The Beta-MANOVA Ensemble with General Covariance

Alexander Dubbs
Mathematics, MIT, Massachusetts Ave. and Vassar St.
Cambridge, MA 02139, United States of America,
alex.dubbs@gmail.com

Alan Edelman
Mathematics, MIT, Massachusetts Ave. and Vassar St.
Cambridge, MA 02139, United States of America,
edelman@math.mit.edu

Received March 20, 2018
Revised ?

We find the joint generalized singular value distribution and largest generalized singular value distributions of the \(\beta \)-MANOVA ensemble with positive diagonal covariance, which is general. This has been done for the continuous \(\beta > 0 \) case for identity covariance (in eigenvalue form), and by setting the covariance to \(I \) in our model we get another version. For the diagonal covariance case, it has only been done for \(\beta = 1, 2, 4 \) cases (real, complex, and quaternion matrix entries). This is in a way the first second-order \(\beta \)-ensemble, since the sampler for the generalized singular values of the \(\beta \)-MANOVA with diagonal covariance calls the sampler for the eigenvalues of the \(\beta \)-Wishart with diagonal covariance of Forrester and Dubbs-Edelman-Koev-Venkataramana. We use a conjecture of MacDonald proven by Baker and Forrester concerning an integral of a hypergeometric function and a theorem of Kaneko concerning an integral of Jack polynomials to derive our generalized singular value distributions. In addition we use many identities from Forrester’s Log-Gases and Random Matrices. We supply numerical evidence that our theorems are correct.

Keywords: Finite random matrix theory; Beta-ensembles; MANOVA.

Mathematics Subject Classification 2000: 22E46, 53C35, 57S20

1. Introduction

The first \(\beta \)-ensembles were introduced by Dumitriu and Edelman [1], the \(\beta \)-Hermite ensemble and the \(\beta \)-Laguerre ensemble. A \(\beta \)-ensemble is defined to be a real random matrix with a nonrandom continuous tuning parameter \(\beta > 0 \) such that when \(\beta = 1, 2, 4 \), the \(\beta \)-ensemble has the same joint eigenvalue distribution as the real, complex, or quaternionic \(\beta \)-ensemble. For \(\beta \) not equal to 1, 2, 4 its eigenvalue distribution interpolates naturally among the \(\beta = 1, 2, 4 \) cases. A \(\beta \)-circular ensemble and four \(\beta \)-Jacobi ensembles shortly followed [2], [3], [4], [5]. The extreme eigenvalues of the \(\beta \)-Jacobi ensembles were characterized by Dumitriu and
Alexander Dubbs and Alan Edelman

Koev in [6]. More recently, Forrester [7] and Dubbs-Edelman-Koev-Venkataramana [8] separately introduced a β-Wishart ensemble with diagonal covariance, which generalizes the β-Laguerre ensemble by adding the covariance term.

This paper introduces the β-MANOVA ensemble with diagonal covariance, which generalizes the β-Jacobi ensembles by adding the covariance term. When $\beta = 1$ this amounts to finding the distribution of the cosine generalized singular values of the pair $(Y, X\Omega)$, where X is $m \times n$ Gaussian, Y is $p \times n$ Gaussian, and Ω is $n \times n$ diagonal. Note that forcing Ω to be diagonal does not lose any generality; using orthogonal transformations, were Ω not diagonal we could replace it with its diagonal matrix of eigenvalues and preserve the model. Our β-MANOVA ensemble also generalizes the real, complex, and quaternionic MANOVA ensembles (the last of which has never been studied). [9], [10], and [11] independently solved the $\beta = 1$ identity-covariance case, [12] solved our problem in the $\beta = 1$, general-covariance case, and [13] solved our problem in the $\beta = 2$, general-covariance case.

We find the joint eigenvalue distribution of the β-MANOVA ensemble, and generalize Dumitriu and Koev’s results in [6] by finding the distribution of the largest generalized singular value of the β-MANOVA ensemble. We also set the covariance to the identity to add a fourth β-Jacobi ensemble to the literature in Theorem 3.1. Our β-MANOVA ensemble is unique in that it is not built on a recursive procedure, rather it is sampled by calling the sampler for the β-Wishart ensemble.

Generalizations of our results exist in the $\beta = 1,2$ cases by adding a mean matrix to one of the Wishart-distributed parameters. The $\beta = 1$ case is from [12, p. 1279] and the $\beta = 2$ case is from [13, p. 490].

The sampler for the β-Wishart ensemble of Forrester [7] and Dubbs-Edelman-Koev-Venkataramana [8] is the following algorithm:

Beta-Wishart (Recursive) Model Pseudocode

```plaintext
Function $\Sigma := \text{BetaWishart}(m, n, \beta, D)$
if $n = 1$ then
    $\Sigma := \chi_{m,\beta} D_{1,1}^{1/2}$
else
    $Z_{1:n-1,1:n-1} := \text{BetaWishart}(m, n - 1, \beta, D_{1:n-1,1:n-1})$
    $Z_{n,1:n-1} := [0, \ldots, 0]$
    $Z_{1:n-1,n} := [\chi_{\beta} D_{n,n}^{1/2}; \ldots; \chi_{\beta} D_{n,n}^{1/2}]$
    $Z_{n,n} := \chi_{(m-n+1,\beta} D_{n,n}^{1/2}$
    $\Sigma := \text{diag(svd}(Z))$
end if
```

The elements of Σ are distributed according to the following theorem of [7] and [8]:

Proposition 1.1. The distribution of the singular values $\text{diag}(\Sigma) = (\sigma_1, \ldots, \sigma_n)$.
The Beta-MANOVA Ensemble with General Covariance

\[\sigma_1 > \sigma_2 > \cdots > \sigma_n, \text{ generated by the above algorithm is equal to:} \]

\[\frac{2^n \det(D)^{-\beta/2}}{K^{(\beta)}_{m,n}} \prod_{i=1}^{n} \sigma_i^{(m-n+1)\beta-1} \Delta^2(\sigma)^{\beta} \left(-\frac{1}{2} \Sigma^2, D^{-1} \right) d\sigma, \]

where \(K^{(\beta)}_{m,n} \) and \(K^{(\beta)}_{m,n} \) are defined in the upcoming section, Preliminaries.

To get the generalized singular values of the \(\beta \)-MANOVA ensemble with general covariance, in diagonal \(C \), we use the following algorithm which calls BetaWishart\((m, n, \beta, D)\). Let \(\Omega \) be an \(n \times n \) diagonal matrix.

Beta-MANOVA Model Pseudocode

Function \(C := \text{BetaMANOVA}(m, n, p, \beta, \Omega) \)

\(\Lambda := \text{BetaWishart}(m, n, \beta, \Omega^2) \)

\(M := \text{BetaWishart}(p, n, \beta, \Lambda^{-1})^{-1} \)

\(C := (M + I)^{-\frac{1}{2}} \)

Our main theorem is the joint distribution of the elements of \(C \),

Theorem 1.1. The distribution of the generalized singular values \(\text{diag}(C) = (c_1, \ldots, c_n) \), \(c_1 > c_2 > \cdots > c_n \), generated by the above algorithm for \(m, p \geq n \) is equal to:

\[\frac{2^n K_{m+p,n}^{(\beta)}}{K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \det(\Omega)^{\beta} \prod_{i=1}^{n} c_i^{(p-n+1)\beta-1} \prod_{i=1}^{n} (1 - c_i^2)^{-\frac{p+n-1}{2} - 1} \prod_{i<j} |c_i^2 - c_j^2|^\beta \times 1 F_0^{(\beta)} \left(\frac{m+p}{2}, \beta; C^2(I - 1)^{-1}, \Omega^2 \right) dc, \]

where \(1 F_0^{(\beta)} \) and \(K_{m,n}^{(\beta)} \) are defined in the upcoming section, Preliminaries.

We also find the distributions of the largest generalized singular value in certain cases:

Theorem 1.2. If \(t = (m - n + 1)\beta/2 - 1 \in \mathbb{Z}_{\geq 0} \),

\[P(c_1 < x) = \det(x^2 \Omega^2((1 - x^2)I + x^2 \Omega^2)^{-1})^{\frac{\beta}{2}} \times \sum_{k=0}^{nt} \sum_{\kappa, \kappa_1 \leq t} \frac{1}{k!} (p\beta/2)^{(\beta)}_{\kappa} C^{(\beta)}_{\kappa} \left((1 - x^2)((1 - x^2)I + x^2 \Omega^2)^{-1} \right), \]

where the Jack function \(C^{(\beta)}_{\kappa} \) and Pochhammer symbol \((\cdot)^{(\beta)}_{\kappa} \) are defined in the upcoming section, Preliminaries.

These expressions can be computed by Edelman and Koev’s software, mhg, [13].

It is actually intuitive that BetaMANOVA\((m, n, p, \beta, \Omega)\) should generalize the real, complex, and quaternionic MANOVA ensembles with diagonal covariance using the “method of ghosts.” The method of ghosts was first used implicitly to derive
β-ensembles for the Laguerre and Hermite cases in [1], was stated precisely by Edelman in [15], and was expanded on in [8]. To use the method of ghosts, assume a given ensemble is full of β-dimensional Gaussians, which generalize real, complex, and quaternionic Gaussians and have some of the same properties: they can be left invariant or made into a χβ's under rotation by a real orthogonal or "ghost orthogonal" matrix. Then apply enough orthogonal transformations and/or ghost orthogonal transformations to the ghost matrix to make it all real.

In the β-MANOVA case, let \(X \) be \(m \times n \) real, complex, quaternion, or ghost normal, \(Y \) be \(p \times n \) real complex, quaternion, or ghost normal, and let \(\Omega \) be \(n \times n \) diagonal real pd. Let \(\Omega X^*X\Omega \) have eigendecomposition \(U\Lambda U^* \), and \(\Omega X^*X(YY^*)^{-1} \) have eigendecomposition \(VMV^* \). We want to draw \(M \) so we can draw

\[
C = \text{gsvd}_{(\cosine)}(Y, X\Omega) = (M + I)^{-\frac{1}{2}}.
\]

Let \(\sim \) mean "having the same eigenvalues."

\[
\Omega X^*X(YY^*)^{-1} \sim \Lambda U^*(YY^*)^{-1}U \sim \Lambda((Y^*Y)^{-1}U)^{-1} \sim \Lambda(YY^*)^{-1},
\]

which we can draw the eigenvalues \(M \) of using BetaWishart(\(p, n, \beta, \Lambda^{-1} \)). Since \(\Lambda \) can be drawn using BetaWishart(\(m, n, \beta, \Omega^2 \)), this completes the algorithm for BetaMANOVA(\(m, n, p, \beta, \Omega \)) and proves Theorem 1.1 in the \(\beta = 1, 2, 4 \) cases.

The following section contains preliminaries to the proofs of Theorems 1.1 and 1.2 in the general \(\beta \) case. Most important are several propositions concerning Jack polynomials and Hypergeometric Functions. Proposition 2.1 was conjectured by Macdonald [16] and proved by Baker and Forrester [17], Proposition 2.3 is due to Kaneko, in a paper containing many results on Selberg-type integrals [19], and the other propositions are found in [19] pp. 593-596.

2. Preliminaries

Definition 2.1. We define the generalized Gamma function to be

\[
\Gamma_n^{(\beta)}(c) = \pi^{n(n-1)\beta/2} \prod_{i=1}^{n} \Gamma(c - (i-1)\beta/2)
\]

for \(\Re(c) > (n-1)\beta/2 \).

Definition 2.2.

\[
K^{(\beta)}_{m,n} = \frac{2^{mn\beta/2}}{\pi^{n(n-1)\beta/2}} \frac{\Gamma_n^{(\beta)}(m\beta/2)\Gamma_n^{(\beta)}(n\beta/2)}{\Gamma^{(\beta/2)n}}.
\]

Definition 2.3.

\[
\Delta(\lambda) = \prod_{i<j}(\lambda_i - \lambda_j).
\]

If \(X \) is a diagonal matrix,

\[
\Delta(X) = \prod_{i<j}|X_{i,i} - X_{j,j}|.
\]
We define the generalized Pochhammer symbol to be, for a partition $\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_n)$, nonnegative, ordered non-increasingly, and it sums to k. Let $\alpha = 2/\beta$. Let $\rho^n_\kappa = \sum_{i=1}^{n} \kappa_i (\kappa_i - 1 - (2/\alpha)(i - 1))$. We define $l(\kappa)$ to be the number of nonzero elements of κ. We say that $\mu \leq \kappa$ in "lexicographic ordering" if for the largest integer j such that $\mu_i = \kappa_i$ for all $i < j$, we have $\mu_j \leq \kappa_j$.

Definition 2.4. As in Dumitriu, Edelman and Shuman, we define the Jack polynomial of a matrix argument, $C^{(\beta)}_\kappa(X)$, as follows: Let x_1, \ldots, x_n be the eigenvalues of X. $C^{(\beta)}_\kappa(X)$ is the only homogeneous polynomial eigenfunction of the Laplace-Beltrami-type operator:

$$D^n_\kappa = \sum_{i=1}^{n} x_i^2 \frac{\partial^2}{\partial x_i^2} + \beta \cdot \sum_{1 \leq i \neq j \leq n} \frac{x_i^2}{x_i - x_j} \frac{\partial}{\partial x_i},$$

with eigenvalue $\rho^n_\kappa + k(n - 1)$, having highest order monomial basis function in lexicographic ordering (see Dumitriu, Edelman, Shuman, Section 2.4) corresponding to κ. In addition,

$$\sum_{\kappa \vdash k, l(\kappa) \leq n} C^{(\beta)}_\kappa(X) = \text{trace}(X)^k.$$

Definition 2.5. We define the generalized Pochhammer symbol to be, for a partition $\kappa = (\kappa_1, \ldots, \kappa_l)$

$$(a)_{\kappa}^{(\beta)} = \prod_{i=1}^{l} \prod_{j=1}^{\kappa_i} \left(a - \frac{i - 1}{2} \beta + j - 1 \right).$$

Definition 2.6. As in Koev and Edelman, we define the hypergeometric function $pF_q^{(\beta)}$ to be

$$pF_q^{(\beta)}(a; b; X) = \sum_{k=0}^{\infty} \sum_{l, (\kappa) \leq n} \frac{(a_1)_{\kappa_1}^{(\beta)} \cdots (a_p)_{\kappa_p}^{(\beta)}}{(b_1)_{\kappa_1}^{(\beta)} \cdots (b_q)_{\kappa_q}^{(\beta)}} \frac{C^{(\beta)}_\kappa(X) C^{(\beta)}_\kappa(Y)}{k! C^{(\beta)}_\kappa(I)}.$$

The best software available to compute this function numerically is described in Koev and Edelman, mhg, $pF_q^{(\beta)}(a; b; X) = pF_q^{(\beta)}(a; b; X, I)$. We will also need two theorems from the literature about integrals of Jack polynomials and hypergeometric functions.

Conjectured by MacDonald, proved by Baker and Forrester with the wrong constant, correct constant found using Special Functions [21, p. 406] (Corollary 8.2.2):

Proposition 2.1. Let X be a diagonal matrix.

$$C^{(\beta)}_n(a + (n - 1)\beta/2 + 1)(a + (n - 1)\beta/2 + 1)C^{(\beta)}_n(Y^{-1})$$

$$= |Y|^{n+(n-1)\beta/2+1} \int_{X > 0} pF_0^{(\beta)}(-X, Y)|X|^a C^{(\beta)}_n(X)\Delta(X)^{\beta} dX,$$
where $c_n^{(\beta)} = \pi^{-n(n-1)/4} n! \Gamma(\beta/2)^n \prod_{i=1}^{n} \Gamma(i\beta/2)$.

From [19] p.593],

Proposition 2.2. If $X < I$ is diagonal,

$$1 F_{0}^{(\beta)}(a; X) = |I - X|^{-a}.$$

Kaneko, Corollary 2 [18]:

Proposition 2.3. Let $\kappa = (\kappa_1, \ldots, \kappa_n)$ be nonincreasing and X be diagonal. Let $a, b > -1$ and $\beta > 0$.

$$\int_{0 < X < I} C_{\kappa}^{(\beta)}(X) \Delta(X)^{\beta} \prod_{i=1}^{n} \left[x_i^a (1 - x_i)^b \right] dX$$

$$= C_{\kappa}^{(\beta)}(I) \cdot \prod_{i=1}^{n} \frac{\Gamma(i\beta/2 + 1) \Gamma(\kappa_i + a + (\beta/2)(n - i) + 1) \Gamma(b + (\beta/2)(n - i) + 1)}{\Gamma((\beta/2) + 1) \Gamma(\kappa_i + a + b + (\beta/2)(2n - i - 1) + 2)}.$$

From [19] p. 595],

Proposition 2.4. Let X be diagonal,

$$2 F_{1}^{(\beta)}(a, b; c; X) = 2 F_{1}^{(\beta)}(c - a, b; c; -X(I - X)^{-1})|I - X|^{-b}$$

$$= 2 F_{1}^{(\beta)}(c - a, c - b; c; I - X)|I - X|^{c - a - b}.$$

From [19] p. 596],

Proposition 2.5. If X is $n \times n$ diagonal and a or b is a nonpositive integer,

$$2 F_{1}^{(\beta)}(a, b; c; X) = 2 F_{1}^{(\beta)}(a, b; c; I) 2 F_{1}^{(\beta)}(a, b + 1 + (n - 1)\beta/2 - c; I - X).$$

From [19] p. 594],

Proposition 2.6.

$$2 F_{1}^{(\beta)}(a, b; c; I) = \frac{\Gamma_n^{(\beta)}(c) \Gamma_n^{(\beta)}(c - a - b)}{\Gamma_n^{(\beta)}(c - a) \Gamma_n^{(\beta)}(c - b)}.$$

3. Main Theorems

Proof of Theorem 1.1. Let $m, p \geq n$. We will draw M by drawing $\Lambda \sim P(\Lambda) = \text{BetaWishart}(m, n, \beta, \Omega^2)$, and compute M by drawing $M \sim P(M|\Lambda) = \text{BetaWishart}(p, n, \beta, \Lambda^{-1})^{-1}$. The distribution of M is $\int P(M|\Lambda) P(\Lambda) d\Lambda$. Then we will compute C by $C = (M + I)^{-\frac{1}{2}}$. We use the convention that eigenvalues and generalized singular values are unordered. By the [8] BetaWishart described in the introduction, we sample the diagonal Λ from

$$P(\Lambda) = \frac{\det(\Omega)^{-m\beta}}{n! K_{m,n}^{(\beta)}} \prod_{i=1}^{n} \lambda_i^{-\frac{n + \beta}{2}} \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} \cdot \left(\frac{1}{2} \Lambda, \Omega^{-2} \right) \frac{1}{d\lambda},$$
\[K^{(\beta)}_{m,n} = \frac{2^{m\beta/2}}{\pi^{(n-1)\beta/2}} \cdot \frac{\Gamma_n^{(\beta)}(m\beta/2)\Gamma_n^{\beta}(n\beta/2)}{\Gamma(\beta/2)^n}. \]

Likewise, by inverting the answer to the Beta-Wishart described in the introduction, we can sample diagonal \(M \) from

\[P(M|\Lambda) = \frac{\det(\Lambda)^{\beta/2}}{n!K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} F_0^{(\beta)} \left(\frac{1}{2} M^{-1}, \Lambda \right) d\mu. \]

To get \(P(M) \) we need to compute

\[\frac{\det(\Omega)^{-\beta/2}}{n!2K_{1,n} K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{-\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} \int_{\lambda_1, \ldots, \lambda_n \geq 0} \det(\Lambda)^{\beta/2} \prod_{i=1}^{n} \lambda_i^{\frac{m-n-1}{2}} \prod_{i<j} |\lambda_i - \lambda_j|^{\beta/2} F_0^{(\beta)} \left(\frac{1}{2} \Omega^{-2}, -\Lambda \right) \lambda_0 F_0^{(\beta)} \left(-\frac{1}{2} M^{-1}, \Lambda \right) d\lambda. \]

Expanding the hypergeometric function, this is

\[\frac{\det(\Omega)^{-\beta/2}}{n!2K_{1,n} K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} \int_{\lambda_1, \ldots, \lambda_n \geq 0} \det(\Lambda)^{\beta/2} \prod_{i=1}^{n} \lambda_i^{\frac{m-n-1}{2}} \prod_{i<j} |\lambda_i - \lambda_j|^{\beta/2} F_0^{(\beta)} \left(\frac{1}{2} \Omega^{-2}, -\Lambda \right) C_\kappa^{(\beta)}(\Lambda) d\lambda. \]

Using Proposition 2.1,

\[\frac{\det(\Omega)^{-\beta/2}}{n!2K_{1,n} K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} \int_{\lambda_1, \ldots, \lambda_n \geq 0} \det(\Lambda)^{\beta/2} \prod_{i=1}^{n} \lambda_i^{\frac{m-n-1}{2}} \prod_{i<j} |\lambda_i - \lambda_j|^{\beta/2} F_0^{(\beta)} \left(\frac{1}{2} \Omega^{-2}, -\Lambda \right) C_\kappa^{(\beta)}(\Lambda) d\lambda. \]

Cleaning things up,

\[\frac{\det(\Omega)^{\beta/2}}{n!K_{1,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{-\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} \int_{\lambda_1, \ldots, \lambda_n \geq 0} \det(\Lambda)^{\beta/2} \prod_{i=1}^{n} \lambda_i^{\frac{m-n-1}{2}} \prod_{i<j} |\lambda_i - \lambda_j|^{\beta/2} F_0^{(\beta)} \left(\frac{m+p}{2}, \beta \right) \frac{m+p}{2} \beta \right) C_\kappa^{(\beta)}(\Lambda) d\lambda. \]

By the definition of the hypergeometric function, this is

\[\frac{\det(\Omega)^{\beta/2}}{n!K_{1,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^{n} \mu_i^{-\frac{p-n+1}{2}} \prod_{i<j} |\mu_i - \mu_j|^{\beta/2} F_0^{(\beta)} \left(\frac{m+p}{2}, \beta \right) \left(-\frac{1}{2} M^{-1}, \Omega^2 \right) d\mu. \]
Converting to cosine form, \(C = \text{diag}(c_1, \ldots, c_n) = (M + I)^{-1/2} \), this is
\[
\frac{2^n K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \det(\Omega)^{p\beta} \prod_{i=1}^n c_i^{(p-n+1)\beta-1} \prod_{i=1}^n (1 - c_i^2)^{-\frac{m+n-1}{2}\beta-1} \prod_{i<j} |c_i^2 - c_j^2|^\beta \times \Gamma_0^{(\beta)} \left(\frac{m+p}{2}, \beta; C_2 (C^2 - I)^{-1}, \Omega^2 \right) du. (3.2)
\]

Theorem 3.1. If we set \(\Omega = I \) and \(u_i = c_i^2, (u_1, \ldots, u_n) \) obey the standard Jacobian density of [3], [4], [5], and [6].
\[
\frac{K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^n u_i^{-\frac{p-n+1}{2}\beta-1} \prod_{i=1}^n (1 - u_i)^{-\frac{m-n+1}{2}\beta-1} \prod_{i<j} |u_i - u_j|^\beta du. (3.3)
\]

Proof. Proposition 2.2 works from the statement of Theorem 1.1 because \(C^2 (C^2 - I)^{-1} < I \) (we know that \(M > 0 \) from how it is sampled, so \(0 < C^2 = (M+I)^{-1} < I \), likewise \(C^2 - I \)).
\[
\frac{2^n K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^n c_i^{(p-n+1)\beta-1} \prod_{i=1}^n (1 - c_i^2)^{-\frac{m-n-1}{2}\beta-1} \prod_{i<j} |c_i^2 - c_j^2|^\beta \times \det(I - C^2 (C^2 - I)^{-1})^{-\frac{m+n}{2}\beta} dc,
\]
or equivalently
\[
\frac{2^n K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^n c_i^{(p-n+1)\beta-1} \prod_{i=1}^n (1 - c_i^2)^{-\frac{m-n+1}{2}\beta-1} \prod_{i<j} |c_i^2 - c_j^2|^\beta dc.
\]
If we substitute \(u_i = c_i^2 \), by the change-of-variables theorem we get the desired result.

Proof of Theorem 1.2. Let \(H = \text{diag}(\eta_1, \ldots, \eta_n) = M^{-1} \). Changing variables from (3.1) we get
\[
\frac{\det(\Omega)^{p\beta} K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \prod_{i=1}^n \eta_i^{-\frac{p-n+1}{2}\beta-1} \prod_{i<j} |\eta_i - \eta_j|^\beta \cdot \Gamma_0^{(\beta)}((m+p)\beta/2; H, -\Omega^2) d\eta.
\]
Taking the maximum eigenvalue, following mvs.pdf,
\[
P(H < xI) = \frac{\det(\Omega)^{p\beta} K_{m+p,n}^{(\beta)}}{n! K_{m,n}^{(\beta)} K_{p,n}^{(\beta)}} \times \int_{H < xI} \prod_{i=1}^n \eta_i^{-\frac{p-n+1}{2}\beta-1} \prod_{i<j} |\eta_i - \eta_j|^\beta \cdot \Gamma_0^{(\beta)}((m+p)\beta/2; H, -\Omega^2) d\eta,
\]
Letting \(N = \text{diag}(\nu_1, \ldots, \nu_n) = H/x \), changing variables again we get

\[
P(H < x) = \frac{\det(\Omega)^{\nu_2/2}}{n!K_{m,n}^{(\nu_2/2)}} \cdot x^{\nu_2/2} \\
\times \int_{N < I} \prod_{i=1}^{n} \frac{\nu_i^{p-n+1} - 1}{\nu_i - \nu_j} |\nu_i - \nu_j|^{\beta} \cdot \frac{1}{\nu_i! \nu_j! \nu_i \nu_j} \cdot \int_{N < x^{2 \nu_2}} |\nu_i - \nu_j|^{\beta} \cdot C_{\kappa}^{(\beta)}(N) d\nu.
\]

Expanding the hypergeometric function we get

\[
P(H < x) = \frac{\det(\Omega)^{\nu_2/2}}{n!K_{m,n}^{(\nu_2/2)}} \cdot x^{\nu_2/2} \times \left[\prod_{i=1}^{n} \frac{\nu_i^{p-n+1} - 1}{\nu_i - \nu_j} \int_{N < x^{2 \nu_2}} |\nu_i - \nu_j|^{\beta} \cdot C_{\kappa}^{(\beta)}(N) d\nu \right]. \tag{3.4}
\]

Using Proposition 2.3,

\[
\prod_{i=1}^{n} \frac{\Gamma((\beta/2)(p+1-i)) \Gamma((\beta/2)(p+1-\nu_i)) \Gamma((\beta/2)(p+1-\nu_i))}{\Gamma((\beta/2)(p+1-n+i)) \Gamma((\beta/2)(p+1-n+i))} = \frac{C_{\kappa}^{(\beta)}(I) \Gamma_n^{(\beta)}((n\beta/2)+1) \Gamma_n^{(\beta)}(\cdot) + 1)}{\pi^{n(n-1)/2} \Gamma((\beta/2)+1)^{n}} \prod_{i=1}^{n} \frac{\Gamma((\beta/2)(p+1-i)) \Gamma((\beta/2)(p+1-i))}{\Gamma((\beta/2)(p+1-n+i)) \Gamma((\beta/2)(p+1-n+i))}
\]

Now

\[
\prod_{i=1}^{n} \frac{\Gamma((\beta/2)(p+1-i))}{\Gamma((\beta/2)(p+1-n+i))} = \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))} \cdot \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}
\]

\[
= \pi^{-\frac{n(n-1)}{4}} \Gamma_n^{(\beta)}((\beta/2)(p+1-i)) \Gamma_n^{(\beta)}(p+1-i) \cdot \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}
\]

\[
= \pi^{-\frac{n(n-1)}{4}} \Gamma_n^{(\beta)}((p+1-n-1)(\beta/2)+1) \cdot \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}
\]

\[
= \pi^{-\frac{n(n-1)}{4}} \Gamma_n^{(\beta)}((p+1-n-1)(\beta/2)+1) \cdot \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}
\]

\[
= \pi^{-\frac{n(n-1)}{4}} \Gamma_n^{(\beta)}((p+1-n-1)(\beta/2)+1) \cdot \frac{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}{\prod_{i=1}^{n} \Gamma((\beta/2)(p+1-n+i))}
\]
Therefore,

\[
\int_{N<1} \prod_{i=1}^{n} \nu_{i}^{x_{i}} \beta^{-1} \prod_{i<j} (\nu_{i} - \nu_{j})^{\beta} \cdot C_{\kappa}^{(\beta)}(N) \, d\nu
\]

\[
= \frac{C_{\kappa}^{(\beta)}(I) \Gamma_{n}^{(\beta)}((n\beta)/2 + 1) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1) \Gamma_{n}^{(\beta)}(p\beta/2)}{\pi^{n(n-1)\beta/2} \Gamma((p + n - 1)\beta/2 + 1)}
\]

Using (3.4) and the definition of the hypergeometric function we get

\[
P(H < xI) = \frac{\det(\Omega)^{\beta}}{n! \kappa_{m,n}^{(\beta)} \kappa_{p,n}^{(\beta)}} \cdot \frac{\prod_{i=1}^{n} (\Gamma((n\beta)/2 + 1) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1))}{\prod_{i=1}^{n} \Gamma((i\beta)/2 + 1)^{\beta} \Gamma_{n}^{(\beta)}((p + n - 1)\beta/2 + 1))}
\]

Rewriting the constant we get

\[
\frac{\Gamma((\beta)/2)^{\beta} \Gamma_{n}^{(\beta)}((m + p)\beta/2)}{n! \kappa_{m,n}^{(\beta)} \kappa_{p,n}^{(\beta)}} \cdot \frac{\prod_{i=1}^{n} (\Gamma((n\beta)/2 + 1) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1))}{\prod_{i=1}^{n} \Gamma((i\beta)/2 + 1)^{\beta} \Gamma_{n}^{(\beta)}((p + n - 1)\beta/2 + 1))}
\]

The left fraction in parentheses is

\[
\frac{1}{\prod_{i=1}^{n} (i\beta/2)} \cdot \frac{\prod_{i=1}^{n} \Gamma((n\beta)/2 + 1 - (i - 1)\beta/2)}{n! \kappa_{m,n}^{(\beta)} \kappa_{p,n}^{(\beta)}} \cdot \frac{\prod_{i=1}^{n} \Gamma((i\beta)/2 + 1)}{\prod_{i=1}^{n} \Gamma((i\beta)/2)} = 1.
\]

Hence

\[
P(H < xI) = \det(\Omega)^{\beta} \cdot \frac{\Gamma_{n}^{(\beta)}((m + p)\beta/2) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1))}{\Gamma_{n}^{(\beta)}((m\beta/2) \Gamma_{n}^{(\beta)}((p + n - 1)\beta/2 + 1))}
\]

\[
\times \frac{n! \kappa_{m,n}^{(\beta)} \kappa_{p,n}^{(\beta)}}{\prod_{i=1}^{n} (i\beta/2)} \cdot \frac{\prod_{i=1}^{n} \Gamma((i\beta)/2 + 1)}{\prod_{i=1}^{n} \Gamma((i\beta)/2)} \cdot \frac{\Gamma_{n}^{(\beta)}((n\beta)/2 + 1))}{\Gamma_{n}^{(\beta)}((n + p - 1)\beta/2 + 1))}
\]

\[
\times \left(\frac{x^{2}}{1 - x^{2}} \right)^{\beta} \cdot 2F_{1}(\beta) \left(\frac{m + p}{2\beta} \cdot \frac{p + n - 1}{2\beta} + 1; -x\Omega^{2} \right). \quad (3.5)
\]

Now \(H = M^{-1} \) and \(C = (M + I)^{-1/2} \), so equivalently,

\[
P(C < xI) = \det(\Omega)^{\beta} \cdot \frac{\Gamma_{n}^{(\beta)}((m + p)\beta/2) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1))}{\Gamma_{n}^{(\beta)}((m\beta/2) \Gamma_{n}^{(\beta)}((p + n - 1)\beta/2 + 1))}
\]

\[
\times \left(\frac{x^{2}}{1 - x^{2}} \right)^{\beta} \cdot 2F_{1}(\beta) \left(\frac{m + p}{2\beta} \cdot \frac{p + n - 1}{2\beta} + 1; -x^{2}/1 - x^{2} \cdot \Omega^{2} \right). \quad (3.6)
\]

Remark. Using \(U = \text{diag}(u_{1}, \ldots, u_{n}) = C^{2} \) and setting \(\Omega = I \) this is

\[
P(U < xI) = \frac{\Gamma_{n}^{(\beta)}((m + p)\beta/2) \Gamma_{n}^{(\beta)}(((n - 1)\beta)/2 + 1))}{\Gamma_{n}^{(\beta)}((m\beta/2) \Gamma_{n}^{(\beta)}((p + n - 1)\beta/2 + 1))}
\]

\[
\times \left(\frac{x}{1 - x} \right)^{\beta} \cdot 2F_{1}(\beta) \left(\frac{m + p}{2\beta} \cdot \frac{p + n - 1}{2\beta} + 1; -x/1 - x \cdot I \right),
\]
so by using Proposition 2.4, this is

\[P(U < xI) = \frac{\Gamma_n(\beta) ((m+p)\beta/2) \Gamma_n((n-1)\beta/2) + 1)}{\Gamma_n(\beta) (m\beta/2) \Gamma_n((n+p-1)\beta/2) + 1)}
\times x^{m+p/2} \cdot \begin{aligned} & 2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p+n-1}{2} \beta + 1; xI \right), \end{aligned} \]

which is familiar from Dumitriu and Koev [6].

Now back to the proof of Theorem 1.2. If we use Proposition 2.4 on (3.6) we get

\[P(C < xI) = \det(x^2 \Omega^2 ((1-x^2)I + x^2 \Omega^2)^{-1})^{\frac{m+p}{2}} \frac{\Gamma_n(\beta) ((m+p)\beta/2) \Gamma_n((n-1)\beta/2) + 1)}{\Gamma_n(\beta) (m\beta/2) \Gamma_n((n+p-1)\beta/2) + 1)}
\times 2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p+n-1}{2} \beta + 1; x^2 \Omega^2 ((1-x^2)I + x^2 \Omega^2)^{-1} \right). \]

(3.7)

Using the approach of Dumitriu and Koev [6], let \(t = (m-n+1)\beta/2 - 1 \) in \(\mathbb{Z}_{\geq 0} \). We can prove that the series truncates: Looking at (3.7), the hypergeometric function involves the term

\[(-t)_\kappa = \prod_{i=1}^n \prod_{j=1}^{\kappa_i} \left(-t - \frac{i-1}{2} \beta + j - 1\right), \]

which is zero when \(i = 1 \) and \(j - 1 = t \), so the series truncates when any \(\kappa_i \) has \(\kappa_i - 1 \geq t \), or just \(\kappa_1 = t + 1 \). This must happen if \(k > nt \). Thus (3.7) is just a finite polynomial,

\[P(C < xI) = \det(x^2 \Omega^2 ((1-x^2)I + x^2 \Omega^2)^{-1})^{\frac{m+p}{2}} \frac{\Gamma_n(\beta) ((m+p)\beta/2) \Gamma_n((n-1)\beta/2) + 1)}{\Gamma_n(\beta) (m\beta/2) \Gamma_n((n+p-1)\beta/2) + 1)}
\times \sum_{k=1}^{nt} \sum_{\kappa \in k, \kappa \leq t} \frac{(n-m-1)\beta/2 + 1)_\kappa (p\beta/2)_\kappa}{(p+n-1)\beta/2 + 1 + \epsilon)_\kappa} \cdot C_\kappa(x^2 \Omega^2 ((1-x^2)I + x^2 \Omega^2)^{-1}). \]

(3.8)

Let \(Z \) be a positive-definite diagonal matrix, and \(\epsilon \) a real with \(|\epsilon| > 0 \). Define

\[f(Z, \epsilon) = \sum_{k=1}^{nt} \sum_{\kappa \in k, \kappa \leq t} \frac{(n-m-1)\beta/2 + 1)_\kappa (p\beta/2)_\kappa}{(p+n-1)\beta/2 + 1 + \epsilon)_\kappa} \cdot C_\kappa(Z). \]

Using Proposition 2.5,

\[f(Z, \epsilon) = 2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p+\epsilon}{2} ; \frac{n-m-1}{2} \beta + 1 + \epsilon; I \right)
\times 2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p+n-1}{2} \beta + 1 - \epsilon; I - Z \right) \]

(3.9)
Using the definition of the hypergeometric function and the fact that the series must truncate,

$$f(Z, \epsilon) = {}_2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p}{2} \beta; \frac{p+n-1}{2} \beta + 1; I \right)$$

$$\times \sum_{k=1}^{n_t} \sum_{\kappa \vdash k, \kappa_1 \leq t} \frac{(n-m-1)\beta/2 + 1)^{\beta}}{(n-m-1)\beta/2 + 1 - \epsilon)^{\beta}} C^{(\beta)}(I - Z)$$ \hspace{1cm} (3.10)

Now the limit is obvious

$$f(Z, 0) = {}_2F_1(\beta) \left(\frac{n-m-1}{2} \beta + 1, \frac{p}{2} \beta; \frac{p+n-1}{2} \beta + 1; I \right)$$

$$\times \sum_{k=1}^{n_t} \sum_{\kappa \vdash k, \kappa_1 \leq t} (p\beta/2)^{\beta} C^{(\beta)}(I - Z).$$ \hspace{1cm} (3.11)

Plugging this expression into (3.8)

$$P(C < x I) = \det(x^2 \Omega^2((1-x^2)I + x^2 \Omega^2)^{-1})^{p\beta} \frac{\Gamma^{(\beta)}((m+p)\beta/2)\Gamma^{(\beta)}((n-1)\beta/2) + 1}{\Gamma^{(\beta)}(m\beta/2)\Gamma^{(\beta)}((n+p-1)\beta/2 + 1)}$$

$$\times \sum_{k=1}^{n_t} \sum_{\kappa \vdash k, \kappa_1 \leq t} (p\beta/2)^{\beta} C^{(\beta)}((1-x^2)((1-x^2)I + x^2 \Omega^2)^{-1}).$$

Cancelling via Proposition 2.6 gives

$$P(C < x I) = \det(x^2 \Omega^2((1-x^2)I + x^2 \Omega^2)^{-1})^{p\beta}$$

$$\times \sum_{k=1}^{n_t} \sum_{\kappa \vdash k, \kappa_1 \leq t} \frac{1}{k!} (p\beta/2)^{\beta} C^{(\beta)}((1-x^2)((1-x^2)I + x^2 \Omega^2)^{-1}).$$ \hspace{1cm} (3.12)

4. Numerical Evidence

The plots below are empirical cdf’s of the greatest generalized singular value as sampled by the BetaMANOVA pseudocode in the introduction (the blue lines) against the Theorem 1.2 formula for them as calculated by mhg (red x’s).

Acknowledgments

We acknowledge the support of the National Science Foundation through grants SOLAR Grant No. 1035400, DMS-1035400, and DMS-1016086. Alexander Dubbs was funded by the NSF GRFP.
Fig. 1. Empirical vs. analytic when $m = 7$, $n = 4$, $p = 5$, $\beta = 2.5$, and $\Omega = \text{diag}(1, 2, 2.5, 2.7)$.

Fig. 2. Empirical vs. analytic when $m = 9$, $n = 4$, $p = 6$, $\beta = 3$, and $\Omega = \text{diag}(1, 2, 2.5, 2.7)$.
References

[1] Ioana Dumitriu and Alan Edelman, “Matrix models for beta ensembles,” *Journal of Mathematical Physics*, Volume 43, Number 11, November, 2002.

[2] Ross A. Lippert, “A matrix model for the β-Jacobi ensemble,” *Journal of Mathematical Physics*, Volume 44, Number 10, October, 2003.

[3] Rowan Killip and Irina Nenciu, “Matrix Models for Circular Ensembles,” *International Mathematics Research Notices*, No. 50, 2004.

[4] Peter J. Forrester, Eric M. Rains, “Interpretations of some parameter dependent generalizations of classical matrix ensembles,” *Probability Theory and Related Fields*, Volume 131, Issue 1, pp. 1-61, January, 2005.

[5] Alan Edelman and Brian D. Sutton, “The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems,” *Foundations of Computational Mathematics*, 259-285 (2008).

[6] Ioana Dumitriu and Plamen Koev, “Distributions of the extreme eigenvalues of Beta-Jacobi random matrices,” *SIAM Journal of Matrix Analysis and Applications*, Volume 30, Number 1, 2008.

[7] Peter J. Forrester, “Probability densities and distributions for spiked Wishart β-ensembles,” 2011, http://arxiv.org/abs/1101.2261

[8] Alexander Dubbs, Alan Edelman, Plamen Koev, and Praveen Venkataramana, “The Beta-Wishart Ensemble,” 2017, http://arxiv.org/abs/1305.3561

[9] R. A. Fisher, “The sampling distribution of some statistics obtained from non-linear equations,” *Ann. Eugenics* 9, 238-249, 1939.

[10] P. L. Hsu, “On the distribution of roots of certain determinantal equations,” *Ann. Eugenics* 9, 250-258, 1939.

[11] S. N. Roy, “p-Statistics and some generalizations in analysis of variance appropriate to multivariate problems,” *Sankhya* 4, 381-396, 1939.

[12] A. G. Constantine, “Some non-central distribution problems in multivariate analysis,” *Ann. Math. Statist.* Volume 34, Number 4, (1963).

[13] Alan T. James, “Distributions of matrix variates and latent roots derived from normal samples,” *Ann. Math. Statist.* Volume 35, Number 2, (1964).

[14] Plamen Koev and Alan Edelman, “The Efficient Evaluations of the Hypergeometric Function of a Matrix Argument,” *Mathematics of Computation*, Volume 75, Number 254, Pages 833-846, January 19, 2006. Code available at http://www-math.mit.edu/~plamen/software/mhgref.html

[15] Alan Edelman, “The random matrix technique of ghosts and shadows,” *Markov Processes and Related Fields*, 2010.

[16] I. G. Macdonald, “Hypergeometric functions,” unpublished manuscript.

[17] T. H. Baker, P. J. Forrester, “The Calogero-Sutherland Model and Generalized Classical Polynomials,” *Communications in Mathematical Physics*, Volume 188, Issue 1, September, 1997.

[18] Jyoichi Kaneko, “Selberg integrals and hypergeometric functions associated with Jack polynomials,” *SIAM Journal on Mathematical Analysis*, Volume 24, Issue 4, July 1993.

[19] P. J. Forrester, *Log-Gases and Random Matrices*, London Mathematical Society Monographs Series, vol. 34, Princeton University Press, Princeton, NJ, 2010.

[20] Ioana Dumitriu, Alan Edelman, Gene H. Shuman, “MOPS: Multivariate orthogonal polynomials (symbolically),” *Journal of Symbolic Computation*, Volume 42, Issue 6, June, 2007.

[21] George E. Andrews, Richard Askey, and Ranjan Roy, *Special Functions*, Cambridge University Press, 1999.