Taiwanese *Trichogramma* of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection

Li-Hsin Wu, ¹ Ary A. Hoffmann, and Linda J. Thomson

School of BioSciences, University of Melbourne, Bio21, 30 Flemington Rd., Parkville, VIC 3010, Australia (lihsinwu@gmail.com; ary@unimelb.edu.au; lthom@unimelb.edu.au) and ²Corresponding author, e-mail: lihsinwu@gmail.com

Subject Editor: Oliver Martin

Received 21 December 2015; Accepted 15 January 2016

Abstract

Egg parasitoids of the genus *Trichogramma* are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic *Trichogramma* for pest control in particular crops. In this study, *Trichogramma* wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three *Trichogramma* species, *Trichogramma ostriniae* Pang and Chen, *Trichogramma chilonis* Ishii, and *T. sp. y* were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although *T. ostriniae* and *T. sp. y* appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released *Trichogramma* colony thought to be *T. chilonis* possessed 99% identity (ITS-2) with the field *T. sp. y* individuals. This suggests past contamination leading to substitution of the laboratory-reared *T. chilonis* colony by *T. sp. y*. Natural populations of all three *Trichogramma* species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence.

Key words: biological control, egg parasitoid, endosymbiont, ITS-2 rDNA, *Trichogramma*

Trichogramma (Hymenoptera: Trichogrammatidae) are polyphagous endoparasitoids of lepidopteran eggs commonly used for biological control of economic pests around the world (Hoffmann et al. 2001, Kuhar et al. 2004, Zhang et al. 2010, Wang et al. 2014). Because they can be easily reared in the laboratory on hosts other than the field hosts and have a broad host range of target pests, they play an important role in pest control (Mills 2010).

Crop pests targeted by *Trichogramma* include those of sugarcane and corn in southeastern Asia. Sugarcane and corn crops in Taiwan share several lepidopteran pests including Asian corn borer *Ostrinia furnacalis* (Guenée), sugarcane gray borer *Argyroloce schistaceana* Meyrick, and sugarcane stalk borer *Proceras venosatus* Walker. Around 1984, when surplus production of rice in Taiwan led to a change in agricultural policy to replacement of rice with corn and sorghum, control measures for these pests became more important. Mass rearing and release of *Trichogramma chilonis* Ishii had been conducted in the 1950s for *A. schistacea* and *P. venosatus* control. Following implementation of the corn transfer policy, inductive releases of *T. chilonis* and *Trichogramma ostriniae* Pang and Chen for controlling corn and sugarcane borer were conducted (Cheng 1997): *T. ostriniae* was mass reared and released in those fields for biocontrol in 1980s (Cheng 1997) (Fig. 1). In addition, a strain designated *T. sp. y* reported by Kim and Huh (GenBank GQ228084.1) was maintained in the laboratory of Taiwan Sugar Corporation and released regularly in 1950s (Wu et al. 2015, GenBank KU199688). Thus, several *Trichogramma* species are known to have been reared and released. However, because of this complex agricultural history of releases in Southwestern Taiwan combined with the challenges of identifying *Trichogramma* morphologically, there is uncertainty regarding identification of species present and the composition of species complexes contributing to pest control.

Although eight species of *Trichogramma* have been recorded in Taiwan (Chan and Chou 2000), two species, *T. ostriniae* and *T. chilonis*, are the most frequently recorded parasitoids of the Asian crop borers of greatest concern, with natural parasitism of *A. schistacea* in sugarcane as high as 71% (Cheng 1997, Chang et al. 2001). *Trichogramma* species are notoriously difficult to identify because of their small size (<1 mm) and low interspecific morphological diversity (Thomson et al. 2003): the most commonly used and most reliable morphological characteristics are features of the male genitalia (Chan and Chou 2000). Life history traits such as development time, fecundity, longevity, and host acceptance can also help in distinguishing between species (Smith and Hubbes 1986). More recently, the internal transcribed spacer regions (ITS-1 and ITS-2) of the ribosomal gene have been found to be effective in distinguishing *Trichogramma* species found around the globe (Chang

© The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact permissions@oup.com.

Research article

doi: 10.1093/jisesa/iew006

Journal of Insect Science (2016) 16(1): 22; 1–7
et al. 2001, Thomson et al. 2003). The development of better approaches for identifying Trichogramma species during the last decades provides as opportunity for revisiting Trichogramma used for pest control in Taiwan.

Polymerase chain reaction (PCR) testing with primers for the Wolbachia wsp gene revealed both T. ostriniae and T. chilonis were infected with two groups of Wolbachia (Kue and Pip) (α-proteobacteria), maternally inherited intracellular bacteria (Song et al. 2010, Wu et al. 2015). Because of their dependence on host reproduction, natural selection is expected to favor symbionts that are most beneficial to the host—those that least harm host growth rate and other aspects of host fitness (Bull et al. 1991). Accordingly, several thelytoky-inducing Wolbachia have been shown to confer benefits on the fitness of their hosts under some conditions; for example, thelytokous strains of Trichogramma pretiosum and Trichogramma cordubensis lower mortality and increase longevity when compared to sexually reproducing strains (Pintureau and Bolland 2001).

Because Wolbachia infection can lead to large impacts on wasp fitness, knowledge of the infection status of populations may play an important role in selection of wasps for biological control programs (Hoffmann and Turelli 1990, Stouthamer et al. 1994, Poorjavad et al. 2012). In previous work, we have shown Wolbachia-infected T. ostriniae from Taiwan tend to remain active longer than uninfected colonies under high temperature conditions (30–50°C) (Wu et al. 2015). Tolerance to higher temperature may be an advantage in Taiwan especially under conditions of climate change.

The aim of this study is to identify Trichogramma species emerging from parasitized Asian corn borer eggs collected from southwestern Taiwan using morphological features and molecular methods and to investigate the presence of Wolbachia in these species. Detected Wolbachia strains were characterized and placed within a broader Wolbachia phylogeny based on the Wolbachia surface protein (wsp) (Braig et al. 1998).

Materials and Methods
Trichogramma Sampling and Collection
Trichogramma were isolated from 1,031 naturally occurring egg masses of O. furnacalis found on sweet corn from six sites throughout the Southwestern counties (Changhua, Yunlin, Chiayi, and Tainan) of Taiwan in June of 2014. One of the sites (site A) was sampled on three other occasions during April and June 2013 and December 2014 for examining effects of sampling time on Trichogramma species composition and Wolbachia infection status (Fig. 2). This site comprised an organic field where Trichogramma from a colony managed by Tainan District Agricultural Research and Extention Station had been regularly released.

Species Identification
About 30 wasps emerging from parasitized eggs were collected for morphological identification, and remaining wasps were kept for molecular identification. For morphological identification, wasps were soaked in acetic acid for 2 d and slides were made of genitalia from five of the males: these were examined microscopically (Sorokina and Atamirzaeva 1993). Males were present in all samples.

For molecular identification of wasps with ITS-2 sequence analysis and for characterizing Wolbachia infections, genomic DNA was isolated from individual wasps using an ALS Tissue Genomic DNA Extraction Kit (Kaohsiung, Taiwan) and stored at −20°C until use. Primers used for PCR amplification of the ITS-2 DNA and wsp (81F/691R) genes (Braig et al. 1998, Chang et al. 2001, Wu et al. 2015) are given in Supplementary Table S1. PCR was initiated at 95°C for 5 min, followed by 35 cycles at 95°C for 1 min, 40°C for 1 min, and 72°C for 1 min, with a final extension at 72°C for 7 min. The PCR products were obtained by electrophoresis in 1.5% agarose gels and sequenced. Sequences were aligned using MEGA 6 software (Tamura et al. 2013).

Phylogenetic and Statistical Analysis
Sequences of the wsp gene were identified through a Blast search via the National Center for Biotechnology Information website to determine whether the sequences were wsp gene of Wolbachia. The wsp sequences obtained in this study and 21 reference wsp sequences retrieved from GenBank were used to construct a rooted phylogenetic tree (Zhou et al. 1998, Song et al. 2009) with Bayesian inference of phylogeny using MEGA 6. The tree was constructed through maximum-likelihood and neighbor-joining models. Bootstrapping was performed with the heuristic option for 500 replications in the two models.

Statistical analyses were performed in R (version 3.1.1, R Core Team 2014). We compared wasp species composition and Wolbachia infection rates in Trichogramma species using G-tests with sequential Bonferroni correction.
Results

Morphological and Molecular Identification of Trichogramma Species

On the basis of male genitalia features, wasps could be divided into two species: *T. ostriniae* and *T. chilonis*. Species identification was confirmed by ITS-2 sequence analysis. The third species, *T. sp. y*, possessed similar genitalia traits to *T. ostriniae*: moderately constricted base of dorsal lamina, with the absence of narrowly rounded lateral lobes seen in *T. chilonis* (Fig. 3). However, *T. sp. y* could not be assigned confidently to *T. chilonis* because there were minor differences in their ITS-2 sequence (see Wu et al. 2015, GenBank KU199688).

Following *Trichogramma* species identification based on ITS-2 sequencing and morphological comparisons, a total of 341 *Trichogramma* individuals were identified morphologically and molecularly as *T. ostriniae*, 39 individuals as *T. chilonis*, and 66 individuals as *T. sp. y*, based on wasps reared from 1,031 parasitized egg masses of *O. furnacalis*. *T. ostriniae* individuals were identified from all six locations and all four sampling times, and *T. chilonis* individuals were identified from four northern locations (A, C, E, and F) and two of four sampling times. *T. sp. y* occurred at a single site, site A. The species composition was compared across the six sampling sites and shown to differ ($G^2 = 90.46; P < 0.001$) (Fig. 2A). *T. ostriniae* was most abundant at all sites apart from site A where *T. sp. y* predominated; *T. chilonis* was found at four of six sampling sites.

A difference in species composition was also detected among the four sampling times ($G^2 = 91.43; P < 0.001$). *T. ostriniae* was the most abundant species in three of the four samples, while *T. chilonis* was captured at one of the four sampling times, as was *T. sp. y* which was the dominant species in the June sample (Fig. 2B). The species composition remained consistent among rest of three
sampling time after we excluded the T. sp. y dominated sample ($G_4 = 3.22; P = 0.521$).

Phylogenetic Analysis of Wolbachia Infection

A PCR assay was carried out to detect Wolbachia in the three species of Trichogramma. In total, 238 individual wasps from nine populations were tested; 146 from the six site collections and a further 92 from the time series collection from site A. The infection was detected in 56 individuals from the six sites and 40 from the time series. Samples of all three Trichogramma species were found to be infected, but the same Wolbachia sequence was identified from each species. Similarity with wsp gene sequences retrieved from GenBank was greater than 95%. Phylogenetic analyses using both models yielded a similar topology. The Wolbachia sequence belongs to group Pip in supergroup B, and it is identical with the sequence provided by Song et al. (2009) for T. ostriniae from mainland China (Fig. 4).

Wolbachia Infection Rate Over Different Sites and Time

The Wolbachia infection rates for samples from the species varied: 35.6% (95% binomial confidence intervals: 30.0%, 42.6%, $n = 222$) in T. ostriniae, 4.6% (0.6%, 26.2%, $n = 22$) in T. sp. y, and 15.4% (3.9%, 45.1%, $n = 13$) in T. chilonis. The Wolbachia detected in T. chilonis and T. sp. y came from two individuals of each of these species collected from site A. For the infection in T. ostriniae, no infection was detected at site F, and this contributed to significant heterogeneity in infection rate across sampling sites ($G_3 = 41.91; P < 0.001$) (Fig. 5). Infection rate varied between 42.9 and 68.8% at the other five sites, and Wolbachia infections across these sites did not differ significantly ($G_4 = 2.24; P = 0.691$); however, the emergence rate of T. ostriniae for some sites (site A and site B) was low, resulting in small sample sizes ($n = 7$ and 10).

Among the four samples from site A, the Wolbachia infection rate was not significantly different among the dates ($G_3 = 0.80; P = 0.850$) (Fig. 6).

Discussion

Three Trichogramma species (T. ostriniae, T. chilonis, and T. sp. y) were identified in this field survey, in which similar rates of parasitism were observed among sampling sites and times. Our results, consistent with Cheng (1997) and Wu et al. (2015), indicate that T. ostriniae is the dominant wasp parasitoid of Asian corn borer, with T. chilonis co-occurring at several sites. According to Cheng (1997), T. ostriniae has been collected from eggs of several economic crop pests including Asian corn borer, and also A. schistaceana, P. venosatus, and striped stem borer Chilo suppressalis (Walker), from maize, rice, and sugarcane fields in Southwestern Taiwan. T. ostriniae has been extensively used in inundative release programmes against the sugarcane stalk borer P. venosatus, the sugarcane gray borer A. schistaceana, and the Asian corn borer O. furnacalis (Cheng 1997). In Taiwan, T. ostriniae are known mainly from corn/maize fields (Cheng 1997, Wu et al. 2015), while T. chilonis are known mainly from rice fields (Cheng 1997).
This study indicated that the ITS-2 region provides an efficient approach for separating closely related *Trichogramma* parasitoids of Asian corn borer in Taiwan, consistent with the effectiveness of this marker in distinguishing other *Trichogramma* species (e.g., Thomson et al. 2003). *T. ostriniae*, *T. chilonis*, and *T. sp. y* were difficult to distinguish morphologically but were all easily separated on the basis of their sequence differences. Moreover, ITS-2 sequence allowed identification of female *Trichogramma* spp. which is not possible using external morphological characters.

Trichogramma sp. y was only collected from one site (site A) in our study. The species has previously been reported from both South Korea and Taiwan (see Wu et al. 2015). Suprisingly, the laboratory-
reared Trichogramma colony from the Taiwan Sugar Corporation (government-owned sugarcane growing organization) possessed 99% identity (ITS-2) with our field individuals from site A (Wu et al. 2015). The Taiwan Sugar Corporation is reported to be rearing T. chilonis to control the sugarcane pests (A. schistacea and P. venosatus) since 1950 and has achieved parasitism rates of up to 58.9% in the field (Cheng 1997). However, this work suggests that there may have been contamination at some point in time, leading to substitution of the laboratory-reared T. chilonis colony by T. sp. y. Information provided by the Taiwan Sugar Corporation indicates that the laboratory T. chilonis colony has been refreshed from field collected individuals every 2–3 yr since 1972 (Cheng 1997) which may have resulted in contamination. Our findings reinforce the notion that it is important to monitor species destined for release in order to detect contamination events, particularly when local endemic Trichogramma are being reared for pest control in particular crops (Wang et al. 2014). In some cases, release of the wrong species in an area where another closely related species is present might even lead to a suppression of both native and introduced species in biological control programs (Stouthamer et al. 2000), although we are unaware of whether inundative releases of T. sp. y have had negative consequences.

Based on the current field survey, T. ostriniae and T. chilonis both appear to be active in corn in Southwestern Taiwan on egg masses of O. furnacalis. T. chilonis has been reported from eggs or egg masses of diverse species including Orgyia postica (Walker), Lampides boeticus (L.), Ochyroreta yanoi (Arenberger), Protoparca convolvuli (L.), Platella xylostella (L.), Trichoplusia ni (Hubner), A. schistacea, P. venosatus, C. suppressalis, and Cnaphalocrocis (Chen and Chiu 1986, Cheng 1997, Chan and Chou 2000). However, our data suggest that T. chilonis may not occur in southern sites, unlike T. ostriniae (Fig. 2A). This is consistent with museum records which indicate that T. ostriniae tend to be distributed further south than T. chilonis in Taiwan (Chan and Chou 2000). In contrast to T. ostriniae, T. chilonis predominates in rice fields (Chen and Chiu 1986). Historically, rice and corn fields have been cultivated close to each other in Southwestern Taiwan, and this may have affected Trichogramma species composition (Cheng 1997). On the other hand, the presence of T. sp. y only at site A (Puzi) may reflect the fact that this site is a long-term organic study field that routinely releases Trichogramma species; this site is managed by Tainan District Agricultural Research and Extension Station, which obtains wasps for inundative release from the Taiwan Sugar Corporation (Cheng 1997), and T. sp. y at this site may have originated from the laboratory-reared T. sp. y colony. However, T. sp. y was not captured at other sample sites, even though inundative releases (most likely involving T. sp. y unless there has been a recent contamination) would have taken place throughout our sampling area in Southwestern Taiwan. Perhaps competition with other species in corn fields limits the dispersal and establishment of T. sp. y in this crop. The relationship between T. ostriniae and T. sp. y is still ambiguous and requires more work.

Based on the PCR surveys of wsp gene, this study indicated wPip Wolbachia infections present in all Trichogramma species, T. ostriniae, T. chilonis, and T. sp. y, and a consistent infection rate of around 35%. Wolbachia prevalence differed from the Song et al. (2009) where all of individuals (101) from Guangdong, China, were triple infected by wKue, wHau, and wPip group Wolbachia in T. ostriniae, although no triple infected wasps were found in other provinces of China. A high level of infection by wKue, wEva, and wPip group Wolbachia was also found in T. chilonis samples from South and North China (Guangdong and Heibei) (Song et al. 2010).

In conclusion, we found that Taiwan’s most abundant Trichogramma in corn, T. ostriniae and T. chilonis, can be successfully separated by specific molecular primers based on ITS-2 sequences (Chang et al. 2001). Although T. ostriniae and T. sp. y appear to be morphologically similar and with a similar life history (Wu et al. 2015), the ITS-2 identify between these two species is only 89%. Given the absence of T. sp. y from most field sites, a different species may need to be used for mass rearing. Wolbachia bacteria have infected some populations of T. ostriniae, T. chilonis, and T. sp. y collected from Southwestern Taiwan. As the Wolbachia infection rate is relatively consistent across T. ostriniae populations, this situation provides an opportunity to identify factors maintaining stable polymorphic Wolbachia infections in populations.

Supplementary Data
Supplementary data are available at Journal of Insect Science online.

Acknowledgments
We thank M. C. Chiu and Y. C. Hsu of the Department of Entomology, National Taiwan University, S. H. Huang of Department of Plant Protection, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, C. P. Lin of Taiwan Sugar Research Institute, and M. Y. Lin of Department of Plant Medicine, National Chiayi University for assistance with experimental design, and three anonymous reviewers for their constructive comments on a previous version of the manuscript.

References Cited
Braig, H. R., W. Zhou, S. Dobson, and S. L. O’Neill. 1998. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia. J. Bacteriol. 180: 2373–2378.
Bull, J. J., I. J. Molinueve, and W. R. Rice. 1991. Selection of benevolence in a host-parasite system. Evolution 45: 875–882.
Chan, M. L., and L. Y. Chou. 2000. The Trichogramma (Hymenoptera: Trichogrammatidae) of Taiwan. Chin. J. Entomol. 20: 135–151.
Chang, S. C., N. T. Hu, C. Y. Hsin, and C. N. Sun. 2001. Characterization of differences between two Trichogramma wasps by molecular makers. Biol. Control 21: 75–78.
Chen, C. C., and S. C. Chiu. 1986. Studies on the field releases of Trichogramma chilonis and the factors affecting its activity. J. Agric. Res. China 35: 99–106.

Fig. 6. Wolbachia infection rate (% ± CI) remained consistent within T. ostriniae at site A across sampling time (n = 97). Sample sizes (brackets) range from 7 to 30. Error bars indicate 95% binomial confidence intervals (CIs, binomial test).
Cheng, W. Y. 1997. The use of Trichogramma species in Taiwan. Formos. Entomol. Spec. 10: 131–142.
Hoffmann, A. A., and M. Turelli. 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933–948.
Hoffmann, M. P., P. R. Ode, D. L. Walker, J. Gardner, S. van Nouhuys, and A. M. Shelton. 2001. Performance of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) reared on factitious hosts, including the target host, Ostrinia nubilalis (Lepidoptera: Crambidae). Biol. Control 10: 1–10.
Honda, J. Y., L. Taylor, J. Rodriguez, N. Yashiro, and Y. Hirose. 2006. A taxonomic review of the Japanese Trichogramma (Hymenoptera: Trichogrammatidae) with descriptions of the three new species. Appl. Entomol. Zool. 41: 247–267.
Kuhar, T. P., V. M. Barlow, M. P. Hoffmann, S. J. Fleischer, E. Groden, J. Gardner, R. Hazzard, M. G. Wright, S. A. Pitcher, J. Speese, III, et al. 2004. Potential of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) for biological control of European corn borer (Lepidoptera: Crambidae) in solanaceous crops. J. Econ. Entomol. 97: 1209–1216.
Mills, N. 2010. Egg parasitoids in biological control and integrated pest management, pp. 389–411. In F. Consoli, J. Parra, and R. Zucchi (eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, New York.
Pintureau, B., and P. Bolland. 2001. A Trichogramma species showing a better adaptation to high temperature than its symbionts. Biocontrol Sci. Technol. 11: 37–41.
Poorjavad, N., S. H. Goldansaz, T. Machtelinckx, L. Tirry, R. Stouthamer, and T. van Leeuwen. 2012. Iranian Trichogramma: ITS2 DNA characterization and natural Wolbachia infection. BioControl 57: 361–374.
R Core Team. 2014. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.
Smith, S. M., and M. Hubbs. 1986. Isoenzyme patterns and biology of Trichogramma minutum as influenced by rearing temperature and host. Entomol. Exp. Appl. 42: 249–258.
Song, Y., Z. R. Shen, Z. Wang, and H. Y. Liu. 2009. Triple infection of Wolbachia in Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Acta Entomol. Sin. 52: 445–452.
Song, Y., Z. R. Shen, Z. Wang, and Z. Y. Li. 2010. Distribution and genetic stability of Wolbachia in populations of Trichogramma chilonis. J. Environ. Entomol. 32: 188–193.
Sorokina, A., and T. Atamirzaeva. 1993. A new species of the genus Trichogramma (Hymenoptera: Trichogrammatidae) from central-Asia. Zool. Zh. 72: 149–152.
Stouthamer, R., S. Luko, and F. Mak. 1994. Influence of parthenogenesis Wolbachia on host fitness. Norw. J. Agric. Sci. 16: 117–122.
Stouthamer, R., P. Jochemsen, G. R. Mak, and J. D. Pinto. 2000. Crossing incompatibility between Trichogramma minutum and T. plattneri and its implications for their application in biological control. Environ. Entomol. 29: 832–837.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.
Thomson, L. J., B. J. Rundle, M. E. Carew, and A. A. Hoffmann. 2003. Identification and characterization of Trichogramma species from southeastern Australia using the internal transcribed spacer 2 (ITS-2) region of the ribosomal gene complex. Entomol. Exp. Appl. 106: 235–240.
Wang, Z. Y., K. L. He, F. Zhang, X. Lu, and D. Babendreier. 2014. Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biol. Control 68: 136–144.
Wu, L. H., A. A. Hoffmann, and L. J. Thomson. 2015. Trichogramma parasitoids for control of Lepidopteran borers in Taiwan: species, life-history traits and Wolbachia infections. J. Appl. Entomol. 139: 481–490.
Zhou, W., F. Rousset, and S. O'Neill. 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. Lond. B Biol. Sci. 265: 509–515.