Predictors of extrapulmonary tuberculosis among diabetic patients at Debre Markos compressive specialized hospital, Ethiopia, 2021: A retrospective cohort study

Mihretie Gedfew
College of Health Science, Debre Markos University, Debre Markos, Ethiopia

ARTICLE INFO

Keywords:
Diabetes mellitus
Extrapulmonary tuberculosis
Predictors of extrapulmonary tuberculosis

ABSTRACT

Background: Extrapulmonary tuberculosis is an emerging public health problem among diabetic patients. Diabetes, which causes immunosuppression, is increasingly being recognized as an independent risk factor for tuberculosis, and the two often coexist and impact each other. Therefore, this study aimed to investigate the incidence and predictors of extra pulmonary tuberculosis among diabetic patients at Debre Markos referral hospital, Northwest Ethiopia.

Methods: This institutionally-based retrospective cohort study was undertaken among 433 diabetic patients of Debre Markos compressive specialized hospital between January 2016 to December 2020. All eligible diabetic patients who fulfilled the inclusion criteria were included in the study. Data were entered using Epi-data Version 3.1 and analyzed using STATA Version 14. The survival time of diabetic patients was estimated using the Kaplan-Meier survival curve, and the survival time between different categorical variables was compared using the log rank test. Both bi-variable and multivariable Cox-proportional hazard regression models were fitted to identify independent predictors of tuberculosis among diabetic patients.

Results: Among a cohort of 433 diabetic patients at Debre Markos compressive specialized hospital, 17(3.9%) developed extra pulmonary tuberculosis during the follow-up time. The total time allotted to follow up the study participants was 1101.5 person-years (PY). The overall extra pulmonary tuberculosis incidence rate was 1.5 per 100 PY with 95% CI. Using the multivariable Cox-regression analysis, age (AIR 4.8 (95% CI (1.2–20.7), 0.03), diabetic medication (AIR 1.4 (95% CI(1.24–16), 0.03), having past history of PTB before diabetic follow up initiation (AID 1.5(95% CI (3.2–6.9),0.01) and having history of alcohol (AIR (95%CI (4(1.2–13),0.02) were significantly increased the risk of extra pulmonary tuberculosis while BMI (18.5–25) AIR(95% CI (0.22 (0.06–0.76), 0.02) was associated with a rate reduction for the incidence of extra pulmonary tuberculosis.

Conclusions: In this study, we found a high rate of extra pulmonary tuberculosis among diabetic patients. Factors significantly linked with increased risk of extra pulmonary tuberculosis included: age, using insulin as hypoglycemic medication, having past history of PTB before diabetic follow up initiation and alcoholic history while BMI was associated with a rate reduction of EPTB. Early screening and treatment for extra pulmonary tuberculosis is highly recommended at diabetes mellitus follow up for patients with the above risk factors.

1. Background

TB remains a serious public health challenge throughout the world, most notably in low and middle income countries ranking above HIV/AIDS [1]. Globally, around 10.4 million people fell ill with TB and 1.7 million died from the disease in 2016. The dynamics of the transmission varies geographically, the largest number of new TB cases occurred in Asia and Africa with 45% and 25% respectively [2,3].

Extrapulmonary tuberculosis is an emerging public health problem among diabetic patients. Diabetes, which causes immunosuppression, is
increasingly being recognized as an independent risk factor for tuberculosis. The association of extra pulmonary tuberculosis and diabetes mellitus is a concern for the health sectors as the coexistence of those two highly prevalent diseases has made the already existing treatments very complex [4]. The link between TB and DM is considered to be more prominent in developing countries where TB is endemic and the burden of diabetes mellitus is increasing. Accordingly, it is estimated that about 1.6 million deaths were directly caused by diabetes which is 1.69 times more likely to develop TB than none DM individuals in 2015, [5,6].

Currently, the worldwide prevalence of DM has been increased more quickly than ever (11.7%) that increases the incidence of EPTB and made the already existing treatments very complex among the co-infected patients [7]. The prevalence of DM and the incidence of TB in Ethiopia was found to be 6.5 % and 140/100 population respectively [1,8].

2. Methods

2.1. Study design and setting

This institutionally-based retrospective cohort study was undertaken between January 2016 to December 2020 in the chronic follow-up care unit of Debre Markos compressive specialized hospital. Debre Markos town is located 300 km from Addis Ababa, the capital city of Ethiopia, and 256 km from Bahir-Dar, the capital of Amhara Regional State. Debre Markos compressive and specialized Hospital is the only referral hospital found in East Gojjam Zone. The hospital serves >3.5 million people in its catchment area.

2.2. Population

The population for this study were all adult (≥18 years old) diabetic patients who were registered in Debre Markos referral hospital for chronic follow-up care from January 1st, 2016 to December 2020.

2.3. Inclusion criteria and exclusion criteria

All diabetic patients who fulfilled the inclusion criteria and registered from January, 1st 2016 to December 30/2020,’ in chronic care follow up clinic of Debre Markos compressive specialized hospital were included in the study. However, we excluded diabetic patients with gestational DM, incomplete data or unavailable medical records, who were transferred in and who had been with EPTB at the time of DM diagnosis from the study as far as the exclusion criteria is concerned.

2.4. Data collection procedures

A five-year institution-based retrospective follow up study was conducted using chart review at Debre Markos compressive and specialized hospital chronic care follow up clinic on adult diabetic patients who had been registered from January 1st 2016 to December 30, 2020. All eligible patients were included in the study (census method) after ethical clearance was obtained from the Institutional Review Committee of the College of Health Sciences, Debre Markos University (Ref. Res/Com/ser/ &Post gra/Coor/Off: 781/11/10) and verbal informed consent was obtained from the patients. The medical record number (MRN) of the patients was identified from electronic database and health management information system (HMIS) registry books that had been used for the routine care of DM from January 1st, 2016 to December 2020. Then by using the MRN of the diabetic patients their medical records were identified and their status was assessed for the development of EPTB starting from the date of diabetic follow up initiation (first follow-up visit) to the end of the study period using validated data collection checklists.

2.5. Variables of the study

The dependent variable for this study was incidence of EPTB among diabetic patients. The independent variables were: socio-demographic factors (age, sex, and residence), personal behaviors (smoking, alcohol use and both smoking and alcohol use) and clinical characteristics (type of DM, BMI, duration of DM, glycemic control, anti-diabetic medications, past history of TB treatment, close contact with TB patients, history of renal failure).

2.6. Data analysis

Data collection checklist tools adapted from previous study in Ethiopia were used for the data collection [9]. We used Epi-data Version 4.1 for data entry and STATA Version 14 statistical software for data analysis. The necessary assumption of Cox-proportional hazard regression model was checked using the Schoenfeld residual test and the Log-Log plot. The diabetic cohort characteristics of continuous data were described in terms of central tendency (mean or median), dispersion (standard deviation or inter quartile range) and in the frequency distribution for categorical data. In the bi-variable Cox-regression analysis, significant predictors (p-value ≤ 0.25) of extra pulmonary tuberculosis included: HIV Sero status, history of renal failure, family history of DM, blood glucose level, body mass index, type of DM, diabetic medication, past history of TB and history of alcohol. To determine the independent predictors of EPTB a multivariable Cox-proportional hazard adjusted model was fitted after the proportional hazard assumption was checked with (global test = 0.94). log rank test for significantly associated variables at the multivariable analysis (body mass index = 0.02, Past history of PTB = 0.001, age = 0.00, diabetic medication = 0.02 and alcoholic history = 0.02) and by graphically assessment method.

Finally, the outcomes of diabetic patients were dichotomized into censored or event categories. The Kaplan Meier survival curve was used to estimate survival time, and log rank test was used to compare the survival curves. Bi-variable Cox proportional hazards regression model was fitted for each explanatory variable and those variables having p-value < 0.25 in bivariate analysis were fit into the multivariable Cox-proportional hazard regression model. Hazard ratio with 95% confidence interval and p-values were used to measure the strength of association and to identify statistically significant predictors. In the multivariable analysis, variables having P-value < 0.05 were considered as significant predictors of extrapulmonary tuberculosis.

3. Result

3.1. Socio demographic characteristics of study participants

In this retrospective cohort study, a total of 433 diabetic patients at Debre Markos compressive specialized Hospital from the period of January 1st, 2016 to December 30, 2020 were included. Fig. 1. In this study about 187(43.2%) of diabetic patients were under the age category of 18–35 years. The median age of the patients was 39 years with minimum and maximum age of 18 and 79 years respectively. In addition, 241 (55.7%) participants were males and 270 (62.5%) were rural residents.

3.2. Clinical and behavioral characteristics of the diabetic patients

This study revealed that about 33(7.6%) patients were positive for HIV and 34 (7.9%) had a history of renal failure. The duration of DM in all patients varied from date of initiation to 5 years of follow up. In the study 53 (12.2%) participants had a family history of DM and 224 (51.7 %) were with type-I DM. About 197 (45.5%) patients were on oral hypoglycemic agents and 362(83.6%) were above 18kg/m2 for their BMI. About 8(1.9%) were smokers, 16(3.7%) had alcoholic history and only 5 (1.2%) of the study subjects had both history of alcohol and smoking.
3.3. Incidence of extra pulmonary tuberculosis among diabetic patients

The patients were followed for 1101.5 total person years. The mean, median and range of the follow-up time was found to be 2.5, 2 and 4.8 years with (IQR = 3) respectively. During the follow up time, about 17 (3.9%) of the patients were with new EPTB cases (7/41.2% Bone, 5/29.4% lymphoid, 4/23.5% and 3/17.6% others). The overall incidence rate ratio of EPTB was found to be 3.9 per 100PY with 95% CI. Among the 17 individuals reporting extra pulmonary tuberculosis 9 (52.9 %) of them were males and 8(47%) had a past history of PTB. More over a relatively higher proportion of EPTB, 8(47%) was diagnosed among the age group of 35–50. In addition, the incidence was higher among rural residents 12(70.6%) and who had a duration of 1–3 years 13 (76.5%) follow-up. In this study, we observed that more than half 11(64.7%) of the EPTBDM patients were with type I DM. Fig. 1

3.4. Tuberculosis incidence density

In this retrospective cohort study, a total of 433 study participants were followed for different periods in five years and produced 1101.5 PY of observation. The mean, median and range of the follow-up time was 2.5, 2 and 4.8 years with (IQR = 3) respectively. Within the follow-up period, 17 patients were found to have post DM EPTB (new cases) with the overall EPTB incidence density (ID) of 3.9 per 100 with 95%CI. (Table2), Figs. 2-6.

3.5. Predictors of time to EPTB occurrence among diabetic patients

At the multivariable analysis only age, past history of PTB, diabetic medication body mass index and alcoholic history remained significant predictors for EPTB (p < 0.05). Accordingly, people who are at age of 18–50 years were 4.8 times more likely to develop EPTB than its counter parts (>50 years) (adjusted incidence ratio 4.8 (95% confidence interval 1.2–20.7), 0.03). On the other hand, people living with DM who had a history of PTB were 1.5 times at higher risk of developing EPTB as compared to those who had no past history of PTB (incidence rate ratio (95% CI: 1.5(3.2, 6.9), p: 0.01) and patients who used insulin were 1.4 times at higher risk of developing EPTB as compared to those who used oral hypoglycemic agents only (incidence rate ratio (95%CI: 1.4(1.2,16), p: 0.03) and patients with history of alcohol were 4 times more likely to develop EPTB than its counterparts/incidence rate ratio (95%CI: 4 (1.2–13)). Conversely patients with BMI > =18.5 were less likely to develop EPTB (Incidence rate ratio (95%CI: 0.22(0.6, 0.8), p: 0.02) than those who were underweight (<18.5 kg/m²) counter parts.

4. Discussion

Despite numerous interventions made to prevent EPTB, it remains a serious global public health concern, especially in low- and middle-income countries. Therefore, we conducted this retrospective cohort study to determine the incidence of extra pulmonary tuberculosis among diabetic patients at Debre Markos compressed specialized hospital, Northwest Ethiopia. Accordingly, the overall incidence rate of EPTB was found to be was 1.5 per 100 PY with 95% CI among diabetic patients. This finding is higher than studies conducted in Texas (0.31/100PY), [10]. The above variations between studies could be explained, in part, by the differences in sample size, study settings, follow-up period, and socio-demographic characteristics of study participants. In addition, the distinction might be use of sophisticated screening and diagnostic techniques for early testing and detection prior to the disease progression in developed countries like Texas and China. This is supported by other studies, showed that sophisticated screening and diagnostic techniques for early testing and detection reduce the incidence of TB disease[7,11].

However, the finding of this study is consistent with the study conducted in India (2.2/100 PY) [12] and Tanzania (1.7/100 PY) [10] but inconsistent with the study in North India(0.655/100 PY) [13]. This might be due to the difference in population and the study layout (prospective study was conducted on patients with type II DM) in North India which have relatively decent insulin secretion and glycemic control which prevent developing of complications and co-infections as compared to type I DM.

Conversely, our finding is much lower than TB incidence reported in, Ethiopia at Dessie referral hospitals 6.2/100PY [14]. In the same way the above variations between studies could be explained, in part, by the differences in sample size, study settings, follow-up period, and socio-demographic characteristics of study participants. In this study nearly half(48%) of the respondents were type II DM which is more common in advanced ages with minimal complications including EPTB because of having relatively decent insulin secretion for glycemic control [15]. In addition, most respondents in this study were rural residents that might have socio-economic and demographic factors as a problem to visit the health care organization.

In this cohort study, people who are at age of18-50 years were 4.8 times more likely to develop EPTB than its counter parts (>50 years) (adjusted incidence ratio 4.8 (95% confidence interval 1.2–20.7), 0.03). This might be due to the high proportion of type I DM among young population than type II DM which is relatively with many complications including EPTB due to absolute deficiency of insulin among type I DM. Having history of alcohol was significantly associated with EPTB, accordingly, Patients with a history of alcohol are four times more likely to develop TB than patients with no history of PTB counter parts (incidence rate ratio 4 times more likely to develop EPTB than its counterparts (incidence rate ratio (95%CI: 4 (1.2–13)). This is consistent with studies in Texas [16], Australia [17] India [18] and Ethiopia [19]. However, this study contradicts findings reported from US [20], UK [21] and China [22]. These variations between studies could be the differences in sample size, study settings, follow-up period, and socio-demographic characteristics of study participants.

Furthermore, one of the most significant predictors for the incidence of EPTB among diabetic patients was having past history of PTB. Accordingly patients with a history of PTB are 1.5 times at higher risk of developing EPTB as compared to those who had no past history of PTB (incidence rate ratio (95% CI: 1.5(3.2, 6.9), p: 0.01) which is consistent with a study conducted in Australia [17] and studies in Ethiopia [19,14,23] .

Conversely patients who were normal and over weight (BMI > =18.5) were less likely to develop EPTB (Incidence rate ratio (95%CI: 0.22(0.6, 0.8), p: 0.02) than those who were underweight and over
weight (<18.5 kg/m2) counterparts which contradicts with the previous studies conducted in south-eastern Amhara [24], systematic review in Ethiopia [19], Egypt [25], US [20,26] and China (AHR (95%CI: 0.89 (0.76,1.03) [22]. The above variations between studies could be explained, in part, by the differences in sample size, study settings, follow-up period, and socio-demographic characteristics of study participants. In this study half (52%) of the respondents were type I DM in which more expected to be underweight. Similarly this study finding contradicts with the study conducted in Ethiopia at Black lion hospital [9]. This could be due to the difference in socio-demographic characteristics as more than half of the respondents in this study were rural residents and underweight. It is known that most commonly underweight patients are considered to be Immuno compromised to withstand TB infection. In addition, most respondents in this study were rural residents that might have socio-economic and demographic factors as a problem to visit the health care organization. Furthermore, patients who are on insulin were 1.4 times more likely to develop EPTB than who are on oral hypoglycemic agents only (adjusted incidence ratio 1.4 (1.24–1.6), 0.03). More than half of the respondents in this study were type I DM. It is known that most commonly type I DM patients are considered to be Immuno compromised due to the absolute deficiency of insulin to withstand complications including EPTB. In addition, So this might be the possible justification for diabetic patients having insulin medication is significantly associated with EPTB.

5. Limitations

Despite strengths, this study has a number of limitations. Firstly, the study was institutional; therefore, diabetic patients at home could be missed. Moreover, secondary data were used, consequently some

Table 1
Baseline socio demographic, clinical and behavioral characteristics of people living with diabetes at Debre Markos referral hospital from January, 1st 2016 to December 30/2020.*

| Variables                         | Characteristics | Frequency | Percent (%) | PY  | EPTB | EPTBID |
|-----------------------------------|-----------------|-----------|-------------|-----|------|--------|
| Sex                               | Male            | 241       | 55.7        | 55.7| 9    | 0.52   |
|                                   | Female          | 192       | 44.3        | 44.3| 8    | 0.25   |
| Age                               | 18-35           | 187       | 43.2        | 489.9| 3 | 0.002 |
|                                   | 36-50           | 157       | 36.3        | 385.2| 8 | 0.005 |
|                                   | >50             | 89        | 20.6        | 226.4| 6 | 0.004 |
|                                   | Median          | 39.9      |             |      |     |        |
| Place of residence                | Urban           | 163       | 37.6        | 441.3| 7 | 0.004 |
|                                   | Rural           | 270       | 62.4        | 660.2| 12| 0.07   |
| BMI                               | < 18.5          | 71        | 16.4        | 212.5| 4 | 0.003 |
|                                   | ≥ 18.5          | 362       | 83.6        | 889  | 13| 0.01   |
| HIV Sero-status                   | Positive        | 33        | 7.6         | 79.4 | 3 | 0.01   |
|                                   | Negative        | 400       | 92.4        | 1022.1| 14| 0.04   |
| Type of DM                        | Type I          | 224       | 51.7        | 593.1| 11| 0.06   |
|                                   | Type II         | 209       | 48.3        | 508.4| 6 | 0.01   |
| Blood glucose level (mg/dl)       | < 70            | 14        | 3.2         | 47   | 2 | 0.02   |
|                                   | 70-130          | 165       | 38.1        | 417.3| 8 | 0.03   |
|                                   | ≥ 130           | 254       | 58.7        | 637.2| 7 | 0.02   |
| Past history of PTB               | Yes             | 9         | 2.1         | 23.5 | 5 | 0.02   |
|                                   | No              | 424       | 97.9        | 1078 | 12| 0.07   |
| History of close contact          | Yes             | 5         | 1.1         | 10   | 3 | 0.3    |
|                                   | No              | 428       | 98.8        | 1091.5| 2| 0.15   |
| Duration of EPTB since DM diagnosis| ≤ 1 year      | 12        | 46.2        | 27   | 4 | 0.02   |
|                                   | 1-3 year        | 14        | 53.9        | 63.5 | 13| 0.01   |
| DM medications had been/being used| OHGA           | 197       | 45.5        | 492.3| 6 | 0.01   |
|                                   | Insulin         | 226       | 52.2        | 580  | 11| 0.03   |
| History of smoking                | Yes             | 8         | 1.9         | 22   | 1 | 0.05   |
|                                   | No              | 425       | 98.2        | 1079.5| 16| 0.09   |
| History of alcohol                | Yes             | 16        | 3.7         | 47   | 3 | 0.01   |
|                                   | No              | 417       | 96.3        | 1054.5| 14| 0.04   |
| Both smoking and alcohol          | Yes             | 5         | 1.2         | 10   | 1 | 0.001  |
|                                   | No              | 428       | 98.9        | 1091.5| 16| 0.02   |

*BMI: body mass index, DM: diabetic mellitus TB: tuberculosis, OHGA: oral hypoglycemic agents, HIV: human immune virus.
important variables like a history of Cancer, chemotherapy, adherence status, gllicated hemoglobin, and organ transplantation could be missed. Furthermore, in this study, the impact of providers’ training, supplies, equipment, and setup have not been explored.

6. Conclusion

In five years of diabetic cohort, the overall incidence of Extra pulmonary tuberculosis has been high among diabetic patients. Age, history of alcohol, past history of TB and insulin are found to be independent predictors of TB. However, being normal and overweight (BMI, \( \geq 18.5 \)) is found to be an independent positive factor associated with decreased risk of EPTB. Special attention should be given for patients who have a history of alcohol, past history of TB and with low body mass index to reduce the risk of EPTB incidence by improving modifiable risk factors. All diabetic patients should be screened in clinical practice to prevent the occurrences of EPTB as early as possible. Furthermore, prospective cohort study should be conducted to make clear relations between predictors and EPTB incidence among diabetic patients.

7. Declarations

7.1. Ethics approval and consent to participate

Ethical clearance was obtained from the Institutional Review Committee of the College of Health Sciences, Debre Markos University with

---

**Table 2**

| Variables | Frequency | PY  | EPTB | EPTB IDR | CHR (95% CI) | AHR (95% CI) | p-value |
|-----------|-----------|-----|------|----------|--------------|--------------|---------|
| Sex       |           |     |      |          |              |              |         |
| Male      | 241       | 55.7| 9    | 0.52     | 1.8(1.2–3.2) |              |         |
| Female    | 192       | 44.3| 8    | 0.25     | 1.00         |              |         |
| Age       |           |     |      |          |              |              |         |
| 18–35     | 187       | 489.9|3    | 0.002    | 4(2–31)      | 4.8(1.2–20)  | 0.031   |
| 36–50     | 157       | 385.2|8    | 0.005    | 1            |              |         |
| >50       | 89        | 226.4|6    | 0.004    | 1            |              |         |
| Place of residence | | | | | | | |
| Urban     | 163       | 441.3|7    | 0.004    | 1.00         |              |         |
| Rural     | 270       | 660.2|12   | 0.07     | 0.72(0.04–11)|              |         |
| Clinical characteristics | | | | | | | |
| HIV Sero-status | | | | | | | |
| Positive  | 33        | 79.4 | 3   | 0.01     | 1.00         |              |         |
| Negative  | 400       | 1022.1|14  | 0.04     | 0.52(0.15–1.7)|              |         |
| History of renal failure | | | | | | | |
| Yes       | 34        | 78.1 | 2   | 0.002    | 1.00         |              | 0.99    |
| No        | 399       | 1023 | 15  | 0.02     | 1.10(0.24–4.3)|              |         |
| Family history of DM | | | | | | | |
| Yes       | 53        | 89.4 | 2   | 0.003    | 1.00         |              |         |
| No        | 380       | 1011.7|15  | 0.04     | 1.10(0.35–3) |              | 0.96    |
| Type of DM Type I | | | | | | | |
| Type II   | 209       | 508.4|6   | 0.01     | 0.4(0.2–1)   | 1.60(0.29–8.4)| 0.24    |
| BMI <18.5 | 71        | 212.5|4   | 0.05     | 1.00         |              |         |
| ≥18.5     | 362       | 889  | 13  | 0.01     | 0.20(1–0.6)  | 0.34(0.14–0.8) | 0.02*  |
| Blood glucose level (g/dl) | | | | | | | |
| <70       | 14        | 47   | 1   | 0.01     | 1.00         |              |         |
| 70–130    | 165       | 417.3|8   | 0.02     | 1.10(0.12–8.1)|              | 0.99    |
| ≥130      | 254       | 637.2|8   | 0.03     | 1.00         |              |         |
| Past history of TB | | | | | | | |
| Yes       | 9         | 23.5 | 5   | 0.02     | 24(6.6–52)   | 12(3–39)     | 0.001*  |
| No        | 424       | 1078 | 12  | 0.04     | 1.00         | 1.00         | 1       |
| Duration of TB since DM diagnosis | | | | | | | |
| ≤1 year   | 12        | 27   | 12  | 0.4      | 1.00         |              |         |
| 1–3 years | 14        | 63.5 | 15  | 0.5      | 0.40(2–1.1)  |              |         |
| DM medications | | | | | | | |
| OHGA      | 197       | 492.3|6   | 0.01     | 1.00         |              | 1       |
| Insulin   | 226       | 580  | 11  | 0.03     | 2.7(1.1–6)   | 2.8(0.46–16)| 0.02    |
| Behavioral characteristics | | | | | | | |
| History of smoking | | | | | | | |
| Yes       | 8         | 22   | 1   | 0.05     | 1.00         |              |         |
| No        | 425       | 1079.5|16  | 0.09     | 0.60(1.4–3.3)|              |         |
| History of alcohol | | | | | | | |
| Yes       | 16        | 47   | 3   | 0.01     | 8.5(1.4–11)  | 4(1.2–13)    | 0.02*   |
| No        | 417       | 1054.5|14  | 0.04     | 1.00         | 1.00         |         |
| History of smoking and alcohol | | | | | | | |
| Yes       | 5         | 10   | 1   | 0.001    |              |              |         |
| No        | 428       | 1091.5|16  | 0.02     |              |              |         |

BMI: body mass index, DM: diabetic mellitus TB: tuberculosis, OHGA: oral hypoglycemic agents, HIV: human immune virus.
Oral permission was obtained from hospital administrations. Each diabetic patient received an explanation about the purpose of study, and verbal informed consent was obtained from each participant prior to proceeding. The ethical committee formally waived the need of formal written consent since the study was done through interviewing and reviewing of medical record of the couples. Therefore, the committee declared that this study is less invasive as much as confidentiality is maintained. To ensure confidentiality, all collected data were coded and locked in a separate room prior to the data entry process. Participant names were not included in the data collection format, and the data were not disclosed to any person other than principal investigators.

**Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ref. Res/Com/ser/Post gra/Coor/Off: 781/11/10. Oral permission was obtained from hospital administrations. Each diabetic patient received an explanation about the purpose of study, and verbal informed consent was obtained from each participant prior to proceeding. The ethical committee formally waived the need of formal written consent since the study was done through interviewing and reviewing of medical record of the couples. Therefore, the committee declared that this study is less invasive as much as confidentiality is maintained. To ensure confidentiality, all collected data were coded and locked in a separate room prior to the data entry process. Participant names were not included in the data collection format, and the data were not disclosed to any person other than principal investigators.

**Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

---

**Fig. 2.** Nelson Aalen cumulative hazard estimate of extra pulmonary tuberculosis among diabetic patients at Debre Markos specialized compressive hospital from January 01/2015 to December 30/2019.

**Fig. 3.** The Kaplan-Meier survival curves comparing the extra pulmonary tuberculosis free survival probabilities of diabetic patients based their body mass index.

**Fig. 4.** The Kaplan-Meier survival curves comparing the tuberculosis free survival probabilities of diabetic patients based on their diabetic medication.

**Fig. 5.** The Kaplan-Meier survival curves comparing the extra pulmonary tuberculosis free survival probabilities of diabetic patients based on their alcoholic history.

**Fig. 6.** The Kaplan-Meier survival curves comparing the extra pulmonary tuberculosis free survival probabilities of diabetic patients based on their alcoholic history.
Acknowledgements

I would like to acknowledge Debre Markos University for the financial funding of this research. We extend our special thanks to all data collectors’ nurses working in Debre Markos comprehensive specialized hospital and supervisor.

Availability of data and materials

“The dataset will not be shared in order to protect the participants’ identities” but it is available from the corresponding author on reasonable request.

References

[1] Global W. Tuberculosis report 2017. Geneva, Switzerland: World Health Organization; 2017.
[2] Organization WH. Global tuberculosis report 2016;2016.
[3] Gilpin, C., et al., The World Health Organization standards for tuberculosis care and management. 2018, Eur Respiratory Soc.
[4] Gyawali B, Hansen MRH, Povlsen MB, Neupane D, Andersen PK, McLachlan CS, et al. Awareness, prevalence, treatment, and control of type 2 diabetes in a semi-urban area of Nepal: Findings from a cross-sectional study conducted as a part of CORIN-D trial. PLoS ONE 2018;13(1):e0206491. https://doi.org/10.1371/journal.pone.0206491.
[5] Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonroth K, et al. The impact of diabetes on tuberculosis treatment outcome: a systematic review. BMC medicine 2011;9(1). https://doi.org/10.1186/1741-7015-9-81.
[6] Motamed N, Khonsari M, Rabiee B, Ajdarkosh H, Hemasi G, Sohrabi M, et al. Discriminatory Ability of Visceral Adiposity Index (VAI) in Diagnosis of Metabolic Syndrome: A Population Based Study. Exp Clin Endocrinol Diabetes 2017;125(03): 202-7.
[7] Zheng C, Hu M, Gao F. Diabetes and pulmonary tuberculosis: a global overview with special focus on the situation in Asian countries with high TB-DM burden. Global health action 2017;10(1):1264702. https://doi.org/10.1080/16549716.2016.1264702.
[8] Aynalem, S.B. and A.J. Zeleke, Prevalence of diabetes mellitus and its risk factors among individuals aged 15 years and above in Mizan-Aman town, Southwest Ethiopia, 2016: a cross sectional study. International journal of endocrinology, 2018. 2018.
[9] TIRORO, S., COLLEGE OF HEALTH SCIENCES SCHOOL OF PUBLIC HEALTH, 2015, SCHOOL OF GRADUATE STUDIES, COLLEGE OF HEALTH SCIENCE, SCHOOL OF PUBLIC HEALTH, ADDIS ABABA UNIVERSITY.
[10] Said K, Vovor S, Kalingonji A, Lwilla F, Mkopi A, Charalambous S, et al. Tuberculosis among HIV-infected population: incidence and risk factors in rural Tanzania. African health sciences 2017;17(1):208. https://doi.org/10.4314/ahs.v17i1.28.
[11] Viswanathan Vijay, Kumpati Satyavani, Aravinthaolchavan Vigneswari, Rajan Rajeswari, Chinnavamy C, Srinivanan Rajan, et al. Prevalence of diabetes and pre-diabetes and associated risk factors among tuberculosis patients in India. PLoS ONE 2012;7(7):e41367. https://doi.org/10.1371/journal.pone.0041367.
[12] Das Shriram, Das Elina, Bhuyan Kashyap, Prusty Biswajita, Barik Minakatetan, Yadav VS, et al. Bi-directional screening of tuberculosis patients for type 2 diabetes mellitus and diabetes patients for tuberculosis in Bhushaneshwar, Odisha. International Journal Of Community Medicine And Public Health 2017;4(7):2435. https://doi.org/10.18203/2394-6040.ijcmph20172837.
[13] Singh Surinder Pal, Singh Satinder Pal, Kishan Jai, Kaur Sunmeet, Ramana Shandhara. Association of tuberculosis and diabetes Mellitus: an analysis of 1000 consecutively admitted cases in a tertiary care hospital of North India. The Pan African Medical Journal 2016;24. https://doi.org/10.11604/panmj.2016.24.4.8153.
[14] Amare Hiwot, Gelaw Aschalew, Anagaw Belay, Gelaw Baye. Smerosear pulmonary tuberculosis among diabetic patients at the Dessie referral hospital, Northeast Ethiopia. Infectious Diseases of poverty 2013;2(1). https://doi.org/10.1186/2049-9957-2-6.
[15] Restrepo Blanca I, Camerlin Aulaa J, Rahbar Mohammad H, Wang Weivei, Restrepo Mary A, Zarate Icelda, et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull World Health Organ 2011;89(5):352–9.
[16] RESTREPO BI, FISHER-HOCH SP, CRESPO JG, WHITNEY E, PEREZ A, SMITH B, et al. Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiol Infect 2007;135(3):483–91.
[17] Nazninshah Padmaneaz, Wood James, Macintyre Chandini Raina, Mathai Dilip. Risk factors for tuberculosis. Pulmonary medicine 2013;2013:1–11.
[18] Rao VG, Bhat J, Yadav R, Muniyandi M, Bhandley MK, Wares DF. Smoking and alcohol consumption: risk factors for pulmonary tuberculosis among the tribal community in central India. Indian Journal of Tuberculosis 2017;64(1):49–53.
[19] Workneh Mahteme Haile, Bjune Gunnar Aksel, Yimer Solomon Abebe, Wilkinson Katalin Andrea. Prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: A systematic review. PLoS ONE 2017;12(4):e0175925. https://doi.org/10.1371/journal.pone.0175925.
[20] Godhaiser-Fiebert, J.D., et al., Diabetes mellitus and tuberculosis in countries with high tuberculosis burdens: individual risks and social determinants. International journal of epidemiology, 2011. 40(2): p. 417-428.
[21] Pealing Louise, Wing Kevin, Mathur Rohini, Prieto-Merino David, Smeeth Liam, Moore David AJ. Risk of tuberculosis in patients with diabetes: population based cohort study using the UK Clinical Practice Research Datalink. BMC medicine 2015;13(1). https://doi.org/10.1186/s12916-015-0381-9.
[22] Zhang H, et al. Association of body mass index with the tuberculosis infection: a population-based study among 17796 adults in rural China. Sci Rep 2017;7:41933.
[23] Hamusse ShalloDaba, Demissie Meaza, Teshome Dejene, Hassen Mohammed Suuufi, Lindjarn Bernt. Prevalence and Incidence of Smear-Positive Pulmonary Tuberculosis in the Hetosa District of Arsi Zone, Oromia Regional State of Central Ethiopia. BMC Infect Dis 2017;17(1). https://doi.org/10.1186/s12879-017-2321-0.
[24] Workneh MH, Bjune GA, Yimer SA. Diabetes mellitus is associated with increased mortality during tuberculosis treatment: a prospective cohort study among tuberculosis patients in South-Eastern Amahra Region, Ethiopia. Infectious diseases of poverty 2016;5(1):22.
[25] Khalil Naser H, Ramadan Ramadan A. Study of risk factors for pulmonary tuberculosis among diabetes mellitus patients. Egyptian Journal of Chest Diseases and Tuberculosis 2016;65(4):817–23.
[26] Benoit Stephen R, Gregg Edward W, Jongsalagaga Sasi, Phares Christina R, Zhou Weigong, Painter John A. Association of Diabetes and Tuberculosis Disease among US-Bound Adult Refugees, 2009–2014. Emerg Infect Dis 2017;23(3):543–5.