Efficacy of soy-lecithin for replacing egg yolk in tris extender on quality of frozen buck semen

MANOJ KUMAR KALITA1, SUDIP SINHA2, BHARAT CHANDRA DEKA3, RANJAN KUMAR BISWAS4, LUITMANI BARKALITA5 and RUMI SAIKIA BORAH6

Assam Agricultural University, Guwahati, Asom 781 022 India

Received: 21 August 2018; Accepted: 24 September 2018

ABSTRACT

The present study undertaken to find the efficacy of incorporating soy-lecithin in tris extender for replacing egg yolk, a widely used animal component. Pooled ejaculates (40), 10 from each of four bucks maintained at Goat Research Station, Burnihat were used for freezing in tris extender containing 1% and 1.5% soy-lecithin and 20% egg yolk by adopting split sample technique following conventional method. The post thaw sperm motility in 1.5% soy-lecithin-tris extender (60.20±0.45%) was comparable with that of 20% egg yolk-tris (61.20±0.45%), the difference being non-significant. However, the post thaw values for live sperm, intact acrosome and hypo-osmotic swollen sperm were significantly lower in 1.5% soy-lecithin-tris as compared to that in 20% egg yolk-tris. The post thaw values were significantly higher for 1.5% than that for 1% soy-lecithin for all the parameters studied. It could be concluded that 1.5% soy-lecithin-tris extender has similar efficacy with that of 20% egg yolk-tris extender in respect of post thaw sperm motility; however, significantly lower post thaw values for remaining sperm qualities obtained with soy-lecithin in tris-based extender necessitate further trials comprising higher number of ejaculates from more bucks to find a suitable level of soy-lecithin for replacing egg yolk in tris extender for freezing of goat semen.

Key words: Egg yolk, Freezing, Goat semen, Post thaw quality, Soy-lecithin, Tris

The success of AI depends on quality of frozen semen which in turn depends on extenders. Currently egg yolk based extender is extensively used for semen extension and storage, because of its low density lipoprotein (LDL) which protects the sperm phospholipids during cryopreservation. However, the fertilizing capacity of spermatozoa is negatively affected by the risk of microbial contamination associated with egg yolk (Bousseau et al. 1998). Moreover, the World Organization for Animal Health recommended in its terrestrial animal health code of 2003 that animal origin products used in semen processing should be free of any biological risk (Marco-jimenez et al. 2004). Hence the search for non-animal origin, well-defined and contamination-free medium for extension of semen is highly desirable. On the other hand, the problem about using extenders containing egg yolk in goat semen has been attributed to an enzyme from bulbourethral gland called egg yolk coagulating enzyme (EYCE) later identified as phospholipase A. The interaction between this enzyme and egg yolk can be harmful to the sperm cells. Therefore, during processing, centrifugation and removal of seminal plasma (washing) is often recommended to improve the quality of frozen thawed goat semen. Demands for replacement of egg yolk in extenders have increased due to the concern that it contains substances that increase the viscosity of extenders, impede respiration of spermatozoa, and diminishes sperm motility (Sharafi et al. 2009). Soy-lecithin, a natural mixture of phosphatidylcholine and several fatty acids such as stearic, oleic and palmitic, could serve as an alternative replacing the animal based component in an extender. Previous studies suggested that addition of soy-lecithin to semen extender improved post-thaw sperm motility, viability, acrosome integrity and sperm membrane structure in human (Reed et al. 2009), boar (Zhang et al. 2009), stallion (Papa et al. 2011), bull (Akhter et al. 2012), ram (Emamverdi et al. 2013), buffalo (Chaudhari et al. 2015) and goat (Lekshmi bhai et al. 2015).

Therefore, the present study was planned to find the efficacy of Tris extender containing 1% and 1.5% soy-lecithin as compared to that containing 20% egg yolk on quality of frozen Beetal and Sirohi buck semen.

MATERIALS AND METHODS

Beetal and Sirohi adult bucks (2 each) maintained at Goat Research Station, Assam Agricultural University, Burnihat...
RESULTS AND DISCUSSION

Analysis of variance revealed that per cent sperm motility, live sperm, intact acrosome and HOST-reacted sperm (mean ± SE) after equilibration (AE) and after freezing (AF) of buck semen in tris extender containing soy-lecithin or egg yolk were used in the study. The bucks were thoroughly examined for sexual and general health before being selected. The animals were maintained under uniform feeding and managemental practices. Semen was collected from each buck once/twice a week with the help of a standard artificial vagina using a restrained doe as a mount. Immediately after collection, each ejaculate was evaluated for volume, mass activity (Zemjanis 1970) (based on the numerical scale 0–4) and initial sperm motility. Only ejaculates having volume 0.8 ml or more, mass activity 3+ or more and initial sperm motility 70% or more were used for the study. Pooled ejaculates (40), 10 from each buck were used. Each pooled ejaculate was diluted (1:5) with warm (35°C) tris buffer, split into three equal parts and centrifuged for 7 min at 3,000 rpm to remove the seminal plasma. The pellets so formed were diluted (1:15) separately for sperm motility, live sperm, intact acrosome and HOST-reacted sperm after equilibration and after freezing on thawing. The statistical analyses of the data were performed with one way ANOVA using the Statistical Analysis Systems (enterprise Guide 4.2 version) and Duncan’s Multiple Range Test (DMRT) was used to compare the differences between mean values.

Tris extender	Sperm motility (%)	Live sperm (%)	Intact acrosome (%)	HOST (%)				
	AE	AF	AE	AF	AE	AF	AE	AF
Soy-lecithin (1%)	70.32±0.30	57.77±0.54	80.75±0.50	65.40±0.56	73.12±0.73	61.30±0.74	66.12±0.50	57.35±0.50
Soy-lecithin (1.5%)	71.87±0.41	60.20±0.45	82.05±0.46	67.07±0.56	75.45±0.71	63.80±0.58	63.82±0.63	60.17±0.46
Egg yolk (20%)	74.05±0.39	61.20±0.45	84.20±0.43	72.32±0.47	77.85±0.72	68.42±0.43	70.95±0.57	64.35±0.63

*40 observations. Means bearing different superscripts in a column under each parameter differ significantly (P<0.05).

In the present study, the overall mean live sperm both after equilibration and after freezing was significantly (P<0.05) higher in tris extender containing 20% egg yolk (control) than in that containing 1% and 1.5% soy-lecithin and with that containing 1.5% soy-lecithin registering more line spermes than that containing 1% soy-lecithin. Similar to the present findings, Salmani et al. (2013) in Mahabadi goat semen recorded significantly lower sperm viability in tris extender with 10% soy-lecithin than that containing 15% egg yolk. On the contrary, no significant difference in sperm
viability after equilibration and after freezing was reported between with and without soy-lecithin supplementation in tris extender by Khalifa and Abdel-hafez (2014) in ram semen. No significant difference in sperm viability after freezing was observed between tris extender containing 15% egg yolk and 1% soy-lecithin by Salmani et al. (2013) and between tris extender containing 15% egg yolk, 1% soy-lecithin and 1.5% soy-lecithin by Salmani et al. (2014) in Mahabadi buck semen. Chaudhari et al. (2015) reported that sperm viability after equilibration and after freezing was significantly higher in commercial Optixcell extender than that in tris-citrate-fructose-egg yolk-glycerol extender which was attributed to phosphatidylcholine from soy-lecithin that restored phospholipids of membranes, thereby preserving the integrity of the membrane and maintaining viability at low temperature.

The overall mean intact acrosome both after equilibration and after freezing was significantly (P<0.05) higher in tris extender containing 20% egg yolk (control) than that containing 1% soy-lecithin and 1.5% soy-lecithin. Significantly lower percentage of intact acrosome in tris containing 1% and 1.5% soy-lecithin than that containing 20% egg yolk was in accordance with the report of Veerabramhaiah et al. (2012) in bull semen who found significantly lower incidence of intact acrosome in commercial Biociphos plus extenders than in tris extender after freezing. On the other hand, Chaudhari et al. (2015) observed significantly higher incidence of intact acrosome after equilibration and after freezing in commercial soybean based Optixcell extender as compared to tris extender. The finding of significantly higher mean intact acrosome after freezing in extender containing 1.5% soy-lecithin than 1% soy-lecithin in the present study was at contrary to that reported by Vidal et al. (2013) who found no significant difference in the acrosomal integrity of Saanen goat spermatozoa post thaw when extended in tris extender supplemented with soy lecithin at different concentrations (0.04%, 0.08% and 0.16%). However, the concentrations of soya-lecithin used in the work of Vidal et al. (2013) were at wide variance from that of the present study.

The overall mean HOST-reacted sperm both after equilibration and after freezing was significantly (P<0.05) higher in tris extender containing 20% egg yolk (control) than that containing 1% soy-lecithin and 1.5% soy-lecithin, and also that containing 1.5% soy-lecithin than 1% soy-lecithin. The present findings of significantly lower proportion of HOST-reacted sperm in soy-lecithin as compared to egg yolk in tris extender were in concurrence with that recorded by Chaudhari et al. (2015) in frozen Surti buffalo semen who obtained significantly lower percentage of Host-reacted sperm in commercial Bioxcell extender than in tris extender containing 20% egg yolk. However, no significant difference in sperm membrane integrity was observed between tris buffer supplemented with 1% soy-lecithin and tris extender containing 15% egg yolk in frozen Mahabadi buck semen (Salmani et al. 2013, 2014). In the present investigation, HOST-reacted sperm after equilibration and after freezing was significantly higher in tris buffer supplemented with 1.5% soy-lecithin than 1% soy-lecithin which could be due to insufficiency of lower concentration of soy-lecithin in conferring necessary protection to sperm membrane (Vidal et al. 2013). However, Salmani et al. (2014) recorded no significant difference for incidence of HOST-reacted sperm in Tris buffer added with 1% and 1.5% soy-lecithin.

It could be concluded that although the quality of frozen goat semen based on live sperm, intact acrosome and HOST-reacted sperm was significantly higher in tris extender containing egg yolk than that containing soy-lecithin in the present study, an equivalent percentage of post thaw sperm motility in extender containing soy-lecithin as with that of egg yolk suggests that soy-lecithin holds a possibility of replacing egg yolk in tris following modified use and further trials.

ACKNOWLEDGEMENTS

The authors are thankful to the Director of Research (Veterinary) and Principal Scientist, Goat Research Station, Assam Agricultural University for providing animals to carry out the study.

REFERENCES

Akhter S, Ansari M S, Andrabri S M, Rakha B A, Ullah N and Khalid M. 2012. Soya-lecithin in extender improves the freezability and fertility of buffalo (Bubalus bubalis) bull spermatozoa. Reproduction Domestic Animal 47: 815–19.
Blom E. 1977. Sperm morphology with reference to bull infertility. All India Symposium on Animal Reproduction, Punjab Agricultural University, Ludhiana. pp 61–81.
Bousseau S, Brillard J P, Marquant-le-guierne B, Guerin B, Camus A and Lechat M. 1998. Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents. Theriogenology 50: 699–706.
Chaudhari D V, Dhami A J, Hadiyaj K K and Patel A. 2015. Relative efficacy of egg yolk and soya milk-based extenders for cryopreservation (~196°C) of buffalo semen. Veterinary World 8: 239–44.
Emamverdi M, Zhandi M, Zare shahneh A, Sharafi M and Akbari Sharif A. 2013. Optimization of ram semen cryopreservation using a chemically defined soybean lecithin based extender. Reproduction Domestic Animal 48: 899–904.
Khalifa E I and Abdel-hafez M A M. 2014. Effect of soybean lecithin-based semen extender on freezability and fertility of Rahmani ram spermatozoa. Egyptian Journal of Sheep and Goat Science 9: 59–66.
Lekshmi bhai K, Joseph M, Behera S, Harshan H M, Ghosharavinda K N and Raghavan K C. 2015. Motility and functional membrane integrity of buck spermatozoa with soyabean lecithin based extender. Journal of Cell and Tissue Research. 15: 4711–14.
Marco-jimenez F, Puchades S, Moce E, Viudes-de-cartro M P, Vicente J S and Rodriguez M. 2004. Use of powdered egg yolk vs. fresh egg yolk for the cryopreservation of ovine semen. Reproduction Domestic Animal 39: 438–41.
Moussa M, Martinet V, Trimeche A, Tainturier D and Anton M.
2002. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozen-thawed bull semen. *Theriogenology* **57**: 1695–1706.

Murphy E M, Meara C O, Eivers B, Lonergan P and Fair S. 2018. Comparison of plant- and egg yolk-based semen diluents on *in vitro* sperm kinematics and *in vivo* fertility of frozen-thawed bull semen. *Animal Reproduction Science* **191**: 70–75.

Papa F O, Felicio G B, Melo-o na C M, Alvarenga M A, De vita B, Trinque C, Puoli-filhob J N P and Dell aqu J A. 2011. Replacing egg yolk with soybean lecithin in the cryopreservation of stallion semen. *Animal Reproduction Science* **129**: 73–77.

Reed M L, Ezeh P C, Hamic A, Thompson D J and Caperton C L. 2009. Soy-lecithin replaces egg yolk for cryopreservation of human sperm without adversely affecting post thaw motility, morphology, sperm DNA integrity, or sperm binding to hyaluronate. *Fertility Sterility* **92**: 1787–90.

Revell S G and Mrode R A. 1994. An osmotic resistance test for bovine semen. *Animal Reproduction Science* **36**: 77–86.

Salmani H, Nabi M M, Vaseghi-dodaran H, Rahman M B, Mohammadi-sangcheshmeh A, Shakeri M, Towhidi A, Shahnne A Z and Zhandi M. 2013. Effect of glutathione in soybean lecithin-based semen extender on goat semen quality after freeze-thawing. *Small Ruminant Research* **122**: 123–27.

Salmani H, Towhidi A, Zhandi M, Bahraini M and Sharafi M. 2014. *In vitro* assessment of soybean lecithin and egg yolk based diluents for cryopreservation of goat semen. *Cryobiology* **68**: 276–80.

Sharafi M, Eghbalsaied S, Nili N and Nasr-esfahani M H. 2009. Ram semen *in vitro* fertility after cryopreservation using soybean lecithin and egg yolk based extender. *Reproduction Domestic Animal* **44**: 90–95.

Veerabramhaiah K, Seshagiri Rao A, Rao V H, Venugopal Naidu K and Viroji Rao S T. 2012. Efficacy of the tris and biociphos plus extenders on the freezability of punganur bull semen. *Indian Journal of Animal Reproduction* **32**: 1–4.

Vidal A H, Batista A M, Bento Da Silva E C, Gomes W A, Pelinca M A, Silva S V and Guerra M M P. 2013. Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. *Small Ruminant Research* **109**: 47–51.

Waterhouse K E, Hofmo P O, Tverdal A and Miller Jr R R. 2006. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. *Reproduction* **131**: 887–894.

Watson P F and Martin I C A. 1975. Effects of egg yolk glycerol and the freezing rate on the viability and acrosomal structures of frozen spermatozoa. *Australasian Journal of Animal Science* **28**: 153–59.

Yodmingkwana P, Guntapromb S, Jaksamritc J and Lertchunhakiata K. 2016. Effects of extenders on fresh and freezing semen of boer goat. *Agriculture and Agricultural Science Procedia* **11**: 125–130.

Zemjanis R. 1970. Collection and evaluation of semen. *Diagnostic and Therapeutic Techniques in Animal Reproduction*, 2nd edn. Williams and Wilkins Co., Baltimore. pp 139–155.

Zhang S S, Hu J H, Li Q W, Jiang Z L and Zhang X Y. 2009. The cryoprotective effects of soybean lecithin on boar spermatozoa quality. *African Journal of Biotechnology* **8**: 6476–80.