Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint

Frank Neumann1 · Mojgan Pourhassan1 · Carsten Witt2

Received: 17 October 2019 / Accepted: 20 October 2020 / Published online: 4 November 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In the last decade remarkable progress has been made in development of suitable proof techniques for analysing randomised search heuristics. The theoretical investigation of these algorithms on classes of functions is essential to the understanding of the underlying stochastic process. Linear functions have been traditionally studied in this area resulting in tight bounds on the expected optimisation time of simple randomised search algorithms for this class of problems. Recently, the constrained version of this problem has gained attention and some theoretical results have also been obtained on this class of problems. In this paper we study the class of linear functions under uniform constraint and investigate the expected optimisation time of Randomised Local Search (RLS) and a simple evolutionary algorithm called (1+1) EA. We prove a tight bound of $\Theta(n^2)$ for RLS and improve the previously best known upper bound of (1+1) EA from $O(n^2 \log(Bw_{\text{max}}))$ to $O(n^2 \log B)$ in expectation and to $O(n^2 \log n)$ with high probability, where w_{max} and B are the maximum weight of the linear objective function and the bound of the uniform constraint, respectively. Also, we obtain a tight bound of $O(n^2)$ for the (1+1) EA on a special class of instances. We complement our theoretical studies by experimental investigations that consider different values of B and also higher mutation rates that reflect the fact that 2-bit flips are crucial for dealing with the uniform constraint.

Keywords Randomised search heuristics · (1+1) EA · Linear functions · Constraints · Runtime analysis

Frank Neumann
frank.neumann@adelaide.edu.au

Mojgan Pourhassan
mojgan.pourhassan@adelaide.edu.au

Carsten Witt
cawi@dtu.dk

1 University of Adelaide, Adelaide, Australia
2 Technical University of Denmark, Lyngby, Denmark
1 Introduction

Randomised search heuristics, such as evolutionary computing techniques and randomised local search algorithms have been widely used in real world applications that involve optimisation. Over the last decade a lot of progress has been obtained in understanding the runtime behaviour of these algorithms, which give us insights on the underlying stochastic process, particularly for classes of optimisation problems.

One of the classes of problems which has been studied for a simple evolutionary algorithm, called (1+1) EA, is the class of linear pseudo-boolean functions [5, 9, 12–14, 26]. The problem is to optimise a linear function of n Boolean variables. Droste, Jansen and Wegener [9] were the first to obtain an upper bound of $O(n \log n)$ for the expected optimisation time of the (1+1) EA on this problem, where the presented proof is highly technical. Later, using the analytic framework of drift analysis [11], He and Yao presented a simplified proof for the same upper bound of $O(n \log n)$ [12]. Another major improvement was made in [13, 14], where the first precise analysis is presented for the optimisation time of the problem. Using a framework for the analysis of multiplicative drift [6], Doerr, Johannsen and Winzen improved the precise upper bound result to the bound $(1.39 + o(1))en \ln n$ [5]. Witt [26] finally improved this bound to $en \ln n + O(n)$, using adaptive drift [2, 3] based on a novel potential function.

The mentioned results consider the problem without any constraints. However, the class of linear pseudo-boolean functions has also been recently studied under linear constraints [10]. The problem of optimising a linear function under a linear constraint means that the search space is split by a hyperplane and only the points in one of the half spaces are considered feasible. This problem is equivalent to the well-known knapsack problem in the Boolean domain. One of the linear constraints that is studied in [10], is the uniform constraint, in which the constraint is given by OneMax; hence, restricting the number of 1-bits in the string. Denoting the bound on the number of 1-bits by B, the authors of that work have conjectured a general upper bound of $O(n^2)$ for all linear functions, independently of B. However, their analysis only proves a general upper bound of $O(n^2 \log(Bw_{\text{max}}))$ for this setting, where w_{max} is the largest weight in the objective function.

In this paper, we study two randomised search heuristics, RLS and (1+1) EA, and analyse the expected optimisation time of these algorithms on linear functions problem under a uniform constraint. We first prove that an upper bound of $O(n^2)$ holds for RLS and then we improve the current upper bound of $O(n^2 \log(Bw_{\text{max}}))$ to $O(n^2 \log^+ B)$ for the (1+1) EA, where $\log^+(x) := \min\{1, \log x\}$. In the special case that the B smallest weights of the linear function are identical, the bound for the (1+1) EA becomes $O(n^2)$. Together with the lower bound $\Omega(n^2)$ due to [10], we have obtained asymptotically tight results.

The problem of optimising a linear function under a uniform constraint can be seen as a simplification of the classical minimum spanning tree problem. The minimum spanning tree problem has been studied quite extensively in the area of randomised search heuristics. Neumann and Wegener [19] have shown an upper
bound of $O(m^2 \log n + \log w_{\text{max}})$, where n is the number of nodes, m is the number of edges and w_{max} is the largest edge weight of the given input graph. These results have been improved for special classes of graphs [27] and edge weights [22]. However, it still remains an open question whether an upper bound of $O(m^2 \log n)$ can be achieved for the (1+1) EA on any graph.

The investigations in this paper are on a simpler problem and do not have direct implications for instances of the minimum spanning tree problem, but we are hopeful that the provided techniques and insights will be helpful to achieve an upper bound of $O(m^2 \log n)$ of the (1+1) EA on that problem. Many other analyses of evolutionary algorithms also contain the largest input weight in the obtained runtime bounds (e.g., [20, 23]) and getting strong results independent of this parameter poses a significant challenge for many problems where input weights might be exponential. This includes many results using multiplicative drift analysis when dealing with exponentially large weights and using the given fitness functions as the potential/drift function [7].

This paper is structured as follows. Section 2 includes the definition of the investigated algorithms and the analytical tools that we are going to use in the paper. Section 3 explains the studied problem, as well as the notations that we use in this paper. In Sects. 4 and 5, respectively, we present the analysis for RLS and the (1+1) EA. We report on our experimental results in Sect. 8 and finish in Sect. 9 with some conclusions.

Extensions to the conference version The conference version [21] of this paper only proved a runtime bound $O(n^2 \log B)$ with respect to the (1+1) EA. For a special class of functions where the B smallest weights are identical we improved this bound towards the asymptotically tight result $O(n^2)$ via a refined drift analysis. Moreover, we have the new Sect. 8 describing empirical studies of the impact of the bound B and the mutation rate.

2 Preliminaries

We consider two classical randomised search heuristics called RLS and (1+1) EA, see Algorithms 1 and 2, which are intensively studied in the theory of randomised search heuristics [1, 15]. The (1+1) EA is a globally searching hill-climber, whereas RLS samples from a neighbourhood of size at most 2. Note that for RLS, steps that change two bits are crucial when the current search point has a tight constraint but is not the optimum yet.

The runtime (synonymously, optimisation time) of the algorithms is defined as the random number of iterations until an optimal search point has been sampled. Denoting this number by a random variable T, in this paper we analyse the expected value of T, $E(T)$, for both studied algorithms.
Algorithm 1 (1+1) EA

\[t := 0. \]
Choose uniformly at random \(x_0 \in \{0, 1\}^n \).

repeat
Create \(x' \) by flipping each bit in \(x_t \) independently with probability \(1/n \).

\[x_{t+1} := x' \text{ if } f(x') \leq f(x_t), \text{ and } x_{t+1} := x_t \text{ otherwise.} \]

\[t := t + 1. \]

until some stopping criterion is fulfilled.

Algorithm 2 Randomised Local Search (RLS)

\[t := 0. \]
Choose uniformly at random \(x_0 \in \{0, 1\}^n \).

repeat
Choose \(b \in \{1, 2\} \) uniformly. Create \(x' \) by flipping \(b \) bits in \(x_t \) chosen uniformly at random.

\[x_{t+1} := x' \text{ if } f(x') \leq f(x_t), \text{ and } x_{t+1} := x_t \text{ otherwise.} \]

\[t := t + 1. \]

until some stopping criterion is fulfilled.

In our analysis for the (1+1) EA, we use two important drift theorems, which we list in this section in Theorems 1 and 2. The variable drift theorem (Theorem 1) was independently proposed in [16, 18] and generalised in [24]. The multiplicative drift theorem (Theorem 2) is due to [7] and was enhanced with tail bounds by [3]. Both theorems are formulated in a unified and slightly generalised manner here. The formulation in terms of an arbitrary stochastic process can also be found in [17]. The adaptation of the multiplicative drift theorem to arbitrary positive \(s_{\text{min}} \)-values has first been stated in [7].

Theorem 1 (Variable Drift, cf. [16, 24]) Let \((X_t)_{t \geq 0} \), be a stochastic process, adapted to a filtration \(\mathcal{F}_t \), over some state space \(S \subseteq \{0\} \cup [s_{\text{min}}, s_{\text{max}}] \), where \(s_{\text{min}} > 0 \). Furthermore, let \(T := \min\{t \mid X_t = 0\} \) be the first hitting time of state 0. Suppose that there exists a monotonically increasing function \(h : [s_{\text{min}}, s_{\text{max}}] \to \mathbb{R}^+ \) such that \(1/h \) is integrable, and for all \(t < T \)

\[E(X_t - X_{t+1} \mid \mathcal{F}_t) \geq h(X_t). \]

Then,

\[E(T \mid \mathcal{F}_0) \leq \frac{s_{\text{min}}}{h(s_{\text{min}})} + \int_{s_{\text{min}}}^{X_0} \frac{1}{h(s)} \, ds. \]

Theorem 2 (Multiplicative Drift, cf. [3, 7]) Let \((X_t)_{t \geq 0} \), be a stochastic process, adapted to a filtration \(\mathcal{F}_t \), over some state space \(S \subseteq \{0\} \cup [s_{\text{min}}, s_{\text{max}}] \), where \(s_{\text{min}} > 0 \). Suppose that there exists a \(\delta > 0 \) such that for all \(t \geq 0 \)

Springer
Then it holds for the first hitting time \(T := \min \{ t \mid X_t = 0 \} \) that

\[
\mathbb{E}(T \mid \mathcal{F}_0) \leq \frac{\ln(X_0/s_{\text{min}}) + 1}{\delta}.
\]

Moreover, \(\Pr(T > (\ln(X_0/s_{\text{min}}) + r)/\delta) \leq e^{-r} \) for any \(r > 0 \).

Finally, in our analysis, we will use the following simple lemma dealing with convexity.

Lemma 3 Let \(a_1, \ldots, a_k \geq 0 \) and \(C > 1 \). Then

\[
(a_1 + \cdots + a_k)^C \leq k^{C-1}(a_1)^C + \cdots + (a_k)^C.
\]

Proof We write

\[
(a_1 + \cdots + a_k)^C = k^C \left(\frac{a_1}{k} + \cdots + \frac{a_k}{k} \right)^C,
\]

and interpret the expression in parentheses as a linear combination of the \(k \) numbers with coefficient \(1/k \) each. Applying Jensen’s inequality, we have

\[
\left(\frac{a_1}{k} + \cdots + \frac{a_k}{k} \right)^C \leq \frac{(a_1)^C}{k} + \cdots + \frac{(a_k)^C}{k},
\]

which, after multiplying with \(k^C \), gives the desired result. \(\Box \)

Notation Throughout this paper, for natural numbers \(n \) we write \([n] := \{1, \ldots, n\} \).

3 Scenario

In this paper we analyse the expected optimisation time of RLS and the (1+1) EA and consider an optimisation problem with a linear objective function under a uniform constraint. In contrast to earlier work in this area [10], we assume that the objective function has to be *minimised* since this perspective more naturally coincides with the minimisation of the distance to the target 0 that is implicit in the drift theorems (Theorems 1 and 2). The upper bounds on the optimisation time obtained for RLS in Sect. 4 and for the (1+1) EA in Sect. 5, respectively, would equally hold if we adopted maximisation in the same way as in the previous work. See Sect. 7 for more discussion about assuming a minimisation problem or a maximisation problem.

Formally, throughout this paper, we consider the search space \(\{0, 1\}^n \) of all bit strings \(x = x_nx_{n-1} \cdots x_1 \), and the goal is to *minimise* the objective function of
where \(w_n \geq \cdots \geq w_1 \) are positive real weights, under the uniform constraint

\[
x_1 + \cdots + x_n \geq B
\]

for some \(B \in \{1, \ldots, n\} \). We are excluding \(B = 0 \), as it is equivalent to having no constraints. Note that we follow common conventions in the analysis of linear functions \([5, 26]\) by writing down search points in the order \(x_n \ldots x_1 \), i.e., most significant bit first. Therefore, an index \(i \) is called left of index \(j \neq i \) if \(i > j \) and right of \(j \) otherwise.

A search point is optimal if it minimises \(f_{\text{obj}} \) and is placed in the feasible region, i.e., the part of the search space where the constraint is satisfied. Moreover, we say that a search point is tight (in the constraint) if \(x_1 + \cdots + x_n = B \).

In Algorithms 1 and 2, \(x \) denotes the best search point found so far, and \(x' \) is the new offspring, which replaces \(x \) if it is at least as good as it with respect to a fitness function \(f \) that we define as follows. We aim to handle the constraint of the problem by setting a penalty for the violation. Therefore, we define the fitness function below, to be used by the algorithms.

\[
f(x) = f_{\text{obj}}(x) + \max\{0, (B - b(x))\} \cdot (nw_{\text{max}} + 1),
\]

where \(w_{\text{max}} = w_n \) is the maximal weight, and \(b(x) = \sum_{i=1}^{n} x_i \) is the number of ones in the bit string \(x \), which we also refer to as the \(b \)-value of \(x \). For feasible search points we have \(b(x) \geq B \), which implies that \(\max\{0, (B - b(x))\} = 0 \). Therefore, the penalty of \((B - b(x)) \cdot (nw_{\text{max}} + 1) \) is applied to search points that are infeasible, making the value of this fitness function larger than that of any feasible search points. Note that with this definition of the fitness function, the search in infeasible region is also guided to the feasible region, because as the extent of the constraint violation is reduced the penalty also decreases.

We first find a tight bound on the expected optimisation time of RLS on this problem in Sect. 4, and then focus on the challenging analysis of the (1+1) EA in the rest of the paper. Lemma 4, which is presented in Sect. 4 holds for the (1+1) EA as well as RLS, and is used in the analysis of both algorithms (Sects. 4 and 5).

4 Analysis of RLS

In Theorem 5, we prove that RLS (Algorithm 2) optimises the linear function problem under a uniform constraint in expected time \(O(n^2) \). In Theorem 6 we also prove that this bound is tight.

We start with the following lemma, which proves that a feasible search point is sampled by the studied algorithm in \(O(n \log(n/(n-B))) \). This lemma holds for the (1+1) EA as well, and is also used in the analysis of Sect. 5. The proof of this lemma is similar to the proof of Lemma 7 in [10] in which a maximisation problem
for a linear function under uniform constraint is considered. Here we adapt the proof to match the minimisation problem.

Lemma 4 Starting with an arbitrary initial solution, the expected time until RLS or the (1+1) EA obtain a feasible solution is $O(n \log(n/(n-B)))$.

Proof Recall that we denote by $b(x)$ the number of 1-bits in a search point x. Due to the definition of the fitness function f, in the infeasible region, a search point x with a larger $b(x)$ is always preferred to a search point with a smaller b-value. Therefore, the problem can be seen as maximising $b(x)$ until reaching $b(x) \geq B$, where the initial solution may have a b-value of 0. We consider the potential function

$$g(x) = \begin{cases} n - b(x), & \text{if } b(x) < B, \\ 0, & \text{otherwise}, \end{cases}$$

for which the initial value is at most n and the minimum value before reaching 0 is $n - B + 1$. The value of this function is never increased during the process of RLS or the (1+1) EA as larger b-values are always preferred to smaller b-values before reaching $g(x) = 0$. We find the drift on the value of $g(x_t)$ for RLS, where x_t is the search point of the algorithm at step t, as

$$E(g(x_t) - g(x_{t+1}) \mid g(x_t); g(x_t) > 0) \geq \frac{n - b(x_t)}{2n} = \frac{g(x_t)}{2n}$$

since RLS performs a 1-bit flip with probability $1/2$ and flips a 0-bit with probability $(n - b(x_t))/n$, improving g by 1. A similar drift of

$$E(g(x_t) - g(x_{t+1}) \mid g(x_t); g(x_t) > 0) \geq \frac{g(x_t)}{en}$$

is obtained for the (1+1) EA, in which the probability of flipping one 0-bit and no other bits is $\frac{n-b(x_t)}{n} \cdot (1 - \frac{1}{n})^{n-1} \geq \frac{g(x_t)}{en}$.

Using the multiplicative drift theorem (Theorem 2) with $\delta = 1/en$, $X_0 \leq n$ and $s_{\min} = n - B + 1$ we find that the expected time until reaching a feasible solution is upper bounded by

$$\frac{\ln(n/(n-B+1)) + 1}{1/(en)} = O\left(n \log\left(\frac{n}{n-B}\right)\right).$$

\square

Theorem 5 Starting with an arbitrary initial solution, the expected optimisation time of RLS on linear functions with a uniform constraint is $O(n^2)$.

Proof Due to Lemma 4, RLS finds a feasible solution in expected time $O(n \log(n/(n-B)))$. Also, since all feasible solutions have smaller fitness values than infeasible solutions, the algorithm does not switch back to the infeasible region again. Moreover, note that once a feasible solution has been found for the first time,
the number of ones in the solution cannot be increased. This is due to the fact that the penalty is 0 and all 1-bit flips flipping a 0 increase the fitness. Also, all 2-bit flips that increase the number of ones (flipping two zeros) increase the fitness as well.

We split the analysis of the algorithm after obtaining a feasible solution into two phases. In the first phase, the algorithm starts with a solution x with $b(x) > B$ and obtains a solution with exactly B 1-bits ($b(x) = B$). Then the second phase starts, during which the number of 1-bits of the solution does not change, because both 1-bit flips and 2-bit flips that change the number of ones increase the fitness. If the first feasible solution that is obtained by the algorithm has $b(x) = B$, then we do not have a first phase. We first analyse the expected time until the first phase ends, then we focus on the second phase.

In the first phase, the algorithm starts with a solution x with $b(x) > B$. In this situation, as explained above, $b(x)$ does not increase. Moreover, a 1-bit flip that flips a 1 to 0, which happens with probability $b(x)/(2n)$, is always accepted because it decreases the fitness, while not violating the constraint yet. By defining a potential function $g(x)$ as

$$g(x) = \begin{cases} b(x), & \text{if } b(x) > B, \\ 0, & \text{otherwise,} \end{cases}$$

and using the multiplicative drift theorem with $\delta = 1/2n$, $X_0 \leq n$ and $s_{\text{min}} = B + 1$, we find the expected time of $O(n \log(n/B))$ until a solution with $g(x) = 0$ is found, which implies $b(x) = B$.

Now we analyse the second phase. Having obtained a solution with exactly B ones, only 2-bit flips flipping a zero and a one are accepted. Let r be the number of bits of weight w_B among w_B, \ldots, w_1, i.e., $r = |\{i \mid w_i = w_B, 1 \leq i \leq B\}|$. An optimal solution contains all weights of weight less than w_B and exactly r weights of weight w_B.

Let x be the current solution and

$$s(x) = \max\{0, r - |\{i \mid w_i = w_B \land x_i = 1\}|\}$$

be the number of 1-bits of weight w_B missing in x. Furthermore, let

$$t(x) = |\{i \mid w_i < w_B \land x_i = 0\}|$$

be the number of 1-bits of weight less than w_B missing in x.

We denote by

$$k = s(x) + t(x)$$

the number of weights that are missing in the weight profile of the current solution x compared to an arbitrary optimal solution.

As there are exactly B 1-bits in the current solution x, it implies that there are exactly

$$k = |\{i \mid w_i > w_B \land x_i = 1\}| + \max\{0, |\{i \mid w_i = w_B \land x_i = 1\}| - r\}$$
weights chosen in x that do not belong to an optimal weight profile. Note that for a given solution x,

$$r - | \{ i \mid w_i = w_B \land x_i = 1 \}|$$

is a fixed value which is greater than 0 if 1-bits of weight w_B are missing and less than 0 if there are too many 1-bits of weight w_B.

This implies that there are at k 1-bits which can be swapped with an arbitrary 0-bit of the missing k weights in order to reduce k. Hence, the probability of swapping a 1-bit with a 0-bit of the missing weights is at least $\frac{k^2}{2n^2}$ and the expected waiting time for this event is bounded from above by $2n^2/k^2$. Since k cannot increase, it suffices to sum up these expected waiting times following the idea of fitness-based partitions [25]. Hence, the expected time until reaching $k = 0$ is

$$\sum_{k=1}^{B} \left(\frac{2n^2}{k^2} \right) = O(n^2),$$

which completes the proof.

We now show that the previous bound is asymptotically tight.

Theorem 6 There is a linear function f and a bound B such that, starting with a uniformly random initial solution, the expected optimisation time of RLS on f under uniform constraint B is $\Omega(n^2)$.

Proof The same lower bound is proved for the (1+1) EA in Theorem 10 of [10]. Since RLS does not flip more than 2 bits at each step, the proof of this theorem is simpler. We use a function f that is similar to the function that is used in [10] and is adapted for a minimisation problem. We define f as

$$f(x) = \sum_{i=1}^{B} x_i + \sum_{j=B+1}^{n} (1 + \epsilon)x_j,$$

where ϵ is an arbitrary positive real number. Since the weights that are assigned to the first B bits are smaller than the weights of other bits, the optimal solution is selecting the first B bits. We prove that with $B = n/4$, the expected optimisation time of RLS is lower bounded by $\Omega(n^2)$.

We denote the Hamming distance of a solution x to the optimal solution by $d_H(x)$. By Chernoff bounds the initial solution has at least $n/3$ 1-bits with probability exponentially close to 1, which implies a Hamming distance of at least $n/12$ to the optimal solution. Since RLS can only decrease the Hamming distance by one or two at each step, in order to reach the optimal solution, a solution x has to be obtained at some point such that $2 \leq d_H(x) \leq 3$. We investigate the process based on the number of 1-bits of solution x, which we denote by $|x|_1$. Since the initial solution is feasible with probability exponentially close to 1, we either have $|x|_1 = B$ or $|x|_1 > B$.

Springer
If $|x|_1 = B$, then $d_H(x) = 2$ and x can only have one 0-bit among the first B bits and one 1-bit among other bits. In this case only a swap on the two misplaced bits can improve the fitness, the probability of which to happen is at most $1/n^2$; hence, the waiting time is $\Omega(n^2)$ and the theorem follows.

If $|x|_1 > B$, then flipping any of the 1-bits improves the fitness. Since there are more than $n/4$ 1-bits in the solution, the probability of decreasing the number of 1-bits is at least $1/8$ at each time step of RLS. Furthermore, the number of 0-bits does not decrease by RLS due to the fitness function. Using a drift argument on $|x|_1 - B$, we find that in expected constant time (at most $3/18$) a solution x' is obtained such that $|x'|_1 = B$. This implies that in a phase of $\log n$ steps, with probability $1 - o(1)$ the solution x' is obtained. If x' is not optimal, then we have to swap at least two bits and the theorem follows as above. What remains is to show that x' is not optimal with probability $1 - o(1)$. Since $d_H(x) \leq 3$, the probability of flipping a one-bit from x that is outside the first B positions is at most $3/n$ at each step. Therefore, with probability at least $1 - (1 - (1 - 1/n)^{\log n})^3 = 1 - o(1)$ at least one of these bits does not flip in a phase of $\log n$ steps; hence, x' is not the optimal solution with probability $1 - o(1)$, which completes the proof.

5 Analysis of the (1+1) EA

In this section we analyse the expected optimisation time of the (1+1) EA for linear functions under a uniform constraint. In the following subsection we present the statement of our results, and in the subsequent section we prove the statement.

For a linear function under uniform constraint of B, we aim to prove that the (1+1) EA finds an optimal solution in expected time $O(n^2)$. Since Lemma 4 proves that a feasible solution is obtained by the (1+1) EA in expected time $O(n \log(n/(n - B)))$ and this upper bound is asymptotically smaller than $O(n^2)$, we only focus on the analysis of the algorithm after finding a feasible solution. The main theorem that we prove in this section is stated below.

Theorem 7 Given an arbitrary linear function under a uniform constraint $x_1 + \cdots + x_n \geq B$ for $B \in \{1, \ldots, n\}$, the expected optimisation time of the (1+1) EA is upper bounded by $O(n^2 \log^+ B)$. Also, the time is $O(n^2 \log n)$ with probability $1 - O(n^{-c})$ for any constant $c > 0$.

To prove Theorem 7, we conduct an adaptive drift analysis, where the underlying potential function $g(x)$, to be minimised, depends on both the weights (w_1, \ldots, w_n) of the linear function and the constraint value B. The exact definition of the potential function is to some extent inspired by the techniques developed in [26] and further applied in [4, 8]. However, as these papers are concerned with unconstrained problems only, additional effort has been made to transfer these techniques to our scenario.
Once having defined the potential function, the idea is to analyse the potential \(X_t := g(x(t)) \) of the random search point \(x(t) \) maintained by the \((1+1)\) EA on \(f \) at time \(t \). We bound its expected change \(E(X_t - X_{t+1} \mid X_t) \), i.e., the expected decrease of the potential function from time \(t \) to time \(t + 1 \). Then we use this bound in the drift argument that proves the main theorem.

The following lemma (Lemma 8) states this bound as well as a bound on the maximum value of the potential function, which will be required in the drift theorems. We define \(g(x) \) later in Definition 9, and prove the statements of Lemma 8 for this function afterwards. We first bring the statement of this lemma and show how it can be used to prove Theorem 7.

Lemma 8 Considering a random variable \(X_t = g(x(t)) \), where the function \(g \) is given in Definition 9 and \(x(t) \) is the random search point of the \((1+1)\) EA at time \(t \), for all time steps \(t \) we have

1. \(E(X_t - X_{t+1} \mid X_t) \geq \frac{0.025}{en^2} \min \left\{ \frac{X_t^{1/7}}{B^{2/7}}, X_t \right\} \),
2. \(1 \leq X_t = O(n^9) \) if \(x(t) \) is not optimal.

Deferring the definition of the potential function \(g \) and the proof of the previous lemma, we obtain our theorem.

Proof of Theorem 7 We apply the variable drift theorem (Theorem 1) given the statements of Lemma 8. Using that \(X_t \geq 1 =: s_{\min} \) and \(X_t = O(n^9) \) as well as the drift bound

\[
 h(X_t) := \frac{0.025X_t}{en^2} \max\{X_t^{1/7}/B^{2/7}, 1\},
\]

the expected optimisation time is bounded by

\[
 \frac{s_{\min}}{h(s_{\min})} + \int_{s_{\min}}^{n^8} \frac{1}{h(x)} \, dx \\
= O(n^2) + \frac{en^2}{0.025} \left(\int_{B^2}^{B^2 + 1} \frac{1}{x} \, dx + B^{2/7} \int_{B^2 + 1}^{O(n^8)} \frac{1}{x^{8/7}} \, dx \right) \\
= O(n^2) + O(n^2)(O(\log B) + O(1)) = O(n^2 \log^+ B),
\]

which completes the proof of the \(O(n^2 \log^+ B) \) bound.

For the tail bound we use the multiplicative drift theorem (Theorem 2) with the simple bound \(E(X_t - X_{t+1} \mid X_t) \geq \frac{0.025X_t}{en^2} \) of Lemma 8 along with \(X_t \leq n^8 \) that implies \(\ln(X_t/s_{\min}) = O(\log n) \). Note that the theorem gives the upper bound \(O(n^2 \log n) \) on the expected optimisation time so that the tail bound can be obtained by setting \(r = c \ln n \). \(\square \)
In the following, we unroll the proofs of the drift statements. The proof of Lemma 8 relies on the analysis of the drift of the potential function \(g : \{0,1\}^m \to \mathbb{R} \). We now introduce the setup required to define \(g(x) \).

Definition 9 Let an arbitrary linear function \(f = \sum_{i=1}^n w_i x_i \), where \(w_n \geq \cdots \geq w_1 \), under uniform constraint \(x_1 + \cdots + x_n \geq B \) be given and let \(x_{\text{opt}} \) be the (not necessarily unique) optimal search point having one-bits at the \(B \) rightmost positions only. Let \(m := |\{w_1, \ldots, w_n\}| \) be the number of distinct weights and define \(s(i) = \min\{j \mid \{w_1, \ldots, w_j\} \geq i\} \), where \(i \in [1, \ldots, m] \), as the start of the block of indices having the \(i \)th largest weight as well as \(s(m+1) := n+1 \). Also, let \(K_i := \{s(i), \ldots, s(i+1)-1\} \) be the indices comprising the \(i \)th block of equal weights.

For \(j \in [n] \), we let
\[
\gamma_j := \begin{cases} 1 & \text{if } j \leq B, \\ 75B(j - B)^7 & \text{otherwise}. \end{cases}
\]

Based on this, define for all blocks \(i \in [2, \ldots, m] \)
\[
g_{s(i)} = \cdots = g_{s(i+1)-1} := \min\{\gamma_{s(i)} \cdot g_{s(i-1)} \cdot w_{s(i)}/w_{s(i-1)}\}
\]
as well as \(g(1) := 1 \). Finally, we let \(g(x) := \sum_{j=1}^n g_{s(j)} - \sum_{j=1}^B g_{s(j)} \), i.e., \(g(x_{\text{opt}}) = 0 \). To prepare the drift analysis, we define any block \(i \in [m] \):

- \(\kappa(i) := \max\{j \leq i \mid g_{s(j)} = \gamma_{s(j)}\} \), the most significant block right of \(i \) (possibly \(i \) itself) capping according to the sequence \(\gamma_i \),
- \(L(i) := \{m, \ldots, \kappa(i)\} \), the block indices left of (and including) the block \(\kappa(i) \),
- \(R(i) := \{\kappa(i) - 1, \ldots, 1\} \), the block indices right of block \(\kappa(i) \).

This concludes the definition of the potential function.

We now work out some important properties of the potential \(g \) and along the way, present some underlying intuition for the definition. Considering the original weights \(w_1, \ldots, w_n \) in increasing order, the potential function assigns the same \(g \)-value to all indices within a block \(K_i \) of equal \(w \)-value. Note that blocks may be of size 1. We also observe that the weights of \(g \) can be equivalently defined as
\[
g_j = \min\{\gamma_{j}, g_{j-1} \cdot w_{j}/w_{j-1}\} \quad \text{for } j \in [n].
\]

The idea of the potential function is to cap the original weights at \(\gamma_i \) at the indices where the original weights increase too steeply and to rebuild their slope otherwise. In particular, we have \(g_i \leq \gamma_i \) for all \(i \in [n] \). The intuition is that the potential function will underestimate the progress made at blocks being at least as significant as \(\kappa(i) \), i.e., the blocks in \(L(i) \). In all less significant blocks (those in \(R(i) \)), we will pessimistically assume that they contribute a loss, and the choice of \(\kappa(i) \) guarantees that this loss is overestimated. We

As already mentioned, the potential function assigns 0 to all optimal search points (which are unique if and only if \(w_B \neq w_{B+1} \)). Inspecting the definition, we have
Algorithmica (2021) 83:3209–3237

Hence, the accumulated weight of the one-bits outside the B rightmost positions is an upper bound on the g-value; formally,

$$g(x) = \sum_{j>B} g_j + \sum_{j\leq B} g_j - \sum_{j=1}^B g_j$$

$$= \sum_{j>B} g_j - \sum_{j\leq B} g_j,$$

As mentioned above, we will analyse the stochastic process $(X_t)_{t\geq 0}$ where $X_t = g(x(t))$ for all t, and define $A_t := X_t - X_{t+1}$. Recall that we are interested in the first point in time t where $X_t = 0$ holds since $g(x) = 0$ if and only if $f(x) = f(x_{\text{opt}})$. The drift $E(A_t \mid X_t)$ of the potential function will be worked out conditioned on certain events depending on two flipping bits. The following notions prepare the definition of these events.

Definition 10 Given $x(t) \in \{0, 1\}^n$, denote by x' the random search point created by mutation of $x(t)$ (before selection). We define

- $I := \{i \in [n] \mid x_i(t) = 1\}$ the one-bits in $x(t)$,
- $I^* := \{i \in I \mid x_i' = 0\}$ the one-bits flipping to 0,
- $Z := \{i \in [n] \mid x_i(t) = 0\}$ the zero-bits in $x(t)$,
- $Z^* := \{i \in Z \mid x_i' = 1\}$ the zero-bits flipping to 1.
- $\sigma_i := |I^* \cap K_i| - |Z^* \cap K_i|$ the surplus of flipping one-bits within block K_i, where $i \in [m]$.

Note that the random sets I^* and Z^* are disjoint and that the remaining bits in $[n]$ contribute nothing to the A_t-value.

Obviously, for $A_t \neq 0$ it is necessary that $x(t+1) \neq x(t)$ (i.e., the offspring is accepted) and that the number of one-bits changes in at least one block since mutations that only change the positions of one-bits within the blocks neither change f- nor g-value. We fix an arbitrary search point $x(t)$ and let A be the event that both $x(t+1) \neq x(t)$ and there is at least one $i \in [m]$ such that $\sigma_i \neq 0$, i.e., the number of one-bits changes in at least one block. Then event A requires that

$$I^* \neq \emptyset \text{ and } \sum_{j \in I^*} w_j - \sum_{j \in Z^*} w_j \geq 0.$$

To simplify the analysis of blocks of equal weights, we from now on use the equivalence

$$\sum_{j \in I^*} w_j - \sum_{j \in Z^*} w_j = \sum_{i=1}^m \sigma_i w_{x(i)}.$$
Hence, for A to occur it is necessary that

$$\sum_{i | \sigma_i > 0} |\sigma_i| w_{s(i)} - \sum_{i | \sigma_i < 0 \land i \geq k} |\sigma_i| w_{s(i)} \geq 0,$$

for arbitrary $k \in [m]$ since we only ignore the loss due to the bits right of block k. In the following, $k = \kappa(i)$ will be used where i is the leftmost block such that $\sigma_i > 0$.

We now decompose the event A according to two indices $i \in [m]$ and $\ell \in [n]$, where i relates to the leftmost block that flips more ones than zeros, and ℓ to the leftmost flipping one-bit from block i.

Definition 11 The event $A_{i,\ell}$, where $i \in [m]$ and $\ell \in [n]$, occurs iff the following conditions hold simultaneously.

1. $I^* \neq \emptyset$.
2. $i := \max\{i \mid \sigma_i > 0\}$.
3. $\ell = \max(I^* \cap K_i)$.
4. $\sum_{i | \sigma_i > 0} |\sigma_i| w_{s(i)} - \sum_{i | \sigma_i < 0 \land \ell \geq x(i)} |\sigma_i| w_{s(i)} \geq 0$.
5. A feasible search point is obtained by flipping the bits from $I^* \cup Z^*$ in $x^{(t)}$.

We distinguish between two types of such events: $A_{i,\ell}$ is called potentially helpful if $\ell > B$ and unhelpful otherwise.

Obviously, the events $A_{i,\ell}$ are mutually disjoint. Since each accepted mutation that changes the value of at least one block flips at least one one-bit, the union of the events $A_{i,\ell}$ is a superset of A (in other words, is necessary for A). If the leftmost flipping one-bit is among the $n - B$ most significant positions then the corresponding mutation may simultaneously flip a zero-bit from the B least significant positions and increase the number of one-bits at the latter positions; hence, it may be helpful. (It is not helpful, e. g., if the one-bit is of the same weight as position B.) If the left-most flipping one-bit is already at the B least significant positions, then the mutation cannot increase the number of one-bits at these positions or the resulting search point is no longer tight, and is therefore called unhelpful.

The key inequality used to bound the drift is stated in the following lemma, which decomposes the set of possible events $A_{i,\ell}$ into potentially helpful and unhelpful ones.

Lemma 12 Consider any $t \geq 0$, $i \in [m]$ and $\ell \in K_i$ such that $\Pr(A_{i,\ell}) > 0$. Then $E(a | A_{i,\ell}) \geq 0.11 g_{s(i)}$ if $\ell > B$ and $E(a | A_{i,\ell}) \geq -3/2$ otherwise.

Before we prove Lemma 12, let us show how it can be used to prove Lemma 8.

Proof of Lemma 8 We still fix an arbitrary search point $x^{(t)}$, denote by $X_t = g(x^{(t)})$ its potential and investigate the following step. As observed above, in the step the potential remains either unchanged or a certain event $A_{i,\ell}$ occurs. Hence, the drift can be expressed as
\[E(X_t - X_{t+1} \mid X_t) = \sum_{i \in [m], \ell \in K_t, \Pr(A_{i,\ell}) > 0} E(\Delta_i \mid A_{i,\ell}) \cdot \Pr(A_{i,\ell}). \]

Using Lemma 12, the last expression is at least
\[
\sum_{i \in [m], \ell \in K_t \cap [B+1, \ldots, n], \Pr(A_{i,\ell}) > 0} 0.11g_{s(i)} \Pr(A_{i,\ell})
\]
\[+ \sum_{i \in [m], \ell \in K_t \cap [1, \ldots, B], \Pr(A_{i,\ell}) > 0} -(3/2) \Pr(A_{i,\ell}). \tag{2} \]

Hence, we have to bound \(\Pr(A_{i,\ell}) \) from below for those events that are possible, taking into account the different signs of the terms.

We first show that may basically concentrate on the case \(\ell > B \) of potentially helpful mutations, more precisely, we claim that the bound (2) is at least
\[
\sum_{i \in [m], \ell \in K_t \cap [B+1, \ldots, n], \Pr(A_{i,\ell}) > 0} 0.05g_{s(i)} \Pr(A_{i,\ell}). \tag{3} \]

To prove the claim, we carefully analyse \(\Pr(A_{i,\ell}) \) in both cases.

If \(\Pr(A_{i,\ell}) > 0 \) then there is a one-bit at position \(\ell \). If the current search point is not tight, already flipping bit \(\ell \) alone is accepted and we obtain \(\Pr(A_{i,\ell}) \geq (1/n)(1 - 1/n)^{n-1} \geq 1/(en) \) as well as trivially \(\Pr(A_{i,\ell}) \leq 1/n \). If the constraint is tight there are \(B \) other one-bits in \(x^{(i)} \). Recall that \(A_{i,\ell} \) requires \(\ell \) to be the leftmost flipping one-bit in the leftmost block flipping more ones than zeros. For the offspring to be feasible (Condition 5 of \(A_{i,\ell} \)) a zero-bit right of \(\ell \) must flip simultaneously with \(\ell \). Let \(z \) be the number of such bits. Similarly as before, we obtain \(\Pr(A_{i,\ell}) \geq (z/n^2)(1 - 1/n)^{n-1} \geq z/(en^2) \) and \(\Pr(A_{i,\ell}) \leq z/n^2 \). Altogether, for any two pairs \((i, \ell), (i', \ell')\) where both \(\Pr(A_{i,\ell}) > 0 \) and \(\Pr(A_{i',\ell'}) > 0 \), we have
\[
\Pr(A_{i',\ell'}) \leq \Pr(A_{i,\ell'}) \leq \Pr(A_{i,\ell}). \tag{4} \]

Note that we assume a tight, non-optimal search point. Now, there is at least one possible events \(A_{i,\ell} \) where \(\ell > B \) and there are at most \(B \) such events where \(\ell < B \). Using this observation and (4), we link each event with positive drift to at most \(B \) events with negative drift and bound (2) from below by
\[
\sum_{i \in [m], \ell \in K_t \cap [B+1, \ldots, n], \Pr(A_{i,\ell}) > 0} \left(\frac{0.11g_{s(i)}}{e} - B \frac{3}{2} \right). \]

Since \(g_{\ell} \geq 75B \) for \(\ell > B \), we have \(\frac{0.11g_{s(i)}}{e} - B \frac{3}{2} \geq -g_{s(i)}/50 \geq 0.05g_{s(i)} \), so altogether the bound (2) on the drift is at least
\[
\sum_{i \in [m], \ell \in K_t \cap [B+1, \ldots, n], \Pr(A_{i,\ell}) > 0} 0.05g_{s(i)} \Pr(A_{i,\ell}) \]
as claimed.
We proceed by bounding (3) further from below. To this end, we derive two different lower bounds on \(\Pr(A_{i,\ell'}) > 0 \), where \(\ell' > B \). Considering a mutation that flips bit \(\ell' > B \), the mutation is accepted if it flips a zero-bit right of \(\ell' \) and does not flip any further bits. Firstly, even if all \(B \) one-bits are right of (and including) bit \(\ell' \), there are at least \(\ell' - B \) zero-bits right of \(\ell' \). Secondly, denoting by \(\tilde{z} := \sum_{i=1}^{B} x_i^{(i)} \) the number of zero-bits among the \(B \) rightmost positions, there are at least \(\tilde{z} \) zero-bits right of \(\ell' \). Counting the at least \(\min\{\ell' - B, \tilde{z}\} \) different ways of flipping a zero-bit right of \(\ell' \), we conclude that

\[
\Pr(A_{i,\ell'}) \geq \frac{\max\{\ell' - B, \tilde{z}\}}{n^2} \left(1 - \frac{1}{n}\right)^{n-2} \geq \frac{\max\{\ell' - B, \tilde{z}\}}{en^2}
\]

(5)

if \(A_{i,\ell'} \) is possible.

We will now relate the expression \(\ell' - B \) to the factor \(g_{s(i)} \) appearing in (3). First of all, since \(\ell' \) appears in block \(i \) and all bits in a block have equal weight, we have \(g_{s(i)} = g_{\ell'} \). Next we note that \(g_{\ell'} \leq \gamma_{\ell'} = 75B(\ell' - B)^{7/2} \) by Definition 9 for \(\ell' > B \), so \(\ell' - B \geq (g_{s(i)}/75)^{1/7} \geq (1/2)(g_{s(i)})^{1/7}B^{-1/7} \). Plugging this into Equation (5), we obtain (if \(A_{i,\ell'} \) is possible) that

\[
\Pr(A_{i,\ell'}) \geq \frac{\max\{(g_{s(i)})^{1/7}/(2B^{1/7}), \tilde{z}\}}{en^2}.
\]

(6)

We will now apply (6) to obtain our final bound on (3). Let \(I = \{x_i \mid x_i = 1 \land i > B\} \) be the set of ones-bits at the \(n - B \) leftmost positions. Since for each \(i \in [m] \) there are \(|K_i \cap \tilde{I}| \) disjoint events \(A_{i,\ell'} \) each, namely one for each one-bit \(\ell' \) within block \(i \), we obtain by combining (3) and (6) that

\[
E(X_i - X_{i+1} \mid X_i) \geq \sum_{i \in [m] \mid K_i \cap \tilde{I} \neq \emptyset} |K_i \cap \tilde{I}| \cdot 0.05 g_{s(i)} \Pr(A_{i,\ell'}) \\
\geq \sum_{i \in [m] \mid K_i \cap \tilde{I} \neq \emptyset} |K_i \cap \tilde{I}| \cdot 0.025 \max\{(g_{s(i)})^{8/7}B^{-1/7}, g_{s(i)} \cdot \tilde{z}\}.
\]

(7)

Using the estimate

\[
\sum_{i \in I} (g_i)^{8/7} \geq \left(\sum_{i \in I} (g_i)\right)^{8/7} (|I|)^{-1/7} \geq B^{-1/7} \left(\sum_{i \in I} (g_i)\right)^{8/7}
\]

proved in Lemma 3 and recalling (1) we finally have

\[
E(X_i - X_{i+1} \mid X_i) \geq \frac{0.025}{en^2} \min\left\{\frac{(g(x^{(i)}))^{8/7}}{B^{2/7}}, g(x^{(i)})\right\} \\
= \frac{0.025 g(x^{(i)})}{en^2} \min\left\{\frac{(g(x^{(i)}))^{1/7}}{B^{2/7}}, 1\right\}.
\]

This proves the first statement of Lemma 8.
For the second statement of Lemma 8, we simply use that \(g_i \leq 75B_i^7 \), so for all \(x^{(i)} \) it holds that \(g(x^{(i)}) \leq \sum_{i=1}^n g_i \leq nB \cdot 75n^7 \leq 75n^9 \). Also, since \(g_i \geq 1 \) for \(i \in [n] \), each non-optimal search point \(x^{(i)} \) must satisfy \(g(x^{(i)}) \geq 1 \). \(\square \)

The still outstanding proof of Lemma 12 requires a careful analysis of the one-step drift, taking into account the specific structure of the drift function.

Proof of Lemma 12 Recall that we want to condition on the event \(A_i, \ell \) (Definition 11), where \(i \) is the leftmost block flipping more ones than zeros. Moreover, recall the notions introduced in Definitions 9 and 10. Let

\[
\Delta_L(i) := \left(\sum_{j|\sigma_j > 0} |\sigma_j| g_s(j) - \sum_{j|\sigma_j < 0, j \geq \kappa(i)} |\sigma_j| g_s(j) \right) \cdot \mathbb{1}_A,
\]

\[
\Delta_R(i) := \left(\sum_{j|\sigma_j > 0, j < \kappa(i)} |\sigma_j| g_s(j) \right) \cdot \mathbb{1}_A,
\]

where \(\mathbb{1}_A \) denotes the indicator random variable of event \(A \). Recall that \(\Delta_i = 0 \) if \(A \) does not occur. Otherwise, \(\Delta_i = \sum_{j|\sigma_j > 0} |\sigma(j)| g_s(j) - \sum_{j|\sigma_j < 0} |\sigma(j)| g_s(j) \). Hence, we have \(\Delta_i = (\Delta_L(i) - \Delta_R(i)) \) for all \(i \in [m] \). By linearity of expectation, we obtain

\[
E(\Delta_i | A_i, \ell) = E(\Delta_L(i) | A_i, \ell) - E(\Delta_R(i) | A_i, \ell).
\]

We first show that \(\Delta_L(i) | A_i, \ell \) is a non-negative random variable, i.e., the probability of any negative outcome is 0. To prove this, assume that \(A_i, \ell \) holds, which implies that no block left of \(i \) flips more ones than zeros.

We now inspect the relation between the weights of the original function and the potential function. Here we exploit that the ratio of \(g \)-values and \(w \)-values of two blocks \(i > j \) is the same unless the weight of block \(i \) is capped by the minimum operator in the definition of \(g_s(j) \) in Definition 9. Otherwise, the ratio may be smaller. Looking also into symmetrical cases, for any \(i \in [m] \) we obtain from Definition 9 that

\[
\frac{g_s(j)}{g_s(\kappa(i))} = \frac{w_s(j)}{w_s(\kappa(i))} \text{ for } i \geq j \geq \kappa(i),
\]

\[
\frac{g_s(j)}{g_s(\kappa(i))} \leq \frac{w_s(j)}{w_s(\kappa(i))} \text{ for } j \geq \kappa(i),
\]

\[
\frac{g_s(j)}{g_s(\kappa(i))} \geq \frac{w_s(j)}{w_s(\kappa(i))} \text{ for } j < \kappa(i).
\]

Hence,
\[
(\Delta_L(i) \mid A_{i,\ell}) = \left(\sum_{j:|\sigma_j| > 0} |\sigma_j|g_{s(j)} - \sum_{j:|\sigma_j| < 0 \land j \geq k(i)} |\sigma_j|g_{s(j)} \right)
\geq \left(\sum_{j:|\sigma_j| > 0} |\sigma_j|g_{s(k(i))}\frac{w_{s(j)}}{w_{s(k(i))}} - \sum_{j:|\sigma_j| < 0 \land j \geq k(i)} |\sigma_j|g_{s(k(i))}\frac{w_{s(j)}}{w_{s(k(i))}} \right)
\geq 0,
\]

where the first inequality uses (9)–(11) along with the fact that no block left of \(i \) has positive \(\sigma \)-value, and the last inequality holds by the fourth item from the definition of \(A_{i,\ell} \) (Definition 11).

We note that according to the fifth item of Definition 11, this event may imply that a bit \(j^* \in Z \) flips to 1 simultaneously with a one-bit in block \(i \) flipping to 0. This is the case if the constraint is tight in the search point \(x^{(i)} \), which we again pessimistically assume to be the case (if \(x^{(i)} \) had more than \(B \) one-bits, flipping only \(\ell \) would already be accepted).

In the following, we concentrate on the case \(\ell > B \), i. e., the case of a potentially helpful mutation, and consider the other case at the end of this proof. Now let \(S_{i,\ell} \) be the event that the following three events happen simultaneously:

1. \(|\{I^* \cup Z^*\} \cap K_j| = 0\) for all \(j \in \{k(i), \ldots, m\}\) \(\setminus\{i\}\)
2. \(|I^* \cap K_j| = 1\) and \(\ell' \in I^* \cap K_i\)
3. \(|Z^* \cap K_j| = 0\),

i. e., block \(i \) is the only one in \(L(i) \) that contributes to \(\Delta_L \) by flipping exactly one one-bit at position \(\ell' \). We have

\[
E(\Delta_L(i) \mid A_{i,\ell}) = E(\Delta_L(i) \mid A_{i,\ell} \cap S_{i,\ell'}) \cdot \Pr(S_{i,\ell'} \mid A_{i,\ell})
+ E(\Delta_L(i) \mid A_{i,\ell} \cap S_{i,\ell'}) \cdot \Pr(S_{i,\ell'} \mid A_{i,\ell})
\]

by the law of total probability. As the random variable \((\Delta_L(i) \mid A_{i,\ell}) \) cannot have any negative outcomes, all these conditional expectations are non-negative as well. From (8) we thus derive

\[
E(\Delta_L(i) \mid A_{i,\ell}) \geq E(\Delta_L(i) \mid A_{i,\ell} \cap S_{i,\ell'}) \cdot \Pr(S_{i,\ell'} \mid A_{i,\ell}) - E(\Delta_R(i) \mid A_{i,\ell}).
\tag{12}
\]

We will now bound the terms from (12) from below to obtain our result. For \((S_{i,\ell'} \mid A_{i,\ell}) \) to occur, it is sufficient that all bits in the blocks in \(L(i) \) except the one-bit \(\ell' \) in block \(i \) and bit \(j^* \) do not flip (note that these bits flip since we condition on \(A_{i,\ell} \)). Consequently, \(\Pr(S_{i,\ell'} \mid A_{i,\ell}) \geq (1 - 1/n)^{n-2} \geq 1/e \). Moreover, since no zero-bits in \(L(i) \) flip under \(A_{i,\ell} \cap S_{i,\ell'} \), \(j^* \) must be in a block in \(R(i) \). Hence, \(E(\Delta_L(i) \mid A_{i,\ell} \cap S_{i,\ell'}) \geq g_{s(i)} \). Altogether,

\[
E(\Delta_L(i) \mid A_{i,\ell} \cap S_{i,\ell'}) \cdot \Pr(S_{i,\ell'} \mid A_{i,\ell}) \geq \frac{g_{s(i)}}{e}.
\tag{13}
\]
Finally, we need a bound on $E(\Delta_R(i) \mid A_{i,\ell})$, which is determined by the bits in $R(i)$ that flip to 1, i.e., bits from blocks $1, \ldots, \kappa(i) - 1$. Note that event $A_{i,\ell}$ might imply that at least one of these bits flips to 1 for sure to maintain feasibility of the search point. We still pessimistically assume this to happen and denote by j^* the random index of the zero-bit that is forced to flip. Furthermore, since $\ell > B$ and exploiting the monotonicity of the weights g_k, we pessimistically assume that bits $1, \ldots, B - 1$ are all 1 in $x^{(i)}$ so that the contribution of bit j^* becomes as large as possible. Then, since the flips in $R(i)$ are not part of the fourth item in the definition of $A_{i,\ell}$ (Definition 11), we conclude that j^* is uniform on $\{B, \ldots, s(\kappa(i)) - 1\}$ and contributes at most

$$
\frac{1}{s(\kappa(i)) - B} \sum_{k=B}^{s(\kappa(i)) - 1} g_k.
$$

With respect to the bits different from j^*, we exploit that they are flipped independently. Hence, on $A_{i,\ell}$, the probability that $k \in \mathbb{Z} \cap \{B, \ldots, s(\kappa(i)) - 1\} \setminus \{j^*\}$ flips is bounded from above by $\frac{1}{n}$. Pessimistically, we assume that A occurs in such a mutation. By using linearity of expectation and combining with the contribution of j^*, it follows that

$$
E(\Delta_R(i) \mid A_{i,\ell}) \leq \sum_{k=B}^{s(\kappa(i)) - 1} \frac{1}{n} g_k + \frac{1}{s(\kappa(i)) - B} \sum_{k=B}^{s(\kappa(i)) - 1} g_k,
$$

which is at most

$$
\frac{2}{s(\kappa(i)) - B} \sum_{k=B}^{s(\kappa(i)) - 1} g_k \leq \frac{2}{s(\kappa(i)) - B} \sum_{k=B}^{s(\kappa(i)) - 1} \gamma_k,
$$

where we used that $g_k \leq \gamma_k$ for all $k \in [n]$ by Definition 9. Along with (12) and (13), we obtain

$$
E(\Delta_{\ell} \mid A_{i,\ell}) \geq \frac{g_{s(i)}}{e} - \frac{2}{s(\kappa(i)) - B} \sum_{k=B}^{s(\kappa(i)) - 1} \gamma_k.
$$

We are left with the sum over k. Plugging in the definition of γ_k and taking care of its different cases, this is estimated by

$$
\sum_{k=B}^{s(\kappa(i)) - 1} \gamma_k \leq 1 + \sum_{k=B+1}^{s(\kappa(i)) - 1} 75B(k - B)^7 \leq 1 + \frac{75B}{8} ((s(\kappa(i)) - B)^8 - 1^8) \leq \frac{75B(s(\kappa(i)) - B)^8}{8},
$$

where we used that $g_{s(\kappa(i))} = \gamma_{s(\kappa(i))} = 75B(s(\kappa(i)) - B)^7$ according to the definition of $\kappa(i)$ as well as $g_{s(i)} \geq g_{s(\kappa(i))}$.
Hence, altogether,

\[E(\Delta_t \mid A_{i,\ell}) \geq \frac{g_{s(i)}}{e} - \frac{2g_{s(i)}(s(k(i)) - B)}{8(s(k(i)) - B)} \geq 0.11g_{s(i)}, \]

which concludes the proof in the case $\ell > B$.

We are left with the case $\ell \leq B$, i.e., an unhelpful mutation. Recalling that we work under $A_{i,\ell}$, we note that ℓ cannot be from block 1 since then 1 would be the number of the leftmost block that flips more ones than zeros, in contradiction with the fourth case of the definition of $A_{i,j}$. Hence, there is a zero-bit j^* right of ℓ in a lower-numbered block that flips to 1 simultaneously with ℓ flipping to 0. If no other one-bit flips then zero-bits left of ℓ cannot flip simultaneously with the pair (ℓ, j^*); however, if there are further flips of one-bits among the B rightmost positions (recalling that ℓ is the left-most flipping one-bit) then there might be zero-bits flipping left of ℓ. Let S be the number of additionally flipping one-bits among the B rightmost positions, i.e., there are $S + 1$ flipping one-bits there. For the mutation to be accepted (and $A_{i,\ell}$ to occur), the weight w_z of each potentially flipping zero-bit z (where $z > \ell$ is possible) cannot exceed $(S + 1)w_{\ell}$. Due to (10), we have $g_{z}/g_{\ell} \leq w_z/w_{\ell}$. Along with $g_{\ell} = 1$ for $\ell \leq B$, we have $g_z \leq S + 1$. Hence, the expected contribution of these bits to Δ_t is no less than $-(S + 1)$. If we can show that $Pr(S = s) \leq 2^{-s}$, then we altogether have in the case $\ell \leq B$ that

\[E(\Delta_t \mid A_{i,\ell}) \geq -\sum_{s=1}^{\infty} (s + 1)2^{-s} \geq -3/2 \]

as claimed. To conclude the proof, we note that (still on $A_{i,\ell}$) $S = s$ can only happen if s one-bits and s zero-bits flip simultaneously and in addition to the flipping one-bit at position ℓ. The probability of this happening is maximized if there are $n/2$ zero- and one-bits and is therefore at most

\[
\binom{n/2}{s} \binom{n/2}{s} \frac{1}{n^{2s}} \leq \left(\frac{(n/2)^s}{s!} \right)^2 \frac{1}{n^{2s}} \leq \frac{1}{2^{s^2(s!)^2}} \leq 2^{-s}
\]

as suggested. \qed

6 A Tight Bound for Specific Instances

As mentioned above, we can show a tight runtime bound of $O(n^2)$ for instances where the B least significant weights are identical, i.e., $w_B = w_1$; this includes the case that the function equals ONEMAX. The analysis is in very large tracks identical to the one from the previous sections proving Theorem 7 such that we only describe the places where changes are necessary. We prove the following theorem.
Theorem 13 Let a linear function \(f(x) = w_1x_1 + \cdots + w_nx_n \), where \(w_n \geq \cdots \geq w_1 \), under a uniform constraint \(x_1 + \cdots + x_n \geq B \) for \(B \in \{1, \ldots, n\} \) be given. If \(w_1 = w_B \) then the expected optimisation time of the \((1+1)\) EA optimizing \(f \) under the constraint is upper bounded by \(O(n^2) \). Also, the time is \(O(n^2 \log n) \) with probability \(1 - O(n^{-c}) \) for any constant \(c > 0 \).

From now on, we assume that we have been given a fitness function with the property \(w_1 = w_B \). The key idea for the proof of Theorem 13 is as follows: since \(w_1 = w_B \), block 1 as defined in Definition 9 includes the positions \(1, \ldots, B \) and, if \(s(2) > B + 1 \), some positions further to the left, more precisely \(B + 1, \ldots, s(2) - 1 \). Clearly, all events \(A_{1,\ell} \), i. e., where the leftmost block flipping more ones than zeros is block 1, are impossible since they would increase the \(f \)-value. Hence, the previously considered so-called unhelpful mutations (i. e., mutations where the leftmost flipping one-bit in blocks flipping more ones than zeros is among the \(B \) rightmost positions) are impossible and we do no longer have to handle the negative drift that could arise from such mutations in the context of Theorem 13. In turn, this now allows us to use a potential function that assigns smaller weights to the positions \(B + 1, \ldots, n \) than in the general case.

The modified potential function used here is constructed in the same way as before but uses the following new \(\gamma \)-values: For \(j \in [n] \), we let

\[
\gamma_j := \begin{cases}
1 & \text{if } j \leq B, \\
8(j - B)^2 & \text{otherwise}.
\end{cases}
\]

Hence, the \(\gamma \)-values in the second case are by a factor \(\Theta(B) \) smaller compared to Definition 9.

Using the modified potential function, which we still call \(g \), we obtain the following analogue of Lemma 12.

Lemma 14 Consider any \(t \geq 0 \), \(i \in [m] \) and \(\ell \in K_i \) such that \(\Pr(A_{i,\ell}) > 0 \). Then

\[
E(\Delta_{i} \mid A_{i,\ell}) \geq 0.011g_{s(i)} \text{ if } \ell > B \text{ and } E(\Delta_{i} \mid A_{i,\ell}) \geq 0 \text{ otherwise}.
\]

Proof We describe the required changes compared to the proof of Lemma 12. As argued before, unhelpful mutations are not possible in the case \(w_1 = w_B \) so that \(E(\Delta_{i} \mid A_{i,\ell}) \geq 0 \) for \(\ell \leq B \).

We are left with the case \(\ell > B \). The analysis differs only at the point where we estimate the contribution to the drift of the bits in \(R(i) \). Again, this contribution is bounded from above by

\[
\frac{2}{s(k(i)) - B} \sum_{k=B}^{s(k(i)) - 1} \gamma_k,
\]

which, using our new definition of \(\gamma_k \), is at most
where we used that $g_{s(\kappa(i))} = \gamma_{s(\kappa(i))} = 8(s(\kappa(i)) - B)^7$ according to the definition of $\kappa(i)$ as well as $g_{s(i)} \geq g_{s(\kappa(i))}$.

Along with (12) and (13), which still hold for the modified potential function, we have

$$E(\Delta_t \mid A_{i,\ell}) \geq \frac{g_{s(i)} e}{e} - \frac{2g_{s(i)}(s(\kappa(i)) - B)}{8(s(\kappa(i)) - B)} \geq 0.11g_{s(i)}$$

as suggested. \(\square\)

Using Lemma 14, we next show the following lemma, which corresponds to Lemma 8.

Lemma 15 Considering a random variable $X_t = g(x^{(t)})$, with the modified potential function g defined above, and $x^{(t)}$ is the random search point of the $(1+1)$ EA at time t, for all time steps t we have

1. $E(X_t - X_{t+1} \mid X_t) \geq \frac{0.055n^{15/14}}{en^2}$.
2. $1 \leq X_t = O(n^8)$ if $x^{(t)}$ is not optimal.

Proof The proof starts in the same ways as the one of Lemma 15 (hereinafter called the **original proof**). The drift can be expressed as

$$E(X_t - X_{t+1} \mid X_t) = \sum_{i\in[m], \ell \in K_i, \Pr(A_{i,\ell}) > 0} E(\Delta_t \mid A_{i,\ell}) \cdot \Pr(A_{i,\ell}).$$

Using Lemma 14, the last expression is at least

$$\sum_{i\in[m], \ell \in K_i \cap \{B+1, \ldots, n\}, \Pr(A_{i,\ell}) > 0} 0.11g_{s(i)} \Pr(A_{i,\ell}),$$

which is the first difference to the original proof since we no longer have to consider unhelpful mutations.

Proceeding as in the original proof, we still have

$$\Pr(A_{i,\ell}) \geq \frac{\max\{\ell - B, \tilde{z}\}}{n^2} \left(1 - \frac{1}{n}\right)^{n-2} \geq \frac{\max\{\ell - B, \tilde{z}\}}{en^2}$$

if $A_{i,\ell}$ is possible. As in the original proof, we now relate the expression $\ell - B$ to the factor $g_{s(i)}$ appearing in (14). Adjusting the to the new γ-value, we have
ℓ − B ≥ (g_{s(i)}/8)^{1/7} ≥ (1/2)(g_{s(i)})^{1/7}. Plugging this into Eq. (15), we obtain (if \(A_{i,\ell} \) is possible) that
\[
\Pr(A_{i,\ell}) \geq \frac{\max\{(g_{s(i)})^{1/7}/2, \bar{z}\}}{en^2}.
\] (16)

With the same arguments as in the original proof, we therefore have
\[
\mathbb{E}(X_t - X_{t+1} \mid X_t) \geq \sum_{i \in [m] : K_i \cap \bar{I} \neq \emptyset} |K | \left(0.11 g_{s(i)} \Pr(A_{i,\ell}) \right)
\geq \sum_{i \in [m] : K_i \cap \bar{I} \neq \emptyset} \frac{0.055 (g_{s(i)})^{8/7}}{\bar{z}^{1/7}en^2} \geq \frac{0.055 g(x(t))^{8/7}}{2en^2},
\] (17)
which differs from (7) solely because of the modified potential function. Deviating from the original proof, we now distinguish between two cases according to \(\bar{z} \).

Case 1 \(\bar{z} \leq \sqrt{g(x(t))} \). Then we use the term \((g_{s(i)})^{8/7}\) from the maximum in (17) and obtain
\[
\mathbb{E}(X_t - X_{t+1} \mid X_t) \geq \frac{0.055 g(x(t))^{8/7}}{g(x(t))^{1/14}en^2} = \frac{0.055 g(x(t))^{15/14}}{en^2}.
\]

Case 2 \(\bar{z} > \sqrt{g(x(t))} \). Then we use the term \(\bar{z} \) from the maximum in (17) and obtain
\[
\mathbb{E}(X_t - X_{t+1} \mid X_t) \geq \frac{0.055 g(x(t))^{8/7}}{en^2} \geq \frac{0.055 g(x(t))\sqrt{g(x(t))}}{en^2} = \frac{0.055 (g(x(t)))^{3/2}}{en^2}.
\]
Altogether, we therefore have
This proves the first statement of Lemma 15. The second statement is proved in the same way as in Lemma 15, taking into account the smaller weights of the modified potential function.

With these two lemmas in place, we show our result.

Proof of Theorem 13 We apply the variable drift theorem (Theorem 1) given the statements of Lemma 15. Using that $X_t \geq 1 =: s_{\text{min}}$ and $X_t = O(n^8)$ as well as the drift bound

$$h(X_t) := \frac{0.055(X_t)^{15/14}}{en^2},$$

the expected optimisation time is bounded by

$$\frac{s_{\text{min}}}{h(s_{\text{min}})} + \int_{s_{\text{min}}}^{n^8} \frac{1}{h(x)} \, dx$$

$$= O(n^2) + \frac{en^2}{0.055} \left(\int_1^{n^8} \frac{1}{x^{15/14}} \, dx \right)$$

$$= O(n^2) + O(n^2) = O(n^2),$$

which completes the proof of the bound on the expected time.

For the tail bound we use the multiplicative drift theorem (Theorem 2) with the simple bound $E(X_t - X_{t+1} \mid X_t) \geq \frac{0.055X_t}{en^2}$ from Lemma 8, along with $X_t = O(n^8)$ that implies $\ln(X_t/s_{\text{min}}) = O(\log n)$. Note that the multiplicative drift theorem gives the upper bound $O(n^2 \log n)$ on the expected optimisation time so that the tail bound can be obtained by setting $r = c \ln n$.

We note that upper bound given in Theorem 13 is tight. The lower bound of $\Omega(n^2)$ for the (1+1) EA is similar to Theorem 6 and follows by the fact that a special 2-bit flip is needed if the current solution is non-optimal and has exactly B 1-bits. For a detailed analysis see Theorem 10 in [10].

7 Minimisation Versus Maximisation

The results we presented in this paper have been formulated with respect to the minimisation of linear functions under a uniform lower constraint $x_1 + \cdots + x_n \geq B$. This perspective of minimisation fits more naturally the minimisation of potential functions used in drift theorems (Theorems 1 and 2) and is therefore de-facto standard in many recent papers dealing with the optimisation of linear functions [5, 26].

© Springer
However, previous works about the optimisation of linear functions under constraints considered the maximisation of a linear function under an upper uniform constraint $x_1 + \cdots + x_n \leq B$. It is not difficult to see that our main theorems (Theorems 5 and 7) also hold for this scenario. Since this is rather straightforward to realise for RLS, we only discuss the result for the (1+1) EA now. The potential function g from Definition 9 would have to be adapted to assign weight 0 to the B most significant positions and increasing weights from bits 1 to $n-B$ in the same way as before, with the exception that 0-bits instead of 1-bits would contribute: roughly speaking we would define $g(x) := \sum_{i=1}^{n-B} g_i (1-x_i)$.

Interestingly, the time to reach the feasible region analysed in Lemma 4 will be $O(n \log(n/B))$ instead of $O(n \log(n/(n-B))$ in the scenario of maximisation, as proved in earlier work [10]. This is due to the fact that a large B corresponds to a large infeasible region in the maximisation case but a small one in the minimisation case. However, in both cases the time to reach the feasible region is always bounded by an asymptotically smaller expression than our bound for the time to find an optimal search point after having reached the feasible region.

8 Experimental Supplements

We carry out experimental investigations for the (1+1) EA that complement the theoretical results provided in this paper. Our experiments provide additional insights with respect to two aspects. Firstly, we investigate the runtime of the (1+1) EA in dependence of the given constraint bound B. Secondly, we study higher mutation rates than $1/n$, namely $2/n$ and $3/n$. We consider the special case of the objective function where $w_i = i$, $1 \leq i \leq n$. The objective function has the important property that all bits have different weights. For a given bound B the unique optimal solution consists of the first B bits.

Figure 1 shows our results for $n = 100$ and $n = 200$. For each value of $B = 0, \ldots, n/3$, we carried out 500 independent runs and the figure shows for each B the average value of these 500 runs. For $B = 0$, the expected runtime of (1+1) EA is $\Theta(n \log n)$ whereas for $B > 0$ this value becomes $O(n^2 \log^+ B)$ due to the upper bound given in Theorem 7.

We cannot observe a pattern in dependence of B if $B \neq 0$. However, we can observe that there is a clear difference when using mutation rates $2/n$ or $3/n$ in the (1+1) EA for our linear function with the uniform constraint. A mutation rate of $2/n$ performs best in our experiments which we attribute to the fact that mutations flipping 2 bits are crucial to optimize the objective function. However, also the mutation rate of $3/n$ shows a better runtime behaviour than the mutation rate of $1/n$ although it leads to a slower optimization process than the mutation rate of $2/n$. A possible explanation of the better results for mutation rate $3/n$ over $1/n$ is that 2-bit flips (or multiple bit flips) are essential to optimize the considered constraint problems when having obtained solutions at the constraint boundary.

Figure 2 shows our experimental results for $n = 500$ and $n = 1000$. The results are consistent with our observations for $n = 100, 200$. Again, we do not observe a dependence on the constraint bound value of B, $B \neq 0$. However, we can again
observe that the optimization process is fastest for mutation rate $2/n$ followed by $3/n$ with both of them having a clear advantage of the standard mutation rate $1/n$.

9 Conclusion

We have carried out a rigorous theoretical analysis on the expected optimisation time of RLS and the (1+1) EA on the problem of minimising a linear function under uniform constraint. Our results include a tight expected bound of $O(n^2)$ for RLS and a bound of $O(n^2 \log^+ B)$ for the (1+1) EA, where B is the constraint value, i.e., the minimum number of 1-bits that a solution should have to be considered feasible. Both bounds considerably improve over previous results.
We have also proved an upper bound of $O(n^2 \log n)$ for the $(1+1)$ EA with high probability and a tight bound of $O(n^2)$ in the case that the B smallest weights of the function are identical. In order to prove our results for the $(1+1)$ EA, we have conducted an adaptive drift analysis with a potential function that depends on the weights of the linear function and the constraint value B. We are optimistic that the developed techniques can be helpful in finding upper bounds on the expected optimisation time of the $(1+1)$ EA on more complicated problems for which currently best upper bounds depend on the weights of the given input. This includes the minimum spanning tree problem where the best proven upper bound for general graphs is $O(n^2(\log n + \log w_{\text{max}}))$ and conjectured to be $O(n^2 \log n)$.

Acknowledgements This research has been supported by the Australian Research Council (ARC) through Grant DP160102401.
References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific Publishing, Singapore (2011)
2. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. In: Proceedings of PPSN ’10, LNCS, vol. 6238, pp. 32–41. Springer (2010)
3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013)
4. Doerr, B., Pohl, S.: Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions over a finite alphabet. In: Proceedings of GECCO ’12, pp. 1317–1324. ACM Press (2012)
5. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC ’10, pp. 1–8. IEEE Press (2010)
6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO ’10, pp. 1449–1456. ACM Press (2010)
7. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697 (2012)
8. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separable functions in parallel? In: Proceedings of FOGA ’13, pp. 51–64. ACM Press (2013)
9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)
10. Friedrich, T., Kötzing, T., Lagodzinski, J.G., Neumann, F., Schirneck, M.: Analysis of the (1+1) EA on subclasses of linear functions under uniform and linear constraints. Theor. Comput. Sci. 832(6), 3–19 (2020)
11. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13(3), 502–525 (1982)
12. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)
13. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Proceedings of PPSN ’08, LNCS, vol. 5199, pp. 41–51. Springer (2008)
14. Jägersküpper, J.: Combining Markov-chain analysis and drift analysis. Algorithmica 59(3), 409–424 (2011)
15. Jansen, T.: Analyzing Evolutionary Algorithms: The Computer Science Perspective. Natural Computing Series. Springer, Berlin (2013)
16. Johannsen, D.: Random combinatorial structures and randomized search heuristics. PhD thesis, Saarland University (2010)
17. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Proceedings of ISAAC ’14, LNCS, vol. 8889, pp. 686–697. Springer. Extended technical report at http://arxiv.org/abs/1307.2559 (2014)
18. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2(2), 243–284 (2009)
19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)
20. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. Algorithmica 59(3), 323–342 (2011)
21. Neumann, F., Pourhassan, M., Witt, C.: Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. Proc. Genet. Evolut. Comput. Conf. GECCO 2019, 1506–1514 (2019)
22. Reichel, J., Skutella, M.: On the size of weights in randomized search heuristics. In: Proceedings of FOGA ’09, pp. 21–28. ACM Press (2009)
23. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. Algorithmica 57(1), 187–206 (2010)
24. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ) EA. In: Proceedings of GECCO ’12, pp. 1349–1356. ACM (2012)
25. Wegener, I.: Methods for the analysis of evolutionary algorithmson pseudo-Boolean functions. In: Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization. Kluwer Academic Publishers, Dordrecht (2001)
26. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combin. Probab. Comput. 22(2), 294–318 (2013)
27. Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning tree problem. In: Proceedings of GECCO ’14, pp. 509–516. ACM Press (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.