Qualitative Characteristics of Mutton Obtained from Animals with Different Bioenergy Profile

L D Samusenko¹, A V Mamaev¹, K V Konovalov¹
¹FSBEE HE Orel State Agrarian University, Orel, Russia

E-mail: ldsamusenko@mail.ru

Abstract. Food security is one of the components of the stable economic development. Its main criteria are: availability and safety of raw materials and products of its processing for the population. Ensuring food security in Russia is possible only on the basis of innovative development of the agro-industrial complex and introduction of new methods based on the knowledge of physiology of productive animals into practice. In this regard, a promising direction is a study of product quality assessment using a bioelectric profile of superficially localized biologically active centers on the skin of sheep. Determination of meat qualities was carried out on young sheep at the age of 6-7 months old. Topographic search and measurement of the bioelectric potential level of SLBAC was carried out with an ELAP device. As a result of the studies, it was found out that at values of the bioelectric potential level of SLBAC from 58.2 μA and higher, the quality indicators of meat content are high. The correlation dependence threshold of the bioelectric potential level of SLBAC and the meat content is from +0.12 to 1.0. The bioelectric profile level of SLBAC can serve as a test for a live-animal assessment of the qualitative composition of mutton, with sufficient information content and meat producibility assessment.

1. Relevance
Food security is one of the components of the stable economic development. Its main criteria are: availability and safety of raw materials and products of its processing for the population. Ensuring food security in Russia is possible only on the basis of innovative development of the agro-industrial complex and introduction of new methods based on the knowledge of physiology of productive animals into practice [8,9,10,11,12,17,16,19]. Lately environmentally friendly methods of assessing quality of products, based on the use of bioenergy activity of superficially localized biologically active centers connected to the regulatory systems of the body are often used in the animal husbandry. Thus, the scientific research confirms facts that the level of bioelectric potential of superficially localized biologically active centers can be used to assess the slaughter qualities of cattle and pigs under the conditions of transport stress, as well as to apply acupuncture methods to eliminate negative consequences of the transport stress [7,14,18,19,22]. The previous studies defined a relationship between the bioelectric potential level of SLBAC and dry matter content in milk, technological characteristics of milk fat (fat content, its fatty acid composition and fat content, globule size) [20].

However, available sources contain no information about reliable and informative methods for assessing the quality of sheep raising product - mutton. In this regard, a promising direction is a study of product quality assessment using a bioelectric profile of superficially localized biologically active centers on the skin of the sheep.
2. Materials and methods

The research was carried out on rams of the Orel region farms. Experienced groups were formed on the basis of analogs. Localization and enumeration of the centers on the body of the sheep were adopted based on the research by L.D. Samusenko, A.V. Mamaev. (2015) [15]. Topographic search and measurement of the level of bioelectric potential of SLBAC was carried out with the ELAP-type device [3]. To study and assess the quality of meat productivity, SLBAC No. 13, 31, 61, 62, 64, 65, 80 were selected. To assess the carcase quality based on rib eye indicators, SLBAC No. 28, 31, 36, 37 were used. The area of the rib eye, cm, was determined by measuring the print of the transverse section of the rib eye between the 12th and 13th vertebrae on paper. A qualitative analysis of the meat parameters was carried out using samples taken from the rib eye: moisture, fat, ash and protein, according to generally accepted methods.

Weighing and control slaughter were carried out using the methodology of the All Russian Research Institute for Animal Husbandry 1978 [2,13]. The data were processed statistically using the t-test.

3. Research results

Technological conditions of cultivation and internal factors of the organism are reflected in the intensity of the course of metabolic processes in productive animals, which affects the dynamics of growth and is reflected in the degree of activity of the regulatory systems of the body associated with SLBAC [1,4,5].

As a result of the research, the data presented graphically in Figure 1 were obtained.

![Figure 1](image-url)

Figure 1. The relationship between the indicators of meat productivity and the level of bioelectric potential of the LBAC of sheep, M ± m.

As shown in Figure 1, animals with a high pre-slaughter weight - 38.63 kg had a high level of bioelectric potential of SLBAC - 58.2 μA, which significantly exceeded the control by 24.2%. The rams with a high level of bioelectric potential of SLBAC before slaughter had a slaughter weight of 11.3%, higher in comparison with the control, and 8.2% higher slaughter yield (** P <0.01; *** P <0.001). Animals with a high level of bioelectric potential of SLBAC, according to the assessment of the fatness category, corresponded to the characteristics of the first category.
One of the important criteria in assessing the quality of meat content of slaughter animals is the area of the rib eye. The generalized data of the study (Fig. 2) show a straight-line correlation of the absolute mass of the rib eye, the area of the rib eye and the level of the bioelectric potential of SLBAC. So in animals with a high level of bioelectric potential - 61.7 μA, live weight compared with animals with a low level of bioelectric potential was 7.2% higher, the absolute weight of the rib eye - by 17.6%, - by 12.8% (** P <0.001; *** P <0.001).

![Graph showing the correlation between bioelectric potential and rib eye parameters.]

Figure 2. Dependence of the level of the bioelectric potential of SLBAC and the quality of the meat of rams.

![Image of a rib eye with bioelectric potential levels marked.]

Figure 3. The rib eye of rams with a high level of bioelectric potential of SLBAC (the picture was taken by the authors).

To confirm the established dependence, the correlation coefficients were calculated (Table 1). The animals with a high level of bioelectric potential have a high positive threshold of dependence, that corresponds to the research made by L.E. Orme (1963) and S.V. Builova (1990) showing a high correlation of the area of the rib eye with the total weight of the muscle tissue of the carcase [1,21].
Table 1. Correlation of the dependence of the level of bioelectric potential of SLBAC and the quality of the meat content.

Indicators	Group 1, low LBP (control) n=5	Group 2, high LBP n=5
LBP of SLBAC, μA preslaughter live weight, kg	+0.98	+0.11
LBP of SLBAC, μA slaughter carcass weight, kg	+0.14	+0.56
LBP of SLBAC, μA slaughter yield, %	+0.28	+0.48
LBP of SLBAC, μA absolute rib eye weight, kg	-0.21	+0.12
LBP of SLBAC, μA area of the rib eye, cm²	-0.21	+0.12

The chemical composition of the carcass pulp determines its technological qualities and purpose in further processing of raw materials, therefore, a chemical analysis of meat was carried out and studied, and compared with LBP of SLBAC [6] (Fig. 2).

Figure 4. Chemical composition of mutton with different levels of bioelectric potential of SLBAC.

All the experimental animals showed the previously established dependence. So, in the samples of meat of animals with high LBP of SLBAC there was by 10.2% high moisture content and by 48.0% lower crude fat content, relative to the control (* P <0.05). Reduced moisture content in meat indicates its functional and technological maturity, which is one of the elements of the lifetime assessment of the meat quality. Also, the relationship between the bioelectric potential of SLBAC and the amount of crude fat indicates an increased energy value of meat. The quantitative protein content in animal meat...
did not have significant differences. The distribution of ash elements in the meat of the experimental rams is similar to the distribution of protein.

4. Conclusions
1. It has been established that at values of the bioelectric potential level of SLBAC from 58.2 μA or more, the indicators of the meat productivity and meat quality are high.
2. The threshold of the correlation dependence of the average level of the bioelectric potential of SLBAC and indicators of the quality of meat content is from +0.12 to 1.
3. The level of the bioelectric profile of SLBAC can serve as a test for a live-animal assessment of the qualitative composition of mutton, with sufficient information content and meat productivity assessment.

5. References
[1] Buylov S V 1990 Heritability of productivity traits in Romney Marsh sheep [Text] Questions of technology of wool and mutton production (Dubrovitsy) pp 12-16
[2] GOST 317770 2012 Sheep and goats for slaughter. Mutton, lamb and goat meat in carcase Technical conditions
[3] Guskov A M 1996 Methodological guide for scientific research by postgraduates, applicants and students in the field of animal husbandry [Text] (Orel) 39 p
[4] Erokhin A S 2014 The productivity of Kuibyshev sheep of different sex and type of birth [Text] Sheep, goats, woolen business 1 pp 35-36
[5] Zabelina M V 2007 Technology of growing rams of indigenous sheep breeds of Volga for meat [Text] Agrarian Science 11 pp 19-21
[6] Zabelina M V 2012 Chemical composition and biological usefulness of meat of young sheep of Bakur and Volgograd breeds and their crosses with Edilbaevskaya Scientific Review 2 pp 31-35
[7] Mamaev A V, Leshchukov K A 2008 Life-animal assessment of the quality of raw meat according to the level of bioelectric potential [Text] Bulletin of Orel SAU 2 pp 36-38
[8] Mamaev A V 2005 Theoretical and applied aspects of the use of the compensatory system of animals in assessing the functional state and stimulating the reproductive function - abstract of thesis for the degree of Doctor of Biological Sciences All-Russian Research Institute of Physiology, Biochemistry and Nutrition of Farm Animals (Borovsk)
[9] Mamaev A V 1999 Diagnostics of pregnancy by bioenergetic potential of female animals [Text] (Zootechnics) 11 P 32
[10] Mamaev A V 2003 Using the biological potential of cows to stimulate reproductive function Ways to improve the efficiency of agricultural science All-Russian scientific and practical conference pp 398-405
[11] Mamaev A V 2004 Assessment of the physiological state of cows by bioelectric potential [Text] Veterinary medicine 7 pp 41-42
[12] Mamaev A V 2005 Stimulation of the system of biologically active centers of cows with a laser [Text] Actual issues of zootechnical science and practice as the basis for improving the productive qualities and health of farm animals Materials of the third International scientific and practical conference, dedicated to the 75th anniversary of the Faculty of Technological Management of the Stavropol State Agrarian University pp 249-252
[13] Veniaminov A A, Builov S V, Khamitsaev R S 1978 Methodological recommendations for the study of the meat productivity of sheep (M.) 45 p
[14] Mamaev A V, Samusenko L D, Leshchukov K A 2007 Patent No. 2292710 Method for assessing the slaughter qualities of cattle [Text] (Moscow)
[15] Mamaev A V, Samusenko L D, Rodin O Yu 2005 Patent No. 2570325 Method for identifying superficially localized biologically active centers of the body of sheep [Text] (Moscow)
[16] Mamaev A V, Ilyushina L D, Leshchukov K A Patent PB No. RUS220218128.12.2000 Method of stimulating reproductive function of pigs [Text]
[17] Mamaev A V, Guskov A M, Schepelyev A N, Ilyushina L D, Leshchukov K A RF Patent No. RUS 2175211 07.17.2000 Method for the diagnosis of multiple pregnancy in sows [Text]

[18] Ryabukha A B 2004 Biologically active points of cattle and their influence on the internal environment of the body [Text] Biological resources of the Russian Far East: international scientific practical. conf. (Blagoveschensk) pp 114-116

[19] Samusenko L D, Mamaev A V, Konovalov K A 2018 The relationship between the biopotential level of SLBAC and the meat productivity of sheep [Text] Bulletin of the Kursk State Agricultural Academy 8 pp 132-136

[20] Solovyova A O, Mamaev A V 2018 Application of Method of Measuring Bioelectric Potential for Evaluation of Milk Fitness in Production of Curd Cheese International Conference on Smart Solutions for Agriculture (Agro-SMART)

[21] Orme L E 1963 Estimating compositia from linear measurements, live, probe, and body weight Annals of N.Y. Acad. of Sciences 110 pp 307-308

[22] Niboyet J E H 1963 La moindre resistance a l'electricite de surfaces punctiforme et de trajets cutanes concordant avec les "points et meridians" bases de l'acupuncture These de sciences (Marseille)