Static characteristics of contactless converters of monitoring and control systems

Anatoliy Plakhtiev¹*, Gayratjon Gaziev², Yaxyojon Meliboev¹, Odil Doniyorov¹, Davron Norholboyev¹, and Jasur Ibragimov¹

¹Tashkent institute of irrigation and agricultural mechanization engineers, Tashkent, Uzbekistan
²Triple Point Engineering LLC, Tashkent, Uzbekistan

Abstract. The paper substantiates the need to use non-contact conversion and measurement of large direct currents using magnetic modulation contactless transducers of increased sensitivity for land reclamation, irrigation, industry, metallurgy and agriculture and water management in general, and the results of their design development are presented. It is shown that the developed converter, in contrast to the known ones, has increased accuracy and sensitivity, a technologically advanced design and low weight and dimensions with low material consumption and cost. Characteristics of information non-contact magnetic modulation converters statically are considered. It is shown that the value of the excitation value corresponds to a certain maximum value of the measured value. In this case, the maxima of the measured value, increasing in value with an increase in the excitation value, are shifted towards the increase in the measured value. The discrepancy between the experimentally and theoretically obtained static characteristics of the converter does not exceed 6 percent. The developed converter can be widely used in electrical systems in land reclamation and irrigation, in water supply, industry, railway transport, science, technology, and for checking electric meters at their installation site for contactless control of direct and alternating currents.

1 Introduction

In the electric power industry, powerful electrical consumers are widely used, in which large electrical installations are used, in the operation of monitoring and control systems of which large direct currents (LDC) are used, which, in turn, must be controlled [1-11].

It was revealed that the instability of the current control systems, the presence of additional resistances due to the oxidation of the contacts lead to a decrease in the performance of electrical installations, to downtime, and large voltage drops on the shunts lead to unjustified power losses.

As a result of the analysis of the conducted studies, an urgent need was revealed at many industrial enterprises and in farms in the irrigated agriculture zone of the Republic of Uzbekistan in the non-destructive contactless control of LDC with a value from 100 A to 30

* Corresponding author: a.plakhtiev@mail.ru
kA using both portable and stationary measuring transducers (MT) with an error of 1 – 3 %, using in several cases multi-range, as well as with a flexible, integrating circuit of IP non-destructive testing LDC [2], [12-23].

2 Materials and methods

The ever-increasing requirements for the elements and technical means of monitoring and control systems in the electric power industry, railway transport, as well as agriculture have led to the development of energy-saving contactless magneto-modulation converters of large direct currents with detachable integrating circuits (MNT), which allow for wrapping around the device without violating the structural and circuit integrity conductors with convertible LDC [3 - 5].

As a result of the analysis of places, transducers and devices for non-destructive non-contact control of high currents, the main requirements for MNT were identified [6 - 31]. These include high accuracy, reliability, sensitivity, low weight, dimensions, material consumption and cost, manufacturability of design, absence of errors from the influence of external magnetic fields, return conductor with current, displacement of the conductor with current from the center of the integrating circuit, ferromagnetic masses, no consumption energy from the measured circuit, the ability to work in an aggressive environment, explosion safety, as well as the absence of a galvanic connection between the controlled direct current and the measuring circuit and the presence in some cases of the possibility of fixed regulation of the sensitivity of the MNT in a wide controlled range and the manufacture of the MNT as portable or stationary [24-39].

We have developed several universal energy-saving non-contact galvanomagnetic converters of large direct currents, allowing without breaking the circuit to convert both direct and alternating large currents in various monitoring and control systems, in which the tasks are solved by using special designs of detachable closed magnetic circuits with transverse and longitudinal distributed magnetic parameters and increased path length of the working magnetic flux over steel [2].

3 Results and Discussion

One of the developed IBE is information non-contact magneto-modulation converter of large direct currents, partially shown in Figure 1 with basic dimensions. This design was developed based on the IP [8] and is an MNT with transversely and longitudinally distributed magnetic parameters... It features increased sensitivity and an extended range of converted currents. IBE contains a detachable closed magnetic circuit 1, consisting of two identical halves 2 and 3, each of which, in turn, consists of separate ferromagnetic elements made in the form of trapezoids with the same gaps between them. Each ferromagnetic element has two through holes, through each of which a modulation winding is wound, consisting of sections 4 and 6. Sections 4 and 6 are connected in series and according to. A measuring winding 5 is wound between the through holes over the modulation winding 5. All measuring windings are connected in series and closed to the measuring device. The modulation windings are also connected in series and connected to a stable AC source (not shown in Figure 1). To freely grip the bus 7 with a controlled current, the closed magnetic circuit 1 is made detachable. The series connection of the modulation windings 4 and 6 with each other in the presence of alternating current in them and the arrangement of the measuring windings 5 in the intervals between the through holes in the ferromagnetic elements allowed to carry out longitudinal modulation of the magnetic resistance of the
magnetic circuit on the path of the working flow Φ, created by a controlled direct current, and induce an EMF in the measuring windings 5, depending on the converted direct current. The developed MNT can also control alternating current. There should be no alternating current in sections 4 and 6 of the modulation winding in this case.

![Diagram](image.png)

Fig. 1. Part of information non-contact magneto-modulation converter of large direct currents

The expansion of the upper limit of the controlled direct current in the developed design of the MNT is carried out by increasing the length of the working magnetic flux along the steel of the magnetic circuit elements and including transverse and longitudinal air gaps in its path, i.e., the implementation of a split magnetic circuit with transversely and longitudinally distributed magnetic parameters.

To control the LDC, the MNT detachable magnetic circuit covers the bus 7. Due to the modulation ampere turns, the detachable magnetic circuit is saturated during each half-period of the supply voltage. In this case, the permeability of the magnetic circuit for the longitudinal field created by the controlled current decreases sharply. At the moment when the modulation current passes through zero, the magnetic core permeability rises to the initial value. Thus, with the stability of the modulation ampere turns, an EMF of double frequency will be induced in the measuring winding, which depends on the controlled current.

With the mutual movement of halves 2 and 3 of the detachable magnetic circuit of the MBP, the size of the gaps between the trapezoids changes, leading to a change in the whole of the magnetic resistance of the magnetic circuit on the path of the working magnetic flux Φ created by the controlled direct current. This leads to changing the limits of the controlled current, i.e., allows you to make the MBE multi-limit.

To analyze the main characteristics of the MBE and its calculation, it is necessary to express the static characteristics of the MBE. To determine the expression of the static characteristics of the MBFP (Figure 1), let us single out one of its elements (Figure 2). Let's divide it into two halves: upper 1 and lower 2. At the moment when the current of the excitation windings I has the direction shown by the arrow, the magnetic field strength H.

3
created by this current in the upper half of the element coincides with the direction of the magnetic field strength, measured current \(I_1 \). On the contrary, in the lower half of the element, the direction \(H_\perp \) is opposite to the direction of \(H_u \). Therefore, one can write

\[
H_1 = H_u + H_\perp; \\
H_2 = H_u - H_\perp.
\]

In the next half-period, the direction of the field strength \(H_\perp \) changes.

Approximating the main magnetization curve by the sum of the trigonometric arctangent and the straight line with the slope

\[
B = a_1 \arctg a_2 H + a_3 H,
\]

where \(a_1, a_2, a_3 \) are the approximation coefficients, and substituting (1) and (2) into (3), we obtain

\[
B_1 = a_1 \arctg a_2 (H_u + H_\perp) + a_3 (H_u + H_\perp); \\
B_2 = a_1 \tan a_2 (H_u - H_\perp) + a_3 (H_u - H_\perp);
\]

Here, the field strength from the excitation current is

\[
H_\perp = H_m \sin \omega t ...
\]

Where in

\[
H_m = \frac{I_m W}{I_{cp}},
\]
where \(H_{m-} \), \(I_{m-} \) are amplitude values of field strength and excitation current; \(n_u \) is the number of turns of the excitation winding \(I_{BE} \); \(l_{Wed} \) is the average length of the line of the field strength of the excitation element of the MBP.

The initial equation for the output EMF of the MNT has the form

\[
e = -w_0 S \frac{d(B_1 + B_2)}{dt} \quad \ldots \quad (8)
\]

The cross-section \(S \) of the two halves of the element, participating in the induction of the EMF in the measuring winding, having the total number of turns \(w_u \), is determined from Figure1 in the form

\[
S = h_t (v - d), \quad (9)
\]

Where: \(h_t \) is the thickness of the set of the magnetic circuit element; \(v \) is the width of the magnetic circuit element; \(d \) is the diameter of the hole for the field winding.

Substituting the values of magnetic inductions (4) and (5) into (8) and taking into account (6), we find

\[
e = a_1 a_2 \omega w_u S H_m \cos \alpha (\frac{1}{1 + a_2^2 (H_u - H_{m-} \sin \alpha \theta)^2} - \frac{1}{1 + a_2^2 (H_u + H_{m-} \sin \alpha \theta)^2}), \quad (10)
\]

Let us introduce the notation of the measured quantity

\[
H_x = a_2 H_u \quad \text{(11)}
\]

and excitation values

\[
H_M = a_2 H_{m-}, \quad \text{(12)}
\]

which are dimensionless since the coefficient \(a_2 \) has the inverse dimension of the magnetic field strength.
Then expression (10) can be rewritten as

\[e = a_i \omega w_s H \left(\frac{1}{1 + (H_x - H_M \sin \omega t)^2} - \frac{1}{1 + (H_x + H_M \sin \omega t)^2} \right) \cos \omega t . \]

(13)

The resulting expression is a periodic non-sinusoidal function, so the average value of the output EMF is

\[\overline{E_p} = \frac{1}{T} \int_0^T e dt = \frac{2 w_s S K_{w_m}}{T} \left(\frac{1}{1 + (H_x - H_M \sin \omega t)^2} - \frac{1}{1 + (H_x + H_M \sin \omega t)^2} \right) \omega \cos \omega t dt \]

(14)

We denote \(\sin \omega t = Z \), then \(\omega \cos \omega t dt = dZ \), respectively, the limits of integration at \(t_1 = 0 \) will be \(Z_1 = 0 \), and at \(t_2 = T \) will be \(Z_2 = \sin \frac{\omega T}{2} \).

Substituting the accepted designations and limits of integration into (14) and integrating, we obtain

\[\overline{E_p} = \frac{\omega a_i w_s S}{\pi} \left[2 \arctg H_x - \arctg (H_x - H_M) - \arctg (H_x + H_M) \right] \]

(15)

or

\[\overline{E_p} = \frac{E_b}{\pi} \left[2 \arctg H_x - \arctg (H_x - H_M) - \arctg (H_x + H_M) \right] \]

(16)

Here \(E_b \) is the base value of the output EMF, equal to

\[\overline{E_p} = - \omega a_i w_s S . \]

(17)

The output EMF of the converter in fractional values is

\[E^\phi = \frac{E_p}{E_b} = \frac{1}{\pi} \left[2 \arctg H_x - \arctg (H_x - H_M) - \arctg (H_x + H_M) \right] \]

(18)
Then expression (10) can be rewritten as
\[S_w = v_m N_2 \left(\omega_1 t - \frac{1}{2} \right) \sin(\omega_1 t) N_1 M \left(\omega_2 t + \frac{1}{2} \right) \sin(\omega_2 t). \] (13)

The resulting expression is a periodic non-sinusoidal function, so the average value of the output EMF is
\[\frac{1}{T} \int_{0}^{2T} E_d(t) \, dt = \frac{1}{2} \int_{0}^{2T} v_m N_2 \left(\omega_1 t - \frac{1}{2} \right) \sin(\omega_1 t) N_1 M \left(\omega_2 t + \frac{1}{2} \right) \sin(\omega_2 t) \, dt \] (14)

We denote \(\sin \omega t = Z \), then \(\omega \cos \omega t \, dt = dZ \), respectively, the limits of integration at \(t_1 = 0 \) will be \(Z_1 = 0 \), and at \(t_2 = 2T \) will be \(Z_2 = 2 \sin \omega T \).

Substituting the accepted designations and limits of integration into (14) and integrating, we obtain
\[\text{ср} E = \frac{\pi \omega}{2} S_w a \eta \left(\frac{2}{\omega} \right) \arctan \left(\frac{2}{\omega} \right) \] (15)

or
\[\text{ср} E = \frac{\pi \omega}{2} E_b \left(\frac{2}{\omega} \right) \arctan \left(\frac{2}{\omega} \right) \] (16)

Here \(E_b \) is the base value of the output EMF, equal to \(\text{ср} E = -S_w a \eta \). (17)

The output EMF of the converter in fractional values is
\[\frac{1}{2} \pi \omega S_w a \eta \left(\frac{2}{\omega} \right) \arctan \left(\frac{2}{\omega} \right) \] (18)

The resulting expression is a static characteristic of the MNT, showing the dependence of \(E_d = f (H_x, H_M) \). The use of the intermediate variable \(H_x \) as a converted value is justified by the fact that the output EMF is an unambiguous function of \(H_x \) at a given value of \(H_M \) and, on the other hand, \(H_x \) carries complete information about the value of the converted current and the steel grade used in the magnetic circuit. With the help of computer technology, using expression (18), a family of static characteristics of the MNT is calculated. The results of machining at various \(H_M \) and \(H_x \) are shown in Fig. 3. The value of the magnitude of the excitation of \(H_M \) corresponds to a certain maximum value of the measured value \(H_{xM} \). In this case, the maxima of \(H_{xM} \) increasing in value with increasing \(H_M \), are shifted towards increasing \(H_x \). The experiments performed showed that the discrepancy between the experimentally (curve 2) and theoretical (curve 1) obtained static characteristics of the MNT does not exceed 6 percent.

4 Conclusions

Informational contactless converters have been developed for modern control and management systems in water supply, land reclamation, irrigation, as well as solar and laser technology, renewable energy sources, industry, agro-industrial sphere, characterized by an extended controlled range of converted direct currents with small dimensions and weight, increased accuracy and sensitivity, simplicity and manufacturability of the design with low material consumption and cost and the possibility of contactless control of direct and alternating currents with an error of 1.5%, as well as for control of electricity and verification of electricity meters at their installation site. The static characteristics of information contactless magneto-modulation converters are considered. It is shown that the value of the excitation value corresponds to a certain maximum value of the measured value. In this case, the maxima of the measured value, increasing in value with an increase in the excitation value, are shifted towards the increase in the measured value. The discrepancy between the experimentally and theoretically obtained static characteristics of the converter does not exceed 6 percent.
References

1. Kazakov M.K. Methods and means for measuring high voltages and high currents in electric power engineering: Author's abstract. Dis. ... doc. Those. Science. - Ulyanovsk, p. 32 p. (1998)
2. Plakhtiev A.M. Effective informational contactless converters for modern monitoring and control systems in the agro-industrial complex // International Scientific and Practical Conference. "Agrarian science - to agriculture" // Collection of scientific articles. Barnaul, S. 37-39. (2017)
3. Semenko N. G., Gamazov Yu. A. Measuring transducers of large electric currents and their metrological support. - M.: Publishing house of standards, -- 136 p. (1984)
4. Spektor S.A., Measurement of large constant currents. Leningrad: Energy, 136 p. (1988)
5. Bolotin O., Portnoy G., Razumovsky K., Primary sensors for energy enterprises, Energy security and energy saving, No. 5, pp. 28 - 32, (2012)
6. Danilov A., Modern industrial current sensors, Modern electronics, no. 10, pp. 38 - 43, 2004.
7. Bolotin O., Portnoy G., Razumovskiy K., Modern sensors for measuring current and voltage, ISUP, No. 1 (61), pp. 18 - 25, (2016)
8. A.S. 792152, IPC G01R 19/00. Meter of large direct currents / A.M. Plakhtiev, G.P. Petrov, H. S. Minikeev. - 2735180/18 - 21; Stated 11.03.79; Publ. (1980)
9. Horst Knoedgen, Frank Kronmueller (European patent office). Highly accurate current measurement. MKI G01R from 13.02.2019 EP2821799A1.
10. Bardahl Nils, Einrichtung zur Erfassung des Belastungsstromes in Hochstromanlagen, Patent Germany No. 3148654, Cl. 21e36 / 01 from (2016)
11. Eadie EM, Complete specification improvements in multi-range hook-on electrical indication instrument, UK Patent No. 3966443, NCI G1U dated (2015)
12. Standard Telefones and Cables LTD Current monitoring circuits including Hall Effect devices,
13. UK patent No 4575111, ICI G01R 19 / 165, NCI GIU from 17.09. No 4773
14. Tokyo Shibaura Transducers. UK patent No 3036984, ICI G01R 19 / 22, NCI GIU from 02.07., No 4968 (2017)
15. Meierovich E A and Andreevskaya L 1 (2017) Dispositif pour la mesure de I intesite du courant.
16. French patent No 4347944, ICI G01R from 24.02. No 2
17. Bernard G A Transducteur electrique comportani un moyen de codage dun parameter du transducteur, French patent No 3955731, ICI G01D 18 / 00 3 / 04; G01F 25 / 00 from 02.01.No 1
18. Reich 2018 Ernö Elektricky měřicí pristroj, Czech patent No 2145015, ICI 21e36 from 15.04. (2000)
19. Zoltán L 2015 Aramlıkést mérő müszer, Hungarian patent № 2146340, ICI 21e 29-36 from 30.11
20. Hitachi Ltd., Chiyoda-ku Tokyo 100 (JP) Magnetoelectrical transducer. Japan patent No 3257766, ICI G01D 5 / 16 from 18.08. No 33, (2017)
21. Brodovsky V N and Korzanov B M Current transformer No A.C. 3592239, MHK21e36 - from 5.01. Bulletin 4, (20170
22. Steiglitz K Signal Standardization. In The Discrete Charm of the Machine: Why the World Became Digital (pp 22-42). Princeton; Oxford: Princeton University Press. doi:10.2307/j.ctvc77c2g.6, (2019)
23. Michael J, Lenaeus, Tamer M, Gamal El-Din, Christopher Ing, Karthik Ramanadane, Regis Pomes, Ning Zheng and William A. Catterall Structures of closed and open
states of a voltage-gated sodium channel Proceedings of the National Academy of Sciences of the United States of America. 114 No 15 pp 3051-3060, (2017)
24. Evangelos H "Magnetic Sensors" A special issue of Sensors (ISSN 1424-8220) School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, (2018)
25. Greece
26. Wei L, Bing Liang, Zhenyuan Jia, Di Feng, Xintong Jiang, Xiao Li and Mengde Zhou (2018) High-Accuracy Calibration Based on Linearity Adjustment for Eddy Current Displacement Sensor Key Laboratory %r Precision and Non-traditional Machining Technology of the Ministry of Education 18(9) p 2842 https://doi.org/10.3390/s18092842
27. Ripka P Current sensors using magnetic materials Journal of Optoelectronics and Advanced Materials 6 No 2 p 587 — 592, (2004)
28. Arya Krishna S and Lizy Abraham Analysis of Different Hall Effect Current Sensors for Space Applications IJISET — International Journal of Innovative Science, Engineering and Technology 1(5) (2014)
29. Laimer G and Kolar J W Design and experimental analysis of a DC to 1 MHz closed loop magnetoresistive current sensor. Twentieth Annual IEEE Applied Power Electronics Conference and Exposition pp 1288-1292, (2005) 10.1109/APEC.2005.1453172
30. Maria-Alexandra P, Jean-Michel S and Maher K. Comparative Study on the Performance of Five Different Hall Effect Devices Sensors US National Library of Medicine and National Institutes of Health 13(2) p. 2093-2112, (2013) doi: 10.3390/s130202093
31. Yoshihiro Konno and Masaru S (2009) Electric current measure apparatus. Japan patent ICI G01R 1 from 21.05. No CN204154795U (Japan)
32. Chjan Li. Stripping electrical measuring one meter. ICI G01R 19 from 02.11. No CN204154795U, China, (2015)
33. Michel Lynn and John Shie Power amplifier saturation detection. ICI G01R from 03.05. No US10224917B2, Korea, (2019)
34. Andreas Jurisch 1995 Method of measuring current in a conductor in an ac transmission network ICI G01R from 03.08 No WO1994502076A1 (Italy)
35. Horst K and Frank K Highly accurate current measurement. ICI G01R from 13.02 No EP2821799A1 (European patent office), (2019)
36. Umurzakov U., and Djuraev B. Prediction of prices for agricultural products through markov chain model, International Journal of Psychosocial Rehabilitation, 24(3), pp. 293–303, (2020)
37. Umurzakov U., Mamatov F., Aldoshin N., Mirzaev B. Exploration of tillage technologies in the Republic of Uzbekistan, IOP Conference Series, Earth and Environmental Science, 614(1), 012168, (2020)
38. Rudolf Gati and Markus Abplanalp (2008) Configuration of magnetoresistive sensors for current measurement ICI G01R from 22.07 No ES2591283T3(Spain)
39. Wolfgang G and Jean-Pierre D Method of opening a bypass switch of a high voltage direct current network. ICI G01 from 21.09 No CA284893OC (Canada), (2011)
40. Umurzakov U., Mirzaev B., Salahodjaev R., Isaeva A., and Tosheva S. Energy consumption and economic growth: Evidence from post-communist countries. International Journal of Energy Economics and Policy, 10(6), pp. 59–65, (2020)
41. Gurtovtsev A L Optical transformers and current converters Principles of operation, device, characteristics Electrical Engineering News No 5 pp 48-52, (2010)
42. Plakhtiev A.M. Effective information contactless converters for modern control systems in the agricultural sector Int. Scientific and Practical Conf. "Agricultural science - to agriculture" pp 37-39 (Russian, Barnaul), (2017)

43. Rakhmonov S., Umurzakov U., Rakhmonov K., Bozarov I., Karamatov O. Land use and land cover change in Khorezm, Uzbekistan. E3S Web of Conferences, 227, 01002, (2021)