P106 A dermatoscopic finding of Tinea capitis caused by Microsporum canis

Eunhye Jeong, Jeongseun Yim, Hyengmok Kwon, Donghun Shin, Jongseo Choi
Yeungnam University Hospital, Daegu, South Korea

Background: Tinea capitis is a relatively common disease, and the mycological examination is the gold standard for diagnosis. However, the probability of false negatives on KOH test is up to 40%, and culture examination takes a long time for diagnosis. The characteristic pattern of dermatoscopy not only aids in diagnosis, but also enables early treatment.

Objective: To evaluate dermatoscopic findings of Tinea capitis caused by Microsporum canis, and to compare with the findings of a digital dermatoscope (DermLite Pro 2 PSL) from the patients. The pictures were obtained by taking multiple focal points with dermatoscopy. The color, colorless, Microsporum-like, ring, and bare hairs were observed as the main findings.

Methods: We evaluated 248 patients who were diagnosed with tinea capitis through clinical and dermatoscopic findings. The images of the lesions were taken with a digital camera (Nikon, HB-42) and photographed with dermatoscopy (DermLite Pro 2 PSL) from the patients. The pictures were obtained by taking multiple focal points with dermatoscopy. The color, colorless, Microsporum-like, ring, and bare hairs were observed as the main findings.

Results: The dermatoscopic finding was seen with overlapping of various findings in each of the patients. Upon dermatoscopy, the most common findings were the colorless hair (44%) and the bare hair (64%). The common hair (35%) and the proximal white shaft hair (35%) were less frequently observed and argan hair and Microsporum-like hair were not seen in any patients. In the photograph taken with a camera, findings considered to be dermatoscopic features such as colorless hair or common hair were not observed.

Conclusion: It is important for dermatologists to consider that abnormal findings in dermatoscopy can play an important role in diagnosing Tinea capitis. And it will help in early treatment and prevent the progression of complications. Here in, we report specific dermatoscopic findings which can narrow down the differential diagnosis.

P107 Spectrum of dermatophyte infections and drug susceptibility pattern of dermatophytes in patients visiting to tertiary care hospital in Chandigarh state of India

Anuradha Kothari1, Padma Dar1, Pratibha Sharma1, Satyaki Ganguly1, Namrita Chhabra2, MR Shivasprakash2
1PGIMER, Chandigarh, India
2PGIMER, Chandigarh, India

Background: To isolate and identify various species of dermatophytes from clinical specimens. 2. To perform and analyze the antifungal susceptibility testing of isolated dermatophytes for commonly used antifungal agents; terbinafine and itraconazole.

Methods: A prospective study was conducted from December 2019 to October 2021. Clinical specimens (skin, hair, nail) from suspected cases of dermatophytes were received and processed in the department of microbiology. All the samples were subjected to microscopic examination and culture by standard techniques. The clinical-demographic profile was obtained. Specimens were processed for KOH and fungal culture. Dermatophytes were identified by studying microscopic and microscopic characteristics of the isolates. The conditions-favored dermatophytes isolates were processed for antifungal susceptibility testing for terbinafine and itraconazole by Microbroth dilution testing following the CLSI-M2-A2 guidelines.

Results: Total 248 patients with nail prominence (68%) were noted in the above-mentioned study period. Prevalence of study population belonged to rural area. Maximum numbers of cases were from the age group 21-30 years. Majority of patients belong to poor socioeconomic status. Out of 248 samples, 178 (72%) had a positive KOH mount amongst which 72% had positive cultures result. Amongst 2,681% were skin scraping, 37% were nail and 3.4% hair samples were processed. Out of culture-positive samples 52% were Dermatophytes. The most clinical form of dermatophytes was combination of both Trichophyton and T. rubrum (61%) followed by T. rubrum (22%) and T. rubrum (17%) for whole skin scraping was processed. The most common isolates were Trichophyton rubrum (72%), followed by T. mentagrophytes (15%), and T. verruae. Onychomycosis was diagnosed in 17% patients of which 7% were positive by KOH-49% were culture positive. 11.3% isolates from nails were dermatophytes.

Antifungal susceptibility testing was done by Microbroth dilution method and analyzed by the range. The MIC range of major isolates, i.e., T. rubrum showed MIC ranges against terbinafine 0.03-4 μg/ml and itraconazole 0.03-2 μg/ml. Trichophyton mentagrophytes for terbinafine 0.12-4 μg/ml and for itraconazole 0.12-2 μg/ml. Four isolates of T. rubrum had higher MIC values for terbinafine and two isolates had higher MIC for itraconazole. One isolate of T. mentagrophytes had higher MIC values of itraconazole, and one another isolate had higher MIC for terbinafine.

Conclusion: This study highlights the change in pattern of causative agents of dermatophytes. The present study showed the predominance of T. rubrum. More extensive studies are needed to evaluate the cut-off range of antifungal susceptibility testing of dermatophytes with clinical follow-up to see the response of respective antifungal and to guide the therapy.

P110 AIRE gene mutation predisposing chronic mucocutaneous candidiasis in two kids from a Chinese family

YuBo Ma, XianWen Wang, RunYu Li
Peking University First Hospital, Beijing, China

Background: Chronic mucocutaneous candidiasis (CMC) is a group of clinical syndromes characterized by chronic recurrent skin, nails, and mucosal superficial Candida infections. Various gene mutations have been reported to predispose individuals to CMC and its related syndromes. This study aims to study the clinical features and the genetic background underlying two kids of CMC from a Chinese family.

Methods: Clinical and laboratory findings of the two patients were studied, including physical examination, direct microscopic examination, and fungal culture. Genomic DNA of all family members was extracted from peripheral blood leukocytes, and whole-exome sequencing (WES) was performed.

Results: A 2-year-old boy and his sister were admitted to the hospital due to recurrent thrush and thickening of their nails. Direct microscopic examination of their nails and the brother’s tongue showed branching pseudohyphae and yeast cells, and Candida albicans was identified through fungal culture. The brother also experienced a progressively impaired vision, which was diagnosed as retinitis pigmentosa, causing no light perception in one eye and light perception up to 0.1 in the other. Their parents belonged to the Hui population in minority population in China and had a history of consanguineous marriage. Chronic mucocutaneous candidiasis (CMC) was diagnosed, and oral fluconazole was prescribed. After continuous fluconazole treatment for 6 months, the nails and the tongue became normal. These patients are still under follow-up.

Conclusion: In this study, we identified two CMC patients of Chinese background AIRE mutations. These patients remain as the importance of genetic analysis in management of CMC, which then help to adjust the time of treatment, as well as to predict and early detect related complications.

P111 A case of nail discoloration due to topical treatment of onychomycosis with liliconazole 5% nail solution

Tomotaka Sato1, Naruhito Fukuda1, Akihiko Kinjo1, Mariro Hotta1, Ryoza Akimoto1, Hisashi Kobayashi2, Satoru Fukusawa2
1Department of Dermatology, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan
2Department of Plastic surgery, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan

Background: We conducted a case of onychomycosis treated with nail debridement and topical liliconazole 5% nail solution to the nail and topical liliconazole 1% cream to the foot.

Methods: A woman in her twenties with chronic onychomycosis had a nail spike color change on her left big toe (Fig. 1). We opened the spike lesion with a plastic nippers and KOH direct microscopic examination showed dermatophyton. We treated with topical liliconazole cream on the toes and sole of the foot and 5% solution on the nail. Because of the summer season, she walked inside in sandals without socks during treatment and noticed the nail yellow color change (Fig. 2). We advised the patient to protect from sun light and not to walk outside without socks. Due to the report from the production company, the reason for nail color change to yellowish is photodegradation of liliconazole. After 1 year since first time, the fungal infection of the big toe disappeared by our topical treatment. The nail yellow color change also disappeared. We recommended avoiding sunlight exposure on the treated nail during topical treatment of liliconazole 5% nail solution.