Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions

Xinliang Li · Kai Wang · Liyuan Xian · Yaoli Su

Received: 4 October 2021 / Accepted: 26 May 2022 / Published online: 1 July 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract During the oil and gas drilling engineering, the selection of drilling fluids must take account of the technical and environmental factors. This study investigated the effectiveness of carboxylated cellulose nanocrystals (denoted as CNCs) as environmentally friendly additives for improving the rheological, filtration, and inhibitive properties of water-based drilling fluids (WBDFs). CNCs used in this study were modified by carboxylation reaction, displaying small size, negative surface charge, good colloidal stability, and prominent shear-thinning behavior. Experimental results indicated that BT/CNC suspensions had superior rheological properties, low fluid loss volumes, and effective inhibition, even at 140 °C. Microstructure analysis demonstrated that CNCs could attach to the surface of BT via hydrogen bond and ionic bond. CNCs, BT, and vicinal water molecules could form a stiff gel network, which had a strong resistance to flow under shear force, leading to a significant improvement in the rheological properties. Moreover, under the differential pressure, BT/CNC suspensions formed thin and less hydrophilic filter cakes with compact layered structure, thereby efficiently decreasing the fluid loss volume. Finally, due to the gel network and filtration ability, BT/CNC suspensions performed low water activity, which was beneficial for preventing the penetration of free water into the shales and borehole well. Thus, CNCs also exerted satisfactory inhibition on hydration and dispersion of BT and shales. As a result, CNCs showed great potential to be used as efficient, multi-functional, and environmentally friendly additives in WBDFs.

Keywords Cellulose nanocrystals · Water-based drilling fluid · Shale gas drilling · Rheology · Fluid loss · Inhibition

Introduction

Drilling fluids are vital functional fluids in oil and gas drilling operations (Caenn and Chillingar 1996). They can cool and lubricate drilling tools, carry cuttings from the bottom of borehole to the surface, stabilize borehole, and thereby ensure the success of the drilling operations (Apaleke et al. 2012; Agwu et al. 2021). With the increasing strict technical and environmental requirements in complex formations, the selection of drilling fluids must take account of the thermal stability, salt tolerance, cost, health safety, and environmental factor, especially in shale areas (Amanullah et al. 2016). In these easy-hydrated areas,
oil-based drilling fluids (OBDFs) have been often applied due to their excellent technical performance, such as good inhibition, lubricity, filtration, and high-temperature resistant (Patel et al. 2007). However, OBDFs are expensive, disadvantageous to well logging, and easy to pollute environment (Chegny et al. 2008). Therefore, high-performance WBDFs with environmental consideration are being emphatically studied to replace the OBDFs (Attia et al. 2010).

To achieve ideal properties, water-based drilling fluids (WBDFs) are usually composed of water, clay, fluid loss additive, rheology modifier, inhibitor, and other organic and inorganic additives (Yao et al. 2014; Akpan et al. 2019). Effective fluid loss additives include copolymers of acrylamide (AM), 2-Acrylamido -2-methylpropane sulfonic acid (AMPS) and cationic monomers (Liu et al. 2016; Yang et al. 2017), sulfonated phenolic resin (Sun et al. 2013; Liu et al. 2018), modified asphalt (Igwilo et al. 2020), and polyamionic cellulose (Li et al. 2016; PAC) are commonly used as rheological modifiers. These additives are helpful to obtain desired properties. However, few materials among these additives can simultaneously meet the demands of both technical and environmental factors. For example, these copolymer fluid loss additives might raise toxicity issues and could only be degraded at high temperatures (Aftab et al. 2020). The temperature resistance of Xanthan gum and PAC is limited with a temperature of lower than 120 °C (Zhu et al. 2021). Thus, in order to minimize the environmental hazard and health risk as well as to meet the demand of drilling engineering, developing high-performance additives with environmentally friendly, biodegradable, and renewable properties is still a continuous effort and research focus, and even that one materials can exhibit multiple functions.

Cellulose has been always favored by researches due to their wide range of sources, low cost, facile modification, and suitable performance. They have nanofibrillar structures and can form self-assembled systems in the nano and macro scale. In recent years, various cellulose nanoparticles, primarily including microfibrillated cellulose (MFC) (Kumar et al. 2021), microcrystalline cellulose (MCC) (Ventura-Cruz and Tecante 2021), and cellulose nanocrystals (CNCs) (Ng et al. 2021), have been isolated from many cellulosic resources, such as wood, plants, marine animals, algae, and bacteria using different preparation methods. MFC can be produced by mechanical heating method (Pääkkö et al. 2007; Saito et al. 2006). MFC has dimensions of 10–50 nm in width and several micrometers in length. CNCs, belonging to rod nanoparticles, can be fabricated using a strong acid hydrolysis method. Because of their nanoscale dimensions, high surface area, large aspect ratio, superior water retention ability, and self-assembling ability, these nanoparticles can form stable and viscous gels at a relatively low concentration, with good dispersion, viscosity and formability (Li et al. 2021). Thus, these nanoparticles have been commonly applied in food, coatings, cosmetics, pharmaceuticals and materials industries. These intrinsically appealing features also enable cellulose nanoparticles to act as potential effective additives in oil industry. MFC and CNCs could perform rheological regulation and fluid loss control properties at room temperatures (Li et al. 2015; Villada et al. 2021). High quality cement materials could be prepared by adding MCC or CNCs (Montes et al. 2020; Kamasamudram et al. 2021). Some modified nanocelluloses have been also expected to be an alternative for enhancing oil recovery (Combariza et al. 2021). Carboxylated cellulose nanocrystals (CNCs) are a kind of cellulose nanocrystal derivatives, which can be obtained through organic acid hydrolysis, enzymolysis, oxidation, mechanical processing, or a combination of these means (Lam and Hemraz 2021). In addition to high thermal stability and high crystallinity, CNCs possess many carboxyl groups that can promote the electrostatic repulsion between neighboring CNCs, presenting more outstanding colloidal stability. One particularly enticing feature of CNCs is the ability for these carboxyl groups to undergo further reactivity for surface modification to tailor the properties of the nanomaterial for a diverse range of applications. These advantages make a wide gateway for CNCs to be used for nano-biocomposite (Lu et al. 2019), cationic dye adsorbent (Yu et al. 2016), wastewater treatment (Fan et al. 2019), emulsion stability (Mikulcova et al. 2018), and rheological control (Li et al. 2021). In drilling fluid industry, CNC derivatives have been also used as fluid loss additives or rheological modifiers (Li et al. 2018, 2020a, b). However, few studies have investigated in detail the interaction between CNCs and clay, especially at high temperatures.

In this study, CNCs were developed as novel, renewable, biodegradable, effective, and
environmentally friendly additives for bentonite water-based drilling fluids (BT-WBDFs). CNCs showed multiple functions on improving the rheological, filtration, and inhibitive properties of BT-WBDFs at room and high temperatures. The interaction behaviors between CNCs and BT have been also studied in detail through measuring the colloidal stability of the fluids, observing the microstructure of BT/CNC suspensions and filter cakes, determining the wettability and water activity. Finally, the underlying mechanism of the performance improvement of BT-WBDFs was summarized.

Materials and methods

Materials

CNCs (carboxylated through 2,2,6,6-tetramethyl-1-piperidinoxy-mediated oxidation, purity $\geq 99\%$) were prepared and purchased from Guilin Qihong Technology Co., Ltd. BT (sodium form) was obtained by Energy Chemical (China). Sodium hydroxide was provided by Modern Oriental (Beijing) Technology Development (China) as a pH value adjuster. The shale cuttings were acquired from the oil field.

Preparation of CNC suspensions and BT/CNC suspensions

The process of preparing CNC suspensions: CNCs (0.5 g or 1.5 g) was added in deionized water (100 ml) and the fluid was vigorously stirred at 8000 rpm for 30 min to prepare CNC suspensions.

The process of preparing BT/CNC suspensions: BT (6 g) was added in deionized water (300 ml) and vigorously stirred for 24 h to prepare BT suspensions. The BT concentration was always fixed at 2.0 wt% for all BT suspensions. Then, CNCs were added into BT suspensions and the dispersion was stirred at 8000 rpm for 30 min. The concentration of CNCs was varied at 0, 0.25, 0.5, and 1.0 wt%. In order to evaluate the influence of high temperatures on the property variations of BT suspensions after adding CNCs, an aging test was conducted by hot-rolling in a roller oven at a set temperature for 16 h.

Rheology analysis

The rheological properties of BT/CNC suspensions were performed by a Haake Mars rheometer (Thermo Electron Corporation, Germany) with a cone-plate model. Before each measurement, the suspensions were vigorously stirred for 20 min. Approximately 1.5 ml of the samples were carefully placed on the plate. The gap between the cone rotor and the plate is 53 μm, and the diameter of the cone rotor is 35 mm, containing a cone angle of 1.0$^\circ$. All tests began with a preshearing procedure (2 min, $\gamma = 2000.0 \text{ s}^{-1}$). Then, the apparent viscosity as a function of shear rate from 1000.0 to 0.1 s^{-1} was measured at 25 $^\circ\text{C}$.

The rheological model of drilling fluids has an important and direct effect on cutting carrying capability, borehole cleaning, wellbore stabilization, and subsurface safety (Liu et al. 2021). For non-Newtonian drilling fluids, Bingham, power–law, and Herschel–Bulkely models are commonly used to fit the relationship between shear stress and shear rate (Nasiri and Ashrafizadeh 2010). The Bingham model is given by Eq. (1).

$$\tau = \tau_0 + \mu_{PV} \times \gamma$$

(1)

where τ is the shear stress, τ_0 is the yield stress, μ_{PV} is the plastic viscosity, and γ is the shear rate. In the Bingham plastic model, the relationship between the shear stress and shear rate is linear. This model is simple and is adequate for some simple dispersions with high solid content and uniform particles. Afterwards, a power-law model is developed, as expressed by Eq. (2).

$$\tau = K \times \gamma^n$$

(2)

where K is the consistency coefficient, and n is the flow behavior index. Many polymer drilling fluids conform to the power-law model. The Herschel–Bulkely model is a power-law model with a yield point, as given by Eq. (3).

$$\tau = \tau_0 + Ky^n$$

(3)

Based on the shear stress and shear rate obtained from the rotating viscometer, the rheological curves of the set WBDF were fitted through a data processing system in Origin software.
Filtration measurement

Fluid loss for freshly prepared BT-WBDFs and those aged for 16 h were measured according to the American Petroleum Institute (API) guidelines for drilling fluids. About 240 ml of the fluids were poured into a standard SD6 filter press (Qingdao Tongchun Petroleum Instrument Co., Ltd, China) equipped with quantitative filter paper. Afterwards, the fluids were pressed under a 0.69 MPa by using N₂ gas chargers for 30 min and the fluid loss volumes were recorded.

Inhibition measurement

Linear swelling test

The inhibitive effect of CNCs on the swelling behavior of BT was evaluated by a CPZ-2 dual-channel linear swelling meter (Tongchun, Qingdao). BT (5 g) was pressed into a pellet under 10 MPa pressure for 5 min. Then, the BT pellet was placed on the instrument. 20 ml filtrate from filtration tests was added to immerse the BT pellet. Finally, the swelling height with time was recorded for 24 h.

Hot-rolling recovery test

The inhibition performance of BT/CNC suspensions on the dispersion of shale cuttings at high temperatures was evaluated by hot-rolling recovery test. In this test, shale cuttings (20 g) between 6 and 10 mesh and 350 ml BT/CNC suspensions were poured into a sealed jar together. Then, the jar was hot-rolled in a BGRL-5 roller furnace (Qingdao, China) at 140 °C for 16 h. After cooling to room temperature, the remaining shale cuttings were screened with a 40-mesh sieve and washed repeatedly and gently with pure water. Finally, the recovered cuttings were dried at 75 °C for 48 h and weighed. The shale recovery percentage was calculated by the following equation:

\[
\text{Shale recovery} = \left(\frac{m_2}{m_1} \right) \times 100\% \tag{4}
\]

where \(m_1 \) was the mass of shale cuttings before hot-rolling and \(m_2 \) was the mass of shale cuttings remained after hot-rolling.

Microstructural analysis of BT/CNC suspensions

The morphology of the surface and cross section of the filter cakes from BT/CNC suspensions was observed using a SU8010 scanning electron microscopy (SEM) at an accelerating voltage of 5.0 kV. The structure of BT in CNC suspension was observed by a JEM-2100 transmission electron microscopy (TEM) at an accelerating voltage of 10 kV.

The water contact angles of filter cakes obtained from different BT/CNC suspensions were also measured. Deionized water was dropped onto the membrane with a micro-injector and the images were captured by a JC2000C contact angle tester.

The particle size distribution of BT/CNC suspensions was conducted using a Malvern Mastersizer 2000 particle size analyzer. The concentration of all samples was approximately 0.1 g l⁻¹. Each of the measurements was carried out at 25 °C.

The ζ potential of BT dispersion was measured by Malvern Zetasizer Nano series. The concentration of all samples in this test was approximately 2.0 g l⁻¹. Each of the measurements was repeated two times and the average value is used for accuracy.

The water activity (\(a_w \)) of various inhibitor solutions was measured by HygroLab C1 at 25 °C. In this test, a 30 ml sample was added into a disposable sample cup. Each measurement was repeated two times and the average was recorded.

Table 1 Physicochemical characteristics of CNCs

Sample	Width (nm)	Length (nm)	Aspect ratio	ζ potential (mV)	pH	Surface functional groups	Carboxyl content (mmol g⁻¹)
CNCs	5–20	50–100	2.5–20	−22.1	6.95	−OH/−COOH	1.2–3.0

Water contamination: Springer
Results and discussion

The detailed characteristics of CNCs used in this study are summarized in Table 1, and their TEM micrographs are displayed in Fig. 1. CNCs exhibited a short rod-like morphology with a width range of 5–20 nm and length of 50–100 nm. Its aspect ratio was approximately between 2.5 and 20. After the carboxylation treatment, negatively charged carboxy groups were introduced on the surface of CNCs, which contributed to the colloidal stability under the electrostatic repulsion. The ζ potential also proved this result. CNCs performed ζ potential values of -22.1 mV at pH 6.95 and -31.5 mV at pH 9.16. Figure 1b showed the apparent viscosity versus shear rate for CNC suspensions at concentrations of 0.5 and 1.5 wt%. Due to the nanometer dimensions and carboxyl group, CNCs in water could form connective networks and stiff gels. So all CNC suspensions exhibited low viscosity at high shear rates, but high viscosity at low shear rates, which was commonly called as “shear-thinning” behavior (Yang et al. 2021). Moreover, the viscoelastic behavior of CNC suspensions was strongly affected by the mass fractions. It could be seen that the shear-thinning phenomenon became more significant as the concentration of CNCs increased from 0.5 to 1.5%. The higher viscosity at high concentration indicated a higher resistance against deformation and a better ability of recovery.

BT-WBDFs are greatly expected to be typical shear-thinning non-Newtonian fluids, which have high viscosity at low shear rates to suspend or carry cuttings from downhole, but low viscosity at high shear rates to reduce friction and assist rock breaking (Fagundes et al. 2018). CNCs were incorporated with BT suspensions to explore how profitable CNCs modified the rheological properties of BT-WBDFs. The concentrations of CNCs were varied in the range of 0.25 to 1.0 wt%, while that of BT was fixed at 2.0 wt%. Figure 2a,b showed the plots of viscosity versus shear rate for BT/CNC suspensions at different CNC concentrations and temperatures. All samples revealed a shear-thinning behavior in the whole range of shear rates. But BT and BT/CNC suspensions presented distinctive shear-thinning behaviors after high temperature treatment. At room temperature, BT suspension exhibited a predictable shear-thinning, thereby being commonly used in WBDFs (Farag et al. 2019; Zou et al. 2019). The addition of CNCs effectively increased the viscosity of BT suspension and produced more remarkable shear-thinning behavior, which was conducive to optimizing drilling fluid performance. For example, at the shear rate of 1.0 s$^{-1}$, the addition of 0.25, 0.5, and 1.0 wt% CNCs into BT suspension increased the apparent viscosity values from 201.59554 to 740.77179, 1602.26233, and 4702.94775 mPa s, respectively. In comparison with the result at room temperature, the high temperature processing at 140 °C sharply decreased the viscosity of pure BT suspension, but the viscosity of BT/CNC suspensions maintained highly values, and the shear-thinning behavior was more outstanding. Moreover, it can been seen that the shear-thinning behavior for BT/CNC suspensions at room temperature was progressive, whereas that for BT/CNC suspensions at 140 °C was nonprogressive, in which all BT/CNC suspensions displayed similar viscosity values at low shear rates, and progressive viscosity variation at high shear rates. For example, at a shear rate of 1.0 s$^{-1}$, BT/CNC suspensions with 0.25, 0.5, and 1.0 wt% of CNCs had viscosity values of 2353.05176, 2851.86499, and 3578.5708 mPa s,
respectively, while at a shear rate of 119 s$^{-1}$, that were 21.98516, 48.28335, and 65.98486 mPa s, respectively.

It was postulated that CNCs fully interacted with BT particles and adsorbed onto their surfaces after aging at 140 °C. When the shear rate was low, the contribution of surface interactions on the viscosity was inapparent. At this time, BT content might play a dominant role for the viscosity, resulting in similar viscosity of BT/CNC suspensions with different concentrations of CNCs. As the shear rate increased, the surface interactions between CNCs and BT acted as crucial role in the maintenance of viscosity. As a result, the viscosity of BT/CNC suspensions increased with increasing the concentration of CNCs. Based on these observations, it could be concluded that CNCs efficiently improved the shear-thinning properties of BT suspensions, even under high-temperature conditions.

Further, the curves of shear stress versus shear rate for BT/CNC suspensions at different CNC concentrations were shown in Fig. 2c,d. Similar to the viscosity results, the shear stress also enhanced with the increase in the concentration of CNCs. The Bingham plastic, power-law and Herschel–Bulkey models were applied to fit their shear stress–shear rate curves, and the corresponding fit parameters were listed in Table 2. Whether room temperature or 140 °C, the Herschel–Bulkey model was more befitting for all shear stress–shear rate curves, compared with the Bingham plastic and power-law models, which was evidenced by the higher values of R^2. In detail, after the addition of CNCs, the yield point values increased and the flow behavior n index decreased with the increase of CNC concentration. The yield point indicated the stress required to start the flow of drilling fluid (Hussaini and Azar 1983), which could reflect the strength of grid structure between clay particles and CNCs (Ismail et al. 2016). The rheological modeling results further proved that CNCs had superior rheological modification ability, beneficial for transporting the cuttings and cleaning the wellbore (Liu et al. 2017).

As shown in Fig. 3, the influence of pH on the viscosity of BT/CNC suspensions was investigated. At the low shear rate, both of BT/CNC suspensions at pH 7 and 9 showed high viscosity, while the viscosity of BT/CNC suspension at pH 7 was higher than that at pH 9. It was inferred that more positively charged sites appeared on the edge of BT layers at an appropriately low pH, leading to stronger ionic interaction between CNCs and BT layers. However, when the
pH was as low as 4, the viscosity of BT/CNC dispersion sharply decreased, demonstrating that the electrostatic repulsion weakened and some BT particles occurred coalescence instead of edge-face structure. These results proved that the interaction between CNCs and BT was affected by the pH condition.

Based on above measurement results, it can be speculated that there must be particular surface interactions between CNCs and BT layers. To verify the interactions and driving force between CNCs and BT, the macroscopic phenomenon and microstructures of BT/CNC suspensions were examined, respectively. As displayed in Fig. 4a, b, pure BT suspension could easily flow after being placed for 10 h, while BT/CNC suspension with 1.0 wt% CNCs added formed a whole piece of gel, indicating that BT/CNC had higher viscosity and stress. Moreover, after shaking for 10 s, the formed BT/CNC gel could flow again. Specific variation on viscosity was shown in Fig. 4c. BT/CNC suspensions performed quite higher viscosity at a low shear rate of 0.1 s\(^{-1}\). After increasing shear rate from 0.1 to 1000 s\(^{-1}\), the viscosity of BT/CNC suspensions could sharply decrease.

Table 2 Calculated parameters for BT/CNC suspensions at different CNC concentrations using Bingham, Power-Law, and Herschel–Bulkley models

Models	Parameters	CNC concentrations (wt%)/25 °C	CNC concentrations (wt%)/140 °C						
		0	0.25	0.5	1.0	0	0.25	0.5	1.0
Bingham	\(\tau_0/\text{Pa}\)	0.20732	1.22334	2.4135	6.04269	0.13684	1.69228	3.22997	5.91782
	\(\mu_p/\text{mPa s}\)	0.00281	0.00692	0.0118	0.0226	0.00455	0.00595	0.01065	0.01377
	\(R^2\)	0.99703	0.97906	0.98173	0.98159	0.99744	0.97721	0.90405	0.99178
Power-Law	\(K/\text{Pa s}\)	0.01714	0.21803	0.48434	1.54894	0.0118	0.46404	0.9233	2.30946
	\(n\)	0.73984	0.50595	0.46988	0.40049	0.86143	0.38293	0.37155	0.28415
	\(R^2\)	0.9895	0.98066	0.97835	0.96581	0.99891	0.95897	0.97517	0.90854
Herschel–Bulkley	\(\tau_y/\text{Pa}\)	0.16301	0.78231	1.65015	4.55636	0.05762	1.30569	1.10036	5.40477
	\(K/\text{Pa s}^n\)	0.00525	0.04815	0.0836	0.16378	0.00901	0.04256	0.45219	0.05044
	\(n\)	0.90802	0.71707	0.71458	0.71131	0.8996	0.71313	0.46514	0.80994
	\(R^2\)	0.99862	0.9954	0.99928	0.99957	0.99942	0.99329	0.97909	0.99921

Fig. 3 Viscosity variation of BT/CNC suspensions with 0.5 wt% of CNCs at pH 4, 7, and 9

Fig. 4 Gel structure of pure BT suspension (a), BT/CNC suspension added 1.0 wt% of CNCs (b), and the three-interval thixotropy of BT/CNC suspensions (c)
Furthermore, compared to that of BT suspension, the viscosity of BT/CNC suspensions could recover and reach high values quickly after the shear rate decreased from 1000 to 0.1 s\(^{-1}\). These distinctive phenomena between pure BT and BT/CNC suspensions demonstrated that CNCs had a strong gel formation capacity and a stiff network among BT layers, CNCs, and water molecules was created, which had a strong resistance to flow under shear force (Wang et al. 2018). This conclusion could also be proved through the viscoelastic properties of these suspensions. As shown in Fig. 5, the elastic (\(G'\)) and viscous (\(G''\)) moduli of BT/CNC suspensions were obviously larger than that of BT suspensions and grew gradually with increasing the concentration of CNCs, which further proved the interaction between BT and CNCs.

The phase interactions between CNCs and BT layers were also observed by TEM (as shown in Fig. 6). BT hydrated in water and presented typical sheet-like structures (Fig. 6a). In BT/CNC suspensions, CNCs were homogeneously dispersed in BT layers and fully interacted with them (Fig. 6b–d). The observations meant that CNCs were adsorbed onto the surface of BT particles and a stable colloidal structure was formed.

It was clear that BT was composed of a large number of plate-like crystal layers with permanent negative charges due to isomorphic substitutions on the faces and pH-dependent charges developed on the surface hydroxyls at the edges (Anderson et al. 2010). Due to the broken bonds of the octahedral Al–OH and tetrahedral Si–OH groups on the edges,
some amphoteric sites also exist and variable (either positive or negative) charges can develop at the edges depending on the pH. Besides, a positive charged edge could be also created due to the exposed octahedral Al layers when the pH value is less than 9 (Tomáč and Szekeres 2006; Avena et al. 2003). In pure BT suspension, the ionic attraction between the negatively charged face and positively charged edge (edge-to-face attraction) could form a “house-of-cards” structure, which was responsible for the viscosity of BT suspensions (Li et al. 2020c). Therefore, BT was commonly used as an ideal additive in drilling fluid. In BT/CNC suspension, CNCs would adsorb to the surface of BT layers via hydrogen bond between their hydroxyl groups, and ionic bond between the positively charged edges of BT layers and the negatively charged carboxy groups of CNCs. Meanwhile, in addition to the hydration and colloidal properties of BT itself, CNCs also had strong gel formation capacity, due to the high specific surface area and a large number of hydroxyl groups on the nanoparticle surface (Crawford et al. 2012). Then a large number of water molecules were bounded at the vicinity of BT and CNCs and a compact network was created, leading to a strong resistance to flow under shear force, even at high temperatures. Based on above interaction, a significant improvement in the rheological properties was achieved.

Filtration is one of the most important properties for drilling fluids. The penetration of fluids into the formation always causes shale swelling and wellbore collapse. Furthermore, high temperatures may also destroy the hydration of clay and induce the flocculation of BT particles. Poor filter cakes with large thickness and high porosity formed on the wall of wellbore, resulting in large fluid loss volume and poor filtration (Wang et al. 2021). As shown in Fig. 7, the API fluid loss volumes of BT and BT/CNC suspensions were measured at different temperatures. After treatment at high temperature of 140 °C, the fluid loss volume of pure 2.0 wt% BT suspension increased from 41.0 to 50.0 ml, revealing the detriment of high-temperature environments. By contrast, whether at room temperature or high temperatures, the addition of CNCs always improved the filtration performance of BT suspensions. The fluid loss volume of BT/CNC suspensions decreased as the concentration of CNCs increased, whereas the filter cakes also became thinner. For example, compared to the filter cake thickness of 1.96 mm from pure BT suspension at 140 °C, the BT/CNC suspensions with 0.25, 0.5, and 1.0% of CNCs had filter cake thickness values of 1.02, 0.64 and 0.56 mm, respectively. No matter how CNCs worked, the filter cake was the final barrier to prevent filtration. It could be inferred that more suitable structure was formed in the filter cakes after adding CNCs as fluid loss reducer.

For drilling fluids, it is always thought that filtration is mainly determined by fluid viscosity and filter cake quality (Elkatatny et al. 2011). Generally, high viscosity improves the fluid with the ability to against fluid loss (Borges et al. 2021). As analyzed in Fig. 2a,b, the viscosity increased with increasing the concentration of CNCs. However, the viscosity of BT/CNC suspensions at low shear rates under 140 °C processing varied mildly, which was mainly related to the API fluid loss volume under static filtration condition. Therefore, increasing viscosity might be not the predominant factor affecting the filtration control of CNCs. Then, the microstructure of filter cakes was further detected by SEM observation (as shown in Fig. 8). At room temperature, it could be

![Fig. 7 The fluid loss volumes and filter cakes of BT/CNC suspensions at CNCs concentrations of 0, 0.25, 0.5, and 1.0 wt% after hot rolling at 25 °C (a) and 140 °C (b).](image-url)
seen that both of the BT and BT/CNC presented satisfactory filter cakes with smooth and hydrated surface. With increasing the concentration of CNCs, the surface of filter cakes obtained from BT/CNC suspensions was much smoother and more compact, like a “film”. In comparison, after aging at 140 °C, the viscosity of pure BT suspension decreased (Fig. 2b) and the obtained filter cake appeared cracks and irregular accumulation, due to the dehydration effect under high temperatures. Similar phenomena on the variation of filter cakes after adding CNCs also went at 140 °C. In order to observe the deposit structure of BT layers more clearly, the cross sections of these filter cakes were also investigated, as displayed in

Fig. 8 SEM micrographs of dried filter cakes obtained from BT/CNC suspensions at CNC concentrations of 0 (a), 0.25% (b), 0.5% (c), and 1.0% CNCs at 25 °C. SEM micrographs (e–h) were obtained from BT/CNC after aging at 140 °C for 16 h. The graph scale length was 30 μm

Fig. 9 Cross-sectional SEM micrographs of filter cakes from different BT/CNC suspensions: a BT at 25 °C, b BT + 1.0 wt% CNCs at 25 °C, c BT after aging at 140 °C, d BT + 1.0 wt% CNCs after aging at 140 °C. The graph scale length was 5 μm
Fig. 9. The section of filter cake from pure BT suspension showed a relatively clear pattern, but not orderly. After aging, layered structure of the accumulation became thick and irregular, which was related to the coalescence and settlement of BT at 140 °C. In comparison, the sections from BT/CNC suspension with 1.0 wt% of CNCs were more regular and compact than that from pure BT, especially at high temperature. BT layers in BT/CNC deposited regularly under differential pressure and formed a clear lamellar structure, which was beneficial for producing thin and compact filter cakes.

Interestingly, we also found that the addition of CNCs improved the hydrophobicity of the filter cakes. As exhibited in Fig. 10, filter cakes from pure BT displayed strong hydrophilicity and had a water contact angle of approximate 27° at room temperature and 140 °C. Adding CNCs dramatically enhanced the water contact angle of the filter cakes. For example, at a CNC concentration of 1.0 wt%, the water contact angle of the filter cake obtained from BT/CNC suspensions was increased to 57.78 and 66.67° at room temperature and 140 °C, respectively. Performance evaluation results mentioned above showed that CNCs had a temperature resistance of 140° in BT suspension. So it was inferred that CNCs fully interacted with BT particles and more CNCs adsorbed onto the surface of BT particles after aging at 140 °C. CNCs covering the surface of BT enhanced the water contact angle.

The enhanced hydrophobic effect was favorable for preventing the invasion of water (Saparti et al. 2018). Besides, according to Wenzel’s equation (Wang et al. 2015), the decrease of roughness can increase the contact angle measured on hydrophilic surface. The contact angle measurement also proved that the addition of CNCs caused a more smooth surface on the filter cakes. In short, based on the gel network among BT layers, CNCs, and immobilized water molecules, and the adsorption of CNCs on BT surface, BT deposited on the filter paper in a regular and compact layered structure, forming a more hydrophobic and smooth CNC polymer film on the surface. Finally, a high-quality filter cake was built and the fluid loss volume was sharply decreased.

In comparison with OBDFs, one of the deficiencies of WBDFs is the insufficient inhibition. There are more water in WBDFs and the fluids easily penetrate into the formation, resulting in clay hydration, swelling, and dispersion. Therefore, efficient shale inhibitors must be added in WBDFs (Muhammed et al. 2021). The inhibition of CNCs was evaluated by linear swelling measurement and shale recovery test. As shown in Fig. 11a, the swelling height curves of all samples exhibited a similar tendency with a
dramatic increase rate within the initial period and a gradual slower growth as time proceeds, which was the typical swelling behavior of BT in aqueous solution. However, there was a gradual decrease in swelling height after CNCs were added as inhibitors. In detail, after immersing in water for 24 h, the swelling height of BT pellet in pure water reached as high as 6.16 mm. In comparison, the linear swelling heights of the BT pellets in filtrate obtained from BT/CNC suspensions at a CNC concentration of 0.25, 0.5, and 2.0 wt% CNCs were 5.77, 5.23, and 4.00 mm, respectively, displaying the inhibition of BT swelling. Shale recovery test, as a standard method for evaluating the hydration dispersion of shale cuttings after hot-rolling at a set temperature, was also conducted. As illustrated in Fig. 11b, after aging at 140 °C, the shale recovery value of pure BT suspension was the lowest (29.4%), which indicated the strong water sensitivity and dispersion of shales. Under the same conditions, the shale recovery values for BT/CNC suspensions with 0.25, 0.5, and 1.0 wt% of CNCs were 35.8, 48.6, and 55.25%, respectively, suggesting the capability of CNCs for inhibiting the dispersion of the shales. Moreover, the results from hot-rolling shale recovery tests also demonstrated the temperature resistance of CNCs. The findings from linear swelling tests and shale recovery experiments were consistent. CNCs could be used as valid inhibitors in WBDFs.

Generally, shale inhibitors achieved efficient inhibition through decreasing the interlayer spacing, such as KCl, the oligomeric and polymeric amines with cationic groups (Anderson et al. 2010), or encapsulation effect, such as various acrylamide copolymers (Zhang et al. 2018). Visibly, CNCs, as negatively charged solid-phase nanoparticles, might not inhibit BT by these approaches, presumably due to the interactions (gel network and adsorption) between CNCs and BT particles analyzed above, or whether there were other mechanisms. With these questions, the colloidal stability of BT was examined by measuring the ζ potential and particle size distribution. As shown in Fig. 12, the addition of CNCs decreased the ζ potential efficiently. When the concentration of CNCs was 1.0 wt%, the ζ potential of BT decreased from −23.05 mV to −32.4 mV at room temperature. The variation tendency of the ζ potential at 140 °C was similar with that at room temperature. However, the whole values of the ζ potential at 140 °C were higher, echoing the increase of fluid loss volume from 25 to 140 °C in Fig. 5. Anyway, the cooperation of CNCs could increase the negative charges of BT particles and improve their stability.

Meanwhile, the particle size distribution of BT/CNC was also determined. As exhibited in Fig. 13, the addition of CNCs didn’t increase the particle size of BT, even showing a dispersion effect at small size range. These results demonstrated that CNCs didn’t inhibit the hydration and swelling of BT by encapsulating the BT particles.

The ζ potential and particle size measurements indicated that CNCs could promote the stability of BT suspensions, which was contrary to the general inhibition mechanisms mentioned above. How does CNCs exert competent inhibition? In order to figure this out, the water activity of these samples were further evaluated (as listed in Table 3). Water activity is an important index in estimating shale/drilling fluid interactions, which can evaluate the hydration state of shale and its potential to adsorb or lose water. Drilling fluids with lower water activity than shale can reduce the osmotic pressure between drilling fluids and the formation fluids, finally preventing water from invading shales (Chenevert. 1970; Zhang et al. 2008). From the Table 3, the water activity of BT samples decreased gradually with increasing the concentration of CNCs from 0 to 1.0%. In fact, these results should be foreseeable. The rheological tests concluded that BT, CNCs and immobilized water molecules formed stiff gel network. This network could efficiently bound the water molecules and reduce the free water, thereby decreasing the water activity. Moreover, the filtration measurements indicated that CNCs could
contribute to creating a thin, compact, and low-hydrophilicity filter cake. The plugging and wettability modification abilities of CNCs also restrained the penetration of free water into the clay or shales. Under these comprehensive actions, CNCs presented the inhibition well.

In summary, the modification effect of CNCs on the properties of BT-WBDFs and the interaction mechanism were concluded and listed in Table 4, which was also clearly described by the schematic diagrams, as shown in Fig. 14. BT platelet was negatively charged on the flat surface and positively charged on the edge. These plates could be linked together via face-to-face (FF), edge-to-edge (EE), and edge-to-face (EF) attractions. The edge-to-face attraction formed a “house-of-cards” structure, which was responsible for the viscosity of BT suspensions. At 140 °C, the high temperature passivation and dehydration played the dominant roles for BT suspensions, which could result in coalescence of BT particles and decrease of viscosity. When the CNCs were employed in BT suspensions, one hand, CNCs adsorbed on the surface of BT through hydrogen bond and electrostatic interaction. The BT platelet and CNCs interwove with each other and formed stable “house of cards” structure at low shear rates and dispersed structure at high shear rates. On the other hand, due to the strong gel formation capacity of CNCs, a stiff network between BT layer, CNCs, and water molecules was created. Finally, BT/CNC suspensions exhibited excellent “shear-thinning”.

Based on the prominent rheological properties and plugging function of CNCs, BT/CNC deposited

Table 3 The water activity of BT/CNC suspensions at different CNC concentrations after aging at 25 °C and 140 °C

Sample	Water activity/aw	25 °C	140 °C
BT	0.968	0.964	
BT + 0.25% CNCs	0.953	0.954	
BT + 0.5% CNCs	0.933	0.932	
BT + 1.0% CNCs	0.927	0.931	

Table 4 The functions and mechanisms of CNCs on improving the properties of BT-WBDFs

Effect	Mechanism
Yield point	Adsorption of CNCs on BT Stiff network between BT layer, CNCs, and water molecules
Filtration	The addition of 1.0 wt% CNCs decreased the API fluid loss volume of BT suspension from 50.0 to 16.0 ml at 140 °C Thin and compact filter cakes with layered structure Improve the hydrophobicity of filter cakes Plugging effect of CNCs
Inhibition	The addition of 1.0 wt% CNCs decreased the swelling height of BT in filtrate from 6.16 to 4.00 mm at room temperature. The addition of 1.0 wt% CNCs increased the shale recovery of BT suspension from 29.40 to 55.25% at 140 °C Adsorption of CNCs on BT Stiff network between BT layer, CNCs, and water molecules Low water activity Plugging effect
on the filter paper with a compact layered structure and constituted a “film” with improved hydrophobic ability, thereby resulting in a thin and compact filter cake and low filtration volume. Meanwhile, under the actions of CNCs, BT/CNC suspensions kept colloidal stability with high viscosity, displayed lower water activity, and prevented the penetration of free water, exerting competent inhibition on hydration and dispersion of clays. Moreover, compared to MFC and MCC, the crystallinity of CNCs was higher, which was associated with the total removal of amorphous non-cellulosic compounds and leaving more crystalline domains unaltered. As a result, CNCs possessed higher thermal decomposition temperature, displaying outstanding thermal stability. CNCs showed great potential to be used as efficient and environmentally friendly rheological modifier, fluid loss agent, and clay inhibitor for BT-WBDFs at 140 °C. However, as a kind of natural materials, CNCs might degrade at a higher temperature, and antioxidants might be needed to alleviate this situation.

Conclusion

Carboxylated cellulose nanocrystals (CNCs) were selected as efficient and environmentally friendly additives to improve the rheological, filtration, and inhibitive properties of BT suspension. CNCs were modified by carboxylation reaction, displaying small size, negative surface charge, good colloidal stability, and prominent shear-thinning behavior. The experimental results indicated that BT/CNC suspensions had superior rheological properties, low fluid loss volumes, and effective inhibition, even at 140 °C. CNCs could attach to the surface of BT via hydrogen bond and ionic bond. A stiff gel network between CNCs, BT, and vicinal water molecules was observed and proved, which had a strong resistance to flow under shear force, leading to a significant improvement in the rheological properties, including the viscosity, shear force, and yield point. Moreover, under the differential pressure, the improved viscosity, the created gel network as well as the formation of CNC films remarkably reduced the fluid loss volume, forming a thin, compact, and less hydrophilic filter cake with layered structure. Finally, benefiting from the gel network and outstanding filtration, BT/CNC provided low water activity and plugging effect, which could prevent the penetration of free water into the shales and borehole wall, therefore exerting satisfactory inhibitive performance for shale formations. CNCs could be used as multi-functional, and environmentally friendly additives in BT-WBDFs. This research demonstrates the effectiveness of CNCs in enhancing the performances of BT suspensions, offering a pathway for designing a new generation of additives in drilling fluid applications.
Acknowledgments This collaborative study was carried out with support from the “academic pass” of Southwest Petroleum University, and CNPC Chuangqing Drilling Engineering Company Limited, China.

Funding This collaborative study was carried out with support from the China Postdoctoral Science Foundation (2022M712644), the “academic pass” of Southwest Petroleum University, and CNPC Chuangqing Drilling Engineering Company Limited, China.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

Aftab A, Ali M, Sahito MF et al (2020) Environmental friendliness and high performance of multifunctional tween 80/ZnO-nanoparticles-added water-based drilling fluid: an experimental approach. ACS Sustain Chem Eng 8(30):11224–11243. https://doi.org/10.1021/acs.suschemeng.0c02661

Agwu OE, Akpabio JU, Ekpenyong ME et al (2021) A critical review of drilling mud rheological models. J Petrol Sci Eng 203:108659. https://doi.org/10.1016/j.petrol.2021.108659

Akpan EU, Enyi GC, Nasr G et al (2019) Water-based drilling fluids for high-temperature applications and water-sensitive and dispersible shale formations. J Petrol Sci Eng 175:1028–1038. https://doi.org/10.1016/j.petrol.2019.01.002

Amanullah M, Ramasamy J, Al-Arfaj MK et al (2016) Application of an indigenous eco-friendly raw material as fluid loss additive. J Petrol Sci Eng 139:191–197. https://doi.org/10.1016/j.petrol.2015.12.023

Anderson RL, Ratcliffe I, Greenwell HC et al (2010) Clay swelling—a challenge in the oilfield. Earth-Sci Rev 98(3–4):201–216. https://doi.org/10.1016/j.earscirev.2009.11.003

Apaleke AS, Al-Majed A, Hossain ME (2012) Drilling fluid: state of the art and future trend. In: The North Africa technical conference and exhibition, SPE 149555. https://doi.org/10.2118/149555-MS

Attia M, Elsorafy W, D’Angelo S (2010) New engineered approach to replace oil-based drilling fluids with high performance water-based drilling fluids in mediterranean sea. In: North Africa technical conference & exhibition, SPE 127826. https://doi.org/10.2118/127826-MS

Avena MJ, Mariscal MM, De Pauli CP (2003) Proton binding at clay surfaces in water. Appl Clay Sci 24(1–2):3–9. https://doi.org/10.1016/j.clay.2003.07.003

Borges RFO, Oechsler BF, Oliveira BR et al (2021) Reparameterization of static filtration model of aqueous-based drilling fluids for simultaneous estimation of compressible mudcake parameters. Powder Technol 386:120–135. https://doi.org/10.1016/j.powtec.2021.03.015

Carrn R, Chillingar GV (1996) Drilling fluids: state of the art. J Petrol Sci Eng 14(3):221–230. https://doi.org/10.1016/0920-4105(95)00051-8

Chegny SJ, Tahmasbi K, Arsanjani N (2008) The possibility of replacing obms with emulsified glycol mud systems in drilling low-pressure zones of iranian oilfields. In: IADC/ SPE Asia Pacific drilling technology conference, 114067. https://doi.org/10.2118/114067-MS

Chenevert ME (1970) Shale control with balanced-activity oil-continuous muds. J Pet Technol 22(10):1309–1316. https://doi.org/10.2118/2559-PA

Combariza MY, Martinez-Ramirez AP, Blanco-Tirado C (2021) Perspectives in nanocellulose for crude oil recovery: a minireview. Energy Fuel 35(19):15381–15397. https://doi.org/10.1021/acs.energyfuels.1c02230

Crawford RJ, Edler KJ, Lindhoud S et al (2012) Formation of shear thinning gels from partially oxidised cellulose nanofibril. Green Chem 14(2):300–303. https://doi.org/10.1039/C2GC16302K

Elkatatny SM, Mahmoud MA, Nasr-El-Din HA (2011) A new technique to characterize drilling fluid filter cake. In: SPE European formation damage conference, SPE 144098. https://doi.org/10.2118/144098-MS

Fagundes FM, Santos NB, Damasceno JJ et al (2018) Study on the stability of a shear-thinning suspension used in oil well drilling. Oil Gas Sci Technol 73:10. https://doi.org/10.2516/ogst/2018007

Fan X, Yu H, Wang D et al (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 9:18067–18075. https://doi.org/10.1021/acs.suschemeng.9b05081

Farag RM, Salem AM, El-Midyani AA et al (2019) Justifying API bentonite rheological behavior through its forming size fractions. Min Metall Explor 37(2):537–542. https://doi.org/10.1007/s42461-019-00157-w

Hussaini SM, Azar JJ (1983) Experimental study of drilled cuttings transport using common drilling muds. SPE J 23(1):11–20. https://doi.org/10.2118/10674-PA

Igwilo KC, Uwaezuoke N, Onyekwere RK et al (2020) Comparative assessment of Macuna solaniana as an alternative fluid loss control material in synthetic drilling fluid design. J Pet Explor Prod Te 11(1):97–107. https://doi.org/10.1007/s13202-020-01041-w

Ismail AR, Sulaiman WRW, Jaafar MZ et al (2016) Nanoparticles performance as fluid loss additives in water based drilling fluids. Mater Sci Forum 864:189–193. https://doi.org/10.4028/www.scientific.net/MSF.864.189

Kamasamudram KS, Ashraf W, Landis EN (2021) Cellulose nanofibrils with and without nanosilica for the performance enhancement of Portland cement systems. Constr Build Mater 285:121547. https://doi.org/10.1016/j.conbuildmat.2020.121547

Kumar A, Gupta V, Gaikwad KK (2021) Microfibrillated cellulose from pine cone: extraction, properties, and characterization. Biomass Convers Biorefin. https://doi.org/10.1007/s13202-020-01794-2

Lam E, Hemraz UD (2021) Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials 11(7):1641. https://doi.org/10.3390/nano11071641
Li M, Wu Q, Song K et al (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7(8):5006–5016. https://doi.org/10.1021/acsami.5b00498

Li M, Wu Q, Song K et al (2016) Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind Eng Chem Res 55(1):133–143. https://doi.org/10.1021/acs.iecr.5b03510

Li M, Ren S, Zhang X et al (2018) Surface-chemistry-tuned cellulose nanocrystals in a bentonite suspension for water-based drilling fluids. ACS Appl Nano Mater 1(12):7039–7051. https://doi.org/10.1021/acsanm.8b01830

Li M, Tang Z, Liu C et al (2020a) Water-redispersible cellulose nanofiber and polyanionic cellulose hybrids for high-performance water-based drilling fluids. Ind Eng Chem Res 59(32):14352–14363. https://doi.org/10.1021/acs.iecr.0c02644

Li M, Wu Q, Han J et al (2020b) Overcoming salt contamination of bentonite water-based drilling fluids with blended dual-functionalized cellulose nanocrystals. ACS Sustain Chem Eng 8(31):11569–11578. https://doi.org/10.1021/acssuschemeng.oc02774

Li X, Jiang G, Shen X et al (2020c) Application of tea polyphenols as a biodegradable fluid loss additive and study of the filtration mechanism. ACS Omega 5(7):3453–3461. https://doi.org/10.1021/acsomega.9b03712

Li M, Wu Q, Moon RJ et al (2021) Rheological aspects of cellulose nanomaterials: governing factors and emerging applications. Adv Mater 33(21):2006052. https://doi.org/10.1002/adma.202006052

Liu F, Jiang G, Peng S et al (2016) Amphotheric polymer as an anti-calcium contamination fluid-loss additive in water-based drilling fluids. Energy Fuel 30(9):7221–7228. https://doi.org/10.1021/acs.energyfuels.6b01567

Liu F, Jiang G, Wang K et al (2017) Laponite nanoparticle as a multi-functional additive in water-based drilling fluids. J Mater Sci 52:12266–12278. https://doi.org/10.1007/s10853-017-1375-0

Liu L, Pu X, Tao H et al (2018) Synthesis and characterization of comb-shaped copolymer as a filtration reducer and comparison with counterparts. RSC Adv 8:11424–11435. https://doi.org/10.1039/C7RA13255G

Liu N, Zhang D, Gao H et al (2021) Real-time measurement of drilling fluid rheological properties: a review. Sensors 21(11):3592. https://doi.org/10.3390/s21113592

Lu Q, Lu L, Li Y et al (2019) High-yield synthesis of functionalized cellulose nanocrystals for nano-biocomposites. ACS Appl Nano Mater 2(4):2036–2043. https://doi.org/10.1021/acsnanm.9b00048

Mikulcova V, Bordes R, Minarik A et al (2018) Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals—effect of the pH. Food Hydrocolloid 80:60–67. https://doi.org/10.1016/j.foodhyd.2018.01.034

Montes F, Fu T, Youngblood JP et al (2020) Rheological impact of using cellulose nanocrystals (CNC) in cement pastes. Constr Build Mater 235:117497. https://doi.org/10.1016/j.conbuildmat.2019.117497

Muhammed NS, Olayiwola T, Elkatatny S (2021) A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids. J Petrol Sci Eng 206:109043. https://doi.org/10.1016/j.petrol.2021.109043

Nasiri M, Ashrafizadeh SN (2010) Novel equation for the prediction of rheological parameters of drilling fluids in an annulus. Ind Eng Chem Res 49(7):3374–3385. https://doi.org/10.1021/ie909233

Ng LY, Wong TJ, Ng CY et al (2021) A review on cellulose nanocrystals production and characterization methods from Elaeis guineensis empty fruit bunches. Arab J Chem 14(9):103339. https://doi.org/10.1016/j.arabjc.2021.103339

Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. https://doi.org/10.1021/bm061215p

Patel A, Stamatakis S, Young S et al (2007) Advances in inhibitive water-based drilling fluids—Can they replace oil-based muds? In: SPE international symposium on oilfield chemistry, SPE 106476. https://doi.org/10.2118/106476-MS

Saito T, Nishiyama Y, Pouta et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691. https://doi.org/10.1021/acs.biomacromol.6b00154

Saparti M, Jali N, Rohani R et al (2018) Hydrophobic nanosilica as fluid loss control additive for high performance water-based drilling fluids. J Kejuruter SI1(4):75–85. https://doi.org/10.17576/jkukm-2018-si1(4)-10

Sun H, Xin Y, Hu Y (2013) Preparation mechanism and experimental results on deep thermophilic and halotolerant solids-free drilling fluids. Asian J Chem 25(5):2866–2868. https://doi.org/10.14233/ajchem.2013.14152

Tombácz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34(1–4):105–124. https://doi.org/10.1016/j.clay.2006.05.009

Ventura-Cruz S, Tecante A (2021) Nanocellullose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloid 118:106771. https://doi.org/10.1016/j.foodhyd.2021.106771

Villada Y, Gallardo F, Erdmann E et al (2017) Functional characterization on colloidal suspensions containing xanthan gum (XGD) and polyanionic cellulose (PAC) used in drilling fluids for a shale formation. Appl Clay Sci 149:59–66. https://doi.org/10.1016/j.clay.2017.08.020

Villada Y, Iglesias MC, Olivares ML et al (2021) Di-carboxylic acid cellulose nanofibril (DCA-CNF) as an additive in water-based drilling fluids (WBMs) applied to shale formations. Cellulose 28:417–436. https://doi.org/10.1007/s10570-020-03502-1

Wang X, Fan X, Cui S et al (2015) A Generalized Wenzel’s equation for wetting of droplets on rough substrates with air bubbles trapped at the solid-liquid interface. J Comput Theor Nanosci 12(10):3787–3791. https://doi.org/10.1166/jctn.2015.4278

Wang K, Jiang G, Liu F et al (2018) Magnesium aluminum silicate nanoparticles as a high-performance rheological modifier in water-based drilling fluids. Appl Clay Sci 161:427–435. https://doi.org/10.1016/j.clay.2018.05.012
Wang G, Jiang G, Yang J et al (2021) Novel N,N-dimethylacrylamide copolymer containing multiple rigid comonomers as a filtrate reducer in water-based drilling fluids and mechanism study. J Appl Polym Sci 138:e51001. https://doi.org/10.1002/app.51001

Yang L, Jiang G, Shi Y et al (2017) Application of ionic liquid to a high-performance calcium-resistant additive for filtration control of bentonite/water-based drilling fluids. J Mater Sci 52:6362–6375. https://doi.org/10.1007/s10853-017-0870-7

Yang G, Zheng T, Cheng Q et al (2021) Molecular dynamics simulation on shear thinning characteristics of non-newtonian fluids. Acta Phys Sin 70(12):124701. https://doi.org/10.7498/aps.70.20202116

Yao R, Jiang G, Li W et al (2014) Effect of water-based drilling fluid components on filter cake structure. Powder Technol 262:51–61. https://doi.org/10.1016/j.powtec.2014.04.060

Yu H, Zhang D, Lu F et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4(5):2632–2643. https://doi.org/10.1021/acssuschemeng.6b00126

Zhang J, Rojas JC, Clark DE (2008) Stressed-shale drilling strategy—water-activity design improves drilling performance. SPE Drill Complet 23(4):385–393. https://doi.org/10.2118/102498-PA

Zhang X, Jiang G, Dong T et al (2018) An amphoteric polymer as a shale borehole stabilizer in water-based drilling fluids. J Petrol Sci Eng 170:112–120. https://doi.org/10.1016/j.petrol.2018.06.051

Zhu W, Zheng X, Shi J et al (2021) A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AM-AA/AMPS. J Petrol Sci Eng 205:108821. https://doi.org/10.1016/j.petrol.2021.108821

Zou Z, Zhou F, Wang Q et al (2019) Enhanced dispersive stability of bentonite suspension in saline water-based mud. Colloid Surf A 579:123589. https://doi.org/10.1016/j.colsurfa.2019.123589

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.