GOOD REDUCTION OF THREE-POINT GALOIS COVERS

ANDREW OBUS

Abstract. Michel Raynaud gave a criterion for a three-point G-cover $f : Y \rightarrow X = \mathbb{P}^1$, defined over a p-adic field K, to have good reduction. In particular, if the order of a p-Sylow subgroup of G is p, and the number of conjugacy classes of elements of order p is greater than the absolute ramification index e of K, then f has potentially good reduction. We give a different proof of this criterion, which extends to the case where G has an arbitrarily large cyclic p-Sylow subgroup, answering a question of Raynaud. We then use the criterion to give a family of examples of three-point covers with good reduction to characteristic p and arbitrarily large p-Sylow subgroups.

1. Introduction

This paper is about three-point G-Galois covers of the projective line (that is, G-Galois covers $f : Y \rightarrow X = \mathbb{P}^1$ that are étale outside of $\{0, 1, \infty\} \subseteq X$). In particular, we give a criterion for such covers to have potentially good reduction to characteristic p, when they are defined over a mixed characteristic $(0, p)$ discrete valuation field. If $p \nmid |G|$, then it is known (SGA1) that the cover has potentially good reduction. If p divides the order of any ramification index, then the cover will have bad reduction (see §3 for what we specifically mean by this). When p divides $|G|$, but not any ramification index (the “in-between” case), then it can be quite difficult to determine whether the cover has potentially good reduction. Our main theorem is the following (which is phrased equivalently, although slightly differently, in the body of the paper).

Theorem 5.2. Let G be a finite group with cyclic p-Sylow subgroup. Let $K_0 = \text{Frac}(W(k))$, where k is an algebraically closed field of characteristic p. Let K/K_0 be a finite extension of degree $e(K)$, where $e(K)$ is less than the number of conjugacy classes of order p in G. If $f : Y \rightarrow X = \mathbb{P}^1$ is a three-point G-cover defined over K (as a G-cover), then f has potentially good reduction, realized over a tame extension L/K of degree dividing the exponent of the center $Z(G)$ of G. In particular, if $Z(G)$ is trivial, then f has good reduction.

Note that, if f is a cover satisfying the hypotheses of Theorem 5.2, then the ramification indices of f are all prime to p (Ray99, Lemma 4.2.13)).
The immediate motivation for Theorem 5.2 is the result \text{Ray99, Théorème 0} of Raynaud, which is Theorem 5.2 in the case that the p-Sylow subgroup of G has order exactly p. Raynaud asked (\text{Ray99, Question 6.2.1}) whether the theorem could be extended to the case where G has a cyclic p-Sylow subgroup. Raynaud’s proof (in the $v_p(|G|) = 1$ case) was based on a study of the stable model of the cover f. In particular, he showed that the action of the absolute Galois group G_K on the stable reduction \overline{f} of f factors through a quotient of prime-to-p order (i.e., that the “wild monodromy” is trivial), and was able to conclude the good reduction from this. The author undertook a detailed study of this Galois action in \text{Obu12}, but it is still not clear whether the wild monodromy must be trivial for three-point covers as in Theorem 5.2. We are able to get around this obstacle by analyzing the arithmetic of certain extensions of discrete valuation rings attached to the stable model of f, see §1.1.

Of course, the greater background motivation for our result is to understand the tame fundamental group $\pi_1(U_K)^\text{tame}$ of $U_K := \mathbb{P}^1_k \setminus \{0, 1, \infty\}$, where k is algebraically closed of characteristic p. If K is an algebraic closure of $\text{Frac}(W(k))$ and $U_K = \mathbb{P}^1_K \setminus \{0, 1, \infty\}$, then Grothendieck (\text{SGA1}) showed that there exists a well-defined surjection

$$ pr : \pi_1(U_K)^{p\text{-tame}} \twoheadrightarrow \pi_1(U_k)^{\text{tame}} $$

up to conjugation (here $\pi_1(U_K)^{p\text{-tame}}$ is the inverse limit of the automorphism groups of étale Galois covers of U_K whose completion to a branched cover of \mathbb{P}^1_K has prime-to-p branching indices). The surjection pr is an isomorphism on the maximal prime-to-p quotients. Understanding the kernel of pr (equivalently, $\pi_1(U_K)^{\text{p-tame}}$) is equivalent to determining which p-tame three-point G-Galois covers of \mathbb{P}^1_K have good reduction. For a purely group-theoretic translation of our result, see Appendix A.

1.1. Plan of the proof. Similarly to the proof of Raynaud, our proof of Theorem 5.2 depends upon understanding the stable reduction $\overline{f} : \overline{Y} \to \overline{X}$ of the G-cover f to characteristic p. We will recall the details we need in §3. If f has bad reduction, there will be irreducible components of \overline{X} above which the map \overline{f} is inseparable, where information from the original cover is seemingly lost. But we are able to show that, when f is a three-point cover with bad reduction, the reduction is multiplicative. That is, the action of certain subgroups $\mathbb{Z}/p^i \leq G$ on certain irreducible components of \overline{Y} reduces to that of the multiplicative group scheme μ_{p^i}. This is done by generalizing a result of Wewers (\text{Wew03a}) on multiplicative reduction of $\mathbb{Z}/p \times \mathbb{Z}/m$-covers ($p \nmid m$) to the case of $\mathbb{Z}/p^i \times \mathbb{Z}/m$-covers. In §3 we use the construction of the auxiliary cover (originally by Raynaud in \text{Ray99}), generalized by the author in \text{Obu10}), to reduce the case of general G with cyclic p-Sylow subgroup to the case of $\mathbb{Z}/p^i \times \mathbb{Z}/m$.

We show independently in §5 (Proposition 5.1) that a three-point G-cover (or even a G-cover of \mathbb{P}^1 branched at arbitrarily many equidistant points) defined over a “small” field (i.e., a field K such as in Theorem 5.2) cannot possibly have multiplicative reduction. This uses results in §2 on Galois extensions of mixed characteristic discrete valuation fields. This allows us to conclude Theorem 5.2. In §6 we apply Theorem 5.2 to give examples of covers with good reduction.

It should be noted that the method of deformation data (\text{Hen00}, \text{Wew03b}, \text{Obu12}) is implicit in everything we do. However, we are able to sufficiently encapsulate this so that an understanding of deformation data is unnecessary to
read this paper, as long as one is willing to accept the vanishing cycles formula (Theorem 3.5).

1.2. Notation. For a group G with a cyclic p-Sylow subgroup P, we set $n_G := |N_G(P)|/|Z_G(P)|$, the order of the normalizer of P divided by the order of the centralizer. A G-Galois cover (or just G-cover) of projective, smooth, geometrically integral curves over a field K is a finite map $f : Y \rightarrow X$ such that $K(Y)/K(X)$ is a G-Galois extension. If f is a G-Galois cover, with $y \in Y$ such that $f(y) = x$, then the ramification index of y is equal to the branching index of x, which is the ramification index of the extension $\mathcal{O}_{Y,y} \rightarrow \mathcal{O}_{X,x}$ of complete local rings. If this index is greater than 1, then y is called a ramification point and x is a branch point.

Let $f : Y \rightarrow X$ be any morphism of schemes and assume H is a finite group with $H \rightarrow \text{Aut}(Y/X)$. If G is a finite group containing H, then we define the map $\text{Ind}_H^G f : \text{Ind}_H^G Y \rightarrow X$ by setting $\text{Ind}_H^G Y$ to be a disjoint union of $[G : H]$ copies of Y, indexed by the left cosets of H in G, and applying f to each copy. The group G acts on $\text{Ind}_H^G Y$, and the stabilizer of each copy of Y in $\text{Ind}_H^G Y$ is a conjugate of H.

The valuation on any mixed characteristic discrete valuation field K is written v_K, and is normalized so that the value group is \mathbb{Z}.

Acknowledgements

The main result of this paper is the first result I had originally wanted to prove for my Ph. D. thesis. While I was not able to succeed at the time, I was able to lay much of the essential groundwork for this paper. I thank my thesis advisor, David Harbater, for invaluable help with this process. I also thank Irene Bouw, Gerd Faltings, Michel Raynaud, and Kirsten Wickelgren for useful comments.

2. Extensions of discrete valuation fields

Let L/K be a finite separable extension of complete discrete valuation fields (DVF s), with valuation rings $\mathcal{O}_L/\mathcal{O}_K$ and residue fields κ_L/κ_K. The extension L/K (likewise $\mathcal{O}_L/\mathcal{O}_K$) is called unramified if a uniformizer of K is also a uniformizer of L, and the extension κ_L/κ_K is separable. If the extension is not unramified, it is called ramified. If κ_L/κ_K is inseparable, the extension is called fiercely ramified. If a uniformizer of K is not a uniformizer of L, we will call the extension naively ramified. An extension that is not naively ramified is called weakly unramified (it might be fiercely ramified or unramified). Furthermore, if L/K is a $(0,\ldots,0)$ finite extension of complete DVFs such that K has perfect residue field, it is called unramified if a uniformizer of K is a uniformizer of L.

Now, let us assume that L and K have characteristic $(0,p)$, and that L/K is a \mathbb{Z}/p^n-extension, for $n \geq 1$. The extension L/K (likewise $\mathcal{O}_L/\mathcal{O}_K$) is said to be of μ_{p^n}-type if it is a Kummer extension that can be generated by extracting a p^nth root of an element $a \in K$ such that $v_K(a) = 0$ and the reduction of a is not a pth power in κ_K (in particular, K must contain a p^nth root of unity). Such an extension is clearly fiercely ramified and weakly unramified, with an inseparable residue field extension of degree p^n. If $F \subseteq K$ is a complete DVF, then the extension L/K (likewise $\mathcal{O}_L/\mathcal{O}_K$) is potentially of μ_{p^n}-type with respect to F if there exists a finite extension F'/F of complete DVFs such that the base change $L'/K' := (L \otimes_F F')/(K \otimes_F F')$ of L/K is a field extension of μ_{p^n}-type.
The terminology “\(\mu_p^n \)-type” comes from the fact that the corresponding map
\(\text{Spec } O_L \rightarrow \text{Spec } O_K \) is a torsor under the group scheme \(\mu_{p^n} \).

Lemma 2.1. Let \(L/K \) be a \(\mathbb{Z}/p^n \)-extension of characteristic \((0,p)\) complete DVFs
given as a Kummer extension by extracting a \(p^n \)th root of \(a \), where \(v_K(a) = 0 \). For
any complete DVF \(F \subseteq K \), we have that \(L/K \) is potentially of \(\mu_{p^n} \)-type with respect
to \(F \) iff it is of \(\mu_{p^n} \)-type.

Proof. One direction is trivial. For the other, suppose \(L/K \) is not of \(\mu_{p^n} \)-type, let
\(F'/F \) be a finite extension, and let \(L'/K' = (L \otimes_F F')/(K \otimes_F F') \). Assume \(L'/K' \)
is a field extension. Then \(a \) reduces to a \(p \)th power \(\overline{a} \) in the residue field \(\kappa_K \) of \(K \),
and \(\overline{a} \) is also a \(p \)th power in the residue field \(\kappa_{K'} \) of \(K' \). Now, \(L' = K'(\sqrt[p^n]{a}) \).
If we can also write \(L' = K'(\sqrt[p^n]{b}) \), with \(v_K(b) = 0 \), then Kummer theory shows that
\(b = a^r c^{en} \) for some \(r \in \mathbb{Z} \) and \(e \in K' \). This means that \(b \) reduces to a \(p \)th power in
\(\kappa_{K'} \), so \(L'/K' \) is not of \(\mu_{p^n} \)-type. \(\square \)

Lemma 2.2. Let \(L/K \) be a \(\mathbb{Z}/p^n \)-extension of characteristic \((0,p)\) complete DVFs
with \(n \geq 1 \), and let \(M/K \) be the unique \(\mathbb{Z}/p \)-subextension. Suppose \(F \subseteq K \) is a
complete DVF with algebraically closed residue field such that \(K \) is unramified over \(F \). Then \(L/K \) is potentially of \(\mu_{p^n} \)-type with respect to \(F \) iff \(M/K \) is potentially of
\(\mu_{p^n} \)-type with respect to \(F \).

Proof. Throughout this proof, a base change of \(K \) by a finite extension \(F'/F \) (resp.
\(F''/F \), etc.) will be denoted \(K' \) (resp. \(K'' \), etc.). The same holds for \(L \) and \(M \).
If \(L/K \) is potentially of \(\mu_{p^n} \)-type with respect to \(F \), then there is a finite extension
\(F'/F \) such that \(L' = K'((\sqrt[p^n]{a})) \) with \(v_K(a) = 0 \) and \(a \) does not reduce to a \(p \)th
power in the residue field \(\kappa_{K'} \) of \(K' \). Then \(M'/K' \) is given by \(M' = K'(\sqrt[p^n]{a}) \), so
\(M/K \) is potentially of \(\mu_{p^n} \)-type.

Conversely, suppose a finite extension \(F'/F \) yields \(M'/K' \) given by \(M' = K'(\sqrt[p^n]{a}) \),
where \(v_K(a) = 0 \) and \(a \) does not reduce to a \(p \)th power in \(\kappa_{K'} \). Note that \(K' \)
is unramified over \(F' \). If \(F'' = F'((\sqrt[p]{a})) \), then \(F''/F' \) is totally naively ramified (as \(F' \)
has algebraically closed residue field). So \(K''/K' \) is also totally naively ramified, \(v_K(a) = 0 \),
and \(a \) does not reduce to a \(p \)th power in the residue field \(\kappa_{K''} = \kappa_{K'} \) of \(K'' \). Thus \(M''/K'' \)
is given by \(M'' = K''((\sqrt[p^n]{a})) \), which is a non-trivial \(\mathbb{Z}/p \)-extension.
This means that \(L''/K'' \) is a \(\mathbb{Z}/p^n \)-extension given by \(L'' = K''((\sqrt[p^n]{b})) \), where \(b/a \) is a \(p \)th
power in \(K'' \). After a further totally naively ramified extension \(F'''/F'' \) (giving a totally naively ramified extension \(K'''/K'' \)), and possibly multiplying \(b
by a \) \(p \)th power in \(K'' \), we may assume that \(v_{K'''}(b) = 0 \), and \(a \) still does not reduce to a \(p \)th
power in the residue field \(\kappa_{K'''} = \kappa_{K'} \) of \(K''' \). Since \(b/a \) is a \(p \)th
power in \(K''' \), we have that \(b \) does not reduce to a \(p \)th power in \(\kappa_{K'''}. \) In particular,
\(L''' = K'''((\sqrt[p^n]{b})) \), thus \(L/K \) is potentially of multipliclicative type. \(\square \)

Remark 2.3. One can give an alternate proof of Lemma 2.2 by using [Tos10, Lemma 3.2] for the case \(n = 2 \), and then induction for general \(n \).

Proposition 2.4. Let \(m > 1 \) be prime to \(p \), let \(M/K \) be a \(\mathbb{Z}/m \)-extension of
characteristic \((0,p)\) complete DVFs, and assume that \(K \) contains the \(p \)th roots of
unity. Let \(a \in M^\times \backslash (M^\times)^p \), and let \(L = M((\sqrt[p]{a})) \). If \(L/K \) is \(G \)-Galois with \(G \)
non-commutative, then \(p \mid v_M(a) \).

Proof. By the Schur-Zassenhaus theorem, \(G \cong \mathbb{Z}/p \times \mathbb{Z}/m \), for some nontrivial
action of \(\mathbb{Z}/m \) on \(\mathbb{Z}/p \). Let \(\sigma, c \in G \) be noncommuting elements of order \(p \) and

prime-to-p respectively, such that \(c \sigma = \sigma^\nu c \), with \(\nu \equiv 1 \pmod{p} \). Since \(L/K \) is Galois, we know that \(a \) and \(c(a) \) both yield the same Kummer extension, so \(c(a) = a^{z \sigma} \), where \(z \in M \) and \(p \nmid d \).

Choose a \(p \)-th root \(\sqrt[p]{a} \) of \(a \) in \(L \), and let \(\zeta \) be a \(p \)-th root of unity such that \(\sigma(\sqrt[p]{a}) = \zeta \sqrt[p]{a} \). Let \(\alpha_c \) be such that \(c(\sqrt[p]{a}) = \zeta^{\alpha_c} \sqrt[p]{a}^d \). Then

\[
c(\sqrt[p]{a}) = c(\zeta \sqrt[p]{a}) = \zeta c(\sqrt[p]{a}) = \zeta^{1+\alpha_c} \sqrt[p]{a}^d,
\]

whereas

\[
\sigma^\nu c(\sqrt[p]{a}) = \sigma^\nu(\zeta^{\alpha_c} \sqrt[p]{a}^d) = \zeta^{\nu d + \alpha_c} \sqrt[p]{a}^d.
\]

Thus \(\nu d \equiv 1 \pmod{p} \). In particular, \(d \not\equiv 1 \pmod{p} \). Since

\[
v_M(a) \equiv v_M(c(a)) \equiv dv_M(a) \pmod{p},
\]

we conclude that \(p \mid v_M(a) \).

\begin{proof}
By Proposition \([2.4]\) we know that \(L/M \) is given by extracting a \(p \)-th root of some \(a \in M \) such that \(p \mid v_M(a) \). After multiplying by a \(p \)-th power, we may assume \(v_M(a) = 0 \). Since \(L/M \) is naively ramified, it is not of \(\mu_p \)-type, thus (by Lemma \([2.1]\)) not potentially of \(\mu_p \)-type with respect to any DVF \(F \subseteq M \).
\end{proof}

Corollary 2.5. Let \(m > 1 \) be prime to \(p \), and let \(L/K \) be a non-abelian \(\mathbb{Z}/p \times \mathbb{Z}/m \)-extension of characteristic \((0,p)\) complete DVF. Assume that \(K \) contains the \(p \)-th roots of unity. Let \(M \) be the intermediate field corresponding to the subgroup \(\mathbb{Z}/p \). If \(L/M \) is naively ramified, then \(L/M \) is not potentially of \(\mu_p \)-type with respect to any DVF \(F \subseteq M \).

Proof. By Proposition \([2.4]\) we know that \(L/M \) is given by extracting a \(p \)-th root of some \(a \in M \) such that \(p \mid v_M(a) \). After multiplying by a \(p \)-th power, we may assume \(v_M(a) = 0 \). Since \(L/M \) is naively ramified, it is not of \(\mu_p \)-type, thus (by Lemma \([2.1]\)) not potentially of \(\mu_p \)-type with respect to any DVF \(F \subseteq M \).

\begin{proof}
This is well known and follows, for example, from \([Ray74,\ Proposition 3.3.2] \) and \(\text{Théorème 3.3.3} \).
\end{proof}

3. Stable reduction of covers

Let \(R \) be a mixed characteristic \((0,p)\) complete discrete valuation ring (DVR) with residue field \(k \) and fraction field \(K \). We set \(X \cong \mathbb{P}^1_K \), and we fix a smooth model \(X_R = \mathbb{P}^1_R \) of \(X \). Let \(G \) be a finite group with cyclic \(p \)-Sylow group. Let \(f : Y \to X \) be a \(G \)-Galois cover defined over \(K \), such that the branch points of \(f \) are defined over \(K \) and their specializations do not collide on the special fiber of \(X_R \). Assume that \(f \) is branched at at least three points. By a theorem of Deligne and Mumford (\([DM69,\ Corollary 2.7] \)), combined with work of Raynaud (\([Ray90,\ Ray99] \) and Liu (\([Liu06] \)), there is a minimal finite extension \(K^{st}/K \) with valuation ring \(R^{st} \), and a unique model \(f^{st} : Y^{st} \to X^{st} \) of \(f_{K^{st}} := f \times_K K^{st} \) (called the stable model of \(f \)) over \(R^{st} \) such that

- The special fiber \(\overline{Y} \) of \(Y^{st} \) is semistable (i.e., has only ordinary double points for singularities).
- The ramification points of \(f_{K^{st}} \) specialize to distinct smooth points of \(\overline{Y} \).
- \(G \) acts on \(Y^{st} \), and \(X^{st} = Y^{st}/G \).
- Any genus zero irreducible component of \(\overline{Y} \) contains at least three marked points (i.e., ramification points or points of intersection with the rest of \(\overline{Y} \)).
If the last criterion is omitted, we say we have a semistable model for f. If we are working over a finite extension K'/K^{st} with valuation ring R', we will sometimes abuse language and call $f^{st} \times_R R'$ the stable model of f. This is justified because the special fiber of such a model is identical to that of the original stable model.

If \mathcal{Y} is smooth, the cover $f : Y \rightarrow X$ is said to have potentially good reduction. If f does not have potentially good reduction, it is said to have bad reduction. In any case, the special fiber $\mathcal{Y} : \mathcal{Y} \rightarrow \mathcal{X}$ of the stable model is called the stable reduction of f. One can view X^{st} as a blowup of $X_R \times_R R^{st}$, and the strict transform of the special fiber of $X_R \times_R R^{st}$ in X^{st} is called the original component, and will be denoted \mathcal{X}_0.

3.1. Inertia Groups of the Stable Reduction. The action of G on Y^{st} reduces to an action on the special fiber \mathcal{Y}. By [Ray94, Lemme 6.3.3], we know that the inertia groups of the action of G on \mathcal{Y} at generic points of \mathcal{Y} are p-groups. If \mathcal{Y} is an irreducible component of \mathcal{Y}, we will always write $I_{\mathcal{Y}} \leq G$ for the inertia group of the generic point of \mathcal{Y}, and $D_{\mathcal{Y}} \leq G$ for the decomposition group.

The inertia groups above a generic point of an irreducible component $\mathcal{W} \subset \mathcal{X}$ are conjugate cyclic p-groups. If they have of order p^i, we call \mathcal{W} an p^i-component. If $i = 0$, we call \mathcal{W} an étale component, and if $i > 0$, we call \mathcal{W} an inseparable component.

As in [Ray99], we call an irreducible component $\mathcal{W} \subset \mathcal{X}$ a tail if it is not the original component and intersects exactly one other irreducible component of \mathcal{X}. Otherwise, it is called an interior component. A tail of \mathcal{X} is called primitive if it contains the specialization of a branch point of f. Otherwise it is called new. An étale component that is a tail is called an étale tail.

Lemma 3.1 ([Obu12], Proposition 2.13). If $x \in X$ is branched of prime-to-p order, then x specializes to an étale component.

Lemma 3.2 ([Ray99], Proposition 2.4.8). If f has bad reduction and \mathcal{W} is an étale component of \mathcal{X}, then \mathcal{W} is a tail. In particular, the original component is an inseparable component.

3.2. Vanishing cycles formula. The original version of the vanishing cycles formula below is due to Raynaud in [Ray99]. The generalized version below is a special case of [Obu12, Theorem 3.14], which will be vital for Proposition 4.3. First we need a definition. Maintain the notation from the beginning of §3.

Definition 3.3 (cf. [Obu09], Definition 4.10). Consider an étale tail \mathcal{X}_b of \mathcal{X}. Suppose \mathcal{X}_b intersects the rest of \mathcal{X} at \mathfrak{m}_b. Let \mathcal{Y}_b be a component of \mathcal{Y} lying above \mathcal{X}_b, and let \mathfrak{n}_b be a point lying above \mathfrak{m}_b. Then the effective ramification invariant σ_b of \mathcal{X}_b is the conductor of higher ramification for the extension $\mathcal{O}_{\mathcal{Y}_b, \mathfrak{m}_b}/\mathcal{O}_{\mathcal{X}_b, \mathfrak{m}_b}$ of complete DVRs. That is,

$$\sigma_b = \sup_{i \in \mathbb{Q}_{\geq 0}} \{ H^i \neq id \},$$

where H is the Galois group of $\mathcal{O}_{\mathcal{Y}_b, \mathfrak{m}_b}/\mathcal{O}_{\mathcal{X}_b, \mathfrak{m}_b}$ and H^i is the filtration for the upper numbering (see [Ser79, IV §3]). We also set m_b equal to the prime-to-p part of $|H|$.

Lemma 3.4 ([Obu12], Lemma 2.20, Lemma 4.2). The effective ramification invariants σ_b are positive and lie in $\frac{1}{m_b} \mathbb{Z}$. Furthermore, if \mathcal{X}_b is a new tail, then $\sigma_b \geq 1 + \frac{1}{m_b}$.
Theorem 3.5 (Vanishing cycles formula. [Obu12], Theorem 3.14, Corollary 3.15). Let \(f : Y \to X \cong \mathbb{P}^1 \) be a \(G \)-Galois cover with bad reduction branched at \(r \) points as in this section, where \(G \) has a cyclic \(p \)-Sylow subgroup. Let \(B_{\text{new}} \) be an indexing set for the new étale tails and let \(B_{\text{prim}} \) be an indexing set for the primitive étale tails. Let \(\sigma_b \) be the effective ramification invariant in Definition 3.3. Then we have the formula

\[
(3.1) \quad r - 2 = \sum_{b \in B_{\text{new}}} (\sigma_b - 1) + \sum_{b \in B_{\text{prim}}} \sigma_b.
\]

3.3. Multiplicative reduction. Maintain the notation previously introduced in 3. Suppose that \(f : Y \to X = \mathbb{P}^1 \) has bad reduction, and let \(f^{ss} : Y^{ss} \to X^{ss} \) be a semistable model for \(f \), defined over \(R \), with special fiber \(f^{ss} : \mathcal{Y}^{ss} \to \mathcal{X}^{ss} \).

Let \(\mathcal{V} \) be an irreducible component of \(\mathcal{Y}^{ss} \) above an inseparable component \(\overline{W} \) of \(\mathcal{X}^{ss} \), let \(I_{\mathcal{V}} \) be its inertia group, and let \(\mathcal{D}_{\mathcal{V}} \) be its decomposition group. Since \(I_{\mathcal{V}} \) is normal in \(\mathcal{D}_{\mathcal{V}} \), it follows that \(\mathcal{D}_{\mathcal{V}} \) has a normal subgroup of order \(p \). Thus, by [Obu12, Corollary 2.4], the maximal normal prime-to-\(p \) subgroup \(N \) of \(\mathcal{D}_{\mathcal{V}} \) is such that \(\mathcal{D}_{\mathcal{V}}/N \) has normal \(p \)-Sylow subgroup \(P \) of some order \(p^j \).

If \(\eta \) is the generic point of \(\mathcal{V}/N \), then \(P \) acts on the complete DVR \(B := \hat{O}_{\mathcal{V}/N} \). Let \(C \) be the fixed ring \(B^P \). Since \(P \) acts trivially on the residue field \(k(\mathcal{V}/N) \) of \(B \), we have that \(B/C \) is a totally ramified \(P \)-extension of complete DVRs. If \(B/C \) is potentially of \(\mu_{p^s} \)-type with respect to \(\text{Frac}(R) \), then the model \(f^{ss} \) is said to have multiplicative reduction above \(\overline{W} \). This implies that \(I_{\mathcal{V}} \) is already the unique normal \(p \)-Sylow subgroup of \(\mathcal{D}_{\mathcal{V}} \) (and has order \(p^j \)). Note that having multiplicative reduction is equivalent to the deformation data above \(\overline{W} \) being multiplicative of type \((H, \chi) \) for a prime-to-\(p \) group \(H \), see [Obu12, Construction 3.4] and [Obu10, Question 9.2].

3.4. Covers of multiplicative type. Maintain the notation of this section, and let \(G = \mathbb{Z}/p^s \times \mathbb{Z}/m \), where \(m \) is prime to \(p \), the action of \(\mathbb{Z}/m \) on \(\mathbb{Z}/p^s \) is faithful, and \(s \geq 1 \). Note that \(m_G = m \). Fix elements \(c \in G \) of order \(m \) and \(\sigma \in G \) of order \(p \). Then we can define a character \(\chi : \mathbb{Z}/m \to \mathbb{F}_p^* \) such that \(\chi(i)c^{-1} = \sigma^{\chi(i)} \) for all \(i \in \mathbb{Z}/m \). By [Obu12, Lemma 2.1], the character \(\chi \) is injective; in particular, \(mp - 1 \). We lift \(\chi \) to a character \(\overline{\chi} : \mathbb{Z}/m \to K \) such that \(\chi(i) \) is the unique \(i \)-th root of unity whose residue is \(\overline{\chi}(i) \).

Let \(f : Y \to X = \mathbb{P}^1 \) be a \(G \)-cover defined over \(K \) branched at \(r \) \(K \)-points \(x_1, \ldots, x_r \), with \(r \geq 3 \). Assume that the branching indices are all prime to \(p \). For notational purposes, choose a coordinate for \(X \) such that \(x_i \neq \infty \) for \(1 \leq i \leq r \). Throughout §3.3 we allow the specializations of the branch points to collide on the special fiber of \(X_K \). There is then a unique stable model \(\overline{X}^{adm} \) of \(X_K \) separating the specializations of the branch points, such that each irreducible component of the special fiber \(\overline{X}^{adm} \) of \(\overline{X} \) contains at least three marked points (i.e., branch points and singular points of \(\overline{X}^{adm} \)).

The cover \(f \) is the composition of a \(\mathbb{Z}/m \)-cover \(g : Z \to X \) given (birationally) by an equation of the form

\[
(3.2) \quad z^m = \prod_{i=1}^{r} (x - x_i)^{a_i}
\]
with an étale cover $Y \to Z$ of degree p^n. Here z is chosen so that $c^*z = \chi(1)z$. We may assume that, for $1 \leq i \leq r$, we have $0 \leq a_i \leq m$. Since q is unramified at ∞, we have $m\sum_{i=1}^{r} a_i$. If $\sum_{i=1}^{r} a_i = m$, then f is said to be of multiplicative type (cf. [Wew03a §1]).

Let $f^{ss}: Y^{ss} \to X^{ss}$ be a semistable model for f with special fiber $\overline{Y}^{ss} : \overline{Y}^{ss} \to \overline{X}^{ss}$. Since a semistable model must separate the specializations of branch points, \overline{X}^{ss} is a blowup of \overline{X}^{adm}. If \overline{X}_b is an étale tail of \overline{X}^{ss} that intersects an inseparable component, then one can define σ_b and m_b for \overline{X}_b as in Definition 3.3.

The following proposition (and proof) are analogous to [Wew03a, Proposition 1.8 (i)].

Proposition 3.6. Given f^{ss} as above, suppose \overline{X}_b is an étale tail of \overline{X}^{ss} containing the specialization \overline{x}_i of x_i and no other specializations of branch points. Suppose further that \overline{X}_b intersects an inseparable component of \overline{X}^{ss}. Then

$$\langle \sigma_b \rangle = \frac{a_i}{m},$$

where $\langle \cdot \rangle$ means the fractional part.

Proof. Let u be a coordinate on \overline{X}_b such that $u = \infty$ corresponds to the intersection point \overline{x}_b with the rest of \overline{X}^{ss} and $u = 0$ corresponds to \overline{x}_i. We first note that σ_b is defined by a jump in the upper numbering of a certain $H := \mathbb{Z}/p^\epsilon \times \mathbb{Z}/m_b$-Galois extension of $k[[u^{-1}]]$, and that replacing σ_b by any other jump does not change its fractional part (cf. [OP10, Theorem 1.1]). So it suffices to prove the theorem for the first positive upper jump σ'_b of the Galois extension in Definition 3.3 (i.e., the smallest number $i > 0$ such that $H^i \supseteq H^{i+\epsilon}$ for all $\epsilon > 0$). Let \overline{Y}_b be a component of \overline{Y}^{ss} lying above \overline{X}_b with decomposition group H. Since the upper numbering is invariant under taking quotients ([Ser71, IV, Proposition 14]), taking the quotient of the cover \overline{f}^{ss} by the unique subgroup of order p^{a_i-1} in H does not affect the quantities in the proposition, and we may assume $a_i = 1$. That is, $H \cong \mathbb{Z}/p \times \mathbb{Z}/m_b$.

By purity of the branch locus ([Sza09, Theorem 5.2.13]), the cover $\overline{Y}_b \to \overline{X}_b$ is branched only at $u = 0$ (of index m_b) and $u = \infty$ (of index pm_b). It factors into its p and prime-to-p parts as $\overline{Y}_b \to \overline{Z}_b \to \overline{X}_b$, where $\overline{Z}_b \to \overline{X}_b$ can be given by the equation $v^{m_b} = u$. Furthermore, if $d \in H$ is an element of order m_b whose residue in $\mathbb{Z}/m_b \leq \mathbb{Z}/m$ is the same as that of c^{m/m_b}, then an examination of the germ at \overline{x}_b, using that $(v^{a_i})^{m_b} = v^{a_i}$, shows that

$$d^* v^{a_i} = \chi(m/m_b) v^{a_i}.$$

In other words,

$$(d^{a_i})^* v = \chi(m/m_b) v$$

and

$$(d^{a_i})^* v^{m_b} = \chi(\sigma_b m) v^{m_b}.$$

The cover $\overline{Y}_b \to \overline{Z}_b$ is an Artin-Schreier extension given by the equation

$$y^p - y = v^{\sigma_b m_b} g(u),$$

where $g(u)$ is a polynomial ([Pri02, Lemma 1.4.1]). Let $q \in H$ be such that $q^* y = y + 1$. Then $d^{a_i} q = q^\chi(a_i) d^{a_i}$. One computes

$$(d^{a_i} q)^* y = q^*(d^{a_i})^* y = q^* \chi(\sigma_b m)y = \chi(\sigma_b m)y + \chi(\sigma_b m),$$

and

$$(d^{a_i} q)^* v = \chi(m/m_b) v^{a_i} q^* \chi(\sigma_b m) v^{m_b} = \chi(\sigma_b m) v^{a_i}.$$
whereas

\[(q^{(a_i)}d^{a_i})^* y = (d^{a_i})^* (q^{(a_i)})^* y = (d^{a_i})^* (y + \chi(a_i)) = \chi(\sigma_b m)y + \chi(a_i).\]

We conclude that \(\sigma_b m \equiv a_i \pmod{m}\), that is, \((\sigma_b) = \frac{a_i}{m}\). \(\square\)

The meaning of “multiplicative type” is made clear in the proposition below.

Proposition 3.7. If \(f : Y \to X\) is of multiplicative type with \(G = \mathbb{Z}/p^s \times \mathbb{Z}/m\), then any semistable model \(f^{ss}\) has multiplicative reduction \((\mathbb{L}, \mathbb{L})\) above every irreducible component of \(\mathbb{X}^{adm}\).

Proof. If \(s = 1\), then this follows from \([Wew03a, \text{ Proposition 1.3}]\) and \([Ray90, \text{ Corollary 1.5}]\). If \(s \geq 1\), then \(f\) has a quotient \(\mathbb{Z}/p^s \times \mathbb{Z}/m\)-cover \(h : W \to X\), which is also of multiplicative type. Thus any semistable model \(h^{ss}\) of \(h\) has multiplicative reduction above all of \(\mathbb{X}^{adm}\). This implies each irreducible component of \(\mathbb{X}^{adm}\) is a \(p^s\)-component for \(f\). Let \(K^{ss}/K\) be a finite extension over which \(f^{ss}\) is defined. Since \(K^{ss}\) has algebraically closed residue field, Lemma 2.2 implies that \(f^{ss}\) has multiplicative reduction over all of \(\mathbb{X}^{adm}\). \(\square\)

4. THE AUXILIARY COVER

We maintain the notation of \(\mathbb{E}\). In particular, \(G\) is a finite group with cyclic \(p\)-Sylow group. Assume that \(f : Y \to X = \mathbb{P}^1\) is a \(G\)-cover defined over \(K\) as in \(\mathbb{E}\) with bad reduction, such that the specializations of the branch points do not collide on the special fiber of \(X_R\). Over some finite extension \(K'/K\), one can construct an auxiliary cover \(f^{aux} : Y^{aux} \to X\) with a semistable model \((f^{aux})^{ss} : (Y^{aux})^{ss} \to (X^{aux})^{ss}\) and special fiber \(f^{aux} : Y^{aux} \to X^{aux}\). The construction is given in \([Obu10, \text{ §7}]\), and is originally based on \([Ray99, \text{ §3.2}]\). We do not repeat the construction here, but we summarize the important properties, which all follow from \([Obu10, \text{ §7}]\).

Proposition 4.1. (i) The cover \(f^{aux}\) is a \(G^{aux}\)-Galois cover, where \(G^{aux} \leq G\).
(ii) We have \((X^{aux})^{ss} = X^{st}\) and \(X^{aux} = \overline{X}\).
(iii) There exists an étale neighborhood \(Z\) (relative to \(X^{st}\)) of the union \(\overline{U}\) of the inseparable components of \(\overline{X}\), such that the cover \(f^{st} \times_{X^{st}} Z\) is isomorphic to \(\text{Ind}_{G^{aux}}(f^{aux})^{st} \times_{X^{st}} Z\).
(iv) The cover \(f^{aux}\) has a branch point \(x_b\) of index \(m_b\) for each étale tail \(\overline{X}_b\) of \(\overline{X}\) such that \(m_b > 1\) (Definition 3.3). If \(\overline{X}_b\) is a primitive tail, then \(x_b\) is the corresponding point branched in \(f\). If \(\overline{X}_b\) is a new tail, then \(x_b\) specializes to a smooth point of \(\overline{X}_b\). These points comprise the entire branch locus of \(f^{aux}\).
(v) If \(\overline{X}_b\) is an étale tail of \(\overline{X}\), and if \(\overline{V}_b\) is an irreducible component of \(\overline{Y}^{aux}\) above \(\overline{X}_b\), then \(\overline{V}_b \to \overline{X}_b\) is generically étale. If the effective ramification invariant \(a^{aux}_b\) of \(\overline{V}_b \to \overline{X}_b\) is defined as in Definition 3.3, then \(a^{aux}_b = a_b\).
(vi) If \(N\) is the maximal prime-to-\(p\) normal subgroup of \(G^{aux}\), then \(G^{aux}/N \cong \mathbb{Z}/p^s \times \mathbb{Z}/m^{G^{aux}},\) where \(s \geq 1\) and the action of \(\mathbb{Z}/m^{G^{aux}}\) on \(\mathbb{Z}/p^s\) is faithful.

Remark 4.2. In the context of Proposition 4.1 (iii), \(\overline{U}\) is a tree, and thus has trivial fundamental group. So \(f \times_{\overline{X}} \overline{U}\) is isomorphic to \(\text{Ind}_{G^{aux}}(f^{aux})^{st} \times_{\overline{X}} \overline{U}\). In particular, the inseparable components of \(\overline{X}\) for the auxiliary cover are the same as for the original cover.
In light of Proposition 4.1 (vi), write $G^{\text{str}} := G^{\text{aux}}/N$, where N is the maximal prime-to-p normal subgroup of G^{aux}. The canonical G^{str}-quotient cover of f^{aux} is called the strong auxiliary cover, and is written $f^{\text{str}} : Y^{\text{str}} \to X$. We also write $(f^{\text{str}})^{ss}$ and $\overline{f}^{\text{str}}$ for $(f^{\text{aux}})^{ss}/N$ and its reduction, respectively. Since the higher ramification filtration for the upper numbering is invariant under taking quotients ([Ser79, IV, Proposition 14]), the effective ramification invariants for the strong auxiliary cover are the same as those for the auxiliary cover, which are the same as those for the original cover.

Proposition 4.3. The strong auxiliary cover f^{str} of a three-point cover f with prime-to-p branching is of multiplicative type (§3.4).

Proof. For each étale tail X_b of X^{str}, let σ_b be its effective ramification invariant. The vanishing cycles formula (3.1), combined with Lemma 3.4 and the discussion before this proposition, shows that $\sum_b \langle \sigma_b \rangle = 1$, where b ranges over the étale tails of X^{str}. Since there are three primitive étale tails, thus namely more than one étale tail, Lemma 3.4 shows that all invariants σ_b are nonintegers. This means that $m_b > 1$ for each étale tail. By Proposition 4.1 (iv), each étale tail contains the specialization of exactly one branch point of f^{str}. Now Proposition 3.6 shows that f^{str} is of multiplicative type. \blacksquare

Corollary 4.4. Let $f : Y \to X$ be a three-point cover with bad reduction, such that all branching indices are prime to p. Then the stable model of f has multiplicative reduction over the original component.

Proof. By Propositions 4.3 and 3.7, any semistable model of the strong auxiliary cover f^{str} has multiplicative reduction over the original component. Since f^{str} is a prime-to-p quotient of the auxiliary cover f^{aux}, we have that any semistable model of f^{aux} also has multiplicative reduction over the original component. By Proposition 4.1 (iii), over an étale neighborhood of the original component, the cover f is isomorphic to a disjoint union of copies of f^{aux}. Thus the stable model of f also has multiplicative reduction over the original component. \blacksquare

Lemma 4.5. Let $f : Y \to X$ be a cover branched at $r \geq 3$ points as in this section, with bad reduction, such that all branching indices are prime to p. Let ∇ be an irreducible component above the original component, with decomposition group $D_\nabla \subseteq G$. Then $m_{D_\nabla} > 1$.

Proof. By Remark 4.2 it suffices to prove this for the auxiliary cover f^{aux}. Since taking the quotient by a prime-to-p subgroup does not affect m_{D_∇}, we may work instead with the strong auxiliary cover f^{str}. It suffices to show that the decomposition group of a component above the original component in f^{str} is not a p-group. Now, f^{str} has a $\mathbb{Z}/m_{G^{\text{str}}}$-quotient cover given birationally by

$$z^m = \prod_{i=1}^{\rho} (x - x_i)^{a_i},$$

where $0 < a_i < m$. It suffices to prove that this cover does not split completely over the original component, that is, that the reduction

$$\prod_{i=1}^{\rho} (x - \overline{x}_i)^{a_i}$$

is nontrivial.
of the right hand side of (4.1) modulo the maximal ideal is not an mth power in $k(x)$.

Since f is branched in r different points, assumed to reduce to pairwise distinct points of \mathbb{P}^1, we know that there are at least r different residue classes represented among the π_i. By the vanishing cycles formula (3.1) and Proposition 3.6, we have

$$\sum_{i=1}^r a_i = m(r-2).$$

So there is at least one residue class, comprised of $\pi_{i_1}, \ldots, \pi_{i_v}$, such that $0 < \sum_{j=1}^v a_{i_j} < m$. This means that (4.2) is not an mth power, and we are done.

5. Good reduction

In this section, k is an algebraically closed field of characteristic p, and $K_0 = \text{Frac}(W(k))$. For a characteristic $(0,p)$ discrete valuation ring or field A, we write $e(A)$ for the absolute ramification index of A (i.e., the valuation of p, taking the value group to be \mathbb{Z}).

Proposition 5.1. Let G be a finite group with nontrivial cyclic p-Sylow subgroup. Let K/K_0 be a finite extension such that $e(K) < \frac{p-1}{m}$, and let $f : Y \to X = \mathbb{P}^1$ be a G-cover defined over K, branched at distinct K-points $\{x_1, \ldots, x_r\}$, with $r \geq 3$. Let R be the valuation ring of K, and suppose that there is a smooth model X_R for X such that the specializations of the branch points do not collide on the special fiber. If f has bad reduction, then the stable model of f does not have multiplicative reduction over the original component.

Proof. Suppose f has bad reduction. Let $f_R : Y_R \to X_R$ be the normalization of X_R in $K(Y)$, and let $\overline{f} : \overline{Y} \to \overline{X}$ be the special fiber of f_R. Pick an irreducible component \overline{Y} of \overline{Y}, and let $\eta_{\overline{Y}}$ and $\eta_{\overline{X}}$ be the respective generic points. Then $\hat{O}_{Y_R, \eta_{\overline{Y}}}/\hat{O}_{X_R, \eta_{\overline{X}}}$ is a Galois extension of mixed characteristic $(0,p)$ complete DVRs containing R. Let Δ be the Galois group of this extension, and I the inertia group. Then I is normal in Δ, and the p-Sylow subgroup of I (which is nontrivial by Lemma 3.2) is characteristic in I, so it is normal in Δ. By [Obu12, Corollary 2.4], there is a prime-to-p normal subgroup N of Δ such that $\Delta/N \cong \mathbb{Z}/m_\Delta$, where P is a p-group and \mathbb{Z}/m_Δ acts faithfully on P.

Let $P' \leq P$ be the (nontrivial) p-Sylow subgroup of I/N, and let $P'' < P'$ be the unique subgroup of index p. Write

$$E \supseteq D \supseteq C \supseteq B \supseteq A,$$

where

$$E := (\hat{O}_{Y_R, \eta_{\overline{Y}}})^N, \quad D := E^{P''}, \quad C := E^{P'}, \quad B := E^{I/N}, \quad A := E^{\Delta/N} = \hat{O}_{X_R, \eta_{\overline{X}}}.$$

Since $m_\Delta|m_G$ and $e(B) = e(C) = e(K)$, we have

$$e(C) < e(B)m_\Delta \leq e(K)m_G < p - 1.$$

By Lemma 2.8 D/C is a naively ramified \mathbb{Z}/p-extension. Let E', D', C', B', A', and R' be the extensions of E, D, C, B, A, and R respectively given by adjoining a pth root of unity. Since D'/D and C'/C are prime-to-p extensions, we have that D'/C' is naively ramified. Also, Lemma 1.5 shows that C'/A' is an extension with nontrivial prime-to-p part (indeed, this would be the case even after adjoining arbitrary elements finite over R). Let g be an element of $\text{Gal}(C'/A')$ of nontrivial prime-to-p order. Then applying Corollary 2.5 to $D'/(C')^g$ shows that D'/C' is not potentially of μ_p-type with respect to $\text{Frac}(R')$. Writing $|P'| = p^n$, we see by
Lemma 2.2 that E'/C' is a P'-extension that is not potentially of μ_{p^n}-type with respect to Frac(R').

Let E'' (resp. C'') be the normalization of $E' \otimes_R R''$ (resp. $C' \otimes_R R''$), where R'' is a finite extension of R' over which f attains stable reduction. We claim that E''/C'' is, in fact, a $P' \cong \mathbb{Z}/p^n$-extension of DVR's over each direct summand of C'' (as opposed to a product of copies of extensions of each direct summand). To prove the claim, it suffices to show that C'' and E' are linearly disjoint over C', which is equivalent to showing that C'' and D' are linearly disjoint over C', which is equivalent to showing that C'' and E' are linearly disjoint over C'. Clearly, the extension C''/C' is a base change of an extension A''/A'. But D'/C' is not a base change of an extension of A', because $\text{Gal}(D'/A')$ does not commute (inside $\text{Gal}(D'/A')$) with any lift of $g \in \text{Gal}(C'/A')$ (above) to $\text{Gal}(D'/A')$. Thus the claim is proved.

Let C''' be a DVR which is a direct summand of C'', and let $E''' = E'' \otimes_{C''} C'''$. Then $\text{Gal}(E'''/C''')$ can be identified with a subquotient of the decomposition group of an irreducible component \mathcal{U} of the stable model of f above the original component. If the stable model of f has multiplicative reduction over the original component, then the inertia group of \mathcal{U} is isomorphic to $\text{Gal}(E'''/C''')$ and E'''/C''' is potentially of μ_{p^n}-type with respect to R''. But since E'/C' is not potentially of μ_{p^n}-type with respect to R', it follows by definition that E'''/C''' is not potentially of μ_{p^n}-type with respect to R''. This is a contradiction, and completes the proof.

\begin{theorem}
Let G be a finite group with cyclic p-Sylow subgroup. Let K/K_0 be a finite extension such that $e(K) < \frac{p-1}{m_G}$, and let $f : Y \rightarrow X = \mathbb{P}^1$ be a three-point G-cover defined (as a G-cover) over K. Then f has potentially good reduction, realized over a tame extension L/K of degree dividing the exponent of the center $Z(G)$ of G. In particular, if $Z(G)$ is trivial, then f has good reduction.
\end{theorem}

\begin{proof}
Since $e(K) < \frac{p-1}{m_G}$, [Ray99, Lemme 4.2.13] shows that the branching indices of f are all prime-to-p. If f has bad reduction, then Corollary 1.3 shows that the stable model of f has multiplicative reduction over the original component. However, by Proposition 5.1 this is impossible. Thus f must have potentially good reduction.

By [Ray99, Proposition 4.1.2], if L/K is the minimal extension such that $f \times_K L$ has good reduction, then $\text{Gal}(L/K)$ is a subgroup of $Z(G)$. If p divides $|Z(G)|$, then [Obu12, Corollary 2.4] shows that G has a quotient that is a nontrivial p-group. Thus f must be branched with ramification indices divisible by p. By [Ray99, Lemme 4.2.13], this is impossible. So $p \nmid \text{Gal}(L/K)$. This means that $\text{Gal}(L/K)$ is cyclic, so its degree divides the exponent of $Z(G)$.
\end{proof}

\begin{remark}
Since all p-Sylow subgroups of G are conjugate to each other, so are all subgroups of order p. If Q is such a subgroup, then the G-conjugacy class of a nontrivial element $q \in Q$ contains m_G elements of Q. Thus there are $\frac{m_G}{m_Q}$ different conjugacy classes of elements of order p in G, and the form of Theorem 5.2 stated above is equivalent to that in the introduction.
\end{remark}

\begin{remark}
Raynaud asked ([Ray99, Question 6.2.2]) if Theorem 5.2 might hold when G has a p-Sylow group of order p and $r-2 < p/m_G$, where r is the number of branch points and all branch points are equidistant. For instance, should Theorem 5.2 hold for four-point covers with equidistant branch locus when $m_G \neq p-1$?
\end{remark}
Unfortunately, Corollary 4.2 need not hold for covers with more than three branch points, so it looks as though other techniques must be used for such covers.

Remark 5.5. It is not hard to show (with essentially the same proof) that if \(X \) is any smooth curve over \(K \) of genus \(g \) with good reduction, if \(f : Y \to X \) is branched at \(r \) \(K \)-points specializing to distinct points on a smooth model of \(X \), and if \(2g_X - 2 + r > 0 \), then the analog of Proposition 5.1 holds as long as the analog of Lemma 4.3 holds. Thus, if \(f : Y \to X \) is as in Theorem 5.2 then \(f \) will have good reduction if one can show that \(f \) having bad reduction would imply the analogs of Corollary 4.2 and Lemma 4.3. It would be interesting to see if this is the case when \(g_X = 1 \) and \(r = 1 \), which in many ways is analogous to the case \(g_X = 0 \) and \(r = 3 \) (for instance, the fundamental groups of \(X \times_K \overline{K} \) are the same in both cases, and by [Rav93, Théorème 5.1.5], Theorem 5.2 is true in both cases when \(v_p(G) = 1 \) and \(G \) has trivial center).

6. Examples

Let \(k \) be an algebraically closed field of characteristic \(p \), and let \(K_0 = \text{Frac}(W(k)) \). We exhibit a family of three-point covers defined over \(K_0 \) that have good reduction, generalizing [Obu12, Example 5.12]. In particular, fix integers \(n \geq 1 \) and \(m \geq 2 \), and let \(p \equiv 1 \pmod{m} \) be a prime not equal to \(m + 1 \). For any \(m, n \), and \(p \) as above, we construct (for infinitely many \(q \)) a \(G := \text{PGL}_m(q) \)-cover over \(K_0 \) with good reduction, where \(G \) has \(p \)-Sylow subgroup of size at least \(p^n \). Note that \(G \) has trivial center.

Let \(q \) be a prime power such that

\[
q^m \equiv 1 \pmod{p^n}, \quad \text{but } q^j \not\equiv 1 \pmod{p^n} \quad \text{for } 1 \leq j < m.
\]

Since \(p \equiv 1 \pmod{m} \), the group \((\mathbb{Z}/p^n)^\times\) has elements of exact order \(m \), and (6.1) has integer solutions \(q \). Then Dirichlet’s theorem shows that there are infinitely many prime power solutions \(q \) (in fact, infinitely many prime solutions).

Assume \(q = t^d \) is a prime power satisfying (6.1). We know by [Hup67, II, Satz 7.3], along with an examination of the order of \(G \), that \(G = \text{PGL}_m(q) \) has a cyclic \(p \)-Sylow subgroup of order \(p^m(q^n-1) \geq p^n \). The same construction as in [Obu12, Example 5.12] now works to construct a three-point \(G \)-cover defined over \(K_0 \) with potentially good reduction to characteristic \(p \). Since it is brief, we include it here.

Consider \(H := \text{GL}_m(q) \rtimes \mathbb{Z}/2 \), where the \(\mathbb{Z}/2 \)-action is inverse-transpose. In [MM99, II, Proposition 6.4 and Theorem 6.5], a rigid class vector \((\tilde{C}_0, \tilde{C}_1, \tilde{C}_\infty)\) is exhibited for \(H/\{\pm 1\} \), where \(\tilde{C}_0 \) has order 2, \(\tilde{C}_1 \) has order 4, and \(\tilde{C}_\infty \) has order \((q-1)^a \) for some \(a \) (this is because the characteristic polynomial for the elements of \(\tilde{C}_\infty \) has eigenvalues of order \(q-1 \)). Since \(p \) does not divide the order of any of the ramification indices, this triple is rational over \(K_0 \), so the corresponding \(H/\{\pm 1\} \)-cover is defined over \(K_0 \). Thus there is a quotient \(G \rtimes \mathbb{Z}/2 \)-cover \(h : Y \to \mathbb{P}^1 \) defined over \(K_0 \).

Let \(X \to \mathbb{P}^1 \) be the quotient cover of \(h : Y \to \mathbb{P}^1 \) corresponding to the group \(G \). Then \(X \to \mathbb{P}^1 \) is a cyclic cover of degree 2, branched at 0 and 1. This means that \(X \cong \mathbb{P}^1 \), and \(Y \to X \) is branched at three points (the two points above \(\infty \), and the unique point above 1). So we have constructed a three-point \(G \)-cover \(f : Y \to X \cong \mathbb{P}^1 \) defined over \(K_0 \), such that all branch points have prime-to-\(p \) branching index. Since the absolute ramification index \(e \) of \(K_0 \) is 1, and since
An element \(\sigma \supseteq L \) the system of \(p \)-cover \(f \). Corollary A.1. group-theoretic restatement of the main theorem. It must be contained in the corresponding normal subgroup for each such cover. As when it acts trivially on every such cover that has good reduction. In other words, \([DM69]\) shows that \(f \) the field of moduli does not depend on which representative action is taken. Since we note that the conjugation action is \(a \text{ priori} \) the isomorphism class of \(f \) acts trivially on the cover \(f \). Action of \(\text{Gal}(\overline{K}/\mathbb{Q}) \) on \(\pi_1(\overline{U}_K) \) preserves \(N_f \) and descends to an inner automorphism on \(\pi_1(\overline{U}_K) \) preserves the isomorphism class of \(f \) when acting on the coefficients of the equations for \(f \). We note that the conjugation action is \(a \text{ priori} \) only an outer action, but that the field of moduli does not depend on which representative action is taken. Since \(K_0 \) and all finite extensions have cohomological dimension 1, \([CH85]\) Proposition 2.5] shows that \(f \) can be defined over a given finite extension \(L/K_0 \) exactly when \(L \supseteq M_f \).

Also, from the introduction, we have a surjection

\[
pr : \pi_1(\overline{U}_K) \to \pi_1(U_k) \to \text{ker}(pr).
\]

An element \(\sigma \in \pi_1(\overline{U}_K) \) is determined (up to conjugation) by its action on the system of \(p \)-tame three-point covers of \(\mathbb{P}_K^1 \), and it is in the kernel of \(pr \) precisely when it acts trivially on every such cover that has good reduction. In other words, it must be contained in the corresponding normal subgroup for each such cover. As a consequence of Theorem 5.2 and the discussion above, we obtain the following group-theoretic restatement of the main theorem.

Corollary A.1. Let \(\sigma \in \pi_1(\overline{U}_K) \). If \(\sigma \in \ker(pr) \), then \(\sigma \) is contained in every finite index normal subgroup \(N \) of \(\pi_1(\overline{U}_K) \) such that both

(i) \(\pi_1(\overline{U}_K)/N \cong G \) has a cyclic (possibly trivial) \(p \)-Sylow subgroup.

(ii) There exists a subgroup \(\Gamma \leq \text{Gal}(\overline{K}/K_0) \) of index less than \(\frac{p-1}{m_G} \) such that the conjugation action of \(\Gamma \) on \(\pi_1(\overline{U}_K) \) fixes \(N \) and descends to an inner automorphism of \(\pi_1(\overline{U}_K)/N \) (Note: this is automatic if \(\pi_1(\overline{U}_K)/N \) is prime to \(p \), as all such covers can be defined over \(K_0 \).

References

[CH85] Kevin Coombe and David Harbater, “Hurwitz families and arithmetic Galois groups,” Duke Math. J. 52, no. 4 (1985), 821–839.

[DM69] P. Deligne and D. Mumford, “The irreducibility of the space of curves of given genus,” Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75–109.

[Hen00] Yannick Henrio, “Arbres de Hurwitz et automorphismes d’ordre \(p \) des disques et des couronnes \(p \)-adiques formels” (2000), arXiv:math/0011098.
REFERENCES

[Hup67] B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Berlin: Springer-Verlag, 1967, xii+793.

[Liu06] Qing Liu, “Stable reduction of finite covers of curves,” *Compos. Math.* **142**, no. 1 (2006), 101–118.

[MM99] Gunter Malle and B. Heinrich Matzat, *Inverse Galois theory*, Springer Monographs in Mathematics, Berlin: Springer-Verlag, 1999, xvi+436.

[Obu09] Andrew Obus, “Fields of moduli of three-point G-covers with cyclic p-Sylow, I” (2009), to appear in *Algebra Number Theory*, arXiv:0911.1103v5 [math.AG]

[Obu10] Andrew Obus, “Fields of moduli of three-point G-covers with cyclic p-Sylow, II” (2010), to appear in *J. Théor. Nombres Bordeaux*, arXiv:1001.3723v6 [math.AG]

[Obu12] Andrew Obus, “Vanishing cycles and wild monodromy,” *Int. Math. Res. Not. IMRN* no. 2 (2012), 299–338.

[OP10] Andrew Obus and Rachel Pries, “Wild tame-by-cyclic extensions,” *J. Pure Appl. Algebra* **214**, no. 5 (2010), 565–573.

[Pri02] Rachel J. Pries, “Families of wildly ramified covers of curves,” *Amer. J. Math.* **124**, no. 4 (2002), 737–768.

[Ray74] Michel Raynaud, “Schémas en groupes de type (p,\ldots,p),” *Bull. Soc. Math. France* **102** (1974), 241–280.

[Ray90] Michel Raynaud, “p-groupes et réduction semi-stable des courbes,” *The Grothendieck Festschrift, Vol. III*, vol. 88, Progr. Math. Boston, MA: Birkhäuser Boston, 1990, 179–197.

[Ray94] Michel Raynaud, “Revêtements de la droite affine en caractéristique $p > 0$ et conjecture d’Abhyankar,” *Invent. Math.* **116**, no. 1-3 (1994), 425–462.

[Ray99] Michel Raynaud, “Spécialisation des revêtements en caractéristique $p > 0$,” *Ann. Sci. École Norm. Sup. (4)* **32**, no. 1 (1999), 87–126.

[Ser79] Jean-Pierre Serre, *Local Fields*, vol. 67, Graduate Texts in Mathematics, New York: Springer-Verlag, 1979, viii+241.

[SAG1] Alexander Grothendieck and Michèle Raynaud, *Revêtements étals et groupe fondamental (SGA 1)*, Documents Mathématiques (Paris), 3, Séminaire de géométrie algébrique du Bois Marie 1960–61. Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)], Paris: Société Mathématique de France, 2003, xviii+327.

[Sza09] Tamás Szamuely, *Galois groups and fundamental groups*, vol. 117, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 2009, x+270.

[Tos10] Dajano Tossici, “Models of $\mu_{p^n,K}$ over a discrete valuation ring,” *J. Algebra* **323**, no. 7 (2010), With an appendix by Xavier Caruso, 1908–1957.

[Wew03a] Stefan Wewers, “Reduction and lifting of special metacyclic covers,” *Ann. Sci. École Norm. Sup. (4)* **36**, no. 1 (2003), 113–138.

[Wew03b] Stefan Wewers, “Three point covers with bad reduction,” *J. Amer. Math. Soc.* **16**, no. 4 (2003), 991–1032.

Max Planck Institute, Vivatsgasse 7, 53111 Bonn
E-mail address: andrewobus@gmail.com