Clinical significance of geriatric conditions in acute hospitalization

Hiroyuki Umegaki, Masaaki Nagae, Hitoshi Komiya, Kazuhisa Watanabe, Yosuke Yamada, Tomomichi Sakai and Tomihiko Tajima

Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan

Correspondence
Hiroyuki Umegaki, Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan. Email: umegaki@med.nagoya-u.ac.jp

Received: 11 September 2022
Revised: 31 October 2022
Accepted: 22 November 2022

Introduction

Geriatric conditions (GCs) are a complex set of clinical signs and symptoms in older adults that do not fit into a discrete disease category. Dizziness is a typical GC and may be caused by a variety of pathological and/or age-related functional deficits in the elderly population. However, dizziness is often attributed to a single pathology, for example, inner ear disturbance, in the same way as other GCs. GCs are multifactorial and occur when the accumulated effects of impairment of multiple systems render older adults vulnerable to situational challenges. The concept of GCs, also known as geriatric syndrome, has been widely adopted, although its constituents have not been clearly defined.

The clinical significance of GCs has been investigated in several situations, and many studies have shown they are a risk factor for hospital admission and mortality in community-dwelling elders. Some studies have also found that GCs are associated with readmission after an acute hospitalization. However, the clinical significance of GCs in the acute care setting has not been as well investigated as it has in community-dwelling elders.

Hospital admission in older adults is often accompanied by hospital-acquired complications (HACs), which are an obstacle to safe and effective treatment and should be avoided as far as possible. HACs include delirium, falls, functional decline, decubitus and incontinence, which can be considered GCs if they occur for the first time after a hospital admission. There is as yet limited information on the association between GC at admission and the incidence of HACs during hospitalization. Moreover, little is understood about the association of GCs with frailty and polypharmacy, both of which are recognized risk factors for adverse outcomes in a wide range of situations and are attracting increasing interest in the geriatric field.

In this study, we sought to clarify the clinical significance of GCs in acute care, first by investigating the cross-sectional association between GCs and frailty/polypharmacy at the time of admission to an acute care geriatric ward and then by prospectively investigating the association of GCs with the incidence of hospital-acquired complications, falls and death within 3 months of discharge by multiple logistic regression analysis.

Methods

Data from a prospective observational cohort in a geriatric ward at a university hospital were analyzed. The study protocol was approved by the Ethics Committee of Nagoya University Graduate School of Medicine (approval no. 2019-0260) and conducted in accordance with the principles of the Declaration of Helsinki and its later amendments. Written informed consent was obtained from all participants. In the case that participants were unable to provide consent, family members provided informed consent on their behalf.

Background: Geriatric conditions (GCs) are common in the elderly population, but their clinical significance in acute care is not well understood. In this study, we first investigated the cross-sectional associations of GCs with frailty and polypharmacy at the time of admission to an acute care geriatric ward. Then, to clarify the clinical significance of GCs in acute care, we prospectively examined the association of GCs with the incidence of hospital-acquired complications and consequences after discharge.

Methods: Participants were 184 patients (40.2% men; mean age 85.0 ± 6.0 years) hospitalized in an acute care geriatric ward at a university hospital. We examined the cross-sectional associations of GCs with frailty and polypharmacy by multiple regression analysis, and then the associations of GCs with the incidence of hospital-acquired complications, falls and death within 3 months of discharge by multiple logistic regression analysis.

Results: GCs were associated with frailty and use of polypharmacy, independent of multiple morbidity. GCs were also associated with readmission within 3 months of discharge; however, there was no significant association with the incidence of hospital-acquired complications, falls, or mortality after discharge.

Conclusions: These findings suggest that GCs are clinically significant in the hospitalized elderly and further research on GCs is warranted.

Keywords: geriatric medicine, clinical medicine, internal medicine.
Eligibility criteria

Patients aged ≥65 years who were admitted to the geriatric ward of Nagoya University Hospital were recruited between October 2019 and September 2021. The following exclusion criteria were applied: discharge from hospital within 48 h; inability to secure written informed consent; estimated life expectancy less than 1 month at the time of admission in the opinion of the attending physician; readmission within 3 months after discharge and enrolled in the study at the time of the previous admission; transfer from another hospital department; and any other reason deemed to preclude participation; and any other reason deemed to preclude participation by the investigators.

Data collection

Data were collected at the time of admission (within the first 48 h) and HACs during the hospitalization period were recorded. The attending physicians obtained information on the occurrence of falls, readmission to any hospital, emergency room (ER) visits, and death by telephone interviews with each patient or caregiver who provided informed consent at 3 months after discharge.

At admission

Demographic data, including age and sex, were obtained from the clinical records. A comprehensive battery of geriatric assessments was performed in each case by the attending physician. The assessments included the Charlson Comorbidity Index (CCI) score,11 Clinical Frailty Scale (CFS) score12 and Mini-Nutritional Assessment-Short Form (MNA-SF) score for nutrition.13 Functional status was assessed using the Barthel Index14 at baseline (2 weeks before admission).

Geriatric conditions

GCs were defined as symptoms of pain, mood disturbance, anxiety, incontinence, dizziness, constipation, impairment of vision or hearing, and malnutrition. They were assessed by the attending physician at the time of admission. Malnutrition was defined as an MNA-SF score below 7.

Table 1	Background characteristics of the participating elders hospitalized on a geriatric ward
Patients, male; n (%)	184 (40.2)
Age (years); mean ± SD	85.0 ± 6.0
Charlson Comorbidity Index score, mean ± SD	2.3 ± 1.9
Clinical Frailty Scale score, mean ± SD	5.0 ± 1.4
MNS-SF score ≤7, %	33.50
Patients with GC, %	84.80
Mean number of GCs, mean ± SD	1.9 ± 1.5
Mean number of medications, mean ± SD	6.3 ± 3.6
Patients prescribed >5 medications, %	65.50
Basic activities of daily living, mean ± SD	76.7 ± 28.2
MMSE score, mean ± SD	19.4 ± 8.8
MMSE score <24, %	56.0
Mean number of HACs per patient, mean ± SD	0.6 ± 0.9
Patients with any HAC, %	40.50

HAC, hospital-acquired complications; MNA-SF, Mini-Nutritional Assessment-Short Form.

Hospital-acquired complications

HACs were defined as the occurrence of delirium, functional decline, incontinence, fall, pressure injury or nosocomial infection during hospitalization.10 Delirium was evaluated daily by the attending physician based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Functional decline was defined as a Barthel Index score at discharge that was lower than that at admission (2 weeks before admission). Incontinence was included if described as newly recognized in the medical records. Falls were also evaluated from the medical records, as were newly recognized pressure injuries. Nosocomial infections were evaluated by the attending physician.

Consequences after discharge

The attending physicians collected information on falls, readmission, ER visits and death within 3 months of discharge from hospital by telephone interviews with patients or their caregivers.

Statistical analysis

Multiple regression analysis was performed to explore the association of the number of GCs with CFS score or the number of prescribed medications at admission with adjustment for age, sex and CCI score. The association of GC with the occurrence of HACs was investigated by multiple logistic regression analysis with adjustment for age, sex, CFS score, CCI score and number of medications. The association of GCs with fall, readmission/ER visit and mortality was evaluated by multiple logistic regression analysis. Data are shown as the mean and standard deviation or as the number and/or percentage as appropriate.

Results

Table 1 shows the background characteristics of the 184 patients included in this study (40.2% men; mean age 85.0 ± 6.0 years).

Table 2 Main causes of admission recorded

Causes of admission	Number (%)
Infection, n (%)	51 (27.7)
CNS disorder*, n (%)	30 (16.3)
Loss of appetite/weight loss/dehydration, n (%)	26 (14.1)
Immune system disorder, n (%)	11 (6.0)
Heart failure, edema, n (%)	10 (5.4)

*Includes stroke, transient ischemic attack, dementia and impaired consciousness.

Abbreviation: CNS, central nervous system.

Table 3 Association of geriatric conditions, Clinical Frailty Scale score and number of prescribed medications

Objective variable	Standardized beta coefficient	P-value
Clinical Frailty Scale score	0.329	<0.001
Number of prescribed medications	0.139	0.044

Note: Multiple regression analysis adjusted for age, sex and Charlson Comorbidity Index score.
While was burdensome, however, it could be attributed to readmission or an ER visit, which in 37; fall in 12, infection in seven, incontinence in three and decubitus in one. Of the various main causes of admission recorded, the most frequent was infection, followed by central nervous system disorder (Table 2).

The cross-sectional associations of the number of GCs with the CFS score and the number of prescribed medications are shown in Table 3.

Multiple regression with adjustment for age, sex, cognitive impairment (MMSE <24) and CCI score showed significant associations with both variables. Multiple logistic regression analysis revealed no significant association of GCs with HACs or any constituents of HACs (Table 4).

During the 3 months after discharge, we had 38 readmission/ER visits (20.7%), 24 falls (13.0%) and 10 deaths (5.4%). GCs were significantly associated with the consequences of the readmission/ER visits, but not with fall or mortality at 3 months after discharge (Table 5).

Table 4 Association of geriatric conditions with hospital-acquired complications

Objective variable	Odds ratio	95% CI	P-value
HAC	1.012	0.785–1.304	0.926

Note: Multiple logistic regression analysis adjusted for Clinical Frailty Scale score, Charlson Comorbidity Index score, age, sex, number of prescribed medications and cognitive impairment (mini mental state examination score <24).

Abbreviations: CI, confidence interval; HAC, hospital-acquired complication.

Table 5 Association of geriatric conditions with consequences of discharge within 3 months

Objective variable	Odds ratio	95% CI	P-value
Readmission/ER visit	1.387	1.028–1.873	0.033
Fall	1.315	0.906–1.910	0.150
Mortality	1.341	0.738–2.436	0.336

Note: Multiple logistic regression analysis adjusted for Clinical Frailty Scale score, Charlson Comorbidity Index score, age, sex, number of prescribed medications and cognitive impairment (mini mental state examination score <24).

Abbreviations: CI, confidence interval; ER, emergency room.

Overall, 84.8% had ≥1 GC at admission (mean number of GCs, 1.9 ± 1.5). The numbers of the subjects with each GC are shown in Table S1. The mean CCI score was 2.3 ± 1.9, the mean CFS score was 5.0 ± 1.4, and 33.5% of the patients had an MNA-SF score <7. The mean number of prescribed medications was 6.3 ± 3.6 (62.5% were taking ≥5 medications). The mean score of mini mental state examination (MMSE) was 19.4 ± 8.8, and 56.0% of the subjects had MMSE scores <24. In total, 75 patients (40.7%) had records of an HAC: functional decline in 57, delirium in 37; fall in 12, infection in seven, incontinence in three and decubitus in one.

Of the various main causes of admission recorded, the most frequent was infection, followed by central nervous system disorder (Table 2).

The cross-sectional associations of the number of GCs with the CFS score and the number of prescribed medications are shown in Table 3.

Multiple regression with adjustment for age, sex, cognitive impairment (MMSE <24) and CCI score showed significant associations with both variables. Multiple logistic regression analysis revealed no significant association of GCs with HACs or any constituents of HACs (Table 4).

During the 3 months after discharge, we had 38 readmission/ER visits (20.7%), 24 falls (13.0%) and 10 deaths (5.4%). GCs were significantly associated with the consequences of the readmission/ER visits, but not with fall or mortality at 3 months after discharge (Table 5).

Discussion

This study found associations of GCs with frailty and polypharmacy that were independent of multimorbidity. GCs were also associated with an increased likelihood of readmission within 3 months of discharge from an acute care ward. However, GCs were not significantly associated with the incidence of HACs, fall after discharge or mortality.

We found that GCs were significantly associated with the level of frailty at the time of admission. Frailty occurs due to an age-related decline in physiological reserve. GCs are also age-related, so an association between frailty and GCs seems reasonable. We also found that this association was independent of any multimorbidity reflected in the CCI score, which suggests that the clinical significance of GCs differs from that of discrete diseases. The cross-sectional design component made it impossible for us to see this association and confirm a cause–effect relationship between frailty and GCs. The symptoms of GCs may be a phenotype of frailty caused by an age-related decline in physiological reserve, or accumulation of age-related symptoms of GCs may contribute to the development of frailty.

There was also an association of GCs with the number of prescribed medications at admission, which was independent of multimorbidity. This finding suggests that physicians should be watchful for symptoms of GCs instead of only treating specific diseases in elders. Although relief of symptoms is important in the elderly population, medications prescribed to alleviate symptoms tend to be continued even when no longer necessary. While medications prescribed for the management of symptoms of GCs result in polypharmacy, the association between GCs and polypharmacy may be bidirectional. Many commonly prescribed medications could trigger or exacerbate GC symptoms, which in turn increase the number of medications prescribed.

In this study, we found that GCs were associated with readmission or an ER visit within 3 months of discharge, which is in agreement with previous studies. Readmission or an ER visit was reported to be associated with high costs, was burdensome for patients and caregivers, and resulted in a diminished quality of life. Although these consequences are avoidable in some cases, we suggest that it is clinically important that patients with GCs are at high risk of readmission and/or a subsequent ER visit. Doctors should be cognizant of this, particularly as they tend to focus on the treatment of diseases, particularly in acute medical care settings, and can overlook GCs. Although we did not look into the causes of a readmission or ER visit, the mechanism of this association should be explored further to ascertain how the risk of readmission or an ER visit could be reduced. In the present study, the association between GCs and readmission or an ER visit was independent of polypharmacy, which was previously identified as a risk factor for readmission. However, it could be attributed to specific medications that are potentially inappropriate for frail elders. For example, the adverse effects of the benzodiazepines commonly used to treat insomnia could contribute to the risk of readmission or an ER visit.

We found that GCs at the time of hospital admission did not predict either the incidence of HACs or falls during the 3 months after discharge. GCs commonly include falls and delirium, which we included in the HACs examined. Therefore, it could be presumed that the symptoms included in GCs in this study and falls/delirium constitute a “geriatric syndrome.” Broadly speaking, a syndrome refers to “a group of signs and symptoms that occur together and characterize a particular abnormality.” However, our findings did not necessarily confirm that the symptoms included in GCs and falls/delirium make up a “syndrome.” Research involving larger numbers of elderly patients is needed to determine whether or not GCs constitute a syndrome.

GCs were not associated with mortality in this study. We only followed our patients for a relatively short period of time (3 months) after an index discharge though, and therefore the effects of disease were more pronounced than those of the...
symptoms. The effects of GCs over the longer term should be investigated.

This study has several limitations. The information collected on the consequences after discharge was obtained during telephone interviews after 3 months and thus relied mainly on recall. Some misclassifications, particularly with regard to falls, would have been unavoidable, and the follow-up period was short. We had a wide range of diseases for the main causes of admission, and the causes of admission might affect the consequences during and after the admission. In the current study, we considered CCI for statistical analysis, but it may not be fully adjusted. Finally, the research was performed at a single institution, and the extent to which its findings can be generalized to other situations is unclear.

In conclusion, we found that GCs were associated with frailty and polypharmacy at the time of hospital admission and with the likelihood of readmission or an ER visit in the 3 months after discharge. GCs are prevalent in elderly patients but are likely to be overlooked. Our findings underscore the clinical significance of GCs in elderly hospitalized patients and warrant further investigations.

Disclosure statement
The authors declare no conflict of interest.

Author contributions
HU formed the research question. MN coded the data. HU conducted the analysis with input from MN, HK, KW, YY, TS and TT. HU wrote the manuscript and MN, HK, 1KW, YY, TS and TT reviewed the article. All authors approved the final draft.

Ethics statement
Ethics approval and consent to participate. The study protocol was approved by the Ethics Committee of Nagoya University Graduate School of Medicine (approval no. 2019-0260) and conducted in accordance with the principles of the Declaration of Helsinki and its later amendments. Written informed consent was obtained from all participants. In the case that participants were unable to provide consent, family members provided informed consent on their behalf.

Data Availability Statement
The data that support the findings of this study are not publicly available due to the research group policy. Data are however available from the authors upon reasonable request and with permission of Nagoya university.

References
1 Tinetti ME, Inouye SK, Gill TM, Doucette JT. Shared risk factors for falls, incontinence, and functional dependence. Unifying the approach to geriatric syndromes. JAMA 1995; 273: 1348–1353.
2 Cigolle CT, Langa KM, Kabeto MU, Tian Z, Blaum CS. Geriatric conditions and disability: the health and retirement study. Ann Intern Med 2007; 147: 156–164.
3 Rosso AL, Eaton CB, Wallace R et al. Geriatric syndromes and incident disability in older women: results from the women’s health initiative observational study. J Am Geriatr Soc 2013; 61: 371–379.
4 Huang CC, Lee JD, Yang DC, Shih HI, Sun CY, Chang CM. Association between geriatric syndromes and mortality in community-dwelling elderly: results of a National Longitudinal Study in Taiwan. J Am Med Dir Assoc 2017; 18: 246–251.
5 Kane RL, Shamiyan T, Talley K, Pacala J. The association between geriatric syndromes and survival. J Am Geriatr Soc 2012; 60: 896–904.
6 Wang SY, Shamiyan TA, Talley KM, Ramakrishnan R, Kane RL. Not just specific diseases: systematic review of the association of geriatric syndromes with hospitalization or nursing home admission. Arch Gerontol Geriatr 2013; 57: 16–26.
7 Shin J, Han SH, Choi J, Kim YS, Lee J. Importance of geriatric syndrome screening within 48 hours of hospitalization for identifying readmission risk: a retrospective study in an acute-care hospital. Am Geriatr Med Res 2020; 24: 83–90.
8 Anpalahan M, Gibson SJ. Geriatric syndromes as predictors of adverse outcomes of hospitalization. Intern Med J 2008; 38: 16–23.
9 Berlowitz DR, Brand HK, Perkins C. Geriatric syndromes as outcome measures of hospital care: can administrative data be used? J Am Geriatr Soc 1999; 47: 692–696.
10 Mudge AM, McRae P, Hubbard RE et al. Hospital-associated complications of older people: a proposed multicomponent outcome for acute care. J Am Geriatr Soc 2019; 67: 352–356.
11 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373–383.
12 Rockwood K, Song X, Macknight C et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173: 489–495.
13 Rubenstein LZ, Harker JO, Salvá A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366–M372.
14 Mahoney FI, Barthel DW. Functional evaluation: the BARTHEL index. Md State Med J 1965; 41: 61–65.
15 Hajjar ER, Hanlon JT, Sloane RJ et al. Unnecessary drug use in frail older people at hospital discharge. J Am Geriatr Soc 2005; 53: 1518–1523.
16 Saraf AA, Petersen AW, Simmons SF et al. Medications associated with geriatric syndromes and their prevalence in older hospitalized adults discharged to skilled nursing facilities. J Hosp Med 2016; 11: 694–700.
17 Akkawi ME, Mohd Taufek NH, Abdul Hadi AD, Nik Lah NNNF. The prevalence of prescribing medications associated with geriatric syndromes among discharged elderly patients. J Pharm Bioallied Sci 2020; 12: 5747–5751.
18 Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med 2009; 360: 1418–1428.
19 van Walraven C, Bennett C, Jennings A, Austin PC, Forster AJ. Proportion of hospital readmissions deemed avoidable: a systematic review. CMAJ 2011; 183: E391–E402.
20 Pereira F, Verloo H, Zhivko T et al. Risk of 30-day hospital readmission associated with medical conditions and drug regimens of polymedicated, older inpatients discharged home: a registry-based cohort study. BMJ Open 2021; 11: e052755.
21 Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. J Am Geriatr Soc 2007; 55: 780–791.

Supporting Information
Additional supporting information may be found in the online version of this article at the publisher’s website.

Table S1. The number of subjects with each geriatric condition.

How to cite this article: Umegaki H, Nagae M, Komiya H, et al. Clinical significance of geriatric conditions in acute hospitalization. Geriatr. Gerontol. Int. 2023;23:50–53. https://doi.org/10.1111/ggi.14523