Reactions of kynurenic acid with hypobromous acid and hypochlorous acid

Toshinori Suzuki,* Hiroyuki Morishita, and Kosumo Fukuhara

School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan

(Received 14 April, 2020; Accepted 31 August, 2020; Published online 31 October, 2020)

Kynurenic acid, a tryptophan metabolite, acts as antagonist or agonist of several receptors. Hypobromous acid (HOBr) and hypochlorous acid (HOCl) are generated by eosi疏通il and neutrophils. At inflammation sites, kynurenic acid may encounter HOBr and HOCl to generate products. When kynurenic acid was incubated with HOBr under neutral conditions, kynurenic acid generated a single product almost exclusively. This was identified as 3-bromokyurenic acid. Kynurenic acid reacted with HOCl, generating two products. The major product was identified as 3-chlorokyurenic acid with its oxidative decarboxylation product, 3-chloro-4-hydroxy-2(1H)-quinolinone as a by-product. Free amino acids suppressed the reactions of kynurenic acid with HOBr and HOCl. A eosinophil peroxidase system containing H2O2, NaCl, and NaBr reacted with kynurenic acid, generating 3-bromokyurenic acid under mildly acidic conditions. Although a myeloperoxidase system containing H2O2 and NaCl reacted with kynurenic acid to generate 3-chlorokyurenic acid under mildly acidic conditions, the product was altered to 3-bromokyurenic acid by addition of NaBr to the system. These results suggest that 3-bromokyurenic acid and 3-chlorokyurenic acid may be generated from kynurenic acid at inflammation sites in humans, although their formation will be suppressed by coexistent amino acids.

Key Words: kynurenic acid, hypobromous acid, hypochlorous acid, myeloperoxidase, eosinophil peroxidase

Kynurenic acid (KYNA) is a tryptophan metabolite generated by enzymes along the kynurenine pathway. KYNA is an agonist of G-protein coupled GPR35 receptor, which presents predominantly on immune cells and in the gastrointestinal tract. The serum level of KYNA was significantly elevated in patients with inflammatory bowel disease, compared to control subjects. The concentration of KYNA is an antagonist of both the N-methyl-D-aspartate receptor and the α7 nicotinic acetylcholine receptor. The brain level of KYNA was significantly elevated in patients with schizophrenia and bipolar disorder. KYNA possesses neuroprotective properties, since it blocks some of the neurotoxic effects of excitotoxins. Recently, the relationship between inflammation and these disorders has received. Eosi疏通il are a minor component of white blood cells, but are abundant in blood and tissues in various inflammatory disorders. Eosi疏通il discharge eosinophil peroxidase (EPO), which catalyzes the oxidation of bromide ion (Br⁻) to hypobromous acid (HOBr) through hydrogen peroxide (H2O2) reduction. Although the plasma concentrations are 39–84 μM for Br⁻ and 100 mM for Cl⁻, EPO uses Br⁻ selectively, resulting in HOBr. The formed HOBr plays an important role in defense mechanisms against parasites. Meanwhile, neutrophils discharge myeloperoxidase (MPO), which catalyzes the oxidation of chloride ion (Cl⁻) to hypochlorous acid (HOCl) through hydrogen peroxide (H2O2) reduction. Neutrophils are a major component of white blood cells. The HOCl formed by MPO plays a central role in host defense mechanisms against infection. Since HOCl can react with Br⁻ to generate HOBr, a portion of the HOCl formed by the MPO system will react with Br⁻ of the plasma concentration converting to HOBr. Under inflammation conditions, KYNA may encounter HOBr and HOCl, and react with them. However, there is little information about the reactions of KYNA with HOBr and HOCl. In the present study, we examined the reactions of KYNA with reagents HOBr and HOCl, and with peroxidases EPO and MPO, using RP-HPLC, and found that both the reagents and the peroxidase systems readily react with KYNA to generate halogenated products.

Materials and Methods

Materials. KYNA was purchased from ChemCruz (Dallas, TX), NaBr (~99.99%), NaCl (~99.99%), KH2PO4, KH2PO4, MPO from human leukocytes, and EPO human recombinant protein were purchased from Sigma-Aldrich (St. Louis, MO). Other chemicals were obtained from Nacalai Tesque (Kyoto, Japan) or TCI (Tokyo). Bromide-free hypobromous acid (HOBr) was prepared by the addition of silver nitrate and subsequent distillation, as previously reported. The concentration of HOBr was determined spectrophotometrically at 331 nm in 10 mM NaOH using a molar extinction coefficient of 315 M⁻¹ cm⁻¹. (22) Chloride-free sodium hypochlorite (NaOCl) was prepared by the method previously reported. The concentration of NaOCl was determined spectrophotometrically at 290 nm using a molar extinction coefficient of 350 M⁻¹ cm⁻¹.

HPLC and MS conditions. The HPLC system consisted of LC-10ADvp pumps and an SPD-M10Avp UV-vis photodiode-array detector (Shimadzu, Kyoto, Japan). For the RP-HPLC, an Inertsil ODS-3 octadecylsilane column of 4.6 × 250 mm and particle size 5 μm (GL Sciences, Tokyo, Japan) was used. The eluent was 20 mM ammonium acetate (pH 7.0) containing acetonitrile. The acetonitrile concentration was increased from 0 to 14% during 40 min in linear gradient mode. The column temperature was 40°C and the flow rate was 1 ml/min. The electrospray ionization time of flight mass spectrometry (ESI-TOF/MS) measurements were performed on a MicroTOF spectrometer (Bruker, Bremen, Germany) in negative mode.

Spectrometric data. Peak 1: 3-bromokyurenic acid (3-BrKYNA). ESI-TOF/MS; m/z 222 and 224 (1:1), 266 and 268 (1:1). HR-ESI-TOF/MS: 265.94632 obsd (265.94582 calcd for C10H13BrNO5). UV: λmax = 248, 320, 330 nm. 1H NMR (500 MHz,
DMSO-d$_6$): δ (ppm/TMS) 8.02 (d, $J = 8.0$ Hz, 1H), 7.61 (d, $J = 8.6$ Hz, 1H), 7.55 (dd, $J = 7.7$, 7.7 Hz, 1H), 7.24 (dd, $J = 7.5$, 7.5 Hz, 1H). 1H NMR (500 MHz, DMSO-d$_6$): δ (ppm/TMS) 171.7, 161.0, 151.0, 138.2, 131.0, 124.9, 123.0, 122.8, 118.3, 99.3.

Peak 2: 3-chlorokynurenic acid (3-Cl-KYNA). ESI-TOF/MS: m/z 178 and 180 (3:1), 222 and 224 (3:1). HR-ESI-TOF/MS: 221.996344 (221.996344 for C$_9$H$_7$ClNO$_2$). UV: $\lambda_{max} = 246$, 317, 331 nm. 1H NMR (500 MHz, DMSO-d$_6$): δ (ppm/TMS) 7.81 (d, $J = 8.0$ Hz, 1H), 7.21 (dd, $J = 7.5$, 7.5 Hz, 1H), 7.03 (d, $J = 8.5$ Hz, 1H), 6.89 (dd, $J = 7.5$, 7.5 Hz, 1H), 13C NMR (125 MHz, DMSO-d$_6$): δ (ppm/TMS) 172.0, 162.0, 149.0, 138.2, 131.2, 124.8, 123.0, 122.8, 118.3, 109.0.

Peak 3: 3-chloro-4-hydroxy-2(1H)-quinolinone (3-Cl-HQN). ESI-TOF/MS: m/z 158, 194 and 196 (3:1). HR-ESI-TOF/MS: 193.9996 (194.0007 for C$_{9}$H$_{7}$ClNO$_{2}$). UV: λ_{max} = 246, 317, 331 nm. 1H NMR showed four aromatic protons correlated with each other on the aromatic protons coupled with each other on the carbons attributable to [KYNA + Br–CO–2H] by [KYNA + Br–2H] within 3 ppm. 1H NMR showed four aromatic protons correlated with each other on the 1H-1H COSY. 13C NMR showed nine aromatic carbons and a carbon attributable to a carboxy group. From these data, Peak 1 was identified as 3-bromokynurenic acid (3-Br-KYNA) (Scheme 1). Reaction with HOBr. A solution of 100 μM KYNA was incubated with 100 μM HOBr in 100 mM potassium phosphate buffer at pH 7.4 and 37°C for 30 min. When the reaction mixture was separated according to the integrated peak areas on RP-HPLC chromatograms detected at 240 nm and by the molecular extinction coefficients at 240 nm (e_{240}). The e_{240} value of 25,300 M$^{-1}$ cm$^{-1}$ was used for KYNA. The e_{240} values of Peaks 1–3 were determined from the integration of proton signals of NMR and the HPLC peak area detected at 240 nm relative to that of KYNA in the mixed solution. The estimated e_{240} values were 27,300 M$^{-1}$ cm$^{-1}$ for Peak 1, 28,600 M$^{-1}$ cm$^{-1}$ for Peak 2, and 22,700 M$^{-1}$ cm$^{-1}$ for Peak 3.

Results

Reaction with HOBr. A solution of 100 μM KYNA was incubated with 100 μM HOBr in 100 mM potassium phosphate buffer at pH 7.4 and 37°C for 30 min. When the reaction mixture was separated according to the integrated peak areas on RP-HPLC chromatograms detected at 240 nm (Fig. 1). The product was isolated by RP-HPLC and identified using MS and NMR (1H-1H COSY, 1H-13C HMOC, 1H-13C HMBC, 13C-1H). Peak 1 showed an ESI-TOF/MS spectrum with m/z = 222 and 224 (1:1) and 266 and 268 (1:1) in negative mode. High-resolution (HR) ESI-TOF/MS values of the molecular ion for Peak 1 agreed with the theoretical molecular mass for C$_{9}$H$_{7}$BrNO$_2$ attributable to [KYNA + Br–2H] within 3 ppm. 1H NMR showed four aromatic protons coupled with each other on the 1H-1H COSY spectrum. 13C NMR showed nine aromatic carbons and a carbon attributable to a carboxy group. From these data, Peak 1 was identified as 3-bromokynurenic acid (3-Br-KYNA) (Scheme 1). Reaction with HOCl. A solution of 100 μM KYNA was incubated with 100 μM HOCl in 100 mM potassium phosphate buffer at pH 7.4 and 37°C for 30 min. When the reaction mixture was separated according to the integrated peak areas on RP-HPLC chromatograms detected at 240 nm (Fig. 3). The products were isolated by RP-HPLC and identified. Peak 2 showed an ESI-TOF/MS spectrum with m/z = 178 and 180 (3:1) and 222 and 224 (3:1) in negative mode. HR-ESI-TOF/MS values of the molecular ion for Peak 2 agreed with the theoretical molecular mass for C$_{9}$H$_{7}$ClNO$_2$ attributable to [KYNA + Cl–CO–2H] within 3 ppm. 1H NMR showed four aromatic protons correlated with each other on the 1H-1H COSY. 13C NMR showed nine aromatic carbons but no carbon of a carboxy group. Peak 3 was identified as 3-chloro-4-hydroxy-2(1H)-quinolinone (3-Cl-HQN) (Scheme 2). Figure 4 shows the HOCl dose-dependence of the reaction of...
KYNA with HOCl. With increasing HOCl concentration, the consumptions of KYNA and both the yields of 3-Cl-KYNA and 3-Cl-HQN increased. The reactivity of HOCl to KYNA was lower than that of HOBr. The yield of 3-Cl-KYNA was higher than that of 3-Cl-HQN.

Reaction with HOCl in the presence of NaBr. A solution of 100 μM KYNA was incubated with 100 μM HOCl in 100 mM potassium phosphate buffer at pH 7.4 and 37°C for 30 min (Fig. 5). Consumption of KYNA and the yield of 3-Br-KYNA increased with increasing NaBr dose. At 100 μM NaBr, the major product was 3-Br-KYNA.

Effects of additives on the reaction with HOBr. To obtain information about the effects of coexistent compounds on the reactions of KYNA with HOBr, experiments were carried out in the presence of various additives. Table 1 shows the concentrations of KYNA and 3-Br-KYNA when a solution of 100 μM KYNA and 1 mM additives was incubated with 100 μM HOBr in 100 mM potassium phosphate buffer (pH 7.4) at 37°C for 24 h.
Although ammonium chloride suppressed the reaction, methylamine, dimethylamine, trimethylamine, and tetramethylammonium chloride had no effect. Amino acids suppressed the reaction. Taurine had no effect. Ascorbic acid suppressed the reaction. Urea, glucose, and sodium acetate had no effect. Taurine had no effect. Ascorbic acid suppressed the reaction. Chloride had no effect. Amino acids suppressed the reaction.

Effects of additives on the reaction with HOCl. To obtain information about the effects of coexistent compounds on the reactions of KYNA with HOCl, experiments were carried out in the presence of various additives (Table 2). Ammonium chloride, methylamine, and dimethylamine strongly suppressed the reaction, while trimethylamine and tetramethylammonium chloride showed little effect. In the case of tetramethylammonium chloride, the yield of 3-Cl-HQN was comparable to that of 3-Cl-KYNA, probably due to facilitation of the decarboxylation of 3-Cl-KYNA by tetramethylammonium ion, generating 3-Cl-HQN. Amino acids and taurine suppressed the reaction almost completely. Ascorbic acid suppressed the formations of 3-Cl-KYNA and 3-Cl-HQN almost completely, although a certain amount of KYNA was consumed. Urea, glucose, and sodium acetate showed little effect.

Reaction of KYNA with EPO systems. Figure 6A and B show the pH dependence of concentrations of KYNA and the products in the reaction of KYNA with an EPO/H₂O₂/Cl⁻ system with or without Br⁻, respectively. In the absence of NaBr, 3-Cl-KYNA was formed under mildly acidic conditions. Small amounts of 3-Br-KYNA were also generated, although 3-Cl-HQN was not detected. The maximum consumption of KYNA was observed at around pH 4–5. At around pH 7, the reaction was still observed. 3-Cl-KYNA and 3-Cl-HQN were not generated over the pH range examined.

Reaction of KYNA with MPO systems. Figure 7A and B show the pH dependence of concentrations of KYNA and the products in the reaction of KYNA with an MPO/H₂O₂/Cl⁻ system with or without Br⁻, respectively. In the absence of NaBr, 3-Cl-KYNA was formed under mildly acidic conditions. Small amounts of 3-Br-KYNA were also generated, although 3-Cl-HQN was not detected. The maximum consumption of KYNA was observed at around pH 5. No reaction was observed above pH 7. In the presence of 100 μM NaBr, 3-Br-KYNA was formed under mildly acidic conditions. 3-Cl-KYNA and 3-Cl-HQN were not generated over the pH range examined. No reaction was observed above pH 7.

Table 2. Effects of additives on the reactions of KYNA with HOCl

Additives	KYNA (μM)	3-Cl-KYNA (μM)	3-Cl-HQN (μM)
None	66.3 ± 3.8	19.5 ± 0.5	3.1 ± 1.4
NH₄Cl	94.4 ± 0.8	0.5 ± 0.1	0.0 ± 0.0
CH₃NH₂HCl	97.0 ± 1.0	0.6 ± 0.2	0.0 ± 0.0
(CH₃)₂NHHCl	92.4 ± 0.6	2.4 ± 0.2	0.0 ± 0.0
(CH₃)₃NHCl	48.2 ± 1.5	21.7 ± 0.4	5.7 ± 0.1
(CH₃)₄NCl	59.5 ± 0.7	12.1 ± 0.1	10.9 ± 0.3
Gly	98.1 ± 0.4	0.2 ± 0.1	0.0 ± 0.0
Lys	97.7 ± 0.1	0.2 ± 0.2	0.0 ± 0.0
Met	97.3 ± 0.1	0.5 ± 0.1	0.0 ± 0.0
Cys	98.6 ± 1.2	0.2 ± 0.2	0.0 ± 0.0
Taurine	96.0 ± 3.0	0.7 ± 0.1	0.0 ± 0.0
Ascorbic acid	74.7 ± 0.1	0.3 ± 0.2	0.0 ± 0.0
Urea	58.6 ± 0.8	26.6 ± 0.7	2.6 ± 0.2
Glucose	59.5 ± 1.5	21.6 ± 0.4	3.3 ± 0.2
CH₃COONa	59.0 ± 2.7	20.9 ± 0.6	3.8 ± 0.5

aConcentrations of KYNA, 3Cl-KYNA, and 3-Cl-HQN when a solution of 100 μM KYNA was incubated with 100 μM HOCI in 100 mM potassium phosphate buffer (pH 7.4) at 37°C for 24 h in the presence of the 1 mM additives. All the reaction mixtures were analyzed by RP-HPLC. Means ± SD (n = 3) are presented.

Fig. 6. (A) pH dependence of concentrations of KYNA and products in the reaction of KYNA with an EPO/H₂O₂/Cl⁻ system. A 100 μM KYNA solution with 100 μM H₂O₂ and 100 mM NaCl in the presence of 0.2 unit/ml EPO in 100 mM potassium phosphate buffer (pH 7.4–9.6) was incubated at 37°C for 30 min and the reaction was terminated by addition of 1 mM AcCys. (B) pH dependence of concentration of products in the reaction of KYNA with an EPO/H₂O₂/Cl⁻ system. A 100 μM KYNA solution with 100 μM H₂O₂, 100 mM NaCl, and 100 μM NaBr in the presence of 0.2 unit/ml EPO in 100 mM potassium phosphate buffer (pH 7.4–9.6) was incubated at 37°C for 30 min and the reaction was terminated by addition of 1 mM AcCys. KYNA (closed circle), 3-Br-KYNA (open circle), 3-Cl-KYNA (open square), and 3-Cl-HQN (open triangle). All the reaction mixtures were analyzed by RP-HPLC.
Discussion

3-Br-KYNA and 3-Cl-KYNA were reportedly synthesized from an ethyl ester derivative of KYNA by treatment with Br₂ and SO₂Cl₂, respectively, and subsequent hydrolysis. The present study showed that 3-Br-KYNA and 3-Cl-KYNA were generated directly as the major products of the reaction of KYNA with HOBr and HOCl, respectively, under neutral conditions. We recently showed that rebamipide and methotrexate reacted with HOBr, resulting in corresponding brominated products as major products. Methotrexate reacted with HOCl generating a corresponding chlorinated methotrexate, whereas rebamipide did not react with HOCl. Like methotrexate, KYNA reacted with both HOBr and HOCl. The reactivity of HOBr to KYNA was higher than that of HOCl (Fig. 2 and 4), probably due to the higher electrophilicity of HOBr compared to HOCl. In the presence of NaBr, HOCl generated 3-Br-KYNA in addition to 3-Cl-KYNA, probably due to the formation of HOBr. At serum concentration of Br⁻ (about 60 μM), the yield of 3-Br-KYNA was higher than that of 3-Cl-KYNA (Fig. 5). Amines had enhanced on the reactions of KYNA with HOBr and HOCl, whereas they suppressed the reactions of KYNA with HOBr and HOCl, respectively.

Several studies have reported the concentrations of halogenated derivatives of tyrosine (Tyr), 3-bromotyrosine (3-Br-Tyr) and 3-chlorotyrosine (3-Cl-Tyr) in animals and humans, which were probably generated from Tyr by EPO and MPO. In wild-type mice, the concentration of free 3-Br-Tyr in the peritoneal fluid was comparable to that of free 3-Cl-Tyr. Treatment by cecal ligation and puncture greatly increased the concentrations of both 3-Br-Tyr and 3-Cl-Tyr, with the average concentration of 3-Cl-Tyr three times higher than that of 3-Br-Tyr. In healthy volunteers, the concentration of 3-Cl-Tyr in proteins recovered from airways was five times higher than that of 3-Br-Tyr, while in severe asthmatics the concentrations of both 3-Br-Tyr and 3-Cl-Tyr were higher than in healthy volunteers; the average concentration of 3-Br-Tyr was seven times higher than that of 3-Cl-Tyr. Another study showed that the concentration of free 3-Br-Tyr in human plasma of healthy male volunteers was three times higher than that of 3-Cl-Tyr. In contrast, only one study reported the concentrations of halogenated nucleosides in humans. The concentration of 8-bromo-2'-deoxyguanosine (8-Br-dGuo) in urine from healthy volunteers was similar to that of 8-chloro-2'-deoxyguanosine (8-Cl-dGuo), while urinary 8-Br-dGuo and 8-Cl-dGuo levels from diabetic patients were 8-fold the levels in healthy volunteers. These reported results imply that both bromination and chlorination of living substances occur in healthy humans, and that inflammatory diseases greatly increase those levels. In humans, the concentration of KYNA is 0.003 μM in saliva, 0.004–0.060 μM in plasma, 0.14–1.58 μM in brain, and 4–40 μM in urine, whereas the concentration of Tyr ranges from 8 to 82 μM (median 30 μM) in plasma and 7 to 366 μM (median 64 μM) in urine. Another study showed that in vitro EPO and MPO systems readily converted KYNA to its halogenated derivatives under mildly acidic conditions. There is a possibility that the halogenated derivatives of KYNA form in vivo, especially in urine, although the reaction rate constants of KYNA with HOBr and HOCl are not determined.

KYNA is an agonist of G-protein coupled GPR35 receptor, which presents predominantly on immune cells and in the gastrointestinal tract. KYNA may have a positive influence on a number of pathologies of the gastrointestinal tract. KYNA is also an antagonist of both the N-methyl-D-aspartate receptor and the α7 nicotinic acetylcholine receptor. KYNA possesses neuroprotective properties, since it blocks some of the neurotoxic effects of excitotoxins. It has been reported that halogenated analogues of KYNA, such as 7-chlorokyurenine acid, 5,7-dichlorokyurenine acid, and 5,7-dibromokyurenine acid, are selective antagonists at the glycine modulatory site of the N-
methyl-D-aspartate receptor complex.\(30,39\) However, the biological activities of 3-Br-KYNA and 3-Cl-KYNA have not been clarified. And also, the formations of 3-Br-KYNA and 3-Cl-KYNA are unclear in humans. If 3-Br-KYNA and 3-Cl-KYNA formed in body fluids and show biological activities, they may affect the pathophysiology of various diseases with inflammation. The present study showed that KYNA readily reacts with reagents of HOBr and HOCI, and enzyme systems of EPO and MPO, resulting in halogenated products in vitro. These results suggest that 3-Br-KYNA and 3-Cl-KYNA may be generated from KYNA by EPO and MPO in inflammation sites in humans.

Conflict of Interest

No potential conflicts of interest were disclosed.

References

1 Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 2017; 10: 1178646917691938.
2 Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 2006; 281: 22021–22028.
3 Forrest CM, Gould SR, Darlington LG, Stone TW. Levels of purine, kynurenic acid and lipid peroxidation products in patients with inflammatory bowel disease. Adv Exp Med Biol 2003; 527: 395–400.
4 Turski MP, Turska M, Paluszakiewicz P, Parada-Turska J, Oxenkrug GF. Kynurenine acid in the digestive system—new facts, new challenges. Int J Tryptophan Res 2013; 6: 47–55.
5 Ganong AH, Cotman CW. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther 1986; 236: 293–299.
6 Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 2001; 21: 7463–7473.
7 Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 2001; 313: 96–98.
8 Olsson SK, Samuelsson M, Saette P, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder. J Psychiatry Neurosci 2010; 35: 195–199.
9 Zinger A, Barcia C, Herrero MT, Guillemin GJ. The involvement of neuroinflammation and kynurenine pathway in Parkinson’s disease. Parkinsonis Dis 2011; 2011: 716859.
10 Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci 2015; 9: 372.
11 Fries GR, Wals-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 2019; 177: 12–19.
12 Rothenberg ME. Eosinophilia. N Engl J Med 1998; 338: 1592–1600.
13 Wang J, Slungaard A. Role of eosinophilic peroxidase in host defense and disease pathology. Arch Biochem Biophys 2006; 445: 256–260.
14 Weiss SJ, Test ST, Eckmann CM, Roos D, Regiani S. Brominating oxidants generated by human eosinophils. J Immunol 1995; 155: 2906–2913.
15 Saito T, Kondo H, Masuda M, et al. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain. Mol Pharmacol 1992; 41: 914–922.
16 Kemper JA, Foster AC, Leeson PD, et al. 7-Chloro kynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci USA 1988; 85: 6547–6550.
17 Page DJ, Morris JC. Rates of formation of N-bromo amines in aqueous solution. Inorg Chem 1982; 21: 4258–4263.
18 Turski MP, Turska M, Paluszakiewicz P, Parada-Turska J, Oxenkrug GF. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 2017; 10: 1178646917691938.
19 Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 2006; 281: 22021–22028.
20 Forrest CM, Gould SR, Darlington LG, Stone TW. Levels of purine, kynurenic acid and lipid peroxidation products in patients with inflammatory bowel disease. Adv Exp Med Biol 2003; 527: 395–400.
21 Turski MP, Turska M, Paluszakiewicz P, Parada-Turska J, Oxenkrug GF. Kynurenine acid in the digestive system—new facts, new challenges. Int J Tryptophan Res 2013; 6: 47–55.
22 Wajon JE, Morris JC. Rates of formation of N-bromo amines in aqueous solution. Inorg Chem 1982; 21: 4258–4263.
23 Hazen SL, Hsu FF, Gaut JP, Crowley JR, Heinecke JW. Modification of proteins and lipids by myeloperoxidase. Methods Enzymol 1999; 300: 88–105.
24 Morris JC. The acid ionization constant of HOCI from 5 to 35°. J Phys Chem 1966; 70: 3798–3805.
25 Surrey AR, Cutler RA. The preparation of 3-halo-4-dialkylaminoalkylaminoquinoline derivatives. J Am Chem Soc 1946; 68: 2570–2574.
26 Suzuki T, Okayama A. Reactions of rebamipide with hypobromous acid. Chem Pharm Bull 2019; 67: 1164–1167.
27 Suzuki T, Takeuchi R. Reactions of methrotrexate with hypobromous acid and hypochlorous acid. Chem Pharm Bull 2019; 67: 1250–1254.
28 Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds—a critical review. Water Res 2014; 48: 15–42.
29 Thomas EL, Bozeman PM, Jefferson MM, King CC. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem 1995; 270: 2906–2913.
30 Heeb MB, Kristiana I, Trogolo D, Arey JS, von Gunten U. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment. Water Res 2017; 110: 91–101.
31 Yamamoto H, Kondo K, Tanaka T, et al. Reference intervals for plasma-free amino acid in a Japanese population. Ann Clin Biochem 2016; 53 (Pt 3): 357–364.
32 Lear NB, Fried VA, Thomas EL. Taurine and hypotaurine content of human leukocytes. J Leukoc Biol 1990; 47: 174–182.
33 Gaut JP, Yeh GC, Tran HD, et al. Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci USA 2001; 89: 11961–11966.
34 MacPherson JC, Comhair SA, Erzurum SC, et al. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol 2001; 166: 5763–5772.
35 Gaut JP, Byun J, Tran HD, Heinecke JW. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 2002; 300: 252–259.
36 Asahi T, Kondo H, Masuda M, et al. Chemical and immunochemical detection of 8-halogenated deoxyguanosines at early stage inflammation. J Biol Chem 2010; 285: 9282–9291.
37 Anesi A, Rubert J, Oluwabemigun K, et al. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites 2019; 9: 261.
38 Kemper JA, Foster AC, Leeson PD, et al. 7-Chloro kynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci USA 1988; 85: 6547–6550.
39 Forster AC, Kem JA, Leeson PD, et al. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain. Mol Pharmacol 1992; 41: 914–922.

©2021 JCBN

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/).