Proof of Correspondence between Keys and Encoding Maps in an Authentication Code

Juan Carlos Ku-Cauich, Guillermo Morales-Luna$^1$ and Horacio Tapia-Recillas$^2$

$^1$ Computer Science, CINVESTAV-IPN, Mexico City, Mexico, jckc35@hotmail.com, gmorales@cs.cinvestav.mx
$^2$ Mathematics Department, Universidad Autónoma Metropolitana-I, Mexico City, Mexico, htr@xanum.uam.mx

Abstract. In a former paper the authors introduced two new systematic authentication codes based on the Gray map over a Galois ring. In this paper, it is proved the one-to-one onto correspondence between keys and encoding maps for the second introduced authentication code.

Keywords: Authentication schemes, resilient maps, Gray map.

2010 MSC Primary: 11T71; Secondary: 14G50, 94A60, 94A62.

1 Introduction

Systematic authentication codes without secrecy were defined in [1]. In [2] two new systematic authentication codes based on the Gray map on a Galois ring are introduced with the purpose of optimally reducing the impersonation and substitution probabilities. The first code is another example of a previously constructed code using the Gray map on Galois rings and modules over these rings [3]. The second code generalises the construction in [3], on the assumption of the existence of an appropriate class of bent functions. For this code, the existence of the bijection between the key space and the set of encoding maps is proved in this paper in a rather long but exhaustive way.

2 Refreshment of basic notions

2.1 General systematic authentication codes

We recall that a systematic authentication code without secrecy [1] is a structure $(S, T, K, E)$ where $S$ is the source state space, $T$ is the tag space, $K$ is the key space and $E = (e_k)_{k \in K}$ is a sequence of encoding rules $S \rightarrow T$.

A transmitter and a receiver agree to a secret key $k \in K$. Whenever a source $s \in S$ must be sent, the participants proceed according to the following protocol:

| Transmitter | Receiver |
|-------------|----------|
| evaluates $t = e_k(s) \in T$ | receives $m' = (s', t')$, evaluates $t'' = e_k(s') \in T$ |
| forms the pair $m = (s, t)$ | if $t' = t''$ then accepts $s'$, otherwise the message $m'$ is rejected |
The communicating channel is public, thus it can be eavesdropped upon by an intruder able to perform either impersonation or substitution attacks through the public channel. The intruder’s success probabilities for impersonation and substitution are, respectively [3]

\[ p_I = \max_{(s,t) \in S \times T} \frac{|\{k \in K \mid e_k(s) = t\}|}{|K|} \]  

(1)

\[ p_S = \max_{(s,t) \in S \times T} \max_{(s',t') \in (S - \{s\}) \times T} \frac{|\{k \in K \mid e_k(s) = t \& e_k(s') = t'\}|}{|\{k \in K \mid e_k(s) = t\}|} \]  

(2)

2.2 The second systematic authentication code

The second systematic authentication code introduced in [2] is constructed as follows:

Let \( p \) be a prime number, \( r, \ell, n \in \mathbb{Z}^+ \) and \( q = p^r \). Let \( A = \text{GR}(p^r, \ell) \) and \( B = \text{GR}(p^r, \ell n) \) be the corresponding Galois rings of degrees \( \ell \) and \( \ell n \). We denote by \( T(A) = \{0\} \cup \left( \xi^A_j \right)_{j=0}^{q-2} \) the set of the Teichmüller representatives of \( \mathbb{F}_q \) in \( A \). Then \( p^{r-1}A = \{a p^{r-1} \mid a \in T(A)\} \). We define \( \Xi = \{0, \rho(\xi_0), \ldots, \rho(\xi_A^{q-2}), \rho(\xi_A^{q-1})\} \in \mathbb{F}_q^* \) and \( L = \{r_0 + r_1 p + \cdots + r_{r-2} p^{r-2} \mid r_0, \ldots, r_{r-2} \in T(A)\} \subset A \backslash p^{r-1}A \cup \{0\} \).

Since \( \langle p^{r-1} \rangle = \{a p^{r-1} \mid a \in T(A)\} \), if \( a, b \in L \) then \( a - b \in A \backslash p^{r-1}A \).

Similarly, \( T(B) \) is the set of the Teichmüller representatives of \( F_{p^m} \) in \( B \).

Let \( n \in \mathbb{Z}^+ \) and \( t \leq n \). For any \( i \), we denote \( e_i = (\delta_{ij})_{j=0}^{n-1} \) as the \( i \)-th “canonical” vector. For any \( b \in T(B)^n \), let

\[ X_{b,t} = \left\{ \sum_{j=0}^{t-2} b_j e_j, b_{t-1} e_{t-1}, \ldots, b_{n-1} e_{n-1} \right\} \subset B^n \]

(3)

\[ N = \bigcup_{b \in T(B)^n} X_{b,t} \]

\[ L = \left\{ \sum_{i=0}^{r-2} r_i p^i \mid (r_0, \ldots, r_{r-2}) \in T(A)^{r-1} \right\} . \]

(4)

Then \( |X_{b,t}| = n - t + 1 \), \( |N| = q^n(t-1) + (n - (t - 1))q^m \), \( |L| = q^{r-1} \), \( L \subset (A - p^{r-1}A) \cup \{0\} \) and also \( \forall u, v \in L: (u - v) \in (A - p^{r-1}A) \cup \{0\} \).

Let us consider an \((r-1)n\)-subset of \( T(A) - \{0,1\} \),

\[ \eta = \{\eta_k\}_{k=0}^{(r-1)n-1} , \]

(5)

and

\[ D_\eta = \{(\eta_{i-1}n+j, p^j e_j) \mid 1 \leq i \leq r - 1, 0 \leq j \leq n - 1\} . \]

(6)

Then \( D_\eta \subset A \times B^n \) and \( |D_\eta| = (r - 1)n \).

Let us write \( T(B) = \{0\} \cup \left( \xi_B^j \right)_{j=0}^{q^m-2} \), \( G(T(B)) = \{\xi_B^k \mid \gcd(k, q^m - 1) = 1\} \) and \( \theta = (\theta_j)_{j=0}^{n-1} \), which is an \( n \)-sequence of \( G(T(B)) \) (repetitions are allowed),
and \( \zeta \in T(B) \setminus \{0\} \). For each integer \( k \), with \( 0 \leq k \leq q^m - (r-1)n - 2 \), let
\[
T_{\theta \zeta k} = \left\{ (\theta^i, (\zeta + \theta^j p^{1+k \mod (r-1)/e_j}) \right\} \mid 0 \leq i \leq q^m - 2, 0 \leq j \leq n - 1 \}.
\]
Then \( T_{\theta \zeta k} \subset B \times B^n \) and \( |T_{\theta \zeta k}| = (q^m - 1)n \). Now, let \( Z = \{ \zeta_k \}_{k=0}^{q^m-(r-1)n-2} \) be a subset of \( T(B) - \{0\} \), with \( (q^m - 1 - (r-1)n - 1) \) elements, such that \( Z \cap \eta = \emptyset \), and
\[
T_{\eta \theta Z} = D_0 \cup \bigcup_{k=0}^{q^m-(r-1)n-2} T_{\theta \zeta_k}.
\] (7)
Then \( T_{\eta \theta Z} \subset B \times B^n \) and
\[
|T_{\eta \theta Z}| = (r-1)n + (q^m - 1 - (r-1)n)(q^m - 1)n = [(r-1) + [(q^m - 1 - (r-1)n)(q^m - 1)]n
\]
Let \( f \) be a bent function on \( B \) such that \( uf \) is a bent function for any unit \( u \in S \) and let \( \Phi \) be the Gray map \([2]\) on \( A \). The proposed Systematic Authentication Code, \( A = (S, T, K, E) \), is the following:
\[
S := (T(B) \times B - \{(0,0)\}) \times L,
\]
\[
T := \mathbb{F}_q,
\]
\[
K := \mathbb{Z}_q^{e(n+1)},
\]
\[
E := \{E_k(s) = pr_k(u_s), k \in K, s \in B\}.
\]
where for \( s = (a, b, c) \in S, \beta \in p^{r-1}A = \{\beta_1, \beta_2, \ldots, \beta_q\}, \)
\[
u_{s, \beta}(x) = \beta + \text{Tr}_{B/A}(af(x) + bx) + c,
\]
\[
u_{s, \beta} = (\Phi(\nu_{s, \beta}(x))) \circ B
\]
\[
u_s = (\nu_{s, \beta})_{\beta \in p^{r-1}A},
\]
and \( pr_k \) is the \( k \)-th projection map from \( \mathbb{F}_q^{e(n+1)} \) onto \( \mathbb{F}_q \), mapping \( u_s \) to its \( k \)-th coordinate.

For each \( s = (s_0, s_1, s_2) \in S \) and each \( w \in p^{r-1}A \), consider the map
\[
\nu_{s, w} : B^n \to A
\]
\[
x \mapsto \nu_{s, w}(x) = \text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) + s_2 + w
\]
\[
= \gamma_{s_0s_1}f(x) + s_2 + w
\] (8)
Let
\[
u_{s, w} = (\Phi(\nu_{s, w}(x))) = (\mathbb{F}_q^{q-1})^{q^m n},
\]
\[
u_s = (\nu_{s, w})_{w \in p^{r-1}A} \in (\mathbb{F}_q^{q-1})^{q^m n + 1},
\] (9)
Since \( |p^{r-1}A| = q \), we have \( (\mathbb{F}_q^{q-1})^{q^m n + 1} \simeq \mathbb{F}_q^{q^m n + 1} \), thus we may assume \( u_s \in \mathbb{F}_q^{q^m n + 1} \).

This paper is devoted to prove the following:
Theorem 1. The map $K \to E$, $k \mapsto e_k$, is one-to-one.

Proof. The theorem is clearly equivalent to the following statement:

$$\forall k_0, k_1 \in K : \ [k_0 \neq k_1 \implies \exists s \in S : \ \pi_{k_0}(u_s) \neq \pi_{k_1}(u_s)] \tag{10}$$

where $u_s$ is given by relation (9), and $\pi_k(u_s)$ is the $k$-th entry of the element $u_s$.

According to (9), each element $u_s$, $s \in S$, is the concatenation of $q$ arrays $u_{s,\omega}$, each of length $q^{r+\alpha}$. The index range $\{0, \ldots, q^{r+\alpha}-1\}$ of the element $u_s$ can be split as the concatenation of $q^{r+\alpha+1}$ integer intervals

$$K_{x,\omega} = \{ \text{indexes of entries with the value } \Phi(v_{s,\omega}(x)) \}$$

with $(x, \omega) \in B^n \times p^{r-1}A$, and each integer interval $K_{x,\omega}$ has length $q^{r-1}$.

We recall at this point that $|B^n \times p^{r-1}A| = q^{r+\alpha}q = q^{r+\alpha+1}$. Let $\alpha_b : B^n \to \{0, \ldots, q^{r+\alpha}-1\}$, $\alpha_a : p^{r-1}A \to \{0, \ldots, q-1\}$ be the corresponding natural bijections. Then we may identify

$$K_{x,\omega} \approx \{ k \in K \mid k_{x,\omega}q^{r-1} \leq k \leq k_{x,\omega}q^{r-1} + (q^{r-1} - 1) \},$$

where

$$\forall (x, \omega) \in B^n \times p^{r-1}A : \ k_{x,\omega} = \alpha_b(x)q + \alpha_a(\omega). \tag{11}$$

Let $k_0, k_1 \in K \approx \{0, \ldots, q^{r+\alpha+1}-1\}$ be two keys such that $k_0 \neq k_1$. Depending on the intervals $K_{x,\omega}$ in which these keys fall, we may consider four mutually disjoint and exhaustive cases.

- Case I: $\exists w \in p^{r-1}A, \exists x \in B^n : k_0 \in K_{x,\omega} \& k_1 \in K_{x,\omega}$.
- Case II: $\exists w \in p^{r-1}A, \exists x, y \in B^n : x \neq y \& k_0 \in K_{x,\omega} \& k_1 \in K_{y,\omega}$.
- Case III: $\exists w_0, w_1 \in p^{r-1}A, \exists x \in B^n : w_0 \neq w_1 \& k_0 \in K_{x,\omega_0} \& k_1 \in K_{x,\omega_1}$.
- Case IV: $\exists w_0, w_1 \in p^{r-1}A, \exists x, y \in B^n : w_0 \neq w_1 \& x \neq y \& k_0 \in K_{x,\omega_0} \& k_1 \in K_{y,\omega_1}$.

The analysis of these cases, giving a full proof of the proposition, is rather extensive and it is provided in the following section.

3 Proof of Proposition

The detailed proof of Proposition 1 is presented in this section. The plan of the proof is sketched as Plan 1. In what follows, we will list extensively all the assertions claimed in the proof plans.

Assertion 1 Based on the condition underlying statement I in Plan 1, the claim (10) holds.
if Case I holds then
  I. See Assertion 1
else
  if Case II holds then
    let $k_{00} = k_0 - k_{x,w}$ and $k_{10} = k_1 - k_{y,w}$.
    if $k_{00} = k_{10}$ then
      proceed as in Plan 2
    else
      proceed as in Plan 3
    end
  else
    if Case III holds then
      let $k_{00} = k_0 - k_{x,w_0}$ and $k_{10} = k_1 - k_{x,w_1}$, according to (11); 
      if $k_{00} = k_{10}$ then
        III.0 See Assertion 11
      else
        pick $(s_0, s_1) \in \{0\} \times (N - \{0\})$ arbitrarily;
        if $\pi_{k_{00}} \circ \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) + w_0) = \pi_{k_{10}} \circ \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) + w_1)$ then
          III.1.0 See Assertion 12
        else
          III.1.1 See Assertion 13
        end
      end
    else
      (at this point, Case IV necessarily does hold)
      let $k_{00} = k_0 - k_{x,w_0}$ and $k_{10} = k_1 - k_{x,w_1}$, according to (11); 
      if $\pi_{k_{00}} \circ \Phi(\text{Tr}_{B/A}(f(x))) = \pi_{k_{10}} \circ \Phi(\text{Tr}_{B/A}(f(y)))$ then
        IV.0 See Assertion 14
      else
        IV.1 See Assertion 15
      end
    end
  end
end
end

Plan 1. Plan of the proof of Proposition 1
choose \( j \in \{0, \ldots, n - 1\} \) such that the \( j \)-th entry of \( x - y \) is not zero, namely \( x_j - y_j \neq 0 \);

if \( x_j - y_j \in p^{r-1}B - \{0\} \) then
  \[ \text{II.0.0 See Assertion 2} \]
else
  there are \( \theta \in T_B - T_A \), and \( t \leq r - 1 \) such that
  \[ \text{Tr}_{B/A}(\theta x_j - y_j) \in p^{r-1}A - \{0\} \];
  if \( \text{Tr}_{B/A}(x_j) = \text{Tr}_{B/A}(y_j) \) then
    \[ \text{II.0.1.0.0 See Assertion 3} \]
  else
    \[ \text{II.0.1.0.1 See Assertion 4} \]
end
else
  \[ \text{II.0.1.1 See Assertion 7} \]
end
end

Plan 2. First branch of Case II.
Let $j \in \{0, \ldots, n-1\}$ be such that $x_j - y_j \neq 0$;
if $x_j - y_j \in p^{r-1}B - \{0\}$ then
\begin{enumerate}
\item \text{II.0.0} See Assertion \textcircled{8}
\end{enumerate}
else
there exist $\theta \in (T_B - T_A) \cup \{1\}$ and $t \in \{1, \ldots, r-1\}$ such that
\begin{align*}
\text{Tr}_{B/A}(\theta p^t(x_j - y_j)) &\in p^{r-1}A - \{0\}; \\
\text{Tr}_{B/A}(x_j) &\in \text{Tr}_{B/A}(y_j) \\
\text{Tr}_{B/A}(y_j) &\in \text{Tr}_{B/A}(x_j)
\end{align*}
if $\text{Tr}_{B/A}(x_j) = \text{Tr}_{B/A}(y_j)$ then
\begin{enumerate}
\item \text{II.1.0.0} See Assertion \textcircled{9}
\end{enumerate}
else
\begin{enumerate}
\item \text{II.1.1.0.1} See Assertion \textcircled{10}
\end{enumerate}
end
else
proceed as in statement \text{II.0.1.1} of Plan \textcircled{2}
end
end

Plan 3. Second branch of Case II.

\textit{Proof}. Let $(s_0, s_1) \in \{0\} \times (N - \{0\})$ and
\[
\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) = \sum_{i=0}^{r-2} a_i p^i + a_{r-1} p^{r-1}.
\]
For each $k \in \{0, \ldots, r-2\}$, there exists $y^{(k)} = \sum_{i=0}^{r-2} y_{ik} p^i \in L$ such that
\[
\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) + y^{(k)} = \begin{cases}
  a_k p^k + a_{r-1} p^{r-1} & \text{if } a_k \neq 0 \\
  y_{kk} p^k + a_{r-1} p^{r-1} & \text{if } a_k = 0 \text{ & } y_{kk} \neq 0
\end{cases}
\]
Thus,
\[
\Phi \left( \text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) + y^{(k)} + w \right)
\]
\[
= \begin{cases}
  \Phi(a_k p^k) + \Phi(a_{r-1} p^{r-1} + w) & \text{if } a_k \neq 0 \\
  \Phi(y_{kk} p^k) + \Phi(a_{r-1} p^{r-1} + w) & \text{if } a_k = 0 \text{ & } y_{kk} \neq 0
\end{cases}
\]
We have that $(s_0, s_1, y^{(k)}) \in S$ and $w \in p^{r-1}A$.
Now, let $k_{00} = k_0 - k_{x,w}$ and $k_{10} = k_1 - k_{x,w}$. Let us consider the following possibilities:

- $q \nmid (k_{10} - k_{00})$: By taking $a_{r-2} \neq 0$, all other coefficients zero, and $s = (s_0, s_1, s_2)$, the $k_{00}$-projection of $u_{s,w}$ (see \textcircled{11}) differs from its $k_{10}$-projection, thus $\pi_{k_0}(u_s) \neq \pi_{k_1}(u_s)$.
- $q | (k_{10} - k_{00})$ and $(\exists d: 1 \leq d \leq r - 1$ & $q^{d-1} \leq k_{10} - k_{00} < q^d)$: By taking $a_{r-2-d} \neq 0$ and all other coefficients zero, and $s = (s_0, s_1, s_2)$, the $k_{00}$-projection of $u_{s,w}$ differs from its $k_{10}$-projection, thus $\pi_{k_0}(u_s) \neq \pi_{k_1}(u_s)$.
**Assertion 2** Based on the condition underlying statement II.0.0 in Plan 2, the claim \((10)\) holds.

*Proof.* There exists \(\theta \in T_B\) such that \(\text{Tr}_{B/A}(\theta(x_j - y_j)) \in p^{r-1}B - \{0\}\). We express in their \(p\)-adic forms \(\text{Tr}_{B/A}(\theta x_j)\) and \(\text{Tr}_{B/A}(\theta y_j)\), namely

\[
\text{Tr}_{B/A}(\theta x_j) = \sum_{k=0}^{r-1} a_k p^k, \quad \text{Tr}_{B/A}(\theta y_j) = \sum_{k=0}^{r-1} b_k p^k. \quad (12)
\]

Thus

\[
\sum_{k=0}^{r-1} (a_k - b_k) p^k = (a_0 - b_0) + \sum_{k=1}^{r-1} (a_k - b_k) p^k \in p^{r-1}A - \{0\}
\]

and \(a_0 - b_0 = 0\). Also

\[
\sum_{k=1}^{r-1} (a_k - b_k) p^{k-1} = (a_1 - b_1) + \sum_{k=2}^{r-1} (a_k - b_k) p^k \in p^{r-2}A - \{0\}
\]

and \(a_1 - b_1 = 0\). Successively, continuing with this procedure, \(\forall k \leq r - 2, a_k = b_k,\) and \((a_{r-1} - b_{r-1})p \in pA - \{0\}\). Hence \(a_{r-1} \neq b_{r-1}\), and \(\Phi(\text{Tr}_{B/A}(\theta x_j)) \neq \Phi(\text{Tr}_{B/A}(\theta y_j))\).

Let \(s_0 = 0, s_1 = \theta x_j, s_2 = 0\) and \(s = (s_0, s_1, s_2) \in S\). Then, according to (8),

\[
\Phi(v_{s,w}(x)) = \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x + s_2 + w)) = \Phi(\text{Tr}_{B/A}(\theta x_j)) + \Phi(w) \\
\neq \Phi(\text{Tr}_{B/A}(\theta y_j)) + \Phi(w) \\
= \Phi(\text{Tr}_{B/A}(s_0 f(y) + s_1 \cdot y + s_2 + w)) \\
= \Phi(v_{s,w}(y)),
\]

and, in particular, \(\pi_{k_0} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_0} \circ \Phi(v_{s,w}(x))\). Thus, implication \((10)\) holds under these conditions.

**Assertion 3** Based on the condition underlying statement II.0.1.0.0 in Plan 2, implication \((10)\) holds.

*Proof.* Let \(s_2 = d_{r-1}p^{r-1} + a_{r-1}p^{r-1} - \text{Tr}_{B/A}(\zeta + \theta p^f x_j) = d_{r-1}p^{r-1} + b_{r-1}p^{r-1} - \text{Tr}_{B/A}(\zeta + \theta p^f y_j)\). Then,

\[
\Phi(v_{s,w}(x)) = \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x + s_2 + w)) = \Phi(\text{Tr}_{B/A}(\theta f(x)) + (\zeta + \theta p^f)x_j + s_2 + w) \\
= \Phi(\text{Tr}_{B/A}(\theta f(x))) + \Phi(d_{r-1}p^{r-1} + a_{r-1}p^{r-1} + w) \\
= \Phi(\text{Tr}_{B/A}(\theta f(x))) + \Phi(d_{r-1}p^{r-1}) + \Phi(a_{r-1}p^{r-1}) + \Phi(w).
\]

Thus

\[
\Phi(v_{s,w}(y)) = \Phi(\text{Tr}_{B/A}(\theta f(y))) + \Phi(d_{r-1}p^{r-1}) + \Phi(b_{r-1}p^{r-1}) + \Phi(w),
\]

hence \(\Phi(v_{s,w}(x)) \neq \Phi(v_{s,w}(y))\). In particular, \(\pi_{k_0} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_0} \circ \Phi(v_{s,w}(x))\). Thus, implication \((10)\) holds under these conditions.
Assertion 4 Based on the condition underlying statement II.0.1.0.1 in Plan 2 implication (11) holds.

Proof. Let $\theta \in T_B$ be as in Assertion 2 above and $(s_0, s_1, s_2) = (\theta, 0, 0)$. Then, $\Phi(v_{s,w}(x)) = \Phi(Tr_{B/A}(\theta f(x))) + \Phi(w)$ and $\Phi(v_{s,w}(y)) = \Phi(Tr_{B/A}(\theta f(y))) + \Phi(w)$. Hence $\pi_{k_0} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_1} \circ \Phi(v_{s,w}(y))$.

Assertion 5 Based on the condition underlying statement II.0.1.0.0 in Plan 2 implication (11) holds.

Proof. Let $s_0 = 0$, $s_1 = c_j$, $s_2 = 0$ and $s = (s_0, s_1, s_2) \in S$. Then as in Assertion 2 we conclude that $\pi_{k_0} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_1} \circ \Phi(v_{s,w}(y))$.

Assertion 6 Based on the condition underlying statement II.0.1.1.0.1 in Plan 2 implication (11) holds.

Proof. There is a pair $(s_0, s_1) = (\theta, p^j c_j)$ in the set $D_{\eta}$, as defined in (11), such that $\Phi(Tr_{B/A}(\theta f(x))) = \Phi(Tr_{B/A}(\theta f(y)))$, since $\theta \in T_A - \{0\}$. Written in $p$-adic form $Tr_{B/A}(p^j x_j) = \sum_{i=0}^{r-2} a_i p^i + a_{r-1} p^{r-1}$, $Tr_{B/A}(p^j y_j) = \sum_{i=0}^{r-2} a_i p^i + a_{r-1} p^{r-1}$ with $a_{r-1} \neq b_{r-1}$. An adequate selection of $s_2$ gives

$$\Phi(v_{s,w}(x)) = \Phi(Tr_{B/A}(\theta f(x)) + Tr_{B/A}(p^j x_j) + s_2 + w)$$
$$= \Phi(Tr_{B/A}(\theta f(x)) + a_{r-1} p^{r-1} + w)$$
$$= \Phi(Tr_{B/A}(\theta f(x)) + \Phi(a_{r-1} p^{r-1}) + \Phi(w).$$

Similarly, $\Phi(v_{s,w}(y)) = \Phi(Tr_{B/A}(\theta f(y)) + \Phi(b_{r-1} p^{r-1}) + \Phi(w)$, and the right sides of the above identities are different, thus implication (11) holds in this case.

Assertion 7 Based on the condition underlying statement II.0.1.1.1 in Plan 2 the claim (11) holds.

Proof. In this case, $\pi_{k_0} \circ \Phi(Tr_{B/A}(\eta_{(r-1)n}f(x))) \neq \pi_{k_1} \circ \Phi(\eta_{(r-1)n}Tr_{B/A}(f(y)))$, and there exists $\eta_{(r-1)n} \in T(A) - \{0\}$ such that $\eta_{(r-1)n}$ does not appear in $\eta$, because $(r - 1)(n + 1) < p^m - 1$. Now, we choose $s_1 = 0 \in B^n$, $s_2 = 0$ and $s = (\eta_{(r-1)n}, 0, 0)$. Then,

$$\pi_{k_0} \circ \Phi(v_{s,w}(x)) = \pi_{k_0} \circ \Phi(Tr_{B/A}(s_0 f(x) + s_1 \cdot x) + s_2 + w)$$
$$= \pi_{k_0} \circ \Phi(Tr_{B/A}(\eta_{(r-1)n}f(x)) + w)$$
$$\neq \pi_{k_1} \circ \Phi(Tr_{B/A}(\eta_{(r-1)n}f(y)) + w)$$
$$= \pi_{k_1} \circ \Phi(v_{s,w}(y))$$

and implication (11) holds.

Assertion 8 Based on the condition underlying statement II.1.0 in Plan 3 implication (11) holds.
Proof. There is a $\theta \in T_B$ such that $\text{Tr}_{B/A}(\theta(x_j - y_j))j \in p'^{-1}A - \{0\}$. By writing $\text{Tr}_{B/A}(\theta(x_j)$ and $\text{Tr}_{B/A}(\theta y_j)$ in $p$-adic form as in (12) we have that, as in Assertion 2, for any $i \leq r - 2$, $a_i = b_i$ and $a_{r-1} - b_{r-1} \in p'^{-1}B - \{0\}$. Let $(s_0, s_1, s_2) = (0, \theta e_j, -\sum_{i=0}^{r-2} a_i p^i)$. Then $\Phi(v_{s,w}(x)) = \Phi(\text{Tr}_{B/A}(a_{r-1}p'^{-1}) + \Phi(w)$ and $\Phi(v_{s,w}(y)) = \Phi(\text{Tr}_{B/A}(b_{r-1}p'^{-1}) + \Phi(w)$. Hence $\pi_{k_{00}} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w}(y))$.

**Assertion 9** Based on the condition underlying statement II.1.0.0 in Plan 3, implication (11) holds.

Proof. There is a $s_2$ in $(T(B) - \{0\} \cup \eta) \times \{0\} \times L$ such that

$$
\Phi(v_{s,w}(x)) = \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x + s_2 + w)
= \Phi(\text{Tr}_{B/A}(\theta f(x) + (\zeta + \theta p^i)x_j) + s_2 + w)
= \Phi(\text{Tr}_{B/A}(\theta f(x)) + \text{Tr}_{B/A}(\zeta x_j) + s_2 + \text{Tr}_{B/A}(\theta p^i x_j) + w)
= \Phi(\text{Tr}_{B/A}(\theta f(x)) + (c_{r-1}p'^{-1} + a_{r-1}p'^{-1} + w)
= \Phi(\text{Tr}_{B/A}(\theta f(x))) + \Phi(c_{r-1}p'^{-1}) + \Phi(a_{r-1}p'^{-1}) + \Phi(w),$$

where we have used the $p$-adic forms displayed in Plan 2.

*Mutatis mutandis* we get,

$$
\Phi(v_{s,w}(y)) = \Phi(\text{Tr}_{B/A}(\theta f(y))) + \Phi(c_{r-1}p'^{-1}) + \Phi(b_{r-1}p'^{-1}) + \Phi(w),$$

hence $\Phi(v_{s,w}(x)) \neq \Phi(v_{s,w}(y))$. In particular, $\pi_{k_{00}} \circ \Phi(v_{s,w}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w}(x))$.

Thus, implication (10) holds under these conditions.

**Assertion 10** Based on the condition underlying statement II.1.0.1 in Plan 3, implication (11) holds.

Proof. We may proceed as in Assertion 4 to show that implication (10) holds under these conditions.

**Assertion 11** Based on the condition underlying statement III.0 in Plan 4, implication (11) holds.

Proof. For any $s = (s_0, s_1, s_2) \in S$ we have

\[
\begin{align*}
\Phi(v_{s,w_0}(x)) - \Phi(v_{s,w_1}(x)) &= \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x + s_2 + w_0) \\
&= \Phi(\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x + s_2 + w_1) \\
&= \Phi(w_0) - \Phi(w_1) \neq 0.
\end{align*}
\]

In particular, $\pi_{k_{00}} \circ \Phi(v_{s,w_0}(x)) \neq \pi_{k_{00}} \circ \Phi(v_{s,w_1}(x))$. Thus, implication (10) holds in this case as well.

**Assertion 12** Based on the condition underlying statement III.1.0 in Plan 4, the claim (10) holds.
Proof. If, written in its $p$-adic form, $\text{Tr}_{B/A}(s_0 f(x) + s_1 \cdot x) = \sum_{i=0}^{r-1} \alpha_i p^i$, let $s_2 = -\sum_{i=0}^{r-2} \alpha_i p^i$. As in Assertion 8, we will have
\[
\pi_{k_00} \circ \Phi(v_{s,w_0}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w_1}(x)).
\]

Assertion 13 Based on the condition underlying statement III.1.1 in Plan 7 implication (10) holds.

Proof. Let $s_2 = 0$. We will have $\pi_{k_{00}} \circ \Phi(v_{s,w_0}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w_1}(x))$.

Assertion 14 Based on the condition underlying statement IV.0 in Plan 7 implication (11) holds.

Proof. In this case, $\pi_{k_{00}} \circ \Phi(\text{Tr}_{B/A}(\eta (r-1)n f(x))) = \pi_{k_{10}} \circ \Phi(\text{Tr}_{B/A}(\eta (r-1)n f(y)))$ with $\eta (r-1)n \in T(A) - \{0\}$ such that $\eta (r-1)n \notin \eta$, where $\eta$ is defined on [8].

If $(s_0, s_1, s_2) = (\eta (r-1)n, 0, 0)$, then $\pi_{k_{00}} \circ \Phi(v_{s,w_0}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w_1}(x))$.

Assertion 15 Based on the condition underlying statement IV.1 in Plan 7 implication (11) holds.

Proof. Let $\eta \in T(A)$. Then, $\pi_{k_{00}} \circ \Phi(\eta \text{Tr}_{B/A}(f(x))) = \eta \pi_{k_{10}} \circ \Phi(\text{Tr}_{B/A}(f(x)))$ and $\pi_{k_{00}} \circ \Phi(\eta \text{Tr}_{B/A}(f(y))) = \eta \pi_{k_{10}} \circ \Phi(\text{Tr}_{B/A}(f(y)))$, and if there exists $\eta \in T(A)$ such that
\[
\pi_{k_{00}} \circ \Phi(w_0) + \pi_{k_{00}} \circ \Phi(\eta \text{Tr}_{B/A}(f(x))) = \pi_{k_{10}} \circ \Phi(w_1) + \pi_{k_{10}} \circ \Phi(\eta \text{Tr}_{B/A}(f(y)))
\]
then this element $\eta$ is unique.

Let us choose $\zeta = \{\zeta_k\}_{k=0}^{m-(r-1)n-2}$, as was done in relation [7]. Thus, either $\pi_{k_{00}} \circ \Phi(w_0) + \pi_{k_{00}} \circ \Phi(\zeta_k \text{Tr}_{B/A}(f(x))) \neq \pi_{k_{10}} \circ \Phi(w_1) + \pi_{k_{10}} \circ \Phi(\zeta_k \text{Tr}_{B/A}(f(y)))$ or
\[
\pi_{k_{00}} \circ \Phi(w_0) + \pi_{k_{00}} \circ \Phi(\zeta_k' \text{Tr}_{B/A}(f(x))) \neq \pi_{k_{10}} \circ \Phi(w_1) + \pi_{k_{10}} \circ \Phi(\zeta_k' \text{Tr}_{B/A}(f(y)))
\]
where $\zeta_k, \zeta_k' \in T(A) \cap \zeta, k \neq k'$. Let $j$ be an index witnessing the relations above and $(s_0, s_1, s_2) = (\eta j, 0, 0)$. Then $\pi_{k_{00}} \circ \Phi(v_{s,w_0}(x)) \neq \pi_{k_{10}} \circ \Phi(v_{s,w_1}(x))$.

References

1. Ding, C., Niederreiter, H.: Systematic authentication codes from highly nonlinear functions. IEEE Transactions on Information Theory 50(10) (2004) 2421–2428
2. Ku-Cauich, J.C., Morales-Luna, G., Tapia-Recillas, H.: An authentication code over Galois rings with optimal impersonation and substitution probabilities. Cryptology ePrint Archive: Report 2015/618 https://eprint.iacr.org/2015/618 (2015)
3. Ku-Cauich, J.C., Tapia-Recillas, H.: Systematic authentication codes based on a class of bent functions and the Gray map on a Galois ring. SIAM J. Discrete Math. 27(2) (2013) 1159–1170
4. Özbudak, F., Saygı, Z.: Some constructions of systematic authentication codes using Galois rings. Des. Codes Cryptography 41(3) (2006) 343–357
5. Stinson, D.R.: Combinatorial characterizations of authentication codes. Designs, Codes and Cryptography 2(2) (1992) 175–187