Antiferromagnetic behavior in CeCo$_9$Ge$_4$

C Gold1, L Peyker1, E-W Scheidt1, H Michor2 and W Scherer1

1 CPM, Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany
2 Institut für Festkörperphysik, Technische Universität Wien, 1040 Wien, Austria

E-mail: christian.gold@physik.uni-augsburg.de

Abstract. We investigate the novel intermetallic ternary compounds RCo$_9$Ge$_4$ with R = La and Ce by means of X-ray diffraction, susceptibility and specific heat measurements. CeCo$_9$Ge$_4$ crystallizes in the space group $I4/mcm$ and is characterized by the coexistence of two different magnetic sublattices. The Ce-based sublattice, with an effective moment close to the expected value for a Ce$^{3+}$-ion, exhibits a magnetically ordered ground state with $T_N = 12.5$ K. The Co-based sublattice, however, exhibits magnetic moments due to itinerant 3d electrons. The magnetic specific heat contribution of the Ce-sublattice is discussed in terms of a resonance-level model implying the interplay between an antiferromagnetic phase transition and the Kondo-effect and an underlying Schottky-anomaly indicating a crystal field level scheme splitting into three twofold degenerated micro states ($\Delta_1 = 69$ K, $\Delta_2 = 133$ K).

1. Introduction

Cerium based intermetallic compounds of the tetragonal Ce$_T$X$_4$ (T: transition metal, X: Group 14 element) family exhibit a rich variety of ground states, such as unprecedented Fermi-liquid (FL) behavior in CeNi$_9$Ge$_4$ ($\gamma = C/T \approx 5.5$ Jmol$^{-1}$K$^{-2}$) [1; 2], model type Kondo-lattice behavior in CeNi$_9$Si$_4$ [3] and valence fluctuations in CeCo$_9$Si$_4$ [4; 5]. The most outstanding feature of CeNi$_9$Ge$_4$ is the approximate scaling of the magnetic specific heat and susceptibility contributions within the Ce-content in the solid solution Ce$_{1-y}$La$_y$Ni$_9$Ge$_4$. This indicates that the huge Sommerfeld coefficient γ is mainly due to a single-ion effect [2] caused by an effectively fourfold degenerate ground state in CeNi$_9$Ge$_4$ [6]. To gain insight into the spin fluctuation dynamics and to study the influences of the crystal electrical field (CEF) of the ground state of CeNi$_9$Ge$_4$, substitution experiments on the ligand sites are a valuable tool.

Control of hybridization strength, between the 4f electrons and the conduction electrons was achieved by a systematic Ni/Cu substitution in CeNi$_9$$_{1-x}Cu_xGe_4$. As a result a quantum critical phase (QCP) transition at $x = 0.4$ is induced. This QCP transition is not only driven by the competition between Kondo-effect and RKKY interaction, but also by a continuous reduction of the effective crystal field ground state degeneracy from non-magnetic fourfold in CeNi$_9$Ge$_4$ towards a magnetically ordered twofold one in CeNi$_8$CuGe$_4$ [6].

The consequences of a Ni/Cu substitution which lead to a continuous increase of the d-electron density of state at the Fermi-level have been studied already [6]. In this paper, however, we analyzed the reverse scenario to identify the consequences of a decreasing d-electron count. CeCo$_9$Ge$_4$ seems to be a suitable candidate for this study.
2. Sample Preparation and Structural Characterization

Polycrystalline samples with nominal compositions of CeCo$_9$Ge$_4$ and LaCo$_9$Ge$_4$ were prepared by a two-step-arc-melting-procedure of the pure elements (Ce: 4N, La: 3N8, Co: 4N8, Ge: 5N) under a protective argon atmosphere. To obtain the highest possible homogeneity, the samples were turned upside-down, remelted several times and finally annealed in evacuated quartz glass tubes for two weeks at 950$^\circ$C. The weight losses of both samples after annealing were less than 0.5% of the total mass.

Phase purity and crystal structure analysis were performed by means of X-ray powder diffractometry at room temperature. Rietveld analysis of the X-ray data confirmed that both samples crystallize in the tetragonal LaFe$_9$Si$_4$-type [7] (space group $I4/mcm$) structure. Here, the rare-earth elements (Ce, La) occupy the crystallographic 4a sites, while the Ge atoms are situated on the 16f and the transition elements are distributed over the 16k, 16l and 4d sites. The high quality of the refinement ($R_f = 6.51$) is reflected in the rather featureless difference plot in Fig. 1 for observed and calculated Bragg intensities in CeCo$_9$Ge$_4$. The resulting lattice parameters for CeCo$_9$Ge$_4$ ($a = b = 7.9809(1)$ Å and $c = 11.8825(7)$ Å) and for LaCo$_9$Ge$_4$ ($a = b = 7.9827(8)$ Å and $c = 11.8743(7)$ Å) reveal a volume increase of about 8.0% and 6.6% in comparison to isostructural CeCo$_9$Si$_4$ and LaCo$_9$Si$_4$ [5], respectively. This pronounced volume expansion might not only arise from differences in the (ionic) radii of Si versus Ge. An additional volume increase may be due to a change of the Ce-valence from mixed-valence- (CeCo$_9$Si$_4$ [4]) to a dominant Ce$^{3+}$-state in CeCo$_9$Ge$_4$.

3. Magnetic Measurements

The temperature dependence of the DC magnetic susceptibility $\chi(T)$ of CeCo$_9$Ge$_4$ and LaCo$_9$Ge$_4$ is shown in Fig. 2 between 2 K and 400 K in an external field of 0.5 T. Above 200 K the susceptibilities follow a modified Curie-Weiss type law, $\chi(T) = C/(T - \Theta_{CW}) + \chi_0$ (see insert Fig. 2). From the Curie constants C the effective magnetic moments $\mu_{eff} = 5.21\mu_B$ and $4.54\mu_B$ were determined for the Ce- and La-compounds, respectively. For CeCo$_9$Ge$_4$ these results lead to two different magnetic sublattices, one is based on the local magnetic moments of the Ce$^{3+}$-
The temperature dependent specific heat \(\Delta C \) of CeCo\(_4\)Ge\(_4\) is displayed in Fig. 3b. The magnetic contribution of the specific heat \(\Delta C \) of CeCo\(_4\)Ge\(_4\). The dashed line represents a theoretical adjustment to the data taking into account the resonant-level model [9] and a Schottky anomaly.

4. Specific Heat Measurements

The temperature dependent specific heat \(C(T) \) divided by temperature \(C/T \) of CeCo\(_4\)Ge\(_4\) and LaCo\(_3\)Ge\(_4\) between 2 K to 300 K is displayed in Fig. 3a. Besides the high temperature regime of the specific heat, which is dominated by phonon contributions \(C(T)/T \) of CeCo\(_4\)Ge\(_4\) exhibits a pronounced anomaly at 12.5 K indicating a phase transition to an ordered magnetic state, in good agreement with the \(\chi(T) \) data. By contrast \(C(T) \) of LaCo\(_3\)Ge\(_4\) does not feature any evidence of magnetic order but a small increase below 10 K in correspondence to the observed flattening in \(\chi(T) \).

Due to the fact, that itinerant \(3d \) magnetism is presented in both samples, it is difficult to quantify the linear Sommerfeld coefficient \(\gamma \). In order to disregard this effect and to eliminate the phonon contribution, we subtracted the total specific heat of the isostructural LaCo\(_3\)Ge\(_4\)
sample from the Ce compound. As a result we obtained the magnetic contribution of the specific heat ΔC of the Ce subsystem pictured in Fig. 3b. From a $\Delta C/T$ over T^2 plot a Sommerfeld coefficient $\gamma \approx 200 \text{ mJmol}^{-1}\text{K}^{-2}$ is extracted, yielding a Kondo-temperature of $T_K = 0.68R/\gamma = 28 \text{ K}$, where R is the gas constant. This pronounced Kondo-contribution at low temperatures can be described utilizing the resonant-level model [9] in combination with a molecular field approach to account for long-range magnetic order (see, e.g., [6]). The results of these calculations qualitatively reproduce the evolution of the magnetic specific heat anomaly ($T_N = 12.5 \text{ K}$) and the Kondo-contribution of CeCo$_9$Ge$_4$ (see dashed line in Fig.2b). The exchange interaction J and the Kondo-temperature T_K, obtained from the resonant-level model, are 65 K and 32 K in good agreement with the T_K-value obtained from the γ-value. In addition, at high temperatures the specific heat data can be well described by a Schottky anomaly resulting from a CEF effect of the $J = 5/2$ state of the Ce$^{3+}$-ion. The Schottky maximum can be fitted using a crystal-field level scheme with energies levels separations of $\Delta_1 = 69 \text{ K}$ and $\Delta_2 = 133 \text{ K}$. The entropy calculation from $\Delta C/T$ nearly tends above 130 K towards the expected value of $R \ln 6$, characteristic for a sixfold degenerated system.

5. Conclusion

The influence of the observed volume expansion of about 1.2% as well as the reduction of the d-electron count compared to CeNi$_9$Ge$_4$ was investigated using susceptibility and specific heat measurements. We have found a coexistence of two magnetic sublattices in CeCo$_9$Ge$_4$. While the Ce-sublattice is characterized by an antiferromagnetic ordered Kondo-lattice ($T_N = 12.5 \text{ K}$) with a Sommerfeld value of $\gamma \approx 200 \text{ mJmol}^{-1}\text{K}^{-2}$ and a Kondo-temperature of $T_K = 32 \text{ K}$, the Co-sublattice reveals 3d itinerant paramagnetism. In addition, the Ni/Co exchange leads to a shift of the CEF levels. The isostructural compound LaCo$_9$Ge$_4$ is, due to the missing magnetic rare-earth sublattice, an ideal system to study the role of itinerant magnetism in CeCo$_9$Ge$_4$ and will be subject of future investigations.

6. Acknowledgments

We acknowledge valuable discussions with E Bauer. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Contract No. SCHE487/7-1 and by the COST P16 ECOM project of the European Union.

References

[1] Michor H, Bauer E, Dusek C, Hilscher G, Rogl P, Chevalier B, Etourneau J, Giester G, Killer U and Scheidt E-W 2004 J. Magn. Magn. Mater. 272 227-228
[2] Killer U, Scheidt E-W, Eickerling G, Michor H, Sereni J, Pruschke T and Kehrein S 2004 Phys. Rev. Lett. 93 216404
[3] Michor H, Berger S, El-Hagary M, Bauer E, Hilscher H, Rogl P and Giester G 2003 Phys. Rev. B 67 224428
[4] El-Hagary M, Michor H, Bauer E, Grissinger R, Kerschl P, Eckert D, Miller K H, Rogl P, Giester G and Hilscher G 2005 Physica B 359 311
[5] Wang X, Michor H and Grioni M 2007 Phys. Rev. B 75 035127
[6] Peyker L, Gold C, Scheidt E-W, Scherer W, Donath J G, Gegenwart P, Mayr F, Unruh T, Eyert V, Bauer E and Michor H 2009 J. Phys.: Condens. Matter 21 235604
[7] Tang W H, Liang J K, Chen X I and Rao G H 1994 J. Appl. Phys. 76 4095
[8] Michor H, El-Hagary M, Della Mea M, Pieper M W, Reissner M, Hilscher G, Khmelevskyi S, Mohl P, Schneider G, Giester G and Rogl P 2004 Phys. Rev. B 69 081404
[9] Schotte K D and Schotte U 1975 Phys. Lett. A 55 38