Measurement of "pretzelosity" asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He-3 target

Y. Zhang
Y. -W. Zhang
X. Qian
J. Katich
T. Averett

College of William and Mary

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation
Zhang, Y.; Zhang, Y. -W.; Qian, X.; Katich, J.; Averett, T.; Bradshaw, P. C.; Kelleher, A.; and Zhao, B., Measurement of "pretzelosity" asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He-3 target (2014).
https://scholarworks.wm.edu/aspubs/459

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Publications by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized ^3He target

Y. Zhang et al. (Jefferson Lab Hall A Collaboration)

Phys. Rev. C 90, 055209 — Published 24 November 2014

DOI: 10.1103/PhysRevC.90.055209
Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized 3He target

Y. Zhang,1,* X. Qian,2,3 K. Allada,4,5 C. Dutta,4 J. Huang,5,6 J. Katich,7 Y. Wang,8 K. Aniol,9 J.R.M. Annand,10 T. Averett,7 F. Benmokhtar,11 W. Bertozzi,5 P.C. Bradshaw,7 P. Bosted,12 A. Camsonne,12 M. Canan,13 G.D. Cates,14 C. Chen,15 J.-P. Chen,12 W. Chen,2 K. Chirapatpimol,14 E. Chudakov,12 E. Cisbani,16,17 J.C. Cornejo,9 F. Cusanno,16,17 M. M. Dalton,14 W. Deconinck,5 C.W. de Jager,12,14 R. De Leo,18 X. Deng,14 A. Deur,12 H. Ding,14 P. A. M. Dolph,14 D. Dutta,19 L. El Fassi,20 S. Frullani,16,17 H. Gao,2 F. Garibaldi,16,17 D. Gaskell,12 S. Gilad,5 R. Gilman,12,20 O. Glazmazid,31 S. Golge,13 L. Guo,6 D. Hamilton,10 O. Hansel,12 D.W. Higinbotham,12 T. Holmstrom,22 M. Huang,2 H. F. Ibrahim,23 M. Iodice,24 X. Jiang,20,6 G. Jin,14 M.K. Jones,12 A. Kelleher,7 W. Kim,25 A. Kolarkar,4 W. Korsch,4 J.J. LeRose,12 X. Li,26 Y. Li,26 R. Lindgren,14 N. Liyanage,14 E. Long,27 H.-J. Lu,28 D.J. Margazziotis,9 P. Markowitz,29 S. Marrone,18 D. McNulty,30 Z.-E. Meziani,31 R. Michaels,12 B. Moffit,5,12 C. Muñoz Camacho,32 S. Nanda,12 A. Narayan,19 V. Nelyubin,14 B. Norum,14 Y. Oh,33 M. Osipenko,34 D. Parno,11,35 J. C. Peng,8 S. K. Phillips,27 M. Posik,31 A. J. R. Puckett,5,6 Y. Qiang,2,12 A. Rahkman,36 R. D. Ransome,20 S. Riordan,14 A. Saha,12,1† B. Sawatzky,31,12 E. Schulte,20 A. Shahinyan,37 M. H. Shabestari,14,19 S. Sirca,38 S. Stepanyan,25 R. Subedi,14 V. Sulkosky,5,12 L.-G. Tang,15 W.A. Tobias,14 G. M. Urciuoli,16 I. Vilardi,18 K. Wang,14 B. Wojtsekhowski,12 X. Yan,29 H. Yao,33 Y. Ye,28 Z. Ye,15 L. Yuan,15 X. Zhan,5 Y.-W. Zhang,1 B. Zhao,7 X. Zheng,14 L. Zhu,8,15 X. Zhu,2 and X. Zong2

(The Jefferson Lab Hall A Collaboration)

1Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
2Duke University, Durham, NC 27708
3Physics Department, Brookhaven National Lab, Upton, NY 11973
4University of Kentucky, Lexington, KY 40506
5Massachusetts Institute of Technology, Cambridge, MA 02139
6Los Alamos National Laboratory, Los Alamos, NM 87545
7College of William and Mary, Williamsburg, VA 23187
8University of Illinois, Urbana-Champaign, IL 61801
9California State University, Los Angeles, Los Angeles, CA 90032
10University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
11Carnegie Mellon University, Pittsburgh, PA 15213
12Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
13Old Dominion University, Norfolk, VA 23529
14University of Virginia, Charlottesville, VA 22904
15Hampton University, Hampton, VA 23187
16INFN, Sezione di Roma, I-00161 Rome, Italy
17Istituto Superiore di Sanità, I-00161 Rome, Italy
18INFN, Sezione di Bari and University of Bari, I-70126 Bari, Italy
19Mississippi State University, MS 39762
20Rutgers, The State University of New Jersey, Piscataway, NJ 08855
21Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
22Longwood University, Farmville, VA 23909
23Cairo University, Giza 12613, Egypt
24INFN, Sezione di Roma3, I-00146 Rome, Italy
25Kyungpook National University, Taegu 702-701, Republic of Korea
26China Institute of Atomic Energy, Beijing, People's Republic of China
27University of New Hampshire, Durham, NH 03824
28University of Science and Technology of China, Hefei 230026, People’s Republic of China
29Florida International University, Miami, FL 33199
30University of Massachusetts, Amherst, MA 01003
31Temple University, Philadelphia, PA 19122
32Université Blaise Pascal/IN2P3, F-63177 Aubière, France
33Seoul National University, Seoul 151-747, Republic of Korea
34INFN, Sezione di Genova, I-16146 Genova, Italy
35University of Washington, Seattle, WA 98195
36Syracuse University, Syracuse, NY 13244
37Yerevan Physics Institute, Yerevan 375036, Armenia
38University of Ljubljana, SI-1000 Ljubljana, Slovenia

An experiment to measure single-spin asymmetries of semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Lab
Studies of nucleon structure have been and still are at the frontier of understanding how quantum chromodynamics (QCD) works in the non-perturbative region. It has been known for decades that the nucleon is composed of quarks and gluons. However, how quarks and gluons contribute to the elementary properties of the nucleon is still an open question. Among these properties, the nucleon spin has been at the center of interests for more than two decades since the European Muon Collaboration’s discovery that quark spins were found to contribute only a small portion to the nucleon spin [1]. In last two decades, polarized deep-inelastic scattering (DIS) experiments [2] have confirmed that the quark spin only contributes to about 25% of the nucleon spin with significantly improved precision. In more recent years, efforts have also been devoted to the determination of the gluon’s intrinsic contribution to the nucleon spin both from fixet-target polarized DIS and from polarized proton-proton collision measurements [3]. New results [4–6] from the RHIC-spin program suggest that the gluon spin may only contribute to the proton spin at a level comparable to those of quark spins. These findings suggest that the orbital angular momentum (OAM) of quarks and gluons, the most elusive piece, may actually be the largest contributor.

In recent years, major theoretical and experimental efforts have focused on accessing OAM of quarks. The development of the general parton distribution functions (GPDs) [7] and the transverse-momentum-dependent parton distribution functions (TMDs) [8] provides not only the three-dimensional imaging of the nucleon, but also promising ways to access OAM. By investigating correlations between the quark position and the momentum, GPDs supply a new way to characterize the contribution of the quarks’ orbital motion to the spin of the nucleon. On the other hand, TMDs investigate the parton distributions in three-dimensional momentum space and provide information about the relationship between the quark momenta and the spin of either the nucleon or the quark. Most TMDs are expected to vanish in the absence of quark orbital motion. Thus they supply important and complementary (to GPDs) ways to access the OAM’s contribution to the nucleon spin.

Among the 8 leading-twist TMDs, there are only three that remain non-zero after integrating over the parton transverse momentum [8]. They are the unpolarized parton distribution function (PDF) f_1, the longitudinally polarized PDF g_1 (helicity), and the transversely polarized PDF h_1 (transversity). The distribution f_1 has been extensively studied for several decades. The distribution g_1 is also relatively well understood by continuous efforts since 1970s [2]. For the h_1, although less known than the former two, pioneering studies were made in recent years, both theoretically and experimentally [9]. One of the least known TMDs, h_{1T}, referred to as pretzelosity, has drawn significant attention recently [10–14] due to its intuitive relation to the quark OAM. As one of the eight leading-twist TMDs, it has a probabilistic interpretation as in a transversely polarized nucleon the parton number density of which is transversely polarized in a direction perpendicular to the nucleon polarization direction, subtracted by the parton number density with the opposite parton-polarization direction. Same as transversity, pretzelosity also has an odd chirality, which leads to an important consequence that there are only quark pretzelosity distributions, with no gluonic counterparts.

In a class of relativistic quark models [13, 14], pretzelosity can be expressed as the difference between the helicity and the transversity. In the light cone the difference of quark polarization between the longitudinal and transverse direction is due to the fact that boost and rotation operators do not commute. A non-zero value of the pretzelosity is thus a direct consequence of this relativistic nature of quark motion. Another interesting feature is that pretzelosity emerges from the interference of quark wave-function components differing by two units of orbital angular momentum [15]. Pretzelosity is the only leading-twist TMD carrying this unique feature. In certain models, the quark OAM can be directly accessed via pretzelosity [13, 14]. This finding was first obtained in a quark-diquark model [16] and a bag model [12], and then confirmed in a large class of quark models respecting spherical symmetry [14].

In experiments, pretzelosity is suppressed in the inclusive DIS processes due to its chiral-odd nature. However, combined with another chiral-odd object such as the Collins fragmentation function [17], it leads to a measurable effect in the semi-inclusive DIS (SIDIS) [18] in which a leading hadron is detected in addition to the scattered lepton. Specifically, with an unpolarized lepton beam scattered from a transversely polarized nucleon target, a non-zero h_{1T} would produce an azimuthal angular dependent single-spin asymmetry (SSA).

At the leading twist and following the Trento convention [19], the azimuthal angular dependence of the target
SSA can be written as:

\[
A_{UT}(\phi_h, \phi_s) = \frac{1}{P_{\text{He}}} \frac{Y(\phi_h, \phi_s) - Y(\phi_h, \phi_s + \pi)}{Y(\phi_h, \phi_s) + Y(\phi_h, \phi_s + \pi)}
\approx A^C \cdot \sin(\phi_h + \phi_s) + A^S \cdot \sin(\phi_h - \phi_s)
+ A^P \cdot \sin(3\phi_h - \phi_s),
\]

where the subscript \(U\) and \(T\) stand for the unpolarized beam and the transversely polarized target, respectively. \(P_{\text{He}}\) is the polarization of the target, \(Y\) is the normalized yield, \(\phi_h\) is the angle between the lepton plane and the hadron plane, which is defined by the hadron momentum direction and the virtual photon momentum direction, and \(\phi_s\) is the angle between the target spin direction and the lepton plane. The three leading-twist asymmetries [20] correspond to the Collins asymmetry \((A^C)\), the Sivers asymmetry \((A^S)\) and the pretzelosity asymmetry \((A^P)\). The Collins asymmetry is the transversity distribution function convoluted with the Collins fragmentation function, while the Sivers asymmetry is the Sivers distribution function convoluted with the unpolarized fragmentation function. The last term, referred to as the pretzelosity asymmetry, is the pretzelosity distribution function convoluted with the Collins fragmentation function. As shown in Eq. (1), these three terms have different azimuthal angular dependences, therefore it is possible to simultaneously determine all three terms by studying the angular dependence.

The HERMES collaboration carried out the first measurement of Collins and Sivers asymmetries [21] with electron and positron beams on a transversely polarized proton target. The COMPASS collaboration performed measurements with a muon beam on transversely polarized proton [22] and deuteron targets [23]. In Hall A at Jefferson Lab (JLab), an exploratory experiment E06-010 [24, 25] was carried out, for the first time using a gas target. The extracted Collins and Sivers asymmetries were published [24]. In extracting these asymmetries, the pretzelosity term was not included. Its uncertainty was estimated and included in the systematic uncertainties.

In this paper, we present the results of the pretzelosity asymmetry extracted from the JLab E06-010 data. As shown in Fig. 1, a 5.9-GeV electron beam was incident on a transversely polarized gaseous \(^3\)He target with an average current of 12 \(\mu\)A. The target [26] was polarized by spin-exchange optical pumping [27] of a Rb/K mixture, with which an average polarization is 55.4 \(\pm\) 2.8\%.

The scattered electrons were detected using the BigBite spectrometer [26] at beam right with a solid-angle acceptance of \(\sim 64\) msr. Three sets of drift chambers with eighteen wire planes in total were used for tracking. Lead-glass pre-shower and shower detectors were used to identify electrons. The hadron contamination of the electron sample in the SIDIS process was suppressed to below 2\% in the momentum range of 0.6-2.5 GeV. The produced hadrons were detected in the left arm of the high resolution spectrometers [26] (LHRS). A gas Cherenkov detector and two layers of lead-glass detectors provided a clean separation of pions from electrons. An aerogel Cherenkov detector and the coincident time-of-flight technique (about 25 meters from the target to the LHRS focal plane) were employed to distinguish pions from kaons and protons.

To extract moments of the SSA, it is important to have the azimuthal angular coverage as complete as possible. In the case of pretzelosity asymmetry, the azimuthal angle is \((3\phi_h - \phi_s)\) and the range is \([0, 2\pi]\). In the experiment, the BigBite and the LHRS spectrometer covered only part of the \(2\pi\) angular range. To increase the angular coverage, four different target spin orientations orthogonal to the beam direction, transverse left, transverse right, vertical up, and vertical down, were used. For each target spin orientation the spectrometers covered only a section of the phase space as shown in the left panel of Fig. 2 (target spin vertical up). However, data from all four orientations, when combined, covered the full angular range as shown in the right panel of Fig. 2, where magenta, green, red, and blue are for horizontal beam left, horizontal beam right, vertical up, and vertical down, respectively. In order to achieve target polarizations in these four orientations, three pairs of mutually orthogonal Helmholtz coils were employed. During the experiment, the target spin direction was flipped every twenty minutes using the adiabatic fast passage technique, in which the magnetic holding field direction and strength remained unchanged.

Several kinematic cuts were used to select SIDIS events: the negative square of the four-momentum transfer \(Q^2 > 1\) GeV\(^2\), the invariant mass of the virtual photon-nucleon system \(W > 2.3\) GeV, and the invariant mass of the undetected final state particles \(W' > 1.6\) GeV. Data were divided into 4 Bjorken-\(x\) bins with roughly equal statistics. The central kinematics are pre-
In Eq. (2) the scaling variable x is defined as $P_{t\perp} \cos(3\phi_h - \phi_s)$ in a polar coordinate. In each panel the x-axis is defined as $P_{t\perp} \cos(3\phi_h - \phi_s)$ and the y-axis is defined as $P_{t\perp} \sin(3\phi_h - \phi_s)$. The left panel shows the data in only one target spin orientation (horizontal beam left), while the right panel shows the data in all four orientations.

In Eq. (2) the cross section ratio $\sigma_{3He}/\sigma_{N_2}$ was measured through dedicated data taking with a reference target cell filled with known amount of 3He and N_2 gases. The number densities of 3He and N_2 in the polarized target were verified by taking the data of electron elastic scattering on both the reference target and the production 3He target [28]. Another important correction was made due to the pair-produced background electrons (and positions) in the SIDIS electron samples. This is especially significant in the lowest x bin corresponding to the lowest momentum. Dedicated data were taken with the BigBite spectrometer in reversed polarity to measure the yield of the coincident $(e,e'\pi^\pm)$ events, which is identical to the yield of $(e,e'\pi^\pm)$ events in the charge-symmetric pair production. This effect was corrected as a dilution since the measured asymmetries of the coincident $(e,e'\pi^\pm)$ events were consistent with zero.

In the analysis, the systematic uncertainties due to omission of the other ϕ_H- and ϕ_S-dependent terms in the binned least-χ^2 fit, including the Cahn ($\langle \cos(\phi_S) \rangle$) and Boer-Mulders ($\langle \cos(2\phi_H) \rangle$) effects, higher-twist terms ($\langle \sin(\phi_S) \rangle$ and $\langle \sin(2\phi_H - \phi_s) \rangle$), and the A_{UL} terms ($\langle \sin(\phi_h) \rangle$ and $\langle \sin(2\phi_h) \rangle$) [20, 29], were estimated. The A_{UL} terms were induced by a small longitudinal component of the target polarization in the virtual photon-nucleon center-of-mass frame of the SIDIS process. Of all these effects, the uncertainty of the $\langle \sin(2\phi_h - \phi_s) \rangle$ term was largest (~16% of the statistical uncertainty), followed by the $\langle \sin(\phi_h) \rangle$ term (~14% of the statistical uncertainty). To estimate the systematic uncertainty induced by K^\pm contamination in π^\pm sample, the coincident $(e,e'K^\pm)$ events were selected and the $\sin(3\phi_h - \phi_s)$ term of the asymmetry was extracted by maximum likelihood method. Then, the systematic uncertainty was evaluated as the difference between the $\sin(3\phi_h - \phi_s)$ terms of the $(e,e'\pi^\pm)$ and the $(e,e'K^\pm)$ samples, weighted by the contamination ratios of the K^\pm in π^\pm samples. Other ingredients of the systematic uncertainties included the yield drift, the target polarization, the target-density fluctuation, the detector tracking efficiency, the DAQ live time, the nitrogen dilution, and the photon contamination in the BigBite spectrometer. Since those ingredients have no azimuthal angular dependence and share the same data set of [24], they have the same values as in [24].

The extracted moments of the pretzelosity asymmetry on the 3He target are shown in the top two panels of Fig. 3 and in the Table. II. Only statistical uncertainties are included in the error bars. The experimental systematic uncertainties are combined in quadrature and shown as the band labeled as “Sys.”. All the extracted π^+ and π^- pretzelosity terms, which were cross checked with an unbinned maximum-likelihood fit, are small and consistent with zero within the uncertainties. This observation further supports the assumption in previous analysis [24] that the inclusion of pretzelosity term has little effect on the extraction of Collins and Sivers term.

To extract the pretzelosity asymmetries on neutron,
the effective polarization method was used:

\[A_n^p = \frac{1}{(1 - f_p)P_n} \left(A_{3He}^p - f_p A_n^p P_p \right), \tag{3} \]

where the proton dilution factor \(f_p \equiv 2\sigma_p/\sigma_{3He} \) was obtained by measuring the yields of unpolarized proton and \(^3\)He targets at the same kinematics. The same model uncertainty due to final-state interactions as in [24] was taken into account for \(f_p \). \(P_n = 0.86^{+0.02}_{-0.01} \) and \(P_p = -0.028^{+0.009}_{-0.004} \) are the effective polarizations of the neutron and proton in a \(^3\)He nucleus [30, 31], respectively. Due to the scarcity of available data and the small effective polarization of the proton, no correction was applied to account for the effect due to the proton asymmetry. The uncertainty due to this omission was estimated and included in the systematic uncertainty. For positive pions at the highest \(x \) bin, the asymmetry is magnified by nearly one order of magnitude from \(^3\)He to the neutron, due to the large proton dilution.

The extracted moments of the pretzelosity asymmetry on the neutron are listed in Table III and are also shown in the bottom two panels of Fig. 3, in which they are compared with the quark-diquark model (QDM) [16] and light-cone constituent-quark model (LCQM) [32, 33].

TABLE III. Values and uncertainties of the extracted neutron asymmetries.

\(x \)	\(\pi^+ \) terms	\(\pi^- \) terms	
	asym. stat. sys.	asym. stat. sys.	asym. stat. sys.
0.156	0.049 0.164 0.038	-0.035 0.110 0.025	
0.206	0.185 0.169 0.050	0.097 0.143 0.040	
0.265	0.074 0.105 0.030	-0.057 0.076 0.022	
0.349	-0.246 0.143 0.044	-0.057 0.079 0.022	

FIG. 3. (Color online) The extracted pretzelosity asymmetries on \(^3\)He nuclei (top panels) and on the neutron (bottom panels) are shown together with uncertainty bands for both \(\pi^+ \) and \(\pi^- \) electron-production.
[1] J. Ashman, et al. [European Muon Collaboration], Phys. Lett. B 206 (1988) 364.
[2] S. E. Kuhn, J.-P. Chen, and E. Leader, Prog. Part. Nucl. Phys. 63 (2009) 1.
[3] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Malik, Rev. Mod. Phys. 85 (2013) 655.
[4] A. Adare, et al. (PHENIX Collaboration), Phys. Rev. D 84 (2011) 012006.
[5] A. Adare, et al. (PHENIX Collaboration), Phys. Rev. D 86 (2012) 092006.
[6] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Prog. Part. Nucl. Phys. 67 (2012) 251.
[7] M. Guidal, H. Moutarde, and M. Vanderhaeghen, Rep. Prog. Phys. 76 (2013) 066202.
[8] M. Anselmino, et al., Phys. Rev. D 73 (2006) 014020.
[9] V. Barone, F. Bradamante, and A. Martin, Prog. Part. Nucl. Phys. 65 (2010) 267.
[10] G. A. Miller, Phys. Rev. C 68 (2003) 022201.
[11] G. A. Miller, Phys. Rev. C 76 (2007) 065209.
[12] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan, Phys. Rev. D 78 (2008) 114024.
[13] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan, Phys. Rev. D 81 (2010) 074035.
[14] C. Lorce’ and B. Pasquini, Phys. Lett. B 710 (2011) 486.
[15] M. Burkardt, arXiv:0709.2966 (2007).
[16] J. She, J. Zhu, and B.-Q. Ma, Phys. Rev. D 79 (2009) 054008.
[17] J. Collins, Nucl. Phys. B 396 (1993) 161.
[18] F. Yuan and J. Zhou, Phys. Rev. Lett. 103 (2009) 052001.
[19] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D 70 (2004) 117504.
[20] M. Anselmino, et al., Phys. Rev. D 83 (2011) 114019.
[21] A. Airapetian, et al. (HERMES Collaboration), Phys. Rev. Lett. 94 (2005) 012002.
[22] M. Alekseev, et al. (COMPASS Collaboration), Phys. Lett. B 692 (2010) 240.
[23] M. Alekseev, et al. (COMPASS Collaboration), Phys. Lett. B 673 (2010) 127.
[24] X. Qian, et al., Phys. Rev. Lett. 107 (2011) 072003.
[25] J. Huang, et al., Phys. Rev. Lett. 108 (2012) 052001.
[26] J. Alcorn, et al., Nucl. Instr. and Meth. A 522 (2004) 294.
[27] T. G. Walker and W. Happer, Rev. Mod. Phys. 69 629 (1997).
[28] Y. Zhang, X. Qian, and B.-T. Hu, Chinese Phys. C 36 (2012) 610.
[29] A. Bacchetta, et al., J. High Energy Phys. 02 (2007) 093.
[30] X. Zheng, et al., Phys. Rev. C 70 (2004) 065207.
[31] J. J. Ethier and W. Melnitchouk, arXiv:1308.3723.
[32] B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D 78 (2008) 034025.
[33] S. Boffi, A. V. Efremov, B. Pasquini, and P. Schweitzer, Phys. Rev. D 79 (2009) 094012.
[34] H. Gao, et al., Eur. Phys. J. Plus 126 (2011) 2.; JLab Proposal Report No. E12-10-006 and No. E12-11-108
[35] B.-Q. Ma and I. Schmidt, Phys. Rev. D 58 (1998) 096008.