Baxter–Bazhanov–Stroganov model: Separation of Variables and Baxter Equation

G von Gehlen†, N Iorgov‡, S Pakuliak§♭ and V Shadura‡

† Physikalisches Institut der Universität Bonn, Nussallee 12, D-53115 Bonn, Germany
‡ Bogolyubov Institute for Theoretical Physics, Kiev 03143, Ukraine
♯ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Moscow region, Russia
♭ Institute of Theoretical and Experimental Physics, Moscow 117259, Russia

E-mail: gehlen@th.physik.uni-bonn.de, iorgov@bitp.kiev.ua, pakuliak@theor.jinr.ru, shadura@bitp.kiev.ua

Abstract. The Baxter-Bazhanov-Stroganov model (also known as the \(\tau(2) \) model) has attracted much interest because it provides a tool for solving the integrable chiral \(\mathbb{Z}_N \)-Potts model. It can be formulated as a face spin model or via cyclic \(L \)-operators. Using the latter formulation and the Sklyanin-Kharchev-Lebedev approach, we give the explicit derivation of the eigenvectors of the component \(B_n(\lambda) \) of the monodromy matrix for the fully inhomogeneous chain of finite length. For the periodic chain we obtain the Baxter T-Q-equations via separation of variables. The functional relations for the transfer matrices of the \(\tau(2) \) model guarantee non-trivial solutions to the Baxter equations. For the \(N = 2 \) case, which is free fermion point of a generalized Ising model, the Baxter equations are solved explicitly.

22 September 2018 Submitted to: J. Phys. A: Math. Gen.
PACS numbers: 75.10Hk, 75.10Jm, 05.50+q, 02.30Ik

1. Introduction

The aim of this paper is the explicit construction of eigenvectors of the transfer-matrix for the finite-size inhomogenous periodic Baxter–Bazhanov–Stroganov model (BBS model) also known as the \(\tau(2) \)-model \[1, 2, 3, 4\]. This is a \(N \)-state spin lattice model, intimately related to the integrable chiral Potts model. The connection between the 6-vertex model, the BBS model and the chiral Potts model gives the possibility to formulate a system of functional relations \[3, 4\] for the transfer matrices of these models. Solving these systems is the basic method for calculating the eigenvalues of the transfer matrix of the chiral Potts model \[5\], and under some analyticity assumptions, to derive the free energy of this model \[5\] and its order parameter \[6\].

In general for the BBS model there is no Bethe pseudovacuum state and so the algebraic Bethe ansatz cannot be used. Therefore, in order to achieve our goal, we shall use the formulation of the BBS model in terms of cyclic \(L \)-operators first introduced by Korepanov \[7\] and Bazhanov-Stroganov \[3\] and adapt the Sklyanin–Kharchev–Lebedev
method of separation of variables (SoV) \[8, 9, 10, 11\] for solving the BBS eigenvector problem. The fusion equations will provide the existence of solutions to the Baxter equations.

The paper is organized as follows. After defining the BBS model as a statistical face spin model, we give the vertex formulation of the model in terms of a cyclic L-operator and conclude the Introduction explaining the two basic steps involved in the SoV method. Section 2 deals with the solution of the auxiliary problem, leaving for Section 3 the lengthy inductive proof of the main formula. The short Section 4 derives the action of the diagonal component D of the L-operator on the auxiliary eigenstates. Then in Section 5 we come to the periodic model and in deriving the Baxter T-Q-equations we show the role of the fusion equations for solving these Baxter equations. In Section 6 we apply these results to the homogenous $N = 2$ case and calculate the eigenvalues and eigenvectors of the homogenous $N = 2$ BBS model which is the free fermion point of a generalized Ising model. Section 7 gives our conclusions. In an Appendix we show a strong simplification occurring if the BBS model is homogenous.

1.1. The BBS model

Following the notation of a recent paper of Baxter \[11\], we define the BBS model as a statistical model of short-range interacting spins placed at the vertices of a rectangular lattice. We label the spin variables $s_{x,y}$ by a pair (x, y) of integers: $x = 1, \ldots, n$, and $y = 1, \ldots, m$. Each spin variable $s_{x,y}$ takes N values $(N \geq 2)$: 0, $1, \ldots, N - 1$. The model shall have \mathbb{Z}_N-symmetry and we may extend the range of the spins $s_{x,y}$ to all integers identifying two values if their difference is a multiple of N. The model has a chiral restriction on the values of vertically neighboring spins:

$$s_{x,y} - s_{x,y+1} = 0 \text{ or } 1 \mod N . \tag{1}$$

In the following we will consider the spin variables on two adjacent rows: (k, l) and $(k, l+1)$, where l is fixed and $k = 1, \ldots, n$. Let us denote $s_{k,l} = \gamma_k$ and $s_{k,t+1} = \gamma'_k$. The model depends on the parameters t_q and a_k', b_k', c_k', d_k', $a''_k, b''_k, c''_k, d''_k, k = 1, 2, \ldots, n$. Each square plaquette of the lattice has the Boltzmann weight (see Fig.1)

$$W_{\tau}(\gamma_{k-1}, \gamma_k; \gamma'_{k-1}, \gamma'_k) = \sum_{m_{k-1}=0}^{1} \omega^{m_{k-1}(\gamma'_k - \gamma_{k-1})} (-\omega t_q)^{\gamma_k - \gamma_{k-1} - m_{k-1}} \times \tag{2}$$

$$\times F_{k-1}'(\gamma_{k-1} - \gamma'_{k-1}, m_{k-1}) F_{k}'(\gamma_k - \gamma'_k, m_{k-1}),$$

where $\omega = e^{2\pi i/N}$, and

$$F_{k}'(0, 0) = 1, \quad F_{k}'(0, 1) = -\omega t_q \frac{c_k'}{b_k'}, \quad F_{k}'(1, 0) = \frac{d_k'}{b_k'}, \quad F_{k}'(1, 1) = -\omega \frac{a_k'}{b_k'}$$

and expressions for $F_{k}'(\gamma_k - \gamma'_k, m_{k-1})$ are obtained from $F_{k}'(\gamma_k - \gamma'_k, m_k)$ by substitutions:

$a_k', b_k', c_k', d_k' \rightarrow a''_k, b''_k, c''_k, d''_k$.
We will consider the periodic boundary condition: $\gamma_{n+1} = \gamma_1$, $\gamma'_{n+1} = \gamma'_1$, where n is the number of sites on the lattice along the horizontal axis. The transfer-matrix of the periodic BBS model is $N^n \times N^n$ matrix with matrix elements

$$
t_n(\gamma, \gamma') = \prod_{k=2}^{n+1} W_r(\gamma_{k-1}, \gamma_k; \gamma'_{k-1}, \gamma'_k),
$$

labelled by the sets of spin variables $\gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_n\}$ and $\gamma' = \{\gamma'_1, \gamma'_2, \ldots, \gamma'_n\}$ of two neighbour rows.

Considering $m_k, k = 1, \ldots, n$, in (2) as auxiliary spin variables which take the two values 0 and 1, we can rewrite transfer-matrix (3) in a vertex formulation associating a statistical weight not to the plaquettes but to vertices each of them relating four spins: $m_{k-1}, m_k, \gamma_k, \gamma'_k$ (see Fig. 1). Then the weight associated with the kth vertex is

$$
\ell_k(t_q; m_{k-1}, m_k; \gamma_k, \gamma'_k) = \omega^{m_{k-1}\gamma'_{k-1}-m_k \gamma_k} (-\omega t_q)^{\gamma_k-\gamma'_k-m_{k-1}} \times F''_k(\gamma_k - \gamma'_k, m_{k-1}) F'_k(\gamma_k - \gamma'_k, m_k).
$$

and the transfer-matrix (3) can be rewritten as

$$
t_n(\gamma, \gamma') = \sum_{m_1, \ldots, m_n} \prod_{k=2}^{n+1} \ell_k(t_q; m_{k-1}, m_k; \gamma_k, \gamma'_k).
$$

1.2. The L-operator formulation of BBS model

For our construction of the BBS model eigenvectors we will use a description of this model as a quantum chain model as introduced in [7] and [3]. To the each site k of the quantum chain we associate the cyclic L-operator acting in a two-dimensional auxiliary space.
At each site \(k \) we define ultra-local Weyl elements \(u_k \) and \(v_k \) obeying the commutation rules and normalization
\[
 u_j u_k = u_k u_j, \quad v_j v_k = v_k v_j, \quad u_j v_k = \omega^{\delta_{jk}} v_k u_j, \quad \omega = e^{2\pi i/N}, \quad u_k^N = v_k^N = 1. \tag{7}
\]
In (3), \(\lambda \) is the spectral parameter and we have five parameters \(\varkappa, a_k, b_k, c_k, d_k \) per site. At each site \(k \) we define a \(N \)-dimensional linear space (quantum space) \(\mathcal{V}_k \) with the basis \(|\gamma\rangle_k, \gamma \in \mathbb{Z}_N \) and natural scalar product \(\langle \gamma' | \gamma \rangle_k = \delta_{\gamma', \gamma} \). In \(\mathcal{V}_k \) the Weyl elements \(u_k \) and \(v_k \) act by the formulas:
\[
 u_k |\gamma\rangle_k = \omega^\gamma |\gamma\rangle_k, \quad v_k |\gamma\rangle_k = |\gamma + 1\rangle_k. \tag{8}
\]
The correspondence between the lattice BBS model and its quantum chain analog is established through the relation
\[
 \ell_k(t_q; m_{k-1}, m_k; \gamma_k, \gamma'_k) = \langle \gamma | L_k(\lambda)_{m_{k-1}, m_k} |\gamma' \rangle_k \tag{9}
\]
and the following connection between the parameters of these models
\[
 \lambda = -\omega t_q, \quad \varkappa_k = \frac{d'_k d''_k}{b'_k b''_k}, \quad a_k = \frac{c''_k}{b''_k}, \quad b_k = \omega \frac{a''_k d'_k}{b''_k b'_k}, \quad c_k = \frac{c''_k}{b'_k}, \quad d_k = \frac{a''_k d'_k}{b'_k b'_k}. \tag{10}
\]
We extend the action of the operators \(u_k, v_k \) to \(\mathcal{V}^{(n)} = \mathcal{V}_1 \otimes \mathcal{V}_2 \otimes \cdots \otimes \mathcal{V}_n \) defining this action to be trivial in all \(\mathcal{V}_s \) with \(s \neq k \). The monodromy matrix for the quantum chain with \(n \) sites is defined as
\[
 T_n(\lambda) = L_1(\lambda) L_2(\lambda) \cdots L_n(\lambda) = \begin{pmatrix}
 A_n(\lambda) & B_n(\lambda) \\
 C_n(\lambda) & D_n(\lambda)
 \end{pmatrix}. \tag{11}
\]
The transfer-matrix is obtained taking the trace in the auxiliary space
\[
 t_n(\lambda) = \text{tr} T_n(\lambda) = A_n(\lambda) + D_n(\lambda). \tag{12}
\]
This quantum chain is integrable because the \(L \)-operators are intertwined by the twisted 6-vertex \(R \)-matrix at root of unity
\[
 R(\lambda, \nu) = \begin{pmatrix}
 \lambda - \omega \nu & 0 & 0 & 0 \\
 0 & \omega(\lambda - \nu) & \lambda(1 - \omega) & 0 \\
 0 & \nu(1 - \omega) & \lambda - \nu & 0 \\
 0 & 0 & 0 & \lambda - \omega \nu
 \end{pmatrix}, \tag{13}
\]
where \(L_k^{(1)}(\lambda) = L_k(\lambda) \otimes I, \quad L_k^{(2)}(\lambda) = I \otimes L_k(\lambda) \). Relation (13) leads to \([t_n(\lambda), t_n(\mu)] = 0\) and so \(t_n(\lambda) \) is the generating function for the commuting set of non-local and non-hermitian Hamiltonians \(H_0, \ldots, H_n \) of the model:
\[
 t_n(\lambda) = H_0 + H_1 \lambda + \cdots + H_{n-1} \lambda^{n-1} + H_n \lambda^n. \tag{14}
\]
The lowest and highest Hamiltonians can be easily written explicitly in terms of the global \mathbb{Z}_N-charge rotation operator V_n

$$H_0 = 1 + V_n \prod_{k=1}^n b_k d_k; \quad H_n = \prod_{k=1}^n a_k c_k + V_n \prod_{k=1}^n x_k; \quad V_n = v_1 v_2 \cdots v_n. \quad (15)$$

It also follows from the intertwining relation $[13]$ that $B_n(\lambda)$ is the generating function for another commuting set of operators h_1, \ldots, h_n:

$$[B_n(\lambda), B_n(\mu)] = 0, \quad B_n(\lambda) = h_1 \lambda + h_2 \lambda^2 + \cdots + h_n \lambda^n. \quad (16)$$

The great interest in the BBS chain model is due to its relation to the integrable chiral Potts model. In $[3, 7]$ it was observed that besides the intertwining relations $[13]$, the L-operators $[6]$ satisfy a second intertwining relation in the Weyl quantum space:

$$\sum_{\beta_1 \beta_2, j} S_{\alpha \alpha_2; \beta_1 \beta_2, p, p', q, q'} L_{ij}^{\beta_1 \gamma_1} (\lambda; p, p') L_{ij}^{\beta_2 \gamma_2} (\lambda; q, q') = \sum_{\beta_1 \beta_2, j} L_{ij}^{\alpha \beta_1} (\lambda; q, q') L_{ij}^{\alpha \beta_1} (\lambda; p, p') S_{\beta_1, \beta_2; \gamma_1, \gamma_2} (p, p', q, q'), \quad (17)$$

if the parameters are chosen as

$$x_k = \frac{y_k y_{k'}^*}{\mu_k \mu_{k'}^*}; \quad a_k = x_{k'}; \quad b_k = \frac{y_k y_{k'}^*}{\mu_k \mu_{k'}^*}; \quad c_k = \omega x_{k'}; \quad d_k = \frac{y_k y_{k'}^*}{\mu_k \mu_{k'}^*}, \quad (18)$$

where $x_{k'}, y_{k'}, \mu_{k'}$ (analogously for $x_{k''}$ etc.) satisfy the chiral Potts model constraints

$$x_{k''}^N + y_{k''}^N = k (x_{k'}^N y_{k'}^* + 1); \quad k x_{k''}^N = 1 - k' \mu_{k''}^-; \quad k y_{k''}^N = 1 - k' \mu_{k''}^N; \quad k^2 + k'^2 = 1. \quad (19)$$

Here k and k' are temperature parameters. In (17) we have written the spin matrix elements of the L-operators with the parametrization (18) as $L_{ij}^{\alpha \beta} (\lambda; q, q')$ where $i, j = 0, 1$ are the components in the auxiliary space and greek indices $\alpha, \beta = 0, \ldots, N-1$ denote the components in the quantum space (8), suppressing the site index k. The matrix S turns out to be the product of four chiral Potts–Boltzmann weights $[3]$

$$S_{\alpha \alpha_2; \beta_1 \beta_2} (p, p', q, q') = W_{p p'} (\alpha_1 - \alpha_2) W_{p' q} (\beta_2 - \beta_1) W_{p q} (\beta_2 - \alpha_1) W_{p' q'} (\beta_1 - \alpha_2). \quad (20)$$

In the parametrization (18) of the BBS model there are various functional relations to the chiral Potts model transfer matrix which have been used to obtain explicit solutions for the chiral Potts eigenvalues $[4]$. Only further restricting the parameters to the “superintegrable chiral Potts” case:

$$a_k = \omega^{-1} b_k = c_k = d_k = x_k = 1 \quad (21)$$

allows to solve the BBS model by algebraic Bethe ansatz, see e.g. $[12, 13, 15]$. In this form Baxter in 1989 first obtained the BBS model as an “inverse” of the superintegrable chiral Potts model, see Equations (8.13), (8.14) of $[2]$. In this paper we shall follow $[11]$ in not using restrictions like (19) on the parameters x_k, a_k, b_k, c_k, d_k. We only shall exclude the superintegrable case (21).

It was shown in the paper $[16]$ that the $N = 2$ BBS model is equivalent to the generalized Ising model at the free fermion point. The results of our paper permit to obtain the transfer-matrix eigenvectors for this model. Recently, the interesting paper $[17]$ appeared, where these eigenvectors was constructed using the Grassmann functional integral.
1.3. Functional Bethe ansatz and SoV

The construction of common eigenvectors of the set commuting integrals (14) will be solved in two main steps, which generally can be formulated as follows:

First, for the given quantum integrable chain type model one has to find an auxiliary integrable model such that: 1) the eigenvectors for original model can be expressed as a linear combination of the eigenvectors for the auxiliary model and 2) the coefficients of this decomposition should factorize into products of the single variable functions (phenomenon of “separation of variables”).

Second, the auxiliary problem should be chosen in such a way that the construction of its eigenvectors is a simple iteration process: eigenvectors for the auxiliary model of size n have to be obtained from the eigenvectors for the model of size $n - 1$.

An example of realization of the first step in case of the Toda chain model was proposed in the paper [18]. The auxiliary model for the periodic Toda chain was the open Toda chain. In the paper [19] on the Toda example this approach has been formalized as “the functional Bethe ansatz” [8]. A complete realization of this step for the periodic Toda chain model can be found in the paper [9].

Regarding a recurrent procedure for eigenvectors of the auxiliary problem, probably the first reference to this possibility may be found in the series of lectures [20]. The main idea of this approach can be formulated as follows. Consider an integrable quantum chain model of size n. The monodromy matrix is the product of n L-operators. We decompose a system into two subsystems of the sizes n_1 and n_2 such that $n = n_1 + n_2$. Suppose we can solve the eigenvalue and eigenvector problems for the subsystems. In [20] E. Sklyanin claims that there is a relation between the eigenvectors of the original system and the eigenvectors of its smaller subsystems. For the open Toda chain model this Sklyanin approach has been realized in the paper [10].

In our case of the BBS chain model, the auxiliary model is governed by the set of commuting integrals (16). So we first solve the problem of finding the eigenvectors for these integrals. Then we shall show that the eigenvectors for the operators (14) can be constructed as linear combinations of the eigenvectors of the set (16). The multi-variable coefficients of this decomposition admit the separation of variables and can be written as products of single variable functions, each satisfying a Baxter difference equation. We shall obtain this Baxter equation for generic N and solve it explicitly for $N = 2$ corresponding to the free fermion point of the generalized Ising model [16]. Note that the eigenvectors of the commuting set of operators which come from the generating polynomial $A_n(\lambda) \left([A_n(\lambda), A_n(\mu)] = 0 \right)$ were found in paper [21].

2. Eigenvectors of $B_n(\lambda)$.

2.1. Consequences of the RTT relations

We start with the second step of the program described in Section 1.3. Following [8] [20] [10], we first construct eigenvectors of $B_n(\lambda)$. According to [16], any common
where r is a common property of the root of unity integrable models. The amplitudes can be considered as dependent only on the integer phases of the roots into the quantum system (see [29] and references therein).

Some cases this procedure becomes a classical integrable system naturally incorporated these roots are fixed by some"classical" procedure which will be described below. In

A eigenvector of the commuting set of operators h_1,\ldots,h_n is eigenvector of $B_n(\lambda)$ and the eigenvalue is a polynomial in λ. Factorizing this polynomial we get

$$B_n(\lambda) \Psi_\lambda = \lambda \lambda_0 \prod_{k=1}^{n-1} (\lambda - \lambda_k) \Psi_\lambda; \quad \lambda = (\lambda_0, \lambda_1, \ldots, \lambda_{n-1}), \quad (22)$$

where we labelled the eigenvector Ψ_λ by the normalizing factor λ_0 and the $n-1$ non-vanishing zeros $\lambda_1,\lambda_2,\ldots,\lambda_{n-1}$ of the eigenvalue polynomial.

Now the intertwining relations (13) tell us that if Ψ_λ is eigenvector of $B_n(\lambda)$, then by applying repeatedly the operators $A(\lambda_j)$ and $D(\lambda_k)$ ($j, k = 1,\ldots,n-1$) and V_n (15), we can generate a whole set of N^n eigenvectors of $B_n(\lambda)$.

The intertwining relations (13) give

\begin{align*}
(\lambda - \omega \mu) A_n(\lambda) B_n(\mu) &= \omega (\lambda - \mu) B_n(\mu) A_n(\lambda) + \mu (1 - \omega) A_n(\mu) B_n(\lambda) \quad (23) \\
(\lambda - \omega \mu) D_n(\mu) B_n(\lambda) &= \omega (\lambda - \mu) D_n(\lambda) B_n(\mu) + \lambda (1 - \omega) D_n(\lambda) B_n(\mu). \quad (24)
\end{align*}

Fixing $\lambda = \lambda_k, \; k = 1,\ldots,n-1$ in (23) and acting by it on Ψ_λ we obtain

$$B_n(\mu) (A_n(\lambda_k) \Psi_\lambda) = \mu \lambda_0 (\mu - \omega^{-1} \lambda_k) \prod_{s \neq k} (\mu - \lambda_s) (A_n(\lambda_k) \Psi_\lambda). \quad (25)$$

This means that up to a constant

$$A_n(\lambda_k) \Psi_\lambda \sim \Psi_{\lambda_0,\ldots,\omega^{-1}\lambda_k,\ldots,\lambda_{n-1}}. \quad (26)$$

Similarly, from (24) we can get

$$D_n(\lambda_k) \Psi_\lambda \sim \Psi_{\omega^{-1}\lambda_0,\ldots,\omega\lambda_k,\ldots,\lambda_{n-1}}. \quad (27)$$

(The proportional factors will be obtained later in (70) and (90)). Furthermore, acting by (23) on Ψ_λ and extracting coefficients of $\lambda^{n+1} \mu^n$ we have

$$V_n \Psi_\lambda \sim \Psi_{\omega^{-1}\lambda_0,\ldots,\lambda_k,\ldots,\lambda_{n-1}}. \quad (28)$$

We see that the operators $A_n(\lambda)$ and $D_n(\lambda)$ at the eigenvalue zeros λ_k of $B_n(\lambda)$, together with the charge rotation operator $V_n = v_1 v_2 \cdots v_n$ act as cyclic ladder operators on the eigenvectors of $B_n(\lambda)$. So the eigenvalues of $B_n(\lambda)$ can be written

$$B_n(\lambda) \Psi_{\rho_n} = \lambda r_{n,0} \omega^{-\rho_{n,0}} \prod_{k=1}^{n-1} (\lambda + r_{n,k} \omega^{-\rho_{n,k}}) \Psi_{\rho_n}, \quad (29)$$

where $r_{n,s}, \; s = 0,\ldots,n-1$ is a set of constants and we shall use the phases

$$\rho_n = (\rho_{n,0},\ldots,\rho_{n,n-1}) \in (\mathbb{Z}_N)^n \quad (30)$$

as new labels of the eigenvectors. The fact that the eigenvectors of the operator $B_n(\lambda)$ can be considered as dependent only on the integer phases of the roots

$$\lambda_{n,k} = -r_{n,k} \omega^{-\rho_{n,k}} \quad (31)$$

is a common property of the root of unity integrable models. The amplitudes $r_{n,k}$ of these roots are fixed by some"classical" procedure which will be described below. In some cases this procedure becomes an classical integrable system naturally incorporated into the quantum system (see [29] and references therein).
2.2. One- and two-site eigenvectors for the auxiliary problem

We now start to solve the auxiliary problem, which is to compute the eigenvectors of $B_n(\lambda)$ in the basis $V^{(n)}$. We shall adapt the recursive procedure of Kharchev and Lebedev \cite{10} to the BBS chain model.

In our root of unity case a very important role will be played by the cyclic function $w_p(\gamma)$ \cite{28} which depends on a \mathbb{Z}_N-variable γ and on a point $p = (x, y)$ restricted to the Fermat curve $x^N + y^N = 1$. We define $w_p(\gamma)$ by the difference equation

$$\frac{w_p(\gamma)}{w_p(\gamma - 1)} = \frac{y}{1 - \omega^\gamma x}; \quad x^N + y^N = 1; \quad \gamma \in \mathbb{Z}_N; \quad w_p(0) = 1. \quad (32)$$

The Fermat curve restriction guarantees the cyclic property $w_p(\gamma + N) = w_p(\gamma)$. The function $w_p(\gamma)$ is a root of unity analog of the q-gamma function.

It is convenient to change the bases in the spaces V_k. Instead of $|\gamma\rangle_k, \gamma \in \mathbb{Z}_N$, we will use the vectors

$$\psi^{(k)}_\rho = \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho)|\gamma\rangle_k, \quad \rho \in \mathbb{Z}_N, \quad (33)$$

which are eigenvectors of the upper off-diagonal matrix element $\lambda u^{-1}_k(a_k - b_k v_k)$ of the operator L_k:

$$\lambda u^{-1}_k(a_k - b_k v_k) \psi^{(k)}_\rho = \lambda a_k \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho)\omega^{-\gamma}|\gamma\rangle_k - \lambda b_k \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho)\omega^{-\gamma + 1}|\gamma + 1\rangle_k = \lambda a_k \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho)\omega^{-\gamma}|\gamma\rangle_k - \lambda b_k \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho - 1)\omega^{-\gamma}|\gamma\rangle_k = \lambda \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho) \left[a_k - \frac{b_k}{y_k} \right] \omega^{-\gamma} + b_k \frac{x_k}{y_k} \omega^{-\rho} |\gamma\rangle_k = \lambda r_k \omega^{-\rho} \psi^{(k)}_\rho. \quad (34)$$

In the first step we used \cite{8} and to obtain the last line we used \cite{32} with $y_k = b_k / a_k$, $r_k = x_k a_k$. The Fermat curve restriction for $p_k = (x_k, y_k)$ gives $r_k^N = a_k^N - b_k^N$. We see that if $r_k = 0$ (in particular, in the superintegrable case \cite{21}) it leads to $x_k = 0, y_k = 1$. In this case \cite{33} does not give a new basis in V_k. This is a reason why we exclude values of the parameters which lead to the degeneration of the cyclic function $w_p(\gamma)$.

This sequence of operations applied in \cite{34} will be performed rather often in the following derivations. The application of v_k shifts the spin index. This is compensated by the shift of the summation variable, which results in an opposite shift of the argument of w_p. This in turn is removed using \cite{32}.

The operator v_k shifts the index of $\psi^{(k)}_\rho$:

$$v_k \psi^{(k)}_\rho = \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho)|\gamma + 1\rangle_k = \sum_{\gamma \in \mathbb{Z}_N} w_{pk}(\gamma - \rho - 1)|\gamma\rangle_k = \psi^{(k)}_{\rho + 1}. \quad (35)$$

Using \cite{34} for $k = 1$ and comparing to \cite{29}, we write one-site eigenvector as $\Psi_{\rho_{1,0}} := \psi^{(1)}_{\rho_{1,0}}$. With $r_{1,0} = r_1$ we have

$$B_1(\lambda) \Psi_{\rho_{1,0}} = \lambda r_{1,0} \omega^{-\rho_{1,0}} \Psi_{\rho_{1,0}}, \quad A_1(\lambda) \Psi_{\rho_{1,0}} = \Psi_{\rho_{1,0}} + \lambda x_1 \Psi_{\rho_{1,0} + 1}. \quad (36)$$
The construction of the two-site eigenvectors Ψ_{ρ_2} will show us the first step of the recursive method. In accordance with (29) we are looking for eigenvectors Ψ_{ρ_2}, ($\rho_2 \equiv (\rho_{2,0}, \rho_{2,1}) \in \mathbb{Z}_N \times \mathbb{Z}_N$) of the two-site operator $B_2(\lambda)$, which should satisfy

$$B_2(\lambda)\Psi_{\rho_2} = \lambda r_{2,0} \omega^{-\rho_{2,0}} (\lambda + r_{2,1} \omega^{-\rho_{2,1}}) \Psi_{\rho_2}. \quad (37)$$

We suppose that Ψ_{ρ_2} can be written as a linear combinations of products of one-site eigenvectors

$$\Psi_{\rho_2} = \sum_{\rho_1, \rho_2 \in \mathbb{Z}_N} Q(\rho_1, \rho_2 | \rho_2) \psi^{(1)}_{\rho_1} \otimes \psi^{(2)}_{\rho_2}. \quad (38)$$

Using (36) and (37), the matrix Q can be calculated as follows:

$$B_2(\lambda)\Psi_{\rho_2} = (A_1(\lambda) \lambda u_2^{-1}(a_2 - b_2 v_2) + B_1(\lambda)(\lambda a_2 c_2 + b_2 d_2 \omega)) \Psi_{\rho_2} =$$

$$\sum_{\rho_1, \rho_2} \left\{ Q(\rho_1, \rho_2 | \rho_2) (\lambda r_{2} \omega^{-\rho_{2}} + \lambda^2 a_2 c_2 r_1 \omega^{-\rho_1}) + Q(\rho_1 - 1, \rho_2 | \rho_2) \lambda^2 \kappa_1 r_2 \omega^{-\rho_2} + Q(\rho_1, \rho_2 - 1 | \rho_2) \lambda r_1 \omega^{-\rho_1} \right\} \psi^{(1)}_{\rho_1} \otimes \psi^{(2)}_{\rho_2}. \quad (39)$$

Comparing powers of the spectral parameter λ in (39) and in (37), together with (38), we get

$$(r_{2,0} \omega^{-\rho_{2,0}} - a_2 c_2 r_1 \omega^{-\rho_1}) Q(\rho_1, \rho_2 | \rho_2) = \kappa_1 r_{2} \omega^{-\rho_2} Q(\rho_1 - 1, \rho_2 | \rho_2), \quad (40)$$

$$(r_{2,0} r_{2,1} \omega^{-\rho_{2,0} - \rho_{2,1}} - r_2 \omega^{-\rho_2}) Q(\rho_1, \rho_2 | \rho_2) = \frac{b_2 d_2}{\kappa_2} \kappa_1 r_{2} \omega^{-\rho_1} Q(\rho_1, \rho_2 - 1 | \rho_2). \quad (41)$$

The difference equations (40) and (41) have the solution

$$Q(\rho_1, \rho_2 | \rho_2) = \frac{\omega^{-\rho_{2,0} + \rho_{2,1} - \rho_1}}{w_{\tilde{p}_{2,0} - \rho_1} w_{\tilde{p}_{2,0} + \rho_{2,1} - \rho_2 - 1}}, \quad (42)$$

where $p_{2,0} = (x_2, 0, y_2, 0)$, $\tilde{p}_2 = (\tilde{x}_2, \tilde{y}_2)$ and

$$x_{2,0} = a_2 c_2 \frac{r_1}{r_{2,0}}, \quad y_{2,0} = \kappa_1 \frac{r_2}{r_{2,0}}, \quad \tilde{x}_2 = \frac{r_2}{r_{2,0} r_{2,1}}, \quad \tilde{y}_2 = \frac{b_2 d_2}{\kappa_2} \frac{r_1}{r_{2,0} r_{2,1}}. \quad (43)$$

The parameters $r_{2,0}$ and $r_{2,1}$ are determined from the condition that the points $p_{2,0}$ and \tilde{p}_2 belong to the Fermat curve.

One can proceed this way to construct n-site eigenvectors of the auxiliary problem. In fact, in order to see the general structure emerging, one has to go to the four-site case. We shall not do this here, but rather in Section 3 we shall prove the general result by induction. This proof will use recursive relations between amplitudes $r_{n,k}$, $k = 0, 1, \ldots, n - 1$ formulated in the Subsection 2.4. Fermat parameters $p = (x, y)$ of the cyclic functions $w_{\tilde{p}}(\rho)$ appearing in our construction will depend on these amplitudes. Compatibility conditions between recursive relations for the amplitudes and Fermat curve equation $x^N + y^N = 1$ can be formulated as a “classical” BBS chain model [29]. This model will be formulated in the next Subsection using an averaging procedure for the cyclic L-operators (4) given in [14].
2.3. Determination of the parameters $r_{m,s}$

Let us define the “classical” counterpart $\mathcal{O}(\lambda^N)$ of a quantum cyclic operator $O(\lambda)$ using averaging procedure

$$O(\lambda^N) = \langle O \rangle (\lambda^N) = \prod_{s \in \mathbb{Z}} O(\omega^s \lambda)$$

(44)

and apply this procedure to the entries of the quantum L-operator (3). Denote the result by $\mathcal{L}_k(\lambda^N)$

$$\mathcal{L}_k(\lambda^N) = \begin{pmatrix}
\langle L_{00} \rangle & \langle L_{01} \rangle \\
\langle L_{10} \rangle & \langle L_{11} \rangle
\end{pmatrix} = \begin{pmatrix}
1 - \epsilon \kappa^N \lambda^N & -\epsilon \lambda^N (a_k^N - b_k^N) \\
c_k^N - d_k^N & b_k^N d_k^N / \kappa_k^N - \epsilon \lambda^N a_k^N c_k^N
\end{pmatrix}$$

(45)

where $\epsilon = (-1)^N$, and call it as the “classical” \mathcal{L}-operator of the classical BBS model. Accordingly, the classical monodromy \mathcal{T}_m for the m-site chain is

$$\mathcal{T}_m(\lambda^N) = \mathcal{L}_1(\lambda^N) \mathcal{L}_2(\lambda^N) \cdots \mathcal{L}_m(\lambda^N) = \begin{pmatrix}
\mathcal{A}_m(\lambda^N) & \mathcal{B}_m(\lambda^N) \\
\mathcal{C}_m(\lambda^N) & \mathcal{D}_m(\lambda^N)
\end{pmatrix}$$

(46)

where the entries are polynomials of λ^N. By Proposition 1.5 from [14], these polynomials coincide with averages $\langle A_m \rangle$, $\langle B_m \rangle$, $\langle C_m \rangle$ and $\langle D_m \rangle$ of the entries of (10). This proposition provides a tool for finding the N-th powers of the amplitudes $r_{m,s}$: applying (44) to (49) we obtain

$$\mathcal{B}_m(\lambda^N) = (-\epsilon)^m \lambda^N r_{m,0} \prod_{s=1}^{m-1} (\lambda^N - \epsilon r_{m,s}^N).$$

(47)

This relation together with (45) and (46) allows to find $r_{m,s}^N$ in terms of the parameters a_k^N, b_k^N, c_k^N, d_k^N and κ_k^N, $k = 1, \ldots, m$. The problem of finding the amplitudes $r_{m,s}$ is reduced to the problem of solving a $(m - 1)$-th degree algebraic relation. As shown in the Appendix, in the case of the homogeneous BBS chain model the problem is reduced to solving a quadratic equation only. The described procedure gives the amplitudes $r_{m,s}$ up to some roots of unity. In fact we can fix these phases arbitrarily because this leads just to relabeling of the eigenvectors. In what follows we suppose that we fixed some solution $\{r_{m,s}\}$ in terms of the parameters a_k^N, b_k^N, c_k^N, d_k^N and κ_k^N.

Let us give a recursive description for $\mathcal{B}_m(\lambda^N)$. From (46), we immediately read off the recursion relations

$$\mathcal{A}_m(\lambda^N) = (1 - \epsilon \kappa_m^N \lambda^N) \mathcal{A}_{m-1}(\lambda^N) + (c_m^N - d_m^N) \mathcal{B}_{m-1}(\lambda^N),$$

$$\mathcal{B}_m(\lambda^N) = -\epsilon \lambda^N (a_m^N - b_m^N) \mathcal{A}_{m-1}(\lambda^N) + (b_m^N d_m^N / \kappa_m^N - \epsilon \lambda^N a_m^N c_m^N) \mathcal{B}_{m-1}(\lambda^N).$$

(48)

Combining these two relations we get

$$\mathcal{A}_m(\lambda^N) = \frac{\epsilon \kappa_m^N \lambda^N - 1}{\epsilon \lambda^N (a_m^N - b_m^N)} \mathcal{B}_m(\lambda^N) + \frac{\det \mathcal{L}_m(\lambda^N)}{\epsilon \lambda^N (a_m^N - b_m^N)} \mathcal{B}_{m-1}(\lambda^N),$$

(49)

where

$$\det \mathcal{L}_m(\lambda^N) = (d_m^N - \epsilon \lambda^N c_m^N \kappa_m^N) (b_m^N - \epsilon \lambda^N a_m^N \kappa_m^N) / \kappa_m^N.$$

(50)
Substituting A_{m-1} from this equation with m replaced by $m-1$ into \ref{53}, we obtain a three-term recursion for $B_m(\lambda_N)$:

$$B_m(\lambda_N) = \left(\frac{r_N}{r_{m-1}} (1 - \epsilon \lambda_{m-1}^N \lambda_N) + b_m d_m \lambda_{m-1}^N a_m c_m \right) B_{m-1}(\lambda_N) +$$

$$+ \frac{r_N}{r_{m-1}^N} (b_{m-1} - \epsilon \lambda_{m-1}^N \lambda_{m-1}^N) (\epsilon \lambda_{m-1}^N c_{m-1}^N \lambda_{m-1}^N - d_{m-1}) B_{m-2}(\lambda_N), \quad m \geq 2,$$

where we abbreviated

$$r_m^N = a_m^N - b_m^N. \quad (52)$$

To define $B_m(\lambda_N)$ by \ref{51}, we have to provide the initial values

$$B_1(\lambda_N) = -\epsilon \lambda_N r_1^N; \quad B_0(\lambda_N) = 0.$$

2.4. Fermat curve points appearing in the construction of the eigenvectors of $B_n(\lambda)$

As we have seen in the case of the two-site chain, the formulas \ref{53}, \ref{52} for the eigenvectors are given in terms of the points $p_{2,0}$ and \bar{p}_2 on the Fermat curve. The coordinates of these points are fixed by the values of amplitudes $r_{2,0}, r_{2,1}$, see \ref{43}. In the n-site case four types of such points will appear:

$$\bar{p}_m = (\bar{x}_m, \bar{y}_m); \quad p_{m,s} = (x_{m,s}, y_{m,s}); \quad \bar{p}_{m,s} = (\bar{x}_{m,s}, \bar{y}_{m,s}); \quad p_{m,s}^{m,s'} = (x_{m,s}, y_{m,s'}). \quad (53)$$

The coordinates of these points are expressed in the terms of amplitudes $r_{m,s}, m = 1, \ldots, n, \ s = 0, \ldots, m-1$ (defined as some solutions of equations \ref{47}, $m = 1, \ldots, n$) by

$$x_{m,s}^{m,s'} = r_{m,s}/r_{m,s'}, \quad x_{m,s} = a_m \lambda_r r_{m,s}/b_m, \quad \bar{x}_{m,s} = d_m/(\lambda_r c_m r_{m,s}), \quad s, s' \geq 1. \quad (54)$$

The corresponding $y_{m,s}, \ y_{m,s}'$ are defined by the only condition on $p_{m,s}, \ \bar{p}_{m,s}$ to belong to the Fermat curve. The coordinates $y_{m-1,l}, 1 \leq l \leq m-2$ are defined by

$$\frac{r_{m-1} r_{m,0} r_{m-1}}{r_{m-2} r_{m-1,0} r_{m} b_{m-1} c_{m-1} y_{m-1,l} \bar{y}_{m-1,l}}$$

$$\times \prod_{s \neq l}^{m-2} \frac{y_{m-1,s}}{y_{m-1,l}} \prod_{k=1}^{m-1} \frac{y_{m-1,k}}{y_{m-1,l}} = 1, \quad l = 1, \ldots, m-2. \quad (55)$$

where

$$\bar{r}_m = r_{m,0} r_{m,1} \ldots r_{m,m-1}. \quad (56)$$

The coordinates of the points $p_{m,0}$ and \bar{p}_m are defined by

$$x_{m,0} r_{m,0} = r_{m-1,0} a_m c_m, \quad y_{m,0} r_{m,0} = \lambda_1 \lambda_2 \cdots \lambda_{m-1} r_m, \quad (57)$$

$$\bar{x}_m \bar{r}_m = r_m, \quad \bar{y}_m r_m = b_m d_m \bar{r}_{m-1}/\lambda_m. \quad (58)$$

Formulas \ref{55}–\ref{58} are result from the solution of the eigenvector problem \ref{29}, see Section 3.
The condition on the points \(p_{m-1,l} \) (\(1 \leq l \leq m-2 \)), \(p_{m,0} \) and \(\tilde{p}_{m} \) defined by (55), (57), (58) to belong to the Fermat curve gives:

\[
r_{m-1} N \Psi_{m-1} N r_{m,0} \prod_{k=1}^{m-1} (r_{m-1,l} N - r_{m,k} N) = r_{m} N r_{m-2,0} N (b_{m-1} N - a_{m-1} N \Psi_{m-1} N r_{m-1,l} N) \times
\]

\[
\times (r_{m-1,l} N \Psi_{m-1} N r_{m-1,m-1} - d_{m-1} N) \prod_{s=1}^{m-3} (r_{m-1,l} N - r_{m-2,s} N), \quad l = 1, 2, \ldots, m-2,
\]

(59)

\[
r_{m,0} N = r_{m-1,0} N a_{m} N \Psi_{m} N + \Psi_{1} N \Psi_{2} N \cdots \Psi_{m-1} N r_{m} N,
\]

(60)

\[
\tilde{r}_{m} N = r_{m,0} N r_{m,1} N \cdots r_{m,m-1} N = r_{m} N + b_{m} N d_{m} N \tilde{r}_{m-1} N / \Psi_{m} N.
\]

(61)

In order to relate these relations to the recurrent formulas of the classical BBS model (51) we observe that the relations (60) (resp. (61)) follow from the relations obtained by the consideration of the highest (resp. lowest) terms in \(\lambda \) in (51) starting from \(m = 2 \). Then, fixing in (51) \(\lambda N \) successively at the \(m-2 \) non-vanishing zeros of \(B_{m-1} \), i.e. putting \(\lambda N = cr_{m-1,l} N \), \(l = 1, \ldots, m-2 \), we obtain (59). Thus the points \(p_{m-1,l} \), \(p_{m,0} \) and \(\tilde{p}_{m} \) defined by (55), (57), (58) belong to the Fermat curve automatically.

At the end of this section we would like to mention that the amplitudes \(r_{m,s} \) can be found directly (i.e. not using the results from the previous subsection) from the relations (55), (57), (58) considered as equations with respect to \(r_{m,s} \) and the coordinates of the Fermat curve points (53). These equations can be solved recursively starting from \(m = 2 \) and taking \(N \)-th powers of these relations (see (59), (60), (61)). Then the explicit formulas for the eigenvectors from the next section allow to obtain the Tarasov Proposition 1.5 in [14] as a corollary.

3. Inductive proof of the general solution of the auxiliary problem

Recall from (60) that the vector \(\Psi_{\rho_{1,0}} := \psi^{(1)}_{\rho_{1,0}} \in \mathcal{V}_{1} \) is eigenvector for \(B_{1}(\lambda) \):

\[
B_{1}(\lambda) \Psi_{\rho_{1,0}} = \lambda \rho_{1,0} \omega^{-\rho_{1,0}} \Psi_{\rho_{1,0}},
\]

and recall from (29), (30) that the eigenvectors \(\Psi_{\rho_{n}} \) of \(B_{n}(\lambda) \) were labeled by the vector \(\rho_{n} = (\rho_{n,0}, \ldots, \rho_{n,n-1}) \in (\mathbb{Z}_{N})^{n} \). Let us further define:

\[
\tilde{\rho}_{n} = \sum_{k=0}^{n-1} \rho_{n,k}; \quad \rho'_{n} = (\rho_{n,1}, \ldots, \rho_{n,n-1}) \in (\mathbb{Z}_{N})^{n-1}.
\]

(62)

\[
\rho_{n}^{+k} \text{ denotes the vector } \rho_{n} \text{ in which } \rho_{n,k} \text{ is replaced by } \rho_{n,k} \pm 1, \text{ i.e.}
\]

\[
\rho_{n}^{+k} = (\rho_{n,0}, \ldots, \rho_{n,k} \pm 1, \ldots, \rho_{n,n-1}), \quad k = 0, 1, \ldots, n.
\]

The following Theorem II gives a procedure to obtain the eigenvectors \(\Psi_{\rho_{n}} \in \mathcal{V}^{(n)} \), \(n \geq 2 \), of \(B_{n}(\lambda) \) from eigenvectors \(\Psi_{\rho_{n-1}} \in \mathcal{V}^{(n-1)} \) of \(B_{n-1}(\lambda) \) and single site vectors \(\psi^{(n)}_{\rho_{n}} \in \mathcal{V}_{n} \) defined by (33). We start from \(\Psi_{\rho_{1,0}} \). As result of the first step of the induction we obtain the two-site result (38) with (42), (43).

The following theorem is valid provided \(r_{m} N \neq 0 \), the polynomials \(B_{m}(\lambda N)/\lambda N \), \(m = 2, \ldots, n \), have nonzero simple zeros and \(\det T_{n}(cr_{m,s} N) \neq 0 \) (cf. the definition of the \(B \)-representation in [13]).
Theorem 1 The vector
\[\Psi_{\rho_n} = \sum_{\rho_{n-1} \in (\mathbb{Z}_N)^{n-1}} Q(\rho_{n-1}, \rho_n) \Psi_{\rho_{n-1}} \otimes \psi^{(n)}_{\rho_n} \]
(63)
where
\[Q(\rho_{n-1}, \rho_n) = \frac{\omega(\rho_n - \rho_{n-1})(\rho_n - \rho_n, \rho_{n-1})}{w_{\rho_n}(\rho_n, 0 - \rho_{n-1}, 0 - 1)w_{\rho_{n-1}}(\rho_{n-1} - \rho_n - 1)} \times \]
\[\prod_{k=1}^{n-1} \prod_{l=1}^{n-1} w_{\rho_{n-1}, l}^{n-1} \left(\rho_{n-1, l} - \rho_{n, l} \right) \prod_{l=1}^{n-2} w_{\rho_{n-1}, l}^{n-2} \left(-\rho_{n-1, l} \right) \]
(64)
is eigenvector of \(B_n(\lambda) \):
\[B_n(\lambda) \Psi_{\rho_n} = \lambda r_{n, 0} \omega^{-\rho_{n, 0}} \prod_{k=1}^{n-1} (\lambda + \rho_{n, k} \omega^{-\rho_{n, k}}) \Psi_{\rho_n}. \]
(65)
The Fermat curve points \(\tilde{\rho}_n, \rho_{n, l}, \tilde{\rho}_{n, l}, \rho_{n, l}^{n, k} \) and \(r_{n, k} \), entering (64) are related to the parameters of the model \(a_s, b_s, c_s, d_s, \kappa_s \) by equations (57), (58), (59), (60).

A \(n(\lambda) \) acts on \(\Psi_{\rho_n} \) as follows:
\[A_n(\lambda) \Psi_{\rho_n} = \prod_{s=1}^{n-1} \left(1 - \frac{\lambda}{\lambda_{n,s}} \right) \Psi_{\rho_n} + \lambda \kappa_1 \cdots \kappa_n \prod_{s=1}^{n-1} (\lambda - \lambda_{n,s}) \Psi_{\rho_n}^{s, 0} + \]
\[+ \sum_{k=1}^{n-1} \prod_{s \neq k} \frac{\lambda - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \frac{\lambda}{\lambda_{n,k}} \varphi_k(\rho'_n) \Psi_{\rho_n^{s, k}}, \]
(66)
where
\[\varphi_k(\rho'_n) = -\frac{r_{n-1}}{r_n} \omega^{-\rho_{n, 0} + \rho_{n, 0}} F_n(\lambda_{n,k}/\omega) \prod_{s=1}^{n-2} y_{n-1,s}^{n,k} \]
(67)
with
\[F_n(\lambda) = (b_n + \omega \alpha_n \kappa_n \lambda) (\lambda c_n + d_n / \kappa_n). \]
(68)

Corollary. In particular, at the \(n-1 \) zeros \(\lambda_{n,k} \) of the eigenvalue polynomial of \(B_n(\lambda) \)
\[\lambda_{n,k} = -r_{n,k} \omega^{-\rho_{n,k}}, \quad k = 1, \ldots, n - 1 \]
(69)
the operator \(A_n \) acts as shift operator for the \(k \)-th index of \(\Psi_{\rho_n} \):
\[A_n(\lambda_{n,k}) \Psi_{\rho_n} = \varphi_k(\rho'_n) \Psi_{\rho_n^{s, k}}. \]
(70)
Further, the term in (62) of highest degree in \(\lambda \) gives: \(V_n = v_1 v_2 \cdots v_n \) is a shift operator for the zeroth index of \(\Psi_{\rho_n} \):
\[V_n \Psi_{\rho_n} = \Psi_{\rho_n^{s, 0}}. \]
(71)

Proof. We shall prove the Theorem by induction, showing that if it is valid for \(n-1 \) site eigenvectors, then it follows for \(n \) site eigenvectors. Namely, we assume the correctness of the following formulas
\[B_{n-1}(\lambda) \Psi_{\rho_{n-1}} = \lambda r_{n-1, 0} \omega^{-\rho_{n-1, 0}} \prod_{l=1}^{n-2} (\lambda - \lambda_{n-1, l}) \Psi_{\rho_{n-1}}. \]
(72)
In order to prove the eigenvalue formula (65) we use the following relation
\[A_{n-1}(\lambda)\Psi_{\rho_{n-1}} = \sum_{l=1}^{n-2} \left(\prod_{s \neq l} \frac{\lambda - \lambda_{n-1,s}}{\lambda_{n-1,l} - \lambda_{n-1,s}} \right) \frac{\lambda}{\lambda_{n-1,l}} \varphi_l(\rho_{n-1}^{\prime})\Psi_{\rho_{n-1}^{\prime,l}} + \]
\[+ \prod_{s=1}^{n-2} \left(1 - \frac{\lambda}{\lambda_{n-1,s}} \right) \Psi_{\rho_{n-1}} + \lambda \varkappa_1 \cdots \varkappa_{n-1} \prod_{s=1}^{n-2} (\lambda - \lambda_{n-1,s}) \cdot \Psi_{\rho_{n-1}^{\prime,0}}, \quad (73) \]
where \(\lambda_{n-1,l} = -r_{n-1,l} \omega^{\rho_{n-1,l}} \) and the formulas for \(\varphi_l(\rho_{n-1}^{\prime}) \) given by (67) with \(n \) replaced by \(n - 1 \).

Formula (65) for \(B_n(\lambda)\Psi_{\rho_n} \):

In order to prove the eigenvalue formula (63) we use the following relation
\[B_n(\lambda) = A_{n-1}(\lambda) \lambda \vec{u}_n - b_n v_n + B_{n-1}(\lambda) \left(\lambda a_n c_n + b_n d_n v_n \right) \quad (74) \]
which follows directly from (6) and (10). We apply its left-hand side to the left-hand side of (63) and its right-hand side to the right-hand side of (63). On the right, we use (72), (73), (34), (35). According to (73), \(A_{n-1} \) introduces shifts in the indices \(\rho_{n-1} \) of \(\Psi_{\rho_{n-1}} \), while the second term involving \(v_n \) shift the index of \(\psi_{\rho_{n}}^{(n)} \). Since we are looking for an eigenstate, by shifting the summation indices we restore the original indices. However, this leaves a change in the matrix \(Q(\rho_{n-1}; \rho_n|\rho_n) \). Now the difference equation (52) for the \(w_\mu(\gamma) \) functions appearing in \(Q(\rho_{n-1}; \rho_n|\rho_n) \) is used, producing several factors under the summation which together we call \(R \):
\[R = \sum_{\rho_{n-1} \in \mathbb{Z}_N} Q(\rho_{n-1}; \rho_n|\rho_n) \cdot \Psi_{\rho_{n-1}^{\prime}} \otimes \Psi_{\rho_n}^{(n)}. \]

After some calculation we obtain
\[R = \left\{ \sum_{l=1}^{n-2} \left(\prod_{s \neq l} \frac{\lambda - \lambda_{n-1,s}}{\omega \lambda_{n-1,l} - \lambda_{n-1,s}} \right) \frac{\lambda}{\omega \lambda_{n-1,l}} \varphi_l(\rho_{n-1}^{\prime,l}) \frac{Q(\rho_{n-1}; \rho_{n}^{l})}{Q(\rho_{n-1}; \rho_{n}^{l})} + \right\} \]
\[+ \prod_{s=1}^{n-2} \left(1 - \frac{\lambda}{\lambda_{n-1,s}} \right) + \lambda \varkappa_1 \cdots \varkappa_{n-1} \prod_{s=1}^{n-2} (\lambda - \lambda_{n-1,s}) \frac{Q(\rho_{n-1}; \rho_{n}^{0})}{Q(\rho_{n-1}; \rho_{n}^{0})} \lambda r_{n,\omega}^{\rho_{n}} + \]
\[+ \lambda r_{n,0,\omega}^{\rho_{n},0} \prod_{l=1}^{n-2} (\lambda - \lambda_{n-1,l}) \left(\lambda a_n c_n + b_n d_n v_n \right) \frac{Q(\rho_{n-1}; \rho_{n} - 1|\rho_{n})}{Q(\rho_{n-1}; \rho_{n} - 1|\rho_{n})}. \]

We have to show that
\[R = \lambda r_{n,0,\omega}^{\rho_{n},0} \prod_{k=1}^{n-1} (\lambda - \lambda_{n,k}); \quad \lambda_{n,k} = -r_{n,k,\omega}^{\rho_{n},k}. \]

This will prove (63). Using the definitions (53) of \(x_{m,s} \) and \(\bar{x}_{m,s} \), we can rewrite (68) for the argument \(\lambda = \lambda_{n,k}/\omega \) as follows:
\[F_n(\lambda_{n,k}/\omega) = \lambda_{n,k} b_n c_n \omega^{-1} \left(1 - x_{n,k,\omega}^{\rho_{n},k} \right) \left(1 - \bar{x}_{n,k,\omega}^{\rho_{n},k+1} \right). \]
Taking into account the expression (64) for $Q(\rho_{n-1}, \rho_n | \rho_n)$, the definition for $w_p(\gamma)$ and the relations (54), (55), (56), (57), (76) we obtain:

$$
\frac{Q(\rho_{n-1}, \rho_n | \rho_n)}{Q(\rho_{n-1}, \rho_n | \rho_n)} = \omega^{\rho_{n-1,0}} \prod_{k=1}^{n-1} \frac{w_{\rho_{n-1,k}}(\rho_{n-1,k} - \rho_{n,k} - 1)}{w_{\rho_{n-1,k}}(\rho_{n-1,k} - \rho_{n,k})} \cdot \frac{w_{\rho_{n-1,l}}(\rho_{n-1,l} - 1)}{w_{\rho_{n-1,l}}(\rho_{n-1,l})} \times
$$

$$
\prod_{s \neq l} \left(\frac{w_{\rho_{n-1,s}}(\rho_{n-1,s} - \rho_{n-1,l} + 1)}{w_{\rho_{n-1,s}}(\rho_{n-1,s} - \rho_{n-1,l})} \cdot \frac{w_{\rho_{n-1,s}}(\rho_{n-1,s} - 1)}{w_{\rho_{n-1,s}}(\rho_{n-1,s})} \right) =
$$

$$
\frac{\omega}{\varphi_{l}(\rho_{n-1})} \frac{r_{n,0} \omega^{-\rho_{n,0}} \prod_{k=1}^{n-1} (\lambda_{n-1,k} - \lambda_{n,k}) \prod_{s \neq l} (\omega \lambda_{n-1,s} - \lambda_{n,k})}{r_{n,1} \omega^{-\rho_{n,1}} (\lambda_{n-1,l} - \lambda_{n,k})}.
$$

Substituting these expressions into R gives

$$
R = \left\{ \sum_{l=1}^{n-2} \left(\prod_{s \neq l} \frac{\lambda - \lambda_{n-1,s}}{\lambda_{n-1,l} - \lambda_{n-1,s}} \right) \frac{\lambda}{r_{n,0} \omega^{-\rho_{n,0}}} \prod_{k=1}^{n-1} (\lambda_{n-1,k} - \lambda_{n,k}) +
$$

$$
+ \prod_{s=1}^{n-2} \left(1 - \frac{\lambda}{\lambda_{n-1,s}} \right) + \lambda \prod_{s=1}^{n-2} (\lambda - \lambda_{n-1,s}) \cdot \frac{r_{n,0} \omega^{-\rho_{n,0}} - r_{n,1} \omega^{-\rho_{n-1,0}} d_n c_n}{r_{n,1} \omega^{-\rho_{n}}} \right\} \lambda r_{n,1} \omega^{-\rho_{n}} +
$$

$$
+ \lambda r_{n,1} \omega^{-\rho_{n-1,0}} \prod_{l=1}^{n-2} (\lambda - \lambda_{n-1,l}) \cdot \left(\lambda c_n + \frac{\tilde{r}_{n,1} \omega^{-\rho_{n}} - r_{n,1} \omega^{-\rho_{n-1}}}{\tilde{r}_{n,1} \omega^{-\rho_{n-1}}} \right).
$$

After appropriate cancellations this becomes

$$
R = \sum_{l=1}^{n-2} \left(\prod_{s \neq l} \frac{\lambda - \lambda_{n-1,s}}{\lambda_{n-1,l} - \lambda_{n-1,s}} \right) \frac{\lambda^2}{r_{n,0} \omega^{-\rho_{n,0}}} \prod_{k=1}^{n-1} (\lambda_{n-1,k} - \lambda_{n,k}) +
$$

$$
+ \lambda^2 \prod_{s=1}^{n-2} (\lambda - \lambda_{n-1,s}) \cdot r_{n,0} \omega^{-\rho_{n,0}} + \lambda \tilde{r}_{n,1} \omega^{-\rho_{n}} \prod_{l=1}^{n-2} \left(1 - \frac{\lambda}{\lambda_{n-1,l}} \right).
$$

To prove (75) we note that the coefficients at λ^n in both expressions (65) and (74) are $r_{n,0} \omega^{-\rho_{n,0}}$ and coefficients at λ also coincide being $\tilde{r}_{n} \omega^{-\rho_{n}}$. Therefore the difference of these two expressions has the form $\lambda^3 P(\lambda)$ where $P(\lambda)$ is a polynomial of degree $n - 3$. Using the explicit expressions (75) and (77) we convince ourselves that $P(\lambda_{n-1,l}) = 0$ and therefore $P(\lambda) \equiv 0$. This completes the proof that Ψ_{ρ_n} defined by (63), (64) is eigenvector of $B_n(\lambda)$ with eigenvalue (75).

Formula (70) for $A_n(\lambda_{n,k}) \Psi_{\rho_n}$:

Next we show the validity of (70), (77). We will need the relation

$$
u_n^{-1}(a_n - b_n v_n) A_n(\lambda) = (1 + \lambda \xi_n \omega^{-1} v_n) B_n(\lambda) / \lambda - v_n F_n(\lambda / \omega) B_{n-1}(\lambda) / \lambda
$$

(78)
which can be obtained by eliminating A_{n-1} between (74) and

$$A_n(\lambda) = (1 + \lambda \omega_n) A_{n-1}(\lambda) + u_n(c_n - d_n \omega_n) B_{n-1}(\lambda).$$ \hfill (79)

Let us apply (78) to Ψ_{ρ_n} for $\lambda = -r_{n-1} \omega^{-\rho_{n-1,0}}$, i.e. at the zeros of $B_n(\lambda)$. This gives

$$u_n^{-1}(a_n - b_n \omega_n) A_n(\lambda_n, k) \Psi_{\rho_n} = -F_n(\lambda_n, k) / \lambda_n, k \times \sum_{\rho_{n-1} \in \mathbb{Z}_N^{n-1}} Q(\rho_{n-1}, \rho_n | \rho_n) B_{n-1}(\lambda_n, k) \Psi_{\rho_{n-1}} \otimes \psi^{(n)}_{\rho_n+1}. \hfill (80)$$

From (72) we know how to apply B_{n-1} to $\Psi_{\rho_{n-1}}$:

$$B_{n-1}(\lambda_n, k) \Psi_{\rho_{n-1}} = \lambda_{n, k} r_{n-1, 0} \omega^{-\rho_{n-1,0}} \prod_{s=1}^{n-2} \left(-r_{n-1, k} \omega^{-\rho_{n-1, s} + r_{n-1, s} \omega^{-\rho_{n-1, s}}} \right) \Psi_{\rho_{n-1}}$$

$$= \lambda_{n, k} R_{n-1} \omega^{-\rho_{n-1}} \left(\prod_{s=1}^{n-2} y_{n-1, s} w_{n-1, s}^{\rho_{n-1, s} - \rho_n, k} \right) \Psi_{\rho_{n-1}}. \hfill (81)$$

Using (84) we find the action of the inverse of the operator $u_n^{-1}(a_n - b_n \omega_n)$ on $\psi^{(n)}_{\rho_n}$:

$$(u_n^{-1}(a_n - b_n \omega_n))^{-1} \psi^{(n)}_{\rho_n} = r_n^{-1} \omega^{\rho_n, \rho_n}_{\rho_n} \quad (82)$$

Shifting the summation over ρ_n in (80) and then applying (82) we obtain

$$A_n(\lambda_n, k) \Psi_{\rho_n} = -F_n(\lambda_n, k) / \lambda_n, k \times \sum_{\rho_{n-1} \in \mathbb{Z}_N^{n-1}} Q(\rho_{n-1}, \rho_n - 1 | \rho_n) \omega^{\rho_n, \rho_n}_{\rho_n} B_{n-1}(\lambda_n, k) \Psi_{\rho_{n-1}} \otimes \psi^{(n)}_{\rho_n}. \hfill (83)$$

Finally, using (81) and observing that

$$Q(\rho_{n-1}, \rho_n - 1 | \rho_n) \omega^{\rho_n, \rho_n}_{\rho_n} \prod_{s=1}^{n-2} w_{n-1, s}^{\rho_{n-1, s} - \rho_n, k} = \omega^{-\rho_n, \rho_n}_{\rho_n} Q(\rho_{n-1}, \rho_n | \rho_n) \omega^{\rho_n, \rho_n}_{\rho_n}$$

we come to (70).

Formula (71) for $V_n \Psi_{\rho_n}$:

Using $V_n \Psi_{\rho_{n-1}} = \Psi_{\rho_{n-1} + 0}$ and $V_n \psi_{\rho_n}^{(n)} = \psi_{\rho_n + 1}^{(n)}$ we have

$$V_n \Psi_{\rho_n} = \sum_{\rho_{n-1} \in \mathbb{Z}_N^{n-1}} Q(\rho_{n-1}, \rho_n | \rho_n) \Psi_{\rho_{n-1} + 0} \otimes \psi_{\rho_n + 1}^{(n)} = \sum_{\rho_{n-1} \in \mathbb{Z}_N^{n-1}} Q(\rho_{n-1}^0, \rho_n - 1 | \rho_n) \Psi_{\rho_{n-1} + 0} \otimes \psi_{\rho_n}^{(n)} \hfill (84)$$

where in the second line we have shifted the summation variables $\rho_{n-1,0}$ and ρ_n. Now considering the explicit form (64) for $Q(\rho_{n-1}, \rho_n | \rho_n)$ we read off that

$$Q(\rho_{n-1}^0, \rho_n - 1 | \rho_n) = Q(\rho_{n-1}, \rho_n | \rho_n^0) \hfill (85)$$

which gives (71).

Formula (66) for $A_n(\lambda) \Psi_{\rho_n}$:
The operator \(A_n(\lambda) \) is a polynomial in \(\lambda \) of \(n \)th order. From (6) and (10) we immediately read off its the highest and lowest coefficients:

\[
A_n(\lambda) = 1 + \ldots + \lambda^n \cdot \kappa_1 \kappa_2 \ldots \kappa_n V_n.
\] (86)

Using (71) we know how these terms act on \(\Psi_{\rho_n} \) and if in addition we use the action of \(A_n \) at the \(n-1 \) particular values given in (70), we can reconstruct the action of the whole polynomial \(A_n(\lambda) \) on \(\Psi_{\rho_n} \) uniquely. Comparing this to (66) we see that formula (66) is the one which satisfies all these data. Therefore by uniqueness formula (66) is one which we are looking for.

This completes the proof of Theorem 11.

4. Action of \(D_n \) on the eigenstates of \(B_n \).

In order to obtain the action of \(D_n(\lambda) \) on \(\Psi_{\rho_n} \), we use the notion of the quantum determinant \(\det_q T_n(\lambda) \) of the monodromy matrix. Since the rank of the matrix \(R(\omega \lambda, \lambda) \) is 1, the definition of the quantum determinant is given by

\[
R(\omega \lambda, \lambda) T_n^{(1)}(\omega \lambda) T_n^{(2)}(\lambda) = T_n^{(2)}(\lambda) T_n^{(1)}(\omega \lambda) R(\omega \lambda, \lambda) =: \det_q T_n(\lambda) \cdot R(\omega \lambda, \lambda).
\] (87)

Explicitly we have

\[
\det_q T_n(\lambda) = A_n(\omega \lambda) D_n(\lambda) - C_n(\omega \lambda) B_n(\lambda).
\] (88)

Using (10) and (87) we obtain the factorization property of the quantum determinant

\[
\det_q T_n(\lambda) = \det_q L_1(\lambda) \cdot \det_q L_2(\lambda) \cdots \det_q L_n(\lambda),
\]

For a single \(L \)-operator, using (88) gives \(\det_q L_m(\lambda) = v_m F_m(\lambda) \). So

\[
A_n(\omega \lambda) D_n(\lambda) - C_n(\omega \lambda) B_n(\lambda) = V_n \cdot \prod_{m=1}^{n} F_m(\lambda).
\] (89)

Acting by both sides of this identity on \(\Psi_{\rho_n} \), fixing \(\lambda = \lambda_{n,k} \) (i.e. at the zeroes of the eigenvalue polynomial of \(B_n(\lambda) \)) and using the inverse of (70) with (67), we see that, very similar to \(A_n(\lambda_{n,k}) \), also \(D_n(\lambda_{n,k}) \) acts as a shift operator on \(\Psi_{\rho_n} \), compare (27):

\[
D_n(\lambda_{n,k}) \Psi_{\rho_n} = \tilde{\varphi}_k(\rho'_n) \Psi_{\rho_{n,0,-k}}; \quad \tilde{\varphi}_k(\rho'_n) = -\frac{r_n}{\prod_{s=1}^{n-2} \gamma_{n,s}} \prod_{m=1}^{n-1} F_m(\lambda_{n,k}).
\] (90)

Note that \(D_n(\lambda_{n,k}) \) shifts \(\rho_{n,k} \) in the opposite direction as \(A_n(\lambda_{n,k}) \) (see (67) and (70)) and \(D_n(\lambda_{n,k}) \) also shifts \(\rho_{n,0} \). The shift in \(\rho_{n,0} \) is due to the operator \(V_n \) at the right-hand side of (89). Apart from the shifts just mentioned, applying the inverse of \(A_n(\omega \lambda) \) has cancelled in (90) the last factor \(m = n \) of the quantum determinant (89). Analogously to (88), using the particular values (90) and reading off the coefficients of \(\lambda^0 \) and \(\lambda^n \) directly from (10), we obtain the following interpolation formula for \(D_n(\lambda) \Psi_{\rho_n} \):

\[
D_n(\lambda) \Psi_{\rho_n} = \sum_{k=1}^{n-1} \left(\prod_{s \neq k} \frac{\lambda - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \right) \frac{\lambda}{\lambda_{n,k}} \tilde{\varphi}_k(\rho'_n) \Psi_{\rho_{n,0,-k}} + \prod_{s=1}^{n-1} \left(1 - \frac{\lambda}{\lambda_{n,s}} \right) \cdot \prod_{m=1}^{n} \frac{b_m d_m}{\zeta_m} \cdot \Psi_{\rho_{n,0}} + \lambda \prod_{m=1}^{n} a_m c_m \prod_{s=1}^{n-1} (\lambda - \lambda_{n,s}) \cdot \Psi_{\rho_n}.
\] (91)
5. Periodic model. Baxter equation and functional relations

5.1. The Baxter equations

After having determined the eigenvalues and eigenvectors of the auxiliary system, we now perform the first step of the program exposed in Subsection 5.3 i.e. the calculation of the eigenvalues and eigenvectors of the inhomogenous n-site periodic BBS chain model with the transfer matrix $\{1\}, \{14\}$. Following the ideas of the papers $\{18, 19, 20, 21\}$ we are looking for eigenvectors of $t_n(\lambda)$ as linear combinations of the eigenvectors Ψ_{ρ_n} of the auxiliary system.

It is convenient to go by Fourier transform in $\rho_{n,0}$ from Ψ_{ρ_n} to a basis of eigenvectors of V_n (and therefore of the Hamiltonians H_0 and H_n, see $\{13\}$, $\{15\}$)

$$\tilde{\Psi}_{\rho,\rho_n} = \sum_{\rho_{n,0} \in \mathbb{Z}_N} \omega^{-\rho \rho_{n,0}} \Psi_{\rho_n}; \quad V_n \tilde{\Psi}_{\rho,\rho_n} = \omega^\rho \tilde{\Psi}_{\rho,\rho_n}. \quad (92)$$

A shift of $\rho_{n,0}$ in Ψ_{ρ_n} is replaced by a multiplication of $\tilde{\Psi}_{\rho,\rho_n}$ by powers of ω. So from $\{66\}$ and $\{91\}$, the action of $t_n(\lambda)$ on $\tilde{\Psi}_{\rho,\rho_n}$ becomes

$$t_n(\lambda) \tilde{\Psi}_{\rho,\rho_n} = \sum_{k=1}^{n-1} \left(\prod_{s \neq k} \frac{\lambda - \lambda_{s,n}}{\lambda_{n,k} - \lambda_{s,n}} \right) \frac{\lambda}{\lambda_{n,k}} \left(\varphi_k(\rho_{n,k}') \tilde{\Psi}_{\rho,\rho_{n,k}'} + \omega^\rho \tilde{\varphi}_k(\rho_{n,k}') \tilde{\Psi}_{\rho,\rho_{n,k}'} \right) + \left\{ 1 + \omega^\rho \prod_{m=1}^{n} b_m d_m \left(\prod_{s=1}^{n-1} \left(1 - \frac{\lambda}{\lambda_{n,s}} \right) + \lambda \left(\omega^\rho \prod_{m=1}^{n} \zeta_m + \prod_{m=1}^{n} a_m c_m \right) \prod_{s=1}^{n-1} (\lambda - \lambda_{n,s}) \right) \right\} \tilde{\Psi}_{\rho,\rho_n}, \quad (93)$$

where we have taken into account that $\varphi_k(\rho_{n,k}')$ and $\tilde{\varphi}_k(\rho_{n,k}')$ are independent of $\rho_{n,0}$. Of course, since $t_n(\lambda)$ commutes with V_n, in $\{93\}$ there is no coupling between sectors of different ρ and we get separate equations for the different “charge” quantum numbers ρ which often will not be indicated explicitly.

Let $\Phi_{\rho,E}$ be eigenvector of $t_n(\lambda)$ with eigenvalue

$$t_n(\lambda \mid \rho, E) = E_0 + E_1 \lambda + \cdots + E_{n-1} \lambda^{n-1} + E_n \lambda^n, \quad (94)$$

where $E = \{E_1, \ldots, E_{n-1}\}$ and from $\{15\}$ the values of E_0 and E_n are

$$E_0 = 1 + \omega^\rho \prod_{m=1}^{n} b_m d_m / \zeta_m, \quad E_n = \prod_{m=1}^{n} a_m c_m + \omega^\rho \prod_{m=1}^{n} \zeta_m. \quad (95)$$

We are looking for $\Phi_{\rho,E}$ to be of the form

$$\Phi_{\rho,E} = \sum_{\rho_n} Q(\rho_n' \mid \rho, E) \tilde{\Psi}_{\rho,\rho_n}. \quad (96)$$

From $\{93\}$ we get a difference equation for $Q(\rho_n' \mid \rho, E)$ with respect to variables ρ_n' which depends on λ:

$$t_n(\lambda \mid \rho, E) Q(\rho_n' \mid \rho, E) = \sum_{k=1}^{n-1} \frac{\lambda}{\omega \lambda_{n,k}} \varphi_k(\rho_{n,k}') Q(\rho_{n,k}' \mid \rho, E) \prod_{s \neq k} \frac{\lambda - \lambda_{n,s}}{\omega \lambda_{n,k} - \lambda_{n,s}} +$$
Baxter–Bazhanov–Stroganov model: Separation of Variables and Baxter Equation

\[+ \sum_{k=1}^{n-1} \frac{\omega \lambda}{\lambda_{n,k} - \lambda_{n,s}} \varphi_k(\rho_n^{r+k}) \frac{Q(\rho_n^{r+k} | \rho, E)}{\omega^{-1} \lambda_{n,k} - \lambda_{n,s}} + \]
\[+ \left\{ \left(1 + \omega^\rho \prod_{m=1}^n b_{m \ell} m \right) \prod_{s=1}^{n-1} \left(1 - \frac{\lambda}{\lambda_{n,s}} \right) + \right. \]
\[+ \left. \lambda \left(\omega^\rho \prod_{m=1}^n \varphi_m + \prod_{m=1}^n a_{m \ell} \right) \prod_{s=1}^{n-1} (\lambda - \lambda_{n,s}) \right\} Q(\rho'_n | \rho, E). \] (97)

Substituting sequentially \(\lambda = \lambda_{n,k}, \ k = 1, 2, \ldots, n - 1 \), we obtain a system of difference equations with respect to the variables \(\rho'_n \):

\[t_n(\lambda_{n,k} | \rho, E) \ Q(\rho'_n | \rho, E) = \left(\prod_{s \neq k} \frac{\lambda_{n,s} - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \right) \omega^{-1} \varphi_k(\rho_n^{r-k}) \ Q(\rho_n^{r-k} | \rho, E) + \]
\[+ \left(\prod_{s \neq k} \frac{\lambda_{n,s} - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \right) \omega^\rho \varphi_k(\rho_n^{r+k}) \ Q(\rho_n^{r+k} | \rho, E), \ k = 1, \ldots, n - 1. \] (98)

In analogy to [18, 19, 9] we can decouple these difference equations using a Sklyanin’s measure, namely, by introducing \(\tilde{Q}(\rho'_n | \rho, E) \) defined as

\[Q(\rho'_n | \rho, E) = \frac{\tilde{Q}(\rho'_n | \rho, E)}{\prod_{s=1, (s \neq s')}^n \omega(\rho_{n,s} - \rho_{n,s'})}. \] (99)

Rewriting (98) in terms of \(\tilde{Q} \) produces factors \(R_\pm \) in both terms of the right hand side:

\[t_n(\lambda_{n,k} | \rho, E) \ \tilde{Q}(\rho'_n | \rho, E) = \left(\prod_{s \neq k} \frac{\lambda_{n,s} - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \right) \omega^{-1} \varphi_k(\rho_n^{r-k}) \ R_+ \tilde{Q}(\rho_n^{r-k} | \rho, E) + \]
\[+ \left(\prod_{s \neq k} \frac{\lambda_{n,s} - \lambda_{n,s}}{\lambda_{n,k} - \lambda_{n,s}} \right) \omega^\rho \varphi_k(\rho_n^{r+k}) \ R_+ \tilde{Q}(\rho_n^{r+k} | \rho, E), \ k = 1, \ldots, n - 1. \] (100)

where

\[R_+ = \prod_{s=1, (s \neq s')}^{n-1} \frac{w_{n,s} \omega(\rho_{n,s} - \rho_{n,s'})}{w_{n,s} \omega(\rho_{n,s} - \rho_{n,s} - 1)} \cdot \frac{w_{n,s} \omega(\rho_{n,s} - \rho_{n,s} + 1)}{w_{n,s} \omega(\rho_{n,s} - \rho_{n,s})}, \]
\[= \prod_{s=1, (s \neq s')}^{n-1} \frac{y_{n,s} \omega(\rho_{n,s} - \rho_{n,s})}{1 - y_{n,s} \omega(\rho_{n,s} - \rho_{n,s} + 1)} \cdot \frac{y_{n,s} \omega(\rho_{n,s} - \rho_{n,s} + 1)}{y_{n,s} \omega(\rho_{n,s} - \rho_{n,s})}, \]

and analogously \(R_- \). We see that passing from \(Q \) to \(\tilde{Q} \) the brackets containing differences of terms \(\lambda_{n,t} \) in (100) are cancelled and so the equations decouple. This means that in terms of \(\tilde{Q} \), the difference equations (98) admit the separation of variables:

\[\tilde{Q}(\rho'_n | E) = \prod_{k=1}^{n-1} \tilde{q}_k(\rho_{n,k}). \] (101)

Inserting the explicit expressions for \(\varphi_k(\rho_n^{r-k}) \) and \(\varphi_k(\rho_n^{r+k}) \) we obtain Baxter type difference equations for the functions \(\tilde{q}_k(\rho_{n,k}) \):

\[t_n(\lambda_{n,k} | \rho, E) \ \tilde{q}_k(\rho_{n,k}) = \Delta_+(\lambda_{n,k}) \ \tilde{q}_k(\rho_{n,k} + 1) + \Delta_-(\omega \lambda_{n,k}) \ \tilde{q}_k(\rho_{n,k} - 1). \] (102)
with
\[\Delta_+(\lambda) = (\omega^\rho/\chi_k) (\lambda/\omega)^{1-n} \prod_{m=1}^{n-1} F_m(\lambda/\omega); \quad \Delta_-(\lambda) = \chi_k (\lambda/\omega)^{n-1} F_n(\lambda/\omega); \] (103)

\[\chi_k = \frac{r_{n,0} \bar{r}_{n-1}}{r_n \bar{r}_n} \left(\prod_{s=1}^{n-1} \frac{y_{n,k} y_{n,s}}{y_{n,k} y_{n,s}} \right) \prod_{s=1}^{n-2} y_{n,k} y_{n-1,s}. \] (104)

In what follows we will mainly use \(t(\lambda) \) instead of \(t_n(\lambda|\rho,E) \). In fact the system of linear homogeneous equations (102) with respect to \(\tilde{q}_k(\rho_{n,k}), \rho_{n,k} \in \mathbb{Z}_N \), is not completely defined. Since \(E_1, E_2, \ldots, E_{n-1} \) are unknown, the coefficients \(t(\lambda_{n,k}) \) are also unknown. The requirement on the system of homogeneous equations (102) for some fixed \(k, k = 1, 2, \ldots, n-1 \), to have a nontrivial solution leads to the requirement that the matrix of coefficients must be degenerate. The latter gives a relation for the values \(E_0, E_1, \ldots, E_n \) entering \(t(\lambda) \). Taking all such relations corresponding to all \(k = 1, 2, \ldots, n-1 \), and using the values of \(E_0 \) and \(E_n \) given in (95), at least in principle we can find the possible values of \(E_1, \ldots, E_{n-1} \). This fixes \(t(\lambda) \). Then for every \(k, k = 1, 2, \ldots, n-1 \), we solve (102) to find \(\tilde{q}_k(\rho_{n,k}) \) for \(\rho_{n,k} \in \mathbb{Z}_N \) (These difference equations have three terms and cannot be solved in terms of the functions \(w_\rho \)). This gives us finally \(Q(\rho'_n|\rho,E) \) and therefore the eigenvectors of the periodic BBS model:

\[\Phi_{n,E} = \sum_{\rho_n=(\rho_{n,0}, \rho'_n)} \omega^{-\rho \rho_{n,0}} Q(\rho'_n|\rho,E) \Psi_{\rho_n}. \]

5.2. Role of the functional relations

Now we will show that mentioned requirement on the systems of homogeneous equations (102) for all \(k \) to have a nontrivial solution is equivalent to functional relations [3, 4, 1] of the \(\tau^{(2)} \)-model. We define \(\tau^{(0)}(\lambda) = 0, \tau^{(1)}(\lambda) = 1, \tau^{(2)}(\lambda) = t(\lambda) \) (see (94), (95)) and \(\tau^{(j+1)}(\lambda) = \tau^{(2)}(\omega^{j-1}\lambda) \tau^{(j)}(\lambda) - \omega^\rho z(\omega^{j-1}\lambda) \tau^{(j-1)}(\lambda), \quad j = 2, 3, \ldots, N, \) (105)

\[z(\lambda) = \omega^\rho \Delta_+(\lambda) \Delta_-(\lambda) = \prod_{m=1}^{n} F_m(\lambda/\omega). \] (106)

The appearance of the monodromy determinant (68) in the fusion relation is a direct consequence of the fusion procedure (see [22, 23]).

The fusion hierarchy can be used to find eigenvalues of the transfer matrices in lattice integrable models. A key tool here is, in addition to (105), to demand a “truncation” identity which allows to express \(\tau^{(j)}(\lambda) \) for some value \(j \) through \(\tau^{(i)}(\lambda) \) with \(i < j \). A combination of the fusion hierarchy and truncation identity allows one to obtain an equation for \(\tau^{(2)}(\lambda) = t(\lambda) \). This method was applied to many integrable models, in particular, to the RSOS models in [24] and to the root of unity lattice vertex models in [25]. The functional relations for the \(\tau^{(2)} \)-model for \(N = 3 \) and the superintegrable case were first guessed in [12] and have been solved to some extend in [26].
The goal of the present section is to prove that the relations to determine the values E_1, \ldots, E_{n-1} entering $t(\lambda)$ also have the form of a truncation identity. We formulate this statement as follows:

Theorem 2 The polynomial $\tau^{(N+1)}(\lambda)$ satisfies the “truncation” identity

$$\tau^{(N+1)}(\lambda) - \omega^p z(\lambda) \tau^{(N-1)}(\omega \lambda) = A_n(\lambda^N) + D_n(\lambda^N)$$

(107)

if and only if the system of homogeneous equations \((102)\) for all k has a nontrivial solution.

Note, the classical polynomial $A_n(\lambda^N) + D_n(\lambda^N)$ corresponds to $\alpha_q + \bar{\alpha}_q$ in [1].

Proof. Let $t(\lambda)$ be a polynomial \((94), (95)\) such that the systems of homogeneous equations \((102)\) for all k have a nontrivial solution. We shall show that the polynomial $P(\lambda) = \tau^{(N+1)}(\lambda) - \omega^p z(\lambda) \tau^{(N-1)}(\omega \lambda)$ at the left-hand side of \((107)\) is equal to $A_n(\lambda^N) + D_n(\lambda^N)$. With this aim we introduce the matrix

$$\Gamma(\lambda) = \begin{pmatrix} \tau(2)(\lambda) & \omega^p z(\lambda) \\ -1 & 0 \end{pmatrix}.$$

Then it is easy to verify from \((105)\) by induction that

$$\Gamma(\omega^{-1} \lambda) \cdots \Gamma(\omega \lambda) \Gamma(\lambda) = \begin{pmatrix} \tau^{(j+1)}(\lambda) & \omega^p z(\lambda) \tau^{(j)}(\omega \lambda) \\ -\tau^{(j)}(\lambda) & -\omega^p z(\lambda) \tau^{(j-1)}(\omega \lambda) \end{pmatrix}$$

and we see that

$$P(\lambda) = \text{tr} \Gamma(\omega^{-1} \lambda) \cdots \Gamma(\omega \lambda) \Gamma(\lambda).$$ (108)

This relation shows the invariance of $P(\lambda)$ under cyclic shifting $\lambda \rightarrow \omega \lambda$. It means that in fact $P(\lambda)$ depends only on λ^N. We denote $P(\lambda^N) = P(\lambda)$. Thus we have to show that $P(\lambda^N) = A_n(\lambda^N) + D_n(\lambda^N)$. The direct calculation gives that the coefficients of λ^0 and λ^{Nn} at both sides of this equation coincide. In order to calculate the coefficient in front of λ^0 in the trace of the product of Γ-matrices \((108)\) one has to substitute

$$\Gamma(\lambda) \rightarrow \begin{pmatrix} 1 + \omega^p \prod_{m=1}^n b_m d_m / \kappa_m & \omega^p \prod_{m=1}^n b_m d_m / \kappa_m \\ -1 & 0 \end{pmatrix}$$

(109)

where only the lowest terms in λ in the matrix elements were kept. Therefore the lowest term in λ in $P(\lambda)$ is

$$\text{tr} \left(1 + \omega^p \prod_{m=1}^n \frac{b_m d_m}{\kappa_m} \omega^p \prod_{m=1}^n \frac{b_m d_m}{\kappa_m} \right)^N.$$

Finding the eigenvalues of the matrix \((109)\) one can easily calculate the latter trace which is the lowest term $P(0)$ and identify it with the lowest term

$$A_n(0) + D_n(0) = 1 + \prod_{m=1}^n \frac{b_m^N d_m^N}{\kappa_m^N}$$

of the polynomial $A_n(\lambda^N) + D_n(\lambda^N)$ calculated by means of relations \((45)\) and \((46)\). The case of the coefficients in front of λ^{Nn} can be treated analogously.
Therefore to prove the Theorem 2 it remains to prove

\[P(\lambda_{n,k}) = A_n(\lambda_{n,k}^N) + D_n(\lambda_{n,k}), \quad k = 1, 2, \ldots, n - 1, \]

(110)

where \(\lambda_{n,k} \) are given by (31) and \(\lambda_{n,k}^N = \epsilon r_{n,k}^N \) are zeros of the polynomial (17). Let us fix some \(k \) and \(\rho_{n,k} \) and denote the matrix of the coefficients of (102) with respect to the variables \(\tilde{\eta}_k(\rho_{n,k}), \tilde{\eta}_k(\rho_{n,k} - 1), \ldots, \tilde{\eta}_k(\rho_{n,k} - N + 1) \) by \(\mathcal{M} \):

\[
\mathcal{M} = \begin{pmatrix}
t_0 & -\Delta_1^- & 0 & \ldots & 0 & -\Delta_0^+ \\
-\Delta_1^+ & t_1 & -\Delta_2^- & \ldots & 0 & 0 \\
0 & -\Delta_2^+ & t_2 & \ldots & 0 & 0 \\
& & & \ddots & \ddots & \ddots \\
& & & & -\Delta_{N-1}^+ & t_{N-1} \\
-\Delta_0^- & 0 & 0 & \ldots & -\Delta_N^- & t_N \\
\end{pmatrix},
\]

(111)

where we abbreviated: \(t_j = t(\omega^j \lambda_{n,k}) \); \(\Delta_j^\pm = \Delta_{\pm}(\omega^j \lambda_{n,k}) \). In order (102) to have a nontrivial solution, the matrix \(\mathcal{M} \) must be degenerate. Let \(\mathcal{M}' \) be the matrix which has the same matrix elements as \(\mathcal{M} \) except for \(\mathcal{M}'_{1,N} = 0 \) and \(\mathcal{M}'_{N,1} = 0 \). Then, using the recursive definition (105) of \(\tau^{(j)}(\lambda) \) and (106), it is easy to show that the principal minor corresponding to the first \(j, j \leq N \) rows of the matrix \(\mathcal{M}' \) gives \(\tau^{(j+1)}(\lambda_{n,k}) \). Calculating the determinant of the matrix (111) and equating it to zero we obtain

\[
\det \mathcal{M} = \tau^{(N+1)}(\lambda_{n,k}) - \omega^p z(\lambda_{n,k}) \tau^{(N-1)}(\omega \lambda_{n,k}) - \prod_{s \in \mathbb{Z}_N} \Delta_+(\lambda_{n,k} \omega^s) - \prod_{s \in \mathbb{Z}_N} \Delta_-(\lambda_{n,k} \omega^s) = 0.
\]

(112)

Further,

\[
\prod_{s \in \mathbb{Z}_N} \Delta_-(\lambda_{n,k} \omega^s) = \chi_k (\lambda) = \chi_k (-1)^{n-1} r_{n,k}^{N(n-1)} \det \mathcal{L}_n(\lambda_{n,k}^N) = \epsilon \frac{B_{n-1}(\lambda_{n,k}^N)}{r_n^{N} \lambda_{n,k}^N} \det \mathcal{L}_n(\lambda_{n,k}^N),
\]

where we have used (103), (50), (104), (53), (17) and

\[
\chi_k = \frac{(-1)^n r_n^{N-1} r_{n-1}^{N} \prod_{s=1}^{n-2} (r_{n-1,s} - r_{n,k})}{r_n^{N} (r_{n,k}^{N})^n} = \frac{(-1)^{n-1} B_{n-1}(\lambda_{n,k}^N)}{r_n^{N} (r_{n,k}^{N})^n}.
\]

Evaluating (49) at \(m = n \) and \(\lambda = \lambda_{n,k} \) so that \(B_n(\lambda_{n,k}^N) = 0 \), finally we obtain

\[
\prod_{s \in \mathbb{Z}_N} \Delta_-(\lambda_{n,k} \omega^s) = A_n(\lambda_{n,k}^N).
\]

Substituting \(\lambda = \lambda_{n,k} \) into

\[
\det \mathcal{T}_n(\lambda^N) = A_n(\lambda^N) D_n(\lambda^N) - B_n(\lambda^N) C_n(\lambda^N) = \prod_{m=1}^{n} \det \mathcal{L}_m(\lambda^N) = \prod_{m=1}^{n} \prod_{s \in \mathbb{Z}_N} F_m(\lambda \omega^{s-1}) = \prod_{s \in \mathbb{Z}_N} z(\lambda \omega^s) = \prod_{s \in \mathbb{Z}_N} (\Delta_+(\lambda \omega^s) \cdot \Delta_-(\lambda \omega^s)).
\]

(113)

we get

\[
\prod_{s \in \mathbb{Z}_N} \Delta_+(\lambda_{n,k} \omega^s) = D_n(\lambda_{n,k}^N).
\]

Using (112) we obtain (110).
Conversely, if we have the polynomials \(\tau^{(N-1)}(\lambda) \) and \(\tau^{(N+1)}(\lambda) \) built from \(\tau^{(2)}(\lambda) = t(\lambda) \) (see (94), (95)) by the recursion (105) and satisfying (107) we get (112) at particular values of \(\lambda \). This means that the Baxter equations (102) have nontrivial solutions.

This completes the proof of Theorem 2.

6. Periodic homogeneous BBS model for \(N = 2 \)

6.1. Solution of the Baxter equations

In this section we consider in more detail the case of the \(N = 2 \) periodic homogeneous BBS model, where \(\omega = -1 \). By homogenous we mean that the parameters \(a, b, c, d \) and \(\varkappa \) are taken to be the same for all sites. As it was shown in [16], for \(N = 2 \) and with arbitrary homogeneous parameters this model is a particular case (“free fermion point”) of the generalized Ising model.

We will find the eigenvalues \(t_n(\lambda|\rho, E) \) of the transfer-matrix \(t_n(\lambda) \) using a functional relation (see also [30], where a similar calculation is presented). We use the short notation \(t(\lambda) \) for \(t_n(\lambda|\rho, E) \). From the previous section we have

\[
t(\lambda) = 1 + (-1)^n \frac{b^2 d^n}{\varkappa^n} + E_1 \lambda + \cdots + E_{n-1} \lambda^{n-1} + \lambda^n (a^n c^n + (-1)^n \varepsilon^n).
\] (114)

Using (105) for \(j = 2 \) and eliminating \(\tau^{(3)} \) by (107) we get the functional relation

\[
t(\lambda) t(-\lambda) = (-1)^n (z(\lambda) + z(-\lambda)) + A_n(\lambda^2) + D_n(\lambda^2)
\] (115)

which we shall use to find \(t(\lambda) \). Equivalently, we could have obtained (115) by multiplying together the two Baxter equations (102) for \(\lambda_{n,k} = \pm r_{n,k} \).

Postponing for a moment the derivation (which will be supplied after (126)), let us anticipate that (115) can be rewritten as

\[
t(\lambda) t(-\lambda) = (-1)^n \prod_q \left(A(q) \lambda^2 - C(q) + 2i B(q) \lambda \right)
\] (116)

where

\[
A(q) = a^2 c^2 - 2 \varkappa a c \cos q + \varkappa^2; \quad B(q) = (ad - bc) \sin q
\]

\[
C(q) = 1 - 2 \frac{b d}{\varkappa} \cos q + \frac{b^2 d^2}{\varkappa^2},
\] (117)

\(q \) is running over the set \(\pi (2s + 1 - \rho)/n, \; s = 0, 1, \ldots, n - 1 \). Factorizing (116) we get

\[
t(\lambda) t(-\lambda) = (-1)^n \prod_q A(q)(\lambda - \lambda_q)(\lambda + \lambda_{-q})
\] (118)

with

\[
\lambda_q = \frac{1}{A(q)} \left(\sqrt{D(q)} - i B(q) \right), \quad D(q) = A(q) C(q) - B(q)^2.
\] (119)

We fix the sign of \(\sqrt{D(q)} \) by the conditions

\[
\sqrt{D(q)} = \sqrt{D(-q)}, \quad q \neq 0, \pi;
\] (120)

\[
\sqrt{D(0)} = (\varkappa - ac)(1 - bd/\varkappa); \quad \sqrt{D(\pi)} = (\varkappa + ac)(1 + bd/\varkappa).
\] (121)
In what follows we shall need the relations
\[
\prod_{q} A(q) = \prod_{q} (\varkappa - e^{iq}ac)(\varkappa - e^{-iq}ac) = (a^n c^n + (-1)^{\rho} \varkappa^n)^2, \tag{122}
\]
\[
\prod_{q} (\sqrt{D(q)} - iB(q)) = \prod_{q} (\varkappa - e^{iq}ac)(1 - e^{iqd}/\varkappa). \tag{123}
\]

The last relation can be obtained by grouping terms with opposite signs of \(q \) (modulo 2\(\pi \)) and using the definition of \(\sqrt{D(q)} \). Using \eqref{122} we get
\[
t(\lambda)t(-\lambda) = (-1)^n (a^n c^n + (-1)^{\rho} \varkappa^n)^2 \prod_{q}(\lambda - \lambda_q) \cdot \prod_{q}(\lambda + \lambda_{-q})
\]
\[
= (-1)^n (a^n c^n + (-1)^{\rho} \varkappa^n)^2 \prod_{q}(\lambda^2 - \lambda_q^2), \tag{124}
\]
where we made the change \(q \to -q \) in second product. From \eqref{114} it follows that \(t(\lambda) \) can be presented as
\[
t(\lambda) = (a^n c^n + (-1)^{\rho} \varkappa^n) \prod_{s=1}^{n}(\lambda - \Lambda_s)
\]
with zeroes \(\Lambda_s \). Therefore
\[
t(\lambda)t(-\lambda) = (-1)^n (a^n c^n + (-1)^{\rho} \varkappa^n)^2 \prod_{s=1}^{n}(\lambda^2 - \Lambda_s^2).
\]
Comparing with \eqref{124} we obtain
\[
t(\lambda) = (a^n c^n + (-1)^{\rho} \varkappa^n) \prod_{q}(\lambda \pm \lambda_q), \tag{125}
\]
where the signs are not yet fixed. To fix these signs we compare the \(\lambda \)-independent term in \eqref{114} with the corresponding term in \eqref{125}. The latter can be found using
\[
(a^n c^n + (-1)^{\rho} \varkappa^n) \prod_{q} \lambda_q = (a^n c^n + (-1)^{\rho} \varkappa^n)^{-1} \prod_{q}(\sqrt{D(q)} - iB(q))
\]
\[
= (a^n c^n + (-1)^{\rho} \varkappa^n)^{-1} \prod_{q}(\varkappa - e^{iq}ac)(1 - e^{iqd}/\varkappa) = (-1)^{\rho} + b^n d^n / \varkappa^n, \tag{126}
\]
where we took into account \eqref{123}. Therefore the number of minus signs in \eqref{125} must be even for the sector \(\rho = 0 \) and odd for \(\rho = 1 \). Thus we have obtained \(2^n \) eigenvalues (\(2^{n-1} \) each for both \(\rho = 0 \) and \(\rho = 1 \)). These eigenvalues provide the existence of nontrivial solutions of the system \eqref{102} of homogeneous equations. These solutions give the eigenvectors \eqref{90}, a basis in the space of states of the periodic BBS model for \(N = 2 \).

We conclude this section supplying the derivation of \eqref{116} from \eqref{115}: Using
\[
\delta_+ (\lambda) := (b + a \varkappa \lambda)(d - c \varkappa \lambda) / \varkappa, \quad \delta_-(\lambda) := \delta_+ (-\lambda) = (b - a \varkappa \lambda)(d + c \varkappa \lambda) / \varkappa
\]
we easily verify the relations \(\delta_+ (\lambda) = z(\lambda), \ \delta_- (\lambda) = z(-\lambda), \ \delta_+(\lambda) \delta_-(\lambda) = \delta(\lambda^2), \) where \(z(\lambda) \) and \(\delta(\lambda^2) \) are given by \eqref{103} and \eqref{A.5} respectively. Taking into account \(A_n (\lambda^2) + D_n (\lambda^2) = \text{tr} \ (\mathcal{L}(\lambda^2))^n = x_+ (\lambda^2) + x_- (\lambda^2) \) and the relations
\[
\tau(\lambda^2) = \text{tr} \ \mathcal{L}(\lambda^2) = x_+ (\lambda^2) + x_- (\lambda^2), \quad \delta(\lambda^2) = \text{det} \ \mathcal{L}(\lambda^2) = x_+ (\lambda^2) x_- (\lambda^2),
\]
we can rewrite the functional relation (115) as
\[t(\lambda) t(-\lambda) = (-1)^\rho (z(\lambda) + z(-\lambda)) + A_n(\lambda^2) + D_n(\lambda^2) \]
\[= (-1)^\rho (\delta^+ + \delta^-) + x^+ + x^- \]
\[= (-1)^\rho (x^+ + (-1)^\rho \delta^-) ((x^-/\delta^+) + (-1)^\rho) \]
\[= (-1)^\rho \prod_q (x_+ - e^{iq}\delta_+)(x_-/\delta_+ - e^{iq}) \]
\[= (-1)^\rho \prod_q (e^{iq}\delta_+ - \tau(\lambda^2) + e^{-iq}\delta_-) \]
\[= (-1)^\rho \prod_q \left\{ \left(a^2e^2 + \tau^2 \right)\lambda - \frac{b^2d^2}{\lambda^2} - 1 \right\} + 2 \left(\frac{b^2}{\lambda^2} - \lambda^2 \right) \cos q \]
\[-2i \lambda(a d - b c) \sin q \right\}, \quad (127) \]
which confirms (116).

6.2. Relation to the standard Ising model notations

In the homogeneous $N = 2$ case we have $\omega = -1$ and $u_k^{-1} = u_k$, so the cyclic L-operator (6) reduces to
\[L_k(\lambda) = \begin{pmatrix} 1 + \lambda \kappa v_k & \lambda u_k (a - b v_k) \\ u_k (c - d v_k) & \lambda ac + \kappa b d / \kappa \end{pmatrix}. \quad (128) \]
Let us make the special choice of the parameters $d = bc/a$ and $\lambda = b/(a \kappa)$. Then
\[L_k(\lambda) = (1 + v_k b/a) \begin{pmatrix} 1 & u_k b / \kappa \\ c u_k & bc / \kappa \end{pmatrix} = (1 + v_k b/a) \begin{pmatrix} 1 & u_k b / \kappa \\ c u_k & bc / \kappa \end{pmatrix}. \quad (129) \]
and the transfer-matrix is
\[t_n(\lambda) = \text{tr} L_1(\lambda) L_2(\lambda) \cdots L_n(\lambda) = \prod_{k=1}^n (1 + v_k b/a) \cdot \prod_{k=1}^n (1 + u_k b/c / \kappa). \quad (130) \]
Recall that due to the periodic boundary conditions $u_{n+1} = u_k$. Using
\[\exp(K_1 u_{k-1} u_k) = \cosh K_1 (1 + u_{k-1} u_k \tanh K_1); \quad \exp(K_2^* v_k) = \cosh K_2^* (1 + v_k \tanh K_2^*), \]
and writing $u_k = \sigma^+_k$ and $v_k = \sigma^+_k$, it is easy to identify $t_n(\lambda)$ with the standard Ising transfer-matrix:
\[t_{\text{Ising}} = \exp \left(\sum_{k=1}^n K_2^* \sigma^+_k \right) \exp \left(\sum_{k=1}^n K_1 \sigma^+_k \right); \quad \tanh K_2^* = \frac{b}{a}; \quad \tanh K_1 = \frac{bc}{\kappa}. \]

7. Conclusion

This paper is devoted to the solution of the eigenvalue and eigenvector problems for the finite-size inhomogenous periodic Baxter-Bazhanov-Stroganov quantum chain model. We use an approach which had been developed in full detail for the quantum Toda
Baxter–Bazhanov–Stroganov model: Separation of Variables and Baxter Equation

chain in [9, 10] and in [11] for the relativistic deformation of the Toda chain. This approach consists of two main steps: In order to find eigenvectors for the transfer matrix $A_n(\lambda) + D_n(\lambda)$ first we find the eigenvectors of the off-diagonal operator $B_n(\lambda)$ adapting the well known recurrent procedure described in [10] to our root-of-unity case. Then, using these eigenvectors, we construct the eigenvectors for the BBS transfer matrix and show that the coefficients of the decompositions of one set of eigenvectors in terms of the other set factorizes into a product of single variable functions, each satisfying the Baxter type equation. We show that the condition for these equations to have nontrivial solution is equivalent to the functional relations for the transfer matrix eigenvalues in the BBS or $\tau^{(2)}$ model. In case of $N = 2$ the Baxter equation can be solved and as result we obtain the eigenstates of the transfer matrix of the generalized Ising model at the free fermion point. We shortly give the relation of the $N = 2$ BBS model parameters to the standard Ising model parametrization.

Acknowledgements

This work was partially supported by the grant INTAS-OPEN-03-51-3350, the Heisenberg-Landau program and France–Ukrainian project “Dnipro” and the grant RFBR-05-01-086.

Appendix: Amplitudes $r_{m,k}$ in the homogeneous case

The determination of the amplitudes $r_{m,k}$ for the inhomogenous BBS model had been reduced to solving Equation (47) with (51) of Section 2.3. Here we show that in the homogenous case this task simplifies to solving just one quadratic equation, using a trigonometric parametrization.

In the homogeneous case we have

\[a_m = a, \ b_m = b, \ c_m = c, \ d_m = d, \ \Lambda_m = \Lambda, \ r_m = r, \ \mathcal{L}_m(\lambda^N) = \mathcal{L}(\lambda^N) \]

and

\[\begin{pmatrix} A_m(\lambda^N) & B_m(\lambda^N) \\ C_m(\lambda^N) & D_m(\lambda^N) \end{pmatrix} = (\mathcal{L}(\lambda^N))^m. \]

Using the fact that a 2×2 matrix M with eigenvalues μ_+ and μ_- satisfies

\[M^m = \frac{\mu_+^m - \mu_-^m}{\mu_+ - \mu_-} M - \frac{\mu_+^m - \mu_-^m}{\mu_+ - \mu_-} 1, \]

from the matrix $\mathcal{L}(\lambda^N)$ we obtain

\[B_m(\lambda^N) = -\epsilon \lambda^N r_N \frac{x_+^m - x_-^m}{x_+ - x_-}, \]

where $x_+(\lambda^N)$ and $x_-(\lambda^N)$ are the eigenvalues of $\mathcal{L}(\lambda^N)$. These eigenvalues are the roots of the characteristic polynomial $x^2 - \tau(\lambda^N)x + \delta(\lambda^N) = 0$:

\[x_\pm = \frac{1}{2}(\tau \pm \sqrt{\tau^2 - 4\delta}), \]

(A.3)
where, see (50),
\[
\tau(\lambda^N) = \text{tr} \mathcal{L}(\lambda^N) = 1 + \frac{b_N d_N}{\lambda^N} - \epsilon \lambda^N (\phi^N + a_N c_N),
\]
(A.4)
\[
\delta(\lambda^N) = \det \mathcal{L}(\lambda^N) = (b_N/\lambda^N - \epsilon \lambda^N a_N) (d_N - \epsilon \lambda^N c_N \phi^N).
\]
(A.5)

Introducing the variable \(\phi\) by \(x_+/x_- = e^{i\phi}\) we find that roots of \(B_m\) correspond to roots \(\phi_{m,s}\) of \(e^{im\phi} = 1\) (without \(\phi = 0\)):
\[
\phi_{m,s} = 2\pi s/m, \quad s = 1, 2, \ldots, m - 1.
\]
(A.6)

Now we need to find the explicit relation between \(\lambda^N\) and \(\phi\). We have
\[
\tau + \sqrt{\tau^2 - 4\delta} = e^{i\phi} (\tau - \sqrt{\tau^2 - 4\delta}) \quad \text{or} \quad \tau^2 = 4\delta \cos^2 \frac{\phi}{2}.
\]
(A.7)

Taking into account \(\text{(A.4)}\) and \(\text{(A.5)}\), we consider \(\text{(A.7)}\) as a quadratic equation for \(\lambda^N\):
\[
\lambda^{2N}(a^{2N}c^{2N} + \phi^N - 2a_N c_N \phi^N \cos \phi) + (b^{2N}d^{2N} - 2b_N d_N \phi^N \cos \phi)/\phi^N
\]
\[
- 2\epsilon \lambda^N \left((a^N - b^N)(c^N - d^N) + \frac{a_N b_N c_N d_N}{\phi^N} + \phi^N - (a_N d_N + b_N c_N) \cos \phi\right) = 0.
\]
(A.8)

The solution \(\lambda^N(\phi)\) of this equation describes the relation between the variables \(\lambda^N\) and \(\phi\). Therefore we can translate the zeroes \(\lambda^N(\phi_{m,s})\) of \(B_m(\lambda^N(\phi))\) in terms of variable \(\phi\), to zeroes \(\lambda^N(\phi_{m,s})\). From \(\text{(A.7)}\) we get
\[
r^N_{m,s} = \epsilon \lambda^N(\phi_{m,s}), \quad s = 1, 2, \ldots, m - 1.
\]
(A.9)

The value of \(r^N_{m,0}\) can be found recursively from \(\text{(60)}\) using \(\text{(A.1)}\):
\[
r^N_{m,0} = r^N_{m-1,0} a^N c^N + r^N \phi^N(m-1), \quad r^N_{1,0} = r^N = a^N - b^N.
\]
(A.10)

References

[1] Baxter R J 2004 Transfer matrix functional relations for the generalized \(\tau_t(t)\) model, J. Stat. Phys. 117 1–25
[2] Baxter R J 1989 Superintegrable chiral Potts model: Thermodynamic properties, an "Inverse" model, and a simple associated Hamiltonian J. Stat. Phys. 57 1–39
[3] Bazhanov V V and Stroganov Yu G 1990 Chiral Potts model as a descendant of the six-vertex model, J. Stat. Phys. 59 799–817
[4] Baxter R J, Bazhanov V V and Perk J H H 1990 Functional relations for the transfer matrices of the chiral Potts model, Intern. J. Mod. Phys. B 4 803–869
[5] Baxter R J 1990 Chiral Potts model: eigenvalues of the transfer matrix, Phys. Lett. A146 110–114
[6] Baxter R J 2005 Derivation of the order parameter of the chiral Potts model, Phys. Rev. Lett. 94 130602: arXiv:cond-mat/0501227
[7] Korepanov I G 1987 Hidden symmetries in the 6-vertex model, Chelyabinsk Polytechnical Institute, archive VINITI No. 1472-V87 (in Russian); 1994 Hidden symmetries in the 6-vertex model of Statistical Physics, Zapiski Nauchn. Semin. POMI 215 163–177, arXiv:hep-th/94010066
[8] Sklyanin E K 1990 Functional Bethe Ansatz in Integrable and Superintegrable Systems, ed. Kupershmidt B A, World Scientific, Singapore, 8–33
[9] Kharchev S and Lebedev D 1999 Integral representations for the eigenfunctions of a quantum periodic Toda chain, Lett. Math. Phys. 50 53–77
Baxter–Bazhanov–Stroganov model: Separation of Variables and Baxter Equation

[10] Kharchev S and Lebedev D 2000 Eigenfunctions of $GL(N, \mathbb{R})$ Toda chain: The Mellin-Barnes representation, JETP Lett. 71 235–238

[11] Kharchev S, Lebedev D, and Semenov-Tian-Shansky M 2002 Unitary representations of $U_q(sl(2, R))$, the modular double, and the multiparticle q-deformed Toda chains, Comm. Math. Phys. 225 573–609

[12] Albertini G, McCoy B M M and Perk J J H 1898 Eigenvalue spectrum of the superintegrable chiral Potts model Adv. Stud. Pure Math. 19 1–55

[13] Tarasov V O 1990 Transfer matrix of the superintegrable chiral Potts model. Bethe ansatz spectrum, Phys. Lett. A147 487–490

[14] Tarasov V O 1992 Cyclic monodromy matrices for the R-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions, Intern. J. Mod. Phys. A7 Suppl. 1B 963–975

[15] Baxter R J 1993 Chiral Potts model with skewed boundary conditions J. Stat. Phys.73 461–495

[16] Bugrij A I, Iorgov N Z and Shadura V N 2005 Alternative Method of Calculating the Eigenvalues of the Transfer Matrix of the τ_2 Model for $N = 2$ JETP Lett. 82 311–315

[17] Lisovyy O 2006 Transfer matrix eigenvectors of the Baxter-Bazhanov-Stroganov τ_2-model for $N=2$ J. Phys. A: Math. Gen. 39 2265–2285; arXiv:nlin.SI/0512026

[18] Gutzwiller M 1981 The quantum mechanical Toda lattice II, Ann. of Phys. 133 304–331

[19] Sklyanin E 1985 The quantum Toda chain in Lectures Notes in Physics 226 196–233, Springer, New York

[20] Sklyanin E K 1992 Quantum Inverse Scattering Method. Selected Topics, in Quantum Group and Quantum Integrable Systems, Nankai Lectures in Math. Phys., ed. Mo-Lin Ge, World Scientific, Singapore, 63–97.

[21] Iorgov N Z 2006 Eigenvectors of open Bazhanov–Stroganov quantum chain, SIGMA 2, No. 19; arXiv:nlin.SI/0602010

[22] Kulish P P and Sklyanin E K 1982 Lecture notes in Physics 151 (Springer) 61

[23] Kirillov A N and Reshetikhin N Yu 1987 J. Phys. A: Math. Gen. 20 1565

[24] Bazhanov V V and Reshetikhin N Yu 1989 Critical RSOS models and conformal field theory, Intern. J. Mod. Phys. A4 115

[25] Nepomechie R I 2003 Functional relations and Bethe ansatz for the XXZ chain, J. Stat. Phys. 111 1363

[26] McCoy B M M and Roan S S, 1990 Excitation spectrum and phase structure of the chiral Potts model, Phys. Lett. A150 347

[27] Iorgov N and Shadura V 2005 Wave functions of the Toda chain with boundary interactions, Theor. Math. Phys. 142 289–305; arXiv:nlin.SI/0411002

[28] Bazhanov V V and Baxter R J 1992 New solvable lattice models in three dimensions, J. Stat. Phys.69 453–485

[29] von Gehlen G, Pakuliak S and Sergeev S 2005 The Bazhanov-Stroganov model from 3D approach. J. Phys. A: Math. Gen. 38 7269–7298

[30] Au-Yang H, Bai-Qi Jin and Perk J H H 2001 Baxter’s solution for the free energy of the chiral Potts model, J. Stat. Phys. 102 471–499