Fully QED/relativistic theory of light pressure on free electrons by isotropic radiation

A E Kaplan

Electrical and Computer Engineering Department, Johns Hopkins University, Baltimore, MD, 21218, USA

E-mail: alexander.kaplan@jhu.edu

Received 30 March 2015, revised 19 May 2015
Accepted for publication 27 May 2015
Published 8 July 2015

Abstract
A relativistic/QED theory of light pressure on electrons by an isotropic, in particular blackbody, radiation predicts thermalization rates of free electrons over the entire span of energies available in the lab and the nature. The calculations based on the QED Klein–Nishina theory of electron-photon scattering and relativistic Fokker–Planck equation, show that the transition from classical (Thompson) to QED (Compton) thermalization determined by the product of electron energy and radiation temperature, is reachable under conditions for controlled nuclear fusion, and predicts large acceleration of electron thermalization in the Compton domain and strong damping of plasma oscillations at the temperatures near plasma nuclear fusion.

Keywords: radiation pressure, Compton scattering, Lorentz transformation, photon scattering, inverse compton scattering, relativistic thermalization, Fokker-Planck equation

1. Introduction

Beginning with Max Planck’s discoveries [1], one of the fundamental issues in optics, electrodynamics, thermodynamics, atomic physics and quantum mechanics, is how radiation, in particular blackbody radiation, imposes an equilibrium in the material system by either heating it up or cooling it down. This process is facilitated by a so-called light pressure [2–4] on charged particles [5], most of all the lightest ones, i.e. electrons, either (quasi)free as in plasma, or bound as in atoms or ions, in which case the electrons pass the light pressure on to atoms. The advent of lasers allowed the development of highly controlled and engineered non-thermal radiation environments, such as coherent laser light with its frequency tuned near atomic resonances, which can be used for the cooling of atoms by red-shifted lasers [6–9] (and coherent motional excitation of atoms by blue-shifted lasers [10, 11]). A related ponderomotive, or field-gradient force [12–14], manifested e.g. via Kapitza–Dirac effect [15–18], has also been used in laser trapping of atoms [6–9] and macro-particles [19], high-field ionization of atoms [19–21], etc. It can be very sensitive to relativistic effects, which under certain conditions may result in a chaotic motion [22, 23] or even reverse the sign of that force in a strong field [24, 25].

In the case of blackbody radiation acting upon free electrons, the situation is rather straightforward and fundamental: non-resonant light pressure plays the role of the equilibrium ‘enforcer’ by either energizing slow electrons or damping fast ones. The main issue here is how fast the equilibrium/thermalization can be reached. The relaxation time, t_{rel}, of that process could vary by many orders of magnitude depending on the temperature T and initial energy/momentum of electrons; in the classical domain $t_{\text{rel}} \propto T^{-4}$. At the temperatures near absolute zero (e.g. in the so called relic radiations, or cosmic microwave background, CMB [26–28]) the equilibrium is essentially unreachable (it is too long even at $T \sim 10^3$ K; see below), whereas in high-T environments, e.g. controlled nuclear fusion, nuclear explosions, and star cores, it can be reached in less than attoseconds. We found that the nature of the transition to equilibrium is controlled by a parameter we call the Compton factor, $K_C = q\gamma/m_0c^2$, where γ is a relativistic factor of electrons, $\theta = k_B T m_0c^2$ is a normalized temperature, k_B is the Boltzmann constant, m_0c^2 is the rest energy of electron, and $q \approx 10$; see below. When $K_C \ll 1$, we are dealing with a so-called Thompson, or classical, scattering of light, whereby the scattering cross-section, σ_0 is constant, even if $\gamma \gg 1$, and the theory of light pressure is well known, see e.g. [5]. Due to advents in laser and controlled fusion technologies, the K_C can be large enough, $K_C > 1$, and we are entering a QED, or Compton domain, where the respective theory is far less developed.
In view of new developments in nuclear fusion and physics in general, e.g. in astrophysics and cosmology [29–31], it would be of fundamental importance to have the theory of that force over all the energies of electrons and temperatures of radiation, from the classical, \(K_c \ll 1 \), to transient, \(K_c \sim 1 \), to QED domains, \(K_C \gg 1 \). From QM viewpoint [32, 33], the light pressure on elementary particles is a result of averaging over ensemble of inverse Compton scattering events [34–36], whereby a particle transfers part of its momentum to a scattered photon. The known results provide patchy descriptions of the process, with quantitative results known mostly for ‘cold’ cases [5], and qualitative for very ‘hot’ cases in the theory of high-energy cosmic rays [36–38]. Yet, to the best of our knowledge, no general formula for the light pressure \(F(\gamma, \theta) \) and related relaxation rates for arbitrary \(K_c \) presently exists.

In this paper,

(a) by using Lorentz transformation of spectrum, section 2, and relating photon scattering to momentum transfer to electrons via Doppler and Compton relationships, section 3, we derived a general light pressure formula, section 4, for the uniform/uniform radiation with an arbitrary frequency spectrum, arbitrarily relativistic energy of electrons and arbitrary spectral dependence of the the scattering cross-section on frequency of light,

(b) checked it out for the well-known case of Thompson scattering and related light pressure, section 5, and simplified it in the case of blackbody radiation with Planck’s spectrum at arbitrary temperature, section 6;

(c) by using the frequency/energy dependence of photon–electron scattering cross-section in the Compton, or QED domain, based on the Klein–Nishina QED theory [39, 40] which takes into consideration virtual electron–positron pair creation and annihilation, section 7, we applied a general formula to the case of the electron, immersed in the blackbody radiation, and found amazingly precise and universal analytic approximation for the light force in the entire domain, section 8, and finally

(d) considered the kinetics of electron density distribution to the equilibrium, i.e. the thermalization of the distribution, using Fokker–Planck equation and its solutions, in particular relaxation rates of the process, and how they may affect plasma oscillations, section 9.

Our results may have important applications for both high-temperature plasma, in particular controlled nuclear fusion and nuclear explosions, and for astrophysics/cosmology (to be addressed by us elsewhere [41]).

2. Lorentz transformation of radiation spectrum

An isotropic (and homogeneous) radiation is associated with some preferred \(L \)-frame, where a particle at rest experiences no time-averaged light pressure, as the action of a \(\hat{k} \)-vector component is canceled by a counter-propagating (\(-\hat{k}\)) component. We assume the spectrum of this radiation, \(\rho_f(\omega) \), to be known. A particle moves in the \(x \)-axis in that frame with velocity \(\hat{v} = v e_x \), and is at rest in a certain \(P \)-frame. A light pressure \(\tilde{F} = d\tilde{p}/dt = F\hat{e}_x \) on a particle is then nonzero if \(v \neq 0 \); here \(\tilde{p} = p\hat{e}_x \) is its momentum in the \(L \)-frame, \(p_{\mu 0} c \equiv \mu = \gamma \sqrt{1 - \beta^2} = \sqrt{1 + \beta^2} \).

Our derivation of \(F(\mu) \) is based on Lorentz transformation of \(\rho(\hat{k}) \) from \(L \)-frame to \(P \)-frame [42, 43]; it is valid for arbitrary frequency dependence of a full cross-section \(\sigma(\epsilon) \) where \(\epsilon = h\omega m_0 c^2 \), of scattering of an \(\omega \)-photon at a particle.

For a gas of particles with non-zero mass, one can define distribution function \(g(\tilde{p}, \tilde{r}) \) in a lab \(L \)-frame in the phase space of momentum \(\tilde{p} \) and position vector \(\tilde{r} \) as the number of particles, \(dN_{\tilde{p}, \tilde{r}} = g(\tilde{p}, \tilde{r})d\Omega \), per the element of phase space, \(d\Omega = dV_L = d\xi \) where \(dV_L = dp_dq_d\Omega \) and \(dV_L = dx dy dz \) are the elements of momentum and coordinate spaces respectively. A general formula for a Lorentz transformation of a distribution function \(g_L(\tilde{k}_L, \tilde{n}_L) \) in the \(L \)-frame to a distribution function \(g_P(\tilde{p}_P, \tilde{r}_P) \) in a \(P \)-frame moving uniformly with respect to the \(L \)-frame is as [42, 43]:

\[
g_L(\tilde{k}_L, \tilde{n}_L) = g_P(\tilde{p}_P, \tilde{r}_P); \quad d\Omega_L = d\Omega_P \tag{1}
\]

where \(\tilde{k}_L \) and \(\tilde{n}_L \) are related to \(\tilde{k}_P \) and \(\tilde{n}_P \) respectively by a standard Lorentz transform for an observer moving in \(L \)-frame in the \(x \)-axis with velocity \(\hat{v} = \hat{e}_x v \). In the case of photon gas equation (1) remains true for the spectrum of photons \(g(\hat{k}, \tilde{r}) \), by replacing \(\tilde{p} \) with \(\tilde{k} \) (\(\omega = \omega(\tilde{k}) \)), \(\tilde{r} \) by \(\tilde{r} \), \(dV_L \) by \(dk_dk_d\xi \), and \(d\Omega \) by \(d\Omega = dV_L \).

Since we are interested here in the case of a homogeneous radiation, a spectrum is \(g(\hat{k}) \), and its transformation is written as

\[
g_L(\tilde{k}_L) = g_P(\tilde{k}_P); \quad d\Omega_L = d\Omega_P \tag{2}
\]

(here \(g \) and \(d\Omega \) are dimensionless), where Lorentz transform for \(\tilde{k}_L \) is \(\gamma(\hat{k}) = (k_L; p + k\beta) \), \(\gamma(\hat{k}) = (k_L; p) \); \(k_L = \gamma(k_p + \beta(k_p)) \), with \(\beta = \gamma(k_L; p) = k_L \); \(k = \omega/c = \sqrt{k_L^2 + k_p^2} \).

In particular, the Doppler coefficient is as

\[
D \equiv \omega_P/\omega_L = \left[\gamma(1 + \beta \cos \xi_P \hat{p}) \right]^{-1} = \gamma(1 - \beta \cos \xi_L) \tag{3}
\]

where \(\xi \) are the angles between respective \(\hat{k}_L \)-vectors and the \(x \)-axis, i.e. \(\cos \xi_L = (k_{L; x}/k_L, \cos \xi_L = (k_{L; y}, k_P, \text{transformed as} \cos \xi_P = (\cos \xi_L - \beta)/\left(1 - \beta \cos \xi_L \right) \). Furthermore, since the radiation is isotropic in the \(L \)-frame, the distribution function \(g_L \) does not depend on the direction of \(\hat{k}_L \)-vector, and we have \(g_L(\hat{k}_L) = g_L(\hat{k}_x) \), where \(k = |\hat{k}| \). Since both spectra are symmetrical around the \(x \)-axis, we will use spherical coordinates in the \(\hat{k} \) space, so that \(dV_L = k^2 dk d\Omega_L \), where \(d\Omega_L = \text{element of solid angle in the direction of} \hat{k} \).

One can then introduce the density number of photons in the element \(\rho(\tilde{k}) \), \(dk d\Omega_L \) defined as

\[
\rho(\tilde{k}) = k^2 g(\tilde{k}) \quad \text{with} \quad d\tilde{N}_L = \rho(\tilde{k})dk d\Omega_L \tag{4}
\]
\[\rho_i(\mathbf{k}_i) \mathbf{k}_i^2 = \rho_p(\mathbf{k}_p) \mathbf{k}_p^2 \]

From now on, since we are dealing with a homogeneous radiation independent on the radius-vector length, \(|\mathbf{r}|\), we will re-assign the notion of spectra \(\rho \) only to the ones being functions of frequency \(\omega \) and angles \(\xi \) instead of \(\mathbf{k} \) and \(\mathbf{r} \) vectors. In this case, \(\rho_p(\omega, \xi) \) will have dimension of \([\text{cm}^{-3}] \). As expected, the radiation becomes anisotropic in the \(P \)-frame (yet symmetric around the \(x \)-axis) with its spectrum \(\rho_p(\omega, \xi_p) \) given by a \(L \)-frame isotropic spectrum \(\rho_L(\omega) \), whose argument and amplitude are now altered by the parameters \(\beta \) and \(\xi_p \) via Doppler coefficient \(D = [\gamma(1 - \beta \cos \xi_p)]^{-1} \), equation (3):

\[\rho_p(\omega, \xi_p) = \rho_L(\omega/D(\beta, \xi_p)) D^2(\beta, \xi_p). \]

Our further calculations will mostly be focused on the events in the \(P \)-frame assuming that \(\rho_L(\omega) \) is known.

3. Photon scattering and momentum transfer

We designate the wave-vector of an incident photon in the \(P \)-frame as \(\mathbf{k}_{\text{inc}} \), and that of a scattered photon as \(\mathbf{k}_{\text{sc}} \). The latter one is scattered into the solid angle \(d\Omega_{\text{sc}} = \sin \theta_{\text{sc}} \, d\Omega_{\text{sc}} \, d\phi \) around \(\mathbf{k}_{\text{sc}} \). Here \(\theta_{\text{sc}} \in [0, \pi] \), the angle between incident and scattered \(k \)-vectors, and \(\phi \in [0, 2\pi] \) is an azimuthal angle around the \(\mathbf{k}_{\text{sc}} \) direction. The number of photons scattered into \(d\Omega_{\text{sc}} \) within time interval \(dt \) and spectral band \(d\omega = c \, dk \), is

\[dN_{\text{sc}} = \rho_p(\omega_{\text{inc}}, \mathbf{e}_{\text{inc}}) (d\sigma/d\Omega_{\text{sc}}) (d\Omega_{\text{sc}}/4\pi) c \, dk \]

where the differential scattering cross-section \(d\sigma/d\Omega_{\text{sc}} \) describes an (unknown yet) physics of energy and momentum transfer from the incident photon to both scattered photon and a particle (including a possible excitation of internal degrees of freedom in the particle if there is any, which is not the case for an electron, whereby \(d\sigma/d\Omega_{\text{sc}} \) is strictly due to Compton scattering, see equation (8), that enters Klein–Nishina formula, see below, equation (27), and discussion in the end of section 4).

The Compton quantum formula determines the ratio \(R \) of photon energies after and before scattering from a single electron:

\[e_{\text{sc}}/e_{\text{inc}} = R(e_{\text{inc}}, \mathbf{e}_{\text{inc}}) = \left[1 + e_{\text{inc}}(1 - \cos \theta_{\text{sc}}) \right]^{-1} \]

where \(e \equiv \hbar \omega/m_0 c^2 \). When calculated back to the \(L \)-frame, photons back-scattered from an ultra-relativistic electron, \(\gamma \gg 1 \), may have large energies with the Doppler shift up to \(D \approx 2\gamma \), even if their energies in the \(P \)-frame are still below QED limit, i.e. \(e_{\text{sc}} \ll 1 \). It is commonly called an inverse Compton (or Thompson, if \(e_{\text{sc}} \ll 1 \) scattering.

Only the projection of \(\mathbf{k}_{\text{sc}} \) into \(\hat{\mathbf{k}}_{\text{in}} \)-direction contribute to the force \(F \); all the rest are canceled out after integration over the azimuthal angle \(\phi \) (in the \(P \)-frame, where the electron is at rest, the scattering problem has a symmetry around \(\hat{\mathbf{k}}_{\text{in}} \)). Thus the momentum transfer to an electron in \(\mathbf{k}_{\text{in}} \)-direction after the scattering is

\[h\Delta k_{\text{u}} = h\left(k_{\text{in}} - k_{\text{sc}} \cos \psi_{\text{sc}} \right) = \hbar \omega_{\text{inc}} \left[1 - R(\epsilon_{\text{sc}}, \mathbf{e}_{\text{sc}}) \cos \psi_{\text{sc}} \right]/c \]

4. Light pressure on a particle

Considering the number of photons, \(dN_{\text{sc}} \), equation (7), scattered into a solid angle \(d\Omega_{\text{sc}} \), the light pressure impacted by them on the electron in \(\mathbf{k}_{\text{in}} \)-direction, is the rate of momentum transfer, \(\hat{F} = \mathbf{F}_{\text{q}_{\text{in}}} \) where \(\mathbf{q}_{\text{in}} = \mathbf{k}_{\text{in}}/k_{\text{in}} \) and

\[dF = h\Delta k_{\text{u}} d^2N_{\text{sc}}/d\omega d\Omega_{\text{sc}} = \frac{\hbar \omega_{\text{inc}}}{4\pi} \frac{d\sigma}{d\Omega_{\text{sc}}} \left[1 - R(\epsilon_{\text{sc}}, \mathbf{e}_{\text{sc}}) \cos \psi_{\text{sc}} \right] \rho_p(\omega_{\text{inc}}, \xi_{\text{sc}}) \times \sin \psi_{\text{sc}} d\psi_{\text{sc}} d\phi \]

Integrating equation (10) over \(\phi \) and \(\psi_{\text{sc}} \), we find a full \(\omega_{\text{inc}} \)-Fourier component of the light pressure as:

\[F(\omega_{\text{inc}}, \beta, \hat{\mathbf{q}}_{\text{in}}) = \left(\hbar \omega_{\text{inc}}/4\pi \right) \rho_p(\omega_{\text{inc}}, \xi_{\text{inc}}) \sigma_{\text{MT}} \]

with

\[\sigma_{\text{MT}} = 2\pi \int_0^\pi \left[1 - R(\epsilon_{\text{sc}}, \mathbf{e}_{\text{sc}}) \cos \psi_{\text{sc}} \right] \frac{d\sigma}{d\Omega_{\text{sc}}} \sin \psi_{\text{sc}} d\psi_{\text{sc}} \]

where \(\sigma_{\text{MT}} \) is the cross-section of a momentum transfer from \(\omega_{\text{inc}} \)-photon to a particle. It must be noted that \(\sigma_{\text{MT}} \) may not in general coincide with a plain (full) integrated scattering cross-section, \(\sigma(\epsilon_{\text{inc}}) \)

\[\sigma(\epsilon_{\text{inc}}) = 2\pi \int_0^\pi \frac{d\sigma}{d\Omega_{\text{sc}}} \sin \psi_{\text{sc}} d\psi_{\text{sc}} \equiv \frac{\hbar \omega_{\text{inc}}}{m_0 c^2} \]

because only the projection of \(\mathbf{k}_{\text{sc}} \) into \(\hat{\mathbf{k}}_{\text{in}} \)-direction contributes to the radiation force \(F \), see equations (9) and (11) where in general \(R(\epsilon, \mathbf{e}_{\text{sc}}) < 1 \) if \(\epsilon > 0 \), equation (8), \(\sigma_{\text{MT}} \) and \(\sigma(\epsilon_{\text{inc}}) \) are related as \(\sigma_{\text{RT}} = \sigma - \sigma_{\text{R}} \), where

\[\sigma_{\text{R}}(\epsilon) = 2\pi \int_0^- R(\epsilon, \psi) \frac{d\sigma}{d\Omega} \cos \psi \sin \psi d\psi \]

\[= \pi \int_0^\pi \frac{d\sigma}{d\Omega} \frac{\zeta}{1 + e(1 - \zeta)} d\zeta \]

which in turn reflects the \(R \)-factor in equations (9) and (12) It zeroes out for \(\sigma = \text{const} \) (Thompson scattering) and at \(\epsilon = 0 \), and peaks at \(\epsilon \sim 0.54 \) (see the end of section 7), but is negligibly small both at \(\epsilon \ll 1 \) and \(\epsilon \gg 1 \).

Now, we compute the light pressure, \(\hat{F} = \mathbf{F}(p) \hat{e}_x \), as an integral of the \(x \)-projections of the Fourier force components, \(\mathbf{F}(\omega_{\text{inc}}, \beta, \mathbf{q}_{\text{in}}) \), i.e. \(\hat{F}_x = \mathbf{F}(\omega_{\text{inc}}, \beta, \mathbf{q}_{\text{in}}) \hat{e}_x = \mathbf{F} \cos \psi_{\text{sc}} \), over all the incident solid angles, \(d\Omega_{\text{sc}} = \sin \psi_{\text{sc}} d\psi_{\text{sc}} d\phi_{\text{sc}} \), and frequencies \(\omega_{\text{inc}} \) in the \(P \)-frame. Thus, we have for the full light
Recalling that a spectrum ρ_ν in F, equations (11), (15) can be expressed directly via the known isotropic spectrum in the L-frame, ρ_L, equation (6), we can now write the expression for the light pressure in closed form as:

$$F(p) = \frac{\hbar}{4} \int_0^\infty \omega \sigma_{MT}(\omega) \left[\int_0^\xi \sin(2\xi)\rho_L(\omega/D)D^2d\xi \right] d\omega$$

or by using a substitution, $\zeta = \cos \xi$, reduce it to:

$$F(p) = \frac{\hbar}{2} \int_0^\infty \frac{\omega \sigma_{MT}(\omega)}{\gamma^2} \left\{ \int_{-1}^1 \rho_L(\log(1 + \beta\zeta)) \frac{\zeta d\zeta}{(1 + \beta\zeta)^2} \right\} d\omega$$

Alternatively, by using a substitute $\nu = \omega \gamma (1 + \beta\zeta$), the same result can be written as

$$F(p) = \frac{\hbar}{2} \int_0^\infty \frac{\nu \rho_L(\nu)}{\gamma^4} \left[\int_{-1}^1 \sigma_{MT} \left(\frac{\nu/\gamma}{1 + \beta\zeta} \right) \frac{\zeta d\zeta}{(1 + \beta\zeta)^4} \right] d\nu$$

Note also that only full (integrated) cross-section, σ_{MT}, enters into the final calculations. Which one of equations (17) or (18) to use for detailed study is a matter of computational convenience depending on specific model functions $\sigma_{MT}(\nu)$ and $\rho_L(\nu)$ (see section 6 below for Planck radiation); both of them incorporate ensemble averaging over all the relevant parameters, which makes pressure F the best tool to explore electron de-acceleration in the EM field.

Let us reflect on the domain of validity of equations (17) and (18) The rest of this paper deals with the light pressure on a single, most fundamental elementary particle, electron (or substantially rarefied electron gas or plasma), which presents a clear case. The question is then whether they could be applicable for more general cases, in particular for high-density gas or plasma with many-body interactions, in particular plasma oscillations, and for single particles/objects with an internal structure and resonances. We address the former issue in section 9 below (see the text preceding and following equation (39)), and discuss the latter one here.

In our derivation of equations (17), (18) we have not used any assumption based on the fact that a scattering object is an elementary particle. Essentially, the only assumption was that we have only one particle and one photon both in input and final output channels in each act of scattering, and were not concerned about intermediate processes. The physics of these processes in general is to be described by the differential cross-section $d\sigma(\omega)/d\Omega_c$, which in the case of an electron is due to Klein–Nishina formula, see equation (27), based on the Compton scattering relationship for input/output electron energies, equation (8); eventually, $d\sigma/d\Omega_c$ is absorbed into the full cross-sections of scattering $\sigma(\omega)$ and momentum transfer, $\sigma_{MT}(\omega)$ via integration, equations (13) and (12) which may also include a new ratio R of photon energies after and before scattering from a particle, that may differ now from the Compton quantum formula, equation (8), for a single electron, based now on radiation loss or amplifications after scattering from the particle due to its internal degrees of freedom. Thus, equations (17), (18) use only our knowledge of σ and ρ as functions of ω. They will be valid for example for the resonant or other dispersion-related interaction of the radiation with atoms or even macro-particles, with any quantum or classical resonances due to e.g. dipole momenta, band structure, eigen-modes, etc. By the same token it also does not matter whether the cross-section σ is due to elastic scattering or includes losses of energy to internal degrees of freedom; all that implicitly enters into the functions $\sigma(\omega)$ and $\sigma_{MT}(\omega)$. To a degree, this is reminiscent of a phenomenological role played by dispersive dielectric constant $\varepsilon(\omega)$ in electrodynamics whereby $\varepsilon(\omega)$ provides a short-hand representation of all the constitutive interactions of an EM field with matter.

The above discussion clearly suggests the situations in which the description offered by equations (17), (18) is not comprehensive: it is when there is more than one output particle (as e.g. in the case of photoionization resulting in an ion and one or more ionized electrons), and/or more than one output photon (as e.g. in stimulated emission or any kind of nonlinear multi-photon process, such as sum, difference, or high harmonics generation, etc). In all those cases, one needs to include all the scattering channels and generalize equations (17), (18) by summation over all of them.

5. Thompson light pressure ($\sigma_{MT} = \sigma = \text{const}$, $\sigma_R = 0$)

In the limit of frequency-independent cross-section, the integral in equation (17) is readily evaluated resulting in:

$$F_{Th} = -(4/3)\sigma_0 W_L \gamma, \text{ with } \gamma = \sqrt{1 + \mu^2}$$

where $W_L = \hbar \int_0^\infty \omega \rho_L(\omega) d\omega$ is the energy density of photons in the L-frame, and σ_0 is a full (classical) cross-section of a charged particle:

$$\sigma = \text{const} = \sigma_0 = (8\pi/3)r_e^2, \text{ with } r_e = e^2/m_0c^2$$

where r_0 is a classical EM-radius of a particle. Equation (19) coincides with known results [5]. At $\mu \ll 1$ we have $-F \propto \mu$, while in a relativistic case, $\mu \gg 1$, $-F \propto \mu^2 |\mu|$. It is reminiscent of a drag force in liquids and gases, which is linear in velocity v for low v (Stokes force), and $\alpha v |v|$ for highly turbulent flow [44].
6. Light pressure of a blackbody (Planck) radiation

Spectral, ρ_{TR}, and total energy, $W_{TR} = \hbar \int_0^\infty \omega \rho_{TR} (\omega) \, d\omega$ densities of blackbody radiation in the L-frame at the temperature $T \approx 2.725$ K for current CMB are

$$\rho_{TR} (\omega) \, d\omega = \frac{\hbar^2}{2\pi^2} \frac{d\omega}{\omega} \, e^{\hbar \omega/k_B T} - 1; \quad W_{TR} = \frac{8\pi^5}{15} m_e c^3 T^4$$

which is a familiar Planck distribution, where k_B is the Boltzmann constant, $m_e c^2 / \lambda_e^2$ is a Compton energy density, $\lambda_e c = 2\pi \hbar / m_e c$ is the Compton wavelength, and $\theta = k_B T m_0 c^2$ is a dimensionless temperature (for the current CMB, $\theta \approx 0.534 \times 10^{-9}$). In the Thompson limit, the energy density W_e can now be replaced by W_{TR}. For further calculations, we will use a dimensionless time $\tau = t / t_C$, and force $f = F_e m_0 c$ by introducing a Compton time scale for an electron:

$$t_C = 135 \lambda_e / 64 \pi^4 a_\gamma^2 c \approx 3.25 \times 10^{-18} \text{s}; \quad t_C \propto h^3$$

where $a_\gamma = e^2 / \hbar c \approx 1 / 137$ is the fine structure constant. (It is worth noting that a ‘U-scale’ $\theta_U = (t_C / t_U)^{1/4} \approx 1.65 \times 10^{-9}$, where $t_U \approx 4.4 \times 10^7 \text{s}$ is the age of the universe, comes close to the current CMB temperature, $\theta \approx 0.534 \times 10^{-9}$.) In the dimensionless terms, equation (19) for Thompson limit can now be rewritten as:

$$\left(\frac{d\mu}{d\tau} \right)_{\theta_U} = f_{Th} = -\delta^4 \mu \gamma.$$

(23)

This approximation is valid for $K_C \ll 1$ (hence $\theta \ll 1$), and it is still good for relativistic case, $\mu \sim \gamma \gg 1$, as long as $\mu \ll \theta^{-1}$ (Note that for electrons, $\theta = 1$ corresponds to $T \approx 0.6 \times 10^{10}$ K). Equation (23) is readily solved for $\mu (\tau)$; with an initial condition $\mu = \mu_0$ at $\tau = 0$, we have

$$\mu (\tau) = 1 - \sinh (\tau t_C^4 + \delta_0);$$

(24)

where $\delta_0 = \ln(1 + \mu_0) / \mu_0$. At $\mu \ll 1$ equation (24) reduces to $\mu \approx \mu_0 / (t / t_C + 1)^{-1}$, a time scale here is $t_{TR} = t_C \hbar / \theta^4$. This scale may vary tremendously even for $\mu_0 \leq 1$—from 0.4×10^{-10} s = 40 ps for the temperature $T \approx 10^4 \text{K}$ ($\theta \approx 1.7 \times 10^{-2}$) below lab-nuclear fusion, to $0.4 \times 10^3 \text{s}$ for the current epoch CMB ($\theta \approx 0.534 \times 10^{-9}$), which is 10^8 times longer than the age of the universe, t_U.

For a frequency-dependent cross-section $\sigma_{MT}(\epsilon)$, where $\epsilon = h \omega m_0 c^2$, equation (17) for a blackbody radiation (21), can be readily reduced to a single integral by using the dilogarithm function, $\ln [1 - e^{-x}] = -x^2 \ln (1 - e^{-x})$:

$$f = \frac{45}{8\pi^2} \frac{\theta^4}{\mu^y} \int_0^\infty \frac{\sigma_{MT}(\epsilon / \gamma)}{\sigma_0} (S^- + S^+) \, d\epsilon;$$

(25)

where

$$S^\pm = \pm \lambda \ln \left[e^{-x (1 + \beta)} - \frac{1}{\beta} \ln \left(1 - e^{-x (1 + \beta)} \right) \right]$$

and $\beta = \mu / \gamma$. In particular, for a lowrelativistic motion, $\beta \mu \ll 1$, but arbitrary high temperature θ, equation (25) is further reduced to $f = -\mu \theta^4 \sigma_0 (\theta)$, where

$$\sigma_0 (\theta) = \frac{15}{16\pi^4} \int_0^\infty \frac{\mu_0^2 \ln (\lambda / 2 \theta)}{\sigma_0} \, d\lambda; \quad \sigma_0 (0) = 1$$

For arbitrary μ, a specific case of electron is considered in section 8 below, but we need first to determine a QED-related energy dependence of scattering and momentum-transfer cross-sections for electron in the next section.

7. QED scattering and momentum-transfer cross-sections for electron

In the limit of low-energy photons, $\epsilon \ll 1$, their scattering by a charged particle is described by an energy-independent Thompson cross-section σ_0, equation (20). Yet a cross-section σ becomes energy-dependent even at sub-relativistic energies, which in the case of electrons/leptons is due to quantum Compton scattering via Klein–Nishina theory providing an exact solution for $\sigma = \sigma_{KN}$ for any ϵ, good to the first degree in α. The differential cross-section $d\sigma_{KN} / d\Omega$ in that case is

$$d\sigma_{KN} / d\Omega = (3 \sigma_0 / 16\pi) R^2 \left(R + R^{-1} - \sin^2 \psi \right)$$

(27)

with $R = R(\epsilon, \psi)$ as in equation (8). Using equation (27) in equation (13) we get a full Klein–Nishina cross-section [39, 40]:

$$\frac{d\sigma_{KN}}{d\Omega} = \frac{3}{8\pi} \left(1 + \frac{1}{\epsilon} + \frac{4}{(1 + 2\epsilon)^2} \right) \ln (1 + 2\epsilon)$$

(28)

In the ‘cold’ and ‘hot’ limits we have respectively, $\sigma_{KN} / \sigma_0 \approx 1 - 2\epsilon$ at $\epsilon \ll 1$, and $\sigma_{KN} / \sigma_0 \approx (3/8\pi) \ln (2\epsilon) + 1/2$ at $\epsilon \gg 1$. Using now equation (8) in
As mentioned already, $\sigma_R(e = 0) = 0$. The three terms within the outer brackets [...] in equation (30) are grouped to have each one of them also zero out at $e = 0$. In the 'cold' and 'hot' limits we have respectively $\sigma_R/\sigma_0 \approx 6e/5$ at $e \ll 1$, and $\sigma_R/\sigma_0 \approx (1/2e)[1 - 3 \ln(1 + 2e)/4e]$ at $e \gg 1$, so that the term σ_R in the photon-\textit{e}lectron momentum transfer can be neglected at $e, e^{-1} \ll 1$. It can be shown that $\sigma_{KN} > \sigma_R > 0$ everywhere in $e \in (0, \infty)$, so that total cross-section $\sigma_{MT} \approx \sigma_{KN} - \sigma_R$ in equations (17) and (18) is always positively defined. All the σ spectral profiles are depicted in figure 1 showing that $\sigma_R(e)$ peaks as $\sigma_R/\sigma_0 \approx 0.1442$ at $e \approx 0.543 \approx (\hbar \omega \approx 277.5 \text{KeV})$. At that point $\sigma_{KN} \approx 0.55\sigma_0$, and $\sigma_{MT} \approx 0.4\sigma_0$, i.e. $\sigma_R/\sigma_{KN} \approx 0.26 \gg \alpha$. Thus, strictly speaking, σ_R should not be neglected within KN-theory using $O(\alpha)$ terms, at least around $e \approx 1$. Yet in reality, it makes little difference when calculating $f(\mu, \theta)$ in the entire momentum span, $\mu \in (0, \mu_{pl})$, where $\mu_{pl} = k_B T_{pl}/m_0 c^2 \approx 2.4 \times 10^{32}$ is the highest momentum in the universe related to the Planck temperature $T_{pl} \approx 1.417 \times 10^{32} \text{K}$; see below.

8. QED blackbody light pressure

Equations (28), (30) together with equations (24)–(26) allow for specific investigation of the light pressure by Planck radiation on an electron. The force f versus μ in the entire momentum span, $\mu \in (0, \mu_{pl})$, and for various θ, from $\theta \sim 10^{-9}$ to 10^9, was numerically evaluated using equation (25) and depicted in figure 2 for the relativistic/QED factor $Q(\mu, \theta) = -\mu/(\mu_0)^4$, where $-\mu^4$ is the Thompson non-relativistic light pressure, equation (23), for $\gamma = 1$; for $\mu, \theta \ll 1$, $Q \approx 1$. In the ultra-relativistic QED, or Compton domain, based on the behavior of $\sigma_{KN}(\omega)$ at $\omega \to \infty$, equation (28), the asymptotics of Q at $\mu \gg \max(1, \theta^{-1})$ can be shown to be $Q \propto [\ln(\theta_0) + O(1)]/\theta$. Using these numerical and asymptotic results, it would be greatly beneficial for further analysis to have their good analytic interpolation/approximation. Amazingly, this task is perfectly served by a remarkably simple formula good for the entire

![Figure 2](image-url)
problem is best handled by using a Fokker–Planck equation for the diffusion in the momentum space [46]. To that end, we consider a distribution function, \(g^{(e)}(\mu, \tau) \) of electrons defined here as the number of electrons per element of solid angle d\(\Omega \), element of momentum, d\(\mu \), within a unity of coordinate space, and a density number, \(\rho^{(e)}(\mu, \tau) = 4\pi \mu^2 \ g^{(e)}. \) Note that in application to cosmology, in which one needs to consider the expanding space/universe, these functions reflect the distribution within the expanding unity of coordinate space, i.e. in the spatial 'unity box' expanding at the same rate as the Universe. Assuming then that (a) the electron distribution is isotropic, i.e. the same as CMB, (b) the total number of electrons in the unity of momentum space and the expanding unity of coordinate space is approximately invariant,
\[
\int_0^\infty \rho^{(e)}d\mu = N_e \approx \text{inv}, \quad \text{and} \quad (c) \text{the thermal equilibrium of a relativistic gas at any } \theta \text{ is due to the Maxwell–Jüttner (MJ) distribution,}
\]
\[
g_{\text{MJ}}^{(e)} \propto e^{-\gamma \theta} \left[\rho K_2(1/\theta) \right]^{-1} \tag{33}
\]
where \(K_2 \) is the modified Bessel function of the second order, with MJ being a relativistic generalization of the Maxwell–Boltzmann distribution,
\[
g_{\text{MB}}^{(e)} \propto e^{-\gamma^2/2\theta} \theta^{-3/2} \tag{34}
\]
we found a Fokker–Planck equation for the distribution function \(g^{(e)}(\mu, \tau) \), in terms of dimensionless momentum \(\mu \), relativistic factor \(\gamma \), time \(\tau \), temperature \(\theta \), and force \(f \), as
\[
\frac{\partial}{\partial \tau} \left[\frac{\mu^2 g^{(e)}}{\partial} \right] + \frac{\partial}{\partial \mu} \left[\mu f(\mu, \tau) \left[g^{(e)} + \theta(\gamma) \frac{\partial g^{(e)}}{\partial \mu} \right] \right] = 0. \tag{35}
\]
This equation is valid for time-dependent \(\theta \) and for the expanding universe. For our purposes here we will consider only the case \(\theta = \text{const} = \theta_\text{eq} \) (and neglect the universe expansion), since the time involved is much shorter than the age of the universe for the effects of interest here. Equation (35) is solved fully analytically for the non-relativistic case, \(\mu \ll 1 \), whereby any initial distribution function \(g^{(e)}(\tau = 0) \) is decomposed into Gaussian components, equation (34), each of which has its specific initial temperature, \(\theta^{(e)}_\text{in} \) at \(\tau = 0 \); in time, their distribution functions remain Gaussian, with their time-dependent effective temperature being:
\[
\theta^{(e)}(\tau) = \theta_\text{eq} + \left(\theta^{(e)}_\text{in} - \theta_\text{eq} \right) e^{-\tau/\tau_\text{relx}}, \quad \tau_\text{relx} = 1/2\theta^4_\text{eq} \tag{36}
\]
i.e. \(\tau_\text{relx} = \tau_\text{rel}^2/2 = \tau_\text{rel}^2/2\theta^4_\text{eq} \) (see equation (24) and explanations therein). Equation (36) still holds approximately for the entire Thompson domain for initial conditions close to the equilibrium (be reminded that the condition \(K_C \ll 1 \) automatically means \(\theta_\text{eq} \ll 1 \), while proximity to the equilibrium—that \(\gamma_\text{in} = O(1) \). In the general case of arbitrary initial conditions the relaxation rate becomes
\[
\tau_\text{relx} \approx q^{-1} \left[2\theta^3_\text{eq} \ln \left(1 + q\theta_\text{eq} \gamma_\text{in} \right) \right]^{-1} \tag{37}
\]
where \(\gamma_\text{in} \) is the energy at the peak of initial density distribution. If it was MJ density distribution \(\rho_\text{MJ}^{(e)} \propto \mu^2 \rho^{(e)}_\text{MJ} \), then \(\gamma_\text{in} = \left[1 + 2\theta^2_\text{in} \left(\theta_\text{in} + \sqrt{1 + \theta^2_\text{in}} \right) \right]^{1/2} \), and \(\tau_\text{relx} = \tau_\text{rel} \left(\gamma_\text{in} \right) \). For \(\theta_\text{in} \ll 1 \), it coincides with equation (36), and for \(\theta^2_\text{in} \gg 1 \) we have
\[
\tau_\text{relx} \approx q \left[2\theta^3_\text{eq} \ln \left(2q\theta_\text{eq} \theta_\text{in} \right) \right]^{-1}. \tag{38}
\]
It is instructive to look at a few examples of interest. For the current CMB, the relaxation time to the equilibrium will exceed the age of the universe by \(\sim 10^3 \), see equation (23) and related discussion, which makes the thermalization here almost irrelevant. With an easily lab-accessible \(T = 1300 \text{ K} \) (\(\theta = 2.2 \times 10^{-7} \)), we have \(\tau_\text{relx} \approx 0.7 \times 10^8 \text{ s} \), which is still unrealistic in practical terms. At the Compton threshold, \(K_C = 1, \theta = 0.1 \), we have \(\tau_\text{relx} \approx 2.3 \times 10^{-13} \text{ s} = 23 \text{ fs} \). For \(T \sim 10^9 \text{ K} \) (\(\theta \approx 1.7 \)) required for the controlled nuclear fusion [49, 50], we have \(\tau_\text{relx} \approx 10^{-18} \text{ s} \approx 1 \). If \(\gamma_\text{in} \gg 1 \), the process is getting even faster, and the radiation might act to almost instantly deplete the coherency of e.g. an electron beam used as a plasma diagnostic tool. For example, if its energy is 50 MeV, a Compton factor in equation (37) is \(K_C = q\theta_\text{eq} \approx 1 \), 700, with \(\gamma_\text{in} \approx 0.4 \) as, so that the starting rate of e-beam thermalization is much faster.

Having in mind plasma nuclear fusion, it would be of substantial interest to see how the light pressure-induced damping may affect plasma oscillations in high-density, high-temperature plasmas. Those many-body excitations seem to preclude a single-electron light pressure, equation (31), from playing a significant role in plasma relaxation. However, the relaxation time \(\tau_\text{relx} \) due to light pressure does become a major player as long as it gets faster than relaxation in other channels of thermalization such as collision with similar or other species (e.g. electrons and protons), \(\tau_\text{relx} ^\text{coll} \), to dominate in a total relaxation rate \(\tau_\text{rel}^2 = \tau_\text{relx} ^2 + \tau_\text{relx} ^\text{coll} \) if \(\tau_\text{relx} ^\text{coll} \ll \tau_\text{relx} ^2 \) hence \(\tau_\text{rel}^2 \approx \tau_\text{relx} ^2 \). Yet the most important effect here is that the time \(\tau_\text{relx} ^2 \) may get even much shorter than a plasma oscillation period, \(\tau_\text{relx} ^\text{coll} \approx 1 \), in which case those oscillations would be damped or even extinguished. Using in rough approximation a standard equation for plasma frequency \(\omega_\text{pl} \) versus the number density of electrons, \(N_e \), we get the condition on \(N_e \) to have plasma oscillations strongly damped
\[
N_e \ll N_{\text{cr}} = \frac{m_0/e^2}{(t_e\tau_\text{relx})^2} \approx \frac{1.2 \times 10^{26}}{\tau_\text{relx}^2} \text{ cm}^{-3}. \tag{39}
\]
up to \(\omega \sim \omega_\text{dmp} = \tau_\text{relx} ^2 \), where \(N_{\text{cr}} \) is a critical number density of electrons below which the light pressure suppresses plasma oscillations. For \(T \approx 10^9 \text{ K} \) (\(\theta \approx 1.7 \)) required for the nuclear fusion [49, 50], presuming near-equilibrium, \(\theta_\text{eq} \approx \theta_\text{in} \), and using Compton domain equation (38), we have \(N_{\text{cr}} \approx 2 \times 10^{27} \text{ cm}^{-3} \), which exceeds the number density of the interior of most of the stars, thus making plasma oscillations of electrons completely extinguished. Even with an order of magnitude lower temperature \(T \approx 10^8 \text{ K} \), using Thompson formula (36) for \(\tau_\text{relx} ^2 \) in equation (39), we get
\(N_C \approx 3.4 \times 10^{20} \text{ cm}^{-3} \), which is still much higher than any conceivable lab plasma density.

Notice that far from equilibrium, with \(\theta_{in} \gg \theta_{eq} \) in equations (37), (38) the thermalization rate, \(\tau_{\gamma}^{-1} \), as well as the friction coefficient, \(f/\mu \) in equation (31), still increase with energy \(E_{in} \) (which translates into photon energy \(\epsilon \) increase in \(P \)-frame) in the Compton domain, \(K_C \gg 1 \), for a fixed temperature, while cross-section \(\sigma(\epsilon) \) decreases. The explanation of this is that while the \(\sigma(\epsilon) \) is indeed slowly receding with photon energy (as \(\sim 1/\ln(\epsilon) \), equations (28) and (30), each act of inverse Compton scattering (ICS) gets much more ‘quantum efficient’ since then a low-energy photon scattered from a high-energy electron gets a huge boost by accruing up to almost full energy of the electron. The peak gain is reached in a ‘head-on’ collision, when a photon is exactly back-scattered. Based on the Compton scattering formula, equation (8), and Doppler effect, equation (3), that enter the final formula, equation (17), the maximum scattered photon energy in the \(L \)-frame is

\[
\epsilon_{sc} \equiv \hbar \omega_{sc}/m_\gamma c^2 = \epsilon_{in}(\gamma + \mu)/(\gamma - \mu + 2\epsilon_{in}) \tag{40}
\]

where \(\epsilon_{in} \) is the incident photon energy. For high-energy electrons, \(\gamma \approx \mu \gg 1 \), and low-energy incident photons, \(\epsilon_{in} \ll 1 \), the maximum quantum efficiency of ICS defined as the ratio of scattered photon energy to that of an incident electron, \(\eta \equiv \epsilon_{sc}/\epsilon_{in} \), is then \(\eta \approx 1 + (4\gamma \epsilon_{in})^{-1} \), and in the sub-QED domain, \(\gamma \ll 1/\epsilon_{in} \), we have \(\eta \approx 4\gamma \epsilon_{in} \ll 1 \), hence small loss of electron energy per collision. However, in the QED Compton domain, \(4\gamma \epsilon_{in} \gg 1 \), we have \(\eta \approx 1 - (4\gamma \epsilon_{in})^{-1} \sim 1 \), i.e. an electron passes a large part of its energy to a scattered photon. With considerable probability an electron jumps then in one collision to the Compton threshold, \(\mu \rightarrow \mu_c \sim 1/\eta \).

These effects make it of special interest to look into the kinetics of highly relativistic electrons with their energy far exceeding that of equilibrium. Since in such a case the system remains far from the equilibrium during the evolution, the last term in equation (35) can be omitted, and in terms of density \(\rho^{(e)} \propto \rho^{-2} g^{(e)} \) it can be reduced to

\[
\frac{\partial \rho^{(e)}}{\partial \tau} + \frac{\partial}{\partial x} \left[f \rho^{(e)} \right] = 0 \tag{41}
\]

which is essentially a continuity-like equation and is fully integrable; its general solution can be shown to be

\[
\rho^{(e)} = \Phi(\xi - \tau)/f(\mu), \quad \text{with} \quad \xi = \int_0^\mu f \, d\mu \tag{42}
\]

where \(\Phi(s) \) is an arbitrary function of \(s \); here it is defined by initial conditions, e.g. the MJ-distribution with \(\theta_{in} \gg 1 \). Resulting evolution of the spectra of high-\(T \) sources in the relic radiation environment reveals their drastic transformation, e.g. the formation of narrow spectral lines in the cosmic electron spectrum, and development of a frozen nonequilibrium state due to very low rate of electron momentum decay in the Thompson domain. The ramifications of these effects in astrophysics and cosmology will be discussed by us elsewhere [41].

10. Conclusion

In conclusion, we developed a theory for the light pressure on particles, in particular electrons, by isotropic radiation, in particular blackbody/Planck radiation, that covers the entire span of energies/momenta up to the Planck energy by using, in the case of an electron, the QED Klein–Nishina theory for electron–photon cross-section scattering. We also analyzed the kinetics of electron relaxation into equilibrium by using the relativistic Fokker–Planck equation for temporal evolution of electron spectra of high-\(T \) sources, revealing a dramatic difference between classical and QED electron relaxation rates that may result in a host of new effects. We showed as well that a light pressure-induced damping may completely extinguish plasma oscillations of electrons at the temperatures approaching nuclear fusion.

Acknowledgments

The author is most grateful to B Y Zeldovich for insightful discussions and to anonymous referees for very thoughtful and helpful comments.

References

[1] Planck M 1900 Ann. Phys. 306 69–122
[2] Lebedev P 1901 Ann. Phys. 311 433
[3] Nichols E F and Hull G F 1903 Astrophys. J. 17 315
[4] Debye P 1909 Ann. Phys. 335 57
[5] Landau L D and Lifshitz E M 1971 The Classical Theory of Fields (Oxford: Pergamon Press) p 219
[6] Ashkin A 1970 Phys. Rev. Lett. 24 156
[7] Hänsch T W and Schawlow A L 1975 Opt. Commun. 13 68
[8] Arimondo E, Phillips W D and Strumina S (ed) 1992 Laser Manipulation of Atoms and Ions (Amsterdam: North-Holland)
[9] Grynberg G and Robilliard C 2001 Phys. Rep. 355 335
[10] Kaplan A E 2009 Opt. Express 17 10035
[11] Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W and Udem T 2009 Nat. Phys. 5 682
[12] Boot H A H and Harvie R B R-S 1957 Nature 180 1187
[13] Gaponov A V and Miller M A 1958 Sov. Phys.—JETP 7 168
[14] Kibble T B W 1966 Phys. Rev. Lett. 16 1054
[15] Kapitza P L and Dirac P A M 1933 Proc. Cambridge Philos. Soc. 29 297
[16] Fedorov M V 1974 Opt. Commun. 12 205
[17] Bucksbaum P H, Schumacher D W and Bashkansky M 1988 Phys. Rev. Lett. 61 1182
[18] Frumhund D L, Allanortho K and Batelan H 2001 Nature 413 142
[19] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[20] Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092
[21] Wells E, Ben-Itzhak I and Jones R R 2004 Phys. Rev. Lett. 93 023001
[22] Bauer D, Mulser P and Steeb W-H 1995 Phys. Rev. Lett. 75 4622
