DETERMINATION OF A COMPACT FINSLER MANIFOLD FROM ITS BOUNDARY DISTANCE MAP AND AN INVERSE PROBLEM IN ELASTICITY

MAARTEN V. DE HOOP ‡, JOONAS ILMAVIRTA †, MATTI LASSAS □, AND TEEMU SAKSALA ‡, †

Abstract. We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differentiable structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points.

We recall how the fastest qP-polarized waves in anisotropic elastic medium are given as solutions of the second order hyperbolic pseudodifferential equation $(\frac{\partial^2}{\partial t^2} - \lambda^1(x, D))u(t, x) = h(t, x)$ on \mathbb{R}^{1+3}, where $\sqrt{\lambda^1}$ is the Legendre transform of a fiberwise real analytic Finsler function F on \mathbb{R}^3. If $M \subset \mathbb{R}^3$ is a F-convex smooth bounded domain we say that a travel time of u to $z \in \partial M$ is the first time $t > 0$ when the wavefront set of u arrives in (t, z). The aforementioned geometric result can then be utilized to determine the isometry class of (M, F) if we have measured a large amount of travel times of qP-polarized waves, issued from a dense set of unknown interior point sources on M.

1. Introduction

This paper is devoted to an inverse problem for smooth compact Finsler manifolds with smooth boundaries. We prove that the boundary distance map of such a manifold determines its topological and differentiable structures. In general, the boundary distance map is not sufficient to determine the Finsler function in those directions which correspond to geodesics that are either trapped or are not distance minimizers to terminal boundary points. To prove our result, we embed a Finsler manifold with boundary into a function space and use smooth boundary distance functions to give a coordinate structure and the Finsler function where possible.

This geometric problem arises from the propagation of singularities from a point source for the elastic wave equation. The point source can be natural (e.g. an...
earthquake as a source of seismic waves) or artificial (e.g. produced by focusing of waves or by a wave sent in scattering from a point scatterer). Due to polarization effects, there are singularities propagating at various speeds. We study the first arrivals and thus restrict our attention to the fastest singularities (corresponding to so-called \(qP\)-polarization, informally “primary waves”). They follow the geodesic flow of a Finsler manifold, as we shall explain in more detail in section 2. The goal of this paper is to study a geophysical inverse problem in the framework of Finsler geometry and then bring the conclusion back to the elastic model.

An elastic body — e.g. a planet — can be modeled as a manifold, where distance is measured in travel time: The distance between two points is the shortest time it takes for a wave to go from one point to the other. If the material is elliptically anisotropic, then this elastic geometry is Riemannian. However, this sets a very stringent assumption on the stiffness tensor describing the elastic system, and Riemannian geometry is therefore insufficient to describe the propagation of seismic waves in the Earth. We make no structural assumptions on the stiffness tensor apart from the physically necessary symmetry and positivity properties, and this leads necessarily to Finsler geometry.

The inverse problem introduced above can be rephrased as the following problem in geophysics. Imagine that earthquakes occur at known times but unknown locations within Earth’s interior and arrival times are measured everywhere on the surface. Are such travel time measurements sufficient to determine the possibly anisotropic elastic wave speed everywhere in the interior and pinpoint the locations of the earthquakes? While earthquake times are not known in practice, this is a fundamental mathematical problem that underlies more elaborate geophysical scenarios. In the Riemannian realm the corresponding result \([37, 40]\) is a crucial stepping stone towards the results of \([9, 22, 25, 36, 41, 46]\). We expect that solutions to inverse problems for the fully anisotropic elastic wave equation rely on geometrical results similar to the ones presented in this paper. However, as Finsler geometry is substantially more complicated than Riemannian — especially concerning the structure of unit spheres — the present result is not a mere straightforward generalization of the corresponding Riemannian result nor do we expect follow-up results to be so.

1.1. Main results. We let \((M, F)\) be a smooth compact, connected Finsler manifold with smooth boundary \(\partial M\) (For the basic of theory of Finsler manifolds see the appendix (Section A) at the end of this paper.). We denote the tangent bundle of \(M\) by \(TM\) and use the notation \((x, y)\) for points in \(TM\), where \(x\) is a base point and \(y\) is a vector in the fiber \(T_xM\). The notations \(T^*M\) and \((x, p)\) are reserved for the cotangent bundle and its points respectively.

We write \(d_F : M \times M \to \mathbb{R}\) for the non-symmetric distance function given by a Finsler function \(F\). For a given \(x \in M\) the boundary distance function related to \(x\) is
\[
r_x : \partial M \to [0, \infty), \quad r_x(z) = d_F(x, z).
\]
To give the mapping \(x \mapsto r_x\) a name, we denote \(r_x = R(x)\). We denote by \(\mathcal{R}(M^{int}) = \{r_x : x \in M^{int}\}\) the collection of all boundary distance functions with
Inverse problem 1.1. Do the boundary distance data (1) determine \((M, F)\) up to isometry?

We emphasize that we do not assume \(d_F\) to be symmetric and therefore data (1) contain only information where the distance is measured from the points of \(M^{int}\) to points in \(\partial M\). We note that for any \(x \in M^{int}\),

\[r_x(z) = d_{F^-}(z, x), \quad z \in \partial M, \]

where \(F^-\) is the Finsler function

\[F^-(x, y) := F(x, -y). \]

Therefore, data (1) are equivalent to the data

\[
\left\{(d_{F^-}(. , x) : \partial M \to \mathbb{R} \mid x \in M^{int}\}, \partial M\right\},
\]

where the distance is measured from the boundary to the interior. In [37, 40] it is shown that the data (1) determine a Riemannian manifold \((M, g)\) up to isometry. In the Finsler case this is not generally true. Next we explain what can be obtained from the Finslerian boundary distance data (1).

Notation 1.2. Let \((M, F)\) be a Finsler manifold with boundary. For any \((x, y) \in T M \setminus 0\), let \(\gamma_{x,y}\) denote the geodesic starting at \(x\) in the direction of \(y\). We denote by \(t(x, y) \in [0, \infty]\) be the first time the geodesic \(\gamma_{x,y}\) meets the boundary, and we denote this boundary point by \(z(x, y) = \gamma_{x,y}(t(x, y))\). We denote by \(G(M, F)\) the set of points \((x, y) \in T M \setminus 0, x \in M^{int}\) for which \(t(x, y) < \infty\) and the geodesic \(\gamma_{x,y}\) is minimizing between the initial point \(x\) and the final point \(z(x, y)\) on the boundary.

Under this convention we have that \(t(x, y) = 0\) when \(x \in \partial M\) and \(t(x, y) > 0\) whenever \(x \in M^{int}\). Our definition of the exit time \(t(x, y)\) guarantees that \(\gamma_{x,y}(0, t(x, y)) \subset M^{int}\).

Since for any \((x, y) \in T M \setminus \{0\}\) and \(a > 0\) it holds that \(\gamma_{x,ay}(t) = \gamma_{x,y}(at)\), we notice that \(G(M, F)\) is a conic set. Let \((x, y) \in G(M, F)\), then \(t(x, ay) = a^{-1}t(x, y)\) and \(z(x, y) = z(x, ay)\) for any \(a > 0\). Moreover if \(F(y) = 1\), then \(t(x, y) = d_{F^-}(x, z(x, y))\).

We show that the data (1) determine the Finsler function in the closure of the set \(G(M, F)\) and that the data (1) are not sufficient to recover the Finsler function \(F\) on \(TM^{int} \setminus G(M, F)\). The reason is that the data (1) do not provide any information about the geodesics that are trapped in \(M^{int}\) or do not minimize the distance between the point of origin and the terminal boundary point. Therefore, to recover the Finsler function \(F\) globally we assume that for every \(x \in M\) the function \(F(x, \cdot) : T_x M \setminus \{0\} \to \mathbb{R}\) is real analytic. We call such a Finsler function \textit{fiberwise real analytic}. For instance Finsler functions \(F(x, y) = \sqrt{g_x(y, y)}\), where \(g\) is a Riemannian metric, and Randers metrics are fiberwise real analytic. In Section 2 we show that also the Finsler metric related to the fastest polarization of elastic waves is fiberwise real analytic.
Now we formulate our main theorems. If \((M_i, F_i)\), \(i \in \{1, 2\}\) are smooth, connected, compact Finsler manifolds with smooth boundaries, we call a smooth map \(\Phi: (M_1, F_1) \to (M_2, F_2)\) a Finslerian isomorphism if it is a diffeomorphism which satisfies

\[
F_1(x, y) = F_2(\Phi(x), \Phi_*y), \quad (x, y) \in TM_1.
\]

Here \(\Phi_*\) is the pushforward by \(\Phi\). We say that the boundary distance data of manifolds \((M_i, F_i)\), \(i = 1, 2\) agree, if there exists a diffeomorphism \(\phi: \partial M_1 \to \partial M_2\) such that

\[
\{r_{x_1} : x_1 \in M_1^{\text{int}}\} = \{r_{x_2} \circ \phi : x_2 \in M_2^{\text{int}}\} \subset C(\partial M_1). \quad (2)
\]

We emphasize that this is an equality of non-indexed sets and we do not know the point \(x_1\) corresponding to the function \(r_{x_1}\).

Our first main result shows that the boundary distance data \((1)\) determine a manifold up to a diffeomorphism and a Finsler function in an optimal set.

Theorem 1.3. Let \((M_i, F_i)\), \(i = 1, 2\) be smooth, connected, compact Finsler manifolds with smooth boundaries. Suppose that there is a diffeomorphism \(\phi: \partial M_1 \to \partial M_2\) so that \((2)\) holds. Then there is a diffeomorphism \(\Psi: M_1 \to M_2\) so that \(\Psi|_{\partial M_i} = \phi\). The sets \(G(M_1, F_1)\) and \(G(M_1, \Psi_*F_2)\) coincide and in this set \(F_1 = \Psi_*F_2\), where the pullback \(\Psi_*F_2 : TM_1 \to \mathbb{R}\) is defined by

\[
\Psi_*F_2(x, y) = F_2(\Psi(x), \Psi_*y).
\]

Moreover, for any \((x_0, y_0) \in TM_1^{\text{int}} \setminus G(M_1, F_1)\) there exists a smooth Finsler function \(F_3: TM_1 \to [0, \infty)\) so that \(d_{F_1}(x, z) = d_{F_3}(x, z)\) for all \(x \in M_1\) and \(z \in \partial M_1\) but \(F_1(x_0, y_0) \neq F_3(x_0, y_0)\).

Remark 1.4. The set \(G(M, F)\) can be large or small as the following examples illustrate. If every geodesic of \((M, F)\) is minimizing, then it holds that \(G(M, F) = TM\). This holds for instance on simple Finsler manifolds, as by the definition for any pair of points there exists a unique distance minimizing geodesic that depends smoothly on these points. If \(M\) is any subset of \(S^2\) larger than the hemisphere and if \(F\) is given by the round metric, then \(TM^{\text{int}} \setminus G(M, F)\) contains an open non-empty set \(U\) whose canonical projection to \(M\) is an open neighborhood of the equator.

Our second main result shows that the boundary distance data \((1)\) determine a fiberwise real analytic Finsler manifold up to an isometry.

Theorem 1.5. Let \((M_i, F_i)\), \(i = 1, 2\) be smooth, connected, compact Finsler manifolds with smooth boundary. Suppose that there is a diffeomorphism \(\phi: \partial M_1 \to \partial M_2\) such that \((2)\) holds. If Finsler functions \(F_i\) are fiberwise real analytic, then there exists a Finslerian isometry \(\Psi: (M_1, F_1) \to (M_2, F_2)\) so that \(\Psi|_{\partial M_i} = \phi\).

In Section \(2\) we consider anisotropic elastic wave equation on \(\mathbb{R}^{1+3}\). We show that under physically necessary symmetry and positivity properties on the stiffness tensor the travel times of the fastest polarized \(qP\)-waves are given by a distance function of a fiberwise real analytic Finsler function \(F\). Therefore Theorem 1.5 can be used to recover the isometry class \((\overline{M}, F)\) from the travel times of these waves.
Here \(M \subset \mathbb{R}^3 \) is an open bounded subset of \(\mathbb{R}^3 \) that has a smooth boundary. See Theorem 1.3 and the discussion preceding it for the rigorous claims.

Remark 1.6. In Theorems 1.3 and 1.5 we measure distances from the interior to the boundary. If we measure in the opposite direction, from boundary to the interior, this corresponds to the data \((1) \) given with respect to the reversed Finsler function \(F(x, y) \). Our results give uniqueness for \(F \) and therefore \(F \). That is, our main results hold no matter which way distances are measured.

1.1.1. Outline of the proofs of the main results. Theorem 1.5 essentially follows from Theorem 1.3. We split the proof of Theorem 1.3 into four parts (subsections 3.1–3.4). In the first part, we show that the data \((1) \) determine \(r_x \) for any \(x \in M \). Then we study the properties of the map \(R: M \ni x \mapsto r_x \in L^\infty(\partial M) \) and show that this map is a topological embedding. We use the map \(R \) to construct a map \(\Psi: (M_1, F_1) \to (M_2, F_2) \) that will be shown to be a homeomorphism. In the second part, we show that the map \(\Psi \) is a diffeomorphism. In the third part we connect the set \(G(M, F) \) to smoothness of the distance functions of the form \(d_F(\cdot, z), z \in \partial M \). In the final section we use this to prove that the map \(\Psi \) is a Finslerian isometry in the optimal set \(G(M, F) \).

We have included in this paper a supplemental Section B and the appendix (Section A), which contain necessary material for the proof of Theorem 1.3. We have also included some well-known results and properties in the Riemannian case while providing a detailed background of compact Finsler manifolds with and without boundary for the proof given in Section B. To the best of our knowledge, most of this material cannot be found in the literature.

1.2. Background and related work.

1.2.1. Geometric inverse problems. The problem of determination of the isometry type of a Riemannian manifold from its boundary distance map has been studied \([37, 40]\). The construction of the topology of the manifold was introduced in \([40]\) and the reconstruction of the smooth atlas on the manifold and the metric tensor in these coordinates was considered in \([37]\). We emphasize that there results were heavily based on Riemannian geometry. The problem of determining a Riemannian manifold from its boundary distance map is related to many other geometric inverse problems. For instance, it is a crucial step in proving uniqueness for Gel'fand’s inverse boundary spectral problem \([37]\). Gel’fand’s problem concerns the question whether the data

\[
\{ \partial M, (\lambda_j, \partial_\nu \phi_j |_{\partial M}) \}_{j=1}^\infty
\]

determine \((M, g)\) up to isometry. Above \((\lambda_j, \phi_j)\) are the Dirichlet eigenvalues and the corresponding \(L^2\)-orthonormal eigenfunctions of the Laplace-Beltrami operator. Belishev and Kurylev provide an affirmative answer to this problem in \([9]\).

We recall that the Riemannian wave operator is a globally hyperbolic linear partial differential operator of real principal type. Therefore, the Riemannian distance function and the propagation of a singularity initiated by a point source in space time are related to one another. In other words, \(r_x(z) = t(z) - s \), where \(t(z) \) is the time when the singularity initiated by the point source \((s, x) \in (0, \infty) \times M\)
hits \(z \in \partial M \). If the initial time \(s \) is unknown, but the arrival times \(t(z), z \in \partial M \) are known, then one obtains a boundary distance difference function \(D_x(z_1, z_2) := r_x(z_1) - r_x(z_2), \ z_1, z_2 \in \partial M \). In [30] it is shown that if \(U \subset N \) is a compact subset of a closed Riemannian manifold \((N, g)\) and \(U^{\text{int}} \neq \emptyset \), then \textit{distance difference data} \(\{(U, g|_U), \{D_x : U \times U \to \mathbb{R} \mid x \in N\}\} \) determine \((N, g)\) up to isometry. This result was recently generalized to complete Riemannian manifolds [36] and for compact Riemannian manifolds with boundary [25].

If the sign in the definition of the distance difference functions is changed, we arrive at the distance sum functions,

\[
D_x^+(z_1, z_2) = d(z_1, x) + d(z_2, x), \quad x \in M, \ z_1, z_2 \in \partial M.
\]

These functions give the lengths of the broken geodesics, that is, the union of the shortest geodesics connecting \(z_1 \) to \(x \) and the shortest geodesics connecting \(x \) to \(z_2 \). Also, the gradients of \(D_x^+(z_1, z_2) \) with respect to \(z_1 \) and \(z_2 \) give the velocity vectors of these geodesics. The inverse problem of determining the manifold \((M, g)\) from the \textit{broken geodesic data}, consisting of the initial and the final points and directions, and the total length, of the broken geodesics, has been considered in [41]. In [41] the authors show that broken geodesic data determine the boundary distance data and use then the results of [37, 30] to prove that the broken geodesic data determine the Riemannian manifold up to an isometry. In [24] we utilized Theorem 1.3 of the current paper and generalized the result of [41] on reversible Finsler manifolds \(F(x, y) = F(x, -y) \), satisfying a convex foliation condition.

Let \(u \) be the solution of the Riemannian wave equation with a point source at \((s, x) \in (0, \infty) \times M\). In [28, 30] it is shown that the image, \(\Lambda \), of the wavefront set of \(u \), under the canonical isomorphism \(T^*M \ni (x, p) \mapsto g^{ij}(x)p_i \in TM \), coincides with the image of the unit sphere \(S_xM \) at \(x \) under the geodesic flow of \(g \). Thus \(\Lambda \cap \partial(SM) \), where \(SM \) is the unit sphere bundle of \((M, g)\), coincides with the exit directions of geodesics emitted from \(p \). In [47] the authors show that if \((M, g)\) is a compact smooth non-trapping Riemannian manifold with smooth strictly convex boundary, then generically the \textit{scattering data of point sources} \(\{\partial M, R_{\partial M}(M)\} \) determine \((M, g)\) up to isometry. Here, \(R_{\partial M}(x) \in R_{\partial M}(M) \), \(x \in M \) stands for the collection of tangential components to boundary of exit directions of geodesics from \(x \) to \(\partial M \).

A classical geometric inverse problem, that is closely related to the distance functions, asks: Does the Dirichlet-to-Neumann mapping of a Riemannian wave operator determine a Riemannian manifold up to isometry? For the full boundary data this problem was solved originally in [9] using the Boundary control method. Partial boundary data questions have been studied for instance in [15, 53]. Recently [48] extended these results for connection Laplacians. Lately also inverse problems related to non-linear hyperbolic equations have been studied extensively [42, 48, 65]. For a review of inverse boundary value problems for partial differential equations see [44, 64].

Another well studied geometric inverse problem formulated with the distance functions is the Boundary rigidity problem. This problem asks: Does the \textit{boundary distance function} \(d_F : \partial M \times \partial M \to \mathbb{R} \), that gives a distance between any two
boundary points, determine \((M, F)\) up to isometry? In an affirmative case \((M, F)\) is said to be boundary rigid. For a general Riemannian manifold the problem is false: Suppose the manifold contains a domain with very slow wave speed, such that all the geodesics starting and ending at the boundary avoid this domain. Then in this domain one can perturb the metric in such a way that the boundary distance function does not change. It was conjectured in [52] that for all compact simple Riemannian manifolds the answer is affirmative. In two dimensions it was solved in [58]. For higher dimensional case the problem is still open, but different variations of it has been considered for instance in [14, 21, 61, 62]. In contrast to a Riemannian case a simple Finsler manifold is never boundary rigid [35].

The boundary distance data (1), studied in this paper, are much more data than the knowledge of the boundary distance function. Therefore we can obtain the optimal determination of \((M, F)\), as explained in theorems 1.3 and 1.5, even though we pose no geometric conditions on \((M, F)\).

1.2.2. Finsler and Riemannian geometry. We refer to the monographs [4, 60] for the development of Finsler manifolds without boundaries. We point out that two major differences occur between the Riemannian and Finslerian realms that are related to the proof of Theorem 1.3. In Riemannian geometry the relation between \(T M\) and \(T^*M\) is simple; raising and lowering indices provides a fiberwise linear isomorphism. In Finsler geometry this is not possible, since the Legendre transform (see (42)) is not linear in the fibers. For this reason, we have to be more careful in the analysis of distance functions and the connection of their differential to the velocity fields of geodesics. Moreover the Finslerian gradient is not a linear operator.

The second issue arises from the lack of a natural linear connection compatible with \(F\) on vector bundle \(\pi: TM \to M\), where \(\pi(x, y) = x\) is the canonical projection to the base point. In Section 3 we consider properties of Chern connection \(\nabla\), which is a torsion free linear connection on the pullback bundle \(\pi'^*TM \to TM\) (see [3, 17, 18]). We derive natural compatibility relations for \(\nabla\) and the fundamental tensor field \(g\) on \(\pi'^*TM\) (see [60, Section 5.2] and Lemma 4.2) in a special case. In [59] Shen proved the general version of the compatibility relations. We use Lemma 4.2 to formulate the initial conditions for so-called transverse vector fields (see [16, Section III.6]) with respect to \(\partial M\) along boundary normal geodesics. After this we give a definition of an index form related to these vector fields and use it to prove results similar to classical theorems, originally by Jacobi, related to the minimizing of geodesics after focal points (for the Riemannian case, see for instance [16, Section III.6]).

Inverse problems arising from elastic equations have been also extensively studied. See e.g. [6, 2, 5, 31, 34, 55, 56].

2. From Elasticity to Finsler geometry

The main physical motivation of this paper is to obtain a geometric and coordinate invariant point of view to the inverse problems related to the propagation of seismic waves. The seismic waves are modelled by the anisotropic elastic wave equation in \(\mathbb{R}^{1+3}\). This elastic system can be microlocally decoupled to 3 different
polarizations \[63\]. In this section, we introduce a connection between the fastest polarization (known as the primary polarization and denoted by \(qP\)) and the Finsler geometry. Moreover it turns out that the Finsler metric arising from elasticity is fiberwise real analytic. We use the typical notation and terminology of the seismological literature, see for instance \[15\]. We let \(c_{ijkl}(x)\) be the smooth stiffness tensor on \(\mathbb{R}^3\) which satisfies the symmetry
\[c_{ijkl}(x) = c_{jikl}(x) = c_{klij}(x), \quad x \in \mathbb{R}^3.\] (3)
We also assume that the density \(\rho(x)\) is a smooth function of \(x\) and define density–normalized elastic moduli
\[a_{ijkl}(x) = \frac{c_{ijkl}(x)}{\rho(x)}.\]
The elastic wave operator \(P\), related to \(a_{ijkl}\), is given by
\[P_{\ell} = \delta_{\ell} \frac{\partial^2}{\partial t^2} - a_{ijkl}(x) \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} + \text{lower order terms}.\]
For every \((x, p) \in \mathbb{R}^3 \times \mathbb{R}^3\) we define a square matrix \(\Gamma(x, p)\), by
\[\Gamma_{\ell}(x, p) := \sum_{j,k} a_{ijkl}(x)p_j p_k.\] (4)
The matrix \(\Gamma(x, p)\) is called the Christoffel matrix. Due to (3) the matrix \(\Gamma(x, p)\) is symmetric. One also assumes that \(\Gamma(x, p)\) is positive definite for every \((x, p) \in \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\})\).

The principal symbol \(\delta(t, x, \omega, p)\) of the operator \(P\) is then given by
\[\delta(t, x, \omega, p) = \omega^2 I - \Gamma(x, p), \quad (t, x, \omega, p) \in \mathbb{R}^{1+3} \times \mathbb{R}^{1+3}.\]
Since the matrix \(\Gamma(x, p)\) is positive definite and symmetric, it has three positive eigenvalues \(\lambda^m(x, p), m \in \{1, 2, 3\}\).

For example in homogeneous medium, where \(a_{ijkl}\) are constants, and there are no lower order terms on the operator \(P\) and \(\lambda^m(x, p) = \lambda^m(p)\), the equation
\[Pu(x, t) = 0\]
has plane wave solution \(u(x, t) = ve^{i(p \cdot x - (\lambda^m(p))^{1/2} t)}\). These waves correspond to waves that propagate with speed \(c^m(p) = (\lambda^m(p))^{1/2}\) to the direction \(p\).

We assume that
\[\lambda^1(x, p) > \lambda^m(x, p), \quad m \in \{2, 3\}, \quad (x, p) \in \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\}).\] (5)

Then it follows from the Implicit Function Theorem that \(\lambda^1(x, p)\) and a related unit eigenvector \(q^1(x, p)\) are smooth with respect to \((x, p)\). See for instance \[29\] Chapter 11, Theorem 2 for more details. Moreover the function \(\lambda^1(x, p)\) is homogeneous of degree 2 with respect to \(p\). Due to \[4\] the Christoffel matrix \(\Gamma(x, p)\) is real analytic on each fiber \(T_x^* \mathbb{R}^3\). Since \(\lambda^1(x, p)\) is defined by a polynomial equation \(\det(\Gamma(x, p) - \lambda(x, p)I) = 0\) in \(p\), we may apply the real analytic implicit function theorem (see e.g. \[39\] Theorem 2.3.5) to see that \(\lambda^1\) is real analytic on the fibers of \(T^* \mathbb{R}^3\).
To keep the notation simple, we write from now on $\lambda := \lambda^1(x, p)$ and $q := q^1(x, p)$. We use $\Gamma = \lambda q$ and (4) to compute the Hessian of $\lambda(x, p)$ with respect to p to obtain
\[
\text{Hess}_p(\lambda(x, p)) = 2 \left(\Gamma(q(x, p)) + (Dq)^T (\lambda(x, p)I - \Gamma(x, p))Dq \right),
\]
where Dq is the Jacobian of $q(x, p)$ with respect to p and the superscript T stands for transpose. Since $\Gamma(q(x, p))$ is positive definite it follows from (5) and (6) that the Hessian of $\lambda(x, p)$ is also positive definite. We note that a similar result has been presented in [1] under the assumption the stiffness tensor is homogeneous and transversely isotropic.

We define a continuous function $f(x, p) := \sqrt{\lambda(x, p)}$, which is smooth outside $\mathbb{R}^3 \times \{0\}$. We conclude with summarizing the properties of the function f:

(i) The function $f: \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\}) \to (0, \infty)$ is smooth, real analytic on the fibers
(ii) For every $(x, p) \in \mathbb{R}^3 \times \mathbb{R}^3$ and $s \in \mathbb{R}$ it holds that $f(x, sp) = |s|f(x, p)$
(iii) For every $(x, p) \in \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\})$ the Hessian of $\frac{1}{2}f^2$ is symmetric and positive definite with respect to p.

Therefore, f is a convex (Minkowski) norm on the cotangent space. Finally, we define a Finsler function F to be the Legendre transform of f. Thus the bicharacteristic curves of Hamiltonian $\frac{1}{2}\left(\lambda(x, p) - 1\right)$ are given by the co-geodesic flow of F. Moreover the qP group velocities are given by the Finsler structure.

Another geometrical inverse problem on Finsler manifolds, using exterior geodesic sphere data, is presented in [23], extending an earlier result on Riemannian manifolds [22].

The connection between Finsler geometry elastic media has been also considered for instance in [19, 20, 66]. For Finsler geometry and the deformations of oriented media we suggest the reader to see for instance [8].

2.1. Inverse problem for the travel times of qP-waves. The travel time data that we consider next can be viewed as being obtained from propagation of singularities of qP polarized waves generated at Dirac sources in the interior. This originates from the work of Dencker [20], and follows upon microlocally diagonalizing the elastic wave operator with a smooth stiffness tensor, even though it is not of principal type. Nonetheless, the diagonal component λ, which is second-order elliptic pseudodifferential in space, associated with qP polarized waves can be smoothly extracted. (This is not the case for the other polarizations.) We note that the ΨDO with principal symbol $\omega^2 - \lambda(x, p)$, $\omega \neq 0$ is of real principal type on \mathbb{R}^{1+3}, and one can carry out a parametrix construction for this operator, which generates a classical Fourier integral operator. The principal symbol $\omega^2 - \lambda(x, p)$ of the pseudodifferential operator defines a Hamiltonian and the associated flow
determines a Lagrangian submanifold and its corresponding generating function. This function yields the phase function in the oscillatory integral representation of the parametrix. By Hörmander’s theorem [33, Theorem 2.5.15], the propagation of singularities by the mentioned Fourier integral operator is determined by this phase function, and by the implication of [30, Proposition 2.1] follows the Hamiltonian flow. Travel time, arrival of singularities, is measured along the Hamiltonian flow. The wavefront set detection, at the boundary, of the polarized wave solution, generated by each Dirac source in the interior thus provides the data in our inverse problem. Moreover, the projection of the Hamiltonian flows on the base manifold of the cotangent bundle coincide with the geodesics in the Finsler geometry, where the co-Finsler function is identified with the principal symbol of the above mentioned pseudodifferential operator λ.

Let $M \subset \mathbb{R}^3$ be a bounded domain with a smooth boundary ∂M. We assume that ∂M is strictly convex with respect to F, that is the second fundamental form of ∂M is positive definite. In this case the compact Finsler manifold (\overline{M}, F) is geodesically complete [7], which means that any pair of points can be connected by a distance minimizing geodesic. We suppose that F is a complete Finsler metric on \mathbb{R}^3. Moreover we assume that the shortest curves of (\mathbb{R}^3, F) connecting points in M are contained in M. We call these the “completeness” conditions for (M, F).

Let $x_0 \in M$, $t_0 > 0$ and let $h(t, x)$ be a Dirac delta function at $(t_0, x_0) \in \mathbb{R} \times M$. We also denote $D := i(\partial_{x_1}, \partial_{x_2}, \partial_{x_3})$. Let u^{t_0, x_0} be the solution of $\left(\frac{\partial^2}{\partial t^2} - \lambda(x, D) \right) u(t, x) = h(t, x)$ on $(0, \infty) \times \mathbb{R}^3$, with vanishing initial conditions. We note that $\partial(\mathbb{R} \times M) = \mathbb{R} \times \partial M$, and therefore for any $(x, t, \omega, p) \in \partial(T^*(\mathbb{R} \times M))$ it holds that $(x, p) \in \partial(T^*M)$ and $x \in \partial M$. Then we set

$$\Lambda_{x_0, t_0} := \partial(T^*(\mathbb{R} \times M)) \cap \text{wavefront set}(u^{t_0, x_0})$$

and define the travel time from x_0 to $z \in \partial M$ to be

$$\mathcal{T}(t_0, x_0, z) := \inf\{ t > 0 : T_{t, z}^*(\mathbb{R} \times M) \cap \Lambda_{x_0, t_0} \neq \emptyset \} - t_0.$$

Theorem 2.1. Let $c_{ijke}(x)$ be an anisotropic elastic tensor and ρ a smooth density of the mass on \mathbb{R}^3. Suppose that the eigenvalues of the corresponding Christoffel matrix Γ satisfy the inequality (5). Then the square root of the largest eigenvalue of Γ satisfies (i)–(iii) of (7).

Let $M \subset \mathbb{R}^3$ be an open bounded set with smooth boundary. If F is the Finsler metric on M given by λ^1 that satisfies the completeness conditions, stated above, on M then the travel time data

$$\{ \mathcal{T}(t_0, x_0, z) : z \in \partial M \}, \; x_0 \in M, \; t_0 > 0$$

determine the isometry class of (M, F).

Proof. By the completeness assumptions it holds that $\mathcal{T}(x_0, z) = d_F(x_0, z)$ for any $x_0 \in M$ and $z \in \partial M$. Thus the result follows from Theorem 1.5. □
3. Proof of Theorem 1.3

In this section we provide a proof of Theorem 1.3. The proof is divided into four parts. In the first part, we consider the topology and introduce a homeomorphism Ψ from \((M_1, F_1)\) onto \((M_2, F_2)\). The second part is devoted to proving that homeomorphism Ψ is smooth and has a smooth inverse. In the third part, we study smoothness of a distance function \(d_F(\cdot, z)\), \(z \in \partial M\) in those interior points \(x\) where a distance minimizing curve from \(x\) to \(z\) is a geodesic contained in the interior. Then, in the final part, we use the result obtained in the third part to prove that the Finsler functions \(F_1, \Psi^* F_2\) coincide in the set \(\overline{G(M_1, F_1)}\) (recall Notation 1.2), but not necessarily in its exterior.

3.1. Topology. Here, we define a map \(\Psi : (M_1, F_1) \to (M_2, F_2)\) that will be shown to satisfy the claim of Theorem 1.3. Whenever we do not need to distinguish manifolds \(M_1\) and \(M_2\) we drop the subindices.

We start with showing that data (1) determine the function \(r_x : \partial M \to \mathbb{R}\) for each \(x \in \partial M\). By the triangle inequality and the continuity of distance function \(d_F(\cdot, z)\) on \(M\) we have

\[r_x(z) := d_F(x, z) = \sup_{q \in M^{int}} (d_F(q, z) - d_F(q, x)) = \sup_{q \in M^{int}} (r_q(z) - r_q(x)) \tag{8} \]

for all \(z \in \partial M\). Thus data (1) determine \(r_x\), moreover (2) and (8) imply

\[\{r_{x_1} : x_1 \in M_1\} = \{r_{x_2} \circ \phi : x_2 \in M_2\} \subset C(\partial M_1). \tag{9} \]

Since \(\partial M\) is compact it holds that for any \(x \in M\) the corresponding boundary function \(r_x\) belongs to \(C(\partial M) \subset L^\infty(\partial M)\). By (1) and (8) we have recovered the mapping

\[\mathcal{R} : M \to C(\partial M), \quad \mathcal{R}(x) = r_x. \tag{10} \]

In the next proposition, we study the properties of this map.

Proposition 3.1. Let \((M, F)\) be a smooth compact Finsler manifold with smooth boundary. The map \(\mathcal{R}\) given by (10) is a topological embedding.

Proof. Since \(M\) is compact, \(d_F\) is a complete non-symmetric (path) metric, and by Theorem 2.5.23 for any \(x_1, x_2 \in M\) there exists a distance minimizing curve \(\gamma : [0, d_F(x_1, x_2)] \to M\) from \(x_1\) to \(x_2\). Moreover, whenever \(a, b \in [0, d_F(x_1, x_2)]\) are such that \(\gamma([a, b]) \subset M^{int}\), then \(\gamma : [a, b] \to M\) is a geodesic.

Since the unit sphere bundle \(SM := F^{-1}\{1\}\) is compact there exists a universal constant \(L > 1\), such that for all \(x_1, x_2 \in M\) we have

\[\frac{1}{L} d_F(x_1, x_2) \leq d_F(x_2, x_1) \leq L d_F(x_1, x_2). \tag{11} \]

We let \(x_1, x_2 \in M\) and \(z \in \partial M\). By triangular inequality we have

\[|d_F(x_1, z) - d_F(x_2, z)| \leq L d_F(x_1, x_2). \]

Thus \(\|r_{x_1} - r_{x_2}\|_\infty \leq L d_F(x_1, x_2)\), which proves that the map \(\mathcal{R}\) is continuous.

We suppose then that \(r_{x_1} = r_{x_2}\) for some \(x_1, x_2 \in M\). We let \(z\) be one of the closest boundary points to \(x_1\). Then \(z\) is also a closest boundary point to \(x_2\). Denote
$r_{x_1}(z) = h$. If $h = 0$ then $x_1 = z$ and thus $x_1 = x_2$. We suppose then that $h > 0$, which means that x_1 and x_2 are interior points of M.

It follows from Lemma A.5 that for both $i = 1, 2$ the minimizing curve from x_i to z is a geodesic and meets the boundary orthogonally. Let us denote this geodesic by γ_i. We shift time parameter so that $z = \gamma_1(0) = \gamma_2(0)$, and thus $x_i = \gamma_i(-h)$ for both indices. As the two geodesics share the same initial point and initial direction, we conclude that $\gamma_1 = \gamma_2$ and consequently $x_1 = \gamma_1(-h) = \gamma_2(-h) = x_2$.

The injectivity of R implies that it is a topological embedding, as any continuous mapping from a compact space to a Hausdorff space is closed. □

Next we define maps

$$\Phi: C(\partial M_1) \to C(\partial M_2), \quad \Phi(f) = f \circ \phi^{-1}$$

and

$$\Psi: M_1 \to M_2, \quad \Psi = R_2^{-1} \circ \Phi \circ R_1$$

(12)

Here R_i is defined as R in (10). The main theorem of the section is the following

Theorem 3.2. Let $(M_i, F_i), i = 1, 2$ be as in Theorem 1.3. Then the map $\Psi: M_1 \to M_2$ given by (12) is a homeomorphism. Moreover $\Psi|_{\partial M_1} = \phi$.

Proof. By (9) and Proposition 3.1 it holds that Ψ is well defined. Clearly the map Φ is a homeomorphism and therefore Ψ is a homeomorphism.

We let $x_1 \in \partial M_1$. Then $(\Phi \circ R_1)(x_1)$ is r_{x_2} for some $x_2 \in M_2$. Since

$$r_{x_2}(\phi(x_1)) = [(\Phi \circ R_1)(x_1)](\phi(x_1)) = r_{x_1}(x_1) = 0,$$

we have $d_{F_2}(x_2, \phi(x_1)) = 0$ and so $x_2 = \phi(x_1)$. This proves $\Psi(x_1) = \phi(x_1)$. □

3.2. Differentiable structure.

Here, we show that the map $\Psi: M_1 \to M_2$ is a diffeomorphism. We split the study in two cases, near the boundary and far from the boundary. We begin with the former one.

We extend (M, F) to a closed Finsler manifold (N, H) to facilitate the study of boundary points. (This can be done for instance by constructing the “double” of M. See for instance [50, Example 9.32].)

We let ν_{in}^{-} be the inward pointing unit normal vector field to ∂M with respect to reversed Finsler function \bar{F}. We define the normal exponential map $\exp^{-1}: \partial M \times \mathbb{R} \to N$ so that

$$\exp^{-1}(z, s) := \exp_{\bar{F}}^{-} (s \, \nu_{in}^{-} (z)),$$

where $\exp_{\bar{F}}$ is the exponential map of the reversed Finsler function \bar{H}.

Lemma 3.3. There exists $h > 0$ such that M is contained in the image of the normal map. Moreover there exists $r > 0$ such that $\exp^{-1}: \partial M \times [0, r) \to M$ is a diffeomorphism onto its image.
Proof. Define

\[h = \max\{d_F(x, \partial M) : x \in M\} + c, \]

for any \(c > 0 \). Since \(N \) is compact the map \(\exp^\perp : \partial M \times [0, h) \rightarrow N \) is well defined. Moreover it holds that any interior point can be connected to any of its closest boundary points via distance minimizing geodesic that is normal to the boundary. Therefore we conclude that \(M \subset \exp^\perp(\partial M \times [0, h)) \).

Notice that

\[\exp^\perp(z, t) = \pi(\phi_t(z, \nu_{in}(z))), \]

where \(\phi_t \) is the geodesic flow of \(\tilde{H} \). Since \(\nu_{in} \) is a smooth unit length vector field, this proves that \(\exp^\perp \) is smooth.

We let \(z \in \partial M \). Give any local coordinates \((z', f)\) near \(z \) such that \(f|_{\partial M} = 0 \) is a boundary defining function. Then with respect to coordinates \((z', t)\) for \((\partial M \times (-h, h))\) we have

\[
D \exp^\perp(z, 0) = \begin{pmatrix}
D_{z'}(z' \circ \exp^\perp) & \frac{\partial}{\partial t}(z' \circ \exp^\perp) \\
D_{z'}(f \circ \exp^\perp) & \frac{\partial}{\partial t}(f \circ \exp^\perp)
\end{pmatrix} = \begin{pmatrix}
\text{id}_{n-1} & \overline{\pi} \\
\overline{\nu} & df(\nu_{in})
\end{pmatrix},
\]

where \(\overline{\pi}, \overline{\nu} \in \mathbb{R}^{n-1} \) and \(df(\nu_{in}) \neq 0 \), since \(\nu_{in} \) is not tangential to \(\partial M \) and \(f \) is a boundary defining function. Thus the Jacobian \(\exp^\perp(z, 0) \) is invertible and by the Inverse Function Theorem \(\exp^\perp \) is a local diffeomorphism.

Next we show that there exists \(r \in (0, h) \) such that \(\exp^\perp : \partial M \times [0, r) \rightarrow M \) is a diffeomorphism onto its image. If this does not hold, there exists a sequence \((x_j)_{j=1}^\infty \subset M\) such that

\[\exp^\perp(z_j^1, s_j^1) = x_j = \exp^\perp(z_j^2, s_j^2) \]

for some \(s_j^i \rightarrow 0, i \in \{1, 2\} \) as \(j \rightarrow \infty \) and for some boundary points \(z_j^1 \) and \(z_j^2 \) such that \((z_1, s_1) \neq (z_2, s_2) \). Then \(d_F(x_j, \partial M) \rightarrow 0 \) as \(j \rightarrow \infty \) and by the compactness of \(N \) we may assume that \(x_j \rightarrow x \in \partial M \). Let \(\epsilon > 0 \) and choose \(j \in \mathbb{N} \) so that \(d_F(x_j, x), s_j \leq \epsilon \). Then for \(i \in \{1, 2\} \) it holds that

\[d_F(x, z_j^i) \leq d_F(x, x_j) + d_F(x_j, z_j^i) < 2L \epsilon \]

where \(L \) is the constant of (11). Therefore, \(z_j^i \rightarrow x \) as \(j \rightarrow \infty \) for \(i \in \{1, 2\} \). This is a contradiction to the local diffeomorphism property of \(\exp^\perp \). Thus there exists \(r > 0 \) that satisfies the claim of this lemma.

We immediately obtain the following.

Corollary 3.4. Let \((M, F)\) be compact Finsler manifold with smooth boundary that is isometrically embedded into a closed Finsler manifold \((N, H)\). Let us denote

\[U(\partial M, \epsilon) := \{ x \in M : d_F(x, \partial M) < \epsilon \}. \]

There exists \(\epsilon > 0 \) and a diffeomorphism \(U(\partial M, \epsilon) \ni x \mapsto (z(x), s(x)) \in (\partial M \times [0, \epsilon)) \), such that

\[d_F(x, z(x)) = d_F(x, \partial M) = s(x). \]
Proof. The claim follows from Lemma 3.3 by denoting \((z(x), s(x)) := (\exp^\perp)^{-1}(x)\).

We then consider points far from the boundary. Our goal is to show that for every \(x_0 \in M^{int}\) there exists points \((z_i)_{i=1}^n \subset \partial M\) and a neighborhood \(U\) of \(x_0\) such that the map

\[U \ni x \mapsto (d_F(x, z_i))_{i=1}^n \]

is a coordinate map. To do this we need to set up some notation.

Definition 3.5. Let \(z \in \partial M\). We say that

\[\tau_{\partial M}(z) := \sup\{t > 0 : d_F(\exp^\perp(z, t), z) = d_F(\exp^\perp(z, t), \partial M) = t\}, \]

is the boundary cut distance to \(z\). Then we define the collection of boundary cut points \(\sigma(\partial M)\) as

\[\sigma(\partial M) = \{\exp^\perp(z, \tau_{\partial M}(z)) : z \in \partial M\}. \]

The set \(\sigma(\partial M)\) is not empty and the next lemma explains why we cannot use the coordinate structure given by Lemma 3.4 far from \(\partial M\).

Lemma 3.6. Let \(z \in \partial M\) and \(t_0 = \tau_{\partial M}(z)\). Then at least one of the following holds:

1. The map \(\exp^\perp\) is singular at \((z, t_0)\).
2. There exists \(q \in \partial M, q \neq z\) such that \(\exp^\perp(z, t_0) = \exp^\perp(q, t_0)\).

Moreover for any \(t \in [0, t_0)\) the map \(\exp^\perp\) is non-singular at \((z, t)\).

Proof. The proof of the first claim is a modification of the proof of [27, Chapter 13, Proposition 2.2]. The proof of the last claim is long. It is given in detail in Section 4. \(\square\)

Lemma 3.7. The function \(\tau_{\partial M} : \partial M \to \mathbb{R}\) is continuous.

The proof of Lemma 3.7 is completely analogous to Klingenberg’s lemma presented in [38, Lemma 2.1.15] or [27, Chapter 13, Proposition 2.9].

The cut distance function of the extended manifold \((N, H)\) is defined as

\[\tau(x, v) = \sup\{t > 0 : d_H(x, \gamma_{x,v}(t)) = t\}, \quad (x, v) \in TN, \quad F(x, v) = 1. \]

We call a point \(\gamma_{x,v}(\tau(x,v))\) an ordinary cut point to \(x\). In the next Lemma we show that a boundary cut point always occurs before an ordinary cut point.

Lemma 3.8. For any \(z \in \partial M\) it holds that

\[\tau^\perp(z, \nu_{\text{in}}(z)) > \tau_{\partial M}(z), \]

where \(\tau^\perp\) is the cut distance function of the reversed Finsler metric \(\overrightarrow{H}\).

Proof. The claim follows by applying Klingenberg’s lemma to the geodesic \(\gamma_{p, \xi}\), where \(p = \gamma_{p, \xi}(\tau_{\partial M}(z))\) and \(\xi = -\dot{\gamma}_{p, \xi}(\tau_{\partial M}(z))\) that hits normally to the boundary at the point \(z\), see [37, Lemma 2.13] for details. \(\square\)
Corollary 3.9. Let \(x_1 \in M^{int} \) and \(z_{x_1} \in \partial M \) be a closest boundary point to \(x_1 \). There exist neighborhoods \(U \subset M \) of \(x_1 \) and \(V \subset \partial M \) of \(z_{x_1} \) such that for every \((x, z) \in U \times V \) there exists the unique distance minimizing unit speed geodesic \(\gamma_{x,z} \) from \(x \) to \(z \) and moreover \(\gamma_{x,z}(0, d_F(x, z)) \subset M^{int} \). Both the distance \(d_F(x, z) \) and the geodesic \(\gamma_{x,z} \) depend smoothly on \((x, z) \in U \times V \).

Proof. Recall that we have assumed the manifold \((M, F)\) being isometrically embedded in a closed Finsler manifold \((N, H)\). By Lemmas 3.8 and 3.9 there are neighbourhoods \(\tilde{U} \subset M^{int} \) of \(x_1 \) and \(\tilde{V} \subset N \) of \(z_{x_1} \) such that the distance function \(d_H: \tilde{U} \times \tilde{V} \to \mathbb{R} \) is smooth. Moreover for each \(x \in \tilde{U} \) and \(z \in \tilde{V} \) there exists a unique \(H\)-distance minimizing unit speed geodesic connecting \(x \) to \(z \). This is denoted by \(\gamma_{x,z} \).

Let \(y(x, z) \in S_x N \) be the initial velocity of the geodesic \(\gamma_{x,z} \). Since the exponential map is invertible at \((x_1, y(x_1, z_1)) \in TN\) it holds that the map \((x, z) \mapsto y(x, z) \in SN \) is smooth in \(\tilde{U} \times \tilde{V} \). Therefore \(\gamma_{x,z} \) depends smoothly on \((x, z) \in U \times V \).

As the geodesic between the reference points is normal to \(\partial M \) at \(z_1 \) the implicit function theorem yields that the function \(t(x, y) \) of Notation 1.2 is smooth in \(SN \) near \(y(x_1, z_1) \). This implies that

\[
d_H(x, z) = t(x, y(x, z)),
\]

for any \(z \in \partial M \) near \(z_1 \). Since \(H \) and \(F \) agree on \(TM \) it holds that \(\gamma_{x,z} \), for any \(z \in \partial M \) near \(z_1 \), is also a geodesic of \((M, F)\) on the interval \([0, t(x, y)]\). Therefore \(\gamma_{x,z}(0, t(x, y(x, z))) \subset M^{int} \) and after possibly choosing smaller \(\tilde{U} \subset \tilde{U} \) and \(\tilde{V} \subset \tilde{V} \cap M \) we see that the \(F \)-distance and \(H \)-distances agree on \(\tilde{U} \times \tilde{V} \). Clearly the map \((x, z) \mapsto y(x, z) \) is also smooth in this set. This concludes the proof. \(\square \)

We let \(z \in \partial M \) and define an evaluation function \(E_z: \mathcal{R}(M) \to \mathbb{R} \) by \(E_z(r) = r(z) \). The functions \(E_z \) correspond to the distance function \(d_F(\cdot, z): M \to \mathbb{R} \) via the equation

\[
d_F(x, z) = (E_z \circ \mathcal{R})(x).
\]

Since \(z \in \partial M \) was an arbitrary point we note that the function \(d_F: M \times \partial M \to \mathbb{R} \) is determined by the data \(\mathcal{I} \) in the sense of 1.3.

We define the exit time function

\[
\tau_{exit}: SM^{int} \to [0, \infty], \quad \tau_{exit}(x, v) := \inf\{t > 0 : \gamma_{x,v}(t) \in \partial M\}.
\]

Comparing this to the function \(t: TM \setminus 0 \to [0, \infty] \) defined in Notation 1.2, we have \(\tau_{exit} = t |_{SM^{int}} \). The original data was formulated on the whole slit tangent bundle because it is independent of the Finsler metric, unlike the unit sphere bundle.

Lemma 3.10. If \((x, v) \in SM^{int} \) is such that \(\tau_{exit}(x, v) < \infty \) and \(\dot{\gamma}_{x,v}(\tau_{exit}(x, v)) \) is transversal to \(\partial M \) then there exists a neighborhood \(U \subset SM \) of \((x, v)\) such that \(\tau_{exit}|_U \) is well defined and \(C^\infty \)-smooth.

Proof. Since \(\dot{\gamma}_{x,v}(t_0) \) is not tangential to \(\partial M \) the claim follows from the Implicit Function Theorem in boundary coordinates. \(\square \)
Take an interior point \(x \in M \) near which we want to construct a system of coordinates. We let \(v \in S_x M \) be such that the geodesic \(\gamma_{x,v} \) emanating from \(x \) to the direction \(v \) is the shortest curve between \(x \) and a terminal boundary point \(z_x \).

By Lemma 3.8 these two points are not conjugate along \(\gamma_{x,v} \).

We let \(U \subset SM \) be so small neighborhood of \((x,v)\) that the exit time function \(\tau_{\text{exit}}: U \to \mathbb{R} \) is defined and smooth. We have thus assumed that \(x \) and \(z_x = \gamma_{x,v}(\tau_{\text{exit}}(x,v)) \) are connected minimally and without conjugate points by \(\gamma_{x,v} \).

We let \(\ell_x: T_x M \to T^*_x M \) be the Legendre transform, (to recall the definition see (42) in the appendix). It and its inverse are smooth outside the origin. Thus the distance function \(d_{x,v} \) of \(\gamma_{x,v} \) is smooth near \(x \) and its differential at \(x \) is \(\ell_x(v) \in T^*_x M \) (see Lemma A.4).

Pick any \(u \in T^*_x M \setminus \{0\} \) with \(\langle u, v \rangle = 0 \). For \(s \in \mathbb{R} \), denote
\[
v_s = \frac{\ell_x^{-1}(\ell_x(v) + su)}{F^*(\ell_x(v) + su)}.
\]

Here \(F^* \) is the dual of \(F \), (see (43)). The map \(s \mapsto v_s \in S_x M \) is smooth.

Consider the geodesics \(\gamma_{v_s} \), starting at \(x \) in the direction \(v_s \). Since \(\gamma_{x,v}((\tau_{\text{exit}}(x,v))) \) is transversal to \(\partial M \), then \(s \mapsto \gamma_{v_s}(\tau_{\text{exit}}(x,v_s)) \) is smooth near \(s = 0 \). Also since \(x \) is not an ordinary cut point to \(\gamma_{v_s}(\tau_{\text{exit}}(x,v_s)) \) at \(s = 0 \), it is not either an ordinary cut point to \(\gamma_{v_s}(\tau_{\text{exit}}(x,v_s)) \) when \(|s| \) is small. Therefore, for \(s \) sufficiently close to zero the distance function to \(\gamma_{v_s}(\tau_{\text{exit}}(x,v_s)) \) is smooth near \(x \).

The differential of the distance function at \(x \) amounts to
\[
\ell_x(v_s) = \frac{\ell_x(v) + su}{F^*(\ell_x(v) + su)}.
\]

Therefore, for any \(u \) with the required property there is a small non-zero \(s \) so that there is a distance function to a boundary point which is smooth near \(x \) and the differential at \(x \) is \(\frac{\ell_x(v) + su}{F^*(\ell_x(v) + su)} \).

We take \(n-1 \) covectors \(u_1, \ldots, u_{n-1} \in T^*_x M \) so that the set
\[
\{\ell_x(v), u_1, \ldots, u_{n-1}\} \subset T^*_x M
\]
is linearly independent and each \(u_i \in T^*_x M \) is orthogonal to \(v \in T_x M \). For each \(i = 1, \ldots, n-1 \) we take \(s_i \neq 0 \) so that
\[
\frac{\ell_x(v) + s_i u_i}{F^*(\ell_x(v) + s_i u_i)}
\]
is the differential of a distance function to a boundary point as described above.

This gives rise to distance functions to \(n \) boundary points close to one another. These functions are smooth near \(x \) and the differentials are
\[
\ell_x(v), \frac{\ell_x(v) + s_1 u_1}{F^*(\ell_x(v) + s_1 u_1)}, \ldots, \frac{\ell_x(v) + s_{n-1} u_{n-1}}{F^*(\ell_x(v) + s_{n-1} u_{n-1})}.
\]

This set is linearly independent, so the distance functions give a smooth system of coordinates in a neighborhood of \(x \). Thus we obtain
Lemma 3.11. Let $x_0 \in M^{\text{int}}$. There is a neighborhood U of x_0 and points $z_1, \ldots, z_n \in \partial M$, where z_1 is a closest boundary point to x_0, so that the mapping $U \ni x \mapsto (d_F(x, z_i))_{i=1}^n$ is a smooth coordinate map.

Moreover there exists an open neighborhood $V \subset \partial M$ of z_1 such that the distance function $d_F: U \times V \to \mathbb{R}$ is smooth and the set

$$V := \left\{ (z_i)_{i=2}^n \in V^{n-1} : \det(f_{z_2,\ldots,z_n}(x)) \Big|_{x=x_0} \neq 0 \right\}.$$

is open and dense in $V^{n-1} := V \times \cdots \times V$. Where $f_{z_2,\ldots,z_n}(x) := DF_z(z_2,\ldots,z_n)(x)$, and DF_z stands for the pushforward of the map $\Psi(x, z_i) := (d_F(x, z_i))_{i=1}^n \in \mathbb{R}^n$, $x \in U$.

Proof. It remains to show that the set V is open and dense in V^{n-1}. Clearly the function $G: V^{n-1} \to \mathbb{R}$, $G(z_2, \ldots, z_n) = \det(f_{z_2, \ldots, z_n}(x_0))$ is continuous. Thus $V = V^{n-1} \setminus G^{-1}\{0\}$ is open. Since the Legendre transform is an metric isometry between fibers, we have for every $z \in V$

$$(d_F(\cdot, z))|_{x_0} \in S_{x_0}^* M := \{ p \in T_{x_0}^* M : F^*(p) = 1 \}.$$

(For the details, see Lemma 4.3 in the appendix.) We let $(e_i)_{i=1}^n$ be a basis of $T_{x_0}^* M$ and define a map $T: (T_{x_0}^* M)^{n-1} \to \mathbb{R}$ by

$$T((u_i))_{i=2}^n = \det(M(\ell_{x_0}(v), u_2, \ldots, u_n)),$$

where $\ell_{x_0}(v)$ is as in the discussion before this lemma and $M(\ell_{x_0}(v), u_1, \ldots, u_{n-1})$ is a real $n \times n$ matrix with columns $\ell_{x_0}(v), u_1, \ldots, u_{n-1}$, with respect to basis $(e_i)_{i=1}^n$ of $T_{x_0}^* M$. Notice that $(T_{x_0}^* M)^{n-1}$ is a real analytic manifold and T is a multivariable polynomial, and thus a real analytic function. Moreover by the discussion before this lemma we know that T is not identically zero. Therefore, it follows from [32, Lemma 4.3] that $T^{-1}\{0\} \subset (T_{x_0}^* M)^{n-1}$ is nowhere dense. Since determinant is multilinear and the map $V \ni z \mapsto (d_F(\cdot, z))|_{x_0} \in S_{x_0}^* M$ is a smooth embedding, it follows that $V \subset V^{n-1}$ is dense. \hfill \Box

Now we are ready to prove the main theorem.

Theorem 3.12. The mapping Ψ given in (12) is a diffeomorphism.

Proof. We let $x_0 \in M_1$. We suppose first that x_0 is an interior point. By the data [9] it holds that $z \in \partial M_1$ is a minimizer of $d_F_1(x_0, \cdot)|_{\partial M_1}$ if and only if $\phi(z) \in \partial M_2$ is a minimizer of $d_F_2(\Psi(x_0), \cdot)|_{\partial M_2}$. We let z_1 be a minimizer of $d_F_1(x_0, \cdot)|_{\partial M_1}$. Since the map $\phi: \partial M_1 \to \partial M_2$ is a diffeomorphism it follows from the Lemma 3.11 that there exist points $z_2, \ldots, z_n \in M_1$ and (suitably shrunk) neighborhood $U \subset M_1$ of x_0 such that the maps $U \ni x_1 \mapsto (d_F_1(x_1, z_i))_{i=1}^n$ and

$$\Psi(U) \ni x_2 \mapsto (d_F_2(x_2, \phi(z_i)))_{i=1}^n = (d_F_1(\Psi^{-1}(x_2), z_i))_{i=1}^n$$

is a real analytic manifold and T is a multivariable polynomial, and thus a real analytic function. Moreover by the discussion before this lemma we know that T is not identically zero. Therefore, it follows from [32, Lemma 4.3] that $T^{-1}\{0\} \subset (T_{x_0}^* M)^{n-1}$ is nowhere dense. Since determinant is multilinear and the map $V \ni z \mapsto (d_F(\cdot, z))|_{x_0} \in S_{x_0}^* M$ is a smooth embedding, it follows that $V \subset V^{n-1}$ is dense. \hfill \Box
are smooth coordinate maps. Thus with respect to these coordinates it holds that the local representation of Ψ near x_0 is an identity map of \mathbb{R}^n. This proves that Ψ is a local diffeomorphism near any interior point of M_1.

We consider next the boundary case. We denote

$$U = \{ x_1 \in M_1 : \text{there exists precisely one minimizer for } d_{F_1}(x_1, \cdot) |_{\partial M_1} \}^\text{int}.$$

By (9) and since Ψ is a homeomorphism, it holds that

$$\Psi(U) = \{ x_2 \in M_2 : \text{there exists precisely one minimizer for } d_{F_2}(x_2, \cdot) |_{\partial M_2} \}^\text{int}. \quad (14)$$

By Lemma 3.3 it follows that there exists $\epsilon > 0$ and open neighborhood $V \subset U \subset M_1$ of ∂M_1 such that the maps

$$\exp_{F_1}^\perp : \partial M_1 \times [0, \epsilon) \to V, \quad \text{and}$$

$$\exp_{F_2}^\perp : \partial M_2 \times [0, \epsilon) \to \Psi(V)$$

are diffeomorphisms. Moreover due to Lemma 3.4 for every $x \in V$ it holds that $x = \exp_{F_1}^\perp(z(x), s(x))$, where $z(x)$ is the minimizer of $d_{F_1}(x, \cdot) |_{\partial M_1}$ and $s(x) = d_{F_1}(x, z(x))$. Therefore, by (14) it holds that

$$(\exp_{F_2}^\perp)^{-1}(\Psi(p)) = (\phi(z(p)), s(p)).$$

Thus we have proved that with respect to coordinates $(V, (\exp_{F_1}^\perp)^{-1})$ and $(\Psi(V), (\exp_{F_2}^\perp)^{-1})$ the local representation of Ψ is

$$(\partial M_1 \times [0, \epsilon)) \ni (z, s) \mapsto (\phi(z), s) \in (\partial M_2 \times [0, \epsilon)).$$

Since $\phi : \partial M_1 \to \partial M_2$ is a diffeomorphism we have proved that Ψ is a local diffeomorphism near ∂M_1.

By Theorem 3.2 the map Ψ is one-to-one and we have proved that Ψ is a diffeomorphism. \qed

3.3. Smoothness of the boundary distance function. Here we consider the smoothness of a boundary distance function and show that the closure of

$$\hat{G}(M, F) := \{(x, y) \in G(M, F) : x \in M^{\text{int}}, \ d_F(\cdot, z(x, y)) \text{ is } C^\infty \text{ at } x \} \cup \partial_{\text{out}} TM, \quad (15)$$

where $\partial_{\text{out}} TM \subset \partial(TM)$ is the collection of outward pointing vectors (excluding tangential ones), coincides with the set $\overline{G(M, F)}$ (see Definition 1.2). This will be used in the next subsection to reconstruct F in $G(M, F)$.

We note that if $(x, y) \in G(M, F)$, with $F(y) = 1$ then

$$\tau_{\text{exit}}(x, y) = t(x, y),$$

where $t(x, y)$ is as in Definition 1.2. We assume below in this section that all vectors are of unit length.

For those $(x, z) \in M^{\text{int}} \times \partial M$ for which $d_F(\cdot, z)$ is smooth at x we can use the differential of the distance function to determine the image of the distance minimizing geodesic from x to z. In this sense our problem is related to the Finslerian
version of Hilbert’s 4th problem which is: To recover Finsler metric from the images of the geodesics. In this setting the problem has been studied for instance in [10, 11, 12, 51, 57].

The main result in this section is the following.

Proposition 3.13. For any smooth connected and compact Finsler manifold \((M, F)\) with smooth boundary it holds that

\[\hat{G}(M, F) = G(M, F). \]

We need a couple of auxiliary results to prove this proposition. We state these auxiliary results below and prove them after the proof of Proposition 3.13.

Lemma 3.14. Let \(x_1, x_2 \in M\) and let \(c: [0, 1] \to M\) be a rectifiable curve from \(x_1\) to \(x_2\). Let \(t_0 \in (0, 1)\) be such that \(c(t_0) \in \partial M\). If there exits \(\delta > 0\) such that \(c|_{[t_0-\delta,t_0]}\) is a geodesic and \(\lim_{t \to t_0} \dot{c}(t)\) is transversal to \(\partial M\) then there exists a rectifiable curve \(\alpha: [0, 1] \to M\) from \(x_1\) to \(x_2\) such that

\[L(\alpha) < L(c). \]

Lemma 3.15. Suppose that \((x, v) \in G(M, F)\), and the exit direction \(\eta\) is tangential to the boundary at \(z\). Assume that there exists \(h > 0\) such that for any \(h' \in (0, h)\) the geodesic \(\gamma_{z,\xi_{h'}}: [0, \tau_{exit}(x, v)] \to M\) is well defined, where

\[\xi_{h'} := \frac{-\eta + h' \hat{v}_{in}}{F(z, -\eta + h' \hat{v}_{in})} \in T_z M. \]

Then there exist sequences \((h_j)_{j=1}^\infty, (\epsilon_j)_{j=1}^\infty \subset \mathbb{R}\) such that \(h_j, \epsilon_j > 0, h_j, \epsilon_j \to 0\) as \(j \to \infty\) and moreover the geodesic \(\gamma_{z,\xi_{h_j}}\) is a distance minimizing curve of \((M, \hat{F})\) from \(z\) to \(\gamma_{z,\xi_{h_j}}(\tau_{exit}(x, v) - \epsilon_j)\) for any \(j \in \mathbb{N}\) that is large enough.

Proof of Proposition 3.13. Since the sets \(\hat{G}(M, F)\) and \(G(M, F)\) are conical it suffices to prove that

\[\hat{G}(M, F) \cap SM = G(M, F) \cap SM. \]

We first prove \(\hat{G}(M, F) \subset G(M, F)\), which implies \(G(M, F) \subset \hat{G}(M, F)\). We let \((x, v) \in \hat{G}(M, F)\). If \(x \in M^{int}\), then clearly \((x, v) \in G(M, F)\). If \((x, v) \in \partial_{out} TM\) then due to transversality of \(v\) and \(T_z \partial M\) there exists \(\epsilon > 0\) such that for every \(t \in (0, \epsilon)\) we have

\[(\gamma_{x,v}(-t), \dot{\gamma}_{x,v}(-t)) \in G(M, F). \]

Thus \((x, v) \in G(M, F)\).

\[\hat{G}(M, F) \cap SM = G(M, F) \cap SM. \]
Next we show that \(G(M, F) \subset G(M, F) \). We let \((x, v) \in G(M, F)\). Lemma \ref{3.15} implies that for any \(s \in (0, \tau_{\text{exit}}(x, v)) \) we have \((\gamma_{x,v}(s), \dot{\gamma}_{x,v}(s)) \in \tilde{G}(M, F)\) if \(\dot{\gamma}_{x,v}(\tau_{\text{exit}}(x, v)) \) is transversal to \(\partial M \). This implies, \((x, v) \in G(M, F)\).

Therefore, we assume that \((\gamma_{x,v}(\tau_{\text{exit}}(x, v)), \dot{\gamma}_{x,v}(\tau_{\text{exit}}(x, v))) := (z, \eta)\) is tangential to \(\partial M \). We let \((N, H)\) be a smooth complete Finsler manifold without boundary that extends \((M, \tilde{F})\) and \(\Pi \subset T_{\gamma}N \) be the two dimensional vector subspace spanned by \(\{\eta, \tilde{\nu}_{in}\} \). If \(a \in (0, \tau_{\text{exit}}(x, v))\) is small enough, then

\[
S(a) := \{\exp_{\tilde{\gamma}_{x,v}}(w) \in N : w \in \Pi, \tilde{F}(z, w) < a\}
\]

is a \(C^1\)-smooth hyper surface of \(N\) with a coordinate system given by \(\eta \) and \(\tilde{\nu}_{in} \).

We note that possible after choosing smaller \(a \) the set \(S(a) \cap \partial M \) is given by a \(C^1\)-smooth graph \((s, c(s)) \in S(a) \) such that for \(s < 0 \) we have \(c(s) < 0 \). This follows since \(\partial M \) is a smooth co-dimension 1 manifold and with respect to the coordinates \((\eta, \tilde{\nu}_{in})\) of \(S(a) \) we have \((-t, 0) = \gamma_{x,v}(\tau_{\text{exit}}(x, v) - t)\) and \(\dot{\gamma}_{x,v}(\tau_{\text{exit}}(x, v) - t) \) does not hit \(\partial M \), if \(t \in (0, a) \). Thus for any \(h > 0 \) and \(t \in (0, a) \) the geodesic \(\tilde{\gamma}_{z,\xi_h} \) with

\[
\xi_h := \frac{-\eta + h \tilde{\nu}_{in}}{\tilde{F}(z, -\eta + h \tilde{\nu}_{in})}
\]

of the Finsler function \(H \) satisfies \(\tilde{\gamma}_{z,\xi_h}(t) \in M^{\text{int}} \).

The interval \([0, \tau_{\text{exit}}(x, v) - \frac{c}{2}]\) is compact and \(\gamma_{x,v}([0, \tau_{\text{exit}}(x, v) - \frac{c}{2}]) \subset M^{\text{int}} \). Thus there is \(r > 0 \) such that for all \(t \in [0, \tau_{\text{exit}}(x, v) - \frac{c}{2}] \) we have \(d_F(\gamma_{x,v}(t), \partial M) < r \). Therefore the continuity of the exponential map implies that for any \(h > 0 \) small enough and \(t \in (0, \tau_{\text{exit}}(x, v)) \) we have \(\tilde{\gamma}_{z,\xi_h}(t) \in M^{\text{int}} \).

We note that Lemma \ref{3.16} implies that for any \(h, \epsilon > 0 \) that are small enough we have

\[
(x', v') := \left(\tilde{\gamma}_{z,\xi_h}(\tau(x, v) - \epsilon), \tilde{\gamma}_{z,\xi_h}(\tau(x, v) - \epsilon) \right) \in G(M, F).
\]

Then Lemma \ref{3.15} implies \((x', v') \in G(M, F)\). Taking \(h \) and \(\epsilon \) to zero we finally obtain \((x, v) \in G(M, F)\). \(\square\)

Proof of Lemma \ref{3.14} Since \(\lim_{t \to 0} c(t) \) is transversal to \(\partial M \), there exists \(\epsilon \in (0, \delta) \) such that \(c|_{(0-\epsilon, t_0)} \) is a geodesic in \(M^{\text{int}} \). We let \((\tilde{M}, \tilde{F})\) be any compact Finsler manifold that extends \((M, F)\) and for which \(c(t_0) \) is an interior point. Since \(c|_{0-\epsilon, t_0} \) is also a geodesic of the extended manifold \((\tilde{M}, \tilde{F})\), it follows from [60] Proposition 11.3.1] that there exists \(t_1 \in (t_0 - \epsilon, t_0) \) such that for \(x := c(t_1), z := (c(t_0)) \) we have

\[
(t_0 - t_1) = d_{\tilde{F}}(x, z) = d_{\tilde{F}}(x, z) = \tau_{\text{exit}}(x, \dot{c}(t_1)),
\]

and the exponential map of \((\tilde{M}, \tilde{F})\) is a \(C^1\)-diffeomorphism from

\[
\{y \in T_xM : F(y) < 2(t_0 - t_1)\}
\]

onto a metric ball \(B_{\tilde{F}}(x, 2(t_0 - t_1)) \) of \((\tilde{M}, \tilde{F})\).
Since \(\lim_{t \to t_0} c(t) \) is transversal to \(\partial M \) it follows from the Implicit Function Theorem that there exists a neighborhood \(U \subset S_x M \) of \(v := c(t_1) \) where the function \(\tau_{\text{exit}} \) is smooth and \(\tau_{\text{exit}}(x, w) < 2(t_0 - t_1) \), whenever \(w \in U \). We let
\[
C := \{rw \in T_x M : w \in U, r \in [0, \tau_{\text{exit}}(x, w)]\}.
\]
Then \(\exp_x(C) \) contains an open neighborhood of \(z \) in \(M \). Since path \(c \) is continuous there exists \(t_2 > t_0 \) such that \(\exp_x^{-1}(c(t_2)) \in C \), and moreover
\[
F(x, \exp_x^{-1}(c(t_2))) = \tilde{d}_F(x, c(t_2)) = d_F(x, c(t_2)),
\]
since for any \(w \in U \) the radial geodesic \(\gamma_{x,v} \) of \((\tilde{M}, \tilde{F})\) has the minimal length among all curves connecting \(x \) to \(\gamma_{x,v}(t), t \in (0, 2(t_0 - t_1)) \).

If we denote by \(\tilde{c} \) the geodesic of \((M, F)\) that satisfies the initial condition \((\tilde{c}(0), \tilde{c}(0)) = (x, \tilde{c}(t_1))\), then it leaves \(M \) at \(z \). Therefore, there exits a geodesic \(\gamma \) of \((M, F)\) connecting \(x = c(t_1) \) to \(c(t_2) \) which satisfies
\[
\mathcal{L}(c|_{[t_1, t_2]}) > \mathcal{L}(\gamma).
\]
This implies the claim. \(\square \)

Proof of Lemma 3.15 We note first that it follows from the Implicit Function Theorem that there exists a neighborhood \(U \subset SM \) of \((x, v)\) such that function \(\tau_{\text{exit}} \) is smooth in \(U \). Therefore, the mapping
\[
U \ni (\tilde{x}, w) \mapsto (z(\tilde{x}, w), \eta(\tilde{x}, w)) := (\gamma_{\tilde{x}, w}(\tau_{\text{exit}}(\tilde{x}, w)), \gamma_{\tilde{x}, w}(\tau_{\text{exit}}(\tilde{x}, w)))
\]
is smooth and without loss of generality we may assume \(\eta(\tilde{x}, w) \) is transverse to \(\partial M \) for any \((\tilde{x}, w) \in U \).

We let \((N, H)\) be any compact Finsler manifold without boundary extending \((M, F)\). We set \((x', v') := (\gamma_{x,v}(s), \gamma_{x,v}(s))\) and it follows that the points \(x' \) and \(z := z(x, v) \) are not conjugate along \(\gamma_{x,v} \). Therefore, the exponential map \(\exp_{x'} \), of Finsler function \(H \) is a diffeomorphism in a neighborhood \(V \subset T_x N \) of \(hv' \), for \(h := (\tau_{\text{exit}}(x, v) - s) \) onto some neighborhood of \(z \) in \(N \). Moreover
\[
h = d_F(x', z) \geq d_H(x', z).
\]

To finish the proof, we show that we can find a smooth Finsler manifold \((\tilde{M}, \tilde{F})\) so that \(M \subset \tilde{M} \subset \tilde{N} \), \(\tilde{F} = H|_{\tilde{M}} \), \(z \in \tilde{M}^{\text{int}} \) and there exists a neighborhood \(A \subset M^{\text{int}} \) of \(x' \) so that
\[
d_F(\tilde{x}, z) = \tilde{d}_F(z, \exp_{x'}^{-1}(\tilde{x})), \quad \tilde{x} \in A.
\]
Above the exponential map is given with respect to \(\tilde{F} \). This implies \((x', v') \in \tilde{G}(M, F)\) and since \(s \in (0, \tau_{\text{exit}}(x, v)) \) was arbitrary we have \((x, v) \in \tilde{G}(M, F)\).

We let \(W_0 \) be the image of \(V \) under the orthogonal projection \(y \mapsto \frac{y}{\langle y, y \rangle} \) on \(S_{x'} N \). We let \(r_0 \in (0, d_F(x', \partial M)) \) be so small that for any \(w \in S_{x'} M \) geodesic \(\gamma_{x', w}[0, r_0] \) is a distance minimizer of \(H \) and contained in \(M^{\text{int}} \). In addition we define
\[
\Gamma := \{\exp_{x'}(r_0 w) \in M^{\text{int}} : w \in (S_{x'} N) \setminus W_0\},
\]
Since this set is compact it follows from the triangle inequality that there exists $\epsilon_0 > 0$ which satisfies
\[r_0 + d_F(\Gamma, z) \geq d_F(x', z) + \epsilon_0, \tag{16} \]
as otherwise there would exist a \tilde{F}-distance minimizing curve from z to x which is not C^1 at x'.

For $p \in N$ and $r > 0$ we define
\[\overrightarrow{B_H}(p, r) := \{ q \in N : d_H(q, p) < r \}. \]
Since the points x' and z are not conjugate along $\gamma_{x,v}$ we can choose a neighborhood set $W_1 \subset W_0$ of ν', and $2\epsilon_1 < \epsilon_0, \delta > 0$ such that
\[\overrightarrow{B_H}(z, 2\epsilon_1) \subset (\exp_{x'}((0, h + \delta) \times W_1)) \cap \overrightarrow{B_F}(z, \epsilon_0) \]
and the geodesic $\gamma_{x,v}$ is the shortest curve from x' to z contained in $\exp_{x'}((0, h + \delta) \times W_1))$.

We write $M_k := M \cup \overrightarrow{B_H}(z, k\epsilon_1)$, for $k \in \{1, 2\}$. Finally, we let (\tilde{M}, \tilde{F}) be any smooth compact Finsler manifold with boundary such that
\[M_1 \subset \tilde{M} \subset M_2 \quad \text{and} \quad \tilde{F} = H|_{\tilde{M}}. \]
If β is a distance minimizing curve of (\tilde{M}, \tilde{F}) from x' to z it is a geodesic of (M, F) for $t < r_0$. Therefore, we have that $\beta = \gamma_{x,v}$ if $\dot{\beta}(0) \in W_1$. If $\dot{\beta}(0) \in (W_0 \setminus W_1)$, then β hits $\partial \tilde{M}$ transversally outside $\overrightarrow{B_H}(z, 2\epsilon_1)$, which cannot happen due to Lemma 3.14. If $\dot{\beta}(0) \in (\overrightarrow{S_{\nu'}} N) \setminus W_0$ then by (16) we have
\[r_0 + d_F(\Gamma, z) - \epsilon_0 \geq d_F(x', z) \geq d_{\tilde{F}}(x', z) \geq r_0 + s_1 + 2\epsilon_1, \]
where $s_1 \geq 0$ is the time it takes to travel from Γ to $(\overrightarrow{B_H}(z, 2\epsilon_1) \cap \tilde{M})$ along the curve β. We note that $\beta(r_0 + s_1)$ is contained in M which implies
\[s_1 + \epsilon_0 \geq d_{\tilde{F}}(\Gamma, z). \]
Thus we arrive at a contradiction $0 \geq 2\epsilon_1$, and we have proven that $\gamma_{x,v}$ is the unique distance minimizing curve of (\tilde{M}, \tilde{F}) connecting x' to z.

Since x' and z are not conjugate points along $\gamma_{x,v}$, the exponential map of the reversed Finsler function \tilde{F} is a diffeomorphism from a neighborhood of $-h\eta \in T_x \tilde{M}$, $\eta := \eta(x, v)$ to a neighborhood of x'. Thus the local distance function
\[q \mapsto \rho(q, z) := \tilde{F}(z, \left(\exp^{-1}_{\tilde{M}}(q)\right)) \]
is smooth near x' and due to earlier part of this proof it coincides with $d_{\tilde{F}}(\cdot, z)$ at x'.

We suppose that there exists a sequence $(x_j)_{j=1}^{\infty} \subset M$ that converges to x' and for which it holds that
\[d_{\tilde{F}}(x_j, z) < \rho(x_j, z). \tag{17} \]
We let β_j be a distance minimizing curve of \widetilde{M} from z to x_j. Since $(\widetilde{M}, \widetilde{F})$ is a compact (non-symmetric) metric space it follows form [54] there exists a rectifiable curve β_∞ connecting z to x', that is a uniform limit of β_j, and whose length is not greater than $d_{\widetilde{F}}(x', z)$. This implies $\beta_\infty(t) = \gamma_{x',v}(h - t)$, since $\gamma_{x',v}$ is the unique \widetilde{F} distance minimizer from x' to z.

Since $z \in M^{int}$, there exists $R > 0$ such that for every $j \in \mathbb{N}$ the curve $\beta_j(t)$ is a geodesic of $(\widetilde{M}, \widetilde{F})$ if $t \in [0, R]$. Therefore,

$$\beta_j(0) \to -\eta \in S_z \widetilde{M} \quad (18)$$

and the continuity of the exit time function τ_{exit} implies that there exists $J \in \mathbb{N}$ such that for every $j > J$ the curve β_j is a geodesic of (M, \widetilde{F}). Thus (17) and (18) contradict with the assumption that \exp_{z} is a diffeomorphism near $-h\eta$.

Therefore, (17) cannot hold and we have that $d_{\widetilde{F}}(\cdot, z)$ and the local distance function $\rho(\cdot, z)$ coincide near x'. Hence there exists a neighborhood $A \subset M^{int}$ of x' in which we have

$$d_{\widetilde{F}}(\cdot, z) = d_{\widetilde{F}}(\cdot, z) = \rho(\cdot, z),$$

due to continuity of the exit time function.

Proof of Lemma 3.10 We let (z, η) be the exit point and direction of $\gamma_{x,v}$. We let $(\widetilde{M}, \widetilde{F})$ be any compact Finsler manifold for which $z \in M^{int}$, and choose $s \in (0, \tau_{\text{exit}}(x, v))$ and denote $\ell = \ell(s) := \tau_{\text{exit}}(x, v) - s$. Then for $x' := (\gamma_{x,v}(s))$ the point z is not a conjugate point along $\gamma_{x,v}$. Since the conjugate distance function is lower continuous [60, Section 12.1] there exist neighborhoods $V \subset T_z M$ of $-\ell \eta$ and $U \subset \widetilde{M}$ of $\gamma_{x,v}([s, \tau_{\text{exit}}(x, v)])$ such that for any $y \in V$ the shortest curve that is contained in U and connects z to the point $x(y) := \exp_{z}(y) \in U$, is the geodesic $t \to \exp_{z}(t\eta)$, $t \in [0, 1]$.

We let $(h_j)_{j=1}^\infty$, $(\epsilon_j)_{j=1}^\infty \subset \mathbb{R}$ be such that $h_j, \epsilon_j > 0$, $h_j, \epsilon_j \to 0$ as $j \to \infty$. Denote $x_j := \gamma_{z,\xi_{h_j}}(\ell - \epsilon_j)$, where $\xi_{h_j} := \frac{-\eta + h_j \nu_{\eta \in \nu_{z}}}{\nu_{F(z,-\eta + h_j \nu_{\eta \in \nu_{z}})}}$. Then $x_j \to x'$ as $j \to \infty$. We let $c_j : [0, \ell] \to M$ be a distance minimizing curve of (M, \widetilde{F}) from z to x_j. Then we have

$$\mathcal{L}(c_j) \to \ell \text{ as } j \to \infty.$$

Due to [54] we can without loss of generality assume that curves c_j converge uniformly to a rectifiable curve c_∞, from z to x', that satisfies

$$\mathcal{L}(c_\infty) \leq \ell.$$

Then [60] Proposition 11.3.1] implies $c_\infty = \gamma_{z,-\eta} \mid [0, \ell]$, since otherwise there would exist a distance minimizing curve of (M, \widetilde{F}) from z to x that is not C^1-smooth at x'. Since $c_j \to \gamma_{z,-\eta} \mid [0, \ell]$ uniformly in $[0, \ell]$ there exists $J \in \mathbb{N}$ such that for all $j \geq J$ we have $(\exp_{x})^{-1}(x_j) \in V$ and the image of c_j is contained in U. Thus after unit speed reparametrization of c_j we have, $c_j(t) = \gamma_{z,\xi_{h_j}}(t)$ for any $t \in [0, \ell - \epsilon_j]$.

We recall that above we had \(\ell \) = \(\tau_{\text{exit}}(x, v) - s \). The claim of this lemma follows using a diagonal argument for sequence \((\epsilon_j^i)_{i=1}^\infty, (h_j^i)_{i=1}^\infty \subset (0, 1)\) which are chosen as above for \(s_j \in (0, \tau_{\text{exit}}(x, v)) \), \(j \in \mathbb{N} \), such that \(s_j \to 0 \) when \(j \to 0 \). \(\square \)

3.4. Finsler structure. In this section, we prove that the data \(\text{(1)} \) determine the set \(\hat{G}(M, F) \), (see \(\text{(14)} \)) and the Finsler function \(F \) on it. Again we deal separately with interior and boundary cases.

Lemma 3.17. Let \(x \in M^{\text{int}} \). The set \(T_x M \cap \hat{G}(M, F) \) contains an open non-empty set. Moreover the data \(\text{(1)} \) determine the set \(T_x M \cap \hat{G}(M, F) \) and \(F \) on it.

Proof. We let \(z_x \in \partial M \) be a closest boundary point to \(x \). By Lemma 3.8 the function \(dF(\cdot, z_x) \) is smooth at \(x \). Moreover \(v := -\gamma_{z_x, v_{\gamma_n(z_x)}}(dF(x, z_x)) \in S_x M \cap \hat{G}(M, F) \).

Thus the set \(S_x M \cap \hat{G}(M, F) \) is not empty. By Corollary 3.9 there exists a neighborhood \(U \subset S_x M \) of \(v \) that is contained in \(\hat{G}(M, F) \).

Next, we prove the latter claim. We let \(z \in \partial M \) be such that the function \(dF(\cdot, z) \) is smooth at \(x \). We let \(v \in S_x M \). Then

\[
\left. d(d_{\hat{F}}(z, \cdot)) \right|_x = g_v(\cdot, \cdot) = \ell_x(v) \quad \text{if and only if} \quad \gamma_{x, -v}(dF(x, z)) = z, \quad (19)
\]

where \(g_y(\cdot, \cdot) \) is the hessian of \(\frac{1}{2}F^2(x, y) \) with respect to \(y \) variables and \(\ell_x \) is the Legendre transform of Finsler function \(F \) at \(x \). The property \(\text{(19)} \) implies that the set

\[
A(x) := \{ \left. d(d_{\hat{F}}(z, \cdot)) \right|_x : z \in \partial M, \ d_{\hat{F}}(z, \cdot) \text{ is } C^\infty \text{ at } x \}
\]

satisfies

\[
A(x) = \ell_x(S_x M \cap (-\hat{G}(M, F))).
\]

Since the Legendre transform is an isometry the dual map \(\left(\hat{F} \right)^* \) is constant 1 on \(A(x) \). As the function \(\left(\hat{F} \right)^* \) is positively homogeneous of order 1 we have determined \(\left(\hat{F} \right)^* \) on \(\mathbb{R}_+ A(x) := \{ rp \in T_x^* M : p \in A(x), \ r > 0 \} \). Recall that the components of the Legendre satisfy

\[
\left(\ell_x^{-1}(p) \right)_j = \frac{1}{2} \left(\frac{\partial}{\partial p^i} \frac{\partial}{\partial p^j} \left(\left(\hat{F} \right)^* \right)^2 (x, p) \right) p_i \quad (20)
\]
for all \(p \in T^*_x M \). Since \(\left(\begin{array}{c} F \\ x \end{array} \right)^* \) is recovered on \(\mathbb{R}_+ A(x) \) the equation \((20)\) determines \((\ell^x)_{-1} \) on \(\mathbb{R}_+ A(x) \). Therefore,

\[
T_0 \mathcal{M} \cap (-\mathcal{G}(M, F)) = (\ell^x)_{-1}(\mathbb{R}_+ A(x)) \quad \text{and} \quad
t F = \left(\begin{array}{c} F \\ x \end{array} \right)^* \quad \text{on} \quad T_0 \mathcal{M} \cap (-\mathcal{G}(M, F)).
\]

Finally,

\[
F(x, y) = \mathcal{F}(x, -y).
\]

This concludes the proof. \(\square\)

Lemma 3.18. Let \(x \in M^\text{int}_1 \). Then

\[
\mathcal{G}(M_1, F_1) \cap T_0 \mathcal{M}_1 = \mathcal{G}(M_1, \Psi^* F_2) \cap T_0 \mathcal{M}_1
\]

and

\[
F_1(y) = F_2(\Psi^* y), \quad y \in (\mathcal{G}(M_1, F_1) \cap T_0 \mathcal{M}_1).
\]

Proof. The mapping \(\Psi \) is a diffeomorphism that satisfies

\[
d_{F_2}(\Psi(\cdot),\phi(\cdot))|_{M_1 \times \partial M_1} = d_{F_1}(\cdot,\cdot)|_{M_1 \times \partial M_1}.
\]

Thus for any \(z \in \partial M_1 \) the function \(d_{F_2}(\Psi(\cdot),\phi(z)) \) is smooth at \(\Psi(x) \) if and only if \(d_{F_1}(\cdot, z) \) is smooth at \(x \). Therefore, the claims follow by applying the differential of \(M_1 \) to the both sides of \(21\) and using \(19\)–\(20\). \(\square\)

Next, we consider the boundary case.

Lemma 3.19. Let \(x \in \partial M \). Then data \((1)\) determine \(F \) on

\[
\partial_\text{out} \mathcal{M} \cap T_x M = \{ y \in T_x M : g_{\nu_{\text{in}}} (\nu_{\text{in}}, y) < 0 \}.
\]

Proof. We let \(y \in T_x M \setminus \{0\} \) be an outward pointing vector that is not tangential to the boundary. We let \(b > a \geq 0 \) and choose any smooth curve \(c : [a, b] \to M \) such that

\[
c((a, b)) \subset M^\text{int}, \quad c(b) = x, \quad \dot{c}(b) = y.
\]

Recall that with respect to the geodesic coordinates at \(x \) we have \(d_F(x, c(t)) = F(\exp_x^{-1}(c(t))) \). Since \(F \) is continuous we have

\[
\lim_{t \to b} \frac{d_F(x, c(t))}{b - t} = F(\dot{c}(b)) = F(y).
\]

Since \(y \in T_x M \setminus \{0\} \) was an arbitrary outward pointing vector the data \((1)\) and \((22)\) determine \(F \) on the set \(\partial_\text{out} \mathcal{M} \cap T_x M \). \(\square\)

Lemma 3.20. For any \((x, y) \in \partial_\text{out} \mathcal{M}_1 \) it holds that

\[
F_1((x, y)) = F_2(\Psi(x, y)).
\]

Proof. The claim follows from \(21\) and \(22\). \(\square\)

Now we are ready to give a proof of Theorem 1.3.
Proof of Theorem 1.3. By theorems 3.2 and 3.12, the map $\Psi: M_1 \to M_2$ is a diffeomorphism, and the pullback Ψ^*F_2 of F_2 gives a Finsler function on M_1. By Lemmas 3.18 and 3.20 we have proved that $\overline{G(M_1,F_1)}$ and $\overline{G(M_1,\Psi^*F_2)}$ coincide and in this set $F_1 = \Psi^*F_2$.

We still have to show that the data (11) are not sufficient to guarantee that F_1 and F_2 coincide in $\text{T}M_1^{\text{int}} \setminus \overline{G(M_1,F_1)}$. We denote a manifold M_1 by M and a Finsler function F_1 by F. If $\text{T}M_1^{\text{int}} \setminus \overline{G(M,F)}$ is not empty, we choose $(x_0,v_0) \in \text{T}M_1^{\text{int}} \setminus \overline{G(M,F)}$, $F(v_0) = 1$ and a neighborhood $V \subset \text{T}M_1^{\text{int}} \setminus \overline{G(M,F)}$ of (x_0,v_0) such that

$$\text{dist}_F(\pi(V), \partial M) > 0. \quad (23)$$

We denote the radial projection of V to the unit sphere bundle of (M,F) by W. We let $\alpha \in \mathcal{C}_0^\infty(W)$ be non-negative and define a function

$$H: \mathbb{R} \times \text{T}M \to \mathbb{R}, \quad H(s,y) = \left(1 + s\alpha\left(\frac{y}{F(y)}\right)\right)F(y). \quad (24)$$

We show that there exists $\epsilon > 0$ such that for any $s \in (-\epsilon, \epsilon)$ the function $H(s,\cdot): \text{T}M \to \mathbb{R}$ is a Finsler function.

Since α is compactly supported it holds, for $|s|$ small enough, that $H(s,\cdot)$ is non-negative, continuous and $H(s,y) = 0$ if and only if $y = 0$. Moreover $H(s,\cdot)$ is smooth outside the zero section of M. Clearly also the scaling property $H(s,ty) = tH(s,y)$, $t > 0$ is valid.

We let (x,y) be a smooth coordinate system of $\text{T}M$ near (x_0,v_0). To prove that $H(s,\cdot)$ is a Finsler function, we have to show that for every $(x,y) \in \text{T}M \setminus \{0\}$ the Hessian

$$\frac{1}{2} \frac{\partial}{\partial y^i} \frac{\partial}{\partial y^j} H^2(s,(x,y)) = \frac{1}{2} \frac{\partial}{\partial y^i} \frac{\partial}{\partial y^j} \left[\left(1 + s\alpha\left(\frac{y}{F(y)}\right)\right)^2 \left(F(y)\right)^2 \right]$$

is symmetric and positive definite. Since $H^2(s,(x,\cdot)): T_xM \to \mathbb{R}$ is smooth outside 0 it follows that the Hessian is symmetric, and $\alpha \in \mathcal{C}_0^\infty(W)$ implies

$$\frac{1}{2} \frac{\partial}{\partial y^i} \frac{\partial}{\partial y^j} H^2(s,(x,y)) = g_{ij}(x,y) + \mathcal{O}(s)$$

where g_{ij} is the Hessian of $\frac{1}{2} F^2$. Therefore, for $|s|$ small enough $H(s,\cdot): \text{T}M \to \mathbb{R}$ is a Finsler function.

We let $\epsilon > 0$ be so small that $H(s,\cdot)$ is a Finsler function for $s \in (0,\epsilon)$. We prove that for any $x \in M$ and $z \in \partial M$

$$d_{H(s,\cdot)}(x,z) = d_F(x,z). \quad (25)$$

This implies that the boundary distance data of F and $H(s,\cdot)$ coincide.

If $c: [0,1] \to M$ is any piecewise C^1-smooth curve, (24) implies

$$\mathcal{L}_F(c) \leq \mathcal{L}_{H(s,\cdot)}(c). \quad (26)$$
We let $x \in M$ and $z \in \partial M$. Since M is compact there exists a F-distance minimizing curve $c: [0, d_F(x, z)] \to M$ from x to z. We let $I, J \subset [0, d_F(x, z)]$ be a partition $[0, d_F(x, z)]$ such that

$$c(t) \in M^{\text{int}} \quad \text{if and only if} \quad t \in I.$$

Then I is open in $[0, d_F(x, z)]$ and J is closed. On set I the curve c is a union of distance minimizing geodesic segments of F which have end points in ∂M. Thus for any $t \in I$ we have $\dot{c}(t) \in G(M, F)$. This and (24) imply

$$d_F(x, z) = \mathcal{L}_F(c) = \mathcal{L}_{H(s, \cdot)}(c),$$

and the equation (25) follows from (26). □

4. Completion of the proof of Lemma 3.6

Most of Lemma 3.6 was proven after its statement, but the final claim was deferred here. The proof of the missing claim is presented at the end of this section, once we have introduced all the tools we use.

In this section, we denote by (N, F) a compact, connected smooth Finsler manifold without boundary. We present the second variation formula in the case when the variation curves start from a smooth submanifold S of N. We introduce the concept of a focal distance and connect it to the degeneracy of the normal exponential map \exp^\perp of surface S.

We define a pullback vector bundle π^*TN over $TN \setminus \{0\}$ such that for every $(x, y) \in TN \setminus \{0\}$ the corresponding fiber is T_xN. Notice that π^*TN is then defined by the equation

$$\pi^*TN = \{(x, y) \in (T_xN \setminus \{0\}) \times T_xN : x \in N\}.$$

We let (x, y) be a local coordinates for TN. We define a local frame $(\partial_i)_{i=1}^n$ for π^*TN by

$$\partial_i|_{(x,y)} := \left((x, y), \frac{\partial}{\partial x^i}\right).$$

and a local co-vector field on TN by

$$\delta y^i := dy^i + N^i_j dx^j, \quad N^i_j(x, y) := \frac{\partial}{\partial y^j} G^i(x, y).$$

Above the functions G^i are the geodesic coefficients of F in coordinates (x, y) (see (40) in [A]). Notice that $\frac{\partial}{\partial y^j}$ is a dual vector to δy^i and a dual vector $\frac{\partial}{\partial x^i}$ to dx^i is given by

$$\frac{\delta}{\delta x^i} := \frac{\partial}{\partial x^i} - N^i_j \frac{\partial}{\partial y^j}.$$

Therefore, vectors dx^i and δy^i are linearly independent for all $i, j \in \{1, \ldots, n\}$ and it holds that

$$T^*(TN \setminus \{0\}) = \text{span}\{dx^i\} \oplus \text{span}\{\delta y^i\} =: \mathcal{H}^*(TN) \oplus \mathcal{V}^*(TN).$$

We relate π^*TN locally to $\mathcal{H}^*(TN)$ and to $\mathcal{V}^*(TN)$ by mappings

$$\partial_i \mapsto dx^i \quad \text{and} \quad \partial_i \mapsto \delta y^i, \quad i \in \{1, \ldots, n\}.$$
We denote the collection of smooth sections of π^*TN by $\mathcal{S}(\pi^*TN)$. The Chern connection is defined on π^*TN by

$$\nabla: \mathcal{T}(TN) \times \mathcal{S}(\pi^*TN) \to \mathcal{S}(\pi^*TN), \quad \nabla_X U = \left\{ dU^i(X) + U^j \omega^i_j(X) \right\} \partial_i,$$

where $\mathcal{T}(TN)$ is the collection of all smooth vector fields on $TN \setminus \{0\}$ and the connection one forms ω^i_j on $TN \setminus \{0\}$ are given by

$$\omega^i_j(x, y) := \Gamma^i_{jk}(x, y)dx^k,$$

and functions $\Gamma^i_{jk}(x, y)$ are defined by [60, equation (5.25)]. They satisfy

$$y^k \Gamma^i_{jk}(x, y) = N^i_j(x, y) \quad \text{and} \quad \Gamma^i_{jk} = \Gamma^i_{kj}. \quad (27)$$

See [60] equations (5.24) and (5.25).

Notice that any vector field X on TN, that is locally given by

$$X = X^i x^i + X^k \frac{\partial}{\partial y^k}, \quad X^i, X^k \in C^\infty(TN)$$

defines a section $\widetilde{X} \in \mathcal{S}(\pi^*TN)$ by

$$\widetilde{X}(x, y) = X^i(x, y)\partial_i.$$

Lemma 4.1. Let X, Y, Z be vector fields on TN. Then

$$\nabla_X \widetilde{Y} - \nabla_Y \widetilde{X} = [\widetilde{X}, \widetilde{Y}]. \quad (28)$$

Proof. Equation (28) follows from the definition of the Chern connection and (27). \hfill \Box

The fundamental tensor g on π^*TN is defined by

$$g(U, V) := g_{ij}(x, y)U^i(x, y)V^j(x, y), \quad U, V \in \mathcal{S}(\pi^*TN), \ (x, y) \in TN,$$

where $g_{ij}(x, y) = g_y \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right)$.

Recall that if $X = X^i \frac{\partial}{\partial x^i} + X^k \frac{\partial}{\partial y^k}$ is in $T(TN)$, then $D\pi X = X^i \frac{\partial}{\partial x^i} \in TTN$.

Lemma 4.2. Let X, Y, Z be vector fields on TN. Then

$$Yg(\widetilde{X}, \widetilde{Z}) \bigg|_{D\pi X} = \left. \left[g(\nabla_Y \widetilde{X}, \widetilde{Z}) + g(\widetilde{X}, \nabla_Y \widetilde{Z}) \right] \right|_{D\pi X}. \quad (29)$$

Proof. The proof is a direct evaluation in coordinates, using that g_{ij} is homogeneous of order zero with respect to directional variables. It is important to evaluate $Yg(\widetilde{X}, \widetilde{Z})$ at $D\pi X$ as for an arbitrary direction, (29) does not hold, since the Cartan tensor does not vanish identically. \hfill \Box

If $V(x) = V^i(x)\frac{\partial}{\partial x^i}$ is a vector field on N then $\widehat{V}(x, y) := V^i(x)\frac{\partial}{\partial x^i}$ is a horizontal vector field on TN. We call \widehat{V} a horizontal lift of V. We define a covariant derivative D_t of smooth vector field V on geodesic γ as

$$D_t V(t) := \left. \left\{ \widehat{V}^i(t) + V^j(t)N^i_j(\gamma(t)) \right\} \frac{\partial}{\partial x^i} \right|_{\gamma(t)}.$$

In the next lemma we relate the covariant derivative to the Chern connection.
Lemma 4.3. Let $t \mapsto c(t)$ be a geodesic on (N,F) and V be a smooth vector field on c that is extendible. Write $V(x) = V^i(x) \frac{\partial}{\partial x^i}$. Then $\tilde{V}(x,y) := V^i(x) \partial_i(x,y)$ is a smooth section of $S(\pi^*TN)$ and

$$\tilde{D}_V = \nabla^\gamma \tilde{V}. \tag{31}$$

Proof. The claim can be verified in local coordinates using (27). \hfill \Box

We now consider variations of a geodesic γ: $[0,h] \to N$ normal to a hypersurface S so that one endpoint stays on S and the other one is fixed. We denote the starting point of γ by $z_0 \in S$. For a smooth curve σ on S we assume that a variation $\Gamma(s,t)$ satisfies $\Gamma(s,0) = \sigma(s)$, $\Gamma(s,h) = \gamma(h)$, and $\Gamma(0,t) = \gamma(t)$ for all values of the time $t \in [0,h]$ and the variation parameter s near zero. The variation field $J(t) := \frac{\partial}{\partial s} \Gamma(s,t)|_{s=0}$ is a vector field along γ and satisfies the boundary conditions $J(0) = \dot{\sigma}(0)$ and $J(h) = 0$. We additionally assume that the variation is normal: $g_{\gamma}(\dot{\gamma}, J) \equiv 0$.

The second variation formula (see [60, Chapter 10]) and equations (29)–(31) imply that

$$\frac{\partial^2}{\partial s^2} \mathcal{L}(\Gamma(s, \cdot)) \bigg|_{s=0} = \int_0^h g_\gamma(D_s^2 J(t) - R_{\gamma}(J(t)), J(t)) dt + g(\nabla_{\dot{\gamma}} \tilde{V} - \nabla_{\dot{\gamma}} \tilde{J}, \tilde{J})_{\nu},$$

where $R_{\gamma}(\cdot)$ is the Riemannian curvature tensor (see [60, Chapter 6]). If J is a Jacobi field, the expression simplifies to

$$\frac{\partial^2}{\partial s^2} \mathcal{L}(\Gamma(s, \cdot)) \bigg|_{s=0} = g(\nabla_{\dot{\gamma}} \tilde{V} - \nabla_{\dot{\gamma}} \tilde{J}, \tilde{J})_{\nu}.$$

To discuss geodesic variations of γ, we consider normal Jacobi fields J along γ that satisfy

$$J(0) \in TS \text{ and } \left(\nabla_{\dot{\gamma}} \tilde{V} - \nabla_{\dot{\gamma}} \tilde{J}\right)_{\nu} = 0. \tag{32}$$

We let \mathcal{J} be the collection of all normal Jacobi fields on γ that satisfy (32) and $\mathcal{J}_0 = \{J \in \mathcal{J} : J(h) = 0\}$. Following [16], we call \mathcal{J} the space of transverse Jacobi fields.

Lemma 4.4. A vector field J on γ is a transverse Jacobi field if and only if

$$J(t) = D \exp^\gamma \bigg|_{(z_0,t)} \theta \quad \text{for some } \theta = J(0) \in T_{z_0}S. \tag{33}$$

Proof. We let $\epsilon > 0$ and $U \subset S$ be a neighborhood of z_0 be such that the normal exponential map $\exp^\gamma: U \times (-\epsilon, \epsilon) \to N$ is a diffeomorphism onto its image. We define a unit length vector field W, that is orthogonal to S, by

$$W(x) := \frac{\partial}{\partial t} \exp^\gamma(z, t) = \dot{\gamma}_{z,v(z)}(t), \quad (z, t) \in U \times (-\epsilon, \epsilon),$$

where $x = \exp^\gamma(z, t)$.

For any \(z \in U \) the geodesic \(\gamma_{z,\nu}(z) \) of \(F \) is also a geodesic of the local Riemannian metric

\[
g_W(x) := \text{Hess}_y \left(\frac{1}{2} F(x, y)^2 \right) \bigg|_{y = W(x)},
\]

that is normal to \(S \). This implies that the normal exponential maps of \(F \) and \(g_W \) coincide in \(U \times (-\epsilon, \epsilon) \) and moreover \(D_t = D_t^W \), where \(D_t \) is the covariant derivative of \(F \) (given in (30)) and \(D_t^W \) is the covariant derivative of Riemannian metric \(g_W \) on \(\gamma_{z,\nu}(z) \).

Now we are ready to prove the claim of this lemma. We let \(\sigma(s) \in S \) be a smooth curve with initial conditions \(\sigma(0) = z_0 \) and \(\dot{\sigma}(0) = \eta = J(0) \). Define \(\Gamma(s, t) = \exp^\perp(\sigma(s), t) \). Then \(\Gamma(0, t) = \gamma(t) \) and all the variation curves \(t \mapsto \Gamma(s, t) \) are geodesics. Therefore, the variation field

\[
V(t) := \frac{\partial}{\partial s} \Gamma(s, t) \bigg|_{s=0}
\]

with \(t \in (-\epsilon, \epsilon) \) is a Jacobi field of \(F \) that satisfies

\[
V(0) = \frac{\partial}{\partial s} \Gamma(s, t) \bigg|_{s=t=0} = D \exp^\perp(\sigma(0)) = \eta.
\]

Therefore, it suffices to show that \(D_t J(0) = D_t V(0) \). We note that since \(g_W \) is a Riemannian metric the following symmetry holds true,

\[
D_t \frac{\partial}{\partial s} = D_s \frac{\partial}{\partial t}, \quad (34)
\]

along any transverse curve \(s \mapsto \Gamma(s, t) \). Above \(D_s \) is a covariant derivative of \(g_W \) along transverse curve \(\Gamma(\cdot, t) \). We also assume that \(\dot{\sigma} \) can be extended to a smooth vector field \(Y \) on \(N \). Then the equation (34) implies

\[
D_t V(0) = \nabla_Y W \bigg|_{z_0} = \nabla_{\dot{\eta}} W,
\]

where \(\nabla \) is the Riemannian connection of \(g_W \). To end the proof we still have to show the first equation of the following

\[
\widetilde{\nabla}_{\dot{\eta}} W = \nabla_{\dot{\eta}} W = \nabla_{\widetilde{\eta}} \widetilde{\eta} = D_t J(0),
\]

where \(\nabla \) is the Chern connection of \(F \). The proof of this claim is a direct computations in local coordinates.

We obtain the following lemma as a direct consequence.

Lemma 4.5. Set \(J \) is a real vector space of dimension \(n-1 \).

Proof. The claim follows since the dimension of \(S \) is \(n-1 \) and the operator given by (33) is linear in \(T_{z_0} S \) and onto at \(t = 0 \). \(\square \)
Similarly to the spaces \mathcal{J} and \mathcal{J}_0 of Jacobi fields defined above, we denote by \mathcal{V} the collection of piecewise smooth normal vector fields along γ satisfying (32) and by \mathcal{V}_0 the subspace vanishing at $\gamma(h)$. On \mathcal{V}_0 we define the index form

$$I(V, W) := \int_0^h g_\gamma(D_t V(t), D_t W(t)) - g_\gamma(R_\gamma(V(t)), W(t)) dt$$

Lemma 4.6. The index form I on \mathcal{V}_0 is a symmetric bilinear form.

Proof. Clearly, I is bilinear. It is proven in [60, Section 8.1] that for all $x \in N$ and $y, v, w \in T_x N$, it holds that

$$g_y(R_y(v), w) = g_y(v, R_y(w)).$$

Since V, W are normal to $\dot{\gamma}$, the equation

$$g(\nabla^{\tilde{g}} V \big|_{\dot{\gamma}(0)}, \tilde{\nu}) = g(\nabla^{\tilde{g}} W \big|_{\dot{\gamma}(0)}, \tilde{\nu})$$

follows from (29) and the symmetry of the second fundamental form (see [60, Section 14.4]).

Lemma 4.7. Assume that γ is not self-intersecting on $[0, h]$. We let $V \in \mathcal{V}$. There exists $\delta > 0$ and a variation $\Gamma: (\delta, \delta) \times [0, h] \to N$ of γ whose variation field $\frac{\partial}{\partial s}\Gamma(s, t)|_{s=0}$ is $V(t)$ and $\Gamma(s, 0)$ is a smooth curve on S. Moreover if $t_1, \ldots, t_k \in [0, h]$ are the points where V is not smooth then $\Gamma: (\delta, \delta) \times (t_i, t_{i+1}) \to N$ smooth.

Proof. We let W be a smooth vector field that is an extension of $\dot{\gamma}(t)$ in a neighborhood of $\gamma([0, h])$. Using the Fermi coordinates of S, with respect to the local Riemannian metric g_W, we can construct a Riemannian metric \tilde{g} in some neighborhood of $\gamma([0, h])$ such that S is a geodesic submanifold of \tilde{g} and γ is a geodesic of \tilde{g} that is \tilde{g}-normal to S. Then we use the following variation to prove the claim of this lemma.

We let $\delta > 0$ and define a variation of γ with

$$\Gamma(s, t) = \exp_\tilde{g}(\gamma(t), sV(t)); \quad t \in [0, h], s \in (-\delta, \delta),$$

(35)

where $\exp_\tilde{g}$ is the exponential map of metric tensor \tilde{g}. Since S is a geodesic submanifold with respect to \tilde{g} we have that

$$\Gamma(s, 0) = \exp_\tilde{g}(\gamma(0), sV(0)) \in S, \quad s \in (-\delta, \delta).$$

Moreover

$$\frac{\partial}{\partial s}\Gamma(s, t) \bigg|_{s=0} = D((\exp_\tilde{g})_{\gamma(t)}) \bigg|_0 V(t) = V(t).$$

The claim is proven.

For a given vector field $V \in \mathcal{V}_0$ we call the variation of $\gamma(t)$ given by (35) the variation related to V.

BOUNDARY DISTANCE MAP ON FINSLER MANIFOLDS

31
Definition 4.8. We say that $\gamma(h)$ is a focal point of S if the set J_0 contains a non-zero Jacobi field.

Lemma 4.9. The point $\gamma(h)$ is a focal point of S if and only if $D\exp^\perp$ is singular at (z_0, h).

Proof. The claim follows from Lemma 4.4. \qed

We define the quantities $\tau_S(z_0)$ and $\tau_f(z_0)$ as

$$
\tau_S(z_0) = \sup\{t > 0 : t = d_F(z_0, \gamma_{z_0, \nu}(t)) = d_F(S, \gamma_{z_0, \nu}(t))\}
$$

and

$$
\tau_f(z_0) = \inf\{t > 0 : \gamma(t) \text{ is a focal point to } S\}.
$$

The function τ_S above agrees with $\tau_{\partial M}$ given in Definition 3.5 when $S = \partial M$. Our final goal is to show that $\tau_S(z_0) \leq \tau_f(z_0)$. To check the inequality, we still have to state one auxiliary result:

Lemma 4.10. If $\tau_f(z_0) > h$, then Index form I is positive definite on V_0. If $\tau_f(z_0) = h$, then I is positive semidefinite on V_0 and $I(V, V) = 0$ if and only if $V \in J_0$.

Proof. The claim follows from standard properties of the index form $I(\cdot, \cdot)$, see the proof of [16, Theorem II.5.4] for details. \qed

Lemma 4.11. Suppose that $\tau_f(z_0) < h$. Then there exists $W \in V_0$ such that

$$I(W, W) < 0.$$

Moreover,

$$\tau_S(z_0) \leq \tau_f(z_0). \quad (36)$$

Proof. Denote $\tau_f(z_0) := t_0 < h$. Choose a non-zero $J \in J$ that vanishes at t_0. Define

$$V(t) = \begin{cases} J(t), & t \leq t_0 \\ 0, & t \in [t_0, h) \end{cases}.$$

By Lemma 4.10 it holds that $I(V, V) = 0$. Since $D_t J(t_0) \neq 0$ there exists a non-zero smooth vector field $X \in V_0$ on γ that satisfies

$$\text{supp} X \subset (0, h) \text{ and } X(t_0) = -D_t J(t_0).$$

Therefore if $\epsilon > 0$ is small enough $I(V + \epsilon X, V + \epsilon X)$ is negative.

Finally, we prove (36). We denote $W := V + \epsilon X$. We let $\Gamma(s, t)$ be the variation of $\gamma(t)$ that is related to W. Since γ is a geodesic we have

$$\frac{d}{ds} L(\Gamma(s, \cdot)) = 0 \text{ and } \frac{d^2}{ds^2} L(\Gamma(s, \cdot)) = I(W, W) < 0.$$

Therefore, γ cannot minimize the length from S to $\gamma(h)$. Thus the inequality (36) is valid. \qed

Let us now summarize the proof of the remaining claim.
Proof of the final statement of Lemma 3.6. The claim remaining to be proven is that for any $t \in [0, t_0)$ the normal exponential map \exp^\perp is non-singular at (z, t). The time $t_0 = \tau_{\partial M}(z)$ is the boundary cut distance at z. We are only interested in the hypersurface $S = \partial M$, so our cut distance function to S equals that of Definition 3.5.

By Lemma 4.9 we need to show that the point $\exp^\perp(z, t)$ is not a focal point. The closest focal point to z is at distance $\tau_f(z)$ from the boundary, and so by Lemma 4.11 there are no focal points before the time $\tau_S(z) = \tau_{\partial M}(z)$. Therefore there are no focal points before the boundary cut distance, as claimed. □

Acknowledgements. MVdH was supported by the Simons Foundation under the MATH + X program, the National Science Foundation under grant DMS-1815143, and by the members of the Geo-Mathematical Imaging Group at Rice University. JI was supported by the Academy of Finland (decisions 295853, 332890, and 336254). Much of the work was completed during JI's visits to Rice University, and he is grateful for hospitality and support. ML was supported by Academy of Finland (decisions 284715 and 303754). TS was supported by the Simons Foundation under the MATH + X program. Part of this work was carried out during TS’s visit to University of Helsinki, and he is grateful for hospitality and support. We thank Antti Kykkänen and Jonne Nyberg for discussions and the anonymous referees for their valuable comments.

Appendix A. Basics of compact Finsler manifolds

In this appendix, we summarize some basic theory of compact Finsler manifolds. This section is intended for the readers having background in imaging methods and elasticity. We follow the notation of [60] and use it as a main reference. The main goal is to prove that if $x \in M$ and $z_x \in \partial M$ is a closest boundary point to x, that is the minimizer of $d_F(x, \cdot)|_{\partial M}$ or $d_F(\cdot, x)|_{\partial M}$, then the distance minimizing curve from x to z_x or from z_x to x respectively is a geodesic that is perpendicular to the boundary. Readers who are not familiar with Finsler geometry are encouraged to read this section before embarking to the proof of Theorem 1.3 presented in Section 3.

Most of the claims and the proofs given in this section are modifications of similar theorems in Riemannian geometry. We refer to the classical material where the Riemannian version is presented.

We let N be a n-dimensional, compact, connected smooth manifold without boundary. We reserve the notation TN for the tangent bundle of N and say that a function $F: TN \to [0, \infty)$ is a Finsler function if

1. $F: TN \setminus \{0\} \to [0, \infty)$ is smooth
2. For each $x \in N$ the restriction $F: T_x N \to [0, \infty)$ is a Minkowski norm.

Recall that for a vector space V a function $F: V \to [0, \infty)$ is called a Minkowski norm if the following hold

- $F: V \setminus \{0\} \to \mathbb{R}$ is smooth.
- For every $y \in V$ and $s > 0$ it holds that $F(sy) = s F(y)$.

For every $y \in V \setminus \{0\}$ the function $g_y : V \times V \to \mathbb{R}$ is a symmetric positive definite bilinear form, where

$$g_y(v, w) := \frac{1}{2} \frac{\partial}{\partial s} \frac{\partial}{\partial t} \left[F^2(y + sv + tw) \right] \bigg|_{s=t=0}. \quad (37)$$

We call the pair (N, F) a Finsler manifold.

The length of a piecewise smooth curve $c : I \to N$, I is an interval, is defined as

$$L(c) := \int_I F(\dot{c}(t))dt.$$

For every $x_1, x_2 \in N$ we define

$$d_F(x_1, x_2) := \inf_{c \in C_{x_1, x_2}} L(c),$$

where C_{x_1, x_2} is the collection of piecewise smooth curves starting at x_1 and ending at x_2. The function $d_F : N \times N \to [0, \infty)$ is a non-symmetric path metric related to F, meaning that for some $x_1, x_2 \in N$ the distance $d_F(x_1, x_2)$ need not coincide with $d_F(x_2, x_1)$ (see [4, Section 6.2]).

We note that for all $x_1, x_2 \in N$ it holds that

$$d_F(x_1, x_2) = d_{\bar{F}}(x_2, x_1), \quad (38)$$

where \bar{F} is the reversed Finsler function $\bar{F}(x, y) = F(x, -y)$.

We use the notation $g_{ij}(x, y)$ for the component functions of the Hessian of $\frac{1}{2} F^2$ as in (37). A C^1 curve $\gamma : I \to N$, with a constant speed $\dot{F}(\gamma(t)) \equiv c \geq 0$, is a geodesic of Finsler manifold (N, F) if $\gamma(t)$ solves the system of geodesic equations

$$\ddot{\gamma}^i(t) + 2G^i(\gamma(t)) = 0, \quad i \in \{1, \ldots, m\}. \quad (39)$$

Here, $G^i : TN \to \mathbb{R}$ is given in local coordinates (x, y) by

$$G^i(x, y) = \frac{1}{4} g^{ij}(x, y) \left\{ 2 \frac{\partial g_{ij}(x, y)}{\partial x^k} - \frac{\partial g_{ik}(x, y)}{\partial x^l} \right\} y^j y^k. \quad (40)$$

Since $F^2(x, y)$ is positively homogeneous of degree two with respect to y variables, it follows from (40) that G^i is positively homogeneous of degree two with respect to y, but not necessarily quadratic in y. Therefore, the geodesic equation (39) is not preserved if the orientation of the curve γ is reversed.

We define a vector field \mathbf{G}, by

$$\mathbf{G}(x, y) := y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}. \quad (41)$$

A curve γ is a geodesic of F if and only if $\gamma = \pi(c)$, where c is an integral curve of \mathbf{G}. Due to ODE theory for a given initial conditions $(x, y) \in TN$ there exists the unique solution $\gamma_{x, y}$ of (41), defined on maximal interval containing 0. Thus by defining \mathbf{G} locally with (41), it extends to a global vector field on TN. We call \mathbf{G} the geodesic vector field.

Lemma A.1 ([60, Section 5.4]). Let c be an integral curve of geodesic vector field \mathbf{G}, then $F(\dot{c}(t))$ is a constant.
We use the notations ϕ_t for the geodesic flow of F on TN and (x,v) for points in SN. By Lemma [A1] we know that for $(x,v) \in SN$ and for any $t \in \mathbb{R}$ in the flow domain of (x,v) it holds that $\phi_t(x,v) \in SN$. Since SN is compact we have proven that ϕ on SN is a global flow (see for instance [49 Theorem 17.11]), which means that the map

$$\phi : \mathbb{R} \times SN \to SN$$

is well defined. Therefore, we can define the exponential mapping \exp_x, $x \in N$ by

$$\exp_x(y) := \pi(\phi_1(x,y)) = \gamma_{x,y}(1), \quad y \in T_xN.$$

Moreover in [60] Section 11.4, it is shown that for any points $x_1, x_2 \in N$ there exists a globally minimizing geodesic from x_1 to x_2.

In the following, we relate the smoothness of a distance function to distance minimizing property of geodesics. This is done via the cut distance function $\tau : SN \to \mathbb{R}$, which is defined by

$$\tau(x,v) = \sup\{t > 0 : d_F(x, \gamma_{x,v}(t)) = t\}.$$

In the next lemma, we collect properties of the cut distance function.

Lemma A.2 ([60] Chapter 12 or [4] Chapter 8). Let $(x,v) \in SN$ and $t_0 = \tau(x,v)$. At least one of the following holds:

1. The exponential map \exp_x, of F, is singular at t_0v.
2. There exists $\eta \in S_xN$, $\eta \neq v$ such that $\exp_x(t_0v) = \exp_x(t_0\eta)$.

Moreover for any $t \in [0,t_0)$ the map \exp_x is non-singular at tv. Also the map $\tau : SN \to \mathbb{R}$ is continuous.

In the next lemma, we consider the regularity of the function d_F.

Lemma A.3. Let $(x_1,v_1) \in SN$, $0 < t_1 < \tau(x_1,v_1)$ and $x_2 = \gamma_{x_1,v_1}(t_1)$. Then there exists neighborhoods U of x_1 and V of x_2 respectively such that the distance function $d_F : U \times V \to \mathbb{R}$ is smooth.

Proof. Since the cut distance function τ is continuous, there exist a neighborhood $U' \subset SM$ of (x_1,v_1) and $\epsilon > 0$ such that for any $t \in (t_1-\epsilon, t_1+\epsilon)$ and $(x,v) \in U'$ holds $t < \tau(x,v)$.

Consider the smooth function

$$E : U' \times (t_1-\epsilon, t_1+\epsilon) \ni ((x,v), t) \mapsto (x, \exp_xtv) \in N \times N.$$

Since for every $((x,v), t) \in U' \times (t_1-\epsilon, t_1+\epsilon)$ we have that the exponential map \exp_x is not singular at $vt \in T_xN$, the Jacobian of E is invertible in $U' \times (t_1-\epsilon, t_1+\epsilon)$. Thus the Inverse Function Theorem implies the existence of the neighborhood $U \times V \subset N \times N$ of (x_1, x_2) such that E is a diffeomorphism onto $U \times V$. Therefore the map

$$U \times V \ni (x,y) \mapsto \exp_x^{-1} y \in TN$$

is smooth.

By the definition of the cut distance function and [60] Section 11.4], the following equation holds for any $(x,y) \in U \times V$,

$$d_F(x,y) = F(x, \exp_x^{-1} y).$$
This implies the claim as F is smooth outside the zero section. \hfill \Box

The duality map between the tangent bundle and the cotangent bundle is given by the Legendre transform $\ell: TN \setminus \{0\} \to T^*N \setminus \{0\}$ which is defined by

$$\ell(x, y) = \ell_x(y) := g_y(y, \cdot) \in T_x^*N, \quad y \in T_x N.$$ \hfill (42)

The Legendre transform is a diffeomorphism and for all $a > 0$ and $(x, y) \in TN \setminus \{0\}$ we have

$$\ell(x, ay) = a \ell(x, y).$$

(see [60, Section 3.1]). The dual F^* of the Finsler function F, which is given by

$$F^*(x, p) := \sup_{v \in S_x N} p(v), \quad (x, p) \in T^* N,$$ \hfill (43)

is a Finsler function on $T^* N$ and the Legendre transform ℓ_x satisfies

$$F(x, v) = F^*(x, \ell_x(v)).$$

We let $S \subset N$ be a smooth submanifold of co-dimension 1. It is shown in [60, Section 2.3] that for every $z \in S$ there exists precisely two unit vectors $\nu_1, \nu_2 \in S_z N$ such that

$$T_z S = \{y \in T_z N : g_y(\nu_i, y) = 0\}, \quad i \in \{1, 2\}.$$

Vectors $\nu_1, \nu_2 \in S_p N$ are called the unit normals of S. Typically $\nu_1 \neq -\nu_2$ unless F is reversible.

In the next lemma, we relate the Legendre transform of the velocity field of a distance minimizing geodesic to the differential of the distance function.

\textbf{Lemma A.4.} Let $x_1 \in N$ and $x_2 \in N$ be such that $d_F(x_1, \cdot)$ is smooth at x_2. Then

$$d\bigl(d_F(x_1, \cdot)\bigr)\bigg|_{x_2} = g_{\gamma_{x_1, v}(t)}(\dot{\gamma}_{x_1, v}(t), \cdot)\bigg|_{t = d_F(x_1, x_2)} \in T_{x_2}^* N,$$ \hfill (44)

where $\gamma_{x_1, v}$ is the unique distance minimizing unit speed geodesic from x_1 to x_2.

\textbf{Proof.} Denote $t_0 = d_F(x_1, x_2)$ and

$$S(x_1, t_0) = \exp_{x_1} \{w \in T_{x_1} N : F(w) = t_0\}.$$

Recall that

$$d_F(x_1, \exp_{x_1} (tw)) = F(tw) = t, \quad t > 0, \quad w \in S_{x_1} N,$$ \hfill (45)

if tw is close to $t_0 v$. We use a shorthand notation d_F for the function $d_F(x_1, \cdot)$. We take a t-derivative from the both sides of (45) to obtain

$$d(d_F)\bigg|_{\exp_{x_1}(tw)} (D \exp_{x_1} |_{tw} w) = d(d_F)\bigg|_{\exp_{x_1}(tw)} (\dot{\gamma}_{x_1, v}(t)) = 1.$$ \hfill (46)

Due to (46) the set $S(x_1, t_0)$ is a regular level set of d_F near x_2, and moreover (45) implies

$$T_{x_2} S(x_1, t_0) = \ker d(d_F)\bigg|_{x_2}.$$

Thus it suffices to prove that

$$\ker g_{\gamma_{x_1, v}(t_0)}(\dot{\gamma}_{x_1, v}(t_0), \cdot) = T_{x_2} S(x_1, t_0).$$
Notice that for any \(w \in T_x M \), such that \(g_v(v, w) = 0 \) holds

\[
0 = g_{tv_1}(tv_1, tv_2) = \frac{1}{2} \frac{d}{ds} |F^2| \left| t(s + sw) \right|_{s=0} = t_0 d(d_F |_{\exp_{x_1}(tv)} (D \exp_{x_1} |_{t_0} tw)).
\]

Therefore, \(d(d_F |_{\exp_{x_1}(tv)} (D \exp_{x_1} |_{t_0} tw)) = 0 \) and \((D \exp_{x_1} |_{t_0} w) \in T_{x_1} S(x_1, t_0) \).

Recall that \(J(t) := D \exp_{x_1} |_{t_0} tw \) is the unique Jacobi field with initial conditions \(J(0) = 0 \), \(D_t J(0) = w \). By Gauss’ Lemma \[60, Lemma 11.2.1\] we have

\[
0 = g_v(v, w) = g_{\gamma_{x_1,v}(t_0)}(\dot{\gamma}_{x_1,v}(t_0), D \exp_{x_1} |_{t_0} v)).
\]

In the above, we used the identity

\[
g_{tv_1}(tv_1, tv_2) = t^2 g_{v_1}(v_1, v_2), \quad t > 0; \ v_1, v_2 \in T_x N.
\]

This implies that

\[
\ker g_{\gamma_{x_1,v}(t_0)}(\dot{\gamma}_{x_1,v}(t_0), \cdot) = \{ D \exp_{x_1} |_{t_0} w : g_v(v, w) = 0 \} = T_{x_2} S(x_1, t_0),
\]

since \(\dim v^\perp = \dim T_{x_2} S(x_1, t_0) \) and \(D \exp_{x_1} |_{t_0} v \) is not degenerate. \(\square \)

Lemma A.5. Let \(S \subset N \) be a smooth closed submanifold of co-dimension 1. Let \(x \in N \). A distance minimizing curve from \(S \) to \(x \) (from \(x \) to \(S \)) is a geodesic that is orthogonal to \(S \) at the initial (terminal) point.

Proof. Since \(S \) is compact there exists a closest point \(z_x \in S \) to \(x \). We denote \(h = d_F(x, z_x) \). Since \((N, F)\) is complete there exists a distance minimizing geodesic \(\gamma \) from \(x \) to \(z_x \).

We suppose first that \(d_F(x, \cdot) \) is smooth at \(z_x \). We denote \(r(z) = d_F(x, z) \) for \(z \in S \). Since \(z_x \) is a minimal point of \(r \) we have \(d_S r(z_x) = 0 \). Here \(d_S \) is the differential operator of smooth manifold \(S \). Then \(d_S r = \iota^* d(d_F(x, \cdot)) \), where \(\iota : S \hookrightarrow N \). Thus \(d(d_F(x, \cdot)) \) vanishes on \(T_{z_x} S \). By \[14\] it holds that

\[
d(d_F(x, \cdot)) |_{z_x} = g_{\dot{\gamma}_x}(\dot{\gamma}_x(h), \cdot) \neq 0.
\]

Thus \(\dot{\gamma}_x(h) \) is normal to \(S \) at \(z_x \).

If \(d_F(x, \cdot) \) is not smooth at \(z_x \) there exists \(\epsilon > 0 \) such that for any \(t \in (\epsilon, h) \) \(d_F(\gamma(t), \cdot) \) is smooth at \(z_x \). By the first part of the proof it follows that \(\dot{\gamma}_x(h) \) is perpendicular to \(S \).

Due to \[38\] the second claim for the reversed distance function can be proven in the same way, upon replacing \(F \) by \(\overleftarrow{F} \). \(\square \)

References

[1] P. Antonelli, S. Rutz, and M. Slawinski. A geometrical foundation for seismic ray theory based on modern finsler geometry. In *Finsler and Lagrange Geometries*, pages 17–54. Springer, 2003.

[2] G. Bal, F. Monard, and G. Uhlmann. Reconstruction of a fully anisotropic elasticity tensor from knowledge of displacement fields. *SIAM Journal on Applied Mathematics*, 75(5):2214–2231, 2015.

[3] D. Bao and S.-S. Chern. On a notable connection in finsler geometry. In *A Mathematician And His Mathematical Work: Selected Papers of SS Chern*, pages 613–658. World Scientific, 1996.

[4] D. Bao, S.-S. Chern, and Z. Shen. *An introduction to Riemann-Finsler geometry*, volume 200. Springer Science & Business Media, 2012.
[5] G. Bao, G. Hu, Y. Kian, and T. Yin. Inverse source problems in elastodynamics. *Inverse Problems*, 34(4):045009, 2018.

[6] G. Bao, G. Hu, J. Sun, and T. Yin. Direct and inverse elastic scattering from anisotropic media. *Journal de Mathématiques Pures et Appliquées*, 117:263–301, 2018.

[7] R. Bartolo, E. Caponio, A. V. Germinario, and M. Sánchez. Convex domains of finsler and riemannian manifolds. *Calculus of Variations and Partial Differential Equations*, 40(3-4):335–356, 2011.

[8] A. Bejancu and D. E. Blair. *Finsler geometry and applications*. Ellis Horwood New York, 1990.

[9] M. I. Belishev and Y. V. Kurylev. To the reconstruction of a Riemannian manifold via its spectral data (Bc–Method). *Communications in partial differential equations*, 17(5-6):767–804, 1992.

[10] I. Bucataru. Funk functions and projective deformations of sprays and finsler spaces of scalar flag curvature. *The Journal of Geometric Analysis*, 26(4):3056–3065, 2016.

[11] I. Bucataru and Z. Muzsnay. Projective and finsler metrizability: parameterization-rigidity of the geodesics. *International Journal of Mathematics*, 23(09):1250099, 2012.

[12] I. Bucataru and Z. Muzsnay. Finsler metrizable isotropic sprays and hilbert’s fourth problem. *Journal of the Australian Mathematical Society*, 97(1):27–47, 2014.

[13] D. Burago, Y. Burago, and S. Ivanov. *A course in metric geometry*, volume 33. American Mathematical Society Providence, RI, 2001.

[14] D. Burago and S. Ivanov. Boundary rigidity and filling volume minimality of metrics close to a flat one. *Annals of mathematics*, pages 1183–1211, 2010.

[15] V. Cerveny. *Seismic ray theory*. Cambridge university press, 2005.

[16] I. Chavel. *Riemannian geometry: a modern introduction*, volume 98. Cambridge university press, 2006.

[17] S.-S. Chern. On the Euclidean connections in a Finsler space. *Proceedings of the National Academy of Sciences*, 29(1):33–37, 1943.

[18] S.-S. Chern. On Finsler geometry. In *A Mathematician And His Mathematical Work: Selected Papers of SS Chern*, pages 603–607. World Scientific, 1996.

[19] J. D. Clayton. On Finsler geometry and applications in mechanics: review and new perspectives. *Advances in Mathematical Physics*, 2015, 2015.

[20] J. D. Clayton. Finsler geometry of nonlinear elastic solids with internal structure. *Journal of Geometry and Physics*, 112:118–146, 2017.

[21] C. B. Croke et al. Rigidity and the distance between boundary points. *Journal of Differential Geometry*, 33(2):445–464, 1991.

[22] M. V. de Hoop, S. F. Holman, E. Iversen, M. Lassas, and B. Ursin. Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times. *Journal de Mathématiques Pures et Appliquées*, 103(3):830–848, 2015.

[23] M. V. de Hoop, J. Ilmavirta, and M. Lassas. Dix’s inverse problem on elastic Finsler manifolds. *in preparation*, 2018.

[24] M. V. de Hoop, J. Ilmavirta, M. Lassas, and T. Saksala. A foliated and reversible Finsler manifold is determined by its broken scattering relation. *arXiv preprint arXiv:2003.12657*, 2020.

[25] M. V. de Hoop and T. Saksala. Inverse problem of travel time difference functions on a compact riemannian manifold with boundary. *The Journal of Geometric Analysis*, 29(4):3308–3327, 2019.

[26] N. Dencker. On the propagation of polarization sets for systems of real principal type. *Journal of Functional Analysis*, 46(3):351–372, 1982.

[27] M. P. do Carmo. *Riemannian geometry*. Birkhäuser, 1992.

[28] J. J. Duistermaat and L. Hörmander. Fourier integral operators. ii. *Acta mathematica*, 128(1):183–269, 1972.

[29] L. C. Evans. *Partial differential equations*, volume 19 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2010.
A. Greenleaf and G. Uhlmann. Recovering singularities of a potential from singularities of scattering data. *Communications in mathematical physics*, 157(3):549–572, 1993.

R. Griesmaier and J. Sylvester. Uncertainty principles for inverse source problems for electromagnetic and elastic waves. *Inverse Problems*, 34(6):065003, 2018.

S. Helgason. *Differential geometry and symmetric spaces*, volume 341. American Mathematical Soc., 2001.

L. Hörmander. Fourier integral operators. I. *Acta mathematica*, 127(1):79, 1971.

G. Hu and H. Liu. Nearly cloaking the elastic wave fields. *Journal de Mathématiques Pures et Appliquées*, 104(6):1045–1074, 2015.

S. Ivanov. Local monotonicity of Riemannian and Finsler volume with respect to boundary distances. *Geometriae Dedicata*, 164(1):83–96, 2013.

S. Ivanov. Distance difference representations of Riemannian manifolds. *Geometriae Dedicata*, 207(1):167–192, 2020.

A. Katchalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems, volume 123 of *Monographs and Surveys in Pure and Applied Mathematics*. Chapman & Hall/CRC, Boca Raton, FL, 2001.

W. P. Klingenberg. *Riemannian geometry*, volume I. Walter de Gruyter, 1995.

S. Krantz and H. R. Parks. *A Primer of Real Analytic Functions*. Birkhäuser, 2 edition, 2002.

Y. Kurylev. Multidimensional Gel’fand inverse problem and boundary distance map. *Inverse Problems Related with Geometry (ed. H. Soga)*, pages 1–15, 1997.

Y. Kurylev, M. Lassas, and G. Uhlmann. Rigidity of broken geodesic flow and inverse problems. *American journal of mathematics*, 132(2):529–562, 2010.

Y. Kurylev, M. Lassas, and G. Uhlmann. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. *Invent. Math.*, 212(3):781–857, 2018.

Y. Kurylev, L. Oksanen, and G. P. Paternain. Inverse problems for the connection Laplacian. *Journal of Differential Geometry*, 110(3):457–494, 2018.

M. Lassas. Inverse problems for linear and non-linear hyperbolic equations. *Proceedings of International Congress of Mathematicians – 2018 Rio de Janeiro*, 3:3739—3760, 2018.

M. Lassas and L. Oksanen. Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets. *Duke Mathematical Journal*, 163(6):1071–1103, 2014.

M. Lassas and T. Saksala. Determination of a Riemannian manifold from the distance difference functions. *Asian Journal of Mathematics*, 23(2):173–200, 2019.

M. Lassas, T. Saksala, and H. Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. *Inverse Problems & Imaging*, 12(4), 2018.

M. Lassas, G. Uhlmann, and Y. Wang. Inverse problems for semilinear wave equations on Lorentzian manifolds. *Communications in Mathematical Physics*, pages 1–55, 2018.

J. M. Lee. *Introduction to Smooth Manifolds*. Number 218 in *Graduate Texts in Mathematics*. Springer-Verlag, 2003.

J. M. Lee. *Introduction to Smooth Manifolds*. Springer, second edition, 2013.

V. S. Matveev. On projective equivalence and pointwise projective relation of Randers metrics. *Journal of Mathematical Physics*, 359(12):8781–8810, 2019.

T. Milne and A.-R. Mansouri. Codomain rigidity of the Dirichlet-to-Neumann operator for the Riemannian wave equation. *Transactions of the American Mathematical Society*, 371(12):8781–8810, 2019.

S. Myers. Arcs and geodesics in metric spaces. *Transactions of the American Mathematical Society*, 57(2):217–227, 1945.

G. Nakamura and G. Uhlmann. Identification of Lamé parameters by boundary measurements. *American Journal of Mathematics*, pages 1161–1187, 1993.

G. Nakamura and G. Uhlmann. Global uniqueness for an inverse boundary problem arising in elasticity. *Inventiones mathematicae*, 118(1):457–474, 1994.

J. A. Paiva et al. Symplectic geometry and hilbert’s fourth problem. *Journal of Differential Geometry*, 69(2):353–378, 2005.
[58] L. Pestov and G. Uhlmann. Two dimensional compact simple Riemannian manifolds are boundary distance rigid. *Annals of mathematics*, pages 1093–1110, 2005.

[59] Z. Shen. On a connection in Finsler geometry. *Houston J. of Math.*, 20:591–602, 1994.

[60] Z. Shen. *Lectures on Finsler geometry*. World Scientific, 2001.

[61] P. Stefanov, G. Uhlmann, and A. Vasy. Boundary rigidity with partial data. *Journal of the American Mathematical Society*, 29(2):299–332, 2016.

[62] P. Stefanov, G. Uhlmann, and A. Vasy. Local and global boundary rigidity and the geodesic x-ray transform in the normal gauge. *arXiv preprint arXiv:1702.03638*, 2017.

[63] C. C. Stolk and M. V. De Hoop. Microlocal analysis of seismic inverse scattering in anisotropic elastic media. *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 55(3):261–301, 2002.

[64] G. Uhlmann. Inverse boundary value problems for partial differential equations. In *Proceedings of the International Congress of Mathematicians, Berlin*, pages 77–86, 1998.

[65] Y. Wang and T. Zhou. Inverse problems for quadratic derivative nonlinear wave equations. *Communications in Partial Differential Equations*, 44(11):1140–1158, 2019.

[66] T. Yajima and H. Nagahama. Finsler geometry of seismic ray path in anisotropic media. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 465(2106):1763–1777, 2009.

Email address, de Hoop: mdehoop@rice.edu

Email address, Ilmavirta: joonas.ilmavirta@tuni.fi

Email address, Lassas: matti.lassas@helsinki.fi

Email address, Saksala: tssaksal@ncsu.edu