Synthesizing Mathematical Identities with E-Graphs

Ian Briggs
School of Computing
University of Utah
Salt Lake City, UT, USA
ibriggs@cs.utah.edu

Pavel Panchekha
School of Computing
University of Utah
Salt Lake City, UT, USA
pavpan@cs.utah.edu

Abstract

Identities compactly describe properties of a mathematical expression and can be leveraged into faster and more accurate function implementations. However, identities must currently be discovered manually, which requires a lot of expertise. We propose a two-phase synthesis and deduplication pipeline that discovers these identities automatically. In the synthesis step, a set of rewrite rules is composed, using an e-graph, to discover candidate identities. However, most of these candidates are duplicates, which a secondary de-duplication step discards using integer linear programming and another e-graph. Applied to a set of 61 benchmarks, the synthesis phase generates 7215 candidate identities which the de-duplication phase then reduces down to 125 core identities.

CCS Concepts: • Computing methodologies → Representation of mathematical functions.

Keywords: synthesis, approximation theory, e-graphs

ACM Reference Format:
Ian Briggs and Pavel Panchekha. 2022. Synthesizing Mathematical Identities with E-Graphs. In Proceedings of the 1st ACM SIGPLAN International Symposium on E-Graph Research, Applications, Practices, and Human-factors (EGRAPHS '22), June 14, 2022, San Diego, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3520308.3534506

1 Introduction

Identities are a compact way of describing the properties of a mathematical expression. For example, the $\sin(x)$ function is odd and periodic, which can be expressed via the identities $\sin(x) = -\sin(-x)$ and $\sin(x) = \sin(x + 2\pi k)$. Identifying the identities true of a particular expression allow one to write faster and more accurate implementations of that function. We propose automatically synthesizing the identities necessary for range reduction and reconstruction of compound functions using e-graphs.

Specifically, this paper considers the task of synthesizing equalities $f(x) = s(f(t(x)))$ from arbitrary mathematical expressions f in one variable x. To do so, we use a set of rewrite rules, based on the Herbie floating-point synthesis tool [7], to generate equivalent forms of $f(x)$ in an e-graph, and extract expressions of the form $s(f(t(x)))$. On a set of 61 benchmarks, this generates 7215 identities. The vast majority of extracted expressions are, however, duplicates of each other, and represent the same mathematical property. We therefore de-duplicate these identities in a second e-graph, which uses the same set of rewrite rules but, crucially, treats f abstractly. This means that identities are considered duplicates if they are equivalent for all possible functions f, that is, if they express the same property of f. Deduplication significantly cuts down (by 96%) on the number of synthesized identities. We further add a second de-duplication phase that considers compositions of identities (of the form $f(x) = s_1(s_2(f(t_2(t_1(x)))))$) and reduces the number of identities by a further 44%. These synthesis and deduplication phases allow us to automatically synthesize a small yet descriptive set of identities for an arbitrary mathematical expression.

2 Motivation

To implement a transcendental mathematical function in floating point, such as \sin, \exp, or \log, an approximation must be used; some common techniques include polynomial approximation, table based interpolation, or combinations of these. These approaches work particularly well when the input is drawn from a small domain, since polynomial-based and table-based approximations are typically less accurate when used over larger domains. As such, implementations of mathematical functions require range reduction and reconstruction, which implement one function in terms of an auxiliary function over a smaller domain. Range reduction and reconstruction uses the features of a function to derive an appropriate auxiliary function and map the desired function to it. For example, consider the task of implementing $\sin(x)$. It’s relatively straightforward to approximate $\sin(x)$ over a narrow range like $[0, \pi/2]$ using a technique like Remez approximation [6], but these techniques get less accurate as

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EGRAPHS ’22, June 14, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9270-9/22/06.
https://doi.org/10.1145/3520308.3534506

1This technique is called range reduction and reconstruction despite modifying the domain, not the range, of the function in question.
the domain grows larger, and are totally unworkable if, for example, the input x could be any double-precision value. However, as shown in Figure 1, the graph of $\sin(x)$ has many symmetries and self-similarities. For example, $\sin(x)$ is horizontally symmetric, with the function looking identically to the left and right of the peak at $\pi/2$. This means that to implement $\sin(x)$ over $[0, \pi]$, inputs between $\pi/2$ and π can be remapped to the input $[0, \pi/2]$. In other words, an implementation of $\sin(x)$ over $[0, \pi]$ can be reduced to an implementation over $[0, \pi/2]$. Likewise, the left half of the graph is just a 180° rotation of right half. Thus implementing $\sin(x)$ over $[-\pi, \pi]$ can be reduced to implementing it over $[0, \pi]$, and negating the result for negative inputs. Finally, $\sin(x)$ is periodic with period 2π. Thus, to implement $\sin(x)$ for arbitrary real numbers x, it’s sufficient to take the input x modulo 2π, mapping the input into an arbitrary input range of width 2π like, for example, $[-\pi, \pi]$. Intuitively, these range reduction and reconstruction steps correspond to graphical symmetries of $\sin(x)$, but mathematically, these symmetries correspond to mathematical identities of $\sin(x)$. Horizontal symmetry around $\pi/2$ corresponds to the identity $\sin(x) = \sin(\pi - x)$; the 180° rotation corresponds to $\sin(x) = -\sin(-x)$; and periodicity corresponds to the fact that $\sin(x) = \sin(x + 2\pi n)$ for any integer n. Each of these identities correspond to a step in our $\sin(x)$ implementation: horizontal symmetry means subtracting inputs in $[\pi/2, \pi]$ from π; the 180° symmetry means negative inputs (and storing a flag to negate the results before returning); and periodicity requires computing the input x modulo 2π. Other $\sin(x)$ identities, like the double-angle formula, could also be used for range reduction and reconstruction.

More generally, implementations of mathematical functions typically leverage identities of those functions to operate over a larger set of inputs or to improve accuracy and speed. In the general case, these identities take the form $f(x) = s(f(t(x)))$ where t corresponds to the range reduction function and s corresponds to the reconstruction function. For example, for $\sin(x)$, the 180° rotation identity has $t(x) = -x$ and $s(y) = -y$, while the periodicity identity has $t(x) = x + 2\pi$ and $s(y) = y$; 1 lists s and t for $\sin(x)$’s other identities. Unfortunately, today, range reduction and reconstruction steps are coded manually by a mathematical expert, even though the actual polynomial-based or table-based core can be derived with automated tools [4, 8]. For elemental functions such as \sin, \log, or \exp, these identities are relatively common knowledge; but for compound mathematical functions like $\log(x + 1) - \log(x)$, $(1 - (\tan(x) \cdot \tan(x)))/(1 + (\tan(x) \cdot \tan(x)))$, or $(1 - \cos(x))/\sin(x)$, the useful identities might not be so obvious. This means that high-quality implementations of these compound functions are still the domain of experts with deep experience and knowledge.

3 Synthesizing

Our overall approach is to construct an e-graph containing the compound function $f(x)$ and use the axioms of basic functions as rewrite rules to discover identities about $f(x)$ like $f(x) = -f(x + k)$. Then, all e-nodes in the e-class of $f(x)$ are extracted and any with the form $s(f(t(x)))$ are taken as candidate identities.

3.1 Grammar and Rewrite Rules

To do any of this we need to start with a firm e-graph world to stand on, meaning a grammar and accompanying rewrite rules so that combinations of rewrites can discover meaningful identities. Our grammar starts with standard mathematical operations such as addition, subtraction, multiplication, division, as well as common mathematical functions such as square root, trigonometric functions, exponential functions, and logarithmic functions. The compound functions whose identities we seek will be defined in terms of these common operations. We assume these operations ultimately apply to real-valued constants and a single real-number argument x. Then, mathematical identities such as $x + y = y + x$ or $\cos(x) = \cos(-x)$ are encoded as rewrite rules.

Initially, we derived our rule set from the Herbie expression simplifier [7], but we quickly realized that that rule set was unusable for our purposes because it contains many unsound rules. For example, consider the rule $a \cdot (1/a) \sim 1$, called rgt-mult-inverse in Herbie. While innocuous-looking,

Inputs	Outputs	$\sin(x) = s(t(x))$	$s(y) = t(x) = $
$[-\infty, \infty]$	$[0, \infty]$	$-\sin(-x)$	$-y$ $-x$
$[0, \infty]$	$[0, 2\pi]$	$\sin(x - n2\pi)$	y $x - 2\pi\lfloor\frac{x}{2\pi}\rfloor$
$[0, 2\pi]$	$[0, \pi]$	$-\sin(x - \pi)$	$-y$ $x - \pi$
$[0, \pi]$	$[0, \pi/2]$	$\sin(\pi - x)$	y $\pi - x$

Table 1. Four identities true for $\sin(x)$, and their representation in the form $\sin(x) = s(\sin(t(x)))$. For two of the identities $s(y) = y$, in which case no reconstruction step is needed.

Figure 1. A graph of $\sin(x)$, highlighting the portion over the domain $[0, \pi/2]$ and indicating how various graphical symmetries allow one to recover the complete graph.
it rewrites the expression \(0 \cdot (1/0)\) to 1, while the equally-innocuous rule mul\(\rightarrow\)1, which states that \(0 \cdot a \rightarrow 0\), rewrites \(0 \cdot (1/0)\) to 0. In an e-graph, using both of these rules simultaneously allows one to prove that \(0 = 1\), which is both untrue and causes significant problems for extraction. In Herbie, this is not a significant issue because the rules are run for few iterations, and derivations like this are rarely hit. Moreover, Herbie saves the state of its e-graph and rewinds to an earlier iteration if two obviously-different things are proven equal. However, for our task, a different approach is needed, since runs with many iterations are necessary to discover valuable identities about compound functions.

We therefore need to choose a subset of rules where derivations like the above are impossible. In the example above, the issue is clearly the input expression, \(0 \cdot (1/0)\), which is undefined everywhere. We thus need to ensure that none of our rewrite rules can ever create expressions of this form; Table 2 lists functions in our grammar and the domains that they are not defined over. For example, the rewrite rule \(a/b \rightarrow 1/(b/a)\) must be dropped, since applying it to the safe, well-defined expression \(0/1\) constructs the ill-defined term \(1/(1/0)\). Mathematically, the issue is that the left hand side of this rule is defined as long as \(b\) is nonzero, while the right hand side additionally requires that \(a\) is non-zero in order to be defined. More generally, for each of our rewrite rules, we need to ensure that the right hand side is defined at all points that the left hand side is defined at; if this is true, then inductively every expression in the e-graph is defined at all points that the original compound function is defined at, and wholly-undefined expressions are never generated. This typically requires some kind of conditional reasoning. For example, in the rule \(a/(b \cdot c) \rightarrow (a/b)/c\), we can assume that the left hand side is defined and therefore that \(b \cdot c\) does not equal zero (since we divide by it), while on the right hand side we need to prove that \(b\) is not equal to zero (so that we can divide by it) and that \(c\) is not equal to zero (so that we can also divide by it). Luckily, \(b \cdot c\) is nonzero if and only if both \(b\) and \(c\) are nonzero, so this rule is safe to apply. We applied similar reasoning to each of the rules in the Herbie rule set, filtering it down to a set of safe rules that cannot lead to the unsound equivalences described above.

Table 2. Operations which can be undefined.

Operation	Invalid Domain
\(a/b\)	\(b = 0\)
\(\text{acos}(x)\)	\(x < -1 \lor 1 < x\)
\(\text{acosh}(x)\)	\(x < 1\)
\(\text{asin}(x)\)	\(x < -1 \lor 1 < x\)
\(\log(x)\)	\(x \leq 0\)
\(\log^{-1}_1(x)\)	\(x \leq -1\)
\(\text{sqrt}(x)\)	\(x < 0\)
\(\text{atan2}(y, x)\)	\(x = 0\)

3.2 E-Graphs for Identities

With the grammar and rewrite rules set, e-graphs provide a straightforward way to derive a whole lot of equivalent formulations of the compound function. For example, if the compound function is \(f(x) = \tan(x) - \sin(x)\), our rewrite rules allow us to prove it equal to \(-\tan(-x) - \sin(-x)\), or in other words that \(f(x) = -f(-x)\). Notice that we are interested only in formulations of \(f(x)\) that themselves are phrased in terms of calls to \(f\), so standard e-graph extraction can’t be used. Instead, we want to artificially lower the cost of calls to \(f\), so that equivalent formulations that call \(f\) are preferred. This is tricky to do, since \(f\) is given by a compound expression, while extraction looks at e-nodes one at a time, and so can’t know if a call to \(f\) is even being considered. To get around this issue, we introduce a new operator to our grammar, \(\text{thefunc}(x)\), plus new rewrite rules representing the equality \(\text{thefunc}(x) = f(x)\). Note that this equality is the only equality constraining \(\text{thefunc}\). This way, we not only prove \(\tan(x) - \sin(x)\) equal to \(-\tan(-x) - \sin(-x)\), but also \(\text{thefunc}(x) = -\text{thefunc}(-x)\). Extraction can then preferentially select expressions containing \(\text{thefunc}\) by setting the cost of the \(\text{thefunc}\) operator to zero during extraction.

Traditionally, e-graph extraction is used to select the single simplest expression represented in the e-graph and equal to a given starting point. However, in our case, we want to extract multiple expressions representing a diverse set of different identities that can be combined into a useful range reduction and reconstruction algorithm. This requires a twist on the traditional extraction algorithm. In a traditional e-graph extraction, a simplest (lowest-cost) form is computed for every e-class in the e-graph, and the simplest form of the initial e-class is returned. This results in the simplest form of the initial expression. Since we instead want many different formulations of the initial expression \(\text{thefunc}(x)\), we are looking to extract multiple expressions from a single e-class; but we also don’t want our extracted expressions to contain unnecessary junk like \(\text{thefunc}(x + 0 \cdot (\ldots))\). To balance the goals of diversity and simplicity, we made a custom extractor that returns standard extractions of all e-nodes in the initial e-class. Each of those e-nodes represents a different formulation of the initial expression, since duplicate e-nodes are merged in an e-graph; however, the standard extraction of each of those e-nodes uses simplest form for each argument of the e-node, meaning that the extracted expressions are all still relatively simple.

The combination of zero cost for \(\text{thefunc}\) nodes and standard extractions of each e-node in the initial e-class allows us to extract many different formulations of \(\text{thefunc}(x)\) that preferentially contain calls to \(\text{thefunc}\), and many of the extracted expressions represent identities of \(f(x)\). However, these extracted expressions also contain many duplicates and redundant identities.
4 Deduplicating

In range reduction and reconstruction, duplicate or redundant identities are never useful, so should be automatically removed. For instance, the identity \(f(x) = 0 + f(x) \) does not help reduce the range of \(x \), yet is represented by a different e-node (a plus node) than the initial expression thefunc(\(x \)).

However, some identities that do not change the range of \(x \), such as \(f(x) = \text{fabs}(f(x)) \), do present information useful during range reduction, in this case that \(f(x) \) is uniformly positive. What determines if an extracted identity is useful? Our insight is that identities like \(f(x) = 0 + f(x) \) are useless precisely because they are true of every possible function \(f(x) \), while an identity like \(\text{fabs}(f(x)) \) is true about only some functions \(f(x) \) and therefore provides non-trivial information about \(f \). This insight allows us to use an e-graph for deduplication.

Specifically, we create a new, secondary e-graph containing all of the expressions extracted from the first e-graph, expressed in terms of thefunc(\(x \)) and initially unequal, including the expression thefunc(\(x \)). We then run the same set of rewrite rules except for the rules representing the equality thefunc(\(x \)) = \(f(x) \). By withholding this equality, we effectively ask the e-graph to prove which of our extracted expressions are the same for all possible meanings of thefunc.

Any extracted expressions proved equal in this e-graph are true for all possible functions \(f \) and are therefore duplicates. Thus, to eliminate duplicates, we merely re-extract all of the expressions from this new e-graph, which will yield the same extraction for expressions that are equal for all possible \(f \), and throw away the duplicates.

A similar approach can be used to identify not only duplicate rules but also rules that are compositions of other rules. For example, for \(f(x) = \tan(x) - \sin(x) \), both \(I_1 = [f(x) = f(x + 2\pi n)] \) and \(I_2 = [f(x) = f(x + 4\pi)] \) are true identities, and moreover these two identities are not equivalent for arbitrary functions \(f(x) \). However, the first identity, applied twice, results in the second identity, and in fact the first identity can be repeated any number of times to result in \(f(x) = f(x + 2\pi n) \). This means that any use of the second identity during range reduction can always be better accomplished using the first identity, and so the second identity ought to be filtered out. We do so using e-graphs and integer linear programming. Like for deduplicating, we create a new e-graph containing all the extracted expressions, expressed in terms of thefunc(\(x \)) and initially unequal, as well as all pairwise compositions of these expressions, where composing one expression with another means substituting the second expression into all uses of thefunc in the first expression. Applying rewrite rules in this e-graph allows us to prove identities like \(I_1 \circ I_1 = I_2 \), and re-extracting all composed expressions allows us to identify which composed identities are equal to which non-composed identities. In this case, we say the identity \(I_2 \) is covered by the set \(\{I_1\} \) of identities, in the sense that it is equal to a composition of identities from that set. We now aim to select a minimal set of core identities that cover all the discovered identities.

This is a kind of set-cover problem, which we encode as integer linear programming like so. For each identity we introduce two variables: \(I_n \), which indicates whether the identity is part of the core set, and \(c_{I_n} \), indicates whether it is covered by identities in the core set. These variables are constrained by the equivalences discovered by the e-graph: if \(I_i \circ I_j = I_k \), then \(c_{I_i} \land c_{I_j} \implies c_{I_k} \). All identities in the core set are covered as well: \(I_i \implies c_{I_i} \). To put this in more concrete terms, for \(f(x) = \tan(x) - \sin(x) \), the constraint for \(I_2 \) reads \(c_{I_2} = I_2 \lor (c_{I_1} \land c_{I_3}) \). The integer linear program is then asked to minimize the sum of the \(I_n \)'s, that is, minimize the number of core identities.

However, additional constraints are needed to prevent “cyclic” reasoning in the case of equalities like \(I_1 \circ I_1 = I_1 \), where the constraint \(c_{I_1} = I_1 \lor (c_{I_1} \land c_{I_1}) \) is satisfiable with \(I_1 = \bot \) and \(c_{I_1} = \top \). To avoid this, we enforce a kind of provenance where each covered identity must be covered by a finite sequence of compositions from the core set. Each identity now gets a positive age variable, \(a_{I_n} \), which defines when the identity was covered. If an identity is in the core set (meaning \(I_n \) is true) then its age \(a_{I_n} = 1 \). Otherwise, its age is the sum of the ages of the covered identities that compose to it; for the \(\tan(x) - \sin(x) \) case, this means the constraint reads:

\[
I_2 = (a_{I_2} \land a_{I_1} = 1) \lor (c_{I_1} \land c_{I_1} \land a_{I_2} = a_{I_1} + a_{I_1})
\]

The age variables eliminate the possibility of cycles; in the case of \(I_1 \circ I_1 = I_1 \), the constraint reads:

\[
I_1 = (I_1 \land a_{I_1} = 1) \lor (c_{I_1} \land c_{I_1} \land a_{I_1} = a_{I_1} + a_{I_1})
\]

The equation \(a_{I_1} = a_{I_1} + a_{I_1} \) is unsatisfiable, since all ages are positive, eliminating cycles and meaning that setting \(c_{I_1} \) requires setting \(I_1 \). The addition of ages transforms this from a SAT problem into an integer linear programming problem, but luckily one that is typically small and easy to solve. Using this encoding stops self supporting logic from forming, since the age of any covered identity can’t be less than the source of that cover.

The solution to this integer linear programming problem identifies a set of core identities of \(f(x) \) that are not duplicates and that can be composed to derive any other identity of \(f(x) \) provable from our set of rewrite rules. These core identities can then be presented to the user or, eventually, integrated into an end-to-end mathematical function synthesis tool.

5 Results

We implemented this approach on top of the egg e-graph library [9] via the snake_egg Python package and applied it to 61 mathematical expressions from the FPBench [1]
and Herbie [7] benchmark suites, plus additional expressions defining variant trigonometric functions like versin, havercosin, and similar. In total, the first synthesis step synthesized 7215 expressions across all benchmarks. Of these 2913 contained no form of their target function, leaving 4302 candidate identities. Deduplication then removes 4071 identities that are true for all possible functions \(f \), leaving 4302 identities that provide useful information about the function. Note that the vast majority of candidate identities are duplicates, for the simple reason that these identities can be found for any possible input program, while the non-trivial and non-duplicate identities require actual reasoning about the function at hand. Deduplicating compound functions using integer linear programming removed 102, leaving a penultimate count of 231. Of these, 19 are the trivial identity of \(\text{thefunc}(x) = \text{thefunc}(x) \), which is true of all benchmarks but is not always present because it can sometimes be represented as a compound of two other identities: for example, if \(I = [f(x) = -f(-x)] \), then \(I \circ f = [f(x) = -f(-x)] \), which simplifies to the trivial identity \([f(x) = f(x)]\). In this case, the trivial identity won’t be in the minimal core set. This means that of the 129 deduplicated identities, 106 are non-trivial, shown in Figure 2. Of these, a healthy 51 of them, just under half, look, upon manual examination, to correspond to useful range reductions. This means that our approach is effective at automatically synthesizing identities that are useful for range reduction and reconstruction of compound functions.

The other 55 non-trivial identities are, however, less useful, in that they just encode the definition of \(f(x) \) in a complicated form. For example, consider \(f(x) = 1 + \cos(x) \), for which our tool generates the identity \((1 - \text{thefunc}(x)) - (-\text{thefunc}(x) - \cos(x)) \). Distributing the subtraction, we get \(1 - \text{thefunc}(x) + \text{thefunc}(x) + \cos(x) \), and the two instances of \(\text{thefunc}(x) \) cancel to leave just \(1 + \cos(x) \), the definition of \(f(x) \). This is not a useful identity of \(f(x) \) and does not suggest a possible range reduction and reconstruction approach. This issue is, in a sense, the dual of duplication and redundancy: where duplicates are those that are equivalent even not knowing the definition of \(f(x) \), these definitional identities are those that are only true for the single, fixed \(f(x) \). In this example, the definition identity can be detected by noticing that it is equivalent, for arbitrary \(f(x) \), to an expression that doesn’t use \(f(x) \) at all, meaning that calling \(f(x) \) is unnecessary and that this identity isn’t helpful for range reduction. In the egg library, an e-graph analysis can be used to determine whether \(f(x) \) is equivalent to an expression that does not call \(f(x) \). We do not yet have a comprehensive approach to detecting and eliminating these kinds of definitional identities. Our current approach attempts to derive the definition of \(f(x) \) from each identity, keeping only the identities where this is impossible. To do so, we might, for example, take the right-hand-side \(s(f(t(x)) \) of the identity and adds the equality \(f(x) - s(f(t(x)) = 0 \) to an e-graph. If \(f(x) \) can then be proven equal to an expression without any calls to \(f \), the identity is definitional and can be discarded. In our experiments, this approach removes just 4 definitional identities, suggesting that it is not a particularly effective method for dealing with definitional identities. It’s possible that variations on this approach (like adding the equality \(f(x)/s(f(t(x)) = 1 \), will be more effective, but that’s not clear at the moment. Despite the presence of many definitional identities, our approach is clearly surfaceing many true and useful identities and provides useful assistance to a programmer implementing a mathematical function.

6 Discussion & Related Work

Our approach is similar to existing work on rewrite rule synthesis, algebraic rewriting, and library function implementation.

Ruler [5] is a synthesis tool that generates rewrite rules over an arbitrary domain \(D \). For example, given an interpreter for arithmetic expressions on rational numbers, Ruler...
can automatically synthesize facts like commutativity, associativity, and the difference of squares. Like Ruler, our approach generates mathematical equalities over a domain, though unlike in Ruler, our domain includes a function symbol \texttt{the}\texttt{func}. Moreover, while Ruler-generated rewrite rules can be arbitrary expressions from its grammar, our approach generates rules strictly of the form \(f(x) = s(f(t(x))) \). Because Ruler rules can have arbitrary left- and right-hand sides, in its synthesis step it must consider all pairs of e-nodes in the e-graph, while in our more restricted setting we can use ordinary e-graph extraction. Ruler attempts to minimize the set of rules it synthesizes, but its approach is different from ours. Ruler uses an approach similar to delta-debugging, where subsets of synthesized rules are tested to check whether they can compose to form the full set of synthesized rules. One can see this as one heuristic method to approximately solve the ILP problem our approach uses for minimization. We expect fewer rewrites to be available in our domain, and desire more minimization, so the slower but more optimal ILP solution is more appropriate. Finally, Ruler requires a complete interpreter and verifier for its domain, which makes it difficult (or perhaps impossible?) to apply to domains like exponential or trigonometric functions. Our approach is instead based on basic mathematical axioms, so has no trouble with exponential or trigonometric functions.

In algebraic rewriting, identities are used to transform one mathematical expression into another. For example, the Herbie floating-point synthesis tool [7] rewrites mathematical expressions using an e-graph in an attempt to find an equivalent expression with less floating-point error. In Herbie 1.5, a feature was added that allows Herbie to leverage symmetric expressions. For example, in the expression \(f(a, b) = \sqrt{a^2 + b^2} \), the variables \(a \) and \(b \) are symmetric, meaning that swapping \(a \) and \(b \) results in the same value. In such a case, Herbie automatically inserts a sorting step, which sometimes allows for more accurate results. These symmetries could be seen as an instance of our framework, with the identity reading \(f(a, b) = f(b, a) \) meaning \(s(y) = y \) and \(t(a, b) = (b, a) \).

Herbie’s approach was an inspiration for this work, and we suspect that a generalization of the approach in this paper could discover symmetric expressions. However, our current implementation does not handle multi-variable expressions; the success of symmetric expressions in Herbie suggests that extending our implementation would be valuable. Such an extensions could potentially allow Herbie to handle a larger class of expressions, including anti-symmetric expressions \(f(a, b) = -f(b, a) \) or expressions that are both symmetric and have other identities; for example, \(\sqrt{a^2 + b^2} \) is not only symmetric but also even in both \(a \) and \(b \).

Mathematical library implementation tools such as MetaLibm [3], Flopoco [2], and RLibm [4] provide utilities that assist experts in writing implementations of mathematical functions like \(\sin(x) \). However, all three of these tools require the expert to identify and leverage mathematical identities such as periodicity, evenness, or oddness. Our approach potentially paves the way for a fully automated mathematical function implementation synthesis, where identities are automatically synthesized, deduplicated, and then used to generate faster and more accurate function implementations. We plan to pursue this avenue as the next step for our implementation, combining it with established techniques [4, 6, 8] for generating polynomial- or table-based implementations of functions over a narrow range.

References

[1] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu, Alex Sanchez-Stern, and Zachary Tatlock. 2016. Toward a Standard Benchmark Format and Suite for Floating-Point Analysis. (2016).

[2] Florent de Dinechin and Bogdan Pasca. 2011. Designing Custom Arithmetic Data Paths with FloPoCo. IEEE Design & Test of Computers 28, 4 (July 2011), 18–27.

[3] Olga Kupriianova and Christoph Lauter. 2014. Metilibm: A Mathematically Functions Code Generator. In Mathematical Software – ICMS 2014 (Lecture Notes in Computer Science), Hoon Hong and Chee Yap (Eds.). Springer, Berlin, Heidelberg, 713–717. https://doi.org/10.1007/978-3-662-44199-2_106

[4] Jay P. Lim and Santosh Nagaraktte. 2021. RLibm: A Novel Polynomial Approximation Method to Produce Correctly Rounded Results for Multiple Representations and Rounding Modes. CoRR abs/2108.06756 (2021). arXiv:2108.06756 https://arxiv.org/abs/2108.06756

[5] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock. 2021. Rewrite Rule Inference Using Equality Saturation. Proc. ACM Program. Lang. 5, OOPSLA, Article 119 (oct 2021), 28 pages. https://doi.org/10.1145/3485496

[6] Ricardo Pachón and Lloyd N. Trefethen. 2009. Barycentric-Remez algorithms for best polynomial approximation in the chebfun system. BIT Numerical Mathematics 49, 4 (Oct. 2009), 721. https://doi.org/10.1007/s10543-009-0240-1

[7] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically improving accuracy for floating point expressions. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/2737924.2737959

[8] S. Chevillard, M. Joldes, and C. Lauter. 2010. Sollya: An Environment for the Development of Numerical Codes. In Mathematical Software - ICMS 2010 (Lecture Notes in Computer Science, Vol. 6327). K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama (Eds.). Springer, Heidelberg, Germany, 28–31.

[9] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (Jan 2021), 29 pages. https://doi.org/10.1145/3434304