Coherent tunnelling across a quantum point contact in the quantum Hall regime

F. Martins¹, S. Faniel², B. Rosenow³, H. Sellier⁴, S. Huant⁵, M. G. Pala⁶, L. Desplanque⁶, X. Wallart⁶, V. Bayot¹,⁴ & B. Hackens¹

¹IMCN/NAPS, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium, ²ICTEAM/ELEN, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium, ³Institute for Theoretical Physics, Leipzig University, Leipzig D-04009, Germany, ⁴Institut Néel, CNRS and Université Joseph Fourier, Grenoble F-38042, France, ⁵IMEP-LAHC, Grenoble INP, Minatec, Grenoble F-38016, France, ⁶IEMN, Cité scientifique, Villeneuve d’Ascq F-59652, France.

The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.

Electron phase coherence is the cornerstone of quantum devices and computation¹,². In that perspective, Quantum Hall (QH) devices are particularly attractive in view of their large coherence times³. Quantum Hall edge states (ES) formed by Landau levels (LL) crossing the Fermi energy near sample borders are ideal one-dimensional (1D) systems in which scattering vanishes exponentially at low temperature T⁴. Edge state loops surrounding potential hills or wells, referred to as localized states or quantum Hall islands (QHIs), then form unique zero-dimensional (0D) systems⁵. The last few years witnessed great progresses in the transport spectroscopy of model QH localized states created by patterning quantum dots⁶ or antidots⁷–⁹ in a two-dimensional electron system (2DES).

In parallel, new tools were developed to probe the microscopic structure of confined electron systems in the QH regime. In particular, scanning gate microscopy¹⁰–¹⁶ (SGM) makes use of a movable metallic tip, which is voltage-biased, to finely tune the electrons’ confining potential in its vicinity. This way, the geometry of propagating edge states and localized states can be modified at will¹⁷. Very recently, SGM allowed us to locate active QHIs in a QH interferometer¹⁸. Importantly, it appeared that QHIs do not only form around antidots, but potential inhomogeneities also induce QHIs in the arms or near the constrictions connecting a quantum ring to source and drain reservoirs¹⁸. Therefore, lateral confinement, e.g. in quantum point contacts (QPC), offers the possibility to connect a QHI to ES through tunnel junctions, and thus form a new class of 1D-0D-1D QH devices (Fig. 1).

In this case, the 0D island is characterized by a weak coupling ($\nu = e^2/h$) and a large charging energy ($E_C = e^2/C$) (C is the island capacitance), which induce Coulomb blockade (CB)¹. In such devices, Aharonov-Bohm (AB) like oscillations of the resistance can be explained by Coulomb coupling between fully occupied LLs and confined states in the QHI¹⁸–²². It was also suggested that AB oscillations reported on a QPC²³ could be attributed to tunnelling paths around the saddle point²⁴. In contrast, transport through QH devices, but in the strong coupling limit ($\nu \gg e^2/h$), revealed coherent effects analog to those observed in optical Mach-Zehnder²⁵,²⁶ or Fabry-Pérot²⁷–²⁹ interferometers.

Here, we examine an unexplored regime of transport across a QPC where QH edge states are weakly coupled, but phase coherence is preserved. The SGM tip is used as a nanogate to tune the potential landscape and hence edge states’ pattern and coupling. At first sight, one expects that transport should be driven by tunnelling, and possibly by Coulomb blockade if a quantum Hall island were mediating transport between edge states (Fig. 1)¹⁸. Indeed, SGM and magnetoresistance data corroborate with Coulomb blockade across a QHI located near the saddle point of the QPC. However, temperature dependence and scanning gate spectroscopy show clear...
signatures of quantum interferences. Since, up to now, such interferences were exclusively observed in open QH devices, this observation sets the stage for a new electron transport scenario. We propose a new model that provides a quantitative interpretation of the data.

Results

Our sample is a QPC etched in an InGaAs/InAlAs heterostructure holding a 2DES 25 nm below the surface. The QPC lithographic mask consists in scanning a metallic tip with a constant radius of curvature over a 2DES at a tip-2DES distance of 50 nm while recording a map of the device resistance. The position of the active QHI, which connects opposite ES through tunnelling paths (dotted lines in Fig. 2), is illustrated in Fig. 2(b) for two consecutive fringes highlighted with the white dashed lines when circling the island, this form for \(\Delta B \) depends on the tip-QHI distance \(\delta_x \) varied.

where \(N \) is the number of completely filled LL in the bulk (here \(N = 6 \)). The combined effect of moving the tip along the dashed line in Fig. 2(a) and changing \(B \) is illustrated in Fig. 2(b) for \(V_{tip} = -6 \) V. Along the \(B \)-axis, AB-like oscillations are highlighted with the white dashed lines. The negatively polarized tip approaching the QHI raises its potential, which increases its area \(A \), and hence reduces the magnetic field that separates two resistance peaks \(\Delta B \). This is illustrated in Fig. 2(c), where we assume that the QHI has a surface equivalent to that of a disk with diameter \(d \) obtained from Eq. (1): \(d \) found to increase from \(\sim 65 \) nm to \(\sim 95 \) nm as the tip-island distance \(\delta_x \) decreases from 1300 nm to 300 nm, respectively. Noteworthy, as expected for Coulomb dominated transport in a QH interferometer, increasing \(B \) is equivalent to applying a more negative \(V_{tip} \), yielding a positive \(dV_{tip}/d\delta_x \) for isoresistance stripes. Since approaching the negatively charged tip has the same effect as decreasing \(V_{tip} \), Fig. 2(b) seems consistent with the Coulomb dominated transport.

But, surprisingly, the temperature dependence of fringes amplitude \(\delta R \), measured on SGM maps, shown on Fig. 3, reveals a peculiar behaviour: it clearly does not follow the \(T^{-1} \) dependence expected in the quantum regime of CB\(^{29,31,32} \) (data from ref. 18 are presented for comparison in Fig. 3). Instead, \(\delta R \) decreases very slowly from 100 mK to 4.2 K. Indeed, for coherent transport through a Fabry–Pérot geometry, thermal smearing of interfering electrons gives rise to a temperature dependence \(\delta R(T) \sim \exp(-T/T_0) \) in the low temperature regime. In contrast, for transport processes involving a weakly coupled Coulomb island, this form for \(\delta R(T) \) is expected only for temperatures larger than the charging energy\(^{22} \). In the Fabry–Pérot situation, \(T_0 \) is linked to the excited states level spacing \(E_{ES} \) according to the relation \(T_0 = \Delta E_{ES}/h = 2h\nu_{ES}(dk_a) \) where \(\nu_{ES} \) is the local edge state velocity, related to the gradient of the confining potential. From experimental data measured in a GaAs QH Fabry–Pérot interferometer\(^{22,31,32} \), one can infer that, in our sample, \(5 \times 10^4 \) m/s \(< \nu_{ES} < 10^5 \) m/s. Given this range for \(\nu_{ES} \) and \(d \sim 80 \) nm (from Fig. 2(c), taking into account that the \(T \)-dependence data were measured at \(\delta_x \sim 630 \) nm), we obtain the range of \(T \)-dependence as a gray region in Fig. 3, which reproduces quite well the behaviour observed experimentally. The corresponding range of 9.5 K \(< T_0 < 19.1 \) K is consistent with the low temperature limit and hence with a Fabry–Pérot behaviour.
Through the QPC. Scanning gate spectroscopy is realized by positioning the analysis of non-linear transport.

Earlier experiments already evidenced such an exponential decay with temperature, but only in Mach-Zehnder and ballistic devices, which are known to be coherent.30,36,37

However, our main observation confirming the preserved electron phase coherence emerges from the analysis of non-linear transport through the QPC. Scanning gate spectroscopy is realized by positioning the tip right above the QHI, and sweeping both V_{tip} and the dc current I through the QPC. The voltage across our tunnel device, i.e. the Hall voltage: $V_{\text{Hall}} = h/(e^2 N^*)\delta$, where N^* is the (integer) number of transmitted ES at the QPC (Fig. S1 - supplementary material). The measurement configuration is indeed identical to that used to perform conventional electrical spectroscopy on isolated quantum dots. If the QHI were weakly tunnel-coupled to the propagating edge states, one would expect to observe a "Coulomb diamond" pattern. Fig. 4(a) shows an exponential decay as a function of the dc component of V_{tip} and V_{bias}. Instead of Coulomb diamonds, the spectroscopy displays a checkerboard pattern of maxima and minima, indicating that both V_{tip} and V_{bias} tune the interference of transiting electrons. Each bias independently adds a phase shift between interfering paths, so that the transconductance is modulated by a product of cosines and an exponential term accounting for a voltage-dependent dephasing induced by electrons injected at an energy $e|V_{\text{bias}}|$.

$$\frac{dR}{dV_{\text{tip}}} = D \cos \left(2\pi \frac{V_{\text{bias}}}{\Delta V_{\text{bias}}} \right) \cos \left(2\pi \frac{V_{\text{tip}}}{\Delta V_{\text{tip}}} + \theta \right) \exp \left(-2\pi \gamma (\frac{V_{\text{bias}}}{\Delta V_{\text{bias}}})^n \right),$$

where D is the zero-bias visibility of the oscillations, ΔV_{tip} is the oscillation period induced by V_{tip}, θ is a constant phase factor, $\Delta V_{\text{bias}} = 4h/n_{\text{ES}}(ed)$ is the oscillation period along the V_{bias} axis, and γ is directly related to the V_{bias}-dependent dephasing rate: $\gamma = \gamma(e|V_{\text{bias}}|)/2h^2$. n varies from 1 to 2 according to Ref. 29, 30, 36, 39 and was set to 1 as we could not discriminate from fitting the data. As shown in Figs. 4(b-d), we obtain an excellent fit of the data in Fig. 4(a) using Eq. (2) with a transit time $t_\tau = d\nu_{ES} = 1.7 \times 10^{-12}$ s, and a parameter $\gamma = 0.2$ in the range found in Ref. 29. Note that in such a small QHI, t_τ turns out to be smaller by at least one order of magnitude than the intrinsic t_τ in the same 2DES. This renders coherent resonant tunnelling through the whole QHI device possible.

Figure 3 | Temperature dependence: Coulomb blockade vs coherent transport. δR vs T obtained from SGM maps with $V_{\text{tip}} = -1$ V (circles) and from data in ref. 18 (squares). The dashed line corresponds to a T^{-1} dependence. The gray region corresponds to an exponential dependence $\exp(-T/T_0)$ with $9.5 < T_0 < 19.1$ K, consistent with magnetoresistance data and edge state velocity estimate along Ref. 29. The solid line corresponds to $T_0 = 16.2$ K, consistent with the spectroscopy data (see text).

Figure 4 | Evidence for coherent transport in spectroscopy. (a) dR/dV_{tip} as a function of the dc component of V_{tip} and V_{bias} at $B = 9.5$ T and $T = 100$ mK. Voltage modulation of V_{tip} was set to 50 mV. (b) 2D fit of dR/dV_{tip} using Eq. (2). (c–d) Transconductance vs V_{bias}, taken along the red (c) and blue (d) dashed lines in (a–b). The circles correspond to the experimental data and the continuous lines to the fit.

Discussion

To interpret ΔV_{tip} obtained from the fit, one first notes that R evolves very similarly when changing either V_{tip} or B in the vicinity of $B = 9$ T (Fig. S2 - supplementary material). Therefore, one can convert ΔV_{tip} into an equivalent ΔB, through a lever arm $\Delta B/\Delta V_{\text{tip}} = 0.108$ T/V. Hence, $\Delta V_{\text{tip}} = 0.46$ V corresponds to $\Delta B = 50$ mT for the AB-like oscillations. In that range of V_{tip}, $N^* = 5$ (Fig. S1(d)). This means that $d = 2\sqrt{\phi_0}/(\pi N^* \Delta B) = 145$ nm, consistent with data in Fig. 2(c) since d is at a maximum when the tip is above the QHI ($\delta_i = 0$). Moreover, the value of $t_\tau = 1.7 \times 10^{-12}$ s found in fitting the spectroscopy data, one obtains $\nu_{ES} = 8.5 \times 10^4$ m/s, within the range of values that was expected from data in ref. 29, and in agreement with the exponential temperature dependence in Fig. 3. We therefore have a fully consistent picture that explains all magnetoresistance, temperature dependence and spectroscopy data, and shows that tunnelling across the QHI is indeed coherent.

One fundamental question remains: why do we observe two distinct behaviours of transport through apparently similar QH devices, Coulomb blockaded transport in our previous work, and coherent transport in this one? The qualitative difference cannot be explained by the fact that d is smaller than previously examined QHIs. T_0 and ΔV_{bias} would be reduced proportionally, but not enough to explain the observed T-dependence and spectroscopy. On the other hand, signs of coherent transport through CB quantum dots were only
obtained for symmetric tunnel junctions that allow resonant tunnelling instead of sequential tunnelling. In that framework, one might thus ascribe the loss of electron coherence in other QHIs to an asymmetry of tunnel junctions. However, a difference in the transmission coefficients of the tunnel barrier may point towards an alternative explanation. In the coherent regime, we find a rather strong coupling between the QHI and propagating ES (0.27 alternative explanation. In the coherent regime, we find a rather strong coupling between the QHI and propagating ES (0.27)

Methods

Device fabrication and 2D parameters. Our device is fabricated from a InGaAs/InAlAs heterostructure grown by molecular beam epitaxy where a 2DES is confined 25 nm below the surface (the layer sequence of this heterostructure is detailed in 13,14). InAlAs heterostructure grown by molecular beam epitaxy where a 2DES is confined 25 nm below the surface (the layer sequence of this heterostructure is detailed in 13,14).

Figure 5 | Potential landscape and tunnelling paths across the QPC.

(a) Schematic representation of the electrostatic potential in the vicinity of the QPC (in brown), with the ES in yellow and the tunnelling paths connecting opposite ES (red and green). Only one edge state is represented, for the sake of clarity. (b) top view of the three-dimensional figure in (a), with the various tunnelling probabilities \(T_i \) between edge states.

SGM and SGS techniques. All the experiments are carried out inside a He//He dilution refrigerator where a home-made cryogenic atomic force microscope (AFM) was integrated 26. The AFM is based on a quartz tuning fork to which a commercial metallized Si cantilever (model CSC17 from MikroMasch) is glued by means of a conductive silver epoxy. We image the sample topography by imposing a feedback loop on the shift in the tuning fork resonant frequency and using standard dynamic AFM mode of operation. After locating the QPC we perform SGM. It consists of scanning the tip along a plane parallel to the 2DES at constant distance of 25 nm from the surface, i.e. 50 nm from the 2DES, with a bias voltage \(V_{tip} \) applied to the tip and recording simultaneously the device resistance \(R \). At the end of a set of SGM experiments, we image the topography of the QPC to ensure that, during that period, the position of the QPC did not change. The SGS is performed by positioning the AFM tip at a fixed position in the vicinity of the QHI and by adding a dc current \(I \) to the lock-in ac signal between contacts 1 and 2 (Fig. 1). The voltage between edge states \(V_{edge} \) is obtained by multiplying the dc current \(I \) by \(h/e^2 N \). The transresistance \(\partial R/ \partial V_{tip} \) is measured with a second lock-in using an ac modulation of \(V_{tip} \).

1. Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Physics 44, 1–228 (1991).
2. Fischer, J. & Loss, D. Dealing with decoherence. Science 324, 1277–1278 (2009).
3. Rouleau, P. et al. Direct measurement of the coherence length of edge states in the Integer quantum Hall regime. Phys. Rev. Lett. 100, 126802 (2008).
4. Huckestein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–395 (1995).
5. Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).
6. Altminar, C. et al. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nature Phys. 6, 34–39 (2009).
7. Sim, H.-S., Kataoka, M. & Ford, C. J. B. Electron interactions in an antidot in the integer quantum Hall regime. Phys. Rev. B 56, 127–165 (2008).
8. Goldman, V. J. & Su, B. Resonant tunnelling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).
9. Maasitla, I. J. & Goldman, V. J. Energetics of quantum antidot states in the quantum Hall regime. Phys. Rev. B 57, R4273–R4276 (1998).
10. Topinka, M. et al. Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000).
11. Crook, R., Smith, C. G., Simmons, M. Y. & Ritchie, D. A. Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas. Phys. Rev. B 62, 5174–5178 (2000).
12. Piola, A. et al. Spatially resolved manipulation of single electrons in quantum dots using a scanning probe. Phys. Rev. Lett. 93, 216801 (2004).
13. Hackens, B. et al. Imaging and controlling electron transport inside a quantum ring. Nature Phys. 2, 826–830 (2006).
14. Martins, F. et al. Imaging electron wave functions inside open quantum rings. Phys. Rev. Lett. 99, 136807 (2007).
15. Pala, M. G. et al. Local density of states in mesoscopic samples from scanning gate microscopy. Phys. Rev. B 77, 125310 (2008).
16. Pala, M. G. et al. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects. Nanotechnology 20, 264012 (2009).
17. Paradiso, N. et al. Spatially resolved analysis of edge-channel equilibration in quantum Hall circuits. Phys. Rev. B 83, 155305 (2011).
18. Hackens, B. et al. Imaging Coulomb islands in a quantum Hall interferometer. Nature Comm. 1, 39 (2010).
19. Taylor, B. P. et al. Aharonov-Bohm oscillations in the Coulomb blockade regime. Phys. Rev. Lett. 69, 1989–1992 (1992).
20. Kataoka, M. et al. Detection of Coulomb charging around an antidot in the quantum Hall regime. Phys. Rev. Lett. 83, 160–163 (1999).
21. Rosenow, B. & Halperin, B. I. Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007).
22. Zhang, Y. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Pérot interferometers. Phys. Rev. B 79, 241304 (2009).
23. van Loosdrecht, P. H. M. et al. Aharonov-Bohm effect in a singly connected point contact. Phys. Rev. B 88, 10162–10165 (1988).
24. Jain, J. K. & Kivelson, S. Model tunneling problems in a high magnetic-field. Phys. Rev. B 37, 4111–4117 (1988).
25. Ji, Y. et al. An electronic Mach-Zehnder interferometer. Nature 422, 415–418 (2003).
26. Neder, L., Heiblum, M., Levinson, Y., Mahalu, D. & Umannsky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 16804 (2006).
27. Sivan, U., Imry, Y. & Hartstein, C. Aharonov-Bohm and quantum Hall effects in singly-connected quantum dots. Phys. Rev. B 39, 1242–1245 (1989).
28. van Wees, B. J. et al. Observation of zero-dimensional states in a one-dimensional electron interferometer. Phys. Rev. Lett. 62, 2523–2526 (1989).
29. McClure, D. T. et al. Edge-state velocity and coherence in a quantum Hall Fabry-Pérot interferometer. Phys. Rev. Lett. 103, 206806 (2009).
30. Yamauchi, Y. et al. Universality of bias- and temperature-induced dephasing in ballistic electronic interferometers. *Phys. Rev. B* 79, 161306(R) (2009).

31. Ofek, N. et al. Role of interactions in an electronic Fabry-Pérot interferometer operating in the quantum Hall effect regime. *Proc. Natl. Acad. Sci.* 107, 5276–5281 (2010).

32. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Pérot quantum Hall interferometer. *Phys. Rev. B* 83, 155440 (2011).

33. Buttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. *Phys. Rev. B* 38, 9375–9389 (1988).

34. Yacoby, A., Heiblum, M., Mahalu, D. & Shtrikman, H. Coherence and phase sensitive measurements in a quantum dot. *Phys. Rev. Lett.* 74, 4047–4050 (1995).

35. Kouwenhoven, L. P. et al. Electron transport in quantum dots. in Mesoscopic electron transport. (eds. Sohn, L. L., Kouwenhoven, L. P. & Schon, G.) Series E: Applied sciences (Kluwer Academic, Dordrecht) 345, 105–214 (1997).

36. Roulleau, P. et al. Finite bias visibility of the electronic Mach–Zehnder interferometer. *Phys. Rev. B* 76, 161309(R) (2007).

37. Litvin, L. V., Helzel, A., Tranitz, H. P., Wegscheider, W. & Strunk, C. Edge-channel interference controlled by Landau level filling. *Phys. Rev. B* 78, 075303 (2008).

38. Martins, F. et al. Scanning gate spectroscopy of transport across a quantum Hall nano-island. *New J. Phys.* 15, 013049 (2013).

39. van der Wiel, W. G. et al. Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring. *Phys. Rev. B* 67, 033307 (2003).

40. Hackens, B. et al. Dwell-time-limited coherence in open quantum dots. *Phys. Rev. Lett.* 94, 146802 (2005).

41. van Houten, H., Beenakker, C. W. J. & Staring, A. A. M. Coulomb Blockade Oscillations in Semiconductor Nanostructures (in Single Charge Tunneling, edited by Grabert, H. & Devoret, M. H.) NATO ASI series B294, (Plenum, New York, 1992).

42. Biercuk, M. J., Ilani, S., Marcus, C. M. & McEuen, P. L., Electrical transport in single-wall carbon nanotubes Carbon Nanotubes. (in Advanced Topics in the Synthesis, Structure, Properties and Applications, edited by Jorio, A., Dresselhaus, G. & Dresselhaus, M. S.) 111, 455–493 (Springer, Berlin, 2008).

Acknowledgements

The authors are grateful to M. Treffkorn and T. Huert for helpful discussions. F.M. and B.H. are postdoctoral and associate researchers with the Belgian FRS-FNRS, respectively. This work has been supported by FRFC grants no. 2.4.546.08.F and 2.4503.12, FNRS grant no. 1.5.044.07.F, by the FSR and ARC program “Stresstronics”, by BELSPO (Interuniversity Attraction Pole IAP-64/42), and by the PNANO 2007 program of the ANR (MICATEC project). V.B. acknowledges the award of a Chaire d’excellence by the Nanoscience Foundation in Grenoble.

Author contributions

F.M., B.H. and S.F. performed the low-temperature SGM experiment; F.M., B.H., V.B. and B.R. analysed the experimental data; L.D. and X.W. grew the InGaAs heterostructure; B.H. processed the sample; B.H., S.F. and F.M. built the low temperature scanning gate microscope; B.H., F.M., S.F., H.S., S.H., M.P. and V.B. contributed to the conception of the experiment; F.M., B.H. and V.B. wrote the paper and all authors discussed the results and commented on the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

How to cite this article: Martins, F. et al. Coherent tunnelling across a quantum Hall nano-contact in the quantum Hall regime. *Sci. Rep.* 3, 1416; DOI:10.1038/srep01416 (2013).