Zoogeography of South American Forest-Dwelling Bats: Disjunct Distributions or Sampling Deficiencies?

Patrício Adriano da Rocha¹*, Stephen Francis Ferrari¹,², Anderson Feijó², Sidney Feitosa Gouveia¹

¹ Department of Ecology, Federal University of Sergipe–UFS, CEP 49100–000, São Cristóvão, Sergipe, Brazil, ² Graduate Program in Zoology, Department of Systematics and Ecology, Federal University of Paraíba—UFPB, CEP 58059–900, João Pessoa, Paraíba, Brazil

* parocha2@yahoo.com.br

Abstract

Many forest-dwelling bats are purported to be widespread in South America, although records are scant from the vast diagonal belt of dry ecosystems that straddles the continent, implying possible sampling deficiencies. Here, we investigate this possibility in the case of four species of bat (Centronycteris maximiliani, Lampronycteris brachyotis, Peropteryx kappleri and Trinycteris nicefori), evaluating whether their disjunct present-day distributions reflect their true zoogeographic characteristics or the subsampling of intermediate zones. We use environmental niche modelling (ENM) in an ensemble approach, combining four different modeling techniques, and using niche descriptors based on climatic and remote sensing data, to estimate the potential distribution of the four species. The models indicate that all four species have disjunct distributions in the Amazon and Atlantic forest biomes. The one possible exception is P. kappleri, which the models indicated might potentially occur in humid forest enclaves in western Brazil and eastern Bolivia. The present-day distribution of the species may date back to the Plio-Pleistocene, when the forested biomes of South America were more extensive and connected. Further studies of different chiropteran lineages may provide additional insights into the historic processes of faunal interchange between the Amazon and Atlantic forest biomes.

Introduction

Biogeographic patterns of continental biotas have been forged by cycles of environmental (mainly climatic) change, yielding complex patterns of species distributions in existing biomes [1,2]. These continuous transformations, coupled with the evolutionary history of the clades, have resulted in a mixture of species with both broad and narrow geographic ranges [3]. These individual patterns have received increasing attention from evolutionary biologists, especially in the context of phylogeographic studies [4]. However, the lack of reliable data on the occurrence of most clades precludes the conclusive definition of biogeographical patterns. Vast areas
remain poorly sampled, providing inconclusive evidence on the history of colonization of certain species or their absence from specific regions. This distributional data deficiency has recently been referred to as Wallacean shortfall [5].

In case of South American biomes, for example, the humid formations (the Amazon and Atlantic rainforests) are separated by a diagonal band of more arid environments, the Caatinga, Chaco, and Cerrado [6]. There is substantial evidence from geological, palynological, botanical and zoological studies that the humid biomes expanded and retracted repeatedly during different epochs, coming into contact with one another on many occasions [7–12]. Vivo [13] suggested that mammals currently found in the Amazon and Atlantic forests were once common in the region now dominated by the Caatinga, being led to extinction by the establishment of the semiarid conditions that persist to the present day.

Some species of bats are able to disperse over long distances and many species are known to occur in both Amazon and Atlantic rainforests. One straightforward conclusion is that they constitute additional examples of species that migrated between these biomes during a prior period of connectivity and interchange, although Gardner [3] has proposed the existence of a corridor between Amazon and Atlantic forests northern running across northern Brazil. However, most of these small-bodied species appear to have low population densities, at least based on the available data from mist-netting studies. They also have not been recorded in the regions where they are believed to occur, in particular the limited zone of more humid conditions that ranges along the northern coast of Brazil between the two rainforest biomes.

Ecological niche modeling (ENM) and species distribution modeling (SDM) are widely-used and effective approaches to the analysis of ecological questions on species with uncertain geographic distributions. The suite of ENM techniques has become ubiquitous in modern ecology, with major applications in the fields of climate change, historical biogeography, and conservation planning [14–18]. The ENM methods now available range from simple, correlative approaches that aim to build bioclimatic envelopes of the spatial occurrence of species (e.g. [19, 20]) to more complex procedures based on artificial intelligence [21,22].

More recently, a novel strategy has been proposed, in which different techniques are combined to provide a consensus solution. This approach, known as “ensemble forecasting” [23], aims to circumvent the deficiencies and potential biases of each individual method, and has been conceived to improve the reliability of projections of future species distributions under climate shifts (e.g. [24–26]). The reasoning nevertheless applies as effectively to current conditions [27]. The essence of ensemble modeling is to average out predictions from different approaches as a means of reducing the uncertainties generated by varying initial conditions, model classes, parameters, and boundary definitions (see [23] for further details).

In view of the uncertainties on the present-day distribution of many chiropterans, we employ here an ensemble ENM protocol for the analysis of the data on four bat species that are posited to occur in South American cloud forest enclaves within the dry biomes that separate the principal rainforest biomes [28,29], Centronycteris maximiliani (Fischer, 1829), Peropteryx kappleri Peters, 1867, Lampronycteris brachyotis Dobson, 1879, Trinycteris nicefori Sanborn, 1949. The primary objective of this analysis is to assess whether the absence of these species from more arid environments represents their true, disjunct distribution or simply reflect the inadequate sampling of the intervening region.

Material and Methods

We gathered occurrence data (geographic coordinates) of the four study species from published studies (S1, S2, S3 and S4 Tables), and we overlaid these locality point data onto a grid cell map of South America with 0.25° × 0.25° spatial resolution (Fig 1). The number of records...
for a given species varied from 23 to 34. As in other studies of species distribution modeling, we used a set of seven environmental variables that we believed to be the most relevant descriptors of the ecological niches of the four species, and consequently, of their spatial distribution. These included five bioclimatic variables (mean annual temperature, amplitude of diurnal temperatures, seasonality of annual temperatures, and precipitation of the driest and the wettest months). We also used two variables to describe the vegetation cover (as all the bat species inhabit forests), both based on the global model of Leaf Area Index (LAI: [30]). The LAI measures were arranged monthly for the year 2010. We estimated the mean annual LAI and the LAI of the driest month, as a proxy for the principal vegetation type and the difference between deciduous and evergreen forest, respectively. Bioclimatic variables were drawn from a high-resolution interpolated surface data series with a spatial resolution of approximately 20 km (1950–2000; see [31]). The raw LAI products are derived from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) satellite, which estimates the surface reflectance of the land surface at a 0.5 km spatial resolution with an 8-day sampling interval (see further details in [32]). We rescaled all these variables to the 0.25° cell grid prior to the analyses, to match the matrix of species occurrence data.

We used an ensemble approach to model the distribution of the study species, involving four methods: BIOCLIM [19], Mahalanobis distance [20], Genetic Algorithm for Rule Set Production, or GARP [33], and Maximum Entropy, Maxent [34]. Briefly, the BIOCLIM and Mahalanobis distances are based on the construction of bioclimatic envelopes based on a species’ occurrence records and the environmental conditions of these localities. The GARP and Maxent models are more sophisticated, being based on both occurrence and pseudo-absence data, also considering local environmental conditions (see related references for further details). In the present study, however, we generated pseudo-absence for all the models in order to evaluate their performance through the receiving operating curve, or ROC (see below). The models generated for each species were then combined into a final weighted consensus model, i.e. the ensemble. For each model, the entire dataset was randomly partitioned into two subsets, a 75% training fraction, and a 25% test fraction, a procedure known as cross-validation [35]. This routine was repeated 10 times for each method, i.e., a tenfold cross-validation. The training outputs provided the niche projection, whereas the test fraction provided an evaluation of the models’ performance.

We assessed the performance of the consensus models through true skill statistics (TSS), which is given by the sum of the models’ sensitivity and specificity minus 1. Sensitivity and specificity refer, respectively, to the proportion of the presence and absence records identified correctly. We also evaluated individual models through the area under the ROC curve (AUC), which is a plot of the true positives (y-axis) against unity minus the false positives (x-axis) of a given model. It is obtained by increasing cutoffs that convert continuous values of “local suitability” into a binary presence/absence variable. The area under this curve–AUC–provides an estimate of the model’s performance by measuring its ability to predict true occurrence (maximum sensitivity) while minimizing the error of predicting pseudo occurrence, or maximum specificity ([36, 37], but see [38, 39]). In this case, AUC values close to 1.0 denote high quality models, whereas values below 0.7 indicate poor models [40]. Here, we defined the threshold of each model with an automatic search using the ROC and a 0.5 consensus threshold for the final ensemble. We ran all modeling procedures and analyses in the Bioensembles software [41].

Results

The final consensus models for all four species had high TSS values—from 0.926 for T. nicefori to 0.967 for C. maximiliani—indicating very good model fit in all cases. Individual models derived from the different approaches were also of high to very high quality, as indicated by the AUC values, ranging from 0.78 in the Mahalanobis distance model for L. brachyotis to 1.0 in the GARP models generated for all four species (Table 1).

The models described clear, disjunctive geographical distributions for two species—C. maximiliani and T. nicefori—including most of the Amazon and the northern extreme of the Atlantic forest. These predicted ranges varied only slightly in their total extension and overlap, with a marked congruence, in particular in the Amazon basin (Fig 2). In the two cases, the potential distribution of the species in the Atlantic forest was also greatly reduced, even considering their known distribution in this biome.

By contrast, the models indicated potential connections for the populations of P. kappleri and L. brachyotis (Fig 2). In the case of P. kappleri, there is a sparsely-distributed corridor of more humid enclaves stretching between southern Bolivia, eastern Paraguay, and southern
Brazil. For *L. brachyotis*, the corridor extends through the humid enclaves of northeastern Brazil. The potential distribution of these species also extended considerably in the eastern and southern limits of the Atlantic forest biome, in comparison with their known occurrence in this region.

Discussion

Our analyses have shown that three of the four chiropteran species analyzed indeed appear to have a disjunct distribution in the humid forests of South America. The one possible exception is *P. kappleri*, which may find suitable—but widely scattered—habitats between the southern limits of the Amazon and Atlantic forest domains. Overall, these results contradict the conclusion that the gap in the distributions of the species may be related to the subsampling of populations, and in particular the possible existence of a corridor of dispersion across northern Brazil [3].

Regarding the potential occurrence of *L. brachyotis* and *P. kappleri* in corridors of scattered mesic forest enclaves bridging the northern and southern gaps, respectively, the models may reflect either later historical dispersal routes arising during periods of more humid climate or relict populations. For example, the enclaves identified within the dry diagonal as being suitable for *L. brachyotis* coincide with more mesic areas, such as the Chapada do Araripe and Baturite forests in Ceará, northeastern Brazil. The floristic characteristics of the latter are more closely linked to the Amazon and Atlantic forests than to those of other forest enclaves in the Caatinga [42].

In addition to reinforcing the classification of all four bat species as strict forest dwellers, the results of this study emphasize the importance of vicariant events in the determination of the present-day distribution of the species. In addition to Gardner’s [3] northern coastal corridor, there is considerable evidence of a southern route, as well as a central corridor during periods of milder climate [12, 43, 44]. Batalha-Filho et al. [12] identified two routes that enabled birds to interchange between the Amazon and Atlantic forests, one in the mid to late Miocene in the southern portion of the biomes, and a later route during the Pliocene–Pleistocene transition within the dry diagonal of the present day. Considering their comparable dispersal capabilities, birds and bats are likely to have congruent patterns of species intrusion between formations.

These conclusions may also have important implications for the taxonomic classification of these species. While they are clearly very closely related, the distinct populations appear to have been isolated from one another for long periods, raising potential doubts with regard to their species status, especially in light of studies of the recently-described species *Dryadonycteris capixaba* [45, 46]. This species was described from specimens collected from the Atlantic forest, identified previously as *Choeroniscus minor*. Subsequently, Rocha et al. [46] concluded that all the records of *C. minor* from the Atlantic forest actually refer to populations of *D. capixaba*, restricting the range of *C. minor* to the Amazon forest. The results of the present study suggest that other taxa, including those analyzed here, may be in a similar situation.

While ecological niche modeling has a range of applications in ecology, it was originally applied to the definition of the potential distribution of poorly-known species [14]. We have shown that this analytical tool may be equally useful for the differentiation of biogeographical
Fig 2. Final consensus models for the potential distribution of the four study species (labeled) in South America based on the consensus of four modeling techniques (Bioclim, Mahalanobis distances, GARP, and Maxent). All models portray the varying suitability values across space, from a lower 0.5 consensus threshold to unity.

doi:10.1371/journal.pone.0133276.g002
processes from sampling deficiencies [47], reinforced by the highest degree of accuracy (i.e. TSS and AUC values) obtained by the ensemble approach. One important caveat here is that species niches may have been underestimated precisely because of the lack of records from intermediate (i.e. non-forested) conditions, which might have caused an environmental bias, and hence an incomplete niche characterization [48]. However, we do not believe that this is the case for the four species studied here, mainly because all the occurrence localities are restricted to rainforest habitats, and none at all coincide with adjacent savanna or scrub habitats, such as those found at the southern and northern edges of the Amazon biome (Fig 1). This also contradicts the idea of circular thinking affecting this study, i.e., biases in the data causing a bias toward a particular environmental setting in the model. Of course, models in general are subject to many sources of error, but we have attempted to avoid estimation biases as much as possible by adopting an ensemble framework. This strategy is especially appropriate for the avoidance of many potential sources of model bias, including both over- and under-prediction of the potential distribution of a species [23].

Indeed, forested habitat was a key factor in the characterization of the species’ niches. The annual mean LAI or the LAI of the driest month appeared among the better descriptors of species distributions, according to the estimates of relative contributions of the environmental variables provided by the Maxent models (Table 2). This highlights the importance of remote sensing data for the study of animal ecology in general [49], including niche models [50], and the relevance of forest remnants for these species, in particular. In fact, we have shown here that three of the four study species face reduced habitat suitability in the Atlantic forest (Fig 2), reflecting the relatively poor conservation status of this eastern Brazilian biome.

In summary, we have shown that all four species of bat may indeed be confined to the forested environments of tropical South America and that their current distribution is not the product of sampling deficiencies, except possibly in one case. It seems likely that the present disjunct distribution of all four species is the product of the loss of a dispersal corridor that connected the Amazon and Atlantic forests no later than the Plio–Pleistocene. While the exact timing of this process and the dispersal routes of these clades have yet to be defined, the results of the present study provide important insights into the history of faunal interchange—specifically of chiropterans—between forested South American biomes.

Supporting Information

S1 Table. Recording localities for *Lampronycteris brachyotis* used in modeling analyses.

S2 Table. Recording localities for *Trinycteris nicefori* used in modeling analyses.
S3 Table. Recording localities for *Cetronycteris maximiliani* used in modeling analysis.

(DOC)

S4 Table. Recording localities for *Peropteryx kappleri* used in modeling analysis.

(DOC)

Author Contributions

Conceived and designed the experiments: PAR SFG. Performed the experiments: PAR SFG. Analyzed the data: PAR SFG AF SFF. Wrote the paper: PAR SFG AF SFF.

References

1. Vuilleumier BS (1971) Pleistocene Changes in the Fauna and Flora of South America. Science 173 (3999):771–780. PMID: [17812182](https://doi.org/10.1126/science.173.3999.771)
2. Hammen T (1974) The Pleistocene Changes of Vegetation and Climate in Tropical South America. J Biogeogr 1(1): 3–26.
3. Gardner AL (2008) Mammals of South America: Volume I. Marsupials, xenarthrans, shrews, and bats. Chicago: University of Chicago Press. 669 p.
4. Avise J (2000). Phylogeography: The History and Formation of Species. President and Fellows of Harvard College. 464 p.
5. Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR, editors. Frontiers of Biogeography: New directions in the geography of nature. pp. 293–296.
6. Ab’ Saber AN (1977) Os Domínios Morfológicos da América do Sul. Primeira Aproximação. Geomorfologia 52: 1–21
7. Haberle SG, Maslin MA (1999) Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon fan, ODP Site 932. Quat Res 51: 27–38.
8. Auler AS, Smart PL (2001) Late Quaternary paleoclimate in semi-arid northeastern Brazil from U-series dating of travertine and watertable speleothems. Quat Res 55:159–167
9. Auler AS, Wang A, Edwards RL, Cheng H, Cristalli PS, Smart PL, et al. (2004) Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19:693–70
10. Cavalcanti D, Tabarelli M (2004) Distribuição das plantas amazônico-nordestinas no centro de endemismo Pernambuco: brejos de altitude versus florestas de terras baixas. In: Porto KC, Cabral JJP, Tabarelli M editors. Brejos de altitude em Pernambuco e Paraíba. Ministério do Meio Ambiente, Brasília, pp 285–296.
11. Martini AMZ, Fiaschi P, Amorim AM, Paixão JL (2007) A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic Forest. Biodivers Conserv 16:3111–3128.
12. Batalha-Filho H, Fjeldsá J, Fabre PH, Miyaki CY (2013) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50.
13. Vivo M (1997) A mastofauna da floresta atlântica: padrões biogeográficos e implicações conservacionistas. In: Anais da 5ª Reunião Especial da SBPC–Floresta Atlântica. Diversidade Biológica e Sócio-Econômica, Blumenau, pp 60–63.
14. Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135: 147–186.
15. Peterson AT, Ortega-Huerta MA, Bartley J, Saánchez-Cordero V, Soberon J, Buddemeier RH, et al. (2002). Future projections for Mexican faunas under global climatic change scenarios. Nature 416: 626–629. PMID: [11948349](https://doi.org/10.1038/nature00771)
16. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve selection methods. Glob Change Biol 10:1618–1626.
17. Thuiller W, Lavelle S, Araujo MB, Sykes MT, Prentice IC (2005b) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250.
18. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005a) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11: 2234–2250.
19. Busby JR (1991) BIOCLIM—a bioclimatic analysis and prediction system. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. In: Margules CR, Austin MP, editors. pp. 64–68. CSIRO, Australia.
20. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160: 115–130.
21. Ripley BD (1996) Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, UK. 419 p.
22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.
23. Araújo M.B. and New M. 2007. Ensemble forecasting of species distributions. Trends in Ecol Evol 22: 42–47.
24. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15: 59–69.
25. Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogues-Bravo D, et al. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.
26. Diniz-Filho JAF, Nabout JC, Bini LM, Loyola RD, Nogues-Bravo D, et al. (2010). Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv Divers 3(3):213–221.
27. Grenouillet G, Buisson L, Casajus N, Lek S (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.
28. Reis NR, Guillaumet J (1983) Les chauve-souris frugivores de la région de Manaus et leur rôle dans la dissémination des espèces végétales. Rev Ecol 38: 147–169.
29. Peracchi AL, Albuquerque ST (1993) Quirópteros do município de Linhares, Estado do Espírito Santo, Brasil (Mammalia, Chiroptera). Rev Bras Bio 53: 575–581.
30. Liang S, Xiao Z (2012) Global Land Surface Products: Leaf Area Index Product Data Collection (1985–2010), Beijing Normal University. doi:10.6050/glass863.3004.db
31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
32. Xiao Z, Liang J, Wang J, Chen J, Yin P, Zhang L, et al. (2013). Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance. IEEE Trans Geosci Remote Sens 25(1): 209–223.
33. Stockwell D. R. B., and Noble I. R. 1992. Induction of sets of rules from animal distribution data: A robust and informative method of analysis. Math Comput Simul 33: 385–390.
34. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259.
35. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ. 328pp.
36. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 38–49.
37. Allouche O., Tsoar A. & Kadmon R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232.
38. Peterson AT, Papes M, Soberón J (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213(1):63–72.
39. Lobo JM, Jiménez-Valverde A, Real R (2008). AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biog 17: 145–151.
40. Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. PMID: 3287615
41. Rangel TFLVB, Diniz-Filho JAF, Araujo MB (2009) BIOENSEMBLES 1.0. Software for computer intensive ensemble forecasting of species distributions under climate change. Goiás, Madrid, Évora.
42. Por FD (1992) Sooretama: the Atlantic rain forest of Brazil. SPB Academic Publishing, The Hague. 130 p.
43. Santos AMM, Cavalcanti DR, Silva JMC, Tabarelli M (2007) Biogeographical relationships among tropical forests In northeastern Brazil. Journal of Biogeography 34: 437–446.
44. Costa L (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biog 30: 71–86.
45. Nogueira MR, Lima IP, Peracchi AL, Simmons NB (2012) New Genus and Species of Nectar Feeding Bat from the Atlantic Forest of Southeastern Brazil (Chiroptera: Phyllostomidae: Glossophaginae). Am Mus Novit 3747:1–30.

46. Rocha PA, Feijó A, Dias D, Mikalauskas J, Ruiz-Esparza J, Ferrari SF (2014) Major extension of the known range of the capixaba nectar-feeding bat, Dryadonycteris capixaba (Chiroptera, Phyllostomidae). Is this rare species widely distributed in eastern Brazil? Mastozool Neotrop In press.

47. Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions. PLoS ONE 2(7): e563.

48. Boakes EH, McGowan PJK, Fuller RA, Cjiang-qing D, Clark NE, O'Connor K, et al. (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8: e1000385 doi: 10.1371/journal.pbio.1000385 PMID: 20532234

49. Davies BD, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol Evol. In press.

50. Tattoni C, Rizzolli F, Pedrini P (2012) Can LiDAR data improve bird habitat suitability models? Ecol. Model 245: 103–110.