Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads

Submitted by Emmanuel Lemoine on Thu, 02/12/2015 - 13:04

Titre	Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads
Type de publication	Article de revue
Auteur	Mhedbi-Hajri, Nadia [1], Darrasse, Armelle [2], Pigné, Sandrine [3], Durand, Karine [4], Fouteau, Stéphanie [5], Barbe, Valérie [6], Manceau, Charles [7], Lemaire, Christophe [8], Jacques, Marie-Agnès [9]
Editeur	BioMed Central
Type	Article scientifique dans une revue à comité de lecture
Année	2011
Langue	Anglais
Date	2011/03/11
Numéro	1
Volume	11
Titre de la revue	BMC Evolutionary Biology
ISSN	1471-2148

Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.

Résumé en anglais

Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.

URL de la notice

http://okina.univ-angers.fr/publications/ua7769 [10]

DOI

10.1186/1471-2148-11-67 [11]

Lien vers le document

http://dx.doi.org/10.1186/1471-2148-11-67 [11]

Liens

[1] http://okina.univ-angers.fr/publications?f[author]=12061
[2] http://okina.univ-angers.fr/a.darrasse/publications
[3] http://okina.univ-angers.fr/publications?f[author]=12062
[4] http://okina.univ-angers.fr/publications?f[author]=11808
[5] http://okina.univ-angers.fr/publications?f[author]=12063
[6] http://okina.univ-angers.fr/publications?f[author]=11664
Publié sur Okina (http://okina.univ-angers.fr)