An Improved Authentication Protocol for Smart Healthcare System Using Wireless Medical Sensor Network

WANG YUANBING, LIU WANRONG, AND LI BIN

1School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
2Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China

Corresponding author: Li Bin (libin2001@hotmail.com)

This work was supported in part by the National Key Research and Development Program of the Ministry of Science and Technology of China under Grant 2019YFC0121805.

ABSTRACT With the rapid development and evolution of wireless network technology, electronic health has shown great potential in continuously monitoring the health of patients. The wireless medical sensor network (WMSN) has played an important role in this field. In WMSN, medical sensors are placed on patients to collect relevant health data and transmitted to medical professionals in hospitals or at home through insecure channels. These health data need to be highly protected because they contain patient-related private information. Once the information is leaked or maliciously modified, it will cause the wrong diagnosis and endanger the health of patients. To protect information privacy and security from being stolen by illegal users, this article reviews the solutions of Farash et al. and further points out the existing vulnerabilities, such as privileged insider attack, user anonymity invalidation, and offline password guessing attack. In order to overcome these drawbacks, we use the Elliptic Curve Cryptography to propose an improved anonymous authentication protocol for a smart healthcare system. The security of our protocol is verified by Burrows-Abadi-Needham logic and Automated Validation of Internet Security Protocols and Applications (AVISPA) tools, and security features and efficiency analysis are performed with other related schemes. The results show that the improved protocol provides better security protection while ensuring computational and communication efficiency.

INDEX TERMS Authentication, patient monitor, security analysis, wireless medical sensor network.

I. INTRODUCTION

In recent years, with the rapid growth of hospitalized patients, it has become an increasingly difficult task to continuously monitor the health of patients by relying solely on medical professionals (such as doctors or nurses) [1]. Electronic health (e-Health) and mobile health provide the possibility to solve this problem. E-Health is an application based on Internet of Things which contains a series of healthcare information services [2], [3]. In this system, medical sensors are placed on the patient in advance to collect relevant physiological information, such as ECG, body temperature, blood pressure, pulse, etc. After that, the doctor can obtain medical information about the patient at any time and any place. This can not only reduce medical costs and make full use of limited medical resources but also help doctors make an early diagnosis and improve the quality of life of patients [1], [3], [4].

As a typical application in e-Health, Wireless Medical Sensor Network (WMSN) uses Wireless Sensing Network (WSN) to complete the task of monitoring the health status of patients. It comprises numerous lightweight smart devices with limited storage space, computation power, transmission range, and battery life [5]–[7]. Besides, when the patient’s health data are transmitted through an unsafe public channel, information protection and privacy protection become prominent problems and big challenges [8].

If we transmit patient medical data without any encryption through an unsafe public channel, it is very likely that these information can be obtained by someone illegally, then the patient’s privacy will be exposed. Meanwhile, a malicious user may modify the intercepted data and disguise it...
as original information and then send it to remote medical professionals, which will lead to inappropriate diagnosis and affect patient treatment. User authentication and key agreement mechanism plays a vital role in protecting the patient’s real-time data from unauthorized users; it can not only provide mutual authentication between all participating entities but also negotiate session keys to encrypt the transmitted data from eavesdropping [6], [8]–[11].

In 2012, Kumar et al. [12] proposed a user authentication protocol for medical monitoring. According to their security analysis, their solution can resist a variety of common security attacks and fully protect patient data from illegal users. However, Khan and Khan [13] and He et al. [14] pointed out that the protocol proposed by Kumar et al. [12] cannot resist insider privilege attack and offline password guessing attack, and lacks user anonymity and a complete mutual authentication mechanism. In order to overcome the above shortcomings, Khan and Khan [13] and He et al. [14] each proposed an improved two-factor user authentication protocol. Later in 2015, Wu et al. [15] found that He et al. scheme [14] could not resist offline password guessing attack, user impersonation attack, and sensor node capture attack. Then in 2016, Li et al. [16] found that He et al.’s scheme [14] had many problems during the login and authentication phases, and could not establish a correct session key. Besides, there is no check to verify whether the password inputted by user is correct until the information is delivered to the gateway node (GWN), and this may even cause the user to fail the authentication process after updating the password with a wrong old password. Therefore, Li et al. [16] introduced biometrics in their improved user authentication protocol to try to eliminate the previous drawbacks. Unfortunately, Das et al. [17] confirmed that Li et al.’s scheme [16] still could not resist various attacks such as privileged-insider attack.

In 2014, Turkanović et al. [18] designed a novel lightweight user authentication and key agreement protocol for resource-constrained WSN which is claimed to have high security and can resist various common attacks. Unfortunately, in 2016, Farash et al. [19] showed Turkanović et al.’s scheme [18] is very vulnerable to man-in-the-middle attack and stolen smart card attack. Besides, there was a lack of user untraceability and a secure session key protection mechanism. Subsequently, Amin and Biswas [20] further pointed out that any attacker can easily guess out a user’s identity and password in [18]. Later, the analysis results of Amin et al. [21] showed that the improved user authentication scheme of Farash et al. [19] still has multiple security flaws. Similarly, in 2016, Wu et al. [22] showed that the scheme of Amin and Biswas [20] has the problem of mission key leakage and forgery attacks.

In 2016, in order to reduce the communication cost of sensing nodes mentioned in [20], Amin et al. [23] designed a new lightweight user authentication scheme that is used in patient monitoring systems. However, in 2017, Jiang et al. [24] showed that Amin et al.’s protocol [23] could not withstand the stolen mobile device attack, session key leakage, and desynchronization attack. Later, Wu et al. [25] in 2017 and Ali et al. [26] in 2018 further pointed out system insiders can use their own privileges to obtain the password of any user, and an unauthorized attacker can also pass the system authentication through forged login information in Amin et al.’s protocol [23]. But in 2018, Li et al. [27] analyzed Wu et al.’s scheme [25] and pointed out that the scheme is not user-friendly and does not provide forward security. In 2019, Chandrakar [9] mentioned that the protocol of Wu et al. [25] has some drawbacks such as it cannot prevent replay attack. In the same year, in order to solve the historical flaws in the authentication protocol used for remote patient monitoring (including the lack of forward security and desynchronization attack problem), Shuai et al. [28] designed a three-factor authentication scheme using hash functions and pseudonyms. In 2020, Mo et al. [29] pointed out that Ali et al.’s and Shuai et al.’s schemes [26], [28] are not as perfect as their own security analysis. Both of them have the same security problems, i.e., there is still the possibility of privileged insider attack and offline dictionary guessing attack. To make matters worse, once the user changes his/her password, they will be permanently rejected by GWN from login the network using the updated password.

In 2017, Challa et al. [30] designed a three-factor user authentication protocol for use in healthcare environments that takes into account both computational efficiency and security. In their scheme, in addition to providing a regular password update function, the user can also update his/her biometrics. In addition, a user re-registration function is added to the scheme to prevent the user’s smart card from being lost or stolen. In 2019, Soni et al. [31] found many weaknesses in Challa et al.’s scheme [30]. Firstly, the attacker can easily calculate the session key; secondly, the attacker may destroy the normal connection process between the user and the sensor node; thirdly, the user re-registration process does not consider the issue of the revocation of the old smart card, which may cause the smart card flood. In 2020, Xu et al. [32] introduced chaotic maps and Rabin cryptosystem to improve Soni et al.’s scheme [31], providing a higher level of security and less computational consumption, which is more suitable for WMSN. Besides, Yazdinejad et al. [33] shortened the time for authentication in the hospital network by using the idea of blockchain.

A. MOTIVATION, METHODOLOGY AND CONTRIBUTION

The scheme of Farash et al. has been studied and analyzed by a large number of researchers, and many enhanced schemes have been proposed afterwards. However, most of the schemes did not adopt the architecture of Farash et al. for protocol design. Although Farash et al.’s protocol still uses the GWN to perform the authentication process, it does not need to interact with the GWN directly and can only obtain aggregated information about the sensor node as in other schemes. The user can directly connect and access a specific sensor node, thus providing a more direct approach.
Therefore, we believe that the design idea of Farash et al. is worth learning.

In this article, we first point out the security problems that still exist in Farash et al.’s scheme (i.e., privileged insider attack, user anonymity problem, and stolen smart card attack). Furthermore, we want to overcome these weaknesses. Therefore, we use the principle of elliptic curve cryptography (ECC) to improve the scheme. There is a CDH (Computational Diffie-Hellman) problem in ECC. The CDH problem believes that when given random numbers \(a, b \) and point \(P \), it is easy to calculate \(abP \); but when only the information of \(P, aP, \) and \(bP \) is given, it is impossible to calculate the value of \(abP \) in a limited time. Besides, we preserve the timestamp mechanism to ensure the freshness of the message in our protocol.

Based on the above principles, we propose an improved anonymous user authentication and key agreement protocol for health monitoring. In the subsequent security analysis, we proved the security of our protocol through Burrows-Abadi-Needham (BAN) logic and Automated Validation of Internet Security Protocols and Applications (AVISPA) tools. The performance comparison and efficiency analysis results confirm that the improved protocol provides a higher security level while ensuring computation efficiency.

B. ORGANIZATION OF THE PAPER

The remainder of this paper is organized as follows. In Section II, we briefly reviewed Farash et al.’s scheme and further pointed out the drawbacks of the scheme in Section III. In order to eliminate these shortcomings, we proposed an improved user authentication protocol for intelligent medical systems in Section IV. In Section V and VI, the security analysis of the proposed protocol is showed, including informal security analysis and mutual authentication proof using BAN logic. Further, we depict the simulation outputs using AVISPA in Section VII. The security features comparison and effectiveness analysis with other related schemes are illustrated in Section VIII. Finally, the conclusion is represented in Section IX.

II. REVIEW OF FARASH et al.’s SCHEME

In this section, we will briefly review Farash et al.’s scheme [19] in order to better understanding their content. According to Farash et al.’s description, their scheme includes five phases. For the purpose of this article, we will only describe the first four phases in detail except for the dynamic node addition phase. TABLE 1 depicts all notations used in the scheme.

A. PRE-DEPLOYMENT PHASE

In order to enable the network to operate normally, the system administrator SA must first perform the pre-deployment phase in offline mode. At this stage, SA will select a secure password \(X_{GWN} \) which is known only to the GWN. Each sensor node \(S_j \) will be pre-defined with its identity \(SID_j \), and the gateway node GWN will generate and store a password \(X_{GWN−S_j} \) which is familiar by only GWN and the related \(S_j (1 ≤ j ≤ m) \), where \(m \) represents the number of sensor nodes. The shared key \(X_{GWN−S_j} \) will be used in the next sensor node registration phase. It is worth noting that when \(S_j \) is successfully registered, the password \(X_{GWN−S_j} \) will be deleted from the memory of \(S_j \). Meanwhile, the gateway node GWN will also lose this information forever. In addition, the information of the sensor identity \(SID_j \) will also be deleted from the GWN, which allows the GWN to add a huge number of additional sensor nodes to this network, regardless of the GWN memory limit.

B. REGISTRATION PHASE

In this stage, a user needs to get a legal identity to access the system and sensors need to complete the rest initialization to normal work. In the subsequent login and authentication phases, only registered users and sensor nodes can be verified by GWN, then negotiate the session key between each other and achieve successful mutual communication. User and sensor node registration are shown in FIGURE 1 and 2.

C. LOGIN AND AUTHENTICATION PHASE

This phase is shown in FIGURE 3.

D. PASSWORD CHANGE PHASE

This phase is shown in FIGURE 4.

III. WEAKNESSES OF FARASH et al.’s SCHEME

A. WEAKNESS 1: PRIVILEGED INSIDER ATTACK

A privileged insider attack is an attack initiated by a privileged but malicious person. Although the GWN is generally

Notation	Description
\(U_i \)	user
\(ID_i \)	the identity of \(U_i \)
\(PW_i \)	the password of \(U_i \)
\(SC \)	smart card
\(S_j \)	sensor node
\(SID_j \)	the identity of \(S_j \)
\(ESID_j \)	masked identity of \(S_j \)
\(GWN \)	gateway node
\(X_{GWN} \)	secure password known only to the GWN
\(X_{GWN−S_j} \)	secure password shared with \(S_j \)
\(MP_i, MP_j \)	masked password of \(U_i \) and \(S_j \)
\(MN_j \)	masked nonce of \(S_j \)
\(T_j \)	timestamp
\(\Delta T \)	time interval for the allowed transmission delay
\(SK \)	session key
\(\Theta, \|, h() \)	XOR, concatenation, and hash operation
\(r_r, r_p, K_i, K_j \)	random numbers
User registration phase of Farash et al.’s scheme [19].

U∗i → GWN

Choses < IDi, PW∗i >

Generates a nonce ri

Calculates MP∗i = h(ri ‖ PW∗i)

{MP∗i , IDi } → Calculates ei = h(MP∗i ‖ IDi)
di = h(IDi ‖ XGWN)
gi = h(XGWN) ⊕ h(MP∗i ‖ di)
fj = di ⊕ h(MP∗i ‖ ej)

← {SC} - Stores {ei, fj, gi} into a SC

Stores ri into SC

SC contains parameters {ri, ei, fj, gi}

FIGURE 1. User registration phase of Farash et al.’s scheme [19].

Sj, GWN

stores its SIDi and XGWN—si for each Sj, stores their SIDi and XGWN—si.

Generates a nonce rj

Calculates MPj = h(XGWN—si ‖ rj ‖ SIDi ‖ Fj)

MNj = rj ⊕ XGWN—si

Checks rj ⊕ MNj ⊕ XGWN—si

Calculates rj = MNj ⊕ XGWN—si

Checks MPj = h(XGWN—si ‖ rj ‖ SIDi ‖ Fj)

Calculates xj = h(SIDi ‖ XGWN), rj = xj ⊕ XGWN—si

dj = h(XGWN) ⊕ h(XGWN—si ‖ Fj)

Checks|rj — rj| < AT?

Calculates xj = ej ⊕ XGWN—si

Checks xj ⊕ ej ⊕ XGWN—si

Calculates h(XGWN) = dj ⊕ h(XGWN—si ‖ Fj)

Stores < xj, h(XGWN)> into memory

Deletes XGWN—si from memory

FIGURE 2. Sensor registration phase of Farash et al.’s scheme [19].

considered as a trusted subject in the authentication scheme, the system administrator may also use his/her privileges to try to obtain some sensitive information, such as user identity, user password, session key, and so on. Assuming that adversary A is a privileged attacker, A can compute the session key of a session through the following steps:

Step1: A gets XGWN from the GWN memory.

Step2: During the login and authentication phase, A can receive the message {M1, M2, M3, T1, T2, ESIDj, M4, M5}, and then A computes:

\[K'_j = M2 \oplus h(d'_i \parallel T1_1) = M2 \oplus h(ID'_j \parallel XGWN) \parallel T1_1 \]

\[= M2 \oplus h((M1 + h(XGWN) \parallel T1_1) \parallel XGWN) \parallel T1_1 \]

\[K''_j = M4 \oplus h(x'_j \parallel T1_1 \parallel T2_1) \]

\[= M4 \oplus h((ESIDj + h(XGWN) \parallel T2_1)) \parallel XGWN) \parallel T1_1 \parallel T2_1. \]

Step3: A computes SK = h(K'_i + K''_i).

Once a privileged insider A calculates the session key SK, he/she can eavesdrop on the messages which are exchanged between the user and the sensor node even if these messages are encrypted by SK.

B. WEAKNESS 2: USER ANONYMITY PROBLEM

A secure identity authentication protocol requires complete confidentiality of the user’s identity IDi, hence all transmitted information that covers it should be highly encrypted so that no adversary can crack it in any way. However, Farash et al.’s scheme is not secure in terms of user anonymity. The user’s identity IDi can be extracted through the following steps:

Step1: Any authenticated user U∗i has the capacity to retrieve the information {ri, ei, fj, gi} from his/her smart card using the power consumption monitoring methods.

Step2: Assuming adversary A is an authenticated user, A can use his/her password PW∗i to compute MP∗i = h(ri ‖ PW∗i),

di = fj ⊕ h(MP∗i ‖ ej).

gi = h(XGWN) = gi ⊕ h(MP∗i ‖ di).

Step3: During the login and authentication phase of U∗i, A can intercept the message {M1, M2, M3, T1}, where M1 = IDi ⊕ h(XGWN) ∥ T1, and then A computes IDi = M1 ⊕ h(XGWN) ∥ T1.

Therefore, any registered user can easily obtain the identity information of other users, which violates the user anonymity property that a security scheme should have.

C. WEAKNESS 3: STOLEN SMART CARD ATTACK

Sometimes the user’s smart card SC would be lost, such as being picked up or stolen by an adversary A. Afterward, A can retrieve the information {ri, ei, fj, gi} from the smart card. As stated in subsection B, if adversary A is an authenticated user, A can easily obtain the identity information IDi of any other user U∗i. Based on this information, A can launch the offline password guessing attack through the following steps:

Step1: A guesses a password PW∗i guess, and computes MP∗i guess = h(ri ‖ PW∗i guess).

Step2: A checks whether ei = h(MP∗i guess ‖ IDi). If it holds, A guesses the correct password PW∗i.

Step3: Otherwise, A repeats from Step1 until he/she guesses the correct password PW∗i.

After extracting the correct password PW∗i, A can also launch the new smart card problem attack. In this situation, the attacker may use U∗i’s original identity IDi and a new password (not equal to PW∗i) to create a new smart card, and then use the new smart card to login to the network as IDi and pass the verification. Further, he/she can access all the information which is transmitted by any registered Sj.

We conclude the implementation process of this attack by the following steps:

Step1: A computes MP1 = h(ri ‖ PW1), e1 = h(MP1 ‖ ID1), di = fi ⊕ h(MP1 ‖ ej).

Step2: A chooses a new password PW1, and computes MP1 = h(ri ‖ PW1), fi = di ⊕ h(MP1 ‖ ej).
Step3: A chooses a new smart card and inserts \(\{r_t, r_s, r_f, \overline{r}_t\} \) into it.

Obviously, the adversary can use this new smart card to pass GWN's verification and successfully login to the system.

IV. PROPOSED PROTOCOL

In this section, we propose an enhanced protocol based on the CDH problem to overcome the shortcomings of Farash et al.’s scheme, and the architecture of the health monitor system is depicted in FIGURE 5. Medical sensor nodes are placed on the patient, collect relevant physiological data, and regularly upload it to a cloud service platform with sufficient storage and computing capabilities. Users (i.e., medical professionals) can obtain historical data of patients through the cloud service platform, analyze the transfer and development of the disease, and help guide patients’ long-term health management. This aspect does not belong to the concern of our article (shown by the dashed line). More often, medical professionals want to obtain real-time patient data. In this scenario, the communication between doctors and medical sensors is carried out through insecure public channels. Therefore, before accessing the medical information of a patient, the mutual authentication between the user and the medical sensor must be completed to verify the legitimacy of both parties. In the proposed protocol, the mutual authentication process includes four steps, as shown by the solid line. The medical user first establishes a connection with a specific sensor node and sends an authentication request; then the sensor node sends its own information along with the information received from the user to the gateway node for authentication. After successfully verifying their identities, the gateway node sends a reply message to the sensor node and the user in turn to complete the authentication and key agreement process.

Inheriting the framework of Farash et al.’s scheme, the enhanced protocol still consists of the above five phases. The difference is that we will redesign some of the details of the previous process to improve the security features. TABLE 2 depicts all new notations in our protocol.

A. PRE-DEPLOYMENT PHASE

This phase is the same as Farash et al.’s scheme which has been described above. In particular, the system administrator SA is to preset the identity information \(SID_j \) and the corre-
TABLE 2. Notations.

Notation	Description
MID_i	masked identity of U_i
MID_j	temporarily masked identity of U_i related to specific task
P	a point on the elliptic curve
a,b,c	random numbers

TABLE 2. Notations.

Notation	Description
MID_i	masked identity of U_i
MID_j	temporarily masked identity of U_i related to specific task
P	a point on the elliptic curve
a,b,c	random numbers

sponding security password $X_{\text{GWN}}-S_j$ for each medical sensor that will be placed on the patient in our protocol.

B. REGISTRATION PHASE

The phase still contains two different parts: medical professional user registration and medical sensor node registration. For the user registration phase, a medical professional must first register in the system when he/she wants to obtain the medical data of a patient in order to protect the privacy of patients. Only authorized users (such as doctors and nurses) can access this sensitive information. We describe the process of user registration in detail:

For the user registration phase, a medical professional must first register in the system when he/she wants to obtain the medical data of a patient in order to protect the privacy of patients. Only authorized users (such as doctors and nurses) can access this sensitive information. We describe the process of user registration in detail:

![Figure 5. Patient health monitor system model.](image)

![Figure 4. Password change phase of Farash et al’s scheme [19].](image)

FIGURE 4. Password change phase of Farash et al’s scheme [19].

FIGURE 5. Patient health monitor system model.

Step1: The medical professional U_i chooses an identity ID_i, a password PW_i, and a random number r_i, then computes $\text{MID}_i = h(r_i \parallel ID_i)$, $MP_i = h(r_i \parallel PW_i)$, $\text{RSP}_i = h(\text{ID}_i \parallel MP_i)$. Then it submits $\{\text{MID}_i, \text{RSP}_i\}$ to GWN.

Step2: Upon receiving the message $\{\text{MID}_i, \text{RSP}_i\}$, GWN computes $e_i = h(\text{RSP}_i \parallel \text{MID}_i)$, $d_i = h(\text{MDI}_i \parallel X_{\text{GWN}})$, $g_i = h(X_{\text{GWN}}) \oplus h(\text{RSP}_i \parallel d_i)$, $f_i = d_i \oplus h(\text{RSP}_i \parallel e_i)$. Then GWN writes e_i, f_i, and g_i into a SC and issues it to U_i.

Step3: The medical professional U_i computes $r_i^* = h(\text{ID}_i \parallel PW_i) \oplus r_i$ and inserts r_i^* into SC.

The illustration of the process is depicted in FIGURE 6.

When a medical sensor node needs to be registered, there is no change and just following the steps of FIGURE 2:

Step1: S_j first selects a random number r_j, and computes $MP_j = h(X_{\text{GWN}}-S_j \parallel r_j \parallel \text{SID}_j \parallel T_j)$, $MN_j = r_j \oplus X_{\text{GWN}}-S_j$, where T_j is current timestamp. Then S_j sends the registration message $\{\text{SID}_j, MP_j, MN_j, T_j\}$ to GWN.

Step2: After receiving the sensor registration message, GWN checks if $|T_j - T_e| < \Delta T$ to avoid potential replay attack. If the condition holds, GWN uses its $X_{\text{GWN}}-S_j$ and the received information MN_j to compute its own version $r_j' = MN_j \oplus X_{\text{GWN}}-S_j$. Then GWN checks if $MP_j = h(X_{\text{GWN}}-S_j \parallel r_j' \parallel \text{SID}_j \parallel T_j)$, if it holds, GWN trusts the S_j is legal. GWN chooses the new current timestamp T_2, and computes $x_j = h(\text{SID}_j \parallel X_{\text{GWN}})$, $e_j = x_j \oplus X_{\text{GWN}}-S_j$, $d_j = h(X_{\text{GWN}} \parallel 1) \oplus h(X_{\text{GWN}}-S_j \parallel T_2)$, $f_j = h(x_j \parallel d_j \parallel X_{\text{GWN}}-S_j \parallel T_2)$.

Finally, the message $\{e_j, f_j, d_j, T_2\}$ is sent to S_j as a response.

Step3: Similarly, S_j first checks if $|T_2 - T_e| < \Delta T$ to avoid potential replay attack. Afterwards, S_j computes its own version $x_j = e_j \oplus X_{\text{GWN}}-S_j$ and authenticates the identity of GWN by checking if $f_j = h(x_j \parallel d_j \parallel X_{\text{GWN}}-S_j \parallel T_2)$. S_j then computes $h(X_{\text{GWN}} \parallel 1) = d_j \oplus h(X_{\text{GWN}}-S_j \parallel T_2)$ and stores these information $\{x_j, h(X_{\text{GWN}} \parallel 1)\}$ to its memory. Finally, S_j
deletes the shared password X_{GWN-S_j} and sends a successful confirmation message to GWN.

Step4: After receiving the successful confirmation message, GWN deletes $\{SID_j, X_{GWN-S_j}\}$.

C. LOGIN AND AUTHENTICATION PHASE

Step1: U_i inserts the SC into a reader and inputs his/her ID_i, PW_i. SC computes $r'_i = r_i^e + h(ID'_i \parallel PW'_i)$, $MID_i = h(r'_i \parallel ID_i)$, $MP'_i = h(r'_i \parallel PW'_i)$, $RSP'_i = h(ID'_i \parallel MP'_i)$. SC verifies the legitimacy of U_i by checking if $e_i = h(RSP'_i \parallel MID_i)$. If this condition holds, U_i has a successful login.

Step2: SC computes $d_i = f_i \oplus h(RSP'_i \parallel e_i)$, $h(X_{GWN}) = g_i \oplus h(RSP'_i \parallel d_i)$. SC respectively chooses a to compute $R_1=aP$ and c to mask the true identity with $MID_i = h(c \parallel ID_i)$. Then SC computes $x_i = h(MID_i \parallel h(X_{GWN}))$, $M_1 = MID_i \oplus h(x_i \parallel T_1 \parallel T_2)$, and sends the message $\{M_1, M_2, T_1, T_2\}$ to GWN for authentication.

Step3: After receiving U_i’s authentication message, S_j will add its own information and send it to GWN for verification. But before that, S_j must first check if $|T_1 - T_i| < \Delta T$ to prevent replay attack. Then S_j chooses a random number b, computes $R_2 = bP, M_3 = h(SID_j \parallel x_i \parallel R_2 \parallel T_1 \parallel T_2), R_3 = bR_1$, and sends $\{M_1, M_2, M_3, T_1, T_2, ESID_j, R_1, R_3\}$ to GWN.

Step4: Similarly, GWN first check if $|T_2 - T_i| < \Delta T$ to prevent replay attack. Then GWN computes its own version $SID'_j = ESID_j \oplus h(x_i \parallel T_1 \parallel T_2), x'_i = h(SID'_j \parallel X_{GWN})$, and verifies the legitimacy of S_j by checking if $M_3 = h(SID'_j \parallel x'_i \parallel R_2 \parallel T_1 \parallel T_2)$. GWN computes its own version $MID'_j = M_1 \oplus h(x'_i \parallel T_1), x'_i = h(MID'_j \parallel h(X_{GWN}))$, and verifies the legitimacy of U_i by checking if $M_2 = h(M_1 \parallel x'_i \parallel R_1 \parallel T_1)$. After both U_i and S_j are verified successfully, GWN computes $M_4 = h(x'_i \parallel R_2 \parallel T_3), M_5 = h(x'_i \parallel R_1 \parallel T_2), M_6 = MID'_j \oplus h(x'_i \parallel T_3)$, and sends $\{M_4, M_5, M_6, R_1, R_3\}$ to S_j.

Step5: When S_j receives the response message from GWN, this shows that U_i is a legitimate user. Hence, S_j starts to check if $|T_3 - T_i| < \Delta T$ to prevent replay attack. Then S_j authenticates GWN by comparing the received value M_5 with its own computed value $h(x'_i \parallel R_1 \parallel T_3)$. If the two values are equal, then it proves that the received message is trustworthy. S_j continues to compute $MID'_j = M_6 \oplus h(x'_i \parallel T_3)$ and generates the session key $SK = h(MID'_j \parallel SID'_j \parallel R_3 \parallel T_3 \parallel T_4)$. Finally, S_j computes $M_7 = h(SK \parallel M_4 \parallel T_3 \parallel T_4)$ and sends $\{M_4, M_7, T_3, T_4\}$ to U_i.

Step6: When U_i receives the response message from S_j, U_i starts to check if $|T_3 - T_i| < \Delta T$ to prevent replay attack. Then U_i authenticates GWN by comparing the received value M_4 with its own computed value $h(x'_i \parallel R_2 \parallel T_3)$. If the two values are equal, then S_j continues to compute $R_4 = aR_2$, and generates the session key $SK = h(MID'_j \parallel SID'_j \parallel R_4 \parallel T_3 \parallel T_4)$. At the end of authentication phase, U_i needs to verify the legitimacy of S_j by comparing the received value M_7 with its own computed value $h(SK \parallel M_4 \parallel T_3 \parallel T_4)$. If this condition holds, U_i verifies the legitimacy of S_j and can use the SK for subsequent information transmission.

The illustration of the process is depicted in FIGURE 8.

D. PASSWORD CHANGE PHASE

Step1: U_i must first finish the successful login process through section IV-subsection C’s Step1.

Step2: SC computes $d_i = f_i \oplus h(RSP'_i \parallel e_i), h(X_{GWN}) = g_i \oplus h(RSP'_i \parallel d_i)$. Then U_i can input a new password PW'_i.

Thus SC computes all the values that need to be changed due to the new password, including:

$$MP'_{\text{new}} = h(r_i \parallel PW'_i)$$
$$RSP'_i = h(ID'_i \parallel MP'_i)$$
$$r_i'_{\text{new}} = r_i = h(ID'_i \parallel PW'_i)$$
$$e_i'_{\text{new}} = h(RSP'_i \parallel MID'_i)$$

Finally, SC replaces $\{r_i, e_i, f_i, g_i\}$ with $\{r_i'_{\text{new}}, e_i'_{\text{new}}, f_i'_{\text{new}}, g_i'_{\text{new}}\}$.

The illustration of the process is depicted in FIGURE 8.

E. DYNAMIC NODE ADDITION PHASE

The main purpose of this phase is to meet the needs of system expansion and replacement of damaged nodes. During the operation of the system, there will be new patients who need to be monitored, then new medical sensors need to be added to ensure the system performance. In addition, medical sensor nodes in some patients maybe maliciously damaged or have reached the end of their useful lives, so new nodes need to be replaced at these patients to ensure the normal operation of the system. Suppose a new sensor node S'_j needs to be replaced in a patient, the dynamic node addition will be performed by the following steps:

Step1: The system administrator SA selects an identity SID'_{new} and shared key $X_{GWN-S'_j}$ for the new medical sensor node. Then $\{SID'_{\text{new}}, X_{GWN-S'_j}\}$ are stored in the memory of SID'_{new} and GWN.

Step2: SA replaces S'_j to the patient of interests, and then S'_j executes the sensor node registration phase expressed in section IV-subsection B.

Step3: SA informs the registered users (i.e., medical professionals) that they can communicate with S'_j.

V. SECURITY ANALYSIS

A. PRIVILEGED INSIDER ATTACK

It is well known that many users may use the same identity and password in different systems. Therefore, even though the GWN is regarded as a trusted subject in our protocol, we should also avoid the possibility of privileged but malicious system administrators extracting the sensitive information (i.e., ID_i, PW_i) of registered users in various ways. Once this sensitive information is extracted, the adversary would impersonate a legitimate user and further initiate more attacks.

The proposed protocol resists this possible attack and eliminates it by providing more careful steps in user information protection. During user registration phase, the user U_i...
only send \{\text{MID}_i, \text{PW}_i\} to the gateway node \text{GWN}, where \text{MID}_i = h(r_i \| \text{ID}_i \| \text{PW}_i) \text{ and } h(r_i) \text{ is} not stored in \text{SC} \text{ but } r_i^* = h(r_i \| \text{PW}_i) \oplus r_i. \text{ In other words, there is no way for GWN to retrieve } r_i. \text{ In addition, during the authentication phase, GWN can only retrieve } \text{MID}_1 \text{ from } \{\text{MID}_1, \text{MID}_2, \text{MID}_3, \text{T}_1, \text{T}_2, \text{ESID}_j, \text{R}_1, \text{R}_2\} \text{ which is different in each session and } \text{PW}_i \text{ has never been transmitted over these insecure channels. As a result, it is impossible for any privileged insider to reveal these useful information in our protocol.}

B. USER ANONYMITY

In the registration phase, only \{\text{MID}_i, \text{RSP}_i\} is sent to the gateway node \text{GWN} via a secure channel, where \text{MID}_i = h(r_i \| \text{ID}_i \| \text{PW}_i) \text{ and } h(r_i) \text{ is not stored in } \text{SC} \text{ but } r_i^* = h(r_i \| \text{PW}_i). \text{ In other words, there is no way for GWN to retrieve } r_i. \text{ In addition, during the authentication phase, GWN can only retrieve } \text{MID}_1 \text{ from } \{\text{MID}_1, \text{MID}_2, \text{MID}_3, \text{T}_1, \text{T}_2, \text{ESID}_j, \text{R}_1, \text{R}_2\} \text{ which is different in each session and } \text{PW}_i \text{ has never been transmitted over these insecure channels. As a result, it is impossible for any privileged insider to reveal these useful information in our protocol.}

C. OFFLINE PASSWORD GUESSING ATTACK

Assuming that the adversary A retrieves the information \{r_i^*, e_i, f_i, g_i\} from a stolen/lost smart card SC. However,
$e_i = h(RSP_i \parallel MID_i), \ RSP_i = h(ID_i \parallel MP_i), \ MID_i = h(r_i \parallel ID_i), \ MP_i = h(r_i \parallel PW_i)$, the ID_i is anonymous and never revealed to others. Thus, the adversary A must first guess the correct identity ID_i before A can guess the password PW_i. This is almost impossible for the attacker.

D. KNOWN SESSION SPECIFIC TEMPORARY INFORMATION ATTACK

In the authentication phase, we use the timestamp mechanism and CDH to prevent known session specific temporary information attack. Random numbers a, b are regenerated in each session to evaluate the session key $SK = h(MID_i \parallel SID_i \parallel abP \parallel T_3 \parallel T_4)$. Based on CDH, it is a computationally difficult problem to guess abP even if the attacker gets the information aP and bP. Besides, it uses T_3 and T_4 to check whether the session message is the latest or not. If the condition does not hold, the protocol rejects the message and aborts the session.

E. PASSWORD CHANGE ATTACK

In the password change phase, user U_i inserts his/her SC into a terminal and inputs ID_i, PW_i. Then SC computes $r'_i = r_i^* \oplus h(ID_i \parallel PW_i), \ e'_i = h(RSP_i \parallel MID_i) = h(h(ID_i \parallel MP_i) \parallel h(r'_i \parallel ID_i)) = h(h(ID_i \parallel h(r'_i \parallel PW_i)) \parallel h(r'_i \parallel ID_i))$ and checks whether $e'_i = e_i$ or not. If the condition holds, SC asks U_i for a new password PW_i^{new} to replace the old one. Otherwise, SC rejects the request. If an attacker wants to change the password, he/she must know the information (ID_i, PW_i) in advance to pass the equation verification $e'_i = e_i$. As mentioned earlier, the attacker cannot obtain (ID_i, PW_i) in any way. Therefore, the proposed protocol provides security against the password change attack.

F. TRACEABILITY ATTACK

In this attack, the attacker usually eavesdrops on two different session login and authentication messages and compares them. If the two messages have the same components, the attacker infers that they belong to the same user, so that the login activity of a single user can be tracked by the attacker. However, it is impossible for the attacker to track anyone in our protocol. In the login and authentication phase, the user sends the message (M_1, M_2, R_1, T_1) to S_j where $M_1 = MID_1 \oplus h(h(X_{GW})) \parallel T_1 = h(c \parallel ID_i \parallel h(X_{GW})) \parallel T_1, M_2 = h(M_1 \parallel R_1 \parallel T_1), R_1 = aP$, and T_1 is the current timestamp. Note the random numbers (i.e., a, c) and timestamp are different in each session, so the message of each session differs from the other sessions. Similarly, other transmitted messages in this phase also depend on random numbers and timestamps. Hence, the protocol can resist the traceability attack.

VI. MUTUAL AUTHENTICATION PROOF USING BAN LOGIC

Through the security analysis using the widely-accepted BAN logic[34], it is shown that the proposed protocol provides the mutual authentication between a user U_i and a medical sensor node S_j.

A. GOALS

The proposed protocol must meet the following goals to prove that the protocol is secure:

Goal 1: $U_i \rightarrow S_j: MID_1, \ (U_i, MID) \rightarrow GWN > h(X_{GW})$

Message 2:

$U_i \rightarrow GWN : (R_1, MID_1, GWN), \ (U_i, R_1, GWN)_{x_i}$

Message 3:

$S_j \rightarrow GWN : (R_2, SID_j, T_2, S_j \rightarrow GWN, (S_j, R_2, GWN)_{x_j}$

Message 4:

$S_j \rightarrow GWN : (R_2, SID_j, T_1, T_2, S_j \rightarrow GWN), (S_j, R_2, GWN)_{x_j}$

Message 5:

$GWN \rightarrow S_j : (R_1, T_3, S_j \rightarrow GWN)_{x_i=xy}$

Message 6:

$U_i \rightarrow S_j : <MID_1, T_3, (U_i, SK \rightarrow S_j), (S_j, SK \rightarrow GWN) > x_i=xy$

Message 7:

$GWN \rightarrow U_i : (M_4, T_3, T_4, (U_i, MID_1 \rightarrow GWN), (U_i, R_1 \rightarrow GWN), (U_i, SK \rightarrow S_j)_{SK}$
C. ASSUMPTIONS

The following assumptions about the initial state are used to analyze the proposed protocol:

A1: $GWN \equiv \#(T_1)$
A2: $GWN \equiv \#(T_2)$
A3: $S_j \equiv \#(T_3)$
A4: $U_i \equiv \#(T_4)$
A5: $GWN \equiv \#(R_1)$
A6: $GWN \equiv \#(R_2)$
A7: $S_j \equiv \#(R_1)$
A8: $U_i \equiv \#(R_2)$
A9: $S_j \equiv \#(MID_1) = MID_1$
A10: $U_i \equiv (U_i x = h(MID_1 || h(X_{GWN}))) \leftrightarrow GWN$
A11: $GWN \equiv (U_i x = h(MID_1 || h(X_{GWN}))) \leftrightarrow GWN$
A12: $S_j \equiv (S_j x = h(SID || X_{GWN})) \leftrightarrow GWN$
A13: $GWN \equiv (S_j x = h(SID || X_{GWN})) \leftrightarrow GWN$
A14: $GWN \equiv (U_i h(X_{GWN}) \leftrightarrow GWN)
A15: $GWN \equiv (S_j h(X_{GWN}) \leftrightarrow GWN)
A16: $GWN \equiv U_i \Rightarrow (U_i R_1 \leftrightarrow GWN)$
A17: $GWN \equiv U_i \Rightarrow (U_i MID_1 \leftrightarrow GWN)$
A18: $GWN \equiv S_j \Rightarrow (S_j R_2 \leftrightarrow GWN)$
A19: $GWN \equiv S_j \Rightarrow (S_j SID \leftrightarrow GWN)$
A20: $S_j \equiv U_i \Rightarrow (U_i SK \leftrightarrow S_j)$
A21: $U_i \equiv S_j \Rightarrow (U_i SK \leftrightarrow S_j)$

D. PROOF

Based on logical postulates in the BAN logic, the proof process is as follows:

From Message 1, we have,

$$GWN \sim < MID_1, T_1, (U_i MID_1 GWN) > h(X_{GWN})$$ (1)

From (1), A14, and message-meaning rule, we have,

$$GWN \equiv U_i \sim < MID_1, T_1, (U_i MID_1 GWN) >$$ (2)

From A1 and freshness rule, we have,

$$GWN \equiv \# < MID_1, T_1, (U_i MID_1 GWN) >$$ (3)

From (2), (3), and nonce-verification rule, we have,

$$GWN \equiv U_i \equiv < MID_1, T_1, (U_i MID_1 GWN) >$$ (4)

From (4) and belief rule, we have,

$$GWN \equiv U_i \equiv (U_i MID_1 GWN)$$ (5)

From (5), A17 and jurisdiction rule, we have,

$$GWN \equiv (U_i MID_1 GWN)$$ (6)

From Message 2, we have,

$$GWN \sim (R_1, M_1, T_1, (U_i \rightarrow MID_1 GWN), (U_i \rightarrow R_1 GWN))$$ (7)

From (7), A11, and message-meaning rule, we have,

$$GWN \equiv U_i \sim (R_1, M_1, T_1, (U_i MID_1 GWN), (U_i \rightarrow R_1 GWN))$$ (8)

From A1, A5, and freshness rule, we have,

$$GWN \equiv \#(R_1, M_1, T_1, (U_i MID_1 GWN), (U_i \rightarrow R_1 GWN))$$ (9)

From (8), (9), and nonce-verification rule, we have,

$$GWN \equiv U_i \equiv (R_1, M_1, T_1, (U_i MID_1 GWN), (U_i \rightarrow R_1 GWN))$$ (10)

From (10) and belief rule, we have,

$$GWN \equiv U_i \equiv (U_i R_1 GWN)$$ (11)

From (11), A16, and jurisdiction rule, we have,

$$GWN \equiv (U_i R_1 GWN)$$ (12)

From Message 3, we have,

$$GWN \sim < S_ID_2, T_2, (S_j SID \sim GWN) > h(X_{GWN})$$ (13)

From (13), A15, and message-meaning rule, we have,

$$GWN \equiv S_j \sim < S_ID_2, T_2, (S_j SID \sim GWN) >$$ (14)

From A2 and freshness rule, we have,

$$GWN \equiv \# < S_ID_2, T_2, (S_j SID \sim GWN) >$$ (15)

From (14), (15), and nonce-verification rule, we have,

$$GWN \equiv S_j \equiv < S_ID_2, T_2, (S_j SID \sim GWN) >$$ (16)

From (16) and belief rule, we have,

$$GWN \equiv S_j \equiv (S_j SID \sim GWN)$$ (17)

From (17), A19, and jurisdiction rule, we have,

$$GWN \equiv (S_j SID \sim GWN)$$ (18)

From Message 4, we have,

$$GWN \sim (R_2, S_ID_2, T_1, T_2, (S_j SID \sim GWN), (S_j \rightarrow R_2 GWN))$$ (19)

From (19), A13, and message-meaning rule, we have,

$$GWN \equiv S_j \sim (R_2, S_ID_2, T_1, T_2, (S_j SID \sim GWN), (S_j \rightarrow R_2 GWN))$$ (20)
From A_2, A_6, and freshness rule, we have,

$$GWN \models \#(R_2, SID_j, T_1, T_2, (S_j \xleftarrow{\text{SID}_j} GWN), (S_j \xrightarrow{R_2} GWN))$$ \hspace{1cm} (21)

From (20), (21), and nonce-verification rule, we have,

$$GWN \models S_j \models (R_2, SID_j, T_1, T_2, (S_j \xleftarrow{\text{SID}_j} GWN), (S_j \xrightarrow{R_2} GWN))$$ \hspace{1cm} (22)

From (22) and belief rule, we have,

$$GWN \models S_j \models (S_j \xrightarrow{R_2} GWN)$$ \hspace{1cm} (23)

From (23), A_{18}, and jurisdiction rule, we have,

$$GWN \models (S_j \xrightarrow{R_2} GWN)$$ \hspace{1cm} (24)

From Message 5, we have,

$$S_j \xleftarrow{} (R_1, T_3, (S_j \xleftarrow{\text{SID}_j} GWN))_{s_j=x_j}$$ \hspace{1cm} (25)

From (25), A_{12}, and message-meaning rule, we have,

$$S_j \models GWN \models \sim (R_1, T_3, (S_j \xleftarrow{\text{SID}_j} GWN))$$ \hspace{1cm} (26)

From A_7 and freshness rule, we have,

$$S_j \models \#(R_1, T_3, (S_j \xleftarrow{\text{SID}_j} GWN))$$ \hspace{1cm} (27)

From (26), (27), and nonce-verification rule, we have,

$$S_j \models GWN \models (R_1, T_3, (S_j \xleftarrow{\text{SID}_j} GWN))$$ \hspace{1cm} (28)

From (28) and belief rule, we have,

$$S_j \models GWN \models (S_j \xleftarrow{\text{SID}_j} GWN)$$ \hspace{1cm} (29)

From Message 6, we have,

$$S_j \xleftarrow{} MIDX_1 = MID_1, T_3, (U_i \xleftarrow{SK} S_j), (S_j \xleftarrow{\text{SID}_j} GWN)_{s_j=x_j}$$ \hspace{1cm} (30)

From (30), A_{12}, and message-meaning rule, we have,

$$S_j \models U_i \models \sim MIDX_1 = MID_1, T_3, (U_i \xleftarrow{SK} S_j), (S_j \xleftarrow{\text{SID}_j} GWN)$$ \hspace{1cm} (31)

From A_3, A_9, and freshness rule, we have,

$$S_j \models \# \sim MIDX_1 = MID_1, T_3, (U_i \xleftarrow{SK} S_j), (S_j \xleftarrow{\text{SID}_j} GWN)$$ \hspace{1cm} (32)

From (31), (32), and nonce-verification rule, we have,

$$S_j \models U_i \models \sim MIDX_1 = MID_1, T_3, (U_i \xleftarrow{SK} S_j), (S_j \xleftarrow{\text{SID}_j} GWN)$$ \hspace{1cm} (33)

From (33) and belief rule, we have,

$$S_j \models U_i \models (U_i \xleftarrow{SK} S_j)$$ \hspace{1cm} (Goal 4)

From (Goal 4), A_{20}, and jurisdiction rule, we have,

$$S_j \models (U_i \xleftarrow{SK} S_j)$$ \hspace{1cm} (Goal 3)

From Message 7, we have,

$$U_i \xleftarrow{} (R_2, T_3, (U_i \xrightarrow{MIDX_1} GWN))_{x_i \equiv x_j}$$ \hspace{1cm} (34)

From (34), A_{10}, and message-meaning rule, we have,

$$U_i \models GWN \models \sim (R_2, T_3, (U_i \xrightarrow{MIDX_1} GWN))$$ \hspace{1cm} (35)

From A_8 and freshness rule, we have,

$$U_i \models \#(R_2, T_3, (U_i \xrightarrow{MIDX_1} GWN))$$ \hspace{1cm} (36)

From (35), (36), and nonce-verification rule, we have,

$$U_i \models GWN \models (R_2, T_3, (U_i \xrightarrow{MIDX_1} GWN))$$ \hspace{1cm} (37)

From (37) and belief rule, we have,

$$U_i \models GWN \models (U_i \xrightarrow{MIDX_1} GWN)$$ \hspace{1cm} (38)

From Message 8, we have,

$$U_i \xleftarrow{} (M_4, T_3, T_4, (U_i \xrightarrow{MIDX_1} GWN), (U_i \xleftarrow{R_1} GWN), (U_i \xleftarrow{SK} S_j))_{SK}$$ \hspace{1cm} (39)

From (39), A_{10}, and message-meaning rule, we have,

$$U_i \models S_j \models \sim (M_4, T_3, T_4, (U_i \xrightarrow{MIDX_1} GWN), (U_i \xleftarrow{R_1} GWN), (U_i \xleftarrow{SK} S_j))$$ \hspace{1cm} (40)

From A_4 and freshness rule, we have,

$$U_i \models \#(M_4, T_3, T_4, (U_i \xrightarrow{MIDX_1} GWN), (U_i \xleftarrow{R_1} GWN), (U_i \xleftarrow{SK} S_j))$$ \hspace{1cm} (41)

From (40), (41), and nonce-verification rule, we have,

$$U_i \models S_j \models \#(M_4, T_3, T_4, (U_i \xrightarrow{MIDX_1} GWN), (U_i \xleftarrow{R_1} GWN), (U_i \xleftarrow{SK} S_j))$$ \hspace{1cm} (42)

From (42) and belief rule, we have,

$$U_i \models S_j \models (U_i \xleftarrow{SK} S_j)$$ \hspace{1cm} (Goal 2)

From (Goal 2), A_{21}, and jurisdiction rule, we have,

$$U_i \models (U_i \xleftarrow{SK} S_j)$$ \hspace{1cm} (Goal 1)

According to Goal 1, Goal 2, Goal 3, and Goal 4, it is obvious that the improved protocol makes it successful to provide a secure mutual authentication between a medical professional user U_i and a medical sensor node S_j.
VII. SIMULATION OF PROPOSED PROTOCOL USING AVISPA TOOL

There is a popular simulation tool called AVISPA which has the ability to automatically verify network security protocols and applications. In this section, we use the AVISPA tool to simulate the proposed protocol and verify whether the protocol is secure against an attacker.

Before the simulation, the protocol needs to be implemented in HLPSL (High Level Protocol Specification Language) that can be recognized by the AVISPA tool. In the implementation of HLSPL, the roles of all participating entities are specified, including the medical professional U_i, the medical sensor S_j, the gateway node GWN, as well as the session, the environment, and the goal. In FIGURE 9, we depict the role of the medical professional U_i. When the user wants to register in the system, U_i first computes and transmits the request message $\{\text{MID}_i, \text{RSP}_i\}$ to the gateway node GWN using $\text{Snd}()$ operation via a secure channel. The statement $\text{secret} (\{\text{ID}_i, \text{PW}_i\}, \text{sec_subs}_i, U_i)$ indicates that only the U_i knows the information of ID_i and PW_i. Afterward, the U_i obtains a smart card with the information (E_i, F_i, G_i) and forwards the message to the medical sensor S_j, the gateway node GWN, as well as the session, the environment, and the goal. In FIGURE 10, we give out the role of the medical sensor S_j by $\text{Snd}()$ operation via an insecure channel. The statement $\text{secret} (\{\text{A}^n\}, \text{sec}_a, U_i)$ and $\text{secret} (\{\text{C}^n\}, \text{sec}_a, U_i)$ indicate that A^n and C^n are U_i’s secret and undisclosed to anyone else. The statements $\text{witness} (U_i, S_j, user_sensor_a, A_n^i)$ and $\text{witness} (U_i, G, user_gwn_a, A_n^i)$ indicate that the U_i generates a fresh timestamp T_1 and random number A_n, C_n with the help of $\text{new}()$ operation, and then forwards these message $\{M_1, M_2, R_1, T_1\}$ to the medical sensor S_j by $\text{Snd}()$ operation via an insecure channel. The statement $\text{secret} (\{SK\}, \text{sec}_s, \{U_i, S_j\})$ indicates that SK is a secret that only U_i and S_j know. The statement $\text{request} (S_j, U_i, sensor_user_b, B_n)$ indicates that S_j authenticated the identity of U_i by its generated number B_n. The type statement $\text{channel}(dy)$ indicates that the channels follow the Dolev-Yao threat model.

In FIGURE 10, we give out the role of the medical sensor S_j in HLPSL. In the medical sensor registration phase, the S_j initially generates timestamp T_3 and random number R_3, and then transmits the message $\{\text{SID}_j, MP_j', MN_j, T_3\}$ to GWN by $\text{Snd}()$ operation through an insecure open channel. The statement $\text{witness} (S_j, G, sensor_gwn_rj, R_3')$ indicates that the S_j generates the fresh value R_3' for GWN. In the login and authentication phase, when the S_j gets the message $\{M_1, M_2, R_1, T_1\}$ from U_i using $\text{Rcv}()$ operation, the S_j generates timestamp T_2 and random numbers B_n using $\text{new}()$ operation, and forwards the message $\{M_1, M_2, M_3, T_2, \text{ESID}_j, R_1, R_2\}$ to GWN. The statement $\text{secret} (\{B_n\}, \text{sec}_b, S_j)$ indicates that B_n’ is known to only S_j. The statements $\text{witness} (S_j, U_i, sensor_user_b, B_n')$ and $\text{witness} (S_j, G, sensor_gwn_b, B_n')$ indicate that the S_j generates the fresh value B_n' for U_i and GWN respectively. Hereafter, S_j gets the message $\{M_4, M_5, M_6, R_1, T_3\}$ from GWN using $\text{Rcv}()$ operation. Then the S_j generates timestamp T_4 using $\text{new}()$ operation and computes SK. In the end, S_j transmits the message $\{M_4, M_7, R_2, T_3, T_4\}$ to U_i using $\text{Snd}()$ operation. The statement $\text{request} (U_i, S_j, user_sensor_a, A_n)$ indicates that U_i authenticated the identity of S_j by its generated number A_n.

In FIGURE 11, we summarize the implementation of gateway node GWN in HLPSL. In the user registration phase, GWN gets the request message $\{\text{MID}_i, \text{RSP}_i\}$ from the medical professional U_i using $\text{Rcv}()$ operation. GWN sends the
role (Ui,Sj, G:agent, SKgui: symmetric_key, SKgsj: symmetric_key, H, Mul: hash_func,
Snd, Rcv: channel(dy))
played by Sj
def=
local State: nat,
ID1, PW1, Ri, MID1, MPI, RSPi, Di, Ei, Fi, Gi, Xgwn, Xhgwn, Xgwmi, Rii, SIDj, Rj, MPj, MNj, TS1, Xj, Dj, Ej, Fj, TS2, An, Bn, Cn, P, MID1, XI, R3, R4, SK: text,
R1, R2, M1, M2, M3, M4, M5, M6, M7, T1, T2, T3, T4, ESIDj: message,
Inc: hash_func
const
sec_subS1, sec_a, sec_b, sec_c, sec_sk, sec_xgwn, user_sensor_a, user_gwn_a, sensor_user_b, sensor_gwn_b, sensor_gwn_rj, protocol_id
init State::=0
transition
%Registration phase
1. State = 0 ∧ Rcv(start) =⇒ State’:: 1 ∧ Rj’:: new() ∧ TS1’:: new() ∧ MPj’:: H(SKgsj, Rj’. SIDj. TS1’)
∧ MNj’:: xor(Rj’, SKgsj) ∧ Snd(SIDj, MPj’. MNj’. TS1’) ∧ witness(Sj, G, sensor_gwn_rj, Rj’)
2. State = 1 ∧ Rcv(Ej, Fj, Dj. TS2) =⇒ State’:: 2 ∧ Xj’:: xor(Ej, SKgsj) ∧ Xgwmi’:: xor(Dj, H(SKgsj. TS2))
%Login and authentication phase
3. State = 2 ∧ Rcv(M1, M2, R1. T1) =⇒ State’:: 3 ∧ Bn’:: new() ∧ T2’:: new() ∧ ESIDj’:: xor(SIDj, H(Xgwmi. T2’))
∧ R2’:: Mul(Bn’. P) ∧ R3’:: Mul(Bn’. R1) ∧ M3’:: H(SIDj. Xj. R2’. T1. T2’ ∧ Snd(M1. M2. M3’. T1. T2’. ESIDj’. R1. R2’) ∧
secret(Bn’, sec_b, Sj) ∧ witness(Sj, Ui, sensor_user_b, Bn’) ∧ witness(Sj, G, sensor_gwn_rj, Bn’)
4. State = 3 ∧ Rcv(M4, M5, M6, R1. T3) =⇒ State’:: 4 ∧ T4’:: new() ∧ MID1’:: xor(M6, H(Xj, T3))
∧ SK’:: H(MID1’. SIDj. R3. T3. T4’) ∧ M7’:: H(SK’. M4. T3. T4’) ∧ Snd(M4. M5. R2. T3. T4’)
∧ secret(SK’, sec_sk, {Ui, Sj}) ∧ request(Ui, Sj, user_sensor_a, An) ∧ witness(Sj, Ui, sensor_user_b, Bn)
end role

FIGURE 10. Role specification in HLPSL for Sj in our protocol.

TABLE 3. Security features comparison among the proposed protocol and other schemes.

Security features	Farash et al. 2016 [19]	Wu et al. 2017 [25]	Suresh Kumar et al. 2019 [1]	Chandrakar et al. 2019 [9]	Li et al. 2020 [37]	Rangwani et al. 2021 [38]	Ours
SF1	No	No	Yes	Yes	No	Yes	Yes
SF2	No	No	No	No	No	Yes	Yes
SF3	No	Yes	Yes	No	Yes	Yes	Yes
SF4	No	No	Yes	Yes	No	Yes	Yes
SF5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SF6	Yes	No	Yes	No	No	Yes	Yes
SF7	Yes	Yes	No	Yes	No	Yes	Yes
SF8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
SF9	No	No	No	Yes	No	Yes	Yes
SF10	No	Yes	/	No	/	Yes	Yes
SF11	No	No	No	Yes	Yes	Yes	Yes
SF12	Yes	Yes	Yes	Yes	No	Yes	Yes
SF13	Yes	Yes	Yes	Yes	Yes	Yes	Yes

SF1: user anonymity; SF2: resist privileged insider attack; SF3: resist offline password guessing attack; SF4: resist stolen smart card attack; SF5: resist denial-of-service attack; SF6: prevent replay attack; SF7: prevent man-in-the-middle attack; SF8: mutual authentication; SF9: session key security; SF10: dynamic ID; SF11: resist known session specific temporary information attack; SF12: untraceability property; SF13: server independent password update phase.

message \{Ei, Fi, Gi\} in response by Snd() operation. The statement secret (\{Xgwmi\}, sec_xgwn, G) indicates that Xgwmi is undisclosed to anyone except GWN. In the medical sensor registration phase, the GWN obtains the message \{SIDj, MPj, MNj, TS1\} from Sj by Rcv() operation. Thence GWN generates timestamp TS2 using new() operation and then sends
FIGURE 11. Role specification in HLPSL for GWN in our protocol.

the message \{E_j, F_j, D_j, T_{S2}\} to S_j. The statement request (S_j, G, sensor_gwn_r, R_j) indicates that S_j authenticated the identity of GWN by its generated number R_j. In the login and authentication phase, GWN receives the message \{M_1, M_2, M_3, T_1, T_2, ESID_j, R_1, R_2\} from S_j, and then generates timestamp T_3. Lastly, GWN sends the message \{M_4, M_5, M_6, R_1, T_3\} to S_j. The statements request (U_i, G, user_gwn_a, A_n) and request (S_j, G, sensor_gwn_b, B_n) indicate that GWN is authenticated by the fresh number A_n generated by U_i and B_n generated by S_j respectively.

We also describe the role of session, environment, and goal in FIGURE 12. There are 6 secrecy goals and 4 authentication goals as follows:

* secrecy_of_sec_subs1: It tells that only U_i is familiar with \{ID_i, P_i\};
* secrecy_of_sec_a: It shows that only U_i is familiar with A_n;
* secrecy_of_sec_b: It indicates that B_n is undisclosed to everyone except S_j;
* secrecy_of_sec_c: It shows that only U_i is familiar with C_n;
* secrecy_of_sec_sk: It shows that SK is kept secret for only U_i and S_j;
TABLE 4. Comparison of computational cost among the proposed protocol and other schemes.

	Farash et al. 2016 [19]	Wu et al. 2017 [25]	Sureshkumar et al. 2019 [1]	Chandrakar et al. 2019 [9]	Li et al. 2020 [37]	Rangwani et al. 2021 [38]	Ours
User	$11T_h$	$11T_h$	$8T_h + 4T_{pm}$	$12T_h$	$9T_h + 3T_{pm}$	$5T_h + 2T_{pm} + 3T_{pa}$	$14T_h + 2T_{pm}$
Sensor node	$7T_h$	$6T_h$	$4T_h + 6T_{pm}$	$5T_h$	$4T_h + 2T_{pm}$	$8T_h + 2T_{pm} + 4T_{pa}$	$6T_h + 2T_{pm}$
GWN	$14T_h$	$17T_h$	$6T_h + 6T_{pm}$	$14T_h$	$8T_h + 1T_{pm}$	$4T_h + 2T_{pm} + 3T_{pa}$	$11T_h$
Total	$32T_h$	$34T_h$	$18T_h + 16T_{pm}$	$31T_h$	$21T_h + 6T_{pm}$	$17T_h + 6T_{pm} + 10T_{pa}$	$31T_h + 4T_{pm}$
Time	0.0736ms	0.0782ms	35.6574ms	0.0713ms	13.4043ms	13.6831ms	8.9753ms

T_h: time complexity of a one-way hash function; T_{pm}: time complexity of a point multiplication operation on an elliptic curve; T_{pa}: time complexity of a point addition operation on an elliptic curve.

 secretion_of sec_xgwn: It indicates that only GWN is familiar with Xgwn.

 authentication_on user_sensor_a: It indicates that Ui generates a random number A_i to authenticate S_j;

 authentication_on user_gwn_a: It indicates that Ui generates a random number A_i to authenticate GWN;

 authentication_on sensor_user_b: It indicates that Sj generates a random number B_n to authenticate Ui;

 authentication_on sensor_gwn_b, sensor_gwn_rj: It indicates that Sj generates random number B_n and R_j to authenticate GWN in the registration and authentication phase respectively.

FIGURE 13 and 14 represent the simulation results of our protocol in the OFMC and CL-AtSe backend respectively. The results show that the proposed protocol is secure against potential attacks.

VIII. SECURITY FEATURES COMPARISON AND EFFICIENCY ANALYSIS

TABLE 3 compares the security features of our protocol and other existing schemes. In order to better compare the computational cost of each scheme in the login and authentication phases, we use $T_h \approx 0.0023$ ms, $T_{pm} \approx 2.226$ ms, and $T_{pa} \approx 0.0288$ ms as mentioned in [35], [36]. TABLE 4 shows the results. Through comparison, it is found that our proposed protocol has increased the computational cost compared with some other schemes [9], [19], [25]. This is because we use additional point multiplication operations to solve potential security problems. Besides, compared with those schemes [1], [37], [38] that also use point multiplication operations, the computational cost of our protocol is not high. Besides, we also compare the communication cost of our protocol with other existing schemes. We supposed that the lengths of identity, password, random number, and hash

FIGURE 13. Simulation output with OFMC backend.

FIGURE 14. Simulation output with CL-AtSe backend.

TABLE 5. Comparison of communication cost among the proposed protocol and other schemes.

	Communication Cost (bits)
Farash et al. 2016 [19]	9152
Wu et al. 2017 [25]	8704
Sureshkumar et al. 2019 [1]	5088
Chandrakar et al. 2019 [9]	7648
Li et al. 2020 [37]	6080
Rangwani et al. 2021 [38]	4608
Ours	8192
IX. CONCLUSION

In this research, we first reviewed and analyzed the scheme of Farash et al. and found that there are many security problems, such as privileged insider attacks, user anonymity problems, stolen smart card attacks, and offline password guessing attacks. In order to solve these security flaws, the authors proposed an improved ECC-based anonymous authentication protocol for smart healthcare systems using WMSN. The formal analysis using BAN logic and informal security analysis ensured that our protocol can provide secure mutual authentication and the ability to resist various security attacks. In addition, simulation outputs using AVISPA showed the scheme is secure to guard against intruders. Finally, security features comparison and efficiency analysis of our protocol with other existing schemes could prove that the improved protocol can provide more robust security features and less communication cost whereas increasing a small amount of computational cost. Therefore, our protocol is suitable for use in the smart healthcare environment.

However, we must point out that the protocol still has some shortcomings. There is still room for improvement in the communication cost of our protocol. Besides, the storage and computational capacity of a single gateway node are always limited, which makes the authentication tasks it can undertake is also limited. Therefore, in practical use, multiple gateways would be used to coordinate manage a huge medical monitoring network. Hence how to enable users registered in one GWN to pass the authentication of another GWN and access the medical sensor information managed by the latter GWN becomes a question worth considering. In the future, we need to think how to solve this problem in an authentication protocol for multi-gateway WMSN. In addition, how to achieve cross-hospital information transmission is also what the protocol needs to settle.

REFERENCES

[1] V. Suresh Kumar, R. Amin, V. R. Vijayakumar, and S. R. Sekar, “Robust secure communication protocol for smart healthcare system with FPGA implementation,” Future Gener. Comput. Syst., vol. 100, pp. 938–951, Nov. 2019.

[2] W.-L. Tai, Y.-F. Chang, and Y.-L. Lo, “An anonymity, availability and security-ensured authentication model of the IoT control system for reliable and anonymous eHealth services,” J. Med. Biol. Eng., vol. 39, no. 4, pp. 443–455, Aug. 2019.

[3] J. J. Rodrigues, D. B. D. R. Segundo, H. A. Junqueira, M. H. Sabino, R. M. Prince, J. Al-Multaidi, and V. H. C. De Albuquerque, “Enabling technologies for the internet of health things,” IEEE Access, vol. 6, pp. 13129–13141, 2018.

[4] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The Internet of Things for health care: A comprehensive survey,” IEEE Access, vol. 3, pp. 678–708, Jun. 2015.

[5] B. D. Deeba, F. Al-Turjman, and A. Nayyar, “Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care,” Multimedia Tools Appl., vol. 80, no. 11, pp. 17103–17128, Nov. 2020, doi: 10.1007/s11042-020-10134-x.

[6] Y. K. Ever, “Secure-anonymous user authentication scheme for e-Healthcare application using wireless medical sensor networks,” IEEE Syst. J., vol. 13, no. 1, pp. 456–467, Mar. 2019.

[7] S. F. Aghili, H. Mala, and P. Peris-Lopez, “Securing heterogeneous wireless sensor networks: Breaking and fixing a three-factor authentication protocol,” Sensors, vol. 18, no. 11, p. 3663, 2018.

[8] P. Chandrakar and H. Om, “An extended ECC-based anonymity-preserving 3-factor remote authentication scheme usable in TMIS,” Int. J. Commun. Syst., vol. 31, no. 8, May 2018, Art. no. e3540.

[9] P. Chandrakar, “A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks,” Int. J. Ambient Intell., vol. 10, no. 1, pp. 96–116, Jan. 2019.

[10] Q. Jiang, S. Zeadally, J. Ma, and D. He, “Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks,” IEEE Access, vol. 5, pp. 3376–3392, 2017.

[11] T. Nandy, M. Y. I. B. Idris, R. M. Noor, L. M. Kiah, L. S. Lun, N. B. A. Juma’a, I. Ahmad, N. A. Ghanri, and S. Bhattacharyya, “Review on security of Internet of Things authentication mechanism,” IEEE Access, vol. 7, pp. 1–36, 2019.

[12] P. Kumar, S. G. Lee, and H. J. Lee, “E-SAP: Efficient-strong authentication protocol for healthcare applications using wireless medical sensor networks,” Sensors, vol. 12, no. 2, pp. 1625–1647, 2012.

[13] M. K. Khan and S. Kumari, “An improved user authentication protocol for healthcare services via wireless medical sensor networks,” Int. J. Distrib. Sensor Netw., vol. 10, no. 4, Apr. 2014, Art. no. 347169.

[14] D. He, N. Kumar, J. Chen, C.-C. Lee, N. Chilamkuri, and S.-S. Yeo, “Robust anonymous authentication protocol for health-care applications using wireless medical sensor networks,” Multimedia Syst., vol. 21, no. 1, pp. 49–60, Feb. 2015.

[15] F. Wu, L. Xu, S. Kumari, and X. Li, “An improved and anonymous two-factor authentication protocol for health-care applications with wireless medical sensor networks,” Multimedia Syst., vol. 23, no. 2, pp. 195–205, Mar. 2017.

[16] X. Li, J. Niu, S. Kumari, J. Liao, W. Liang, and M. K. Khan, “A new authentication protocol for healthcare applications using wireless medical sensor networks with user anonymity,” Secur. Commun. Netw., vol. 9, no. 15, pp. 2643–2655, Oct. 2016.

[17] A. K. Das, A. K. Sutrala, V. Odelu, and A. Goswami, “A secure smartcard-based anonymous user authentication scheme for healthcare applications using wireless medical sensor networks,” Wireless Pers. Commun., vol. 94, no. 3, pp. 1899–1933, 2017.

[18] M. Turkanović, B. Brumen, and M. Hölzl, “A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion,” Ad Hoc Netw., vol. 20, pp. 96–112, Sep. 2014.

[19] M. S. Farash, M. Turkanović, S. Kumari, and M. Hölzl, “An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment,” Ad Hoc Netw., vol. 36, pp. 152–176, Jan. 2016.

[20] R. Amin and G. Biswas, “A secure lightweight scheme for user authentication and key agreement in multi-gateway based wireless sensor networks,” Ad Hoc Netw., vol. 36, pp. 58–80, Jan. 2016.

[21] R. Amin, S. H. Islam, G. P. Biswas, M. K. Khan, L. Deng, and N. Kumar, “Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks,” Comput. Netw., vol. 101, pp. 42–62, Jun. 2016.

[22] F. Wu, L. Xu, S. Kumari, X. Li, J. Shen, K.-K. R. Choo, M. Wazid, and A. K. Das, “An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment,” J. Netw. Comput. Syst., vol. 89, pp. 72–85, Jul. 2017.

[23] R. Amin, S. K. H. Islam, G. P. Biswas, M. K. Khan, and N. Kumar, “A robust and anonymous patient monitoring system using wireless medical sensor networks,” Future Gener. Comput. Syst., vol. 80, pp. 483–495, Mar. 2018.

[24] C. Jiang, J. Ma, C. Yang, X. Ma, J. Shen, and A. C. Shehzad, “Efficient end-to-end authentication protocol for wearable health monitoring systems,” Comput. Elect. Eng., vol. 63, pp. 182–195, Oct. 2017.
G. Xu, F. Wang, M. Zhang, and J. Peng, “Efficient and provably secure P. Soni, A. K. Pal, and S. H. Islam, “An improved three-factor authen-
three-factor user authentication protocol using wireless medical sensor networks,” J. Ambient Intell. Humanized Comput., pp. 1–22, Sep. 2018, doi: 10.1007/s12652-018-1015-9.
X. Li, J. Peng, M. S. Obaidat, F. Wu, M. K. Khan, and C. Chen, “A secure A. Ostad-Sharif, A. Babamohammadi, D. Abbasinezhad-Mood, and
X. Li, J. Peng, M. S. Obaidat, F. Wu, M. K. Khan, and C. Chen, “A secure a. Yazdinejad, G. Srivastava, R. M. Parizi, A. Dehghantanha, K.-K.-R. Choo, and M. Aledhari, “Decentralized authentication of
distributed patients in hospital networks using blockchain,” IEEE J. Biomed. Health Informat., vol. 24, no. 8, pp. 2146–2156, Aug. 2020.
M. Shuai, B. Liu, N. Yu, and L. Xiong, “Lightweight and secure three-factor authentication scheme for remote patient monitoring using on-body wireless networks,” Secur. Commun. Netw., vol. 2019, pp. 1–14, Jun. 2019.
J. Mo, Z. Hu, and Y. Lin, “Cryptanalysis and security improvement of two authentication schemes for healthcare systems using wireless medical sensor networks,” Secur. Commun. Netw., vol. 2020, pp. 1–11, Feb. 2020.
S. Challka, A. K. Das, V. Odelu, N. Kumar, S. Kumari, M. K. Khan, and A. V. Vasilakos, “An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks,” Comput. Elect. Eng., vol. 69, pp. 534–554, Jul. 2018.
P. Soni, A. K. Pal, and S. H. Islam, “An improved three-factor authen-
tication scheme for patient monitoring using WSN in remote healthcare system,” Comput. Methods Programs Biomed., vol. 182, Dec. 2019, Art. no. 105054.
G. Xu, F. Wang, M. Zhang, and J. Peng, “Efficient and provably secure anonymous user authentication scheme for patient monitoring using wireless medical sensor networks,” IEEE Access, vol. 8, pp. 47282–47294, 2020.
A. Yazdinejad, G. Srivastava, R. M. Parizi, A. Dehghantanha, K.-K.-R. Choo, and M. Aledhari, “Decentralized authentication of
distributed patients in hospital networks using blockchain,” IEEE J. Biomed. Health Informat., vol. 24, no. 8, pp. 2146–2156, Aug. 2020.
M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.
H. H. Kilinc and T. Yanik, “A survey of SIP authentication and key agreement schemes,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1005–1023, 2nd Quart., 2014.
A. Ostad-Sharif, A. Babamohammadi, D. Abbasinezhad-Mood, and M. Nikooghadam, “Efficient privacy-preserving authentication scheme for roaming consumer in global mobility networks,” Int. J. Commun. Syst., vol. 32, no. 5, Mar. 2019, Art. no. e3904.
X. Li, J. Peng, M. S. Obaidat, F. Wu, M. K. Khan, and C. Chen, “A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems,” IEEE Syst. J., vol. 14, no. 1, pp. 39–50, Mar. 2020.
D. Rangwani and H. Om, “A secure user authentication protocol based on ECC for cloud computing environment,” Arabian J. Sci. Eng., vol. 46, no. 4, pp. 3865–3888, Apr. 2021.