Effect of Time of Sowing, Row Spacing and Variety on Summer Cluster Bean (Cymopsis tetragonoloba (L.)Taub.) Under Middle Gujarat Conditions

K.D. Mevada¹, S.J. Chaudhary¹, K.C. Ombase¹ and M.M. Chaudhary²

¹Department of Agronomy, BACA, AAU, Anand, Gujarat, India.
²Agricultural Officer, NIRP, AAU, Khandha, Gujarat, India.

http://dx.doi.org/10.22207/JPAM.11.2.56
(Received: 15 April 2017; accepted: 02 June 2017)

A field experiment was carried out at Agronomy Farm, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat during the summer season of the year 2015 to study the effect of time of sowing, row spacing and variety on summer cluster bean under middle Gujarat conditions, in loamy sand soil. Eighteen treatment combinations comprised of three dates of sowing viz., D₁; (21st January); D₂; (1st February) and D₃; (11th February) as main plot treatments and combination of three different row spacing viz., S₁; 30 cm; S₂; 45 cm; and S₃; 60 cm along with two varieties V₁ (GG 1) and V₂ (GG 2) as sub plot treatments, were laid out in Split Plot Design with three replications. Results revealed that treatment combination D₃S₁V₂ (sowing on 11th February with 30 cm row spacing with variety GG 2) recorded significantly higher seed yield (1476 kg ha⁻¹) which was found at par with treatment combination D₂S₃V₂ (sowing on 1st February with 60 cm row spacing with variety GG 2). However, maximum net realization (Rs.50667 ha⁻¹) and BCR (4.53) were obtained under treatment combination D₂S₃V₂, followed by D₃S₁V₂ with net realization of Rs.48511 ha⁻¹ and BCR of 4.24.

Keywords: Time of sowing, row spacing, variety, cluster bean.
1) and Gujarat Guar 2 (GG 2) have been released by G.A.U., S.K. Nagar, which have been found suitable for cultivation during summer season in north Gujarat conditions. But the performance of cluster bean varieties at varied time of sowing and row spacing have not been evaluated for middle Gujarat conditions in summer season. Therefore, this experiment was conducted.

MATERIALS AND METHOD

A field experiment was carried out at Agronomy Farm, B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat during the summer season of the year 2015 to study the effect of time of sowing, row spacing and variety on summer cluster bean under middle Gujarat conditions, in loamy sand soil, low in organic carbon (0.35%), medium in available phosphorous (43.28 kg P$_2$O$_5$ ha$^{-1}$) and high in available potash (388.17 kg K$_2$O ha$^{-1}$). Eighteen treatment combinations comprised of three dates of sowing viz., D$_1$: (21st January); D$_2$: (1st February) and D$_3$: (11th February) as main plot treatments and combination of three different row spacing viz., S$_1$: 30 cm; S$_2$: 45 cm; and S$_3$: 60 cm along with two varieties V$_1$ (GG 1) and V$_2$ (GG 2) as sub plot treatments, were laid out in Split Plot Design with three replications.

RESULTS AND DISCUSSION

Effect of time of sowing

A perusal of data presented in table-1 revealed that sowing on 1st February (D$_2$) being at par with sowing on 11th February (D$_3$) gave significantly higher plant height at 30 (32.31 cm), 60 DAS (56.47 cm) and at harvest (82.97 cm) and for test weight (38.90 g) of cluster bean over sowing on 21st January (D$_1$). Conversely, crop sown on 11th February (D$_3$) produced significantly the highest branches plant$^{-1}$ (6.01), pods plant$^{-1}$ (43.92), seeds pod$^{-1}$ (7.96) and pod length (9.11 cm) over early sowing on 1st February (D$_2$) and 21st January (D$_1$). Better growth of plant in terms of plant height under late sowing on 1st February (D$_2$) and 11th February (D$_3$) reflected into better development of yield attributes. Moreover, congenial climatic conditions especially at reproductive phase also played vital role in development of yield attributes due to positive sink to source ratio wherein assimilates translocation to reproductive components. These

Treatments	(g)	30 DAS	60 DAS	At Harvest	Number of branches plant$^{-1}$	Number of pods plant$^{-1}$	Pod length (cm)	Number of seeds pod$^{-1}$	Test weight
Time of sowing (D)									
D$_1$: 21st January		27.29	51.44	75.26	5.42	32.96	6.51	5.47	35.54
D$_2$: 1st February		32.31	56.47	82.97	5.47	34.86	7.97	6.73	38.90
D$_3$: 11th February		31.99	55.08	81.24	6.01	43.92	9.11	7.96	38.79
C.D. at 5%		0.61	0.92	1.49	0.10	0.95	0.26	0.30	0.61
C.V. %		8.50	7.21	7.95	7.78	10.83	14.28	18.93	6.90
Row spacing (S)									
S$_1$: 30 cm		30.03	55.96	82.04	5.52	36.88	7.54	6.40	38.23
S$_2$: 45 cm		30.76	53.47	78.63	5.66	37.14	7.80	6.62	37.32
S$_3$: 60 cm		30.81	53.57	78.79	5.72	37.72	8.24	7.13	37.68
C.D. at 5%		0.61	0.69	1.04	0.10	0.70	0.18	0.18	0.60
C.V. %		8.00	5.57	5.85	7.59	7.98	9.76	11.43	6.76
Variety (V)									
V$_1$: GG 1		34.38	60.12	88.39	5.13	33.60	6.44	5.37	33.63
V$_2$: GG 2		26.69	48.54	71.25	6.13	40.89	9.28	8.07	41.86
C.D. at 5%		0.50	0.57	0.85	0.08	0.57	0.15	0.15	0.49
C.V. %		8.49	5.43	5.51	7.59	7.98	9.76	11.43	6.76
findings are substantiated with those reported by Patel et al., (2004) and Vishal et al., (2014).

Similar trend was observed for seed and stalk yield. The impact of different time of sowing on seed and stalk yield of cluster bean reported in table 2 indicated that 1st February sowing (D1), being at par with 11th February sowing (D2) produced significantly higher seed (1027 kg ha⁻¹) as well as stalk (5043 kg ha⁻¹) yield which were 21.12 % and 27.87 % higher over 21st January sowing (D3), respectively. Higher seed and stalk yield under treatments D₂ (1st February) and D₁ (11th February) over D₃ (21st January) might be attributed to enhanced yield attributes in later sowing over early sowing under favorable weather conditions which might induced photosynthetic activity and translocation of assimilates which was reflected in augmentinggermination, plant height and ultimately had complimentary impact on number of branches plant⁻¹, pod development and seed formation (Kalyani, 2012).

Harvest index (Table 2) was found unchanged due to different time of sowing. However, maximum harvest index (19.56 %) was reported under sowing on 11th February (D₃).

Effect of row spacing

Results given in table-1 and table-2 revealed that significantly the highest plant height at 60 DAS (55.96 cm) and at harvest (82.04 cm) and stalk yield (4859 kg ha⁻¹) were obtained when crop sown at 30 cm spacing (S₁) over rest of the treatments. Nevertheless, crop sown at 60 cm spacing (S₃) being at par with 45 cm spacing (S₂) produced significantly higher pod length (8.24 cm) and seeds pod⁻¹ (7.13) over 30 cm spacing (S₁). Plant height at 30 DAS, branches plant⁻¹, pods plant⁻¹, test weight (g), seed yield (kg ha⁻¹) and harvest index (%) were found statistically at par due to different row spacing. Under wider spacing some of the yield components might have been increased on individual plant basis but would have been decreased on per unit area basis, while under narrow spacing though number of plants per unit area might have been increased, but the yield components might have been declined on individual basis and eventually the biological yield was reduced. A similar result was obtained by Machado et al., (2003).

Effect of variety

In the present experiment different varieties showed imperial impact on all the growth

Treatments	Seed yield (kg ha⁻¹)	Stalk yield (kg ha⁻¹)	Harvest index (%)
Time of sowing (D)			
D₁ : 21st January	848	3944	19.50
D₂ : 1st February	1027	5043	17.34
D₃: 11th February	979	4450	19.56
S.Em ± 33	33	176	0.58
C.D. at 5%	131	692	NS
C.V. %	14.87	16.69	13.00
Row spacing (S)			
S₁ : 30 cm	996	4859	18.76
S₂ : 45 cm	916	4178	18.41
S₃ : 60 cm	942	4400	19.22
S.Em ± 364	23	126	0.55
C.D. at 5%	NS	364	NS
Variety (V)			
V₁ : GG 1	658	5392	11.00
V₂ : GG 2	1245	3566	26.59
S.Em ± 103	18	103	0.45
C.D. at 5%	53	298	1.30
C. V. %	10.07	11.95	12.44

Table 2. Effect of time of sowing, row spacing and variety on seed and stalk yield and harvest index of Cluster bean
parameters, yield attributing characters and yield (Table 1 and Table-2). Variety GG 2 (V₂) proved statistically superior over variety GG1 (V₁) in all the aspects barring periodical plant height and stalk yield. Significantly maximum branches plant⁻¹ (6.13), pods plant⁻¹ (40.89), pod length (9.28 cm), number of seeds pod⁻¹ (8.07), test weight (41.86 g), seed yield (1245 kg ha⁻¹) and harvest index (26.59 %) were recorded under variety GG 2 (V₂) over GG 1 (V₁). On the other hand, variety GG 1 (V₁) exhibited higher plant height at 30 DAS (34.38 cm), 60 DAS (60.12 cm) and at harvest (88.39 cm) and produced higher stalk yield (5392 kg ha⁻¹) over variety GG 2 (V₂). Variety GG 2 (V₂) produced 89 % higher seed yield over variety GG 1 (V₁). This can be attributed to higher biomass accumulation coupled with effective translocation and distribution of photosynthesis from source to sink (Patel et al., 2010).

Interaction effect

Interaction effect between D X V was found significant (Table 3(a)) for plant height at 30 DAS, pod length, seeds pod⁻¹, stalk yield and harvest index. Treatment combination Dᵥ₁V₁ (sowing on 11th February with GG 1) being at par with treatment combination Dᵥ₂V₁ (sowing on 1st January with GG 1) reported significantly higher plant height (37.17 cm) as well as stalk yield (5589 kg ha⁻¹). However, in case of pod length and number of seeds pod⁻¹, treatment combination Dᵥ₂V₂ (sowing on 11th February with GG 2) out right produced highest pod length (10.95 cm) and number of seeds pod⁻¹ (9.84). Significantly higher harvest index (28.96) was reported under treatment combination Dᵥ₁V₂ which remained at par with Dᵥ₂V₂.

Interaction between D X S (Table 3(b)) were found significant for seed yield as well as harvest index, wherein treatment combination Dₛ₁S₂ (sowing on 11th February at 30 cm row spacing) gave significantly higher seed yield (1085 kg ha⁻¹) and harvest index (22.05 %). Nevertheless, it remained at with Dₛ₁S₁ and Dₛ₁S₂ for seed yield and with Dₛ₂S₁ and Dₛ₂S₂ for harvest index.

Number of pod plant⁻¹, seed yield as well as harvest index were found significantly influenced due to interaction between S X V (Table 3 (c)) and treatment combination Sᵥ₃V₂ gave appreciably higher Number of pod plant⁻¹ (42.51), seed yield (1245 kg ha⁻¹) and harvest index (28.02 %).

Table 3 (a). Interaction effect of time of sowing and variety on various growth and yield attributes of Cluster bean

Time of sowing (D)	Plant height (cm)	Pod length (cm)	Number of seeds pod⁻¹	Stalk yield (kg ha⁻¹)	Harvest index (%)
Dᵥ₁ : 21st January	28.44	5.65	6.22	5066	28.96
Dᵥ₂ : 1st February	37.13	6.40	9.54	4565	22.39
Dᵥ₃ : 11th February	37.17	7.28	10.95	3310	28.42

Table 3 (b). Interaction effect of time of sowing and variety on various growth and yield attributes of Cluster bean

Time of sowing (D)	Plant height (cm)	Pod length (cm)	Number of seeds pod⁻¹	Stalk yield (kg ha⁻¹)	Harvest index (%)
V₁ : GG1	25.74	5.36	4.71	5066	28.96
V₂ : GG2	27.49	6.40	9.54	4565	22.39
V₃ : GG1	27.13	7.28	10.95	3310	28.42

Table 3 (c). Interaction effect of variety and sowing spacing on various growth and yield attributes of Cluster bean

Time of sowing (D)	Plant height (cm)	Pod length (cm)	Number of seeds pod⁻¹	Stalk yield (kg ha⁻¹)	Harvest index (%)
Sᵥ₁ : 30 cm	28.44	5.65	6.22	5066	28.96
Sᵥ₂ : 30 cm	27.49	6.40	9.54	4565	22.39
Sᵥ₃ : 30 cm	27.13	7.28	10.95	3310	28.42

C.D. at 5%

	Dᵥ₁	Dᵥ₂	Dᵥ₃	V₁	V₂	V₃
21st January	3.06	0.90	0.90	3.06	0.90	0.90
1st February	3.06	0.90	0.90	3.06	0.90	0.90
Table 3 (b). Interaction effect of time of sowing and row spacing on seed yield and harvest index of Cluster bean

Time of sowing (D)	Seed yield kg ha\(^{-1}\)	Row spacing (S)	Harvest index (%)				
		S\(_1\): 30 cm	S\(_2\): 45 cm	S\(_3\): 60 cm	S\(_1\): 30 cm	S\(_2\): 45 cm	S\(_3\): 60 cm
D\(_1\): 21\(^{st}\) January	943	798	804	19.29	18.98	20.22	
D\(_2\): 1\(^{st}\) February	961	1056	1063	14.93	18.73	18.35	
D\(_3\): 11\(^{th}\) February	1085	894	958	22.05	17.52	19.10	
S. Em ±	32	0.95					
C.D. at 5%	92	2.76					

Table 3 (c). Interaction effect of row spacing and variety on number of pod plant\(^{-1}\), seed yield and harvest index of Cluster bean

Row spacing (S)	Number of pod plant\(^{-1}\)	Seed yield kg ha\(^{-1}\) Variety (V)	Harvest index (%)				
		V\(_1\): GG1	V\(_2\): GG2	V\(_1\): GG1	V\(_2\): GG2	V\(_1\): GG1	V\(_2\): GG2
S\(_1\): 30 cm	35.14	38.61	665	1327	9.99	27.52	
S\(_2\): 45 cm	32.73	41.54	670	1162	12.60	24.23	
S\(_3\): 60 cm	32.93	42.51	639	1245	10.42	28.02	
S. Em ±	0.99	32	0.78				
C.D. at 5%	2.86	92	2.25				

Table 3 (d). Interaction effect of time of sowing, row spacing and variety on seed yield of cluster bean

Time of sowing (D)	Row spacing (S)	(Seed yield kg ha\(^{-1}\)) Variety (V)	
		V\(_1\): GG1	V\(_2\): GG2
D\(_1\): 21\(^{st}\) January	S\(_1\): 30 cm	624	1261
	S\(_2\): 45 cm	556	1040
	S\(_3\): 60 cm	505	1103
D\(_2\): 1\(^{st}\) February	S\(_1\): 30 cm	678	1245
	S\(_2\): 45 cm	895	1217
	S\(_3\): 60 cm	665	1461
D\(_3\): 11\(^{th}\) February	S\(_1\): 30 cm	694	1476
	S\(_2\): 45 cm	558	1231
	S\(_3\): 60 cm	746	1170
S. Em ±	55		
C.D. at 5%	160		

The perusal of result given in table 3(d) revealed that treatment combination D\(_3\), S\(_1\), V\(_2\) (cluster bean variety GG 2 sown on 11\(^{th}\) February with 30 cm row spacing), being at par with D\(_2\), S\(_3\), V\(_2\) (cluster bean variety GG 2 sown on 1\(^{st}\) February with 60 cm row spacing) produced significantly higher seed yield (1476 kg ha\(^{-1}\)) over rest of the treatment combinations. This could be also attributed to higher biomass accumulation coupled with effective translocation and distribution of photosynthates from source to sink. The result was also supported by Sonani et al. (2016).

Economics

Data pertaining to economics (Table-4) clearly indicated that the highest net realization Rs. 50667 ha\(^{-1}\) and BCR (4.53) were obtained under treatment combination D\(_2\), S\(_3\), V\(_2\), i.e. cluster bean variety GG 2 sown on 1\(^{st}\) February with 60 cm
MEVADA et al.: STUDY OF SUMMER CLUSTER BEAN (Cymopsis tetragonoloba)

Table 4. Economics of cluster bean as influenced by time of sowing, spacing and variety

Treatments	Seed yield (kg ha⁻¹)	Stalk yield (kg ha⁻¹)	Gross Income (Rs. ha⁻¹)	Total cost of cultivation (Rs. ha⁻¹)	Net realization (Rs. ha⁻¹)	BCR
D₁S₁V₁	624	5521	33242	14957	18285	2.22
D₁S₁V₂	1261	3194	55231	14957	40274	3.69
D₁S₂V₁	556	4537	29046	14657	14389	1.98
D₁S₂V₂	1040	2809	45814	14657	31157	3.13
D₁S₃V₁	505	5139	27909	14357	13552	1.94
D₁S₃V₂	1103	2465	47818	14357	33461	3.33
D₂S₁V₁	678	6688	37152	14957	22195	2.48
D₂S₁V₂	1245	4820	57030	14957	42073	3.81
D₂S₂V₁	895	4808	34198	14657	19841	2.38
D₂S₂V₂	1217	4486	55409	14657	40752	3.78
D₂S₃V₁	665	5065	29126	14657	14469	1.99
D₂S₃V₂	1231	3889	55074	14657	40417	3.76
D₃S₁V₁	1170	3090	51435	14357	37078	3.58
D₃S₁V₂	1476	2952	48511	14357	33461	3.33

Selling Price: Seed – Rs. 40 kg⁻¹, Stalk – Rs. 1.5 kg⁻¹

row spacing; followed by treatment combination D₁S₁V₂ i.e. cluster bean variety GG 2 sown on 11th February with 30 cm row spacing, with net realization of Rs. 47511 ha⁻¹ and BCR of 4.24.

CONCLUSION

In light of the above results it can be concluded that summer cluster bean variety GG-2 should be sown on 1st February with wider row spacing of 60 cm for getting higher yield and monetary return. In case, sowing is delayed, variety GG-2 should be sown on 11th February at narrow spacing of 30 cm.

REFERENCES

1. Anonymous (2014). www.indianstatistics.com
2. Anonymous (2015). www.guargumcultivation.com
3. Kalyani D. (2012). Performance of cluster bean genotypes under varied time of sowing. Legume Res., 35(2):154-158
4. Machado, S., C. Humphreys, B. Tuck, T. Darnell and M. Corp (2003) Variety, seeding date, spacing and seeding rate effects on grain yield and grain size of chickpea in Eastern Oregon. Agric. Exper. Station Oregon State Univ. Special Report. 1047. Patel et al. (2004)
5. Patel, I. C., Patel M. M., Patel A. G., and Tikka, S. B. S. Response of summer cluster bean varieties to time of sowing and row spacing on yield under north Gujarat agro climatic condition. J. of Arid Legumes, 2004; 1(1): 24-26
6. Patel, M.M.; Patel I.C.; Patel P.H.; Vaghela, S.G.; Patel R.I. and Acharya S. Effect of sowing time, row spacing and seed rate on yield and yield attributes of moth bean (V. aconitifolia) under rain fed conditions. Journal of Arid Legumes, 2010; 7(2): 112-114.
7. Sonani, V. V., Gurjar, R., Parmar, H. C. and Patel, R. R. Effects of sowing dates and spacing on summer greengram. Green Farming, 2016; 7(1):194-196.
8. Vishal D, Arvadia M. K., and Swapnil D. Ideal sowing dates for summer cluster bean in South Gujarat. Trends in Biosciences, 2014; 7(23): 3792-3794.