FOXM1 coming of age: time for translation into clinical benefits?

Muy-Teck Teh*

Centre for Clinical and Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

A decade since the first evidence implicating the cell cycle transcription factor Forkhead Box M1 (FOXM1) in human tumorigenesis, a slew of subsequent studies revealed an oncogenic role of FOXM1 in the majority of human cancers including oral, nasopharynx, oropharynx, esophagus, breast, ovary, prostate, lung, liver, pancreas, kidney, colon, brain, cervix, thyroid, bladder, uterus, testis, stomach, skin, and blood. Its aberrant upregulation in almost all different cancer types suggests a fundamental role for FOXM1 in tumorigenesis.

Its dose-dependent expression pattern correlated well with tumor progression starting from cancer predisposition and initiation, early premalignancy and progression, to metastatic invasion. In addition, emerging studies have demonstrated a causal link between FOXM1 and chemotherapeutic drug resistance. Despite the well-established multifaceted roles for FOXM1 in all stages of oncogenesis, its translation into clinical benefit is yet to materialize.

In this contribution, I reviewed and discussed how our current knowledge on the oncogenic mechanisms of FOXM1 could be exploited for clinical use as biomarker for risk prediction, early cancer screening, molecular diagnostics/prognostics, and/or companion diagnostics for personalized cancer therapy.

Keywords: FOXM1, cancer biomarkers, epigenetic markers, cancer stem cells, personalised medicine
Clinical translation of FOXM1

Adult stem cells are responsible for tissue homeostasis and repair. However, due to their inherently high clonogenic potential and plasticity, stem cells are susceptible to oncogenic selection rendering these cells ideal targets for cancer initiation. In rare occasions, tumors may arise spontaneously and rapidly without sequential accumulation/selection of oncogenic mutations through a catastrophic genomic rearrangement event, namely chromothripsis (Liu et al., 2011; Stephens et al., 2011; Crasta et al., 2012). Nevertheless, it is generally accepted that the majority of malignancies are initiated by stem cells which accumulate and propagate oncogenic mutations through clonal evolutionary selection.

Emerging evidence have indicated that FOXM1 plays an important role in maintaining stem cell renewal through pluripotency genes Oct4, Nanog, and Sox2 in mouse (Xie et al., 2010; Tompkins et al., 2011; Wang et al., 2011). A recent mouse model study established a key role for FOXM1 in cell fate determination. This study showed that FOXM1 regulated mammary luminal cell fate by modulating the expression of GATA-3, a key regulator of breast luminal epithelial differentiation (Carr et al., 2012). Furthermore, FOXM1 has been shown to transactivate an epithelial stem cell marker keratin 15 (KRT15) gene in human keratinocytes (Bose et al., 2012).

It has been demonstrated that environmental (e.g., sun exposure) and carcinogenic factors (e.g., tobacco use, etc.) can cause aberrant expression of FOXM1 leading to cellular proliferation and promote oncogenic genomic instability in human cells (Figure 1). It has been shown that ionizing radiation, etoposide, or ultraviolet light-induced DNA damage leads to Chk2-mediated FOXM1 phosphorylation and its stabilization (Tan et al., 2007). Furthermore, repeated ultraviolet B irradiation on human keratinocytes enhanced FOXM1-associated genomic instability in the form of loss of heterozygosity (LOH) and copy number aberrations (CNA) perturbing genomic loci containing large number of genes, for example, epidermal growth factor receptor (EGFR), insulin-like growth factor receptor 2 (IGF2R), and insulin-like growth factor binding protein 1 (IGFBP1) (3), which have been previously linked to oncogenesis of human squamous cell carcinoma (Teh et al., 2010). Similarly, nicotine has been shown to promote malignant transformation by enhancing FOXM1-associated LOH and CNA, whereby malignant cells bearing amplified CNV loci (10q23) containing a centrosomal protein CEP55 responsible for cytokinesis and a chromatin-remodeling helicase/stem cell factor HELLS known to regulate epigenetic reprogramming (Gemenetzidis et al., 2009; Teh et al., 2012). The complexity of genomic instability and epigenetic reprogramming activated by FOXM1 may therefore generate a highly heterogeneous population of mutant cells ready to adopt subsequent oncogenic insults which may explain the heterogeneity exists in many cancers. Taken together, these studies support a driver role of FOXM1 in cancer predisposition and initiation through perturbation of the genomic and epigenomic landscapes (Gemenetzidis et al., 2009; Teh et al., 2010, 2012). It was unclear how normal healthy cells retain abnormal expression of FOXM1 following exposure to carcinogens. Using a well-established three dimension (3D) human organotypical tissue culture model system enabled us to study epithelial differentiation and renewal mechanism with high degree of similarity to human tissue regeneration in vivo (Gemenetzidis et al., 2010) without provoking ethical issues associated with human or animal subjects. This human organotypical culture study has provided the first direct evidence that FOXM1 regulates human adult epithelial stem cell fate (Gemenetzidis et al., 2010). Overexpression of FOXM1 in human keratinocyte stem/progenitor cells, but not in differentiating cells, significantly expanded the proliferative progenitor compartment by perturbing epithelial differentiation producing a hyperproliferative phenotype reminiscent of that seen in hyperplasia – a condition that carries a risk of malignant transformation depending on subsequent oncogenic hits. This finding indicates that FOXM1 hijacks the self-renewal properties of stem cells to initiate a premalignant condition sustained by molecularly distinct "pre-cancer" stem cells. The acquisition of aberrant expression of FOXM1 by normal stem cells may represent a key driver step in a multistep oncogenic evolutionary pathway (Figure 1).

Ectopic FOXM1 has been found to induce stem/progenitor compartment expansion by shifting the balance toward stem cell renewal whilst perturbing differentiation (Gemenetzidis et al., 2010; Bao et al., 2011; Kalin et al., 2011; Wang et al., 2011; Bose et al., 2012) and cause genomic instability in human cells through deregulation of mitosis and/or cytokinesis (Loaukii et al., 2005; Gemenetzidis et al., 2009). Moreover, aberrant FOXM1 expression also induces epigenomic perturbations through activation of a chromatin-remodeling helicase/stem cell factor HELLs (Gemenetzidis et al., 2009; Teh et al., 2012), activated epithelial-mesenchymal transition (reviewed in Wierstra and Alves, 2007; Gemenetzidis et al., 2010; Kalin et al., 2011) and induces DNA repair/drug resistance pathways (reviewed in Wilson et al., 2011). Collectively, these findings illustrate diverse molecular mechanisms of how aberrant expression of FOXM1 may play pivotal roles in all stages of tumorigenesis from initiation to metastatic invasion.

CLINICAL TRANSLATION

Understanding the basic molecular mechanism of FOXM1-driven oncogenesis is prerequisite to exploitation for clinical benefits. Given that FOXM1 has been implicated in all stages from cancer initiation, progression, metastasis to drug resistance, FOXM1 is evidently a promising cancer biomarker. However, understanding the detail molecular mechanisms specific to each disease stages would be important to reveal stage-specific
Te h Clinical translation of FOXM1

FIGURE 1 | A model mechanism illustrating the role of FOXM1 in human epithelial cancer initiation, progression, and metastasis. Multiple lines of evidence have suggested that carcinogens (such as ultraviolet light, ionizing radiation, tobacco, etc.) exposure causes activation of FOXM1 which triggers aberrant expansion of “pre-cancer stem cells” through perturbation of epithelial differentiation, producing a premalignant hyperplastic phenotype (Gemenetzidis et al., 2010). Activation of genomic instability (i.e., through activation of CEP55 leading to mitotic instability; Gemenetzidis et al., 2009) and epigenetic reprogramming (i.e., through deregulation of HELLS causing chromatin remodeling and altered genomic methylation) triggered by aberrant expression of FOXM1 (Teh et al., 2012) may predispose cells to further mutations thereby driving oncogenic progression and subsequent metastatic invasion. Due to the complexity of genomic instability and epigenetic reprogramming activated by FOXM1, this model may explain the heterogeneity found in tumor whereby the initial molecularly distinct “pre-cancer stem cells” undergo constant adaptive evolutionary changes to produce “cancer stem cells” and subsequently “metastatic cancer stem cells” during the course of cancer progression. An alternative mechanism involving catastrophic genomic rearrangement, chromothripsis, has been shown to produce tumor directly and rapidly from normal cells without the need for sequential accumulation of oncogenic mutations (Li et al., 2011; Stephens et al., 2011; Crasta et al., 2012).

FOXM1-associated biomarker panels as illustrated in Figure 2. Furthermore, identification of such stage-specific biomarkers could in turn stimulate further research into finding new anti-tumor drugs with better specificity and efficacy.

EPIGENETIC ALTERATIONS AS PREDICTIVE CANCER BIOMARKERS

Epigenetic programming plays a key role in cell fate diversification that involves mechanisms such as stem cell renewal, proliferation, differentiation, and aging (Baylin and Jones, 2011). DNA methylation is one of the fundamental epigenetic programing mechanisms whereby its heritable yet reversible methylome landscapes is able to produce diverse phenotypes from a single genome without altering its primary DNA sequence. Aberrant disturbance of the methylome landscape in normal cells is known to induce cancer formation (Tsai and Baylin, 2011). Given a presumed higher hierarchy of the epigenome over the transcriptome and proteome in terms of the Central Dogma of Molecular Biology, understanding aberrant epigenetic alteration involving DNA methylation is prerequisite to finding predictive, and/or early cancer biomarkers. Advances in detecting cell-free nucleic acids in cancer patients’ blood demand better nucleic acid-based biomarkers (Schwarzenbach et al., 2011a). The chemically distinctive and reversible properties of methylated DNA provide ample opportunities for clinical exploitation as methylated DNA is found to be differentially expressed in head and neck squamous carcinoma tumor samples compared to control normal tissues (Teh et al., 2012). However, in order to establish whether methylation profiles of these genes have any predictive value, further longitudinal studies correlating pre-symptomatic patient data with subsequent disease outcome are required. Such predictive biomarkers would have tremendous clinical value for population screening to identify individuals with cancer predisposition or at risk of developing cancer. Increase public awareness, clinical surveillance and appropriate preventive interventions, such as behavioral or lifestyle changes, may significantly delay or even avert cancer initiation. In cases where cancer initiation could not be prevented, early detection of pre-cancerous lesions together with appropriate intervention can
FIGURE 2 | Strategy for translating basic FOXM1 research into clinical benefits. FOXM1 has been implicated in all stages from cancer initiation, progression, metastasis to drug resistance. Understanding the detail molecular mechanisms specific to each disease stages would be important to reveal stage-specific FOXM1-associated biomarker panels as illustrated in the diagram. Identification of these new stage-specific biomarkers paves way toward further research into developing more accurate cancer diagnosis/prognosis and better anti-tumor drugs.

FOXM1 TRANSCRIPTIONAL TARGETS AS DIAGNOSTIC AND PROGNOSTIC CANCER BIOMARKERS

Perturbed epigenome invariably leads to genomic instability (Baylin and Jones, 2011; Tsai and Baylin, 2011). Aberrant expression of FOXM1 has been shown to perturb both the human methylome (Teh et al., 2012) and induces genomic instability (Gemenetzidis et al., 2009; Teh et al., 2010). We have found that FOXM1-induced genomic instability leads to heritable genomic alterations which were potentially oncogenic (Gemenetzidis et al., 2009; Teh et al., 2010). As genomic instability precedes malignant conversion (Gemenetzidis et al., 2009; Teh et al., 2010; Baylin and Jones, 2011; Tsai and Baylin, 2011), these genomic alterations are thought to contain clinically relevant “cancer progression” biomarkers for diagnosis and prognosis. FOXM1-induced LOH, CNA, and/or resultant gene expression alterations may be used to determine disease aggressiveness or segregate between high and low risks patients. For example, LOH markers within cell-free DNA found in blood samples have been shown to be clinically valuable as diagnostic/prognostic markers in breast cancer patients (Schwarzenbach et al., 2011b). Extra-cellular RNA molecules released into the blood stream were surprisingly stable possibly protected by being packaged in exosomes. Emerging evidences have shown that the levels of specific cell-free mRNA in blood samples were exploitable for clinical use as prognostic biomarkers (Schwarzenbach et al., 2011a; Tzimagiorgis et al., 2011). Detection of target mRNA signatures in cell-free biofluids (such as blood, urine, saliva, etc.) may therefore represent a promising non-invasive method for cancer diagnosis and prognosis.

FUTURE PERSPECTIVE

Pre-cancer initiation and multifaceted oncogenic roles of FOXM1 in myriad of human cancers (Myatt and Lam, 2007; Koo et al., 2012) render it a highly promising cancer biomarker for clinical exploitation. Recent advances have shown promising clinical use of multi-gene mRNA expression signature in tumor tissue samples for cancer risk stratification in patients with non-small cell lung cancer (Kratz et al., 2012), prostate (Cuzick et al., 2011), breast cancer (Kim and Puk, 2010), sarcomas, gastrointestinal stromal tumors, and lymphomas (Chibon et al., 2010). Hence, exploiting FOXM1 and its key oncogenic epigenetic and transcriptional targets as multi-gene panels would be superior over using a single biomarker for a complex disease such as cancer. Disease stage-specific cancer predictive, diagnostic, and prognostic biomarkers driven by FOXM1 require further discovery and validation studies on clinical specimens. Given the role of FOXM1 in mediating therapeutic drug resistance in cancer cells (Koo et al., 2012), FOXM1 pathway-based multi-biomarkers panel could be exploited for use as a personalized companion diagnostic tool to guide the best treatment strategy and improve drug treatment response. In summary, our scientific knowledge of FOXM1-driven oncogenesis presents multifaceted clinically exploitable opportunities ranging from cancer prevention, early diagnostics, and prognostics to personalized diagnostics and therapeutics.
REFERENCES

Ahmed, M., Uddin, S., Hussain, A. R., Ali, A., John, Z., Al-Delali, F., et al. (2012). FoxM1 and its association with matrix metallopro- teinase (MMP) signaling pathway in papillary thyroid carcinoma. J. Clin. Endocrinol Metab 97, E61–E69.
Bao, B., Wang, Z., Ali, S., Kong, D., Benucci,S., Ahmed, A., et al. (2011). Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J. Cell Biochem 112, 2238–2248.
Baron, B. C., Molliet, S., Bimer, B. K., Cotoss, B. J., Karna, J., Habarta, N., et al. (2010). Intervention to increase recommendation and deliv- ery of screening for breast, cervic- al, and colorectal cancers by health- care providers: a systematic review of provider reminders. Am. J. Prev. Med. 38, 110–117.
Batra, S. B., and Jones, P. A. (2011). A decade of exploring the cancer epigenome — biological and transla- tional implications. Nat Rev Cancer 11, 726–734.
Bekins, N., Haif, A., Veek, I., Wild, P. J., Lascher-Ferlito, I., Hartmann, A., et al. (2008). Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer. BMC. 42, 10.1186/1471-2407-8, 42. doi: 10.1186/1471-2407-8, 42.
Bose, A., Teh, M. T., Hutchison, I. L., Wan, H., Lough, I. M., and Vasson, P. (2012). Two mechanisms regu- late keratin K15 expression in ker- atinocytes: role of FOXM1 and FOXM1 mediated signalling. PLoS ONE 7, e38899. doi: 10.1371/jour- nal.pone.0038899.
Carr, J. B., Kiefer, M. M., Park, H. J., Liu, P., Patare, L. A., et al. (2012). FoxM1 regulates mammary luminal differentiation in mice. J Mat. Biol. 1, 715–729.
Chen, C. H., Chen, C. Y., Huang, C. F., Chuang, H. C., Li, J., Wang, Z., Fontanarosa, J., et al. (2012). Interaction of the fork head domain transcription factor FOXM1 with the cdk5 partner p35 regulates cell proliferation and tumor induction. J. Cell Physiol 226, 194–204.
Chen, L., Xue, J., and Kama, Y. (2010). Upregulation of FOXM1 mediates growth arrest during terminal differentiation of HO-1 human metastatic melanoma cells. J. Invest Dermatol 130, 96–106.
Chen, M. K., Chan, K. W., Luk, J. M., Lee, K., Cheung, Y. M., et al. (2011). Chk2 mediates stabi- lization of p21 and p53 in response to DNA damage. Cancer Res 71, 126–129.
Chen, M. K., Wong, S. T., Neill, G., et al. (2010). Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res 70, 9515–9526.
Chen, C. H., Chen, C. Y., Huang, C. F., Chang, H. C., Fang, F. M., et al. (2009). Expression of FOXM1 is correlated with acros- somal agglutination and centrosome size in cervical cancer cells by stimulating cell migra- tion and invasion through increased FOXM1 and MMP-2 activity. Oncogene 28, 2723–2737.
Chen, C. H., Yang, J., Wu, Y., Liu, X., Hsu, J., Zeng, L., et al. (2012). Adenovirus-mediated RNA interfer- ence targeting FOXM1 transcription factor suppresses cell proliferation and tumor growth of nasopharyn- geal carcinoma. J. Genet. Mol. Biol. 41, 251–260.
Chibon, F., Legrande, F., Salas, S., Perrot, B., Bonnet, T., Teule, E., et al. (2010). Validated prediction of clinical outcome in sarcoma and multiple types of cancer on the basis of a gene expression signature related to patients’ complexity. Nat Med 16, 791–797.
Chen, C. Y., Zhu, S. M., Chen, L. B., Wang, J. H., Yu, S. Q., Yang, J. R., et al. (2012). FOXM1 expres- sion correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem 114, 55–58.
Chen, L., Swanson, G. P., Fishman, G., Brothman, A. R., Bemery, D. M., Reid, J. E., et al. (2011). Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retro- spective study. Lancet Oncol 12, 245–251.
Gemenetzidis, E., Bose, A., Riau, A. M., Chaplin, T., Young, B. D., Ali, M., et al. (2009). FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS ONE 4, e6865. doi: 10.1371/journal.pone.000686.
Gemenetzidis, E., Costos, D. E., Parkin- son, K., Wessman, A., Wan, H., and Teh, M. T. (2010). Induction of FOXM1 expression in human epithelial stem/progenitor cells by FOXM1 mediated signalling. PLoS ONE 7, e13402. doi: 10.1371/journal.pone.0013402.
Huang, F. J., Lang, F. F., et al. (2006). The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and pro- moter characterization. Genomics 46, 475–482.
Ichimiya, R., He, J., Van Den Eeden, S. K., Zhi, H., Gao, W., Pham, P. T., et al. (2012). A practical molecular assay to predict survival in invasive non-squamous, non-small cell lung cancer: development and interna- tional validation studies. Lancet 379, 825–832.
Laslizi, J., Koostro, M. R., Brau, A., Kerse, J., Kirkhorn, K. R. M., Mor- rison, A., et al. (2005). FoxM1 is required for vacation of the mitotic and G2/M checkpoint. Mol. Cancer Ther 4, 2407-8-42. doi: 10.1186/1471-2407-8, 42.
Kalin, T. V., Utzven, V., and Kalnichenko, V. V. (2011). Multiple faces of FoxM1 transcription fac- tor: lessons from transgenic mouse models. Cell Cycle 10, 396–415.
Kim, C., and Pak, S. (2012). Gene- expression-based prognostic assay for breast cancer. Nat Rev Clin Oncol 7, 540–547.
Koehler, S., and Han, E. W. (2012). FOXM1: from cancer ini- tiation to progression and treatment. Biologicals 40, 10–17.
Luscher-Firzlaff, J. M., Westendorf, J. J., Nakamura, S., Hisanaga, G., Takahara, T., Yokota, D., Onto, T., et al. (2003). The FOXM1 trans- scriptional factor promotes the pro- liferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Cancer- genes XI, 2012–2022.
Schwarzon, H., Hoon, D. S., and Pandol, K. (2011a). Cell-free nucleic acids as biomarkers in can- cer patients. Nat Rev. Cancer 11, 426–437.
Schwarzon, H., Muller, V., Miltche- Luszczynski, K., Steinbach, R., and Pan- dol, K. (2011b). Evaluation of cell-free tumour DNA and RNA in patients with breast cancer and benign breast disease. Mol. Binder 7, 2844–2854.
Stephens, P. J., Guccione, C. D., Po, B., Yang, F., Bignell, G. R., Mule, L. J., et al. (2011). Massive genomic rearrangement acquired in a sin- gle catastrophic event during cancer development. Cell 144, 27–38.
Sun, H. C., Li, M., Lu, J. L., Yan, D. W., Zhou, C. Z., Fan, J. W., et al. (2011). Overexpression of Forkhead box M1 protein associates with aggressive tumor features and survival in squamous cell carcinoma of the head and neck. Cancer Res 71, 3355–3362.
Tang, B., Chen, J., Gao, Y., Li, X., Bai, Y. (2011). The transcription factor stimulates expression of DNA repair genes. Mol. Cell. 27, 1087–1096.
Teh, M. T., Gemenetzidis, E., Chaplin, T., Young, R. D., Perrot, G., Brouste, V., et al. (2010). Upregulation of FOXM1 induces genomic instability and human epidermal keratinocytes. Mol. Cancer 9, 45.
Teh, M. T., Gemenetzidis, E., Patel, D., Tang, R., Nadir, A., Bateman, A. W., et al. (2012). FOXM1 induces global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PLoS ONE 7, e45329. doi: 10.1371/journal.pone.0045329.
Teh, M. T., Wang, S. T., Neel, G. W., Ghai, L. B., Perrot, G. P., and Quinn, A. G. (2002). FOXM1 is a downstream target of G1/S transition factors in human breast cancer. Cancer Res 62, 4773–4780.
Tehrani, M. H., Bouord, V., Lange, A. W., Kisse, E. R., Wei, S. E., Brunet, M. D., et al. (2011). S phase activ- ion.
cell proliferation and differentiation in the respiratory epithelium. Am J Respir Cell Mol Biol 45, 101–110.
Tsu, H. C., and Baylin, S. B. (2011). Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 21, 502–517.
Tsimikou, G., Michailidou, E. Z., Kritis, A., Marapoukos, A. K., and Kouidou, S. (2011). Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol 35, 580–589.
Wang, Z., Park, H. J., Carr, J. R., Chen, Y. J., Zhong, Y. L., Li, E. J., et al. (2011). FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 71, 4292–4302.
Westendorf, J. M., Rao, P. N., and Gerace, L. (1994). Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Natl Acad Sci U.S.A. 91, 714–718.
Wierstra, I., and Alves, J. (2007). FOXM1, a typical proliferation-associated transcription factor. Biol Chem 388, 1257–1274.
Xia, Z., Tan, G., Ding, M., Dong, D., Chen, T., Meng, X., et al. (2010). Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res 38, 8027–8038.
Yang, D. K., Son, C. H., Lee, S. K., Choi, P. J., Lee, K. E., and Roh, M. S. (2009). Forkhead box M1 expression in pulmonary squamous cell carcinoma: correlation with clinicopathologic features and its prognostic significance. Hum Pathol 40, 466–471.
Ye, H., Kelly, T. F., Sattal, B., Lim, L., Rubin, S., Overdier, D. G., et al. (1997). Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 17, 1626–1641.

Conflict of Interest Statement: The author is listed as an inventor on a patent application at the World Intellectual Property Organisation filed by Queen Mary University of London pertaining to the use of a panel of biomarkers for cancer diagnosis.

Received: 06 August 2012; paper pending published: 30 August 2012; accepted: 01 October 2012; published online: 15 October 2012.

Citation: Teh M-T. (2012) FOXM1 coming of age: time for translation into clinical benefits? Front Oncol 2:146. doi: 10.3389/fonc.2012.00146

This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology.

Copyright © 2012 Teh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.