Role of N6-Methyladenosine RNA Modification in Cardiovascular Disease

Dandan Song1,2, Jianhua Hou3, Junduo Wu4 and Junnan Wang4*

1 Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China; 2 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China; 3 Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China; 4 Department of Cardiology, Second Hospital of Jilin University, Changchun, China

Despite treatments being improved and many risk factors being identified, cardiovascular disease (CVD) is still a leading cause of mortality and disability worldwide. N6-methyladenosine (m6A) is the most common, abundant, and conserved internal modification in RNAs and plays an important role in the development of CVD. Many studies have shown that abnormal m6A modifications of coding RNAs are involved in the development of CVD. In addition, non-coding RNAs (ncRNAs) exert post-transcriptional regulation in many diseases including CVD. Although ncRNAs have also been found to be modified by m6A, the studies on m6A modifications of ncRNAs in CVD are currently lacking. In this review, we summarized the recent progress in understanding m6A modifications in the context of coding RNAs and ncRNAs, as well as their regulatory roles in CVD.

Keywords: M6A, mRNAs, non-coding RNAs, CVD, modification

INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality and disability worldwide despite recent improvements in health care, with many risk factors identified (1). Therefore, the mechanisms underlying CVD development remain to be elucidated. Recently, abnormal modifications in RNA have been identified in CVD and have attracted attention to our understanding of the mechanism underlying CVD development (2).

Currently, over 100 chemical modifications of RNA have been identified. Among them, N6-methyladenosine (m6A) is the most common conserved internal modification in RNA and is activated by the m6A methyltransferases (m6A writers), reversed by m6A demethylases (m6A erasers), and recognized by m6A-binding proteins (m6A readers) (3). m6A is enriched in the 3' untranslated regions (3' -UTRs), stop codons, internal long exons, and consensus sequence RRACH (where R: A or G and H: A, C, or U), thus affecting mRNA splicing, export, translation, and decay (4). m6A modification is also present in the 5' cap, which is required for RNA stability or degradation (5). m6A modification accounts for \sim 50\% of the mRNA modifications in mammals (6). In addition to mRNAs, the m6A modification is also found in non-coding RNAs (nc RNAs) including micro RNAs (miRNAs), long non-coding RNAs (lnc RNAs), and circular RNAs (circ RNAs), which have been found to regulate transcription in many diseases including CVD (6–9).

Abnormal m6A RNA modifications have been found in the CVD risk conditions and to regulate the CVD development. However, research regarding the underlying mechanism is still lacking.
In this review, we summarize the recent progress on the m^6^A modifications of mRNAs and ncRNAs, as well as their regulatory roles in CVD.

BIOLOGY OF m^6^A RNA MODIFICATION

The m^6^A RNA modification is dynamically regulated by diverse functional proteins, including m^6^A methyltransferases, demethylases, and others (m^6^A writers, erasers, and readers, respectively). m^6^A writers include methyltransferase-like 3/14/16 (METTL3, METTL14, METTL16), Wilm’s tumor-associated protein (WTAP), RNA-binding motif protein 15 (RBM15)—and its paralog RBM15B—and KIAA1429, NOP2/Sun RNA methyltransferase 2 (NSun2), and zinc finger CCHC domain-containing protein 4 (ZCCHC4) (10–13). METTL3 and METTL14 are the core components of the m^6^A writers; WTAP, RBM15, and KIAA1429 are also important components of the m^6^A methylase complex to enhance methyltransferase activity (10, 11). METTL16, NOP2/Sun RNA methyltransferase 2 (NSun2), and zinc finger CCHC domain-containing protein 4 (ZCCHC4) are other components of the m^6^A methylase complex, which are indispensable for m^6^A deposition (12, 13). m^6^A erasers consist of fat mass and obesity-associated protein (FTO) and AlkB family member 5 (ALKBH5) and can mediate m^6^A demethylation (14). m^6^A readers include YT521-B homology (YTH) domain family proteins (YTHDF1-3), insulin-like growth factor 2 mRNA-binding protein (IGF2BP), YTH domain-containing proteins (YTHDC), heterogeneous nuclear ribonucleoprotein (HNRNP), and eukaryotic translation initiation factor 3 (eIF3), which are also involved in m^6^A modification (15–19). YTHDC1 can also regulate target gene transcription (16, 17). YTHDF1 can bind to the 3′UTRs and the stop codon of m^6^A-containing RNAs, and interact with eIF3 to initiate translation (18). IGF2BPs, HNRNPs, and HNRNPG affect the stability, storage, the structure of RNA (18, 19). Therefore, m^6^A writers, erasers, and readers affect the translation, export, degradation, and structure of RNAs to regulate the development of many diseases (Figure 1).

m^6^A Modification of mRNAs

m^6^A methylation is the most prevalent internal post-transcriptional modification of mammalian mRNA and can affect mRNA splicing, translation, transcription, stability, and structure (20). m^6^A modification frequently occurs in the introns of pre-mRNAs and promotes the nuclear export of mRNAs and facilitates mRNA transcription in the cytoplasm (21). m^6^A writer, METTL3 accelerates mRNA translocation from the nucleus to the cytoplasm and enhances translation of target mRNAs (22, 23). Moreover, METTL3 and METTL14 also reduce mRNA stability and promote mRNA degradation efficiency (5). In contrast, m^6^A eraser, ALKBH5 inhibits mRNA export and stability (14, 24). m^6^A readers are also found to regulate mRNA in many ways. For example, YTHDF1, YTHDF3, and IGF2BP1/2/3 can drive mRNA translation and promote translation efficiency (25, 26). Furthermore, IGF2BP also can enhance the stability of mRNA by binding to mRNA-stabilizing proteins such as human antigen R (HuR) (27). HuR is an RNA binding protein and can increase RNA stability (28). However, m^6^A modification can interact with HuR and inhibit its ability of enhancing RNA stability (28). YTHDF2 can promote the degradation of m^6^A-containing mRNA by recruiting RNA-degrading enzymes or adaptor proteins CCR4/NOT or HRSP12-RNase (29). Similarly, HNRNPC and HNRNPG can recognize specific sites on mRNA, thereby altering the structure of mRNAs (19). m^6^A writers, erasers, and readers affect mRNA expression in many aspects.

m^6^A Modification of nc RNAs

Nc RNAs exert post-transcriptional regulation in many diseases and mainly include miRNAs, Inc RNAs, and circ RNAs (30). miRNAs are small nc RNA molecules ~22 nucleotides in length that bind with the 3′-UTR of mRNA to post-transcriptionally regulate genes (31). Lnc RNAs are ncRNAs that are longer than 200 nucleotides in length and circ RNAs are a specific class of ncRNA that form a covalently closed loop, and they interfere with gene expression and signaling pathways at various stages, such as the sponging of miRNAs (32, 33). Recently, many studies showed that miRNAs, Inc RNAs, and circ RNAs are modified by m^6^A (28, 34–45).

The m^6^A writers, METTL3 and METTL14 affect miRNA maturation by interacting with DiGeorge critical region 8 (DGC8), which can bind to pri-miRNAs and promote miRNA maturation (34, 35). HuR is also found to increase miRNA stability by interfering with the binding of miRNAs to the Ago complex (28). The m^6^A eraser, FTO can enhance the stability of hsa-miR-6505-5p, hsa-miR-651-5p, and hsa-miR-493-5p, and reduce the stability of hsa-miR-7-5p, hsa-miR-92a-1-5p, and hsa-miR-6769a-3p, but the underlying molecular mechanism is not clear (36). While m6A modifies miRNA, miRNAs can also target m6A independently. For example, the miRNA let-7g binds to the 3′-UTR of METTL3 mRNA to inhibit its expression (37). Similarly, miR-145 targets the mRNA encoding YTHDF2 and inhibits YTHDF2 expression, which can stabilize m^6^A-modified mRNAs (38). Therefore, there is crosstalk of m^6^A modification with miRNAs.

Abbreviations: CVD, Cardiovascular disease; m^6^A, N^6^ methyladenosine; 3′-UTRs, 3′-untranslated regions; miRNAs, micro RNAs; Inc RNAs, long non-coding RNAs; circ RNAs, circular RNAs; METTL3, methyltransferase-like 3; METTL14, methyltransferase-like 14; WTAP, Wilm’s tumor-associated protein; RBM15, RNA-binding motif protein 15; IGF2BP, insulin-like growth factor 2 mRNA-binding protein; HNRNP, heterogeneous nuclear ribonucleoprotein; NSun2, NOP2/Sun RNA methyltransferase 2; ZCCHC4, zinc finger CCHC domain-containing protein 4; FTO, fat mass and obesity-associated protein; AlKBH5, AlkB family member 5; YTH, YT521-B homology; YTHDF, YTH domain family proteins; YTHDC, YTH domain-containing proteins; eIF3, eukaryotic translation initiation factor 3; DGC8, DiGeorge Critical Region 8; T2D, type 2 diabetes; FOXO1, forkhead box O1; HuR, hypoxia and reperfusion; MI, myocardial infarction; ox-LDL, oxidized low-density lipoprotein; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; EC, endothelial cell; VSMCs, vascular smooth muscle cells; XIST, X-inactive specific transcript; ESC, embryonic stem cells; I/R, ischemia-reperfusion; GASS, growth arrest-specific 5; MIAT, myocardial infarction associated transcript; TLRI, toll-like receptor 4; NF-kB, nuclear factor-kB; ECM, extracellular matrix.
FIGURE 1 | Mechanism of the deposition of m6A modification on mRNA and non-coding RNAs. m6A writers, erasers, and readers regulate the deposition of m6A modification and affect the translocation, translation, stability, degradation, and structure of RNA.

Many m6A-methylated lnc RNA transcripts have been identified in mouse transcriptome (46). For example, METTL3 can increase the nuclear accumulation of lnc RNA RP11 to enhance its expression in colon cancer (39). METTL16 can methylate 68 lnc RNAs in human embryonic kidney 293 cells (40). By contrast, the m6A eraser, ALKBH5, can demethylate lnc RNA KCNK15-AS1 and nuclear paraspeckle assembly transcript 1 (NEAT1) (41). ALKBH5 was also found to reduce the m6A level and increase the stability of lnc RNA growth arrest-specific 5 (GAS5) (42). The m6A readers, YTHDF2 and YTHDF3 were found to promote the degradation of GAS5 (42, 43). The m6A reader IGF2BP2 interacts with the lnc RNA DANC and stabilizes DANC RNA (44). In addition, YTHDC1 and YTHDF2 are found to regulate the export and stability of circ RNAs (29, 45). Thus, the m6A modification exerts the regulatory effect through regulating the expressions of lnc RNAs and circ RNAs.

m6A RNA MODIFICATION IN CARDIOVASCULAR RISK CONDITIONS

Many risk factors of CVD such as hyperlipidaemia, diabetes, and inflammation have been identified, but their molecular mechanisms in regulating CVD are still investigated (47–49). Recently, it has been found that m6A RNA methylations are dysregulated in risk conditions, and involved in the pathology of CVD (50, 51). These findings may provide insight into the molecular mechanisms underlying CVD development.

Hyperlipidaemia and obesity are risk factors for CVD development, and m6A functional enzymes are dysregulated and involved in lipid metabolism (47, 50). Oscillations in mRNA m6A methylation in the murine liver depend on a functional circadian clock, which is essential for lipid metabolic homeostasis (52). m6A methylation of peroxisome proliferator-activated receptor α (PPARα) mRNA that codes for a nuclear receptor can accelerate lipid metabolism (22). m6A modification of PPARα mRNA was decreased by METTL3 knockdown, causing the reduction of cellular lipid accumulation (53). In addition, m6A erasers and readers are also involved in lipid metabolism. FTO facilitates the adipogenesis of 3T3-L1 cells by interacting with YTHDF2 to maintain FTO-induced m6A demethylation (54). Consistently, FTO inhibition suppresses adipogenesis through an m6A-YTHDF2-dependent mechanism (54, 55). YTHDF2 is found to promote lipid accumulation by directly binding to the m6A modification site to promote the translation of 6-phosphogluconate dehydrogenase, which can increase the level of cholesterol FAM134B (56). Similarly, YTHDF1 is also found to promote adipogenesis in intramuscular preadipocytes by enhancing the translation of mitochondrial carrier homolog 2, which limited energy utilization and promoted diet-induced obesity (57). These evidences show that m6A writers, erasers, and readers can regulate lipid metabolism genes, which are involved in the development of CVD.

Diabetes is another risk factor positively correlated with the incidence of CVD (48). In patients with type 2 diabetes (T2D), m6A levels were reduced, while the mRNA levels of FTO, METTL3, METTL14, WTAP were significantly elevated and involved in the pathogenesis of diabetes (51). However,
high glucose was found to enhance FTO levels in HepG2 cells (58). FTO can participate in glucose and insulin metabolism by inducing the expression of forkhead box O1 (FOXO1), glucose-6-phosphatase catalytic subunit, and diacylglycerol O-acyltransferase 2 mRNA (51). METTL3 and METTL14 were found to regulate insulin secretion in human β-cells. METTL14 inhibition can inhibit β-cell proliferation and promote insulin dysregulation (58). These findings indicate that FTO, METTL3, and METTL14 play important roles in the development of diabetes or CVD by regulating glucose metabolism and insulin secretion.

Inflammation was found in all phenomena associated with CVD including vascular and cardiac dysfunction (49). For example, M1-type macrophage-mediated inflammation plays an important role in the development of atherosclerosis (59). METTL3 expression is increased in M1-type macrophages and can directly methylate the mRNA of signal transducer and activator of transcription 1 to increase its expression (60). METTL3 can also promote the activation of dendritic cells by activating toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and increasing the expression of CD40, CD80, and IL-12 (61). METTL3 also can stimulate T cells and promote their differentiation (61, 62). METTL14 was found to promote an inflammatory response in endothelial cell (EC) and atherosclerotic plaque formation by interacting with FOXO1 and mediating its m6A modification (63). FOXO1 is an important transcription factor that acts directly on the promoter regions of VCAM-1 and ICAM-1 to promote their transcription (63). This evidence indicates that METTL3 and METTL14 can promote inflammation to regulate the development of CVD.

m6A RNA METHYLATION IN CVDs

CVD risk factors, such as hyperlipidaemia, hyperglycaemia, and inflammation can lead to vascular dysfunction, which ultimately results in cardiomyocyte ischemic injury and myocardial infarction (MI) (64, 65). The fibroblasts are activated and extracellular matrix (ECM) components are over-produced after MI; these compensate for cardiomyocyte loss and maintain the structural integrity of the ECM (66). Excessive cardiac remodeling and fibrosis following the cardiac injury can cause cardiomyocyte hypertrophy, which ultimately leads to heart failure (67). Dysregulated m6A RNA methylation has also been found to be responsible for vascular or cardiac dysfunction (Figure 2).

m6A Modification of mRNAs in CVDs

METTL3 and FTO have been found to regulate vascular or cardiac dysfunction under stress conditions (68). METTL3 induced by hypoxic stress can promote the differentiation of adipose-derived stem cells into vascular smooth muscle cells (VSMCs) by increasing the expression of paracrine factors, including VEGF, and TGF-β (69). Similarly, METTL3 was also found to promote the differentiation of mouse embryonic stem cells into cardiomyocytes (70). In addition, METTL3 promoted the apoptosis of hypoxia and reperfusion (H/R)-treated cardiomyocytes by regulating the expression of transcription factor EB, which is a master regulator of lysosomal biogenesis and autophagy genes (71). Moreover, METTL3 promotes cardiac remodeling and hypertrophy by catalyzing the m6A methylation of certain subsets of mRNAs (70). In contrast, METTL3 knockout hearts develop maladaptive eccentric remodeling and cardiac functional defects with aging and rapid progressive dysfunction following acute pressure-overload stress (72). Cardiac FTO expression is decreased in cardiomyocytes under conditions of hypoxia, ischemia, and heart failure (73). It has been observed that FTO overexpression attenuates hypoxia-induced cardiomyocyte dysfunction and restores calcium handling and sarcomere dynamics (73). FTO has been shown to attenuate ischemia-induced cardiac remodeling and improve cardiac contractility by demethylating the m6A modifications of p53, thereby inhibiting the expression of p53 (74, 75). Thus, m6A writers, erasers, and readers can regulate the developments of vascular and cardiac diseases via the methylation of target mRNAs.

m6A-Methylated miRNAs in CVD

miRNAs are a determinant of cardiovascular pathology and could be modified by m6A (31). For example, m6A modification and METTL14 are significantly up-regulated in atherosclerotic vascular endothelial cells and promote their proliferation (76). The underlying mechanism is that the METTL14 inhibits the expression of pri-miR-19a but increases the expression of mature miR-19a by binding to DGCR8 (76). Similarly, METTL3 homolog, mRNA adenosine methylase (MTA) can accumulate primary pri-miRNAs but inhibits the expression of mature miRNAs In Arabidopsis (77). In addition, many miRNAs are found to be mediated the deposition of m6A modification by METTL3 or METTL14, and some of them play important roles in CVD development (78). For example, METTL3 affect the stability of Let-7e, miR-25, miR-126, miR-221/222, and miR-143-3p (78). METTL14 modulates the primary processing of miR-126 and miR-375 by interacting with DGCR8 in hepatocellular carcinoma or colon cancer, respectively (34, 79). Let-7, miR-126, miR-221/222, and miR-143-3p are key vascular biology players that are involved in the development of atherosclerosis and angiogenesis via their effects on ECs and VSMCs (80–85). Let-7, miR-25, and miR-375 play an important role in the development of cardiac diseases, including arrhythmia, dilated cardiomyopathy, MI, cardiac hypertrophy, fibrosis, and heart failure by regulating apoptosis, autophagy, oxidative stress, inflammation, and calcium handling (80, 86, 87). Those pieces of evidence indicate that m6A modifications are involved in the development of CVD by affecting the expressions of miRNAs.

m6A Methylation of Inc RNAs and Circ RNAs in CVDs

Similar to miRNAs, Inc RNAs and circ RNAs have been thoroughly investigated in the context of CVD and have recently been found to be m6A-methylated (32, 88). For example, the m6A modification is enriched on Inc RNA 1281 and the m6A modification of Inc RNA 1281 affects the differentiation of embryonic stem cells (ESC) via sponging Let-7, which has
FIGURE 2 | Regulation of m6A RNA modification in CVD. CVD risk factors can result in deregulated m6A deposition on mRNA, miRNA, lnc RNA, circ RNA, which are known to play a role in the development of cardiac and vascular disease.

been reported to play an important role in the cardiovascular differentiation of ESCs and the development of CVD (80, 89).

The lnc RNA H19 is highly expressed in human atherosclerotic lesions and promotes the development of atherosclerosis by regulating the mitogen-activated protein kinase and NF-kB signaling pathways (90). Additionally, H19 ameliorates ischemia-reperfusion (I/R)-induced myocardial apoptosis or MI-induced myocardial injury by sponging miR-877-3p or miR-22-3p, respectively (91, 92). In H9c2 cells with H2O2-induced senescence, H/R enhanced the level of m6A methylation and increased the expression of lnc RNA H19 by upregulating ALKBH5 (93). Therefore, the m6A modification of H19 is involved in the development of CVD.

Lnc RNA myocardial infarction associated transcript (MIAT) is also found to inhibit EC proliferation, migration, and tube formation in diabetes via the sponging of miR-29b (94). MIAT levels were also increased in MI and deregulated some fibrosis-related regulators by sponging miR-24 and increasing the expression of furin and TGF-β1 (95). Similarly, the MIAT levels increase in response to hypoxia, and MIAT is involved in cardiac interstitial fibrosis (96). Oxidized low-density lipoprotein (ox-LDL)-induced m6A demethylation was found to facilitate the binding of HIF1α to the ALKBH1-demethylated MIAT promoter and the transactivation of MIAT, indicating that MIAT is a target gene of ALKBH1-related m6A methylation (97).

Lnc RNA X-inactive specific transcript (XIST) was reported to play an important role in CVD development and is highly m6A-methylated (3). XIST was highly expressed in human thoracic aortic dissection and promoted the apoptosis of VSMCs by sponging miR-17 (98). Consistently, miR-17 was reported to promote mitochondria-dependent apoptosis by targeting at phosphatase and tensin homolog deleted on chromosome 10 (PTEN) (98). In addition, XIST inhibited myocardial cell proliferation by sponging miR-130a-3p, which targets phosphodiesterase 4D (99). XIST was also found to promote phenylephrine-induced cardiac hypertrophy via the miR-330-3p/S100B and miR-101-5p axis (100, 101). The METTL3/METTL14 complex deposited the 78 m6A-methylation on XIST RNA by interacting with the MACOM complex, comprising WTAP, VIRMA, and RBM15 proteins, and inhibited the expression of XIST (102). YTHDC1 and YTHDF2 bind to XIST and mediate its degradation (102). This evidence indicated that the m6A modification of XIST might regulate the development of CVD.

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) regulates the development of CVD and contains several m6A motifs (103, 104). MALAT1 protects against endothelial injury induced by ox-LDL, hyperglycaemia, and oxidative stress via the sponging of miR-22-3p or activation of nuclear factor erythroid 2 (105, 106). MALAT1 levels were increased in the serum and myocardial tissue of AMI
and promoted cardiomyocyte apoptosis or myocardial tissue injury induced by hypoxia, H/R, or I/R by targeting miR-144, miR-125, miR-200a-3p, or miR-320, respectively (107–110). However, it was also found that MALAT1 inhibits isoproterenol-induced cardiomyocyte apoptosis by sponging miR-558 (111). Additionally, MALAT1 promoted angiotensin II-induced cardiac fibrosis by sponging miR-145, thereby enhancing target growth factor-β1 activity (112). Recently, the m⁶A-deposition sites of MALAT1 have been identified. For example, m⁶A modification at the A2577 or A2515 site of MALAT1 can destabilize the RNA hairpin, release the poly(U) tract, and increase binding with HNRNPC or HNRNP G, respectively (103, 104). METTL16 specifically binds to the 3′-end of a triple-helix and enhances the stability of MALAT1 transcripts (113). This evidence indicates that MALAT1 could be m⁶A modified to regulate the development of CVD.

The levels of GAS5 were increased in atherosclerotic rats and aggravated ox-LDL-induced inflammation by inhibiting the expression of miR-221 or miR-135a (114, 115). GAS5 was also found to accelerate myocardial I/R injury by sponging miR-532-5p (116). In contrast, other studies showed that GAS5 could attenuate homocysteine-induced cardiac microvascular ECs by inhibiting miR-33a-5p and reverse cardiac apoptosis and fibrosis via the inhibition of semaphorin-3A or miR-21 expression, respectively (117–119). The m⁶A modifications of GAS5 have also been identified. ALKBH5 reduced the m⁶A level and increased the stability of GAS5. m⁶A induced GAS5 RNA degradation in a YTHDF2-dependent manner (42). Knockdown of YTHDF3 was also found to prolong the degradation of GAS5. This evidence indicates that m⁶A-deposited GAS5 might be involved in the development of CVD (42, 43).

Lnc RNA, Myheart (MHRT), plays an important role in cardiac disease. MHRT protects against the H₂O₂ or H/R-induced apoptosis of cardiomyocytes (120). In addition, MHRT is found to regulate cardiac hypertrophy and is associated with the outcome of heart failure (121, 122). Over-expression of FTO protects against H/R-induced apoptosis of myocardial cells by regulating m⁶A modification of MHRT, indicating that m⁶A modification of MHRT participates in the development of cardiac disease (123).

Certain circ RNAs, such as circXpo6 and circTmtc3, have also demonstrated m⁶A-methylation in the lungs of rats with hypoxia-induced pulmonary hypertension, as well as in pulmonary artery smooth muscle cells, and, finally, in pulmonary arterial ECs exposed to hypoxia. This suggests that m⁶A-methylated circXpo6 and circTmtc3 might be involved in the development of CVD (124). However, the role of m⁶A-methylated circ RNAs in the development of CVD requires further study.

MODULATION OF m⁶A FOR CVD TREATMENT

Modulation of m⁶A could be a strategy for CVD treatment. For example, silencing of METTL3 reduced I/R-induced cardiac injury and H/R-induced apoptosis of cardiomyocytes by inducing autophagy (71). Moreover, METTL3 inhibition reduced cardiomyocyte remodeling under the hypertrophic stimuli (125). Similarly, inhibition of METTL14 was found to decrease the calcification and enhance the vascular repair function (126). It was favored that inhibition of METTL14 inhibited the proliferation of atherosclerotic vascular endothelial cells by affecting the expression of miR-19 (76). Over-expression of FTO by adeno-associated virus serotype 9 (AAV9) significantly prevented the formation of atherosclerotic plaques by reducing total cholesterol (127). Furthermore, FTO over-expression significantly improved cardiac function by reducing fibrosis and increasing angiogenesis at the chronic stage of post-myocardial infarction (73). Moreover, the protective effect of FTO in cardiac disease is associated with the regulation of m⁶A modification of MHRT (123).

Non-coding RNAs also can regulate m⁶A. Micro RNAs such as miR-33a and miR-4429 were found to inhibit METTL3 in the field of tumor studies, indicating that those miRNAs might be as therapeutic agents for CVD (128, 129). In addition, lnc RNA H19 has been reported to protect against H2O2-induced H9c2 cell apoptosis by up-regulating ALKBH5 (93). Thus, ncRNAs might be used for the regulation of m⁶A and CVD treatment.

CONCLUSION

CVD is a leading cause of death worldwide, but the underlying mechanism remains unknown. m⁶A is the most common, abundant, and conserved internal modification in RNAs, including mRNA and ncRNAs. In this review, we summarized the current research on m⁶A RNA modification on CVD risk conditions and development, which may help elucidate the molecular mechanism underlying CVD development. In addition, inhibition of MELL3/14 or over-expression of FTO could be used for the treatment of CVD. Notably, some ncRNAs also can regulate m⁶A modifications and could be therapeutic molecules for CVD. However, m⁶A modifications of ncRNAs in CVD require further study.

AUTHOR CONTRIBUTIONS

JWa designed the article. DS, JH, JWu, and JWa wrote and critically reviewed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Jilin Provincial Health and Family Planning Commission (2020C036-3) and the basic and clinical research of coronary heart disease and artificial intelligence diagnosis team in Jilin Province (20200301003RQ) and Talent Project of Jilin Provincial Finance (2020SCZT003 and 2019SCZT081).
REFERENCES

1. McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. (2019) 8:1–11. doi: 10.2147/IPRP.S135308

2. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. (2017) 169:1187–200. doi: 10.1016/j.cell.2017.05.045

3. He Y, Xing J, Wang S, Xin S, Han Y, Zhang J. Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med. (2017) 5:797. doi: 10.21037/atm.2017.12.65

4. Fu Y, Dominiussini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. (2014) 15:293–306. doi: 10.1038/nrg3724

5. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5’ cap controls mRNA stability. Nature. (2017) 541:371–5. doi: 10.1038/nature21022

6. Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. (2019) 12:121. doi: 10.1186/s13045-019-0805-7

7. Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, et al. M (6) A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Cell. (2017) 162:1299–308. doi: 10.1016/j.cell.2015.08.011

8. Elcheva IA, Wood T, Chiarolanzio K, Chin B, Wong M, Singh V, et al. RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia. (2020) 34:1354–63. doi: 10.1038/s41373-019-0656-9

9. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu P, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. (2017) 27:315–28. doi: 10.1038/cr.2017.15

10. Huang H, Wang H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. (2018) 20:285–95. doi: 10.1038/s41556-018-0045-2

11. Ahuja D, Goyal A, Ray PS. Interplay between RNA-binding protein HuR and microRNA-125B regulates p53 mRNA translation in response to genotoxic stress. RNA Biol. (2016) 13:1152–65. doi: 10.1080/15476286.2016.1229734

12. Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. (2020) 36:177–88. doi: 10.1016/j.tig.2019.12.007

13. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. (2011) 12:861–74. doi: 10.1038/nrg3074

14. Colpaert RMW, Calore M. MicroRNAs in cardiac diseases. Cells. (2019) 8:737. doi: 10.3390/cells8070737

15. Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs and splicing during mouse oocyte development. J Chin Med Assoc. (2019) 82:363–7. doi: 10.1093/jcm/rjz042

16. Yuan S, Tang H, Xing J, Fan X, Cai X, Li Q, et al. Methylation by N5un2 represses the levels and function of microRNA 125b. Mol Cell Biol. (2014) 34:3630–41. doi: 10.1128/MCB.00243-14

17. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li C, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. (2013) 49:18–29. doi: 10.1016/j.molcel.2012.10.015

18. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N6-(methyladenosine modulates messenger RNA translation efficiency. Cell. (2017) 161:1388–99. doi: 10.1016/j.cell.2015.05.014

19. Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. (2018) 14:e1007412. doi: 10.1371/journal.pgen.1007412

20. Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF, Zhang J. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. (2015) 162:1299–308. doi: 10.1016/j.cell.2015.08.011

21. Liang Y, Zhan G, Chang KI, Yang YP, Wang L, Lin J, et al. The roles of m6A RNA modifiers in human cancer. J Chin Med Assoc. (2020) 83:221–6. doi: 10.1097/JCMA.0000000000000251

22. Liu N, Zhou KI, Parisien M, Dai Q, Diachenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. (2017) 45:6051–63. doi: 10.1093/nar/gkx141

23. Zaccara S, Ries R, Jeffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. (2019) 20:608–24. doi: 10.1038/s41580-019-0168-5

24. Lesbreil S, Wilson SA. The m6A-methylase complex and mRNA export. Biochim Biophys Acta Genet Regul Mech. (2019) 1862:319–28. doi: 10.1016/j.bbrgm.2018.09.008

25. Fujin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. (2013) 155:791–806. doi: 10.1016/j.cell.2013.10.026

26. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. (2018) 561:556–60. doi: 10.1038/s41586-018-0538-8

27. Li XC, Jin F, Wang BY, Yin XJ, Hong W, Tian FJ. The N6-methyladenosine ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CR16 mRNA. Theranostics. (2019) 9:3853–65. doi: 10.7150/thno.31888

28. Elcheva IA, Wood T, Chiarolanzio K, Chin B, Wong M, Singh V, et al. RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia. (2020) 34:1354–63. doi: 10.1038/s41373-019-0656-9

29. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu P, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. (2017) 27:315–28. doi: 10.1038/cr.2017.15

30. Huang H, Wang H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. (2018) 20:285–95. doi: 10.1038/s41556-018-0045-2

31. Wu Y, Yang X, Chen Z, Tian L, Hou Y, Chen F, et al. m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. (2019) 18:867. doi: 10.1186/s12943-019-1014-2

32. Huang J, Li X, Xiao X, Sun Y, Liu X, Jia S. Regulatory role of N6-methyladenosine (m6A) methylation in RNA processing and human diseases. J Cell Biochem. (2017) 118:2534–43. doi: 10.1002/jcb.25967
41. He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. *Cell Physiol Biochem.* (2018) 48:838–46. doi: 10.1159/000491915
42. Wang X, Zhang J, Wang Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. *Am J Transl Res.* (2019) 11:4909–21.
43. Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. *Mol Cancer.* (2019) 18:143. doi: 10.1186/s12935-019-1079-y
44. Xu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, et al. JGF2BP2 regulates DANCER by serving as an N6-methyladenosine reader. *Cell Death Differ.* (2020) 27:1782–94. doi: 10.1038/s41418-019-0461-z
45. Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenbergh NE, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. *Cell Rep.* (2017) 20:2262–76. doi: 10.1016/j.celrep.2017.08.027
46. Nie Y, Tian GG, Zhang L, Lee T, Zhang Z, Li J, et al. Identifying cortical specific long noncoding RNAs modified by m6A RNA methylation in mouse brains. *Epigenetics.* (2020) 23:1–17. doi: 10.18080/15592294.2020.1861170
47. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. *Circ Res.* (2017) 121:677–94. doi: 10.1161/CIRCRESAHA.117.3108903
48. Archundia Herrera MC, Subhan FB, Chan CB. Dietary patterns and cardiovascular disease risk in people with type 2 diabetes. *Curr Obes Rep.* (2017) 6:405–13. doi: 10.1007/s13191-017-0284-5
49. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. *Circulation.* (2004) 109(21 Suppl. 1):II2–10. doi: 10.1161/01.CIR.0000129535.04194.38
50. Heng J, Tian M, Zhang W, Chen F, Guan W, Chen N, et al. Maternal heat stress regulates m6A-YTHDF2-dependent modulation of m6A mRNA methylation in neonatal piglets. *Cell Physiol Biochem.* (2019) 48:838–46. doi: 10.1159/000491915
51. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. *Curr Obes Rep.* (2017) 6:405–13. doi: 10.1007/s13191-017-0284-5
52. Zhong X, Yu J, Frazier K, Weng X, Li Y, Cham CM, et al. Circadian clock regulation of hepatic lipid metabolism by specific long noncoding RNAs modified by m6A RNA methylation in mouse brains. *Epigenetics.* (2019) 18:143. doi: 10.1186/s12935-019-1079-y
53. Nie Y, Tian GG, Zhang L, Lee T, Zhang Z, Li J, et al. Identifying cortical specific long noncoding RNAs modified by m6A RNA methylation in mouse brains. *Epigenetics.* (2020) 23:1–17. doi: 10.18080/15592294.2020.1861170
54. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. *Circ Res.* (2017) 121:677–94. doi: 10.1161/CIRCRESAHA.117.3108903
55. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. *Curr Obes Rep.* (2017) 6:405–13. doi: 10.1007/s13191-017-0284-5
56. Cai M, Liu Q, Jiang Q, Wu R, Wang X, Wang Y. Loss of m6A on FAM134B regulates cardiac function during remodeling and repair. *Circulation.* (2019) 139:533–45. doi: 10.1161/CIRCULATIONAHA.118.036373
57. Jiang Q, Sun B, Liu Q, Cai M, Wu R, Wang F, et al. MCHT2 promotes adipogenesis in porcine adipocytes through m6A-YTHDF2-dependent way. *IUBMB Life.* (2019) 71:580–6. doi: 10.1002/iub.1974
58. Jiang Q, Sun B, Liu Q, Cai M, Wu R, Wang F, et al. MCHT2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF2-dependent mechanism. *FASEB J.* (2019) 33:2971–81. doi: 10.1096/fj.20180393RR
59. De Jesus DF, Zhang Z, Kahraman S, Brown NK, Chen M, Hu J, et al. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. *Nat Metab.* (2019) 1:765–74. doi: 10.1038/s42255-019-0098-9
60. Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular macrophages in atherosclerosis. *J Immunol Res.* (2019) 2019:4354786. doi: 10.1155/2019/4354786
88. Fazi F, Fatica A. Interplay between N6-methyladenosine (m6A) and non-coding RNAs in cell development and cancer. FEBS Lett. (2019) 593:1458–65. doi: 10.1002/1873-3468.10778

89. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, et al. N 6-Methyladenine DNA modification of lincRNA 1281 is critically required for mESC differentiation mediated primary miR-375 processing. Mol Ther Nucleic Acids. (2020) 234:10842–54. doi: 10.1002/jcp.27925

90. Wu L, Pei Y, Zhu Y, Jiang M, Wang C, Cui W, et al. Association of N6-methylene DNA with plaque progression in atherosclerosis via myocardial inflammation-associated transcripts. Cell Death Dis. (2019) 10:909. doi: 10.1038/s41419-019-2152-6

91. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, et al. miAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. (2017) 7:42657. doi: 10.1038/srep42657

92. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. (2015) 116:1143–56. doi: 10.1161/CIRCRESAHA.115.305510

93. Zhang X, Wu H, Mai C, Qi Y. Long non-coding RNA XIST/miR-17/PTEN axis modulates the proliferation and apoptosis of vascular smooth muscle cells to affect Stanford type A aortic dissection. J Cardiovasc Pharmacol. (2020) 76:53–62. doi: 10.1097/FJP.0000000000000835

94. Zhou T, Qin G, Yang L, Xiang D, Li S. LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J Cell Physiol. (2019) 234:8659–67. doi: 10.1002/jcp.26327

95. Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J, et al. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun. (2018) 505:807–15. doi: 10.1016/j.bbrc.2018.09.135

96. Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol. (2019) 234:13680–92. doi: 10.1002/jcp.28047

97. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates angiogenic signaling and vascular integrity. Dev Cell. (2008) 15:272–84. doi: 10.1016/j.devcel.2008.07.008

98. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing DD1. Nat Med. (2014) 20:368–76. doi: 10.1038/nm.3487

99. Grommes J, et al. MicroRNA-126 promotes endothelial proliferation and limits atherosclerosis by targeting miR-330-3p. Biochem Biophys Res Commun. (2015) 2015:354517. doi: 10.1155/2015/354517

100. Chastikov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. (2015) 2015:354517. doi: 10.1155/2015/354517

101. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. (2009) 104:476–87. doi: 10.1161/CIRCRESAHA.108.185363

102. Zhao W, Zhao SP, Zhao YH. MicroRNA-143/145 in Cardiovascular Diseases. Biomed Res Int. (2015) 2015:33170. doi: 10.1155/2015/331740

103. Sarközy M, Kahan Z, Coont T. A myriad of roles of miR-25 in health and disease. Oncotarget. (2018) 9:25180–612. doi: 10.18632/oncotarget.24662

104. Garkipati VNS, Verma SK, Jolaradashi D, Cheng Z, Ibbet J, Cimini M, et al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-akt signalling axis. Cardiovasc Res. (2017) 113:938–49. doi: 10.1093/cvr/cvx052

105. Fazi F, Fatica A. Interplay between N6-methyladenosine (m6A) and non-coding RNAs in cardiovascular disease and cancer. Front Cell Dev Biol. (2019) 7:116. doi: 10.3389/fcell.2019.00116

106. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, et al. N 6-Methyladenosine modification of lncRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. (2018) 46:53906–20. doi: 10.1093/nar/gky130

107. Pan JX. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci. (2017) 21:322–8.

108. Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, et al. IncRNA H19 alleviated myocardial infarction via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids. (2019) 17:297–309. doi: 10.1038/s41984-019-00531-9

109. Zhang B, Chen J, Jiang H. LncRNA H19 ameliorates myocardial ischemia-reperfusion injury by targeting miR-22-3P. Int J Cardiol. (2019) 280:3006. doi: 10.1016/j.ijcard.2018.11.017

110. Zhang X, Fu Q, Xu L, Yang Y, Zhao W, Zhang Y, et al. Dexametomidine postconditioning alleviates hypoxia/reperfusion injury in senescent myocardial cells by regulating IncRNA H19 and m6A modification. Oxidative Med Cell Longevity. (2020) 2020:7059751. doi: 10.1155/2020/9250512

111. Zhang J, Chen M, Chen J, Lin S, Cai D, Chen C, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep. (2017) 37:BR20170036. doi: 10.1042/BSR20170036

112. Wu L, Pei Y, Zhu Y, Jiang M, Wang C, Cui W, et al. Association of N6-methylene DNA with plaque progression in atherosclerosis via myocardial inflammation-associated transcripts. Cell Death Dis. (2019) 10:909. doi: 10.1038/s41419-019-2152-6

113. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep. (2017) 7:42657. doi: 10.1038/srep42657

114. Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. (2015) 116:1143–56. doi: 10.1161/CIRCRESAHA.115.305510

115. Zhang X, Wu H, Mai C, Qi Y. Long non-coding RNA XIST/miR-17/PTEN axis modulates the proliferation and apoptosis of vascular smooth muscle cells to affect Stanford type A aortic dissection. J Cardiovasc Pharmacol. (2020) 76:53–62. doi: 10.1097/FJC.0000000000000835
Diao L, Liu X, Su X, Pei Y, Liang Z, Zhou N. Long non-coding RNA GAS5 mediates oxidative stress in cardiac microvascular endothelial cells injury. *J Cell Physiol.* (2019) 234:17649–62. doi: 10.1002/jcp.28388

Hao S, Liu X, Sui X, Pei Y, Liang Z, Zhou N. Long non-coding RNA GAS5 reduces cardiomyocyte apoptosis induced by MI through sema3a. *Int J Biol Macromol.* (2018) 120(Pt A):371–7. doi: 10.1016/j.ijbiomac.2018.08.039

Tao H, Zhang JG, Qin RH, Dai C, Shi P, Yang JJ, et al. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. *Toxicology.* (2017) 386:11–8. doi: 10.1016/j.tox.2017.05.007

Zhang J, Gao C, Meng M, Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. *Biomol Ther.* (2016) 24:19–24. doi: 10.4062/biomolther.2015.066

Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis[J]. *J Mol Cell Cardiol.* (2020) 139:47–61. doi: 10.1016/j.yjmcc.2019.12.013

Zhang L, Wu YJ, Zhang SL. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. *J Geriatr Cardiol.* (2019) 16:818–21. doi: 10.11909/j.issn.1671-5411.2019.11.006

Shen W, Li H, Su H, Chen K, Yan J. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. *Mol Cell Biochem.* (2021) 476:2171–9. doi: 10.1007/s11010-021-04069-6

Su H, Wang G, Wu L, Ma X, Ying K, Zhang R. Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. *BMC Genomics.* (2020) 21:39. doi: 10.1186/s12864-020-06462-y

Gao XQ, Zhang YH, Liu F, Ponnusamy M, Zhao XM, Zhou LY, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N-6-methyladenosine methylation of Parp10 mRNA. *Nat Cell Biol.* (2020) 22:1319–31. doi: 10.1038/s41556-020-0576-y

Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. *Life Sci.* (2019) 239:117034. doi: 10.1016/j.lfs.2019.117034

Zhao X, Yang Y, Sun B, Shi Y, Yang X, Xiao W, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. *Cell Res.* (2014) 24:1403–19. doi: 10.1038/cr.2014.151

Du M, Zhang Y, Mao Y, Mou J, Zhao J, Xue Q, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. *Biochem Biophys Res Commun.* (2017) 482:582–9. doi: 10.1016/j.bbrc.2016.11.077

He H, Wu W, Sun Z, Chai L. MiR-4429 prevented gastric cancer progression through targeting METTL3 to inhibit m6A-caused stabilization of SEC62. *Biochem Biophys Res Commun.* (2019) 517:581–7. doi: 10.1016/j.bbrc.2019.07.05

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.