Genomic evidence is increasingly underpinning that hybridization between taxa is commonplace, challenging our views on the mechanisms that maintain their boundaries. Here, we focus on seven catadromous eel species (genus *Anguilla*) and use genome-wide sequence data from more than 450 individuals sampled across the tropical Indo-Pacific, morphological information, and three newly assembled draft genomes to compare contemporary patterns of hybridization with signatures of past introgression across a time-calibrated phylogeny. We show that the seven species have remained distinct for up to 10 million years and find that the current frequencies of hybridization across species pairs contrast with genomic signatures of past introgression. Based on near-complete asymmetry in the directionality of hybridization and decreasing frequencies of later-generation hybrids, we suggest cytonuclear incompatibilities, hybrid breakdown, and purifying selection as mechanisms that can support species cohesion even when hybridization has been pervasive throughout the evolutionary history of clades.
The turn of the century has witnessed a paradigm shift in how we view the role of hybridization for building up biological diversity. While hybridization was previously assumed to be spatially restricted and confined to a small number of taxa, it became gradually recognized that incomplete isolation of genomes is widespread across eukaryotes, with varied effects on adaptation and speciation. More recently, this view has been further fuelled by technical and analytical advances that enable the quantification of past introgression—that is, the genetic exchange through hybridization—across entire clades, revealing that it is often the most rapidly diversifying clades that experienced high frequencies of introgression. This seemingly paradoxical association between introgression and rapid species proliferation underlies a key question in evolutionary biology: How can species in diversifying clades be accessible for introgression but nevertheless solidify their species boundaries? To answer this question, insights are required into the mechanisms that gradually reduce the degree to which hybridization generates introgression; however, these mechanisms are still poorly understood because contemporary hybridization and past introgression have rarely been studied and compared jointly across multiple pairs of animal species with different divergence times within a single clade.

Teleost fish provide well-established model systems to reveal processes of diversification, including the impact of hybridization on speciation. A particularly promising system for hybridization research are catadromous freshwater eels of the genus Anguilla, one of the most species-rich genera of eels with high economic value. These fishes are renowned for their unique population biology, whereby individuals of a given species migrate to one or only few oceanic spawning areas and reproduce panmictically within these. Moreover, spawning is temporally and spatially overlapping between multiple species, which therefore are expected to have great potential for interspecies mating. Frequent occurrence of hybridization has in fact been demonstrated with genomic data for the two Atlantic Anguilla species (A. anguilla and A. rostrata), with a particularly high proportion of hybrids in Iceland. However, while these Atlantic species have so far received most of the scientific attention, the greatest concentration of Anguilla species is present in the tropical Indo-Pacific, where 11 species occur and may partially spawn at the same locations. A locally high frequency of hybrids between two species occurring in this region (A. marmorata and A. megastoma) has been suggested by microsatellite markers and small datasets of species-diagnostic single-nucleotide polymorphisms (SNPs); however, the pervasiveness of hybridization across all tropical eel species, the degree to which hybridization leads to introgression in these species, and the mechanisms maintaining species boundaries have so far remained poorly known.

In the present paper, we use high-throughput sequencing and morphological analyses for seven species of tropical eels sampled across the Indo-Pacific to (i) infer their age and diversification history, (ii) determine the frequencies of contemporary hybridization between the species, (iii) quantify signatures of past introgression among them, and (iv) identify mechanisms that may be responsible for the stabilization of species boundaries. Our unique combination of approaches allows us to compare hybridization and introgression across multiple pairs of species with different ages and suggests that cytonuclear incompatibilities, hybrid breakdown, and purifying selection can strengthen species boundaries in the face of frequent hybridization.

Results

Extensive sampling. Collected in 14 field expeditions over the course of 17 years, our dataset included 456 individuals from 14 localities covering the distribution of anguillid eels in the tropical Indo-Pacific (Fig. 1a, Supplementary Table 1). Whenever possible, eels were tentatively identified morphologically in the field. Restriction-site-associated DNA (RAD) sequencing for all 456 individuals resulted in a comprehensive dataset of 704,480 RAD loci with a mean of 253.4 bp per locus and up to 1,518,299 SNPs, depending on quality-filtering options (Supplementary Fig. 1). RAD sequencing reads mapping to the mitochondrial genome unambiguously assigned all individuals to one of the seven tropical eel species A. marmorata, A. megastoma, A. obscura, A. luzonensis, A. bicolor, A. interioris, and A. mossambica, in agreement with our morphological assessment that indicated that the remaining four Indo-Pacific Anguilla species A. celebesensis, A. bengalensis, A. borneensis, and A. reinhardtii were not included in our dataset (Supplementary Fig. 2). For those individuals for which sufficient morphological information was available (n = 161, restricted to A. marmorata, A. megastoma, A. obscura, and A. interioris), predorsal length without head length (PDH) and distance between the origin of the dorsal fin and the anus (AD), size-standardized by total length (TL), showed species-specific clusters, even though these were not fully separated from each other (Fig. 1b, Supplementary Fig. 3). This diagnosis was further supported by principal component analysis (PCA) of seven morphological characters (Supplementary Fig. 3). After excluding individuals with low-quality sequence data, the sample set used for genomic analyses contained 430 individuals of the seven species, including 325 A. marmorata, 41 A. megastoma, 36 A. obscura, 20 A. luzonensis, 4 A. bicolor, 3 A. interioris, and 1 A. mossambica (Supplementary Tables 2, 3). The large number of individuals available for A. marmorata, A. megastoma, and A. obscura, sampled at multiple sites throughout their geographic distribution (Fig. 1a, Supplementary Table 1), permitted detailed analyses of genomic variation within these species (Supplementary Note 1). These analyses distinguished four populations in the geographically widespread species A. marmorata, restricted to the western South Pacific (Fig. 1c, Supplementary Fig. 5). With few exceptions (see next section), the 430 individuals grouped according to species, and the seven species included in our dataset formed largely well-separated clusters. Pairwise nuclear genetic distances between species ranged from 0.0053 to 0.0116 (uncorrected p-distance; excluding individuals with intermediate genotypes) and were largest for A. mossambica, followed by A. megastoma (Supplementary Table 4). We further investigated the relationships among tropical eel species and their divergence times by applying Bayesian phylogenetic inference to genome-wide SNPs, using the multispecies coalescent model implemented in the software SNAPP. As SNAPP does not account for rate variation among substitution types, we performed separate analyses with transitions and transversions, both of which supported the same species-tree topology. In agreement with the pairwise genetic distances, A. mossambica appeared as the sister to a clade formed by all other species, and A. megastoma was resolved within this clade as the sister to a group formed by the species pair A. bicolor and A. obscura and the species trio A. marmorata, A. luzonensis, and A. interioris, with A. marmorata and A. luzonensis being most closely related within this trio (Fig. 1d, Supplementary Fig. 6). Each node of this species tree received full Bayesian support (Bayesian posterior probability, BPP, 1.0) and, except for the interrelationships of A. marmorata,
A. luzonensis, and A. interioris, the tree agreed with previous phylogenies of mitochondrial sequences. Using a published age estimate for the divergence of A. marmorata to time calibrate the species tree, our analysis of transition SNPs with SNAPP showed that the clade combining all species except A. marmorata began to diverge around 9.7 Ma (divergence of A. megastoma; 95% highest-posterior-density interval, HPD, 11.7–7.7 Ma). This age estimate was robust to the use of transversions instead of transitions, alternative topologies enforced through constraints, and subsampling of taxa (Supplementary Fig. 6).

To allow for the integration into other timelines of eel diversification based on multimarker data, we used whole-genome sequencing (WGS) data and generated new draft genome assemblies for A. marmorata, A. megastoma, and A. obscura (N50 between 54,849 bp and 64,770 bp; Supplementary Table 5), and extracted orthologs of the markers used in the studies of Musilova et al. and Rabosky et al. The use of these combined datasets together with age calibrations from the two studies also had little effect on age estimates (Supplementary Fig. 6). Thus, all our analyses of divergence times point to an age of the clade formed by A. marmorata, A. megastoma, A. obscura, A. luzonensis, A. bicolor, and A. interioris roughly on the order of 10 Ma.

High frequency of contemporary hybridization. Despite their divergence times up to around 10 Ma, our genomic dataset revealed ongoing hybridization in multiple pairs of tropical eel species. Analyses of genomic variation with PCA revealed a sample from the posterior tree distribution; a maximum-clade-credibility summary tree is shown in black. Color code in b, c, and d is identical to a. PC, principal component; AD, distance between the dorsal fin and the anus; PDH, predorsal length without head length; TL, total length.

Fig. 1 Genomic and morphological variation in tropical eels. a Distribution of Anguilla species in the Indo-Pacific. The color and position of dots within hexagons indicate species presence within the region covered by the hexagon, according to the Global Biodiversity Information Facility database and our own collection. Sampling locations are indicated with black dots. Numbers following location names specify the number of samples taken. Stacked bars indicate the species identities of individuals, according to mitochondrial and morphological species assignment. b Morphological variation among the four species A. marmorata (n = 100), A. megastoma (n = 30), A. obscura (n = 30), and A. interioris (n = 1). Dots represent individuals and are colored according to mitochondrial species identity. c Genomic principal component analysis (PCA) based on 155,896 variable sites. Specimen IDs are given for individuals with intermediate genotypes. The cyan circle indicates a cluster of 11 individuals mitochondrially assigned to A. marmorata (SAA16011, SAA16012, SAA16013, SAA16027, SAV17B27, SAV17B49, VAG12012, VAG12018, VAG12019, VAG13071, VAG13078), in addition to the highlighted VAG12044 that is mitochondrially assigned to A. megastoma. d Time-calibrated phylogeny based on 5000 transition sites. Each individual tree shown in gray represents a

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15099-x

(2020)11:1433 | https://doi.org/10.1038/s41467-020-15099-x | www.nature.com/naturecommunications
Fig. 2 Contemporary hybridization among tropical eels. a–d Genomic variation inferred in a PCA of all individuals of *A. marmorata*, *A. megastoma*, *A. obscura*, and *A. interioris* (Supplementary Fig. 5c), shown separately for four hybridizing species pairs: *A. marmorata* and *A. megastoma* (a), *A. marmorata* and *A. obscura* (b), *A. megastoma* and *A. obscura* (c), and *A. marmorata* and *A. interioris* (d). Individuals with intermediate positions are marked in gray with species color code as in Fig. 1. e Ancestry painting for 20 hybrids between *A. marmorata* and *A. megastoma*. The top and bottom horizontal bars represent 302 sites that are fixed for different alleles between the two species; all other bars indicate the alleles at each of those sites. White color indicates missing data. Heterozygous alleles are shown with the top half in each bar matching the second parental species and vice versa. f Ancestry painting for three contemporary hybrids between *A. marmorata* and *A. obscura*, based on 742 sites fixed between these two species. g Ancestry painting for one hybrid between *A. megastoma* and *A. obscura*, based on 525 fixed sites. h Ancestry painting for one hybrid between *A. marmorata* and *A. interioris*, based on 429 fixed sites. i Histogram of heterozygosity observed in hybrids. j Histogram of the proportions of hybrid genomes derived from the maternal species (according to mitochondrial sequence data). k Histogram of the relative morphological similarities between hybrids and the maternal species, measured as the relative proximity to the mean maternal phenotypes, compared to the proximity to the mean paternal phenotype. l Comparison of the proportions of hybrids’ genomes derived from the maternal species and the similarity to the mean maternal species’ phenotype. The dotted line indicates a significant positive correlation between the two measures (two-tailed t test; \(t = 3.1, p = 0.008 \)). PC, principal component; mito., mitochondrial genome; AD, distance between the dorsal fin and the anus; PDH, predorsal length without head; TL, total length.

ADMIIXTURE (Supplementary Fig. 7, Supplementary Table 6) and had high levels of conœstry with two other species in analyses of RAD haplotype similarity with the program fineRADstructure, indicative of hybrid origin. In contrast to these signals of interspecific hybridization, no *A. marmorata* individuals had genotypes clearly intermediate between the four distinct *A. marmorata* populations (Supplementary Fig. 4).

For each of the putative interspecific hybrid individuals, we produced ancestry paintings based on sites that are fixed for different alleles in the parental species. In these ancestry paintings, the genotypes of the putative hybrids are assessed for those sites fixed between parents, with the expectation that first-generation (F1) hybrids should be heterozygous at almost all of these sites, and backcrossed hybrids of the second generation should be heterozygous at about half of them. All of the putative hybrids were confirmed by the ancestry paintings, showing that our dataset includes 20 hybrids between *A. marmorata* and *A. megastoma*, 3 hybrids between *A. marmorata* and *A. obscura*, 1 hybrid between *A. megastoma* and *A. obscura*, and 1 hybrid between *A. marmorata* and *A. interioris* (Fig. 2e–h, Supplementary Figs. 9–13, Supplementary Table 7). The frequency of
hybrids in our dataset is thus 5.8% overall and up to 22.5% at the hybridization hotspot of Gaua, Vanuatu18 (Supplementary Table 4, Supplementary Table 8). This high frequency is remarkable, given that most animal species produce hybrids at a frequency far below 1\%14,45. The heterozygosities of the hybrids are clearly bimodal with a peak near 1 and another around 0.5 (Fig. 2i, Supplementary Table 7), supporting the presence of both first-generation hybrids and backcrossed second-generation hybrids.

Using the mitochondrial genomes of hybrids as an indicator of their maternal species, we quantified the proportions of their nuclear genomes derived from the maternal species, $\phi_{n,\text{genome}}$, based on their genotypes at the fixed sites used for ancestry painting. The distribution of these $\phi_{n,\text{genome}}$ values has three peaks centered around 0.25 (4 individuals), 0.5 (18 individuals), and 0.75 (3 individuals), suggesting that backcrossing has occurred about equally often with both parental species (Fig. 2, Supplementary Fig. 15).

In their size-standardized overall morphology, all hybrids for which morphological information was available ($n=15$) were intermediate between the two parental species (Supplementary Fig. 16). Following Watanabe et al.25, we measured this overall morphology by the ratios AD/TL and PDH/TL, where AD is the distance between the dorsal fin and the anus, TL is the total length, and PDH is the predorsal length without the head. From these two ratios, we quantified the morphological similarity of hybrids to their maternal species relative to their paternal species, $\phi_{m,\text{morphology}}$, as their position on an axis connecting the mean phenotypes of the two parental species (Supplementary Fig. 16). Similar to the distribution of $\phi_{n,\text{genome}}$ values (Fig. 2i), the distribution of $\phi_{m,\text{morphology}}$ values (Fig. 2k) also has three peaks centered close to 0.25, 0.5, and 0.75, and the two values were correlated (Fig. 2l). In contrast to their intermediate size-standardized overall morphology, hybrids in some cases had certain transgressive characters, exceeding the range of the parental phenotypes44,45 (Supplementary Figs. 17, 18). This was the case for VAG13071 and VAG12044, two F1 hybrids between A. marmorata and A. megastoma that had the greatest total length among all sampled individuals (Supplementary Table 1, Supplementary Fig. 17).

Notably, we recorded no signals of hybridization with Anguilla species that were not included in our dataset. Anguilla celebesensis, A. bengalenis, A. borneensis, and A. reichardtii all occur in the Indo-Pacific and could be expected to hybridize with the sampled species. If our dataset had included hybrids between sampled and unsampled species, we could have identified these hybrids from their expected increased heterozygosity, outlier positions in PCA analyses, and separate clustering in our analyses with ADMIXTURE and fineRADstructure. However, hybridization with the unsampled species could be locally restricted away from the sampled localities, a more extensive sampling scheme might be required to assess its overall frequency.

Signatures of past introgression. Multiple independent approaches revealed highly variable signatures of past introgression among species pairs of tropical eels. First, we found discordance between the Bayesian species tree based on the multispecies coalescent model (Fig. 1d) and an additional maximum-likelihood tree inferred with IQ-TREE46 (Supplementary Fig. 19) from 1360 concatenated RAD loci selected for high SNP density (Supplementary Fig. 1). Even though both types of trees received full node support, their topologies differed in the position of A. interioris, which appeared next to A. marmorata and A. luzonensis in the Bayesian species tree (Fig. 1d, Supplementary Fig. 6), but as the sister to A. bicolor and A. obscura in the maximum-likelihood tree, in agreement with mitochondrial phylogenies14,34. We applied an approach recently implemented in IQ-TREE47 to assess per-locus and per-site concordance factors as additional measures of node support in the maximum-likelihood tree. These concordance factors were substantially lower than bootstrap-support values and showed that as few as 4.7% of the individual RAD loci and no more than 39.7% of all sites supported the position of A. interioris as the sister to A. bicolor and A. obscura.

To further test whether the tree discordance is due to past introgression or other forms of model misspecification, we applied genealogy interrogation49, comparing the likelihood of different topological hypotheses for each of the 1360 RAD loci (Fig. 3a). We find that neither the topology of the Bayesian species trees nor the topology of the maximum-likelihood tree received most support from genealogy interrogation. Instead, 773 loci (62% of the informative loci) had a better likelihood when A. interioris was the sister to A. marmorata, A. luzonensis, A. bicolor, and A. obscura, compared to the topology of the Bayesian species tree (A. interioris as the sister to A. marmorata and A. luzonensis; Fig. 1d). The position of A. interioris as the sister to the other four species also had a better likelihood than the topology of the maximum-likelihood tree (A. interioris as the sister to A. bicolor and A. obscura; Supplementary Fig. 19) for 659 loci (53% of the informative loci). We thus assumed that the topology supported by genealogy interrogation (with A. interioris being the sister to A. marmorata, A. luzonensis, A. bicolor, and A. obscura) is our best estimate of the true species-tree topology. However, we observed an imbalance in the numbers of loci supporting the two alternative topologies, as 541 loci had a better likelihood when A. interioris was the sister to A. marmorata and A. luzonensis, whereas 685 loci had a better likelihood when A. interioris was the sister to A. bicolor and A. obscura (Fig. 3a). As incomplete lineage sorting would be expected to produce equal support for both alternative topologies but the imbalance is too large to arise stochastically (two-tailed binomial test; $p<10^{-4}$), genealogy interrogation supports past introgression among A. interioris, A. bicolor, and A. obscura.

We further quantified both Patterson’s D statistic49,50 and the f_1 statistic51,52 from biallelic SNPs, for all species quartets compatible with the species tree supported by genealogy interrogation. Both of these statistics support past introgression when they are found to differ from zero. We found that the f_1 statistic was significant in no less than 29 out of 60 species quartets (Supplementary Table 9). The most extreme D and f_1 values were observed in quartets in which A. mossambica was in the outgroup position, A. marmorata was in the position of the unadmixed species (P1), and A. interioris was in a position (P3) sharing gene flow with either A. luzonensis ($D=0.41$) or A. bicolor ($f_1=-0.011$) (P2). The sum of the analyses of D and f_1 suggests pervasive introgression among tropical eel species (Table 1), with significant support for gene flow between A. interioris and each of the four species A. luzonensis, A. bicolor, A. obscura, and A. megastoma, between A. luzonensis and both A. bicolor and A. obscura, and between A. marmorata and A. bicolor (Fig. 3b). While the pervasiveness of these signals prevents a clear resolution of introgression scenarios, the patterns could potentially be explained by a minimum of five introgression events: introgression between A. megastoma and A. interioris, between A. interioris and the common ancestor of A. bicolor and A. obscura, between A. interioris and A. luzonensis, between A. luzonensis and the common ancestor of A. bicolor and A. obscura, and between A. bicolor and A. marmorata (Fig. 3b).

The four different populations of A. marmorata all showed nearly the same signal of gene flow with A. bicolor, indicating that either the introgression between these species predates the origin of the
both have a high population mutation rate, similarly widespread restricted geographic distributions (Fig. 2d, h). In contrast, contemporary hybridization involving one of these species (top). The position of each dot shows the relative likelihood support of one RAD locus for each of the three tested relationships, with a distance corresponding to a log-likelihood difference of 10 indicated by the scale bar. The central triangle connects the mean relative likelihood support for each relationship. A black dot inside that triangle marks the central position corresponding to equal support for all three relationships. Sample sizes (n) report the number of loci that support each of the two competing relationships connected by that edge. b Heatmap indicating maximum pairwise D (above diagonal) and fi values (below diagonal) statistics (see Table 1). Combinations marked with “x” symbols indicate sister taxa; introgression between these could not be assessed. Asterisks indicate the significance of fi values (*p < 0.05; **p < 0.01; ***p < 0.001; not adjusted for multiple comparisons; see Table 1 for precise values), determined through one-sided comparison with coalescent simulations with the F4 software. The cladogram on the left summarizes the species-tree topology according to the and the significant signals of introgression according to b. c,d Comparisons of the maximum D value per species with the species’ geographic range or population mutation rate Θ. Geographic range was measured as the number of geographic hexagons (see Fig. 1) in which the species is present, and Watterson’s estimator was used for the population mutation rate Θ. n.s. not significant. e Genomic patterns of phylogenetic relationships among A. marmorata, A. obscura, and A. megastoma, based on WGS reads mapped to the 11 largest scaffolds (those longer than 5 Mbp) of the A. anguilla reference genome. Blocks in light gray show 20,000-bp regions (incremented by 10,000 bp) in which A. marmorata and A. obscura appear as sister species, in agreement with the inferred species tree; in other blocks, A. megastoma appears closer to either A. obscura (gray) or A. marmorata (dark gray).

Fig. 3 Past introgression among tropical eels. a Likelihood support of individual RAD loci for different relationships of A. interioris: as sister to A. marmorata and A. luzonensis (bottom left), as sister to A. obscura and A. bicolor (bottom right), and as sister to a clade formed by those four species (top). The position of each dot shows the relative likelihood support of one RAD locus for each of the three tested relationships, with a distance corresponding to a log-likelihood difference of 10 indicated by the scale bar. The central triangle connects the mean relative likelihood support for each relationship. A black dot inside that triangle marks the central position corresponding to equal support for all three relationships. Sample sizes (n) report the number of loci that support each of the two competing relationships connected by that edge. b Heatmap indicating maximum pairwise D (above diagonal) and fi values (below diagonal) statistics (see Table 1). Combinations marked with “x” symbols indicate sister taxa; introgression between these could not be assessed. Asterisks indicate the significance of fi values (*p < 0.05; **p < 0.01; ***p < 0.001; not adjusted for multiple comparisons; see Table 1 for precise values), determined through one-sided comparison with coalescent simulations with the F4 software. The cladogram on the left summarizes the species-tree topology according to the and the significant signals of introgression according to b. c,d Comparisons of the maximum D value per species with the species’ geographic range or population mutation rate Θ. Geographic range was measured as the number of geographic hexagons (see Fig. 1) in which the species is present, and Watterson’s estimator was used for the population mutation rate Θ. n.s. not significant. e Genomic patterns of phylogenetic relationships among A. marmorata, A. obscura, and A. megastoma, based on WGS reads mapped to the 11 largest scaffolds (those longer than 5 Mbp) of the A. anguilla reference genome. Blocks in light gray show 20,000-bp regions (incremented by 10,000 bp) in which A. marmorata and A. obscura appear as sister species, in agreement with the inferred species tree; in other blocks, A. megastoma appears closer to either A. obscura (gray) or A. marmorata (dark gray).

observed spatial within-species differentiation in A. marmorata, or that each A. marmorata population had gene flow with the similarly widespread A. bicolor (Supplementary Table 10).

Interestingly, it appears that the species with the most restricted geographic distributions—A. interioris and A. luzonensis—are those with the strongest signals of past introgression (Fig. 3c), even though we identified only a single instance of contemporary hybridization involving one of these species (Fig. 2d, h). In contrast, A. marmorata and A. megastoma, which both have a high population mutation rate Θ indicative of a large effective population size N_e (as Θ = 4N_eμ; with μ being the mutation rate), are those with the weakest signals of introgression (Fig. 3d) despite a high frequency of hybrids between them. This observation could be explained if introgressed alleles are over time more effectively purged by purifying selection from the genomes of species with larger effective population sizes. Particularly large effective population sizes in A. marmorata and A. megastoma are in fact supported by the WGS data produced for one individual of both species as well as A. obscura. When analyzed with the pairwise sequentially Markovian coalescent model, these data yielded estimates of a contemporary N_e between 9.9 × 10^4 and 6.0 × 10^5 for A. marmorata and between 2.3 × 10^5 and 2.0 × 10^6 for A. megastoma, whereas a comparatively lower N_e between 3.4 × 10^4 and 7.4 × 10^4 was estimated for the third species with WGS data, A. obscura (Supplementary Fig. 20).

Low levels of introgression in the genomes of A. marmorata and A. megastoma were also supported by these WGS data. Aligning the WGS reads of A. marmorata, A. megastoma, and A. obscura to the A. anguilla reference genome assembly resulted in an alignment with 23,165,451 genome-wide SNPs. Based on these SNPs, and using A. anguilla as the outgroup, the D value supporting gene flow between A. marmorata and A. megastoma was only 0.007 (Table 1). Phylogenetic analyses for 7133 scaffolds of the genomes of species with larger effective population sizes9,53–55.
respectively. Notably, we did not observe long sets of adjacent blocks supporting the alternative topologies, which would be expected if the individuals had hybrids in their recent ancestry. The longest set of blocks supporting A. marmorata and A. megastoma as most closely related encompassed merely 80,000 bp (positions 4,890,000 to 4,970,000 on scaffold scf1677). While the lack of phasing information and a recombination map prevents a statistical test of time since admixture, the absence of longer sets of blocks most likely excludes hybrid ancestors within the last 10–20 generations.

Evidence of cytonuclear incompatibility. With a single exception, all of the 20 hybrids between A. marmorata and A. megastoma possessed the mitochondrial genome of A. marmorata, indicating that it is almost exclusively female A. marmorata that are involved in successful hybridization events (Fig. 2e). None of the seven backcrosses possessed the A. megastoma mitochondrial genome, and thus the mother of the mother of each backcross must have been an A. marmorata. Such asymmetry indicates differential viability of hybrids depending on the directionality of mating and could result from cytonuclear incompatibilities.

To identify potential causes of cytonuclear incompatibility between the two species, we investigated their nuclear and mitochondrial genomes for rearrangements within genes and for nonsynonymous substitutions between the species. Pairwise whole-genome alignment of the A. marmorata and A. megastoma genome assemblies with the A. anguilla reference genome assembly revealed at least one clear example of a large-scale (>1 kb) inversion in A. megastoma and several further putative inversions and transpositions (Supplementary Table 11, Supplementary Fig. 21). Mapping of A. megastoma WGS reads to the genome assembly of the same species further indicated the heterozygous presence of an inversion with a length of about 8 kb. This inversion changes the orientation of at least two regions homologous to exons of the zebrafish (Danio rerio) myhc4 gene (NCBI accession NM_001202485), suggesting that the inversion affects the protein encoded by this gene, myosin heavy chain, in part of the A. megastoma population (Fig. 4a, Supplementary Fig. 22, Supplementary Table 12).

A closer inspection of the RAD-sequencing-derived nuclear sites fixed between A. marmorata and A. megastoma (Fig. 2e) showed that nine of the 302 fixed sites lie within coding regions, according to gene prediction for the A. anguilla genome assembly with AUGUSTUS (Supplementary Table 13). Of these nine fixed differences, three change an amino acid in the translation of the predicted gene, including, in one case, a change in a region homologous to exon 191 of the zebrafish ttna gene, encoding for titin (NCBI accession DQ649453) (Fig. 4b, Supplementary Table 14).

Finally, by comparing the mitochondrial genomes of A. marmorata and A. megastoma, we identified 67 mitochondrial amino-acid changes between the two species (Fig. 4c, Supplementary Table 15; whether or not these changes were fixed in the two species could not be determined as we only had mitochondrial genome information of one individual per species). The greatest density of these changes was found in the translation of the mt-atp6 gene, where 15 out of 227 amino acids (6.6%) were different between the two species.

Based on these findings, we propose that differences in myhc4, ttna, and mt-atp6 could be possible causes of cytonuclear incompatibility between A. marmorata and A. megastoma. The products of myhc4 and ttna, myosin heavy chain and titin, are both essential for muscle function and their joint work is powered by hydrolysis of adenosine triphosphate (ATP) in the myosin heavy chain subunit. In turn, ATP is produced at mitochondrial

P1	P2	P3	n	\(C_{ABBA}\)	\(C_{BABA}\)	D	\(f_4\)	p
A. marmorata	A. luzonensis	A. interioris	10,290	182.7	77.1	0.406	0.0070	0.000
A. marmorata	A. luzonensis	A. obscura	15,689	186.6	93.0	0.334	0.0043	0.000
A. marmorata	A. bicolor	A. interioris	7772	266.3	138.4	0.316	0.0109	0.000
A. marmorata	A. luzonensis	A. bicolor	11,542	158.1	82.8	0.313	0.0052	0.000
A. marmorata	A. obscura	A. interioris	10,208	307.9	197.8	0.218	0.0051	0.000
A. obscura	A. bicolor	A. marmorata	8304	123.8	84.1	0.191	0.0030	0.005
A. obscura	A. bicolor	A. luzonensis	11,372	104.7	71.2	0.191	0.0025	0.002
A. obscura	A. bicolor	A. luzonensis	12,557	113.4	80.0	0.173	0.0022	0.008
A. marmorata	A. interioris	A. megastoma	9951	96.4	72.7	0.140	0.0023	0.026
A. marmorata	A. luzonensis	A. megastoma	13,129	69.0	52.9	0.133	0.0008	0.201
A. luzonensis	A. marmorata	A. bicolor	14,675	105.4	84.5	0.110	0.0011	0.106
A. luzonensis	A. marmorata	A. bicolor	14,246	228.4	191.0	0.089	0.0015	0.062
A. luzonensis	A. interioris	A. megastoma	13,632	82.4	70.2	0.080	0.0007	0.192
A. marmorata	A. bicolor	A. megastoma	11,134	110.9	95.0	0.077	0.0003	0.430
A. luzonensis	A. marmorata	A. obscura	15,500	111.7	96.5	0.073	0.0003	0.406
A. marmorata	A. obscura	A. megastoma	11,647	126.1	110.0	0.068	0.0009	0.241
A. bicolor	A. obscura	A. marmorata	11,303	80.0	73.0	0.046	0.0007	0.261
A. obscura	A. bicolor	A. megastoma	11,761	64.7	59.5	0.042	0.0002	0.447
A. bicolor	A. obscura	A. luzonensis	15,856	78.1	72.1	0.040	0.0010	0.141
A. bicolor	A. obscura	A. interioris	11,017	96.2	90.8	0.029	0.0011	0.137
A. luzonensis	A. bicolor	A. megastoma	14,602	97.0	93.1	0.020	0.0002	0.416
A. bicolor	A. interioris	A. megastoma	10,451	84.0	82.0	0.012	0.0007	0.213
A. luzonensis	A. obscura	A. interioris	15,143	227.1	221.7	0.012	0.0006	0.300
A. luzonensis	A. obscura	A. marmorata	15,405	107.9	106.2	0.008	0.0001	0.461
A. obscura	A. marmorata	A. megastoma	23,165,451	596,786.0	587,910.0	0.007	—	—

Only comparisons that are compatible with the inferred phylogenetic relationships and result in positive D values are shown (for all comparisons, see Supplementary Table 9). All except the comparison in the last row are based on RAD-sequencing-derived SNP data; the last comparison is based on WGS reads of a single individual of the three species. Either A. messenica, A. megastoma, A. interioris, or A. anguilla (in the comparison based on WGS data) were used as outgroups and the comparison resulting in the largest D value is reported when multiple of these outgroups were used. p values are based on one-sided comparisons and not adjusted for multiple comparisons. \(n\): number of sites variable among the included species; \(C_{ABBA}\): number of sites at which species P2 and P3 share the derived allele; \(C_{BABA}\): number of sites at which P1 and P3 share the derived allele. Italic font is used for species names and variables.
membranes by the enzyme ATP synthase, which is in part encoded by mt-atp6. It could therefore be possible that modifications in ATP synthase in one of the two species, influencing for example the efficiency of ATP production, are incompatible with altered properties of myosin and titin in the other species, which could reduce the fitness of hybrids in which the modifications co-occur. This type of fitness reduction could be particularly relevant in species that rely on highly efficient muscle function, such as anguillid eels during their oceanic spawning migrations. Interestingly, myosin heavy chain, titin, and ATP synthase have also been linked to cytonuclear incompatibility in the two Atlantic eel species A. anguilla and A. rostrata, where myosin heavy chain and titin were among 94 proteins with fixed sites between the two species and mt-atp6 was found to be under strong positive selection together with a nuclear interactor gene.

Discussion

As species diverge, genetic incompatibilities accumulate and reduce the viability of hybrids. However, the absolute timescale on which hybrid inviability evolves vastly exceeds the ages of species in many diversifying clades, indicating that species boundaries in these groups are maintained by reproductive barriers that act after the F1 stage. For anguillid eels, laboratory experiments have produced hybrids between several species pairs, including A. anguilla and A. australis 77, A. anguilla and A. japonica 78,79, and A. australis and A. dieffenbachii 80. These species pairs result from some of the earliest divergence events within the genus (Supplementary Fig. 6), suggesting that the limits of hybrid viability are not reached in anguillid eels. Our observation of frequent hybridization in four different species pairs, including two pairs involving A. megastoma with a divergence time around 10 Ma (Fig. 1d), supports this conclusion in a natural system, indicating that prezygotic reproductive barriers may generally be weak in tropical eels. This interpretation is strengthened by the fact that the 25 hybrids in our dataset were sampled in five different years (Supplementary Table 7), suggesting that natural hybridization in tropical eels occurs continuously, rather than, for example, being the result of an environmental trigger that ephemeral caused spatially and temporally overlapping spawning 81. Moreover, the seven identified backcrosses demonstrate that hybrids, at least those between A. marmorata and A. megastoma, can successfully reproduce naturally, indicating that, just like prezygotic barriers, postzygotic barriers (in the form of a reduction of F1 fertility) are also incomplete in tropical eels, even after 10 million years of divergence.

Nevertheless, by considering both hybridization frequencies and introgression signals across multiple species pairs, our analyses reveal how species collapse has been prevented in tropical eel species despite their great potential for genomic homogenization. First, asymmetry in the inheritance of mitochondrial genomes in hybrids suggests cytonuclear incompatibility between A. marmorata and A. megastoma, which is supported by our identification of genetic differences related to muscle function in the two species. Second, the lower frequency of backcrosses compared to F1 hybrids and the lack of later-generation backcrosses also suggest decreased fitness of hybrids. This hypothesis is supported by the observation that the A. marmorata and A. megastoma individuals selected for WGS apparently did not have recent hybrid ancestors, even though these individuals were sampled at the hybridization hotspot of Gaua, Vanuatu, where over 20% of all specimens are hybrids (Supplementary Table 8). Thus, it is possible that hybrid breakdown, affecting the viability and fertility of later-generation hybrids to a greater extent than F1 hybrids 74,76,82, is common in tropical eels and reduces the amount of introgression generated by backcrossing. Finally, the degree of introgression present in the genomes of tropical eel species appears to depend more on their population sizes than their hybridization frequencies, which could suggest that most introgressed alleles are purged from the recipient species by purifying selection. This purging may be particularly
effective in tropical eels due to their largely panmictic popula-
tions, preventing deleterious alleles from persisting in isolated
subgroups. The combination of cytostatic incompatibility, hybrid
breakdown, and purifying selection may thus effectively reduce
gene flow among tropical eels to a trickle that is too weak to
break down species boundaries. Over the last 10 million years,
this trickle might nevertheless have contributed to the diversi-
fication of tropical eels by providing the potential for adaptive
introgression, which could for example have aided local ad-
aptation following range expansion. Due to their unique cata-
 bromous life cycle, speciation in anguillid eels is assumed to
proceed in one of two ways: either through a gradual expansion of
the freshwater growth habitat, followed by reproductive isolation
when spawning areas become separated in space or time, or
through the transport of larvae into a different ocean current
system—perhaps due to changes in palaeoeceanographic con-
ditions—followed by the establishment of a new spawning area
in that system. Particularly during the early colonization stages in a new system,
introgression from other species already established in that system
may be beneficial for local adaptation, leaving their
signatures in the genome. This identification of such signatures based
on population-level whole-genome resequencing in tropical eels
and their eels in the future goal for future studies.

Methods
Sample collection. A total of 456 Anguilla specimens were obtained from 14 main localities over 17 years (2001–2017; Fig. 1, Supplementary Table 1). Sampling localities included South Africa (AFC: n = 16), Swaziland (AFS: n = 1), Mayotte (MAY: n = 10), Reunion (REU: n = 10), Indonesia (JAVA: n = 30), Philippines (PHC/PHP: n = 58), Taiwan (TAI: n = 30), Bougainville Island (BOU: n = 50), Solomon Islands (SOK/SOL:SON/SOR: MongoI: n = 31), Vanuatu (VAG: n = 79), New California (NCA: n = 43), Samoa (SAW: n = 71), and American Samoa (SAA: n = 38). Sampling was performed by electrofishing and with handnets in estuaries, rivers, and lakes, targeting elvers, yellow eels, and silver eels. Small fin clips were extracted from the pectoral fin of each specimen and stored in 98% ethanol, to be used in subsequent genetic analyses. Permits were obtained prior to sampling from the responsible authorities. The project was approved by the Research, Innovation and Academic Engagement Ethical Approval Panel of the University of Salford (the institution where DNA extraction and library preparation took place, permit number ST15/68). Local governments further approved the sampling protocols.

Morphological analyses. Morphological variation was assessed based on the following measurements: total length (TL), weight, preanal length (PA), predorsal length (PD), postdorsal length (PD'), anal fin length (HF), prepectoral fin length (PFL), postpectoral fin length (PPL), tail length (T = TL – PA), and preanal length without head length (TR = PA – HL). Morphological variation was assessed with gstacks in the program IMP v.7.0 (SAS Institute Inc.; www.insp.com) based on the ratios of PA, T, HL, TR, PD, and AD to TL, this analysis was performed for 161 individuals for which all measurements were available (100 A. marmorata, 30 A. megastoma, 30 A. obscura, and 1 A. interioris). Principal component scores were used to delimit “core” groups of putatively unadmixed individuals for the three species, A. marmorata (73 individuals), A. megastoma (26 individuals), and A. obscura (26 individuals). In addition to PCA, we plotted the ratios of AD to PDH to TL, which were found to be particularly diagnostic for Anguilla species.

Sequencing and quality filtering. Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen) as per the manufacturer’s instructions, or using a standard phenol chloroform procedure59. DNA quality of each sample was evaluated
analyzed on an agarose gel and quantified on a Qubit Fluorometer 2.0 (Thermo Fisher Scientific) for correct cut sites and adaptor sequences using the “process_radtags” tool and subsequently mapped against the European eel (A. anguilla) genome assembly57 using BWA MEM v.0.7.1756. As this assembly does not include the mitochondrial genome, mitochondrial reads were identified by separately mapping against the A. japonica mitochondrial genome (NCBI accession CM002536). Mapped reads were sorted and indexed using SAMTools v.1.4.30. Species identification was verified for all individuals by comparing mitochondrial sequences with the NCBI Genbank database using BLAST v.2.7.15. Individuals with low-quality sequence data (with a number of reads below 600,000, a number of mapped reads below 70%, and a proportion of singletone above 0.8) were excluded (n = 26). Variants were called using the “gstacks” tool, requiring a minimum mapping quality of 20 and an insert size below 500. Called variants were exported to variant call format (VCF) and haplotype format using the “optimization” tool, allowing maximally 20% missing data and an observed heterozygosity below 75%, returning 1,518,299 SNPs.

The VCF file was further processed in two separate ways to generate suitable datasets for phylogenetic and population genetic analyses based on SNPs. For phylogenetic analyses, the VCF file was filtered with BCFTools v.1.657 to mask genotypes if the per-sample read depth was below 3 or above 50 or if the genotype quality was below 30. The resulting VCF file contained 619,553 SNPs (Supplementary Fig. 1). For analyses of genomic variation within and among species, filtering was done using VCFTools v.0.1.1458 and PLINK v.1.959. Sites were excluded if the mean read depth was above 50, the minor allele frequency was below 0.02, or heterozygosity excess was supported with p < 0.05 (rejecting the null hypothesis of no excess). In addition, individual genotypes were masked if they had a read depth below 5 or a genotype quality below 30. The resulting VCF file contained 155,896 SNPs (Supplementary Fig. 1).

For each of the three species A. marmorata, A. megastoma, and A. obscura, one individual (VAG12030, VAG12031, and VAG12050, respectively) sampled in Gaua, Vanuatu, was subjected to WGS. Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s protocol. DNA quality was evaluated on a Qubit Fluorometer 2.0 (Thermo Fisher Scientific). All samples were sequenced on an Illumina HiSeq X Ten system at Macrogen (Korea) with the TrueSeq DNA PCR-Free library kit (350 bp insert size) using 150 bp paired-end reads.

Genome assembly. WGS reads for A. marmorata, A. megastoma, and A. obscura were error-corrected and trimmed for adapters with “merTrim” from the Celera Assembler software v.8.3 (downloaded from the Concurrent Version System repository on 21 June 2017) using a k-mer size of 22 and the Illumina adapters option96. Celera Assembler was run with the following options: merThreshold = 0, merDistinct = 0.9995, merTotal = 0.995, unitigger = boargt, doOBT = 0, doTogle = 0; default settings were used for all other parameters. After assembly, the reads were mapped back to the assemblies using BWA MEM v.0.7.12, and their two resulting alignments were concatenated. The genealogy of mitochondrial haplotypes was reconstructed based on the GTRCAT substitution model in RAxML v.8.2.11102 and used jointly with the concatenated alignment to produce a haplotype–genealogy graph with the software Titchi v.1.1.1.40.

Analysis of mitochondrial haplotypes. RAD-sequence data with SNPs for all mitochondrial genome were converted to FASTA format using SAMTools v.1.3.1, and aligned using MAFFT v.7.289. Alignments were trimmed to regions 10,630–10,720 and 12,015–12,105 of the A. japonica mitochondrial genome with alignment settings in MAFFFT v.7.397101 and the two resulting alignments were concatenated. The genealogy of mitochondrial haplotypes was reconstructed based on the GTRCAT substitution model in RAxML v.8.2.11.102 and used jointly with the concatenated alignment to produce a haplotype–genealogy graph with the software Titchi v.1.1.1.40.

Species-tree inference. To estimate a time-calibrated species tree for the seven sampled Anguilla species, we applied the Bayesian molecular-clock approach of Stange et al.31 to a subset of the dataset of 619,553 SNPs, containing data for the maximally five individuals per species with the lowest proportions of missing data (28 individuals in total: 1 A. mossambica, 3 A. interioris, 4 A. bicolor, and 5 of each remaining species). By employing the SNAPP v.1.325 package for the program BEAST v.2.5.10140, the approach of Stange et al.31 integrates over all possible trees at each SNP and therefore allows accurate phylogenetic inference in the presence of incomplete lineage sorting. As the SNAPP model assumes a single rate of evolution for all substitution types, all SNAPP analyses were conducted separately for transversion and transition SNPs and the two alignments were used in both cases to reduce run times of the computationally demanding SNAPP analyses. After exploratory analyses unambiguously supported a position of A. mossambica outside of the other six sampled anguillid species, the root of the species tree was calibrated according to published estimates for the divergence time of A. mos-
sambica to A. japonica —determined to be 0.1 myr, reported by Jacobsen et al.14 based on mitochondrial genomes of 15 anguillid species and three outgroup species. A justification of this
timeline is given in Supplementary Note 3. Five replicate Markov-chain Monte Carlo (MCMC) analyses were conducted and convergence was confirmed with effective sample sizes greater than 200, measured with software Tracer v.1.7.123. The posterior distributions of run replicates were merged after discarding the first 10% of each MCMC as burn-in, and maximum-clade-credibility (MCC) trees with node heights set to mean age estimates were generated with TreeAnnotator106. The robustness of divergence-time estimates was tested in a series of additional analyses, in which (i) alternative topologies were specified to fix the position of *A. interioris* (see below), (ii) species with strong signals of past introgression, *A. luzonensis* and *A. interioris* (see below), were excluded, (iii) genome assemblies of *A. marmorata*, *A. obscura*, and *A. megastoma* were used in combination with sequences from nuclear and mitochondrial markers (for the same three species were used jointly with sequences and age constraints from Rabosky et al.38). A full description of these additional analyses is presented in Supplementary Note 4.

The relationships among the seven sampled species *A. marmorata*, *A. luzonensis*, *A. bicolor*, *A. obscura*, *A. interioris*, *A. megastoma*, and *A. mossambica* were further investigated based on maximum likelihood, using the software IQ-TREE v.1.7.126 and the same 28 individuals as in SNAPP. Node support was estimated with three separate Maximum-likelihood phylogeny was estimated from this set of loci with IQ-TREE lengths of 393,708 bp and 0.18% of missing data (Supplementary Fig. 1). The resulting dataset contained sequences from 1360 loci with a total percentage of loci and sites, respectively, that support a given branch, and thus are around 50% or less at these sites. For each versus species quartet from a fully genomic dataset. To this end, WGS data for *A. marmorata*, *A. megastoma*, and *A. obscura*, in combination with the absolute reference genome assembly *A. anguilla* (see “Methods”), we calculated *D* statistic for this species quartet from a fully genomic dataset. To this end, WGS reads of the three species were mapped against the *A. anguilla* reference assembly using BWA MEM, and sorted and indexed using SAMTools. Duplicates were marked using Picard tools v.2.6.0 (http://broadinstitute.github.io/picard/), and indels were realigned using GATK v.3.4.6415. Per-species mean read coverage (71.3X, 64.8X, and 48.9X for *A. marmorata*, *A. megastoma*, and *A. obscura*, respectively) was calculated with bedtools v.2.26.0136. SNP calling was performed using SAMTools “mpileup” command, requiring a minimum mapping quality (MQ) of 30 and a base quality (BQ) greater than 30, before extracting the consensus sequence using BCPTools v.1.6. The consensus sequences were converted to FASTQ format via SAMTools’ “vcfutils” script for bases with a read depth (DP) between 15 and 140, and subsequently used to calculate the genome-wide *D* statistic with *A. obscura* as P1, *A. marmorata* as P2, *A. megastoma* as P3, and *A. anguilla* as the outgroup.

The dataset of 619,353 RAD-sequence-derived SNPs (Supplementary Table 1) was further used to calculate the *f*$_\text{ST}$ statistic42,43 as a separate measure of introgression signals, for the same species quartets as the *D* statistic. The *f*$_\text{ST}$ statistic is based on allele-frequency differences between the species pair formed by P1 and P2 and the species pair formed by P3 and the outgroup (as the *f*$_\text{ST}$ statistic does not assume a phylogenetic signal, there is no requirement that P1 and the outgroup be monophyletic), and like the *D* statistic, the *f*$_\text{ST}$ statistic is expected to be zero in the absence of introgression. We calculated the *f*$_\text{ST}$ statistic with the F4 program v.0.9252. As the
distribution of the f_2 statistic across the genome is usually not normally distributed, block-jackknife resampling is not an appropriate method to assess its significance; thus, we used bootstrap p-values based on coalescent simulations. These simulations were also conducted with the F4 program, internally employing fastsimcoal v.2.5.217 to run each individual simulation. After a burnin period required to adjust settings for divergence times and population sizes in the simulations, the set of simulations allows the estimation of the p value for the hypothesis of no introgression as the proportion of simulations that resulted in an f_2 statistic as extreme or more extreme than the f_2 statistic of the empirical species quartet.

The genome-wide consensus sequences for A. marmorata, A. megastaomo, and A. obscura, aligned to the A. anguilla reference genome assembly27, were further used to test for introgressions on the largest scaffolds of the reference genome (11 scaffolds with lengths greater than 5 Mbps). To this end, maximum-likelihood phylogenies of the four species were generated with IQ-TREE for blocks of 20,000 bp, incremented by 10,000 bp, with IQ-TREE settings as described above for species-tree inference.

Estimating effective population sizes. Distributions of genome-wide coalescence times were inferred from WGS reads of A. marmorata, A. megastaomo, and A. obscura using the pairwise sequentially Markovian coalescent model, implemented in the program f_{2pm}199. Heterozygous sites were then used to infer parameter estimates in fastQFST format (see above) using the script "fq2spmcn"199, applying a window size of 20 bp (1.4% of windows contained more than one heterozygous site), and a scaffold-good-size of 10,000 bp. The PSMC analyses were run for 30 iterations, setting the initial effective population size to 15, the initial Θ to five, and the time-intervals option to $4 \times 4 \times 13 \times 2 \times 4 \times 4 \times 4$, corresponding to 22 free parameters. To assess confidence intervals, 100 bootstrap replicates were performed using the script "splitfita"56. The PSMC plots were scaled using generation times reported by Jacoby et al.116; these were 12 years, 10 years, and 6 years for A. marmorata, A. megastaomo, and A. obscura, respectively. Mutation rates were calculated based on pairwise genetic distances and divergence-time estimates inferred in our phylogenetic analyses. Uncorrected p-distances were 1.199% between A. marmorata and A. megastaomo, 1.307% between A. megastaomo and A. obscura, and 1.141% between A. marmorata and A. obscura. In combination with the divergence time of A. megastaomo at 9.6954 Ma and the divergence time between A. marmorata and A. obscura at 7.2023 Ma, these distances resulted in mutation-rate estimates per site per generation of $r = 8.6 \times 10^{-9}$, 5.6 $\times 10^{-9}$, and 5.2×10^{-9} for A. marmorata, A. megastaomo, and A. obscura, respectively.

Identification of genomic rearrangements. Structural genomic rearrangements among A. marmorata, A. megastaomo, and A. obscura were identified by performing whole-genome alignment for the three newly generated genome assemblies and the two previously available genome assemblies for A. japonica118 and A. anguilla22. Whole-genome alignments were generated in a pairwise manner with the program LASTZ v.1.04120, aligning the assemblies of A. japonica, A. megastaomo, A. anguilla, and A. obscura to the species-specific genome assemblies using BWA MEM, and investigating the distributions of mapped reads with and without proper mate pairing (Supplementary Figs. 21, 22). A full description of the methods used to identify and verify genomic rearrangements is provided in Supplementary Notes 5 and 6. We further applied gene prediction for AUGUSTUS v.3.3.490 to the A. anguilla22 reference genome (Supplementary Note 7), allowing us to determine the locations of rearrangements relative to coding sequences. For rearrangements within genes, we applied TBLASTX searches52 to determine the locations and orientations of regions homologous to exons of zebrafish (Danio rerio) genes (assembly version GRCh11; NCBI accession GCA_000002355.1425) (Supplementary Table 12).

Identification of nonsynonymous substitutions. To investigate possible causes of cytochrome c incompatibility between A. marmorata and A. megastaomo, we analyzed both the RAD-seq-derived nuclear SNPs as well as mitochondrial genomes produced with WGS for substitutions that change the amino-acid sequence of proteins. For each of the 302 nuclear sites fixed between A. marmorata and A. megastaomo, we determined whether it was localized within a coding sequence predicted with AUGUSTUS (Supplementary Note 7), and if so, whether it affects the amino-acid translation. For the resulting set of nine fixed sites localized within coding sequences (Supplementary Table 13), we used BLASTX searches52 to identify homologous proteins in the zebrafish proteome. Mitochondrial gene sequences were identified from the newly generated mitochondrial genome assemblies of A. marmorata and A. megastaomo using nucleotide sequences of the A. anguilla mitochondrial genome (NCBI accession NC_006531) as queries in TBLASTN searches52. The identified sequences were aligned separately for each mitochondrial gene with MAFFT and translated into amino acids with the vertebrate mitochondrial genetic code (Supplementary Table 15).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The raw RADseq data are deposited on the NCBI SRA database with project number PRJNA590038. Genome assemblies and WGS reads for A. marmorata, A. megastaomo, and A. obscura are deposited on ENA with project number PRJEB32187. Haplotype files, alignment files, SNP datasets in VCF format, and input and output of phylogenetic analyses are available from the associated Dryad repository (https://doi.org/10.5066/dryad.ncjs8n1). Previously available datasets used in this study include the NCBI accessions CM002536, NC_006531, GCA_000020305.4, GCA_000695075, GCA_000470695, NM_001024085, and DQ649453. The source data underlying Figs. 1b, c, 2d–l, i–l, 3c, d, and Supplementary Figs. 3–5, 7, and 15–18 are provided as a Source Data file.

Code availability

Code for computational analyses is available from Github (http://github.com/mmatschiner/anguilla/).

Received: 12 June 2019; Accepted: 7 February 2020; Published online: 18 March 2020

References

1. Mallet, J. Hybridization as an invasion of the genome. *Trends Ecol. Evol.* **20**, 229–237 (2005).
2. Mallet, J. Hybrid speciation. *Nature* **446**, 279–283 (2007).
3. Abbott, R. et al. Hybridization and speciation. *J. Evol. Biol.* **26**, 229–246 (2013).
4. Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. *Nat. Ecol. Evol.* **3**, 170–177 (2019).
5. Meier, I. J. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nat. Commun.* **8**, 14363 (2017).
6. Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. *Science* **359**, 224–228 (2018).
7. Kozak, K. M., McMillan, W. O., Joron, M. & Jiggins, C.D. Genome-wide admixture is common across the *Heliconius* radiation. Preprint at https://doi.org/10.1101/414201 (2018).
8. Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. *Science* **366**, 594–599 (2019).
9. Schummer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. *Science* **360**, 1–11 (2018).
10. Grant, P. R. & Grant, B. R. Hybridization increases population variation during adaptive radiation. *Proc. Natl Acad. Sci. USA* **116**, 23216–23224 (2019).
11. Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations during adaptive radiation. *Trends Ecol. Evol.* **24**, 1903–1915 (2018).
12. Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Interchromosomal coupling between vision and pigmentation genes during genomic divergence. *Nat. Ecol. Evol.* **3**, 657–667 (2019).
13. Nelson, J. S., Grande, T. C. & Wilson, M. V. H. *Fishes of the World 5th edn* (John Wiley & Sons, Inc: Hoboken, NJ, 2016).
14. Jacobsen, M. W. et al. Speciation and demographic history of Atlantic eels (*Anguilla anguilla* and *A. rostrata*) revealed by mitogenome sequencing. *Hereditas* **113**, 432–442 (2014).
15. Pujolar, J. M. & Maes, G. E. In *Biological and Ecological of Anguillid Eels* (ed. Arai, T.) 36–51 (CRC Press, Boca Raton, USA, 2016).
16. Baltazar Soares, M. & Eizaguirre, C. Does asymmetric gene flow among matrilines maintain the evolutionary potential of the European eel? *Ecol. Evol.* **6**, 5305–5320 (2016).
17. Avise, J. C. et al. The evolutionary genetic status of Icelandic eels. *Evolution* **44**, 1254–1262 (1990).
18. Schahsingerber, R. et al. Genetic and migratory evidence for sympatric spawning of tropical Pacific eels from Vanuatu. *Mar. Ecol. Prog. Ser.* **521**, 171–187 (2015).
19. Albert, V., Jónsson, B. & Bernatchez, L. Natural hybrids in Atlantic eels (*Anguilla anguilla, A. rostrata*): evidence for successful reproduction and fluctuating abundance in space and time. *Mol. Ecol.* **15**, 1903–1916 (2006).
20. Gagnaire, P.-A., Normandeau, E. & Bernatchez, L. Comparative genomics reveals adaptive protein evolution and a possible cytonuclear incompatibility between European and American eels. *Mol. Biol. Evol.* **29**, 2909–2919 (2012).
21. Wielgoss, G., Gilabert, A., Meyer, A. & Wirth, T. Introspective hybridization and latitudinal admixture clines in North Atlantic eels. BMC Evol. Biol. 14, 61 (2014).
22. Nikolov, N. et al. Speciation history of European (Anguilla anguilla) and American eel (A. rostrata), analysed using genomic data. Mol. Ecol. 29, 565–577 (2020).
23. Kuroki, M. et al. Offshore spawning for the newly discovered anguillid species Anguilla japonica (Teleostei; Anguillidae) in the Western North Pacific. Pac. Sci. 66, 497–507 (2012).
24. Ara, T. (ed.) In Biology and Ecology of Anguillid Eels 1–20 (CRC Press, Boca Raton, 2016).
25. Watanabe, S., Miller, M. J., Aoyama, J. & Tsukamoto, K. Morphological and meristic evaluation of the population structure of Anguilla marmorata across its range. J. Fish Biol. 74, 2069–2093 (2009).
26. Ishikawa, S., Tsukamoto, K. & Nishida, M. Genetic evidence for multiple geographic populations of the giant mottled eel Anguilla marmorata in the Pacific and Indian oceans. Ichthyol. Res. 51, 343–353 (2004).
27. Minegishi, Y., Aoyama, J. & Tsukamoto, K. Multiple population structure of the giant mottled eel, Anguilla marmorata. Mol. Ecol. 17, 3109–3122 (2008).
28. Watanabe, S. et al. Evidence of population structure in the giant mottled eel, Anguilla marmorata, using total number of vertebrae. Copeia 2008, 680–688 (2008).
29. Gagnaire, P.-A. et al. Within-population structure highlighted by differential introgression across semipermeable barriers to gene flow in Anguilla marmorata. Mol. Ecol. 18, 1341–1347 (2009).
30. Schabetsberger, R. et al. Hydrographic features of anguillid spawning areas: potential signposts for migrating eels. Mar. Ecol. Prog. Ser. 554, 141–155 (2017).
31. Stange, M., Sánchez-Villagra, M. R., Salzburger, W. & Matschiner, M. Bayesian divergence-time estimation with genome-wide SNP data of catfishes (Ariidae) supports Miocene closure of the Panamanian Isthmus. Syst. Biol. 67, 681–699 (2018).
32. Bryant, D., Bouckaert, R. R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012).
33. Aoyama, J., Nishida, M. & Tsukamoto, K. Molecular phylogeny and evolution of the freshwater eel, genus Anguilla. Mol. Phylogenet. Evol. 20, 450–459 (2001).
34. Minegishi, Y. et al. Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol. Phylogenet. Evol. 34, 134–146 (2005).
35. Teng, H.-Y., Lin, Y.-S. & Tseng, C.-S. A new Anguilla species and a reanalysis of the phylogeny of freshwater eels. Zool. Stud. 48, 808–822 (2009).
36. Inoue, J. G. et al. Deep-ocean origin of the freshwater eels. Biol. Lett. 6, 363–366 (2010).
37. Tseng, M.-C. in Biology and Ecology of Anguillid Eels (ed. Ara, T.) 21–35 (CRC Press, Boca Raton, 2016).
38. Rabosky, D. L. et al. Variation and constraints in hybrid genome formation. Bioessays 38, 1290–1303 (2016).
39. RoyChoudhury, A. Inferring species trees directly from biallelic genetic data. PLoS ONE 10, e0127207 (2015).
40. Burgerhout, E. et al. First artificial hybrid of the eel species Anguilla australis and Anguilla anguilla. Dev. Biol. 11, 16 (2011).
41. Okamura, A. et al. Artificial hybridization of Anguilla anguilla and A. japonica. J. Fish Biol. 64, 1450–1454 (2004).
42. Müller, T. et al. Artificial hybridization of Japanese and European eel (Anguilla japonica × A. anguilla) by using cryopreserved sperm from freshwater reared males. Aquaculture 350–351, 130–133 (2012).
43. Lockett, L. M. & Young, K. A. & Seehausen, O. The accumulation of reproductive incompatibilities in African cichlid fish. Evolution 64, 617–633 (2010).
44. Stensbo, L. et al. Testing for ancient introgression across semipermeable barriers to gene flow in Anguilla maroma. Mol. Ecol. 20, 2239–2252 (2011).
45. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).
46. Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
47. Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance coefficients for phylogenomic datasets. Preprint at https://doi.org/10.1101/487301v1 (2018).
48. Arcila, D. et al. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1, 1–10 (2017).
49. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
50. Durbin, R. E., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).
Acknowledgements

Funding for this study was provided by the Austrian Science Fund (FWF, project P28381-B29 to R. Schabetsberger) and the Norwegian Research Council (FRIPRO project 275869 to M.M.). We thank Anthony Acou, David Boseto, Donna Kallatik, Rilley Leana, Finn Økland, Christine Pollabauer, Alexander Scheik, Ursula Sichrowsky, and Meels Tambets for assistance with field work, Frantz Gassner for help with data analysis, Ian Goodhead for his support in the laboratory, and Milan Malinsky for advice on whole-genome alignment. We further thank Olaf L. F. Weyl and acknowledge the DST/NRF South African Research Chair in Inland Fisheries and Freshwater Ecology (Grant No. 110507) and the NRF-SAIAF Collections Platform for the provision of genetic tissue samples. We thank the governments of American Samoa, France, Indonesia, Papua New Guinea, Philippines, Samoa, Solomon Islands, South Africa, Swaziland, Taiwan, and Vanuatu for issuing sampling permits. All computational work was performed on the Abel Supercomputing Cluster (Norwegian Metacenter for High-Performance Computing (NOTUR) and the University of Oslo), operated by the Research Computing Group at UiST, the University of Oslo IT Department. Peter Comes provided valuable comments that allowed us to improve the manuscript.

Author contributions

R. Schabetsberger and R.J. conceived the project. R. Schabetsberger, R.J., C.G., M.M., J.M.B., and R. Sommaruga planned and oversaw the project. R. Schabetsberger, C.G., Y.-S. H., and E.F. contributed specimens. C.G., R.J., and R. Schabetsberger organized RAD sequencing. S.W. performed morphological analyses. J.M.I.B. and B.E. prepared genomic datasets. O.K.T. performed genotype assembly. M.M. and J.M.B. performed population genomic and phylogenomic analyses. M.M. performed analyses of structural rearrangements. M.M. and J.M.B. prepared the figures. M.M. and J.M.B. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15099-x.

Correspondence and requests for materials should be addressed to M.M. or R.S.

Peer review information Nature Communications thanks Christian Henkel and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.