Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes\(^1\) of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback\(^2\)–\(^4\). Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 \(\pm\) 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 \(\pm\) 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

The JAXA Hitomi X-ray Observatory\(^7\) was launched on 2016 February 17 from Tanegashima, Japan. It carries the non-dispersive soft X-ray spectrometer (SXS)\(^8\), which is a calorimeter cooled to 0.05 K giving a Gaussian-shaped energy response with a 4.9-eV full-width at half-maximum (FWHM; ratio of photon energy to FWHM, \(E/dE = 1.250\) at 6 keV) over a 6 x 6 pixel array (total 3 arcmin \(\times\) 3 arcmin). It operates over an energy range of 0.3–12 keV with X-rays focused by a mirror\(^9\) with angular resolution of 1.2 arcmin (half-power diameter). A gate valve was in place for early observations to minimize the risk of contamination from outgassing of the spacecraft. It includes a beryllium window that absorbs most X-rays below about 3 keV. The SXS can detect bulk and turbulent motions of the intracluster medium by measuring Doppler shifts and broadening of the emission lines with unprecedented accuracy. It also allows the detection of weak emission lines or absorption features.

The SXS imaged a 60 kpc \(\times\) 60 kpc region in the Perseus cluster centred 1 arcmin to the northwest of the nucleus for a total exposure time of 230 ks. The offset from the nucleus was due to the attitude control system not having then been calibrated. For this early observation, not all calibration procedures were available; in particular, we did not have contemporaneous calibration of the energy scale factors (gains) of the detector pixels. Gain variation over short time intervals was corrected using a separate calibration pixel illuminated by 5.9-keV Mn K\(\alpha\) photons from an \(^{55}\)Fe X-ray source. Gain values were pinned to an absolute scale via extrapolation of a subsequent calibration of the whole array 10 days later using illumination by another \(^{55}\)Fe source mounted on the filter wheel. (For more details, see Methods.) We used a subset of the Perseus data closest to that calibration to derive the velocity map. For the line-width determination, we used the full dataset to minimize the statistical uncertainty, and applied a scale factor to force the Fe xxv He\(\alpha\) complex from the cluster to have the same energy in all pixels. This minimizes the gain uncertainty in the determination of the velocity dispersion, but also removes any true variations of the line-of-sight velocity of the intracluster medium across the field.

A 5.5–8.5-keV spectrum of the full 3 arcmin \(\times\) 3 arcmin field is shown in Fig. 1. This spectrum shows a thermal continuum with line emission\(^10\) from Cr, Mn, Fe and Ni. The strongest lines are from Fe and consist of Fe xxv He\(\alpha\), He\(\beta\) and He\(\gamma\) complexes, together with H-like Fe xxvi Ly\(\alpha\) Ly\(\alpha\) lines. The total number of counts in the Fe xxv He\(\alpha\) line is 21,726, of which about 16 counts are expected from residual instrumental background. The line complex is spread over about 75 eV and its major components include the resonance, intercombination and forbidden lines, all of which have been resolved.

We adopt a minimally model-dependent method for spectral fitting, and represent the Fe xxv He\(\alpha\), Fe xxv He\(\beta\) and Fe xxvi Ly\(\alpha\) complexes in the spectrum with a set of Gaussians with free normalizations and energies fixed either at redshifted laboratory values (for He-like Fe) or theoretical values (for H-like Fe); see Extended Data Table 1. Figure 2 shows the profiles of these lines in a spectrum obtained from the outer region of the Perseus core, which excludes the active galactic nucleus (AGN) and prominent inner bubbles (Fig. 3). To measure the line-of-sight velocity broadening (Gaussian \(\sigma\)), we fitted the high-signal-to-noise, Fe xxv He\(\alpha\) line complex using nine Gaussians associated with lines known from atomic physics and obtain 164 \(\pm\) 10 km s\(^{-1}\) (all uncertainties are quoted at the 90% confidence level). The widths of the 6.7008-keV resonance line and the 6.617-keV blend of faint satellite lines are allowed to be separate from the rest of the lines. The effect of the thermal broadening expected from the observed 4-keV plasma has been removed (alone it corresponds to 80 km s\(^{-1}\)). Conservative estimates of the uncertainty in energy resolution (FWHM of 5 \(\pm\) 0.5 eV) result in a systematic uncertainty range in the turbulent velocity of only \(\pm\)6 km s\(^{-1}\), because the total measured line width is roughly twice the instrumental broadening, which adds to the astronomical broadening in quadrature. Uncertainties in plasma temperature add only a further \(\pm\)2 km s\(^{-1}\).

The statistical scatter in the energy-scale alignment of co-added pixels results in an overestimate of the true broadening by more than 3 km s\(^{-1}\). The finite angular resolution of the telescope in the presence of a velocity gradient across the cluster results in a small artificial increase in the measured dispersion (see Methods) that is difficult to quantify at this stage.

The Fe xxvi Ly\(\alpha\) complex alone (554 counts) yields a consistent velocity broadening of 160 \(\pm\) 16 km s\(^{-1}\). A search for spatial variations in velocity broadening using the Fe xxv He\(\alpha\) lines reveals that

* A list of participants and their affiliations appears at the end of the paper.
all 1-arcmin-resolution bins have broadening of less than 200 km s$^{-1}$. With just a single observation we cannot comment on how this result translates to the wider cluster core.

The tightest previous constraint on the velocity dispersion of a cluster gas was from the XMM-Newton reflection grating spectrometer, giving $\sigma = 164 \pm 64$ km s$^{-1}$ on the X-ray coolest gas (that is, $kT < 3$ keV, where k is Boltzmann’s constant and T is the temperature) in the distant luminous cluster A1835. These measurements are available for only a few peaked clusters12; the angular size of Perseus and many other bright clusters is too large to derive meaningful velocity results from a slitless dispersive spectrometer such as the reflection grating spectrometer (the corresponding limit for Perseus13 is 625 km s$^{-1}$). The Hitomi SXS achieves much higher accuracy on diffuse hot gas owing to it being non-dispersive.

We measure a slightly higher velocity broadening, 187 ± 13 km s$^{-1}$, in the central region (Fig. 3a) that includes the bubbles and the nucleus. This region exhibits a strong power-law component from the AGN, which is several times brighter than the measured low line widths, providing independent indication of the low level of turbulence. Uncertainties in the current atomic data, as well as more complex structure along the line of sight and across the region, complicate the interpretation of these results, which we defer to a future study.

A velocity map (Fig. 3b) was produced from the absolute energies of the lines in the Fe α complex, using a subset of the data for which such a measurement was reliable, given the limited calibration (see Methods). We find a gradient in the line-of-sight velocities of about 150 ± 70 km s$^{-1}$, from southeast to northwest of the SXS field of view. The velocity to the southeast (towards the nucleus) is 48 ± 17 km s$^{-1}$ redshifted relative to NGC 1275 (redshift $z = 0.01756$) and consistent with results from Suzaku CCD (charge-coupled device) data20. Our statistical uncertainty on relative velocities is about 30 times better than that of Suzaku, although there is a systematic uncertainty on the absolute SXS velocities of about 50 km s$^{-1}$ (see Methods).

Figure 2 | Spectra of Fe α, Fe α Lyα and Fe α Heβ from the outer region. a–c, Gaussians (red curves) were fitted to lines with energies (marked by short red lines) from laboratory measurements in the case of He-like Fe α (a, c) and from theory in the case of Fe α Lyα (b; see Extended Data Table 1 for details) with the same velocity dispersion ($\sigma_v = 164$ km s$^{-1}$), except for the Fe α Heα resonant line, which was allowed to have its own width. Instrumental broadening with (blue line) and without (black line) thermal broadening are indicated in a. The redshift ($z = 0.01756$) is the cluster value to which the data were self-calibrated using the Fe xxv Heα lines. The strongest resonance (‘w’), intercombination (‘x’, ‘y’) and forbidden (‘z’) lines are indicated. The error bars are 1 s.d.
Figure 3 | The region of the Perseus cluster observed by the SXS.
a. The field of view of the SXS overlaid on a Chandra image. The nucleus of NGC 1275 is seen as the white dot with inner bubbles to the north and south. A buoyant outer bubble lies northwest of the centre of the field. A swirling cold front coincides with the second-most-outter contour. The central and outer regions are marked. b. The bulk velocity field across the imaged region. Colours show the difference from the velocity of the central galaxy NGC 1275 (whose redshift is z = 0.01756); positive difference means gas receding faster than the galaxy. The 1-arcmin pixels of the map correspond approximately to the angular resolution, but are not entirely independent (see Extended Data Fig. 5). The calibration uncertainty on velocities in individual pixels and in the overall baseline is 50 km s\(^{-1}\) (\(\Delta z = 0.00017\)).

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 26 April; accepted 4 June 2016.

NGC 1275 hosts a giant (80-kpc wide) molecular nebula seen in CO and H\(_2\) data with a total cold-gas mass of several \(10^{10} M_\odot\), which dominates the total gas mass out to a 15-kpc radius. The velocities of that gas\(^{12,22}\) are consistent with the trend of the SXS bulk shear, suggesting that the molecular gas moves together with the hot plasma. (More details of the X-ray spectra and imaged region are provided in Extended Data Figs 1–8.)

The large-scale bulk shear observed over the 60-kpc field is of comparable amplitude to the small-scale velocity dispersion that we derive for the outer region. The dispersion can be due to gas flows around the rising bubble at the centre of the field\(^{23,24}\), a velocity gradient in the cold front\(^{25}\) contained in this region, sound waves\(^{26,27}\), turbulence\(^{28}\) or galaxy motions\(^{29}\). The large-scale shear could be due to the buoyant AGN bubbles or to sloshing motions of gas in the cluster core that give rise to the cold front\(^{25}\).

If the observed dispersion is interpreted as turbulence driven on scales comparable with the size of the largest bubbles in the field (about 20–30 kpc), then it is in agreement with the level inferred\(^{28}\) from X-ray surface brightness fluctuations. In this case, our measured velocity dispersion suggests that turbulent dissipation of kinetic energy can offset radiative cooling. However, assuming isotropic turbulence, the ratio of turbulent pressure to thermal pressure in the intracluster medium is low at 4%. Such low-velocity turbulence cannot spread far (< 10 kpc) across the cooling core during the fraction (4%) of the cooling time in which it must be replenished, so the turbulent-dissipation mechanism requires that turbulence be generated \(\text{in situ}\) throughout the core. Another process is needed to transport energy from the bubbling region. The observed level of turbulence is also sufficient to sustain the population of ultrarelativistic electrons that give rise to the radio synchrotron mini-halo observed in the Perseus core\(^{30}\).

A low level of turbulent pressure measured for the core region of a cluster, which is continuously stirred by a central AGN and gas sloshing, is surprising and may imply that turbulence in the intracluster medium is difficult to generate and/or easy to damp. If true throughout the cluster, then this is encouraging for total mass measurements, which depend on knowledge of all forms of pressure support, and for cluster cosmology, which depends on accurate masses.

The Hitomi spacecraft lost its ground contact on 2016 March 26, and later the recovery operation by JAXA was discontinued.
Acknowledgements We acknowledge all the JAXA members who have contributed to the ASTRO-H (Hitomi) project. All US members gratefully acknowledge support from the following engineers. JAXA/ISAS: S.-i. Sakai, Y. Shibano, M. Shida, T. Shimada, A. Wada, T. Yamada; JAXA/TKSC: H. Nagano; NASA/GSFC: T. Bialas, K. Boyce, E. Canavan, M. DiPirro, M. Kimball, K. Ogi; Kochi U of Technology: T. Kosaka; Miyazaki U: Y. Nishioka; Nagoya U: C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. Muench, J. Pontius, P. Shirron, C. Masters, D. Mcguinness, J. Miko, T. M. 12Department of Physics, Ehime University, Ehime 790-8577, Japan. 13Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan. 14Department of Physics, University of Tokyo, Tokyo 113-0033, Japan. 15Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 16Smithsonian Astrophysical Observatory, 60 Garden Street, MS-4, Cambridge, Massachusetts 02138, USA. 17Lawrence Livermore National Laboratory, Livermore, California 94550, USA. 18Institute of Astrophysics, Cambridge University, Cambridge CB3 0HE, UK. 19Yale Center for Astronomy and Astrophysics, Yale University, New Haven, Connecticut 06520-8121, USA. 20Department of Physics, University of Durham, Durham DH1 3LE, UK. 21Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Kanagawa 252-5210, Japan. 22Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan. 23The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8502, Japan. 24Faculty of Mathematics and Physics, Kanazawa University, Ishikawa 920-1192, Japan. 25Department of Physics, Hiroshima University, Hiroshima 739-8526, Japan. 26Physics Department, University of Miami, Miami, Florida 33124, USA. 27Department of Astronomy and Physics, Saint Mary's University.
METHODS
Gain corrections and calibration. Gain scales for each pixel were measured in ground calibration using a series of fiducial X-ray lines at several detector heat-sink temperatures (a single spectral energy reference is sufficient to determine the effective detector temperature and thus the appropriate gain curve to use). As the heat-sink temperature varies, the gain of each pixel tracks the gain change in the separate calibration pixel that is continuously illuminated by a dedicated 57Fe source. However, time-varying differential thermal loading of the pixels changes their gains by different factors. Thus, use of the gain history of the calibration pixel alone can be insufficient to correct the gain scale of the main array.

The Perseus observation used for this work was performed in two parts, 7 days apart, during which the gain of the calibration pixel changed by 0.6%. Ten days after the final observation, a fiducial measurement for the full array was obtained with an on-board 57Fe source mounted on a filter wheel. To relate this calibration to the two Perseus observations, a two-stage approach was used. First, a correction factor was applied to all pixels using the gain history of the calibration pixel. Second, the differential pixel–pixel gain error was removed using the science observation itself. To do this, the two Perseus observations were subdivided, and the He-like 5He complex was fitted for each pixel in each subset. The time-dependent relative gain of each pixel (compared to the gain correction of the calibration pixel) was then linearly fitted and extrapolated to the later full-array calibration. The full dataset was then corrected using this time-dependent gain function, and the fitting errors were incorporated into the error analysis. To validate this approach, we compared the first observation, which required a substantial gain correction, to the second, for which the instrument was much closer to thermal equilibrium and thus required much less correction. In the first case, the bulk velocity uncertainties are dominated by the uncertainties in the gain correction, whereas, in the second, the uncertainties are dominated by the fit to the He-like 5He complex. The results for the two datasets agree for both bulk velocity and velocity dispersion, indicating that this is a robust approach. For the absolute velocity maps, we are presenting only the result from the second observation of the two used in this work, which requires the least correction and thus has the smallest uncertainty. Note that the limited gain calibration results in pixel-to-pixel uncertainty of 50 km s$^{-1}$ on the absolute velocities.

To derive the absolute velocities of the cluster, we applied the heliocentric correction, which was -26.4 km s$^{-1}$ for the observation used for velocity mapping. The orbital motion of the satellite around Earth averages out. Our velocities are compared to the heliocentric velocity of NGC 1275 in Fig. 3 and Extended Data Fig. 6.

An additional validation of our calibration comes from a weak background line in the whole-array spectrum from stray 26Fe X-rays, which, after the above procedure, is observed at the correct energy to ± 1.8 eV (equivalent to ± 90 km s$^{-1}$).

Although the line is not strong enough to verify the calibration of individual pixels (because there should be about 68 counts in this line, non-uniformly distributed across the array), it is a convincing check of the approach.

To determine velocity dispersion, we applied additional scale factors for each SXS pixel to match the apparent energies of the cluster Fe Heα complex in order to remove any residual gain errors at the relevant energy. This also removes the effect of true bulk shear. Pixels were then combined in physically relevant regions to minimize statistical uncertainties.

We presumed a fixed energy resolution of 5.0 eV FWHM in all the analyses. By comparing the line widths in the first and second parts of the observation to estimate the broadening from residual gain drift, and accounting for the variation in resolution of the calibration pixel in time over the observation and during the later calibration of the array, we estimate that the composite resolution of the array and of the separately analysed central and outer regions is bounded with high confidence between 4.5 eV and 5.5 eV FWHM. This 10% uncertainty in instrumental broadening produces a much smaller fractional uncertainty in velocity broadening because the instrumental broadening is roughly half as large as the astronomical broadening, and adds in quadrature with it.

The error from gain aligning the different pixels in a region is smaller than the uncertainty in instrumental broadening because of the small statistical errors in the determination of the scale factor at the Fe Heα complex (in an outer pixel, equivalent to 30 km s$^{-1}$ at 90% confidence). Adding the spectra of multiple pixels with the same velocity uncertainty will add 30 km s$^{-1}$ of noise in quadrature with the measured broadening, producing an overestimate by no more than 3 km s$^{-1}$.

Our velocity dispersion measurements exclude velocity variations across the field on scales of 20 kpc and greater because of the aforementioned self-calibration procedure, but integrate over all scales along the line of sight (weighted by X-ray emissivity, which essentially limits integration to the cluster core). Any comparison with simulations will have to take these into account.

Effects of angular resolution. The point spread function (PSF) of the telescope has a 1.2’ half-power diameter as measured during ground calibration. This means that regions used for spectral extraction get photons not only from the corresponding cluster regions in the sky, but also from the surrounding regions. The PSF image is shown in the right panel of Extended Data Fig. 5, centred on the SXS pixel that contains the cluster peak. By comparing the PSF with the middle panel of Extended Data Fig. 5, which shows the image in the Fe Heα line (which comes mostly from the gas, as opposed to the central AGN), we see that the diffuse emission of the cluster is resolved. However, small regions in the detector, such as the 1’ × 1’ regions of the velocity map shown in Fig. 3b and Extended Data Fig. 6, are significantly correlated. The fraction of the emission that originates in a given 1’ cluster region and ends up in the corresponding 1’ detector region is 36%–37%, with the rest spreading over the surrounding regions. For example, for the region marked ‘60’ in Extended Data Fig. 6, the scattered contribution from the neighbouring region marked ‘78’ is 20% of the flux that originates in region ‘60’ itself; the contribution from ‘60’ into ‘78’ is 20% of the flux that originates and stays in ‘78’. Regions adjacent to the brightness peak (which is in region marked ‘48’) are most affected—the region marked ‘94’ has a ratio of photons scattered in from 48 to its own photons of 27%. This means that the true line-of-sight velocity gradients on a 1’ scale have to be steeper than what we measure, but not by much. Scattered flux from an adjacent region with a large velocity difference (for example, from region 78 to region ‘60’) should contribute lines at a different velocity in the spectrum, but such contributions would be very small compared to the observed line-of-sight velocity dispersion of >160 km s$^{-1}$. Correction of the PSF effects is left for future work.

The PSF scattering also has the subtle effect of inflating our measured value of velocity dispersion. Although the self-calibration procedure that aligns the Fe Heα lines in each pixel (as described above) removes most of the velocity-gradient contribution from the measured velocity dispersion, it does so after the PSF scattering has occurred and mixed the photons from regions with different line-of-sight velocities, so that contribution remains.

Pointing. For this early observation, accurate pointing direction of the spacecraft was not available. We therefore assumed that the observed brightness peak in the SXS image is the AGN in NGC 1275. The resulting uncertainty of the sky coordinates should be less than 15’’. The peak of the source determined in short time intervals revealed a small drift of the source in the detector image, within the above coordinate uncertainty. It causes image smearing that is insignificant compared to the effect of PSF scattering.

31. Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998).
32. Fabian, A. C. et al. A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 418, 2154–2164 (2011).
33. Ferruit, P., Binette, L., Sutherland, R. S. & Pencontal, E. Tiger observations of the Perseus cluster. Astrophys. J. 122, 2281–2300 (2001).
34. Conselice, C., Gallagher, J. G. & Wyse, R. G. On the nature of the NGC 1275 system. Astron. J. 122, 846–859 (1993).
35. Smith, A. J. et al. k' spectra of heliumlike iron from tokomak-fusion-test-reactor plasmas. Phys. Rev. A 47, 2073–2079 (1993).
36. Johnson, W. R. & Soft, G. The lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110. Atm. Data Nucl. Data 33, 405–446 (1985).
Extended Data Figure 1 | SXS spectrum of the full field overlaid with a CCD spectrum of the same region. The CCD is the Suzaku X-ray imaging spectrometer (XIS) (red line); the difference in the continuum slope is due to differences in the effective areas of the instruments.
Extended Data Figure 2 | The iron line complexes from the outer region compared with best-fit models. a–c. These have been obtained from various emission-line databases typically used in the literature. The spectra were modelled as a single-temperature, optically thin plasma in collisional ionization equilibrium using either APEC/ATOMDB 3.0.3 (ref 16; red) or SPEX 3.0 (ref. 17; blue). We determined the best-fit model by fitting the Hitomi spectrum from the outer 23 pixels in the energy range 6.4–8 keV, excluding the Fe Heα resonance line and Ni Heα line complex. We obtain consistent best-fit parameters, with both APEC and SPEX predicting a temperature of 4.1 ± 0.1 keV. The iron-to-hydrogen abundances are 0.62 ± 0.02 from APEC and 0.74 ± 0.02 from SPEX, relative to solar values31. The line broadening obtained from APEC, 146 ± 7 km s$^{-1}$, is smaller than the best-fit SPEX value of 171 ± 7 km s$^{-1}$, although both values are consistent with the line broadening obtained by fitting a set of Gaussians (the result presented in the main body of the paper). Apart from the Fe Heα w line affected by resonance scattering (a), both emission line models presented here currently have difficulty reproducing the measured Fe Heα intercombination lines (a) as well as the exact position of the Fe Heβ line (c). This motivates the model-independent approach adopted in the manuscript for determining the line widths. Error bars are 1 s.d.
Extended Data Figure 3 | The Fe He-α line complex from the central region around the AGN. The 5.0–8.5-keV spectrum was modelled with an isothermal, optically thin plasma in collisional ionization equilibrium using either APEC/ATOMDB 3.0.3 (red) or SPEX 3.0 (blue), with an additional power-law component accounting for emission from the central AGN. During the fit we excluded the Fe Heα resonance line because this can be affected by resonant scattering of photons by the intracluster gas in the line of sight. The two spectral codes provide similar results with an average temperature of 3.8 ± 0.1 keV and metallicity consistent with the solar value. We obtain a velocity broadening of 156 ± 12 km s$^{-1}$ from APEC and 178 ± 9 km s$^{-1}$ from SPEX. Both models suggest that the resonant line has been suppressed in the central region. Error bars are 1 s.d.
Extended Data Figure 4 | Confidence contours for joint fits of redshift z and velocity broadening σ_v are compared. The three line complexes have been fitted independently. The contours are plotted at $\chi^2_{\text{min}} + 2.3$ (68%, two parameters) and $\chi^2_{\text{min}} + 6.17$ (95%). The three fits give consistent redshifts (with the one to which the data were self-calibrated) and broadening.
Extended Data Figure 5 | The spatial response of the SXS array.
The total broadband counts (colour scale) seen across the detector array (left), Fe Heα line counts (centre) that come mostly from the diffuse cluster plasma, and a model response of a point source centred in the pixel coincident with the nucleus of NGC 1275 (right) are compared. Brightness is normalized to the same peak value.
Extended Data Figure 6 | The line-of-sight gas velocities overlaid on a deep Chandra image. The Chandra image is from ref. 32. The contours increase by a factor of 1.5. The numbers in the larger font indicate the velocity in each region (see also the colour scale). The 90% errors in the figure (numbers in the smaller font) are statistical only; our estimate of the calibration uncertainty in individual pixels is 50 km s$^{-1}$. Heliocentric correction has been applied. Velocities are shown relative to that of NGC 1275, whose redshift is $z = 0.01756$ (ref. 33).
Extended Data Figure 7 | The SXS field overlaid on the cold gas nebulosity surrounding NGC 1275. The image shows Hα emission. The radial velocity along the long northern filament measured from CO data decreases, south to north (within the SXS field of view), from about $+50\,\text{km\,s}^{-1}$ to $-65\,\text{km\,s}^{-1}$. This is similar to the trend seen in the SXS velocity map (Extended Data Fig. 6).
Extended Data Figure 8 | In-flight spectral resolution of the SXS.

a, The composite spectrum of all pixels (excluding the calibration pixel) when they were exposed to the 55Fe source on the filter wheel. The blue line shows the expected natural line shape and the red line shows the observed profile (error bars are 1 s.d.).

b, A histogram of pixel resolution. N is the number of pixels sharing that resolution.
Extended Data Table 1 | Line energies used in the Gaussian fits

Energy (eV)	λ (Å)	Charge state	Transition	Label	Note	Ref
He-α						
multiplet						
6617.00	1.8737					
6628.93	1.8704	XXIII	1s2s2p 1P1 → 1s2 3S1	Be-like		35
6636.84	1.8681	XXV	1s2s 3S1 → 1s2 1S0	He α (z)	Forbidden	35
6645.24	1.8658	XXIV	1s2p2 3D5/2 → 1s2p 3P3/2	Li-like		35
6654.19	1.8633	XXIV	1s2s2p 2P1/2 → 1s2s 2S1/2 1s2p 2D3/2 → 1s2p 2P1/2	Li-like blend		35
6662.09	1.8610	XXIV	1s2s2p 2P3/2 → 1s2s 2S1/2	Li-like		35
6667.90	1.8594	XXV	1s2p 3P1 → 1s2 1S0	He α (y)	Intercombination	35
6682.45	1.8554	XXV	1s2p 3P2 → 1s2 1S0	He α (x)	Intercombination	35
6700.76	1.8503	XXV	1s2p 1P1 → 1s2 1S0	He α (w)	Resonance	35
H-like						
doublet						
6951.96	1.7834	XXVI	2p2 3P1/2 → 1s1/2 2S1/2	Ly α2		36
6973.18	1.7780	XXVI	2p2 3P3/2 → 1s1/2 2S1/2	Ly α1		36
He-β						
doublet						
7871.31	1.5751	XXV	1s3p 3P1 → 1s2 1S0	He β2		37
7880.67	1.5733	XXV	1s3p 1P1 → 1s2 1S0	He β1		37

Data are from refs 34–37.