CATEGORICAL RELATIONS BETWEEN LANGLANDS DUAL
QUANTUM AFFINE ALGEBRAS:
DOUBLY LACED TYPES

MASAKI KASHIWARA†, SE-JIN OH‡

Abstract. We prove that the Grothendieck rings of category $C^{(t)}_q$ over quantum affine algebras $U_q^t(g^{(r)})$ ($t = 1, 2$) associated to each Dynkin quiver Q of finite type A_{2n-1} (resp. D_{n+1}) is isomorphic to one of category $C^{(t)}_r$ over the Langlands dual $U_q^t(L g^{(2)})$ of $U_q^t(g^{(2)})$ associated to any twisted adapted class $[Q]$ of A_{2n-1} (resp. D_{n+1}). This results provide partial answers of conjectures of Frenkel-Hernandez on Langlands duality for finite-dimensional representation of quantum affine algebras.

1. Introduction

Let $U_q^t(g^{(r)})$ ($r = 2, 3$) be the twisted quantum affine algebra ($g^{(r)} = A_{2n-1}^{(2)}, D_{n+1}^{(2)}, E_6^{(2)}, D_4^{(3)}$) and let $U_q^t(L g^{(r)})$ be its untwisted Langlands dual ($L g^{(r)} = B_n^{(1)}, C_n^{(1)}, F_4^{(1)}, G_2^{(1)}$) whose generalized Cartan matrix is the transpose of that of $U_q^t(g^{(r)})$. Let us denote by $W_{q,t}(g)$ the (q, t)-deformed $W(g)$-algebra associated to the simple Lie subalgebra g of $L g^{(r)}$, introduced by Frenkel and Reshetikhin in [8]. Then it is known that (i) the limit $q \to \exp(\pi i/r)$ of $W_{q,t}(g)$ recovers the commutative Grothendieck ring of finite-dimensional integrable representations $C^{(r)}_{g^{(r)}}$ over $U_q^t(g^{(r)})$, and (ii) the limit $t \to 1$ of $W_{q,t}(g)$ recovers the one of $C^{(r)}_{L g^{(r)}}$ over $U_q^t(L g^{(r)})$ ([7]):

$$[C^{(r)}_{g^{(r)}}] \xrightarrow{\exp(\pi i/r) \to q} W_{q,t}(g) \xrightarrow{t \to 1} [C^{(r)}_{L g^{(r)}}]$$

Thus $W_{q,t}(g)$ interpolates the Grothendieck rings of the categories $C^{(r)}_q$ and $C^{(r)}_{L g}$. Since then, the duality between the representations over $U_q^t(g^{(r)})$ and $U_q^t(L g^{(r)})$ has been intensively studied (for example, see [9, 10]). We remark that this duality is related to the geometric Langlands correspondence (see [10, Introduction]).

On the other hand, Hernandez ([12]) proved that, for the untwisted quantum affine algebra $U_q^t(g^{(1)})$ ($g^{(1)} = A_{2n-1}^{(1)}, D_{n+1}^{(1)}, E_6^{(1)}, D_4^{(1)}$) corresponding to $U_q^t(g^{(r)})$, the commutative Grothendieck ring of $C^{(1)}_{g^{(1)}}$ is isomorphic to the one of $C^{(r)}_{g^{(r)}}$:

$$[C^{(1)}_{g^{(1)}}] \cong [C^{(r)}_{g^{(r)}}]$$

Date: May 23, 2017.

Key words and phrases. longest element, r-cluster point, Schur-Weyl diagram, combinatorial Auslander-Reiten quivers, Langlands duality.

† The research was supported by Grant-in-Aid for Scientific Research (B) 15H03608, Japan Society for the Promotion of Science.

‡ This work was supported by NRF Grant # 2016R1C1B2013135.
Hence, we can expect that the isomorphisms among the Grothendieck groups can be lifted to equivalences of categories:

\[
\begin{align*}
\mathcal{C}_{\mathcal{g}(r)} & \sim_{\mathcal{F}_Q^{(r)}} \sim_{\mathcal{F}_Q^{(r)}} \mathcal{C}_{\mathcal{g}(r)} \\
\mathcal{C}_{\mathcal{g}(1)} & \sim_{\mathcal{F}_Q^{(1)}} \sim_{\mathcal{F}_Q^{(2)}} \mathcal{C}_{\mathcal{g}(2)} \sim_{\mathcal{F}_Q^{(2)}} \mathcal{C}_{\mathcal{g}(1)}
\end{align*}
\]

However, there is no satisfactory answer for the reason why such dualities happen. The goal of paper is to provide new point of view for these dualities through the categorification theory of quantum groups.

The quiver Hecke algebras \(R_q\), introduced by Khovanov-Lauda [24, 25] and Rouquier [35] independently, categorify the negative part \(U_q(\mathfrak{g})\) of quantum groups \(U_q(\mathfrak{g})\) for all symmetrizable Kac-Moody algebras \(\mathfrak{g}\). The categorification for (dual) PBW-bases and global bases of the integral form \(\tilde{U}_\mathfrak{g}(\mathfrak{g})\) of \(U_q(\mathfrak{g})\) were developed very actively since the introduction of quiver Hecke algebras. Among them, [3, 23, 27] give the categorification theory for (dual) PBW-bases of \(\tilde{U}_\mathfrak{g}(\mathfrak{g})\) associated to finite simple Lie algebra \(\mathfrak{g}\) by using convex orders on the set of positive roots \(\Phi^+\).

On the other hand, Hernandez and Leclerc [14] defined a subcategory \(C_Q^{(1)}\) of \(\mathcal{C}_{\mathfrak{g}(1)}\) for quantum affine algebras \(U_q(\mathfrak{g}(1))\) of untwisted affine type \(ADE\), which depends on the Auslander-Reiten quiver \(\Gamma_Q\) for each Dynkin quiver \(Q\) of finite type \(ADE\). They proved that \(C_Q^{(1)}\) categorifies \(\tilde{U}_\mathfrak{g}(\mathfrak{g})\big|_{q=1}\), where \(\mathfrak{g}\) is the finite simple Lie subalgebra of \(\mathfrak{g}(1)\). Furthermore, they provided the categorification theories for the upper global basis and for the dual PBW-basis associated to \(Q\) via certain sets of modules in \(C_Q^{(1)}\).

For a quantum affine algebra \(U_q(\mathfrak{g})\), the first-named author and his collaborators constructed the quantum affine Schur-Weyl duality functor \(\mathcal{F}: \text{Rep}(R^\Xi) \to \mathcal{C}_{\mathfrak{g}}\) by observing denominator formulas \(d_{V,W}(z)\) of the normalized \(R\)-matrices \(R_{V,W}^{\text{norm}}(z)\) between good modules \(V, W \in \mathcal{C}_{\mathfrak{g}}\) ([16, 17]). Here \(R^\Xi\) is the quiver Hecke algebra determined by Schur-Weyl datum \(\Xi\) which depends on the choice of good modules in \(\mathcal{C}_{\mathfrak{g}}\) (see § 5.3 for details), and we denote by \(\text{Rep}(R^\Xi)\) the category of finite-dimensional modules over \(R^\Xi\). In [17], they construct an exact functor

\[
\mathcal{F}_Q^{(1)}: \text{Rep}(R_{\mathfrak{g}}) \rightarrow \mathcal{C}_Q^{(1)}
\]

sending simples to simples,

where \(\mathfrak{g} = A_n\) or \(D_n\) is a finite simple Lie subalgebra of \(A_n^{(1)}\) or \(D_n^{(1)}\), and \(Q\) is of type \(\mathfrak{g}\), respectively. Furthermore, the authors and their collaborators ([18]) defined the subcategory \(C_Q^{(2)}\) of \(C_{\mathfrak{g}(2)}\) and constructed twisted analogues of (1.4): For any Dynkin quivers \(Q\) and \(Q'\) of type \(A_n \) or \(D_n\), we have

\[
C_{\mathfrak{g}(1)} \supset C_Q^{(1)} \xrightarrow{\sim} \text{Rep}(R_{\mathfrak{g}}) \xrightarrow{\sim} C_Q^{(2)} \subset C_{\mathfrak{g}(2)}
\]

and

\[
C_Q^{(1)} \supset [\text{Rep}(R_{\mathfrak{g}})] \xrightarrow{\sim} U_\mathfrak{g}(\mathfrak{g})|_{q=1} \xrightarrow{\sim} C_Q^{(2)}
\]

Here \(\mathfrak{g} = \mathfrak{g} = A_n\) or \(D_n\). The above result provides the categorification theoretical interpretation of the similarity between the modules over \(C_{\mathfrak{g}(1)}\) and \(C_{\mathfrak{g}(2)}\), described in (1.2).
In this paper, we define certain subcategory $\mathcal{C}_\mathcal{Q}$ of $\mathcal{C}_B^{(1)}$ and $\mathcal{C}_C^{(1)}$ for any twisted adapted class $[\mathcal{Q}]$ of finite type A_{2n-1} and D_{n+1}, and prove that (1) Grothendieck rings $[\mathcal{C}_\mathcal{Q}]$ are isomorphic to $[\mathcal{C}_Q^{(t)}]$ ($t = 1, 2$) for each Dynkin quiver Q of finite type A_{2n-1} and D_{n+1}, respectively, (2) there exists an exact functor between $\mathcal{C}_\mathcal{Q}$ and $\mathcal{C}_Q^{(t)}$ ($t = 1, 2$) sending simples to simples. To explain our main result, we need to introduce several notions and previous results.

Let Q be a Dynkin quiver of finite type ADE. By the Gabriel theorem ([11]), it is well-known that Auslander-Reiten (AR) quiver Γ_Q reflects the representation theory for the path algebra $\mathbb{C}Q$. Moreover, the vertices of Γ_Q can be identified with Φ^+ and the convex partial order \prec_Q is represented by the paths in Γ_Q (see [2, 11] for more detail). On the other hand, each commutation class $[\tilde{w}_0]$ of reduced expressions for the longest element w_0 of a finite Weyl group determines the convex partial order $\prec_{[\tilde{w}_0]}$ on Φ^+. In particular, each \prec_Q coincides with the convex partial order induced from the commutation class $[Q]$ consisting of all reduced expressions adapted to Q, and has its unique Coxeter element ϕ_Q. Interestingly, all commutation classes $[\tilde{w}_0]$ are reflection equivalent and hence can be grouped into one r-cluster point $[Q]$. In [32], the second-named author and Suh introduced the combinatorial AR-quiver $\Upsilon_{[\tilde{w}_0]}$ for every $[\tilde{w}_0]$ of w_0 for any finite type to realize the convex partial order $\prec_{[\tilde{w}_0]}$ and studied the combinatorial properties of $\Upsilon_{[\tilde{w}_0]}$ of type A.

In the papers [28, 29, 31], the second-named author proved that important information on the representation theories for $U_q'(A_n^{(1)})$ and $U_q'(D_n^{(1)})$ are encoded in the AR-quiver Γ_Q in the following sense:

(1) In [28, 29], he proved that the conditions for

$$(1.6) \quad \text{Hom}(V(\varpi_i) \otimes V(\varpi_j), V(\varpi_k)) \neq 0,$$

which can be interpreted as the coordinates of (α, β, γ) in some Γ_Q where $\alpha + \beta = \gamma \in \Phi^+$ and g is of type $A_n^{(1)}$ and $D_n^{(1)}$. Here the conditions in (1.6) are referred as Dorey’s rule for quantum affine algebras of type $A_n^{(1)}$, $D_n^{(1)}$, $B_n^{(1)}$ and $C_n^{(1)}$ and studied by Chari-Pressley ([5]) by using Coxeter elements and twisted Coxeter elements.

(2) By using the newly introduced notions on the sequences of positive roots in [31], he proved that we can read the denominator formulas $d_{k, l}(z)$ for $U_q'(A_n^{(1)})$ and $U_q'(D_n^{(1)})$ from any Γ_Q.

In [33, 34], to extend the previous results to quantum affine algebras of type $B_n^{(1)}$ and $C_n^{(1)}$, the second-named author and Suh developed the twisted analogues by using twisted Coxeter elements $\tilde{\phi}$ of type A_{2n-1} and D_{n+1} associated to Dynkin diagram automorphisms
They characterized the r-cluster point \([\mathcal{D}]\) arising from any twisted Coxeter element $\tilde{\phi}$ in terms of Coxeter composition (see Definition 2.8 and [33, Observation 4.1]). We call the commutation classes \([\mathcal{D}]\) in \([\mathcal{D}]\) twisted adapted classes. (Hence the notation \([\mathcal{D}]\) in this paper can be understood as the label of the combinatorial AR-quiver $\Upsilon_{[\mathcal{D}]}$ for each \([\mathcal{D}]\) in \([\mathcal{D}]\).) Moreover, by assigning coordinate system to $\Upsilon_{[\mathcal{D}]}$ and folding $\Upsilon_{[\mathcal{D}]}$, they proved that (1') Dorey’s rule for quantum affine algebras of type $B_n^{(1)}$ and $C_n^{(1)}$ can be interpreted as the coordinates of (α, β, γ) in some folded AR-quiver $\tilde{\Upsilon}_{[\mathcal{D}]}$ where (α, β) is a $[\mathcal{D}]$-minimal pair of γ, (2') we can read the denominator formulas $d_{k,l}(z)$ for $U_q'(B_n^{(1)})$ and $U_q'(C_n^{(1)})$ from any $\tilde{\Upsilon}_{[\mathcal{D}]}$.

With the previous results at hand, we first introduce the subcategory $\mathcal{C}_\mathcal{D}$ for $U_q'(B_n^{(1)})$ and $U_q'(C_n^{(1)})$ by considering the coordinates of positive roots in $\tilde{\Upsilon}_{[\mathcal{D}]}$, where \([\mathcal{D}]\) is a twisted adapted class of type A_{2n-1} and D_{n+1} respectively (Definition 6.1). By considering the denominator formulas for $U_q'(B_n^{(1)})$ (resp. $U_q'(C_n^{(1)})$) and the coordinate system of $\tilde{\Upsilon}_{[\mathcal{D}]}$, we can take the Schur-Weyl datum Ξ for each twisted adapted class $[\mathcal{D}]$ yielding the exact functor

$$\mathcal{F}_\mathcal{D} : \text{Rep}(R_g) \to \mathcal{C}_\mathcal{D} \subset \mathcal{C}_g$$

where g is the finite simple Lie algebra of type A_{2n-1} and D_{n+1}, and $g = B_n^{(1)}$ and $C_n^{(1)}$, respectively (Theorem 6.2). Furthermore, by applying the correspondence between Dorey’s rule and $[\mathcal{D}]$-minimal pair, we can prove that the functor $\mathcal{F}_\mathcal{D}$ sends simples to simples (Theorem 6.5). Thus we have Langlands analogues of (1.5):

\[
(1.8) \quad \mathcal{C}_g^{(2)} \supset \mathcal{C}_Q^{(2)} \xrightarrow{\cong} \text{Rep}(R_g) \xrightarrow{\mathcal{F}_\mathcal{D}} \mathcal{C}_\mathcal{D} \subset \mathcal{C}_{l_g(2)} \quad \text{and} \quad |\mathcal{C}_Q^{(2)}| \xrightarrow{\cong} \text{[Rep}(R_g)\text{]} \cong U_q^-(\mathfrak{g})|_{q=1} \xrightarrow{\cong} \text{[}\mathcal{C}_\mathcal{D}\text{]} \]

Hence we have

\[
(1.9) \quad \mathcal{C}_g^{(1)} \supset \mathcal{C}_Q^{(1)} \xrightarrow{\mathcal{F}_Q^{(1)}} \text{Rep}(R_g) \xrightarrow{\mathcal{F}_\mathcal{D}} \mathcal{C}_\mathcal{D}^{(2)} \subset \mathcal{C}_{g(2)} \quad \text{and} \quad |\mathcal{C}_Q^{(1)}| \xrightarrow{\cong} U_q^-(\mathfrak{g})|_{q=1} \xrightarrow{\cong} \text{[}\mathcal{C}_\mathcal{D}\text{]} \]

This result implies partial answers for conjectures suggested by Frenkel-Hernandez in the following sense:

For a representation V in $\mathcal{C}_g^{(2)}$, it has a Langlands dual representation $^L V$ in $\mathcal{C}_\mathcal{D}$ via induced functor $\mathcal{F}_\mathcal{D} \circ F_Q^{(2)-1}$ for any $[Q]$ and $[\mathcal{D}]$. In particular if V is simple, so is $^L V$ (see [9, Conjecture 2.2, Conjecture 2.4, Conjecture 3.10]).

As an application, we can characterize the sets of modules in $\mathcal{C}_\mathcal{D}$ categorifying the upper global basis and the dual PBW-basis associated to $[\mathcal{D}]$ of $U_\Lambda(\mathfrak{g})|_{q=1}$ (Corollary 6.7). In Section 7, we continue the study of [31] about the intersection of the dual PBW-basis $P_{[\vec{w}_0]}$ associated to a commutation class $[\vec{w}_0]$ and the upper global basis $B(\infty)$. More precisely, in
[31, Corollary 5.24], the second-named author proved that an element \(b \in P_Q \cap B(\infty) \) if and only if \(b \) corresponds to a \([Q]-simple sequence \(m \), for any \([Q] \in [\mathcal{Q}] \). In this paper, we also prove that

an element \(b \in P_{[\mathcal{Q}]} \cap B(\infty) \) if and only if \(b \) corresponds to a \([Q]-simple sequence \(m \), for any \([Q] \in [\mathcal{Q}] \) (Corollary 7.2).

Now we suggest the following conjecture:

Conjecture 1.1. An element \(b \in P_{[\mathcal{Q}]} \cap B(\infty) \) if and only if \(b \) corresponds to a \([\mathcal{Q}]-simple sequence \(m \), for any \([\mathcal{Q}] \in [\mathcal{Q}] \).

In Appendix, we propose several conjectures on the dualities among quantum affine algebras \(U_q'(E_n^{(i)}) \) \((i = 1, 2)\) and \(U_q'(F_n^{(1)}) \) by applying the same framework of this paper.

2. Cluster points and their AR-quivers with coordinates

Let \(I \) be an index set. A symmetrizable Cartan datum is a quintuple \((A, P, \Pi, P^\vee, \Pi^\vee)\) consisting of (a) a symmetrizable generalized Cartan matrix \(A = (a_{ij})_{i,j \in I} \), (b) a free abelian group \(P \), called the weight lattice, (c) \(\Pi = \{\alpha_i \in P \mid i \in I\} \), called the set of simple roots, (d) \(P^\vee := \text{Hom}(P, \mathbb{Z}) \), called the coweight lattice, (e) \(\Pi^\vee = \{h_i \mid i \in I\} \subset P^\vee \), called the set of simple coroots. It satisfies certain conditions: \(\langle h_i, \alpha_j \rangle = a_{ij}, \) etc (see [19, §1.1] for precise definition).

The free abelian group \(Q := \oplus_{i \in I} \mathbb{Z} \alpha_i \) is called the root lattice. Set \(Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \). For \(b = \sum_{i \in I} m_i \alpha_i \in Q^+ \), we set \(\text{ht}(b) = \sum_{i \in I} m_i \).

We denote by \(U_q(g) \) the quantum group associated to a symmetrizable Cartan datum which is generated by \(e_i, f_i \) \((i \in I)\) and \(q^h \) \((h \in P^\vee)\).

2.1. Foldable \(r \)-cluster points

Let us consider the Dynkin diagrams \(\Delta \) of finite type, labeled by an index set \(I \), and their automorphisms \(\vee \). By the Dynkin diagram automorphisms \(\vee \), we can obtain the Dynkin diagrams of finite type \(BCFG \) as orbits of \(\vee \):

\[
(2.1) \quad B_n \ (n \geq 2) \quad \leftrightarrow \quad (A_{2n-1} : \begin{array}{c|c|c|c|c|c|c} & & & & & n & \text{odd} \end{array} \begin{array}{c} \text{odd} \end{array}) \quad i^\vee = 2n - i \]

\[
(2.2) \quad C_n \ (n \geq 3) \quad \leftrightarrow \quad \begin{cases} D_{n+1} : \begin{array}{c|c|c|c|c} & & & & \end{array} \begin{array}{c} \text{odd} \end{array} , \quad i^\vee = \begin{cases} i & \text{if } i \leq n - 1, \\ n + 1 & \text{if } i = n, \\ n & \text{if } i = n + 1. \end{cases} \\ E_6 : \begin{array}{c|c|c|c|c} & & & & \end{array} \begin{array}{c} \text{odd} \end{array} , \quad \begin{cases} 1^\vee = 5, & 5^\vee = 1 \\ 2^\vee = 4, & 4^\vee = 2 \\ 3^\vee = 3, & 6^\vee = 6 \end{cases} \\ D_4 : \begin{array}{c|c|c|c} & & & \end{array} \begin{array}{c} \text{odd} \end{array} , \quad \begin{cases} 1^\vee = 3, & 3^\vee = 4, & 4^\vee = 1, \\ 2^\vee = 2. \end{cases} \end{cases}

Let \(\mathcal{W}_0 \) be the Weyl group, generated by simple reflections \((s_i \mid i \in I)\) corresponding to \(\Delta \), and \(w_0 \) the longest element of \(\mathcal{W}_0 \). We denote by \(^* \), the involution on \(I \) defined by

\[
\text{w}_0(\alpha_i) = -\alpha_i^*. \]
We also denote by \(\Phi^+ \) the set of all positive roots.

Definition 2.1. We say that two reduced expressions \(\tilde{w} = s_{i_1} s_{i_2} \cdots s_{i_r} \) and \(\tilde{w}' = s_{j_1} s_{j_2} \cdots s_{j_t} \) of \(w \in W_0 \) are commutation equivalent, denoted by \(\tilde{w} \sim \tilde{w}' \), if \(s_{i_1} s_{j_2} \cdots s_{j_t} \) is obtained from \(s_{i_1} s_{i_2} \cdots s_{i_r} \) by applying the commutation relations \(s_k s_i = s_i s_k \) (\(\langle h_k, \alpha_i \rangle = 0 \)). We denote by \([\tilde{w}]\) the commutation equivalence class of \(\tilde{w} \).

For each \([\tilde{w}]\), there exists a convex partial order \(\prec_{[\tilde{w}]} \) on \(\Phi^+ \), the set of positive roots, satisfying the following property (see [31] for details): For \(\alpha, \beta \in \Phi^+ \) with \(\alpha + \beta \in \Phi^+ \), we have either

\[
\alpha \prec_{[\tilde{w}]} \alpha + \beta \prec_{[\tilde{w}]} \beta \quad \text{or} \quad \beta \prec_{[\tilde{w}]} \alpha + \beta \prec_{[\tilde{w}]} \alpha.
\]

Definition 2.2. Fix a Dynkin diagram \(\Delta \) of finite type. For an equivalence class \([\tilde{w}_0]\) of reduced expression \(\tilde{w}_0 \), we say that \(i \in I \) is a sink (resp. source) of \([\tilde{w}_0]\) if there is a reduced expression \(\tilde{w}_0' \in [\tilde{w}_0] \) of \(w \) starting with \(s_i \) (resp. ending with \(s_i \)).

The following proposition is well-known (for example, see [23, 32]):

Proposition 2.3. For \(\tilde{w}_0 = s_{i_1} s_{i_2} \cdots s_{i_{k-1}} s_{i_k} \) with \(i_{k}^* = i \), \(\tilde{w}_0' = s_{i_1} s_{i_2} \cdots s_{i_{k-1}} i_k \) is a reduced expression of \(w_0 \) and \([\tilde{w}_0'] \neq [\tilde{w}_0] \). Similarly, \(\tilde{w}_0'' = s_{i_2} \cdots s_{i_{k-1}} i_k s_i \) is a reduced expression of \(w_0 \) and \([\tilde{w}_0''] \neq [\tilde{w}_0] \).

Definition 2.4 ([32]). The right action of the reflection functor \(r_i \) on \([\tilde{w}_0]\) is defined by

\[
[\tilde{w}_0] r_i = \begin{cases}
([s_{i_2}, \ldots, s_{i_N}, s_{i_1}]) & \text{if there is } \tilde{w}_0' = (s_{i_1}, s_{i_2}, \ldots, s_{i_N}) \in [\tilde{w}_0], \\
[\tilde{w}_0] & \text{otherwise.}
\end{cases}
\]

On the other hand, the left right action of the reflection functor \(r_i \) on \([\tilde{w}_0]\) is defined by

\[
r_i [\tilde{w}_0] = \begin{cases}
([s_{i_1}, s_{i_2}, \ldots, s_{i_{N-1}}]) & \text{if there is } \tilde{w}_0' = (s_{i_1}, \ldots, s_{i_{N-1}}, s_i) \in [\tilde{w}_0], \\
[\tilde{w}_0] & \text{otherwise.}
\end{cases}
\]

Definition 2.5 ([32]). Let \([\tilde{w}_0]\) and \([\tilde{w}_0']\) be two commutation classes. We say \([\tilde{w}_0]\) and \([\tilde{w}_0']\) are reflection equivalent and write \([\tilde{w}_0] \sim [\tilde{w}_0']\) if \([\tilde{w}_0']\) can be obtained from \([\tilde{w}_0]\) by a sequence of reflection maps. The equivalence class \([\tilde{w}_0]:=[\tilde{w}_0]\) with respect to the reflection equivalence relation is called an \(r \)-cluster point.

Definition 2.6 ([33, Definition 1.8]). Fix a Dynkin diagram automorphism \(\lor \) of \(I \). Let \(I^\lor := \{ \overline{i} \mid i \in I \} \) be the orbit classes of \(I \) induced by \(\lor \). For an \(r \)-cluster point \([\tilde{w}_0] = [s_{i_1} \cdots s_{i_N}]\) of \(w_0 \) and \(\overline{k} \in I^\lor \), define

\[
\mathcal{C}_{[\tilde{w}_0]}(\overline{k}) = |\{ i_s \mid i_s \in \overline{k}, \ 1 \leq s \leq N \}| \quad (N = \ell(w_0)).
\]

We call the composition \(\mathcal{C}_{[\tilde{w}_0]} = (\mathcal{C}_{[\tilde{w}_0]}(\overline{1}), \ldots, \mathcal{C}_{[\tilde{w}_0]}(\overline{\ell(I^\lor)})) \), the \(\lor \) -Coxeter composition of \([\tilde{w}_0]\).

Example 2.7. For \(\tilde{w}_0 = s_1 s_2 s_3 s_5 s_4 s_3 s_1 s_2 s_3 s_5 s_4 s_3 s_1 s_2 s_3 \) of type \(A_5 \), we have

\[
\mathcal{C}_{[\tilde{w}_0]} = (5, 5, 5).
\]
Definition 2.8 ([33, Definition 1.10]). For an automorphism \(\vee \) and an cluster \([\vec{w}_0]\) of type ADE, we say that an \(r \)-cluster point \([\vec{w}_0]\) is \(\vee \)-foldable if

\[
C'_{[\vec{w}_0]}(k) = C'_{[\vec{w}_0]}(l) \quad \text{for any } k, l \in I'\vee.
\]

In [33, 34], the existence for a \(\vee \)-foldable \(r \)-cluster point is proved, but we do not know whether it is unique or not:

Proposition 2.9 ([33, 34]).

(a) A \(\vee \)-foldable \(r \)-cluster point exists, and is denoted by \([\mathcal{Q}]\).

(b) The number of commutation classes in each \([\mathcal{Q}]\) is equal to \(2^{[I'\vee]} \times |\vee|\), where \(|\vee|\) denotes the order of \(\vee \).

The \(r \)-cluster point \([\mathcal{Q}]\) is called a twisted adapted cluster point and a class \([\mathcal{Q}]\) in \([\mathcal{Q}]\) is called a twisted adapted class.

Let \(\sigma \in GL(\Phi) \) be a linear transformation of finite order which preserves \(\Pi \). Hence \(\sigma \) preserves \(\Phi \) itself and normalizes \(W_0 \) and so \(W_0 \) acts by conjugation on the coset \(W_0 \sigma \).

Definition 2.10.

(1) Let \(\{\Pi_i, \ldots, \Pi_k\} \) be the all orbits of \(\Pi \) in \(\Phi \) with respect to \(\sigma \). For each \(r \in \{1, \ldots, k\} \), choose \(\alpha_i \in \Pi_i \) arbitrarily, and let \(s_i \in W_0 \) denote the corresponding reflection. Let \(w \) be the product of \(s_{i_1}, \ldots, s_{i_k} \) in any order. The element \(w\sigma \in W_0\sigma \) of \(w \in W_0 \) thus obtained is called a \(\sigma \)-Coxeter element.

(2) If \(\sigma \) in (1) is \(\vee \) in (2.1), (2.2), (2.3), then \(\sigma \)-Coxeter element is also called a twisted Coxeter element.

Remark 2.11.

(i) For the involution of \(A_{2n-1} \) in (2.1), of \(D_{n+1} \) in (2.2) and of \(E_6 \) in (2.3), the number of commutation classes of each \([\mathcal{Q}]\) and the one of each \([\mathcal{Q}]\) are the same and are equal to \(2^{2n-2}, 2^n \) and \(2^5\), respectively.

(ii) For types \(A_{2n-1}, D_{n+1} \) and \(E_6 \), \([\mathcal{Q}]\) are given as follows:

\[
[\mathcal{Q}] = \begin{cases}
\prod_{k=0}^{2n-2} (s_{j_1} s_{j_2} s_{j_3} \cdots s_{j_n})^{k_{\vee}} & \text{if } \Delta \text{ is of type } A_{2n-1}, \\
\prod_{k=0}^{n} (s_{j_1} s_{j_2} s_{j_3} \cdots s_{j_n})^{k_{\vee}} & \text{if } \Delta \text{ is of type } D_{n+1}, \\
\prod_{k=0}^{8} (s_{j_1} s_{j_2} s_{j_3} s_{j_4} s_{j_5} s_{j_6} s_{j_7} s_{j_8})^{k_{\vee}} & \text{if } \Delta \text{ is of type } E_6,
\end{cases}
\]

where

- \(s_{j_1} s_{j_2} s_{j_3} \cdots s_{j_n} \) is an arbitrary twisted Coxeter element of type \(A_{2n-1} \) (resp. \(D_{n+1} \) and \(E_6 \)),
- \(\vee \) is given in (2.1) (resp. (2.2) and (2.3)),
- \((s_{j_1} \cdots s_{j_n})^{\vee} := s_{j_1}^{\vee} \cdots s_{j_n}^{\vee} \) and \((s_{j_1} \cdots s_{j_n})^{k\vee} := (\cdots ((s_{j_1} \cdots s_{j_n})^{\vee})^{\vee} \cdots)^{\vee} \).

Note that \(s_1 s_2 s_3 \cdots s_n \) is a twisted Coxeter element of type \(A_{2n-1}, D_{n+1} \) and \(E_6 \).
(iii) For types D_4, $[\mathcal{Q}]$ with respect to (2.4) is given as follows:

$$[\mathcal{Q}] = \left[\prod_{k=0}^{5} (s_2 s_1)^{k} \right]$$

Example 2.12.

(i) For \vee in (2.1), the Coxeter composition of a foldable cluster is

$$C_{[\mathcal{Q}]} = (2n - 1, \ldots, 2n - 1).$$

(ii) For \ast in (2.2), the Coxeter composition of a foldable cluster is

$$C_{[\mathcal{Q}]} = (n + 1, \ldots, n + 1).$$

(iii) For \vee in (2.3), the Coxeter composition of a foldable cluster is $C_{[\mathcal{Q}]} = (9, 9, 9)$.

(iv) For \ast in (2.4), the Coxeter composition of a foldable cluster is $C_{[\mathcal{Q}]} = (6, 6)$.

2.2. Adapted cluster point and Auslander-Reiten quiver. Let Q be a Dynkin quiver by orienting edges of a Dynkin diagram Δ of type ADE. We say that a vertex i in Q is a source (resp. sink) if and only if there are only exiting arrows out of it (resp. entering arrows into it). For a source (resp. sink) i, If i is a sink or source, $s_i Q$ denotes the quiver obtained by Q by reversing the arrows incident with i. We say that a reduced expression $\tilde{w} = s_{i_1} s_{i_2} \cdots s_{i_{|w|}}$ of $w \in W_0$ is adapted to Q if i_k is a sink of the quiver $s_{i_{k-1}} \cdots s_{i_2} s_{i_1} Q$ for all $1 \leq k \leq \ell(w)$.

The followings are well-known:

Theorem 2.13.

1. Any reduced word \tilde{w}_0 of w_0 is adapted to at most one Dynkin quiver Q.
2. For each Dynkin quiver Q, there is a reduced word \tilde{w}_0 of w_0 adapted to Q. Moreover, any reduced word \tilde{w}_0 in $[\tilde{w}_0]$ is adapted to Q, and the commutation equivalence class $[\tilde{w}_0]$ is uniquely determined by Q. We denote by $[Q]$ of the commutation equivalence class $[\tilde{w}_0]$.
3. For every commutation class $[Q]$, there exists a unique Coxeter element ϕ_Q which is a product of all simple reflections and adapted to Q.
4. For every Coxeter element ϕ, there exists a unique Dynkin quiver Q such that $\phi = \phi_Q$.
5. All commutation classes $\{[Q]\}$ are reflection equivalent and form the r-cluster point $[Q]$, called the adapted cluster point. The number of commutation classes in $[Q]$ is $2^{2^{|I|-1}}$.

Let $\Phi(\phi_Q)$ be the subset of Φ^+ determined by $\phi_Q = s_{i_1} s_{i_2} \cdots s_{i_n}$ with $|I| = n$:

$$\Phi(\phi_Q) = \Phi^+ \cap \phi_Q \Phi^+ = \{ \beta_1^{\phi_Q} = \alpha_{i_1}, \beta_2^{\phi_Q} = s_{i_2}(\alpha_{i_1}), \ldots, \beta_n^{\phi_Q} = s_{i_n} \cdots s_{i_{n-1}}(\alpha_{i_n}) \}.$$

The height function ξ on Q is an integer-valued map $\xi : Q \to \mathbb{Z}$ satisfying $\xi(j) = \xi(i) + 1$ when $i \to j$ in Q.

The Auslander-Reiten quiver (AR-quiver) Γ_Q associated to Q is a quiver with coordinates in $I \times \mathbb{Z}$ defined as follows: Construct an injective map $\Omega_Q : \Phi^+ \to I \times \mathbb{Z}$ in an inductive way.
Theorem 2.15. \[Q \]

Q-twisted adapted classes associated to the commutation class \[\xi \]

\begin{aligned}
\text{(1) } & \Omega_Q(\beta^p_{k}) := (i_k, \xi(i_k)). \\
\text{(ii) } & \text{If } \Omega_Q(\beta) \text{ is already assigned as } (i, p) \text{ and } \phi_Q(\beta) \in \Phi^+, \text{ then } \Omega_Q(\phi_Q(\beta)) = (i, p - 2).
\end{aligned}

The AR-quiver \(\Gamma_Q \) is a quiver whose vertices consist of \(\text{Im}(\Omega_Q) \) (\(\simeq \Phi^+ \)) and arrows \((i, p) \to (j, q)\) are assigned when \(i \) and \(j \) are adjacent in \(\Delta \) and \(p - q = -1 \).

Example 2.14. The AR-quiver \(\Gamma_Q \) associated to \(1 \xrightarrow{} 2 \xrightarrow{} 3 \xrightarrow{} 4 \) of type \(A_4 \) with the height function such that \(\xi(1) = 0 \) is given as follows:

\[(i, p) \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \]

\[1 \quad 2 \quad 3 \quad 4 \]

\[(2, 4) \quad \{1, 4\} \quad \{3, 4\} \]

Here \([a, b]\) \((1 \leq a, b \leq 4)\) stands for the positive root \(\sum_{k=a}^{b} \alpha_k \) of \(\Phi_{A_4}^+ \).

Interestingly, \(\Gamma_Q \) can be understood as a visualization of \(\prec_Q := \prec_{[Q]} \) and is closely related to the commutation class \([Q]\):

Theorem 2.15. \[[2, 32] \]

\begin{enumerate}
\item \(\alpha \prec_Q \beta \) if and only if there exists a path from \(\beta \) to \(\alpha \) inside of \(\Gamma_Q \).
\item By reading the residues (i.e., \(i \) for \((i, p)\)) of vertices in a way compatible with arrows, we can obtain all reduced expressions \(\tilde{w}_0 \in [Q] \).
\end{enumerate}

In Example 2.14, we can get a reduced expression \(\tilde{w}_0 \) in \([Q]\) as follows:

\[\tilde{w}_0 = s_4s_1s_3s_2s_4s_1s_3s_2s_4s_3 \]

2.3. Relationship between \(\mathbb{L} \) and \(\mathbb{Q} \). In this subsection, we briefly recall the relationship between \(\mathbb{L} \) and \(\mathbb{Q} \) studied in [33, 34]. We shall first consider a Dynkin quiver \(Q \) of type \(A \) and \(\tilde{w}_0 = s_{i_1}s_{i_2}\cdots s_{i_n} \) in \([Q]\).

Theorem 2.16 ([33]). For \(\tilde{w}_0 = s_{i_1}s_{i_2}\cdots s_{i_n} \in [Q] \) of type \(A_{2n-2} \), we can obtain two distinct twisted adapted classes \(\mathbb{L}^> \), \(\mathbb{L}^< \) \(\in \mathbb{L} \) of type \(A_{2n-1} \) as follows:

\begin{enumerate}
\item For each pair \((i_k, i_l)\) such that \(\{i_k, i_l\} = \{n - 1, n\} \) and \(i_j \notin \{n - 1, n\} \) for any \(j \) with \(k < j < l \), we replace subexpression \(s_{i_k}s_{i_k+1}\cdots s_{i_l} \) with \(s_{i_k+1}s_{i_k}s_{i_k+1}\cdots s_{i_l} \) where \(i^+ = i + 1 \) if \(i > n - 1 \) and \(i^+ = i \) otherwise.
\item For the smallest index (resp. the largest index) \(i_t \) with \(i_t \in \{n - 1, n\} \), we replace \(s_{i_t} \) with \(s_{i_t}s_{i_t}^+ \) (resp. \(s_{i_t}^+s_{i_t} \)).
\end{enumerate}

Then the resulted reduced expression \(\tilde{w}_0^> \) (resp. \(\tilde{w}_0^< \)) is a reduced expression whose commutation class \([\mathbb{L}^>] \) (resp. \([\mathbb{L}^<] \)) is well-defined and twisted adapted. Conversely, each commutation class in \(\mathbb{L} \) can be obtained in this way and \(\mathbb{L} \neq [\mathbb{L}] \) if \(Q \neq Q' \).
By the work of [32], the combinatorial AR-quivers $\Upsilon_{[\mathcal{Q}]^+}$ and $\Upsilon_{[\mathcal{Q}]^-}$ of Q in Example 2.14 can be understood as realization of the convex partial orders $\prec_{[\mathcal{Q}]^+}$ and $\prec_{[\mathcal{Q}]^-}$:

$$\begin{array}{c}
(i, p) \quad -4 \quad -\frac{7}{2} \quad -3 \quad -\frac{5}{2} \quad -2 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 1
\end{array}$$

For each new vertex, denoted by ★ above, we can assign its coordinate in $I \times \mathbb{Z}/2$ in a canonical way. By [32], we can obtain all reduced expressions $\tilde{w}_0 \in [\mathcal{Q}]^+$ (resp. $[\mathcal{Q}]^-$) by reading it in a compatible way with arrows: For instance, we have

$$\begin{array}{c}
\bullet s_5 s_3 s_1 s_4 s_3 s_5 s_3 s_1 s_4 s_3 s_5 s_3 s_4 \in [\mathcal{Q}]^+.
\bullet s_3 s_4 s_3 s_2 s_5 s_3 s_5 s_3 s_5 s_3 s_4 \in [\mathcal{Q}]^-.
\end{array}$$

In D_{n+1} case, we can get two distinct commutation classes $[\mathcal{Q}^{-n}]$ and $[\mathcal{Q}^{-n+1}]$ in $[\mathcal{Q}]$ from Γ_Q of type A_n:

Theorem 2.17 ([34]).

1. For a given Γ_Q, consider the copy Γ_Q^\uparrow of Γ_Q by turning upside down.
2. By putting Γ_Q^\uparrow to the left of Γ_Q, we have new quiver inside of $I \times \mathbb{Z}$ by assigning arrows to vertices (i, p) and $(j, q) \in \Gamma_Q^\uparrow \sqcup \Gamma_Q$, $(i, p) \rightarrow (j, q)$ such that i, j are adjacent in Q and $q - p = 1$.
3. For vertices whose residues are n, we change their residues as $n, n+1, n, n+1...$ (resp. $n+1, n, n+1, n...$) from the right-most one.

Then the resulted quiver coincides with the combinatorial quiver $\Upsilon_{[\mathcal{Q}^{-n}]}$ (resp. $\Upsilon_{[\mathcal{Q}^{-n+1}]}$) of type D_{n+1} introduced in [32, 34]. Thus we can obtain all reduced expressions $\tilde{w}_0 \in [\mathcal{Q}^{-n}]$ (resp. $[\mathcal{Q}^{-n+1}]$) by reading it. Conversely, each commutation class in $[\mathcal{Q}]$ can be obtained in this way and $[\mathcal{Q}] \neq [\mathcal{Q}']$ if $Q \neq Q'$.

Example 2.18. For better explanation of the above theorem, we now give examples by using Γ_Q in Example 2.14: For the Γ_Q, Γ_Q^\uparrow can be described as follows:

$$\Gamma_Q^\uparrow = \begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4
\end{array}
\end{array}$$

$$\Gamma_Q = \begin{array}{c}
\begin{array}{c}
1 \quad 2 \quad 3 \quad 4
\end{array}
\end{array}$$

By putting Γ_Q^\uparrow to the left of Γ_Q, we have new quiver as follows:

$$\begin{array}{c}
(i, p) \quad -9 \quad -8 \quad -7 \quad -6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1
\end{array}$$
Now we can get \(\hat{\mathcal{Y}}_{\mathscr{Q}^{\leq n}} \) and \(\hat{\mathcal{Y}}_{\mathscr{Q}^{\leq n+1}} \) as follows:

\[
\begin{align*}
\hat{\mathcal{Y}}_{\mathscr{Q}^{\leq n}} &= (i, p) \quad \begin{array}{cccccccc}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 \\
\end{array} \\
\hat{\mathcal{Y}}_{\mathscr{Q}^{\leq n+1}} &= (i, p) \quad \begin{array}{cccccccc}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\end{align*}
\]

One can easily notice that we can assign a coordinate to each vertex in a canonical way.

2.4. Folded AR-quivers. Now we can define a folded AR-quiver \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) associated to the commutation class \([\mathscr{Q}]\) in \(\mathcal{C}(\mathscr{Q})\) of type \(A_{2n-1}\) and \(D_{n+1}\) by folding \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) ([33, 34]):

(i) \([\mathscr{Q}]\) of type \(A_{2n-1}\) By replacing coordinate \(\Omega_Q(\beta) = (i, p/2) \) of \(\beta \) in \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) with \(\hat{\Omega}_{\mathscr{Q}}(\beta) = (\tilde{i}, p) \in \tilde{T} \times \mathbb{Z} \), we have new quiver \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) with folded coordinates, which is isomorphic to \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) as quivers.

(ii) \([\mathscr{Q}]\) of type \(D_{n+1}\) By replacing coordinate \(\Omega(\beta) = (i, p) \) of \(\beta \) in \(\mathcal{Y}_{\mathscr{Q}} \) with \(\hat{\Omega}_{\mathscr{Q}}(\beta) = (\tilde{i}, p) \in \tilde{T} \times \mathbb{Z} \), we have new quiver \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) with folded coordinates.

We call \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) the folded AR-quiver associated to \([\mathscr{Q}]\) and \(\hat{\Omega}_{\mathscr{Q}}(\beta) = (\tilde{i}, p) \) the folded coordinate of \(\beta \) with respect to \([\mathscr{Q}]\).

Example 2.19. From (2.6) and Example 2.18, we can obtain folded AR-quivers \(\hat{\mathcal{Y}}_{\mathscr{Q}} \) as follows:

1. \([\mathscr{Q}]\) of type \(A_5\) cases:

\[
\begin{array}{cc}
\tilde{i}, p & (i, p) \\
\mathbb{T} & \mathbb{T} \\
\mathbb{Q} & \mathbb{Q} \\
\mathbb{Q} & \mathbb{Q} \\
\end{array}
\]

2. \([\mathscr{Q}]\) of type \(D_5\) cases:

\[
\begin{array}{cc}
\tilde{i}, p & (i, p) \\
\mathbb{T} & \mathbb{T} \\
\mathbb{Q} & \mathbb{Q} \\
\mathbb{Q} & \mathbb{Q} \\
\end{array}
\]
3. Positive root systems

In this section, we recall main results of [31, 33, 34], which investigated the positive root systems by using newly introduced notions and (combinatorial) AR-quivers.

3.1. Notions. For a reduced expression $\bar{w}_0 = s_{i_1} s_{i_2} \cdots s_{i_N}$ of w_0, there exists the convex total order $<_{\bar{w}_0}$ on Φ^+ defined as follows:

$$\beta_{\bar{w}_0}^k <_{\bar{w}_0} \beta_{\bar{w}_0}^l \quad \text{if and only if} \quad k < l,$$

where $\beta_{\bar{w}_0}^k := s_i \cdots s_{i_{k-1}}(\alpha_{i_k})$.

With the convex total order $<_{\bar{w}_0}$, we identify $m = (m_1, m_2, \ldots, m_N) \in \mathbb{Z}_+^N$ with

$$m_{\bar{w}_0} \in (\mathbb{Z}_+)^{\Phi^+},$$

whose coordinate at $\beta_{\bar{w}_0}^k$ is m_k. For a sequence m, we set $\text{wt}(m) = \sum_{i=1}^N m_i \beta_{\bar{w}_0}^i \in \mathbb{Q}^+.$

Definition 3.1 ([27, 31]). We define the partial orders $<_{\bar{w}_0}^b$ and $<_{\bar{w}_0}$ on \mathbb{Z}_+^N as follows:

(i) $<_{\bar{w}_0}^b$ is the bi-lexicographical partial order induced by $<_{\bar{w}_0}$. Namely, $m <_{\bar{w}_0}^b m'$ if there exist j and k ($1 \leq j \leq k \leq N$) such that $m_s = m'_s$ for $1 \leq s < j$, $m_j < m'_j$ and $m_s = m'_s$ for $k < s \leq N$, $m_k < m'_k$.

(ii) For sequences m and m', $m <_{\bar{w}_0} m'$ if and only if $\text{wt}(m) = \text{wt}(m')$ and $n <_{\bar{w}_0} n'$ for all $\bar{w}_0' \in [\bar{w}_0]$, where n and n' are sequences such that $n_{\bar{w}_0'} = m_{\bar{w}_0}$ and $n'_{\bar{w}_0'} = m'_{\bar{w}_0}$.

We call a sequence m a pair if $|m| := \sum_{i=1}^N m_i = 2$ and $m_i \leq 1$ for $1 \leq i \leq N$. We mainly use the notation p for a pair. We also write p as $(\beta_{i_1}, \beta_{i_2})$ or (i_1, i_2) where $p_{i_1} = p_{i_2} = 1$ and $i_1 \leq i_2$.

Definition 3.2 ([31]).

(i) A pair p is called $[\bar{w}_0]$-simple if there exists no sequence $m \in \mathbb{Z}_+^N$ satisfying $m <_{\bar{w}_0}^b p$.

(ii) A sequence $m = (m_1, m_2, \ldots, m_N) \in \mathbb{Z}_+^N$ is called $[\bar{w}_0]$-simple if $m = (m_k \beta_{\bar{w}_0}^k)$ for some $1 \leq k \leq N$ or any pair (i_1, i_2) such that $m_{i_1} = m_{i_2} = 0$ is a $[\bar{w}_0]$-simple pair.

Definition 3.3 ([27, 31]). For a given $[\bar{w}_0]$-simple sequence $s = (s_1, \ldots, s_N) \in \mathbb{Z}_+^N$, we say that a sequence $m \in \mathbb{Z}_+^N$ is called a $[\bar{w}_0]$-minimal sequence of s if m satisfies the following properties:

$$s <_{\bar{w}_0}^b m$$

and there exists no sequence $m' \in \mathbb{Z}_+^N$ such that $s <_{\bar{w}_0}^b m' <_{\bar{w}_0}^b m$.

Definition 3.4 ([31]). The $[\bar{w}_0]$-distance of a sequence m, denoted by $\text{dist}_{[\bar{w}_0]}(m)$, is the largest integer $k \geq 0$ such that there exists a family of sequences $\{m^{(i)}\}_{0 \leq i \leq k}$ satisfying

$$m^{(0)} <_{[\bar{w}_0]} \cdots <_{[\bar{w}_0]} m^{(k)} = m.$$

Note that $m^{(0)}$ should be $[\bar{w}_0]$-simple.

Definition 3.5 ([31]). For a pair p, the $[\bar{w}_0]$-socle of p, denoted by $\text{soc}_{[\bar{w}_0]}(p)$, is a $[\bar{w}_0]$-simple sequence s satisfying $s <_{[\bar{w}_0]}^b p$ if such an s exists uniquely.
3.2. Socles, minimal pairs and folded distance polynomial.

Proposition 3.6 ([3, Lemma 2.6]). For $\gamma \in \Phi^+ \setminus \Pi$ and any \tilde{w}_0 of w_0, a $[\tilde{w}_0]$-minimal sequence of γ is indeed a pair (α, β) for some $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta = \gamma$.

Theorem 3.7 ([33, 34]). For any $[\mathcal{D}] \in [\mathcal{D}]$ and any pair p, we have the followings:

1. $\text{soc}_{[\mathcal{D}]}(p)$ is well-defined.
2. $\text{dist}_{[\mathcal{D}]}(p) \leq 2$. In particular, if $\text{dist}_{[\mathcal{D}]}(p) = 2$, there exist a unique m and a unique chain of length 3 such that $\text{soc}_{[\mathcal{D}]}(p) \prec^{m}_{[\mathcal{D}]} m \prec^{b}_{[\mathcal{D}]} p$.
3. If $\text{dist}_{[\mathcal{D}]}(p) \leq 1$, then p is a $[\mathcal{D}]$-minimal pair of $\text{soc}_{[\mathcal{D}]}(p)$.

For the involutions \vee in (2.1) and (2.2), we can identify T, the orbit space of \vee, with $\{1, 2, \ldots, n\}$ and the order of \vee is equal to $\tilde{d} := 2$. The following propositions tell the characterization of the positions of minimal pairs for $\gamma \in \Phi^+$ inside of $T_{[\mathcal{D}]}$.

Proposition 3.8 ([33, Proposition 7.8]). Let us fix $[\mathcal{D}] \in [\mathcal{D}]$ of finite type A_{2n-1}. For $\alpha, \beta, \gamma \in \Phi^+$ with $\hat{\Theta}_{[\mathcal{D}]}(\alpha) = (i, p)$, $\hat{\Theta}_{[\mathcal{D}]}(\beta) = (j, q)$ $\hat{\Theta}_{[\mathcal{D}]}(\gamma) = (k, r)$ and $\alpha + \beta = \gamma$, (α, β) is a $[\mathcal{D}]$-minimal pair of γ if and only if one of the following conditions holds:

\begin{equation}
\begin{aligned}
(i) \quad \ell := \max(i, j, k) \leq n - 1, \quad &i + j + k = 2\ell \quad \text{and} \\
&\left(\frac{q - r}{2}, \frac{p - r}{2}\right) = \begin{cases}
(i - j), & \text{if } \ell = k, \\
(i - (2n - 1) - j), & \text{if } \ell = i, \\
(- i, 2n - 1 - j), & \text{if } \ell = j.
\end{cases}
\end{aligned}
\end{equation}

(ii) $s := \min(i, j, k) \leq n - 1$, the others are the same as n and

\[(q - r, p - r) = \begin{cases}
(- 2(n - 1 - k) + 1, 2n - 1 - k - 1), & \text{if } s = k, \\
(- 2i - 4, 2(n - 1 - i) - 1), & \text{if } s = i, \\
(- 2(n - 1 - j) + 1, 4j + 4), & \text{if } s = j.
\end{cases} \]

Proposition 3.9 ([34, Corollary 8.26]). Let us fix $[\mathcal{D}] \in [\mathcal{D}]$ of finite type D_{n+1}. For $\alpha, \beta, \gamma \in \Phi^+$ with $\hat{\Theta}_{[\mathcal{D}]}(\alpha) = (i, p)$, $\hat{\Theta}_{[\mathcal{D}]}(\beta) = (j, q)$ $\hat{\Theta}_{[\mathcal{D}]}(\gamma) = (k, r)$ and $\alpha + \beta = \gamma$, (α, β) is a $[\mathcal{D}]$-minimal pair of γ if and only if one of the following conditions holds:

\begin{equation}
\begin{aligned}
\ell := \max(i, j, k) \leq n, \quad &i + j + k = 2\ell \quad \text{and} \\
&\left(\frac{q - r}{2}, \frac{p - r}{2}\right) = \begin{cases}
(i - j), & \text{if } \ell = k, \\
(i - (2n + 2) - j), & \text{if } \ell = i, \\
(- i, 2n + 2 - j), & \text{if } \ell = j.
\end{cases}
\end{aligned}
\end{equation}

Definition 3.10 ([33, Definition 8.7]). For a folded AR-quiver $\hat{T}_{[\mathcal{D}]}$, indices $\hat{k}, \hat{l} \in T$ and an integer $t \in \mathbb{Z}_{\geq 1}$, we define the subset $\Phi_{[\mathcal{D}]}(\hat{k}, \hat{l})[t]$ of $\Phi^+ \times \Phi^+$ as follows:

A pair (α, β) is contained in $\Phi_{[\mathcal{D}]}(\hat{k}, \hat{l})[t]$ if $\alpha \prec_{[\mathcal{D}]} \beta$ or $\beta \prec_{[\mathcal{D}]} \alpha$ and $\{\hat{\Theta}_{[\mathcal{D}]}(\alpha), \hat{\Theta}_{[\mathcal{D}]}(\beta)\} = \{(\hat{k}, a), (\hat{l}, b)\}$ such that $|a - b| = t$.
Proposition 3.11 ([33, 34]). For any \((\alpha^{(1)}, \beta^{(1)}), (\alpha^{(2)}, \beta^{(2)}) \in \Phi_{[\mathcal{Q}]}(\bar{k}, \bar{t})[t]\), we have
\[
\text{dist}_{[\mathcal{Q}]}(\alpha^{(1)}, \beta^{(1)}) = \text{dist}_{[\mathcal{Q}]}(\alpha^{(2)}, \beta^{(2)}).
\]
Thus the notion
\[
o_t^{[\mathcal{Q}]}(\bar{k}, \bar{t}) := \text{dist}_{[\mathcal{Q}]}(\alpha, \beta) \quad \text{for any } (\alpha, \beta) \in \Phi_{[\mathcal{Q}]}(\bar{k}, \bar{t})[t]
\]
is well-defined.

Definition 3.12 ([33, Definition 8.9]). For \(\bar{k}, \bar{t} \in \bar{T}\) and a folded AR-quiver \(\hat{\mathcal{T}}_{[\mathcal{Q}]}\), we define a polynomial \(\hat{D}^{[\mathcal{Q}]}_{\bar{k}, \bar{t}}(z) \in k[z]\) as follows: Let \(q\) be an indeterminate, \(q_s^2 = q\) and \(o_t^{[\mathcal{Q}]}(\bar{k}, \bar{t}) := [o_t^{[\mathcal{Q}]}(\bar{k}, \bar{t})/\mathcal{D}]\).

(i) When \([\mathcal{Q}]\) is of type \(A_{2n-1}\), \(\hat{D}^{[\mathcal{Q}]}_{\bar{k}, \bar{t}}(z) := \prod_{i \in \mathbb{Z}_{>0}} (z - (-1)^{i+1}(q_s)^{i}o_t^{[\mathcal{Q}]}(\bar{k}, \bar{t})).
\)

(ii) When \([\mathcal{Q}]\) is of type \(D_{n+1}\), \(\hat{D}^{[\mathcal{Q}]}_{\bar{k}, \bar{t}}(z) := \prod_{i \in \mathbb{Z}_{>0}} (z - (q_s)^{i}o_t^{[\mathcal{Q}]}(\bar{k}, \bar{t})\).

Proposition 3.13 ([33, 34]). For \(\bar{k}, \bar{t} \in \bar{T}\) and any twisted adapted classes \([\mathcal{Q}]\) and \([\mathcal{Q}']\) in \([\mathcal{Q}]\), we have
\[
\hat{D}^{[\mathcal{Q}]}_{\bar{k}, \bar{t}}(z) = \hat{D}^{[\mathcal{Q}']}_{\bar{k}, \bar{t}}(z).
\]

From the above proposition, we can define \(\hat{D}_{\bar{k}, \bar{t}}^([\mathcal{Q}])\) in a natural way and call it the folded distance polynomial at \(\bar{k}\) and \(\bar{t}\).

4. Quantum affine algebras, denominator formulas and Dorey’s rule

4.1. Quantum affine algebras. Let \(A\) be a generalized Cartan matrix of affine type; i.e., \(A\) is positive semi-definite of corank 1. We choose \(0 \in I := \{0, 1, \ldots, n\}\) as the leftmost vertices in the tables in [15, pages 54, 55] except \(A^{(2)}\)-case in which we take the longest simple root as \(\alpha_0\). We set \(I_0 := I \setminus \{0\}\). We denote by \(\delta := \sum_{i \in I} d_i \alpha_i\) the imaginary root and by \(c = \sum_{i \in I} c_i \alpha_i\) the center. We have \(d_0 = 1\).

For an affine Cartan datum \((A, \Pi, \Pi', \Pi')\), we denote by \(\mathfrak{g}\) the affine Kac-Moody algebra, \(\mathfrak{g}_0\) the subalgebra generated by \(\{e_i, f_i, h_i \mid i \in I_0\}\), by \(U_q(\mathfrak{g})\) and \(U_q(\mathfrak{g}_0)\) the corresponding quantum groups. We denote by \(U'_{[\mathcal{Q}]}(\mathfrak{g})\) the subalgebra of \(U_q(\mathfrak{g})\) generated by \(\{e_i, f_i, q^{\pm h_i} \mid i \in I\}\). We mainly deal with \(U'_{[\mathcal{Q}]}(\mathfrak{g})\) which is called the quantum affine algebra.

We denote by \(\mathcal{C}_\mathfrak{g}\) the category of finite-dimensional integrable \(U'_{[\mathcal{Q}]}(\mathfrak{g})\)-modules. For the rest of this paper, we take the algebraic closure of \(\mathbb{C}(q) \cup \mathbb{C}(q^{1/m})\) as the base field \(k\) of \(U'_{[\mathcal{Q}]}(\mathfrak{g})\)-modules. A simple module \(M\) in \(\mathcal{C}_\mathfrak{g}\) contains a non-zero vector \(u\) of weight \(\lambda \in \mathcal{P}_\text{cl} := \mathcal{P}/\mathbb{Z}\delta\) such that
\[
\langle \epsilon_i, \lambda \rangle = 0 \quad \text{and} \quad \langle h_i, \lambda \rangle \geq 0 \quad \text{for all } i \in I_0,
\]
- all the weights of \(M\) are contained in \(\lambda - \sum_{i \in I_0} \mathbb{Z}_{\geq 0} c_i \alpha_i\),
where \(\text{cl}: \mathcal{P} \to \mathcal{P}_\text{cl}\). Such a \(\lambda\) is unique and \(u\) is unique up to a constant multiple. We call \(\lambda\) the dominant extremal weight of \(M\) and \(u\) the dominant extremal weight vector of \(M\).

For \(M \in \mathcal{C}_\mathfrak{g}\) and \(x \in k^\times\), let \(M_x\) be the \(U'_{[\mathcal{Q}]}(\mathfrak{g})\)-module with the actions of \(e_i, f_i\) replaced with \(x^{\delta_i} e_i, x^{-\delta_i} f_i\), respectively.
For each $i \in I_0$, we set
\[
\varpi_i := \gcd(c_0, c_i)^{-1} \mathcal{c}l(c_0 A_i - c_i A_0) \in \mathcal{P}_{cl}.
\]

Then there exists a unique simple $\mathcal{U}_q(\mathfrak{g})$-module $V(\varpi_i)$ in \mathcal{C}_0 with its dominant extremal weight ϖ_i and its dominant extremal weight vector u_{ϖ_i}, called the fundamental representation of weight ϖ_i, satisfying certain conditions (see [1, \S 1.3] for more detail). Moreover, there exist the left dual $V(\varpi_i)^*$ and the right dual $V(\varpi_i)$ of $V(\varpi_i)$ with the following $\mathcal{U}_q(\mathfrak{g})$-homomorphisms
\[
V(\varpi_i)^* \otimes V(\varpi_i) \xrightarrow{\mathfrak{t}_r} \mathbb{k} \quad \text{and} \quad V(\varpi_i) \otimes V(\varpi_i^\vee) \xrightarrow{\mathfrak{t}_l} \mathbb{k}.
\]
We have
\[
\begin{aligned}
V(\varpi_i)^* & \simeq V(\varpi_i)^{(p^*)^{-1}}, \\
V(\varpi_i) & \simeq V(\varpi_i^{p^*})_{p^*} \quad \text{with} \quad p^* := (-1)^{(\rho, \delta)} q^{(c, p)}.
\end{aligned}
\]
Here ρ is defined by $\langle h_i, \rho \rangle = 1$, ρ^\vee is defined by $\langle \rho^\vee, \alpha_i \rangle = 1$ and i^* is the involution of I_0 defined in (2.5).

For $k \in \mathbb{Z}$ and $V(\varpi_i)_x$, we denote by
\[
V(\varpi_i)^{k^*}_x := \begin{cases}
V(\varpi_i)_x & \text{if } k = 0, \\
\cdots ((V(\varpi_i)_x)^*)^\cdots)^* & \text{if } k > 0, \\
()(\cdots ((V(\varpi_i)_x))\cdots) & \text{if } k < 0.
\end{cases}
\]

We say that a $\mathcal{U}_q(\mathfrak{g})$-module M is good if it has a bar involution, a crystal basis with simple crystal graph, and a global basis (see [22] for the precise definition). For instance, $V(\varpi_i)$ is a good module for every $i \in I$.

4.2. Denominator formulas and folded distance polynomials

For a good module M and N, there exists a $\mathcal{U}_q(\mathfrak{g})$-homomorphism
\[
R_{M,N}^{\text{norm}} : M_{z_M} \otimes M_{z_N} \rightarrow \mathbb{k}[z_M, z_N] \otimes_{\mathbb{k}[[z_M^{\pm 1}, z_N^{\pm 1}]]} N_{z_N} \otimes M_{z_M}
\]
such that
\[
R_{M,N}^{\text{norm}} \circ z_M = z_M \circ R_{M,N}^{\text{norm}}, \quad R_{M,N}^{\text{norm}} \circ z_N = z_N \circ R_{M,N}^{\text{norm}} \quad \text{and} \quad R_{M,N}^{\text{norm}}(u_M \otimes u_N) = u_N \otimes u_M,
\]
where u_M (resp. u_N) is the dominant extremal weight vector of M (resp. N).

The denominator $d_{M,N}$ of $R_{M,N}^{\text{norm}}$ is the unique non-zero monic polynomial $d(u) \in \mathbb{k}[u]$ of the smallest degree such that
\[
d_{M,N}(z_N / z_M) R_{M,N}^{\text{norm}}(M_{z_M} \otimes N_{z_N}) \subset N_{z_N} \otimes M_{z_M}.
\]

Theorem 4.1 ([1, 4, 22]).

1. For good modules M_1 and M_2, the zeroes of $d_{M_1, M_2}(z)$ belong to $\mathbb{C}[[q^1/m]] q^1/m$ for some $m \in \mathbb{Z}_{>0}$.
2. $V(\varpi_i)_a_i \otimes V(\varpi_j)_a_j$ is simple if and only if
\[
d_{i,j}(z) := d_{V(\varpi_i), V(\varpi_j)}(z)
\]
does not vanish at $z = a_i/a_j$ nor a_j/a_i.
(3) Let \(M \) be a finite-dimensional simple integrable \(U'_q(\mathfrak{g}) \)-module. Then, there exists a finite sequence
\[
((i_1, a_1), \ldots, (i_t, a_t)) \text{ in } (I_0 \times k^x)^t
\]
such that \(d_{i_k, i_{k'}}(a_k'/a_k) \neq 0 \) for \(1 \leq k < k' \leq l \) and \(M \) is isomorphic to the head of
\(\bigotimes_{i=1}^t V(\varpi_{i_k})_{a_k} \). Moreover, such a sequence \(((i_1, a_1), \ldots, (i_t, a_t))\) is unique up to permutation.

(4) \(d_{k,l}(z) = d_{l,k}(z) = d_{k^*,l^*}(z) = d_{l^*,k^*}(z) \) for \(k, l \in I_0 \).

The denominator formulas between fundamental representations are calculated in [1, 6, 17, 30] for all classical quantum affine algebras (see [30, Appendix A]). In this paper, we will focus on the denominator formulas for \(U'_q(B_n^{(1)}) \) and \(U'_q(C_n^{(1)}) \):

Proposition 4.2 ([1, 30]).

\[
(1) \quad d_{k,l}^{B_n^{(1)}}(z) = \prod_{s=1}^{\min(k,l)} \left(z - (-q)^{|k-l|+2s} \right) \left(z + (-q)^{2n-k-l-2} \right) 1 \leq k, l \leq n-1, \\
(2) \quad d_{k,l}^{C_n^{(1)}}(z) = \prod_{s=1}^{\min(k,l)} \left(z - (-q)^{|k-l|+2s} \right) \prod_{i=1}^{\min(k,l)} \left(z - (-q)^{2n-2-k-l+2s} \right).
\]

The following theorem tells that we can read \(d_{k,l}^{B_n^{(1)}}(z) \) from any \(\widehat{\mathcal{T}}_{[\mathcal{Q}]} \) of type \(A_{2n-1} \) and
\(d_{k,l}^{C_n^{(1)}}(z) \) from any \(\widehat{\mathcal{T}}_{[\mathcal{Q}]} \) of type \(D_{n+1} \):

Theorem 4.3 ([33, 34]). For any \(k, l \in \widehat{T} \), we have

\[
(1) \quad d_{k,l}^{B_n^{(1)}}(z) = \widehat{D}_{k,l}(z) \times (z - q^{2n-1})^{\delta_{k,l}} \text{ where } [\mathcal{Q}] \text{ is of type } A_{2n-1}, \\
(2) \quad d_{k,l}^{C_n^{(1)}}(z) = \widehat{D}_{k,l}(z) \times (z - q^{n+1})^{\delta_{k,l}} \text{ where } [\mathcal{Q}] \text{ is of type } D_{n+1}.
\]

4.3. **Dorey’s rule and minimal pairs.** The morphisms in
\[
\text{Hom}_{U'_q(\mathfrak{g})}(V(\varpi_i)_a \otimes V(\varpi_j)_b, V(\varpi_k)_c) \quad \text{for } i, j, k \in I_0 \text{ and } a, b, c \in k^x
\]
are studied by [5, 17, 30] and called Dorey’s type morphisms. In [28, 29], the condition of non-vanishing of the above Hom space are interpreted the positions of \(\alpha, \beta, \gamma \in \Phi^+ \) in \(\Gamma_Q \) where \((\alpha, \beta) \) is a pair for \(\gamma \) and \(\mathfrak{g} \) is of type \(A_n^{(1)} \) or \(D_n^{(1)} \).

Theorem 4.4 ([5, Theorem 8.1, Theorem 8.2]). For \(\mathfrak{g}^{(1)} = B_n^{(1)} \text { or } C_n^{(1)} \), let \((i, x), (j, y), (k, z) \in I_0 \times k^x \). Then
\[
\text{Hom}_{U'_q(\mathfrak{g}^{(1)})}(V(\varpi_j)_y \otimes V(\varpi_i)_x, V(\varpi_k)_z) \neq 0
\]
if and only if one of the following conditions holds:
When $g^{(1)} = B_n^{(1)}$, the conditions are given as follows:

\[
\begin{align*}
(i) \quad & \ell := \max(i, j, k) \leq n - 1, \ i + j + k = 2\ell \quad \text{and} \\
& (y/z, x/z) = \begin{cases}
((-1)^{j+k}q^{-i}, (-1)^{j+k}q^i), & \text{if} \ \ell = k, \\
((-1)^{j+k}q^{-(2n-1)-i}, (-1)^{j+k}q^i), & \text{if} \ \ell = i, \\
((-1)^{j+k}q^{-(2n-1)-j}, (-1)^{j+k}q^{2n-1-j}), & \text{if} \ \ell = j.
\end{cases}
\end{align*}
\]

(4.4)

(ii) $s := \min(i, j, k) \leq n - 1$, the others are the same as n and

\[
(y/z, x/z) = \begin{cases}
((-1)^{n+k}q^{-2(n-1-k)+1}, (-1)^{n+k}q^{2(n-1-k)-1}), & \text{if} \ s = k, \\
(q^{-2n-4}, (-1)^{i+j}q^{2(n-1-i)-1}), & \text{if} \ s = i, \\
((-1)^{j+n}q^{-2(n-1-j)+1}, q^{2j+4}), & \text{if} \ s = j.
\end{cases}
\]

When $g^{(1)} = C_n^{(1)}$, the conditions are given as follows:

\[
\begin{align*}
\ell := \max(i, j, k) \leq n, \ i + j + k = 2\ell \quad \text{and} \\
& (y/z, x/z) = \begin{cases}
((-q_s)^{-i}, (-q_s)^i), & \text{if} \ \ell = k, \\
((-q_s)^{i-(2n+3)}, (-q_s)^i), & \text{if} \ \ell = i, \\
((-q_s)^{i-(2n+2)}, (-q_s)^{2n+2-j}), & \text{if} \ \ell = j.
\end{cases}
\end{align*}
\]

Definition 4.5 ([33, 34]). For any $[\vartheta] \in [\vartheta] \cap$ and any positive root $\beta \in \Phi^+$ of type A_{2n-1} or D_{n+1}, we set the $U'_{q}(g^{(1)})$-module $(g^{(1)} = B_n^{(1)}$ or $C_n^{(1)}) V_{\vartheta}(\beta)$ defined as follows: For $\hat{\Omega}_{\vartheta}(\beta) = (i, p)$, we define

\[
V_{\vartheta}(\beta) := \begin{cases}
V(\omega_i)(-1)^i(q_p) & \text{if } g^{(1)} = B_n^{(1)}, \\
V(\omega_i)(-q_p) & \text{if } g^{(1)} = C_n^{(1)}.
\end{cases}
\]

(4.6)

Theorem 4.6 ([33, 34]). Let $(i, x), (j, y), (k, z) \in I_0 \times k^\times$. Then

\[
\text{Hom}_{U'_{q}(g^{(1)})}(V(\omega_j)y \otimes V(\omega_i)x, V(\omega_k)z) \neq 0 \quad \text{for } g^{(1)} = B_n^{(1)} \quad \text{(resp. } C_n^{(1)})
\]

if and only if there exists a twisted adapted class $[\vartheta]$ of type A_{2n-1} (resp. D_{n+1}) and $\alpha, \beta, \gamma \in \Phi_{A_{2n-1}}^+$ (resp. $\Phi_{D_{n+1}}^+$) such that

1. (α, β) is a $[\vartheta]$-minimal pair of γ,
2. $V(\omega_j)y = V_{\vartheta}(\beta)_a, \ V(\omega_i)x = V_{\vartheta}(\alpha)_a, \ V(\omega_k)z = V_{\vartheta}(\gamma)_a$ for some $a \in k^\times$.

5. Categorifications and Schur-Weyl dualities

5.1. Categorifications via modules over quiver Hecke algebras. For a given symmetrizable Cartan datum $(\Lambda, P, \Pi, P^\vee, \Pi^\vee)$, we choose a polynomial $Q_{ij}(u, v) \in k[u, v]$ for $i, j \in I$ which is of the form

\[
Q_{ij}(u, v) = \delta(i \neq j) \sum_{(p, q) \in \mathbb{Z}^2_{\geq 0}} t_{i, j; p, q} u^p v^q
\]

with $t_{i, j; p, q} \in k$, $t_{i, j; p, q} = t_{j, i; q, p}$ and $t_{i, j; -a, 0} \in k^\times$. Thus we have $Q_{i, j}(u, v) = Q_{j, i}(v, u)$.
For \(n \in \mathbb{Z}_{\geq 0} \) and \(b \in \mathbb{Q}^+ \) such that \(\text{ht}(b) = n \), we set
\[
I^b = \{ \nu = (\nu_1, \ldots, \nu_n) \in I^n \mid \alpha_{\nu_1} + \cdots + \alpha_{\nu_n} = \beta \}.
\]

For \(b \in \mathbb{Q}^+ \), we denote by \(R(b) \) the quiver Hecke algebra at \(b \) associated with \((A, P, \Pi, \Pi^\vee, \Pi^\vee)\) and \((Q_{i,j})_{i,j \in I}\). It is a \(\mathbb{Z} \)-graded \(k \)-algebra generated by the generators \(\{e(\nu)\}_{\nu \in P}, \{x_k\}_{1 \leq k \leq \text{ht}(b)}, \{\tau_m\}_{1 \leq m < \text{ht}(b)} \) with the certain defining relations (see [28, Definition 2.7] for the relations).

Let \(\text{Rep}(R(b)) \) be the category consisting of finite-dimensional graded \(R(b) \)-modules and \([\text{Rep}(R(b))] \) be the Grothendieck group of \(\text{Rep}(R(b)) \). Then \([\text{Rep}(R(b))] \) has a natural \(\mathbb{Z}[q^{\pm 1}] \)-module structure induced by the grading shift. In this paper, we often ignore grading shifts.

For \(M \in \text{Rep}(R(a)) \) and \(N \in \text{Rep}(R(b)) \), we denote by \(M \circ N \) the convolution product of \(M \) and \(N \). Then \(\text{Rep}(R) := \bigoplus_{b \in \mathbb{Q}^+} \text{Rep}(R(b)) \) has a monoidal category structure by the convolution product and its Grothendieck group \([\text{Rep}(R)] \) has a natural \(\mathbb{Z}[q^{\pm 1}] \)-algebra structure induced by the convolution product \(\circ \) and the grading shift functor \(q \).

For \(M \in \text{Rep}(b) \) and \(M_k \in \text{Rep}(b_k) \) \((1 \leq k \leq n)\), we denote by
\[
M^{O_0} := k, \quad M^{Or} = \underbrace{M \circ \cdots \circ M}_r, \quad \underbrace{M_k = M_1 \circ \cdots \circ M_n}_{k=1}.
\]

We say that a simple \(R(b) \)-module \(M \) is real if \(M \circ M \) is simple.

Theorem 5.1 ([24, 35]). For a given symmetrizable Cartan datum, Let \(U^-_\Lambda(g)^\vee \) \((\Lambda = \mathbb{Z}[q^{\pm 1}]\) the dual of the integral form of the negative part of quantum groups \(U_q(g) \) and let \(R \) be the quiver Hecke algebra related to the datum. Then we have
\[
(5.2) \quad U^-_\Lambda(g)^\vee \simeq [\text{Rep}(R)].
\]

Definition 5.2. We say that the quiver Hecke algebra \(R \) is symmetric if \(A \) is symmetric and \(Q_{i,j}(u, v) \) is a polynomial in \(u-v \) for all \(i, j \in I \).

Theorem 5.3. [36, 37] Assume that the quiver Hecke algebra \(R \) is symmetric and the base field \(k \) is of characteristic zero. Then under the isomorphism \((5.2)\) in Theorem 5.1, the upper global basis of \(U^-_\Lambda(g)^\vee \) corresponds to the set of the isomorphism classes of self-dual simple \(R \)-modules.

Theorem 5.4 ([23, 27, 31]). For a finite-dimensional simple Lie algebra \(g \), the dual PBW-basis of \(U^-_\Lambda(g)^\vee \) associated to \([\tilde{\omega}_0] \) is categorified in the following sense: for each \(\beta \in \Phi^+ \), there exists a simple \(R(\beta) \)-module \(S_{[\tilde{\omega}_0]}(\beta) \) such that

1. \(S_{[\tilde{\omega}_0]}(\beta)^{Or} \) is simple for any \(r \in \mathbb{Z}_{\geq 0} \),
2. for each \(m \in \mathbb{Z}^N \geq 0 \), set \(S_{[\tilde{\omega}_0]}(m) := S_{[\tilde{\omega}_0]}(\beta_1)^{O_{m_1}} \circ \cdots \circ S_{[\tilde{\omega}_0]}(\beta_n)^{O_{m_n}} \). Then the set \(\{ S_{[\tilde{\omega}_0]}(m) \mid m \in \mathbb{Z}^N_{\geq 0} \} \) corresponds to the dual PBW-basis under the isomorphism in \((5.2)\) (up to a grading shift).

5.2. Categorifications via modules over untwisted quantum affine algebras.

Definition 5.5 ([13, 14, 20]). Fix any \([Q] \in \mathbb{Q} \) of finite type \(A_n \) or \(D_n \), and any positive root \(\beta \in \Phi^+ \) with \(\Omega_Q(\beta) = (i, p) \).

1. We set the \(U_q'(g)^{(1)} \)-module \((g^{(1)} = A_n^{(1)}, D_n^{(1)}) \) \(V_Q^{(1)}(\beta) \) defined as follows:
 \[
 V_Q^{(1)}(\beta) := V(\varpi_i)(-q)^p.
 \]
Theorem 5.6 \((5.4)\)

We review the generalized quantum affine Schur-Weyl duality which was studied in Generalized quantum affine Schur-Weyl dualities.

Theorem 5.7 \((5.5)\)

We have a ring isomorphism given as follows: For any \(Q\) and \(Q'\),

\[
\left[C^{(1)}_Q \right] \simeq U_\Lambda^-(g)^\vee |_{q=1} \simeq \left[C^{(2)}_{Q'} \right],
\]

where \([C^{(t)}_Q]\) denotes the Grothendieck ring of \(C^{(t)}_Q\) \((t = 1, 2)\).

Theorem 5.7 \((5.5)\)

A dual PBW-basis associated to \([Q]\) and the upper global basis of \(U_\Lambda^-(g)^\vee\) are categorized by the modules over \(U_q'(g^{(t)})\) in the following sense \((t = 1, 2)\):

1. The set of all simple modules in \(C^{(t)}_Q\) corresponds to the upper global basis of \(U_\Lambda^-(g)^\vee |_{q=1}\).
2. For each \(m \in \mathbb{Z}_{\geq 0}^N\), define the \(U_q'(g)\)-module \(V^{(t)}_Q(m)\) by \(V^{(t)}_Q(m) = V^{(t)}_Q(\beta_1)^{\otimes m_1} \otimes \cdots \otimes V^{(t)}_Q(\beta_N)^{\otimes m_N}\).

Then the set \(\{V^{(t)}_Q(m) | m \in \mathbb{Z}_{\geq 0}^N\}\) corresponds to the dual PBW-basis under the isomorphism in \((5.4)\).

We note that Hernandez-Leclerc \([14]\) gave \(E^{(1)}_n\)-analogues of the above theorems.

5.3. Generalized quantum affine Schur-Weyl dualities. In this subsection, we briefly review the generalized quantum affine Schur-Weyl duality which was studied in \([16, 17, 19, 20]\).

Let \(\mathcal{S}\) be an index set. A Schur-Weyl datum \(\Xi\) is a quintuple

\[(U_q'(g), J, X, s, \{V_s\}_{s \in \mathcal{S}})\]

consisting of (a) a quantum affine algebra \(U_q'(g)\), (b) an index set \(J\), (c) two maps \(X : J \rightarrow k^\times\), \(s : J \rightarrow \mathcal{S}\), (d) a family of good \(U_q'(g)\)-modules \(\{V_s\}\) indexed by \(\mathcal{S}\).
For a given \(\Xi \), we define a quiver \(\Gamma^\Xi = (\Gamma^\Xi_0, \Gamma^\Xi_1) \) in the following way: (i) \(\Gamma^\Xi_0 = J \), (ii) for \(i, j \in J \), we assign \(d_{ij} \) many arrows from \(i \) to \(j \), where \(d_{ij} \) is the order of the zero of \(d_{\nu(i),\nu(j)}(z_2/z_1) \) at \(X(j)/X(i) \). We call \(\Gamma^\Xi \) the Schur-Weyl quiver associated to \(\Xi \).

For a Schur-Weyl quiver \(\Gamma^\Xi \), we have

- a symmetric Cartan matrix \(A^\Xi = (a^\Xi_{ij})_{i,j \in J} \) by
 \[a^\Xi_{ij} = 2 \quad \text{if} \quad i = j, \quad a^\Xi_{ij} = -d_{ij} - d_{ji} \quad \text{if} \quad i \neq j, \]
- the set of polynomials \(Q^\Xi_{i,j}(u,v) \) for \(i, j \)
 \[Q^\Xi_{i,j}(u,v) = (u - v)^{d_{ij}}(v - u)^{d_{ji}} \quad \text{if} \quad i \neq j. \]

We denote by \(R^\Xi \) the symmetric quiver Hecke algebra associated with \((Q^\Xi_{i,j}(u,v)) \).

Theorem 5.8 ([16]). For a given \(\Xi \), there exists a functor
\[\mathcal{F} : \text{Rep}(R^\Xi) \to \mathcal{C}_q. \]
Moreover, \(\mathcal{F} \) satisfies the following properties:
1. \(\mathcal{F} \) is a tensor functor; that is, there exist \(U'_q(g) \)-module isomorphisms
 \[\mathcal{F}(R^\Xi(0)) \simeq k \quad \text{and} \quad \mathcal{F}(M_1 \circ M_2) \simeq \mathcal{F}(M_1) \otimes \mathcal{F}(M_2) \]
 for any \(M_1, M_2 \in \text{Rep}(R^\Xi) \).
2. If the underlying graph of \(\Gamma^\Xi \) is a Dynkin diagram of finite type \(ADE \), then \(\mathcal{F} \) is exact
 and \(R^\Xi \) is isomorphic to the quiver Hecke algebra associated to \(g \) of finite type \(ADE \).

We call the functor \(\mathcal{F} \) the generalized quantum affine Schur-Weyl duality functor.

Theorem 5.9 ([17, 20]). Let \(U'_q(g^{(t)}) \) be a quantum affine algebra of type \(A_n^{(t)} \) (resp. \(D_n^{(t)} \)) and let \(Q \) be a Dynkin quiver of finite type \(A_n \) (resp. \(D_n \)) for \(t = 1, 2 \). Take \(J \) and \(S \) as the set of simple roots \(\Pi \) associated to \(Q \). We define two maps

\[s : \Pi \to \{ V(\varpi_i) \mid i \in I_0 \} \quad \text{and} \quad X : \Pi \to k^\times \]

as follows: for \(\alpha \in \Pi \) with \(\Omega_Q(\alpha) = (i, p) \), we define

\[s(\alpha) = \begin{cases} V(\varpi_i) & \text{if } g^{(1)} = A_n^{(1)} \text{ or } D_n^{(1)}, \\ V(\varpi_i^+) & \text{if } g^{(2)} = A_n^{(2)} \text{ or } D_n^{(2)}, \end{cases} \quad X(\alpha) = \begin{cases} (-q)^p & \text{if } g^{(1)} = A_n^{(1)} \text{ or } D_n^{(1)}, \\ ((-q)^p)^* & \text{if } g^{(2)} = A_n^{(2)} \text{ or } D_n^{(2)}. \end{cases} \]

Then we have the followings:
1. The underlying graph of \(\Gamma^\Xi \) coincides with the one of \(Q \). Hence the functor
 \[\mathcal{F}^{(t)}_Q : \text{Rep}(R^\Xi) \to \mathcal{C}_Q^{(t)} \quad (t = 1, 2) \]
 in Theorem 5.8 is exact.
2. The functor \(\mathcal{F}^{(t)}_Q \) induces a bijection from the set of the isomorphism classes of simple objects of \(\text{Rep}(R^\Xi) \) to that of \(\mathcal{C}_Q^{(t)} \). In particular, \(\mathcal{F}^{(t)}_Q \) sends \(S_Q(\beta) := S_Q(\beta) \) to \(V^{(t)}_Q(\beta) \). Moreover, the induced bijection between the set of the isomorphism classes of simple objects of \(\mathcal{C}_Q^{(1)} \) and that of \(\mathcal{C}_Q^{(2)} \) preserves the dimensions.
3. The functors \(\mathcal{F}^{(1)}_Q \) and \(\mathcal{F}^{(2)}_Q \) induce the ring isomorphisms in (5.4).
6. Isomorphism between Grothendieck rings

In this section, we first introduce subcategories $\mathcal{C}_\mathcal{D}$ and $\mathcal{C}_\mathcal{Z}$ of $\mathcal{C}^{(1)}_{B_n}$ or $\mathcal{C}^{(1)}_{C_n}$.

Definition 6.1 ([33, 34]).

(i) Let us define $\mathcal{C}^{B_n(1)}_{\mathcal{D}}$ (resp. $\mathcal{C}^{C_n(1)}_{\mathcal{D}}$) as the smallest abelian full subcategory of $\mathcal{C}^{(1)}_{B_n}$ (resp. $\mathcal{C}^{(1)}_{C_n}$) such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains $V_\mathcal{D}(\beta)$ for all $\beta \in \Phi^+_A$ (resp. Φ^+_D).

(ii) Let us define $\mathcal{C}^{B_n(1)}_{\mathcal{Z}}$ (resp. $\mathcal{C}^{C_n(1)}_{\mathcal{Z}}$) as the smallest abelian full subcategory of $\mathcal{C}^{(1)}_{B_n}$ (resp. $\mathcal{C}^{(1)}_{C_n}$) such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains $V_\mathcal{Z}(\beta)^k \ast$ for all $k \in \mathbb{Z}$ and all $\beta \in \Phi^+_A$ (resp. Φ^+_D).

We sometimes omit the superscript $B_n(1)$ or $C_n(1)$ if there is no afraid of confusion.

Note that the definition $\mathcal{C}_\mathcal{Z}$ does not depend on the choice of $[\mathcal{D}]$ in $[\mathcal{D}]$.

Theorem 6.2.

(1) There exists an exact functor $F_\mathcal{D} : \text{Rep}(R_{A_{2n-1}}) \to \mathcal{C}_\mathcal{D} \subset \mathcal{C}^{(1)}_{B_n}$ for any $[\mathcal{D}]$ of type A_{2n-1}.

(2) There exists an exact functor $F_\mathcal{D} : \text{Rep}(R_{D_{n+1}}) \to \mathcal{C}_\mathcal{D} \subset \mathcal{C}^{(1)}_{C_n}$ for any $[\mathcal{D}]$ of type D_{n+1}.

Proof. (1) For the construction of a functor, we need to take a Schur-Weyl datum Ξ. (i) Take J and S as the set of simple roots Π of Φ^+_A. (ii) Define two maps $s : \Pi \to \{V(\omega_i) \mid i \in I_0\}$ and $X : \Pi \to \mathbb{C}^\times$ as follows: For $\alpha \in \Pi$ with $\widehat{\Omega}(\alpha) = (i, p)$, we define

$s(\alpha) = V(\omega_i)$ and $X(\alpha) = (-1)^i q^p.$

Then we can conclude that the underlying graph of Schur-Weyl quiver Γ^Ξ coincides with the Dynkin diagram Δ of A_{2n-1}, since

- $\text{dist}(\mathcal{D})(\alpha_i, \alpha_j) = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent in } \Delta, \\ 0 & \text{otherwise}, \end{cases}$
- $d_{k,l}^{B_n(1)}(z) = \hat{D}_{k,l}(z) \times (z - q^{2n-1})^{\delta_{k,l}}$ (Theorem 4.3),
- $d_{k,l}^{B_n(1)}(z)$ has only roots of order 1.

Thus our assertion follows from (b) of Theorem 5.8.

(2) The assertion can be proved by the same argument of (1) with the two maps s and X given as follows: For $\alpha \in \Pi$ with $\widehat{\Omega}(\alpha) = (i, p)$, we define

$s(\alpha) = V(\omega_i)$ and $X(\alpha) = (-q_s)^p.$

\square
Theorem 6.3. For any $[\mathcal{D}]$ of $[\mathcal{D}]$ and $\gamma \in \Phi^+_1 \ A_{2n-1}$ (resp. $\gamma \in \Phi^+_1 D_{n+1}$), we have
\[
\mathcal{F}_\mathcal{D}(S_\mathcal{D}(\gamma)) \simeq V_\mathcal{D}(\gamma).
\]

Proof. We shall prove our assertion by an induction on $\text{ht}(\gamma)$. For γ with $\text{ht}(\gamma) = 1$, our assertion follows from [16, Proposition 3.2.2]. Now we assume that $\text{ht}(\gamma) \geq 2$. Note that there exists a minimal pair (α, β) of γ. By [27, Theorem 3.1], we have a six-term exact sequence of $R(\gamma)$-modules
\[
0 \hookrightarrow S_\mathcal{D}(\gamma) \longrightarrow S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\beta) \overset{r}{\longrightarrow} S_\mathcal{D}(\beta) \circ S_\mathcal{D}(\alpha) \overset{s}{\longrightarrow} S_\mathcal{D}(\gamma) \rightarrow 0.
\]
Applying the functor $\mathcal{F}_\mathcal{D}$, we have an exact sequence of $U'_q(\mathfrak{g})$-modules by the induction hypothesis
\[
0 \overset{\mathcal{F}_\mathcal{D}(t)}{\longrightarrow} \mathcal{F}_\mathcal{D}(S_\mathcal{D}(\gamma)) \overset{\mathcal{F}_\mathcal{D}(r)}{\longrightarrow} V_\mathcal{D}(\alpha) \otimes V_\mathcal{D}(\beta) \overset{\mathcal{F}_\mathcal{D}(s)}{\longrightarrow} V_\mathcal{D}(\beta) \otimes V_\mathcal{D}(\alpha) \overset{\mathcal{F}_\mathcal{D}(t)}{\longrightarrow} \mathcal{F}_\mathcal{D}(S_\mathcal{D}(\gamma)) \rightarrow 0.
\]

On the other hand, Theorem 4.6 tells that $V_\mathcal{D}(\beta) \otimes V_\mathcal{D}(\alpha)$ is not simple. We have then $\mathcal{F}_\mathcal{D}(S_\mathcal{D}(\gamma)) \neq 0$. Indeed, if it vanished, we would have
\[
V_\mathcal{D}(\alpha) \otimes V_\mathcal{D}(\beta) \simeq V_\mathcal{D}(\beta) \otimes V_\mathcal{D}(\alpha),
\]
which implies that $V_\mathcal{D}(\alpha) \otimes V_\mathcal{D}(\beta)$ is simple by [18, Corollary 3.16]. Hence $\mathcal{F}_\mathcal{D}(S_\mathcal{D}(\gamma))$ is the image of a non-zero homomorphism
\[
\mathcal{F}_\mathcal{D}(ts): V_\mathcal{D}(\beta) \otimes V_\mathcal{D}(\alpha) \rightarrow V_\mathcal{D}(\alpha) \otimes V_\mathcal{D}(\beta).
\]
Thus [18] and the quantum affine version of [21, Proposition 4.5] imply that $\mathcal{F}_\mathcal{D}(S_\mathcal{D}(\beta))$ is the simple head of $V_\mathcal{D}(\beta) \otimes V_\mathcal{D}(\alpha)$ which coincides with $V_\mathcal{D}(\gamma)$.

Lemma 6.4. Let $\beta, \gamma \in \Phi^+$. If $R_{\mathcal{D}(\mathfrak{g})}(\gamma, \mathfrak{g})$ has a pole at $z = 1$, then $\beta \prec [\mathcal{D}] \alpha$.

Proof. The proof is almost identical with [20, Lemma 4.2].

Theorem 6.5. The functor $\mathcal{F}_\mathcal{D}$ sends a simple module to a simple module. Moreover, the functor $\mathcal{F}_\mathcal{D}$ induces a bijection from the set of simple modules in $\text{Rep}(R)$ to the set of simple modules in $\mathcal{C}_\mathcal{D}$.

Proof. With Theorem 4.3 and Theorem 4.6, we can apply the same argument of [20, Theorem 4.5].

Thus, for any $[Q], [Q']$ and $[\mathcal{D}]$, we have the following diagrams:

\[
\text{(6.1)}
\]
Corollary 6.6. Let \(\mathfrak{g} = A_{2n-1} \) or \(D_{n+1} \). For any \([\mathcal{D}] \in [\mathcal{Q}]\), there exists an isomorphism between \([\mathcal{C}_{\mathcal{D}}] \) and \(U_{\mathbb{A}}^{-}(\mathfrak{g})|_{q=1} \) induced by \(F_{\mathcal{D}} \):
\[
[F_{\mathcal{D}}]: [\mathcal{C}_{\mathcal{D}}] \simeq U_{\mathbb{A}}^{-}(\mathfrak{g})|_{q=1}.
\]
Hence, we have isomorphisms which refine (5.4):
\[
\begin{align*}
[\mathcal{C}^{(1)}_Q] & \simeq U_{\mathbb{A}}^{-}(\mathfrak{g})|_{q=1} \\
& \simeq [\mathcal{C}^{(2)}_Q]
\end{align*}
\]

Now we have a \([\mathcal{Q}]-\text{analogue of Theorem 5.7}:

Corollary 6.7. A dual PBW-basis associated to \([\mathcal{Q}]\) and the upper global basis of \(U_{\mathbb{A}}^{-}(\mathfrak{g})\) are categorified by the modules over \(U_q(\mathfrak{g}) \) in the following sense:
(1) The set of all simple modules in \(\mathcal{C}_{\mathcal{D}} \) corresponds to the upper global basis of \(U_{\mathbb{A}}^{-}(\mathfrak{g})\).
(2) The set \(\{V_{\mathcal{D}}(m) \mid m \in \mathbb{Z}_{\geq 0}^N \} \) corresponds to the dual PBW-basis under the isomorphism in (6.2). Here \(V_{\mathcal{D}}(\overline{m}) := V_{\mathcal{D}}(\beta_1)^{\text{om}_1} \circ \cdots \circ V_{\mathcal{D}}(\beta_N)^{\text{om}_N} \).

Corollary 6.8. For any \([Q]\) and \([\mathcal{D}]\) of type \(A_{2n-1} \) (resp. \(D_{n+1} \)), the ring isomorphism
\[
\phi_{Q,\mathcal{D}}^{(t)} := F_{\mathcal{D}} \circ (F_Q^{(t)})^{-1} : [\mathcal{C}^{(t)}_Q] \simeq [\mathcal{D}] \quad (t = 1, 2)
\]
sends simples to simples, bijectively.

Corollary 6.9. For any \([Q]\) and \([\mathcal{D}]\) of type \(A_{2n-1} \) (resp. \(D_{n+1} \)), the ring isomorphism \(\phi_{Q,\mathcal{D}}^{(t)} \) sends \([V_Q(\alpha_i)]\) to \([V_\mathcal{D}(\alpha_i)]\) for each simple root \(\alpha_i \).

Proof. For any \(i \in I \), the 1-dimensional module \(L(i) \) is the unique simple module over \(R(\alpha_i) \). Thus our assertion follows from [16, Proposition 3.2.2].

Now we have a conjecture which can be understood as a Langlands analogue of [20, Conjecture 4.7]:

Conjecture 6.10. The functor \(F_{\mathcal{D}}: \text{Rep}(R) \to \mathcal{C}_{\mathcal{D}} \) is an equivalence of categories.

7. Simple head and socle

In this section, we study the simple head and socle of \(S_{\mathcal{D}}(\alpha) \circ S_{\mathcal{D}}(\beta) \) and \(V_{\mathcal{D}}(\alpha) \circ V_{\mathcal{D}}(\beta) \) which has been studied in many context (see [18, 26, 31]).

Theorem 7.1. A pair \(\underline{p} = (\alpha, \beta) \) is \([\tilde{w}_0]-\)simple if and only if \(S_{\mathcal{D}}(\alpha) \circ S_{\mathcal{D}}(\beta) \) and \(V_{\mathcal{D}}(\alpha) \circ V_{\mathcal{D}}(\beta) \) are simple.

Proof. Only if part is an immediate consequence of [31, Theorem 5.10] (see also [27, Theorem 3.1]). Assume that \(\text{dist}_{[\mathcal{D}]}(\underline{p}) > 0 \). Then there exists \(\underline{m} \) such that \(\underline{m} \prec_{[\mathcal{D}]} \underline{p} \) and there exists no \(\underline{m}' \) such that
\[
\underline{m} \prec_{[\mathcal{D}]} \underline{m}' \prec_{[\mathcal{D}]} \underline{p}.
\]
Furthermore, by [33, Theorem 6.16] and [34, Theorem 8.12], \mathfrak{m} satisfies one of the following conditions:

1. if $m = \alpha + \beta$, p is a minimal pair of $\alpha + \beta$.
2. if (a) $\alpha + \beta \not\in \Phi^+$, (b) dist$_{[D]}(\alpha, \beta) = 2$ and (c) $[D]$ is of type A_{2n-1}, \mathfrak{m} is a triple (μ, ν, η) such that
 (i) $\mu + \nu \not\in \Phi^+$, (μ, ν) is a $[D]$-minimal pair of $\mu + \nu$ and $\alpha - \mu, \beta - \nu \not\in \Phi^+$,
 (ii) η is not comparable to μ and ν with respect to $\prec_{[D]}$,
 (iii) $\eta = (\alpha - \mu) + (\beta - \nu)$ and $((\alpha - \mu), (\beta - \nu))$ is a $[D]$-minimal pair for η,
 (iv) $(\alpha - \mu, \mu), (\nu, \beta - \nu)$ are $[D]$-minimal pairs for α and β respectively,
3. if $\alpha + \beta \not\in \Phi^+$ and it does not satisfy one of (b) and (c) in (2), then \mathfrak{m} is a pair (α', β') and either (i) $\alpha' - \alpha, \beta - \beta' \in \Phi^+$ or (ii) $\alpha - \alpha', \beta - \beta' \in \Phi^+$ such that (i') $(\alpha' - \alpha, \alpha)$ is a minimal pair for α or (ii') $(\beta' - \beta, \beta)$ is a minimal pair for β.

(see [33, Remark 6.23] and [34, Remark 8.19] also). Thus our assertion for $\mathfrak{m} = \alpha + \beta$ holds by [27, Theorem 3.1]. For the case when \mathfrak{m} is a pair, we have a non-zero composition of homomorphisms

(i) $S_\mathcal{D}(\alpha') \circ S_\mathcal{D}(\beta') \to S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\alpha' - \alpha) \circ S_\mathcal{D}(\beta') \to S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\beta)$ or
(ii) $S_\mathcal{D}(\alpha') \circ S_\mathcal{D}(\beta') \to S_\mathcal{D}(\alpha') \circ S_\mathcal{D}(\beta' - \beta) \circ S_\mathcal{D}(\beta) \to S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\beta),$

by [18, Corollary 3.11]. For the case when \mathfrak{m} is a triple, we have a non-zero composition

$S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\nu) \circ S_\mathcal{D}(\eta) \simeq S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\eta) \circ S_\mathcal{D}(\nu)$

and hence a desired non-zero composition

$S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\nu) \circ S_\mathcal{D}(\eta) \to S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\alpha - \mu) \circ S_\mathcal{D}(\beta - \nu) \circ S_\mathcal{D}(\nu) \to S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\alpha - \mu) \circ S_\mathcal{D}(\beta).$

and hence a desired non-zero composition

$S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\nu) \circ S_\mathcal{D}(\eta) \to S_\mathcal{D}(\mu) \circ S_\mathcal{D}(\alpha - \mu) \circ S_\mathcal{D}(\beta) \to S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\beta)$

by [18, Corollary 3.11]. Hence our assertion follows from the fact that the heads of $S_\mathcal{D}(\mathfrak{m})$ and $S_\mathcal{D}(\alpha) \circ S_\mathcal{D}(\beta)$ are distinct. Our assertion for $V_\mathcal{D}(\alpha) \circ V_\mathcal{D}(\beta)$ can be obtained by applying the functor $\mathcal{F}_\mathcal{D}$.

\begin{corollary}
For $\mathfrak{m} \in \mathbb{Z}_{\geq 0}^N$, $S_\mathcal{D}(\mathfrak{m})$ and $V_\mathcal{D}(\mathfrak{m})$ are simple if and only if \mathfrak{m} is $[\mathcal{D}]$-simple.
\end{corollary}

\begin{proof}
It is an immediate consequence of Theorem 7.1.
\end{proof}

\begin{lemma}
Let $U_q(\mathfrak{g})$ be a quantum affine algebra and let V and W be good $U'_q(\mathfrak{g})$-modules. If the normalized R-matrix $R_{W,V}^{\text{norm}}(z)$ has a simple pole at $z = a$ for some $a \in \mathbb{k}^\times$, then we have

$\text{Im}((z-a)R_{W,V}^{\text{norm}}|_{z=a}) = \text{Ker}(R_{W,V}^{\text{norm}}|_{z=a}).$

Moreover, the tensor product $V \otimes W_a$ is of length 2.
\end{lemma}

\begin{proof}
The first assertion follows from the fact:

Let $A(z)$ and $B(z)$ be $n \times n$-matrices with entries in rational functions in z. Assume that $A(z)$ and $B(z)$ have no poles at $z = a$. If $A(z)B(z) = (z-a)\text{id}$, then we have $\text{Im}A(a) = \text{Ker}B(a)$.
\end{proof}
Recall that $\text{Ker}(R_{W,V}^\text{norm}|_{z=a})$ is simple. By [18, Theorem 3.2], we know that $\text{Im}((z-a)R_{W,V}^\text{norm}|_{z=a})$ is also simple. Hence we conclude that $V \otimes W_a$ is of composition length 2 by the first assertion.

\textbf{Theorem 7.4.} For a pair $p = (\alpha, \beta)$ with $\text{dist}_\mathcal{Q}(p) > 0$, the composition length of $V_\mathcal{Q}(\alpha) \circ V_\mathcal{Q}(\beta)$ is 2 and the composition series of $V_\mathcal{Q}(\alpha) \circ V_\mathcal{Q}(\beta)$ consists of its distinct head and socle. In particular,

1. if $\text{dist}_\mathcal{Q}(p) = 1$, $\text{soc}(V_\mathcal{Q}(\alpha) \circ V_\mathcal{Q}(\beta)) \simeq V_\mathcal{Q}(\text{soc}_\mathcal{Q}(\alpha, \beta))$,
2. if $\text{dist}_\mathcal{Q}(p) = 2$, $\text{soc}(V_\mathcal{Q}(\alpha) \circ V_\mathcal{Q}(\beta)) \simeq \text{hd}(V_\mathcal{Q}(m))$ where m is a unique sequence such that

$$\text{soc}_\mathcal{Q}(p) \prec_{\mathcal{Q}} b \prec_{\mathcal{Q}} m \prec_{\mathcal{Q}} p.$$

The same assertions for $S_\mathcal{Q}(\alpha) \circ S_\mathcal{Q}(\beta)$ hold.

\textbf{Proof.} By Theorem 7.1, Proposition 7.3 and the fact that $d_{k,l}^{(i)}(z)$ and $d_{k,l}^{(i-1)}(z)$ have only roots of order 1, $V_\mathcal{Q}(\alpha) \circ V_\mathcal{Q}(\beta)$ has composition length 2 if $\text{dist}_\mathcal{Q}(\alpha, \beta) \neq 0$. If $\text{dist}_\mathcal{Q}(p) = 1$, then $\text{soc}_\mathcal{Q}(p)$ is a unique sequence such that $\text{soc}_\mathcal{Q}(p) \prec_{\mathcal{Q}} b \prec_{\mathcal{Q}} p$ and $V_\mathcal{Q}(\text{soc}_\mathcal{Q}(p))$ is simple. Thus, by the previous proof, there exist a non-zero homomorphism

$$V_\mathcal{Q}(\text{soc}_\mathcal{Q}(p)) \longrightarrow V_\mathcal{Q}(p).$$

Hence $V_\mathcal{Q}(\text{soc}_\mathcal{Q}(p)) \simeq \text{soc}(V_\mathcal{Q}(p))$ by [18, Theorem 3.2]. For $\text{dist}_\mathcal{Q}(p) = 2$, we have a non-zero homomorphism

$$V_\mathcal{Q}(m) \longrightarrow V_\mathcal{Q}(p)$$

where m is the unique sequence such that $\text{soc}_\mathcal{Q}(p) \prec_{\mathcal{Q}} b \prec_{\mathcal{Q}} m \prec_{\mathcal{Q}} p$. Thus our last assertion follows since

- $V_\mathcal{Q}(p)$ has composition length 2,
- $V_\mathcal{Q}(p)$ and $V_\mathcal{Q}(m)$ have distinct heads.

Our assertions for $S_\mathcal{Q}(p)$ can be obtained by applying the functor $F_\mathcal{Q}$. \qed

\textbf{APPENDIX: Exceptional doubly laced type}

In this appendix, we discuss the exceptional doubly laced type analogue of our main results and give several conjectures on it. We first recall the \vee-foldable cluster point $[\mathcal{Q}]$ of E_6 associated with \vee in (2.3) and the twisted Coxeter element $s_1s_2s_6s_3$ [33, Appendix]:

$$[\mathcal{Q}] = [\tilde{w}_0] \quad \text{where} \quad \tilde{w}_0 = \prod_{k=0}^{8} (s_1s_2s_6s_3)^{k\vee}.$$

Here,

$$s_{j_1} \cdots s_{j_n}^{\vee} := s_{j_1}^{\vee} \cdots s_{j_n}^{\vee} \quad \text{and} \quad s_{j_1} \cdots s_{j_n}^{k\vee} := (\cdots((s_{j_1} \cdots s_{j_n})^{\vee})^{\vee})^{\cdots}^{k\text{-times}}.$$

Note that the number of distinct commutation classes in $[\mathcal{Q}]$ is 32 ([33, Appendix]).
Now, we assign the coordinates of $\Upsilon_{[\vec{w}_0]}$ in the following way (see also [31, Appendix]):

$$
\begin{array}{cccccccccccccccccccc}
(i, p) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
1 & \\
2 & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
3 & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
6 & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
4 & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
5 & \\
\end{array}
$$

$$
\begin{pmatrix} a_1a_2a_3 \\ a_4a_5a_6 \end{pmatrix} := \sum_{i=1}^{6} a_i \alpha_i.
$$

Then the quiver $\Upsilon_{[\vec{w}_0]}$ is foldable in the sense that there exists no (i, p) and $(j, q) \in \Upsilon_{[\vec{w}_0]}$ such that $i^\vee = j$ and $p = q$. Hence we can fold in a canonical way:

$$
\begin{array}{cccccccccccccccccccc}
(i, p) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
1 := \Upsilon & \\
2 := \Upsilon & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
3 := \Upsilon & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
4 := \Upsilon & (001) & (001) & (012) & (012) & (112) & (112) & (122) & (122) & (111) & (111) & (111) & (111) & (110) & (110) & (100) & (100) & (100) & (100) & (100) \\
\end{array}
$$

Thus $\hat{\Upsilon}_{[\vec{w}_0]}$ is well-defined.

Furthermore, the action of reflection maps on $[\partial]$ is well-described by the datum of F_4 in the following sense (see also [33, Algorithm 7.6], [34, Algorithm 7.15]):

$$
\Delta : \overset{1}{\circ} \overset{2}{\circ} \overset{3}{\circ} \overset{4}{\circ}
$$

of type F_4.

Let us denote by (i) $D = \text{diag}(d_i \mid 1 \leq i \leq 4)$ the diagonal matrix which diagonalizes the Cartan matrix A of type F_4, (ii) $\underline{d} = \text{lcm}(d_i \mid 1 \leq i \leq 4) = 2$, (iii) α_i a sink of $\hat{\Upsilon}_{[\vec{w}_0]}$ and (iv) $h^\vee = 9$ the dual Coxeter number of type F_4. Now the algorithm obtaining $\hat{\Upsilon}_{[\vec{w}_0]_r \iota}$ from $\hat{\Upsilon}_{[\vec{w}_0]}$ can be described as follows:

(A1) Remove the vertex (i, p) corresponding (α_i) and arrows entering into (i, p) in $\hat{\Upsilon}_{[\vec{w}_0]}$.

(A2) Add the vertex $(i, p - \underline{d} \times h^\vee)$ and arrows to all vertices whose coordinates are $(j, p - \underline{d} \times h^\vee + \min(d_i, d_j)) \in \hat{\Upsilon}_{[\vec{w}_0]}$, where j is adjacent to i in Δ.

(A3) Label the vertex $(i, p - \underline{d} \times h^\vee)$ with α_i and change the labels β to $s_i(\beta)$ for all $\beta \in \hat{\Upsilon}_{[\vec{w}_0]} \setminus \{\alpha_i\}$.

For example $\hat{\Upsilon}_{[\mathcal{O}_{1}]}^{(1)}$ can be depicted as follows:

$r(p)$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	100	000																	
2	001	100																	
3	001	100																	
4	001	100																	

Remark 7.5. For every $\Upsilon_{[\mathcal{D}]}$ ($[\mathcal{D}] \in [\mathcal{D}]$) of E_{6}, the twisted additive property observed in [33, 34] also holds.

By applying the results in [33, 34], one can check that the folded distance polynomials $D_{k,l}(z)$ are well-defined on $[\mathcal{D}]$ and have natural conjectural formulas for $d_{k,l}^{F_{4}(1)}(z)$ as follows: Set $q_{s}^{2} = q$.

\[
d_{1,1}^{F_{4}(1)}(z) = (z - (-q_{s})^{4})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{18}),
\]
\[
d_{1,2}^{F_{4}(1)}(z) = (z - (-q_{s})^{9})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{14})(z - (-q_{s})^{16}),
\]
\[
d_{1,3}^{F_{4}(1)}(z) = (z - (-q_{s})^{7})(z - (-q_{s})^{9})(z - (-q_{s})^{13})(z - (-q_{s})^{15}),
\]
\[
d_{1,4}^{F_{4}(1)}(z) = (z - (-q_{s})^{9})(z - (-q_{s})^{14}),
\]
\[
d_{2,2}^{F_{4}(1)}(z) = (z - (-q_{s})^{4})(z - (-q_{s})^{6})(z - (-q_{s})^{8})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{14})^{2}(z - (-q_{s})^{16})(z - (-q_{s})^{18}),
\]
\[
d_{2,3}^{F_{4}(1)}(z) = (z - (-q_{s})^{7})(z - (-q_{s})^{8})(z - (-q_{s})^{11})(z - (-q_{s})^{11})(z - (-q_{s})^{13})(z - (-q_{s})^{17}),
\]
\[
d_{2,4}^{F_{4}(1)}(z) = (z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{16}),
\]
\[
d_{3,3}^{F_{4}(1)}(z) = (z - (-q_{s})^{7})(z - (-q_{s})^{8})(z - (-q_{s})^{9})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{16})(z - (-q_{s})^{18}),
\]
\[
d_{3,4}^{F_{4}(1)}(z) = (z - (-q_{s})^{7})(z - (-q_{s})^{8})(z - (-q_{s})^{9})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{16})(z - (-q_{s})^{18}),
\]
\[
d_{4,4}^{F_{4}(1)}(z) = (z - (-q_{s})^{7})(z - (-q_{s})^{8})(z - (-q_{s})^{9})(z - (-q_{s})^{10})(z - (-q_{s})^{12})(z - (-q_{s})^{16})(z - (-q_{s})^{18}).
\]

Now we can define $V_{\mathcal{D}}(\beta)$, for each $\beta \in \Phi_{E_{6}}^{+}$ and $[\mathcal{D}] \in [\mathcal{D}]$ naturally.

Definition 7.6.

1. We define the smallest abelian full subcategory $\mathcal{C}_{\mathcal{D}}$ inside $\mathcal{C}_{F_{4}(1)}$ such that
 a. it is stable by taking subquotient, tensor product and extension,
 b. it contains $V_{\mathcal{D}}(\beta)$ for all $\beta \in \Phi_{E_{6}}^{+}$.

2. We define the smallest abelian full subcategory $\mathcal{C}_{\mathcal{Z}}$ inside $\mathcal{C}_{F_{4}(1)}$ such that
 a. it is stable by taking subquotient, tensor product and extension,
 b. it contains $V_{\mathcal{D}}(\beta)^{k}$ for all $k \in \mathbb{Z}$ and all $\beta \in \Phi_{E_{6}}^{+}$.
Recall the subcategories $\mathcal{C}_Q^{(1)}$ of $\mathcal{C}_{E_6^{(1)}}$ in [14], $\mathcal{C}_Q^{(2)}$ of $\mathcal{C}_{E_6^{(2)}}$ in [31, Arxiv version 1]. Now we can naturally expect that all results in this paper can be extended to $\mathcal{C}_Q^{(t)} (t = 1, 2)$, $\mathcal{C}_{\mathbb{D}}$, $U_{\mathbb{D}} (E_6)^{\vee}$ and $V_{\mathbb{D}} (\mathbb{m})$, etc.

References

[1] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), 839-867.
[2] R. Bedard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), 483–505.
[3] J. Brundan, A. Kleshchev and P. J. McNamara, Homological properties of finite Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), 1353–1404.
[4] V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. 2002 (7) (2010), 357-382.
[5] V. Chari and A. Pressley, Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys. 181 (1996), no. 2, 265-302.
[6] E. Date and M. Okado, Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type $A_n^{(1)}$, Internat. J. Modern Phys. A 9 (3) (1994), 399–417.
[7] E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine algebras, Recent developments in quantum affine algebras and related topics, Contemp. Math. 248 (1999), 163–205.
[8] E. Frenkel and N. Reshetikhin, Deformations of W-algebras associated to simple Lie algebras, Commun. Math. Phys. 197(1) (1998) 1–32.
[9] E. Frenkel and D. Hernandez, Langlands duality for finite-dimensional representations of quantum affine algebras, Lett. Math. Phys. 96 (2011) 217–261.
[10] , Langlands duality for representations of quantum groups, Math. Ann. 349(3) (2011), 705–746.
[11] P. Gabriel, Auslander-Reiten sequences and Representation-finite algebras, Lecture notes in Math., vol. 831, Springer-Verlag, Berlin and New York, (1980), pp.1-71.
[12] D. Hernandez, Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. (2010) no.7, 149–193.
[13] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265–341.
[14] , Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77–126.
[15] V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
[16] S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, arXiv:1304.0323 [math.RT].
[17] , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, Duke Math. J. 164 (2015), no. 8, 1549–1602.
[18] S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), no. 2, 377–396.
[19] , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III, Proc. Lond. Math. Soc. 111 (2015), no. 2, 420–444.
[20] , Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, Selecta Math. 22 (2016), no. 4, 1987–2015.
[21] , Monoidal categorification of cluster algebras II, arXiv:1502.06714.
[22] M. Kashiwara, On level zero representations of quantum affine algebras, Duke. Math. J. 112 (2002), 117–175.
[23] S. Kato, Poincaré–Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163, 3 (2014), 619–663.
[24] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309–347.
[25] , A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700.
[26] B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(n)$, Transform. Groups 8 (2003), no. 1, 95–104.
[27] P. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type, J. Reine Angew. Math. 707 (2015), 103–124.
[28] S.-j. Oh, Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Amer. Math. Soc. 369 (2017), 1895–1933.
[29] , Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra 460 (2016), 203-252.
[30] , The Denominators of normalized R-matrices of types $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$, $B_n^{(1)}$ and $D_{n+1}^{(2)}$, Publ. Res. Inst. Math. Sci. 51 (2015), 709–744.
[31] , Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, arXiv:1509.04949 [math.RT].
[32] S.-j. Oh and U. Suh, Combinatorial Auslander-Reiten quivers and reduced expressions, arXiv:1509.04820.
[33] , Twisted Coxeter elements and folded AR-quivers via Dynkin diagram automorphisms: I, arXiv:1606.00076 [math.RT].
[34] , Twisted Coxeter elements and folded AR-quivers via Dynkin diagram automorphisms: II, arXiv:1606.00102 [math.RT].
[35] R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
[36] , Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410.
[37] M. Varagnolo and E. Vasserot, Canonical bases and KLR algebras, J. reine angew. Math. 659 (2011), 67–100.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan, & Department of Mathematical Sciences and School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Korea
E-mail address: masaki@kurims.kyoto-u.ac.jp

Department of Mathematics Ewha Womans University Seoul 120-750, Korea
E-mail address: sejin092@gmail.com