The detection of transient directional couplings based on phase synchronization

T Wagner¹,²,⁴, J Fell¹ and K Lehnertz¹,²,³

¹ Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
² Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
³ Interdisciplinary Center for Complex Systems, University of Bonn, Römerstrasse 164, 53117 Bonn, Germany
E-mail: twagner@uni-bonn.de

New Journal of Physics 12 (2010) 053031 (13pp)
Received 12 January 2010
Published 20 May 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/5/053031

Abstract. We extend recent approaches based on the concept of phase synchronization to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the direction of transient interactions and assess its statistical significance using surrogate techniques. Analysing time series from noisy and chaotic systems, we demonstrate numerically the applicability and limitations of our approach. Our findings from an exemplary application to event-related brain activities underline the importance of our method for improving knowledge about the mechanisms underlying memory formation in humans.

⁴ Author to whom any correspondence should be addressed.
1. Introduction

Characterizing the interactions between two or more (sub-)systems is an important but challenging issue in many scientific fields, ranging from physics to neuroscience [1]. Although interactions cannot be measured directly, they can nevertheless be quantified by applying appropriate time series analysis methods to system observables. In recent decades, a number of techniques that are based on information or synchronization theory have been proposed to characterize the strength or direction of an interaction (see [2]–[4] for an overview). More recently, these techniques were supplemented with methods based on the Fokker–Planck formalism [5, 6]. Most approaches assume the underlying systems to be stationary, the coupling between them to be stable, and the time series to be composed of a sufficiently large number of data points. Thus, a short intermittent coupling cannot be resolved accurately with these techniques, and fast dynamical changes are usually regarded as an undesirable complication. Nevertheless, transient coupling might constitute an even more interesting aspect of interacting dynamical systems.

As a prominent example from neuroscience, we mention here the investigation of so-called event-related potentials (ERPs). The electroencephalogram (EEG) reflects electrical neural activity due to intrinsic dynamics and/or responses to external stimuli. To examine the pathways and time courses of information processing in the brain under specific conditions, numerous experiments have been developed controlling sensory or other inputs (stimuli) [7, 8]. The neural activity induced by this kind of stimulation leads to potential changes in the EEG. These ERPs often exhibit a sequence of multi-phasic peak amplitudes after stimulus onset and extending over a time period of several 100 ms. ERPs reflect different stages of information processing in the brain, and insights into the underlying neural processes can already be achieved from the analysis of specific aspects of ERPs, such as peak amplitude or moment of occurrence (latency). Since individual ERPs possess very low peak amplitudes, as compared to the ongoing EEG, multiple realizations with respect to a given stimulus are commonly averaged, assuming phase-locked responses not correlated with the ongoing EEG. More recently, data analysis techniques were proposed that make use of only a few measurements instead of large preprocessed ensembles [9]–[13].

The human brain is a complex network of interacting subsystems, and it is now commonly accepted that synchronization plays an important role in brain function [14]–[17]. In order to further improve insights into the mechanisms of interactions subserving information processing in the brain there is a strong need for reliable analysis techniques that allow one to characterize both the strength and direction of an interaction from short and transient signals such as ERPs.
While the strength of an interaction only quantifies the degree of mutual influence, knowledge about the direction of an interaction is essential to investigate the influence of one system on another. For example, knowing the direction of influences between the neocortex and the hippocampus is crucial for a better understanding of mechanisms of transfer of memory contents between these structures. While a number of approaches allow one to investigate the strength of interactions [18]–[22], only a few methods have been proposed for the estimation of the direction of interactions from transient signals [23, 24]. These methods are based on an embedding of the data into some high-dimensional state space and require the parameters embedding dimension as well as time delay to be chosen appropriately [25, 26], which might be nontrivial when analysing time series from systems with only poorly understood properties. Moreover, since the phases of signals in particular are sensitive to weak couplings, a phase synchronization-based method for the detection of directed interactions between stationary systems, as proposed in [27], can be regarded as a more promising approach. We present here an extension of this approach that allows the time-resolved investigation of the direction of interactions from short and transient noisy time series.

2. Time-resolved detection of directional couplings

Given the time series of observables from systems X and Y, the phase time series \(\phi_{X,Y}(j \delta t) = \phi_{X,Y}(t_j) \) can be extracted using either the Hilbert or a wavelet transform [28, 29]. Following [27], an asymmetric influence of system X onto system Y can be estimated by modelling the underlying phase dynamics, which are considered to be generated by unknown two-dimensional maps \(\mathcal{F} \),

\[
\Delta \phi_{X,Y}(t_j) = \mathcal{F}_{X,Y}[\phi_{X,Y}(t_j), \phi_{Y,X}(t_j)] + \xi_{X,Y},
\]

with noisy perturbations \(\xi_{X,Y} \).

With the slope of the phases derived from the time series, the deterministic part \(\mathcal{F} \) can be modelled using finite Fourier series \(F \). In order to estimate the coefficient vector \(\mathbf{x} \), the so-called design matrix \(\mathbf{A} \) can be derived, and the linear least square problem for approximating \(\mathcal{F} \) can then be written as

\[
\| \mathbf{Ax} - \mathbf{b} \|^2 \rightarrow \min,
\]

where \(\mathbf{b} \) denotes the vector of phase slopes for all \(t_j \).

Now, in order to resolve directional couplings on short time scales, we consider an observed ensemble of \(m \) time series as multiple realizations of some process of transient interactions induced by some event. We rewrite the phase time series as \(\{ \phi_{X,Y}(t'_j) \}_{j=1, \ldots, m} \) with the ensemble index \(r \), and \(j = 1 \) denotes the time index of the onset of coupling. For each time point, the Fourier series \(F^X_j \) for system X then reads

\[
F^X_j(\phi_X(t'_j), \phi_Y(t'_j)) = \sum_{\alpha,\beta} x^\alpha \beta \exp(i[\alpha \phi_X(t'_j) + \beta \phi_Y(t'_j)]),
\]

using the following combination of coefficients: \(|\alpha| \leq 3 \) for \(\beta = 0 \), \(|\beta| \leq 3 \) for \(\alpha = 0 \), and \(|\alpha| = |\beta| = 1 \) [30]. To simplify matters we define \(F^r_j \) for each Fourier term \(k \), each realization \(r \), and each time point \(j \), and obtain a time-dependent version of the design matrix:

\[
\mathbf{A}_j^Y = \begin{pmatrix} F^1_j & \cdots & F^1_{j_0} \\ \vdots & \ddots & \vdots \\ F^m_j & \cdots & F^m_{j_0} \end{pmatrix}.
\]
We define the time-dependent phase slope vector \mathbf{b}_j via the phase increments $\Delta \phi_X(t'_j) = \phi_X(t'_{j+1}) - \phi_X(t'_j)$, where τ denotes an appropriately chosen time delay. Following [31], we here choose $\tau = \min(T_X, T_Y)$ with the mean periods $T_{X,Y}$ of the phase time series. The time-dependent phase slope vector then reads

$$\mathbf{b}^Y_j = \begin{pmatrix} \Delta \phi_X(t'_j) \\ \vdots \\ \Delta \phi_X(t'_m) \end{pmatrix}.$$

Given these definitions, (2) can now be solved for each time index j, and the influence of system Y onto system X is quantified by

$$C_j(X|Y) = \left(\frac{\partial F^X_j}{\partial \phi_Y} \right)^2 = \left(\sum_{\alpha,\beta} b^2 \alpha^\beta \right)^{1/2},$$

with $\langle \cdot \rangle = \int_0^{2\pi} \int_0^{2\pi} (-\cdot)d\phi_X d\phi_Y$. The sum on the rhs can be derived analytically [32]. With the influence of system X onto system Y, which is defined in complete analogy, we quantify a time-dependent directional relationship as

$$D_j(X, Y) = C_j(Y|X) - C_j(X|Y).$$

$D_j(X, Y)$ is not bounded, but by definition it will attain positive values if system X drives system Y and negative values for the opposite case.

Note that C_j can attain nonzero values even for uncoupled systems, e.g. due to a similar temporal evolution of the systems. In order to minimize false interpretations of directed couplings, we developed a surrogate-based testing scheme that is related to the methods proposed in [23, 33, 34]. Under the null hypothesis that the underlying phase dynamics of both systems are independent, the surrogates are designed such that they preserve the temporal structure of each time series and destroy the dependence between systems. To test if the process of system X is independent of that of system Y, we employed the following surrogate test. We randomly permute the realizations r of phase variable $\phi_Y(t'_r)$ and calculate $[C_j^p(X|Y)]_{p=1,\ldots,s}$ with the permuted realizations of system Y. With $s = 39$ random permutations and a significance level of 97.5%, $C_j(X|Y)$ is set to zero only if $C_j(X|Y) \leq \max_p(C_j^p(X|Y))$. The testing for $C_j(Y|X)$ is defined in complete analogy. In the following, we refer to the surrogate-tested quantities as \tilde{C}_j and \tilde{D}_j.

3. Numerical examples

To illustrate our approach, we present findings obtained from an analysis of time series from coupled noisy phase oscillators [27]

$$\Phi_{x,y} = \omega_{x,y} + h \xi_{x,y} + \epsilon_{x,y} \sin(\Phi_{x,y} - \Phi_{x,y}),$$

with natural frequencies $\omega_X = 1.1$ and $\omega_Y = 0.9$. Here $\epsilon_{X,Y}$ denotes the coupling strength, and $\xi_{x,y}$ are Gaussian δ-correlated noisy perturbations with amplitude h. The oscillators (8) were integrated using the Euler–Maruyama method [35] with a step size of 0.009π and sampling interval $\delta t = 0.113$. With initial conditions chosen randomly from $[0, 2\pi)$ we generated $m = 1000$ realizations, each consisting of $n = 1200$ data points. The transient diffusive couplings between oscillators were realized such that $\epsilon_X = 0.1 \& \epsilon_Y = 0$ for
Figure 1. Results for noisy phase oscillators with $h = 0.3$. (a) Time-dependent influence of system Y onto system X $C_j(X|Y)$ and (b) of system X onto system Y $C_j(Y|X)$ (black lines), together with maximum values of $s = 39$ surrogates (grey lines). (c) Time-dependent directional relationships D_j and (d) surrogate-tested directional relationships \tilde{D}_j. $\tilde{D}_j > 0$ indicates system X to predominantly drive system Y and $\tilde{D}_j < 0$ indicates system X to be driven by system Y. (e) Mean values $\langle \tilde{D}_j \rangle$ and standard deviation derived from 20 sets with 1000 realizations each. Time intervals with unidirectional couplings ($W_{Y \rightarrow X}$ and $W_{X \rightarrow Y}$) are highlighted in light grey.

In parts (a) and (b) of figure 1, we show $C_j(X|Y)$ and $C_j(Y|X)$, as well as the maximum and minimum values of the corresponding surrogates. As expected, $C_j(X|Y)$ and $C_j(Y|X)$ increase shortly after the onset of the coupling and remain well above the maximum values of the surrogates until the coupling is turned off. Likewise, the directional relationship reflects these coupling changes (cf figure 1(c)); we observe, however, $D_j(X, Y) \neq 0$ also for uncoupled oscillators. In contrast, $\tilde{D}_j = 0$ except for statistical outliers (cf figure 1(d)). During the intervals with a constant nonzero coupling, both $D_j(X, Y)$ and \tilde{D}_j fluctuate around some level. From an analysis of 20 sets with $m = 1000$ realizations each we derive the means $\langle \tilde{D}_j \rangle$ and standard deviations (cf figure 1(e)) and conclude that these fluctuations can—to a large extent—be related to the noisy perturbations.
we note that the range of absolute values of \(\tilde{D}_j \) from 20 sets of 1000 realizations. \(\langle \tilde{D}_j \rangle > 0 \) indicates system \(X \) to predominantly drive system \(Y \) and \(\langle \tilde{D}_j \rangle < 0 \) indicates system \(X \) to be driven by system \(Y \). Time intervals with unidirectional couplings \(W_{Y \rightarrow X} \) and \(W_{X \rightarrow Y} \) are highlighted in light grey.

Next, we proceed with analysing interactions between nonidentical nonlinear oscillators. We here chose Lorenz oscillators as a prototypical example:

\[
\begin{align*}
\dot{x}_{j,t} &= -8/3 x_{j,t} - y_{j,t} z_{j,t} + \epsilon_{x,j} (x_{j,t} - x_{k,t}), \\
\dot{y}_{j,t} &= R x_{j,t} z_{j,t} - y_{j,t} + x_{j,t} z_{j,t}, \\
\dot{z}_{j,t} &= 10 (y_{j,t} - z_{j,t}),
\end{align*}
\]

with \(R_X = 35 \), \(R_Y = 39 \), and the nonzero couplings \(\epsilon_X = 4.0 \) for \(j \in W_{Y \rightarrow X} \) and \(\epsilon_Y = 4.0 \) for \(j \in W_{X \rightarrow Y} \) (cf [23]). The equations of motion were integrated with sampling rate \(\delta t = 0.01 \) using an algorithm based on the Livermore solver for ordinary differential equations [37, 38]. To generate 20 sets of \(m = 1000 \) realizations each, we chose the initial conditions randomly in the state space near the Lorenz attractor and estimated phase time series from the \(x_{j,t} \) variables via the Hilbert transform using the analytical signal approach [39, 40]. The temporal evolution of \(\langle \tilde{D}_j \rangle \) clearly reflects the coupling changes (cf figure 2) but in contrast to the noisy oscillators the range of absolute values of \(\tilde{D}_j \) differs for the intervals \(W_{Y \rightarrow X} \) and \(W_{X \rightarrow Y} \), which can be related to the different control parameters.

When comparing figures 1(e) and 2 we note that the range of absolute values of the directional relationship varies for the unidirectionally coupled oscillators investigated here. Thus, an appropriate normalization of \(\tilde{D}_j \) may be expedient when analysing empirical data. We also notice that \(\tilde{D}_j \) does not immediately indicate a change in the coupling, which can be related to the definition of the phase slope vector (cf (5)) and coupling properties of the oscillators.

In order to estimate the performance of our approach, particularly with respect to the analysis of empirical data, we investigated the impact of noise contaminations and the number of realizations \(m \) on the correct detection of directional relationships. We repeated the analyses for coupled Lorenz oscillators as outlined above for different numbers of realizations \(m \) and varied the coupling strength \(\epsilon_{X,Y} \), as well as the amount of noise contamination (additive Gaussian \(\delta \)-correlated noise; the signal-to-noise ratio (SNR) is \(\sigma_n^2 / \sigma_s^2 \)). Then, we accumulated correct (\(\gamma_C = \sum_{j \in W_{Y \rightarrow X}} |\tilde{D}_j| + \sum_{j \in W_{X \rightarrow Y}} |\tilde{D}_j| \)) and incorrect indications of directional relationships (\(\gamma_I = \sum_{j \in W_{Y \rightarrow X}} |\tilde{D}_j| + \sum_{j \in W_{X \rightarrow Y}} |\tilde{D}_j| + \sum_{j \in W_{X \rightarrow Y}} |\tilde{D}_j| \)). With \(\gamma = \gamma_C / (\gamma_C + \gamma_I) \), which is confined to the interval \([0,1]\), we define a performance estimator \(\tilde{\gamma} \) as the mean from 20 sets of oscillators.
In the upper parts of figure 3, we show the dependence of $\tilde{\gamma}$ on the coupling strength $\epsilon_{X,Y}$ and the number of realizations m. For coupling strengths $\epsilon_{X,Y} > 2.5$, we observe $\tilde{\gamma} \geq 0.75$ even for a number of realizations as low as 200. For coupling strengths $\epsilon_{X,Y} \approx 1.0$, an increase of the number of realizations ($m > 1000$) suffices to reliably detect directional relationships.

In the lower parts of figure 3 we show, for a fixed coupling strength $\epsilon_{X,Y} = 4.0$, the dependence of $\tilde{\gamma}$ on SNR and on the number of realizations m. Assuming $\tilde{\gamma} \geq 0.75$ to indicate a sufficient performance, directional relationships can be resolved with $m > 100$ realizations for noise contaminations with SNR ≥ 10. As expected, even stronger noise contaminations require a larger amount of realizations ($m \geq 3000$) in order to achieve a comparative performance.

Before closing this section, we conclude that our approach, which is based on the concept of phase synchronization, allows one to investigate—in a time-resolved manner—the direction of interaction from short and transient noisy time series. Our numerically obtained findings indicate that directional interactions can be detected reliably with only a few hundreds of realizations.

4. Detection of transient directional couplings in event-related potentials

In this section we present exemplary findings obtained from applying our method to ERPs that were recorded intracranially from an epilepsy patient who underwent presurgical evaluation.
Figure 4. ERPs recorded from the different brain structures during the encoding and the retrieval condition. We averaged the raw EEG time series in a time interval extending from 300 ms before stimulus onset to 1000 ms after stimulus onset, and corrected amplitudes with respect to the mean amplitude from the pre-stimulus interval, which is usually taken to be a period of inactivity. The dashed vertical line at \(j = 0 \) indicates stimulus onset.

of drug-resistant temporal lobe epilepsy. The patient had signed informed consent that his/her clinical data might be used and published for research purposes, and the study protocol had previously been approved by the local ethics committee. In order to define the zone of seizure origin for resective surgery, depth electrodes had been implanted bilaterally along the longitudinal axes of the hippocampi to enable recording of brain electrical activities with high signal-to-noise ratio and with high spatial resolution. For this patient seizures proved to originate unilaterally from the left temporal lobe; thus electrodes located in the right brain hemisphere enabled recordings of activities unrelated to epilepsy. We analysed ERP data that were recorded while the patient performed two memory-related tasks (cf [42, 43]). During an encoding phase 896 pictures (either houses or faces) were presented sequentially for 2500 ms on a computer screen with an inter-stimulus interval of 1500 ms. In order to ensure that the patient adequately attended to and processed each item, she/he was asked to rate each as pleasant or unpleasant by pressing one of two buttons. During the retrieval phase 576 pictures (either houses or faces) were again presented, but this time the sequence consisted of 384 old pictures that had already been presented, and another 192 new presentations. The patient was asked to react to all pictures by pressing one of four buttons, indicating whether she/he judged a given picture to be a first presentation (sure or unsure) or a repeat (sure or unsure). While the patient performed these tasks, brain electrical activities were recorded from multiple electrodes within the frequency band 0.1–300 Hz with a sampling rate of 1000 Hz and using a 16-bit analogue-to-digital converter. Linked mastoid electrodes served as reference. Discarding trials with pronounced artifacts resulted in 738 trials for the encoding phase and 434 trials for the retrieval phase.

For our exemplary analyses, we concentrated on ERP recordings from the hippocampus and the rhinal cortex. These brain structures are known to be crucially involved in memory processing [19, 44, 45]. Using magnetic resonance imaging scans that had been performed after implantation of the electrodes, we identified those electrode contacts that best sampled activities from these brain structures.

In figure 4, we show—for each brain structure—averaged ERPs that we derived for each condition separately in the time interval ranging from 300 ms before stimulus onset to 1000 ms...
after stimulus onset. The time interval ranging from 0 to 1000 ms after stimulus onset is sufficient to capture the main ERP components (hippocampus: a positive peak at around 200 ms and a negative peak at around 500 ms; rhinal cortex: a negative peak at around 400 ms) that have been described in previous studies [46, 47]. We observe here similar ERP components, and the clear amplitude differences seen for the different conditions already indicate that the rhinal cortex and the hippocampus are involved in the memory processing steps investigated here. Although some findings indicate a more dominant influence from rhinal cortex to hippocampus during encoding and an inverse influence during retrieval [44, 48], averaged ERPs do not provide clear-cut information as to whether there are transient directed interactions between these brain structures. Moreover, we are not aware of any study that has investigated such interactions in a time-resolved manner.

We therefore performed a time- and frequency-resolved analysis of directional relationships between the rhinal cortex and the hippocampus using the raw EEG time series from the trials for each condition as described above. We concentrated on the well-known EEG-frequency bands θ (3.0–8.0 Hz), α (8.0–12.0 Hz), β_1 (12.0–16.0 Hz), β_2 (16.0–25.0 Hz), γ_1 (25.0–48.0 Hz) and γ_2 (48.0–90.0 Hz). Note that particularly activities in the θ- and γ-band are associated with encoding and retrieval of memory [19], [48]–[50]. After bandpass filtering (Butterworth characteristic) each trial forward and backward to account for phase shifts, the data were normalized to zero mean, which corresponds to setting the dc Fourier coefficient to zero. To avoid edge effects, we tapered each trial using a cosine half-wave (Hanning window) before deriving phase time series using the Hilbert transform. Since the calculation of the Hilbert transform requires integration over infinite time, which cannot be performed for a time series of finite length, we discarded 1/8 of the calculated instantaneous phase values on each side of every trial. We then calculated D_j and \tilde{D}_j as described in section 2. Since these analyses yield 15 600 values of \tilde{D}_j (6 frequency bands, 1300 points per time interval, 2 conditions), we applied a Bonferroni correction to account for multiple comparisons. We adjusted the significance threshold by dividing it by the total number of statistical tests and obtained a corrected probability value for \tilde{C}_j as $\alpha_R = 0.025/15 600 = 1.6 \times 10^{-6}$. Assuming that directed interactions, if they exist, extend over at least some tens of milliseconds, we considered a sequence of at least four consecutive values of \tilde{C}_j not equal to zero to indicate statistically significant $((0.025)^4 < \alpha_R)$ directed interactions. Following our findings in section 3, we rescaled each time series D_j and (Bonferroni-corrected) \tilde{D}_j such that it is confined to the interval $[-1, 1]$, and denote them by D_j^* and \tilde{D}_j^*, respectively.

In figure 5, we show the time-resolved directional relationships between the rhinal cortex and the hippocampus for the two experimental conditions and for the investigated frequency bands. Except for the α-band, we observe significant directional influences around 200 ms and in the period 400–1000 ms after stimulus onset in all other frequency bands. In the θ-band, we observe for the encoding condition that the rhinal cortex first influences the hippocampus (at about 130 ms), while the influence is then reversed later on (at about 500 ms). This sequence appears to be reversed for the retrieval condition; here the hippocampus first influences the rhinal cortex (at about 270 ms) and the influence is then reversed later on (at about 580 ms). Although our findings fit quite well to current hypotheses of memory formation in humans [51, 52] we here refrain from providing an interpretation. Future studies on a larger group of subjects may elucidate the possible neurofunctional relevance of directed interactions between different brain structures for memory formation in humans.
Figure 5. Time-resolved directional relationship D_j^e (black line) and surrogate-tested directional relationship \tilde{D}_j^e (blue area) between the rhinal cortex and the hippocampus during the encoding (top) and retrieval (bottom) of pictures. Both measures (denoted as M) are shown for the different frequency bands. Positive values reflect directional influences of the rhinal cortex on the hippocampus, and vice versa. If there are no statistically significant directional influences, $\tilde{D}_j^e = 0$ (blue horizontal line). The dashed vertical line at $j = 0$ indicates stimulus onset.
5. Conclusion

We have proposed an approach based on the concept of phase synchronization which allows the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. Given an ensemble of such time series as multiple realizations of some interaction process, we have extended the approach proposed by Rosenblum and Pikovsky [27] and derived an index that quantifies the direction of a transient interaction. We assessed the statistical significance of our index with a surrogate-based testing scheme [23, 33, 34]. With several numerical examples that are representative of noisy and chaotic systems that can be nonidentical, we have exemplified the applicability of our approach. Moreover, we have provided an estimate of the minimum amount of realizations needed to reliably identify directional relationships for different coupling strengths and for different contaminations with observational noise. Our preliminary findings obtained from a time- and frequency-resolved analysis of directional relationships between ERPs recorded from the human rhinal cortex and hippocampus underline the potential impact of our approach on improving the understanding of neural processes underlying memory formation and other cognitive processes.

As one of the directions for further study, we consider improvements from using more sophisticated methods for estimating the phase from raw time series [53, 54], as well as the use of other weighting functions [55, 56]. As another direction, we mention comparisons of our approach with other quantifying measures for the direction of a transient interaction [23, 24]. We expect that our approach will also find applications in other scientific fields where transient couplings are considered an interesting aspect of interacting dynamical systems.

Acknowledgments

We thank Nikolai Axmacher, Jan Olligs and Bernhard Staresina for their contributions regarding data acquisition and for fruitful discussions. This study was supported by the Deutsche Forschungsgemeinschaft (DFG; FE 366/5-1).

References

[1] Pikovsky A S, Rosenblum M G and Kurths J 2001 Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Pereda E, Quian Quiroga R and Bhattacharya J 2005 Nonlinear multivariate analysis of neurophysiological signals Prog. Neurobiol. 77 1–37
[3] Hlaváčková-Schindler K, Paluš M, Vejmelka M and Bhattacharya J 2007 Causality detection based on information-theoretic approaches in time series analysis Phys. Rep. 441 1–46
[4] Lehnertz K, Bialonski S, Horstmann M-T, Krug D, Rothkegel A, Staniek M and Wagner T 2009 Synchronization phenomena in human epileptic brain networks J. Neurosci. Methods 183 42–8
[5] Prusseit J and Lehnertz K 2008 Measuring interdependences in dissipative dynamical systems with estimated Fokker–Planck coefficients Phys. Rev. E 77 041914
[6] Bahraminasab A, Ghasemi F, Stefanovska A, McClintock P V E and Friedrich R 2009 Physics of brain dynamics: Fokker–Planck analysis reveals changes in EEG δ–θ interactions in anaesthesia New J. Phys. 11 103051
[7] Callaway E, Tueting P and Koslow S (ed) 1978 Event-Related Brain Potentials in Man (New York: Academic)
[8] Massimini M, Ferrarelli F, Huber R, Esser S K, Singh H and Tononi G 2005 Breakdown of cortical effective connectivity during sleep Science 309 2228–32

New Journal of Physics 12 (2010) 053031 (http://www.njp.org/)
Beim Graben P, Saddy J D, Schlesewsky M and Kurths J 2000 Symbolic dynamics of event-related brain potentials Phys. Rev. E 62 5518–41

Effern A, Lehnerz K, Schreiber T, Grunwald T, David P and Elger C E 2000 Nonlinear denoising of transient signals with application to event-related potentials Physica D 140 257–66

Quiroga R and Garcia H 2003 Single-trial event-related potentials with wavelet denoising Clin. Neurophysiol. 114 376–90

Marwan N and Meinke A 2004 Extended recurrence plot analysis and its application to ERP data Int. J. Bifurcation Chaos 14 761

Schinkel S, Marwan N and Kurths J 2007 Order patterns recurrence plots in the analysis of ERP data Cogn. Neurodyn. 1 317–25

Varela F J, Lachaux J P, Rodriguez E and Martinerie J 2001 The brain web: phase synchronization and large-scale integration Nat. Rev. Neurosci. 2 229–39

Glass L 2001 Synchronization and rhythmic processes in physiology Nature 410 277–84

Schnitzler A and Gross J 2005 Normal and pathological oscillatory communication in the brain Nat. Rev. Neurosci. 6 285–96

Buzsáki G 2006 Rhythms of the Brain (Oxford: Oxford University Press)

Rodriguez E, George N, Lachaux J P, Martinerie J, Renault B and Varela F J 1999 Perception’s shadow: long-distance synchronization of human brain activity Nature 397 430–3

Fell J, Klaver P, Lehnerz K, Grunwald T, Schaller C, Elger C E and Fernández G 2001 Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling Nat. Neurosci. 4 1259–64

Allefeld C and Kurths J 2004 An approach to multivariate synchronization analysis and its application to event-related potentials Int. J. Bifurcation Chaos Appl. Sci. Eng. 14 417–26

Kramer M A, Edwards E, Soltani M, Berger M S, Knight R T and Szeri A J 2004 Synchronization measures of bursting data: application to the electrocorticogram of an auditory event-related experiment Phys. Rev. E 70 011914

Leski S and Wójcik D K 2008 Inferring coupling strength from event-related dynamics Phys. Rev. E 78 1918–27

Andrzejak R G, Ledberg A and Deco G 2006 Detecting event-related time-dependent directional couplings New J. Phys. 8 6

Ishiguro K, Otsu N, Lungarella M and Kuniyoshi Y 2008 Detecting direction of causal interactions between dynamically coupled signals Phys. Rev. E 77 026216

Kantz H and Schreiber T 2003 Nonlinear Time Series Analysis 2nd edn (Cambridge: Cambridge University Press)

Osterhage H, Mormann F, Wagner T and Lehnertz K 2007 Measuring the directionality of coupling: phase versus state space dynamics and application to EEG time series Int. J. Neural. Syst. 17 139–48

Rosenblum M G and Pikovsky A S 2001 Detecting direction of coupling in interacting oscillators Phys. Rev. E 64 045202

Quiroga R, Kraskov A, Kreuz T and Grassberger P 2002 Performance of different synchronization measures in real data: a case study on electroencephalographic signals Phys. Rev. E 65 041903

Bruns A 2004 Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J. Neurosci. Methods 137 321–32

Rosenblum M G, Pikovsky A S, Kurths J, Schäfer C and Tass P A 2001 Phase synchronization: from theory to data analysis Handbook of Biological Physics ed F Moss and S Gielen (Amsterdam: Elsevier) pp 297–321

Rosenblum M G, Cimpaneri L, Bezerianos A, Patzak A and Mrowka R 2002 Identification of coupling direction: application to cardiorespiratory interaction Phys. Rev. E 65 041909

Smirnov D A and Bezruchko B P 2003 Estimation of interaction strength and direction from short and noisy time series Phys. Rev. E 68 046209

Theiler J 1995 On the evidence for low-dimensional chaos in an epileptic electroencephalogram Phys. Lett. A 196 335–41

New Journal of Physics 12 (2010) 053031 (http://www.njp.org/)
[34] Lachaux J P, Rodriguez E, Martinerie J and Varela F J 1999 Measuring phase synchrony in brain signals Hum. Brain Mapp. 8 194–208
[35] Kloeden P E and Platen E 1999 Numerical Solution of Stochastic Differential Equations (Berlin: Springer)
[36] Lorenz E N 1963 Deterministic non-periodic flow J. Atmos. Sci. 20 130
[37] Hindmarsh A C 1980 Lsode and lsodi, two new initial value ordinary differential equation solvers Signum Newsl. 15 10–11
[38] Hindmarsh A C 1983 ODEPACK, A Systematized Collection of ODE Solvers Scientific Computing ed R S Stepleman (Amsterdam: North-Holland) pp 55–64
[39] Gabor D 1946 Theory of communication J. IEE 93 429–57
[40] Panter P 1965 Modulation, Noise, and Spectral Analysis (New York: McGraw-Hill)
[41] Van Roost D, Solymosi L, Schramm J, van Oosterwyck B and Elger C E 1998 Depth electrode implantation in the length axis of the hippocampus for the presurgical evaluation of medial temporal lobe epilepsy: a computed tomography-based stereotactic insertion technique and its accuracy Neurosurgery 43 130
[42] von Restorff H 1933 Über die Wirkung von Bereichsbildungen im Spurenfeld Psychol. Forsch. 18 299–342
[43] Parker A, Wilding E and Akerman C 1998 The Von Restorff effect in visual object recognition memory in humans and monkeys. The role of frontal/perirhinal interaction J. Cogn. Neurosci. 10 691–703
[44] Fernández G, Effern A, Grunwald T, Pezer N, Lehnhertz K, Dümppelmann M, Van Roost D and Elger C E 1999 Real-time tracking of memory formation in the human rhinal cortex and hippocampus Science 285 1582–5
[45] Fernández G and Tendolkar I 2006 The rhinal cortex: ‘gatekeeper’ of the declarative memory system Trends Cogn. Sci. 10 358–62
[46] Fell J, Dietl T, Grunwald T, Kurthen M, Klaver P, Trautner P, Schaller C, Elger C E and Fernández G 2004 Neural bases of cognitive ERPs: more than phase reset J. Cogn. Neurosci. 16 1595–604
[47] Axmacher N, Cohen M X, Fell J, Haupt S, Dümppelmann M, Elger C E, Schlaefer T E, Lenartz D, Sturm V and Ranganath C 2010 Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens Neuron 65 541–9
[48] Manns J R, Zilli E A, Ong K C, Hasselmo M E and Eichenbaum H 2007 Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase Neurobiol. Learn. Mem. 87 9–20
[49] Sederberg P B, Kahana M J, Howard M W, Donner E J and Madsen J R 2003 Theta and gamma oscillations during encoding predict subsequent recall J. Neurosci. 23 10809–14
[50] Ossipova D, Takashima A, Oostenveld R, Fernández G, Maris E and Jensen O 2006 Theta and gamma oscillations predict encoding and retrieval of declarative memory J. Neurosci. 26 7523–31
[51] Eichenbaum H 2000 A cortical–hippocampal system for declarative memory Nat. Rev. Neurosci. 1 41–50
[52] Wang S H and Morris R G 2010 Hippocampal–neocortical interactions in memory formation, consolidation and reconsolidation Annul. Rev. Psychol. 61 49–79
[53] Kralemann B, Cimpaneriu L, Rosenblum M G, Pikovsky A S and Mrowka R 2008 Phase dynamics of coupled oscillators reconstructed from data Phys. Rev. E 77 066205
[54] Nolte G, Ziehe A, Nikulin V V, Schlögl A, Krämer N, Brismar T and Müller K-R 2008 Robustly estimating the flow direction of information in complex physical systems Phys. Rev. Lett. 100 234101
[55] Smirnov D A, Bodrov M B, Perez Velazquez J L, Wennberg R A and Bezruchko B P 2005 Estimation of coupling between oscillators from short time series via phase dynamics modeling: limitations and application to EEG data Chaos 15 024102
[56] Smirnov D A and Bezruchko B P 2009 Detection of couplings in ensembles of stochastic oscillators Phys. Rev. E 79 046204