Admissible topologies on $C(Y, Z)$ and $O_Z(Y)$

Dimitris Georgioua, Athanasios Megaritisb, and Kyriakos Papadopoulosc

aUniversity of Patras, Department of Mathematics, Greece
bTechnological Educational Institute of Messolonghi, Department of Accounting, Greece
cUniversity of Birmingham, School of Mathematics, United Kingdom

Abstract

Let Y and Z be two given topological spaces, $O(Y)$ (respectively, $O(Z)$) the set of all open subsets of Y (respectively, Z), and $C(Y, Z)$ the set of all continuous maps from Y to Z. We study Scott type topologies on $O(Y)$ and we construct admissible topologies on $C(Y, Z)$ and $O_Z(Y) = \{f^{-1}(U) \in O(Y) : f \in C(Y, Z) \text{ and } U \in O(Z)\}$, introducing new problems in the field.

2000 Mathematics Subject Classification: 54C35
Key words and phrases: Function space, admissible topology

1 Introduction and Preliminaries

We denote by Y and Z two fixed topological spaces and by $C(Y, Z)$ the set of all continuous maps from Y to Z. If t is a topology on $C(Y, Z)$, then the corresponding topological space is denoted by $C_t(Y, Z)$.

Let X be a topological space and Q a subset of X. By $\text{Cl}(Q)$ we denote the closure of Q in X.

By $O(X)$ we denote the family of all open subsets of X under a given topology and by $O_Z(Y)$ the family $\{f^{-1}(U) : f \in C(Y, Z) \text{ and } U \in O(Z)\}$.

Let X be a space and let $F : X \times Y \to Z$ be a continuous map. By \widehat{F} we denote the map from X to the set $C(Y, Z)$, such that $\widehat{F}(x)(y) = F(x, y)$, for every $x \in X$ and $y \in Y$. Let G be a map from X to $C(Y, Z)$. By \widehat{G} we denote the map from $X \times Y$ to Z, such that $\widehat{G}(x, y) = G(x)(y)$, for every $(x, y) \in X \times Y$.
Definition 1 (see [1] and [2]) A topology t on $C(Y, Z)$ is called admissible, if for every space X, the continuity of the map $G: X \to C_t(Y, Z)$ implies the continuity of the map $\tilde{G}: X \times Y \to Z$ or equivalently the evaluation map $e: C_t(Y, Z) \times Y \to Z$, defined by $e(f, y) = f(y)$ for every $(f, y) \in C(Y, Z) \times Y$, is continuous.

Definition 2 (see, for example, [8]) The Scott topology $\Omega(Y)$ on $O(Y)$ is defined as follows: a subset $\mathcal{I} \in O(Y)$ belongs to $\Omega(Y)$ if:

(α) $U \in \mathcal{I}$, $V \in O(Y)$, and $U \subseteq V$ imply $V \in \mathcal{I}$ and

(β) for every collection of open sets of Y, whose union belongs to \mathcal{I}, there are finitely many elements of this collection whose union also belongs to \mathcal{I}.

Definition 3 (see [11]) The strong Scott topology $\Omega_1(Y)$ on $O(Y)$ is defined as follows: a subset $\mathcal{I} \in O(Y)$ belongs to $\Omega_1(Y)$ if:

(α) $U \in \mathcal{I}$, $V \in O(Y)$, and $U \subseteq V$ imply $V \in \mathcal{I}$ and

(β) for every open cover of Y, there are finitely many elements of this cover whose union belongs to \mathcal{I}.

Definition 4 (see, for example, [11] and [13]) The Isbell topology on $C(Y, Z)$, denoted here by t_{Is}, is the topology which has as a subbasis the family of all sets of the form:

$$(\mathcal{I}, U) = \{ f \in C(Y, Z) : f^{-1}(U) \in \mathcal{I} \},$$

where $\mathcal{I} \in \Omega(Y)$ and $U \in O(Z)$.

Definition 5 (see, for example, [11] and [13]) The strong Isbell topology on $C(Y, Z)$, denoted here by t_{sIs}, is the topology which has as a subbasis the family of all sets of the form:

$$(\mathcal{I}, U) = \{ f \in C(Y, Z) : f^{-1}(U) \in \mathcal{I} \},$$

where $\mathcal{I} \in \Omega_1(Y)$ and $U \in O(Z)$.

Definition 6 (see [4]) The compact open topology on $C(Y, Z)$, denoted here by t_{co}, is the topology which has as a subbasis the family of all sets of the form:

$$(K, U) = \{ f \in C(Y, Z) : f(K) \subseteq U \},$$

where K is a compact subset of Y and $U \in O(Z)$.

It is known that $t_{co} \subseteq t_{Is}$ (see, for example, [13]).

Definition 7 (see, for example, [11]) A subset K of a space X is said to be bounded, if every open cover of X has a finite subcover for K.

2
Definition 8 (see, for example, [8]) A space X is called corecompact, if for every $x \in X$ and for every open neighborhood U of x there exists an open neighborhood V of x such that $V \subseteq U$ and the subset V is bounded in the space U.

Definition 9 (see, for example, [11]) A space X is called locally bounded, if for every $x \in X$ and for every open neighborhood U of x there exists a bounded open neighborhood V of x such that $V \subseteq U$.

Below, we give some well known results on admissible topologies:

1. The compact open topology on $C(Y, Z)$ is admissible, if Y is a regular locally compact space (see [1]).

2. The Isbell topology on $C(Y, Z)$ is admissible, if Y is a corecompact space (see, for example, [11] and [15]).

3. The strong Isbell topology on $C(Y, Z)$ is admissible, if Y is a locally bounded space (see, for example, [11]).

4. A topology which is larger than an admissible topology is also admissible (see [1]).

For a summary of all the above results and some open problems on function spaces see [5].

In this paper, we give Scott type topologies on the set $O(Y)$ and define using these topologies, in a standard way, new admissible topologies on the sets $C(Y, Z)$ and $O_Z(Y)$. We finally introduce questions on the field.

2 Scott type topologies on the set $O(Y)$

Throughout the text, by τ_X we will denote the corresponding topology on X, where X is a topological space.

Definition 10 Let Y and Z be two topological spaces. The topology on Y, denoted here by τ^Z_Y, which has as a subbasis the family:

$$O_Z(Y) = \{ f^{-1}(U) \in O(Y) : f \in C(Y, Z) \text{ and } U \in O(Z) \}$$

is called the Z-topology corresponding to the topology τ_Y of Y.

Clearly, $\tau^Z_Y \subseteq \tau_Y$.

Example 2.1 (1) Let \mathbb{R} be the set of real numbers equipped with its usual topology $\tau_\mathbb{R}$ and let Z be any set together with its trivial topology that is, the indiscrete topology. Then, $O_Z(\mathbb{R}) = \{ \emptyset, \mathbb{R} \}$ and, therefore, $\tau^Z_\mathbb{R} \neq \tau_\mathbb{R}$.

3
(2) It is well known that (see, for example, [16] (Example 92), [9], and [17]) for a fixed space Z there exists a space Y such that every continuous map from Y to Z is constant. This means that $\mathcal{O}_Z(Y) = \{\emptyset, Y\}$ and, therefore, $\tau_Y^Z \neq \tau_Y$.

(3) Let $Z = S$ be the Sierpiński space, that is $Z = \{0, 1\}$ and $\tau_Z = \{\emptyset, \{1\}, \{0, 1\}\}$. If Y is another topological space, then $C(Y, S) = \{\mathcal{X}_V : V \in \mathcal{O}(Y)\}$, where $\mathcal{X}_V : Y \to S$ denotes the characteristic function of V.

$$\mathcal{X}_V(y) = \begin{cases} 1 & \text{if } y \in V, \\ 0 & \text{if } y \notin V. \end{cases}$$

In this case we observe that:

$$\mathcal{O}_Z(Y) = \{\mathcal{X}_V^{-1}(\{1\}) : \mathcal{X}_V \in C(Y, S)\}$$
$$= \{V : V \in \mathcal{O}(Y)\}$$
$$= \mathcal{O}(Y).$$

Thus, $\tau_Y^S = \tau_Y$.

Definition 11 Let Y and Z be two topological spaces. A subset K of Y is called Z-compact, if K is compact in the space (Y, τ_Y^Z), where τ_Y^Z is the Z-topology corresponding to the topology τ_Y of Y.

Example 2.2 Every compact subset of a space Y is Z-compact, but the converse statement is not true. Indeed, let \mathbb{R} be the set of real numbers with the usual topology and Z a set equipped with the trivial topology. Then, every subset of \mathbb{R} is Z-compact, while subsets of the set of real numbers are not necessarily compact, in general.

Definition 12 Let Y and Z be two topological spaces. The Z-compact open topology on $C(Y, Z)$, denoted here by t_{co}^Z, is the topology, which has as a subbasis the family of all sets of the form:

$$(K, U) = \{f \in C(Y, Z) : f(K) \subseteq U\},$$

where K is a Z-compact subset of Y and $U \in \mathcal{O}(Z)$.

Remark 2.1 For the topologies t_{co} and t_{co}^Z we have that:

$$t_{co} \subseteq t_{co}^Z.$$
Example 2.3 Let Y be an arbitrary topological space and S the Sierpiński space. By Example 2.1(3), we have that a subset K of Y is S-compact if and only if K is compact in (Y, τ_Y). In this case, we have $t_{Sco}^S = t_{co}$.

Furthermore, we observe that, whenever we consider the topology on $O(Y)$ which has as subbasis the family:

$$\{< K >: K \text{ is compact in } Y\},$$

where $< K > = \{U \in O(Y) : K \subset U\}$, then the topological spaces $C_{\text{co}}(Y, S)$ and $O(Y)$ are homeomorphic. Indeed, it would be enough to consider the homeomorphism $T : C(Y, S) \to O(Y)$ for which $T(\mathcal{X}_V) = V$, for every $\mathcal{X}_V \in C(Y, S)$.

So, in the case where $Z = S$, it would be that $t_{Sco}^S = t_{co}$ on $C(Y, S)$ and this topology coincides with the topology on $O(Y)$, which has as subbasis the set $\{< K >: K \text{ is compact in } Y\}$.

Definition 13 By τ_1^Z we denote the family of all subsets of $O(Y)$ that are defined as follows: a subset I_H of $O(Y)$ belongs to τ_1^Z if:

(α) $f^{-1}(U) \in I_H \cap O(Z(Y), V \in O(Y)$ and $f^{-1}(U) \subseteq V$ imply $V \in I_H$ and

(β) for every collection $\{f^{-1}_\lambda(U_\lambda) : \lambda \in \Lambda\}$ of elements of $O(Z(Y)$, whose union belongs to I_H, there are finitely many elements $f^{-1}_\lambda(U_\lambda)$, $i = 1, 2, \ldots, n$ of this collection, such that:

$$\bigcup\{f^{-1}_\lambda(U_\lambda) : i = 1, 2, \ldots, n\} \in I_H.$$

Proposition 2.1 The family τ_1^Z defines a topology on $O(Y)$, called the Z-Scott topology.

Proof. The proof follows trivially by Definition 13. □

Definition 14 By $\tau_1^{Z,s}$ we denote the family of all subsets of $O(Y)$ that are defined as follows: a subset I_H of $O(Y)$ belongs to $\tau_1^{Z,s}$ if:

(α) $f^{-1}(U) \in I_H \cap O(Z(Y), V \in O(Y)$ and $f^{-1}(U) \subseteq V$ imply $V \in I_H$ and

(β) for every collection $\{f^{-1}_\lambda(U_\lambda) : \lambda \in \Lambda\}$ of elements of $O(Z(Y)$ whose union is equal to Y, there are finitely many elements $f^{-1}_\lambda(U_\lambda)$, $i = 1, 2, \ldots, n$ of this collection, such that:

$$\bigcup\{f^{-1}_\lambda(U_\lambda) : i = 1, 2, \ldots, n\} \in I_H.$$

Proposition 2.2 The family $\tau_1^{Z,s}$ defines a topology on $O(Y)$, called the strong Z-Scott topology.

Proof. The proof follows trivially by Definition 14. □
Example 2.4 (1) Let $Y = \{0, 1\}$ be equipped with the topology $\tau_Y = \{\emptyset, \{0\}, Y\}$ and let Z be a set equipped with the trivial topology. Then,

$$\mathcal{O}_Z(Y) = \{\emptyset, Y\},$$
$$\Omega(Y) = \Omega_1(Y) = \{\emptyset, \{0\}, \{0, Y\}, \{0\}, \emptyset\}$$

and

$$\tau^Z_1 = \tau^Z_{1,s} = \{\emptyset, \{\{0\}\}, \{0\}, \{0, Y\}, \{\{0\}, Y\}\}.$$

(2) If Y is an arbitrary topological space and S is the Sierpiński space, then a subset H of $\mathcal{O}_Z(Y)$, will belong to τ^Z_s, if:

1. $X^{-1}_i V(\{1\}) \in H \cap \mathcal{O}_S(Y)$, $V \in \mathcal{O}(Y)$, and $X^{-1}_i V(\{1\}) \subset W$ implies that $W \in \mathcal{H}$. Equivalently, $V \in \mathcal{H} \cap \mathcal{O}(Y) = \mathcal{H}$, $V \in \mathcal{O}(Y)$ and $V \subset W$ implies that $W \in H$.

2. For every collection $\{X^{-1}_i V(\{1\}) : V \in \mathcal{O}(Y)\}$ of elements of $\mathcal{O}_S(Y) = \mathcal{O}(Y)$, whose union belongs to H, there exist finitely many elements $\{X^{-1}_i V(\{1\}) : i = 1, 2, \cdots, n\}$, such that:

$$\bigcup \{X^{-1}_i V(\{1\}) : i = 1, 2, \cdots, n\} \in \mathcal{H}.$$

Equivalently, for every collection $\{V_\lambda \in \mathcal{O}(Y) : \lambda \in \Lambda\}$, such that $\bigcup\{V_\lambda : \lambda \in \Lambda\} \in \mathcal{H}$, there are finitely many elements $\{V_\lambda : i = 1, 2, \cdots, n\}$, such that $\bigcup\{V_\lambda : i = 1, 2, \cdots, n\} \in \mathcal{H}$. So, τ^Z_1 is the Scott topology on $\mathcal{O}(Y)$.

Remark 2.2 For the topologies $\Omega(Y), \Omega_1(Y), \tau^Z_1,$ and $\tau^Z_{1,s}$ we have the following comparison:

$$\Omega_1(Y) \subseteq \tau^Z_{1,s} \subseteq \tau^Z_1 \subseteq \Omega(Y)$$

Definition 15 The t^Z_1 topology on $C(Y, Z)$ is the topology which has as a subbasis the family of all sets of the form:

$$\{(\mathcal{H}, U) = \{f \in C(Y, Z) : f^{-1}(U) \in \mathcal{H}\},$$

where \mathcal{H} is open in the topology τ^Z_1 on $\mathcal{O}(Y)$ and $U \in \mathcal{O}(Z)$.

Definition 16 The $t^Z_{1,s}$ topology on $C(Y, Z)$ is the topology which has as a subbasis the family of all sets of the form:

$$\{(\mathcal{H}, U) = \{f \in C(Y, Z) : f^{-1}(U) \in \mathcal{H}\},$$

where \mathcal{H} is open in the topology $\tau^Z_{1,s}$ on $\mathcal{O}(Y)$ and $U \in \mathcal{O}(Z)$.
Proposition 2.3 Let Y and Z be two topological spaces and let K be a Z-compact subset of Y. Then, the set:

$$IH_K = \{ U \in \mathcal{O}(Y) : K \subseteq U \}$$

is open in $\mathcal{O}(Y)$ with the topology τ^Z_1.

Proof. Let $f^{-1}(U) \in IH_K \cap \mathcal{O}_Z(Y)$, $V \in \mathcal{O}(Y)$ and let $f^{-1}(U) \subseteq V$. Then, $K \subseteq f^{-1}(U) \subseteq V$ and, therefore, $V \in IH_K$.

Now, let $\{ f^{-1}_\lambda(U_\lambda) : \lambda \in \Lambda \}$ be a collection of sets of $\mathcal{O}_Z(Y)$, whose union belongs to IH_K. Then:

$$K \subseteq \bigcup \{ f^{-1}_\lambda(U_\lambda) : \lambda \in \Lambda \}.$$

Since K is Z-compact, there are finitely many elements $f^{-1}_\lambda(U_\lambda)$, $i = 1, 2, \ldots , n$ of this collection such that:

$$K \subseteq \bigcup \{ f^{-1}_\lambda(U_\lambda) : i = 1, 2, \ldots , n \}$$

and, therefore,

$$\bigcup \{ f^{-1}_\lambda(U_\lambda) : i = 1, 2, \ldots , n \} \in IH_K.$$

Thus, the set IH_K is open in $\mathcal{O}(Y)$ with the topology τ^Z_1. □

Remark 2.3 (1) We observe that for every Z-compact subset K of Y we have:

$$(IH_K, U) = \{ f \in C(Y, Z) : f^{-1}(U) \in IH_K \} = \{ f \in C(Y, Z) : K \subseteq f^{-1}(U) \} = \{ f \in C(Y, Z) : f(K) \subseteq U \}.$$

This says that $t^Z_{co} \subseteq t^Z_1$. Thus, by Remarks 2.1 and 2.2 we get the following comparison between the topologies $t_{co}, t^Z_{co}, t_{Is}, t^Z_{Is}, t^Z_1$, and $t^Z_{1,s}$:

$$t^Z_{co} \subseteq t^Z_1 \subseteq t^Z_{1,s}$$

(2) Let

$$\mathcal{T} = \{ \tau^Z_Y : Z \text{ is an arbitrary topological space} \}.$$

We immediately see that (\mathcal{T}, \subseteq) has an upper bound, namely τ^Z_Y, which is also the maximal element for \mathcal{T} because, if $Z = S$, then $\tau^Z_Y = \tau^S_Y$.

7
In a similar way, we can prove that the set:

\[T_{co} = \{ t_{co}^Z : Z \text{ is an arbitrary topological space} \} \]

has a lower bound, namely \(t_{co} \), which is a minimal element and, if \(Z = S \), then \(t_{co} = t_{co}^S \).

Also, in a similar manner the set:

\[T_1 = \{ t_1^Z : Z \text{ is an arbitrary topological space} \} \]

has a lower bound, namely \(t_{Is} \), which is a minimal element and, if \(Z = S \), then \(t_{Is} = t_{Is}^S \).

Finally, the set:

\[T_{1,s} = \{ t_{1,s}^Z : Z \text{ is an arbitrary topological space} \} \]

has a lower bound, namely \(t_{sIs} \), which is a minimal element and, if \(Z = S \), then \(t_{sIs} = t_{sIs}^S \).

Theorem 2.4 Let \(Z \) be a \(T_i \)-space, where \(i = 0, 1, 2 \). Then, the topological spaces \(C_{t_{co}}^Z(Y, Z) \), \(C_{t_1}^Z(Y, Z) \), and \(C_{t_{1,s}}^Z(Y, Z) \) are also \(T_i \)-spaces.

Proof. Since \(Z \) is a \(T_i \)-space, where \(i = 0, 1, 2 \), the space \(C_{t_{co}}^Z(Y, Z) \) will also be a \(T_i \)-space (see, for example, [2]). Thus, by Remark 2.3, the spaces \(C_{t_{co}}^Z(Y, Z) \), \(C_{t_1}^Z(Y, Z) \) and \(C_{t_{1,s}}^Z(Y, Z) \) are \(T_i \)-spaces. □

Theorem 2.5 The following statements are true:

1. If \(Y \) is a regular locally compact space, then the topologies \(t_{co}^Z \), \(t_1^Z \) and \(t_{1,s}^Z \) are admissible.
2. If \(Y \) is a corecompact space, then the topologies \(t_1^Z \) and \(t_{1,s}^Z \) are admissible.
3. If \(Y \) is a locally bounded space, then the topology \(t_{1,s}^Z \) is admissible.

Proof. The proof of this theorem follows from Remark 2.3 and from the fact that a topology larger than an admissible topology is also admissible. □

Definition 17 Let \(Y \) and \(Z \) be two topological spaces. The space \(Y \) is called **locally \(Z \)-compact**, if the space \((Y, \tau_Y^Z)\), where \(\tau_Y^Z \) is the \(Z \)-topology corresponding to the topology \(\tau_Y \) of \(Y \), is locally compact.

Remark 2.4 We observe that, if a space \(Y \) is regular locally \(Z \)-compact, then for every \(y \in Y \) and for every neighborhood \(f^{-1}(W) \in \tau_Y^Z \) of \(y \), where \(f \in C(Y, Z) \) and \(W \in \mathcal{O}(Z) \), there exists \(g^{-1}(V) \in \tau_Y^Z \) such that the closure of the set \(g^{-1}(V) \) is compact in the space \((Y, \tau_Y^Z)\) and \(y \in g^{-1}(V) \subseteq \text{Cl}(g^{-1}(V)) \subseteq f^{-1}(W) \).
Theorem 2.6 Let Z be a space and Y a regular locally Z-compact space. Then, the t^Z_{co} topology on $C(Y, Z)$ is admissible.

Proof. It is sufficient to prove that the evaluation map:

$$ e : C_{t^Z_{co}}(Y, Z) \times Y \to Z $$

is continuous.

Let $(f, y) \in C(Y, Z) \times Y$ and let also $W \in \mathcal{O}(Z)$, such that:

$$ e(f, y) = f(y) \in W. $$

Then, we have that:

$$ y \in f^{-1}(W). $$

Since the space Y is regular locally Z-compact, there exists $g^{-1}(V) \in \tau^Z_Y$, such that the set $\text{Cl}(g^{-1}(V))$ is compact in the space (Y, τ^Z_Y) and

$$ y \in g^{-1}(V) \subseteq \text{Cl}(g^{-1}(V)) \subseteq f^{-1}(W). $$

Since $\text{Cl}(g^{-1}(V)) \subseteq f^{-1}(W)$, we have that $f \in (\text{Cl}(g^{-1}(V)), W)$. Thus,

$$(\text{Cl}(g^{-1}(V)), W) \times g^{-1}(V)$$

is an open neighborhood of (f, y) in $C_{t^Z_{co}}(Y, Z) \times Y$.

We finally prove that:

$$ e((\text{Cl}(g^{-1}(V)), W) \times g^{-1}(V)) \subseteq W. $$

Let $(h, z) \in (\text{Cl}(g^{-1}(V)), W) \times g^{-1}(V)$. Then:

$$ h \in (\text{Cl}(g^{-1}(V)), W) \text{ and } z \in g^{-1}(V). $$

Therefore, $h(g^{-1}(V)) \subseteq h(\text{Cl}(g^{-1}(V))) \subseteq W$ and $e(h, z) = h(z) \in W$.

Thus, the evaluation map e is continuous and, therefore, the t^Z_{co} topology on $C(Y, Z)$ is admissible too. □

Theorem 2.7 Let X, Y, and Z be three topological spaces. If the space Y is locally Z-compact, then the map:

$$ T : C_{t^Z_{co}}(X, Y) \times C_{t^Z_{co}}(Y, Z) \to C_{t^Z_{co}}(X, Z), $$

with $T(f, g) = g \circ f$ for every $(f, g) \in C(X, Y) \times C(Y, Z)$, is continuous.
Proof. Let \((f, g) \in C(X, Y) \times C(Y, Z)\) and let:

\[
T(f, g) = g \circ f \in (K, U) \in t^Z_{co},
\]

where \(K\) is a compact subset of the space \((X, \tau^Z_X)\) and \(U\) an open subset of \(Z\). Then, we have that:

\[
(g \circ f)(K) \subseteq U
\]

or, equivalently:

\[
K \subseteq f^{-1}(g^{-1}(U)).
\]

Now, since the space \(Y\) is locally \(Z\)-compact, the space \((Y, \tau^Z_Y)\) is locally compact. Thus, for an arbitrary \(y \in g^{-1}(U)\) there exists \(W_y \in \mathcal{O}(Z)\) such that \(\text{Cl}(W_y)\) is compact in \((X, \tau^Z_X)\) and

\[
y \in W_y \subseteq \text{Cl}(W_y) \subseteq g^{-1}(U). \tag{1}
\]

So, we have that:

\[
g^{-1}(U) = \bigcup \{W_y : y \in g^{-1}(U)\}
\]

and, therefore,

\[
K \subseteq f^{-1}(g^{-1}(U)) = \bigcup \{f^{-1}(W_y) : y \in g^{-1}(U)\}.
\]

Since \(K\) is a compact subset of the space \((X, \tau^Z_X)\), there are finitely many elements \(y_1, \ldots, y_n \in g^{-1}(U)\), such that:

\[
K \subseteq \bigcup \{f^{-1}(W_{y_i}) : i \in \{1, \ldots, n\}\}.
\]

So, we have

\[
f(K) \subseteq \bigcup \{W_{y_i} : i \in \{1, \ldots, n\}\}
\]

or, equivalently:

\[
f \in (K, \bigcup \{W_{y_i} : i \in \{1, \ldots, n\}\}).
\]

Also, by relation (1) we have

\[
g\left(\bigcup \{\text{Cl}(W_{y_i}) : i \in \{1, \ldots, n\}\}\right) \subseteq U
\]

and, therefore,

\[
g \in \left(\bigcup \{\text{Cl}(W_{y_i}) : i \in \{1, \ldots, n\}\}, U\right).
\]

We observe that:

\[
(K, \bigcup \{W_{y_i} : i \in \{1, \ldots, n\}\}) \in t^Y_{co}
\]
and that
\[
(\bigcup\{\text{Cl}(W_{y_i}) : i \in \{1, \cdots, n\}\}, U) \in \mathcal{T}_{\mathcal{C}}^{Z}.
\]
By all the above it suffices to prove that:
\[
T\left((K, \bigcup\{W_{y_i} : i \in \{1, \cdots, n\}\}) \times (\bigcup\{\text{Cl}(W_{y_i}) : i \in \{1, \cdots, n\}\}, U)\right) \subseteq (K, U).
\]
Let
\[
(h_1, h_2) \in (K, \bigcup\{W_{y_i} : i \in \{1, \cdots, n\}\}) \times (\bigcup\{\text{Cl}(W_{y_i}) : i \in \{1, \cdots, n\}\}, U).
\]
Then,
\[
h_1(K) \subseteq \bigcup\{W_{y_i} : i \in \{1, \cdots, n\}\}
\]
and
\[
h_2(\bigcup\{\text{Cl}(W_{y_i}) : i \in \{1, \cdots, n\}\}) \subseteq U.
\]
Therefore,
\[
(h_2 \circ h_1)(K) = h_2(h_1(K)) \subseteq h_2(\bigcup\{W_{y_i} : i \in \{1, \cdots, n\}\}) \subseteq h_2(\bigcup\{\text{Cl}(W_{y_i}) : i \in \{1, \cdots, n\}\}) \subseteq U,
\]
so that \(T(h_1, h_2) = h_2 \circ h_1 \in (K, U)\). Thus, the map \(T\) is continuous. \(\square\)

Definition 18 Let \(Y\) and \(Z\) be two topological spaces. A subset \(B\) of \(Y\) is called \textit{Z-bounded}, if \(B\) is bounded in the space \((Y, \tau^{Z}_Y)\), where \(\tau^{Z}_Y\) is the \(Z\)-topology corresponding to the topology \(\tau_Y\) of \(Y\).

Definition 19 Let \(Z\) be a space. A space \(Y\) is called \textit{locally Z-bounded}, if for every \(y \in Y\) and for every open neighborhood \(U\) of \(y\), there exists a \(Z\)-bounded neighborhood \(g^{-1}(V) \in \mathcal{O}_Z(Y)\) of \(y\), such that \(g^{-1}(V) \subseteq U\).

Theorem 2.8 Let \(Z\) be a space and let \(Y\) be a locally \(Z\)-bounded space. Then, the \(i_{1, s}^{Z}\) topology on \(C(Y, Z)\) is admissible.

Proof. It is sufficient to prove that the evaluation map:
\[
e : C_{i_{1, s}^{Z}}(Y, Z) \times Y \to Z
\]
is continuous.

For this, we let \((f, y) \in C(Y, Z) \times Y\) and let \(W \in \mathcal{O}(Z)\), such that:
\[
e(f, y) = f(y) \in W.
\]
Then:
\[y \in f^{-1}(W). \]

Also, since \(Y \) is locally \(Z \)-bounded, there exists a \(Z \)-bounded neighborhood \(g^{-1}(V) \in \mathcal{O}_Z(Y) \) of \(y \), such that:
\[y \in g^{-1}(V) \subseteq f^{-1}(W). \]

Consider the set:
\[\mathcal{H}_{g^{-1}(V)} = \{ U \in \mathcal{O}(Y) : g^{-1}(V) \subseteq U \}. \]

We prove that \(\mathcal{H}_{g^{-1}(V)} \) belongs to the \(\tau_{1,s}^Z \) topology.

Indeed, let \(h^{-1}(U) \in \mathcal{H}_{g^{-1}(V)} \cap \mathcal{O}_Z(Y) \), \(U_1 \in \mathcal{O}(Y) \) and \(h^{-1}(U) \subseteq U_1 \). Then:
\[g^{-1}(V) \subseteq h^{-1}(U) \subseteq U_1 \]

and, therefore, \(U_1 \in \mathcal{H}_{g^{-1}(V)} \). Now, let \(\{ f^{-1}_{i_y}(U_i) : i \in I \} \) be a collection of elements of \(\mathcal{O}_Z(Y) \), whose union is equal to the set \(Y \). Then, for every \(y \in Y \), there exists \(i_y \in I \), such that \(y \in f^{-1}_{i_y}(U_{i_y}) \). Since \(Y \) is locally \(Z \)-bounded, there exists a \(Z \)-bounded neighborhood \(g^{-1}_{i_y}(V_{i_y}) \in \mathcal{O}_Z(Y) \) of \(y \), such that:
\[y \in g^{-1}_{i_y}(V_{i_y}) \subseteq f^{-1}_{i_y}(U_{i_y}). \]

We can easily deduce that the set \(\{ g^{-1}_{i_y}(V_{i_y}) : i_y \in I \} \) is an open cover of \((Y, \tau_Y^Z) \).

Since \(g^{-1}(V) \) is \(Z \)-bounded, there exist finitely many sets
\[g^{-1}_{i_{y_1}}(V_{i_{y_1}}), \cdots, g^{-1}_{i_{y_n}}(V_{i_{y_n}}) \]
such that:
\[g^{-1}(V) \subseteq \bigcup\{ g^{-1}_{i_{y_k}}(V_{i_{y_k}}) : k = 1, 2, \cdots, n \}. \quad (2) \]

We now consider the sets \(f^{-1}_{i_{y_1}}(U_{i_{y_1}}), \cdots, f^{-1}_{i_{y_n}}(U_{i_{y_n}}) \) of \(\mathcal{O}_Z(Y) \), for which:
\[g^{-1}_{i_{y_k}}(V_{i_{y_k}}) \subseteq f^{-1}_{i_{y_k}}(U_{i_{y_k}}), \quad k = 1, 2, \cdots, n. \]

But relation (2) gives:
\[g^{-1}(V) \subseteq \bigcup\{ g^{-1}_{i_{y_k}}(V_{i_{y_k}}) \} \subseteq \bigcup\{ f^{-1}_{i_{y_k}}(U_{i_{y_k}}) : k = 1, 2, \cdots, n \} \]

and, therefore:
\[\bigcup\{ f^{-1}_{i_{y_k}}(U_{i_{y_k}}) : k = 1, 2, \cdots, n \} \in \mathcal{H}_{g^{-1}(V)}. \]

So, the set \(\mathcal{H}_{g^{-1}(V)} \) is open in the \(\tau_{1,s}^Z \) topology.
Also, since \(g^{-1}(V) \subseteq f^{-1}(W) \), we have that \(f \in (f^{-1}(V), W) \). Thus, the set \((f^{-1}(V), W) \times g^{-1}(V)\) is an open neighborhood of \((f, y)\) in \(C_{t_1Z}(Y, Z) \times Y\).

We finally prove that:

\[
e((f^{-1}(V), W) \times g^{-1}(V)) \subseteq W.
\]

Let \((h, z) \in (f^{-1}(V), W) \times g^{-1}(V)\). Then:

\[
h \in (f^{-1}(V), W) \text{ and } z \in g^{-1}(V).
\]

Therefore, \(z \in g^{-1}(V) \subseteq h^{-1}(W) \) and \(e(h, z) = h(z) \in W\).

Thus, the evaluation map \(e \) is continuous and, therefore, the topology \(t_1Z \) is admissible. \(\square \)

Definition 20 Let \(Z \) be a space. A space \(Y \) is called \(Z \)-corecompact, if for every \(y \in Y \) and for every open neighborhood \(U \) of \(y \) in \(Y \), there exists a neighborhood \(f^{-1}(V) \in \mathcal{O}_Z(Y) \) of \(y \) such that \(f^{-1}(V) \subseteq U \) and the subset \(f^{-1}(V) \) is \(Z \)-bounded in the space \(U \) (in symbols we write \(f^{-1}(V) \ll U \)).

Remark 2.5 (1) In Definition 20 we considered the space \(U \) to be a subspace of the space \((Y, \tau_Y)\), that is \(U \) is the space which is equipped with the topology:

\[
(\tau_Y)_U = \{ U \cap V : V \in \tau_Y \}.
\]

(2) Let \(Y \) and \(Z \) be two topological spaces, \(U, W, U_i \in \mathcal{O}(Y) \), and \(f^{-1}(V), f_i^{-1}(V_i) \in \mathcal{O}_Z(Y) \), where \(i = 1, \ldots , n \). We observe that:

(i) If \(f^{-1}(V) \subseteq U \ll W \), then \(f^{-1}(V) \ll W \).

(ii) If \(f^{-1}(V) \ll U \subseteq W \), then \(f^{-1}(V) \ll W \).

(iii) If \(f_i^{-1}(V_i) \ll U_i \), for every \(i = 1, \ldots , n \), then

\[
\bigcup \{ f_i^{-1}(V_i) : i = 1, \ldots , n \} \ll \bigcup \{ U_i : i = 1, \ldots , n \}.
\]

Theorem 2.9 Let \(Z \) be a space and let \(Y \) be a \(Z \)-corecompact space. Then, the \(t_1Z \) topology on \(C(Y, Z) \) is admissible.

Proof. It is sufficient to prove that the evaluation map:

\[
e : C_{t_1Z}(Y, Z) \times Y \to Z
\]

is continuous.
For this, let \((f, y) \in C(Y, Z) \times Y\) and let \(W \in \mathcal{O}(Z)\) be such that:

\[e(f, y) = f(y) \in W. \]

Then, we have that:

\[y \in f^{-1}(W). \]

Since the space \(Y\) is \(Z\)-corecompact, there exists a neighborhood \(g^{-1}(V) \in \mathcal{O}_Z(Y)\) of \(y\), such that:

\[g^{-1}(V) \ll f^{-1}(W). \]

We now consider the set:

\[\mathbb{H}^g_{g^{-1}(V)} = \{ U \in \mathcal{O}(Y) : g^{-1}(V) \ll U \} \]

and we prove that the set \(\mathbb{H}^g_{g^{-1}(V)}\) is open in the \(\tau^Z_Y\) topology.

Indeed, let \(f^{-1}(U) \in \mathbb{H}^g_{g^{-1}(V)} \cap \mathcal{O}_Z(Y)\), \(V_1 \in \mathcal{O}(Y)\) and \(f^{-1}(U) \subseteq V_1\). Then, we have:

\[g^{-1}(V) \ll f^{-1}(U) \subseteq V_1 \]

and, therefore, by Remark 2.5, \(g^{-1}(V) \ll V_1\). Thus, \(V_1 \in \mathbb{H}^g_{g^{-1}(V)}\). Now, let \(\{f_i^{-1}(U_i) : i \in I\}\) be a collection of sets of \(\mathcal{O}_Z(Y)\), such that:

\[\bigcup\{f_i^{-1}(U_i) : i \in I\} \in \mathbb{H}^g_{g^{-1}(V)} \]

or equivalently:

\[g^{-1}(V) \ll \bigcup\{f_i^{-1}(U_i) : i \in I\}. \]

Clearly, for every \(y \in \bigcup\{f_i^{-1}(U_i) : i \in I\}\), there exists \(i_y \in I\) such that \(y \in f_{i_{y}}^{-1}(U_{i_{y}})\). Since \(Y\) is \(Z\)-corecompact, there exists a neighborhood \(g^{-1}_{i_{y}}(V_{i_{y}}) \in \mathcal{O}_Z(Y)\) of \(y\), such that:

\[y \in g^{-1}_{i_{y}}(V_{i_{y}}) \ll f_{i_{y}}^{-1}(U_{i_{y}}). \]

By all the above we get:

\[\bigcup\{g^{-1}_{i_{y}}(V_{i_{y}}) : i_{y} \in I\} = \bigcup\{f_{i_{y}}^{-1}(U_{i_{y}}) : i_{y} \in I\} = \bigcup\{f_i^{-1}(U_i) : i \in I\}. \]

Since

\[g^{-1}(V) \ll \bigcup\{f_i^{-1}(U_i) : i \in I\} \]

and since \(\{g^{-1}_{i_{y}}(V_{i_{y}}) : i_{y} \in I\}\) is an open cover of \(\bigcup\{f_i^{-1}(U_i) : i \in I\}\) with respect to the topology \((\tau^Z_Y)_{\bigcup\{f_i^{-1}(U_i) : i \in I\}}\), there exist finitely many sets \(g^{-1}_{i_{y_1}}(V_{i_{y_1}}), \ldots, g^{-1}_{i_{y_n}}(V_{i_{y_n}})\) of this collection such that:

\[g^{-1}(V) \subseteq \bigcup\{g^{-1}_{i_{y_k}}(V_{i_{y_k}}) : k = 1, 2, \ldots, n\}. \]

(3)
We now consider the sets $f_{i_{y_k}}^{-1}(U_{i_{y_k}}), \cdots, f_{i_{y_n}}^{-1}(U_{i_{y_n}})$ of $\mathcal{O}_Z(Y)$, for which:

$$g_{i_{y_k}}^{-1}(V_{i_{y_k}}) << f_{i_{y_k}}^{-1}(U_{i_{y_k}}), \ k = 1, 2, \ldots, n.$$

By Remark 2.5 and by (3) above, we get:

$$g^{-1}(V) \subseteq \bigcup \{g_{i_{y_k}}^{-1}(V_{i_{y_k}}) : k = 1, 2, \ldots, n\} << \bigcup \{f_{i_{y_k}}^{-1}(U_{i_{y_k}}) : k = 1, 2, \ldots, n\}$$

and, therefore:

$$g^{-1}(V) << \bigcup \{f_{i_{y_k}}^{-1}(U_{i_{y_k}}) : k = 1, 2, \ldots, n\}.$$

So, $\bigcup \{f_{i_{y_k}}^{-1}(U_{i_{y_k}}) : k = 1, 2, \ldots, n\} \in I_{g^{-1}(V)}$. Thus, the set $I_{g^{-1}(V)}$ is open in the τ^Z_{1} topology.

Also, since $g^{-1}(V) << f^{-1}(W)$, we have that $f \in (I_{g^{-1}(V)}, W)$. Thus, the set $(H_{g^{-1}(V)}, W) \times g^{-1}(V)$ is an open neighborhood of (f, y) in $C_{\tau^Z_{1}}(Y, Z) \times Y$.

We finally prove that:

$$e((H_{g^{-1}(V)}, W) \times g^{-1}(V)) \subseteq W.$$

For this, let $(h, z) \in (H_{g^{-1}(V)}, W) \times g^{-1}(V)$. Then, $h \in (H_{g^{-1}(V)}, W)$ and $z \in g^{-1}(V)$. Therefore, $z \in g^{-1}(V) << h^{-1}(W)$ and $e(h, z) = h(z) \in W$.

Thus, the evaluation map e is continuous and, consequently, the t^Z_{1} topology is admissible. □

By Theorem 2.9 and Remark 2.3 we obtain the following corollary.

Corollary 2.10 Let Z be any space and let Y be a Z-corecompact space. Then, the t^Z_{1} topology on $C(Y, Z)$ is admissible.

3 Admissible topologies on $\mathcal{O}_Z(Y)$

Let $I \subseteq \mathcal{O}_Z(Y)$, $\mathcal{H} \subseteq C(Y, Z)$ and let $U \in \mathcal{O}(Z)$. We set:

$$(I, U) = \{f \in C(Y, Z) : f^{-1}(U) \in I\}$$

and

$$(\mathcal{H}, U) = \{f^{-1}(U) : f \in \mathcal{H}\}.$$
Definition 21 (see [7]) (1) Let τ be a topology on $\mathcal{O}_Z(Y)$. The topology on $C(Y,Z)$, for which the set
\[\{(H,U) : H \in \tau, U \in \mathcal{O}(Z)\} \]
is a subbasis, is called the dual topology to τ and is denoted by $t(\tau)$.
(2) Let t be a topology on $C(Y,Z)$. The topology on $\mathcal{O}_Z(Y)$, for which the set:
\[\{(H,U) : H \in t, U \in \mathcal{O}(Z)\} \]
is a subbasis, is called the dual topology to t and is denoted by $\tau(t)$.

Let X be a space and let $G : X \rightarrow C(Y,Z)$ be a map. By \overline{G} we denote the map from $X \times \mathcal{O}(Z)$ to $\mathcal{O}_Z(Y)$, for which $\overline{G}(x,U) = (G(x))^{-1}(U)$ for every $x \in X$ and $U \in \mathcal{O}(Z)$.

Let τ be a topology on $\mathcal{O}_Z(Y)$. We say that a map M from $X \times \mathcal{O}(Z)$ to $\mathcal{O}_Z(Y)$ is continuous with respect to the first variable if for every fixed element U of $\mathcal{O}(Z)$, the map $M_U : X \rightarrow (\mathcal{O}_Z(Y), \tau)$, for which $M_U(x) = M(x,U)$ for every $x \in X$, is continuous.

Definition 22 (see [7]) A topology τ on $\mathcal{O}_Z(Y)$ is called admissible, if for every space X and for every map $G : X \rightarrow C(Y,Z)$ the continuity with respect to the first variable of the map $\overline{G} : X \times \mathcal{O}(Z) \rightarrow (\mathcal{O}_Z(Y), \tau)$ implies the continuity of the map $\overline{G} : X \times Y \rightarrow Z$

It is known that (see [7]):
(1) A topology t on $C(Y,Z)$ is admissible if and only if the topology $\tau(t)$ on $\mathcal{O}_Z(Y)$ is admissible.
(2) A topology τ on $\mathcal{O}_Z(Y)$ is admissible if and only if the topology $t(\tau)$ on $C(Y,Z)$ is admissible.

Theorem 3.1 The following statements hold:
(1) If Y is a regular locally compact space (or a regular locally Z-compact space), then the topologies $\tau(t^Z_{\text{co}})$, $\tau(t^Z_1)$, and $\tau(t^Z_{1,s})$ on $\mathcal{O}_Z(Y)$ are admissible.
(2) If Y is a corecompact space (or a Z-corecompact space), then the topologies $\tau(t^Z_1)$ and $\tau(t^Z_{1,s})$ on $\mathcal{O}_Z(Y)$ are admissible.
(3) If Y is a locally bounded space (or a locally Z-bounded space), then the topology $\tau(t^Z_{1,s})$ on $\mathcal{O}_Z(Y)$ is admissible.

Proof. The proof of this theorem follows immediately from Theorems 2.5, 2.6, 2.7 and 2.8. □
Corollary 3.2 The following statements are true:

(1) If \(Y \) is a regular locally compact space (or a regular locally \(Z \)-compact space), then the topologies \(t(\tau(t_{co})) \), \(t(\tau(t_1)) \), and \(t(\tau(t_{1,s})) \) on \(C(Y, Z) \) are admissible.

(2) If \(Y \) is a corecompact space (or a \(Z \)-corecompact space), then the topologies \(t(\tau(t_1)) \) and \(t(\tau(t_{1,s})) \) on \(C(Y, Z) \) are admissible.

(3) If \(Y \) is a locally bounded space (or a locally \(Z \)-bounded space), then the topology \(t(\tau(t_{1,s})) \) on \(C(Y, Z) \) is admissible.

Corollary 3.3 The following propositions are true:

(1) If \(Y \) is a regular locally compact space (or a regular locally \(Z \)-compact space), then the topologies \(\tau(t(\tau(t_{co}))), \tau(t(\tau(t_1))), \) and \(\tau(t(\tau(t_{1,s}))) \) on \(\mathcal{O}_Z(Y) \) are admissible.

(2) If \(Y \) is a corecompact space (or a \(Z \)-corecompact space), then the topologies \(\tau(t(\tau(t_1))) \) and \(\tau(t(\tau(t_{1,s}))) \) on \(\mathcal{O}_Z(Y) \) are admissible.

(3) If \(Y \) is a locally bounded space (or a locally \(Z \)-bounded space), then the topology \(\tau(t(\tau(t_{1,s}))) \) on \(\mathcal{O}_Z(Y) \) is admissible.

4 Some open questions

In this section we give some interesting in our opinion open questions applied to the topologies \(t_{co}, t_1, \) and \(t_{1,s}. \)

Question 1. Let \(Y \) and \(Z \) be two topological spaces. Is the topology \(t_1 \) on \(C(Y, Z) \) regular in the case where \(Z \) is regular?

Question 2. Let \(Y \) and \(Z \) be two topological spaces. Is the topology \(t_1 \) on \(C(Y, Z) \) completely regular in the case where \(Z \) is completely regular?

Question 3. Find two topological spaces \(Y \) and \(Z \) such that

3.1. \(t_{co} \neq t_{co}. \)
3.2. \(t_1 \neq t_{1,s}. \)
3.3. \(t_{1,s} \neq t_{s1s}. \)

Question 4. Do the topologies \(t_{co} \) and \(t_{co} \) coincide on the set \(C(\mathbb{R}^\omega, \mathbb{R}) \) where \(\mathbb{R} \) is the set of real numbers with the usual topology and \(\omega \) is the first infinite cardinal?

Question 5. Do the topologies \(t_{co} \) and \(t_{co} \) coincide on the set \(C(\mathbb{N}^\omega, \mathbb{N}) \), where \(\mathbb{N} \) is the set of natural numbers with its usual topology?

Question 6. Let \(X, Y, \) and \(Z \) be three topological spaces. Is the map:

\[
T : C_{t_1,s}(X, Y) \times C_{t_1,s}(Y, Z) \to C_{t_1,s}(X, Z),
\]

17
with \(T(f, g) = g \circ f \), for every \((f, g) \in C(X, Y) \times C(Y, Z)\), continuous in the case where \(Y \) is locally \(Z \)-bounded?

Question 7. Let \(X, Y, \) and \(Z \) be three topological spaces. Is the map:

\[
T : C_{t_1}(X, Y) \times C_{t_1}(Y, Z) \to C_{t_1}(X, Z),
\]

with \(T(f, g) = g \circ f \), for every \((f, g) \in C(X, Y) \times C(Y, Z)\), continuous in the case where \(Y \) is \(Z \)-corecompact?

Notation. Let \(X \) be a space and \(F : X \times Y \to Z \) be a continuous map. By \(F_x \), where \(x \in X \), we denote the continuous map of \(Y \) into \(Z \) such that \(F_x(y) = F(x, y) \), \(y \in Y \). By \(\hat{F} \) we denote the map of \(X \) into the set \(C(Y, Z) \) such that \(\hat{F}(x) = F_x \), \(x \in X \).

We recall that a topology \(t \) on \(C(Y, Z) \) is called *splitting* if for every space \(X \), the continuity of a map \(F : X \times Y \to Z \) implies that of the map \(\hat{F} : X \to C_t(Y, Z) \) (see [1] and [2]).

It is known that:

1. The compact open topology \(t_{co} \) is always splitting (see [11] and [14]).
2. The Isbell topology is always splitting (see [10], [12], [13], and [15]).
3. If \(Z \) is the Sierpiński space and \(Y \) is an arbitrary space, then the Isbell topology coincides with the greatest splitting topology (see [14] and [15]).

By Remark 2.3(2) if \(Z \) is the Sierpiński space, then the topology \(t_{Z}^1 \) coincides with the Isbell topology on \(C(Y, Z) \) and, therefore, this topology is a splitting topology. In this case the topology \(t_{co}^1 \) is also splitting.

Question 8. Find necessary and sufficient conditions for the space \(Z \) such that the topology \(t_{co}^1 \) on \(C(Y, Z) \) to be splitting.

Question 9. Find necessary and sufficient conditions for the space \(Z \) such that the topology \(t_{co}^1 \) on \(C(Y, Z) \) to be splitting.

Question 10. Let \(Y \) be an arbitrary topological space and \(Z = \{0, 1\} \) with the discrete topology. Which of the following relations is true or false on \(C(Y, Z) \)?

(i) \(t_{co} \neq t_{co}^1 \),
(ii) \(t_{Is} \neq t_{Is}^1 \), and
(iii) \(t_{sIs} \neq t_{sIs}^1 \).

Question 11. Let \(Y \) be an arbitrary topological space and \(Z = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \) with the usual topology of the real line. Which of the following relations is true or false on \(C(Y, Z) \)?

(i) \(t_{co} \neq t_{co}^1 \),
(ii) \(t_{Is} \neq t_{Is}^1 \), and
(iii) \(t_{sIs} \neq t_{sIs}^1 \).

18
Let Y be a corecompact space which is not basic locally compact. (A space is basic locally compact if for every point there exists a basis of compact neighbourhoods). Then, the Isbell topology $t_{Is} \equiv t^S_1$, in $C(Y,S)$ does not coincide to the compact open topology $t_{co} \equiv t^{S}_{co}$ (see [14] and [15]).

Question 12. For what spaces Y and Z does the equality $t^Z_1 = t^Z_{co}$ hold?

Acknowledgements. The authors would like to thank the referee for very helpful comments and suggestions.

References

[1] R. Arens and J. Dugundji, *Topologies for function spaces*, Pacific J. Math. 1(1951), 5-31.

[2] J. Dugundji, *Topology*, Allyn and Bacon, Boston, Mass., 1966.

[3] M. Escardo, J. Lawson, and A. Simpson, *Comparing cartesian closed categories of (core) compactly generated spaces*, Top. Appl. 143(2004), 105-145.

[4] R.H. Fox, *On topologies for function spaces*, Bull. Amer. Math. Soc. 51(1945), 429-432.

[5] D.N. Georgiou, S.D. Iliadis, and F. Mynard, *Function space topologies*, Open Problems in Topology II (Elliot Pearl (ed.)) Elsevier, 2007.

[6] D.N. Georgiou and S.D. Iliadis, *On the compact open and finest splitting topologies*, Topology Appl. 154 (2007), No. 10, 2110-2116.

[7] D.N. Georgiou, S.D. Iliadis, and B.K. Papadopoulos, *On dual topologies*, Topology and its Applications, 140 (2004), 57-68.

[8] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, *A Compendium of Continuous Lattices*, Springer, Berlin-Heidelberg-New York 1980.

[9] S.D. Iliadis and V. Tzannes, *Spaces on which every continuous map into a given space is constant*, Can. J. Math., 38 (1986), 1281-1298.

[10] J.R. Isbell, *Function spaces and adjoints*, Symposia Math. 36(1975), 317-339.

[11] P. Lambrinos and B.K. Papadopoulos, *The (strong) Isbell topology and (weakly) continuous lattices*, Continuous Lattices and Applications, Lecture Notes in pure and Appl. Math. No. 101, Marcel Dekker, New York 1984, 191-211.
[12] M.H. Escardo and R. Heckmann, *Topologies on spaces of continuous functions*, Topology Proceedings 26(2001-2002), No.2, 545-564.

[13] R. McCoy and I. Ntantu, *Topological properties of spaces of continuous functions*, Lecture Notes in Mathematics, 1315. Springer-Verlag, Berlin, 1988. iv+124 pp.

[14] B.K. Papadopoulos, *Proper topologies on the set S^Y*, Clasnik Matematicki Vol. 23 (43), (1988), 143-146.

[15] F. Schwarz and S. Weck, *Scott topology, Isbell topology, and continuous convergence*, Lecture Notes in Pure and Appl. Math. No.101, Marcel Dekker, New York 1984, 251-271.

[16] L.A. Steen and J.A. Seebach, *Counterexamples in Topology* (2nd edition), Springer-Verlag, New York, 1970.

[17] V. Tzannes, *A Hausdorff countably compact space on which every continuous real-valued function is constant*, Topology Proc, vol. 21 (1996), 239-244.

Email addresses: georgiou@math.upatras.gr (Dimitris Georgiou)
megariti@master.math.upatras.gr (Athanasios Megaritis)
KXP878@bham.ac.uk (Kyriakos Papadopoulos)