Image segmentation with Kapur, Otsu and minimum cross entropy based multilevel thresholding aided with cuckoo search algorithm

R Kalyani¹, P D Sathya² and V P Sakthivel³

¹,² Department of Electronics and Communication Engineering, Faculty of Engineering & Technology, Annamalai University, Tamilnadu, India – 608002. harebalu@gmail.com
³Department of Electrical and Electronics Engineering, Government College of Engineering, Dharmapuri, Tamilnadu, India
¹vp.sakthivel@yahoo.com

Abstract. Color image segmentation is the primary factor to provide the intended information from the input image. The straightforward method called multilevel thresholding (MLT) is used to analyse the various classes of complex images. But, when the level of threshold increases, computational difficulty increases. Hence, MLT with most promising objective functions such as Kapur, Otsu and minimum cross entropy aided with cuckoo search algorithm (CSA) is used. The efficient metaheuristic cuckoo search algorithm’s controlling parameter balances the local and global search. In this paper, the efficacy of CSA at 4, 5, 6 and 7 threshold levels with various fitness functions are utilized for precise image segmentation. It is seen from experimental results, the Otsu based cuckoo search algorithm outperform than Kapur and MCE. Quality metrics such as computational time, PSNR (peak signal to noise ratio) and SSIM (structural similarity index) authenticate the exploration and exploitation capability of CSA algorithm for real-world applications.

1. Introduction
Color image segmentation is the basic pre-processing step to examine the image and it finds applications in video processing, medical analysis, computer vision, industrial production and so forth [1]. Various segmentation techniques namely thresholding, edge detection, region based are most widely used as an initial step in image processing [2]. Among these techniques, thresholding is the straightforward technique to retrieve the information we require. Bilevel thresholding classifies the simple image into object of interest and the background with single threshold value, whereas various classes of complex images are obtained through multilevel thresholding with various threshold levels [3]. The maximising objective functions such as Otsu method calculates the optimal threshold by maximising between the class variance, Kapur entropy gains maximum information by estimating the pixel relationship and minimum deviation between the true and predicted image is obtained by minimum cross entropy method [4-7].

Optimisation plays a vital role in finding feasible solutions for various engineering problems. Most of the bio-inspired algorithms use tuning parameters to locate the global threshold for perfect image segmentation. Generally, conventional methods get trapped in sub-optimal solutions without reaching the target point. Thus, to overcome such complexities, metaheuristic algorithms such as differential evolution (DE) helps the fitness function to reach the goal by controlling the parameters of
DE [8]. Ant colony optimisation (ACO) provides perfect segmentation using entropy method. Inspired by Darwin evolution, Genetic algorithm (GA) finds wide applications in optimisation problems, but GA fails in controlling the parameters and get stuck with local point [9]. Particle swarm optimisation (PSO) mimics the behaviour of birds and fishes and it is easy to implement but results in limited search space due to fixed trajectory [10]. Honey-bee algorithm with Otsu, Bayesian produce improved image segmentation [11]. Precise classification is attained by improved variational mode decomposition for fast target recognition compared to PSO, BF (Bacterial foraging) [12] etc. In the listed aforesaid bio-inspired algorithms require controlling of various parameters. Hence, selection of suitable parameters to seek optimal values is essential. The most widely used efficient, cuckoo search algorithm falls under the bio-inspired algorithm category to increase their population through reproductive strategy and it is computationally effective than PSO [13]. Cuckoo search algorithm mimics the cuckoo birds and their strategy, laying eggs in another bird’s nest. The host bird hurls the eggs away if the eggs are alien or it builds a new nest leaving the old nest. CSA assumes that every cuckoo lay eggs one by one. The best eggs are chosen for the next round fixing the number of nests. According to the literature the cuckoo search algorithm is better than other methods. CSA employs Levy flight strategy, has excellent global and local search capabilities and hence CSA is used in wide range of applications.

2. Problem estimation of multilevel thresholding methods

Kapur entropy method, Otsu (between-class variance method) and minimum cross entropy method [14-15] for accurate image segmentation are widespread in use. Thresholding with more than single thresholds are called multi-level thresholding and represented as:

\[o_{i}(x, y) = \{i(x, y) \in I \mid 0 \leq I(x, y) \leq t_{i} - 1\} \] (1)

\[o_{i}(x, y) = \{i(x, y) \in I \mid t_{i} \leq I(x, y) \leq t_{2} - 1\} \] (2)

\[o_{i}(x, y) = \{i(x, y) \in I \mid t_{i} \leq I(x, y) \leq t_{i+1} - 1\} \ldots \] (3)

\[o_{i}(x, y) = \{i(x, y) \in I \mid t_{L} \leq I(x, y) \leq L - 1\} \] (4)

where \(t_1, t_2, t_3, \ldots, t_r \) indicate various thresholds, \(I(x,y) \) stands for input image and \(o(x,y) \) indicate output image. In this proposed paper, the part to be explored from the color image, is interpreted by using maximising objective functions such as Otsu, Kapur and with minimum entropy function MCE.

2.1 Kapur method

Kapur entropy is most widely used fitness function for color image segmentation through multilevel thresholding method [16].

Maximizing the objective function by:

\[f(t) = F_0 + F_1 \] (5)

\[F_0 = - \sum_{i=0}^{t-1} \frac{P_i}{X_0} \ln \frac{P_i}{X_0}; \quad X_0 = \sum_{i=0}^{t-1} P_i \] (6)

\[F_1 = - \sum_{i=0}^{G-1} \frac{P_i}{X_1} \ln \frac{P_i}{X_1}; \quad X_1 = \sum_{i=0}^{G-1} P_i \] (7)

Thus, Kapur’s entropy achieves unification of the histogram for image segmentation. Extension of Kapur’s concept for Multilevel thresholding:

For ‘k’ dimensional optimization problem, ‘k’ optimal thresholds of an image \([t_1, t_2, \ldots, t_k]\) to maximise the objective function.

\[f[t_1, t_2, \ldots, t_k] = F_0 + F_1 + \cdots + F_k \] (8)

where
2.2 Otsu’s method

The between-class variance (Otsu’s) criteria predict the optimal threshold by maximising between-class variance [17].

According to Otsu’s between-class variance discriminant analysis:

\[y(t) = \sigma_0 + \sigma_t \]

\[\sigma_0 = x_0(\mu_0 - \mu_T) \]

\[\sigma_t = x_t(\mu_t - \mu_T) \]

Otsu’s bilevel optimal threshold ‘\(t^* \)’ as

\[t^* = \arg \max \{y(t)\} \quad 0 \leq t \leq G - 1 \]

Extension of Otsu’s concept for multilevel thresholding is represented as:

\[y(t) = \sigma_0 + \sigma_t + \sigma_2 + \cdots + \sigma_k \]

\[\sigma_0 = x_0(\mu_0 - \mu_T)^2 \]

\[\sigma_t = x_t(\mu_t - \mu_T)^2 \]

\[\sigma_k = x_k(\mu_k - \mu_T)^2 \]

2.3 Minimum cross entropy

Minimum discrimination information is the summation of entropy and its divergence [17].

Cross entropies minimum objective function is stated as:

\[\text{min } \{D(m)\} = D_0 + D_1 \]

\[D_0 = -\sum_{i=0}^{m-1} ih(i) \log \left(\frac{\sum_{i=0}^{m-1} h(i)}{\sum_{i=0}^{m-1} h(i)} \right) \]

\[D_1 = -\sum_{i=m}^{G} ih(i) \log \left(\frac{\sum_{i=m}^{G} h(i)}{\sum_{i=m}^{G} h(i)} \right) \]

Complex image information is received by multilevel thresholding and for determining ‘\(m \)’ dimensional optimization, the objective function is considered as:
\[\min D(m_0 + m_0 + m_0 + \ldots + m_0) = D_0 + D_1 + D_2 + \ldots + D_n \]

where,
\[D_0 = -\sum_{i=0}^{m-1} ih(i) \log \left(\sum_{i=0}^{m-1} h(i) \right) \]
(25)
\[D_1 = -\sum_{i=m_0}^{m-1} ih(i) \log \left(\sum_{i=m_0}^{m-1} h(i) \right) \]
(26)
\[D_2 = -\sum_{i=m_2}^{m-1} ih(i) \log \left(\sum_{i=m_2}^{m-1} h(i) \right) \]
(27)
\[D_n = -\sum_{i=n}^{G} ih(i) \log \left(\sum_{i=n}^{G} h(i) \right) \]
(28)

With the increase in number of thresholds, computational time goes up, limiting the multilevel thresholding applications. The above problem is overcome by predicting the perfect parameters of Otsu, Kapur and MCE multilevel thresholding using EMA algorithm for excellent medical image segmentation. The proposed method maximizes the Kapur and Otsu’s fitness function, while minimizing the MCE function.

3. Cuckoo Search Algorithm

Cuckoo birds show some collective emerging and self-organising characteristics. This algorithm solves NP-hard problems. The metaheuristic cuckoo search algorithm was conceived by Yan and Deb in 2009 [18]. Cuckoo search algorithm is used to find an optimised solution with cuckoo eggs. The cuckoo search birds are fascinating, and they lay 16 to 22 eggs in communal nests. Timing of laying the eggs into the nests exactly shows the unique reproductive approach of cuckoo birds. The cuckoo bird lays only one egg in their host nest by quick hatching. Rest of the unhatched eggs will be removed by foreign cuckoo. The time cuckoos find that the eggs do not belong to them, will be thrown out and abandoned to build a new nest. This strategy improves their hatching probability. This method uses levy flight to generate random steps and choose random direction with step length. Thus, the algorithm depends on cuckoo’s parasitic reproduction strategy and Levy flight global and local search principle.

3.1 Levy Flights

The random walks performed by animals and insects in random direction is called Levy flights and the Levy direction is driven by the step length. Sudden 90-degree turns are associated with the walks and Levy flight variance increases faster and thereby decreases the algorithmic iterations than other random walks.

Intensified search by exploiting the limited search area is achieved through local random walk and this is expressed as
\[x^{d+1}_p = x^d_p + \alpha s \otimes H(p_a - E) \otimes (x^d_q - x^d_p) \]
(29)
\[x^{d+1}_r = x^d_r + \alpha L(s, \lambda) \]
(30)

Here, \(x^d_p \) and \(x^d_r \) indicates current positions by random permutation, \(\alpha \) is the positive step size factor, \(x^{d+1}_p \) indicates the updated position, \(s \) denotes the step size, \(\otimes \) represents the product of two vectors, \(H \)
is the Heavy-side function, $P_a \in [0,1]$ and P_a the switching parameter controls the search between local and global threshold, E is the random number and $L(s, \lambda)$ is the Levy distribution to determine the step size.

Each egg in cuckoo search algorithm represents a solution and thus each cuckoo can lay only one egg indicating only one solution. Step length is much longer in the longer run and thus Levy flight explores the search space efficiently and effectively. Levy flight, randomized step length and less tuning parameters are the main advantage of cuckoo search algorithm for wide range of applications such as nurse scheduling problems by Lim Huai Tein [19], Layeb [20] quantum computing and principles, Traveling salesman problem by Aziz [21] and so forth.

4. Algorithmic steps to implement CSA for MLT using Kapur, Otsu and MCE objective function

Search step 1: Initialization

Initialise randomly the M bird’s nest location as $X = (x_1, x_2, \ldots, x_M)$ and the M bird’s nest positions are fed to test through objective functions in Eq. 8, 13 and 21. The output of the functions decides the nest location to carry it over the next generation.

Search step 2: Exploitation of the search space

The local random walks are updated by the Eq.29. By refining in limited search space, improvement in current solution is obtained.

Search step 3: Exploring the location

The global random walks are revised by the Eq.30. Wide search is carried out by exploring the promising solutions. Thus, diversified search avoids getting trapped with local point.

Search step 4: Update the position

Evaluate the fitness function’s current output with exploration capability and update the new solution until the maximum number of iterations is reached.

Search step 5: Optimal threshold output is obtained by reaching the best nest and its flow chart is represented in figure 1.
5. Experimental Results
Cuckoo search algorithm based multilevel thresholding simulations have been examined in MATLAB 7.0, processed in Intel core 2 Duo Processor(3GHz), 2 GB RAM. Performance of CSA based MLT aided with Kapur, Otsu and MCE objective functions are used to analyze the segmentation quality. Color test input images in Fig. 2. such as Lena (512×512), Airplane (512×512), Baboon (512×512), Goldhill (720×576) and Starfish (480×512) along with their histogram are illustrated and these images are taken from Berkeley segmentation and COCO dataset. Cuckoo search algorithm is computed at 4-level, 5-level, 6-level, and 7-level thresholds. Optimization is authenticated by best fitness value CPU time and convergence rate. Furthermore, segmented image quality is predicted by peak signal to noise ratio (PSNR) and structural similarity index (SSIM).
Figure 2. Standard test color images and their histograms
(a) Lena (b) Airplane (c) Baboon (d) Goldhill (e) Starfish

5.1 Performance evaluation by Kapur’s method
The segmented output of cuckoo search algorithm at 4, 5, 6, 7 threshold level for various input images is in figures 3. Table 1 shows that CSA algorithm based on Kapur method. Comparing Lena, Airplane, Baboon, Goldhill and Starfish images, the output segmented image of Baboon performed well for all the threshold levels of CSA. This makes the CSA based color segmentation easy even with higher threshold levels. Airplane image segmentation took less computational time for 4th CSA threshold level, similarly, Lena image for 5th and 7th CSA threshold level, Starfish for 6th CSA threshold level. The best objective values of CSA reduce the time to explore and exploit the threshold value. The switching
parameter P_a set as 0.25 with step size 0.01 balances the best output at lower and higher threshold levels. Thus, the switching parameter variable switches between the exploration and exploitation to achieve superior output. The accurate overall outperformance of CSA overcomes the drawback of getting stuck with sub-optimal solutions.

Table 5 shows the performance of CSA in terms of PSNR to specify the accuracy of an image. The region of interest is inferred by avoiding over and under segmentation through the best PSNR output of CSA based MLT. PSNR table shows that accurate image segmentation of Lena at 4 and 6 threshold levels, Starfish at 5th and Baboon at 7th threshold level. Thus, High PSNR with low MSE affirms the low degree of distortion in the image. True and segmented image consistency is obtained through SSIM (Structural similarity index). Table 1 shows the better performance of Lena at 4,5 and 7th level and Baboon at 6th threshold level.

Input Image	No. of thresholds	Red Band	Green Band	Blue Band	Objective values
Lena	4	103 142 172 193	85 103 126 162	95 108 144 198	51.779538
	5	112 132 192 215 229	57 81 99 193 207	82 105 139 151 167	57.966487
	6	102 122 146 183 188 233	35 92 150 167 190 226	91 132 137 169 201 213	63.906785
	7	67 102 115 141 194 203 226	48 109 141 152 161 190 195	78 107 127 153 159 184 210	70.274729
Airplane	4	65 86 151 209	84 119 167 194	65 138 171 208	51.924100
	5	52 111 127 184 208	85 111 158 202 210	63 121 132 152 200	58.340205
	6	68 123 142 177 187 201	49 121 137 155 187 203	62 118 165 183 206 223	64.867523
	7	48 72 112 133 159 184 205	43 96 145 177 190 196 217	32 57 117 149 166 179 216	71.707438
Baboon	4	47 125 178 188	30 68 103 151	43 87 170 210	55.185184
	5	38 101 160 188 226	45 109 129 159 175	78 109 138 211 227	62.811760
	6	67 104 129 147 214 242	55 108 127 151 181 206	57 123 138 189 204 228	69.402750
	7	49 108 128 166 177 200 216	30 78 104 136 162 190 214	55 64 77 117 178 205 221	77.053829
Goldhill	4	61 88 156 185	99 127 195 218	53 81 132 203	54.905472
	5	77 135 168 204 220	47 80 129 163 192	113 127 169 185 197	61.862014
	6	53 73 132 158 176 193	54 79 92 141 195 210	61 83 108 134 173 179	69.180404
	7	56 71 88 106 135 166 199	59 80 148 162 185 212 230	41 56 81 102 143 167 224	76.121606
Starfish	4	79 133 175 225	75 104 179 226	52 139 182 209	55.123595
	5	54 90 109 165 226	106 149 173 218 238	47 121 138 181 199	62.008888
	6	41 86 100 175 207 245	101 134 158 191 218 241	63 83 104 174 190 209	69.440745
	7	48 71 100 145 174 202 237	78 114 140 158 166 216 238	68 88 133 156 175 208 213	76.285343
Figure 3. Segmentation results by Kapur method. (a)-(t) at \(m=4,5,6\) and 7 for Lena, Airplane, Baboon, Goldhill and Starfish images

5.2 Performance evaluation based on Otsu’s method

Figure 4 shows the segmented output of different algorithms using Otsu method at 4,5,6 and 7th threshold level. Table 2 lists the fitness function values and selected threshold values based on Otsu’s entropy. It is very clear that the Otsu method’s result is consistent compared to Kapur’s entropy. For example, the baboon objective values prove the accurate image segmentation of Airplane image in Otsu’s method with the values 16678.75537, 16695.57938, 16711.16156 and 16730.00905 at 4,5,6 and
The reason behind CSA achieving the best segmented output is mainly using Levy flight strategy to search for unknown area quickly without any deviation. The Otsu based CSA wins with excellent results compared to Kapur and MCE indicating the excellent intensification and diversification capability.

Table 2 of Otsu based EMA, indicates the Baboon, Airplane, Lena, and Starfish images at 4, 5, 6 and 7 threshold levels respectively, winning with least execution time through tactical control of market risk variables \(g_1\) and \(g_2\). Detailed information through PSNR and SSIM from the Table 4 and Table 6 affirm the best performance of Otsu based CSA.

Input Image	No. of thresholds	Red Band	Green Band	Blue Band	Objective values
Lena	4	111 132 167 222	37 99 139 176	52 96 127 154	10000.93306
	5	114 118 154 193 244	50 74 106 118 159	90 139 167 185 231	10021.79832
	6	108 131 143 195 217 232	44 70 83 128 163 192	52 91 132 140 178 199	10050.55737
	7	38 112 138 166 197 214 228	49 104 138 144 159 210 218	75 94 120 144 171 213 239	10063.47963
Airplane	4	83 148 188 210	43 94 153 183	35 112 177 203	16678.75537
	5	84 139 175 183 206	51 87 103 142 201	110 116 177 205 251	16695.57938
	6	92 141 146 151 195 234	48 90 140 179 199 218	117 146 164 171 199 203	16711.16156
	7	78 109 130 159 170 198 208	77 91 127 159 187 204 237	35 114 137 177 193 201 221	16730.00905
Baboon	4	73 122 172 234	92 102 150 187	77 136 160 194	10120.50075
	5	83 136 173 183 273	71 82 123 165 218	52 99 141 150 205	10159.04394
	6	97 135 168 188 200 221	83 113 120 130 152 169	69 103 127 153 172 229	10186.45124
	7	68 118 123 157 196 212 218	63 114 136 148 164 183 197	47 79 97 133 166 192 217	10218.74905
Goldhill	4	57 101 157 163	62 104 166 219	51 110 183 222	7473.054615
	5	82 112 178 202 227	45 60 111 130 194	62 93 122 165 204	7500.457409
	6	39 67 108 143 165 191	57 95 106 136 153 194	72 91 129 156 175 199	7541.36196
	7	41 66 93 99 122 165 170	51 95 131 168 179 186 208	44 48 62 90 98 135 199	7582.882381
Starfish	4	53 113 142 203	58 130 161 215	43 54 81 156	7450.00132
	5	54 103 159 192 242	47 131 158 195 238	38 84 140 178 232	7483.21717
	6	37 93 108 146 189 225	36 58 118 122 183 242	37 47 51 99 135 174	7497.254725
	7	52 64 93 145 161 186 230	61 102 128 157 184 218 230	53 95 123 147 181 197 215	7540.674017
Figure 4. Segmentation results by Otsu method. (a)-(t) at $m=4,5,6$ and 7 for Lena, Airplane, Baboon, Goldhill and Starfish images.
5.3 Performance evaluation based on MCE method

The segmented performance of CSA in terms of optimal threshold values, objective function values in Table 3 and its segmentation results are in figure 5. Due to stochasticity in metaheuristic algorithms, the CSA experiments are run for 100 times. It can be confirmed from the table that the better segmentation is obtained for Airplane at 4th and 7th level and Baboon images at 5th and 6th threshold level. Optimal threshold selection process is generally considered as constrained optimization problem. Thus, the image segmentation quality is determined by CSA based metaheuristic algorithms. In this paper, Table 5 depicts that the CSA algorithm achieves the least CPU time Starfish (4th and 7th threshold level) and Lena at 5th and 6th compared to other considered images. Table 4 and Table 6 show the Higher PSNR and SSIM of CSA based MCE predicting the segmentation quality.

Input Image	No. of thresholds	Red Band	Green Band	Blue Band	Objective values
Lena	4	99 120 182 213	88 116 167 233	73 121 144 183	28703.09866
	5	114 141 185 208 223	103 128 148 191 251	87 135 170 197 224	24577.15000
	6	97 111 176 189 204 229	30 82 136 172 213 243	83 99 119 137 178 236	21612.70379
	7	74 90 141 167 193 217 235	60 84 120 121 155 205 224	80 110 119 129 171 216 244	19118.64986
Airplane	4	82 149 176 205	118 150 195 240	90 134 163 201	33939.77180
	5	80 149 185 196 210	103 159 196 207 233	109 131 197 205 229	27098.50875
	6	115 136 143 169 197 221	76 107 148 197 212 220	99 146 160 185 207 221	22452.43679
	7	70 117 147 176 185 202 216	79 81 140 165 184 195 213	53 111 138 158 199 204 240	21538.68202
Baboon	4	117 149 190 214	107 150 178 196	51 105 157 184	31227.48433
	5	69 120 177 202	93 133 160 188 202	97 149 165 182 239	27468.89777
	6	101 127 156 173 214 234	80 126 172 180 193 241	61 100 155 189 213 221	24029.79900
	7	71 102 128 148 189 207 240	38 84 104 146 164 188 225	40 95 120 150 164 195 221	20110.63566
Goldhill	4	80 108 129 172	80 113 135 169	98 142 151 204	24318.98900
	5	69 81 112 152 203	76 109 122 180 217	104 119 186 207 238	21969.71380
	6	51 91 105 131 191 217	61 123 153 179 219 228	57 111 170 198 218 225	19111.57907
	7	57 89 109 143 201 228	77 116 137 149 158 172 193	77 110 142 177 195 213 222	16099.62704
Starfish	4	92 127 171 221	94 147 172 208	98 100 161 210	23545.85164
	5	76 96 133 190 238	110 138 185 203	69 128 158 176 199	20656.05822
	6	97 129 149 176 207 241	95 128 137 182 206 213	47 103 139 143 191 240	18332.34007
	7	78 105 124 153 166 204 245	74 112 149 178 185 203 230	45 88 117 142 180 207 251	14642.14150
Figure 5. Segmentation results by MCE method. (a)-(t) at $m=4, 5, 6$ and 7 for Lena, Airplane, Baboon, Goldhill and Starfish images.

5.4 Quality metrics
Segmentation quality of cuckoo search algorithm is obtained by quality metrics such as computational time, PSNR (peak signal to noise ratio) and SSIM (structural similarity index).
5.4.1 Computational time

Computational time specification can meet the demand of real-time image processing and Table 4 shows that the optimal output is reached with fewer iterations indicating less time to converge. Low run time is reached with Kapur fitness function winning in 13 out of 20 cases and otsu with 7 out of 20 cases. In general, Computational time increases as the level of threshold increases. But the CSA based MLT achieves the computation within a reasonable amount of time. Quick global convergence is achieved in less time by maintaining the diversity of population effectively. Levy flight with infinite mean and variance allows larger changes in magnitude and direction from the current position in search space.

Table 4. CPU time (s) of each algorithm

Images	No. of thresholds	Kapur method CSA	Otsu’s method CSA	MCE method CSA
Lena	4	1.007780	0.977818	1.087521
	5	1.302429	1.342012	1.411131
	6	1.759438	1.706068	1.831942
	7	2.108483	2.205990	2.356025
	4	1.004558	1.044710	1.080848
Airplane	5	1.336676	1.374064	1.434904
	6	1.825396	1.717111	1.865030
	7	2.136269	2.409146	2.367477
	4	1.094111	0.968136	1.093525
Baboon	5	1.419862	1.335000	1.42456
	6	1.790348	1.713826	1.869365
	7	2.156000	2.229007	2.428548
	4	1.076432	1.096310	1.163808
Goldhill	5	1.489951	1.404934	1.479675
	6	1.864444	1.791522	1.963528
	7	2.272580	2.487100	2.380089
	4	1.024416	1.041476	1.054550
Starfish	5	1.341694	1.369150	1.542192
	6	1.750967	1.714934	1.857201
	7	2.170626	2.233899	2.324789

5.4.2 Power Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) indicates visual depiction of segmented image from original image. CSA based MLT with high PSNR and low MSE confirms the accuracy. PSNR is stated as

\[
PSNR = 20 \log_{10} \left(\frac{255}{RMSE} \right)
\]

(31)

Where MSE refers the root mean-squared error,
\[\text{MSE} = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} [I(i, j) - I^\wedge(i, j)]^2} \]

where \(I \) and \(I^\wedge \) refers the original and thresholded images and \(M \times N \) indicates the dimensions of an image.

Table 5 show the comparison of CSA based MLT at 4, 5, 6 and 7 threshold level. High PSNR is obtained by Otsu objective function winning in 11 out of 20 cases, MCE with 6 out of 20 cases and 3 with Kapur out of 20 cases. Thus, from the Table 5, Otsu fitness function takes the upper hand over MCE and Kapur fitness function, indicating the object of interest to be inferred from the segmented image even with increase in number of thresholds.

5.5 Structural Similarity Index (SSIM)

Structural Similarity (SSIM) index measures the consistency between the true and segmented image. Higher value of SSIM by Otsu objective function winning in 15 out of 20 cases, Kapur with 3 out of 20 cases and 2 with MCE out of 20 cases, confirms the quality of original image. Thus, the Tables 6 infers the superior performance of CSA based Otsu with maximum value of SSIM compared to Kapur and MCE.

\[
\text{SSIM}(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xs} + c_2)}{\mu_x^2 + \mu_y^2 + c_1(\sigma_x^2 + \sigma_y^2 + c_2)}
\]

\(\mu_x \) and \(\mu_y \) are mean intensity of true and segmented image,
\(\sigma_x \) and \(\sigma_y \) are the standard deviation of true and segmented image
\(\sigma_{xs} \) indicates covariance of true and segmented image
\(c_1, c_2 \) are constants.
Table 6. SSIM of each algorithm

Images	No. of thresholds	CSA (Kapur method)	CSA (Otsu method)	CSA (MCE method)
Lena	4	0.9191	0.912	0.909
	5	0.9061	0.933	0.905
	6	0.8727	0.964	0.858
	7	0.9530	0.962	0.942
	4	0.7520	0.713	0.765
	5	0.7621	0.961	0.847
	6	0.7877	0.723	0.770
	7	0.8828	0.903	0.907
Airplane	5	0.8011	0.911	0.905
Baboon	6	0.9042	0.923	0.923
	7	0.8190	0.946	0.918
	4	0.7575	0.767	0.684
	5	0.6577	0.733	0.646
	6	0.7787	0.915	0.778
	7	0.8003	0.813	0.774
Goldhill	4	0.8762	0.904	0.809
Starfish	5	0.9056	0.908	0.880
	6	0.8968	0.918	0.903
	7	0.8963	0.926	0.926

6. Conclusion

In this paper, cuckoo search algorithm based MLT is used to attain the desired objective by overcoming the drawbacks of conventional color image segmentation such as premature convergence, inefficacy to find the points in near vicinity and getting stuck with suboptimal point. The simple, most widely used non-parametric objective functions such as Otsu, Kapur and MCE help to seek the optimal threshold to infer the details from the input image. CSA based MLT is tested with 5 standard test images at 4, 5, 6 and 7 threshold levels. Performance is authenticated through metrices namely objective values, optimal thresholds, CPU time, PSNR and SSIM.

The comparative analysis with experimental results of MLT based CSA proves that the Otsu based cuckoo search algorithm outperformed than Kapur and MCE. Otsu based CSA achieves best in class performance in terms of CPU time, PSNR and SSIM. The intelligent approach of the controlling parameter ‘Pa’ with 75% search time for global optimal point and 25% search for local optimal point helps to attain our goal without any delay. The superiority of the proposed technique is that it employs Levy flight’s infinite mean and variance to accomplish intensified and diversified search for wide range of applications.

References

[1] Liang H, Jia H, Xing Z, Ma J and Peng X 2019 Modified grasshopper algorithm based multilevel thresholding for color image segmentation, IEEE Access, 7, p 11258 –95.
[2] Jia H, Peng X, Song W, Lang C, Xing Z and Sun K 2019 Hybrid multiverse optimisation algorithm with gravitational search algorithm for multithreshold color image segmentation, IEEE Access, 7, p 44903 –27.
[3] Cheng H D, Jiang X H, Sun Y and Wang J 2001 Color image segmentation: advances and prospects, Pattern Recognition 34, p 2259-81.
[4] Upadhyay P and Chhabra J K 2019 Kapur’s entropy based optimal multilevel image segmentation using Crow Search Algorithm, *Applied Soft Computing*, p 105522.

[5] Sathyaa P D and Kayalvizhi R 2011 Optimal multilevel thresholding using bacterial foraging algorithm, *Expert Systems with Applications*, 38(12), p.15549–64.

[6] Li J, Tang W, Wang J and Zhang X 2019 A multilevel color image thresholding scheme based on minimum cross entropy and alternating direction method of multipliers, *optik*, 183, p.30-37.

[7] Yin P Y 2007 Multilevel minimum cross entropy threshold selection based on particle swarm optimization, *Applied Mathematics and Computation* 184(2), p 503–13.

[8] Sarkar S, Das S and Chaudhuri S 2014 A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution, *Pattern recognition letters*, 54, p 27-35.

[9] Chen H, Jiang W, Li C and Li R 2013 A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm, *Mathematical problems in engineering*, p 1-6.

[10] Manikantan KV and Yaradoni DKS 2012 Optimal Multilevel Thresholds based on Tsallis Entropy Method using Golden Ratio Particle Swarm Optimization for Improved Image Segmentation, *Procedia Engineering*, 30, p 364–71.

[11] Jiang Y, Tsai P, Yeh W C and Cao L 2016 A Honeybee mating Based Algorithm for Multilevel Image segmentation using Bayesian theorem, *Applied Soft computing*, 52, p1181-90.

[12] Li J, Tang W and Zhang X 2018 Multilevel Thresholding Selection based on variational mode decomposition for Image segmentation, *Signal Processing*, 147, p 80-91.

[13] Baskan O 2013 Determining optimal link capacity expansion in road networks using cuckoo search algorithm with Levy flights, *Journal of applied mathematics*, p 1-11.

[14] Pare S, Kumar A, Bajaj V and G.K Singh 2016 A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve, *Applied soft computing*, 47 p 76-102.

[15] Zhao X, Turk M, Li W, Lien K C and Wang G 2016 A multilevel thresholding segmentation algorithm based on two-dimensional K-L divergence and modified particle swarm optimization, *Applied soft computing*, 48 p 151-59.

[16] Bhandari A K, and Kumar I V 2019 A context sensitive energy thresholding-based 3D Otsu function for image segmentation using human learning optimization, *Applied Soft Computing*, 82, p 105570.

[17] Pare S, Kumar A, Bajaj V and Singh G K 2017 An efficient method for Multilevel Colour image thresholding using cuckoo search algorithm based on minimum cross entropy *Applied Soft Computing* 61, p 200-92.

[18] Yang X S and Deb S 2009 Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing (NaBIC 2009). *IEEE Publications* p 210–14.

[19] Tein L H and Ramli R 2009 Recent Advancements of Nurse Scheduling Models and A Potential Path Proceedings of the 6thIMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010) Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia.

[20] Layeb A 2011 A novel quantum inspired cuckoo search for knapsack problems. *International Journal of Bio-Inspired Computation*, 3(5), 297.

[21] Ouaarab A, Ahiod B and Yang X S 2013 Discrete cuckoo search algorithm for the travelling salesman problem, *Neural Computing and applications*, p 1659-69.