Complete Genome Sequence of a Wild-Type Measles Virus Isolated during the Spring 2013 Epidemic in Germany

Konstantin M. J. Sparrer, Stefan Krebs, Gundula Jäger, Sabine Santibanez, Annette Mankertz, Helmut Blum, Karl-Klaus Conzelmann

Max von Pettenkofer-Institute, Gene Center, Ludwig-Maximilians-University, Munich, Germany; Robert-Koch Institute, National Reference Center Measles, Mumps, Rubella, Berlin, Germany

Measles virus induces an acute disease with rash and fever. Despite ongoing vaccination and elimination campaigns, the measles virus still sustains long-lasting transmission chains in Europe. Here we report the complete genome sequence of a wild-type measles virus isolated from a patient in Munich (MVi/Muenchen.DEU/19.13[D8]) during a German measles outbreak in 2013.
1. World Health Organization. 2013. Measles surveillance data. World Health Organization, Geneva, Switzerland. http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/.

2. Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs286/en/.

3. World Health Organization. 2013. Measles surveillance data. World Health Organization, Geneva, Switzerland. http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/.

4. Griffin DE. 2010. Measles virus-induced suppression of immune responses. Immunol. Rev. 236:176–189. http://dx.doi.org/10.1111/j.1600-065X.2010.00925.x.

5. Mankertz A, Miheva Z, Gold H, Baumgarte S, Baillot A, Helble R, Roggendorf H, Boscavska G, Nedeljkovic J, Makowka A, Hutse V, Holzmann H, Abeer SW, Cordey S, Necula G, Mentis A, Korukkuoglu G, Carr M, Brown KE, Hubschen JM, Muller CP, Mulders MN, Santibanez S. 2011. Spread of measles virus D4-Hamburg, Europe, 2008–2011. Emerg. Infect. Dis. 17:1396–1401. http://dx.doi.org/10.3201/eid1708.101994.

6. Mankertz A, Mulders MN, Shulga S, Kremer JR, Brown KE, Santibanez S, Muller CP, Tikhonova N, Lipskaya G, Jankovic D, Khetsuriani N, Martin R, Gavrilin E. 2011. Molecular genotyping and epidemiology of measles virus transmission in the World Health Organization European Region, 2007–2009. J. Infect. Dis. 204(Suppl 1):S335–S342. http://dx.doi.org/10.1093/infdis/jir101.

7. Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y. 2001. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J. Virol. 75:4399–4401. http://dx.doi.org/10.1128/JVI.75.9.4399-4401.2001.

8. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829. http://dx.doi.org/10.1101/gr.074492.107.

9. World Health Organization. 2001. Nomenclature for describing the genetic characteristics of wild-type measles virus. Wkly. Epidemiol. Rec. 76:249–251.

10. Kolakofsky D, Pelet T, Garcia D, Hausmann S, Curran J, Roux L. 1998. Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J. Virol. 72:891–899.

11. Calain P, Roux L. 1993. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 67: 4822–4830.

12. Sparrer KM, Pfaller CK, Conzelmann KK. 2012. Measles virus C protein interferes with beta interferon transcription in the nucleus. J. Virol. 86: 796–805. http://dx.doi.org/10.1128/JVI.05899-11.

13. Lecouturier V, Fauville J, Caballero M, Carabaña J, Celma ML, Fernandez-Muñoz R, Wild TF, Buckland R. 1996. Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J. Virol. 70:4200–4204.

14. Shibahara K, Hotta H, Katayama Y, Homma M. 1994. Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J. Gen. Virol. 75(Pt 12):3511–3516. http://dx.doi.org/10.1099/0022-1317-75-12-3511.