Potential determinants of vitamin D in Finnish adults: a cross-sectional study from the Northern Finland birth cohort 1966

Palaniswamy, S., Hypponen, E., Williams, D., Jokelainen, J., Lowry, E., Keinanen-kankaaniemi, S., Herzig, K-H., Jarvelin, M-R., & Sebert, S. (2017). Potential determinants of vitamin D in Finnish adults: a cross-sectional study from the Northern Finland birth cohort 1966. BMJ Open, 7(3). https://doi.org/10.1136/bmjopen-2016-013161

Published in:
BMJ Open

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Potential determinants of vitamin D in Finnish adults: a cross-sectional study from the Northern Finland birth cohort 1966

Saranya Palaniswamy, Elina Hyppönen, Dylan M Williams, Jari Jokelainen, Estelle Lowry, Sirkka Keinänen-Kiukaanniemi, Karl-Heinz Herzig, Marjo-Riitta Järvelin, Sylvain Sebert

ABSTRACT

Objective: Evidence from randomised controlled trials suggests that vitamin D may reduce multimorbidity, but very few studies have investigated specific determinants of vitamin D2 and D3 (two isoforms of 25-hydroxyvitamin D). The aim of the study was to investigate the determinants of vitamin D2 and D3 and to identify the risk factors associated with hypovitaminosis D.

Design: Cross-sectional study.

Setting: Northern Finland Birth Cohort 1966.

Participants: 2374 male and 2384 female participants with data on serum 25(OH)D2 and 25(OH)D3 concentrations measured at 31 years of age (1997), together with comprehensive measures of daylight, anthropometric, social, lifestyle and contraceptive cofactors.

Methods: We assessed a wide range of potential determinants prior to a nationwide fortification programme introduced in Finland. The determinants of 25(OH)D2, 25(OH)D3 and 25(OH)D concentrations were analysed by linear regression and risk factors for being in lower tertile of 25(OH)D concentration by ordinal logistic regression.

Results: At the time of sampling, 72% of the participants were vitamin D sufficient (≥50 nmol/L). Low sunlight exposure period (vs high) was associated positively with 25(OH)D2 and negatively with 25(OH)D3 concentrations. Use of oral contraceptives (vs non-users) was associated with an increase of 0.17 nmol/L of serum 25(OH)D2 and 0.48 nmol/L (95% CI 0.41 to 0.56) in 25(OH)D2 and 25(OH)D3 concentrations. Sex, season, latitude, alcohol consumption and physical activity were the factors most strongly associated with 25(OH)D concentration. Risk factors for low vitamin D status were low sunlight exposure defined by time of sampling, residing in northern latitudes, obesity, higher waist circumference, low physical activity and unhealthy diet.

Conclusions: We demonstrate some differential associations of environmental and lifestyle factors with 25(OH)D2 and 25(OH)D3 raising important questions related to personalised healthcare. Future strategies could implement lifestyle modification and supplementation to improve vitamin D2 and D3 status, accounting for seasonal, lifestyle, metabolic and endocrine status.

INTRODUCTION

Serum 25-hydroxyvitamin D (25(OH)D), the circulating biomarker of vitamin D status, is found to be associated with multiple pathological conditions. There is growing interest in understanding the causal role of vitamin D in the aetiology of chronic metabolic diseases including obesity, type 2 diabetes and mortality. Vitamin D is classified as a pro-hormone which exists in circulation...
in two major forms of 25(OH)D: 25(OH)D$_2$ (ergocalciferol) and 25(OH)D$_3$ (also known as cholecalciferol). Serum 25(OH)D$_2$ is obtained only from plant-derived dietary sources, fortification or supplementation. In contrast, 25(OH)D$_3$ is predominantly obtained from sunlight exposure and smaller quantities from dietary sources such as fatty fish, fortified milk products and supplements. In Finland, the milk products and spreadable fats are fortified with 25(OH)D$_3$. The current fortification contains 25(OH)D$_3$ due to somewhat lower biopotency of 25(OH)D$_2$ that requests further understanding. Vitamin D status is determined by measuring 25(OH)D$_2$, which reflects the combined intake of vitamins 25(OH)D$_2$ and 25(OH)D$_3$ and subcutaneous synthesis during the past 3–4 weeks. There is limited knowledge about the factors associated with each isoform that may have differential environmental determinants. Total 25(OH)D and the relative proportions of 25(OH)D$_2$ and 25(OH)D$_3$ are suggested to reflect a number of health and lifestyle factors that might be sex specific. In young adults, lifestyle and body composition differ between men and women. As to whether the differential composition of the body between sexes, as well as other endocrine factors, will be reflected by differences in the 25(OH)D concentration and the 25(OH)D$_2$ and 25(OH)D$_3$ components is yet unknown. There are no previous comprehensive studies examining the factors associated with 25(OH)D$_2$ and 25(OH)D$_3$ concentrations in Finland. This limits the availability of inferences that could help to identify people at risk of vitamin D deficiency, and improved fortification policies to meet the requirements of those living at northern latitudes.

We examined here factors associated with 25(OH)D$_2$, 25(OH)D$_3$ and total 25(OH)D concentrations in Finnish adults aged 31 years prior to the implementation of a nationwide supplementation of vitamin D via fortification of milk products and margarine in 2002.

METHODS

Study population

We analysed data on participants from the Northern Finland Birth Cohort 1966 (NFBC1966) which has previously been described in detail. In brief, all women who were pregnant, residing in Northern Finland (provinces of Oulu and Lapland) with expected dates of delivery between 1 January and 31 December,1966 were targeted for enrolment in the study. Over 96% of eligible women participated. This comprised of 12 055 mothers and 12 058 live born children. The children were followed up at regular intervals from birth onwards. In 1997, when participants were aged 31 years, all cohort participants with known addresses in the provinces of Oulu and Lapland (65°N to 70°N) and in Helsinki (60°N) area were sent a postal questionnaire and invited to a clinical examination which also included, a fasted blood sample. A total of N=4758 individuals of white European origin were included in the study as shown in online supplementary figure S1. All participants gave written informed consent. The procedures follow the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study includes individuals with a complete set of data on variables of interest, as detailed below.

Outcome variables

25(OH)D measurement

Serum 25(OH)D$_2$ and 25(OH)D$_3$ were measured by liquid chromatography tandem mass spectrometry and the detailed assay procedure is published elsewhere. Participants with 25(OH)D$_2$ values under the detectable limit were assigned a value of 1.25 nmol/L. Total 25(OH)D is obtained as the actual sum of D2+D3 without low value assignment. Consequently, in the tables, total 25(OH)D may differ slightly from exact sum of D2 and D3. Vitamin D sufficiency criteria were defined according to the Institute of Medicine (IOM) guidelines as ≥30 nmol/L (risk/deficiency), 30–50 nmol/L (risk/insufficiency) and ≥50 nmol/L (sufficient).

Explanatory factors

The season of participant attendance at the clinical assessment was categorised according to the Finnish Meteorological Institute standard as high sunlight (summer (1 June–30 August) autumn (1 September–31 October)) and low sunlight season (winter (1 November–31 March) and spring (1 April–31 May)). This definition aims to assess the impact of natural high and low vitamin D level periods throughout the calendar year. The residence of the participants at age 31 years was collected from the population register office. They were categorised as residing in Helsinki (60°N); the city of Oulu (65°N) and elsewhere in northernmost provinces of Oulu and Lapland (>65°N). In Helsinki, blood samples were collected only during winter in contrast to all year round in other provinces, due to the feasibility of data collection and were excluded in multivariable analyses. Height (cm) and weight (kg) were measured in barefoot and loose clothing by well-trained nurses. Body Mass Index (BMI) (kg/m2) was calculated and categorised according to the WHO 1998. Waist circumference (cm) was categorised as elevated when it was ≥94 cm in men and ≥80 cm in women.

Categorisation of following lifestyle variables was based on the responses in the postal questionnaire. Current smoking was categorised as non-smoker, former/occasional or active smoker. Alcohol consumption during the 6 months prior to the questionnaire was calculated as grams per day (g/day) and has been described elsewhere. It was further categorised according to WHO sex-specific classification as abstainer, low-risk drinker (≤20 and ≤40 g/day for women and men, respectively) or at-risk drinker (>20 and >40 g/day for women and men, respectively). The frequency of computer use
during leisure time was categorised as never, no more than once per week, on 2–5 days per week or on more than 5 days per week. The reported frequency and duration of leisure time and brisk physical activity were used to calculate the metabolic equivalent of task (MET) scores in hours per week, and these were ordered into quartiles. An intensity value of 3 METs is considered as light physical activity, and 5 METs as brisk physical activity. Current use of contraception by women was categorised as no contraception use, other methods of contraception (hormone intrauterine device (IUD), copper IUD, chemical contraception) or oral contraceptive pill (OCP). Socioeconomic position (SEP) was categorised as I and II (professional), III (skilled worker), IV (unskilled worker), V (farmer) and VI (others-pensioner, student, long-term unemployed or not defined). The exclusion criteria consisted of participants with non-fasting blood samples, pregnant women, no consent for use of data and persons whose information was missing on one or more variables of interest.

Statistical analyses

All statistical analyses were performed using SAS V.9.4 (SAS Institute, Cary, NC, USA). The variables were assessed for normality and log transformed where relevant. Mean differences between sexes for continuous variables were measured by independent samples t-test and analysis of variance; and Pearson χ² test for categorical variables. We performed univariable linear regression analysis to explore the association between explanatory variables and serum 25(OH)D₂, 25(OH)D₃ and total 25(OH)D concentrations. We log transformed 25(OH)D₂, 25(OH)D₃ and 25(OH)D, and expressed these on standardised scales (z-scores). To examine the impact of daylight, anthropometric, social and lifestyle risk factors for being in the lower tertiles of 25(OH)D compared with the highest are shown in online supplementary table S3. The mutually adjusted model shows the risk of being in lower tertile of 25(OH)D was increased in individuals whose blood samples were collected during low sunlight months, living in higher latitudes, having elevated waist circumference and unhealthy diet. Figure 1 illustrates the mutually adjusted analyses with OR estimates for the impact of daylight, anthropometric, social and lifestyle factors associated with serum 25(OH)D2, 25(OH)D3 and 25(OH)D concentrations. Univariable and multivariable associations of daylight, anthropometric, social and lifestyle factors with 25(OH)D₂, 25(OH)D₃ and 25(OH)D in the total population are shown in table 3, online supplementary tables S4 and S5.
Sample size (n)	Total 4758	Male 2374	Female 2384				
	n or mean	% or 95% CI	n or mean	% or 95% CI	n or mean	% or 95% CI	
Daylight							
Season of blood sampling† (n %)							
High sunlight	2953	62.1	1501	63.2	1452	60.9	0.09
Low sunlight	1805	37.9	873	36.8	932	39.1	
Latitude‡ (n %)							
≥65°N	891	28.7	460	29.3	431	28.1	0.58
>65°N	3105	71.3	1571	70.7	1534	71.9	
Anthropometry							
BMI (kg/m²) (mean, 95% CI)	24.7	24.6 to 24.8	25.2	25.1 to 25.3	24.1	23.9 to 24.3	<0.01
Waist circumference(cm) (mean, 95% CI)	83.8	83.5 to 84.2	88.9	88.5 to 89.3	78.8	78.3 to 79.2	<0.01
Socioeconomic position: (n %)							
I+II (Professional)	1134	23.8	653	27.5	481	20.2	<0.01
III (Skilled worker)	1483	31.2	433	18.2	1050	44.0	
IV (Unskilled worker)	1228	25.8	856	36.1	372	15.6	
V (Farmer)	165	3.5	111	4.7	54	2.3	
VI (Other)	748	15.7	321	13.5	427	17.9	
Lifestyle							
Smoking (n %)							
Non-smoker	2128	44.7	952	40.1	1176	49.4	<0.01
Former/occasional smoker	1214	25.5	600	25.3	614	25.7	
Active smoker	1416	29.8	822	34.6	594	24.9	
Alcohol consumption (g/day) (n %)	426	8.95	191	8.1	235	9.9	<0.01
Abstainer	4053	85.18	2026	85.3	2027	85.0	
Low-risk drinker	279	5.86	157	6.6	122	5.1	
At-risk drinker	1708	35.9	852	35.9	856	35.9	<0.01
Leisure time computer use (n %)							
Never	1461	30.71	453	19.1	1008	42.3	<0.01
No more than once per week	2739	57.57	1531	64.5	1208	50.6	
On 2 to 5 days per week	558	11.73	390	16.4	168	7.1	
Physical activity (MET hours/week) (mean, 95% CI)	15.0	14.6 to 15.4	14.9	14.4 to 15.6	15.0	14.5 to 15.6	<0.01
Diet score (n %)							
0–1	1461	30.71	453	19.1	1008	42.3	<0.01
2–3	2739	57.57	1531	64.5	1208	50.6	
4–5	558	11.73	390	16.4	168	7.1	
Contraception status§ (n %)							
No contraception	1154	49.1					
Other kinds of contraception	591	25.1					
Oral contraceptive pills (OCP)	607	25.8					
Vitamin D status (mean, 95% CI)							
Serum total 25(OH)D¶	68.4	67.6 to 69.2	68.9	67.7 to 70.1	67.9	66.7 to 68.9	0.78
Serum 25(OH)D3	64.8	63.9 to 65.6	65.6	64.4 to 66.7	64.0	62.8 to 65.1	0.45
Serum 25(OH)D2	4.2	3.9 to 4.3	3.9	3.6 to 4.2	4.4	4.1 to 4.7	<0.01
Vitamin D status without OCP** (mean, 95% CI)							
Serum total 25(OH)D¶	67.0	66.2 to 67.9	68.9	67.7 to 70.1	64.6	63.3 to 65.8	<0.01
Serum 25(OH)D3	63.6	62.8 to 64.5	65.6	64.4 to 66.7	60.9	59.8 to 62.2	<0.01
Serum 25(OH)D2	4.0	3.8 to 4.2	3.9	3.6 to 4.2	4.2	3.9 to 4.5	0.05

Values are presented as mean, 95% CIs or number (%).
*p Value was calculated using independent samples t-test for normally distributed variables and Pearson’s χ² test for categorical variables.
†The season of blood sampling were categorised as high sunlight (summer (1 June–30 August), autumn (1 September–31 October)) and low sunlight (winter (1 November–31 March) and spring (1 April–31 May)).
‡Data included only on samples taken during all seasons from Oulu city and other provinces of Oulu and Lapland. Data not included on N=343 in men and N=419 in women with samples taken during winter months from Helsinki region.
§Data available on N=2352 individuals (N=32 missing with contraception status in women).
¶Serum total 25(OH)D may differ slightly from the actual sum of D2 and D3 because of amendment of undetectable D2 values (see methods).
**Data on N=607 using oral contraceptives excluded.
BMI, body mass index; MET, metabolic equivalent of task of physical activity; 25(OH)D, 25-hydroxyvitamin D; 25(OH)D2, ergocalciferol; 25(OH)D3, cholecalciferol.
Tertile of serum 25(OH)D†	N	n	or	mean	% or 95% CI	n	or	mean	% or 95% CI	n	or	mean	% or 95% CI	P Value					
Sex																			
Males	782	32.9	800	33.7	792	33.4	792	33.4			0.75								
Females	810	33.9	789	33.2	785	32.9	785	32.9											
Environmental factors																			
Season of blood drawn‡																			
High sunlight	566	19.2	1012	34.3	1375	46.5	<0.0001												
Low sunlight	1026	56.9	577	31.9	202	11.2													
Latitude§																			
65°N	210	23.6	305	34.2	376	42.2	0.0006												
>65°N	923	29.7	1042	33.6	1140	36.7													
Anthropometry																			
Body mass index (kg/m²)																			
Mean	24.8		24.6		24.8		24.8		24.6		24.6		24.4		24.2		24.6		0.017
Waist circumference (cm)																			
Mean	84.6		83.9		84.0		83.4		84.6		82.9		82.3		83.4		0.0003		
Socioeconomic position																			
I+II (Professional)	421	37.2	374	32.9	339	29.9	0.0046												
III (Skilled worker)	501	33.8	503	33.9	479	32.3													
IV (Unskilled worker)	386	31.4	427	34.8	415	33.8													
V (Farmer)	60	36.4	49	29.7	56	33.9													
VI (Other)	224	29.9	236	31.6	288	38.5													
Lifestyle factors																			
Smoking n %																			
Non-smoker	742	34.9	686	32.2	700	32.9													
Former/occasional smoker	366	30.2	438	36.1	410	33.7													
Active smoker	484	34.2	465	32.9	467	32.9													
Alcohol consumption (g/day) n %																			
Abstainer	165	38.7	146	34.3	115	27.0	0.053												
Low risk drinker	1335	32.9	1349	33.3	1369	33.8													
At-risk drinker	92	32.9	94	33.7	93	33.4													
Leisure time computer use n %																			
Never	537	31.4	599	35.1	572	33.5	0.0012												
No more than once per week	208	30.1	234	33.9	249	36.0													
On 2 to 5 days per week	487	34.3	447	31.5	485	34.2													
On more than 5 days per week	360	38.3	309	32.9	271	28.8													
Quartile of physical activity (MET hours per week) n %																			
QI: 0.0–3.79	444	36.6	394	32.5	376	30.9	<0.0001												
QII: 3.80–11.29	403	33.9	421	35.4	365	30.7													
QIII: 11.30–21.99	415	34.5	397	33.0	391	32.5													
QIV: >22.0	330	28.7	377	32.7	445	38.6													
Diet score n %																			
0–1	478	32.7	477	32.7	506	34.6	0.26												
2–3	912	33.3	920	33.6	907	33.1													
4–5	202	36.2	192	34.4	164	29.4													
Females only																			
Contraception n %																			
No contraception	441	38.2	401	34.8	312	27.0	<0.001												
Other kinds of contraception	216	36.6	187	31.6	188	31.8													
Oral contraceptive pills	140	23.1	190	31.3	277	45.6													

The values are expressed as mean and 95% CIs; numbers and %.
*Differences between males and females were tested with ANOVA for normally distributed variables and Pearson’s χ² test for categorical variables.
†Mean (95% CI) of 25-hydroxyvitamin D tertiles for all were 41.50 (41.11 to 41.89), 63.87 (63.55 to 64.19) and 100.01 (98.81 to 101.22).
‡Serum total 25(OH)D may differ slightly from the actual sum of D2 and D3 because of amendment of undetectable D2 values (see methods).
§Data included only on samples taken during all seasons from Oulu city and other provinces of Oulu and Lapland. Data not included on N=343 in men and N=419 in women with samples taken during winter months from Helsinki region.
MET, metabolic equivalent of task of physical activity; 25(OH)D, 25-hydroxyvitamin D.
The factors associated with 25(OH)D2 and 25(OH)D3 were sex, season of blood sampling, latitude, obesity, waist circumference and physical activity. Unhealthy diet and active smoking were univariably associated with lower 25(OH)D2 concentrations; and SEP was associated univariably with lower 25(OH)D3 concentrations.

In multivariable analyses, sex was associated with serum 25(OH)D2 and 25(OH)D3 concentrations. Men had 0.5 nmol/L lower 25(OH)D2 but 1.6 nmol/L higher 25(OH)D3 than women. When women using oral contraceptives were excluded from the analysis, the association between sex and 25(OH)D2 concentration was attenuated (β=0.06; 95% CI −0.002 to 0.13).

Conversely, the sex difference still persisted for 25(OH)D3 concentrations (β=−0.21; 95% CI −0.26 to −0.15), that is, women having lower concentrations. Low sunlight exposure period (vs high) at sampling associated with higher concentrations of 25(OH)D2 but lower concentrations of 25(OH)D3. Alcohol abstainers were associated with lower 25(OH)D3 concentrations than any other level of drinker. In addition, unhealthy diet score and leisure time computer use were associated with lower 25(OH)D3 concentrations.

In sex-stratified analyses, the associations were in the same direction and of similar magnitude with 25(OH)D2 and 25(OH)D3 concentrations. Female OCP users (vs non-users) had greater serum 25(OH)D2 and 25

Figure 1 Forest plots showing the risk factors associated with low vitamin D status based on tertile distribution in the total population and by sex. Associations from mutually adjusted ordinal logistic regression ORs (on log scale) show the risk of being in the lower vitamin D tertile.
Table 3 Major factors associated with serum 25(OH)D$_2$ (vitamin D2), 25(OH)D$_3$ (vitamin D3) and total 25(OH)D (vitamin D) nmol/L concentrations assessed by univariable and multiple linear regression analysis, total (N=4758)\(^*$

Explanatory variables	Serum 25(OH)D$_2$, nmol/L \(^†\)	Serum 25(OH)D$_3$, nmol/L \(^†\)	Serum 25(OH)D, nmol/L \(^†\)									
	Univariable \(\beta\)	95% CI	Multivariable\(\beta\)	95% CI	Univariable\(\beta\)	95% CI	Multivariable\(\beta\)	95% CI	Univariable\(\beta\)	95% CI	Multivariable\(\beta\)	95% CI
Sex (reference: males)												
Females	0.10	0.04 to 0.16	0.12	0.06 to 0.18	-0.06	-0.12 to -0.03	-0.09	-0.14 to -0.04	-0.04	-0.09 to 0.02	-0.06	-0.12 to -0.01
Global p value	0.0008		0.0001		0.038		0.0005		0.21		0.019	
Daylight												
Season of blood sampling § (reference: high sunlight)												
Low sunlight	0.57	0.51 to 0.63	0.29	0.21 to 0.36	-1.03	-1.08 to -0.98	-0.43	-0.49 to -0.36	-0.92	-0.97 to -0.87	-0.36	-0.42 to -0.29
Global p value	<0.0001		<0.0001		<0.0001		<0.0001		<0.0001		<0.0001	
>65°N	-0.08	-0.16 to -0.01	-0.06	-0.13 to 0.02	-0.14	-0.21 to 0.07	-0.18	-0.24 to -0.12	-0.16	-0.23 to 0.008	-0.20	-0.26 to -0.13
Global p value	0.023		0.12		0.0002		<0.0001		<0.0001		<0.0001	
Anthropometry												
BMI (kg/m2) (reference: normal (18.5–24.99))												
Underweight	-0.05	-0.25 to 0.15	-0.06	-0.24 to 0.13	-0.08	-0.27 to 0.12	-0.06	-0.22 to 0.10	-0.09	-0.29 to 0.11	-0.08	-0.25 to 0.09
Overweight (<18.5)	-0.10	-0.17 to -0.04	-0.01	-0.08 to 0.06	0.02	-0.04 to 0.08	-0.001	-0.06 to 0.06	-0.004	-0.07 to 0.06	-0.005	-0.07 to 0.06
Obese (≥30)	-0.13	-0.24 to -0.03	-0.01	-0.14 to 0.11	-0.19	-0.30 to -0.09	-0.16	-0.27 to -0.06	-0.23	-0.33 to -0.12	-0.17	-0.27 to -0.06
Global p value	0.0035		0.94		0.0008		0.0035		0.0002		0.0057	
Waist circumference (cm) (reference: m<94, f<80)												
M≥94, F≥80	-0.09	-0.15 to -0.03	-0.10	-0.18 to -0.02	-0.13	-0.19 to -0.07	-0.05	-0.12 to 0.01	-0.15	-0.21 to -0.09	-0.08	-0.15 to -0.01
Global p value	0.003		0.0001		0.11		<0.0001		0.030			
Socioeconomic position (reference: I+II (professional))												
III (Skilled worker)	-0.05	-0.13 to 0.03	-0.05	-0.13 to 0.02	0.08	0.001 to 0.15	0.03	-0.04 to 0.09	0.07	-0.003 to 0.15	0.03	-0.04 to 0.09
IV (Unskilled worker)	-0.06	-0.15 to 0.02	0.01	-0.07 to 0.10	0.14	0.06 to 0.22	0.02	-0.05 to 0.09	0.12	0.04 to 0.21	0.03	-0.05 to 0.10
V (Farmer)	-0.11	-0.27 to 0.06	-0.02	-0.18 to 0.14	0.06	-0.10 to 0.22	-0.06	-0.19 to 0.08	0.03	-0.13 to 0.20	-0.06	-0.20 to 0.08
VI (Other)	-0.14	-0.23 to -0.05	-0.06	-0.16 to 0.03	0.21	0.11 to 0.29	0.05	-0.03 to 0.13	0.18	0.09 to 0.28	0.05	-0.03 to 0.13
Global p value	0.056		0.33		0.0002		0.49		0.0012		0.56	
Lifestyle												
Smoking (reference: non-smoker)												
Former/occasional smoker	-0.03	-0.10 to 0.04	-0.01	-0.08 to 0.06	0.05	-0.02 to 0.12	0.02	-0.03 to 0.08	0.04	-0.03 to 0.11	0.02	-0.04 to 0.08
Active smoker	-0.10	-0.17 to -0.03	-0.05	-0.12 to 0.02	0.007	-0.06 to 0.07	-0.05	-0.10 to 0.01	-0.02	-0.08 to 0.05	-0.06	-0.12 to 0.002
Global p value	0.014		0.37		0.39		0.071		0.37		0.051	
Alcohol consumption (g/day) (reference: abstainer)												
Low risk drinker	0.04	0.07 to 0.14	0.07	0.03 to 0.16	0.17	0.07 to 0.27	0.12	0.04 to 0.20	0.19	0.09 to 0.29	0.14	0.06 to 0.23
At-risk drinker	0.03	0.07 to 0.19	0.07	0.08 to 0.21	0.13	0.02 to 0.28	0.19	0.06 to 0.31	0.14	-0.02 to 0.29	0.20	0.07 to 0.33
Global p value	0.71		0.39		0.0043		0.0041		0.0012		0.0019	

\(^*$\) For minor factors, p values are based on Singleton et al. \(^‡\) \(^†\) P<0.05. Open Access.

BMJ Open: first published as 10.1136/bmjopen-2016-013161 on 6 March 2017. Downloaded from http://bmjopen.bmj.com/ on 12 April 2019 by guest. Protected by copyright.
Explanatory variables	Serum 25(OH)D₂, nmol/L†	Serum 25(OH)D₃, nmol/L†	Serum 25(OH)D, nmol/L†														
	Univariable	Multivariable‡	Univariable	Multivariable‡	Univariable	Multivariable‡											
	β	95% CI	β	95% CI	β	95% CI											
Leisure time computer use (reference: never)																	
No more than once per week	0.03	−0.06 to 0.12	0.002	−0.08 to 0.09	0.01	−0.08 to 0.09	0.02	−0.05 to 0.09	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09	0.02	−0.06 to 0.09			
On 2 to 5 days per week	0.03	−0.04 to 0.10	0.01	−0.08 to 0.06	−0.04	−0.11 to 0.03	−0.03	−0.09 to 0.03	−0.03	−0.10 to 0.04	−0.03	−0.09 to 0.03	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09	
On more than 5 days per week	0.09	0.01 to 0.17	95% CI	0.02	−0.07 to 0.10	−0.20	−0.28 to −0.12	−0.09	−0.16 to −0.02	−0.17	−0.25 to −0.10	−0.08	−0.15 to −0.01	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09
Global p value	0.14	0.93	95% CI	95% CI	95% CI	95% CI											
Quartile of physical activity (MET-hours per week) (reference: QI: 0.0–3.79)																	
QII: 3.80–11.29	0.08	0.0003 to 0.16	0.05	−0.03 to 0.12	−0.02	−0.10 to 0.06	0.003	−0.06 to 0.07	−0.01	−0.09 to 0.07	0.01	−0.06 to 0.07	0.02	−0.06 to 0.09			
QIII: 11.30–21.99	0.10	0.02 to 0.18	0.05	−0.03 to 0.12	0.02	−0.06 to 0.10	0.05	−0.01 to 0.12	0.04	−0.04 to 0.12	0.07	−0.02 to 0.13	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09	
QIV: >22.0	0.11	0.03 to 0.20	0.08	−0.002 to 0.16	0.15	0.07 to 0.23	0.14	0.07 to 0.20	0.18	0.10 to 0.26	0.16	0.09 to 0.23	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09	
Global p value	0.022	0.29	95% CI	95% CI	95% CI	95% CI											
Diet score (reference: healthy diet)																	
Unhealthy diet	−0.12	−0.21 to −0.03	−0.06	−0.15 to 0.02	−0.07	−0.15 to 0.02	−0.07	−0.15 to 0.02	−0.10	−0.18 to −0.01	−0.09	−0.17 to −0.01	0.01	−0.08 to 0.10	0.02	−0.06 to 0.09	
Global p value	0.009	0.14	95% CI	0.049	0.034	0.022											

*The values are standardised regression coefficients (β) and p values from linear regression models by entering each variable separately in univariable analysis and by entering all the variables in multivariable analysis.
†1 SD increase/decrease in 25(OH)D₂, 25(OH)D₃ and 25(OH)D nmol/L per 1 unit or category change in explanatory variable.
‡Analysis performed on N=3996 (total). Blood drawn only in winter on N=343 men and N=419 in women residing in Helsinki were excluded.
§The season of blood sampling were categorised as high sunlight (summer (1 June–30 August), autumn (1 September–31 October)) and low sunlight (winter (1 November–31 March) and spring (1 April–31 May)).
MET, metabolic equivalent of task of physical activity; 25(OH)D, 25-hydroxyvitamin D; 25(OH)D₂, ergocalciferol; 25(OH)D₃, cholecalciferol.
(OH)D₃ concentrations of 0.17 nmol/L and 0.48 nmol/L, respectively.

Total 25(OH)D associations with potential determinants reflect similar associations as reported for 25(OH)D₃ concentrations, with the exception of waist circumference and leisure time computer use (table 3). OCP users (vs non-users) were associated with a 0.50 nmol/L greater serum 25(OH)D concentration.

DISCUSSION

According to the present data collected in 1997, 28% of young adults in Northern Finland were exposed to the risk of vitamin D insufficiency defined by IOM. The average vitamin D status observed in our study was higher than those reported by other studies from the same geographical location (ie, Finland), despite these latter samples being collected after 2002, that is, year of the first Finnish fortification campaign for vitamin D. The mean concentration of serum 25(OH)D measured in both precompiled studies of the same geographical location (mean age: approx. 37 and 60 years) were nearly 10 nmol/L lower when compared with our population. Our present sample can be considered as a good representation of the young adult population living in Finland at the time of measurement. In comparison with previous findings, our data may also raise queries about the efficacy of the first wave of fortification introduced in Finland in the year 2002. The fortification levels were since increased in 2010. Careful consideration should be made before speculating a potential causation. We must acknowledge, for instance, the differences in study design such as analysis of wider age groups and determination of vitamin D status by radioimmunoassay as opposed to mass spectrometry.

Adding to previous literature, we observed a strong impact of the duration of sunlight in determining the vitamin D status irrespective of the gender. The latitude of residence also plays an important role in determining vitamin D status. During the six long winter months in northern latitudes (>60°N), the few hours of daylight are incapable of increasing vitamin D naturally. The usage of computers outside working hours and a reduced level of physical activity were negatively associated with vitamin D status, which supports previous reports. It is suspected that the observed association between the characteristics of sedentary behaviour in young adults and a lower vitamin D status is likely to be explained by significant changes in the time spent outdoors. Unfortunately, the current study does not distinguish between indoor and outdoor physical activity that would help to ascertain this hypothesis. In addition, our results supported the negative association between vitamin D status and obesity or higher waist circumference. The current hypotheses linking obesity and reduced vitamin D status consider either an effect due to an increased capacity of storage of vitamin D in the fat tissue or the interplay with autocrine factors produced by the adipose tissues. The experimental evidence from animal and human studies is suggesting a direct biological pathway, although the question of reverse causality has not been fully addressed. Currently, the epidemiological data in adults is supporting a causal inference of increased BMI in the reduction of vitamin D status while the reverse has not been confirmed. In addition, unhealthy diet was negatively associated with vitamin D status. Unfortunately, the food questionnaire used in the present study could not discriminate precisely the consumption of fatty fish or mushrooms to account for a precise dietary quantity of vitamin D₃ and D₂, respectively. Diet score has been previously examined in the same sample as an adequate proxy of a healthy or unhealthy diet, but future research with precise food frequency questionnaire is warranted. This will help understand the role of the natural source of dietary vitamin D to reinforce maintenance of a healthy dietary intake whenever possible.

Many reports and reviews consider vitamin D status as a mere representation of individual lifestyle and health behaviour. The positive association between vitamin D status and the use of OCP is in contrast with the suggestion that vitamin D status merely bio-marks a healthy status. In fact, OCP was linked to 10% higher vitamin D status as consistently reported, Similarly, one study which examined the effect of hormonal contraceptives during vitamin D supplementation in premenopausal women reported that the use of exogenous oestrogen would enhance the response to supplementation. It is not apparent what the underlying mechanism is pertaining to a higher vitamin D status in women using OCP. Two hypotheses are currently being examined to understand such association. These examine whether the mechanisms by which oestrogen increases the 25(OH)D are due to higher activity of vitamin D 25-hydroxylase in the liver, or an increase in circulating concentration of vitamin D binding protein (DBP). According to the IOM classification, OCP users in our study are more likely to be classified as vitamin D sufficient. Previous research using the same data has shown a link between the use of OCP and inflammation. It will therefore be essential to analyse the pathways underpinning the role of OCP in simultaneously increasing inflammation and vitamin D status. Based on evidence from this and other studies reporting consistently higher vitamin D status in women using OCP, it may be important to implement a corrective factor to the IOM criteria to avoid overestimation of vitamin D status in this subgroup of women.

Importance of considering D₃ and D₂ isomers

Public health recommendations and clinical diagnostics do not currently distinguish between vitamin D₂ and D₃. However, there is disagreement on whether these two forms should be considered equivalent. Additionally, 25(OH)D₃ accounted for the vast majority (>90%) of the circulating 25(OH)D concentrations in the present population. Our study and the study

Palaniswamy S, et al. BMJ Open 2017;7:e013161. doi:10.1136/bmjopen-2016-013161

BMJ Open: first published as 10.1136/bmjopen-2016-013161 on 13 March 2017. Downloaded from http://bmjopen.bmj.com/ on 12 April 2019 by guest. Protected by copyright.
performed by Tolppanen et al were in agreement on the reported associations between the season of blood sampling and the concentrations in 25(OH)D$_2$ and 25(OH)D$_3$. The determinants associated with the vitamin D status also influenced the serum concentrations of 25(OH)D$_2$ with the highest effect being exerted by the season. Importantly, we replicated the associations of the seasonal variation but not the SEP as first observed in children (mean age 9.8 years) of the Avon Longitudinal Studies of Parents and Children. As expected, 25(OH)D$_3$, known as the main contributor of vitamin D status obtained from sunlight, was positively associated with the season of blood sampling and latitude of residence. Interestingly, we observed a heightened vitamin 25(OH)D$_2$ status during the winter months that has yet to be understood. However, we do not have information on supplement use which hinders the ability to assess the increased vitamin 25(OH)D$_2$ status during winter. As suggested by Tolppanen and colleagues, if serum vitamin D2 is largely associated with dietary and some socioeconomic related factors, this may provide an indication of compensatory behaviour which can be adopted to correct the vitamin D status during the low sunlight months.

CONCLUSIONS AND IMPLICATIONS

Our results have provided information on the potential determinants associated with the vitamin D status prior to the implementation of a nationwide fortification policy. Understanding the associations between sex, season, latitude and multiple lifestyle factors with dual sources of vitamin D (25(OH)D$_2$ and 25(OH)D$_3$) will help better understand the role of vitamin D in research, clinical and public health implications. The data also supported a differential association of 25(OH)D$_2$ and 25(OH)D$_3$ concentrations with sunlight which might have an impact on future strategy for supplementation. These differential results also question current strategies of vitamin D supplementation and IOM cutoffs for vitamin D sufficiency and warrant a personalised approach, accounting for individual and lifestyle characteristics. The fortification of fluid milk products (0.5 μg/100 g) was introduced in Finland in 2002 with limited efficiency in all age groups. More recently, in April 2010, the fortification levels have been raised further (1.0 μg/100 g). In addition, in 2012, the Nordic and Finnish nutritional experts have recommended 10 μg/day for all individuals aged 6 months to 75 years, in addition to dietary intake. Our intended follow-up study from NFBC1966 at 46 years, will be helpful in measuring the efficiency of waves of fortification before (1997) and after (2012), taking into account multiple determinants and personal supplement use in Northern Finland.

Author affiliations
1 Biocenter Oulu, University of Oulu, Oulu, Finland
2 Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
3 Centre for Population Health Research, School of Health Sciences and Sansom Institute, University of South Australia, South Australian Health and Medical Research Institute, Adelaide, Australia
4 Population, Policy and Practice, Institute of Child Health, University College London, London, UK
5 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
6 MRC and Unit of Primary Care, Oulu University Hospital, Oulu, Finland
7 Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
8 Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
9 CEU Cardenal Herrera University, Valencia, Spain
10 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
12 Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, UK

Twitter Follow Saranya Palaniswamy @saranbio

Acknowledgements We thank the entire NFBC1966 study team, including the research staff and all others involved in the data collection and processing and those involved in the oversight and management of the study. We acknowledge late Professor Paula Rantakallio for launch of Northern Finland Birth Cohort 1966 and initial data collection, Sarianna Vaara for data collection, Markku Koiranen for data management and Tuula Ylitalo for administration. The authors thank all the participants of NFBC1966 study.

Contributors SP, MRJ and SS designed the analysis plan. SP conducted the analysis and wrote the manuscript with guidance from SS, JJ, DMW and MRJ. EH and MRJ were responsible for data collection of variables and blood sampling related to this analysis. EL reviewed/edited the manuscript. All authors contributed intellectually to the manuscript and approved the final version.

Funding This work was financially supported by the Academy of Finland (MRJ, grant number 24300796); Medical Research Council, UK (EH, grant number G0601653); Biocenter Oulu Doctoral Programme (SP); European Union’s Horizon 2020 research and innovation programme (MRJ, SS, DMW, grant number 633595) for the DynaHEALTH action.

Disclaimer The funders had no role in the design, analysis or writing of this article.

Competing interests None declared.

Patient consent Obtained.

Ethics approval The study was approved by the ethical committee of University of Oulu and Northern Ostrobotnia Hospital District. The procedures follow the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Data are available on request to the NFBC1966 Data Sharing Committee. NFBC1966 data sharing policies and processes meet the requirement and expectations of Northern Ostrobotnia Hospital District policy on sharing of data from population and patient cohorts. Data requests should be submitted to Minna.Mannikko@oulu.fi; further details can be found at http://www.oulu.fi/nfbc/. These policies and processes are in places to ensure the use of data from this prospective birth cohort study is within the bounds of consent given previously by study members, complies with Northern Ostrobotnia Hospital district guidance on ethics and research governance and meets rigorous University of Oulu data security standards.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/
REFERENCES

1. Vimalaswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med 2013;10: e1001383.

2. Affal SJ, Karthi T, Lehtonen S, et al. Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D3 via the NF-kB pathway. FASEB J 2012;26:4400–7.

3. Pham TM, Ekwuwe JP, Leehr SA, et al. The relationship of serum 25-hydroxyvitamin D and insulin resistance among nondiabetic Canadians: a longitudinal analysis of participants of a preventive health program. PLoS ONE 2015;10:e0141081.

4. Afzal S, Brøndum-Jacobsen P, Bojesen SE, et al. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ 2014;48:9830.

5. Rossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc 2013;88:720–50.

6. Huotari A, Herzig KH. Vitamin D and living in northern latitudes—an endemic risk area for vitamin D deficiency. Int J Circumpolar Health 2008;67:164–78.

7. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266–81.

8. Itkonen ST, Lamberg-Allardt C. Food fortification as a means to prevent and control vitamin D deficiency in children. Int J Vitam Nutr Res 2015;7:511–22.

9. Lamberg-Allardt C, Brustad M, Meyer HE, et al. Vitamin D—a systematic literature review for the 5th edition of the Nordic Nutrition Recommendations. Food Nutr Res 2013;57:22671.

10. Mazahery H, von Hurst PR. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients 2015;7:411–22.

11. Jungert A, Neuhauser-Berthold M. Sex-specific determinants of 25-hydroxyvitamin D concentrations and increased mortality: a longitudinal analysis of participants of a preventive health program. PLoS ONE 2015;10:e0141081.

12. Sohl E, Heymans MW, de Jongh RT, et al. Prediction of vitamin D deficiency by simple patient characteristics. Am J Clin Nutr 2014;99:1089–95.

13. Nevill AM, Metsios GS. The need to redefine age- and gender-specific overweight and obese body mass index cutoff points. Nutr Diabetes 2015;5:e186.

14. Tyler-Hall EA, Cheng S, Lytvynaken A, et al. Strategies to improve vitamin D status in northern European children: exploring the merits of vitamin D fortification and supplementation. J Nutr 2006;136:1130–4.

15. Rantakallio P. Groups at risk in low birth weight infants and perinatal mortality. Acta Paediatr Scand 1969;193(Suppl 193):1+.4

16. Rantakallio P. The longitudinal study of the northern Finland birth cohort of 1966. Paediatr Perinatal Epidemiol 1988;2:59–88.

17. Jarvelin MR, Sovio U, King V, et al. Associations between lifestyle and vitamin D: a general population study with repeated vitamin D measurements. Endocrine 2016;51:342–50.

18. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Washington DC: The National Academic Press, 2011.

19. Finnish Meteorological Institute. Seasons in Finland. 2016. http://en. ilmatieteenlaitos.fi/seasons-in-finland (accessed 5 Jun 2016).

20. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000:894–i, xii, 1–253.

21. Albert KG, Ecket RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–5.

22. Laitinen J, Pietiläinen K, Wadsworth M, et al. Predictors of abdominal obesity among 31-year men and women born in Nottorpem Finland in 1966. Int J Obes 2008;32:180–90.

23. Fawehinmi TO, Ilomáji J, Voutilainen S, et al. Alcohol consumption and dietary patterns: the FinDrink study. PLoS ONE 2012;7:e38607.

24. Suja K, Timonen M, Suviola M, et al. The association between physical fitness and depressive symptoms among young adults: results of the Northern Finland 1966 birth cohort study. BMC Public Health 2013;13:535, 2458-13-535.

25. Morin-Papunen L, Martikainen H, McCarthy MI, et al. Comparison of metabolic and inflammatory outcomes in women who used oral contraceptives and the levonorgestrel-releasing intrauterine device in a general population. Am J Obstet Gynecol 2008;199:529.e1–e10.

26. Voipio AJ, Pahkala KA, Viikari JS, et al. Determinants of serum 25(OH)D concentration in young and middle-aged adults. The Cardiovascular Risk in Young Finns Study. Am J Med 2015;127:253–62.

27. Mettinen ME, Kinnunen L, Leiviski J, et al. Association of serum 25-hydroxyvitamin D with lifestyle factors and metabolic and cardiovascular disease markers: population-based cross-sectional study (FIN-D2D). PLoS ONE 2014;9:e100235.

28. Statistics of Finland, National Institute for Health and Welfare. Obesity. 2016. http://findikaattori.fi/en/62 (accessed 13 October 2016).

29. Hypponen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr 2007;85:860–8.

30. Hypponen AM, Frean MA, Easier WD, et al. Risk factors for variation in 25-hydroxyvitamin D(3) and D(2) concentrations and vitamin D deficiency in children. J Clin Endocrinol Metab 2012;97:1202–10.

31. Jääskelainen T, Knekt P, Marniemi J, et al. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health: a general population study. Eur J Nutr 2013;52:113–25.

32. Skauby T, Husemoen LL, Thuesen BH, et al. Longitudinal associations between lifestyle and vitamin D: a general population study with repeated vitamin D measurements. Endocrine 2015;51:342–50.

33. Mutt SJ, Hypponen E, Saarmio J, et al. Vitamin D and adipose tissue-more than storage. Front Physiol 2014;5:228.

34. Mangin M, Sinha R, Fincher K. Inflammation and vitamin D: the infection connection. Inflamm Res 2014;63:803–19.

35. Harris SS, Dawson-Hughes B. The association of oral contraceptive use with plasma 25-hydroxyvitamin D levels. J Am Coll Nutr 1998;17:282–4.

36. Møller UK, Streym Sv, Jensen LT, et al. Increased plasma concentrations of vitamin D metabolites and vitamin D binding protein in women using hormonal contraceptives: a cross-sectional study. Nutrients 2013;5:3470–80.

37. Nelson ML, Blum JM, Hollis BW, et al. Supplements of 20 microg/d cholecalciferol optimized serum 25-hydroxyvitamin D concentrations in 80% of premenopausal women in winter. J Nutr 2009;139:540–6.

38. Saaarem K, Pedersen JL. Sex differences in the hydroxylation of cholecalciferol and of 5 alpha-cholecalciferol and of 5 beta-cholecalciferol-3 alpha 7 alpha, 12 alpha-triol in rat liver. Biochem J 1987;247:73–8.

39. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012;95:1357–64.

40. Nordic Council of Ministers. Nordic nutrition recommendations 2012. Integrating nutrition and physical activity, 5th edn. Copenhagen: Nordic Council of Ministers, 2014.

41. Larsen SC, Angquist L, Moldovan M, et al. Serum 25-hydroxyvitamin D status and longitudinal changes in weight and waist circumference: influence of genetic predisposition to adiposity. PLoS ONE 2016;11:e0153611.