Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism

Xiaojing Nie1, Xirao Sun1, Chengyue Wang1,-* and Jingxin Yang2,-*

1Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China; 2College of Robotics, Beijing Union University, Beijing 100000, China

*Correspondence address. Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China. Tel: +13941613817; E-mail: 1225604126@qq.com and College of Robotics, Beijing Union University, Beijing 100000, P.R. China. Tel: +15010257973; E-mail: 187123403@qq.com

Received 7 July 2019; revised 25 August 2019; accepted on 7 September 2019

Abstract

Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 406-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 406-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin \textalpha{2}, integrin \textbeta{1}, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin \textalpha{2}\textbeta{1}-FAK-ERK1/2 protein-coupled receptor pathway.

Keywords: magnesium ion; integrin; Type I collagen; FAK/ERK

Introduction

Extracellular matrix (ECM) protein plays an important role in tissues repair and replacement [1]. Type I collagen (Col I) is a main component of ECM and performs structural and cell adhesion in many important organs and tissues. Col I is the main structural protein of all vertebrates. It is a natural polymer material and one of the main components of connective tissue. Its influence on medical applications has been confirmed, and it have been widely used in surgical sutures, anticoagulant materials, artificial blood vessels, skin, cartilage, etc. [2, 3]. And Col I was the most relapsing embedding substrate for cell encapsulation due to its biocompatibility, biodegradability and interconnected porous architecture and similarity to the natural ECM but collagen itself did not induce mineral formation and needed to exist and possessed poor load bearing capability [4–7].

However, magnesium is an essential element of the human body. Its modulus of elasticity is about 45 GPa, which is close to human bone and can effectively reduce stress shielding. As a degradable implant material, magnesium does not cause acute reactions after implantation. No obvious inflammatory reaction is found during implantation, which can meet the mechanical strength required for bone bearing area [8, 9], and after degradation, magnesium ions not only regulate cell behavior but also stimulate local bone formation and healing [10, 11]. Mg2+ is involved in bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. However,
Magnesium chloride (anhydrous MgCl₂, 99.99%, Sigma-Aldrich, USA) was dissolved in deionized water and was filtered through a 0.22 μm filter (Corning, USA), and then diluted into cell culture medium formulated 10 mM Mg²⁺. The PH hasn’t changed. The experiment was divided into A: intact a-MEM (Hyclone, USA) medium control group; B: 10 mM Mg²⁺ treatment group; C: Col I-coating treatment group and D: 10 mM Mg²⁺/Col I-coating treatment group. Osteoblast-like MC3T3-E1 cells (Institute of Basic Medical Sciences, Beijing, China) were cultured in a cell culture medium at 37°C, 5% CO₂ and containing 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) and medium was changed once in every 2–3 days.

Cell proliferation
The proliferation of MC3T3-E1 cells were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Cells were inoculated into a 96-well plate at a concentration of 1 × 10⁴/ml, and 2 ml of the cell suspension was added to each well, and five replicate wells of each group were cultured for 1, 3 and 5 days. Each empty medium was then aspirated and were rinsed with PBS and 10 μl cells of MTT (Solorbio, M8180, China) were added to each well. After 4 h of incubation in 5% CO₂ incubator at 37°C, the medium was replaced with 150 μl of dimethyl sulfoxide to dissolve formazan. The plate was shaken for 10 minutes and then the solution in each well was transferred to a 96-well ELISA plate. The optical density (OD) of the dissolved solute was measured using an ELISA reader (Tecan, Austria) at 570 nm (n = 5 in each group).

Cell apoptosis
The cells were inoculated into a 24-well plate at a concentration of 1 × 10⁵/ml, and 1 ml cells suspension was added to each well. Each group were cultured for 3 days. After 3 days, the cells were washed three times with PBS, fixed with 4% paraformaldehyde for 30 minutes and then washed three times with PBS, and added with 5 μg/ml of 4’6-diamidino-2-phenylindole (DAPI) reagent (Beyotime, China). After 3–5 minutes of staining, the PBS were washed three times. Images were taken under a microscope.

Cell adhesion
Cells were seeded in confocal dishes at 1 × 10⁵/ml, and 1 ml of cell suspension was added to each group with three replicate wells per group. About 24 hours after cell attachment, the medium was aspirated and the cells were washed twice with 37°C and prewarmed 1X PBS (pH 7.4), fixed with 10% paraformaldehyde for 10 minutes at room temperature, washed 2–3 times with PBS for 10 minutes at room temperature. It was then permeabilized with a 0.5% Triton X-100 solution for 5 minutes. The cells were washed 2–3 times with PBS for 10 minutes at room temperature and 200 μl of the TRITC-labeled phalloidin (YEASEN, China) working solution was added.

Preparation of magnesium ion and cell culture

Materials and methods

Col I coating
Col I (Solarbio, China) was made to 100 μg/ml with glacial acetic acid (≥99.5% Analytical purity, China) and the surface of the plates was coated at 100 μg/cm². The plates were allowed to stand at room temperature or 37°C for several hours or at 2–8°C overnight. We aspirate excess liquid and allowed the dish to dry overnight (Fig. 1). The surface of the cell culture dish can be washed with a sterile balanced salt solution before inoculation of the cells.

Cell apoptosis

Preparation of magnesium ion and cell culture
Magnesium chloride (anhydrous MgCl₂, 99.99%, Sigma-Aldrich, USA) was dissolved in deionized water and was filtered through a 0.22 μm filter (Corning, USA), and then diluted into cell culture medium formulated 10 mM Mg²⁺. The PH hasn’t changed. The experiment was divided into A: intact a-MEM (Hyclone, USA) medium control group; B: 10 mM Mg²⁺ treatment group; C: Col I-coating treatment group and D: 10 mM Mg²⁺/Col I-coating treatment group. Osteoblast-like MC3T3-E1 cells (Institute of Basic Medical Sciences, Beijing, China) were cultured in a cell culture medium at 37°C, 5% CO₂ and containing 10% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) and medium was changed once in every 2–3 days.

Cell proliferation
The proliferation of MC3T3-E1 cells were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Cells were inoculated into a 96-well plate at a concentration of 1 × 10⁴/ml, and 2 ml of the cell suspension was added to each well, and five replicate wells of each group were cultured for 1, 3 and 5 days. Each empty medium was then aspirated and were rinsed with PBS and 10 μl cells of MTT (Solorbio, M8180, China) were added to each well. After 4 h of incubation in 5% CO₂ incubator at 37°C, the medium was replaced with 150 μl of dimethyl sulfoxide to dissolve formazan. The plate was shaken for 10 minutes and then the solution in each well was transferred to a 96-well ELISA plate. The optical density (OD) of the dissolved solute was measured using an ELISA reader (Tecan, Austria) at 570 nm (n = 5 in each group).

Cell apoptosis
The cells were inoculated into a 24-well plate at a concentration of 1 × 10⁵/ml, and 1 ml cells suspension was added to each well. Each group were cultured for 3 days. After 3 days, the cells were washed three times with PBS, fixed with 4% paraformaldehyde for 30 minutes and then washed three times with PBS, and added with 5 μg/ml of 4’6-diamidino-2-phenylindole (DAPI) reagent (Beyotime, China). After 3–5 minutes of staining, the PBS were washed three times. Images were taken under a microscope.

Cell adhesion
Cells were seeded in confocal dishes at 1 × 10⁵/ml, and 1 ml of cell suspension was added to each group with three replicate wells per group. About 24 hours after cell attachment, the medium was aspirated and the cells were washed twice with 37°C and prewarmed 1X PBS (pH 7.4), fixed with 10% paraformaldehyde for 10 minutes at room temperature, washed 2–3 times with PBS for 10 minutes at room temperature. It was then permeabilized with a 0.5% Triton X-100 solution for 5 minutes. The cells were washed 2–3 times with PBS for 10 minutes at room temperature and 200 μl of the TRITC-labeled phalloidin (YEASEN, China) working solution was added.

Materials and methods

Col I coating
Col I (Solarbio, China) was made to 100 μg/ml with glacial acetic acid (≥99.5% Analytical purity, China) and the surface of the plates was coated at 100 μg/cm². The plates were allowed to stand at room temperature or 37°C for several hours or at 2–8°C overnight. We aspirate excess liquid and allowed the dish to dry overnight (Fig. 1). The surface of the cell culture dish can be washed with a sterile balanced salt solution before inoculation of the cells.
and incubated at room temperature for 30 minutes in the dark, to wash three times with PBS for 5 minutes each time. The nucleus was counterstained with 200 μl of DAPI solution (Beyotime, China) for about 30 seconds and then was observed under a confocal microscope. Cell areas were measured using Image J software.

Alkaline phosphatase activity
The viability of MC3T3-E1 cells were tested by alkaline phosphatase (ALP, NanJing JianCheng Bioengineering Institute, A059-2, China). The cells were inoculated into a 24-well plate at a concentration of 1 × 10⁴/ml, and 1 ml of the cell suspension was added to each well, and five replicate wells of each group were cultured for 3, 5 and 7 days. The culture medium was carefully removed and the plates were gently washed twice with PBS. About 500 μl of 0.2% (v/v) Triton X-100 (Sigma, USA) was added to each well. The activity of the alkaline phosphatase in the lysate was measured by adding an ALP kit according to the instructions and the absorbance OD at a wavelength of 520 nm using a spectrophotometer.

ECM mineralization experiment
The cells were randomly added to the above experimental design at a concentration of 1 × 10⁴/ml. The cells were cultured in six-well plate and a cell suspension of 1 ml was added to each well with a pipette. Three replicate wells were set in each group. The cell culture plates were placed in a 37°C incubator with a CO₂ concentration of 5%. After 18 days of culture, the supernatant was discarded and washed three times with PBS buffer then fixed with 95% alcohol for 30 minutes. Cells were washed again with PBS buffer for three times to remove residual wine and 3 ml of 0.1% alizarin red dye solution (Solarbio, G1452, China) was added to each well and incubated in a 37°C incubator for 30 minutes. After that, cells were washed with PBS buffer and were observed under a microscope.

Western blot
MC3T3-E1 cells were cultured in α-MEM complete medium containing 10% FBS for 7 days, the cultured cells were lysed by using IP (Beyotime, China). The protein concentration was then measured by BCA protein quantification kit (Beyotime, China). The protein samples were heated and dried at 98°C for 5 min for denaturing the protein and loaded into SDS-PAGE. The proteins were transferred to the suitable of poly(vinylidene fluoride) (PVDF) membranes. The membranes were incubated in blocking solution (5% BSA) for 2 hours at room temperature, followed by washing with TBST lotion. After washing, the anti-FAK, anti-integrin a2, anti-integrin β1 and anti-ERK1/2 antibody were added and the membranes were incubated overnight at 4°C. Subsequently, the membranes were incubated with secondary antibody for 90 minutes at room temperature. After washing with TBST, the reaction was performed with a chemiluminescent reagent and exposure was performed. The western blot images were semi-quantitatively analysed by using Image J.

Real-time quantitative PCR analysis
The expression levels of osteogenesis-related genes were evaluated on the basis of a real-time polymerase chain reaction (real-time quantitative PCR). The cells were seeded with 1 × 10⁴ cells/well. After culturing for 7 days. The total RNA was isolated using the Trizol reagent (Ambion, USA). Here, 1 mg RNA from each sample was reverse transcribed into complementary DNA using the Prime Script™ RT reagent kit (Vazyme, USA). The forward and reverse primers for the selected genes were the same as those described in the literature. The expression levels of osteogenesis-related genes, including Alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), Bone Morphogenetic Protein 2 (BMP-2), Osteocalcin (OCN) and Osteopontin (OPN), were quantified on the basis of real-time PCR (Bio-Rad IQTM5 multicolor real-time PCR detection system) with ChamQ™ Universal SYBR® qPCR Master Mix (Vazyme, USA). The internal reference gene was β-actin. Data analysis was carried out using the IQTM5 optical system software version 2.0 (Table 1).

Statistical analysis
To analyse each group with at least three samples, all data were statistically analysed using one-way ANOVA. Comparisons were evaluated between statistically significant differences between sample groups. Quantitative data are presented as the mean ± standard deviation for each group. P values < 0.05 was considered statistically significant.

Results

Collagen I coating
Cell proliferation
We cultured MC3T3-E1 under four different culture conditions including NC (control group), Mg (10 mM Mg²⁺ group), Col I (Col I-coating group), Mg-Col (10 mM Mg²⁺/Col I-coating group) and divided into three group in which cells were cultured for 1, 3 and 5 days. Cells were compared for cell proliferation by MTT assay. Compared the Col I-coating group, MC3T3-E1 cells proliferated faster in Col I-coating group than the 10 mM Mg²⁺ group. The results showed that the proliferation of the Col I-coating group was higher than that of the 10 mM Mg²⁺ group, suggesting that Col I promoted the proliferation of MC3T3-E1 cells at the same time and conditions. However, compared with the Col I-coating group, we also found that the proliferative capacity of MC3T3-E1 cells was significantly improved in the 10 mM Mg²⁺/Col I-coating group (Fig. 2).

Cell apoptosis
Figure 3 showed that there was no significant difference in cell morphology between NC (control group), Mg (10 mM Mg²⁺ group),

Target	Forward primer	Reverse primer
BMP-2	ACACCGTGCGACGCTCCATC	CGGAAGATCTGGAGTCTGCAG
ALP	CCAGAAAGACACCTTGACTTGG	TCTTGGCCCTTGCTGCACCAT
Runx-2	CCTGAACCTTGCAAAAGCCTCT	TACATGGGACTGAGATTGAGAG
OCN	TGAGAGCGCCTCACCTTCCT	ACCCTTGACTGACTGCAC
OPN	GAGATTGCTTTTCTGCTTTG	TAGCGTCCGAGAATACGACTAC
β-Actin	GGACTATGACTTGCGTTAC	TTTGCAATTACATAATTACAGA

Table 1. Sequence of primers used for RT-PCR analysis
COL (Col I-coating group) and COL + Mg (10 mM Mg$^{2+}$/Col I-coating group). Under the microscope, there was no obvious phenomenon of apoptosis such as nuclear disintegration in deep nuclear staining.

Cell adhesion

Figure 4 indicated that in the control group, osteoblasts grew flat and the extension was not obvious; however, in 10 mM Mg$^{2+}$ group, Col I-coating group and 10 mM Mg$^{2+}$/Col I-coating group, osteoblasts were densely distributed, full-bodied and stretch-extended, and clear, distinct actin filaments can be seen. In particular, 10 mM Mg$^{2+}$/Col I-coating group of osteoblasts were densely distributed. Image J software was used to quantify acreage of the cell growth.

Alkaline phosphatase activity

Figure 5 indicated that the viability of MC3T3-E1 cells cultured in different groups after 3, 5 7 days of incubation, the results indicated that compared with control group, 10 mM Mg$^{2+}$ group and Col I-coating group, 10 mM Mg$^{2+}$/Col I-coating group apparently promoted the viability of MC3T3-E1 cells. There were significant differences between all other groups ($P < 0.05$). Especially 10 mM Mg$^{2+}$/Col I-coating group significantly promoted cell viability.

Mineralization of ECM

To analyse the effects of different groups using Extracellular matrix mineralization experiment after 18 days of incubation. We used Alizarin red staining, Fig. 6 showed that (a) control group, (b) 10 mM Mg$^{2+}$ group, (c) Col I-coating group, (d) 10mM Mg$^{2+}$/Col I-coating group. Compared with control group, other three groups apparently increased the mineralization knot of ECM. There were significant differences between all groups, especially 10 mM Mg$^{2+}$/Col I-coating group significantly promoted the mineralization of ECM.
The different groups of protein levels (FAK, α2, β1 and ERK1/2) were tested by Western blotting. Compared with the NC (control group), Mg (10 mM Mg²⁺), COL (Col I-coating group) and COL+Mg (10 mM Mg²⁺/Col I-coating group), Western blotting data indicated that protein expression levels of FAK, integrin α2, integrin β1 and ERK1/2 (a–d) increased obviously. There were significant differences between all groups, especially 10 mM Mg²⁺/Col I-coating group that had the highest protein levels of expression (Fig. 7).

Expression of osteogenic genes

We quantified the osteogenic-related genes expression levels of OPN, OCN, ALP, RUNX2 and BMP-2 at 7 days by real-time PCR and the results were presented in Fig. 8. It was indicated that 10mM Mg²⁺ and Col I, respectively, stimulated the osteogenic-related gene expression. Additionally, compared with control group, the osteogenic-related genes expression levels of OPN (a), OCN (b), ALP (c), RUNX2 (d) and BMP-2 (e) had arrived at the highest genes expression in 10 mM Mg²⁺/Col I-coating group. There were significant differences between all groups. One-way ANOVA (n = 3 per treatment group). *P < 0.05 vs. control group.

Discussion

It is well known that most cellular processes rely on the formation of interactions between cells and extracellular matrices (ECMs). The key contributing factor to these interactions is integrins [19]. Integrins are integral membrane proteins that mediate cell matrix and cell-cell adhesion. Integrins mediate cell adhesion to collagen through magnesium-dependent interactions and it can be used as messenger conversion signals to initiate downstream cascades [20]. Many studies have showed that Mg²⁺ played a dual role in the integrins-collagen interaction and Mg²⁺ promoted osteoblasts adhesion through integrins and activated focal adhesion kinase (FAK) [21, 22]. FAK is a key component of the integrins-mediated signaling pathway. FAK act as a signaling molecule that transduces integrins receptor signaling through the intracellular protein cascade to participate in the adhesion process. FAK is considered to be the basic molecule of integrins dependent signal transduction pathway [23, 24]. In fact, the integrins2β1-FAK-ERK (MAPK) signaling pathway was widely present in stromal cells [25, 26]. Moreover, MAPK/ERK is an important signaling pathway regulating bone development, bone remodeling and bone metabolism through promoting the expression of osteogenic-related genes [27, 28]. Some studies also showed Mg²⁺ promoted adhesion of osteoblasts, proliferation and differentiation by activating PI3K/Akt signaling pathway and Mg²⁺ participated in PI3K/Akt signaling pathway through ion channel functional protein kinase TRPM7 [13, 29]. There may be cross-activation between the PI3K/Akt signaling pathway and the ERK pathway. The osteogenesis mechanisms of Mg²⁺ need to explore in the future.

In our previous studies, we added additional MgCl₂ solution to the medium, which is a neutral salt, however MgCl₂ solution cannot change the pH of the medium. We also tested the activity of Mg²⁺ in the medium and medium showed the appropriate concentration. We compared the 6 mM – 18 mM Mg²⁺, 10 mM Mg²⁺ promoted cells adhesion proliferation and differentiation, which was consistent with previous studies [13]. Therefore, in our present study, we investigated how 10 mM Mg²⁺ mediated integrin α2 and integrin β1-Col I binding and 10 mM Mg²⁺ bind Col I via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway. To clarify the biological behavior effect of 10 mM Mg²⁺/Col I coating, we performed MTT, ALP, DAPI, Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments. We detected the expression of osteogenic-related genes (Runx2, ALP, OCN, OPN and BMP-2) by RT-PCR and the expression of signaling pathway proteins (integrin α2, integrin β1, FAK and ERK1/2) by Western blotting. By MTT, ALP and Alizarin red staining detections, we found that 10 mM Mg²⁺ group, Col I-coating group, 10 mM Mg²⁺/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg²⁺/Col I-coating group.

![Figure 5](image5.png)

Figure 5. After incubation of 18 days, (a) the NC (control group), (b) Mg (10 mM Mg²⁺ group), (c) COL (Col I-coating group), (d) COL+Mg (10 mM Mg²⁺/Col I-coating group) of mineralization of ECM (scale bar: 50 μm)

![Figure 6](image6.png)

*Figure 6. The ALP activity of NC (control group), Mg (10 mM Mg²⁺ group), COL (Col I-coating group), Mg+COL (10 mM Mg²⁺/Col I-coating group) after incubation of MC3T3-E1 cells for 3, 5 and 7 days. One-way ANOVA (n = 5 per treatment group). *P < 0.05 versus control group.*

![Figure 7](image7.png)
Moreover, our studies also showed cells adhesion, proliferation, and differentiation were higher in Col I-coating group and 10 mM Mg\(^{2+}\)/Col I-coating group, especially 10 mM Mg\(^{2+}\)/Col I-coating group had significantly difference. So, we speculated that Col I-coating materials had a good effect on the attachment, growth activity, and function of osteoblasts and it play an important role in cell biological activity, cell compatibility, and osteoinductivity, and it is widely used in the field of biomedicine [30, 31]. This results also showed that Mg\(^{2+}\) in integrin-collagen binding had an important role and promoted integrin α2β1-Col I binding. This may be due to the fact that Col I-binding integrin are present in the α-subunit, inserted into the A domain, called the I domain. Mg\(^{2+}\) bind to metal ion-dependent adhesion sites on the

![Figure 7. After 7 days of incubation, the NC (control group), Mg (10 mM Mg\(^{2+}\) group), COL (Col I-coating group), COL+Mg (10 mM Mg\(^{2+}\)/Col I-coating group) that protein expression levels of FAK (a), integrin α2 (b), integrin β1 (c), ERK1/2 (d). One-way ANOVA (n = 3 per treatment group). *P < 0.05 versus control group](image-url)
Our findings were in agreement with previous studies [32–34]. The major strength of this study was to prove the osteogenesis mechanisms of Mg^{2+}-mediated integrin $\alpha_2\beta_1$-Col I binding. However, our studies have some limitations. First, we have formalized the possible mechanisms of integrin $\alpha_2\beta_1$-FAK-ERK1/2 signaling in vitro (Fig. 9) [35–37]. But the mechanisms of biological activity provided by this method have not been fully elucidated. Second, we used MC3T3-E1 cells for in vitro studies. But the in vitro simulated environment was different from in vivo studies, the degradation of Mg^{2+} concentration affected the environment inside the receptor. Its degradation rate was uncontrollable. At present, preliminary research on the mechanism, safety and effectiveness of the material was necessary. Third, it was difficult to assess the effects of surface topography. These provide new ideas for the future of magnesium-based composites and provide development prospects for better application in clinical practice. This still needs to be discussed in the future.

Figure 8. The NC (control group), Mg (10 mM Mg^{2+} group), COL (Col I-coating group), COL+Mg (10 mM Mg^{2+}/Col I-coating group) that osteogenic-related genes expression levels of OPN (a), OCN (b), ALP (c), RUNX2 (d), BMP-2 (e) at 7 days were quantified by real-time PCR. One-way ANOVA ($n=3$ per treatment group). *$P<0.05$ versus control group.
Conclusions

In summary, our study demonstrated that the 10 mM Mg^{2+}/Col I-coating play a critical role in up-regulating the MC3T3-E1 cells activity. Moreover, Mg^{2+} played a dual role in integrin α2β1-Col I to promote the biological behavior of MC3T3-E1 cells. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway. However, the underlying osteogenesis mechanisms of Mg^{2+}/Col I not fully understood. We need a further research on the degradation and osteogenesis mechanisms of magnesium-based composites.

Acknowledgements

This work was supported by Science and Technology Fund of Liaoning Province (No.20180530071 and No.2019-MS-141).

Conflict of interest statement

None declared.

References

1. Krishnamoorthy N, Tseng YT, Gajendrarao P et al. A novel strategy to enhance secretion of ECM components by stem cells: relevance to tissue engineering. Tissue Eng Part A 2017;24:145–56.
2. Davidenko N, Hamaa S, Bax DV. Selecting the correct cellular model for assessing the biological response of collagen-based biomaterials. Acta Biomater 2018;65:88–101.
3. Ling-Yu L, Lan-Yue C, Rong-Chang Z et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys—a review. Acta Biomater 2018;79:23–36.
4. Hayrapetyan A, Bongio M, Leeuwenburgh SCG et al. Effect of nano-HA/collagen composite hydrogels on osteogenic behavior of mesenchymal stromal cells. Stem Cell Res Rep 2016;12:352–64.
5. Peng C, Zhu ZA, Li GL et al. Enhancement of bone healing in rabbit ulnar critical bone defect by injectable nano-hydroxyapatite/collagen/(calcium sulfate hemihydrate) mixed with autogenous bone marrow. J Biomat Tissue Eng 2013;3:534–41.
6. Qing Y, Chengyu W, Jingsyu Y et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction. Biomater 2018;13:065008.
7. Wang YF, Wang CY, Wan P et al. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen Biomater 2016;3:33–40.
8. Jaiswal S, Kumar RM, Gupta P et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. J Mech Behav Biomater 2018;78:442.
9. Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regener Biomater 2016;3:79–86.
10. Zhang K, Lin S, Feng Q et al. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater 2017;64:389.
11. Federica B, Angelica B, Giulia A et al. Magnesium modifies the structural features of enzymatically mineralized collagen gels affecting the retraction capabilities of human dermal fibroblasts embedded within this 3D system. Materials 2016;9:477.
12. Zuoqiang Y, Pengfei W, Yuqian H et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019;85:294–309.
13. Wang J, Ma XY, Feng YF et al. Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res 2017;179:284–93.
14. Shimaya M, Muneta T, Ichinose S et al. Magnesium enhances adhesion and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthr Cartil 2010;18:1300–9.
15. Leem Y-H, Lee K-S, Kim J-H et al. Magnesium ions facilitate integrin alpha 2- and alpha 3-mediated proliferation and enhance alkaline

Figure 9. The potential mechanisms of integrins α2β1-FAK-ERK1/2 signaling in MC3T3-E1 cells
phosphatase expression and activity in hBMSCs. J Tissue Eng Regen Med 2016;10:527–82.
16. Brown KL, Banerjee S, Feigley A et al. Salt-bridge modulates differential calcium-modulated ligand binding to integrin α1- and α2- domains. Sci Rep 2018;8:2916.
17. Kozlova NI, Morozevich GE, Ushakova NA et al. Implication of Integrin α2β1 in proliferation and invasion of human breast carcinoma and melanoma cells: noncanonical Function of Akt protein kinase. Biochemistry (Mosc) 2018;83:738–45.
18. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. J Cell Physiol 2000;184:207–13.
19. Arous C, Wehrle-Haller B. Role and impact of the extracellular matrix on integrin-mediated pancreatic β-cell functions. Biol Cell 2017;109:223–37.
20. Eble JA, McDougall M, Orriss GL et al. Dramatic and concerted conformational changes enable rhodocetin to block α2β1 integrin selectively. PLOS Biol 2017;15:e2001492.
21. Onley DJ, Knight CG, Tuckwell DS et al. Micromolar Ca2+ concentrations are essential for Mg2+-dependent binding of collagen by the integrin alpha 2beta 1 in human platelets. J Biol Chem 2000;275:24560–4.
22. OX.Zreiqat H, Howlett CR, Zannettino A et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:173–84.
23. Witkowska-Zimny M, Wrobel E, Mrowka P. α2β1 integrin-mediated mechanical signals during osteodifferentiation of stem cells from the Wharton’s jelly of the umbilical cord. Folia Histochem Cytobiol 2015;52:297–307.
24. Macket CO, Booth C, Elowsky C et al. Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol 2019;78-79:165–79.
25. Jahan R, Macha MA, Rachagani S et al. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim Biophys Acta Mol Basis Dis 2018;1864:2538–49.
26. Saleem S, Li J, Yee SP et al. beta1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol 2009;219:182–92.
27. Gao W, Pu L, Chen M et al. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J Clin Biochem Nutr 2018;62:56–62.
28. Zhang AP, Gao RL, Yin LM et al. Panaxadiol saponins induce activation of MAPK/ERK signaling pathway in bone marrow cells of aplastic anemia mice. Chin J Pathophysiol 2018;34:686–92.
29. Zhang X, Zu H, Zhao D et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater 2017;63:369–82.
30. Mushahary D, Wen C, Kumar JM et al. Collagen type-I leads to in vivo matrix mineralization and secondary stabilization of Mg-Zr–Ca alloy implants. Colloids Surf B 2014;122:719–28.
31. Serre CM, Papillard M, Chavassieux P et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res 1998;42:626–33.
32. Chin YK-Y, Headey S, Mohanty B et al. Assignments of human integrin α1I domain in the apoand Mg2+-bound states. Biomol NMR Assign 2014;8:117–21.
33. Hamata S, Farndale RW. Integrin recognition motifs in the human collagens. Adv Exper Med Biol 2014;819:127–42.
34. Zhang J, Ma X, Lin D et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 2015;53:251–64.
35. Humtsoe JO, Kim JK, Xu Y et al. A streptococcal collagen-like protein interacts with the α2β1 integrin and induces intracellular signaling. J Biol Chem 2005;280:13848–57.
36. Huang Y, Sook-Kim M, Ratovitski E. Mucin promotes tetraspanin-integrin interaction and induces FAK-Stat1alpha pathway contributing to migration/invasiveness of human head and neck squamous cell carcinoma cells. Biochem Biophys Res Commun 2008;377:474–8.
37. Witkowskazimny M, Wrobel E, Mrowka P. α2β1 integrin-mediated mechanical signals during osteodifferentiation of stem cells from the Wharton’s jelly of the umbilical cord. Folia Histochem Cytobiol 2014;52:297–307.
