1. Optimizing NTP treatment intensity for melanoma treatment

In order to determine the optimal NTP treatment parameters, subcutaneous B16F10 melanoma tumors were treated with NTP for 10 seconds at different intensities (defined by the pulse frequency: 500, 700, and 1000 Hz) for 5 consecutive days (n=4-5) and monitored up to day 17 in a small pilot study (Figure S1). Compared to the untreated controls (541.6±256.8 mm³), 700 Hz treatment had the greatest effect on reducing tumor volumes (230.6±96.4 mm³) on day 17. At a lower treatment intensity (500 Hz), treatment did not affect tumor volume (419.1±127.7 mm³) and further increase in pulse frequency to 1000 Hz did not benefit therapy response (272.2±131.4 mm³). Therefore, NTP treatment intensity of 700 Hz was considered the most optimal treatment and was used in all subsequent experiments.
Figure S1. Assessment of the anti-cancer NTP effects at different treatment intensities (defined by the pulse frequency). Subcutaneous melanoma tumors were treated for 5 consecutive days with NTP and monitored up to day 17 (n=4-5).

2. Thermography analysis

2.1 Temperature evolution of NTP treatment for 10 seconds

A video showing the temperature evolution of NTP treatment on the mouse skin, as well as the cooling profile is shown in Supplementary Video 1. Images taken immediately after NTP treatment also indicate that no visible damage had occurred during treatment, thus further suggesting that the thermal properties of NTP are not associated with its therapeutic effect (Figure S2).

![Figure S2. Images of the mouse skin taken after NTP treatment at various treatment intensities (defined by pulse frequency). The hair was removed and NTP was discharged directly onto the skin of the mouse. No visible or thermal damage was observed following treatment compared to untreated.](image)

2.2 Temperature evolution of NTP treatment for 60 seconds

The effect of NTP treatment over longer application times was also investigated. The temperature of the mouse skin did not increase past 38°C with 60 seconds of NTP treatment and rapidly cooled to baseline when treatment was stopped (Figure S3a). A spatial profile from the point directly below the NTP applicator (Figure S3b) showed that the temperature of the skin 9 mm from the center of treatment was unaffected (Figure S3c). A video showing this temperature evolution is shown in Supplementary Video 2.
Figure S3. Thermal effects of extended NTP treatment on mouse skin. a) NTP treatment of 60 seconds showed that temperature of the skin below the NTP applicator does not increase past 38°C and cools rapidly when treatment was stopped. b) The temperature of the skin was measured immediately after NTP treatment and c) the spatial profile showed that the temperature of skin 9 mm from the center of treatment was unaffected.

3. RNA sequencing analysis

3.1 GSEA Analysis

A pre-ranked GSEA analysis was performed on RNA sequences from tumors resected on day 7, 10, and 14, comparing that of NTP-treated to untreated controls. A complete list of the upregulated and downregulated hallmark gene sets (adjusted p-value ≤ 0.05) is provided (Table S1).
Table S1. Upregulated and downregulated hallmark gene sets

Day 7

NAME	SIZE	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
HALLMARK_CHOLESOLAR_HOMEOSTASIS	64	1.419	0.028	0.518	0.288	3856	
HALLMARK_E2F_TARGETS	200	1.369	0.004	0.404	0.411	6032	
HALLMARK_UNFOLDED_PROTEIN RESPONSE	110	1.300	0.046	0.476	0.616	4495	
HALLMARK_MYC_TARGETS_V1	200	1.282	0.031	0.418	0.673	6708	
HALLMARK_INTERFERON_GAMMA_RESPONSE	165	-2.178	0.000	0.000	0.000	2512	
HALLMARK_INTERFERON_ALPHA_RESPONSE	85	-2.078	0.000	0.000	0.000	1875	
HALLMARK_MYOGENESIS	143	-2.022	0.000	0.000	0.000	1905	
HALLMARK_ALLOGRAFT_REJECTION	145	-1.807	0.000	0.000	0.001	1842	
HALLMARK_IL6_JAK_STAT3_SIGNALING	56	-1.647	0.008	0.003	0.023	3165	
HALLMARK_IL2STAT5_SIGNALING	156	-1.614	0.000	0.005	0.043	2981	
HALLMARK_INFLAMMATORY_RESPONSE	131	-1.499	0.002	0.022	0.190	2144	
HALLMARK_COMPLEMENT	144	-1.429	0.016	0.049	0.424	3211	

Day 10

NAME	SIZE	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
HALLMARK_OXIDATIVE_PHOSPHORYLATION	137	2.034	0.000	0.000	0.000	939	
HALLMARK_HYPOXIA	103	2.012	0.000	0.000	0.000	393	
HALLMARK_MTORC1_SIGNALING	154	2.011	0.000	0.000	0.000	634	
HALLMARK_FATTY_ACID_METABOLISM	76	1.934	0.000	0.000	0.000	743	
HALLMARK_GLYCOLYSIS	107	1.910	0.000	0.000	0.000	592	
HALLMARK_MYC_TARGETS_V1	177	1.777	0.000	0.001	0.006	1252	
HALLMARKHEME_METABOLISM	85	1.711	0.003	0.004	0.025	533	
HALLMARK_INTERFERON_ALPHA_RESPONSE	38	1.703	0.003	0.004	0.028	682	
HALLMARK_XENOBIOTIC_METABOLISM	65	1.671	0.002	0.005	0.045	857	
HALLMARK_P53_PATHWAY	84	1.656	0.000	0.006	0.055	971	
HALLMARK_INTERFERON_GAMMA_RESPONSE	77	1.625	0.000	0.008	0.086	682	
HALLMARK_PIEK_AKT_MTOR_SIGNALING	64	1.599	0.008	0.010	0.111	355	
HALLMARK_UNFOLDED_PROTEIN_RESPONSE	84	1.479	0.010	0.040	0.399	850	
HALLMARK_ADIPogenesis	115	1.477	0.016	0.037	0.401	697	
HALLMARK_UV_RESPONSE_UP	83	1.356	0.045	0.099	0.795	666	
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	89	-2.139	0.000	0.000	0.000	427	
HALLMARK_COAGULATION	43	-1.754	0.003	0.007	0.016	381	
HALLMARK_MYOGENESIS	65	-1.716	0.000	0.011	0.033	551	
HALLMARK_UV_RESPONSE_DN	78	-1.669	0.005	0.014	0.059	575	
HALLMARK_MITOTIC_SPINDLE	143	-1.355	0.027	0.226	0.699	711	

Day 14

NAME	SIZE	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
HALLMARK_MYC_TARGETS_V1	200	1.874	0.000	0.002	0.002	1307	
HALLMARK_E2F_TARGETS	199	1.750	0.000	0.031	0.034	1332	
HALLMARK_MYC_TARGETS_V2	57	1.589	0.046	0.119	0.182	2147	
3.2 Differential Gene Expression (DESeq2) Analysis

Based on the GSEA analysis, we further investigated the genes in the IL6-JAK-STAT3, unfolded protein response, and interferon gamma pathways that were significantly (p≤0.05) up- or downregulated on day 7, 10, and 14 (Table S2). Due to the high variability within the mice, the adjusted p-values did not reveal any significant genes, and therefore, the uncorrected p-values and log2fold change values (Log2FC) are provided. These results should, therefore, be interpreted with care, and increasing the number of mice per group would help provide more concrete insight.

Table S2. Genes in the selected pathways that were upregulated or downregulated

	DAY 7	Day 10	Day 14					
Gene	Log2FC	p-value	Gene	Log2FC	p-value	Gene	Log2FC	p-value
IL12RB1	-1.832	0.0705	IL6ST	-0.2571	0.0045	ITGB3	-0.6963	4.85E-08
STAT1	-0.882	0.1805	CBL	-0.2151	0.0197	Tyk2	-0.2327	0.0017
TNF	-0.830	0.1916	ITGA4	-0.2697	0.0354	IL12RB1	-2.5049	0.0021
STAT2	-0.944	0.1932	OSMR	-0.6945	0.1022	TNF	-1.1278	0.0210
IRF1	-0.925	0.2319	CSF2RA	-0.5589	0.1128	STAT2	-1.1150	0.0233
CXCL9	-0.955	0.2418	IL1R1	-1.1327	0.1174	JUN	-0.3905	0.0371
IL2RG	-1.028	0.2997	PF4	-0.8373	0.1627	Cxcl9	-2.4841	0.0395
SOCS1	-0.659	0.4365	CD14	-0.9670	0.1649	STAT1	-1.2806	0.0423
Gene	Log2FC	p-value	Gene	Log2FC	p-value	Gene	Log2FC	p-value
---------	--------	---------	---------	--------	---------	---------	--------	---------
CXCL10	-0.684	0.4385	TLR2	-0.6513	0.1667	Ifr1	-1.7070	0.0447
IL2RA	-0.605	0.4892	IL12RB1	0.6042	0.1752	CNTFR	0.2303	0.0457
			CCL7	-0.6657	0.2857	Ifr9	-0.7631	0.0603
			PIK3R5	-0.5287	0.3935	IIf15A	-0.8677	0.0818
			CSF2RB	-0.5583	0.3985	Socs1	-1.3700	0.0954
						Map3k8	-0.5375	0.1362
						IIf2R	-1.4244	0.1562
						Cxcl10	-0.8965	0.2094
						IIf2RG	-0.5721	0.3507
						Csfr2B	-0.5208	0.3878
						Csf3R	-0.5685	0.4141

UNFOLDED PROTEIN RESPONSE

Gene	Log2FC	p-value	Gene	Log2FC	p-value	Gene	Log2FC	p-value
VEGFA	0.6583	0.0191	GOSR2	0.2464	0.0008	SPCS3	0.2125	0.0076
ERO1A	0.5655	0.0481	Eif4EBP1	0.2498	0.0039	SSR1	0.2370	0.0099
			ERO1A	0.4929	0.0047	Calr	0.2265	0.0321
			Ddit4	0.4062	0.0054	Exosc2	0.1815	0.0453
			Eif4a3	0.1968	0.0180			
			Hspa9	0.2128	0.0297			
			H2ax	0.2244	0.0329			
			Cxcc1	-0.1469	0.0407			
			Eif4a1	0.1121	0.0433			
			Nop56	-0.1647	0.0488			
			Atf6v0d1	0.1725	0.0488			
			Sec11a	0.2217	0.0491			

INTERFERON GAMMA

Gene	Log2FC	p-value	Gene	Log2FC	p-value	Gene	Log2FC	p-value																	
Nlrc5	-1.1418	0.0622	Ifi27	0.4000	0.0059	Helz2	-0.8278	0.0006																	
Rnf213	-0.8380	0.1077	Pfkp	0.3182	0.0070	Znfx1	-0.4797	0.0036																	
Tap1	-1.1387	0.1389	Ube2L6	0.8084	0.0087	Adar	-0.5821	0.0048																	
Bst2	-0.8724	0.1424	Nampt	0.3264	0.0108	Samd9l	-0.8436	0.0086																	
Gbp6	-1.4343	0.1435	Bst2	0.4497	0.0133	Ifi27	-0.5449	0.0115																	
B2m	-0.8436	0.1516	Ncoa3	-0.2523	0.0211	Ddx58	-1.0325	0.0133																	
Tapbp	-0.9466	0.1731	Psmb2	0.2188	0.0383	Pml	-0.3744	0.0169																	
Psme1	-0.6909	0.1782	Plscr1	0.2033	0.0440	Stat2	-1.1150	0.0233																	
Lgals3Bp	-0.6387	0.1850	Psma2	0.1782	0.0466	Rsad2	-1.2412	0.0238																	
Stat2	-0.9442	0.1932	Tap1	0.5926	0.1588	Ifitm2	0.2086	0.0245																	
Ifitm3	-0.8949	0.2090	Ly6e	-0.5632	0.3677	Trim25	-0.7181	0.0279																	
Parp12	-0.7404	0.2141	Gbp6	0.5554	0.4007	Parp14	-1.6582	0.0293																	
Parp14	-0.9491	0.2176	Serping1	-0.6143	0.4154	Gbp6	-2.6723	0.0302																	
Ube2L6	-0.9185	0.2263				Ogfr	-0.3453	0.0327																	
Znfx1	-0.5331	0.2269				Tapbp	-1.3173	0.0331																	
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
CXCL9	-0.9551	0.2418																							
SAMHD1	-0.9275	0.2427																							
CD74	-1.1967	0.2444																							
SAMD9L	-0.6074	0.2455																							
LAP3	-0.5951	0.2580																							
IRF2	-0.5628	0.2593																							
RSAD2	-0.5874	0.4086																							
CXCL10	-0.6842	0.4385																							
PARP12	-1.1176	0.0343																							
NLRC5	-1.9799	0.0392																							
CXCL9	-2.4841	0.0395																							
LAP3	-0.4080	0.0461																							
UBE2L6	-1.3170	0.0470																							
IFITM3	-0.8906	0.0486																							
IRF2	-0.3023	0.0488																							
RNF213	-0.9596	0.0532																							
TAP1	-1.8648	0.0568																							
IRF9	-0.7631	0.0603																							
B2M	-1.0038	0.0649																							
PSME1	-0.8148	0.0740																							
LGALS3BP	-0.5764	0.0861																							
BST2	-0.9201	0.1174																							
CD74	-1.2132	0.1771																							
CXCL10	-0.8965	0.2094																							
SAMHD1	-0.5023	0.2339																							
SERPING1	-0.5226	0.4818																							

4. **Flow cytometry analysis**

4.1 **DC and NK cell gating strategy**

A representative gating strategy to identify dendritic cells (DCs) and natural killer (NK) cells is shown (Figure S4).
Figure S4. The flow cytometry gating strategy to identify DCs and NK cells along with intracellular interferon-gamma and granzyme b.

4.2 T cell gating strategy

A representative gating strategy to identify CD8^+^, non-regulatory CD4^+^, and regulatory T cells is shown (Figure S5). The gating strategy to delineate non-exhausted populations of T cells are also shown.
Figure S5. The flow cytometry gating strategy to identify subpopulations of T cells and activation and exhaustion markers.

4.3 NK cell analysis in the tumor and tumor draining lymph node

The population of NK cells in the tumor (Figure S6a) and tumor draining lymph node (Figure S6b) was evaluated with flow cytometry. NTP treatment did not appear to affect NK cell populations on either day 10 or day 14. Furthermore, overton analysis of IFN-γ with the corresponding isotype also did not show significant differences between the two groups in the tumor or tumor draining lymph node (Figure S6c, d).
Figure S6. **Flow cytometry assessment of NK cells following NTP treatment.** The NK cell population in the a) tumor and b) tumor draining lymph node was evaluated on day 10 and 14. Overton analysis of interferon gamma (IFN-γ) expression in the NK cells also did not show significant differences between the NTP-treated and untreated control (Ctrl) groups in the c) tumor or d) lymph node.

5. **Detailed Methods**

5.1 **Flow cytometry panels**

The following section describes in detail the antibodies and clones used for flow cytometry analysis (Table S3). The T cell panel consisted of CD8-FITC (Clone 53-6.7, Biolegend, The Netherlands), Tim3-PE (Clone 5D12, BD Biosciences, Belgium), CD25-PEDazzle549 (Clone PC61, Biolegend), CD4-PerCP/Cy5.5 (Clone GK1.5, Biolegend), ICOS-PE-Cy7 (Clone C398.4A, Biolegend), FOXP3-APC (Clone FJK-16s, Thermofisher Scientific, United States), CD45.2-APC-Cy7 (Clone 104, BD Biosciences), PD-1-BV421 (Clone RMP1-30, Biolegend), LiveDead Aqua (Life technologies, United States), CD3-BV785 (Clone 17A2, Biolegend). The NK cell and DC panel consisted of CD8-FITC (Clone 53-6.7, Biolegend), CD103-PE (Clone 2E7, Thermofisher Scientific), IFN-γ-PE-Dazzle549 (Clone XMG1.2, Biolegend), GranzymeB-PerCP/Cy5.5 (Clone QA16A02, Biolegend), MHC Class II-
PE/Cy7 (Clone M5/114.15.2, Biolegend), NK1.1-APC (Clone P136, Biolegend), CD45.2-APC-Cy7 (Clone 104, BD Biosciences), CD11c-BV421 (Clone N418, BD Biosciences), CD11c-BV421 (Clone N418, BD Biosciences), CD3-BV785 (Clone 17A2, Biolegend). The samples obtained from the spleens were stained with the following antibody cocktail, CD8-FITC (Clone 53-6.7, Biolegend), CD103-PE (Clone 2E7, Thermofisher Scientific), CD3-PEDazzle594 (Clone 17A2, Biolegend), CD4-PerCP/Cy5.5 (Clone GK1.5, Biolegend), MHC Class II-PE/Cy7 (Clone M5/114.15.2, Biolegend), FOXP3-APC (Clone FJK-16s, Thermofisher Scientific), CD45.2-APC-Cy7 (Clone 104, BD Biosciences), CD11c-BV421 (Clone N418, BD Biosciences), LiveDead Aqua (Life technologies, United States), CD25-BV785 (Clone PC61, Biolegend).

Table S3. Antibodies used for flow cytometry panels

Fluor Type	Fluor	Antigen	Clone	Company	Cat No.	Dilution
T cell Panel	FITC	CD8	53-6.7	Biolegend	100705	1:50
	PE	Tim3	5D12	BD Bioscience	566346	1:25
	PE-TxRd (dzl549)	CD25	PK136	Biolegend	102048	1:100
	PerCP-Cy7	CD4	GK1.5	Biolegend	100434	1:100
	PE-Cy7	ICOS	C398.4A	Biolegend	313519	1:25
	APC	FOXP3	FJK-16s	Thermofisher	17-5773-82	1:50
	APC-Cy7	CD45	104	BD Bioscience	560694	1:50
	BV421	PD1	RMP1-30	Biolegend	109121	1:25
	AF430	L/D Aqua		Thermodisher	L34957	1:50
	BV786	CD3	17A2	Biolegend	100231	1:100
DC/NK cell Panel	FITC	CD8	53-6.7	Biolegend	100705	1:50
	PE	CD103	2E7	Thermofisher	12-1031-83	1:100
	PE-TxRd (dzl549)	IFN-gamma	XM16.12	Biolegend	505845	1:100
	PerCP-Cy7	granzyme B	QA16A02	Biolegend	372212	1:50
	PE-Cy7	MHC-II	M5/114.15.2	Biolegend	107630	1:50
	APC	NK1.1	PK136	Biolegend	108701	1:50
	APC-Cy7	CD45	104	BD Bioscience	560694	1:50
	BV421	CD11c	N418	BD Bioscience	565452	1:50
	AF430	L/D Aqua	-	Thermodisher	L34957	1:50
	BV786/5	CD3	17A2	Biolegend	100231	1:100
Spleen Panel	FITC	CD8	53-6.7	Biolegend	100705	1:50
	PE	CD103	2E7	Thermofisher	12-1031-83	1:100
	PE-TxRd (dzl549)	CD3	17A2	Biolegend	100246	1:100
	PerCP-Cy7	CD4	GK1.5	Biolegend	100434	1:100
	PE-Cy7	MHC-II	M5/114.15.2	Biolegend	107630	1:50
	APC	FOXP3	FJK-16s	Thermofisher	17-5773-82	1:50
	APC-Cy7	CD45	104	BD Bioscience	560694	1:50
	BV421	CD11c	N418	BD Bioscience	565452	1:50
	AF430	L/D Aqua	-	Thermodisher	L34957	1:50
	BV786	CD25	PC61	BD Bioscience	564023	1:50
5.2 Optimization of immunofluorescence staining

Tumor slides were stained with the isotype controls of CRT, CD47, and PD-L1 to check for non-specific staining and determine the optimal primary and secondary antibody dilutions. CRT was optimized previously in the lab and here we demonstrated a low amount of non-specific binding (Figure S7a). Since the stock concentration of the monclonal CRT antibody and the rabbit IgG isotype control was different, the dilutions were made to keep the final staining concentration the same. The starting concentration for the isotypes of CD47 and PD-L1 were to the same, and we found that for CD47, a 1:100 and a 1:200 dilution was most optimal for primary and secondary staining, respectively (Figure S7b), while a 1:200 dilution for both primary and secondary staining was most optimal for PD-L1 (Figure S7c). These concentrations were used for staining of all tumor slides.

![Figure S7. Comparison of primary staining with isotype controls.](image)

Data are shown normalized to the primary stain at various dilutions for a) CRT, b) CD47, and c) PD-L1.

5.3 Computational image processing

Individual nuclei in the images were indexed using connected component analysis and objects smaller than 40 pixels2 were removed. The nuclear masks were morphologically dilated using a disk structuring element with diameter of 51 pixels (20.4 µm2) to form a cytoplasmic mask. Each pixel of the resulting cytoplasmic mask was indexed to the nearest nuclei. In this way, mean signal intensity and positivity for each cell in the approximated cytoplasm was also measured individually. Signal marker positivity for protein expression were imaged fluorescently using red (TxRED) and green (GFP) channels. To
quantify expression of CRT, CD47, and PDL1, the intensity values were corrected for background signal by first saturating the signal to the 95th percentile and subtracting by a one sided low pass filter formed by a Gaussian kernel of 60 pixels in standard deviation. The resultant intensity values for these images were measured using in nuclear and cytoplasmic masks.