Preliminary population-based epidemiological and clinical data on 2009 pandemic H1N1 influenza A (pH1N1) from Lima, Peru

Yeny Tinoco,a,d Hugo Razuri,a Ernesto J. Ortiz,a Jorge Gomez,b Marc-Alain Widdowson,c Timothy Uyeki, Timo Alberto Laguna-Torres,a Tadeusz J. Kochel,a Robert H. Gilman,a,d and Joel M. Montgomery,a,c for the Peru Influenza Working Group*1

aUS Naval Medical Research Center Detachment, Lima, Peru. bPeruvian Ministry of Health, Dirección General de Epidemiología, Lima, Peru. cUS Centers for Disease Control and Prevention, Atlanta, GA, USA, Influenza Division. dJohn Hopkins School of Public Health, Baltimore, MD, USA.

Correspondence: Joel M. Montgomery, US Public Health Service, Director, Department of Epidemiology and Emerging Infections, Naval Medical Research Center Detachment-Peru CDC Liaison and Influenza Division Field Assignee. E-mail: joel.montgomery@med.navy.mil, ztq9@cdc.gov

*see Appendix

Accepted 4 October 2009. Published Online 22 October 2009.

Keywords Influenza, Peru, pandemic influenza, pH1N1, epidemiology, cohort.

To the editor:

Since early April 2009, the world has been responding to a pandemic of a novel H1N1 influenza A virus (pH1N1). Data on transmission and severity of pH1N1, especially from the Southern Hemisphere will help plan for the upcoming Northern Hemisphere influenza season. In mid-June 2009, the Naval Medical Research Center Detachment in Peru, the CDC and the Peruvian Ministry of Health implemented a prospective cohort population-based study of influenza in Peru. We report the first 6 weeks of this population-based data, specifically describing the evolution and clinical data of pH1N1. 343 households from San Juan de Miraflores District, Lima and their household members were randomly selected from a previous census list using a computer-based, randomly generated numbers table and invited to participate in the study. Subsequently, field workers performed screening visits to households three times per week to identify influenza-like illness (ILI) cases. The ILI case definition for individuals ≥5 years of age included sudden onset of fever >38°C, with cough and/or sore throat and for children <5 years old, we utilized the WHO-ILI case¹ definition with the addition of rhinorrhea and/or nasal congestion. Once an ILI case was identified, both nasal and oropharyngeal swabs were collected, combined and placed into viral transport media, transported at 4°C to the laboratory and stored at −80°C. For each identified ILI case, multiple follow-up site visits were conducted over a 15-day period to determine clinical symptoms duration. Identification of pH1N1 was conducted using the CDC 2009 pH1N1 real-time PCR (rRT-PCR) assay,² while seasonal influenza A viruses were identified using standard rRT-PCR procedures. Attack rates (AR) and incidence rates (IR) were estimated by age group for ILI and pH1N1 confirmed cases.

A total of 1747 individuals, living in 343 households, were enrolled in the study from May to June, 2009. Screening visits were initiated on June 25, 2009 and, as of August 1, 191 ILI cases had been identified. Of the 191 ILI cases, 134 were positive (70.1%) for pH1N1 – only one seasonal H3N2 isolate was identified from samples negative for pH1N1. The percentage of ILI due to pH1N1 was highest in the age group of 5–17 years (86.2%) compared with other age groups (Table 1). The most common symptoms at illness onset among pH1N1 cases of all ages were cough (92.5%), rhinorrhea (77.6%), malaise (69.4%), sore throat (67.9%) followed by headache (64.9%), red eyes (47.8%), vomiting (25.4%), and diarrhea (9.7%). Median symptom duration among all pH1N1 cases that completed 15 days of follow-up was cough 8 days (range 0–15 days), rhinorrhea 5 days (range 0–12 days), sore throat 2 days (range 0–12 days), fever 1 day (range 1–8 days), and headache 1 day (range 0–15 days). As of August 1, 2009, the cumulative attack rate for confirmed pH1N1 infection among all ages was 77%. Age adjusted IRs of pH1N1 were slightly higher among young adults and children (Table 1) and were equivalent with respect to gender (data not shown), although few confirmed cases were identified among adults >50 years of age. Weekly incidence rates of pH1N1 ranged from 11.7 to 27.8 cases/1000 person-weeks. We have begun to observe a reduction of pH1N1 IRs and ARs, as well as a reduction in ILI ARs over time (Table 1). By extrapolating from our
Table 1. Influenza-like illness (ILI) and pandemic H1N1 influenza (pH1N1) attack rates and incidence rates between June 14th and August 1st, 2009

Dates	Epi weeks	ILIs total (N = 191)	pH1N1 (N = 134)	Other ILIs (N = 57)	Other etiologies cumulative attack rate (%)	pH1N1 cumulative attack rate (%)	Weekly pH1N1 incidence rate x 1000	Age specific weekly pH1N1 incidence rate x 1000
Jun 14–20	Week 24	1	0	1	0.00	0.00	0.00	<5 (n = 196) 5–9 (n = 160) 10–17 (n = 315) 18–29 (n = 478) 30–49 (n = 402) 50–59 (n = 133) >=60 (n = 63)
Jun 21–27	Week 25	20	9	6897	1.15	0.06	11.45	5.10 5.0 28.57 2.09 0.00 7.52 0.00
Jun 28–Jul 4	Week 26	47	13	7833	3.84	1.32	27.23	51.28 85.53 49.02 12.58 7.46 0.00 0.00
Jul 5–11	Week 27	54	15	7222	6.07	2.18	11.59	48.65 71.94 27.49 23.35 2.51 0.00 0.00
Jul 12–18*	Week 28	19	10	6576	2.71	0.57	5.19	22.73 46.51 10.60 8.70 5.03 0.00 0.00
Jul 19–25	Week 29	12	6	5000	7.50	3.09	3.70	5.81 8.13 7.14 2.19 0.00 7.58 0.00
Jul 26–Aug 1	Week 30	6	3	5000	7.67	3.26	1.86	5.85 0.00 0.00 4.40 0.00 0.00 0.00
*School closing from July 15th to August 9th
†All tested for influenza A and B, one H3N2 identified

Many investigators have suggested that 11–35% of outpatient ILI cases, globally, are due to seasonal influenza A and B viruses. As a result, one important question that remains is what proportion of the pandemic and seasonal influenza cases observed in young children and young adults may have been due to pH1N1. Alternatively, our results will help to address these questions. We also note that our data demonstrate the need for continued surveillance efforts to better understand the impact of pH1N1 on different age groups. In addition, the results of this study may provide insight into the potential impact of pH1N1 on other countries. In conclusion, this study provides important information on the epidemiology of pH1N1 in Peru and highlights the need for continued surveillance efforts to better understand the impact of pH1N1 on the local population.
arises is whether or not pH1N1 will displace seasonal influenza viral strains. Although our data are limited by short time period, most ILI cases had laboratory-confirmed pH1N1 during the typical winter influenza season in Lima, 70-1% in total, with very little seasonal influenza virus circulation within this population. As mentioned previously, individuals <18 years of age in our population had the highest proportion of pH1N1 as an etiologic agent of ILI (86-2%), opposed to what is normally observed in a prepandemic influenza season, whereby in this age group influenza virus is not the most common cause of respiratory illness11,12 These data may suggest a trend in displacement of seasonal influenza by pH1N1 as has been observed in other countries, including those in the Southern Hemisphere13,14 during this same period of time.15 Additional weeks of surveillance will help to clarify this finding.

Epidemiologic data on the impact of pandemic influenza from the Southern Hemisphere winter may help inform planning for the upcoming Northern Hemisphere influenza season. Data generated by this population-based study has allowed calculation of measures of disease impact for a larger population. Such data may help inform pH1N1 mitigation strategies, surveillance strategies, and vaccine policy.

Acknowledgements

We would like to thank numerous contributors to this study including the influenza staff from the Lima-Peru influenza cohort site and Lilia Cabrera; Merly Sotero, Josefina Garcia and Gloria Chauca of the US NMRCV Virology Department; and finally the community members of San Juan de Miraflores District.

Disclaimers

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the US Government.

The study was funded by the Centers for Disease Control and Prevention, the National Institutes of Health – Fogarty International Center and the US DoD Global Emerging Infections Systems grant number I0082_09_LI. The Naval Medical Research Center participation was under Protocol NMRCD.2009.0005 in compliance with all applicable Federal regulations governing the protection of human subjects.

Disclosure

None of the authors has a financial or personal conflict of interest related to this study. The corresponding author had full access to all data in the study and final responsibility for the decision to submit this publication.

Copyright statement

Joel M. Montgomery, Tadeusz J. Kochel and Tim Uyeki are U.S. military and public health service members; Marc-Alain Widdowson and V. Alberto Laguna-Torres are employees of the US Government. This work was prepared as part of their official duties. Title 17 U.S.C. § 105 provides that ‘Copyright protection under this title is not available for any work of the United States Government’. Title 17 U.S.C. § 101.

Appendix

Peru Influenza Working Group: V. Gonzaga, H.H. Garcia, A.E. Gonzalez, M.J. Sklar, B. Ghersi, J. Neyra, D. Vera, R. Hora, C. Romero, A. Estela, P. Breña, M. Morales.

References

1. WHO. WHO Recommended Surveillance Standards, 2nd edn. 1999 Available at: http://www.who.int/csr/resources/publications/surveillance/WHO_CDS_CSR_ISR_99_2_EN/ (Accessed 9 October 2009).
2. WHO. CDC Protocol of Realtime RTPCR for Influenza A(H1N1). 2009 Available at http://www.who.int/csr/resources/publications/swineflu/CDCRealtimerTPTCR_SwineH1Assay-2009_20090430.pdf (Accessed 27 July 2009).
3. Baker MG, et al. Pandemic influenza A(H1N1)v in New Zealand: the experience from April to August 2009. Euro Surveill 2009; 14:1–6.
4. CDC. Serum cross-reactive antibody response to a novel influenza A(H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb Mortal Wkly Rep 2009, 58:521–524.
5 CDC. Influenza: The Disease. 2008 Available at: http://www.cdc.gov/flu/about/disease/index.htm (Accessed 30 October 2008).
6 Dawood FS, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360:2605–2615.
7 Glezen WP, et al. Mortality and influenza. J Infect Dis 1982; 146:313–321.
8 Monto AS, Sullivan KM. Acute respiratory illness in the community. Frequency of illness and the agents involved. Epidemiol Infect 1993; 110:145–160.
9 Simmerman JM, Uyeki TM. The burden of influenza in East and South East Asia: a review of the English language literature. Influenza Other Respir Viruses, 2008; 2:81–92.
10 Laguna-Torres VA, et al. Influenza-like illness sentinel surveillance in Peru. PLoS ONE 2009; 4:e6118.
11 Fabbiani M, et al. Epidemiological and clinical study of viral respiratory tract infections in children from Italy. J Med Virol 2009; 81:750–756.
12 de Arruda E, et al. Acute respiratory viral infections in ambulatory children of urban northeast Brazil. J Infect Dis 1991; 164:252–258.
13 CDC. Surveillance for the 2009 pandemic influenza A (H1N1) virus and seasonal influenza viruses-New Zealand, 2009. MMWR Morb Mortal Wkly Rep 2009; 58:918–921.
14 Kelly H, Grant K. Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination. Euro Surveill 2009; 14:1–5.
15 WHO. Preparing for the Second Wave: Lessons from Current Outbreaks. Global Alert and Response (GAR). 2009 Available at: http://www.who.int/csr/disease/swineflu/en/index.html (Accessed 28 August 2009).