Isolated Splenic Tuberculosis Masquerading as Disease Progression of Hodgkin’s Lymphoma on Interim 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Scan

Abstract

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan is the imaging modality of choice in the management of lymphoma. However, 18F-FDG is a nonspecific tracer for tumoral metabolic activity and infective pathology, thus posing a challenge in accurate response assessment. Here, we present a case of Hodgkin’s lymphoma, referred for staging PET/CT scan which showed FDG-avid disease in the mediastinum, and on interim 18F-FDG PET/CT in addition to the mediastinal mass lesion, a FDG-avid lesion was also noted in the spleen suggestive of disease progression. The biopsy report of the lesion was tuberculosis, which was masquerading as disease progression on interim 18F-FDG PET/CT.

Keywords: 18F-fluorodeoxyglucose positron emission tomography/computed tomography, Hodgkin’s lymphoma, spleen, tuberculosis

A 28-year-old female patient presented with a painless, firm lump on the left side of the upper chest. The ultrasonography-guided mediastinal mass biopsy revealed features compatible with Hodgkin’s lymphoma. The patient was referred for staging 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan. Maximum intensity projection (MIP) image [Figure 1a] showed FDG-avid mediastinal mass with involvement of multiple groups of lymph nodes. The axial and coronal fused PET/CT images [Figures 1b-d] showed FDG-avid mediastinal mass lesion encasing the great vessels and its branches, trachea, and esophagus. The patient subsequently underwent two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine-based chemotherapy and was then referred for an interim 18F-FDG PET/CT scan which revealed a good response to therapy. MIP image [Figure 1e] showed a significant reduction in FDG avidity and extent of mediastinal mass and lymph nodes; however, transaxial and coronal fused PET/CT images [Figures 1f-h] showed focal FDG uptake in the inferior pole of the spleen. Suspecting disease progression, the patient underwent a USG-guided splenic lesion linear core biopsy, which revealed fibrocollagenous tissue with lymphoid cells, epithelioid granuloma, and central necrosis [Figure 2]. No atypical (Hodgkin) cells were seen, suggestive of necrotizing granulomatous inflammation compatible with tuberculosis (TB).

Hodgkin’s disease is a type of monoclonal lymphoid neoplasm.[1] Functional imaging using 18F-FDG PET/CT is considered as the gold standard imaging modality in staging and response assessment of Hodgkin’s lymphoma.[2] Staging 18F-FDG-PET/CT accurately detects the extent of lymphoma and extralymphatic involvement.[3] Bone marrow involvement is accurately diagnosed by 18F-FDG-PET/CT, which demonstrates higher rate of involvement than bone marrow biopsy procedure.[4] Interim 18F-FDG PET/CT has a high prognostic value in evaluation of the chemosensitivity of the tumor and identifies patients with different outcomes, with patients showing residual tumor uptake after two cycles of chemotherapy related to poor prognosis.[5] 18F-FDG is a nonspecific tracer that accumulates within the tumor cells and also in granulation and inflammatory tissues;[6] both Hodgkin’s lymphoma and TB show intense FDG uptake in PET/CT imaging with no differentiation in PET/CT.

How to cite this article: Dey S, Gupta N, Verma R, Seniaray N, Belho ES, Dhawan S. Isolated Splenic tuberculosis masquerading as disease progression of hodgkin’s lymphoma on interim 18F-fluorodeoxyglucose positron emission tomography/computed tomography scan. Indian J Nucl Med 2021;36:100-2.
quantitative parameters.\(^6\) Thus, TB lesions can mimic Hodgkin’s lymphoma. If there is any new \(^{18}\text{F}-\text{FDG}\)-avid focal lesion in interim PET/CT scan with uncertain etiology, then biopsy merits consideration before labeling as disease progression and considering a change of chemotherapy regimen.\(^7\) Thus, in ambiguous situations, \(^{18}\text{F}-\text{FDG}\) PET/CT helps in guiding biopsy site and makes a definitive diagnosis; as in our case, the splenic lesion masquerading as lymphoma was subsequently found to be a splenic tubercular lesion on biopsy. TB accounts for a major health burden globally, with 15% cases being extrapulmonary TB;\(^8\) hepatosplenic involvement is noted in mostly disseminated TB, whereas isolated splenic TB is an extremely rare entity, commonly misdiagnosed as lymphoma, abscess, or primary splenic carcinoma.\(^9\) \(^{18}\text{F}-\text{FDG}\) PET/CT can determine the metabolic activity of tuberculous lesion, assess the extent of disease, detect site for biopsy, and evaluate therapeutic response.\(^10\) Development of TB-specific radiotracers with positron-emitting isotopes labeled with antitubercular drugs such as isoniazid and rifampicin may pave the way for specific diagnosis of TB.\(^11\) The usefulness of \(^{18}\text{F}-\text{FDG}\) PET/CT in determining treatment response in Hodgkin’s lymphoma and assessing disease progression is unequivocal, but any new lesion should always be histopathologically examined before any change of treatment is considered due to the nonspecific nature of \(^{18}\text{F}-\text{FDG}\) PET/CT. In a tubercular endemic region like India, the diagnosis of TB in any suspected lesion merits consideration.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient has given her consent for her images and other clinical information.
to be reported in the journal. The patient understands that
name and initials will not be published and due efforts
will be made to conceal identity, but anonymity cannot be
guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Lees C, Keane C, Gandhi MK, Gunawardana J. Biology and
therapy of primary mediastinal B-cell lymphoma: Current status
and future directions. Br J Haematol 2019;185:25-41.
2. Kanoun S, Rossi C, Casasnovas O. [18F] FDG-PET/CT in
Hodgkin lymphoma: Current usefulness and perspectives.
Cancers (Basel) 2018;10:145.
3. Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK,
Keiding S, et al. Position emission tomography with or without
computed tomography in the primary staging of Hodgkin's
lymphoma. Haematologica 2006;91:482-9.
4. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH,
Zucca E, et al. Recommendations for initial evaluation,
staging, and response assessment of Hodgkin and non-Hodgkin
lymphoma: The Lugano classification. J Clin Oncol
2014;32:3059-67.
5. Cerchi JJ, Trindade E, Pracchia LF, Pratella FA, Linardi CC,
Soares J, et al. Cost effectiveness of positron emission
tomography in patients with Hodgkin's lymphoma in unconfirmed
complete remission or partial remission after first-line therapy.
J Clin Oncol 2010;28:1415-21.
6. Stelzmueller I, Huber H, Wunn R, Hodolic M, Mandl M,
Lamprecht B, et al. [18F-FDG PET/CT in the initial assessment
and for follow-up in patients with tuberculosis. Clin Nucl Med
2016;41:187-94.
7. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L,
Horning S, et al. International Harmonization Project on
Lymphoma. Revised response criteria for malignant lymphoma.
J Clin Oncol 2007;25:579-86.
8. Rao A, Mallarajapatna G, Godehal S, Shivakumar S. Isolated
splenic tuberculosis detected only on FDG-PET. BJR Case Rep
2017;3:20150238.
9. Zhan F, Wang CJ, Lin JZ, Zhong PJ, Qiu WZ, Lin HH, et al.
Isolated splenic tuberculosis: A case report. World J Gastrointest
Pathophysiol 2010;1:109-11.
10. Harkirat S, Anana SS, Indrajit LK, Dash AK. Pictorial essay:
PET/CT in tuberculosis. Indian J Radiol Imaging 2008;18:141-7.
11. Liu L, Xu Y, Shea C, Fowler JS, Hooper JM, Tonge PJ.
Radiosynthesis and bioimaging of the tuberculosis
chemotherapeutics isoniazid, rifampicin and pyrazinamide in
baboons. J Med Chem 2010;53:2882-91.