Formation of Glycidol Fatty Acid Esters in Meat Samples Cooked by Various Methods

Ryo Inagaki, Chikako Hirai, Yuko Shimamura and Shuichi Masuda*
Laboratory of Food hygiene, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan

Abstract

Glycidyl fatty acid esters (GEs) are found in some refined edible oils. It is thought that GEs may be broken down by lipase and release glycidol which has been classified as a genotoxic and carcinogenic compound. GEs are formed during deodorization step in the oil refining process. The deodorizing temperature occurs at temperatures of about 200 to 250°C. The cooking temperature is also around 200°C or higher. The aim of this study was to evaluate the formation of GEs in edible meat patties cooked using two methods in order to clarify the intake source of GEs. Three ground meat (beef, pork and chicken) patties were heated by gas fired and char-grilling cooking methods. GEs were formed in meat samples cooked with both heating treatments. In particular, a high concentration of GEs was contained in meat samples heated at high temperature using a charcoal grill. The concentration of each GE compound formed by heating treatment contributed to the amount of each corresponding fatty acid in non-treated raw meat samples. From these results, it is suggested that we may normally ingest GE compounds through cooked meat on a daily basis.

Keywords: Glycidol fatty acid ester; Glycidol; Edible meat; Cooking; Risk assessment

Introduction

Glycidyl fatty acid esters (GEs), such as glycidyl palmitate (C16:0-GE), glycidyl stearate (C18:0-GE), glycidyl oleate (C18:1-GE), glycidyl linoleate (C18:2-GE), and glycidyl linolenate (C18:3-GE), were contained in Dicylglycerol (DAG) oil at high concentration [1]. GEs were also found to be present in small amounts in other common oils rich in tricylglycerol [2]. It was thought that GEs may be carcinogenic [3,4]. This is because it is understood that GEs are broken down by the action of lipase to produce equimodal glycidol (G), which has a reactive epoxy site in the structure [5,6]. G was confirmed as a rodent carcinogen in National Toxicology Program (NTP) study [7]. The International Agency for Research on Cancer (IARC) also classifies G in Group 2A ( Probably carcinogenic to humans) [8]. If we ingest 10.0 g per day of DAG oil containing GEs (269 μg/g) [1], the margin of exposure (MOE) of GEs is calculated as 342 value based on comparison of human exposure (0.012 mg/kg bw per day). A benchmark dose lower confidence limit (BMDL10) of G is estimated as 4.06 mg/kg bw per day [9]. Therefore, the sale of DAG oil was halted. It is important to estimate the human exposure and toxicities of GEs and G.

Hemoglobin (Hb) adducts have been applied for estimating human exposure to various reactive chemicals as biomarkers [9]. N-(2,3-dihydroxy-propyl) valine (diHOPrVal), which is a Hb adduct in the red blood cells of humans with exposure to G, is an useful biomarker for G and GEs exposure [10,11]. Honda et al. [11] demonstrated that there was no significant difference in diHOPrVal levels in the blood of DAG oil consumers and non-consumers. There was a report that the values of diHOPrVal in the blood of German subjects without G exposure were higher than those of the Japanese DAG oil user [10,12]. These results suggest that we might be exposed to GEs through different food sources other than DAG oil in daily life. Some studies demonstrated that GEs are formed during deodorization step in the oil refining process. The deodorizing temperature occurs at temperatures of about 200 to 250°C. The cooking temperature is also around 200°C or higher. It is reported that some mutagens and carcinogens, such as heterocyclic amines and acrylamide, are formed from meat and fish or potatoes cooked at high temperature [13-16]. Because edible meat and fish contain fatty materials, GEs may be generated in meat and fish heated at high cooking temperature. In the present study, we estimated the formation of GEs in some kinds of meat patties heated by two cooking methods.

Materials and Methods

Reagents

Methanol, 2-propanol, tert-butyl methyl ether, boron trifluoride methanol complex methanol solution were purchased from Wako Pure Chemical Industries (Osaka, Japan). n-Hexane, ethyl acetate, diethyl ether, and dichloromethane were bought from Kanto Chemical (Tokyo, Japan). Lauric acid was purchased from Tokyo Chemical Industries (Tokyo, Japan). All reagents were used based on analytical grade reagent.

Standard materials

The standard materials of glycidyl palmitate (C16:0-GE, purity 98.0%), glycidyl stearate (C18:0-GE, purity 98.0%), glycidyl oleate (C18:1-GE, purity 98.0%), glycidyl linoleate (C18:2-GE, purity 90.0%), and glycidyl linolenate (C18:3-GE, purity 85.0%) were purchased from Wako Pure Chemical Industries (Osaka, Japan). Individual GE solutions were prepared at 5.0 mg/ml using methanol/2-propanol (1:1 v/v). Each solution, mixed in equal proportion, was diluted with methanol/2-propanol (1:1 v/v). Standard mix solutions (0.005-1.0 ppm) were used for LC-MSAnalysis. The standard materials of methyl palmitate (C16:0-MF, purity 98.0%), methyl stearate (C18:0-MF, purity 99.5%), and methyl oleate (C18:1-MF, purity 99.0%) were purchased from Wako Pure Chemical Industries (Osaka, Japan). Methyl linoleate (C18:2-MF,...
were used for the analysis of GEs using LC-MS. Individual MF solutions were prepared at 5.0 mg/ml in equal quantity and diluted with dichloromethane. Finally, the standard mix solution was prepared by addition of methyl laurate (Tokyo Chemical Industries, Tokyo, Japan, C12:0-MF purity 99.5%) as an internal standard. Standard mix solutions (1.0-1000 ppm) were used for GC-FID analysis.

Heat treatment of edible meat samples by cooking methods
The pork, beef and chicken ground meat samples were purchased from a local supermarket in Shizuoka city and stored at -20°C before the experiment. At time of the experiment, ground meat samples were allowed to reach room temperature and thoroughly mixed by hand. One hundreds grams of mixed meat samples were used to form circular patties. The size of each patty was (1.0 cm thick and 10 cm indiameter). Gas fired frying pan cooking and charcoal barbecue cooking were used to cook meat patty samples. The pan cooking method was carried out with a commercial Teflon-coated frying pan (metal), which was preheated until the surface temperature was attained at 150 (low temperature condition) or 250°C (high temperature condition). Then, the meat patty samples were cooked for 2 min per side, for a total cooking time of 20 min (low temperature condition) or 10 min (high temperature condition), without adding oil. For the charcoal barbecue cooking, approximately 1.0 kg of charcoal was placed in the bottom of a barbecue oven. A fire lighter was poured onto charcoal to start the fire. When all the flames had subsided, the charcoal was leveled by raking. The meat patty samples were then barbecued over the charcoal for 2 min per side, a total cooking time of 5 min. The distance between the samples and the charcoal was about 2 cm. Cooking temperature on surfaces of each heated meat patty sample was monitored with a thermometer (Hioki 3412-50 Temperature HiTester, HIOKI E.E. Corp, Nagano, Japan) for 1 min. The average temperature of charcoal open fire was about 400°C. The gas fired frying pan cooking experiments and charcoal barbecue cooking were respectively performed in replicuplicate and decaplicate.

Purification of meat samples for the instrumental analysis
Heated meat samples were crushed in a blender and freeze-dried with lyophilizer. Subsequently, 10 g of dry samples were oil-extracted by soxhlet extraction with diethyl ether. Extracted oil samples were evaporated with vacuum concentrator. Evaporated samples of 1.0 g were weight accurately and dissolved in 5.0 ml tert-butyl methyl ether/ethyl acetate (4:1, v/v). Each solution was cleaned according to double solid-phase extraction (SPE) as described in the previous study [17]. The solution of 500 μl was loaded on the first reverse-phase (RP) SPE (Sep-Pak Vac RC C18 cartridge 500 mg, Waters) column preconditioned with 4 ml methanol just prior to use. Three elutions of 2.0 ml methanol each were then applied. The combined eluates (total volume: 6.0 ml) were dried using a nitrogen stream. The dried residues were dissolved in 2.0 ml n-hexane/ethyl acetate (95:5 v/v), and the solutions were loaded on the second normal-phase (NP) SPE (Sep-Pak Vac RC Silica cartridge 500 mg, Waters) preconditioned with 4.0 ml n-hexane/ethyl acetate (95:5 v/v) just prior to use. Three eluates of 2.0 ml n-hexane/ethyl acetate (95:5 v/v) each were then applied. The combined eluates (total volume: 6.0 ml) were dried using a nitrogen stream. The dried residues were then carefully dissolved in 1.0 ml methanol/2-propanol (1:1 v/v) and mixed by ultrasonic wave. The solutions were centrifuged (4000 rpm × 5 min) and the supernatants were used for the analysis of GEs using LC-MS.

LC-MS analysis
LC-MS was used with AOCS and JOCS conjunction testing methodology CD 28-10 to perform the measurement of GEs [18]. The mobile phases A (methanol/ distillated water 92:8) and B (2-propanol) were consecutively time-programmed as follows: isocratic elution of A 0% (B 100%) between 0 and 4 min, an isocratic elution of A 100% (B 0%) between 4 and 30 min, finally, an isocratic elution of A 0% (B 100%) between 30 and 60 min. For the selected ion monitoring measurement, each of the protonated molecular ions [M + H]+ were used: m/z 313.3 for C16:0-GE, m/z 341.4 for C18:0-GE, m/z 339.4 for C18:1-GE, m/z 373.4 for C18:2-GE and m/z 335.4 for C18:3-GE. Other parameters were as follows: instrument; API2000 LC-MS system (column; L-column ODS (4.6 mm diameter, 150 mm length, 5 μm packing materials, Chemical Evaluation and Research Institute, Tokyo, Japan), flow rate of mobile phases; 1.0 ml/min, injection volume; 2.0 μl, column temperature; 40°C, atmospheric pressure chemicalionization; positive ion mode, vaporizer temperature; 500°C, heater temperature of nitrogen gas; 350°C, flow of heated dry nitrogen gas; 5.0 L/min, nebulizer gas pressure; 0.241 MPa, corona current; 8.0 mA, and fragmenter voltage; 150 V.

Derivatization of samples and GC-FID analysis
Extracted oil samples by soxhlet extraction were derivatized by methylation for analysis fatty acids using gas chromatography. About 20 mg of extracted oil samples were dissolved in 0.5 M sodium hydrate methanol solution containing lauric acid as an internal standard. These samples were heated up at 100°C for 9.0 min using dried block box. Continuously, samples of 2.0 ml of boron trifluoridemethanol complex methanol solution were added and heated up for 7.0 min. After heating, samples were refrigerated in ice and 2.0 ml of dichloromethane with vortex were added. After mixing for 3.0 min by ultrasonic agitation, 5.0 ml of saturated saline were added to the samples and they were centrifugated for 10 min (4000 rpm). Lower layers were diluted tenfold with dichloromethane and used as GC-FID analysis test sample. The GC-FID system was a GC-18A-FID (Shimazu Tokyo, Japan) and a hydrogen generator (OPGU-2200S (Shimazu Tokyo, Japan)). Separations were conducted on a SLB-IL100 Capillary Column(60 m × 0.25 mm × 0.2 μm film thickness) from Supelco (Bellefonte, PA, USA). Helium (99.999%) was used as a carrier gas in constant flow mode of 0.4 ml/min. Injections (1.0 μl) were done at 240°C in the split mode (1:5:1). The oven temperature was held at 140°C for 5 min. Then it was increased at a rate of 2°C/min to 240°C (held for 10 min). Hydrogen gas was generated with a hydrogen generator for FID at a flow rate of 2.0 kgf/cm². The flow rate of air for FID was 4.0 kgf/cm². Primary gas (nitrogen) flow rate was 3.0 kgf/cm². This experiments was performed in triplicate.

Statistical analysis
Significant differences between the experimental means were calculated by t-test and Tukey–Kramer method. A paired t-test and Tukey–Kramer method were used for the comparison of cooked meat samples in terms of GE and fatty acid contents. The evaluation of linearity was achieved by applying Microsoft Excel.

Results and Discussion
Figure 1 shows the typical LC-MS chromatogram of each GEs standard along with their characteristic ion. Each GE was clearly separated on LC-MS chromatogram. The recovery rates varied from 72 to 91%, which may be attributed to differing GEs. Figures 2-4 shows the
Figure 1: LC-MS chromatogram of each GEs standard (1 ppm) along with their characteristic ion.

For the selected ion monitoring measurement, each of the protonated molecular ions \([M + H]^+\) were used: m/z 313.3 for C16:0-GE, m/z 341.4 for C18:0-GE, m/z 339.4 for C18:1-GE, m/z 337.4 for C18:2-GE and m/z 335.4 for C18:3-GE.

Figure 2: LC-MS chromatogram of each GEs compound in 0.05 g of extracted oil from pork meat patties cooked by charcoal grill. For the selected ion monitoring measurement, each of the protonated molecular ions \([M + H]^+\) were used: m/z 313.3 for C16:0-GE, m/z 341.4 for C18:0-GE, m/z 339.4 for C18:1-GE, m/z 337.4 for C18:2-GE and m/z 335.4 for C18:3-GE.

Figure 3: LC-MS chromatogram of each GEs compound in 0.05 g of extracted oil from beef meat patties cooked by charcoal grill. For the selected ion monitoring measurement, each of the protonated molecular ions \([M + H]^+\) were used: m/z 313.3 for C16:0-GE, m/z 341.4 for C18:0-GE, m/z 339.4 for C18:1-GE, m/z 337.4 for C18:2-GE and m/z 335.4 for C18:3-GE.

Figure 4: LC-MS chromatogram of each GEs compound in 0.05 g of extracted oil from chicken meat patties cooked by charcoal grill. For the selected ion monitoring measurement, each of the protonated molecular ions \([M + H]^+\) were used: m/z 313.3 for C16:0-GE, m/z 341.4 for C18:0-GE, m/z 339.4 for C18:1-GE, m/z 337.4 for C18:2-GE and m/z 335.4 for C18:3-GE.
representative LC-MS chromatogram of each GEs compound in pork, beef and chicken meat patties cooked by charcoal grill by along with their characteristic ion. Peaks of each GE in heated meat samples was confirmed and clearly separated on LC-MS chromatogram.

Table 1 shows the concentration of total GEs in pork and beef meat samples cooked by gas fired frying pan. No GEs were detected in the pork and beef meat samples at low cooking temperature (150°C). At high temperature (250°C), GEs were determined in pork meat samples cooked for 5 min (34.4 ± 1.5 ng) and 10 min (166.1 ± 6.8 ng/g) and beef meat samples cooked for 10 min (65.7 ± 6.2 ng/g), respectively. These results showed that the amount of GEs formed in meat samples might rise with increasing cooking temperature and time. However, GEs were not detected in chicken cooked at high temperature (250°C). The contents of fat and water in raw pork, beef and chicken meat samples were 0.15, 0.14 and 0.08 g fat/g, and 0.64, 0.65 and 0.70 g water/g respectively. The fat content is lower and water content is higher in raw chicken meat samples than those in pork and beef meat samples. Chicken meat samples could possibly not be sufficiently heated inside under gas fired frying pan cooking condition. Therefore, GEs could not be formed in chicken meat samples.

Table 1 shows the concentration and content percentage of each glycidyl fatty acid in cooked meat samples. Glycidyl oleate was present in pork meat samples cooked for 5 min at the highest content (13.4 ± 0.4 ng/g and content percentage (39.1%), followed by palmitate (11.0 ± 0.7 ng/g (32.0%)), stearate (7.7 ± 0.2 ng/g (22.3%)), linoleate (1.8 ± 0.0 ng/g (5.2%)) and linolenate (0.5 ± 0.2 ng/g (1.5%)). In the case of cooking for 10 min, the concentration and content percentage of glycidyl oleate was also highest (57.3 ± 2.4 ng/g (34.5%)), followed by palmitate (53.0 ± 1.9 ng/g (32.1%)), stearate (41.8 ± 1.7 ng/g (25.1%)), linoleate (12.3 ± 0.7 ng/g (7.4%)) and linolenate (1.3 ± 0.5 ng/g (0.8%)). In beef meat samples cooked for 10 min, glycidyl oleate was contained at the highest content (28.7 ± 3.6 ng/g and content percentage (43.6%), followed by palmitate (26.7 ± 3.9 ng/g (30.7%)), stearate (20.2 ± 2.1 ng/g (24.2%)), linolenate (0.6 ± 0.2 ng/g (0.9%)), and linoleate (0.3 ± 0.1 ng/g (0.5%)). From these results, the concentration of each GE compound varied widely in cooked pork and beef meat samples.

Oleic acid, palmitic acid, stearic acid, linoleic acid and linolenic acid are contained in raw pork, beef and chicken at high concentrations. GEs might be generally formed from corresponding fatty acids in raw meat samples. Therefore, the concentrations of five main fatty acids in raw meat samples were detected using GC-FID. Table 2 shows the concentration and content percentage of each fatty acid in unheated raw meat samples. Oleate acid was present in raw pork and beef meat samples at the highest content (50.4 ± 1.0 mg/g (46.6%), 48.4 ± 1.5 mg/g (52.9%)), followed by palmitate acid (27.6 ± 0.5 mg/g (25.5%), 27.3 ± 1.0 mg/g (29.8%)), stearate acid (16.4 ± 0.3 mg/g (15.2%), 13.8 ± 0.4 mg/g (15.1%)), linoleate (12.3 ± 0.2 mg/g (11.4%), 1.6 ± 0.2 mg/g (1.7%) and linolenate (1.4 ± 0.2 mg/g (1.3%), 0.4 ± 0.1 mg/g (0.5%)), respectively. In raw chicken meat samples, oleic acid was also detected at the highest concentration (25.4 ± 2.2 mg/g (52.1%)), followed by palmitate acid (12.2 ± 1.1 mg/g (25.0%)), linoleate (7.2 ± 0.6 mg/g (14.9%)), stearate acid (3.4 ± 0.3 mg/g (6.9%)) and linolenate (0.5 ± 0.1 mg/g (1.0%)). As compared with the content percentage of each GE in cooked meat samples and fatty acid in raw meat samples, GEs might be generally formed from corresponding fatty acids in raw meat samples.

In the next experiments, the formation of GEs in meat samples cooked by charcoal grill was examined. The temperature under the charcoal grill condition was higher than that under the pan frying condition. The range of cooking temperature using charcoal grill was from 350°C to 600°C. As it was difficult to control the temperature of charcoal grill fire, experiments were done under the same condition ten times. Table 3 shows the amount of total GEs and each GE in three ground meat samples cooked by charcoal grill. The average contents of total GEs in cooked pork meat samples was 1083.5 ± 602.9 ng/g meat sample. Regarding the average contents of each GE compound: glycidyl oleate was present in cooked pork meat samples at the highest content (481.4 ± 279.2 ng/g and content percentage (44.7%), followed by palmitate (339.8 ± 213.8 ng/g (31.4%)), stearate (163.5 ± 82.7 ng/g (15.0%)), linoleate (80.0 ± 39.4 ng/g (7.4%)) and linolenate (18.8 ± 11.3 ng/g (1.8%)). The average contents of total GEs in beef meat samples cooked by charcoal grill were 669.5 ± 526.0 ng/g meat sample. Glycidyl oleate was detected in cooked beef meat samples at the highest content (311.1 ± 262.7 ng/g and content percentage (46.4%) of GEs compounds, followed by palmitate (291.6 ± 177.1 ng/g (32.8%)), stearate (109.2 ± 84.9 ng/g (16.3%)), linoleate (93.5 ± 11.1 ng/g (2.8%)) and linolenate (103.9 ± 9.0 ng/g (1.5%)). The average contents of total GEs in cooked chicken meat samples were 1106.6 ± 475.3 ng/g meat sample. Glycidyl

| Samples | Cooking treatment | Concentration of Glycidyl Fatty Acid Esters (GEs) (ng/g meat samples) | (Each GE content percentage in total GEs [%]) |
|---------|-------------------|---------------------------------------------------------------|-----------------------------------------|
| Pork    | Low (150)         | Temp (°C) | Time (min) | Total GEs | Palmitate | Stearate | Oleate | Linoleate | Linolenate |
|         | 5                 | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.    | N.D.      | N.D.      |
|         | 10                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.    | N.D.      | N.D.      |
|         | 15                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.    | N.D.      | N.D.      |
|         | 20                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.    | N.D.      | N.D.      |
| High (250) | 5             | 34.4 ± 1.5ª | 11.0 ± 0.7ª | N.D.      | 7.7 ± 0.2ª | 13.4 ± 0.4ª | N.D.    | N.D.      | N.D.      |
|         | 10                | 166.1 ± 6.8ª | 53.0 ± 1.9ª | N.D.      | 41.8 ± 1.7ª | 57.3 ± 2.4ª | N.D.    | N.D.      | N.D.      |

| Beef    | Low (150)         | Temp (°C) | Time (min) | Total GEs | Palmitate | Stearate | Oleate | Linoleate | Linolenate |
|---------|-------------------|-----------|------------|-----------|-----------|---------|-------|-----------|-----------|
|         | 5                 | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.   | N.D.      | N.D.      |
|         | 10                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.   | N.D.      | N.D.      |
|         | 15                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.   | N.D.      | N.D.      |
|         | 20                | N.D.      | N.D.       | N.D.      | N.D.      | N.D.     | N.D.   | N.D.      | N.D.      |
| High (250) | 5             | 65.7 ± 6.2ª | 26.7 ± 3.9ª | N.D.      | 20.2 ± 2.1ª | 28.7 ± 3.6ª | N.D.   | N.D.      | N.D.      |

N.D. : Not Detected; Each value is expressed as mean ± standard deviation (n=4); Values are shown as mean ± standard deviation. Symbols bearing different letters in the same column are significantly different (p<0.05).

Table 1: Concentration and content percentage of glycidyl fatty acids in meat samples cooked by gas fired frying pan.
The present results show that GEs are contained in cooked meat even by charcoal grill in the present study is equivalent to the amount of GEs, approximately 2 μg/g of GEs, and 1 g of DAG oil has approximately 200 to estimate the risk of mutagens containing GEs in diets holistically. Using these biomarkers of G and GEs in humans, should be examined. From these results, it was demonstrated that GEs were formed from each corresponding fatty acid directly under high temperature conditions. Cooking meat by charcoal fire was improper especially under very high temperature conditions such as charcoal grill were very higher than those in meat samples cooked by gas fired frying pan. This was because the cooking temperature in a charcoal grill were very higher than those in meat samples cooked by frying pan. High 10 min p<0.05)
Values are shown as mean ± standard deviation. Symbols bearing different letters in the same column are significantly different (p<0.05).

Table 2: Concentration and content percentage of glycidol fatty acids in meat samples

| Meat samples | Concentration of fatty acid (mg/g meat samples) (Each fatty acid content percentage in total fatty acids (%)) | Total GEs | Palmitate | Stearate | Oleate | Linoleate |
|--------------|-------------------------------------------------------------------------------------------------|----------|-----------|--------|-------|---------|
| Pork         | 27.6 ± 0.5% (25.5%) 16.4 ± 0.3% (15.2%) 50.4 ± 1.0% (46.6%) 12.3 ± 0.2% (11.4%) 1.4 ± 0.2% (1.3%) | 213.8     | 82.7      | 48.4    | 27.9  | 80.0    |
| Beef         | 27.3 ± 1.0% (29.8%) 13.8 ± 0.4% (15.1%) 48.4 ± 1.5% (52.9%) 1.6 ± 0.2% (1.7%) 0.4 ± 0.1% (0.5%) | 502.9     | 84.9      | 262.7   | 19.3  | 10.3    |
| Chicken      | 12.2 ± 1.1% (25.0%) 3.4 ± 0.3% (6.9%) 25.4 ± 2.2% (52.1%) 7.2 ± 0.6% (14.9%) 0.5 ± 0.1% (1.0%) | 108.1     | 91.5      | 27.6    | 48.7  | 18.8    |

Each value is expressed as mean ± standard deviation (n=3). Values are shown as mean ± standard deviation. Symbols bearing different letters in the same column are significantly different (p<0.05).

Table 3: Concentration and content percentage of glycidol fatty acids in meat samples cooked by charcoal grill

| Meat samples | Concentration of Glycerol Fatty Acid Esters (GEs) (ng/g meat samples) (Each GE content percentage in total GEs (%)) | Total GEs | Palmitate | Stearate | Oleate | Linoleate |
|--------------|-------------------------------------------------------------------------------------------------|----------|-----------|--------|-------|---------|
| Pork         | 339.8 ± 213.8% (31.4%) 163.5 ± 82.7% (15.0%) 481.4 ± 279.2% (44.4%) 80.0 ± 39.4% (7.4%) 18.8 ± 11.3% (1.8%) | 602.9     | 177.1     | 262.7   | 19.3  | 10.3    |
| Beef         | 219.6 ± 177.1% (32.8%) 109.2 ± 84.9% (16.3%) 311.1 ± 262.7% (46.6%) 19.3 ± 11.1% (2.2%) 10.3 ± 9.0% (1.5%) | 526.0     | 160.8     | 230.6   | 139.4 | 17.6    |
| Chicken      | 332.8 ± 160.8% (30.1%) 98.1 ± 54.9% (8.9%) 518.4 ± 311.1% (46.6%) 57.7 ± 12.6% 17.6 ± 6.6% (1.6%) | 475.3     | 109.2     | 279.2   | 139.4 | 11.3    |

Each value is expressed as mean ± standard deviation (n=10). Values are shown as mean ± standard deviation. Symbols bearing different letters in the same column are significantly different (p<0.05). (*vs gas fired frying pan High 10 min p<0.05)

Table 4: Concentration of Glycerol Fatty Acid Esters (GEs) (ng/g meat samples) (Each GE content percentage in total GEs (%))

| Meat samples | Concentration of Glycerol Fatty Acid Esters (GEs) (ng/g meat samples) (Each GE content percentage in total GEs (%)) | Total GEs | Palmitate | Stearate | Oleate | Linoleate |
|--------------|-------------------------------------------------------------------------------------------------|----------|-----------|--------|-------|---------|
| Pork         | 1083.5 ± 602.9% (31.4%) 163.5 ± 82.7% (15.0%) 481.4 ± 279.2% (44.4%) 80.0 ± 39.4% (7.4%) 18.8 ± 11.3% (1.8%) | 602.9     | 177.1     | 262.7   | 19.3  | 10.3    |
| Beef         | 669.5 ± 526.0% (32.8%) 109.2 ± 84.9% (16.3%) 311.1 ± 262.7% (46.6%) 19.3 ± 11.1% (2.2%) 10.3 ± 9.0% (1.5%) | 526.0     | 160.8     | 230.6   | 139.4 | 17.6    |
| Chicken      | 1106.6 ± 475.3% (30.1%) 98.1 ± 54.9% (8.9%) 518.4 ± 311.1% (46.6%) 57.7 ± 12.6% 17.6 ± 6.6% (1.6%) | 475.3     | 109.2     | 279.2   | 139.4 | 11.3    |

Each value is expressed as mean ± standard deviation (n=3). Values are shown as mean ± standard deviation. Symbols bearing different letters in the same column are significantly different (p<0.05).
of dietary glycidol esters. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 30: 69-79.

6. Appel KE, Abraham K, Berger-Preiss E, Hansen T, Apel E, et al. (2013) Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Arch Toxicol 87: 1649-1659.

7. National Toxicology Program (1990) Toxicology and carcinogenesis studies of glycidol in F344/N rats and B6C3F1 mice. NTP Technical Report 374: 1-229.

8. Glycidol (2000) IARC Monogr Eval Carcinog Risks Hum 77: 469-486.

9. Ogawa M, Oyama T, Isse T, Yamaguchi T, Murakami T, et al. (2006) Hemoglobin adducts as a marker of exposure to chemical substances, especially PRTR class I designated chemical substances. Journal of Occupational Health 48: 314-328.

10. Hiroshi H, Kenkichi F, Tohru Y, Naohiro I, Naohiro N, et al. (2012) Glycidol exposure evaluation of humans who have ingested diacylglycerol oil containing glycidol fatty acid esters using hemoglobin adducts. Food and Chemical Toxicology 50: 4163-4168.

11. Honda H, Törnqvist M, Nishiyama N, Kasamatsu T (2014) Characterization of glycidol-hemoglobin adducts as biomarkers of exposure and in vivo dose. Toxicol Appl Pharmacol 276: 213-220.

12. Hindsq Landin H, Grummt T, Laurent C, Tates A, et al. (1997) Monitoring of occupational exposure to epichlorohydrin by genetic effects and hemoglobin adducts. Mutat Res 381: 217-226.

13. Rose M, Holland J, Dowdang A, Petch SR, White S, et al. (2015) Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem Toxicol 78: 1-19.

14. Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95: 290-299.

15. Costa M, Viegas O, Melo A, Petiscas C, Pinho O, et al. (2009) Heterocyclic aromatic amine formation in barbecued sardines (Sardina pilchardus) and Atlantic salmon (Salmo salar). J Agric Food Chem 57: 3173-3179.

16. Stadler RH, Blank I, Varga N, Robert F, Hau J, et al. (2002) Acrylamide from Maillard reaction products. Nature 419: 449-450.

17. Hiroki S, Naoki K, Nobuya K, Yoshinori M (2011) Direct method for quantification of glycidol fatty acid esters in edible oils. European Journal of Lipid Science and Technology 113: 356-360.

18. Joint AOCS/JOCS Official Method (2012) Glycidyl fatty acid esters in edible oils.

19. Viegas O, Yebra-Pimentel I, Martínez-Carballe E, Simai-Gandara J, Ferreira IM, et al. (2014) Effect of beer marinades on formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. J Agric Food Chem 62: 2638-2643.

20. Keskekolu H, Uren A (2014) Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods. Meat Sci 96: 1446-1451.

21. Freudenstein A, Weking J, Matthäus B (2013) Influence of precursors on the formation of 3-MCPD and glycidyl esters in a model oil under simulated deodorization conditions. European Journal of Lipid Science and Technology 115: 286-294.

22. Ngoan le T, Thu NT, Lua NT, Hang LT, Bich NN, et al. (2009) Cooking temperature, heat-generated carcinogens, and the risk of stomach and colorectal cancers. Asian Pac J Cancer Prev 10: 83-88.

23. Elisabeth E, Hans D, Thomas G (2010) Determination of six hydroxyalkyl mercapturic acids in human urine using hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-ESI-MS/MS). Journal of Chromatography B 878: 2506-2514.

24. Elisabeth E, Klaus S, Barbara S, Keratin HK, Hans D, et al. (2011) Mercapturic acids as metabolites of alkylating substances in urine samples of German inhabitants. International Journal of Hygiene and Environmental Health 214: 196-204.