Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic

Graphical Abstract

Highlights

- Ebola glycoprotein mutant GP-A82V arose early and dominated the West African epidemic
- GP-A82V infects human cells more efficiently than does the ancestral glycoprotein
- The increased infectivity of GP-A82V is specific for primate cells
- GP-A82V was weakly associated with increased mortality during the epidemic

Authors

William E. Diehl, Aaron E. Lin, Nathan D. Grubaugh, ..., Kristian G. Andersen, Pardis C. Sabeti, Jeremy Luban

Correspondence

andersen@scripps.edu (K.G.A.), pardis@broadinstitute.org (P.C.S.), jeremy.luban@umassmed.edu (J.L.)

In Brief

An Ebola glycoprotein mutant that arose early during the West African epidemic increases infectivity of human cells and may have contributed to increased mortality.
Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic

William E. Diehl, Aaron E. Lin, Nathan D. Grubaugh, Luiz Max Carvalho, Kyusik Kim, Pyae Phyo Kyawe, Sean M. McCauley, Elisa Donnard, Alper Kucukural, Patrick McDonel, Stephen F. Schaffner, Manuel Garber, Andrew Rambaut, Kristian G. Andersen, Pardis C. Sabeti, and Jeremy Luban

INTRODUCTION

Ebola virus (EBOV) is an enveloped filovirus with a 19-kb, negative-sense, single-stranded RNA genome that causes sporadic outbreaks of lethal hemorrhagic fever in humans (Feldmann and Geisbert, 2011; Kuhn et al., 2011). EBOV was identified as a human pathogen in 1976 (Bowen et al., 1977; Johnson et al., 1977; Pattyn et al., 1977). The high case-fatality rate and self-limited nature of EVD outbreaks suggest that EVD is a zoonosis (Bausch and Schwarz, 2014; Feldmann and Geisbert, 2011).

A82V contributed to disease severity during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013–2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.

SUMMARY

The magnitude of the 2013–2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013–2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.
the EBOV genome exhibited purifying selection (Park et al., 2015). Although most nonsynonymous mutations detected during the epidemic probably had little effect on viral fitness, it is possible that some of these mutations proliferated because they conferred an advantage to the virus. One such candidate is the clade-defining A82V substitution in EBOV Makona GP, which emerged at a time in the epidemic just before the number of EVD cases increased exponentially. This mutation is particularly intriguing because it is located in the receptor-binding domain of EBOV GP. Here we describe our efforts to determine whether GP-A82V conferred a replication advantage to the virus.

RESULTS

GP-A82V Was First Detected Just Prior to the Exponential Increase in Cases and Rapidly Exceeded the Prevalence of the Ancestral Makona EBOV

To get the broadest possible perspective on the EBOV sequence evolution that took place during the 2013–2016 EVD epidemic, we generated a phylogenetic tree using 1,489 EBOV Makona sequences for which near-complete genomes were available (Tables S1 and S2). The tree demonstrated two distinct lineages. The first lineage consisted of 86 sequences and was largely confined to the region around Conakry, Guinea. The second lineage formed a monophyletic clade comprised of 1,403 genomes sampled between March 2014 and August 2015. The second lineage included EBOV from all countries affected by the epidemic and was largely defined by two mutations: a non-synonymous C-to-T substitution at nucleotide 6,283, resulting in the GP-A82V substitution, and a synonymous T-to-C substitution at nucleotide 1,849, which encodes amino acid D460 of the viral NP. In addition to being present in the vast majority of EBOV infections during the 2013–2016 epidemic, the GP-A82V mutant was of interest because residue 82 is located at the receptor binding interface (Gong et al., 2016; Wang et al., 2016).

The two lineages were plotted according to date and country of sampling (Figures 1B–1E). GP-A82V was first sampled in Guinea in March 2014. It was next sampled in May 2014 in Sierra Leone. In June 2014 the GP-A82V lineage was again sampled in Guinea. The number of EVD cases caused by GP-A82V in Liberia and Sierra Leone grew rapidly in the summer and fall of 2014 with no apparent contribution from the first, ancestral lineage. In the fall of 2014, EBOV was reintroduced into Guinea from Liberia and Sierra Leone, resulting in a burst of additional cases (Carroll et al., 2015; Quick et al., 2016; Simon-Loriere et al., 2015).

We detected 114 additional amino acid substitutions in the EBOV Makona GP population, though none of these approached the prevalence of GP-A82V. The majority of these were not pursued further because they were located in the mucin-like domain, which is dispensable for entry into target cells (Chandran et al., 2005; Jeffers et al., 2002; Kaletsky et al., 2007; Schomberg et al., 2006). Instead, we focused on a sub-lineage of GP-A82V with an A-to-G change at nucleotide 6,726 that resulted in a GP-A82V/T230A double mutant (Figure 1A). Aside from GP-A82V, T230A was the most frequently observed non-synonymous mutation (2.5%) outside of the mucin-like domain. Four isolates from the GP-A82V/T230A sub-lineage possessed an additional A-to-G substitution at nucleotide 7,947 that resulted in the triple mutant, GP-A82V/T230A/D637G. These mutants were studied further, as described below.

EBOV Makona GP-A82V Increases Infectivity in Human Cells

The naturally occurring GP mutants A82V, A82V/T230A, and A82V/T230A/D637G were evaluated for their ability to infect cells by placing them in a mammalian expression plasmid containing the gene encoding EBOV Makona GP. Plasmids were constructed for the ancestral sequence and for each mutant combination. Additionally, the single mutants GP-T230A and GP-D637G were constructed, although these mutations were never observed independently of GP-A82V during the epidemic. The expression plasmids were used to generate EBOV GP-pseudotyped lentiviral virion particles bearing a GFP reporter gene. Equal volumes of each supernatant were used to transduce the human osteosarcoma cell line U2OS after confirming that each construct generated comparable amounts of particles by measuring reverse transcriptase activity in the supernatant. 72 hr later, the transduction efficiency for each GP was assessed by measuring the percent GFP-positive cells by flow cytometry. Lentiviruses bearing GP-A82V, GP-A82V/T230A, or GP-A82V/T230A/D637G produced 4-fold more GFP-positive cells than did particles bearing the ancestral GP (Figure 2A). In contrast, pseudotypes bearing either of the single mutants GP-T230A or GP-D637G produced GFP-positive cells at a rate similar to the ancestral GP.

To determine whether the observed infectivity differences were particular to U2OS cells, similar transductions were performed with HEK293 cells as target cells. In HEK293 cells, a 2-fold increase in infectivity was observed with lentiviral particles pseudotyped with GP-A82V, GP-A82V/T230A, or GP-A82V/T230A/D637G (Figure 2B). Once again, no statistically significant changes were observed with transductions using either of the single mutants GP-T230A or GP-D637G produced GFP-positive cells at a rate similar to the ancestral GP.

Dendritic cells (DCs) are targets for EBOV replication in vivo, at both early and later stages of infection (Geisbert et al., 2003). We therefore looked at the effect of the GP mutants on infection of this critical cell type (Figure 2C). Human monocyte-derived DCs were generated from eight blood donors. These cells were challenged with ancestral and with mutant EBOV GP-pseudotyped lentiviral vectors. As compared to the ancestral GP, A82V-containing GPs had significantly enhanced infectivity, while individually the T230A and D637G substitutions either had no effect or had less infectivity.

Amino acid substitutions introduced into the EBOV GP may alter rates of protein production and processing, protein stability, or protein incorporation into virions. To determine whether any of these properties were changed by the EBOV GP mutants, the amount of ancestral versus mutant GP present in our EBOV GP-pseudotyped lentiviruses was compared. EBOV GP-pseudotyped lentiviruses were enriched by acceleration through a 25% sucrose cushion, and virion-associated proteins were analyzed by western blotting, using polyclonal antiserum against a V5 epitope tag that was appended to the carboxy terminus of the GP. GP is cleaved by furin into two components, GP1 and GP2, and our western blot showed two distinct bands. One
band was 70 kDa, consistent in size with full-length GP, either uncleaved by furin or GP1+GP2 covalently bound by disulfide linkages (Figure 2D). The second band was 25 kDa, consistent with the furin-processed GP2 product. GP1+GP2 band intensity was compared to the intensity of the lentivirion capsid core (p24). All GPs showed equivalent levels of incorporation into particles, indicating that the enhanced infectivity observed in human cells with the GP-A82V-containing EBOV GPs was not due to differences in protein synthesis, processing, or GP incorporation into lentiviral particles.

GP-A82V Enhances GP-Mediated Entry of EBOV Virion Cores into the Target Cell Cytoplasm

The EBOV matrix protein VP40 is sufficient to drive assembly and budding of filamentous virus-like particles (VLPs) from the producer cell plasma membrane (Geisbert and Jahrling, 1995;
VP40 is also sufficient for incorporation of EBOV GP into the virion membrane, such that the resulting particles are capable of bona fide receptor-mediated entry into target cell cytoplasm. To facilitate quantitation of EBOV GP-mediated entry, EBOV VP40 fused to β-lactamase was used to generate VLPs. These VLPs were used to infect target cells, and subsequently target cells were loaded with a fluorogenic substrate that is trapped within the target cell cytoplasm. The substrate can be cleaved only if the GP successfully attaches, binds, and triggers fusion, releasing β-lactamase-VP40 into the cytoplasm (Manicassamy and Rong, 2009; Tscherne et al., 2010). This experimental system does not require transcription of reporter genes, and therefore more directly tests whether the EBOV GP mutants increase the ability of EBOV VP40 cores to enter into the target cell cytoplasm.

GP-A82V Increases Infectivity in Primate Cells but Not in Cells from Other Species

Next, we determined whether GP-A82V was more infectious for cells of any permissive species or whether the increased infectivity was a human-specific adaptation. NPC1 is the main cellular receptor for EBOV (Carette et al., 2011; Côté et al., 2011), and the EBOV GP-interacting region of NPC1 has been well defined (Gong et al., 2016; Krishnan et al., 2012; Wang et al., 2016). Because the EBOV interacting loop 2 of NPC1 is positioned in close proximity to EBOV GP-82, we assessed species-specific amino acid differences within this portion of NPC1 from 49 mammalian species (Figures 4A and 4B, Table S3).

EBOV interacting loop 2 of NPC1 is almost perfectly conserved in primates (Figure 4B). Only two species, the New World monkey Callithrix jacchus and the lemur Microcebus murinus, harbor amino acid differences from those found in human NPC1: K499I in Callithrix jacchus and K499V in Microcebus murinus. Outside of primates, nearly all species have a non-polar amino acid at residue 499, the exception being rabbits (Oryctolagus cuniculus), which have a glutamine. Several species harbor amino acid changes in residue 502. Previous studies have shown that a D-to-F substitution at residue 502 disrupts interaction between EBOV GP and NPC1 in straw colored fruit bats (Eidolon helvum) (Ng et al., 2015), and it is likely that similar substitutions would prevent EBOV infection in killer whales (Orcinus Orca), pigs (Sus scrofa), Jamaican fruit bats (Artibeus jamaicensis), and possibly the common vampire bat (Desmodus rotundus).

Based on the NPC1 sequence alignments, we anticipated that infections using EBOV GP-A82V variants in non-human primate cells would result in a similar enhancement to that seen in human cells. To test this prediction, we transduced cells from several primate species, as well as carnivores and rodents, with GFP-expressing lentiviral vectors pseudotyped with the EBOV GPs. Indeed, cells from non-human primates were more susceptible to infection by GP-A82V (Figure 4C). In contrast, cells from rodents and carnivores showed no difference in infectivity between
EBOV Makona GP-A82V Is Associated with a Higher Rate of Mortality

To determine whether the GP-A82V mutation had detectable effect on viremia or mortality, we obtained EBOV genotype data from 56 locations in Guinea, Liberia, and Sierra Leone (Arias et al., 2016; Carroll et al., 2015; Gire et al., 2014; Kugelman et al., 2015; Ladner et al., 2015; Park et al., 2015; Quick et al., 2016; Simon-Loriere et al., 2015; Tong et al., 2015) where mortality and viral load information was also available. This data recapitulated the skew (82V > 82A) that was seen in EBOV GP genotype prevalence per country depicted in Figure 1 (Figure 6A). Further analysis was restricted to those cases for which data were available regarding all four parameters: viral load, mortality, sampling location, and viral genotype (Carroll et al., 2015; Gire et al., 2014; Quick et al., 2016). All but 15 of these 194 cases occurred in Guinea, so the analysis was further restricted to Guinea, with samples from 19 districts. After paring down the data, geographic differences in the prevalence of viral genotypes remained (Figure 6B).

We examined associations between viral load (as assessed by Ct(t) values), risk of death, and GP-82 allele and found that both viral load and possession of GP-A82V were significantly associated with higher mortality. Lower Ct(t) values (corresponding to higher viral loads) were highly predictive of negative outcome (Figure 6C), consistent with previous reports (de La Vega et al., 2015; Li et al., 2016). GP-A82V-infected individuals had slightly higher viral loads (lower Ct(t) value, Figure 6D), but the difference was not statistically significant (Student’s t test: mean A = 20.07, mean V = 19.68, 95% CI for difference in the means [-0.69, 1.44]; p value = 0.49). Infection by virus with GP-A82V was associated with a significantly higher risk of death (raw odds ratio: 2.64, 95% CI [1.29, 5.38]; Figure 6E).

To better understand the association between GP-A82V and mortality, we modeled the failure rates for both the ancestral and GP-A82V genotypes over a range of viral loads (transformed Ct(t) values) (Figure 6F). After correcting for differences in Ct(t) values, the adjusted odds ratio for GP-A82V remained above 1, but with a wide confidence interval (OR = 2.09, 95% CI [0.94, 4.64]). When we added multiple potential confounding factors, including geographic variation in base fatality rate and access to health care, to the model, they had little effect on the conclusion. We found only modest evidence of geographic variation (Figure S1), while including the cumulative number of EVD cases per region (a proxy for EVD-associated burdens on the health care infrastructure) failed to improve model fit (Figure S1). Taken together, these data suggest an increased risk of death in people infected with GP-A82V, but we cannot rule out that there is no independent effect of the mutation or demonstrate that the association is causal.

DISCUSSION

The devastating 2013–2016 EVD epidemic led to two orders of magnitude more cases than in previous EVD outbreaks (CDC, 2016), providing greater opportunity for EBOV to undergo human adaptive changes than ever before. The A82V mutation in EBOV Makona GP arose early during the outbreak, nearly replacing the ancestral genotype, and was present in the viruses responsible for a number of batching events observed over the course of the epidemic.
for the majority of EVD cases during the epidemic (Figure 1). Our data show that GP-A82V enhances infectivity in human and other primate cells but not in cells of other mammalian species (Figures 2 and 4). Given that GP-A82V is located at the NPC1 binding interface, we are left with a strong suspicion that GP-A82V represents an EBOV adaptation to the human host. Human population data reveal a modest trend toward higher viremia with GP-A82V and a significant association with increased mortality (Figure 6), raising the intriguing possibility that these phenotypes result from this mutation.

In a co-submitted manuscript, Urbanowicz and colleagues independently arrived at the conclusion that GP-A82V enhances viral infectivity in human cells (Urbanowicz et al., 2016). In their hands, GP-A82V enhanced infectivity within the context of numerous GP sequences observed during the outbreak. Complementary to our findings, they showed that A82V is a primate-specific adaptation.

For GP-A82V, our molecular data warrant follow-up with in vivo, high-containment (BSL-4) experiments. Reverse genetics systems have been used to study live EBOV variants...
The GP-A82V mutation enhances infectivity for human cells through GP-mediated fusion (Figure 3), suggesting a biologically plausible mechanism for cross-species viral adaptation. Emergence of human viral disease from a reservoir host is a major route of virus transmission, as has been documented for human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), severe acute respiratory virus coronavirus (SARS-CoV), influenza virus, dengue virus, Nipah virus, Hendra virus, and Marburg virus (Parish et al., 2008). Because of shared co-evolutionary history, zoonotic viruses are thought to replicate and transmit more efficiently in their reservoir hosts than in humans. In a new host, although productive infection may occur, differences in key host factors between cells of the reservoir versus those of the new host can impair important events such as receptor binding and entry, replication of the viral genome, virion assembly and release, and avoidance of the host innate or adaptive immune response. More efficient receptor utilization in the new host is a common route of adaptation and has been described for SARS CoV (Li et al., 2005) and numerous influenza strains (Herfst et al., 2012; Imai et al., 2012; Matrosovich et al., 2000; Stevens et al., 2006a, 2006b; Xu et al., 2010). These experimental findings involving influenza have allowed for more informed surveillance of the animal reservoirs as well as providing a better understanding of the ongoing viral evolution in humans (Dugan et al., 2008; Holmes et al., 2005; Nelson et al., 2008; Obenauer et al., 2006; Rambaut et al., 2008; Russell et al., 2012). The knowledge that EBOV GP mutations that modulate fusion to host cells may be a route for human adaptation, and which GP residues mediate this adaptation is potentially valuable knowledge for surveillance activities during future EBOV epidemics.

The GP-A82V mutation is on the backside of the α1 helix that interacts with NPC1 and is therefore predicted to have little direct impact on binding to NPC1. However, there are likely to be differences in how the alanine and valine side chains pack against neighboring amino acids. Valine contains more alkane branches than alanine, which would place the side chain in closer proximity to GP-R85 and -W86. Steric hindrance between V82 and R85 may alter a predicted salt bridge between R85 and E178 (~2.7 Å apart, Figure 5). In addition, the added

Figure 5. Comparative Structural Analysis of the EBOV GP-A82V Substitution and NPC1 Orthologs

(A) Structural overview of EBOV GP2 (yellow) and cleaved GP (GPcl, light blue) bound to human NPC1 (orange), as experimentally derived by Wang et al. (2016). The EBOV GP-A82V substitution (red) occurs in the α1 helix of proteolytically cleaved GP that interacts with NPC1 loop 2. (B and C) Zoom of the (B) ancestral GP-A82 (blue) and (C) derived GP-V82 (red) variants in relation to proximal amino acid side chains. The distance between R85 and E178 is close enough (i.e., <4 Å) where a salt bridge is possible. (D and E) NPC1 loop 2 amino acid (D) sequence alignments and (E) target-template homology models of cell species used in this study (rodents, green; other mammals, cyan; Figure 4) and bats (purple) compared to primates (orange). Highlighted in (C) are the amino acid differences in loop 2 from the target species compared to the template, humans, and their location compared to the GP-A82V variant.
“bulk” of the GP-A82V mutation may alter the α1 helix conformation, to provide better access for proximal residues, such as GP-V79, -P80, -T83, and -W86, to interact with NPC1 (Wang et al., 2016). Compared to the human NPC1 loop 2 domain, the inclusion of hydrophobic side chains at site 499 (valine or isoleucine) in other mammals (non-primates) probably adds more bulk near the backbone, potentially restricting how the loop can adapt to new conformations. Primates also possess a phenylalanine at amino acid 504, while several other species have a tyrosine. Changes between phenylalanine and tyrosine are common, differing only by an ortho hydrogen (phenylalanine) or hydroxyl group (tyrosine) on the benzene ring, and both are generally non-reactive and rarely involved in protein function. F504, however, is predicted to make contact with up to eight residues on EBOV GP (measured by a distance of <4.5 Å [Wang et al., 2016]) and is potentially a critical site for filovirus susceptibility (Zhao et al., 2016). In addition to the effects the A82V substitution could impart to NPC1/GP interactions, it may also alter the
propensity for EBOV GP to undergo “triggering” upon interaction with NPC1. In this context, the triggering process refers to the dramatic conformational changes undertaken by the EBOV GP resulting in the exposure of the viral fusion peptide on GP2, which is normally sequestered by GP1.

If GP-A82V is an adaptation to humans, it remains an open question whether this change led not only to increased replication in human hosts, but also to increased transmission between humans. The GP-A82V mutation was first sampled on March 31, 2014 (Data S1), after only approximately 110 EVD cases (CDC, 2016). Our data show that GP-A82V increases infectivity of EBOV for a variety of human cells in tissue culture and is associated with increased mortality in humans. Although significant questions remain, our findings raise the possibility that this mutation contributed directly to greater transmission and thus to the severity of the outbreak. It is difficult to draw any conclusion about this hypothesis, though, since the frequency increase can also be attributed to stochastic effects, including founder effects as EBOV moved from Guinea into Sierra Leone and multiple re-introductions of GP-A82V back into Guinea. In any case, the early emergence of GP-A82V highlights the need for vigorous surveillance and rapid public health intervention after identification of EVD and other emerging infectious diseases, in order to limit the possibility of viral adaptation to humans. Finally, studies such as this are necessary, as they provide vital biological information crucial for the interpretation of viral sequence evolution. Having this connection between viral genotype and phenotype maximizes the utility of viral sequencing efforts during outbreaks, allowing more efficient targeting of intervention strategies.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODELS AND SUBJECT DETAILS
 - Cell Lines and Primary Human MDDCs
- METHOD DETAILS
 - Sequence Data and Alignments
 - Phylogenetic Analysis
 - Cell Culture
 - Plasmid DNA
 - Reporter Virus and Virus-like Particle Production
 - Virus Infectivity Assays
 - Infectivity Assay Using EBOV Virion Cores
 - Analysis of Clinical Data
 - Western Blots
 - Protein Structure Modeling
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, three tables, and one data file and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2016.10.014.

AUTHOR CONTRIBUTIONS

W.E.D., A.E.L., A.R., M.G., K.G.A., P.C.S., and J.L. designed and supervised the study. W.E.D., A.E.L., N.D.G., L.M.C., K.K., P.P.K., S.M.M., S.F.S., E.D., A.K., P.M., M.G., and K.G.A. conducted the experiments and collected the datasets. All authors analyzed the data and wrote the manuscript.

ACKNOWLEDGMENTS

We wish to thank Andrew Orry for assistance with the homology modeling and Greg Towers for MDTF cells. This work was supported by NIH grants NIDA DP1DA034990 and NIAID R01AI11809 to J.L., NHGRI 1U01HG007910 to M.G. and J.L., ST3A007244-33 to N.D.G., NCATS U1TR001114 and NIAID HHSN272201400048C to K.G.A., Howard Hughes Medical Investigator award and NIAID U19AI110818 to P.C.S., and European Union Seventh Framework Programme [FP7/2007-2013] Grant No 278433-PREDEMICS to A.R. This material is based upon work supported by the National Science Foundation under grant no. DGE 1144152 (A.E.L.). Some reagents were constructed from NIH grant U19AI110818 (P.C.S.). K.G.A. is a PEW Biomedical Scholar.

Received: August 12, 2016
Revised: September 23, 2016
Accepted: October 6, 2016
Published: November 3, 2016

REFERENCES

Abagyan, R., Totrov, M., and Kuznetsov, D. (1994). ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506.
Albarino, C.G., Guerrero, L.W., Chakrabarti, A.K., Kainulainen, M.H., Whitmer, S.L.M., Welch, S.R., and Nichol, S.T. (2016). Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach. Virology 496, 237–243.
Alexander, K.A., Sanderson, C.E., Marathe, M., Lewis, B.L., Rivers, C.M., Shaman, J., Drake, J.M., Lofgren, E., Dato, V.M., Eisenberg, M.C., and Eubank, S. (2015). What factors might have led to the emergence of Ebola in West Africa? PLoS Negl. Trop. Dis. 9, e003662.
Arias, A., Watson, S.J., Asongu, D., Tobin, E.A., Lu, J., Phan, M.V.T., Jah, U., Wadoum, R.E.G., Meredith, L., Thorne, L., et al. (2016). Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evolution 2, wve16.
Baze, S., Pannetier, D., Oesterich, L., Rieger, T., Koivogui, L., Magasouba, N., Soropogui, B., Sow, M.S., Kelta, S., De Clerck, H., et al. (2014). Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 371, 1418–1425.
Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.
Bausch, D.G., and Schwarz, L. (2014). Outbreak of ebola virus disease in Guinea: where ecology meets economy. PLoS Negl. Trop. Dis. 8, e3056.
Berthoux, L., Sebastian, S., Sokolskaja, E., and Luban, J. (2005). Cyclophilin A is required for TRIM5alpha-mediated resistance to HIV-1 in Old World monkey cells. Proc. Natl. Acad. Sci. USA 102, 14849–14853.
Bivand, R., and Lewin-Koh, N. (2016). Tools for Reading and Handling Spatial Objects [R package maptools version 0.8-39] (Comprehensive R Archive Network [CRAN]). http://r-forge.r-project.org/projects/maptools/.
Bowen, E.T., Lloyd, G., Harris, W.J., Platt, G.S., Baskerville, A., and Vella, E.E. (1977). Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent. Lancet 1, 571–573.
Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
Carette, J.E., Raaben, M., Wong, A.C., Herbert, A.S., Obernosterer, G., Muller, M., Kuehne, A.I., Kranzusch, P.J., Griffin, A.M., Ruthel, G., et al.
dritic cells are early and sustained targets of infection. Am. J. Pathol.

Chandran, K., Sullivan, N.J., Selbor, U., Whelan, S.P., and Cunningham, J.M. (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645.

Chesebro, B., Wehrly, K., Nishio, J., and Perryman, S. (1992). Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J. Virol. 66, 6547–6554.

Côté, M., Misasi, J., Ten, T., Bruche, A., Lee, K., Filone, C.M., Hensley, L., Li, Q., Ory, D., Chandran, K., and Cunningham, J. (2011). Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348.

de La Vega, M.-A., Carello, G., Audet, J., Qiu, X., Kozak, R.A., Brooks, J.L., Kern, S., Wozc, A., Sprecher, A., Greig, J., et al. (2015). Ebola virion load at diagnosis associates with patient outcome and outbreak evolution. J. Clin. Invest. 125, 4421–4428.

Diehl, W.E., Stansell, E., Kaiser, S.M., Emerman, M., and Hunter, E. (2008). Identification of postentry restrictions to Mason-Pfizer monkey virus infection in New World monkey cells. J. Virol. 82, 11140–11151.

Dugan, V.G., Chen, R., Spiro, D.J., Sengamalay, N., Zaborsky, J., Ghedin, E., Notting, J., Swayne, D.E., Runstadler, J.A., Hopp, G.M., et al. (2008). The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog. 4, e1000076.

Dunham, E.C., Banadyga, L., Groseth, A., Chiramel, A.I., Best, S.M., Ebihara, H., Feldmann, H., and Hoener, T. (2015). Assessing the contribution of interferon antagonism to the virulence of West African Ebola viruses. Nat. Commun. 6, 8000.

Feldmann, H., and Geisbert, T.W. (2011). Ebola haemorrhagic fever. Lancet 377, 849–862.

Geisbert, T.W., and Jahrling, P.B. (1995). Differentiation of flaviviruses by electron microscopy. Virus Res. 39, 129–150.

Geisbert, T.W., Hensley, L.E., Larsen, T., Young, H.A., Reed, D.S., Geisbert, J.B., Scott, D.P., Kagan, E., Jahrling, P.B., and Davis, K.J. (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cell-specific CD4+ T cell responses reveal Niemann-Pick C1 is essential for Ebola virus infection. J. Virol. 77, 129–150.

Gong, X., Qian, H., Zhou, X., Wu, J., Han, Y., Peng, Z., Li, J., Duan, H.-J., Chen, H.-Y., Luo, S., Song, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., et al. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643.

Gong, X., Qian, H., Zhou, X., Wu, J., Han, Y., Peng, Z., Li, J., Duan, H.-J., Chen, H.-Y., Li, J.-Y., Zhang, X., Rong, Y.-H., Xu, Z., Sun, L.-J., Zhang, Y.-J., Liu, L.-M., et al. (2016). Age and Ebola virus load correlate with mortality and survival time in 288 Ebola virus disease patients. Int. J. Infect. Dis. 42, 34–39.

Gong, X., Qian, H., Zhou, X., Wu, J., Han, Y., Peng, Z., Li, J., Duan, H.-J., Chen, H.-Y., Li, J.-Y., Zhang, X., Rong, Y.-H., Xu, Z., Sun, L.-J., Zhang, Y.-J., Liu, L.-M., et al. (2016). Age and Ebola viral load correlate with mortality and survival time in 288 Ebola virus disease patients. Int. J. Infect. Dis. 42, 34–39.

Manicassamy, B., and Rong, L. (2009). Expression of Ebola virus glycoprotein on the target cells enhances viral entry. Virol. J. 6, 75.

Marzi, A., Feldmann, F., Hanley, P.W., Scott, D.P., Günter, S., and Feldmann, H. (2015). Delayed disease progression in cynomolgus macaques infected with Ebola virus Makona strain. Emerg. Infect. Dis. 21, 1777–1783.

Matthews, D.A., Hiscox, J.A., Elmore, M.J., Pollakis, G., Rambaut, A., Hewson, R., García-Dorival, I., Bore, J.A., Koudounou, R., et al. (2015). Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa. Nature 524, 97–101.

CDC (2016). Outbreaks Chronology: Ebola Virus Disease | Ebola Hemorrhagic Fever | CDC. http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology. html (CDC).

Holmes, E.C., Ghedin, E., Miller, N., Taylor, J., Bao, Y., St George, K., Grenfell, B.T., Salzberg, S.L., Fraser, C.M., Lipman, D.J., and Taubenberger, J.K. (2005). Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 3, e300.

Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., et al. (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420–428.

Jeffers, S.A., Sanders, D.A., and Sanchez, A. (2002). Covalent modifications of the ebola virus glycoprotein. J. Virol. 76, 12463–12472.

Johnson, K.M., Lange, J.V., Webb, P.A., and Murphy, F.A. (1977). Isolation and partial characterization of a new virus causing acute haemorrhagic fever in Zaire. Lancet 1, 569–571.

Kaeltsky, R.L., Simmons, G., and Bates, P. (2007). Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J. Virol. 81, 13378–13384.

Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

Krishnan, A., Miller, E.H., Herbert, A.S., Ng, M., Ndungo, E., Whelan, S.P., Dye, J.M., and Chandran, K. (2012). Niemann-Pick C1 (NPC1)/NPC1-like1 chimeras define sequences critical for NPC1’s function as a flavivirus entry receptor. Viruses 4, 2471–2484.

Kugelman, J.R., Wiley, M.R., Mate, S., Ladner, J.T., Beitzel, B., Fakoli, L., Taweh, F., Prieto, K., Diclaro, J.W., Minogue, T., et al.; US Army Medical Research Institute of Infectious Diseases; National Institutes of Health; Integrated Research Facility-Frederick Ebola Response Team (2015). Monitoring of Ebola virus Makona evolution through establishment of advanced genomic capability in Liberia. Emerg. Infect. Dis. 21, 1135–1143.

Kuhn, J.H., Becker, S., Ebihara, H., Geisbert, T.W., Johnson, K.M., Kawaoka, Y., Lipkin, W.I., Negredo, A.I., Netesov, S.V., Nichol, S.T., et al. (2010). Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 155, 2083–2103.

Ladner, J.T., Wiley, M.R., Mate, S., Dudas, G., Prieto, K., Lovett, S., Nagle, E.R., Beitzel, B., Gilbert, M.L., Fakoli, L., et al. (2015). Evolution and spread of Ebola virus in Liberia, 2014-2015. Cell Host Microbe 18, 659–669.

Laguerre, N., Sobhian, B., Casartelli, N., Ringeard, M., Chable-Bessia, C., Séguela, E., Yatim, A., Emiliain, S., Schwartz, O., and Senenac, M. (2014). SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657.

Leroy, E.M., Kumulungui, B., Poupart, Y., Rouquet, P., Hassanin, A., Yaba, P., Delécat, A., Pawska, J.T., Gonzalez, J.-P., and Swanepoel, R. (2005). Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576.

Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Song, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., et al. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643.

Li, J., Duan, H.-J., Chen, H.-Y., Y., J.-Y., Zhang, X., Rong, Y.-H., Xu, Z., Sun, L.-J., Zhang, Y.-J., Liu, L.-M., et al. (2016). Age and Ebola viral load correlate with mortality and survival time in 288 Ebola virus disease patients. Int. J. Infect. Dis. 42, 34–39.
immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther. 7, 1613–1623.

Nelson, M.I., Viboud, C., Simonsen, L., Bennett, R.T., Griesemer, S.B., St George, K., Taylor, J., Spiro, D.J., Sengamalay, N.A., Ghedin, E., et al. (2008). Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 4, e1000012.

Ng, M., Ndungo, E., Kaczmarek, M.E., Herbert, A.S., Binger, T., Kuehne, A.I., Junga, R.K., Hawkins, J.A., Gifford, R.J., Biswas, R., et al. (2015). Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife 4, 4.

Noda, T., Sagara, H., Suzuki, E., Takada, A., Kida, H., and Kawaoa, Y. (2002). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J. Virol. 76, 4865–4865.

Obenauer, J.C., Denson, J., Mehta, P.K., Su, X., Mukatira, S., Finkelstein, D.B., Xu, W., Wang, J., Ma, J., Fan, Y., et al. (2006). Large-scale sequence analysis of avian influenza isolates. Science 317, 1576–1580.

Park, J.D., Dudas, G., Woh, S., Goba, A., Whitmer, S.L.M., Andersen, K.G., Sealfon, R.S., Ladner, J.T., Kugelman, J.R., Matranga, C.B., et al. (2015). Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone. Cell 161, 1516–1526.

Parrish, C.R., Holmes, E.C., Morens, D.M., Park, E.C., Burke, D.S., Calisher, C.H., Laughlin, C.A., Saff, L.J., and Daszak, P. (2008). Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470.

Patty, S., van der Groen, G., Jacob, W., Piot, P., and Courteille, G. (1977). Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire. Lancet 1, 573–574.

Pickett, B.E., Sadat, E.L., Zhang, Y., Noronha, J.M., Squires, R.B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., et al. (2012). ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 40, D593–D598.

Pourrut, X., Delicat, A., Rollin, P.E., Kisakye, T.G., Gonzalez, J.-P., and Leroy, E.M. (2007). Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J. Infect. Dis. 196 (Suppl 2), S176–S183.

Pourrut, X., Souris, M., Towner, J.S., Rollin, P.E., Nichol, S.T., Gonzalez, J.-P., and Leroy, E. (2009). Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 9, 159.

Quick, J., Loman, N.J., Duraffour, S., Simpson, J.T., Severi, E., Cowley, L., Bore, J.A., Koundounou, R., Dudas, G., Mikhail, A., et al. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232.

R Core Team. (2016). R: A Language and Environment for Statistical Computing.

Rambaut, A., Pybus, O.G., Nelson, M.I., Viboud, C., Taubenberger, J.K., and Holmes, E.C. (2008). The genomic and epidemiological dynamics of human influenza A virus. Nature 453, 615–619.

Reinhard, C., Bottleneck, D., Kim, B., and Luban, J. (2014). Vpx rescue of HIV-1 from the antiviral state in mature dendritic cells is independent of the intracellular deoxynucleotide concentration. Retrovirology 11, 12.

Russell, C.A., Fonville, J.M., Brown, A.E.X., Burke, D.F., Smith, D.L., James, S.L., Herfst, S., van Boheemen, S., Linster, M., Schrauwen, E.J., et al. (2012). The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336, 1541–1547.

Sanchez, A., Trappier, S.G., Mahy, B.W., Peters, C.J., and Nichol, S.T. (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc. Natl. Acad. Sci. USA 93, 3602–3607.

Schomburg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A., and White, J. (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80, 4174–4178.

Simon-Loriere, E., Faye, O., Faye, O., Koivogui, L., Magassouba, N., Keita, S., Thibierge, J.-M., Diancourt, L., Bouchier, C., Vandenbossche, M., et al. (2015). Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature 524, 102–104.

Smither, S.J., Eastaugh, L., Ngugi, S., O’Brien, L., Phelps, A., Steward, J., and Lever, M.S. (2016). Ebola virus Makona shows reduced lethality in an immune-deficient mouse model. J. Infect. Dis. 214 (Suppl 3), S268–S274.

Stamatakis, A., Ludwig, T., and Meier, H. (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.

Stevens, J., Blixt, O., Glaser, L., Taubenberger, J.K., Palese, P., Paulson, J.C., and Wilson, I.A. (2006a). Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155.

Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., and Wilson, I.A. (2006b). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410.

Tong, Y.-G., Shi, W.-F., Liu, D., Qian, J., Liang, L., Bo, X.-C., Liu, J., Ren, H.-G., Fan, H., Ni, M., et al.; China Mobile Laboratory Testing Team in Sierra Leone (2015). Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature 524, 93–96.

Tschermie, D.M., Manicassamy, B., and García-Sastre, A. (2010). An enzymatic virus-like particle assay for sensitive detection of virus entry. J. Virol. Methods 163, 336–343.

Urbanowicz, R.A., McClure, C.P., Sakuntabhai, A., Salle, A.A., Kobilger, G., Müller, M.A., Holmes, E.C., Rey, F.A., Simon-Loriere, E., and Ball, J.K. (2016). Human adaptation of Ebola virus during the West African outbreak. Cell 167, this issue, 1079–1087.

Volchkov, V.E., Volchkova, V.A., Muhlberger, E., Kolesnikova, L.V., Weik, M., Dolinik, O., and Klenik, H.D. (2001). Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Sci- ence 291, 1965–1969.

Wang, H., Shi, Y., Song, J., Qi, J., Lu, G., Yan, J., and Gao, G.F. (2016). Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164, 258–268.

WHO (2016). Ebola Situation Reports | Ebola. http://apps.who.int/ebola/ebola-situation-reports (WHO).

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag).

Xu, R., McBride, R., Paulson, J.C., Basler, C.F., and Wilson, I.A. (2010). Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 84, 1715–1721.

Zhang, X.-Y., La Russa, V.F., Bao, L., Kolls, J., Schwarzenberger, P., and Reiser, J. (2002). Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol. Ther. 5, 555–565.

Zhao, Y., Ren, J., Harlos, K., and Stuart, D.I. (2016). Structure of glycosylated NPC1 luminal domain C reveals insights into NPC2 and Ebola virus interactions. FEBS Lett. 590, 605–612.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
anti-CD14 antibody MicroBeads	Miltenyi	130-050-201
Rabbit anti-V5 polyclonal serum	Novus Biologicals	cat# NB600-381; RRID: AB_10001084
Mouse monoclonal anti-HIV p24 183-H12-5C	Chesebro et al., 1992; NIH AIDS Reagent Program	3537
goat anti-mouse-680	Li-Cor	925-68070
goat anti-rabbit-800	Li-Cor	925-32211
Chemicals, Peptides, and Recombinant Proteins		
Histopaque-1077	Sigma-Aldrich	H8889
RPMI-1640	ThermoFisher	11875119
DMEM, high glucose	ThermoFisher	11995073
EMEM	ATCC	30-2003
a-MEM	ThermoFisher	12571-063
Fetal Bovine Serum	Omega	FB-11
Human AB+ Serum	Omega Scientific	HS-20
HEPES	Corning	25-060-CI
MEM Non-Essential Amino Acids	Corning	25-025-CI
Sodium Pyruvate	Corning	25-000-CI
TransIT-LT1	Mirus Bio	MIR2306
cyclosporine A	Sigma	30024
Sucrose	Sigma	84097
TRIS-HCl	Corning	46-030-CM
NaCl	Sigma	S5150
EDTA	Corning	46-034-CI
NP40	Millipore	492016
Triton X-100	BioRad	161-0407
Complete mini protease inhibitor	Roche	11836170001
2-mercaptoethanol	Invitrogen	21985-023
Laemmli Buffer	BioRad	161-0737
4-20% gradient SDS-PAGE gels, 12 well	BioRad	456-1095
0.45 µM nitrocellulose membrane	BioRad	162-0112
TBS Odyssey Blocking Buffer	Li-Cor	927-50000
Critical Commercial Assays		
LiveBLAzer FRET-B/G Loading Kit with CCF4-AM	ThermoFisher	K1095
Deposited Data		
Public repository with clinical data	https://github.com/maxbiostat/diehl_ebola_cell_2016	N/A
Experimental Models: Cell Lines		
HEK293	ATCC	CRL-1573
U2OS	ATCC	HTB-96
S008842	Coriell Cell Repository	S008842
Vero	ATCC	CCL-81
FRhK4	ATCC	CRL-1688
CRFK	ATCC	CCL-94

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the Lead Contact Jeremy Luban (jeremy.luban@umassmed.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cell Lines and Primary Human MDDCs
HEK293 (human [Homo sapiens] fetal kidney), U2OS (human [Homo sapiens] osteosarcoma), Vero (African green monkey [Chlorocebus aethiops] kidney), FRhk4 (rhesus macaque [Macaca mulatta] kidney), CRFK (cat [Felis catus] fetal kidney), Cf2Th (dog [Canis familiaris] fetal kidney).
by gradient centrifugation on Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). CD14+ mononuclear cells were enriched via positive
pH 7.2-7.5 was added to all of these medium formulations at a final concentration of 10 mM. Mononuclear leukocytes were isolated
maintained in EMEM supplemented with 20% FBS. Cf2Th were maintained in DMEM supplemented with 20% FBS. HEPES
produce full-length glycoprotein (Sanchez et al., 1996). This sequence contained flanking NcoI and XbaI restriction enzyme sites and
an additional adenosine at nucleotide 890, a modification that substitutes for the transcriptional editing that bona fide EBOV uses to
Ebola virus glycoprotein from the Guinean reference strain (GenBank: KJ660346.2) was synthesized as a gBlock (Integrated DNA
Plasmid DNA
described (Reinhard et al., 2014), with each cytokine supernatant added at a dilution of 1:100.

cKines were produced from HEK293 cells stably transduced with pAIP-hGMCSF-co or pAIP-hIL4-co, respectively, as previously
maintained at 37
Cell Culture

Phylogenetic Analysis
Maximum likelihood phylogenies were made with RAxML v7.3.0 (Stamatakis et al., 2005) using the GTR\gamma nucleotide substitution model. Fifty consecutive runs were performed and the tree with the best likelihood score was bootstrapped with 100 pseudoreplicates. To root the tree, all EBOV Makona sequences from Guinea were aligned with the 1976 EBOV Mayinga variant as an outgroup, which identified the earliest sequences from the 2013-2016 EVD epidemic as the most likely root of the tree (Data S1). All subsequent trees were rooted according to this analysis (Data S1).

Cell Culture
All cells were maintained at 37°C in 5% CO2 humidified incubators. HEK293, U2OS, CRFK, NIH/3T3, and MDTF were maintained in
DMEM supplemented with 10% FBS. S008842 were maintained in α-MEM supplemented with 15% FBS. Vero and FRhK4 were
maintained in EMEM supplemented with 20% FBS. C127 were maintained in DMEM supplemented with 20% FBS. HEPES pH 7.2-7.5 was added to all of these medium formulations at a final concentration of 10 mM. Mononuclear leukocytes were isolated by gradient centrifugation on Histopaque-1077 (Sigma-Aldrich, St. Louis, MO). CD14+ mononuclear cells were enriched via positive selection using anti-CD14 antibody MicroBead conjugates (Miltenyi, San Diego, CA), according to the manufacturer’s protocol. CD14+ cells were then plated at a density of 1 to 2 \times 10^6 cells/ml in RPMI-1640 supplemented with 5% heat inactivated human AB+ serum (Omega Scientific, Tarzana, CA), 20 mM L-glutamine (ThermoFisher, Waltham, MA), 25 mM HEPES pH 7.2 (Sigma-Aldrich), 1 mM sodium pyruvate (ThermoFisher), and 1 x MEM non-essential amino acids (ThermoFisher). Differentiation of the CD14+ monocytes into dendritic cells (MDDCs) was promoted by addition of recombinant human GM-CSF and human IL-4; cytokines were produced from HEK293 cells stably transduced with pAIP-hGMCSF-co or pAIP-hL4-co, respectively, as previously described (Reinhard et al., 2014), with each cytokine supernatant added at a dilution of 1:100.

Plasmid DNA
Ebola virus glycoprotein from the Guinean reference strain (GenBank: KJ660346.2) was synthesized as a gBlock (Integrated DNA Technologies, Coralville, IA). It was engineered to lack the mucin domain (amino acids 309-489) (Chandran et al., 2005) and to contain an additional adenosine at nucleotide 890, a modification that substitutes for the transcriptional editing that bona fide EBOV uses to produce full-length glycoprotein (Sanchez et al., 1996). This sequence contained flanking Ncol and XbaI restriction enzyme sites and was cloned into a mammalian expression vector under the control of the cytomegalovirus early (CMV IE) promoter/enhancer. Into this construct, A82V, T230A, and D637G single amino acid substitutions were generated by QuikChange mutagenesis (Agilent Technologies, Santa Clara, CA), substituting in Phusion High-Fidelity PCR Master Mix with GC Buffer (New England Biolabs, Ipswich MA). The following primers were utilized for generating these mutations: A82V F: 5’-GAAGCCCCATCTTTTAGTCAACAGATGGCAGTCAGTTG-3’, A82V R: 5’-GAAGGCCTCCTTTAGTCAACAGATGGCAGTCAGTTG-3’, T230A F: 5’-CCGGTTTTGGAATAATGAGGCGAAGACTTGTCGAGG-3’, T230A R: 5’-CCGGTTTTGGAATAATGAGGCGAAGACTTGTCGAGG-3’, D637G F: 5’-CTGTATATGCAAAT-3’, D637G R: 5’-CCGGTTTTGGAATAATGAGGCGAAGACTTGTCGAGG-3’. Additional derivatives of the ancestral and mutant glycoproteins were generated by removal of the stop codon (F: 5’-CTGTATATGCAAAT TTGTTCTTCTTAGTACGTCGGGCAGTCGGCC-3’, R: 5’-GCCGGCCCGAATCTGCAAAAGACAAATTTGCATATAGAC-3’) and insertion of an XbaI-flanked C-terminal V5 tag synthesized as a gBlock (Integrated DNA Technologies).
Reporter Virus and Virus-like Particle Production

Viral stocks were generated by transfecting HEK293 cells using Mirus TransIT-LT1 lipid reagent, as follows (Mirus Bio, Madison, WI). 24 hr prior to transfection 6 \times 10^5 HEK293 cells were plated per well in 6-well plates and transfected the following day with a total of 2,490 ng plasmid DNA using 6.25 µl TransIT-LT1 reagent. For production of pseudotyped EGFP-expressing HIV: 1,250 ng pNL-EGFP/CMV-WPREΔU3 (Diehl et al., 2008), 930 ng pCD/NL-BHΔΔΔ (Zhang et al., 2002), and 310 ng glycoprotein expression vector were utilized. For the production of pseudotyped ebola virus VLPs bearing beta-lactamase: 2,180 ng pcDNA3.1-Bla-VP40 (BEI Resources, Manassas, VA) (Manicassamy and Rong, 2009; Tschern et al., 2010) and 310 ng glycoprotein expression vector were utilized. Whenever VSV-G pseudotypes were generated pLP/VSVG (ThermoFisher, Waltham, MA) was used to do so. Vpx-containing SI VLPs were produced by transfecting 2180 ng pSIV3+ (Ngere et al., 2000) and 310 ng pLP/VSVG. Lentiviral VLPs for challenging DCs were produced by transfecting 2180 ng pCD/NL-BHΔΔΔ and 310 ng glycoprotein expression vector. In all cases, culture medium was changed 16 hr post transfection. In most cases fresh DMEM/10% FBS was used, but MDDC culture medium was utilized when virus was to be used for MDDC transductions. A further 48 hr after media change, viral supernatants were harvested, passed through a 0.45 µm pore size filter, and stored at 4°C.

Virus Infectivity Assays

For all adherent cells, 16 hr prior to transfection cells were seeded in 12 well plates at the following cell densities per well: HEK293 1x10^5; U2OS, FRhK4, CRFK, and NIH/3T3 3x10^4; S008842, Vero, Cf2Th, and MDTF 2x10^4. Cells were then exposed to virus-containing medium in a total volume of 350 µl for approximately 16 hr at 37°C. In order to relieve a TRIM5α block to infection (Berthoux et al., 2005), 8µg/ml cyclosporine A was added to the culture medium of FRhK4 and Vero cell lines. After this time, virus containing media was replaced with fresh culture medium and cells were cultured an additional 48 to 72 hr prior to harvest for flow cytometric analysis. For infection of THP-1 and human MDDCs, 5 \times 10^5 cells were seeded per well of a 24-well plate at the time of infection and cells were exposed to virus-containing medium in a total volume of 200 µl for approximately 16 hr at 37°C. For MDDC infections, Vpx-containing VLPs were also added to the medium, in order to overcome a SAMHD1 block to viral infection (Laquette et al., 2011). After overnight culture in the presence of virus, fresh culture medium was added and cells were cultured an additional 48 to 72 hr prior to harvest for flow cytometric analysis.

Cells were harvested for flow cytometric analysis by trypsinization (all adherent lines) or scraping (MDDC), spun at 500 \times g for 5 min, and resuspended in phosphate-buffered saline without Ca^{2+} and Mg^{2+}, supplemented with 2% FBS. Flow cytometry was conducted using the Accuri C6 system (BD Biosciences, San Jose, CA). Data was analyzed using FlowJo software, Macintosh version 10.1 (FlowJo, LLC, Ashland, OR). Infectivity of each mutant Ebola virus GP was compared to that observed with the ancestral GP, under the same conditions.

Infectivity Assay Using EBOV Virion Cores

Pseudotyped Ebola virus β-lactamase-VP40 (Bla-VP40) VLPs were prepared as described above. U2OS cells were seeded at a density of 1 \times 10^5 cells per well in 96-well plates 16 hr prior to infection. For infections, growth medium was replaced with cold Bla-VP40 VLP-containing medium and incubated for 2 hr on ice. Virus containing medium was then removed and cells were washed once with ice cold Hank’s Balanced Salt Solution (HBSS) and the cells were then incubated for 2 hr at 37°C in HBSS containing 10% FBS. Cells were then washed once with ice cold HBSS and loaded with the CCF4-AM substrate, according to the manufacturer’s protocol (ThermoFisher) with the following modifications: the inhibitor of anion transport, probenecid, was added to a final concentration of 250 µM and cells were incubated with CCF4-AM substrate overnight at 11°C. Cleavage of the CCF4-AM substrate was assessed using the Synergy 2 plate reader (BioTek, Winooski, VT) with the following filter settings for the cleaved substrate: 400/30 excitation and 460/40 emission. The amount of CCF4-AM cleavage in cells infected with each mutant Ebola virus GP was compared to that observed for the ancestral GP, similar to what was done for infectivity assays.

Analysis of Clinical Data

In total there were 1,636 observations for which we had genotype information. Of these, only 194 cases were associated with both clinical outcome and C(t) value (viral load) information (Carroll et al., 2015; Gire et al., 2014; Quick et al., 2016). As the vast majority of these cases were from Guinea, we further restricted our attention to these 179 Guinean samples, as we did not want to introduce biases based on potential differences in the health care infrastructure or sample handling/processing. The 179 Guinean cases were used for all model fitting analyses. Maps depicting the spatial distribution of genotypes for all isolates and those associated with clinical outcome and viral load data were constructed using the maptools package (Bivand and Lewin-Koh, 2016). To obtain unbiased estimates of the raw odds ratio, we tallied the number of individuals infected with genotype GP-A82V that died (a) and survived (b) and likewise for cases of individuals infected with genotype GP-A82 that died (c) and survived (d). The estimate for the raw odds ratio is then

\[
m = \frac{ad}{bc}.
\]

To compute confidence interval we calculated

\[
1.96 \times \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right).
\]

It is important, however, to control for the effect of other variables that might influence outcome in order to obtain adjusted odds ratios for the variable of interest (in this case, genotype). For each case we recorded the date of occurrence (in days since December 2013) and also the cumulative number of cases in the location of the case up to the date in which it was reported (cumCases). The idea behind acquiring this information was to detect any time-dependent trend in case fatality rates, as well as an overwhelming of the health care system due to a high case loads. We fit a binomial generalized linear model to the outcome data using these covariates.
in addition to \(C(t) \) values and the absence/presence of the A82V mutation (genotype). In order to make coefficient estimates consistent between the continuous variables and the binary variable, we standardized the continuous variables by subtracting the mean and dividing by two standard deviations (Selman, 2008). To facilitate interpretation of the results, we flipped the sign of the resulting variable such that it was consistent with viral load (which is inversely related to \(C(t) \)).

To further assess the effect of potential confounding variables, we fitted a varying-intercept (also called “random effects”) model to the data where we assigned each location an intercept using the glmer() function in the lme4 package (Bates et al., 2015). This amounts to stating that each location was allowed to have its own baseline fatality rate. We also allowed each location to have its own coefficient for the cumCases variables, such that the structure of the model allowed for variability in how locations responded to demand for health care. Exploration of the model showed no association between sampling date and outcome and this variable was subsequently dropped of the model. The estimates for a model including \(C(t) \) values and genotype as “fixed effects” and cumCases are varying effect are presented in Figure S3 and show considerable uncertainty. We thus decided to make our inferences based on a simpler model, using only the fixed effect variables: \(C(t) \) and genotype.

A comparison of \(C(t) \) values per genotype was performed using a Student t test. Using all data for which \(C(t) \) values and genotype information was available (regardless of outcome information) we obtained 97 \(C(t) \) measurements for genotype GP-82A and 216 measurements for genotype GP-A82V. The results are reported in the main text and indicate no significant association between viral load (as measured by \(C(t) \)) and genotype.

All analyses were carried out in R 3.2.4 (R Core Team, 2016) and figures were produced using the ggplot2 package (Wickham, 2009).

Western Blots

For determination of Ebola virus GP incorporation into viral particles HEK293 cells were transfected according to the procedure above substituting plasmids encoding C-terminally V5-tagged Ebola virus GPs for the corresponding untagged versions. The V5-tagged constructs did indeed have the same phenotype as the untagged constructs (data not shown). 48 hr after media change, viral supernatant was harvested, passed through a 0.45 \(\mu \)m filter, and layered over a 25% sucrose cushion. Virus was pelleted through the sucrose cushion by spinning at 125,000 x \(g \) using SW55Ti buckets in an Optima XE-90 ultracentrifuge (Beckman Coulter, Indianapolis, IN). Supernatant was removed and viral pellets were gently washed with 1 mL ice cold PBS. Virus was then lysed in Hypotonic Lysis Buffer: 20 mM TRIS-HCl, pH 7.5, 150 mM NaCl, 10 mM EDTA, 0.5% NP-40, 0.1% Triton X-100, and cOmplete mini protease inhibitor (Sigma-Aldrich, St. Louis, MO). Concomitantly, transfected cells were washed once with ice cold PBS and lysed in Hypotonic Lysis Buffer for 20 min on ice and clarified by centrifugation at 16,000 x \(g \) for 20 min at 4°C. Cell lysate supernatant was transferred to new tubes and insoluble pellets were discarded. In preparation for SDS-PAGE fractionation, viral and cellular lysates were mixed 1:1 with 2x Laemmli buffer containing 355 mM 2-mercaptoethanol and boiled for 5 min.

Prepared samples were run on 4%–20% gradient SDS-PAGE gels and transferred to nitrocellulose membranes. Membrane blocking, as well as both primary and secondary antibody binding were performed using TBS Odyssey Blocking Buffer (Li-Cor, Lincoln, NE), in accordance with the manufacturer’s instructions. The V5 tag was detected using rabbit polyclonal serum (Novus Biologicals, Littleton, CO) at a 1:4,000 dilution. HIV-1 lentiviral CA (p24) was detected using mouse monoclonal antibody 183-H12-5C (Chesebro et al., 1992) at a 1:1,000 dilution. For imaging on the Li-Cor Odyssey CLx system (Li-Cor), primary antibody was recognized by goat anti-rabbit-680 and goat anti-mouse-800 (Li-Cor), both at 1:10,000 dilutions. Blots were scanned at a resolution of 84 \(\mu \)m using the ‘medium quality’ setting and quantitation of specific bands was done using the box tool in the Odyssey software package. Background subtraction was performed using pixels immediately adjacent to each box as reference background levels.

Protein Structure Modeling

Three-dimensional protein structure analysis, target-template alignments, and comparative homology modeling between human NPC1 bound to EBOV GPCl (experimentally derived by (Wang et al., 2016), Protein Data Bank accession number PDB: 5F1B) and targeted NPC1 loop 2 amino acid substitutions were performed using ICM-Pro version 3.8-5 (MolSoft, San Diego, CA; (Abagyan et al., 1994)).

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental n values, and information regarding what this refers to, can be found in the figure legends. Viral infectivity data for each cell line was independently assessed for statistical significance using Repeated-measures ANOVA, with values obtained from unique viral stocks being the variable considered for repeated-measures. For repeated-measures ANOVAs, a Dunnett’s post-test for multiple comparisons was applied, where infectivity for all derivative GPs was compared to that of the ancestral GP. EBOV VLP fusion data was assessed for statistical significance using One-way Anova, with Bartlett’s post-test comparing all derivative GPs to the ancestral GP. All ANOVAs were performed using PRISM 5 software (GraphPad Software, La Jolla, CA).
Figure S1. Varying-Intercept Model for Fatality Rates, Related to Figure 6
We fit a model that allowed each location to have its own base fatality rate (i.e., its own intercept) and also its own slope for the cumulative cases (cumCases) variable, in order to account for heterogeneity in how locations responded to demand for healthcare. We find that the variability in the data and possibly the relatively small number of observations lead to very broad estimates of the model parameters. While there seem to be differences in base fatality rate between Forecariah and Nzerekore for example, the overlap of confidence intervals precludes definitive conclusions.