内陸の長大な断層におけるアスペリティの動的応力降下量の不均質性の考慮と強震動予測への適用

HETEROGENEOUS DYNAMIC STRESS DROPS ON ASPERITIES OF INLAND EARTHQUAKES CAUSED BY VERY LONG FAULTS AND THEIR APPLICATION TO THE STRONG GROUND MOTION PREDICTION

小穴温子*, 塩 一男**, 藤堂正喜***, 石井透**, 藤原広行****, 森川信之****

Atsuko OANA, Kazuo DAN, Masanobu TOHDO, Toru ISHII, Hiroyuki FUJIWARA and Nobuyuki MORIKAWA

We proposed a procedure for evaluating fault parameters taking into account of heterogeneous dynamic stress drops on the asperities, and calculated strong ground motions. We compiled the stress drop data on the asperities of earthquakes caused by strike-slip faults and reverse faults. In order to establish fault models for strong motion predictions, we applied the log-normal distribution to the stress drop data, and examined a procedure for assigning heterogeneous dynamic stress drops to each asperity by using the obtained log-normal distributions. The strong ground motions predicted by using this proposed procedure had larger variations of the peak ground accelerations and velocities than those with uniform dynamic stress drops on the asperities, while the averages were almost same.

Keywords : strong motion prediction, heterogeneity, dynamic stress drop, very long fault, asperity model

1. はじめに

強震動予測においては、アスペリティモデルとして、アスペリティモデルと呼ばれるモデルが用いられている。アスペリティモデルでは、既往のパラメータ設定方法と異なり、推論式に基づいて必要パラメータが設定される。これらの手法の前提として、アスペリティの数やすべり量に関わらず、アスペリティの応力降下量は一定値である。しかししながら、実際に発生した地震の研究成果を用いることで、アスペリティ每に応力降下量が異なり、不均質性を有する場合が多い。強震動の予測問題を考えると、特に長大な断層ほどアスペリティの数が増えるため、そのような不均質性が生じやすく、地震動の空間分布に大きく影響すると推察される。したがって、応力降下量の不均質性の表現は特に長大な断層で発生する地震の強震動予測において重要な課題といえる。

長大な断層を対象とした断層パラメータ設定方法として、以下が提案されている。塩・他(2011)**および塩・他(2012)**では長大な横ずれ断層について、塩・他(2015)**では長大逆断層について、それぞれ断層パラメータの設定方法を提案し、断層モデルを設定して強震動を試算した。これらの研究では、すべてのアスペリティにおいて動的応力降下量を一様としており、その不均質性を考慮していない。しかしながら、前述のとおり、実際の地震ではすべてのアスペリティの動的応力降下量が同じであるとは考えにくい。

そこで、本論文では、アスペリティの動的応力降下量の不均質性を考慮した断層パラメータ設定方法を提案するとともに、内陸の長大な横ずれ断層の地震を対象に強震動を試算した。さらに、アスペリティの動的応力降下量を一様とした場合の強震動試算結果と比較し、考察を加えた。

なお、付録に示すとおり、応力降下量（静的応力降下量とも言う）は、地震前に断層面に作用していたせん断応力と地震後（断層面のすべての破壊が終了し、力学的に安定した状態に至ったとき）に断層面に作用しているせん断応力の差であり、動的応力降下量は、地震前に断層面に作用していたせん断応力とある点でのすべりが終了したときのせん断応力の差（ある点以外ではすべりが終了していない可能性がある）であるため、厳密には、必ずしも同者が一致しないが、本論文ではその差は小さいと仮定した。ただし、記号としては、応力降下量を\(\Delta \sigma\)，動的応力降下量を\(\Delta \sigma'\)と表して区別することとした。

2. アスペリティの動的応力降下量が一様な場合の断層パラメータ設定方法

既往研究によるアスペリティの動的応力降下量が一様な場合の断層パラメータ設定方法を紹介する。

塩・他(2011)**および塩・他(2015)**のアスペリティモデルの断層
3. アスペリティにおける不均等的な応力低下量の統計的性質
3.1 横ずれ断層の場合
横ずれ断層を対象に、アスペリティの応力低下量に不均等性を有する過去の地震のデータを整理した。既往研究(11,12)による過去の地震のアスペリティまたは強震動生成域（SMGA）の応力低下量を表1に示す。なお、ここに示す文献は各地震に関して分析された研究結果の一部である。表1のうち、1つの地震の各アスペリティの応力低下量がそれぞれ異なる値として評価されている場合はそれぞれのデータを用い、各アスペリティに共通的な1つの応力低下量が評価されている場合はその値を1つのデータとみなして用いることとした。

これらk個（K=11）のデータを大きい順に並べ、Hazenプロット(20)を適用して線率分布を当てはめることにより、k番目のデータに対する非超過確率P_kを(4)式で与えた。

\[
P_k = 1 - \frac{k - 0.5}{K}
\]

ここで、k個のデータを大きい順に並べ、Hazenプロット20を適用して線率分布を当てはめることにより、k番目のデータに対する非超過確率P_kを(4)式で与えた。この結果、地震発生確率を求めることが可能である。

表1 横ずれ断層による過去の地震のアスペリティの応力低下量

地震名	引用文献	アスペリティの応力低下量(MPa)	Δσ_{ave1}	Δσ_{ave2}	Δσ_{ave3}
1995年兵庫県南部地震	荻江・入倉(1997)(21)	8.6	16.3	8.6	
1999年トルコKocaeli地震	荻江・入倉(2002)(21)	12.0	5.0	10.0	
2000年鳥取県西部地震	池田・他(2002)(21)	28.0	14.0	-	
2005年熊本県西方冲地震	佐藤・他(2009)(21)	8.7	7.3	-	
2008年福岡県西方冲地震	荻江・入倉(2009)(21)	11.3	11.3	-	

各地震に関する一部の文献を引用した。
は17.1 MPa、自然対数標準偏差は0.39となった。

4. アスベリティの動的応力降下量が不均質な場合の断層パラメータ設定方法の提案

4.1 アスベリティの不均質な動的応力降下量の設定

前章で得られた対数正規分布を参考に、強震動予測用の断層モデルのためのアスベリティの不均質な動的応力降下量の設定方法について検討した。アスベリティの動的応力降下量の中央値は、既往研究の値を尊重し、横ずれ断層の場合は12.2 MPa、逆断層の場合は18.7 MPaとすることとした。なお、アスベリティの動的応力降下量の既往研究の検討結果と前章に示した過去の地震のデータに基づく検討結果の差異は、それぞれで対象とした地震の違いによるものと考えられる。その差異が強震動に与える影響は、アスベリティの面積のとり方等のモデル設定にもよると考えられるが、平均的には1割程度であることを別途確認した。分布の広がりは、本論文の検討結果を尊重し、それぞれ図1で求めた自然対数標準偏差0.45および0.39を用いることとした。

これらの値を用いて求めた横ずれ断層と逆断層のアスベリティの動的応力降下量の確率分布関数を図2にそれぞれ示す。ここに、アスベリティの動的応力降下量が平均値の応力降下量12.2 MPa以下とならないようにするために、横ずれ断層では3.4 MPa、逆断層では2.4 MPaの確率分布関数の幅切りを行った。各アスベリティの不均質な動的応力降下量のアスベリティの数、アスベリティの動的応力降下量の観測値の平均は、Hazen プロット24の考え方に基づいて設定する。具体的には、図2のように、まず観測の非超過確率をアスベリティの個数で分等する。図2は、アスベリティが5個の場合を例示しており、観測を5等分する横線を引いている。次に、等分したそれぞれの帯域の中央にあたる非超過確率の値のときの動的応力降下量を各アスベリティの動的応力降下量Δσstの値とする。この方法で求めた、アスベリティが1〜10個の場合の各アスベリティの動的応力降下量Δσstの値とその非超過確率を表3に示す。

4.2 断層パラメータの設定における課題と方針

アスベリティに不均質な動的応力降下量を与える場合の課題を整

アスベリティの数	非超過確率	アスベリティの動的応力降下量Δσst [MPa]	
		横ずれ断層	逆断層
1	0.500	12.2	18.7
2	0.750	9.0	14.4
3	0.167	7.9	12.8
	0.500	12.2	18.7
	0.833	18.9	27.3
4	0.125	7.3	11.9
	0.375	10.6	16.5
	0.625	14.1	21.2
	0.875	20.5	29.3
5	0.100	6.9	11.3
	0.300	9.7	15.2
	0.500	12.2	18.7
	0.700	15.5	22.9
	0.900	21.7	30.8
6	0.083	6.6	10.9
	0.250	9.0	14.4
	0.417	11.1	17.2
	0.583	13.4	20.3
	0.750	16.5	24.3
	0.917	22.7	32.1
7	0.100	7.4	11.0
	0.214	8.6	13.7
	0.357	10.4	16.2
	0.500	12.2	18.7
	0.643	14.4	21.6
	0.786	17.4	25.5
	0.929	22.6	33.1
8	0.063	6.2	10.3
	0.138	8.2	13.2
	0.313	9.8	15.5
	0.438	11.4	17.6
	0.563	13.1	19.9
	0.688	15.2	22.6
	0.813	18.2	26.4
	0.938	24.3	34.0
9	0.056	6.0	10.0
	0.167	7.9	13.8
	0.278	9.4	14.9
	0.389	10.8	16.8
	0.500	12.2	18.7
	0.611	13.9	20.9
	0.722	15.9	23.5
	0.833	18.9	27.3
	0.944	25.0	34.8
10	0.050	5.9	9.8
	0.150	7.7	12.5
	0.250	9.0	14.4
	0.350	10.3	16.1
	0.450	11.5	17.8
	0.550	12.9	19.6
	0.650	14.5	21.7
	0.750	16.5	24.3
	0.850	19.5	28.0
	0.950	25.6	35.5
理し、断層パラメータ設定方法について検討した。壇・他(2011)21)および壇・他(2015)22)のアスペルリティモデルは、前述のとおり、(1)式～(3)式から構成される。ここで、(3)式の定数部分を省略して書き換えると、次式になる。

\[S_{avg}(\Delta \sigma_{avg}^x)^2 = \frac{1}{N} \sum_{i=1}^{N} S_{avg}(\Delta \sigma_{avg}^x)^2 \] \hspace{1cm} (5)

(2)式と(5)式より、\(\Delta \sigma_{avg}^x = \Delta \sigma_{avg}^y \)であることが明らかである。したがって、それぞれアスペルリティに不均質な動的応力低下量を与えようとする。(1)式～(3)式で示される拘束条件のすべてを満足することはできなくなってしまう。言い換えれば、アスペルリティの動的応力低下量が同じ場合と不均質な場合において、互いの地震モーメントと短周期レベルを等しく設定することは不可能となる。また、アスペルリティのすべり量についても、アスペルリティの動的応力低下量および等価半径との比例関係が崩れ、アスペルリティ全体の平均すべり量が保存されなくなる。

そこで本論文では、アスペルリティの動的応力低下量が様々な場合と不均質な場合の地震モーメントが等しくなるようにし、短周期レベルの違いが大きくならない範囲で許容することとした。これは、強震動予測において想定地震の断層モデルを設定する際には、予め震源が固定されており、地震モーメントが事前に評価されていることが多いことと加え、仮に同じ規模（地震モーメント）であったとしても実際の地震の短周期レベルはある程度ばらつくためである。

地震モーメントは、平均動的応力低下量が変化しないようにアスペルリティの面積を係数を変えて調整して設定する。また、アスペルリティのすべリ量は、アスペルリティ全体の平均すべリ量が変化せずに、かつアスペルリティの動的応力低下量と等価半径に比例するように、係数を乗じて設定する。短周期レベルについては、アスペルリティの動的応力低下量が異なる場合の短周期レベルとの差が大きくなりないことを確認することにした。

なお、アスペルリティの不均質に動的応力低下量、アスペルリティの面積や位置が与えられず、乱数を用いて各アスペルリティにランダムに割り当てることとした。これは、アスペルリティの応力低下量の大きさがどのような条件に依存するのか、現象的視点で整理されていないためである。参考として、表1および表2に示した過去の地震のアスペルリティの応力低下量と面積の関係を図3に示す。図3のように、横線断層、逆断層ともに、少なくともこれら2つのパラメータの間には明確な相関は見られなかった。

4.3 断層パラメータの設定手順

アスペルリティの動的応力低下量が様々な場合の断層パラメータを壇・他(2011)21)あるいは壇・他(2015)22)の方法により求めたうえで、それらを基準に、アスペルリティの動的応力低下量が不均質な場合の断層パラメータを考慮する。

2 条に述べたように、壇・他(2011)21)および壇・他(2015)22)は、アスペルリティの動的応力低下量が様々な場合における、アスペルリティモデルを記述する断層パラメータの設定手順を示している。この手順により求めたアスペルリティの動的応力低下量が様々な場合のi番目のアスペルリティの面積を\(S_{avg} \)、i番目のアスペルリティの動的応力低下量を\(\Delta \sigma_{avg}^x \)（i番目）として実際にはiよりもずらせて、アスペルリティ全体の平均すべリ量を\(D_{avg} \)とする。

\[\frac{\sum_{i=1}^{N} S_{avg}(\Delta \sigma_{avg}^x)^2}{N} = \left(\frac{\sum_{i=1}^{N} S_{avg}(\Delta \sigma_{avg}^x)^2}{N} \right) \] \hspace{1cm} (6)

このi番目の動的応力低下量がアスペルリティの動的応力低下量が等しい場合に、アスペルリティの面積を調整するための係数である。アスペルリティの動的応力低下量が不均質な場合、(2)式の右辺は次のように表すことができる。

\[\sum_{i=1}^{N} (S_{avg}(\Delta \sigma_{avg}^x)^2) = \sum_{i=1}^{N} (S_{avg}(\Delta \sigma_{avg}^x)^2) \] \hspace{1cm} (7)

(2)式をpについて解くと次のように表すことができる。

\[p = \frac{\sum_{i=1}^{N} S_{avg}(\Delta \sigma_{avg}^x)^2}{\sum_{i=1}^{N} (S_{avg}(\Delta \sigma_{avg}^x)^2)} \] \hspace{1cm} (8)

このi番目のアスペルリティの弧を求まる係数pを(6)式と(8)式に代入すれば、\(S_{avg} \)が求まる。

アスペルリティの動的応力低下量が不均質な場合のi番目のアスペルリティのすべリ量\(D_{avg} \)は、アスペルリティの動的応力低下量と等価半径に比例するように決定するため、その比例定数をqとおけば以下で表すことができる。

\[D_{avg} = q \sigma_{avg}^x \sqrt{S_{avg}/\pi} \] \hspace{1cm} (10)

アスペルリティ全体の平均すべリ量\(D_{avg} \)は、アスペルリティの動的応力低下量が様々な場合と不均質な場合で変化するので、次式で表される。

\[D_{avg} = \left(\sum_{i=1}^{N} D_{avg}^i \right)/N = \left(\sum_{i=1}^{N} \sigma_{avg}(\Delta \sigma_{avg}^x)^2 \sqrt{S_{avg}} / \pi \right) \] \hspace{1cm} (11)

したがって、比例定数qは次式となる。

\[q = D_{avg} S_{avg}/\sum_{i=1}^{N} \sigma_{avg}(\Delta \sigma_{avg}^x)^2 \] \hspace{1cm} (12)

(2)式から求まるqを(10)式に代入すれば\(D_{avg} \)が求まる。
した場合は、アスペリティの不均質な動的応力降下量の割り当ての手順に戻り、乱数を変えて再計算を行う。

背景領域のパラメータは、アスペリティの動的応力降下量が同じ場合に同様に設定する。

以上の断層パラメータ設定手順を図4に示す。

5. 強震動の計算例
 5.1 強震動計算手法

 増・他(2010)の統計的グリーン関数法により、強震動を試算した。

 おおよその手法は、Dan et al.(1989)の2.5次元の手法を用いた。ここでは、放射特性は波の伝播速度に対する3 Hz以下ではAki and Richards (1980)の理論的な値、6 Hz以上では全方位平均の0.445とし、その間は線形補間した。また、高周波波の動的応力降下数の採用、Aki and Richards(1980)の理論的な値、6 Hzとし、伝播経路のQ値を振動数依存とした。

 強震動の評価値は、4.1km/s, 0.5 km/sの解放工学的根拠とし、サイト直下の地震基盤から工学的基盤まで60 kmまでの10 km間の計算点とした。

 要素断層内の地殻波放射状をモデルに配置した21波を計算した。この21波のうち、その減衰速度が代表値の波を対象とした。

 5.2 断層モデルの設定

 長大な断層帯の地震として、活断層の延長360 kmの中央構造線断層帯を2.5次元の手法を用い、アスペリティの動的応力降下量が不均質な場合のパラメータ設定手順を図4に示す。

 5.3 強震動計算例

 5.3.1 強震動計算手法

 増・他(2010)の統計的グリーン関数法により、強震動を試算した。

 増・他(2010)の統計的グリーン関数法により、强震動を試算した。ここでは、アスペリティの動的応力降下量が不均質な場合のパラメータ設定手順を図4に示す。

 5.3.2 強震動計算例

 増・他(2010)の統計的グリーン関数法により、強震動を試算した。ここでは、アスペリティの動的応力降下量が不均質な場合のパラメータ設定手順を図4に示す。
表 4 中央構造線断層帯沿の地震の断層パラメータ設定例（鉛直右横ずれ断層）

アスベリティの動的応力降下量が70%相当モデル（現地・3）\(^*2\)の方法による

東部断層	東部断層	南部断層	南部断層	南部断層	西部断層	西部断層
70%相当						

*1) 地震発生時の圧力は14.8 kmとした。

*2) 諸相関係数の地震発生時の圧力は14.8 kmとした。

*3) アスベリティの動的応力降下量が70%相当モデル（現地・3）\(^*2\)の方法による

![図6 図5のモデルに対して設定したアスベリティの応力降下量が70%相当モデル（鉛直右横ずれ断層）](image)

（鉛直はセグメント境界、矩形はアスベリティ、★は全体の破壊開始点、☆は各セグメントの破壊開始点である。）

1084
図7 図5のモデルに対して設定したアスペリティの応力降下が不均質なアスペリティモデル（凡例は図6と同じ）

図8 強震動計算結果の最大速度の面的分布（NS・EW成分の大きい方）

図9 強震動計算結果の速度波形例（0.15〜10 Hz）

5.3 計算結果

強震動計算結果の最大速度の面的分布を図8に示す。最大速度として、NS成分と EW成分のうち大きい方を採用し、図示した。アスペリティの動的応力降下が不均質なモデルの計算結果と比べて、不均質なモデルの計算結果は明らかに面的なばらつきが大きくなっていることがわかる。特に断層直上の地点など、断層近傍の地点での傾向が顕著に現れている。

図9は、図8のA地点およびB地点における計算結果のNS成分の速度波形例を示す。断層直上のA地点における速度波形のパルス
5. まとめ

本論文では、はじめに、断層分布を用いて、過去の地震のアスベリティの応力降下量のデータを整理した。
ついて、その結果を既往研究の成果に基づき、動的応力降下量とその非超確定の関係をモデル化することに、長大な横亀断層と逆断層のそれぞれに対する不均質な動的応力降下量の割り当て方法を考察し、アスベリティの動的応力降下量の不均質性を考慮した断層パラメータ設定方法を提案した。提案手法の特徴は、以下の点である。
1) アスベリティの動的応力降下量を断層全体の平均動的応力降下量よりも小さくない。
2) アスベリティの面積を調整することにより、地震モーメントはアスベリティの動的応力降下量が一致する場合を数える。
3) 従来の方法の与条件を外すため、短周期レベルはアスベリティの動的応力降下量が一致する場合よりも若干大きくなる。ただし、その差は20%程度以下に収まる。
4) アスベリティの面積は、各アスベリティの動的応力降下量と等価半径に比例する。

最後に、提案した断層パラメータ設定方法に従い、長大な横亀断層で断層である中央構造線断層帯の断層モデルを設定し、統計的グリーン関数法により地震動を計算した。その結果、アスベリティの動的応力降下量を一致した場合に比べて最大応力または最大応力の変動幅が大きくなるが、平均値はほとんど変わらなかった。結果として、地震動の全体像を変えることなく保つもの、特に断層分布での地震動のばらつきを表現し得る方法になったと考えられる。

本論文では、現段階ではデータ数が少ないことから、3 章に示した過去の地震のアスベリティの応力降下量のデータ整理において、地震動のばらつきと地震間のばらつきを区別せずに扱った。本来であれば、両者を区別して整理すべきであるので、M8 クラスの地震やアスベリティが多発する地震のデータの蓄積が今後の課題である。

謝辞

本研究は、独立行政法人防災科学技術研究機構による「全国地震動予測地図作成等支援業務」で得られた成果の一部をまとめたものです。講演者皆さんより貴重なご意見をいただきました。ここに記して感謝いたします。

参考文献

1) 石井透・長域一・小穴元子・藤原広行・森川信之：長大横亀断層の地震の強震動予測レジリエンの検討、その I. 想定地震の断層モデルの設定、日本建築学会大会学術講演発表概要、B-2, pp. 133-134, 2013.
改善震源断層を特定した地質の強震動割度予測（レシピ）. 2009.

5) 亀江克実・入倉孝次郎: 1995年兵庫県南部地震の新断層モデルと震源近傍における強震動シミュレーション, 日本建築学会構造系論文集, 第500号, pp.29-36, 1997.10.

6) 亀江克実・入倉孝次郎: トルコ・コニア地域, 台湾・集集地震の震源の特性と強震動シミュレーション, 第11回日本地震工学会シンポジウム, pp.545-550, 2002.

7) 池田隆明・亀江克実・三輪延生: 入倉孝次郎: ハイブリッド法による2000年鳥取県西部地震の強震動シミュレーション, 第11回日本地震工学会シンポジウム第597号, pp.579-582, 2002.

8) 武藤本名・島村清徳・小野寺哲: スペクトルインバーサル化論を表す中国地域の地表地表の地震波伝播モデルの構築と, その2, 2000年鳥取県西部地震, 日本建築学会大会学術講演要覧, B-2, pp.151-152, 2009.

9) 亀江克実・島村清徳・入江信介・アルプス地区の断層モデルによる強震動の予測と考察, 日本建築学会構造系論文集, 第670号, pp.2041-2050, 2011.12.

10) 亀江克実・島村清徳・入江信介・平均速度の断層モデルによる地震動の予測と考察, 日本建築学会構造系論文集, 第678号, pp.1257-1264, 2012.8.

11) 亀江克実・島村清徳・入江信介・島田清: 大長瀬断層による内部地震の断層モデルの技術の設定と提案, 日本建築学会構造系論文集, 第70号, pp.47-57, 2015.11.

12) Yrie, Kiyohsi, Kazuo Dan, Shinya Itakuma, and Kojiro Irikura: Improvement of kinematic fault models for predicting strong motions by dynamic rupturing simulation Evaluation of proportionality constant between stress drop and seismic moment in strike-slip inland earthquakes, First Kashikawa International Symposium on Seismic Safety of Nuclear Installations, 2010.

13) 佐藤義永・川崎博: 経験的グリーン関数法に基づく2005年福島県西方冲地震の特性震源モデルの推定, 第12回日本地震工学シンポジウム, pp.170-173, 2006.

14) 5) 亀江克実・池田隆明: 地面震源断層の地震動特性と震源モデルの推定, 第12回日本地震工学シンポジウム, pp.533-538, 2006.

15) 佐藤義永・藤本四郎・竹谷幸一・比嘉一: 広域震源波解析法による2004年美濃地震の動力学に関する解析, 地震学会論文集, pp.2-12, 2005.

16) 佐藤義永・池田隆明・中村浩: 2007年3月15日地震の強震動モデル化, www.ri.r.kyoto-u.ac.jp/jishin/irikura/20070315.pdf, 2007.

17) Kurashishi, Susumu, Kazuaki Masaki, and Kojiro Irikura: Source model of the 2007 Noto-Hanto earthquake (Mw 6.7) for estimating broad-band strong ground motion, Earth Planets Space, Vol. 60, pp.89-94, 2008.

18) 亀江克実・香川敷・宮嶋研・倉橋俊: 2007年新潟県中越沖地震の強震動とその地表波の検討, 第12回日本建築学会大会学術講演要覧, B-2, pp.365-366, 2007.

19) 亀江克実・池田隆明・中村浩: 2007年3月15日地震の震源モデル化, 2007年3月15日地震の震源モデル化, www.ri.r.kyoto-u.ac.jp/jishin/eq/notoha.html (参照2014.6.3).

20) 亀江克実・川崎博: 2007年新潟県中越沖地震(Mj 6.8)の震源のモデル化と強震動シミュレーション, www.ri.r.kyoto-u.ac.jp/jishin/eq/notoha.html (参照2014.6.3).

21) 亀江克実: 2005年岩手・宮城沖地震(Mj 7.2)の震源のモデル化と予測, 第12回日本建築学会大会学術講演要覧, B-2, pp.249-250, 2014.

22) 地震調査研究推進本部地震調査委員会:「全国地震予測地図」技術報告書, 付録3, 地震断層を特定した地質の強震動予測（レシピ）, 2009.

23) Hazen, Allen: Flood Flows, A study of frequencies and magnitudes, John Wiley & Sons, Inc., New York, 1930.

24) 亀江克実・入倉孝次郎: 1995年兵庫県南部地震の断層モデルと震源近傍における強震動シミュレーション, 日本建築学会構造系論文集, 第500号, pp.29-36, 1997.10.

25) 亀江克実・入倉孝次郎: トルコ・コニア地域, 台湾・集集地震の震源の特性と強震動シミュレーション, 第11回日本地震工学会シンポジウム, pp.545-550, 2002.

26) 亀江克実・入倉孝次郎: ハイブリッド法による2000年鳥取県西部地震の強震動シミュレーション, 第11回日本地震工学会シンポジウム第597号, pp.579-582, 2002.

27) 亀江克実・入倉孝次郎・高瀬哲也: 地表の速度の平均速度の地震動の予測と考察, 日本建築学会構造系論文集, 第678号, pp.1257-1264, 2012.8.

28) 亀江克実・入倉孝次郎: 大長瀬断層による内部地震の断層モデルの技術の設定と提案, 日本建築学会構造系論文集, 第70号, pp.47-57, 2015.11.

29) 亀江克実・池田隆明: 三輪延生: 入倉孝次郎: ハイブリッド法による2000年鳥取県西部地震の強震動シミュレーション, 第11回日本地震工学会シンポジウム第597号, pp.579-582, 2002.

30) 亀江克実・入倉孝次郎: トルコ・コニア地域, 台湾・集集地震の震源の特性と強震動シミュレーション, 第11回日本地震工学会シンポジウム第597号, pp.579-582, 2002.
ないが、本論文では両者の差は小さいと考えた。

背景領域におけるせん断応力、すべり量、及びすべり速度の時間変化の概念図を付図2に示す。アスペリティの場合と比べて、すべり量やすべり速度が小さい。また、初期せん断応力と動摩擦力の大きさが等しく、動的応力降下量は0である。なお、動摩擦力に達した後は、せん断応力はほぼ変動しないとみなし、最終せん断応力と動摩擦力は等しいものとする。すなわち、応力降下量も0である。ただし、実効応力は0ではなく、すべり速度や最終すべり量も0ではないので、背景領域からも地震波は放出される。

付図1 アスペリティにおけるせん断応力とすべり量及びすべり速度の時間変化

付図2 背景領域におけるせん断応力とすべり量及びすべり速度の時間変化

In these studies, they also treated the dynamic stress drops on the asperities as the uniform ones. However, it is hard to consider that all log-normal distributions. Here, we adopted 12.2 MPa, which had been estimated by Dan. Log-normal distribution to the data, and obtained the median of 10.7 MPa and the logarithmic standard deviation of 0.45. We also carried the fault.

The heterogeneity of the dynamic stress drops, which should affect the spatial distributions of the predicted strong ground motions around the dynamic stress drops on the asperities are uniform in the actual earthquakes. Especially, a longer fault has much more asperities and the proposed procedure, and calculated strong ground motions. Also, Dan the relationships among the fault parameters of the asperity model. However, the strong ground motion obtained by the asperity model with heterogeneous dynamic stress drops remained less than 120% of the one by the asperity model with uniform dynamic stress drops.

In this paper, first, we compiled the data of stress drops on the asperities of earthquakes caused by strike-slip faults. We applied the idea, which the satisfaction of the relationship formula of the seismic moment has priority in exchange for the previous studies. It has been assumed that all the dynamic stress drops on the asperities of the fault model are constant. For example, we truncated the lower part of the log-normal distributions of the dynamic stress drops on the asperities at the value of 3.4 MPa for strike-slip faults and of 2.4 MPa for reverse faults because they should be larger than the dynamic stress drop averaged over the entire fault.

Finally, we proposed a procedure for evaluating fault parameters taking into account of the heterogeneous dynamic stress drops on the asperities. We established a long strike-slip fault model of a scenario earthquake along the Median Tectonic Line fault zone based on the proposed procedure, and calculated strong ground motions. The results had larger reverse faults because they should be larger than the dynamic stress drop averaged over the entire fault.

Atsuko OANA *, Kazuo DAN **, Masanobu TOHDO ***, Toru ISHII **** , Hiroyuki FUJIWARA ***** , KEN'ICHI SASAKI ******, and YURICHI INOUE ******* (2012) proposed a procedure for evaluating the parameters of long strike-slip faults, established fault models based on the relationships among the fault parameters of the asperity model. However, the short-period spectral level of the strong ground motions obtained by the asperity model with heterogeneous dynamic stress drops remained less than 120% of the one by the asperity model with uniform dynamic stress drops.
In order to establish fault models for strong motion predictions, some procedures for evaluating fault parameters were proposed in the previous studies. It has been assumed that all the dynamic stress drops on the asperities of the fault model are constant. For example, Dan et al. (2011, 2012) proposed a procedure for evaluating the parameters of long strike-slip faults, established fault models based on the proposed procedure, and calculated strong ground motions. Also, Dan et al. (2015) carried out the same study for long reverse faults. In these studies, they also treated the dynamic stress drops on the asperities as the uniform ones. However, it is hard to consider that all the dynamic stress drops on the asperities are uniform in the actual earthquakes. Especially, a longer fault has much more asperities and heterogeneity of the dynamic stress drops, which should affect the spatial distributions of the predicted strong ground motions around the fault.

In this paper, first, we compiled the data of stress drops on the asperities of earthquakes caused by strike-slip faults. We applied the log-normal distribution to the data, and obtained the median of 10.7 MPa and the logarithmic standard deviation of 0.45. We also carried out the same processing using the data of earthquakes caused by reverse faults, and obtained the median of 17.1 MPa and the logarithmic standard deviation of 0.39.

Next, we examined a procedure for assigning the heterogeneous dynamic stress drops to each asperity by using the obtained log-normal distributions. Here, we adopted 12.2 MPa, which had been estimated by Dan et al. (2011) for long strike slip faults, as the median, and 18.7 MPa, which had been estimated by Dan et al. (2015) for long reverse faults. In addition, we truncated the lower part of the log-normal distributions of the dynamic stress drops on the asperities at the value of 3.4 MPa for strike-slip faults and of 2.4 MPa for reverse faults because they should be larger than the dynamic stress drop averaged over the entire fault.

We applied one of the idea, which the satisfaction of the relationship formula of the seismic moment has priority in exchange for the dissatisfaction of the relationship formula of the short-period spectral level, to this procedure, because it is impossible to satisfy all the relationships among the fault parameters of the asperity model. However, the short-period spectral level of the strong ground motions obtained by the asperity model with heterogeneous dynamic stress drops remained less than 120 % of the one by the asperity model with uniform dynamic stress drops.

Finally, we proposed a procedure for evaluating fault parameters taking into account of the heterogeneous dynamic stress drops on the asperities. We established a long strike-slip fault model of a scenario earthquake along the Median Tectonic Line fault zone based on the proposed procedure, and calculated the strong ground motions by the stochastic Green’s function method. The results had larger variations of the peak ground accelerations and velocities than those with uniform dynamic stress drops on the asperities, while the averages were almost same. We consider that the proposed procedure can describe the characteristics of strong ground motions near the fault well.