CORRAttack: Black-box Adversarial Attack with Structured Search

Zhichao Huang∗ Yaowei Huang∗ Tong Zhang
The Hong Kong University of Science and Technology
{zhuangbx, yhuangdr}@connect.ust.hk, tongzhang@tongzhang-ml.org

Abstract

We present a new method for score-based adversarial attack, where the attacker queries the loss-oracle of the target model. Our method employs a parameterized search space with a structure that captures the relationship of the gradient of the loss function. We show that searching over the structured space can be approximated by a time-varying contextual bandits problem, where the attacker takes feature of the associated arm to make modifications of the input, and receives an immediate reward as the reduction of the loss function. The time-varying contextual bandits problem can then be solved by a Bayesian optimization procedure, which can take advantage of the features of the structured action space. The experiments on ImageNet and the Google Cloud Vision API demonstrate that the proposed method achieves the state of the art success rates and query efficiencies for both undefended and defended models.

1 Introduction

Although deep learning has many applications, it is known that neural networks are vulnerable to adversarial examples, which are small perturbations of inputs that can fool neural networks into making wrong predictions (Szegedy et al., 2014). While adversarial noise can easily be found when the neural models are known (referred to as white-box attack) (Kurakin et al., 2016). However, in real world scenarios models are often unknown, this situation is referred to as black-box attack.

Some methods (Liu et al., 2016; Papernot et al., 2016) use the transfer-based attack, which generates adversarial examples on a substitute model and transfer the adversarial noise to the target model. However, the transferability is limited and its effectiveness relies highly on the similarity between the networks (Huang & Zhang, 2020). If two networks are very different, transfer-based methods will have low success rates.

In practice, most computer vision API such as the Google Cloud Vision API allow users to access the scores or probabilities of the classification results. Therefore, the attacker may query the black-box model and perform zeroth order optimization to find an adversarial example without the knowledge of the target model. Due to the availability of scores, this scenario is called score-based attack.

There have been a line of studies on black-box attack which directly estimate the gradient direction of the underlying model, and apply (stochastic) gradient descent to the input image (Ilyas et al., 2018, 2019; Chen et al., 2017; Huang & Zhang, 2020; Tu et al., 2018; Li et al., 2019). In this paper, we take another approach and formulate score-based attack as a time-varying contextual bandits problem. At each state, the attacker may change the adversarial perturbation and get the reward as the reduction of the loss. And the attacker would receive some features about the arms before making the decision. By limiting the action space to image blocks, the associated bandits problem exhibits local correlation structures and the slow varying property suitable for learning. Therefore, we may use the location and other features of the blocks to estimate the reward for the future selection of the actions.

Using the above insights, we propose a new method called CorrAttack, which utilizes the local correlation structure and the slow varying property of the underlying bandits problem. CorrAttack uses Bayesian optimization with Gaussian process regression (Rasmussen, 2003) to model the

∗indicates co-first authorship
correlation and select optimal actions. A forgetting strategy is added to the algorithm so that the Gaussian process regression can handle the time-varying changes. CorrAttack can effectively find blocks with the largest rewards. The resulting method achieves much lower numbers of average queries and higher success rates than prior methods with a similar action space (Moon et al., 2019).

It is worth noting that BayesOpt (Ru et al., 2020) and Bayes-Attack (Shukla et al., 2019) also employ Bayesian optimization for score-based attack. However, their Gaussian process regression directly models the loss as a function of the image, whose dimension can be more than one thousand. Therefore, the speed of BayesOpt is extremely slow. CorrAttack, on the other hand, searches over a much limited action space models the reward as a function of the low dimensional feature. Therefore, the optimization of CorrAttack is more efficient, and the method is significantly faster than BayesOpt.

We summarize the contributions of this work as follows:

1. We formulate the score-based adversarial attack as a time-varying contextual bandits, and show that the reward function has slow varying properties. In our new formulation, the attacker could take advantage of the features to model the reward of the arms with learning techniques. Compared to the traditional approach, the use of learning in the proposed framework greatly improves the efficiency of searching over optimal actions.

2. We propose a new method, CorrAttack, which uses Bayesian optimization with Gaussian process regression to learn the reward of each action, by using the feature of the arms.

3. The experiments show that CorrAttack achieves the state of the art performance on ImageNet and Google Cloud Vision API for both defended and undefended models.

2 RELATED WORK

There have been a line of works focusing on black-box adversarial attack. Here, we give a brief review of various existing methods.

Transfer-Based Attack Transfer-based attack assumes the transferability of adversarial examples across different neural networks. It starts with a substitute model that is in the same domain as the target model. The adversaries can be easily generated on the white-box substitute model, and be transferred to attack the target model (Papernot et al., 2016). The approach, however, depends highly on the similarity of the networks. If two networks are distinct, the success rate of transferred attack would rapidly decrease (Huang & Zhang, 2020). Besides, the substitute model requires a lot of training data, which may not be realistic in practical applications. It may require querying the target model to build a synthetic dataset (Papernot et al., 2016).

Score-based Attack Many approaches estimate the gradient with the output scores of the target network. However, the high dimensionality of input images makes naive coordinate-wise search impossible as it requires millions of queries. ZOO (Chen et al., 2017) is an early work of gradient estimation, which estimates the gradient of an image block and perform block-wise gradient descent. NES (Wierstra et al., 2008) and CMA-ES (Meunier et al., 2019) are query efficient methods based on evolution strategy. Instead of the gradient itself, SignHunter (Al-Dujaili & O'Reilly, 2020) just estimates the sign of gradient to reduce the complexity. AutoZOOM uses bilinear transformation or autoencoder to reduce the sampling space and accelerate the optimization process. In the same spirit, data prior can be used to improve query efficiency (Ilyas et al., 2019). Besides, MetaAttack (Du et al., 2020) takes a meta learning approach to learn gradient patterns from prior information, which reduces queries for attacking targeted model.

Many zeroth order optimization methods for black-box attacks rely on gradient estimation. However, there are some research works using gradient free methods to perform black-box attack. BayesOpt and Bayes-Attack (Ru et al., 2020; Shukla et al., 2019) employ Bayesian optimization to find the adversarial examples. They use Gaussian process regression on the embedding and apply bilinear transformation to resize the embedding to the size of image. Although the bilinear transformation could alleviate the high dimensionality of images, the dimension of the embedding space is still in the thousands, which makes Bayesian optimization very ineffective and computationally expensive. A different method, PARSI, poses the attack on l_∞ norm as a discrete optimization problem over $\{-\varepsilon, \varepsilon\}^d$ (Moon et al., 2019). It uses a Lazy-Greedy algorithm to search over the space $\{-\varepsilon, \varepsilon\}^d$ to
find an adversarial example. SimBA [Guo et al., 2018] also employs a discrete search space targeted at ℓ2 norm.

Decision-based Attack Decision-based attack assumes the attacker could only get the output label of the model. Boundary Attack and its variants [Brendel et al., 2017; Chen et al., 2020; Li et al., 2020] are designed for the setting. However, the information received by the attacker is much smaller than score-based attack, and it would take many more queries than score-based attack to successfully attack an image.

3 PRELIMINARIES

A Gaussian process [Rasmussen, 2003] is a prior distribution defined on some bounded set Z, and is determined by a mean function µ : Z → R and a covariance kernel ρ : Z × Z → R. Given n observations Dn = {(zi, f(zi))}n i=1, the prior distribution on f(z1:n) is

\[f(z_{1:n}) \sim \text{Normal} (\mu_0(z_{1:n}), \rho_0(z_{1:n}, z_{1:n})) \]

(1)

where we use compact notation for functions applied to collections of input points: z1:n indicates the sequence z1, · · · , zn, f(z1:n) = [f(z1), · · · , f(zn)], µ0(z1:n) = [µ0(z1), · · · , µ0(zn)], ρ0(z1:n, z1:n) = [ρ0(z1, z1), · · · , ρ0(zn, zn); · · · ; ρ0(z1, zn), · · · , ρ0(zn, z1)].

Now we wish to infer the value of f(z) at some new point z, the posterior process f(z)|Dn is also a Gaussian process (GP) with mean µn and covariance σ2 n:

\[
\begin{align*}
\text{D}_n & \sim \text{Normal}(\mu_n(z), \sigma_n^2(z)), \\
\mu_n(z) & = \rho_0(z, z_{1:n})\rho_0(z_{1:n}, z_{1:n})^{-1}(f(z_{1:n}) - \mu_0(z_{1:n})) + \mu_0(z), \\
\sigma_n^2(z) & = \rho_0(z, z) - \rho_0(z, z_{1:n})\rho_0(z_{1:n}, z_{1:n})^{-1}\rho_0(z_{1:n}, z).
\end{align*}
\]

(2)

As an optimization method to maximize a function f, Bayesian optimization models the function to make decisions about where to evaluate the next point z. Assuming we already obtained observations Dt−1 = {(zt, f(zt))}t−1 i=1, to determine the next point zt for evaluation, we first use the posterior GP to define an acquisition function ϕt : Z → R, which models the utility of evaluating f(z) for any z ∈ Z. We then evaluate f(zt) with

\[
zt = \arg \max_z \phi_t(z).
\]

(3)

In this work, we use the expected improvement (EI) acquisition function [Mockus et al., 1978]

\[
\phi_t(z) = \sqrt{\sigma_n^2(z)}(\gamma(z)\Phi(\gamma(z)) + \phi(\gamma(z))) \quad \text{with} \quad \gamma(z) = \frac{\mu_n(z) - f(z_{\text{best}})}{\sqrt{\sigma_n^2(z)}},
\]

(4)

which measures the expected improvement over the current best value z_{\text{best}} = \arg \max_z f(z_t) according to the posterior GP. Here Φ(·) and φ(·) are the cdf and pdf of N(0, 1) respectively.

4 SCORE-BASED BLACK-BOX ATTACK

Suppose a classifier F(x) has input x and label y. An un-targeted adversarial example x_{adv} satisfies:

\[
\arg \max_{j \in \{1, \cdots, C\}} F(x_{adv})_j \neq y \quad \text{and} \quad \|x_{adv} - x\|_p \leq \varepsilon,
\]

(5)

where C is the number of classes. While an adversarial example for targeted attack means the maximum position of F(x) should be the targeted class q: arg max_{j \in \{1, \cdots, C\}} F(x_{adv})_j = q. In order to find x_{adv}, we may optimize a surrogate loss function ℓ(x, y) (e.g hinge loss).

In this work, we consider adversarial attack as a time-varying contextual bandits problem. At each time t, we observe a state xt which is a modification of the original input x0. Before taking arm at ∈ A ⊂ R^d, we could observe the feature z of arms. And at would modify state xt to xt+1 according to

\[
x_{t+1} = \arg \min_{s \in \{x_t + at, x_t\}} \ell(B_p(x, z)(s), y)
\]

(6)
with reward function \(r(x_t, a_t) = \ell(x_{t+1}, y) - \ell(x_t, y) \) and the checking step tries to remove negative reward. In this frame, we would like to estimate the reward \(r(x_t, a_t) \) with feature \(z_t \) using learning, and then pick \(a_t \) to maximize the reward. Observe that

\[
 r(x_t, a_t) \approx \nabla_x \ell(x_t, y)^\top (x_{t+1} - x_t),
\]

where the gradient \(\nabla_x \ell(x_t, y) \) is unknown. It follows from the formulation that we may rewrite \(r(x_t, a_t) \) as a function

\[
 r(x_t, a_t) \approx f(x_t, x_{t+1} - x_t).
\]

Since in general, we make small steps from one iteration to the next iteration, \(\delta_t(a_t) = x_{t+1} - x_t \) is small. We may approximate the reward with fixed gradient locally with

\[
 f(x_t, \delta_t) = \hat{f}_t(a_t),
\]

We may consider the learning of reward as a time-varying contextual bandits problem with reward function \(\hat{f}_t(a_t) \) for arm \(a_t \) at time \(t \). Since \(x_{t+1} - x_t \) is small, this time-varying bandits has slow-varying property: the function \(\hat{f}_t \) changes slowly from time \(t \) to time \(t + 1 \).

In the proposed framework, our goal is to learn the time-varying bandits reward \(\hat{f}_t(a_t) \) with feature \(z_t \). We use Gaussian process regression to model the reward function using recent historic data since the reward function is slow-varying, and describe the details in the subsequent sections.

We note that the most general action space contains all \(a_t \in \mathbb{R}^d \), where \(d \) is the image pixels. However, it is impossible to explore the arms in such a large space. In this work, we choose a specific class of actions \(A = \{a_i\}_{i=1}^n \), \(n \) is the image blocks of different sizes. It covers the space of the adversarial perturbations while maintaining good complexity. We also find that the location and the PCA of the blocks a good component of the feature \(z \) associated with the arm. Besides, modifying a block only affects the state locally. Therefore the reward function remains similar after state changes.

4.1 Structured Search with Gaussian Process Regression and Bayesian Optimization

Define the block size as \(b \), we divide the image into several blocks \(E = \{e_{000}, e_{001}, \ldots, e_{hwc}\} \), where the block is \(b \times b \) square of pixels and \((h, w, c) = (\text{height}/b, \text{width}/b, \text{channel}) \). Each block \(e_{ijk} \) is associated with the feature \(z_{e_{ijk}} \) such as the location of the block.

Suppose we have time-varying bandits with state \(x_t \) and unknown reward function \(\hat{f}_t \) at time \(t \). By taking the action \(a_{e_{ijk}} \), we change the individual block \(e_{ijk} \) of \(x_t \) and get \(x_{t+1} \) with reward \(\hat{f}_t(s_{e_{ijk}}) \). We consider two ways of taking action \(a_{e_{ijk}} \) on block \(e_{ijk} \) : CorrAttackDiff and CorrAttackFlip.

Finite Difference CorrAttackDiff: For action \(a_{e_{ijk}} \), the attacker will query \(\ell(x_t + \eta e_{ijk}, y) \) and \(\ell(x_t - \eta e_{ijk}, y) \), and choose

\[
 a_{e_{ijk}} = \arg\min_{s \in \{\eta e_{ijk}, -\eta e_{ijk}\}} \ell(x_t + s, y).
\]

The action space \(A = \{a_{e_{ijk}} | e_{ijk} \in E\} \).

In our framework, the bandits problem can also be regarded as learning the conditional gradient over actions. That is, when \(\eta \) is small, we try to choose action \(a_t \) with

\[
 a_t = \arg\min_{e_{ijk} \in E} e_{ijk} \nabla_x \ell(x_t, y)
\]

which is the conditional gradient over the set of blocks.

Discrete Approximation CorrAttackFlip: In general, adversarial attack with \(\ell_\infty \) budget can be formulated as constrained optimization with \(\|x_{adv} - x\|_\infty \leq \epsilon \). However, PARSI (Moon et al., 2019) limits the space to \((-\epsilon, +\epsilon)^d \), which leads to better performance for black-box attack (Moon et al., 2019). The continuous optimization problem becomes a discrete optimization problems as follows:

\[
\begin{align*}
 \text{maximize } & \ell(x_{adv}, y) & \Rightarrow & \text{maximize } \ell(x_{adv}, y) \\
 \text{subject to } & \|x_{adv} - x\|_\infty \leq \epsilon & \text{subject to } & x_{adv} - x \in \{-\epsilon, +\epsilon\}^d.
\end{align*}
\]
Following PARI, we consider two stages to perform structured search. When flipping ε to $-\varepsilon$, a_{ijk} changes the block to $-\varepsilon$ and $A = \{-2e_{ijk} | e_{ijk} \in E\}$. When changing $-\varepsilon$ to ε, $A = \{2e_{ijk} | e_{ijk} \in E\}$ instead.

Gaussian Process (GP) Regression: We model the difference function

$$ g_t(a_t) = \ell((\Pi_{B_p(x,i)}(x_t + a_t), y)) - \ell((x_t, y)) $$

(11)

instead of the reward function $\tilde{f}_t(a_t) \geq 0$, as the difference function could be negative, providing more information about the negative arms in A. We would collect historic actions with feature and difference $\{(z_k, g_k(a_k))\}_{k=1}$ and learn the difference to make choices at a later stage. At each time t, we use the Gaussian process regression to model the correlation between the features $z_{e_{ijk}}$ and use Bayesian optimization to select the next action. More specifically, the same as eq. (2), we let

$$ g_t(a_{e_{ijk}})|D_t \sim \text{Normal}(\mu_t(z_{e_{ijk}}), \sigma_t^2(z_{e_{ijk}})) $$

(12)

where $D_t = \{|z_k, g_k(a_k)|\}_{k=t-\tau}^t$ is the difference of evaluated blocks $e_{t-\tau:t}$ with feature $z_{e_{t-\tau:t}}$ and τ is a parameter to forget old samples. Then we use EI acquisition function to pick up the next action a_{t+1} in A. More specifically, the same as eq. (4), we let

$$ a_{t+1} = \arg\max_{a \in A} (\sqrt{\sigma_t^2(z_{e_{ijk}})(\gamma(z_{e_{ijk}})\Phi(\gamma(z_{e_{ijk}}))) + \phi(\gamma(z_{e_{ijk}})))}) $$

(13)

As the difference function g_t is varying, we take two strategies in Algorithm 2 to update the previous samples to make sure GP regression learns the current difference function well. The first strategy is to remove old samples in D_t. Even if the bandits are slowly varying, the difference function will change significantly after a significant number of rounds. Therefore, we need to forget samples before $t - \tau$. The second strategy is to remove samples near the last block e_{ijkt} in D_t. As we discuss later, the difference function may change significantly in a local region near the latest selected block. Therefore previous samples in this local region will be inaccurate. The resulting algorithm for CorrAttack is shown in Algorithm 1 which mainly follows standard procedure of Bayesian optimization.

Algorithm 1 CorrAttack

Require: Loss function $\ell(\cdot, \cdot)$, Input x_0 and its label y, Action space $A = \{a_{e_{ijk}} | e_{ijk} \in E\}$, Parameter c, τ, α

1: Build set $D_0 = \{|z_{e_{ijk}}|, g_0(a_{e_{ijk}})\}_{p=1}^m$ using latin hypercube sampling from A
2: repeat
3: Fit the parameter of $\text{Normal}(\mu_t(z_{e_{ijk}}), \sigma_t^2(z_{e_{ijk}}))$ on D_t according to Equation (12)
4: Calculate acquisition function $\varphi_t(z_{e_{ijk}})$ and according to Equation (13)
5: Select $a_{e_{ijk}(k)} = \arg\max_{a \in A} \varphi_t(z_{e_{ijk}})$ according to Equation (13)
6: $s_{t+1} = \arg\max_{s \in \{x_1, a_{e_{ijk}(k)} \}} (\ell(\Pi_{B_p(x,c)}(s), y))$
7: Update sample set D_t with Algorithm 2
8: $D_{t+1} = \text{UPDATESAMPLES}(D_t, x_t, x_{t+1}, e_{ijkt}, g_{t+1}(a_{e_{ijkt}}), \tau, \alpha)$
9: until $\max_{A} \varphi_t(z_{e_{ijk}}) < C$
10: return x_T

Algorithm 2 Update Samples

Require: Sample set D_t, State x_t, x_{t+1}, Block e_{ijkt}, Difference $g_{t+1}(a_{e_{ijkt}})$, Parameter τ, α

1: if $x_{t+1} \neq x_t$ then
2: $D_{t+1} = D_t \setminus \{|z_{e_{ijk}}, g| \in D_t | i - i_k | + | j - j_k | \leq \alpha \}$
3: else
4: $D_{t+1} = D_t \cup \{|z_{e_{ijk}}, g_{t+1}(a_{e_{ijkt}})\}$
5: end if
6: Remove the earliest sample from D if the cardinality $|D| > \tau$
7: return D_{t+1}

4.2 Features and Slow Varying Property

Features of Contextual Bandits: We use a four dimensional vector as the feature $z_{e_{ijk}}$:

$$ z_{e_{ijk}} = (i, j, k, \text{pca}) $$

(14)
where \(i, j, k\) is the location of the block. And \(pca\) is the first component of PCA decomposition of \([x_0(e_{000}), x_0(e_{001}), \cdots x_0(e_{hwc})]\). \(x_0(e_{ijk})\) means the block of natural image at the given position.

The reward function depends on the gradient in Equation (7). It has been shown that the gradient \(\nabla_x \ell(x, y)\) has local dependencies (Ilyas et al., 2019). Suppose two coordinates \(e_{ijk}\) and \(e_{lpq}\) are close, then \(\nabla_x \ell(x, y)_{ijk} \approx \nabla_x \ell(x, y)_{lpq}\). We consider the finite difference of the block \(e_{ijk}\)

\[
\Delta_t(e_{ijk}) = \ell(x_t + \eta e_{ijk}, y) - \ell(x_t - \eta e_{ijk}, y) \approx 2\eta e_{ijk}^\top \nabla_x \ell(x_t, y)
\]

where \(\eta\) is a small step size. When \(\eta\) is small, the reward can be approximated by the average of the gradients around a small region, which also has local dependencies. In fact, the local structure of the reward will also be persevered when the block size and \(\eta\) is large. Figure 1 shows one example of the finite difference \(\Delta_t(e_{ijk})\) obtained on ImageNet dataset with ResNet50. This shows blocks with closer locations are more likely to have similar reward. Therefore, we add the location of the block as the feature so that it uses historic data to find the arm with the largest reward.

Slow Varying Property

In addition to the local dependencies of finite difference, the difference would also be slow varying if we just change a small region of \(x_t\). Let \(x_{t+1} = x_t - \eta e_{ijkt}\), Figure 2 shows the difference of \(\Delta_t(e_{ijk})\) and \(\Delta_{t+1}(e_{ijk})\), which is centralized in a small region near \(e_{ijkt}\). Reward function is based on the finite difference, which also has the slow varying property. It could be explained by the local property of convolution. When \(\eta\) is small, the finite difference can be approximated with gradient and the local Hessian:

\[
\Delta_{t+1}(e_{ijk}) - \Delta_t(e_{ijk}) \approx \eta^2 e_{ijk}^\top \nabla_x^2 \ell(x_t, y) e_{ijkt}
\]

The difference is much smaller than \(\Delta_t(e_{ijk})\). Today’s neural networks are built with stacks of convolutions and non-linear operations. Since these operations are localized in a small region, the Hessian of a neural network is also localized and the reward function only changes near \(e_{ijkt}\).

4.3 Hierarchical Bayesian Optimization Search

Recent black-box approaches (Chen et al., 2017; Moon et al., 2019) exploit the hierarchical image structure for query efficiency. Following these approaches, we take a hierarchical approach and perform the accelerated local search in Algorithm 1 from a coarse grid (large blocks) to a fine grid (smaller blocks). The algorithm for hierarchical attack iteratively performs Algorithm 1 at
Table 1: Success rate and average queries of un-targeted attack on 1000 samples of ImageNet. $\varepsilon = 0.05$. Since BayesOpt and Bayes-Attack needs thousands of hours to run all samples, we only test 20 samples, which are marked as *, the complexity and running time could be referred to C.4.

Attack	VGG16 Success (%)	Queries	Resnet50 Success (%)	Queries	Densenet121 Success (%)	Queries
ZOO	81.93%	2003	63.68%	1795	76.73%	1864
NES	99.72%	700	99.19%	1178	99.72%	1074
NAttack	100.0%	293	99.73%	401	100.0%	375
Bandits	94.75%	389	96.92%	433	98.09%	635
PARSI	100%	365	99.73%	432	100%	387
CorrAttack\text{Diff}	100%	389	99.86%	419	99.86%	334
CorrAttack\text{Flip}	100%	130	100%	150	100%	113

BayesOpt* | 100% | 182 | 100% | 214 | 100% | 223 |
Bayes-Attack* | 100% | 244 | 100% | 254 | 100% | 213 |
CorrAttack\text{Flip}* | 100% | 110 | 100% | 96 | 100% | 87 |

Table 2: Success rate and average queries of targeted attack on ImageNet. $\varepsilon = 0.05$ and query limit is 10000. As BayesOpt and Bayes-Attack run very slow, we do not include them for the targeted attack.

Attack	VGG16 Success (%)	Queries	Resnet50 Success (%)	Queries	Densenet121 Success (%)	Queries
ZOO	1.1%	2884	0.8%	3018	1.1%	3309
NES	80.82%	4582	52.73%	5762	64.21%	5427
NAttack	91.86%	4045	89.05%	3799	91.97%	4389
Bandits	50.62%	5379	40.18%	5672	43.53%	5434
PARSI	76.28%	3229	64.88%	3403	75.09%	3246
CorrAttack\text{Diff}	88.41%	3826	81.84%	4064	91.29%	3513
CorrAttack\text{Flip}	98.07%	2191	96.39%	2531	99.41%	2019

one block size, and then divides the blocks into smaller sizes. At each block size, we build a Gaussian process to model the difference function, and perform structured search with the blocks until $\max_A \varphi_t(x_{zijk}) < c$. When dividing the blocks into smaller sizes, we will build a new block set E with action $a_{z_{ij}}$ and new feature z_{ijk}, but keep the x_t in last block size as x_0 in new block size. Define the stage as $S = \{0, 1, \ldots, s\}$ and initial block size as b. The block at stage s is $b^2 \times \frac{h}{2^s} \times \frac{w}{2^s}$ square of pixels and $(h, w, c) = (2^s \times \text{height}, 2^s \times \text{width}, \text{channel})$.

The overall hierarchical accelerated local search algorithm is shown in Appendix A. It is important to note that most of the attacks terminate in the early stages and rarely need to run on fine scales.

5 Experiments

We evaluated the number of queries versus the success rates of CorrAttack on both undefended and defended network on ImageNet (Russakovsky et al., 2015). Moreover, we attacked Google Cloud Vision API to show that CorrAttack can generalize to a true black-box model.

We used the common hinge loss proposed in the CW attack (Carlini & Wagner, 2017). We compared two versions of CorrAttack: CorrAttack\text{Diff} and CorrAttack\text{Flip}, to ZOO (Chen et al., 2017), NES (Ilyas et al., 2018), NAttack (Li et al., 2019), Bandits (Ilyas et al., 2019), PARSI (Moon et al., 2019), BayesOpt (Ru et al., 2020) and Bayes-Attack (Shukla et al., 2019). We only test adversarial attack on ℓ_∞ norm. The details of the Gaussian processes regression and the hyperparameters of CorrAttack are given in the Appendix A. We shall mention that CorrAttack is not sensitive to the hyperparameters. The hyperparameters of other methods follow those suggested by the original papers.

5.1 Undefended Network

We randomly select 1000 images from the validation set of ImageNet and only attack correctly classified images. The query efficiency of CorrAttack is tested on VGG16 (Simonyan & Zisserman).
Table 3: Success rate and average queries of un-targeted attack on defended model. Since BayesOpt and Bayes-Attack take thousands of hours to run, we only tested on 10 samples from ImageNet with $\epsilon = 0.05$ and 1000 query limit, which are marked as *.

Method	ZOO	NES	NAttack	Bandits	PARSI	CorrAttack\text{Nat}	CorrAttack\text{Flip}
Success	28.57%	24.13%	74.38%	55.82%	73.40%	64.86%	79.15%
Queries	1954	3740	1078	1873	1529	1599	1036

Method	BayesAttack*	BayesOpt*	CorrAttack\text{Flip}*
Success	50.00%	50.00%	60.00%
Queries	129	406	206

Table 4: Success rate and average queries of un-targeted attack on Google Cloud Vision API. $\epsilon = 0.05$

Method	NAttack	BayesOpt	PARSI	CorrAttack\text{Flip}
Success	70.00%	30.00%	70.00%	80.00%
Queries	142	129	235	155

5.2 D\text{EFENDED N\text{ETWORK}}

To evaluate the effectiveness of CorrAttack on adversarially defended networks, we tested our method on one of the SOTA robust model (Xie et al., 2018) on ImageNet. The weight is downloaded from Github\footnote{https://github.com/facebookresearch/ImageNet-Adversarial-Training} on ImageNet. "ResneXt DenoiseAll" is chosen as the target model as it achieves the best performance. We set $\epsilon = 0.05$ and the maximum number of queries is 10000. As BayesOpt runs very slowly, the attack is also performed on 10 images and the query limit is 1000. The result is shown in Table 3. CorrAttack\text{Flip} still outperforms other methods.

5.3 G\text{OOGLE C\text{LOUD V\text{ISION} API}}

We also attacked Google Cloud Vision API, a real world black-box model for classification. The target is to remove the top-1 label out of the classification output. We choose 10 images for the ImageNet dataset and set the query limit to be 500 due to high cost to use the API. We compare CorrAttack\text{Flip} with NAttack, BayesOpt and PARSI. The result is shown in Table 4. We also show one example of the classification output in Appendix C.7.
6 CONCLUSION AND FUTURE WORK

We formulate the score-based adversarial attack as a time-varying contextual bandits and propose a new method CorrAttack. By performing structured search on the blocks of the image, the bandits has the slow varying property. CorrAttack takes advantage of the the features of the arm, and uses Bayesian optimization with Gaussian process regression to learn the reward function. The experiment shows that CorrAttack can quickly find the action the large reward and CorrAttack achieves superior query efficiency and success rate on ImageNet and Google Cloud Vision API.

We only include basic features for learning the bandits. Other features like embedding from the transfer-based attack may be taken into account in the future work. While our work only focuses on adversarial attack on ℓ_∞ norm, the same contextual bandits formulation could be generalized to other ℓ_p norm to improve query efficiency. Besides, defense against CorrAttack may be achieved with adversarial training on CorrAttack, but it may not be able to defend other attacks in the meantime.

REFERENCES

Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for black-box attacks. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=SygW0TEFwH.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient decision-based attack. In 2020 IEEE Symposium on Security and Privacy (SP), pp. 1277–1294. IEEE, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM, 2017.

Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, and Andrew G Wilson. Scalable log determinants for gaussian process kernel learning. In Advances in Neural Information Processing Systems, pp. 6327–6337, 2017.

Jiawei Du, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Jiashi Feng. Query-efficient meta attack to deep neural networks. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=Skxd6gSYDS.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural Information Processing Systems, pp. 7576–7586, 2018.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial images using input transformations. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.

Zhichao Huang and Tong Zhang. Black-box adversarial attack with transferable model-based embedding. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=SJxhNTNYw8.
Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited queries and information. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2137–2146, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial attacks with bandits and priors. In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=BkMiWhR5K7

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236, 2016.

Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. Qeba: Query-efficient boundary-based blackbox attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1221–1230, 2020.

Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, and Boqing Gong. Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. arXiv preprint arXiv:1905.00441, 2019.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Laurent Meunier, Jamal Atif, and Olivier Teytaud. Yet another but more efficient black-box adversarial attack: tiling and evolution strategies. arXiv preprint arXiv:1910.02244, 2019.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box adversarial attacks via efficient combinatorial optimization. arXiv preprint arXiv:1905.06635, 2019.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine Learning, pp. 63–71. Springer, 2003.

Binxin Ru, Adam Cobb, Arno Blaas, and Yarin Gal. Bayesopt adversarial attack. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=Hkem-lrtvH

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Satya Narayan Shukla, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Black-box adversarial attacks with bayesian optimization. arXiv preprint arXiv:1909.13857, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. arXiv preprint arXiv:1805.11770, 2018.

Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen Schmidhuber. Natural evolution strategies. 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3381–3387, 2008.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.
A ALGORITHM

Algorithm 3 Split Block

Require: Set of blocks E, Block size b, $E' = \emptyset$
1: for each block $e \in E$ do
2: Split the block e into 4 blocks $\{e_1, e_2, e_3, e_4\}$ with size $b/2$
3: $E' \leftarrow E' \cup \{e_1, e_2, e_3, e_4\}$
4: end for
5: return E'

Algorithm 4 Hierarchical CorrAttackDiff

Require: Loss function $\ell(\cdot, \cdot)$, Input image x and its label y, Initial Block size b, Set of blocks E containing all blocks of the image, Threshold c, τ, α, Step size η, Adversarial budget ε
1: $x_0 = x$
2: repeat
3: Choose $A = \{ae_{ijk} | e_{ijk} \in E\}$ with Equation (5)
4: Run CorrAttack on current block size $x = \text{CORRATTACK}(\ell(\cdot, \cdot), x, y, A, c, \tau, \alpha)$
5: if $b > 1$ then
6: Split the blocks into finer blocks using Algorithm 3
$E = \text{SPLITBLOCK}(E, b)$
7: $b \leftarrow b / 2$
8: end if
9: until ℓ converges
10: return x_K

Algorithm 5 Hierarchical CorrAttackFlip

Require: Loss function $\ell(\cdot, \cdot)$, Input image x and its label y, Block size b, Set of blocks E containing all blocks of the image, Threshold c, τ, α, Adversarial budget ε
1: $x_0 = x$
2: for $e_{ijk} \in E$ do
3: Randomly draw v from $\{-\varepsilon, \varepsilon\}$
4: $x_0[e_{ijk}] = v + x_0[e_{ijk}]$
5: end for
6: repeat
7: $A_k = \{2ve_{ijk} \in E | e_{ijk}^T(x_k - x) < 0\}$
8: Run CorrAttack flipping $-\varepsilon$ to ε
$\tilde{x}_k = \text{CORRATTACK}(\ell(\cdot, \cdot), x_k, y, A_k, c, \tau, \alpha)$
9: $A_p = \{-2ve_{ijk} \in E | e_{ijk}^T(\tilde{x}_k - x) > 0\}$
10: Run CorrAttack flipping ε to $-\varepsilon$
$x_{k+1} = \text{CORRATTACK}(\ell(\cdot, \cdot), \tilde{x}_k, y, A_p, c, \tau, \alpha)$
11: if $b > 1$ then
12: Split the blocks into finer blocks using Algorithm 3
$E = \text{SPLITBLOCK}(E, b)$
13: $b \leftarrow b / 2$
14: end if
15: until ℓ converges
16: return x_K

B DETAILS OF EXPERIMENT SETTING

We use the hinge loss for all the experiments. For un-targeted attacks,

$$\ell_{\text{untarget}}(x, y) = \max \left\{ F(x)_y - \max_{j \neq y} F(x)_j, -\omega \right\} \quad (17)$$

and for targeted attacks,

$$\ell_{\text{target}}(x, y) = \max \left\{ \max_j F(x)_j - F(x)_t, -\omega \right\}. \quad (18)$$
Here F represents the logits of the network outputs, t is the target class, and ω denotes the margin. The image will be projected into the ϵ-ball. Besides, the value of the image will be clipped to range $[0, 1]$.

B.1 Gaussian Process Regression and Bayesian Optimization

We further provide details on both the computational scaling and modeling setup for the GP regression.

To address computational issues, we use GPyTorch [Gardner et al., 2018] for scalable GP regression. GPyTorch follows (Dong et al., 2017) to solve linear systems using the conjugate gradient (CG) method and approximates the log-determinant via the Lanczos process. Without GPyTorch, running BO with a GP regression for more than a few thousand evaluations would be infeasible as classical approaches to GP regression scale cubically in the number of data points.

On the modeling side, the GP is parameterized using a Matérn-5/2 kernel with ARD and a constant mean function for all experiments. The GP hyperparameters are fitted before proposing a new batch by optimizing the log-marginal likelihood. The domain is rescaled to $[0, 1]^d$ and the function values are standardized before fitting the GP regression. We use a Matérn-5/2 kernel with ARD for CorrAttack and use the following bounds for the hyperparameters: (length scale) $\lambda_i \in [0.005, 2.0]$, (output scale) $\lambda'_i \in [0.05, 20.0]$, (noise variance) $\sigma^2 \in [0.0005, 0.1]$.

B.2 Hyperparameters

For CorrAttack in Algorithm 4 and Algorithm 5, we set the initial block size b to be 32 and the step size η for CorrAttackDiff is 0.03. In Algorithm 1, we use the initial sampling ratio $m = 0.03n$ at the start point for Gaussian process regression, the threshold $c = 10^{-4}$ to decide when to stop the search of current block size. In Algorithm 2, the threshold is different for different block size. For CorrAttackFlip, $\alpha = 1, 1, 2, 2, 3$ for block size 32, 16, 8, 4, 2 and for CorrAttackDiff, $\alpha = 0, 0, 1, 1, 2$ for block size 32, 16, 8, 4, 2. We set $\tau = 3n = 0.09n$ to remove the earliest samples from D once $|D| > \alpha$. The Adam optimizer is used to optimize the mean μ and covariance κ of Gaussian process, where the iteration is 1 and the learning rate is 0.1.

For PARSI, the block size is set to 32 as CorrAttack, other hyperparameters are the same as the original paper.

For Bandits, Bayes-Attack and BayesOpt, the hyperparameters are the same as the original paper.

We optimize the hyperparameters for ZOO, NES. For un-targeted attack on NES, we set the sample size to be 50, learning rate to be 0.1. For targeted attack on NES, the sample size is also 50 and the learning rate is 0.05. The learning is decay by 50% if the loss doesn’t decrease for 20 iterations.

For NAAttack, we set the hyperparameters the same as NES and add momentum and learning rate decay, which are not mentioned in the original paper.

For ZOO, we set the learning rate to 1.0 and sample size to be 50. Other setting follows the original paper.

C Additional Experiments

C.1 Optimality of Bayesian Optimization

Figure 3 shows the reward function that the Bayesian optimization could find in the action set. CorrAttack could find the action with high reward within just a few queries. It shows that the Gaussian process regression could model the correlation of the reward function and the Bayesian optimization could use it to optimize the time-varying contextual bandits.

C.2 Varying the Adversarial Budget

We test CorrAttack on different adversarial budget on ImageNet for both un-targeted attack and targeted attack. Table 5 and Table 6 show the success rate and average queries for $\varepsilon = 0.04, 0.05, 0.06$. CorrAttackFlip achieves the best performance among all methods.
Figure 3: The rank of the reward function that the Bayesian optimization could find in the action set for different block size. The rank and query are normalized by the cardinality of the action set.

Table 5: Success rate and average queries of un-targeted attack on different ε. Query limit is 10000

Attack	$\varepsilon = 0.04$	$\varepsilon = 0.05$	$\varepsilon = 0.06$			
	Success	Queries	Success	Queries	Success	Queries
ZOO	63.28%	1915	63.68%	1794	64.88%	1507
NES	99.06%	1230	99.19%	1178	99.19%	1160
NAttack	99.73%	529	99.73%	401	99.73%	369
Bandits	95.86%	898	96.92%	694	97.06%	567
PARS1	99.73%	508	99.73%	432	100%	387
CorrAttackDiff	99.86%	479	99.86%	419	99.78%	373
CorrAttackFlip	100%	203	100%	150	100%	107

Table 6: Success rate and average queries of targeted attack on different ε. Query limit is 10000

Attack	$\varepsilon = 0.04$	$\varepsilon = 0.05$	$\varepsilon = 0.06$			
	Success	Queries	Success	Queries	Success	Queries
ZOO	0.80%	3514	0.80%	3018	0.93%	1938
NES	49.13%	5901	52.73%	5762	56.48%	5884
NAttack	78.24%	5019	89.05%	3799	90.25%	4321
Bandits	31.78%	5721	40.19%	5672	43.39%	5609
PARS1	57.00%	3599	64.88%	3403	68.75%	3250
CorrAttackDiff	78.70%	4472	81.84%	4064	85.31%	3837
CorrAttackFlip	93.44%	2689	96.39%	2531	97.50%	2194

C.3 ABLATION STUDY ON FEATURES

Table 7 shows the success rate and average queries for CorrAttack with different features. We perform ablation study on the features of the contextual bandits. One contains just the location of the block and the other contains both the location and the PCA feature. PCA helps the learning process of the reward and achieve higher success rate and lower number of queries. PCA feature achieves significant improvement on CorrAttackFlip. We may find more useful features in the future.

C.4 RUNNING TIME OF CORRAttackFlip AND BayesOpt

The time complexity of GP regression is $O(dn^2)$ where d is the dimension of input and n is the number of samples. And the dimension for CorrAttack ($d = 4$) is much smaller than BayesOpt and Bayes-Attack ($d = 48 \times 48 \times 3$).

We compare the running time for CorrAttackFlip with BayesOpt and Bayes-Attack on 20 images from ImageNet. Table 8 shows the running time for the un-targeted attack. We use PyTorch to develop these two models. All experiments were conducted on a personal workstation with 28
Table 7: Ablation study on features with success rate and average queries of targeted attack on ImageNet. $\varepsilon = 0.05$ and query limit is 10000. We use feature $z_{i,j,k} = (i,j,k,pca)$ for CorrAttackDiff w pca and CorrAttackFlip w pca, use $z_{i,j,k} = (i,j,k)$ for CorrAttackDiff w/ pca and CorrAttackFlip w/ pca.

Attack	VGG16		Resnet50		Densenet121	
	Success	Queries	Success	Queries	Success	Queries
CorrAttackDiff w pca	88.69%	3892	81.71%	4066	90.88%	3540
CorrAttackFlip w pca	88.41%	3826	81.84%	4064	91.29%	3513
CorrAttackDiff w/ pca	98.11%	2233	95.86%	2682	98.10%	2195
CorrAttackFlip w/ pca	98.07%	2191	96.39%	2531	99.41%	2019

Inte(R) Xeon(R) Gold 5120 2.20GHz CPUs, an NVIDIA GeForce RTX2080Ti 11GB GPU and 252G memory.

BayesOpt models the loss function with a very high dimensional Gaussian process. The decomposition of additive kernel also needs to be restarted several times. Even though we try to optimize the speed of BayesOpt with GPU acceleration, it is still very slow and takes hundreds of times more computational resources than CorrAttack.

Bayes-Attack could be regarded as a simpler version of BayesOpt, which does not add additive kernel. We do not evaluate it on targeted task (when query>1000) since GP inference time grows fast as evaluated query increases, e.g. For Bayes-Attack, when 150 <query< 200, Time=1.6s/query; 800 <query< 1000, Time = 10.5s/query. CorrAttack solves this problem with Time=0.1s/query even when query reaches 10000. Since we forget the previous samples before $t - \tau$, our input sample n will be smaller than τ. The forgetting technique can not be applied into the Bayes-Attack and BayesOpt since they are searching the perturbation of all blocks so each sample needs to be remembered.

Table 8: Comparison of running time between CorrAttackFlip and BayesOpt on un-targeted attack. "Per Query" means the average time needed to perform one query to the loss-oracle and "Per Image" denotes the average time to successfully attack an image. Since BayesOpt needs thousands of hours to run all samples, we only tested on 20 samples from ImageNet, which will be marked as *.

Time	VGG16	Resnet50	Densenet121			
	Per Query	Per Image	Per Query	Per Image	Per Query	Per Image
BayesOpt*	28.94s	5268s	40.53s	8673s	39.57s	8825s
Bayes-Attack*	3.03s	739s	3.42s	869s	2.96s	630s
CorrAttackFlip*	0.12s	19s	0.11s	15s	0.15s	20s

C.5 Growing Curve of Success Rate

The number of average queries is sometimes misleading due to the heavy tail distribution of queries. Therefore in Figure 4, we plot the success rates at different query levels to show the detailed behaviors of different attacks. It shows that CorrAttack is much more efficient than other methods at all query levels.

C.6 Visualization of Adversarial Examples
(a) Un-targeted Attack

(b) Targeted Attack

Figure 4: Success rate of black-box attack at different query levels for undefended ImageNet models.

Figure 5: Visualization of adversarial examples for targeted attack on Densenet121. $\varepsilon = 0.05$
C.7 **Google Cloud Vision API**

Figure 6 shows the example of attacking the Google Cloud Vision API. CorrAttackFlip and Parsi successfully change the classification result. BeyesOpt, however, can not remove the top 1 classification result out of the output.

Figure 6: Example result of attacking Google Cloud Vision API