Epidermal Growth Factor Receptor (EGFR) is a tyrosine kinase and, when activated by one of its ligands, it initiates several signaling cascades that have robust implications in cellular growth, survival, and invasiveness. This pathway is often over-activated in cancers. The EGFR Mitogen Activated Protein Kinase (MAPK) pathway has been at the epicenter of drug development and research programs due to its essential role in tumorigenesis. Many pharmaceuticals that target this pathway are now in clinical use, including the anti-EGFR therapeutic antibody cetuximab that is utilized in colorectal cancer (CRC) treatment regimens.

Resistance has been considered the major obstacle to long-standing benefit from targeted therapies, including cetuximab. Mechanisms of resistance to EGFR inhibitors include the expression of the oncogenic mutant KRAS. Under current clinical guidelines, patients with activating KRAS mutations are ineligible for EGFR inhibitors such as cetuximab.

In recent years, however, several studies have demonstrated that there may be an exception to the rule that oncogenic KRAS mutations confer resistance to EGFR inhibitors.\(^1,2\) Originally, a retrospective analysis of the initial clinical trials for cetuximab showed that patients with a Glycine (G) to Aspartic Acid (D) mutation at amino acid 13 of KRAS (KRAS\(^{G13D}\)) appeared to respond positively to cetuximab, suggesting this mutation is an exception to the rule that KRAS mutations confer resistance to Epidermal Growth Factor Receptor (EGFR) inhibitors. Oncologists have stated that the mechanism that explains why the KRAS\(^{G13D}\) mutation is an exception should be identified before KRAS\(^{G13D}\) colorectal cancer patients should be treated differently. We have recently elucidated this mechanism using mathematical modeling of the KRAS biochemical system coupled with experimental biology. The mechanism we revealed involves a cetuximab-mediated reduction in HRAS and NRAS signaling within KRAS\(^{G13D}\) cancer cells, owing to impaired binding of KRAS\(^{G13D}\) to the tumor suppressor, Neurofibromin (NF1).
In our new work, the model revealed that we reproduced a decreased affinity for G12V E. C. STITES AND T. MCFALL

Endogenous RAS activity is depleted in colorectal cancers expressing KRAS^{G13D} but not other KRAS mutants. We experimentally tested and confirmed our hypotheses using CRC cells that were either homozygous WT or hemizygous for G13D or G12V at the KRAS locus. Following cetuximab treatment, or lack thereof, we evaluated levels of HRAS-GTP and NRAS-GTP by performing an active RAS pulldown assay. The resultant active RAS precipitant was then analyzed using three separate methods: Western blot with antibodies specific for each of HRAS, NRAS, and KRAS; isoelectric focusing to separate HRAS, NRAS, and KRAS followed by immunoblotting with a pan-RAS (HRAS, NRAS, and KRAS specific) antibody; and mass spectrometry. In agreement with our mathematical modeling predictions, we found that cetuximab treatment indeed depleted both HRAS-GTP and NRAS-GTP in both WT and G13D cells, when compared to G12V cells. Furthermore, mutant KRAS-GTP did not show any reduction in G12V and G13D cells, again consistent with our model’s prediction.

We also determined why WT HRAS-GTP and NRAS-GTP signals decrease only in G13D CRC cells. Analysis of our computational model revealed that the affinity of the KRAS mutant for the tumor suppressor Neurofibromin (NF1) solely determined sensitivity to cetuximab. It has previously been shown that the binding between G13D and NF1 is weaker than that of other RAS mutants. We reproduced a decreased affinity for NF1 experimentally using Bioluminescence Resonance Energy Transfer (BRET) and by co-immunoprecipitation. We also demonstrated that the aspartic acid mutation at residue 13 impairs binding of the G12V mutant to NF1 when we engineered cells containing the two mutations together in cis.

That reduced binding to NF1 might have an impact on sensitivity to upstream inhibition was at first surprising because all three of the common KRAS mutants were modeled to be incapable of having NF1 convert their bound GTP to GDP. GTPase Activating Proteins (GAPs) like NF1 normally maintain a low level of WT RAS-GTP, and loss-of-function NF1 mutations result in increased WT RAS-GTP. Our model previously revealed that the binding of an NF1-insensitive RAS mutant, like G12D and G12V, to NF1 effectively allows the RAS mutant to act as a competitive inhibitor of NF1, thereby promoting increased WT RAS-GTP. In our new work, the model revealed that G13D cannot promote WT RAS-GTP by NF1 competitive inhibition. Thus, we believe that the elevated RAS-GTP in KRAS^{G13D} CRC cells is typically EGFR-dependent, and that targeting EGFR with a drug like cetuximab results in reduced WT RAS-GTP. In contrast, targeting EGFR does not decrease WT RAS-GTP levels in G12V or G12D CRC because the G12V (or G12D) mutant competitively inhibits NF1, resulting in elevated WT RAS-GTP in an EGFR-independent manner.

Overall this work resolves a long-standing problem in cancer personalized medicine and RAS biology. It demonstrates how mathematical approaches that leverage biochemical and biological data can play a role in the emerging field of cancer biology and medicine. As a mechanism has now been identified to explain how KRAS G13D CRC patients benefit from cetuximab, we hope this treatment becomes available to these patients, just as it is available to KRAS-WT, NRAS-WT CRC patients.

Disclosure of potential conflicts of interest
No potential conflicts of interest were disclosed.

Funding
This project was supported NIH K22CA216318, NIH T32CA009370 and NIH P30CA014195.

ORCID
Thomas McFall http://orcid.org/0000-0002-5284-6994
Edward Cooper Stites http://orcid.org/0000-0002-3783-7336

Figure 1. Endogenous RAS activity is depleted in colorectal cancers expressing KRAS^{G13D} but not other KRAS mutants. A. KRAS with a Glycine to Aspartic Acid mutation at amino acid residue 13 (G13D) can activate the mitogen activated protein kinase (MAPK) cascade (black arrows). Additionally, epidermal growth factor receptor (EGFR) can activate wild-type (WT) HRAS and NRAS to further activate the MAPK cascade (gray arrows). Cetuximab treatment blocks WT HRAS and NRAS activation. B. KRAS with a Glycine to Valine mutation at residue 12 (G12V), and most other KRAS mutants, activates the MAPK cascade (black arrows). Additionally, these KRAS mutants bind nonproductively to WT RAS negative regulator Neurofibromin (NF1), effectively inhibiting the WT RAS inhibitor and leading to WT HRAS and NRAS activation (black arrows). Cetuximab treatment blocks processes upstream from WT and mutant RAS (gray arrows) but cannot impact this EGFR-independent activation of WT RAS. C. Cartoon conceptualizing the levels of HRAS, NRAS, and KRAS activation in the different conditions that we measured in our experiments. Pro-cancer signals are maintained by a high level of active RAS that is comprised of signals from KRAS, NRAS, and HRAS. Cetuximab treatment can inhibit almost all RAS activation in a cancer with no RAS mutation (WT). Cetuximab treatment can only inhibit HRAS and NRAS in a KRAS^{G13D} cancer (G12V). Cetuximab treatment cannot inhibit HRAS and NRAS in a KRAS^{G12V} cancer (G12V) due to the competitive inhibition of NF1 by KRAS G12V.
References

1. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304:1812–1820. published online Epub Oct 27. doi:10.1001/jama.2010.1535.

2. Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012;30:3570–3577. published online Epub Oct 10. doi:10.1200/JCO.2012.42.2592.

3. Yen I, Shanahan F, Merchant M, Orr C, Hunsaker T, Durk M, La H, Zhang X, Martin SE, Lin E, et al. Pharmacological induction of RAS-GTP confers RAF inhibitor sensitivity in KRAS mutant tumors. Cancer Cell. 2018;34:611–625 e617. published online Epub Aug 8. doi:10.1016/j.ccell.2018.09.002.

4. Johnson CW, Lin YJ, Reid D, Parker J, Pavlopoulos S, Dischinger P, Gravel C, Aguirre AJ, Steensma M, Haigis KM, et al. Isoform-specific destabilization of the active site reveals a molecular mechanism of intrinsic activation of K Ras G13D. Cell Rep. 2019;28:1538–1550 e1537. published online Epub Aug 6. doi:10.1016/j.celrep.2019.07.026.

5. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res. 2015;13:1325–1335. published online Epub Sep. doi:10.1158/1541-7786.MCR-15-0203.

6. Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging Ras back in the ring. Cancer Cell. 2014;25:272–281. published online Epub Mar 17. doi:10.1016/j.ccr.2014.02.017.

7. Morelli MP, Kopetz S. Hurdles and complexities of codon 13 KRAS mutations. J Clin Oncol. 2012;30:3565–3567. published online Epub Oct 10. doi:10.1200/JCO.2012.43.6535.

8. Stites EC, Trampont PC, Ma Z, Ravichandran KS. Network analysis of oncogenic Ras activation in cancer. Science. 2007;318:463–467. published online Epub Oct 19. doi:10.1126/science.1144642.

9. McFall T, Diedrich JK, Mengistu M, Littlechild SL, Paskvan KV, Sisk-Hackworth L, MoreSCO JJ, Shaw AS, Stites EC. A systems mechanism for KRAS mutant allele-specific responses to targeted therapy. Sci Signal. 2019;12:published online Epub Sep 24. doi:10.1126/scisignal.aaw8288.

10. Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol Chem. 2008;389:1163–1171. published online Epub Sep. doi:10.1515/BC.2008.132.