Analysis of the associated factors for severe weight loss after minimally invasive McKeown esophagectomy

Peiyu Wang1, Yin Li1,2, Haibo Sun1, Ruixiang Zhang1, Xianben Liu1, Shilei Liu1, Zongfei Wang1, Yan Zheng1, Yongkui Yu1, Xiankai Chen2, Haomiao Li1, Jun Zhang1 & Qi Liu1

1 Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
2 Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Keywords
Esophageal neoplasm; esophagectomy; risk factor; weight loss.

Abstract
Background: This study investigated the risk factors for severe weight loss (SWL) within one year after minimally invasive McKeown esophagectomy.

Methods: Esophageal cancer patients who underwent McKeown esophagectomy between January and July 2017 were prospectively enrolled. Preoperative body weight (PBW) was chosen as the initial body weight.

Results: Forty-four patients were enrolled and successfully followed up for one year. Median weight loss was 7.4% (quartile: 5.3–8.1%) and 12.6% (quartile: 8.8–17.7%) four weeks and one year after surgery, respectively. Accelerated weight loss occurred during the first two weeks after discharge, with median weight loss of 5.6% (quartile: 4.2–7.1%). Multivariable analysis showed that age ≥ 70 years (odds ratio [OR] 7.65; P = 0.030), preoperative sarcopenia (OR 7.18; P = 0.030), the first surgery in the daily schedule (OR 6.87; P = 0.032) and vocal cord paralysis (OR 12.30; P = 0.046) were independent risk factors for short-term (4 weeks) SWL (> 7.5% PBW), while an American Society of Anesthesiologists score of 3–4 (OR 7.65; P = 0.030), preoperative sarcopenia (OR 7.18; P = 0.030), the first surgery in the daily schedule (OR 6.87; P = 0.032) and vocal cord paralysis (OR 12.30; P = 0.046) were independent risk factors for long-term (1 year) SWL (> 13.0% PBW) after esophagectomy. Postoperative symptoms of insomnia, appetite loss, dysphagia, eating difficulties, and taste issues were also related to SWL.

Conclusions: In esophageal cancer patients who have undergone esophagectomy, the first two weeks after hospital discharge is a key period for nutrition intervention. Patients with associated factors for SWL require postoperative nutrition support.

Introduction
Esophageal cancer is the 11th most common cancer and the sixth most common cause of perioperative mortality worldwide.1 Esophagectomy or neoadjuvant therapy followed by esophagectomy is the critical therapy for this malignant tumor.2 Postoperative weight loss is a common problem in patients with esophageal cancer, and severe weight loss (SWL) is closely related to poor prognosis.3,4 However, the degrees of postoperative body weight changes and the risk factors for SWL have not been identified.5,6 The purpose of this study was to prospectively observe body weight changes in patients who underwent minimally invasive McKeown esophagectomy (McKeown-MIE) to explore the regularity of body weight changes and to analyze the risk factors leading to SWL.

Methods
Study design and patients
Patients who underwent McKeown-MIE as initial treatment from January to July 2017 at the Department of...
Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University were prospectively included. The inclusion criteria were: (i) age 18–80 years, (ii) preoperative diagnosis of esophageal cancer, and (iii) good cardiopulmonary function that was evaluated to tolerate surgery. The exclusion criteria were: (i) a preoperative examination that showed that the tumor had invaded into surrounding tissues, lymph nodes, and important organ metastases; (ii) esophagectomy after neoadjuvant therapy; and (iii) a history of previous gastrointestinal malignancies, rheumatic immune disease, or inflammatory bowel disease.

This study met the ethical standards of the Affiliated Cancer Hospital of Zhengzhou University Ethics Committee. All patients signed informed consent prior to their inclusion in the study.

Data collection

Patients’ body composition was assessed at 7:00 a.m. on the operation day using multifrequency bioelectrical impedance with eight tactile electrodes (BCA-IB Body Component Analyzer, Tsinghua Tongfang Co. Ltd., Beijing, China). Various parameters, including the fat-free mass (FFM), skeletal muscle, and fat mass were automatically measured. Preoperative sarcopenia (depletion of skeletal muscle mass) was diagnosed as skeletal muscle below the normal range of the Chinese population provided by the BCA-IB Body Component Analyzer. Body mass index (BMI) was calculated as the weight in kilograms divided by the height in square meters (kg/m²), and was classified according to the Asian-specific BMI cut-off. Preoperative performance status was assessed using Eastern Cooperative Oncology Group performance status (ECOG-PS) and Karnofsky Performance Status (KPS).

For clinical data collection, the included patients were staged before and after surgery according to the eighth edition American Joint Committee on Cancer/Union for International Cancer Control Tumor Node Metastasis (TNM) Classification. Preoperative clinical staging was based on esophagography, endoscopy, endoscopic ultrasonography (EUS), and computed tomography (CT) of the chest and upper abdomen. A biopsy of the cervical lymph nodes and positron emission tomography were used to determine the clinical stage if needed. Postoperative complications were defined according to the international consensus on the standardization of data collection for complications associated with esophagectomy produced by the Esophagectomy Complications Consensus Group, and graded according to the Clavien–Dindo classification.

To measure and follow-up body weight, weight was measured in the morning after defecation on an empty stomach with a single layer of clothes. The figures were accurate to 0.1 kg, and the average of three consecutive measurements was used as the final measurement. The preoperative body weight (PBW) was measured on the morning of the operation day. Patients’ body weight was measured every three to four days over four weeks, every week from 5 to 12 weeks, and every two weeks from 13 to 56 weeks after surgery. Follow-up was arranged by telephone, and details were explained to patients ahead of time to ensure the accuracy of weight measurement. Data were collected by email.

Surgery and recovery

All patients underwent McKeown-MIE with a two-field lymph node dissection, and anastomosis was performed to sew up the gastric conduit to the distal esophagus, as previously described. All operations were performed by one surgical team led by one author. The “non-tube no fasting” fast-track program was the first choice for all patients, except when symptoms of aspiration or the appearance of serious complications arose, at which time oral feeding was delayed or ceased. Normally the nutrition provided by intravenous approach decreases with the increase in oral feeding, and is removed on the fourth day after surgery. The need for adjuvant therapy after surgery is determined by the pathology stage and the patients’ aspiration and nutrition status.

Quality of life

The European Organization for Research and Treatment of Cancer questionnaires C30 and OES18 were used to assess quality of life (QOL) at baseline (1 week before surgery) and 2, 4, 8, 12, and 24 weeks after surgery. Questionnaire scales related to intake and body weight recovery were analyzed to investigate the association between QOL and postoperative weight loss. Baseline data were collected in the hospital and follow-up assessments were arranged by telephone and performed by mail, with one telephone reminder if required.

Statistical analysis

The categorical data are presented as the frequency (percentage), and the continuous data are presented as the mean ± standard deviation or the medians and interquartile ranges according to the results of the Shapiro–Wilk test. QOL data are presented as mean ± standard deviation. Comparisons between the groups were performed using the t-test for independent samples in cases of normal data distribution and the Mann–Whitney U test in cases of non-normal data distribution. Univariate and multivariate logistic regression models were used to analyze the risk factors. The continuous variables were grouped according to the mean, median, and practical significance to be included in risk.
factor analysis. A two-tailed \(P \) value of < 0.05 was considered statistically significant. All analyses were conducted using SPSS version 17.0 (SPSS Inc., Chicago, IL, USA).

Results

A total of 45 patients met the study criteria during the study period. All of the patients were included in the study after signing informed consent, and the baseline data collection rate was 100%. One patient dropped out of the study three weeks after surgery, and 44 patients were followed up for one year. No perioperative or follow-up death occurred and no tumor recurrence or metastasis.

Table 1 Basic patient characteristics and clinical data

Variables	Values
Demographic data, N (%)	
Age (years), mean ± SD	65.7 ± 7.7
Gender (male)	26 (59.1)
Brinkman index (≥ 100)	18 (40.9)
Alcohol index (≥ 2000)	7 (15.9)
Preoperative morbidity, N (%)	
Diabetes	3 (6.8)
Cardiovascular disease	11 (25.0)
COPD	4 (9.1)
Cerebral vascular disease	6 (13.6)
ASA score 3–4	19 (43.2)
ECOG PS score > 1 point	11 (25)
KPS score < 90%	13 (29.5)
Preoperative nutrition, mean ± SD	
Body weight (kg)	66.1 ± 7.8 (male); 54.9 ± 5.7 (female)
FFM (kg)	49.9 ± 6.2 (male); 37.7 ± 3.4 (female)
Fat mass (kg)	16.3 ± 4.2 (male); 17.3 ± 3.5 (female)
Weight loss in last 3 months (%)	4.3 ± 0.5
BMI (kg/m²)	23.1 ± 2.3
Preoperative sarcopenia, N (%)	18 (40.9)
Tumor characteristics, N (%)	
Location (upper/middle/lower)	2 (4.5)/29 (65.9)/13 (29.5)
cTNM (0–II–III)	19 (43.2)/25 (56.8)
pTNM (0–III)	34 (77.3)/10 (22.7)
Histological type (SCC/AC)	19 (43.2)/25 (56.8)
Differentiation (well/moderately/poorly)	2 (2.3%)§
Tumor length (mm), mean ± SD	47.5 ± 19.3
Adjuvant therapy, N (%)	1 (2.3%)§

†Brinkman index = daily count of cigarettes × smoking years. ‡Alcohol index = daily alcohol consumption (g) × drinking years. §One patient underwent postoperative chemotherapy. AC, adenocarcinoma; ASA, American Society of Anesthesiologists; BMI, body mass index; COPD, chronic obstructive pulmonary disease; ECOG PS, Eastern Cooperative Oncology Group performance status; FFM, fat-free mass; KPS, Karnofsky Performance Status; pTNM, pathological tumor node metastasis; SCC, squamous cell carcinoma; SD, standard deviation.

Data characteristics

The patient characteristics are shown in Table 1. There were 26 (59.1%) men and 18 (40.9%) women at an average age of 65.7 ± 7.7. Squamous cell carcinoma (SCC) dominated the pathological types, with 43 (97.7%) patients. The perioperative parameters and postoperative complications are shown in Table 2. In total, 31 (70.5%) patients successfully completed the fast-track program, oral feeding was delayed to the fourth day after surgery in 9 (20.5%) patients because of aspiration, 3 (6.8%) patients did not complete the fast-track program and underwent gastrointestinal decompression because of severe stomach distention, and 1 (2.3%) patient returned to the intensive care unit and oral feeding was stopped because of acute respiratory distress syndrome. Among the 9 (20.5%) patients with symptoms of aspiration, 7 (15.9%) patients developed vocal cord paralysis (VCP) because of the operation, 1 (2.3%) patient developed VCP because of

Table 2 Perioperative parameters and postoperative complications

Variables	Values
Operative parameters	
Operation order (first/others), N (%)	21 (47.7)/23 (52.3)
Operative time (minutes), mean ± SD	185.0 ± 38.0
Blood loss (mL), mean ± SD	97.5 ± 30.2
Curability (R0/R1-2), N (%)	44 (100)/0
Postoperative complications, N (%)	
Cardiac dysrhythmia	5 (11.4)
Pneumonia	4 (9.1)
Pleural effusion	4 (9.1)
ARDS	1 (2.3)
VCP	7 (15.9)
Wound infection	2 (4.5)
Pulmonary embolus	1 (2.3)
Anastomotic leakage	0 (0)
Other complications	2 (4.5)
Overall complications†	13 (29.5)
Recurrent need of ICU treatment	2 (4.5)
In-hospital mortality	0 (0)
Clavien–Dindo classification	9 (20.5)/4 (9.1)
Fast track program, N (%)	31 (70.5)
Length of postoperative stay, mean ± SD	9.0 ± 3.2
Perioperative serum parameters, mean ± SD	
Preoperative serum prealbumin (mg/L)	203.3 ± 63.6
Preoperative serum albumin (g/L)	43.7 ± 3.9
POD1 serum prealbumin (mg/L)	148.0 ± 33.2
POD1 serum albumin (g/L)	33.2 ± 3.8
POD7 serum prealbumin (mg/L)†	109.3 ± 27.2
POD7 serum albumin (g/L)†	36.6 ± 3.8

†Defined as the presence of one or more of the complications listed above in a single patient. ‡Data was missing for three patients. ARDS, acute respiratory distress syndrome; ICU, intensive care unit; POD, postoperative day; SD, standard deviation; VCP, vocal cord paralysis.
Weight loss after esophagectomy

The preoperative average weight of the 44 patients was 61.5 ± 8.9 kg, and this value decreased to 55.1 ± 8.8 kg one year after surgery. Using the PBW as a reference, the changes in the body weight in each period after surgery are presented in Table 3. The median and quartile weight loss rates at one year were 12.6% (8.8–17.7%), and the maximum weight loss rate within the first year was 13% (9.5–17.7%). We also drew a line chart to describe patient’s weekly body weight changes after surgery (Fig. 1). We noticed that the patients’ weight loss was concentrated within four weeks after surgery, while the change in body weight in the first week was minor. Considering that the length of the hospitalization was 9.0 ± 3.2 days, we speculated that the patients underwent accelerated weight loss in the short term after discharge. Subsequently, we analyzed the changes in body weight in and out of the hospital, with the discharge time as the observation point (Table 3). We observed that accelerated weight loss occurred in the first two weeks after discharge, with a weight loss rate of 5.6% (4.2–7.1%), contributing to 46.4% ± 16.7% of the maximum weight loss within one year after surgery.

Risk factors for short-term (4 weeks) severe weight loss after esophagectomy

The patients’ average weight loss rate at four weeks after surgery was 7.6% ± 3.8%, with a median weight loss rate of 7.4% (quartile: 5.3–8.1%). Therefore, a weight loss rate > 7.5% was chosen as the criteria to recognize SWL at four weeks after surgery. Twenty (45.5%) patients were assigned to the SWL group and 24 (54.5%) to a normal weight loss (NWL) group. The outcomes of the univariate logistic regression models are presented in Table 4. Age ≥ 70 years (odds ratio [OR] 4.50; *P* = 0.022), ECOG PS > 1 (OR 9.00; *P* = 0.011), KPS < 90% (OR 5.73; *P* = 0.022), preoperative sarcopenia (OR 7.06; *P* = 0.004), a poorly differentiated tumor (OR 15.33; *P* = 0.047), the first surgery in the daily schedule (OR 3.71; *P* = 0.040), VCP (OR 15.33; *P* = 0.022), and a previous recurrent nerve injury caused by preoperative cervical lymph node biopsy, and 1 (2.3%) patient developed VCP as a result of a previous recurrent nerve injury caused by thyroidectomy.

Time	Weight loss (%)	Contributing to 1-year MWL (%)
1st week AO	0.2 (0.7, 0)	2.6 ± 4.7
2nd week AO	3.4 (5.2, 2.4)	29.1 ± 13.4
3rd week AO	2.2 (3.2, 1.3)	17.5 ± 9.7
4th week AO	0.6 (1.4, 0.3)	7.0 ± 7.7
1–4 weeks AO	7.4 (1.1, 0.3)	56.3 ± 18.0
1–12 weeks AO	9.8 (1.1, 5.9)	68.9 ± 18.3
1–24 weeks AO	10.6 (1.4, 9.1)	81.0 ± 24.6
1 year AO	12.6 (17.7, 8.8)	100
In-hospital	0.3 (0.8, 0.1)	2.5 ± 5.7
1st week AD	3.6 (5.5, 2.5)	34.3 ± 15.9
2nd week AD	1.3 (2.6, 1.0)	14.7 ± 9.5
3rd week AD	0.5 (1.2, 0.3)	6.7 ± 7.9
4th week AD	0.2 (6.0, 0.0)	2.9 ± 4.4
1–2 weeks AD	5.6 (7.1, 4.2)	46.4 ± 16.7
1–4 weeks AD	7.1 (7.9, 5.4)	55.8 ± 17.8

†Preoperative body weight was chosen as initial body weight. †Negative values (−) mean weight loss; positive values (+) mean weight gain. §Calculated as the weight loss during the corresponding period divided by the maximum weight loss (MWL) within the first year after surgery; weight gain was noted as 0%. AD, after discharge; AO, after operation; SD, standard deviation.
Table 4 Outcomes of univariate analysis of the risk factors for SWL

Variables	4W SWL (n = 20)†	1-year SWL (n = 21)‡			
	OR (95% CI)	P	OR (95% CI)	P	
Demographic data					
Age ≥ 70 years	4.50 (1.24–16.28)	0.022	1.71 (0.51–5.73)	0.389	
Gender (male)	0.73 (0.22–2.45)	0.615	1.25 (0.37–4.17)	0.717	
Body mass index ≥ 100	0.43 (0.12–1.49)	0.183	0.80 (0.24–2.67)	0.717	
Alcohol index ≥ 2000	0.42 (0.07–2.46)	0.338	0.79 (0.16–4.04)	0.779	
Preoperative morbidity					
Diabetic	3 (17): (0.22)	0.300	0.53 (0.04–6.25)	0.610	
Cardiovascular disease	2.49 (0.66–11.06)	0.170	2.38 (0.58–9.72)	0.229	
COPD	4.06 (0.39–42.49)	0.242	3.67 (0.35–38.35)	0.278	
Cerebral vascular disease	2.75 (0.45–16.90)	0.275	6 (15): (0.23)*	0.020	
ASA score 3–4	2.44 (0.72–8.31)	0.153	4.60 (1.28–16.58)	0.020	
ECOG-PS score > 1 point	9.00 (1.65–49.00)	0.011	2.38 (0.58–9.72)	0.229	
KPS score < 90%	5.73 (1.28–25.58)	0.022	0.18 (0.47–6.90)	0.391	
Preoperative nutrition					
High body weight	1.40 (0.42–6.42)	0.581	3.72 (1.06–12.98)	0.040	
High FFM†	1.71 (0.52–5.67)	0.379	7.08 (1.88–26.72)	0.004	
High fat mass	0.82 (0.25–2.69)	0.741	1.43 (0.44–4.69)	0.555	
Weight loss in last 3 months ≥ 5%	1.62 (0.46–5.68)	0.452	2.13 (0.60–7.57)	0.245	
BMI ≥ 23 (kg/m²)	0.87 (0.26–2.89)	0.824	2.18 (0.64–7.40)	0.211	
Preoperative sarcopenia	7.06 (1.84–27.14)	0.004	2.51 (0.73–8.64)	0.143	
Tumor characteristics					
Location (lower vs. upper/middle)	0.67 (0.18–2.50)	0.547	2.22 (0.59–8.34)	0.240	
Differentiation					
Moderate (vs. well)	8.80 (0.93–83.35)	0.058	13.00 (1.36–124.30)	0.026	
Poorly (vs. well)	10.67 (1.04–109.94)	0.047	8.00 (0.78–82.05)	0.080	
pTNM					
Stage II (vs. 0–I)	1.03 (0.26–4.17)	0.966	1.03 (0.26–4.17)	0.966	
Stage III (vs. 0–I)	1.65 (0.37–7.37)	0.512	2.41 (0.52–11.10)	0.260	
Positive lymph nodes status	1.62 (0.44–5.96)	0.471	2.22 (0.59–8.34)	0.240	
Tumor length ≥ 50 mm	0.79 (0.24–2.62)	0.697	0.97 (0.30–3.23)	0.967	
Perioperative parameters					
The first operation (vs. others)	3.71 (1.06–12.98)	0.040	2.07 (0.62–6.91)	0.235	
Operation time ≥ 190 minutes	1.71 (0.52–5.67)	0.379	2.07 (0.62–6.91)	0.235	
Blood loss ≥ 100 mL	1.64 (0.48–5.56)	0.430	1.41 (0.42–4.75)	0.583	
Cardiac dysrhythmia	1.94 (0.29–12.95)	0.493	0.70 (0.11–4.67)	0.714	
Pulmonary complication†		3.67 (0.63–21.45)	0.149	0.79 (0.16–4.04)	0.779
VCP	15.33 (1.71–137.40)	0.015	13.54 (1.52–120.85)	0.020	
Overall complications	7.00 (1.57–31.18)	0.011	2.22 (0.59–8.34)	0.240	
Clavien–Dindo grade 3–4 (vs. 0–2)	1.22 (0.16–9.56)	0.848	1.11 (0.14–8.64)	0.924	
Fast track program	0.40 (0.10–1.49)	0.171	0.45 (0.12–1.70)	0.240	
Length of postoperative stay > 8 days	1.40 (0.42–6.42)	0.581	3.71 (1.06–12.98)	0.040	
Perioperative serum parameters					
Preoperative serum PA < 200 mg/L	0.69 (0.21–2.28)	0.545	0.58 (0.18–1.91)	0.367	
Preoperative serum A < 43.5 g/L	1.00 (0.31–3.28)	1.000	0.58 (0.18–1.91)	0.367	
POD1 serum PA < 150 mg/L	1.00 (0.31–3.28)	1.000	0.83 (0.26–2.72)	0.763	
POD1 serum A < 33.0 g/L	1.33 (0.39–4.57)	0.647	0.61 (0.18–2.09)	0.428	
POD7 serum PA < 110 mg/L†	5.67 (1.55–20.79)	0.009	1.43 (0.44–4.69)	0.555	
POD7 serum A < 36.5 g/L††	3.00 (0.87–10.30)	0.081	0.82 (0.25–2.69)	0.741	

‡The former is the number and rate of the severe weight loss (SWL) group, and the latter is the number and rate of the normal weight change group. †Defined as weight loss > 7.5% of preoperative body weight four weeks after surgery. ††Defined as weight loss > 13.0% of preoperative body weight one year after surgery. †High fat-free mass (FFM) was defined as >50.0 kg for men and >38.0 kg for women. †Pulmonary complication was defined as pneumonia, pleural effusion, or acute respiratory distress syndrome (ARDS). ††Data were missing for three patients. A albumin; ASA American Society of Anesthesiologists; BMI, body mass index; CI, confidence interval; COPD, chronic obstructive pulmonary disease; ECOG-PS, Eastern Cooperative Oncology Group performance status; KPS, Karnofsky Performance Status; OR, odds ratio; PA, pre-albumin; POD, postoperative day; pTNM, pathological tumor node metastasis; SWL, serious weight loss; VCP, vocal cord paralysis.
Weight loss after esophagectomy

P. Wang et al.

The multivariate logistic regression model demonstrated that an postoperative stay (LOS) > 8 days (OR 3.71; \(P = 0.004 \)), a moderately differentiated tumor (OR 13.00; \(P = 0.040 \)), high FFM (> 50.0 kg for men or >38.0 kg for women, OR 7.08; \(P = 0.040 \)) and VCP (OR 12.30; \(P = 0.046 \)) were independent risk factors for short-term SWL after esophagectomy (Table 5).

Risk factors for long-term (1 year) severe weight loss after esophagectomy

The average and median of the body weight loss rate one year after surgery were 13.1% ± 6.5% and 12.6% (8.8–17.7%), respectively. Thus, we defined long-term SWL as a body weight loss > 13%. Ultimately, 21 (47.7%) patients belonged to the SWL group and 23 (52.3%) to the NWL group. According to the outcomes of univariate analysis shown in Table 4, cerebral vascular disease (\(P = 0.020 \)), an American Society of Anesthesiologists (ASA) score of 3–4 (OR 4.60; \(P = 0.020 \)), a high PBW (> 66.0 kg for men or > 55.0 kg for women, OR 3.72; \(P = 0.040 \)), high FFM (> 50.0 kg for men or > 38.0 kg for women, OR 7.08; \(P = 0.004 \)), a moderately differentiated tumor (OR 13.00; \(P = 0.026 \)), VCP (OR 13.54; \(P = 0.020 \)), and the length of postoperative stay (LOS) > 8 days (OR 3.71; \(P = 0.040 \)) were associated with SWL one year after surgery. The multivariate logistic regression model demonstrated that an ASA score of 3–4 (OR 6.58; \(P = 0.047 \)), high FFM (OR 21.91; \(P = 0.003 \)), and VCP (OR 25.83; \(P = 0.017 \)) were independent risk factors leading to long-term SWL after esophagectomy (Table 5).

Quality of life and weight loss

We studied the impact of postoperative intake-related QOL on short-term and long-term weight loss, respectively (Table 6). No significant difference in baseline QOL was observed between the groups in regard to short-term weight loss, except for a higher prevalence of insomnia (\(P = 0.001 \)) and reflux (\(P = 0.017 \)) in the SWL group. Two weeks after the operation, patients in the SWL group reported statistically significantly more problems with insomnia (\(P = 0.032 \)), appetite loss (\(P = 0.006 \)), dysphagia (\(P = 0.001 \)), eating difficulties (\(P = 0.040 \)), taste issues (\(P = 0.016 \)), coughing (\(P = 0.040 \)), and difficulty talking (\(P = 0.002 \)) with a lower score of emotional functioning (\(P = 0.021 \)) than patients in the NWL group. A significant difference was still observed four weeks after surgery.

In the long-term weight loss analysis, emotional functioning (\(P = 0.002 \)) was significantly lower in patients in the SWL group four weeks after surgery, and they reported more serious symptoms of insomnia (\(P = 0.010 \)), appetite loss (\(P = 0.017 \)), dysphagia (\(P = 0.045 \)), eating difficulties (\(P = 0.031 \)), esophageal pain (\(P = 0.043 \)), taste issues (\(P = 0.028 \)), coughing (\(P = 0.002 \)), and difficulty talking (\(P = 0.048 \)) at that time. While the difference in esophageal pain, coughing, and difficulty talking decreased with time, the differences in other symptoms remained significant within one year after surgery.

Discussion

Previous studies have reported different degrees of postoperative weight loss in esophageal cancer patients. A prospective study including 226 patients showed that 63.7% of patients suffered from weight loss > 10% of the PBW six months after surgery, and 20.4% patients showed weight loss of > 20% of the PBW.6 Recently, two retrospective studies conducted in Asian countries showed weight loss rates of 10.95% ± 7.50% and 12.9% ± 9.08% of the PBW one year after esophagectomy.5,18 The results of our prospective study, which included Chinese patients who underwent McKeown-MIE, also demonstrated obvious weight loss one year after surgery, at a rate of 13.1% ± 6.5%. Additionally, consecutive follow-up over a year showed that the first two weeks after discharge represented an accelerated weight loss period. According to our experience and the results of previous studies, at least three factors contributed to this particular term:

1. Poor eating function. Both our patient sample and previous studies reported adverse postoperative eating

Table 5: Outcomes of multivariate analysis of the risk factors for SWL.

Risk factors	OR	95% CI	\(P \)
Short-term (4 weeks) SWL (\(n = 20 \))†			
Age ≥ 70 years	7.65	1.22–48.13	0.030
Preoperative sarcopenia	7.18	1.22–42.38	0.030
The first surgery in the daily schedule	6.87	1.18–40.14	0.032
VCP	12.30	1.04–144.96	0.046
Long-term (1 year) SWL (\(n = 21 \))‡			
ASA score 3–4	5.68	1.03–42.26	0.047
High FFM§	21.91	2.93–163.81	0.003
VCP	25.83	1.80–371.28	0.017

†Defined as weight loss > 7.5% of preoperative body weight four weeks after surgery. ‡Defined as weight loss >13.0% of preoperative body weight one year after surgery. §High fat-free mass (FFM) was defined as >50.0 kg for men and >38.0 kg for women. ASA, American Society of Anesthesiologists; CI, confidence interval; OR, odds ratio; SWL, severe weight loss; VCP, vocal cord paralysis.
Table 6: Patients' SWL and related QOL

Questionnaire and items	Pre 2W, 4W, and QOL	Long-term (1Y) SWL and QOL													
	SWL (n = 20)	NWL (n = 24)	P	SWL (n = 20)	NWL (n = 24)	P	SWL (n = 21)	NWL (n = 23)	P	SWL (n = 21)	NWL (n = 23)	P	SWL (n = 21)	NWL (n = 23)	P
EORTC QLQC-30 function scales															
Emotional	87.9 ± 11.3	90.6 ± 10.2	0.427	79.0 ± 9.7	85.4 ± 7.9	0.021	79.1 ± 11.6	87.1 ± 9.2	0.022	88.1 ± 11.4	90.6 ± 10.1	0.481	80.0 ± 87.7	87.7 ± 8.7	0.002
Nausea and vomiting	7.5 ± 8.5	7.0 ± 8.4	0.826	14.2 ± 15.5	6.3 ± 9.6	0.076	15.8 ± 15.7	7.6 ± 9.8	0.077	8.0 ± 8.5	6.5 ± 8.3	0.575	13.5 ± 15.5	9.4 ± 11.0	0.466
Insomnia	26.7 ± 23.2	5.6 ± 12.7	0.001	26.7 ± 23.2	12.5 ± 19.2	0.032	20.0 ± 20.0	8.3 ± 17.7	0.027	25.4 ± 23.3	5.8 ± 12.9	0.002	20.6 ± 19.6	7.2 ± 17.3	0.010
Appetite loss	16.7 ± 17.1	11.1 ± 16.0	0.268	28.3 ± 27.1	8.3 ± 17.7	0.006	36.7 ± 24.0	15.3 ± 24.0	0.004	17.4 ± 17.0	10.1 ± 15.6	0.144	34.9 ± 26.8	15.9 ± 22.2	0.017
Constipation	3.3 ± 10.2	4.2 ± 11.2	0.797	3.3 ± 10.2	9.7 ± 15.5	0.121	5.0 ± 12.2	12.5 ± 16.5	0.099	6.3 ± 13.4	1.4 ± 6.9	0.129	7.9 ± 14.5	10.1 ± 15.7	0.626
Diarrhea	1.7 ± 7.4	2.8 ± 9.4	0.666	5.0 ± 12.2	5.6 ± 12.7	0.882	15.0 ± 20.2	13.9 ± 19.4	0.858	16.7 ± 7.3	2.9 ± 9.6	0.609	11.1 ± 19.2	17.4 ± 19.8	0.195
Dysphagia	13.9 ± 7.1	12.0 ± 8.0	0.443	31.6 ± 6.5	23.1 ± 8.6	0.001	30.0 ± 21.3	10.3 ± 10.8	0.008	14.4 ± 8.0	11.6 ± 7.1	0.213	28.5 ± 11.9	22.2 ± 11.1	0.045
Eating difficulties	16.7 ± 13.0	12.5 ± 9.2	0.355	26.3 ± 12.2	18.1 ± 11.9	0.040	27.5 ± 14.6	18.1 ± 14.2	0.039	17.8 ± 13.0	11.2 ± 8.2	0.094	27.0 ± 14.9	18.1 ± 14.1	0.031
Reflux	19.2 ± 16.5	9.7 ± 14.7	0.017	2.5 ± 6.1	6.3 ± 8.3	0.099	11.7 ± 11.0	13.2 ± 12.0	0.698	18.3 ± 10.4	10.2 ± 19.3	0.002	13.5 ± 11.3	11.6 ± 11.7	0.533
Esophageal pain	8.3 ± 8.7	6.5 ± 8.6	0.436	11.7 ± 8.4	11.1 ± 8.0	0.819	11.1 ± 8.1	13.9 ± 8.2	0.259	7.9 ± 7.9	6.8 ± 9.3	0.485	10.0 ± 7.8	15.0 ± 7.9	0.043
Difficulty swallowing	10.0 ± 15.7	9.7 ± 15.5	0.952	18.3 ± 20.2	9.7 ± 15.5	0.138	13.3 ± 16.7	5.6 ± 12.7	0.087	9.5 ± 15.4	10.1 ± 15.7	0.894	12.7 ± 16.6	5.8 ± 12.9	0.128
Choke when swallowing	16.7 ± 20.2	16.7 ± 17.0	0.871	23.3 ± 15.7	13.9 ± 16.8	0.063	16.7 ± 17.1	11.1 ± 16.0	0.268	15.9 ± 17.0	17.4 ± 19.8	0.882	17.4 ± 17.0	10.1 ± 15.7	0.144
Dry mouth	18.3 ± 20.2	15.3 ± 16.9	0.676	26.3 ± 13.9	20.3 ± 19.4	0.209	13.3 ± 16.7	19.7 ± 9.6	0.624	22.2 ± 19.2	11.6 ± 16.2	0.062	14.3 ± 16.9	15.9 ± 19.8	0.871
Taste issue	11.7 ± 16.3	8.7 ± 15.0	0.530	43.3 ± 24.4	26.9 ± 19.6	0.016	42.1 ± 26.9	20.2 ± 24.1	0.011	12.7 ± 16.6	7.6 ± 14.3	0.278	40.0 ± 27.8	21.2 ± 24.2	0.028
Coughing	6.7 ± 13.7	2.8 ± 9.4	0.267	36.7 ± 21.4	23.3 ± 18.3	0.040	25.0 ± 21.3	11.1 ± 18.8	0.021	6.3 ± 13.4	2.9 ± 9.6	0.323	27.0 ± 20.1	8.7 ± 18.0	0.002
Difficulty talking	3.3 ± 10.2	2.8 ± 9.4	0.850	31.7 ± 27.5	8.3 ± 14.7	0.002	21.7 ± 24.8	6.9 ± 13.8	0.028	16.7 ± 7.3	4.3 ± 11.5	0.345	20.6 ± 24.7	7.2 ± 14.0	0.048

The scores are presented as mean ± standard deviation. EORTC, European Organization for Research and Treatment of Cancer; NWL, normal weight loss; QOL, quality of life; SWL, severe weight loss.
Weight loss after esophagectomy

P. Wang et al.

symptoms, including dysphagia, eating difficulties, trouble swallowing saliva, and choking when swallowing within a short time after esophagectomy. These symptoms worsened in the short term after discharge because of the lack of medical guidance but relieved gradually with time.

2 Stress response. Surgical damage, incision scar, new lifestyle after discharge, and residual symptoms (coughing, dysphagia, cracked voice) can cause significant stress responses after discharge, which lead to greater catabolism and energy consumption, severe sleep disorders, and decreased digestive function.

3 Gut hormone secretion disorder. Previous studies have shown that patients with esophageal cancer experience a severe decrease in ghrelin secretion and a significant increase in postprandial plasma glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), contributing to severe appetite loss and decreased food intake after esophagectomy.

Short-term SWL after esophagectomy has not been extensively studied worldwide. The results of our study show significant differences in risk factors for postoperative short-term and long-term SWL in patients with esophageal cancer, while VCP was the only common independent risk factor. Patients suffering from VCP are reported to experience symptoms of aspiration, which result in eating difficulties and a serious postoperative stress response. The impact of this adverse factor may continue for a number of months to several years. Damage to macromolecules in human cells accumulates with age, resulting in the gradual decline of cell function. Older patients are more likely to experience SWL in the short term after surgery because of decreased anabolism and physical dysfunction. Sarcopenia, related to advanced age and malignant tumors, results in weakness and decreased resistance and tolerance. Previous studies have shown that preoperative sarcopenia is a risk factor for mortality, postoperative complications, and poor survival. Our results show that this factor also leads to postoperative short-term SWL. Additionally, the first surgery in the daily schedule was associated with short-term SWL, but no significant difference in patient characteristics and perioperative data was observed between the first and following surgery groups (data not shown). Patients in our center who underwent the first surgery in the daily schedule usually entered the preoperative area an hour earlier, and thus may have experienced more serious preoperative anxiety than patients that underwent following surgeries with a shorter wait in the preoperative area. The rate of delay to the start of the scheduled first operation is higher than for the following surgeries, which may influence short-term weight loss. Further studies are warranted to confirm the effect of operation order on patients’ postoperative body weight recovery.

The FFM is defined as the main factor determining resting energy expenditure (REE), and allows a person to maintain biological function during resting. Patients with a high FFM experience a higher energy requirement during the postoperative chronic recovery term, during which the REE is the main energy expenditure. However, patients are reported to experience hypermetabolism caused by multiple factors in the acute stage after esophagectomy. Our results also showed no association between FFM and short-term SWL. Patients with an ASA score of 3–4 always suffer from severe systemic diseases and dysfunction before surgery, which appear to affect not only perioperative complications and mortality but also postoperative weight recovery. Previous studies have also investigated the risk factors for SWL after esophagectomy. Park et al. reported that preoperative weight and postoperative VCP were independent risk factors for weight loss > 10% of PWL one year after esophagectomy. Harada et al. reported that the absence of pyloroplasty was the sole risk factor for > 10% weight loss of PWL one year after esophagectomy. A retrospective study with six months follow-up after esophagectomy showed that preoperative BMI and a shorter LOS resulted in > 10% weight loss. In this study, however, except for VCP, we found no definitive association between the PBW, BMI, and LOS with long-term SWL.

Patients’ body weight is always associated with food intake and energy expenditure. Previous studies have reported the detrimental effect of esophagectomy on patients’ short-term QOL, particularly in regard to eating. But few studies have focused on the impact of eating symptoms on body weight loss. Martin et al. reported that eating difficulties, pain, fatigue, nausea and vomiting, and appetite loss were clinically relevant and statistically significantly worse among patients with weight loss of ≥ 15% five years after esophageal cancer surgery. Our results indicate that postoperative esophageal symptoms, including appetite loss, dysphagia, eating difficulties, and taste issues are related to both short-term and long-term SWL, mainly because of their detrimental effect on food intake. Patients suffering from insomnia are not likely to get proper rest, which contributes to SWL. Additionally, patients that experienced SWL reported worse emotional functioning, indicating tension, anxiety and depression, which were related to stress response and energy expenditure. There is surely complex interaction among eating symptoms, insomnia, emotional functioning, and weight loss, revealing the need for postoperative life guidance and nutrition intervention for esophageal cancer patients.

In this study, we prospectively observed changes in the body weight of 44 patients with esophageal cancer one year after surgery and propose the existence of an accelerated weight loss period in the first two weeks after discharge.
We also investigated the risk factors for SWL at four weeks and one year after surgery. However, there were limitations to this study. Only a small sample of Asian patients during the short term was analyzed, and the pathological type of the tumor was mainly SCC. Patients who underwent neoadjuvant therapy followed by esophagectomy were excluded, and all of the patients in this study underwent McKeown MIE. Thus, the effects of multi-treatment and surgical methods on weight recovery require further exploration.

Acknowledgments

The study was funded by the Top Talent Fund for Medical Science and Technology (Grant no. 3101030102) and the Key Science and Technological Breakthrough Project of Henan Province (Grant no: 152102310160). We would like to thank M.K. Ferguson (Department of Surgery, The University of Chicago Medicine, Chicago, Illinois, USA) for providing advice and sharing data.

Disclosure

No authors report any conflict of interest.

References

1. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the Global Burden of Disease Study. JAMA Oncol 2017; 3: 524–48.
2. Pasquali S, Yim G, Vohra RS et al. Survival after neoadjuvant and adjuvant treatments compared to surgery alone for resectable esophageal carcinoma: A network meta-analysis. Ann Surg 2017; 265: 481–91.
3. Hynes O, Anandavadivelan P, Gossage J, Johar AM, Lagergren J, Lagergren P. The impact of pre- and postoperative weight loss and body mass index on prognosis in patients with oesophageal cancer. Eur J Surg Oncol 2017; 43: 1559–65.
4. D’Journo XB, Ouattara M, Loundou A et al. Prognostic impact of weight loss in 1-year survivors after transthoracic esophagectomy for cancer. Dis Esophagus 2012; 25: 527–34.
5. Harada K, Yoshida N, Baba Y et al. Pyloroplasty may reduce weight loss 1 year after esophagectomy. Dis Esophagus 2018; 31: 1–8.
6. Martin L, Lagergren J, Lindblad M, Rouvelas I, Lagergren P. Malnutrition after oesophageal cancer surgery in Sweden. Br J Surg 2007; 94: 1496–500.
7. Muscaritoli M, Anker SD, Argiles J et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29: 154–9.
8. Zhang SS, Yang H, Luo KJ et al. The impact of body mass index on complication and survival in resected oesophageal cancer: A clinical-based cohort and meta-analysis. Br J Cancer 2013; 109: 2894–903.
9. Karnofsky DA, Burchenal JH. The clinical evaluation of chemotherapeutic agents in cancer. In: Macleod CM (ed.). Evaluation of Chemotherapeutic Agents. Columbia University Press, New York 1949; 191–205.
10. Eastern Cooperative Oncology Group. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Ann J Med 1980; 69: 491–7.
11. Rice TW, Ishwaran H, Blackstone EH et al. Recommendations for clinical staging (cTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Dis Esophagus 2016; 29: 913–9.
12. Rice TW, Ishwaran H, Hofstetter WL et al. Recommendations for pathologic staging (pTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Dis Esophagus 2016; 29: 897–905.
13. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications. Ann Surg 2004; 240: 205–13.
14. Low DE, Alderson D, Cecconello I et al. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann Surg 2015; 262: 286–94.
15. Sun HB, Li Y, Liu XB et al. Early oral feeding following McKeown minimally invasive esophagectomy: An open-label, randomized, controlled, noninferiority trial. Ann Surg 2018; 267: 435–42.
16. Zheng Y, Li Y, Wang Z, Sun H, Zhang R. A video demonstration of the Li’s anastomosis—the key part of the “non-tube no fasting” fast track program for resectable esophageal carcinoma. J Thorac Dis 2015; 7: 1264–8.
17. Zhu Z, Li Y, Zheng Y et al. Chewing 50 times per bite could help to resume oral feeding on the first postoperative day following minimally invasive oesophagectomy. Eur J Cardiothorac Surg 2017; 53: 325–30.
18. Park SY, Kim DJ, Suh JW, Byun GE. Risk factors for weight loss 1 year after esophagectomy and gastric pull-up for esophageal cancer. J Gastrointest Surg 2018; 22: 1137–43.
19. Zhang C, Wu QC, Hou PY et al. Impact of the method of reconstruction after oncologic oesophagectomy on quality of life--A prospective, randomised study. Eur J Cardiothorac Surg 2011; 39: 109–14.
20. Seematter G, Guenat E, Schneider P, Cayeux C, Jéquier E, Tappy LLT. Effects of mental stress on insulin-mediated glucose metabolism and energy expenditure in lean and obese women. Am J Physiol Endocrinol Metab 2000; 279: E799–805.
21 Drake CL, Roth T. Predisposition in the evolution of insomnia: Evidence, potential mechanisms, and future directions. Sleep Med Clin 2006; 1: 333–49.
22 Lee SP, Sung IK, Kim JH, Lee SY, Park HS, Shim CS. The effect of emotional stress and depression on the prevalence of digestive diseases. J Neurogastroenterol Motil 2015; 21: 273–82.
23 Doki Y, Takachi K, Ishikawa O et al. Ghrelin reduction after esophageal substitution and its correlation to postoperative body weight loss in esophageal cancer patients. Surgery 2006; 139: 797–805.
24 le Roux CW, Welbourn R, Werling M et al. Gut hormones as mediators of appetite and weight loss after roux-en-Y gastric bypass. Ann Surg 2007; 246: 780–5.
25 Yamamoto K, Takiguchi S, Miyata H et al. Randomized phase II study of clinical effects of ghrelin after esophagectomy with gastric tube reconstruction. Surgery 2010; 148: 31–8.
26 Elliott JA, Jackson S, King S et al. Gut hormone suppression increases food intake after esophagectomy with gastric conduit reconstruction. Ann Surg 2015; 262: 824–9.
27 Baba M, Aikou T, Natsugoe S et al. Quality of life following esophagectomy with three-field lymphadenectomy for carcinoma, focusing on its relationship to vocal cord palsy. Dis Esophagus 1998; 11: 28–34.
28 Pierie JP, Goedegebuure S, Schuerman FA, Leguit P. Relation between functional dysphagia and vocal cord palsy after transhiatal esophagectomy. Eur J Surg 2000; 166: 207–9.
29 Bhattacharyya N, Kotz T, Shapiro J. Dysphagia and aspiration with unilateral vocal cord immobility: Incidence, characterization, and response to surgical treatment. Ann Otol Rhinal Laryngol 2002; 111: 672–9.
30 Sato N, Oymatsu M, Tsukada K, Suzuki T, Hatakeyama K, Muto T. Serial changes in contribution of substrates to energy expenditure after transthoracic esophagectomy for cancer. Nutrition 1997; 13: 100–3.
31 Takagi K, Yamamori H, Toyoda Y, Nakajima N, Tashiro T. Modulating effects of the feeding route on stress response and endotoxin translocation in severely stressed patients receiving thoracic esophagectomy. Nutrition 2000; 16: 355–60.
32 Hopkins TJ, Raghunathan K, Barbeito A et al. Associations between ASA physical status and postoperative mortality at 48 h: A contemporary dataset analysis compared to a historical cohort. Perioper Med (Lond) 2016; 5: 29.
33 Liou DZ, Serna-Gallegos D, Mirocha J, Bairamian V, Alban RF, Soukiasian HJ. Predictors of failure to rescue after esophagectomy. Ann Thorac Surg 2018; 105: 871–8.
34 Onder PT, Bohl DD, Bovonratwet P et al. Predicting adverse outcomes after total hip arthroplasty: A comparison of demographics, the American Society of Anesthesiologists class, the Modified Charlson Comorbidity Index, and the Modified Frailty Index. J Am Acad Orthop Surg 2018; 26: 735–43.
35 Kitagawa H, Namikawa T, Munekage M et al. Analysis of factors associated with weight loss after esophagectomy for esophageal cancer. Anticancer Res 2016; 36: 5409–12.
36 Djav T, Blazey JM, Lagreren P. Predictors of postoperative quality of life after esophagectomy for cancer. J Clin Oncol 2009; 27: 1963–8.
37 Martin L, Lagreren P. Risk factors for weight loss among patients surviving 5 years after esophageal cancer surgery. Ann Surg Oncol 2015; 22: 610–6.
38 Ross C, Ancoli-Israel S, Redline S, Stone K, Fredman L. Association between insomnia symptoms and weight change in older women: Caregiver--study of osteoporotic fractures study. J Am Geriatr Soc 2011; 59: 1697–704.
39 Harrell CS, Gillespie CF, Neigh GN. Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiol Behav 2016; 166: 43–55.