Correction of RNA splicing defect in β^{654}-thalassemia mice using CRISPR/Cas9 gene-editing technology

Dan Lu, Xiuli Gong, Yudan Fang, Xinbing Guo, Yanwen Chen, Fan Yang, Guijun Zhao, Qingwen Ma, Yitao Zeng and Fanyi Zeng

1Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University; 2Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine and 3Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China

Correspondence:
Fanyi Zeng
fzeng@vip.163.com

Received: December 22, 2020.
Accepted: September 23, 2021.
Prepublished: October 28, 2021.
https://doi.org/10.3324/haematol.2020.278238

©2022 Ferrata Storti Foundation
Haematologica material is published under a CC BY-NC license
Correction of RNA splicing defect in β654-thalassemia mice using CRISPR/Cas9 gene-editing technology

Dan Lu1, Xiuli Gong1, Yudan Fang1, Xinbing Guo1, Yanwen Chen1, Fan Yang1, Guijun Zhao1, Qingwen Ma1, Yitao Zeng1, Fanyi Zeng1,2,3

1 Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
2 Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
3 Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China

Online Supplementary Materials and Methods

Construction of the CRISPR plasmids

Three sgRNAs targeting the DNA fragment containing both the IVS-2-654 C→T and IVS-2-579 were cloned into the pSpCas9 (BB)-2A-Puro (pX459) (Addgene plasmid #48139) backbone vector. The sequences of the guides are listed in Table S1. Other primers and sequences used throughout of this paper can also be found in Table S1.

Off-target prediction analysis

The CRISPOR program (http://crispor.tefor.net)1 was used to predict the potential off-target loci that may be affected by using the chosen CRISPR/Cas9 sgRNAs. The top ten potential gene loci (Table S2) were selected for analysis by PCR and targeted deep sequencing in 293T cells.

In vitro transcription of sgRNAs

The DNA templates were prepared by PCR of pX459-sgRNA(G1/G2) plasmids as template with specific primers (Table S1). The sgRNAs were in vitro transcribed with HiScribe™T7 Quick High Yield RNA Synthesis Kit (New England Biolabs) and purified with the MEGAclear kit (Life Technologies), according to manufacturer’s instructions.

Cell culture and transfection

293T cells were cultured using Gibco® DMEM, high glucose, supplemented
with 10% fetal bovine serum. 293T cells were seeded into 12-well plates to which a total of 1 μg of DNA plasmid pairs (pX459-sgRNA(G1/G2) plasmids, 0.5 μg for each plasmid) mixed with Lipofectamine 3000 (Invitrogen) were added according to the manufacturer’s instructions. After 72 hours, genomic DNA was extracted from these cell lines.

Sub-cloning and genotyping

The PCR product was purified and ligated to pGEM-T vector and transformed to competent *E. coli* strain DH5α. After overnight culture at 37°C, randomly selected clones were sequenced by the Sanger method. The genotypes were determined by PCR of genomic DNA extracted from cells. ExTaq was activated at 95°C for 5 min, and PCR was performed for 34 cycles at 95°C for 30 sec, 58°C for 30 sec, and 72°C for 40 sec, with a final extension at 72°C for 7 min.

Targeted deep sequencing

DNA fragments containing the off-target sites were amplified from genomic DNA using KOD DNA polymerase (TOYOBOP). Primers of targeted deep sequencing are listed in Table S1. Following amplification, the paired-end sequencing of PCR amplicons were gel-purified using QIAquick Gel Extraction Kit (Qiagen) and used for sequencing on Illumina Nextseq 500 (2×150) platform at Mingma, China. Data were analyzed using CRISPResso2.

Quantitative PCR

Quantitative PCR (qPCR) was used to identify the β654 mice. The primer pair Mhbb-QF1/R1 (Mhbb-QF1: 5ʹ- TGGGCAGGCTGCTGGTTGTC -3ʹ; Mhbb-QR1: 5ʹ- CAAGTGATTCAGGCCATCGTT -3ʹ), which can amplify a 152 bp product, was used to calculate the mouse β-major globin gene copy number in founder mice. The primer pair Mus TF-F/R (Mus TF-F: 5ʹ- TGACTGCACCGCAATTTC -3ʹ; Mus TF-R: 5ʹ- GGTACCCTCTGGAAGTTTAACGAA -3ʹ), which can amplify a 92 bp product from the mouse transferrin gene, was used as an internal control. Each PCR amplification was performed in a 25 μL reaction volume containing 5 μL of template DNA (20 ng/μL), 1 μL of each primer, 12.5 μL of Power SYBR Green Mix, and 6.5 μL of distilled deionized water (ddH2O) using the ABI7500 qPCR system.

HPLC

The samples for HPLC were prepared by collecting 50 μL whole blood and dissolving in 1mL pure water after filtration. 10 μL samples were loaded into ChromCore 300 C4 reversed-phase columns for polypeptides (300 Å, 5 μm, 4.6 mm x 250 mm). Individual globin chain levels were quantified on an Agilent 1260
instrument. A 40%-80% gradient mixture of 0.1% trifluoroacetic acid in water/acetonitrile was applied at a rate of 1 mL/min.

Hematologic analysis

Mouse peripheral blood samples were collected in heparinized microhematocrit tubes for hematologic analysis. 1-2 μL blood samples were prepared for blood smears stained with Wright-Giemsa (Baso, Zhuhai, China). The parameters examined include RBC count, hemoglobin (HGB) concentration, hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and reticulocyte counts (RET) using a Hematology Analyzer (KX-21, Sysmex, Japan).

Histopathology analysis

Liver and spleen tissues from WT, β654-Ctrl, and β654-E mice were embedded in paraffin, sliced to 4 μm sections, and stained with hematoxylin and eosin (Baso, Zhuhai, China). Bone marrow smears were stained with Wright-Giemsa (Baso, Zhuhai, China).

Whole-genome sequencing and data analysis

Genomic DNA was extracted from cells by using the DNeasy Blood and tissue kit (catalog number 69504, Qiagen) according to the manufacturer's instructions. WGS was performed at mean coverages of 50x by Illumina HiSeq X Ten. BWA (v0.7.12) was used to map qualified sequencing reads to the reference genome (mm10). The workflow of “Best Practice of GATK”\(^3\) was used for sequence alignment to the reference genome (mm10) and variant (SNVs and indels) calling. The software involved includes BWA,\(^4\) SAMtools,\(^5\) and Genome Analysis Toolkit (GATK 4).\(^6\) Structural variants (SV) were detected with Manta.\(^7\) For analysis of sequence variations in β654-ER mice, the Cas-OFFinder\(^8\) Web tool was used to identify candidate off-target sites with up to 3 mismatches.

Statistical analysis

All experimental data were analyzed using GraphPad Prism 5. A Student's t-test was used for intergroup comparisons. Probability (P) values < 0.05 was considered statistically significant.
References

1. Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242-W245.

2. Clement K, Rees H, Canver MC, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37(3):224-226.

3. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1-11.10.33.

4. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760.

5. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079.

6. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.

7. Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220-1222.

8. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473-1475.
Online Supplementary Data

Table S1. Primer sequences.

Primer name	Primer sequences
G1	taaattgtaactgatgtaag
G2	tgccctgaaagaaagatt
G3	tccctaatctctttctttca
T7-G1	TAATACGACTCACTATAGGtaaattgtaactgatgtaag
T7-G2	TAATACGACTCACTATAGGtgccctgaaagaaagatt
T7-G3	TAATACGACTCACTATAGGtcctaatctctttctttca
G-R	AAAAAAGCACCGACTCGGTG
Mhbb-QF1	TGGGCCAGGCTGCTGGTTGTC
Mhbb-QR1	CAAGTGATTTACGGCAATGCT
Mus TF-F	TGACTGCACCGGCAATTTC
Mus TF-R	GGTACACCTTCTGGAAAGTTCGAA
β-L	GACCAAAATACAGTTAAATTTCG
β-R	GCGAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTG
HBG-L	GACCGAGAAGACGGCATACGAGATCACTGTGTG
HBG-R	GCCACAGAGACGGCATACGAGATCACTGTGTG
GAPDH-L	AGGCCAGAAGACGGCATACGAGATCACTGTGTG
GAPDH-R	AGGCCAGAAGACGGCATACGAGATCACTGTGTG
deep-OT1F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTATTTTCTACATAGTGACCC
deep-OT1R	ACTGGATTTACAGCGGTGCCTGGACCTCGATCTNNNNCTACATAGTGACCC
deep-OT2F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT2R	ACTGGATTTACAGCGGTGCCTGGACCTCGATCTNNNNCTACATAGTGACCC
deep-OT3F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT3R	ACTGGATTTACAGCGGTGCCTGGACCTCGATCTNNNNCTACATAGTGACCC
deep-OT4F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT4R	ACTGGATTTACAGCGGTGCCTGGACCTCGATCTNNNNCTACATAGTGACCC
deep-OT5F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT5R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT6F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT6R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT7F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT7R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT8F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT8R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT9F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT9R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT10F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT10R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT11F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT11R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT12F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT12R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT13F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT13R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT14F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT14R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT15F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT15R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT16F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT16R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT17F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT17R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT18F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT18R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT19F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT19R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT20F	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
deep-OT20R	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTACATAGTGACCC
P5-index1-F	AAGGAGCAGGACAAGGACATACGACACTCCAGTTCTACGAC
P5-index1-R	AAGGAGCAGGACAAGGACATACGACACTCCAGTTCTACGAC
P5-index2-F	AAGGAGCAGGACAAGGACATACGACACTCCAGTTCTACGAC
P5-index2-R	AAGGAGCAGGACAAGGACATACGACACTCCAGTTCTACGAC

* Lowercase letters represent sgRNA sequences.
Table S2. Summary of predicted off-target sites by CRISPOR program in this study.

Site number	Location	Gene name	Sequences	
G1	chr1:5225863-5225883:+	HBB	TAAATTGTAACTGATGTAAG	
OT1	chr3:146771381-146771403:+	PLSCR5	RP11-649A16.1	CAAACTATAACCTAATGTAAG
OT2	chr7:85759049-85759071:+	LIN00972	GRM3	AAAATCATAAATGATGTAAG
OT3	chr3:175578526-175578548:-	NAAADLD2	RN4U4-91P	TAAATAAATAATGATAAAT
OT4	chr4:104416220-104416242:+	RP11-729M20.1	CXXC4	AAAATAGTAACAAATGTAAG
OT5	chr8:119080608-119080630:-	RP11-278I4.2	COLEC10	TAAATAAATGATAAAT
OT6	chr3:190711443-190711465:-	RP11-95L3.2	GMNC	TAAATACCTAATGTAAG
OT7	chr4:117904678-117904790:+	AC108056.1	NDST3	CAAACTCTAATGTAAG
OT8	chr5:136856678-136856660:-	CTB-1I2.1	RNA5SP193	TTAACCTGTAACAAATGTAAG
OT9	chr3:19296956-19296978:-	KCN8	MIR4791	TATATTGTAACCTGATAAAT
OT10	chr1:128088384-128088406:-	RN7SKP279	RP11-702B10.2	TAAATTAAACCTGTTAAG
G2	chr11:5225995-5225975:-	HBB	TGCCCTGAAAGAAAGAGATT	
OT11	chr3:174204131-174204153:-	RN7SKP234-NLGN1	TGGCTCCAAGAAAGGAAGAGATT	
OT12	chr12:93077796-93077818:+	Y_RNA-RP11-202G11.2	GGACCAGAAGAAAGAGAAATT	
OT13	chr1:245015083-245015085:+	EFCAAB2	CACCCAGGAAGAAAGAGATT	
OT14	chr14:52992879-52992901:-	FERM2-DDHD1	AGCCTCAAGAAAGGAGAGATT	
OT15	chr11:113667535-113667557:-	DRD2-TMPRSS5	AATCCTGAAAAGAAAGAGATT	
OT16	chr5:149321993-149322015:+	AFAP1L1	TGCACTCAAAGAAAGAGATT	
OT17	chr11:105272413-105272435:+	RP11-94P11.4-MetazoSRP	TCCCCTAAAAAAGGAAGAGATT	
OT18	chr12:62532287-62532309:+	MON2	TCCCTCAAAAGAAAGAGATT	
OT19	chr4:170395548-170395570:+	RP11-789C1.2-RP11-322J23.1	TCTCCTGAAAGAAAGAGATT	
OT20	chr13:42045543-42045565:-	RP11-187A9.1-DGKH	TTAACCTGAAAGAAAGAGATT	

The red letters in the sequences represent mismatched bases.
Table S3. List of key parameters of mice gene-editing process.

Item	No.
No. of embryos microinjected	142
No. of embryos transferred	123
No. of the live-born mice	56
Birth Rate	45.53% (56/123)
No. of mice tested at 19 days after birth	37
No. of \(\beta^{654}\)-E mice	12
The survival rate of \(\beta^{654}\)-E mice	32.43% (12/37)
No. of \(\beta^{654}\)-ER or \(\beta^{654}\)-ENR mice	10
Gene editing rate	83.33% (10/12)

Table S4. Hematologic analyses of offspring from \(\beta^{654}\)-ER mice.

Group	N	RBC (10^6/µL)	HGB (g/L)	HCT (%)	MCV (fl)	MCH (pg)	MCHC (g/L)	RET (%)
F1	21	9.1±1.1^a	132.3±20.2^a	44.9±6.5^a	49.2±1.7^a	14.5±0.8^a	294.6±10.9^a	3.2±0.9^a
F2	13	9.7±1.2^a	144.8±17.8^a	48.5±5.8^a	50.3±1.5^a	15.0±0.4^a	298.7±5.1^a	3.0±0.7^a
WT	28	9.2±1.1^a	136.6±18.6^a	44.6±5.7^a	48.3±1.0^a	14.8±0.4^a	305.9±8.7^a	3.3±0.6^a
\(\beta^{654}\)-Ctrl	21	6.5±0.7	82.3±7.6	25.7±2.3	39.4±2.2	12.6±0.8	320.8±14.3	19.2±3.6

Values represent mean ± SD; N: number of mice tested; RBC: red blood cell; HGB: hemoglobin; HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; RET: reticulocyte. Statistically significant differences, WT or \(\beta^{654}\)-ER, compared to the \(\beta^{654}\)-Ctrl group: ^a P<0.01.

Table S5. Initial and filtered unique variant counts from whole-genome sequencing.

Group	Sample	Counts of SV	Unique SV	Counts of Indel	Unique Indel	Counts of SNV	Unique SNV
\(\beta^{654}\)-Ctrl	\(\beta^{654}\)-Ctrl _1	7280	-	347386	-	1121679	-
\(\beta^{654}\)-Ctrl	\(\beta^{654}\)-Ctrl _2	7327	-	353933	-	1153867	-
\(\beta^{654}\)-Ctrl	\(\beta^{654}\)-Ctrl _3	10035	-	413460	-	1370339	-
\(\beta^{654}\)-ER	Sample_52	9252	5707	385124	213082	1070986	355264
\(\beta^{654}\)-ER	Sample_53	6646	4506	290055	170524	640101	212543
\(\beta^{654}\)-ER	Sample_59	7716	5396	386931	264064	1003649	562068
\(\beta^{654}\)-ER	Sample_64	8641	5734	404374	253982	1083585	516555
\(\beta^{654}\)-ER	Sample_87	16038	14187	290845	190791	661374	297755
\(\beta^{654}\)-ER	Sample_90	16994	15724	264252	184865	499451	279619
\(\beta^{654}\)-ER	Sample_92	15802	12247	422284	253057	1245989	558789
Table S6. Thirty-five off-target sites for G1/G2 in the mouse genome predicted by Cas-OFFinder.

No.	sgRNA	DNA	Chromosome	Position	Direction	Mismatches
1	G1	TAAATTGTAACTGATAAAATTGG	chr15	19512164	-	3
2	G1	TGATTGTGACTGATGTAAGAGG	chr15	24488540	+	3
3	G1	AAAATTGTAAACTGATGTAAGAGG	chr5	40501464	+	3
4	G1	GAGATTGTCACTGATGTAAGAGG	chr5	64689128	-	3
5	G1	CAAATTGTAGCTGATGTAACAGG	chr7	138239140	+	3
6	G1	TAAATTGTAGCTGATGTAAGAGG	chr2	52791351	+	1
7	G1	TAAATTGTAGCTGATGTAACAGG	chr2	157361384	-	3
8	G1	TAAATTGTAGCTGATGTAAGAGG	chr4	145683976	-	3
9	G1	TAAATTGTAGCTGATGTAACAGG	chr17	31247452	-	3
10	G1	TAAATTGTAGCTGATGTAACAGG	chrX	103390000	+	3
11	G1	TAAATTGTAGCTGATGTAACAGG	chrX	10863259	+	2
12	G1	TAAATTGTAGCTGATGTAACAGG	chr6	114706092	+	2
13	G1	TAAATTGTAGCTGATGTAACAGG	chr11	10553586	-	3
14	G1	TAAATTGTAGCTGATGTAACAGG	chr10	36097147	+	3
15	G1	TAAATTGTAGCTGATGTAACAGG	chr10	40986901	-	3
16	G1	TAAATTGTAGCTGATGTAACAGG	chr10	123030322	-	3
17	G1	TAAATTGTAGCTGATGTAACAGG	chr13	30225663	-	3
18	G1	TAAATTGTAGCTGATGTAACAGG	chr3	37931054	+	3
19	G1	TAAATTGTAGCTGATGTAACAGG	chr3	128640890	-	3
20	G2	TGCACTGAAAGAAAAAGATGTGG	chr15	92531701	-	3
21	G2	TGCACTGAAAGAAAAAGATGTGG	chr15	12423332	-	3
22	G2	TGCACTGAAAGAAAAAGATGTGG	chr1	26809785	-	3
23	G2	TGCACTGAAAGAAAAAGATGTGG	chr1	86425826	+	3
24	G2	TGCACTGAAAGAAAAAGATGTGG	chr1	128424331	+	3
25	G2	TGCACTGAAAGAAAAAGATGTGG	chr1	58124943	-	3
26	G2	TGCACTGAAAGAAAAAGATGTGG	chr17	4392949	-	3
27	G2	TGCACTGAAAGAAAAAGATGTGG	chr14	32074650	-	3
28	G2	TGCACTGAAAGAAAAAGATGTGG	chr14	61447679	+	3
29	G2	TGCACTGAAAGAAAAAGATGTGG	chr6	107501455	+	3
30	G2	TGCACTGAAAGAAAAAGATGTGG	chr11	79258171	-	3
31	G2	TGCACTGAAAGAAAAAGATGTGG	chr10	42844492	-	3
32	G2	TGCACTGAAAGAAAAAGATGTGG	chr10	71530156	+	3
33	G2	TGCACTGAAAGAAAAAGATGTGG	chr10	113588503	-	3
34	G2	TGCACTGAAAGAAAAAGATGTGG	chr18	35302981	-	3
35	G2	TGCACTGAAAGAAAAAGATGTGG	chr3	75965220	+	3

The red letters in the sequences represent mismatched bases.
Figure S1. Deep sequencing analysis of potential off-target sites in 293T cells edited by sgRNA G1+G2. Predicted off-target sites OT1 to OT20 are listed in Table S2. (A) Deep sequencing analysis of top 10 off-target sites for sgRNA G1. (B) Deep sequencing analysis of top 10 off-target sites for sgRNA G2.

Figure S2. Copy number analysis for mouse β-major globin gene by qPCR. WT-1, WT-2: wild-type mice; β^{654-1}~3: β^{654-Cml} mice. Copy number = 2, correlates to wild-type mouse. Copy number = 1, represents one mouse β-major globin gene, and correlates to β^{654} mice. The mouse ID numbers in red represent β^{654-F} mice subjected to gene editing.
Figure S3. HPLC analysis of globin chains in RBCs. (A) Representative chromatograms of mice. Upper panel: Data from representative chromatograms of β^{654-Ctrl} mice. The peaks of mouse α-globin (m α-globin) and mouse β major globin (m βmajor) are indicated in the upper panel. Lower panel: data from representative chromatograms of effective gene-edited β^{654-ER} mice. The peaks of human β-globin (hu β-globin), mouse α-globin (m α-globin), and mouse β major globin (m βmajor) are indicated in the lower panel. (B) Summary of human β-globin levels to mouse β major globin chains in individual mice. WT, n=5; β^{654-ER}, n=7 (mouse IDs: 52, 53, 64, 92, 87, 90 and 59); β^{654-ENR}, n=3 (mouse IDs: 54, 74, and 76).