Impoundment-Associated Hydro-Mechanical Changes
and Regional Seismicity Near the Xiluodu Reservoir,
Southwestern China

Man Zhang1,2, Shemin Ge3, Qiang Yang1, and Xiaodong Ma2

1Department of Hydraulic Engineering, Tsinghua University, Beijing, China, 2Department of Earth Sciences, ETH Zürich, Zürich, Switzerland, 3Department of Geological Sciences, University of Colorado, Boulder, CO, USA

Abstract Four large hydropower stations have recently been built downstream the Jinsha River in Southwestern China with a strong regional tectonic activity background. There is widely felt seismicity since the impoundment of the Xiluodu and Xiangjiaba reservoirs, increasing the public concern in this region. We begin with a criticality analysis of the faults near these reservoirs to quantify their susceptibility to triggered seismicity. Then we focus on the Xiluodu reservoir to investigate the correlation between the impoundment and seismicity nearby. We analyze the spatio-temporal distribution of seismicity near the Xiluodu reservoir, and identify the plausible rapid and delayed seismic response due to the impoundment. According to the impoundment record, we explicitly model the hydro-mechanical changes due to diffusion and reservoir water load, that is, pore pressure, elastic stress, and the resulting Coulomb stress. Our results show that the pore pressure changes can reach a level that may trigger fault reactivation and consequently, seismicity nearby. The water load can also induce the positive Coulomb stress changes on faults, depending on the fault orientation, which is especially important for understanding the earthquakes that occurred shortly after the impoundment and at more than 10 km distance from the reservoir. The combination of these two effects can induce positive Coulomb stress change over a larger area, which overlaps the majority of the events after the impoundment, including two M5+ events. While the causal relationship between the impoundment and seismicity warrants further analysis, we hope to inform the regional seismic impact of impoundment with this timely study.

Plain Language Summary There has been increasing concern over the construction of four hydropower stations situated along the Jinsha River, Southwestern China, due to the increased seismicity following the impoundment of Xiluodu and Xiangjiaba reservoirs. This calls for an in-depth analysis of the temporal and spatial correlation between the increased seismicity and reservoir impoundment. In this study, we first quantify the relative criticality of the faults. The results suggest that the faults near the Wudongde and Baihetan hydropower stations are more likely to be reactivated and produce earthquakes. Then, we take the Xiluodu Reservoir as a timely example to analyze two possible mechanisms for increased seismicity, corresponding to the effect of the increased weight of reservoir water and the process of reservoir water pressure seeping into the crust, respectively. We calculate the water pressure and stress changes due to the Xiluodu impoundment with numerical simulations. The results show that these two mechanisms can explain the occurrence of most earthquakes near the reservoir and nearby faults after the impoundment, including two M5+ events. Our study is important to understand the impact of reservoir impoundment on regional seismicity and its evolution, and to offer a scientific perspective for the long-term operational decisions for these hydropower stations.

1. Introduction

Four major hydropower stations (Wudongde, Baihetan, Xiluodu, and Xiangjiaba) have recently been built along the Jinsha River, Southwestern China (Figure 1). They all rank among the top five largest hydropower stations in China, with a total installed capacity of ~43 GigaWatt. The Xiangjiaba, Xiluodu, Wudongde, and Baihetan reservoirs have started the impoundment from December 2012, May 2013, January 2020, and April 2021, respectively. Widely felt seismicity has been recorded since the initial operation of the Xiluodu (Diao et al., 2014; Duan, 2019; Luo et al., 2020) and Xiangjiaba (Yang et al., 2019) reservoirs, exhibiting spatio-temporal patterns that are plausibly related to the reservoir impoundment. The potential impact of
The influence of reservoir impoundment on seismicity is complex, depending on the reservoir operation, regional geologic and tectonic settings, and hydro-mechanical characteristics of rock masses (Gupta, 2002). Since the first case of Lake Mead in the late 1930s (Carder, 1945), there have been numerous reservoirs that are associated with triggered seismicity (do Nascimento et al., 2005; El Hariri et al., 2010; Ge et al., 2009; Gupta, 1992, 2002; Lamontagne et al., 2006; Stabile et al., 2014; Zhang et al., 2018). The physical mechanisms of increased seismicity pertinent to reservoir impoundment have been extensively studied (Gupta, 1985; Ruiz-Barajas et al., 2019; Simpson, 1976; Talwani & Acree, 1984; Talwani, 1997), and generally can be attributed to the pore pressure diffusion and the reservoir gravitational loading (Bell & Nur, 1978; Simpson et al., 1988). Both correspond to the water level change during reservoir impoundment. The reservoir water load can change the elastic stress and induce instantaneous pore pressure change. The increase in pore pressure can reduce the effective stress on faults, and consequently their resistance to shear slip. The elastic stress changes may stabilize or destabilize the fault, depending on the fault orientation and the stress environment (Rajendran & Talwani, 1992; Segall & Lu, 2015). The collective impacts of pore pressure and elastic stress changes on fault reactivation are commonly considered to be primarily responsible for triggered seismicity, which can be quantified in terms of Coulomb stress changes (Harris, 1998; King et al., 1994). Previous studies suggest that Coulomb stress changes even of the order of 0.01 MPa can trigger seismicity on critically stressed faults (Cochran et al., 2004; Harris, 1998; King et al., 1994; Stein, 1999; Talwani, 2000).

This paper presents a case study of the Xiluodu reservoir, seeking to examine the plausible correlation between reservoir impoundment and regional seismicity. We first present the regional geomechanical setting near the four hydropower station sites downstream the Jinsha River. A fault criticality analysis is conducted as a first-order quantification of the faults’ susceptibility to reactivation, considering the uncertainty of geomechanical parameters. Then, the earthquake catalog from May 2013 to January 2020 and water level records of the Xiluodu reservoir are analyzed to explore their spatio-temporal correlation. Subsequently, we...
simulate the evolution of pore pressure and elastic stress changes due to diffusion and water load, respectively, to yield estimations of the Coulomb stress changes at earthquake locations and relevant faults (the flowchart illustrating the modeling steps is shown in Figure S1). With such, we hope to provide a useful and timely example to inform the possible impact of reservoir impoundment on the regional seismicity and its evolution, and offer a scientific perspective for the long-term operational decisions for these hydropower stations.

2. Geomechanical Setting and Fault Criticality

The Wudongde, Baihetan, Xiluodu, and Xiangjiaba dams are located to the east of the Sichuan-Yunan block (Figure 1a), which is the transitional zone between the eastern Tibetan Plateau and the Sichuan Basin (Xuan et al., 2016). The Sichuan-Yunan block is tectonically active and closely linked to the Tibetan Plateau tectonics (Pan & Shen, 2017), and belongs to the major North-South seismic zone in China (Wang et al., 2010). The regional tectonic regime is characterized by thrust and/or strike-slip faulting, as detailed below. The maximum horizontal stress (S_{Hmax}) in the region, according to the World Stress Map (Heidbach et al., 2016, 2018; Hu et al., 2017), generally trends NW-SE, consistent with the regional tectonics and geodetic observations (Xu et al., 2016).

Fault systems are developed in this region. As shown in Figure 1a, it primarily features NNW- to NS-striking faults, with fewer striking NE. Overall, the NNW- and NS-striking faults are associated with thrust faulting and a left-lateral strike-slip component, and the NE-striking faults dominantly exhibit thrust faulting with a right-lateral strike-slip component (Wen et al., 2013). The term thrust fault usually refers to shallow-dipping reverse faults. The reverse faults in this region were mainly formed by large-scale thrust movements. Their dip angles are expected to be relatively small at greater depth, but become steeper as they curve upward. To be consistent with the literature (Wen et al., 2013; Yao et al., 2017), we use thrust fault in this context for reverse fault of varying dipping angles. The NNW-striking faults are present near the Wudongde and Baihetan dams, while no major faults appear near the Xiluodu and Xiangjiaba. Figure 1a shows that the historical earthquakes between 1936 and 2008 correlate well with these mapped faults, and as expected, the corresponding focal mechanism inversions are characteristic of thrust and strike-slip faulting. The upper crust is generally considered to be at or close to the state of frictional equilibrium (Zoback et al., 2002); therefore (sub-) critically stressed faults could be reactivated due to small perturbations and cause seismicity (Raleigh et al., 1976; Robinson, 2004). The fact that most of the historical earthquakes were located along certain major faults in this region suggests that these faults are probably critically stressed under the prevailing stress field.

There is a growing public concern about the increased seismicity following the impoundment of Xiluodu (Duan, 2019) and Xiangjiaba (Yang et al., 2019) reservoirs. The potential seismic hazard of the soon-to-be impounded Wudongde and Baihetan is also critical in the future. To assess the possibility of fault reactivation near these dams, we quantify the fault criticality, that is, the proximity of faults to failure. We adopt the index of fault instability I proposed by Vavryčuk et al. (2013), to quantify the fault criticality for the given range of geomechanical parameters. The fault instability I reflects the proximity of a given fault to the optimally oriented fault in the given regional stress field (Martínez-Garzón et al., 2016; Vavryčuk, 2014) and can be evaluated from the stress condition, fault frictional coefficient μ, and fault orientation (see Text S1) (Hereafter, the Xiluodu, Baihetan, and Wudongde dams are abbreviated as XLD, BHT, and WDD, respectively.) The local stress conditions (i.e., principal stress directions and relative stress magnitudes) are derived via an iterative joint stress inversion (Vavryčuk, 2014) from focal mechanisms in each area. The Xiangjiaba area is not included in the stress inversion due to insufficient focal mechanisms. The inverted stress state in the XLD area is dominated by thrust faulting and transitioning into strike-slip, and the stress state in the BHT and WDD area is dominated by strike-slip and transitioning into thrust faulting, suggesting a spatial variation of the in-situ stress field (Table S1). This is relatively consistent with the regional tectonic stress state (Cui et al., 2006; Tian et al., 2019).

The spatially varying stress field warrants the analysis of each area individually. Acknowledging the uncertainty and natural variability of the geomechanical parameters in evaluating the fault instability I, we follow the approach by Walsh and Zoback (2016) with the Monte Carlo method. We assign reasonable distributions
of each parameter and simulate various scenarios on each fault segment. We solve the probability of fault instability I at 5 km depth (where most seismicity in the Xiluodu area appeared to cluster, as suggested by the published event catalog, detailed in Section 3). The fault criticality analysis is elaborated in Text S1.

Figure 1b presents the resolved criticality of each fault segment by their corresponding I_m, in a color-coded fashion, with red representing less stable and green more stable. I_m represents the area-weighted average of 10,000 results of fault instability I of Monte Carlo simulation. The fault segments that are colored red correspond to $I_m \geq 0.9$, and those in green represent $I_m \leq 0.7$. As shown in Figure 1b, the majority of the red-colored fault segments are NNW- and NS-striking, especially near the WDD and BHT, and the NE-striking faults are almost all colored green in these three areas. In the XLD area, the NS-striking faults are generally green-colored, albeit with some orange to red segments; the NNW-striking faults are primarily red-colored. It appears that the NNW- and NS-striking faults near the BHT and WDD reservoirs, in the transitional strike-slip and/or thrust faulting stress environment, are more prone to reactivation than those near the XLD reservoir, which is dominated by thrust faulting stress environment. Such heterogeneity in the criticality of sub-parallel faults could be attributed to the spatial variations of the stress field.

The orientations of inverted maximum principal stresses in each area are generally sub-horizontal. However, the departure of the inverted minimum and/or intermediate principal stresses from being vertical is of questionable importance (Table S1). This deviates from the classical assumption, that is, one of the principal stresses is perpendicular to the Earth’s surface (Zoback, 2007). Two factors can contribute to these deviations. One is the insufficient focal mechanism solutions used in stress inversion, which might lead to biased local stress state only characteristic of the resolved events. The other is the complexity of regional tectonics, especially for the Sichuan-Yunan block and its adjacent areas (Jin et al., 2019), which can induce spatial rotation and variation of the stress field. To incorporate these stress inversion uncertainties, we also evaluate the fault criticality for two extreme cases of the stress environment, thrust and strike-slip faulting, that is, assuming the overburden stress to be the minimum and intermediate principal stress, respectively (see Text S1). As shown in Figure S4, the faults become systematically more critical in the strike-slip faulting environment, consistent with the results shown in Figure 1b. The relative fault criticality underscores that the NNW- and NS-striking faults in these reservoir regions have a higher probability of being reactivated than those that are NE-striking. Therefore, this observation suggests more attention should be paid to the seismic hazard associated with the former.

It is noted that most historical M3+ earthquakes correlate well with the distribution of the red- and orange-colored NNW- and NS-striking faults. This correlation corroborates the primary control of fault criticality on seismicity occurrence, but there remain some obstacles to predict the regional seismicity evolution. The fault criticality is a conditional scalar index based on the assumed probabilistic distributions of in-situ stress field, fault geometry, and frictional coefficient, which are quite heterogeneous and difficult to constrain (Ma et al., 2020; Shen et al., 2019; Snee & Zoback, 2018; Walsh & Zoback, 2016; Zhang & Ma, 2021). Despite the possible deviation of the assumed parameter distributions from the realistic in-situ conditions, the first-order quantification of fault criticality is rather informative to estimate the faults’ susceptibility to reactivation, particularly in the context of nearby reservoir impoundment.

3. Xiluodu Impoundment History and Seismicity

Xiluodu is currently the third-largest hydropower station in the world, second in China. The Xiluodu dam is a double-curved arch dam with a crest elevation of 610 m and a height of 285.5 m. It situates in the Leibo-Yongshan tectonic basin, surrounded by the Ebian-Jinyang fault (EJF), Huayingshan-Lianfeng fault (HLF), and Mabian-Yanjin fault zone (MYF, composed of several sub-parallel faults) (Figure 2). The Jinhekou-Meigu fault (JMF) is sub-parallel to and to the west of the EJF. The Xiluodu reservoir is a typical river-type reservoir with a surface impoundment extension of ~204 km along the Jinsha River (Yin et al., 2015), and intersects the EJF and HLF upstream. The minimum distance from the Xiluodu reservoir to the MYF and JMF is ~10 and ~30 km, respectively.

The impoundment process of the Xiluodu reservoir can be generally divided into three stages (Figure 3). In the first impoundment period (P1), from May 2013 to May 2014, the water level elevation quickly rose from 440 to 542 m within the first ~50 days with a maximum water level change of 120 m. The second
Impoundment period is the first storage cycle (P2). Starting on May 20, 2014, the water level increased from 540 m to its historical high of 600 m on September 28, 2014. After ~6 months, the water level gradually decreased to 545 m in June 2015. Then the third impoundment period (P3) continues to the present (data is collected until the end of 2019 in this study). The reservoir water level undergoes yearly seasonal variations between the maximum water levels during the rainy season and the minimum during the dry season (Figure 3a). The Xiluodu reservoir has experienced six filling and five drawdown processes between May 2014 and January 2020.

Felt earthquakes near the Xiluodu dam (XLD) were rare before the impoundment. However, a significant increase in seismicity was recorded in the XLD area following the impoundment, including an Ms 5.1 and an Ms 5.2 event on April 5, 2014, and August 17, 2014, respectively. The earthquake catalog of the XLD area is provided by China Earthquake Networks Center (CENC) (see Data Set S1). The temporal and spatial patterns of M1+ earthquakes in the XLD area following the impoundment are shown in Figures 2 and 3. Most earthquakes concentrated within a 30 km by 20 km area near the dam, and the other events clustered near the surrounding faults. To better quantify the spatio-temporal features of seismicity, we arbitrarily define five subregions, R1 to R5, according to the distribution of seismicity (see Figure 2). The subregions R1–R5 correspond to the head area of the reservoir, and south of EJF, north of EJF, JMF, MYF, and HLF, respectively.

Figure 2. Mapview of M1+ earthquakes observed in the XLD area from May 2013 to January 2020. The subregions R1 to R5 (dashed boxes) are arbitrarily defined according to the spatial seismicity distributions.
Most post-impoundment seismicity occurred in subregion 1 (R1); in contrast, there are only five M1+ earthquakes with a maximum magnitude of 1.8 recorded within four years prior to the impoundment (Figure 3c). A burst of small earthquakes occurred at the beginning of impoundment in May 2013, which we categorize as “rapid response” to the water level change and might be related to the elastic loading and coupled pore pressure changes (Simpson et al., 1988). The second impoundment period (P2) is quite seismically active, including approximately half of the R1 events following the impoundment. The month that M1+ earthquakes hiked to their maximum number (≈55) coincides with the historical highest water level change (Figure 3). During the third impoundment period (P3), the monthly seismicity rate declined significantly compared to that in P2, fluctuated and generally reached its yearly peak between May to October. As shown in Figures 3a–3d, in R1, there are approximately 440 M1+ earthquakes recorded during these three impoundment periods; about two-thirds of events are below M2. Most of these events are within 10 km depth and concentrate within 5 km depth. We also notice that the events gradually migrated further from the reservoir (Figure 2a), and both the peak monthly seismicity rate and maximum magnitude of earthquakes in R1 continuously increased after 2016 (Figure 3c), including an Ms 4.7 event on May 26, 2019. These earthquakes with a significant delay after the initial impoundment, as well as their further distance...
from the reservoir, generally can be identified as “delayed response” and might be attributed to pore pressure diffusion (Simpson et al., 1988).

The seismicity is also statistically analyzed in the other four subregions, R2 to R5, corresponding to the four major fault zones shown in Figures 3e–3h. As shown in Figure 3, the seismicity following the impoundment in those four subregions has also experienced rapid increase and plateau; however, with temporal and spatial variations from one to another. The seismicity distribution near the EJF in R2 suggests an along-fault propagation, with the occurrence of a maximum magnitude of 4.1 in August 2018. In R3, the seismicity rate sharply increased after the water level change reached its maximum value of 160 m (corresponding to the water level of 600 m), and most earthquakes are located near the southern end of the JMF, with a maximum magnitude of 1.8. In R4, the events burst almost instantaneously with the initial impoundment from May 2013 and continued through the first impoundment period (P1); the maximum seismicity rate was reached when the water level attained its historical high in P2, and then the events continued at a moderate rate thereafter (P3). The seismicity in R5 migrates further upstream the reservoir, with a maximum magnitude of 3.4 taking place at the very beginning of the impoundment. These observations of both rapid and delayed seismic response to reservoir water changes suggest that the seismicity near the faults is very likely to be associated with the Xiluodu reservoir impoundment. It appears that the seismicity rate change in R4, unlike R2, R3, and R5, follows a similar trend to that of R1 (more visible on their cumulative statistics). A possible explanation for this might be that the MYF in R4 is located downstream the Xiluodu reservoir and upstream the Xiangjiaba reservoir, and the impoundment of the latter can also contribute to R4 seismicity effectively. In the absence of Xiangjiaba data, we do not verify this hypothesis in this study.

Duan (2019) resolved that the focal mechanism solutions of earthquakes near the head area of the Xiluodu reservoir following the impoundment are mainly the combination of thrust and strike-slip faulting, while the focal mechanism solutions of earthquakes near the EJF and MYF are dominated by thrust faulting and strike-slip faulting, respectively. This observation is consistent with the faulting styles and the inverted stress field in this area, further suggesting a relatively clear correlation between these major faults and nearby earthquakes.

In the above, we only analyze the M1+ events in the Xiluodu area for convenience. The spatio-temporal evolution of the complete seismic catalog (M0+ events) is shown in Figures S6 and S7, consistent with the observations inferred from the M1+ events. Specifically, the seismic data of the M5+ events were also obtained from Global CMT (GCMT) (Dziewonski et al., 1981; Ekström et al., 2012) (Data Set S1). For convenience, we refer to the M5+ events (occurred on April 5, 2014, and August 17, 2014, respectively), by their magnitudes from the CENC solutions, that is, Ms 5.1 and 5.2 (corresponding to Mw 4.9 and 5.1 from the GCMT solutions). The differences between the locations and focal mechanisms by GCMT and CENC are shown in Table S4 and Figure S8. We consider that CENC can provide better constraints for hypocenter locations and focal mechanism solutions, due to more complete regional seismic information. The average location errors in the catalog we used are estimated to be about 3–5 km (see Table S3 for the location errors of 16 typical events).

In short, a plausible link between the increased seismicity and reservoir impoundment in the XLD area is evidenced by both spatial and temporal correlations. Dissimilar seismicity response between different sub-regions (R1–R5), from rapid to delayed seismic response to reservoir water level changes, and the different characteristics of seismicity frequency and magnitude therein, might be related to the complex interaction between water load and pore pressure diffusion (Simpson et al., 1988). The understanding of the hydro-mechanical impact of reservoir impoundment on increased seismicity is therefore needed for correlating with the evolution of regional seismicity.

4. Pore Pressure Diffusion Due to Impoundment

4.1. Method and Modeling

To quantify the pore pressure diffusion due to the Xiluodu reservoir impoundment, we utilize MODFLOW, a finite-difference groundwater flow code. It can simulate the three-dimensional transient groundwater flow through anisotropic and heterogeneous porous media by solving the following 3-D transient groundwater...
The delay between the water level change and the occurrence of seismicity can be assessed to the first order by hydraulic diffusivity and the distance between the reservoir and seismicity. However, the delay often deviates from such a first-order estimate because of heterogeneity in hydraulic diffusivity. The pore pressure modeling enables better assessment of when the pore pressure front arrives at certain hypocenter and fault locations. We focus on the modeled pore pressure changes at the hypocenters of M1+ earthquakes in R1 to R5. We evaluate the pore pressure changes at the two M5+ hypocenter locations, and compare their differences between the CENC and GCMT solutions, taking into account the possible uncertainty of locations. As shown in Table S3, the average horizontal location errors of the available events in R1 are ~1 km; the vertical location errors are between 1.1 and 11.7 km, with the average values of ~3 km. In the absence of location uncertainties of the full catalog, we would like to better assess the typical pore pressure changes at event hypocenters by incorporating possible vertical location errors. This is done by setting up three “virtual” monitoring locations that are 1, 5, and 10 km underneath the head area of the Xiluodu reservoir (Text S3). We also evaluate the pore pressure evolution at 5 km depth at six typical locations on the mapped faults. Figure 4 shows the seven monitoring locations at 5 km depth.

The hydrologic parameters of the pore pressure diffusion model include hydraulic conductivity \(K \), specific storage \(S_s \), and hydraulic diffusivity \(D \) expressed as the ratio of \(K/S_s \), which mainly depends on the lithology and geological structure of the rock masses. According to previous studies, the hydraulic diffusivity values beneath the reservoirs generally vary between 0.1 and 10 m² s⁻¹ (Talwani et al., 2007). We resolve the possible range of equivalent hydraulic diffusivity in the rock masses beneath the Xiluodu reservoir between 0.32 and 4.6 m² s⁻¹ (Figure S5), assuming that the M1+ earthquakes in R1 are due to diffusion of elevated pore pressure. It should be noted that the hydraulic diffusivity estimated under this assumption might contain various uncertainties and tend to be overestimated (Ge et al., 2009; Talwani & Acree, 1984), and the

\[
S_s \frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(K_s \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_s \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_s \frac{\partial h}{\partial z} \right) + Q \tag{1}
\]

where \(h \) is the hydraulic head (m), \(K \) is hydraulic conductivity \(\text{(m s}^{-1}) \), in \(x, y, \) and \(z \) directions) and \(S_s \) is specific storage \(\text{(m}^{-3}) \), \(Q \) is fluid source rate \(\text{(s}^{-1}) \). The ratio of \(K \) and \(S_s \) is hydraulic diffusivity \(D \) \(\text{(m}^2 \text{s}^{-1}) \). Pore pressure change \(\Delta P \) can be obtained by \(\Delta P = \gamma \Delta h \), where \(\gamma \) is the specific weight of water \(\text{(N m}^{-3}) \), and \(\Delta h \) is the change of hydraulic head.

Figure 4. 3D numerical model domain for pore pressure diffusion simulation. The modeled Xiluodu reservoir are in blue and faults in yellow. Red dots represent pore pressure monitoring locations on faults at 5 km depth.
actual hydraulic diffusivity can range several orders of magnitude. In the absence of direct measurement of hydraulic diffusivity in the study area, we adopt several possible values of the hydraulic diffusivity for basement rock within 15 km depth (\(D_x = 0.05, 0.5, \) and \(2 \text{ m}^2\text{s}^{-1}\)) and for high-diffusivity fault zones (\(D_y = 1, 5, \) and \(10 \text{ m}^2\text{s}^{-1}\)), to allow for possible ranges of estimated pore pressure perturbations.

Table 1 presents the five modeling cases with different combinations of basement and fault zone hydraulic diffusivity. In all cases, the hydraulic diffusivity in the basement rock below 15 km is set to 0.001 m\(^2\) s\(^{-1}\). The specific storage \(S_e\) is generally assumed to be between \(10^{-5}\) and \(10^{-7} \text{ m}^{-1}\) for pore pressure diffusion modeling (Brown et al., 2017; Ortiz et al., 2019; Pandey & Chadha, 2003; Wetzler et al., 2019; Yeo et al., 2020; Zhang et al., 2013). Here, we assign a constant specific storage \(S_e\) of \(5 \times 10^{-7} \text{ m}^{-1}\) to basement rock and \(10^{-5} \text{ m}^{-1}\) to fault zones in all scenarios.

4.2. Spatio-Temporal Pore Pressure Diffusion

The simulated spatial extent of pore pressure change expands with time since the impoundment, basically following the geometry of the reservoir. Figure 5 shows the spatial distribution of the modeled \(\Delta P\) for Case B, the moderate combination of hydraulic diffusivities, \(D_x \sim 0.5 \text{ m}^2\text{s}^{-1}\) and \(D_y \sim 5 \text{ m}^2\text{s}^{-1}\), in plain view and cross sections of faults (see Figures S9–S12 for other cases). Two temporal snapshots are presented, one in October 2014, the first time when the reservoir water level reached its maximum value and the maximum seismicity rate observed, and one in January 2020. In the reservoir head area at 5 km depth, where most of the seismicity occurred following the impoundment, the lateral extent of influence where \(\Delta P \geq 0.01 \text{ MPa}\) is within 30 km of the reservoir in October 2014 and can increase to nearly 60 km in January 2020. The maximum values of \(\Delta P\) can reach 0.2 MPa in October 2014, and further increase to over 0.5 MPa in January 2020.

Case A and C represent a lower and an upper limit for the simulated pore pressure change, respectively. For lower diffusivity value (\(D_y \sim 0.05 \text{ m}^2\text{s}^{-1}\), Case A), the pore pressure perturbation is significantly smaller and mainly dominated by the EJF and HLF, extending to further distance but at shallower depth over time along these two faults than Case B (Figure S9). As anticipated, for higher diffusivity value (\(D_y \sim 2 \text{ m}^2\text{s}^{-1}\), Case C), the pore pressure diffusion is very significant, and the extent of influence where \(\Delta P \geq 0.01 \text{ MPa}\) is over 50 km in October 2014 and can reach the JMF and MYF in January 2020 (Figure S10).

We also explored the effect of the impoundment on high-diffusivity fault zones, which can channel the pore pressure diffusion over large distances and lead to the localized pore pressure increase. The intersections between faults and the reservoir can quickly respond to the water level change and act as the main conduits of diffusion along the faults. However, the pore pressure diffusion is less likely to reach the faults without the direct hydraulic connection with the reservoir. For Case B of \(D_y \sim 5 \text{ m}^2\text{s}^{-1}\), the extent where \(\Delta P \geq 0.01 \text{ MPa}\) increases over 30 km along the EJF between October 2014 and January 2020; the modeled pore pressure appears to permeate throughout the entire HLF in January 2020, while the pore pressure changes on the JMF and MYF are still negligible. For lower diffusivity values of \(D_y \sim 1 \text{ m}^2\text{s}^{-1}\) (Case D), the \(\Delta P\) along the faults are not distinguishable from that in the basement rock, and the \(\Delta P\) tends to only build up underneath the head area of the reservoir (Figure S11). As expected, a higher diffusivity value (\(D_y \sim 10 \text{ m}^2\text{s}^{-1}\), Case E) can significantly facilitate pore pressure diffusion, and the extent where \(\Delta P \geq 0.01 \text{ MPa}\) can extend further along the EJF and reach the southern end of MYF in January 2020 (Figure S12).

Case	\(D_x\), Basement (depth ≤ 15 km)	\(D_y\), Fault
A	0.05	5
B	0.5	5
C	2	5
D	0.5	1
E	0.5	10
We further quantify the pore pressure evolution more specifically at nine “virtual” monitoring locations. Six of these monitoring points (A-F) are located on the faults, and one (G) is underneath the head area of the reservoir, at 5 km depth (Figure 4). Another two monitoring locations, G1 and G2, have the same horizontal position with G, but at 1 and 10 km depth, respectively. (Pore pressure changes at monitoring locations G1, G, and G2 are shown in Text S3 and Figure S13, and are discussed in Section 4.3.) Figure 6 shows the simulated pore pressure changes over time at monitoring locations A-F for Case B. With the water level change, the pore pressure changes at monitoring locations D and G, both are directly underneath the reservoir, significantly increase over time. The ΔP at other monitoring locations gradually builds up at a relatively lower rate over time. Till January 2020, the pore pressure changes of monitoring locations A and E are nearly 0.1 MPa, while the ΔP of monitoring locations B, C, and F are not measurable. The results of
other case studies confirm that the increase in both D_r and D_f can promote pore pressure change at these monitoring locations (Figure S14). The time that ΔP reaches 0.01 MPa at monitoring location C is predicted to be January 2019, December 2017, and January 2017 for Case A, C, and D, respectively. We note that the ΔP at monitoring location C can only exceed 0.01 MPa at the end of 2017 with $D_r \sim 2 \text{ m}^2 \text{s}^{-1}$ (Case C) in our study, suggesting that significant pore pressure perturbations along JMF are unlikely.

The above results indicate that higher hydraulic diffusivity of both the rock masses and fault zones can promote the propagation of pore pressure front, increasing its possibility of reaching the critically stressed faults and triggering slip. It is worth noting that we simplify the hydraulic diffusivity to be isotropic and constant in the model, without considering its spatial variations (Ingebritsen & Manning, 1999) and the pressure dependence of hydraulic diffusivity. Moreover, the possible existence of some hydraulically conductive unmapped faults can further the pore pressure diffusion process. That said, our modeling results highlight the significant contribution of the impoundment to pore pressure change in the rock masses underneath the reservoir, and the channeling effects of high-diffusivity fault zones on pore pressure diffusion. Particularly in the head area of the reservoir, pore pressure diffusion is considerable with $D_r \geq 0.5 \text{ m}^2 \text{s}^{-1}$ and seems to overlay the extent where most earthquakes are located following the impoundment. The pore pressure diffusion along the EJF and HLF, which intersect with the reservoir, is extensive even for the lower limit of pore pressure changes (Case A); therefore, these two faults and the regions nearby are expected to be more prone to reactivation after the impoundment. However, the impoundment process has limited influence on pore pressure changes near the MYF and JMF because of their relatively larger distance to the reservoir.

4.3. Correlation Between Pore Pressure Changes and Seismicity

The seismicity following the impoundment tends to migrate away from the Xiluodu reservoir over time, coinciding with the expanding pattern of pore pressure diffusion. For Case B, as shown in Figures 5a and 5b, the M1+ events between May 2013 and October 2014 mainly cluster within an elongated narrow zone beneath the head of the reservoir. From October 2014 to January 2020, according to our model, the area of elevated pore pressure significantly expanded, which seems to encompass the area where produced much of the seismicity during this period. Figure 7 further presents the ΔP when the M1+ events occurred in each subregion for Case B, and see Figures S16–S19 for other cases. As expected, the ΔP at the hypocenters of M1+ events in R1 and R5 significantly increases, even for the events that occurred shortly after the impoundment, due to their short distances to the reservoir. The median pore pressure changes in R1 significantly increase with D_r and reach values between 0.01 and 0.27 MPa (Figure 8). Indeed, for $\sim 16.7\%$ of the M1+ events in R1, the ΔP at their hypocenters can exceed 0.01 MPa, the threshold generally referred to for triggering seismicity on critically stressed faults (King et al., 1994; Reasenberg & Simpson, 1992), for Case A; while over 93% for the other four cases (Figure 8). We also plot the distribution of the modeled ΔP for Case B at the hypocenters in R1, individually for the magnitude ranges of $1 \leq M < 2$, $2 \leq M < 3$, $3 \leq M < 4$, and $4 \leq M < 5$ (Figure S15). The modeled ΔP at the hypocenters in each magnitude range are generally greater than 0.01 MPa, suggesting a general triggering effect of pore pressure diffusion on the events in different magnitude ranges. The ΔP of the Ms 4.7 event occurred in May 2019 beneath the head area of the reservoir, which could be related to the delayed seismic response to impoundment as discussed in Section 2, can reach the value of ~ 0.002 MPa for Case A, and increase to over 0.2 MPa for other cases. It is noted that the modeled ΔP at some
hypocenters in R2 can also exceed 0.01 MPa, and increase with r_{ED} and f_{ED}. Thus, we can first conclude that most earthquakes near the reservoir, and the along-fault migration of seismicity near EJF have a great chance to be directly triggered by pore pressure diffusion. The modeled ΔP at the two M5+ hypocenters mainly depend on the value of hydraulic diffusivity r_{ED}. For all the cases in this study, the modeled ΔP at the Ms 5.1 and Ms 5.2 hypocenters range between 0 and 0.055 MPa and between 0 and 0.066 MPa, respectively, corresponding to the CENC solutions (Table S4). For a modest combination of diffusivities in Case B, the modeled ΔP at the Ms 5.1 is \sim0.001 MPa and exceeds 0.01 MPa after April 2014. Thus, the Ms 5.1 event is expected to occur about one year sooner when considering only the modeled ΔP. The influence of water load on the Ms 5.1 event is discussed in the next section. The modeled ΔP at the hypocenter of the Ms 5.2 event can increase to \sim0.062 MPa, greater than the generally cited triggering threshold of pore pressure changes. The modeled ΔP are much smaller at the two M5+ locations from the GCMT solutions (Table S4) because of being further from the diffusion source. The pore pressure changes at some other hypocenters, especially those at greater depths and further distances, are not significant when those events occurred. With $D_r \sim 0.5$ m2 s$^{-1}$ (Case B), the ΔP of events in R4 is negligible during P1 and P2, and tends to increase only after 2017, while the ΔP of events in R3 is practically zero. Even with $D_r \sim 2$ m2 s$^{-1}$ (Case C), the upper bound of pore pressure diffusion in this study, the ΔP of events in R3 and R4 only slightly increases and generally are smaller than 0.005 MPa.

There are also several possible explanations for the result that the modeled pore pressure changes are not significant at these hypocenters. For example, the hypocenter locations are subject to the uncertainties, and the precise fault geometries at depths are also difficult to constrain. The relative locations of faults and the reservoir can influence the modeled pore pressure changes at the event hypocenters, particularly for those events that are far from the reservoir and sensitive to the channeling effect of high-diffusivity faults. Therefore, we might underestimate or overestimate the pore pressure changes at some hypocenters located on or near the JMF and MYF.

We are also cognizant that the location uncertainties of events can cause the discrepancy between the modeled ΔP and the “actual” ΔP at some earthquake hypocenters. We supplemented the modeling of ΔP for different depths but at same horizontal locations (see the results of G1, G, and G2 shown in Text S3 and
Figure S13). Despite the depth uncertainty of ~9 km, all cases of reasonable diffusivity lead to significant pore pressure changes that are expected to trigger some events within such depth range.

Alternative mechanisms can also be relevant to the earthquake triggering, including the water-weakening effects on fault strength (Masuda et al., 2012) and the far-field poroelastic effect due to water load (Goebel et al., 2017; Guglielmi et al., 2015; Segall et al., 1994). Moreover, it should be noted that the time delays between the observed seismicity and water level change in general depend on the hypocenter locations and hydraulic diffusivities. Diffusion pressure physics suggests that under idealistic conditions, the characteristic diffusion time is proportional to characteristic length squared and inversely proportional to diffusivity. The arrival of a pore pressure increase at a ready-to-failure fault can trigger an event, then, the time delay discussed above would be the time delay between water level change and seismicity. The real-world situation is more complex, this study site is no exception. The complexity arises when the pore pressure does not encounter a ready-to-fail fault, thus the arrival of pore pressure would lead to no seismicity. Conversely, a major event may occur before the arrival of a threshold pore pressure change, as it may be triggered by static stress changes of foreshocks or stress from water load.

5. Coulomb Stress Changes

5.1. Method and Modeling

The simulation of elastic stress changes due to reservoir water load is performed using the finite-difference code FLAC3D (Itasca Consulting Group, 2012). The stress model domain is the same as that in the pore pressure diffusion modeling. We employ a linear elastic and isotropic material to represent the crustal rock masses, albeit being simplistic. The assigned Young’s modulus and shear modulus are 37.5 and 15 GPa, respectively, for the crust (Tao et al., 2015), and 3.75 and 1.5 GPa, respectively, for the fault zones. The modeled upstream water level change is also set to decrease with distance from the dam linearly, and the modeled stress changes are due to reservoir impoundment only. Here, we assess the effective Coulomb stress change (ΔCFS) in the context of decoupled linear poroelasticity (Biot, 1956; Cheng, 2016; Cocco & Rice, 2002; Roe-lof, 1988). The effective Coulomb stress change (ΔCFS_{eff}) in terms of the mechanical effect and hydrologic effect is defined as (Ge et al., 2009):

$$\Delta CFS_{eff} = \Delta \tau - \mu \Delta \sigma_n + \mu \Delta p_u + \mu \Delta p_d$$

where $\Delta \tau$ and $\Delta \sigma_n$ are the shear stress (along the slip direction) and normal stress changes on the fault, respectively (compression-positive); Δp_u is the undrained pore pressure, which can build up instantly due to the water load. Δp_d is the diffused pore pressure. If assuming $\Delta p_u = B \Delta \sigma_n$, with B being the Skempton coefficient that varies between 0 and 1 with rock type, Equation 2 becomes:

$$\Delta CFS_{eff} = \Delta \tau - \mu (1 - B) \Delta \sigma_n + \mu \Delta p_u + \mu \Delta p_d = \Delta \tau - \mu' \Delta \sigma_n + \mu \Delta p_u + \mu \Delta p_d = \Delta CFS_s + \Delta CFS_p$$

where $\mu' = \mu (1 - B)$ is the effective (or apparent) friction coefficient (Cocco & Rice, 2002; Harris, 1998). Δp_u is at its maximum value upon loading without diffusion to occur, and dissipates with the diffusion process and deformation of rock masses over time. ΔCFS_s and ΔCFS_p are the induced Coulomb stress changes resulting from water load and pore pressure diffusion, respectively. The values of μ' generally range between 0 and 0.75 in the calculations of Coulomb stress changes (Green & Wang, 1986; Hart et al., 1994), and $\mu' = 0.4$ is often used (King et al., 1994; Stein et al., 1992). Smaller values of μ', signifying larger undrained pore pressure increase, result in larger ΔCFS_s, and therefore larger ΔCFS in a given stress field, suggesting a stronger influence of water load on earthquake triggering. In this study, we assume $\mu' = 0.14$ (corresponding to $\mu = 0.71$ and $B = 0.8$), toward an upper limit for the impact of the short-term undrained response on faults; the underlying assumptions include that the rock mass underneath the reservoir is saturated before the reservoir impoundment (Ruiz-Barajas et al., 2019), and the value of μ of the rock mass is maximunly reduced when the earthquake occurred. It is also worth noting that the ΔCFS_{eff} defined in Equations 2 and 3 involves the coupled process of pore pressure diffusion and stress changes due to water load, referring to poroelastic effects (Cheng, 2016). However, the numerical simulation of stress changes in this study is static and decoupled from the process of pore pressure diffusion. The neglected effect of the dissipation of undrained pore pressure may lead to the overestimation of ΔCFS_{eff}, if the pore pressure diffusion has already taken place. Thus, we quantified the Coulomb stress changes induced by the water load and pore...
pressure diffusion separately, without superimposing the ΔCFS_e and ΔCFS_s directly to obtain the distribution of ΔCFS_{eff} throughout the study area.

5.2. Coulomb Stress Changes at Two M5+ Events

We first calculate the Coulomb stress changes at the hypocenters of the Ms 5.1 and Ms 5.2 earthquakes to quantify the seismogenic impact of the reservoir impoundment. The water level changes at the time of both events were about 100 m. The focal mechanism solutions of these two events are obtained from CENC and GCMT; however, the faulting planes are not distinguished from the auxiliary planes. Thus, the stress changes are calculated for both nodal planes of each focal mechanism solution. As shown in Table 2, for the CENC solutions, the water load produces positive ΔCFS_s on nodal plane 1 of the Ms 5.1 event, promoting fault destabilization. The resolved $\Delta \sigma_n$ on nodal plane 2 of the Ms 5.1 event is over \sim13 times larger than $\Delta \tau$, which can hardly induce the positive ΔCFS_s. The $\Delta \tau$ induced by water load is negative for both nodal planes of the Ms 5.2 event, leading to the negative ΔCFS_s. Thus, the water load tends to destabilize the nodal plane 1 of the Ms 5.1 event, and stabilize both nodal planes of the Ms 5.2 event. Superimposing the effect of pore pressure diffusion, the ΔCFS_{eff} of the Ms 5.1 event is slightly increased to \sim0.003 MPa for nodal plane 1; while the ΔCFS_{eff} of the Ms 5.2 event can increase to \sim0.03 MPa, which is generally considered to be of relevant significance in triggered seismicity on critically stressed faults.

These results suggest that stress changes induced solely by water load can plausibly trigger the Ms 5.1 event, and pore pressure diffusion also tends to significantly contribute to the occurrence of the Ms 5.2 event and also promote the occurrence of the Ms 5.1 event. Here, the modeled Coulomb stress changes due to the combined effects of water load and pore pressure diffusion favor the occurrence of both M5+ events. We also calculate the Coulomb stress changes due to these two effects corresponding to the GCMT solutions (Table S5). For the Ms 5.1 event, the water load results in \sim0.002 MPa for nodal plane 1, suggesting a similar triggering effect, consistent with that of the CENC solution; while the ΔCFS_{eff} is negative for the Ms 5.2 event due to the negative $\Delta \tau$ and negligible ΔP.

The poroelastic effect has been widely accounted for to explain triggered seismicity at great depths and distances (Goebel et al., 2017; Guglielmi et al., 2015; Segall et al., 1994), and can contribute to the occurrence of two M5+ events in this study. Alternative mechanisms can also plausibly be relevant, for example, Coulomb stress transfer (King et al., 1994; Stein, 1999), which may destabilize faults in affected areas and subsequently trigger larger events (Brown & Ge, 2018; Sumy et al., 2014; Yeo et al., 2020). We notice that many smaller earthquakes occurred close to the Ms 5.1 and Ms 5.2 events, both temporally and spatially (Figures 2 and 3a). Thus, the cumulative effect of Coulomb stress transfer induced by previous smaller events can potentially be responsible for the occurrence of these two M5+ events.

5.3. Coulomb Stress Changes on Nearby Faults

The fault geometry and orientation influence the estimation of stress changes. However, this information is lacking for the faults in the study area. We resolve the stress changes on all relevant faults corresponding to either thrust faulting or strike-slip faulting (Figure 9). The rake angles are set to be 90° for thrust faulting, 0° and 180° for left-lateral (EJF, MYF, and JMF) and right-lateral (HLF) strike-slip faulting, respectively. The dip angles at depth are set to be constant and the same as those in the pore pressure diffusion model.
The estimated ΔCFS_s corresponds to the maximum water level change of 160 m without considering the dissipation of undrained pore pressure, representing an upper bound of the plausible values.

The results show that the $\Delta \sigma_n$ due to water load significantly increases on fault segments near the reservoir, gradually decreases to negative, and finally diminishes at a larger distance (Figure 9). In the case of thrust faulting, the $\Delta \tau$ significantly increases on the southern segment of the EJF and the southwestern segment of the HLF adjacent to the reservoir, consequently leading to the positive ΔCFS_s. While the estimations of ΔCFS_s of the JMF and MYF are relatively small, we note that the water load tends to induce the positive ΔCFS_s at the southern segment of the JMF within 2 km depth and the middle segment of MYF, coinciding with most of the events near these two faults. This means that the stress changes due to water load can

Figure 9. Shear stress, normal stress, and Coulomb stress change resulting from reservoir water load (ΔCFS_s), and Coulomb stress changes resulting from pore pressure diffusion (ΔCFS_p) on October 10, 2014, for Case (b) on faults. The scenario of thrust faulting (TF) and strike-slip faulting (SS) were both considered. The hypocenters of M1+ earthquakes recorded from May 2013 to June 2015 and from July 2015 to January 2020 are shown as filled and open black circles, respectively.
contribute to the reactivation of the JMF and MYF, and consequently those events nearby. In the case of strike-slip faulting, positive values of $\Delta \tau$ are only present in a few local segments at the shallow depth and tend to induce the negative ΔCFS_s on faults. This suggests that the stress changes induced by the water load are inclined to promote the thrust-slip motion of the EJF and HLF segments and suppress the strike-slip motion there.

To study the combined effects of water load and pore pressure diffusion, we also compute the ΔCFS_p, corresponding to the pore pressure diffusion on faults for Case B on October 1, 2014, the first time that water level reached its historical high. As shown in Figure 9, the maximum positive ΔCFS_s on fault segments corresponds to the thrust faulting and are generally less than 0.01 MPa. In comparison, the ΔCFS_p could exceed 0.01 MPa on most segments of the HLF and approximately half of the EJF adjacent to the reservoir. This result agrees with the dramatic seismicity increase near the EJF following the impoundment; however, the HLF does not feature strong seismicity. This observation corroborates the fault criticality analysis that the NE-striking faults (such as the HLF) are less critically stressed than the NNW- and NS-striking faults downstream the Jinsha River. Moreover, the relatively small ΔCFS_s and ΔCFS_p simulated on the MYF contrast the significant seismicity increase near the MYF. This observation is consistent with the fault criticality analysis, as the MYF is quantified as being more critically stressed. Another possible influence factor on the seismicity increase near the MYF: the MYF is located upstream of the previously impounded Xiangjiaba reservoir (started from October 2012), which might also induce considerable hydro-mechanical influence on the MYF. This is out of the scope of this paper but warrants further study. The probability of pore pressure diffusion reaching the southern end of the JMF is low, and the water load tends to only slightly increase ΔCFS_s on the JMF. Meanwhile, the fault criticality analysis has identified the JMF as more stable in the prevailing stress field. These results contradict the fact that the seismicity clustered at the southern end of the JMF. This inconsistency may be due to the local variations of the in-situ stress field or the uncertainty of the assumed fault dip angles, which warrants further investigation.

5.4. Coulomb Stress Changes Beneath the Head Area of Xiluodu Reservoir

We also resolve the Coulomb stress changes in the head area of the reservoir, where most events are located immediately following the impoundment. Although there are no major faults in the head area of the XLD reservoir, focal mechanism solutions of events nearby (Duan, 2019) suggest the existence of NE-striking faults. Therefore, we suspect that there are unmapped faults sub-parallel to the HLF and modeled so, that is, with an average strike and dip angles of 235° and 60°, respectively. We compute the stress changes induced by water load for both thrust and right-lateral strike-slip faulting, corresponding to rake angles of 90° and 180°, respectively (Figure S20). Figure 10 shows the seismicity cloud following the impoundment overlaid by the ΔCFS_s, corresponding to the maximum water level change of 160 m, and ΔCFS_p on October 1, 2014, for Case B. For each reference mapview plane considered in Figure 10, the events within \pm 1 km depth (\pm vertical location errors of 1 km) are included for comparison. The distribution of ΔCFS_s and ΔCFS_p correlate well with the shape of the reservoir at shallow depth and vary as the depth increases. In the case of thrust faulting, the ΔCFS_s is at its maximum value of more than 0.1 MPa at shallow depth, and the positive ΔCFS_s area spatially expands as depth increases. Due to the significant increase in $\Delta \tau$ beneath the reservoir, the ΔCFS_s can reach about 0.01 MPa at 15 km depth, which is unlikely for pore pressure diffusion to reach, especially shortly after the initial impoundment. In the case of strike-slip faulting, the signs of the calculated values of ΔCFS_s are opposite to those of thrust faulting. The area with modeled $\Delta CFS_p \geq 0.005$ MPa overlaps with most events within 12 km depth as of October 2014 (Case B).

It is noted that the boundary between the positive and negative ΔCFS_s area moves by \sim10 km to the east as the depth increases from 3 to 15 km in the case of thrust faulting. However, minor shifts of this boundary are observed in the case of strike-slip faulting. Thus, for the catalog in use (with average location errors of \sim3–5 km), the triggering effect of the water load would not be significantly affected for the events in the latter case; instead, more attention should be paid to the case of thrust faulting, should further relocations and focal mechanisms become available.

Although the possible depth uncertainties of events shown in Figure 10 may exceed 1 km, the reasonable correlation between the modeled stress changes and the actual earthquake locations corroborates the possible influence of reservoir impoundment on nearby seismicity. The pore pressure diffusion can be quite
Figure 10. Spatial distribution of modeled Coulomb stress changes resulting from reservoir water load (ΔCFS_{w}) and pore pressure diffusion (ΔCFS_{p}, on October 10, 2014) in the head area of the Xiluodu reservoir. The corresponding water level change $\Delta H_{max} = 160$ m, $\mu = 0.71$, $R = 0.8$. The scenarios of thrust faulting (TF) and strike-slip faulting (SS) were both considered. The M1+ earthquakes following the impoundment of the Xiluodu reservoir are shown for depth intervals within 1 km with respect to each observation plane. The M1+ events observed from May 2013 to June 2015 and from July 2015 to January 2020 are shown as filled and open black circles, respectively.
relevant to fault reactivation, especially at shallow depth. In comparison, the effect of water load can be far-reaching and alter the fault criticality at greater depths and distances. The combination of these two effects can induce positive Coulomb stress change and contribute to the earthquake triggering both temporally and spatially.

It is important to note that the spatial pattern of the ΔCFS_s is highly dependent on the fault orientation and slip directions (Deng et al., 2020; Segall & Lu, 2015). A higher dip angle would generally result in greater Coulomb stress changes for the given hypocentral location (Tao et al., 2015; Zhou & Deng, 2011). Moreover, we acknowledge that the location uncertainties can also influence the modeled ΔCFS_s and ΔCFS_p at the hypocenters. Especially, the ΔCFS_s estimation at the events may change significantly, or even change in sign, depending on the exact hypocenter locations, for example, on or off the fault. However, we consider that the systematic uncertainty of the seismic catalog will not incur significant deviations from temporal-spatial distribution of events and the resulting modeling results. Thus, the model supplemented with more geological details could facilitate a more realistic distribution of Coulomb stress changes.

6. Concluding Remarks

In this study, we first conducted a fault criticality analysis in the areas of the four hydropower stations as a first-order quantification of the proximity of faults to slip. Based on the calculation of fault instability I, we conclude that the NNW- and NS- striking faults are more critical in this region, and the faults near the Wudongde and Baihetan dams are more likely to be reactivated than those near the Xiluodu dam. This indicates an even larger seismic hazard near the Wudongde and Baihetan reservoirs.

We take the Xiluodu reservoir, with detailed records of water level changes and seismicity, as a timely example to study the impact of reservoir impoundment on regional seismicity. The spatio-temporal pattern of seismicity near the Xiluodu reservoir and nearby faults suggests a positive correlation with the impoundment, revealing both rapid and delayed seismic response to water level changes. To quantify the effect of the Xiluodu reservoir impoundment on the regional seismicity, we compute the changes of pore pressure, stress, and the resulting Coulomb stress due to pore pressure diffusion and reservoir water load.

The results of pore pressure modeling show that the spatial extent of elevated pore pressure expands with time during the impoundment, and the hydraulic diffusivity of the basement rock and faults exert a strong influence on the diffusion process. For the hydraulic diffusivity of the basement rock of 0.05 $m^2 s^{-1}$, the pore pressure changes at the majority of M1+ hypocenters near the head area of the reservoir following the impoundment can exceed 0.01 MPa, in the order of the empirical threshold to reactivate certain critically stressed fault segments. The pore pressure diffusion also appears to exhibit appreciable impact to promote the slip of the EJF and HLF directly, while with little influence on the MYF and JMF, because they are relatively more distant from the reservoir.

The results of Coulomb stress modeling indicate that the water load can promote the thrust-slip motion and suppress the strike-slip motion of nearby faults, especially for the segments of EJF and HLF that are close to the reservoir. The water load tends to induce small positive Coulomb stress changes at larger depths and distances, for example, near the southern segment of the JMF and the middle segment of the MYF, which are about 30 and 10 km from the reservoir, respectively, and are not realistic for pore pressure diffusion to reach at the time of the events. In the head area of the reservoir, where most earthquakes are located, the extent of positive Coulomb stress changes varies with depth, basically covering the majority of the M1+ events, considering the thrust faulting stress environment. The pore pressure diffusion contributes to the positive Coulomb stress changes at shallower depth, and gradually decreases at greater depth. The combined effects of reservoir water load and pore pressure diffusion favor the occurrence of both M5+ events for the CENC solutions, while tend to suppress the occurrence of the Ms 5.2 event for the GCMT solutions, thus the Ms 5.2 event may have been related to alternative mechanisms.

To conclude, our study provides a useful and timely analysis of how reservoir impoundment can affect fault criticality and regional seismicity from the perspective of hydro-mechanical changes. It can be expected that the pore pressure diffusion can continuously increase the Coulomb stress changes in future operations of the Xiluodu reservoir until reaching a regional hydrological steady state; in contrast, the contribution of
water load to positive Coulomb stress changes will decrease with time due to the dissipation of undrained pore pressure. Further simulations with the emphasis on the coupled poroelastic effect is required. It should be noted that the relocation of events was not performed in this study. The event location uncertainties may affect our interpretation of the impact of impoundment on specific events. Further relocations of the events are therefore warranted. More information on the geomechanical and hydro-mechanical parameters and regional faults is also required to facilitate a more quantitative analysis. The case study of the Xiluodu reservoir has important implications, especially for Wudongde and Baihetan hydropower stations that are close to faults of presumably higher criticality, according to our analysis. The future impoundment operations there demand careful considerations and in-depth research, as well as forward-looking mitigation measures.

Data Availability Statement
The authors acknowledge the support from “China Earthquake Networks Center, National Earthquake Data Center. (http://data.earthquake.cn)” for seismic data. The data set of mapped faults is provided by Data Sharing Center for Seismogeology and Earthquake Dynamics (http://210.72.25.138/datashare).

Acknowledgments
This research was supported by the National Natural Science Foundation of China under Project No. 51738006 and the State Key Laboratory of Hydroscience and Hydraulic Engineering under Grant No. 2019-KY-03. The support provided by the China Scholarship Council (CSC) during the visit of Man Zhang to ETH Zurich is greatly appreciated. Xiaodong Ma acknowledges the funding from Swiss National Science Foundation (Grant No. 182150) and ETH Zürich Research Grant (No. ETH-06 19-1). Shenmin Ge acknowledges the visiting professorship from ETH Zürich Department of Earth Sciences and the Geothermal Energy and GeoFluids Group. Open access funding provided by Eidgenossische Technische Hochschule Zurich.

References
Bell, M. L., & Nur, A. (1978). Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville. Journal of Geophysical Research, 83(B9), 4469–4483. https://doi.org/10.1029/JB083iB09p04469
Biot, M. A. (1956). General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 78, 91–96. https://doi.org/10.1115/1.4011213
Brown, M. R. M., & Ge, S. (2018). Small earthquakes matter in injection-induced seismicity. Geophysical Research Letters, 45(11), 5445–5453. https://doi.org/10.1002/2018GL077472
Brown, M. R. M., Ge, S., Sheehan, A. F., & Nakai, J. S. (2017). Evaluating the effectiveness of induced seismicity mitigation: Numerical modeling of wastewater injection near Greeley, Colorado. Journal of Geophysical Research-Solid Earth, 122(8), 6569–6582. https://doi.org/10.1002/2017J004456
Carder, D. S. (1945). Seismic investigations in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on local earthquake activity*. Bulletin of the Seismological Society of America, 35(4), 175–192. https://doi.org/10.1785/ibsa0350040175
Cheng, A. H.-D. (2016). Poroelasticity (Vol. 27): Springer International Publishing. https://doi.org/10.1007/978-3-319-25202-5
Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research, 107(B2), ESE2. https://doi.org/10.1029/2000JB000338
Cochran, E. S., Vidale, J. E., & Tanaka, S. (2004). Earth tides can trigger shallow thrust fault earthquakes. Science, 306(5699), 1164–1166. https://doi.org/10.1126/science.1103961
Cui, X., Xie, F., & Zhang, H. (2006). Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest. (in Chinese). Institude of Earthquake Forecasting, CEA.
Cui, Y., Deng, J., & Xu, C. (2019). The activity of the Yanzif Fault on the lower reaches of the Jinsha River, Southwestern China: Indirect evidence from Paleo earthquakes and ancient landslides. Advances in Civil Engineering, 2019, 1–14. https://doi.org/10.1155/2019/5020357
Deng, K., Liu, Y., & Chen, X. (2020). Correlation between poroelastic stress perturbation and multidispalosal wells induced earthquake sequence in cucsheh, Oklahoma. Geophysical Research Letters, 47(20), e2020GL089366. https://doi.org/10.1029/2020GL089366
Diao, G., Wang, Y., Feng, X., Wang, X., Feng, Z., Zhang, H., et al. (2014). Analysis of characteristics of focal mechanism in reservoir head region of Xiluodu reservoir after impoundment. (in Chinese). Seismology and Geology, 36(3), 644–657.
Duan, M. (2019). Study on characteristics of focal mechanisms and stress field in the downstream reservoir area of Jinsha River (Master's thesis). Institute of Earthquake Forecasting, CEA.
Dziwonski, A., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2828. https://doi.org/10.1029/JB086iB04p02825
Ekström, G., Nettles, M., & Dziewonski, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
El Hartiri, M., Abercrombie, R. E., Rowe, C. A., & do Nascimento, A. F. (2010). The role of fluids in triggering earthquakes: Observations from reservoir induced seismicity in Brazil. Geophysical Journal International, 181(3), 1566–1574. https://doi.org/10.1111/j.1365-246X.2010.04544.x
Ge, S., Liu, M., Lu, N., Godt, J. W., & Luo, G. (2009). Did the Zipingpu Reservoir trigger the 2008 Wenchen earthquake? Geophysical Research Letters, 36. https://doi.org/10.1029/2009GL040349
Goebel, T. H. W., Weingarten, M., Chen, X., Hafifner, J., & Brodsky, E. E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61. https://doi.org/10.1016/j.epsl.2017.05.011
Green, D. H., & Wang, H. F. (1986). Fluid pressure response to undrained compression in saturated sedimentary rock. Geophysics, 51(4), 948–956. https://doi.org/10.1190/1.1442152
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection-induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab4076
Guo, J. (2018). The present status of reservoir induced seismicity investigations with special emphasis on Koynea earthquakes. Tectonophysics, 734, 257–279. https://doi.org/10.1016/j.tecto.2018.05.022
Guo, J. K. (1985). The present status of reservoir induced seismicity investigations with special emphasis on Koynea earthquakes. Tectonophysics, 118(3–4), 257–279. https://doi.org/10.1016/0040-1951(85)90125-8
Guo, H. K. (1992). Reservoir-induced earthquakes. Current Science, 62(1–2), 183–198. https://doi.org/10.1016/c2009-0-08933-8
Sumy, D. F., Cochran, E. S., Keranen, K. M., Wei, M., & Abers, G. A. (2014). Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. Journal of Geophysical Research-Solid Earth, 119(3), 1904–1923. https://doi.org/10.1002/2013JB010612

Talwani, P. (1997). On the nature of reservoir-induced seismicity. Pure and Applied Geophysics, 150(3–4), 473–492. https://doi.org/10.1007/s000240050089

Talwani, P. (2000). Seismonastic properties of the crust inferred from recent studies of reservoir-induced seismicity - Application to Koyna. Current Science, 79(9), 1327–1333.

Talwani, P., & Acree, S. (1984). Pure pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Applied Geophysics, 122(6), 947–965.

Talwani, P., Chen, L., & Ghalautat, K. (2007). Seismonastic permeability, k(s). Journal of Geophysical Research, 112(B7). https://doi.org/10.1029/2006JB004685

Tao, W., Masterlark, T., Shen, Z.-K., & Ronchin, E. (2015). Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake. China. Journal of Geophysical Research-Solid Earth, 120(10), 7033–7047. https://doi.org/10.1002/2014JB011766

Tian, J., Luo, Y., Zhao, L., & Zhao, L. (2019). Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes. Earth and Planetary Physics, 3(3), 243–252. https://doi.org/10.26464/ep2019024

Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224

Vavryčuk, V., Bouchaala, F., & Fischer, T. (2013). High-resolution fault image from accurate locations and focal mechanisms of the 2008 swarms earthquakes in West Bohemia, Czech Republic. Tectonophysics, 590, 188–195. https://doi.org/10.1016/j.tecto.2013.01.025

Walsh, F. R., III, & Zoback, M. D. (2016). Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA. Geology, 44(12), 991–994. https://doi.org/10.1130/g38275.1

Wang, Y. (2019). The geomorphology and sedimentary records of the Lianfeng fault zone and adjacent areas since the Late Cenozoic (Master's thesis). The Institute of Crustal Dynamics, CEA.

Wang, Z., Zhao, D., & Wang, J. (2010). Deep structure and seismonogenesis of the north-south seismic zone in Southwest China. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009JB007797

Wen, X., Du, F., Yi, G., Long, F., Fan, J., Yang, P., et al. (2016). Stress field in Yunnan: Implication for crust-mantle coupling. Earthquake Science, 29(2), 105–118. https://doi.org/10.1007/s11589-016-0146-3

Xuan, S., Shen, C., Li, H., & Tan, H. (2016). Structural interpretation of the Chuan-Dian block and surrounding regions using discrete wavelet transform. International Journal of Earth Sciences, 105(5), 1591–1602. https://doi.org/10.1007/s00531-015-1272-1

Yang, L., Li, B., & Chang, T. (2019). Seismicity characteristics of Xiangjiaba Reservoir region before and after the impoundment. (in Chinese). Chinese Journal of Geophysics-Chinese Edition, 56(10), 3361–3372. https://doi.org/10.6038/cjg20131012

Wetzler, N., Shalev, E., Gobel, T., Amelung, F., Kurzon, L., Lyakhovsky, V., & Brodsky, E. E. (2019). Earthquake swarms triggered by groundwater extraction near the Dead Sea Fault. Geophysical Research Letters, 46(14), 8056–8063. https://doi.org/10.1029/2019GL083491

Xu, Z., Huang, Z., Wang, L., Xu, M., Ding, Z., Wang, P., et al. (2016). Crustal stress field in Yunnan: Implication for crust-mantle coupling. Earthquake Science, 29(2), 105–118. https://doi.org/10.1007/s11589-016-0146-3

Yeoh, I. W., Brown, M. R. M., Ge, S., & Lee, K. K. (2020). Causal mechanism of injection-induced earthquakes through the M-w 5.5 Pohang earthquake case study. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16408-9

Yin, Y., Huang, B., Wang, S., & Li, J. (2015). Potential for a ganhaizi landslide-generated surge in Xiluodu Reservoir, Jinsha River, China. Environmental Earth Sciences, 73(7), 3188–3196. https://doi.org/10.1007/s12665-014-3619-5

Zhang, L., Li, J., Sun, X., Liao, W., Zhao, Y., Wei, G., & He, C. (2018). A possible mechanism of reservoir-induced earthquakes in the Three Gorges Reservoir, Central China. Bulletin of the Seismological Society of America, 108(5B), 3016–3028. https://doi.org/10.1785/0120180015

Zhang, Q., Peng, X., & Zhu, J. (2019). Characteristics and activity of the Mabian-Leibo-Ebian-Jinyang major fault. Acta Geologica Sichuan, 39(1), 32–35.

Zhang, S., & Ma, X. (2021). Global frictional equilibrium via stochastic, local coulomb frictional slips. Journal of Geophysical Research-Solid Earth, 126(7), e2020JB012404. https://doi.org/10.1029/2020JB012404

Zhang, Y., Person, M., Rupp, J., Ellett, K., Celia, M. A., Gable, C. W., et al. (2013). Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into Basal Reservoirs. Ground Water, 51(4), 525–538. https://doi.org/10.1111/gwat.12071

Zhou, S., & Deng, K. (2011). Reply to “Comment on Evidence that the 2008 Mw 7.9 Wenchuan earthquake could not have been induced by the Zipingpu reservoir” by Kai Deng, Shiyong Zhou, Rui Wang, Russell Robinson, Cuiping Zhao, and Wanzheng Cheng” by Shenmin Ge. Bulletin of the Seismological Society of America, 101(6), 3119–3120. https://doi.org/10.1785/10120110099

Zoback, M. D. (2007). Reservoir geomechanics: Cambridge University Press. https://doi.org/10.1017/CBO9780511586477

Zoback, M. D., Townend, J., & Groolmund, B. (2002). Steady-state failure equilibrium and deformation of intraplate lithosphere. International Geology Review, 44(5), 383–401. https://doi.org/10.2747/0020-6814.44.5.383

References From the Supporting Information

Bianpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. Journal of Geophysical Research, 100(B7), 13045–13064. https://doi.org/10.1029/95JB00862

Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., & Baumgartner, J. (1997). Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. Journal of Geophysical Research, 102(B8), 18453–18475. https://doi.org/10.1029/96jb02942

Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 89(NB11), 9305–9320. https://doi.org/10.1029/JB009B11p09305

Guhu, S. K. (2000). Induced earthquakes (p. 314pp). Kluwer Academic Publishers.

Zhu, D.-C., Wang, Q., Cawood, P. A., Zhao, Z.-D., & Mo, X.-X. (2017). Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research-Solid Earth, 122(1), 214–223. https://doi.org/10.1002/2016jb013508

Zoback, M. D., & Healy, J. H. (1984). Friction, faulting and in-situ stress. Annales Geophysics, 2(6), 689–698.