Nephroprotective Effect of Herbal Seed Extracts of *Vigna unguiculata* and *Hordeum vulgare* on Serum Biochemical Changes on Ethylene Glycol and Ammonium Chloride Induced Urolithiasis in Female Wistar Rats

Monika K. Patel¹, Sunant K. Raval¹*, Rakesh J. Modi², Dasharath B. Sadhu¹ and Mukesh T. Gehani¹

¹Department of Veterinary Medicine, ²Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India

*Corresponding author

Abstract

The experimental work was undertaken to study the therapeutic efficacy of aqueous, alcoholic and biherbal extracts of *Vigna unguiculata* (V.U.) and *Hordeum vulgare* (H.V.) on ethyleneglycol and ammonium chloride induced urolithiasis in female wistar rats. Rats were divided into 4 groups. Each of 6 rats except lithiatic control group consist 8 rats. Group I and II served as lithiatic and vehicle control, respectively. In group I and III to XIV induction of urolithiasis was done by administration of 0.75 % (v/v) ethylene glycol and 2% (w/v) ammonium chloride along with drinking water for 28 days. Group II was given 0.5% sodium bicarbonate. After 28th day, the rats of urolithiatic treatment Groups III to XIV were given aqueous and alcoholic seed extract of V.U. and H.V. @ 200 mg/kg and 300 mg/kg bwt orally as either single extracts or combination as biherbal extracts (1:1) in 0.5% sodium bicarbonate using syringe and rat gavage needle. Blood samples were collected. Confirmation of urolithiasis was done by evaluating serum biochemical parameters. However, increase level of serum glutamic-pyruvic transaminase, Blood Urea Nitrogen, uric acid, creatinine, calcium and phosphorus, while decreased level of serum total protein and serum magnesium were observed in urolithiatic groups as compared to vehical control group on 28th day. Results of serum biochemistry reveals aqueous and alcoholic extract of V.U. and H.V. possess good therapeutic efficacy against urolithiasis. The effect of biherbal alcoholic extract of the seeds was much better in restoring the values on 63rd day after treatment.

Keywords

Biherbal extract, *Vigna unguiculata*, *Hordeum vulgare*, Ethylene glycol, Ammonium chloride, Sodium bicarbonate, Urolithiasis, Wistar rat

Article Info

Accepted: 20 August 2018
Available Online: 10 September 2018

Introduction

Urolithiasis refers to the solid nonmetallic minerals in the urinary tract. Among the several types of kidney stones, the most common are calcium oxalate. The formation of these stones involves several physicochemical events, beginning with crystal nucleation, aggregation, and ending with retention within the urinary tract (Purnima et al., 2010). All over the globe a large number of people are suffering from
urinary stone problem. The occurrence in some areas is so alarming that they are known as ‘Stone Belts’ (Chauhan et al., 2009). The rate of occurrence is three times higher in men than women (Butterweck and Khan, 2009; Joy et al., 2012).

Various medicinal plants with diuretic activities exert inhibitory effects on crystallization, nucleation, and aggregation of crystals, making them useful for treatment of urolithiasis (Nirumand et al., 2018). The medical management of lithiasis, today, includes extracorporeal shock wave lithotripsy (ESWL) and surgical procedures which depends on the size and location of stones (Saha and Verma, 2015). Number of medicinal plants shows antiurolithic activity and play vital role in prevention of disease (Tiwari et al., 2012).

Horsegram (Vigna unguiculata) supposed to have unique property of dissolving kidney stones, therefore, in many parts of the country it is given to prevent or cure urinary stones (Singla and Kumar, 1985). Medicinal use of Hordeum vulgare (Jav) as a diuretic. As per Ayurveda, the seeds of Hordeum vulgare Linn. are reported to be useful in the treatment of a wide range of aliments including urinary stones (Shah et al., 2012). Seed extract of Hordeum vulgare Linn. To experimentally CaOx-induced nephrolithiasic rats reduced the deposition of crystals into kidneys confirming it antilithiasic effect (Shah et al., 2012).

Materials and Methods

Ethical approval

The project was approved by the Institutional Animals Ethics Committee (IAEC) of College of Veterinary Science and Animal Husbandry, Anand (Approval No: AAU/GVC/CPCSEA/IAEC/ 264/2017 dated 03/04/2017).

Experimental design

The work was carried out form November 2017 to April 2018 on 86 healthy mature (12-15 weeks) female Wistar rats. For induction of urolithiasis ethylene glycol (EG) and ammonium chloride (AC) were used. Rats were divided in to 14 groups. Each of 6 rats except lithiatic control group consist 8 rats and were kept in separate cages. Group I and II served as lithiatic and vehicle control, respectively.

In group I and III to XIV induction of urolithiasis was done by administration of 0.75 % (v/v) ethylene glycol and 2% (w/v) ammonium chloride along with drinking water for 28 days. Group II was given 0.5% sodium bicarbonate. After 28th day, the rats of urolithiatic treatment Groups III, VI, V, VI, VII, VIII, IX, X, XI, XII, XIII and XIV were given aqueous and alcoholic seed extract of V.U. and H.V. @ 200 mg/kg and 300 mg/kg bwt orally as either single extracts or combination as biherbal extracts (1:1) in 0.5% sodium bicarbonate using syringe and rat gavage needle.

Preparation of plant extracts

The dried Seeds of H.V. were procured from Regional Research Centre (RRC) - Anubhav seeds, AAU, Anand and seeds of V.U. were purchased commercially from the local market of Vadodara, Gujarat. The air-dried seeds were powdered by mechanical grinder and stored in air tight containers. Exactly 100g of coarse powdered material of both the plants were successfully extracted with water and also with alcohol in soxhlet apparatus for 24 hours.

The extract was evaporated under reduced pressure to give solid residue. The aqueous and alcoholic extracts were preserved in refrigerator at 4°C for subsequent experiment.
Studies of therapeutic effect

After 28 days of induction of urolithiasis group III and IV was given aqueous extract of V.U. 200 mg/kg and 300 mg/kg, group V and VI was given alcoholic extract of V.U. 200 mg /kg and 300 mg/kg, group VII and VIII was given aqueous extract of H.V. 200 mg /kg and 300 mg/kg, group IX and X was given alcoholic extract of H.V.200 mg/kg and 300 mg/kg, group XI and XII was given aqueous biherbal extract V.U. + H.V. (1:1) 200 mg/kg and 300 mg/kg, group XIII and XIV was given alcoholic biherbal extract of V.U. + H.V.(1:1)200 mg/kg and 300 mg/kg for another 35 days. Dose was administered by oral route using sterile 1ml syringe with oral rat gavage needle. Dose was calculated according to body weight.

Blood collection and analysis of serum biochemical

Blood samples were collected thrice: first 0 day, after 28th days of induction of urolithiasis and then on 63rd day (after treatment) of experimental period. Blood samples were collected from all the rats by retro-orbital plexuses puncture under mild diethyl ether anaesthesia with the help of capillary tube.

Serum was harvested by centrifugation at 3000 rpm for 15 minutes at 10°C (Eppendorf 5804 R, Germany) and stored - 40°C C used for biochemical analysis using standard procedure and assay kits (Coral Clinical, Goa, India) with the help of Visiscan 167 Spectrophotometer.

Parameter studied

The biochemical parameters viz. serum glutamic-pyruvic transaminase (SGPT), Blood Urea Nitrogen (BUN), uric acid, creatinine, calcium and phosphorus, total protein (TP), Magnesium were studied during the study.

Statistical analysis

Paired T-test was used to compare serology parameters before and after treatment, while One-way-analysis of variance (ANOVA) was used to compare the effects of V.U. and H.V. extracts with vehical control group, ethyleneglycol model group and group given plant extract on different variables using software SPSS (Version 20). All the data have been presented as mean ± SE (Snedecor and Cochran, 1990).

Results and Discussion

Renal function was evaluated by measuring serum total protein, SGPT (serum glutamic-pyruvic transaminase), BUN (Blood Urea Nitrogen), uric acid, creatinine, calcium, phosphorus and magnesium in group I to XIV (Table 1 and 2) (Figure 1, 2, 3, 4, 5, 6, 7 and 8).

In present study, decreased the level of serum Total protein and increased level of serum SGPT, BUN and Uric acid were observed in the urolithiasis induced group as compared to the 0 day (when experiment was started) and vehicle control group by day 28 of treatment (Table 1) (Figure 1, 2, 3 and 4). However the single extract or the co-treatment with aqueous and alcoholic extracts of V.U. and H.V.for 28 day significantly restored these changes, i.e., by 63rd day of experiment in most of the groups. Biherbal alcoholic extract compared to mono-herbal extract of the said seeds was much better in restoring the values of serum Total protein, SGPT, BUN and Uric acid and serum SGPT and Total protein values were came down nearer to vehicle control group by 63rd day.

Patel (2018) stated that significant decreased in total protein level following administration of EG + AC while significant increased following administration of extracts of...
Bryophyllum calcynium and Solanum xanthocarpum. Vasanthi, et al., (2017) stated that Ethylene glycol induction induces renal cellular damage. Renal injury was also evidenced by the increased activities of SGPT. This might be due to the leakage of these enzymes into the general circulation from the collateral circulation. Administration of cystone or plant extract at all doses prevented the leakage of these marker enzymes and maintained its level in comparison to lithiatic rats. Lakshmi et al., (2014) stated that in ethylene glycol and ammonium chloride induced rats, significant raise in uric acid and BUN were observed in serum, because of decreased glomerular filtration rate due to obstruction in the urine flow in urinary system with the deposition of calcium oxalate in renal tubules. Trianthema portulacasrum Linn. and Gymnema sylvestre showed decrease in uric acid and BUN level.

Figure 1: Changes in Serum Total protein (g/dl) concentration in different group on 0, 28th and 63rd day

Figure 2: Changes in Serum SGPT (U/L) concentration in different group on 0, 28th and 63rd day

Figure 3: Changes in Serum BUN (mg/dl) concentration in different group on 0, 28th and 63rd day

Figure 4: Changes in Serum Uric acid (mg/dl) concentration in different group on 0, 28th and 63rd day
Figure 5: Changes in Serum Creatinine (mg/dl) concentration in different group on 0, 28th and 63rd day

Figure 6: Changes in Serum Calcium (mg/dl) concentration in different group on 0, 28th and 63rd day

Figure 7: Changes in Serum Magnesium (mg/dl) concentration in different group on 0, 28th and 63rd day

Figure 8: Changes in Serum Phosphorus (mg/dl) concentration in different group on 0, 28th and 63rd day
Table 1: Changes in serum Total protein, serum SGPT (serum glutamic-pyruvic transaminase), serum BUN (blood urea nitrogen) and serum Uric acid concentration on day 0, 28th and 63rd

Group No	Group Name	Total protein (g/dl)	SGPT (U/L)	BUN	Uric acid								
		0 day	28th day	63rd day	0 day	28th day	63rd day	0 day	28th day	63rd day	0 day	28th day	63rd day
I	Lithiatic Control	29.99 ± 0.59	52.40 ± 0.80**	61.41 ± 0.51**	29.99 ± 0.59	52.40 ± 0.80**	61.41 ± 0.51**	13.26 ± 1.20	38.99 ± 0.48**	40.53 ± 1.20	2.07 ± 0.07	4.28 ± 0.25**	4.61 ± 0.21
II	Vehicle Control	30.17 ± 0.36	29.68 ± 0.62	28.61 ± 0.64	30.17 ± 0.36	29.68 ± 0.62	28.61 ± 0.64	12.67 ± 1.06	12.75 ± 0.98	12.69 ± 1.10	2.28 ± 0.24	2.23 ± 0.25	2.03 ± 0.12
III	AQ. EX. V.U. 200mg/kg	30.67 ± 0.23	52.81 ± 1.51**	41.06 ± 0.28**	30.67 ± 0.23	52.81 ± 1.51**	41.06 ± 0.28**	12.07 ± 1.17	32.73 ± 0.69**	23.28 ± 0.97**	2.50 ± 0.47	3.50 ± 0.36	3.25 ± 0.36
IV	AQ. EX. V.U. 300mg/kg	29.06 ± 0.25	51.33 ± 0.49**	39.27 ± 0.87**	29.06 ± 0.25	51.33 ± 0.49**	39.27 ± 0.87**	10.93 ± 0.31	34.00 ± 0.85**	19.76 ± 1.14**	2.88 ± 0.45	4.42 ± 0.50	3.94 ± 0.64
V	AL. EX. V.U. 200mg/kg	29.07 ± 0.34	50.28 ± 0.39**	39.43 ± 2.27	29.07 ± 0.34	50.28 ± 0.39**	39.43 ± 2.27	11.08 ± 0.76	31.32 ± 0.42**	22.21 ± 1.56**	2.39 ± 0.17	3.76 ± 0.33	3.14 ± 0.41
VI	AL. EX. V.U. 300mg/kg	29.52 ± 0.56	50.48 ± 1.06	37.55 ± 0.61	29.52 ± 0.56	50.48 ± 1.06	37.55 ± 0.61	11.42 ± 0.74	31.54 ± 0.38**	16.86 ± 1.62**	2.21 ± 0.18	3.69 ± 0.31	2.68 ± 0.38**
VII	AQ. EX. H.V. 200mg/kg	30.64 ± 0.24	50.08 ± 0.57**	32.90 ± 0.77**	30.64 ± 0.24	50.08 ± 0.57**	32.90 ± 0.77**	13.03 ± 0.64	31.71 ± 0.22**	23.80 ± 1.31**	2.33 ± 0.33	3.50 ± 0.33	3.20 ± 0.39**
VIII	AQ. EX. H.V. 300mg/kg	30.58 ± 0.15	52.17 ± 0.80**	33.67 ± 1.02**	30.58 ± 0.15	52.17 ± 0.80**	33.67 ± 1.02**	12.46 ± 0.96	33.12 ± 0.54**	20.45 ± 2.34**	2.12 ± 0.27	3.67 ± 0.28	3.21 ± 0.27**
IX	AL. EX. H.V. 200mg/kg	29.99 ± 0.78	49.23 ± 1.15	32.81 ± 1.02**	29.99 ± 0.78	49.23 ± 1.15	32.81 ± 1.02**	13.17 ± 0.47	31.81 ± 0.45**	18.89 ± 0.81**	2.23 ± 0.27	3.51 ± 0.33	2.52 ± 0.15**
X	AL. EX. H.V. 300mg/kg	31.15 ± 0.25	51.01 ± 0.75**	31.91 ± 0.61**	31.15 ± 0.25	51.01 ± 0.75**	31.91 ± 0.61**	13.33 ± 0.22	32.07 ± 0.23**	19.06 ± 2.14**	2.37 ± 0.22	3.59 ± 0.26	2.32 ± 0.20**
XI	BIH.AQ.EX. (V.U.+H.V.) 200mg/kg	30.93 ± 0.31	50.17 ± 0.69**	32.40 ± 0.71**	30.93 ± 0.31	50.17 ± 0.69**	32.40 ± 0.71**	13.98 ± 0.21	33.52 ± 0.16**	19.81 ± 1.49**	2.35 ± 0.26	3.62 ± 0.41**	2.46 ± 0.34**
XII	BIH.AQ.EX. (V.U.+H.V.) 300mg/kg	30.92 ± 0.84	50.10 ± 0.82**	31.06 ± 0.39**	30.92 ± 0.84	50.10 ± 0.82**	31.06 ± 0.39**	12.99 ± 0.25	32.26 ± 0.23**	18.13 ± 1.07**	2.18 ± 0.33	3.82 ± 0.25	2.64 ± 0.33**
XIII	BIH.AL.EX.(V.U.+H.V.) 200mg/kg	29.51 ± 0.64	50.57 ± 1.08**	30.08 ± 0.68**	29.51 ± 0.64	50.57 ± 1.08**	30.08 ± 0.68**	12.93 ± 0.20	32.95 ± 0.21**	18.35 ± 0.81**	2.21 ± 0.20	3.97 ± 0.09**	2.75 ± 0.21**
XIV	BIH.AL.EX.(V.U.+H.V.) 300mg/kg	29.05 ± 0.62	50.62 ± 0.83**	27.48 ± 0.77**	29.05 ± 0.62	50.62 ± 0.83**	27.48 ± 0.77**	13.87 ± 0.25	33.10 ± 0.39**	17.62 ± 1.07**	2.28 ± 0.40	4.06 ± 0.20	2.75 ± 0.15**

AQ. EX/AL. EX. = aqueous/alcoholic extract, V.U./H.V. = Vigna unguiculata and Hordeum vulgare; BIH = Biherbal
*p<0.05, **p<0.01 between days, (Means with different superscript differ significantly)
Table 2: Changes in serum creatinine, serum calcium, serum magnesium and serum phosphorus concentration on day 0, 28th and 63rd

Group No	Group Name	0 day	28th day	63rd day	0 day	28th day	63rd day	0 day	28th day	63rd day	0 day	28th day	63rd day
I	Lithiatic Control	0.43± 0.08	1.98± 0.06**	1.51± 0.21**	7.86± 0.21	10.36± 0.18**	10.88± 0.22	2.68± 0.10	2.55± 0.12	1.88± 0.10**	6.70± 0.30	7.71± 0.41**	8.05± 0.37**
II	Vehicle Control	0.45± 0.08	0.49± 0.08	0.58± 0.06	8.01± 0.15	7.96± 0.05	7.87± 0.13	2.73± 0.23	2.75± 0.09	2.76± 0.07**	7.45± 0.31	7.42± 0.24**	7.39± 0.25**
III	AQ. EX. V.U. 200mg/kg	0.53± 0.07	1.81± 0.19**	1.22± 0.10**	7.84± 0.25	9.26± 0.55	8.90± 0.51	2.85± 0.10	2.65± 0.05	2.73± 0.04**	6.10± 0.32	7.25± 0.45**	6.90± 0.40**
IV	AQ. EX. V.U. 300mg/kg	0.56± 0.10	1.70± 0.10**	1.11± 0.03**	7.94± 0.16	9.62± 0.46	8.92± 0.47**	2.50± 0.20	2.56± 0.09	2.73± 0.13	6.55± 0.49	7.24± 0.46**	6.51± 0.24**
V	AL. EX. V.U. 200mg/kg	0.50± 0.08	1.71± 0.11**	0.87± 0.10**	8.06± 0.12	9.65± 0.23**	8.71± 0.15**	2.82± 0.04	2.24± 0.10**	2.75± 0.04**	6.29± 0.22	7.10± 0.29**	6.32± 0.15**
VI	AL. EX. V.U. 300mg/kg	0.33± 0.04	1.76± 0.07**	0.74± 0.10	8.08± 0.24	9.22± 0.15**	8.12± 0.28**	2.72± 0.17	2.05± 0.12	2.66± 0.10**	6.53± 0.30	7.50± 0.35**	6.47± 0.34**
VII	AQ. EX. H.V. 200mg/kg	0.59± 0.08	1.41± 0.19**	0.72± 0.12	8.53± 0.38	9.98± 0.28	9.45± 0.30	2.80± 0.17	2.58± 0.07	2.76± 0.06	6.86± 0.30	7.56± 0.18**	7.05± 0.38**
VIII	AQ. EX. H.V. 300mg/kg	0.54± 0.05	1.40± 0.20	0.59± 0.15	7.97± 0.25	9.71± 0.30	8.78± 0.29**	3.00± 0.12	2.63± 0.08	2.86± 0.03**	6.48± 0.62	7.63± 0.44**	6.86± 0.37**
IX	AL. EX. H.V. 200mg/kg	0.68± 0.05	1.81± 0.17**	0.79± 0.19**	8.30± 0.27	10.01± 0.28**	8.78± 0.15	3.03± 0.06	2.27± 0.10**	2.83± 0.05**	7.41± 0.34	8.10± 0.31**	7.06± 0.31**
X	AL. EX. H.V. 300mg/kg	0.37± 0.05	1.90± 0.18**	0.90± 0.20**	8.46± 0.20	9.98± 0.17**	8.75± 0.33**	2.82± 0.13	1.96± 0.08	2.77± 0.09**	6.38± 0.19	7.93± 0.52	6.86± 0.45**
XI	BIH.AQ.EX. (V.U.+H.V.) 200mg/kg	0.61± 0.08	1.74± 0.25	0.60± 0.14	8.39± 0.22	10.24± 0.22**	9.81± 0.18**	2.54± 0.12	2.16± 0.28	2.49± 0.15	6.62± 0.24	7.47± 0.29**	6.68± 0.32**
XII	BIH.AQ.EX. (V.U.+H.V.) 300mg/kg	0.51± 0.08	1.95± 0.18**	0.70± 0.18**	8.43± 0.22	10.35± 0.14**	9.25± 0.23**	2.92± 0.15	2.34± 0.14	2.75± 0.09**	6.81± 0.41	7.63± 0.48	6.67± 0.33**
XIII	BIH. AL. EX. (V.U.+H.V.) 200mg/kg	0.48± 0.04	1.97± 0.24**	0.64± 0.10**	8.41± 0.25	10.63± 0.19**	8.87± 0.17**	2.73± 0.08	1.97± 0.13**	2.69± 0.11**	6.88± 0.21	7.98± 0.46**	6.90± 0.36**
XIV	BIH. AL. EX. (V.U.+H.V.) 300mg/kg	0.53± 0.09	1.99± 0.24**	0.54± 0.15**	8.01± 0.37	10.58± 0.08**	8.43± 0.17**	3.06± 0.13	1.86± 0.08**	2.87± 0.04**	7.32± 0.19	8.58± 0.45**	7.04± 0.28**

AQ. EX/AL. EX. = aqueous/alcoholic extract, V.U./H.V. = Vigna unguiculata and Hordeum vulgare ; BIH = Biherbal

*p<0.05, **p<0.01 between days. (Means with different superscript differ significantly)
In the urolithiasis induced groups, increased serum Creatinine, Calcium, Phosphorus and decreased level of serum Magnesium levels were observed as compared to compared to the 0 day (when experiment was started) and vehicle control group by day 28 of treatment (Table 2) (Figure 5, 6, 7 and 8).

However the single extract or the co-treatment with aqueous and alcoholic extracts of V.U. and H.V. for 28 day significantly restored these parameters, i.e., by 63rd day of experiment in most of the groups.

Biherbal alcoholic extract compared to mono-herbal extract of the said seeds was much better in restoring the values of serum Magnesium, Creatinine, Calcium, Phosphorus and serum Magnesium, Creatinine, Phosphorus values were came down nearer to vehicle control group by 63rd day.

Mashiyava et al., (2015) was observed significant increase in mean values of serum Magnesium following administration of EG, while significant restoration following administration of extracts of Bryophyllum calcynium and Tribulus terretis.

Khan et al., (2017) concluded that there was significant increase in mean values of serum Phosphorus following administration of EG, while significant following administration of extracts Gum arabic. Rathva (2016) concluded significant increase the Creatinine and Calcium levels following administration of EG, while significantly decreased following administration of extracts of Solanum xanthocarpum and Acaraynthus aspera. Increased levels were indicative the necrosis of renal epithelia and damage at the collecting tubules and nephron.

From the results of this experiment, it is concluded that alcoholic extract of V.U. and H.V. at the dose rat of 300mg/kg compared to aqueous extracts and single herbal aqueous and alcoholic extract of the said seeds was much better in restoring the changes in biochemical parameters EG + AC induced urolithiasis in Wistar rats.

Acknowledgement

We are grateful to the Project coordinator, Outreach Program of Ethno-Veterinary Medicine, IVRI, Izatnagar, UP and ICAR, New Delhi for providing research facilities.

Conflict of Interest

Authors declare no conflict of interest for this research work.

References

Butterweck, V., and Khan, S. R. 2009. Herbal medicines in the management of urolithiasis: alternative or complementary? Planta medica, 75(10), 1095.

Chauhan, C. K., Joshi, M. J., and Vaidya, A. D. B. 2009. Growth inhibition of struvite crystals in the presence of herbal extract Boerhaavia diffusa Linn. American Journal of Infectious Diseases, 5(3), 170-179.

Joy, J. M., Prathyusha, S., Mohanalakshmi, S., Kumar, A. P., and Kumar, C. K. 2012. Potent herbal wealth with litholytic activity: a review. International Journal of Innovative Drug Discovery, 2(2), 66-75.

Khan, R. G., Khan, S. A., and Khan, G. A. 2017. Antiurolithiatic Activity of Gum arabic on Ethylene Glycol Induced Urolithiasis in Rat. International Journal of Pharmacy and Pharmaceutical Research, 11 (1), 87-94.

Lakshmi, K. S., Prabhakaran, V., Mallikarjuna, G., and Gowthami, A. 2014. Antilithiatic activity of Trianthema portulacastrum L. and Gymnema sylvestre R. Br against ethylene glycol induced urolithiasis.
International Journal of Pharmaceutical Sciences Review and Research, 25, 16-22.
Mashiyava, P. H., Raval, S. K., and Vasava, A. A. 2016. Effect of Biherbal Extracts of Bryophyllum calycinum and Tribulus terrestris on Biochemical Serum Changes on Ethylene Glycol Induced Urolithiasis in Female Wistar Rats. Advances in Life Sciences, 5(20), 1-5.
Nirumand, M. C., Hajialyani, M., Rahimi, R., Farzaei, M. H., Zingue, S., Nabavi, S. M., and Bishayee, A. 2018. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. International journal of molecular sciences, 19(3), 765.
Patel, D. B., Raval, S. K., Mandali, G. C., Patel, A. C., and Pande, A. M. 2018. Nephroprotective Effect of Herbal Extracts of Bryophyllum calycinum and Solanum xanthocarpum on Induced Urolithiasis in Wistar Rats: Haemato-Biochemical Evaluation. THE INDIAN JOURNAL OF VETERINARY SCIENCES AND BIOTECHNOLOGY, 13(03).
Purnima, A., Koti, B. C., and Vishwanathswamy, A. H. M. 2010. Antiurolithiatic and antioxidant activity of Mimusops elengi on ethylene glycol-induced urolithiasis in rats. Indian Journal of Pharmacology, 42(6), 380-383.
Rathva, A. N. 2016. Evaluation of therapeutic efficacy of plants Solanum xanthocarpum and achyranthes aspera on ethylene glycol induced urolithiasis in wistar rats. (M. V. Sc. Thesis, Anand Agricultural University Anand, Gujarat).

Saha, S., and Verma, R. J. 2015. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiatic rat model. Pharmaceutical biology, 53(1), 16-30.
Shah, J. G., Patel, B. G., Patel, S. B., and Patel, R. 2012. Effect of Hordeum vulgare Linn. seeds on glycolic acid induced urolithiasis in rats. Pharmacognosy Communications, 2(2), 34-9.
Shah, J.G., Patel, B.G., Patel, S. B., and Patel, R.K. 2012. Antiurolithiatic and antioxidant activity of Hordeum vulgare seeds on ethylene glycol-induced urolithiasis in rats. Indian Journal of Pharmacology, 44(6), 672-677.
Singla, S. K., and K. Kumar 1985. Inhibitors of calcification from Dolichos biflorus. Proceeding of National conference of uralithiasis, 51.
Snedecor, G. W., and Cochran, W. G. 1990. Statistical Methods, (6thEd.). Oxford and JBH Publishing, New York.
Tiwari, A., Soni, V., Londhe, V., Bhandarkar, A., Bandwane, D., and Nipate, S. 2012. An overview on potent indigenous herbs for urinary tract infirmity: urolithiasis. Asian Journal of Pharmaceutical and Clinical Research., 5(1), 7-12.
Vasanthi, A. H. R., Muthulakshmi, V., Gayathri, V., Manikandan, R., Ananthi, S., and Kuruvilla, S. 2017. Antiurolithiatic effect of Siruppeelai Samoola Kudineer: A polyherbal siddha decoction on ethylene glycol-induced renal calculus in experimental rats. Pharmacognosy magazine, 13(2), 273-279.

How to cite this article:
Monika K. Patel, Sunant K. Raval, Rakesh J. Modi, Dasharath B. Sadhu and Mukesh T. Gehani. 2018. Nephroprotective Effect of Herbal Seed Extracts of Vigna unguiculata and Hordeum vulgare on Serum Biochemical Changes on Ethylene Glycol and Ammonium Chloride Induced Urolithiasis in Female Wistar Rats. Int.J.Curr.Microbiol.App.Sci. 7(09): 2977-2985.
doi: https://doi.org/10.20546/ijcemas.2018.709.370