How generic is cosmic string formation in SUSY GUTs

Rachel Jeannerot*

The Abdus Salam ICTP, strada costiera 11, 34100 Trieste, Italy

Jonathan Rocher†

Institut d’Astrophysique de Paris, GReCO, FRE 2435-CNRS, 98bis boulevard Arago, 75014 Paris, France

Mairi Sakellariadou‡

Division of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis, GR-15784 Zografos (Athens), Hellas and Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France

Abstract

We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.

Pacs 12.10.Dm, 98.80.Cq, 11.27+d

1 Introduction

The interface between high energy physics and cosmology is very fruitful. Both high energy physics and cosmology enter the description of the evolution of the early universe, at microscopic and macroscopic levels respectively. However, cosmological models such as inflation must originate from the particle physics model describing interactions of the
constituents of the early universe plasma. Cosmology provides the ground to test fundamental theories at energies far beyond the ones accessible by any terrestrial accelerator.

The particle physics Standard Model (SM) has been tested to a very high precision. However, evidence of neutrino masses [1, 2, 3] proves that one must go beyond this model. The simplest explanation of the data is that neutrino get masses via the seesaw mechanism [4] which results from the breaking of some left-right symmetry. This is the first hint suggesting an extension of the SM gauge group, although this is not strictly needed since right-handed neutrinos could be present without invoking any extra gauge symmetry. At present, Supersymmetry (SUSY) is the only viable theory for solving the gauge hierarchy problem. In addition, in the supersymmetric standard model the gauge coupling constants of the strong, weak and electromagnetic interactions, with SUSY broken at the TeV-scale, meet in a single point at around $M_{\text{GUT}} \simeq (2 - 3) \times 10^{16}$ GeV. This strengthens the idea that there may be a gauge group G with a single gauge coupling constant, which describes the interactions between particles above the scale M_{GUT}. These are the so-called Supersymmetric Grand Unified Theories (SUSY GUTs). From the point of view of cosmology, SUSY GUTs can provide the scalar field needed for inflation, they can explain the matter-antimatter asymmetry of the universe, and they can provide a candidate for cold dark matter, namely the lightest superparticle (LSP).

An acceptable SUSY GUT model should be in agreement with both the standard model and cosmology. The grand unified gauge group must be broken at the GUT scale down to the standard model gauge group. The GUT gauge group must therefore contain the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$, and it must predict the phenomenology that has been observed at accelerators [5]. Constraining SUSY GUTs at accelerators is a challenge which will be undertaken in the future. On the other hand, even if accelerators can find SUSY particles and constrain the Minimal Supersymmetric Standard Model (MSSM), they will probably say only very little about GUTs and symmetry breaking patterns. Luckily, a number of new astrophysical data can be used to constrain the various schemes of Spontaneously Symmetry Breaking (SSB) from a grand unified gauge group down to the standard model.

In building SUSY GUTs, one faces the appearance of undesirable stable topological defects, mainly monopoles, but also domain walls, according to the Kibble mechanism [6]. To get rid of the unwanted topological defects, one employs the mechanism of inflation. Inflation is also the most promising mechanism for generating density perturbations which lead to structure formation and Cosmic Microwave Background (CMB) temperature anisotropies, as confirmed by the recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements [7]. On the other hand, inflation usually requires fine-tuning of its parameters, leading to the naturalness issue. These fine-tuning problems can be circumvented in SUSY models. In principle, we could build an inflationary scenario using a random scalar field with a given potential, which has nothing to do with either the SM, or a gauge theory containing the SM. This could come, for example, from a hidden sector. An interesting possibility is that inflation comes from extensions of the SM, such as a GUT model, which is then self-consistent: monopoles form, inflation originates from the GUT itself and solves the monopole problem, and in addition it fits with CMB data, as
well as other data such as the baryon asymmetry which is generated by oscillations of the inflaton field. Models along these lines have been constructed \cite{38,39,40}. This scheme is the philosophy which we follow here.

Given an inflationary scenario, we investigate the topological defects which may be produced at subsequent phase transitions. We consider all possible symmetry breaking schemes and examine which kind of topological defects are left after inflation, if any. In all schemes, only local topological defects can arise, since we only consider gauge symmetries. If monopoles or domain walls are produced after inflation, then these SSB patterns are discarded, since these defects should have closed the universe. The only acceptable SSB patterns are those which, after the inflationary stage, either lead to the formation of cosmic strings or to no defects at all. If cosmic strings (topological defects) are formed, we should examine their type (Nambu-Goto strings, superconducting strings) and then check their compatibility with the constraint coming from the recent measurements of the CMB temperature anisotropies \cite{7,8}. If embedded strings are formed, then we should examine their stability (they are in general unstable under small perturbations). The symmetry breaking patterns leading to the formation of textures cannot be constrained, since local textures decay very fast \cite{9} and therefore play no role in cosmology.

We organize the rest of the paper as follows: In Section 2, we discuss the theoretical framework of our study. We discuss the various kinds of topological defects which may form, and the criterion for their formation. We briefly review the standard model for inflation in SUSY GUTs, and we comment on leptogenesis. In Section 3, we discuss the choice of the gauge groups which we consider. In Section 4, we list all possible SSB patterns from the selected GUT gauge groups down to the standard model gauge group. We review the most common embeddings of the standard model in each GUT. Each embedding leads to specific SSB patterns. We list them all, giving the type of defect which is formed at each phase transition. We then discuss which of the SSB patterns are allowed from cosmology and we count for each group the number of schemes where strings are formed after inflation, as compared to the number of schemes with no defect. We round up with our conclusions in Section 5. Finally, in Appendix A, we list the maximal sub-algebras which we employ for the groups considered in our study.

2 Theoretical framework

2.1 Topological Defects

The assumption of a GUT implies that our universe has undergone a series of phase transitions associated with the spontaneous symmetry breaking of the GUT gauge group G_{GUT} down to the standard model gauge group $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ at $M_{GUT} \sim 3 \times 10^{16}$ GeV. The last phase transition of the SSB pattern is the electroweak phase transition which takes place at $M_{EW} \sim 10^2$ GeV as G_{SM} breaks down to $SU(3)_C \times U(1)_Q$. There might be one, more than one, or none intermediate symmetry group between
G\(_{\text{GUT}}\) and G\(_{\text{SM}}\). The important cosmological consequence of these SSB schemes is the formation of topological defects via the Kibble mechanism \([6]\).

If we have a system with a topologically non-trivial vacuum manifold, then fields in different spatial regions fall into different ground states, and thus SSB may be followed by the emergence of a network of topological defects during the associated phase transition. (For a review on topological defects the reader is referred to Refs. \([10]\), \([11]\)). This leads to the GUT monopole problem: all GUTs based on simple gauge groups lead to the formation of topologically stable monopoles whose density is about \(10^{18}\) times greater than the experimental limit. Homotopy theory tells us that topologically stable monopoles always form. Moreover, a wide variety of other defects may also form, leading to important astrophysical and cosmological implications.

In this paper, we study the formation of topological defects in realistic GUTs considering all possible SSB patterns of a given group. Allowing for standard hybrid inflation we can then throw away all schemes which lead to the formation of unwanted defects and check whether strings form at the end of inflation or after inflation has completed.

Let us consider the symmetry breaking of a group G down to a sub-group H of G. In order to see whether topological defects form during the phase transition associated with the breaking of G down to H, we can study the homotopy groups \(\pi_k(G/H)\) of the vacuum manifold \(M_n = G/H\). If \(\pi_k(G/H) \neq 0\), then topological defects are formed; if \(k = 0\) then domain walls form, if \(k = 1\) then cosmic strings form, if \(k = 2\) then monopoles form, and if \(k = 3\) then textures appear.

Spontaneous symmetry breaking patterns which lead to the formation of monopoles or domain walls are ruled out since they are incompatible with our universe, except if an inflationary era took place after their formation. The reason for which monopoles and domain walls are undesirable, is that in both cases they soon dominate the energy density of our universe and close it. The textures are not studied in this work because in the local case, their relative contribution to the energy density of the universe decreases rapidly with time \([9]\). Thus, we cannot constrain SSB patterns with textures because they cannot play a significant role in cosmology.

In addition to topological defects, a gauge field theory may have non-topological defects. It is possible to obtain a sub-manifold \(M_m\) \((m < n)\), of the original vacuum manifold \(M_n\), by freezing out some combinations of the original fields. If the topology of the \(M_m\) is such that the theory admits topological defects, then one can create configurations of the unconstrained fields which correspond to topological defects. Provided these configurations satisfy the equations of motion of the unconstrained theory, then embedded defects appear \([12]\), \([13]\). More precisely, if we have a symmetry breaking \(G \rightarrow H\) and \(G_{\text{emb}} \rightarrow H_{\text{emb}}\), with \(G_{\text{emb}} \subset G\) and \(H_{\text{emb}} \subset H\), we examine whether \(\pi_k(G_{\text{emb}}/H_{\text{emb}}) \neq 0\), which is the criterion for the appearance of embedded \((2 - k)\)-dimensional defects.

Embedded defects are not topologically stable and in general they are not dynamically stable either \([14]\). However, a number of mechanisms have been proposed in the literature, which may stabilize the embedded strings and therefore, they may play an important role.
in cosmology. For example, the pion string in the theory of strong interactions, and the
electroweak Z-string in the standard electroweak theory can be stabilized in the early
universe via finite-temperature plasma effects [15]. In addition, an electroweak Z-string
can be also stabilized by the presence of bound states of a complex scalar field [16].
Embedded gauge monopoles always suffer [17] from a long range instability (the Brandt-
Neri-Coleman instability [18]), and therefore, we do not consider them.

2.2 Inflation in Supersymmetric Unified Theories

Inflation is at present the most appealing theory which describes the early universe. Infla-
tion essentially consists of a phase of accelerated expansion which took place at a very high
energy scale. Even though only special initial conditions eventually lead to successfully
inflationary cosmologies, it has been argued [19] that these initial conditions are precisely
the likely outcomes of quantum events occurred before the inflationary era. Thus, infla-
tion is itself generic [19]. In addition, when the principles of quantum mechanics are
taken into account, inflation provides a natural explanation for the origin of the large
scale structures and the associated temperature anisotropies in the CMB radiation. With
the increasing data on the CMB, which seem to confirm an early inflationary era [21], one
needs to find the most natural framework for inflation which can match the data. Inflation
is most naturally realized in SUSY models. (For a review on inflation in SUSY models
the reader in referred to Ref. [21].) The most natural scenario for inflation, up-to-date, is
the so-called standard hybrid inflation (the reader is referred to Refs. [22], [23], [24]).

Let us summarize how inflation arises naturally in SUSY GUTs based on gauge groups
with rank greater or equal to five. By naturally we mean that no extra-field, nor any extra-
symmetry, are needed for inflation except those needed to build the GUT itself. In order
to satisfy COBE data the inflationary scale has to be $\sim 10^{15.5}$ GeV [24] which is close
to the GUT scale. Note that the problem of initial conditions is not completely solved,
but the argument is that all the fields would come out from the quantum gravity period
taking values which are of the order of the cut-off scale of the ultimate theory, which can
take to be the Planck scale M_{Pl} or the string scale [24]. The horizon problem is solved
for coupling constants of the order of 10^{-2}. The spectral index is predicted to be very
close to one (we usually get $n \approx 0.98$). Supergravity (SUGRA) corrections can be kept
small [26].

The superpotential for hybrid inflation in SUSY GUTs is given by:

$$W = \alpha S \overline{\Phi} \Phi - \mu^{2} S,$$ \hspace{1cm} (2.1)

where S is a GUT singlet, $\overline{\Phi}$ and Φ are GUT Higgs fields in complex conjugate representations which lower the rank of the group by one unit when acquiring non-zero VEV, and α and μ are two constants (μ has dimensions of mass) which can both be taken positive with field redefinition. The superpotential given in Eq. (2.1) is the most general superpotential consistent with an R-symmetry under which $W \rightarrow e^{i\beta} W$, $\overline{\Phi} \rightarrow e^{-i\beta} \overline{\Phi}$, $\Phi \rightarrow e^{i\beta} \Phi$, and $S \rightarrow e^{i\beta}$.
The potential has two minima: one valley of local minima, for S greater than its critical value $S_c = \mu/\sqrt{\alpha}$, $\Phi = \Phi$, and one global supersymmetric minimum ($V=0$) at $S = 0$ and $\Phi = \Phi = \mu/\sqrt{\alpha}$. Imposing chaotic initial conditions, i.e. $S \gg S_c$, the fields quickly settle down the valley of local minima. The potential $V = \mu^4 \neq 0$ and inflation can take place. SUSY is broken and the one-loop corrections to the effective scalar potential can be calculated. This gives a little tilt to the scalar potential which helps the scalar field S to slowly roll down the valley of minima. The last 50 or so e-folds of inflation take place much below the Planck scale. When S falls below its critical value S_c, inflation stops by a waterfall regime, and the fields quickly settle down to the global minimum of the potential and supersymmetry is restored. SSB occurs at the end of inflation (\(\Phi\) and Φ acquire non zero VEVs after inflation, or at most during the last e-fold; this is GUT model dependent). This is very important for cosmology because it implies that topological defects (if any) form at the end of inflation with a mass per unit length \(\propto \mu/\sqrt{\alpha}\). Henceforth no monopole nor domain walls should be associated with the SSB induced by the Φ and Φ VEVs. They should not form at any subsequent phase transition either. We shall use this argument to constraint all SSB of a given G\(\text{GUT}\). It was already done for supersymmetric SO(10) models. It was found that among all the SSB patterns from SO(10) down to the standard model gauge group involving at most one intermediate symmetry breaking scale, only three are in agreement with observations. The proton is “stable” (R-parity is conserved) and no unwanted defects form after inflation. In all these three SSB patterns, cosmic strings form at the end of inflation. They imply a mixed scenario with inflation and cosmic strings to account for the CMB temperature anisotropies. We shall generalize this to all GUTs predicting neutrinos masses via the see-saw mechanism.

Let us comment on CMB anisotropies from inflation and cosmic strings in SUSY GUTs models. In these scenarios, the multipole moments C_ℓ add quadratically and they are proportional to the same scale $\Lambda_{\text{infl}} = \mu/\sqrt{\alpha}$ with a proportionality constant which is model dependent. This can be rewritten as $C^\text{tot}_\ell = (1 - x)C^\text{infl}_\ell + xC^\text{str}_\ell$ where $C^\text{infl}_\ell, C^\text{str}_\ell \propto (\Lambda_{\text{infl}}/M_{\text{Pl}})$. Here x depends on the CMB normalization for each scenario, on the coupling constant α of the trilinear term $\alpha S\Phi\Phi$ in Eq. (2.1), on the dimension of Φ, and on the GUT itself. Local cosmic string predictions are unfortunately not very well established in detail and range from an almost flat spectrum to a single wide bump at $\ell \sim 500$ with extremely rapidly decaying tail. Recent numerical simulations of local string networks confirm the existence of a bump at around $\ell \sim 600$. It seems that the microphysics of the string network plays a crucial role in the height and in the position of the bump. Studies of mixed perturbation models (inflation + cosmic strings) impose strong constraints on the maximum contribution of the string network. The initial condition is also not taken into account (the distribution of strings forming at the end of inflation and their micro-structure may be very different from those concerning strings formed at standard phase transitions). What we can conclude is that the effect of cosmic strings on the CMB power is to lower the height of the first acoustic peak, and to displace it to smaller angular scales, as well as to wash out any secondary peaks. In addition, topological defects induce non-Gaussian statistics, due to their non-linear
evolution\[34\].

So far, we have been discussing F-term inflation. D-term inflation\[35\] requires the existence (in addition to the GUT) of a U(1) factor with a non-vanishing Fayet-Iliopoulos term which can only appear if $\text{Tr}Q \neq 0$, where Q stands for the U(1) charge\[36\]. D-term inflation occurs in the following way: If one assumes an appropriate set of discrete and continuous symmetries, the linear term in Eq. (2.1) can be forbidden. The VEV of the fields Φ and Φ can be then forced to equal the Fayet-Iliopoulos term which also sets the scale of inflation. This is the so-called D-term inflation\[37\]. The main advantage of D-term inflation is that it works for general Kahler potentials. However, if this extra U(1) is anomalous coming from string theory (this would be the best way to justify its presence), the F-term is calculated using the Green-Schwarz mechanism and would be at the string scale which is far too high for inflation. At the end of D-term inflation cosmic strings always form (this is easy to understand since we are breaking a U(1) gauge symmetry). In this case they satisfy the Bogolomny bound and their contribution to the C_l’s is $x = 0.75$\[28\]. The string contribution is smaller in the F-term case\[28\] and as mentioned above, model dependent. We conclude that D-term inflation is not consistent with observations\[8\], but it does not concern us anyway, since we are interested in GUTs based on simple gauge groups.

Since topological defects always form at the end of standard hybrid inflation, it is easy to conclude that at least one intermediate symmetry breaking is needed between G_{GUT} and G_{SM}. One way to avoid the monopole problem in single step breaking GUTs is to consider the first non-renormalisable term in Eq. (2.1)\[38\]. Its effect on the scalar potential is to “shift” the inflationary valley of local minima to a valley in which the GUT Higgs have already a non-vanishing VEV, implying that the GUT is already broken during inflation so that no topological defects form at the end of inflation\[38\],\[39\]. Note that non-renormalisable terms of all orders are in general present in the superpotential if no R-symmetry is invoked to cancel them. However, their effect on the scalar potential is usually negligible. The way one can solve the monopole problem with SUSY GUTs hybrid inflation has been discussed in Ref.\[40\].

We thus assume standard hybrid inflation which can only occur when the rank of the group is lowered by (at least) one unit. We can then discuss how frequently cosmic strings form at the end of inflation with a mass proportional to the inflationary scale as discussed above, so that both inflation and cosmic strings contribute to the CMB temperature anisotropies. We point out that for GUTs based on gauge groups with rank strictly greater than five, more than one stage of inflation can occur. This could lead to a multiple inflationary scenario with or without cosmic strings at each stage. If more than one stage of the SSB pattern lowers the rank of the group, there can be a succession of short bursts of inflation\[11\] which occur at different scales below the Planck scale and leave behind a distinctive signature in the spectrum of the generated scalar density perturbations\[42\]. In our scenarios, i.e. in the selected SSB which lead to various stages of inflation as well as to cosmic string formation at the end of each stage, multiple inflation combined with multiple string networks arises.
2.3 Leptogenesis

A cosmological scenario is incomplete if it does not discuss baryogenesis which has to occur after inflation has taken place. GUT baryogenesis is washed out by inflation and the window left for electroweak baryogenesis is very small. The most appealing scenario today for baryogenesis is that of leptogenesis [17] which requires non-zero neutrino masses. This scenario is strongly favored since the discovery of non-zero neutrino masses [1, 2, 3]. (For a review on baryogenesis scenarios and on the cosmological arguments which they render most of them unlikely, the reader is referred to Ref. [48].)

The most economical way for getting neutrino masses is the see-saw mechanism [4]. This requires the existence of SM gauge singlets (the right-handed neutrinos), which must get masses around $M_R \sim 10^{14}$ GeV from data on neutrino oscillations [1, 2, 3]. This means, that there exist a superpotential mass term for the right-handed neutrinos of the form $M_R N_i N_j$, where $i, j = 1, 2, 3$ and M_R is a 3×3 mass matrix. The N_i’s are SM singlets which couple with the MSSM lepton doublets L and electroweak up-type Higgs H_u via the superpotential term $h_{ij} l_i H_u N_j$, where h_{ij} is a 3×3 complex Yukawa matrix. This gives rise to a non-zero mass matrix M_ν for the left-handed neutrinos. The basic idea of leptogenesis [17], is that when the universe cools down and its temperature falls below $T \sim M_R$, the right-handed (s)neutrinos stop being in thermal equilibrium with the surrounding plasma and decay into (s)leptons and electroweak Higgs (higgsinos); lepton number and CP are violated [19]. A net lepton asymmetry is produced which is then transformed into a baryon asymmetry via sphaleron transitions, which are effective between 10^{12} and 10^2 GeV [50]. The reheating temperature in supersymmetric models is bounded by above, i.e. $T_{RH} < 10^{10}$ GeV, to avoid an overproduction of gravitinos which would overclose the universe.

The most effective way for leptogenesis is therefore non-thermal. This happens for example if the inflaton field decays into right-handed neutrinos and sneutrinos (see for example Ref. [51]). The resulting lepton asymmetry is then proportional to the reheating temperature, inversely proportional to the inflaton mass, and depends on neutrino mass parameters. Constraints from successful inflation, reheating and neutrino masses can be satisfied. In these scenarios, the right-handed neutrino masses come from a superpotential term $\kappa_{ij} \Phi N_i N_j$, where the GUT Higgs field Φ is identified with the GUT Higgs field entering the inflationary superpotential given in Eq. (2.1). This is the same Higgs field which breaks $B-L$ (B and L are respectively baryon and lepton numbers) in GUTs, predicting right-handed neutrinos. Such GUTs contain a $U(1)_{B-L}$ gauge symmetry and the scale of neutrino masses is proportional to the $B-L$ breaking scale.

Another non-thermal process for leptogenesis is via decaying $B-L$ cosmic strings [52]. The Higgs field responsible for string formation is the same Higgs field which is used to break $B-L$. Since it gives mass to the right-handed neutrinos, there are right-handed neutrino zero modes trapped in $B-L$ cosmic string cores. These are released when cosmic string loops decay and leptogenesis takes place. If the superpotential given in Eq. (2.1) is used for inflation, as well as to break $B-L$, then $B-L$ cosmic strings form at the end of inflation. Such models were discussed in Ref. [53]. In this case both processes contribute
to the lepton asymmetry of the universe: the non-thermal process from reheating after
inflation and the decay of cosmic strings.

In any case, the SSB patterns which can explain the baryon asymmetry of the universe
have the B-L gauge symmetry broken at the end or after inflation. If inflation takes place
at the B-L breaking scale, both non-thermal scenarios will compete, somehow in the same
way that both strings and inflation can contribute to CMB anisotropies. It would be very
interesting to calculate in which proportion they contribute to the net baryon asymmetry
of the universe today.

3 Grand Unified Theories

GUTs can solve many of the SM problems, such as the quantization of the electric charge,
the quarks and leptons masses, and the origin of neutrino masses. On the other hand,
SUSY solves the gauge hierarchy problem. In the MSSM with SUSY broken at around
10^3 GeV the strong, weak, and electromagnetic gauge coupling constants run with energy
and reach the same value at $M_{GUT} \sim 3 \times 10^{16}$ GeV. Hence SUSY GUTs can describe
particle interactions at energies above M_{GUT} and it must be broken down to the standard
model gauge group. In this section, we select GUT gauge groups which lead to the correct
SM phenomenology without fine-tuning [43], [44], [45].

A single value for the three gauge coupling constants of the standard model can be
obtained with a simple group or with a group which is the direct product of n identical
simple groups with the addition of a discrete symmetry Z_n. Simple groups are divided into
four infinite families, $SU(n+1)$, $SO(2n+1)$, $Sp(2n)$ and $SO(2n)$, where n denotes the rank
of the group. In addition there are five simple exceptional groups, G_2, F_4, E_6, E_7, E_8, where
the index corresponds to the rank of the group. The basic requirement for a GUT is that
it must contain the standard model gauge group $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$
as a subgroup. Its rank must therefore be greater or equal to 4, which is the rank of G_{SM}. Simple
groups of rank 4 are $SU(5)$, $SO(9)$, $Sp(8)$, $SO(8)$, F_4 and we can add the semi-simple
group $SU(3) \times SU(3)$. Among these groups of rank 4, only $SU(5)$ and $SU(3) \times SU(3)$ have
complex representations, which are needed in order to describe electroweak interactions.
However, $SU(3) \times SU(3)$ cannot describe particles of integer and fractional charge and
therefore it is also excluded. Thus, the only group of rank 4 which remains is $SU(5)$ [15].

In selecting GUT gauge groups, we have two additional constraints: the group must
include a complex representation which is necessary to describe the standard model
fermions, and it must be anomaly free. In principle, $SU(n)$ may not be anomaly free [16];
more precisely it depends on the chosen fermionic representation [43]. We assume that
the $SU(n)$ groups which we use have indeed a fermionic representation that certifies that
the model is anomaly free. With these constraints taken into account (we do not yet
require see-saw mechanism for neutrino masses), only $SO(4n+2)$ with $n \geq 2$, $SU(n)$ with
$n \geq 5$, and E_6 can be kept. We also point out that minimal SUSY $SU(5)$ is ruled out by
proton lifetime measurements.
The last constraint comes from neutrino masses. The fairly recent discovery of neutrino oscillations at Superkamiokande \cite{1} implies that neutrino have a mass. The Sudbury Neutrino Observatory (SNO) \cite{2} results and the KamLAND \cite{3} direct measurement of neutrino mixing have confirmed the existence of non zero neutrino masses. Since the standard model does not predict the existence of mass for the neutrino, we must go beyond. The simplest possibility is to add a singlet which plays the role of right-handed neutrino. One can also add a triplet of Higgs to the SM. But neutrino masses are predicted in GUTs which contain a $U(1)_{B-L}$ gauge symmetry \cite{4}. The requirement of see-saw mechanism is our next constraint on the choice of the group. We point out that these models can also automatically lead to R-parity conservation \cite{5} and baryogenesis via leptogenesis \cite{6}. SUSY GUT models that we shall select at the end are self-consistent: they predict neutrino masses and R-parity conservation, they solve their own monopole problem with inflation, and at the end of inflation baryogenesis via leptogenesis can take place.

Regarding the upper bound on the rank, we limit our study to groups with rank, r, less than or equal to 8. Clearly, the choice of the maximum rank is in principle arbitrary. The choice of $r \leq 8$ could, in a sense, be motivated by the Horava-Witten \cite{54} model, based on $E_8 \times E_8$. Each factor E_8 (rank $r = 8$) can be seen as confined in one brane. Thus, within a four-dimensional theory (no extra dimensions), the rank can be limited to $r = 8$. To be more precise, within the framework of five consistent string theories in ten-dimensions (i.e., type I open strings, type IIA and IIB closed strings and the two closed heterotic strings), the rank of the gauge group is bounded to $r \leq 22$ \cite{55}. However, it is at present believed that the five string theories are related by strong-weak coupling dualities, and they can be seen as different limits of one underlying theory, the M-theory. In this context, one gets non-perturbative strings which have their own non-perturbative gauge group, thus enhancing, by a really a lot, the maximum rank required in perturbation theory \cite{55} (a few years ago, the upper bound of the rank was found to be 10^5 \cite{56}). Even though we limit our study in $r \leq 8$, we believe that we still capture the main results. Indeed, higher rank groups lead (as one can see in the next sections) to similar SSB patterns as the one considered for groups of smaller rank. At last, but not least, a fully exhaustive analysis is clearly impossible.

4 Spontaneous Symmetry Breaking Patterns

In the previous section, we showed that a number of constraints restrict the choice of symmetry groups G_{GUT}. In this section, we study all possible spontaneous symmetry breaking patterns from G_{GUT} down to the standard model gauge group G_{SM} (or $G_{SM} \times Z_2$) and we look for defect formation. Here Z_2 is a sub-group of the $U(1)_{B-L}$ gauge symmetry which is contained in various gauge groups such as SO(10), E(6) and SU(8). It plays the role of R-parity. Recall that R-parity in SUSY forbids all dimensions 3 and 4 (even dimension 5) baryon and lepton number violating operators, therefore forbidding fast proton decay. This discrete Z_2 symmetry can be left unbroken down to low energy when
appropriate representations are used to implement the SSB pattern [57]. R-parity is thus an automatic consequence of SUSY GUTs which contain $U(1)_{B-L}$. Only models with unbroken Z_2 at low energy are consistent with the proton lifetime measurements. Therefore when it appears in a SSB scheme, we keep it unbroken down to low energy.

We only consider maximal regular sub-groups [15]; they are listed explicitly in Appendix A. We disregard special maximal sub-groups because it is then really non-trivial to get G_{SM} with the correct phenomenology. We write down SSB schemes which are consistent with both group theory and particle physics phenomenology. Some of the SSB schemes may be extremely complicated for model building. For example, non-trivial Higgs representations may be needed. In fact, in model building with a minimal set of Higgs, we do not usually get many intermediate SSB scales. Also, in going beyond one or two intermediate SSB scales, the model loses its predictability. However, this is beyond the scope of the systematic search we are aiming to.

For each group, there may be different ways of embedding G_{SM} in a given maximal subgroup. We use different indices to refer to the embedding that we consider. The three indices C, L, Y stand for Color, Left and Hypercharge respectively, but we use more generally the index C (respectively L) when $SU(n)_C \supset SU(3)_C$ (respectively $SU(n)_L \supset SU(2)_L$). We use several other indices which correspond to different possible embeddings of G_{SM} in maximal sub-groups of G_{GUT}. They are explained below when we list the various SSB patterns for each group. The definition of the weak hypercharge is given where needed. The microstructure of cosmic strings is very much dependent on these assignments, which can imply different cosmological and astrophysical effects such as superconductivity, non-thermal production of baryons, lepton asymmetry or dark matter.

In order to simplify the notation, we write $4_C 2_L 2_R$ which stands for $SU(4)_C \times SU(2)_L \times SU(2)_R, 3_C 2_L 2_R$ for $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$, etc. We also use the numbers $1, 2, 2', 3$ over an arrow to distinguish the type of gauge defect which is formed during the corresponding phase transition: 1 stands for monopoles, 2 for topological cosmic strings, $2'$ for embedded strings and 3 for domain walls; 0 indicates that no defect forms. If the number is given in brackets, it stands for the type of defect formed during the SSB of the same gauge group down to the same sub-group $\times Z_2$. As an example, $G \overset{1}{\to} H (Z_2)$, means that monopoles form when G breaks down to H, while both monopoles and cosmic strings form when G breaks down to $H \times Z_2$. If (Z_2) appears but there is no number in brackets, it is because the Z_2 appeared during a previous transition and the type of defect which forms in the SSB with unbroken Z_2 is identical the one without it. Finally, $G \to \ldots$ means that the SSB patterns of G down to G_{SM} have already been given.

4.1 Discrete Symmetries

We briefly discuss various discrete symmetries which may appear during the SSB patterns. The Z_2 sub-group of $U(1)_{B-L}$ which plays the role of R-parity is the only discrete symmetry that we shall consider in the SSB patterns. It must be there by naturalness for keeping
the proton lifetime above the experimental limits, since we do not consider the existence of any other symmetry than \(G_{\text{GUT}}\) at the GUT scale.

Nevertheless, we point out that some discrete \(Z_n\) symmetries may be left unbroken when the rank of the group is lowered. This depends on the Higgs representation which is used to implement the SSB. However, only two discrete symmetries, the standard \(Z_2\) parity and one \(Z_3\) parity, are anomaly free and can remain unbroken at low energy \[58\]. (Note that by adding some gauge singlets and/or doublets two more \(Z_3\) could be allowed.)

Also, in order to get the \(Z_3\) symmetry some very high Higgs dimensional representations are needed \[59\]. For example, in order to get a residual \(Z_3\) from \(E_6\), one has to choose a 3003-dim Higgs representation. To simplify our work, we disregard these \(Z_n\). They must be broken at some stage during the SSB pattern, so that they are broken today. From a cosmological point of view, when these discrete symmetries break, unwanted domain walls form. In a full model, they must therefore appear and be broken before inflation.

Another discrete symmetry, \(Z_2^C\), can also be left unbroken when Pati-Salam or Left-Right symmetry groups appear. This leads to the formation of \(Z_2\)-strings which get connected via domain walls when \(Z_2^C\) breaks \[60\]. (This is not coming from the breaking of a gauge \(U(1)\) symmetry and hence does not enter in the comments above.) The \(Z_2^C\) symmetry is also known as D-parity \[61\]. The scale of breaking of \(Z_2^C\) and \(SU(2)_R\) may be, in principle, separated. We discuss all the SSB patterns for SUSY \(SO(10)\) with and without unbroken D-parity at high scale. Although the unbroken D-parity may also appear in \(E_6\) models, for reasons of simplification, we do not discuss it. The important issue is that it must be broken before inflation takes place.

4.2 SU(5)

The discussion of SU(5) GUT is very short, since SU(5) has rank 4 and can only break directly down to the standard model gauge group. This SSB leads to the formation of topologically stable monopoles which are inconsistent with observations. One way to solve the monopole problem in SUSY SU(5) is to introduce an extra singlet and to give non-trivial initial conditions to the fields in the Higgs potential \[62\]. In the following section we discuss GUT gauge groups with rank greater or equal to five.

4.3 SO(10)

SO(10) is a gauge group of rank 5, which contains as maximal sub-groups \(SU(5) \times U(1)\) and the Pati-Salam gauge group \(G_{PS} = SU(4)_C \times SU(2)_R \times SU(2)_L\), where \(SU(4)_C \supset SU(3)_C \times U(1)_{B-L}\).

In order to give explicit definition for the hypercharge, we consider the following decomposition \[63\]

\[
SO(10) \supset SU(5) \times U(1)_V \supset SU(3)_C \times SU(2)_L \times U(1)_Z \times U(1)_V.
\] (4.2)
There are two possible assignments for the hypercharge Y that reproduce the SM and they depend on whether it is only included in SU(5) or also in SO(10). In the first case

$$\frac{Y}{2} = Z.$$ \hfill (4.3)

It is used for SSB via the Georgi-Glashow model \[64\]; we add no subscript to SU(5). In the second case

$$\frac{Y}{2} = -\frac{1}{5}(Z + V),$$ \hfill (4.4)

and it is used for the breakings via the flipped SU(5) model \[65\], in which case we add the subscript F, i.e. we write 5_F. In SO(10), all the standard model fermions of each family plus a right-handed neutrino belong to the 16-dimensional representation. The decomposition of the 16 under SU(5) and SU(5)$_F$ is given in Refs. \[64\] \[65\].

Thus, there are two ways of embedding SU(5) \times U(1)$_V$ \supset SU(3)$_C$ \times SU(2)$_L$ \times U(1)$_{B-L}$ in minimal SO(10) GUT, but there is only one way for SU(2)$_R$ \[63\]. Here V is related to the third component I^3_R of SU(2)$_R$ and to $B - L$, which is contained in SO(10) by

$$V = -4I^3_R - 3(B - L),$$ \hfill (4.5)

and to Z by

$$Z = -I^3_R + \frac{1}{2}(B - L).$$ \hfill (4.6)

Thus, in the first case,

$$\frac{Y}{2} = -I^3_R + \frac{1}{2}(B - L),$$ \hfill (4.7)

while in the second case

$$\frac{Y}{2} = I^3_R + \frac{1}{2}(B - L).$$ \hfill (4.8)

We list below the SSB schemes of SO(10) via SU(5) sub-groups. We indicate the type of defect(s) formed at each phase transition

\[
\text{SO}(10) \quad \left\{ \begin{array}{c}
1 \rightarrow \quad 5 \quad 1_V \\
1 \rightarrow \quad 5_F \quad 1_V \\
0 \rightarrow \quad 5 \quad (Z_2)
\end{array} \right\} \quad \left\{ \begin{array}{c}
2 \rightarrow \quad 5 \quad (Z_2) \\
1 \rightarrow \quad 3_C \quad 2_L \quad 1_Z \quad 1_V \\
1,2 \rightarrow \quad G_{SM} \quad (Z_2)
\end{array} \right\} \quad \left\{ \begin{array}{c}
\frac{1}{2} \rightarrow \quad G_{SM} \quad (Z_2) \\
\frac{1}{2} \rightarrow \quad G_{SM} \quad (Z_2) \\
\frac{1}{2} \rightarrow \quad G_{SM} \quad (Z_2)
\end{array} \right\}
\]

SO(10) can also break via the left-right symmetric groups $G_{PS} \supset$ SU(3)$_C$ \times SU(2)$_R$ \times SU(2)$_L$ \times U(1)$_{B-L}$, in which case the assignment of the hypercharge is given by Eq. (4.8). As explained in the previous section, a discrete symmetry known as D-parity (noted as Z_2^D) can appear, leading to the formation of walls bounded by strings; such configurations are not problematic for cosmology. However, if inflation takes place before the formation
of domain walls, then these would become cosmologically catastrophic; this situation is forbidden. Another Z_2 appears when SO(10) is breaking via G_{PS} \[60\]; indeed, it is not SO(10) but its universal covering group Spin(10) which is really broken to [(Spin(6) × Spin(4))/Z_2](×Z_2^C) (We remind to the reader that SU(4) × SU(2) × SU(2) ∼ Spin(6) × Spin(4).) The quotient Z_2 results from the non-trivial intersection of Spin(6) and Spin(4) and implies the formation of monopoles.

The SSB patterns of G_{PS} and G_{PS} with D-parity down to G_{SM} (Z_2) are respectively given by

\[
\begin{align*}
4C & 2L 2_R \quad \begin{cases}
1 \rightarrow 3C 2L 2_R 1_{B-L} \\
1 \rightarrow 4C 2L 1_R \\
1 \rightarrow 3C 2L 1_R 1_{B-L} \\
1 \rightarrow 1_{(1,2)} \rightarrow G_{SM} (Z_2)
\end{cases} \\
& \begin{cases}
1 \rightarrow 3C 2L 1_R 1_{B-L} \rightarrow \frac{2}{(2)} G_{SM} (Z_2) \\
1 \rightarrow 3C 2L 1_R \rightarrow \frac{2}{(2)} G_{SM} (Z_2)
\end{cases}
\end{align*}
\]

and

\[
\begin{align*}
4C & 2L 2_R Z_2^C \quad \begin{cases}
1 \rightarrow 3C 2L 2_R 1_{B-L} \rightarrow \frac{2}{(2)} G_{SM} (Z_2) \\
1 \rightarrow 4C 2L 1_R \rightarrow \frac{2}{(2)} G_{SM} (Z_2)
\end{cases} \\
& \begin{cases}
3 \rightarrow 3C 2L 2_R \rightarrow \cdots \\
1 \rightarrow 3C 2L 1_R \rightarrow \frac{2}{(2)} G_{SM} (Z_2)
\end{cases}
\end{align*}
\]

The SSB schemes of SO(10) via the left-right groups with associated defect formation
The SSB patterns listed above and the type of defect indicated above the arrows, contain all the information one needs to address the question of whether cosmic strings (topological or embedded) are expected to exist in models which are compatible with both particle physics and cosmology. The acceptable models must be consistent with proton lifetime measurements, solve the GUT monopole problem with inflation, and explain the baryon asymmetry of the universe. Inflation takes place when the rank of the group is lowered and non-thermal leptogenesis (i.e. B-L breaks at the end of inflation) is efficient.

For GUTs based on gauge groups which have rank less or equal to five such as SO(10) or SU(6), in each SSB pattern, there is one single choice for the phase transition where hybrid inflation can take place. In SO(10), non-thermal leptogenesis always takes place at the end of inflation. On the other hand, for GUTs based on gauge groups which have rank greater than five, there may be more than one choice for the phase transition which leads to inflation. In these GUTs where inflation can take place at different stages in the SSB patterns, B-L is not necessarily broken at the end of inflation. Models satisfying all constraints must lead to efficient leptogenesis; B-L must be broken at the end of inflation.

Since in standard hybrid inflation SSB takes place at the end of inflation, in the schemes which are consistent with cosmology from a defect point of view, inflation can only take place during a given phase transition, with no monopoles or domain walls at this or at a subsequent phase transition.

For SO(10), we find that there are 68 SSB patterns which do not lead to formation of unwanted defects after inflation and all these models lead to the formation of cosmic strings (topological cosmic strings or embedded ones) at the end of inflation. More precisely, we find that there are 34 SSB patterns with cosmic strings (topological defects) and unbroken matter parity, i.e. $G_{SM} \times Z_2$. There are 21 SSB patterns leading to cosmic string formation, but with broken R-parity. Finally, there are 13 SSB schemes with embedded strings. In SO(10), when embedded strings are formed, R-parity is always broken. In all these models, B-L is broken at the end of inflation and leptogenesis is efficient. As discussed earlier, the proton lifetime measurements require unbroken R-parity. There are therefore only 34 SSB patterns which satisfy all the constraints and they all lead to the formation of topological cosmic strings at the end of inflation.
4.4 SU(6)

SU(6) is the second group of rank 5. The maximal sub-groups of SU(6) are given in Table A. Recall that SU(6) does not contain B-L and, therefore it cannot accommodate the data on neutrino oscillations. There are only few possibilities for the spontaneous symmetry breaking patterns from SU(6) down to the G

\[\text{SM} \]. We list them below, indicating also the type of defects, if any, formed at each phase transition.

\[
\begin{align*}
&\begin{array}{c}
\text{SU}(6) \\
\rightarrow 5 \quad 1_6 \\
\rightarrow 4_3 \quad 2_L \quad 1 \\
\rightarrow 3_3 \quad 3_L \quad 1 \\
\rightarrow 3_2 \quad 2_L \quad 1 \quad 1 \\
\rightarrow 5 \\
\rightarrow \text{G}_\text{SM}
\end{array}
\end{align*}
\]

\[\begin{align*}
&\begin{array}{c}
\rightarrow 5 \\
\rightarrow 3_3 \quad 2_L \quad 1 \quad 1 \\
\rightarrow \text{G}_\text{SM} \\
\rightarrow \text{G}_\text{SM} \\
\rightarrow \\
\rightarrow \text{G}_\text{SM} \\
\rightarrow \text{G}_\text{SM}
\end{array}
\end{align*} \] (4.13)

Following the same approach as in the case of SO(10), one finds that there are six cosmologically allowed SSB schemes (from a defect point of view). They all lead to the formation of cosmic strings at the end of inflation. There are four schemes with topological strings and two with embedded ones. However, SU(6) does not contain U(1) \text{B-L}, data on neutrino oscillations cannot be accommodated without extension of the minimal version and R-parity is not there. Thus, minimal SU(6) is not an acceptable group for particle physics.

4.5 E\(_6\)

E\(_6\) is a group of rank 6 and it has three regular maximal sub-groups which can accommodate the standard model

\[
\begin{align*}
&\text{SO}(10) \times \text{U}(1)_V \\
&\text{SU}(3)_C \times \text{SU}(3)_L \times \text{SU}(3)_R \\
&\text{SU}(6) \times \text{SU}(2)
\end{align*}
\]

We study the SSB patterns of E\(_6\) via each of them in the following sections. (We follow the notation of Ref. [63].)

4.5.1 Breaking E\(_6\) via SO(10) \times U(1)

Let us start with E\(_6\) \supset \text{SO}(10) \times \text{U}(1)_V' and \text{SO}(10) \supset \text{SU}(5) \times \text{U}(1)_V. There are three possible assignments for the hypercharge Y which reproduce the SM depending on whether
U(1)_Y \subset SU(5), or U(1)_Y \subset SO(10), or U(1)_Y \subset E_6. They are respectively given by

\[\frac{Y}{2} = Z \] \hspace{1cm} (4.14)

\[\frac{Y}{2} = -\frac{1}{5}(Z + V) \] \hspace{1cm} (4.15)

\[\frac{Y}{2} = -\frac{1}{20}(4Z - V - 5V') \] \hspace{1cm} (4.16)

So the U(1)_Y with hypercharge given in Eq. (4.14) is only contained in SU(5) and is valid for the breakings through the Georgi-Glashow model. The hypercharge in Eq. (4.15) is contained in SO(10) and is the one appearing in the breakings through flipped SU(5). Finally the last assignment of Y in Eq. (4.16) correspond to U(1)_Y \subset E_6. This is the sub-group which appears in the breaking of E_6 through the E-twisted SU(5) model for example. We distinguish the SU(5) of each of these three cases by writing it as 5, 5_F, or 5_E respectively. The SSB patterns for 5 1_V 1_V' and 5_F 1_V 1_V' are respectively given by

\[
\begin{align*}
5_V_V' & \rightarrow \begin{cases}
2^{(2)} \\ 1^{(2)}
\end{cases} G_{SM} (Z_2) \\
G_{SM} 1_V 1_V' & \rightarrow \begin{cases}
2 \\ 1^{(2)}
\end{cases} G_{SM} (Z_2) \\
5_V & \rightarrow \begin{cases}
2 \\ 1^{(2)}
\end{cases} G_{SM} (Z_2)
\end{align*}
\]

where the hypercharge is given by Eq. (4.14), and

\[
\begin{align*}
5_F_V_V' & \rightarrow \begin{cases}
2^{(2)} \\ 2^{(2)}
\end{cases} G_{SM} (Z_2)
\end{align*}
\]

where the hypercharge is given by Eq. (4.15). In the E-twisted case the hypercharge is given by Eq. (4.16) and 5_E 1_V 1_V' can only break down to G_{SM} (Z_2).

The SSB patterns with E_6 \supset SO(10) \times U(1)_V' \supset SU(5) \times U(1)_V \times U(1)_V' are therefore
given by

\[
E_6 \rightarrow 1 \rightarrow 10 \begin{array}{ll}
2 & \rightarrow 10 \\
1 & \rightarrow 5\ 1_V\ 1_{V'} \\
1 & \rightarrow 5_F\ 1\ V'
\end{array} \rightarrow \text{Eq. (4.17)}
\]

\[
E_6 \rightarrow 1 \rightarrow 10 \begin{array}{ll}
0 & \rightarrow 5\ 1_{V'} (Z_2) \\
\frac{1}{2} & \rightarrow 5\ 1_V \\
\frac{1}{2} & \rightarrow 5\ (Z_2)
\end{array} \rightarrow \text{Eq. (4.18)}
\]

SO(10) in \(E_6 \supset SO(10) \times U(1)_{V'} \) can also break via SU(4) \times SU(2) \times SU(2) which can be the Pati-Salam group \(G_{PS} \), or SU(4)_{C'} \times SU(2)_L \times SU(2)_G \cite{66}. In the first case, U(1)_{V'} is orthogonal to \(G_{SM} \), and the hypercharge assignment is exactly the same as in the SO(10) case (Eq. (4.8)). In the second case, the hypercharge is given by

\[Y = \frac{1}{4} V' - \frac{1}{12} C' \]

(4.20)

where \(C' \) is the fifteenth generator of SU(4)_{C'}.

The SSB patterns with \(E_6 \supset SO(10) \times U(1)_{V'} \supset SU(4) \times SU(2) \times SU(2) \times U(1)_{V'} \) with associated defects are

\[
E_6 \rightarrow 1 \rightarrow 10 \begin{array}{ll}
\frac{1}{2} & \rightarrow 4_C\ 2_L\ 2_R\ 1_{V'} \\
0 & \rightarrow 4_{C'}\ 2_L\ 2_G\ 1_{V'} \\
\frac{1}{2} & \rightarrow 4_C\ 2_L\ 2_R
\end{array} \rightarrow \text{Eq. (4.22)}
\]

\[
E_6 \rightarrow 1 \rightarrow 10 \begin{array}{ll}
\frac{1}{2} & \rightarrow 3_C\ 2_L\ 2_R\ 1_{B-L}\ 1_{V'} \\
\frac{1}{2} & \rightarrow 3_C\ 2_L\ 1_{B-L}\ 1_{V'}
\end{array} \rightarrow \text{Eq. (4.10)}
\]

(4.21)
where

\[
\begin{align*}
4C_L \ 2R \ & \rightarrow \ Eq. \ (4.10) \\
\{ & \\
\begin{array}{c}
2 \rightarrow 4C_L \ 2R \\
1 \rightarrow 3C_L \ 2R \ 1_{B-L} \ 1_{V'}
\end{array} & \\
\{ & \\
\begin{array}{c}
2 \rightarrow G_{SM} \ (Z_2) \\
2 \rightarrow G_{SM} \ (Z_2) \\
1 \rightarrow 3C_L \ 2R \ 1_{B-L} \ 1_{V'} & \rightarrow \cdots
\end{array}
\end{align*}
\]

and

\[
\begin{align*}
4C' \ 2L \ 2G \ 1_{V'} \ & \\
\{ & \\
\begin{array}{c}
1 \rightarrow 4C' \ 2L \ 1_{G} \ 1_{V'} \\
0 \rightarrow 4C' \ 2L \ 1_{V'} \\
2' \rightarrow G_{SM}
\end{array} & \\
\{ & \\
\begin{array}{c}
2 \rightarrow G_{SM} \\
2' \rightarrow G_{SM}
\end{array}
\end{align*}
\]

(4.22)

(4.23)
There are also more direct schemes with these embeddings:

\[
E_6 \rightarrow \begin{cases}
1 & \rightarrow 5 \, 1_V \, 1_{V'} \\
1 & \rightarrow 5_F \, 1_V \, 1_{V'} \\
1 & \rightarrow 5_E \, 1_V \, 1_{V'} \\
1 & \rightarrow 5 \, 1_V \\
1 & \rightarrow 5 \, 1_{V'} \\
0 & \rightarrow 5 \\
1 & \rightarrow 5_F \, 1_V \\
1 & \rightarrow 4_C \, 2_L \, 2_R \, 1_{V'} \\
1 & \rightarrow 4_C' \, 2_L \, 2_G \, 1_{V'} \\
1 & \rightarrow 4_C \, 2_L \, 2_R \\
1 & \rightarrow 4_C' \, 2_L \, 1_{V'} \\
1 & \rightarrow 3_C \, 2_L \, 1_R \, 1_{B-L} \, 1_{V'} \\
1 & \rightarrow 3_C \, 2_L \, 1_R \, 1_{B-L} \, 1_{V'} \\
1 & \rightarrow 3_C \, 2_L \, 1_R \, 1_{B-L} \\
1 & \rightarrow G_{SM} \, 1_V \\
1 & \rightarrow G_{SM} \, 1_{V'} \, (Z_2) \\
1 & \rightarrow G_{SM} \, (Z_2)
\end{cases}
\]

E(6) is a group of rank six, and therefore there are a priori two possible choices for the onset of inflation in each SSB pattern. We consider first the SSB schemes which are compatible with observations from a defect point of view and then we add the constraint coming from leptogenesis. We recall that for non-thermal leptogenesis, B-L must break at the end of inflation. Our results are the following: we find that there are in total 382 SSB patterns which are consistent from a defect point of view, 184 leading to topological strings and conserved R-parity, 146 with topological strings and broken R-parity and 51 with embedded strings. There is 1 SSB scheme with no defect formation after the inflationary era; however R-parity is broken. Once non-thermal leptogenesis constraint is included, there remain 146 schemes with topological strings and conserved R-parity, 101 with topological strings and broken R-parity and 51 with embedded strings. The total number of SSB patterns which satisfy all constraints is 146. All of them lead to the formation of topologically stable cosmic strings whose mass per unit length can be computed and is proportional to the inflationary scale.
4.5.2 Breaking E_6 via $SU(3)_C \times SU(3)_L \times SU(3)_R$

We proceed with $E_6 \supset SU(3)_C \times SU(3)_L \times SU(3)_R \supset SU(3)_C \times SU(2)_L \times U(1)_{Y_L} \times SU(3)_R$. There exist three different $SU(2)$ sub-groups of $SU(3)_R$, namely $SU(3)_R \supset SU(2)'_R \times U(1)_{Y'_R}$ and $SU(3)_R \supset SU(2)'_E \times U(1)_{Y_E}$. Following Ref. [63], we use the notation $SU(2)'_{(R)}$ which can stand for any of the three groups $SU(2)'_R$, $SU(2)'_E$, or $SU(2)_E$. Identically, $U(1)_{Y'_{(R)}}$ can stand for $U(1)_{Y_R}$, or $U(1)_{Y'_R}$ or $U(1)_{Y_E}$.

There are again three possible assignments for the hypercharge which are given in Eqs. (4.14), (4.15) and (4.16). They can also be expressed in terms of $I^3_{(R)}$, the third component of $SU(2)'_{(R)}$, and Y_L, and $Y_{(R)}$, the quantum numbers of $U(1)_{Y_L}$ and $U(1)_{Y_{(R)}}$ (we refer the reader to Ref. [63] for details).

If $U(1)_{B-L} \subset E_6$ is imposed, there are also three possible assignments of $B-L$ [63]:

$$B - L = -\frac{1}{5}(V - 4Z) = \frac{2}{3}Y_L + \frac{2}{3}Y_R ,$$ \hspace{1cm} (4.25)

or

$$B - L = \frac{1}{20}(16Z + V + 5V') = \frac{2}{3}Y_L + \frac{2}{3}Y'_{(R)} ,$$ \hspace{1cm} (4.26)

or

$$B - L = -\frac{1}{20}(8Z + 3V - 5V') = \frac{2}{3}Y_L + \frac{2}{3}Y_E .$$ \hspace{1cm} (4.27)

It was shown in Ref. [63] that among these $3 \times 3 = 9$ possible assignments for the hypercharge Y and $B-L$ only 6 are consistent with the standard model because $U(1)_{B-L}$ and $U(1)_Y$ cannot be orthogonal to the same $SU(2)'_{(R)}$ sub-group of $SU(3)_R$. The possible relations between Y, and $B-L$ can be expressed in terms of $I^3_{(R)}$. We have the following 6 possibilities:

$$\frac{Y}{2} = -I^3_{(R)} + \frac{1}{2}(B - L) = -I^3_{(R)} + \frac{1}{2}(B - L) ,$$ \hspace{1cm} (4.28)

where $B - L$ is respectively given by Eqs. (4.25), (4.26),

$$\frac{Y}{2} = I^3_{(R)} + \frac{1}{2}(B - L) = -I^3_{(E)} + \frac{1}{2}(B - L) ,$$ \hspace{1cm} (4.29)

where $B - L$ is respectively given by Eqs. (4.25), (4.27), and

$$\frac{Y}{2} = -I^3_{(R)} + \frac{1}{2}(B - L) = I^3_{(E)} + \frac{1}{2}(B - L) ,$$ \hspace{1cm} (4.30)

where $B - L$ is respectively given by Eqs. (4.26), (4.27).

In the SSB patterns of E_6 via $SU(3)^3$ there will therefore often appear the intermediate symmetry group $SU(3)_C \times SU(2)_L \times SU(2)'_{(R)} \times U(1)_{Y_L} \times U(1)_{Y_{(R)}}$. This intermediate group can break down to $SU(3)_C \times SU(2)_L \times SU(2)'_{(R)} \times U(1)_{B-L}$ and the SSB patterns which follow are just a generalisation of those written previously for $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.

21
The SSB of $SU(3)_C \times SU(2)_L \times SU(2)_{(R)} \times U(1)_{Y_L} \times U(1)_{Y_{(R)}}$ down to G_{SM} with associated defects formation are given by

$$
\begin{align*}
&\begin{array}{c}
3C 2L 2(R) 1_{Y_{(R)}} \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
3C 2L 2(R) 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{Y_{(R)}} 1_{Y_L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\end{align*}

$$

(4.31)

We must count six times each SSB when we evaluate the number of allowed schemes.

We also have

$$
\begin{align*}
&\begin{array}{c}
3C 3L 2(R) 1_{(Y_{R})}
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
3C 2L 2(R) 1_{Y_{(R)}} 1_{Y_L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{Y_{(R)}} 1_{Y_L}
\end{array}
\begin{array}{c}
3C 2L 2(R) 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\end{align*}

$$

(4.32)

and

$$
\begin{align*}
&\begin{array}{c}
3C 2L 3R 1_{Y_{L}}
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
3C 2L 2(L) 1_{Y_{L}}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{Y_{L}}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{Y_{(R)}} 1_{Y_L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\end{align*}

$$

(4.33)

also

$$
\begin{align*}
&\begin{array}{c}
3C 3L 1_{(R)} 1_{Y_{(R)}}
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
\begin{array}{c}
3C 2L 1_{Y_{L}} 1_{(R)} 1_{Y_{(R)}}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{Y_{(R)}} 1_{Y_L}
\end{array}
\begin{array}{c}
3C 2L 1_{(R)} 1_{B-L}
\end{array}
\end{align*}

$$

(4.34)

The SSB patterns of E_6 via $SU(3)_C \times SU(3)_L \times SU(3)_R$ with associated defects for-
There are more direct breakings which are given by

\[
E_6 \rightarrow {3C \ 3L \ 3R}
\]

\[
\begin{align*}
1 & \rightarrow 3C \ 2L \ 2_{(R)} \ 1_{Y_{(R)}} \ 1_{Y_L} \quad \rightarrow \quad \text{Eq. } (4.31) \\
1 & \rightarrow 3C \ 3L \ 2_{(R)} \ 1_{Y_{(R)}} \quad \rightarrow \quad \text{Eq. } (4.32) \\
1 & \rightarrow 3C \ 2L \ 3_{R} \ 1_{Y_L} \quad \rightarrow \quad \text{Eq. } (4.33) \\
1 & \rightarrow 3C \ 3L \ 1_{(R)} \ 1_{Y_{(R)}} \quad \rightarrow \quad \text{Eq. } (4.34) \\
1 & \rightarrow 3C \ 2L \ 1_{(R)} \ 1_{Y_{(R)}} \ 1_{Y_L} \quad \rightarrow \quad \ldots \\
1 & \rightarrow 3C \ 2L \ 2_{(R)} \ 1_{B-L} \quad \rightarrow \quad \ldots \\
1 & \rightarrow 3C \ 2L \ 1_{(R)} \ 1_{B-L} \ 2 \quad \rightarrow \quad G_{\text{SM}} \ (Z_2)
\end{align*}
\]

There is now the possibility of having inflation and embedded strings forming at the end of inflation together with R-parity conservation. The total number of schemes satisfying cosmological constraints for defects is 1086, with 522 schemes leading to the formation of topological strings at the end of inflation with conserved R-parity, 384 with topological strings and broken R-parity, 162 models with embedded strings and broken R-parity and 18 schemes with embedded strings and conserved R-parity. When the constraint of leptogenesis is added, we find 444 schemes leading to the formation of topological strings at the end of inflation with conserved R-parity, 312 with topological strings and broken R-parity and 138 models with embedded strings and broken R-parity. There is not any model with embedded strings and R-parity. In conclusion, there are 444 models satisfying all constraints, and they all lead to the formation of topological cosmic strings at the end of inflation.

4.5.3 Breaking E_6 via $\text{SU}(6) \times \text{SU}(2)$

We end with $E_6 \supset \text{SU}(6) \times \text{SU}(2)$. There are two possibilities, namely $\text{SU}(6) \times \text{SU}(2)_L$ or $\text{SU}(6) \times \text{SU}(2)_R$. A third possibility would be $\text{SU}(6) \times \text{SU}(2)_I$ where $\text{SU}(2)_I$ is called inert [67] because it is orthogonal to G_{SM} which is embedded completely inside $\text{SU}(6)$. However, since in SUSY models this embedding is not compatible with the proton lifetime, we do not study it.
SU(7) is the second group of rank 6. The embeddings which one can choose are

\[SU(7) \supset SU(6)_{\text{SM}} \times U(1) \quad \text{with} \quad SU(6)_{\text{SM}} \supset G_{\text{SM}}. \]

4.6 SU(7)

SU(7) is the second group of rank 6. The embeddings which one can choose are
SU(7) ⊇ SU(6) × U(1) with SU(6) × U(1) ⊇ G_{SM},

SU(7) ⊇ SU(4)_C × SU(3)_L × U(1),

SU(7) ⊇ SU(5)_C × SU(2)_L × U(1) with SU(5)_C × SU(2)_L × U(1) ⊇ G_{SM},

SU(7) ⊇ SU(5)_SM × SU(2) × U(1) with SU(5)_SM ⊇ G_{SM}.

In the first and later cases G_{SM} is completely embedded in the SU(6) (SU(5)) factor.

The only possibility for getting inflation without defect formation at the end or after, is if we have the later scheme, where the SU(2) factor is orthogonal to G_{SM}. The SSB patterns which could accommodate an epoch of inflation with no defect (of any kind) formation at a later stage are

\[
\begin{align*}
\text{SU(7)} &\rightarrow 5_{SM}^2 \quad 1 \\
&\rightarrow 5_{SM}^2 \quad 1 \\
&\rightarrow G_{SM} \quad 2 \quad 0 \\
&\rightarrow G_{SM} \quad 2 \quad 0
\end{align*}
\] \quad (4.39)

However, these models are inconsistent with proton lifetime measurements and minimal SU(7) does not predict neutrino masses. These models are therefore incompatible with high energy physics phenomenology.

4.7 Higher Rank Groups

There are two groups of rank 7, namely SO(14) and SU(8). These groups are particularly interesting since they both contain U(1)_{B-L}. In what follows, we discuss the embeddings of the G_{SM} in these groups and we then comment on the SSB patterns, without writing down explicitly all of them. We just aim to extract those scenarios which can lead to inflation without cosmic string formation at the end of inflation or afterwards.

SO(14) has only two maximal sub-algebras,

SU(7) × U(1),

SO(10) × SU(2) × SU(2).

The only possibility for getting inflation without strings in the first case, is to embed the standard model in SU(5)_{SM} ⊆ SU(7) in SU(5)_{SM} × SU(2) × U(1) ⊆ SU(7) so that the SU(2) and the two U(1)s in SU(5)_{SM} × SU(2) × U(1) × U(1) ⊆ SO(14) are orthogonal to G_{SM}. These models are also inconsistent with observations from both particle physics and cosmological point of view.

If we consider the maximal sub-algebra SO(10) × SU(2) × SU(2), then the only way would be to embed G_{SM} in SO(10) so that the two SU(2) factors are inert, and break SU(2) down to identity after the breaking of SO(10). These models are also inconsistent with observations.
SU(8) maximal sub-groups are SU(7) × U(1) and SU(m) × SU(n) × U(1) where m + n = 8. One may have SU(m) ⊃ SU(3)C and SU(m) ⊃ SU(2)L or for m (n) ≥ 5 embed G_{SM} in SU(m) so that SU(n) × U(1) is orthogonal to it. The only way to get inflation without strings in the first case is to embed G_{SM} entirely in SU(7), break U(1) before inflation and we are left with the SU(7) cases mentioned above. These models are inconsistent from both the cosmological and particle physics requirements that we have. One can easily show that in the second case where SU(m, n) ⊃ SU(3)C and SU(n, m) ⊃ SU(2)L all SSB patterns with inflation and leptogenesis lead to the formations of cosmic strings at the end of inflation (topological or embedded ones) and if unbroken R-parity is required, the strings are topological and topologically stable down to low energies. The only possibility for having inflation without strings might be the last case where m or n > 5 and to embed G_{SM} in SU(m, n). But here again, it seems impossible to fit leptogenesis after inflation. Therefore all SU(8) models with standard hybrid inflation and baryogenesis lead to the formation of cosmic strings at the end of inflation.

Finally, there is one group of rank 8, SU(9). Following the same procedure as for the SU(8) case, we conclude that none of the SSB schemes lead to inflation without strings after the end of the inflationary era.

5 Conclusion and Discussion

Current data from the realm of cosmology strongly support an early inflationary era. In addition, current CMB temperature anisotropies data minimize a possible contribution from cosmic strings. On the other hand, many GUTs naturally lead to cosmic string formation. We are thus faced with a crucial quest, namely how often GUTs lead to cosmic string formation? Or, in other words, which is a natural inflationary scenario? Answering these questions is the motivation of our study.

In the context of SUSY GUTs, we have studied the cosmological implications of SSB patterns from grand unified gauge groups G_{GUT} down to the standard model gauge group G_{SM}. The aim is to select all the schemes which can satisfy both cosmological and particle physics constraints, among them: lead to inflation and solve the GUT monopole problem, explain the baryon asymmetry of the universe, predict neutrino masses and lead to automatic R-parity conservation. To perform this analysis, we limit ourselves to simple gauge groups which contain G_{SM}, have a complex representation, are anomaly free, and have a rank not greater than 8. Such gauge groups are: SU(5), SO(10), SU(6), E_6, SU(7), SO(14), SU(8), and SU(9). We take a large number of possible embeddings of G_{SM} in G_{GUT} and we list in detail all possible SSB patterns of G_{GUT} down to G_{SM}. We also investigate whether defects are formed during the SSB schemes and of which kind they are. We assume standard hybrid inflation which emerges naturally in SUSY GUTs, the inflaton field being a linear combination of a singlet field and one component of the complex GUT Higgs fields which are used to lower the rank of the group by one unit. We then examine whether monopoles or domain walls are formed after the end of inflation. We disregard such SSB patterns. We also disregard SSB schemes with broken
R-parity. To be consistent with leptogenesis, we require that the gauged B − L symmetry, which is contained in GUTs which predict neutrino masses via the see-saw mechanism and unbroken R-parity, is broken at the end inflation. This, for example, implies that we throw away SU(6) or SU(7). We then compare the SSB patterns where topological cosmic strings or embedded strings are formed after inflation with respect to the SSB patterns where there are no defects at all after the end of the inflationary era.

Among the SSB schemes which are compatible with high energy physics and cosmology, we did not find any without strings after inflation. One should thus only consider mixed models, where inflation co-exists with cosmic strings. On the other hand, various cosmological issues, and in particular the CMB temperature anisotropies, set bounds to the cosmic string contribution. This can help constraining or ruling out realistic GUT models where the string contribution can always be computed. One may also have to reconsider the validity of the whole theoretical framework.

We also find the existence of SSB patterns, for GUTs based on gauge groups which have rank greater than six, which predict the formation of secondary string networks at lower energies. Finally, in all models with strings and inflation, the strings forming at the end of inflation are the so-called B-L cosmic strings [52]. Their contribution to the baryon asymmetry of the universe is non-negligible and may compete with the non-thermal process of leptogenesis from reheating.

A Maximal Sub-groups

We list the maximal sub-groups of each GUT which is studied in this paper. They are necessary for finding the SSB patterns. Most of the information given here is taken from Ref. [45]. We only consider maximal regular sub-groups because it is very difficult and unnatural to get G_{SM} via maximal special sub-groups. As discussed in Sec. 4.1 some discrete symmetries may also appear during the SSB patterns, they do not appear here. Sometimes, there is more than one possibilities to embed a maximal regular sub-group in the GUT, and we add indices to make this explicit to the reader. In general, a subscript C means that this groups contains SU(3)$_C$ as a sub-group and subscript L means that this groups contains SU(2)$_L$ as a sub-group. Definitions of indices for each maximal sub-group will be obvious to the reader in each section dedicated to a given GUT.

Acknowledgments

We would like to thank U. Ellwanger, I. Gogoladze, A. Perez-Lorenzana, P. Peter, M. Postma, G. Senjanović and C.-M. Viallet for useful discussions. The work of R.J. and J.R. was partially supported by the EC network HPRN-CT-2000-00152. M.S. acknowledges financial support from E.L.K.E. (Special Account for Research), University of Athens, Hellas.
Rank	Group	Maximal sub-algebras
4	SU(5)	SU(3)_C × SU(2)_L × U(1)_Y
		SU(4) × U(1)
5	SO(10)	SU(5) × U(1)_V
		SU(5)_F × U(1)_V
		SU(4)_C × SU(2)_L × SU(2)_R = G_{FM}
	SU(6)	SU(5) × U(1)_6
		SU(4)_C × SU(2)_L × U(1)
		SU(3)_C × SU(3)_L × U(1)
6	E_6	SO(10) × U(1)_V
		SU(6) × SU(2)_R
		SU(6) × SU(2)_L
		SU(3)_C × SU(3)_L × SU(3)_(R)
	SU(7)	SU(6)_{SM} × U(1)
		SU(5)_C × SU(2)_L × U(1)
		SU(5)_{SM} × SU(2) × U(1)
		SU(4)_C × SU(3)_L × U(1)
7	SO(14)	SU(7) × U(1)
		SO(10) × SU(2) × SU(2)
8	SU(9)	SU(8) × U(1)
		SU(7) × SU(2) × U(1)
		SU(6) × SU(3) × U(1)
		SU(5) × SU(4) × U(1)

Table 1: Maximal regular sub-groups of grand unification gauge groups with rank not greater than 8.

References

[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. **81**, 1562 (1998).

[2] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. **87**, 071301 (2001).

[3] K. Eguchi et al. [KamLAND Collaboration], Phys. Rev. Lett. **90**, 021802 (2003).

[4] M. Gell-Mann, P. Ramond and R. Slansky, in : Supergravity, eds. P. van Nieuwenhuizen and D. Freeman (North Holland, Amsterdam, 1979) p. 315; T. Yanagida, Prog. Th. Phys. B **135**, 66 (1979); R. N. Mohapatra and G. Senjanovic, *Neutrino mass and spontaneous parity violation*, Phys. Rev. Lett. **44**, 912 (1980).
[5] K. Hogiwara et al., Phys. Rev. D66, 010001 (2002).

[6] T. W. B. Kibble, J. Phys. A9, 387 (1976).

[7] G. Hinshaw et al. “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum” astro-ph/0302217

[8] F. R. Bouchet, P. Peter, A. Riazuelo, and M. Sakellariadou, Phys. Rev. D65, 021301 (2002).

[9] N. Turok, Phys. Rev. Lett. 63, 2625 (1989).

[10] A. Vilenkin and E.P.S. Shellard, “Cosmic strings and other topological defects”, Cambridge monographs on mathematical physics, Cambridge University Press, England, 1994.

[11] M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58, 477 (1995).

[12] T. Vachaspati and M. Barriola, Phys. Rev. Lett. 69, 1867 (1992).

[13] T. Vachaspati, Phys. Rev. Lett. 78, 1977 (1992); Nucl. Phys. B397, 648 (1993).

[14] M. James, L. Perivolaropoulos, and T. Vachaspati, Phys. Rev. D46, 5232 (1992); Nucl. Phys. B395, 534 (1993); M. Goodband and M. Hindmarsh, Phys. Lett. B363, 58 (1995).

[15] M. Nagasawa and R. Brandenberger, Phys. Rev. D67, 043504 (2003).

[16] T. Vachaspati and R. Watkins, Phys. Lett. B318 163 (1993).

[17] M. Barriola, T. Vachaspati, and M. Bucher, Phys. Rev. D50 2819 (1994).

[18] R. A. Brandt and F. Neri, Nucl. Phys. B161, 253 (1979); S. Coleman, Erice Lectures (1981).

[19] E. Calzetta and M. Sakellariadou, Phys. Rev. D45, 2802 (1992); E. Calzetta and M. Sakellariadou, Phys. Rev. D47, 3184 (1993).

[20] M. Sakellariadou, (astro-ph/9911497), in “Recent Developments in Gravitation”, Proceedings of the Spanish Relativity Meeting, ERE-99, Bilbao (Spain), 7-10 September 1999, J. Ibanez, ed., 113 (2000).

[21] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999)

[22] A. D. Linde, Phys. Rev. D49, 748 (1994).

[23] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, Phys. Rev. D49, 6410 (1994).

[24] G. Dvali, Q. Shafi and R. Schaefer, Phys. Rev. Lett. 73, 1886 (1994).
[25] A. D. Linde, Phys. Lett. B 129, 177 (1983).
[26] W. Buchmuller, L. Covi and D. Delepine, Phys. Lett. B 491, 183 (2000).
[27] A-C. Davis and R. Jeannerot, Phys. Rev. D 52, 7220 (1995).
[28] R. Jeannerot, Phys. Rev. D 56, 6205 (1997).
[29] B. Allen, R.R. Caldwell, S. Dodelson, L. Knox, E.P.S. Shellard and A. Stebbins,
Phys. Rev. Lett. 79 (19,) 2624 (1997).
[30] C. Contaldi, M. Hindmarsh and J. Magueijo, Phys. Rev. Lett. 82, 679 (1999).
[31] A. Riazuelo and C. Ringeval, private communication (2003).
[32] G. R. Vincent, M. Hindmarsh and M. Sakellariadou, Phys. Rev. D 56, 637 (1997).
[33] L. Pogosian and T. Vachaspati, Phys. Rev. D 60, 083504 (1999).
[34] L. Perivolaropoulos, Phys. Rev. D 48, 1530 (1993); M. Sakellariadou, Int. J. of Theor.
Phys. 36, No. 11, 847 (1997); A. Gangui, L. Pogosian and S. Winitzki, Phys. Rev.
D 64, 043001 (2001).
[35] W. Fishler, H. P. Nilles, J. Polchinski, S. Raby, and L. Susskind, Phys. Rev. Lett.
47, 757 (1981).
[36] P. Fayet, and J. Iliopoulos, Phys. Lett. 51B, 461 (1974).
[37] P. Binetruy and G. R. Dvali, Phys. Lett. B 388, 241 (1996).
[38] R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi, JHEP 0010, 012 (2000).
[39] R. Jeannerot, S. Khalil and G. Lazarides, JHEP 0207, 069 (2002).
[40] R. Jeannerot, S. Khalil and G. Lazarides, Proceedings of Cairo International Conference on
High-Energy Physics (CICHEP 2001), Cairo, Egypt, 9-14 Jan 2001.
[41] J. A. Adams and S. Sarkar, Nucl. Phys. B 503, 405 (1997).
[42] N. Tetradis and M. Sakellariadou, hep-ph/9806461 (1998).
[43] P. Langacker, Phys. Rept. 72, 185 (1981).
[44] G. G. Ross, “Grand Unified Theories”, Reading, Usa: Benjamin/cummings (1984) 497 P. (Frontiers In Physics, 60).
[45] R. Slansky, Phys. Rep. 79,1 (1981).
[46] M. Dubois-Violette, M. Talon and C. M. Viallet, Com. in Math. Phys. 102, 105
(1985); M. Dubois-Violette, M. Talon and C. M. Viallet, Annales de l’Inst. Henri
Poincaré 44, 103 (1986).
[47] M. Fukugita and T. Yanagida, Phys. Lett. B 174:45 (1986).

[48] M. Dine and A. Kusenko, Submitted to Rev. Mod. Phys., hep-ph/0303065.

[49] W. Buchmüller and M. Plumacher, Phys. Rept 320, 329, (1999) and Refs therein.

[50] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

[51] G. Lazarides, Robert K. Schaefer and Q. Shafi, Phys. Rev. D 56, 1324 (1997); G. Lazarides, Q. Shafi, N.D. Vlachos, Phys. Lett. B 427, 53 (1998).

[52] R. Jeannerot, Phys. Rev. Lett. 77, 3292 (1996).

[53] R. Jeannerot, Proceedings de COSMO-97, International Workshop on Particle Physics and the Early Universe, 15-19 September 1997, Ambleside, Lake district, England.

[54] P. Horava and E. Witten, Nucl. Phys. B 460 (1996) 506.

[55] F. Quevedo, Nucl. Phys. Proc. Suppl. 62, 134 (1998).

[56] P. Candelas, E. Perevalov and G. Rajesh, Nucl. Phys. B 507, 445 (1997).

[57] S. P. Martin, Phys. Rev. D 46, 2769 (1992).

[58] L. E. Ibanez, G. G. Ross, Nucl. Phys. B 368, 3 (1992).

[59] M. de Montigny, M. Masip, Phys. Rev. D 49, 3734 (1994).

[60] T. W. B. Kibble, G. Lazarides and Q. Shafi, Phys. Rev. D 26, 435 (1982).

[61] D. Chang, R. N. Mohapatra and M. K. Parida, Phys. Rev. Lett. 52, 1072 (1984).

[62] L. Covi, G. Mangano, A. Masiero, G. Miele, Phys. Lett. B 424, 25 (1998).

[63] J. Harada, Submitted to JHEP, hep-ph/0305015.

[64] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

[65] S. M. Barr, Phys. Lett. B 112, 219 (1982); J. P. Derendinger, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B 139, 170 (1984); I. Antoniadis, J. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B 194, 231 (1987); J. Ellis, J. L. Lopez and D. V. Nanopoulos, Phys. Lett. B 371, 65 (1996).

[66] J. Sato, Prog. Theor. Phys. 96, 597 (1996).

[67] D. London and J. Rosner, Phys. Rev. D 34, 435 (1986).