Peripheral oxytocin and vasopressin: Biomarkers of psychiatric disorders? A comprehensive systematic review and preliminary meta-analysis

Rutigliano Graziaa,b,1, Rocchetti Matteoa,c,1, Paloyelis Yannisd, Gilleen Jamesa,f, Sardella Albertoa, Cappucciati Marcoa,c, Palombini Erikaa,c, Dell’Osso Lilianab, Caverzasi Edgardoc, Politi Pierluigic, McGuire Philipa, Fusar-Poli Paoloa,e,6

a Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, PO63, De Crespigny Park, SE58AF London, UK
b Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67-56126 Pisa, Italy
c Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, PO89, De Crespigny Park, SE58AF London, UK
d OASIS clinic, StA&M NHS Foundation Trust, 190 Kennington Lane, SE11 5DL London, UK
e Department of Psychology, University of Roehampton, UK
f Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

Abstract

A large array of studies have investigated peripheral oxytocin (OT) and vasopressin (ADH) as potential biomarkers of psychiatric disorders, with highly conflicting and heterogeneous findings. We searched Web of KnowledgeTM and ScopusTM for English original articles investigating OT and/or ADH levels in different biological fluids (plasma/serum, saliva, urine and cerebrospinal fluid) across several psychiatric disorders. Sixty-four studies were included. We conducted 19 preliminary meta-analyses addressing OT alterations in plasma/serum, saliva, urine and cerebrospinal fluid of 7 psychiatric disorders and ADH alterations in plasma/serum, saliva, urine and cerebrospinal fluid of 6 psychiatric disorders compared to controls. Hedge’s g was used as effect size measure, together with heterogeneity analyses, test of publication biases and quality control. None of them (except serum OT in anorexia nervosa) revealed significant differences. There is no convincing evidence that peripheral ADH or OT might be reliable biomarkers in psychiatric disorders. However, the lack of significant results was associated with high methodological heterogeneity, low quality of the studies, small sample size, and scarce reliability of the methods used in previous studies, which need to be validated and standardized.

© 2016 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Oxytocin (hereafter OT) and vasopressin (hereafter ADH) are neuropeptides mainly synthesized in the brain’s hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei (Ludwig and Leng, 2006). They are released in systemic circulation through the posterior pituitary gland, where they act as hormones regulating a range of physiological functions (Gimpl and Fahrenholz, 2001; Ludwig et al., 2015). They are also released in the central nervous system, acting on multiple brain regions as neuromodulators and influencing a range of neurophysiological processes and behaviours (Stoop, 2012), including feeding, anxiety, aggression, social recognition and the stress/fear response to social stimuli (Hashimoto et al., 2012).

Evidence from animal studies has demonstrated the significant role that OT and ADH play in the regulation of social behaviour and cognition (Chang and Platt, 2014). An increasing number of studies have also begun to dissect the roles of OT and ADH in human social behaviour (Heinrichs et al., 2009). These neuropeptides are associated with complex social and emotional processing in healthy people which if impaired may account for some of the symptoms present in psychiatric disorders (Meyer-Lindenberg et al., 2011). Furthermore, there is also growing interest in the potential for synthetic neuropeptides in treatment of psychosis (for a comprehensive review see (Gumley et al., 2014)), autism spectrum disorders (ASD) (Thompson et al., 2006; Uzunova et al., 2015), and affective and anxiety disorders (Griebel et al., 2012).

In animals there are multiple methods that allow to reliably either assess or manipulate central OT and ADH levels and their effects on behaviour (e.g. intracerebral microdialysis (Veemana and Neumann, 2008), targeted delivery of neuropeptide agonists or antagonists (Song et al., 2014), gene knockout (Wersinger et al., 2002), and viral gene transfer (Pagani et al., 2014)). However, these are not available in humans, hence researchers have turned to peripheral assays as proxy measures. Specifically, plasma/serum (Rubin et al., 2014), saliva (Fujisawa et al., 2014), urine (Hoffman et al., 2012) or cerebrospinal fluid (CSF) (Sasayama et al., 2012) OT and ADH levels have been recently tested as putative biomarkers in ASD (Alabdali et al., 2014; Boso et al., 2007; Modahl et al., 1998), Psychosis (Elman et al., 2003; Goldman et al., 2008; Rubin et al., 2013; Walss-Bass et al., 2013), bipolar disorder (BD) (Rubin et al., 2014; Turan et al., 2013), major depressive disorder (MDD) (Goldstein et al., 2000; Ozsoy et al., 2009; Yuen et al., 2014), as well as in anxiety (Hoge et al., 2012, 2008), personality (Bertsch et al., 2013) and eating disorders (anorexia nervosa, AN and bulimia nervosa, BN) (Frank et al., 2000; Lawson et al., 2011, 2012), with highly heterogeneous and conflicting results (Al-Ayadhi, 2005; Alabdali et al., 2014; Emsley et al., 1989; Watson et al., 2007). The first aim of the present systematic review and preliminary meta-analysis was to test if the levels of these neuropeptides across different clinical samples and different biological fluids (plasma/serum, cerebrospinal fluid (CSF), urine and saliva) were consistently altered and could therefore be considered as potential reliable biomarkers for psychiatric disorders. The second aim was to investigate and address moderators and confounding factors impacting the preliminary meta-analytical estimates.

2. Methods

2.1. Selection procedures and data collection

2.1.1. Search strategies

A systematic search strategy was used to identify relevant articles. A two-step literature search was conducted by two independent researchers [GR, AS]. At a first step, the Web of Knowledge database by Thomson Reuters® (including Web of Science™, BIOSIS Citation Index™ and MEDLINE®) and Scopus® were searched. The search was extended until March 1st, 2015, including abstracts in English language only (see Supplementary materials for the electronic search code).

The second step involved the implementation of an electronic manual search of the reference lists of the retrieved articles. Articles identified through these two steps were then screened on basis of title or abstract reading. The articles surviving selection were fully downloaded (PDFs) and assessed for eligibility on the basis of full-text reading. Discrepancies were resolved through consensus with a third researcher [MR]. To achieve high quality of reporting we adopted MOOSE guidelines (Stroup et al., 2000) (see Supplementary materials).
2.1.2. Inclusion criteria

Articles meeting the inclusion criteria for the current systematic review and preliminary meta-analysis: (a) were original articles, written in English; (b) included subjects with a psychiatric diagnosis defined according to international standard definitions (ICD, DSM); (c) included a healthy comparison group; (d) reported the putative influence of several categorical moderators: assay technique, pregnancy, alcohol use and phase of the psychotic disorder. In particular, we performed sensitivity analyses by sequentially removing biases were tested with the Duval and Tweedie method (Duval and Tweedie, 2000), when at least 3 studies were included. To further assess the robustness of the results, we performed sensitivity analyses by sequentially removing each study and re-running the analysis, when at least 5 studies were included. We did not perform analyses on diagnoses where there was only one study available: generalized social anxiety (GSAD) (Hoge et al., 2012), borderline personality disorder (BPD) (Bertsch et al., 2013), attention deficit and hyperactivity disorder (ADHD) (Taurines et al, 2014), Tourette syndrome (TS) (Leckman et al, 1994) and Prader-Willi syndrome (PWS) (Martin et al, 1998) (eTable 4). Therefore, the final database included 64 samples. Further details of the eligible articles not included in the meta-analysis and the list of the excluded articles (with reason for exclusion) are given in eTables 4 and 5. The full details of the included samples are appended in Table 1. The mean sample size of the included samples was of 63.64 (±36.50). Overall we performed 19 preliminary meta-analyses.

2.2. Statistical analysis

2.2.1. Effect size

The meta-analyses were performed using Comprehensive Meta-Analysis Software version 2 (Borenstein et al., 2005). We did not perform analyses on diagnoses where there was only one study available. As a measure of effect size, Hedges' g was adopted. Results were Bonferroni-corrected for multiple testing, by dividing 0.05 by the overall number of meta-analyses conducted.

2.2.2. Heterogeneity, publication biases, sensitivity analysis

Heterogeneity among study point estimates was assessed using Q statistics (Paulson and Bazemore, 2010) and the proportion of the total variability in the effect size estimates evaluated with the I2 index (Lipsey and Wilson, 2000). As meta-analysis of observational studies is supposed to be characterized by significant heterogeneity, random effect models were used (Cooper et al., 2009). Because of numerical constraints, meta-regressions were not conducted. Publication biases were tested with the Duval and Tweedie ‘trim and fill’ method (Duval and Tweedie, 2000), when at least 3 studies were included. To further assess the robustness of the results, we performed sensitivity analyses by sequentially removing each study and re-running the analysis, when at least 5 studies were included (Higgins and Green, 2011). We conducted other sensitivity analyses to investigate the putative influence of several categorical moderators: assay technique, pregnancy, alcohol use and phase of the psychotic disorder. In particular, we performed sensitivity analyses to clarify the impact of peptide extraction techniques on the results. Because of numerical constraints, this was possible only in two of the subgroups (assessing plasma/serum ADH levels in MDD and psychosis). We performed an additional sub-group analysis dividing First Episode Psychosis (FEP) and chronic Psychosis vs healthy comparisons (see Supplementary materials for details). The potential influence of methodological weaknesses influencing preliminary meta-analytic estimates, according to the quality rating, was discussed.

3. Results

3.1. Database

After manual and electronic searches, 192 potential articles (PDFs) were screened to assess eligibility (see PRISMA flow chart eFig. 1 and MOOSE checklist eTable 1). 52 articles were considered eligible according to our inclusion criteria. 12 of these contributed two individual samples each: six investigating both OT and ADH in the same psychiatric disorder; four investigating the same neuropeptide across two different psychiatric disorders; two conducting the analyses on both plasma and CSF. Three articles delivered four individual samples each: two by measuring OT and ADH in two distinct diagnostic groups, and one measuring ADH both in plasma and CSF in two psychiatric disorders. Finally, one article delivered three individual samples, by addressing both neuropeptides in BN and only OT in AN. Consequently, the total number of eligible individual samples was 75. We did not perform analyses on diagnoses where there was only one study available: generalized social anxiety (GSAD) (Hoge et al., 2012), borderline personality disorder (BPD) (Bertsch et al., 2013), attention deficit and hyperactivity disorder (ADHD) (Taurines et al, 2014), Tourette syndrome (TS) (Leckman et al, 1994) and Prader-Willi syndrome (PWS) (Martin et al, 1998) (eTable 4). Therefore, the final database included 64 samples. Further details of the eligible articles not included in the meta-analysis and the list of the excluded articles (with reason for exclusion) are given in eTables 4 and 5. The full details of the included samples are appended in Table 1. The mean sample size of the included samples was of 63.64 (±36.50). Overall we performed 19 preliminary meta-analyses.

3.2. Preliminary meta-analyses of OT peripheral levels in psychiatric disorders

3.2.1. OT levels in CSF

Meta-analyses of OT levels in CSF were conducted in AN, BN, MDD, OCD and Psychosis. We found no differences between healthy comparisons and AN ($n=2$, overall sample = 52, Hedges’ g = −0.034, 95% CI from −1.068 to 1.019, p = 0.950, between studies heterogeneity non-significant), BN ($n=2$, overall sample = 86, Hedges’ g = −0.219, 95% CI from −0.755 to 0.318, p = 0.425, between studies heterogeneity non-significant), MDD ($n=2$, overall sample = 75, Hedges’ g = −0.333, 95% CI from −0.781 to 0.114, p = 0.144, between studies heterogeneity non-significant), OCD ($n=2$, overall sample = 99, Hedges’ g = −0.599, 95% CI from 0.194 to 1.014, p = 0.004, p corr = ns, between studies heterogeneity non-significant).

3.2.2. OT levels in plasma/serum

Meta-analyses of OT levels in plasma were conducted in ASD, BD, Psychosis and AN. They revealed no difference between healthy comparisons and patients diagnosed with ASD ($n=4$, overall sample = 404, Hedges’ g = −0.576, 95% CI from −1.442 to 0.291, p = 0.193, considerable between studies heterogeneity $Q=64.613$, $I^2=93.81$, p < 0.001), BD ($n=3$, overall sample = 275, Hedges’ g = 0.056, 95% CI from −0.845 to 0.957, p = 0.903, considerable between studies heterogeneity $Q=20.796$, $I^2=90.38$, p < 0.001) or Psychosis (n = 8, overall sample = 691, Hedges’ g = −0.005, 95% CI from −0.304 to 0.294, p = 0.974, substantial between studies heterogeneity $Q=24.923$, $I^2=71.91$, p = 0.001). Patients with AN had lower serum OT levels than healthy comparisons ($n=2$, overall sample = 71, Hedges’ g = −0.824, 95% CI from −1.308 to −0.341, p corr = 0.001, between studies heterogeneity non-significant).

3.2.3. OT levels in saliva

Meta-analyses of OT levels in saliva were conducted in ADS. OT levels in saliva of ASD were not statistically different from those observed in healthy controls ($n=2$, overall sample = 152, Hedges’ g = −0.354, 95% CI from −0.701 to −0.006, p = 0.046, p corr = ns, between studies heterogeneity non significant).

3.2.4. OT levels in urine

Meta-analyses were not performed as insufficient data were retrieved.
Table 1
Characteristics of studies included in the meta-analysis.

Study name	Year of publication	Country	Neuropeptide	Specimen	Diagnosis	Sample size	Age	Female %
Oxytocin in Autism Spectrum Disorders (7)								
Modgil et al. (1998)	1998	USA	OT	Plasma	ASD			
(a) Al-Ayadi (2005)	2005	Saudi Arabia	OT	Plasma	ASD	594	37.1	38.1
(a) Miller et al. (2013)	2013	USA	OT	Plasma	ASD	753	24.9	24.6
Alabdali et al. (2014)	2014	Saudi Arabia	OT	Plasma	ASD	804	12.2	0.58
Feldman et al. (2014)	2014	Japan	OT	Plasma	ASD	734	4.83	4.01
Fujisawa et al. (2014)	2014	Germany	OT	Plasma	ASD	361	17.6	0.55
(a) Tsuang et al. (2014)	2014	Germany	OT	Plasma	ASD	361	17.6	0.55
Oxytocin in Bipolar Disorder (3)								
Ozsyo et al. (2009)	2009	Turkey	OT	Serum	BD	43	37.3	30.7
Turan et al. (2013)	2013	Turkey	OT	Serum	BD	91	34.3	34.2
(a) Rubin et al. (2014)	2014	USA	OT	Plasma	BD	141	37.1	37.8
Oxytocin in Major Depressive Disorder (2)								
(a) Pitts et al. (1995)	1995	USA	OT	CSF	MDD	37	37.3	30.7
(a) Sasayama et al. (2012)	2012	Japan	OT	CSF	MDD	38	38.1	38.3
Oxytocin in Psychosis (11)								
(a) Beckmann et al. (1985)	1985	Germany	OT	Plasma	Psychosis	44	24.3	25.5
Glovinsky et al. (1994)	1994	USA	OT	CSF	Psychosis	55	25.9	23.4
Goldman et al. (2008)	2008	USA	OT	Plasma	Psychosis	22	40.8	34.7
Keri et al. (2009)	2009	Hungary	OT	Plasma	Psychosis	100	47.9	47.8
Rubin et al. (2010)	2010	USA	OT	Serum	Psychosis	108	30.9	27.7
(b) Sasayama et al. (2012)	2012	Japan	OT	CSF	Psychosis	48	21.6	38.3
(a) Rubin et al. (2013)	2013	USA	OT	Serum	Psychosis	76	23.7	37.9
Walss-Bass et al. (2013)	2013	USA	OT	Plasma	Psychosis	80	42.1	39.6
(a) Jobst et al. (2014)	2014	Germany and Austria	OT	Plasma	Psychosis	86	24.9	24.6
(a) Rubin et al. (2014)	2014	USA	OT	Plasma	Psychosis	157	34.7	34.2
Oxytocin in Obsessive-Compulsive Disorder (2)								
(a) Sorensen et al. (1985)	1985	Denmark	OT	CSF	OCD	46	35.5	35.5
(a) Frank et al. (2000)	2000	USA	OT	CSF	OCD	40	26.4	23.4
Antidiuretic Hormone in Autism Spectrum Disorder (3)								
(b) Al-Ayadi (2005)	2005	Saudi Arabia	OT	Plasma	ASD	154	77	8.8
Boso et al. (2007)	2007	Italy	OT	Plasma	ASD	39	27.5	29.6
(b) Miller et al. (2013)	2013	USA	OT	Plasma	ASD	75	32	12.2
Antidiuretic Hormone in Bipolar Disorder (3)								
Padfield et al. (1977)	1977	UK	ADH	Plasma	BD	52	34	0.72
(c) Rubin et al. (2014)	2014	USA	ADH	Plasma	BD	141	37.1	37.8
Antidiuretic Hormone in Major Depressive Disorder (6)								
(a) Sorensen et al. (1985)	1985	Denmark	ADH	CSF	MDD	98	46	46
(b) Frank et al. (2000)	2000	USA	OT	CSF	MDD	40	23	23.4
Antidiuretic Hormone in Psychosis (13)								
(b) Beckmann et al. (1985)	1985	Germany	ADH	CSF	Psychosis	44	30.6	30.6
(c) Sorensen et al. (1985)	1985	Denmark	ADH	CSF	Psychosis	61	49	49.6
Emsley et al. (1989)	1989	South Africa	ADH	Plasma	Psychosis	51	28	0.30
Sarai and Matsunaga (1989)	1989	Japan	ADH	Plasma	Psychosis	60	44.6	44.6
Ohsrwa et al. (1993)	1993	Japan	ADH	Plasma	Psychosis	30	32.2	32.2
Kudoh et al. (1998)	1998	Japan	ADH	Plasma	Psychosis	40	54	55.2
Elman et al. (2003)	2003	USA	ADH	Plasma	Psychosis	25	37.7	32.7
Ryan et al. (2004)	2004	UK	ADH	Plasma	Psychosis	24	34.8	34.8
Walsh et al. (2005)	2005	Ireland	ADH	Plasma	Psychosis	20	26.8	26.8
(b) Rubin et al. (2013)	2013	USA	ADH	Serum	Psychosis	76	23.7	27.8
(b) Jobst et al. (2014)	2014	Germany and Austria	ADH	Plasma	Psychosis	86	24.9	24.6
(d) Rubin et al. (2014)	2014	USA	ADH	Plasma	Psychosis	157	37.1	37.8
Antidiuretic Hormone in Obsessive-Compulsive Disorder (2)								
(a) Altemus et al. (1992b)	1992	USA	ADH	CSF	OCD	40	34.3	34.3
(b) Leckman et al. (1994)	1994	USA	ADH	CSF	OCD	59	33.7	33.7
Table 1 (continued)

Study name	Year of publication	Country	Neuropeptide	Specimen	Diagnosis	Sample size	Age	Female %			
						Total Pt	HC	Pt	HC	Pt	HC
Antidiuretic Hormone in Anorexia Nervosa (4)											
(a) Gold et al. (1983)	1983	USA	ADH	CSF	AN	16 8 8	24.3	25.3	1 1		
(b) Gold et al. (1983)	1983	USA	ADH	Plasma	AN	16 8 8	24.3	25.3	1 1		
(c) Frank et al. (2000)	2000	USA	ADH	CSF	AN	50 33 17	26.2	23.4	1 1		
Evrard et al. (2004)	2004	Belgium	ADH	Plasma	AN	24 12 12	21.6	22.8	1 1		

Table 2 describes the quality of the studies. Study quality scores ranged from 1 to 7 (median score was 4 of 9 possible points). There were no significant differences in Newcastle-Ottawa Scale (NOS) scores between the subgroups (F=0.503, df=18, p=0.943). Unfortunately, since the number of studies included in each meta-analysis was too small to perform meta-regressions, it was not possible to directly assess the effect of NOS scores on the findings of our preliminary meta-analyses.
4. Discussion

This is the first systematic review and preliminary meta-analysis to comprehensively summarize the available evidence of altered peripheral levels of OT and ADH in psychiatric disorders and investigate whether there are reliable differences which could serve as biomarkers between patients and healthy controls. We found no robust and convincing evidence for significant alterations in the two neuropeptides in psychiatric disorders. The lack of significant association was secondary to high heterogeneity across individual studies, low quality and significant methodological limitations. Indeed, our results do not contradict the potential role of the two neuropeptides in mental disorders per se but do clearly suggest that peripheral levels do not reliably distinguish cases from controls. The putative reasons for this will be discussed in the following sections.

4.1. Reliability of assays

Both the commercially available immunoassays (RIA and EIA) have high heterogeneity and questionable validity (McCullough...
Average plasmatic levels within studies included in the present meta-analysis ranged from 0.64 pg/mL to 436.97 pg/mL for OT and from 0.66 pg/mL to 109.17 pg/mL for ADH, this variability being massively explained by the use of different immunoassay and by whether or not a pre-assay sample extraction was performed (eTable 2). It is evident, as others have previously suggested (Christensen et al., 2014), that the two immunoassays are poorly correlated, thus preventing the comparison of results obtained by different research groups. Particularly, in recent evaluations the RIA method was shown to have low sensitivity in the majority of samples tested (McCullough et al., 2013) and EIA performed without extraction yielded to values that were two orders of magnitude greater than those in extracted samples (Szeto et al., 2011) and without correlation, due to the presence of multiple adjunctive immunoreactive products besides oxytocin (Szeto et al., 2011). Since the main methodological concern specifically regards the use of extraction (Christensen et al., 2014), we performed a sensitivity analysis on the studies investigating serum/plasma ADH levels in Psychosis, which seemed to confirm that the extraction technique could have had an effect on the observed results. However, further characterization of the tagged molecules has shown that even in extracted samples the non-OT immunoreactive products of uncertain nature account for most of the measured immunoreactivity (McCullough et al., 2013). With respect to other bodily fluids, such as saliva and urine, it has been demonstrated that the estimated levels are highly discrepant and weakly correlated to plasmatic levels (McCullough et al., 2013).

4.2. Recommendations for methodological improvement

It is of crucial importance that future research in this field aim at method validation and standardization before the results of studies exploring the role of neuropeptides in physiology and disease can be considered meaningful.

The samples obtained by EIA, even following the assay manufacturers’ recommendations to extract samples, contain multiple non-OT immunoreactive molecules, still to identify. It is therefore pivotal to clarify whether those are reflecting the turnover of bioactive OT, or are non-related reactants. Moreover, assays with high degree of sensitivity and specificity, such as two-dimensional liquid chromatography separation with tandem mass spectrometry detection, could be used as reference for validation of techniques as RIA and EIA and to confirm the presence of OT and ADH in other biological fluids, such as saliva and urine, where less knowledge is available.

Furthermore, pre-analytical errors should be avoided and systematic evaluation and standardization of pre-analytical procedures should be conducted. In particular, consideration should be payed to variations in the levels of the hormones related to circadian patterns and other physiological conditions (e.g., fasting or post-prandial state, sexual activity, menstrual cycle, pregnancy), time of day and environmental features during collection, tube additives (e.g., EDTA and citrate), use of protease inhibitors and storage conditions.

4.3. Peripheral vs central levels

Our results provide meta-analytical confirmation for the concern, increasingly expressed by many authors, about the lack of neurophysiological evidence of a direct relationship between peripheral levels of OT and ADH and their central release and activity (Grinevich et al., 2015; Kagerbauer et al., 2013; Leng and Ludwig, 2015; Ludwig and Leng, 2006; McCullough et al., 2013; Neumann, 2007). Originally, ADH and OT have been described as hormones, involved respectively in antidiuresis, osmolality regulation, direct vasoconstriction and hepatic glycogenolysis (Appelgren, 1982; Robertson, 2001) and labor (Husslein, 1984), lactation (Crowley, 2015), and sexual activity (Carmichael et al., 1987). Under physiological conditions, the primary drive for ADH peripheral secretion is plasma osmolality. It is unlikely that this homeostatic constraint can be chronically overridden by erratic triggers, such as socioemotional stimuli (Kagerbauer et al., 2013).
Study name and Year of publication	Total	Selection	Representativeness of the cases	Selection of controls	Definition of controls	Comparability	Exposure	Ascertainment of OT/ADH level	Same method of ascertainment for cases and controls	Missing data rate
Plasma/Serum Oxytocin in Autism Spectrum Disorders										
Modahl et al. (1998)	6	⋆								
(a) Al-Ayadhi (2005)	3	⋆								
(a) Miller et al. (2013)	4	⋆								
Alabdali et al. (2014)	3	⋆								
(a) Taurines et al. (2014)	6	⋆								
Overall	4.60	(± 1.817)								
Saliva Oxytocin in Autism Spectrum Disorders										
Feldman et al. (2014)	5	⋆								
Fujisawa et al. (2014)	4	⋆								
Overall	4.50	(± 0.707)								
Plasma/Serum Oxytocin in Bipolar Disorder										
Ozsoy et al. (2009)	1	⋆								
Tura et al. (2013)	4	⋆								
(a) Rubin et al. (2014)	7	⋆								
Overall	4.00	(± 3.00)								
CSF Oxytocin in Major Depressive Disorder										
(a) Pitts et al. (1995)	4	⋆								
(a) Sasayama et al. (2012)	5	⋆								
Overall	4.50	(± 0.707)								
CSF Oxytocin in Psychosis										
(a) Beckmann et al. (1985)	3	⋆								
Glovinsky et al. (1994)	1	⋆								
(b) Sasayama et al. (2012)	5	⋆								
Overall	3.00	(± 2.00)								
Plasma/Serum Oxytocin in Psychosis										
Goldman et al. (2008)	1	/								
Kori et al. (2009)	4	⋆								
Rubin et al. (2010)	3	⋆								
(a) Rubin et al. (2013)	6	⋆								
Walss-Bass et al. (2013)	7	⋆								
(a) Jobst et al. (2014)	4	⋆								
(a) Rubin et al. (2014)	7	⋆								
(a) Strauss et al. (2015)	5	/								
Overall	4.63	(± 2.066)								
CSF Oxytocin in Obsessive-Compulsive Disorder										
(a) Leckman et al. (1994)	5	⋆								
Altemus et al. (1999)	3	⋆								
Overall	4.00	(± 1.414)								
CSF Oxytocin in Anorexia Nervosa										
(a) Demitrack et al. (1990)	2	⋆								
(a) Frank et al. (2000)	6	⋆								
Overall	4.00	(± 2.828)								
Plasma/Serum Oxytocin in Anorexia Nervosa										
Lawson et al. (2011)	7	⋆								
Lavon et al. (2012)	7	⋆								
Overall	7.00	(± 0.000)								
CSF Oxytocin in Bulimia Nervosa										
(b) Demitrack et al. (1990)	2	⋆								
(b) Frank et al. (2000)	6	⋆								
Overall	4.00	(± 2.828)								
Plasma/Serum Antidiuretic Hormone in Autism Spectrum Disorder										

(b) Al-Ayadhi (2005)										
(b) Miller et al. (2013)										
Overall										
4.67 (± 2.082)										

Plasma/Serum Antidiuretic Hormone in Bipolar Disorder
Padfield et al. (1977)
(c) Rubin et al. (2014)
Overall
4.00 (± 4.243)

CSF Antidiuretic Hormone in Major Depressive Disorder
(a) Sorensen et al. (1985)
(b) Pitts et al. (1995)
Heuser et al. (1998)
Overall
3.33 (± 1.155)

Plasma/Serum Antidiuretic Hormone in Major Depressive Disorder
(b) Sorensen et al. (1985)
Inder et al. (1997)
Rubin et al. (1999)
Goldstein et al. (2000)
Goekoop et al. (2006)
Overall
3.67 (± 1.033)

Plasma/Serum Antidiuretic Hormone in Psychosis
(d) Sorensen et al. (1985)
Ensley et al. (1989)
Sarai and Matsunaga (1989)
Ohsawa et al. (1993)
Kudoh et al. (1998)
Elman et al. (2003)
Ryan et al. (2004)
Walsh et al. (2005)
(b) Rubin et al. (2013)
(b) Jobst et al. (2014)
(d) Rubin et al. (2014)
Overall
2.50 (± 0.707)

Plasma/Serum Antidiuretic Hormone in Psychosis
(a) Gold et al. (1983)
(c) Frank et al. (2000)
Overall
4.00 (± 1.414)

CSF Antidiuretic Hormone in Anorexia Nervosa
(a) Gold et al. (1983)
(c) Frank et al. (2000)
Overall
4.00 (± 2.282)

Plasm/Serum Antidiuretic Hormone in Bulimia Nervosa
(b) Gold et al. (1983)
Evarid et al. (2004)
Overall
3.50 (± 2.121)

a Selection: (1) Diagnostic adequacy: A, yes, with independent validation; B, yes, e.g. record linkage or based on self reports; C, no description. (2) Representativeness of the cases: A, consecutive or obviously representative series of cases; B, potential for selection biases or not stated. (3) Selection of controls: A, community controls (same community as cases); B, hospital controls; C, no description. (4) Definition of controls: A, no history of Diagnosis; B, no description of source.

b Comparability: Comparability of cases and controls on the basis of the design or analysis: A, study controls for sex and age; B, study controls for any additional factor.

** Exposure: (1) Ascertainment of OT/ADH level: A, laboratory analyst where blind to case/control status; B, laboratory analyst not blinded to case/control status; C, no description. (2) Same method of ascertainment for cases and controls: A, yes; B, no. (3) Missing data rate: A, same rate for both groups; B, non respondents described; C, rate different and no designation.
On the other hand plasma OT levels are stable, except in pregnancy (Leng and Ludwig, 2015), but may be regulated independently from central OT as suggested by converging evidence from animal studies (Ludwig et al., 1994; Moos et al., 1989). In humans no correlation was found between central and plasma OT in pregnant women (Altemus et al., 2004) and suicide attempters (Jokinen et al., 2012).

The mechanisms explaining such dissociation between central and peripheral compartments are barely understood. Separate and independent neuropeptide synthesis and vesicle routing and targeting have been shown in the somata (for peripheral secretion and somatic release) and in dendrites (for dendritic release), which might account for independent central and peripheral release patterns (Landgraf and Neumann, 2004). The axons of the magnocellular neurons (MCN) of the PVN and SON nuclei of the hypothalamus project to the posterior pituitary from which they can be secreted into the peripheral bloodstream to exert their hormonal actions (Ludwig and Leng, 2006; Marazziti and Catena Dell’osso, 2008). A substantial amount of ADH and OT are released from soma and dendrites into the extracellular space, where the neuropeptides act as autocrine or paracrine signals and diffuse toward distant brain sites. The axons of the parvocellular neurons of the PVN project centrally (Ludwig and Leng, 2006). Axonal and dendritic/soma release may be independently regulated by the MCNs through inhibitory mechanisms – mediated by corticosterone, GABA, endogenous opioids, the atrial natriuretic peptide and ADH itself – which selectively block the peripheral secretion (Wotjak et al., 1998).

The utility of CSF assays is more controversial. In fact, although the extracellular fluid of the brain interconnects freely with the CSF, the contribution of centrally released neuropeptides to CSF levels depends on several factors, as they eventually reach the CSF after having induced central effects by binding to specific receptors and having been possibly degraded by enzymes. It is plausible that once diffused in the CSF, the neuropeptides may have lost their biological activity, since they are unlikely to pass back into the brain parenchyma against the concentration gradient to act on their receptors. Furthermore, the blood–brain barrier prevents ADH and OT to reflux into the central compartment (i.e., brain parenchyma and CSF) once they have reached the peripheral one (i.e., blood and peripheral organs) (Kagerbauer et al., 2013; Mens et al., 1983). Further, peptides appear to have a short plasma half-life (1–2 min) and a slightly longer central half-life (~30 min) (MacDonald and MacDonald, 2010). Given to a positive feedback, once dendritic release is triggered, it is self-sustaining and long-lasting (Ludwig and Leng, 2006). Priming persisting for at least 90 min (Ludwig et al., 2002) allows peptides to survive for long enough to diffuse to distant sites. Also long-lasting changes induced in other transmitter systems may further extend their biological activity and behavioural effects (MacDonald and MacDonald, 2010; Uvanas-Moberg et al., 2005).

4.4. Psychosis

Overall, we found no convincing evidence that either plasmonic or CSF ADH and OT levels are altered in Psychosis. We also investigated whether the peripheral ADH impairments in Psychosis were associated with the illness phase. It has been argued that psychotic exacerbations may be concurrent with a transient reset of the osmostasis for ADH secretion, elevated plasma levels of the neuropeptide and eventually water imbalance, as an epiphemomenon of dysfunctions in hypothalamic pituitary adrenal (HPA) axis response to psychological stimuli (Goldman, 2009). However, we found no meta-analytical evidence for peripheral ADH differences between first episode and chronic Psychosis.

Despite this findings should be interpreted in the light of a body of literature that has demonstrated a role for these neuropeptides in functions which map on to common symptoms and behavioural deficits in psychosis and schizophrenia, in particular in the social cognition domain (MacDonald and MacDonald, 2010). There is considerable evidence of a role these two neuropeptides in various aspects of social behaviour. For example, OT alters response to social cues (Zak et al., 2005) and has an effect on emotion recognition/theory of mind (Domes et al., 2007; Guastella et al., 2010b), fearful face processing (Evans et al., 2010), social anxiety (Heinrichs et al., 2003), paranoia (Legros et al., 1992), and trust behaviour (Baumgartner et al., 2008). Research with ADH in human social cognition is less prevalent but there is evidence that intranasal ADH biases emotional face perception (Thompson et al., 2004), enhances memory encoding of human faces (Guastella et al., 2010b), produces gender-specific changes in perceived friendliness of others, and alters autonomic response to threatening faces (Thompson et al., 2006). ADH has been shown to alter reciprocation of cooperation in males (Rilling et al., 2014) while the ADH Avpr-1a gene, which is involved in social bonding in humans (Walum et al., 2008), has been shown to influence the money people will give to others in an economic game (Knafo et al., 2008). As the present analysis investigates between-group differences, not within-group effects our results do not contradict the potential role of these neuropeptides in the symptoms of psychosis per se. In schizophrenia, patients have been shown to produce a failure in the trust-related increases in OT seen in controls (Keri et al., 2009) and OT levels have been shown to correlate inversely with symptomatology (including suspiciousness and paranoia) and prosociality (Rubin et al., 2010), as well as capacity to identify facial emotions (Goldman et al., 2008). Neuropeptides have also been reported to normalise raised ADH plasma levels in patients with schizophrenia (Raskind et al., 1987).

Furthermore, there is also emerging preclinical and clinical evidence supporting the potential for manipulation by exogenous delivery of these two neuropeptides. Administration of OT either intracerebrally or subcutaneously effectively reverted behavioural deficits in rodent models of schizophrenia (Macdonald and Feifel, 2012). Single-dose studies in humans proved OT ability to improve the processing of emotional and social stimuli in subjects affected by schizophrenia (MacDonald and MacDonald, 2010). Finally, the results of two recent clinical trials of exogenous OT (intranasal administration; dose: 24 IU twice daily (Pedersen et al., 2011) and 40 IU twice daily (Feifel et al., 2010)) in patients with schizophrenia suggest a therapeutic effect across different symptom domains with good safety and tolerability both in short-term and long-lasting use. Nevertheless, a recent meta-analysis examining the effects of OT on psychotic symptoms and social cognition found weak and inconsistent evidence, mainly because of methodological limitations, similarly as the ones observed by our current analysis (Cumley et al., 2014).

4.5. ASD

We did not find evidence that peripheral ADH and OT levels are impaired in ASD, in contrast with converging evidence from animal models of ASD and human studies which implicate alterations in the function of the OT system within ASD. The results align with concerns that these measures are not reliable proxies of the central release and activity of these neuropeptides. In preclinical animal models of neurodevelopmental disorders, autistic-like symptoms were shown to be accounted by alterations of trafficking and/or release of OT from axonal terminals and to be rescued after OT administration (Grinevich et al., 2015). Clinical trials with exogenous OT, administered either via intravenous infusion or intranasal spray, have produced contradictory results, ranging from positive outcomes in a variety of ASD psychopathology.
domains, namely emotion recognition (Guastella et al., 2010a), social cognition (Andari et al., 2010), and core autistic repetitive behaviours (e.g. ordering, compulsion to tell/ask and touching) (Hollander et al., 2003), to modest (Anagnostou et al., 2012) or null clinical improvement (Anagnostou et al., 2014). Although ADH is less commercially available, the few reports to date show some promise that ADH may exert gender-specific positive effects on processes related to empathic ability (Thompson et al., 2006). Nevertheless the findings in human studies should be interpreted cautiously and confirmed in larger trials.

4.6. BD and MDD

Plasmatic and CSF neuropeptide levels were not significantly altered in affective disorders (BD and MDD) compared to matched healthy controls.

Again these results indicate that peripheral OT and ADH levels are not reliable biomarkers of BD/MDD. In contrast to the null findings shown here, several preclinical and clinical data provide evidence of the association between ADH and affective disorders (BD and MDD). ADH is involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, which has been found to be overactive in BD (Cervantes et al., 2001; Daban et al., 2005) and MDD (Carroll et al., 1981; Dinan, 1994; Holsboer, 2000). Post-mortem brain tissues of patients with MDD and BD contain a greater number of ADH-immunoreactive neurons in the hypothalamic PVN (Merali et al., 2006). Therefore, antagonists of V1b receptor have been developed and tested in rodents as potential new strategies for the treatment of affective disorders, whose efficacy in humans does still need clarification (Griebel et al., 2012).

4.7. OCD, AN and BN

Our meta-analysis did not detect significant alterations of ADH and OT in OCD and BN. A difference in serum OT levels could be observed between patients suffering from AN and healthy comparisons. The reliability of peripheral ADH and OT levels as biomarkers of AN is weakened by the global hypothalamic-pituitary dysfunction, the impact of fluid and sodium restriction and purging behaviours observed in AN and the putative role of the two hormones in the regulation of the gut brain axis and energy homeostasis (Blevins and Ho, 2013). In fact, both neuropeptide levels end to be restored after body weight recovery (Gold et al., 1983). Therefore, once again our findings should be interpreted considering that peripheral levels of OT and ADH are unreliable proxy measures of their central activity.

4.8. Limitations

There are some significant limitations to our study. The subgroups were very small in sample sizes. However, as recommended in the Cochrane Handbook for Systematic Reviews of Interventions meta-analyses provide statistical combination of results from two or more separate studies ((Higgins and Green, 2011), Chapter 9, page 244). The studies included were highly heterogeneous. For example, despite evidence that patients with schizoaffective psychoses may have clear distinctive features as compared to schizophrenic psychoses (Pagel et al., 2013), they were included in some of the articles in the Psychosis subgroup (OT: 6 out of 11 (Goldman et al., 2008; Rubin et al., 2014, 2013, 2010; Strauss et al., 2015; Wallis-Bass et al., 2013)); ADH (4 out of 13 (Emsley et al., 1989; Ohsawa et al., 1993; Rubin et al., 2014, 2013)). Correspondingly, psychotic features were unevenly considered as exclusion criteria across the articles investigating affective disorders (BD and MDD). Several confounding factors might have had an impact on the results. 38% of the included studies reported that participants were taking lithium salts (eTable 3). Despite its therapeutic value, lithium exerts adverse effects on the kidney, leading to nephrogenic diabetes insipidus (NDI) in up to 10% of the patients on long term treatment (Bendz and Aurell, 1999; Bendz et al., 1996), which may be expected to be associated with a compensatory increase in ADH release (Watson et al., 2007). As regard OT, preclinical studies in rats found that a systemic injection of lithium leads to a significant elevation of peripheral OT levels (Cui et al., 2001; You et al., 2001). Furthermore, 42 studies out of 62 (68%) failed to control for alcohol intake (not applicable to 2 studies which had recruited only children), which was reported to induce degeneration in numerous neurons in the hypothalamic magnocellular system in rats (Silva et al., 2002). The majority of studies did not ascertain the pregnancy state of female participants (70%, 35 out of 50, condition not applicable to 14 studies because of the characteristics of the sample, see eTable 3 for further details). During pregnancy dramatic structural and functional changes occur in the OT system of the mother’s brain (Hillerer et al., 2014; Rocchetti et al., 2014). Moreover, high levels of oxytocinase secreted by the placenta might further contribute to the final serum/plasma OT levels (Nomura et al., 2005). Finally, only 18% of the studies investigating OT and none of those investigating ADH analyzed the fluctuations of OT levels across the menstrual cycle phases. Studies investigating plasma OT and ADH levels during the menstrual cycle in different species, including humans, found that these fluctuate across the ovarian cycle (Wathes and Swann, 1982). (Spruce et al., 1985). As a consequence, our meta-analytical estimates are affected by high uncertainty and should be considered as a preliminary synthesis of the available literature.

5. Conclusions

The current meta-analysis does not provide convincing evidence that peripheral OT or ADH levels are altered in psychiatric disorders as compared to healthy controls. These findings are characterized by high heterogeneity, various methodological limitations, and poor quality. For more meaningful results to be obtained, methods need to be validated and standardized. Future studies are requested to better address with robust methods and adequate sample sizes the actual role of ADH and OT as biomarkers of mental illnesses.

Acknowledgements

The authors have declared that there are no conflicts of interest in relation to the subject of this study. This work was supported with the resources of the Department of Psychiatry Studies; Institute of Psychiatry, Psychology and Neuroscience; King’s College London, UK. Y.P. was supported in part by an ESRC fellowship [Grant number ES/K009400/1]. Dr P.F.P. was supported in part by a 2014 NARSAD Young Investigator Award.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.psychres.2016.04.117.

References

Alabdali, A., Al-Ayadhi, L., El-Ansary, A., 2014. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J. Neuroinflamm., 11.
Al-Ayadi, L.Y., 2005. Altered oxytocin and vasopressin levels in autistic children in Central Saudi Arabia. Neurosci. Letters 10 (1), 47–50.
Altemus, M., Cizza, G., Gold, P.W., 1992a. Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vivo. Brain Res. 593 (2), 311–313.
Altemus, M., Fong, I., Sarnak, D., Luine, V., Ferguson, D., 2004. Changes in cerebrospinal fluid neurochemistry during pregnancy. Biol. Psychiatry 56 (6), 386–392.
Altemus, M., Pigott, T., Kalogera, K.T., Demitrack, M., Dubbatt, B., Murphy, D.L., Gold, P.W., 1992b. Oxytocin and corticotropin-releasing factor serum levels in obesity-compulsive disorder. Arch. Gen. Psychiatry 49 (1), 9–20.
Altemus, M., Jacobson, K.R., Debellis, M., Kling, M., Pigott, T., Murphy, D.L., Gold, P.W., 1995. Normal CSF oxytocin and NPY levels in OCD. Biol. Psychiatry 45 (7), 931–933.
Anagnostou, E., Soorya, L., Brian, J., Dupuis, A., Mankad, D., Smile, J., Jacob, S., 2014. Intrastral oxytocin in the treatment of autism spectrum disorders: a review of literature and efficacy data in youth. Brain Res. 1686, 188–197.
Anagnostou, E., Soorya, L., Chaplin, W., Bart, J., Halpern, D., Wasserman, S., Wang, A.T., Pepa, L., Tanel, N., Kushiki, A., Holland, E., 2012. Intrastral oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol. Autism 3 (1), 16.
Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M., Sirigu, A., 2010. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. USA 107 (9), 4389–4394.
Appelgren, B., 1982. Reflex and hormonal influences on cerebral control of water–balance – studies of alimentary and cardiovascular factors, and of systemic angiotensin in the regulation of water-intake and adh secretion. Acta Physiol. Scand. 115, 1–39.
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., Fehr, E., 2008. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 58 (4), 639–650.
Bentzon, M.H., Lang, R.E., Gattaz, W.F., 1985. Vasopressin oxytocin in cerebrospinal-fluid of schizophrenic-patients and normal controls. Psychoneuroendocrinology 10 (2), 187–191.
Bendz, H., Aurell, M., 1999. Drug-induced diabetes insipidus: incidence, prevention and management. Drug Saf. 21 (6), 449–456.
Bendz, H., Spjolin, I., Aurell, M., 1996. Renal function on and off in lithium patients treated with lithium for 15 years or more. A controlled, prospective lithium-withdrawal study. Nephrol. Dial. Transplant. 11 (3), 457–460.
Bertsch, K., Schmidinger, I., Neumann, I.D., Herpertz, S.C., 2013. Reduced plasma oxytocin levels in female patients with borderline personality disorder. Horm. Res. Paediatr. 80 (4), 255–261.
Bolin, E., Stenberg, K., Karlsson, L., 2004. The treatment of male gender dysphoria with intranasal oxytocin. Horm. Res. Paediatr. 61 (4), 291–295.
Bos, M., Emanuele, E., Politi, P., Luine, V., Ferguson, D., 2004. Changes in the regulation of vasopressin and corticotropin releasing-factor secretion in obsessive-compulsive disorder. Arch. Gen. Psychiatry 51 (7), 649–650.
Brannan, E.K., Baumann, A.M., 2013. High circulating vasopressin levels after recovery from bulimia nervosa and anorexia nervosa, but not body mass index. Biol. Psychiatry 74 (12), 931–933.
Brooks, J.S., Buxbaum, J.D., 2013. Next-generation sequencing in autism spectrum disorder: a research roadmap and proposed guidelines for study design. Am. J. Med. Genet. A 161, 206–222.
Bylenga, G., Rutigliano et al. / Psychiatry Research 241 (2016) 207–220.
mechanism of labor in humans," Wien. Klin. Wochenschr. Suppl. 155, 1–32.
Inder, W.J., Donald, R.A., Prickett, T.C.R., Frampton, C.M., Sullivan, P.F., Mulder, R.T., Joyce, P.R., 1997. Arginine vasopressin is associated with hypercortisolemia and suicide attempts in depressed. Biol. Psychiatry 42 (8), 744–747.
Higgins, J.T.P., Green, S., 2011. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 ed. The Cochrane Collaboration.
Jobst, A., Dehning, S., Ruf, S., Notz, T., Buchheim, A., Henning-Fast, K., Meissner, D., Meyer, S., Bondy, B., Muller, N., Zill, P., 2014. Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients. Acta Neuropsychiatr. 26 (6), 347–355.
Jokinen, J., Chatzitofis, A., Hellstrom, C., Nordstrom, P., Uvnas-Moberg, K., Asberg, M., 2012. Low CSF oxytocin reflects high intent suicide attempts. Psycho-neuroendocrinology 37 (4), 482–490.
Kagerbauer, S.M., Martin, J., Schuster, T., Blobek, M., Nocks, E.F., Landgraf, R., 2013. Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. J. Neuroendocrinol. 25 (7), 668–673.
Kis, S., Kiss, I., Lehel, C., 2008. SHARAT-secrets: oxytocin and trust in schizophrenia. Soc. Neurosci. 4 (4), 287–293.
Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzeffovsky, F., Cohen, L., Feldman, E., Reger, A., Laiba, E., Avaz, Y., Nemanov, L., Griskeno, L., Dina, C., Agam, G., Dean, B., Bornstein, C., Eibstein, R.P. 2008. Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopine 1 receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes Brain Behav. 7 (3), 266–275.
Kudoh, A., Kudo, M., Ishihara, H., Matsuki, A., 1998. Increased plasma vasopressin and atrial natriuretic peptide in chronic schizophrenic patients during abdom-inal surgery. Neuropsychobiology 37 (4), 169–174.
Landgraf, R., Neumann, I.D., 2004. Vasopressin co-localization release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25 (3–4), 150–176.
Lawson, E.A., Holsen, L.M., Santin, M., Meenaghan, E., Eddy, K.T., Becker, A.E., Herms, W.B., Witter, A., van Wimersma Greidanus, T.B., 1983. Penetration of neurohy-pophysial peptides and psychopathology, in: Swaab, D.F., Hofman, M. (Eds.), Neuroendocrine dysfunction in psychiatric disorders. Curr. Med. Chem. 15 (7), 698–704.
Li, W., Lin, F., Leung, S., Hsu, P., Miller, B.R., Hamblin, A., 2011. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J. Clin. Psychiatry 72 (11), 1546–1551.
Lipsky, P., Wilson, D., 2000. Practical Meta-Analysis. Sage Publications, Thousand Oaks, CA.
Ludwig, M., Leng, G., 2006. Dendrite peptide release and peptide-dependent be-havior. Nat. Rev. Neurosci. 7 (2), 126–132.
Ludwig, M., Callahan, M.F., Neumann, I., Landgraf, R., Morris, M., 1994. Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J. Neuroendocrinol. 6 (4), 369–373.
Ludwig, M., Sabater, N., Bull, P.M., Landgraf, R., Dayanithi, G., Leng, G. 2002. In-tracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418 (6893), 85–89.
Borenstein, M.H.L., Higgins, J., Rothstein, H., 2005. Comprehensive Meta-Analysis Version 2. Biostat, Englewood, NJ, USA.
Rubin, L.H., Carter, C.S., Drogos, L., Pournaja, D., 2004. Evidence of basal pituitary oxytocin and vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Psychoneuroendocrinology 29 (8), 782–792.
Raskind, M.A., Courtney, N., Murburg, M.M., Backus, F.L., Bokan, J.A., Ries, R.K., Dorsa, D.M., Weitzen, R.E., 1987. Antipsychotic-drugs and plasma vasopressin in normals and acute schizophrenic-patients. Biol. Psychiatry 22 (4), 453–458.
Rilling, J.K., Damero, A.C., Hackett, P.D., Chen, X., Gautam, T., Stair, S., Haroon, E., Thompson, R., Ditzen, B., Patel, R., Pagnoni, G., 2014. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology 39, 237–248.
Robinson, B., Gershon, E.S., Sweeney, J.A., 2014. Reduced levels of vasopressin and reduced behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry.
Rogers, J.D., Weitzman, R.E., 1987. Antipsychotic-drugs and plasma vasopressin in normals and acute schizophrenic-patients. Biol. Psychiatry 22 (4), 453–458.
Rutigliano, G., Condren, R., Thakore, J.H., 2004. Evidence of basal pituitary oxytocin and vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Psychoneuroendocrinology 29 (8), 782–792.
Rabin, L.H., Carter, C.S., Drosos, L., Pouarn-jaffi-Nazarhol, H., Sweeney, J.A., Maki, P.M., 2010. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr. Res. 124 (1–3), 13–21.
Rabin, L.H., Carter, C.S., Bishop, J.R., Pouarna-jaffi-Nazarhol, H., Harris, M.S.H., Hill, S.K., Reilly, J.L., Sweeney, J.A. 2013. Peripheral vasopressin but not oxytocin relates to severity of acute psychosis in women with acutely-ill untreated first episode psychosis. Schizophr. Res. 146 (1–3), 138–143.
Rabin, L.H., Carter, C.S., Bishop, J.R., Pouarna-jaffi-Nazarhol, H., Drosos, L.L., Hill, S.K., Ruocco, A.C., Keedy, S.K., Reilly, J.L., Keshavan, M.S., Pearson, G.D., Tamminga, C.A., Gershon, E.S., Sweeney, J.A. 2014. Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. Schizophr. Bull. 40 (6), 1374–1384.
Rabin, R.T, O’Toole, S.M., Rhodes, M.E., Sekula, L.K., Czembal, R.R., 1999. Hypotha-lamopituitary-adrenal cortical responses to low-dose physostigmine and argi-nine vasopressin administration: sex differences between major depressives and matched control subjects. Psychiatry Res. 89 (1), 1–20.
Ryan, M.C.M., Shariff, N., Condon, R., Thakore, J.H., 2004. Evidence of basal pituitary and renal overactivity in first episode, drug naive patients with schizo-phrenia. Psychoneuroendocrinology 29 (8), 1065–1070.
Scioli, G., Matsumana, H., 1989. ADH secretion in schizophrenic-patients on anti-psychotic-drugs. Biol. Psychiatry 26 (6), 576–580.
Sasayama, D., Hattori, M., Teraishi, T., Yamauchi, M., Yoshida, S., Arima, K., Higuchi, T., Amano, N., Kunogi, H., 2012. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr. Res. 139 (1–3), 201–206.
Silva, J.M., Madeira, M.D., Barata, M.M., 2002. Prolonged alcohol intake leads to irreversible loss of vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. Brain Res. 925 (1), 76–88.
Song, Z., McCann, K.E., McNeill, J.R., Larkin 2nd, T.E., Hulme, K.L., Albers, H.E., N.}
2014. Oxytocin induces social communication by activating arginine-vaso-
pressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology 39 (1), 14–19.
Sorensen, P.S., Gjerris, A., Hammer, M., 1985. Cerebrospinal-fluid vasopressin in ne-
urological and psychiatric-disorders. J. Neurol. Neurosurg. Psychiatry 48 (1), 50–57.
Spruce, B.A., Baylis, P.H., Burd, J., Watson, M.J., 1985. Variation in osmoregulation of
arginine vasopressin during the human menstrual-cycle. Clin. Endocrinol. 22 (1), 37–42.
Stoop, R., 2012. Neuronmodulation by oxytocin and vasopressin. Neurosci. 76 (1), 142–159.
Strauss, G.P., Keller, W.R., Koenig, J.I., Gold, J.M., Frost, K.H., Buchanan, R.W., 2015.
Plasma oxytocin levels predict social cue recognition in individuals with schi-
zophrenia. Schizophr. Res. 162 (1–3), 47–51.
Stroup, D.F., Berlin, J.A., Morton, S.C., Olkin, I., Williamson, G.D., Rennie, D., Moher,
D., Becker, B.J., Sipe, T.A., Thacker, S.B., 2000. Meta-analysis of observational
studies in epidemiology: a proposal for reporting. Meta-analysis Of observa-
tional studies in epidemiology (MOOSE) group. JAMA 283 (15). 2008–2012.
Szeto, A., McCabe, P.M., Nation, D.A., Tabak, B.A., Rossetti, M.A., McCullough, M.E.,
Schneiderman, N., Mendez, A.J., 2013. Evaluation of enzyme immunoassay and
radioimmunooassay methods for the measurement of plasma oxytocin. Psy-
chom. Med. 73 (5), 393–400.
Taurines, R., Schwenc, C., Lyttwin, B., Scheckmann, M., Jans, T., Reeschlmann, L.,
Geissler, J., Gerlach, M., Romanos, M., 2014. Oxytocin plasma concentrations in
children and adolescents with autism spectrum disorder: correlation with
autistic symptomatology. Atten. Deficit Hyperact. Disord. 6 (3), 231–239.
Thompson, R., Gupta, S., Miller, K., Mills, S., Orr, S., 2004. The effects of vasopressin
Thompson, R.R., George, K., Walton, J.C., Orr, S.P., Benson, J., 2006. Sex-specific in-
fluences of vasopressin on human facial responses related to social communica-
Psychoneuroendocrinology 29 (1), 35–48.
Thompson, R.R., George, K., Walton, J.C., Orr, S.P., Benson, J., 2006. Sex-specific in-
fluences of vasopressin on human social communication. Proc. Natl. Acad. Sci.
USA 103 (20), 7889–7894.
Turans, T., Uysal, C., Asdemir, A., Kilic, E., 2013. May oxytocin be a trait maker for
biolar disorder? Psychoneuroendocrinology 38 (12), 2890–2896.
Uvanas-Moberg, K., Arn, I., Magnusson, D., 2005. The psychobiology of emotion: the
role of the oxytocinergic system. Int. J. Behav. Med. 12 (2), 59–65.
Uzunova, G., Pallanti, S., Holland, E., 2015. Excitatory/inhibitory imbalance in autism
spectrum disorders: Implications for interventions and therapeutics. World J.
Biol. Psychiatry, 1–13.
van Londen, L., Kerkhof, G.A., van den Berg, F., Goekoop, J.G., Zwinderman, K.H.,
Frankhuizen-Sierenvogel, A.C., Wiegrant, V.M., de Wied, D., 1998. Plasma argi-
nine vasopressin and motor activity in major depression. Biol. Psychiatry 43 (3),
196–204.
Veeninga, A.H., Neumann, I.D., 2008. Central vasopressin and oxytocin release:
regulation of complex social behaviours. Prog. Brain Res. 170, 261–276.
Walsh, P., Spelman, L., Shari, N., Thakore, J.H., 2005. Mate patients with paranoid
schizophrenia have greater ACTH and cortisol secretion in response to meto-
clopramide-induced AVP release. Psychoneuroendocrinology 30 (5), 431–437.
Wals-Bass, C., Fernandes, J.M., Roberts, D.L., Service, H., Velligan, D., 2013. Differ-
ential correlations between plasma oxytocin and social cognitive capacity and
bias in schizophrenia. Schizophr. Res. 147 (2–3), 387–392.
Walum, H., Westberg, L., Hemmingson, S., Neiderhiser, J.M., Reiss, D., Igl, W., Gar-
niban, J.M., Spotts, E.L., Pedersen, N.L., Eriksson, E., Lichtenstein, P., 2008. Ge-
netic variation in the vasopressin receptor 1a gene (AVPR1A) associates with
pair-bonding behavior in humans. Proc. Natl. Acad. Sci. USA 105 (37),
14153–14156.
Watkins, D.C., Swann, R.W., 1982. Is oxytocin an ovarian hormone? Nature 297
(5863), 225–227.
Watson, S., Gallagher, P., Smith, M.S., Young, A.H., Ferrier, I.N., 2007. Lithium, ar-
ginine vasopressin and the dex/CRH test in mood disordered patients. Psy-
choneuroendocrinology 32 (5), 464–469.
Wersinger, S.R., Gims, E.I., O’Carroll, A.M., Loilat, S.J., Young. 3rd, W.S., 2002. Va-
pressin V1b receptor knockout reduces aggressive behavior in male mice.
Mol. Psychiatry 7 (9), 975–984.
Wotjak, C.T., Ganster, J., Kohl, G., Holboer, F., Landgraf, R., Engelland, M., 1998.
Dissociated central and peripheral release of vasopressin, but not oxytocin, in
response to repeated swim stress: new insights into the secretory capacities of
peptidergic neurons. Neuroscience 85 (4), 1209–1222.
Wu, Z.D., Lu, J.H., Song, C.Y., Li, C.L., He, C., 2001. Oxytocin mediates the inhibitory
action of acute lithium on the morphine dependence in rats. Neurosci. Res. 41
(2), 143–150.
Yuen, K.W., Garner, J.P., Carson, D.S., Keller, J., Lembke, A., Hyde, S.A., Kenna, H.A.,
Tennakoon, L., Schatzberg, A.F., Parker, R.J., 2014. Plasma oxytocin concentra-
tions are lower in depressed vs. healthy control women and independent of
cortisol. J. Psychiatr. Res. 51, 30–36.
Zak, P.J., Kurzban, R., Matzner, W.T., 2005. Oxytocin is associated with human
trustworthiness. Horm. Behav. 48 (5), 522–527.