SIMPLE WET CHEMICAL ROUTE FOR DECORATION OF MULTI-WALLED CARBON NANOTUBES WITH NICKEL NANOPARTICLES

Sabita Shrestha*, Jay Prashad Bhatta
Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
*Corresponding author: shresthasabita@hotmail.com

(Received: December 15, 2019; Revised: June 15, 2020; Re-revised: November 02, 2020; Accepted: November 22, 2020)

INTRODUCTION

Carbon nanotubes (CNTs) are one-dimensional nanostructures with extra-ordinary electronic, mechanical, and chemical properties which is also known as cylindrical fullerenes. They are a few nanometers wide, but range from micrometers to several millimeters in length (Wang et al., 2009). They are composed of quasi-circular tubes with unique polygonal carbon ring microstructure units (Zheng et al., 2015). CNTs are considered to be excellent support for different kinds of nanomaterials (Auer et al., 1998). The CNT-based composites include metal, inorganic or organic components for specific application (Satishkumar et al., 1996; Hernadi et al., 2003; Cao et al., 2002).

Decorating the external surface of CNTs with metal nanoparticles has attracted considerable attention due to its fundamental and technological interest. Combining the unique properties of CNTs (Dresselhaus & Avouris, 2001) and nanoparticles, (Alivisatos, 1996) a nanoparticle-nanotube composite structures is produced with different applications, such as nanoelectronics (Hu et al., 1999), catalysis (Luo et al., 2002), chemical sensors (Kong et al., 2001), fuel cells (Che et al., 1998), hydrogen storage (Yildirim & Ciraci, 2005).

Before decoration, the MWCNTs must be purified and oxidized in order to obtain optimal performance of CNTs in various fields which require high-purity of CNTs. The impurities typically found in as-prepared CNTs are carbon species such as amorphous carbon, carbon nanoparticles, graphite flakes and transition metals that are introduced as a catalyst during synthesis. These impurities must be removed before proceeding to the next step. Purification removes the impurities present in raw or pristine CNTs and oxidation adds different oxygen functional groups on the surface of CNTs. Since the pristine CNTs are inert and poorly dispersible in common solvents, efforts have been made on the surface modification of CNTs mainly to enhance their solubility and process ability.

In general, CNTs are chemically treated with acids, which introduce various functional groups, such as carboxyl (–COOH), hydroxyl (–OH), and carbonyl (>C=O), onto the carbon surface (Ebbesen et al., 1996). After the acid treatments, the nanotubes formed a well-dispersed colloid in water and ethanol (Schaffer et al., 1998). Different methods have been reported to decorate metal and metal oxide nanoparticles onto the surface of CNTs. These include liquid phase (Sun et al., 2005), vapor-liquid deposition (Sadeghi et al., 2011), electrode deposition (Tsai et al., 2006), microwave irradiation (Nadagouda & Varma, 2008), thermal decomposition (Xue et al., 2001), hydrothermal (Jayalakshmi et al., 2007), and gamma irradiation (Oh et al., 2005).

This paper reports a simple wet chemical route for decoration of nickel nanoparticles on the surface of oxidized MWCNTs. This method has several advantages.
of decorating CNTs such as; simple chemicals can be used, the amount and size of metal nanoparticles can be controlled, don't need any sophisticated instruments, and consume less energy compared to other methods.

MATERIALS AND METHODS

Starting materials
MWCNTs, synthesized by a catalytic chemical vapor deposition (CVD) process (IIjin Nanotech, Korea), were used in this research work. Ethylene glycol, nickel chloride from Qualigens (SQ), and nitric acid, sodium hydroxide from Fisher Scientific were used without further purification.

Deposition of Ni nanoparticles
The deposition of Ni-nanoparticle on the surface of MWCNTs was done in two steps.

Oxidation and purification
There are several methods for the purification/oxidation of carbon nanotubes. An acid oxidation method was used in this process. Many oxidants have been used to oxidize CNT surfaces (Lyth et al., 2007; Datsyuk et al., 2008). In this work, nitric acid was used for purification/oxidation of MWCNTs. During this process, MWCNTs (0.1 g) was first sonicated (~15 mins) in HNO₃ and then refluxed for about 4 hours. This was filtered using membrane filter paper of pore size: 0.2 µm with the help of suction filter equipment. It was then washed with distilled water until pH 7 and dried in an oven at 100 °C for one hour, as described elsewhere (Shrestha et al., 2010).

Deposition of Ni-nanoparticles on oxidized MWCNTs
The deposition of metal nanoparticles on the surface of CNTs can be achieved by two main pathways. One of the methods is to grow and/or deposit naked nanoparticle directly onto the CNT surface. In an alternative approach, the nanoparticle is pre-formed and connected to CNTs using covalent linking. In the present work, the NiNPs were decorated on the surface of oxidized MWCNTs by wet chemical route using ethylene glycol as a reducing agent. In this decoration procedure, nitric acid-treated MWCNTs (0.05 g) were dispersed in ethylene glycol. To this well-dispersed suspension, NiCl₂·H₂O (0.1 g) in ethylene glycol (2 mL) was added. The pH of the mixture was adjusted to 9 by adding 2 M NaOH and stirred while heating with the help of a magnetic stirrer. The mixture was then filtered through membrane filter paper of pore size 0.2 µm, washed several times with distilled water and dried in an oven at 100 °C for one hour.

Characterization
Solid-state Raman spectra of pristine purified Ni/MWCNTs composite were obtained on a renishaw RM-1000. The combined thermogravimetric and differential thermal analysis (TG-DTA) was carried out on a TG/DTA 6200 (Seiko) instrument. The analysis was performed at a heating rate of 10 °C/min over the temperature range, 50-1000 °C, in open air. Infrared spectroscopy was recorded on IR Prestige-21 (Shimadzu) by powdered method.

RESULTS AND DISCUSSION

Formation of Ni-nanoparticles on oxidized MWCNTs
The NiNPs were decorated on the surface of the MWCNTs in the following steps. The first step is the purification/oxidation process, during the purification process, impurities were removed from the pristine CNTs, but on the other hand, several defect sites were generated on the surface of the CNTs. The second step involved the addition of oxygen functional groups into the defect sites. The final step involves decorating the surface of the CNTs with NiNPs. These are shown in schematic diagram 1.

Schematic diagram 1. Decoration of MWCNT with Ni-nanoparticles
The reaction of Ni-atoms on the defect site of MWCNTs is given (eqn.1) by a simple general ion exchange reaction, replacing the proton of the carboxylic group of the nanotubes with metal ions M⁺.

CNT-COOH +M’X → CNT-COOM + HX (1)

Raman spectroscopy
Raman spectroscopy is a very valuable tool for the characterization of carbon-based nanostructures. Graphitization of pristine, functionalized, and metal attached MWCNTs was comparatively analyzed based on the destruction level due to acid treatment. Figure 1(a) shows the Raman Spectra of pristine, oxidized, and Ni-deposited MWCNTs respectively. Each of them consists of the characteristic bands at 1351 cm⁻¹ (Pristine), 1353 cm⁻¹ (oxidized), and 1356 cm⁻¹ (Ni-MWCNTs) is due to the D band (Shrestha et al., 2010). The D-band was attributed to the presence of defect or disordered in the graphitic structure in the CNT samples (Eklund et al., 1995). Similarly, the band at 1585 cm⁻¹ (pristine), 1586 cm⁻¹ (oxidized), and 1589 cm⁻¹ (Ni-MWCNTs) was due to...
the G band, arise from in-plane tangential stretching of the carbon-carbon bonds in graphite sheets (Zdrojek et al., 2004).

In the study of the Raman response of the acid-treated MWCNTs in respect of the pristine sample, Costa and Borowiak (2009) showed that the vibronic and electronic properties of the nanotubes were strongly affected by the acid treatment. When we compared the Raman spectrum of oxidized MWCNT to that of pristine MWCNT, the intensity of D-band increased after treatment with HNO$_3$ (Table 1). HNO$_3$ contains oxygen atoms and this oxygen can be easily attached to the sides of the defect in the CNT bond network which leads to changes in the defect band. The guest molecule can either intercalate the walls (Fisher, 2002) or react with the defects in the surface creating attached functional groups (Kim et al., 2007). It is known that both cases lead to an increase in the number of defects in the CNT (Costa et al., 2008).

![Fig. 1. Raman spectra of (a) pristine, oxidized and Ni-decorated MWCNT (b) area ratio of G and D band with oxidation and decoration with nickel nanoparticles](image)

All the D band and G bands were fitted according to Lorentz fitting to calculate the area ratio. The area ratio decreased from pristine to oxidized MWCNTs after acid treatment as shown in Fig. 1(b). That is due to the increase in defect sites on the surface of MWCNTs. These defect sites may be amorphous carbon generated during oxidation, conversion of sp$_2$ carbon to sp$_3$ carbon etc. And again this ratio increased after nickel deposition. This suggests that the defect sites generated by the shortening and thinning of the MWCNTs during oxidation can be passivated by decoration with the metal nanoparticles (Shrestha et al., 2010). Characterization of the nanotube surface area helps to elucidate these interactions and the material activity. The shifting of D band and G band together with the first decrease of area ratio and the increase after nickel deposition strongly supported the attachment of nickel with MWCNTs (Kim et al., 2007).

Table 1. Band positions of pristine, oxidized and Ni-MWCNTs

Sample	D-band (cm$^{-1}$)	G-band (cm$^{-1}$)	$A_{G/D}$
Pristine MWCNTs	1351	1585	0.98
Oxidized MWCNTs	1353	1586	0.87
Ni-MWCNTs	1356	1589	1.0

Infrared spectroscopy

Infrared Spectroscopy is used to gain information about the sample composition in terms of chemical groups present and also used to check the purity of the sample. Here, this technique was used to detect the oxygen functional on the surface of oxidized MWCNTs after treatment with acid. Acidic oxidative treatment of the MWCNTs may cause major changes in the structural properties. Figure 2 shows the infrared spectrum of pristine-MWCNTs. The spectra do not show any sharp infrared peak.

![Fig. 2. IR spectrum of the pristine MWCNTs](image)

Figure 3 shows the infrared spectrum of oxidized MWCNTs. If we compare the infrared spectrum of pristine MWCNTs to that of oxidized MWCNTs, we can see many changes. The spectrum shows the number of peaks at different wavelengths. The integrity of the hexagonal structure on the pristine MWCNTs was confirmed by the appearance of a peak at 1527 cm$^{-1}$ elucidating the existence of carbon double bonding (C=C). Appearance of peak at 1689 cm$^{-1}$ assigns carbonyl (C=O) stretching vibration of carboxyl groups indicating the expansion of carboxylation on the surfaces of purified and functionalized MWCNTs. Peak at 2800-2900 cm$^{-1}$ appeared after purification and functionalization corresponding to the C-H asymmetric and symmetric
stretching vibration, derived from the long alkyl chain. Appearance of peak at 3032 cm$^{-1}$ assigns aromatic rings (Yudianti et al., 2011; Silverstein et al., 1981).

Fig. 3. IR Spectrum of oxidized MWCNTs

Thermal analysis

Figures 4(a), (b), and (c) show the TGA/DTA thermograms for pristine, oxidized, and Ni-MWCNTs respectively. In pristine MWCNTs, the constant weight was maintained up to 550 °C, as shown in Fig. 4(a). That means the pristine MWCNTs was hydrophobic in nature and did not contain any water molecule as well as other functional groups. It was thermally stable up to 550 °C. Then drastic weight loss occured from 550 to 650 °C with a single exothermic peak around 625 °C. Almost all MWCNTs were burned out at this temperature. After 650 °C, continuous heating up to temperature 1000 °C did not show any change in weight loss. The weight remaining was about 8 %, which may be due to the oxides of transition metal, used as a catalyst during the synthesis of CNTs (Dillon et al., 1999).

Figure 4 (b) shows the TGA/DTA curve of HNO$_3$ treated MWCNTs. If compare this thermogram to that of pristine, changes can be seen. The weight loss from 90-180 °C was due to the loss of water molecules because oxidized MWCNTs are hydrophilic in nature. At around 250 °C to 350 °C, some weight loss was seen in the TGA curve with a small exothermic peak around 300 °C. Here, this weight loss may be due to the loss of some amorphous carbon, which was generated during oxidation and different oxygen functional groups formed after acid treatment (Dillon et al., 1999). This confirmed the introduction of oxygen functional groups after acid treatment. The drastic weight loss (~ 70 %) occured from 500 °C to 600 °C, which was due to the combustion of MWCNTs. If we compare the burning temperature of pristine and oxidized MWCNTs, the burning of oxidized MWCNTs occurred at a lower temperature than pristine MWCNTs. That may be due to the rupture of the wall of MWCNTs by acid treatment. After heating to 1000 °C less than 1 % of weight remained. This confirmed that most of the impurities were removed after treatment with acid.

Figure 4(c) shows the TGA/DTA curve for nickel decorated MWCNTs. Weight loss at 100 °C was due to the moisture contained in it during the experiment. At around 250-300 °C a small loss (with exothermic peak at 300 °C) is due to amorphous carbon and oxygen functional group. Between 450 °C to 600 °C, a large weight loss was seen having a large exothermic peak at 575 °C, in which almost all the MWCNTs were burned. After 600 °C no weight loss was observed up to 1000 °C. The total residual weight left in the decorated sample was approximately 30 %, which was due to the formation of stable Ni-oxide. This also confirmed the presence of Nickel nanoparticles on the surface of oxidized MWCNTs.

Fig. 4. TG-DTA thermograms of (a) pristine (b) oxidized and (c) Ni-decorated MWCNTs

Energy dispersive spectroscopy

EDS was used for the elemental analysis or chemical characterization of a sample. Its characterization capability is due to its fundamental principle that each element has a unique atomic structure allowing a unique set of peaks on its X-ray emission spectrum. Figure 5 shows the EDS spectrum of Nickel decorated MWCNTs. The presence of the expected nickel in the sample was confirmed by their EDS spectra.

CONCLUSION

By using a simple chemical reduction method, the NiNPs can be decorated on the surface of oxidized MWCNTs.
The oxidized and Ni decorated MWCNTs were characterized by various techniques such as Raman spectroscopy, IR spectroscopy, Thermal analysis, and EDS. Raman spectroscopy showed the characterization of MWCNTs at various stages. The G and D bands were seen in pristine, oxidized and Ni deposited MWCNTs. The position of these bands and area ratio of G and D bands clarified the purification and deposition of Ni on the surface of MWCNTs.

Fig. 5. Energy dispersive spectroscopy of nickel deposited MWCNTs

The increased area ratio of G and D bands in oxidized MWCNTs and shifting of G and D band showed the attachment of nickel. The infrared spectrum of oxidized MWCNTs indicated the addition of oxygen functional groups. The presence of Nickel on the surface of MWCNTs was confirmed by energy dispersive spectroscopy. At the same time, TGA/DTA analysis showed different thermal behavior of pristine-MWCNTs, oxidized-MWCNTs, and Ni deposited MWCNTs. The combustion temperature in oxidized-MWCNTs was decreased, which is due to the rupture of walls and the introduction of defects in MWCNTs. Again, TGA/DTA of oxidized MWCNTs showed the presence of an oxygen functional group. The TGA thermogram of Ni-MWCNTs showed the total residual weight of the Ni-deposited sample was approximately 30 %, which is due mainly to Ni-oxide. This also confirmed the presence of Ni with MWCNTs. After decoration, its applications in various fields can be explored.

ACKNOWLEDGMENTS

Authors would like to thank Dr. Bijaya Singh, Seoul National University, South Korea, for his help in recording Raman, EDS, and thermal data. The authors also acknowledged Mr. Keshav Poudel, Natural Product Development Division, Thapathali for recording IR.

REFERENCES

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933-977.

Auer, E., Freund, A., Pietsch, J., & Tacke, T. (1998). Carbons as supports for industrial precious metal catalysts. Applied Catalysis A, 173(2), 259-271.

Cao, L., Chen, H. Z., Wang, M., Sun, J. Z., Zhang, X. B., & Kong, F. Z. (2002). Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites. Journal of Physical Chemistry B, 106, 8971-8975.

Che, G., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393(6683), 346-349.

Costa, S. & Borowiak-Palen, H. (2009). Raman study on doped multiwalled carbon nanotubes. Acta Physica Polonica A, 116(9), 32-35.

Costa, S., Bachmatiuk, A., Borowiak-Palen, E., & Kalenczuk, R. (2008). Reversible electron charge transfer in single-wall carbon nanotubes. Polish Journal of Chemical Technology, 10, 1-4.

Datsyuk, V., Kalyva, M., Papageulis, K., Panthienios, J., Tasis, D., Siokou A, Kallitis, I., & Galiotois, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-40.

Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., & Heben, M. J. (1999). A simple and complete purification of single-walled carbon nanotube materials. Advanced Materials, 11(16), 1354-1358.

Dresselhaus, M. S., & Avouris, P. (2001). Introduction to carbon materials research. In M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon nanotubes: synthesis, structure, properties, and applications (pp. 1-9), Chapter-2, Springer.

Ebbesen, T. W., Hiura, H., Bisher, M. E., Treacy, M. M. J., Shreeve-Keyer, J. L., & Haushalter, R. C. (1996). Decoration of carbon nanotubes. Advanced Materials, 8, 155-157.

Eklund, P. C., Holden, J. M., & Jishi, R. A. (1995). Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon, 33(7), 959-972.

Fisher, J. (2002). Chemical doping of single-wall carbon nanotubes. Accounts of Chemical Research, 35, 1079-1086.

Hernadi, K., Ljubovic, E., Seo, J. W., & Forro, L. (2003). Synthesis of MWNT-based composite materials with inorganic coating. Acta Materialia, 51, 1447-1452.

Hu, J., Ouyang, M., Yang, P., & Lieber, C. M. (1999). Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 399(6731), 48-51.
Jayalakshmi, M., Rao, M. M., Venugopal, N., & Kim, K. B. (2007). Hydrothermal synthesis of SnO$_2$-V$_2$O$_5$ mixed oxide and electrochemical screening of carbon nanotubes (CNT), V$_2$O$_5$, V$_2$O$_5$-CNT, and SnO$_2$-V$_2$O$_5$-CNT electrodes for supercapacitor applications. *Journal of Power Resources*, 166, 578-583.

Kim, S. D., Kim, J. W., Im, J. S., Kim, Y. H., & Lee, Y. S. (2007). A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination. *Journal of Fluorine Chemistry*, 128(1), 60-64.

Kim, S. J., Park, Y. J., Ra, E. J., Kim, K. K., An, K. H., Lee, Y. H., Choi, J. Y., Park, C. H., Doo, S. K., Park, M. H., & Yang, C. W. (2007). Defect induced loading of Pt-nanoparticles on carbon nanotubes. *Applied Physics Letter*, 90(2), 023114-1-3.

Kong, J., Chapline, M. G., & Dai, H. (2001). Functionalized carbon nanotubes for molecular hydrogen sensors. *Advanced Materials*, 13(18), 1384-1386.

Luo, J., Jones, V. W., Maye, M. M., Han, L., Kariuki, N. N., & Zhong, C. J. (2002). Thermal activation of molecularly-wired gold nanoparticles on a substrate as catalyst. *Journal of American Chemical Society*, 124(47), 13988-13989.

Lyth, S. M., Hatton, R. A., & Silva, S. R. P. (2007). Efficient field emission from Li–salt functionalized multiwall carbon nanotubes on flexible substrates. *Applied Physics Letter*, 90(1), 013120 (pp. 3).

Nadagouda, M. N., & Varma, R. S. (2008). Noble Metal decoration and alignment of carbon nanotubes in carboxymethyl cellulose. *Macromolecular Rapid Communications*, 29, 155-159.

Oh, S. D., So, B. K., Choi, S. H., Gopalan, A., Lee, K. P., Yoon, K. R., & Choi, I. S. (2005). Dispersing of Ag, Pd, and Pt-Ru alloy nanoparticles on single-walled carbon nanotubes by r-irradiation. *Material Letters*, 59, 1121-1124.

Sadeghi, S. N., Shafiekhani, A., & Vesaghi, M. A. J. (2011). Direct production of carbon nanotubes decorated with CuO by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate. *Journal of Nanoparticle Research*, 13, 4681-4689.

Satishkumar, B. C., Vogl, E. M., Govindaraj, A., & Rao, C. N. R. (1996). The decoration of carbon nanotubes by metal nanoparticles. *Journal of Physics D: Applied Physics* 29, 3173-3176.

Schaffer, M. S. P., Fan, X., & Wilindle, A. H. (1998). Dispersion and packing of carbon nanotubes. *Carbon*, 36, 1603-16012.

Shrestha, S., Choi, W. C., Song, W., Kwon, Y. T., Shrestha, S. P., & Park, C. Y. (2010). Preparation and field emission properties of Er-decorated multiwalled carbon nanotubes. *Carbon*, 48, 54-59.

Silverstein, R. M., Bassler G. C., & Morrill, T. C. (1981). *Spectrometric identification of organic compounds* (4th ed.). New York, USA: John Wiley and Sons.

Sun, Z., Yuan, H., Liu, Z., Han, B., & Zhang, X. (2005). A Highly efficient chemical sensor material for H$_2$S: α-Fe$_2$O$_3$ nanotubes fabricated using carbon nanotube templates. *Advanced Materials*, 17, 2993-2997.

Tsai, M. C., Yeh, T. K., & Tsai, C. H. (2006). An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. *Electrochemistry Communication*, 8(9), 1445-1452.

Wang, X., Quqing, Li., Jing, X., Zhong, J., Jinyong, W., Yan, L., Kaili, J., & Shoushan, F. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. *Nano Letters*, 9, 3317-3341.

Xue, B., Chen, P., Hong, Q., Lin, J., & Tan, K. L. (2001). Growth of Pd, Pt, Ag, and Au nanoparticles on carbon nanotubes. *Journal of Materials Chemistry*, 11, 2378-2381.

Yildirim, T., & Ciraci, S. (2005). Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. *Physical Review Letter*, 94(17), 175501-175504.

Yudianti, R., Onggo, H., Sudirman., Saito, Y., Iwata, T., & Azuma, J. (2011) Analysis of functional group sited on multi-wall carbon nanotube surface, *The Open Materials Science Journal*, 5, 242-247.

Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., & Huczko, A. (2004). Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. *Solid State Phenomena*, 99(265), 1-4.

Zheng, Z., Zhao, S., Dong, S., Lianjie, L., Xiao, A., & Sinian, L. (2015). Preparation of nickel-copper bilayer coated on single-walled carbon nanotubes. *Journal of Nanomaterials*, 2015. Article ID, 679049. https://doi.org/10.1155/2015/679049