A Regression Analysis on the Effects of Factors on Plastic Waste Production

Junnan Yang, Lingchang Zhang, Weitao Wang*, and Zheyong Qiu

1School of Science, Hangzhou Dianzi University, Hangzhou Zhejiang 310018, China
2School of Automation, Hangzhou Dianzi University, Hangzhou Zhejiang 310018, China

*Corresponding author email: wwtao@hdu.edu.cn

Abstract. Plastic is a multi-purpose material produced in large quantities. However, the non-degradability of plastic waste also brings many negative effects. In order to solve the problem of plastic production waste, we first analyze which factors have a greater impact on the production of plastic waste, and for this reason, a multiple linear regression has been established. We quantify abstract influencing factors. After that, the data is put into Statistical Product and Service Solutions (SPSS) for processing, and the influence of different factors on plastic waste is calculated. We find that the production of plastics has the greatest impact on the increase of plastic waste, while mainland policies have the greatest impact on the reduction of plastic waste. Finally, we have a sensitivity analysis on this model to analyze the impact of various factors on the output of plastic waste.

Keywords: Plastic production waste; Multiple Linear Regression Model; Statistical Product and Service Solutions.

1. Introduction

Plastics are widely used because of their low cost, light materials, and convenience of production. However, due to its non-corrosive nature, it is difficult to dispose of, and the plastic waste flowing into the ocean alone is approximately 10 million tons every year [1], not to mention the residue in nature. Besides, plastic also poses a potential challenge to human health. To answer the question that how much plastic waste can be reduced, the degree of influence of various factors on plastic waste need to be deliberated.

At present, domestic and foreign researches on plastics mainly focuses on plastic research and qualitative analysis. Roland Geyer et al. [2] made statistics on plastic waste worldwide before 2015, and conducted detailed processing and analysis on it, roughly predicting that there will be 8300 million metric tons (Mt) of waste in 2050. produce. What’s more, Yao haowen [3] proposed a countermeasure model for the flood of plastic. Wang Jiajia et al. [4] proposed that the DPSIR model qualitatively analyzes plastic waste and its impact through driving force, pressure, state, influence and response. And Plastics Europe [5] will give a regular report on all aspects of plastics every year. Regarding the output of urban waste, although Chen Jinfa [6] once established a grey prediction model to predict the output of urban waste, he did not consider the impact of variables on the waste.

These studies are essential for us to understand plastic waste, but we still lack models or methods that can quantitatively study plastic waste based on existing data. Therefore, based on the previous research, this paper quantitatively studied the maximum carrying capacity of environmental waste and the degree of influence of various factors on plastic waste. This requires our statistics in the United Nations [7].
2. Problem Description

In order to discuss in depth, the reasons that plastic pollution affects human life, we make every effort to do the following:

We look for the influencing factors of plastic pollution and analyze the key factors that have the greatest impact on the environmental protection level. After this, we find the data of various influencing factors and analyze the weights of various influencing indicators in different regions. This requires us to build a model, analyze the data, and clarify the impact of various indicators on the environmental protection level in different regions. This will help us to formulate targeted policies in different regions. Based on the above description, the following assumptions are given:

- Assume that the capacity of plastic waste recycling in various countries and regions is constant:
- When considering environmental carrying capacity, only plastic waste is considered, and the impact of other types of waste is not considered.

In addition, we have defined some variables and explained them in Table 1. This will greatly help us in the process of building the model later.

Variable	Description
y_1, y_2, \ldots, y_j	Value of non-recyclable plastic waste in j cities or regions
x_1, x_2, \ldots, x_m	Factors affecting the value of m non-recyclable plastic waste
$\beta_0, \beta_1, \beta_2, \ldots, \beta_m$	Degree of influence of m indexes (β_0 is a similar intercept parameter)
$\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_j$	The error value of the corresponding city or region in the calculation process

3. Establishment of the Multiple Linear Regression Model

The maximum level of disposable plastic product waste depends on many factors. However, the main need to consider the source & current status (that is, objective factors) of the remaining plastic waste in the environment and environmental carrying capacity. When thinking about this question, we carried out variable control. Assuming that the current status and carrying capacity remain unchanged, we consider the source separately. It is known that the total amount of plastic waste remaining in the environment this year will be regarded as the current status of plastic waste in the next year, and it is the non-recyclable plastic waste that really remains and affects the environmental protection level. Therefore, in this question, we will focus on the analysis and evaluation of the value of non-recyclable plastic waste in various cities or regions.

It is known that the value of non-recyclable plastic waste in each region is a random variable y. In order to consider the effects of multiple non-random factors, we summarize the m factors and data of the variable y, and establish a Multiple Linear Regression Model to analyze the problem.

Suppose y and x_1, x_2, \ldots, x_m and $\beta_0, \beta_1, \ldots, \beta_m$ impact parameter has the following relationships:

$$ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_m x_m + \varepsilon $$

(1)

At the same time, in order to accurately describe the lives of residents and the impact of national and even continent policies on the amount of non-recyclable plastic waste, we quantify the impact of these factors. Before this, we will establish an evaluation scale, which is basically divided into five items according to the importance of each influencing factor, and give evaluation values of evaluation scales
1, 3, 5, 7, and 9, and set another four scales between the five basic scales. Between the scales, and given 2, 4, 6, 8 measurement values, a total of nine scales, the significance of each scale is shown in the following Table 2:

Table 2. Evaluation of the impact of recycling, lifestyle, policies, and use of alternative materials

Assessment Scale	Definition
1	Condition, influence or restraint quite weak
3	Condition, influence or restraint relatively weak
5	Condition, influence or restraint in general
7	Condition, influence or restraint relatively strong
9	Condition, influence or restraint quite strong
2, 4, 6, 8	Median of adjacent scales

To this end, we select representative cities in the world for analysis and list the equations:

\[
\begin{align*}
y_1 &= \beta_0 + \beta_1 x_{11} + \beta_2 x_{12} + \cdots + \beta_m x_{1m} + \varepsilon_1 \\
y_2 &= \beta_0 + \beta_1 x_{21} + \beta_2 x_{22} + \cdots + \beta_m x_{2m} + \varepsilon_2 \\
&\cdots \\
y_j &= \beta_0 + \beta_1 x_{j1} + \beta_2 x_{j2} + \cdots + \beta_m x_{jm} + \varepsilon_j
\end{align*}
\]

(2)

Among them, the error terms \(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_j \) are independent of each other and satisfy the \(N(0, \sigma^2) \) distribution.

4. Data Analysis and Results

After establishing the model, we selected a few influential countries in the world and summarized their plastic waste residues based on data from multiple influencing factors into the following Table 3:

Table 3. Plastic waste and influencing factors in several cities in 2010

Country	Code	Year	Plastic waste generation (tonnes per year) \(w_1 \)	Source (output) \(w_2 \)	Recycle status \(w_3 \)	Use of alternative plastics \(w_4 \)	Impact on people \(w_5 \)	Continent policy \(w_6 \)	Policy \(w_7 \)
Australia	AU	2010	900658	3%	1	8	9	2	9
Brazil	BR	2010	11852055	11%	7	3	8	1	3
Canada	CA	2010	1154309	5%	6	7	7	2	6
China	CH	2010	59079741	35%	4	4	4	1	3
France	FR	2010	4557128	7%	1	6	8	3	9
India	IND	2010	4493080	9%	5	7	2	1	9
United Kingdom	GB	2010	4925590	8%	4	8	5	3	3
United States	US	2010	37825550	22%	5	9	7	2	9

Data sources: Hannah Ritchie and Max Roser (2020) - "Plastic Pollution". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/plastic-pollution' [Online Resource]

Put the data in the Table 3 into SPSS for analysis to get Coefficients Table 4:
Table 4. Coefficientsa

Model	Unstandardized Coefficients	Standardized Coefficients	t	Sig.		
	B	Std. Error	Beta			
1	(Constant)	-19511497.659	1452146.563	-13.436	.047	
	Source (output)	2076759.465	21054.383	1.046	98.638	.006
	recycle status	-261885.629	124032.876	-0.027	-2.111	.282
	Use of alternative plastics	993278.289	148123.032	0.966	6.706	.094
	Impact on people	-1487753.375	389941.940	-0.058	-3.815	.163
	Continent policy	-126002.615	101444.672	-0.018	-1.242	.432

a Dependent Variable: Plastic waste generation (tonnes, total) (tonnes per year)

Multivariate linear regression equation between the amount of waste remaining and the influencing factors:

\[y = -19511497.659 + 2076759.465w_1 - 261885.629w_2 + 993278.289w_3 + 993278.289 + 1178766.689w_4 - 1487753.375w_5 - 126002.615w_6 (3) \]

From the multiple linear regression model and data analysis results, it can be known that for every 1% increase in plastic output, the global plastic waste will increase by about 2077 tonnes; for each level of recycling capacity, the global plastic waste will decrease by about 261886 tonnes; Every time the usage is reduced by one level, the global plastic waste is reduced by about 993278 tonnes; each level of residents' reaction decreases by one level, the global plastic waste is reduced by approximately 118767 tonnes; each level of stricter continent policy is increased by one level, the global plastic waste will reduce about 1487753 tonnes; for each level of stricter national policy, the global plastic waste will be reduced by about 126003 tonnes.

5. Sensitivity Analysis

Here, we perform a sensitivity analysis on the impact of the minimum level of plastic waste on human lifestyle, effects on the environment, and plastic industry.

Among them, human lifestyle can be divided into three indicators: daily necessities, everyday packaging and home appliances. Effects on the environment can be divided into three indicators: air, soil, and water, and plastic industry can be divided into raw materials, machining, detection and product sales.

Here we fill the Table 5 below with the impact of reducing plastic waste by 1000, 2000, 3000, 4000 tonnes on these ten indicators. The specific data is as follows:

Table 5. Plastic waste reduction sensitivity analysis table (Unit: tonnes)

Index	1000	2000	3000	4000
Daily necessities	9.16704	18.33408	27.50112	36.66816
Everyday packaging	30.28094	60.56188	90.84282	121.12376
Home appliances	66.65202	133.30404	199.95606	266.60808
Air	37.13328	74.26656	111.39984	148.53312
Soil	134.89704	269.79408	404.69112	539.58816
Water	120.99132	241.98264	362.97396	483.96528
Raw material	32.52640	65.052800	97.5792	130.1056
Machining	179.9467	359.89340	539.8401	719.7868
Detection	179.9467	359.89340	539.8401	719.7868
Product sales	97.7194	195.43880	293.1582	390.8776
We found that plastic has the least impact on daily necessities and the largest impact on machining and detection.

6. Conclusions
Through Table 6 Model Summary from SPSS, we verified that the multiple linear regression equation is reasonable and effective.

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000a	1.000	.999	484201.710

b. Dependent Variable: Plastic waste generation (tonnes, total) (tonnes per year)

In this model summary table, R stands for goodness of fit, which is used to measure how well the model fits the known data. The closer its value is to 1, the better the model.

Table 7 shows the results of analysis of variance, which can show whether the entire regression equation has any use value.

Model	Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	318227593943	6	530379323238	2262.215	.016b
		1462.500		577.060		
	Residual	234451295932.	1	234451295932.		
		576		576		
	Total	318251039072	7	7395.000		

a. Dependent Variable: Plastic waste generation (tonnes, total) (tonnes per year)
b. Predictors: (Constant), policy, Impact on people, Continent policy, Source (output), recycle status, use of alternative plastics

Among the above, in Table 6, R stands for goodness of fit, which is used to measure how well the model fits the known data. The closer its value is to 1, the better the model.

In Table 7, the results of the analysis of variance of the F value are used to make an overall test of our entire linear regression equation to prove whether the equation is of local use value. The Sig value corresponding to the F value is less than 0.05 can be regarded as regression Equations are useful.

The main purpose of this paper is to find the key to effectively reduce the generation of plastic waste. In order to understand how to reduce plastic waste, we first analysed the factors that affect plastic waste. We find that plastic waste is affected by plastic output, people's lifestyle, the use of recyclable plastics and policies. So, in order to minimize the amount of plastic waste in the world, not only people's efforts but also the joint assistance of governments and international organizations are needed.

Acknowledgement
This study was supported by the National Natural Science Foundation of China (11871185).

References
[1] Jenna R.Jambeck, Roland Geyer, Chris Wilcox, Theodore R. Siegler, Miriam Perryman, Anthony Andrady, Ramani Narayan, Kara Lavender Law, Plastic waste inputs from land into the ocean. Science Letter, vol 347 no.768, 2015.
[2] Roland G, Jenna R.J, Kara L.L, Production, use, and fate of all plastics ever made. Science Advances, Sci Adv vol.3 no.7, 2017.
[3] Yao haowen, Countermeasure model for the crisis of waste plastic flooding. China Resources Comprehensive Utilization, vol 38 no.6, pp69-71, 2020.
[4] Wang J.J, Liang S.Y, Liu S.L and Li Y, Analysis of Negative Impact of Waste Plastics on the Environment and Countermeasures——Based on DPSIR Model. Rural Economy and Science-Technology, vol.30 no.16, pp.1-2, 2019.
[5] Plastics-the Facts 2019, [online] Available: https://www.plasticseurope.org/en/resources/market-data.

[6] Chen J.F, Ning P, Hou M.M, Predication model for urban waste output. Recycling Research, no.6, pp 25-27, 2003.

[7] World Health Organization. SINGLE-USE-PLASTICS: United Nations Environment Programme. Nairobi: WHO, 2018.