Finite temperature QCD with $N_f = 2 + 1 + 1$ Wilson twisted mass fermions at physical pion, strange and charm masses

Andrey Yu. Kotov1,2,3,a, Maria Paola Lombardo4, Anton M. Trunin5

1 Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region 141700, Russia
2 National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
3 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
4 INFN, Sezione di Firenze, 50019 Sesto Fiorentino, FI, Italy
5 Samara National Research University, Samara 443086, Russia

Received: 15 April 2020 / Accepted: 2 August 2020 / Published online: 13 August 2020
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Communicated by Laura Tolos

Abstract We discuss recent progress in studying Quantum Chromodynamics at finite temperature using $N_f = 2 + 1 + 1$ Wilson twisted mass fermions. Particular interest is in QCD symmetries and their breaking and restoration. First, we discuss the behaviour of the η' meson at finite temperature, which is tightly connected to the axial and chiral symmetries. The results suggest a small decrease of the η' mass in the pseudo-critical region coming close to the non-anomalous contribution and subsequent growth at large temperatures. Second, we present the first results of lattice simulations of Quantum Chromodynamics with $N_f = 2 + 1 + 1$ twisted mass Wilson fermions at physical pion, strange and charm masses. We estimate the chiral pseudo-critical temperatures for different observables. Our preliminary results are consistent with a second order transition in the chiral limit, however other scenarios are not excluded.

1 Introduction

Quantum Chromodynamics under extreme conditions has been the subject of numerous theoretical and experimental studies [1]. In the experiments on heavy ion collisions at Relativistic Heavy Ion Collider, Brookhaven and Large Hadron Collider, CERN a droplet of strongly coupled matter at large temperatures is believed to be produced, thus providing a great opportunity to study thermal QCD. One of the most famous experimental discoveries was the observation of the Quark-Gluon Plasma — a new state of matter, characterized by unbound deconfined quarks and gluons. From the theoretical side, the existing information on finite temperature QCD is based on first-principle lattice supercomputer simulations, see e.g. Ref. [2] for a recent review.

Properties of strongly interacting matter at nonzero temperature are tightly related to the symmetries and symmetry breaking pattern of QCD [3]. The chiral symmetry $SU_L(2) \times SU_R(2)$, being broken in the vacuum state of QCD, becomes effectively restored at temperature $T_c \approx 160$ MeV [4–6]. Approximately at the same temperature the transition to the deconfined phase of Quark-Gluon Plasma occurs with both transitions being analytical crossovers, rather than the phase transitions [7].

The behaviour of $U_A(1)$ axial symmetry at finite temperature is a more subtle issue. The proposed mechanism of instanton suppression might lead to the effective restoration of the axial symmetry close to the chiral (pseudo-)critical temperature [8]. Numerical lattice studies of various observables with different fermion discretisations give rather controversial results — some propose joint effective restoration of axial and chiral symmetry, while others favour axial symmetry restoration at much higher temperatures (see [3] and references therein). From a phenomenological point of view, the restoration of axial symmetry should be reflected in the particle spectrum as a degeneracy of axial partners, see [9] and references therein.

The behaviour of $U_A(1)$ symmetry also has a clear link to the universality class of the finite temperature QCD phase transition [10,11]. If it remains broken after the chiral phase transition, the transition in the chiral limit should be in the $O(4)$-universality class. Effective restoration of $U_A(1)$ implies enlarged symmetry breaking pattern and, consequently, another behaviour of the chiral transition: it should be either first-order or in the other universality class $U(2) \otimes U(2)/U(2)$. The scaling of chiral observables with

ae-mail: andrey.kotov@phystech.edu (corresponding author)
the quark mass could in principle distinguish possible scenarios, thus calling for simulations at low pion mass, even lower than physical [12].

Apart from axial and chiral symmetry restoration, the existence of other thresholds in Quark-Gluon Plasma was proposed [13,14] suggesting possible emergence of more elaborate symmetries. So far, the thermal QCD and its symmetries and symmetry breaking patterns are not yet fully understood and further first-principle results are required.

In this note we present lattice results in the Wilson twisted mass discretization at maximal twist, with two families of quarks. The strange and charm masses are set at their physical values, while the light (degenerate) quarks take different values, including the physical one. The gauge field configurations were generated using the public ETMC code. Our setup for pion masses ranging from 210 MeV till 470 MeV is taken from Ref. [15], while for the physical pion mass we use the recent tuning of Refs. [16,17].

2 η' and QCD symmetries

The behaviour of the axial and chiral symmetries in Quantum Chromodynamics is tightly connected with the meson spectrum. Spontaneous breaking of chiral symmetry leads to an octet of Goldstone bosons: π‘s, K‘s and η. Nonzero quark masses m_q, breaking chiral symmetry explicitly, lead to small nonzero masses of these pseudo-Goldstone bosons $M^2_{\pi, K, \eta} \sim m_q \Lambda_{QCD}$. If $U_A(1)$ axial symmetry would be also spontaneously broken, its would-be Goldstone boson η' mass should follow the same pattern. However, the experimental result for $m_{\eta'} \sim 1$ GeV is much higher than the masses of the octet of pseudoscalar mesons. The solution to this well known puzzle comes from the fact that the axial symmetry is anomalously broken and η' mass gets an additional contribution coming from axial anomaly [19]. This contribution can be quantitatively taken into account within large-N limit [20]. There are studies of the η/η'-complex beyond large-N approximation, both phenomenological [21] and on the lattice [22–26]. In general, the behaviour of the η' in QCD at zero temperature is well understood (see, e.g., the detailed discussion in [9]). The properties of η' at finite temperature are less clear and require first-principle investigation.

To determine the η'-mass at nonzero temperature we measured the correlator of the topological charge density $G^q(t) = \int d^3x \langle q(\bar{x}, t)q(0, 0) \rangle$, which is coupled to η' due to the axial anomaly. Topological charge density was measured with the help of Gradient Flow [27]. By fitting the data at large Euclidean times with a simple behaviour $G(t) \sim \cosh [m(t - N_t/2)]$, where N_t is the temporal lattice extent, we extracted the parameter m, which corresponds to the η' mass. More detailed description of the simulation setup can be found in our original paper [9]. The final results for the temperature dependence of the η'-mass for two pion masses $m_\pi = 370$ MeV and $m_\pi = 210$ MeV are presented in Fig. 1.

The results suggest a small decrease in the η' mass in the vicinity of the chiral pseudo-critical temperature followed by an increase at larger temperatures. Various phenomenological studies [28–33] provide similar trend, although some quantitative features are different. One of the possible explanation of these results would be the restoration of chiral and axial symmetries, so that the whole nonet of pseudo-Goldstone bosons becomes degenerate. To draw more definite conclusions, one needs more information from other observables, sensitive to chiral and axial symmetry. In particular, it is very important to measure the spectrum of other particles, both already mentioned pseudo-Goldstone bosons as well as other mesons, at finite temperature, and to extend the results to physical pion mass. This is the subject of an ongoing study.

3 Chiral phase transition for physical pion mass

One of the challenges of modern lattice studies of QCD is related to the fact that the required computational time grows very fast with the pion mass going down to its physical value. So far, the main results at the physical pion mass $m_\pi \sim 140$ MeV were obtained for (improved) staggered fermions [4,5], although results with other discretizations are also available [34]. One of the alternatives is to use Wilson-type fermions, in particular, twisted-mass implementation of Wilson fermions [35]. Development of multi-grid algorithm [36] made it possible to perform simulations with twisted mass fermions at physical pion mass.

Our setup is based on recent tuning of the parameters by ETM collaboration at $T = 0$ for physical pion mass [16,17].
Following Refs. [16, 17], simulations were performed with $N_f = 2 + 1 + 1$ Wilson twisted mass fermions at the isospin symmetric point. With respect to our previous study, a clover term was included, and the fermionic action for two light quarks S^l and for $1 + 1$ heavy doublet S^h has the following form:

$$
S^l = \sum_{x,y} \bar{\chi}_l(x) \left[1 - i \frac{1}{2} c_{SW} \sigma^{\mu \nu} F_{\mu \nu} \right] \delta_{x,y} - \kappa D_W[U](x,y) + 2i \mu_1 \tau^1 \gamma^5 \delta_{x,y} \chi_l(y),
$$

$$
S^h = \sum_{x,y} \bar{\chi}_h(x) \left[1 - i \frac{1}{2} c_{SW} \sigma^{\mu \nu} F_{\mu \nu} \right] \delta_{x,y} - \kappa D_W[U](x,y) + 2i \mu_1 \tau^1 \gamma^5 \delta_{x,y} + 2k \mu_2 \tau^3 \delta_{x,y} \chi_h(y),
$$

where a is the lattice spacing, $D_W[U]$ is the usual Wilson operator, $c_{SW} \sigma^{\mu \nu} F_{\mu \nu}$ is the standard clover term [37].

For the gauge fields the Iwasaki improved action was used ($c_0 = 3.648, c_1 = -0.331$):

$$
S^g = \beta \sum_p \left(c_0 \sum_p \left[1 - \frac{1}{3} \Re \Tr U_p \right] + c_1 \sum_R \left[1 - \frac{1}{3} \Re \Tr U_R \right] \right).
$$

Here \sum_p and \sum_R denote the sum over all 1×1 plaquettes and over all 1×2 rectangles, correspondingly. Parameters of the action were tuned by zero temperature simulations of ETM collaboration [16] to reproduce physical pion mass $m_\pi = 139.3(7)$ MeV [38]. We summarize the parameters used in our simulations in Table 1.

Simulations are performed in a fixed-scale approach, where temperature $T = \frac{1}{N_t a}$ is varied by varying the temporal extent of the lattice N_t, and all the parameters of the action (1)–(2) are kept constant. Used bare parameters correspond to the lattice spacing $a = 0.0801(4)$ fm [38]. Spatial lattice size was fixed $N_s = 64$, or $N_s a = 5.126(26)$ fm. During generation each 4th trajectory was saved. Summary of all used statistics for various values of N_t is presented in Table 2. Simulations are still in progress, and complete results will be reported elsewhere.

In our first study with $N_f = 2 + 1 + 1$ twisted mass fermions at physical pion mass we measured simple chiral observables: the light quark chiral condensate $\langle \bar{\psi} \psi \rangle$ and the disconnected chiral susceptibility $\chi_{\bar{\psi} \psi}^{\text{disc}} = \frac{V}{T} \left(\langle \bar{\psi} \psi \rangle^2 \rangle - \langle \bar{\psi} \psi \rangle \right)$. In Table 2 we also present the data for these observables. The statistical errors were measured by Γ-method [42]. The typical autocorrelation time for studied observables was ~ 1 configuration far from pseudocritical temperatures and ~ 3 configurations for temperatures T near T_c and was taken into account in error analysis. Using their temperature dependence we estimated the pseudocritical temperature of the chiral phase transition, as the inflection point of the chiral condensate $\langle \bar{\psi} \psi \rangle$ versus T and the peak in the susceptibility $\chi_{\bar{\psi} \psi}^{\text{disc}}$. To extract the inflection point T_{Δ}, the chiral condensate in the transition region was fitted by several functions $\langle \bar{\psi} \psi \rangle = A + B \tan \frac{T - T_{\Delta}}{(T_{\Delta})}$, $\langle \bar{\psi} \psi \rangle = A + B (T - T_{\Delta}) / \sqrt{T_{\Delta}^2 + (T - T_{\Delta})^2}$ and $\langle \bar{\psi} \psi \rangle = a_{\Delta} + b_{\Delta} T + c_{\Delta} T^2 + d_{\Delta} T^3$. The difference of T_{Δ} extracted from various fits, and by varying fitting interval, allowed us to estimate the systematic uncertainty of our results. In the same way by using various functions $\chi_{\bar{\psi} \psi}^{\text{disc}} = A_0 + B_0 (T - T_{\Delta})^2$.

Table 1 Parameters of the action (1) and (2)

N_t	β	c_{SW}	κ	μ_1	μ_σ	μ_δ
64	1.778	1.69	0.1394265	0.00072	0.1246864	0.1315052

Simulations are performed in a fixed-scale approach, where temperature $T = \frac{1}{N_t a}$ is varied by varying the temporal extent of the lattice N_t, and all the parameters of the action (1)–(2) are kept constant. Used bare parameters correspond to the lattice spacing $a = 0.0801(4)$ fm [38]. Spatial lattice size was fixed $N_s = 64$, or $N_s a = 5.126(26)$ fm. During generation each 4th trajectory was saved. Summary of all used statistics for various values of N_t is presented in Table 2. Simulations are still in progress, and complete results will be reported elsewhere.

In our first study with $N_f = 2 + 1 + 1$ twisted mass fermions at physical pion mass we measured simple chiral observables: the light quark chiral condensate $\langle \bar{\psi} \psi \rangle$ and the disconnected chiral susceptibility $\chi_{\bar{\psi} \psi}^{\text{disc}} = \frac{V}{T} \left(\langle \bar{\psi} \psi \rangle^2 \rangle - \langle \bar{\psi} \psi \rangle \right)$. In Table 2 we also present the data for these observables. The statistical errors were measured by Γ-method [42]. The typical autocorrelation time for studied observables was ~ 1 configuration far from pseudocritical temperatures and ~ 3 configurations for temperatures T near T_c and was taken into account in error analysis. Using their temperature dependence we estimated the pseudocritical temperature of the chiral phase transition, as the inflection point of the chiral condensate $\langle \bar{\psi} \psi \rangle$ versus T and the peak in the susceptibility $\chi_{\bar{\psi} \psi}^{\text{disc}}$. To extract the inflection point T_{Δ}, the chiral condensate in the transition region was fitted by several functions $\langle \bar{\psi} \psi \rangle = A + B \tan \frac{T - T_{\Delta}}{(T_{\Delta})}$, $\langle \bar{\psi} \psi \rangle = A + B (T - T_{\Delta}) / \sqrt{T_{\Delta}^2 + (T - T_{\Delta})^2}$ and $\langle \bar{\psi} \psi \rangle = a_{\Delta} + b_{\Delta} T + c_{\Delta} T^2 + d_{\Delta} T^3$. The difference of T_{Δ} extracted from various fits, and by varying fitting interval, allowed us to estimate the systematic uncertainty of our results. In the same way by using various functions $\chi_{\bar{\psi} \psi}^{\text{disc}} = A_0 + B_0 (T - T_{\Delta})^2$.

Table 2 Statistics and raw data for the chiral condensate $\langle \bar{\psi} \psi \rangle$ and the disconnected susceptibility $\chi_{\bar{\psi} \psi}^{\text{disc}}$

N_t	T [MeV]	$\# \text{ conf}$	$\langle \bar{\psi} \psi \rangle$	$\chi_{\bar{\psi} \psi}^{\text{disc}}$
20	123(1)	244	0.00833(5)	0.97(22)
18	137(1)	155	0.00777(11)	1.55(32)
16	154(1)	364	0.00664(9)	1.51(14)
14	176(1)	129	0.00413(7)	0.53(11)
12	205(1)	263	0.003437(15)	0.093(21)
10	246(1)	205	0.003167(4)	0.09(5)
8	308(2)	360	0.0030385(4)	5.1(8)\times10^{-5}
6	411(2)	195	0.00291805(17)	4.4(5)\times10^{-6}
4	616(3)	472	0.00268258(5)	9.6(8)\times10^{-7}
temperatures \(T_c \) (red squares) versus the pion mass. The data for higher than physical pion masses are taken from [39]. Along with our results we present the staggered continuum extrapolated results of Wuppertal–Budapest collaboration both for \(T_\Delta \) and \(T_X \) (cyan and orange triangles) [40], recent continuum extrapolated combined for various observables results of HotQCD collaboration both at physical pion mass [5] and in the chiral limit [12] (purple rhombi) and preliminary results of the FASTSUM collaboration for \(T_\Delta \) (blue stars) [41].

In the same plot we show the (continuum extrapolated) \(T_\chi \) (green circles) and peak of the susceptibility \(\Delta \chi \) (cyan and orange triangles) [40], recent results for the physical pion mass obtained with staggered fermions [39]. In the same plot we show the (continuum extrapolated) \(T_\chi \) (green circles) and peak of the susceptibility \(\Delta \chi \) (cyan and orange triangles) [40].

Recent progress in algorithms and supercomputers leads to significant advance in first-principle lattice simulations. In this work we have presented the first results for a physical pion mass with twisted mass Wilson fermions. Our first results for the pseudo-critical temperature with \(N_f = 2 + 1 + 1 \) twisted mass fermions at physical pion mass are consistent with an \(O(4) \) universality class as found with staggered fermions [6].

However, the properties of Quantum Chromodynamics at nonzero temperature still are not yet fully understood. The properties of the chiral transition, its behaviour and universality class in the chiral limit, and the role of the axial symmetry near the chiral phase transition remain an open issue and require further attention. Although our results for the \(\eta' \) mass are in favour of disappearance of axial anomaly and restoration of the axial symmetry in the vicinity of the chiral phase transition, a more thorough study of various observables is required to draw more definite conclusions. In particular, in the future, alongside with a more complete analysis of the scaling properties of the order parameters, a detailed study of meson spectrum for physical pion mass is planned [43].

Acknowledgements

It is a pleasure to thank Roberto Frezzotti for useful conversation on twisted mass Wilson fermions. A.M.T. acknowledges support from the “BASIS” foundation. A.Yu.K. acknowledges the hospitality of the Galileo Galilei Institute for Theoretical Physics and the support of the European COST Action CA15213 “Theory of hot matter and relativistic heavy-ion collisions” (THOR). The work of A.Yu.K. was also supported by RFBR grant 18-02-40126. M.P.L. acknowledges the hospitality of the Joint Institute for Nuclear Research.

Numerical simulations have been carried out using computing resources of CINECA (agreement INFN-CINECA and ISCRA project IsB20), the supercomputer of Joint Institute for Nuclear Research “Govorun” and the computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Please note that new data of this manuscript is presented in the Table 2.]

References

1. W. Busza, K. Rajagopal, W. van der Schee, Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018)

2. H.-T. Ding, New developments in lattice QCD on equilibrium physics and phase diagram. In 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, p. 2 (2020)

3. O. Philipsen. Constraining the QCD phase diagram at finite temperature and density. In 37th International Symposium on Lattice
4. Sz Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539(7627), 69–71 (2016)
5. A. Bazavov et al., Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019)
6. P. Steinbrecher, The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 982, 847–850 (2019)
7. Y. Aoki et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006)
8. E.V. Shuryak, Which chiral symmetry is restored in hot QCD? Comments Nucl. Part. Phys. 21(4), 235–248 (1994)
9. A.Y. Kotov, M.P. Lombardo, A.M. Trunin, Fate of the η' in the quark gluon plasma. Phys. Lett. B 794, 83–88 (2019)
10. R.D. Pisarski, F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics. Phys. Rev. D 29, 338–341 (1984)
11. A. Pelissetto, E. Vicari, Relevance of the axial anomaly at the finite-temperature chiral transition in QCD. Phys. Rev. D 88(10), 105018 (2013)
12. H.T. Ding et al., Chiral Phase Transition Temperature in (2+1)-Flavor QCD. Phys. Rev. Lett. 123(6), 062002 (2019)
13. C. Rohrhofer et al., Symmetries of spatial meson correlators in high temperature QCD. Phys. Rev. D 100(1), 014502 (2019)
14. A. Alexandrou, I. Horváth, Possible new phase of thermal QCD. Phys. Rev. D 100(9), 094507 (2019)
15. N. Carrasco et al., Up, down, strange and charm quark masses with $N_f = 2+1+1$ twisted mass lattice QCD. Nucl. Phys. B 887, 19–68 (2014)
16. C. Alexandrou et al., Simulating twisted mass fermions at physical light, strange and charm quark masses. Phys. Rev. D 98(5), 054518 (2018)
17. G. Bergner et al, Quark masses and decay constants in $N_f = 2 + 1 + 1$ isoQCD with Wilson clover twisted mass fermions. In 37th International Symposium on Lattice Field Theory, p. 1 (2020)
18. K. Ottnad, C. Urbach, Flavor-singlet meson decay constants from $N_f = 2 + 1 + 1$ twisted mass lattice QCD. Phys. Rev. D 97(5), 054508 (2018)
19. G'I Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976)
20. G. Veneziano, U(1) without instantons. Nucl. Phys. B 159, 213–224 (1979)
21. G.M. Shore, The U(1)(A) anomaly and QCD phenomenology. Lect. Notes Phys. 737, 235–288 (2008)
22. T. Kaneko et al., Flavor-singlet mesons in N(6) = 2+1 QCD with dynamical overlap quarks. PoS LAT2009, 107 (2009)
23. N.H. Christ et al., The η and η' mesons from Lattice QCD. Phys. Rev. Lett. 105, 241601 (2010)
24. E.B. Gregory et al., A study of the eta and eta' mesons with improved staggered fermions. Phys. Rev. D 86, 014504 (2012)
25. K. Ottnad, C. Urbach, F. Zimmermann, A mixed action analysis of η and η' mesons. Nucl. Phys. B 896, 470–492 (2015)
26. H. Fukaya et al., η' meson from topological charge density correlator in QCD. Phys. Rev. D 92(11), 111501 (2015)
27. M. Lüscher, Properties and uses of the Wilson flow in lattice QCD. JHEP 08, 071 (2010). [Erratum: JHEP03,092(2014)]
28. D. Horvatić, D. Keze, D. Klubućar, η' and η mesons at high T when the $U_A(1)$ and chiral symmetry breaking are tied. Phys. Rev. D 99(1), 014007 (2019)
29. A. Gómez Nicola, J Ruiz De Elvira, Chiral and $U(1)_A$ restoration for the scalar and pseudoscalar meson nonets. Phys. Rev. D 98(1), 014020 (2018)
30. A. Gómez Nicola, J.R. De Elvira, A. Vioque-Rodríguez, The QCD topological charge and its thermal dependence: the role of the η'. JHEP 11, 086 (2019)
31. M. Ishii, H. Kouno, M. Yahiro, Model prediction for temperature dependence of meson pole masses from lattice QCD results on meson screening masses. Phys. Rev. D 95(11), 114022 (2017)
32. M. Mitter, B.-J. Schaefer, Fluctuations and the axial anomaly with three quark flavors. Phys. Rev. D 89(5), 054027 (2014)
33. G. Xiao-Wei, C.-G. Duan, Z.-H. Guo, Updated study of the η-η' mixing and the thermal properties of light pseudoscalar mesons at low temperatures. Phys. Rev. D 98(3), 034007 (2018)
34. T. Bhattacharya et al., QCD phase transition with chiral Quarks and physical Quark masses. Phys. Rev. Lett. 113(8), 082001 (2014)
35. R. Frezzotti et al., Lattice QCD with a chirally twisted mass term. JHEP 08, 058 (2001)
36. C. Alexandrou et al., Adaptive aggregation-based domain decomposition multigrid for twisted mass fermions. Phys. Rev. D 94(11), 114509 (2016)
37. M. Hasenbusch, K. Jansen, Speeding up lattice QCD simulations with clover improved Wilson fermions. Nucl. Phys. B 659, 299–320 (2003)
38. C. Alexandrou et al., Proton and neutron electromagnetic form factors from lattice QCD. Phys. Rev. D 100(1), 014509 (2019)
39. F. Burger et al., Chiral observables and topology in hot QCD with two families of quarks. Phys. Rev. D 98(9), 094501 (2018)
40. Sz Borsanyi et al., Is there still any T_c mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP 09, 073 (2010)
41. G. Aarts et al. Spectral quantities in thermal QCD: a progress report from the FASTSUM collaboration. In 37th International Symposium on Lattice Field Theory, (2019)
42. U. Wolff, Monte Carlo errors with less errors. Comput. Phys. Commun. 156, 143–153 (2004). [Erratum: Comput. Phys. Commun. 176, 383(2007)]
43. A.Y. Kotov, M.P. Lombardo, A.M. Trunin. In preparation (2020)