New records of marine decapods and stomatopods in Área de Conservación Guanacaste (ACG): four years of marine biodiversity inventorying

Rita Vargas-Castillo 1,3 and Jorge Cortés 1,2,3*

Abstract

The marine area of Área de Conservación Guanacaste (ACG) contains a 43,000 ha formal marine protected area, a 732 ha special management zone in Bahía Santa Elena, and 150 km of wild protected coastline. In an effort to broaden the biodiversity knowledge of all marine taxa present in the area, an inventory was started in 2015 (BioMar-ACG Project). This initiative is being funded by the Guanacaste Dry Forest Conservation Fund (GDFCF) in collaboration with government staff at ACG, and is carried out by Centro de Investigación en Ciencias del Mar y Limnología (CIMAR, Center for Research in Marine Science and Limnology) and Museo de Zoología (Zoology Museum), both from Universidad de Costa Rica (UCR). After four years of the project, 2650 specimens of marine decapod crustaceans and stomatopods have been collected, belonging to 209 species, out of which 99 are new records for ACG, four may be new species and nine (Cyrtoplax panamensis, Glyptoxanthus labyrinthicus, Pachyches marcorzpees, Petrolithes donadio, Pylopagurus holmesi, Synalpheus pinkfordi, Typton granulosus, Zenopontonia soror, Neogonodactylus pumilus) are new records for Costa Rica. With this contribution the total number of decapods (257 spp.) and stomatopods (14 spp.) for ACG is 271 species, more than half the species reported for Costa Rica, and more than a quarter of all crustaceans reported for the eastern tropical Pacific. The high concentration of species in ACG may be attributed to the diversity of habitats, the seasonal upwelling and to the recent sampling efforts. In only four years, the BioMar-ACG has increased the number of species in these groups of crustaceans by 37% over the past 85 years of previous studies in the ACG.

Keywords: Decapods, Stomatopods, Biodiversity, Inventory, ACG

Introduction

The first study of marine decapods of Costa Rica was completed by Faxon (1895), and on stomatopods by Schmitt (1940) and Reaka and Manning (1980). Compilations of the biodiversity of marine decapod crustaceans and stomatopods in Costa Rica began with a publication by Moran and Dittel (1993), with an annotated list of anomuran and brachyuran crabs from the Pacific and Caribbean coasts. Castro and Vargas (1996) published an annotated list of decapods and stomatopods from Golfo Dulce, while Vargas and Cortés (1997) a list of stomatopods of the country. Afterwards, two other compilations on crustaceans were published for Penaeoidae, Sergestoidea, Caridea, Astacidea, Thalassinidea and Palinura in the Caribbean (Vargas and Cortés 1999a) and in the Pacific (Vargas y Cortés 1999b). Vargas and Cortés (2006) published a compilation of the Infraorder Anomura. Some years later, compilations were published in the book “Marine Biodiversity of Costa Rica, Central America” (Wehrtmann and Cortés 2009), which examines all groups of marine organisms reported for Costa Rica. Chapters include all crustacean groups known to be present in this country on the Pacific and Caribbean, including the best-known taxa: stomatopods (35 spp.)
Área de Conservación Guanacaste (ACG) includes several terrestrial National Parks and Reserves and a Marine Sector that is 43,000 ha and 150 km of protected coastline (http://www.acguanacaste.ac.cr/acg/que-es-el-acg). It is one of the best-studied conservation areas in Central America, but previous biological research has

Code	Collection sites	Type of environment
BEH	Bahía El Hachal	Intertidal zone
BEJ	Bajo El Jardín	Reef and algae covered coralline rocks
BEM	Bajo El Machetazo	Rocky bottom and small loose rocks
BET	Bajo El Tigre	Rocky bottom and small loose rocks
BEV	Bajo El Viejón	Rocky bottom and small loose rocks
BEJ	Bajo El Jardín	Rocky bottom and small loose rocks
BSE	Bahía Santa Elena, Pintadero, Playa Cocos	Rocky bottom and small loose rocks
BLC	Bajo Las Chavelas	Rocky bottom and small loose rocks
BLM	Bajo Los Mogotes	Rocky bottom and small loose rocks
BRR	Bajo La Rajada	Rocky bottom and small loose rocks
BLS	Bajo La Salvadita	Rocky bottom and small loose rocks
BMu	Bajo Los Muñecos	Rocky bottom and small loose rocks
BPi	Bajo Pintadero	Rocky bottom and small loose rocks
BPo	Bajo Pochote	Rocky bottom and small loose rocks
BRo	Bajo Rojo	Rocky bottom and small loose rocks
BTh	Bahía Thomas	Floating oyster baskets, rocky beach, rocky beach with sponges, live and dead Pocillopora
Cua	Bahía Cuajiniquil, Playa Cuajiniquil	Sand and mud bottoms
IDa	Isla David	Rocky intertidal zone and reefs
IDa	Isla David	Rocky bottom and small loose rocks
IGo	Isla Golondrina	Pavona clavus reef, dead coral
Ip	Isla Pelada	Rocky intertidal zone, rocks covered with algae
ISJ	Esquina Conchal, Playa del Maíz, Playa Cactus, Isla San José	Rocky intertidal zone and dead Pocillopora
ISP	Arrecife al NE de Isla San Pedrito, arrecife muerto San Pedrito, San Pedrito	Coral reef and dead coral
Jun	Playa Junquillal, Junquillal esquina norte; Isla Junquillal, Junquillal, Esquina del Tamarindo	Rocky intertidal zone, polychaete reef, and Pocillopora
Mat	Matapalito	Coral reef, dead coral and rocky-sandy bottom
MCu	Manglar en Bahía Cuajiniquil, Manglar 3 Bocas, Manglar 4 × 4 Cuajiniquil	Mangrove, mud, rubble with sponges and algae
MSE	Manglar Santa Elena	Mangrove, muddy flats
Mue	Muelle lado derecho, muelle lado izquierdo, Cástula, Tiza, Hielera	Rocky intertidal and subtidal zones, sandy bottom, rubble
PCI	Piedra Claudio	Rocky bottom and small loose rocks with barnacles
PCo	Playa Corona	Rocky intertidal zone
Pd1	Puerta de Iglesia, Isla San José	Rocky bottom
PGs	Playa Potrero Grande, Estero de Potrero Grande	Rocky intertidal zone, sandy beach, estuary, mangrove
PMa	Playa Macaya	Rocky intertidal zone, subtidal live coral
PPo	Punta Pochote	Dead corals
Pre	Playa Respingue	Rocky intertidal zone
PSe	Piedra Seca	Rocky bottom and small loose rocks with barnacles
2MM	Arrecife 2MM	Coral reef
Table 2 New records of marine decapods and stomatopods from Área de Conservación Guanacaste after four years of the BioMar-ACG project. In bold type: new records for Costa Rica (Continued)

Taxon	Locality
34) Goniopsis pulchra (Lockington, 1877)	MCu
Family Hippolytidae	
35) Thor alpicola Wicksten, 1987	BTh, BRo, ISJ, Jun, Cue, PGr
36) Thor sp. nov.	PSe
Family Hymenoceridae	
37) Hymenocera picta Dana, 1852	BTh, 2MM
Family Inachidae	
38) Coryphyna vestitus (Stimpson, 1871)	BTh, BEJ, BLM, Cua, Jun, Cue, PCi
Family Leucosiidae	
39) Peneponia tournesi Bell, 1855	Koa
40) Ultia elliptica Stimpson, 1871	BTh, ISJ
Family Menipidae	
41) Menippe obtusa Stimpson, 1859	Mue
Family Ocypodidae	
42) Leptusca beebri (Crate, 1941)	Cua, Mue, PGr
43) Leptusca musicus (Rathbun, 1914)	PGr
44) Uca princeps (Smith, 1870)	Mue, PGr
45) Uca styllina (H. Milne Edwards, 1852)	Mue
46) Ucides occidentalis (Ortmann, 1897)	Mue, PGr
Family Oxidae	
47) Euclannus xantheus (Stimpson, 1860)	BTh, BEm, ISJ, Mue
48) Oxius perlitus Stimpson, 1860	Koa, ISJ
Family Palaemonidae	
49) Pagonus namades Hagg & Harvey, 1991	Mue
50) Phithomurix roseus (Benedict, 1892)	BTh
51) Pylacinus holmesi Schmitt, 1921	Koa, ISJ
Family Palaemonidae	
52) Ascidonia pusilla (Holthius, 1951)	BTh
53) Harpiliopsis depressa (Stimpson, 1860)	BTh, ISJ, Mue, PGr, PRe, PRe
54) Palaemon ritteri Holthius 1895	BTh, Koa, ISJ, Mue, PGr, PRe
55) Palaemonella holmesi (Benedict, 1892)	BTh, BEm, BLo, BEV, ISJ, Mue, Mue
56) Pontonia maculata Guerin-Méneville, 1855 [in Guerin-Méneville, 1855–1856]	BTh, BEJ, Bro, BEV, ISJ, BEm, Mue
57) Pseudocauterina elegans Holthius, 1951	BTh, BEm, BLo, BEV, ISJ, Mue
58) Pseudoveleronia latifrons (Holthius, 1951)	BTh, BEJ, BLo, BEV, ISJ, Mue
59) Typton granulosus Ayon-Parente, Hendrick & Galvan-Villa, 2015	BTh, BEJ, BEV, ISJ, Mue, Mue
60) Zemopontonia soror (Benedict, 1892)	BTh, BEm, ISJ, Mue

Family Panopeidae | |
61) Acantholobulus mirafloresensis (Abele & Kim, 1989)	BTh, BEm, ISJ, Mue, PGr
62) Lophopanopeus maculatus Rathbun, 1898	ISJ
63) Panopeus purpureus Lockington, 1877	BTh, Cua, Mue, PGr
64) Pironoiafla clistia Smith, 1870	Mue, PGr

Family Panopinae | |
| 65) Heterocrypsa colombiana Garth, 1940 | Cua, Mue |
Table 2 New records of marine decapods and stomatopods from Área de Conservación Guanacaste after four years of the BioMar-ACG project. In bold type: new records for Costa Rica (Continued)

Taxon	Locality
66) Pandalus interruptus (Stimpson, 1860)	BTh
Family Pandalidae	
67) Penaeus stylostris Stimpson, 1871	BTh
68) Penaeus vannamei Boone, 1931	BTh
Family Penaeidae	
69) Pilumnus iliosus Smith, 1869	BTh, BEV, MCu, Mue
70) Pilumnus stimpsoni Miers, 1886	BLM, BRo, BLS, BEv, ISJ, Mue, ISJ, Gdo,
BTh	ISP, Mue, PSe
Family Pilumnidae	
71) Pinnixa sp. indet	Jun
72) Pinnixa sp. indet	Mue
73) Pinnotheres sp. indet	PGr
74) Turnidithrix sp. indet	BTh
Family Pinnotheridae	
75) Pismus immaculatus Lamarck, 1818	BTh, PBe, PGr
Family Porcellanidae	
76) Megalobrachium erasum (Glassell, 1936)	BTh, Cua
77) Neopenaeosoma mexicanum (Streets, 1871)	Jun, PGr
78) Pachycheles calcaratus Haig, 1960	Jun
79) Pachycheles marcetzenmis Glassell, 1936	BTh
80) Pachycheles spinidactylus Haig, 1957	ISJ, Jun, JMM
81) Petrolisthes donadio Hiller & Werding, 2007	BTh, BLM, ISJ, Jun, Mat, Mue, PSe, PRo
Family Paguroidea	
82) Polyonyx confinis Haig, 1960	Jun, Mue
83) Uloosa perplexa Glassell, 1938	BLM
Family Pinnotheridae	
84) Acherous tuberculatus Stimpson, 1860	BTh, ISJ, MSE
Family Pseudosquillidae	
85) Processa perviana Wickstien, 1983	Cua, ISJ, Mue
Family Pseudosquillidae	
86) Cyrtoplax panamensis Ziesenhenne in Garth, 1940	MSE
Family Raninidae	
87) Raninoides benedicti Rathbun, 1935	PGr
Family Rhynchocinetidae	
88) Cretorhinus sp. nov.	BTh
Family Sesarmidae	
89) Sesarma sulcatum Smith, 1870	MCu
Family Spongidae	
90) Terebido digitatus Latreille, 1828	BEH, BTh, IDa, Jun, Mat, PMA
Family Upogebiidae	
91) Upogebia titillie Williams, 1986	BTh, BSE,Jun, Mue
Family Xanthidae	
92) Glyptoxanthus labyrinticus (Stimpson, 1860)	BLS
93) Liponesthes laticorne Rathbun, 1898	BEl, BEM, BEV, BLM, BPr, PCh, BTh, BEV, BBL, BLS, BPr, BRe, BSe, PSe
94) Lipkemedaus spinulifer (Rathbun, 1898)	BTh, BEM, BEV, BLM, BPr, PCh, BTh, BEV, BBL, BLS, BPr, BRe, BSe, PSe

Methodology

Sixty sites were visited in ACG, from Punta Descartes to Islas Murciélago (Table 1), including rocky beaches (most common) and muddy beaches, shallow and deep reefs, shallow and deep rocky areas, estuaries, mangroves and areas deeper than 45 m. The location, geographic coordinates, depth and substrate type were registered.

In the rocky beaches during low tide, rocks were lifted to collect the organisms that live beneath them and the substrate was dug up to collect the organisms that live buried in the sediments. In the muddy beach areas, organisms were also collected from the mud. To collect the organisms that live within coral reefs, an indirect method was used: dead coral rocks were brought to the surface and broken apart to collect the organisms that mutually live inside. A similar method was used areas of rocky ocean floor, where collected specimens were brought to the surface. In the mangroves, specimens

Stomatopoda

Taxon	Locality
95) Platypodia bella (Stimpson, 1860)	BTh, BEM, BRe, Cua, ISJ, ISJ, Gdo, ISJ, Jun, MCu, Mue, PGr
Family Gonodactylidae	
96) Neogonodactylus pumilus (Manning, 1970)	ISJ
97) Neogonodactylus stanschi (Schmitt, 1940)	BEV, Mat
Family Squillidae	
98) Cladopus dubia (H. Milne Edwards, 1837)	BTh
99) Metacarpita stanschii Manning, 1970	MSE

focused primarily on the terrestrial part. In order to expand the knowledge of marine biodiversity in this region, the project entitled “Marine Biodiversity of Área de Conservación Guanacaste” (BioMar-ACG) was launched in 2015. The project has been funded by the Guanacaste Dry Forest Conservation Fund (GDFCF), and carried out by the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) and Museo de Zoología, both from Universidad de Costa Rica (UCR) (Cortés & Joyce in prep). The project has also received necessary support from the government staff of ACG, local marine “parataxonomists” supported by GDFCF and private foundations.

Following the compilation on marine biodiversity in ACG published by Cortés (2017), this paper presents an update of the inventory of marine decapod crustaceans and stomatopods, with new records for ACG as well as new records for the country. This is the result of work from mid 2015 to early 2019 by the BioMar-ACG project.
were collected during walks in the forest and intertidal zone, and they were taken from the roots and ground. Using a shovel, the substrate was dug up and sifted to look for those organisms that live buried in the mud. In the external part of the mangrove, a similar process was followed, but also fallen leaves and tree trunks were examined for organisms. Deep dredging sampling (down to 50 m depth) was carried out with a Van Veen dredge with a 25×25 cm opening. Other organisms were manually collected during dives, and some samples of crustaceans were associated with octocorals.

Collected specimens were placed in plastic containers with a net and then submerged in a bucket filled with seawater. Afterwards, the organisms were photographed in an improvised lab, a code was assigned to each specimen, a preliminary identification was provided and a sample of tissue was taken for barcoding. Once this process was finished, the organisms were sent to the

Fig. 1 New records of crustaceans for Costa Rica, with their BioMar-ACG sample code: (a) Cyrtoplax panamensis, 17-BMACGRV-02644-ACG001862; (b) Glyptoxanthus labyrinthicus, 16-BMACGRV-02104-ACG005676; (c) Neogonodactylus pumilus, 16-BMACGRV-02407-ACG006086; (d) Pachyches marcortezensis, 15-BMACGRV-00507-ACG006967; (e) Petrolisthes donadio, 16-BMACGRV-02177-ACG009006; (f) Pylopagurus holmesi, 16-BMACGRV-02414-ACG007167; (g) Synalpheus pinkfloydi, 16-BMACGRV-02245-ACG003908; (h) Typton granulosus, 16-BMACGRV-01941-ACG001783, and (i) Zenopontonia soror, 15-BMACGRV-00590-ACG009037
Zoology Museum at Universidad de Costa Rica, where a definite identification was provided and the samples were catalogued and stored. The names of the species used are as in WoRMS (http://www.marinespecies.org).

Results and discussion

By early 2019, 2650 specimens have been collected (Table 2), corresponding to 209 species, 99 of which are new records for ACG, four could be new undescribed species, and nine are also new records for Costa Rica: *Cyrtoplax panamensis* (Fig. 1a), *Glyptoxanthus labynthicus* (Fig. 1b), *Neogonodactylus pumilus* (Fig. 1c), *Pachyches marcortezensis* (Fig. 1d), *Petrolisthes donadio* (Fig. 1e), *Pylopagurus holmesi* (Fig. 1f), *Synalpheus pinkfloydi* (Fig. 1g), *Typton granulosus* (Fig. 1h) and *Zenopontonia soror* (Fig. 1i). Cortés (2017) reported 172 species from ACG, 162 decapods and 10 stomatopods. In this study 209 species have been collected so far, 200 decapods and 9 stomatopods. Of the decapod species reported by Cortés (2017), 57 species of decapods and 5 species of stomatopod have not been collected yet. These belong mainly to organisms commonly found at depths greater than 40 m, that were collected by dredging. Taking this into account, the total number of species found in the area is 271, which includes 257 decapods and 14 stomatopods. During the last four years since the BioMar-ACG project started, 99 new records have been added to the known species from ACG (Table 2) This represents an increase of 37% over the almost 85 years of previous studies in the region.

The number of species of decapods and stomatopods reported for ACG (271) is the highest number found in Costa Rica and among the highest reported in the eastern tropical Pacific ETP (Table 3). The ETP extends from the Gulf of California to southern Ecuador and include several oceanic islands (Robertson and Kramer 2009). ACG has more than half the species reported for Costa Rica and about a quarter of decapods and stomatopods crustaceans reported for the ETP (Boschi 2000; Cortés et al. 2017) (Table 3). The high diversity of decapods and stomatopods at ACG may be due to the diversity of habitats: beaches of different wave and sediment regimes, islands and continental shorelines, mangrove forests, seagrass beds, coral reefs (live and dead), intertidal and submerged rocky platforms, sandy and muddy bottoms and deep areas (Cortés 2017). The region is exposed to season upwelling, with temperatures ranging from 15° to 30 °C (Cortés et al. 2014). And finally, the sampling effort makes a difference in how many species are reported from an area, as demonstrated in this paper.

Up to now 60 sites have been sampled, with many more still to explore, such as the coastal area of Peninsula Santa Elena, south of Playa Naranjo and offshore, as well as some habitats such as sandy beaches, and deep rocky and muddy bottoms. Definitely more species of decapods and stomatopods will be found increasing the biodiversity of crustaceans in Área de Conservación de Guanacaste.

Resumen

El sector marino del Area de Conservación Guanacaste (ACG) posee 43,000 ha y 150 km de costa, en su mayoría poco estudiada. En un esfuerzo por conocer mejor la biodiversidad de todos los taxones marinos presentes en el área, se inicio en el 2015 un inventario (Proyecto BioMar-ACG). Esta iniciativa está siendo sustentada por la Guanacaste Dry Forest Conservation Fund (GDFCF) y desarrollada por el Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) y el Museo de Zoología, ambos de la Universidad de Costa Rica (UCR).

| Table 3 Richness of stomatopods and decapods in the eastern tropical Pacific (ETP) |
|-----------------------------------|-----------|-----------|-----------|----------------------|
| **Stomatopoda** | **Decapoda** | **Total** | **References** |
| México | 28 | 1029^a | **878** | Hendrickx 2005a, 2005b; M.E. Hendrickx, personal communication, 2019 |
| Eastern Pacific | 53 | 825^b | **878** | Boschi 2000; Cortés et al. 2017; Salgado-Barragán & Hendrickx 2010 |
| Costa Rica | 29 | 437 | **466** | Vargas 2009; Vargas & Wehrtmann 2009 |
| Colombia | 11 | 378 | **389** | Lemaître & Álvarez-León 1992; López & Jairnes 2014 |
| ACG, Costa Rica | 14 | 257 | **271** | This study |
| Oaxaca, México | 15 | 197 | **212** | Bastida-Zavala et al. 2013 |
| Galápagos, Ecuador | 5 | 205 | **210** | Hickman & Zimmermn 2000 |
| Clipperton, France | 4 | 190 | **194** | Poupin et al. 2009 |
| Isla del Coco, Costa Rica | 6 | 139 | **145** | Vargas-Castillo & Wehrtmann 2008; Cortés 2012 |
| Bahía Culebra, Costa Rica | 3 | 99 | **102** | Cortés et al. 2012 |
| Golfo Dulce, Costa Rica | 2 | 71 | **71** | Morales-Ramirez 2011; Castro & Vargas 1996 |

^aIncludes pelagic and deep and shallow water species (M.E. Hendrickx, personal communication, 2019)

^bIncludes only shallow water species
Transcurridos cuatro años del proyecto, se han recolectado 2650 especímenes de crustáceos decápodos y estomatopodos marinos pertenecientes a 209 especies, de las cuales 99 son nuevas para el ACG, cuatro podrían ser nuevas especies para la ciencia y nueve (Cyrtolax pana-
mensis, Glytoxanthus labrinthicus, Pachycheles marco-
zentis, Petrolithes donadio, Pyllogopus holmesi,
Synalpheus pinkfloydii, Typton granulosus, Zenopontonia
soror y Neogonodactylus pumilus) son ampliaciones de
ámbito y nuevos informes para el país. Con esta contribu-
ción aumenta el número de decápodos a 257 spp. y de
estomatopodos a 14 spp. para un total de 271 spp. para
ACG. Esto es más de la mitad las especies conocidas de
estos grupos para Costa Rica y más una cuarta parte de las
especies conocidas para el Pacífico Tropical. En
cuatro años el proyecto BioMar-ACG ha aumentado el
número de especies de decápodos y estomatopodos del
ACG en 37% más que lo que se conocía a partir de estu-
dios en los últimos 85 años.

Conclusions
The model for marine biodiversity inventory developed
with the BioMar-ACG project, the partnership between
government, academia, private funding and local para-
taxonomists, accelerates the rate of species discovery
and reporting. It also makes species information and
project results available in an open access format. In
only for years of the project the number of decapods
and stomatopods of ACG increased by 37% over the past
85 years of previous studies, for a total of 271 species.
This number represents more than half the species re-
ported for Costa Rica, and more than a quarter of all
decapods and stomatopods reported for the eastern
tropical Pacific.

Acknowledgements
The authors acknowledge and thank the following people and organizations for their efforts and significant support to the BioMar-ACG project: Daniel Janzen, Winnie Hallwachs, Frank Joyce, María Marta Chavarría, Roger Blanco, Eric Palola, Yelba Vega, Gilbert Ampie, Diving Center Cuajiniquil, the Santa Elena Lodge, the Guanacaste Dry Forest Conservation Fund, the Wege
Foundation, the New England BioLabs Foundation, the Wallace Genetic
Foundation and the Centre for Biodiversity Genomics, University of Guilph. We thank Francilena Carranza for preparing the photographs and Eric Palola
and anonymous reviewers for the review of the manuscript. Michel E.
Hendrickx was very helpful in the preparation of the reviewed draft of the
paper.

Authors’ contributions
RV collected and identified the specimens, wrote a first draft of the
manuscript. JC, conceived the main project, helped with logistics and
and obtaining the funds, wrote some sections of the paper, helped prepared the
images and the final draft of the paper. All authors read and approved the
final manuscript.

Authors’ information
Rita Vargas: Collection Manager and curator of Crustaceans of the Zoology
Museum of the University of Costa Rica.

Jorge Cortés: Senior researcher at the Center for Research in Marine Science
and Limnology, and professor at the School of Biology, both at the
University of Costa Rica.

Funding
Funding source indicated in the Acknowledgement section.

Availability of data and materials
Data will be made available in the project website. The specimens are
deposited in the Museo de Zoología, Universidad de Costa Rica, and can be
checked there.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Museo de Zoología, Universidad de Costa Rica, San Pedro, San José
11501-2060, Costa Rica. 2Centro de Investigación en Ciencias del Mar y
Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José
11501-2060, Costa Rica. 3Escuela de Biología, Universidad de Costa Rica, San
Pedro, San José 11501-2060, Costa Rica.

Received: 28 July 2019 Accepted: 28 October 2019
Published online: 13 November 2019

References
Bastida-Zavala JR, del S G-MM, Rosas-Alquicica EF, López-Pérez RA, Benítez-
Villalobos F, Menzag-Hernando JF, Torres-Huerta AM, Montoya-Máquez A,
Barrientos-Luján NA. Marine and coastal biodiversity of Oaxaca, Mexico.
Check List. 2013;9:329–90.
Boschi E. Species of decapod crustaceans and their distribution in the American
marine zoogeographic provinces. Rev Invest Des Pesc. 2000;131–63.
Castro M, Vargas R. Annotated list of species of marine crustaceans (Decapoda
and Stomatopoda) from Golfo Dulce, Costa Rica. Rev Biol Trop. 1996;44(Suppl
3):87–95.
Cortés J. Marine biodiversity of an eastern tropical Pacific oceanic island, Isla del
Coco. Costa Rica Rev Biol Trop. 2012;60(Suppl 3):131–85.
Cortés J. Marine biodiversity baseline for Area de Conservación Guanacaste, Costa
Rica: published records. ZooKeys. 2017;652:129–79. https://doi.org/10.3897/
zookeys.652.10427.
Cortés J, Enochs IC, Sibaja-Cordero J, Hernández L, Álvarez JJ, Breedy O, Cruz-
Barraza JA, Esquivel-Garrote O, Fernández-García C, Hernissoil A, Kaiser KL,
Medina-Rosas P, Morales-Ramírez A, Pacheco C, Pérez-Matus A, Reyes-Bonilla
H, Riosmena-Rodríguez R, Sánchez-Noguera C, Wieters E, Zapata FA. Marine
biodiversity of eastern tropical Pacific coral reefs. In: Glynn PW, Manello D,
Enochs I, editors. Coral reefs of the eastern Pacific: persistence and loss in a
dynamic environment. Dordrecht: Springer Science+Business Media; 2017. p.
203–50.
Cortés J, Sampa-Villareal J, Beemer A, Seasonal phenology of Sargassum
leembranni J. Agardh (Fucales, Heterokontophyta) in an upwelling area of
the eastern tropical Pacific. Aquat Bot. 2014;119:105–10.
Cortés J, Vargas-Castillo R, Nava-Ruiz J. Marine biodiversity of Bahía Culebra,
Guanacaste, Costa Rica: published records. Rev Biol Trop. 2012;60(Suppl
2):39–71.
Faxon W. Reports on an exploration off the west coast of México, Central and
South America, and off the Galápagos Islands by the U.S. Fish Commission
Steamer “Albatross,” during 1891. XV. The stalk-eyed Crustacea. Mem Mus
Comp Zool. 1895:292.
Faxon W. Reports on an exploration off the west coast of México, Central and
South America, and off the Galápagos Islands by the U.S. Fish Commission
Steamer “Albatross,” during 1891. XV. The stalk-eyed Crustacea. Mem Mus
Comp Zool. 1895;18:292.
Hendrickx ME. Chapter 10. Crustacea 2: Stomatopoda. In: Hendrickx ME, Brusca
RC, Findley LT, editors. A distributional checklist of the macrofauna of the
Gulf of California, Mexico. Tucson, Arizona; Part I. Invertebrates. Arizona-
Sonora Desert Museum; 2005a. p. 127–95.
Hendrickx ME. Chapter 14. Crustacea 6. Decapoda: Dendrobranchiata, Caridea,
Palaemonidae, Stomatopoda, Anomura & Brachyura. In: Hendrickx ME, Brusca
RC, Findley LT, editors. A distributional checklist of the macrofauna of the Gulf of California,

Page 7 of 8
Vargas-Castillo and Cortés Marine Biodiversity Records (2019) 12:21

https://doi.org/10.3897/

zookeys.652.10427.

https://doi.org/10.3897/
zookeys.652.10427.

zookeys.652.10427.
Mexico, Tucson, Arizona: Part I. Invertebrates. Arizona-Sonora Desert Museum; 2005b. p. 159–94.
Hickman CP, Zimmerman TL. A field guide to the crustaceans of Galápagos. Lexington, Virginia: Galápagos Marine Life Series, Sugar Spring Press; 2000.
Lemaitre R, Álvarez-León R. Crustáceos decápodos del Pacífico colombiano: Lista de especies y consideraciones zoogeográficas. An Inst Inv Mar Punta Betín. 1992;21:33–76.
López RH, Jaimes JC. Aspectos de la distribución larval de Stomatopoda (Crustacea) en aguas superficiales del pacífico colombiano. Rev UDCA Actual Divulg Cient. 2014;17:227–36.
Morales-Ramírez A. La diversidad marina del Golfo Dulce, Pacífico sur de Costa Rica: amenazas a su conservación. Biotecnología. 2011;24:9–20.
Moran DA, Dittel AL. Anomuran and brachyuran crabs of Costa Rica: annotated list of species. Rev Biol Trop. 1993;41:599–617.
Poupin J, Bouchard J-M, Albenga L, Cleva R, Hermoso-Salazar M, Solis-Weiss V. Les crustacés décapodes et stomatopodes, inventaire, écologie et zoogéographie. In: Charpy L (ed) Clipperton, environnement et biodiversité d’un microcosme océanique. Patrim Nat. 2009;68:163–216.
Reaka ML, Manning RB. The distributional ecology and zoogeographical relationships of stomatopod Crustacea from Pacific Costa Rica. Smithsonian Contr Mar Sci. 1980;129–225.
Robertson DR, Cramer KL. Shore fishes and biogeographic subdivisions of the tropical eastern Pacific. Mar Ecol Prog Ser. 2009;380:1–17.
Salgado-Barragán J, Hendrickx ME. Clave ilustrada para la identificación de los estomatópodos (Crustacea: Holoarcanida) del Pacífico oriental. Rev Mex Biodiv. 2010;81:51–549.
Schmitt WL. The stomatopods of the west coast of America based on collections made by the Allan Hancock expeditions, 1933–38. Allan Hancock Pac Exp. 1940;5:129–225.
Vargas R, Cortés J. Biodiversidad marina de Costa Rica: Orden Stomatopoda (Crustacea: Holoarcanida). Rev Biol Trop. 1997;45:1531–9.
Vargas R, Cortés J. Biodiversidad marina de Costa Rica: Orden Crustacea: Decapoda (Peneoidea, Sergestoidea, Stenopodidae, Caridea, Thalassinidea, Palinura) del Caribe. Rev Biol Trop. 1999a;47:877–85.
Vargas R, Cortés J. Biodiversidad marina de Costa Rica: Crustacea: Decapoda (Peneoidea, Sergestoidea, Caridea, Astacidea, Thalassinidea, Palinura) del Pacífico. Rev Biol Trop. 1999b;47:887–911.
Vargas R, Cortés J. Biodiversidad marina de Costa Rica: Crustacea: Infraorden Anomura. Rev Biol Trop. 2006;54:461–88. https://doi.org/10.15517/rbt.v54i2.13894.
Vargas R, Wehrtmann IS. Decapods crustaceans. In: Wehrtmann IS, Cortés J, editors. Marine biodiversity of Costa Rica, Central America. Dordrecht: Springer & Business Media Bv; 2009. p. 193–7. https://doi.org/10.1007/978-1-4020-8278-8_17.
Vargas-Castillo R, Wehrtmann IS. Stomatopods and decapods from Isla del Coco, Pacific Costa Rica. Rev Biol Trop. 2008;56(Suppl 2):79–97.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.