Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress

Nathan T. Hein, Ignacio A. Ciampitti*, S.V. Krishna Jagadish*
Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA

Emails – NHein@ksu.edu, Ciampitti@ksu.edu, kjagadish@ksu.edu

*Correspondence
Ignacio A. Ciampitti
Department of Agronomy
2004 Throckmorton Plant Sciences Center
1712 Claflin Road, Manhattan, Kansas 66506-5501
Tel: + 1 785 410 9354
Email – ciampitti@ksu.edu

Krishna Jagadish SV
Department of Agronomy
2004 Throckmorton Plant Sciences Center
1712 Claflin Road, Manhattan, Kansas 66506-5501
Tel: + 1 785 706 3263
Email – kjagadish@ksu.edu

Highlight – This review focuses on developing high-throughput phenotyping approaches to quantitfy key physiological traits at high temporal frequency, involving diverse germplasm to incorporate greater heat and drought stress resilience in crops.
Abstract

Flowering and grain-filling stages are highly sensitive to heat and drought stress exposure, leading to significant loss in crop yields. Therefore, phenotyping to enhance resilience to these abiotic stresses is critical for sustaining genetic gains in crop improvement programs. However, traditional methods for screening traits related to these stresses are slow, laborious, and often expensive. Remote sensing provides opportunities to introduce low-cost, less-biased, high-throughput phenotyping methods to capture large genetic diversity to facilitate enhancement of stress resilience in crops. This review focuses on four key physiological traits or processes that are critical in understanding crop responses to drought and heat stress during reproductive and grain-filling periods. Specifically, these traits include: i) time-of-day of flowering, to escape these stresses during flowering, ii) optimizing photosynthetic efficiency, iii) storage and translocation of water-soluble carbohydrates, and iv) yield and yield components to provide in-season yield estimates. An overview of current advances in remote sensing in capturing these traits, limitations with existing technology and future direction of research to develop high-throughput phenotyping approaches for these traits are discussed in this review. In the future, phenotyping these complex traits will require sensor advancement, high-quality imagery combined with machine learning methods, and efforts in transdisciplinary science to foster integration across disciplines.

Keywords
Remote sensing, Field-based high-throughput phenotyping, Heat stress, Drought stress, Time-of-day of flowering, Photosynthetic efficiency, Water-soluble carbohydrates, Yield estimation
Abbreviations

CNN - Convolutional Neural Network
LIFT - Laser Induced Fluorescence Transient
NDVI – Normalized Difference Vegetation Index
NIRS – Near-infrared Spectroscopy
PLSR – Partial Least Squares Regression
PRI – Photochemical Reflectance Index
TOF – Time-of-Day of Flowering
UAVs – Unmanned Aerial Vehicles
QY – Quantum Yield
WSC – Water-soluble Carbohydrates
Introduction

Advancements in quantifying abiotic stress impact on the productivity of field crops have become more important than ever in order to breed for heat and drought stress resilience or to understand the ability of a plant to maintain yield under abiotic stresses. In order to meet the future global food demand, global agriculture production must be doubled by 2050 as compared to 2012 (Food and Agriculture Organization [FAO], 2017; 2019). As of 2008, it has been shown that yields in major crops such as maize (Zea mays L.), rice (Oryza sativa L.), and wheat (Triticum aestivum L.) are increasing at an annual rate of 1.6%, 1.0%, and 0.9%, respectively (Ray et al., 2013). If the same rate of increase is sustained, maize, rice, and wheat would see an increase in production of 67%, 42%, and 38%, respectively, by 2050. This rate of increase, obtained largely through advances in breeding aided by high technology management, has mitigated the negative effects due to a challenging and damaging climate until now, but, as demand grows and climate instability continues to increase, these negative effects could pose a threat to global food security in the future.

The Intergovernmental Panel on Climate Change (IPCC) has predicted that heat waves in the future will occur at a more frequent rate and with increases in both duration and intensity (IPCC, 2014). The increase in global mean temperature and the expected instability in precipitation creates a potential major risk to global food security. Gourdji et al. (2013) have predicted that, by 2030, 31% of maize, 16% of rice, and 11% of wheat growing areas will record over five reproductive days with temperatures above their respective critical threshold, in any given year. This increase in temperature coinciding with sensitive developmental stages, such as flowering, will have detrimental impacts on yield (Jagadish, 2020). Empirically, heat stress during the booting and flowering stages in rice reduced yield by as much as 28.5% depending on the timing and duration of heat stress (Aghamolki et al., 2013). Similarly, a significant reduction in winter wheat yield was recorded with heat stress.
coinciding with heading and lasting for 15 days, even though a stress period of five days was sufficient to induce yield loss (Balla et al., 2019). In addition, it is predicted that with every degree centigrade increase in mean temperature, the global wheat production will be reduced by 6% (Asseng et al., 2015).

Drought reduced yield in about 75% of all globally harvested areas of maize, rice, wheat, and soybeans (Glycine max L.) between 1983 and 2009 (Kim et al., 2019). The IPCC has also predicted a shift in the water cycle where the higher latitudes will receive increased precipitation while the mid-latitudes and those areas already prone to drought will encounter a more substantial decrease in water supply (IPCC, 2014). Daryanto et al. (2016) synthesized 144 studies between 1980 and 2015, and reported an average yield reduction of about 21% for wheat and 39% for maize due to drought. Zhang et al. (2018), using a meta-analysis approach including over 110 independent studies, recorded a 28% and 25% yield reduction due to drought in wheat and rice, respectively, with the largest reduction associated with stress during grain-filling. Similarly, Sehgal et al. (2018) reported that the most critical growth stages with significant reductions in yield due to drought and/or heat stress were the reproductive and grain-filling stages. Hence, a better understanding of plant’s responses to both heat and drought stresses during reproductive and grain-filling stages is crucial to provide new opportunities for breeding programs to enhance the rate of success in developing stress-tolerant genotypes.

Remote sensing approaches allow for data collection on much larger studies encompassing a wide genetic diversity in order to phenotype for abiotic stress resilience. Remote sensing has been utilized for a variety of purposes such as measuring canopy height (Varela et al., 2017; Thompson et al., 2018; Thompson et al., 2020; Zhou et al., 2020), biomass (Neumann et al., 2015; Padilla-Chacón et al., 2019), canopy temperature (Romano et al., 2011; Pauli et al., 2016; Graß et al., 2020), leaf area (Neilson et al., 2015; Zhang et al.,
2019), and predicting yield (Rischbeck et al., 2016; Becker and Schmidhalter, 2017; El-Hendawy et al., 2017; Zhou et al., 2020). Through the use of specialized vegetation indices (VIs) or spectral bands alone, remote sensing can quickly and efficiently collect data on different traits simultaneously, non-destructively, and with a high spatio-temporal frequency. In addition, remote sensing presents the opportunity of correlating an index with the trait of interest, without being confounded by a differential time-stamp, unlike manual measurements (Janse, 2017; Xue and Su, 2017).

In order to effectively utilize remote sensing for the diagnosis of drought and heat stress impacts on crops, the data obtained should help in understanding complex physiological processes that determine yield, at a scale that cannot be achieved by manual methods. Recently, there have been attempts to review advances in sensor technology and estimation of agronomic traits such as plant height, biomass or greenness (Araus et al., 2018; Chawade et al., 2019). Hence, to avoid duplication, this review utilizes the progress achieved in the realm of sensor technology and focuses on quantifying key physiological traits or processes that are critical in understanding crop resilience to drought and heat stress during the reproductive period, but more specifically with focus on the grain-filling period. These specific traits include phenotyping for i) time-of-day of flowering (TOF), as a means to escape heat stress during flowering, ii) enhance photosynthetic efficiency by optimizing stay-green versus senescence, iii) water-soluble carbohydrates translocation and contribution to yield under stress, and iv) yield components i.e., grain number and grain size determination to provide in-season (and before harvest) yield estimates. These traits define major physiological and agronomic aspects related to heat and drought stress resilience in crops and are complex, labor-intensive, time-consuming to measure, and change dynamically over time to be effectively captured through traditional methods. Opportunities exist with each trait to increase the throughput and accuracy of trait determination via remote sensing. This review
aims to identify ways to utilize advances in remote sensing and to strengthen efforts towards developing heat and drought tolerant crops for the future. Finally, the review identifies limitations and bottlenecks in remote sensing methods and provides recommendations for future research in order to overcome these limitations.

Time-of-day of flowering (TOF) – A route to escape heat stress

Historically, adaption to abiotic stresses has been acquired naturally in crops through evolution, but crops are not equipped to deal with significant intra- and inter-annual climate variability faced under current and predicted future climate. Traits that induce heat stress resilience can be classified into three categories: tolerance, avoidance, and escape. Tolerance is defined by the ability of the plants to continue operating their physiological processes under stressful conditions (Khan *et al.*, 2014). Traits that define avoidance allow normal processes to continue by creating a more favorable microclimate. An excellent example for heat stress avoidance is transpirational cooling, wherein canopy temperature is decreased to optimal levels even under severe ambient hotter environments (Lin *et al.*, 2017). This trait, however, is highly beneficial under sufficient water supply (Julia and Dingkuhn, 2013) but not beneficial under combined drought and heat stresses, as the competition to conserve water to survive drought is prioritized (Lin *et al.*, 2017). Escape on the other hand, provides the opportunity for sensitive physiological processes to occur during favorable times of the season (macro-escape) or the day (micro-escape).

Shortening crop growth duration in order to complete their life cycle or to prevent exposure to severe hot and dry summers would be an example for macro-escape (Stone, 2001; Barnabás *et al.*, 2008), while adjusting their sensitive flowering time to cooler hours with more favorable vapor pressure deficit (VPD) conditions is an example for micro-escape (Sheehy *et al.*, 2005; Jagadish, 2020). Heat stress and higher VPD during flowering leads to
significant yield reductions in a large variety of crops and the inclusion (naturally or through genetic improvement) of an early morning flowering trait has been shown to significantly reduce spikelet sterility and yield losses in rice (Ishimaru et al., 2010; Hirabayashi et al., 2015; Bheemanahalli et al., 2017) and sorghum (Chiluwal et al., 2020). Although crops can employ tolerance, avoidance, or escape independently or in combination, this section focuses on advancing methods to phenotype for TOF as an effective means to minimize crop damage from heat and drought stresses (Jung and Müller, 2009; Jagadish et al., 2015). Currently, the TOF is manually phenotyped, which is tedious, prone to human error (subjective to bias), confounded by spatio-temporal variability of measurements, and can only be measured on a limited number of genotypes (Ishimaru et al., 2010; Aiqing et al., 2018; Chiluwal et al., 2020; Pokharel et al., 2020) (Fig. 1A). Traditionally, researchers have identified the flowering pattern in crops by counting the number of opened flowers at specific time increments or by marking opened flowers by fine-tipped pens (Hirabayashi et al., 2015), but this can lead to confounding results as any physical stimuli can alter the flowering pattern (Kobayasi et al., 2010).

Steps toward optimizing this methodology to reduce temporal variability with manual measurements and to overcome physical stimuli induced by human touch have been proposed. For rice, Kobayasi et al. (2010) utilized digital cameras to determine the flower opening time. This allowed for more frequent measurements (10 minute intervals), created a physical representation of the inflorescence at the specified time point so it could be evaluated, repeatedly if necessary, at a later date. This approach also enhanced accuracy by utilizing a tripod and a timer to initiate the data collection. Significant steps have been made in the last few years, which have allowed to increase the number of genotypes phenotyped, and reduced the variability in measurements. The first step forward came via utilizing fixed field-based phenotyping systems such as the Field Scanalyzer phenotyping platform. The unit
contains multiple sensors including high resolution digital cameras which, when combined with machine learning, can positively identify flowering in wheat (Sadeghi-Tehran et al., 2017). This methodology has an accuracy ranging from 76 to 92% and its imprecisions are linked to the size and color of the anthers as they can vary amongst genotypes (Sadeghi-Tehran et al., 2017) (Table 1). A significantly greater challenge in determining the flowering opening time was observed in *Setaria viridis*, wherein the flower opening was predominant during the night in all three tested accessions (Desai et al., 2018). A Raspberry Pi system equipped with infrared imaging allowed the authors to correlate the flower opening time of the night with the movement in floral bristles, coinciding with extrusion of anthers (Desai et al., 2018) (Table 1). The ability to capture the night-time flower opening is important to quantify the trait in some wild species known to predominantly flower during night (rice; Sheehy et al., 2007) or for capturing late evening flowering as seen in wheat (Aiqing et al., 2018).

A mobile methodology has been developed by utilizing a high-clearance field-based high-throughput mobile phenotyping platform outfitted with multiple high resolution digital cameras which collected geo-referenced images with the help of a built-in RTK GPS system (Barker et al., 2016; Wang et al., 2019). Utilizing deep learning tools, this methodology is able to correctly identify plant phenology and growth stages and the system was utilized to identify flowering dates, which were associated with plot-based breeder’s score (Wang et al., 2019) (Table 1). The system, however, was not employed to identify TOF due to lack of high temporal measurements on a single day. The success of the system in identifying heading and flowering dates indicates that the system is sensitive enough to be modified to capture images at a high temporal setting to explore the flowering pattern in different crops.

The success of utilizing both fixed field-based phenotyping systems and ground-based mobile phenotyping platforms indicates that aerial high-throughput phenotyping for capturing
TOF in crops is achievable. Unmanned aerial vehicles (UAVs) are capable of carrying extremely high resolution red-green-blue (RGB) digital cameras and as cameras have gotten smaller, this has allowed even smaller UAVs to carry them (Colomina and Molina, 2014) (Fig. 1B). Low altitude flights will allow capturing extremely high resolution images of the canopy in order to quantify the TOF. Two examples for the TOF phenomenon are presented wherein sorghum and rice genotypes vary in the proportion of flowers that open at different times of the day (Fig. 1C, D). The extremely short window (minutes after dawn) in sorghum and a much longer flowering window (hours after dawn) in rice provides the diversity in the scale of operation in crops with TOF, and the efficiency and accuracy required to capture the genetic diversity for this trait. The difference in color between the green leaf background with a contrasting yellow by the anthers provides the opportunity to establish a phenotyping approach that can employ an area- and color-based detection method to define the temporal magnitude of flowering (Fig. 1 C, D). Employing this method will allow for screening a large number of genotypes, at high spatio-temporal frequency, and with increased effectiveness thereby facilitating integration of this trait into abiotic stress breeding programs.

Photosynthetic Efficiency – capturing stay-green versus senescence dynamics

Photosynthesis is one of the key physiological processes which can be optimized for achieving maximum yield potential in crops, with abiotic stresses negatively impacting photosynthetic efficiency which can significantly reduce grain yields (Crafts-Brandner and Salvucci, 2002; Long et al., 2006; Feng et al., 2013; Ambavaram et al., 2014). Attainable maximum yield can be determined by analyzing the amount of light captured, the ability of the plant to convert this energy into biomass, and the proportion of biomass partitioned to grain (Muchow et al., 1990). Improvements in the amount of radiation captured, increases in the partitioning of biomass into grain have been achieved through plant breeding, however,
there is room for further improvement in efficiency in translating intercepted radiation into biomass. Theoretically, maximum potential photosynthetic efficiencies are indicated to be 0.051 for C3 and 0.060 for C4 crops (Long et al., 2005). The maximum short term rates of photosynthetic efficiency recorded reached around 70% of this potential in both C3 and C4 plants while the maximum season long measured efficiencies was about 47% of the maximum for C3 and 57% of the maximum for C4 crops (Monteith, 1977; Beadle and Long, 1985; Piedade et al., 1991; Beale and Long, 1995). Thus, increasing yields to meet the future global demand will rely on the further improvement of photosynthetic efficiency or crops ability to convert captured light energy into biomass.

Possible developments to improve photosynthetic efficiency for heat and drought stress resilience include introducing the C4 photosynthetic pathway into C3 plants, improving Rubisco kinetic properties, and increased photoprotection to reduce high levels of reactive oxygen species (Gowik and Westhoff, 2011; Whitney et al., 2011; Murchie and Niyogi, 2011). Heat and drought stress can increase the oxygenation reaction of Rubisco, which can result in a direct loss of up to 30% of fixed carbon (Raines, 2011). This degradation of fixed C is extremely influential on potential yield when drought or heat stress occur during flowering or grain-filling. In addition, the early onset of senescence due to abiotic stresses is characterized by accelerated chlorophyll degradation and severely reduced photosynthetic efficiency (Hörtensteiner and Feller, 2002; Woo et al., 2018). These negative effects can be reduced through functional stay-green phenotypes, by extending the activity of the photosynthetic machinery (Thomas and Ougham, 2014). Functional stay-green phenotypes are shown to have a positive effect on either yield, heat or drought stress tolerance in sorghum (Sorghum bicolor L.) (Borrell et al., 2014), wheat (Spano et al., 2003; Pinto et al., 2016), barley (Hordeum vulgare L.) (Seiler et al., 2014; Gous et al., 2015), maize (Cairns et al., 2012), and rice (Fu et al., 2011).
Traditional measurements of photosynthetic efficiency are laborious, destructive and fail to detect the subtle changes that occur at the inception of senescence (Šebela et al., 2020). Sequential biomass harvests have been proposed to capture the photosynthetic efficiency for the entire growing season (Zhu et al., 2010), which is highly cumbersome to achieve with large breeding populations. A major milestone in addressing the above limitation was reached through the creation of the laser induced fluorescence transient (LIFT) method for remotely measuring this plant trait (Raesch et al., 2014) (Table 1). The LIFT technique uses a laser at 665 nm to excite the leaves and the fluorescent emission at 690 nm by the plant is collected by a reflective telescope and processed (Kolber et al., 2005, Pieruschka et al., 2012).

Advancements have been made in the mobility of this system to be utilized with highly precise global positioning systems in a field setting; however, it is still quite bulky and requires a large cart or all-terrain vehicle for its operation (Muller et al., 2018). Another limitation of the system is that it can measure an area larger than the targeted leaf, which can confound conclusions due to overlap of multiple layers of leaves within the canopy (Raesch et al., 2014).

A study using hyperspectral imaging on evergreen tree leaves exposed to a simulated short term drought stress, revealed a reduction in photosynthetic efficiency well before chlorophyll degradation was initiated. The use of longwave red-edge vegetation indices such as red edge NDVI (NDRE740) and red edge chlorophyll index (CI740) had significantly strong relationship with photosynthetic efficiency ($R^2 = 0.88$ and 0.72 for stressed and non-stressed leaves, respectively) (Peng et al., 2017) (Table 1). The photochemical reflectance index (PRI) has similar strong relationship with photosynthetic efficiency in flowering plant species under control, drought, and warming scenarios ($R^2 = 0.78 - 0.85$) (Zhang et al., 2017) (Table 1).
The chlorophyll fluorescence, which is shown to quantify photosynthetic efficiency, has been used to measure the effective quantum yield (QY) of photosystem II in order to determine the exact change point at which senescence begins in leaves and floral tissue (Šebela et al., 2015, 2020). Chlorophyll fluorescence measured through QY provides information on the overall efficiency of photochemical reactions in PSII under light-adapted state (Genty et al., 1989), and has been effectively utilized to phenotype a rice diversity panel exposed to water-deficit stress (Šebela et al., 2019). Therefore, using QY as a case study trait, the transition from leaf (handheld) to the plot level using UAVs and the desired phenotype for stress prone environments with source-sink related stay green and senescence pattern is pictorially presented (Fig. 2). The UAV platforms provides the opportunity to move beyond point based leaf or inflorescence-based photosynthetic parameter measurements (Šebela et al., 2015, 2020; Fig. 2A) to whole plant (Fig. 2B) or canopy-based estimations (Fig. 2C), to capture genetic diversity for extending source-sink photosynthetic efficiency. Developing varieties that can trigger senescence in the lower half of the plant or plot while retaining active photosynthetic machinery in the top half or third is a desirable phenotype for heat and drought stress prone environments (Jagadish et al., 2015). This ideotype concept proposed can be realized using advances in the sensor-based technology to help capture the differential onset and rate of senescence at different positions along the plant or plot in large diversity panels or mapping populations (Fig. 2C). Photosynthetic efficiency is an integrated measure of many physiological processes which are difficult to be experimented individually, hence requiring a modelling framework to design a phenotype that can optimize both resource capture and use efficiency to increase yield. Determining opportunities to further enhance photosynthetic efficiency is an ideal target for designing an ideotype through model-based approaches (Hammer et al., 2010; Lobell et al., 2013, 2014; Wu et al., 2019). These approaches can help breed for varieties optimized with functional stay green versus
senescence, enhance assimilate production and transport efficiency to sustain productivity under heat and drought prone environments.

Translocation of water-soluble carbohydrates (WSC)

The end result of photosynthesis is the production of monosaccharides such as glucose and fructose, which form the foundation blocks for storage carbohydrates (polysaccharides) such as starch. Sugars including glucose and fructans, synthesized in leaves are transported to the stem and leaf sheaths and stored as water-soluble carbohydrates (WSC) (also known as non-structural carbohydrates) (Schnyder, 1993; Gebbing, 2003; Ehdai et al., 2006; Fernandez et al., 2020). Subsequently after storage, the accrued WSC in the stem and leaf sheaths are remobilized to the sink tissue during grain-filling (Scofield et al., 2009), with the efficiency of translocation influenced by the genetic diversity in sink strength depending on the crop or species (Cock and Cock and Yoshida 1971; Yoshida, 1981; Kiniry et al., 1992; Kiniry, 1993; Schnyder, 1993; Li et al., 2017).

After removing maintenance costs which can accounts for up to 68% of total WSC allocation, in wheat as much as 0.68 to 0.78 g of yield can be produced for each 1 g of WSC stored through apparent reserve use (Kiniry, 1993). Increased rate of reallocation due to terminal drought has been stated to contribute up to 50% of yield in traditional- and as much as 70% in elite-cultivars (van Herwaarden et al., 1998). Similar responses have been reported with heat (Schittenhelm et al., 2020) and other biotic stresses (Sadras et al., 2020). To minimize damage from stresses, newer phenotyping methods for high WSC storage and translocation are recommended in crops (Blum, 1998, Asseng and van Herwaarden, 2003; Wang et al., 2016; Schittenhelm et al., 2020). Studies exploring genotypic variation for WSC levels have been mainly focused on barley (Gay et al., 1999), wheat (van Herwaarden et al., 2003; Ruuska et al., 2006; Dreccher et al., 2009; Ovenden et al., 2017), rice (Xiong et al.,
2014; Wang et al., 2016; 2017; Moura et al., 2017), and maize (Jones and Simmons, 1983; Uhart and Andrade, 1995; Edreira et al., 2014; Wu et al., 2019; Fernandez et al., 2020).

Traditional methodology for quantifying WSC levels is destructive, time-consuming, expensive, and restricts the number of genotypes or samples that can be realistically processed. Due to the time-consuming nature of sample gathering and processing for WSC, temporal changes can occur within plant samples in response to the changes in the prevailing microclimate. This indicates the need for a high-throughput methodology which can quickly and accurately measure WSC levels in large number of samples. Currently, lab based methods for the extraction of WSC utilizes different approaches in wet chemistry. The original method was developed in 1954 by using anthrone and is still used to this day for ground-truthing or for generating benchmarks or references (Yemm and Willis, 1954; Giri, 2019). To increase throughput, near-infrared reflectance spectroscopy (NIRS) is being utilized alongside traditional wet chemistry methods. This medium-throughput methodology begins by determining the WSC levels in a subset of samples via wet chemistry and then the data generated was correlated with NIRS reflectance spectra. This methodology has been utilized on different crops including wheat (Rebetzke et al., 2008; Wang et al., 2011; Giri, 2019) rice (Wang et al., 2016), and maize (Campo et al., 2013).

The first step towards a true high-throughput phenotyping method for stem WSC levels was attempted on four recombinant inbred wheat lines utilizing a hyperspectral radiometer (Dreccer et al., 2014). The radiometer, with a sampling range from 350-2500 nm, was mounted onto a 4-wheel drive motorbike at 1.35 m above the soil. The remotely-sensed WSC levels were then confirmed in the laboratory utilizing the anthrone method, presenting a significantly strong relationship ($R^2 = 0.90$) averaged across two years (Dreccer et al., 2014) (Table 1). It was not until 2017 when hyperspectral imaging was used again to evaluate the concentration of WSC. A study involving estimation of sucrose content in maize leaves had
success in utilizing hyperspectral imaging of the adaxial surface of a leaf with an illuminated leaf clip contact probe and partial least squares regression (PLSR) models (Yendrek et al., 2017) (Table 1). While not as successful as Dreccer et al. (2014), the PLSR model was still able to predict sucrose content within the leaf with an R^2 value of 0.62. Garriga et al. (2017) utilized the same hyperspectral radiometer model as Dreccer et al. (2014) to predict WSC in a large variety trial, including 384 cultivars and advanced lines of spring wheat in both well-watered and watered-stressed environments. The radiometer was placed at a 45 degree angle and swept over the plot three times and, utilizing multivariate regression models, the study was able to predict stem WSC with R^2 of 0.56 (Garriga et al., 2017) (Table 1). It is unclear whether the difference in coefficients of determinations between Dreccer et al. (2014) and Garriga et al. (2017) was due to the angle at which the reflectance was obtained or other confounding factors, but these procedures need to be further standardized to accurately reflect the ground-truth observational data.

The next step forward in quantifying WSC levels via a high-throughput methodology is by implementing machine learning. This methodology has not been implemented with a row crop, however it was recently tested with perennial ryegrass. The authors used a hyperspectral radiometer as well as a light shield in order to capture the spectra under stable light conditions from 960 different plants, comprised of 50 experimental perennial ryegrass varieties (Smith et al., 2020). The light shield was manually placed on each plant and artificial light within the shield was used as the light source. Comparatively, the cubist model resulted in an R^2 value of 0.49 while the PLSR model was only able to obtain an R^2 of 0.19 (Smith et al., 2020). Although promising, the methodology may not be practical and too laborious to implement on multi-location trials that involve diversity panels or mapping populations in order to make it applicable to breeding programs. With limited research into the feasibility of utilizing hyperspectral imaging and machine learning for rapid, accurate
measurements, the methodology cannot be discredited nor confirmed as the path forward for accurate high-throughput evaluation.

Estimating yield and key yield related parameters

The economic yield of a crop is defined as the biological yield multiplied by the harvest index (HI) of dry matter or the product of grain number and grain weight (Osaki et al., 1994). The ability to accurately predict yield in both stressed and non-stressed environments is an endeavor that is being continued for decades. Yield prediction is a complicated undertaking due to the dynamic environmental changes that fluctuate on a large temporal scale, from daily to yearly, and on a large geographical area, from local to regional scales, resulting in large variations in attainable crop yields. This is particularly true for heat and drought-prone environments, which lead to lower seed numbers when stress occurs immediately before or coincides with flowering (Fischer, 1985; Jagadish et al., 2010; Prasad et al., 2015; Prasad et al., 2017; Bheemanahalli et al., 2019) or loss in seed weight with stress during grain-filling (Asana et al., 1958; Wardlaw, 1970; 1971; Lawas et al., 2018; Hein et al., 2020).

Yield forecasts for regional, national and international cropping systems involve highly intricate and complicated systems utilizing an enormous amount of data and multiple regression models or machine learning (Jeong et al., 2016; Iizumi et al., 2018; Han et al., 2020; Schwalbert et al., 2020). Advances are being made in order to estimate yield within the season in order to aid in making important management decisions in nominal, heat stress, or drought stress environments. Hence, to predict yield more reliably and accurately, particularly under abiotic stress prone environments, approaches to remotely determine the number of heads in a plot and the number of seeds on the head is required.

The first step to gaining the ability to predict yield is acquiring the capacity to accurately identify heads or panicles in crops. This area of remote sensing has garnered
increased interest and utilizes different strategies employing machine and deep learning tools to ascertain accurate counts. One such experiment in 2017 attempted to identify rice panicles by applying a Convolutional Neural Network (CNN) classification and entropy rate super-pixel optimization to 684 images of pot-grown rice (Xiong et al., 2017). This method outperformed three previously identified methods with an F-measure indicator, which accounts for precision and recall of 0.77 while the previous methodologies could only reach an F-measure indicator of 0.44 (Xiong et al., 2017) (Table 1).

The CNNs have also been utilized to detect and count the number of wheat spikes within a plot. This was achieved by employing a ground based steel cart, with a central overhead rail equipped with high resolution cameras capable of being mounted at differing angles in relation to the crop of interest (Hasan et al., 2018). The Faster R-CNN model using 305 training images at different growth stages was able to attain on average a 93% accuracy on the 30 test images after training (Ren et al., 2017; Hasan et al., 2018) (Table 1). Similarly, another study using the same approach was equally accurate during early stages after heading, but was more robust during later stages when the leaves senesced and contrasted with greener wheat spikes (Madec et al., 2019). The model achieved high relationship ($R^2 = 0.91$) when the resolution of the image was 0.26 mm but reduced ($R^2 = 0.33$) when the image resolution was decreased to 0.78 mm, indicating the need for high resolution imagery for accurate spike detection (Madec et al., 2019) (Table 1).

These advances in agricultural object identification are impressive, given how small wheat spikes are compared to other crops. Sorghum has had considerably more research into developing accurate models for extracting and counting heads (Ghosal et al., 2009; Malambo et al., 2019; Oh et al., 2019; Lin and Guo, 2020). Even though sorghum has much larger sized head than wheat spikes, research faces the same challenges while utilizing UAVs to obtain imagery: changing light conditions over the duration of a flight, complex and intricate
backgrounds, and genotypic variations in head color, size, or shape and overlapping heads (Guo et al., 2018) (Table 1). The same authors employed a pixel-based segmentation approach to train a digital terrain surface model (DTSM) which is a supervised machine learning based on the decision tree, resulting in a F-measure of 0.92 for 52 images and 0.89 for 40 images per plot. The research group was then able to establish a deep learning framework with minimum supervision using CNN for sorghum head detection, and achieved an R^2 of 0.88 with the training set comprising of only 40 randomly selected images (Ghosal et al., 2019) (Table 1). In a more recent study, CNN models with image segmentation accurately estimated the number of sorghum heads ($R^2 = 0.90$) and characterized the shape and size of individual heads (Lin and Guo, 2020) (Table 1). This advancement could be key to estimating yield in sorghum, but seed number and weight are additional traits to be determined for effective yield prediction.

Research into using remote sensing to quantify seed number and grain weight of a plant in a field environment is limited. There has been success in controlled environments in which a 3D reconstruction of rice showed that seed number for the panicle had a significant ($p < 0.05$) positive correlation with the voxel count of the reconstruction throughout the grain-filling period ($r = 0.61$ to 0.70) (Sandhu et al., 2019). This same experiment also found significant ($p < 0.05$) positive correlation ($r = 0.48$ to 0.74) between voxel count and seed weight which increased approaching maturity. This method of obtaining the estimated seed number and weight works moderately well in the laboratory setting but will be challenging to adopt under field conditions.

This challenge has been approached using a simpler method in order to allow for the methodology and the tool developed to be utilized by both researchers and farmers. This method follows an allometric determination method by taking RGB images with a digital camera of over 1000 sorghum heads (closed panicle type). The head volume is determined by...
using the head length and diameter (measured using a ruler) and assuming the head is cylindrical and comparing this volume to grain number per head resulted in a strong relationship (R^2 of 0.68 and 0.58) for commercial hybrids and inbreds, respectively (Ciampitti et al., 2014) (Fig. 3A). At last, this approach has been extended to estimate final yield using variables such as row spacing and estimated seed number per kilogram of grain harvested (Ciampitti et al., 2015) (Fig. 3B). The progress achieved using this method integrated with machine learning tools is currently under development (Fig. 3C). Currently, the method is under substantial refinement to consider a new machine learning approach via utilization of edge-detection technology for clearly defining head volume accounting for different sizes and types of panicles, i.e., open versus closed heads. Alternatively, current high-throughput estimations of yield are derived through the analysis of vegetation indices. While this method can provide relatively accurate prediction of yield, it is a secondary measure of yield and the reliability of the prediction only increases near maturity and could vary based on environmental changes (Galli et al., 2020). In the near future, the primary measurement based on remote sensing that is being developed (Fig. 3C), can be scalable to identify grain number on large populations in sorghum under field conditions.

Limitations and future research directions

Keeping in line with the scope of the review, we have indicated limitations and provided recommendations of utilizing advances in sensor technology to develop high-throughput phenotyping approaches to capture physiological aspects that will help enhance heat and drought stress resilience in crops.

Time-of-day of flowering - Achieving multiple flights at short temporal frequency to record TOF can be a limiting factor for many research programs. Hence, it is recommended to optimize flights that capture a large proportion of the variation on a flowering day to make
the approach of using UAVs for capturing TOF feasible. In addition, the distance between the aerial sensor platform and the flowering field (after accounting for differences in plant height) needs to be optimized for different crops to ensure high quality images for detecting genotypic differences. Algorithms will need to be developed and standardized to capture differences in color and area of foliage and anthers accounting for soil surface in crops such as wheat where the canopy does not close completely.

Photosynthetic efficiency – Designing ideotypes to maintain improved productivity under heat and drought stress and moving beyond stay-green versus senescence concepts implemented at the plant level and small plots to phenotype diversity panels on large area has been the major bottleneck. Progress achieved in sensor technology provides the vehicle to capture temporal (flowering till maturity) changes in stay green versus senescence patterns that will allow for capturing the diversity required to incorporate into breeding programs. Experiments involving large diversity panels will need to be designed innovatively to be able to capture the gradient of changes in stay green and senescence both within and between genotypes.

Tracking water soluble carbohydrates translocation to grains – Limited progress has been achieved in employing sensor-based technology to capture the storage and translocation of WSC in plants because of the dynamic changes, both spatially (leaf, stem and grain) and temporally (within and between days during grain-filling). This is further complicated by the stage, duration and intensity of stress which warrant the need to capture the dynamics but still establish a practically feasible approach. Taking sensor-based carbon balance in different plant parts in the morning and evening throughout the grain-filling period could help establish solid benchmarks. Using these established benchmarks, environment specific temporal intervals (in days) can be defined at which images needs to be taken that are both practical and capture >90% of changes between flowering and physiological maturity.
Further, the community would still need to improve the accuracy of capturing the changes in WSC in plant parts, building on the progress achieved by Dreccer et al. (2014) and Garriga et al. (2017).

Estimating grain number and weight under stress – Heat and drought stress during flowering and post-flowering stages induce non-uniform seed-set (gaps) within panicles and heads, which deviates from the normal fully filled panicles that the system (Fig 3A, B) has been optimized to estimate. Having a mosaic of loss in seeds within panicles due to stress will challenge the approach developed. This would require extensive training before it can be employed or used effectively to estimate the seed loss under stress. Currently, the integration of machine learning tools into the approach could help but would still require a large sample size with different proportion of loss in seed numbers in panicles or heads, before the technology can be standardized. Unlike loss in seed numbers, reduction in seed weight within panicles and different genotypes due to heat and drought stress presents a lesser challenge and can be captured using the current model.

Conclusions

The review provides an overview of current advances and future directions related to key physiological processes related to heat and drought stress resilience during reproductive and grain-filling periods. In order to take advantage of naturally occurring trait variation to increase heat and drought stress resilience in crop varieties, collaborative science is imperative and inevitable. Tools in machine and deep learning in relation to agriculture are becoming fundamentally critical for evaluation of these hard to quantify and time-sensitive
traits. In order to make progress at the rate which is required by global demand in a changing climate, traditional and hand-measurements must be evolved in order to accurately, quickly, and reliably obtain more scalable measurements with high-resolution. The limitations and future research directions highlighted for the four key areas provide the next steps to establish high-throughput phenotyping platforms for field-based estimations and for incorporating these traits into global abiotic stress breeding programs.
Acknowledgements

We thank the financial support by National Science Foundation, USA Award No. 1736192 to Krishna Jagadish, Kansas State University. Contribution 21-090-J from the Kansas Agricultural Experiment Station. We also thank Anuj Chiluwal and Paula Demarco for supplying the sorghum images in Figures 1 and 3, respectively.

Conflict of interest

Authors declare no conflict of interest
References

Aghamolki MTK, Yusop MK, Oad FC, Zakikhani H, Jaafar HZ, Kharida S, Musa MH. 2013. Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. Journal of Food Agriculture and Environment 12, 741 – 746.

Aiqing S, Somayanda I, Sebastian SV, Singh K, Gil K, Prasad PVV, Jagadish SVK. 2018. Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat. Crop Science 58, 380 – 392.

Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. 2014. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature Communications 5, 5302.

Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE. 2018. Translating high-throughput phenotyping into genetic gain. Trends in Plant Science 23, 451 – 466.

Asana RD, Saini AD, Ray D. 1958. Studies in physiological analysis of yield III. The rate of grain development in wheat in relation to photosynthetic surface and soil moisture. Physiologia Plantarum 11, 655 – 665.

Asseng S, Ewert F, Martre P, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5, 143 – 147.

Asseng S, van Herwaarden AF. 2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil 256, 217 – 229.

Balla K, Karsai I, Bónis P, Kiss T, Berki Z, Horváth A, Mayer M, Bencze S, Veisz O. 2019. Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE 14, e0222639.
Barker III J, Zhang N, Sharon J, Steeves R, Wang X, Wei Y, Poland J. 2016. Development of a field-based high-throughput mobile phenotyping platform. Computers and Electronics in Agriculture 122, 74 – 85.

Barnabás B, Jäger K, Fehér A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment 31, 11 – 38.

Beadle CL, Long SP. 1985. Photosynthesis – is it limiting to biomass production? Biomass 8, 119 – 168.

Beale CV, Long SP. 1995. Can perennial C-4 grasses attain high efficiencies of radiant energy-conversion in cool climates. Plant, Cell and Environment 18, 641 – 650.

Becker E, Schmidhalter U. 2017. Evaluation of yield and drought using active and passive spectral sensing systems at the reproductive stage in wheat. Frontiers in Plant Science 8, 379.

Bheemanahalli R, Sathishraj R, Manoharan M, Sumanth HN, Muthurajan R, Ishimaru T, Jagadish SVK. 2017. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice?. Field Crops Research 203, 238 – 242.

Bheemanahalli R, Sunoj VSJ, Saripalli G, Prasad PVV, Balyan HS, Gupta PK, Grant N, Gill KS, Jagadish SVK. 2019. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Science 59, 684 – 696.

Blum A. 1998. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100, 77 – 83.

Borrell AK, Oosterom EJV, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL. 2014. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytologist 203, 817 – 830.
Cairns JE, Sanchez C, Vargas M, Ordoñez R, Araus JL. 2012. Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. Journal of Integrative Plant Biology 54, 1007 – 1020.

Campo L, Monteagudo AB, Salleres B, Castro P, Moreno-Gonzalez J. 2013. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability. Spanish Journal of Agricultural Research 11, 463 – 471.

Chawade A, Ham JV, Blomquist H, Bagge O, Alexandersson E, Ortiz R. 2019. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9, 258.

Chiluwal A, Bheemanahalli R, Kanaganahalli V, Boyle D, Perumal R, Pokharel M, Oumarou H, Jagadish SVK. 2020. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant Cell and Environment 43, 448 – 462.

Ciampitti IA, Azevedo AJ, Balboa GR, Bossio N. 2015. Sorghum yield app, a new tool for predicting sorghum yields: validation and calibration. ASA, CSSA, and SSSA International Annual Meeting (2015). Poster Number: 501.

Ciampitti IA, Balboa GR, Prasad PVV. 2014. Development of a new tool for estimating sorghum yields at the farm-scale. ASA, CSSA and SSSA International Annual Meeting (2014). Poster Number: 342.

Cock JH, Yoshida S. 1971. Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science 41, 226 – 234.
Colomina I, Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing 92, 79 – 97.

Crafts-Brandner SJ, Salvucci ME. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology 129, 1773 – 1780.

Daryanto S, Wang L, Jacinthe PA. 2016. Global synthesis of drought effects on maize and wheat production. PLOS ONE, e0156362.

Desai JS, Slabaugh E, Liebelt DJ, Fredenberg JD, Gray BN, Jagadish SVK, Wilkins O, Doherty CJ. 2018. Neural net classification combined with movement analysis to evaluate Setaria viridis as model system for time of day of anther appearance. Frontiers in Plant Science 9, 1585.

Dreccer MF, Barnes LR, Meder R. 2014. Quantitative dynamics of stem water soluble carbohydrates in wheat can be monitored in the field using hyperspectral reflectance. Field Crops Research 159, 70-80.

Dreccer MF, van Herwaarden AF, Chapman SC. 2009. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crops Research 112, 43 – 54.

Edreira JIR, Mayer LI, Otegui ME. 2014. Heat stress in temperate and tropical maize hybrids: kernel growth, water relations and assimilate availability for grain filling. Field Crops Research 166, 162 – 172.

Ehdaie B, Alloush A, Madore MA, Waines JG. 2006. Genotypic variation for stem reserves and mobilization in wheat: II. postanthesis changes in internode water-soluble carbohydrates. Crop Science 46, 2093-2103.
El-Hendawy S, Hassan WM, Al-Suhaibani NA, Schmidhalter U. 2017. Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation. Agricultural Water Management 182, 1 – 12.

Feng B, Lui P, Li G, Dong ST, Wang FH, Wong LA, Zhang JW. 2013. Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. Journal of Agronomy and Crop Science 200, 143 – 155.

Fernandez JA, Messina, CD, Rotundo J, Ciampitti IA. 2020. Integrating nitrogen and water-soluble carbohydrates dynamics in maize: a comparison between hybrids from different decades. Crop Science doi: 10.1002/csc2.20338

Fischer RA. Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science 105, 447 – 461.

Food and Agriculture Organization of the United Nations. FAO Stat: Annual Population [Internet]. 2019 Available from: http://www.fao.org/faostat/en/#data/OA

Food and Agriculture Organization of the United Nations. The future of food and agriculture: Trends and challenges [Internet]. 2017 Available from: http://www.fao.org/3/a-i6583e.pdf

Fu J, Yan Y, Kim MY, Lee SH, Lee BW. 2011. Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome 54, 235 – 243.

Galli G, Horne DW, Collins SD, Jung J, Chang A, Fritsche-Neto R, Rooney WL. 2020. Optimization of UAS-based high-throughput phenotyping to estimate plant health and grain yield in sorghum. The Plant Phenome Journal 3, e20010.
Garriga M, Romero-Bravo S, Estrada F, Escobar A, Matus I, del Pozo A, Astudillo CA, Lobos GA. 2017. Assessing wheat traits by spectral reflectance: do we really need to focus on predicted trait-values or directly identify the elite genotypes group?. Frontiers in Plant Science 8, 280.

Gay AP, Spink JH, Foulkes MJ. 1999. Preliminary assessment of the potential for variety typing in winter barley: stem water soluble carbohydrate measurements. Project Report no. 186. Home-Grown Cereals Authority.

Gebbing T. 2003. The enclosed and exposed part of the peduncle of wheat (Triticum aestivum) – spatial separation of fructan storage. New Phytologist 159, 245 – 252.

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) – General Subjects 990, 87 – 92.

Ghosal S, Zheng B, Chapman SC, et al. 2019. A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics 2019, 1525874.

Giri A. 2019. Wheat improvement for heat and drought stress tolerance. PhD thesis, Kansas State University http://hdl.handle.net/2097/39551 Accessed September 2020.

Gourdji SM, Sibley AM, Lobell DB. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters 8, 024041.

Gous PW, Hickey L, Christopher J, Franckowiak J, Fox GP. 2015. Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica 207, 305 – 317.
Gowik U, Westhoff P. 2011. The Path from C3 to C4 Photosynthesis. Plant Physiology 155, 56 – 63.

Graß R, Böttcher U, Lilienthal H, Wild P, Kage H. 2020. Is canopy temperature suitable for high throughput field phenotyping of drought resistance of winter rye in temperate climate?. European Journal of Agronomy 120, 126104.

Guo W, Zheng B, Potgieter AB, et al. 2018. Aerial imagery analysis – quantifying appearance and number of sorghum heads for application in breeding and agronomy. Frontiers in Plant Science 9, 1544.

Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany 61, 2185 – 2202.

Han J, Zhang Z, Cao J, Luo Y, Zhang L, Li Z, Zhang J. 2020. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing 12, 236.

Hasan MM, Chopin JP, Laga H, Miklavcic S. 2018. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14, 100.

Hein NT, Bheemanhalli R, Wagner D et al. 2020. Improved cyber-physical system captured post-flowering high night temperature impact on yield and quality of field grown wheat. Scientific Reports 10, 22213.

Hirabayashi H, Sasaki K, Kambe T, et al. 2015. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of Experimental Botany 66, 1227 – 1236.
Hörtensteiner S, Feller U. 2002. Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany 53, 927 – 937.

Iizume T, Shin Y, Kim W, Kim M, Choi J. 2018. Global crop yield forecasting using seasonal climate information from a multi-model ensemble. Climate Services 11, 13 – 23.

Intergovernmental Panel on Climate Change. Climate change 2014: synthesis report [Internet]. 2014 [cited 2020 Apr 25]. Available from: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M. 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany 106, 515 – 520.

Jagadish SVK, Kishor PBK, Bahuguna RN, von Wirén N, Sreenivasulu N. 2015. Staying alive or going to die during terminal senescence – an enigma surrounding yield stability. Frontiers in Plant Science 6, 1070.

Jagadish SVK. 2020. Heat stress during flowering in cereals – effects and adaptation strategies. New Phytologist 226, 1567 – 1572.

Jagadish SVK, Murty MVR, Quick WP. 2015. Rice responses to rising temperatures – challenges, perspectives and future directions. Plant, Cell and Environment 38, 1686 – 1698.

Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany 61, 143 – 156.
Janse PV. 2017. Hyperspectral remote sensing for agriculture: a review. International Journal of Computer Applications 172, 30 – 34.

Jeong JH, Resop JP, Mueller ND, et al. 2016. Random forests for global and regional crop yield predictions. PLoS ONE 11, e0156571.

Jones RJ, Simmons SR. 1983. Effect of altered source-sink ratio on growth of maize kernels. Crop Science 23, 129 – 134.

Julia C, Dingkuhn M. 2013. Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate. European Journal of Agronomy 49, 50 – 60.

Jung C, Müller A. 2009. Flowering time control and application in plant breeding. Trends in Plant Science 14, 563 – 573.

Khan PSSV, Nagamallaiah GV, Rao MD, Sergeant K, Hausman JF. 2014. Abiotic stress tolerance in plants: insights from proteomics. In: Ahmad P, Rasool S, eds. Emerging technologies and management of crop stress tolerance. Academic Press doi: 10.1016/B978-0-12-800875-1.00002-8

Kim W, Iizumi T, Nishimori M. 2019. Global patterns of crop production losses associated with droughts from 1983 to 2009. Journal of Applied Meteorology and Climatology 58, 1233 – 1244.

Kiniry JR. 1993. Nonstructural carbohydrate utilization by wheat shaded during grain growth. Agronomy Journal 85, 844 – 849.

Kiniry JR, Tischler CR, Rosenthal WD, Gerik TJ. 1992. Nonstructural carbohydrate utilization by sorghum and maize shaded during grain growth. Crop Science 32, 131 – 137.
Kobayasi K, Matsui T, Yoshimoto M, Hasegawa T. 2010. Effects of temperature, solar radiation, and vapor-pressure deficit on flower opening time in rice. Plant Production Science 13, 21 – 28.

Kolber Z, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B. 2005. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynthesis Research 84, 121 – 129.

Lawas LMF, Shi W, Yoshimoto M, Hasegawa T, Hincha DK, Zuther E, Jagadish SVK. 2018. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Research 229, 66 – 77.

Li G, Pan J, Cui K, Yuan M, Hu Q, Wang W, Mohapatra PK, Nie L, Huang J, Peng S. 2017. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Frontiers in Plant Science 8, 1369.

Lin H, Chen Y, Zhang H, Fu P, Fan Z. 2017. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology 31, 2202 – 2211.

Lin Z, Guo W. 2020. Sorghum panicle detection and counting using unmanned aerial system images and deep learning. Frontiers in Plant Science 11, 534853.

Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W. 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change 3, 497 – 501.
Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL.
2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516 – 519.

Long S, Zhu Z, Naidu S, Raines C, Ort D. 2005. Limits to efficiencies of primary production, constraints, and opportunities. In: Sylvester BR, Wiseman J. Yields of farmed species: constraints and opportunities in the 21st century. Nottingham, UK: Nottingham University Press, 319 – 333.

Long SP, Zhu X, Naidu SL, Ort DR. 2006. Can improvement in photosynthesis increase crop yields?. Plant, Cell and Environment 29, 315 – 330.

Madec S, Jin X, Lu H, De Solan B, Liu S, Duyme F, Heritier E, Baret F. 2019. Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural and Forest Meteorology 264, 225 – 234.

Malambo L, Popescu S, Ku NW, Rooney W, Zhou T, Moore S. 2019. A deep learning semantic segmentation-based approach for field-level sorghum panicle counting. Remote Sensing 11, 2939.

Monteith JL. 1977 Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London 281, 277 – 294.

Moura DS, Brito GG, Campos AD, Moraes I, Porto F, Teixeira S, Fagundes P, Andres A, Schreiber F, Deuner S. 2017. Non-structural carbohydrates accumulation in contrasting rice genotypes subjected to high night temperatures. Journal of Agricultural Science 9, 12.

Muchow RC, Sinclair TR, Bennett JM. 1990. Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal 82, 338 – 343.
Muller O, Keller B, Zimmermann L, et al. 2018. Field phenotyping and an example of proximal sensing of photosynthesis under elevated CO₂. Proceedings of the 14th International Conference on Precision Agriculture doi: 10.1109/IGARSS.2018.8517301

Murchi EH, Niyogi KK. 2011. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology 155, 86 – 92.

Neilson EH, Blomstedt CK, Berger B, Møller BL. 2015. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C₄ cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany 66, 1817 – 1832.

Neumann K, Klukas C, Friedel S, Rischbeck P, Chen D, Entzian A, Stein N, Graner A, Kilian B. 2015. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant, Cell and Environment 38, 1980 – 1996.

Oh M, Olsen P, Ramamurthy KN. 2019. Counting and segmenting sorghum heads. arXiv: 1905.13291. Available at: https://arxiv.org/abs/1905.13291.

Osaki M, Matsumoto M, Shinano T, Tadano T. 1994. Parameters determining yield of field crops in relation to the amount of nitrogen absorbed. Soil Science and Plant Nutrition 40, 19 – 28.

Ovenden B, Milgate A, Lisle C, Wade LJ, Rebetzke GJ, Holland JB. 2017. Selection for water-soluble carbohydrate accumulation and investigation of genetic x environment interactions in an elite wheat breeding population. Theoretical and Applied Genetics 130, 2445 – 2461.
Padilla-Chacón D, Valdivia CBP, Garcia-Esteva A, Cayetano-Marcial MI, Shibata JK. 2019. Phenotypic variation and biomass partitioning during post-flowering in two common bean cultivars (*Phaseolus vulgaris* L.) under water restriction. South African Journal of Botany 121, 98 – 104.

Pauli D, Andrade-Sanchez P, Carmo-Silva AE, *et al.* 2016. Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton. *G3: Genes, Genomes, Genetics* 6, 865 – 879.

Peng Y, Zeng A, Zhu T, Fang S, Gong Y, Tao Y, Zhou Y, Liu K. 2017. Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements. *Journal of Applied Remote Sensing* 11, 026034.

Piedade MTF, Junk WJ, Long SP. 1991. The productivity of the C4 grass *Echinochloa polystachya* on the Amazon floodplain. *Ecology* 72, 1456 – 1463.

Pieruschka R, Klimov D, Berry JA, Osmond CB, Rascher U, Kolber ZS. 2012. Remote chlorophyll fluorescence measurements with the laser-induced fluorescence transient approach. *Methods in Molecular Biology* 918, 51 – 59.

Pinto RS, Lopes MS, Collins NC, Reynolds MP. 2016. Modelling and genetic dissection of staygreen under heat stress. *Theoretical and Applied Genetics* 129, 2055 – 2074.

Pokharel M, Chiluwal A, Stamm M, Min D, Rhodes D, Jagadish SVK. 2020. High night-time temperature during flowering and pod filling affects flower opening, yield and seed fatty acid composition in canola. *Journal of Agronomy and Crop Science* 00, 1 – 18.

Prasad PVV, Djanaguiraman M, Ramasamy P, Ciampitti IA. 2015. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum:
sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science 6, 820.

Prasad PVV, Bheemanahalli R, Jagadish SVK. 2017. Field crops and the fear of heat stress – opportunities, challenges, and future directions. Field Crops Research 200, 114 – 121.

Raesch AR, Muller O, Pieruschka R, Rascher U. 2014. Field observations with laser-induced fluorescence transient (LIFT) method in barley and sugar beet. Agriculture 4, 159 – 169.

Raines CA. 2011. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology 155, 36 – 42.

Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428.

Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA. 2008. Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Australian Journal of Agricultural Research 59, 891 – 905.

Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transaction on Pattern Analysis and Machine Intelligence 39, 1137 – 1149.

Rischbeck P, Elsayed S, Mistele B, Barmeier G, Heil K, Schmidhalter U. 2016. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. European Journal of Agronomy 78, 44 – 59.

Romano G, Zia S, Spreer W, Sanchez C, Cairns J, Araus JL, Müller J. 2011. Use of thermography for high throughput phenotyping of tropical maize adaption in water stress. Computer and Electronics in Agriculture 79, 67 – 74.
Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CLD. 2006. Genotypic variation in water-soluble carbohydrate accumulation in wheat. Functional Plant Biology 33, 799 – 809.

Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ. 2017. Automated method to determine two critical growth stages of wheat: heading and flowering. Frontiers in Plant Science 8, 252.

Sadras VO, Fereres E, Borrás L, Garzo E, Moreno A, Araus JL, Fereres A. 2020. Aphid resistance: an overlooked ecological dimension of nonstructural carbohydrates in cereals. Frontiers in Plant Science 11, 937.

Sandhu J, Zhu F, Paul P, Gao T, Dhatt B, Ge Y, Staswick P, Yu H, Walia H. 2019. PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits. Plant Methods 15, 162.

Schittenhelm S, Langkamp-Wedde T, Kraft M, Kottmann L, Matschiner K. 2020. Effect of two-week heat stress during grain filling on stem reserves, senescence, and grain yield of European winter wheat cultivars. Journal of Agronomy and Crop Sciences doi.org/10.1111/jac.12410

Schnyder H. 1993. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling – a review. New Phytologist 123, 233 – 245.

Schwalbert R, Amado T, Nieto L, Corassa G, Rice C, Peralta N, Schaubberger B, Gornott C, Ciampitti I. 2020. Mid-season county-level corn yield forecast for US corn belt integrating satellite imagery and weather variables. Crop Science 60, 739 – 750.
Scofield GN, Ruuska SA, Aoki N, Lewis DC, Tabe LM, Jenkins CLD. 2009. Starch storage in the stems of wheat plants: localization and temporal changes. Annals of Botany 103, 859 – 868.

Šebela D, Bergkamp B, Somayanda IM, Fritz AK, Jagadish SVK. 2020. Impact of post-flowering heat stress in winter wheat tracked through optical signals. Agronomy Journal doi.org/10.1002/agj2.20360

Šebela D, Bheemanahalli R, Tamilselvan A, Kadam NN, Jagadish SVK. 2019. Genetic dissection of photochemical efficiency under water-deficit stress in rice. Plant Physiology Reports 24, 238 – 339.

Šebela D, Quiñones C, Olejníčková J, Jagadish SVK. 2015. Temporal chlorophyll fluorescence signals to track changes in optical properties of maturing rice panicles exposed to high night temperature. Field Crops Research 177, 75 – 85.

Seiler C, Harshavardhan VT, Reddy PS, et al. 2014. Abscisic acid flux alterations result in differential abscisic acid signaling in responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiology 164, 1677 – 1696.

Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad PVV, Nayyar H. 2018. Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Sciences 9, 1705.

Sheehy J, Elmido A, Centeno G, Publico P. 2005. Searching for new plants for climate change. Journal of Agricultural Meteorology 60, 463 – 468.
Sheehy JE, Mabilangan AE, Dionora MJA, Pablico PP. 2007. Time of day of flowering in wild species of the genus *Oryza*. International Rice Research Notes doi: 10.3860/irrn.v32i1.1082

Smith C, Karunaratne S, Badenhorst P, Cogan N, Spangenberg G, Smith K. 2020. Machine learning algorithms to predict forage nutritive value of in situ perennial ryegrass plants using hyperspectral canopy reflectance data. Remote Sensing 12, 928.

Spano G, Di Fonzo N, Perrotta C, Platani C, Ronga G, Lawlor DW, Napier JA, Shewry PR. 2003. Physiological characterizations of ‘stay green’ mutants in durum wheat. Journal of Experimental Botany 54, 1415 – 1420.

Stone P. 2001. The effects of heat stress on cereal yield and quality. In: Basra AS, eds. Crop responses and adaptations to temperature stress. Binghamton, NY: Food Products Press, 243 – 291.

Thomas H, Ougham H. 2014. The stay-green trait. Journal of Experimental Botany 65, 3889 – 3900.

Thompson AL, Thorp KR, Conley M, Andrade-Sanchez P, Heun JT, Dyer JM, White JW. 2018. Deploying a proximal sensing cart to identify drought-adaptive traits in upland cotton for high-throughput phenotyping. Frontiers in Plant Science 9, 507.

Thompson CN, Mills C, Pabuayon ILB, Ritchie GL. 2020. Time-based remote sensing yield estimates of cotton in water-limiting environments. Agronomy Journal 112, 975-984.

Uhart SA, Andrade FH. 1995. Nitrogen and carbon accumulation and remobilization during grain filling in maize under difference source/sink ratios. Crop Science 35, 183 – 190.
van Herwaarden A, Richards R, Angus J. 2003. Water soluble carbohydrates and yield in wheat. In ‘Proceedings of the 11th Australian Agronomy Conference’. The Australian Society of Agronomy: Geelong.

van Herwaarden AF, Angus JF, Richards RA, Farquhar GD. 1998. ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertilizer II. carbohydrate and protein dynamics. Crop and Pasture Science 49, 1083 – 1094.

Varela S, Assefa Y, Prasad PVV, Peralta NR, Griffin TW, Sharda A, Ferguson A, Ciampitti IA. 2017. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. Journal of Applied Remote Sensing 11, 036013.

Wang DR, Han R, Wolfrum EJ, McCouch SR. 2017. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa. New Phytologist 215, 658 – 671.

Wang DR, Wolfrum EJ, Virk P, Ismail A, Greenberg AJ, McCouch SR. 2016. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice. Journal of Experimental Botany 67, 6125 – 6138.

Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J. 2019. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. GigaScience 8, giz120.

Wang Z, Liu X, Li R, Chang X, Jing R. 2011. Development of near-infrared reflectance spectroscopy models for quantitative determination of water-soluble carbohydrate content in wheat stem and glume. Analytical Letters 44, 2478 – 2490.

Wardlaw IF. 1970. The early stages of grain development in wheat: response to light and temperature in a single variety. Australian Journal of Biological Sciences 23, 765 – 774.
Wardlaw IF. 1971. The early stages of grain development in wheat: response to water stress in a single variety. Australian Journal of Biological Sciences 24, 1047 – 1055.

Whitney SM, Houtz RL, Alonso H. 2011. Advancing our understanding and capacity to engineer nature’s CO₂ sequestering enzyme, rubisco. Plant Physiology 155, 27 – 35.

Woo HR, Masclaux-Daubresse C, Lim PO. 2018. Plant senescence: how plants know when and how to die. Journal of Experimental Botany 69, 715 – 718.

Wu A, Hammer GL, Doherty A, von Caemmerer S, Farquhar GD. 2019. Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants 5, 380 – 388.

Wu Y, Zhao B, Li Q, Kong F, Du L, Zhou F, Shi H, Ke Y, Liu Q, Feng D, Yuan J. 2019. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition. PLoS ONE 14, e0225753.

Xiong D, Yu T, Ling X, Fahad S, Peng S, Li Y, Huang J. 2014. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology 42, 347 – 356.

Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q. 2017. Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 13, 104.

Xue J, Su B. 2017. Significant remote sensing vegetation indices: a review of developments and applications. Journal of Sensors, 1353691.

Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57, 508 – 514.
Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA. 2017. High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiology 173, 614 – 626.

Yoshida S. 1981. Fundamentals of Rice Crop Science. Manila: The International Rice Research Institute.

Zhang C, Filella I, Liu D, Ogaya R, Llusiá J, Asensio D, Peñuelas J. 2017. Photochemical reflectance index (PRI) for detecting responses of diurnal and seasonal photosynthetic activity to experimental drought and warming in a Mediterranean shrubland. Remote Sensing 9, 1189.

Zhang C, Pumphrey MO, Zhou J, Zhang Q, Sankaran S. 2019. Development of an automated high-throughput phenotyping system for wheat evaluation in a controlled environment. Transactions of the ASABE 62, 61 – 74.

Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J. 2018. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. International Journal of Environmental Research and Public Health 15, 839.

Zhou Jin, Zhou Jia, Ye H, Ali ML, Nguyen HT, Chen P. 2020. Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Computers and Electronics in Agriculture 175, 105576.

Zhu X, Long SP, Ort DR. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61, 235 – 261.
Table 1. Overview of research advances for phenotyping target traits focused in the review.

Trait	Crop	Throughput	Location	Platform	Sensor	Sensor Measured Trait	Observed Agronomic Trait	Reference
Time-of-day of flowering	Wheat	High	Field	Field Scanalyzer	RGB Digital Camera	TOF	TOF	Sadeghi-Tehran et al., 2017
	Setaria viridis	Medium	Lab	Fixed Mount	RGB Digital Camera (Daytime)	TOF	TOF	Desai et al., 2018
	Wheat	High	Field	Tractor Mount	RGB Digital Camera	Percent Heading	Percent Heading	Wang et al., 2019
Photosynthetic efficiency	Barley and Sugar Beet	Medium	Field	Fixed Mount	LIFT System	Chl a	Daily Average Fluorescence Values	Raesch et al., 2014
	Aspen and Cherry Tree	Medium	Field/Lab	Hand-Held	Hyperspectral Radiometer	NDRE₇₄₀	Photosynthetic Efficiency	Peng et al., 2016
					SPAD Meter	Chlorophyll Index	Photosynthetic Efficiency	
Translocation of WSC	Evergreen Shrub Medium Field Hand-Held Field Spectroradiometer PRI Photosynthetic Efficiency Zhang et al., 2017							
---------------------	---							
Wheat High Field Tractor Mount Hyperspectral Radiometer Spectral Region (350 - 1290 nm) WSC Amount Drecker et al., 2014								
Maize Medium Field Hand-Held Hyperspectral Radiometer Reflectance Spectra Sucrose Content Yendrek et al., 2017								
Wheat Medium Field Fixed Mount Hyperspectral Radiometer Spectral Region (350 - 2500 nm) WSC Concentration Garrig a et al., 2014								
Estimating yield and yield parameters	Rice Medium Field Fixed Mount RGB Digital Camera Panicle Count Panicle Count Xiong et al., 2017							
Wheat Medium Field Tractor Mount RGB Digital Camera Spike Count Spike Count Hasan et al., 2018								
Wheat Medium Field Hand-RGB Digital Ear Count Ear Density Madec et al., 2018								
Species	Environment	Method	Imaging System	Head Count	Reference			
-------------	-------------	-----------------------	----------------------------	------------	--------------------------------			
Sorghum	High	UAV-Based	RGB Digital Camera	Head Count	Guo et al., 2018			
	Field				Ghosa et al., 2019			
					Lin and Guo, 2020			
Figure Legends

Figure 1: Quantifying time-of-day of flowering (TOF) in crops. Figure shows potential transition of methodologies in recording TOF in crops and provides cases studies related to TOF in sorghum and rice. Traditional low-throughput measurement via manual counts (A) which is labor intensive, induces temporal variability, and is subject to human error to use of low-altitude UAVs and high resolution imagery to easily acquire high-temporal and accurate data to record TOF (B). Natural alteration of flowering time in sorghum (C; Chiluwal et al., 2020) and the change in flower opening time in rice by genetic incorporation of early morning flowering trait (see far right pie charts) from wild rice into popular variety (D; Ishimaru et al., 2010).

Figure 2: Optimizing stay-green and senescence dynamics. Handheld, indoor high-throughput, and field-based high-throughput techniques for quantifying photosynthetic efficiency is presented using effective quantum yield of photosystem II (QY) as a case study. Handheld devices (A), though sensitive enough to detect subtle changes such as initiation of senescence, are highly laborious, provide data either at a leaf or spike level, and challenging to be deployed on large scale phenotyping. Indoor high-throughput platforms (B) having similar or higher sensing capability can easily acquire trait information on the whole plant automatically without human intervention. Field-based high-throughput platforms (C) have the capability of gathering reflectance data on a large number of genotypes with extreme sensitivity and low-temporal variation.
Figure 3: Estimation of yield and yield related parameters. Figure illustrates the progression from destructive field-based primary measurements in order to obtain an estimation of yield to new high-throughput measurements to estimate yield through both primary and secondary measurements. The methods of gathering information for yield estimation are ordered from least applicable but highly accurate to most applicable but less accurate or from low-throughput to high-throughput and include destructive sampling and lab-based primary measurements (A), field-based primary measurements (B), and current investigation on developing high-throughput non-destructive primary and secondary measurements (C).
Figure 1: Quantifying time-of-day of flowering (TOF) in crops. Figure shows potential transition of methodologies in recording TOF in crops and provides cases studies related to TOF in sorghum and rice. Traditional low-throughput measurement via manual counts (A) which is labor intensive, induces temporal variability, and is subject to human error to use of low-altitude UAVs and high resolution imagery to easily acquire high-temporal and accurate data to record TOF (B). Natural alteration of flowering time in sorghum (C; Chiluwal et al., 2020) and the change in flower opening time in rice by genetic incorporation of early morning flowering trait (see far right pie charts) from wild rice into popular variety (D; Ishimaru et al., 2010).
Figure 2: Optimizing stay-green and senescence dynamics. Handheld, indoor high-throughput, and field-based high-throughput techniques for quantifying photosynthetic efficiency is presented using effective quantum yield of photosystem II (QY) as a case study. Handheld devices (A), though sensitive enough to detect subtle changes such as initiation of senescence, are highly laborious, provide data either at a leaf or spike level, and challenging to be deployed on large scale phenotyping. Indoor high-throughput platforms (B) having similar or higher sensing capability can easily acquire trait information on the whole plant automatically without human intervention. Field-based high-throughput platforms (C) have the capability of gathering reflectance data on a large number of genotypes with extreme sensitivity and low-temporal variation.
Figure 3: Estimation of Yield and Yield Parameters. Figure illustrates the progression from destructive field-based primary measurements in order to obtain an estimation of yield to new high-throughput measurements to estimate yield through both primary and secondary measurements. The methods of gathering information for yield estimation are ordered from least applicable but highly accurate to most applicable but less accurate or from low-throughput to high-throughput and include destructive sampling and lab-based primary measurements (A), field-based primary measurements (B), and current investigation on developing high-throughput non-destructive primary and secondary measurements (C).