Minireview

C/EBP and the Control of Phosphoenolpyruvate Carboxykinase Gene Transcription in the Liver*

Colleen Croniger, Patrick Leahy†, Lea Reshef‡, and Richard W. Hanson§

From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-3945 and the Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120

In 1989, shortly after the discovery of CAAT/enhancer-binding protein (C/EBP)* and in a period before it was clear that there was more than one form of C/EBP, McKnight et al. (1) published a review entitled: “Is C/EBP a Central Regulator of Energy Metabolism?” This prediction of a critical metabolic role for this transcription factor was based on the very slim evidence that C/EBP was involved in the transcription of a number of metabolically important genes such as 4229ap2, phosphoenolpyruvate carboxykinase (PEPCK), and fatty acid synthase, in addition to its role in the differentiation of adipocytes (2, 3). Over the decade since this article was published, the prediction has proven to be remarkably accurate. C/EBP is now known to comprise a gene family with a number of closely related members, the biology of which has been detailed in the first minireview in this series by Lekstrom-Himes and Xanthopoulos (4). These C/EBP isoforms can stimulate or inhibit transcription from a growing list of genes in a variety of tissues in animals as diverse as chickens and rats. One of the critical aspects of the biology of C/EBP that has emerged over the past 10 years is the key role that members of the family of transcription factors play in both the development and maintenance of metabolically important processes (1, 5, 6). This review will focus on the effects of C/EBP isoforms on the control of transcription of the gene for the key gluconeogenic enzyme PEPCK (GTP) (EC 4.1.1.32) as a model for its regulation of other genes that code for enzymes of metabolic importance.

Transcriptional Regulation of the PEPCK Gene Promoter

The transcripational control of the gene for the cytosolic form of PEPCK from the rat (7–9) and chicken (10, 11) has been extensively studied. The promoter regulatory region of the gene from the rat is shown in Fig. 1. Because the sequence of the promoter for the PEPCK gene from the mouse, rat, and human has been remarkably conserved (greater than 95% sequence identity), it is reasonable to assume that the pattern of transcriptional regulation noted from studies with the PEPCK gene promoter from rodents is characteristic of the control in most mammalian species. The PEPCK gene promoter contains several critical regions of transcription factor binding that are required for the regulation of PEPCK gene transcription.

Region 1—This region contains a cAMP regulatory element (CRE) (−91 to −84), which is about 60 base pairs 5′ from the TATA box (−29 to −23) and is immediately adjacent to a nuclear factor 1 (NFI)-binding site (−116 to −104). The CRE has been shown to bind members of the leucine zipper family of transcription factors, including C/EBPα (12, 13), C/EBPβ (14), D-binding protein (15), AP-1 (16), cAMP regulatory element-binding protein (CREB) (17), cAMP regulatory element modulator (CREM) (18), and Jun/Jun homodimers (16). The CRE is required for the full induction of transcription from the PEPCK gene promoter by cAMP (19). Recently, we have demonstrated that NFI inhibits transcription from the PEPCK gene promoter and suggested that an interaction between NFI and CREB-binding protein (CBP) is involved in the control of the basal level of transcription of the PEPCK gene in the liver (20).

Region 2—This region contains an hepatic nuclear factor 1 (HNF-1) regulatory element (−190 to −185), which, despite its name, is critical for the expression of the PEPCK gene in the kidney-inducedogenic mice. There is a C/EBP-binding domain (−234 to −235), termed P3(I), which is required for the liver-specific expression of the PEPCK gene (21); members of the C/EBP family are the only transcription factors that are known to bind to the P3(I) site. This site is involved in the CAMP stimulation of transcription from the PEPCK gene promoter since its deletion results in a 60−70% drop in expression from the promoter in the presence of cAMP in both hepatoma cells (19) and in transgenic mice (21). C/EBP also binds to the P4 site (−282 to −274) (12). A thyroid hormone regulatory element is located at −332 to −316 of the PEPCK gene promoter (22, 23).

Region 3—This region contains the glucocorticoid response unit (GRU) composed of two glucocorticoid regulatory elements, three accessory factor-binding sites, and a CRE (24). The entire element binds between NFI and CREB-binding protein (CBP) is involved in the control of the basal level of transcription of the PEPCK gene in the liver (20).

Region 4—This region contains a PPARγ regulatory element (−999 to −987), which is required for the adipose tissue-specific expression of the PEPCK gene in both cultured adipocytes (27) and in adipose tissue of transgenic mice in which the region containing the PPARγ element has been deleted (28).

The Role of C/EBP Isoforms in the Regulation of PEPCK Gene Transcription

Of the C/EBP isoforms, only C/EBPα (6, 23, 29), C/EBPβ (14), and D-binding protein (15) have been implicated in the control of PEPCK gene transcription; all three of these isoforms of C/EBP bind to the PEPCK gene promoter and can stimulate transcription from the promoter when transfected into hepatoma cells. It is likely that these three transcription factors, either individually or in combination, regulate PEPCK gene transcription in the liver. Wang et al. (29) partially resolved the issue of which isoform of C/EBP controls the development of hepatic PEPCK gene transcription when they reported that PEPCK and glucose 6-phosphatase mRNAs were absent in the livers of mice with a deletion in the gene for C/EBPα (C/EBPα−/− mice). Subsequently, Flodby et al. (30) demonstrated that C/EBPα−/− mice also have immature lung development. The complete analysis of those genes whose expression is affected by a deletion in the gene for C/EBPα has not been performed to date, but it is clear from the available data that a
number of these genes are involved in integrative metabolic functions (5). These proteins include enzymes involved in gluconeogenesis, glycogen synthesis, and fatty acid synthesis that are markedly altered in the absence of C/EBPs. For example, C/EBPα−/− mice have no hepatic glycogen at birth (there is no detectable glycogen synthase in the liver), and in the absence of PEPCK and glucose 6-phosphatase, they cannot synthesize glucose to maintain glucose homeostasis in the perinatal period; both brown and white adipose tissues also fail to develop normally (29).

The administration of dibutyryl cAMP to C/EBPα−/− mice at day 19 of fetal life resulted in a blunted induction of PEPCK mRNA in the liver (about 10% of the control value) but caused a marked increase in the level of C/EBPβ mRNA in the livers of the C/EBPα−/− mice (6). It is thus possible that C/EBPβ assumes the function of regulating PEPCK gene transcription in the absence of C/EBPα. The temporal pattern of expression of the isoforms of C/EBP could be critical for the programmed initiation of gene transcription in the liver. In preliminary studies from our laboratory we have shown that C/EBPα−/−/C/EBPβ+/+ mice do not survive past day 18 of fetal life, suggesting that the at least one allele for C/EBPα must be present in the mouse to ensure that development proceeds.

The role of C/EBPα in mediating cAMP-stimulated transcription of the PEPCK gene was first demonstrated by Liu et al. (19). They reported that a mutant PEPCK gene promoter, in which the CRE has been replaced by the P90U site (which binds only C/EBP), is as responsive to the catalytic subunit of PKA (PKAc) as the native PEPCK gene promoter. Recently, Roehler et al. (31) demonstrated that C/EBPα (but not C/EBPβ) can substitute for CREB in cAMP-stimulated PEPCK gene transcription and mapped the C/EBPα activation domain to a region between amino acids 176 and 217. In addition, Roehler et al. (32) also reported that a dominant repressor of C/EBPα, when transfected into hepatoma cells, significantly inhibited induction of transcription from the PEPCK gene promoter by PKAc. Interestingly, the DNA-binding domain of C/EBPα was not required for its effect on PEPCK gene transcription in hepatoma cells but was required in non-hepatoma cells, suggesting that there is an interaction between C/EBP and other factors, which are critical for the full effect of C/EBPα on PEPCK gene transcription.

A major problem in studying the long term effects of a deletion in the gene for C/EBPα in mice is the lethality of the deletion in the perinatal period. Lee et al. (33) constructed a conditional knockout allele of C/EBPα using the Cre/loxP recombinase system. The Cre recombinase is expressed in the liver of adult mice containing the gene for C/EBPα flanked by loxP sites, using a recombinant adenoviral vector carrying the cre gene. The hepatic expression of the genes for both C/EBPα and PEPCK was reduced by 90% in the livers of these mice, indicating that C/EBPα is required for maintaining the basal levels of PEPCK in the livers of adult mice. It is surprising that this requirement for C/EBPα could not be compensated for by C/EBPβ or other C/EBP isoforms, which are abundantly expressed in the liver of adult animals.

Mice homozygous for a deletion in the gene for C/EBPβ (C/EBPβ−/− mice) were initially generated to study the effects of C/EBPβ on the interleukin-6 signaling pathway. Screpanti et al. (34) reported that the mice developed a pathology similar to animals that overexpress interleukin-6; they have splenomegaly, peripheral lymphadenopathy, enhanced hemopoiesis, and altered T-helper cell function. Despite these problems with the immune system, the mice had no overt disruption of glucose homeostasis (34). However, both Screpanti et al. (34) and Tanaka et al. (35) noted a failure to obtain the expected ratio of mice heterozygous for a deletion in the gene for C/EBPβ, although the appropriate number of C/EBPβ−/− mice was present at 20 days of fetal life. In a recent study we reported that there are two phenotypes noted with the C/EBPβ−/− mice (6). Animals with phenotype A live until about 4–6 months of age and die of problems associated with a severely compromised immune system, whereas the other half of the C/EBPβ−/− mice, those with phenotype B, die within the first hour after birth of profound hypoglycemia.

Animals with the B phenotype have normal levels of hepatic glycogen but do not mobilize this glycogen and do not initiate hepatic PEPCK gene transcription, which is characteristic of the neonatal period (36). However, PEPCK gene transcription and glycogen mobilization from the liver can be induced during the perinatal period in C/EBPβ−/− mice by the administration of dibutyryl cAMP. It is possible that C/EBPβ−/− mice are less responsive to cAMP and are thus not able to maintain the level of glucose in the blood by either glucagon or glucose. C/EBPβ−/− mice have about 25% of the total hepatic cAMP, and the administered dose of glucagon to adult C/EBPβ−/− mice (A phenotype) does not cause the same level of increase in the concentration of cAMP as with C/EBPβ+/+ mice. C/EBPβ−/− mice (A phenotype) also have a diminished ability of the liver and adipose tissue to respond to glucagon and epinephrine administration. The rate of glucose production by the liver after glucagon administration is less than control mice, and the rate of free fatty acid release from adipose tissue in vitro after the addition of epinephrine is greatly reduced. It thus seems likely that the inability of C/EBPβ−/− mice with the B phenotype (mice die immediately after birth) to maintain the appropriate level of hepatic cAMP is responsible for the failure of these animals to initiate glucose homeostasis at birth. We are currently investigating the mechanism(s) responsible for the lower level of cAMP in the livers of these mice.

C/EBPβ−/− mice (A phenotype) are also less responsive to administered glucocorticoids. Dexamethasone induces transcription of the gene for PEPCK in the kidney of C/EBPβ−/− mice (A phenotype) to about 10% of the level noted in control mice. There is, however, no defect in the cAMP induction of PEPCK gene transcription, indicating that C/EBPβ, although critical for the full response of metabolically significant genes to hormones such as glucocorticoids, glucagon, and epinephrine, is not required for the induction of PEPCK by cAMP.

The reason there are two different phenotypes noted with the C/EBPβ−/− mice is not clear. We assume that there are factors produced in the mice with phenotype A that allows them to transcribe genes critical for survival during the perinatal period. These "modifier genes" are expressed as a result of the genetic background of the mice, which are not inbred. This possibility is sup-

2 C. Croniger and R. W. Hanson, unpublished results.
ported by preliminary experiments in which mice homozygous for a deletion the gene for C/EBPβ were backcrossed with C57BL/6 mice; no C/EBPβ−/− offspring from these matings survived after birth.4 One simple explanation for this result is that the gene(s) for other C/EBP isofoms are up-regulated in mice with the A phenotype, permitting their survival through the perinatal period. However, there is no apparent up-regulation in the expression of the gene for C/EBPα or C/EBPδ in the livers of the C/EBPβ−/− mice; the level of expression of the genes for the other members of the C/EBP family has not as yet been investigated in detail in these mice.

Mechanism of the Effect of C/EBP on PEPCK Gene Transcription; Interaction with CBP/p300

C/EBP isofoms bind to three major sites on the PEPCK gene promoter, the CRE, the P3(I) site, and the AP2 element; all three are critical for the regulated transcription of the PEPCK gene in the liver. A deletion in the CRE or the P3(I) site results in 70% loss of transcriptional induction from the PEPCK gene promoter by cAMP, whereas mutating both sites virtually eliminates the inducive effects of the cyclic nucleotide (19). In addition, mice containing a transgene with the PEPCK gene promoter lacking the P3(I) site (only isofoms of C/EBP are known to bind to this site) have a greatly diminished level of expression of the transgene in the liver (21). A deletion in the AP2 site in the PEPCK gene promoter eliminates the stimulatory effect of diabetes on transcription from that promoter when it is introduced into transgenic mice.5 The results of gene deletion studies outlined above offer further support for the importance of C/EBP isofoms in both the liver-specific expression of the PEPCK gene and the cAMP-regulated transcription from the PEPCK promoter. The mechanism by which C/EBP regulates transcription from the PEPCK gene promoter remains to be determined. There are, however, a number of recent research studies, and work in our own laboratory now sheds some light on this critical question.

C/EBP isofoms have been shown to bind to the dyad-symmetric sequence ATTGCGCAAT (38). The sequences for the CRE and the P3(I) site of the PEPCK gene promoter to form a productive complex. Recently, Mink et al. (44) reported that the transcriptional coactivator CBP binds to C/EBPβ at a region from amino acids 1752 to 1859 of CBP and that this domain contains a region that is conserved in the various C/EBP isofoms. The CRE of the PEPCK promoter lies immediately adjacent to an NFI-binding domain (12), and NFI inhibits the induction of transcription from the PEPCK gene promoter by PKA (20). However, it has been demonstrated in gene transfection studies that the NFI-binding site of the PEPCK gene promoter is not required for the effect of NFI. This suggests that there is an interaction between NFI and another protein(s), neither of which need to bind to the PEPCK gene promoter to form a productive complex. Recently, Lehay et al. (52) provided evidence that this interaction is with CBP, because co-transfection of CBP with NFI overcomes the strong negative effect of NFI on transcription from the PEPCK gene promoter. This effect is concentration-dependent for both CBP and NFI. Preliminary data suggest that NFI binds to the CREB-binding domain of CBP. In support of the role of CBP in the regulation of PEPCK gene transcription, is our observation that E1A, the adenoviral early protein, strongly inhibits cAMP-induced transcription from the PEPCK gene promoter (52).6 Because E1A binding to CBP/p300 is well characterized as a major mechanism by which adenovirus controls host cell function, it is likely that CBP/p300 is also a critical factor in the transcriptional response of PEPCK to hormones (see Fig. 2).

Model for the Control of PEPCK Gene Transcription

Our current model (Fig. 2) for the role of C/EBP isofomms in the control of PEPCK gene transcription is from Leahy et al.6 and shows the PEPCK gene promoter arranged to stress the role of CBP and retinoic acid in regulating the transcriptional response of C/AMP, glucocorticoids, and insulin. C/EBP, which binds to both the CRE and the P3(I) site of the PEPCK gene promoter, interacts with CBP, probably in response to stimulation by PKA. The effect of glucocorticoids on PEPCK gene transcription is also exerted via the interaction of the glucocorticoid receptor with its well-characterized binding site on CBP. It is also likely that insulin exerts its effect on PEPCK gene transcription by interfering with this interaction. The removal of the AP2 domain in the PEPCK gene promoter results in

4 V. Poli, unpublished observations.
5 P. S. Lechner, C. Croniger, and R. W. Hanson, unpublished observations.
6 F. Leahy, D. R. Crawford, G. Grossman, A. Chaudhry, R. Gronostajski, and R. W. Hanson, submitted for publication.
a total loss of transcriptional induction from the promoter in livers from diabetic mice. 4 Although the glucocorticoid receptor does not bind to the CREB-binding domain of CBP whereas CBP binds to the EIA region of CBP (see text for details). The abbreviations are the same as those used in Fig. 1 except: Pol II, RNA polymerase II; TR, thyroid receptor. This mechanism by which phosphorylation of either or both of these proteins alters transcription of the PEPCK gene remains to be determined.

Acknowledgment—We thank Dr. Martin Snider for critically reading the manuscript before publication.

REFERENCES

1. McKnight, S. L., Lane, M. D., and Glueckshon-Waelch, S. (1989) Genes Dev. 3, 2021–2024
2. Yeh, W.-C., Bierer, B., and McKnight, S. L. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 11086–11090
3. Cristy, R. J., Yang, V. W., Ntambi, J. M., Geiman, D. E., Landschulz, W. H., Friedman, A. D., Kelly, J. T., and Lane, M. D. (1989) Genes Dev. 3, 1233–1235
4. Lekstrom-Himes, J., and Xanthopoulos, K. G. (1998) J. Biol. Chem. 273, 2654–2662
5. Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. (1998) J. Biol. Chem. 273, 11991–11996
6. Tontonoz, P., Hu, E., Devine, J., Beale, E. G., and Spiegelman, B. M. (1995) Mol. Cell. Biol. 15, 351–357
7. Shikama, N., Lyon, J., and LaThangue, N. B. (1997) J. Biol. Chem. 272, 19078–19085
8. O’Brien, R. M., Lucas, P. C., Yamasaki, T., Nosin, E. L., and Granner, D. K. (1998) J. Biol. Chem. 273, 1932–1941
9. Shuman, J. D., Cheong, J., and Coligan, J. E. (1997) J. Biol. Chem. 272, 12793–12799
10. Chambon, P., Gossler, A., and Yokoyama, K. K. (1995) Mol. Cell. Biol. 15, 6609–6617
11. Nakajima, T., Uchida, C., Anderson, S. F., Farvin, J. D., and Montminy, M. (1997) Genes Dev. 11, 738–747
12. Kalvakalana, D. V. R., Liu, J., Hanson, R. W., Harter, M. L., and Sen, G. C. (1992) J. Biol. Chem. 267, 2530–2536
13. Trus, M., Benvenisty, N., Cohen, H., and Reshef, L. (1990) Mol. Cell. Biol. 10, 2418–2422
14. Park, E. A., Gurney, A. L., Nizielecki, S. E., Hakimi, P., Cao, Z., Moorman, A., and Hanson, R. W. (1994) Mol. Cell. Biol. 14, 613–619
15. Roesler, W. J., McFie, P. J., and Dauvin, C. (1992) J. Biol. Chem. 267, 21235–21243
16. Gurney, A. L., Park, E. A., Giralt, M., Liu, J., and Hanson, R. W. (1992) J. Biol. Chem. 267, 18133–18139
17. Quinn, P. G. (1993) J. Biol. Chem. 268, 16999–17009
18. Park, E. A., Hanson, R. W., and Reshef, L. (1991) J. Biol. Chem. 266, 19095–19102
19. Liu, J., Park, E. A., Gurney, A. L., Roesler, W. J., and Hanson, R. W. (1991) J. Biol. Chem. 266, 5619–5628
20. Trus, M., Song, S., Oliver, M., and Roesler, W. J. (1996) Biochem. J. 322, 343–348
21. Flodby, P., Barlow, C., Kylefjord, H., Ahlund-Richter, L., and Xanthopoulos, K. G. (1996) J. Biol. Chem. 271, 24753–24760
22. Roesler, W. J., Park, E. A., and McFie, P. J. (1998) J. Biol. Chem. 273, 14590–14597
23. Roesler, W. J., Crosson, S. M., Vinson, C., and McFie, P. J. (1996) J. Biol. Chem. 271, 8068–8074
24. Lee, Y.-H., Sauer, J. W., Johnson, P. F., and Ganzoles, F. J. (1997) Mol. Cell. Biol. 17, 6014–6022
25. Serpentina, I., Romani, L., Masiani, P., Modesti, A., Fattori, E., Lazzares, D., Soldini, C., Scarpai, S., Bellavia, D., Lattanzio, G., Bistoni, F., Frati, L., Cortese, R., Gulino, A., Ciliberto, G., Costantini, F., and Poli, V. (1995) EMBO J. 14, 1932–1941
26. Ballard, F. J., and Hanson, R. W. (1987) Biochem. J. 212, 952–958
27. Nizielecki, S., Lechner, P. S., Craniger, C., Wang, N., Darlington, D. J., and Hanson, R. W. (1996) J. Biol. Chem. 271, 2697–2708
28. Johnson, P. F. (1993) Mol. Cell. Biol. 13, 6919–6930
29. Mahoney, C. W., Shuman, J., McKnight, S. L., Chen, H.-C., and Huang, K.-P. (1992) J. Biol. Chem. 267, 18396–18403
30. Trautwein, C., Van der Geer, P., Karim, M., Hunter, T., and Chukjiev, M. (1994) J. Clin. Invest. 93, 2554–2561
31. Crosson, S. M., and Hanson, R. W. (1993) Life Sci. Adv. 12, 165–170
32. Shuman, J. D., Cheong, J., and Coligan, J. E. (1997) J. Biol. Chem. 272, 12793–12800
33. González, S., Chodury, S., Takiguchi, M., and Morii, M. (1997) J. Biol. Chem. 272, 3684–3688
34. Mink, S., Haenig, B., and Klempnauer, K.-H. (1997) Mol. Cell. Biol. 17, 6609–6617
35. Chivica, J. C., Klok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H. (1993) Nature 365, 855–859
36. Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B., and Livingston, D. M. (1994) Genes Dev. 7, 869–884
37. Shikama, N., Lyon, J., and LaThangue, N. B. (1997) Trends Cell Biol. 7, 230–236
38. Yao, T.-P., Oh, S. P., Fruches, M., Zhou, N.-D., Ch‘ng, L.-E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. (1998) Cell 95, 361–372
39. Chen, H., Lin, R. J., Schiltz, R. L., Chakavarti, D., Nash, L., Privalsky, M. L., Nakatani, Y., and Evans, R. M. (1997) Cell 89, 569–580
40. Kitabayashi, I., Eckner, R., Arany, Z., Chui, R., Gachelin, G., Livingston, D. M., and Yokoyama, K. K. (1995) EMBO J. 14, 3496–3509
41. Nagayama, T., Uchida, C., Anderson, S. F., Farvin, J. D., and Montminy, M. (1997) Genes Dev. 11, 738–747