Introduction

Chronic kidney disease (CKD) is a major public health problem affecting 50 million people worldwide, with recent United States (US) adult prevalence estimates of >13% (>25 million) [1–3]. CKD often progresses and may result in end-stage renal disease (ESRD), where the kidneys are no longer functioning and dialysis or kidney transplantation is needed. Among the approximately 570,000 Americans with ESRD during 2009, nearly 400,000 were receiving dialysis [1–3].

Erythropoiesis-stimulating agents (ESAs) are considered standard treatment for CKD-related anemia. ESAs provide a stimulatory signal to erythropoietin receptor cells located in the bone marrow, thereby treating the anemia and notably reducing the requirement for blood transfusions [4].

Peginesatide (OMONTYS®) is a once-monthly ESA that was recently approved in the US for the treatment of anemia due to CKD in adult patients on dialysis. The compound is a novel, synthetic peptide-based ESA designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis [4]. It is composed of a dimeric peptide that is linked to a polyethylene glycol (PEG) moiety [4]. The amino acid sequence of peginesatide is unrelated to that of erythropoietin; therefore, peginesatide is unlikely to induce a cross-reactive immune response against either endogenous or recombinant erythropoietin [4]. The pharmacologic and pharmacokinetic (PK) characteristics of peginesatide as a 40-kDa PEG-conjugate, together with its additional functional properties, may contribute to peginesatide’s prolonged erythropoietic action. Peginesatide was voluntarily withdrawn from the market in February 2013 due to the post-marketing reports of serious hypersensitivity reactions, including anaphylaxis observed in some subjects (0.02% after the first intravenous dose).

In patients on dialysis, peginesatide maximum plasma concentration (Cmax) and area-under-the-curve (AUC) increase with dose following single intravenous (IV) or subcutaneous (SC) injection administration at doses ranging from 0.03 to 0.16 mg/kg. The mean (± standard deviation) half-life (T1/2) in dialysis patients is 47.9±16.3 hours following IV administration, with a mean systemic clearance of 0.5±0.2 mL/hr/kg and a mean volume of distribution of 34.9±13.8 mL/kg. Following SC administration to dialysis patients, peginesatide Cmax is reached in approximately 48 hours, with a bioavailability of approximately 46%. No accumulation of peginesatide was observed following IV
or SC administration every 4 weeks in dialysis patients [5]. In healthy subjects, similar to other ESAs [6], peginesatide follows flip-flop kinetics and a shorter T1/2 is observed following IV (25.0 ± 7.6 hours) compared to SC administration (53.0 ± 17.7 hours).

The objective of the current analyses was to develop a population PK and pharmacodynamic (PD) model for peginesatide following IV and SC administration in patients with CKD receiving dialysis to characterize the time-course of peginesatide plasma concentrations and hemoglobin levels and to assess the impact of selected covariates in explaining the inter-subject variability associated with the estimation of PK and PD parameters of peginesatide.

Materials and Methods

Data and Analyses Utilized for the PK and PK-PD Model Determinations

Data utilized to develop the population PK and PK-PD models for peginesatide were obtained from four Phase 2 studies in CKD patients on and not on dialysis. These studies were: AFX01-02 (NCT00109291) [data on file], AFX01-03 (NCT00229449) [7], AFX01-04 (NCT00229436) [8] and AFX01-07 (NCT00434330) [data on file]. Data were also utilized from one Phase 3 study, AFX01-14 (NCT00597504) [9] conducted in hemodialysis patients. All plasma concentration-time data obtained in Phase 2 (with frequent PK and PD sampling scheme) [7, 9], AFX01-2, AFX01-07 and Phase 3 studies [9], with sparse PK and frequent PD sampling schemes, were used for the development of the PK model. However, only hemoglobin data obtained in studies conducted in hemodialysis patients (AFX01-03 [7], AFX01-07 [data on file], and AFX01-14 [9]) were used for the development of the PK-PD model as peginesatide is currently indicated only for use in treatment of anemia due to CKD in patients receiving dialysis. A review of the peginesatide doses and pharmacokinetic and hemoglobin sampling times implemented in these clinical trials is provided in Table 1.

Peginesatide concentrations in plasma were measured using a validated enzyme linked immunosorbent assay (ELISA) with a calibration curve that ranged from 11.7 to 1500 ng/mL and anchor points at 11.72 and 1500 ng/mL. The lower and upper limits of quantification for the assay were 25 and 600 ng/mL, respectively. The inter-day analysis of quality control (QC) plasma samples for peginesatide (25, 50, 100, 450 and 600 ng/mL) demonstrated precision of the bioanalytical method with relative standard deviation ranging from 0.7 to 22.8% (n = 10). Inter-day accuracy for the plasma QC samples for peginesatide ranged from -21.3 to 17.8% (n = 10).

The concentration of hemoglobin was measured using a standard laboratory method in a Clinical Laboratory Improvement Amendments certified central laboratory. Baseline weight was used to calculate the dose (in mg/kg). The first order conditional estimation (FOCE) and first-order (FO) method as implemented in NONMEM were used for PK and PK-PD modeling. Model selection criteria included a statistically significant reduction of the objective function value (OFV) (Δ0.05) for nested models, Akaike information criteria for non-nested models, reductions in both residual (σ²) and inter-subject (σ²) variability, improvement in the precision of parameter estimates as measured by the percent standard error of the mean (%SEM), and visual examination of standard goodness-of-fit plots.

Analysis Software

NONMEM software version VI, level 1.0 (ICON Development Solutions, Ellicott City, Maryland, US) was used for population PK-PD modeling [10]. Graphical plots were generated using S-PLUS version 8.0 (Tibco Software Inc, Palo Alto, CA), Microsoft Excel 2007 (Microsoft Corp, Redmond, Washington, US), R® version 2.12.1 [The R Foundation for Statistical Computing, Vienna, Austria], SAS® version 9.2 (2009; SAS Institute, Cary, North Carolina, US), and Perl Speaks NONMEM (Uppsala, Sweden).

PK and PK-PD Model Development

Several different PK models were evaluated as base structural PK models. These included: 1-compartment and 2-compartment with first-order absorption and elimination; 1-compartment and 2-compartment with first-order absorption and Michaelis-Menten (MM) elimination; and a combination of zero- and first-order absorption with linear and MM elimination. Life-span, negative-feedback and precursor-dependent Lifespan Indirect Response (LIDR) models were evaluated as potential base PK-PD models.

A sequential PK-PD modeling approach was used to characterize the time-course of peginesatide plasma concentrations (CP) and hemoglobin levels following IV and SC peginesatide administration to hemodialysis patients. A modified precursor-dependent LIDR model with stimulation of the production rate of precursor cells as described in Equation 1 and Figure 1 was used as the base PK-PD model:

\[\frac{d\text{PRC}}{dt} = K0 \cdot \text{STM} - K1 \cdot \text{INT} \cdot A(1) \]

\[\text{STM} = 1 + (\text{EMAX} \cdot \text{CP}) / (\text{EC50} + \text{CP}) \]

\[\text{INT} = 1 + \exp(-\text{CF} \cdot \text{TIME}) \]

\[MTP = 1 / K1 \]

Where:

- \(\text{dPRC}/dt \) = Rate of change in production of precursor cells over time,
- \(K0 = \) Endogenous production rate constant for progenitor cells,
- \(\text{STM} = \) Stimulation factor,
- \(K1 = \) First-order transition rate constant from precursor cell to red blood cells,
- \(\text{INT} = \) Exponential function to empirically account for the downward shift in hemoglobin levels during trial,
- \(A(1) = \) The amount of precursor cells,
- \(\text{EMAX} = \) Maximal stimulatory effect of peginesatide on K0,
- \(\text{CP} = \) Plasma concentration of peginesatide,
- \(\text{EC50} = \) Peginesatide concentration required for 50% of maximal response,
- \(\text{CF} = \) Correction factor, and,
- \(\text{MTP} = \) Mean transit time for progenitor cells.

The model used to describe the relation between peginesatide concentration and hemoglobin levels was based upon that used for darbepoetin, with slight modifications [6]. In order to account for the life span of red blood cells (RBC) in describing the time course of hemoglobin, a series of compartments linked together by first order cell transfer rates was incorporated in the model as shown in Figure 1. Each compartment represents a pool of red blood cells of increased mean age by 1/KT where KT = First order rate constant between the aging compartments [6]. A cascade of NRBC = 7 age compartments with the transfer rate constants equal to NRBC/MTT was selected to account for the hemoglobin in the RBC, where MTT is the mean RBC life span. The precursor cells in bone marrow are related to the blood as the youngest.
Table 1. Review of peginesatide doses and pharmacokinetic sampling times, by study.

Peginesatide Doses and Cohorts (Number of subjects per cohort)	AFX01-02	AFX01-03^a	AFX01-04^b	AFX01-07^c	AFX01-14 [EMERALD 1]^d				
Cohort (Number in PK substudy)	Single dose	Cohort (Number in PK substudy)	Dose Q 4 W for 6 doses	Cohort (Number in PK substudy)	Starting dose and regimen Cohort (Number in PK substudy)	Starting Dose and Regimen	Study population	Starting Dose	
1 (7)	0.05 mg/kg IV	1 (15)	0.033 mg/kg IV	1 (9)	0.05 mg/kg q 4 W SC	1 (3)	0.04 mg/kg IV q4w	549 subjects	0.04 mg/kg to 0.16 mg/kg (based on patient's prior erythropoietin dose) IV or SC Q 4 Weeks
2 (4)	0.025 mg/kg IV	2 (15)	0.041 mg/kg IV	2 (4)	0.05 mg/kg q 4 W SC	2 (4)	0.05 mg/kg IV q4w		
3 (2)	0.1 mg/kg IV	3 (15)	0.050 mg/kg IV	3 (6)	0.075 mg/kg q 4 W SC	3 (1)	0.075 mg/kg IV q4w		
4 (15)	0.066 mg/kg IV	5 (15)	0.05 mg/kg q 4 W IV	5 (4)	0.05 mg/kg SC q4w	5 (4)	0.10 mg/kg IV q4w		
6–8 (15 per cohort)	Weight-based dosing of 0.05 to 0.15 mg/kg IV	6 (4)	0.025 mg/kg q 2 W SC	6 (5)	0.05 mg/kg SC q4w	6 (5)	0.05 mg/kg SC q4w		
9 (15 subjects)	0.05 mg/kg IV	7 (10)	0.0375 mg/kg Q 2 W SC	7 (3)	0.075 mg/kg SC q4w	7 (3)	0.10 mg/kg SC q4w		
10–11 (15 per cohort)	Fixed dose of 40, 60, 120, or 160 mg IV	8 (2)	0.05 mg/kg Q 4 W SC	8 (2)	0.10 mg/kg SC q4w	8 (2)	0.10 mg/kg SC q4w		
9 (7)	40 mg fixed dose Q 4 W SC	10 (11 subjects)	30 mg fixed dose Q 4 W SC						

Pharmacokinetic Sample Collection Schedules

PK sampling on days 1 and 2: Samples drawn pre-dose and after the start of study drug administration at 5 and 15 minutes, and at hours 1, 4, 8 and 24 hours.

**Prior to Dose 1 and post-Dose 1 at 5, 15, and 60 minutes, and at 4 and 24 hours, pre- and post- the next dialysis (approximately 44 and 48 hours), at 96 hours (~24 hours) and after 1 week.

PK sampling on Week 5 and 9 dosing days: Samples drawn pre-dose and post-dose at 15 minutes.

PK sampling on Week 5, 9, 13, 17 and 21 dosing days: Samples drawn pre-dose only.

Optional PK profile drawn from Dose 2 onwards. Samples will be drawn prior to dosing and post-dosing at 2 hours (~10 minutes), and at Days 1 (24±1 hour), 2 (48±2 hours), 4 (96±4 hours), 6 (144±6 hours), 7 (168±6 hours) and 9 (216±6 hours) after that dose.

PK Sampling for Subsequent Doses: Samples drawn pre-dose only.

Blood samples for population PK analysis were collected at Week 1 prior to Dose 1 and approximately 48 to 72 hours post-Dose 1 of peginesatide injection.

Blood samples were collected at Week 1 prior to Dose 1 and approximately 48 to 72 hours post-Dose 1 of peginesatide injection.

Blood samples were collected at Week 1 prior to Dose 1 and approximately 48 to 72 hours post-Dose 1 of peginesatide injection.

Blood samples were collected at Week 1 prior to Dose 1 and approximately 48 to 72 hours post-Dose 1 of peginesatide injection.
circulating reticulocytes (red blood cells), according to a first-order rate, K_1, following Equation 2:

$$d\text{RBC} \, dt = K_1 \times \text{INT} \times A(1) - K_T \times A(2)$$ \hspace{1cm} (2)$$

Where:

- $d\text{RBC}/dt = \text{Rate of change in production of RBC over time}$,
- $\text{INT} = \text{Exponential function to empirically account for the downward shift in hemoglobin levels during trial}$,
- $A(1) = \text{The amount of precursor cells}$,
- $K_T = \text{First-order rate constant between the aging compartments}$, and,
- $A(2) = \text{Amount of red blood cells}$.

And then they mature to red blood cells through a series of age compartments as in Equation 3 [6]:

$$d\text{RBC}_j \, dt = K_T \times \left(\text{RBC}_{j-1} - \text{RBC}_j \right)$$ \hspace{1cm} (3)$$

Where:

- $J = 2, 3, ..., N_{RBC}$.

Therefore, circulating red blood cells (RBC) are the sum of red blood cell reticulocytes at all ages, as in Equation 4 [6]:

$$\text{RBC} = \text{RBC}_1 + \text{RBC}_2 + ... + \text{RBC}_N$$ \hspace{1cm} (4)$$

As hemoglobin production is directly proportional to the production of RBCs, then Equation 4 (as above) can be transformed as follows (Equation 5 [6]):

$$\text{Hgb} = \text{Hgb}_1 + \text{Hgb}_2 + ... + \text{Hgb}_N$$ \hspace{1cm} (5)$$

Where:

- $\text{Hgb} = \text{observed hemoglobin levels}$.

Therefore, the red blood cell life span is equivalent to hemoglobin life span, and the initial conditions for the production rate of precursor cells and red blood cells (or hemoglobin) can be determined from the baseline hemoglobin as in Equations 6 and 7:

$$\text{PRC}_0 = \text{Hgb}_0 \times \text{MTT} / \text{MTT}$$ \hspace{1cm} (6)$$

$$\text{Hgb}_{b0} = \text{Hgb}_0 / N_{RBC}$$ \hspace{1cm} (7)$$

Where:

- $\text{PRC}_0 = \text{Precursor cells at baseline}$,
- $\text{Hgb}_0 = \text{Observed baseline hemoglobin}$, and,
- $\text{MTT} = \text{Mean red blood cell life span}$.

The endogenous progenitor production rate constant at baseline was calculated from Equation 1 as:

$$K_0 = \text{Hgb}_0 / \text{MTT} \times (1 + \left[EMAX \times e\text{EPO} \right] / \left[EC50 + e\text{EPO} \right])$$

Where:

- $e\text{EPO} = \text{Endogenous erythropoietin for each individual at the start of the trial}$.

In the study, baseline erythropoietin levels were not measured in all patients. Instead of using actual baseline erythropoietin values to calculate the endogenous progenitor production rate constant at baseline, the values were estimated in the form of the residual effect of previous ESAs (RSA).
Thus the effect of previous ESAs at baseline was calculated using Equation 8 at steady state:

$$K_0 = \frac{Hgb_0}{MTT} \times RSA$$ \hspace{1cm} (8)

Where:

$$RSA = 1 + \left(\frac{[EMAX \times eEPO]}{[EC50 + eEPO]}\right)$$

Covariate Screening, Assessment and Analyses

Initially all plausible covariates and model parameter relationships were explored graphically. The clinical relevance and biological plausibility of covariate-parameter relationships were considered and discussed after development of the final model (Table 2 and Table 3). In addition, concomitant medications that were taken by more than 10% of the patient population during 80% of the trial period were also evaluated (Table 2).

A generalized additive modeling (GAM) approach along with graphical analysis (plots of the inter-subject error terms for each parameter [η] versus covariates) was used for initial covariate screening and to determine the functional form of the relationship between the covariates and PK and PD parameters of peginesatide. In order to avoid possible multicollinearity issues, GAM analyses were performed for PK and PD parameters using different combinations of covariates that were deemed to be highly correlated ($r > 0.6$) along with the remaining covariates. The potential covariates selected following GAM analysis were then tested using a standard approach of stepwise forward addition ($P < 0.05$) followed by stepwise backward elimination procedure ($P < 0.005$). The list of covariates evaluated for PK and PD parameters of peginesatide in GAM and NONMEM is presented in Table 4 and Table 5, respectively. The relationship between continuous covariates and PK and PD parameters were evaluated using linear, exponential and power functions as described in Equations 9, 10, and 11 with the covariates centered or scaled at their median values:

$$P = 0_1 + 0_2 \times (Hgb_0 - 11.5) \text{ for linear function}$$ \hspace{1cm} (9)

$$P = 0_1 \times \exp(0_2 \times [Hgb_0 - 11.5]) \text{ for exponential function}$$ \hspace{1cm} (10)

$$P = 0_1 \times \exp(0_2 \times [Hgb_0 - 11.5]) \text{ for exponential function}$$ \hspace{1cm} (11)

Where:

$$P = \text{Parameter},$$

$$0_1 = \text{The parameter estimate of an individual with an observed baseline hemoglobin (Hgb}_0\text{) of 11.5 g/dL},$$

$$\exp = \text{Exponential, and}$$
The influences of binary covariates on the parameter were modeled using an additive relationship as described in Equation 12 below:

\[P = 0_3 + 0_4 \times \text{Gender} \]

(12)

Where:

\[0_3 = \text{The parameter value in female, and} \]

\[0_4 = \text{a factor describing the correlation between observed baseline Hgb and the parameter.} \]

Table 2. Summary of categorical covariates and concomitant medications, by population group.

Variable and Categorical Covariate	PK Population (N = 672)	PK-PD Population (N = 517)		
	Number	Percentage	Number	Percentage
Gender				
Male	408	60.7	318	61.5
Female	264	39.3	199	38.5
Race				
Black	250	37.2	167	32.3
White	384	57.1	325	62.9
Asian	24	3.6	15	2.9
Other	14	2.1		
Ethnicity				
Hispanic	99	14.7	85	16.5
Non-Hispanic	573	85.3	432	83.5
Subject Type				
Dialysis patient	602	89.6	517	-
Non-dialysis patient	70	10.4		-
Beta-blocker at BL	280	51.0	235	50.5
Intravenous Iron at BL	331	60.3	287	61.7
Congestive heart failure	208	37.9	174	37.4
Arrhythmia	85	15.5	74	15.9
Subjects on Concomitant Medication During Study				
ACE Inhibitors	188	28.0	130	25.1
Antidiabetics	78	11.6	57	11.0
Angiotensin II receptor blockers	147	21.9	114	22.1
Aspirin	277	41.2	223	43.1
Beta-blockers	315	46.9	239	46.2
Calcium channel blockers	260	38.7	185	35.8
Diuretic	124	18.5	73	14.1
Folic acid	122	18.2	100	19.3
Heparin	454	67.6	388	75.1
Insulin	139	20.7	100	19.3
Iron supplement	177	26.3	140	27.1
Other antihypertensives	260	38.7	226	43.7
Phosphate binder	476	70.8	395	76.4
Statin	228	33.9	157	30.4
Vitamin(s)	506	75.3	426	82.4
Nonsteroidal anti-inflammatory drugs	47	7.0	32	6.2
Warfarin	26	3.9	21	4.1
Antiplatelet agents	60	8.9	53	10.3

doi:10.1371/journal.pone.0066422.t002
To evaluate the clinical significance of the effect of statistically significant PK and PD covariates, the final population PK and PK-PD models developed were used to simulate exposure and hemoglobin levels following administration of peginesatide 10 mg SC every 4 weeks. This 10 mg dose (equivalent to 0.12 mg/kg dose based upon a mean weight of 79 kg) was used for the simulations since it was in the range of clinical relevant doses administered in the AFX01-14 recently published Phase 3 trial [9].

Model Evaluation

The adequacy of the final PK and PK-PD models was evaluated using a simulation-based prediction-corrected (pc) visual predictive check (VPC) method (1000 replicates). Due to the dose adjustment algorithm used in these trials, the pcVPC was utilized. This technique provides an enhanced ability to diagnose possible model misspecification by removing the variability introduced in an ordinary VPC when binning across a potentially large variability in dose or other influential covariates [11]. The percent of observations outside the 90% prediction interval were also calculated to evaluate predictive ability of the model. A non-parametric bootstrap procedure (1000 bootstrap runs) was also employed to evaluate the precision of the parameter estimates and the robustness of the final PK and PK-PD models.

Results

A total of 2,665 peginesatide plasma samples collected from 672 CKD patients on or not on dialysis enrolled in five clinical trials (one phase 3 trial: AFX01-14 [9] and four Phase 2 trials [AFX01-02 [data on file], AFX01-03 [7], AFX01-04 [8], AFX01-07 [data on file]]) were used in the population PK analysis. A total of
18,857 hemoglobin concentrations collected from 517 hemodialysis patients enrolled in two of the Phase 2 trials (AFX01-03 [7], AFX01-07 [data on file]) and the one Phase 3 trial (AFX01-14 [9]) were used for the PK-PD analysis. In 63 subjects, hemoglobin concentration data collected during the time of transfusion (n = 237 samples) or phlebotomy (n = 48 samples), or while they experienced gastrointestinal bleeding (n = 15 samples) or trauma (n = 12 samples) were excluded from the PK-PD analysis. Demographics and baseline characteristics for these two analysis populations are shown in Table 2 and Table 3.

Table 4. Covariates evaluated on the PK and PD parameters of peginesatide.

Covariate	PK Parameters	PD Parameters	Covariate	PK Parameters	PD Parameters
Age	Yes	Yes	Beta blocker	Yes	Yes
Gender	Yes	Yes	Calcium channel	Yes	Yes
RAC 1 (Black)	Yes	Yes	Insulin	Yes	Yes
RAC 2 (Caucasian)	Yes	Yes	Statin	Yes	Yes
RAC 3 (Asian)	Yes	Yes	Diuretic	Yes	Yes
Ethnicity	Yes	Yes	Phosphate binder	Yes	Yes
Weight (WT)	Yes	Yes	Warfarin	No	Yes
Body mass index (BMI)	Yes	Yes	ACE inhibitor	Yes	Yes
eGFR	Yes	Yes	Antidiabetic	Yes	Yes
Creatinine (CR)	Yes	Yes	ARBs	Yes	Yes
Hgb	No	Yes	Vitamin	Yes	Yes
RBC	No	Yes	Folic acid	Yes	Yes
Reticulocytes	No	Yes	Other hypertensive	Yes	Yes
Albumin	Yes	Yes	Aspirin	Yes	Yes
ALP	Yes	Yes	Iron supplement	Yes	Yes
AST	Yes	Yes	Heparin	Yes	Yes
TBIU	Yes	Yes	Antiplatelet	Yes	Yes
CA	No	Yes			
Creatinine Clearance (Ccr)	Yes	Yes			
Ferritin (FERR)	No	Yes			
Total protein	No	Yes			
Hematocrit (HT)	No	Yes			
Potassium (K)	Yes	Yes			
Platelets	No	Yes			
ESAD	Yes	Yes			
WBC	No	Yes			
Transferrin	No	Yes			
Dialysis adequacy (Ktv)	No	Yes			
C-Reactive Protein	No	Yes			
Arrhythmias (CVARR2N)	No	Yes			
Congestive heart failure (CHFN)	No	Yes			
Phosphate level at baseline (PHBL)	No	Yes			
Beta blocker at baseline (BBBLN)	No	Yes			
IV Iron at baseline (IVIRONBN)	No	Yes			
Patient Type (Patient on dialysis vs Not on dialysis)	Yes	No			

Pharmacokinetic Model of Peginesatide

Peginesatide PK administered either as an SC or IV dose in CKD patients on and not on dialysis is best described by a two-compartment model with first-order absorption and saturable MM elimination, where inter-compartmental clearance was fixed to improve model stability (Figure 1). As summarized in Table 6, most of the PK model parameters were estimated with good precision and, as illustrated in Figure 2, no noticeable trends or biases in the diagnostic goodness-of-fit plots were observed. Inter-individual variability (IIV) was estimated for volume of the central compartment (V2), the absorption rate constant (Ka) and the concentration required to reach 50% of maximum rate of elimination (KM) using exponential models, assuming a log-normal distribution for each parameter. The residual variability was best described using a combination of additive and constant coefficient of variation (CCV) error model.
Following covariate analysis, ethnicity (ETHN) and serum creatinine (CR, only for non-dialysis patients) for Ka; total bilirubin (TBIL), age, and body mass index (BMI) for V2; and alkaline phosphatase (ALP) for KM were identified as statistically significant (P < 0.005) covariates (Equations 13, 14 and 15). The inclusion of statistically significant covariates in the PK model reduced the IIV for Ka, V2, and KM by 22.6%, 1.5%, and 13.4%, respectively.

\[
Ka = 0.00865 + (CR - 3.3) \times (0.000784 \\
+ 0.00811 \times (1 - ETHN))
\]

Table 5. Covariates evaluated on the PK and PD parameters of peginesatide in NONMEM using forward selection and backward elimination approach.

Parameter	Significant Covariates
Pharmacokinetic Parameters	
V2	Age, BMI, ALP, SGOT, eGFR, TBIL, ESAD, Ethnicity, Patient type
KM	WTKG, ALP, K, ESAD, Patient type
Ka	BMI, CR, TBIL, Ethnicity, Patient type
V2	Anti Diabetic, Aspirin, Other Hypertensive agents, Statin, Patient type
KM	Beta Blockers, Other Hypertensive agents, Statin, Patient type
Pharmacodynamic Parameters	
BL	HT, AGE, K, FERR, TRSA, ESAD, RACE, TPRO, Anti-viral, statin, IV iron
CF	HT, AGE, FERR, ESAD, ACE Inhibitor, antiviral, Statin, IV iron, heparin, insulin
RSA	Ccr, Anti-diabetic, iron supplement, warfarin, CVARR2, CHF, PHBL
EC50	BMI, TPRO, ESAD, HT, vitamin, warfarin, CVARR2, PHBL, BBBL

doi:10.1371/journal.pone.0066422.t005

Figure 2. Diagnostic goodness-of-fit plots for the final population PK model of peginesatide (2A-C: upper panel set) and for the final population PK-PD model of peginesatide (2D-F: lower panel set). Upper left (2A): measured concentration versus predicted concentration; Upper middle (2B): measured concentration versus individual predicted concentration; Upper right (2C): weighted residuals versus predicted concentration. Lower left (2D): measured hemoglobin versus predicted hemoglobin; Lower middle (2E): measured hemoglobin versus individual predicted hemoglobin; lower right (2F): weighted residual versus predicted hemoglobin concentration.

doi:10.1371/journal.pone.0066422.g002
PK-PD Model of Peginesatide

The time-course of peginesatide plasma concentrations and hemoglobin levels was well characterized by a modified precursor-dependent LIDR model, as presented in Figure 1. Most PK-PD model parameters were estimated with good precision (Table 7) and no noticeable trends or biases (Figure 2) in diagnostics plots (except for the plot of observed versus population predicted hemoglobin concentration). IIV was estimated as an exponential model for drug concentration required for 50% of maximum response (EC50), predicted baseline hemoglobin (HgbBL), residual effect of previous ESAs (RSA) and correction factor (CF), a parameter empirically accounting for the downward shift in hemoglobin levels observed over the time course of peginesatide treatment. The residual variability was best described using an additive error model (equivalent to proportional error model for non log-transformed hemoglobin concentrations).

Previous ESA dose (ESAD) was identified as a statistically significant predictor of hemoglobin level at baseline and age was identified as a statistically significant predictor of the CF (equations 16 and 17):

\[
HgbBL = 11.5 * e^{(-0.00000449 \cdot (ESAD - 7996) \cdot ESADF)}
\]

\[
CF = 0.000275 * e^{(-0.00314 \cdot (Age - 58))}
\]

Where:
- HgbBL = Model predicted hemoglobin at baseline,
- ESADF = an indicator variable with a value of 0 if ESAD = 0 and 1 if ESAD is >0, and
- CF = correction factor.

In other words no effect of ESAD was incorporated for subjects whose ESAD dose information was not available.

Inclusion of statistically significant covariates reduced the IIV for RSA and EC50 by 12.6% and 211.3% while the IIV in hemoglobin at baseline was essentially unchanged in the final model, and increased by 11% for CF, relative to the base model.

Table 6. Peginesatide parameter estimates and their associated precision for the final PK model, including bootstrap evaluation results.

Parameter	Final Estimate (% SEM)	Median Bootstrap Estimate	Bootstrap 95% CI¹
Maximum rate of elimination (Vmax), in ng/mL/hr	45.3 (10.0)	44.7	32.0–69.0
Concentration needed to reach 50% of Vmax (KM), in ng/mL	1880 (14.6)	1860	1120.0–3222.5
Central volume of distribution (V2), in mL/kg	35.6 (2.7)	35.6	33.3–38.0
Absorption rate constant (Ka), in 1/hr	0.00865 (15.6)	0.00869	0.00582–0.011
Subcutaneous bioavailability (F1)	0.498 (4.4)	0.499	0.430–0.577
Inter-compartmental clearance (Q), in mL/kg/hr	5.23	5.23	Fixed
Peripheral volume of distribution (V3), in mL/kg	7.44 (10.3)	7.42	5.49–9.84
BMI power for V2, in mL/L	–0.491 (8.7)	–0.485	–0.685 to –0.280
Age slope for V2, in L/yr	–0.125 (19.0)	–0.125	–0.238 to –0.015
ALP power for KM	–0.194 (25.5)	–0.190	–0.307 to –0.0895
TBIL slope for V2, in L/(g/L)	0.477 (22.4)	0.482	0.086–0.933
Serum creatinine slope on Ka (where PDIA = 1)², in (1/hr)/(mg/dL)	7.84E–04 (69.1)	6.9E–04	–13E–04 to 23E–04
ETHN shift for Ka, in (1/hr)	0.00811 (20.3)	0.00815	0.0036–0.0117
α² on KM	0.0589 (29.0)	0.0575	0.032–0.102
α² on V2	0.101 (8.1)	0.100	0.0646–0.1372
Cov between V2 and Ka	–0.0928 (25.4)	–0.0904	–0.136 to –0.0342
α² on Ka	0.197 (32.0)	0.190	0.0964–0.3391
Ratio of proportional to additive residual variability	0.0218 (19.5)	0.0223	0.0139–5.15
α² (additive component)	81.8 (36.8)	78.2	0.0017–166.7
IIV in KM	24.3%	NA	NA
IIV in V2	31.8%	NA	NA
IIV in Ka	44.4%	NA	NA

1. Based on 870/1000 successfully converged bootstrap runs.
2. PDIA = 1 for patients not on dialysis (covariate was considered only for those not on dialysis).

doi:10.1371/journal.pone.0066422.0006
Model Validation
The parameter estimates from the final PK and PK-PD models were also consistent with those estimated from bootstrap evaluations and were within the 95% Confidence Interval (CI) of the median bootstrap estimate, which supports the robustness and stability of the model (Table 6 and Table 7). The results of the pvVPC supported the predictive ability of the PK and PK-PD models, whereby the simulated 90% prediction intervals encompassed approximately 90.9% and 95.2% of the observed peginesatide and hemoglobin concentrations (Figure 3), respectively. The pvVPC approach successfully accounted for an inflated estimate of overall variability for the upper 95th percentile following traditional VPCs (Figure 4) due to continuous dose adjustment based on hemoglobin response.

Impact of Covariates on PK and PD Parameters of Peginesatide and Hemoglobin Levels
The impact of covariates on the PK and PD population mean simulated concentration-time profiles for peginesatide are presented in Figure 5. The continuous covariates that were identified as statistically significant for PK, BMI had the largest impact on exposure of peginesatide. Relative to the typical subject with a median BMI of 26 kg/m² and median TBIL, CR and ALP levels of 9.0 g/L, 3.31 mg/dL (in non-dialysis patients) and 87.0 U/L, respectively, subjects experienced up to 630% change in exposure of peginesatide over the range of BMI evaluated. Effects of all other continuous covariates on peginesatide exposure were less than ±15%. Hispanics exhibited peginesatide Cmax and AUC values approximately 36% and 3% lower, respectively compared to non-Hispanics. The variability in exposure, based on these PK covariates for this population, is predicted to result in a change in hemoglobin levels of ±0.2 g/dL, following administration of a SC dose of 10 mg given every 4 weeks for 1 year. The effect of significant covariates (ESAD and age) on PD parameters of peginesatide is predicted to result in hemoglobin level changes of ±0.05 g/dL. Concomitant medications taken by 10% of the patient population during 80% of the trial period (Table 2) did not alter the PK or PD parameters of peginesatide.

Discussion
The purpose of the current analysis was to develop a population PK-PD model to describe the time-course of peginesatide plasma concentrations and hemoglobin levels following IV and SC administration in patients with CKD. Peginesatide PK parameters were best described by a two-compartment model with first-order absorption and saturable elimination. The relationship between hemoglobin and peginesatide plasma levels was best characterized by a modified precursor-dependent LIDR model.

Parameter	Final Estimate (% SEM)	Median Bootstrap Estimate	Bootstrap 95% CI
Drug concentration required for 50% of maximum response (EC₅₀), in ng/mL	401 (2.0)	417	128–12420
Maximum pharmacologic effect (Emax)	0.542 (1.6)	0.564	0.3254–2.976
Hemoglobin at baseline, in g/dL	11.5 (0.4)	11.5	11.4–11.5
Mean transit time for red blood cells (MTT), in hours	1640 (0.5)	1610	1330–1866
Mean transit time for progenitor cells (MTP), in hours	462 (1.1)	447	348.4–545
Residual effect of previous erythropoiesis stimulating agent dose (RSA)	0.153 (0.7)	0.152	0.149–0.155
Correction factor (CF)	2.75E–4 (0.9)	2.8E–4	2.2E–4–3.3E–4
Slope of age for CF on log–scale	–0.00314 (21.5)	–0.00021	–0.01346 to 0.0144
Slope of ESAD on baseline hemoglobin on log–scale	–4.49E–7 (54.8)	–4.33E–7	–11.5E–7 to 2.23E–7
σ² on RSA Effect	0.0130 (8.8)	0.0124	0.00766–0.01966
σ² on EC₅₀	8.92 (9.5)	9.47	3.61–25.78
σ² on BL Hgb	0.00485 (7.9)	0.00476	0.00393–0.00563
σ² on CF	10.6 (8.0)	11.6	7.24–20.88
σ² (additive component)	0.00478 (0.4)	0.00475	0.0044–0.00511
IV in RSA	11.4%	NA	NA
IV in EC₅₀	298.7%	NA	NA
IV in BL Hgb	7.0%	NA	NA
IV in CF	325.6%	NA	NA
Residual Variability	0.07 SD		

1. Based on 935/1000 successfully converged bootstrap runs;
SD: Standard deviation; NA: not applicable.
doi:10.1371/journal.pone.0066422.t007

Model Validation Table 7. Peginesatide parameter estimates and their associated precision for the final PK-PD Model, including bootstrap evaluation results.
known. However elimination of ESAs has been linked with binding to erythropoietin receptor (EPOr) in target tissue, such as bone marrow and spleen. A possible route of elimination could be endocytosis of the EPOr - erythropoietin complex followed by lysosomal degradation as reported by Olsson-Gisleskog et al [14]. The formation of such a complex via receptor binding in the bone marrow may be responsible for the non-linear characteristics observed for peginesatide.

The estimated population value for total volume of distribution (43.0 mL/kg) suggested that tissue distribution was limited following IV and SC administration. The estimated value for the volume of distribution was similar to what observed in healthy volunteers (35 mL/kg). The patient population (i.e., hemodialysis or non-dialysis) did not appear to have a significant effect on peginesatide PK parameters, which may be attributed to the limited amount of non-dialysis patient data (<11%) used in this population PK model. Impact of dialysis on drug levels was not evaluated in this analysis as in the Phase 3 study [9] (which comprised the majority of the data used for PK analysis [81.7%]); only one sample per patient was collected immediately following first dose when subjects were not on dialysis.

Peginesatide administered SC has a model estimated bioavailability of 49.8%, which is similar to the range of 33% to 45% reported in studies conducted in healthy volunteers (unpublished data [AFX01_102, AFX01_103] as well as values reported for other ESAs [11–15]. Peginesatide, like other erythropoietins, appears to follow flip-flop pharmacokinetics [16] where the rate of absorption is slower than the rate of elimination. Following
intravenous administration, peginesatide concentrations exceed the estimated EC50 (concentration required to obtain 50% of the maximum effect for hemoglobin) value, but subsequently decline, rapidly to values below the EC50 during the dosing interval.

Following subcutaneous administration, the peak plasma concentrations of peginesatide are lower than those following intravenous administration; however, the plasma concentrations following subcutaneous administration remain sustained above the EC50 for
a duration that is comparable to that of intravenous administration. Although the fraction of the dose absorbed from the extravascular compartment following subcutaneous dosing is approximately 50% that of intravenous dosing, subcutaneous dosing provides a similar hemoglobin response. This is further supported by the simulations performed using the final PK model.

Figure 5. Effect of PK covariates on simulated peginesatide plasma concentrations and hemoglobin levels in patients with chronic kidney disease on dialysis following 10 mg SC dose every 4 weeks for 52 weeks. Upper panel: effect of PK covariates on simulated peginesatide plasma concentrations; Middle and lower panels: effect of PK covariates on simulated peginesatide hemoglobin concentrations. Note that in the panel for hemoglobin levels by ESAD, the effect is very low and, as such, the profiles overlap. Abbreviations: BMI = body mass index, ALP = alkaline phosphatase, TBIL = total bilirubin, CR = serum creatinine, ETHN = ethnicity, and ESAD = erythropoiesis-stimulating agent dose. doi:10.1371/journal.pone.0066422.g005

Figure 6. Simulated concentration-time profile of peginesatide following administration of a single 5, 8, and 10 mg every 4 week IV (top panel) and SC (bottom panel) dose. EC50 values reflect the EC50 value estimated for the base PK-PD model. doi:10.1371/journal.pone.0066422.g006
as presented in Figure 6 where the time above EC50 was similar following IC and SQ every 4 weeks dosing of peginesatide.

BMI, age, ALP, CR (for nondialysis subjects) and TBIL were identified as statistically significant PK covariates. The effect of BMI was included in the final model to account for the variability that is not accounted following weight-normalized dosing of peginesatide. The effect of CR on Ka is attributed to the level of overall patient hydration that may in turn affect the SC absorption of peginesatide. None of the covariates identified are considered clinically relevant based on their effect on exposure (\(<36\%\)) of peginesatide and simulated hemoglobin levels (\(\leq0.2\) g/dL). The effect of ethnicity was also not considered clinically relevant and, further, may have been confounded by the study site data, with the majority of data from Hispanic subjects (84%) coming from a single clinical site. Concomitant medications did not impact the PK or PD parameters of peginesatide further supporting a lack of potential for drug-drug interactions.

The precursor-dependent LIDR model that described the time-course of peginesatide plasma and hemoglobin levels following IV and SC dosing is similar to the one used for darbepoetin [6]. This model has been used to characterize the effects of hematopoietic growth factors on the proliferation of precursor cells, which mature to circulating red blood cells and eventually die due to apoptosis or random destruction. The small bias observed in the diagnostic plot (observed versus population predicted hemoglobin level) was similar to that observed with the PK-PD analysis conducted for other ESAs [6,13]. This observed bias may be attributed to the nature of the clinical trials for ESA and peginesatide that included continuous dose adjustment based on the hemoglobin levels.

The estimates of red blood cell life span (67.5 days) obtained from this analysis are consistent with previously reported values in the literature (60 to 65 days in dialysis patients) [15,17]. The estimated EC50 for peginesatide was higher compared to darbepoetin alfa (0.41 ng/mL), Micera (0.898 ng/mL) and peptide erythropoiesis receptor agonist (ERA) (120 ng/mL) and associated with a high degree of IV (298.6% CV), similar to observations of pegylated epoetin beta (539% CV) [6,13,18]. The estimated value for the Emax for peginesatide was similar to the values observed for darbepoetin (0.637), Micera (0.425) and ERA (1.68) [6,13,18]. The differences in EC50 and Emax observed across the ESAs to some extent is attributed to the fact that estimates were derived using data obtained from different populations (dialysis versus non-dialysis) and analyzed using different structural models or might actually reflect differences in binding ability of the molecule to erythropoietin receptors. The higher EC50 value of peginesatide is also expected due to pegylation of the peptide moiety that binds with the erythropoietin receptors. A CF was empirically derived in the model to account for the potential downward drift in hemoglobin levels observed in patients over the course of the trial period and was found to improve the model fit. However, no placebo data in subjects with CKD were available. Thus, the CF could not be correlated to the rate of change in hemoglobin levels due to progression of the underlying disease in this patient population in the absence of therapeutic intervention.

The pcVPCs of the PK-PD model showed that the simulated prediction intervals were in close agreement with the corresponding percentiles of the observed data. The standard VPC of the PK-PD model (Figure 4) showed significant bias in the upper bound of the 90% prediction interval. This is likely due to the very high degree of IV associated with the estimation of EC50 and individualized dose adjustment implemented in the phase 3 trial based upon observed hemoglobin level. As a result, model predictions should be limited to the evaluated hemodialysis population and additional bias may be observed if the model is extrapolated beyond the evaluated conditions. The traditional VPC has been shown to be uninformative with regard to assessing and diagnosing possible model misspecifications when an adaptive design such as an a posteriori dose adaptation scheme is implemented during a trial [11]. As demonstrated in this case, the use of prediction correction during the VPC provides a more appropriate evaluation of model predictability.

Subjects on lower doses of ESA at baseline generally had higher baseline hemoglobin values compared to those on higher doses. This may be attributed to the fact that patients on a higher ESA dose prior to peginesatide treatment were relatively less sensitive to previous ESA treatment and may reflect poor responders to ESA treatment due various factors [19].

In conclusion, this modeling effort supported the characterization of the PK and PK-PD relationship for peginesatide in subjects with CKD on hemodialysis. Further, although some covariates were found to be statistically significant predictors of variability, their impact on the PK and PD of peginesatide was not clinically relevant and therefore, no dosage adjustments based on patient characteristics or concomitant medications are indicated.

Acknowledgments

We would like to thank Susan Ruffalo, PharmD, MedWrite, Inc. Newport Coast, California, for medical writing support, R. Eric Schmidt for bioanalytical support, and David Jaworowicz, PhD and Susan Willavize, PhD from Cognigen Corporation for model development support.

Author Contributions

Conceived and designed the experiments: HN MT JFK PQ MV. Performed the experiments: HN MT JFK PQ MV. Analyzed the data: HN MT JFK PQ MV. Contributed reagents/materials/analysis tools: HN MT JFK PQ MV. Wrote the paper: HN MT JFK PQ MV.

References

1. National Kidney and Urologic Diseases Information Clearinghouse (2011). Kidney and Urologic Diseases Statistics. U.S. Department of Health and Human Services. National Institutes of Health. Available: http://www.kidney.niddk.nih.gov. Accessed 19 February 2012.
2. Centers for Disease Control and Prevention (CDC). National chronic kidney disease fact sheet: general information and national estimates on chronic kidney disease in the United States. 2010. Atlanta, GA: U.S. Department of Health and Human Services (HHS); CDC. 2010.
3. US Renal Data System 2011 Annual Data Report. Volume 2. Atlas of End State Renal Disease. United States Renal Data System website. Available: http://www.usrds.org/pdf/v2_00_intro11.pdf. Accessed 19 February 2012.
4. Woodburn KW, Talhouk CP, Wilson SD, Fong K-L, Press RJ, et al. (2012) Absorption, distribution, metabolism and excretion of peginesatide, a novel erythropoiesis-stimulating agent, in rats. Xenobiotica 42(7): 660–667.
5. Peginesatide (OMONTYS®) Prescribing Information. Takoda Pharmaceuticals America, Inc. Deerfield, IL 60015. March 2012.
6. Doshi S, Chow A. (2010) Exposure-response modeling of darbepoetin alfa in anemic patients with chronic kidney disease not receiving dialysis. J Clin Pharmacol 50(9 Suppl): 758–908.
7. Besarab A, Zeig SN, Martin ER, Pergola PE, Whitter FC, et al. (2012) An open-label, sequential, dose-finding study of peginesatide for the maintenance treatment of anemia in chronic hemodialysis patients. BMC Nephrology 13:95 (doi:10.1186/1471–2369–13–95).
8. Macdougall IG, Wierczak A, Tucker B, Yaqoob M, Mikhail A, et al. (2011) Dose-finding study of peginesatide for anemia correction in chronic kidney disease patients. Clin J Am Soc Nephrol 6: 2579–2586.
9. Fishbane S, Schiller B, Locatelli F, Covic AC, Prozenzano R, et al. (2013) Peginesatide in patients with anemia undergoing hemodialysis. N Engl J Med 368: 307–319.
10. PDx-Pop: Tools for expediting population analysis. (2009) Version 3.2 User Manual. Ellicot City, MD, ICON Development Solutions.

11. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2): 143–151.

12. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB. (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46(7): 747–757.

13. Mirrera (methoxy polyethylene glycol-epoetin beta). Summary of product characteristics. F. Hoffmann-La Roche Ltd. Data on File. 2007. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000739/WC500033672.pdf. Accessed August 10, 2012.

14. Olson-Gideskog P, Jacqmin P. (2007) Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects. Clin Pharmacokinet 46(2): 159–173.

15. Chanu P, Gieschke R, Charoiz JE, Pannier A, Reigner B. (2010) Population pharmacokinetic/pharmacodynamics model for C. E. R. A. in both ESA-naive and ESA-treated chronic kidney disease patients with renal anemia. J Clin Pharmacol 50(5): 507–520.

16. Boesenbaum H. (1998) Pharmacokinetic tricks and traps: flip-flop models. J Pharm Pharmacut Sci 1: 90–91.

17. Uehlinger DE, Gotch FA. (1992) A pharmacodynamics model of erythropoietin therapy for uremic anemia. Clin Pharmacokinet 21(1): 76–89.

18. Woo S, Krzyzanski W, Duliege A-M, Richard SR, Jusko WJ. (2008) Population pharmacokinetic and pharmacodynamic modeling of a novel peptidic erythropoiesis receptor agonist (ERA), in healthy volunteers. J Clin Pharmacol 48: 43–52.

19. Locatelli F, Aljama P, Barany P, Canaud B, Carrera F, et al. (2004) Revised European best practice guidelines for the management of anemia in patients with chronic renal failure. Nephrol Dial Transplant 19 (Suppl 2): 1–47.