Unique Characteristic Features of Mycobacterium Tuberculosis in Relation to Immune System

Rajni and Laxman S. Meena
Institute of Genomics and Integrative Biology, Allergy and Infectious Diseases, Mall Road, Delhi-110007, India

Abstract: Problem statement: Tuberculosis is a leading global mortality factor which has not been effectively controlled, with 1.7 million deaths per year and 8.9 million new cases. Aerobic microbe Mycobacterium Tuberculosis H37Rv (MTB) is the causative agent of tuberculosis. Approach: It is unique among prokaryotes due to its exceptional features contributing to its survival within the hostile environment of macrophages. Results: It modifies both its intracellular and local tissue environment and proliferates within macrophages resulting in caseous granulomas, the characteristic lesions of TB. MTB derived cAMP intoxicates host cells and thus enable MTB for long term persistence within macrophages by modifying its intracellular environment. Apart from these, there are several unique structural components of MTB which interfere in the pathways of immune system and thus eluding it from destruction. Conclusion: The dormant state of MTB is the major factor which provides this pathogen ability to survive host inflammatory mediators and antibiotic treatment. It is indispensable to delineate the unusual features of MTB that enable its escape from the host immune system, in order to design an efficacious drug against the unpardonable form of tuberculosis.

Key words: Unique characteristic, mycobacterium tuberculosis, immune system, survive host, multidrug resistant, virulence factors, resistant tuberculosis, sharply reduced, drug resistant

INTRODUCTION

Tuberculosis is the direct cause of death affecting one third of world’s population. It is the most unpardonable infectious disease and the most common one, which easily spreads through the air when the diseased person coughs, sneezes, or spits. Lungs are the most common target, but it may also affect the central nervous system, the gastrointestinal system, the lymphatic system, the circulatory system, bones, joints and skin (Kumar and Robbins, 2007) WHO, 2006. A number of treatment and preventive strategies have been employed including BCG (Bacillus Calmette-Guerin) vaccine against TB, but none of them have been proved to be successful so far. Poor administrative control, incomplete and inadequate treatment and spontaneous mutation have led to the emergence of multidrug resistant tuberculosis and later its progression into extensively drug resistant tuberculosis (Jain and Dixit, 2008; Holtz and Cegielski, 2007).
Antigen 85 complex is one of those dominant exported proteins which is one of the most powerful and protective antigen of MTB (Belisle et al., 1997). MTB is one of the most successful pathogen, which has extraordinary ability to persist within host macrophages through a complex and coordinated process controlled by its special bacterial protein secretion system called as ESX-1 (Raghavan et al., 2008; Sorensen et al., 1995; Champion and Cox, 2007; Stanley et al., 2003; Wel et al., 2007; MacGurn et al., 2005; Porcelli, 2008).

Tumor Necrosis Factor (TNF) is a cytokine well known for its role in systemic inflammation and the regulation of immune cells (Flynn et al., 1995). It is also an important mediator produced by monocytes against bacterial and parasitic infections. The essentiality of TNF-α during MTB infection has been realized, however its overproduction is associated with deleterious effects (Orme and Collins, 1984; Orme et al., 1992; Flory et al., 1992 Flynn et al., 1992; Rook et al., 1986; Mangelsdorf et al., 1984; Bevilaqua et al., 1986; Nawroth and Stern, 1986; Beutler and Cerami, 1985; 1986; 1989; Dinarello et al., 1986; Tracey et al., 1988; Cotran et al., 1999; Sampaio et al., 1991; 1993; Sarno et al., 1991).

Granulomas which are known to restrict bacterial spreading actually serve as a nutrient rich reservoir for MTB persistence. Granulomas accumulate at the site of tuberculosis infection and benefits MTB by providing a constant supply of susceptible host cells to infect (Adams, 1976; Egen et al., 2008; Peyron et al., 2008; Davis and Ramakrishnan, 2009; Bold and Ernst, 2009). This efficient recruitment of uninfected macrophages to the site of infection is controlled by mycobacterial RD1 locus (Davis and Ramakrishnan, 2009). MTB which proliferates within host macrophages modifies its intracellular and local tissue environment causing caseous granulomas with incomplete bacterial sterilization (Baker and Kelly, 2004; Sands and Palmer, 2008; Walburger et al., 2004; Axelrod et al., 2008; Hunter et al., 2007; Agarwal et al., 2009; Keane et al., 2001; Chakravarty et al., 2008). Apart from unique behavior of granulomas there are 17 adenylate cyclase genes present in MTB, among them Rv0386 has been shown to be necessary for virulence. Rv0386 adenylate cyclase also mediates delivery of cAMP derived from bacteria into the macrophage cytoplasm (Agarwal et al., 2009).

There are some host factors that initiate and maintain the latent state of TB, Nitrice Oxide (NO) is one such host factor which is a product of activated macrophages and exhibits antimycobacterial properties (Cardona and Ruiz-Manzano, 2004). Non-toxic concentration of NO competitively modulates the expression of a 48 gene regulon which expresses to prepare bacilli for survival during long periods of in vitro dormancy. It was suggested that inhibition of respiration by NO production along with oxygen limitation constrains MTB replication rates in persons with latent TB (Cardona and Ruiz-Manzano, 2004; Zhang et al., 2001).

M. tuberculosis H37rv versus host immune system:

Cell wall structure: MTB cell wall structure deserves special consideration due to its incomparable characteristics among prokaryotes and it’s a major factor for the virulence of the bacterium. The cell wall contains complex lipids apart from peptidoglycan. Mycobacterial cell wall is composed of over 60% of lipids. The lipid fraction of MTB comprises of three major components i.e., mycolic acid, cord factor and wax-D (Alderwick et al., 2007; Brennan, 2003). Mycolic acids are unique alpha-branched lipids present in the cell wall of Mycobacterium and Corynebacterium. Mycolic acids are the primary determinant of permeability of mycobacterial cell wall due to its strong hydrophobic nature. Mycolic acid forms a lipid shell around the organism and thus affect permeability properties at the cell surface. Mycolic acids are considered to be an important factor responsible for virulence in MTB, because they defend mycobacteria from the attack of cationic proteins, lysozyme and oxygen radicals in the phagocytic granule. They are also known to protect extracellular mycobacteria from complement deposition in serum (Alderwick et al., 2007).

Cord factor (trehalose 6, 6’- dimycolate; TDM) is a surface glycolipid, which causes MTB to grow in vitro in serpentine cords. Cord factor is an inhibitor of PMN (Polymorphonuclear neutrophil) migration and is also toxic to mammalian cells. It is most abundantly produced on the surface of virulent strains of MTB while avirulent strains do not have cord factor (Asano et al., 1993). The third major lipid ‘wax-D’ is the major component of freund’s complete adjuvant. Apart from wax-D LAM is also an important part of mycobacterial cell wall which has been shown to be involved in phagocytosis of MTB when it is “capped” with short mannose oligosaccharides (ManLAM) (Brennan, 2003; Belisle et al., 1997).
ManLAM is an important regulator of endosomal trafficking since it is known to inhibit phosphatidylinositol 3-kinase and phosphatidlyinositol 3-phosphate binding effectors dependent pathway and thus inhibit phagosome maturation (Fratti et al., 2003). Antigen 85 complex is a group of related gene products forming a triad. This complex acts through its fibronectin binding capacities and thus contributes in disease pathogenesis (Meena and Rajni, 2010; Rajni and Meena, 2010). These proteins are also involved in the ultimate stages of mycobacterial cell wall assembly through their mycolyltransferase activity (Belisle et al., 1997). Apart from all these unique structural features, porins present in the mycobacterial cell wall also deserves special attention due to its very small pore size compared to other bacteria. These porins act like a diffusion barrier which is 100-1000 times less permeable to hydrophilic molecules and many antibiotics compared to other prokaryotes like E. coli (Rajni and Meena, 2010; Kartmann et al., 1999). It was suggested that high concentration of lipids in the cell wall of MTB imparts bacterium several properties such as impermeability to strains and dyes, resistance to many antibiotics, resistance to killing by acidic and alkaline compounds, resistance to osmotic lysis via complement deposition and resistance to lethal oxidation and survival inside macrophages as shown in Fig. 1 (Alderwick et al., 2007; Brennan, 2003).

Modulation of virulence by M. tuberculosis h37rv: MTB is one of the most successful pathogens because of its shrewd survival strategy. The extraordinary ability of MTB to persist within host macrophage results from the complex and delicately coordinated process in which it interacts with its host. This process is controlled in part by a specialized bacterial protein-secretion system known as ESX-1. Mycobacteria avoid excessive virulence by maintaining ESX-1 activity, leading to its long term survival (Raghavan et al., 2008). Virulence of MTB is mediated by ESX-1, which is also found to occur in other gram positive bacteria. ESAT-6 and CEP-10 are the two proteins secreted by the ESX-1 system. These proteins are the salient targets of the immune system in animals, including humans infected with MTB (Sorensen et al., 1995). Studies have shown that during the early phase of infection in mice and in macrophages ESX-1 mutants grow poorly (Patricia et al., 2007; Stanley et al., 2003). ESX-1 also helps MTB to escape from phagosome vesicles in order to prevent their destruction (Wel et al., 2007). It was envisaged that a gene Rv 3849 which is located some distance from the main ESX-1 gene cluster is required for ESX-1 function. EspR is the protein product of Rv3849 which is highly similar to a gene transcription factor of the harmless soil bacterium Bacillus subtilis and is also a DNA-binding transcriptional regulator (MacGurn et al., 2005). An important finding has
shown that EspR is itself secreted by ESX-1 (Porcelli, 2008). EspR is a transcription factor that is actively exported from the cell by the same secretion system that it induces. EspR when initially express activate ESX-1 to secrete high levels of virulence promoting proteins, allowing MTB to establish its infection in the host. After infection secretion of EspR reduces its transcriptional activity within the bacterium and diminished ESX-1 activity. This process partially attenuate virulence thus promoting bacterial persistence in order to heights transmission (Porcelli, 2008).

Role of tumour necrosis factor in the immunopathology of tuberculosis: MTB stimulates variety of immune responses after infection in the host (Flynn et al., 1995). CD4 and CD8 T cells have been shown to be responsible for protective immune response to MTB infection (Orme and Collins, 1984; Orme et al., 1992; Flory et al., 1992; Flynn et al., 1992). Different cell types are known to produce TNF-α including macrophages. TNF-α is released upon exposure of macrophages to Lipopolysaccharide (LPS) or other pathogens like mycobacteria (Flynn et al., 1995). The release of TNF from macrophages in granulomata occurs via specific sequence of events. Initially IFN-γ is produced by the T-cell mediated response, resulting in the local activation of macrophages. Activated macrophages produces TNF and also gain 1-hydroxylase activity responsible for the conversion of inactive circulating 25-OH vitamin D₃ into the active 1, 25-(OH)₂ derivative (Rook et al., 1986). This compound fascilitates maturation of macrophages, (Mangelsdorf et al., 1984) and heightens the anti-microbial efficacy of human monocytes during MTB infection (Mangelsdorf et al., 1984). TNF-α has been associated with potent effects on normal endothelial cells and may also induce intravascular coagulation (Bevilacqua et al., 1986; Nawroth and Sterin, 1986). Moreover, weight-loss associated with tuberculosis is also due to TNF secretion (Beutler and Cerami, 1986). TNF release is also associated with release of Interleukin-1 (IL-1) which is a pyrogen, (Dinarello et al., 1986) and suppresses lipoprotein lipase (Beutler and Cerami, 1986) but induces procoagulant activity in endothelial cells Fig. 2 (Bevilacqua et al., 1986). Information obtained from murine models has shown crucial role of TNF in control and survival of MTB infection in mice (Flynn et al., 1995).

In view of all these observations it can be envisaged that TNF-α is essential for host immunity. However its overproduction may have severe pathologic consequences, such as fever by direct action of TNF-α on the hypothalamus, (Beutler and Cerami, 1989) marked losses of fat and muscle cells (Tracey et al., 1988) weakness, fatigue, nightsweats, lung necrosis and progressive weight loss (Cotran et al., 1999). Recently drug thalidomide (alpha-N-phthalimido-glutarimide) has been shown to suppress TNF-α production by human monocytes in vitro, (Sampaio et al., 1991; 1993) and it also normalize elevated levels of serum TNF-α in vivo (Sampaio et al., 1991; 1993; Sarno et al., 1991). Thus there must be a balance in the production of TNF-α to stimulate host immunity.

Granulomas fascilitating spread of M. tuberculosis h37rv: Granulomas are the characterisitic lesions of TB, which have long been considered as a host defense mechanism for containing persistent pathogens (Adams, 1976; Egen et al., 2008). The first real time images of granulomas was produced in mammals by examining live granulomas in mice infected with Mycobacterium bovis BCG (Egen et al., 2008). Their report also identified a role for TNF in maintenance of granulomas. It is also suggested that oxygenated mycolic acids from MTB play an important role in the differentiation of foamy macrophages from macrophages. These foamy macrophages which are granuloma specific cell population are characterized by its high lipid content and could serve as a reservoir for long persistence of tubercle bacillus within its human host (Peyron et al., 2008). Recent findings suggest that granulomas commonly known as organized aggregates of immune cells which accumulate at the site of tuberculosis infection are beneficial to the MTB in the early stages of infection. During early stages of granuloma formation macrophages are highly motile and the early granuloma in reality benefits the MTB by recruiting macrophages to the site of infection, thus providing a constant supply of susceptible host cells to infect (Davis and Ramakrishnan, 2009). Uninfected macrophages are actively recruited to the site of infection by the infected macrophages (Bold and Ernst, 2009). Phagocytosis of infected cell remnants and their bacterial contents by uninfected macrophages fascilitates efficient spread and expansion of the bacterial population (Bold and Ernst, 2009). Mycobacterial RD-1 locus has been thought to be responsible for the efficient recruitment of uninfected macrophages to the site of Mycobacterium marium (M. marium) infection (Davis and Ramakrishnan, 2009). It was observed that RD-1 deficient M. marium recruit seven fold less uninfected macrophages to the site of infection than virulent M. marium. MTB is considered as one of the most successful bacterium that infects macrophages and dendritic cells and hence is able to counteract and utilize host immune responses (Davis and Ramakrishnan, 2009).
Although immune system consisting of adaptive immunity (CD4+ and CD8+ T cell) is able to protect host from foreign particles but its not able to eradicate tuberculosis infection, which results in latent infection (Bold and Ernst, 2009). At the same time MTB also possess mechanisms to confine apoptosis (Davis and Ramakrishnan, 2009). Development of an effective tuberculosis vaccine requires realizing the shortcomings of immune responses to MTB and the virulence mechanisms it employs to circumvent immunity.

M. tuberculosis h37rv adenylate cyclase intoxicates macrophages with cyclic AMP: MTB has evolved highly specialized mechanism to proliferate in the host during infection. Subversion of host cell signal transduction is the common strategy employed by MTB by the introduction of enzymes that modulate the levels of secondary messengers such as cAMP (Baker and Kelly, 2004; Sands and Palmer, 2008). MTB inhibits the host phagosome maturation process to survive intracellularly (Walburger et al., 2004; Axelrod et al., 2008). It also arouses an immune response giving rise to caseous necrosis and the formation of solid granulomas (Hunter et al., 2007). It was suggested that these lesions may facilitate chronic contained infection (Baker and Kelly, 2004; Sands and Palmer, 2008; Walburger et al., 2004). It was observed that infection with the MTB mutant lacking the adenylate cyclase gene Rv0386 resulted in cAMP levels that were fivefold lower than those observed with wild type MTB (Agarwal et al., 2009). Data has shown that Rv0386 is required for full virulence in the mouse model and loss of this adenylate cyclase gene results in a macrophage infection that is devoid of a cAMP burst. Rv0386 mutant elicited sharply reduced CREB phosphorylation signals after macrophage infection, which is equivalent to cAMP levels in uninfected macrophages. It also resulted in reduced TNF-α secretion, which is 40-50% below wild type levels. Low levels of TNF-α are associated with immune containment of latent MTB, (Keane et al., 2001; Chakravarty et al., 2008) while in active disease high levels of TNF-α cause caseation necrosis leading to the development of granulomas.

Dormancy in *M. tuberculosis* h37rv: MTB latent bacilli are microorganisms that are able to survive within the hostile environment of macrophages and adapt themselves to the stressful conditions generated by host defense system. By slowing metabolism and becoming dormant MTB counterbalances these conditions and appear as silent to the immune system (Cardona and Ruiz-Manzano, 2004). The dormant form of tubercle bacilli is the major block for tuberculosis treatment. Evidence from murine models of tuberculosis have shown progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. It was concluded that O2 and low, nontoxic concentration of NO competitively modulate the expression of a 48- gene regulon, which expresses in...
vivo and prepares bacilli for survival during long periods of in vitro dormancy. According to data obtained from experiments it is postulated that inhibition of respiration by NO production and O$_2$ limitation within granulomas restricts MTB replication rates in individuals with latent tuberculosis (Zhang et al., 2001). Gradual reduction in O$_2$ concentration leads to a non replicating persistent state characterized by bacteriostasis and metabolic, chromosomal and structural changes in the dormant bacteria. It was observed that even after long periods of hypoxia induced bacteriostasis, provision of O$_2$ results in resuscitation of the dormant bacteria (Zhang et al., 2001).

CONCLUSION

It is quite striking how MTB has developed so much variation in its cell wall from other gram positive bacteria. These unique cell wall components have different functions after recruitment into host cell. The high lipid content of cell wall imparts impermeability to various compounds including resistance to numerous drugs. Moreover, MTB bacilli also release mycobacterial products which directly or indirectly can affect local immune responses. Apart from these, dormant state of MTB is one of the most remarkable feature of this pathogen which is closely associated with the ability of the pathogen to survive host inflammatory responses and antibiotics. Establishment of this dormant state requires unique regulatory mechanisms and signals to enter and exit dormancy. The more we will understand the processes involved in cell wall metabolism, cell division and growth signaling, the more we will be able to design a novel drug effective against the dormant MTB.

ACKNOWLEDGEMENT

We thank Dr. Rajesh S. Gokhale for making this work possible. The authors acknowledge financial support from GAP0050 of the DST (Department of Science and Technology) and CSIR (Council of Scientific and Industrial Research).

REFERENCES

Adams, D.O., 1976. The granulomatous inflammatory response: A review. Am. J. Pathol., 84: 164-192. PMID: 937513

Agarwal, N., G. Lamichhane, R. Gupta, S. Nolan and W.R. Bishai, 2009. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature., 460: 98-102. PMID: 19516256

Alderwick, L.J., H.L. Birch, A.K. Mishra, L. Eggeling and G.S. Besra, 2007. Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: Arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem. Soc. Transact., 35: 1325-1328. PMID: 17956343

Asano, M., A. Nakane and T. Minagawa, 1993. Endogenous gamma interferon is essential in granuloma formation induced by glycolipid-containing mycolic acid in mice. Infect Immun., 61: 2872-2878. PMID: 8514390

Axelrod, S., H. Oschkinat, J. Enders, B. Schlegel and V. Brinkmann et al., 2008. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol., 10: 1530-1545. PMID: 18363878

Baker, D.A. and J.M. Kelly, 2004. Structure, function and evolution of microbial adenyl and guanylyl cyclases. Mol. Microbiol., 52: 1229-1242. PMID: 15165228

Belisle, J.T., V.D. Vissa, T. Sievert, K. Takayama and P.J. Brennan et al., 1997. Role of the major antigen of mycobacterium tuberculosis in cell wall biogenesis. Science, 276: 1420-1422. PMID: 9162010

Beutler, B. and A. Cerami, 1986. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature, 320: 584-588. PMID: 3010124

Beutler, B. and A. Cerami, 1989. The biology of cachectin/TNF--a primary mediator of the host response. Annu. Rev. Immunol., 7: 625-655. PMID: 2540776

Beutler, B.A. and A. Cerami, 1985. Recombinant interleukin 1 suppresses lipoprotein lipase activity in 3T3-L1 cells. J. Immunol., 135: 3969-3971. PMID: 2999235

Bevilacqua, M.P., J.S. Pober and G.R. Majeau, W. Fiers and R.S. Cotran et al., 1986. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc. Natl. Acad. Sci. USA., 83: 4533-4537. PMID: 3487091

Bold, T.D. and J.D. Ernst, 2009. Who benefits from granulomas, Mycobacteria or host? Cell, 136: 17-19. PMID: 19135882

Brennan, P.J., 2003. Structure, function and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis, 83: 91-97. DOI: 10.1016/S1472-9792(02)00089-6

Cardona, P.J. and J. Ruiz-Manzano, 2004. On the nature of Mycobacterium tuberculosis-latent bacilli. Eur. Respir, J., 24: 1044-1051. DOI: 10.1183/09031936.04.00072604
Chakravarty, S.D., G. Zhu, M.C. Tsai, V.P. Mohan and S. Marino et al., 2008. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect. Immune., 76: 916-926. DOI: 10.1128/IAI.01011-07

Cotran, R.S., V. Kumar and T. Collins, 1999. Robbins Pathologic Basis of Disease. 6th Edn., W.B. Saunders, Philadelphia, ISBN-10: 072167335X, pp: 1425.

Davis, J.M. and L. Ramakrishnan, 2009. The role of the granuloma in expansion and dissemination of early tuberculosis infection. Cell, 136: 37-49. DOI: 10.1016/J.CELL.2008.11.014

Dinarello, C.A., J.G. Cannon and S.M. Wolff, H.A. Bernheim and B. Beutler et al., 1986. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med., 163: 1433-1450. PMID: 3486936

Egen, J.G., A.G. Rothfuchs, C.G. Feng, N. Winter and A. Sher et al., 2008. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity, 28: 271-284. DOI: 10.1016/J.IMMUNI.2007.12.010

Flory, C.M., R.D. Hubbard and F.M. Collins, 1992. Effects of in vivo T lymphocyte subset depletion on mycobacterial infections in mice. J. Leukoc. Biol., 51: 225-229. PMID: 1347311

Flynn, J.L., M.M. Goldstein, J. Chan, K.J. Triebold and K. Pfeffer et al., 1995. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561-572. DOI: 10.1016/1074-7613(95)90001-2

Flynn, J.L., M.M. Goldstein, K.J. Triebold, B. Koller and B.R. Bloom, 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA., 89: 12013-12017.

Fratti, R.A., J. Chua, I. Vergne and V. Deretic, 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosomal maturation arrest. Proc. Natl. Acad. Sci., 100: 5437-5442. DOI: 10.1073/pnas.0737613100

Holtz, T.H. and J.P. Cegielski, 2007. Origin of the term XDR-TB. Eur. Respir. J., 30: 396-396. DOI: 10.1183/09031936.00042607

Hunter, R.L., C. Jagannath and J.K. Actor, 2007. Pathology of postprimary tuberculosis in humans and mice: Contradiction of long-held beliefs. Tuberculosis, 87: 267-278. DOI: 10.1016/J.TUBE.2006.11.003

Jain, A. and P. Dixit, 2008. Multidrug resistant to extensively drug resistant tuberculosis: What is next? J. Biosci., 33: 605-616. DOI: 10.1007/s12038-008-0078-8

Kartmann, B., S. Stengler and M. Niederweis, 1999. Porins in the Cell Wall of mycobacterium tuberculosis. J. Bacterial., 181: 6543-6546. PMID: 10515949

Keane, J. S. Gershon, R.P. Wise, E. Mirabile-Levens and K. Kasznica et al., 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med., 345: 1098-1104. PMID: 11596589

Kumar, V. and S.L. Robbins, 2007. Robbins Basic Pathology. 8th Edn., Saunders/Elsevier, Philadelphia, ISBN: 10: 1416029737, pp: 946.

MacGurn, J.A., S. Raghavan, S.A. Stanley and J.S. Cox, 2005. A non-RD1 gene cluster is required for smc secretion in mycobacterium tuberculosis. Mol. Microbiol., 57: 1653-1663. DOI: 10.1111/j.1365-2958.2005.04800.x

Mangelsdorf, D.J., H.P. Koeffler and C.A. Donaldson, J.W. Pike and M.R. Haussler et al., 1984. 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): Receptor-mediated maturation to macrophage-like cells. J. Cell Biol., 98: 391-398. DOI: 10.1083/jcb.98.2.391; PMID: 6319426

Meena, L.S. and Rajni, 2010. Survival mechanisms of pathogenic Mycobacterium tuberculosis H7Rv. FEBS J., 277: 2416-2427. DOI: 10.1111/j.1742-4658.2010.07666.x

Nawroth, P.P. and D.M. Stern, 1986. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J. Exp. Med., 163: 740-745. DOI: 10.1084/jem.163.3.391; PMID: 3753996

Orme, I.M. and F.M. Collins, 1984. 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): Receptor-mediated maturation to macrophage-like cells. J. Cell Biol., 98: 391-398. DOI: 10.1083/jcb.98.2.391; PMID: 6319426

Orme, I.M. and F.M. Collins, 1984. Tumor necrosis factor-α neutralizing agent. N. Engl. J. Med., 345: 1098-1104. PMID: 11596589

Orme, I.M., E.S. Miller, A.D. Roberts, S.K. Furney and E. Mirabile-Levens et al., 2007. Protein secretion systems in Mycobacteria. Cell Microbiol., 9: 1376-1384. DOI: 10.1111/j.1462-5822.2006.00943.x
Peyron, P., J. Vaubourgeix, Y. Poquet, F. Levillain and C. Botanch et al., 2008. Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathog., 4: e1000204-e1000204. PMID: 19002241
Porcelli, S.A., 2008. Tuberculosis: Shrewd survival strategy. Nature., 454: 702-703. DOI: 10.1038/454702a
Rajni and L.S. Meena, 2010. Guanosine triphosphatases as novel therapeutic targets in tuberculosis. Int. J. Infect. Dis., 14: e682-e687. DOI: 10.1016/J.IJID.2009.11.016
Raghavan, S., P. Manzanillo, K. Chan, C. Dovey and J.S. Cox, 2008. Secreted transcription factor controls mycobacterium tuberculosis virulence. Nature, 454: 717-721. DOI: 10.1038/nature07219
Rook, G.A., J. Steele, L. Fraher, S. Barker and R. Karmali et al., 1986. Vitamin D3, gamma interferon and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology, 57: 159-163. PMID: 3002968
Sampaio, E.P., E.N. Sarno, R. Gallily, Z.A. Cohn and G. Kaplan, 1991. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J. Exp. Med., 173: 699-703. PMID: 1997652
Sampaio, E.P., G. Kaplan, A. Miranda, J.A.C. Nery and C.P. Miguel et al., 1993. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosum leprosum. J. Infect. Dis., 168: 408-414. DOI: 10.1093/infdis/168.2.408
Sands, W.A. and T.M. Palmer, 2008. Regulating gene transcription in response to cyclic AMP elevation. Cell Signal., 20: 460-466. DOI: 10.1016/J.CELLSIG.2007.10.005
Sarno, E.N., G.E. Grau, L.M. Vieira and J.A. Nery, 1991. Serum levels of tumour necrosis factor-alpha and interleukin-1 beta during leprosy reactional states. Clin. Exp. Immunol., 84: 103-108. PMID: 2015700
Sorensen, A.L., S. Nagai, G. Houen, P. Andersen and A.B. Andersen, 1995. Purification and characterization of a low-molecular-mass T-cell antigen secreted by mycobacterium tuberculosis. Infect. Immun., 63: 1710-1717. PMID: 7729876
Stanley, S.A., S. Raghavan, W.W. Hwang and J.S. Cox, 2003. Acute infection and macrophage subversion by mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci., 100: 13001-13006. DOI: 10.1073/pnas.2235593100
Tracey, K.J., H. Wei, K.R. Manogue, Y. Fong and D.G. Hesse et al., 1988. Cachectin/tumor necrosis factor induces cachexia, anemia and inflammation. J. Exp. Med., 167: 1211-1227. DOI: 10.1084/jem.167.3.1211
Wel, N.V.D., D. Hava, D. Houben, D. Fluitsma and M.V. Zon et al., 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell., 129: 1287-1298. DOI: 10.1016/J.CELL.2007.05.059
Walburger, A., A. Koul, G. Ferrari, L. Nguyen and C. Prescianotto-Baschong et al., 2004. Protein kinase g from pathogenic mycobacteria promotes survival within macrophages. Science, 304: 1800-1804. DOI: 10.1126/science.1099384
Zhang, Y., Y. Yang, A. Woods, R.J. Cotter and Z. Sun, 2001. Resuscitation of dormant Mycobacterium tuberculosis by phospholipids or specific peptides. Biochem. Biophys. Res. Commun., 284: 542-547. DOI: 10.1006/BBRC.2001.4993