In-vitro anti-malarial activity of Chikadoma plant from the rainforest of Southern Nigeria

Okolo CE¹, Eban LK², Amazu LU¹, Chukwu LC³, *Ohadoma SC², Osuala FN⁴

¹Department of Pharmacology, College of Medicine, Imo State University, Nigeria
²Department of Pharmacology, College of Medical Sciences, University of Calabar, Nigeria
³Department of Pharmacology, College of Medicine, Chukwuemeka Odumegwu Ojukwu University, Amaku Awka Campus, Nigeria
⁴Department of Pharmacognosy, Faculty of Pharmacy, Madonna University, Elele, Nigeria

ABSTRACT

Background: Malaria remains a life-threatening tropical disease. Due to the development of resistance to the commonly available orthodox antimalarials which of course, poses a great challenge in malaria-controlling program, alternative and complementary approach becomes imperative thereby making phytotherapy a research focus. Objectives: To investigate the effect of chikadoma plant using its methanol leaf extract against a plasmodium-mediated tropical disease, malaria. Materials and Methods: The culture samples of Plasmodium (P.) falciparum from 20 symptomatic adult outpatients were used in the antimalarial in-vitro test. For cultivation of P. falciparum, the culture medium employed was Roswell Park Memorial Institute (RPMI) 1640. Optical microscopy was used for parasite quantification in the performance of antimalarial in-vitro assays. The leaf extract of chikadoma dissolved in dimethylsulphoxide (DMSO) was the treatment, prepared into 7 different levels of concentration (3.125, 6.25, 12.5, 25, 50, 100, and 200 mg/mL) while culture medium with the malarial parasite alone served as negative control. Micromalarial stages of proliferation. Thin blood smear from the erythrocytes layer was made and incubated in CO₂ candle jar at 37°C for 72 h. The percentage of parasitemia was measured 8 h, showing the activity of the extract on P. falciparum stages of proliferation. Conclusion: The leaf extract of chikadoma significantly has antimalarial effect in-vitro against P. falciparum.

Keywords: Chikadoma; Lupinus arboreus; antimalarial activity; tropical disease; Nigeria.

1. INTRODUCTION

Malaria is caused and mediated by Plasmodium (P.) species. It is one of the tropical diseases with high preponderance of life-threatening, essentially due to emergency of resistance by the causative parasites to most readily available antimalarials, thereby posing serious challenge in roll-back malaria control programs ¹. P. species include P. falciparum, P. vivax, P. ovale and P. malariae, among which P. falciparum is perhaps, the most dangerous and widespread, notoriously implicated to cause severe anaemia, kidney failure, hypoglycemia and brain damage particularly among children and infants ². Important sources of antiprotozoal substances are traceable to plants for development of chemical agents against several tropical diseases. For instance, quinine is antimalarial of natural origin present in Cinchona spp; artemisinin, limonoids and quassinoids are derived from Artemisia annua, Meliaceae and Simaroubaceae families respectively ³. Expert opinion has it that from 1981 to 2010, natural products are the origin of approximately 75% of all the drugs introduced in the past 30 years ⁴. Most plants that offer active ingredients for prescription remedy capture the attention of researchers principally because of their application in traditional setting ⁵. Fortunately, the emergence of European Scientific methods have proven positive pharmacological activity with numerous of the herbal preparations. Nonetheless, a lot of them are used superstition and devoid of scientific affirmation or proof. This tendency cuts across various ailments and not particular to folkloric anti-malarials. To buttress this, Khaya
grandifoliola listed as anaemia remedy has been proven scientifically to lack anti-anaemic effect. Similarly, Zanthoxylum djala-batistae and Xylopia amazonica despite being listed indicating anti-malaria use, have been scientifically disproved to have remedy for malaria. In the rain forest of Southern Nigeria, chikadoma (Lupinus arboreus), Acharatea (cymbopogon citratus), and Ochnyoeogwo (Azadiractcha indica) usually prepared as polyherbal mixtures are among several plants acclaimed to possess antimalarial properties by traditional healers. In this regard, some studies have been carried out on Ochnyoeogwo and Acharatea, but not for chikadoma plants. The objective of this study therefore, was to investigate in-vitro the effect of methanol leaf extract of chikadoma in the treatment of malaria caused by P. falciparum. The plant popularly called “chikadoma” in Nigeria which derived its name after Dr. Chika Ohadoma, a lead researcher who pioneered its novel and extensive study, can be easily recognised as a bushy ornamental shrub up to 1.8 m tall. It usually has bright yellow sweet-smelling flowers blended with white and purple colours and the English name is Yellow bush. The scientific basis for the therapeutic use of chikadoma highlighted anti-bacterial, anti-fungal, anti-etiemic, anti-inflammatory, antineoplastic, antipyretic and antinociceptive activities. effects have also been reported. Chikadoma has been shown to contain various phytochemicals which are implicated for its stupendous pharmacological activities such as alkaloids, flavonoids, terpenoids, saponins, glycosides and steroids.

2. MATERIALS AND METHODS

2.1 Plant material

The fresh leaves of chikadoma were collected from Owerri environs, Nigeria; and authenticated at the Department of Pharmacognosy, Madonna University Elele, Nigeria. The leaves at room temperature were dried for 28 days. After grinding the leaves to fine powder, 2 kg were extracted using absolute methanol (Sigma Aldrich, Germany) for 48 h. The crude methanol extract (OME) after filtration was concentrated using a rotary evaporator (RV 05 Basic 1B, 1KA, Staufen, Germany) and oven dried further before storing it in a refrigerator until required.

2.2 Study samples

In this study, the P. falciparum culture samples used originated from 20 symptomatic adult outpatients at Laboratory Unit of Madonna University Teaching Hospital, Nigeria. The necessary study protocols were approved by the appropriate ethical review committee, and informed consent was sort and obtained from all the study participants. With a geometric mean of 0.27%, the parasite densities ranged from 0.01 to 0.95% infected red blood cells.

2.3 In-vitro culture

To establish sensitivities to test isolates with a broad and wide range of drug (antimalarials) susceptibilities, the P. falciparum parasite isolates were subjected to culture in the presence of serial dilutions of antimalarials (dihydroartemisinin [DA], mefloquine [MF], chloroquine [CQ], and quinine [QN] at 1.5% haematocrit in RPMI 1640 with 0.5% Albumax 1 [Gibco, Bangkok, Thailand]). The plates were frozen after 72 h period of culturing, and stored at -20°C.

2.4: In-vitro antimalarial assessment

In this study, a traditional and reliable technique in the assessment of in-vitro antimalarial assays which remains parasite quantification by optical microscopy was employed. Briefly, the chikadoma extract (1.0 mg) was dissolved in DMSO to make a stock solution of 5.0 mg/mL. Test solutions of the plant extract were prepared via dilution of stock solution in RPMI-1640 culture medium. Antimicrobial activity was conducted in 96 well microculture plates. In microculture plate, 100 µL treated drugs were added to each well while 100 µL of parasitized culture (1% haematocrit, 0.5% parasitemia) were added to well, and incubated for 72 h in CO2 candle jar at 37°C. For the purpose of ascertaining the activities of the extract on the stages of P. falciparum growth, the percentage of parasitemia was measured every 8 h. The contents of the various wells were harvested and stained when incubation was concluded. The proliferation stages of parasites were monitored by performing a thin blood smear and stained with Giemsa 10% for 30 mins. According to Rocha e Silva et al. (2012), all tests were performed in triplicated. Using the following formula, parasitemia was calculated after examination under microscope with magnification 1000 by adding immersion oil:

\[
\% \text{Parasitemia} = \frac{\text{Number of infected RBC}}{\text{Total number of RBC}} \times 100
\]

For calculation of percentage of the growth inhibition of the parasites the following formula was employed:

\[
\% \text{Inhibition} = \frac{\text{Parasitemia in control} - \text{parasitemia in treated group}}{\text{Total number of RBC}} \times 100
\]

At each concentration, growth stages percentage inhibition of the parasites was calculated by the mean of at least three (3) IC50 viability of parasites in which the 50% of growth stages of inhibition was calculated by method of Probit analysis.

2.5 Statistical analysis

The IC50 values of individual inhibitory concentrations were generated by Probit analysis and non-linear regression using the GraphPad Program (Intuitive Software for Science, San Diego CA, USA).

3. RESULTS

The results of in-vitro antimalarial activity of the methanol leaf extract of chikadoma on P. falciparum were obtained. Both the percentages of parasitemia and that of growth stages inhibitory of P. falciparum calculated to 72 h in every 8 h interval are shown in Tables I and II, respectively. The chikadoma leaf extract inhibited the proliferation of P. falciparum on mature schizont stage. The fifty percentage inhibitory concentration (IC50) of the extract by which the antimalarial activity was determined, calculated using Probit analysis was 3.0 µg/mL after 32 h incubation (Table III).
Table 1: The percentage of parasitemia after cultivation in 8 h interval to 72 h at different concentrations of chikadoma methanol leaf extract

Concentration (µg/mL)	8 h	16 h	24 h	32 h	40 h	48 h	56 h	64 h	72 h
0.000	11.04	8.17	12.70	15.90	16.22	16.36	15.70	15.92	16.40
3.125	6.13	8.01	8.04	11.53	9.51	11.20	14.80	13.61	11.21
6.25	7.33	5.22	6.70	9.00	6.30	11.03	13.70	12.40	10.42
12.5	7.02	5.04	5.60	7.12	5.80	11.71	13.02	12.20	9.10
25.0	5.63	3.54	5.07	6.21	5.20	9.60	12.21	11.60	7.80
50.0	5.30	2.60	4.70	5.10	4.70	6.80	10.50	10.22	6.04
100.0	4.25	2.23	4.30	4.04	3.40	5.52	9.20	8.20	5.60
200.0	3.03	1.70	3.70	3.40	2.61	3.80	4.09	5.01	3.92

Table 2: The percentage of growth inhibition of P. falciparum after cultivation in 8 h interval to 72 h at different concentrations of chikadoma methanol leaf extract.

Concentration (µg/mL)	8 h	16 h	24 h	32 h	40 h	48 h	56 h	64 h	72 h
0.000	-	-	-	-	-	-	-	-	-
3.125	27.4	25.0	37.0	27.4	41.4	32.0	6.0	15.0	32.0
6.25	34.0	36.1	47.4	61.4	44.0	33.0	13.0	12.40	36.4
12.5	36.4	38.3	56.0	64.4	56.0	35.0	17.0	24.0	45.0
25.0	49.0	57.0	60.0	68.2	61.0	41.5	22.0	27.3	52.0
50.0	52.0	69.0	63.1	71.2	68.0	59.0	33.0	36.0	63.2
100.0	62.0	73.0	66.3	79.0	75.0	66.3	42.0	49.0	65.0
200.0	73.0	79.2	71.0	90.0	79.0	77.0	74.0	69.0	76.1

Where – means no percentage inhibition with negative control

Table 3: The IC₅₀ value against growth of P. falciparum after cultivation in 8 h intervals to 72 h of C. citratus aqueous leaf extract.

Observation (hour)	IC₅₀(µg/mL)
8	31.7
16	19.0
24	9.8
32	12.1
40	3.0
48	27.5
56	99.0
64	92.9
72	19.4

4. DISCUSSION

From the results obtained in this study, methanol leaf extract of chikadoma plant from the rain-forest of Southern Nigeria possesses antimalarial effect. This may not be unconnected with the presence of phenolic compounds, flavonoids, terpenoids and alkaloids among others which corroborate previous studies that plant extracts containing such phytocompounds do possess antiplasmodial tendencies. It should be noted that the plethora of phytochemical compositions of *Lupinus arboreus* varies according to the geographical source and location, however, quinolizidine alkaloids are considered as the chemotaxonomical markers of the plant genus and have constantly been registered even in Chikadoma which is located and sourced from the rain-forest region of Southern Nigeria. The presence of alkaloids as a source of potent antimalarial and antiplasmodial substances has been supported by studies on plant species from the Amazon region such as Brazil. Phenolic compounds had been reported and implicated in the antiplasmodial and antimalarial activity of husk extract and fractions of *Zea*...
mays 23 where 8 phenolics have been detected in its ethanol husk extract 24. Gallic acid and Kaempferol are among phenolic compounds implicated in the antimalarial and antiplasmodial activity of plants 25. In-vitro antimalarial activity in this investigation, was found in the IC50 = 3.0 µg/mL of the methanol leaf extract of Chikadoma on mature schizont stage after 40 h cultivation. This represented a variation to that of the aqueous leaf extract of *Azadirachta indica* and *Cymbopogon citratus* with IC50 of 2.0 and 3.9 µg/mL respectively 26, 1, indicating higher potency than *C. citratus* but less potency than *A. indica*. In-vitro antimalarial activity of plant extracts could be explained as the synergism of the bioactive components which occur as complexes of structurally related compounds. However, these phytochemicals may exhibit diminished effect in-vivo due to pharmacokinetic parameters (low bioavailability, biotransformation) and physiological factors in the host organism 27. Flavonoids especially, and other antioxidant potentials of some plants which are present in Chikadoma 28 have been known to up-regulate schizontidial activity through modulation of the cellular signaling pathway 29, 30. This could be speculated as one of the mechanisms of action of Chikadoma recognizing the antioxidant activity of its phenolics and flavonoids, because elevated levels of free radicals which are common features of malaria cases are implicated in malaria complications 24.

CONCLUSION

The leaf extract of Chikadoma plant possessed antimalarial activity against *P. falciparum*, *in-vitro*. This gives credence to the ethnopharmacological use of Chikadoma from the rain forest region of Southern Nigeria for intervention of malaria.

Conflict of Interest: The authors have declared no conflict of interest.

Source of financial support: Nil

Authors Contributions:

OCE designed the study, literature search, and draft manuscripts

ELK: Literature search, draft manuscripts.

ALU, OFN, and CLC: Plant material, samples, and bench work

OSC conceptualized and manuscript review. All authors read and approved the final manuscript.

REFERENCES:

[1] Ohadoma SC, Ntatunya IN, Osuala FN. Intrinsic activity of aqueous leaf extract of *Cymbopogon citratus* against plasmodium-mediated tropical disease. Journal of Herbal Medicine Research 2017; 2:17

[2] Sutanto I, Ismid IS, Syarifuddin PK, Sungkar S. Medical Parasitology, 4th ed., Jakarta: Medical Faculty of University of Indonesia Publishers, 2008; p.221-231.

[3] Schmidt IJ, Khalid SA, Romanha AJ, Alves TMA, Biavatti W, Brun R et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part I. Curr Med Chem. 2012; 19:2128

[4] Newman DJ, Crag GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat Prod. 2012; 75:311.

[5] Schutz V, Hansen R, Tyler VE. Rational phytotherapy. A physician’s guide to herbal medicine. Berlin: Springer-Verlag, 1998; p.5-8.

[6] Adjanohoun E, Ahijy M, Ake-Assi L, Dramane K, Elewude J, Fodjou S et al. Traditional Medicine and pharmacopoeia contribution to ethnobotanical and floristic studies in Western Nigeria. Lagos: OAH/STR/PCPublications, 1991; p.149.

[7] Adeyemi AA, Gbogale AA. Anti-anaemic activity of *Spondias mombin* and *Khaya grandifoliola* aqueous extracts on rats. J Pharm Biore. 2006; 3(2):94-97.

[8] Isabang N, Fokus PV, Tchokouaha LRY, Noguem B, Bakamga-via I, Nguefi MSD, et al. Ethnopharmacological survey of Annonaceae medicinal plants used in traditional medicine in four areas of Cameroon. J Ethnopharmacol. 2002; 139:171-180.

[9] Lima RBS, Rocha e Silva LF, Melo MRS, Costa JS, Figano NS, Lima ES, et al. *In-vitro and in-vivo anti-malarial activity of plants from the Brazilian amazon. Malar J. 2015; 14:508.

[10] Yusuf H, Maryatu S. The antimalarial activity of the leaf extract of the Neem leaves (*Azadirachta indica, A. juss*) on *Plasmodium falciparum* in-vitro. Proceedings of the Annual International Conference Sayiah Kuala University Banda Aceh, Indonesia 2011; p.217

[11] Pickart AJ, Miller LD. Yellow bush lupin invasion in Northern California coastal dunes. Ecological impacts and manual restriction techniques. Restoration Ecology 1998; 6:59-68.

[12] Ohadoma SC. Scientific basis for the therapeutic use of *Lupinus arboresus*. Euro J. Pharm Med Res. 2018; 5(3):30-34.

[13] Ohadoma SC, Osuala FN, Ntatunya IN. Spasmolytic activity of methanol leaf extract of *Lupinus arboresus* in guinea pig ileum. Euro J. Pharm Med Res., 2016; 3(7):50-52.

[14] Ohadoma SC, Lawal BAS, Chakovi LC. Anti-arthritic activity of methanol leaf extract of *Lupinus arboresus* in complete Freund’s adjunct-induced arthritic rats. British J Med & Health Sci 2019; 1(2):43-46.

[15] Lough BJ. Isolation and characterization of developing seed of *Lupinus arboresus* J Pharm Med Res. 1992; 12(1):22-26.

[16] Rocha e Silva LF, Magalhães PM, Costa MR, Alercin MG, Chaves FC, Hidalgo AF et al. *In-vitro susceptibility of Plasmodium falciparum* *Welch* field isolates to infusions prepared from *Artemisia annua* L. cultivated in the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2012; 107(859):866.

[17] Ohadoma SC, Akuodor GC, Amazia UU, Michael HI. Quantitative estimation of total phenolic and total flavonoid contents of ethylacetate fraction of *Chikadoma* as a bactericidal agent. Asian J Sci & Tech. 2020; 11 (6):1102-1104.

[18] Okokon JE, Obot AU, Mohanakrishnan D, Mittal G, Sahal D. Antimalarial and antiplasmodial activity of leaf extract of *Alchornea laxiflora*. J Herbs Spices Med Plants. 2017; 25(2):128-141.

[19] Kahi B, Vlark J, Ling T, Connelly M, Medina-Bolivar F, Rivas F. Antimalarial evaluation of the chemical constituents of hairy root culture of *Bixa orellana* L. Molecules. 2014; 19:756.

[20] Trease GE. A textbook of pharmacognosy. 9th ed. London: W.B Saunders, 1996; p.201.

[21] Kar A. Pharmacognosy and pharmacobiotecnology, 2nd ed. New Delhi: New Age Publishers, 2007; p. 449.

[22] Torres ZE, Silveira E, Rocha e Silva LF, Magalhaes PM, Costa MR, Alecrim MG, Chaves FC, Hidalgo AF et al. *In-vitro susceptibility of Plasmodium falciparum* *Welch* field isolates to infusions prepared from *Artemisia annua* L. cultivated in the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2012; 107(859):866.

[23] Ohadoma SC, Lawal BAS, Chakovi LC. Anti-arthritic activity of methanol leaf extract of *Lupinus arboresus* in complete Freund’s adjunct-induced arthritic rats. British J Med & Health Sci 2019; 1(2):43-46.

[24] Lough BJ. Isolation and characterization of developing seed of *Lupinus arboresus* J Pharm Med Res. 1992; 12(1):22-26.

[25] Rocha e Silva LF, Magalhaes PM, Costa MR, Alercin MG, Chaves FC, Hidalgo AF et al. *In-vitro susceptibility of Plasmodium falciparum* *Welch* field isolates to infusions prepared from *Artemisia annua* L. cultivated in the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2012; 107(859):866.

[26] Ohadoma SC, Akuodor GC, Amazia UU, Michael HI. Quantitative estimation of total phenolic and total flavonoid contents of ethylacetate fraction of *Chikadoma* as a bactericidal agent. Asian J Sci & Tech. 2020; 11 (6):1102-1104.

[27] Okokon JE, Obot AU, Mohanakrishnan D, Mittal G, Sahal D. Antimalarial and antiplasmodial activity of leaf extract of *Alchornea laxiflora*. J Herbs Spices Med Plants. 2017; 25(2):128-141.

[28] Kahi B, Vlark J, Ling T, Connelly M, Medina-Bolivar F, Rivas F. Antimalarial evaluation of the chemical constituents of hairy root culture of *Bixa orellana* L. Molecules. 2014; 19:756.

[29] Trease GE. A textbook of pharmacognosy. 9th ed. London: W.B Saunders, 1996; p.201.

[30] Kar A. Pharmacognosy and pharmacobiotecnology, 2nd ed. New Delhi: New Age Publishers, 2007; p. 449.

[31] Torres ZE, Silveira E, Rocha e Silva LF, Magalhaes PM, Costa MR, Alecrim MG, Chaves FC, Hidalgo AF et al. *In-vitro susceptibility of Plasmodium falciparum* *Welch* field isolates to infusions prepared from *Artemisia annua* L. cultivated in the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2012; 107(859):866.