Gonzalez, Javier E.; Benetti, Micol; von Marttens, Rodrigo; Alcaniz, Jailson

Testing the consistency between cosmological data: the impact of spatial curvature and the dark energy EoS. (English) Zbl 1487.85021 J. Cosmol. Astropart. Phys. 2021, No. 11, Paper No. 60, 17 p. (2021).

MSC:
85A25 Radiative transfer in astronomy and astrophysics
83C56 Dark matter and dark energy
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
83E05 Geometrodynamics and the holographic principle
83F05 Relativistic cosmology
81V80 Quantum optics
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering

Keywords:
cosmological parameters from CMBR; cosmological parameters from LSS; dark energy theory

Full Text: DOI arXiv

References:
[1] Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo, Observational Probes of Cosmic Acceleration, Phys. Rept., 530, 87-255 (2013) · doi:10.1016/j.physrep.2013.05.001
[2] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[3] WMAP Collaboration; Hinshaw, G., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl., 208, 19 (2013) · doi:10.1088/0004-6361/208/2/19
[4] eBOSS Collaboration; Alam, Shadab, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.083533
[5] Pan-STARRS1 Collaboration; Scolnic, D. M., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J., 859, 101 (2018) · doi:10.3847/1538-4357/aab0b0
[6] SDSS Collaboration; Betoule, M., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys., 568, A22 (2014) · doi:10.1051/0004-6361/20142413
[7] DES Collaboration; Abbott, T. M. C., First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters, Astrophys. J. Lett., 872, L30 (2019) · doi:10.3847/2041-8213/ab04fa
[8] Bouvin, V., BiLiCOW - V. New COSMOMGRAIL time delays of HE 04351223: H_0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model, Mon. Not. Roy. Astron. Soc., 465, 4914-4930 (2017) · doi:10.1093/mnras/stw3006
[9] ACT Collaboration; Aiosa, Simone, The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters, JCAP, 12 (2020) · doi:10.1088/1475-7516/2020/12/047
[10] DES, SPT Collaboration; Costanzi, M., Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.043522
[11] Efstathiou, George; Gratton, Steven, The evidence for a spatially flat Universe, Mon. Not. Roy. Astron. Soc., 496, L91-L95 (2020) · doi:10.1093/mnrasl/slaa093
[12] Guth, Alan H.; Fan, Li-Zhi; Ruffini, R., The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23, 347-356 (1981) · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[13] Linde, Andrei D., Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario, Phys. Lett. B, 116, 335-339 (1982) · doi:10.1016/0370-2693(82)90929-3
[14] Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph, Planck evidence for a closed Universe and a possible crisis for cosmology, Nature Astron., 4, 196-203 (2019) · doi:10.1038/s41550-019-0906-9
[15] Handley, Will, Curvature tension: evidence for a closed universe, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.L041301
[16] Park, Chan-Gyung; Ratra, Bharat, Using the tilted flat-ΛCDM and the untilted non-flat ΛCDM inflation models to measure cosmological parameters from a compilation of observational data, Astrophys. J., 882, 158 (2019). doi:10.3847/1538-4357/ab3641

[17] Zdziarski, Andrzej A.; Dzielak, Marta A.; De Marco, Barbara; Szanecki, Michal; Niedźwiecki, Andrzej, Accretion Geometry in the Hard State of the Black-Hole X-Ray Binary MAXI J1820+070, Astrophys. J. Lett., 909, L9 (2021). doi:10.3847/2041-8213/abe7ef

[18] Verde, Lucía; Protopapas, Pavlos; Jimenez, Raúl, Planck and the local Universe: Quantifying the tension, Phys. Dark Univ., 2, 166-175 (2013). doi:10.1016/j.dark.2013.09.002

[19] Marshall, Phil; Rajguru, Nutan; Slosar, Anze, Bayesian evidence as a tool for comparing datasets, Phys. Rev. D, 73 (2006). doi:10.1103/PhysRevD.73.067302

[20] Handley, Will; Lemos, Pablo, Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio, Phys. Rev. D, 100 (2019). doi:10.1103/PhysRevD.100.043504

[21] Battye, Richard A.; Charnock, Tom; Moss, Adam, Tension between the power spectrum of density perturbations measured on large and small scales, Phys. Rev. D, 91 (2015). doi:10.1103/PhysRevD.91.053508

[22] Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël, Information Gains from Cosmic Microwave Background Experiments, Phys. Rev. D, 80 (2009). doi:10.1103/PhysRevD.80.023533

[23] Lin, Weikang; Ishak, Mustapha, Cosmological discordances II: Hubble constant, Planck and large-scale-structure data sets, Phys. Rev. D, 96 (2017). doi:10.1103/PhysRevD.96.023532

[24] Lin, Weikang; Ishak, Mustapha, Cosmological discordances I: Hubble constant, Planck and large-scale-structure data sets, Phys. Rev. D, 96 (2017). doi:10.1103/PhysRevD.96.083532

[25] Lin, Weikang; Ishak, Mustapha, A Bayesian interpretation of inconsistency measures in cosmology, JCAP, 05 (2021). doi:10.1088/1475-7516/2021/05/009

[26] Planck Collaboration; Aghanim, N., Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys., 641, A5 (2020). doi:10.1051/0004-6361/201936386

[27] Planck Collaboration; Aghanim, N., Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys., 641, A8 (2020). doi:10.1051/0004-6361/201838886

[28] Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc., 416, 3017-3032 (2011). doi:10.1111/j.1365-2966.2011.19250.x

[29] Ross, Ashley J.; Samushia, Lado; Howlett, Cullan; Percival, Will J.; Burden, Angela; Manera, Marc, The clustering of the dark energy, Phys. Dark Univ., 9, 3616-3631 (2020). doi:10.1016/j.dark.2013.09.002

[30] BOSS Collaboration; Alam, Shadab, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc., 470, 2617-2652 (2017). doi:10.1093/mnras/stx721

[31] Camarena, David; Marra, Valerio, On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference, Mon. Not. Roy. Astron. Soc., 504, 5164-5171 (2021). doi:10.1093/mnras/stab1200

[32] DES Collaboration; Lemos, P., Assessing tension metrics with dark energy survey and Planck data, Mon. Not. Roy. Astron. Soc., 505, 6164-6171 (2021). doi:10.1093/mnras/stab1670

[33] Verde, L.; Treu, T.; Riess, A. G., Tensions between the Early and the Late Universe, Nature Astron., 3, 891 (2019). doi:10.1038/s41550-019-0902-0

[34] Lin, Weikang; Mack, Katherine J.; Hou, Liqiang, Investigating the Hubble Constant Tension - Two Numbers in the Standard Cosmological Model, Astrophys. J. Lett., 904, L22 (2020). doi:10.3847/2041-8213/ab984c

[35] Chevallier, Michel; Polarski, David, Accelerating universes with scaling dark matter, Int. J. Mod. Phys. D, 10, 213-224 (2001). doi:10.1142/S0218271801000822

[36] Linder, Eric V., Exploring the expansion history of the universe, Phys. Rev. Lett., 90 (2003). doi:10.1103/PhysRevLett.90.091301

[37] Aparicio Resco, Miguel, J-PAS: forecasts on dark energy and modified gravity theories, Mon. Not. Roy. Astron. Soc., 493, 3616-3631 (2020). doi:10.1093/mnras/staa367

[38] Barboza, E. M. Jr.; Alcaniz, J. S., A parametric model for dark energy, Phys. Lett. B, 666, 415-419 (2008). doi:10.1016/j.physletb.2008.08.012

[39] Barboza, E. M.; Alcaniz, J. S.; Zhu, Z.-H.; Silva, R., A generalized equation of state for dark energy, Phys. Rev. D, 80 (2009). doi:10.1103/PhysRevD.80.043521

[40] Lazkoz, Ruth; Salzano, Vincenzo; Sendra, Irene, Oscillations in the dark energy EoS: new MCMC lessons, Phys. Lett. B, 694, 198-208 (2011). doi:10.1016/j.physletb.2010.10.002

[41] Jassal, H. K.; Bagla, J. S.; Padmanabhan, T., WMAP constraints on low redshift evolution of dark energy, Mon. Not. Roy. Astron. Soc., 356, L11-L16 (2005). doi:10.1111/j.1745-3933.2005.00577.x

[42] Adak, Debabrata; Majumdar, Debashish; Pal, Supratik, Generalizing thawing dark energy models: the standard vis-à-vis model independent diagnostics, Mon. Not. Roy. Astron. Soc., 437, 831-842 (2014). doi:10.1093/mnras/stt1941

[43] Carter, Paul; Beutler, Florian; Percival, Will J.; DeRose, Joseph; Wechsler, Risa H.; Zhao, Cheng, The impact of the fiducial cosmology assumption on BAO distance scale measurements, Mon. Not. Roy. Astron. Soc., 494, 2076-2089 (2020). doi:10.1093/mnras/staa761

[44] Vagnozzi, Sunny; Loeb, Abraham; Moresco, Michele, Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature
and Cosmic Concordance, Astrophys. J., 908, 84 (2021) · doi:10.3847/1538-4357/abd4df

Jimenez, Raul; Loeb, Abraham, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J., 573, 37-42 (2002) · doi:10.1086/340549

Simon, Joan; Verde, Licia; Jimenez, Raul, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.123001

Stern, Daniel; Jimenez, Raul; Verde, Licia; Kamionkowski, Marc; Stanford, S. Adam, Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements, JCAP, 02 (2010) · doi:10.1088/1475-7516/2010/02/008

Moresco, Michele, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z \geq 2, Mon. Not. Roy. Astron. Soc., 450, L16-L20 (2015) · doi:10.1093/mnrasl/slv037

Zhang, Cong; Zhang, Han; Yuan, Shuo; Zhang, Tong-Jie; Sun, Yan-Chun, Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven, Res. Astron. Astrophys., 14, 1221-1233 (2014) · doi:10.1088/1674-4527/14/10/002

Moresco, Michele; Pozzetti, Lucia; Cimatti, Andrea; Jimenez, Raul; Maraston, Claudia; Verde, Licia, A 6% measurement of the Hubble parameter at z=0.45: direct evidence of the epoch of cosmic re-acceleration, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/014

Ratsimbazafy, A. L.; Loubser, S. I.; Crawford, S. M.; Cress, C. M.; Bassett, B. A.; Nichol, R. C., Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope, Mon. Not. Roy. Astron. Soc., 467, 3239-3254 (2017) · doi:10.1093/mnras/stx301

Vagnozzi, Sunny; Di Valentino, Elenora; Gariazzo, Stefano; Melchiorri, Alessandro; Mena, Olga; Silk, Joseph, The galaxy power spectrum take on spatial curvature and cosmic concordance, Phys. Dark Univ., 33 (2021) · doi:10.1016/j.dark.2021.100851

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.