Strategies to Modify the Risk of Heart Failure Readmission: A Systematic Review and Meta-Analysis

Thomas T. H. Wan¹, Amanda Terry¹, Enesha Cobb², Bobbie McKee¹, Rebecca Tregerman¹, and Sara D. S. Barbaro¹

Abstract
Background: Human factors play an important role in health-care outcomes of heart failure (HF) patients. A systematic review and meta-analysis of clinical trial studies on HF hospitalization may yield positive proofs of the beneficial effect of specific care management strategies.

Purpose: To investigate how the 8 guiding principles of choice, rest, environment, activity, trust, interpersonal relationships, outlook, and nutrition reduce HF readmissions.

Basic Procedures: Appropriate keywords were identified related to the (1) independent variable of hospitalization and treatment, (2) the moderating variable of care management principles, (3) the dependent variable of readmission, and (4) the disease of HF to conduct searches in 9 databases. Databases searched included CINAHL, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, ERIC, MEDLINE, PubMed, PsycInfo, Science Direct, and Web of Science. Only prospective studies associated with HF hospitalization and readmissions, published in English, Chinese, Spanish, and German journals between January 1, 1990, and August 31, 2015, were included in the systematic review. In the meta-analysis, data were collected from studies that measured HF readmission for individual patients.

Main Findings: The results indicate that an intervention involving any human factor principles may nearly double an individual’s probability of not being readmitted. Participants in interventions that incorporated single or combined principles were 1.4 to 6.8 times less likely to be readmitted.

Principal Conclusions: Interventions with human factor principles reduce readmissions among HF patients. Overall, this review may help reconfigure the design, implementation, and evaluation of clinical practice for reducing HF readmissions in the future.

Keywords
heart failure readmission, care management strategies, moderating effects of human factors in heart health care, risk reduction approach

Introduction
Heart failure (HF) is a chronic and progressive condition in which the heart muscle is unable to pump enough blood to meet the body’s need for blood and oxygen.¹ Placement into class I, II, III, or IV of the New York Heart Association functional classification depends on the severity of patient symptoms and physical activity limitations.¹ Heart failure is a leading cause of hospitalization and health-care costs in the United States. Nearly 5.1 million Americans have been diagnosed with HF, and approximately half die within 5 years of diagnosis.²,³ The total costs of HF to the nation, in terms of direct medical costs and lost productivity, are estimated to be US$32 billion annually.²,³ Congestive HF is the most common reason for readmission among Medicare fee-for-service beneficiaries.⁴

¹ College of Health and Public Affairs, University of Central Florida, Orlando, FL, USA
² Florida Hospital Translational Research Institute, Orlando, FL, USA

Submitted December 11, 2016. Revised February 7, 2017. Accepted February 7, 2017.

Corresponding Author:
Thomas T. H. Wan, 761 Mills Estate Place, Chuluota, FL 32766, USA.
Email: thomas.wan@ucf.edu
patients, and up to 25% of HF patients are readmitted within 30 days. An analysis of Medicare claims data from 2007 to 2009 showed that 35% of readmissions within 30 days were for HF. Section 3025 of the Affordable Care Act amended the Social Security Act to establish the Hospital Readmissions Reduction Program, which requires the Centers for Medicare and Medicaid Services to decrease reimbursements to hospitals with excessive risk-standardized readmissions. This program encourages hospitals to develop interventions to reduce the readmission rates for HF patients. Increasingly, care management practices incorporate human factors that can influence the relationship between therapeutic interventions and patient outcomes. These interventions commonly involve human factors, including components such as education and assessment, rest and relaxation, exercise, interpersonal relationships, outlook, and dietary recommendations.

Research Questions

In a search for the causal mechanisms for enhancing patient care outcomes, this investigation explored how scientific literature has documented the moderating influence of varying care management principles involving human factors on hospital outcomes of HF patients. A systematic review of intervention strategies was conducted, and a broad range of intervention types aimed at reducing HF readmissions was included. The selected intervention components include education and assessment, rest and relaxation, exercise, interpersonal relationships, outlook, and dietary recommendations. The systematic review and meta-analysis aimed to answer the following research questions:

1. Is there evidence that particular intervention components may modify the care management effects on HF readmission?
2. Does a single intervention component work more effectively than a combination of intervention components in care management for HF patients?
3. How can the knowledge gained from the systematic review and meta-analysis be applied in population health management for HF?

Material and Methods

Data Sources and Searches

Appropriate keywords were identified related to (1) the independent variable of hospitalization and treatment, (2) the moderating variable of intervention components, (3) the dependent variable of readmission, and (4) HF. Combinations with 1 keyword from each of the 4 categories (see Table 1) were used to conduct searches in 9 databases: CINAHL, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, ERIC, MEDLINE, PubMed, PsycInfo, ScienceDirect, and Web of Science. Although systematic reviews were not included in the meta-analysis, the Cochrane Database of Systematic Reviews was searched in case any similar studies existed.

Study Selection, Data Extraction, and Quality Assessment

Table 2 shows the inclusion and exclusion criteria in regard to population, interventions, outcomes, timing of outcomes, time period, settings, publication language, design, and publication format. Only studies associated with HF hospitalization and readmissions, published in English, Chinese, French, German, Italian, Portuguese, and Spanish between January 1, 1990, and August 31, 2015, were compiled. Retrospective studies were excluded. Studies that evaluated interventions focused on only pharmaceuticals, surgical procedures, technology, or other therapeutic strategies and that did not incorporate any of the selected human factors were excluded. Each selected study was reviewed by a team of 5 graduate students with training in rating the quality. The detailed characteristics of cited studies are listed in Appendix A.

Data Synthesis and Analysis

Studies that focused on HF and other chronic illnesses and reported the number of readmissions for only HF patients were included if they met the inclusion criteria. All studies that reported the number of persons readmitted in each group were included in the meta-analysis. Although a study that only reported the total number of readmissions per group was included in the systematic review, it was not included in the meta-analysis. Additionally, studies in the systematic review could not be included in the meta-analysis if they evaluated multiple intervention groups and a control group rather than only 1 intervention group and 1 control group, or if the study reported numbers for only composite outcomes, such as readmission and death.

In the Comprehensive Meta-Analysis (Version 2) software, a mixed-effects model was used to synthesize effect sizes from independent studies, which were also categorized into

Table 1. List of Keywords for Database Searches.

Variable	Keywords
Heart failure Intervention	Heart failure, Medicine, medication, hospital, inpatient, outpatient, health education, behavior modification, motivational interviewing
Outcome	Rehospitalization, readmission, health-related quality of life
Education/assessment	Internal-external control, choice behavior, responsibility, goal-setting
Rest/relaxation Environment	Relaxation, rest, sleep, Built environment, pollution
Exercise	Leisure activities, exercise, recreation, sports
Religion/spirituality	Trust, belief, higher power, religion, spirituality
Interpersonal relationships	Family relations, interpersonal relations, sibling relations, professional-family relations, professional-patient relations, social participation, social capital
Outlook	Mindfulness, control, self-efficacy, emotion*, optimism, stress*
Dietary	Food habits, meals, food preferences, food security

* indicates a non-English word.
subgroups based on the moderator variable of intervention components. A random-effects model was used to combine studies within each subgroup, and a fixed-effect model was used to combine subgroups and yield the overall effect. The study-to-study variance was not assumed to be the same for all subgroups. This is the method used by Review Manager (Rev-Man).7 The odds ratio represented the odds of successfully avoiding HF readmissions, given exposure to an intervention involving 1 or more intervention components. A funnel plot of log odds ratio was created to test for publication bias.

Results of Systematic Review
A flow diagram of the systematic review of literature is shown in Figure 1. The characteristics of the 113 included studies are shown in Appendix A. The interventions were grouped by components. Limited biases were introduced since only studies with proven quality were included. The empirical evidence provided by the systematic review is summarized in this section.

Education and Assessment
Eleven studies incorporated education and assessment.8-18 In 9 of these studies, readmissions were significantly lowered. These interventions included:

- Patient education during hospitalization and postdischarge telemonitoring for reinforcement of education and assessment of patients13 or postdischarge home visits and monthly calls for reinforcement, assessment, and medication compliance8
- Phone calls after discharge for patient education, assessment of symptoms and compliance, and review of medication adherence14

Exercise
Four studies incorporated exercise.19-22 In all 4 studies, readmissions were significantly lowered. These interventions included:

- Postdischarge patient education at outpatient clinics and assessment of symptoms and compliance during clinic visits12 or during follow-up calls every 2 to 4 weeks16
- Postdischarge assessments of medication adherence, symptoms/health, and compliance through a single home visit 1 week after discharge,18 through daily telemonitoring and outpatient clinic visits every 1 to 2 weeks,11 and through a daily telemonitoring system.9

Interpersonal Relationships
Two studies incorporated interpersonal relationships.23,24 In these studies, readmissions were not significantly lowered.

Outlook
Two studies incorporated outlook.25,26 In these studies, readmissions were not significantly lowered.
Dietary Recommendations

Three studies incorporated dietary recommendations. In 2 of these studies, readmissions were significantly lowered. These interventions included:

- A comparison of 2 groups, one with a low-sodium diet and the other with a medium-sodium diet. Both groups had 1000 mL/d fluid restriction and a high diuretic dose. The group with the medium-sodium diet showed a significant reduction in readmissions.
- Eight different combinations of levels of fluid intake restriction, sodium intake, and diuretic dosages. A normal sodium diet with high diuretic doses and fluid intake restriction was most effective in reducing readmissions.

Education and Assessment Combined With Exercise

Two studies incorporated these 2 components. In 1 of these studies, readmissions were significantly lowered. This intervention included:

- Patient education during hospitalization and post-discharge assessment of symptoms and compliance with emphasis on activity and treatment through Internet-based monitoring 3 times per week.

Education and Assessment Combined With Interpersonal Relationships

Four studies incorporated these 2 components. In 2 of these studies, readmissions were significantly lowered. These interventions included:

- Postdischarge education and counseling for patients and families to influence medication adherence through clinic visits and phone calls focused on incorporating significant others and building positive medication-taking behaviors.

Education and Assessment Combined With Outlook

One study incorporated these 2 components. In this study, readmissions were not significantly lowered.

Education and Assessment Combined With Dietary Recommendations

Thirty studies incorporated these 2 components. In 16 of these studies, readmissions were significantly lowered. These interventions included:

- Patient education during hospitalization and weekly or biweekly phone calls postdischarge to reinforce education and assess symptoms, compliance, and medication adherence.
- Diet and self-care education during hospitalization and reinforcement of education and assessment of symptoms and compliance after discharge through weekly calls for 2 weeks, weekly calls for 12 weeks and 2 clinic visits, or calls and clinic visits tailored to individual patient needs.
- Diet, disease, and drug therapy education at discharge and after discharge on monthly phone calls, clinic assessments, and using a pill counter.
- Postdischarge phone calls weekly or biweekly for patient education.
- Telemonitoring to assess diet, weight, symptoms, and medication adherence, along with home visits.
- Patient education about symptoms and diet at discharge and after discharge over the phone, monthly home visits.
and a daily diary for assessment of symptoms and compliance.52

- Postdischarge patient education on HF and diet at outpatient clinics, assessment of symptoms and compliance during clinic visits, and monitoring diet and/or medication adherence on calls47,64 or through the use of a diary and printed guide.50

Rest and Relaxation Combined With Outlook
One study incorporated these 2 components.66 In this study, readmissions were significantly lowered. This intervention included:

- Relaxation therapy consisting of relaxation training and music therapy for 1 hour daily and basic psychological care lasting 4 weeks.66

Exercise Combined With Outlook
One study incorporated these 2 components.67 In this study, readmissions were not significantly lowered.

Education and Assessment Combined With Exercise and Interpersonal Relationships
One study incorporated these 3 components.68 In this study, readmissions were significantly lowered. This intervention included:

- A cardiac rehabilitation program for 12 weeks with individualized exercise plans and group-based educational session for patients and families.68

Education and Assessment Combined With Exercise and Dietary Recommendations
Twenty-two studies incorporated these 3 components.69-90 In 12 of these studies, readmissions were significantly lowered. These interventions included:

- Comprehensive patient education during hospitalization and a follow-up call 1 to 2 weeks after discharge76 and at 90 days for high-risk patients72
- Patient education during hospitalization and postdischarge assessment of symptoms and compliance with emphasis on diet, activity, and treatment through biweekly phone calls74
- Comprehensive patient education during hospitalization and postdischarge reinforcement and assessment of symptoms and compliance emphasizing diet, activity, and treatment through home visits at least once weekly for 6 weeks70
- Postdischarge clinic visits and phone calls at 6-month intervals to provide patient education and assess symptoms and compliance66
- Patient education postdischarge during 2 to 5 clinic visits and assessment of symptoms, compliance, and medication use through follow-up phone calls77 or through the use of a diary and/or pill counter,73 as well as motivational interviewing,81 or during monthly home visits with follow-up phone calls every 10 to 15 days89
- One home visit during the first 2 weeks after discharge to provide patient education on self-management, diet, and physical activity and assess medication adherence and/or symptoms69 and follow-up phone calls at 3 and 6 months for assessment85
- Education on self-care management, diet, and exercise delivered by a multidisciplinary team weekly for 6 weeks with a 1-hour exercise component.78

Education and Assessment Combined With Interpersonal Relationships and Dietary Recommendations
Six studies incorporated these 3 components.91-96 In 4 of these studies, readmissions were significantly lowered. These interventions included:

- Postdischarge education on diet and sodium restriction for patients and caregivers through weekly outpatient clinic visits92 or coaching phone calls96
- Education on HF, diet, and drug therapy for patients and caregivers at discharge and postdischarge on monthly phone calls, clinic assessments, and medication checklist84
- Development of care plan and patient and caregiver education by a multidisciplinary team during hospitalization and weekly home visits to reinforce education and assess symptoms and compliance for 9 weeks postdischarge.95

Education and Assessment Combined With Outlook and Dietary Recommendations
Two studies incorporated these 3 components.97,98 In these studies, readmissions were not significantly lowered.

Education and Assessment Combined With Rest and Relaxation, Exercise, and Dietary Recommendations
One study incorporated the 4 components.99 In this study, readmissions were significantly lowered. This intervention included:

- Pharmaceutical care, education about self-care, drugs, and medication, and 1 month of self-monitoring diary cards to record medication use, physical activity, diet, and symptoms.99

Education and Assessment Combined With Exercise, Interpersonal Relationships, and Dietary Recommendations
Eight studies incorporated these 4 components.100-107 In 6 of these studies, readmissions were significantly lowered. These interventions included:
• Educational programs in clinics for patients and families102,103
• PredischARGE education on self-monitoring, diet, exercise, and medication and interview of patients and caregivers by nurse and postdischarge outpatient clinic visits every 3 months to review performance and introduce strategies to improve treatment adherence and response100
• Comprehensive patient education with families/caregivers during hospitalization and postdischarge reinforcement and assessment of symptoms and compliance emphasizing diet, activity, and treatment through clinic visits every 3 months106 or clinic visits and phone calls every 2 to 8 weeks101
• Home visit once during the first month after discharge for education on self-management, diet, physical activity, and vaccinations for the patient and caregiver, and pill organizers provided for medication adherence.104

Education and Assessment Combined With Exercise, Outlook, and Dietary Recommendations

Three studies incorporated these 4 components.108-110 In 1 of these studies, readmissions were significantly lowered. This intervention included:

• A multidisciplinary disease management program to provide in-person education to patients when enrolled in the intervention and through follow-up, which included outpatient clinic visits and monthly telephone calls and then visits every few months beginning at 6 months if patients had stabilized.110

Education and Assessment Combined With Exercise, Interpersonal Relationships, Outlook, and Dietary Recommendations

Nine studies incorporated these 5 components.111-119 In 2 of these studies, readmissions were significantly lowered. These interventions included:

• A telehealth system that combined self-monitoring and motivational support tools in addition to a comprehensive, multidisciplinary HF care program112
• Patient education about HF, medication, diet, and activity during hospitalization, at discharge, or after discharge during home visits and phone calls, which also included assessment of diet, weight, and medication checklist117

Education and Assessment Combined With Rest and Relaxation, Exercise, Interpersonal Relationships, Outlook, and Dietary Recommendations

One study incorporated these 6 components.120 In this study, readmissions were not significantly lowered.

Results of Meta-Analysis

A meta-analysis allowed for the combination of data from 67 studies to determine the impact of single or combined intervention components aiming to reduce HF readmissions. Studies included in the systematic review could not be included in the meta-analysis if only the total number of readmissions per group was reported, if multiple intervention groups were assessed, or if only composite outcomes were reported. Figure 2 shows the forest plot of the effect sizes and confidence intervals for each study in the fixed-effect and random-effects models. In the mixed-effects model, the overall odds of being readmitted were 1.79 times lower among participants of interventions that involved any of these intervention components. The funnel plot of log odds ratio was symmetrical, which indicates that publication bias was unlikely.121

Discussion and Conclusions

This analysis yields robust results that are based on a systematic review and meta-analysis of published studies that evaluate interventions involving particular components aimed at reducing HF readmissions. Intervention strategies incorporating certain human factors or combinations of such factors have the potential to enhance therapeutic outcomes for HF patients following hospitalization. The implications of the key findings are as follows:

1. The independent and combined effects of education and assessment are the most beneficial strategies to yield a positive benefit to avoid or reduce readmissions of HF patients. A care management or disease management team could consider a person-centered approach to enhance individual choice or self-efficacy for the patients.
2. Exercise combined with education and assessment or rest and relaxation shows greater benefits than exercise alone. A clinical team could examine how activities were prescribed, implemented, and evaluated. Lack of adherence to or uncertainty about prescribed activities for the therapeutic outcomes may have prevented activities from demonstrating their beneficial effects on readmissions.
3. Nutrition combined with other intervention components reveals a clear positive effect. Dietary interventions should be combined with other strategies in order to maximize their benefit in the reduction of risk for HF readmissions.
4. Interventions with the aforementioned components increase the likelihood of not being readmitted to the hospital for HF. The meta-analysis results indicate that an intervention involving 1 or more of these components doubles an individual’s probability of not being readmitted.

This study is not without limitations. Potential limitations include the risk of bias at the study level and the possibility of
incomplete retrieval of studies that meet the criteria. Furthermore, consideration should be given to other human factors and information technology that may facilitate patient–provider communications and coordinated care for chronic conditions as effective care modalities are developed and implemented for HF care management. This study focused on therapeutic interventions that incorporated certain human factors; therefore, comparison of these interventions to those not incorporating human factors was beyond the scope of this analysis. Overall, this research may help reconfigure the design, implementation, and evaluation of clinical practice for reducing HF readmissions in the future.

Figure 2. Forest plot of odds ratios for heart failure (HF) readmission in included studies.
Table A1. Characteristics of Included Studies.

Authors	Year	Country	Sample (Intervention)	Sample (Control)	Setting	Timing
Brotons et al.\(^8\)	2009	Spain	144	139	After discharge	12 months
Cordisco et al.\(^9\)	1999	US	30	51	After discharge	1 year
Domingues et al.\(^10\)	2011	Brazil	48	63	During	3 months
Gambetta et al.\(^11\)	2007	US	158	124	After discharge	7 months
Grundtvig et al.\(^12\)	2011	Norway	1169	N/A	After discharge	12 months
Hagglund et al.\(^13\)	2015	Sweden	32	40	After discharge	3 months
Hudson et al.\(^14\)	2005	US	91	N/A	After discharge	6 months
Linden et al.\(^15\)	2014	US	128	129	During	30, 90 days
Bailón et al.\(^16\)	2007	Spain	51	131	During	90 days
Miller & Cox\(^17\)	2005	US	68	N/A	After discharge	90 days, 1 year
Stewart et al.\(^18\)	1998	Australia	49	48	After discharge	6 months
Belardinelli et al.\(^19\)	1999	US	50	49	After discharge	14 months
Dracup et al.\(^20\)	2007	US	86	87	After discharge	3, 6, 12 months
Evangelista et al.\(^21\)	2006	US	48	51	After discharge	6 months
Zeitler et al.\(^22\)	2015	US	1159	1172	After discharge	Every 3 months
Heisler et al.\(^23\)	2013	US	135	131	During	12 months
Li et al.\(^24\)	2012	US	202	205	During	hospitalization
Dekker et al.\(^25\)	2012	US	21	20	During	3 months
Jayadevappa et al.\(^26\)	2006	US	13	10	After discharge	6 months
Albert et al.\(^27\)	2013	US	20	26	After discharge	60 days
Parrinello et al.\(^28\)	2009	Italy	A=87, B=86	N/A	After discharge	12 months
Paterna et al.\(^29\)	2009	Italy	A=52, B=51, C=51, D=51, E=52, F=50, G=52, H=51	N/A	After discharge	6 months
Kashem et al.\(^30\)	2008	US	24	24	After discharge	12 months
Witham et al.\(^31\)	2005	UK	41	41	After discharge	6 months
Bull et al.\(^32\)	2000	US	40	71	During	2 weeks, 2 months
Cline et al.\(^33\)	1998	Sweden	80	110	During	12 months
Saleh et al.\(^34\)	2012	US	173	160	During	12 months
Wu et al.\(^35\)	2012	US	A=27, B=27	28	After discharge	9 months
Ekman et al.\(^36\)	2012	Sweden	125	123	During	hospitalization
Aldamiz-Echevarria et al.\(^37\)	2007	Spain	137	142	After discharge	12 months
Benatar et al.\(^38\)	2003	US	108	108	After discharge	3 months
Brandon et al.\(^39\)	2009	US	10	10	After discharge	12 weeks
Chen et al.\(^40\)	2010	Taiwan	275	275	After discharge	6 months
DevWalt et al.\(^41\)	2006	US	59	64	After discharge	12 months
Dunagan et al.\(^42\)	2005	US	76	75	After discharge	6, 12 months
Falces et al.\(^43\)	2008	Spain	53	50	During	6, 12 months
Gattis et al.\(^44\)	1999	US	90	91	After discharge	2, 12, 24 weeks

(continued)
Table A1. (continued)

Authors	Year	Country	Sample (Intervention)	Sample (Control)	Setting	Timing
Giordano et al.	2009	Italy	230	230	During hospitalization	12 months
Goldberg et al.	2003	US	138	142	During discharge	6 months
Ho et al.	2007	Taiwan	247	N/A	After discharge	139 ± 96 days
Jaarsma et al.	2008	Netherlands	A = 340	339	After discharge	18 months
Jurgens et al.	2013	US	48	51	During discharge	90 days
Korajkic et al.	2011	Australia	35	35	After discharge	3 months
Koelling et al.	2005	US	107	116	During discharge	180 days
Lee et al.	2013	US	23	21	After discharge	3 months
McDonald et al.	2002	Ireland	51	47	During hospitalization	After discharge
Mejhert et al.	2004	Sweden	103	105	After discharge	18 months
Piepoli et al.	2006	Italy	509	N/A	After discharge	12 months
Roig et al.	2006	Spain	61	N/A	After discharge	11 ± 10 months
Roth et al.	2004	Israel	118	N/A	After discharge	12 months
Sales et al.	2013	US	70	67	During hospitalization	30 days
After discharge Sethares & Elliott	2004	US	33	37	During hospitalization	3 months
Shao & Yeh	2010	Taiwan, China	93	N/A	After discharge	1 month
Sisk et al.	2006	US	203	203	After discharge	12 months
Slater et al.	2008	US	612	N/A	During hospitalization	6 months
After discharge						
Wang et al.	2014	China	32	34	During hospitalization	6 months
West et al.	1997	US	51	N/A	After discharge	94-182 days
Wheeler & Waterhouse	2006	US	20	N/A	After discharge	14 weeks
Jiang	2008	China	101	89	During hospitalization	6 months
Tully et al.	2014	Australia	A = 15	N/A	After discharge	6 months
Davidson et al.	2010	Australia	52	53	After discharge	12 months
Aguado et al.	2010	Spain	42	64	After discharge	24 months
Anderson et al.	2005	US	44	77	During hospitalization	6 months
After discharge Andryukhin et al.	2010	Russia	44	41	After discharge	6, 18 months
Dahl & Penque	2001	US	381	203	During hospitalization	90 days
After discharge						
Doughty et al.	2002	New Zealand	100	97	After discharge	12 months
Ferrante et al.	2010	Argentina	760	758	After discharge	1, 3 years
Gámez-López et al.	2012	Spain	A = 25	35	After discharge	10.8 ± 3.2 months
Gau et al.	2008	Taiwan, China	30	30	During hospitalization	1 month
After discharge Hershberger et al.	2001	US	108	N/A	After discharge	6 months
Houchen et al.	2012	UK	17	N/A	After discharge	12 months

(continued)
Authors	Year	Country	Sample (Intervention)	Sample (Control)	Setting	Timing
Lee et al.79	2014	US	473	475	During	hospitalization
30 days						
Liou et al.80 b	2015	Taiwan	56	75	During	hospitalization
Pugh et al. b	2001	US	27	31	During	hospitalization
After discharge						30, 90 days
Riegel et al.82 a	2002	US	126	226	After discharge	3, 6 months
Riegel & Carlson83 b	2004	US	45	43	After discharge	30 days, 3 months
Smith et al.84 b	2015	US	92	106	After discharge	12 months
Stewart et al.85 b	1999	Australia	100	100	After discharge	6 months
Sun et al.86 b	2013	China	433	288	After discharge	4 years
Szkiladz et al.87 b	2013	US	86	94	During	30 days
Tsuyuki et al.88 a	2004	Canada	140	136	During	hospitalization
After discharge						6 months
Vavouranakis et al.89 b	2003	Greece	28	N/A	After discharge	12 months
Wright et al.90 b	2003	New Zealand	100	97	After discharge	12 months
Dracup et al.91 b	2014	US	A=200 B=193	209	After discharge	2 years
Howlett et al.92 b	2009	Canada	990	7741	After discharge	12 months
Jaarsma et al.93 a	1999	Netherlands	84	95	During	hospitalization
After discharge						9 months
López Cabezas et al.94 b	2006	Spain	70	64	During	12 months
Naylor et al.95 b	2004	US	118	121	During	hospitalization
After discharge						52 weeks
Pamjariyakul et al.96 b	2015	US	20	N/A	After discharge	6 months
Jerant et al.97 b	2001	US	A=12 B=13	12	After discharge	6 months
Shao et al.98 b	2013	Taiwan	47	46	After discharge	12 weeks
Varma et al.99 b	1999	UK	42	41	After discharge	12 months
Atienza et al.100 b	2004	Spain	164	174	During	hospitalization
12 months						
Fonarow et al.101 b	1997	US	214	N/A	During	hospitalization
After discharge						6 months
Holst et al.102 b	2001	Australia	42	N/A	During	hospitalization
After discharge						6 months
Kanokslip et al.103 b	2009	Thailand	50	50	After discharge	12 months
Morcillo et al.104 b	2005	Spain	34	36	After discharge	6 months
Ojeda et al.105 b	2005	Spain	76	77	After discharge	16 ± 8 months
Wang et al.106 b	2011	Taiwan, China	14	13	During	hospitalization
After discharge						3 months
White & Hill107 b	2014	US	59	N/A	During	hospitalization
After discharge						2 months
Davis et al.108 b	2012	US	63	62	During	hospitalization
After discharge						30 days
Delaney & Apostolidis109 b	2010	US	12	12	After discharge	90 days
Mao et al.110 b	2015	Taiwan	174	175	After discharge	Median 2 years
Byszewski et al.111 b	2010	Canada	45	46	After discharge	6 weeks
Domingo et al.112 b	2011	Spain	A=48 B=44	N/A	After discharge	12 months
Harrison et al.113 b	2002	Canada	92	100	After discharge	12 weeks
Löfvenmark et al.114 b	2011	Sweden	65	63	After discharge	18 months
Otsu & Moriyama115 b	2012	Japan	47	47	After discharge	7-12, 24 months

(continued)
Table A1. (continued)

Authors	Year	Country	Sample (Intervention)	Sample (Control)	Setting	Timing
Rich et al.	1993	US	63	35	During	90 days
After discharge						
Rich et al.	1995	US	142	140	During	90 days
After discharge						
Stewart et al.	2012	Australia	143	137	After discharge	18 months
Stewart et al.	2014	Australia	137	143	After discharge	12-18 months
Sullivan et al.	2009	US	108	100	After discharge	12 months

Abbreviation: NA, not available.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References
1. American Heart Association. Classes of heart failure. 2015. http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-Failure_UCM_306328_Article.jsp#.Vs3iVpw4HIU. Accessed March 15, 2017.
2. Go AS, Mozaffarian D, Roger VL, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6-e245. doi:10.1161/CIRCULATIONAHA.113.002184.
3. Centers for Disease Control and Prevention. Heart failure fact sheet. 2016. http://www.cdc.gov/dhsp/data_statistics/factsheets/fs_heart_failure.htm. Accessed March 15, 2017.
4. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2009;360(14):1418-1428. doi:10.1056/NEJMsa0803563.
5. Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355-363. doi:10.1001/jama.2012.216476.
6. Centers for Medicare and Medicaid Services. Readmissions Reduction Program (HRPP). 2016. https://www.cms.gov/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html. Accessed March 15, 2017.
7. Comprehensive Meta-Analysis (CMA). Comprehensive meta-analysis 2009. http://www.meta-analysis.com/index.php. Accessed March 15, 2017.
8. Brotons C, Falces C, Alegre J, et al. Randomized clinical trial of the effectiveness of a home-based intervention in patients with heart failure: the IC-DOM study [in English, Spanish]. Rev Esp Cardiol. 2009;62(4):400-408. doi:10.1016/S1885-5857(09)71667-6.
9. Cordisco ME, Beniaminovitz A, Hammond K, Mancini D. Use of telemonitoring to decrease the rate of hospitalization in patients with severe congestive heart failure. Am J Cardiol. 1999;84(7):860-862. doi:10.1016/S0002-9149(99)00452-X.
10. Domingues FB, Clausell N, Aliti GB, Domínguez DR, Rabelo ER. Education and telephone monitoring by nurses of patients with heart failure: randomized clinical trial [in English, Portuguese, Spanish]. Arq Bras Cardiol. 2011;96(3):233-239. doi:10.1590/S0066-782X2011000500014.
11. Gambetta M, Dunn P, Nelson D, Herron B, Arena R. Impact of the implementation of telemanagement on a disease management program in an elderly heart failure cohort. Prog Cardiovasc Nurs. 2007;22(4):196-200. doi:10.1111/j.0889-7204.2007.06483.x.
12. Grundtvig M, Gullestad L, Hole T, Flønæs B, Westheim A. Characteristics, implementation of evidence-based management and outcome in patients with chronic heart failure results from the Norwegian Heart Failure Registry. Eur J Cardiovasc Nurs. 2011;10(1):44-49. doi:10.1016/j.ejcnurse.2010.04.001.
13. Hägglund E, Lyngå P, Frie F, et al. Patient-centred home-based management of heart failure. Findings from a randomised clinical trial evaluating a tablet computer for self-care, quality of life and effects on knowledge. Scand Cardiovasc J. 2015;49(4):193-199. doi:10.3109/14017431.2015.1035319.
14. Hudson LR, Hamar GB, Orr P. Remote physiological monitoring: clinical, financial, and behavioral outcomes in a heart failure population. Dis Manag. 2005;8(6):372-381. doi:10.1089/dis.2005.8.372.
15. Linden A, Butterworth SW. A comprehensive hospital-based intervention to reduce readmissions for chronically ill patients: a randomised controlled trial. Am J Manag Care. 2014;20(10):783-792. http://www.ajmc.com/journals/issue/2014/2014-vol20-n10/a-comprehensive-hospital-based-intervention-to-reduce-readmissions-for-chronically-ill-patients-a-randomized-controlled-trial/. Accessed March 15, 2017.
16. Bailón MM, Rivas NM, Gutiérrez CP, Alonso CJ, de Oteyza CP, Mena LA. Manejo de la insuficiencia cardíaca en pacientes ancianos a través de la implantación de un hospital de día multidisciplinar [in Spanish]. Rev Clin Exp. 2007;207(11):555-558. doi:10.1157/13111573.
17. Miller LC, Cox KR. Case management for patients with heart failure: a quality improvement intervention. J Gerontol Nurs. 2005;31(5):20-28. doi:10.3928/0098-9134-20050501-06.
18. Stewart S, Pearson S, Horowitz JD. Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care. Arch Intern Med. 1998;158(10):1067-1072. doi:10.1001/archinte.158.10.1067.

19. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99(9):1173-1182. doi:10.1161/01.CIR.99.9.1173.

20. Dracup K, Evangelista LS, Hamilton MA, et al. Effects of a home-based exercise program on clinical outcomes in heart failure. Am Heart J. 2007;154(5):877-883. doi:10.1016/j.ahj.2007.07.019.

21. Evangelista LS, Doering LV, Lennie T, et al. Usefulness of a home-based exercise program for overweight and obese patients with advanced heart failure. Am J Cardiol. 2006;97(6):886-890. doi:10.1016/j.amjcard.2005.10.025.

22. Zeitler EP, Piccini JP, Hellkamp AS, et al; HF-ACTION Investigators. Exercise training and pacing status in patients with heart failure: results from HF-ACTION. J Card Fail. 2015;21(1):60-67. doi:10.1016/j.cardfail.2014.10.004.

23. Heisler M, Halasyamani L, Cowen ME, et al. Randomized controlled effectiveness trial of reciprocal peer support in heart failure. Circ Heart Fail. 2013;6(2):246-253. doi:10.1161/CIRCHEARTFAILURE.

24. Li H, Powers BA, Melnyk BM, et al. Randomized controlled trial of CARE: an intervention to improve outcomes of hospitalized elders and family caregivers. Res Nurs Health. 2012;35(5):533-549. doi:10.1002/nur.21491.

25. Ekman I, Wolf A, Olsson LE, et al. Effects of person-centred care among patients with congestive heart failure [in Spanish]. Rev Esp Cardiol. 2007;60(9):914-922. http://www.revespcardiol.org/en/randomized-controlled-clinical-trial-of/article/13114108/.

26. Jayadevappa R, Johnson JC, Bloom BS, et al. Effectiveness of transcendent meditation on functional capacity and quality of life of African Americans with congestive heart failure: a randomized control study. Ethn Dis. 2006;16(1):72-77. http://www.ncbi.nlm.nih.gov/pubmed/17274213. Accessed March 15, 2017.

27. Albert NM, Nutter B, Forney J, Sifcak E, Tang WHW. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (SALT-HF). J Card Fail. 2013;19(1):1-9. doi:10.1016/j.cardfail.2012.11.007.

28. Parrinello G, Di Pasquale P, Licata G, et al. Long-term effects of dietary sodium intake on cytokines and neurohormonal activation in patients with recently compensated congestive heart failure. J Card Fail. 2009;15(10):864-873. doi:10.1016/j.cardfail.2009.06.002.

29. Paterna S, Parrinello G, Cannizzaro S, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol. 2009;103(1):93-102. doi:10.1016/j.amjcard.2008.08.043.

30. Kashem A, Droogan MT, Santamore WP, Wald JW, Bove AA. Managing heart failure care using an internet-based telemedicine system. J Card Fail. 2008;14(2):121-126. doi:10.1016/j.cardfail.2007.10.014.

31. Witham MD, Gray JM, Argo IS, Johnston DW, Struthers AD, McMurdie ME. Effect of a seated exercise program to improve physical function and health status in frail patients ≥70 years of age with heart failure. Am J Cardiol. 2005;95(9):1120-1124. doi:10.1016/j.amjcard.2005.01.031.

32. Bull MJ, Hansen HE, Gross CR. A professional-patient partnership model of discharge planning with elders hospitalized with heart failure. Appl Nurs Res. 2000;13(1):19-28. doi:10.1016/S0897-1897(00)80015-4.

33. Cline CM, Israelsson BY, Willenheimer RB, Broms K, Erhardt LR. Cost effective management programme for heart failure reduces hospitalisation. Heart. 1998;80(5):442-446. doi:10.1136/hrt.80.5.442.

34. Saleh SS, Freire C, Morris-Dickinson G, Shannon T. An effectiveness and cost–benefit analysis of a hospital-based discharge transition program for elderly Medicare recipients. J Am Geriatr Soc. 2012;60(6):1051-1056. doi:10.1111/j.1532-5415.2012.03992.x.

35. Wu JR, Corley DJ, Lennie TA, Moser DK. Effect of a medication-taking behavior feedback theory-based intervention on outcomes in patients with heart failure. J Card Fail. 2012;18(1):1-9. doi:10.1016/j.cardfail.2011.09.006.

36. Ekman I, Wolf A, Olsson LE, et al. Effects of person-centred care in patients with chronic heart failure: the PCC-HF study. Eur Heart J. 2012;33(9):1112-1119. doi:10.1093/eurheartj/het306.

37. Aldamiz-Echevarría Iraquí B, Muniz J, Rodriguez-Fernandez JA, et al. Randomized controlled clinical trial of a home care unit intervention to reduce readmission and death rates in patients discharged from hospital following admission for heart failure [in Spanish]. Rev Esp Cardiol. 2007;60(9):914-922. http://www.revespcardiol.org/en/randomized-controlled-clinical-trial-of/article/13114108/.

38. Benatar D, Bondmass M, Ghitelman J, Avitall B. Outcomes of chronic heart failure. Arch Intern Med. 2003;163(3):347-352. doi:10.1001/archinte.163.3.347.

39. Brandon AF, Schuessler JB, Ellison KJ, Lazenby RB. The effects of an advanced practice nurse led telephone intervention on outcomes of patients with heart failure. Appl Nurs Res. 2009;22(4):e1-e7. doi:10.1016/j.apnur.2009.02.003.

40. Chen YH, Ho YL, Huang HC, et al. Assessment of the clinical outcomes and cost-effectiveness of the management of systolic heart failure in Chinese patients using a home-based intervention. J Int Med Res. 2010;38(1):242-252. doi:10.1177/14732301003800129.

41. DeValt DA, Malone RM, Elliott LA, Buntin RB. The effects of a medication-taking behavior feedback theory-based intervention on outcomes of patients with heart failure [in Spanish]. J Cardiovasc Nurs. 2007;15(5):227-234. doi:10.1097/00024141-200708000-00002.

42. Dunagan WC, Littenberg B, Bryant ME, et al. Randomized trial of a nurse-administered, telephone-based disease management program for patients with heart failure [in Spanish]. J Card Fail. 2005;11(5):358-365. doi:10.1016/j.cardfail.2004.12.004.

43. Falces C, López-Cabezas C, Andrea R, Arnau A, Ylla M, Sadurní J. Intervención educativa para mejorar el cumplimiento del tratamiento y prevenir reingresos en pacientes de edad avanzada con insuficiencia cardíaca. Med Clin. 2008;131(12):452-456. doi:10.1157/13126954.
44. Gattis WA, Hasselblad V, Whellan DJ, O’Connor CM. Reduction in heart failure events by the addition of a clinical pharmacist to the heart failure management team: results of the Pharmacist in Heart Failure Assessment Recommendation and Monitoring (PHARM) study. Arch Intern Med. 1999;159(16):1939-1945. doi:10.1001/archinte.159.16.1939.

45. Giordano A, Scalvini S, Zanelli E, et al. Multicenter randomised trial on home-based telemanagement to prevent hospital readmission of patients with chronic heart failure. Int J Cardiol. 2009;131(2):192-199. doi:10.1016/j.ijcard.2007.10.027.

46. Goldberg LR, Piette JD, Walsh MN, et al; WHARF Investigators. Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: the Weight Monitoring in Heart Failure (WHARF) trial. Am Heart J. 2003;146(4):705-712. doi:10.1016/S0002-8703(03)00393-4.

47. Ho YL, Hsu TP, Chen CP, et al. Improved cost-effectiveness for management of chronic heart failure by combined home-based intervention with clinical nursing specialists. J Formos Med Assoc. 2007;106(4):313-319. doi:10.1016/S0929-6646(09)60258-8.

48. Jaarsma T, van der Wal MH, Lesman-Leegte I. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med. 2008;168(3):316-324. doi:10.1001/archinternmed.2007.83.

49. Jurgens CY, Lee CS, Reitano JM, Riegel B. Heart failure symptom monitoring and response training. Heart Lung. 2013;42(4):273-280. doi:10.1016/j.hrtlng.2013.03.005.

50. Korajcik A, Poole SG, MacFarlane LM, Bergin PJ, Dooley MJ. Impact of a pharmacist intervention on ambulatory patients with heart failure: a randomised controlled study. J Pharm Pract Res. 2011;41(2):126-131. doi:10.1002/jppr.2010.04.002.

51. Koelling TM, Johnson ML, Cody RJ, Aaronson KD. Discharge education improves clinical outcomes in patients with chronic heart failure. Circulation. 2005;111(2):179-185. doi:10.1161/01.CIR.0000151811.53450.B8.

52. Lee KS, Lennie TA, Warden S, Jacobs-Lawson JM, Moser DK. A comprehensive symptom diary intervention to improve outcomes in patients with HF: a pilot study. J Card Fail. 2013;19(9):647-654. doi:10.1016/j.cardfail.2013.07.001.

53. McDonald K, Ledwidge M, Cahill J, et al. Heart failure management: multidisciplinary care has intrinsic benefit above the optimization of medical care. J Card Fail. 2002;8(3):142-148. doi:10.1054/jcaf.2002.124340.

54. Mejhert M, Kahan T, Persson H, Edner M. Limited long term effects of a management programme for heart failure. Heart. 2004;90(9):1010-1015. doi:10.1136/hrt.2003.014407.

55. Piepoli MF, Villani GQ, Aschieri D, et al. Multidisciplinary and multisettering team management programme in heart failure patients affects hospitalisation and costing. Int J Cardiol. 2006;111(3):377-385. doi:10.1016/j.ijcard.2005.07.041.

56. Roig E, Pérez-Villa F, Cuppoletti A, et al. Programa de atención especializada en la insuficiencia cardíaca terminal. Experiencia piloto de una unidad de insuficiencia cardíaca [in Spanish]. Rev Esp Cardiol. 2006;59(2):109-116. doi:10.1157/13084637.

57. Roth A, Kajiloti I, Elkayam I, Sander J, Kehati M, Golovner M. Telecardiology for patients with chronic heart failure: the ‘SHL’ experience in Israel. Int J Cardiol. 2004;97(1):49-55. doi:10.1016/j.ijcard.2003.07.030.

58. Sales VL, Ashraf MS, Lella KJ, et al. Utilization of trained volunteers decreases 30-day readmissions for heart failure. J Card Fail. 2013;19(12):842-850. doi:10.1016/j.cardfail.2013.10.008.

59. Sethares KA, Elliott K. The effect of a tailored message intervention on heart failure readmission rates, quality of life, and benefit and barrier beliefs in persons with heart failure. Heart Lung. 2004;33(4):249-260. doi:10.1016/j.hrtlng.2004.03.005.

60. Shao JH, Yeh HF. The effectiveness of self-management programs for elderly people with heart failure. Tzu Chi Nurs J. 2010;9(1):71-79. doi:10.1016/j.jcma.2015.06.004.

61. Sisk JE, Hebert PL, Horowitz CR, McLaughlin MA, Wang JJ, Chassin MR. Effects of nurse management on the quality of heart failure care in minority communities: a randomized trial. Ann Intern Med. 2006;145(4):273-283. doi:10.7326/0003-4819-145-4-200608150-00007.

62. Slater MR, Phillips DM, Woodard EK. Cost-effective care a phone call away: a nurse-managed telephonic program for patients with chronic heart failure. Nurs Econ. 2008;26(1):41-44. http://www.medscape.com/viewarticle/572312. Accessed March 15, 2017.

63. Wang XH, Qiu JB, Ju Y, et al. Reduction of heart failure rehospitalization using a weight management education intervention. J Cardiovasc Nurs. 2014;29(6):528-534. doi:10.1097/JCN.0000000000000092.

64. West JA, Miller NH, Parker KM, et al. A comprehensive management system for heart failure improves clinical outcomes and reduces medical resource utilization. Am J Cardiol. 1997;79(1):58-63. doi:10.1016/S0002-9149(96)00679-X.

65. Wheeler EC, Waterhouse JK. Telephone interventions by nursing students: improving outcomes for heart failure patients in the community. J Community Health Nurs. 2006;23(3):137-146. doi:10.1207/s15327655jchn2303_1.

66. Wang XH, Qiu JB, Ju Y, et al. Reduction of heart failure rehospitalization using a weight management education intervention. J Cardiovasc Nurs. 2014;29(6):528-534. doi:10.1097/JCN.0000000000000092.

67. Wang XH, Qiu JB, Ju Y, et al. Reduction of heart failure rehospitalization using a weight management education intervention. J Cardiovasc Nurs. 2014;29(6):528-534. doi:10.1097/JCN.0000000000000092.

68. West JA, Miller NH, Parker KM, et al. A comprehensive management system for heart failure improves clinical outcomes and reduces medical resource utilization. Am J Cardiol. 1997;79(1):58-63. doi:10.1016/S0002-9149(96)00679-X.

69. Wheeler EC, Waterhouse JK. Telephone interventions by nursing students: improving outcomes for heart failure patients in the community. J Community Health Nurs. 2006;23(3):137-146. doi:10.1207/s15327655jchn2303_1.

70. Wang XH, Qiu JB, Ju Y, et al. Reduction of heart failure rehospitalization using a weight management education intervention. J Cardiovasc Nurs. 2014;29(6):528-534. doi:10.1097/JCN.0000000000000092.

71. West JA, Miller NH, Parker KM, et al. A comprehensive management system for heart failure improves clinical outcomes and reduces medical resource utilization. Am J Cardiol. 1997;79(1):58-63. doi:10.1016/S0002-9149(96)00679-X.

72. Wang XH, Qiu JB, Ju Y, et al. Reduction of heart failure rehospitalization using a weight management education intervention. J Cardiovasc Nurs. 2014;29(6):528-534. doi:10.1097/JCN.0000000000000092.
70. Anderson C, Deepak BV, Amoateng-Adjepong Y, Zarich S. Benefits of comprehensive inpatient education and discharge planning combined with outpatient support in elderly patients with congestive heart failure. *Congest Heart Fail*. 2005;11(6):315-321. doi:10.1111/j.1527-5299.2005.00458.x.

71. Andryukhin A, Frolova E, Vaes B, Degryse J. The impact of a nurse-led care programme on events and physical and psychosocial parameters in patients with heart failure with preserved ejection fraction: a randomized clinical trial in primary care in Russia. *Eur J Gen Pract*. 2010;16(4):205-214. doi:10.1016/j.eujhj.2001.2712.

72. Dahl J, Penque S. The effects of an advanced practice nurse-directed heart failure program. *Dimens Crit Care Nurs*. 2001;20(5):20-28. doi:10.1097/00003465-200109000-00006.

73. Doughty RN, Wright SP, Pearl A, et al. Randomized, controlled trial of integrated heart failure management: the Auckland Heart Failure Management Study. *Eur Heart J*. 2002;23(2):139-146. doi:10.1053/euhj.2001.27938.

74. Ferrante D, Varini S, Macchia A, et al; GESICA Investigators. Long-term results after a telephone intervention in chronic heart failure: DIAL (Randomized Trial of Phone Intervention in Chronic Heart Failure) follow-up. *J Am Coll Cardiol*. 2010;56(5):372-378. doi:10.1016/j.jacc.2010.03.049.

75. Gámez-López AL, Bonilla-Palomos JL, Anguita-Sánchez M, Castillo-Domínguez JC, Crespin-Crespin M, Suárez de Lezo J. Influencia pronóstica de diferentes programas de intervención extrahospitalaria en pacientes ingresados por insuficiencia cardíaca con disfunción sistólica. *Cardiocore*. 2012;47(1):e1-e5. doi:10.1016/j.carcor.2011.01.008.

76. Gau J, Ting C, Yeh M, Chang T. The effectiveness of comprehensive care programs at improving self-care and quality of life and reducing rehospitalization in patients with congestive heart failure. *Evid Based Nurs*. 2008;4(3):233-242. doi:10.1016/j.jcma.2015.06.004.

77. Hershberger RE, Ni H, Nauman DJ, et al. Prospective evaluation of an outpatient heart failure management program. *J Card Fail*. 2001;7(1):64-74. doi:10.1016/j.cardfail.2001.21677.

78. Houchen L, Watt A, Boyce S, Singh S. A pilot study to explore the effectiveness of ‘early’ rehabilitation after a hospital admission for chronic heart failure. *Physiotherapy Theory Pract*. 2012;28(5):355-358. doi:10.3109/09593985.2011.612015.

79. Lee JH, Kim SJ, Lim J, Kim S, Nakagawa S, Yoo JW. The effects of shared situational awareness on functional and hospital outcomes of hospitalized older adults with heart failure. *J Multidiscip Healthc*. 2014;7:259-265. doi:10.2147/JMDH.S62269.

80. Liou HL, Chen HI, Hsu SC, Lee SC, Chang CJ, Wu MJ. The effects of a self-care program on patients with heart failure. *J Chin Med Assoc*. 2015;78(11):648-656. doi:10.1016/j.jcma.2015.06.004.

81. Pugh LC, Havens DS, Xie S, Robinson JM, Blaha C. Case management for elderly persons with heart failure: the quality of life and cost outcomes. *Med Surg Nurs*. 2001;10(2):71-78.

82. Riegel B, Carlson B, Glaser D, Kopp Z, Romero TE. Standardized telephonic case management in a Hispanic heart failure population: an effective intervention. *Dis Manag Health Out*. 2002;10(4):241-249. doi:10.2165/00115677-200220004-00006.

83. Riegel B, Carlson B. Is individual peer support a promising intervention for persons with heart failure? *J Cardiovasc Nurs*. 2004;19(3):174-183.

84. Smith CE, Piamjariyakul U, Dalton KM, Russell C, Wick J, Ellerbeck EF. Nurse-led multidisciplinary heart failure group clinic appointments: methods, materials, and outcomes used in the clinical trial. *J Cardiovasc Nurs*. 2015;4(1):S25-S34. doi:10.1097/JCN.0000000000000255.

85. Stewart S, Marley JE, Korovitz JD. Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study. *Lancet*. 1999;354(9184):1077-1083. doi:10.1016/S0140-6736(99)03428-5.

86. Sun LN, Wang NF, Zhong YG, et al. Curative effects on standardized management of community patients with coronary heart disease complicated with chronic heart failure [in Chinese]. *Zhonggu Hai Xue Za Zhi*. 2013;93(30):2341-2344. doi:10.3760/cma.j.issn.0376-2491.2013.30.002.

87. Szkladz A, Carey K, Ackerbauer K, Heelon M, Friderici J, Kopczak K. Impact of pharmacy student and resident-led discharge counseling on heart failure patients. *J Pharm Pract*. 2013;26(6):574-579. doi:10.1177/0897190013491768.

88. Tsuyuki RT, Fradette M, Johnson JA, et al. A multicenter disease management program for hospitalized patients with heart failure. *J Card Fail*. 2004;10(6):473-480. doi:10.1016/j.cardfail.2004.02.005.

89. Vavouranakis I, Lambriogeniakas E, Markakis G, et al. Effect of home-based intervention on hospital readmission and quality of life in middle-aged patients with severe congestive heart failure: a 12-month follow up study. *Eur J Cardiovasc Nurs*. 2003;2(2):105-111. doi:10.1016/S1474-5151(03)00006-9.

90. Wright SP, Walsh H, Ingleby KM, et al. Uptake of self-management strategies in a heart failure management programme. *Eur J Heart Fail*. 2003;5(3):371-380. doi:10.1016/S1388-9842(03)00039-4.

91. Dracup K, Moser DK, Pelter MM, et al. Randomized, controlled trial to improve self-care in patients with heart failure living in rural areas. *Circulation*. 2014;130(3):256-264. doi:10.1161/CIRCULATIONAHA.113.03542.

92. Howlett JG, Mann OE, Baillie R, et al. Heart failure clinics are associated with clinical benefit in both tertiary and community care settings: data from the improving Cardiovascular Outcomes in Nova Scotia (ICONS) Registry. *Can J Cardiol*. 2009;25(9):e306-e311. doi:10.1016/S0888-282X(09)70141-2.

93. Jaarsma T, Halsens R, Huijer Abu-Saad H, et al. Effects of education and support on self-care and resource utilization in patients with heart failure. *Eur Heart J*. 1999;20(9):673-682. doi:10.1053/eurhj.1998.1341.

94. López-Cabezás C, Salvador CF, Quadra DC, et al. Randomized clinical trial of a postdischarge pharmaceutical care program vs. regular follow-up in patients with heart failure [in English, Spanish]. *Farm Hosp*. 2006;30(6):328-342. doi:10.1016/S1130-6343(06)74004-1.

95. Naylor MD, Brooten DA, Campbell RL, Maislin G, McCauley KM, Schwartz JS. Transitional care of older adults hospitalized with heart failure: a randomized, controlled trial. *J Am Geriatr Soc*. 2004;52(5):675-684. doi:10.1111/j.1532-5415.2004.52202.x.
96. Piamjariyakul U, Werkowitch M, Wick J, Russell C, Vacek JL, Smith CECaregiver improving program effect: reducing heart failure patient hospitalizations and improving caregiver outcomes among African Americans. *Heart Lung.* 2015;44(6): 466-473. doi:10.1016/j.hrthm.2015.07.007.

97. Jerant AF, Azari R, Nesbitt TSReducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention. *Med Care.* 2001;39(11): 1234-1245. doi:10.1097/00005650-200111000-00010.

98. Shao JH, Chang AM, Edwards H, Shyu YI, Chen SH. A randomized controlled trial of self-management programme improves health-related outcomes of older people with heart failure. *J Adv Nurs.* 2013;69(11):2458-2469. doi:10.1111/j.1212.

99. Varma S, McElnay JC, Hughes CM, Passmore AP, Varma M. Pharmacological care of patients with congestive heart failure: interventions and outcomes. *Pharmacotherapy.* 1999;19(7): 860-869. doi:10.1592/phco.19.10.860.31565.

100. Atienza F, Anguita M, Martinez Alzamora N, et al; PRICE Study Group. Multicenter randomized trial of a comprehensive hospital discharge and outpatient heart failure management program. *Eur J Heart Fail.* 2004;6(5):643-652. doi:10.1016/j.ejheart.2003.11.023.

101. Fonarow GC, Stevenson LW, Walden JA, et al. Impact of a comprehensive heart failure management program on hospital readmission and functional status of patients with advanced heart failure. *J Am Coll Cardiol.* 1997;30(3):725-732. doi:10.1016/S0735-1097(97)00208-8.

102. Holst DP, Kaye D, Richardson M, et al. Improved outcomes from a comprehensive management system for heart failure. *Eur J Heart Fail.* 2001;3(5):619-625. doi:10.1016/S1388-9842(01)00164-7.

103. Kanokspal A, Hengruessamee K, Wuthiwarapras P. A comparison of one-year outcome in adult patients with heart failure in two medical setting: heart failure clinic and daily physician practice. *J Med Assoc Thai.* 2009;92(4):466-470. doi:10.1.1.394. 1187&type=cc.

104. Morcillo C, Valderas JM, Aguado O, Delâs J, Sort D. Evaluation of a home-based intervention in heart failure patients. Results of a randomized study [in Spanish]. *Rev Esp Cardiol.* 2005;58(6): 618-625. doi:10.1016/S1885-5857(06)60247-8.

105. Ojeda S, Anguita M, Delgado M, et al. Short- and long-term results of a programme for the prevention of readmissions and mortality in patients with heart failure: are effects maintained after stopping the programme? *Eur J Heart Fail.* 2005;7(5): 921-926. doi:10.1016/j.ejheart.2005.05.009.

106. Wang SP, Lin LC, Lee CM, Wu SC. Effectiveness of a self-care program in improving symptom distress and quality of life in congestive heart failure patients: a preliminary study. *J Nurs Res.* 2011;19(4):257-266. doi:10.1097/JNR.0b013e31823708d.

107. White SM, Hill A. A heart failure initiative to reduce the length of stay and readmission rates. *Prof Case Manag.* 2014;19(6): 276-284. doi:10.1097/NCM.0000000000000059.

108. Davis KK, Mintzer M, Dennison Himmelfarb CR, Hayat MJ, Rotman S, Allen J. Targeted intervention improves knowledge but not self-care or readmissions in heart failure patients with mild cognitive impairment. *Eur J Heart Fail.* 2012;14(9): 1041-1049. doi:10.1093/eurjhf/hfs096.

109. Delaney C, Apostolidis B. Pilot testing of a multicomponent home care intervention for older adults with heart failure: an academic clinical partnership. *J Cardiovasc Nurs.* 2010;25(5): E27-E40. doi:10.1097/JCN.0b013e3181da2f79.

110. Mao CT, Liu MH, Hsu KH, et al. Effect of multidisciplinary disease management for hospitalized heart failure under a national health insurance programme. *J Cardiovasc Med.* 2015;16(9):616-624. doi:10.2459/JCM.0000000000000089.

111. Byszewski A, Azad N, Molnar FJ, Amos S. Clinical pathways: adherence issues in complex older female patients with heart failure (HF). *Arch Gerontol Geriatr.* 2010;50(2): 165-170. doi:10.1016/j.archger.2009.03.004.

112. Domingo M, Lupón J, González B, et al. Noninvasive remote telemonitoring for ambulatory patients with heart failure: effect on number of hospitalizations, days in hospital, and quality of life. CARME (CATalans Remote Management Evaluation) study [in Spanish]. *Rev Esp Cardiol.* 2011;64(4):277-285. doi:10.1016/j.recesp.2010.10.032.

113. Harrison MB, Browne GB, Roberts J, Tugwell P, Gafni A, Graham ID. Quality of life of individuals with heart failure: a randomized trial of the effectiveness of two models of hospital-to-home transition. *Med Care.* 2002;40(4):271-282. http://www.ncbi.nlm.nih.gov/pubmed/12021683.

114. Löfvenmark C, Karlsson MR, Billing E, Mattiasson AC. A group-based multi-professional education programme for family members of patients with chronic heart failure: effects on knowledge and patients’ health care utilization. *Patient Educ Couns.* 2011;85(2):e162-e168. doi:10.1016/j.pec.2010.09.026.

115. Otsu H, Moriyama M. Follow-up study for a disease management program for chronic heart failure 24 months after program commencement. *Jpn J Nurs Sci.* 2012;9(2):136-148. doi:10.1111/j.1742-7924.2011.00194.x.

116. Rich MW, Vinson JM, Sperry JC, et al. Prevention of readmission in elderly patients with congestive heart failure: results of a prospective, randomized pilot study. *J Gen Intern Med.* 1993; 8(11):585-590. doi:10.1007/BF02599709.

117. Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. *N Engl J Med.* 1995;333(18):1190-1195. doi:10.1056/NEJM199511023331806.

118. Stewart S, Carrington MJ, Marwick TH, et al. Impact of home versus clinic-based management of chronic heart failure: the WHICH? (Which Heart Failure Intervention Is Most Cost-Effective & Consumer Friendly in Reducing Hospital Care) multicenter, randomized trial. *J Am Coll Cardiol.* 2012;60(14): 1239-1248. doi:10.1016/j.jacc.2012.06.025.

119. Stewart S, Carrington MJ, Horowitz JD, et al. Prolonged impact of home versus clinic-based management of chronic heart failure: extended follow-up of a pragmatic, multicentre randomized trial cohort. *Int J Cardiol.* 2014;174(3):600-610. doi:10.1016/j.ijcard.2014.04.164.
120. Sullivan MJ, Wood L, Terry J, et al. The Support, Education, and Research in Chronic Heart Failure Study (SEARCH): a mindfulness-based psychoeducational intervention improves depression and clinical symptoms in patients with chronic heart failure. Am Heart J. 2009;157(1):84-90. doi:10.1016/j.ahj.2008.08.033.

121. Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration; 2011. http://www.handbook.cochrane.org. Accessed March 15, 2017. Updated March, 2011.

Author Biographies

Thomas T. H. Wan, PhD, is a professor and associate dean for Research in the College of Health and Public Affairs at the University of Central Florida in Orlando, Florida. He received his PhD in Sociology/Demography (1970) from University of Georgia and MHS in Social Epidemiology (1971) at the Johns Hopkins University School of Public Health. He served on the faculties of Cornell University, University of Maryland Baltimore County, Virginia Commonwealth University. He has published 13 books and 200+ articles and book chapters in the fields of health services research and evaluation, health and aging, long-term care, etc.

Amanda Terry, PhD, is a Research Scientist at the Florida Hospital Translational Research Institute in Orlando, Florida. She received her PhD in Public Affairs (2016) from the University of Central Florida.

Enesha Cobb, MD, is a Research Scientist at the Florida Hospital Translational Research Institute in Orlando, Florida. She earned her MD (2007) from Johns Hopkins, MA in Theological Studies (2006), and MS in Health and Health Research (2013) from the University of Michigan.

Bobbie McKee, PhD, is a Research Associate in the College of Health and Public Affairs at the University of Central Florida in Orlando, Florida. She received her PhD in Public Affairs (2016).

Rebecca Tregerman is a MS-HSA Candidate in the College of Health and Public Affairs at the University of Central Florida in Orlando, Florida. She is a graduate research assistant for the project.

Sara D. S. Barbaro is a MS-HSA Candidate in the College of Health and Public Affairs at the University of Central Florida in Orlando, Florida. She is a graduate research assistant for the project.