Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study

Min-Ju Kim, Nam-Kyoo Lim, Sun-Ja Choi and Hyun-Young Park

Hypertension and diabetes share common risk factors and frequently co-occur. Although high blood pressure (BP) was reported as a significant predictor of type 2 diabetes, little is known about this association in Korea. This study investigated the relationship of prehypertension and hypertension with type 2 diabetes in 7150 middle-aged Koreans, as well as the effect of BP control on diabetes development over 8 years. At 8 years, 1049 (14.7%) of the 7150 participants had newly developed diabetes, including 11.2, 16.7 and 21.5% of baseline normotensive, prehypertensive and hypertensive subjects, respectively. The overall incidence rate of diabetes was 22.3 events per 1000 person-years. Subjects with baseline prehypertension (hazard ratio (HR), 1.27; 95% confidence interval (CI), 1.09–1.48) and hypertension (HR 1.51; 95% CI, 1.29–1.76) were at higher risk of diabetes than normotensive subjects after controlling for potential confounders (P-value for trend < 0.001). These associations persisted even when subjects were stratified by baseline glucose status, sex and body mass index (BMI). The risk of diabetes was significantly higher in subjects who had normal BP at baseline and progressed to prehypertension or hypertension at 8 years (HR, 1.48; 95% CI, 1.20–1.83) than those with controlled BP, but these associations were not observed in subjects with baseline prehypertension and hypertension. These findings showed that prehypertension and hypertension are significantly associated with the development of diabetes, independent of baseline glucose status, sex and BMI. Active BP control reduced incident diabetes only in normotensive individuals, suggesting the need for early BP management.

Hypertension Research (2015) 38, 783–789; doi:10.1038/hr.2015.72; published online 16 July 2015

Keywords: blood pressure; diabetes; incidence

INTRODUCTION

The worldwide incidence of diabetes has increased significantly, with the number of people of all ages with diabetes expected to approximately double between 2000 and 2030. The prevalence of diabetes increased more among Asians than among whites in 2005. In Korea, the prevalence of diabetes in subjects aged ≥30 years was increased from 8.6% in 2001 to 11.0% in 2013. Diabetes is associated with increased cardiovascular morbidity and mortality, with the risk of vascular diseases being about twofold higher in diabetic patients than without diabetes. Early detection of patients at high risk for diabetes is particularly important in preventing cardiovascular diseases.

Age, ethnicity, obesity, blood pressure (BP), and fasting blood glucose and lipid concentrations were identified as risk factors for diabetes. In particular, hypertension, which is also associated with cardiovascular disease, is emerging as a risk factor for diabetes. A cross-sectional study from China showed that hypertensive subjects with diabetic risk had a greater risk of cardiovascular disease than normoglycemic subjects. Hypertension and diabetes were found to share common risk factors, including obesity, lipid profile and BP; moreover, as both are factors of metabolic syndrome, they commonly occur together in individuals. Although several longitudinal studies indicated that higher BP is a significant predictor of type 2 diabetes, most of these studies have limitations, including self-reporting of diabetes and/or BP, inclusion of a single sex, and lack of information on important baseline characteristics that may confound these relationships.

Glucose surveillance may be important in both hypertensive and prehypertensive individuals. Despite findings showing the association between BP and diabetes, little is known about this association in Koreans or about the relationship between prehypertension and incident type 2 diabetes. Therefore, this study investigated the relationships between prehypertension and hypertension with type 2 diabetes in a prospective community-based epidemiologic cohort that had been followed-up for 8 years. The effect of BP control on development of diabetes was determined by evaluating the risk of incident diabetes relative to change in BP.

MATERIALS AND METHODS

Study participants

The Korean Genome and Epidemiology Study is a population-based prospective cohort study designed to investigate the prevalence of and risk factors for chronic diseases in Korea and supported by the Korean National Institute of...
A1C (HbA1C) concentrations by high-performance liquid chromatography. The approval by the Institutional Review Board of the Korea Centers for Disease follow-up and 217 with incomplete data were excluded. A total of 7150 people diabetes and 451 with incomplete data were excluded. The remaining 8214 the National Institute of Health, Korea. The details of the present cohort have homeostatic model for insulin resistance was calculated as fasting insulin

Clinical and biochemical measurements

Body weight was measured in the nearest 0.1 kg, and height was measured to

Table 1 Demographic and clinical characteristics of the study subjects at baseline

Variable	NGT (n = 5593)	Prediabetes (n = 1557)	P-value for trend	NGT (n = 5593)	Prediabetes (n = 1557)	P-value for trend		
Age (years)	49.1 ± 7.8	53.4 ± 9.0	55.8 ± 8.4	<0.001	50.1 ± 8.3	54.3 ± 8.8	56.4 ± 8.4	<0.001
BMI (kg·m²)	23.8 ± 2.8	25.2 ± 3.1	25.4 ± 3.1	<0.001	24.5 ± 3.1	25.0 ± 3.1	25.7 ± 3.4	<0.001
WC (cm)	79.8 ± 8.1	83.4 ± 8.6	85.9 ± 8.2	<0.001	80.7 ± 8.4	84.2 ± 8.3	86.5 ± 8.6	<0.001
SBP (mm Hg)	103.8 (103.5–104.1)	123.6 (123.2–124.0)	138.2 (137.2–139.2)	<0.001	104.2 (103.5–105.0)	124.8 (124.1–125.5)	136.5 (134.9–138.2)	<0.001
DBP (mm Hg)	67.0 (66.7–67.3)	79.5 (79.1–79.8)	87.7 (87.1–88.3)	<0.001	67.0 (66.4–67.6)	79.8 (79.2–80.4)	86.0 (84.9–87.1)	<0.001
FPG (mg/dl)	80.4 (80.2–80.6)	81.6 (81.2–82.0)	81.8 (81.4–82.3)	<0.001	86.5 (85.7–87.2)	88.3 (87.3–89.4)	88.0 (87.0–89.0)	0.013
PP2 glucose (mg/dl)	99.2 (98.5–100.0)	99.6 (98.4–100.9)	102.5 (101.1–104.0)	<0.001	151.9 (150.2–153.6)	152.6 (149.9–155.2)	153.9 (151.5–156.3)	0.182
Fasting insulin (μU/ml)	6.2 (6.0–6.3)	6.7 (6.3–6.8)	7.1 (6.8–7.4)	<0.001	6.1 (5.9–6.4)	6.8 (6.4–7.2)	7.3 (6.9–7.7)	<0.001
PP2 insulin (μU/ml)	16.4 (15.9–16.9)	16.3 (15.6–17.2)	19.9 (18.8–21.1)	<0.001	25.4 (23.6–27.3)	24.4 (22.0–27.0)	26.7 (24.2–29.4)	<0.001
HOMAIR (%)	1.2 (1.2–1.3)	1.3 (1.3–1.4)	1.4 (1.4–1.6)	<0.001	1.3 (1.2–1.4)	1.5 (1.4–1.6)	1.6 (1.5–1.7)	<0.001
HbA1C (%)	5.5 (5.4–5.5)	5.5 (5.4–5.5)	5.5 (5.4–5.5)	<0.001	5.6 (5.4–5.7)	5.7 (5.5–5.7)	5.7 (5.5–5.8)	<0.001
TC (mg/dl)	182.0 (180.9–183.1)	185.7 (183.9–187.5)	189.7 (187.6–198.1)	<0.001	189.8 (187.5–192.3)	199.8 (195.6–202.4)	196.0 (192.7–199.4)	0.003
HDL-C (mg/dl)	44.3 (44.0–44.7)	44.3 (43.8–44.8)	43.2 (42.6–43.7)	<0.001	44.3 (43.6–45.0)	44.2 (43.3–45.2)	43.5 (42.6–44.4)	0.146
LDL-C (mg/dl)	109.1 (108.1–110.2)	108.5 (106.7–110.3)	111.0 (108.9–112.6)	<0.014	114.2 (111.9–116.5)	117.8 (114.3–121.4)	113.3 (109.7–117.0)	0.665
TG (mg/dl)	120.8 (119.1–122.5)	136.3 (135.9–139.9)	149.1 (145.4–153.0)	<0.014	132.0 (127.9–136.2)	154.1 (147.6–160.9)	163.1 (156.8–169.8)	<0.001

Abbreviations: BMI, body mass index; BP, blood pressure; DBP, diastolic BP; FPG, fasting plasma glucose; HbA1C, hemoglobin A1C; HDLC, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model for insulin resistance; LDL-C, low-density lipoprotein cholesterol; NGT, normal glucose tolerance; PP2, postprandial 2 h; SBP, systolic BP; TC, total cholesterol; TG, triglyceride; WC, waist circumference.

The data are expressed as mean ± s.d. or as geometric mean (95% confidence interval (CI)). Between group differences were analyzed by one-way analysis of variance.

*Log-transformed values were analyzed, with the geometric means and 95% CIs back-transformed.
Definition of hypertension and diabetes mellitus

BP was classified according to the Seventh Report of the Joint National Committee on High BP categories as normal (<120 mm Hg systolic and <80 mm Hg diastolic); prehypertension (120–139 mm Hg systolic or 80–89 mm Hg diastolic); or hypertension (≥140 mm Hg systolic or ≥90 mm Hg diastolic or use of antihypertensive medication).

Diabetes mellitus was diagnosed according to the 2010 criteria of the American Diabetes Association as an FPG ≥126 mg dl⁻¹, or 2-h PG ≥200 mg dl⁻¹, HbA₁C ≥6.5% or use of an oral hypoglycemic agent, and prediabetes as either impaired fasting glucose (FPG levels 100–125 mg dl⁻¹) and/or impaired glucose tolerance (2-h PG levels 140–199 mg dl⁻¹).

Statistical analysis

Distribution testing for normality was performed using the Shapiro–Wilk test, with the data log-transformed to obtain normalized distributions. The baseline characteristics of subjects were expressed as means ± s.d. or geometric means with 95% confidence intervals (CIs). Differences between groups were compared by one-way analysis of variance for continuous variables and χ² tests for categorical variables. The geometric means of log-transformed variables were back-transformed for ease of interpretation and reported with their 95% CIs. The diabetes incidence rate was calculated per 1000 person-years for each BP category. Cox proportional hazards models were used to analyze time at risk and the association with BP categories, and reported as hazard ratios (HRs) and 95% CIs. Participants with normal BP at baseline were considered the reference.

Table 2 Risk of incident diabetes over 8 years in subjects categorized by baseline BP

BP groups	Number at risk	Diabetes cases	Unadjusted	Model 1	Model 2	
			P-value	P-value	P-value	
			for trend	for trend	for trend	
All						
Normal BP	3930	442	1 (reference)	<0.001	1 (reference)	<0.001
Prehypertension	1767	295	1.58 (1.37–1.83)**	<0.001	1.44 (1.23–1.67)**	<0.001
Hypertension	1453	312	2.12 (1.83–2.45)**	<0.001	1.90 (1.63–2.22)**	<0.001
Total	7150	1049				
NGT						
Normal BP	3198	197	1 (reference)	<0.001	1 (reference)	<0.001
Prehypertension	1378	126	1.58 (1.26–1.97)**	<0.001	1.43 (1.14–1.80)**	<0.001
Hypertension	1017	125	2.12 (1.69–2.65)**	<0.001	1.91 (1.51–2.41)**	<0.001
Total	5593	448				
Prediabetes						
Normal BP	732	245	1 (reference)	0.001	1 (reference)	0.002
Prehypertension	389	169	1.40 (1.15–1.70)**	0.001	1.28 (1.05–1.57)**	0.002
Hypertension	436	187	1.49 (1.24–1.81)**	0.001	1.38 (1.13–1.68)**	0.001
Total	1557	601				

Abbreviations: BP, blood pressure; CI, confidence interval; HR, hazard ratio; NGT, normal glucose tolerance.

By glucose status and BP category at baseline examination.

Model 1: adjusted for age and sex.

Model 2: adjusted for the variables in model 1 and fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol, body mass index, family history of diabetes (yes or no), education (less than high school, high school or equivalent, or college or above), alcohol use (current or non-current) and smoking status (current or non-current).

*P<0.05, **P<0.001.

Figure 2 Effect of baseline glucose status and BP on cumulative incidence rates of diabetes over 8 years.
RESULTS

Baseline characteristics

Table 3 Sex-stratified risk of incident diabetes over 8 years in subjects categorized by baseline BP

BP groups	Number at risk	Diabetes cases	Person-years	Diabetes incidence rate per 1000 person-years	OR (95% CI)	P-value for trend	OR (95% CI)	P-value for trend	OR (95% CI)	P-value for trend
Men										
Normal BP	1774	229	11717.1	19.5	1 (reference)	<0.001	1 (reference)	<0.001	1 (reference)	<0.001
Prehypertension	949	168	6069.2	27.7	1.43 (1.17–1.75)**	1.38 (1.13–1.69)*	1.24 (1.01–1.52)*			
Hypertension	671	165	4136.8	39.9	2.09 (1.71–2.55)**	1.98 (1.61–2.42)**	1.65 (1.34–2.05)**			
Total	3394	562	21923.1	25.6						
Women										
Normal BP	2156	216	14759.2	14.6	1 (reference)	<0.001	1 (reference)	<0.001	1 (reference)	0.018
Prehypertension	818	127	5418.1	23.4	1.69 (1.35–2.10)**	1.49 (1.19–1.88)*	1.30 (1.03–1.64)*			
Hypertension	782	147	5008.6	29.3	2.13 (1.73–2.64)**	1.79 (1.42–2.25)**	1.34 (1.05–1.70)*			
Total	3756	487	25185.9	19.3						

Abbreviations: BP, blood pressure; CI, confidence interval; OR, odds ratio. By glucose status and BP category at baseline examination.

Model 1: adjusted for age.
Model 2: adjusted for the variables in model 1 and fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol, body mass index, family history of diabetes (yes or no), education (less than high school, high school or equivalent, or college or above), alcohol use (current or non-current) and smoking status (current or non-current).

*p<0.05, **p<0.001.

Risk of incident diabetes over 8 years according to baseline BP category

Table 2 shows the risk of incident type 2 diabetes by BP categories. During the 8-year follow-up period, 1049 (14.7%) of the 7150 participants had newly developed diabetes, including 442 (11.2%), 295 (16.7%), and 312 (21.5%) subjects with baseline normal BP, prehypertension and hypertension, respectively. The overall incidence rate for diabetes was 22.3 events per 1000 person-years, which increased from 16.7 per 1000 person-years in baseline normotensive to 34.1 per 1000 person-years in hypertensive subjects (Figure 2). The incidence of diabetes after 8 years was higher in subjects with baseline prediabetes than NGT. Compared with subjects having baseline normal BP, those with baseline prehypertension (HR, 1.27; 95% CI, 1.09–1.48) and hypertension (HR, 1.51; 95% CI, 1.29–1.76) were at higher risk for incident diabetes (P-value for trend <0.001, Table 2); these associations persisted even when subjects were stratified by baseline glucose status. For further analysis, prehypertension category was divided into two groups: those with systolic BP of 120–129 mm Hg or diastolic BP of 85–89 mm Hg. Relative to normotensive subjects, diabetes risk was significantly higher in subjects with BP of 130–139/85–89 mm Hg (HR, 1.48; 95% CI, 1.20–1.82), but not for those with BP of 120–129/80–84 mm Hg (data not shown).

Stratification by sex showed that, relative to normotensive men, those with prehypertension (adjusted HR, 1.24; 95% CI, 1.01–1.52) and hypertension (adjusted HR, 1.65; 95% CI, 1.34–2.05) were at higher risk for diabetes (Table 3). Similarly, women with prehypertension (adjusted HR, 1.30; 95% CI, 1.03–1.64) and hypertension (adjusted HR, 1.34; 95% CI, 1.05–1.70) were at higher risk for diabetes than normotensive women.

Stratification by BMI category showed that, of the 7150 subjects, 32.2% had a normal BMI, 26.7% were overweight and 41.4% were obese (Table 4). The effect of BP on risk of diabetes was similar in these three subgroups. For example, the risk of diabetes was ~ 1.5-fold higher among hypertensive than normotensive individuals, regardless of BMI.

BP control and incident diabetes

Table 5 shows the HRs for diabetes according to change in BP over 8 years. Of the 5537 subjects with available BP measurements at baseline and at 8 years, 2768 had controlled BP (normal BP) and 2769 had poorly controlled BP (prehypertension or hypertension). Multivariate analysis Cox proportional hazard models showed that the latter group had a significantly higher risk of diabetes (HR, 1.28; 95% CI, 1.11–1.47) than the former. When the subjects were stratified by BP category at baseline, those who had normal BP at baseline and progressed to prehypertension or hypertension at 8 years had a significantly higher risk of diabetes (HR, 1.48; 95% CI, 1.20–1.83) than subjects with controlled BP. However, no association was observed between BP control and incident diabetes in subjects with prehypertension and hypertension at baseline.

DISCUSSION

The purpose of this study was to examine the relationships of BP and BP progression with type 2 diabetes in a middle-aged Korean population followed-up for 8 years. Prehypertension, as well as hypertension, were strongly and independently associated with type diabetes.
Table 4 BMI-stratified risk of incident diabetes over 8 years in subjects categorized by baseline BP

BP groups	Number at risk	Diabetes cases	Person-years	Diabetes incidence rate per 1000 person-years	Unadjusted	Model 1	Model 2			
					OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
BMI ≤ 23 kg m⁻²										
Normal BP	1489	134	10 067.7	13.3	1 (reference)	<0.001	1 (reference)	0.003	1 (reference)	0.041
Prehypertension	517	58	3295.3	17.6	1.37 (1.01-1.87)		1.17 (0.85-1.62)	0.98 (0.70-1.35)		
Hypertension	294	47	1855.5	25.3	1.98 (1.42-2.76)		1.71 (1.20-2.43)	1.45 (1.02-2.08)		
Total	2300	239	15 218.5	15.7						
BMI 23.4-24.9 kg m⁻²										
Normal BP	1108	111	7434.9	14.9	1 (reference)	<0.001	1 (reference)	0.016	1 (reference)	<0.001
Prehypertension	460	85	3051.9	27.9	1.91 (1.44-2.53)		1.62 (1.21-2.17)	1.52 (1.13-2.04)		
Hypertension	341	60	2204.1	27.2	1.85 (1.35-2.54)		1.50 (1.08-2.09)	1.51 (1.08-2.11)		
Total	1909	256	12 690.9	20.2						
BMI > 25 kg m⁻²										
Normal BP	1333	197	8973.7	22.0	1 (reference)	<0.001	1 (reference)	<0.001	1 (reference)	<0.001
Prehypertension	790	152	5140.1	29.6	1.38 (1.11-1.70)		1.28 (1.03-1.59)	1.29 (1.04-1.60)		
Hypertension	818	205	5085.9	40.3	1.92 (1.58-2.33)		1.74 (1.41-2.13)	1.52 (1.23-1.88)		
Total	2941	554	19 199.7	28.9						

Abbreviations: BMI, body mass index; BP, blood pressure; CI, confidence interval; OR, odds ratio. By BMI and BP category at baseline examination.
Model 1: adjusted for age and sex.
Model 2: adjusted for the variables in model 1 and fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol, body mass index, family history of diabetes (yes or no), education (less than high school, high school or equivalent, or college or above), alcohol use (current or non-current) and smoking status (current or non-current).

Table 5 Risk of incident diabetes according to change in BP over 8 years in subjects categorized by baseline BP

BP change after 8 years	Number at risk	Diabetes cases (%)	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
All	5557	884 (16.0)	1 (reference)		1 (reference)		1 (reference)	
Controlled BP¹	2768	346 (12.5)	1.60 (1.40-1.83)	<0.001	1.45 (1.26-1.66)	<0.001	1.28 (1.11-1.47)	<0.001
Poorly controlled BP²	2769	538 (19.4)						
Normal at baseline	3100	372 (12.0)						
Controlled BP³	2032	195 (9.6)	1 (reference)					
Poorly controlled BP²	1068	177 (16.6)	1.78 (1.45-2.18)	<0.001	1.65 (1.34-2.03)	<0.001	1.48 (1.20-1.83)	<0.001
Prehypertension at baseline	1343	238 (17.7)						
Controlled BP³	446	73 (16.4)	1 (reference)					
Poorly controlled BP²	897	165 (18.4)	1.10 (0.84-1.45)	0.486	1.11 (0.84-1.46)	0.470	1.05 (0.80-1.39)	0.717
Hypertension at baseline	1094	274 (25.0)						
Controlled BP³	290	78 (26.9)	1 (reference)					
Poorly controlled BP²	804	196 (24.4)	0.89 (0.68-1.15)	0.361	0.88 (0.68-1.14)	0.339	0.93 (0.71-1.22)	0.607

Abbreviations: BP, blood pressure; CI, confidence interval; HR, hazard ratio. By glucose status at baseline examination and BP change after 8 years.
Model 1: adjusted for age and sex.
Model 2: adjusted for the variables in model 1 and fasting plasma glucose, total cholesterol, high-density lipoprotein cholesterol, body mass index, family history of diabetes (yes or no), education (less than high school, high school or equivalent, or college or above), alcohol use (current or non-current) and smoking status (current or non-current).

2 diabetes, even after controlling for potential confounders. Moreover, the risk of incident diabetes was significantly greater when BP was poorly controlled than well-controlled, with this association observed only in subjects with normal BP at baseline.

During the 8-year follow-up period, about 14.7% of all participants developed type 2 diabetes, with incidence rates in baseline normotensive, prehypertensive and hypertensive subjects of 16.7, 25.7 and 34.1 per 1000 person-years, respectively. These results indicated that participants with normal BP had the lowest risk of type 2 diabetes, with the risk steadily increasing as BP increased. In addition, these associations persisted after stratification by glucose status, sex and BMI.

Our findings are consistent with previous studies of the association between BP and the risk of type 2 diabetes. The Osaka Health Survey reported that high normal BP and hypertension were associated with an increased risk of diabetes. Moreover, the Women’s Health Initiative Study found that subjects with high normal BP and hypertension were at about 1.5- and 2.0-fold higher risk of...
developing diabetes than normotensive subjects. A recent study from Sweden showed that hypertension and high normal systolic BP at midlife was a significant predictor of type 2 diabetes. In the present study, Cox proportional hazards models indicated that prehypertensive and hypertensive participants were at 1.3- and 1.5-fold higher risk of type 2 diabetes than normotensive subjects, indicating that the increased risk of diabetes starts at near-normal BP. These associations remained significant after stratification by baseline glucose status and sex. Stratification by BMI showed that prehypertension and hypertension were associated with increased risk of diabetes among overweight (BMI, 23–24.9 kg m\(^{-2}\)) and obese (BMI, \(\geq 25\) kg m\(^{-2}\)) individuals, emphasizing the importance of BP control in prehypertensive subjects with BMI \(\geq 23\) kg m\(^{-2}\).

Prehypertension is associated with increased cardiovascular risk and insulin resistance. For example, results from the San Antonio Heart Study indicated that subjects with prehypertension are at greater risk of diabetes than those with normal BP. In particular, a BP of 130–139/85–89 mm Hg was associated with incident type 2 diabetes, indicating that prehypertension subcategories may differ in diabetes risk. Our study also found that type 2 diabetes development was associated with a BP of 130–139/85–89 mm Hg (HR, 1.33; 95% CI, 1.20–1.82) but not a BP of 120–129/80–84 mm Hg. Although the clinical impact of these BP categories requires further analysis, active BP control in the former subcategory should be considered to reduce the development of diabetes. These findings indicate the importance of glucose surveillance in prehypertensive, as well as in hypertensive subjects.

This study also found that subjects with poorly controlled BP were more likely to develop type 2 diabetes than those with controlled BP. The risk of incident diabetes was significantly higher among subjects with poorly controlled than well-controlled baseline BP, in agreement with results showing that women with BP progression over 48 months had a higher risk of developing type 2 diabetes than women without BP progression. The United Kingdom Prospective Diabetes Study trial showed that strict BP control significantly reduced the risk of diabetes-related end points compared with less-tight control. By contrast, we found no significant associations between BP control and incident diabetes in baseline prehypertensive and hypertensive subjects, suggesting that the relative risk-reductions observed in subjects with controlled BP are lost once the BP is higher than the normal range. Continuous monitoring of BP levels during follow-up may elucidate the mechanisms underlying these results.

The pathophysiological mechanisms explaining the association between BP and incident type 2 diabetes are not clear, but several hypotheses were proposed. High BP was shown to induce microvascular dysfunction, which may contribute to the pathophysiology of diabetes development. Endothelial dysfunction which is related to insulin resistance is also closely associated with hypertension, and biomarkers of endothelial dysfunction were found to be independent predictors of type 2 diabetes. Insulin resistance constitutes a common soil for BP, type 2 diabetes and cardiovascular disease. Thus it could be other potential links between BP and type 2 diabetes. In addition, inflammatory markers, especially C-reactive protein, are related to both incident type 2 diabetes and increased BP levels.

The strengths of this study include its assessment of a prospectively enrolled community-based cohort study from the general populations followed-up for 8 years. However, this study also had several limitations. First, the study population consisted only of those aged 40–69 years. Nevertheless, our results may be representative of the general population in Korea because the data were from a community-based prospective cohort study, which may have minimized the sampling-bias effect. Second, BP control was based on measured BP values at baseline and at 8 years, and not at intermediate time points. This may have led to a misclassification of BP, with under- or overestimations of the prevalence of controlled and poorly controlled BP. Because of the limitations inherent in observational studies, further intervention trials will be needed to confirm these findings. Third, some antihypertensive drugs may increase the risk of type 2 diabetes. This should be further examined. Finally, the follow-up time examining the relationship between BP and diabetes was <10 years. Longitudinal studies with longer follow-up are needed to confirm these findings.

In conclusion, prehypertension, as well as hypertension, was a significant risk factor for incident diabetes, independent of baseline glucose status, sex and BMI. These results indicate that active BP control, including early BP management, is needed to prevent incident diabetes.

CONFLICT OF INTEREST

The authors declare no conflict interest.

ACKNOWLEDGEMENTS

This work was supported by the Korea National Institute of Health intramural research grant, 4800-4845-302(2011-NG63002-00).

1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–787.
2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–1053.
3. Shin M, Du Y, Lighthall AS, Simon PA, Wang MC. Stemming the tide: rising diabetes prevalence and ethnic subgroup variation among Asians in Los Angeles County. Prevent Med 2014; 63: 90–95.
4. Ministry of Health and Welfare of Korea. Korea Health Statistics 2013: Korea National Health Nutrition Examination Survey (KNHANES VI–1). Korea Centers for Disease Control and Prevention: South Korea, 2014.
5. The Emerging risk factors collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215–2222.
6. American Diabetes Association. Standards of medical care in diabetes: 2014. Diabetes Care 2014; 37: S14–S80.
7. Hayashit Tsumura K, Suematsu C, Endo G, Fuji S, Okada K. High normal blood pressure, hypertension, and the risk of type 2 diabetes in Japanese men. The Osaka Health Survey. Diabetes Care 1999; 22: 1683–1687.
8. Gress TW, Nielof FJ, Shafar E, Wolford MR, Brancati FL. Hypertension and anti-hypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med 2000; 342: 905–912.
9. Sun N, Wang H, Sun Y, Chen X, Wang H, Zhao L, Wang J, Zhu Z. Detecting diabetic risk using the oral glucose tolerance test in Chinese patients with hypertension: a cross-sectional study. Hypertens Res 2014; 37: 82–87.
10. Haslam DW, James WP. Obesity. Lancet 2005; 366: 1197–1209.
11. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: definition and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–553.
12. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005; 112: 3066–3072.
13. Cohen D, Rickard M, Mara S, Buring JE, Glynn RJ. Blood pressure and risk of developing type 2 diabetes mellitus: the Women’s Health Study. Eur Heart J 2007; 28: 2937–2943.
14. Wei GS, Coady SA, Golf DC Jr, Brancati FL, Levy D, Selvin E, Vasan RS, Fox CS. Blood pressure and the risk of developing diabetes in African Americans and whites: ARIC, CARDIA, and the Framingham heart study. Diabetes Care 2011; 34: 873–879.
15. Stahli CH, Novak M, Lappas G, Wilhelmsen L, Bjorck L, Hansson PO, Rosengren A. High-normal blood pressure and long-term risk of type 2 diabetes. 35-year prospective population based cohort study of men. BMC Cardiovasc Disord 2012; 12: 89.
16. Golden SH, Wang NY, Klag MJ, Meoni LA, Brancati FL. Blood pressure in young adulthood and the risk of type 2 diabetes in middle age. Diabetes Care 2003; 26: 1110–1115.
17. Kim BG, Park JT, Ahn Y, Kimm K, Shin C. Geographical difference in the prevalence of isolated systolic hypertension in middle-aged men and women in Korea: the Korean Health and Genome Study. J Hum Hypertens 2005; 19: 877–883.
18 Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.

19 Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560-2572.

20 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33: 562-569.

21 Hsia J, Margolis KL, Eaton CB, Wenger NK, Allison M, Wu L, LaCroix AZ, Black HR. Women's Health Initiative Investigators. Prehypertension and cardiovascular disease risk in the Women's Health Initiative. Circulation 2007; 115: 855-860.

22 Player MS, Mainous AG 3rd, Diaz VA, Everett CJ. Prehypertension and insulin resistance in a nationally representative adult population. J Clin Hypertens 2007; 9: 424-429.

23 Mullican DR, Lorenzo C, Haffner SM. Is prehypertension a risk factor for the development of type 2 diabetes? Diabetes Care 2009; 32: 1870-1872.

24 Everett CJ, Fritschen IL. Evidence that prehypertension is a risk factor for Type 2 diabetes. Expert Rev Cardiovasc Ther 2010; 8: 335-337.

25 de La Sierra A, Ruilope LM. Treatment of hypertension in diabetes mellitus. Curr Hypertens Rep 2000; 2: 335-342.

26 Feixl F, Liaudet L, Waelder B, Levy BJ. Hypertension: a disease of the microcirculation? Hypertension 2006; 48: 1012-1017.

27 Nguyen TT, Wang JJ, Islam FM, Mitchell P, Tapp RJ, Zimmet PZ, Simpson R, Shaw J, Wong TY. Retinal arteriolar narrowing predicts incidence of diabetes: the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. Diabetes 2008; 57: 536-539.

28 Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004; 291: 1978-1986.

29 Stern MP. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes 1995; 44: 369-374.

30 Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Grazierdi L, Pedrinelli R, Brandi L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med 1987; 317: 350-357.

31 Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 2004; 53: 693–700.

32 Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA 2003; 290: 2945-2951.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/