Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome

Gabriella Farries, Kenneth Bryan, Charlotte L. McGivney, Paul A. McGettigan, Katie F. Gough, John A. Browne, David E. MacHugh, Lisa Michelle Katz and Emmeline W. Hill

While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest ($n = 92$) and four hours after high-intensity exercise ($n = 77$); $n = 60$ were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold ($P_{\text{FDR}} < 0.05$), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: $P_{\text{FDR}} = 3.81 \times 10^{-27}$, Post-exercise: $P_{\text{FDR}} = 1.66 \times 10^{-24}$), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with
INTRODUCTION

In the 6,000 years since horses were first domesticated on the Eurasian steppe, there has been strong artificial selection for various athletic traits (Levine, 1999). Selection for athleticism is perhaps most clearly manifested in the Thoroughbred, which has undergone over 300 years of intense selection for speed and racing performance (Willett, 1975; Todd et al., 2018). As a result, the Thoroughbred has a highly developed musculature, with a skeletal muscle mass ~10% greater than other horse breeds (~55% compared to ~42%) (Gunn, 1987), accompanied by decreased body fat (Kearns et al., 2002), superior glycogen storage capacity (Votion et al., 2012), increased mitochondrial volume (compared to other mammals) (Kayar et al., 1989) and a high degree of plasticity in skeletal muscle fibre composition (Rivero, 2004).

The response of equine skeletal muscle to training has been well studied (Snow et al., 1985; Snow, 1994). These responses in general increase the oxidative capacity of the muscle, such as fibre type switching from fast-twitch glycolytic fibres to slow-twitch, high-oxidative fibres (Snow, 1994; Serrano et al., 2000), an increase in oxidative phosphorylation (Snow et al., 1985; Votion et al., 2012) and increased mitochondrial volume (Tyler et al., 1998). Training also elicits an increase in skeletal muscle mass (Rivero et al., 1996), mediated through hyperplastic growth as opposed to marked hypertrophy (Rivero et al., 1996; Rivero et al., 2002).

The transcriptional response to exercise and training in skeletal muscle has been studied in the Thoroughbred (McGivney et al., 2009; Eivers et al., 2010; McGivney et al., 2010; Eivers et al., 2012; Bryan et al., 2017). Initially, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to quantify expression of 18 candidate genes in response to a standard exercise test on a high-speed treadmill (Eivers et al., 2010). Significant differential expression of creatine kinase M-type (CKM), cytochrome c oxidase subunit 4I1 (COX4I1), cytochrome c subunit 4I2 (COX4I2), pyruvate dehydrogenase kinase 4 (PDK4), PPARG coactivator 1 alpha (PPARG1A) and solute carrier family 24 member 4 (SLC2A4) four hours post-exercise was detected. PPARG1A is a transcription factor downstream of hypoxia-inducible factor (HIF), activation of PPARG1A via HIF in response to exercise induces downstream adaptations in oxidative phosphorylation (Arany, 2008). The differentially expressed genes were downstream targets of HIF or related to oxidative phosphorylation or muscle substrate use (Kranjou et al., 2006). The availability of a dedicated equine microarray allowed gene expression to be measured across 9,333 expressed sequence tags (ESTs). This technology was then used to examine the changes in gene expression induced by exercise, without a priori knowledge of the genes involved (McGivney et al., 2009).

Analysis of the differentially expressed genes showed a functional enrichment of genes involved in insulin signalling, focal adhesion, hypertrophic and apoptotic pathways. Digital gene expression was used to investigate the transcriptional response to a ten-month training protocol (McGivney et al., 2010), identifying functional enrichment of genes relevant to aerobic metabolism. More recently, RNA sequencing (RNA-seq) was used to investigate the response to both exercise and training, and a network biology approach was employed to identify relevant functional modules that highlighted the role of autophagy (Bryan et al., 2017). While these studies provide insight to the genes involved in the transcriptional response to exercise, they do not reveal whether there is variation in the transcriptional response among individuals and how this may influence skeletal muscle function.

Expression quantitative trait loci (eQTL) are genomic variants, typically single nucleotide polymorphism (SNPs), that are associated with variation in RNA transcript abundance. Jansen and Nap (2001) introduced the concept of ‘genetical genomics’ where genomic loci were associated with cellular intermediates, such as transcript abundance, to catalogue functional relevance for non-coding variants. These measurements at a cellular level then act as endophenotypes, which are heritable, intermediate phenotypes. This was a particularly important development because the clear majority (>85%) of QTL detected in genome-wide association studies (GWAS) are located in non-coding regions (Hindorff et al., 2009; Brown et al., 2013).

Cis-eQTL are genetic variants that alter gene expression in an allele-specific manner and are typically located in gene regulatory regions (Wittkopp, 2005; Westra and Franke, 2014). Identification of true cis-eQTL requires aligning reads to their chromosome of origin; consequently, many studies have by convention defined any eQTLs within 1 Mb of the transcription start site (TSS) of the gene they act on as cis. Conversely, trans-eQTL act in a less direct manner, altering the expression of a secondary genome product—for example, a transcription factor or a microRNA—that regulates expression of a distant gene elsewhere in the genome (Wittkopp, 2005).

The study of eQTL in skeletal muscle to-date has been largely to investigate functional variants in the pathogenesis of type II diabetes (T2D) in humans (Mason et al., 2011; Keildson et al., 2014b; Sajuthi et al., 2016). While GWAS for T2D have identified loci associated with disease risk, these studies have not provided information on the function of these variants or the mechanism by which they contribute to disease. Keildson et al. (2014b) performed an eQTL investigation using skeletal muscle biopsies from 104 human subjects and identified an association between the rs4547172 SNP and muscle phosphofructokinase gene (PFKM) expression. Furthermore, the study found that
increased expression of PFKM was associated with increased resting plasma insulin (an endophenotype) and T2D (an endpoint phenotype). This example shows that an eQTL approach can identify functional links between genomic variants, gene expression, endophenotypes, and ultimately, disease.

Variation in human gene expression has been found to be highly heritable (Monks et al., 2004; Stranger et al., 2007; Wright et al., 2014). Given the influence of gene expression on phenotype, detection of heritable variation in skeletal muscle gene expression may provide insight into genomic loci contributing to variation in exercise and performance related phenotypes.

In this study, we hypothesised that there is heritable variation in the Thoroughbred skeletal muscle transcriptional response to exercise and training, and that this variation may have implications for athletic performance.

METHODS

Ethics Statement

University College Dublin Animal Research Ethics Committee approval (AREC-P-12-55-Hill), a licence from the Department of Health (B100/3525), and informed owner consent were obtained.

Cohort

Skeletal muscle biopsy samples (gluteus medius) were collected from 111 horses (47 male, 64 female) born between 2011 and 2012. All horses were based at a single training yard, under the supervision of a single trainer and under similar management and feeding regimes. The 111 horses used for the study were produced from 19 different sires and 94 different dams.

Biopsies were collected at two time points: untrained at rest (UR) and untrained four hours post-exercise (UE). Of the 111 horses, 60 were sampled at both time points. In total 92 UR samples and 77 UE samples were collected. The horses were defined as untrained because they had completed ≤ four sprint exercise bouts (e.g., work days) prior to sampling. The number of prior work days and days of submaximal prior training prior to sampling were recorded. Horses were defined as untrained in order to integrate results with those of Bryan et al. (2017), where the untrained cohort had performed only 1–2 work days prior to sampling, and the trained cohort had completed a mean of 15.1 work days prior to sampling (SD = 9.1).

Exercise Test

The exercise stimulus was an intense sprint bout of exercise (work day) undertaken as part of normal training. The training regime for horses is submaximal training at canter six times per week, with work days being introduced and replacing one to two submaximal bouts per week. On a work day horses were initially walked on an automated horse walker for 30–60 min, followed by 5–10 min of walking in hand. Under saddle there was an initial warm-up period of 300 m walk and 700 m of trot and slow canter down the incline of the track. The work day was performed on a 1,500 m all-weather woodchip gallop track, with the final 800 m straight set on a 2.7% incline. The sprint portion of the exercise bout consisted of the horses galloping at high intensity for 800–1,000 m up the incline of the gallop. In a larger cohort of horses (n = 294) from the same training establishment, the work day was characterised using concurrent global positioning system (GPS) and heart rate monitoring (Farries et al., 2019). From 2,900 GPS recordings the mean peak speed was 16.36 m/s (range: 14.23–17.63 m/s). Of these 2,900 recordings 1,056 had simultaneous heart rate recordings, with a mean peak heart rate of 219 beats per minute (range: 182–237).

For 34/77 UE horses, whole blood was collected at rest and five minutes post-exercise into fluoride oxalate tubes. Samples were centrifuged, and plasma lactate concentrations measured on-site using a YSI2300 STAT PLUS auto analyser (YSI UK Ltd, Hampshire, UK). These measurements were used to validate the intensity of the exercise test performed.

Biopsy Sampling

Percutaneous needle muscle biopsies (approximately 300 mg) were obtained from the ventral compartment of the middle gluteal muscle using the method described by Valette et al. (1999). All UR samples were collected between 7:30 am and 11:30 am. UE samples were taken four hours after completion of the exercise test, as this has previously been shown to be a timepoint where the greatest change in gene expression in response to acute exercise was observed (McGivney et al., 2009; Eivers et al., 2010). Muscle samples were stored in RNAlater (Thermo Fisher, Massachusetts, USA) for 24 hours at 4°C then stored at −20°C prior to RNA extraction.

RNA Extraction and Quality Control

Total RNA was extracted from approximately 70 mg tissue using a protocol combining TRIZol reagent (Thermo Fisher), DNase I treatment (Qiagen, Hilden, Germany) and an RNeasy Mini-Kit (Qiagen). RNA was quantified using a Nano Drop ND1000 spectrophotometer V 3.5.27 (Thermo Fisher). RNA quality was assessed using the RNA integrity number (RIN) on an Agilent Bioanalyzer with the RNA 6000 Nano LabChip kit6 (Agilent, Cork, Ireland).

RNA Sequencing

Indexed, strand-specific Illumina sequencing libraries were prepared using the TruSeq Stranded mRNA Library Preparation Kit LT (Illumina, San Diego, CA, USA). Libraries were pooled with 18–20 indexed libraries per pool and sequenced on an Illumina HiSeq 2500 using a Rapid Run flow cell and reagents to generate 100 bp paired-end reads. Each pool was sequenced across both lanes of the flow cell (dual lane loading). Demultiplexed sequence data was then converted to FASTQ format. Sequencing was performed by the Research Technology Support Facility, Michigan State University.

RNA-Seq Data Workflow

Quality control of the sequence reads was performed using FastQC [version: 0.11.5] (Andrews, 2010). STAR aligner [version: 2.5.2b] (Dobin et al., 2013) was used to map reads to the Equine reference genome EquCab2 (Ensembl release 62).
After mapping, featureCounts [version: 1.5.0] was used to assign reads to genes (Liao et al., 2014). Data for each sample from each sequencing lane was then merged where concordance was >99% between lanes. Count data was parsed using a custom script, then small non-coding RNA were filtered using BiomaRt (Durinck et al., 2009). Assessment of the count data and multidimensional scaling were performed using edgeR (Robinson et al., 2010). Results of the multidimensional scaling were visualised using ggplot2 (Wickham, 2009). Count data was quantile normalised using preprocessCore [version: 1.40.0] (Bolstad, 2017) within the R environment [version: 3.5.1] (R Core Team, 2017), and the log2 of quantile-normalised count data calculated.

Genotyping

Genomic DNA was extracted from whole blood using the Maxwell 16 automated DNA purification system (Promega, Madison, WI, USA). Horses were genotyped on the Illumina Equine SNP70 BeadChip (Illumina). A genetic versus phenotypic sex check was performed. SNPs with a genotyping rate of <95%, and individuals with a genotyping rate <95% were excluded. SNPs with a minor allele frequency (MAF) < 0.10 were removed. Using these quality-controlled SNPs, identity by state (IBS) distances between individuals were calculated using the ‘genome’ function in PLINK [version 1.09] (Chang et al., 2015). The remaining 43,988 SNPs were then pruned based on pairwise linkage disequilibrium (LD) using a sliding window with an LD threshold of $r^2 > 0.7$, a window size of 50, and a step of 5 in PLINK. A set of 15,995 SNPs were used for the eQTL analysis. Pruning was undertaken due to the large spanning of LD within the Thoroughbred, with previous work validating the use of <15,000 SNPs to capture the majority of genetic variation (Corbin et al., 2014; Schaefer et al., 2017).

eQTL Analysis

eQTL were determined using a linear model within matrixEQTL [version: 2.1.1] (Shabalin, 2012); including sex and age at sampling (days) as covariates. As samples had been included in two separate sample pools which were sequenced separately, the sequencing batch for each sample was also included as a covariate. Tests of association were corrected using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) and eQTL with a corrected P-value (P_{FDR}) < 0.05 were catalogued for UR and UE samples separately. eQTL located within 1 Mb of the transcription start site (TSS) of the gene they were associated were designated as cis, and those located >1Mb from the TSS were designated trans, in keeping with human eQTL studies (Lonsdale et al., 2013). Significant results were then compared against genes previously identified in the skeletal muscle transcriptional response to acute, high-intensity exercise (a work day; 3,241 genes) and transcriptional response to a six-month period of training (3,405 genes) (Bryan et al., 2017).

Functional Enrichment Analysis

Genes with significant eQTL were investigated for enrichment of biological processes using gene ontology (GO) categories (Ashburner et al., 2000) with the clusterProfiler package [version: 3.10.1] (Yu et al., 2012) within the R environment. Equine Ensembl IDs were mapped to annotated human orthologs, retrieved from the BioMart database (Kasprzyk, 2011) and GO enrichment performed using the annotation from the human genome annotation package org.Hs.eg.db [version: 2.12.0] (Carlson, 2019). The background gene set was the complement of genes expressed in skeletal muscle identified in this study (13,384 genes; 12,707 mapped to human orthologs). A threshold for significant enrichment was set at <0.05 after adjustment using the Benjamini-Hochberg procedure (P_{FDR}) (Benjamini and Hochberg, 1995). The number of genes assigned to each Biological Process (Gene count) and proportion of genes associated with that cluster out of all the genes expressed (Gene ratio) were also reported. Results were visualised using the clusterProfiler package (Yu et al., 2012).

Results

Cohort

UR horses had a mean age of 611.7 days (range: 513–787 days), UE horses had a mean age of 757.5 days (range: 617–1,283 days). Dates of commencing preparatory training were available for 90 of the UR horses; 21 of the UR horses were sampled prior to breaking. 69 were sampled after breaking with a mean of 41.5 days after commencing preparatory training (range: 5–154 days) (Table 1). UR horses were sampled on average 156.6 days after commencing preparatory training (range: 31–307). UR horses had an average of 41.5 days submaximal training (range: 5–154) and UE had on average 48.6 (range: 19–152) (Table 1). UR horses had completed a mean of 0.3 work days (range: 0–4), UE horses completed a mean of 0.5 WDs prior to sampling (range: 0–3) (Table 2). A subset of 34 of the UE horses had a mean peak post-exercise plasma lactate concentration of 28.2 mmol/L, and a mean resting plasma concentration of 0.4 mmol/L. All RNA samples used for RNA-seq had a RIN greater than 7.0, the UR cohort had a mean RIN of 8.0 (range: 7.2–9.3) and the UE cohort had a mean RIN of 8.1 (range: 7.0–9.3). Multi-dimensional scaling was used to visually inspect the count data, showing separation of untrained resting and untrained post-exercise samples (Figure S1).

Analysis of the genetic relatedness of the cohort showed the mean IBS distance between individuals was 0.69 and ranged from 0.64–0.85 (SD = 0.03). Of the 19 sires represented in the cohort, the top six sires in terms of number of progeny represented had 39, 23, 14, 10, 6, and 4 progeny. There were two sires with two progeny and the remaining ten sires had one offspring each. There were 12 full siblings in the cohort and 34 half-siblings by dam.

eQTL Discovery

Using the full complement of 13,384 genes, 3,582 cis-eQTL and 1,703 trans-eQTL were detected in UR samples ($P_{FDR} < 0.05$). The 3,582 cis-eQTL were associated with expression of 1,456 genes. The gene with the strongest cis-eQTL (BIEC2-707785) in UR horses was the endosome associated trafficking regulator 1 gene (ENTR1; $P_{FDR} = 3.81 \times 10^{-7}$) (Figure S2, Table 3). GO enrichment analysis of the cis regulated genes in UR samples showed that the most significantly enriched Biological Process was ‘GO:0006805 xenobiotic metabolic process’ ($P_{FDR} = 3.02 \times 10^{-7}$, Gene Ratio =
TABLE 1 | Description of prior training completed by horses in the untrained resting and untrained post-exercise cohorts.

Preparatory training	Submaximal training
No. horses sampled before entering preparatory training	No. horses sampled before entering submaximal training
Days preparatory training prior to sampling	Days submaximal training prior to sampling

Untrained resting	21	52
No. horses sampled after entering preparatory training	69	16
Mean: 31.82 SD: 40.78 Range: 5-154	Mean: 11.44 SD: 26.16 Range: 19-152	

| Untrained post-exercise | 0 | 76 |
| No. horses sampled after entering preparatory training | 74 |
| Mean: 156.61 SD: 63.91 Range: 31-307 |

TABLE 2 | Number of prior high-intensity sprint bouts (work days, WDs) completed prior to sampling for horses within untrained resting and untrained post-exercise cohorts.

Untrained resting	Untrained post-exercise		
Prior WDs	No. horses	Prior WDs	No. horses
0	78	0	47
1	7	1	24
2	5	2	4
3	2	3	1
4	1	4	0

TABLE 3 | Top 10 genes by strongest cis-eQTL association.

SNP	Ensembl Gene ID	Gene	SNP Chr	SNP Pos	P_FDR	Gene Chr	TSS	Gene End	Strand	Distance from TSS	
Untrained resting	BIEC2-707785	ENSECAG00000010463	ENTR1	25	37504251	3.81E-27	25	37555303	37560097	1	-51052
	BIEC2-1078267	ENSECAG00000021215	NA	8	1998191	3.61E-24	28	2897771	2900415	-1	-896580
	BIEC2-1078267	ENSECAG00000020446	NA	8	1998191	5.51E-23	8	2440998	2443623	-1	-442607
	BIEC2-737866	ENSECAG00000024388	BPFC	28	30429661	3.20E-21	28	30683308	30696619	-1	-170647
	BIEC2-1078267	ENSECAG00000014546	NA	8	1998191	5.14E-21	8	1868952	1871600	-1	-129239
	BIEC2-235541	ENSECAG00000019034	NMRAL1	13	38538682	2.28E-18	13	38500913	38500913	1	46028
	BIEC2-312869	ENSECAG00000021118	NA	15	28568868	5.02E-18	15	29286022	29284093	-1	-711936
	BIEC2-163619	ENSECAG00000003428	NA	11	58806041	8.51E-18	11	57863227	57863227	-1	942814

Table 3 continued...

- Table 3 continues with additional rows for Untrained post-exercise genes.

- The functional categories with the highest Gene Ratios were 'cofactor metabolic process' (P_FDR = 0.01, Gene Ratio = 29/340) and 'monocarboxylic acid metabolic process' (P_FDR = 0.02, Gene Ratio = 29/340).

- In the UR cohort 4,992 cis-eQTL were associated with the expression of 1,922 genes. The most significant cis-eQTL was BIEC2-707785 on ECA25 and ENTR1 (P_FDR = 1.66 × 10^{-24}) (Figure 2, Table S2).

- In the UR cohort 1,219 trans-eQTL were associated with 425 genes. The majority 70.39% (858) were located on the same chromosome as the associated gene, and 29.61% (361) were associated with genes located on different chromosomes.
on ECA11 and transcript ENSECAG00000016949 ($P_{\text{FDR}} = 1.12 \times 10^{-13}$) (Table 4). Similar to UR samples, the majority (75.45%; 544) of trans-eQTL were located on the same chromosome and 24.55% (177) were on different chromosomes.

Analysis of the cis regulated genes in UE samples showed that similar to the UR cohort, the most significantly enriched Biological Process was ‘cofactor metabolic process’ ($P_{\text{FDR}} = 6.40 \times 10^{-7}$, Gene Ratio = 112/1,579) (Figure 3, Table S3). Comparable results were obtained for enrichment of Biological Processes among putative trans regulated genes, with ‘cofactor metabolic process’ the most significantly enriched (Figure 4; $P_{\text{FDR}} = 5.06 \times 10^{-7}$, Gene Ratio = 33/235).

Genetic Regulation of Exercise Relevant Genes

The total set of genes with expression changes associated with eQTLs (i.e. eGenes) were queried against genes that we have reported from the same dataset to be differentially expressed post-exercise in a sample of 39 Thoroughbreds (Bryan et al., 2017). Of the 3,582 UR cis-eQTL, 913 were associated with genes differentially expressed in response to exercise. The most significant association was between BIEC2-285235 and the CCR4-NOT transcription complex subunit 11 gene (CNOT11; $P_{\text{FDR}} = 3.00 \times 10^{-15}$) (Table 5). Of the 1,703 UR trans-eQTL, 144 were associated with exercise relevant genes. The most significant trans-eQTL was between BIEC2-1061469 and the TAL bHLH transcription factor 2 gene (TAL2; $P_{\text{FDR}} = 3.03 \times 10^{-10}$) (Table 6).

Within the UE cohort 4,992 cis-eQTL were identified, 1,132 of which were associated with genes differentially expressed post-exercise. The strongest association was between BIEC2-240006 and the polyA-specific ribonuclease gene (PARN; $P_{\text{FDR}} = 2.41 \times 10^{-21}$) (Table 5). Of the UR trans-eQTL, 121 eQTL were associated with eGenes in the transcriptional exercise response. The strongest trans-eQTL in the UE cohort was BIEC2-1053404, associated with expression of the peroxiredoxin 2 gene (PRDX2; $P_{\text{FDR}} = 1.51 \times 10^{-8}$) (Table 6).
TABLE 4 | top ten genes by strongest trans-eQTL association.

SNP	Ensembl Gene ID	Gene	SNP Chr	SNP Pos	P_{adj}	Gene Chr	TSS	Gene End	Strand	Distance from TSS
Untrained resting										
BIEC-526896	ENSECA00000008537	DMX16	20	28206968	3.50E-17	20	29693915	29708818	-1	-1486947
BIEC-218753	ENSECA00000015585	TBL2	13	9657509	8.69E-14	13	11241845	11246295	-1	-1584326
BIEC-526896	ENSECA00000015782	NA	20	28206968	5.20E-13	20	29386470	29398260	1	-1157742
BIEC-526896	ENSECA00000015505	NA	20	28206968	3.57E-12	20	30173637	30178981	-1	-1966669
BIEC-554291	ENSECA00000019318	NA	20	29116874	3.57E-12	20	32450503	32452484	-1	-3338629
BIEC-991035	ENSECA00000012956	DCPS	7	31604226	9.10E-12	7	35117723	35153555	1	-3513497
BIEC-526896	ENSECA00000021750	NA	20	28206968	2.27E-11	20	31193941	31197235	-1	-2986973
BIEC-526791	ENSECA00000009368	NA	20	27782384	2.27E-11	20	29049395	29052907	1	-1267011
BIEC-554291	ENSECA00000021750	NA	20	29116874	4.38E-11	20	31193941	31197235	-1	-2077067
BIEC-31048	ENSECA00000024546	NA	1	73058328	5.71E-11	1	70638960	70656636	-1	-2417368
Untrained post-exercise										
UKUL2765	ENSECA00000010213	MCCC2	14	92893549	1.12E-13	14	92304084	92460487	-1	1589465
BIEC-3702	ENSECA00000004989	NA	1	9625107	4.38E-12	1	96257111	96259450	1	-8643200
BIEC-991035	ENSECA00000012956	DCPS	7	31604226	2.03E-11	7	35117723	35153555	-1	-3513497
BIEC-526896	ENSECA00000015505	NA	20	28206968	6.37E-11	20	30173637	30178981	-1	-1966669
BIEC-210079	ENSECA00000012497	LIMK1	13	10604233	6.76E-11	13	11610902	11634978	-1	-1006669
BIEC-554291	ENSECA00000019318	NA	20	29116874	2.91E-10	20	32450503	32452484	-1	-3338629
BIEC-526896	ENSECA00000015782	NA	20	28206968	4.06E-10	20	29386470	29398260	1	-1157742
BIEC-554291	ENSECA00000015505	NA	20	29116874	8.06E-10	20	30173637	30178981	-1	-1056763
BIEC-63245	ENSECA00000016304	CASC4	1	1.48E+08	1.04E-09	1	1.45E+08	1.45E+08	-1	3045045
BIEC-3702	ENSECA00000009972	LHPP	1	9825107	2.16E-09	1	8372229	8511110	-1	1452878

FIGURE 2 | Gene ontology enrichment of biological processes for genes under trans regulation in the untrained resting cohort.
Genetic Regulation of Training Relevant Genes

Using 3,405 genes that were differentially expressed in response to training in a sample of 39 Thoroughbreds (Bryan et al., 2017), we examined our results based on eQTL associated with genes within this transcriptional response. Within the UR cohort, 609 of the 3,582 cis-eQTL were associated with training response genes. The strongest association was between BIEC2-1061469 and the spindle and expression of the kinetochore associated complex subunit 1 gene (SKA1; \(P_{\text{FDR}} = 9.80 \times 10^{-18} \)) (Table 7). Of the 1,703 UR trans-eQTL, 145 were associated with training response genes. The most significant association was between BIEC2-658237 and TAL2 (\(P_{\text{FDR}} = 3.03 \times 10^{-10} \)) (Table 8).

Within the UE cohort 766 of the 4,992 cis-eQTL were associated with training response genes. The most significant cis-eQTL association was between UKUL3712 and the interleukin 33 gene (IL33; \(P_{\text{FDR}} = 8.07 \times 10^{-16} \)) (Table 7). Of the 1,219 UE trans-eQTL 90 were associated with genes relevant to training. As with the exercise relevant genes, the strongest UE trans-eQTL was between BIEC2-1053404 and PRDX2 (\(P_{\text{FDR}} = 1.51 \times 10^{-8} \)) (Table 8).

DISCUSSION

Using a systems genetics approach we have integrated RNA-seq and genome-wide SNP data for a large cohort of Thoroughbred horses in active race training that were maintained in a single environment. This strategy has allowed us to detect significant cis and trans eQTL in equine skeletal muscle that are likely to be relevant to an exercise phenotype, adaptation to training, an important and valuable trait in the racing Thoroughbred. A total of 4,992 cis-eQTL associated with the expression of 1,922 distinct genes were identified in the UR cohort; and 4,886 cis-eQTL associated with the expression of 1,875 genes were identified in

![Gene ontology enrichment of biological processes for genes under cis regulation in the post-exercise cohort.](image-url)
Figure 4 | Gene ontology enrichment of biological processes for genes under trans regulation in the post-exercise cohort.

Table 5 | Top ten cis-eQTL identified in genes differentially expressed in response to exercise.

SNP	Ensembl Gene ID	Gene	LogFC: Exercise	SNP Chr	SNP Pos	P_{FDR}	Gene Chr	TSS	Gene End	Strand	Distance from TSS
Untrained resting											
BIEC2-285235	ENSECAG000000011967	CNOT11	0.34	15	8238549	3.00E-15	15	8266315	8278004	-1	-27766
BIEC2-240006	ENSECAG00000017792	PARP1	0.37	13	30544927	4.42E-15	13	30444515	30591937	1	100412
BIEC2-209001	ENSECAG00000019190	IFT2	-0.36	13	9212034	5.33E-15	13	9228395	9237278	-1	-16325
BIEC2-1035081	ENSECAG00000008723	NA	0.47	7	14212942	5.82E-14	7	14574017	14587590	-1	-361075
BIEC2-830969	ENSECAG0000012898	PNLD1	0.55	31	1778298	3.95E-13	31	2104239	2157442	1	-163914
BIEC2-872079	ENSECAG00000024368	IPO9	-0.62	30	28911273	1.23E-12	30	28818157	28849624	1	93116
BIEC2-988215	ENSECAG00000018541	C2CD2L	-0.59	7	26800468	4.48E-12	7	26815981	26823999	1	-15513
BIEC2-911228	ENSECAG00000024971	GSTM4	-0.45	5	57817054	4.38E-11	5	58455048	58459646	-1	-637993
BIEC2-609981	ENSECAG00000011021	NDUFA5	0.41	22	9904469	7.88E-11	22	10479889	10512792	-1	575230
TBIEC2-57788	ENSECAG00000013327	SL2CA1	0.82	1	1.27E+08	9.47E-11	1	12676422	12765001	1	-3157
Untrained post-exercise											
BIEC2-240006	ENSECAG00000017792	PARP1	0.37	13	30544927	4.42E-15	13	30444515	30591937	1	100412
BIEC2-209001	ENSECAG00000019190	IFT2	-0.36	13	9212034	5.33E-15	13	9228395	9237278	-1	-16325
BIEC2-1035081	ENSECAG00000008479	SDR16C5	-0.43	9	27686807	3.39E-12	9	27293107	27308749	1	393700
BIEC2-1035081	ENSECAG00000008723	NA	0.47	7	14212942	6.06E-12	7	14574017	14587590	-1	-361075
TBIEC2-513760	ENSECAG00000009973	NA	-1.82	2	73037320	1.15E-11	2	72642318	72935865	1	575002
BIEC2-770455	ENSECAG00000011697	TMCC3	0.57	28	19829349	2.82E-11	28	19803131	19811873	-1	26218
BIEC2-14401	ENSECAG00000010786	PGAMA1	0.48	1	32009184	6.25E-11	1	31823570	31825848	-1	185614
BIEC2-412279	ENSECAG00000023566	DHRS9	1.18	18	48009567	1.04E-10	18	48741376	48752360	1	-731809
BIEC2-1029754	ENSECAG00000019879	ISCU	0.50	8	11582493	2.78E-10	8	12361828	12395086	-1	-779335
BIEC2-909217	ENSECAG00000009353	AGMO	-0.47	4	48124305	3.15E-10	4	47940706	48126316	1	183599

3 Log, fold-change (log FC) of expression in response to exercise in Bryan et al., 2017.
TABLE 6 | top ten trans-eQTL identified in genes differentially expressed in response to exercise.

SNP	Ensembl Gene ID	Gene	Log₂ FC; Exercise¹	SNP Chr	SNP Pos	P_{FDR}	Gene Chr	TSS	Gene End	Strand	Distance from TSS
BIEC2-658237	ENSECAG000000004995	TAL2	-1.67	25	9914109	3.0E-10	25	11725340	11725720	1	-1811231
BIEC2-53419	ENSECAG000000013327	SLC2A1	0.82	1	124846027	3.7E-08	1	126764822	126790389	-1	-1918795
BIEC2-568303	ENSECAG000000013327	SLC2A1	0.82	1	128180460	2.1E-06	1	126764822	126790389	-1	-1415638
BIEC2-913863	ENSECAG000000024971	GSTM4	-0.45	5	63531114	5.0E-06	5	58455048	58459648	-1	5076066
BIEC2-959879	ENSECAG000000024971	GSTM4	-0.45	5	610353410	3.2E-05	5	58455048	58459648	-1	-2580362
BIEC2-496328	ENSECAG000000014441	ZNF330	0.56	2	89041634	3.7E-05	2	90306068	90375065	-1	-1318994
BIEC2-311700	ENSECAG000000017760	ELK3	0.44	15	53973327	5.2E-06	28	2110553	21148433	1	NA
BIEC2-907346	ENSECAG000000018012	SELENBP1	-0.56	5	44309385	6.0E-06	5	45898879	45906904	-1	-1989494
BIEC2-59128	ENSECAG000000013327	SLC2A1	0.82	1	129427638	1.9E-04	1	126764822	126790389	-1	2662836
BIEC2-60026	ENSECAG000000013327	SLC2A1	0.82	1	130739790	1.5E-04	1	126764822	126790389	-1	3974968

¹Log₂ fold-change (log₂ FC) of expression in response to training by Bryan et al., 2017.

TABLE 7 | top ten cis-eQTL identified in genes differentially expressed in response to training.

SNP	Ensembl Gene ID	Gene	Log₂ FC; Training¹	SNP Chr	SNP Pos	P_{FDR}	Gene Chr	TSS	Gene End	Strand	Distance from TSS
BIEC2-1053404	ENSECAG000000011541	PRDX2	0.53	7	51698577	1.5E-08	7	45573939	45575352	1	6125258
BIEC2-996678	ENSECAG000000011541	PRDX2	0.53	7	41340513	2.5E-08	7	45573939	45575352	1	-4238986
BIEC2-658237	ENSECAG000000004995	TAL2	-1.67	25	9914109	9.7E-09	25	11725340	11725720	1	-1811231
BIEC2-1028898	ENSECAG000000019879	ISC1	0.50	8	10602506	1.2E-06	8	12361828	12395086	-1	-1758322
BIEC2-1028319	ENSECAG000000019879	ISC1	0.50	8	10149470	9.8E-06	8	12361828	12395086	-1	-2213588
BIEC2-1051774	ENSECAG000000023096	TP53G2	0.41	8	51698367	2.0E-05	8	56940922	56949571	-1	-5245525
BIEC2-440241	ENSECAG000000009547	WDR12	0.57	18	76611180	4.3E-05	18	77653552	77674750	-1	-1044172
TBIEC2-1144261	ENSECAG000000008479	SDR16C5	-0.43	9	30312051	9.4E-05	9	27929107	27307849	1	3019944
TBIEC2-1149959	ENSECAG000000008479	SDR16C5	-0.43	9	40285361	6.3E-05	9	27929107	27307849	1	12992254
TBIEC2-1052388	ENSECAG000000023096	TP53G2	0.41	8	53636613	1.0E-07	8	56940922	56949571	-1	-3304309

¹Log₂ fold-change (log₂ FC) of expression in response to training in Bryan et al., 2017.

the UE cohort. Fewer trans-eQTL were detected (UR: 1,703; UE: 1,219), which is consistent with previous studies, and likely due to the greater statistical power required to identify trans-eQTL (Westra and Franke, 2014).

The gene with the most significant association with a cis-eQTL in the UR and UE cohorts was ENTR1 (Table 3: UR: P_{FDR} = 3.81 \times 10^{-7}, UE: P_{FDR} = 1.66 \times 10^{-24}). The ENTR1 protein is involved in cellular transport of cargo proteins from the endosome to the
Golgi apparatus or for degradation in the lysosome (McGough et al., 2014) and has been suggested to play a role in cytolysis (Hagemann et al., 2013). In a study where ENTR1 protein expression was blocked by RNA interference, there was a decrease in solute carrier family 2 member 1 glucose transporter protein (SLC2A1; previously known as GLUT1) (McGough et al., 2014). When examining whether this was due to increased SLC2A1 degradation, there was no evidence of increased transport of SLC2A1 to the lysosome. It was hypothesised that the decrease in SLC2A1 was mediated through regulation of transcription by ENTR1. SLC2A1 is responsible for approximately 30−40% of the glucose uptake in skeletal muscle, with the remainder transported through GLUT4 (Zisman et al., 2000; Rudich et al., 2003). As opposed to GLUT4 which is primarily expressed in skeletal muscle, SLC2A1 is widely expressed and is highly expressed on erythrocye membranes (Krook et al., 2004). The control of SLC2A1 by ENTR1 in the context of the equine athlete is intriguing to speculate since SLC2A1 is expressed within equine lamellar tissue, and its expression is increased in hyperinsulinemia, therefore may play a role in the pathophysiology of equine laminitis (Campolo et al., 2016). SLC2A1 is also differentially expressed in response to hypoxia, which may also be expressed in equine chondrocytes in vitro after exposure to coal chloride (to mimic hypoxia) and in chondrocytes from osteoarthritis cases (Peasunkamee et al., 2009).

The most significant trans association in the UR cohort was between BIEC2-526896 and expression of the DEAH-box helicase 16 gene (DHX16) (Table 4). DHX16 is an RNA helicase and is involved in regulation of translation and pre-mRNA splicing (Gencheva et al., 2010; Putiri and Pelegrin, 2011). The gene located closest to BIEC2-526896 is the olfactory receptor family 12 subfamily D member 3 gene (OR12D3) with the TSS located 96.5 kb from the SNP. However, the zinc finger protein 311 gene (ZNF311) also relatively close to BIEC2-526896 (792.5 kb) (Consortium, 2017). ZNF311 has previously been associated with telomere length in heterozygous ataxia-telangiectasia mutated (ATM) gene patients (Renault et al., 2017). As a member of the a krueppel c2h2-type zinc-finger protein family it is likely a transcription factor and has been associated with Biological Processes such as ‘regulation of transcription, DNA templated’ and ‘regulation of transcription by RNA polymerase II’ (Consortium, 2017). The trans association between BIEC2-526896 and DHX16 expression may therefore be mediated via the gene regulatory function of ZNF311.

The most significant trans-eQTL in the UE cohort was UKUL2765 and expression of the methylcrotonoyl-CoA carboxylase 2 gene (MCCC2) (Table 4). MCCC2 encodes a subunit of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme which catalobises leucine (Stadler et al., 2005). Mutations within MCCC2 have been found to result in MCC deficiency, which has varying implications for patients from no symptoms at all to death in early infancy (Fonseca et al., 2016). To date studies have yet to discern mutations which result in more or less severe disease phenotypes (Gallardo et al., 2001; Stadler et al., 2006). In terms of muscle physiology, MCCC2 has been shown to be highly expressed in skeletal muscle of the red seabream fish (Pagrus major), which is likely due to high levels of protein metabolism within skeletal muscle (Abe et al., 2004). The TSS of the jumonji domain containing 4 gene (JMJD4) is located 71 bp from UKUL2765. The JMJD4 protein catalyses the hydroxylation of translation termination factor eRF1 lysine 63, which in turn enables the correct termination of translation and maintenance of translational fidelity (Feng et al., 2014). It is possible that the variation proximal to JMJD4 is influencing expression of JMJD4.
in turn altering expression of MCCC2. However, from the data available only one significant \textit{cis}-eQTL for JMJDA4 was detected in the UR cohort and this was BIEC2-658237; Table 6 and that this \textit{trans}-eQTL was also highly significant in the UE cohort ($P_{\text{FDR}} = 9.80 \times 10^{-4}$; Table 4). TAL2 encodes a basic-helix-loop-helix transcription factor (Xia et al., 1991; Langlands et al., 1997). Deletion of TAL2 in mice has been shown to cause severe disruption of the development of the central nervous system, with new-born mice dying shortly post-partum (Bucher et al., 2000). TAL2 has been shown to be vital for the development of gamma-aminobutyric acid (GABA, inhibitory neurotransmitter) signalling neurons in the developing midbrain, showing highly regulated and coordinated expression (Achim et al., 2013). When expression of TAL2 was inhibited, neurons more closely resembled an excitatory glutamatergic phenotype (Achim et al., 2013). In terms of application in racing performance, GABA has previously been used as a calming agent in Thoroughbred racehorses, although it was banned from use in 2012. The GABA type A receptor associated protein like 1 gene (GABARAPL1) was also identified as a key regulator in the skeletal muscle transcriptional response to exercise (Bryan et al., 2017). In addition, we have previously reported functional enrichment of pathways related to neurodegenerative disorders in the transcriptional response to exercise (Bryan et al., 2017). Given the role of TAL2 in GABAergic neuronal fate, this suggests a potential role for TAL2 in the coordination of the response to exercise. These results suggest that the role of genes associated with neuronal differentiation and disease in the context of muscle and exercise warrants further investigation.

To identify common biological functions within genes identified under \textit{cis} or \textit{trans} regulation, enrichment analysis of Biological Processes among the gene sets was performed. Among the \textit{cis} eGenes detected in both the UR and UE cohort, as well as \textit{trans} eGenes in the UR cohort there was significant enrichment of cofactor metabolic processes (GO:0051186, \textit{Tables S1, S3}, and S4). Cofactor metabolic process is defined as chemical reactions and pathways requiring the activity of an inorganic cofactor, such as an ion, or an organic coenzyme for the activity of an enzyme or other functional protein. Genes within this cluster were related to metabolism and substrate utilisation, including vitamin and mineral binding and synthesis such as: selenium (selenium binding protein 1 gene, SELENBP1; and selenoprotein T gene, SELENOT) molibdenuem (molybdenum cofactor sulfurate gene, MOCOS) and thiamine (thiamine triphosphatase gene, THTPA). Consequently, variation in the expression of genes associated with nutrient binding may lead to variation in the ability of horses to utilise such nutrients. In this regard, abundance of selenoprotein gene transcripts has been used to identify dietary requirements for selenium in rats and turkeys (Barnes et al., 2009; Taylor and Sunde, 2017). Given the inter-animal variation in expression observed for genes relevant to substrate binding, it may be possible to use this information to evaluate nutrient requirements for individual horses, or whether expression of these genes can be modulated through diet.

Many of these genes have also been shown to have functions relevant to exercise, and variation within the expression of these genes may underpin variation in athletic performance. For example, the selenium binding protein 1 gene (SELENBP1) is significantly downregulated in response to exercise (log_{FC} = -0.56; $P_{\text{FDR}} = 3.71 \times 10^{-13}$) (Bryan et al., 2017). In both normal and cancerous human cells SELENBP1 has been shown to be highly variable in expression (Yang and Sytkowski, 1998). Functionally, the SELENBP1 protein has been shown to be involved in many cellular processes including detoxification (Ishii et al., 1996), cytoskeletal outgrowth (Miyaguchi, 2004) and regulation of reduction and oxidation within the cell (Jamba et al., 1997). SELENBP1 was found be differentially expressed in blood in response to administration of human recombinant erythropoietin in human endurance athletes (Durussel et al., 2016; Wang et al., 2017), suggesting a potential role in haematopoiesis and its regulation. In the UE cohort the DDB1 and CUL4 associated factor 12 (DCAF12) and guanosine monophosphate reductase (GMPR) genes both exhibited significant \textit{cis}-eQTL (DCAF12: $P_{\text{FDR}} = 0.02$; GMPR: $P_{\text{FDR}} = 4.17 \times 10^{-3}$). These genes, in addition to SELENBP1, were also shown by Wang et al. (2017) to be differentially expressed in blood in response to human recombinant erythropoietin. Variation in the expression of these genes may therefore potentially underpin variation in haematological phenotypes in horses, which may in turn influence traits relevant to aerobic capacity. It is also noteworthy that selenium deficiency has been associated with significant myopathy (White muscle disease) (Loftedt, 1997; Delesalle et al., 2017) and reduced exercise tolerance in horses (Brady et al., 1978; Avellini et al., 1999). In addition, selenoproteins have been shown to be involved in several metabolic pathways and the response to oxidative stress in muscle (Rederstorff et al., 2006). These findings suggest an important role for selenium, and its associated biochemical machinery, in the correct functioning of skeletal muscle and muscle metabolism. This highlights the importance of selenium in the context of exercise and provides a potential role for variation in expression of genes relevant to selenium metabolism in determining metabolic function within the muscle.

The cofactor metabolic process cluster also contained genes relevant to mitochondrial function and oxidative phosphorylation. These included genes within the coenzyme Q synthesis pathway: coenzyme Q3 hydroxylase (COQ3), coenzyme Q7 (COQ7) and coenzyme Q8A (COQ8A). The coenzyme Q complex is a critical component of the electron transport chain during oxidative phosphorylation, moving electrons from complexes I and II to complex III (Lenaz, 1985; Turunen et al., 2004; Stefely and Pagliarini, 2017). COQ7 and COQ8A are required for coenzyme Q biosynthesis (Mollet et al., 2008; Stefely et al., 2016). Human patients with COQ8A mutations suffered seizures and other neurological symptoms and showed reduced coenzyme Q within skeletal muscle (Jacobsen et al.; Mollet et al., 2008). An eQTL for COQ8A in skeletal muscle has already been identified in horses, with a 227 bp SINE insertion in the promotor region of MSTN (g.66495326_66495327ins227) on ECA18 associated with
increased expression of COQ8A (previously known as ADCK3) in Thoroughbreds (Rooney et al., 2017). However it should be noted that this increase in COQ8A expression did not appear to accompany an COQ8A protein abundance, with no difference in COQ8A protein abundance across genotypes (Rooney et al., 2017). This may be due to COQ8A having a regulatory role in coenzyme Q biosynthesis (Acosta et al., 2016). Electron transport chain complex activity assays, as well as assays using the exogenous application of ubiquinone, suggested a difference in the abundance of coenzyme Q across genotypes at this locus (Rooney et al., 2017). Suggesting variation at this SINE insertion is associated with COQ8A expression as well as coenzyme Q abundance. Therefore eQTL in the current study associated with COQ8A (Figure S4), and indeed other genes within the coenzyme Q biosynthetic pathway, may result in variation in synthesis of the coenzyme Q complex and have downstream implications for mitochondrial function.

We have for the first time systematically catalogued eQTL in equine skeletal muscle, both at rest and post-exercise. Previous investigations of eQTL in skeletal muscle have focussed primarily on human T2D (Sharma et al., 2011; Keildson et al., 2014a; Sajuthi et al., 2016; Langefeld et al., 2018) and meat quality traits in production animals (Ponsuksili et al., 2015; Gonzalez-Prendes et al., 2017; Pampouille et al., 2018; Gonzalez-Prendes et al., 2019; Velez-Irazarry et al., 2019). Our investigation of eQTL in the context of skeletal muscle and exercise present some of the only work to-date in this area (Kelly et al., 2014). Our work utilised linear models to detect associations between SNPs and gene expression as quantified by RNA-seq. It should be noted at this point that there are potential biases introduced in terms of the high number of related individuals within the cohort, future work could utilise more sophisticated techniques such as allele specific expression, where transcripts are mapped back to the maternal and paternal chromosomes and the expression of the maternal and paternal transcripts can be compared (Chamberlain et al., 2015). This would be particularly useful in our cohort given the high number of offspring by a small number of sires. Within the cohort there is also some variation in the amount of training prior to sampling, this was kept to a minimum by our sampling criteria. However, extending the study to incorporate trained horses and utilise variation in prior training by modelling the transcriptional training response could provide information on regulation of the training responsive transcriptome.

Our current results provide novel information concerning the regulation of gene expression in horses and can provide a framework for interpreting future GWAS of athletic and performance traits in Thoroughbreds. In terms of future applications of these results, the identification of quantitative trait transcripts (QTT) for athletic traits characterised in our cohort could be used to detect associations between a SNP, variation in expression of a QTT and a trait of interest. Thus giving a fuller picture of genetic variation contributing to traits of interest. An example may be detecting loci and QTT involved in the response to exercise and training, which has previously been shown to be highly heritable in humans (Timmons et al., 2010; Bouchard et al., 2011). The use of systems genetics approaches that integrate differential gene expression with genome variation represent an excellent strategy for dissecting the genetic architecture of complex anatomical and physiological traits.

DATA AVAILABILITY STATEMENT

The RNA-seq datasets analyzed for this study can be found in EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5447/). SNP datasets will not be made publicly available as the data were generated from privately owned horses, with a legal commitment to confidentiality. Researchers may request access to the data and consideration will be given to individuals following the conclusion of a confidentiality agreement. Requests should be made to the UCD Technology Transfer Office (https://www.ucd.ie/innovation/knowledge-transfer/).

ETHICS STATEMENT

University College Dublin Animal Research Ethics Committee approval (AREC-P-12-55-Hill), a licence from the Department of Health (B100/3525) and informed owner consent were obtained.

AUTHOR CONTRIBUTIONS

GF performed computations and functional analyses. KB and PM assisted in analysis and pipeline development. CM, KG and GF performed biopsy sample collections. JB and GF prepared RNA. GF wrote the manuscript in close consultation with EH, LK and DM. All authors were involved in study design, implementation of the research and preparation of the manuscript.

FUNDING

This research was funded by Science Foundation Ireland (SFI/11/PI/1166 and 18/TIDA/6019).

ACKNOWLEDGMENTS

We would like to thank J.S. Bolger for access to his horses, and staff at Glebe House stables for their assistance, particularly B. O’Connor and P. O’Donovan. This research was conducted with the financial support of Science Foundation Ireland (grant no. SFI/11/PI/1166 and 18/TIDA/6019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2019.01215/full#supplementary-material

FIGURE S1 | Principal component analysis of quantile-normalised log counts of RNA-seq transcripts and coloured by sample type: untrained resting or untrained post-exercise.

FIGURE S2 | Boxplot of ENTR1 expression (log2 quantile-normalised counts) across BIEC2-707785 genotypes in untrained resting samples.

FIGURE S3 | Boxplot of ENTR1 expression (log2 quantile-normalised counts) across BIEC2-707785 genotypes in untrained post-exercise samples.

FIGURE S4 | Boxplot of COQ8A expression (log2 quantile-normalised counts) across BIEC2-417075 genotypes in untrained post-exercise samples.
loci in African Americans to identify genes for type 2 diabetes and obesity. *Hum. Genet.* 135 (8), 869–880. doi: 10.1007/s00439-016-1680-8

Schaefer, R. J., Schubert, M., Bailey, E., Bannasch, D. L., Barrey, E., Bar-Gal, G. K., et al. (2017). Developing a 670K genotyping array to tag ~2M SNPs across 24 horse breeds. *BMC Genomics* 18 (1), 565. doi: 10.1186/s12864-017-3943-8

Serrano, A. L., Quiroz-Rothe, E., and Rivero, J.-L. L. (2000). Early and long-term changes of equine skeletal muscle in response to endurance training and detraining. *Pflügers Arch.* 441 (2), 263–274. doi: 10.1007/s004240000408

Shabalin, A. A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics* 28 (10), 1353–1358. doi: 10.1093/bioinformatics/bts163

Sharma, N. K., Langberg, K. A., Mondal, A. K., Elbein, S. C., and Das, S. K. (2011). Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects. *J. Clin. Endocrinol. Metab.* 96 (2), E394–E403. doi: 10.1210/jc.2010-1754

Snow, D. H., Harris, R. C., and Gash, S. P. (1985). Metabolic response of equine muscle to intermittent maximal exercise. *J. Appl. Physiol.* (1985) 58 (5), 1689–1697. doi: 10.1152/jappl.1985.58.5.1689

Snow, D.H.a.V. Sj. (1994). Muscle anatomy, physiology and adaptations to exercise and training in The athletic horse: principles and practice of equine sports medicine. Ed.Hodgson, D. R. R. (PhiladelphiaSaunders), 145–179.

Stadler, S. C., Polanetz, R., Meier, S., Mayerhofer, P. U., Herrmann, J. M., Anslinger, K., et al. (2005). Mitochondrial targeting signals and mature peptides of 3-methylcrotonyl-CoA carboxylase. *Biochem. Biophys. Res. Commun.* 334 (3), 939–946. doi: 10.1016/j.bbrc.2005.06.190

Stadler, S. C., Polanetz, R., Maier, E. M., Heidenreich, S. C., Niederer, B., Mayerhofer, P. U., et al. (2006). Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity of MCCCA and MCCB mutations and impact on risk assessment. *Hum. Mutat.* 27 (8), 748–759. doi: 10.1002/humu.20349

Stefely, J. A., and Pagliarini, D. J. (2017). Biochemistry of mitochondrial coenzyme Q biosynthesis. *Trends In Biochem. Sci.* 42 (10), 824–843. doi: 10.1016/j.tibs.2017.06.008

Stefely, J. A., Licitra, F., Laredj, L., Reidenbach, A. G., Kemmerer, Z. A., Grangeray, A., et al. (2016). Cerebella ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. *Mol. Cell* 63 (4), 608–620. doi: 10.1016/j.molcel.2016.06.030

Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., et al. (2007). Population genomics of human gene expression. *Nat. Genet.* 39 (10), 1217–1224. doi: 10.1038/ng1424

Taylor, R. M., and Sunde, R. A. (2017). Selenium requirements based on muscle and kidney selenoprotein enzyme activity and transcript expression in the turkey poult (Meleagris gallopavo). *PloS One* 12 (11), e0189001. doi: 10.1371/journal.pone.0189001

Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., et al. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. *J. Appl. Physiol.* 108 (6), 1487–1496. doi: 10.1152/japplphysiol.01295.2009

Todd, E. T., Ho, S. Y. W., Thomson, P. C., Ang, R. A., Velie, B. D., and Hamilton, N. A. (2018). Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. *Sci. Rep.* 8 (1), 6167. doi: 10.1038/s41598-018-24663-x

Turunen, M., Olsson, J., and Dallner, G. (2004). Metabolism and function of coenzyme Q. *Biochim. Biophys. Acta (BBA) - Biomembr.* 1660 (171), 1–199. doi: 10.1016/j.bbamed.2003.11.012

Tyler, C. M., Golland, L. C., Evans, D. L., Hodgson, D. R., and Rose, R. J. (1998). Skeletal muscle adaptations to prolonged training, overtraining and detraining in horses. *Pflügers Arch.* 436 (3), 391–397. doi: 10.1007/s004240050648