On continued gravitational collapse

A. LOINGER

Dipartimento di Fisica, Università di Milano
Via Celoria, 16, 20133 Milano, Italy

Summary. – According to a widespread idée fixe, the spherically-symmetric collapse of a sufficiently massive celestial body of spherical shape should generate a black hole. I prove that this process generates simply an ordinary point mass. My argument is model-independent.

PACS. 04.20 – General relativity; 97.60 – Black holes.

1. – The necessary and sufficient condition that a Riemann-Einstein space-time admit the group of spatial rotations is that its ds^2 be reducible to the following form [1]:

$$ds^2 = A_1(r,t) \, dr^2 - A_2(r,t) \, dr^2 - A_3(r,t) \, d\omega^2, \quad (r \geq 0),$$

where

$$d\omega^2 = d\theta^2 + \sin^2\theta \, d\varphi^2.$$

By suitable substitutions: $r \rightarrow f_1(r,t), \ t \rightarrow f_2(r,t)$, eq. (1.1) becomes

$$ds^2 = B_1(r,t) \, dr^2 - B_2(r,t) \, dr^2 - r^2 d\omega^2, \quad (r \geq 0),$$

Let us put (cf. [2], [2bis])

$$R \equiv \left[r^3 + (2M)^3 \right]^{1/3}, \quad (r \geq 0), \quad (c=G=1)$$

where M is the mass of a given collapsing spherical body. Accordingly, we can write

$$ds^2 = C_1(R,t) \, dr^2 - C_2(R,t) \, dR^2 - R^2 d\omega^2.$$
Take ideally an instantaneous photograph of our contracting sphere at any time $t = \bar{t}$; its co-ordinate radius r_a be equal to \bar{r}_a. Then, if $\bar{R}_a = [(\bar{r}_a)^3 + (2M)^3]^{1/3}$, by virtue of a well-known Birkhoff’s theorem, we have (see [2], [2bis]):

$$(1.4) \quad C_1(\bar{R}_a, \bar{t}) = \frac{\bar{R}_a - 2M}{\bar{R}_a},$$

$$(1.4') \quad C_2(\bar{R}_a, \bar{t}) = C_1^{-1}(\bar{R}_a, \bar{t}).$$

Now, \bar{t} is just any time: this means that, since r_a tends to zero, the star will reduce asymptotically to the origin of the space co-ordinates, i.e. it will become asymptotically a simple point mass, as described by the original Schwarzschild’s memoirs [2], [2bis].

Remark that the original form of Schwarzschild’s solution to the problem of a gravitating mass point at rest is diffeomorphic to the exterior part $(r > 2M)$ of the usual, standard form of solution, which is due to Hilbert [3], Droste [4], and Weyl [5]. (The invariance of the surface area $4\pi(2M)^2$ is only a geometrical curiousness, devoid of any physical significance).

2. – If in the mentioned standard form of solution ([3], [4], [5]) we substitute for r the following function $f(r)$ (see [6]):

$$(2.1) \quad f(r) \equiv r + 2M,$$

for the spatial region external to the collapsing body we obtain

$$(2.2) \quad ds_{\text{ext}}^2 = \frac{r}{r + 2M} dr^2 - \frac{r + 2M}{r} dr^2 - (r + 2M)^2 d\omega^2.$$

(Obviously, eq. (2.2) can be obtained also from Schwarzschild’s ds^2 of paper [2] with the substitution $R \to r+2M$).
In lieu of eq. (1.1bis) we have:

$$\text{(2.3)} \quad ds^2 = D_1(r,t) \, dr^2 - D_2(r,t) \, dr^2 - (r+2M)^2 \, d\omega^2$$

At $t = \bar{r}$, if $r_a = \bar{r}_a$:

$$\text{(2.4)} \quad D_1(\bar{r}_a, \bar{r}) = \frac{\bar{r}_a}{\bar{r}_a + 2M}$$

$$\text{(2.4')} \quad D_2(\bar{r}_a, \bar{r}) = D_1^{-1}(\bar{r}_a, \bar{r})$$

But r_a tends to zero, and our object will shrink asymptotically to a point mass. Again, no black hole has been engendered by the collapsing process.

3. – It is commonly believed that the final stage of a collapsing rotating star is a Kerr’s black hole. Now, I have proved (see [7]) that Kerr’s ds^2 is generated in reality by a simple spinning point mass, without event horizons, stationary-limit surface, ergo-sphere. The conclusion is obvious.

Vain is the chase of the black holes.

“Nicht Jeder wandelt nur gemeine Stege:
Du siehst, die Spinnen bauen luft’ge Wege.”

J. W. v. Goethe

HISTORICAL FINALE

In the Twenties of the 20th century the form of solution of the papers [3], [4], [5] was not the unique solution taken into consideration, Schwarzschild’s solution [2] had not yet fallen into oblivion. (Remark that, for very good reason, only the exterior part, $r>2M$, of the HDW-solution was regarded as valid by all the Fathers of Relativity. Magic and science fiction were extraneous to physics; no guru had brainwashed the community of physicists).
In 1922 some witty men \((lucus a non lucendo)\) proposed to make Schwarzschild’s form fully equivalent to whole HDW-form by the assumption that Schwarzschild’s \(r\) take also the negative values of the interval \(-2M \leq r < 0\). Obviously, the Fathers of Relativity rejected this physical and mathematical folly, which was refuted in a detailed way by Marcel Brillouin [8]. Recently, the above proposition was put forward anew by some uninformed authors, but a nonsense remains a nonsense even if it is dressed with a sauce \(à la mode\).

\textit{Acknowledgment.} – I am very grateful to my friend Dr. S. Antoci for many useful discussions and advices.
REFERENCES

[1] EIESLAND J., *Trans. Amer. Math. Soc.*, 27 (1925) 213. See also EISENHART L.P.,
Continuous Groups of Transformations (Dover Publ., N. Y.) 1961, sect.58.

[2] SCHWARZSCHILD K., *Berl. Ber.*, (1916) 189; an English version by S.Antoci and
A.Loinger at http://xxx.lanl.gov/abs/physics/9905030 (May 12th, 1999).
[2bis] SCHWARZSCHILD K., *Berl. Ber.*, (1916) 427; an English version by S.Antoci at
http://xxx.lanl.gov/abs/physics/9912033 (December 16th, 1999). See further
LOINGER A., http://xxx.lanl.gov/abs/gr-qc/9908009 (August 3rd, 1999).

[3] HILBERT D., *Gött. Nachr.*, zweite Mitteilung, vorgelegt am 23. Dez. 1916; Id.,
Mathem. Annalen, 92 (1924) 1, Teil II.

[4] DROSTE J., *Ned. Acad. Wet.*, S.A., 19 (1917) 197.

[5] WEYL H., *Ann. Phys. (Lpz.)*, 54 (1917) 117, sect.4.

[6] LOINGER A., http://xxx.lanl.gov/abs/astro-ph/9810167 (October 30th, 1998). See also
EDDINGTON A.S.: *The Mathematical Theory of Relativity*, Second Edition (Cambridge
University Press, Cambridge) 1960, p.94 and p.95.

[7] LOINGER A., http://xxx.lanl.gov/abs/gr-qc/9911077 (November 20th, 1999).

[8] BRILLOUIN M., *Journ. Phys. Rad.*, 23 (1923) 43. See also ROSEN N., *Nuovo Cimento,
72 B* (1982) 51.