentrated feed and alfalfa hay were given to the calves. In their compartments. In the first 3 months of calving, the calf starter feed (2.80 Mcal kg⁻¹ metabolizable energy (ME), at least 18% crude protein (CP) and for the calves of 4-6 months, alfalfa hay and concentrate feed (2.70 Mcal kg⁻¹ ME and 17% CP) were given. The heifers and cows were kept on the natural pasture during spring and summer months. In addition to pasture, animals were given alfalfa hay and corn silage. In other months, animals were given corn silage, sorghum silage and alfalfa hay and mineral mixtures were given.

2.2. Milk yield and progeny characteristics

Dairy control in cattle was done every 15 days at start on the 15th day after birth. Cows with less than 130 days of the lactation duration...
were not evaluated. In addition, the birth weight of the calf, the age of first birth, the live weight of the calf, and various body measurements were taken for progeny performance characteristics.

2.3. Statistics analysis

The effect of macro environmental factors (genotype and sex) on birth weight, were estimated using the least squares method. The model used for the analysis was: \(Y_{ijk} = \mu + ai + bj + eijk \) mathematical model and differences between groups were estimated by TUKEY statistical test. It was assumed that there is no significant interaction between the factors studied in the model used. This mathematical model was; \(Y_{ijk} = \mu + ai + bj + eijk \) where \(i \) is the effect of the genotype, \(j \) is the effect of the number lactation, \(eijk \) is the impact of the incidental environmental factor affecting the cow or the random error.

In addition, the effect of macro environmental factors (genotype and lactation) on milk yield was estimated using the least squares method. Variance analysis with \(Y_{ijk} = \mu + ai + bj + eijk \) mathematical model and differences between groups were estimated by TUKEY statistical test. It was assumed that there is no significant interaction between the factors studied in the model used. This mathematical model was; \(Y_{ijk} = \mu + ai + bj + eijk \) where \(i \) is the effect of the genotype, \(j \) is the effect of the number lactation, and \(eijk \) is the impact of the incidental environmental factor affecting the cow or the random error.

3. Results and Discussion

3.1. Birth and weaning weights

The birth weight and the weaning weight of the Kilis cattle, F1 and B1 genotypes were shown in Table 1. In B1 genotypes, the birth weight and weaning weight were highest in calves with G1 genotype, followed by F1 and Kilis calves.

Trials/Genotypes	Sex of calf	N	Calf birth weight (kg)	Lower Bound	Upper Bound	Weaning weight (kg)	Lower Bound	Upper Bound
Killis	Male	10	26.4	23.0	30.0	60.16	56.3	67.2
	Female	6	23.5	15.0	32.0	54.10	50.0	60.0
Mean	Male	16	24.95 b	19.0	28.5	57.13 b	56.2	63.6
	Female	6	28.3	23.0	32.0	52.3	43.2	65.8
Mean	Male	22	29.20 ab	26.0	32.0	55.75 ab	43.9	67.6
	Female	31	30.63	26.0	36.0	62.7	52.3	73.4
Mean	Male	52	30.79 a	25.0	36.0	64.0 a	54.2	74.4

(*) Means within column by different letters differ (P<0.05)

Differences the birth weight and the weaning weight between genotypes were statistically significant (P<0.05). The birth weight of Kilis calves results in agreement with reflected by Ünalan and Işık (2007). Also, the effects of macro environment factors such as sex and genotype on calf birth weight, expected average, sex and genotypes calculated according to \(Y_{ijk} = \mu + ai + bj + eijk \) model. The average expected calf birth weight was found to be \(M = 27.65 \) kg, \(b1 = -2.790 \) kg (The effect of genotype, Kilis), \(b2 = + 0.491 \) kg (The effect of genotype, F1), \(b3 = + 2.479 \) kg (The effect of genotype, B1), \(c1 = 0.628 \) kg (The effect of
male sex) and \(c_2 = -0.628 \text{ kg} \) (The effect of female sex). Male calves were 0.628 kg heavier than females. Also, the birth weight of Kilis calves was 2.790 kg lower than crossbred genotypes.

3.2. First calving age and calving interval

The calving age and calving interval of Kilis and crossbreed genotypes were shown in Table 2. It was determined that the F1 crossbred genotype was found to be the earliest calving. But the Kilis cattle was latest calving in the genotypes. Differences at the first calving age between genotypes were statistically significant (\(P<0.05 \)). Although the first calving age was similar to the findings of Sezgin (1976) for F1 crossbreed genotype, it was observed that it was higher than reported by Koçak and Özbeyaz (2005).

Trials/Genotypes	N	Calving age (day)	Lower Bound	Upper Bound
Kilis	16	1141.50 b	1101	1359
F1	37	885.80 a	720	1275
B1	24	1047.53 ab	940	1239
Significance	77	*		

Calving interval (day)
Kilis
6
362.5 ab
317
424
F1
10
352.1 a
312
440
B1
4
376.0 b
346
404
Significance
20

(*) Means within column by different letters differ (\(P<0.05 \)).

In this study, B1 crossbreed genotypes were found to be greater than the results of Ertuğrul et al. (2001) and Koçak and Özbeyaz (2005), but the data on the age of first birth were similar to those of Sezgin (1976). The calving interval of Kilis cattle were found less than the results of Koçak and Özbeyaz (2005). It has been observed that the F1 genotype has a lower calving interval than Ertuğrul et al. (2001) and Koçak and Özbeyaz (2005) ’s findings. The calving intervals of B1 genotypes was determined in accordance with the values of Ertuğrul et al. (2001) and Koçak and Özbeyaz (2005). Additionally, Sing (2016) reported that The Friesian crossbreds were slightly older at first calving and had slightly longer calving intervals than Jersey crosses.

3.3. Milk yield and lactation duration

The milk yield and the lactation duration of Kilis and Holstein Friesian x Kilis crossbreds were shown in Table 3.

Trials/Genotypes	N	Milk yield (kg)	Lower bound	Upper bound	Lactation time (day)	Lower Bound	Upper Bound
Kilis	16	2001.88 c	484.8	2725.5	222.6 c	154	291
F1	33	2686.31 b	1441.5	3670.0	244.5 b	161	296
B1	24	3901.59 a	2377.5	6435.0	278.2 a	225	335
Significance	73	**		**	**		

(***) Means within column by different letters differ (\(P<0.01 \)).

The highest milk yield was obtained from the B1 genotype followed by the F1 genotype cattle. The lowest milk yield obtained from Kilis cattle. Differences in the milk yield among Kilis cattle, F1 and B1 crossbreds were statistically significant (\(P<0.05 \)). Although the real milk yield data obtained from Kilis cattle were higher than reflected by Koçak and Özbeyaz (2005). In Ceylanpınar, actual milk yield was found to be lower than the findings of Şekerden and 94
Holstein Friesian bulls increased some progeny characteristics and milk yield in South Anatolian region conditions. It is thought that crossbreeding may be necessary in order to maintain production in the dairy cattle industry by thinking that we may be facing a crisis in climate change in the future in.

References
Alpan O (1993). Sığır yetiştiriciliği ve besiciliği. 3. Basım, Ankara.
Asker A, Juma A K H and Kassir S A (1965). Dairy characters of Friesian, Aryshire, native and crossbred cattle in Iraq. Journal Agricultural Science, 10:17-26.
Aytuğ C N (1959). Çukurova harası Güney Sari Kırımızı ineklerinin süt verimleri üzerinde Çalışmalar. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 59:1-4.
Eker M (1956). Çukurova harası Güney San Kırımızı ineklerinin süt verimleri üzerinde çalışmalari. Lalahan Zootekni Araştırma Enstitüsü Dergisi, 4: 28-46.
Eker M and Tuncel E (1971). Holçotayn Frizyan boğası mevcut ve its crosses in Egypt. Dairy Shorthorn and its crosses in Egypt. Journal Agricultural Science, 10:17-26.
FAO (2010). Fao.org. breeds reported by Turkey. http://dad.fao.org/. Erişim 02.08.2010.
Fahmy SK, Fahim MA, Attega M and El-Mehallawy MK (1976). Dairy Shorthorn and its crosses in Egypt Agricultural Research, 54: 79-87.
Hzlı H, Ayaşan T and Işık A (2017). Growth characteristics and milk yield in South Anatolian Red calves. International Conference on Agriculture, Forest, Food Science, 10:17–18. Cappadocia, Nevşehir/Turkey
Kassir SA, Juma KH and Al Jaff PH (1969). A further study on dairy characters in Friesian and crossbred cattle in Iraq. Tropical Agricultural (Trinidad), 46: 359-363.
Koçak S and Özbeyaz C (2005). Kilis, Simental x Kilis crossbred F1, G1 and F1 x G1 genotypes yield characteristics Lalahan Hayvancilik Araştırma Enstitüsü Dergisi, 45: 9-23.
Kumlu S, Özkütük K ve Pekel E (1991). Siyah Alaca, İsrail Friesian'ın, Kilis ve melezleri üzerine araştırmaları. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 6: 81-90.
Milazzotto MP, Rahal P, Nichi M, Miranda-Neto T, Teixeira LA, Ferraz JBS, Eler JP, Campagnani F and Garcia JF (2008). New molecular variants of hypothalamus–pituitary–gonad axis genes and their association with early puberty phenotype in Bos
taurus indicus (Nellore). Livestock Science, 114: 274–279.

Molee A, Duanghaklang N and Na-Lampang P (2011). Effects of Acyl-CoA: diacylglycerol acyl transferase 1 (DGAT1) gene on milk production traits in crossbred Holstein dairy cattle Tropical Animal Health Production, DOI 10.1007/s11250-011-9959-1

Sezgin Y (1976). Holstein (H), Güney Anadolu Kırmızısı (GAK) ve (HxGAK) melezi F1 ve G1 gruplarında beden yapısı ve bazı verim özellikleri. Lalahan Zootekni Araştırma Enstitüsü Dergisi, Yayın No: 47.

Şekerden Ö ve Pekel E (1982). Reyhanlı devlet üretme çiftliğinde yetiştirilen saf Siyah Alaca, Kilis tipi Güney Kırmızı Sığırlar ve bunların melezlerinin döld ve süt verim özellikleri ile bazı parametrelerin tahmini üzerine bir araştırma. Çukurova Üniversitesi Ziraat Fakültesi Yıllığı, 13:14-27.

Singh CV (2016). Cross-breeding in cattle for milk production: achievements, challenges and opportunities in India. Advances in Dairy Research, 4:3.

Tadesse M and Dessie T (2003). Milk production performance of Zebu, Holstein Friesian and their crosses in Ethiopia. Livestock Research for Rural Development, 15. http://www.cipav.org.co/lrrd/lrrd15/3/Tade153.htm (04/03/06).

Ünal A and Işık A (2007). a study on determination of environmental effects and phenotypic correlations among some body measurements of South Anatolian Red (Kilis) calves. Journal Agricultural Faculty of Çukurova Universty, 22: 1 – 6.

Yarkin I, Eliçin A and Erdoğan T (1971). Investigation on some characters and body structure related to milk and fertility yield in kilis cattle grown in Ceylanpinar state breeding farm. Ankara University, Faculty of Agriculture Yearbook, p. 633-645.

Yeniçeri C ve Özcan L (1982). Yüreğir ovası Zağarlı köyünde yetiştirilen Kilis sığırlarının ıslahında Siyah Alaca boşlarından yaralanma olanakları. Çukurova Üniversitesi Ziraat Fakültesi Yıllığı, 13:18-30.