O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes

Caifei Liu1,*, Yingxin Shi1,*, Jie Li1,*, Xuewen Liu2, Zhikai Xiahou1, Zhongping Tan3, Xing Chen4 and Jing Li1,§

1Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
2Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Key Laboratory of Translational Radiation Oncology, Hunan 410006, China
3Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
4College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.

Running title: O-GlcNAc of MYPT1 regulates centrosome dynamics

*These authors contributed equally to this work.

§To whom correspondence should be addressed:
Jing Li, 1Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China, Phone: 86-10-68901692, Fax: 86-10-68906307, E-mail: jing_li@mail.cnu.edu.cn

Keywords: O-GlcNAcylation; O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT); mitosis; cell cycle; centrosome; protein phosphorylation; CDK1; PLK1; MYPT1
ABSTRACT
The role of O-linked N-acetylglucosamine (O-GlcNAc) modification in the cell cycle has been enigmatic. Previously, both O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) disruptions have been shown to derail the mitotic centrosome numbers, suggesting that mitotic O-GlcNAc oscillation needs to be in concert with mitotic progression to account for centrosome integrity. Here using both chemical approaches and biological assays with HeLa cells, we attempted to address the underlying molecular mechanism and observed that incubation of the cells with the OGA inhibitor Thiamet-G strikingly elevates centrosomal distances, suggestive of premature centrosome disjunction. These aberrations could be overcome by inhibiting Polo-like kinase 1 (PLK1), a mitotic master kinase. PLK1 inactivation is modulated by the myosin phosphatase targeting subunit 1 (MYPT1)-protein phosphatase 1 cβ (PP1cβ) complex. Interestingly, MYPT1 has been shown to be abundantly O-GlcNAcylated and the modified residues have been detected in a recent O-GlcNAc-profiling screen utilizing chemoenzymatic labeling and bioorthogonal conjugation. We demonstrate here that MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589 and Ser-601, which antagonizes CDK1-dependent phosphorylation at Ser-473, and attenuating the association between MYPT1 and PLK1, thereby promoting PLK1 activity. We conclude that under high O-GlcNAc levels, PLK1 is untimely activated, conducive to inopportune centrosome separation and disruption of the cell cycle. We propose that too much O-GlcNAc is equally deleterious as too little O-GlcNAc, and a fine balance between the OGT/OGA duo is indispensable for successful mitotic divisions.

INTRODUCTION
The centrosomes are the primary microtubule-organizing centers that nucleate the mitotic spindle apparatus to ensure subsequent faithful sister chromatid segregation during mitosis. The centrosome cycle is tightly coordinated with other cell cycle events (1), and its aberrancy could culminate in chromosome segregation defects and aneuploidy (2). The entire centrosome cycle encompasses centrosome duplication during S phase, disjunction in late G2 and further separation during prophase or prometaphase, and eventual segregation into the two daughter cells.

Centrosomes duplicate in concomitant with DNA replication, after which the sister centrosomes are glued together by two proteinaceous linkers, c-Nap1 and rootletin (3,4), as well as other components such as Cep68, Cep215 and LRRRC45 (5). C-Nap1, a large coiled-coiled protein, links rootletin to the centrioles so that the centrosome pair is joined by fibrous polymers (3). In late G2, the Never In Mitosis (NIMA)-related serine/threonine kinase Nek2A phosphorylates and displaces c-Nap1 and rootletin, leading to disjoint centrosomes (6). Centrosomal accumulation of Nek2A is mediated by the Hippo pathway, among which sterile 20-like kinase 2 (Mst2) and Salvador (Sav1) play critical roles. In particular, Mst2 phosphorylates and activates Nek2A(7). Upstream of Mst2 is the mitotic master kinase, Polo-like kinase 1 (PLK1) (8).

Following centrosome disjunction, the kinesin Eg5 accounts for centrosome
positioning in the beginning of M phase. Cyclin-dependent kinase 1 (CDK1) phosphorylates and activates Eg5 at Thr-927 by stimulating the engagement between Eg5 and microtubules (9). Independently, centrosomal localization of Eg5 requires PLK1 (10), which activates the NIMA-family kinase Nek9, leading to Eg5 phosphorylation at Ser-1033 by the Nek9/6/7 complex (11). Phosphorylated Eg5 then binds centrosomal Targeting Protein for Xenopus kinesin-like protein 2 (TPX2), which is also mediated by Nek9 (12). Besides mitosis, Eg5 also governs centrosome dynamics during interphase (10). Hence, the centrosomal role of Plk1 is two-fold: centrosome disjunction via the PLK1-Mst2-Nek2A signaling cascade, and centrosome separation through PLK1-Nek9/6/7-Eg5 (13).

Besides centrosomes, PLK1 also orchestrates a multitude of cell cycle events, including replication, mitotic entry, chromosome segregation and cytokinesis (4,14-16). It contains an N-terminal kinase domain and a C-terminal polo-box binding domain (PBD). Phosphorylation of PLK1 at Thr-210 at the T-loop is mediated by the Aurora A-Bora complex (17), resulting in dissociation of PBD from the kinase domain and thus activating PLK1. Dephosphorylation of PLK1 is modulated by the protein phosphatase 1 cβ (PP1cβ), targeted by the myosin phosphatase targeting subunit 1 (MYPT1) (18). Specifically, CDK1 phosphorylates MYPT1 at Ser-473, creating a binding pocket between MYPT1 and the PBD of PLK1. Subsequently MYPT1 recruits PP1cβ to dephosphorylate pThr-210 of PLK1 (18). Such interaction at the kinetochore destabilizes kinetochore-microtubule attachments (19). Besides phosphorylation, PLK1 is also methylated at Lys-209 (20,21), which vies with pThr-210 and hence blocking Plk1 activity.

Due to the vital role of PLK1 in mitosis, MYPT1 is subject to multifaceted regulations: the Hippo pathway kinase LATS1/WARTS phosphorylates MYPT1 at Ser-445 to inactivate PLK1 (22); optineurin, another phosphatase, promotes MYPT1 activity (23); checkpoint kinase 1 (CHK1) phosphorylates MYPT1 at Ser-20, and enhances MYPT1-PP1cβ binding (24); checkpoint kinase 2 (CHK2) phosphorylates MYPT1 at Ser-507 to attenuate pSer-473 (25).

Previous investigations have identified that MYPT1 is also subject to O-linked N-acetylglucosamine (O-GlcNAc) modifications (26). O-GlcNAcylation is an emerging post-translational modification (PTM) that integrates the metabolic signals with transcription, nutrient sensing, stress responses and cell cycle events (27,28). It is catalyzed by the sole transerase O-GlcNAc transferase (OGT), and reversed by the only O-GlcNAcase (OGA) (27). Chemical inhibitors of OGT [acetyl-5S-GlcNAc (5S-G)] and OGA [Thiamet-G (TMG)] have been developed to interrogate various biological processes (29). During the cell cycle, O-GlcNAcylation levels fluctuate as the cells proceed through different stages (30). In particular, both OGT and OGA overproduction results in multipolar spindles (31). However, myriad targets of O-GlcNAc and its quintessential functions remain largely unexplored. Here we identify the O-GlcNAc modified residues of MYPT1. We show that O-GlcNAcylation of MYPT1 antagonizes pSer-473, and results in its dissociation from PLK1. Elevated
O-GlcNAc levels thus fuel PLK1 activity towards centrosomes and render ill-timed centrosome separation, disrupting the mitotic cell cycle.

RESULTS

O-GlcNAc promotes aberrant centrosome separation via PLK1

Previously, both OGT and OGA overproduction has been linked with multi-polar spindle (31). We sought to identify whether O-GlcNAc could also be linked with centrosome dynamics. Strikingly, when HeLa cells were treated with TMG (OGAi), the inter-centrosomal distance was significantly augmented four-fold (Fig. 1A), reminiscent of the phenotype of Nek2A overexpression or over-activation (4,32). As the centrosome cycle is tightly governed by PLK1, we attempted to inhibit PLK1. When BI2536 (PLK1i) was adopted in conjuncture with TMG, the centrosomal distances shortened considerably (Fig. 1A-C). When BI2536 was utilized alone (Fig. 1A), the cells reduced centrosomal distances as previously reported (4). These cytological studies suggest that high O-GlcNAc culminates in premature centrosomal separation, probably via PLK1.

MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589 and Ser-601.

Previous investigation has identified the inactivating phosphatase of PLK1 as PP1cβ, which is targeted by MYPT1 (18). Intriguingly, MYPT1 is O-GlcNAcylated (26). Therefore we reasoned that O-GlcNAc might exert its effect through MYPT1.

First, we validated the interaction between MYPT1 and OGT through biochemical assays. As shown in Fig. 2A, GST-OGT pulled-down HA-MYPT1 from cell extracts. Then both OGT and MYPT1 proteins were purified from E. coli. Upon incubation, His-OGT pulled-down GST-MYPT1 (Fig. 2B), suggesting that the interact is direct.

Then we mapped which domain of MYPT1 interacts with OGT. As MYPT1 is a relative large protein, we constructed several fragments of MYPT1 as previously described: F1 (1-306), F2 (297-600), F3 (586-901) and F4 (886-1030) (Fig. 2C) (24). To investigate which fragment interacts with OGT, recombinant full-length (FL) and F1-F4 MYPT1 proteins were utilized in pulldown experiments, and the FL, F2 and F3 MYPT1 pulled-down Myc-OGT (Fig. 2D), suggesting that the potential modification sites could be residing in F2 and F3.

A recent quantitative proteomic analysis of protein O-GlcNAc sites using an isotope-tagged cleavable linker (isoTCL) strategy identified the potential O-GlcNAc sites of MYPT1 to be Thr-577, Ser-585, Ser-589 and Ser-601 (33) (Fig. 3 A-D), all of which locate on F2 and F3. We constructed the Thr577Ala/Ser585Ala/Ser589Ala/Ser601Ala (4A) mutant accordingly and assessed its effect. When HA-MYPT1-wild type (WT) and 4A plasmids were transfected into cells, the 4A mutant significantly abrogated O-GlcNAcylation (Fig. 4A), suggesting that these four amino acids are major O-GlcNAc sites. Considering that MYPT1 is abundantly O-GlcNAcylated, and other proteomic screens have also identified extra glycosylation sites (34), our results do not exclude the possibility that there could be more O-GlcNAcylated residues on MYPT1.
O-GlcNAcylation of MYPT1 antagonizes CDK1-dependent phosphorylation at Ser-473

Since CDK1 phosphorylates MYPT1 at Ser-473 during mitosis and creates a binding motif between MYPT1 and the PBD of PLK1(18), we surmised that O-GlcNAc of MYPT1 might interplay with pSer-473. To address this possibility, we used a phospho-specific antibody targeting pSer-473 that has been previously described and utilized (25).

Then the WT and 4A plasmids are compared for the pSer-473 levels, and it is significantly bolstered in the 4A mutant (Fig. 4B). When Noc was used to synchronize cells in the M phase, O-GlcNAc levels decreased while pSer-473 levels arose (Fig. 4C). As pSer-473 is mediated by CDK1, we adopted RO-3306 again, and observed that RL2 levels decreased while pSer-473 levels increased in the RO-3306-treated cells (Fig.4C). This is consistent with our conjecture that O-GlcNAc antagonizes pSer-473. Lastly, we utilized the 5S-G inhibitor for OGT (29), and 5S-G treatment substantially boosted pSer-473 levels of transfected HA-MYPT1(Fig. 4D). We also examined the effects of 5S-G on endogenous MYPT1. Noc treatment enhanced pSer-473 levels, and Noc plus 5S-G elevated pSer-473 markedly (Fig. 4E). In contrast, glucose plus TMG (TMG+Glu) treatment during Noc would down-regulate pSer-473 compared to Noc alone (Fig. 4F). Taken together, O-GlcNAc of MYPT1 attenuates pSer-473.

O-GlcNAcylation inhibits MYPT1-PLK1 association

Since pSer-473 promotes MYPT1-PLK1 association (18), we then explored the effect of O-GlcNAc on the interaction between MYPT1 and PLK1 by treating the cells with TMG+Glu to enhance O-GlcNAc (35,36). As shown in Fig. 5A, Noc increased PLK1-MYPT1 association discernably as reported (18), but TMG+Glu together with Noc obliterated PLK1-MYPT1 affinity.

As phosphorylated MYPT1 binds with PLK1-PBD (18), we adopted GST pulldown experiments using PLK1-PBD, and GST-PLK1-PBD modestly increased binding with HA-MYPT1-4A (Fig. 5B). Then we employed FL-PLK1. When we directly utilized the 4A mutant to colP PLK1, the interaction between MYPT1 and PLK1 substantially upregulated (Fig. 5C).When His-PLK1 was applied in pulldown assays, 4A again manifested more robust association with PLK1(Fig. 5D). In sum, the binding between PLK1 and MYPT1 was abolished during high O-GlcNAc.

O-GlcNAcylation of MYPT1 enhances PLK1 activity

As the MYPT1 associates PLK1 to target PP1c β to dephosphorylate and deactivate PLK1 (18), stronger affinity could signify less activity. We took advantage of the IP-phosphatase assay to examine PLK1 activity (22,24). Cells were transfected with Flag-MYPT1 and treated with Noc. Cells were also supplemented with TMG + Glu to enrich for O-GlcNAc or not treated. When the anti-FLAG immunoprecipitates were incubated with recombinant PLK1, the relative low O-GlcNAc group efficiently dephosphorylated PLK1, as detected by IB with PLK1-pThr-210 antibodies, but not the high O-GlcNAc group (Fig. 6A).
MYPT1-4A mutants were then directly exploited in the IP-phosphate assay. In the absence of Noc, MYPT1-WT decreased PLK1 pThr-210 levels, and the MYPT1-4A completely abolished PLK1-pThr-210 levels (Fig. 6B). This is consistent with our results in Fig. 5C-D that MYPT1-4A partners with PLK1 in the absence of Noc treatment.

Then to directly measure PLK1 kinase activity, we utilized IP-kinase assay (Fig. 6C). Cells were transfected with Flag-PLK1, and then treated with TMG plus glucose or left untreated. Then Flag-Plk1 was IPed from cellular extracts and incubated with GST-MTHFR (methyleneetetrahydrofolate reductase), as our lab has demonstrated and MTHFR is a PLK1 substrate (37). Using the phospho-specific pThr-549 antibody, we observed an increase of kinase activity after TMG plus glucose treatment. Collectively, our biochemical assays suggest that O-GlcNAcylated MYPT1 disjoins PLK1 and promotes its kinase activity.

DISCUSSION

In this study, we identify that O-GlcNAc regulates centrosome separation through the MYPT1-PLK1 complex. We pinpoint the major O-GlcNAcylated sites of MYPT1 to be Ser-564, Ser-566, Thr-570 and Ser-578 in human cells, and further delineate that O-GlcNAc antagonizes pSer-473, hinders MYPT1-PLK1 association, thus boosting PLK1 activity and hence centrosome disjunction (Fig. 7D).

When MYPT1 fails to be O-GlcNAcylated, as in the MYPT1-4A mutant, PLK1 activity is dampened (Fig. 6B).

MYPT1 is one of the most abundant O-GlcNAcylated proteins, and its modification sites have been unveiled time and again in distinct proteomic studies (34,40,41). Perhaps O-GlcNAc sites might not be conserved between humans and mice. MYPT1 is found to be O-GlcNAcylated at Ser-564, Ser-566, Thr-570 and Ser-578 by mass spectrometry in the mouse brain (41), but our data show in HeLa cells O-GlcNAc occurs in Thr-577, Ser-585, Ser-589 and Ser-601. Previously, p53 is identified to be O-GlcNAcylated at Ser-149 (42), which is not conserved in mice either. The same also holds true for phosphorylation. For instance, Ataxia-telangiectasia mutated (ATM), a vital sensor protein for DNA damage signaling, is phosphorylated at S1981 and then activated in humans, but mutation of Ser-1987 (the mouse equivalent) does not hinder ATM function in mice (43,44). Thus extrapolating data across species needs extra caution, as the function and sites of PTMs could be context-dependent.

MYPT1-4A Suppresses the TMG-induced centrosome disjunction defects

Since the aforementioned results suggest that MYPT1 O-GlcNAcylation is a pivotal regulator in centrosome separation, we undertook shMYPT1 to knockdown endogenous MYPT1 (Fig. 7A), so that the effects of MYPT1-4A could be directly measured and observed after TMG incubation. As shown in Fig. 7B, the premature centrosome separation phenotype is discernable in the shMYPT1 cells that bears MYPT1-WT plasmids. But in the cells transfected with MYPT1-4A plasmids, the aberrancy is suppressed (Fig. 7C), in line with previous reports that PLK1 sequestration culminates in duplicated but unseparated centrosomes (38,39). Taken together, the 4A mutant fails to show the untimely centrosome separation phenotype, probably due to PLK1 suppression.
Along the same vein, there could be more O-GlcNAc sites on MYPT1, as the proteomic studies were carried out under disparate circumstances and using different click chemistry methodologies (33,34,40,41). As the O-GlcNAc modification is highly dynamic, distinct sites could be modified in response to environmental cues.

O-GlcNAc could have multi-faceted effects on the centrosome. Both OGT and OGA overexpression result in multi-polar spindles, which could be repressed by TMG treatment (31). NuMA (nuclear mitotic apparatus protein) is indispensible for spindle pole formation and regulates spindle pole cohesion (45,46). NuMA is O-GlcNAcylated and its localization was led astray by OGT overexpression (47). Further investigations reveal that O-GlcNAcylated NuMA interacts with Galectin-3, which is a prerequisite for mitotic spindle cohesion and proper NuMA localization (48). Here we reveal that centrosome dynamics is also governed by O-GlcNAcylation levels. As the centrosome is pivotal for the mitotic process, O-GlcNAc is bound to modulate other aspects of centrosome function.

The interaction between OGT and PLK1 has been examined before (47): cytologically, PLK1 partially colocalizes with OGT during mitosis; OGT overproduction will decrease PLK1 protein levels, without affecting its localization patterns; OGT overproduction does not alter PLK1 pThr-210 levels or pThr-210 localization.

Our results adds a layer of regulation between OGT and PLK1 and indicate that O-GlcNAcylated MYPT1 attenuates interaction with PLK1 and thus promotes PLK1 activity. It is intriguing that overall PLK1 pThr-210 levels remain unaltered in OGT or OGA overproduction cells (31,47). We did not detect discernable difference either, in cells supplemented with TMG plus Glucose (data not shown). This may seem paradoxical at first, but considering the versatile roles of PLK1 during mitosis (4,14-16), we could entertain the possibility that only a small pool of PLK1 is regulated by MYPT1. First, although the overall activity of PLK1 is upregulated during mitosis, CDK1 actually dampens PLK1 activity via MYPT1 in a mitosis-specific fashion (18). Secondly, the pool of PLK1 responsible for kinetochore-microtubule attachment actually contains low PLK1 kinase activity during metaphase so that microtubules could be dynamic (49). Therefore, irrespective of the overall elevation of mitotic activity, the mitotic master kinase—PLK1 is perhaps indeed fine-tuned in space and time. And O-GlcNAc, could be the sweet icing on the cake.

EXPERIMENTAL PROCEDURES

Cell culture, antibodies and plasmids

Cells were purchased from ATCC. Antibodies were as follows: anti-MYPT1 (Bethyl, # BL3866), anti-PLK1 (Zymed, #37-7100), PLK1-pThr-210 (BD Pharmingen, #558400). Antibodies against pSer-473 were prepared as described before (25) and manufactured by Beijing B&M Biotech Co., Ltd. MYPT1 plasmids were described before (50). MYPT1-4A plasmids were generated using specific primers (sequences available upon request) following the manufacturer’s instructions (QuickChange II, Stratagene). His-OGT was from Dr. Yue Wang (Peking Univ.).
The following shRNA target sequences were used: shMYPT1: GTAACCCAGTGGACCATAATT.

Immunoprecipitation (IP) and Immunoblotting (IB) assays

IP and IB experiments were performed as described before (51). The following primary antibodies were used for IB: anti-β-actin (1:10000), anti-HA (1:1000), and anti-FLAG M2 (Sigma) (1:1000), anti-Myc (1:1000), anti-PLK1 (1:1000), anti-MYPT1 (1:1000), PLK1-pThr-210 (1:500). The IP-phosphatase assay was performed as before (22,24). The IP-kinase assay was described (37). Recombinant active Plk1 was purchased (Carna Biosciences, Inc.). Peroxidase-conjugated secondary antibodies were from Jackson ImmunoResearch. Blotted proteins were visualized using the ECL detection system (Amersham). Signals were detected by a LAS-4000, and quantitatively analyzed by densitometry using the Multi Gauge software (Fujifilm). All western blots were repeated for at least three times.

Cell Culture Treatment

Chemical utilization: Nocodazole (Noc) at 100 ng/ml for 16 hours; Ro 3306 (CDK1 inhibitor) at 2 μM for the time indicated; BI2536 (PLK1 inhibitor) at 100 nM for two hours; Thiamet-G (TMG) (OGA inhibitor) at 5 μM for 24 hrs; acetyl-5S-GlcNAc (5S-G) (OGT inhibitor) was used at 100 μM (prepared at 50 mM in DMSO) for 24 hrs [64]. TMG + Glu treatment was utilized as before (35,36). Specifically, cells were incubated with TMG (5 μM) for 24 hrs, and glucose (30 mM) for three hrs.

Indirect Immunofluorescence

Indirect immunofluorescence staining was performed as described before (51). Dilutions of primary antibodies were 1:1,000 for mouse anti-γ-tubulin. Cell nuclei were stained with DAPI. Quantitation was performed with the software Image J.

Data Availability Statement

All data are contained within the manuscript.

Abbreviations:

PTM, post-translational modification; O-GlcNAc, O-linked N-acetylglucosamine; OGT, O-GlcNAc transferase; TMG, Thiamet-G; PBD, polo-box binding domain; MYPT1, myosin phosphatase targeting subunit 1; Cdk1, Cyclin-dependent kinase 1; PLK1, Polo-like kinase 1; 5S-G, acetyl-5S-GlcNAc; PP1cβ, protein phosphatase 1 cβ; FL, full-length; ETD, Electron Transfer Dissociation

Acknowledgements

We thank Dr. Hai-Ning Du (Wuhan Univ.) and the Li laboratory for helpful discussion. This work is supported by the National Natural Science Foundation of China (NSFC) fund (31872720) and Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds (19530050137) to J. L.; NSFC (NOs. 21425204, 21672013 and 21521003) and the National Key Research and Development Projects (NOs. 2016YFA0501500 and 2016YFA0501501).
2018YFA0507600) to X.C.; NSFC (91853120) and the National Major Scientific and Technological Special Project of China for "Significant New Drugs Development" (2018ZX09711001-013) to Z. T.

Competing interests
The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions
J. L., X.C. and Z.T. conceived the project and analyzed the data. C. L., Y. S., X. L., Z. X. and Jie L. performed all the experiments. All authors reviewed and approved the manuscript.
References

1. Vertii, A., Hehnly, H., and Doxsey, S. (2016) The Centrosome, a Multitalented Renaissance Organelle. *Cold Spring Harb Perspect Biol* 8
2. Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A., and Cimini, D. (2012) Timing of centrosome separation is important for accurate chromosome segregation. *Mol Biol Cell* 23, 401-411
3. Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F., and Nigg, E. A. (2005) Rootletin forms centriole-associated filaments and functions in centrosome cohesion. *J Cell Biol* 171, 27-33
4. Mardin, B. R., Agircan, F. G., Lange, C., and Schiebel, E. (2011) Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. *Curr Biol* 21, 1145-1151
5. van Ree, J. H., Nam, H. J., and van Deursen, J. M. (2016) Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer. *Chromosome Res* 24, 67-76
6. Hardy, T., Lee, M., Hames, R. S., Prosser, S. L., Cheary, D. M., Samant, M. D., Schultz, F., Baxter, J. E., Rhee, K., and Fry, A. M. (2014) Multisite phosphorylation of C-Nap1 releases it from Cep135 to trigger centrosome disjunction. *J Cell Sci* 127, 2493-2506
7. Mardin, B. R., Lange, C., Baxter, J. E., Hardy, T., Scholz, S. R., Fry, A. M., and Schiebel, E. (2010) Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. *Nat Cell Biol* 12, 1166-1176
8. Barr, F. A., Sillje, H. H., and Nigg, E. A. (2004) Polo-like kinases and the orchestration of cell division. *Nat. Rev. Mol. Cell. Biol.* 5, 429-440
9. Blangy, A., Lane, H. A., d'Herin, P., Harper, M., Kress, M., and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. *Cell* 83, 1159-1169
10. Smith, E., Hegarat, N., Vesely, C., Roseboom, I., Larch, C., Streicher, H., Straatman, K., Flynn, H., Skehel, M., Hirota, T., Kuriyama, R., and Hochegger, H. (2011) Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. *EMBO J* 30, 2233-2245
11. Bertran, M. T., Sdelci, S., Regue, L., Avruch, J., Caelles, C., and Roig, J. (2011) Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. *EMBO J* 30, 2634-2647
12. Eibes, S., Gallisa-Sune, N., Rosas-Salvans, M., Martinez-Delgado, P., Vernos, I., and Roig, J. (2018) Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. *Curr Biol* 28, 121-129 e124
13. Wang, G., Jiang, Q., and Zhang, C. (2014) The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. *J Cell...
14. Zitouni, S., Nabais, C., Jana, S. C., Guerrero, A., and Bettencourt-Dias, M. (2014) Polo-like kinases: structural variations lead to multiple functions. *Nat Rev Mol Cell Biol* **15**, 433-452
15. Song, B., Liu, X. S., and Liu, X. (2012) Polo-like kinase 1 (Plk1): an Unexpected Player in DNA Replication. *Cell division* **7**, 3
16. Li, J., Wang, J., Jiao, H., Liao, J., and Xu, X. (2010) Cytokinesis and cancer: Polo loves ROCK'n' Rho(A). *J. Genet. Genomics.* **37**, 159-172
17. Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R., and Fang, G. (2008) Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. *Science* **320**, 1655-1658
18. Yamashiro, S., Yamakita, Y., Totsukawa, G., Goto, H., Kaibuchi, K., Ito, M., Hartshorne, D. J., and Matsumura, F. (2008) Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1. *Dev. Cell* **14**, 787-797
19. Dumitru, A. M. G., Rusin, S. F., Clark, A. E. M., Kettenbach, A. N., and Compton, D. A. (2017) Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. *Elife* **6**
20. Feldman, M., Vershinin, Z., Goliand, I., Elia, N., and Levy, D. (2019) The methyltransferase SERT6 regulates Mitotic progression through PLK1 methylation. *Proc Natl Acad Sci U S A* **116**, 1235-1240
21. Li, W., Wang, H. Y., Zhao, X., Duan, H., Cheng, B., Liu, Y., Zhao, M., Shu, W., Mei, Y., Wen, Z., Tang, M., Guo, L., Li, G., Chen, Q., Liu, X., and Du, H. N. (2019) A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. *Sci Adv* **5**, eaau7566
22. Chiyoda, T., Sugiyama, N., Shimizu, T., Naoe, H., Kobayashi, Y., Ishizawa, J., Arima, Y., Tsuda, H., Ito, M., Kaibuchi, K., Aoki, D., Ishihama, Y., Saya, H., and Kuninaka, S. (2012) LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression. *J Cell Biol* **197**, 625-641
23. Kachaner, D., Filipe, J., Laplantine, E., Bauch, A., Bennett, K. L., Superti-Furga, G., Israel, A., and Weil, R. (2012) Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression. *Mol Cell* **45**, 553-566
24. Hu, X., Li, Z., Ding, Y., Geng, Q., Xiahou, Z., Ru, H., Dong, M. Q., Xu, X., and Li, J. (2018) Chk1 modulates the interaction between myosin phosphatase targeting protein 1 (MYPT1) and protein phosphatase 1beta (PP1cβeta). *Cell Cycle* **17**, 421-427
25. Nai, S., Shi, Y., Ru, H., Ding, Y., Geng, Q., Li, Z., Dong, M. Q., Xu, X., and Li, J. (2019) Chk2-dependent phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) regulates centrosome maturation. *Cell Cycle*, 1-9
26. Cheung, W. D., Sakabe, K., Housley, M. P., Dias, W. B., and Hart, G. W.
(2008) O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. *J Biol Chem* **283**, 33935-33941

27. Hart, G. W., Slawson, C., Ramirez-Correa, G., and Lagerlof, O. (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. *Annu Rev Biochem* **80**, 825-858

28. Yang, X., and Qian, K. (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. *Nat Rev Mol Cell Biol* **18**, 452-465

29. Gloster, T. M., Zandberg, W. F., Heinonen, J. E., Shen, D. L., Deng, L., and Vocablo, D. J. (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. *Nat Chem Biol* **7**, 174-181

30. Liu, C., and Li, J. (2018) O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. *Front Endocrinol (Lausanne)* **9**, 415

31. Tan, E. P., Caro, S., Potnis, A., Lanza, C., and Slawson, C. (2013) O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. *J Biol Chem* **288**, 27085-27099

32. Chen, C. H., Tian, F., Lu, L., Wang, Y., Xiao, Z., Yu, C. T., and Yu, X. W. (2015) Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction (vol 128, pg 3290, 2015). *Journal of Cell Science* **128**, 3837-3837

33. Qin, K., Zhu, Y., Qin, W., Gao, J., Shao, X., Wang, Y. L., Zhou, W., Wang, C., and Chen, X. (2018) Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. *ACS Chem Biol*

34. Woo, C. M., Lund, P. J., Huang, A. C., Davis, M. M., Bertozzi, C. R., and Pitteri, S. J. (2018) Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). *Mol Cell Proteomics* **17**, 764-775

35. Ramakrishnan, P., Clark, P. M., Mason, D. E., Peters, E. C., Hsieh-Wilson, L. C., and Baltimore, D. (2013) Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. *Sci Signal* **6**, ra75

36. Tian, J., Geng, Q., Ding, Y., Liao, J., Dong, M. Q., Xu, X., and Li, J. (2016) O-GlcNAcylation Antagonizes Phosphorylation of CDH1 (CDC20 Homologue 1). *J Biol Chem* **291**, 12136-12144

37. Li, X., Nai, S., Ding, Y., Geng, Q., Zhu, B., Yu, K., Zhu, W. G., Dong, M. Q., Su, X. D., Xu, X., and Li, J. (2017) Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. *Cell Cycle* **16**, 1933-1942

38. Lane, H. A., and Nigg, E. A. (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. *J Cell Biol* **135**, 1701-1713

39. Sumara, I., Gimenez-Abian, J. F., Gerlich, D., Hirota, T., Kraft, C., de la Torre, C., Ellenberg, J., and Peters, J. M. (2004) Roles of polo-like kinase 1 in the
assembly of functional mitotic spindles. *Curr Biol* **14**, 1712-1722

40. Li, J., Li, Z., Duan, X., Qin, K., Dang, L., Sun, S., Cai, L., Hsieh-Wilson, L. C., Wu, L., and Yi, W. (2019) An Isotope-Coded Photocleavable Probe for Quantitative Profiling of Protein O-GlcNAcylation. *ACS Chem Biol*

41. Alfaro, J. F., Gong, C. X., Monroe, M. E., Aldrich, J. T., Clauss, T. R., Purvine, S. O., Wang, Z., Camp, D. G., 2nd, Shabanowitz, J., Stanley, P., Hart, G. W., Hunt, D. F., Yang, F., and Smith, R. D. (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. *Proc Natl Acad Sci U S A* **109**, 7280-7285

42. Yang, W. H., Kim, J. E., Nam, H. W., Ju, J. W., Kim, H. S., Kim, Y. S., and Cho, J. W. (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. *Nat Cell Biol* **8**, 1074-1083

43. Pellegrini, M., Celeste, A., Difilippantonio, S., Guo, R., Wang, W., Feigenbaum, L., and Nussenzweig, A. (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. *Nature* **443**, 222-225

44. Shiloh, Y., and Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. *Nat Rev Mol Cell Biol* **14**, 197-210

45. Silk, A. D., Holland, A. J., and Cleveland, D. W. (2009) Requirements for NuMA in maintenance and establishment of mammalian spindle poles. *J Cell Biol* **184**, 677-690

46. Kong, X., Ball, A. R., Jr., Sonoda, E., Feng, J., Takeda, S., Fukagawa, T., Yen, T. J., and Yokomori, K. (2009) Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. *Mol Biol Cell* **20**, 1289-1301

47. Wang, Z., Udeshi, N. D., Slawson, C., Compton, P. D., Sakabe, K., Cheung, W. D., Shabanowitz, J., Hunt, D. F., and Hart, G. W. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. *Sci Signal* **3**, ra2

48. Magescas, J., Sengmanivong, L., Viau, A., Mayeux, A., Dang, T., Burtin, M., Nilsson, U. J., Leffler, H., Poirier, F., Terzi, F., and Delacour, D. (2017) Spindle pole cohesion requires glycosylation-mediated localization of NuMA. *Sci Rep* **7**, 1474

49. Liu, D., Davydenko, O., and Lampson, M. A. (2012) Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. *J Cell Biol* **198**, 491-499

50. Li, J., Liu, X., Liao, J., Tian, J., Wang, J., Wang, X., Zhang, J., and Xu, X. (2013) MYPT1 sustains centromeric cohesion and the spindle-assembly checkpoint. *J Genet Genomics* **40**, 575-578

51. Li, J., Wang, J., Hou, W., Jing, Z., Tian, C., Han, Y., Liao, J., Dong, M. Q., and Xu, X. (2011) Phosphorylation of Ataxin-10 by polo-like kinase 1 is required for cytokinesis. *Cell Cycle* **10**, 2946-2958
Figure legends

Figure 1. Elevated O-GlcNAc levels leads to aberrant centrosome separation via PLK1. (A) HeLa cells were treated with TMG, BI2536 or TMG + BI2536, then stained with anti-γ-tubulin antibodies and DAPI. Scale bar, 10 μM. (B) Quantitation of inter-centrosomal distances in (A). More than 25 cells were counted for each experiment. The data represent mean ± S. D. of three independent experiments. Asterisks indicate significant difference as determined by t-test (p1-2=0.005, p2-4=0.008). (C) Quantitation of percent of cells with separated centrosomes in (A). Asterisks indicate significant difference as determined by t-test (p1-2=0.02, p2-4=0.02).

Figure 2. OGT interacts with the central region of MYPT1. (A) Recombinant GST-OGT proteins were incubated with HA-MYPT1-transfected cell lysates. (B) His-OGT and GST-MYPT1 proteins were incubated together and then subject to pulldown assays as indicated. (C) A diagram showing MYPT1 constructs used in this study. Full-length (FL), F1(1-306), F2(297-600), F3(586-901) and F4(886-1030) were previously described (24). 4A denotes Thr-577Ala Ser-585Ala Ser-589Ala Ser-601Ala. (D) Recombinant GST-MYPT1-FL, F1, F2, F3 and F4 proteins were purified from bacteria, and incubated with extracts from 293T cells transfected with Myc-OGT. Asterisks demarcate corresponding proteins.

Figure 3. MYPT1 is O-GlcNAcylated at Thr-577, Ser-585, Ser-589 and Ser-601. (A-D) Electron Transfer Dissociation (ETD) mass spectrometry combined with chemo-enzymatic labeling identified that Thr-577 Ser-585 Ser-589 Ser-601 are O-GlcNAcylated (33).

Figure 4. O-GlcNAcylation of MYPT1 antagonizes CDK1-dependent phosphorylation at S473. (A) MYPT1-WT and 4A plasmids together with Myc-OGT or empty vectors were transfected into 293T cells and then blotted with antibodies indicated. (B) Cells were transfected with HA-MYPT1-WT or 4A plasmids, and then the lysates were IBed with antibodies indicated. (C) Cells were treated with Noc, or Noc with Ro-3306 for the time indicated. (D) HeLa cells were transfected with HA-MYPT1, treated or untreated with 5S-G (OGT inhibitor). (E) Cells were treated with Noc, or Noc + 5S-G. (F) Cells were transfected with MYPT1-WT plasmids, and then treated with Noc, or Noc plus TMG + Glu as indicated.

Figure 5. O-GlcNAcylation of MYPT1 attenuates the interaction between MYPT1 and PLK1. (A) 293T cells were transfected with Flag-PLK1 and HA-MYPT1, treated or not treated with Noc, TMG + Glu, respectively, then subject to IP and IB as indicated. (B) GST-PLK1-PBD proteins were purified from bacteria. Cells were transfected with HA-MYPT1-WT or 4A, then the cell lysates were subject to GST-PLK1-PBD pulldown assays. (C) Cells were transfected with FLAG-PLK1 together with HA-MYPT1-WT or 4A, then subject to IP and IB as indicated. (D) Cells were transfected with HA-MYPT1-WT or 4A, and then cell extracts were utilized in His-PLK1 pulldown assays.

Figure 6. O-GlcNAcylation of MYPT1 promotes PLK1 activity. (A) IP-phosphatase
assays. U2OS cells were transfected with Flag-MYPT1, synchronized to mitosis with Noc, then treated with TMG + Glu or left untreated. The anti-Flag immunoprecipitates were then incubated with recombinant His-PLK1. (B) IP-phosphatase assays using the MYPT1-WT and -4A mutants without Noc treatment. (C) IP-kinase assays. Cells were transfected with Flag-PLK1 treated with TMG + Glu or left untreated. The anti-Flag immunoprecipitates were then incubated with recombinant GST-MTHFR, and the resultant proteins were subject to IB with the antibodies indicated.

Figure 7. MYPT1 overproduction overrides the centrosome disjunction defects induced by TMG (A) Lenti viruses encoding vectors or shMYPT1 was introduced into HeLa cells, together with HA-MYPT1-WT or -4A plasmids. The cellular lysates were IBed with the antibodies indicated. (B) Cells in (A) were subject to indirect IF using the antibodies indicated. Scale bar, 10 μM. (C) Quantitation of percent of cells with separated centrosomes in (B). Asterisks indicate significant difference as determined by t-test (p1-2=0.0002, p2-3=0.22, p2-4=0.001). (D) We propose that MYPT1 is O-GlcNAcylated at Thr-577 Ser-585 Ser-589 Ser-601, which antagonizes CDK1-dependent phosphorylation at Ser-473 and MYPT1-PLK1 interaction. By disjoining PLK1 from the MYPT1/PP1cβ complex, PLK1 activity is elevated, thus promoting centrosome separation.
A

Group	Images
Control	![Control](image)
TMG (OGA1)	![TMG (OGA1)](image)
BI2536 (PLK1i)	![BI2536 (PLK1i)](image)
TMG+BI2536	![TMG+BI2536](image)

B

- **Intercentrosomal distances (μM)**
 - Control
 - TMG
 - BI
 - TMG+BI

C

- **Cells with Separated centrosomes (%)**
 - Control
 - TMG
 - BI
 - TMG+BI

Fig 1
Fig 2

A

	VEC	WT	HA-MYPT1
Total Pulldown	100	150	100
	+	+	GST-OGT
IB: HA			
IB: GST			
IB: HA			

B

	vec	GST-MYPT1
Total Pulldown	150	100
	+	+
IB: GST		
IB: HIS		
IB: GST		

Fig 2

C

	MYPT1-FL
	GST-OGT
IB: HA	1
IB: GST	F1(1-306)
IB: GST	F2(297-600)
IB: GST	F3(586-901)
IB: GST	F4(886-1030)
IB: HA	4A

D

Cells transfected with Myc-OGT

	GST FL F1 F2 F3 F4
GST-MYPT1	IB:Myc-OGT
IB:GST	Input
IB:Ha	Pull-down
IB:GST	

Fig 2
Fig 4
Fig 5
Fig 6
A

	vec	vec	WT	4A
shMYPT1	-	-	+	+
HA-MYPT1	-	-	+	+
IB:MYPT1	100	100	37	
IB:HA-MYPT1				
IB:actin				

C

HA-MYPT1	vec	vec	WT	4A
shMYPT1	-	-	+	+
TMG	-	+	+	+

Cells with Separated Centrosomes (%)

	0	20	40	60	80	100
WT						
shMYPT1						

B

HA-MYPT1	vec	vec	WT	4A
shMYPT1	-	-	+	+
TMG	-	+	+	+

Merge

Fig 7
O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes

Caifei Liu, Yingxin Shi, Jie Li, Xuewen Liu, Zhihui Xiahou, Zhongping Tan, Xing Chen and Jing Li

J. Biol. Chem. *published online April 15, 2020*

Access the most updated version of this article at doi: 10.1074/jbc.RA119.012401

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts