Berberine: A Medicinal Compound for the Treatment of Bacterial Infections

Ming Chu1,2†, Rong-xin Xiao1†, Yi-nan Yin1, Xi Wang1, Zheng-yun Chu2, Ming-bo Zhang2, Ran Ding2 and Yue-dan Wang2*†

1Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
2Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Liao Ning 116000, China

Abstract

Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis, which is an efficient therapeutic agent to combat bacterial infections. However, bioactive assay manifested that berberine exhibited poor effect on antibacterial properties. In the present paper, we reviewed the multiple activities of berberine, including inhibition of biofilm formation, anti-inflammation effect, and clinical trials, which indicate the possible mechanism of berberine in the treatment of bacterial infections.

Keywords: Berberine; Bacterial infections; Antibacterial; Biofilm; Anti-Inflammation

Introduction

Berberine is a natural isoquinoline alkaloid isolated from various Chinese herbs, including Hydrastis canadensis, Berberis aristata, Coptis chinensis, Coptis rhizome, Coptis japonica, Phellodendron amurense and Phellodendron chinense schneid. In clinical practice, berberine has been used in the treatment of enteritis for thousands of years in China [1]. More importantly, synergy of berberines enhanced the inhibitory efficacy of other antibacterial [2,3]. However, the role of berberine in antibacterial action has not been extensively studied. In this review, we gain insights into the possible mechanisms of berberine in the treatment of bacterial infection diseases, mainly focusing on the inhibition of biofilm formation and anti-inflammation activities.

Antibacterial activity

The natural isoquinoline alkaloid berberine has been employed in Chinese and Ayurvedic Medicine for hundreds of years in the treatment of bacterial infections. Many clinical trials have shown that berberine is effective in treating acute diarrhea (Table 1) [4-7]. A study of one hundred and twenty-seven children with diarrhea in the age group 1 month to 6 years shows that, 68.5% children responded to the berberine therapy with no complications [7]. In addition, four hundred adults presenting with acute watery diarrhoea were entered into a clinical trial of berberine. During the clinical observation, berberine significantly reduced the number of motions (p<0.05), duration of diarrhea in hospital (p<0.001), volume of required intravenous (p<0.001) and oral fluid (p<0.001). However, it is mentioned that berberine did not reduce the excretion of vibrios in the stools, which suggested that berberine exhibited poor effect on antibacterial properties [8]. A study for investigating the potential of berberine and enrofloxacin against E. coli, E. ictaluri and S. dysgalactiae shows that, minimal inhibitory concentrations of berberine against those three bacteria were 300, 400 and 150 μg/ml, while the enrofloxacin were 0.025, 0.025 and 0.8 μg/ml [9]. Another evidence revealed that the low concentration of berberine would promote the growth of B. subtilis, only a high concentration showed inhibitory activity (the IC50 is 952.37 μg/mL) [10]. Thus, we believed that there might be other mechanisms in the antibacterial action of berberine.

Table 1: Overview of berberine in treating diarrhea
Inhibition of biofilm formation

The pathogens are usually found as communities. Although the pathogens that cause acute infection are generally free, those chronic bacterial forms that stick around for decades long ago evolved ways to join together into communities called biofilms. Bacterial biofilm is defined as "a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface" [11]. Biofilm formation process can be divided into attachment, maturation and detachment. The first step is the adherence and attachment of planktonic bacteria to the surfaces or interfaces, such as food, domestic and indwelling medical device. The next step is the maturation of biofilm which contains division, differentiation and recruitment of biofilm inhabitants, secretion of the extracellular matrix and reformation of the biofilm architecture according to the environment [12-16]. During the initial attachment, the matrix will induce bacteria to produce extracellular polymeric substance (EPS) [17]. Meanwhile, the bacteria can utilize the matrix nutrition to divide and differentiate into sessile cells, which will move to the biofilm surface via water channel [13].

These bacteria encase themselves in a hydrated matrix that is a shield against antibiotics, allowing them to grow rapidly [18-21]. Susceptibility tests in vitro have shown that the survival of bacterial biofilms after treatment with antibiotics at concentrations hundreds or even a thousand times the minimum inhibitory concentration of the bacteria measured in a suspension culture [18]. In vivo, antibiotics might suppress symptoms of infection by killing free-floating bacteria shed from the detachment, but fail to eradicate those bacteria still embedded in the biofilm. When the antibacterial treatment stops, the biofilm can act as a nidus for recurrence of infection. Infections usually persist until the surface with biofilm is surgically removed from the body [19].

Recent study has shown that berberine could significantly inhibit Staphylococcus (S.) epidermidis adhesion at the concentration of 45 mg/mL. Higher concentrations (>30 mg/mL) of berberine can prevent the formation of S. epidermidis biofilm [22]. More importantly, berberine has also been proved to be effective in inhibiting biofilm formation in clinical isolates of Klebsiella pneumoniae [23]. We suppose that berberine might affect the attachment during biofilm formation. As mentioned above, bacteria can join together on essentially any surface and start to form a protective matrix. The matrix is made of polymers composed of molecules with repeating structural units that are connected by chemical bonds, in which polymerized phenol soluble modulins (PSMs) play an important role in stabilizing the biofilm architecture [24,25]. PSMs are a family of protein toxins that are produced in all methicillin-resistant Staphylococcus aureus strains, and which are thought to be a possible cause of severe infections. PSMs share a similar β-sheet structure with amyloid-β peptide (Aβ) in Alzheimer's disease (AD). The accumulation of Aβ derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of AD. It has been proved that berberine can reduce Aβ by modulating APP processing in human neuroglioma H4 cells at the range of berberine concentration (0.1-100 μM) [26]. Thus, we believed that berberine could bind to the amyloid proteins in bacterial biofilm EPS that share a similar β-sheet structure, such as PSMs in S. epidermidis and S. aureus biofilm, Curli in Escherichia coli biofilm, TasA in Bacillus subtilis biofilm, and Fap fimbriae in Pseudomonas aeruginosa biofilm [27-30].

Anti-inflammation activity

The bacteria in a biofilm are protected by a matrix; the host immune system is less likely to mount a response to their presence [12]. But if planktonic bacteria are periodically released from the biofilm, each time single bacterial forms enter the tissues, the immune system suddenly becomes aware of their presence. It may proceed to mount an inflammatory response that leads to heightened symptoms. The periodic release of planktonic bacteria from some biofilms may be what causes many chronic relapsing infections. The symptoms of infection include abdominal pain, cramping, dehydration, diarrhea and fever, which are mainly caused by the bacterial endotoxin infection. Endotoxin is used synonymously with the term LPS, which interacts with specific receptors on immune cells such as monocytes, macrophages, dendric cells. LPS consists of a hydrophobic anchor, known as lipid A, a repeating O-antigen polysaccharide, and an inner core oligosaccharide [39,40]. Many of the immune activating abilities of LPS can be attributed to the lipid A unit, which binds to the toll-like receptor 4 (TLR4), and activates the host defence effector system by rapidly triggering pro-inflammatory processes [41-44]. TLR4 alone does not directly bind LPS and requires its coreceptor myeloid differentiation protein (MD-2). MD-2 has a unique hydrophobic cavity which can directly bind the lipid A unit [45-46]. The combination between LPS and TLR4/MD-2 receptor complex can cause intense innate immune response [1,47-49]. Recently, our group has just proved that berberine can act as an antagonist to compete against LPS in binding with TLR4/MD-2 receptor, results in blocking the LPS/TLR4 signaling transduction, and disrupt the body's immune response to LPS [1]. In a study with non obese diabetic mice, berberine supplementation for 14 weeks significantly decreased the expression...
ratios of pro-/anti-inflammatory and/or Th1/Th2 cytokines, protecting the spleen, liver and kidney from spontaneous chronic inflammation [50]. We believe that further study on the berberine will aid in our ability to design effective interventions and treatments for bacterial infection diseases.

Conclusion

Berberine might function in the treatment of bacterial infections in two mechanisms. On the one hand, berberine could bind to amyloid proteins in biofilm, thus interrupt its stability and enhance the antibacterial activity of antibiotics. On the other hand, berberine could compete with LPS for binding to TLR4/MD-2, which inhibits the inflammation in the infection (Figure 1).

Acknowledgment

△ Project 81172884 was supported by National Natural Science Foundation of China; △ Project J1030831/J0108 supported by the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China

Conflict of Interest

The authors declare no conflict of interest.

References

1. Chu M, Ding R, Chu ZY, Zhang MB, Liu XY, et al. (2014) Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor. BMC Complement Altern Med 14: 89.
2. Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, et al. (2005) Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 8: 454-461.
3. Zuo GY, Li Y, Han J, Wang GC, Zhang YL, Bian ZQ (2012) Antibacterial activity and synergy of berberines with antibacterial agents against clinical multidrug-resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules 17: 10322-10330.
4. Lahiri SC, Dutta NK (1967) Berberine and chloramphenicol in the treatment of chola and severe diarrhoea. J Indian Med Assoc 48: 1-11.
5. Bhakat MP, Nandi N, Pal HK, Khan BS (1974) Therapeutic trial of越高保林 in treatment of diarrhoea. Indian Pediatr 1: 275-277.
6. Desai AB, Shah KM, Shah DM (1971) Berberine in treatment of diarrhoea. Indian Pediatr 8: 462-465.
7. Chauhan BK, Jain AM, Bhardari B (1970) Berberine in the treatment of childhood diarrhoea. Indian J Pediatr 37: 577-579.
8. Khin-Maung-U, Myo-Khin, Nyunt-Nyunt-Wai, Aye-Kyaw, Tin-U (1985) Clinical trial of berberine in acute watery diarrhoea. Br Med J (Clin Res Ed) 291: 1601-1605.
9. Defeng Zhang, Aihua Li, Jun Xie, Cheng Li (2010) In vitro antibacterial effect of berberine hydrochloride and enrofloxacin to fish pathogenic bacteria. Aquaculture Research 41: 1095-1100.
10. Kong WJ, Xing XY, Xiao XH, Zhao YL, Wei JH, et al. (2012) Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol 96: 503-510.
11. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.
12. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13: 228-233.
13. Monds RD, O'Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17: 73-87.
14. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322: 207-228.
15. Joo HS, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19: 1503-1513.
16. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8: 881-890.
17. Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK (2013) A distinguishable role of gDNA in the viscoelastic relaxation of biofilms. MBio 4: e00497-00413.
18. Ceni H, Olson ME, Stremick C, Read RR, Morck D, et al. (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37: 1771-1776.
19. Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66: 1339-1341.
20. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33: 1387-1392.
21. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8: 881-890.
22. Wang X, Yao X, Zhu Z, Tang T, Dai K, et al. (2009) Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents 34: 60-66.
23. Magesh K, Kumar A1, Alam A1, Priyam1, Sekar U2, et al. (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 51: 764-772.
24. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8: e1002744.
25. Periasamy S, Chatterjee SS, Cheung GY, Otto M (2012) Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol 5: 275-277.
26. Masashi Asai, Nobuhisa Iwata, Ayumu Yoshikawa, Yoshimi Aizaki, Shoichi Ishiura, et al. (2007) Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Absecretion. Biochemical and Biophysical Research Communications 352: 498–502.
27. Dueholm MS, Petersen SV, Sonderkaer M, Larsen P, Christiansen G, et al. (2010) Functional amyloid in Pseudomonas. Mol Microbiol. 32.
28. Gebbink MF, Claessen B, Bouma B, Dijkhuizen L, Wösten HA (2005) Amyloid—a functional coat for microorganisms. Nat Rev Microbiol 3: 335-341.
29. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, et al. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851-855.
30. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107: 2230-2234.
31. Diep BA, Otto M (2008) The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16: 361-369.
32. Kaito C, Saito Y, Nagano G, Ikuo M, Omata E, et al. (2011) Transcription and translation products of the cytolyin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog 7: e1001267.
33. Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, et al. (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121: 238-248.
34. Vuong C, Götz F, Otto M (2000) Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68: 1048-1053.
35. Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, et al. (2009) Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 5: e1000533.

36. Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296: 133-139.

37. Tsompanidou E, Sibbald MJ, Chlebowicz MA, Dreisbach A, Back JW, et al. (2011) Requirement of the agr locus for colony spreading of Staphylococcus aureus. J Bacteriol 193: 1267-1272.

38. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, et al. (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109: 1281-1286.

39. Gattis SG, Chung HS, Trent MS, Raetz CR (2013) The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis. J Biol Chem 288: 9216-9225.

40. Herath TD, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L: Tetra- and penta-acylated lipid a structures of porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immune – inflammatory response in human gingival fibroblasts. PLoS One 2013; 8: 584965 -58481.

41. Ohno U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109: 7421-7426.

42. Peri F, Piazza M, Calabrese V, Damore G, Cighetti R (2010) Exploring the LPS/TLR4 signal pathway with small molecules. Biochem Soc Trans 38: 1390-1395.

43. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, et al. (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24: 353-389.

44. Beutler B (2002) TLR4 as the mammalian endotoxin sensor. Curr Top Microbiol Immunol 270: 109-120.

45. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777-1782.

46. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, et al. (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3: 667-672.

47. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3: 169-176.

48. Lacatus M (2013) Innate immunity in surgical patients. Chirurgia (Bucur) 108: 18-25.

49. Salomao R, Brunialti MK, Rapozo MM, Baggio-Zappia GL, Galanos C, et al. (2012) Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. Shock 38: 227-242.

50. Wei-Han C, Jin-Yuarn L (2012) Protective effect of isoquinoline alkaloid berberine on spontaneous inflammation in the spleen, liver and kidney of non-obese diabetic mice through down-regulating gene expression ratios of pro-/anti-inflammatory and Th1/Th2 cytokines. Food Chemistry 131: 1263–1271.