A sharpened energy-Strichartz inequality for the wave equation

Giuseppe Negro

Centro de Análise Matemática, Geometria e Sistemas Dinâmicos (CAMGSD), Instituto Superior Técnico, Lisbon, Portugal

Correspondence
Giuseppe Negro, Centro de Análise Matemática, Geometria e Sistemas Dinâmicos (CAMGSD), Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal.
Email: giuseppe.negro@tecnico.ulisboa.pt

Abstract
We consider the sharp Strichartz estimate for the wave equation on \(\mathbb{R}^{1+5} \) in the energy space, due to Bez and Rogers. We show that it can be refined by adding a term proportional to the distance from the set of maximizers, in the spirit of the classical sharpened Sobolev estimate of Bianchi and Egnell.

MSC 2020
35L05, 42B37 (primary)

1 | INTRODUCTION

Let \(\mathcal{H} \) denote the energy space for the wave equation; precisely, \(\mathcal{H} \) is the real Hilbert space obtained as the completion of the Schwartz space with scalar product

\[
\langle f | g \rangle_{\mathcal{H}} := \int_{\mathbb{R}^5} \nabla f_0 \cdot \nabla g_0 \, dx + \int_{\mathbb{R}^5} f_1 g_1 \, dx,
\]

where \(f = (f_0, f_1),\ g = (g_0, g_1) \). Bez and Rogers [2] proved the following sharp inequality: for all \(u : \mathbb{R}^{1+5} \to \mathbb{R} \) satisfying \(u_{tt} = \Delta u \), letting \(u(0) = (u(0), u_t(0)) \), it holds that

\[
\|u\|^2_{L^4(\mathbb{R}^{1+5})} \leq \frac{1}{8\pi} \|u(0)\|^2_{\mathcal{H}}.
\]

Moreover, there is equality in (1) if and only if

\[
u(0) \in M := \left\{ c\Gamma_{\mathbb{R}} f_\star \mid c \in \mathbb{R}, \ \alpha \in S^1 \times \mathbb{R}^7 \times SO(5) \right\},
\]
where \(f_* := (4(1 + |\cdot|^2)^{-2}, 0) \), and \(\Gamma_\alpha \) is a certain representation of the natural symmetry group of (1); we will define this operator in the following section. The distance from \(M \) is

\[
\text{dist}(f, M) := \inf \{ \| f - c\Gamma_\alpha f_* \|_H | c \in \mathbb{R}, \alpha \in S^1 \times \mathbb{R}^7 \times SO(5) \}.
\]

In this note, we will prove that (1) can be sharpened, by adding a term that is proportional to such distance.

Theorem 1. There exists an absolute constant \(C > 0 \) such that, for all \(u : \mathbb{R}^{1+5} \to \mathbb{R} \) satisfying \(u_{tt} = \Delta u \) and \(u(0) \in H \), it holds that

\[
C \text{dist}(u(0), M)^2 \leq \frac{1}{8\pi} \| u(0) \|^2_H - \| u \|^2_{L^4(\mathbb{R}^{1+5})} \leq \frac{1}{8\pi} \text{dist}(u(0), M)^2. \tag{2}
\]

This theorem is analogous to [7, Theorem 1.1], which is a sharpening of the conformal Strichartz estimate of Foschi [5], based on the computation of a spectral gap using the Penrose conformal compactification of the Minkowski spacetime. In applying the same approach here, we will face a fundamental new difficulty, related to the lack of conformal invariance of (1). The computation of the spectral gap is more involved: both the relevant quadratic forms and the scalar product of \(H \) are not diagonal in their spherical harmonics expansions. This requires the introduction of several new ingredients. We find it remarkable that a method based on conformal transformations also works in the present nonconformally invariant case.

The upper bound in Theorem 1 follows from a general, abstract argument. The lower bound, on the other hand, is much more delicate and it will be obtained by the method of Bianchi–Egnell [3]. More precisely, we will obtain a local version of Theorem 1, with an effective constant for the lower bound. This local result will then be made global via the profile decomposition of Bahouri and Gérard [1], following the same steps as in the aforementioned [7]. We refer to [4, 7] for further background and references.

Throughout all of this note, we only consider real-valued solutions to the wave equation. This is a natural assumption; for more details, see [7, Remark 3.2].

In the next section, we will prove Theorem 1. The necessary computations with spherical harmonics are collected in the Appendix.

2 PROOF OF THEOREM 1

The right-hand inequality in (2) is an immediate consequence of [7, Proposition 2.1]. We will thus focus on the following theorem, a local version of Theorem 1. Once this is proved, the global version will be a consequence of the profile decomposition of Bahouri and Gérard [1], applying verbatim the argument in [7, section 5]. We omit the details.

Theorem 2. For all \(u : \mathbb{R}^{1+5} \to \mathbb{R} \) satisfying \(u_{tt} = \Delta u \) and \(\text{dist}(u(0), M) < \| u(0) \|_H \),

\[
\frac{36}{85} \frac{1}{8\pi} \text{dist}(u(0), M)^2 + O(\text{dist}(u(0), M)^3) \leq \frac{1}{8\pi} \| u(0) \|^2_H - \| u \|^2_{L^4(\mathbb{R}^{1+5})}. \tag{3}
\]
Before we can begin with the proof, we give the precise definition of the symmetry operators \(\Gamma_\alpha \):

\[
\Gamma_\alpha f := R(t_0 \sqrt{-\Delta} + \theta) \left[e^{3\sigma} f_0(\cdot + x_0) \right] e^{5\sigma} f_1(\cdot + x_0) .
\]

Here, the matrix-valued operator \(R \) is given by

\[
R(\cdot) := \begin{bmatrix}
\cos(\cdot) & \sin(\cdot) \\
-\sqrt{-\Delta} \sin(\cdot) & \cos(\cdot)
\end{bmatrix},
\]

and the parameter \(\alpha \) is

\[
\alpha = (t_0, \theta, \sigma, x_0, A), \quad t_0 \in \mathbb{R}, \theta \in S^1, \sigma \in \mathbb{R}, x_0 \in \mathbb{R}^5, A \in SO(5).
\]

Remark 3. This definition is analogous to [7, eq. 8], which concerns Foschi’s sharp conformal Strichartz estimate, mentioned in the introduction. However, here there are no Lorentz boosts. This is a first manifestation of the lack of full invariance of (1) under conformal transformations of Minkowski spacetime.

Remark 4. In the aforementioned [2, Corollary 1.2], Bez and Rogers actually considered \((0, (1 + | \cdot |^2)^{-3})\) instead of \(f_*\). Both belong to the orbit \(M\); letting \(\alpha = (0, \pi/2, 0, 0, 0)\), we have that \(-2^{-2} \Gamma_\alpha f_* = (0, (1 + | \cdot |^2)^{-3})\). Thus, the choice of which maximizer to consider is inessential.

These operators \(\Gamma_\alpha \) preserve both sides of the Strichartz inequality (1). Precisely, we introduce the notation

\[
Sf(t, x) := \cos(t \sqrt{-\Delta}) f_0(x) + \frac{\sin(t \sqrt{-\Delta})}{\sqrt{-\Delta}} f_1(x),
\]

for the solution operator to the wave equation \(u_{tt} = \Delta u \) with initial data \(u(0) = f \in \mathcal{H} \), and we have that (see [7, eq. 9])

\[
\| \Gamma_\alpha f \|_{\mathcal{H}} = \| f \|_{\mathcal{H}}, \quad \| S \Gamma_\alpha f \|_{L^4(\mathbb{R}^{1+5})} = \| S f \|_{L^4(\mathbb{R}^{1+5})}.
\]

With this newly introduced notation, we can denote the right-hand side of the sought inequality (3), which is known as the *deficit functional* of (1), as follows:

\[
\Phi(f) := \frac{1}{8\pi} \| f \|_{\mathcal{H}}^2 - \| S f \|_{L^4(\mathbb{R}^{1+5})}^2.
\]

We can now begin the proof of Theorem 2. This will occupy the rest of the section.

For \(f \in \mathcal{H} \setminus \{0\} \), the invariance of \(\Phi \) under the operators \(\Gamma_\alpha \) yields \(\Phi(f) = \Phi(cf_* + f_\perp) \), where \(c \neq 0 \) and

\[
\| f_\perp \|_{\mathcal{H}} = \text{dist}(f, M), \quad \text{and} \quad f_\perp \perp T f_* M;
\]
see the proof of [7, Proposition 5.3]. Here ⊥ denotes orthogonality with respect to $\langle \cdot | \cdot \rangle _{\mathcal{H}}$, and the tangent space is given by

$$T_{f_*} M := \text{span}\{ f_*, \nabla_\alpha \Gamma_\alpha f_\star | _{\alpha = 0} \},$$

where ∇_α is the list of derivatives with respect to all parameters (4). We will give a precise description of such tangent space below.

Obviously, $\Phi(f_\star) = 0$. Moreover, f_\star is a critical point of Φ, being indeed a global minimizer. The expansion of Φ to second order thus reads

$$\Phi(f) = \Phi(cf_\star + f_\perp) = Q(f_\perp, f_\perp) + O(\|f_\perp\|_{\mathcal{H}}^2),$$

where Q is a quadratic form, whose precise expression we will give in the forthcoming (10). We are thus reduced to proving the following coercivity;

$$Q(f_\perp, f_\perp) \geq \frac{36}{85} \frac{1}{8\pi} \|f_\perp\|_{\mathcal{H}}^2, \text{ for all } f_\perp \not\equiv T_{f_\star} M.$$

As mentioned in the introduction, the scalar product $\langle \cdot | \cdot \rangle _{\mathcal{H}}$ and the associated orthogonality relation \perp are cumbersome to work with; see the forthcoming Remark A.2 in the Appendix. The following lemma shows that we are free to modify \perp, leveraging on the fact that f_\star is a maximizer for (1), hence a minimizer for the deficit functional Φ.

Lemma 5. Let $\langle \cdot | \cdot \rangle _{\mathcal{H}}$ be a scalar product on \mathcal{H}, and denote by \perp the corresponding orthogonality relation. If there is a $C_\star > 0$ such that $Q(g, g) \geq C_\star \|g\|_{\mathcal{H}}^2$ for all $g \perp T_{f_\star} M$, then $Q(f_\perp, f_\perp) \geq C_\star \|f_\perp\|_{\mathcal{H}}^2$ for all $f_\perp \not\equiv T_{f_\star} M$.

Proof. Let $f_\perp \not\equiv T_{f_\star} M$ and decompose it as $f_\perp = g + h$, where $g \perp T_{f_\star} M$ and $h \in T_{f_\star} M$. Note that $Q(h, h) = 0$, as $\partial^2 \phi (c f_\star + \varepsilon h)|_{\varepsilon = 0}$ vanishes in that case, as we are differentiating along some curve associated to some symmetry of (1), on which Φ is constant.

As f_\star is a global minimizer of Φ, in particular Q is a positive-semidefinite quadratic form. We can thus apply the Cauchy–Schwarz inequality to obtain that

$$|Q(g, h)| \leq Q(g, g)Q(h, h) = 0.$$

We conclude that

$$Q(f_\perp, f_\perp) = Q(g, g) \geq C_\star \|g\|_{\mathcal{H}}^2 = C_\star \|f_\perp\|_{\mathcal{H}}^2 + C_\star \|h\|_{\mathcal{H}}^2 \geq C_\star \|f_\perp\|_{\mathcal{H}}^2. \quad \Box$$

From now on we will be working on the sphere $\mathbb{S}^5 \subset \mathbb{R}^6$, whose points we denote by $X = (X_0, \vec{X})$, with $\vec{X} = (X_1, ..., X_5)$; thus, $\sum_0^5 X_j^2 = 1$. We let $d\sigma$ denote the standard hypersurface measure on \mathbb{S}^5.

Definition 6 (Penrose transform). We identify $f = (f_0, f_1) \in \mathcal{H}$ with the pair (F_0, F_1) of real functions on \mathbb{S}^5 via the formulae

$$f_0(x) = (1 + X_0)^2 F_0(X), \quad f_1(x) = (1 + X_0)^3 F_1(X), \quad \text{where } x = \frac{\vec{X}}{1 + X_0}. \quad (6)$$
Remark 7. The map \((X_0, \vec{X}) \mapsto x = \frac{\vec{X}}{1 + X_0}\) is the stereographic projection of \(\mathbb{S}^5 \setminus \{(-1, \vec{0})\}\) onto \(\mathbb{R}^5\). The identification (6) implies (see, for example, [7, eqs. 19–20])

\[
Sf(t, r\omega) = \cos \left(T \sqrt{4 - \Delta_{\mathbb{S}^5}} \right) F_0(X) + \frac{\sin(T \sqrt{4 - \Delta_{\mathbb{S}^5}})}{\sqrt{4 - \Delta_{\mathbb{S}^5}}} F_1(X),
\]

where \(X = (\cos R, \sin R\omega)\), for \(r \geq 0\) and \(\omega \in \mathbb{S}^4\). The variables \((T, X) \in [-\pi, \pi] \times \mathbb{S}^5\) are related to \((t, r\omega) \in \mathbb{R}^{1+5}\) via the formulae \(T = \arctan(t + r) + \arctan(t - r)\), \(R = \arctan(t + r) - \arctan(t - r)\), which, however, we will not need in the sequel.

Under (6), \(f_+\) corresponds to the pair of constant functions \(F_{+0} = 1, F_{+1} = 0\), while \(Tf_+M\) corresponds to the following space of polynomials in \((X_0, X_1, ..., X_5)\):

\[
Tf_+M \equiv \left\{ \begin{bmatrix} (1 + X_0)^2 \left(\sum_{j=0}^5 a_j X_j + a_6 \right) \\ (1 + X_0)^3 (b_0 X_0 + b_1) \end{bmatrix} : a_j, b_j \in \mathbb{R} \right\}.
\]

This can be seen by redoing verbatim the computations in [7, section 3].

Remark 8. Note that (7) is strictly smaller than the analogous tangent space [7, eq. 34] in the conformal case. This is because the present case has less symmetries, as we saw.

We now introduce the system of spherical harmonics on \(\mathbb{S}^5\) that we will use. This fine description of spherical harmonics was not needed in the aforementioned [7].

Definition 9. Let \{\(Y_{\ell, m}\)\} denote a complete orthonormal system of \(L^2(\mathbb{S}^5)\), fixed once and for all according to the following prescription. The indices range on

\[
\ell \in \mathbb{N}_{\geq 0}, \quad m \in N(\ell) := \{m = (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 : \ell \geq m_1 \geq m_2 \geq m_3 \geq |m_4|\},
\]

and each \(Y_{\ell, m}\) has the form

\[
Y_{\ell, m}(X_0, \vec{X}) = P_{m_1}(X_0) Y_{m}^{\mathbb{S}^4}(\vec{X} / |\vec{X}|),
\]

with \(P_{m_1}\) denoting the 6-dimensional normalized associated Legendre function (see the Appendix), while \(\{Y_{m}^{\mathbb{S}^4}\}_{m \in N(\ell)}\) denotes a orthonormal system of real spherical harmonics in \(L^2(\mathbb{S}^4)\) of degree \(m_1\). For each \(F \in L^2(\mathbb{S}^5)\), let \(\hat{F}(\ell, m) := \int_{\mathbb{S}^5} FY_{\ell, m} d\sigma\).

With these definitions, we can characterize (7) as

\[
f \in Tf_+M \iff \begin{cases} \hat{F}_0(\ell, m) = 0, & \ell \geq 2, \\ \hat{F}_1(\ell, m) = 0, & \ell \geq 2 \text{ or } \ell = 1, m \neq 0, \end{cases}
\]

† In particular, each \(Y_{\ell, m}\) is a spherical harmonic on \(\mathbb{S}^5\) of degree \(\ell\) and such that \(\| Y_{\ell, m} \|_{L^2(\mathbb{S}^5)} = 1\); see [6, Lemma 1, p. 55].
which suggests the introduction of the following alternative orthogonality relation, toward the application of Lemma 5:

\[
\begin{cases}
\hat{G}_0(\ell, m) = 0, \\
\hat{G}_1(\ell, 0) = 0,
\end{cases}
\text{for } \ell = 0, 1, m \in \mathbb{N}(\ell).
\] \hspace{1cm} (8)

Here, \((F_0, F_1)\) and \((G_0, G_1)\) denote the Penrose transforms (6) of \(f\) and \(g\), respectively. Note that \(\overline{\perp}\) is different from the standard orthogonality \(\perp\) of \(\mathcal{H}\); see the Appendix.

Remark 10. In the conformal case of [7], there is no need to introduce such alternative orthogonality relations. Indeed, the natural scalar product considered there is diagonalized by the spherical harmonics, after the Penrose transform; see [7, eq. 24].

For \(f = (f_0, f_1) \in \mathcal{H}\), a Taylor expansion to second order of the deficit functional (5) shows that the quadratic form \(Q(f, f)\) equals

\[
\frac{1}{4\pi} \left[2\frac{\langle f_\ast | f \rangle_{\mathcal{H}}}{\| f_\ast \|_{\mathcal{H}}^2} + \frac{\| f_\ast \|_{\mathcal{H}}^2}{\| f \|_{\mathcal{H}}^2} - 3 \int_{\mathbb{R}^{1+5}} (Sf_\ast)^2(Sf)^2 \right].
\] \hspace{1cm} (9)

We already observed that \(\Phi(f_\ast) = 0 = \partial_\varepsilon \Phi(f_\ast + \varepsilon f)|_{\varepsilon = 0}\). This yields

\[
\| Sf_\ast \|_{L^4(\mathbb{R}^{1+5})}^2 = \frac{1}{8\pi} \| f_\ast \|_{\mathcal{H}}^2, \quad \int_{\mathbb{R}^{1+5}} (Sf_\ast)^3Sf = \frac{\| Sf_\ast \|_{L^4(\mathbb{R}^{1+5})}^4}{\| f_\ast \|_{\mathcal{H}}^2} \langle f_\ast | f \rangle_{\mathcal{H}},
\]

which we can insert into (9) to obtain the simpler expression

\[
Q(f, f) = \frac{16\pi}{\| f_\ast \|_{\mathcal{H}}^2} \left[\frac{1}{(8\pi)^2} \left(2\langle f_\ast | f \rangle_{\mathcal{H}}^2 + \| f_\ast \|_{\mathcal{H}}^2 \| f \|_{\mathcal{H}}^2 \right) - 3 \int_{\mathbb{R}^{1+5}} (Sf_\ast)^2(Sf)^2 \right].
\] \hspace{1cm} (10)

It is easy to see that \(Q(f, f) = Q((f_0, 0), (f_0, 0)) + Q((0, f_1), (0, f_1))\) (see [7, eq. 50]). The computations in the Subsection A.1 of the Appendix show that, for all \(f \overline{\perp} T_{f_\ast} M\),

\[
Q((f_0, 0), (f_0, 0)) = \frac{1}{4\pi} \left[\sum_{\ell=2}^\infty \sum_{m \in \mathbb{N}(\ell)} \alpha_{\ell, m} \hat{F}_0(\ell, m)^2 + \beta_{\ell, m} \hat{F}_0(\ell + 1, m) \hat{F}_0(\ell, m) \right],
\] \hspace{1cm} (11)

while

\[
Q((0, f_1), (0, f_1)) = \frac{1}{4\pi} \left[\sum_{m \in \mathbb{N}(1), m_1 = 1} \frac{\hat{F}_1(1, m)^2}{9} \right. \\
\left. + \sum_{\ell=2}^\infty \sum_{m \in \mathbb{N}(\ell)} \alpha_{\ell, m} \frac{\hat{F}_1(\ell, m)^2}{(\ell + 2)^2} + \beta_{\ell, m} \frac{\hat{F}_1(\ell, m) \hat{F}_1(\ell + 1, m)}{(\ell + 2)(\ell + 3)} \right],
\] \hspace{1cm} (12)
where the coefficients are

\[
\alpha_{\ell,m} = \frac{\ell^4 + 8\ell^3 + 11\ell^2 - 20\ell - 12 + 6m_1^2 + 18m_1}{(\ell + 1)(\ell + 3)}, \quad \beta_{\ell,m} = (\ell - 1)(\ell + 6) \sqrt{\frac{(\ell + 1 - m_1)(\ell + 4 + m_1)}{(\ell + 2)(\ell + 3)}}.
\]

These formulae show that \(Q \) has a kind of tridiagonal structure; for example, neglecting all summands with \(m \neq 0 \), we can formally write (11) as

\[
\begin{bmatrix}
\hat{F}_0(2,0) & \hat{F}_0(3,0) & \hat{F}_0(4,0) & \cdots \\
\frac{1}{2}\beta_{2,0} & \alpha_{2,0} & 0 & 0 & \hat{F}_0(2,0) \\
0 & \frac{1}{2}\beta_{3,0} & \alpha_{3,0} & 0 & \hat{F}_0(3,0) \\
0 & 0 & \frac{1}{2}\beta_{4,0} & \alpha_{4,0} & \hat{F}_0(4,0) \\
& & & & \ddots \\
\end{bmatrix}
\]

Remark 11. The analogous quadratic form [7, eq. 52] for the conformal case is diagonal.

To exploit such tridiagonal structure, we introduce the following criterion.

Lemma 12 (Diagonal dominance). Let \(L \in \mathbb{N}_{\geq 0} \) and let

\[
\{ a_{\ell,m}, b_{\ell,m} : \ell \in \mathbb{N}_{\geq L}, \ m \in \mathbb{N}(\ell) \}
\]

be real sequences satisfying

\[
\begin{align*}
|a_{\ell,m}| & \geq \frac{1}{2} |b_{\ell,m}|, \\
|a_{\ell,m}| & \geq \frac{1}{2} (|b_{\ell,m}| + |b_{\ell-1,m}|), \quad \ell > L,
\end{align*}
\]

Then the quadratic functional \(T \), defined by

\[
T(F) = \sum_{\ell=L}^{\infty} \sum_{m \in \mathbb{N}(\ell)} a_{\ell,m} \hat{F}(\ell, m)^2 + b_{\ell,m} \hat{F}(\ell, m) \hat{F}(\ell + 1, m),
\]

satisfies \(T(F) \geq 0 \) for all \(F \in L^2(S^5) \).

Proof. With the convention that \(b_{\ell,m} = 0 \) if \(\ell < L \) or \(\ell < m_1 \), we can bound \(T(F) \) from below by

\[
T(F) \geq \sum_{\ell \geq L, \ m \in \mathbb{N}(\ell)} \frac{|b_{\ell,m}|}{2} \hat{F}(\ell, m)^2 + \frac{|b_{\ell-1,m}|}{2} \hat{F}(\ell, m)^2 + b_{\ell,m} \hat{F}(\ell, m) \hat{F}(\ell + 1, m)
\]

\[
\geq \sum_{\ell \geq L, \ m \in \mathbb{N}(\ell)} \frac{1}{2} |b_{\ell,m}| (\hat{F}(\ell, m) + \text{sign}(b_{\ell,m}) \hat{F}(\ell + 1, m))^2 \geq 0.
\]

We can finally apply this lemma to obtain the desired lower bound. Recall that the relation \(\mathcal{I} \) has been defined in (8).
Proposition 13. For all f $\overline{\perp} T f^* M$,

$$Q(f, f) \geq \frac{36}{85} \frac{1}{8\pi} \|f\|_H^2.$$

Once Proposition 13 is proved, Lemma 5 will imply the same lower bound with the standard orthogonality \perp instead of $\overline{\perp}$, thus establishing the required coercivity of Q and completing the proof of Theorem 2, hence of Theorem 1.

Proof of Proposition 13. We observed that $Q(f, f) = Q((f_0, 0), (f_0, 0)) + Q((0, f_1), (0, f_1))$. We consider the term $Q((f_0, 0), (f_0, 0))$ first. Defining the quadratic functional

$$T : \{ F_0(\ell, m) = 0, \text{ for } \ell = 0, 1, m \in \mathbb{N}(\ell) \} \rightarrow \mathbb{R},$$

$$T(f_0) := Q((f_0, 0), (f_0, 0)) - \frac{36}{85} \frac{1}{8\pi} \|(f_0, 0)\|_H^2,$$

it will suffice to show that T satisfies the conditions of Lemma 12; notice that the orthogonality $(f_0, 0) \overline{\perp} T f^* M$ is encoded in the domain of T. We perform the change of variable

$$\hat{F}_0(\ell, m) = \frac{\hat{H}(\ell, m)}{\sqrt{(\ell + 1)(\ell + 3)}},$$

so that, by (11) and by the formula (A.4) in the Appendix, we have

$$T(H) = \sum_{\ell=2}^{\infty} \sum_{m \in \mathbb{N}(\ell)} a_{\ell, m} \hat{H}(\ell, m)^2 + b_{\ell, m} \hat{H}(\ell, m) \hat{H}(\ell + 1, m),$$

where

$$a_{\ell, m} = \frac{1}{4\pi} \frac{\ell^4 + 8\ell^3 + 11\ell^2 - 20\ell - 12 + 6m_1^2 + 18m_1}{(\ell + 1)^2(\ell + 3)^2} - \frac{36}{85} \frac{1}{8\pi} \frac{(\ell + 2)^2}{(\ell + 1)(\ell + 3)},$$

$$b_{\ell, m} = \sqrt{\frac{(\ell + 1 - m_1)(\ell + 4 + m_1)}{(\ell + 1)(\ell + 4)}} \left(\frac{1}{4\pi} \frac{(\ell - 1)(\ell + 6)}{(\ell + 2)(\ell + 3)} - \frac{36}{85} \frac{1}{8\pi} \right).$$

Notice that $b_{\ell, 0}$ is a rational function: the change of variable (14) was chosen to obtain this. Note also that, for all $\ell \geq 2$, $a_{\ell, m} \geq a_{\ell, 0}$ and $b_{\ell, m} \leq b_{\ell, 0}$. Therefore,

$$a_{2,m} - \frac{1}{2} b_{2,m} \geq a_{2,0} - \frac{1}{2} b_{2,0} = 0,$$

while, for $\ell > 2$,

$$a_{\ell, m} - \frac{1}{2} (b_{\ell, m} + b_{\ell-1,m}) \geq a_{\ell,0} - \frac{1}{2} (b_{\ell,0} + b_{\ell-1,0})$$

$$= \frac{1}{4\pi(\ell + 1)(\ell + 3)} \left(\frac{\ell^2 + 4\ell + 15}{(\ell + 1)(\ell + 3)} - \frac{18}{85} \right) > 0.$$
So, the conditions (13) of Lemma 12 are satisfied, and we can conclude that

\[Q((f_0, 0), (f_0, 0)) \geq \frac{36}{85} \frac{1}{8\pi} \| (f_0, 0) \|^2_{H^1}, \quad \text{for all } (f_0, 0) \perp T_{f_0} M. \]

To prove the analogous inequality for \(Q((0, g_1), (0, g_1)) \), we let

\[T : \{ \hat{F}_1(\ell, 0) = 0, \text{ for } \ell = 0, \ell = 1 \} \rightarrow \mathbb{R} \]

\[T(f_1) := Q((0, f_1), (0, f_1)) - \frac{36}{85} \frac{1}{8\pi} \| (0, f_1) \|^2_{H^1}. \]

We perform the change of variable

\[\hat{F}_1(\ell, m) = \frac{\hat{H}(\ell, m)(\ell + 2)}{\sqrt{(\ell + 1)(\ell + 3)}}, \]

so that, by (12) and by the formula (A.3) in the Appendix,

\[T(H) = \sum_{m \in \mathbb{N}(1), m_1 = 1} \tilde{a}_{1,m} \hat{H}(1, m)^2 + \tilde{b}_{1,m} \hat{H}(1, m) \hat{H}(2, m) + \sum_{\ell = 2}^{\infty} \sum_{m \in \mathbb{N}(\ell)} a_{\ell,m} \hat{H}(\ell, m)^2 + b_{\ell,m} \hat{H}(\ell, m) \hat{H}(\ell + 1, m), \]

where \(\tilde{a}_{1,m} = \frac{93}{2720}, \tilde{b}_{1,m} = -\frac{36}{85} \frac{1}{8\pi} \sqrt{\frac{3}{5}} \), while \(a_{\ell,m} \) and \(b_{\ell,m} \) equal (15) for \(\ell \geq 2 \). For \(\ell = 1, 2 \) and \(m_1 = 1 \) we have that

\[a_{1,m} - \frac{1}{2} |\tilde{b}_{1,m}| = \frac{1}{\pi} \left(\frac{93}{2720} - \frac{36}{85} \frac{1}{8\pi} \sqrt{\frac{3}{5}} \right) > \frac{1}{100} > 0, \]

\[a_{2,m} - \frac{1}{2} (b_{2,m} + |\tilde{b}_{1,m}|) = \frac{1}{\pi} \left(\frac{64}{1275} - \frac{2\sqrt{7}}{255} - \frac{9\sqrt{15}}{1700} \right) > \frac{2}{1000} > 0. \]

For all other values of \(\ell \) and \(m \), the assumptions of Lemma 12 have already been verified; see (16) for the \(\ell = 2, m_1 = 2 \) case (recall that, by convention, \(b_{1,m} = 0 \) if \(m_1 > 1 \)), and (17) for all the other cases. We conclude that

\[Q((0, f_1), (0, f_1)) \geq \frac{36}{85} \frac{1}{8\pi} \| (0, f_1) \|^2_{H^1}, \quad \text{for all } (0, f_1) \perp T_{f_1} M, \]

which completes the proof.

\[\square \]

Remark 14. The same proof shows that \(C = \frac{36}{85} \frac{1}{8\pi} \) is the largest constant such that the quadratic form \(Q(f, f) - C\| f \|^2_{H^1} \) is diagonally dominant in the sense of Lemma 12. This is the reason why the constant \(\frac{36}{85} \frac{1}{8\pi} \) appears in Theorem 2.
APPENDIX A: COMPUTATIONS WITH SPHERICAL HARMONICS

In this Appendix, we compute expressions for the scalar product \((f | g)_H\) and the quadratic form \(Q(f, f)\) in terms of the Penrose transforms \((F_0, F_1)\) and \((G_0, G_1)\) of \(f\) and \(g\), respectively (see Definition 6).

Following [6, p. 54], we introduce the normalized associated Legendre functions of degree \(\ell \in \mathbb{N}_{\geq 0}\), order \(m \in \{0, 1, \ldots, \ell\}\) and dimension 6 to be the functions\(^1\)

\[
P^m_{\ell}(6; t) = \mathcal{N}_{\ell, m}(1 - t^2)^{\frac{m}{2}} P_{\ell - m}(2m + 6; t), \quad t \in [-1, 1],
\]

where \(P_{\ell - m}(2m + 6; \cdot)\) is the Legendre polynomial of degree \(\ell - m\) in dimension \(2m + 6\). The normalization constant (recall \(|S^n| = 2\pi^{\frac{n+1}{2}} / \Gamma(\frac{n+1}{2})\))

\[
\mathcal{N}_{\ell, m} = \sqrt{\frac{(2\ell + 4)(\ell + m + 3)!}{(\ell - m)!(2m + 4)!}} \frac{|S^{2m+4}|}{|S^{2m+5}|}
\]

is chosen to ensure the orthonormality

\[
\int_{-1}^{1} P^m_{\ell}(6; t) P^m_{\ell'}(6; t)(1 - t^2)^{\frac{3}{2}} dt = \delta_{\ell, \ell'}, \quad (A.1)
\]

We adopt the convention that \(P^m_{\ell}(6; \cdot) = 0\) if \(m > \ell\).

Recall from Definition 9 that

\[
Y_{\ell, m}(X_0, \vec{X}) = P^m_{\ell}(6; X_0) Y^{S^4}_{m} \left(\frac{\vec{X}}{|\vec{X}|} \right),
\]

where \(\{Y^{S^4}_{m}\}\) is a fixed orthonormal system of spherical harmonics on \(S^4\) of degree \(m_1\); here

\[
\ell \in \mathbb{N}_{\geq 0}, \quad m \in \mathbb{N}(\ell) := \{m = (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 : \ell \geq m_1 \geq m_2 \geq m_3 \geq |m_4|\}.
\]

Note that \(\mathbb{N}(\ell) \subset \mathbb{N}(\ell + 1)\). We now introduce the following coefficient, defined for \(\ell, m_1 \in \mathbb{Z}\):

\[
C_{5}(\ell, m_1) = \begin{cases}
\frac{1}{2} \sqrt{\frac{(\ell-m_1+1)(\ell+m_1+4)}{(\ell+2)(\ell+3)}}, & 0 \leq m_1 \leq \ell, \\
0, & \text{otherwise}.
\end{cases}
\]

This appears in the next lemma.

Lemma A.1. For all \(\ell, \ell' \in \mathbb{N}_{\geq 0}\) and all \(m \in \mathbb{N}(\ell), m' \in \mathbb{N}(\ell')\),

\[
\int_{S^5} X_0 Y_{\ell, m}(X) Y_{\ell', m'}(X) d\sigma = \begin{cases}
C_{5}(\min(\ell, \ell'), m_1), & |\ell' - \ell| = 1 \text{ and } m = m', \\
0, & \text{otherwise}.
\end{cases}
\]

\(^1\) In terms of Gegenbauer polynomials, given via the generating function \(\sum_{\ell=0}^{\infty} C^{(\ell)}(t)e^{-\ell} = (1 - 2rt + r^2)^{-\nu}\), it holds that \(P^m_{\ell}(6; t) = \mathcal{N}_{\ell, m}(1 - t^2)^{\frac{m}{2}} C_{\ell-m}(t) / C_{\ell-m}(1)\).
Proof. Letting $X_0 = \cos R$, we have that $d\sigma = (\sin R)^4 dR \, d\sigma_{S^4}$; thus,

$$
\int_{S^5} X_0 Y_{\ell,m} Y_{\ell',m'} \, d\sigma = \int_{S^4} Y_{m}^{S^4} Y_{m'}^{S^4} \int_0^\pi \cos(R) P_{\ell}^{m_1}(6; \cos R) P_{\ell'}^{m_1}(6; \cos R) (\sin R)^4 dR
$$

$$
= \delta_{m,m'} \int_{-1}^1 X_0 P_{\ell}^{m_1}(6;X_0) P_{\ell'}^{m_1}(6;X_0)(1 - X_0^2)^{\frac{3}{2}} \, dX_0.
$$

To evaluate the latter integral, we first assume without loss of generality $\ell' \geq \ell$. From the recursion relation for the Legendre polynomials \cite[Lemma 3, p. 39]{6}, we obtain

\begin{equation}
0 = a_{m_1}^{m_1} P_{\ell}^{m_1}(6;X_0) - b_{m_1}^{m_1} X_0 P_{\ell-1}^{m_1}(6;X_0) + c_{m_1}^{m_1} P_{\ell-2}^{m_1}(6;X_0),
\end{equation}

with

\begin{align*}
& a_{m_1}^{m_1} = \sqrt{\frac{(\ell-m_1)(\ell+m_1+3)}{(2\ell+4)(\ell+m_1+2)}}, \quad b_{m_1}^{m_1} = \sqrt{\frac{2\ell+2}{\ell+m_1+2}}, \quad c_{m_1}^{m_1} = \sqrt{\frac{\ell-m_1-1}{2\ell}}.
\end{align*}

Multiplying (A.2) by $P_{\ell'-1}^{m_1}(6;X_0)(1 - X_0^2)^{\frac{3}{2}}$ and then integrating, we infer from (A.1) that, as $\ell' \geq \ell$,

$$
\int_{-1}^1 P_{\ell}^{m_1}(6;X_0) P_{\ell'-1}^{m_1}(6;X_0)(1 - X_0^2)^{\frac{3}{2}} \, dX_0 = \frac{a_{m_1}^{m_1}}{b_{m_1}^{m_1}} \delta_{\ell',\ell-1} = c_5(\ell-1, m_1) \delta_{\ell',\ell-1}.
$$

This completes the proof. \hfill \Box

To compute a convenient expression for $\langle f \mid g \rangle_{H^s}$, where as usual $f = (f_0, f_1)$ and $g = (g_0, g_1)$, we start by rewriting it in terms of the fractional Laplacian, as follows:

$$
\langle f \mid g \rangle_{H^s} = \int_{\mathbb{R}^5} \sqrt{-\Delta f_0} \sqrt{-\Delta g_0} \, dx + \int_{\mathbb{R}^5} f_1 g_1 \, dx.
$$

We identify f to (F_0, F_1) and g to (G_0, G_1) via the Penrose transform of Definition 6, and we recall the fractional Laplacian formula (see, e.g., \cite[Lemma A.3]{8})

$$
\sqrt{-\Delta f_0}(x) = (1 + X_0)^3 \sqrt{4 - \Delta_{S^5}}(F_0)(X),
$$

where x and $X = (X_0, \vec{X})$ are related by the stereographic projection $x = \vec{X}/(1 + X_0)$, as in Definition 6. Obviously, the same formula holds for for g_0 and G_0.

Recalling the Jacobian $dx = (1 + X_0)^{-5}d\sigma$, we have that

$$
\langle f \mid g \rangle_{H^s} = \int_{S^5} \sqrt{4 - \Delta_{S^5}} F_0 \sqrt{4 - \Delta_{S^5}} G_0 (1 + X_0) \, d\sigma + \int_{S^5} F_1 G_1(1 + X_0) \, d\sigma.
$$

We now use Lemma A.1 to compute

$$
\int_{S^5} F_1 G_1(1 + X_0) \, d\sigma = \sum_{\ell=0}^{\infty} \sum_{m \in \mathbb{N}(\ell)} \tilde{F}_1(\ell,m) \tilde{G}_1(\ell,m) + C_5(\ell, m_1) \left(\hat{F}_1(\ell,m) \hat{G}_1(\ell + 1,m) + \tilde{F}_1(\ell + 1,m) \tilde{G}_1(\ell,m) \right).
$$
As $-\Delta_{S^5} Y_{\ell, m} = \ell(\ell + 4) Y_{\ell, m}$, we have that $\sqrt{4 - \Delta_{S^5}} Y_{\ell, m} = (\ell + 2) Y_{\ell, m}$. Thus,
\[
\int_{S^5} \sqrt{4 - \Delta_{S^5}} F_0 \sqrt{4 - \Delta_{S^5}} G_0 (1 + X_0) \, d\sigma \text{ is equal to }
\]
\[
\sum_{\ell \geq 0} \sum_{m \in \mathbb{N}(\ell)} (\ell + 2)^2 \hat{F}_0(\ell, m) \hat{G}_0(\ell, m) + C_5(\ell, m_1)(\ell + 2)(\ell + 3)(\hat{F}_0(\ell, m) \hat{G}_0(\ell + 1, m) + \hat{F}_0(\ell + 1, m) \hat{G}_0(\ell, m)). \tag{A.4}
\]

Remark A.2. These formulae show that $\langle \cdot | \cdot \rangle_H$ is not diagonal in $\hat{F}_0(\ell, m)$ and $\hat{F}_1(\ell, m)$. This is the reason why the orthogonality $\mathbf{f} \perp \mathcal{T} \mathbf{f}^* \mathbf{M}$ is difficult to characterize in terms of these coefficients.

As an application, we now compute $\|\mathbf{f}^*\|_H^2$. The Penrose transform of \mathbf{f}^* is the pair of constant functions $(F^*_0, F^*_1) = (1, 0)$, so $\hat{F}^*_0(0, 0) = \sqrt{|S^5|}$ and $\hat{F}^*_0(\ell, m) = 0$ for all $\ell > 0$. We conclude from (A.4) that
\[
\|\mathbf{f}^*\|_H^2 = 4|S^5| = 4\pi^3.
\]

A.1 | The quadratic form

In this subsection, we evaluate an expression for the quadratic form $Q(\mathbf{f}, \mathbf{f})$; recall (10). We need to compute it for $\mathbf{f}^* \mathcal{T}^* \mathbf{f}^* \mathbf{M}$, that is,
\[
\hat{F}_0(\ell, m) = 0, \quad \hat{F}_1(\ell, 0) = 0, \quad \text{for } \ell = 0, 1 \text{ and } m \in \mathbb{N}(\ell), \tag{A.5}
\]

which, by (A.4), immediately imply $\langle \mathbf{f}^* | \mathbf{f} \rangle_H = 0$. Thus,
\[
Q((f_0, 0), (f_0, 0)) = \frac{1}{4\pi} \| (f_0, 0) \|_H^2 - \frac{12}{\pi^2} \int_{\mathbb{R}^{1+5}} (S \mathbf{f}^*)^2 (S(f_0, 0))^2,
\]
\[
Q((0, f_1), (0, f_1)) = \frac{1}{4\pi} \| (0, f_1) \|_H^2 - \frac{12}{\pi^2} \int_{\mathbb{R}^{1+5}} (S \mathbf{f}^*)^2 (S(0, f_1))^2. \tag{A.6}
\]

To evaluate the latter integrals, we first note that, by [7, Corollary 3.7],
\[
\int_{\mathbb{R}^{1+5}} (S \mathbf{f}^*)^2 (S \mathbf{f})^2 =
\]
\[
\frac{1}{2} \int_{S^1 \times S^5} \left[\cos(2T) \left(\begin{array}{c} \cos \left(2\sqrt{4 - \Delta_{S^5}} \right) F_0 + \sin \left(\frac{2\sqrt{4 - \Delta_{S^5}}}{4 - \Delta_{S^5}} \right) F_1 \end{array} \right) \right]^2 (\cos T + X_0)^2 \, dT \, d\sigma;
\]

moreover, by Lemma A.1 (recall the convention $Y_{\ell - 1, m} = 0$ if $\ell - 1 < 0$ or $\ell - 1 < m_1$),
\[
(\cos T + X_0) Y_{\ell, m} = \cos(T) Y_{\ell, m} + C_5(\ell - 1, m_1) Y_{\ell - 1, m} + C_5(\ell, m_1) Y_{\ell + 1, m}.
\]
Let $A_\ell(T) := \cos(2T) \cos((\ell + 2)T)$. We have that
\[
\frac{12}{\pi^2} \int_{\mathbb{R}^{1+5}} (Sf_*)_2^2(S(f,0))^2 = \frac{6}{\pi^2} \int_{S_1 \times S_5} \left[\sum_{\ell,m} A_\ell(T) \hat{F}_0(\ell,m) (\cos T + X_0) Y_{\ell,m}(X) \right]^2 \, dT \, d\sigma
\]
\[
= \frac{6}{\pi^2} \int_{S_1 \times S_5} \left[\sum_{\ell,m} (A_\ell(T) \cos(T) \hat{F}_0(\ell,m) + A_{\ell-1}(T) C_5(\ell - 1,m_1) \hat{F}_0(\ell - 1,m) \right.
\]
\[
+ A_{\ell+1}(T) C_5(\ell,m) \hat{F}_0(\ell + 1,m) \right] \, dT \, d\sigma
\]
\[
= \frac{3}{8\pi^2} \sum_{\ell,m} \int_{-\pi}^{\pi} \left[(\cos((\ell - 1)T) + \cos((\ell + 3)T)) (\hat{F}_0(\ell,m) + 2C_5(\ell - 1,m_1) \hat{F}_0(\ell - 1,m)) \right.
\]
\[
+ (\cos((\ell + 1)T) + \cos((\ell + 5)T)) (\hat{F}_0(\ell,m) + 2C_5(\ell,m_1) \hat{F}_0(\ell + 1,m)) \right]^2 \, dT.
\]

By the orthogonality (A.5), the sum runs on $\ell \geq 1$, so the four cosines in the latter integral are orthogonal on $[-\pi, \pi]$. Using this we evaluate the integral, and rearrange terms, to conclude that
\[
\frac{12}{\pi^2} \int_{\mathbb{R}^{1+5}} (Sf_*)_2^2(S(f,0))^2 \text{ equals}
\]
\[
\frac{3}{8\pi^2} \sum_{\ell \geq 2} \sum_{m \in \mathbb{N}(\ell)} \left[(4 + 8C_5(\ell,m_1))^2 + 16C_5(\ell,m_1)\hat{F}_0(\ell,m)\hat{F}_0(\ell + 1,m) \right.
\]
\[
\left. + 3 \sum_{\ell \geq 2} \sum_{m \in \mathbb{N}(\ell)} \left[\frac{2\ell^2 + 8\ell - m_1^2 - 3m_1 + 4}{2(\ell + 1)(\ell + 3)} \hat{G}_1(\ell,m)^2 + 2C_5(\ell,m_1)\hat{G}_1(\ell,m)\hat{G}_1(\ell + 1,m) \right] \right].
\]

Inserting this, and (A.4), into (A.6) yields the formula (11) of the main text.

To compute the other term, it is convenient to let
\[
\hat{G}_1(\ell,m) := \frac{\hat{F}_1(\ell,m)}{\ell + 2}.
\]

Arguing as before, we see that
\[
\frac{6}{\pi^2} \int_{S_1 \times S_5} \left[\sum_{\ell,m} \cos(2T) \sin((\ell + 2)T) \hat{G}_1(\ell,m)(\cos T + X_0) Y_{\ell,m}(X) \right]^2 \, dT \, d\sigma
\]
\[
= \frac{3}{8\pi^2} \sum_{\ell \geq 2} \sum_{m \in \mathbb{N}(\ell)} \left[2\ell^2 + 8\ell - m_1^2 - 3m_1 + 4 \right. \hat{G}_1(\ell,m)^2 + 2C_5(\ell,m_1)\hat{G}_1(\ell,m)\hat{G}_1(\ell + 1,m) \right]
\]
\[
+ \sum_{0 \neq m \in \mathbb{N}(1)} \frac{1}{2} \hat{G}_1(1,m)^2 + 2C_5(1,1)\hat{G}_1(1,m)\hat{G}_1(2,m).
\]
This is very similar to the right-hand side of (A.7), however, it has extra summands in $\ell' = 1$ and $0 \neq m \in \mathbb{N}(1)$, due to the orthogonality (A.5); indeed, notice that the term $\hat{F}_1(1, m) = (\ell' + 2)\hat{G}_1(\ell', m)$ needs not vanish. Inserting this, together with the formula (A.3), into (A.6) finally yields the formula (12) of the main text.

JOURNAL INFORMATION

The *Bulletin of the London Mathematical Society* is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

ORCID

Giuseppe Negro https://orcid.org/0000-0002-4913-7863

REFERENCES

1. H. Bahouri and P. Gérard, *High frequency approximation of solutions to critical nonlinear wave equations*, Amer. J. Math. **121** (1999), no. 1, 131–175.
2. N. Bez and K. Rogers, *A sharp Strichartz estimate for the wave equation with data in the energy space*, J. Eur. Math. Soc. **15** (2013), no. 3, 805–823.
3. G. Bianchi and H. Egnell, *A note on the Sobolev inequality*, J. Funct. Anal. **100** (1991), no. 1, 18–24.
4. T. Duyckaerts, F. Merle, and S. Roudenko, *Maximizers for the Strichartz norm for small solutions of mass-critical NLS*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) **10** (2011), no. 2, 427–476.
5. D. Foschi, *Maximizers for the Strichartz inequality*, J. Eur. Math. Soc. **9** (2007), no. 4, 739–774.
6. C. Müller, *Analysis of spherical symmetries in Euclidean spaces*, Appl. Math. Sci., vol. 129, Springer, New York, 1998, viii+223 pp.
7. G. Negro, *A sharpened Strichartz inequality for the wave equation*, Ann. Sci. Éc. Norm. Supér., arXiv:1802.04114, to appear.
8. G. Negro, D. Oliveira e Silva, B. Stovall, and J. Tautges, *Exponentials rarely maximize Fourier extension inequalities for cones*, arXiv:2302.00356.