HIGH-GRADE VERSUS LOW-GRADE SEROUS CARCINOMA OF THE OVARY – CURRENT DIFFERENTIAL DIAGNOSIS AND PERSPECTIVES

Manuela POPA1, Adelina BIRCEANU COROBEA2, Octavian MUNTEANU3, Monica M. CIRSTOIU3, Maria SAJIN1

1 Department of Pathology, „Carol Davila” University of Medicine and Pharmacy, University Emergency Hospital, Bucharest, Romania
2 Department of Pathology, „Sfanta Maria” Clinical Hospital, Bucharest, Romania
3 Department of Obstetrics and Gynecology, University Emergency Hospital, Bucharest, Romania

Received 11 Oct 2018, Accepted 30 Nov 2018
https://doi.org/10.31688/ABMU.2018.53.4.11

ABSTRACT

Introduction. Serous carcinoma is responsible for 47% of all ovarian cancers, and from these cases, only 5% are represented by low-grade serous carcinoma, the rest of them accounting for high-grade serous carcinoma.

Objective. The aim of this study is an observational approach of the differences and similarities of the two types of serous carcinoma of the ovary, that must be seen as different forms of cancer and rendered with care.

Methods. We performed a retrospective study using three cases of ovarian high-grade serous carcinoma and three cases of ovarian low-grade serous carcinoma, diagnosed at the University Emergency Hospital Bucharest. We analyzed patients’ age, clinical symptoms, macroscopic and microscopic features together with immunohistochemistry tests.

Results. Mean age for HG carcinoma was 71.3 years old and for LG carcinoma 47.6 years old. Average tumor diameter was with 5.67 cm higher for LG carcinoma. The most encountered stage for HG tumors was pT2a and for LG tumors was pT1a. Mean value

RÉSUMÉ

Comparaison entre les deux types de carcinome séreux de l’ovaire, à haut et à bas degré-diagnostic différentiel courant et perspectives

Introduction. Le carcinome séreux est responsable de 47% de tous les cancers de l’ovaire. Parmi ces cas, 5% seulement sont représentés par un carcinome séreux à bas degré, le reste d’entre eux représentant un carcinome séreux à haut degré.

Objectifs. Le but de cette étude est une approche observationnelle des différences et des similitudes entre les deux types de carcinome séreux de l’ovaire, qui doivent être considérés comme des formes différentes de cancer et traités avec précaution.

Méthodes. Nous avons réalisé une étude rétrospective utilisant trois cas de carcinome séreux ovarien à haut degré et trois cas de carcinome séreux à bas degré ovarien, diagnostiqués à l’Hôpital Universitaire d’Urgence de Bucarest. Nous avons analysé l’âge des patients, les symptômes cliniques, les caractéristiques
for Ki67 was with 36.33% higher for HG carcinoma. AR expressed diffuse positivity in two cases of LG and only focal positivity in two cases of HG. CD44 expressed focal positivity in all cases of LG and had different patterns in HG.

Conclusions. We found considerable differences between patients’ mean age, macroscopic and microscopic features, together with immunohistochemistry expression for Ki67, AR, CD44.

Keywords: high-grade serous carcinoma, low-grade serous carcinoma, AR, CD44.

Abbreviation list

AR = androgen receptor
BRAF = human gene that encodes a protein called B-Raf
CD44 = cluster of differentiation 44
ER = estrogen receptor
HER2 = human epidermal growth factor receptor 2
HG = high-grade
Ki67 = anti-human Ki-67 antibody = proliferation index
KRAS = a gene that acts as an on/off switch in cell signaling, first identified as an oncogene in Kirsten RAt Sarcoma virus
LG = low-grade
MAPK = mitogen-activated protein kinase
p53 = tumor protein p53, encoded by tumor suppression gene TP53
Pi3K/mTOR = intracellular signaling pathway
Phosphatidylinositol-4,5-bisphosphate 3-kinase/mammalian target of rapamycin
RB1 = retinoblastoma protein
WHO = World Health Organization
WT1 = Wilms tumor protein, encoded by WT1 gene

Introduction

Ovarian cancer represents the 5th cause of cancer and the 5th cause of death due to cancer in females in the European Union1. Serous carcinoma is responsible for 47% of all ovarian cancers, and from these cases, only 5% are represented by low-grade serous carcinoma, the rest of them accounting for high-grade serous carcinoma2-5. The separation of these two entities has started even from 2004, but was officially stated as different reporting system worldwide when 2014 edition of WHO Classification of Tumors of the Female Reproductive Organs appeared2-4,5. They are considered two forms of cancer with different biological behavior and outcome6. Because the low-grade tumors are rare, their differences in origin and development are not fully understood2-6.

The objective of the study

We performed an observational study on the differential diagnosis between the two types of serous carcinoma of the ovary with current and new perspectives on the approach of these malignancies.

Material and methods

We performed a retrospective study using three cases of high-grade (HG) serous carcinoma and three cases of ovarian low-grade (LG) serous carcinoma, diagnosed at the University Emergency Hospital Bucharest, Romania. We used hospital’s data base and pathology department records for clinical information and macroscopic features such as: tumor diameter, solid/cystic component, tumor extension, lymph node status; using hematoxylin-eosin stains we analyzed the microscopic...
features: solid area growth, papillary formation, mitotic count, presence of necrosis. We performed immunohistochemistry tests on archived paraffin-embedded tissue blocks: WT1, p53, Ki67, ER, AR, CD44.

RESULTS AND DISCUSSIONS

The mean age of patients with high-grade serous carcinoma was 71.3 years old and of patients with low-grade serous carcinoma 47.6 years old (Figure 1). In the literature, we found a lower mean age, of 57-63 years old for HG carcinoma and 42 years old for LG carcinoma (Figure 1). All patients, except one case of high-grade carcinoma, had urban home environment.

The average tumor diameter was of 8.83 cm for HG tumors and of 14.5 cm for LG tumors, with 5.67 cm higher for LG carcinoma. The most encountered stage for HG carcinomas was pT2a (66.6%) and for LG carcinomas was pT1a (66.6%).

On macroscopic examination, high-grade carcinomas have a predominant solid growth (Figure 2), with evident hemorrhage and necrosis and smaller quantities of serous fluid than low-grade carcinomas, which are predominantly cystic tumors, with small to medium vegetations that correspond to papillary growth with invasive areas (Figure 3).

![Figure 1. Mean age of patients with ovarian serous carcinoma](image1)

![Figure 2. Macroscopic appearance of ovarian high-grade serous carcinoma](image2)

![Figure 3. Macroscopic appearance of ovarian low-grade serous carcinoma](image3)
On histopathological examination, high-grade tumors have predominantly solid areas of severe atypical cells, mitotic count over 30 mitosis/10HPF (high power field) and large areas of necrosis, whereas low-grade tumors have papillary and micropapillary architecture, mitotic count under 15 mitosis/10HPF and rare focal areas of necrosis.

Lymph node status could be evaluated in two cases of high-grade serous carcinoma (one case with lymph node metastasis and the other free of invasion) and in only one case of low-grade serous carcinoma (free of invasion). Lymph node sampling and taking blind peritoneal biopsies are important in surgical staging of early ovarian cancer and involvement of only para-aortic lymph nodes in advanced stage results in a better chance of survival than involvement of pelvic lymph nodes only or both pelvic and para-aortic lymph nodes simultaneously.

The mean value for Ki67 index was 76.6% for HG carcinoma and 40.3% for LG carcinoma, with 36.33% higher for HG group (Figure 4). However, we found one study in the literature where expressions of p53 and Ki67 were found to have little correlation with overall survival and disease-free survival.

WT1 (Wilms Tumor protein 1), p53 were positive for both categories, and ER (estrogen receptor) was positive over 80% for 66.6% of each group. WT1 and p53 showed previous success for use in small biopsy specimens from extraovarian sites due to little variability between ovarian and omental sites. In their study of sex steroid hormone receptors expressed in ovarian carcinomas, Gomora MJ

![Figure 4. Average Ki67 index in ovarian serous carcinoma](image1)

![Figure 5. CD44 expression in ovarian serous carcinoma](image2)
et al found a high frequency of ER negative HG carcinoma. However, other studies confirmed ER positivity in these tumors, associated with recurrent disease and peritoneal metastasis. Also, other studies stated that LG tumors have higher ER and PR expression compared to HG tumors and that estrogen receptor expression was associated with increased risk of lympho-vascular space invasion.

Mutation of TP53 gene is the most frequent genomic alteration of high-grade carcinomas, while KRAS and BRAF mutations are more likely encountered in low-grade ones. In one study DNA derived from tumor was detected in the vaginas of 60% of patients with ovarian cancer with intact fallopian tubes and harbored the exact same TP53 mutation. Other frequent mutations but poorly understood are RB1 (retinoblastoma) deletions in high-grade serous carcinoma. Compared to other localizations, alteration in PI3K/mTOR, MAPK pathways and HER2 expression/amplification is more frequent in uterine serous carcinoma than in ovarian serous carcinoma.

AR expressed diffuse positivity in two cases of LG and only focal positivity in two cases of HG. In the literature, reported cases expressed androgen receptor in 47.5% of serous carcinomas, but with lower value compared with benign and borderline disease and suggested that AR signaling capacity may be reduced with the development but not metastatic progression of serous ovarian cancer.

CD44 is a glycoprotein receptor activated by hyaluronic acid, with role in cell to cell adhesion and recently described as a stem cell marker, reported positive in the majority of epithelial ovarian cancer and correlated with advance stage disease and unfavorable 5-year prognosis. CD44 expressed focal positivity in all cases of LG carcinoma (100%) and had different patterns in HG carcinoma (Figure 5).

Prognosis of low-grade serous ovarian carcinoma shows favorable overall survival, compared to general ovarian cancer population, but is suspicious of resistance to conventional treatments. Some studies suggest that mitogen-activated protein kinase (MAPK) inhibitor and MAPK mutations might eventually be useful in guiding treatment.

While most high-grade ovarian serous carcinomas are highly sensitive and can benefit of cytoreductive surgery and platinum and taxane-based chemotherapy, the majority of patients experience recurrence of treatment-resistant tumors. Bohm et al developed a chemotherapy response score system and applied it to an independent validation cohort of HG patients. That is why further characterization of immunomodulatory factors are required in developing immune checkpoint therapies. The tumor microenvironment of HG tumors was stated to have other important elements that may influence treatment response, including fibroblasts, endothelial cells and the extracellular matrix.

Although a dual pathway of ovarian serous carcinogenesis has been proposed, cases of coexistence of low-grade and high-grade carcinoma in the same patient have been reported, and even accompanied by undifferentiated carcinoma, regarded as a possible form of dedifferentiation. That is why ovarian serous carcinoma is a very complex spectrum of disease and it should be rendered with care by medical staff.

CONCLUSIONS

We found considerable differences between patients’ mean age, macroscopic and microscopic features, together with immunohistochemistry expression for Ki67, AR and CD 44 markers of the two groups represented by high-grade and low-grade carcinoma, respectively. The differential diagnosis is important because tumor’s biological characteristics and behavior are different, and with the help of new perspective markers we can further study possible correlations and take into consideration novel therapeutic targets.

Acknowledgements:

All the authors contributed equally to the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Compliance with Ethics Requirements:

“The authors declare that all the procedures and experiments of this study respect the ethical standards in the Helsinki Declaration of 1975, as revised in 2008(5), as well as the national law. Informed consent was obtained from all the patients included in the study”

“The authors declare no conflict of interest regarding this article”

REFERENCES

1. Ferlay J, Steliarova-Foucher E, Loeret-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49:1374403.
2. Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumors of female reproductive organs. 4th Ed Lyon, IARC; 2014:8-86.
3. Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. Ninth Edition. Saunders Elsevier 2015. ISBN 978-0-8089-2450-0.
High-grade versus low-grade serous carcinoma of the ovary – current differential diagnosis and… – POPA et al

4. Malpica A, Deavers MT, Lu K et al. Grading ovarian se-
rous carcinoma using a two-tier system. Am J Surg Pathol 2004;28(4):496-504.

5. Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed
model based on morphological and molecular genetic anal-
ysis. Am J Pathol 2004, 164:1511-1518.

6. Vang R, Shih IeM, Kurman RJ. Ovarian low-grade and
high-grade serous carcinoma: pathogenesis, clinicopatholog-
ic and molecular biologic features, and diagnostic problems.
Adv Anat Pathol 2009;16(5):267-82.

7. Kurman RJ, Ellenson LH, Ronnett B. Blaustein’s
Pathology of the Female Genital Tract. Sixth Edition,
2009;16(5):267-82.

8. Timmers PJ, Zwijnderman K, Coens C, et al. Lymph node
evaluation and metastatic deposits of ovarian cancer. Int J
Gynecol Cancer 2010;20(7):1142-7.

9. Gasimli K, Braicu EI, Nasir M, et al. Lymph node involve-
ment pattern and survival differences of FIGO IIIA1 and
FIGO IIIC1 ovarian cancer patients after primary complete
tumor debulking surgery: a 10-year retrospective analysis of
the Tumor Bank Ovarian Cancer Network. Ann Surg Oncol
2016;23(4):1279-86.

10. Shen XX, Yu L, Bi R, et al. Clinicopathologic study and
immunohistochemistry comparison of Pax2, p53 and Ki-67
in low and high-grade ovarian serous carcinomas. Zhonghua
Bing Li Xue Za Zhi 2011;40(8):511-6.

11. Köbel M, Turbin D, Kalloger SE, et al. Biomarker expression in pelvic high-grade serous carcinoma: comparison of ovari-
an and omental sites. Int J Gynecol Pathol 2011;30(4):366-71.

12. Gomora MJ, Morales-Vasquez F, Pedernera E, et al. Sexual
steroid hormone receptors profiles in ovarian carcinoma in
Mexican women. Endocr Connect 2016; pii: EC-18-0158. doi:
10.1530/EC-18-0158.

13. Chen S, Dai X, Gao Y, et al. The positivity of estrogen re-
ceptor and progesterone receptor may not be associated with
metastasis and recurrence in epithelial ovarian cancer. Sci Rep
2017; 7(1):19322.

14. Escolar J, Klimowicz AC, Dean M, et al. Quantification of
ER/PR expression in ovarian low-grade serous carcinoma.
Gynecol Oncol 2013;128(2):371-6.

15. Matsuo K, Sheridan TB, Mabuchi S, et al. Estrogen receptor
expression and increased risk of lymphovascular space inva-
sion in high-grade serous ovarian carcinoma. Gynecol Oncol
2014;133(3):473-9.

16. Ab Mutalib NS, Syafruddin SE, Md Zain RR, et al.
Molecular characterization of serous ovarian carcinoma us-
ing a multigene next generation sequencing cancer panel
approach. BMC Res Notes 2014;7:805.

17. McAlpine JD, Porter H, Köbel M, et al. BRCA1 and BRCA2
mutations correlate with TP53 abnormalities and presence of
immune cell infiltrates in ovarian high-grade serous carci-
noma. Mod Pathol 2012;25(5):740-50.

18. Erickson BK, Kinde I, Dobbin ZC, et al. Detection of somatic
TP53 mutations in tampons of patients with high-grade
serous ovarian cancer. Obstet Gynecol 2014;124(5):881-5.

19. Mieka A, George SH, Matevski D, et al. Retinoblastoma
pathway deregulatory mechanisms determine clinical out-
come in high-grade serous ovarian carcinoma. Mod Pathol
2014;27(7):991-1001.

20. Mahdi H, Xi J, Reddy SK, et al. Alteration in PI3K/mTOR,
MAPK pathways and Her2 expression/amplification is more
frequent in uterine serous carcinoma than ovarian serous
carcinoma. J Surg Oncol 2015;112(2):188-94.

21. Lee P, Rosen DG, Zhu C, et al. Expression of progesterone
receptor is a favorable prognostic marker in ovarian cancer.
Gynecol Oncol 2005; 96(3):671-7.

22. Butler MS, Ricciardelli C, Tilley WD, et al. Androgen re-
ceptor protein levels are significantly reduced in serous ovarian
carcinomas compared with benign or borderline disease but
are not altered by cancer stage or metastatic progression.
Horm Cancer 2013; 4(3):154-64.

23. Sacks JD, Barbolina MV. Expression and function of CD44
in epithelial ovarian carcinoma. Biomolecules 2015; 5(4):
3051-3066.

24. Lin J, Ding D. The prognostic role of the cancer stem cell
marker CD44 in ovarian cancer: a meta-analysis. Cancer Cell
Int 2017;17:8.

25. Della Pea C, Tonini G, Santini D, et al. Low grade se-
rous ovarian carcinoma: from the molecular characteriza-
tion to the best therapeutic strategy. Cancer Treat Rev
2015;41(2):136-43.

26. Kaldawy A, Segev Y, Lavie O, et al. Low-grade serous ovarian
cancer: A review. Gynecol Oncol 2016;143(2):433-438.

27. Castellarin M, Milne K, Zeng T, et al. Clonal evolution of
high-grade serous ovarian carcinoma from primary to recur-
rent disease. J Pathol 2013;229(4):515-24.

28. Böhm S, Faruqi A, Said I, et al. Chemotherapy response
score: development and validation of a system to quantify
histopathologic response to neoadjuvant chemotherapy in
tubal-ovarian high-grade serous carcinoma. J Clin Oncol
2015;33(22):2457-63.

29. Bowtell DD, Böhm S, Ahmed AA, et al. Rethinking ovarian
cancer II: reducing mortality from high-grade serous ovarian
cancer. Nat Rev Cancer 2015;15(11):668-79.

30. Boyd C, McCluggage WG. Low-grade ovarian serous neo-
plasms (low-grade serous carcinoma and serous borderline
tumor) associated with high-grade serous carcinoma or
differentiated carcinoma: report of a series of cases of an
unusual phenomenon. Am J Surg Pathol 2012;36(3):368-75.