The pomegranate fruit is rich in many nutrients characterized by a variety of biologically-active and secondary metabolites. However, pomegranate fruits are prone to postharvest water loss, chilling injuries, physical disorders and fungal diseases. Various methods such as high hydrostatic pressure, ultrasound and gamma irradiation, synthetic fungicides, preservatives, controlled atmosphere and modified atmosphere storages, and edible coatings are used for preserving fruits and minimizing changes in their quality. New alternative technologies, such as the coating of agricultural commodities, have been employed to reduce the postharvest losses of fresh fruits and vegetables, and improve their shelf life. Edible films and coatings, including various chemicals, oils, essential oils, and/or a combination of oils and edible coatings, have been used to enhance the shelf life, quality and safety of minimally processed fruits. Therefore, the present study examines the efficacy of edible coating in maintaining the quality of pomegranate fruits and extending the shelf life of freshly dissected pomegranate arils.

Keywords: decay, pomegranate aril, edible coating, minimally processed

INTRODUCTION
The pomegranate is the fruit of Punica granatum L. (Punicaceae), which is widely produced in the Mediterranean area. Pomegranate seeds and juice are red in color, whereas pomegranate arils have a greenish-yellow color. The pomegranate fruit is rich in many nutrients characterized by a variety of biologically-active and secondary metabolites. However, pomegranate fruits are prone to postharvest water loss, chilling injuries, physical disorders and fungal diseases. Various methods such as high hydrostatic pressure, ultrasound and gamma irradiation, synthetic fungicides, preservatives, controlled atmosphere and modified atmosphere storages, and edible coatings are used for preserving fruits and minimizing changes in their quality. New alternative technologies, such as the coating of agricultural commodities, have been employed to reduce the postharvest losses of fresh fruits and vegetables, and improve their shelf life. Edible films and coatings, including various chemicals, oils, essential oils, and/or a combination of oils and edible coatings, have been used to enhance the shelf life, quality and safety of minimally processed fruits. Therefore, the present study examines the efficacy of edible coating in maintaining the quality of pomegranate fruits and extending the shelf life of freshly dissected pomegranate arils.

Keywords: decay, pomegranate aril, edible coating, minimally processed
airtight. All boxes were stored at 4°C and 95% relative humidity for 12 days. Nabigol and Asghari (2013) dipped pomegranate arils in A. vera solutions, after which they were stored at 5°C and 95% RH in permanent darkness for 3 weeks. Öz and Ulukanli (2012) prepared a coating solution by adding food-grade starch powder (2%) and glycerol as a plasticizer (1%) to sterilized distilled water. The solution (a starch: plasticizer ratio of 2:1) was heated and boiled until completely dissolved. Two concentrations (300 and 600 ppm) of cold-pressed seed oil of N. sativa were added into the coating solution and homogenized. The arils were immersed in the coating solution for 15 min at room temperature. After coating, coating solution residues were placed onto sterilized sieved trays at 20°C. The arils were placed into polypropylene bags and stored for 12 days. Romeroa et al. (2012) washed pomegranate arils in a solution containing 100 µL/L chlorine (NaOCl) for 5 min. Excess water was removed from arils with paper towels. The arils were divided into treatment group (Table 1). Thereafter, they were dipped in corresponding solutions for 5 minutes and left to dry subsequently. After coating, the arils (130 g) were placed in polypropylene boxes (280 mL) and covered with airtight lids (with a silicone septum for the gas extraction and the O2 and CO2 quantification). The boxes were stored for 12 days at 3°C and 90% relative humidity. Ozdemir and Gökmen (2017) prepared aqueous solutions (w/v) of 1% chitosan + 1% ascorbic acid, 2% chitosan + 2% ascorbic acid, 1% ascorbic acid and distilled water for the control. The solutions were placed in an ultrasonic bath for 1 h to obtain a translucent solution. The sample arils were immersed in the coating solutions for 5 min. After the immersion, they were left to dry at 25°C for 2 h. Then the arils (10 g) were transferred into sterilized packages and stored 28 days at 5°C.

RESULTS AND DISCUSSION

Effect of Coating Treatments on Pomegranate Aril Quality

Coating treatments provide fruits with a semi-permeable membrane, thus reducing the moisture loss due to the pressure of the fruit and modifying the atmosphere between the fruit and the environment (Opara et al. 2015). Öz and Ulukanli (2012) reported that there were statistically significant differences between the control and coating treatments throughout the storage. At the end of the storage, a 6% weight loss was measured in the control group, 3% in the starch coating itself, 2% in 300 ppm and 1% in 600 ppm oil + starch coating-treated arils (Öz and Ulukanli, 2012). While Ghasemnezhad et al. (2013) stated that chitosan coating significantly decreased the weight loss of pomegranate arils at 3°C, Özdemir and Gökmen (2017) stated that while chitosan + 1% ascorbic acid coating did not affect weight loss as the control, 1% ascorbic acid and coated fruits lost similar weight during + 28 days of storage. While Romeroa et al. (2012) obtained no significant differences between coating treatments in regard to the total soluble solid content (TSS), Ghasemnezhad et al. (2013) reported that the highest TSS was observed in the control sample. Furthermore, Öz and Ulukanlı (2011) stated that the application of 600 ppm oil plus starch coating seemed to be the most effective in reducing the TSS content when compared to the other treatments during storage. Nabigol and Asghari (2013) stated that the TSS was significantly higher in the A. vera treated arils than in the control arils. These findings were associated with the fact that edible coating reduced the respiration rate and weight loss, effectively maintaining the TSS and organic acid contents (Pen and Jyang 2003; Ghasemnezhad et al. 2013).

The value of pH did not change significantly and almost remained constant during storage (Öz and Ulukanlı, 2011) in both the coated and uncoated aril samples. Similarly, Ozdemir and Gökmen (2017) stated that TA (titrable acidity) and pH did not change significantly during storage in both the control and coated samples (1% chitosan-1% ascorbic acid).

Fruit firmness has been accepted as one of the most important factors that affect the quality of fruit commodities during postharvest storage. Öz and Ulukanlı (2012) and Romeroa et al. (2012) found that the highest softening aril ratio (%), which may mainly derive from the hydrolysis of starch to sugar and the degradation of pectin in the fruit cell wall associated with fruit ripening, was in the control arils. The coatings of A. vera gel (at 50 or 100%) alone or in a combination with acids (Romeroa et al., 2012) and the coatings of starch and N. sativa oil (Öz and Ulukanlı, 2012) showed a significant delay of softening. Calcium chloride treatments (0.5% and 1%) maintained the highest firmness of arils, indicating significant differences between the treated and untreated arils (Shaarawi et al., 2016). Öz and Ulukanlı (2017) reported that the most effective treatment for inhibiting browning was the application of 300 and 600 ppm oil plus starch coating and starch coating itself. Pomegranate arils coated with chitosan and ascorbic acid showed no signs of deterioration which rendered them acceptable for consumption. The findings obtained also showed that the a* value, which is related to the color stability and redness was significantly higher in the chitosan coated arils than in the control samples after 28 days of storage (Özdemir and Gökmen, 2017). It has been reported that the coating with chitosan and ascorbic acid significantly reduced bacteria, yeast and mold populations throughout the storage time (Özdemir and Gökmen, 2010). The total yeast and mold counts were also below the detection limits in the 300 ppb and 600 ppb oil + starch coating samples (Öz and Ulukanlı, 2011), whereas the lower microbial growth was observed on the arils coated with chitosan during storage (Ghasemnezhad et al., 2013). Nabigol and Asghari (2013) immersed arils which were dipped in a spore suspension of pathogens (A. niger and P. digitatum) in different A. vera solutions. They reported that for both fungi, the inhibition of mycelium growth rate increased with the A. vera concentration. In another study, the total microbial population was lower in the arils treated with salicylic acid compared to those treated with calcium chloride, calcium lactate, as well as the control arils (Shaarawi et al., 2016).

Effects of Coating Treatments on the Anthocyanin Content (TAC) and Antioxidant Activity of Pomegranate Arils

The attractive colour is one of the most important sensory characteristics of pomegranate arils (Ghasemnezhad et al., 2013). Özdemir and Gökmen (2017) argued that the anthocyanin synthesis was reduced by the reduction of gas metabolism and significantly inhibited by a combination of chitosan and ascorbic acid barriers (Özdemir and Gökmen 2017). Similarly, Varaste et al. (2012) reported that the total anthocyanin content of the chitosan-coated (2%) pomegranate fruit stored at 2°C, was 1.56-fold higher than that recorded in the control sample stored at 5°C at the end of the trial duration. Moreover, Öz and Ulukanlı (2012) asserted that the high edible starch coating, including Nigella oil, significantly influenced the anthocyanin content of arils, and that the TAC was the highest in the treatment with 300 ppm oil + starch coating, followed by 600 ppm and starch coating itself compared to the control samples (Öz and Ulukanlı, 2012). Furthermore, chitosan coating suppressed a decline in the aril anthocyanin content during storage, and the highest anthocyanin content was recorded after 12 days of storage at 4°C in the pomegranate arils coated with 1% chitosan (Ghasemnezhad et al., 2013).
Table 1. Edible coating treatments of pomegranate fruits and arils

References	Coating Materials	Treatment Description
Mirdelghan et al., 2007	- control (distilled water) (by pressure infiltration)	
- 1 mM putrescine
- 1 mM spermidine
- control (distilled water) (by immersion)
- 1 mM putrescine
- 1 mM spermidine | Fruits were harvested when fully mature. Fruits were randomized and divided into six lots of 125 fruits. Half of the lots were treated by pressure (0.05 bar for 4 min at 25 °C) and the other half was treated by dipping at 25 ± 1 °C for 4 min. The fruits were placed on the desiccant Kraft paper and were allowed to dry (rt*, in a dark place). The fruits were stored for 60 days at 2 °C in a temperature-controlled chamber, in permanent darkness, and with relative humidity of 90%. |
| Ergun and Ergun, 2009 | - sterile water (control)
- 10% honey solution (w/v)
- 20% honey solution (w/v) | Arils were manually extracted. The arils were dipped into water or diluted honey solutions, after which they were removed with a plastic strainer and drained. 50 g of arils per treatment were placed in loosely closed plastic containers (130 mL) and stored at 4 °C for 10 days. |
| Öz and Ulukanli, 2012 | - starch coating (starch + glycerol, 2:1, v/v)
- 300 ppm oil + starch coating (starch + glycerol, 2:1, v/v and N. sativa oil, 300 ppm)
- 600 ppm oil + starch coating (starch + glycerol, 2:1, v/v, N. sativa oil, 600 ppm) | Immersing of arils for 15 min at rt*
Let to drip off in laminar flow at rt*
Packaging with PP* (250 g aril/0.5 L)
Storage of 12 days |
Romeroa et al. (2012) found that the Aloe 100%+Acids 1% coating arils showed the highest anthocyanin content after a storage period of 8 days at 3°C. Previous reports showed that the chitosan edible starch coating, including Nigella oil and A. vera coating with acids, had beneficial effects in maintaining the anthocyanin content of pomegranates. According to the total phenolics, the concentration during storage indicated no significant changes in those arils treated with A. vera gel (50 or 100%). Romeroa et al. (2012). Ghasemnezhad et al. (2013) stated that the concentration of total phenolics decreased significantly during storage in both the chitosan-coated and uncoated arils. Therefore, chitosan coating suppressed a decline in the aril phenolic content during storage. The pomegranate arils coated with 1% chitosan maintained the higher total content of phenolics after 12 days of storage (Ghasemnezhad et al., 2013). The highest antioxidant activity was recorded in the pomegranate arils coated with 1% chitosan, whereas the lowest was recorded in the uncoated group after 12 days of storage at 4 °C. Moreover, chitosan coating exhibited beneficial effects in maintaining the antioxidant activity of pomegranate arils. Previous studies showed that there was a positive correlation between the antioxidant activity and total phenolic content. Therefore, a high total antioxidant capacity could be attributed to a high total phenolic content (Ghasemnezhad et al., 2013).

Effect of Coating Treatments on the Sensory Quality of Pomegranate Arils

The pomegranate arils treated with the 300 ppm oil + starch coating showed the best aroma quality. The panelists did not perceive any off-flavors in pomegranate arils as a consequence of the chitosan and ascorbic acid treatment (Özdemir and Gökmen, 2017). Romeroa et al. (2012) stated that the highest scores were given to the arils treated with a combination of Aloe vera gel and acids. Higher sensory scores of the coated arils may result from the fact that edible coatings served as a barrier which reduced the loss of volatiles, i.e. affected the metabolism of volatile production (Olivas et al., 2007).

CONCLUSION

The use of edible coating or film packaging materials is an innovative method for controlling the quality of fruits and vegetables, as well as minimizing microbial and postharvest losses. The application of coating materials to fruits and vegetables affects the nutritional composition and appearance of fresh commodities. There are a number of treatments applied to enhance the quality, storage life, shelf life of pomegranates and minimally processed pomegranate arils. The shelf life of pomegranate arils can be prolonged by edible coating treatments in exchange for these treatments or modified atmosphere packaging. According to previous studies, the most marked effects of edible coating on pomegranate arils are as follows: browning inhibition, weight loss and decay reduction, maintenance of firmness, and higher sensory scores, as well as anthocyanin and phenolic contents. Admittedly, the effects of different types of coating materials on pomegranate arils require further research, as well as their effect on fresh pomegranate arils and other fruit quality parameters.

REFERENCES

Ayhan, Z., Eşturk, O. (2009). Overall quality and shelf life of minimally processed and modified atmosphere packaged “ready-to-eat” pomegranate arils. Journal of Food Science, 74(5), C399-C405.
Barman, K., Asrey, R., Pal, R.K. (2014). Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage. Journal of Food Science and Technology, 51(1):111–117.
Garcia, L.C., Pereira, L.M., de Luca Sarantópooulos, C.I., Hubinger, M.D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food and Bioprocess Technology, 3(6), 834-842.
Ghasemnezhad, M., Zareh, S., Rassa, M., Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368-374.
Gil, M.I., Martínez, J.A., Artés, F. (1996). Minimally processed pomegranate seeds. LWT-Food Science and Technology, 29(8), 708-713.
Meighani, H., Ghasemnezhad, M. (2015). Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.). Journal of Food Science and Technology, 52(7), 4074-408.
Mrdehghan S.H., Rahemi, S., Siano, M., Chalen, F., Martínez-Romero, D., Valero, D. (2007). The application of polyamines by pressure or immersion as a tool to maintain functional properties in stored pomegranate. Journal of Agriculture and Food Chemistry, 55, 7677-7682.
Nabagol, A., Asyari, M. (2011). Antifungal activity of Aloe vera gel on quality of minimally processed pomegranate arils. International Journal of Bioprocess and Plant Production, 4(4), 833–838.
Ojeda, G.A., Sgro, C.S., Zaritzky, N.E. (2016). Application of edible coatings in minimally processed sweet potatoes (Ipomoea batatas L.) to prevent enzymatic browning. International Journal of Food Science & Technology, 50(3), 876-883.
Oliveira, G., Mattinson, D.S., Barbosa-Cânovas, G.V. (2007). Alginate coatings for preservation of minimally processed lollipops. Postharvest biology and Technology, 45(1), 89-96.
Opara, U.L., Atukuri, J., Fawole, O.A. (2015). Application of physical and chemical postharvest treatments to enhance storage and shelf life of pomegranate fruit—A review. Scientia Horticulturae, 197, 41-49.
Oz, A.T., Ulukanlı, Z. (2012). Application of edible starch-based coating including glycerol plus oleum nigella on arils from long-stored whole pomegranate fruits. Journal of Food Processing and Preservation, 36(1), 81-95.Özdemir, K.S., Gökmen, V. (2017). Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT-Food Science and Technology, 76, 172-180.
Öz, A.T., Hiçyılmaz, S., Yarşı, T. (2017). Effects of the Alternative Postharvest Treatments on ‘Hicaznar’ Pomegranate Fruit Phytochemicals, Organic Acids and Sugar Content. Indian Journal of Pharmaceutical Education and Research, 51(3)-49.
Pen, L.T., Jiang, Y.M. (2003) Effect of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. Lebensmittel-Wissenschaft & Technologie, 36, 359–364.
Shaarawi, S.A., Salem, A.S., Elmaghraby, I. M., & Eman, A.A. (2016). Effect of salicylic acid, calcium chloride and calcium lactate applications on quality attributes of minimally-processed ‘Wonderful’ pomegranate arils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2):508-517.
Zahran, A.A., Hassanain, R.A., Abdelwahab, A. T. (2015). Effect of chitosan on biochemical composition and antioxidant activity of minimally processed “Wonderful” pomegranate arils during cold storage, Journal of Applied Botany and Food Quality 88, 241–248.