A Novel Method of Discrete-Time Amplification using NEMS Devices

Sivaneswaran Sankar, Maryam Shojaei Baghini, Valipe Ramgopal Rao
Dept. of Electrical Engineering
Indian Institute of Technology Bombay
Mumbai, India
{shivaneswaran, mshojaei, rrao}@ee.iitb.ac.in

Abstract—In this paper we propose a novel method of realizing discrete-time (D-T) signal amplification using Nano-Electro-Mechanical (NEMS) devices. The amplifier uses mechanical devices instead of traditional solid-state circuits. The proposed NEMS-based D-T amplifier provides high gain and operate on a wide dynamic range of signals, consuming only a few micro watts of power. The proposed concept is subsequently verified using Verilog-A model of the NEMS device. Modifications in the proposed amplifier to suit different specifications are also presented.

Keywords—NEMS Capacitive switch; NEMS Ohmic switch
Switched capacitor circuits; Parametric amplifier

I. INTRODUCTION

The development of integrated circuits using mechanical switches has attracted significant interest in the recent years due to its potential in reducing the overall energy consumption of the system [1]-[8]. Many have utilized NEMS switches for digital logic application, owing to its high ratio of resistances in the on-state and off-state. In [9], continuous-time amplification of the signal using variable MEMS capacitor is achieved. NEMS switch as a transconductance element is proposed in [10] for analog applications.

Switched capacitor networks are inherently present in many ADCs, DACs, DC-DC converters and so on. The most common signal processing function needed is the amplification. In D-T systems, amplification of the input signal is traditionally implemented using a capacitive feedback around an operational amplifier (op-amp) [11], as shown in Fig.1. In the sampling phase (ϕ₁), the input “Vₘ” is sampled across capacitor C₁. In the hold phase (ϕ₂), the charge “C₁Vₘ” which was present initially in C₁ is transferred to the capacitor C₂ by the op-amp. Hence, if C₂ < C₁, one can obtain a voltage gain equal to C₁/C₂.

Fig. 1. Traditional switched capacitor amplifier (from [11])

Specifications of the op-amp greatly influence the performance of the D-T amplifier and it is the most power hungry block. Some of the reported works in which D-T amplification was performed without using op-amp are reported in [12]-[15]. In [12] comparator is used while [13] uses dynamic source follower, [14] employs charge pump technique and [15] utilizes MOS varactor. In this work we propose to utilize NEMS devices for performing D-T signal amplification. The proposed amplifier can provide high gain for wide range of signals and can be modified for different gain or voltage specifications.

This paper is organized as follows. In Section II, the terminal characteristics of the NEMS devices are presented. Section III describes the concept of D-T amplification using NEMS. In Section IV, the simulation results are discussed.

II. PRINCIPLE OF OPERATION OF NEMS SWITCH

In this work, two kinds of NEMS devices are utilized: (1) NEMS capacitive switch (for signal amplification), (2) NEMS ohmic switch (for sampling the signal).

A. NEMS Capacitive Switch

The schematic of the NEMS capacitive switch is shown in Fig. 2(a). The beam clamped at two ends, forms the top plate of the capacitor. Between the top plate and the bottom plate there is a bi-layer consisting of air and a dielectric material (εr). If the electrostatic force (due to applied voltage) between the two plates is higher than the spring restoring force of the beam, then the beam gets pulled-in and the switch is set in on-state, else it is off. For the on-condition, |V| > |V₉₀| (pull-in voltage) and for the off-condition, |V| < |V₉₀| (pull-out voltage). Fig. 2(b) depicts the state of the switch in off and on-state. The C-V
curve and transient characteristics of the NEMS capacitive switch modeled using Verilog-A [16] is plotted in Fig. 3.

Fig.3. (a) C-V curve, (b) Transient characteristics of NEMS Capacitive switch

B. NEMS Ohmic Switch

The side view and top view of the NEMS ohmic switch is shown in Fig.4. (a) and (b) respectively. The cantilever beam fixed at one end forms the gate terminal, to which the floating channel is attached through the dielectric material. The electrostatic attractive force between the gate and body sets the state of the switch. For the on-condition, $V_{\text{ON}}>V_{\text{n}}$ (pull-in voltage) and for the off-condition, $V_{\text{OFF}}<V_{\text{n}}$ (pull-out voltage). Fig.5. (c) depicts the state of the switch in off and on-condition. The I-V characteristics and the transient characteristics of the NEMS ohmic switch modeled using Verilog-A [16] is plotted in Fig. 5.

Fig.4. (a) Side view of NEMS Ohmic switch, (b) Top view of the switch, (c) cross section of the switch along A-A’ during off and on-state

III. CONCEPT OF D-T AMPLIFICATION USING NEMS

Fig.6. Schematic of the NEMS D-T amplifier. v_{in} is the signal that is being amplified ($v_{\text{in}}<V_{\text{DC}}$) and $V_{\text{DC}} > V_{\text{F}}$ of NEMS Capacitive switch.

The schematic of the D-T amplifier using NEMS is given in Fig.6, where C_A and C_B represent the NEMS capacitive switch and the three NEMS ohmic switches are controlled by clock signals. “V_{DC}” is assumed to be greater than the pull-in voltage of the NEMS capacitive switch and “v_{in}” is the signal that is being amplified. The mechanism of amplification is depicted step wise in Fig.7.

Fig.7. Stages of amplification: (a)Sample Phase $0<t<T/2$, (b)Beginning of hold Phase $t=(T/2)^*$, (c)Intermediate period $t=(T/2)^*$, (d) Final step $T/2<T$. Charges are denoted in red color. T - Time period of Clock.

Step (a): During the sample phase (CLK=1) the voltages “$v_{\text{in}}+V_{\text{DC}}$” and “$v_{\text{in}}-V_{\text{DC}}$” are sampled across the two NEMS capacitors as shown in Fig. 7. (a). If $|v_{\text{in}}+V_{\text{DC}}| > V_{\text{F}}$, the beams get pulled-in due to the always attractive nature of the electrostatic forces. Hence the voltages are sampled across a larger capacitance “C_{ON}”.

Step (b): Now in the hold phase (CLK=0), moment the two capacitors are shorted as shown in Fig.7. (b), charges flows from C_A (left one) to C_B (right one) due to the difference in potentials across them. The total charge in the top plates of the capacitors are given by, $Q_{\text{TOTAL}} = Q_{\text{ON}}(v_{\text{in}}+V_{\text{DC}})+Q_{\text{ON}}(v_{\text{in}}-V_{\text{DC}})$.

Step (c): As evident, the charge due to V_{DC} gets cancelled and $Q_{\text{TOTAL}} = 2\times Q_{\text{ON}}(v_{\text{in}})$. The voltage across the capacitors is now “v_{in}”, which is as shown in Fig. 7. (c) and is assumed to be lesser than the pull-out voltage of the NEMS capacitive switch.

Step (d): Since “$v_{\text{in}}<V_{\text{F}}$”, the beams get released due to the fact that electrostatic force is not strong enough to overcome the spring force of the beam. As a result, the capacitances C_A and C_B reduce to C_{OFF}. For the charge conservation to hold, $Q_{\text{TOTAL}} = 2\times Q_{\text{OFF}}(v_{\text{out}}) = 2\times Q_{\text{ON}}(v_{\text{in}})$. Hence v_{out} gets amplified to $(C_{\text{ON}}/C_{\text{OFF}})\times v_{\text{in}}$.

Fig.5. (a) I-V curve, (b) Transient characteristics of NEMS Ohmic switch
IV. Simulation Results of the NEMS D-T Amplifier

A. Waveforms

Fig. 8. Circuit implementation of the D-T amplifier using Verilog-A model.

The implementation of the D-T amplifier in Cadence using Verilog-A model is shown in Fig. 8. Based on the parameters of the NEMS capacitive switch described in Section II, the maximum voltage gain achievable is 39. The clock signals are provided through the non-overlapping clock generator circuit (not shown here). The clock frequency \(f_{\text{CLK}} \) and \(V_{\text{DC}} \) is chosen to be 100 kHz and 10 V (throughout the work). Let’s consider “\(v_{\text{in}} \)” to be a DC signal equal to 10mV. The voltages at node A and B are plotted in Fig. 9.

In the sample phase, “10mV+10V” is sampled across \(C_A \) and “10mV-10V” is sampled across \(C_B \). In the hold phase, the voltage across the node A and B are equal to 389.9 mV, thus providing a gain equal to 38.99. Important internal variables of the NEMS capacitor \(C_A \) that is connected to node A is shown in Fig. 10. The circuit in Fig. 8 effectively performs the function of the circuit shown in Fig. 1. For a sinusoidal input signal, the sampled and amplified differential output waveform is plotted in Fig. 11.

Fig. 9. Voltage waveforms at Node “A” and “B”. \(v_{\text{in}} = 10 \text{mV} \).

Fig. 10. Detailed transient characteristics of the NEMS Capacitive switch “\(C_A \)”.

Fig. 11. Sample and hold amplification of sinusoidal input using differential NEMS D-T amplifier. Peak differential \(v_{\text{in}} \) is 10mV at a frequency of 10 KHz.

B. Non-idealities

One important point to consider is that, the amplified signal “\(v_{\text{out}} \)” will cause the beam to displace and change the value of capacitance in the off-state. From Fig. 3, we can observe that the capacitance in the “off-state” of the NEMS capacitive switch changes with its terminal voltage in a negligible fashion (i.e slope=0) until the pull-out point. Hence it gives rise to weak non-linearity as evident from Fig. 12, where the gain (denoted in blue color) drops only by 8% for an increase in the input amplitude by 175x.

Fig. 12. Variation of gain with respect to the input signal without parasitics of ohmic switch (blue colour) and with parasitics included (red colour).

Another major non-ideality that has to be accounted is the parasitic capacitances of the ohmic switch. Because, clock feed through and charge sharing at node “A” and “B” significantly affects the output voltage. In order to reduce its effect, the clock signal can be applied to the body terminal instead of gate and have multiple NEMS capacitive switch in

Fig. 13. Modification to NEMS D-T amplifier for reducing the effect of parasitic capacitances of the ohmic switch.
parallel (say 10 parallel devices) instead of one, as shown in Fig. 13. In this way, the effect of parasitic capacitances can be reduced and the variation of gain in the modified circuit shown in Fig. 13 is plotted in Fig. 12 (denoted in red color). With the modified circuit as shown in Fig. 13, gain drops from its nominal value of 39 by 15% due to the charge sharing effect at nodes “A” and “B”, which is evident from the gain plot in Fig. 12 (denoted in red color).

C. Power Dissipation

The power dissipated in the NEMS DT-ampilifier is only dynamic in nature. Since \(v_{\text{in}}, V_{\text{CLK}} \ll V_{\text{DC}} \) and \(C_{\text{BB}}, C_{\text{GC}} \ll \left(m \times C_{\text{A}} \right) \), the total power consumption of the amplifier is approximately given by \(2 \times \{ mC_{\text{AF}}V_{\text{DC}} \}^2 \). Using the parameters of the amplifier discussed above, the total power consumed is 6.3 \(\mu \text{W} \).

D. Scaling of NEMS Capacitive switch

As we saw in previous subsections, the main element which enables amplification is the NEMS capacitive switch (through its variable capacitance). For an amplifier to have higher dynamic range, higher \(V_{\text{PI}} \) is required. Hence for lower dynamic range applications, the \(V_{\text{FS}} \) can be reduced for lower power dissipation. Apart from the NEMS capacitive device used earlier, Table I shows two other prospective scaled versions of the device for different amplifier requirements. The C-V curve of the scaled versions of the device is plotted in Fig. 14.

TABLE I

Parameters of NEMS Capacitive switch	High voltage	Low voltage	Low voltage
	High gain	Low gain	Low gain
L (\(\mu \text{m} \))	Large device	Scalded version of device	
W (\(\mu \text{m} \))	8.5	5	5
t (\(\text{nm} \))	1.6	1	1
Lc (\(\text{mm} \))	100	75	75
gc (\(\text{mm} \))	7.9	4	4
\(t_{\text{ox}} \) (\(\text{nm} \))	135	50	50
\(t_{\text{s}} \) (\(\text{nm} \))	27	10	20
\(e_{\text{f}} \) \(\times 10^7 \)	7.6	76	76
\(V_{\text{PI}}/V_{\text{MD}} \)	9.6V/6.2V, 3.8V/2.4V, 4.0V/2.7V		
\(C_{\text{ox}}/C_{\text{corr}} \)	31.5F/0.81F, 26.91F/0.71F, 13.5F/0.71F		
Voltage gain	39	39	20

*Determines voltage gain, *a in previous sub-sections; *one possible scaling

Fig. 14. C-V curve of scaled low voltage NEMS capacitive switch. Blue color corresponds to high gain and red color corresponds to low gain application.

V. CONCLUSION

In this paper we have presented a new method of realizing a D-T amplifier using NEMS devices and is subsequently verified using the Verilog-A model. This opens up new application of utilizing NEMS devices for analog applications, instead of just being traditionally used as a passive switch. Even though lot of challenges lie ahead in realizing the above concept through fabricated devices, it provides a promising solution of reducing the energy consumption in ICs.

REFERENCES

[1] M. Spencer et al., “Demonstration of integrated microelectromechanical relay circuits for vlsi applications,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 308–320, 2011.

[2] V. Pott et al., “Mechanical computing redux: Relays for integrated circuit applications,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2076–2094, 2010.

[3] R. Venkatabrahmanian, S. K. Manohar, and P. T. Balsara, “NEM relay-based sequential logic circuits for low-power design,” Nanotech., IEEE Trans., vol. 9, no. 3, pp. 386–398, May 2013.

[4] D. Lee et al., “Combinational logic design using six-terminal NEM relays,” Comput.-Aided Des. Integr. Circuits Syst., IEEE Trans., vol. 32, no. 5, pp. 653–666, May 2013.

[5] J. Fujiki et al., “Microelectromechanical relay and logic circuit design for zero crowbar current,” IEEE Trans. Electr. Dev., vol. 61, no. 9, pp. 3296–3302, Sept. 2014.

[6] C. Chen et al., “Efficient FPGAs using nanoelectromechanical relays,” Proceedings of the 18th annual ACM/SIGDA International symposium on Field programmable gate arrays, pp. 273–282, 2010.

[7] S. Chong et al., “Nanoelectromechanical (NEM) relays Integrated with CMOS SRAM for improved stability and low Leakage,” IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD) – Digest of Technical Papers, San Jose, CA, 2009, pp. 478–484.

[8] W. Y. Choi, T. Osabe, and T.-J. K. Liu, “Nano-electro-mechanical nonvolatile memory (NEMory) cell design and scaling,” IEEE Trans. Electron Devices, vol. 55, no. 12, pp. 3482–3488, Dec. 2008.

[9] J. P. Raskin, A. R. Brown, B. T. Yakub, and G. M. Rebeiz, “A novel parametric-effect MEMS amplifier,” J. Microelectromech. Syst., vol. 9, no. 6, pp. 528–537, Dec. 2000.

[10] K. Akarvardar and H.-S. P. Wong, “Analog nanoelectromechanical relay with tunable transconductance,” IEEE Electron Device Lett., vol. 30, no. 11, pp. 1143–1145, Nov. 2009.

[11] B. Razavi, “Design of Analog CMOS Integrated circuits,” International edition. McGraw-Hill, 2002.

[12] S. Lee, A. Chandrakasan and H.-S. Lee, “A 12 b 5-to-50 MS/s 0.5-to-1 V voltage scalable zero crossing based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1603–1614, Jul. 2012.

[13] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1057–1066, Apr. 2009.

[14] I. Ahmed, J. Mulder, and D. A. Johns, “A low-power capacitive charge pump based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, pp. 1016–1027, May 2010.

[15] S. Ranganathan and Y. Tsvividis, “Discrete-time parametric amplification based on a three-terminal mos varactor: Analysis and experimental results,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2087–2093, Dec. 2003.

[16] K. Van Caekenbergh, “Modeling RF MEMS Devices,” IEEE Microwave Magazine, vol. 13, no. 1, pp. 83–110, 2012.