Environmental Research Letters

COMMENT

Comment on ‘Geoengineering with seagrasses: is credit due where credit is given?’

Peter I Macreadie1,4, Carolyn J Ewers-Lewis1, Ashley A Whitt1, Quinn Ollivier1, Stacey M Trevathan-Tackett3, Paul Carnell1 and Oscar Serrano3
1 Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, 221 Burwood Highway, Burwood, VIC 3125, Australia
2 Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
3 School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA 6027, Australia
4 Author to whom any correspondence should be addressed.

E-mail: p.macreadie@deakin.edu.au

Over the past decade scientists around the world have sought to estimate the capacity of seagrass meadows to sequester carbon, and thereby understand their role in climate change mitigation. The number of studies reporting on seagrass carbon accumulation rates is still limited, but growing scientific evidence supports the hypothesis that seagrasses have been efficiently locking away CO2 for decades to millennia (e.g. Macreadie et al. 2014, Mateo et al. 1997, Serrano et al. 2012). Johannessen and Macdonald (2016), however, challenge the role of seagrasses as carbon traps, claiming that gains in carbon storage by seagrasses may be ‘illusionary’ and that ‘their contribution to the global burial of carbon has not yet been established’. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits.

Reliability of global estimates of seagrass carbon sequestration

Johannessen and Macdonald (Johannessen and Macdonald 2016) reported that estimates of global carbon burial by seagrasses have been overestimated by 11- to 3100 fold (table 1, Johannessen and Macdonald 2016). Their claims are based on existing literature but their calculations are not clear and their interpretations seem to be misleading, which may have resulted in erroneous conclusions.

First, Johannessen and Macdonald (2016) misinterpreted the global carbon burial estimates reported by Kennedy et al. (2010). Kennedy et al. (2010) reported estimates of mean seagrass net community production (120 g C m⁻² yr⁻¹; Duarte et al. 2010), accumulation of seagrass autochthonous organic carbon (41–66 g C m⁻² yr⁻¹), and allochthonous organic carbon (42–67 g C m⁻² yr⁻¹). Assuming that there is net export of seagrass organic carbon from the meadow, Kennedy et al. (2010) concluded that carbon sequestration by seagrass meadows may be better approximated by the sum of their net community production and their contribution to the global burial of carbon has not yet been established’. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits.

Reliability of global estimates of seagrass carbon sequestration

Johannessen and Macdonald (Johannessen and Macdonald 2016) reported that estimates of global carbon burial by seagrasses have been overestimated by 11- to 3100 fold (table 1, Johannessen and Macdonald 2016). Their claims are based on existing literature but their calculations are not clear and their interpretations seem to be misleading, which may have resulted in erroneous conclusions.

First, Johannessen and Macdonald (2016) misinterpreted the global carbon burial estimates reported by Kennedy et al. (2010). Kennedy et al. (2010) reported estimates of mean seagrass net community production (120 g C m⁻² yr⁻¹; Duarte et al. 2010), accumulation of seagrass autochthonous organic carbon (41–66 g C m⁻² yr⁻¹), and allochthonous organic carbon (42–67 g C m⁻² yr⁻¹). Assuming that there is net export of seagrass organic carbon from the meadow, Kennedy et al. (2010) concluded that carbon sequestration by seagrass meadows may be better approximated by the sum of their net community production and their contribution to the global burial of carbon has not yet been established’. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits.
used sediment accumulation rates from general coastal areas to estimate global carbon burial by seagrasses (Alvisi et al. 2009, Boudreau et al. 1994, Emeis et al. 2000, Junttila et al. 2014, Kuzyk et al. 2013, Zuo et al. 1991), rather than use data from actual seagrass ecosystems (e.g. Serrano et al. 2012, Macreadie et al. 2015a, Serrano et al. 2014a, Miyajima et al. 1998, Serrano et al. 2016a). Moreover, Johannessen and Macdonald (2016) used carbon data from studies where carbon in sediments—both in and outside the seagrass meadows—have been measured (Kennedy et al. 2010) to determine the % additional organic carbon due to seagrass. However, it seems they did not account for the % of autochthonous and allochthonous carbon in their calculations presented in table 1, despite the fact that they clearly stated in section 4.5 that allochthonous carbon capture does not necessarily represent additional burial. Additionally, the previous global estimates by Kennedy et al. (2010) seem to be wrongly reproduced in table 1 from Johannessen and Macdonald (2016) ranging from 4.8×10^{10} and 1.12×10^{11}. Assuming that the units reported by Johannessen and Macdonald (2016) are grams (units not shown), then it should be 48×10^{12} and 112×10^{12}. As previously indicated, the calculation for this overestimation is not provided, the units of most variables used are missing, and literature data is misrepresented, and the rationale behind the assumptions is not provided; thereby we were not able to reproduce their computations and we believe that Johannessen and Macdonald (2016) have incorrectly estimated global carbon burial by seagrasses.

Third, despite early estimates by Kennedy et al. (2010) being based on limited available data and an indirect approach (accounting for plant productivity rather than sediment carbon accumulation), the range they provide is reasonable (12–40 Tg autochthonous C yr$^{-1}$ globally, or 48–112 Tg total C yr$^{-1}$). Here we show that previous global estimates are within the range of estimates based on seagrass carbon burial data published in peer-reviewed literature. Using the lowest seagrass carbon burial rate (2 g C m$^{-2}$ yr$^{-1}$ in Posidonia meadows, burial estimated in a 1 m-thick sedimentary deposit based on 14C geochronology) (Serrano et al. 2014b, Serrano et al. 2016b) and the highest seagrass carbon burial rate (249 g C m$^{-2}$ yr$^{-1}$ in a Posidonia oceanica meadow, burial estimated in a 2 m-thick sedimentary deposit based on 14C geochronology) (Serrano et al. 2016b) reported to date, one could estimate the range of global seagrass carbon burial. Following the approach taken by Johannessen and Macdonald (2016) (global area of seagrass ranging from 177 000–600 000 km2 but assuming that 43%–94% of sediment carbon is due to seagrass presence (based on direct measurements in seagrass cores; Serrano et al. 2016a)), we estimate that global seagrass carbon burial range 0.26–140 Tg C yr$^{-1}$. Therefore, despite the limitations of the early estimates of global seagrass burial provided by Kennedy et al. (2010) (48–112 Tg C yr$^{-1}$ for total carbon, or 7–40 Tg C yr$^{-1}$ for autochthonous carbon), here we demonstrate that these were not necessarily overestimates, but rather that the variability of seagrass carbon sequestration is larger than initially thought.

Overall, we agree with Johannessen and Macdonald (2016) that the methods used by previous authors were indirect and therefore relied on large assumptions, and that further studies are required to understand differences in carbon burial among seagrass ecosystems, including biological and habitat characteristics, to further refine estimates of global seagrass carbon sequestration capacity. We also agree with Johannessen and Macdonald (2016) that carbon stock estimates in combination with 210Pb age dating is one of the best approaches to accurately calculate carbon accumulation rates in seagrass meadows. We disagree, however, that only one previous study (Marba et al. 2015a) has used 210Pb dating to create seagrass sediment chronologies; Johannessen and Macdonald (2016) have missed multiple papers that previously determined decadal to millennial-scale age dating for seagrass sediments (e.g. Mateo et al. 1997, Serrano et al. 2012, Macreadie et al. 2015a, Serrano et al. 2016a, Macreadie et al. 2012, Macreadie et al. 2015b, Greiner et al. 2013, Serrano et al. 2016c). Finally, our calculations based on peer-reviewed literature reporting long-term carbon burial by seagrasses and % contribution of seagrass matter to the sediment carbon pool, we concluded that previous estimates by Kennedy et al. (4) could either represent over- or under-estimates owing to the large variability in carbon sequestration among seagrass ecosystems.

The motivation for seagrass carbon offsetting

Johannessen and Macdonald (Johannessen and Macdonald 2016) stated that ‘For climate change mitigation, it is the change in the long-term sequestration rate that ultimately matters’. Here we would like to clarify that the real potential of seagrass ecosystems to mitigate greenhouse gas emissions is towards the preservation of existing meadows and restoration of lost meadows, which can result in avoided emissions from disturbed sediments after canopy loss. The vast majority of carbon stores in seagrass meadows are found in their sediments (Fourqurean et al. 2012), and recent literature shows that disturbance of sediments after meadow loss can result in carbon dioxide emissions (Marba et al. 2015, Macreadie et al. 2015b, Serrano et al. 2016c). Indeed the carbon burial capacity of seagrass meadows (ranging from 2–249 g C m$^{-2}$ yr$^{-1}$; Serrano et al. 2016a) is small in terms of potential for crediting: the restoration of 1 ha of seagrass could result in then enhanced sequestration of 0.02–2.5 ton C yr$^{-1}$ (valued at $0.88–$110, assuming a price of $12 per ton CO$_2$). However, avoided emissions through the preservation of seagrass meadows and the carbon stocks
underneath could result in a much larger crediting benefit: the preservation of 1 ha of seagrass could result in avoided emissions of 19–220 ton C (assuming, conservatively, that 25% of stocks in 1 m-thick deposits are remineralized after meadow loss, data from (Serrano et al 2016b, Marba et al 2015, Macreadie et al 2015b); 7.5–88 kg C in 1 m-thick sediments), valued at $826–9689 (assuming a price of $12 ton CO₂). Therefore, further initiatives aiming to determine the potential of seagrass meadows to mitigate climate change emissions should primarily focus on the understanding of the loss and fate of carbon stores after meadow loss.

Moving forward

In conclusion, we argue that global carbon sequestration by seagrasses has not been properly established, but current estimates are within the range reported by growing scientific evidence. Increasing research on carbon sequestration rates by seagrasses showed that their capacity to sequester carbon can be highly variable due to biological, physical and chemical factors. Perhaps the largest current cause of high variance in estimates of global seagrass carbon sequestration is from the high uncertainty in global seagrass area (Macreadie et al 2014). In addition, we need to better understand the fate of allochthonous carbon if it weren’t trapped and buried by seagrass meadows. Further research is needed to constrain the range of estimates of seagrass carbon burial rates at local, regional and global scales.

Acknowledgments

P M acknowledges the support of an Australian Research Council (ARC) Discovery Early Career Researcher Award DE130101084 and an Australian Research Council (ARC) Linkage Grant (LP160100242). O S was supported by an ARC DECRA (DE170101524). This project was also supported by the CSIRO Flagship Marine and Coastal Carbon Biogeochemical Cluster and the Ocean and Atmosphere Flagship.

ORCID iDs

Peter I Macreadie © https://orcid.org/0000-0001-7362-0882

References

Alvisi F 2009 A simplified approach to evaluate sedimentary organic matter fluxes and accumulation on the NW Adriatic Shelf (Italy) Chem. Ecol. 25 119–34
Boudreau B P 1994 Is burial velocity a matter parameter for bioturbation? Geochim. Cosmochim. Acta. 58 1243–9
Duarte C M, Marba N, Gacia E, Fourquarean J W, Beggins J, Barron C and Apostolaki E T 2010 Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows Glob. Biogeochem. Cycles 24 4
Eames K C, Struck U, Leipe T, Pollehne F, Kunzendorf H and Christiansen C 2000 Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 130 years—relevance to P regeneration rates and the phosphorus cycle Mar. Geol. 167 43–59
Fourquarean J W, Duarte C M, Kennedy H, Marba N, Holmer M, Mateo M A, Apostolaki E T, Kendrick G A, Krause-Jensen D and McGlathery K J 2012 Seagrass ecosystems as a globally significant carbon stock Nat. Geosci. 5 303–9
Greiner J T, McGlathery K J, Gunnell J and McKee B A 2013 Seagrass restoration enhances blue carbon sequestration in coastal waters PLoS ONE 8 e72469
Johannessen S C and Macdonald R W 2016 Geoengineering with seagrasses: is credit due where credit is given? Environ. Res. Lett. 11 113001
Junttila J, Carroll J, Husum K and Dijkstra N 2014 Sediment transport and deposition in the Ingogydipet trough, SW Barents Sea Cont. Shelf Res. 76 53–63
Kennedy H, Beggins J, Duarte C M, Fourquarean J W, Holmer M, Marba N and Middelburg J J 2010 Seagrass sediments as a global carbon sink: isotopic constraints Glob. Biogeochem. Cycles 24 4
Kurdyk Z A, Gobeil C and Macdonald R W 2013 Pb-210 and Cs-137 in margin sediments of the Arctic Ocean: controls on boundary scavenging Glob. Biogeochem. Cycles 27 422–39
Macreadie P I, Baird M E, Trevathan-Tackett S M, Larkum A W D and Ralph P J 2014 Quantifying and modelling the carbon sequestration capacity of seagrass meadows—a critical assessment Mar. Pollut. Bull. 83 430–9
Mateo M A, Romero J, Perez M, Little L M and Little D S 1997 Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica Estuar. Coast. Shelf. Sci. 44 103–10
Macreadie P I, Rolph T C, Boyd R, Schroder-Adams C J and Skilbeck C G 2015a Do ENSO and coastal development enhance coastal burial of terrestrial carbon? PLoS ONE 10 e0145136
Macreadie P I, Trevathan-Tackett S M, Skilbeck C G, Sanderman J, Curlewis N, Jacobsen G and Seymour J R 2013b Losses and recovery of organic carbon from a seagrass ecosystem following disturbance Proc. R. Soc. Lond. B. Biol. Sci. 282 20151537
Miyajima T, Koike I, Yamano H and Izumi H 1998 Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef Mar. Ecol. Prog. Ser. 175 251–9
Marba N, Arias-Ortiz A, Masque P, Kendrick G A, Mazarrasa I, Bastyany G R, Garcia-Orellana J and Duarte C M 2015 Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks J. Ecol. 103 296–302
Macreadie P I, Allen K, Kelaher B P, Ralph P J and Skilbeck C G 2012 Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks Glob. Change Biol. 18 891–901
Pendleton L et al 2012 Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems PLoS ONE 7 e43542
Serrano O, Mateo M A, Renom P and Julia R 2012 Characterization of soils beneath a Posidonia oceanica meadow Geoderma 185 26–36
Serrano O, Lavery P S, Rozarni M and Mateo M A 2014a Influence of water depth on the carbon sequestration capacity of seagrasses Glob. Biogeochem. Cycles 28 950–61
Serrano O, Lavery P S, Rozarni M and Mateo M A 2014b Influence of water depth on the carbon sequestration capacity of seagrasses Glob. Biogeochem. Cycles 28 950–61
Serrano O, Ricart A M, Lavery P S, Mateo M A, Arias-Ortiz A, Masque P, Rozaimi M, Steven A and Duarte C M 2016a Key biogeochemical factors affecting soil carbon storage in Posidonia meadows Biogeosciences 13 4581–94
Serrano O, Lavery P S, López-Merino L, Ballesteros E and Mateo M A 2016b Location and associated carbon storage of erosional escarpments of seagrass Posidonia mats Front. Mar. Sci. 3 42
Serrano O, Ruhon R, Lavery P S, Kendrick G A, Hickey S, Masque P, Arias-Ortiz A, Steven A and Duarte C M 2016c Impact of mooring activities on carbon stocks in seagrass meadows Sci. Rep. 6 23193
Zuo Z Z, Eisma D and Berger G W 1991 Determination of sediment accumulation and mixing rates in the Gulf of Lions, Mediterranean Sea Oceanol. Acta 14 253–62