A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites*

Olivier Silvie, Jean-François Franetich, Stéphanie Charrin, Markus S. Mueller, Anthony Siau, Myriam Bodescot, Eric Rubinstein, Laurent Hannoun, Y unzip Charoenfir, Clemens H. Kocken, Alan W. Thomas, Geert-Jan van Gemert, Robert W. Sauerwein, Michael J. Blackman, Robin F. Anders, Gerold Pluschke, and Dominique Mazier*

From INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Université Pierre et Marie Curie, 75013 Paris, France, INSERM U268, Institut André-Lwoff, Université Paris XI, Hôpital Paul-Brousse, 94907 Villejuif, France, Molecular Immunology, Swiss Tropical Institute, CH-4002 Basel, Switzerland, the Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Hôpital Pitié-Salpêtrière, 75013 Paris, France, the Malaria Program, Naval Medical Research Center, Silver Spring, Massachusetts 20910, the Biomedical Primate Research Centre, Department of Parasitology, 2280 GH Rijswijk, The Netherlands, the Department of Medical Microbiology, University Medical Centre St. Radboud, 6500 HB Nijmegen, The Netherlands, the Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom, and the Department of Biochemistry and Cooperative Research Centre for Vaccine Technology, La Trobe University, Victoria 3086, Australia

Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion in vitro, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.

The apicomplexan parasite Plasmodium falciparum is a causative agent of malaria, one of the major human infectious diseases, responsible for more than 1 million deaths per year worldwide. Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade the liver of the mammalian host, where they undergo schizogony and differentiate into merozoites that subsequently invade erythrocytes and cause disease. Blocking sporozoite invasion of hepatocytes represents an attractive anti-malarial strategy because it would prevent malaria symptoms and parasite transmission to the mosquito, which both occur at erythrocytic stages. Sporozoites migrate through tissues and invade target cells using gliding motility (1), a process involving secretory vesicles called micronemes. Upon microneme exocytosis, proteins are delivered onto the parasite surface and then redistributed from the anterior to the posterior end of the parasite, leading to its forward movement and penetration into a host cell (2). Only two sporozoite microneme proteins, namely circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP), have been extensively studied (3). It is quite likely, however, that other microneme proteins are involved during the invasion process. Recently, Flores et al. (4) reported a comprehensive view of the proteome of P. falciparum obtained with high resolution liquid chromatography and tandem mass spectrometry. Interestingly, some of the proteins detected in sporozoites had not been reported in this stage before, including apical membrane antigen 1 (AMA-1), a microneme protein involved in merozoite invasion of erythrocytes that is considered to be a leading candidate for inclusion in a vaccine against erythrocytic stages of P. falciparum (5–7). Here, we have analyzed AMA-1 expression in P. falciparum sporozoites and investigated its potential role during invasion of hepatocytes.

EXPERIMENTAL PROCEDURES

Antibodies and Inhibitors—We used previously characterized anti-P. falciparum AMA-1 (PFAMA-1) domain III monoclonal antibody (mAb) DV5 (8), anti-PFAMA-1 promdomain mAb 5G8 (9), anti-PFAMA-1 domain I mAb IF9 (9), anti-3D7 strain PFAMA-1 polyclonal rabbit IgG (10), anti-FVO strain PFAMA-1 polyclonal rabbit IgG (11), anti-PFTRAP mAb SSP2.2 (12), and anti-PICSP mAb E9 (13). For liver schizont counting, we used anti-Plasmodium HSP-70 sera obtained from mice immunized with i72 recombinant protein (gift from D. Mattei, Institut Pasteur, Paris, France). Secondary antibodies were fluorescein isothiocyanate-conjugated goat anti-mouse IgG (GAM-FITC; Sigma), Alexa Fluor® 594 goat anti-rabbit IgG (GAR-Alexa Fluor® 594; Molecular Probes), peroxidase goat anti-mouse and peroxidase goat anti-rabbit IgG (Becton Dickinson). Cytochalasin D (500 μm stock in Me2SO) and protease inhibitors chymostatin (2 mg/ml stock in Me2SO), pepstatin A (1 mg/ml stock in Me2SO) and PMSF, phenylmethylsulfonyl fluoride; TLCK, N-tosyl-L-lysine chloromethyl ketone; TRAP, thrombospondin-related adhesive protein; Z-GML-CH2Cl, Z-Gly-Me-Leu-Cl; 4,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; mAb, monoclonal antibody; NMS, nonspecific mouse serum; TRAP, thrombospondin-related protein; TCA, trichloroacetic acid; Z-GML-CH2Cl, Z-Gly-Me-Leu-Cl.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 The abbreviations used are: CSP, circumsporozoite protein; AMA-1, apical membrane antigen 1; DAP4, 4,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; mAb, monoclonal antibody; PMSF, phenylmethylsulfonyl fluoride; TLCK, N-tosyl-L-lysine chloromethyl ketone; TRAP, thrombospondin-related adhesive protein; Z-GML-CH2Cl, Z-Gly-Me-Leu-chloromethyl ketone.
Isolation of *P. falciparum* Sporozoites—Adult *Anopheles stephensi* female adults were infected with the NF54 strain of *P. falciparum*, using a membrane-based feeder system (15). After 14–21 days, mosquitoes were killed, and their salivary glands were aseptically dissected and disrupted by trituration in a glass tissue grinder, and the sporozoites were counted in a KonovaSlide® chamber.

Isolation and Culture of Human Hepatocytes—Primary human hepatocytes were prepared as described (6), with modifications. We used either fresh or cryopreserved hepatocytes, both susceptible to infection with *P. falciparum* sporozoites (17, 18). In our hands, *P. falciparum* sporozoite infectivity is similar in fresh and cryopreserved hepatocytes. Briefly, the cells were isolated by collagenase (PAA Laboratories) perfusion of human liver fragments, used in agreement with the French ethical regulations, and further purified over a 40% Percoll gradient. The hepatocytes were cryopreserved in liquid nitrogen in fetal calf serum with 10% MeSO; after thawing, viable hepatocytes were purified over a 40% Percoll gradient. The hepatocytes were seeded in eight-chamber plastic Lab-Tek slides or in 24-well culture plates (Nalge Nunc International) coated with rat tail collagen I (Becton Dickinson) at a density of 18 × 10⁴ cells/cm² (fresh hepatocytes) or 25 × 10⁴ cells/cm² (cryopreserved hepatocytes). The hepatocytes were cultured for at least 48 h before inoculation with *P. falciparum* sporozoites (18). After the removal of medium from the culture chambers, the cultures were washed, further incubated in fresh medium for 3 days, and then fixed in methanol. Liver schizonts were stained using an anti-HSP-70 mouse serum followed by goat anti-mouse FITC conjugate and counted under a fluorescence microscope. To determine the effects of anti-AMA-1 antibodies on sporozoite infectivity, sporozoites were incubated with hepatocytes in the presence of increasing concentrations of anti-PfAMA-1 rabbit IgG. The percentage of inhibition was determined in comparison with control rabbit IgG. To determine the effects of protease inhibitors and cytochalasin D on sporozoite infectivity, *P. falciparum* sporozoites were incubated with these inhibitors (each from a 100 μM stock solution) for 5 min at 37 °C, washed, further incubated in fresh medium for 3 days, and then fixed in methanol.

RESULTS

AMA-1 Is Expressed in *P. falciparum* Sporozoites—In a recent analysis of *P. falciparum* proteome, peptides corresponding to the merozoite antigen AMA-1 were identified in sporozoites. Because AMA-1 had never been reported in sporozoites before, we were interested in further characterizing its expression at this stage. Using reverse transcriptase-PCR, we could readily detect ama-1 transcripts in salivary gland sporozoites (Fig. 1A), thus confirming the expression of the gene at this stage. To test whether AMA-1 protein is also present in sporozoites, we performed immunofluorescence assays using the anti-AMA-1 domain III mAb DV5 (8). All permeabilized sporozoites displayed a strong fluorescence (Fig. 1B), with a bipolar nucleus-sparing pattern similar to the immunofluorescence pattern observed with antibodies to TRAP, also known as sporozoite surface protein 2 (12). In contrast, surface labeling with the anti-AMA-1 mAb showed no or very little surface fluorescence on sporozoites (Fig. 1C). When detected, AMA-1 surface fluorescence was restricted to the apical extremity of the sporozoites, on the same side of the nucleus as the apicoplast, a DNA-containing organelle visualized as a DAPI-positive spot, which is visualized in the same region as the soma (21, 22). A similar surface fluorescence pattern was observed using polyclonal anti-AMA-1 antibodies (see Fig. 5A).

** Ionoflorescence Microscopy assays**—For detection of AMA-1 expression in *P. falciparum* sporozoites and liver stages, air-dried sporozoites and *P. falciparum* elongation at 70 °C, by use of 40 cycles

N. Silvian, unpublished observations.
AMA-1 is expressed in *P. falciparum* sporozoites. A, reverse transcriptase-PCR analysis of ama-1 expression in *P. falciparum* sporozoites (spz), with (+) or without (--) reverse transcriptase; Lane M, size markers; lane G, 3D7 *P. falciparum* genomic DNA. The arrowhead indicates the 890-base pair amplicon. B, immunofluorescence microscopy of air-dried permeabilized *P. falciparum* sporozoites stained with anti-AMA-1 mAb DV5 (green) and DAPI (blue). Bar, 5 μm. C, surface immunofluorescence of *P. falciparum* sporozoites stained with anti-AMA-1 mAb DV5 (green) and DAPI (blue). The sporozoite nucleus is indicated with an arrow, and the apicoplast is indicated with an arrowhead. Bar, 5 μm. D, Western blotting of lysates from noninfected mosquito salivary glands (lane sg), *P. falciparum* sporozoite infected salivary glands (lane spz), and *P. falciparum* infected erythrocytes (lane e), using the anti-AMA-1 mAb DV5. E, Western blotting of lysates from *P. falciparum* sporozoites using the anti-AMA-1 mAbs 1F9 and 5G8.

To confirm that the two bands observed in the sporozoite lysates also correspond to the precursor and mature forms, we performed Western blot analysis using the anti-AMA-1 mAbs 1F9, specific for *P. falciparum* AMA-1 domain I, and 5G8, specific for AMA-1 prosequence. The mAb 5G8 recognized only the upper ~63-kDa band, whereas 1F9 recognized both the ~83-kDa and ~66-kDa proteins (Fig. 1E), thus confirming that in *P. falciparum* sporozoites these two bands correspond to the precursor and the mature form of AMA-1, respectively. The relative amount of precursor and mature proteins detected by Western blot varied between the different sporozoite preparations (Fig. 1 and see Fig. 4).

AMA-1 Is Lost after Invasion of Hepatocytes and Is Re-expressed in Liver Merozoites—To assess the fate of AMA-1 after sporozoite invasion of hepatocytes, we analyzed AMA-1 expression in primary human hepatocytes infected with sporozoites (18). We consistently failed to detect the protein in early liver stages by immunofluorescence assay (Fig. 2), suggesting that it was lost after invasion of hepatocytes. AMA-1 was only re-expressed in mature *P. falciparum* liver schizonts, with a punctate pattern likely corresponding to nascent liver merozoites (Fig. 2).

Anti-AMA-1 Antibodies Inhibit the Invasion of Human Hepatocytes by *P. falciparum* Sporozoites—The expression of AMA-1 in *P. falciparum* sporozoites and the fact that AMA-1 was not detected in liver schizonts until the differentiation of liver merozoites suggested that AMA-1 could be involved in the process of invasion of hepatocytes by sporozoites. Therefore, we tested whether antibodies to AMA-1 could inhibit the invasion of hepatocytes by *P. falciparum* sporozoites. Polyclonal IgG raised in rabbits immunized with a recombinant AMA-1 protein from the *P. falciparum* 3D7 clone (10) inhibited invasion of human hepatocytes by NF54 (homologous strain) *P. falciparum* sporozoites in a concentration-dependent manner (Fig. 3). Relatively high concentrations were necessary to achieve significant inhibition, but equivalently high concentrations of IgG from rabbits immunized with a reduced and alkylated form of the recombinant 3D7 PfAMA-1 protein did not inhibit sporozoite invasion (Fig. 3), indicating that inhibition is mediated by antibodies directed to conformational epitopes. IgG from rabbits immunized with a recombinant AMA-1 from the *P. falciparum* heterologous strain FVO (11) also inhibited NF54 *P. falciparum* sporozoite invasion (Fig. 3).

Upon Microneme Exocytosis, AMA-1 and TRAP Are Translocated to the Sporozoite Surface and Shed as Soluble Forms after Proteolytic Processing—Only a minority of salivary gland sporozoites (~5–10%) displayed detectable amounts of AMA-1 on their apical surface (Fig. 1C and see Fig. 5A), suggesting that most of the protein is sequestered within the sporozoite micromeres, as observed with TRAP (25). Upon incubation at 37 °C, which induces microneme exocytosis (26, 27), most of the sporozoites (~60–80%) expressed AMA-1 on their surface, distributed either over the whole surface or as a posterior cap (see Fig. 5B). Sporozoite surface AMA-1 reacted with 1F9 but not with 5G8 mAb, indicating that only the mature 66-kDa protein translocates to the parasite surface (see Fig. 6, C and D). As expected, both 5G8 and 1F9 mAbs labeled air-dried permeabilized sporozoites (see Fig. 6, A and B) with a fluorescent pattern similar to that observed with DV5. In *P. falciparum* merozoites, AMA-1 translocates to the surface upon microneme exocytosis and is proteolytically cleaved and shed as soluble fragments (14, 24). To determine whether similar processing events also occur in *P. falciparum* sporozoites, we analyzed by Western blot lysates from sporozoites incubated at 37 °C. Indeed, an AMA-1 cleavage product of ~48 kDa, associated with a less abundant product of ~52 kDa, was found in lysates from sporozoites incubated at 37 °C but not in lysates from sporozoites kept at 4 °C upon isolation from mosquito salivary glands (Fig. 4A). A TRAP cleavage product was also detected in the preparations from sporozoites incubated at 37 °C, 5–10 kDa smaller than the sporozoite TRAP, consistent with the size of the TRAP ectodomain (Fig. 4B). Importantly, when sporozoites and supernatants were analyzed separately, the cleavage products of
both AMA-1 and TRAP were found only in the supernatants not in the sporozoite pellets (Fig. 4C), demonstrating that these products correspond to soluble proteins shed in the supernatant. When sporozoite supernatants were run under reducing conditions, the AMA-1 48-kDa protein migrated as two distinct bands, a major ~48-kDa product and a minor ~44-kDa product (Fig. 4D), as observed with merozoite AMA-1 (14). The shed TRAP product migrated as a single band under both reducing and nonreducing conditions (data not shown). AMA-1 and TRAP processing and shedding was observed in sporozoites incubated at 37 °C in the absence of host cells, showing that the protease(s) involved in this processing is (are) encoded by the parasite. Nevertheless, incubation of sporozoites at 37 °C in the presence of hepatocytes consistently enhanced the shedding of AMA-1 and TRAP in the sporozoite supernatants (Fig. 4E).

AMA-1 and TRAP Are Processed by a Sporozoite Serine Protease—To further characterize the protease activities mediating AMA-1 and TRAP processing, we used a set of protease inhibitors. Chymostatin, leupeptin, and pepstatin A had no effect on AMA-1 and TRAP shedding (data not shown). In contrast, two serine protease inhibitors, TLCK and Z-GML-CH$_2$Cl, had a profound dose-dependent inhibitory effect on both AMA-1 and TRAP processing and shedding but had no effect on CSP release into the supernatant (Fig. 4F). CSP was detected as a doublet in both sporozoite pellets and supernatants, without any additional cleavage product detectable in parasites incubated at 37 °C (data not shown). Strikingly, PMSF, another serine protease inhibitor, had no significant activity on AMA-1 or TRAP processing in sporozoites (Fig. 4G).

To further characterize the timing of processing events, we analyzed the effects of protease inhibitors on the surface exposure of AMA-1 and TRAP. Treatment with 200 μM TLCK or 100 μM Z-GML-CH$_2$Cl, although profoundly inhibiting the shedding of AMA-1 and TRAP, did not prevent the translocation of AMA-1 to the sporozoite surface at 37 °C. On the contrary, the surface exposure of AMA-1, which tended to accumulate at the posterior end of the parasites, was rather enhanced following treatment with these inhibitors (Fig. 5, C and D). These observations, together with the fact that AMA-1 and TRAP cleavage products were not found associated with the sporozoite pellets, indicate that the proteolytic processing and shedding of AMA-1 and TRAP follows the translocation of these proteins to the parasite surface upon microneme exocytosis, suggesting that the protease involved operates on the sporozoite surface.

Surface Translocation and Proteolytic Processing of AMA-1 and TRAP Are Not Sensitive to Cytochalasin D—Gliding motility and host cell invasion rely on a parasite actomyosin motor that operates beneath the parasite plasma membrane and drives the anterior-to-posterior translocation of microneme proteins once they are released onto the parasite surface (28). Because this actomyosin motor is blocked by the actin polymerization inhibitor cytochalasin D (29), we investigated the effects of cytochalasin D on AMA-1 and TRAP processing. Treatment of sporozoites with 5 μM cytochalasin D completely inhibited both sporozoite gliding and invasion of hepatocytes (data not shown) but did not prevent the translocation of

Fig. 3. Anti-AMA-1 polyclonal antibodies inhibit *P. falciparum* sporozoite invasion of human hepatocytes in vitro. Human hepatocytes were inoculated with *P. falciparum* NF54 sporozoites in the presence of IgG from rabbits immunized with a 3D7 clone PFAMA-1 recombinant protein (gray bars), with a reduced and alkylated form of this 3D7 PFAMA-1 recombinant protein (white bar), or with a PVO strain PFAMA-1 recombinant protein (black bar). The results are expressed as the means of the percentage of inhibition of at least two independent experiments, each done in triplicate wells (± S.D.).

Fig. 4. Upon incubation of sporozoites at 37 °C, *P. falciparum* AMA-1 and TRAP undergo proteolytic processing and shedding, which is sensitive to a subset of serine protease inhibitors but not to cytochalasin D. A, Western blotting of sporozoite lysates probed with anti-AMA-1 polyclonal rabbit IgG. The arrows indicate the 48 and 52 kDa AMA-1 cleavage products, respectively. B, Western blotting of sporozoite lysates probed with anti-TRAP mAb SSP2.2. The arrowhead indicates the TRAP cleavage product. C, Western blotting of pellet (P) and supernatant (SN) from sporozoites incubated at 37 °C, probed with anti-AMA-1 polyclonal rabbit IgG or with anti-TRAP mAb SSP2.2. The arrows and the arrowhead indicate the cleavage products of AMA-1 and TRAP, respectively. D, Western blotting of supernatants from sporozoites incubated at 37 °C, run under reducing (with dithiothreitol, DTT) or non reducing (without dithiothreitol, DTT-) conditions and probed with anti-AMA-1 polyclonal rabbit IgG. E, Western blotting of pellet (P) and supernatant (SN) from sporozoites kept at 4 °C or incubated at 37 °C, in the absence (−h) or presence (+h) of heptocytes, run under reducing conditions, and probed with anti-AMA-1 polyclonal rabbit IgG or with anti-TRAP mAb SSP2.2. The arrow and the arrowhead indicate the 48-kDa AMA-1 and the TRAP cleavage products, respectively. F, Western blotting of supernatants from sporozoites treated with protease inhibitors TLCK and Z-GML-CH$_2$Cl (ZGML) before incubation at 37 °C. The samples were run under reducing conditions and probed with anti-AMA-1 polyclonal rabbit IgG, anti-TRAP mAb SSP2.2, or anti-CSP mAb E9. The arrows and the arrowhead indicate the cleavage products of AMA-1 and TRAP, respectively. G, Western blotting of supernatants from sporozoites treated with PMSF or cytochalasin D and incubated at 37 °C. The samples were run under reducing conditions and probed with anti-AMA-1 polyclonal rabbit IgG or anti-TRAP mAb SSP2.2. The arrows and the arrowhead indicate the cleavage products of AMA-1 and TRAP, respectively.
AMA-1 and TRAP to the sporozoite surface nor their subsequent processing upon passage at 37 °C (Figs. 4G and 5E). However, a slight reduction of AMA-1 and TRAP shedding was observed when sporozoites were co-incubated with hepatocytes in the presence of cytochalasin D (Fig. 4G), probably because cytochalasin D, by suppressing sporozoite motility, prevents the up-regulation of microneme exocytosis induced by sporozoite migration through cells (30).

Interfering with Surface Protein Processing Inhibits P. falciparum Sporozoite Infectivity—Finally, to determine whether AMA-1 and TRAP processing is required during sporozoite invasion of hepatocytes, we analyzed the effects of protease inhibitors on sporozoite infectivity in vitro. Pretreatment of sporozoites with 200 μM TLCK and 100 μM Z-GML-CH2Cl, both inhibiting AMA-1 and TRAP shedding, abrogated sporozoite gliding on glass slides (data not shown). More importantly, treatment with TLCK and Z-GML-CH2Cl inhibited sporozoite invasion of hepatocytes in a dose-dependent manner (Fig. 7). In contrast, treatment of the parasites with chymostatin, leupeptin, pepstatin A, and PMSF, which do not prevent AMA-1 and TRAP processing, had no significant effect on sporozoite motility and infectivity, and pretreatment of hepatocytes with the different protease inhibitors had no effect on sporozoite invasion (data not shown).

DISCUSSION

Until recently, most of the studies on hepatocyte invasion by sporozoites focused on two sporozoite proteins, CSP and TRAP (3). Many other proteins are expressed at the sporozoite stage (4), with some of them being potentially involved in the invasion process. Here we show that P. falciparum AMA-1, a microneme protein involved in merozoite invasion of erythrocytes (7), is also expressed in sporozoites, thus confirming mass spectrometry data (4). AMA-1 is lost after sporozoite invasion and is only re-expressed in liver merozoites, suggesting that it could play a role during invasion of hepatocytes. Indeed, anti-
bodies specific for the *P. falciparum* clone 3D7 AMA-1 inhibit invasion of human hepatocytes by sporozoites of the homolo-
gous strain NF54. This inhibitory activity is directed primarily
to conformational epitopes, as indicated by the absence of neu-
tralizing activity of antibodies raised against a reduced and
alkylated form of recombinant AMA-1, as previously reported
for blood stages (10). Antibodies raised against AMA-1 of the
heterologous FVO strain also inhibit NF54 strain sporozoite
invasion, suggesting that at least part of the targeted epitopes
are conserved. Relative high concentrations of antibodies in-
duced only partial inhibition of invasion. The neutralizing anti-
AMA-1 antibodies presumably represent a relatively small pro-
portion of the total rabbit serum IgG preparations used in these
experiments. However, AMA-1 is initially mostly sequestered
within the sporozoites and therefore may not be readily acces-
sible to antibodies, as previously reported with TRAP (25).

Much higher degrees of inhibition have been reported with
P. falciparum merozoite invasion, using the same rabbit IgG
preparations (10, 11). Interestingly, AMA-1 relocates to the
merozoite surface upon schizont rupture, so that most of the
free merozoites express AMA-1 on their surface (10, 14, 31).
These differences in AMA-1 surface exposure may explain the
higher level of inhibition seen with merozoite as compared with
sporozoite invasion. Nevertheless, the inhibition of sporozoite
invasion by anti-AMA-1 antibodies, although partial, still indi-
cates that AMA-1 could be considered as a potential candidate
to be included in a multi-stage malaria vaccine, targeting both
erthrocytic and pre-erythrocytic stages.

In *P. falciparum* blood stages, the mature 66-kDa AMA-1
relocates to the merozoite surface upon schizont rupture and is
proteolytically cleaved, resulting in the shedding of nearly the
whole AMA-1 ectodomain as a 48-kDa protein (24), associated
with a 44-kDa product resulting from an additional intra-
domain III cleavage (14) and with a less abundant 52-kDa
protein consistent with AMA-1 intramembrane cleavage as
described for *Toxoplasma* microneme proteins (32). Here we
show that similar processing events occur for AMA-1 in spor-
ozoites upon incubation at 37 °C, leading to the shedding of a
major 48-kDa protein and of less abundant products of 44 and
52 kDa. Similarly, incubation of sporozoites at 37 °C induces
TRAP processing and shedding of a fragment 5–10 kDa smaller
than full-length TRAP, consistent with the size of the TRAP
ectodomain and confirming that TRAP is released after cleav-
age of the protein, as suggested previously (26, 33). Both
AMA-1 and TRAP processing are observed in the absence of
host cells, clearly demonstrating the parasite origin of the
protease(s) involved. Still, incubation of *P. falciparum* sporoz-
ites at 37 °C in the presence of human hepatocytes up-regu-
lates the shedding of both AMA-1 and TRAP in the culture
supernatants. This effect is likely due to enhanced microneme
exocytosis induced by host cells (25, 30). In both merozoites (14)
and sporozoites (this study), AMA-1 translocation to the para-
site surface and its subsequent processing are not sensitive to
cytochalasin D, suggesting that microneme exocytosis in *Plas-
modium* is independent of the actin-dependent gliding
machinery.

Strikingly, using a set of protease inhibitors, we observed exactly
the same profile of activity on both AMA-1 and TRAP
processing. Chymostatin, leupeptin, pepstatin A, and PMSF
are ineffective, whereas TLCK inhibits in a dose-dependent
fashion the processing of both proteins. Another chloromethyl
ketone, Z-GML-CH$_2$Cl, initially designed to inhibit merozoite
surface protein 1 processing in *P. falciparum* merozoites (14),
also inhibits both AMA-1 and TRAP processing. In *P. falcipa-
rum* merozoites, a single protease is thought to process both
AMA-1 and merozoite surface protein 1 (14), this protease
being extremely sensitive to PMSF but not to TLCK. In con-
trast, PMSF does not inhibit AMA-1 and TRAP processing in
sporozoites, whereas TLCK is very effective. This finding raises
the interesting hypothesis that the protease mediating AMA-1
and TRAP processing in sporozoites may not be the same as the
one mediating AMA-1 and merozoite surface protein 1 process-
ing in merozoites. Thus, stage-specific regulation of protein
processing may occur in *P. falciparum* through the expression
and/or activity of distinct proteases during the parasite life
cycle.

Treatment of *P. falciparum* sporozoites with the inhibitors TLCK
and Z-GML-CH$_2$Cl, both of which irreversibly block
AMA-1 and TRAP processing, inhibits the gliding motility of
sporozoites and, more importantly, their ability to invade hu-
man hepatocytes. These results suggest that proteolytic proc-
essing of sporozoite proteins is essential for sporozoite motility
and infectivity but do not allow us to conclude that the loss of
sporozoite motility and infectivity results solely from inhibition
of TRAP and/or AMA-1 processing. It has been proposed that
posterior translocation of sporozoite TRAP provides the force
for gliding and host cell invasion via interaction with the para-
site cytoskeleton (2). This critical role of TRAP has been
confirmed using gene knock-out (34) or amino acid substi-
tution experiments, which have notably suggested that the
TRAP cytoplasmic tail mediates anterior to posterior redistri-
bution and posterior shedding of the protein, both functions
crucial for sporozoite gliding motility and host cell invasion
(33). Our inhibition results are consistent with this proposed
critical role of TRAP. Unlike TRAP, which is not expressed
during erythrocytic stages, AMA-1 plays a central role during
Plasmodium erythrocytic multiplication, so that ama-1 gene
knock-out is not possible (7). Alternative strategies will be
required, including conditional gene inactivation, to confirm
that AMA-1 is required during sporozoite invasion of hepato-
cyes. Further studies will be needed to identify and characte-
rize the sporozoite proteases involved in AMA-1 and TRAP
processing. Even though other processing events may be af-
fected by TLCK and Z-GML-CH$_2$Cl, our results nevertheless
demonstrate that interfering with proteolytic processing inhib-
its sporozoite infectivity and suggest that sporozoite serine
proteases may constitute potential drug targets for preventive
anti-malarial strategies.

Fig. 7. Serine protease inhibitors TLCK and Z-GML-CH$_2$Cl in-
hbit *P. falciparum* sporozoite infectivity. Human hepatocytes
were inoculated with *P. falciparum* NF54 sporozoites pretreated
with the serine protease inhibitors TLCK and Z-GML-CH$_2$Cl. For
each inhibitor, the results of two independent experiments are shown
and are expressed as the mean percentages of inhibition of invasion ±
S.D. *, $p < 0.05$, as determined using the one-way analysis of variance
followed by the Tukey multiple comparison test.
Acknowledgments—We thank Laurent Rénia and Claude Boucheix for critically reviewing the manuscript.

REFERENCES

1. Kappe, S. H., Kaiser, K., and Matuschewski, K. (2003) Trends Parasitol. 19, 135–143
2. Menard, R. (2001) Cell Microbiol. 3, 63–73
3. Menard, R. (2000) Microbes Infect. 2, 633–642
4. Fiorello, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. M., Mod, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardiner, M. J., Holder, A. A., Linden, R. E., Yates, J. R., and Carucci, D. J. (2002) Nature 419, 520–526
5. Healer, J., Crawford, S., Ralph, S., McPadden, G., and Cowman, A. F. (2002) Infect. Immun. 70, 5751–5758
6. Bannister, L. H., Hopkins, J. M., Dluzewski, A. R., Margos, G., Williams, I. T., Blackman, M. J., Kocken, C. H., Thomas, A. W., and Mitchell, G. H. (2003) Trends Parasitol. 19, 207–213
7. Triglia, T., Healer, J., Caruana, S. R., Hodder, A. N., Anders, R. F., Tilley, L. M., and Foley, M. (2001) Mol. Microbiol. 39, 790–798
8. Mueller, M. S., Renard, A., Boato, F., Vogel, D., Naegeli, M., Zurbriggen, R., Robinson, J. A., and Pluschke, G. (2005) Infect. Immun. 73, 4749–4758
9. Dowell, S. A., Wells, I., Fleck, S. L., Kettleborough, C., Collins, C., and Blackman, M. J. (2003) J. Biol. Chem. 278, 43549–43558
10. Hackett, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R., and Carucci, D. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 13513–13518
11. Kocken, C. H., Withers-Martinez, C., Dubbeld, M. A., van der Wel, A., Hackett, F., Valderrama, A., Blackman, M. J., and Thomas, A. W. (2002) Infect. Immun. 70, 4471–4476
12. Charoenvit, Y., Pailarne, V., Rodgers, W. O., Sacci, J. B., Jr., McFadden, G., and Cowman, A. F. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 13513–13518
13. Stuber, D., Bannwarth, W., Pink, J. R., Melsen, R. H., and Matile, H. (1990) Eur. J. Immunol. 20, 819–824
14. Howell, S. A., Wells, I., Fleck, S. L., Kettleborough, C., Collins, C., and Blackman, M. J. (2003) J. Biol. Chem. 278, 23890–23898
15. Ponnudurai, T., Meuwissen, J. H., Leeuwenberg, A. D., Verhave, J. P., and Lensen, A. H. (1982) Trans. R. Soc. Trop. Med. Hyg. 76, 242–250
16. Guguen-Guillouzo, C., Campion, J. P., Brijosot, P., Glaize, D., Lannou, B., Borel, M., and Guillouzo, A. (1982) Cell Biol. Int. Rep. 6, 625–628
17. Meis, J. F., Rijntjes, P. J., Verhave, J. P., Ponnudurai, T., Hollingdale, M. R., and Yap, S. H. (1985) Cell Biol. Int. Rep. 9, 976
18. Manier, D., Beaudoin, R. L., Mellouk, S., Druilhe, P., Texier, B., Trosper, J., Milten, F., Landau, I., Paul, C., Brandeicourt, O., et al. (1985) Science 227, 440–442
19. Iom, H. C., Secott, T., Georgoff, I., Woodworth, C., and Mumma, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3252–3256
20. Druilhe, P., Pradier, O., Marc, J. P., Milten, F., Mazier, D., and Parent, G. (1986) Infect. Immun. 53, 393–397
21. Fiche, M. E., and Ross, D. S. (1997) Nature 390, 407–409
22. Kohler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J., Palmer, J. D., and Ross, D. S. (1997) Science 276, 1485–1489
23. Crowther, P. E., Culpener, J. G., Silva, A., Cooper, J. A., and Anders, R. F. (1990) Exp. Parasitol. 70, 193–206
24. Howell, S. A., Withers-Martinez, C., Kocken, C. H., Thomas, A. W., and Blackman, M. J. (2001) J. Biol. Chem. 276, 31311–31320
25. Gnatt, S., Persson, C., Rose, K., Birkett, A. J., Abagayan, R., and Nussenzweig, V. (2000) Infect. Immun. 68, 3667–3673
26. Bhanot, P., Frevert, U., Nussenzweig, V., and Persson, C. (2003) Mol. Biochem. Parasitol. 126, 263–273
27. Carruthers, V. B., Giddings, O. K., and Sibley, L. D. (1999) Cell Microbiol. 1, 225–235
28. Bergman, L. W., Kaiser, K., Fujioka, H., Coppens, I., Daly, T. M., Fox, S., Matuschewski, K., Nussenzweig, V., and Kappe, S. H. (2003) J. Cell Sci. 116, 383–394
29. Stewart, M. J., and Vanderberg, J. P. (1991) J. Protozool. 38, 411–421
30. Moti, M. M., Hafalla, J. C., and Rodriguez, A. (2002) Mol. Biochem. Parasitol. 116, 97–108
31. Narum, D. L., and Thomas, A. W. (1994) Mol. Biochem. Parasitol. 61, 39–47
32. Opitz, C., Di Cristina, M., Reiss, M., Ruppert, T., Crisanti, A., and Soldati, D. (2002) EMBO J. 21, 1577–1585
33. Kappe, S. M., Bresner, T., Gant, S., Fujioka, H., Nussenzweig, V., and Maner, D. (1999) Science 283, 1489–1493
34. Sultan, A. A., Thathy, V., Frevert, U., Robson, K. J., Crisanti, A., Bresner, T., Nussenzweig, V., Nussenzweig, R. S., and Maner, D. (1997) Cell 90, 511–522