The future of therapy for alcoholic hepatitis - beyond corticosteroids

Keywords: alcoholic hepatitis; bile acids; hepatocyte injury; hepatocyte repair; nutrition; nosocomial infection; hepatorenal syndrome; portal translocation of gut microbiota

Received 5 November 2018; received in revised form 28 December 2018; accepted 11 January 2019.
Background
Corticosteroids are the only treatment proven to reduce mortality from severe alcoholic hepatitis (SAH), though the benefit is short-lived. Several potential therapies are currently under evaluation in human clinical trials (Table 1). These therapies target: i) malnutrition; ii) intestinal dysbiosis and its portal translocation; iii) bile acid production; iv) hepatocyte death; v) hepatocyte regeneration; and vi) life-threatening complications of the disease itself.

Nutritional supplements
Malnutrition is common in this group of patients. Good nutrition is a central tenet of SAH management. Intensive nutrition delivered enterally or parenterally does not appear to confer clinical benefit. However, achieving a caloric intake >21.5 kcal/kg per day is associated with a reduction in complications and mortality.

Portal translocation of gut microbiota
Intestinal dysbiosis has been implicated in a range of hepatic diseases. Alcohol consumption causes intestinal dysbiosis and impaired intestinal barrier function. Transfer of intestinal microbiota from humans with SAH to mice confers susceptibility to alcohol-induced steatohepatitis, which can be reversed by faecal microbiota transplantation from humans who drink heavily but do not develop SAH.

Current trials aim to improve bacterial dysbiosis using i) orally administered non-absorbable antibiotics (rifaximin or combined gentamicin, vancomycin and meropenem); ii) probiotics (Lactobacillus rhamnosus [NCT01922895] and acidophilus [NCT02335632]); or iii) faecal microbiota transplantation.

Enterohepatic circulation of bile acids
SAH is characterised by marked biochemical and histological cholestasis. The farnesoid receptor (FXR) is a key regulator of bile acid synthesis. Receptor agonism also improves gut barrier function in mouse models of alcohol-related liver disease. Additional beneficial effects from FXR agonism in ameliorating portal hypertension have been suggested in rodent models of liver disease (reviewed in). Obeticholic acid (OCA) is a semi-synthetic agonist of FXR that has shown promise in non-alcoholic fatty liver disease and has established efficacy in primary biliary cholangitis.

Clinical trial data are awaited (NCT02039219).

Immune dysfunction
Immunotherapy for SAH is challenging because hepatic immunopathology exists concurrently with systemic immune defects. Accordingly, attempts to control hepatic

Pathology	Therapeutic target	Therapy	Trial ID: clinicaltrials.gov, EudraCT, PMID
Portal translocation of gut microbiota	Intestinal dysbiosis	Rifaximin	NCT02116556, EudraCT 2014-002264-33
		Oral vancomycin, gentamycin, meropenem	NCT03157388
		Faecal microbiota transplant	NCT03091010, NCT02458079
		Probiotics *Lactobacillus* spp.	
Intestinal mucosal integrity	Zinc	Obeticholic acid, Canakinumab, Anakirna	NCT01809132, NCT02039219, NCT03775109
Enterohepatic circulation of bile acids	Farnesoid receptor	Obeticholic acid	NCT02039219
Hepatic inflammation	IL-1β	Anakinra	NCT01809132
		Canakinumab	NCT03775109
		Anti-LPS IgG	NCT01968382
	Non-specific	Bovine colostrum	NCT02473341
Hepatocellular injury and repair	Oxidative stress	Metadoxine	NCT02019056, NCT02161853, PMID 24756009
		N-acetylcysteine	NCT00863785 PMID 22070475
		S-Adenosyl methionine	NCT00851981 NCT02042495
		Omega 5	NCT03732586
Hepatocyte regeneration	IL-22	G-CSF	NCT02655510, NCT01820208, NCT02971306
			NCT02442180 NCT01341951
			NCT02776059 NCT03703674
Complications	Infection	Co-amoxiclav	NCT02281929
		Ciprofloxacin	NCT02326103
		Rifaximin	NCT02116556
		N-acetylcysteine	NCT03069300
Kidney injury	Terlipressin	EudraCT 2006-002837-19	

Table 1. Active published clinical trials for alcoholic hepatitis listed by the U.S. National Library of Medicine at clinicaltrials.gov and European Clinical Trials Database at EudraCT.ema.europa.eu.
immunopathology with systemic immunosuppressants, such as anti-TNFα or corticosteroid therapy, are hampered by high rates of infection that offsets clinical benefit. Pre-clinical data suggest that anti-IL-18 therapy does not confer such susceptibility to opportunistic infection and reduces hepatic inflammation, fibrogenesis, stellate cell activation and consequent portal hypertension (NCT02655510, NCT01903798, NCT01809132, EudraCT 2017-003724-79, NCT03775109).

Hepatocellular injury and repair
Ethanol metabolism and immune responses lead to the generation of reactive oxygen species (ROS) that cause oxidative stress and hepatocellular damage. In single studies, the combination of intravenous N-acetylcysteine or oral metadoxine with corticosteroids appears to confer a survival benefit and is the subject of ongoing investigation (N-acetylcysteine [NCT03069300]; metadoxine [NCT02019056, NCT02161653]) along with S-adenosyl-γ-methionine (SAME) [NCT00851981, NCT02024295]. The efficacy of G-CSF, in part mediated via hepatic regeneration, has been suggested by small studies and several trials are in progress aiming to replicate these findings. Similarly, IL-22 has been ascribed hepatoprotective and pro-regenerative features; therapeutic agents are under clinical evaluation (NCT02655510).

Extrahepatic complications of alcoholic hepatitis
Infection: up to 50% of SAH patients will develop infection during the acute illness and nosocomial infections reduce survival. Defective immune cells have been identified in the systemic circulation of patients with SAH and their presence is associated with the development of infection. Reversing these defects (NCT03069300) or predicting infections are attractive prospects. An alternative approach is to treat all SAH patients with broad-spectrum adjunctive antimicrobial therapy such as co-amoxiclav (NCT02281929) and ciprofloxacin (NCT02326103) and these two agents are currently under evaluation.

Acute kidney injury: kidney injury that occurs with SAH portends a poor prognosis. Primed immune cells release a plethora of inflammatory mediators, in particular ROS and nitric oxide, which cause vasodilatation in the splanchic circulation. The vasopressin analogue terlipressin reduces this vasodilatation and is under investigation for SAH specifically.

Financial support
We are grateful for support from the Imperial College NIHR Biomedical Research Centre, the Wellcome Trust, UK (294834/Z/16/Z) and the Medical Research Council UK Stratified Medicine Award: Minimising Mortality from Alcoholic Hepatitis (MR/R014019/1).

Conflicts of interest
MT reports grants and personal fees from Gilead and CN_BIO; personal fees from AbbVie and MSD; grants from Vital Therapeutics. All other authors report no conflict of interest.

Please refer to the accompanying ICMJE disclosure forms for further details.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2019.01.016.

References

Author names in bold designate shared co-first authorship

[1] Louvet A, Thursz MR, Kim DJ, Lahreuche J, Atkinson SR, Sidhu SS, et al. Corticosteroids reduce risk of death within 28 days for patients with severe alcoholic hepatitis, compared with pentoxifylline or placebo—a meta-analysis of individual data from controlled trials. Gastroenterology 2018,
[2] Maneo C, Deltenre P, Senterre C, Louvet A, Gustot T, Bastens B, et al. Intensive enteral nutrition is ineffective for individuals with severe alcoholic hepatitis treated with corticosteroids 903–910.e8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26764182.
[3] Llopis M, Cassard AM, Wizsoek L, Boschat L, Bruneau A, Ferrere G, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016:1–10.
[4] Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, et al. Modulation of the intestinal bile acid/farnesoid X receptor/ fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018.
[5] Schwall P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep 2017.
[6] Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalak MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015.
[7] Hirschfeld GM, Beuers U, Corpechot C, Invernizzi P, Jones D, Marzioni M, et al. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017.
[8] Boeticher NC, Peine CJ, Kwo P, Abrams GA, Patel T, Aqel B, et al. A randomized, double-blind, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 2008:135:1933–1960.
[9] Vergis N, Atkinson SR, Knapp S, Maurice J, Allison M, Austin A, et al. In patients with severe alcoholic hepatitis, prednisolone increases susceptibility to infection and infection-related mortality, and is associated with high circulating levels of bacterial DNA. Gastroenterology 2017:152.
[10] Nguyen-Khac E, Thovet T, Piquet MA, Benferhat S, Goria O, Chatelain D, et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N Engl J Med 2011.
[11] Higuera-De La Tijera F, Servin-Caamano AI, Serralde-Zuniga AE, Cruz-Herrera J, Perez-Torres E, Abdo-Francis JM, et al. Metadoxine improves the three- and six-month survival rates in patients with severe alcoholic hepatitis. World J Gastroenterol 2015.
[12] Sparh L, Lambert JF, Rubbia-Brandt L, Chalandon Y, Frossard JL, Giostra E, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2008.
[13] Singh V, Sharma AK, Narasimhan RL, Bhalla A, Sharma N, Sharma R. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. J Gastroenterol 2014.
[14] Louvet A, Wartel F, Castel H, Dharancy S, Hollebecque A, Canva-Boetticher NC, Peine CJ, Kwo P, Abrams GA, Patel T, Aqel B, et al. Corticosteroids reduce risk of death within 28 days for patients with severe alcoholic hepatitis, compared with pentoxifylline or placebo—a meta-analysis of individual data from controlled trials. Gastroenterology 2018.
[15] Mookerjee RP, Stadlbauer V, Lidder S, Wright GAK, Hodges SJ, Davies NA, Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Spahr L, Lambert JF, Rubbia-Brandt L, Chalandon Y, Frossard JL, Giostra E, et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007:46:831–840.
[16] Markwick LIL, Riva A, Ryan JM, Cooksley H, Helma E, Trannah TH, et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 2015:148(3).
[17] Vergis N, Khamri W, Beale K, Sadig F, Aletro MI, Moore C, et al. Defective monocyte oxidative burst predicts infection in alcoholic hepatitis and is associated with reduced expression of NADPH oxidase. Gut 2017:66.
[18] Rolas L, Bousif A, Weiss E, Letteron P, Haddad O, El-Benna J, et al. NADPH oxidase depletion in neutrophils from patients with cirrhosis and restoration via toll-like receptor 7/8 activation. Gut 2018.

Journal of Hepatology 2019 vol. xxx | xxx–xxx 3