Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer?

Yi Wang
UT Austin
panzer.wy@utexas.edu

Zhiwen Fan
UT Austin
zhiwenfan@utexas.edu

Tianlong Chen
UT Austin
tianlong.chen@utexas.edu

Hehe Fan
National University of Singapore
hehe.fan@nus.edu.sg

Zhangyang Wang
UT Austin
atlaswang@utexas.edu

Abstract

Vision Transformers (ViTs) have proven to be effective, in solving 2D image understanding tasks by training over large-scale image datasets; and meanwhile as a somehow separate track, in modeling the 3D visual world too such as voxels or point clouds. However, with the growing hope that transformers can become the “universal” modeling tool for heterogeneous data, ViTs for 2D and 3D tasks have so far adopted vastly different architecture designs that are hardly transferable. That invites an (over-)ambitious question: can we close the gap between the 2D and 3D ViT architectures? As a piloting study, this paper demonstrates the appealing promise to understand the 3D visual world, using a standard 2D ViT architecture, with only minimal customization at the input and output levels without redesigning the pipeline. To build a 3D ViT from its 2D sibling, we “inflate” the patch embedding and token sequence, accompanied with new positional encoding mechanisms designed to match the 3D data geometry. The resultant “minimalist” 3D ViT, named Simple3D-Former, performs surprisingly robustly on popular 3D tasks such as object classification, point cloud segmentation and indoor scene detection, compared to highly customized 3D-specific designs. It can hence act as a strong baseline for new 3D ViTs. Moreover, we note that pursing a unified 2D-3D ViT design has practical relevance besides just scientific curiosity. Specifically, we demonstrate that Simple3D-Former naturally enables to exploit the wealth of pre-trained weights from large-scale realistic 2D images (e.g., ImageNet), which can be plugged in to enhancing the 3D task performance “for free”. Our code is available at https://github.com/VITA-Group/Simple3D-Former.git.

1 Introduction

In the past year, we have witnessed how transformers extend their reasoning ability from Natural Language Processing (NLP) tasks to computer vision (CV) tasks. Various vision transformers (ViTs) [5, 12, 25, 41] have prevailed in different image/video processing pipelines and outperform conventional Convolutional Neural Networks (CNNs). One major reason that accounts for the success of ViTs is the self-attention mechanism that allows for global token reasoning [39]. It receives tokenized, sequential data and learns to attend between every token pair. These pseudo-linear blocks offer flexibility and global feature aggregation at every element, whereas the receptive field of CNNs at a single location is confined by small size convolution kernels. This is one of the appealing reasons that encourages researchers to develop more versatile ViTs, while keeping its core of self-attention module simple yet efficient, e.g. [53, 18].
Motivated by ViT success in the 2D image/video space, researchers are expecting the same effectiveness of transformers applied into the 3D world, and many innovated architectures have been proposed, e.g. Point Transformer (PT) [52], Point-Voxel Transformer (PVT) [51], Voxel Transformer (VoTr) [26], M3DETR [16]. Although most of the newly proposed 3D Transformers have promising results in 3D classification, segmentation and detection, they hinge on heavy customization beyond a standard transformer architecture, by either introducing pyramid style design in transformer blocks, or making heavy manipulation of self-attentions modules to compensate for sparsely-scattered data. Consequently, ViTs for 2D and 3D vision tasks have so far adopted vastly different architecture designs that are hardly transferable to each other, questioning the belief that transformers can become the universal modeling tool.

That invites the question: are those task-specific, complicated designs necessary for ViTs to succeed in 3D vision tasks? Or can we stick an authentic transformer architecture with minimum modifications, as is the case in 2D ViTs? Note that the questions are of both scientific interest, and practical relevance. On one hand, accomplishing 3D vision tasks with standard transformers would set another important milestone for a transformer to become the universal model, whose success could save tedious task-specific model design. On the other hand, bridging 2D and 3D vision tasks with a unified model implies convenient means to borrow each other’s strength. For example, 2D domain has a much larger scale of real-world images with annotations, while acquiring the same in the 3D domain is much harder or more expensive. Hence, a unified transformer could help leverage the wealth of 2D pre-trained models (e.g., on ImageNet [10]), which are supposed to learn more discriminative ability over real-world data, to enhance the 3D learning which often suffers from either limited data or synthetic-real domain gap. Other potential appeals include integrating 2D and 3D data into unified multi-modal/multi-task learning using one transformer [1].

As an inspiring initial attempt, 3DETR [28] has been proposed. Despite its simplicity, it is surprisingly powerful to yield good end-to-end detection performance over 3D dense point clouds. The success of 3DETR implies that the reasoning ability of a basic transformer, fed with scattered point cloud data in 3D space, is still valid even without additional structural design. However, its 2D siblings, DETR [11], cannot be naively generalized to fit in 3D data scenario. Hence, 3DETR is close to a universal design of but without testing itself over other 3D tasks, and embrace 2D domain. Moreover, concurrent works [2, 14, 22] justify ViT can be extended onto 2D detection tasks without Feature Pyramid Network design as its 2D CNN siblings, leading a positive sign of transferring ViT into different tasks. Uniform transformer model has been tested over multimodal data, especially in combination with 1D and 2D data, and some 3D image data as well [19, 15].
Therefore, we are motivated to design an easily customized transformer by taking a minimalist step from what we have in 2D, i.e., the standard 2D ViT \[12\]. The 2D ViT learns patch semantic correlation mostly under pure stacking of transformer blocks, and is well-trained over large scale of real-world images with annotations. However, there are two practical gaps when bring 2D ViT to 3D space. i) **Data Modality Gaps.** Compared with 2D grid data, the data generated in 3D space contains richer semantic and geometric meanings, and the abundant information is recorded mostly in a spatially-scattered point cloud data format. Even for voxel data, the additional dimension brings the extra semantic information known as “depth”. ii) **Task Knowledge Gaps.** It is unclear whether or not a 3D visual understanding task can gain from 2D semantic information, especially considering many 3D tasks are to infer the stereo structures\[46\] which 2D images do not seem to directly offer.

To minimize the aforementioned gaps, we provide a candidate solution, named as *Simple3D-Former*, to generate 3D understanding starting with a unified framework adapted from 2D ViTs. We propose an easy-to-go model relying on the standard ViT backbone where we made no change to the basic pipeline nor the self-attention module. Rather, we claim that properly modifying (i) positional embeddings; (ii) tokenized scheme; (iii) down-streaming task heads, suffices to settle a high-performance vision transformer for 3D tasks, that can also cross the “wall of dimensionality” to effectively utilize knowledge learned by 2D ViTs, such as in the form of pre-trained weights.

Our Highlighted Contributions

- We propose Simple-3DFormer, which closely follows the standard 2D ViT backbone with only minimal modifications at the input and output levels. Based on the data modality and the end task, we slightly edit only the tokenizer, position embedding and head of Simple3D-Former, making it sufficiently versatile, easy to deploy with maximal reusability.

- We are the first to lend 2D ViT’s knowledge to 3D ViT. We infuse the 2D ViT’s pre-trained weight as a warm initialization, from which Simple-3DFormer can seamlessly adapt and continue training over 3D data. We prove the concept that 2D vision knowledge can help further 3D learning through a unified model.

- Due to a unified 2D-3D ViT design, our Simple3D-Former can naturally extend to different 3D down-streaming tasks, with hassle-free changes. We empirically show that our model yield competitive results in some popular 3D understanding tasks, with simpler and more unified designs.

2 Related Work

2.1 Existing 2D Vision Transformer Designs

There is recently a growing interest in exploring the use of transformer architecture for vision tasks: works in image generation \[6, 29\] and image classification \[6\] learn the pixel distribution using transformer models. ViT\[12\], DETR \[5\] formulated object detection using transformer as a set of prediction problem. SWIN \[25\] is a more advanced, versatile transformer that infuses hierarchical, cyclic-shifted windows to assign more focus within local features while maintaining global reasoning benefited from transformer architectures. In parallel, the computation efficiency is discussed, since the pseudo-linear structure in a self-attention module relates sequence globally, leading to a fast increasing time complexity. DeIT\[37\] focus on data-efficient training while DeepViT\[53\] propose a deeper ViT model with feasible training. Recently, MSA \[18\] was introduced to apply a masked autoencoder to lift the scaling of training in 2D space. Recent works \[7, 14, 22\] start exploring if a pure ViT backbone can be transferred as 2D object detection backbone with minimal modification, and the result indicates it might be sufficient to use single scale feature plus a Vanilla ViT without FPN structure to achieve a good detection performance.

2.2 Exploration of 3D Vision Transformers

Transformer is under active development in the 3D Vision world. For example, 3D reconstruction for human body and hand is explored by the work \[23\] and 3D point cloud completion has been discussed in \[49\]. Earlier works such as Point Transformer \[13\] and Point Cloud Transformer \[17\] focus on point cloud classification and semantic segmentation. They closely follow the prior wisdom in PointNet \[31\] and PointNet++ \[32\]. These networks represent each 3D point as tokens using the Set
Abstraction idea in PointNet and design a hierarchical transformer-like architecture for point cloud processing. Nevertheless, the computing power increases quadratically with respect to the number of points, leading to memory scalability bottleneck. Latest works seek an efficient representation of token sequences. For instance, a concurrent work PatchFormer [9] explores the local voxel embedding as the tokens that feed in transformer layers. Inspired by sparse CNN in object detection, VoTR [26] modifies the transformer to fit sparse voxel input via heavy hand-crafted changes such as the sparse voxel module and the submanifold voxel module. The advent of 3DETR [28] takes an inspiring step towards returning to the standard transformer architecture and avoiding heavy customization. It attains good performance in object detection. Nevertheless, the detection task requires sampling query and bounding box prediction. The semantics contains more information from local queries compared with other general vision tasks in interest, and 3DETR contains transform decoder designs whereas ViT contains transformer encoder only. At current stage, our work focuses more on a simple, universal ViT design, i.e. transformer encoder-based design.

2.3 Transferring Knowledge between 2D and 3D

Transfer learning has always been a hot topic since the advent of deep learning architectures, and hereby we focus our discussion on the transfer of the architecture or weight between 2D and 3D models. 3D Multi View Fusion [35, 20] has been viewed as one connection from Images to 3D Shape domain. A 2D to 3D inflation solution of CNN has been discussed in Image2Point [45], where the copy of convolutional kernels in inflated dimension can help 3D voxel/point cloud understanding and requires less labeled training data in target 3D task. On a related note, for video as a 2D+1D data, TimeSFormer [4] proposes an inflated design from 2D transformers, plus memorizing information across frames using another transformer along the additional time dimension. [24] provides a pixel-to-point knowledge distillation by contrastive learning. It is also possible to apply a uniform transformer backbone in different data modalities, including 2D and 3D images, which is successfully shown by Preceiver [19] and Omnivore [15]. In this paper, we show that with the help of a 2D vanilla transformer, we do not need to specifically design or apply any 2D-3D transfer step - the unified architecture itself acts as the natural bridge.

3 Our Simple3D-Former Design

3.1 Network Architecture

We briefly review the ViT and explain how our network differs from 2D ViTs when dealing with different 3D data modalities. We look for both voxel input and point cloud input. Then we describe how we adapt the 2D reasoning from pretrained weights of 2D ViTs. The overall architecture refers to Figure 1.

3.1.1 Preliminary

For a conventional 2D ViT [12], the input image \(I \in \mathbb{R}^{H \times W \times C} \) is assumed to be divided into patches of size \(P \) by \(P \), denoted as \(I_{x,y} \) with subscripts \(x,y \). We assume \(H \) and \(W \) can be divided by \(P \), thus leading to a sequence of length total length \(N := \frac{HW}{P^2} \). We apply a patch embedding layers \(E: \mathbb{R}^{P \times P} \rightarrow \mathbb{R}^D \) as the tokenizer that maps an image patch into a \(D \)-dimensional feature embedding vector. Then, we collect those embeddings and prepend class tokens, denoted as \(x_{\text{class}} \), as the target classification feature vector. To incorporate positional information for each patch when flattened from 2D grid layout to 1D sequential layout, we add a positional embedding matrix \(E_{\text{pos}} \in \mathbb{R}^{D \times (N+1)} \) as a learn-able parameter with respect to locations of patches. Then we apply \(L \) transformer blocks and output the class labeling \(y \) by a head layer. The overall formula of a 2D ViT is:

\[
\begin{align*}
 z_0 &= [x_{\text{class}}; E(I_{1,1}); \cdots; E(I_{P,P})] + E_{\text{pos}}; \\
 \tilde{z}_l &= MSA(LN(z_{l-1})) + z_{l-1}; \quad z_l = MLP(LN(\tilde{z}_l)) + \tilde{z}_l; \\
 y &= h(LN(z_L,0)).
\end{align*}
\]

Here \(MSA \) and \(MLP \) refer to multi-head self-attention layer and multi-layer perceptron, respectively. The MSA is a standard qkv attention scheme with multi-heads settings [40]. The MLP contains two layers with a GELU non-linearity. Before every block, Layernorm (LN) [42, 3] is applied. The last
layer class token output $z_{L, 0}$ will be fed into head layer h to obtain final class labelings. In 2D ViT setting, h is a single layer MLP that maps D-dimensional class tokens into class dimensions (1000 for ImageNet).

The primary design principle of our Simple3D-Former is to keep transformer encoder blocks \cite{vit} same as in 2D ViT, while maintaining the tokenizing pipeline, \cite{bert} and the task-dependent head, \cite{head}. We state specifically how to design our Simple3D-Former specifically with minimum extension for different data modalities.

3.1.2 Simple3D-Former of Voxel Input

We first consider the “patchable” data, voxels. We start from the data $V \in \mathbb{R}^{H \times W \times Z \times C}$ as the voxel of height H, width W, depth Z and channel number C. We denote our 3D space tessellation unit as cubes $V_{x,y,z} \in \mathbb{R}^{T \times T \times T \times C}$, where x, y, z are three dimensional indices. We assume the cell is of size $T \times T \times T$ by T and H, W, C are divided by T. Let $N = \frac{HWZ}{T^3}$ be the number of total cubes obtain. To reduce the gap from 2D ViT to derived 3D ViT, we provide three different realizations of our Simple3D-Former, only by manipulating tokenization that has been formed in \cite{vit}. We apply a same voxel embedding $E_V : \mathbb{R}^{T \times T \times T} \rightarrow \mathbb{R}^D$ for all following schemes. We refer readers to Figure 2 for a straightforward visual interpretation of three different schemes.

Naive Inflation One can consider a straightforward inflation by only changing patch embedding to a voxel embedding E_V, and reallocating a new positional encoding matrix $E_{pos,V} \in \mathbb{R}^{(1+N) \times D}$ to arrive at a new tokenized sequence:

$$z^V_0 = [x_{class}; E_V(x_{1,1,1}); E_V(x_{1,1,2}); \cdots; E_V(x_{1,2,1}); \cdots; E_V(x_{n, w, z})] + E_{pos,V} . \tag{4}$$

We then feed the voxel tokenized sequence z^V_0 to the transformer block \cite{vit}. The head layer h is replaced by a linear MLP with the output of probability vector in Shape Classification task.

2D Projection (Averaging) It is unclear from \cite{bert} that feeding 3D tokenized cube features is compatible with 2D ViT setting. A modification is to force our Simple3D-Former to think as if the data were in 2D case, with its 3rd dimensional data being compressed into one token, not consecutive tokens. This resemble the occupancy of data at a certain viewpoint if compressed in 2D, and naturally a 2D ViT would fit the 3D voxel modality. We average all tokenized cubes, if they come from the same XY coordinates (i.e. view directions). Therefore, we modify the input tokenized sequence as follows:

$$z^V_0 = [x_{class}; T \sum_{z=1}^{z} E(x_{1,1,z}); T \sum_{z=1}^{z} E(x_{1,2,z}); \cdots; T \sum_{z=1}^{z} E(x_{n, w, z})] + E_{pos,V} . \tag{5}$$

The average setting consider class tokens as a projection in 2D space, with $E_{pos,V} \in \mathbb{R}^{(1+N) \times D}$, $\tilde{N} = \frac{HW}{T^2}$, and henceforth $E_{pos,V}$ attempts to serve as the 2D projected positional encoding with \tilde{N} “patches” encoded.

Group Embedding A more advanced way of tokenizing the cube data is to consider interpreting the additional dimension as a “word group”. The idea comes from group word embedding in BERT-training \cite{bert}. A similar idea was explored in TimesFormer\cite{timesformer} for space-time dataset as well when
considering inflation from image to video (with a temporal 2D+1D inflation). To train an additional “word group” embedding, we introduce an additional 1D Transformer Encoder (TE) to translate the inflated Z-dim data into a single, semantic token. Denote $V_{x,y,z} = \{V_{x,y,1}; V_{x,y,2}; \cdots ; V_{x,y,Z}\}$ as the stacking cube sequence along z-dimension, we have:

$$\tilde{E}(V_{x,y,z}) := TE(E(V_{x,y,z})), \quad z'_0 = [x_{\text{class}}'; \tilde{E}(V_{1,1,z})'; \cdots ; \tilde{E}(V_{y,1,z}); z''_0] + E_{\text{pos}}, V. \quad (6)$$

Here \tilde{E} as a compositional mapping of patch embedding and the 1D Transformer Encoder Layer (TE). The grouping, as an “projection” from 3D space to 2D space, maintains more semantic meaning compared with 2D Projection.

3.1.3 Simple3D-Former of Point Cloud Data

It is not obvious how one can trust 2D ViT backbone’s reasoning power applied over point clouds, especially when the target task changes from image classification to dense point cloud labeling. We show that, in our Simple3D-Former, a universal framework is a valid option for 3D semantic segmentation, with point cloud tokenization scheme combined with our universal transformer backbone. We modify the embedding layer E, positional encoding E_{pos} and task-specific head h originated from (1) and (2) jointly. We state each module’s design specifically, but our structure do welcome different combinations.

Point Cloud Embedding We assume the input now has a form of $(X, P), X \in \mathbb{R}^{N \times 3}, P \in \mathbb{R}^{N \times C}$, referred as point coordinate and input point features. For a given point cloud, we first adopt a MLP (two linear layers with one ReLU nonlinearity) to aggregate positional information into point features and use another MLP embedding to lift point cloud feature vectors. Then, we adopt the same Transition Down (TD) scheme proposed in Point Transformer[52]. A TD layer contains a set abstraction downsampling scheme, originated from PointNet++[42], a local graph convolution with kNN connectivity and a local max-pooling layer. We do not adopt a simpler embedding only (for instance, a single MLP) for two reasons. i) We need to lift input point features to the appropriate dimension to transformer blocks, by looking loosely in local region; ii) We need to reduce the cardinality of dense sets for efficient reasoning. We denote each layer of Transition Down operation as $TD(X, P)$, whose output is a new pair of point coordinate and features (X', P') with fewer cardinality in X' and lifted feature dimension in P'. To match a uniform setting, we add a class token to the tokenized sequence. Later on, this token will not contribute to the segmentation task.

Positional Embedding for Point Clouds We distinguish our positional embedding scheme from any previous work in 3D space. The formula is a simple addition and we state it in (3). We adopt only a single MLP to lift up point cloud coordinate X, and then we sum the result with the point features P altogether for tokenizing. We did not require the transformer backbone to adopt any positional embedding components to fit the point cloud modality.

Segmentation Task Head Design For dense semantic segmentation, since we have proposed applying down-sampling layer, i.e. TD, to the input point cloud, we need to interpolate back to the same input dimension. We adopt the Transition Up (TU) layer in Point Transformer[52] to match TD layers earlier in tokenized scheme. TU layer receives both input coordinate-feature pair from the previous layer as well as the coordinate-feature pair from the same depth TD layer. Overall, the changes we made can be formulated as:

$$\hat{P} = MLP_2(P + MLP_1(X)); \quad z'_0 = [x_{\text{class}}'; TD(TD(X, \hat{P}));] \quad (8)$$

$$y = h(TU(TU(LN(z_{L,1:N}), TD(X, \hat{P})�, (X, \hat{P})).) \quad (9)$$

For detail architecture of Simple3D-Former in segmentation, we refer readers to Appendix C.

3.2 Incorporating 2D Reasoning Knowledge

The advantage of keeping the backbone transformer unchanged is to utilize the comprehensive learnt model in 2D ViT. Our Simple3D-Former can learn from 2D pretrained tasks thanks to the flexibility of choice of backbone structure, without any additional design within transformer blocks. We treat 2D knowledge as either an initial step of finetuning Simple3D-Former or prior knowledge transferred from a distinguished task. The overall idea is demonstrated in Figure[3]
Pretraining from 2D ViT The transformer backbone can get multi-head self-attention pretrained weight loaded without any difficulties, exactly as any 2D ImageNet pretraining loading. This is different from a direct 3D Convolutional Kernel Inflation \cite{33, 45} by maintaining the pure reasoning from patch understanding. We observed that one needs to use a small learning rates in first few epochs as a warm-up fine-tuning, to prevent catastrophic forgetting from 2D pretrained ViT. The observation motivates a better transfer learning scheme by infusing the knowledge batch-by-batch.

Retrospecting From 2D Cases by Generalization As we are transferring a model trained on 2D ImageNet to unseen 3D data, retaining the ImageNet domain knowledge is potentially beneficial to the generalized 3D task. Following such a motivation, we require our Simple3D-Former to memorize the representation learned from ImageNet while training on 3D. Therefore, apart from the loss function given in 3D task L_{3d}, we propose adding the divergence measurement as a proxy guidance during our transfer learning process \cite{8}. We fix a pretrained teacher network (teacher ViT in Figure 3). When training each mini-batch of 3D data, we additionally bring a mini-batch of images from ImageNet validation set (in batch size M). To generate a valid output class vector, we borrow every part except Transformer blocks from 2D teacher ViT and generate 2D class labeling. We then apply an additional KL divergence to measure knowledge memorizing power, denoted as:

$$L := L_{3d} + \lambda \sum_{i=1}^{M} KL(y_{teacher} || y).$$

The original 3D task loss, L_{3d} with additional KL divergence regularization, forms our teacher-student’s training loss. The vector $y_{teacher}$ is from 2D teacher ViT output, and y comes from a same structure as teacher ViT, with the transformer block weight updated as we learn 3D data. In practical implementation, since the teacher ViT is fixed, the hyper-parameter λ depends on the task: see Section 4.

4 Experiments

We test our Simple-3DFormer over three different 3D tasks: object classification, semantic segmentation and object detection. For detailed dataset setup and training implementations, we refer readers to Appendix A.

4.1 3D Object Classification

We test 3D classification performance over ModelNet40 \cite{44} dataset and ScanObjectNN \cite{38} dataset. We choose to apply Group Embedding scheme as our best Simple3D-Former to compare with existing
Table 2: Comparison of 3D segmentation results on the ShapeNetPart and S3DIS dataset.

Method	ShapeNetPartSeg	S3DIS		
	cat. mIoU(%)	ins. mIoU(%)	mAcc.(%)	ins. mIoU(%)
PointNet[31]	80.4	83.7	49.0	41.1
PointNet++[32]	81.9	85.1	-	-
PointCNN[21]	84.6	86.1	75.6	65.4
CDGCNN[43]	82.3	85.4	56.1	-
KPConv[36]	85.1	86.4	72.8	67.1
Point Transformer[52]	83.7	86.6	76.5	70.4
PVT[51]	-	86.5	67.7	61.3
PatchFormer[9]	-	86.7	-	68.1
Simple3D-Former	83.3	86.0	72.5	67.0

We further report the result in Table 1 compared with other state-of-the-art methods over ModelNet40 dataset, and over ScanObjectNN dataset. We optimize the performance of our Simple3D-Former with voxel input by setting up $T = 6$ in (7). We finetune with pretrained weight as well as using memorizing regularization (10) with M equal to batch size. The classification result of point cloud modality is generated by dropping out two TU layers and passing the class token into a linear classifier head, with the same training setup as ShapeNetV2 case. Our network outperforms previous CNN based designs, and yield a competitive performance compared with 3D transformers. Several prior works observed that adding relative positional encoding within self-attention is important for a performance boost. We appreciate these findings, but claim that a well-pretrained 2D ViT backbone, with real semantic knowledge infused, does assist a simple, unified network to learn across different data modalities. The observation is particularly true over ScanObjectNN dataset, where transformer-enlightened networks outperform all past CNN based networks. Our method, with relatively small parameter space, achieves the similar result compared with Point-BERT.

4.2 3D Point Cloud Segmentation

We report our performance over object part segmentation task in Table 2. The target datasets are ShapeNetPart[47] dataset and Semantic 3D Indoor Scene dataset, S3DIS[2]. We do observe that some articulated designed transformer network, such as Point Transformers[52] and PatchFormer[9] reach the overall best performance by designing their transformer networks to fit 3D data with more geometric priors, while our model bond geometric information only by a positional embedding at tokenization. Nevertheless, our model does not harm the performance and is very flexible in designing. Figure 4 visualizes our Simple3D-Former prediction. The prediction is close to ground truth and it is surprisingly coming from 2D vision transformer backbone without any further geometric-aware infused knowledge. Moreover, the prior knowledge comes only from ImageNet classification task, indicating a good generalization ability within our network.

Figure 4: Selective visualizations of point cloud part segmentation.

4.3 3D Object Detection

We test our simple-3DFormer for SUN RGB-D detection task [34]. We follow the experiment setup from [28]: we report the detection performance on the validation set using mean Average Precision (mAP) at IoU thresholds of 0.25 and 0.5, referred as AP25 and AP50. The result is shown in Table 3 and the evaluation is conducted over the 10 most frequent categories for SUN RGB-D. Even though 3DETR is a simple coupled Transformer Encoder-Decoder coupled system, we have shown that our scheme can achieve similar performance by replacing 3D backbone into our simple3D-Former scheme.
Table 3: 3D Detection Result over SUN RGB-D data

Metric	BoxNet [30]	VoteNet [30]	3DETR [28]	3DETR-masked [28]	H3DNet [48]	Simple3D-Former (ours)
AP_{50}	52.4	58.3	58.0	59.1	60.1	57.6
AP_{50}	25.1	33.4	30.3	32.7	39.0	32.0

4.4 Ablation Study

Different Performance With/Without 2D Infused Knowledge to justify our Simple3D-Former can learn to generalize from 2D task to 3D task, we study the necessity of prior knowledge for performance boost. We compare the performance among four different settings: i) train without any 2D knowledge; ii) with pretrained 2D ViT weights loaded; iii) with a teacher ViT only, by applying additional 2D tasks and use the loss in (10); iv) using both pretraining weights and a teacher ViT.

Results shown in Table 4 reflect our motivation. One does achieve the best performance by not only infusing prior 2D pretraining weight at an early stage, but also getting pay-offs by learning without forgetting prior knowledge. It probably benefits a more complex, large-scale task which is based upon our Simple3D-Former.

Table 5: Power of 2D Prior Knowledge (with teacher ViT) in 3D task, evaluated in cat. mIoU.(%) and ins. mIoU.(%) over ShapeNet Part Segmentation

3D Data Portion	M	cat. mIoU.(%)	ins. mIoU.(%)
25%	0	79.1	85.3
	32	79.3	85.6
	64	79.6	85.3
50%	0	79.2	84.1
	32	79.9	84.0
	64	80.3	84.5
100%	0	81.1	84.6
	32	82.8	85.4
	64	83.1	85.7

Performance in Low-Quantity 3D Data Regime

The computation complexity of point cloud data goes up as the number of sample points blows up. Even for a fixed point cloud sampling of 1024 points, it is inefficient to train over the entire dataset. To test the generalization ability of our Simple3D-Former, we perform a test to explore the power of 2D knowledge transferring. We use only a portion of training data in 3D and change the batch size of source task images M at different scales. Result in Table 5 justify the performance over point cloud part segmentation task. Though one needs more data to attain higher accuracy, we found 2D pretrained knowledge offers an accuracy boost. The result indicates a potential joint-training across different data modality and different tasks to find universal transformers with good generalization ability.

5 Conclusion

We retrospect the development of Vision Transformer and propose a unified version of a 3D transformer, named as Simple3D-Former, that learns from 2D rich-knowledge domain first. A 2D ViT can inflate into a 3D ViT, by replacing 2D feature embedding, positional embedding and end-task head layer. Moreover, we justify that 2D domain knowledge helps our model perform better when understanding 3D data and the power of our model can be further strengthened by learning without forgetting. Our experimental result indicates self-attention modules, if learnt from 2D domain knowledge, can be distilled and thereby help the learning tasks in 3D voxel and point cloud data. A potential drawback of our simple3D-Former is an overlook in 3D-aware only knowledge in the tokenizing process. In the subsequent work, we hope to explore more versatile combinations of 2D transformer backbones attached with distinguished 3D feature extracting layers, and include complex tasks in large scale datasets. Even though our models are designed for scientific research, it might unintentionally generate biased semantic labels of confidential or realistic data. One can prevent an abuse of use by restricting copyrights or claim data publicity and ethics.
References

[1] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong Chung, Shih-Fu Chang, Yin Cui, and Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text. arXiv preprint arXiv:2104.11178, 2021.

[2] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1534–1543, 2016.

[3] Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In International Conference on Learning Representations, 2019.

[4] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? In Marina Meila and Tong Zhang, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 813–824. PMLR, 2021.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020.

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In International Conference on Machine Learning, pages 1691–1703. PMLR, 2020.

[7] Wuyang Chen, Xianzhi Du, Fan Yang, Lucas Beyer, Xiaohua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li, Xiaodan Song, Zhangyang Wang, et al. A simple single-scale vision transformer for object localization and instance segmentation. arXiv preprint arXiv:2112.09747, 2021.

[8] Tianrui Guan, Jun Wang, Shiyi Lan, Rohan Chandra, Zuxuan Wu, Larry Davis, and Dinesh Manocha. M3detr: Multi-representation, multi-scale, mutual-relation 3d object detection with transformers. arXiv preprint arXiv:2104.11896, 2021.

[9] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

[10] Yingyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on 3d transformed points. Advances in neural information processing systems, 31:820–830, 2018.

[11] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones for object detection. arXiv preprint arXiv:2203.16527, 2022.
[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xioaou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

[45] Chenfeng Xu, Shijia Yang, Bohan Zhai, Bichen Wu, Xiangyu Yue, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka. Image2point: 3d point-cloud understanding with pretrained 2d convnets. arXiv preprint arXiv:2106.04180, 2021.

[46] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. Computer Vision and Pattern Recognition (CVPR), 2020.

[47] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

[48] Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and Ruigang Yang. Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11495–11504, 2020.

[49] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 12498–12507, 2021.

[50] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud transformers with masked point modeling. arXiv preprint arXiv:2111.14819, 2021.

[51] Cheng Zhang, Haocheng Wan, Shengqiang Liu, Xinyi Shen, and Zizhao Wu. Pvt: Point-voxel transformer for 3d deep learning. arXiv preprint arXiv:2108.06076, 2021.

[52] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 16259–16268, October 2021.

[53] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.
A Dataset Setup and Implementation Details

A.1 3D Object Classification

Dataset Setup ModelNet40 consists of 12311 samples with 9843 training samples and 2468 test samples. It contains 40 classes in total. The original data is aligned and in point-cloud format. To generate voxel input of ModelNet40, we use binvox[^1] to voxelize the data into a 30^3 input. The size 30 follows the standard setup in ModelNet40 setup. ScanObjectNN contains 2902 CAD objects with background knowledge provided in point cloud as well. It contains 15 classes in total. We apply our model over the augmented PB_T50_RS batch samples, in which bounding boxes of objects can shift up to 50% and objects are perturbed with rotation and scaling, resulting 14510 total input train/test samples. We follow the standard sampling scheme to generate a subset of 1024 points for every point cloud model in both datasets. We additionally use ShapeNetV2[^47] to testify our Simple3D-Former for voxel input as well. For details in ShapeNetV2 classification, we refer readers to Appendix B.

Implementation Details We use one TITAN A100 for training. For voxel classification task, we use the Adam optimizer with an initial warm-up at starting learning rate of 0.01, which is decayed by a factor of 0.5 every 20 epochs. The batch size is set to 64. We trained 100 epochs in total. The hyperparameter λ is set to 0.1 back in (10). We evaluate mean of class-wise accuracy (mAcc), and overall point-wise accuracy (OA). The voxel embedding E_V we choose is a single convolutional layer with kernel size of T and stride T to generate tokenized sequence and remain simple. The pretrained knowledge comes from DeIT. The experiment is conducted with DeIT-base backbone with ImageNet-1K pretraining of image size 224. We justify the ablation study for choosing backbones and appropriate positional embedding parameters for optimal performance. In addition, we show the optimal performance is obtained by using not only ViT backbone but pretrained 2D knowledge and the help of memorizing 2D tasks. We report the result in Appendix B accordingly.

A.2 3D Point Cloud Segmentation

Dataset Setup For object part segmentation, we test over ShapeNetPart dataset, containing 16,881 pre-aligned shapes with dense labeling of 50 different parts over 16 distinguished categorical objects. We sample 1024 points for every point cloud model with standard process. We evaluate our Simple3D-Former over semantic indoor scene semantic segmentation dataset, S3DIS, as well. S3DIS contains 5 large-scale indoor scans with 12 semantic elements. We use area 5 as the test case while the remaining areas are treated as training data. We sample 4096 points for every partitioned indoor scene with standard process.

Implementation Details The training is conducted on one TITAN A100. For object part segmentation task, we use the SGD optimizer with an initial learning rate of 0.05, which is decayed by a factor of 0.1 every 100 epochs. The batch size is set to 64. We trained our Simple3D-Former up-to 300 epochs. For semantic segmentation task, we use the SGD optimizer with an initial learning rate of 0.1, which is decayed by a factor of 0.5 every 20 epochs. We trained 100 epochs with batch size 8. We use DeIT-base as the backbone ViT for both tasks. The hyperparameter λ is set to 0.1 back in (10). We evaluate categorical mean intersection over union (cat. mIOU.) and instance mean intersection over union (ins. mIOU.) respectively for ShapeNetPart dataset while we report the mean accuracy and instance mean intersection over union in S3DIS dataset.

A.3 3D Point Cloud Object Detection

Dataset Setup We apply our Simple3D-Former onto a standard 3D indoor detection benchmark, SUN RGB-D (v1). SUN RGB-D contains 5000 training samples with oriented bounding box annotations while KITTI dataset contains 7518 raw 3d input.

Implementation Details To justify our simple3D-Former can be embedded naturally into a detection model’s 3D backbone, we modify 3DETR’s backbone into our version, while keep the decoder head unchanged. The training is conducted on one TITAN A100 and trained over 1080 epochs.

[^1]: https://www.patrickmin.com/binvox/
Detailed architecture of Simple3D-Former backbone used in detection task is explained in Appendix C.

B More Classification Result With Voxel Input

ShapeNetV2 dataset contains 52456 samples from 55 categories and we use a fixed 80% − 20% train-test split throughout our experiments. The voxel data is of size 1283. Note that ShapeNetV2 is evaluated only when we determine which Simple3D-Former setup optimizes the performance over voxel data.

It has been explored in 2D ViT the relationship between the size of patches and the classification accuracy over image dataset. There is no such prior belief in 3D voxel data, so we test our Simple3D-Formers under different settings to find the optimal scheme. For point cloud input, we fix our model all from the beginning.

Table 6: Performance of Different Simple-3DFormer Design on ShapeNetV2 Classification evaluated on OA. (%), either with pretrained 2D ViT weight guidance (W P.) or without pretrained 2D ViT guidance (W/O P.).

Scheme	Token Length	Naive Transformer	
		W P.	W/O P.
Naive Inflation	8 by 8 by 8	83.1	79.8
2D Projection	8 by 8	83.6	82.3
Group Embedding	8 by 8	85.0	84.9
Naive Inflation	14 by 14 by 14	85.5	85.5
2D Projection	14 by 14	83.5	82.8
Group Embedding	14 by 14	87.1	86.8

Table 6 shows the preliminary result. We test under two different cell size settings: $T = 16$ (8 cells per axis) and $T = 9^3$ (14 cells per axis) in (4), (5) and (7). Among all configurations, Group Embedding outperforms Naive Inflation and 2D Projection. More importantly, the pretraining weight adopted in transformer backbone before training over 3D data does help to improve the accuracy of object classification. Another observation is that the size of token sequence affects the result as well. A 9^3 cell yields more semantic meaning compare to that of a 16^3 cell, which neglects too many local connections. Hence, in the following experiments over voxel data,

We further justify that among all transformer backbone mimic from 2D ViT siblings, DeIT-base attains optimal performance. The result is shown in Table 7.

Table 7: Different 2D ViT backbone performance and complexity comparison. The table shows our Simple3D-Former under Group Embedding setup.

Backbone Name	ImageNet(2D)	ModelNet40(3D)		
	Param. (M)	FLOPs (G)	Param. (M)	OA. (%)
DeiT-tiny	5	0.28	5	84.5
DeiT-small	22	1.12	21	86.7
DeiT-base	86	4.46	85	88.0

Different Performance Under Particular Ordering

When discussing 2D Projection tokenized scheme for voxel data, we implicitly assume we project along Z-dim. We show that we are not biased from the choice of ordering. Table 8 explains different result of particular ordering in 2D Projection scheme, in both ShapeNetV2 and ModelNet40 dataset. We denote the ordering XYZ as the normal input order, where Z-dim data is projected or grouped. Similarly, YZX refers to the X-dim data projection and ZXY refers to the Y-dim data pro-

Table 8: Performance under different ordering of input voxels, with 2D Projection scheme and evaluated in OA. (%)

Projection View	ShapeNetV2	ModelNet40
XYZ	83.6	82.1
YZX	84.5	83.2
ZXY	81.9	84.3

2For $T = 9$ Group Embedding scheme, we use batch size of 32 instead.
jection. The result indicates the optimal choice of projection is dataset dependent, but the performance
is optimal further when considering group embedding scheme.

C Detailed architecture of Simple3D-Former In Point Cloud Modality

![Diagram](image)

Figure 5: To transfer from a classification backbone into an object part segmentation backbone,
we propose some additional, yet easy extensions that fit into 3D data modality. Given input point
clouds with its coordinates X, features P, we compose positional information into features first and
use a simple MLP to elevate features into $D/4$ dimensions, given D the dimension of backbone.
Then we apply two layers of Transition down over pair (X, P), then feed the abstracted point cloud
tokens sequentially into the transformer backbone. To generate the dense prediction. We follow the
residual setting and add feature output from TD layers together with the previous layers’ output into
a transition up layer. Then we apply a final MLP layer to generate dense object part predictions.

Simple3D-Former for Part Segmentation Task We refer to Figure 5 as the overall visualized
design of our Simple3D-Former for point cloud data. The overall Simple3D-Former of point cloud
segmentation has a different design of data tokenizer and downstream head (to produce information
not from class tokens). In point tokenizer part, two layers of point set abstractions are applied. The
Transition Down (TD) layer comes from Point Transformer. A TD layer contains a set abstraction
downsampling scheme, originated from PointNet++, a local graph convolution with kNN connectivity,
and a local max-pooling layer. Rather than adding relative positional embedding in attention layers
as most 3d-aware transformers did, we propose to add the relative positional embedding in local
convolution layers in pointnet++ skeleton (i.e. PointSetAbstraction operation in PointNet++), to
avoid artificial design in transformer attention modules, but incorporate local embeddings beforehand.
Each TD layer reduces the number of points by 4 with a 2^x scale-up of the embedding dimension.
The newly distilled point tokenized sequence is then fed into the ViT backbone. The Transition Up
(TU) layer comes from Point Transformer as well. It interpolates over the original point coordinates
by neighboring features and scales down the embedding dimension by 2. TU module also contains a
residual block that adds the point feature vectors back in the corresponding TD layer, resulting in a
U-Net architecture. We provide code snippets in Listing 1 and 2 for readers to match the practical
implementation with Figure 5.

Simple3D-Former for 3D Detection Task In our 3D detection experiment, we replace 3DETR’s
transformer encoder structure into our Simple3D-Former design, and generate the output head with
same structure as in 3detr, and fix other part to show the flexibility of our design.

```python
self.transition_downs = nn.ModuleList()
for i in range(2):
    channel = self.embed_dim // 4 * 2 ** (i+1)
    self.transition_downs.append(TransitionDown(npoints // 4 ** i, nneighbor, [channel // 2 + 3, channel, channel]))

self.transition_ups = nn.ModuleList()
for i in reversed(range(2)):
    channel = self.embed_dim // 4 * 2 ** i
    self.transition_ups.append(TransitionUp(channel * 2, channel, channel))

self.fc1 = nn.Sequential(
nn.Linear(d_points, self.embed_dim // 4),
```

15
D Different Point Cloud Simple3D-Former Design

We additionally show different results regarding the number of TD/TU coupled layers as the ablation study of Simple3D-Former structure. Note that if TD/TU layer number is 0, only a MLP layer is applied to lift input point cloud features and another MLP is applied to encode absolute positions. Moreover, we fix two MLP layers back in Eqn. (10) to have the same output dimension for a reasonable comparison, when testing with 0 or 1 layer TD/TU setting. For 2 layer TD/TU setup, the dimension of MLP is changing according to the embedding dimension $D/4$ based on different choices of backbones: DeIT-tiny, $D = 192$; DeIT-small, $D = 384$; DeIT-base, $D = 768$.

As TD layer scales up the embedding dimension of point vectors while reducing the size of tokenized sequence, different ViT backbones, when equipped with same number of TD/TU layers, have different scalings. The experiment setup is the same as described in Section 4.2, with $M = 64$ for 2D knowledge infusing. All setups applied pretrained weight from the corresponding backbones as well.

Table 9 shows the result regarding different TD/TU layers. We found that by introducing point abstraction, the performance of a 2D pretrained ViT backbone can be further improved compared with MLP only setup (0 TD/TU layers), with the total computational cost relatively lower. This reflects the claim back in Section 3, where we point out the necessity of point cloud data modality modification to fit into the universal transformer backbone. Our Simple3D-Former can adapt from the change of data modality and obtain a good result, compare with CNN-based schemes.
Table 9: Different Simple3D-Formers’ performance over part segmentation task, evaluated in cat. mIoU. (%), ins. mIoU. (%) and MACs. (G).

# of TD/TU Layers	ShapeNetPart	cat. mIoU. (%)	ins. mIoU. (%)	MACs. (G)
0 (DeIT-tiny)		81.7	84.7	5.53
1 (DeIT-small)		82.9	85.1	6.53
1 (DeIT-base)		82.5	84.9	26.04
2 (DeIT-tiny)		82.2	84.7	1.87
2 (DeIT-small)		82.5	84.7	7.42
2 (DeIT-base)		83.1	85.7	29.59