Possibility of Tapping NADH Regenerated from Ethylene Glycol Utilization Pathway for Cofactor Regeneration

Wenfa Ng
Department of Chemical and Biomolecular Engineering, National University of Singapore,
Email: u026654b@alumni.nus.edu.sg

Abstract

Although cofactor regeneration is an established system in biocatalysis, work remains in developing new and alternative cofactor regeneration systems with greater efficiency, ease of use, and higher atom economy. In addition, cofactor regeneration system only works if the cofactor regeneration reaction operates at similar kinetics compared to the biotransformation reaction. This meant that only specific cofactor regeneration system is capable of coupling with particular biotransformation reaction. This then leaves open the field for the development of a plethora of alternative cofactor regeneration systems each capable of coupling with different biotransformation reaction of different kinetics. This short write-up examines the possibility of tapping on the NADH regenerated from a two-step ethylene glycol utilization pathway. Current knowledge suggests that this angle has not been explored; thereby, opening up possibilities for future experimental investigations into the feasibility of coupling ethylene glycol utilization pathway with biotransformation reaction as a coupled cofactor regeneration system.

Keywords: NADH cofactor regeneration; ethylene glycol utilization; biocatalysis; atom economy; enzyme kinetics

Subject areas: biochemistry, biotechnology, cell biology, microbiology,

Background analysis

Implementing biocatalytic systems that require redox cofactors such as NADH or NADPH in microbial cells typically require a cofactor regeneration system.\(^1\)\(^2\) Such systems avoid the need for provision of stoichiometric amounts of expensive redox cofactor,\(^3\) and switches the cost of the process to that of the co-substrate that regenerates the cofactor using an enzymatic reaction. In whole-cell biocatalytic systems with cofactor regeneration, the main biotransformation reaction consumes the redox cofactor, which is regenerated by a coupled second reaction that consumes a co-substrate such as glucose to produce the redox cofactor. Doing it this way allows a cheap co-substrate to replace a high-cost cofactor that would otherwise be needed in stoichiometric amounts in a reaction. Choice of co-substrate is therefore important. Besides price, simplicity of reaction as well as whether the reaction product of cofactor regeneration could complicate downstream processing are also important considerations. This review focuses on NADH cofactor regeneration, even though there are many other cofactor regeneration systems available such as those for NADPH\(^4\)\(^6\) and ATP.\(^7\)\(^8\) Currently, glucose dehydrogenase is the most popular NADH regeneration system for biocatalytic reactions in \(E.\ coli\). But, cofactor regeneration systems with better atom economy, simpler reaction setup, and higher productivities are still sought after.\(^9\)
Conventionally, single enzyme capable of regenerating a particular cofactor are investigated for use in cofactor regeneration, but more recently, the focus has shifted to the use of pathways for regenerating cofactors. In the latter approach, one or more enzymes that participate in the pathway are capable of regenerating a specific cofactor. In general, pathway-based cofactor regeneration would be able to regenerate more cofactors per turn of the pathway compared to single enzyme cofactor regeneration. One approach in this direction is in the use of native pathways present in central carbon metabolism. The other approach is in the design, construction and implementation of new heterologous pathways, typically centered on utilizing new unconventional substrates, even though modified improved version of endogenous pathways have also been used. In this vein, exploring the cofactor regeneration capability of ethylene glycol utilization pathway is an important segment of work seeking to develop alternative cofactor regeneration systems.

Ethylene glycol utilization pathway links ethylene glycol to glycolate. This route was first discovered in *E. coli* when mutants were found to grow on propylene glycol. These mutants could also grow on ethylene glycol by first converting it to glycoaldehyde, which was subsequently converted to glycolate that enters central carbon metabolism. In this incarnation of the ethylene glycol utilization pathway, fucO (an L-1,2-propanediol oxidoreductase native to *E. coli*) would catalyze the first step with regeneration of one NADH. This is followed by conversion of the glycoaldehyde produced in the first step to glycolate through the action of aldA (an aldehyde dehydrogenase native to *E. coli*), which regenerates another NADH. Hence, the two-step pathway regenerates 2 NADH per turn of the cycle. Expression levels of endogenous fucO and aldA are low in *E. coli*, and they have to be over-expressed for the purpose of constructing a cofactor regeneration system. Currently, there are no reports detailing the utilization of NADH generated by the ethylene glycol utilization pathway for cofactor regeneration.

In terms of enzyme systems propelling the ethylene glycol utilization pathway, there has been work done on identifying alternative enzymes capable of catalyzing the critical ethylene glycol to glycoaldehyde step. One possibility is the alcohol dehydrogenase from *Gluconobacter oxydans*, which has exhibited highly selective behavior towards terminal hydroxyl group of varied aliphatic and aromatic diols, with no activity towards sec-alcohols. This enzyme offers an option to modify the proposed ethylene glycol utilization pathway in future work once feasibility of the pathway is successfully demonstrated.

Conclusions

NADH can be regenerated by a couple of enzymatic systems such as NADH oxidase (NOX), glycerol dehydrogenase, glucose dehydrogenase, ethanol utilization, and, in this report, ethylene glycol utilization. Besides expanding the types of regeneration systems available for the community, work on new cofactor regeneration systems could also offer an opportunity for the system to be integrated in metabolic engineering applications. Overall, this literature review has arrived at the conclusion that ethylene glycol utilization pathway’s potential in providing NADH in support of a biotransformation reaction catalyzed by an
oxidoreductase has not been explored, which presents an opportunity for future work. Discovery of an alternative highly selective alcohol dehydrogenase from *Gluconobacter oxydans* that could replace fucO provides more options for improving pathway efficiency and NADH regeneration in future incarnations of the pathway.

Conflicts of interest

The author declares no conflicts of interest.

Funding

No funding was used in this work.

References

1. Mouri, T., Michizoe, J., Ichinose, H., Kamiya, N. & Goto, M. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. *Applied Microbiology and Biotechnology* **72**, 514-520, doi:10.1007/s00253-005-0289-y (2006).

2. Schroer, K., Peter Luef, K., Stefan Hartner, F., Glieder, A. & Pscheidt, B. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. *Metabolic Engineering* **12**, 8-17, doi:https://doi.org/10.1016/j.ymben.2009.08.006 (2010).

3. Liu, W. & Wang, P. Cofactor regeneration for sustainable enzymatic biosynthesis. *Biotechnology Advances* **25**, 369-384, doi:https://doi.org/10.1016/j.biotechadv.2007.03.002 (2007).

4. Johannes, T. W., Woodyer, R. D. & Zhao, H. Efficient regeneration of NADPH using an engineered phosphate dehydrogenase. *Biotechnology and Bioengineering* **96**, 18-26, doi:10.1002/bit.21168 (2007).

5. Lee, W.-H., Kim, M.-D., Jin, Y.-S. & Seo, J.-H. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. *Applied Microbiology and Biotechnology* **97**, 2761-2772, doi:10.1007/s00253-013-4750-z (2013).

6. Wang, X. *et al.* Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. *Chem* **2**, 621-654, doi:https://doi.org/10.1016/j.chempr.2017.04.009 (2017).

7. Kim, D.-M. & Swartz, J. R. Prolonging cell-free protein synthesis with a novel ATP regeneration system. *Biotechnology and Bioengineering* **66**, 180-188, doi:10.1002/(SICI)1097-0290(1999)66:3<180::AID-BIT6>3.0.CO;2-S (1999).

8. Resnick, S. M. & Zehnder, A. J. B. In Vitro ATP Regeneration from Polyphosphate and AMP by Polyphosphate:AMP Phosphotransferase and Adenylate Kinase from Acinetobacter johnsonii 210A. *Applied and Environmental Microbiology* **66**, 2045, doi:10.1128/AEM.66.5.2045-2051.2000 (2000).

9. Kara, S., Schrittwieser, J. H., Hollmann, F. & Ansorge-Schumacher, M. B. Recent trends and novel concepts in cofactor-dependent biotransformations. *Applied Microbiology and Biotechnology* **98**, 1517-1529, doi:10.1007/s00253-013-5441-5 (2014).
10 Taniguchi, H., Okano, K. & Honda, K. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals. *Synthetic and Systems Biotechnology* **2**, 65-74, doi:https://doi.org/10.1016/j.synbio.2017.06.002 (2017).

11 Aslan, S., Noor, E. & Bar-Even, A. Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. *Biochemical Journal* **474**, 3935-3950, doi:10.1042/bcj20170377 (2017).

12 Toya, Y. & Shimizu, H. Flux controlling technology for central carbon metabolism for efficient microbial bio-production. *Current Opinion in Biotechnology* **64**, 169-174, doi:https://doi.org/10.1016/j.copbio.2020.04.003 (2020).

13 Ng, C. Y., Farasat, I., Maranas, C. D. & Salis, H. M. Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. *Metabolic Engineering* **29**, 86-96, doi:https://doi.org/10.1016/j.ymben.2015.03.001 (2015).

14 Boronat, A., Caballero, E. & Aguilar, J. Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli. *Journal of Bacteriology* **153**, 134 (1983).

15 Zhang, X., Zhang, B., Lin, J. & Wei, D. Oxidation of ethylene glycol to glycolaldehyde using a highly selective alcohol dehydrogenase from Gluconobacter oxydans. *Journal of Molecular Catalysis B: Enzymatic* **112**, 69-75, doi:https://doi.org/10.1016/j.molcatb.2014.12.006 (2015).

16 Ichinose, H., Kamiya, N. & Goto, M. Enzymatic Redox Cofactor Regeneration in Organic Media: Functionalization and Application of Glycerol Dehydrogenase and Soluble Transhydrogenase in Reverse Micelles. *Biotechnology Progress* **21**, 1192-1197, doi:10.1021/bp0500765 (2005).

17 Mouri, T., Shimizu, T., Kamiya, N., Goto, M. & Ichinose, H. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase. *Biotechnology Progress* **25**, 1372-1378, doi:10.1002/btpr.231 (2009).

18 Nowak, C., Pick, A., Lommes, P. & Sieber, V. Enzymatic Reduction of Nicotinamide Biomimetic Cofactors Using an Engineered Glucose Dehydrogenase: Providing a Regeneration System for Artificial Cofactors. *ACS Catalysis* **7**, 5202-5208, doi:10.1021/acscatal.7b00721 (2017).