MOTIVES ASSOCIATED TO SUMS OF GRAPHS

SPENCER BLOCH

1. Introduction

In quantum field theory, the path integral is interpreted perturbatively as a sum indexed by graphs. The coefficient (Feynman amplitude) associated to a graph Γ is a period associated to the motive given by the complement of a certain hypersurface X_{Γ} in projective space. Based on considerable numerical evidence, Broadhurst and Kreimer suggested [4] that the Feynman amplitudes should be sums of multizeta numbers. On the other hand, Belkale and Brosnan [2] showed that the motives of the X_{Γ} were not in general mixed Tate.

A recent paper of Aluffi and Marcolli [1] studied the images $[X_{\Gamma}]$ of graph hypersurfaces in the Grothendieck ring $K_0(Var_k)$ of varieties over a field k. Let $\mathbb{Z}[\mathbb{A}^1_k] \subset K_0(Var_k)$ be the subring generated by $1 = [\text{Spec } k]$ and $[\mathbb{A}^1_k]$. It follows from [2] that $[X_{\Gamma}] \notin \mathbb{Z}[\mathbb{A}^1_k]$ for many graphs Γ.

Let $n \geq 3$ be an integer. In this note we consider a sum $S_n \in K_0(Var_k)$ of $[X_{\Gamma}]$ over all connected graphs Γ with n vertices, no multiple edges, and no tadpoles (edges with just one vertex). (There are some subtleties here. Each graph Γ appears with multiplicity $n!/|\text{Aut}(\Gamma)|$. For a precise definition of S_n see (5.1) below.) Our main result is

Theorem 1.1. $S_n \in \mathbb{Z}[\mathbb{A}^1_k]$.

For applications to physics, one would like a formula for sums over all graphs with a given loop order. I do not know if such a formula could be proven by these methods.

Dirk Kreimer explained to me the physical interest in considering sums of graph motives, and I learned about $K_0(Var_k)$ from correspondence with H. Esnault. Finally, the recently paper of Aluffi and Marcolli [1] provides a nice exposition of the general program.

2. Basic Definitions

Let E be a finite set, and let

$$0 \rightarrow H \rightarrow \mathbb{Q}^E \rightarrow W \rightarrow 0; \quad 0 \rightarrow W^\vee \rightarrow \mathbb{Q}^E \rightarrow H^\vee \rightarrow 0$$

(2.1)
be dual exact sequences of vector spaces. For \(e \in E \), let \(e^\vee : \mathbb{Q}^E \to \mathbb{Q} \) be the dual functional, and let \((e^\vee)^2\) be the square, viewed as a quadratic function. By restriction, we can view this as a quadratic function either on \(H \) or on \(W^\vee \). Choosing bases, we get symmetric matrices \(M_e \) and \(N_e \). Let \(A_e, e \in E \) be variables, and consider the homogeneous polynomials

\[
\Psi(A) = \det(\sum A_e M_e); \quad \Psi^\vee(A) = \det(\sum A_e N_e).
\]

Lemma 2.1. \(\Psi(\ldots A_e, \ldots) = c \prod_{e \in E} A_e \Psi^\vee(\ldots A_e^{-1}, \ldots) \), where \(c \in k^\times \).

Proof. This is proposition 1.6 in [3]. \(\square \)

Let \(\Gamma \) be a graph. Write \(E, V \) for the edges and vertices of \(\Gamma \). We have an exact sequence

\[
0 \to H_1(\Gamma, \mathbb{Q}) \to \mathbb{Q}^E \xrightarrow{\partial} \mathbb{Q}^V \to H_0(\Gamma, \mathbb{Q}) \to 0.
\]

We take \(H = H_1(\Gamma) \) and \(W = \text{Image}(\partial) \) in (2.1). The resulting polynomials \(\Psi = \Psi_\Gamma, \quad \Psi^\vee = \Psi^\vee_\Gamma \) as in (2.2) are given by [3]

\[
\Psi_\Gamma = \sum_{t \in T} \prod_{e \notin t} A_e; \quad \Psi^\vee_\Gamma = \sum_{t \in T} \prod_{e \in t} A_e.
\]

Here \(T \) is the set of spanning trees in \(\Gamma \).

Lemma 2.2. Let \(e \in \Gamma \) be an edge. Let \(\Gamma/e \) be the graph obtained from \(\Gamma \) by shrinking \(e \) to a point and identifying the two vertices. We do not consider \(\Gamma/e \) in the degenerate case when \(e \) is a loop, i.e. if the two vertices coincide. Let \(\Gamma - e \) be the graph obtained from \(\Gamma \) by cutting \(e \). We do not consider \(\Gamma - e \) in the degenerate case when cutting \(e \) disconnects \(\Gamma \) or leaves an isolated vertex. Then

\[
\Psi_{\Gamma/e} = \Psi_\Gamma|_{A_e=0}; \quad \Psi_{\Gamma-e} = \frac{\partial}{\partial A_e} \Psi_\Gamma.
\]

\[
\Psi^\vee_{\Gamma/e} = \frac{\partial}{\partial A_e} \Psi^\vee_\Gamma; \quad \Psi^\vee_{\Gamma-e} = \Psi^\vee_\Gamma|_{A_e=0}.
\]

(In the degenerate cases, the polynomials on the right in (2.5) and (2.6) are zero.)

Proof. The formulas in (2.5) are standard [3]. The formulas (2.6) follow easily using lemma 2.1. (In the case of graphs, the constant \(c \) in the lemma is 1.) \(\square \)

More generally, we can consider strings of edges \(e_1, \ldots, e_p \in \Gamma \). If at every stage we have a nondegenerate situation we can conclude inductively

\[
\Psi^\vee_{\Gamma-e_1-\cdots-e_p} = \Psi^\vee_\Gamma|_{A_{e_1}=\cdots=A_{e_p}=0}
\]
In the degenerate situation, the polynomial on the right will vanish, i.e. X_{Γ} will contain the linear space $A_{e_1} = \cdots = A_{e_p} = 0$.

For example, let $\Gamma = e_1 \cup e_2 \cup e_3$ be a triangle, with one loop and three vertices. We get the following polynomials

$$
\Psi_{\Gamma} = A_{e_1} + A_{e_2} + A_{e_3}; \quad \Psi^\vee_{\Gamma} = A_{e_1}A_{e_2} + A_{e_2}A_{e_3} + A_{e_1}A_{e_3}
$$

$$
\Psi_{\Gamma-e_i} = 1; \quad \Psi^\vee_{\Gamma-e_i} = A_{e_j}A_{e_k} = \Psi^\vee_{\Gamma} |_{A_{e_i} = 0}
$$

(2.8) \hspace{1cm} (2.9)

The sets $\{e_i, e_j\}$ are degenerate because cutting two edges will leave an isolated vertex.

3. THE GROTHENDIECK GROUP AND DUALITY

Recall $K_0(Var_k)$ is the free abelian group on generators isomorphism classes $[X]$ of quasi-projective k-varieties and relations

$$
[X] = [U] + [Y]; \quad U \xrightarrow{open} X, \quad Y = X - U.
$$

(3.1)

In fact, $K_0(Var_k)$ is a commutative ring with multiplication given by cartesian product of k-varieties. Let $\mathbb{Z}[A_k^1] \subset K_0(Var_k)$ be the subring generated by $1 = [\text{Spec } k]$ and $[A^1_k]$. Let \mathbb{P}_{Γ} be the projective space with homogeneous coordinates $A_e, e \in E$. We write $X_{\Gamma} : \Psi_{\Gamma} = 0, X_{\Gamma}^\vee : \Psi^\vee_{\Gamma} = 0$ for the corresponding hypersurfaces in \mathbb{P}_{Γ}. We are interested in the classes $[X_{\Gamma}], [X_{\Gamma}^\vee] \in K_0(Var_k)$.

Let $\Delta : \prod_{e \in E} A_e = 0$ in \mathbb{P}_{Γ}, and let $T = T_{\Gamma} = \mathbb{P}_{\Gamma} - \Delta$ be the torus. Define

$$
X_{0\Gamma} = X_{\Gamma} \cap T_{\Gamma}; \quad X_{0\Gamma}^\vee = X_{\Gamma}^\vee \cap T_{\Gamma}.
$$

(3.2)

Lemma 2.1 translates into an isomorphism (Cremona transformation)

$$
X_{\Gamma}^0 \cong X_{0\Gamma}^\vee.
$$

(3.3)

(In fact, this is valid more generally for the setup of (2.1) and (2.2).)

We can stratify X_{Γ}^\vee by intersecting with the toric stratification of \mathbb{P}_{Γ} and write

$$
[X_{\Gamma}^\vee] = \sum_{\{e_1, \ldots, e_p\} \subset E} [(X_{\Gamma}^\vee \cap \{A_{e_1} = \cdots = A_{e_p} = 0\})^0] \in K_0(Var_k)
$$

(3.4)

where the sum is over all subsets of E, and superscript 0 means the open torus orbit where $A_e \neq 0, e \not\in \{e_1, \ldots, e_p\}$. We call a subset $\{e_1, \ldots, e_p\} \subset E$ degenerate if $\{A_{e_1} = \cdots = A_{e_p} = 0\} \subset X_{\Gamma}^\vee$. Since $[G_m] = [A^1] - [pt] \in K_0(Var_k)$ we can rewrite (3.4)

$$
[X_{\Gamma}^\vee] = \sum_{\{e_1, \ldots, e_p\} \subset E \text{ nondegenerate}} [(X_{\Gamma}^\vee \cap \{A_{e_1} = \cdots = A_{e_p} = 0\})^0] + t
$$

(3.5)
where \(t \in \mathbb{Z}[\mathbb{A}^1] \subset K_0(Var_k) \). Now using (2.7) and (3.3) we conclude

\[
[X^\vee_{\Gamma}] = \sum_{\{e_1, \ldots, e_p\} \subset E_{\text{nondeg}}} [(X^0_{\Gamma}-e_1, \ldots, e_p)] + t.
\]

4. Complete Graphs

Let \(\Gamma_n \) be the complete graph with \(n \geq 3 \) vertices. Vertices of \(\Gamma_n \) are written \((j), 1 \leq j \leq n\), and edges \(e_{ij} \) with \(1 \leq i < j \leq n\). We have \(\partial e_{ij} = (j) - (i) \).

Proposition 4.1. We have \([X^\vee_{\Gamma_n}] \in \mathbb{Z}[\mathbb{A}^1_k]\).

Proof. Let \(\mathbb{Q}^{n,0} \subset \mathbb{Q}^n \) be row vectors with entries which sum to 0. We have

\[
0 \to H_1(\Gamma_n) \to \mathbb{Q}^E \xrightarrow{\partial} \mathbb{Q}^{n,0} \to 0.
\]

In a natural way, \((\mathbb{Q}^{n,0})^\vee = \mathbb{Q}^n/\mathbb{Q}\). Take as basis of \(\mathbb{Q}^n/\mathbb{Q} \) the elements \((1), \ldots, (n-1)\). As usual, we interpret the \((e_{ij})^2\) as quadratic functions on \(\mathbb{Q}^n/\mathbb{Q} \). We write \(N_e \) for the corresponding symmetric matrix.

Lemma 4.2. The \(N_{e_{ij}} \) form a basis for the space of all \((n-1) \times (n-1)\) symmetric matrices.

Proof of lemma. The dual map \(\mathbb{Q}^n/\mathbb{Q} \to \mathbb{Q}^E \) carries

\[
(k) \mapsto \sum_{\mu>k} -e_{k\mu} + \sum_{\nu<k} e_{\nu k}; \quad k \leq n-1.
\]

We have

\[
(e_{ij})^2(\sum_{k=1}^{n-1} a_k \cdot (k)) = \begin{cases} a_i^2 - 2a_i a_j + a_j^2 & i < j < n \\ a_i^2 & j = n. \end{cases}
\]

It follows that if \(j < n \), \(N_{e_{ij}} \) has \(-1\) in positions \((ij)\) and \((ji)\) and \(+1\) in positions \((ii), (jj)\) (resp. \(N_{e_{in}} \) has \(1\) in position \((ii)\) and zeroes elsewhere). These form a basis for the symmetric \((n-1) \times (n-1)\) matrices. \(\square \)

It follows from the lemma that \(X^\vee_{\Gamma_n} \) is identified with the projectivized space of \((n-1) \times (n-1)\) matrices of rank \(\leq n-2 \). In order to compute the class in the Grothendieck group we detour momentarily into classical algebraic geometry. For a finite dimensional \(k \)-vector space \(U \), let \(\mathbb{P}(U) \) be the variety whose \(k \)-points are the lines in \(U \). For a \(k \)-algebra \(R \), the \(R \)-points \(\text{Spec} \ R \to \mathbb{P}(U) \) are given by pairs \((L, \phi)\) where \(L \) on \(\text{Spec} \ R \) is a line bundle and \(\phi : L \to U \otimes_k R \) is a locally split embedding.
Suppose now \(U = \text{Hom}(V, W) \). We can stratify \(\mathbb{P}(\text{Hom}(V, W)) = \bigsqcup_{p>0} \mathbb{P}(\text{Hom}(V, W))^p \) according to the rank of the homomorphism. Looking at determinants of minors makes it clear that \(\mathbb{P}(\text{Hom}(V, W))^p \) is closed. Let \(R \) be a local ring which is a localization of a \(k \)-algebra of finite type, and let \(a \) be an \(R \)-point of \(\mathbb{P}(\text{Hom}(V, W))^p \). Choosing a lifting \(b \) of the projective point \(a \), we have

\[
0 \to \ker(b) \to V \otimes R \xrightarrow{b} W \otimes R \to \text{coker}(b) \to 0,
\]

and \(\text{coker}(b) \) is a finitely generated \(R \)-module of constant rank \(\dim W - p \) which is therefore necessarily free.

Let \(Gr(\dim V - p, V) \) and \(Gr(p, W) \) denote the Grassmann varieties of subspaces of the indicated dimension in \(V \) (resp. \(W \)). On \(Gr(\dim V - p, V) \times Gr(p, W) \) we have rank \(p \) bundles \(E, F \) given respectively by the pullbacks of the universal quotient on \(Gr(\dim V - p, V) \) and the universal subbundle on \(Gr(p, W) \). It follows from the above discussion that

\[
\mathbb{P}(\text{Hom}(V, W))^p \cong \mathbb{P}(\text{Isom}(E, F)) \subset \mathbb{P}(\text{Hom}(E, F)).
\]

Suppose now that \(W = V^\vee \). Write \(\langle \ , \ \rangle : V \otimes V^\vee \to k \) for the canonical bilinear form. We can identify \(\text{Hom}(V, V^\vee) \) with bilinear forms on \(V \)

\[
\rho : V \to V^\vee \leftrightarrow (v_1, v_2) \mapsto \langle v_1, \rho(v_2) \rangle.
\]

Let \(\text{SHom}(V, V^\vee) \subset \text{Hom}(V, V^\vee) \) be the subspace of \(\rho \) such that the corresponding bilinear form on \(V \) is symmetric. Equivalently, \(\text{Hom}(V, V^\vee) = V^{\vee \otimes 2} \) and \(\text{SHom}(V, V^\vee) = \text{Sym}^2(V^\vee) \subset V^{\vee \otimes 2} \).

For \(\rho \) symmetric as above, one sees easily that \(\rho(V) = \ker(V)^\perp \) so there is a factorization

\[
V \to V/\ker(\rho) \xrightarrow{\mathbb{P}} (V/\ker(\rho))^\vee = \ker(\rho)^\perp \hookrightarrow V^\vee.
\]

The isomorphism in (4.7) is also symmetric.

Fix an identification \(V = k^n \) and hence \(V = V^\vee \). A symmetric map is then given by a symmetric \(n \times n \) matrix. On \(Gr(n-p, n) \) we have the universal rank \(p \) quotient \(Q = k^n \otimes \mathcal{O}_{Gr}/K \), and also the rank \(p \) perpendicular space \(K^{\perp} \) to the universal subbundle \(K \). Note \(K^{\perp} \cong Q^\vee \).

It follows that

\[
\mathbb{P}(\text{SHom}(k^n, k^n))^p \cong \mathbb{P}(\text{SHom}(Q, Q^\vee))^p \subset \mathbb{P}(\text{SHom}(Q, Q^\vee)).
\]

This is a fibre bundle over \(Gr(n-p, n) \) with fibre \(\mathbb{P}(\text{Hom}(k^p, k^p))^p \), the projectivized space of symmetric \(p \times p \) invertible matrices.
We can now compute \([X^\vee_{\Gamma_n}]\) as follows. Write \(c(n, p) = [\mathbb{P}(\mathsf{SHom}(k^n, k^n))^p]\).

We have the following relations:

\[
(4.9) \quad c(n, 1) = [\mathbb{P}^{n-1}]; \quad \sum_{p=1}^{n} c(n, p) = [\mathbb{P}^{(n+1)/2}];
\]

\[
(4.10) \quad c(n, p) = [\mathsf{Gr}(n - p, n)] \cdot c(p, p)
\]

\[
(4.11) \quad [X^\vee_{\Gamma_n}] = \sum_{p=1}^{n-2} c(n - 1, p)
\]

Here (4.10) follows from (4.8). It is easy to see that these formulas lead to an expression for \([X^\vee_{\Gamma_n}]\) as a polynomial in the \([\mathbb{P}^N]\) and \([\mathsf{Gr}(n - p, n - 1, n - 1)]\) (though the precise form of the polynomial seems complicated). To finish the proof of the proposition, we have to show that \([\mathsf{Gr}(a, b)] \in \mathbb{Z}[\mathbb{A}_1^1]\). Fix a splitting \(k^b = k^{b-a} \oplus k^a\). Stratify \(\mathsf{Gr}(a, b) = \coprod_{p=0}^{d} \mathsf{Gr}(a, b)^p\) where

\[
(4.12) \quad \mathsf{Gr}(a, b)^p = \{ V \subset k^{b-a} \oplus k^a \mid \dim(V) = a, \ \text{Image}(V \to k^a) \ \text{has rank} \ p \} = \\
\{ \langle X, Y, f \rangle \mid X \subset k^{b-a}, \ Y \subset k^a, \ f : Y \to X \}
\]

where \(\dim X = a - p, \ \dim(Y) = p\). This is a fibration over \(\mathsf{Gr}(b - a - p, b - a) \times \mathsf{Gr}(p, a)\) with fibre \(\mathbb{A}_1^{p(b-a-p)}\). By induction, we may assume \([\mathsf{Gr}(b - a - p, b - a) \times \mathsf{Gr}(p, a)] \in \mathbb{Z}[\mathbb{A}_1^1]\). Since the class in the Grothendieck group of a Zariski locally trivial fibration is the class of the base times the class of the fibre, we conclude \([\mathsf{Gr}(a, b)^p] \in \mathbb{Z}[\mathbb{A}_1^1]\), completing the proof.

□

In fact, we will need somewhat more.

\textbf{Lemma 4.3.} Let \(\Gamma\) be a graph.

(i) Let \(e_0 \in \Gamma\) be an edge. Define \(\Gamma' = \Gamma \cup \varepsilon\), the graph obtained from \(\Gamma\) by adding an edge \(\varepsilon\) with \(\partial\varepsilon = \partial e_0\). Then \(X^\vee_{\Gamma'}\) is a cone over \(X^\vee_{\Gamma}\).

(ii) Define \(\Gamma' = \Gamma \cup \varepsilon\) where \(\varepsilon\) is a tadpole, i.e. \(\partial\varepsilon = 0\). Then \(X^\vee_{\Gamma'}\) is a cone over \(X^\vee_{\Gamma}\).

\textbf{Proof.} We prove (i). The proof of (ii) is similar and is left for the reader.

Let \(E, V\) be the edges and vertices of \(\Gamma\). We have a diagram

\[
\begin{array}{ccc}
\mathbb{Q}^E & \xrightarrow{\partial} & \mathbb{Q}^V \\
\downarrow & & \downarrow \\
\mathbb{Q}^E \oplus \mathbb{Q} \cdot \varepsilon & \xrightarrow{\partial} & \mathbb{Q}^V
\end{array}
\]

(4.13)
Dualizing and playing our usual game of interpreting edges as functionals on $\text{Image}(\partial)^{\vee} \cong \mathbb{Q}^{V}/\mathbb{Q}$, we see that $\varepsilon^{\vee} = e^{\vee}_{0}$. Fix a basis for $\mathbb{Q}^{V}/\mathbb{Q}$ so the $(e^{\vee})^{2}$ correspond to symmetric matrices M_{e}. We have

$$ (4.14) \quad X^{\vee}_{\Gamma} : \det\left(\sum_{E} A_{e}M_{e}\right) = 0; \quad X^{\vee}_{\Gamma} : \det(A_{e}M_{e} + \sum_{E} A_{e}M_{e}) = 0. $$

The second polynomial is obtained from the first by the substitution $A_{e_{0}} \mapsto \epsilon^{\vee}A_{e_{0}} + A_{\epsilon}$. Geometrically, this is a cone as claimed. □

Let Γ_{N} be the complete graph on $N \geq 3$ vertices. Let $\Gamma \supset \Gamma_{N}$ be obtained by adding r new edges (but no new vertices) to Γ_{N}.

Proposition 4.4. $[X^{\vee}_{\Gamma}] \in \mathbb{Z}[\mathbb{A}^{1}] \subset K_{0}(\text{Var}_{k})$.

Proof. Note that every pair of distinct vertices in Γ_{N} are connected by an edge, so the r new edges e either duplicate existing edges or are tadpoles ($\partial e = 0$). It follows from lemma 4.3 that X^{\vee}_{Γ} is an iterated cone over $X^{\vee}_{\Gamma_{N}}$. In the Grothendieck ring, the class of a cone is the sum of the vertex point with a product of the base times an affine space, so we conclude from proposition 4.1. □

5. The Main Theorem

Fix $n \geq 3$. Let Γ_{n} be the complete graph on n vertices. It has $\binom{n}{2}$ edges. Recall (lemma 2.2) a set $\{e_{1}, \ldots, e_{p}\} \subset \text{edge}(\Gamma_{n})$ is nondegenerate if cutting these edges (but leaving all vertices) does not disconnect Γ_{n}. (For the case $n = 3$ see (2.8) and (2.9).) Define

$$ (5.1) \quad S_{n} := \sum_{\{e_{1}, \ldots, e_{p}\} \text{ nondegenerate}} [X_{\Gamma_{n}-\{e_{1}, \ldots, e_{p}\}}] \in K_{0}(\text{Var}_{k}). $$

Let Γ be a connected graph with n vertices and no multiple edges or tadpoles. Let $\tilde{G} \subset \text{Sym}^{\text{vert}}(\Gamma)$ be the subgroup of the symmetric group on the vertices which acts on the set of edges. Then $[X_{\Gamma}]$ appears in S_{n} with multiplicity $n!/|\tilde{G}|$.

Theorem 5.1. $S_{n} \in \mathbb{Z}[\mathbb{A}^{1}] \subset K_{0}(\text{Var}_{k})$.

Proof. It follows from (3.6) and proposition 4.1 that

$$ (5.2) \quad \sum_{\{e_{1}, \ldots, e_{p}\} \text{ nondegenerate}} [X_{\Gamma_{n}-\{e_{1}, \ldots, e_{p}\}}^{0}] \in \mathbb{Z}[\mathbb{A}^{1}_{k}]. $$

Write $\bar{e} = \{e_{1}, \ldots, e_{p}\}$ and let $\bar{f} = \{f_{1}, \ldots, f_{q}\}$ be another subset of edges. We will say the pair $\{\bar{e}, \bar{f}\}$ is nondegenerate if \bar{e} is nondegenerate in the above sense, and if further $\bar{e} \cap \bar{f} = \emptyset$ and the edges of \bar{f} do not
support a loop. For \(\{\vec{e}, \vec{f}\} \) nondegenerate, write \((\Gamma_n - \vec{e})/\vec{f}\) for the graph obtained from \(\Gamma_n\) by removing the edges in \(\vec{e}\) and then contracting the edges in \(\vec{f}\). If we fix a nondegenerate \(\vec{e}\), we have

\[
\sum_{\vec{f}} \left[X^0_{(\Gamma_n - \vec{e})/\vec{f}} \right] + t = [X_{\Gamma_n - \vec{e}}].
\]

Here \(t \in \mathbb{Z}[A^1]\) accounts for the \(\vec{f}\) which support a loop. These give rise to degenerate edges in \(X_{\Gamma_n - \vec{e}}\) which are linear spaces and hence have classes in \(\mathbb{Z}[A^1]\). Summing now over both \(\vec{e}\) and \(\vec{f}\), we conclude

\[
S_n \equiv \sum_{\{\vec{e}, \vec{f}\} \text{ nondeg.}} \left[X^0_{(\Gamma_n - \vec{e})/\vec{f}} \right] \mod \mathbb{Z}[A^1].
\]

Note that if \(\vec{e}, \vec{f}\) are disjoint and \(\vec{f}\) does not support a loop, then \(\vec{e}\) is nondegenerate in \(\Gamma_n\) if and only if it is nondegenerate in \(\Gamma_n/\vec{f}\). This means we can rewrite (5.4)

\[
S_n \equiv \sum_{\vec{f}} \sum_{\vec{e} \subset \Gamma_n/\vec{f} \text{ nondegen.}} [X^0_{(\Gamma_n - \vec{e})/\vec{f}}].
\]

Let \(\vec{f} = \{f_1, \ldots, f_q\}\) and assume it does not support a loop. Then \(\Gamma_n/\vec{f}\) has \(n - q\) vertices, and every pair of distinct vertices is connected by at least one edge. This means we may embed \(\Gamma_n - q \subset \Gamma_n/\vec{f}\) and think of \(\Gamma_n/\vec{f}\) as obtained from \(\Gamma_n - q\) by adding duplicate edges and tadpoles. We then apply proposition 4.4 to conclude that \(X^0_{\Gamma_n/\vec{f}} \in \mathbb{Z}[A^1_k]\). Now arguing as in (3.6) we conclude

\[
\sum_{\vec{e} \subset \Gamma_n/\vec{f} \text{ nondegen.}} [X^0_{(\Gamma_n/\vec{f}) - \vec{e}}] \in \mathbb{Z}[A^1_k]
\]

Finally, plugging into (5.5) we get \(S_n \in \mathbb{Z}[A^1]\) as claimed. \(\square\)
REFERENCES

[1] Aluffi, P., and Marcolli, M., Feynman Motives of Banana Graphs, arXiv:0807.1690v2 [hep-th]
[2] Belkale, P., and Brosnan, P., Matroids, motives and a conjecture on Kontsevich, Duke Math. Journal, Vol. 116 (2003) 147-188.
[3] Bloch, S, Esnault, H., and Kreimer, D., On Motives Associated to Graph Polynomials, Comm. Math. Phys. 267 (2006), 181-225.
[4] Broadhurst, D.J., and Kreimer, D., Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett.B 393 (1997) 403.

DEPT. OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL 60637, USA, E-MAIL ADDRESS: BLOCH@MATH.UCHICAGO.EDU