Oral Maintenance Chemotherapy with 6-Mercaptopurine and Methotrexate in Patients with Acute Myeloid Leukemia Ineligible for Transplantation

Yong Won Choi, Seong Hyun Jeong, Mi Sun Ahn, Hyun Woo Lee, Seok Yun Kang, Jin-Hyuk Choi, and Joon Seong Park

Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea

Received: 5 March 2015 Accepted: 7 July 2015

Address for Correspondence: Joon Seong Park, MD
Department of Hematology-Oncology, Ajou University Hospital, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
Tel: +82.31-219-5089, Fax: +82.31-219-5093
E-mail: jspark65@ajou.ac.kr

INTRODUCTION

Acute myeloid leukemia (AML) is the most common type of leukemia, and it has the lowest survival rate of all leukemia types in adults (1). Although attaining complete remission (CR) is the important goal of initial therapy in AML, the median disease free survival of patients who received the induction therapy only without post-remission therapy is four to eight months (2, 3). In the past two decades, little has changed in induction chemotherapy (4). However, improved understanding of the AML biology with modern cytogenetics and molecular testing has led to the customization of post-remission therapy based on relapse risk-stratification (5, 6). Hematopoietic stem cell transplantation (HSCT) has been considered a potentially curative therapy for AML with intermediate and adverse cytogenetics (7). However, several factors, such as old age, absence of a matched donor, and comorbidities, enable only about one-third of patients to be eligible for HSCT (8). The remaining patients who cannot receive HSCT should be followed up until disease progression after two to four courses of high-dose cytarabine-based chemotherapy and more than half of these patients eventually relapse (9). For decades, although several trials with different strategies of maintenance therapy have been conducted to reduce the relapse of disease in patients, these trials have failed to show the improvement of outcomes (10-13). Consequently, maintenance chemotherapy is not a standard therapy for AML except for acute promyelocytic leukemia (APL).

Nonetheless, reducing the relapse rate and the prolongation of the relapse free interval by minimizing the residual disease and preventing the regrowth of dormant leukemic stem cells through the prolonged exposure to maintenance chemotherapy remain attractive (14). The maintenance therapy with low dose cytotoxic agents 6-mercaptopurine (6MP) and methotrexate (MTX) has been clinically proven beneficial to ALL (15) and...
APL (16). However, no study has been conducted yet to prove the clinical benefit of this therapy in AML. In this study, we retrospectively analyzed the clinical outcomes of AML patients who received oral maintenance therapy with 6MP and MTX after remission induction and consolidation therapy.

MATERIALS AND METHODS

Patients

From a single institute, 52 AML patients including those who were ineligible for HSCT (Age ≥ 65, absence of a matched donor and significant comorbidities) received at least one cycle of consolidation therapy in the first complete remission (CR1) were analyzed. Among these patients, 27 received maintenance chemotherapy and 25 did not.

Treatment

Patients received 6MP (50 mg/day, p.o.) and MTX (10 mg/week, p.o.) for two years or until disease progression. The historical control group had completed remission induction and at least one cycle of consolidation therapy. Then, the group received no specific anti-leukemic treatment.

Definitions and statistical analysis

Initial diagnosis and leukemia subtypes were recorded using the French-American-British (FAB) classification system (17). Cytogenetics were classified into 3 risk groups: favorable, t(8;21), inv(16); intermediate, normal karyotype or other numerical or structural abnormalities; unfavorable, 11q23 rearrangement, -5, del(5q), -7, del(7q), inv(3)/t(3;3)/ins(3;3). Leukemia-free survival (LFS) was calculated from the date of diagnosis to the last follow-up or first event (failure to achieve remission, demonstration of resistant leukemia, or relapse). Overall survival (OS) was defined as the time from diagnosis to death from any cause. The characteristics of the two groups were compared by the chi-square test or Fischer’s exact test for categorical data and the Mann-Whitney U-test for continuous variables. LFS and OS were estimated by the Kaplan-Meier method and compared by the Log Rank and Breslow method. The Cox proportional hazard model was used in the multivariate analysis of prognostic factors. P values lower than 0.05 were considered statistically significant. Statistical analysis was performed using SPSS version 13.0 (IBM, Armonk, NY, USA).

Ethics statement

The study (AJIRB-MED-MDB-14-258) was approved by the Ajou University Hospital institutional review board. The board waived written informed consent.

RESULTS

Patient and disease characteristics

The patient and disease characteristics are given in Table 1. No significant difference was found in the baseline patient and disease characteristics between the maintenance and the historical control groups.

Parameters	Total	Maintenance	Control	P value
Number of patients, N (%)	52 (100)	27 (51.9)	25 (48.1)	
Median age, yr (range)	53 (18-74)	55 (21-69)	48 (18-74)	0.126
Age ≥ 60, N, (%)	17 (32.7)	11 (40.7)	6 (24.0)	0.199
Gender (male/female), N (%)	24:28 (46.2:53.8)	13:14 (48.1:51.9)	11:14 (46.4:53.6)	0.788
ECOG PS < 2, N (%)	50 (96.2)	25 (92.6)	25 (100)	0.360
FAB subtype, N (%)				0.145
M0-M2	30 (57.7)	14 (51.9)	16 (64.0)	
M4-M5	20 (38.5)	13 (48.1)	7 (28.0)	
M6-M7	2 (3.8)	0 (0.0)	2 (8.0)	
MDS/therapy related AML, N (%)	8 (15.4)	4 (14.8)	4 (16)	0.906
Cytogenetic risk group, N (%)				0.139
Favorable	17 (32.7)	7 (25.9)	10 (40.0)	
Intermediate	33 (63.5)	20 (74.1)	13 (52.0)	
Unfavorable	2 (3.8)	0 (0.0)	2 (8.0)	
LDH (U/L), median (range)	426 (123-4027)	436 (156-2014)	419 (123-4027)	0.653
Baseline CBC				0.978
Hb, median (range)	7.4 (2.3-10.7)	7.5 (3.0-10.7)	6.9 (2.3-10.7)	0.327
Pt, median (range)	48.5 (6-353)	57 (11-316)	40.0 (6-353)	0.742
WBC, median (range)	13.4 (0.7-358)	14.1 (0.7-97.5)	10.4 (1.9-358)	
Initial median				0.527
PB Blasts, %, range	35.5 (0-89)	31 (0-84)	45.0 (0-89)	
Initial median	65.2 (20-98)	64.8 (20-98)	65.5 (21.1-95)	0.756

ECOG PS, Eastern Cooperative Oncology Group (ECOG) performance status; FAB, French-American-British; MDS, myelodysplastic syndrome; LDH, lactate dehydrogenase; CBC, complete blood count; Hb, hemoglobin; Pt, platelet; WBC, white blood cell; PB, peripheral blood; BM, bone marrow.
Treatment results
The treatment characteristics for induction, number of consolidation therapy, and cause of death are presented in Table 2. Almost all patients (96.4%) received remission induction chemotherapy with idarubicin and cytarabine. More than one-half of the patients received more than two cycles of consolidation chemotherapy. Relapse was observed in 27 patients (51.9%) who achieved CR after induction treatment. Median LFS and OS were 28 months (95% confidence interval [CI], 1-44 months) and 29 months (95% CI, 10-48 months), respectively. Disease progression (54.5%) was the main cause of death, followed by infection (34.5%). The rate of achieving CR and the number of consolidation were not statistically different between the two groups.

OS, LFS, and prognostic factors
The median OS was 43 months and 19 months in the maintenance group and the historical control group, respectively (Log Rank \(P = 0.202\), Breslow \(P = 0.044\), Fig. 1A). The median LFS was 31 months and 12 months in the maintenance group and historical control group, respectively (Log Rank \(P = 0.261\), Breslow \(P = 0.090\), Fig. 1B). In the multivariate analysis (Table 3), older age was an independent poor prognostic factor for OS \((P = 0.020)\) and LFS \((P = 0.028)\). Maintenance therapy was independently associated with favorable OS \((P = 0.021)\) and LFS \((P = 0.024)\). Higher baseline WBC count was associated with shorter LFS \((P = 0.033)\).

Subgroup analysis
Subgroup analysis was performed using a univariate Cox proportional hazard model to evaluate the effects of maintenance treatment on OS and LFS (Table 4). All hazard ratios were made for patients who received maintenance treatment in comparison with those who did not. The OS (50 months vs. 16 months, \(P = 0.004\), Fig. 2A) and LFS (not reached vs. 10 months, \(P = 0.011\) were significantly prolonged with oral maintenance therapy when the cytogenetic study showed intermediate or unfavorable risk. Furthermore, clinical benefit from maintenance chemotherapy (OS and LFS) was documented for patients aged ≥ 60 yr (total: 17 patients, maintenance group: 11 patients, control group: 6 patients), \((P = 0.035,\) Fig. 2B and \(P = 0.019\), those with low peripheral blood (PB) blast count at diagnosis \((P = 0.044,\) Fig. 2C and \(P = 0.022\), and those who received less than two cycles of consolidation chemotherapy \((P = 0.017,\) Fig. 2D and \(P = 0.016)\).

DISCUSSION
Despite intensive consolidation after achieving CR in patients with AML, less than one-third of the patients were cured, mainly because of the high incidence of relapse (18). Although sev-
Table 3. Multivariate analysis of OS and LFS

Variables	OS		LFS			
	HR	95% CI	P value	HR	95% CI	P value
Age (10-yr increase)	1.50	1.07-2.10	**0.020**	1.49	1.04-2.12	**0.028**
Gender (Male vs. female)	0.80	0.31-2.07	NS	0.80	0.31-2.07	NS
ECOG PS (0/1 vs. 2/3/4)	0.35	0.04-2.87	NS	0.30	0.04-2.42	NS
Chromosome (Favorable vs. Intermediate/unfavorable)	0.94	0.32-2.77	NS	1.01	0.31-3.35	NS
De novo AML vs. Secondary AML	1.417	0.46-4.35	NS	0.70	0.20-2.45	NS
FAB (M1/M2 vs M0, M4, M5, M6)	0.56	0.23-1.35	NS	0.64	0.27-1.52	NS
WBC, × 10^9/L (10-fold value)	2.09	0.99-4.40	NS	2.33	1.07-5.09	NS
Hemoglobin (g/L)	1.00	0.79-1.27	NS	0.90	0.71-1.16	NS
Platelet, × 10^11/L	1.27	0.51-3.14	NS	1.41	0.53-3.75	NS
PB blast count (%)	1.00	0.98-1.02	NS	1.01	0.99-1.03	NS
BM blast count (%)	1.01	0.99-1.03	NS	1.01	0.99-1.03	NS
LDH, U/L (10-fold value)	0.99	0.30-3.29	NS	1.25	0.39-4.02	NS
N of consolidation Tx. (0,1 vs. 2,3)	0.65	0.26-1.59	NS	0.43	0.17-1.07	NS
Non-maintenance vs. Maintenance	0.33	0.13-0.84	**0.021**	0.33	0.13-0.87	**0.024**

OS, overall survival; LFS, leukemia free survival; HR, Hazard ratio; CI, confidence interval; NS, not significant; ECOG PS, Eastern Cooperative Oncology Group (ECOG) performance status; AML, acute myeloid leukemia; FAB, French-American-British; LDH, lactate dehydrogenase; All candidate prognostic factors were included in the Cox regression model without selection of variables.

Table 4. Subgroup analysis of OS and LFS

Parameters	OS		LFS			
	HR	95% CI	P value	HR	95% CI	P value
Age < 60	0.86	0.34-2.22	NS	0.97	0.38-2.56	NS
Age ≥ 60	0.23	0.06-0.90	**0.035**	0.17	0.04-0.74	**0.019**
Favorable cytogenetics	2.49	0.62-10.07	NS	2.48	0.59-10.39	NS
Intermediate/Unfavorable cytogenetics	0.27	0.11-0.69	**0.006**	0.31	0.12-0.81	**0.016**
WBC < 50,000/mm²	0.99	0.41-2.37	NS	0.91	0.38-2.17	NS
WBC ≥ 50,000/mm²	0.21	0.00-14.72	NS	0.01	0.00-36.30	NS
PB blast % ≤ median	0.30	0.09-0.97	**0.044**	0.24	0.07-0.81	**0.022**
PB blast % > median	1.12	0.43-3.22	NS	1.61	0.55-4.71	NS
BM blast % ≤ median	0.78	0.27-2.26	NS	0.67	0.23-1.93	NS
BM blast % > median	0.53	0.19-1.52	NS	0.62	0.20-1.90	NS
De novo AML	0.85	0.36-1.98	NS	0.79	0.34-1.84	NS
Secondary AML	0.01	0.00-40.75	NS	0.01	0.00-246.87	NS
LDH (U/L) ≤ 700	0.62	0.25-1.56	NS	0.56	0.22-2.14	NS
LDH (U/L) > 700	0.63	0.17-2.40	NS	0.91	0.23-3.67	NS
N of consolidation Tx. = 1	0.14	0.03-0.70	**0.017**	0.14	0.03-0.69	**0.016**
N of consolidation Tx. > 1	0.87	0.43-2.73	NS	1.11	0.43-2.88	NS

OS, overall survival; LFS, leukemia free survival; HR, Hazard ratio; CI, confidence interval; NS, not significant; WBC, white blood cell; PB, peripheral blood; BM, bone marrow; AML, acute myeloid leukemia; LDH, lactate dehydrogenase; Tx., therapy.

Not all patients have experienced clinical benefit from maintenance therapy, even those with APL (24-26). In one AML study, clinical benefit from maintenance therapy with tipifarnib, farnesyltransferase inhibitor was observed only in patients with secondary AML or AML with adverse cytogenetics (27). In the present study, patients with intermediate risk cytogenetics achieved more prominent OS and LFS benefits from maintenance therapy, whereas patients with favorable cytogenetics received no additional benefits from maintenance therapy. Older patients (Age ≥ 60), patients with low PB blast count, and patients who received insufficient consolidation therapy (≤ 1 cycle) obtained prominent clinical benefits from maintenance therapy. Therefore, risk-adapted maintenance therapy in AML patients may be a more appropriate approach, consistent with previous studies (26, 27).

As results from previous trials with conventional chemotherapy-based therapy have been regarded as negative in supporting maintenance therapy, many ongoing clinical trials have been designed with immunotherapy, demethylating therapy, or targeted therapy (14). However, it is notable that among studies...
using maintenance chemotherapy, those using identical consolidation regimens followed by a randomization to maintenance or no maintenance chemotherapy are rare (28). As the pharmacodynamic and pharmacokinetic features and toxicity profile of conventional agents are well known and cost effective, chemotherapeutic agents such as 6MP and MTX are good candidates for further studies about the validation of clinical efficacy as maintenance chemotherapy.

The duration of maintenance therapy is another issue. In the present study, the OS of the maintenance and non-maintenance groups was 66.5% and 45.2%, respectively, within two years, which was the period of maintenance therapy. However, five-year OS was similar between the two groups. Further studies are needed to prove that prolonged exposure to maintenance therapy is more effective and safe. Exposure to anti-cancer drugs during the two years did not evoke secondary malignancy in our result.

To our knowledge, this study is the first report about the clinical outcome of oral maintenance chemotherapy with 6MP and MTX in AML patients. However, the present study has several limitations. First, although patients were well balanced for age, cytogenetics, and prevalence of secondary AML, this study is a retrospective non-randomized study from a single institution. Second, although AML with normal karyotype is a heterogeneous group according to molecular alteration (5), AML with normal karyotype was simply classified and analyzed as an intermediate risk group, as measuring such molecular abnormalities was not routine practice throughout the duration of the study.

In conclusion, oral maintenance therapy prolonged the median OS (43 months vs. 19 months) in AML patients. Given that most AML patients in CR after several cycles of consolidation therapy.
therapy experience relapse, the clinical efficacy of maintenance therapy to reduce the relapse from dormant leukemic cells needs to be reconsidered and verified by prospective randomized trials. Nonetheless, the present study suggests that AML patients, especially older patients (≥ 60 yr), those with intermediate or unfavorable cytogenetic results, those with initially low PB blast count (% ≤ median), and those receiving less than two cycles of consolidation therapy, could benefit from maintenance therapy with 6MP and MTX without incurring clinically or biologically significant adverse events.

DISCLOSURE

The authors declare that they have no conflicts of interest.

AUTHOR CONTRIBUTION

Study design and literature review: Park JS, Jeong SH, Choi YW, Ahn MS, Lee HW, Kang SY, Choi JH. Data management and analyses: Choi YW, Jeong SH, Park JS. Interpretation of findings and writing manuscript: Choi YW, Jeong SH, Park JS

ORCID

Yong Won Choi http://orcid.org/0000-0002-3659-8126
Seong Hyun Jeong http://orcid.org/0000-0003-4098-1184
Mi Sun Ahn http://orcid.org/0000-0002-7081-9826
Hyun Woo Lee http://orcid.org/0000-0002-6879-9686
Seok Yun Kang http://orcid.org/0000-0002-4995-9912
Jin-Hyuk Choi http://orcid.org/0000-0003-2387-204X
Joon Seong Park http://orcid.org/0000-0001-7999-0577

REFERENCES

1. Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer 2006; 107: 2099-107.
2. Cassileth PA, Harrington DP, Appelbaum FR, Lazarus HM, Rowe JM, Païetta E, Willman C, Hurd DD, Bennett JM, Blume KG, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 1998; 339: 1649-56.
3. British Committee for Standards in Haematology, Milligan DW, Grimwade D, Cullis JO, Bond L, Swirsky D, Craddock C, Kell J, Homewood J, Campbell K, McGinley S, et al. Guidelines on the management of acute myeloid leukaemia in adults. Br J Haematol 2006; 135: 450-74.
4. Estey EH. Acute myeloid leukaemia: 2014 update on risk-stratification and management. Am J Hematol 2014; 89: 1063-81.
5. Mrożek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431-48.
6. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079-89.
7. Clift RA, Thomas ED; Seattle Marrow Transplant Team. Follow-up 26 years after treatment for acute myelogenous leukemia. N Engl J Med 2004; 351: 2456-7.
8. Yi HG, Lee MH, Kim CS, Hong J, Park J, Lee JH, Han BR, Kim HY, Zang DY, Kim SH, et al.; Gyeonggi-Incheon Branch, The Korean Society of Hematology. Clinical characteristics and treatment outcome of acute myeloid leukemia in elderly patients in Korea: a retrospective analysis. Blood Res 2014; 49: 95-9.
9. Burnett AK, Goldstone A, Hills RK, Milligan D, Prentice A, Yin J, Wheatley K, Hunter A, Russell N. Carability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol 2013; 31: 1293-301.
10. Preisser H, Davis BB, Kirchner J, Dupre E, Richards F 3rd, Hoagland HC, Kopel S, Levy RN, Carey B, Schulman P, et al. Comparison of three remission induction regimens and two postinduction strategies for the treatment of acute nonlymphocytic leukemia: a cancer and leukemia group B study. Blood 1987; 69: 1441-9.
11. Sauter C, Berchtold W, Fopp M, Gratwohl A, Imbach P, Maurice P, Tischopp L, von Frieden Y, Cavalli F. Acute myelogenous leukaemia: maintenance chemotherapy after early consolidation treatment does not prolong survival. Lancet 1984; 1: 379-82.
12. Löwenberg B, Suciu S, Archimbaud E, Haak H, Stryckmans P, de Cataldo R, Dekker AW, Berneman ZN, Thyss A, van der Velde J, et al. Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy - the value of low-dose cytarabine for maintenance of remission, and an assessment of prognostic factors in acute myeloid leukemia in the elderly: final report. European Organization for the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group. J Clin Oncol 1998; 16: 872-81.
13. Miyawaki S, Sakamaki H, Ohtake S, Emi N, Yagasaki F, Mitani K, Matsuda S, Kishimoto Y, Miyazaki Y, Asou N, et al.; Japan Adult Leukemia Study Group AML 97 Study. A randomized, postremission comparison of four courses of standard-dose consolidation therapy without maintenance therapy versus three courses of standard-dose consolidation with maintenance therapy in adults with acute myeloid leukemia: the Japan Adult Leukemia Study Group AML 97 Study. Cancer 2005; 104: 2726-34.
14. Krug U, Lübbert M, Büchner T. Maintenance therapy in acute myeloid leukemia revisited: will new agents rekindle an old interest? Curr Opin Hematol 2010; 17: 85-90.
15. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166-78.
16. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E, Fey M, Rayon C, Huguet F, Sotto JI, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Study Group. Blood 1987; 69: 1441-9.
17. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Gralnick HR, Sultan C. Proposals for the classification of the acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451-8.
18. Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 2006; 354: 166-78.
19. Büchner T, Urbanitz D, Hiddemann W, Rühl H, Ludwig WD, Fischer J, Aul HC, Vaupel HA, Kuse R, Zeile G, et al. Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): two multicenter studies of the German AML Cooperative Group. J Clin Oncol 1985; 3: 1583-9.

20. Büchner T, Hiddemann W, Berdel WE, Wörmann B, Schoch C, Fonatsch C, Löffler H, Haferlach T, Ludwig WD, Maschmeyer G, et al.; German AML Cooperative Group. 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group. J Clin Oncol 2003; 21: 4496-504.

21. Robles C, Kim KM, Oken MM, Bennett JM, Letendre L, Wiernik PH, O’Connor MJ, Cassileth PA. Low-dose cytarabine maintenance therapy vs observation after remission induction in advanced acute myeloid leukemia: an Eastern Cooperative Oncology Group Trial (E5483). Leukemia 2000; 14: 1349-53.

22. Büchner T, Berdel WE, Schoch C, Haferlach T, Serve HL, Kienast J, Schnittger S, Kern W, Tchinda J, Reichle A, et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol 2006; 24: 2480-9.

23. Cassileth PA, Lynch E, Hines JD, Oken MM, Mazza JJ, Bennett JM, McGlave PB, Edelstein M, Harrington DP, O’Connell MJ. Varying intensity of postremission therapy in acute myeloid leukemia. Blood 1992; 79: 1924-30.

24. Avvisati G, Lo-Coco F, Paoloni FP, Petti MC, Diverio D, Vignetti M, Latali R, Specchia G, Baccarani M, Di Bona E, et al.; GIMEMA, AIEOP, and EORTC Cooperative Groups. AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood 2011; 117: 4716-25.

25. Asou N, Kishimoto Y, Kiyoi H, Okada M, Kawai Y, Tsuzuki M, Horikawa K, Matsuda M, Shinagawa K, Kobayashi T, et al.; Japan Adult Leukemia Study Group. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy: the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood 2007; 110: 59-66.

26. Nagai S, Takahashi T, Kurokawa M. Risk-adapted maintenance therapy for acute promyelocytic leukemia. J Clin Oncol 2010; 28: e21; author reply e2-3.

27. Karp JE, Smith BD, Gojo I, Lancet JE, Greer J, Klein M, Morris L, Levis MJ, Gore SD, Wright JJ, et al. Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features. Clin Cancer Res 2008; 14: 3077-82.

28. Baer MR. Is there a role for maintenance therapy in acute myeloid leukemia? Best Pract Res Clin Haematol 2009; 22: 517-21.