Genetic Associations of Type 2 Diabetes with Islet Amyloid Polypeptide Processing and Degrading Pathways in Asian Populations

Vincent Kwok Lim Lam¹, Ronald Ching Wan Ma¹,⁷,⁸, Heung Man Lee¹, Cheng Hu⁴, Kyong Soo Park⁵, Hiroto Furuta⁶, Ying Wang¹, Claudia Ha Ting Tam¹, Xueling Sim⁹, Daniel Peng-Keat Ng¹⁰, Jianjun Liu¹⁰,¹¹, Tien-Yin Wong¹²,¹³, E Shyong Tai¹⁰,¹⁴,¹⁵, Andrew P. Morris¹⁶, DIAGRAM Consortium⁷, Nelson Leung Sang Tang², Jean Woo¹, Ping Chung Leung³, Alice Pik Shan Kong¹, Risa Ozaki¹, Wei Ping Jia⁴, Hong Kyu Lee⁷,⁸, Kishio Nanjo⁶, Gang Xu¹,⁷,⁸, Maggie Chor Yin Ng¹⁶, Wing-Yee So¹, Juliana Chung Ngor Chan¹,⁷,⁸

¹Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China, ²Department of Chemical Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China, ³Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China, ⁴Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China, ⁵Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and Department of Internal Medicine, College of Medicine, Seoul National University, Chongno-gu, Seoul, Korea, ⁶First Department of Medicine, Wakayama Medical University, Wakayama, Japan, ⁷Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China, ⁸Li Ka Shing Institute of Health, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China, ⁹Centre for Molecular Epidemiology, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, ¹⁰Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, ¹¹Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, ¹²Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, ¹³Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, ¹⁴Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, ¹⁵Duke-National University of Singapore Graduate Medical School, Singapore, Singapore, ¹⁶Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

Abstract

Type 2 diabetes (T2D) is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP) is highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide polymorphisms (SNPs) in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with quantitative traits in a subset of controls and performed bioinformatic and relevant functional analyses. Amongst the tag SNPs, rs1583645 in carboxypeptidase E (CPE) and rs6583813 in insulin degrading enzyme (IDE) were associated with 1.09 to 1.28 fold increased risk of T2D (Pmeta = 9.4 x 10⁻⁵ and 0.02 respectively) in a meta-analysis of East Asians. Using genetic risk scores (GRS) with each risk variant scoring 1, subjects with GRS = 3 (8.2% of the cohort) had 56% higher risk of T2D than those with GRS = 0 (P = 0.01). In a subcohort of control subjects, plasma IAPP increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively). Bioinformatic and functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support the importance of dysregulation of IAPP metabolism in T2D in East Asians.

Citation: Lam VKL, Ma RCN, Lee HM, Hu C, Park KS, et al. (2013) Genetic Associations of Type 2 Diabetes with Islet Amyloid Polypeptide Processing and Degrading Pathways in Asian Populations. PLoS ONE 8(6): e62378. doi:10.1371/journal.pone.0062378

Editor: Shiro Maeda, RIKEN Center for Integrated Medical Science, Japan

Received: July 14, 2012; Accepted: March 21, 2013; Published: June 11, 2013

Copyright: © 2013 Lam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Multi-staged experiment, we performed associations with risk of T2D and beta cell dysfunction. In this metabolism (Figure S1) and tested their independent and joint effects with ethnic groups [3,14]. Although always consistent [15,16] due to small sample size, population associations of T2D with genetic polymorphisms of components of and beta cell function [9] (Figure S1). Formation of amyloid beta sheet resulting in loss of islet structure [11]. Excessive pro-IAPP and IAPP production can also lead to accumulation of pro-IAPP or excessive oligomerization of IAPP by APCS and reduced clearance of IAPP by IDE [6,7,8] can lead to dysregulation of these processing enzymes, increased stabilization of IAPP and co-secretion with insulin with suppressing effects on appetite [4]. Over 40% of T2D autopsy cases in human showed amyloid deposits associated with loss of beta cells [5]. IAPP is synthesized as a prohormone (pro-IAPP), which is processed to mature IAPP in endoplasmic reticulum (ER) by several enzymes and proteins, including prohormone convertases (PCSK1, PCSK2), carboxypeptidase E (CPE) and serum amyloid P component (APCS) before cleared by the insulin-degrading enzyme (IDE). Dysregulation of these processing enzymes, increased stabilization of IAPP by APCS and reduced clearance of IAPP by IDE [6,7,8] can lead to accumulation of pro-IAPP or excessive oligomerization of IAPP [9] which can cause mitochondrial dysfunction [10] and ER stress [11]. Excessive pro-IAPP and IAPP production can also lead to formation of amyloid beta sheet resulting in loss of islet structure and beta cell function [9] (Figure S1).

Research studies including GWAS have revealed independent associations of T2D with genetic polymorphisms of components of IAPP metabolism [12,13,14]. However, these results were not always consistent [15,16] due to small sample size, population heterogeneity and incomplete interrogation of gene structure. The hematopoietically expressed homeobox (HHIEX)-IDE block is one of the GWAS susceptibility loci for T2D with replications in multiple ethnic groups [3,14]. Although HHIEX is considered to be the most likely causal gene in this block, some studies had shown independent effect of genetic polymorphisms of IAPP and their combined effects with HHIEX on risk of T2D [17].

In this report, we used a tag single nucleotide polymorphism (SNP) approach to select genetic variants of candidate genes (APCS, CPE, IAPP, IDE, PCSK1 and PCSK2) implicated in IAPP metabolism (Figure S1) and tested their independent and joint associations with risk of T2D and beta cell dysfunction. In this multi-staged experiment, we performed de novo genotyping in 9,901 Asians and in silico analysis in 55,252 subjects followed by bioinformatics and functional analyses (Table 1–3 and Figure 1–3). The study design was summarized in Figure S2.

Results

Table S1 shows clinical characteristics of the study populations. In the stage-1 study, 459 unrelated Chinese T2D patients and 419 age and sex-matched controls were included. Positive signals were replicated in 3,092 Hong Kong Chinese (1,114 cases and 1,978 controls), 3,388 Shanghai Chinese (1,716 cases and 1,672 controls), 1,393 Korean (761 cases and 632 controls) and 1,150 Japanese (568 cases and 582 controls). The study cohorts of Singaporeans and Europeans in in silico analysis were described in Table S2.

We also examined the risk association of T2D in a family-based cohort of Hong Kong Chinese consisting of 285 subjects with diabetes and 187 without diabetes. In a subset of 85 control subjects in whom IAPP and insulin were measured, we examined the risk association of significant SNPs with beta cell function. In the control subjects from the stage-1 study, we examined the association of positive SNPs with quantitative traits function.

Stage-1 study

In the stage-1 study, we genotyped 89 single nucleotide polymorphisms (SNPs) of the 6 target genes in 878 unrelated cases and controls. Based on the HapMap Chinese data (CHB), 542 common SNPs in these genes were filtered for the tag SNP selection. In addition to 7 reported SNPs, 135 SNPs were included in the panel design with 89 SNPs finally selected for multiplex genotyping with an average call rate of 95% and concordance rate of 99.9% among the duplicate samples. Using these 89 SNPs, we were able to capture 426 common SNPs, i.e. 79% of all common SNPs with minor allele frequency (MAF) ≥0.05. Amongst these SNPs, 4 SNPs [rs2808661 (APCS), rs12306305 and rs1056007 (IAPP), and rs4646553 (IDE)] failed quality control (QC) and were excluded for analysis. All SNPs were in Hardy-Weinberg equilibrium (HWE) (P>0.001 for controls). Table S3 shows the \(P_{\text{allele}} \) and \(P_{\text{empirical}} \) values for T2D of all SNPs, the latter generated by 10,000 permutations under the best model of genetic models for multiple-test correction. Six of these SNPs showed nominal
Table 1. Association of type 2 diabetes (T2D) with risk variants of carboxypeptidase E (CPE) and insulin degrading enzyme (IDE) in a multi-staged experiment using a tag SNP approach applied to discovery cohort in Hong Kong Chinese (Stage-1) followed by de novo genotyping of top signals in a multi-ethnic Asian population.

N	Genotypes	Allelic	Recessive	Dominant	Stage-1 and 2 combined													
		Allele	Odds	P	Odds	P	Odds	P	Odds	Q statistic								
		T2D	Controls	T2D	Controls	T2D	Controls	T2D	Controls									
		values	ratios	values	ratios	values	ratios	values	ratios									
CPE	rs1583645	G	AA/GA/GG	AA/GA/GG	AA/GA/GG	AA/GA/GG	AA/GA/GG	AA/GA/GG	AA/GA/GG									
	Stage-1																	
	Hong Kong Chinese	410	386	18/153/239	30/151/205	0.05b	1.26	(1.0–1.57)	0.141	1.23	(0.93–1.63)	0.045	1.84	(1.01–3.32)	0.001	1.16	(1.06–1.26)	0.067
	Stage-2																	
	Hong Kong Chinese	1079	1969	45/368/666	37/446/1151	0.005	1.2	(1.05–1.36)	0.009	1.22	(1.05–1.43)	0.089	1.36	(0.95–1.94)				
	Shanghai Chinese	1618	1634	37/446/1151	44/361/1213	0.021	1.17	(1.02–1.35)	0.004	1.26	(1.08–1.47)	0.405	0.83	(0.53–1.29)				
	Japanese	568	582	11/38/433	15/126/427	0.993	1	(0.79–1.27)	0.762	1.04	(0.8–1.36)	0.392	0.71	(0.32–1.55)				
	Korean	754	629	3/143/473	20/191/543	0.161	0.86	(0.69–1.06)	0.182	0.85	(0.67–1.08)	0.477	0.77	(0.38–1.57)				
rs6841638	G	T2D	Controls	T2D	Controls	T2D	Controls	T2D	Controls									
	Stage-1																	
	Hong Kong Chinese	428	416	31/125/272	27/166/223	0.04b	1.3	(1.04–1.62)	0.003	1.51	(1.15–1.99)	0.666	0.89	(0.52–1.52)	0.51	1.06	(0.9–1.24)	0.014
	Stage-2																	
	Hong Kong Chinese	1081	1968	47/372/662	100/648/1220	0.993	1.08	(1.06–1.14)	0.683	0.97	(0.83–1.13)	0.366	1.18	(0.83–1.68)	1.18	(0.83–1.68)		
	Shanghai Chinese	1688	1664	56/551/1081	58/493/1113	0.162	0.92	(0.81–1.04)	0.083	0.88	(0.76–1.02)	0.788	1.05	(0.72–1.53)	1.11	(0.55–2.24)		
	Japanese	568	582	15/142/411	17/150/415	0.659	1.05	(0.84–1.32)	0.691	1.05	(0.81–1.36)	0.773	0.91	(0.35–2.44)				
	Korean	757	632	15/165/452	20/181/556	0.542	1.07	(0.87–1.32)	0.422	1.1	(0.87–1.4)	0.750	0.91	(0.45–1.76)				
rs10021007	C	AA/CA/CC	AA/CA/CC	AA/CA/CC	AA/CA/CC	AA/CA/CC	AA/CA/CC	AA/CA/CC	AA/CA/CC									
	Stage-1																	
	Hong Kong Chinese	429	415	48/185/196	62/197/156	0.01b	1.30	(1.06–1.58)	0.017	1.4	(1.06–1.84)	0.106	1.39	(0.93–2.08)	0.61d	1.07	(0.83–1.34)	0.03d
	Stage-2																	
	Hong Kong Chinese	1069	1978	114/489/466	247/908/823	0.136	1.09	(0.97–1.22)	0.290	1.08	(0.93–1.26)	0.137	1.2	(0.94–1.51)				
	Shanghai Chinese	1216	1577	103/468/645	147/655/775	0.053	1.12	(1.0–1.26)	0.041	1.17	(1.01–1.36)	0.435	1.11	(0.85–1.45)				
Genotypes	Allelic	Recessive	Dominant	Stage-1 and 2 combined														
-----------	---------	-----------	----------	-----------------------														
	N	Allele	Odds	P	Odds	P	Odds	P	Odds	P	Odds	P	Odds	Meta Q statistic				
		T2D	Controls		T2D	Controls	values	ratios	values	ratios	values	ratios	values	ratios				
Japanese	568	41/193/334	21/199/362	0.044	0.82	0.239	0.87	0.007	0.48	0.28–0.82								
Korean	754	46/288/420	46/257/326	0.131	1.14	0.150	1.17	0.368	1.21	0.8–1.85								
rs17046561	G	AA/GA/GG	AA/GA/GG	423	6/100/317	10/119/283	0.03b	1.34	0.045	1.36	0.288	1.73	0.25*	1.05				
rs6583813	C	CC/CT/TT	CC/CT/TT	429	62/188/179	47/167/200	0.04b	1.24	1.32	0.055	1.31	0.045	1.35					
rs8117664	G	GG/GT/TT	GG/GT/TT	424	16/119/289	7/102/307	0.03b	1.32	0.063	2.29	0.072	1.32						

Table 1. Cont.
Table 1. Genotypes Allelic Recessive Dominant Stage-1 and 2 combined c
Risk	N	Genotypes	Allelic	Recessive	Dominant	Stage-1 and 2 combine					
			p	Odds	Odds	Odds					
			values	p values	ratios	Q statistic					
Hong Kong	1075	1075	0.978	28/272/775	74/524/1380	0.081	0.88 (0.76–1.02)	0.095	0.69 (0.44–1.07)	0.178	0.89
Shanghai Chinese	1161	1161	0.727	56/339/766	65/485/992	0.635	0.97 (0.85–1.11)	0.449	1.15 (0.8–1.66)	0.375	0.93 (0.79–1.09)
Japanese	568	568	0.398	21/174/373	16/202/364	0.510	0.93 (0.76–1.15)	0.362	1.36 (0.7–2.62)	0.269	0.87 (0.69–1.11)
Korean	749	749	0.204	26/262/161	20/227/192	0.754	0.97 (0.81–1.17)	0.725	0.90 (0.71–1.19)	0.813	0.81 (0.69–1.01)

Joint effects of CPE and IDE genetic polymorphisms

We tested the joint effects of rs1583645 in CPE and rs6583813 in IDE on T2D risk in the Asian case-control cohort and beta cell function in a subset of the Hong Kong Chinese controls. We assigned each risk allele of rs1583645 (CPE) and rs6583813 (IDE) as a genetic risk score (GRS) of 1 under additive models, which was linearly associated with T2D risk (Pmeta = 0.01, Q-statistic P < 0.05) Figure 1) on meta-analysis. Subjects with the highest GRS accounted for 8.2% of the study population and had 56% higher risk for T2D compared to those with the lowest GRS (P = 0.01). In the control subjects of the Hong Kong cohort stratified by GRS = 1, 2 and ≥3 with similar numbers in each group, increasing GRS was associated with progressive decline in Stumvoll’s index of beta cell function (P = 0.03) and area under the curve (AUC) of insulin at 30-minute (P = 0.05, Table 2). In the 472 subjects from the Hong Kong family-based cohort, 85 non-diabetic unrelated subjects had measurement of plasma IAPP levels. In these subjects, the GRS was associated with increased plasma IAPP (P = 0.000) and IAPP to insulin (IAPP:INS) molar ratios (P = 0.006) after adjustment for age, sex, BMI and/or fasting insulin (Figure 2A and 2B).

In silico analysis in T2D GWAS studies and combined meta-analysis

Having discovered and replicated the risk association of rs1583645 of CPE and rs6583813 of IDE SNPs with T2D in stage-1 and stage-2 experiments, we performed an in silico analysis to validate these findings in 2 GWAS. The Singapore cohort consisted of 8,135 (3,781 cases and 4,354 controls) and the European cohort, 47,117 subjects (8,130 cases and 38,987 controls) [18,19] (Table 3). In the Asian (CHB+JPK) and European (CEU) HapMap database, the respective frequency of the G allele of rs1583645 of CPE were 0.87 and 0.51 while that of the C allele of rs6583813 of IDE were 0.39 and 0.68 (Table S4). In the Caucasian population, we found strong association of IDE rs6583813 with T2D (P = 1.33 × 10−7) but not with rs1583645 of
IDE rs6583813 [OR:1.28(1.04–1.59), P=0.02] in the random effect model.

Bioinformatics and functional analyses
Both CPE and IDE loci show mild conservation among species and are located in the vicinity of regulatory elements for histone modification, islet specific formaldehyde-assisted isolation of regulatory elements (FAIRE) and DNAseI hypersensitive (HS) modification, islet specific formaldehyde-assisted isolation of pre-microRNA form (Table S5). Using transcription factor binding site (TFBS) prediction tools, we identified 11 transcription factors (TFs) which can either bind specifically to one or both of the binding site (TFBS) prediction tools, we identified 11 transcription factors (TFs) which can either bind specifically to one or both of these variants (Table S6). Due to its proximity to the promoter region, we conducted functional tests on CPE rs1583645 variants [G/A] using dual luciferase reporter assays transiently transfected in HepG2 and rat INS-1E cells. In both cells transfected with the constructs carrying the G-risk allele, the basal luciferase activity was 50-66.7% higher than those transfected with A-allele of rs1583645 [P<0.001 and P=0.005 respectively, Mann-Whitney U-test (Figure 3)].

Discussion
In this multi-stage study, we used a hypothesis defined a priori and a tag SNP approach combined with genetic statistics, bioinformatics and functional analyses to examine the independent and joint effects of components of the IAPP pathway on risk of T2D and beta cell function. In the meta-analysis of de novo genotyping and in silico analysis of GWAS data in Asian populations, we confirmed the risk association of rs1583645 for T2D for SNPs with MAF of 10%. In the first stage experiment, we selected 6 SNPs in CPE, IDE and PCSK2 which showed nominal significance for replication. Notwithstanding some heterogeneity of effect sizes possibly due to differences in population-specific LD architecture, allele frequency [18] and factors such as lifestyle and environment [22], rs1583645 of CPE and rs6583813 of IDE showed consistent associations with T2D on meta-analysis of multiple East Asian cohorts. Importantly, subjects with ≥3 risk variants, which accounted for 8.2% of the study population, had 56% increased risk of T2D. In the control subjects, increased GRS was associated with increased plasma IAPP and reduced insulin secretion. Taken together, these findings support our hypothesis that dysregulation of IAPP pathway might increase risk of beta cell dysfunction and T2D.

Insulin degrading enzyme (IDE)
Both CPE and IDE are widely expressed to process and degrade different hormones including IAPP and insulin. In experimental studies, inhibition of IDE decreased IAPP degradation and increased IAPP toxicity while CPE mediated palmitate-induced ER stress resulting in beta cell apoptosis [7,23,24]. These findings were supported by association of variants of CPE and IDE with risk of T2D and related traits in small cohort studies [25,26]. In another study, rs2149632 of IDE was associated with reduced insulin secretion [26,27]. In the stage-1 study, we selected reported SNPs of IDE (rs4649553, rs4649558, rs1887922, rs4649557 and rs2149632) but two of them failed during panel design of genotyping and were replaced by their respective tag SNPs (rs4304670 for rs4649553; rs6583813 for rs2149632). Amongst these SNPs of IDE, only rs6583813 showed significance in the

Table 2. Associations of genetic risk scores (GRS) with beta cell function in Hong Kong Chinese unrelated controls (N = 419) with 1 risk allele of rs1583645 of CPE and rs6583813 of IDE each given 1 point.

Genetic risk score (GRS)	0-1	2	3–4	P value
Subjects (%)	30	41	29	
Male (%)	42	38	36	
Age (years)	41±10	40±11	40±10	
Body mass index (kg/m²)	22.5±3.2	22.6±3.3	22.5±3.1	

Results of 75g oral glucose tolerance test

	Median (IQR)	P value
Fasting plasma glucose (mmol/l)	4.8 (4.6,5)	0.88
Fasting plasma insulin (pmol/l)	41.4 (26,60.7)	0.22
Plasma glucose at 30-minute (mmol/l)	7.67 (6.68,8.75)	0.31
Plasma insulin at 30-minute (pmol/L)	286 (180,449)	0.24
Glucose AUC at 30-minute (min.mmol/l)	195 (179,205)	0.73
Insulin AUC at 30-minute (min.pmol/l)	5817 (3583,7811)	0.05
Stumvoll's index of beta cell function (×10⁻⁵)	29.7 (21.7,40.7)	0.03

Data were shown as mean±SD or median(interquartile range) and analyzed by the linear regression with adjustment of age, sex and BMI under additive models after log-transformation. P values in bold indicated significance for the phenotypes. AUC: area under the curve.

doi:10.1371/journal.pone.0062378.t002
stage-1 study and was replicated in later stages using additional cohorts. In a GWAS examining risk variants for multiple diseases in Icelanders, our group contributed to the discovery of the risk association of T2D with rs1111875 which lies in the intergenic region of the **HHEX-IDE** LD locus [28]. This SNP has now been validated in multiple cohorts albeit with inter-ethnic differences in allele frequency and effect size [3,29,30]. Other researchers have reported the close proximity of this SNP with highly conserved non-coding elements which may control expression of TFs [31]. The importance of this **HHEX-IDE** block was further supported by the joint effects of **TCF7L2**, **HHEX** and **IDE** on risk of T2D [17].

In the present analysis, the SNP discovered in our study, rs6583813, was located near the 3’ end of **IDE** with a moderate LD ($r^2 = 0.67$ in Hong Kong Chinese) with rs1111875. Although we cannot be absolutely certain about the independent effect of rs6583813, in a recent epigenome study of human pancreatic islets, this novel SNP was found to lie within a putative regulatory element (NCBI Build 36.1 CHR10:94,199,479–94,203,011) implicated in epigenetics [21].

Table 3. Meta-analysis of risk associations of *CPE* rs1583645 and *IDE* rs6583813 with Type 2 diabetes (T2D) using data from *de novo* genotyping and *in silico* analysis in a multi-ethnic population.

SNP	Gene	NCBI Build 36.1	Alleles*	Study	Number	Frequency	Risk Allele	OR trend	95% CI	trend	P	Meta-analysis in Asian subjects					
rs1583645	CPE	CHR4:166,517,901	G/A	Stage-1	Cases	Controls	Cases	Controls	OR trend	95% CI	trend	P	Fixed effect	Random effect	Heterogeneity test	P = 0.05	
				Hong Kong Chinese	410	386	0.770	0.727	1.26(1.15–1.38)	0.049				1.09(1.02–1.16)	0.098		
				Stage-2 denovo replication									Fixed effect	Random effect	Heterogeneity test	P = 0.05	
				Hong Kong Chinese	1079	1969	0.788	0.756	1.20(1.06–1.36)	5.24x10^-3				1.01(0.85–1.2)	0.898		
				Shanghai Chinese	1618	1634	0.861	0.841	1.18(1.02–1.35)	0.021				1.00(0.96–1.04)	0.92		
				Korean	754	629	0.847	0.866	0.86(0.69–1.06)	0.161				1.00(0.79–1.27)	0.993		
				Japanese	568	582	0.873	0.863	1.00(0.79–1.27)	0.993				1.00(0.96–1.04)	0.92		
rs6583813	IDE	CHR10:94,199,919	C/T	Stage-1									Fixed effect	Random effect	Heterogeneity test	P = 0.002	
				Hong Kong Chinese	429	414	0.364	0.315	1.23(1.01–1.49)	0.042				1.09(1.02–1.16)	0.098		
				Stage-2 denovo replication									Fixed effect	Random effect	Heterogeneity test	P = 0.05	
				Hong Kong Chinese	1076	1952	0.342	0.346	0.98(0.88–1.1)	0.754				1.01(0.85–1.2)	0.898		
				Shanghai Chinese	1292	1576	0.292	0.297	0.98(0.88–1.09)	0.708				1.00(0.96–1.04)	0.92		
				Korean	756	630	0.40	0.344	1.27(1.08–1.48)	3.0x10^-3				1.00(0.96–1.04)	0.92		
				Japanese	568	582	0.399	0.296	1.58(1.32–1.88)	3.43x10^-7				1.00(0.96–1.04)	0.92		
				Singapore Chinese	1935	1879	0.315	0.278	1.20(1.09–1.33)	4.0x10^-4				1.00(0.96–1.04)	0.92		
				Singapore Malay	1188	759	0.28	0.30	1.07(0.93–1.24)	0.34				1.00(0.96–1.04)	0.92		
				Singapore Indian	–	–	–	–	–	–			Fixed effect	Random effect	Heterogeneity test	P = 0.002	
				DIAGRAM+	38987	8130	1.06	–	1.00(0.96–1.04)	0.92				1.00(0.96–1.04)	0.92		

*Meta-analysis in Asian subjects

aRisk alleles were underlined. bThe allele frequency was based on HapMap Caucasian (CEU) population. cMeta-analysis for the Chinese from Hong Kong, Shanghai, and Singapore, Korean and Japanese cohorts.

doi:10.1371/journal.pone.0062378.t003
Regulation of gene expression (epigenetics) is a complex process involving chromatin and histone modifications which play pivotal roles in determining cellular structure and function [20,21,32]. In a recent epigenetic study on islet cells, CPE is one of the reported genes contained in an islet-selective open chromatin [20] which encompasses various gene regulatory elements. Despite their upstream locations from the promoter and transcription start site, these elements recruit TFs to form a DNA loop to bring them into interactions with promoter to regulate gene expression [33]. Our results indicated that CPE variants at rs1583645 exhibited differential transcriptional activity, suggesting that they might alter gene expression via DNA-protein interactions. On bioinformatics analysis, 11 TFs were predicted to bind to either one or both variants [G/A]. While these predictions need experimental confirmation, two of these TFs, upstream stimulating factor (USF) which binds to the G-allele and octamer binding factor 1 (Oct1 also known as POU2F1) which binds to the A-allele of CPE, are located within the chromosome 1q region which is the most replicable loci for T2D in multiple populations [34]. Besides, we have reported risk association of T2D in our Chinese populations with variants of USF and POU2F1 [35], the latter also known to interact with histone proteins to alter chromatin organization and inflammatory responses [36].

IAPP and insulin

In our family-based association test (FBAT) analysis, none of the SNPs of CPE or IDE showed associations with T2D, possibly due to small sample size and young age of the subjects. However, in this family-based cohort, non-diabetic subjects with high GRS had increased plasma IAPP and IAPP to insulin (IAPP:INS) ratio. In experimental studies, high IAPP, either de novo or compensatory, can induce ER stress and trigger apoptotic signaling pathways with increased expressions of C/EBP homologous proteins (CHOP) and caspase-3 [37]. In in vitro studies, we have demonstrated beta cell toxicity associated with IAPP oligomerization due to mitochondrial dysfunction and oxidative stress [9,10].
Insulin and IAPP form complexes in secretory granules and are secreted in a fixed ratio. However, subject to different stimuli or conditions, these peptides may exhibit different kinetics and responses. Both insulin and IAPP share similar transcriptional regulators and enzymatic pathways for maturation and degradation [38,39]. Thus, reduced CPE activity may lead to low insulin response with compensatory increase of pro-IAPP or alternatively, high CPE activity may increase IAPP production. Both scenarios can potentially lead to beta cell toxicity due to excessive oligomerization especially in the presence of reduced IAPP clearance. In experimental studies, exposure to fatty acids induced overexpression of IAPP resulting in impaired insulin secretion [40]. Thus, genetic or acquired factors which perturb activities of these processing and degrading enzymes may alter IAPP:INS ratio to increase risk of IAPP oligomerization, fibril formation, beta cell dysfunction and T2D [41]. Without measuring CPE and IDE activity, the final effects of these functional SNPs remain uncertain, although the multiple associations between GRS and risk of T2D, reduced beta cell function and increased IAPP support the functional significance of these variants and our overall hypothesis.

Study limitations

Although the combined cohort of 9,901 subjects had over 90% power to detect at least 20% increased risk of T2D for SNPs with MAF ≥0.05, our first stage study involving 459 young patients with familial T2D and 419 controls might have excluded some SNPs with low MAF or effect size resulting in type 2 error. Analysis of these SNPs in a larger sample size will be needed to ascertain their associations with risk of T2D. To overcome possible type 1 error, we performed 10,000 permutation tests to adjust for multiple comparisons. In the qualitative trait analysis, the IAPP results might be confounded by cross-reactivity of the IAPP antibody with pro-IAPP. Although the genetic and bioinformatics analysis on rs1583645 and rs6583813 of CPE and IDE support their functional significance, further studies are needed to examine their effects on IAPP, insulin and/or other substrates. Finally, effects due to adjacent variants via LD structures with stronger causal relationships cannot be excluded.

Conclusion

In this study, we combined our understanding of the IAPP pathway with genetic analysis and used multiple cohorts to demonstrate the genotype-phenotype correlations relevant to T2D and beta cell function. Using a hypothesis driven approach, we confirmed the risk association of T2D with SNPs in CPE and IDE. In non-diabetic subjects, these risk variants were associated with reduced beta cell function, increased IAPP levels and IAPP:INS ratio. Bioinformatics and functional analyses suggested that these SNPs are located within regulatory sites for DNA-protein binding. Although the effect size of these SNPs averaged 15–20%, they can be found in 5% to 50% of the population. It has been estimated that for complex diseases such as T2D, 50% of population attribution risks can be explained by 20 or fewer susceptibility genes with an effect size of 10–20% [42]. Taken together, our findings support the important roles of IAPP processing and

Figure 3. Effect of rs1583645 [G/A] polymorphism on luciferase activity assays. (A) Upstream region of transcription start site (TSS as indicated by the black arrow), first exon and part of intron 1 of CPE (NCBI Build 36.1, CHR4:166,496,501–166,536,501). The LD structure of CPE SNPs within this region was shown by D’ using the Chinese HapMap data. The red arrow indicated the location of rs1583645. (B) CPE-[G/A] constructs consisting of 449 bp of CPE rs1583645 region and pGL4.23 firefly luciferase reporter vectors were transfected into HepG2 (left panel) and rat INS-1E cells (right panel) together with Renilla luciferase reporter vectors. Measurement of the firefly luciferase activity of CPE-[G/A] constructs was normalized relative to the activity of the Renilla luciferase vectors. Data were shown as mean±SEM of at least three independent experiments in triplicate set up. The constructs of CPE-G showed 50% and 66.7% increased transcriptional activity in HepG2 and rat INS-1E cells respectively when compared to the constructs of CPE-A (P<0.001 and P=0.005 respectively by Mann-Whitney U-test).

doi:10.1371/journal.pone.0062378.g003
degrading enzymes in T2D and that a multi-staged approach using tag SNPs of candidate genes within a biological pathway may discover novel variants to identify high risk subjects for T2D.

Methods

Recruitment of samples

Stage-1 study. In the stage-1 study, we selected 459 T2D subjects diagnosed before 40 year-old who had at least one affected first degree relative from the Hong Kong Diabetes Registry (HKDR) [43]. None of these patients had clinical or autoimmune type 1 diabetes, defined as history of ketoacidosis or continuous requirement of insulin within 1 year of diagnosis with or without autoimmune antibodies. Another 419 control subjects with normal glucose tolerance (NGT) [fasting plasma glucose (FPG) <6.1 mmol/L] and no family history of diabetes were recruited from community-based health screening programs [44].

De novo and in silico replication

In the stage-2 study, we included case-control cohorts consisting of 3,564 Hong Kong Chinese, 3,388 Chinese from Shanghai, 1,393 Koreans and 1,150 Japanese [34,45,46]. We also performed the FBAT analysis in 472 subjects recruited from the Hong Kong Diabetes in Family Study [47]. All participants were recruited as part of a diabetes gene discovery program in respective countries. In the stage-3 study, we performed in silico replication in 2 GWAS conducted in Singaporean and European populations including 3,953 Chinese (2,010 cases, 1,945 controls), 2,034 Malays (977 cases, 1,169 controls) and 47,117 Europeans (8,130 cases, 38,987 controls) (Text S1, Table S1 and S2).

Tag SNP selection

Using the HapMap Phase II database for Han Chinese from Beijing (www.hapmap.org), all SNPs with MAF>0.05 in six candidate genes with ~2 kb flanking regions were selected. Their pairwise LD was estimated in terms of r² by Haploview v 4.0RC2 [48]. Under a pair-wise tagging mode with r²>0.8, 82 tag SNPs were selected. Together with 7 SNPs reported to be associated with T2D and/or related traits (rs4646953, rs4646958, rs1887992, rs4646957 and rs2149632), 89 SNPs were selected in the stage-1 study for genotyping in 459 cases and 419 controls. Nominally significant SNPs for T2D were replicated in stage-2 and stage-3 studies.

Genotyping

In the stage-1 study, all SNPs were genotyped using the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MassARRAY System (Sequenom, San Diego, CA) at the Genome Research Center at the University of Hong Kong or Genome Quebec Innovation Center at the McGill University. Each of 96 well plates contained negative controls and duplicate samples for QC. Only SNPs with genotyping call rates ≥0.8, MAF≥0.05 and exhibiting no departure from HWE in control subjects (P>0.001) were included for analysis. Stage-2 genotyping was performed using either Sequenom’s MassARRAY System (Sequenom, San Diego, CA) or the MGB TaqMan Assay (Applied Biosystems, Foster City, CA, USA).

Clinical assessment and metabolic profiling

All patients enrolled in the HKDR [43] underwent structured assessments modified from the European Diabcare protocol [50]. In brief, the HKDR was established in 1995 and enrolls 30–50 ambulatory diabetic patients per week. Patients were referred by general practitioners and internists from community and hospital-based clinics or were discharged from the Prince of Wales Hospital or other regional hospitals. All patients underwent a comprehensive diabetes assessment with documentation of detailed phenotypes and clinical outcomes to form the HKDR. All control subjects underwent detailed clinical examination. A subset (N=302) of control subjects underwent 75g oral glucose tolerance tests (OGTT) and blood samples were collected at multiple time-points for plasma glucose (PG) and insulin measurements. PG assay enzymatically using the Roche Modular Analytics system (Roche Diagnostics GmbH, Mannheim, Germany). Insulin was assayed using the enzyme-linked immunosorbent assays (Dako-Cytomation, Cambridge, UK). The precision of these assays was within that specified by the manufacturer. In the family-based cohort involving 472 subjects (285 cases, 187 controls), a random subcohort of 85 subjects with normal glucose tolerance had measurement of fasting plasma IAPP determined in the laboratory of Professor Garth JS Cooper using a radioimmunoassay method with an inter-assay coefficient of variation (CV) of 3.5% [51].

Calculation

The AUC of PG and insulin during OGTT was calculated by the trapezoid rule. Insulin resistance (HOMA-IR) was calculated by the equation of [(fasting insulin (mU/l) x fasting PG (mmol/l) x 22.5)] while beta cell function was estimated by two algorithms: 1) HOMA-β = [(fasting insulin (mU/l) x 20+ (fasting PG (mmol/l) x 3.5)] and 2) Stumvoll’s index of beta cell function (x10^-6) = [insulin AUC_0 to 60 min (min.pmol/l) + glucose AUC_0 to 60 min (mmol/l)] [52].

Bioinformatics and functional analyses

We tracked the University of California, Santa Cruz (UCSC) human genome browser (http://genome.ucsc.edu/cgi-bin/hgGateway) to examine the cross-species conservation and regulatory elements including CpG islands, chromatin structure and histone modification sites within the flanking regions of rs1583645 in CPE and rs65383813 in IDE (NCBI Build 36.1 CHR1:166,517,651–166,518,151 and CHR10:94,199,669–94,200,169 respectively). We also performed TFBS prediction using the MATCH™ program [53].

Transient transfection studies

We generated two clones with identical sequences except [G/A] variants at rs1583645 of CPE into pGL4.23 vectors (Promega) by PCR cloning and QuickChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) using the following primers: forward:5’-TAAAGAGCTTC(SacI)CAGACCTGATGAACTC-3’; reverse:5’-CTAAGTCTTGAAG(XhoI)TATGCTGTCTTGTAGG-3’; M1-5’-CCTATGAGCCACAAACAGAATATCATGT- GCCAGTAAGTGTTTG-3’ and M2-5’-CCAAACTTACTGGCACT- CAGATGTTATTTGGTGGCCATAGG-3’ (Desired mutation underlined). We independently transfected these clones with Renilla luciferase vectors [pGL4.73[hRUC/SV40]] into HepG2 and rat INS-1E cells using Lipofectamine™ Plus 2000 (Invitrogen). Empty pGL4.23 vectors were included as reference for comparisons. Next, we detected their luciferase activities in cells with different variants in at least 3 independent experiments using the Dual-Luciferase Reporter Assay kit (Promega) in accordance to the manufacturer’s instructions.

Statistical analysis

All data were expressed as mean±SD or median (interquartile range) as appropriate. Skewed data were transformed using
natural logarithms and outlier data (≥ or ≤4SD from the mean) were excluded. All statistical tests were performed by PLINK (v.1.07 http://pngu.mgh.harvard.edu/~purcell/plink), Haploview (v 4.0RC2 http://www.broad.mit.edu/mpg/haplovie) or Statistical Package for Social Sciences (vereson 13.0) for Windows (SPSS Inc., Chicago, IL, USA) unless specified otherwise. The study power in allelic models was estimated using PASS 2008 (NCSS, LLC. Kaysville, Utah). Assuming allelic models, our samples had over 90% power to detect at least 20% increased risk for T2D for SNPs with MAF of 0.1 and α of 0.05. The SNPs which passed QC were analyzed in each study cohort by the χ² and logistic regression (LR) analysis under allelic, dominant and recessive models with or without adjustments. To adjust for multiple testing in stage-1 study, we also presented empirical P values by 10,000 permutations under the most significant models implemented by PLINK, which was used to select SNPs for replication.

Except for stage-1 experiment, 2-tailed P values<0.05 were considered statistically significant in allelic, dominant and/or recessive models unless specified otherwise. Risk association was expressed as OR with 95% CI. We selected the best model based on P values among genetic models for the meta-analysis of T2D in the combined cohort. The latter was performed by the Cochran-Mantel-Haensz el (CMH) test implemented in PLINK to estimate the combined ORs, 95% CI and significance level, using study population as a strata. Heterogeneity of ORs was assessed by the Cochran’s Q statistic which was calculated as the weighted sum of squared differences among individual study effects and the pooled effect across studies. In case of significant heterogeneity (Q-statistic P<0.05), the effect size calculated from the model for random effects was also reported [54]. For the analysis of family-based cohort, Mendelian errors and potential genotyping errors were checked by PEDCHECK (v.1.1; http://watson.hgen.pitt.edu) and removed accordingly. We used the FBAT (v.2.0.3; http://www.biostat.harvard.edu/~fbat) based on the transmission disequilibrium test (TDT) but generalized to allow analysis in additive models of inheritance using –e option for testing the null hypothesis of “no linkage and no association”. The power was estimated by FBAT [55] assuming a disease prevalence of 10%, additive models with allelic OR of 1.2 for SNP with MAF of 0.1.

To test the joint effects of significant SNPs, we assigned a score of 1 to each risk allele to generate GRS with a maximum of 4 in combined analysis of cohorts with de novo genotyping. We also applied linear regression analysis to test the effects of GRS with beta cell function in subsets of control subjects with adjustment for covariates, as appropriate. For the dual luciferase reporter assays, all experiments were performed using a triplicate set-up consisting of 3 independent tests. All results were expressed as mean±SEM and Mann-Whitney U-test was used to compare differences between groups.

Supporting Information

Figure S1 Overall hypothesis: Genetic variations in IAPP encoding pathways including maturation, stabilization and degradation and might be associated with type 2 diabetes (T2D) and beta cell dysfunction through increased formation of pro-IAPP or IAPP, oligomerization and reduced clearance of IAPP.

(DOC)

Table S1 Clinical characteristics of the case-control cohorts from Hong Kong, Shanghai, Korea and Japan in stage-1 and 2 genetic association studies.

(DOC)

Table S2 Clinical characteristics of the case-control cohorts in stage-3 in silico analysis.

(DOC)

Table S3 SNP list for data analysis in stage-1 study ranked by the effect sizes.

(DOC)

Table S4 Risk allele frequencies of CPE rs1583645 and IDE rs6583813 in Asian (CHB+JPK) and European (CEU) HapMap populations.

(DOC)

Table S5 Bioinformatics analysis of rs1583645 in CPE and rs6583813 in IDE.

(DOC)

Table S6 Summary of transcription factor (TF) binding sites predicted in the region of rs1583645 [G/A] with adjacent sequences.

(DOC)

Text S1 Description of study populations in stage-2 de novo and stage-3 in silico replication.

(DOC)

Text S2 Members of DIAGRAM Consortium.

(DOC)

Acknowledgments

We thank all clinical staff at the PWH Diabetes and Endocrine Centre and study participants. Special thanks are extended to Ms. Cherry Chiu and Rebecca Wong for recruiting the various cohorts in Hong Kong. We thank Professor Garth J.S. Cooper and Dr Bernard Y.S. Choong for IAPP measurement and analysis. We also thank the Information Technology Services Centre and Centre for Clinical Trials for support of computing resources. A full list of members of the DIAGRAM Consortium is provided in Text S2.

Dr. Juliana CN Chan is the guarantor of this work, had full access to all the data, and takes full responsibility for the integrity of data and the accuracy of data analysis.

Author Contributions

Conceived and designed the experiments: RCWM WYS MCYN JCNC. Performed the experiments: VKLL CH KSP HF. Analyzed the data: VKLL RCWM WYS HML CHTT MCYN JCNC. Wrote the paper: VKLL RCWM WYS HML MCYN JCNC. Recruitment of samples in Hong Kong: RCWM WYS YW NT JW PCL APSK RO MCYN JCNC. Recruitment of samples from other districts: CH KSP HF WPJ HKL KN. Bioinformatics and functional analyses: VKLL RCWM HML GX JCNC. Stage 3 in silico replication: XS DN JTW EST APM DIAGRAM. Critical revision of the manuscript: CH KSP HF XS EST APM WPJ HKL KN.

References

1. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363: 2339–2350.

2. Cho YS, Chen CH, Hu G, Long J, Lee Ong RT, et al. (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44: 67–72.
27. Rudovich N, Pivovarova O, Fisher E, Fischer-Rosinsky A, Spranger J, et al. (2008) Association of diabetes mellitus. Rev Physiol Biochem Pharmacol 157: 1–125.

26. Kwak SH, Cho YM, Moon MK, Kim JH, Park BL, et al. (2008) Association of insulin-degrading enzyme gene with type 2 diabetes in the Japanese population. Diabet Med 25: 2739–2756.

25. Ho P, Himmelfarb R, Michaud M, Hazlewood S, Scott C, et al. (2006) Association of insulin-degrading enzyme with type 2 diabetes mellitus. Diabet Med 23: 896–899.

24. Martin D, Xu Z, Hwang J, Guo D, Ma L, et al. (2006) Association of insulin-degrading enzyme with type 2 diabetes in an African American population. Mol Genet Metab 92: 224–230.

23. Chen H, Jawahar S, Qian Y, Duong Q, Chan G, et al. (2001) Missense polymorphisms in the insulin-degrading enzyme gene with type 2 diabetes. Diabetes 50: 1704–1709.

22. Zeggini E, Weedon MN, Landgren CM, Frayling TM, et al. (2007) Polymorphism in the insulin-degrading enzyme gene with type 2 diabetes. Cell 130: 1085–1095.

21. Nordman S, Ostenson CG, Efendic S, Gu HF (2009) Loci of TCF7L2, HHEX, and IGF2BP2 on chromosome 1q are associated with type 2 diabetes in an African American population. Mol Genet Metab 92: 145–150.

20. Martin LJ, Comuzzie AG, Dupont S, Vionnet N, Dina C, et al. (2002) A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes 51: 3568–3572.

19. Martin LJ, Comuzzie AG, Dupont S, Vionnet N, Dina C, et al. (2002) A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes 51: 3568–3572.

18. Martin LJ, Comuzzie AG, Dupont S, Vionnet N, Dina C, et al. (2002) A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes 51: 3568–3572.

17. Nordman S, Ostenson CG, Efendic S, Gu HF (2009) Loci of TCF7L2, HHEX, and IGF2BP2 on chromosome 1q are associated with type 2 diabetes in an African American population. Mol Genet Metab 92: 145–150.

16. Utsunomiya N, Ohagi S, Sanke T, Tatsuta H, Hanabusa T, et al. (1998) Twelve type 2 diabetes risk loci in an extended French family. Diabetes 51: 3568–3572.

15. Groves CJ, Wiltshire S, Smedley D, Owen KR, Frayling TM, et al. (2003) Genetic variants of IAPP pathways and T2D

14. Martin LJ, Comuzzie AG, Dupont S, Vionnet N, Dina C, et al. (2002) A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes 51: 3568–3572.

13. Martin LJ, Comuzzie AG, Dupont S, Vionnet N, Dina C, et al. (2002) A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes 51: 3568–3572.

12. Leak TS, Keene KL, Langefeld CD, Gallagher CJ, Mychaleckyj JC, et al. (2007) Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin sensitivity. Diabetes Care 30: 1999–2004.

11. Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC (2009) Successful mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: An effect attenuated by phycocyanin. I J Biochem Cell Biol 41: 525–534.

10. Matveyenko AV, Galvao T, Daval M, Butler AE, Butler PC (2009) Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 58: 906–916.

9. Zhao HL, Sui Y, Guan J, He L, Gu XM, et al. (2009) Amyloid oligomers in adipose tissue and non-beta cell insulin resistance in human pancreas. Transl Res 153: 24–32.

8. Peps MB, Herbert J, Hutchinson WL, Tremante GA, Lachmann HJ, et al. (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417: 254–259.

7. Bennett RG, Hamel FG, Duckworth WC (2005) An insulin-degrading enzyme inhibitor decreases amylin-induced cytotoxicity and increases amyloid formation in islet cell lines. Diabetes 54: 2313–2316.

6. Paulsson J, Westermark G (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54: 2117–2125.

5. Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, et al. (1993) Monitoring the targets of the St Vincent Declaration and the application of WHO criteria to the screening for diabetes mellitus in Pima Indians. Mol Genet Metab 78: 136–144.

4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

3. Prokopenko I, Zeggini E, Hanson RL, Mitchell BD, Rayner NW, et al. (2009) Linkage disequilibrium mapping of the replicated type 2 diabetes linkage signal on chromosome 1q. Diabetes 58: 1704–1709.

2. Ng MC, Lam VK, Tam CH, Chan AW, So WT, et al. (2010) Association of the POU class 2 homeobox gene (POU2F1) with susceptibility to Type 2 diabetes in Chinese populations. Diabet Med 27: 1443–1449.

1. Kim MK, Lease-wood MA, Weintraub D, Chung JH (1996) A soluble transcription factor, Oct-1, is also found in the insomuline matrix and possessies silencing activity in its aluminine-rich region. Mol Cell Biol 16: 4366–4377.