Introduction

Nasopharyngeal carcinoma (NPC) is a type of disease with distinct epidemiology, anatomy, and histopathology characteristics. It often occurred in China and southeast Asia, with the incidence rates in a range of 15 and 50 per 100,000 in southern provinces of China [1]. Radiotherapy (RT) with or without chemotherapy is a mainstay in the treatment of NPC [2]. Given the proximity of temporal lobes to NPC, temporal lobe injury (TLI) is one of serious late complications that affects memory [3], neurocognitive functions [3], physical functions [4], emotion [4], language [3], and the quality of life in survivors [4]. In an era of 2D radiotherapy, the reported rate of TLI ranges from 3-40% [5-7]. Recent advancement of dose-delivering technologies such as intensity-modulated radiation treatment (IMRT) allows normal adjacent structures including temporal lobes to be spared from high-dose radiation, which indeed led to reduction in incidence of radiation-induced temporal lobe injury that varied from 4.6 to 16% [8-10].

In 1991, Emami first described the dose constraint of the brain. The dose ≥60 Gy delivered to 1/3 of whole brain volume was found to be predictive for ≥5%
incidence at 5 years (TD_{50}) [11]. Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) reported the relationship between the radiation dose and incidence of TLI. Based on 2D radiotherapy, for fractionated RT with a fraction size of <2.5 Gy, an incidence of radiation injury of 5 and 10% is predicted to occur at a biologically effective dose of 120 Gy (range, 100–140) and 150 Gy (range, 140–170), respectively. For twice-daily fractionation, a steep increase in toxicity appears to occur when the biologically effective dose is >80 Gy. For daily large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is unpredictable [12]. Lee previously reported that incidence rate of TLI was estimated to be 5% at 10 years when temporal lobe received 64 Gy (equivalent dose) based on 2D radiation therapy [6]. Of important notice, is that these data were created from conventional radiotherapy, and some heterogeneous factors such as different target volumes, endpoints, sample sizes, and irradiated brain regions would affect the clinical outcome.

However, in the modern era of IMRT, the reports about the TLI induced by IMRT or chemotherapy-IMRT were relatively limited. Su and coworkers reported that a total of 4.6% patients were diagnosed with TLI among 870 NPC at a median follow-up of 40 months. Of interest, TLI was not observed in T1-2 patients, the incidence rates were 3.1 and 13.4% in T3 and T4 patients, respectively. The Dmax and D1cc in injured temporal lobes (TLs) are greater than that in normal TLs. The 5-year incidence of TLI in patients with Dmax 64–68 Gy or D1cc 52–58 Gy is reported to be <5% based on this relatively short follow-up [13].

Apparently, previously recommended dose constraints for radiation-induced brain injury from QUANTEC are not adequately applied to IMRT of NPC. The dose constraints for TLI are urgently needed for NPC patients treated with IMRT. In this report, we conducted a retrospective analysis of 695 NPC treated with IMRT to determine predictive factors for TLI.

Materials and Methods

Patient selection

A total of 695 NPC patients treated with definitive IMRT in our institution were retrospectively reviewed and analyzed to determine predictive factors for TLI from June 2004–June 2009. All patients had a pathology-proven NPC and had a local disease or locoregional disease (stage I–Iva + b) according to the UICC 7th TNM staging system, prior to definitive IMRT. Recurrence patients were excluded from our study. The basic characteristics such as age, gender, hypertension, diabetes, blood lipid, chemotherapy, target therapy and et al. were recorded carefully in Table 1.

Table 1. Basic characteristics for 695 patients.
Items
Gender
Male
Female
Age
≥50
<50
T stage (UICC 7th)
T1
T2
T3
T4
N stage (UICC 7th)
N0
N1
N2
N3
TNM (UICC 7th)
I
II
III
Iva + b
Diabetes
Yes
No
Hypertension
Yes
No
Smoking
Yes
No
Alcoholism
Yes
No
Chemotherapy
Yes
No
Target therapy
Yes
No
Cholesterol
≥5.18 mmol/L
<5.18 mmol/L
Triglycerides
≥1.70 mmol/L
<1.70 mmol/L

The study was approved by the ethics committee of our institution.

Treatment

Radiotherapy protocol and temporal lobe contour

Radiation planning was designed and optimized using the CORVUS 3.4–4.2 inverse treatment planning system. The IMRT plan was implemented through dynamic intensity-modulated coplanar arc irradiation using a multileaf
collimator (Nomos mimic). The neck and shoulder thermoplastic mask was used to fix the patients. The target volumes were outlined according to the International Commission on Radiation Units and Measurements (ICRU) 50 and 62. The prescribed doses were as follows: 66–76 Gy for gross tumor volumes of the nasopharynx (GTVnx) (2.0–2.25 Gy/f), 66–70 Gy for positive neck lymph nodes (GTVn-R/L) (2.0–2.2 Gy/f), 60–66 Gy for high-risk clinical target volume (CTV1) (1.9–2.0 Gy/f), 54–60 Gy for low-risk clinical target volume (CTV2) (1.8–1.9 Gy/f) and 50–54 Gy for lymphatic drainage regions (CTVln) (1.7–1.8 Gy/f), in 30–33 fractions. All the patients received radiation to the lymph node drainage areas in the lower neck using 60Co split-field techniques or 6 MV X-ray split-beam techniques with a prescription dose of 46–50 Gy [14]. X-ray was used to evaluate the setup errors before treatment delivery. The patients were treated with one fraction daily over 5 days per week. The dose limits for each normal organ were followed according to the Radiation Therapy Oncology Group protocol 0225 (RTOG0225). The whole process of IMRT was carried out according to an institutional treatment protocol previously described [14].

The temporal lobe (TL) delineated in the original treatment plan were reviewed, and was found that original TL contours did not include the areas that overlapped the tumor target volumes such as CTV and PTV, due to an inherent limitation of the Corvus system. For purpose of this study, we re-delineated the entire TL and obtained the following dosimetric parameters: Dmax, Dmean, D0.1cc (the dose Gray to 0.1cc of the TL volume), D0.5cc, D1cc, D2cc, D3cc, D5cc, D10cc, D15cc, and D20cc.

Chemotherapy

Of the 695 patients, 163 patients received radiotherapy alone, while 532 received concurrent chemoradiotherapy with cisplatin 80 mg/m^2 every 3 weeks for 2–3 cycles. Among 532 patients, 86 patients received 2–3 cycles of neoadjuvant chemotherapy combined with concurrent chemoradiotherapy. 47 patients received concurrent chemoradiotherapy combined with 1 to 2 cycle of adjuvant chemotherapy. The neoadjuvant chemotherapy regimen was TPF, and the adjuvant chemotherapy regimen was cisplatin.

MRI protocol

MRI brain was performed using a 1.5-Tesla system (Signa CV/i; General Electric Healthcare, Chalfont St. Giles, United Kingdom), To diagnose TLI, our neuroradiologists examine the area from the suprasellar cistern to the inferior margin of the sternal end of the clavicle using a head-and-neck combined coil. T1-weighted fast spin-echo images in the axial, coronal, and sagittal planes (repetition time, 500–600 msec; echo time, 10–20 msec), and T2-weighted fast spin-echo MRI in the axial plane (repetition time, 4000–6000 msec; echo time, 95–110 msec) were performed before injection of contrast material. After intravenous injection of gadopentetate dimeglumine (0.1 mmol/kg body weight Gd-DTPA, Magnevist; Bayer-Schering, Berlin, Germany), spin-echo T1-weighted axial and sagittal sequences and spin-echo T1-weighted fat-suppressed coronal sequences were performed sequentially, using similar parameters to before injection. The section thickness was 5 mm with a 1 mm inter-slice gap for the axial plane, and 6 mm with a 1 mm inter-slice gap for the coronal and sagittal planes.

All brain MRI images were centrally reviewed by two neuroradiologists, Each MR was first independently reviewed. For those with any disagreement, a joint review was then performed with a consensus report as the final report for this study analysis. Diagnostic criteria for TLI were as follows: (1) white matter lesions, defined as areas of finger-like lesions of increased signal intensity on T2-weighted images; (2) contrast-enhanced lesions, defined as lesions with or without necrosis on post-contrast T1-weighted images with heterogeneous signal abnormalities on T2-weighted images; (3) cysts, round or oval well-defined lesions of very high signal intensity on T2-weighted images with a thin or imperceptible wall as previously reported [15]. Recurrence or metastasis involved in TL was excluded from this study analysis.

Follow-up

The duration of follow-up was calculated from the completion of IMRT to either the day of death or the day of last examination. All the patients were follow-up every 3 months in the first years, every 6 months in the second year and every 12 months in the following years. Nasopharyngeal mirror, endoscopic examination, detailed physical examination and MRI were performed during follow-up. Follow-up MRI of the nasopharynx and/or neck was performed every 6–12 months, or whenever tumor recurrence was suspected or neurologic signs or symptoms occurred. The latency of TLI was measured from the day of IMRT completion to the date of MRI diagnosis.

Statistical analysis

SPSS 19.0 was used for statistical analysis. Actuarial survival rates were calculated using the Kaplan–Meier method. Student’s t test was used for comparing the dose between TLI and non-TLI group. Receiver operating characteristic curve (ROC) was used for screening volume-dose parameters to predict TLI. Logistic multiple stepwise regression was used for predicting the TLI rate.
from the physical and biological equivalent dose of the 11 volume-dose parameters. For prognostic factor of TLI, long-rank test was used for univariate analyses, and Cox proportional hazard model was used for multivariate analyses. TLI. The response variable was defined by classifying each temporal lobe depending on whether changes on MRI images. Dose and volume response curves were calculated with the nonlinear regression model using the logistic dose-response model as below [16]:

\[P(X_1, X_2, ..., X_m) = \frac{e^{b_0 + b_1 X_1 + b_2 X_2 + ... + b_m X_m}}{1 + e^{b_0 + b_1 X_1 + b_2 X_2 + ... + b_m X_m}} \] (1)

In the equation, \(b \) stands for the regression coefficient, \(X_1, X_2, ..., X_m \) stand for the value of different volume-dose parameters. Both physical dose and biological equivalent dose (BED) of temporal lobe were established. BED was calculated by linear quadratic model (EQD2 = \(D \left(\frac{d + e\beta}{2 + \alpha\beta} \right) \), \(\alpha/\beta = 3 \)). The criterion for statistical significance was set at \(\alpha = 0.05 \), and \(P \) values were determined from two-sided tests.

Results

Of the 695 patients, there were 21, 203, 239, and 232 patients for T1, T2, T3, and T4, respectively, according to UICC 7th staging system. The basic characteristics were summarized in Table 1. The median follow-up time was 73 months (22–108). Fifty-nine patients (8.49%) were diagnosed with TLI based on MRI images (Fig. 1). The incidences of TLI are 8.49% (59/695) in all patients. There was no TLI observed in T1 or T2 stage patients. Seventeen patients had some clinical symptoms including headaches, memory deterioration, emotion disorder, and et al. The other 41 patients did not complaint about any particular discomforts and exhibited obvious signs.

Dosimetric analysis of temporal lobes

In our study, the longest latency of TLI is 55 months, so the 59 patients with TLI all occurred within 60 months after IMRT. Of the 59 patients with TLI, 22 were
diagnosed with bilateral TLI, and these 44 injured temporal lobes were included in this study. The other 37 patients were unilateral TLI, and 26 of the 37 patients who developed unilateral TLI within 60 months after IMRT were followed up for at least 60 months, so these 37 injured temporal lobes were included, and the uninjured temporal lobes in these 26 patients were considered as normal lobes for dose analysis. The 377 of 636 patients without TLI were followed up for at least 60 months and underwent MR imaging examinations at least once during the first 60 months of follow-up to exclude TLI. Therefore, the actual incidence of TLI at 5 years is analyzed in 436 patients. Eighty-one injured temporal lobes and 780 normal temporal lobes were enrolled in dosimetric analysis.

All 81 injured lobes containing TLI lesions received the maximal dose of each dosimetry planning in a range of 74.56 to 84.32 Gy. The dose of temporal lobe (Dmax, D0.1cc, D0.5cc, D1cc, D2cc, D3cc, D5cc, D10cc, D15cc, D20cc, and Dmean) in TLI group were significantly higher than that of non-TLI group (P < 0.05) (Table 2). For ROC curve, the AUC of D2cc (0.856 ± 0.025) was the greatest one among all the parameters (Table 3).

Table 2. The radiation dose of temporal lobe in the patients with TLI or non-TLI.

Volume-dose parameters	TLI (mean ± SD Gy)	Non-TLI(Gy) (mean ± SD Gy)	P value
Dmax	80.36 ± 6.74	73.82 ± 5.45	0.000
D0.1cc	78.91 ± 6.00	71.22 ± 6.02	0.000
D0.5cc	77.08 ± 6.11	68.52 ± 6.40	0.000
D1cc	75.24 ± 6.34	65.83 ± 7.02	0.000
D2cc	72.88 ± 6.90	62.20 ± 7.92	0.000
D3cc	70.73 ± 7.47	59.11 ± 8.60	0.000
D5cc	66.60 ± 8.78	53.79 ± 9.62	0.000
D10cc	57.19 ± 11.53	44.04 ± 10.40	0.000
D15cc	49.31 ± 12.84	37.01 ± 10.86	0.000
D20cc	42.82 ± 13.33	31.78 ± 10.85	0.000
Dmean	29.11 ± 8.54	25.34 ± 15.78	0.039

Table 3. ROC curve for TLI in NPC patients with different volume-dose parameters of temporal lobe.

Volume-dose parameters	Area under curve	SE	95%CI
Dmax	0.798	0.03	0.739–0.857
D0.1cc	0.817	0.028	0.762–0.871
D0.5cc	0.835	0.027	0.783–0.887
D1cc	0.846	0.026	0.796–0.897
D2cc	0.856	0.025	0.806–0.906
D3cc	0.854	0.026	0.804–0.905
D5cc	0.843	0.027	0.789–0.896
D10cc	0.808	0.031	0.748–0.868
D15cc	0.776	0.032	0.713–0.838
D20cc	0.748	0.034	0.682–0.814
Dmean	0.65	0.033	0.585–0.716

CI, confidence interval.

Univariate and multivariate analysis of TLI

For the univariate analysis, T stage, chemotherapy, diabetes, physical dose of temporal lobe (D2cc), biological dose of temporal lobe (BED2cc) and fraction size of prescription were the substantial predictive factors. For the multivariate analysis, only T stage, chemotherapy, D2cc of temporal lobe, and fraction size of prescription were independent risk factors for TLI (Table 4).

Dose-response analysis

For the physical dose of the volume-dose parameters, Logistic multiple stepwise regression analysis showed only D2cc was the independent prognostic factor for TLI among these 11 volume-dose parameters (Dmax, D0.1cc, D0.5cc, D1cc, D2cc, D3cc, D5cc, D10cc, D15cc, D20cc, and Dmean) (P = 0.000, Odds ratio = 1.299) (Table 5), so the original equation was simplified as equation: \(P(X_{PD}) = \frac{e^{b_0+b_1X_{PD}}}{1+e^{b_0+b_1X_{PD}}} \), in which \(X_{PD} \) stands for physical dose of D2cc and \(P(X_{PD}) \) stands for predicted incidence rate of TLI when the D2cc is \(X_{PD} \), \(b_0 \) and \(b_1 \) of D2cc were \(-19.147 (95\% CI: -23.387, -14.907) \) and 0.261 (95\% CI: 0.200, 0.322). Therefore, T5D5/5 was 61.97 Gy (95\% CI: 60.735, 63.193) and T5D5/5 was 73.26 Gy (95\% CI: 71.98, 74.46) (Fig. 2A).

For the biologically equivalent tolerance dose (BED) of the volume-dose parameters, logistic multiple stepwise regression analysis also showed D2cc was the only independent parameter that could predict TLI (P < 0.001, OR = 1.193, 95\% CI: 1.146, 1.243). The original equation was simplified as equation: \(P(X_{BED}) = \frac{e^{b_0+b_1X_{BED}}}{1+e^{b_0+b_1X_{BED}}} \), in which \(X_{BED} \) stands for BED of D2cc and \(P(X_{BED}) \) stands for predicted incidence rate of TLI. \(b_0 \) and \(b_1 \) of D2cc were \(-13.602 (95\% CI: -16.538, -10.666) \) and 0.177 (95\% CI: 0.136, 0.208). Therefore, T5D5/5 was 60.3 Gy (95\% CI: 59.7, 61.5) and T5D5/5 was 76.9 Gy (95\% CI: 75.7, 78.2) (Fig. 2B).

Discussion

Temporal lobe injury (TLI) is one of the most serious late effects after the definitive radiotherapy of NPC. Results from this study and other few studies [9, 13, 17] have demonstrated that incidence rates of TLI in patients treated with modern IMRT are indeed significantly reduced, in comparison with previous reports in the era of conventional radiotherapy [11, 12]. Similar to the previous report [13], we observed TLI in patients treated with T3–T4
Table 4. Univariate and multivariate analysis of 436 patients for TLI.

Items	Univariate analysis	Multivariate analysis				
	No. of non-TLI (%)	No. of TLI (%)	x^2	P	HR	P
Gender						
Male	308 (70.64%)	50 (11.47%)	0.322	0.570	–	–
Female	69 (15.83%)	9 (2.06%)				
Age						
≥50	160 (36.70%)	30 (6.88%)	1.467	0.226	–	–
<50	217 (49.77%)	29 (6.65%)				
T stage (UICC 7th)						
T1	19 (4.36%)	0 (0.0%)	37.167	0.000	2.525	0.000
T2	112 (25.69%)	0 (0.0%)				
T3	135 (30.96%)	22 (5.04%)				
T4	111 (25.46%)	37 (8.49%)				
Diabetes						
Yes	14 (3.21%)	5 (1.15%)	2.775	0.096	1.552	0.080
No	363 (82.26%)	54 (12.39%)				
Hypertension						
Yes	20 (4.59%)	4 (0.92%)	0.213	0.644	–	–
No	357 (81.88%)	55 (12.61%)				
Smoking						
Yes	157 (36.01%)	24 (5.50%)	0.020	0.899	–	–
No	220 (50.46%)	35 (8.03%)				
Alcoholism						
Yes	161 (36.93%)	28 (6.42%)	0.469	0.493	–	–
No	216 (49.54%)	31 (7.11%)				
Chemotherapy						
Yes	301 (69.04%)	55 (12.61%)	6.096	0.014	–	–
No	76 (17.43%)	4 (0.92%)				
Target therapy						
Yes	80 (18.35%)	17 (3.90%)	1.070	0.192	–	–
No	297 (68.12%)	42 (9.63%)				
Cholesterol						
≥5.18 mmol/L	92 (21.10%)	20 (4.59%)	2.409	0.121	–	–
<5.18 mmol/L	285 (65.37%)	39 (8.94%)				
Triglycerides						
≥1.70 mmol/L	102 (23.40%)	15 (3.44%)	0.069	0.792	–	–
<1.70 mmol/L	275 (63.07%)	44 (10.09%)				
D2cc (BED) (temporal lobe side)						
≥60.3 Gy	340 (38.99%)	69 (7.91%)	52.545	0.000	3.755	0.000
<60.3 Gy	451 (51.72%)	12 (1.38%)				
D2cc (radiation dose fraction)						
≥2 Gy	366 (41.97%)	69 (7.91%)	44.508	0.000	2.819	0.009
<2 Gy	425 (48.74%)	12 (1.38%)				

TLI, temporal lobe injury; HR, hazard ratio.

Table 5. Logistic multiple stepwise regression analysis results of volume-dose parameters for TLI.

Factor	B	SE	Wald	Sig	Exp(B)	95%CI for Exp(B)
D2cc	0.261	0.031	71.516	0.000	1.299	1.222 – 1.308
Constant	-19.147	2.163	78.341	0.000	0.000	–
D2cc (BED)	0.177	0.021	72.394	0.000	1.193	1.146 – 1.243
Constant	-13.602	1.498	82.416	0.000	0.000	–

TLI, temporal lobe injury; CI, confidence interval.
NPC, but not in patients with T1-2 NPC. However, the incidence of TLI was 8.49% in patients with T3-4 in our study at a median follow-up of 73 months, which was higher than 6.7% observed in a previous study at a median follow-up of 40 months [13]. This difference could be related to a relatively short follow-up time in the previous study [13], median follow-up of 40 months vs. 73 months in this study, and in this study, we noticed a median time to diagnose TLI was 38 months. The above difference might explain a high incidence rate of TLI in patients with NPC in this study.

The precise mechanism that causes TLI remains unknown, but TLI is likely to be associated with the volume and dose of TL irradiated. Su found that IMRT with rV40 <10% or aV40 <5cc, and a Dmax < 68 Gy or D1cc < 58 Gy for the TL was less likely to develop TLI [13]. Among several volume-dose and volume-dose parameters, Sun reported only D0.5cc was predictive for TLI (D0.5cc < 69 Gy) [18]. In this study, we noticed the area under cures (AUC) of D2cc was the predictable factor for TLI among all the dosimetric parameters. Based on the dose-response analysis (Figure 3), we noticed the close correlation between incidence rate of TLI and D2cc of temporal lobe, which indicates the importance of AUC of D2cc to predict TLI. The D2cc < 60.31 Gy for TD5/5 and 76.85 Gy for TD50/5 thresholds should be considered as the constraint dose of TL in the IMRT of NPC. However, we are still not able to define specific TLI areas that are associated with radiation dose, even though we carefully review the CT dosimetry and MRI.

Radiation-induced injury of temporal lobe is a highly complex and multifactorial process. Radiation tolerance may vary depending on patient- and tumor-specific characteristics, as well as treatment modifications. Our multivariate analysis showed T stage, chemotherapy, D2cc of temporal lobe and fraction size of prescription were the independent risk factors for TLI. Similarly, Zeng reported the T category, chemotherapy and Dmax of temporal lobe were the significant factors affecting the risk of temporal lobe injury [18]. Furthermore, Lee [11] reported the 10-year actuarial incidence of TLN was 4.6% for patients irradiated to 60.0 Gy with 2.5 Gy per fraction, and up to 18.6% for those irradiated to 50.4 Gy with 4.2 Gy per fraction. In a prospective trial, 25 patients are treated by IMRT for a total of 70 Gy with 2.34 Gy per fraction to GTV, and TLI becomes one of the common late complications with a high incidence at 12% [19]. Our results showed that fraction size of prescription (>2 Gy) was the independent risk factors for TLI, which was consistent with the previous studies. Besides the volume-dose parameters of radiation, the age, chemotherapy, diabetes, and hypertension were reportedly predictive factors for TLI [20, 21]. Results of our study confirmed that chemotherapy was indeed the prognostic factor for TLI, but others (diabetes, hypertension, alcohol and smoke, blood lipid, and target therapy) were not found to be independent risk factors for TLI in this study. In this study, 76.5% patients received chemotherapy.

Shortcoming of this study is retrospective nature. The follow-up time might not be enough for NPC, even though, to the best of our knowledge, this study has the longest median follow-up time (73 months) among the literature reports on IMRT of NPC. In addition, current MRI diagnosis of TLI is not completely defined, even though we have assigned two neuroradiologists to independently review each MRI. The NTCP model established in this study warrants further validation in a separate external validation cohort, and the D2cc e constraints based on this NTCP model should be treated with caution before use.

In a conclusion, results from this study have suggested that radiation dose of temporal lobe, T stage, fraction size of prescription, and chemotherapy were the independent predictive factors for TLI. D2cc was an important parameter for TLI. TD5/5 and TD50/5 of D2cc are 60.3 Gy and 76.9 Gy, these biological effective dose thresholds should be considered in IMRT planning of NPC.
Acknowledgments

The authors are grateful to the radiation department of Sichuan Cancer Hospital in the whole study, and also thanks for the Dian Wang from Rush University Medical Center of Chicago Medical University. Mei Feng and Yecai Huang contributed equally to this study and are co-first authors of this manuscript.

Conflicts of Interest

There is no conflict of interest.

References

1. Everett, E. V. 1997. Nasopharyngeal carcinoma. Lancet 350:1087–1091.
2. Chan, A. T. 2010. Nasopharyngeal carcinoma. Ann. Oncol. 21:i308–i312.
3. Hsiao, K. Y., S. A. Yeh, C. C. Chang, P. C. Tsai, J. M. Wu, and J. S. Gau. 2010. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 77:722–726.
4. Tang, Y., D. Luo, X. Rong, X. Shi, and Y. Peng. 2012. Psychological disorders, cognitive dysfunction and quality of life in nasopharyngeal carcinoma patients with radiation-induced brain injury. PLoS ONE 7:e36529.
5. Lee, A. W., S. C. Law, W. Foo, Y. F. Poon, F. K. Cheung, D. K. Chan, et al. 1992. Retrospective analysis of nasopharyngeal carcinoma treated during 1976–1985: late complications following megavoltage irradiation. Br. J. Radiol. 65:918–928.
6. Lee, A. W., W. Foo, R. Chappell, J. F. Fowler, W. M. Sze, Y. F. Poon, et al. 1998. Effect of time, dose, and fractionation on temporal lobe injury following radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 40:35–42.
7. Sham, J., D. Choy, P. W. Kwong, A. C. Cheng, D. L. Kwong, C. C. Yau, et al. 1994. Radiotherapy for nasopharyngeal carcinoma: shielding the pituitary may improve therapeutic ratio. Int. J. Radiat. Oncol. Biol. Phys. 29:699–704.
8. Zhou, G. Q., X. L. Yu, M. Chen, R. Guo, Y. Lei, Y. Sun, et al. 2013. Radiation-induced temporal lobe injury for nasopharyngeal carcinoma: a comparison of intensity-modulated radiotherapy and conventional two-dimensional radiotherapy. PLoS ONE 8:e67488.
9. Su, S. F., Y. Huang, W. W. Xiao, S. M. Huang, F. Han, C. M. Xie, et al. 2012. Clinical and dosimetric characteristics of temporal lobe injury following intensity modulated radiotherapy of nasopharyngeal carcinoma. Radiother. Oncol. 104:312–316.
10. Bakst, R. L., N. Lee, D. G. Pfister, M. J. Zelefsky, M. A. Hunt, D. H. Kraus, et al. 2011. Hypofractionated dose-painting intensity modulated radiation therapy with chemotherapy for nasopharyngeal carcinoma: a prospective trial. Int. J. Radiat. Oncol. Biol. Phys. 80:148–153.
11. Emami, B., J. Lyman, A. Brown, L. Coia, M. Goitein, J. E. Munzenrider, et al. 1991. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21:109–122.
12. Lawrence, Y. R., X. A. Li, I. El Naqa, C. A. Hahn, L. B. Marks, T. E. Merchant, et al. 2010. Radiation volume-dose effects in the brain. Int. J. Radiat. Oncol. Biol. Phys. 76:S20–S27.
13. Su, S. F., S. M. Huang, F. Han, Y. Huang, C. Y. Chen, W. W. Xiao, et al. 2013. Analysis of dosimetric factors associated with temporal lobe injury (TLI) in patients with nasopharyngeal carcinoma (NPC) after intensity modulated radiotherapy. Radiat. Oncol. 22:17.
14. Feng, M., W. Wang, Z. Fan, B. Fu, J. Li, S. Zhang, et al. 2013. Tumor volume is an independent prognostic indicator of local control in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Radiat. Oncol. 8:208.
15. Wang, Y. X., A. D. King, H. Zhou, S. F. Leung, J. Abrigo, Y. L. Chan, et al. 2010. Evolution of radiation-induced brain injury: MR imaging-based study. Radiology 254:210–218.
16. Zehentmayer, F., M. Söhn, A. K. Exeli, K. Wursthauer, A. Tröller, H. Deutschmann, et al. 2015. Normal tissue complication models for clinically relevant acute esophagitis (≥grade 2) in patients treated with dose differentiated accelerated radiotherapy (DART-bid). Radiat. Oncol. 10:121.
17. Sun, Y., G. Q. Zhou, Z. Y. Qi, L. Zhang, S. M. Huang, L. Z. Liu, et al. 2013. Radiation-induced temporal lobe injury after intensity modulated radiotherapy in nasopharyngeal carcinoma patients: a volume-dose-outcome analysis. BMC Cancer 27:397.
18. Milner, B. 1970. Memory and the medial temporal regions of the brain. Pp. 29–50 in K. H. Pribram, D. E. Broadbent, eds. Biology of Memory. Academic, New York.
19. Zeng, L., Y. M. Tian, X. M. Sun, C. Y. Chen, F. Han, W. W. Xiao, et al. 2014. Late toxicities after intensity-modulated radiotherapy for nasopharyngeal carcinoma: patient and treatment-related risk factors. Br. J. Cancer 110:49–54.
20. Wolden, S. L., W. C. Chen, D. G. Pfister, D. H. Kraus, S. L. Berry, and M. J. Zelefsky. 2006. Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan-Kettering experience. Int. J. Radiat. Oncol. Biol. Phys. 64:57–62.
21. Ruben, J. D., M. Dally, M. Bailey, R. Smith, C. A. McLean, and P. Fedele. 2006. Cerebral radiation injury: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 65:499–508.