Dietary amylose:amylopectin ratio influences the expression of amino acid transporters and enzyme activities for amino acid metabolism in the gastrointestinal tract of goats

Xiaokang Ly,1,2 Chuanshe Zhou,1,2a Tao Ran,3 Jinzhen Jiao,1 Yong Liu1, Zhiliang Tan1, Shaoxun Tang1, Jinhe Kang1, Jingjing Xie1, Liang Chen1, Ao Ren4, Qixiang Xv1,2 and Zhiwei Kong1

1CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Human Provincal Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, People’s Republic of China
2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People’s Republic of China
4Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha 410128, People’s Republic of China

(Submitted 12 March 2021 – Final revision received 25 May 2021 – Accepted 8 June 2021 – First published online 14 June 2021)

Abstract
This study was designed to investigate the effects of dietary starch structure on muscle protein synthesis and gastrointestinal amino acid (AA) transport and metabolism of goats. Twenty-seven Xiangdong black female goats (average body weight = 9.00 ± 1.12 kg) were randomly assigned to three treatments, i.e., fed a T1 (normal maize 100 %, high amylose maize 0 %), T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %) diet for 35 d. All AA in the ileal mucosa were decreased linearly as amylose:amylopectin increased in diets (P < 0.05). The plasma valine (linear, P = 0.03), leucine (linear, P = 0.04) and total AA content (linear, P = 0.05) increased linearly with the increase in the ratio of amylose in the diet. The relative mRNA levels of solute carrier family 38 member 1 (linear, P = 0.01), solute carrier family 3 member 2 (linear, P = 0.02) and solute carrier family 38 member 9 (linear, P = 0.02) in the ileum increased linearly with the increase in the ratio of amylose in the diet. With the increase in the ratio of amylose:amylopectin in the diet, the mRNA levels of acetyl-CoA dehydrogenase B (linear, P = 0.04), branched-chain amino acid transferase 1 (linear, P = 0.02) and branched-chain α-keto acid dehydrogenase complex B (linear, P = 0.01) in the ileum decreased linearly. Our results revealed that the protein abundances of phosphorylated mammalian target of rapamycin (p-mTOR) (P < 0.001), phosphorylated 4E-binding protein 1 (P < 0.001) and phosphorylated ribosomal protein S6 kinases 1 (P < 0.001) of T2 and T3 were significantly higher than that of T1. In general, a diet with a high amylose ratio could reduce the consumption of AA in the intestine, allowing more AA to enter the blood to maintain higher muscle protein synthesis through the mTOR pathway.

Key words: Goats: Amylose: Amylopectin: Protein synthesis: Amino acids transporter: Amino acids metabolism enzyme activity

As a widely grown crop, maize provides sufficient carbohydrates for humans and animals and is a primary source of energy(1). Starch is the main component of maize, and it can be separated into two types of glucose polymers due to the difference in glucose linkage: amylose is a linear chain of glucose units joined by –1,4-glucoside linkages, while amylopectin is a highly branched amylose linked by –1,6 bonds(2). Maize digestibility is mainly determined by starch digestibility, which depends on the amylose:amylopectin ratio and molecular weight(3). Depending on the digestion rate of starch, it can be divided into

Abbreviations: AA, amino acid; ACAD, acyl-CoA dehydrogenase; ACADS, acetyl-CoA dehydrogenase; ACADSB, short/branched-chain acyl-CoA dehydrogenase; BCAA, branched-chain amino acid; BCAT, branched-chain amino acid transferase; BCKDH, branched-chain keto acid dehydrogenase; BCKDH, branched-chain α-keto acid dehydrogenase complex; AEBP1, 4E-binding protein 1; mTOR, mammalian target of rapamycin; S6K1, ribosomal protein S6 kinases 1; SLC38A1, solute carrier family 38 member 1; SLC38A2, solute carrier family 38 member 2; SLC38A9, solute carrier family 38 member 9; SLC3A2, solute carrier family 3 member 2.

* Correspondence author: Chuanshe Zhou, email zcs@isa.ac.cn
rapid digestion starch, slow digestion starch and resistant starch⁶⁹. The metabolic response and growth performance of pigs also differ when fed diets with different starch digestibilities⁶⁹. Due to the slow digestion rate of amylose, the plasma glycemic level rises slowly after the animal ingests, it could maintain the animal’s postprandial blood glucose homeostasis⁶,⁷. The level of plasma glycemic can regulate protein metabolism and amino acid (AA) transport⁹⁰. On the other hand, AA are the primary energy source of the small intestines. In addition to participating in protein synthesis, the metabolism of AA in the epithelial cells of the small intestines also provides about 70% of the energy requirements of the small intestines. Additionally, free AA are usually absorbed through some Na⁺-dependent/Na⁺-independent AA transport systems located on the apical membrane of intestinal epithelial cells. Simultaneously, AA transport systems can be divided into neutral AA transporters (preferring leucine and other large hydrophobic neutral AA (system L), preferring alanine and other small and polar neutral AA (system A), and preferring alanine, serine and cysteine (system ASC)), anionic AA transporters (X̄-AG system), cationic AA transporters (γ⁺ system) and some individual AA transport vectors (L and T system)⁹⁰. However, the relationship between dietary starch structure and AA transport in the gastrointestinal tract of animals has seldom been observed.

Furthermore, previous studies have revealed that the source and type of dietary starch often affect the plasma insulin levels, which in turn affect protein turnover and metabolism in animals¹⁰–¹². Due to the faster digestion rate of amylopectin, the plasma insulin also increases rapidly, which is more conducive to the deposition of fat, while the digestion rate of amylose is slower, and the plasma insulin rises slowly and lasts longer, which is more conducive to the lean deposition¹³. More protein synthesis is needed in the lean deposition process than the fat. Compared with high amylose diets, animals fed high amylose diets have lower protein digestibility¹⁴,¹⁵. It is verified that amylopectin probably reduces the absorption of AA due to its fast digestion¹⁶,¹⁷. To our knowledge, information about the influence of dietary starch structure on the absorption and metabolism of AA in the gastrointestinal tract of animals is limited.

Herein, we hypothesised that feeding diets with different amylose:amylopectin ratios would affect the expression of AA transporters, thus regulate the absorption of AA in the gastrointestinal tract. In this study, goats were thereby used as experimental animals to explore the effects of diets with different amylose:amylopectin ratios on intestinal AA transporters’ expression, the activities of enzymes involved in AA metabolism, and mammalian target of rapamycin (mTOR) signalling pathway involved AA accumulation in muscles, intending to reveal how starch types affect animal protein and AA metabolism.

Materials and methods

The study received the approval of the Institutional Animal Care Committee, and all procedures involving animals were conducted in accordance with the guidelines on animal care of the Institute of Subtropical Agriculture, the Chinese Academy of Sciences.

Experimental design, animals and diets

The animal trial was conducted at a commercial Xiangdong black goat farm in Hunan province, P. R. China. Twenty-seven Xiangdong black female goats (average body weight of 9.00 ± 1.12 kg) were selected, blocked by weight and allocated into three groups (9). Then, the grouped goats were randomly assigned to one of three diets: T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %) and T3 (normal maize 0 %, high amylose maize 100 %). The diets were elaborated according to the requirements of the NRC (2007). The ingredients and chemical composition of the concentrate and alfalfa are presented in Table 1. The animal trial lasted 49 d, with 14 d of adaptation period and 35 d of the experimental period. During the experimental period, goats were fed twice daily at 08:00 and 16.00 hours with concentrate and alfalfa offered separately. During the animal trial, all goats had ad libitum access to water, concentrate and alfalfa.

Sample collection

The blood sample of each goat was collected into a 10-ml vacu-umb tube (Zhejiang Gongdong Medical Technology Co. Ltd; code No. GD0100LH) containing Na-heparin via the jugular vein before morning feeding on d 30. Plasma samples were prepared via centrifuged at 3000 ×g for 20 min at 4°C, subsampled and frozen at −20°C until analysed. The longissimus dorsi and mucosa epithelium samples of the rumen (medium ventral) and ileum (middle) were separated immediately after slaughter and rinsed with cold PBS (0.085 % NaCl, 1-4 μM KH2PO4, 8 μM Na2HPO4, pH 7-4). The samples (3 g) were collected from the longissimus dorsi, rumen and ileum, snap-frozen in liquid N2 and stored at −80°C until analysis. Meanwhile, tissue samples of the medium ventral of rumen (2 × 2 cm²) and the middle part of ileum (5 cm) were collected from the sample location as epithelial samples, washed with PBS, fixed in 10% formalin (v/v) for 24 h, embedded in paraffin wax and stored at 4°C until use.

Amino acid profile and enzyme activity related to amino acid metabolism

The free AA profiles of intestinal epithelial, plasma and longi-simus dorsi samples were determined according to the method described by Li et al.¹⁸. The activities of enzymes involved in AA metabolism, including branched-chain amino acid transferase (BCAT), branched-chain α-keto acid dehydrogenase complex (BCKDH), acetyl-CoA dehydrogenase (ACADS) and short/branched-chain ACAD (ACADSB), were determined using commercial ELISA kits (goat#ml567708, goat#ml601711, goat#ml221143, goat#ml221113, Mbio, Shanghai, China, and CW0014, CWBIO, Beijing, China) following the recommended procedures.

Amino acid transporter and receptor expression

The relative mRNA levels of AA transporters were determined using quantitative real-time PCR. Briefly, total RNA was extracted from collected epithelial samples using RNAiso Plus (TaKaRa; Code No. 9108/9109) following the manufacturer’s instructions. The genomic DNA was eliminated by digestion with DNase I.
Table 1. Ingredients and chemical composition of concentrate diets (DM basis, %)

Nutrients	T1	T2	T3
DM (%)	15.2	15.1	14.9
DE (kJ/kg)	16.0	16.2	15.4
CP (%)	12.1	12.0	12.6
Total starch (%)	50.2	50.3	50.3
Amylose/total starch (%)	37.4	39.2	35.2
Ca (%)	0.7	0.7	0.8
TP (%)	0.3	0.3	0.3

All statistical analyses and visualisation were conducted using SAS version 9.4 (SAS Institute, Inc.) and GraphPad Prism 8.0 (GraphPad Software), respectively. All data analyses were performed by one-way ANOVA with the SAS statistical software (SAS Inc.). Polynornial contrasts were used to determine the linear and quadratic effects of dietary amylose levels. A P-value < 0.05 was considered to indicate a statistically significant difference, and a tendency was considered at 0.05 ≤ P < 0.10.

Results

Gastrointestinal mucosa, plasma and longissimus dorsi amino acid profiles

The majority of the free AA (except glycine and alanine) and total AA in ruminal mucosa quadratically (P < 0.05) or tended (0.5 < P < 0.10) to be quadratically changed with the increment
of dietary amylose:amylopectin ratios (online Supplementary Table S4), with AA and total AA concentration increased from T1 to T2 and decreased from T2 to T3. All AA in the ileal mucosa decreased linearly ($P < 0.05$) as the dietary amylose:amylopectin ratio increased, with greater concentration observed in T3 than that in T1 (Table 2), whereas the remaining AA did not differ among diets. The concentration of aspartate ($P = 0.005$), alanine ($P = 0.03$), leucine ($P = 0.009$) and proline ($P = 0.005$) in the longissimus dorsi increased linearly when the amylose:amylopectin ratio increased.

Relative mRNA levels of amino acid transporters and receptors

The relative mRNA levels of various AA transporters and receptors in the ruminal and ileal mucosal of goats with a response to different dietary amylose:amylopectin ratios are shown in Table 5. The mRNA levels of Ca-sensing receptor, metabolotropic glutamate receptor 7, solute carrier family 7 member 1, solute carrier family 7 member 5 (except a quadratic response in the ileum) and solute carrier family 7 member 10 were not affected ($P > 0.05$) by dietary amylose:amylopectin ratios, whereas the mRNA levels of the remaining AA transporters were affected by dietary amylose:amylopectin ratios in at least one gastrointestinal section, among which the expression of solute carrier family 38 member 1 (SLC38A1), solute carrier family 38 member 2 (SLC38A2) and solute carrier family 38 member 9 (SLC38A9) was most sensitive to the dietary amylose:amylopectin ratio. Quadratic ($P < 0.05$) responses of the mRNA level of solute carrier family 1 member 3 in the rumen and solute carrier family 1 member 4 in the rumen and ileum were observed; the mRNA level of solute carrier family 3 member 2 (SLC3A2) in the ileum increased linearly with dietary amylose:amylopectin ratio, with greater expression in T2 and T3 than in T1. The mRNA level of SLC38A1 in the rumen quadratically changed ($P = 0.02$) with increasing dietary amylose:amylopectin ratio, with greater expression in T2 than in T1, while its level in the ileum increased linearly ($P < 0.01$) with dietary amylose:amylopectin ratio increased, with greater expression in T2 and T3 than in T1. The mRNA level of SLC38A2 in the rumen increased linearly ($P = 0.03$) with increasing dietary amylose:amylopectin ratio, with greater expression noted in T3 than in T1. Similarly, the mRNA level of SLC38A9 in the ileum increased linearly ($P = 0.02$) as the dietary amylose:amylopectin ratio increased, with greater expression in T2 and T3 than in T1.

Immunofluorescent analysis of solute carrier family 38 member 1, solute carrier family 38 member 2, solute carrier family 38 member 9 and solute carrier family 3 member 2

Given the relative mRNA levels of SLC38A1, SLC38A2 and SLC38A9 were significantly different among diets in the rumen and ileum, their protein abundance and localisation were furtherly analysed using immunofluorescence (Fig. 1 and Fig. 2).
Table 4. Effects of different amylose:amylopectin ratios on longissimus dorsi amino acid profiles in goats

Items*	T1	T2	T3	SEM	L	Q	P-value†
Aspartate	6.05	6.67	6.65	0.10	0.005	0.07	
Threonine	3.32	3.59	3.58	0.06	0.08	0.26	
Serine	2.33	2.51	2.51	0.04	0.08	0.32	
Glutamate	11.36	11.06	11.27	0.14	0.79	0.41	
Glycine	4.14	4.17	4.04	0.06	0.55	0.57	
Alanine	4.05	4.45	4.56	0.10	0.03	0.46	
Valine	3.38	3.55	3.66	0.07	0.27	0.18	
Methionine	1.56	1.64	1.63	0.05	0.54	0.71	
Isoleucine	3.45	3.64	3.60	0.06	0.33	0.42	
Leucine	5.94	6.48	6.66	0.12	0.009	0.43	
Tyrosine	2.17	2.31	2.32	0.05	0.21	0.55	
Phenylalanine	3.16	3.33	3.25	0.05	0.48	0.27	
Lysine	6.07	6.04	6.08	0.06	0.95	0.76	
Histidine	2.13	2.29	2.14	0.06	0.94	0.26	
Arginine	5.42	5.33	5.14	0.06	0.06	0.69	
Proline	2.69	3.53	3.34	0.05	0.005	0.01	
TAA	67.23	70.68	70.31	0.77	0.10	0.24	

TAA, total amino acids.

* (DM basis, %).
† Treatments were: T1 (normal maize 100%, high amylose maize 0%); T2 (normal maize 50%, high amylose maize 50%); T3 (normal maize 0%, high amylose maize 100%).
‡ L and Q represent a linear and quadratic response to increasing amylose:amylopectin ratio.

Immunolocalisation showed that SC38A1 and SC38A2 were abundantly expressed in the lamina propria, basal layer, and papillae of the rumen, whereas less abundantly expressed in the ileum. The protein abundance of SLC38A1 in the ileum of T3 and T2 was higher (P < 0.05) than that of T1 (Fig. 2(c) and (d)), while the protein abundance of SLC38A2 in the ileum was not affected by dietary amylose:amylopectin ratio among treatments. The SLC38A9 and SLC3A2 were both expressed in the rumen mucosa, and their protein abundance was elevated remarkably (P < 0.05) in T2 and T3 compared with that of T1 (Fig. 3(a), (b), (e), (f)). Similarly, the protein abundance of SLC38A9 (P < 0.05) and SLC3A2 (P < 0.05) was enhanced significantly in the ileal mucosa in T2 and T3 compared with T1 due to increased dietary amylose:amylopectin ratios (Fig. 3(c), (d), (g), (h)).

Table 5. Effects of different amylose:amylopectin ratios on mRNA expression of amino acid transporters in ruminal and ileal mucosa of goat

Items*	Section	T1	T2	T3	SEM	L	Q	P-value†
CASR	Rumen	0.90	0.73	0.80	0.00	0.09	0.30	0.40
GRM7	ileum	0.87	0.73	0.61	0.06	0.03	0.84	
SLC1A1	ileum	0.98	0.87	0.74	0.10	0.28	0.39	
SLC1A3	ileum	1.18	0.74	0.83	0.11	0.12	0.57	
SLC1A4	ileum	1.05	0.68	0.83	0.06	0.07	0.02	
SLC3A2	ileum	1.12	2.50	1.79	0.21	0.01	0.01	
SLC7A1	ileum	1.05	0.89	1.05	0.10	0.09	0.49	
SLC7A5	ileum	1.05	1.98	1.85	0.13	0.02	0.12	
SLC7A10	ileum	1.22	0.99	0.99	0.14	0.52	0.71	
SLC38A1	ileum	0.89	1.07	1.12	0.07	0.21	0.66	
SLC38A2	ileum	1.11	0.69	1.13	0.10	0.95	0.03	
SLC38A9	ileum	0.88	0.90	0.98	0.10	0.73	0.91	
RPC3	ileum	1.03	2.39	1.18	0.27	0.80	0.02	
SLC3A2	ileum	1.02	1.17	1.55	0.08	0.01	0.48	
SLC3A4	ileum	0.70	0.95	1.22	0.09	0.03	0.94	
SLC3A5	ileum	0.93	1.18	0.82	0.07	0.54	0.05	
SLC3A6	ileum	1.15	1.14	1.08	0.10	0.77	0.93	
SLC3A7	ileum	0.92	1.63	1.72	0.13	0.02	0.30	

GRM7, glutamate receptor, metabotropic 7; CASR, Ca-sensing receptor; SLC1A1, solute carrier family 1 member 1; SLC1A3, solute carrier family 1 member 3; SLC1A4, solute carrier family 1 member 4; SLC7A5, solute carrier family 7 member 5; SLC7A10, solute carrier family 7 member 10; SLC38A1, solute carrier family 38 member 1; SLC38A2, solute carrier family 38 member 2; SLC7A1, solute carrier family 7 member 1; SLC3A2, solute carrier family 3 member 2; SLC3A9, solute carrier family 38 member 9.

* Treatments were: T1 (normal maize 100%, high amylose maize 0%); T2 (normal maize 50%, high amylose maize 50%); T3 (normal maize 0%, high amylose maize 100%).
‡ L and Q represent linear and quadratic response to increasing amylose:amylopectin ratio.

The mRNA levels and protein abundances of mammalian target of rapamycin, 4E-binding protein 1 and ribosomal protein S6 kinases 1

Table 7. The activities of ACADS and BCAT in the ileal mucosa decreased linearly (P < 0.05) as dietary amylose:amylopectin increased.

Expression of mTOR, 4EBP1 and S6K1 in longissimus dorsi muscle was measured at mRNA and protein level (Table 8 and Fig. 3). The mRNA levels of mTOR, 4EBP1 and S6K1 increased linearly (P < 0.05) with increasing dietary amylose contents, with greater values observed in T2 and T3 than in T1 (Table 2). The protein abundances of mTOR, 4EBP1 and S6K1 did not differ (P > 0.05) among treatments; however, the relative protein abundances of p-mTOR, p-4EBP1 and p-S6K1 increased linearly (P < 0.01) with increasing dietary amylose contents, with greater p-mTOR in T2 and T3 than in T1, and greater p-4EBP1 and S6K1 in T3 than in T2 and T1 (Fig. 3). Therefore, the phosphorylated: non-phosphorylated ratio of mTOR, 4EBP1 and S6K1 was elevated significantly (P < 0.01) in T2 and T3 compared with T1.
Fig. 1. Mean optical density and representative staining of solute carrier family 38 member 1 (SLC38A1) in the rumen (a), (b) and ileum (c), (d); mean optical density and representative staining of solute carrier family 38 member 2 (SLC38A2) in the rumen (e), (f) and ileum (g), (h). All photos were taken at 400×, with nuclei stained in blue and target protein stained in red. Treatments were: T1 (normal maize 100%, high amylose maize 0%), T2 (normal maize 50%, high amylose maize 50%), T3 (normal maize 0%, high amylose maize 100%). Statistical significance was accepted at $P < 0.05$.

https://doi.org/10.1017/S0007114521002087 Published online by Cambridge University Press
Fig. 2. Mean optical density and representative staining of solute carrier family 38 member 9 (SLC38A9) in the rumen (a), (b) and ileum (c), (d); mean optical density and representative staining of solute carrier family 3 member 2 (SLC3A2) in the rumen (e), (f) and ileum (g), (h). T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %); T3 (normal maize 0 %, high amylose maize 100 %). Statistical significance was accepted at $P < 0.05$.

https://doi.org/10.1017/S0007114521002087 Published online by Cambridge University Press
Discussion

The rumen and small intestines are the main places for digestion and absorption of nutrients in ruminants. Previous studies have revealed that the type of starch in the diets can affect the body’s energy and protein metabolism\(^{10,12,22}\). In the current study, we found that increasing the ratio of amylose in the diet could reduce the deposition of AA in the ileal mucosa of goats, but increase the content of leucine, valine, tryptophan and total AA in the plasma, which suggests that more AA would be transported from the mucosa to the blood to maintain higher protein synthesis and rapid growth of muscles. Not surprisingly, we noticed that a high percentage of amylose diets could promote the deposition of aspartate, alanine, leucine and proline in the longissimus dorsi muscle of goats. Similarly, a previous study has demonstrated that when goats are given high amylose diets, the plasma BCAA (leucine, isoleucine and valine) content tends to rise\(^{23}\). The concept has been established that it is feasible to increase the levels (including BCAA) of serum metabolites to regulate animal production in animal husbandry\(^{24-26}\).

High leucine in plasma is usually thought to promote protein synthesis in skeletal muscle\(^{27,28}\). Our parallel studies have shown that diets with a high amylose ratio can improve goat growth performance. The increase of BCAA in the blood could promote muscle protein synthesis, so the goats fed high amylose diet should have stronger protein synthesis capacity and deposit more protein in muscle.

The AA that entered the small intestinal mucosa can be either used by the intestinal mucosa (AA are oxidised to provide energy, protein synthesis, etc.) or be transported into the blood by AA transporters to be used by other tissues. In this study, goats consumed a high proportion of amylose diets activated the mRNA expression of SLC38A1 and SLC38A2 in the rumen and ileum. Our data showed a high amylose diet up-regulated the protein abundances of AA transporters in the ileal mucosa, such as SLC3A2 and SLC38A9. SLC38A2 and SLC3A2 are involved in the transport of BCAA, which can pass extracellular glutamine and Na\(^+\) through the cell membrane into the cytoplasm\(^{29}\).

Previous studies have clarified the importance of BCAA to
Treatments were: T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %); T3 (normal maize 0 %, high amylose maize 100 %).

Table 6. Effects of different amylose:amylopectin ratios on relative mRNA expression of branched-chain amino acid metabolising enzymes in the ruminal and ileal mucosae of goat (Mean values and standard errors of the mean)

Section	Items*	T1	T2	T3	SEM	L	Q	P-value‡
Rumen	BCAT1	1.36	1.41	1.24	0.23	0.85	0.84	
	BCAT2	1.12	1.16	1.08	0.21	0.77	0.65	
	BCKDHA	1.04	1.13	1.06	0.19	0.54	0.31	
	BCKDHB	1.07	1.04	1.00	0.12	0.11	0.23	
	ACADS	1.24	1.03	0.87	0.18	0.65	0.95	
	ACADSB	1.17	0.90	1.07	0.15	0.82	0.53	
	ACAT1	1.23	0.26	0.59	0.13	0.02	0.005	
	BCAT2	1.04	1.11	1.09	0.10	0.33	0.29	
	BCKDHA	1.16	1.12	1.05	0.09	0.44	0.38	
	BCKDHB	1.13	0.74	0.70	0.07	0.01	0.23	
	ACADS	1.05	1.12	0.90	0.08	0.04	0.43	
	ACADSB	1.06	0.58	0.68	0.08	0.04	0.08	

* BCKDHA, branched-chain u-keto acid dehydrogenase E1, α polypeptide; BCKDHB, branched-chain keto acid dehydrogenase E1 subunit beta; ACADS, acyl-CoA dehydrogenase short-chain; ACADSB, acyl-CoA dehydrogenase short/branched-chain; BCAT1, branched-chain AA transaminase 1; BCAT2, branched-chain amino acid transaminase 2.

† Treatments were: T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %); T3 (normal maize 0 %, high amylose maize 100 %).

‡ L and Q represent linear and quadratic response to increasing amylose:amylopectin ratio.

Table 7. Effects of different amylose:amylopectin ratios on activities of branched-chain amino acid metabolising enzymes (U/mg of protein) in the rumen and ileum of goat (Mean values and standard errors of the mean)

Section	Items*	T1	T2	T3	SEM	Q	P-value‡
Rumen	ACADSB	4.13	4.76	5.31	0.23	23	0.003
	BCAT1	2.72	2.93	2.72	0.35	0.01	0.66
	ACADS	0.63	0.63	0.63	0.10	0.17	0.95
	ACADSB	0.63	0.63	0.63	0.10	0.17	0.95
	ACAT1	0.63	0.63	0.63	0.10	0.17	0.95
	BCAT2	0.63	0.63	0.63	0.10	0.17	0.95
	BCKDHA	0.63	0.63	0.63	0.10	0.17	0.95
	BCKDHB	0.63	0.63	0.63	0.10	0.17	0.95
	ACADS	0.63	0.63	0.63	0.10	0.17	0.95
	ACADSB	0.63	0.63	0.63	0.10	0.17	0.95

* ACADS, acyl-CoA dehydrogenase short-chain; ACADSB, acyl-CoA dehydrogenase short/branched-chain; BCAT1, branched-chain AA transaminase 1; BCAT2, branched-chain amino acid transaminase 2.

† Treatments were: T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %); T3 (normal maize 0 %, high amylose maize 100 %).

‡ L and Q represent linear and quadratic response to increasing amylose:amylopectin ratio.

Table 8. Effects of different dietary amylose:amylopectin ratios on the expression of genes related to muscle protein synthesis of goat (Mean values and standard errors of the mean)

Items*	T1	T2	T3	SEM	L	Q	P-value‡
mTOR	0.98	1.54	1.50	0.11	0.04	0.17	
4EBP1	1.14	1.79	2.08	0.11	0.003	0.32	
S6K1	1.02	1.72	1.74	0.12	0.01	0.15	

* mTOR, mammalian target of rapamycin; 4EBP1, 4E-binding protein 1; S6K1, ribosomal protein S6 kinases 1.

† Treatments were: T1 (normal maize 100 %, high amylose maize 0 %); T2 (normal maize 50 %, high amylose maize 50 %); T3 (normal maize 0 %, high amylose maize 100 %).

‡ L and Q represent linear and quadratic response to increasing amylose:amylopectin ratio.

The AA in the diets are the fuel source of the small intestinal mucosa, and as a substrate for protein synthesis in the small intestines, AA are essential for the growth and integrity of the small intestine mucosa. The BCAA can be decomposed and utilised in the intestinal mucosa. Our results indicate that an increase in the ratio of amylose in the diet could inhibit the mRNA expression of BCAA metabolising enzymes (ACADSB, ACAT1 and BCKDHB) in goat ileal mucosa. The first step in the catabolism of BCAA is the transfer of α-amino groups to α-ketoglutarate through the BCAT1 and BCAT2 enzymes. Two crucial and irreversible reactions of BCAA catabolism require the participation of BCKDH complex and acyl-CoA dehydrogenase (ACAD). Furthermore, after feeding goats a high amylose diet, the metabolic enzyme activities of BCAA in the ileum mucosa also decreased, indicating that the high amylose diet could reduce the metabolism of amylopectin in the intestinal mucosa. This result supports our hypothesis: after goats consumed high amylose diets, the use of BCAA in the intestine would be reduced, increasing the content of BCAA entering the rumen and ileum. This result promotes protein synthesis by activating mTORC1. The increased protein abundances of SLC38A1, SLC38A2 and SLC3A2 in the rumen and ileum of goats fed a high amylose ratio diet allowed more BCAA to be transported into the blood to maintain better growth performance.
the blood. The cause for this outcome might be that amylose had a slower digestion rate in the small intestines compared with amyllopectin and could maintain a stable glycemic index for a long time, so that the small intestine mucosa could preferentially use glucose for energy source, reducing part of the energy supply by oxidation of AA. Our results suggest that different starch types in the diet can affect the metabolism of AA in the intestinal mucosa of goats, especially for BCAA.

In mammals, activated mTOR plays a vital role in regulating protein synthesis through its downstream targets S6K1 and 4EBP1 in the body. It has been reported that higher dietary amylose content reduces fat deposition and enhances protein deposition by altering the insulin/PI3K/Akt/mTOR signalling pathway in finishing pigs. In the present study, the mRNA levels and protein abundances of genes related to protein synthesis (mTOR, 4EBP1 and S6K1) were determined in goat muscle, and the mRNA and protein expression and phosphorylation ratio of mTOR, 4EBP1 and S6K1 were enhanced in the muscles of goats fed diets with a higher amylose/amyllopectin ratio. This would be because high content of AA in plasma activated mTOR and enhanced the expression of its downstream targets S6K1 and 4EBP1. Similarly, a previous study has demonstrated that protein synthesis through its downstream targets S6K1 and 4EBP1 in the body. It has been reported that higher dietary amylose content reduces fat deposition and enhances protein deposition by altering the insulin/PI3K/Akt/mTOR signalling pathway in finishing pigs. In the present study, the mRNA levels and protein abundances of genes related to protein synthesis (mTOR, 4EBP1 and S6K1) were determined in goat muscle, and the mRNA and protein expression and phosphorylation ratio of mTOR, 4EBP1 and S6K1 were enhanced in the muscles of goats fed diets with a higher amylose/amyllopectin ratio. This would be because high content of AA in plasma activated mTOR and enhanced the expression of its downstream targets S6K1 and 4EBP1. Similarly, a previous study has demonstrated that protein synthesis through its downstream targets S6K1 and 4EBP1 in the body. It has been reported that higher dietary amylose content reduces fat deposition and enhances protein deposition by altering the insulin/PI3K/Akt/mTOR signalling pathway in finishing pigs. In the present study, the mRNA levels and protein abundances of genes related to protein synthesis (mTOR, 4EBP1 and S6K1) were determined in goat muscle, and the mRNA and protein expression and phosphorylation ratio of mTOR, 4EBP1 and S6K1 were enhanced in the muscles of goats fed diets with a higher amylose/amyllopectin ratio.

A major finding was that higher dietary amylose contents not only elevated the mRNA levels and protein abundances of BCAA transporters (SLC38A1, SLC38A2) in the ileum of goats but also reduced the mRNA levels and activity of BCAA metabolising enzymes (ACADSB, BCAT, BCKDH), thus leading to an increase in the content of BCAA in the plasma. Furthermore, the high content of BCAA in the blood promotes protein synthesis in the longissimus dorsi muscle, which was likely mediated by the mTOR signalling pathway. The current results would help us better understand how dietary starch structure affects animal muscles growth by affecting AA metabolism.

Acknowledgements

The authors would like to thank Can Peng and Meimei Geng from the Institute of Subtropical Agricultural Ecology, Chinese Academy of Sciences for their help during the experiment.

This work was supported by National Natural Science Foundation of China (31730092; U20A2057; 31772632); STS Project of the Chinese Academy of Sciences (KJF –STS-ZDTP –075).

C.-S. Z., Y. L. and Z.-L. T. designed the experiment. X.-K. L. and K. C. conducted the experiment. X.-K. L., J.-J. X., A. R. and L. C. collected and analysed data. X.-K. L., C.-S. Z., T. R. and J.-Z. J. wrote and revised the manuscript.

The authors declare that no conflict of interest exists.

Supplementary material

For supplementary material referred to in this article, please visit https://doi.org/10.1017/S0007114521002087

References

1. Chen MY, Ye JD, Yang W, et al. (2013) Growth, feed utilization and blood metabolic responses to different amylose-amylopectin ratio fed diets in tilapia (oreochromis niloticus). Asian-Australas J Anim Sci 26, 1160–1171.
2. Zobel H (1988) Molecules to granules: a comprehensive starch review. Starch-Starke 40, 4i–50.
3. Englbyn HN & Hudson GJ (1996) The classification and measurement of dietary carbohydrates. Food Chem 57, 15–21.
4. Englbyn HN, Kingman S & Cummings J (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46, S33–S50.
5. Gao X, Yu B, Yu J, et al. (2020) Effects of dietary starch structure on growth performance, serum glucose–insulin response, and intestinal health in weaned piglets. Animals 10, 543.
6. Behall KM & Hallfrisch J (2002) Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur J Clin Nutr 56, 913–920.
7. Rawles S & Lochmann R (2010) Effects of amylopectin/amylose starch ratio on growth, body composition and glycemic response of sunshine bass Morone chrysops × M. saxatilis. J World Aquacult Soc 34, 278–288.
8. Roos S, Lagerlöf O, Wennergren M, et al. (2009) Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol 297, C725–C731.
9. Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88, 249–286.
10. Drew MD, Schafer TC & Zijlstra RT (2012) Glycemic index of starch affects nitrogen retention in grower pigs. J Anim Sci 90, 1233.
11. Van der Meulen J, Bakker J, Smits B, et al. (1997) Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br J Nutr 78, 533–544.
12. Yang C, Chen D, Yu B, et al. (2015) Effect of dietary amylose/amylopectin ratio on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci 108, 55–60.
13. Dotti S, Suárez-Belloch J, Latorre MA, et al. (2014) Effect of dietary starch source on growth performances, digestibility and quality traits of growing pigs. Livest Sci 164, 119–127.
14. Li TJ, Huang RL, Wu GY, et al. (2007) Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Livest Sci 109, 6–76.
15. Li T-J, Dai Q-Z, Yin Y-L, et al. (2008) Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animals 2, 723–729.
16. Giussi-Perier A, Fiszlewicz M & Rérat A (1989) Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in unanesthetized pigs. J Anim Sci 67, 386–402.
17. Yu M, Li Z, Bong T, et al. (2020) Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J Anim Sci 11, 1–14.
18. Li F, Duan Y, Li Y, et al. (2015) Effects of dietary n-6; n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 113, 739–748.
19. Huang J, Jiao J, Tan Z-L, et al. (2016) Inferring the skeletal muscle developmental changes of grazing and barn-fed meat quality in finishing pigs. Animals 9, 1171–1180.
20. Livest Sci 164, 119–127.
21. Li TJ, Huang RL, Wu GY, et al. (2007) Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Livest Sci 109, 6–76.
22. Li T-J, Dai Q-Z, Yin Y-L, et al. (2008) Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs. Animals 2, 723–729.
23. Giussi-Perier A, Fiszlewicz M & Rérat A (1989) Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in unanesthetized pigs. J Anim Sci 67, 386–402.
24. Yu M, Li Z, Bong T, et al. (2020) Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J Anim Sci 11, 1–14.
25. Li F, Duan Y, Li Y, et al. (2015) Effects of dietary n-6; n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 113, 739–748.
26. Huang J, Jiao J, Tan Z-L, et al. (2016) Inferring the skeletal muscle developmental changes of grazing and barn-fed
Dietary amylose:amylopectin ratio influence

1131

26. Wiltafsky MK, Pfaffl MW & Roth FX (2010) The effects of dietary starch types on rumen fermentation and blood profile in goats. Br J Nutr 111, 445–451.

27. Escobar J, Frank JW, Suryawan A, et al. (2010) Metabolic and transcriptomic responses of weaned pigs induced by different dietary amylose and amylopectin ratio. PLoS One 5, e15110.

28. Escobar J, Frank JW, Suryawan A, et al. (2016) Effects of dietary starch types on rumen fermentation and blood profile in goats. Czech J Anim Sci 61, 32–41.

29. Nicklin P, Bergman P, Zhang B, et al. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534.

30. Chen J, Su W, Kang B, et al. (2018) Supplementation with α-ketoglutarate to a low-protein diet enhances amino acid synthesis in tissues and improves protein metabolism in the skeletal muscle of growing pigs. Amino Acids 50, 1525–1537.

31. Duan Y, Guo Q, Wen C, et al. (2016) Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids. J Agric Food Chem 64, 6791–6800.

32. Escobar J, Frank JW, Suryawan A, et al. (2006) Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 290, E612–E621.

33. Wu G, Knaebe D & Flynn N (2005) Amino acid metabolism in the small intestine: biochemical bases and nutritional significance. Biol Growth Dev 3, 107–126.

34. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128, 1249.

35. Tonjes M, Barbus S, Park YJ, et al. (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19, 901–908.

36. Alfardan J, Mohsen AW, Copeland S, et al. (2010) Characterization of new ACADSB gene sequence mutations and clinical implications in patients with 2-methylbutyrylglycerinuria identified by newborn screening. Mol Genet Metab 100, 333–338.

37. Wands RJA, Duran M & Loupatty FJ (2012) Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway. J Inherit Metab Dis 35, 5–12.

38. Webb LA, Sadi H, Soosten DV, et al. (2019) Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation. J Dairy Sci 102, 3556–3568.

39. Gorissen SH & Phillips SM (2019) Branched-Chain Amino Acids (Leucine, Isoleucine, and Valine) and Skeletal Muscle. Nutr Skeletal Muscle 285–298.

40. Panzhinskaya E, Culver B, Ren J, et al. (2019) Role of Mammalian Target of Rapamycin in Muscle Growth. Nutr Enhanced Sports Performance 251–261.

41. Xie C, Li Y, Li J, et al. (2017) Dietary starch types affect liver nutrient metabolism of finishing pigs. Br J Nutr 118, 353–359.

42. Manjarín R, Columbus DA, Suryawan A, et al. (2016) Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs. Amino Acids 48, 257–267.

43. Deng J, Wu X, Bin S, et al. (2010) Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchic tissues. J Anim Physiol Anim Nutr 94, 220–226.