Case Report

Dropped gallstones mimicking peritoneal metastasis: A case report

Sarah Garaud, Alexandre Stolz*

Department of radiology, Hôpital neuchâtelois, Rue de la Maladière 45, 2000 Neuchâtel, Switzerland

A R T I C L E I N F O

Article history:
Received 15 March 2018
Revised 25 May 2018
Accepted 26 May 2018

Keywords:
Dropped gallstones
Calciﬁed peritoneal nodular pattern
Computed tomography
Cholecystectomy

A B S T R A C T

Dropped gallstones is a rare complication after a cholecystectomy. Computed tomography is the modality of choice for diagnosis. Dropped gallstones can be a fortuitous discovery in an asymptomatic patient but it is usually revealed when a complication occurs, most commonly through an abscess. Our case presents a dropped gallstone found during a routine check-up in a patient with a history of small bowel cancer. We will discuss differential diagnosis with others calciﬁed peritoneal nodular patterns, particularly peritoneal carcinomatosis. We will recall the multimodality imaging ﬁndings of dropped gallstone and, based on literature, we will review the different sources of calciﬁed peritoneal nodular pattern. The treatment of gallstone drop consequences depends on the clinical aspect.

© 2018 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Dropped gallstones is the spillage of stones that can occur during a gallbladder perforation in a cholecystectomy. In most situations, gallstones are not symptomatic, even years after their occurrence. Diagnosis is easy using computed tomography (CT), but sometimes, as in the herein case, in a context of cancer follow-up, the diagnostic is difﬁcult and other—benign and malignant—peritoneal nodules with calciﬁcation come under discussion.

Case report

An 84-year-old man consulted our radiology department for his annual CT follow-up for a small bowel gastrointestinal stromal tumor in complete remission. The patient did not complain of any abdominal pain. He reported a laparoscopic cholecystectomy (LCC) 2 months previously, after an acute cholecystitis with an uneventful postoperative recovery.

Abdominal contrast-enhanced CT showed a centimetric nodule in the anterior compartment of the right subhepatic space with target enhancement and a calciﬁed center, encompassed by fat inﬁltration (Fig. 1), mimicking an omental implant of carcinomatosis. The small bowel was normal showing no signs of cancer recurrence.

A unique low-intensity nodule, with a calciﬁed center, similar in appearance to a choledolithiasis inside the gallbladder seen on a previous CT (Fig. 2), in a context of recent LCC, oriented us toward the diagnosis of dropped gallstones surrounded by an inﬂammatory reaction.

The patient was referred for a surgery consultation but the clinical exam was normal. Due to the patient’s absence of pain,
surgery was not performed. An annual CT follow-up was suggested.

Discussion

LCC is associated with gallstones spillage in 5%-40% of procedures [1]. Mostly, patients stay asymptomatic, but in 0.08%-0.3% it results in clinical consequences [2], with complications such as abscesses and fistulas [3]. These consequences are due to stones leading to a low-noise inflammatory reaction, resulting in granulomas. In certain cases, this inflammation can persist and erode tissues adjacent to the stone, which can migrate to different areas like into the retroperitoneum, in the pelvis or above the diaphragm [4,5]. Symptoms can occur on average a few months after an LCC but also years after such an intervention [3].

Typically, dropped gallstones appear on a CT as high-attenuation calcified, but stones composed of cholesterol or low calcium content may not be seen. On a magnetic resonance imaging, stones can be difficult to recognize. On T1-weighted sequences, pigment gallstones were generally hypersignal while cholesterol gallstones were generally hypointense [6]. On T2-weighted images, a gallstone drop can also be hypointense even without enhancement after injection of gadolinium-based contrast agents [3,6]. On an ultrasound, they are presented as hyperechoic foci mobiles, with posterior acoustic shadowing [7].

Intra-abdominal calcification morphology is classified in laminar, sheetlike, or nodular. Laminar calcifications exist in various situations such as long-time peritoneal dialysis. Here, we discuss sources of calcified peritoneal nodular pattern (CPNP) those including dropped gallstones (Table 1).

Unique calcified peritoneal nodular pattern

In the literature, single CPNP is uncommon. Maatouk et al. reported that retained appendicolith can be seen at ultrasound or CT in different sites including the pelvis, gluteal region,
Table 1 – Calcified nodular peritoneal pattern.

	Benign	Malignant
Unique	Dropped gallstones	Multiple calcified
	Large peritoneal loose	lymphadenopathy
	body	· Tuberculosis
	Calcified infarcted	· Lymphoma
	epiploic appendage	· Calcified nodules of
	Calcified subserosal	carcinomatosis
	pedunculated leiomyoma	· Ovarian or primary
	Old abscess or	papillary serous
	hematoma	peritoneal carcinomas
	Retained appendicolith	· Squamous cell lung cancer
		· Renal cell carcinoma
		· Melanoma
		· Colon cancer
		· Gastric cancer

* Mostly cystic appearance.

Malignant multiple CPNPs are mainly due to calcified nodules of carcinomatosis [5]. The presence of multiple calcified peritoneal nodules, especially if associated with extensive omental calcification, suggests the diagnosis of ovarian papillary serous carcinoma in cases of ovarian mass and of primary papillary serous carcinoma in the absence of ovarian mass, particularly in postmenopausal women [14].

Ovarian papillary serous peritoneal carcinomas is a very common source of calcified carcinomatosis but hyperparathyroidism and hypercalcemia from other malignancies such as squamous cell lung cancer, renal cell carcinoma and melanoma [15], colon cancer [16], and mucous-secreting gastric cancer [17] are other sources of CPNP.

The treatment of gallstone drop consequences depends on the clinical aspect. The most common practice is the surgical retrieval of the stone, although there is currently no consensus. As a preventive measure, it is recommended to remove all the dropped gallstones during the LCC, wherever possible. If all the stones could not be removed, the surgeon should transcribe it in the surgical report and inform the patient and his General Practitioner. Clinical consequences being rare, there is currently no systematic follow up for a patient known with a dropped gallstone.

This case illustrates the importance of recognizing dropped gallstone, to avoid mistaking it with other CPNP, particularly in an oncologic context.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.radcr.2018.05.017.

References

[1] Sathesh-Kumar T, Saklani A, Vinayagam R, Blackett R. Spilled gall stones during laparoscopic cholecystectomy: a review of the literature. Postgrad Med J 2004;80(940):77–9.
[2] Agarwal A, Yeh BM, Breiman RS, Qayyum A, Coakley FV. Peritoneal calcification: causes and distinguishing features on CT. AJR Am J Roentgenol 2004;182(2):441–5.
[3] Nayak L, Menias CO, Gayer G. Dropped gallstones: spectrum of imaging findings, complications and diagnostic pitfalls. Br J Radiol 2013;86(1028):20120588.
[4] Karabulut N, Tavasli B, Kiroglu Y. Intra-abdominal spilled gallstones simulating peritoneal metastasis: CT and MRI features imaging. Eur Radiol 2008;18(4):851–4.
[5] Ramamurthy NK, Rudralingam V, Martin DF, Galloway SW, Sukumar SA. Out of sight but kept in mind: complications and imitations of dropped gallstones. AJR Am J Roentgenol 2013;200(6):1244–53.
[6] Tsai HM, Lin XZ, Chen CY, Lin PW, Lin JC. MRI of gallstones with different compositions. AJR Am J Roentgenol 2004;182:1513–19.
[7] Viera FT, Armellini E, Rosa L, Ravetta V, Alessiani M, Dionigi P, et al. Abdominal spilled stones: ultrasound findings. Abdom Imaging 2006;31:564–7.
[8] Maatouk M, Bunni J, Schujtvtol M. Perihepatic abscess secondary to retained appendicolith: a rare complication managed laparoscopically. J Surg Case Rep 2011.
[9] Gayer G, Petrovitch I. CT diagnosis of a large peritoneal loose body: a case report and review of the literature. Br J Radiol 2011;84(1000):e83–5.

[10] Ghahremani G, White E, Hoff F, Gore R, Miller J, Christ M. Appendices epiploicae of the colon: radiologic and pathologic features. RadioGraphics 1992;12(1): 59–77.

[11] Na-Chiangmai W, Pojchamarnwiputh S, Lertprasertsuke N, Chitapanarux T. CT findings of tuberculous peritonitis. Singapore Med J 2008;49(6):488.

[12] Coumbaras M, Chopier J, Massiani M, Antoine M, Boudghène F, Bazot M. Diffuse Mesenteric and omental infiltration by amyloidosis with omental calcification mimicking abdominal carcinomatosis. Clin Radiol 2001;56(8):674–6.

[13] Pedrosa I, Saíz A, Arrazola J, Ferreirós J, Pedrosa C. Hydatid disease: radiologic and pathologic features and complications. RadioGraphics 2000;20(3):795–817.

[14] Stafford-Johnson D, Bree R, Francis I, Korobkin M. CT appearance of primary papillary serous carcinoma of the peritoneum. Am J Roentgenol 1998;171(3):887–9.

[15] Grill V, Martin TJ. Hypercalcemia of malignancy. Rev Endocr Metab Disord 2000;1:253–63.

[16] Wong LL, Peh WC. Clinics in diagnostic imaging (22): calcified peritoneal carcinomatosis. Singapore Med J 1997;38:88–91.

[17] Kunieda K, Okuhira M, Nakano T, Nakatani S, Tateiwa J, Hiramatsu A, et al. Diffuse calcification in gastric cancer. J Int Med Res 1990;18:506–14.