Molecular Modeling and Preliminary Clinical Data Suggesting Antiviral Activity for Chlorpheniramine (Chlorphenamine) Against COVID-19

Shaun D. Black 1

1. Chemistry and Biochemistry, University of Texas at Tyler, Tyler, USA

Corresponding author: Shaun D. Black, sblack@uttyler.edu

Abstract

Chlorpheniramine maleate, a widely used over-the-counter antihistamine, has been identified as a structural analog of aminoquinolines known to possess antiviral activity against the Betacoronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). Structural similarities include the chlorophenyl group, pyridine ring, alkyl sidechain, and terminal tertiary amine; the comparison of aqueous energy-minimized structures indicates significant three-dimensional similarity as well. Preliminary clinical evidence supports these conclusions. The present study suggests that chlorpheniramine possesses antiviral activity against COVID-19.

Introduction

The coronavirus pandemic of 2019-2022 has caused over 5,300,000 deaths in over 272,000,000 confirmed cases by late 2021; the United States of America has been the most direly affected of all countries in the world, suffering nearly 15% of all fatalities [1]. The etiologic agent is the Betacoronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), first identified in late 2019 in Wuhan, China [1]. Because the world population is naïve to this novel virus, extraordinary mortality has been experienced, and the need for effective therapeutics remains urgent.

Two related Betacoronaviruses have caused widespread mortality and morbidity in the recent past. The SARS-CoV-1 (“SARS”) outbreak of 2002-2004 began in the Guangdong province of southern China [2-5] and has been traced through Asian palm civets to cave-dwelling horseshoe bats [6]. The SARS virus caused a “severe acute respiratory syndrome” in 8,422 victims with a case mortality rate of 9.7% [5]. The Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak of 2012 began in the Arabian Peninsula and has been traced through dromedaries to bats [7,8]. MERS-CoV has infected 2,578 persons to date with a case mortality rate of 34.4% [8]. SARS-CoV-1 has not been detected since 2004 [9], whereas MERS-CoV reached a peak in 2015 and has diminished since then [8]. The SARS-CoV-2 pandemic has continued for three years to date; cases plateaued during early 2020 but have increased and oscillated since then [1], notably due to a surge of variant forms of SARS-CoV-2 such as delta, lambda, mu, and omicron [10]. Based on experience with SARS-CoV-1 and MERS-CoV, no accurate prediction of the SARS-CoV-2 pandemic duration is presently possible.

Currently, 25 COVID-19 vaccines have received emergency-use authorizations worldwide [11,12]; these vary in strategy and are RNA-liposomal, adenovirus-vector based, inactivated-virus, or protein-subunit vaccines. Vaccine efficacy is high, ranging from 67 to 95% [13]. Immunization is and will continue to be a very important means to control the SARS-CoV-2 pandemic, but some fraction of the population will not be protected, some individuals may not have access to the vaccine, contraindications may prevent some from being vaccinated, and vaccines prepared to earlier strains of the virus may have diminished efficacy presently. Accordingly, antiviral therapeutics are still required.

A wide variety of approaches have been taken toward the development of therapeutics for SARS-CoV-2 infections. Small-molecule drugs identified include remdesivir, favipiravir, ribavirin, oseltamivir (Tamiflu®), lopinavir, camostat, umifenovir (Arabidiol®), chloroquine, hydroxychloroquine, azithromycin, ivermectin, and glucocorticoids [14-19]. Interferons and immunoglobulins have also been explored [15,17].

Computational approaches have also contributed to our understanding of potentially active compounds that may be used to treat SARS-CoV-2 infections [20]. Specific approaches have included database searches, molecular modeling, and dynamics; targets have included, for example, the SARS-CoV-2 spike glycoprotein (S-protein) and main protease (Mpro, 3CLpro Nsp5) [18,21,22].
Chloroquine and hydroxychloroquine are antimalarials that also have been shown to interfere with the entrance of SARS-CoV-2 into human cells via the acetyl cholinesterase-2 (ACE2) receptor [15,16]. Clinical use of these drugs repurposed against SARS-CoV-2 has been controversial, but 80% of conclusive trials with significant study size were positive, and essentially 100% of early-stage disease studies were favorable. Negative trials were conducted on hospitalized patients with severe SARS-CoV-2 disease [23-26]. Nonetheless, 68% of late-stage studies have also shown efficacy. Thus, it appears that these aminoquinolines are best used with early to mid-stage disease. Adverse effects of hydroxychloroquine have been found recently, and these include lipidosis and podocytopathy [27], but these side effects must be weighed against therapeutic benefit.

Chlorpheniramine maleate (Chlorphenamine, 1-(2-pyridyl)-1-(4-chlorophenyl)-3-dimethylamino propane, SMILES: NC(C)CCC(C1=CC-C(C=C1)Cl)C2=CC=CC=N2) is an over-the-counter (OTC) antihistamine that was first prepared in 1951 [28] and has been in use for over 70 years. It has been found to be safe and effective with minimal side effects such as drowsiness and dry mouth, nose, and throat. Furthermore, it is widely available and is cost-effective. Chlorpheniramine also has been shown to be active as an antiviral against the human Ebola virus [29] and human influenza viruses [30]. The present work explores the activity of chlorpheniramine against SARS-CoV-2 by means of DrugBank structural searches, molecular modeling, and preliminary clinical evidence from a retrospective study.

Materials And Methods

Molecular modeling studies

The present approach to finding new candidate drugs for SARS-CoV-2 infections is somewhat different from others who have used screening or modeling. Rather, drugs of known activity, namely chloroquine and hydroxychloroquine that are broadly active against SARS-CoV-1, MERS-CoV, and SARS-CoV-2 and prevent the entry of the virus into cells, were employed in this study [15,51]. This approach seemed most fruitful as drugs that prevent cellular damage by the virus should be the most effective; few cells would be harmed, and the virus would remain in the bloodstream, respiratory system, or gastrointestinal tract to be detected and neutralized by the immune system or eliminated directly. Furthermore, a drug active against SARS-CoV-2 and readily available OTC was sought for this study.

A three-tiered approach was used in which the chemical structures of chloroquine and hydroxychloroquine were searched in the DrugBank database [32] against 13,580 drugs for related structures with Similarity Threshold = 0.35, molecular weight > 200, and Drug Types = Approved, Veterinary Approved, and Nutraceuticals; structural matches were re-screened against oral OTC drugs [33]; and the ultimately identified drugs were energy minimized with Spartan 10 software [34] (Hartree Fock 6-31-G* basis set in the presence of water with convergence). Energy-minimized structures were compared three-dimensionally to chloroquine, hydroxychloroquine, and chlorpheniramine crystal structures to achieve placement of related functional groups in similar portions of space. The present DrugBank search strategy was unique among others that have been reported and is based on drugs of known efficacy against SARS-CoV-2; the search threshold was set to 0.35 to survey related structures broadly. Energy minimization by this strategy should result in accurate structures equivalent to the conformation of the drugs in an aqueous solution. Software used in modeling also included Avogadro v1.2.0 [35], PubChem 3D Viewer v2.0 [36], LigandScout v4.45 [57], and Mercury v4.0 [58].

Preliminary clinical data collection

A retrospective human clinical study with chlorpheniramine maleate was performed online and participation in this study was entirely voluntary (https://www.surveymonkey.com/r/Q7RCCCV). Participants were recruited by word of mouth during the period of January 10, 2021, to November 16, 2021, and a majority of responses were received between January and February 2021. Fifteen questions were asked to the volunteers in this online questionnaire:

1. Demographic information.
2. Please say how you took chlorpheniramine (choose one option that best describes your situation).
3. What dose of chlorpheniramine did you take? (please select only one), 4. Date of known exposure to the COVID-19 coronavirus? (please leave blank if unknown), 5. Date of your COVID-19 viral antigen test (PCR or other; please leave blank if not tested), 6. Supplements, vitamins, and prescriptions you take, 7. Results of your COVID-19 test? (please leave blank if inapplicable), 8. When did you become ill with COVID-19? and begin to experience symptoms? (please leave blank if inapplicable), 9. How many days were you ill with COVID-19? 10. How ill did you become after you contracted COVID-19? 11. Were you hospitalized? 12. Your comorbidities or conditions (please check all applicable chronic conditions), 13. How many days were you ill with COVID-19? 14. How much do you believe that chlorpheniramine helped during your COVID-19 disease? and 15. Please provide any other information or feedback that you feel would be helpful to this retrospective study.

Lists of responses also included a free-response option, and sliders were provided, when appropriate, to ease response time. Volunteers provided information that covered November 2, 2020, to November 16, 2021, and many provided information anecdotally on persons who had also taken chlorpheniramine and remained healthy but did not complete the survey. Analysis of results was accomplished through online tools provided...
by the survey company and with Microsoft Excel. The confidentiality of all respondents and their information was protected.

Results

The results of a DrugBank structural search with chloroquine are shown in Table 1. Seventy-two drugs of a similar structure were found, with hydroxychloroquine as the highest score (0.950) and chlorpheniramine as a mid-score (0.377) drug. Fourteen classes of drugs are represented in the matches, including 19 antibiotics, 17 antineoplastic, nine neuroactive drugs, six anesthetics, five antimalarials, three antihistamines, two antifungals, two antiseptics, two anti-inflammatories, two non-steroidal anti-inflammatory drugs (NSAIDs), one anti-asthmatic, one antiemetic, one antiemetic, one antihistamine, and one cardiovascular drug.

DrugBank Database Structural Match (class)	Score	DrugBank Database Structural Match (class)	Score
Hydroxychloroquine (AM)	0.950	Chlorpheniramine (AH)	0.377
Amodiaquine (AM)	0.565	Montelukast (AA)	0.376
Primaquine (AM)	0.519	Orbifloxacin (AB)	0.376
Dequalinium (AS)	0.483	Tofacitinib (AR)	0.376
Chlorquinaldol (AS)	0.473	Brimonidene (AI)	0.372
Proftavine (AB)	0.466	Erlotinib (AC)	0.371
Cabozantinib (AC)	0.438	Thenalidene (AH)	0.369
Dacomitinib (AC)	0.429	Sarafloxacin (AB)	0.368
Chloroxine (AB)	0.428	Difloxacin (AB)	0.368
Danofloxacin (AB)	0.419	Pefloxacin (AB)	0.367
Cariprazine (N)	0.419	Norfloxacin (AB)	0.367
Besifloxacin (AB)	0.414	Mepivacaine (AE)	0.365
Gefitinib (AC)	0.411	Degarelax (AC)	0.363
Tafenoquine (AM)	0.409	Ropivacaine (AE)	0.363
Clioquinol (AF)	0.401	Bupivacaine (AE)	0.363
Lenvatinib (AC)	0.399	Levobupivacaine (AE)	0.363
NCNPP	0.397	Pergolide (N)	0.362
Domperidone (AV)	0.396	Mefloquine (AM)	0.362
Antrafenine (NS)	0.394	Boscalid (AF)	0.362
Sertindole (N)	0.391	Clomipramine (N)	0.361
Bosutinib (AC)	0.389	Floctafenine (AI)	0.360
Lomefloxacin (AB)	0.389	Vandetanib (AC)	0.359
Clofazimine (AB)	0.387	Tropisetron (N)	0.359
Sparfloxacin (AB)	0.387	Glasdegib (AC)	0.358
Grepaflaxacin (AB)	0.385	Perciozine (AE)	0.356
Neratinib (AC)	0.385	Clobazam (N)	0.355
Amsacrine (AC)	0.383	Bazedoxifene (AC)	0.355
Quinupramine (N)	0.382	Finafloxacin (AB)	0.355
Pradofloxacin (AB)	0.380	Bendamustine (AC)	0.354
Afatinib (AC)	0.379	Etdocaine (AE)	0.354
Ciprofloxacin (AB)	0.379	Trazodone (N)	0.354
DrugBank Database Structural Match (class)	Score	DrugBank Database Structural Match (class)	Score
---	-------	---	-------
Chloroquine (AM)	0.950	Pefloxacin (AB)	0.381
Amodiaquine (AM)	0.564	Norfloxacin (AB)	0.381
Primaquine (AM)	0.529	Bazedoxifene (AC)	0.381
Chloroquinaidol (AS)	0.493	Indoramin (CV)	0.381
Dequalinium (AS)	0.474	Erlotinib (AC)	0.380
Proflavine (AB)	0.443	Fentanyl (N)	0.380
Chloroxine (AB)	0.440	Boscalid (AF)	0.379
Gefitinib (AC)	0.439	Remifentanil (AE)	0.378
Dacomitinib (AC)	0.436	Dipyriramole (AT)	0.378
Danofloxacin (AB)	0.433	Tofacitinib (AR)	0.378
Besifloxacin (AB)	0.426	Sufentanil (AE)	0.378
Antrafenine (NS)	0.423	Alectinib (AC)	0.377
Bosutinib (AC)	0.415	Mepivacaine (AE)	0.376
Cariprazine (N)	0.413	Finafloxacin (AB)	0.376
Lenvatinib (AC)	0.407	Ropivacaine (AE)	0.374
Clioquinol (AF)	0.404	Bupivacaine (AE)	0.374
Lomefloxacin (AB)	0.403	Levobupivacaine (AE)	0.374
Sparfloxacin (AB)	0.400	Imiquimod (AC)	0.374
Grepafloxacin (AB)	0.398	Carprofen (NS)	0.373
Afatinib (AC)	0.398	Bendamustine (AC)	0.372
Domperidone (AV)	0.398	Chlorpheniramine (AH)	0.371
Montelukast (AA)	0.396	Perphenazine (N)	0.371
Orbifloxacin (AB)	0.394	Cetrorelix (H)	0.370
Ciprofloxacin (AB)	0.393	Diperodon (AE)	0.370
Enrofloxacin (AB)	0.393	Halofuginone (AS)	0.370
Sertindole (N)	0.393	Vandetanib (AC)	0.368

A structural search with hydroxychloroquine, as shown in Table 2, found similar results with chloroquine scoring 0.950 and chlorpheniramine scoring 0.371. Drug classes remained the same.
These 72 drugs were screened against oral OTC medications, and only chlorpheniramine and deschlorpheniramine, both OTC antihistamines, remained. Deschlorpheniramine is the dextrorotatory isomer or R(+)-chlorpheniramine whereas chlorpheniramine maleate is prepared as a racemic mixture of R and S enantiomers. Thus, only one compound resulted from the OTC screening. The structure of chlorpheniramine is compared with chloroquine and hydroxychloroquine in Figure 1.
FIGURE 1: Comparison of Chlorpheniramine structure with those of Chloroquine and Hydroxychloroquine

Common structural features are indicated by colored ovals: chlorophenyl group (green), pyridine ring (orange), alkyl sidechain (black), and tertiary amine (purple). * = chiral carbons.

Chlorpheniramine shares four common structural features with chloroquine and hydroxychloroquine, namely chlorophenyl group, pyridine ring, tertiary amine, and alkyl sidechain. Structural differences include the presence of a secondary amine in chloroquine and hydroxychloroquine that chlorpheniramine lacks, fused chlorophenyl and pyridine rings (quinoline ring) in chloroquine and hydroxychloroquine, and longer alkyl sidechain and tertiary amine substituents in chloroquine and hydroxychloroquine.

Some properties of the screened drugs are compared in Table 3. Log(P) (octanol:water partition coefficient) values for the drugs shown in Table 3 are strongly positive which indicates significant hydrophobicity; in this respect, the log(P) of hydroxychloroquine is closer to that of chlorpheniramine than it is to that of chloroquine. Chlorpheniramine and deschlorpheniramine are considerably more water soluble than chloroquine and hydroxychloroquine. Lastly, the pKa of hydroxychloroquine lies midway between those of chloroquine and chlorpheniramine.
Drug	CAS Number	DrugBank code	MW (g/mol)	MW (maleate)	log(P)\text{ow}	H₂O Solubility (mg/L)	pKₐ
Chloroquine	54-05-7	DB00608	319.18	-	4.63	0.14	10.1
Hydroxychloroquine	118-42-3	DB01611	335.18	-	3.87	0.026	9.67
Chlorpheniramine	132-22-9	DB01114	274.79	390.14	3.38	160	9.13
Dextropheniramine	25523-97-1	DB09555	274.79	390.14	3.39	>100	9.33

TABLE 3: Properties of Final Drugs Under Study *

* Data were obtained from PubChem.com, DrugBank.com, and the present work. The first molecular weight column is for the free base form of the drugs; the second is for the molecular weight of the maleate salt for the chlorpheniramine compounds. Log(P)\text{ow} refers to the octanol:water partition coefficient.

S-Chlorpheniramine, R-hydroxychloroquine, and R-chloroquine were chosen for further study as these enantiomers are known to be pharmacologically active [39,40]. The structures were energy minimized in the presence of water, and the final structures were aligned by the chlorophenyl ring, a common structural feature and a known hydrophobic pharmacophore of chloroquine, hydroxychloroquine, and chlorpheniramine [41]. Pharmacophores are molecular portions of the drug that confer biological activity when bound to a target macromolecule.

Comparison of the R-chloroquine energy-minimized structure to the crystal structure [42] in Figure 2a shows the alignment of the quinoline rings and secondary amines, but differing conformations for the alkyl sidechains with tertiary amines; the alkyl chain is slightly forward and right in energy-minimized chloroquine whereas it projects up, forward, and centered in the crystal structure. The same is true of hydroxychloroquine (Figure 2b), but the sidechain in the crystal structure [42] projects up, forward, and left compared to the energy-minimized structure which assumes a conformation like that of energy-minimized chloroquine (Figure 2a). Comparison of energy-minimized S-chlorpheniramine to the R-chlorpheniramine crystal structure [42,43] (Figure 2c) shows the overlap of the chlorophenyl groups and benzyl carbons, but the configuration of the alkyl chains and pyridine rings are, as expected, opposite one another; S-chlorpheniramine has the alkyl sidechain to the right compared to the R-isomer in which the sidechain projects backward. The pyridine ring of S-chlorpheniramine is behind the chlorophenyl ring with the nitrogen atom pointing up, whereas the pyridine ring in the R-isomer projects forward.
FIGURE 2: Aligned three-dimensional structures of Chloroquine, Hydroxychloroquine, and Chlorpheniramine

Energy-minimized structures of R-chloroquine, R-hydroxychloroquine, and S-chlorpheniramine are shown with silver bonds; crystal structures of S-chloroquine (CDQQUI), R-hydroxychloroquine sulfate (QOBHUL), and R-chlorpheniramine maleate (JEGWUN) are shown with black bonds. Color coding for atoms: carbon, black; nitrogen, blue; hydrogen, white; chlorine, green; oxygen, red; sulfur, yellow.

a. R-Chloroquine: energy minimized (front) aligned with the crystal structure.
b. R-Hydroxychloroquine: energy minimized (front) aligned with the crystal structure.
c. S-Chlorpheniramine: energy-minimized structure aligned with R-chlorpheniramine crystal structure (front).
d. R-Chloroquine, R-hydroxychloroquine, and S-chlorpheniramine (front) aqueous energy-minimized structures aligned.

The energy-minimized structures are all similar, but the crystal structures vary in significant ways from each other as well as from the energy-minimized structures. The crystal structures were obtained from organic solvents (e.g. ethanol, ethyl acetate, DMSO) [44-46], whereas energy-minimization was performed in the presence of water. Thus, the energy-minimized structures appear to be more reliable representations of the aqueous behavior of chloroquine, hydroxychloroquine, and chlorpheniramine. The energy-minimized structures of these three drugs are aligned in Figure 2d. The chlorophenyl groups and equivalent "benzyl" carbons show a near-exact correspondence in all structures. Interestingly, the pyridine nitrogen of chlorpheniramine is very close in space to the secondary amines of chloroquine and hydroxychloroquine ("amine region"), and the alkyl sidechains and tertiary amines are clustered with nitrogen atoms in similar regions of space ("sidechain, tertiary amine"). This suggests that not only do these molecules have many structural elements in common, but they also share similar three-dimensional structural features.

For the present work, a retrospective clinical study was performed on 13 human participants who took chlorpheniramine (one to three 4 mg tablets per day) either preventively (78.6%) or post-exposure (21.4%). Out of the total participants, 54% had comorbidities (e.g. asthma, hypertension, Lyme disease, and blood-clotting disorders), 63% tested positive for the virus, and 38% became ill with COVID-19 disease (fatigue, sore throat, fever, chills, cough, shortness of breath, difficulty breathing, muscle ache, loss of taste and smell, and congestion). Preliminary results showed that no participant was hospitalized, and none died. Participants with COVID-19 disease recovered in an average of 7.8 ± 5.0 days, and respondents believed that chlorpheniramine had helped them an average of 65%.

Discussion

The strategy of searching for chemical structures related to those of chloroquine and hydroxychloroquine followed by screening results against oral, over-the-counter drugs yielded only chlorpheniramine. In other words, chlorpheniramine represents the only OTC drug that can be considered a possible therapeutic agent.
against SARS-CoV-2 to prevent its entry into human cells. This antihistamine has already been shown to possess antiviral action against the Ebola virus [29] and Influenza viruses [30] which supports its suggested use against the SARS-CoV-2 virus.

Energy minimization in the presence of water in conjunction with molecular modeling and alignment showed that all three drugs are similar three-dimensionally and, thus, may act equivalently against SARS-CoV-2 and other viruses. The three identified regions (chlorophenyl group, "amine region", and alkyl "sidechain, tertiary amine" region) may be important as possible pharmacophores. In studies with the Ebola virus, four hydrophobic interactions, which encompass the above three regions, were important pharmacophores of chloroquine [43].

Hydroxychloroquine appears to exhibit greater efficacy against SARS-CoV-2 than does chloroquine [15]. The results presented here show that chlorpheniramine shares properties with both aminooquinolines, but it more closely resembles hydroxychloroquine with which it shares similar log(P) and pKₐ values. This means that Chlorpheniramine and hydroxychloroquine are closely related by hydrophobicity and acid-base properties, both of which are known to be of significant importance in drug-receptor interactions. In addition, the three-dimensional structure of chlorpheniramine is more related to hydroxychloroquine than it is to chloroquine. Thus, with greater resemblance to the more active drug hydroxychloroquine, chlorpheniramine is more likely to have efficacy against SARS-CoV-2.

In silico molecular-dynamics calculations would be a useful complement to these results.

A recent clinical study from the University of Utah examined chlorpheniramine maleate nasal spray as a possible treatment for SARS-CoV-2 [47]; they found a 99.7% reduction of viral load after 25 min of treatment. This provides additional support for the conclusions of the present work. It is also in harmony with the preliminary retrospective clinical findings presented in this article. Clearly, prospective, double-blinded, placebo-controlled, randomized clinical studies with chlorpheniramine and dexchlorpheniramine will be important to establish firm pharmacologic links between the drug, the active enantiomer, and treatment of COVID-19 disease.

Conclusions

Present results from structural database searches, aqueous energy-minimized structure three-dimensional analyses, and preliminary clinical findings indicate that chlorpheniramine maleate, an inexpensive and widely available antihistamine, possesses antiviral activity against SARS-CoV-2.

Appendices

Appendix 1. Three-dimensional structure of R- chloroquine (R-Chloroquine aqueous.pdb) by energy minimization in the presence of water. This structure can be viewed by copying the text below and pasting it into a plain text file with the extension set as .pdb; the resulting file can be read with most 3D software.

HEADER
REMARK Spartan '10 exported M0001 R-Chloroquine aqueous.pdb
HETATM 1 C UNK 0001 -4.865 -0.979 -0.247
HETATM 2 H UNK 0001 -5.054 0.024 -2.112
HETATM 3 C UNK 0001 -4.491 -0.087 -1.195
HETATM 4 C UNK 0001 -3.055 -0.349 1.175
HETATM 5 C UNK 0001 -3.351 0.730 -0.981
HETATM 6 C UNK 0001 -4.144 -1.127 0.958
HETATM 7 C UNK 0001 -2.626 0.610 0.218
HETATM 8 H UNK 0001 -4.462 -1.851 1.682
HETATM 9 H UNK 0001 -2.504 -0.476 2.088
HETATM 10 C UNK 0001 -1.975 2.349 -1.768
HETATM 11 H UNK 0001 -1.723 5.035 -2.557
HETATM 12 C UNK 0001 -1.187 2.331 -0.600
HETATM 13 H UNK 0001 -0.369 5.016 -0.498
HETATM 14 C UNK 0001 -1.490 1.633 -0.405
HETATM 15 N UNK 0001 -3.013 1.598 -1.969
HETATM 16 Cl UNK 0001 -6.268 -1.986 -0.504
HETATM 17 N UNK 0001 -0.717 1.439 -1.587
HETATM 18 C UNK 0001 -1.311 1.280 -2.377
HETATM 19 C UNK 0001 0.421 0.495 -1.643
HETATM 20 H UNK 0001 0.121 -0.471 1.235
HETATM 21 H UNK 0001 -0.069 -0.058 3.681
HETATM 22 C UNK 0001 0.785 0.305 3.112
HETATM 23 H UNK 0001 1.575 -0.426 -3.229
HETATM 24 H UNK 0001 1.110 1.239 3.553
HETATM 25 C UNK 0001 1.599 -1.015 0.816
HETATM 26 H UNK 0001 1.253 -1.226 -0.190
HETATM	27	H	UNK	0001	1.927	1.962	1.237
HETATM	28	C	UNK	0001	2.780	0.045	0.722
HETATM	29	H	UNK	0001	2.420	-0.927	0.389
HETATM	30	H	UNK	0001	3.234	1.520	0.150
HETATM	31	H	UNK	0001	3.856	0.564	-0.228
HETATM	32	C	UNK	0001	3.415	0.762	-1.209
HETATM	33	H	UNK	0001	5.017	-0.313	-0.338
HETATM	34	H	UNK	0001	3.676	-1.552	-1.375
HETATM	35	H	UNK	0001	4.710	-1.562	-1.048
HETATM	36	H	UNK	0001	5.296	-1.624	-1.960
HETATM	37	C	UNK	0001	6.157	0.391	-0.916
HETATM	38	H	UNK	0001	5.984	0.627	-1.970
HETATM	39	H	UNK	0001	6.254	1.359	-0.401
HETATM	40	C	UNK	0001	7.478	-0.355	-0.777
HETATM	41	H	UNK	0001	7.480	-1.300	-1.308
HETATM	42	C	UNK	0001	5.985	0.627	-0.916
HETATM	43	H	UNK	0001	6.254	1.359	-0.401
HETATM	44	C	UNK	0001	7.478	-0.355	-0.777
HETATM	45	H	UNK	0001	7.480	-1.300	-1.308
HETATM	46	H	UNK	0001	5.985	0.627	-0.916

CONECT 1 3 6 16
CONECT 2 3
CONECT 3 2 1 5
CONECT 4 6 7 9
CONECT 5 3 7 15
CONECT 6 1 4 8
CONECT 7 5 4 14
CONECT 8 6
CONECT 9 4
CONECT 10 12 11 15
CONECT 11 10
CONECT 12 10 14 13
CONECT 13 12
CONECT 14 7 12 17
CONECT 15 10 5
CONECT 16 1
CONECT 17 18 14 19
CONECT 18 17
CONECT 19 20 17 22 25
CONECT 20 19
CONECT 21 22
CONECT 22 21 23 24 19
CONECT 23 22
CONECT 24 22
CONECT 25 26 27 19 28
CONECT 26 25
CONECT 27 25
CONECT 28 29 30 25 32
CONECT 29 28
CONECT 30 28
CONECT 31 32
CONECT 32 31 33 28 34
CONECT 33 32
CONECT 34 32 36 38
CONECT 35 36
CONECT 36 35 37 34 46
CONECT 37 36
CONECT 38 39 40 34 41
CONECT 39 38
CONECT 40 38
CONECT 41 42 45 44 38
CONECT 42 41
CONECT 43 41
CONECT 44 41
CONECT 45 41
CONECT 46 45 47 48 36
CONECT 47 46
CONECT 48 46
Appendix 2. Three-dimensional structure of R-hydroxychloroquine (R-Hydroxychloroquine aqueous.pdb) by energy minimization in the presence of water. This structure can be viewed by copying the text below and pasting it into a plain text file with the extension set as .pdb; the resulting file can be read with most 3D software.

HEADER
REMARK Spartan '10 exported M0001 R-Hydroxychloroquine aqueous.pdb
HETATM 1 C UNK 0001 -5.125 -0.826 -0.333
HETATM 2 H UNK 0001 -5.264 0.356 -2.092
HETATM 3 C UNK 0001 -4.725 0.144 -1.190
HETATM 4 C UNK 0001 -3.297 -0.383 1.141
HETATM 5 C UNK 0001 -3.565 0.907 -0.900
HETATM 6 C UNK 0001 -4.407 -1.109 0.851
HETATM 7 C UNK 0001 -2.844 0.655 0.281
HETATM 8 H UNK 0001 -4.744 -1.892 1.502
HETATM 9 C UNK 0001 -2.752 -0.615 2.036
HETATM 10 C UNK 0001 -2.145 2.556 -1.531
HETATM 11 H UNK 0001 -1.874 3.307 -2.251
HETATM 12 C UNK 0001 -1.360 2.406 -0.371
HETATM 13 H UNK 0001 -0.525 3.057 -0.205
HETATM 14 C UNK 0001 -1.687 1.455 -0.548
HETATM 15 N UNK 0001 -3.203 1.855 -1.800
HETATM 16 Cl UNK 0001 -6.550 -1.768 -0.685
HETATM 17 N UNK 0001 -0.921 1.302 1.724
HETATM 18 H UNK 0001 -1.521 1.069 2.491
HETATM 19 C UNK 0001 -0.208 0.346 1.691
HETATM 20 H UNK 0001 0.099 0.011 3.136
CONECT 1 3 6 16
CONECT 2 3
CONECT 3 1 5
CONECT 4 6 9
CONECT 5 3 7 15
CONECT 6 1 4 8
CONECT 7 5 4 14
CONECT 8 6
CONECT 9 4
CONECT 10 12 11 15
Appendix 3. Three-dimensional structure of S-chlorpheniramine (S-Chlorpheniramine aqueous.pdb) by energy minimization in the presence of water. This structure can be viewed by copying the text below and pasting it into a plain text file with the extension set as .pdb; the resulting file can be read with most 3D software.

HEADER
REMARK Spartan ’10 exported M0001 S-Chlorpheniramine aqueous.pdb
HETATM 1 H UNK 0001 1.169 -0.710 1.854
HETATM 2 C UNK 0001 1.694 -0.262 1.032
HETATM 3 C UNK 0001 3.083 0.857 -1.085
HETATM 4 C UNK 0001 0.979 0.266 -0.041
HETATM 5 C UNK 0001 3.076 -0.235 1.055
HETATM 6 C UNK 0001 3.761 0.327 -0.008
HETATM 7 C UNK 0001 1.697 0.822 -1.091
HETATM 8 H UNK 0001 3.616 -0.645 1.887
HETATM 9 H UNK 0001 1.175 1.239 -1.933
HETATM 10 H UNK 0001 3.623 1.291 -1.906
HETATM 11 Cl UNK 0001 5.511 0.365 0.018
HETATM 12 H UNK 0001 -0.548 0.266 -0.079
HETATM 13 H UNK 0001 -0.833 0.774 -0.990
HETATM 14 C UNK 0001 -1.139 1.065 1.098
HETATM 15 H UNK 0001 -0.925 0.551 2.027
HETATM 16 H UNK 0001 -0.624 2.018 1.152
HETATM 17 H UNK 0001 -5.142 0.517 1.091
HETATM 18 C UNK 0001 -2.651 1.281 1.037
HETATM 19 H UNK 0001 -2.947 1.827 1.938
Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other
relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

The author wishes to thank Carol E. Black DVM, Jiyoung Lee PhD, Paul C. Sharkey MD, Tanya Shtoyko PhD, and Jason J. Snee PhD for useful discussions and careful reading of this manuscript. He also offers his gratitude for the support of this research given by the University of Texas at Tyler, Department of Chemistry and Biochemistry.

References

1. Johns Hopkins Coronavirus Resource Center Dashboard. (2021). Accessed: 12/15/2021: https://coronavirus.jhu.edu/map.html.
2. Dhama K, Khan S, Tiwari R, et al.: Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020, 33:10.1128/CMR.00028-20.
3. Drosten C, Günther S, Preiser W, et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003, 348:1967-76. 10.1056/NEJMoa030747
4. Tambiyah PA: SARS: responding to an unknown virus. Eur J Clin Microbiol Infect Dis. 2004, 23:589-95. 10.1007/s10096-004-1173-8
5. Petersen E, Koopmans M, Go U, et al.: Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020, 20:e238-44. 10.1016/S1473-3099(20)30484-9
6. Weng AC, Li X, Lau SK, Woo PC: Global Epidemiology of Bat Coronaviruses. Viruses. 2019, 11:33995:v11200174
7. Zumla A, Hui DS, Perlman S: Middle East respiratory syndrome. Lancet. 2015, 386:995-1007. 10.1016/S0140-6736(15)60454-8
8. World Health Organization, MERS-CoV Cases and Mortality. (2021). Accessed: 12/15/2021: http://www.who.int/health-topics/mers-cov/mers-outbreaks.html.
9. World Health Organization, Information on SARS-CoV-1. (2021). Accessed: 12/15/2021. https://www.who.int/health-topics/severe-acute-respiratory-syndrome.
10. Planas D, Veyer D, Baidaliuk A, et al.: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021, 596:276-80. 10.1038/s41586-021-05777-9
11. Sanders AM, Sturdivant MS, Ting JP: Influenza virus and SARS-CoV-2 vaccines. J Immunol. 2021, 206:2509-20. 10.4049/jimmunol.2001287
12. Wikipedia, List of COVID-19 Vaccine Authorizations. (2021). Accessed: 12/15/2021: https://en.wikipedia.org/wiki/List_of_COVID-19_vaccine_authorizations.
13. Olliaro P, Torreele E, Vaillant M: COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe. 2021, 2:e279-80. 10.1016/S2666-5247(21)00069-0
14. Gordon DE, Jag J, Bouhaddou M, et al.: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020, 583:459-68. 10.1038/s41586-020-2286-9
15. Pooladanda V, Thatikonda S, Godugu C: The current understanding and potential therapeutic options to combat COVID-19. Life Sci. 2020, 254:117765. 10.1016/j.lfs.2020.117765
16. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB: Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020, 323:1824-36. 10.1001/jama.2020.6019
17. Tse LV, Meganck RM, Graham RL, Baric RS: SARS-CoV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn. 2021, 39:3924-35. 10.1080/07391102.2020.1772885
18. Wang J: Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model. 2020, 60:3277-86. 10.1021/acs.jcim.0c00179
19. Singh A, Gupta V: SARS-CoV-2 therapeutics: how far do we stand from a remedy? Pharmacolet Rep. 2021, 73:750-68. 10.1007/s43440-020-00204-0
20. Shamnugam A, Maraidilhuran N, Velumurugan D, Gromiha MM: Therapeutic targets and computational approaches on drug development for COVID-19. Curr Top Med Chem. 2020, 20:2210-20. 10.2174/1568026620666200710105507.
21. de Oliveira OV, Rocha GB, Paluch AS, Costa LT: Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. J Biomol Struct Dyn. 2021, 39:3924-35. 10.1080/07391102.2020.1772885
22. Zielke-Sznajder E, Moradi S, Raoufi R, Shahlaei M, Janlou MA, Zolghadri S: Targeting SARS-CoV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn. 2021, 39:4633-46. 10.1080/07391102.2020.1779133
23. COVID-19 Treatment - Analysis of 302 Global Studies Showing High Effectiveness for Early Treatment. (2021). Accessed: 12/15/2021: https://c19study.com.
24. Patil VM, Singhal S, Masand N: A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci. 2020, 254:117775. 10.1016/j.lfs.2020.117775
25. Bienvenu AL, Marty AM, Jones MK, Picot S: Systematic review of registered trials of hydroxychloroquine prophylaxis for COVID-19 health-care workers at the first third of 2020. One Health. 2020, 10:100141. 10.1016/j.onehlt.2020.100141
26. Horby P, Mafham M, Lansell L, et al.: Effect of hydroxychloroquine in hospitalized patients with Covid-19 . N Engl J Med. 2020, 383:2030-40. 10.1056/NEJMoa2022926
27. Serre J, Buob D, Boffa J: Hydroxychloroquine-induced podocytopathy mimicking Fabry disease. BMJ Case Rep. 2019, 12:10.1136/bcr-2018-228876
28. Nathan S, Pasta D, Schwenk E: U.S. Patent 2,567,245. 1951. https://patents.google.com/patent/US2567245A/en.
29. Ekins S, Coffee M: FDA approved drugs as potential Ebola treatments. F1000Res. 2015, 4:48. 10.12688/f1000research.6164.2

[2022 Black et al. Cureus 14(1): e20980. DOI 10.7759/cureus.20980]
30. Xu W, Xia S, Pu J, Wang Q, Li P, Lu L, Jiang S: The antihistamine drugs carbinoxamine maleate and chlorpheniramine maleate exhibit potent antiviral activity against a broad spectrum of influenza viruses. Front Microbiol. 2018, 9:2643. 10.3389/fmicb.2018.02643

31. Dyall J, Coleman CM, Hart BJ, et al.: Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014, 58:4885-93. 10.1128/AAC.05036-14

32. Wishart DS, Feunang YD, Guo AC, et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46:D1074-82. 10.1093/nar/gkx1037

33. United States Food and Drug Administration, Animal Drugs@FDA. (2021). Accessed: 12/15/2021: https://animaldrugsatfda.fda.gov/adafda/views/#/search.

34. Wavefunction Spartan software. (2021). Accessed: 2021: http://www.wavefun.com.

35. Avogadro Software. (2021). Accessed: 2021: http://avogadro.cc/

36. Bolton EE, Chen J, Kim S, et al.: PubChem3D: a new resource for scientists. J Cheminform. 2011, 3:32. 10.1186/1758-2946-3-32

37. Wolber G, Langer T: LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005, 45:160-9. 10.1021/ci049855e

38. Courseille C, Busetta B, and Hospital M: 7-Chloro-4(4-diethylamino-1-methylbutyl-amino) quinoline, C18H26ClN3 (Chloroquine Base). Cryst Struct Commun. 1973, 2:283.

39. Parvez M: Structure of an antihistaminic drug, racemic chlorpheniramine hydrogen maleate. Acta Cryst. 1990, 46:945-5.

40. Black et al. Cureus 14(1): e20980. DOI 10.7759/cureus.20980

41. Ekins S, Freundlich JS, Coffee M: A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Res. 2014, 3:277. 10.12688/f1000research.5741.2

42. Courseille C, Busetta B, and Hospital M: 7-Chloro-4(4-diethylamino-1-methylbutyl-amino) quinoline, C18H26ClN3 (Chloroquine Base). Cryst Struct Commun. 1973, 2:283.