The S-wave resonance contributions in the B_s^0 decays into $\psi(2S, 3S)$ plus pion pair

Zhou Rui1, Ya Li2 and Wen-Fei Wang3

1College of Sciences, North China University of Science and Technology, Tangshan 063009, China

2Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, Jiangsu, China and

3Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, Shanxi, China

(Dated: March 6, 2018)

The three-body decays $B_s^0 \rightarrow \psi(2S, 3S)\pi^+\pi^-$ are studied based on the perturbative QCD approach. With the help of the nonperturbative two-pion distribution amplitudes, the analysis is simplified into the quasi-two-body processes. Besides the traditional factorizable and nonfactorizable diagrams at the leading order, the next-to-leading order vertex corrections are also included to cancel the scale dependence. The $f_0(980), f_0(1500)$ resonance contributions as well as the nonresonant contributions are taken into account using the presently known $\pi\pi$ time-like scalar form factor for the $s\bar{s}$ component. It is found that the predicted $B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$ decay spectra in the pion pair invariant mass shows a similar behavior as the experiment. The calculated S-wave contributions to the branching ratio of $B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$ is 6.0×10^{-5}, which is in agreement with the LHCb data $B(B_s^0 \rightarrow \psi(2S)\pi^+\pi^-) = (7.2 \pm 1.2) \times 10^{-5}$ within errors. The estimate of $B(B_s^0 \rightarrow \psi(3S)\pi^+\pi^-)$ can reach the order of 10^{-5}, pending the corresponding measurements.

PACS numbers: 13.20.He, 13.25.Hw, 13.30.Eg

I. INTRODUCTION

The decays of the neutral B mesons to the charmonium state plus light meson pair have attracted lots of attentions recently. These decay processes could be used to study the spectroscopy in various meson pair systems, and they also have significant roles in understanding of the substructure of different resonant states. Up to now, several experimental collaborations, like LHCb and BaBar, have measured the decays $B^0 \rightarrow J/\psi\pi^+\pi^-$ [1, 2], $B_s^0 \rightarrow J/\psi K^+K^-$ [3, 4], $B^0 \rightarrow J/\psi\pi^+\pi^-$ [3, 5], $B^0 \rightarrow J/\psi K^+K^-$ [6, 7], $B^0 \rightarrow J/\psi K K^- [3, 4]$, the analysis of three-body hadronic B meson decays is simplified into the one for two-body decays. As pointed out in [46, 47], it is not practical to make a direct calculation for the three-body processes due to the enormous number of diagrams which contain two gluon exchange at lowest order. Besides, its feature is not important because the region with the two gluons being hard simultaneously is power suppressed. The dominant contributions come from the kinematic region where the two light mesons move almost parallelly for producing a resonance with an invariant mass below $O(\Lambda M_B)$ (Λ being the heavy-meson and heavy-quark mass difference), which can be caught by this new nonperturbative inputs. Second, the three-body decays of B meson receive both resonant and nonresonant contributions, it is difficult to separate the two parts clearly [27]. After absorbing the nonperturbative dynamics associated with the meson pair into the complex time-like form factors in the two-meson distribution amplitudes, both resonant and nonresonant contributions [46, 47] are included in the PQCD approach. Third, in the above dominant contribution region, the end-point singularities are smeared by the two-meson invariant mass, which suggest that the PQCD approach has a good predictive power without any arbitrary cutoffs. Finally, different from the two-body cases, some possible final state interactions (FSIs) may be significant in the three-body decays [31, 48]. According to [31], there are two distinct FSIs mechanisms. One is the interactions between the meson pair in the resonant region associated with various intermediate states. The other is the rescattering between the third particle and the pair of mesons. In our opinion, the former can be factorized into...
two-meson distribution amplitudes while the latter is ignored in the quasi-two-body approximation. Over past few years, the branching ratios and direct CP asymmetries of the three-body decays such as $B^0 \to \pi^+(K^\pm)\pi^\mp$ [49], $B^0 (s) \to J/\psi \pi^+\pi^-$ [50], $B^0 (s) \to \eta \pi^+\pi^-$ [51], $B^+_c \to D_s^+(\pi^+\pi^-)$ [52], $B (s) \to (D(s), \bar{D}(s))\pi^+\pi^-$ [53], $B (s) \to P\pi^+\pi^-$ [54] and $B^0 (s) \to \eta_c (2S)\pi^+\pi^-$ [55] have been studied systematically in the PQCD approach. In a recent work, the P-wave resonance contributions have been calculated in the $B \to K\pi\pi$ decays [56].

The three-body hadronic B meson decays with the radially excited charmonium mesons in the final state have not received much attention in the literature. As the LHC gathering more and more data, the processes of the B Collaboration have measured the three-body decay channels of mesons decays including excited charmonium states must have much possibilities to be found. Recently, the LHCb Collaboration have measured the three-body decay channels of $B^0 (s) \to \psi (2S)\pi^\mp$ with pp collision data collected at $\sqrt{s} = 7$ TeV recently [57]. In the quark model, $\psi (2S)$ ($\psi (3S)$) is the first (second) radially excited vector charmonium with the radial quantum number $n = 2(3)$ and the orbital angular momentum $l = 0$. Both $\psi (2S)$ and $\psi (3S)$ were observed by the processes of the e^+e^- annihilation into hadronic [58, 59]. The properties for the two high excited charmonium were updated in PDG 2016 [60]; they are listed in Table I.

We have previously studied the semileptonic and two-body nonleptonic decays of the B_c meson to radially excited charmonium mesons in the PQCD approach by using the harmonic-oscillator wave functions for the charmonium states [61, 62]. In the present work, we will extend our analysis to the three-body decays $B^0 (s) \to \psi (2S, 3S)\pi^+\pi^-$ to provide an order of magnitude estimation. By introducing the two-pion distribution amplitudes, the S-wave contributions, which are the main contributions in the three-body decays $B^0 (s) \to \psi (2S, 3S)\pi^+\pi^-$ [57], could be described by the quasi-two-body processes $B^0 (s) \to \psi (2S, 3S)f_0 \to \psi (2S, 3S)\pi^+\pi^-$ containing the S-wave resonant states f_0, $f_0 (980)$ and $f_0 (1500)$ as two examples. Following the steps in Ref. [58], the decay amplitude $A(B^0 (s) \to \psi (2S, 3S)\pi^+\pi^-)$ can be written as the convolution

$$A(B^0 (s) \to \psi (2S, 3S)\pi^+\pi^-) = H \otimes \phi_B \otimes \phi_\psi \otimes \phi_{\pi\pi}^S,$$

where the hard function H could be treated by PQCD including both factorizable and nonfactorizable contributions in the expansion at the leading order in α_s (single gluon exchange as depicted in Fig. 1). The hadron wave functions ϕ_B, ϕ_ψ and $\phi_{\pi\pi}^S$ absorb the nonperturbative dynamics, and they can be extracted from experimental data or other nonperturbative methods.

Following the introduction, in Sect. II we shall define kinematics and describe the wave functions of the initial and final states, then we will briefly review the related theoretical formulas. In Sect. III we will calculate the $B^0 (s) \to \psi (2S, 3S)\pi^+\pi^-$ decays in the PQCD approach with discussions. Finally we will close this paper with a conclusion.

II. FRAMEWORK

It is convenient to work in the rest frame of the $B^0 (s)$ meson. Its momentum p_B, along with the charmonium meson momentum p_3, the pion pair momentum p and other quark momenta k_i in each meson, is chosen as [50]

$$p_B = \frac{M_B}{\sqrt{2}}(1, 1, 0_T), \quad p_3 = \frac{M_B}{\sqrt{2}}(1, 1-\eta, 0_T), \quad p = \frac{M_B}{\sqrt{2}}(1-r^2, \eta, 0_T),$$

$$k_B = (0, \frac{M_B}{\sqrt{2}}x_B, k_{BT}), \quad k_3 = (\frac{M_B}{\sqrt{2}}p^2x_3, \frac{M}{\sqrt{2}}(1-\eta)x_3, k_{3T}), \quad k = (\frac{M_B}{\sqrt{2}}(1-r^2), 0, k_T),$$

with the ratio $r = m/M_B$ and $m(M_B)$ is the mass of the charmonium ($B^0 (s)$) meson. The factor $\eta = \omega^2/(M_B^2 - m^2)$ with the invariant mass squared $\omega^2 = p^2$ for the pion pair. The k_{BT}, x_i represent the transverse momentum and longitudinal momentum fraction of the quark inside the meson, respectively. If we choose the $\zeta = p_{1T}/p^\perp$ as the π^\perp meson momentum fraction, the two pion momenta $p_{1, 2}$ can be written as

$$p_1 = \frac{M_B}{\sqrt{2}}((1-r^2)^2, \eta(1-\zeta), p_{1T}), \quad p_2 = \frac{M_B}{\sqrt{2}}((1-r^2)(1-\zeta), \eta\zeta, p_{2T}).$$

Mesons	I^G	J^{PC}	Mass (MeV)	Width (keV)
$\psi (2S)$	0$^-$	1$^-$	3686.097 \pm 0.025	296 \pm 8
$\psi (3S)$	0$^-$	1$^-$	4039 \pm 1	800 \pm 100

TABLE I: The properties of $\psi (2S)$ and $\psi (3S)$ mesons.
FIG. 1: The leading-order Feynman diagrams for the quasi-two-body decays $B^0_s \to \psi(2S,3S)f_0 \to \psi(2S,3S)\pi^+\pi^-$, where f_0 stands for the S-wave intermediate state.

Similar to the situation of the B meson, B^0_s meson could also be treated as a heavy-light system, its wave function in the b space can be expressed by $[51, 67, 68, 69]$

$$\Phi_{B_s}(x,b) = \frac{i}{\sqrt{2N_c}}[(p_B + M_B)\gamma_5\phi_{B_s}(x,b)],$$

where b is the conjugate space coordinate of the transverse momentum k_{RT}, and N_c is the color factor. Here, we only consider one of the dominant Lorentz structures in our calculation. The distribution amplitude ϕ_{B_s} is adopt the same form as it in Refs. $[68, 69]$

$$\phi_{B_s}(x,b) = N\alpha^2(1-x)^2\exp\left[-\frac{x^2M_B^2}{2\omega_b^2} - \frac{\omega_b^2b^2}{2}\right],$$

with shape parameter $\omega_b = 0.50 \pm 0.05$ GeV and the normalization constant N being related to the decay constant f_{B_s} through

$$\int_0^1 \phi_{B_s}(x,b=0)dx = \frac{f_{B_s}}{2\sqrt{2N_c}}.$$

For the considered decays, the vector charmonium meson is longitudinally polarized. The longitudinal polarized component of the wave function is defined as $[61, 62]$

$$\Phi^L_{\psi} = \frac{1}{2\sqrt{N_c}}[m\epsilon_L\phi^L(x,b) + \epsilon_L\gamma_5\phi^I(x,b)],$$

with the longitudinal polarization vector $\epsilon_L = \frac{M}{\sqrt{2m}}(-r^2, 1 - \eta, 0, \ell_T)$. For the twist-2 (twist-3) distribution amplitudes $\phi^L(\phi^I)$ of $2S$ and $3S$ states, the same form and parameters are adopted as their in Refs. $[61, 62]$. According to $[50]$, the S-wave two-pion distribution amplitudes are organized into

$$\phi_{\pi\pi}^n = \frac{1}{2\sqrt{N_c}}[\phi_{tuv=-}(z, \zeta, \omega^2) + \omega\phi_{tuv=0}(z, \zeta, \omega^2) + \omega(\phi - 1)\phi_{tuv=+}(z, \zeta, \omega^2)],$$

where $n = (1, 0, \ell_T)$ and $v = (0, 1, \ell_T)$ are two dimensionless vectors. The asymptotic models for the twist-2 distribution amplitude $\Phi_{tuv=-}$ and the twist-3 distribution amplitude $\Phi_\psi, \Phi_{tuv=+}$ and relevant time-like scalar form factor can be found in $[50]$. Now, we write down the differential branching ratio for $B_s^0 \to \psi(2S,3S)\pi^+\pi^-$ decays,

$$\frac{d\mathcal{B}}{d\omega} = \frac{\tau\omega|\tilde{p}_1||\tilde{p}_3|}{32\pi^3M_B^3}|A|^2,$$

where $\tau = 1.512 \times 10^{-12}$ s is the lifetime of B_s^0 meson. The three-momenta of the pion in the pion pair center-of-mass system \tilde{p}_1 and that of the charmonium \tilde{p}_3 are given by

$$|\tilde{p}_1| = \frac{1}{2}\sqrt{\omega^2 - 4m^2}, \quad |\tilde{p}_3| = \frac{1}{2\omega}\sqrt{[M_B^2 - (\omega + m)^2][M_B^2 - (\omega - m)^2]}.$$
where the errors are induced by the shape parameter ω_a Gegenbauer coefficient corrections to the factorizable amplitudes F, respectively. The errors from the uncertainty of the CKM matrix elements and the decay constants of charmonia are the appendix of Ref. [50] except for the replacement $\lambda[60]$.

The mesons and quark masses (in units of GeV) and the Wolfenstein parameters are taken from the Particle Data Group [60].

\begin{align*}
M_B &= 5.367, \quad m_{\psi(2S)} = 3.686, \quad m_{\psi(3S)} = 4.040, \quad m_\pi = 0.14, \quad m_b = 4.2, \quad m_c = 1.27, \\
\lambda &= 0.22506 \pm 0.00050, \quad A = 0.811 \pm 0.026, \quad \bar{\rho} = 0.124^{+0.019}_{-0.018}, \quad \bar{\eta} = 0.356 \pm 0.011.
\end{align*}

The decay constants needed (in units of MeV) are [61, 73]

\begin{align*}
f_{B_s} &= 259 \pm 32, \quad f_{\psi(2S)} = 296^{+3}_{-2}, \quad f_{\psi(3S)} = 187 \pm 8.
\end{align*}

By using Eq. (9), we have the predictions of the branching ratios as

\begin{align*}
\mathcal{B}(B_s^0 \to \psi(2S) f_0(980) \to \psi(2S) \pi^+ \pi^-) &= [5.1^{+1.6}_{-1.2}(\omega_b)_{-1.2}^{+1.4}(f_{B_s})_{-0.7}(f_{B_s})_{-0.7}(f_{B_s})_{-0.7}] \times 10^{-5}, \\
\mathcal{B}(B_s^0 \to \psi(2S) f_0(1500) \to \psi(2S) \pi^+ \pi^-) &= [2.3^{+1.3}_{-0.5}(\omega_b)_{-0.5}^{+0.7}(f_{B_s})_{-0.1}(f_{B_s})_{-0.1}(f_{B_s})_{-0.1}] \times 10^{-6},
\end{align*}

where the errors are induced by the shape parameter $\omega_b = 0.50 \pm 0.05$ GeV, the decay constant $f_{B_s} = 0.259 \pm 0.032$, the Gegenbauer coefficient $a_2^c = 0.2 \pm 0.2$ for the two-pion system, and the hard scale t which varies from 0.75t to 1.25t, respectively. The errors from the uncertainty of the CKM matrix elements and the decay constants of charmonia are

FIG. 2: (a) The ω dependence of the differential decay rates $d\mathcal{B}/d\omega$ in (a) $B_s^0 \to \psi(2S) \pi^+ \pi^-$ and (b) $B_s^0 \to \psi(3S) \pi^+ \pi^-$ decays.
We have the branching ratio: $$\omega$$, respectively. As expected, the $$f(2\pi)$$ from the LHCb Collaboration \[57\].

FIG. 3: $$\pi^+\pi^-$$ invariant mass distributions for the $$B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$$ decay. (a) The S-wave contributions in this work, and (b) from the LHCb Collaboration \[57\].

very small, and have been neglected. It is found that the main uncertainties in our approach come from the $$B_s$$ meson wave function (the first two errors), which can reach 30 – 50% in size. The uncertainties caused by the Gegenbauer coefficient are less than 20% which is similar to that of $$B_s^+ \rightarrow J/\psi\pi^+\pi^-$$ \[50\]. The scale-dependent uncertainty is largely reduced due to the inclusion of the next-to-leading order vertex corrections. Summing the two resonances $$f_0(980)$$ and $$f_0(1500)$$ in the strange scalar form factors, we have the total S-wave contribution for $$B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$$ decay as

$$B(B_s^0 \rightarrow \psi(2S)(\pi^+\pi^-)_{S-wave}) = [6.0^{+1.7}_{-1.4}(\omega_b)^{+1.6}_{-1.4}(f_{B_s})^{+0.9}_{-0.9}(a_2^{f=0})^{+0.6}_{-0.5}(t)] \times 10^{-5}, \quad (16)$$

which is compatible with the LHCb data \((7.2 \pm 1.2) \times 10^{-5}\) \[61\] when considering its uncertainty. The measured ratio between the branching ratios of $$B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$$ and $$B_s^0 \rightarrow J/\psi\pi^+\pi^-$$ is \[57\]

$$\frac{B(B_s^0 \rightarrow \psi(2S)\pi^+\pi^-)}{B(B_s^0 \rightarrow J/\psi\pi^+\pi^-)} = 0.34 \pm 0.04(\text{stat}) \pm 0.03(\text{syst}) \pm 0.01(\mathcal{B}), \quad (17)$$

which is consistent with the PQCD prediction \(0.37^{+0.25}_{-0.18}\) (uncertainties added in quadrature), where the $$B(B_s^0 \rightarrow J/\psi\pi^+\pi^-)$$ is read from \[50\]. Because the mass of the $$f_0(1500)$$ resonance is beyond the $$\pi^+\pi^-$$ invariant mass region \((2m_{\pi} < \omega < M - m)\) in $$B_s^0 \rightarrow \psi(3S)\pi^+\pi^-$$ decay, there is only one resonant state $$f_0(980)$$ contributing to this decay. We have the branching ratio:

$$B(B_s^0 \rightarrow \psi(3S)f_0(980) \rightarrow \psi(3S)\pi^+\pi^-) = [1.7^{+0.5}_{-0.3}(\omega_b)^{+0.5}_{-0.4}(f_{B_s})^{+0.3}_{-0.1}(a_2^{f=0})^{+0.2}_{-0.0}(t)] \times 10^{-5} \quad (18)$$

In Fig. 2 we plot the differential branching ratio for $$B_s^0 \rightarrow \psi(2S,3S)\pi^+\pi^-$$ as a function of the $$\pi^+\pi^-$$ invariant mass $$\omega$$. The red dashed and blue dotted curves represent the contributions from the resonances $$f_0(980)$$ and $$f_0(1500)$$, respectively. As expected, the $$f_0(980)$$ production is clearly dominant. From the branching ratios in Eqs. (15) and (16) one could find that the $$f_0(980)$$ resonance accounts for 85.0% of the total branching ratio, the $$f_0(1500)$$ resonance 3.8%, and positive interference between the two terms is for 11.2%.

For a more direct comparison with the available experimental data \[57\], we also present the S-wave $$\pi^+\pi^-$$ invariant mass distributions for the $$B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$$ decay in this work as well as the Fig. 4b in Ref. \[57\]. One observes an appreciable peak arising form the $$f_0(980)$$ resonance and a less strong, but clearly visible peak for the $$f_0(1500)$$ in Fig. 3 a. Comparing with the data, our distribution below 1.4 GeV for the resonances agrees quite well, showing a similar behavior in this region.

Different from the fixed kinematics of the two-body decays, the decay amplitudes of the quasi-two-body decays are dependent on the $$\pi^+\pi^-$$ invariant mass. Therefore, it is more convenient to compare these contributions to the branching ratios, whose results are displayed separately in Table III where the labels $$FF$$, $$MM$$, $$FM$$ correspond to the contribution of the factorizable, nonfactorizable cases, and the interferences between them, respectively, while the
TABLE II: Contributions to the branching ratios (in unit of 10^{-5}) of $B^0 \rightarrow \psi(2S,3S)\pi^+\pi^-$ decays from the factorizable amplitudes F, from the nonfactorizable amplitudes M, and from the interference between F and M.

Modes	FF	MM	FM	Total
$B^0 \rightarrow \psi(2S)f_0(980) \rightarrow \psi(2S)\pi^+\pi^-$	6.4	0.2	-1.5	5.1
$B^0 \rightarrow \psi(2S)f_0(1500) \rightarrow \psi(2S)\pi^+\pi^-$	0.34	0.04	-0.15	0.23
$B^0 \rightarrow \psi(2S)(\pi^+\pi^-)_{S\text{-wave}}$	7.3	0.3	-1.6	6.0
$B^0 \rightarrow \psi(3S)f_0(980) \rightarrow \psi(3S)\pi^+\pi^-$	2.0	0.2	-0.5	1.7

In this work, the quasi-two-body decays $B^0 \rightarrow \psi(2S,3S)\pi^+\pi^-$ have been analyzed in the PQCD approach, assuming dominance of the S-wave resonance states $f_0(980)$ and $f_0(1500)$ in the invariant $\pi^+\pi^-$ mass distributions. Both the factorizable (including the vertex corrections) and nonfactorizable contributions are taken into account. We discussed theoretical uncertainties arising from the nonperturbative shape parameters, the decay constant, the Gegenbauer coefficient, and the scale dependence. It is found that the main uncertainties of the concerned processes come from the shape parameters and the decay constant of the B_s meson. The predicted branching ratio and the invariant mass distributions for $B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$ decay are in agreement with the results from LHCb Collaboration. The decay mode $B_s^0 \rightarrow \psi(3S)\pi^+\pi^-$ has not been measured yet, while the large value of the prediction $B = 1.7^{+0.8}_{-0.5}\times 10^{-5}$ for it in this work waits the the future measurements.

IV. CONCLUSION

In this work, the quasi-two-body decays $B^0 \rightarrow \psi(2S,3S)\pi^+\pi^-$ have been analyzed in the PQCD approach, assuming dominance of the S-wave resonance states $f_0(980)$ and $f_0(1500)$ in the invariant $\pi^+\pi^-$ mass distributions. Both the factorizable (including the vertex corrections) and nonfactorizable contributions are taken into account. We discussed theoretical uncertainties arising from the nonperturbative shape parameters, the decay constant, the Gegenbauer coefficient, and the scale dependence. It is found that the main uncertainties of the concerned processes come from the shape parameters and the decay constant of the B_s meson. The predicted branching ratio and the invariant mass distributions for $B_s^0 \rightarrow \psi(2S)\pi^+\pi^-$ decay are in agreement with the results from LHCb Collaboration. The decay mode $B_s^0 \rightarrow \psi(3S)\pi^+\pi^-$ has not been measured yet, while the large value of the prediction $B = 1.7^{+0.8}_{-0.5}\times 10^{-5}$ for it in this work waits the the future measurements.

Acknowledgments

The authors are grateful to Hsiang-nan Li for helpful discussions. This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 11547020, 11605060, and 11547038, in part by the Natural Science Foundation of Hebei Province under Grant No. A2014209308, in part by the Program for the Top Young Innovative Talents of Higher Learning Institutions of Hebei Educational Committee under Grant No. BJ2016041, and in part by the Training Foundation of North China University of Science and Technology under Grant Nos. GP201520 and JP201512.

[1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 86, 052006 (2012).
[2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 89, 092006 (2014).
[3] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 87, 072004 (2013).
[4] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 114, 041801 (2015).
[5] B. Aubert et al. [BaBar collaboration], Phys. Rev. Lett. 90, 091801 (2003).
[6] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 87, 052001 (2013).
[7] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 90, 012003 (2014).
[8] R. Aaij et al. [LHCb Collaboration], Phys. Lett. B 742, 38 (2015).
[9] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 88, 072005 (2013).
[10] R. Aaij et al. [LHCb Collaboration], JHEP 03, 040 (2016).
[11] R. Aaij et al. [LHCb Collaboration], Phys. Lett. B 747, 484 (2015).
[12] M. Gronau, J. L. Rosner, Phys. Lett. B 564, 90 (2003).
[13] M. Gronau, J. L. Rosner, Phys. Rev. D 72, 094031 (2005).
[14] M. Gronau, Phys. Lett. B 727, 136 (2013).
[15] B. Bhattacharya, M. Gronau, J. L. Rosner, Phys. Lett. B 726, 337 (2013).
[16] B. Bhattacharya, M. Gronau, M. Imbeault, D. London, J. L. Rosner, Phys. Rev. D 89, 074043 (2014).
