EEG Signal Classification using Variational Mode Decomposition

Akshith Ullal
Department of EECS
Vanderbilt University
Email: akshith.ullal@vanderbilt.edu

Ram Bilas Pachori
Department of EE
Indian Institute of Technology, Indore
Email: pachori@iiti.ac.in

Abstract—Epilepsy affects about 1% of the population every year, and is characterized by abnormal and sudden hypersynchronous excitation of the neurons in the brain. The electroencephalogram (EEG) is the most widely used method to record brain signals and diagnose epilepsy and seizure cases. In this paper we use the method of Variational Mode Decomposition (VMD) in our analysis to classify seizure/seizure free signals. This technique uses variational non recursive mode decomposition, in comparison to other methods like Empirical Mode (EMD) and Hilbert-Huang transform which recursively decompose the signals, making them more susceptible to noise and sampling rate. VMD decomposes a signal into its components which are called principal modes. In our analysis, 4 features of the decomposed signals namely Renyi Entropy, second order difference plot (SODP), fourth order difference plot (FODP) and average amplitude are investigated, both individually and using a ranking methodology considering all 4 features at the same time. The SODP of decomposed signal modes is an elliptical structure. The 95% confidence ellipse area measured from the SODP of the decomposed signal modes has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signal. For the classification, a Multilayer Perceptron (MLP) with back propagation algorithm as the training method was used. A high percentage of accuracy was obtained when the features were used individually for classification and an even higher degree of accuracy was obtained when the ranking methodology was used.

Index Terms—Electroencephalogram (EEG) signal, Epilepsy, Variational Mode Decomposition (VMD), Second-order difference plot (SODP), Fourth-order difference plot (FODP).

I. INTRODUCTION

Epilepsy is the fourth most common neurological disorder and affects people of all ages.[1] Epilepsy is one of the reasons seizures occur[2]. During the seizure phase there is a lot of uncontrolled electrical disturbances taking place between the neurons of the brain. The electroencephalogram (EEG) signal is the most common way to measure neural activity on the surface of the brain, and is widely used in the detection of epilepsy[3]. Generally normal activity of the brain consists of non-synchronous signals, as the neurons are firing in different directions, when the brain is performing different activities[4]. However, during seizure the electrical activity can become highly synchronous which is what we are interested in looking at. Not all seizures are caused by epilepsy. Some other causes include psychogenic non-epileptic seizures, syncope, sub-cortical movement disorders and migraine variants[5]. Our main goal in this paper is to be able to classify epileptic from non-epileptic seizures. Although EEG signals can be noisy and contain artefacts, generally they can be classified as having 5 frequency bands, namely delta, theta, alpha, beta and gamma bands[6]. In the earlier days, EEG signal analysis was conducted by assuming the signal to be stationary. Hence time and frequency analysis were conducted independently as in [7][8]. The problem with this approach was that, a time domain analysis would lose resolution in frequency and vice versa, which meant some information would be lost. In order to tackle this problem, the time-frequency domain analysis was used in [9][10] by considering the EEG signal to be non-stationary. These techniques included using wavelet and multi-wavelet transforms[11-17]. In addition to time-frequency methods, others include parametric, non-parametric and eigen-vector methods.

The parametric model, as the name suggests is based on the assumption that the EEG signal satisfies a particular generating model and its behavior can be described by using a formula with a number of parameters to be estimated. Some of the widely used parametric methods are Auto-regressive model, Moving Average model, Auto-regressive moving average model[18]. The AR model is very good at representing signals with high and narrow peaks. The Moving Average model is better at representing broad peaks. Non-parametric methods rely on calculating the power spectral density (PSD) in order to represent spectral resolution. There are 2 main types which are Periodogram and Correlogram. These 2 techniques provide reasonable resolution for sufficient data lengths. However they suffer with the problem of having a high variance, even for longer data lengths and methods have been tried in [19] to reduce the variance by making a compromise on the resolution. Eigen vector methods are used for estimating frequencies when the signals have been corrupted by noise[20]. The techniques of wavelet transform are not exactly completely time-frequency analysis, as they divide the signal into small length of time, but lose resolution within those small segments. Recently signal decomposition techniques like Empirical Mode Decomposition (EMD) [21] have been used in EEG signal analysis for analysing non-linear and non-stationary signals and many of these techniques have been applied to EEG signals[22-28]. The idea behind
EMD is to decompose the original signals into its Intrinsic Mode Functions (IMF). IMFs are derived signal components which have inherent characteristics of the original signals. They mainly satisfy 2 conditions. 1) In the whole signal, the number of extrema and the number of zero crossings must be the same or at most differ by one. 2) At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima should be zero[29]. In other words, these conditions define the IMFs as AM-FM signals. With some shortcomings, EMD algorithm has been fairly widely used in many applications such as, signal decomposition in audio engineering [30], climate analysis [31], and various flux, respiratory, and neuromuscular signals found in medicine and biology [32-35]. The problem with EMD is that there is a lack of mathematical theory behind it as the algorithm is empirical in nature. Hence the algorithm’s results are highly dependent on the methods of extremal point finding, interpolation of extremal points into carrier envelopes, and the stopping criteria imposed, which are techniques that are subjective in nature [29]. In order to overcome some of the drawbacks of EMD, a new technique was developed called Variational Mode Decomposition (VMD) in [29]. One of the main drawbacks of EMD is that it is recursive, which does not allow backward error correction[36]. In contrast, VMD is an intrinsic, and variational method that determines the frequency band of each mode adaptively and the modes concurrently. Hence if there is an error in one of the iterations while calculating the frequency bands, it can be quickly balanced while calculating the modes. The noise characteristics obtained during VMD has a close relation to Wiener filtering [29]. Our main aim in this paper is to apply the VMD algorithm in order to classify EEG signals.

II. METHODOLOGY

A. Dataset

The EEG dataset used in this analysis is available publicly online[37] and has been taken from the University of Boon website. The entire recorded data is divided into five groups namely Z, O, N, F and S which contain the signals of both healthy and seizure affected subjects. Each of this set has got 100 single channel EEG signal recording, that were obtained by sampling at a rate of 173.61Hz for a duration of 23.6 seconds. The sub-sets Z and O have been recorded using surface EEG recordings of five healthy volunteers with eyes open and closed, respectively, using standard electrode placement scheme according to the international 10-20 system. The signals in two subsets (N and F) have been recorded in seizure-free intervals from five patients in the epileptogenic zone (subset F) and from the hippocampal formation of the opposite hemisphere of the brain. The subset S includes seizure activity selected from all recording sites exhibiting ictal activity. The subsets N, F, and S have been recorded intracranially. All EEG signals were recorded with the same 128-channel amplifier system with an average common reference. The main goal was to check the accuracy of the proposed method in classifying between Normal/Seizure, Seizure/Seizure-free and Seizure/Non-Seizure signals. For the Normal/Seizure classification, the datasets Z, O, and S were used. For the Seizure/Seizure-free classification the datasets N, C and S were used and finally for the Seizure/Non-Seizure classification, all the five datasets of Z, O, N, C, and S were used.

B. Variational Mode Decomposition

VMD uses variational techniques and the main objective is to decompose the original signal into its discrete number of principal modes or sub modes that have specific sparse properties, while also keeping in mind the reconstruction of the original signal from these modes. In the VMD algorithm we have chosen the bandwidth as the sparse property for each decomposed mode[29]. Hence our final objective is to decompose the signal into its respective modes and also calculate their centre frequency u_k. This means each of the sub-modes will have a centre frequency ω_k which will be calculated during the decomposition. The calculation of bandwidth (centre frequency) for each mode is done as follows: 1) the analytical signal of the mode is calculated by taking the Hilbert transform of the signal which gives us the unilateral frequency spectrum of the mode. 2) Each mode signal is then shifted to base band by mixing it with another signal which is tuned to the respective estimated centre frequency. 3) The bandwidth is now estimated by taking the squared L-2 norm of the gradient. The variational problem with the reconstruction constraint can be written as

$$\min_{u_k, \omega_k} \left\{ \sum_k \left\| \partial_t \left[\left(\delta(t) + \frac{j}{\pi t} \right) * u_k(t) \right] e^{-j\omega_k t} \right\|_2^2 \right\}$$

The reconstruction constraint can be enforced in different ways. In this algorithm 2 methods are used namely, the Lagrange multiplier and the quadratic penalty method. The Lagrangian multiplier is used for enforcing the reconstruction constraint and the quadratic penalty method is used to increase the convergence of the result. Applying this condition the above equation can be rewritten as follows

$$\mathcal{L}(u_k, \omega_k, \lambda) = \alpha \sum_k \left\| \partial_t \left[\left(\delta(t) + \frac{j}{\pi t} \right) * u_k(t) \right] e^{-j\omega_k t} \right\|_2^2$$

$$+ \left\| f - \sum_k u_k \right\| + \left\langle \lambda, f - \sum_k u_k \right\rangle.$$

To find the optimal centre frequency we need to minimize the above Lagrangian, in other words to find the saddle point. This is done in iterations using the alternate direction method of multipliers (ADMM) as shown in [29]. The 3 main equations of the iteration are shown below:

$$\dot{u}_k^n + 1 \leftarrow \frac{\sum_{i<k} \dot{u}_{i}^{n+1} + \sum_{i>k} \dot{u}_{i}^{n} + \frac{\lambda^n}{2}}{1 + 2\alpha (\omega_k - \omega_{k}^n)}.$$

$$\omega_k^{n+1} \leftarrow \frac{\int_0^{\infty} \omega |\dot{u}_k^{n+1}(\omega)|^2 d\omega}{\int_0^{\infty} |\dot{u}_k^{n+1}(\omega)|^2 d\omega}.$$
The method used to calculate the SOPD area is given below. The area is calculated for each of the decomposed signal mode. The confidence area has been used to calculate the SODP area. The EEG signals and Centre of pressure (COP) signals. The 95% samples in both the X and Y axis. Hence the X(n) and Y(n)

\[X(n) = x(n+1) - x(n) \]
\[Y(n) = x(n+2) - x(n+1) \]

Recently, SODP has been used in variability analysis for EEG signals and Centre of pressure (COP) signals. The 95% confidence area has been used to calculate the SODP area. The area is calculated for each of the decomposed signal mode. The method used to calculate the SODP area is given below:

- Compute the mean values of X(n) and Y(n)

\[S_X = \frac{1}{N} \sum_{n=0}^{N-1} X(n)^2 \]
\[S_Y = \frac{1}{N} \sum_{n=0}^{N-1} Y(n)^2 \]
\[S_{XY} = \frac{1}{N} \sum_{n=0}^{N-1} X(n)Y(n) \]

- Compute the D parameter as:

\[D = \sqrt{(S_X^2 + S_Y^2) - 4(S_X^2 S_Y^2 - S_{XY}^2)} \]
\[a = 1.7321 \sqrt{S_X^2 + S_Y^2 + D} \]
\[b = 1.7321 \sqrt{S_X^2 + S_Y^2 - D} \]

From the parameters a and b, the ellipse area is calculated as:

\[A_{ellipse} = \pi ab \]

For the fourth order difference plot (FODP), the procedure is same as SODP except that we shift the signal sample by 2 samples in both the X and Y axis. Hence the X(n) and Y(n) in equations (7) and (8) change to

\[X(n) = x(n+2) - x(n) \]
\[Y(n) = x(n+4) - x(n+2) \]

The rest of process remains the same as in SOPD calculations.

D. Renyi Entropy

The idea of using entropy to classify signals stems from the fact that entropy characterises the distortedness or randomness of the signal. Generally normal signals tend to have more random impulses compared to ictal signals. Spectral entropy [40] is evaluated using the normalized Shannon entropy, which quantifies the spectral complexity of the time series. Fourier transformation is used to obtain the power spectral density (PSD) of the time series. The PSD represents the distribution of power of the signal according to the frequencies present in the signal. In order to obtain the power level for each frequency, the Fourier transform of the signal is computed, and the power level of the frequency component is denoted by \(P_f \). The normalization of the power is performed by computing the total power as \(\sum P_f \) and dividing the power level corresponding to each frequency by the total power as:

\[p_f = \frac{P_f}{\sum P_f} \]

We have used the Renyi entropy as the feature to classify EEG signals [41], which can be generally defined as:

\[RenEn(\alpha) = \frac{1}{1-\alpha} \log \left(\sum_f p_f^\alpha \right), \alpha > 0 \]

In our case we use \(\alpha = 2 \) which is also known as quadratic Renyi entropy.

E. Average Amplitude

Using the VMD algorithm to decompose the modes of signal, the average value of the amplitude was one of the simple yet distinguishable characters used in the classification. It is calculated by taking the sum of the absolute value of all the samples and dividing it by 4097, i.e the total number of samples.

F. Multilayer Perceptron (MLP) based classification

The classifier used for this analysis is the Multilayer Perceptron (MLP) which is a feed forward artificial neural network (ANN). ANNs are inspired to emulate the working of the human brain and contain different number of nodes which can be distributed across many layers, with all the elements of one layer connected to the next one. Each layer has got an activation function and a weight that connects it to another node of the next layer. In our classifier we used a sigmoid activation function for each node. The configuration that yielded the best results were 2 hidden layers, each consisting of 10 nodes each and an input and output layer.

III. RESULTS

Variable Mode Decomposition (VMD) decomposes a given signal into its principal modes. The analysis was done using 4 features extracted from the principal nodes which are, the Renyi entropy, the second order difference plot (SODP), fourth order difference plot (FODP) and average amplitude. The features were tested individually and also combining all the features, i.e all the above features were used for
(a) Variational Mode Decomposition of the 23.6s seizure free EEG signal

(b) Variational Mode Decomposition of the 23.6s ictal EEG signal

Fig. 1: Comparison of seizure-free and ictal signals after Variational Mode Decomposition. Ictal signals have a much larger amplitude compared to seizure-free signals across the different modes.

In VMD, the first principal mode has the lowest frequency. The consecutive modes constitute the higher frequencies as seen in Fig 1, unlike in Empirical Mode Decomposition (EMD) where the first few modes, constitute the higher frequencies. Among the 4 features individually investigated, The Renyi entropy has the least accuracy, the results of which are shown in Table 1. This table shows the results for which the first 80 samples were used as the training data, and the remaining 20 samples (each set (Z,O,N,F,S) contains 100 samples) were used as classification test data. The entropy was calculated for each of the decomposed modes and fed as separate inputs to the MLP classifier. The results for Normal/Seizure classification (Z,O and S) are higher, as this set consists of signals from healthy patients and confirmed seizure patients. The Seizure/Seizure-free (N,F and S) and Seizure/Non-Seizure (Z,O,N,F and S) classifications consist of the N and F datasets which are seizure free, but may have other brain conditions, which increases the risk of misclassification and reduces the accuracy.

The SODP of the decomposed modes is plotted in Fig 2. We can observe the elliptical structure of the modes. Hence we can calculate the area of the ellipse. We have used 95% confidence ellipse area as a feature for discriminating ictal EEG signals from the seizure-free EEG signals. The results obtained are shown in Table 1. The second order difference plot concept can be extended to the fourth-order by delaying
the signal samples twice the amount. This is called the fourth order difference plot (FODP). The calculation of the ellipse area remains the same as in the case of SODP. The final feature used is the average amplitude of each of the decomposed modes. Compared to EMD, the difference in amplitude using VMD is more pronounced between the decomposed modes of seizure free and ictal signals which gives a high degree of accuracy. The results are again shown in Table 1.

We have also tested using all 3 features in the classification logic. Renyi entropy was left out due to its lower accuracy. The ranking methodology used for this is as follows: The classification is initially done using each feature individually. Once the classification results for all 3 features are obtained, they are compared. If all three features output the same result, then that result will be the output. If the results differ, then the

Feature/Accuracy(%)	Normal/Seizure	Seizure/Seizure-Free	Seizure/Non-Seizure
SODP	93.3	96.6	96
FODP	91.6	100	96
Average Amplitude	98.3	98.3	98
Renyi Entropy	98.3	88.3	90
(a) Frequency spectrum of the principal modes of a seizure free signal

(b) Frequency spectrum of the principal modes of an ictal signal

Fig. 3: Comparison of the spectrum of seizure-free and ictal signals.

Feature/Accuracy(%)	Normal/Seizure	Seizure/Seizure-free	Seizure/Non-Seizure
3 features (except entropy)	98.3	100	99

TABLE II: Accuracy(%) with features ranked

majority classification is taken as the result (Table II). In order to get rid of the bias of selecting a particular set of training and testing samples, for this classification 80 samples were randomly selected without replacement, and the remaining 20 samples which were not in the training set were used as the test set. Same feature ranking method was used as the previous method. 24 iterations were run, where in each iteration the training and test set is random. The results are shown below:

IV. CONCLUSION

In this paper, the Variational Mode Decomposition (VMD) method was applied to classify EEG signals as seizure-free/seizure. The VMD had many improvements over previous methods like EMD and Wavelet transforms. It has also given us promising results with an average accuracy of 98.2%, 96.4% and 97.9% for the classification of Normal/Seizure, Seizure/Seizure-free and Seizure/Non-Seizure cases respectively. It is a slight improvement on the accuracy of 97.7% obtained in [39] and a significant improvement over the accuracy of 94% and 95% obtained in [7] and [8] respectively. However we would like to try our algorithm over a larger data set, as the Bonn data set in total has only 300-500 samples, based on the type of, for both testing and training. Hence
TABLE III: Accuracy(%) with training and testing data randomized (mutually exclusive)

Iteration	Normal/Seizure	Seizure/Seizure-free	Seizure/Non-Seizure
1	98.3	96.3	96
2	100	98.3	97
3	100	95	98
4	98.3	96.3	97
5	98.3	96.3	99
6	96.3	96.3	97
7	100	98.3	97
8	100	98.3	99
9	100	95	100
10	96.3	93.6	98
11	100	93.6	98
12	100	100	95
13	96.3	93.6	99
14	95	98.3	98
15	98.3	100	98
16	98.3	96.3	98
17	96.3	93.6	98
18	95	96.3	97
19	96.3	96.3	100
20	98.3	98.6	95
21	96.3	93.6	96
22	100	93.6	99
23	98.3	95	100
24	98.3	98.6	100
Average	98.2	96.4	97.9

a single anomaly or misclassification would bring down the accuracy drastically. We are also looking at applying new features like Lyapunov exponent, Shannon entropy etc in our future work.

REFERENCES

[1] F. Mormann, R.G. Andrzjak, C.E. Elger, K. Lehnertz . Seizure prediction: the long and winding road, vol 2, pp. 314-333, December 2007.

[2] L. Guerra, M. Moreno, J Chozas, R. Bolanos ”Electrolyte Disturbance and Seizures”, Epilepsia The official journal of the International League against Epilepsy, 28th November 2006.

[3] L.D. Iasemidis, et al,”Adaptive epileptic seizure prediction system”, IEEE Transactions on Biomedical Engineering, pp. 616-627, May 2003.

[4] Hammer, edited by Stephen J. McPhee, Gary D . Pathophysiology of disease : an introduction to clinical medicine , New York: McGraw-Hill Medical, 2010.

[5] Ann Pietrangelo, (2017, January 10). [Online]. Available: http://www.healthline.com/health/epilepsy

[6] Tatum, William O, “Ellen R. Grass Lecture: Extraordinary EEG”, Neuro diagnostic Journal 54.1, pp. 3-21, 2014.

[7] S. Altunay, Z. Telatar, O. Erogul, “Epileptic EEG detection using the wavelet transform”, Expert Systems with Applications , pp. 69-87, February 2003.

[8] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Transactions on Biomedical Engineering, pp. 205-211, February 2007.

[9] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Transactions on Biomedical Engineering, pp. 205-211, February 2007.

[10] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Transactions on Biomedical Engineering, pp. 205-211, February 2007.

[11] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Transactions on Biomedical Engineering, pp. 205-211, February 2007.

[12] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Transactions on Biomedical Engineering, pp. 205-211, February 2007.
[33] A. O. Andrade, S. Nasuto, P. Kyberd, C. M. Sweeney-Reed, and F. Van Kanijn, "EMG signal filtering based on empirical mode decomposition", *Biomed. Signal Process. Control*, vol. 1, no. 1, pp. 44-55, January 2006.

[34] S. Liu, Q. He, R. X. Gao, and P. Freedson, "Empirical mode decomposition applied to tissue artifact removal from respiratory signal", *Proc. IEEE Eng. Med. Biol. Conf. (EMBC)*, pp. 3624-3627 January 2008.

[35] I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke, D. P. Mandic, "Application of empirical mode decomposition in removing fidgeting interference in Doppler radar life signs monitoring devices", *Proc. IEEE Eng. Med. Biol. Conf. (EMBC)*, pp. 340-343 January 2009.

[36] G. Rilling, P. Flandrin, and P. Gonalves, "On empirical mode decomposition and its algorithms", *Proc. IEEE-EURASIP Workshop Nonlinear Signal Image Process. (NSIP)*, vol. 3, pp. 8-11, 2003.

[37] R.G. Andrzejak, et al, "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state", *Physical Review E*, vol. 64, Article ID 061907, 2001.

[38] M.E. Cohen, D.L. Hudson, P.C. Deedwania, "Applying continuous chaotic modeling to cardiac signal analysis", *IEEE Engineering in Medicine and Biology Magazine*, pp. 97-102, October 1996.

[39] R.B Pachori, S Patidar, "Epileptic seizure classification in EEG signal using second order difference plot of intrinsic mode functions", *Computer Programs and Methods in Bio-medicine*, pp. 494-502, 2014.

[40] J. Fell, J. Rschke, K. Mann, C. Schffner, "Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures", *Electroencephalogr. Clin. Neurophysiol*, pp. 401-410, 1996.

[41] R.B Pachori, R Sharma, U Acharya, "Application of Entropy measures on Intrinsic Mode functions for the automated identification of Focal EEG signals", *Entropy*, pp. 669-691, 2015.