Second-order Gauge-invariant Cosmological Perturbation Theory: Current Status updated in 2019

Kouji Nakamura
Gravitational-Wave Science Project, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan.
(Dated: January 30, 2020)

The current status of the recent developments of the second-order gauge-invariant cosmological perturbation theory is reviewed. To show the essence of this perturbation theory, we concentrate only on the universe filled with a single scalar field. Through this review, we point out the problems which should be clarified for the further theoretical sophistication of this perturbation theory. This review is an extension of the review paper [K. Nakamura, “Second-Order Gauge-Invariant Cosmological Perturbation Theory: Current Status”, Advances in Astronomy, 2010 (2010), 576273.]. We also expect that this theoretical sophistication will be also useful to discuss the future developments in cosmology as a precise science.

I. INTRODUCTION

The general relativistic cosmological linear perturbation theory has been developed to a high degree of sophistication during the last 40 years [1,2]. One of the motivations of this development was to clarify the relation between the scenarios of the early universe and cosmological data, such as the cosmic microwave background (CMB) anisotropies. Recently, the first-order approximation of our universe from a homogeneous isotropic one was revealed through the observation of the CMB by the Wilkinson Microwave Anisotropy Probe (WMAP) [3] and by the Planck mission [4], the cosmological parameters are accurately measured, we have obtained the standard cosmological model, and the so-called “precision cosmology” is developing. These developments in observations were also supported by the theoretical sophistication of the linear order cosmological perturbation theory.

The observational results of CMB also suggest that the fluctuations of our universe are adiabatic and Gaussian at least in the first-order approximation. We are now on the stage to discuss the deviation from this first-order approximation from the observational [4, 5] and theoretical sides [6–21] through the non-Gaussianity, the non-adiabaticity, and so on. These will be goals of future missions of observations. With the increase of precision of the CMB data, the study of relativistic cosmological perturbations beyond linear order is a topical subject. The second-order cosmological perturbation theory is one of such perturbation theories beyond linear order.

Although the second-order perturbation theory in general relativity is an old topic, a general framework of the gauge-invariant formulation of the general relativistic second-order perturbation has been proposed [22, 23]. This general formulation is an extension of the works of Bruni et al. [24] and has also been applied to cosmological perturbations: The derivation of the second-order Einstein equation in a gauge-invariant manner without any gauge fixing [25, 26]; Applicability in more generic situations [27]; Confirmation of the consistency between all components of the second-order Einstein equations and equations of motions [28]; A comparison with a different formulations [29]. We also note that the radiation was discussed by treating the Boltzmann equation up to second order [30, 31] along the gauge-invariant manner of the above series of papers by the present author.

On the other hand, more basic issues on the general-relativistic gauge-invariant higher-order perturbation theory are also developed. Our general framework is based on the assumption that the linear-order metric perturbation is decomposed into its gauge-invariant and gauge-variant parts (Conjecture I.1 in Sec. I.E below). In Refs. [32, 33], we proposed a scenario of a proof of Conjecture I.1 and showed that Conjecture I.1 are almost proved except for the special modes of perturbations due to the non-local nature in the statement of Conjecture I.1. In Refs. [33, 34], we also pointed out the physical importance of these special modes which are excluded in our proof proposed in Refs. [32, 33]. We also examine the extendibility of our formulation to an arbitrary higher-order perturbations and concluded that we can extend our general-formulation of higher-order gauge-invariant perturbation theory to an arbitrary higher-order, though the arguments of this examination is still incomplete [35].

In this article, we summarize the current status of our development of the second-order gauge-invariant cosmological perturbation theory through the simple system of the universe filled with a scalar field. This review is an updating version of our previous review [36] in 2010. Through this review, we point out the problems which should be clarified.
and directions of the further development of the theoretical sophistication of the general relativistic higher-order perturbation theory, especially in cosmological perturbations. We expect that this theoretical sophistication will be also useful to discuss the future developments to cosmology as a precise science.

The organization of this paper is as follows. In Sec. II, we review the general framework of the second-order gauge-invariant perturbation theory developed in Refs. [22–26, 37–45]. This review also includes additional explanations which were not given in those papers. In Sec. III, we also the derivations of the second-order perturbation of the Einstein equation and the energy-momentum tensor from general point of view. For simplicity, in this review, we only consider a single scalar field as a matter content. The ingredients of Sec. II and III are applicable to perturbation theory in any theory with general covariance, if Conjecture II.1 in Sec. II.E is correct. In Sec. IV, we summarize the Einstein equations in the case of a background homogeneous isotropic universe, which are used in the derivation of the first- and second-order Einstein equations. In Sec. V, the first-order perturbation of the Einstein equations and the Klein-Gordon equations are summarized. The derivation of the second-order perturbations of the Einstein equations and the Klein-Gordon equations, and their consistency are reviewed in Sec. VI. The final section, Sec. VII, is devoted to a summary and discussions. In addition to these main text, we briefly explain the derivation of the general Taylor expansion shown here is the starting point of our gauge-invariant formulation of the second-order general relativistic perturbation theory.

We have to note that this is a review of our own works on general relativistic higher-order perturbations and is not a survey of a huge number of papers of this topic. We hope this review is helpful for the future development of perturbation theories in general relativity not only for cosmology but also for any other situations of gravitational fields.

II. GENERAL FRAMEWORK OF THE GENERAL RELATIVISTIC GAUGE-IN Variant PERTURBATION THEORY

In this section, we review the general framework of the gauge-invariant perturbation theory developed in Refs. [22–26, 37–45]. To develop the general relativistic gauge-invariant perturbation theory, we first explain the general arguments of the Taylor expansion on a manifold without introducing an explicit coordinate system in Sec. II.A. Further, we also have to clarify the notion of “gauge” in general relativity to develop the gauge-invariant perturbation theory from general point of view, which is explained in Sec. II.B. After clarifying the notion of “gauge” in general relativistic perturbations, in Sec. II.C, we explain the formulation of the general relativistic gauge-invariant perturbation theory from general point of view. Although our understanding of “gauge” in general relativistic perturbations is essentially different from “degree of freedom of coordinates” in many literature, “a coordinate transformation” is induced by our understanding of “gauge,” as a result. This situation is explained in Sec. II.D. Sec. II.D also includes explanations of the conceptual relation between general covariance and gauge invariance. To exclude “gauge degree of freedom” which is unphysical degree of freedom in perturbations, we construct “gauge-invariant variables” of perturbations as reviewed in Sec. II.E. These “gauge-invariant variables” are regarded as physical quantities of perturbations in theories with general covariance.

A. Taylor expansion of tensors on a manifold

First, we briefly review the issues on the general form of the Taylor expansion of tensors on a manifold \mathcal{M}. The gauge issue of general relativistic perturbation theories which we will discuss is related to the coordinate transformation as the result. Therefore, we first have to discuss the general form of the Taylor expansion without the explicit introduction of coordinate systems. Although we only consider the Taylor expansion of a scalar function $f : \mathcal{M} \mapsto \mathbb{R}$, here, the resulting formula is extended to that for any tensor field on a manifold as in Appendix A. We have to emphasize that the general formula of the Taylor expansion shown here is the starting point of our gauge-invariant formulation of the second-order general relativistic perturbation theory.

The Taylor expansion of a function f is an approximated form of $f(q)$ at $q \in \mathcal{M}$ in terms of the variables at $p \in \mathcal{M}$, where q is in the neighborhood of p. To derive the formula for the Taylor expansion of f, we have to compare the values of f at the different points on the manifold. To accomplish this, we introduce a one-parameter family of diffeomorphisms $\Phi_\lambda : \mathcal{M} \mapsto \mathcal{M}$, where $\Phi_\lambda(p) = q$ and $\Phi_{\lambda=0}(p) = p$. One example of a diffeomorphisms Φ_λ is an exponential map with a generator. However, we consider a more general class of diffeomorphisms, as seen below.

The diffeomorphism Φ_λ induces the pull-back $\Phi_\lambda^* f$ of the function f and this pull-back enable us to compare the
the expansion (2.1) is given by

\[
\lambda
\]

Therefore, we should regard the Taylor expansion (2.1) to be the expansion of the pull-back \(\Phi \) of the function \(f \) without loss of generality (see Appendix A). Equation (2.2) is not only the representation of the Taylor expansion of \(f \), but also the definitions of the generators (2.3) will be maintained.

We must note that, in general, the representation (2.2) of the Taylor expansion is different from an usual exponential map which is generated by a vector field. In general,

\[
\Phi_\sigma \circ \Phi_\lambda \neq \Phi_{\sigma+\lambda}, \quad \Phi_\lambda^{-1} \neq \Phi_{-\lambda}. \tag{2.3}
\]

As noted in Ref. [24], if the second-order generator \(\xi_2^\sigma \) in Eq. (2.2) is proportional to the first-order generator \(\xi_1^\sigma \) in Eq. (2.2), the diffeomorphism \(\Phi_\lambda \) is reduced to an exponential map. Therefore, one may reasonably doubt that \(\Phi_\lambda \) forms a group except under very special conditions. However, we have to note that the properties (2.3) does not directly mean that \(\Phi_\lambda \) does not form a group. There will be possibilities that \(\Phi_\lambda \) form a group in a different sense from exponential maps, in which the properties (2.3) will be maintained.

Now, we give an intuitive explanation of the representation (2.2) of the Taylor expansion through the case where the scalar function \(f \) in Eq. (2.2) is a coordinate function. When two points \(p, q \in M \) in Eq. (2.2) are in the neighborhood of each other, we can apply a coordinate system \(M \to \mathbb{R}^n \) \((n = \dim M)\), which denoted by \(\{x^\mu\} \), to an open set which includes these two points. Then, we can measure the relative position of these two points \(p \) and \(q \) in \(M \) in terms of this coordinate system in \(\mathbb{R}^n \) through the Taylor expansion (2.2). In this case, we may regard that the scalar function

\[
\frac{1}{2} \lambda^2 \xi_2^\mu(p) \xi_2^\mu(p) + \frac{1}{2} \lambda^2 \xi_1^\mu(p) \partial_\xi_1^\mu(p) + O(\lambda^3).
\]
f in Eq. (2.2) is a coordinate function x^μ and Eq. (2.2) yields

$$x^\mu(q) = (\Phi_1^\ast x^\mu)(p)$$

$$= x^\mu(p) + \lambda \xi^\mu_1(p) + \frac{1}{2} \lambda^2 (\xi_2^\mu + \xi_1^\nu \partial_\nu \xi_1^\mu)|_p + O(\lambda^3).$$

(2.4)

The second term $\lambda \xi^\mu_1(p)$ in the right hand side of Eq. (2.4) is familiar. This is regarded as the vector which points from the point $x^\mu(p)$ to the point $x^\mu(q)$ in the sense of the first-order correction as shown in Fig. 1(a). However, in the sense of the second order, this vector $\lambda \xi^\mu_1(p)$ may fail to point to $x^\mu(q)$. Therefore, it is necessary to add the second-order correction as shown in Fig. 1(b). As a correction of the second order, we may add the term $\frac{1}{2} \lambda^2 \xi_2^\mu(p)\partial_\nu \xi_1^\mu(p)$ to $x^\mu(q)$. This second-order correction corresponds to that coming from the exponential map which is generated by the vector field ξ^μ_1. However, this correction completely determined by the vector field ξ^μ_1. Even if we add this correction comes from the exponential map, there is no guarantee that the corrected vector $\lambda \xi^\mu_1(p) + \frac{1}{2} \lambda^2 \xi_2^\mu(p)\partial_\nu \xi_1^\mu(p)$ does point to $x^\mu(q)$ in the sense of the second order. Thus, we have to add the new correction $\frac{1}{2} \lambda^2 \xi_2^\mu(p)$ of the second order, in general.

Of course, without this correction $\frac{1}{2} \lambda^2 \xi_2^\mu(p)$, the vector which comes only from the exponential map generated by the vector field ξ_1^μ might point to the point $x^\mu(q)$. Actually, this is possible if we carefully choose the vector field ξ_1^μ taking into account of the deviations at the second order. However, this means that we have to take care of the second-order correction when we determine the first-order correction. This contradicts to the philosophy of the Taylor expansion as a perturbative expansion, in which we can determine everything order by order. Therefore, we should regard that the correction $\frac{1}{2} \lambda^2 \xi_2^\mu(p)$ is necessary in general situations.

B. Gauge degree of freedom in general relativity

Since we want to explain the gauge-invariant perturbation theory in general relativity, first of all, we have to explain the notion of “gauge” in general relativity [37]. General relativity is a theory with general covariance, which intuitively states that there is no preferred coordinate system in nature. This general covariance also introduce the notion of “gauge” in the theory. In the theory with general covariance, these “gauges” give rise to the unphysical degree of freedom and we have to fix the “gauges” or to extract some invariant quantities to obtain physical results. Therefore, treatments of “gauges” are crucial in general relativity and this situation becomes more delicate in general relativistic perturbation theory as explained below.

In 1964, Sachs [38] pointed out that there are two kinds of “gauges” in general relativity. Sachs called these two “gauges” as the first- and the second-kind of gauges, respectively. Here, we review these concepts of “gauge,” which are different from each other.

1. **First kind gauge**

The first kind gauge is a coordinate system on a single manifold \mathcal{M}. Although this first kind gauge is not important in this paper, we explain this to emphasize the “gauge” discussing in this review is different from this kind gauge.

In the standard text book of manifolds (for example, see [47]), the following property of a manifold is written, “On a manifold, we can always introduce a coordinate system as a diffeomorphism ψ_α from an open set $O_\alpha \subset \mathcal{M}$ to an open set $\psi_\alpha(O_\alpha) \subset \mathbb{R}^n$ ($n = \dim \mathcal{M}$).” This diffeomorphism ψ_α, i.e., coordinate system of the open set O_α, is called gauge choice (of the first kind). If we consider another open set in $O_\beta \subset \mathcal{M}$, we have another gauge choice $\psi_\beta : O_\beta \mapsto \psi_\beta(O_\beta) \subset \mathbb{R}^n$ for O_β. If these two open sets O_α and O_β have the intersection $O_\alpha \cap O_\beta \neq \emptyset$, we can consider the diffeomorphism $\psi_\beta \circ \psi_\alpha^{-1}$. This diffeomorphism $\psi_\beta \circ \psi_\alpha^{-1}$ is just a coordinate transformation: $\psi_\alpha(O_\alpha \cap O_\beta) \subset \mathbb{R}^n \mapsto \psi_\beta(O_\alpha \cap O_\beta) \subset \mathbb{R}^n$, which is called gauge transformation (of the first kind) in general relativity.

According to the theory of a manifold, coordinate system are not on a manifold itself but we can always introduce a coordinate system through a map from an open set in the manifold \mathcal{M} to an open set of \mathbb{R}^n. For this reason, general covariance in general relativity is automatically included in the premise that our spacetime is regarded as a single manifold. The first kind gauge does arise due to this general covariance. The gauge issue of the first kind is usually represented by the question, “Which coordinate system is convenient?” The answer to this question depends on the problem which we are addressing, i.e., what we want to clarify. In some case, this gauge issue of the first kind is an important. However, in many case, it becomes harmless if we apply a covariant theory on the manifold.

2. **Second kind gauge**

The second kind gauge appears in perturbation theories in a theory with general covariance. This notion of the
second kind “gauge” is the main issue of this article. To explain this, we have to remind what we are doing in perturbation theories.

First, in any perturbation theories, we always treat two spacetime manifolds. One is the physical spacetime \mathcal{M}. We want to describe the properties of this physical spacetime \mathcal{M} through perturbative analyses. This physical spacetime \mathcal{M} is usually identified with our nature itself. The other is the background spacetime \mathcal{M}_0. This background spacetime have nothing to do with our nature and is a fictitious manifold which is introduced as a reference to carry out perturbative analyses by us. We emphasize that these two spacetime manifolds \mathcal{M} and \mathcal{M}_0 are distinct. Let us denote the physical spacetime by $(\mathcal{M}, \bar{g}_{ab})$ and the background spacetime by (\mathcal{M}_0, g_{ab}), where \bar{g}_{ab} is the metric on the physical spacetime manifold, \mathcal{M}, and g_{ab} is the metric on the background spacetime manifold, \mathcal{M}_0. Further, we formally denote the spacetime metric and the other physical tensor fields on \mathcal{M} by Q and its background value on \mathcal{M}_0 by Q_0.

Second, in any perturbation theories, we always write equations for the perturbation of the physical variable Q in the form

\[Q(\text{"p"}) = Q_0(p) + \delta Q(p). \]

(2.5)

Usually, this equation is simply regarded as a relation between the physical variable Q and its background value Q_0, or as the definition of the deviation δQ of the physical variable Q from its background value Q_0. However, Eq. (2.5) has deeper implications. Keeping in our mind that we always treat two different spacetimes, \mathcal{M} and \mathcal{M}_0, in perturbation theory, Eq. (2.5) is a rather curious equation in the following sense: The variable on the left-hand side of Eq. (2.5) is a variable on \mathcal{M}, while the variables on the right-hand side of Eq. (2.5) are variables on \mathcal{M}_0. Hence, Eq. (2.5) gives a relation between variables on two different manifolds.

Furthermore, through Eq. (2.5), we have implicitly identified points in these two different manifolds. More specifically, $Q(\text{"p"})$ on the left-hand side of Eq. (2.5) is a field on \mathcal{M}, and "$p" \in \mathcal{M}$. Similarly, we should regard the background value $Q_0(p)$ of $Q(\text{"p"})$ and its deviation $\delta Q(p)$ of $Q(\text{"p"})$ from $Q_0(p)$, which are on the right-hand side of Eq. (2.5), as fields on \mathcal{M}_0, and $p \in \mathcal{M}_0$. Because Eq. (2.5) is regarded as an equation for a field variable, it implicitly states that the points "$p" \in \mathcal{M}$ and $p \in \mathcal{M}_0$ are same. This represents the implicit assumption of the existence of a map $\mathcal{M}_0 \rightarrow \mathcal{M} : p \in \mathcal{M}_0 \mapsto \text{"p"} \in \mathcal{M}$, which is usually called a gauge choice (of the second kind) in perturbation theory [39–41].

It is important to note that the second kind gauge choice between points on \mathcal{M}_0 and \mathcal{M}, which is established by such a relation as Eq. (2.5), is not unique in theories with general covariance. Rather, Eq. (2.5) involves the degree of freedom corresponding to the choice of the map $\mathcal{M}_0 \rightarrow \mathcal{M}$. This is called the gauge degree of freedom (of the second kind). Such a degree of freedom always exists in perturbations of a theory with general covariance. General covariance intuitively means that there is no preferred coordinate system in the theory as mentioned above. If general covariance is not imposed on the theory, there is a preferred coordinate system in the theory, and we naturally introduce this preferred coordinate system onto both \mathcal{M}_0 and \mathcal{M}. Then, we can choose the identification map $\mathcal{M}_0 \rightarrow \mathcal{M}$ using this preferred coordinate system. However, there is no such coordinate system in general relativity due to general covariance, and we have no guiding principle to choose the identification map $\mathcal{M}_0 \rightarrow \mathcal{M}$. Indeed, we may identify "$p" \in \mathcal{M}$ with $q \in \mathcal{M}_0$ ($q \neq p$) instead of $p \in \mathcal{M}_0$. In the above understanding of the concept of “gauge” (of the second kind) in general relativistic perturbation theory, a gauge transformation is simply a change of the map $\mathcal{M}_0 \rightarrow \mathcal{M}$.

These are the basic ideas of gauge degree of freedom (of the second kind) in the general relativistic perturbation theory which are pointed out by Sacks [38] and mathematically clarified by Stewart and Walker [39–41]. Based on these ideas, higher-order perturbation theory has been developed in Refs. [22, 24, 32, 35, 37, 44–46].

C. Formulation of perturbation theory

To formulate the above understanding in more detail, we introduce an infinitesimal parameter λ for the perturbation. Further, we consider the $4 + 1$-dimensional manifold $\mathcal{N} = \mathcal{M} \times \mathbb{R}$, where $4 = \dim \mathcal{M}$ and $\lambda \in \mathbb{R}$. The background spacetime $\mathcal{M}_0 = \mathcal{N}|_{\lambda = 0}$ and the physical spacetime $\mathcal{M} = \mathcal{M}_0 = \mathcal{N}|_{\lambda = \lambda}$ are also submanifolds embedded in the extended manifold \mathcal{N}. Each point on \mathcal{N} is identified by a pair (p, λ), where $p \in \mathcal{M}_0$, and each point in $\mathcal{M}_0 \subset \mathcal{N}$ is identified by $\lambda = 0$.

Through this construction, the manifold \mathcal{N} is foliated by four-dimensional submanifolds \mathcal{M}_{λ} of each λ, and these are diffeomorphic to \mathcal{M} and \mathcal{M}_0. The manifold \mathcal{N} has a natural differentiable structure consisting of the direct product of \mathcal{M} and \mathbb{R}. Further, the perturbed spacetimes \mathcal{M}_{λ} for each λ must have the same differentiable structure with this construction. In other words, we require that perturbations be continuous in the sense that \mathcal{M} and \mathcal{M}_0 are connected by a continuous curve within the extended manifold \mathcal{N}. Hence, the changes of the differential structure resulting from the perturbation, for example the formation of singularities and singular perturbations in the sense of fluid mechanics, are excluded from consideration.
FIG. 2: The second kind gauge is a point-identification between the physical spacetime \mathcal{M}_λ and the background spacetime \mathcal{M}_0 on the extended manifold \mathcal{N}. Through Eq. (2.5), we implicitly assume the existence of a point-identification map between \mathcal{M}_λ and \mathcal{M}_0. However, this point-identification is not unique by virtue of the general covariance in the theory. We may choose the gauge of the second kind so that $p \in \mathcal{M}_0$ and “p” $\in \mathcal{M}_\lambda$ is same (X_λ). We may also choose the gauge so that $q \in \mathcal{M}_0$ and “q” $\in \mathcal{M}_\lambda$ is same (Y_λ). These are different gauge choices. The gauge transformation $X_\lambda \rightarrow Y_\lambda$ is given by the diffeomorphism $\Phi = X_\lambda^{-1} \circ Y_\lambda$.

Let us consider the set of field equations

$$E[Q_\lambda] = 0$$

(2.6)

on the physical spacetime \mathcal{M}_λ for the physical variables Q_λ on \mathcal{M}_λ. The field equation (2.6) formally represents the Einstein equation for the metric on \mathcal{M}_λ and the equations for matter fields on \mathcal{M}_λ. If a tensor field Q_λ is given on each \mathcal{M}_λ, Q_λ is automatically extended to a tensor field on \mathcal{N} by $Q(p, \lambda) := Q_\lambda(p)$, where $p \in \mathcal{M}_\lambda$. In this extension, the field equation (2.6) is regarded as an equation on the extended manifold \mathcal{N}. Thus, we have extended an arbitrary tensor field and the field equations (2.6) on each \mathcal{M}_λ to those on the extended manifold \mathcal{N}.

Tensor fields on \mathcal{N} obtained through the above construction are necessarily “tangent” to each \mathcal{M}_λ. To consider the basis of the tangent space of \mathcal{N}, we introduce the normal form and its dual, which are normal to each \mathcal{M}_λ in \mathcal{N}. These are denoted by $(d\lambda)_a$ and $(\partial/\partial \lambda)^a$, respectively, and they satisfy $(d\lambda)_a(\partial/\partial \lambda)^a = 1$. The form $(d\lambda)_a$ and its dual, $(\partial/\partial \lambda)^a$, are normal to any tensor field extended from the tangent space on each \mathcal{M}_λ through the above construction. The set consisting of $(d\lambda)_a$, $(\partial/\partial \lambda)^a$ and the basis of the tangent space on each \mathcal{M}_λ is regarded as the basis of the tangent space of \mathcal{N}.

Now, we define the perturbation of an arbitrary tensor field Q. We compare Q on \mathcal{M}_λ with Q_λ on \mathcal{M}_λ, and it is necessary to identify the points of \mathcal{M}_λ with those of \mathcal{M}_0 as mentioned above. This point identification map is the gauge choice of the second kind as mentioned above. The gauge choice is made by assigning a diffeomorphism $X_\lambda : \mathcal{N} \rightarrow \mathcal{N}$ such that $X_\lambda : \mathcal{M}_0 \rightarrow \mathcal{M}_\lambda$. Following the paper of Bruni et al. [24], we introduce a gauge choice X_λ as an one-parameter group of diffeomorphisms, i.e., an exponential map, for simplicity. We denote the generator of this exponential map by $\chi^{a\mu}$. This generator $\chi^{a\mu}$ is decomposed by the basis on \mathcal{N} which are constructed above. Although the generator $\chi^{a\mu}$ should satisfy some appropriate properties, the arbitrariness of the gauge choice X_λ is represented by the tangent component of the generator $\chi^{a\mu}$ to \mathcal{M}_λ.

The pull-back $X^*_\lambda Q$, which is induced by the exponential map X_λ, maps a tensor field Q on the physical manifold \mathcal{M}_λ to a tensor field $X^*_\lambda Q$ on the background spacetime. In terms of this generator $\chi^{a\mu}$, the pull-back $X^*_\lambda Q$ is represented by the Taylor expansion

$$Q(r) = Q(X_\lambda(p)) = X^*_\lambda Q(p)$$

$$= Q(p) + \lambda \left. \mathcal{L}_{\chi_p^a} Q \right|_p + \frac{1}{2} \lambda^2 \left. \mathcal{L}_{\chi_p^a}^2 Q \right|_p + O(\lambda^3),$$

(2.7)

where $r = X_\lambda(p) \in \mathcal{M}_\lambda$. Because $p \in \mathcal{M}_0$, we may regard the equation

$$X^*_\lambda Q(p) = Q_0(p) + \lambda \left. \mathcal{L}_{\chi_p^a} Q \right|_{\mathcal{M}_0} + \frac{1}{2} \lambda^2 \left. \mathcal{L}_{\chi_p^a}^2 Q \right|_{\mathcal{M}_0} + O(\lambda^3)$$

(2.8)
as an equation on the background spacetime \mathcal{M}_0, where $Q_0 = Q|_{\mathcal{M}_0}$ is the background value of the physical variable of Q. Once the definition of the pull-back of the gauge choice \mathcal{X}_λ is given, the first- and the second-order perturbations $^{(1)}\mathcal{X}^\lambda Q$ and $^{(2)}\mathcal{X}^\lambda Q$ of a tensor field Q under the gauge choice \mathcal{X}_λ are simply given by the expansion

$$
^{(1)}\mathcal{X}^\lambda Q|_{\mathcal{M}_0} = Q_0 + \lambda^{(1)} Q + \frac{1}{2} \lambda^{(2)} Q + O(\lambda^3)
$$

(2.9)

with respect to the infinitesimal parameter λ. Comparing Eqs. (2.8) and (2.9), we define the first- and the second-order perturbations of a physical variable Q_λ under the gauge choice \mathcal{X}_λ by

$$
^{(1)}Q := L_{\mathcal{X}^\lambda} Q|_{\mathcal{M}_0}, \quad ^{(2)}Q := L_{\mathcal{X}^\lambda}^2 Q|_{\mathcal{M}_0}.
$$

(2.10)

We note that all variables in Eq. (2.9) are defined on \mathcal{M}_0.

Now, we consider two different gauge choices based on the above understanding of the second kind gauge choice. Suppose that \mathcal{X}_λ and \mathcal{Y}_λ are two exponential maps with the generators \mathcal{X}^μ and \mathcal{Y}^ν on \mathcal{N}, respectively. In other words, \mathcal{X}_λ and \mathcal{Y}_λ are two gauge choices (see Fig. 2). Then, the integral curves of each \mathcal{X}^μ and \mathcal{Y}^ν in \mathcal{N} are the orbits of the actions of the gauge choices \mathcal{X}_λ and \mathcal{Y}_λ, respectively. Since we choose the generators \mathcal{X}^μ and \mathcal{Y}^ν so that these are transverse to each \mathcal{M}_λ everywhere on \mathcal{N}, the integral curves of these vector fields intersect with each \mathcal{M}_λ. Therefore, points lying on the same integral curve of either of the two are to be regarded as the same point within the respective gauges. When these curves are not identical, i.e., the tangential components to each \mathcal{M}_λ of \mathcal{X}^μ and \mathcal{Y}^ν are different, these point identification maps \mathcal{X}_λ and \mathcal{Y}_λ are regarded as two different gauge choices.

We next introduce the concept of gauge invariance. In particular, we consider the concept of order by order gauge invariance [27], in this article. Suppose that \mathcal{X}_λ and \mathcal{Y}_λ are two different gauge choices which are generated by the vector fields \mathcal{X}^μ and \mathcal{Y}^ν, respectively. These gauge choices also pull back a generic tensor field Q on \mathcal{N} to two other tensor fields, $^{(1)}\mathcal{X}^\lambda Q$ and $^{(2)}\mathcal{X}^\lambda Q$, for any given value of λ. In particular, on \mathcal{M}_0, we now have three tensor fields associated with a tensor field Q: one is the background value Q_0 of Q, and the other two are the pulled-back variables of Q from \mathcal{M}_λ to \mathcal{M}_0 by the two different gauge choices,

$$
\begin{align*}
^{(1)}\mathcal{X}^\lambda Q \quad &:= \quad ^{(1)}\mathcal{X}^\lambda Q|_{\mathcal{M}_0} = Q_0 + \lambda^{(1)} Q + \frac{1}{2} \lambda^{(2)} Q + O(\lambda^3) \\
^{(2)}\mathcal{X}^\lambda Q \quad &:= \quad ^{(2)}\mathcal{X}^\lambda Q|_{\mathcal{M}_0} = Q_0 + \lambda^{(1)} Q + \frac{1}{2} \lambda^{(2)} Q + O(\lambda^3)
\end{align*}
$$

(2.11) and (2.12)

Here, we have used Eq. (2.9). Because \mathcal{X}_λ and \mathcal{Y}_λ are gauge choices which map from \mathcal{M}_0 to \mathcal{M}_λ, $^{(1)}\mathcal{X}^\lambda Q$ and $^{(2)}\mathcal{X}^\lambda Q$ are the different representations on \mathcal{M}_0 in the two different gauges of the same perturbed tensor field Q on \mathcal{M}_λ. The quantities $^{(k)}\mathcal{X}^\lambda Q$ and $^{(k)}\mathcal{Y}^\nu Q$ in Eqs. (2.11) and (2.12) are the perturbations of $O(k)$ in the gauges \mathcal{X}_λ and \mathcal{Y}_λ, respectively.

We say that the kth-order perturbation $^{(k)}\mathcal{X}^\lambda Q$ of Q is order by order gauge invariant if and only if for any two gauges \mathcal{X}_λ and \mathcal{Y}_λ the following holds:

$$
^{(k)}\mathcal{X}^\lambda Q = ^{(k)}\mathcal{Y}^\nu Q.
$$

(2.13)

Now, we consider the gauge transformation rules between different gauge choices. In general, the representation $^{(k)}\mathcal{X}^\lambda Q$ on \mathcal{M}_0 of the perturbed variable Q on \mathcal{M}_λ depends on the gauge choice \mathcal{X}_λ. If we employ a different gauge choice, the representation of Q_λ on \mathcal{M}_0 may change. Suppose that \mathcal{X}_λ and \mathcal{Y}_λ are different gauge choices, which are the point identification maps from \mathcal{M}_0 to \mathcal{M}_λ, and the generators of these gauge choices are given by \mathcal{X}^μ and \mathcal{Y}^ν, respectively. Then, the change of the gauge choice from \mathcal{X}_λ to \mathcal{Y}_λ is represented by the diffeomorphism

$$
\Phi_\lambda := (\mathcal{X}_\lambda)^{-1} \circ \mathcal{Y}_\lambda.
$$

(2.14)

This diffeomorphism Φ_λ is the map $\Phi_\lambda : \mathcal{M}_0 \to \mathcal{M}_0$ for each value of $\lambda \in \mathbb{R}$. The diffeomorphism Φ_λ does change the point identification, as expected from the understanding of the gauge choice discussed above. Therefore, the diffeomorphism Φ_λ is regarded as the gauge transformation $\Phi_\lambda : \mathcal{X}_\lambda \to \mathcal{Y}_\lambda$.

The gauge transformation Φ_λ induces a pull-back from the representation $^{(k)}\mathcal{X}^\lambda Q$ of the perturbed tensor field Q in the gauge choice \mathcal{X}_λ to the representation $^{(k)}\mathcal{Y}^\nu Q$ in the gauge choice \mathcal{Y}_λ. Actually, the tensor fields $^{(k)}\mathcal{X}^\lambda Q$ and $^{(k)}\mathcal{Y}^\nu Q$, which are defined on \mathcal{M}_0, are connected by the linear map Φ_λ^\ast as

$$
^{(k)}\mathcal{Y}^\nu Q|_{\mathcal{M}_0} = (\mathcal{Y}_\lambda^\ast (\mathcal{X}_\lambda^{-1})^\ast Q)|_{\mathcal{M}_0} = (\mathcal{X}_\lambda^{-1} \mathcal{Y}_\lambda)^\ast (\mathcal{X}_\lambda^\lambda Q)|_{\mathcal{M}_0} = \Phi_\lambda^\ast^{(k)}\mathcal{X}^\lambda Q.
$$

(2.15)
According to generic arguments concerning the Taylor expansion of the pull-back of a tensor field on the same manifold, given in §§1.1, it should be possible to express the gauge transformation $\Phi_{\lambda} = \Phi_{\lambda} \circ \lambda = \lambda Q + \lambda \xi_1 + \lambda^2 \left(\xi_2 + \frac{1}{2} \left(\xi_5 + \xi_8^2 \right) \right) + O(\lambda^3)$,

\[
\Phi_{\lambda} = \lambda Q + \lambda \xi_1 + \lambda^2 \left(\xi_2 + \frac{1}{2} \left(\xi_5 + \xi_8^2 \right) \right) + O(\lambda^3),
\]

(2.16)

where the vector fields ξ_1 and ξ_2 are the generators of the gauge transformation Φ_{λ} (see Eq. (2.2)). Comparing the representation (2.16) of the Taylor expansion in terms of the generators ξ_1 and ξ_2 of the pull-back $\Phi_{\lambda} \circ \lambda$ and that in terms of the generators $\lambda \eta^a$ and $\lambda \eta^a$ of the pull-back $\lambda \circ (\lambda^{-1})^* \lambda Q = \Phi_{\lambda} \circ \lambda Q$, we readily obtain explicit expressions for the generators ξ_1 and ξ_2 of the gauge transformation $\Phi = \lambda \circ (\lambda^{-1})^* \lambda Q$ in terms of the generators $\lambda \eta^a$ and $\lambda \eta^a$ of each gauge choice as follows:

\[
\xi_1 = \lambda \eta^a - \lambda \eta^a, \quad \xi_2 = [\lambda \eta, \lambda \eta]^a.
\]

(2.17)

Further, because the gauge transformation Φ_{λ} is a map within the background spacetime M_0, the generator should consist of vector fields on M_0. This can be satisfied by imposing some appropriate conditions on the generators $\lambda \eta^a$ and $\lambda \eta^a$. We can now derive the relation between the perturbations in the two different gauges. Up to second order, these relations are derived by substituting (2.11) and (2.12) into (2.16):

\[
(1) \frac{1}{2} Q - (1) Q = \xi_1, Q_0,
\]

(2.18)

\[
(2) \frac{1}{2} Q - (2) Q = 2 \xi_1 + (1) Q + \xi_2 + \xi_8^2 \lambda^3.
\]

(2.19)

Here, we should comment on the gauge choice in the above explanation. We have introduced an exponential map X_{λ} (or Y_{λ}) as the gauge choice, for simplicity. However, this simplified introduction of X_{λ} as an exponential map is not essential to the gauge transformation rules (2.18) and (2.19). Actually, we can generalize the diffeomorphism X_{λ} from an exponential map. For example, the diffeomorphism whose pull-back is represented by the Taylor expansion (2.2) is a candidate of the generalization. If we generalize the diffeomorphism X_{λ}, the representation (2.8) of the pull-back variable $X_{\lambda} \circ \lambda (p)$, the representations of the perturbations (2.10), and the relations (2.17) between generators of Φ_{λ}, X_{λ}, and Y_{λ} will be changed. However, the gauge transformation rules (2.18) and (2.19) are direct consequences of the generic Taylor expansion (2.10) of Φ_{λ}. Generality of the representation of the Taylor expansion (2.10) of Φ_{λ} implies that the gauge transformation rules (2.18) and (2.19) will not be changed, even if we generalize the each gauge choice X_{λ}. Further, the relations (2.17) between generators also imply that, even if we employ simple exponential maps as gauge choices, both of the generators ξ_1 and ξ_2 are naturally induced by the generators of the original gauge choices. Hence, we conclude that the gauge transformation rules (2.18) and (2.19) are quite general and irreducible. In this article, we review the development of a second-order gauge-invariant cosmological perturbation theory based on the above understanding of the gauge degree of freedom only through the gauge transformation rules (2.18) and (2.19). Hence, the developments of the cosmological perturbation theory presented below will not be changed even if we generalize the gauge choice X_{λ} from a simple exponential map.

We also have to emphasize the physical implication of the gauge transformation rules (2.18) and (2.19). According to the above construction of the perturbation theory, gauge degree of freedom, which induces the transformation rules (2.18) and (2.19), is unphysical degree of freedom. As emphasized above, the physical spacetime M_{Λ} is identified with our nature itself, while there is no background spacetime M_0 in our nature. The background spacetime M_0 is a fictitious spacetime and it having nothing to do with our nature. Since the gauge choice X_{λ} just gives a relation between M_{Λ} and M_0, the gauge choice X_{λ} also have nothing to do with our nature. On the other hand, any observations and experiments are carried out only on the physical spacetime M_{Λ} through the physical processes within the physical spacetime M_{Λ}. Therefore, any direct observables in any observations and experiments should be independent of the gauge choice X_{λ}, i.e., should be gauge invariant. Keeping this fact in mind, the gauge transformation rules (2.18) and (2.19) imply that the perturbations $(1)Q$ and $(2)Q$ include unphysical degree of freedom, i.e., gauge degree of freedom, if these perturbations are transformed as (2.18) or (2.19) under the gauge transformation $X_{\lambda} \rightarrow Y_{\lambda}$. If the perturbations $(1)Q$ and $(2)Q$ are independent of the gauge choice, these variables are order by order gauge invariant. Therefore, order by order gauge-invariant variables does not include unphysical degree of freedom and should be related to the physics on the physical spacetime M_{Λ}.

D. Coordinate transformations induced by the second kind gauge transformation

In many literature, gauge degree of freedom is regarded as the degree of freedom of the coordinate transformation. In the linear-order perturbation theory, these two degree of freedom are equivalent with each other. However, in the
higher order perturbations, we should regard that these two degree of freedom are different. Although the essential understanding of the gauge degree of freedom (of the second kind) is as that explained above, the gauge transformation (of the second kind) also induces the infinitesimal coordinate transformation on the physical spacetime M_λ as a result. In many case, the understanding of “gauges” in perturbations based on coordinate transformations leads mistakes. Therefore, we did not use any ingredient of this subsection in our series of papers [22, 23, 25–28] concerning about higher-order general relativistic gauge-invariant perturbation theory. However, we comment on the relations between the coordinate transformation, briefly. Details can be seen in Refs. [22, 43, 44].

To see that the gauge transformation of the second kind induces the coordinate transformation, we introduce the coordinate system $\{O_\alpha, \psi_\alpha\}$ on the “background spacetime” M_0, where O_α are open sets on the background spacetime and ψ_α are diffeomorphisms from O_α to \mathbb{R}^4 ($4 = \dim M_0$). The coordinate system $\{O_\alpha, \psi_\alpha\}$ is the set of the collection of the pair of open sets O_α and diffeomorphism $\psi_\alpha : O_\alpha \to \mathbb{R}^4$. If we employ a gauge choice λ_α, we have the correspondence of M_λ and M_0. Together with the coordinate system ψ_α on M_0, this correspondence between M_λ and M_0 induces the coordinate system on M_λ. Actually, $X_\alpha(O_\alpha)$ for each α is an open set of M_λ. Then, $\psi_\alpha \circ X_\alpha^{-1}$ becomes a diffeomorphism from an open set $X_\lambda(O_\alpha) \subset M_\lambda$ to \mathbb{R}^4. This diffeomorphism $\psi_\alpha \circ X_\alpha^{-1}$ induces a coordinate system of an open set on M_λ. When we have two different gauge choices X_λ and Y_λ, $\psi_\alpha \circ X_\alpha^{-1}$ and $\psi_\alpha \circ Y_\alpha^{-1}$ become different coordinate systems on M_λ. We can also consider the coordinate transformation from the coordinate system $\psi_\alpha \circ X_\alpha^{-1}$ to another coordinate system $\psi_\alpha \circ Y_\alpha^{-1}$. Since the gauge transformation $X_\lambda \to Y_\lambda$ is induced by the diffeomorphism Φ_λ defined by Eq. (2.14), the induced coordinate transformation is given by

$$y^\mu(q) := x^\mu(p) = \left((\Phi^{-1})^* x^\mu\right)(q)$$

(2.20)

in the passive point of view [22, 43, 44]. If we represent this coordinate transformation in terms of the Taylor expansion in Sec. II A up to third order, we have the coordinate transformation

$$y^\mu(q) = x^\mu(q) - \lambda^2 \frac{\zeta_0^\mu(q) + \xi_0^\mu(q) \partial_\nu \xi_0^\nu(q)}{2} + O(\lambda^3).$$

(2.21)

Here again, we note that we have coordinate system $\{X_\lambda(O_\alpha), \psi_\alpha \circ X_\alpha^{-1}\}$ “on the physical spacetime M_λ” if we introduce the coordinate system ψ_α “on the background spacetime M_0”, and if we introduce a diffeomorphism $X_\lambda : M_0 \to M_\lambda$ as the point identification map between the background spacetime M_0 and the physical spacetime M_λ. If we apply the notion of the above (order-by-order) gauge-invariance in the system, this application states that the system which we want to describe is independent of the gauge-choice X_λ. On the other hand, if we apply the general covariance to the system “on the background spacetime M_0”, this application implies that the system on the background spacetime M_0 is independent of the choice of the coordinate system $\{O_\alpha, \psi_\alpha\}$. The general covariance “on the background spacetime M_0” is accomplished by the introduction of a covariant theory on the background spacetime. In addition to this covariant theory “on the background spacetime M_0”, if we impose on the (order-by-order) gauge-invariance for the perturbations, this implies that the system “on the physical spacetime M_λ” is independent of the coordinate system $\{X_\lambda(O_\alpha), \psi_\alpha \circ X_\alpha^{-1}\}$ “on the physical spacetime M_λ”. This is the statement of the general covariance “on the physical spacetime M_λ”. Thus, if we apply the gauge-invariance to “perturbations” together with the covariant theory “on the background spacetime M_0”, this application corresponds to the general covariance “on the physical spacetime M_λ”. Therefore, the general covariance on the physical spacetime in perturbation theory is guaranteed by the imposition of the gauge-invariance to “perturbations” and a covariant theory on the background spacetime. This is the physical meaning of gauge-invariance for perturbations.

E. Gauge-invariant variables

Here, inspecting the gauge transformation rules (2.18) and (2.19), we define the gauge-invariant variables for the metric perturbations and for arbitrary matter fields (tensor fields). Employing the idea of order by order gauge invariance for perturbations [24] introduced in Sec. II C we proposed a procedure to construct gauge-invariant variables of higher-order perturbations [22]. Our proposal is as follows. First, we decompose a linear-order metric perturbation into its gauge invariant and variant parts. The procedure for decomposing linear-order metric perturbations is easily extended to second-order metric perturbations, and we can decompose the second-order metric perturbation into gauge invariant and variant parts. By using the gauge-variant parts of the first- and the second-order metric perturbations, we can define the gauge-invariant variables for the first- and second-order perturbations of an arbitrary field other than the metric.
Now, we review the above strategy to construct gauge-invariant variables. To consider a metric perturbation, we expand the metric on the physical spacetime \mathcal{M}_λ, which is pulled back to the background spacetime \mathcal{M}_0 using a gauge choice in the form given in (2.19):

$$\lambda^* g_{ab} = g_{ab} + \lambda h_{ab} + \frac{\lambda^2}{2} \lambda'_{ab} + O(\lambda^3),$$

(2.22)

where g_{ab} is the metric on \mathcal{M}_0. Of course, the expansion of the metric depends entirely on the gauge choice λ^*. Nevertheless, henceforth, we do not explicitly express the index of the gauge choice λ^* in an expression if there is no possibility of confusion.

Our starting point to construct gauge-invariant variables is the following conjecture:

Conjecture II.1. If there is a symmetric tensor field h_{ab} of the second rank, whose gauge-transformation rule with the generator ξ is given by

$$\gamma h_{ab} - \chi h_{ab} = \mathcal{L}_\xi g_{ab},$$

(2.23)

Then there exist a tensor field \mathcal{H}_{ab} and a vector field X^a such that h_{ab} is decomposed as

$$h_{ab} =: \mathcal{H}_{ab} + \mathcal{L}_X g_{ab},$$

(2.24)

where \mathcal{H}_{ab} and X^a are transformed as

$$\gamma \mathcal{H}_{ab} - \chi \mathcal{H}_{ab} = 0, \quad \gamma X^a - \chi X^a = \xi^a$$

(2.25)

under the gauge-transformation (2.23), respectively.

In this conjecture, \mathcal{H}_{ab} is gauge invariant and call \mathcal{H}_{ab} as the gauge-invariant part of the tensor field h_{ab}. On the other hand, the vector field X^a in Eq. (2.24) is gauge dependent, and we call X^a as the gauge-variant part of the tensor field h_{ab}.

Since Conjecture II.1 can be directly applied to the linear metric perturbation h_{ab}, a linear metric perturbation h_{ab} is decomposed as

$$h_{ab} =: \mathcal{H}_{ab} + \mathcal{L}_X g_{ab},$$

(2.26)

due to the Conjecture II.1 where \mathcal{H}_{ab} and X^a are the gauge invariant and variant parts of the linear-order metric perturbations h_{ab}, i.e., under the gauge transformation (2.26), these are transformed as

$$\gamma \mathcal{H}_{ab} - \chi \mathcal{H}_{ab} = 0, \quad \gamma X^a - \chi X^a = \xi^a$$

(2.27)

due to Eqs. (2.26) in Conjecture II.1.

As emphasized in our series of papers [22, 23, 25–28, 32–35], Conjecture II.1 is still quite non-trivial and it is not simple to carry out the systematic decomposition (2.26) on an arbitrary background spacetime, since this procedure depends completely on the background spacetime (\mathcal{M}_0, g_{ab}). Actually, in Ref. [33], we showed an scenario of the proof of Conjecture II.1. This scenario of the proof of Conjecture II.1 and remaining problems in this proof are briefly explained in Appendix C. This scenario is incomplete due to the non-local nature in the definition of the gauge-invariant part \mathcal{H}_{ab} and the gauge-variant part X^a. Furthermore, as we will show below, Conjecture II.1 is almost correct at least in the case of cosmological perturbations of a homogeneous and isotropic universe in Sec. VA except for some special modes of perturbations which is ignored in this review.

Once we accept Conjecture II.1, we can always find gauge-invariant variables for higher-order perturbations [22, 33]. According to the gauge transformation rule (2.19), the second-order metric perturbation l_{ab} is transformed as

$$\gamma^{(2)} l_{ab} - \chi^{(2)} l_{ab} = 2 \mathcal{L}_\xi l_{ab} + \left\{ \mathcal{L}_\xi^2 + \mathcal{L}_X^2 \right\} g_{ab}$$

(2.28)

under the gauge transformation $\Phi_\lambda = (\lambda^*)^{-1} \circ \gamma_\lambda : \lambda^* \to \gamma_\lambda$. Although this gauge transformation rule is slightly complicated, inspecting this gauge transformation rule, we first introduce the variable \tilde{L}_{ab} defined by

$$\tilde{L}_{ab} := l_{ab} - 2 \mathcal{L}_X h_{ab} + \mathcal{L}_X^2 g_{ab},$$

(2.29)

where the vector X^a is that introduced by Eq. (2.26). Under the gauge transformation $\Phi_\lambda = (\lambda^*)^{-1} \circ \gamma_\lambda : \lambda^* \to \gamma_\lambda$, the variable \tilde{L}_{ab} is transformed as

$$\gamma \tilde{L}_{ab} - \chi \tilde{L}_{ab} = \mathcal{L}_\xi g_{ab},$$

$$\sigma^a := \xi^2 + [\xi_1, X]^a.$$
The gauge transformation rule (2.30) is identical to Eq. (2.23) in Conjecture III.1. Therefore, we may apply Conjecture III.1 not only to the linear-order metric perturbation \(h_{ab} \), but also to the variable \(\tilde{L}_{ab} \) associated with the second-order metric perturbation. Then, \(\tilde{L}_{ab} \) can be decomposed as

\[
\tilde{L}_{ab} = L_{ab} + \mathcal{L} Y_{ab},
\]

where \(L_{ab} \) is the gauge-invariant part of the variable \(L_{ab} \), or equivalently, of the second-order metric perturbation \(l_{ab} \), and \(Y^a \) is the gauge-variant part of \(L_{ab} \), i.e., of the second-order metric perturbation \(l_{ab} \). Under the gauge transformation \(\Phi_\lambda = (\lambda_X)^{-1} \circ \lambda_X \), the variables \(L_{ab} \) and \(Y^a \) are transformed as

\[
yL_{ab} - \chi L_{ab} = 0, \quad yY_a - \chi Y_a = \sigma_a,
\]

respectively. Thus, once we accept Conjecture III.1, the second-order metric perturbations are decomposed as

\[
l_{ab} = L_{ab} + 2\mathcal{L} X h_{ab} + (\mathcal{L} Y - \mathcal{L} X^2) g_{ab},
\]

where \(L_{ab} \) and \(Y^a \) are the gauge invariant and variant parts of the second order metric perturbations, i.e.,

\[
yL_{ab} - \chi L_{ab} = 0, \quad yY^a - \chi Y^a = \xi^a + [\xi_1, X]^a.
\]

Furthermore, as shown in Ref. 22, using the first- and second-order gauge variant parts, \(X^a \) and \(Y^a \), of the metric perturbations, the gauge-invariant variables for an arbitrary field \(Q \) other than the metric are given by

\[
(1)Q := (1)Q - \mathcal{L} X Q_0, \quad (2)Q := (2)Q - 2\mathcal{L} X (1)Q - \{ \mathcal{L} Y - \mathcal{L} X^2 \} Q_0.
\]

It is straightforward to confirm that the variables \(Q^\alpha \) defined by (2.36) and (2.37) are gauge invariant under the gauge transformation rules (2.18) and (2.19), respectively. Equations (2.36) and (2.37) have very important implications. To see this, we represent these equations as

\[
(1)Q = (1)Q + \mathcal{L} X Q_0, \quad (2)Q = (2)Q + 2\mathcal{L} X (1)Q + \{ \mathcal{L} Y - \mathcal{L} X^2 \} Q_0.
\]

These equations imply that any perturbation of first- and second-order can always be decomposed into gauge-invariant and gauge-variant parts as Eqs. (2.38) and (2.39), respectively. These decomposition formulae (2.38) and (2.39) are important ingredients in the general framework of the second-order general relativistic gauge-invariant perturbation theory.

III. Perturbations of the Field Equations

In terms of the gauge-invariant variables defined last section, we derive the field equations, i.e., Einstein equations and the equation for a matter field. To derive the perturbation of the Einstein equations and the equation for a matter field (Klein-Gordon equation), first of all, we have to derive the perturbative expressions of the Einstein tensor [22]. This is reviewed in Sec. III.A. We also derive the first- and the second-order perturbations of the energy momentum tensor for a scalar field and the Klein-Gordon equation [27] in Sec. III.B. Finally, we consider the first- and the second-order the Einstein equations in Sec. III.C

A. Perturbations of the Einstein curvature

The relation between the curvatures associated with the metrics on the physical spacetime \(M_\Lambda \) and the background spacetime \(M_0 \) is given by the relation between the pulled-back operator \(\lambda_\Lambda^n \nabla_n (\lambda_\Lambda^{-1})^* \) of the covariant derivative \(\nabla_n \) associated with the metric \(\tilde{g}_{ab} \) on \(M_\Lambda \) and the covariant derivative \(\nabla_n \) associated with the metric \(g_{ab} \) on \(M_0 \). The pulled-back covariant derivative \(\lambda_\Lambda^n \nabla_n (\lambda_\Lambda^{-1})^* \) depends entirely on the gauge choice \(\lambda_\Lambda \). The property of the derivative operator \(\lambda_\Lambda^n \nabla_n (\lambda_\Lambda^{-1})^* \) as the covariant derivative on \(M_\Lambda \) is given by

\[
\lambda_\Lambda^n \nabla_n \left((\lambda_\Lambda^{-1})^* \lambda_\Lambda^* \tilde{g}_{ab} \right) = 0,
\]
where $X^\lambda \bar{\gamma}_{ab}$ is the pull-back of the metric on \mathcal{M}_λ, which is expanded as Eq. (2.22). In spite of the gauge dependence of the operator $X^\lambda \nabla_a (X^{-1})^\lambda$, we simply denote this operator by $\bar{\nabla}_a$, because our calculations are carried out only on \mathcal{M}_0 in the same gauge choice X_λ. Further, we denote the pulled-back metric $X^\lambda \bar{g}_{ab}$ on \mathcal{M}_λ by \bar{g}_{ab}, as mentioned above.

Since the derivative operator $\bar{\nabla}_a (= X^\lambda \bar{\nabla}_a (X^{-1})^\lambda)$ may be regarded as a derivative operator on \mathcal{M}_0 that satisfies the property (3.1), there exists a tensor field C^c_{ab} on \mathcal{M}_0 such that

$$\bar{\nabla}_a \omega^b = \nabla_a \omega^b - C^c_{ab} \omega^c,$$

where ω^a is an arbitrary one-form on \mathcal{M}_0. From the property (3.1) of the covariant derivative operator $\bar{\nabla}_a$ on \mathcal{M}_λ, the tensor field C^c_{ab} on \mathcal{M}_0 is given by

$$C^c_{ab} = \frac{1}{2} \bar{g}^{cd} \left(\nabla_a \bar{g}_{db} + \nabla_b \bar{g}_{da} - \nabla_d \bar{g}_{ab} \right),$$

where \bar{g}^{ab} is the inverse of \bar{g}_{ab} (see Appendix B). We note that the gauge dependence of the covariant derivative $\bar{\nabla}_a$ appears only through C^c_{ab}. The Riemann curvature \bar{R}_{abc}^d on \mathcal{M}_λ, which is also pulled back to \mathcal{M}_0, is given by [48]:

$$\bar{R}_{abc}^d = R_{abc}^d - 2 \bar{\nabla}_a c^{cd} b_c + 2 C^e_{c[a} c^{d} b_c,$$

where R_{abc}^d is the Riemann curvature on \mathcal{M}_0. The perturbative expression for the curvatures are obtained from the expansion of Eq. (3.3) through the expansion of C^c_{ab}.

The first- and the second order perturbations of the Riemann, the Ricci, the scalar, the Weyl curvatures, and the Einstein tensors on the general background spacetime are summarized in Ref. [23]. We also derived the perturbative C^c_{ab} expansion of Eq. (3.4) through the expansion of C^c_{ab}.

As shown in Appendix B, each order perturbation of the Einstein tensor is given by

$$(1) G^b_a = (1) \bar{G}^b_a \left[\mathcal{H} \right] + \mathcal{L} \bar{G}^b_a,$$

$$(2) G^b_a = (1) \bar{G}^b_a \left[\mathcal{L} \right] + (2) \bar{G}^b_a \left[\mathcal{H}, \mathcal{H} \right] + 2 \mathcal{L} (1) \bar{G}^b_a + \left\{ \mathcal{L}_Y - \mathcal{L}_X \right\} \bar{G}^b_a,$$

where

$$(1) \bar{G}^b_a \left[A \right] := (1) \Sigma^b_a \left[A \right] - \frac{1}{2} \delta^b_a (1) \Sigma^c \left[A \right],$$

$$(2) \bar{G}^b_a \left[A, B \right] := (2) \Sigma^b_a \left[A, B \right] - \frac{1}{2} \delta^b_a (2) \Sigma^c \left[A, B \right],$$

and

$$H_{ab}^c \left[A \right] := \nabla_{(a} A_{b)}^c - \frac{1}{2} \nabla^c A_{ab},$$

$$H_{abc} \left[A \right] := g_{cd} H_{ab}^d \left[A \right], \quad H_{bc}^a \left[A \right] := g^{bd} H_{ad}^c \left[A \right], \quad H_{b}^a \left[A \right] := g_{ca} H_{ab}^d \left[A \right].$$

We note that $(1) \bar{G}^b_a \left[A \right]$ and $(2) \bar{G}^b_a \left[A, B \right]$ in Eqs. (3.6) and (3.7) are the gauge invariant parts of the perturbative Einstein tensors, and Eqs. (3.6) and (3.7) have the same forms as Eqs. (2.36) and (2.39), respectively. The expression of $(2) \bar{G}^b_a \left[A, B \right]$ in Eq. (3.9) with Eq. (3.11) was derived by the consideration of the general relativistic gauge-invariant perturbation theory with two infinitesimal parameters in Refs. [22, 23].

We also note that $(1) \bar{G}^b_a \left[A \right]$ and $(2) \bar{G}^b_a \left[A, B \right]$ defined by Eqs. (3.6)–(3.11) satisfy the identities

$$\nabla_a (1) \bar{G}^b_a \left[A \right] = -H_{ca} \left[A \right] G^c_b + H_{ba} \left[A \right] G^c_a,$$

$$\nabla_a (2) \bar{G}^b_a \left[A, B \right] = -H_{ca} \left[A \right] (1) \bar{G}^c_b \left[B \right] - H_{cb} \left[A \right] (1) \bar{G}^c_a \left[B \right] + H_{ba} \left[A \right] (1) \bar{G}^c \left[B \right] + H_{ba} \left[A \right] (1) \bar{G}^c \left[B \right] \left(1 \bar{G}^d_a \left[B \right] \nabla_{ad} + H_{cad} \left[A \right] B^{ad} \right) G^c_e,$$
for arbitrary tensor fields A_{ab} and B_{ab}, respectively. We can directly confirm these identities without specifying arbitrary tensors A_{ab} and B_{ab} of the second rank, respectively [23]. This implies that our general framework of the second-order gauge-invariant perturbation theory discussed here gives a self-consistent formulation of the second-order perturbation theory. These identities (3.13) and (3.14) guarantee the first- and second-order perturbations of the Bianchi identity $\nabla_i G^i_a = 0$ and are also useful when we check whether the derived components of Eqs. (3.8) and (3.9) are correct.

B. Perturbations of the energy momentum tensor and Klein-Gordon equation

Here, we consider the perturbations of the energy momentum tensor and the equation of motion. As a model of the matter field, we only consider the scalar field, for simplicity. Then, equation of motion for a scalar field is the Klein-Gordon equation.

The background energy momentum tensor \bar{T}_{ab} for arbitrary tensor fields $\bar{\phi}$ and $\bar{\phi}$ is given by

$$\bar{T}_{ab} = \bar{\nabla}_a \bar{\phi} \bar{\nabla}_b \bar{\phi} - \frac{1}{\lambda_2} \delta_a^b \left(\nabla_c \bar{\phi} \nabla^c \bar{\phi} + 2V(\bar{\phi}) \right),$$

where $V(\bar{\phi})$ is the potential of the scalar field $\bar{\phi}$. We expand the scalar field $\bar{\phi}$ as

$$\bar{\phi} = \phi + \lambda \phi_1 + \frac{1}{2} \lambda^2 \phi_2 + O(\lambda^3),$$

where ϕ is the background value of the scalar field $\bar{\phi}$. Further, following to the decomposition formulae (2.30) and (2.37), each order perturbation of the scalar field $\bar{\phi}$ is decomposed as

$$\hat{\phi}_1 := \phi_1 + \frac{1}{2} \phi_1 \phi_1 \phi_2 =: \phi_2 + 2E_X \phi_1 + \left(E_Y - E_X \right) \phi_2,$$

where ϕ_1 and ϕ_2 are the first- and the second-order gauge-invariant perturbations of the scalar field, respectively.

Through the perturbative expansions (3.10) of the scalar field $\bar{\phi}$ and Eq. (3.2) for the inverse metric, the energy momentum tensor (3.15) is also expanded as

$$\hat{T}_{ab} = T_{ab} + \lambda^{(1)} (T_{ab}) + \frac{1}{2} \lambda^{(2)} (T_{ab}) + O(\lambda^3).$$

The background energy momentum tensor T_{ab} is given by the replacement $\bar{\phi} \rightarrow \phi$ in Eq. (3.15). Further, through the decompositions (2.20), (2.31), (3.17), and (3.18), the perturbations of the energy momentum tensor (1)T_{ab} and (2)T_{ab} are also decomposed as

$$\hat{T}_{ab} = (1)T_{ab} + \lambda X T_{ab} + \frac{1}{2} \lambda^2 (T_{ab}) + O(\lambda^3).$$

where the gauge-invariant parts (1)T_{ab} and (2)T_{ab} of the first- and the second-order are given by

$$\hat{T}_{ab} := \nabla_a \bar{\phi} \nabla_b \phi_1 - \nabla_a \phi_1 \nabla_b \phi - \delta_{ab} \left(\nabla_c \phi \nabla^c \phi_1 - \frac{1}{2} \nabla_c \phi \hat{H}^{de} \nabla_d \varphi + \phi_1 \frac{\partial V}{\partial \phi} \right),$$

$$\hat{T}_{ab} := \nabla_a \bar{\phi} \nabla_b \phi_2 + \nabla_a \phi_2 \nabla_b \phi - \delta_{ab} \left(\nabla_c \phi \nabla^c \phi_2 - \frac{1}{2} \nabla_c \phi \hat{H}^{de} \nabla_d \varphi + \frac{1}{2} \nabla_c \phi_1 \hat{H}^{de} \nabla_d \phi_1 - \nabla_c \phi_1 \nabla^c \phi_1 \right.$$

$$+ \phi_2 \frac{\partial V}{\partial \phi} + \phi_1 \frac{\partial^2 V}{\partial \phi^2}. $$

We note that Eq. (3.20) and (3.21) have the same form as (2.30) and (2.30), respectively.

Next, we consider the perturbation of the Klein-Gordon equation

$$\hat{C}_{(K)} := \nabla^a \nabla_a \bar{\phi} - \frac{\partial V}{\partial \phi} (\bar{\phi}) = 0.$$
Through the perturbative expansions (3.10) and (2.22), the Klein-Gordon equation (3.21) is expanded as

\[C_{(K)} = C_{(K)}^{(1)} + \lambda C_{(K)}^{(2)} + \frac{1}{2} \lambda^2 C_{(K)}^{(2)} + O(\lambda^3). \]

(3.25)

\(C_{(K)} \) is the background Klein-Gordon equation

\[C_{(K)} := \nabla^a \nabla_a \varphi - \frac{\partial V}{\partial \varphi} = 0. \]

(3.26)

The first- and the second-order perturbations \(C_{(K)}^{(1)} \) and \(C_{(K)}^{(2)} \) are also decomposed into the gauge-invariant and the gauge-variant parts as

\[C_{(K)}^{(1)} = \mathcal{C}_{(K)}^{(1)} + \mathcal{L} X C_{(K)}; \quad C_{(K)}^{(2)} = \mathcal{C}_{(K)}^{(2)} + 2 \mathcal{L} X C_{(K)}^{(1)} + \left(\mathcal{L} Y - \mathcal{L} X \right) C_{(K)}, \]

(3.27)

where

\[\mathcal{C}_{(K)}^{(1)} := \nabla^a \nabla_a \varphi_1 - H_a^{ac}[\mathcal{H}] \nabla_c \varphi - \mathcal{H}^{ab} \nabla_a \nabla_b \varphi - \varphi \frac{\partial^2 V}{\partial \varphi^2} (\varphi), \]

(3.28)

\[\mathcal{C}_{(K)}^{(2)} := \nabla^a \nabla_a \varphi_2 - H_a^{ac}[\mathcal{L}] \nabla_c \varphi + 2 H_a^{ad}[\mathcal{H}] \nabla_d \nabla^c \varphi - 2 H_a^{ac}[\mathcal{H}] \nabla_c \varphi_1 + 2 \mathcal{H}^{ab} \mathcal{H}_a^{c} [\mathcal{H}] \nabla_c \varphi - \mathcal{L}^{ab} \nabla_a \nabla_b \varphi + 2 \mathcal{H}_d \mathcal{H}^{db} \nabla_d \varphi_1 - \varphi \frac{\partial^2 V}{\partial \varphi^2} (\varphi) - 2 \varphi \frac{\partial V}{\partial \varphi} (\varphi). \]

(3.29)

Here, we note that Eqs. (3.21) have the same form as Eqs. (2.38) and (2.39).

By virtue of the order by order evaluations of the Klein-Gordon equation, the first- and the second-order perturbation of the Klein-Gordon equation are necessarily given in gauge-invariant form as

\[C_{(K)}^{(1)} = 0, \quad C_{(K)}^{(2)} = 0. \]

(3.30)

We should note that, in Ref. [27], we summarized the formulae of the energy momentum tensors for a perfect fluid, an imperfect fluid, and a scalar field. Further, we also summarized the equations of motion of these three matter fields: i.e., the energy continuity equation and the Euler equation for a perfect fluid; the energy continuity equation and the Navier-Stokes equation for an imperfect fluid; the Klein-Gordon equation for a scalar field. All these formulae also have the same form as the decomposition formulae (2.38) and (2.39). In this sense, we may say that the decomposition formulae (2.38) and (2.39) are universal.

C. Perturbations of the Einstein equation

Finally, we impose the perturbed Einstein equation of each order,

\[G_a^b = 8\pi G \left[T_a^b \right]^{(1)}, \quad G_a^b = 8\pi G \left[T_a^b \right]^{(2)}. \]

(3.31)

Then, the perturbative Einstein equation is given by

\[G_a^b \left[\mathcal{H} \right] = 8\pi G \left[T_a^b \right]^{(1)} \]

(3.32)

at linear order and

\[G_a^b \left[\mathcal{L} \right] + G_a^b \left[\mathcal{H}, \mathcal{H} \right] = 8\pi G \left[T_a^b \right]^{(2)} \]

(3.33)

at second order. These explicitly show that, order by order, the Einstein equations are necessarily given in terms of gauge-invariant variables only.

Together with Eqs. (3.30), we have seen that the first- and the second-order perturbations of the Einstein equations and the Klein-Gordon equation are necessarily given in gauge-invariant form. This implies that we do not have to consider the gauge degree of freedom, at least in the level where we concentrate only on the equations of the system.

We have reviewed the general outline of the second-order gauge-invariant perturbation theory. We also note that the ingredients of this section are independent of the explicit form of the background metric \(g_{ab} \), except for Conjecture II.1. Therefore, if Conjecture II.1 is correct for the general background spacetime, the ingredients of this section are also valid not only in cosmological perturbation case but also the other generic situation. Since this is the review of cosmological perturbation theory, in next section, we develop a second-order cosmological perturbation theory in terms of the gauge-invariant variables within this general framework.
IV. COSMOLOGICAL BACKGROUND SPACETIME AND EQUATIONS

The background spacetime \mathcal{M}_0 considered in cosmological perturbation theory is a homogeneous, isotropic universe that is foliated by the three-dimensional hypersurface $\Sigma(\eta)$, which is parametrized by η. Each hypersurface of $\Sigma(\eta)$ is a maximally symmetric three-space $[49]$, and the spacetime metric of this universe is given by

$$g_{ab} = a^2(\eta) \left(-(d\eta)_a(d\eta)_b + \gamma_{ij}(dx^i)_a(dx^j)_b \right),$$

(4.1)

where $a = a(\eta)$ is the scale factor, γ_{ij} is the metric on the maximally symmetric 3-space with curvature constant K, i.e., the spatial curvature associated with the metric γ_{ij} is given by

$$(3) R_{ijkl} = 2K\gamma^{k}_i[\gamma^j_l], \quad (3) R_{ij} = 2K\gamma^{ij}, \quad (3) R = 6K.$$ (4.2)

The indices $i,j,k,...$ for the spatial components run from 1 to 3.

To study the Einstein equation for this background spacetime, we introduce the energy-momentum tensor for a scalar field, which is given by

$$T^b_a = \nabla_a \phi \nabla^b \phi - \frac{1}{2} \delta^b_a \left(\nabla_c \phi \nabla^c \phi + 2V(\phi) \right)$$

(4.3)

$$= -\left(\frac{1}{2a^2}(\partial_\eta \phi)^2 + V(\phi) \right) (d\eta)_a \left(\frac{\partial}{\partial \eta} \right)^b + \left(\frac{1}{2a^2}(\partial_\eta \phi)^2 - V(\phi) \right) \gamma^b_a,$$ (4.4)

where we assumed that the scalar field ϕ is homogeneous

$$\phi = \phi(\eta)$$ (4.5)

and γ^b_a are defined as

$$\gamma_{ab} := \gamma_{ij}(dx^i)_a(dx^j)_b, \quad \gamma^b_a := \gamma^i_j(dx^i)_a(\partial/\partial x^j)^b.$$ (4.6)

The background Einstein equations $G^b_a = 8\pi G T^b_a$ for this background spacetime filled with the single scalar field are given by

$$\mathcal{H}^2 + K = \frac{8\pi G}{3} a^2 \left(\frac{1}{2a^2}(\partial_\eta \phi)^2 + V(\phi) \right),$$ (4.7)

$$2\partial_\phi \mathcal{H} + \mathcal{H}^2 + K = 8\pi G \left(-\frac{1}{2}(\partial_\eta \phi)^2 + a^2 V(\phi) \right).$$ (4.8)

We also note that the equations (4.7) and (4.8) lead to

$$\mathcal{H}^2 + K - \partial_\eta \mathcal{H} = 4\pi G(\partial_\eta \phi)^2.$$ (4.9)

Equation (4.9) is also useful when we derive the perturbative Einstein equations.

Next, we consider the background Klein-Gordon equation which is the equation of motion $\nabla_a T^a_b = 0$ for the scalar field

$$\partial^2_\eta \phi + 2\mathcal{H}\partial_\eta \phi + a^2 \frac{\partial V}{\partial \phi} = 0.$$ (4.10)

The Klein-Gordon equation (4.10) is also derived from the Einstein equations (4.7) and (4.8). This is a well-known fact and is just due to the Bianchi identity of the background spacetime. However, these types of relation are useful to check whether the derived system of equations is consistent.

V. EQUATIONS FOR THE FIRST-ORDER COSMOLOGICAL PERTURBATIONS

On the cosmological background spacetime in the last section, we develop the perturbation theory in the gauge-invariant manner. In this section, we summarize the first-order perturbation of the Einstein equation and the Klein-Gordon equations. In Sec. [V A] we show that Conjecture [I.1] for the linear-order metric perturbation is correct except for the special modes of perturbations. In Sec. [V B] we summarize the first-order perturbation of the Einstein equation. Finally, in Sec. [V C] we show the first-order perturbation of the Klein-Gordon equation.
A. Gauge-invariant metric perturbations

Here, we consider the first-order metric perturbation \(h_{ab} \) and show that Conjecture\[A.1\] is correct in the background metric \([4.1]\) expect for the special modes of perturbations. Although the outline of the proof of Conjecture\[A.1\] for the general metric is given in Appendix\[C\] we show a specific approach of Conjecture\[A.1\] which is valid only in the case of cosmological perturbations.

As the starting point of our arguments, we consider the linear metric perturbation on the background spacetime with the metric \([4.1]\):

\[
h_{ab} = h_{\eta\eta}(d\eta)_a(d\eta)_b + 2h_{\eta i}(d\eta)_a(dx^i)_b + h_{ij}(dx^i)_a(dx^j)_b. \tag{5.1}
\]

Furthermore, we consider the decomposition of the set of the above component \(\{h_{\eta\eta}, h_{\eta i}, h_{ij}\} \) as

\[
h_{ab} = h_{\eta\eta}(d\eta)_a(d\eta)_b + 2(D_i h_{(VL)}) (d\eta)_a(dx^i)_b + a^2 \left\{ (D_i) \gamma_{ij} + \left(D_i D_j - \frac{1}{3} \gamma_{ij} \Delta \right) h_{(TL)} + 2D_i h_{(TV)}(j) + h_{(TT)}(j) \right\} (dx^i)_a(dx^j)_b,
\]

where \(h_{(V)L}, h_{(TV)i}, h_{(TT)ij} \) and \(h_{TT}ij \) satisfy the properties

\[
D_i h_{(V)L} = 0, \quad D_i h_{(TV)i} = 0, \quad h_{(TT)ij} = h_{(TT)ji}, \quad D_i h_{(TT)ij} = 0,
\tag{5.3}
\]

and \(D_i \) is the covariant derivative associated with the metric \(\gamma_{ij} \) and the operator \(\Delta := D^i D_i \) is the Laplacian which is an elliptic operator. The decomposition \([5.2]\) of the symmetric tensor with the properties \([5.3]\) is originated from Refs. \[51\] and used in many literature.

To examine the one-to-one correspondence between the set of variables \(\{h_{\eta\eta}, h_{\eta i}, h_{ij}\} \) and the set of variables \(\{h_{\eta\eta}, h_{(VL)}, h_{(V)i}, h_{(TL)}, h_{(TV)i}, h_{(TT)ij}\} \) through the decomposition \([5.2]\), we consider the inverse relation of the variable transformation from the original components in Eq. \([5.1]\) to the decomposed components in Eq. \([5.2]\), i.e.,

from the set \(\{h_{\eta\eta}, h_{(V)L}, h_{(V)i}, h_{(TL)}, h_{(TV)i}, h_{(TT)ij}\} \) to the set \(\{h_{\eta\eta}, h_{(VL)}, h_{(V)i}, h_{(TL)}, h_{(TV)i}, h_{(TT)ij}\} \):

\[
\begin{align*}
 h_{\eta\eta} &= h_{\eta\eta}, \quad h_{(V)L} = \Delta^{-1} D^i h_{\eta i}, \quad h_{(V)i} = (h_{\eta i} - D_i \Delta^{-1} D^j h_{\eta j}), \tag{5.4} \\
 a^2 h_{(VL)} &= \frac{1}{3} \gamma_{ij} h_{ij}, \quad a^2 h_{(TL)} = \frac{1}{2} [\Delta + 3K]^{-1} \Delta^{-1} D^k D_l h_{(TL)kl}, \tag{5.5} \\
 a^2 h_{(TV)ij} &= [\Delta + 2K]^{-1} \left[\gamma_{i}^m - D_i \Delta^{-1} D^m \right] D^k h_{(TV)mk}, \tag{5.6} \\
 a^2 h_{(TT)ij} &= h_{(TT)ij} - \frac{3}{2} \left(D_i D_j - \frac{1}{3} \gamma_{ij} \Delta \right) [\Delta + 3K]^{-1} \Delta^{-1} D^k D_l h_{(TT)kl} \\
 &\quad - 2\gamma_{li} D_j [\Delta + 2K]^{-1} \left[\gamma_{l}^m - D_l \Delta^{-1} D^m \right] D^k h_{(TT)mk}.
\end{align*}
\]

where \(h_{(T)} \) is the traceless part of the components \(h_{ij} \) defined by

\[
h_{(T)ij} := h_{ij} - \frac{1}{3} \gamma_{ij} \gamma^{kl} h_{kl} = \left(D_i D_j - \frac{1}{3} \gamma_{ij} \Delta \right) h_{(TL)} + 2D_i h_{(TV)j} + h_{(TT)ij}.
\tag{5.8}
\]

In Eqs. \([5.4]–[5.7]\), the operator \(\Delta^{-1} \), \([\Delta + 2K]^{-1} \), and \([\Delta + 3K]^{-1} \) are the Green functions of the elliptic derivative operators \(\Delta, \Delta + 2K, \) and \(\Delta + 3K \), respectively, and \(K \) is the curvature constant of the maximally symmetric three space.

Equations \([5.4]–[5.7]\) indicate that the decomposition \([5.2]\) is non-local, since its inverse relations \([5.4]–[5.7]\) requires the Green functions \(\Delta^{-1}, [\Delta + 2K]^{-1}, \) and \([\Delta + 3K]^{-1} \). More importantly, the inverse relation \([5.4]–[5.7]\) indicates that the decomposition \([5.2]\) does not includes the modes which belong to the kernels of the derivative operators \(\Delta, \Delta + 2K, \) and \(\Delta + 3K \). Actually, there is one-to-one correspondence between the set \(\{h_{\eta\eta}, h_{\eta i}, h_{ij}\} \) and the set \(\{h_{\eta\eta}, h_{(VL)}, h_{(V)i}, h_{(TL)}, h_{(TV)i}, h_{(TT)ij}\} \) of metric perturbations if the Green functions \(\Delta^{-1}, [\Delta + 2K]^{-1}, \) and \([\Delta + 3K]^{-1} \) exist. This implies that the representation \([5.2]\) of the metric perturbation \(h_{ab} \) does not include the kernel modes of the operators \(\Delta, \Delta + 2K, \) and \(\Delta + 3K, \) while the representation \([5.1]\) may include these kernel modes. In this sense, we should regard that the set \(\{h_{\eta\eta}, h_{(VL)}, h_{(V)i}, h_{(TL)}, h_{(TV)i}, h_{(TT)ij}\} \) of the perturbative metric is a subset of the original set \(\{h_{\eta\eta}, h_{\eta i}, h_{ij}\} \) due to the lack of these kernel modes of the operators \(\Delta, \Delta + 2K, \) and \(\Delta + 3K \). In spite of this fact, in this review, we ignore these kernel modes, for simplicity, keeping in our mind the importance of these kernel modes. The importance of these kernel modes are discussed in Sec. \[VII\]
In terms of the perturbative variables \(\{ h_{yy}, h_{y(L)}, h_{(V)L}, h_{(TV)i}, h_{(TT)ij} \} \) for the metric perturbations, we consider the construction of the gauge-invariant variables for the linear-order metric perturbations. From the gauge-transformation rule \((2.26) \) with the generator

\[
\xi_a = \xi_{\eta}(d\eta)_a + \xi_i(dx^i)_a,
\]

we can derive the gauge-transformation rules for the components \(\{ h_{yy}, h_{yi}, h_{ij} \} \) as

\[
\begin{align*}
\gamma h_{yy} - \chi h_{yy} &= 2(\partial_{\eta} - \mathcal{H})\xi_{\eta}, \\
\gamma h_{yi} - \chi h_{yi} &= D_i\xi_{\eta} + 2(\partial_{\eta} - 2\mathcal{H})\xi_i, \\
\gamma h_{ij} - \chi h_{ij} &= 2D_i(\xi_{ij}) - 2\mathcal{H}\gamma_{ij}\xi_{\eta},
\end{align*}
\]

From these gauge-transformation rules \((5.10) - (5.12) \), we can derive the gauge-transformation rules for the variables \(\{ h_{yy}, h_{(V)L}, h_{(V)i}, h_{(L)}, h_{(TV)i}, h_{(TT)ij} \} \) as

\[
\begin{align*}
\gamma h_{yy} - \chi h_{yy} &= 2(\partial_{\eta} - \mathcal{H})\xi_{\eta}, \\
\gamma h_{(V)L} - \chi h_{(V)L} &= \xi_{\eta} + (\partial_{\eta} - 2\mathcal{H})\xi_{(L)}, \\
\gamma h_{(V)i} - \chi h_{(V)i} &= (\partial_{\eta} - 2\mathcal{H})\xi_{(T)i}, \\
a^2\gamma h_{(L)} - a^2\chi h_{(L)} &= -2\mathcal{H}\xi_{\eta} + \frac{2}{3}\Delta\xi_{(L)}, \\
a^2\gamma h_{(TL)} - a^2\chi h_{(TL)} &= 2\xi_{(L)}, \\
a^2\gamma h_{(TV)i} - a^2\chi h_{(TV)i} &= \xi_{(T)i}, \\
a^2\gamma h_{(TT)ij} - a^2\chi h_{(TT)ij} &= 0,
\end{align*}
\]

where we decomposed the component \(\xi_i \) as

\[
\xi_i = D_i\xi_{(L)} + \xi_{(V)i}, \quad D^i\xi_{(V)i} = 0.
\]

First, we derive the definition of the gauge-variant part \(X_a \) of the metric perturbation in Eq. \((2.26) \). From Eqs. \((5.9), (5.14), (5.16), (5.17), \) and \((5.20) \), we define the variable \(X_a \) as

\[
\begin{align*}
X_a := h_{(V)L} - \frac{1}{2}a^2\partial_{\eta}h_{(TL)}(d\eta)_a + a^2\left(h_{(TV)i} + \frac{1}{2}D_ih_{(TL)}\right)(dx^i)_a \\
=: X_a(d\eta)_a + X_i(dx^i)_a.
\end{align*}
\]

We can easily check this vector field \(X_a \) satisfies Eq. \((2.27) \).

Now, we derive the definition of the gauge-invariant part \(\mathcal{H}_{ab} \). First, we note that the gauge-transformation rule \((5.19) \) indicates that the \(h_{(TT)ij} \) is gauge invariant itself:

\[
(1)^{1} \chi_{ij} := h_{(TT)ij}, \quad (1)^{1} \gamma_{ij} := 0 = D^i(1)^{1} \chi_{ij}.
\]

Second, from Eqs. \((5.16) \) and \((5.18) \), we can easily check that the combination

\[
a^2(1)^{1} \nu_i := h_{(V)i} - a^2\partial_{\eta}h_{(TV)i}
\]

is gauge invariant. The gauge-invariant variable \((1)^{1} \nu_i \) is called a “vector mode” in the context of cosmological perturbations. It satisfies the equation

\[
D^i(1)^{1} \nu_i = 0
\]

from the divergenceless property of the variables \(h_{(V)i} \) and \(h_{(TV)i} \). Third, using the component \(X_a \) of the gauge-variant part \(X_a \) given by Eq. \((5.21) \), we can define the gauge-invariant scalar variable \((1)^{1} \Phi \) as

\[
-2a^2(1)^{1} \Phi := h_{yy} - 2(\partial_{\eta} - \mathcal{H})X_{\eta}.
\]
This scalar variable \((1) \Phi \) corresponds to the Newton potential. Finally, from the gauge-transformation rules \((5.16) \), \((5.17) \), and the gauge-transformation rules for the component \(X_\eta \) of the variable defined by Eq. \((5.21) \), we can define the gauge-invariant variable \((1) \Psi \) by

\[
-2a^2 (1) \Psi := a^2 \left(h_{(L)} - \frac{1}{3} \Delta h_{(TL)} \right) + 2 \mathcal{H} X_\eta. \tag{5.27}
\]

This scalar variable \((1) \Psi \) is called curvature perturbation in the context of cosmological perturbations. The two scalar functions \((1) \Phi \) and \((1) \Psi \) are called “scalar perturbations.”

In terms of the components of the gauge-variant variable \(X_a \) defined by Eq. \((5.21) \) and gauge-invariant variables \(\{ (1) \Phi, (1) \Psi, (1) \nu_i, (1) \chi_{ij} \} \) defined by Eqs. \((5.23), (5.24), (5.26), \) and \((5.27) \), the original components \(\{ h_{\eta\eta}, h_{\eta i}, h_{ij} \} \) of the metric perturbation are given by

\[
\begin{align*}
 h_{\eta\eta} &= -2a^2 (1) \Phi + 2(\partial_\eta - \mathcal{H}) X_\eta, \tag{5.28} \\
 h_{\eta i} &= a^2 (1) \nu_i + D_i X_\eta + \partial_\eta X_i - 2 \mathcal{H} X_i, \tag{5.29} \\
 h_{ij} &= -2a^2 (1) \Psi \gamma_{ij} + a^2 (1) \chi_{ij} + 2D_i X_j - 2 \mathcal{H} \gamma_{ij} X_\eta. \tag{5.30}
\end{align*}
\]

These expressions are summarized in the covariant form Eq. \((2.26) \) through the identification of the gauge-invariant part \(\mathcal{H}_{ab} \) as

\[
\mathcal{H}_{ab} = a^2 \left\{ -2 (1) \Phi (d\eta)_a (d\eta)_b + 2 (1) \nu_i (d\eta)_a (dx^i)_b + \left(-2 (1) \Psi \gamma_{ij} + (1) \chi_{ij} \right) (dx^i)_a (dx^j)_b \right\}. \tag{5.31}
\]

Thus, we may say that our assumption for the decomposition \((2.26) \) in linear-order metric perturbation is correct in the case of cosmological perturbations. We have to emphasize that to accomplish Eq. \((2.26) \), we implicitly assumed the existence of the Green functions \(\Delta^{-1}, (\Delta + 2K)^{-1}, \) and \((\Delta + 3K)^{-1} \). This assumption is necessary to guarantee the one-to-one correspondence between the variables \(\{ h_{\eta\eta}, h_{\eta i}, h_{ij} \} \) and \(\{ h_{\eta\eta}, h_{(VL)}, h_{(V)i}, h_{(L)i}, h_{(TL)i}, h_{(TV)ij}, h_{(TT)ij} \} \), but excludes some perturbative modes of the metric perturbations which belong to the kernel of the operator \(\Delta, \Delta + 2K, \) and \(\Delta + 3K \) in the variable set \(\{ h_{\eta\eta}, h_{\eta i}, h_{ij} \} \) from our consideration. For example, we should regard that homogeneous modes, which belong to the kernel of the operator \(\Delta \), are not included in the decomposition formula \((5.2) \). If we have to treat these exceptional modes, the special treatments for these modes are necessary, as mentioned above. We call this problem of the treatments of these special modes as zero-mode problem.

We also note the fact that the definition \((2.26) \) of the gauge-invariant variables is not unique. This comes from the fact that we can always construct new gauge-invariant quantities by the combination of the gauge-invariant variables. For example, using the gauge-invariant variables \((1) \Phi \) and \((1) \nu_i \) of the first-order metric perturbation, we can define a vector field \(Z_a \) by

\[
Z_a := -a (1) \Phi (d\eta)_a + a (1) \nu_i (dx^i)_a. \tag{5.32}
\]

which is gauge-invariant. We have to emphasize that the vector field \((5.32) \) is just an example. We can construct infinitely many different gauge-invariant vector field \(Z^a \). Then, we can rewrite the decomposition formula \((2.26) \) for the linear-order metric perturbation as

\[
\begin{align*}
 h_{ab} &= \mathcal{H}_{ab} - 2 \mathcal{L}_Z g_{ab} + 2 \mathcal{L}_Z g_{ab} + 2 \mathcal{L}_X g_{ab}, \\
 &=: \mathcal{K}_{ab} + 2 \mathcal{L}_X g_{ab}. \tag{5.33}
\end{align*}
\]

where we have defined new gauge-invariant variable \(\mathcal{K}_{ab} \) by \(\mathcal{K}_{ab} := \mathcal{H}_{ab} - 2 \mathcal{L}_Z g_{ab} \). Clearly, \(\mathcal{K}_{ab} \) is gauge-invariant and the vector field \(X^a + Z^a \) satisfies Eq. \((2.27) \). Therefore, we can construct infinitely many gauge-invariant variables by changing the definition of the gauge-invariant vector field \(Z^a \). In spite of this non-uniqueness of gauge-invariant variables, we specify the components of the tensor \(\mathcal{H}_{ab} \) as Eq. \((5.31) \), which is the gauge-invariant part of the linear-order metric perturbation associated with the longitudinal gauge.

The existence of such infinitely many definitions of gauge-invariant variables corresponds to the fact that there are infinitely many “gauge-fixing” method, in principle. Due to the non-uniqueness of gauge-invariant variables, we can
consider the gauge-fixing in the first-order metric perturbation from two different points of view. The first point of view is that the gauge-fixing is to specify the gauge-variant part X^a. For example, the longitudinal gauge is realized by the gauge fixing $X^a = 0$. Due to this gauge fixing $X^a = 0$, we can regard the fact that perturbative variables in the longitudinal gauge are the completely gauge fixed variables. On the other hand, we may also regard that the gauge fixing is the specification of the gauge-invariant vector field Z^a in Eq. (5.33). In this point of view, we do not specify the vector field X^a. Instead, we have to specify the gauge-invariant vector Z^a or equivalently to specify the gauge-invariant metric perturbation K_{ab} without specifying X^a so that the first-order metric perturbation h_{ab} coincides with the gauge-invariant variables k_{ab} when we fix the gauge X^a so that $X^a + Z^a = 0$. These two different points of view of “gauge fixing” are equivalent due to the non-uniqueness of the definition (5.33) of the gauge-invariant variables. These two understandings of “gauge fixing” are explicitly discussed through the derivation of the correspondence between the Poisson gauge and the flat gauge in Ref. [29]. As the result, we reach to the statement that our general formulation is equivalent to the formulation developed by K. A. Malik and Wands [8].

Recently, second-order cosmological perturbations in the synchronous gauge-fixing and its correspondence with the Poisson gauge are extensively discussed in Refs. [52–55].

B. First-order Einstein equations

Here, we derive the linear-order Einstein equation (3.82). To derive the components of the gauge-invariant part of the linearized Einstein tensor $(1)G^b_{a}[\mathcal{H}]$, which is defined by Eqs. (3.8), we first derive the components of the tensor $H_{ab}^{c}[\mathcal{H}]$, which is defined in Eq. (5.11) with $A_{ab} = H_{ab}$ and its component (5.31). These components are summarized in Ref. [23, 26].

From Eq. (3.8), the component of $(1)G^b_{a}[\mathcal{H}]$ are summarized as

$$a^2(1)G^b_{a} [\mathcal{H}] = -(-6\mathcal{H}\partial_\eta + 2\Delta + 6K) (1)\Psi + 6\mathcal{H}^2 (1)\Phi,$$

$$a^2(1)G^i_{i} [\mathcal{H}] = -2\partial_\eta D_i (1)\Psi - 2\mathcal{H}D_i (1)\Phi + \frac{1}{2}(\Delta + 2K) (1)\nu_i,$$

$$a^2(1)G^i_{j} [\mathcal{H}] = 2\partial_\eta D^i (1)\Psi + 2\mathcal{H}D^i (1)\Phi + \frac{1}{2}(-\Delta + 2K + 4\mathcal{H}^2 - 4\partial_\eta \mathcal{H}) (1)\nu^i,$$

$$a^2(1)G^j_{i} [\mathcal{H}] = D_i D^j (1)\Psi - (1)\Phi + \left\{(-\Delta + 2\partial_\eta^2 + 4\mathcal{H}\partial_\eta - 2K) (1)\Psi + (2\mathcal{H}\partial_\eta + 4\partial_\eta \mathcal{H} + 2\mathcal{H}^2 + \Delta) (1)\Phi\right\} \gamma_{i}^{j} - \frac{1}{2\alpha^2}\partial_\eta\left\{a^2(D_i (1)\nu^j + D^j (1)\nu_i)\right\} + \frac{1}{2}(\partial_\eta^2 + 2\mathcal{H}\partial_\eta + 2K - \Delta) (1)\chi_{i}^{j}.\quad(5.37)$$

Straightforward calculations show that these components of the first-order gauge-invariant perturbation $(1)G^b_{a}[\mathcal{H}]$ of the Einstein tensor satisfies the identity (5.13). Although this confirmation is also possible without specification of the tensor H_{ab}, the confirmation of Eq. (5.13) through the explicit components (5.34–5.37) implies that we have derived the components of $(1)G^b_{a}[\mathcal{H}]$ consistently.

Next, we summarize the first-order perturbation of the energy momentum tensor for a scalar field. Since, at the background level, we assume that the scalar field φ is homogeneous as Eq. (4.15), the components of the gauge-invariant part of the first-order energy-momentum tensor $(1)T^b_{a}$ are given by

$$a^2(1)T^\eta_{\eta} = -\partial_\eta \varphi_1 \partial_\eta \varphi + (1)\Phi (\partial_\eta \varphi)^2 - a^2 \frac{dV}{d\varphi_1} \varphi_1,\quad(5.38)$$

$$a^2(1)T^i_{\eta} = -D_i \varphi_1 \partial_\eta \varphi,\quad(5.39)$$

$$a^2(1)T^\eta_{i} = \partial_\eta \varphi D^i \varphi_1 + (\partial_\eta \varphi)^2 (1)\nu^i,\quad(5.40)$$

$$a^2(1)T^j_{i} = \gamma_{i}^{j} \left(\partial_\eta \varphi_1 \partial_\eta \varphi - (1)\Phi (\partial_\eta \varphi)^2 - a^2 \frac{dV}{d\varphi_1} \varphi_1\right).\quad(5.41)$$

The second equation in (5.40) shows that there is no anisotropic stress in the energy-momentum tensor of the single scalar field. Then, we obtain

$$\frac{1}{\Phi} = \Psi.\quad(5.42)$$
From Eqs. (5.34)–(5.40) and (5.42), the components of scalar parts of the linearized Einstein equation (3.32) are given as [3]

\[
\frac{\Delta - 3H\partial_\eta + 4K - \partial_\eta H - 2H^2}{(1)} = 4\pi G \left(\partial_\eta \varphi_1 \partial_\eta \varphi + a^2 \frac{dV}{d\varphi} \varphi_1 \right),
\]

(5.43)

\[
\partial_\eta (1) \Phi + H (1) \Phi = 4\pi G \varphi_1 \partial_\eta \Phi,
\]

(5.44)

\[
(\partial_\eta^2 + 3H\partial_\eta + \partial_\eta H + 2H^2) (1) \Phi = 4\pi G \left(\partial_\eta \varphi_1 \partial_\eta \varphi - a^2 \frac{dV}{d\varphi} \varphi_1 \right).
\]

(5.45)

In the derivation of Eqs. (5.43)–(5.45), we have used Eq. (4.9). We also note that only two of these equations are independent. Further, the vector part of the component \((1)G_{\eta i}\) shows that \(\nu_1 = 0\).

(5.46)

The equation for the tensor mode \((1)\chi_{ij}\) is given by

\[
(\partial_\eta^2 + 2H\partial_\eta + 2K - \Delta)^{\ (1)} \chi_{ij} = 0.
\]

(5.47)

Combining Eqs. (5.43) and (5.45), we eliminate the potential term of the scalar field and thereby obtain

\[
(\partial_\eta^2 + \Delta + 4K)^{\ (1)} \Phi = 8\pi G \partial_\eta \varphi_1 \partial_\eta \Phi.
\]

(5.48)

Further, using Eq. (5.44) to express \(\partial_\eta \varphi_1\) in terms of \(\partial_\eta \Phi\) and \(\Phi\), we also eliminate \(\partial_\eta \varphi_1\) in Eq. (5.48). Hence, we have

\[
\left\{ \partial_\eta^2 + 2 \left(\mathcal{H} - \frac{2\partial_\eta^2 \varphi}{\partial_\eta \varphi} \right) \partial_\eta - \Delta - 4K + 2 \left(\partial_\eta \mathcal{H} - \frac{\mathcal{H} \partial_\eta^2 \varphi}{\partial_\eta \varphi} \right) \right\}^{\ (1)} \Phi = 0.
\]

(5.49)

This is the master equation for the scalar mode perturbation of the cosmological perturbation in universe filled with a single scalar field. It is also known that Eq. (5.49) reduces to a simple equation through a change of variables [3].

C. First-order Klein-Gordon equations

Next, we consider the first-order perturbation of the Klein-Gordon equation (3.28). By the straightforward calculations using Eqs. (4.1), (5.31), (4.3), and (4.10), and the components \(H_{\alpha}^{\ ac}\) summarized in Ref. [25, 26], the gauge-invariant part \(\mathcal{C}_{(K)}^{\ (1)}\) of the first-order Klein-Gordon equation defined by Eq. (3.28) is given by

\[
-a^2 \mathcal{C}_{(K)}^{\ (1)} = \partial_\eta^2 \varphi_1 + 2H\partial_\eta \varphi_1 - \Delta \varphi_1 - \left(\partial^{\ (1)}_\eta \Phi + 3\partial^{\ (1)}_\eta \Psi \right) \partial_\eta \varphi + 2a^2 \varphi_1 \partial_\varphi \frac{dV}{d\varphi} \Phi + a^2 \varphi_1 \partial^2_\varphi \frac{dV}{d\varphi} \Phi = 0.
\]

(5.50)

Through the background Einstein equations (4.7), (4.8), and the first-order perturbations (5.44) and (5.49) of the Einstein equation, we can easily derive the first-order perturbation of the Klein-Gordon equation (5.50) [28]. Hence, the first-order perturbation of the Klein-Gordon equation is not independent of the background and the first-order perturbation of the Einstein equation. Therefore, from the viewpoint of the Cauchy problem, any information obtained from the first-order perturbation of the Klein-Gordon equation should also be obtained from the set of the background and the first-order the Einstein equation, in principle.

VI. EQUATIONS FOR THE SECOND-ORDER COSMOLOGICAL PERTURBATIONS

Now, we develop the second-order perturbation theory on the cosmological background spacetime in Sec. [IV] within the general framework of the gauge-invariant perturbation theory reviewed in Sec. [II]. Since we have already confirm
the important step of our general framework, i.e., the assumption for the decomposition \((2,26)\) of the linear-order metric perturbation is correct except for some special modes which we ignore here. Hence, the general framework reviewed in Sec. [II] is applicable. Applying this framework, we define the second-order gauge-invariant variables of the metric perturbation in Sec. [VI A] In Sec. [VI B] we summarize the explicit components of the gauge-invariant parts of the second-order perturbation of the Einstein tensor. In Sec. [VI C] we summarize the explicit components of the second-order perturbation of the energy-momentum tensor and the Klein-Gordon equations. Then, in Sec. [VI D] we derive the second-order Einstein equations in terms of gauge-invariant variables. The resulting equations have the source terms which constitute of the quadratic terms of the linear-order perturbations. Although these source terms have complicated forms, we give identities which comes from the consistency of all the second-order perturbations of the Einstein equation and the Klein-Gordon equation in Sec. [VI E]

A. Gauge-invariant metric perturbations

First, we consider the components of the gauge-invariant variables for the metric perturbation of second order. The variable \(L_{ab}\) defined by Eq. \((2,29)\) is transformed as Eq. \((2,30)\) under the gauge transformation and we may regard the generator \(\sigma_a\) defined by Eq. \((2,31)\) as an arbitrary vector field on \(M_0\) from the fact that the generator \(\xi^a\) in Eq. \((2,31)\) is arbitrary. We can apply the procedure to find gauge-invariant variables for the first-order metric perturbations discussed above, but more complicated. This situation is similar to the case of the linear-order metric perturbation \(h_{ab}\) discussed above, but more complicated. In the definition of the gauge-invariant variables of the second-order metric perturbation, we may replace the components of the gauge-invariant variables \(L_{ab}\) in Eq. \((2,34)\) as

\[
L_{ab} = -2a^2 \Phi (d \eta)_a (d \eta)_b + 2a^2 \nu_i (d \eta)_a (dx^i)_b + a^2 \left(-2 \Psi \gamma_{ij} + \chi_{ij} \right) (dx^i)_a (dx^j)_b,
\]

where \(\nu_i\) and \(\chi_{ij}\) satisfy the equations

\[
D^i \nu_i = 0, \quad D^i \chi_{ij} = 0.
\]

The gauge-invariant variables \(\Phi\) and \(\Psi\) are the scalar mode perturbations of second order, and \(\nu_i\) and \(\chi_{ij}\) are the second-order vector and tensor modes of the metric perturbations, respectively.

Here, we also note the fact that the decomposition \((2,34)\) is not unique. This situation is similar to the case of the linear-order metric perturbation \(h_{ab}\) discussed above, but more complicated. In the definition of the gauge-invariant variables of the second-order metric perturbation, we may replace

\[
X^a = X^a - Z^a,
\]

where \(Z^a\) is gauge invariant and \(X^a\) is transformed as

\[
\gamma X^a - \chi X^a = \xi^a\]

under the gauge transformation \(\chi_\lambda \rightarrow \gamma_\lambda\). This \(Z^a\) may be different from the vector \(Z^a\) in Eq. \((5,33)\). By the replacement \((6,3)\), the second-order metric perturbation \((2,34)\) is given in the form

\[
l_{ab} =: J_{ab} + 2LX/h_{ab} + \left(L'X' - L'X' + \xi^a \right) g_{ab},
\]

where we defined

\[
J_{ab} := L_{ab} - LXg_{ab} - 2LZK_{ab} - 2LZ'g_{ab} + LXg_{ab} - LX'g_{ab},
\]

\[
Y' := Y' + W' + \left[X', Z' \right]^a.
\]

Here, the vector field \(W^a\) in Eq. \((6,7)\) constitute of some components of gauge-invariant second-order metric perturbation \(L_{ab}\) like \(Z^a\) in Eq. \((5,33)\). The tensor field \(J_{ab}\) is manifestly gauge invariant. The gauge transformation rule of the new gauge-variant part \(Y'\) of the second-order metric perturbation is given by

\[
\gamma Y' - \chi Y' = \xi^a + \left[\xi^a, X' \right]^a.
\]

Although Eq. \((6,5)\) is similar to Eq. \((2,34)\), the tensor fields \(L_{ab}\) and \(J_{ab}\) are different from each other. Thus, the definition of the gauge-invariant variables for the second-order metric perturbation is not unique in a more complicated
way than the linear order. This non-uniqueness of gauge-invariant variables for the metric perturbations propagates to the definition (2.36) and (2.37) of the gauge-invariant variables for matter fields.

In spite of the existence of infinitely many definitions of the gauge-invariant variables, in this paper, we consider the components of \mathcal{L}_{ab} given by Eq. (6.11). Eq. (6.1) corresponds to the second-order extension of the longitudinal gauge, which is called Poisson gauge $X^a = Y^a = 0$.

B. Einstein tensor

Here, we evaluate the second-order perturbation of the Einstein tensor (3.37) with the cosmological background (4.4). We evaluate the term $(1)G^{ab}L$ in the Einstein equation (3.33).

First, we evaluate the term $(1)G^{ab}L$ in the Einstein equation (3.33). Because the components (6.11) of L_{ab} are obtained through the replacements

$$\frac{a^2}{2}(2)\chi^{ij} = \chi^{ij} - 3D_k\Phi_k \chi^{ij} - 8\Phi \chi^{ij} - 3 \left(\partial_\Phi \chi^{ij} \right)^2 - 12 (\mathcal{H}^2 + K) \left(\partial_\Phi \chi^{ij} \right) + D_lD_k \chi^{ij} \chi^{lk}$$

in the components (5.31) of \mathcal{H}_{ab}, we easily obtain the components of $(1)G^{ab}$ through the replacements (6.9) in Eqs. (5.34)–(5.37).

From Eq. (5.31), we can derive the components of $(2)G^{ab}$ defined by Eqs. (5.39)–(5.42) in a straightforward manner. Here, we use the results (5.32) and (5.35) of the first-order Einstein equations, for simplicity. Then the explicit components $(2)G^{ab}$ are summarized as

$$\frac{a^2}{2}(2)\mathcal{H}_{ij} = \mathcal{H}_{ij} - 3D_k\Phi_k \mathcal{H}_{ij} - 8\Phi \mathcal{H}_{ij} - 3 \left(\partial_\Phi \mathcal{H}_{ij} \right)^2 - 12 (\mathcal{H}^2 + K) \left(\partial_\Phi \mathcal{H}_{ij} \right) + D_lD_k \mathcal{H}_{ij} \chi^{lk}$$

We have checked the identity (3.14) through Eqs. (6.10)–(6.13). Then, we may say that the expressions (6.10)–(6.13) are self-consistent.

C. Energy-momentum tensor and Klein-Gordon equation

Here, we summarize the explicit components of the gauge-invariant parts (3.23) of the second-order perturbation of energy momentum tensor for a single scalar field in terms of gauge-invariant variables. Through Eqs. (4.5), (5.31),
where we defined Eqs. (5.42) and (5.46) are satisfied. The formulae for more generic situation is given in Ref. [27]. Through

\[a^{(2)} T_{\eta}^\eta = -\partial_\eta \varphi \partial_\eta \varphi_2 + (\partial_\eta \varphi)^2 \Phi - a^2 \varphi_2 \frac{\partial V}{\partial \varphi} + 4 \partial_\eta \varphi \Phi \partial_\eta \varphi_1 - 4(\partial_\eta \varphi)^2 \left(\frac{\Phi}{\Psi} \right)^2 \]

\[- \left(\partial_\eta \varphi_1 \right)^2 - D_i \varphi_1 D^i \varphi_1 - a^2 \varphi_1 \frac{\partial^2 V}{\partial \varphi^2}, \]

\[a^{(2)} T_i^\eta = -\partial_\eta \varphi D_i \varphi_2 + 4 \partial_\eta \varphi D_i \varphi_1 \left(\frac{\Phi}{\Psi} \right) - 2D_i \varphi_1 \partial_\eta \varphi_1, \]

\[a^{(2)} T_j^\eta = D_i \varphi_1 D^i \varphi_1 + \frac{1}{2} \gamma_i^j \left\{ \partial_\eta \varphi \partial_\eta \varphi_2 - 4 \partial_\eta \varphi \Phi \partial_\eta \varphi_1 + 4(\partial_\eta \varphi)^2 \left(\frac{\Phi}{\Psi} \right)^2 - \left(\partial_\eta \varphi \right)^2 \Phi + (\partial_\eta \varphi)^2 - D_i \varphi_1 D^i \varphi_1 \right. \]

\[- a^2 \varphi_2 \frac{\partial V}{\partial \varphi} - a^2 \varphi_1 \frac{\partial V}{\partial \varphi} \left(\frac{\Phi}{\Psi} \right)^2 \right\}. \]

More generic formulae for the components of \((2)^{T}_{a}^{b}\) are given in Ref. [27].

Next, we show the gauge-invariant second-order the Klein-Gordon equation. We only consider the simple situation where Eqs. (5.32) and (5.40) are satisfied. The formulae for more generic situation is given in Ref. [27]. Through Eqs. (5.31), (6.1), the second-order perturbation of the Klein-Gordon equation (3.29) is given by

\[\Xi_{(K)} := 8 \partial_\eta \varphi \Phi \partial_\eta \varphi_1 + 8 \Delta \varphi_1 - 4a^2 \varphi_1 \frac{\partial V}{\partial \varphi}(\varphi) - a^2 \varphi_1 \frac{\partial^2 V}{\partial \varphi^2}(\varphi) - 8 \Phi \partial_\eta \varphi \Phi \partial_\eta \varphi \]

\[= 0, \quad (6.18) \]

where we defined

\[\Xi_{(K)} := 8 \partial_\eta \varphi \Phi \partial_\eta \varphi_1 + 8 \Delta \varphi_1 - 4a^2 \varphi_1 \frac{\partial V}{\partial \varphi}(\varphi) - a^2 \varphi_1 \frac{\partial^2 V}{\partial \varphi^2}(\varphi) - 8 \Phi \partial_\eta \varphi \Phi \partial_\eta \varphi \]

\[= 0, \quad (6.19) \]

In Eq. (6.18), \(\Xi_{(K)}\) is the source term which is the collection of the quadratic terms of the linear-order perturbations in the second-order perturbation of the Klein-Gordon equation. If we ignore this source term, Eq. (6.18) coincide with the first-order perturbation of the Klein-Gordon equation. From this source term (6.19) of the Klein-Gordon equation, we can see that the mode-mode coupling due to the non-linear effects appear in the second-order Klein-Gordon equation.

We cannot discuss solutions to Eq. (6.18) only through this equation, since this equation includes metric perturbations. To determine the behavior of the metric perturbations, we have to treat the Einstein equations simultaneously. The second-order Einstein equation is shown in Sec. (VI D).

D. Einstein equations

Here, we show the all components of the second-order Einstein equation (5.33). All components of Eq. (5.33) are summarized as

\[(\Xi_{\Phi}) = 0, \quad (2.20) \]

\[2\partial_\eta D_{i \varphi_2} \Phi + 2\partial_\eta D_{i \varphi_2} \Phi - \frac{1}{2}(\Delta + 2K) \gamma_{i \eta} = \Gamma_{i}, \quad (2.21) \]

\[D_{i} D_{j} \left\{ \eta_{i}^{(2)} \right\} + \left\{ (\Delta + 2\partial_\eta^2 + 4\partial_\eta \varphi_1 - 2K) \frac{\Phi}{\Psi} (2\partial_\eta \varphi_1 + 2\partial_\eta \varphi_1 + 4(\partial_\eta \varphi_1)^2 \Phi) \right\} \gamma_{ij} \]

\[- \frac{1}{a^2} \partial_\eta \frac{a^2 D_{i \varphi_2} D_{j \varphi_2}}{2} + \frac{1}{2} (\partial_\eta^2 + 2H_\eta + 2K - \Delta) \chi_{ij} - 8\pi G \left(\partial_\eta \varphi \partial_\eta \varphi_2 - a^2 \varphi_2 \frac{\partial V}{\partial \varphi}(\varphi) \right) \gamma_{ij} = \Gamma_{ij}, \quad (2.22) \]
where Γ_0, Γ_i, Γ_{ij} are the collection of the quadratic term of the first-order perturbations as follows:

$$\Gamma_0 := 4\pi G \left((\partial^\phi \phi_1)^2 + D_i \phi_1 D^i \phi_1 + a^2(\phi_1)^2 \partial^2 V / \partial \phi^2 \right) - 4\partial_\eta H \left(\Phi^2 \right) - 2 \left(\Phi \partial^2_\eta \Phi - 3D_k \Phi D^k \Phi - 10 \Delta \Phi \right) - 3 \left(\partial_\eta \Phi \right)^2 - 16K \left(\Phi^2 \right) - 8\mathcal{H} \left(\Phi^2 \right) + D_i D_k \Phi \chi_{ik} \gamma + \frac{1}{8} \partial_\eta \chi_{ik} \partial_\eta \chi_{kk} + \mathcal{H} \partial_\eta \chi_{ik} \gamma \right).$$

Finally, scalar part of Eqs. (6.20)–(6.22) are summarized as

$$\Gamma_i := 16\pi G \partial_\eta \phi_1 D_i \phi_1 - 4\partial_\eta \Phi D_i \Phi + 8\mathcal{H} \Phi D_i \Phi - 8 \partial_\eta D_i \Phi + 2D_j \Phi \partial_\eta \chi_{ij} - 2\partial_\eta D^i \Phi \chi_{ij}$$

$$- \frac{1}{2} \partial_\eta \chi_{ik} D_i \chi_{kj} - \chi_{kl} \partial_\eta D_i \chi_{lk} + \chi_{kl} \partial_\eta \chi_{lk}.$$

(6.24)

$$\Gamma_{ij} := 16\pi G D_i \phi_1 D_j \phi_1 + 8\pi G \left((\partial^\phi \phi_1)^2 - D_i \phi_1 D^i \phi_1 - a^2(\phi_1)^2 \partial^2 V / \partial \phi^2 \right) \gamma_{ij} - 4D_i \Phi D_j \Phi - 8 \Phi D_i D_j \Phi$$

$$+ \left(6D_k \Phi D^k \Phi + 4 \Phi \Delta \Phi + 2 \left(\partial_\eta \Phi \right)^2 + 8\partial_\eta \mathcal{H} \Phi \right)^2 + 8\mathcal{H} \left(\Phi^2 \right) + 16\mathcal{H} \left(\Phi^2 \right) + 16 \partial_\eta \Phi \partial_\eta \Phi - 4 \Phi \partial_\eta \Phi \right) \gamma_{ij}$$

$$- 4\partial_\eta \Phi \chi_{ij} - 4D_k \Phi \partial_\eta \chi_{ik} + 4D^k \Phi D_i \chi_{kk} - 8K\Phi \chi_{ij} + 4 \Phi \Delta \Phi - 4D_k D_i \Phi \chi_{ij}$$

$$2\Delta \Phi \chi_{ij} + 2D_i D_k \Phi \chi_{ik} \gamma_{ij} + \partial_\eta \chi_{ik} \partial_\eta \chi_{kj} - D_k \Phi \partial_\eta \chi_{ik} + D_i \Phi \chi_{ij} - \frac{1}{2} \partial_\eta \chi_{ik} D_j \chi_{ik}$$

$$- \chi_{lm} D_i D_j \chi_{lm} + 2\chi_{lm} D_i \chi_{lkm} + \chi_{lm} D_m D_i \chi_{ij}$$

$$- \frac{1}{4} \left(3\partial_\eta \chi_{ik} \partial_\eta \chi_{kl} - 3D_k \chi_{lm} D^k \chi_{lm} + 2D_k \chi_{lm} D^k \chi_{lm} - 4K \chi_{lm} \chi_{lm} \right) \gamma_{ij}.$$
where $\Gamma_j^i := \gamma^{kj}\Gamma_{ik}$ and $\Gamma^k_i = \gamma^{ij}\Gamma_{ij}$. Eq. (6.31) is the second-order extension of Eq. (5.49), which is the master equation of scalar mode of the second-order cosmological perturbation in a universe filled with a single scalar field.

Thus, we have a set of ten equations for the second-order perturbations of a universe filled with a single scalar field, Eqs. (6.26)–(6.31). To solve this system of equations of the second-order Einstein equation, first of all, we have to solve the linear-order system. This is accomplished by solving Eq. (5.49) to obtain the potential Φ of the scalar field through (5.44), and the tensor mode χ^{ij} is given by solving Eq. (5.47). Next, we evaluate the quadratic terms, Γ_0, Γ_i, and Γ_{ij} of the linear-order perturbations, which are defined by Eqs. (6.23)–(6.26). Then, using the information of Eqs. (6.28)–(6.26), we estimate the source term in Eq. (6.31). If we know the two independent solutions to the linear-order master equation (5.49), we can solve Eq. (6.31) through the method using the Green functions. After constructing the solution Φ, ψ, φ_2 of the second-order gauge-invariant perturbation of the Klein Gordon equation (6.18) as in Sec. VI E.

For the vector-mode, $\nu_i^{(1)}$ of the first-order identically vanishes due to the momentum constraint (5.46) for the linear-order metric perturbations. On the other hand, in the second-order, we have evolution equation (6.27) of the vector mode $\nu_i^{(2)}$ with the initial value constraint. This evolution equation of the second-order vector mode should be consistent with the initial value constraint, which is confirmed in Sec. VI E. Equations (6.27) also imply that the second-order vector mode perturbation may be generated by the mode couplings of the linear order perturbations. As the simple situations, the generation of both the second-order vector mode and scalar field is discussed in Refs. [54, 55].

The second-order tensor mode is also generated by the mode-coupling of the linear-order perturbations through the source term in Eq. (6.26). Note that Eq. (6.26) is almost same as Eq. (5.47) for the linear-order tensor mode, except for the existence of the source term in Eq. (6.26). If we know the solution to the linear-order Einstein equations (5.44) and (5.49), we can evaluate the source term in Eq. (6.26). Further, we can solve Eq. (6.26) through the Green function method. This leads the generation of the gravitational wave of the second order. Actually, in the simple situation where the first-order tensor mode neglected, the generation of the second-order gravitational waves discussed in some literature [61, 72].

E. Consistency of equations for second-order perturbations

Now, we consider the consistency of the second-order perturbations of the Einstein equations (6.28)–(6.31) for the scalar modes, Eqs. (6.27) for vector mode, and the Klein-Gordon equation (6.18). The consistency check of these equations are necessary to guarantee that the derived equations are correct, since the second-order Einstein equations have complicated forms owing to the quadratic terms of the linear-order perturbations that arise from the nonlinear effects of the Einstein equations.

Since the first equation in Eqs. (6.27) is the initial value constraint for the second-order vector mode $\nu_i^{(2)}$ and it should be consistent with the evolution equation, i.e., the second equation of Eqs. (6.27). these equations should be consistent with each other from the general arguments of the Einstein equation. Explicitly, these equations are consistent with each other if the equation

$$\partial_\eta \Gamma_k + 2\mathcal{H} \Gamma_k - D^j \Gamma_{lk} = 0$$

is satisfied. Actually, through the first-order perturbative Einstein equations (5.44), (5.49), (5.47), we can confirm the equation (6.32). This is a trivial result from a general viewpoint, because the Einstein equation is the first class constrained system. However, this trivial result implies that we have derived the source terms Γ_i and Γ_{ij} of the second-order Einstein equations consistently.

Next, we consider Eq. (6.30). Through the second-order Einstein equations (6.28), (6.29), (6.31), and the background Klein-Gordon equation (4.10), we can confirm that Eq. (6.30) is consistent with the set of the background, first-order and other second-order Einstein equation if the equation

$$(\partial_\eta + 2\mathcal{H}) D^k \Gamma_k - D^j D^l \Gamma_{ij} = 0$$

is satisfied under the background and first-order Einstein equations. Actually, we have already seen that Eq. (6.32) is satisfied under the background and first-order Einstein equations. Taking the divergence of Eq. (6.32), we can immediately confirm Eq. (6.33). Then, Eq. (6.30) gives no information.
Thus, we have seen that the derived Einstein equations of the second order (6.27)–(6.31) are consistent with each other through Eq. (6.32). This fact implies that the derived source terms Γ_i and Γ_{ij} of the second-order perturbations of the Einstein equations, which are defined by Eqs. (6.24) and (6.25), are correct source terms of the second-order Einstein equations. On the other hand, for Γ_0, we have to consider the consistency between the perturbative Einstein equations and the perturbative Klein-Gordon equation as seen below.

Now, we consider the consistency of the second-order perturbation of the Klein-Gordon equation and the Einstein equations. The second-order perturbation of the Klein-Gordon equation is given by Eq. (6.18) with the source term (6.19). Since the vector mode ν_i and tensor mode χ_{ij} of the second-order do not appear in the expressions (6.18) of the second-order perturbation of the Klein-Gordon equation, we may concentrate on the Einstein equations for scalar mode of the second order, i.e., Eqs. (6.28), (6.29), and (6.31) with the definitions (6.23)–(6.25) of the source terms. As in the linear case, the second-order perturbation of the Klein-Gordon equation should also be derived from the set of equations consisting of the second-order perturbations of the Einstein equations (6.28), (6.29), (6.31), the first-order perturbations of the Einstein equations (5.42), (5.44), (5.49), and the background Einstein equations (4.7) and (4.8). Actually, from these equations, we can show that the second-order perturbation of the Klein-Gordon equation is consistent with the background and the second-order Einstein equations if the equation

$$2 (\partial_\eta + H) \Gamma_0 - D^k \Gamma_k + H \Gamma_{k}^k + 8\pi G \partial_\eta \varphi \Xi_{(K)} = 0$$

is satisfied under the background and the first-order Einstein equations. Further, we can also confirm Eq. (6.34) through the background Einstein equations (4.4) and (4.8), the scalar part of the first-order perturbation of the momentum constraint (5.44), the evolution equations (5.49) and (5.47) for the first order scalar and tensor modes in the Einstein equation.

As shown in Ref. [28], the first-order perturbation of the Klein-Gordon equation is derived from the background and the first-order perturbations of the Einstein equation. In the case of the second-order perturbation, the Klein-Gordon equation (6.18) can be also derived from the background, the first-order, and the second-order Einstein equations. The second-order perturbations of the Einstein equation and the Klein-Gordon equation include the source terms Γ_0, Γ_i, Γ_{ij}, and $\Xi_{(K)}$ due to the mode-coupling of the linear-order perturbations. The second-order perturbation of the Klein-Gordon equation gives the relation (6.34) between the source terms Γ_0, Γ_i, Γ_{ij}, and $\Xi_{(K)}$ and we have also confirmed that Eq. (6.34) is satisfied due to the background, the first-order perturbation of the Einstein equations, and the Klein-Gordon equation. Thus, the second-order perturbation of the Klein-Gordon equation is not independent of the set of the background, the first-order, and the second-order Einstein equations if we impose on the Einstein equation at any conformal time η. This also implies that the derived formulae of the source terms Γ_0, Γ_i, Γ_{ij}, and $\Xi_{(K)}$ are consistent with each other. In this sense, we may say that the formulæ (6.23)–(6.25) and (6.19) for these source terms are correct.

VII. SUMMARY AND DISCUSSIONS

In this review, we summarized the current status of our formulation of the gauge-invariant second-order cosmological perturbations. Although the presentation in this article is restricted to the case of the universe filled with a single scalar field, the essence of our general framework of the gauge-invariant perturbation theory is transparent through this simple case. Our general framework of the general relativistic higher-order gauge-invariant perturbation theory can be separated into three parts. First one is the general formulation to derive the gauge-transformation rules (2.18) and (2.19). Second one is the construction of the gauge-invariant variables for the perturbations on the generic background spacetime inspecting gauge-transformation rules (2.18) and (2.19) and the decomposition formula (2.38) and (2.39) for perturbations of any tensor field. Third one is the application of the above general framework of the gauge-invariant perturbation theory to the cosmological situations.

To derive the gauge-transformation rules (2.18) and (2.19), we considered the general arguments on the Taylor expansion of an arbitrary tensor field on a manifold, the general class of the diffeomorphism which is wider than the well-known exponential map, and the general formulation of the perturbation theory. This general class of diffeomorphism is represented in terms of the Taylor expansion (2.2) of its pull-back. The generality of the representation of the Taylor expansion (2.2) can be seen in its derivation shown in Appendix A. We note that the derivation in shown in Appendix A does not require any information of the connection, the metric, nor the special coordinate systems on the manifold. Therefore, the formula for the Taylor expansion (2.2) is quite general.

As commented in Sec. 11A, this general class of diffeomorphism does not form a one-parameter group of diffeomorphism as shown through Eq. (2.28). However, the properties (2.29) do not directly mean that this general class of diffeomorphism does not form a group, as emphasized in Sec. 11A. One of the key points of the properties of this diffeomorphism is the non-commutativity of generators ξ^a and ξ^b of each order. The expression of the n-th order...
Taylor expansion of the pull-back of this general class is discussed in Ref. [40]. When we consider the situation of the n-th order perturbation, this non-commutativity becomes important [22]. Therefore, to clarify the properties of this general class of diffeomorphism, we have to take care of this non-commutativity of generators. Thus, there is a room to clarify the properties of this general class of diffeomorphism.

Further, in Sec. II.C we introduced a gauge choice λ, as an exponential map, for simplicity. On the other hand, we have the concept of the general class of diffeomorphism which is wider than the class of the exponential map. Therefore, we may introduce a gauge choice as one of the element of this general class of diffeomorphism. However, the gauge-transformation rules (2.18) and (2.19) will not be changed even if we generalize the definition of a each gauge choice as emphasized in Sec. II.C. Although there is a room to sophisticate in logical arguments to derive the gauge-transformation rules (2.18) and (2.19), these are harmless to the development of the general framework of the gauge-invariant perturbation theory shown in Secs. II.C, II.E, III and their application to cosmological perturbations.

The gauge-invariant perturbation theory shown in Secs. II.C, II.E, II.I, and their application to cosmological perturbations in Sec. V.A, we assume the existence of some Green functions for the elliptic differential operators $\Delta, \Delta + 2K, \Delta + 3K$. This assumption on the existence of Green functions is an appearance of the non-local nature of the statement of Conjecture II.1 and corresponds to ignoring the kernel modes of the elliptic differential operators $\Delta, \Delta + 2K, \Delta + 3K$. We call these kernel modes as zero mode. To includes these kernel modes even in the case of cosmological perturbations, separate treatments of perturbative modes are required. We call the problem to develop the treatments of these zero mode as zero mode problem. For example, homogeneous modes of perturbations are excluded in our current arguments of the cosmological perturbation theory. These homogeneous modes is physically important because these are necessary to discuss the comparison with the arguments based on the long-wavelength approximation. On the other hand, we can also say that if we resolve this zero mode problem, we can complete the proof of the Conjecture II.1 at least in the case of cosmological perturbations. Therefore, we have to say that there is a room to clarify even in the cosmological perturbation theory.

It is shown that the non-locality in Conjecture II.1 appears even in the scenario of its proof for a generic background spacetime shown in Appendix C. Therefore, we easily expect that zero mode problem essentially exists in perturbations on generic background spacetime. In this sense, we have to say that the scenario of the proof of Conjecture II.1 in Appendix C and in Refs. [32, 33] is still incomplete. In spite of this incompleteness, the Conjecture II.1 is almost correct in some background spacetime [24, 25] in the sense of Sec. V.A. Furthermore, once we accept Conjecture II.1 we can develop the higher-order perturbation theory in an independent manner of the details of the background spacetime. We also expect that our general framework of the gauge-invariant perturbation theory is extensible to an arbitrary-order perturbation theory on an arbitrary background spacetime. Actually, the recursive structure in the construction of gauge-invariant variables for any order perturbations on arbitrary background spacetime was found in Ref. [35] and we can define the gauge-invariant variables on a generic background spacetime to arbitrary order, although the Conjecture II.1 is still incomplete and the other algebraic conjecture (Conjecture 4.1 in Ref. [35]) should be proved. This situation indicates that the zero-mode problem for the perturbations on a generic background spacetime, which is similar to that of cosmological perturbations, is physically essential problem not only of linear-order perturbations but also of non-linear perturbations. Rather, in higher-order perturbations, this zero-mode problem is a serious problem and zero modes should also be included in higher-order perturbations, because Conjecture II.1 is used in the construction of gauge-invariant variables for second-order perturbations shown in Sec. II.C. This situation is also same in the extension to any order perturbations [35]. Thus, we may say that the most important nontrivial part of our general framework of higher-order gauge-invariant perturbation theory is in this zero-mode problem.

Even if Conjecture II.1 is correct on any background spacetime, the other problem exists in the interpretations of the gauge-invariant variables. We have commented on the non-uniqueness in the definitions of the gauge-invariant variables through Eqs. (5.33) and (6.5). Although this non-uniqueness corresponds to the fact that there are infinitely many “gauge-fixing” method, in principle, this non-uniqueness also leads some ambiguities in the interpretations of gauge-invariant variables. On the other hand, as emphasize in Sec. II.C any observations and experiments are carried out only on the physical spacetime through the physical processes within the physical spacetime. For this reason, any direct observables in any observations or experiments should be independent of the gauge choice, i.e., gauge invariant. However, it is not trivial which gauge-invariant variable corresponds to the direct observable in a specific observation or experiment. This non-triviality also comes from the non-uniqueness in the definitions the gauge-invariant variables expressed by Eqs. (5.33) and (6.5) that have the same form as the decomposition formulae (2.28) and (2.29). If we can specify the variable which is the direct observable in an experiment or observation, this variable should be automatically gauge invariant. Furthermore, non-uniqueness of gauge-invariant variables will
be no longer a serious problem, since the terms that bring the non-uniqueness of gauge-invariant variables have the same form as its gauge-variant parts in Eqs. (2.35) and (2.39). These will be confirmed by the clarification of the relations between gauge-invariant variables and direct observables in experiments or observations. To accomplish this, we have to specify the concrete process of experiments, to clarify the problem what are the direct observables in the experiments or observations, and to derive the relations between the gauge-invariant variables and direct observables in a specific experiment. If these arguments are completed, we will be able to show that the gauge degree of freedom is just an unphysical degree of freedom and the non-uniqueness of the gauge-invariant variables is not essential to the direct observables in the concrete observation or experiment, simultaneously. In addition, these considerations will give the precise physical interpretations of the gauge-invariant variables.

This problem of the interpretation of gauge-invariant variables is closely related to “the gauge-dependence of second-order gravitational waves generated by the mode-coupling of the first-order perturbations” which is recently pointed out by J. c.-. Hwang et al. in Ref. [79]. Usually, so called \(\Omega_{GW} \) is estimated the amplitude of gravitational waves in many literature. This \(\Omega_{GW} \) is justified by the arguments on the pseudo-energy-momentum tensor of gravitational field in many text books (for example, see [48, 50]). However, we have to emphasize that we are proposing a different formulation of higher-order perturbation theories of gravity from those in some text books (for exam. in Ref. [48, 50]). In spite of this difference, \(\Omega_{GW} \) is used in many literature. In this sense, the appearance of gauge-dependence in \(\Omega_{GW} \) is not that surprising, because the theoretical context is different. From the arguments in this paper, we can simply say that the gauge-dependence of \(\Omega_{GW} \) for higher-order perturbations indicates that \(\Omega_{GW} \) is no longer direct observable in any experiment nor any observations within our perturbation theory, though \(\Omega_{GW} \) for higher-order perturbations might be one of indicators to estimate the amplitude of gravitational waves in some sense.

As another example in cosmology, in case of the CMB physics, we can easily see that the linear-order perturbation of the CMB temperature is automatically gauge-invariant from Eq. (2.38), because the background temperature of CMB is isotropic Planck distribution. On the other hand, the decomposition formula (2.39) yields that the theoretical prediction of the second-order perturbation of the CMB temperature may depend on gauge choice, since we do know the existence of the first-order fluctuations as the temperature anisotropy in CMB. However, as emphasized above, the direct observables in observations should be gauge-invariant and the gauge-variant term in Eq. (2.39) should be disappear in the direct observables. Therefore, we have to clarify the how gauge-invariant variables are related to the directly observed temperature fluctuations and have to confirm the disappearance of the gauge-variant terms in the direct observable. This will be an important problem for our higher-order cosmological perturbation theory.

Although there are some rooms to accomplish the complete formulation of the second-order cosmological perturbation theory as mentioned above, we derived all the components of the second-order perturbation of the Einstein equation without ignoring any types modes (scalar-, vector-, tensor-types) of perturbations in the case of a scalar field system. In our formulation, any gauge fixing is not necessary and we can obtain all equations in the gauge-invariant form, which are equivalent to the complete gauge fixing. In other words, our formulation gives complete gauge-fixed equations without any gauge fixing. In this sense, the equations shown here are irreducible. This is one of the advantages of the gauge-invariant perturbation theory. Our second-order gauge-invariant cosmological perturbation theory reviewed here is also extensively discussed by Uggla and Wainwright in their series of papers [81–90]. As discussed in these papers, we may obtain more simple equations for second-order cosmological perturbations due to the restriction of the physical situations and the classification of the physical effects such as “super horizon effects”, “Newtonian effects”, and “post-Newtonian effects.” Furthermore, we may also obtain more simple equations by the inclusion of some parts of the source terms in second-order Einstein equations to the gauge-invariant variables for second-order perturbations as in the case of the conventional post-Newtonian expansion theory [91].

The explicit Einstein equations of the second order show that any type of mode-coupling appears as the quadratic terms of the linear-order perturbations due to the nonlinear effect of the Einstein equations, in principle. Perturbations in cosmological situations are classified into three types: scalar, vector, and tensor. In the second-order perturbations, we also have these three types of perturbations as in the case of the first-order perturbations. Furthermore, in the equations for the second-order perturbations, there are many quadratic terms of linear-order perturbations due to the nonlinear effects of the system. Owing to these nonlinear effects, the above three types of perturbations couple with each other. In the scalar field system shown in this paper, the first-order vector mode does not appear due to the momentum constraint of the first-order perturbation of the Einstein equation. Therefore, we have seen that three types of mode-coupling appear in the second-order Einstein equations, i.e., scalar-scalar, scalar-tensor, and tensor-tensor type of mode coupling. In general, all types of mode-coupling may appear in the second-order Einstein equation, in general. Of course, in the some realistic situations of cosmology, we may neglect some modes and some mode-coupling terms. However, even in this case, we should keep in mind the fact that all types of mode-couplings may appear in principle when we discuss the realistic situations of cosmology. We cannot deny the possibility that the mode-couplings of any type produces
observable effects when the quite high accuracy of observations is accomplished.

Even in the case of the single scalar field discussed in this paper, the source terms of the second-order Einstein equation show the mode-coupling of scalar-scalar, scalar-tensor, and the tensor-tensor types as mentioned above. Since the tensor mode of the linear order is also generated due to quantum fluctuations during the inflationary phase, the mode-couplings of the scalar-tensor and tensor-tensor types may appear in the inflation. If these mode-couplings occur during the inflationary phase, these effects will depend on the scalar-tensor ratio r. If so, there is a possibility that the accurate observations of the second-order effects in the fluctuations of the scalar type in our universe also restrict the scalar-tensor ratio r or give some consistency relations between the other observations of primordial gravitational waves such as the measurements of the B-mode of the polarization of CMB. This will be a new effect that gives some information on the scalar-tensor ratio r.

Furthermore, we have also checked the consistency between the second-order perturbations of the equations of motion of matter field and the Einstein equations. In the case of a scalar field, we checked the consistency between the second-order perturbations of the Klein-Gordon equation and the Einstein equations. Due to this consistency check, we have obtained the consistency relations between the source terms in these equations Γ_0, Γ_i, Γ_{ij}, and $\Xi_{(K)}$, which are given by Eqs. (6.32) and (6.34). We note that the relation (6.32) comes from the consistency in the Einstein equations of the second order by itself, while the relation (6.34) comes from the consistency between the second-order perturbation of the Klein-Gordon equation and the Einstein equation. We also showed that these relations between the source terms are satisfied through the background and the first-order perturbation of the Einstein equations in Ref. [28]. This implies that the set of all equations are self-consistent and the derived source terms Γ_0, Γ_i, Γ_{ij}, and $\Xi_{(K)}$ are correct. We also note that these relations are independent of the details of the potential of the scalar field.

Thus, we have derived the self-consistent set of equations of the second-order perturbation of the Einstein equations and the evolution equations of matter fields in terms of gauge-invariant variables. As the current status of the second-order gauge-invariant cosmological perturbation theory, we may say that the curvature terms in the second-order Einstein tensor (3.33), i.e., the second-order perturbations of the Einstein tensor, are almost completely derived, although we have the “zero-mode problem” as a remaining problem, as mentioned above. After resolving this zero-mode problem, we have to clarify the physical behaviors of the second-order cosmological perturbation in the single scalar field system in the context of the inflationary scenario. This will be a preliminary step to clarify the quantum behaviors of second-order perturbations in the inflationary universe. Further, we also have to carry out the comparison with the result by long-wavelength approximations. If these issues are completed, we may say that we have completely understood the properties of the second-order perturbation of the Einstein tensor. The next task is to clarify the nature of the second-order perturbation of the energy-momentum tensor through the extension to multi-fluid or multi-field systems. Further, we also have to extend our arguments to the Einstein Boltzmann system to discuss CMB physics, since we have to treat photon and neutrinos through the Boltzmann distribution functions. This issue is also discussed in some literature [13–21, 30, 31]. If we accomplish these extension, we will be able to clarify the non-linear effects in CMB physics.

Finally, readers might think that the ingredients of this paper is too mathematical as Astronomy. However, we have to emphasize that a high degree of the theoretical sophistication leads unambiguous theoretical predictions in many case. As in the case of the linear-order cosmological perturbation theory, the developments in observations are also supported by the theoretical sophistication and the theoretical sophistication are accomplished motivated by observations. In this sense, now, we have an opportunity to develop the general relativistic second-order perturbation theory to a high degree of sophistication which is motivated by observations. We also expect that this theoretical sophistication will be also useful to discuss the theoretical predictions of non-Gaussianity in CMB and comparison with observations. Therefore, I think that this opportunity is opened not only for observational cosmologists but also for theoretical and mathematical physicists.

Acknowledgments

The author thanks participants in the GCOE/YITP workshop YITP-W-0901 on “Non-linear cosmological perturbations” which was held at YITP in Kyoto, Japan in April, 2009, for valuable discussions, in particular, Prof. M. Bruni, Prof. R. Maartens, Prof. M. Sasaki, Prof. T. Tanaka, and Prof. K. Tomita. This review is an extension of the contribution to this workshop by the author.

Appendix A: Derivation of the generic representation of the Taylor expansion of tensors on a manifold

In this Appendix, we derive the representation of the coefficients of the formal Taylor expansion (2.22) of the pullback of a diffeomorphism in terms of the suitable derivative operators. The guide principle of our arguments is the
following theorem[44, 17].

Theorem A.1. Let \mathcal{D} be a derivative operator acting on the set of all the tensor fields defined on a differentiable manifold \mathcal{M} and satisfying the following conditions: (i) it is linear and satisfies the Leibniz rule; (ii) it is tensor-type preserving; (iii) it commutes with every contraction of a tensor field; and (iv) it commutes with the exterior differentiation d. Then, \mathcal{D} is equivalent to the Lie derivative operator with respect to some vector field ξ, i.e., $\mathcal{D} = \mathcal{L}_\xi$.

The prove of the assertion of Theorem A.1 is given in Ref.[44] as follows. When acting on functions, the derivative operator \mathcal{D} defines a vector field ξ through the relation

$$\mathcal{D} f =: \xi(f) = \mathcal{L}_\xi f, \quad \forall f \in \mathcal{F}(\mathcal{M}) \quad (A1)$$

where $\mathcal{F}(\mathcal{M})$ denotes the algebra of C^∞ functions on \mathcal{M}. The assertion of the Theorem for an arbitrary tensor field is hold if and only if the assertions for an arbitrary scalar function and for an arbitrary vector field V are hold. To do this, we consider the scalar function $V(f)$ and we obtain

$$\mathcal{D}(V(f)) = \xi(V(f)) \quad (A2)$$

through Eq. (A1). Through the conditions (i)-(iv) of \mathcal{D}, $\mathcal{D}(V(f))$ is also given by

$$\mathcal{D}(V(f)) = C \{C(df \otimes V)\}$$

where C is a constant. Then we obtain

$$\mathcal{D}(V(f)) = \xi(V(f)) - V(\xi(f)) = [\xi, V](f) \quad (A3)$$

for an arbitrary f, i.e.,

$$\mathcal{D}V = \mathcal{L}_\xi V. \quad (A5)$$

Through Eqs. (A1) and (A5), we can recursively show

$$\mathcal{D}Q = \mathcal{L}_\xi Q \quad (A6)$$

for an arbitrary tensor field Q[47].

Now, we consider the derivation of the Taylor expansion (2.1). As in the main text, we first consider the representation of the Taylor expansion of $\Phi^*_\lambda f$ for an arbitrary scalar function $f \in \mathcal{F}(\mathcal{M})$:

$$(\Phi^*_\lambda f)(p) = f(p) + \lambda \left\{ \frac{\partial}{\partial \lambda}(\Phi^*_\lambda f) \right\}_{\lambda=0} + \frac{1}{2} \lambda^2 \left\{ \frac{\partial^2}{\partial \lambda^2}(\Phi^*_\lambda f) \right\}_{\lambda=0} + O(\lambda^3). \quad (A7)$$

Although the operator $\partial/\partial \lambda$ in the bracket $\{\}$\textsubscript{$\lambda=0$} of Eq. (A7) are simply symbolic notation, we stipulate the properties

$$\left\{ \frac{\partial^2}{\partial \lambda^2}(\Phi^*_\lambda f) \right\}_{\lambda=0} = \left\{ \frac{\partial}{\partial \lambda} \left(\frac{\partial}{\partial \lambda}(\Phi^*_\lambda f) \right) \right\}_{\lambda=0}, \quad (A8)$$

$$\left\{ \frac{\partial}{\partial \lambda}(\Phi^*_\lambda f)^2 \right\}_{\lambda=0} = \left\{ 2\Phi^*_\lambda f \frac{\partial}{\partial \lambda}(\Phi^*_\lambda f) \right\}_{\lambda=0}. \quad (A9)$$

for $\forall f \in \mathcal{F}(\mathcal{M})$. These properties imply that the operator $\partial/\partial \lambda$ is in fact not simply symbolic notation but indeed the usual partial differential operator on \mathbb{R}. We note that the property (A9) is the Leibniz rule, which plays important roles when we derive the representation of the Taylor expansion (A7) in terms of suitable Lie derivatives.

Together with the property (A9), Theorem A.1 yields that there exists a vector field ξ_1 so that

$$\left\{ \frac{\partial}{\partial \lambda}(\Phi^*_\lambda f) \right\}_{\lambda=0} =: \mathcal{L}_{\xi_1} f. \quad (A10)$$
Actually, the conditions (ii)-(iv) in Theorem A.1 are satisfied from the fact that \(\Phi^{*}_{\lambda} \) is the pull-back of a diffeomorphism \(\Phi_{\lambda} \) and (i) is satisfied due to the property (A9).

Next, we consider the second-order term in Eq. (A7). Since we easily expect that the second-order term in Eq. (A7) may includes \(\xi^{2}_{1} \), we define the derivative operator \(L_{2} \) by

\[
\left\{ \frac{\partial^{2}}{\partial \lambda^{2}}(\Phi^{*}_{\lambda} f) \right\}_{\lambda=0} =: \left(L_{2} + a L_{\xi_{1}}^{2} \right) f,
\]

where \(a \) is determined so that \(L_{2} \) satisfy the conditions of Theorem A.1. The conditions (ii)-(iv) in Theorem A.1 for \(L_{2} \) are satisfied from the fact that \(\Phi^{*}_{\lambda} \) is the pull-back of a diffeomorphism \(\Phi_{\lambda} \). Further, \(L_{2} \) is obviously linear but we have to check \(L_{2} \) satisfy the Leibniz rule, i.e.,

\[
L_{2}(f^{2}) = 2f L_{2} f
\]

for \(\forall f \in \mathcal{F}(\mathcal{M}) \). To do this, we use the properties (A8) and (A9), then we can easily see that the Leibniz rule (A12) is satisfied iff \(a = 1 \) and we may regard \(L_{2} \) as the Lie derivative with respect to some vector field. Then, when and only when \(a = 1 \), there exists a vector field \(\xi_{2} \) such that

\[
L_{2} f = L_{\xi_{2}} f
\]

and

\[
\left\{ \frac{\partial^{2}}{\partial \lambda^{2}}(\Phi^{*}_{\lambda} f) \right\}_{\lambda=0} =: \left(L_{\xi_{2}} + L_{\xi_{1}}^{2} \right) f.
\]

Thus, we have seen that the Taylor expansion (A7) for an arbitrary scalar function \(f \) is given by Eq. (2.2).

Although the formula (2.2) of the Taylor expansion is for an arbitrary scalar function, we can easily extend this formula to that for an arbitrary tensor field \(Q \) as the assertion of Theorem A.1. The proof of the extension of the formula (2.2) to an arbitrary scalar function if we stipulate the properties

\[
\left\{ \frac{\partial^{2}}{\partial \lambda^{2}}(\Phi^{*}_{\lambda} Q) \right\}_{\lambda=0} = \left\{ \frac{\partial}{\partial \lambda} \left(\frac{\partial}{\partial \lambda}(\Phi^{*}_{\lambda} Q) \right) \right\}_{\lambda=0},
\]

\[
\left\{ \frac{\partial}{\partial \lambda}(\Phi^{*}_{\lambda} Q)^{2} \right\}_{\lambda=0} = \left\{ 2\Phi^{*}_{\lambda} Q \frac{\partial}{\partial \lambda}(\Phi^{*}_{\lambda} Q) \right\}_{\lambda=0}
\]

instead of Eqs. (A8) and (A9). As the result, we obtain the representation of the Taylor expansion for an arbitrary tensor field \(Q \).

Appendix B: Derivation of the perturbative Einstein tensors

Following the outline of the calculations explained in Sec. III A we first calculate the perturbative expansion of the inverse metric. The perturbative expansion of the inverse metric can be easily derived from Eq. (2.22) and the definition of the inverse metric

\[
\bar{g}^{ab}\bar{g}_{bc} = \delta^{a}_{c}.
\]

We also expand the inverse metric \(\bar{g}^{ab} \) in the form

\[
\bar{g}^{ab} = g^{ab} + \lambda(1)g^{ab} + \frac{1}{2}\lambda^{2}(2)g^{ab}.
\]

Then, each term of the expansion of the inverse metric is given by

\[
(1)\bar{g}^{ab} = -h^{ab}, \quad (2)\bar{g}^{ab} = 2h^{ac}h_{c}^{b} - \bar{f}^{ab}.
\]

To derive the formulae for the perturbative expansion of the Riemann curvature, we have to derive the formulae for the perturbative expansion of the tensor \(C^{c}_{ab} \) given by Eq. (3.3). The tensor \(C^{c}_{ab} \) is also expanded in the same form as Eq. (2.11). The first-order perturbations of \(C^{c}_{ab} \) have the well-known form

\[
(1)C^{c}_{ab} = \nabla^{c}(h_{b}^{a}) - \frac{1}{2}\nabla^{c}h_{ab} =: H^{c}_{ab} [h],
\]

\[
(2)C^{c}_{ab} = \nabla^{c}(h_{b}^{a}) - \frac{1}{2}\nabla^{c}h_{ab} =: H^{c}_{ab} [h],
\]

where \(h^{ab} \) is the perturbative metric.
where $H_{ab}{}^c[A]$ is defined by Eq. (3.11) for an arbitrary tensor field A_{ab} defined on the background spacetime \mathcal{M}_λ. In terms of the tensor field $H_{ab}{}^c$ defined by (3.11), the second-order perturbation $(2)C_{ab}^c$ of the tensor field C_{ab}^c is given by

$$(2)C_{ab}^c = H_{ab}{}^c [I] - 2h^{cd}H_{abcd} [h].$$ \hspace{1cm} (B5)

The Riemann curvature (3.3) on the physical spacetime \mathcal{M}_λ is also expanded in the form (2.11):

$$\bar{R}_{abc}^d =: R_{abc}^d + \lambda(1)R_{abc}^d + \frac{1}{2}\lambda(2)R_{abc}^d + O(\lambda^3).$$ \hspace{1cm} (B6)

The first- and the second-order perturbation of the Riemann curvature are given by

$$(1)R_{abc}^d = -2\nabla_{[a}C_{bc]}^d \left[h\right],$$

$$(2)R_{abc}^d = -2\nabla_{[a}C_{bc]}^d \left[h\right] + 4H_{[a}{}^{dc} \left[h\right] H_{b]ce} \left[h\right] + 4h^{dc}\nabla_{[a}H_{b]ce} \left[h\right].$$ \hspace{1cm} (B7)

Substituting Eqs. (B4) and (B5) into Eqs. (B7) and (B8), we obtain the perturbative form of the Riemann curvature in terms of the variables defined by Eq. (3.11) and (3.12):

$$(1)R_{abc}^d = -2\nabla_{[a}H_{b]c}^d \left[h\right],$$

$$(2)R_{abc}^d = -2\nabla_{[a}H_{b]c}^d \left[h\right] + 4H_{[a}{}^{dc} \left[h\right] H_{b]ce} \left[h\right] + 4h^{dc}\nabla_{[a}H_{b]ce} \left[h\right].$$ \hspace{1cm} (B9)

To write down the perturbative curvatures (B9) and (B10) in terms of the gauge invariant and variant variables defined by Eqs. (2.26) and (2.34), we first derive an expression for the tensor field $H_{abc}[\mathcal{H}]$ in terms of the gauge invariant variables, and then, we derive a perturbative expression for the Riemann curvature.

First, we consider the linear-order perturbation (B9) of the Riemann curvature. Using the decomposition (2.26) and the identity $R_{[abc]}^d = 0$, we can easily derive the relation

$$H_{abc}[\mathcal{H}] = H_{abc}[\mathcal{H}] + \nabla_a \nabla_b X_c + R_{bca}X^d X_d,$$ \hspace{1cm} (B11)

where the variable $H_{abc}[\mathcal{H}]$ is defined by Eqs. (3.11) and (3.12) with $A_{ab} = \mathcal{H}_{ab}$. Clearly, the variable $H_{ab}{}^c[\mathcal{H}]$ is gauge invariant. Taking the derivative and using the Bianchi identity $\nabla_{[a}R_{b]c]de = 0$, we obtain

$$(1)R_{abc}^d = -2\nabla_{[a}H_{b]c}^d \left[\mathcal{H}\right] + \mathcal{L}_X R_{abc}^d.$$ \hspace{1cm} (B12)

Similar but some cumbersome calculations yield

$$(2)R_{abc}^d = -2\nabla_{[a}H_{b]c}^d \left[\mathcal{L}\right] + 4H_{[a}{}^{de} \left[\mathcal{H}\right] H_{b]ce} \left[\mathcal{H}\right] + 4H_{[a}{}^{de} \nabla_{[a}H_{b]c]e} \left[\mathcal{H}\right] + 2\mathcal{L}_X(1)R_{abc}^d + \left(\mathcal{L}_Y - \mathcal{L}_X^2\right) R_{abc}^d.$$ \hspace{1cm} (B13)

Equations (B12) and (B13) have the same for as the decomposition formulae (2.38) and (2.39), respectively, as the result.

Contracting the indices b and d in Eqs. (B12) and (B13) of the perturbative Riemann curvature, we can directly derive the formulae for the perturbative expansion of the Ricci curvature: expanding the Ricci curvature

$$\bar{R}_{abc} =: R_{ab} + \lambda(1)R_{ab} + \frac{1}{2}\lambda(2)R_{ab} + O(\lambda^3),$$ \hspace{1cm} (B14)

we obtain the first-order Ricci curvature as

$$(1)R_{ab} = -2\nabla_{[a}H_{b]}^c \left[\mathcal{H}\right] + \mathcal{L}_X R_{ab}.$$ \hspace{1cm} (B15)

and we also obtain the second-order Ricci curvature as

$$(2)R_{ab} = -2\nabla_{[a}H_{b]}^c \left[\mathcal{H}\right] + 4H_{[a}{}^{cd} \left[\mathcal{H}\right] H_{b]cd} \left[\mathcal{H}\right] + 4H_{[a}{}^{cd} \nabla_{[a}H_{b]c}^d \left[\mathcal{H}\right] + 2\mathcal{L}_X(1)R_{ab} + \left(\mathcal{L}_Y - \mathcal{L}_X^2\right) R_{ab}.$$ \hspace{1cm} (B16)

The scalar curvature on the physical spacetime \mathcal{M} is given by $\bar{R} = \bar{g}^{ab}\bar{R}_{ab}$. To obtain the perturbative form of the scalar curvature, we expand the \bar{R} in the form (2.11), i.e.,

$$\bar{R} =: R + \lambda(1)R + \frac{1}{2}\lambda(2)R + O(\lambda^3)$$ \hspace{1cm} (B17)
and $\bar{g}_{ab} R_{ab}$ is expanded through the Leibniz rule. Then, the perturbative formula for the scalar curvature at each order is derived from perturbative form of the inverse metric (B3) and the Ricci curvature (B15) and (B16). Straightforward calculations lead to the expansion of the scalar curvature as

$$(1) R = -2\nabla^a [a H_b]^{ab} [\mathcal{H}] - R_{ab} \mathcal{H}^{ab} + \mathcal{L} \chi R,$$

$$(2) R = -2\nabla^a [a H_b]^{ab} [\mathcal{L}] + R_{ab} (2 \mathcal{H} [a H_b]^{ab} - \mathcal{L}) + 4 \mathcal{H}_{[a}^{cd} [\mathcal{H}] H_{c]}^{a} d [\mathcal{H}] + 4 \mathcal{H}_{[a}^{bc} \nabla_{[a} [a H_b]^{ac} [\mathcal{H}] + 4 \mathcal{H}^{ab} \nabla_{[a} [a H_b]^{d} [\mathcal{H}] + 2 \mathcal{L} \chi (1) R + (\mathcal{L} \mathcal{Y} - \mathcal{L} \chi)^2 R. \tag{B19}$$

We also note that the expansion formulae (B18) and (B19) have the same form as the decomposition formulae (2.38) and (2.39), respectively, as the result.

Next, we consider the perturbative form of the Einstein tensor $\bar{G}_{ab} := \bar{R}_{ab} - \frac{1}{2} \bar{g}_{ab} \bar{R}$ and we expand \bar{G}_{ab} as in the form (2.11):

$$\bar{G}_{ab} := G_{ab} + \lambda(1)(G_{ab}) + \frac{1}{2} \lambda^2(2)(G_{ab}) + O(\lambda^3). \tag{B20}$$

As in the case of the scalar curvature, straightforward calculations lead to

$$(1) (G_{ab}) = -2\nabla^a [a H_b]^{cd} [\mathcal{H}] + g_{ab} \nabla^c [c H_d]^{cd} [\mathcal{H}] - \frac{1}{2} R \mathcal{H}_{ab} + \frac{1}{2} g_{ab} R_{cd} \mathcal{H}^{cd} + \mathcal{L} \chi G_{ab}, \tag{B21}$$

$$(2) (G_{ab}) = -2\nabla^a [a H_b]^{cd} [\mathcal{L}] + 4 H_{[a}^{cd} [\mathcal{H}] H_{c]}^{ab} [\mathcal{H}] + 4 \mathcal{H}_{[a}^{bc} \nabla_{[a} [a H_b]^{c} [\mathcal{H}] + 2 \mathcal{H}_{ab} \nabla_{[a} [a H_b]^{cd} [\mathcal{H}] - \frac{1}{2} \nabla_{[a} [a H_b]^{cd} [\mathcal{L}] + 2 R_{de} \mathcal{H}_{c}^{d} \mathcal{H}^{ee} - R_{de} \mathcal{L}^{de} + 4 \mathcal{H}_{[a}^{de} [\mathcal{H}] H_{c]}^{de} e [\mathcal{H}] + 4 \mathcal{H}_{[a}^{bc} \nabla_{[a} [a H_b]^{c} [\mathcal{H}] + 4 \mathcal{H}_{[a}^{bc} \nabla_{[a} [a H_b]^{d} [\mathcal{H}] + \mathcal{H}_{ab} \mathcal{H}^{cd} R_{cd} - \frac{1}{2} R \mathcal{L}_{ab} + 2 \mathcal{L} \chi (1) (G_{ab}) + (\mathcal{L} \mathcal{Y} - \mathcal{L} \chi^2) G_{ab}. \tag{B22}$$

We note again that Eqs. (B21) and (B22) have the same form as the decomposition formulae (2.38) and (2.39), respectively.

The perturbative formulae for the perturbation of the Einstein tensor

$$\bar{G}_{a}^{b} = g^{bc} \bar{G}_{ac} \tag{B23}$$

is derived by the similar manner to the case of the perturbations of the scalar curvature. Through these formulae summarized above, straightforward calculations leads Eqs. (3.9)–(3.10). We have to note that to derive the formulae (3.9) with Eq. (3.10), we have to consider the general relativistic gauge-invariant perturbation theory with two infinitesimal parameters which is developed in Refs. [22, 23], as commented in the main text.

Appendix C: A Scenario of the proof of Conjecture II.1

In this Appendix, we give a scenario of a proof of Conjecture II.1 in Sec. II.3 for an arbitrary background spacetime. To do this, we assume that the background spacetime admits ADM decomposition. Therefore, the background spacetime \mathcal{M}_0 (at least the portion of \mathcal{M}_0 that we are addressing) considered here is $n - 1 + 1$-dimensional spacetime, which is described by the direct product $\mathbb{R} \times \Sigma$. Here, \mathbb{R} is a time direction and Σ is the spacelike hypersurface $(\dim \Sigma = n - 1)$ embedded in \mathcal{M}_0. This means that \mathcal{M}_0 is foliated by the one-parameter family of spacelike hypersurface $\Sigma(t)$, where $t \in \mathbb{R}$ is a time function. In this setup, the metric on \mathcal{M}_0 is described by

$$g_{ab} = -\alpha^2(dt)^a(dt)^b + q_{ij}(dx^i + \beta^i dt)^a(dx^j + \beta^j dt)^b, \tag{C1}$$

where α is the lapse function, β^i is the shift vector, and $q_{ab} = q_{ij}(dx^i)^a(dx^j)^b$ is the metric on $\Sigma(t)$.

Since the ADM decomposition (C1) of the metric is a local decomposition, we may regard the arguments in this paper as being restricted to that for a single patch in \mathcal{M}_0, which is covered by the metric (C1). Further, we may change the region that is covered by the metric (C1) through the choice of the lapse function α and the shift vector β^i. The choice of α and β^i is regarded as the first kind of gauge choice explained in Sec. II.3.1, which has nothing to do with the second kind of gauge as emphasized in Sec. II.3.2. Since we may regard the representation (C1) of the background metric as being that on a single patch in \mathcal{M}_0, in a general situation, each Σ may have its boundary $\partial \Sigma$. For example, in asymptotically flat spacetime, $\partial \Sigma$ includes asymptotically flat regions [48]. Furthermore, if necessary,
we may regard $\Sigma(t)$ as a portion of the spacelike hypersurface in M_0 and add disjoint components to the boundary $\partial \Sigma$. For example, when the formation of black holes occurs, we may exclude the region inside the black holes from Σ. In any case, when we consider the spacelike hypersurface Σ with boundary $\partial \Sigma$, we have to impose appropriate boundary conditions at the boundary $\partial \Sigma$.

To consider the decomposition \((2.24)\) of the first-order metric perturbation h_{ab}, we first consider the components of the metric h_{ab} as

$$h_{ab} = h_{ti}(dt)_a(dt)_b + 2h_{ti}(dt)_a(dx^l)_b + h_{ij}(dx^l)_a(dx^l)_b. \quad (C2)$$

The components h_{ti}, h_{tt}, and h_{ij} are regarded as a scalar function, components of a vector field, and the components of a symmetric tensor field on the spacelike hypersurface Σ, respectively. Under the gauge-transformation rule \((2.23)\) the components $\{h_{ti}, h_{tt}, h_{ij}\}$ are transformed as

$$\chi_{ti} - \chi_{tt} = 2\partial_t \xi_t - \frac{2}{\alpha} \left(\partial_t \alpha + \beta^i \partial_t \alpha - \beta^i \beta^j K_{ij} \right) \xi_t$$

$$- \frac{2}{\alpha} \left(\beta^i \beta^j \beta^k K_{ijk} - \beta^i \partial_t \alpha + \alpha q^j \partial_t \beta_j + \alpha^2 D_i' \alpha - \alpha \beta^j D_i' \beta_k - \alpha \beta^j D_j' \alpha \right) \xi_t, \quad (C3)$$

$$\chi_{tt} - \chi_{ti} = \partial_t \xi_t + D_i \xi_t - \frac{2}{\alpha} \left(D_i \alpha - \beta^i K_{ij} \right) \xi_t - \frac{2}{\alpha} M_i^j \xi_j, \quad (C4)$$

$$\chi_{ij} - \chi_{ij} = 2D_i(\xi_j) + \frac{2}{\alpha} K_{ij} \xi_t - \frac{2}{\alpha} \beta^k K_{ijk} \xi_k, \quad (C5)$$

where M_i^j is defined by

$$M_i^j := -\alpha^2 K_i^j + \beta^i \beta^k K_{ik} - \beta^i D_i \alpha + \alpha D_i \beta^j. \quad (C6)$$

Here, K_{ij} are the components of the extrinsic curvature of Σ in M_0 and D_i is the covariant derivative associated with the metric q_{ij} ($D_i q_{jk} = 0$). The extrinsic curvature K_{ij} and its trace K are related to the time derivative of the metric q_{ij} by

$$K_{ij} = -\frac{1}{2\alpha} \left[\partial_t q_{ij} - 2D_i(\partial_t \beta^j) \right], \quad K := q^{ij} K_{ij}. \quad (C7)$$

We also note that the gauge-transformation rules \((C3)-(C5)\) represent a gauge-transformation of the second kind, which has nothing to do with the gauge degree of freedom of the first kind as explained in Sec. [II].

To exclude the gauge degree of freedom of the second kind, we define the variables $h_{(VL)}, h_{(V)i}, h_{(L)}, h_{(TV)i}, h_{(TT)i,j}$ by the following decomposition formulae for the components h_{ti} and h_{ij}:

$$h_{ti} := D_i h_{(VL)} + h_{(V)i} - \frac{2}{\alpha} \left(D_i \alpha - \beta^k K_{ik} \right) \left(h_{(VL)} - \Delta^{-1} D^k \partial_t h_{(TV)k} \right) - \frac{2}{\alpha} M_i^k h_{(TV)k}, \quad (C8)$$

$$h_{ij} := \frac{1}{n-1} q_{ij} h_{(L)} + (L h_{(TV)})_{ij} + h_{(TT)ij} + \frac{2}{\alpha} \left(h_{(VL)} - \Delta^{-1} D^k \partial_t h_{(TV)k} \right) - \frac{2}{\alpha} K_{ij} \beta^k h_{(TV)k}, \quad (C9)$$

$$D^i h_{(V)i} = 0, \quad q^{ij} h_{(TT)ij} = 0 = D^i h_{(TT)ij}, \quad (C10)$$

where

$$(L h_{(TV)})_{ij} := D_i h_{(TV)j} + D_j h_{(TV)i} - \frac{2}{n} q_{ij} D^l h_{(TV)l}, \quad (C11)$$

and Δ^{-1} is the Green function of the Laplacian $\Delta := D^i D_i$. We note that equations \((C8)\) and \((C9)\) have the non-trivial form. The detailed explanations of the issue how to reach to these expression \((C8)\) and \((C9)\) are described in Refs. [32, 33]. Here, we just accept the expressions of Eqs. \((C8)\) and \((C9)\) as the definitions of the variables $h_{(VL)}, h_{(V)i}, h_{(L)}, h_{(TV)i},$ and $h_{(TT)i,j}$.

1. Inverse relation of Eqs. \((C8)\) and \((C9)\)

Here, we check that the definitions \((C8)\) and \((C9)\) are invertible. We note that this check is essential to our discussion. If the expression \((C8)\) and \((C9)\) are not invertible, one-to-one correspondence with the set $\{h_{ti}, h_{ij}\}$ of the original components is not guaranteed.
To derive the inverse relation of Eqs. (C8)–(C10), we first consider Eq. (C8). Assuming the existence of the Green function \mathcal{F}^{-1} for the elliptic derivative operator

$$
\mathcal{F} := \Delta - \frac{2}{\alpha} (D_i \alpha - \beta^j K_{ij}) D^j - 2D^j \left\{ \frac{1}{\alpha} (D_i \alpha - \beta^j K_{ij}) \right\},
$$

we obtain the relations

$$
h_{(V)L} = \mathcal{F}^{-1} \left[D^k h_{tk} - D^k \partial_t h_{(TV)k} + D^k \left(\frac{2}{\alpha} M_k^l h_{(TV)l} \right) \right] + \Delta^{-1} D^k \partial_t h_{(TV)k},
$$

(C13)

$$
h_{(V)i} = h_{ti} - D_t \Delta^{-1} D^k \partial_t h_{(TV)k} + \frac{2}{\alpha} M_i^k h_{(TV)k}
+ \left[D_i - \frac{2}{\alpha} (D_i \alpha - \beta^j K_{ij}) \right] \mathcal{F}^{-1} \left[-D^k h_{tk} + D^k \partial_t h_{(TV)k} - D^k \left(\frac{2}{\alpha} M_k^l h_{(TV)l} \right) \right].
$$

(C14)

Equations (C13) and (C14) imply that we can obtain the relations between $\{h_{(V)L}, h_{(V)i}\}$ and $\{h_{ti}, h_{ij}\}$ if the relation between $h_{(TV)i}$ and $\{h_{ti}, h_{ij}\}$ is specified. On the other hand, the trace- and the traceless-part of Eq. (C9) are given by

$$
h_{(L)} = q^{ij} h_{ij} + \frac{2}{\alpha} K \beta^k h_{(TV)k} - \frac{2}{\alpha} K \left(\mathcal{F}^{-1} \left[D^k h_{tk} - D^k \partial_t h_{(TV)k} + D^k \left(\frac{2}{\alpha} M_k^l h_{(TV)l} \right) \right] \right),
$$

(C15)

$$
h_{ij} - \frac{1}{n-1} q_{ij} q^{kl} h_{kl} = \left(L h_{(TV)} \right)_{ij} + h_{(TT)ij} - \frac{2}{\alpha} \tilde{K}_{ij} \beta^k h_{(TV)k}
+ \frac{2}{\alpha} \tilde{K}_{ij} \mathcal{F}^{-1} \left[D^k h_{tk} - D^k \partial_t h_{(TV)k} + D^k \left(\frac{2}{\alpha} M_k^l h_{(TV)l} \right) \right],
$$

(C16)

where we have used Eq. (C13) and defined the traceless part \tilde{K}_{ij} of the extrinsic curvature K_{ij} by $\tilde{K}_{ij} := K_{ij} - \frac{1}{n-1} h_{ij} K$. Taking the divergence of Eq. (C16), we obtain the single integro-differential equation for $h_{(TV)k}$:

$$
\mathcal{D}^i h_{(TV)k} + D^m \left\{ \frac{2}{\alpha} \tilde{K}_{mj} \left\{ \mathcal{F}^{-1} D^k \left(\frac{2}{\alpha} M_k^l h_{(TV)l} - \partial_t h_{(TV)k} \right) - \beta^k h_{(TV)k} \right\} \right\}

= D^m \left[h_{mj} - \frac{1}{n-1} q_{mj} q^{kl} h_{kl} - \frac{2}{\alpha} \tilde{K}_{mj} \mathcal{F}^{-1} D^k h_{tk} \right],
$$

(C17)

where

$$
\mathcal{D}^i = q^{ij} \Delta + \left(1 - \frac{2}{n-1} \right) D^i D^j + R^{ij}.
$$

(C18)

The existence and the uniqueness of the solution to this integro-differential equation is highly nontrivial. However, we assume the existence and the uniqueness of the solution $h_{(TV)k} = h_{(TV)k}[h_{tm}, h_{mn}]$ to this integro-differential equation (C17) here. This solution describes the expression of the variable $h_{(TV)i}$ in terms of the original components $\{h_{ti}, h_{ij}\}$ of the metric perturbation h_{ab}. Substituting the solution $h_{(TV)k} = h_{(TV)k}[h_{tm}, h_{mn}]$ to Eq. (C17) into Eqs. (C13)–(C15), we can obtain the representation of the variables $\{h_{(V)L}, h_{(V)i}, h_{(L)}\}$ in terms of the original components h_{ti} and h_{ij} of h_{ab}. Furthermore, the representation of the variable $h_{(TV)ij}$ in terms of h_{ti} and h_{ij} are derived from Eq. (C16) through the substitution of the solution $h_{(TV)k} = h_{(TV)k}[h_{tm}, h_{mn}]$ to Eq. (C17).

Thus, the decomposition formulae (C8)–(C10) are invertible if the Green functions Δ^{-1}, \mathcal{F}^{-1} exist and the solution to the integro-differential equation (C17) exists and is unique.

2. **Gauge-transformation rules**

Through similar calculations to those in Sec. C1, we can derive the gauge-transformation rules for the variables $h_{(V)L}$, $h_{(V)i}$, $h_{(L)}$, $h_{(TV)i}$, and $h_{(TT)ij}$. From Eqs. (C13) and (C14), the gauge-transformation rules (C4) for the component h_{ti}, we obtain the gauge-transformation rule for the variables $h_{(V)L}$ and $h_{(V)i)$.
where \(A_i := \chi_{(TV)i}^L - \chi_{(TV)i}^L - \xi_i \). As in the case of the relations \((C13)\) and \((C14)\), these gauge-transformation rules \((C19)\) and \((C20)\) imply that we can obtain the gauge-transformation rules for the variables \(h_{(VL)} \) and \(h_{(V)i} \) if the gauge-transformation rule for the variable \(h_{(TV)i}^L \) is specified.

From Eq. \((C15)\) and the gauge-transformation rule \((C5)\), we can derive the gauge-transformation rule for the variable \(h_{(L)}^L \):

\[
y h_{(L)} - x h_{(L)} = 2D^i \xi_i + \frac{2}{\alpha} K^b A_k \frac{2}{\alpha} \left(F^{-1} D^k \left[\partial_i A_k - \frac{2}{\alpha} M^i_k A_l \right] \right).
\]

As in the case of the gauge-transformation rules \((C19)\) and \((C19)\), the gauge-transformation rule \((C21)\) also implies that we can obtain the gauge-transformation rule for the variable \(h_{(L)}^L \) if the gauge-transformation rule for the variable \(h_{(TV)i}^L \) is specified. On the other hand, from the gauge-transformation rule for the traceless part \((C16)\) of \(h_{ij} \), we obtain the equation

\[
(LA)_{ij} + y h_{(TT)ij} - x h_{(TT)ij} - \frac{2}{\alpha} K^b A_k \frac{2}{\alpha} \left(F^{-1} D^k \left[\partial_i A_k - \frac{2}{\alpha} M^i_k A_l \right] \right) = 0,
\]

where we have used Eqs. \((C4)\) and \((C5)\). The divergence of Eq. \((C22)\) yields

\[
D^i A_i = D^i \left[\frac{2}{\alpha} K^b A_k \left(F^{-1} D^k \left[\partial_i A_k - \frac{2}{\alpha} M^i_k A_l \right] \right) + \beta^k A_k \right] = 0.
\]

Here, we note that we have assumed the existence and the uniqueness of the solution to Eq. \((C17)\). Since Eq. \((C23)\) is the homogeneous version of Eq. \((C17)\), this assumption shows that we have the unique solution \(A_k = 0 \) to Eq. \((C23)\), i.e.,

\[
y h_{(TV)i} - x h_{(TV)i} = \xi_i.
\]

Thus, we have specified the gauge-transformation rule for the variable \(h_{(TV)i} \).

Substituting Eq. \((C24)\) into Eqs. \((C19)\)–\((C21)\), we obtain the gauge-transformation rules for the variables \(h_{(VL)}, h_{(V)i}, h_{(L)} \), and \(h_{(TT)ij} \):

\[
y h_{(VL)} - x h_{(VL)} = \xi_i + \Delta^{-1} D^k \partial_i \xi_k, \tag{C25}
\]

\[
y h_{(V)i} - x h_{(V)i} = \partial_i \xi_i - D_i \Delta^{-1} D^k \partial_i \xi_k, \tag{C26}
\]

\[
y h_{(L)} - x h_{(L)} = 2D^i \xi_i, \tag{C27}
\]

\[
y h_{(TT)ij} - x h_{(TT)ij} = 0. \tag{C28}
\]

3. Gauge-invariant variables

Inspecting gauge-transformation rules \((C24)\)–\((C28)\), we define the gauge-invariant variables. First, Eq. \((C28)\) yields that the variable \(h_{(TT)ij} \) is manifestly gauge invariant and we define the transverse-traceless gauge-invariant variable \(\chi_{ij} \) as

\[
\chi_{ij} := h_{(TT)ij} \tag{C29}.
\]

To construct the other gauge-invariant variable, we consider the gauge-variant part of the metric perturbation whose gauge-transformation rule is given by the second equation in Eqs. \((C23)\). Since the gauge-transformation rule
From Eqs. (C32), (C36)–(C38), we reach to the decomposition form (2.24):

$$X_i := h_{(TV)i}, \quad \gamma X_i - \chi X_i = \xi_i.$$ \hfill (C30)

Inspecting the gauge-transformation rules (C24) and (C25), we find the definition of X_t to be

$$X_t := h_{(VL)i} - \Delta^{-1} D^k \partial_i h_{(TV)k},$$

$$\gamma X_t - \chi X_t = \xi_t.$$ \hfill (C31)

Actually, the gauge-transformation rule for X_t defined by Eq. (C31) is given by the temporal component X_t of the gauge-variant part X_a in the second equation in Eqs. (2.25). Thus, we have constructed the gauge-variant part X_a of the metric perturbation as

$$X_a := X_t dt_a + X_i (dx^i)_a.$$ \hfill (C32)

Inspecting the gauge-transformation rules (C26), (C30), and (C31), we define a gauge-invariant vector mode ν_t by

$$\nu_t := h_{(VL)i} - \partial_i h_{(TV)i} + D_t \Delta^{-1} D^k \partial_i h_{(TV)k}.$$ \hfill (C33)

Actually we can easily confirm that the variable ν_t is gauge-invariant, i.e., $\gamma \nu_t - \chi \nu_t = 0$. Through the divergenceless property of the variable $h_{(VL)i}$, we easily see the property $D^i \nu_t = 0$. Inspecting the gauge-transformation rule (C27) and (C24), we define the gauge-invariant scalar variable Ψ by

$$-2(n - 1) \Psi := h_{(L)t} - 2 D^i X_i.$$ \hfill (C34)

Finally, inspecting gauge-transformation rule (C3), (C30), and (C31), we can define the gauge-invariant Newton potential Φ as

$$-2 \Phi := h_{tt} - 2 \partial_t X_t + \frac{2}{\alpha} (\partial_i \alpha + \beta^i D^i \alpha - \beta^i \beta^j K_{ij}) X_t$$

$$+ \frac{2}{\alpha} (\beta^i \beta^j \beta^k K_{ij} - \beta^i \partial_i \alpha + \alpha \partial^i \partial_i \beta_j + \alpha^2 D^i \alpha - \alpha \beta^k D^i \beta_k - \beta^i \beta^j D_j \alpha) X_i.$$ \hfill (C35)

We can easily confirm the gauge-invariance of the variables Φ and Ψ through the definitions and gauge-transformation rules (C34), (C35), (C3), (C30), and (C31). Here, we have chosen the factor of Ψ in the definition (C34) so that we may regard $\Phi = \Psi$ as Newton’s gravitational potential in the four-dimensional Newton limit.

In terms of the above gauge-invariant variables Φ, Ψ, ν_t, and χ_{ij}, and the gauge-variant variables X_t and X_i, the original components $\{h_{tt}, h_{ti}, h_{ij}\}$ of the metric perturbation h_{ab} are given by

$$h_{tt} = -2 \Phi + 2 \partial_t X_t - \frac{2}{\alpha} (\partial_i \alpha + \beta^i D^i \alpha - \beta^i \beta^j K_{ij}) X_t$$

$$- \frac{2}{\alpha} (\beta^i \beta^j \beta^k K_{ij} - \beta^i \partial_i \alpha + \alpha \partial^i \partial_i \beta_j + \alpha^2 D^i \alpha - \alpha \beta^k D^i \beta_k - \beta^i \beta^j D_j \alpha) X_i,$$ \hfill (C36)

$$h_{ti} = \nu + D_t X_t + \partial_t X_i - \frac{2}{\alpha} (D_t \alpha - \beta^i K_{ij}) X_i - \frac{2}{\alpha} M_{ij} X_j,$$ \hfill (C37)

$$h_{ij} = -2 \Psi q_{ij} + \chi_{ij} + D_t X_j + D_j X_i + \frac{2}{\alpha} K_{ij} X_i - \frac{2}{\alpha} \beta^k K_{ij} X_k.$$ \hfill (C38)

Equations (C36)–(C38) imply that we may identify the components of the gauge-invariant variables H_{ab} as

$$H_{tt} := -2 \Phi, \quad H_{ti} := \nu_t, \quad H_{ij} := -2 \Psi q_{ij} + \chi_{ij}.$$ \hfill (C39)

From Eqs. (C32), (C36)–(C38), we reach to the decomposition formula (2.24).

[1] J. M. Bardeen, “Gauge-invariant cosmological perturbations”, Physical Review D, vol. 22, no. 8, pp. 1882-1905, (1980).
[2] H. Kodama and M. Sasaki, “Cosmological perturbation theory,” Progress of Theoretical Physics Supplement, no. 78, p. 1, 1984.
[69] H. Assadullahi and D. Wands, “Constraints on primordial density perturbations from induced gravitational waves,” Physical Review D, vol. 81, no. 02, Article ID 023527.

[70] K. Jedamzik, M. Lemoine, and J. Martin, “Generation of gravitational waves during early structure formation between cosmic inflation and reheating,” vol. 2010, no. 04, article 021, 2010.

[71] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda, “Observable induced gravitational waves from an early matter phase,”, Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 05, article 033, 2013.

[72] S. Saga, K. Ichiki, N. Sugiyama, “Impact of anisotropic stress of free-streaming particles on gravitational waves induced by cosmological density perturbations,” Physical Review D vol.91, no. 2, Article ID 024030, 2015.

[73] R. G. Cai, S. Pi, M. Sasaki, “Gravitational Waves Induced by Non-Gaussian Scalar Perturbations”, Physical Review Letters, vol. 122, no. 20, Article ID 201101, 2019.

[74] K. Nakamura, A. Ishibashi and H. Ishihara, “Dynamics of a strong coupled to gravitational waves: gravitational wave scattering by a Nambu-Goto straight string,” Physical Review D, vol. 62, no. 10, Article ID 101402(R), 2000.

[75] K. Nakamura and H. Ishihara, “Dynamics of a string coupled to gravitational waves. II. Perturbations propagate along an infinite Nambu-Goto string,” Physical Review D, vol. 63, no. 12, Article ID 127501, 2001.

[76] K. Nakamura, “Initial condition of a gravitating thick loop cosmic string and linear perturbations,” Classical and Quantum Gravity, vol. 19, no. 4, pp. 783-797, 2002.

[77] K. Nakamura, “Does a Nambu-Goto wall emit gravitational waves? – Cylindrical Nambu-Goto wall as an example of gravitating non-spherical walls,” Physical Review D, vol. 66, no. 8, Article ID 084005, 2002.

[78] K. Nakamura, “Comparison of the oscillatory behavior of a gravitating Nambu-Goto string and a test string,” Progress of Theoretical Physics, vol. 110, no. 2, pp. 201-232, 2003.

[79] J. -c. Hwang, D. Jeong, and H. Noh, “Gauge Dependence of Gravitational Waves Generated from Scalar Perturbations”, The Astrophysical Journal, vol. 842, no. 1, Article ID 46, 2017.

[80] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Oxford: Pergamon, 1962

[81] C. Uggla and J. Wainwright, “Cosmological perturbation theory revisited,” Classical and Quantum Gravity, vol. 28, no. 17, Article ID 175017, 2011.

[82] C. Uggla and J. Wainwright, “Scalar cosmological perturbations,” Classical and Quantum Gravity, vol. 29, no. 10, Article ID 105008, 2014.

[83] C. Uggla and J. Wainwright, “A simplification of the second order cosmological perturbation equations,” General Relativity and Gravitation, vol. 45, no. 3, pp 643-674, 2013.

[84] C. Uggla and J. Wainwright, “Asymptotic analysis of perturbed dust cosmologies to second order,” General Relativity and Gravitation, vol. 45, no. 8, pp 1467-1492, 2013.

[85] C. Uggla and J. Wainwright, “Simple expressions for second order density perturbations in standard cosmology,” Classical and Quantum Gravity, vol. 31, no. 10, Article ID 105008, 2014.

[86] C. Uggla and J. Wainwright, “Second order density perturbations for dust cosmologies,” Physical Review D vol. 90, no. 4, Article ID 043511, 2014.

[87] C. Uggla and J. Wainwright, “Dynamics of cosmological perturbations at first and second order,” Physical Review D, vol. 98, no. 10, Article ID 103534, 2018.

[88] C. Uggla and J. Wainwright, “Second order cosmological perturbations: simplified gauge change formulas,” Classical and Quantum Gravity, vol. 36, no. 3, Article ID 035004, 2019.

[89] C. Uggla and J. Wainwright, “Second order cosmological perturbations: new conserved quantities and the general solution at super-horizon scale,” Physical Review D, vol. 100, no. 2, Article ID 023544, 2019.

[90] C. Uggla and J. Wainwright, “The general solution at large scale for second order perturbations in a scalar field dominated universe,” super-horizon scale,” Journal of Cosmology and Astroparticle Physics, vol. 2019, no. 062, article 021, 2019.

[91] C. M. Will, Theory and experiment in gravitational physics: Revised Edition, Cambridge University Press, Cambridge, UK, 1993.