Cerebral Oximetry as a Real-Time Monitoring Tool to Assess Quality of In-Hospital Cardiopulmonary Resuscitation and Post Cardiac Arrest Care.

Akram W Ibrahim, Emory University
Antoine Trammell, Emory University
Harland Austin, Emory University
Kenya Barbour, Atlanta Veterans Administration Medical Center
Emeka Onuorah, Atlanta Veterans Administration Medical Center
Dorothy House, Atlanta Veterans Administration Medical Center
Heather L Miller, Atlanta Veterans Administration Medical Center
Chandila Tutt, Atlanta Veterans Administration Medical Center
Deborah Combs, Atlanta Veterans Administration Medical Center
Roger Phillips, Atlanta Veterans Administration Medical Center

Only first 10 authors above; see publication for full author list.

Journal Title: Journal of the American Heart Association
Volume: Volume 4, Number 8
Publisher: American Heart Association: JAHA | 2015
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1161/JAHA.115.001859
Permanent URL: https://pid.emory.edu/ark:/25593/r7k28

Final published version: http://dx.doi.org/10.1161/JAHA.115.001859

Copyright information:

© 2015 The Authors.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits making multiple copies, distribution, public display, and publicly performance,
Cerebral Oximetry as a Real-Time Monitoring Tool to Assess Quality of In-Hospital Cardiopulmonary Resuscitation and Post Cardiac Arrest Care

Akram W. Ibrahim, MD; Antoine R. Trammell, MD; Harland Austin, DSc;† Kenya Barbour, RN; Emeka Onuorah, PhD; Dorothy House, RN; Heather L. Miller, RN; Chandila Tutt, RN; Deborah Combs, RN; Roger Phillips, RN; Neal W. Dickert, MD, PhD; A. Maziar Zafari, MD, PhD

Background—Regional cerebral oxygen saturation (rSO2) as assessed by near infrared frontal cerebral spectroscopy decreases in circulatory arrest and increases with high-quality cardiopulmonary resuscitation. We hypothesized that higher rSO2 during cardiopulmonary resuscitation and after return of spontaneous circulation (ROSC) would predict survival to discharge and neurological recovery.

Methods and Results—This prospective case series included patients experiencing in-hospital cardiac arrest. Cerebral oximetry was recorded continuously from initiation of resuscitation until ROSC and up to 48 hours post-arrest. Relationships between oximetry data during these time periods and outcomes of resuscitation survival and survival to discharge were analyzed. The cohort included 27 patients. Nineteen (70.3%) achieved ROSC, and 8 (29.6%) survived to discharge. Median arrest duration was 20.8 minutes (range = 8 to 74). There was a significant difference in rSO2 between resuscitation survivors and resuscitation nonsurvivors at initiation of the resuscitative efforts (35% versus 17.5%, P = 0.03) and during resuscitation (36% versus 15%, P = 0.0008). No significant association was observed between rSO2 at ROSC or during the post-arrest period and survival to discharge. Among patients who survived to discharge, there was no association between cerebral performance category and rSO2 at ROSC, during resuscitation, or post-arrest.

Conclusions—Higher rSO2 levels at initiation of resuscitation and during resuscitation are associated with resuscitation survival and may reflect high-quality cardiopulmonary resuscitation. However, in this small series, rSO2 was not predictive of good neurological outcome. Larger studies are needed to determine whether this monitoring modality can be used to improve clinical outcomes. (J Am Heart Assoc. 2015;4:e001859 doi: 10.1161/JAHA.115.001859)

Key Words: cardiac arrest • cerebral oximetry • research methods

Near infrared spectroscopy is a noninvasive optical monitoring technique that can be utilized to assess regional cerebral oxygen saturation (rSO2). This technique has been used to assess rSO2 in a variety of clinical conditions, including continuous assessment of cerebral oxygenation in patients with induced circulatory arrest1–3 and healthy adult volunteers.4 There has also been significant interest in the role of cerebral oximetry in cardiac arrest.

Although cerebral oximetry monitoring has not been established as a reliable method of detecting cerebral perfusion during a resuscitation attempt,5 several small, single-center studies have suggested that cerebral oximetry may be beneficial either diagnostically or prognostically during resuscitation efforts for cardiac arrest and in the post-arrest period. During cardiac arrest, rSO2 levels have been shown to increase with high-quality cardiopulmonary resuscitation (CPR), and several studies have demonstrated a correlation between rSO2 levels during resuscitation and outcomes such as return of spontaneous circulation (ROSC) and survival.6–9 The role of cerebral oximetry monitoring in the post-arrest period is less clear, but 1 study suggested that cerebral oximetry assessment in the...
Cerebral Oximetry for Cardiac Arrest

Ibrahim et al

palpable pulse. All patients underwent CPR according to Adult Cardiovascular Life Support guidelines. Clinical data, including baseline characteristics and in-hospital clinical information, were abstracted from the electronic medical record and charts. Continuous rSO2 monitoring was performed in 27 patients.

Study Intervention

The Invos 5100 C near infrared spectroscopy device (Invos Somanetics, Troy, USA) was utilized. A disposable sensor was applied to the patient’s forehead. Light emitted from the diodes is used to calculate the frontal cortical hemoglobin concentration; resulting values represent cerebral arteriovenous saturation (normal range 60% to 80%).

The near infrared spectroscopy device did not interfere with CPR efforts or post-arrest interventions and was not used by medical staff to alter management. The forehead sensor was placed as soon as possible after onset of resuscitation efforts (2 minutes or less in all patients), and monitoring was continued up to 48 hours post-arrest unless removed for clinical reasons or patient death. Cerebral oximetry values were available at 30-s intervals for analysis, and rSO2 values are reported at onset of compressions (initial rSO2), during resuscitation (intra-arrest rSO2), at ROSC (end of compressions), and during the post-arrest monitoring period. Mean (average) rSO2 was calculated during resuscitation and during the post-arrest period for each patient.

Study End Points

The primary outcome measures were resuscitation survival and survival to discharge. Resuscitation survival was defined as ROSC lasting more than 20 minutes. A secondary outcome was neurological status on discharge, as categorized by Glasgow–Pittsburgh Cerebral Performance Categories. Cerebral performance category (CPC) levels were defined as follows: CPC 1 (good performance) and CPC 2 (moderate disability), CPC 3 (severe disability), CPC 4 (vegetative state), and CPC 5 (brain death or death). All outcome measures, including CPC scores, were assessed through chart review.

Statistical Analysis

Descriptive analysis was performed for all major study variables. Continuous baseline characteristics and rSO2 assessments are expressed as either mean±SD or median with interquartile range for non-normally distributed variables. Recorded values of “0” from the Invos data stream were excluded as these values likely represent detection failure. The Wilcoxon Rank-Sum test was used to analyze associations between rSO2 assessments and outcome measures of resuscitation survival and survival to discharge. A 2-tailed value of P<0.05 was considered statistically significant. The Wilcoxon Rank-Sum test was also utilized to compare rSO2 assessments, and outcomes between survivors and nonsurvivors. All analyses were performed using Statistical Analysis Software (SAS) software version 9.3 (SAS Institute Inc, Cary, NC).

Ethical Considerations

The use of cerebral oximetry did not interfere with resuscitation protocols, and oximetry data were not used to alter resuscitation, to determine when to terminate resuscitation efforts, or to guide post-arrest care. Prospective informed consent was not considered practical, and the study was considered to represent no more than minimal risk. The Emory University School of Medicine Institutional Review Board and the Atlanta Veterans Medical Center Research and Development Committee approved the study under a waiver of informed consent.

Results

Patient characteristics, including arrest location and survival outcomes, are presented in Table 1. The initial rhythm was pulseless electrical activity (PEA) in 20 patients, ventricular fibrillation in 4 patients, and asystole in 3 patients. Eight patients survived to discharge. The 2 survivors of ventricular fibrillation were treated with therapeutic hypothermia, and early coronary angiography with coronary revascularization was performed in 1 of these patients. They were both discharged with a CPC score of 1. The remaining 6 survivors to discharge had pulseless electrical activity as a presenting rhythm and were all discharged with a CPC score of 3 or 4. Patient characteristics by resuscitation survival status are presented in Table 2.
Resuscitation survivors, compared to resuscitation non-survivors, had higher rSO₂ at initiation of resuscitation (35% versus 17.5%, \(P = 0.03 \)) (Table 3). This difference persisted throughout resuscitation; resuscitation survivors also had higher average rSO₂ during resuscitation compared to resuscitation nonsurvivors (36% versus 15%, \(P = 0.0008 \)). The median rSO₂ for resuscitation survivors at ROSC (at the time of CPR termination) and 48 hours into the post-arrest period were 41% and 42%, respectively. Comparing resuscitation survivors who survived to discharge with those who did not, no significant differences were observed in rSO₂ at ROSC (median 42% versus 41%, \(P = 0.64 \)) or during the post-arrest period (43.5% versus 40.0%, \(P = 0.45 \), Table 4). Finally, among the patients who survived to discharge, there was no association between CPC score and rSO₂ at ROSC, during resuscitation, or post-arrest (Table 5).

Discussion

This prospective case series investigated the use of real-time cerebral oximetry monitoring during resuscitation and during the post-arrest period in patients with in-hospital cardiac arrest. Prior studies involving out-of-hospital cardiac arrest patients have noted that low rSO₂ levels during resuscitation predict a lower chance of resuscitation survival.\(^6\),\(^18\),\(^19\) We observed a similar association for in-hospital cardiac arrest patients. This study thus supports the hypothesis that very low rSO₂ levels at resuscitation initiation and during resuscitation may predict failure to achieve ROSC. However, we did not have data about the quality of CPR in each individual context, and providers did not use oximetry information to alter resuscitation efforts. As a result, this study does not address the question of whether low rSO₂ levels during resuscitation identify individuals with an unalterably poor prognosis or individuals for whom resuscitative efforts could potentially be improved.

While these findings complement previously published evidence\(^20\) that higher rSO₂ during resuscitation may predict ROSC, they do not suggest a significant relationship between rSO₂ during resuscitation and neurologic status at discharge. Specifically, the neurologic status at discharge of individuals with initial pulseless electrical activity arrest was markedly poor (all CPC 3 or 4) despite relatively acceptable rSO₂ during resuscitation. Moreover, rSO₂ values in that population were not different from those of the individuals with an initial shockable rhythm who did have a good neurologic outcome. This finding thus casts some doubt on whether oximetry-guided efforts to increase rSO₂ during resuscitation will meaningfully impact neurologic outcomes. Though rSO₂ levels have been shown to increase with the use of an automated compression device,\(^8\) for instance, no data exist at this point to demonstrate that altering management based on oximetry data improves neurologic status.

This study also may temper enthusiasm for the use of cerebral oximetry as an early prognostic tool regarding likelihood of survival or good neurological outcome in the post-arrest period, an area in which very limited data exist.\(^1\),\(^10\),\(^19\) In this study, rSO₂ following ROSC (post-arrest rSO₂) did not correlate meaningfully with either survival to

Table 1. Demographic, Clinical, and In-Hospital CPR Event Characteristics

Baseline Characteristics	Resuscitation Survivors (n=19)	Resuscitation Nonsurvivors (n=8)
Mean age	65.6±12.3 years	
Mean duration	20.8±12.4 minutes	
Gender		
Male	18/19 (95%)	Male 8/8 (100%)
Female	1/20 (5%)	
Race		
Black	8/19 (42%)	7/8 (88%)
White	11/19 (58%)	1/8 (13%)
Arrest location		
Intensive care unit	14 (74%)	6 (75%)
General wards	10 (52%)	2 (25%)
Radiology	1 (5%)	0 (0%)
Other	3 (16%)	0 (0%)
Survival to discharge	Yes	No
ROSC	14 (74%)	6 (75%)
No ROSC	5 (26%)	2 (25%)

CPR indicates cardiopulmonary resuscitation; ROSC, return of spontaneous circulation.

Table 2. Demographic, Clinical, and Resuscitation Event Characteristic Comparisons Between Resuscitation Survivors and Nonsurvivors

Characteristics of Resuscitation Survivors and Nonsurvivors	Resuscitation Survivors (n=19)	Resuscitation Nonsurvivors (n=8)
Sex		
Male	18/19 (95%)	Male 8/8 (100%)
Female	1/20 (5%)	
Race		
Black	8/19 (42%)	7/8 (88%)
White	11/19 (58%)	1/8 (13%)
Presenting rhythm		
Pulseless electrical activity	14/19 (74%)	6/8 (75%)
Ventricular fibrillation	2/19 (10%)	2/8 (25%)
Asystole	3/19 (16%)	0/8 (0%)
Resuscitation duration, mean	19 minutes	23 minutes
Age, mean	60.4 years	65.5 years
Mean Charlson Comorbidity Index\(^17\)	4.5	4.8
discharge or neurological recovery. Among the 8 survivors to discharge in our study, for example, there was no significant relationship between the CPC score and the post-arrest rSO2. Importantly, this study was small in size and there was a low rate of survival with good neurological status. Moreover, it is possible that cerebral oximetry may be useful in the post-arrest period in other ways, such as to actively monitor for worsening perfusion and, potentially, direct therapeutic intervention. The potential utility of this modality for a range of uses warrants further assessment within larger populations.

The study has important limitations. First, it was small and observational. Larger prospective trials are needed to determine the potential clinical value of this assessment method. Second, we did not compare cerebral oximetry with other methods of assessing adequacy of resuscitation such as invasive arterial pressure, end-tidal CO2, or compression depth. However, this study helps to demonstrate that cerebral oximetry can be quickly initiated without interruption in resuscitation efforts. Third, there are differences, for example, in presenting rhythm, race, and age between patients who maintained ROSC and those who did not. There may also have been differences in response time or “down time” between groups that were reflected in differences in initial rSO2. These factors represent potential confounders as they may play important roles in predicting outcome; however, it is not expected that they would substantially obscure whether cerebral oximetry is a helpful assessment modality, particularly regarding neurologic status. Finally, we could not analyze the impact of post-arrest interventions such as extracorporeal membrane oxygenation–assisted resuscitation (E-CPR), therapeutic hypothermia, and urgent coronary revascularization on rSO2 levels as only 2 patients received the latter 2 treatments and none received E-CPR. Notably, 1 patient showed a rise in rSO2 levels following the initiation of therapeutic hypothermia post-arrest that remained stable during the rewarming phase.

Table 3. Cerebral Oximetry Assessments

Cerebral Oximetry Assessments	All Patients (N=27)	Survivors (N=19)	Nonsurvivors (N=8)	P Value*
Median initial rSO2 (compression onset)	26% (20 to 40)	35% (20 to 40)	17.5% (15 to 25.5)	0.03
Median average rSO2 during resuscitation†	34% (21 to 39)	36% (31 to 41)	15% (13 to 23)	0.0008
Median rSO2 at ROSC (end of compressions)	N/A	41% (39 to 49)	N/A	
Median average post-arrest rSO2†	N/A	42% (34 to 49)	N/A	

N/A indicates not applicable; ROSC, return of spontaneous circulation; rSO2, regional cerebral oxygen saturation.

*The Wilcoxon Rank-Sum test comparing rSO2 measurements between survivors and nonsurvivors. A 2-tailed value of P<0.05 was considered statistically significant.

†Median (within each group) of the calculated mean rSO2 for each patient during this period.

Table 4. Comparison of Cerebral Oximetry Assessments Between Resuscitation Survivors Who Survived to Discharge and Those Who Did Not

	Resuscitation Survivors (n=19 Patients)	Median and Interquartile Range	
	Survivors to Discharge (n=8)	In-Hospital Mortality (n=11)	P Value*
Median rSO2 at ROSC	42.0% (40 to 47)	41.0% (34 to 50)	0.64
Median average post-arrest rSO2†	43.5% (34.2 to 53)	40% (33.5 to 48.3)	0.45

ROSC indicates return of spontaneous circulation; rSO2, regional cerebral oxygen saturation.

*The Wilcoxon Rank-Sum test was utilized to test associations between rSO2 assessments and survival to discharge among resuscitation survivors. A 2-tailed value of P<0.05 was considered statistically significant.

†Median of calculated mean rSO2 values for each patient during this period.

Table 5. CPC Scores and rSO2 Levels at ROSC and in the Post-arrest Period Among Survivors to Discharge

Survivors to Discharge (n=8)	Presenting Rhythm	CPC Score	Median rSO2 at ROSC (%)	Median Post-arrest rSO2 (%)	Number of Patients
Ventricular fibrillation	1	44	38	2	2
Pulseless electrical activity	3	42	46	4	4
	4	42	46	2	2

CPC indicates cerebral performance category; ROSC, return of spontaneous circulation; rSO2, regional cerebral oxygen saturation.
Conclusions

This study further supports the association between higher rSO₂ levels during resuscitation and improved resuscitation survival. Important questions remain, however, about the role of this monitoring modality during resuscitation. Further studies are essential to establish whether oximetry monitoring effectively identifies correctable deficiencies in resuscitation and whether improvement of rSO₂ during resuscitation meaningfully impacts neurologic outcomes and not just resuscitation survival or survival to discharge. Larger studies may also clarify whether there is any prognostic role for post-arrest oximetry monitoring.

Disclosures

None.

References

1. Ito N, Nanto S, Nagao K, Hatanaka T, Nishiyama K, Kai T. Regional cerebral oxygen saturation on hospital arrival is a potential novel predictor of neurological outcomes at hospital discharge in patients with out-of-hospital cardiac arrest. Resuscitation. 2012;83:46–50.
2. Pollard V, Prough DS, DeMelo AE, Deyo DJ, Uchida T, Stoddart HF. Validation in volunteers of a near infrared spectrocope for monitoring brain oxygenation in vivo. Anesth Analg. 1996;82:269–277.
3. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–58.
4. Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–558.
5. Newman DH, Callaway CW, Greenwald IB, Freed J. Cerebral oxygen in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation. 2004;63:189–194.
6. Mulliner M, Sterz F, Binder M, Hirsch MM, Janata K, Lagger AN. Near infrared spectroscopy during and after cardiac arrest—preliminary results. Clin Intensive Care. 1995;6:107–111.
7. Nagdyman N, Fleck TPK, Ewert P, Abdul-Khalig H, Redlin M, Lange PE. Cerebral oxygenation measured by near-infrared spectroscopy during circumulatory arrest and cardiopulmonary resuscitation. Br J Anaesth. 2003;91:438–442.
8. Parnia S, Nasir A, Ahn A, Malik H, Yang J, Zhu J, Dorazi F, Richman P. A feasibility study of cerebral oximetry during in hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2014;42:930–933.
9. Ahn A, Nasir A, Malik H, D’Orazio F, Parnia S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VF) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84:1713–1716.
10. Ahn A, Yang J, Inigo-Santiago L, Parnia S. A feasibility study of cerebral oximetry monitoring during the post-resuscitation period in comatose patients following cardiac arrest. Resuscitation. 2014;85:522–526.
11. Morrison LJ, Neumar RW, Zimmerman JL, Link MS, Newby LK, McMullin PW Jr, Hoek TV, Halverson CC, Doering L, Peberdy MA, Edelson DP; American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on P. Strategies for improving survival after in-hospital cardiac arrest in the United States: 2013 consensus recommendations: a consensus statement from the American Heart Association. Circulation. 2013;127:1538–1563.
12. Safar P. Cerebral resuscitation after cardiac arrest: a review. Circulation. 1986;74:IV138–IV153.
13. Field JM, Hazinski MF, Sayre M, Chameideis L, Schexnayder SM, Hemphill R, Samson RA, Kattwinkel J, Berg RA, Shanhaji F, Cave DM, Jauch EC, Kudenchuk PJ, Neumar RW, Peberdy MA, Perlman JM, Sintz E, Travers AH, Berg MD, Billi JE, Eigil B, Hickey RW, Kleinman ME, Link MS, Morrison LJ, O’Connor RE, Shuster M, Callaway CW, Cucchiara B, Ferguson JD, Rea TD, Vanden Hoek TL. 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S640–S646.
14. Ibrahim AW, Wu V, Zafari AM. Neurologically intact survival after prolonged cardiopulmonary resuscitation for pulseless ventricular tachycardia. Am J Med. 2013;126:e7–e9.
15. McCormick PW, Stewart M, Ray P, Lewis G, Dujovny M, Ausman JI. Measurement of regional cerebrovascular hemoglobin oxygen saturation in cats using optical spectroscopy. Neurol Res. 1991;13:65–70.
16. Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett P, Becker L, Bossert T, Deloz H, Dick W, Eisenberg M, Evans TD, Holmgberg S, Kerber R, Mullie A, Ornato JP, Sandoe E, Skulberg A, Tunstall-Pedoe H, Swanson R, Thes W. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style, Task Force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Ann Emerg Med. 1991;20:861–874.
17. Charlson ME, Pompei P, Ales KL, Mackenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–383.
18. Nemoto EM, Yonash H, Kassam A. Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med. 2000;28:1052–1054.
19. Ito N, Nanto S, Nagao K, Hatanaka T, Kai T. Regional cerebral oxygen saturation predicts poor neurological outcome in patients with out-of-hospital cardiac arrest. Resuscitation. 2010;81:1736–1737.
20. Parnia S, Nasir A, Shah C, Patel R, Mani A, Richman P. A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation. 2012;83:982–985.
Cerebral Oximetry as a Real–Time Monitoring Tool to Assess Quality of In–Hospital Cardiopulmonary Resuscitation and Post Cardiac Arrest Care
Akram W. Ibrahim, Antoine R. Trammell, Harland Austin, Kenya Barbour, Emeka Onuorah, Dorothy House, Heather L. Miller, Chandila Tutt, Deborah Combs, Roger Phillips, Neal W. Dickert and A. Maziar Zafari

J Am Heart Assoc. 2015;4:e001859; originally published August 25, 2015; doi: 10.1161/JAHA.115.001859

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://jaha.ahajournals.org/content/4/8/e001859