Slow fluctuations in enhanced Raman scattering and surface roughness relaxation

D.B. Lukatsky*, G. Haran*, and S.A. Saram*

*Department of Materials and Interfaces, and **Department of Chemical Physics,
Weizmann Institute of Science, Rehovot, Israel

We propose an explanation for the recently measured slow fluctuations and "blinking" in the surface-enhanced Raman scattering (SERS) spectrum of single molecules adsorbed on a silver colloidal particle. We suggest that these fluctuations may be related to the dynamic relaxation of the surface roughness on the nanometer scale and show that there are two classes of roughness with qualitatively different dynamics. The predictions agree with measurements of surface roughness relaxation. Using a theoretical model for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict that the high-frequency electromagnetic field increases both the effective surface tension and the surface diffusion constant and thus accelerates the surface smoothing kinetics and time scale of the Raman fluctuations in a manner that is linear with the laser power intensity, while the addition of salt retards the surface relaxation kinetics and increases the time scale of the fluctuations. These predictions are in qualitative agreement with the Raman experiments.

In a recent experiment by Weiss and Haran [1], large spectral fluctuations in the relative intensities of different Raman lines that varied on a time scale of a few tens of seconds, were measured in the surface-enhanced Raman scattering (SERS) of single rhodamine 6G molecules adsorbed on silver nanocrystals. The rate of spectral fluctuations was demonstrated to increase with laser intensity and decrease with addition of salt in the solution of the silver colloidal particles. In addition, a decay of the overall intensity of the scattering was observed on a scale of the order of hundreds of seconds; this decay was also correlated with the laser intensity [1]. Finally, fluctuations of the overall intensity on a time scale comparable with that of the fluctuations of the individual spectral lines were measured in Refs. [1]. These fluctuations, as well as termed "blinking", are frequently observed in single-molecule SERS studies [2-5]. The long time scale observed in the modulations of the spectrum of molecules adsorbed on silver colloidal particles, was suggested [1] to arise from (slow) motion of the adsorbed molecule, which leads to variation of a charge-transfer interaction between the molecule and the surface.

In this paper, we propose an alternative interpretation of both the slow SERS spectrum fluctuations, and of the decay and the fluctuations of the overall intensity ("blinking") of the SERS spectrum measured in Ref. [1] and show that the time scales for these phenomena are consistent with the relaxation of the surface roughness on the nanometer scale [6]. It is well known that a significant part of the enhancement of the SERS signal is due to the surface roughness [7,8]. Using theoretical models for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict the dependence of the time scale of the fluctuations on the laser power intensity and on the amount of added salt in agreement with the observations.

Conventionally, the SERS enhancement mechanism is separated into the electromagnetic (EM) and enhancement and the chemical enhancement [3]. The relaxation of surface roughness can affect both the EM and chemical enhancement, depending on the characteristic length-scale and the amount of the relaxation modes. The surface relaxation dynamics, however, is governed by the EM mechanism in our model, as we elaborate below. These constitute the starting point of our analysis.

Our dynamical model applies both to equilibrium fluctuations and to the decay to equilibrium (a smooth surface) of non-equilibrium, surface roughness that can have large amplitudes, depending on the initial preparation of the nanoparticles. The amplitude of equilibrium fluctuations is typically small for perfectly smooth surfaces [9]. However, rough surfaces (where the roughness due to sample preparation decays slowly) show larger them fluctuations [10]. Thus, the roughness fluctuations may have a strong effect on the SERS enhancement mechanism and may lead to the observed fluctuations in the relative intensities of the different Raman lines.

We estimate the time scale for relaxation of the surface roughness. We use a model for surface relaxation developed by Mullins [11] based on an isotropic expression for the surface energy. This theory is applicable either above the roughening transition temperature or for vicinal surfaces (that are not perfectly smooth on the...
atom ic scale), even below the roughening tem perature. The dynam ics of ideal, high sym met ry surfaces involves the creation of steps and facets [12] and is outside the scope of our work. A ss u ming that surface di usion (with di usion constant D_s for single atom motion on the surface) is the on ly relevant process, leads one to the kinetic equation:

$$\frac{\partial h}{\partial t} = r^2 h;$$

where $h(\cdot;t)$ is the local height, ∂ is the surface ten-sion, $~ = (x,y)$ is the in-plane position vector and $f = (\partial_x h, \partial_y h)$, and $D_s a^4 = k_B T$ with a being an atom ic length scale (e.g. the nearest-neighbor distance, for silver $a' = 2.38 \text{ Å}$). To estimate the characteristic time of the SERS spectral fluctuations, we analyze the height-height dynam ic correlation function, $C_{hh}(\cdot;t)$, $h(\cdot;t)dh(0;0)$. $C_{hh}(\cdot;t)$ can be straightforwardly obtained from Eq. (1) (see e.g., Refs. 9,13) assum ing that the surface atoms are in contact with a thermal bath: $C_{hh}(\cdot;t) = \frac{h(\cdot,t) \cdot h(0;0)}{D_s a^4}$. $D_s a = \frac{k_B T}{\pi \delta^2}$, where δ is the Bessel function, and $q_o = 2 = L$, with L being the system size. To estimate the characteristic relaxation time τ, numeri-cally, one can adopt the criterion: $C_{hh}(\cdot;0) \geq C_{hh}(\cdot;\tau) = 1 = \exp(1)$, were \cdot is of the order of a size of the adsorbed m olecule.

An accurate estim ate of the relaxation time τ, requires a knowledge of the surface di usion constant, D_s, of silver estimated in the range $D_s \approx 1.8 \times 10^{-15} \text{ cm}^2/\text{sec}$ [14] to $D_s \approx 10^{-14} \text{ cm}^2/\text{sec}$ [15]. Using $L = 50 \text{ nm}$ of the order of a size of silver colloids in the exper iment [1], surface tension of Ag [16], $\delta = 1500 \text{ erg/cm}^2$, $a' = 6 \text{ Å}$, we nd that the correlation time of the equilibrium fluctuations is $\approx 18 \text{ sec}$. This shows that the time scale for the equilibrium relaxation of surface roughness on nanometer scale at room tem perature is comparable to the correlation times of the slow fluctuations of the SERS spectrum measured in [1]. An analytic estim ate for the correlation time can be obtained from the asymptotic long-time form: $C_{hh}(\cdot;\tau) \approx C_{hh}(\cdot;0) \exp(-\frac{\tau}{\tau_p})$, where $\tau_p = 1$. We em phasize that the relaxation time τ, is sensitive to the numerical values used for the lattice constant as well as to the wavelength associated with the size of a colloid.

In addition to the small amplitude, equilibrium uc-tuations of the surface, much larger amplitude surface roughness may arise due to the sample preparation. These features tend to decay in time, leading to a smoothened surface at the atom ic level and this relaxation is equivalent to the formation of a relatively smooth surface (and hence less enhanced emission of the Ram an scattering), leading to the overall decay of the SERS spectrum intensity. The loss of the Ram an signal is a well known phenomenon that also occurs in electrochem ic [17,18] and ultrahigh vacuum [19,20] SERS system s. This e fect was attributed to a di usive loss of surface adatom s in a number of investi-gations (see e.g., introduction in Refs. [17,18]); however, none of these, to the best of our knowledge, explain the slow time scale in terms of cooperative surface tension e fects nor do they discuss the dependence of the decay on the laser optical eld and on added salt.

A nother type of experiment to which our kinetic model is relevant, directly m easures the dynam ics of artificially created, nanoscale surface roughness features [15]. Since the surface pro les in the exper iment al system s are, in general, far from being simple sinusoids, we predict the relaxation time for two important classes of surface features.

To estimate the relaxation time for the two classes of surface features we consider two speci c surface roughness pro les at an initial time $t = 0$: (i) a non-m as s-conserving pro le, modell ed as a Gaussian protrusion where $h > 0$, $h(\cdot;t = 0) = h_0 e^{-t^2}$ and (ii) a m ass-conserving pro le, modell ed as a region where a protru-sion with $h > 0$ is adjacent to an indent ation where $h < 0$. The average value of h over the entire surface is zero and for convenience we consider: $h(\cdot;t = 0) = h_0 e^{-t^2}(1 - \delta^2)$, where δ^2 is the characteristic lateral scale of the feature, and h_0 is the amplitude. The exper iments Ref. [15] correspond to the mass-conserving case (ii) (possibly because of the manner in which the surface was scratched), while we expect that general surface roughness of colloidal particles, applicable to the Ram an exper iments, to be more similar to the non-m as s-conserving case (i). It is straightforward to compute the time evolution of these two types of pro les by solving Eq. (1) with the corresponding initial conditions of cases (i) and (ii). The time dependence of the decay of the maximum height (located at the origin, $= 0$) of these Gaussian-like peaks can be obtained analytically. For case (i), we nd $h(0;t) = h_0(\frac{t}{\delta^2})^{1/2} (\gamma = 0)$: For case (ii) we nd $h(0;t) = h_0(\frac{t}{\delta^2})^{1/2} (\gamma = 0)$; where $\gamma = \exp(\lambda)\exp(-\lambda^2)$ and $\lambda = k_B T(64 D_s \delta^4)$. The characteristic decay time τ and γ are the complex entral error function.

The most important observation is that these two types of pro les have qualitatively different smoothing kinetics (the mass-conserving pro le (ii) decays much faster since in this case the transport of matter need only occur near the boundary between the protrusion and the indentation; that is, atoms are locally transferred from the region where $h > 0$ to the region where $h < 0$). For case (i) of the non-m as s-conserving pro le, the matter must be transported to a much larger scale. This is re ected in the expressions for the asymptotic, long time $(\gamma = t)$ evolution of the height. For case (i), the decay of the maximum of the pro le (located at the origin, $h(0;t) \sim h_0^{1/2}(\gamma = t^{1/2})$; for case (ii) $h(0;t) \sim h_0 t^{1/2}$ tends to zero much faster.

We now use this model for surface smoothing in case
(ii) to estimate the decay time for the (approximately) mass-conserving surface features studied in Ref. [15]. Using their estimate for the diffusion constant at zero external potential, $D_0 = 10^{-14}$ cm2/sec and a value for $\kappa_i = 2\pi$ nm that corresponds to the extent of the scratch, we obtain that a mass-conserving Gaussian profile with initial amplitude $h_{j0} = h_{y0} \kappa_i$ (2) nm decays to an atomically localized estimate as $h_j = 0.3$ nm, in a time $t = 200$ sec. This theoretical estimate is consistent with the experiments that measured the extent in the scratch experiments of Hirai [15]. An estimate of the decay time for case (i) (i.e., the non-mass-conserving profile), yields for the same parameters, a decay time that is about 15 times slower, $t = 3100$ sec. In the case of colloidal particles, we expect that typical non-equilibrium features (preparation-dependent roughness) may be non-mass-conserving protrusions or indentations and that the kinetics of case (i) would apply. We estimate, for instance, that a more localized, Gaussian protrusion of amplitude 1 nm and extent $\kappa_i = 6$ nm would decay to an atomically localized estimate of size 0.3 nm in a time $t = 200$ sec, consistent with the time $t = 200$ sec measured in the Ram an experiments [1].

The Ram an experiments show a systematic dependence of the modulation and relaxation time scales on the salt and the electric field as mentioned at the beginning. Since the characteristic time scales vary inversely with the product of the surface tension and diffusion constant (see Eq. (1)), we consider: (i) the effect of salt on the surface tension (ii) the effect of the laser electric field on the time scale via its effect on the surface tension (iii) the effect of the laser field on the surface diffusion constant. To treat the effects of surface charges [21] and the laser electric field on the silver surface tension and hence on the surface relaxation, we model the charged colloidal interface as an elastic, almost planar surface with a fixed and uniform surface density of charge σ, and height h (). The surface tension, given by calculating the free energy cost (including the electrostatic effects due to the charges and the salt) of deviations of the surface from the planar geometry [22] is:

$$\gamma = \frac{1}{3} \eta \kappa^2,$$

where $\kappa = 80$ is the dielectric constant of water, γ is the Deybe screening length, $\kappa = 80 \frac{e^2}{\kappa_0}$, where κ_0 is the valence of salt ions, and n is the salt concentration, $E_\omega = 4 \omega$ is the electric field at the colloid surface. This result can also be obtained from a scaling argument: the tension is the product of the energy density and the volume divided by the cross-sectional area; this is proportional to energy density E^2 multiplied by a characteristic length, which here is the Deybe length, κ_0. This result shows that with the addition of salt, the effective surface tension decreases, $\gamma = n\kappa_i^2$. This leads to an increase of the relaxation time κ_0, as observed. Taking the experimental values of the parameters used above, we see that in order to obtain an effective electrostatic surface tension, γ, equal to the bare surface tension of silver, $\gamma = \gamma' = 1500$ erg/cm2, the surface of a silver colloidal particle must have a surface charge density, $\sigma = \sigma' = 10^{-14}$ cm2 in 10 M salt solution. This is a rather high surface charge density, but is still within a realistic range for the experiments.

To quantify the contribution of the laser field to the surface energy and diffusion constant of a silver nanocrystal requires an accurate value for the enhanced surface electric field; this requires an accurate model of the microscopic mechanism of the enhancement, which is not yet completely understood [7]. However, we can predict the functional dependence of the both the surface tension as well as the surface diffusion constant on the electric field at the surface. The surface energy density, γ, of a semi-infinite metal sample with a planar surface boundary in the presence of a high-frequency, optical, electron magnetic field, is [23]:

$$\gamma = \frac{1}{8} \frac{\sigma}{\kappa_0} E_{\omega}^2 \kappa_0^2 \frac{\sigma}{\kappa_0} + \frac{1}{8} \frac{\sigma}{\kappa_0} E_{\omega}^2 \kappa_0^2 \frac{\sigma}{\kappa_0}$$

where $\gamma = E_0 \omega^2$ is the spatially-dependent part of the electric field vector with amplitude E_0, and the plane $z = 0$, corresponds to the metal interface plane; the same definitions apply to the magnetic field. For the frequency-dependent dielectric function, "(i)", we use the simplest dispersion model of the free, classical electron gas [23]:

$$\gamma = \frac{1}{8} \frac{\sigma}{\kappa_0} E_{\omega}^2 \kappa_0^2 \frac{\sigma}{\kappa_0}$$

For the optical frequencies relevant to the experiments [1], $\omega = 1$. Using the dispersion relation [23], $\kappa = \frac{\omega^2}{\mu} + \frac{1}{\omega^2}$, we obtain: $\kappa = \frac{\omega^2}{e c}$. Therefore, both the electric and magnetic fields decay exponentially with the silver colloidal particle with a typical decay length [24], $\Gamma = 10^2$ nm. In this frequency region, therefore, the metal is acting with a skin depth, Γ. Using the relationship between Γ and E_{ω} [23], we obtain the time-averaged energy per unit surface area (i.e., effective surface tension), $\gamma = \frac{1}{8} \frac{\sigma}{\kappa_0} E_{\omega}^2 \kappa_0^2 \frac{\sigma}{\kappa_0}$. Again, this can be predicted by a scaling argument: the tension is the product of the energy density (proportional to the laser intensity) and the characteristic length, here the skin depth, in qualitative agreement with the experiment.

However, an estimate of the magnitude of this effect using the bare values $E_0 = 0.5$ erg/cm2, 180 V/cm, (corresponding to a laser power density of 100 W/cm2) and $\kappa = 22$ nm is $\gamma = \frac{1}{8} \frac{\sigma}{\kappa_0} E_{\omega}^2 \kappa_0^2 \frac{\sigma}{\kappa_0}$. This quantity, γ, is thus about 10^{11} times smaller than the bare coefficient of surface tension of silver, γ. It is known that the electric field at the surface in the case of SERS is greatly enhanced by the surface plasmon resonances in
the SERS enhancement factor, (theoretically predicted to be proportional to $E = E_0^4$) where E is the intensity of scattered, enhanced optical field (see also Refs. [27,28]), reaches a value of 10^{4} 10^5. This enhancement is still not large enough to bridge the gap between our prediction for the optical eel-induced effective surface tension, α, and the bare surface tension of silver, ω. We note, however, that the intensity of the localized eel at the surface of a metal colloid may exceed the intensity of the radiated, enhanced optical field [7]. Atomistic scale, globally distributed roughness (at atom s, terraces, kinks, small islands) may produce an extra enhancement of the electric field at the surface of a colloidal particle, as well, although a quantitative understanding of this mechanism is still lacking (see e.g., Ref. [26]). In sum, the scaling of the tension and hence the time scale for surface relaxation with the electric field is qualitatively correct; however, the magnitude depends on the actual value of the surface field.

Although the effect of the electric field on the surface tension may turn out to be too small to matter, the change in the localized surface tension constant of silver atoms with eel may be of some significance. The eel constant enters the kinetic equations discussed above. Indeed, in the case of a static electric field applied to a roughened metal interface, Hiram et al. [15] show from their experiment that the surface eel constant D_s depends exponentially on the applied potential difference. This is in accord with theoretical calculations [29] of surface eel in the presence of external els in the limit where the electrostatic energy is much larger than the thermal energy. This is the case in the static experiments where the potential drop occurs on a length scale of 1 nm of order of the Debye length; this gives rise to a very large electric field. However, this limit is not applicable to the Ram an experiments. The electrolyte cannot respond to the high frequency optical field and provides no screening of the electric field. The potential drops over a length scale given by the optical wavelength, and not the Debye length. The resulting eel is thus orders of magnitude smaller than in the static case. Indeed, the Ram an experiment show only a linear dependence of the rate of the SERS spectral fluctuations on the laser intensity and no exponential behavior.

Calculations [29] of surface eel in the presence of external els in the limit where the electric field energy is smaller than the thermal energy show that the surface eel constant D_s depends linearly on the laser intensity [30]: $D_s \propto D_s(E_0 = 0) + W^4$ where W is the electric field at the surface. This trend agrees with the experimental observation that the time scale varies with the laser intensity. However, as in the case of the surface tension, this requires a significant enhancement of the local, surface field to yield an measurable effect. We note that even if the eel contribution to the tension is small, the intensity on the surface constant may be significantly larger since the eel dependence of the tension depends on the ratio of the intensity to the bare silver surface tension while the correction to the eel constant varies with the ratio of the intensity to the thermal energy, which is about two orders of magnitude smaller than the energy associated with the surface tension of silver.

The best way to verify our predictions would be to perform SERS measurements on surfaces with in situ control of surface roughness by e.g., the methods described in Ref. [15]. Monitoring the SERS spectrum as a function of the surface roughness, the salt concentration, and the laser intensity should provide an ultimate test of our idea.

We thank J. Imry, D. Kandel, and A. Nitzan for useful discussions. SAS acknowledges the support of the US-Israel Binational Science Foundation and the Schm Idt M. A. J. C. M. W. W. Mulkins, J. Appl. Phys., 105, 12,348 (2001).
[2] S. Nitzan and S. R. Emory, Science, 275, 1102 (1997).
[3] W.E. Doering and S. Nitzan, J. Phys. Chem. B, 106, 311 (2002).
[4] A.M. Michaels, M. Nimmal, and L.E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[5] E.J. B extents, P. Johansson, and M. Kall, Single Mol., 1, 239 (2000).
[6] We note that in the single-molecule SERS experiments in addition to intensity fluctuations, frequency fluctuations are usually observed (see e.g., Ref. [3]). These fluctuations were much less pronounced compared with the intensity fluctuations in Ref. [1]. These large, intensity fluctuations are the focus of our work.
[7] M. Moskovits, Rev. Mod. Phys., 57, 783 (1985).
[8] A. Otto et al., Surf. Sci., 138, 319 (1983).
[9] S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley Publishing Company, Reading, MA 1994).
[10] One can see this by expanding the full expression for the surface energy, $\gamma = 1 + (r h)^{1-2}$, to second order about the average roughness and calculating the amplitude of the fluctuations.
[11] W. W. Mullins, J. Appl. Phys., 57, 333 (1957).
[12] N. Israel and D. Kandel, Phys. Rev. Lett. 88, 116103 (2002).
[13] P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 1995) Ch. 7.
[14] W. W. Palet al., Phys. Rev. Lett., 79, 3210 (1997).
[15] N. Hossi, H. Tanaka, S. Ham, Appl. Surf. Sci., 130-132, 506 (1998).
[16] M. J. Mehland, D. A. Papaconstantopoulos, Phys. Rev. B, 54, 4519 (1996).
[17] Y. S. Choi, J. K. Kim, and S. Miyajima, Chem. Phys. Lett., 255, 45 (1996) and references therein.
[18] L. A. Dick et al., J. Phys. Chem. B, 106, 853 (2002).
[19] U. Ertekin, I. Pockrand, and A. Otto, Surf. Sci., 131, 367 (1983).
[20] C. D. Dick et al., J. Chem. Phys., 113, 11315 (2000).
[21] The colloidal surface is charged due to the presence of citrate ions in the solution.
[22] R. E. Goldstein, A. I. Pesci, and V. Romeo-Rochin, Phys. Rev. A, 41, 5504 (1990).
[23] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, (Pergamon Press, Oxford 1984).
[24] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer-Verlag, Berlin, 1995).
[25] D. J. Bergman and A. Nitzan, Chem. Phys. Lett., 88, 409 (1982).
[26] A. Ottolenghi, Phys. Stat. Sol., 188, 1455 (2001).
[27] H. X. Xu et al., Phys. Rev. E, 62, 4318 (2000).
[28] S. Comi and J. Tomasi, J. Chem. Phys., 116, 1156 (2002).
[29] J. Kallinikos, M. Dube, and T. A. La-Nissila, Surf. Sci., 460, 39 (2000).
[30] This result was derived under the assumption that the laser frequency is smaller than the frequency of the thermal noise. The thermal noise arising from phonons has a typical frequency of 10^{13} sec$^{-1}$ which is about two orders of magnitude smaller than the laser frequency. However, very high frequency thermal noise may arise from the coupling of the silver ions to the surface plasmons.