Candidate gene discovery procedure after follow-up confirmatory analyses of candidate regions of interests for Alzheimer’s disease in the NIMH sibling dataset

Tesfaye M. Baye\(^{a,b,*}\), Rodney T. Perry\(^b\), Howard W. Wiener\(^b\), Zuomin Chen\(^b\), Lindy E. Harrell\(^c\) and Rodney C.P. Go\(^b\)

\(^a\)Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
\(^b\)Department of Epidemiology and International Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
\(^c\)Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Abstract. The objective of this research was to develop a procedure to identify candidate genes under linkage peaks confirmed in a follow-up of candidate regions of interests (CRIs) identified in our original genome scan in the NIMH Alzheimer’s disease (AD) Initiative families (Blacker et al. [1]). There were six CRIs identified that met the threshold of multipoint lod score (MLS) of \(\geq 2.0\) from the original scan. The most significant peak (MLS = 7.7) was at 19q13, which was attributed to \(\text{APOE}\). The remaining CRIs with ‘suggestive’ evidence for linkage were identified at 9q22, 6q27, 14q22, 11q25, and 3p26. We have followed up and narrowed the 9q22 CRI signal using simple tandem repeat (STR) markers (Perry et al. [2]). In this confirmatory project, we have followed up the 6q27, 14q22, 11q25, and 3p26 CRIs with a total of 24 additional flanking STRs, reducing the mean interval marker distance (MID) in each CRI, and substantially increase in the information content (IC). The linkage signals at 6q27, 14q22 and 11q25 remain ‘suggestive’, indicating that these CRIs are promising and worthy of detailed fine mapping and assessment of candidate genes associated with AD.

We have developed a bioinformatics approach for identifying candidate genes in these confirmed regions based on the Gene Ontology terms that are annotated and enriched among the systematic meta-analyzed genes, confirmed by at least three case-control samples, and cataloged in the “AlzGene database” as potential Alzheimer disease susceptibility genes (http://www.alzgene.org).

Keywords: Alzheimer, linkage, QTL, STR, SNP, Genomic scan, Candidate gene, bioinformatics, gene ontology, GO, Alzforum, Alzgene database

1. Introduction

The most common form of dementia among aging people is Alzheimer’s disease (AD), which involves the cerebral cortex and hippocampus which control thought, memory and language. Pathologically, AD is characterized by neurofibrillary tangles found in the neurons and the deposition of \(\beta\)-amyloid (A\(\beta\)) within senile plaques and cerebral blood vessels, resulting in the loss of neurons and synapses [3]. Clinically, AD is slowly progressive [4], usually beginning after the age of 65 years, and the risk increases with age, affecting 0.6% of the world’s population for ages 65–69
years, but up to 22.2% of the population over 90 years of age [5]. The number of sufferers worldwide is estimated as over 20 million [6] with more than 5 million affected in the United States.

AD is clinically subdivided into early (<65 years) and late (≧65 years) onset forms. About 10% of AD cases are familial with an autosomal dominant inheritance and these cases are often the early onset form [7]. Mutations in three genes, amyloid precursor protein (APP) on chromosome 21, presenilin 1 (PS1) on chromosome 14, and presenilin 2 (PS2) on chromosome 1 are estimated to account for about 50% of early-onset AD [8–10]. However, the majority of cases (90–95%) are late-onset AD (LOAD) that can show familial clustering without a clear Mendelian mode of inheritance [11]. Apolipoprotein E (APOE) on chromosome 19q13 has been confirmed by multiple independent studies [12] as a risk factor for LOAD, and is associated with lowering the age of onset [1]. However, APOE explains only 20–29% of the risk [13], and it is neither essential nor sufficient to cause AD [14–16]. The etiology of LOAD is complex with the possible involvement of several genes and/or environmental factors [17].

Efforts to identify additional LOAD loci have largely taken two main approaches: genome-wide linkage scans [1,18–21] and association studies of polymorphisms in candidate genes (for review see [22]). These studies indicate the existence of additional AD susceptibility genes on several chromosomes. In our genome-wide linkage scan of the National Institute of Mental Health Alzheimer’s Disease Genetics Initiative (NIMH-ADGI) cohort of affected siblings, we identified five CRIs (9q22, 6q27, 14q22, 11q25, and 3p26) with suggestive linkage and one CRI on 19q23 that met criteria for ‘significant’ evidence of linkage defined by multipoint LOD scores (MLS) > 2.0 [1]. Other linkage studies, though considerable overlap between samples from NIMH-ADGI sets [14], have identified overlapping regions or regions that are within a modest distance of three of these CRIs on 19q23, 9q22, and 11q25 [15–17]. The 14q23 region was identified by an independent scan that used only Caribbean Hispanic samples [23], and serves as a separate replicate.

We followed up the CRI signal on chromosome 9q22 by genotyping additional simple tandem repeats (STRs) and found the region remained significant with an increase in the peak MLS from 2.9 to 3.8 at 95 cM and narrowing of the CRI to 11 cM (92–103 cM), thus supporting the region as potentially harboring LOAD genes [2]. In the present study, with the aim of confirming our previous whole-genome scan findings, we have conducted a follow-up study with denser STR markers spanning the four remaining CRIs (3p26, 6q27, 11q25, and 14q22). Based on the Gene Ontology (GO) terms that are annotated and enriched among the systematic meta-analyzed genes, confirmed by at least three case-control samples, and cataloged in the “AlzGene database” as potential Alzheimer disease susceptibility genes, we developed bioinformatics tools that extract potential AD candidate genes in these CRIs from genomic databases.

2. Materials and methods

2.1. Study population: NIMH AD genetic initiative families

The study subjects were collected as part of the NIMH Genetics Initiative following a standardized protocol utilizing the NINCDS-ADRDA criteria for diagnosis of definite, probable, and possible AD [24, 25]. A total of 468 families were ascertained. The primary structures of these families were affected sib-pairs [1], and the ethnic make-up was primarily Caucasian (95%). In 437 of these families, the mean age of onset (MAO) of affected family members was above 50 (mean = 72.4, range = 50–97) (Those with MAO ≤50 were believed to be enriched for the APP, PS1, and PS2 mutations, and were therefore dropped from the current analyses). In addition to the total set (TS, n = 437 families), the linkage and mapping results presented here are also from a late age at onset subset with a MAO ≥65 (LOAD families) identified in 320 families and a subset of families identified as early-mixed (EM) with MAO between ages 51 and 65 (n = 117), both with similar primary structure and ethnic make-up as the total set of families. Blood was collected and sent to the NIMH repository at Rutgers University where genomic DNA was extracted from lymphocyte cell lines.

2.2. STR genotyping

STRs flanking the 6q27, 14q22, 11q25, 3p26 peaks were chosen from the genomic database (www.gdb.org) and deCODE Genetics (www.nature.com/ng/journal/v31/n3/ extref/ng917-S13.xls). The genetic locations of the STRs were based on sex average distances in the Rutgers combined linkage-physical map, Build 36.1 (compgen.rutgers.edu/mapomat). A total of 24 STRs were genotyped in an attempt to decrease the inter-
Markers used in the study, and their positions on the Rutgers combined linkage-physical map of each chromosome

Chr.	Original CRI position	Follow-up CRI position
6	D6S1009	140.2
14	D6S1003	148.3
	GATA184A08	150
11	D6S1637	153
	D6S1687	156.1
14	D6S494	158.2
	D6S2420	160
	D6S442	165.8
	D6S437	169.4
14	D6S1277	178.5
	D6S1719	181.4
	D6S264	183
	D6S503	188.5
	D6S1027	191.6

The statistical analyses have been detailed previously [2]. In brief, model-free linkage analysis was performed using the program Genehunter Plus with extensions to calculate the Kong and Cox statistic [27,28]. Maximum likelihood estimates of allele frequencies were calculated with the SAGE [29] program FREQ taking into account the family relationships. Replicates were performed on selected samples and any Mendelian errors were detected with the SAGE program MARKERINFO, as well as detected implicitly by the analytical programs used here.

2.4. Bioinformatics approach for candidate gene selection in CRIs

Once a linkage peak has been identified, hundreds of genes under the peak can be accessed using the UCSC genome browser (http://genome.ucsc.edu). But the lists are too large to conduct expensive molecular lab work. We developed a bioinformatics approach using a Python (http://www.python.org) script to assist in the efficient automatic extraction of candidate genes in regions of linkage (the codes are available upon request). Specific procedures for AD are: 1. The region to be analyzed needs to be defined. The input regions are usually defined as the 1 LOD drop of the linkage peak whose physical location is defined by the closest markers to the ends of the regions. 2. A list of disease specific keywords generated from 24 meta-analyzed and confirmed AD genes (http://www.alzgene.org; accessed on July 2, 2007) is provided to the program. These lists are function and process key terms deposited in the Gene Ontology (GO) databases (http://www.geneontology.org; accessed on July 2, 2007) for this disease. GO is developed to capture the activities at cellular and molecular level. For AD, these terms are, in general, related to neurological function, inflammation, oxidative damage, cholesterol/lipoprotein function and atherosclerosis/vascular pathways [30]. As of 2006, there are about 18,455 GO terms assigned to proteins to illustrate what they do, where they function, and what processes they are involved in. The AlzGene (http://www.alzgene.org) with in the Alzforum (http://www.alzforum.org) cat-
logue, “AlzGene database”, is a systematic, meta-analyses of potential Alzheimer disease susceptibility genes in at least three case-control samples [22]. This gene database is expected to provide a powerful tool for deciphering the genetics of Alzheimer disease, and serve as a potential model for tracking the most viable candidate genes.

Based on the GO vocabulary terms of the 24 most significant genes identified by Algene, we developed a bioinformatics approach to identify candidate genes in our QTL regions linked to AD. Briefly, we articulated that these GO terms for these 24 candidate liability genes (Table 2) can serve as a model in discovering new AD genes in each of our linkage peak regions. For each gene, we downloaded two categories of GO terms, function and process, from GO databases and interrogated the linkage regions of interest with theses GO terms for possible candidate AD genes. Genes enriched with the specified AD related GO terms are then downloaded directly from the human genome draft Build 36.1 database (http://genome.ucsc.edu) assembly.

3. Results

3.1. CRI located at 6q27

The chromosome 6q27 interval (140–192 cM) had a peak MLS score of 2.2. We have genotyped an additional ten markers and decreased the MID in this region from 10.9 cM to 3.8 cM. Additionally, the interval of support in the follow-up scan narrows to 148–188 cM (Table 1). Graph of the MLS scores from the total dataset showed the extra marker information split the peak: one signal located between 140 and 165 cM in the LOAD group with a peak MLS of 0.95 at 153 cM and a second CRI located between 170 and 192 cM in the EM group with a peak MLS of 1.48 at 183 cM (Fig. 1a).

3.2. CRI located at 14q22

The CRI we identified at 14q22 (37–80 cM) in the original scan had the highest MLS in the EM subset of families (MLS = 2.2). We have genotyped a third additional markers and decreased the MID in this region from 6.7 to 3.0 cM, and increasing the IC from 0.30–0.54 to 0.44–0.65. Additionally, the interval of support in the follow-up scan narrows to 50–85 cM (Table 1).

3.3. CRI located at 11q27

Four additional microsatellites were genotyped in the CRI at 11q25 (116–161 cM), resulting in a decrease in the MID of this region to 5.0 cM from an MID of 9.0 cM, and an increase of IC from 0.39–0.52 to 0.45–0.62. Additionally, the interval of support in the follow-up scan narrows to 120–153 cM (Table 1). The peak MLS remained unchanged from the original scan (2.0 at 158 cM) for the total set and there was narrowing of the signal to a region between 130 and 164 cM (Fig. 1b).

3.4. CRI located at 3p26

The CRI located at 3p26 had an MLS of 2.0 in the original scan in the EM and CM sets. We have genotyped three additional markers in this region, that resulted in an increase in IC from 0.32–0.52 to 0.43–0.65 and a decrease in the MID from 8.8 to 5.3 cM. The peak MLS for the EM set and the combined set decreased to 1.45 and there was no narrowing of the region. Since we wish to maintain our stringent criteria of an MLS ≥ 2.0 for confirmation of a CRI and because there is no supporting evidence of the 3p26 region linked to AD in other genomic scans, this signal is most likely a false positive, therefore we have omitted this region from any further investigations.

3.5. Candidate gene selection

Results of possible candidate genes in these CRIs and their locations from the interrogation of the database with the GO terms are presented on Table 3. Approximately 159 position-based candidate genes and nearly 53,313 HapMap Caucasian SNPs (http://genome.ucsc.edu) were found at the 6q27 CRI (140–192 cM peak). Our bioinformatics procedure reduced the candidate gene lists to 56 based on function and 48 based on process, with 24 that were overlapping genes. At the interval (35–75 cM) of the 14q22 peak, about 198 genes and nearly 58,438 HapMap Caucasian SNPs were found. The interrogation of the database using GO terms reduced the candidate genes to 107 based on function and 69 based on process, with 46 that
No	Gene	Name	Position	Function	GO terms
1	APOE	apolipoprotein E precursor	19q13.2	antioxidant activity	calcium ion homeostasis
				apolipoprotein E receptor binding	cholesterol catabolic process
				beta-amyloid binding	cholesterol homeostasis
				heparin binding	circulation
				lipid transporter activity	cytoskeleton organization and biogenesis
				lipoprotein binding	induction of apoptosis
				phospholipid binding	intracellular transport
				tau protein binding	learning and/or memory
					lipid transport
					lipoprotein metabolic process
					protein tetramerization
					regulation of axon extension
					regulation of neuronal synaptic plasticity
					response to reactive oxygen species
					synaptic transmission, cholinergic
					vasodilation
2	CHRNA2	cholinergic receptor, nicotinic, beta polypeptide 2 (neuronal)	1q21.3	acetylcholine receptor activity	
				extracellular ligand-gated ion channel activity	
				ion channel activity	
				nicotinic acetylcholine-activated cation-selective	
				channel activity	
					memory
					sensory perception
					signal transduction
3	CH25H	cholesterol 25-hydroxylase	10q23	iron ion binding	cholesterol metabolic process
				metal ion binding	lipid metabolic process
				steroid hydroxylase activity	metabolic process
					steroid biosynthetic process
4	PGBD1	piggyBac transposable element 1	6p22.1	scavenger receptor activity	regulation of transcription, DNA-dependent
				transcription factor activity	
5	LMNA	lamin A/C isoform 3	1q21.2-q21.3	protein binding	
				structural molecule activity	
6	SOAT1	sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1	1q25	acyltransferase activity	cholesterol metabolic process
				acyltransferase activity	
				sterol O-acyltransferase activity	
				transferase activity	
				enzyme binding	
7	MAPT	microtubule-associated protein tau isoform 4	17q21.1	lipoprotein binding	
				microtubule binding	
				microtubule binding	
No	Gene	Name	Position	Function	GO terms
----	---------------	---	----------------	---	---
8	SORL1	sortilin-related receptor, L(DLR class) A repeats-containing	11q23.2-q24.2	SH3 domain binding	negative regulation of microtubule depolymerization
				structural constituent of cytoskeleton	positive regulation of axon extension
				structural constituent of cytoskeleton	positive regulation of axon extension
					positive regulation of microtubule polymerization
					positive regulation of microtubule polymerization
					cholesterol metabolic process
					lipid metabolic process
					lipid transport
					receptor-mediated endocytosis
					steroid metabolic process
					gluconeogenesis
9	PCK1	cytosolic phosphoenolpyruvate carboxykinase 1	20q13.31	GTP binding	glycerol biosynthetic process from pyruvate
				lyase activity	lipid metabolic process
				nucleotide binding	lipid metabolic process
				phosphoenolpyruvate carboxykinase (GTP) activity	receptor-mediated endocytosis
				protein binding homodimerization activity	steroid metabolic process
10	CST3	cystatin C (amyloid angiopathy and cerebral hemorrhage)	20p11.21	cysteine protease inhibitor activity	gluconeogenesis
				protein binding homodimerization activity	lipid metabolic process
11	ACE	angiotensin I converting enzyme isoform 2	17q23.3	carboxypeptidase activity IEA	blood pressure regulation
				chloride ion binding	metabolic process
				hydrolase activity, acting on glycosyl bonds	proteolysis
				metal ion binding	proteolysis
				peptidyl-dipeptidase A activity	proteolysis
				peptidyl-dipeptidase A activity	proteolysis
				metal binding	proteolysis
				zinc ion binding	proteolysis
12	SORCS1	sortilin-related VPS10 domain containing receptor 1	10q23-q25	neuropeptide receptor activity	neuropeptide signaling pathway
				protein binding	neuropeptide signaling pathway
				protein binding	neuropeptide signaling pathway
				ferric iron binding	neuropeptide signaling pathway
				metal ion binding	neuropeptide signaling pathway
13	TF	transferrin	3q22.1	ferric iron binding	ion transport
				metal ion binding	iron ion homeostasis
14	GALP	galanin-like peptide precursor	19q13.42	neuropeptide hormone activity	iron ion transport
				pepsin A activity	biological process
15	CTSD	cathepsin D (lysosomal aspartyl protease)	11p15.5	cathepsin D activity	neuropeptide signaling pathway
				pepsin A activity	proteolysis
				peptidase activity	proteolysis
No	Gene	Name	Position	Function	GO terms
----	------	-------------------------------	----------	---	--
16	TNK1	tyrosine kinase, non-receptor	17p13.1	ATP binding non-membrane spanning protein tyrosine kinase activity nucleotide binding protein binding signal transducer activity transferase activity	protein amino acid autophosphorylation
17	IL1B	interleukin 1, beta proprotein	2q14	interleukin-1 receptor binding protein binding signal transducer activity	apoptosis cell proliferation IEA cell-cell signaling fever immune response inflammatory response leukocyte migration negative regulation of cell proliferation neutrophil chemotaxis positive regulation of chemokine biosynthetic process positive regulation of interleukin-6 biosynthetic process regulation of progression through cell cycle signal transduction
18	PON1	paraoxonase 1	7q21.3	aryldialkylphosphatase activity arylolesterase activity hydrolase activity lipid transporter activity	response to external stimulus response to toxin
19	DAPK1	death-associated protein kinase	9q34.1	ATP binding calmodulin binding kinase activity nucleotide binding protein serine/threonine kinase activity transferase activity	apoptosis induction of apoptosis by extracellular signals protein amino acid phosphorylation protein kinase cascade signal transduction
20	PRNP	prion protein interacting protein	1p32	exonuclease activity hydrolase activity	
21	MYH13	myosin, heavy polypeptide 13, skeletal muscle	17p13	actin binding	striated muscle contraction
22	HMGCS2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	1p13-p12	hydroxymethylglutaryl-CoA synthase activity transferase activity	acetyl-CoA metabolic process cholesterol biosynthetic process
No	Gene	Name	Position	Function	GO terms
----	------	--	----------	---	--
23	BDNF	brain-derived neurotrophic factor isoform b	11p13	growth factor activity	anti-apoptosis, axon guidance, axon target recognition, dendrite development, feeding behavior, glutamate secretion, inner ear development, mechanoreceptor differentiation, negative regulation of neuroblast proliferation, nerve development, neuron recognition, positive regulation of neuron differentiation, regulation of metabolic process, regulation of neuron apoptosis, regulation of retinal programmed cell death, regulation of synaptic plasticity, ureteric bud development
24	PSEN1	presenilin 1 isoform I-463	14q24.3	peptidase activity	amyloid precursor protein catabolic process, anti-apoptosis, apoptosis, cell adhesion, chromosome organization and biogenesis (sensu Eukaryota), chromosome segregation, intracellular signaling cascade, membrane protein ectodomain proteolysis, Notch receptor processing, positive regulation of enzyme activity, protein processing, regulation of phosphorylation
Fig. 1. MLS data of follow-up scan with an additional dense grid of markers for the CRIs on chromosome 6 (1a), 14 (1b), 11 (1c).					
chr 6 (140–192cM)	chr 14 (35–75cM)	chr 11(130–164cM)			
---	---	---	---	---	---
Total	**Function**	**Process**	**Total**	**Function**	**Process**
159 genes	56 genes	48 genes	198 genes	107 genes	69 genes
ACAT2	ACAT2	AKAP12	ABCD4	ABCD4	ADAM20
AGPAT4	AGPAT4	ARID1B	ACTN1	ACTN1	ADAM21
AIG1	AKAP12	BCLAF1	ACTR10	ACTR10	AKAP5
AKAP12	ARID1B	C6orf103	ACYP1	ACYP1	ARF6
ARID1B	BCLAF1	C6orf123	ADAM20	ADAM20	ATP5S
BCLAF1	CITED2	C6orf54	ADAM10	ADAM10	ATP6V1D
BRP44L	CLDN20	CCR6	ADCK1	ACYP1	BATF
Cof1013	CNTSR3	ESR1	ADIPK	ADIPK	BMP4
Cof1115	EPM2A	FBXO5	AF336880	AF336880	CNOT5
Cof1118	ESR1	GRP126	ARF6	ARF6	CNOT3
Cof1120	FBXO30	GRP13	ARF6	ARF6	CNOT3
Cof1122	FBXO5	GRM1	ARF2	ARF2	ESRRB
Cof1123	HIVEP2	BTFH5	ARS1	ARS1	ESRRB
Cof1108	KATN1	HIVEP2	AF30030	AF30030	ESRRB
Cof1111	KIF25	IFNGR1	ARID1B	ARID1B	ESRRB
Cof1135	LATS1	IGFR2	LATS1	LATS1	ESRRB
Cof1154	LPA	LATS1	LPA	LPA	ESRRB
Cof1156	MAPK7	LOC653483	MAPK7	MAPK7	ESRRB
Cof1170	MAP7	LPA	MAP7	MAP7	ESRRB
Cof1171	MLLT4	MAPK4	MLLT4	MLLT4	ESRRB
Cof1172	MTHFD1	MAPK5	MTHFD1	MTHFD1	ESRRB
Cof1196	PARK2	MAPK1	PARK2	MAPK1	ESRRB
Cof1209	PCMT1	MLLT4	PCMT1	PCMT1	ESRRB
CDC29A	PDE10A	NBR1	CDC29A	CDC29A	ESRRB
CCR6	PDE7B	OLIG3	CCR6	CCR6	ESRRB
CITED2	PERP	OPRM1	CITED2	CITED2	ESRRB
CLDN20	PEX3	PDE10A	CLDN20	CLDN20	ESRRB
CNTSR3	PHACTR2	PDE7B	CNTSR3	CNTSR3	ESRRB
DACT2	PHF1	PERP	DACT2	DACT2	ESRRB
DEACD1	PLAG1	PHF10	DEACD1	DEACD1	ESRRB
DLL1	PLG	PLAG1	DLL1	DLL1	ESRRB
DYNL1	PPL4	PLG	DYNL1	DYNL1	ESRRB
EPM2A	RAB32	RAB32	EPM2A	EPM2A	ESRRB
ER1	RAET1E	RPS6KA2	ER1	ER1	ESRRB
FAM120B	RAET1G	SHPRH	FAM120B	FAM120B	ESRRB
FAM54A	RBM16	SLC22A1	FAM54A	FAM54A	ESRRB
FBXO30	RGS17	SLC22A2	FBXO30	FBXO30	ESRRB
FBXO5	RNASE2	SLC22A3	FBXO5	FBXO5	ESRRB
FGRFR1	SHPRH	SNX9	FGRFR1	FGRFR1	ESRRB
FLJ27255	SLC22A1	TAGAP	FLJ27255	FLJ27255	ESRRB
FLJ37060	SLC22A2	THBS2	FLJ37060	FLJ37060	ESRRB
FLJ39824	SNX9	TIA1	FLJ39824	FLJ39824	ESRRB
FLJ44955	SOD2	TNAIP3	FLJ44955	FLJ44955	ESRRB
FNDC1	STX1L	TULP4	FNDC1	FNDC1	ESRRB
FRMD1	SYN1	UNC93A	FRMD1	FRMD1	ESRRB
FUC2A	SYJ2	VIP	FUC2A	FUC2A	ESRRB
GPR126	SYTL3	ZBTB2	GPR126	GPR126	ESRRB
GPR178	TCP1	ZBTB2	GPR178	GPR178	ESRRB
GPR31	THBS2	DDHD1	GPR31	GPR31	ESRRB
GRM1	TNAIP3	SNX9	GRM1	GRM1	ESRRB
GTF2H5	TULP4	SLC22A1	GTF2H5	GTF2H5	ESRRB
HEBP2	UST	SLC22A2	HEBP2	HEBP2	ESRRB
HECA	VIL2	EB2F2	HECA	HECA	ESRRB
HIVEP2	ZBTB2	ZBTB2	HIVEP2	HIVEP2	ESRRB
IFNGR1	ZDHHC14	SLC22A3	IFNGR1	IFNGR1	ESRRB
IGF2R					
chr 6 (140–192cM)	chr 14 (35–75cM)	chr 11 (130–164cM)			
------------------	------------------	------------------			
Total	**Function**	**Process**	**Total**	**Function**	**Process**
159 genes	56 genes	48 genes	198 genes	107 genes	69 genes
IL22RA	ERO1L	NUMB	SNAPC1	PMP22CD	
IL22RA2	ESR2	OTX2	SOCS4	POU2F3	
KATNA1	FBXO33	PAPLN	**SPG3A**	PRDM10	
KIAA1244	FBXO34	PEL12	SSTR1	PUS3	
KIF25	FKBP3	PGF	**TGFBR3**	RICS	
LAT51	FNTB	PLEKH1C1	**TITF1**	ROBO3	
LOC202459	FOS	PNMA1	TXNDC	ROBO4	
LOC401280	FOXA1	POLE2	VTI1B	RPUSD4	
LOC401286	FUT8	PPM1A	WDHD1	SC5DL	
LOC441177	GARNL1	PRKCH	ZBTB1	SCN3B	
LOC441179	GCH1	PSEN1*	**ZBTB25**	SLC37A2	
LOC653483	GMFB	PSMA3	**ZNFI40**	SNX19	
LPA	GNG2	PSMC6		SORL1	
LPAL2	GNP1AT1	PYGL		SPA17	
LPR11	GPHN	RAB15		SPATA19	
LT11	GPR135	RAD51L1		SRPR	
MAP3K4	GPX2	RBM25		ST14	
MAP3K5	GSTZ1	RGS6		ST3GL4	
MAP3K7IP2	HBLD1	RH0J		STS-1	
MAP7	HIF1A	RPS6KL1		TBRG1	
MAS1	HSPA2	RTN1		TECTA	
MGC35308	JDP2	SAV1		THY28	
MLLT4	KCNHI5	SEC23A		TIRAP	
MRPL18	KIAA0317	SFRS5		TMEM45B	
MTHFD1L	KIAA0586	SGPP1		VSG2	
MTRF1L	KIAA1036	SIPI		ZNF202	
MYCT1	KIAA1393	SIAP1L1			
NMRR	KIAA1737	SIX1			
NOX3	KLHDC1	SIX4			
NU43	KLHDC2	SIX6			
OLIG3	KTN1	SLC8A3			
OPRM1	LGALS3	SNW1			
PACRG	LRFN5	SGP3A			
PARK2	LTBP2	SPTB			
PBOV1	MAMDC1	SPTLC2			
PCMT1	MAP3K9	STYX			
PDE10A	MAP4K5	SYNE2			
PDE7B	MAX	SYNJ2BP			
PERP	MBIP	TGFBR3			
PESX5	MED6	TIMM9			
PEX7	MGAT2	TITF1			
PHACTR2	MIA2	TRIM9			
PHF10	MIPO1L	TITL5			
PPIP3-E	MLH3	ZADH1			
PLAGL1	MNAT1	ZBTB1			
PLG	MPP8	ZBTB25			
PNLDC1	MTHFD1	ZFP56L1			
PPL4	NEK9	ZFYVE1			
PPPI14C	NGB	ZFYVE26			
QKI	NID2	ZNF410			
RAB32	NIN				
RAET1-E	NXX2-8				
RAET1-G	NPC2				
RAET1-T	NRXN3				
RBM16	NUMB				
REPS1	OTX2				
RGS17	PAPLN				
RNASET2	PAX9				
RPS6KA2	PCNX				
Table 3, continued

chr 6 (140–192cM)	chr 14 (35–75cM)	chr 11 (130–164cM)	
Total	159 genes	198 genes	83 genes
Function	56 genes	107 genes	12 genes
Process	48 genes	69 genes	26 genes
RSHL2	PELI2		
SASH1	PGF		
SERAC1	PIGH		
SF3B5	PLEK2		
SFT2D1	PLEKHC1		
SHPRH	PLEKHG3		
SLC22A1	PLEKHH1		
SLC22A2	PNM1A		
SLC22A3	PNN		
SLC35D3	POL2		
SMOC2	POMT2		
SNX9	PPL15		
SOD2	PPM1A		
STX11	PPP2R5E		
STXBP5	PRKCH		
SUMO4	PRPF39		
SYNE1	PSEN1		
SYNJ2	PSA3		
SYTL3	PSMC6		
T	PTGDR		
TAGAP	PTGER2		
TCP1	PYGL		
TCP10	RAB15		
TCP10L2	RAD51L1		
TCTE3	RBM25		
TFB1M	RDH11		
THBS2	RDH12		
TIAM2	RGS6		
TNFAIP3	RHOJ		
TTL2	RPL10L		
TULP4	RPL36AL		
TXLNB	RPS29		
ULEB1	RPS6KL1		
ULEB2	RTNI		
ULEB3	SAMD4		
UNC93A	SAVI		
UST	SDCCAG1		
VIL2	SEC10L1		
VIP	SEC23A		
WDR27	SFRS5		
WTAIP	SGPP1		
ZBTB2	SIP1		
ZDHHC14	SIPA1L1		
	SIX1		
	SIX4		
	SIX6		
	SKIJB		
SLC10A1	SLC25A21		
SLC38A6	SLC39A9		
SLC38A3	SNAPC1		
SCS4	SPG3A		
SPTB			
SPTLC2			
SSTR1			
STYX			
Table 3, continued

Chr 6 (140–192cM)	Chr 14 (35–75cM)	Chr 11(130–164cM)	
Total Function	159 genes	Total Function	198 genes
Process	56 genes	Process	107 genes
	48 genes		69 genes
SYN2BP		SYT14L	
SYT14L		TGFB3	
TBPL2		THSD3	
TGFB3		TIMM9	
THSD3		TMED8	
TIMM9		TMP21	
TMED8		TRIM9	
TMP21		TTPC6	
TRIM9		TXNDC	
TTPC6		VTI1B	
TXNDC		WDHD1	
VTI1B		WDR21A	
WDHD1		WDR22	
WDR21A		ZADH1	
WDR22		ZAP128	
ZADH1		ZBTB1	
ZAP128		ZBTB25	
ZBTB1		ZFP3L1	
ZBTB25		ZFYVE1	
ZFP3L1		ZFYVE26	
ZFYVE1		ZNF410	
ZFYVE26		ZNF410	

Genes in bold are common to function and process GO terms, and * are genes that belong to the 24 ‘Alzgene database’.

overlapped. About 83 genes and nearly 8,321 HapMap Caucasian SNPs were recorded at the 11q22 QTL peak interval (116–161 cM) and our bioinformatics procedure reduced the candidate gene lists to 12 genes based on function and 26 based on process, with about 6 genes overlapping.

4. Discussion

Follow-up linkage analyses utilizing an additional 24 STRs with an average intermarker distance of ~5 cM, confirmed suggestive linkages in the NIMH families on the CRIs located at 6q27, 14q22, and 11q25. The MLS scores for each CRI increased from the original scan and narrowing of the CRIs is also observed. Because of the likelihood of genetic heterogeneity in this complex disease, the heterogeneity LOD (HLOD) score statistic [31], which allows for linked and unlinked families in the sample, was performed on the original CIDR marker set and the follow-up set of markers in each region. In addition, the information content (IC), calculated in Genehunter Plus, for the CRI at 6q, 14q and 11q increased from a range of 0.30–0.54, 0.39–0.52, 0.32–0.52 in the original scan to 0.44–0.65, 0.45–0.62, 0.43–0.65 in the follow up, respectively. An IC estimate close to 0.7 is the theoretical maximum for sib pair families, which is the predominant structure in the NIMH families [32]. It is also worthwhile to mention that the chr. 14 ‘peak’ is located at a good distance away from the most obvious candidate gene in the region, i.e. PSEN1. Hence, the above data and analyses suggest these regions may harbor additional loci impacting on risk to AD.

The reduced evidence for linkage at 3p26, initially identified as suggestive on the original genomic scan, may be attributed to confounding factors such as genetic or clinical heterogeneity of the disease, difficulty to detect genes of small effect, which reflects the difficulties and challenges that face the genetic mapping of complex traits like AD, or it may be a true false positive.

4.1. Classical gene discovery approach

In general, gene discovery for complex traits follows four strategic steps: whole genome linkage or association studies to identify chromosome candidate regions, fine-mapping by linkage or association studies of polymorphisms (Ex. SNPs) to identify the putative causal gene(s), sequence analysis of the pinpointed gene(s) to identify causal variant(s), and finally functional tests of the found variants [33]. However, it is becoming apparent that many, and perhaps most of the regions that
show linkage to a phenotype in multiple populations harbor more than one susceptibility locus [34]. For example, different asthma-related phenotypes are known to map to different locations within a broad linkage region [35]. Moreover, it is even likely that additional susceptibility loci reside within the same linkage peak and close to some of the positionally cloned genes, as has been shown for asthma [36]. Therefore, we propose that such regions are more likely to harbor multiple susceptibility loci, each with relatively small to moderate effects rather than large effects, on disease risk.

4.2. Limitations of the classical approach

The challenge in follow-up linkage signals is to identify the genes that are responsible for the observed linkage results contained in such broad chromosomal regions (30 to 40 cM of recombination or 30–40 millions of DNA bases in length). Fine mapping of the linked region using more closely spaced STRs is limited by the low frequency of recombination events between any two closely spaced points in the genome and the limited number of highly informative STRs available, resulting in only marginal increases in IC.

If a CRI has been confirmed and narrowed with follow-up mapping, the region still may be relatively broad, perhaps 20–30 cM, such that potentially hundreds of genes may be contained within a single CRI. Traditionally, the 1-LOD-drop support interval flanking the peak MLS is used as a guide to define the critical region of an observed linkage peak [31], which could further narrow the region from 5–15 cM. However, a large number of genes may still be located in this narrowed region. Given current technology, an exhaustive analyses of all these genes is possible, however given current resources, comprehensive evaluation of all of the genes in a region of linkage is rarely possible, being both laborious and expensive. For example, the CRIs on chromosomes 6q27, 14q22, and 11q22 that we confirmed and narrowed to intervals of 52 cM, 40 cM, and 31 cM, respectively, still contain 159, 198, and 83 genes, respectively, according to the latest assembly (March 2006, NCBI build 36.1) of the human genome draft. Thus, a bioinformatics approach for identification and prioritization of candidate genes from the number of genes in confirmed CRIs remains a critical step following this classical approach. New approaches such as the current high-density genome-wide association (GWA) arrays also requires deep-sequencing, and if there are several SNPs in LD, then bioinformatics will help prioritize the genes to start deep sequencing on. GWA should be also considered as an initial step in the elucidation of susceptibility variants. There may be several regions that may harbor genetic variants that influence susceptibility to a specific disease. Several of the associated SNPs may fall within and near genes. Fine-mapping studies of these several regions are needed to confidently localize the signals to specific genes. Confirmation of the role of genes in the identified regions of interest will require prioritization of the genes and replication studies in other populations, and, ultimately, functional studies. More over, genome-wide association studies are promising, yet not always economically feasible or statistically desirable [37]. Therefore, one of the greatest challenges in disease association study design remains the intelligent selection of candidate genes.

4.3. Selection of candidate genes within CRI

There are potentially hundreds of potential candidate genes which could be investigated in association studies, family-based or case-control, using SNPs and programs such as LAMP [38] can be used to determine whether the entire linkage signal can be explained by a SNP. However, which candidate gene(s) to perform SNP genotyping for association testing is a conundrum. Hence, we must rely on the selection of positional candidate genes in the linkage region that have a known biological function related to our trait or are homologous to other genes in our phenotypic causal pathways. Combining mapping and arraying has been suggested as one approach to reduce the number of genes from QTL regions [39].

In the past few years, several groups have published bioinformatics methods for narrowing the lists of candidate genes (see the review by Tiffin et al. [34]. The fundamental assumption of the scheme for prioritizing candidate genes from linkage studies is that genes involved in or predisposing to a given polygenic disease tend to share more commonalities in their molecular function, biological process or physiological pathway [40,41] than genes chosen at random or genes not involved in the same disease. Hence, Gene Ontology annotation terms will be enriched among genes linked to the trait [42] and such commonalities are often sufficient to identify these genes from regions containing hundreds of other genes.

Based on these assumptions, one way to narrow the list of candidate genes in AD is to search for annotation terms that are enriched among the systematic meta-analyzed AD candidate genes, that have been confirmed
by at least three case-control samples and cataloged in the “AlzGene database” as potential Alzheimer disease susceptibility genes (http://www.alzgene.org) relative to randomly sampled AD genes. Using these more biologically plausible GO function and process terms, we were able to reduce the number of positional candidate genes within each critical region (within the 1-LOD intervals) defined above. The list of genes can be initially prioritized based upon the number of GO terms assigned to each gene. Nevertheless, a large number of genes in the human genome are uncharacterized or poorly characterized, and the annotation in Gene Ontology (GO) databases are incomplete and biased toward highly studied genes; thus, novel or poorly characterized genes could be missed. Moreover, GO is one approach and component to a more comprehensive systems biology approach. Additional sources of information such as gene expression, protein-protein interaction networks, tissue specificity, KEGG or BioCarta pathways, and sequence homology, could be integrated into a combined statistic, and biological confirmation of the candidate genes should be performed. Although the approach here still suffers from the bias introduced by pathways selected by biased researchers [30,43,44], this bias will be reduced once more genome wide association studies are incorporated into the AlzGene database, and gene annotation becomes more comprehensive. Finally, each investigator can then develop bioinformatics methods for further narrowing or prioritizing the list of candidate genes using a variety of selection variables such as expression profiles in neuronal tissue, the number of GO terms for each gene, evolutionary conservation, and patterns of gene duplication [33], and other systems biology approaches to determine which to interrogate first.

5. Conclusion

In 2003, we reported the results of a whole genome AD linkage study in the NIMH AD Genetics Initiative families [1]. In this study, we performed a follow up linkage study by genotyping 24 additional STR markers in the same sample of 437 families. The chromosome 6q27, 14q22, 11q27 and 3p26 CRIs were statistically analyzed under the same dominant inheritance model, resulting in confirmatory evidence for the CRIs at 6q27, 14q22, and 11q27. We were able to reduce the total number of genes in these regions to a list of plausible candidate genes using function and process GO terms derived from 24 meta-analyzed and confirmed AD genes on the Alzgene website. The approach, using bioinformatics tool and databases like Alzgene will facilitate in the identification and prioritization of candidate genes after the classical follow-up of promising linkage region and for deep-sequencing of several SNPs that are in LD in the current high-density genome-wide association array platforms.

6. Outlook of the experiment

Due to the evidence of linkage and the consistency of signals, we will be pursuing chromosome regions 6q27, 14q22, and 11q25 for possible candidate genes. We plan to first, undertake detailed fine mapping of these CRIs using dense SNPs selected from HapMap to narrow down the CRIs through linkage disequilibrium (LD) mapping. We will include in this phase the interrogation of candidate genes using tag SNPs from HapMap. We plan to prioritize these genes based on the number of GO terms for each, and expression in neuronal tissue and determine which to interrogate first. Selection of SNPs in candidate genes will be based upon the location (coding/promoter vs. non-coding SNPs), type (if coding) (nonsynonymous vs. synonymous), as well as comparison with other species [45,46] to identify highly conserved variants. Finally, sequencing within critical gene regions will need to be done in a systematic way to identify gene variants that may predispose to AD. These can then be confirmed in population-based studies, with further studies in animal models or other in vivo methods to ascertain its function in the disease process.

Acknowledgements

The authors would like to thank Micah Simmons for his technical support. The authors are extremely grateful to the families whose participation made this work possible. This work was supported by a grant from the NIMH (R01 NS045934-05).

References

[1] D. Blacker, L. Bertram, A.J. Saunders, T.J. Moscarillo, M.S. Albert, H. Wiener, R.T. Perry, J.S. Collins, L.E. Harrell, R.C. Go et al., Results of a high-resolution genome screen of 437 Alzheimer’s disease families, Hum Mol Genet 12(1) (2003), 23–32.
[36] E. Noguchi, Y. Yokouchi, J. Zhang, K. Shibuya, A. Shibuya and M. Bannai, Positional identification of an asthma susceptibility gene on human chromosome 5q33, *Am J Respir Crit Care Med* **172** (2005), 183–188.

[37] D. Thomas, Are we ready for genome-wide association studies? *Cancer Epidemiol Biomarkers Prev* **15** (2006), 595–598.

[38] M. Li, M. Boehnke and G. R. Abecasis, Joint modeling of linkage and association identifying SNPs responsible for a linkage signal, *Am J Hum Genet* **76**(6) (2005), 934–949.

[39] M.L. Wayne and L.M. McIntyre, Combining mapping and arraying: An approach to candidate gene identification, *Proc Natl Acad Sci USA* **99**(23) (2002), 14903–14906.

[40] N. Tiffin, E. Adie, F. Turner, H.G. Brunner et al., Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes, *Nucl Acids Res* **34** (2006), 3067–3081.

[41] T. Toyoda and Y. Takigawa, Selection of Candidate Genes for Polygenic Diseases by Utilizing Protein-Protein Interaction Networks, *Genome Informatics* **11** (2000), 286–288.

[42] F.S. Turner, D.R. Clutterbuck and C.A. Semple, POCUS: mining genomic sequence annotation to predict disease genes, *Genome Biology* (2003), 4:R75.

[43] M. Burton-Jones and F.M. Laferla, Pathways by which Abeta facilitates tau pathology, *Curr Alzheimer Res* **3**(5) (2006), 437–448.

[44] M. Goedert and M.G. Spillantini, A century of Alzheimer’s disease, *Science* **314**(5800) (2006), 777–781.

[45] C. Ferrer-Costa, M. Orozco and X. de la Cruz, Use of bioinformatics tools for the annotation of disease-associated mutations in animal models, *Proteins* **61** (2005), 878–887.

[46] K.M. Weiss, In search of human variation, *Genome Res* **8** (1988), 691–697.