Overexpression of AGAMOUS-like gene PfAG5 promote early flowering in Polypogon fugax

CURRENT STATUS: UNDER REVIEW

BMC Plant Biology

Fengyan Zhou
Institute of plant protection and agro-products safety, Anhui academy of agricultural sciences
zhoufy@aaas.org.cn
Corresponding Author
ORCID: https://orcid.org/0000-0002-5471-6042

Qin Yu
Australian herbicide resistance initiative, school of agriculture and environment, university of western australia

Yong Zhang
Institute of plant protection and agro-products safety, Anhui academy of agricultural sciences

Chuan-Chun Yao
Institute of plant protection and agro-products safety, Anhui academy of agricultural sciences

Yun-Jing Han
Institute of plant protection and agro-products safety, Anhui academy of agricultural sciences

Yan Shen
Institute of plant protection and agro-products safety, Anhui academy of agricultural sciences

DOI: 10.21203/rs.3.rs-24143/v1

SUBJECT AREAS
Plant Physiology and Morphology Plant Molecular Biology and Genetics

KEYWORDS
Polypogon fugax, Arabidopsis thaliana, herbicide resistance, early flowering, flowering regulation, AGAMOUS-subfamily
Abstract

Background: Herbicides are the major tool for controlling large populations of yield depleting weeds. However, overreliance on herbicides has resulted in weed adaptation and herbicide resistance. In recent years, early flowering weed species related to herbicide resistance is emerging, which may cause seed loss before crop harvest, creating a new problem for non-chemical weed management. However, mechanisms regulating early flowering in weedy species is rarely investigated.

Results: The MADS-box gene family plays an important role in flowering time regulation and floral organogenesis. In this study, a homolog gene of AGAMOUS sub-family (referred to as PfAG5) of the MADS-box family was cloned from plants of an early flowering Polypogon fugax population resistant to the ACCase inhibitor herbicide (clodinafop-propargyl). The PfAG5 gene was functionally characterized in Arabidopsis thaliana. Over-expression of the PfAG5 gene in Arabidopsis resulted in early flowering with abnormal flowers (e.g. small petals, short plants and reduced seed set) compared to the wild type. The expression of the PfAG5 gene was high in leaves and flowers, but low in pods in transgenic Arabidopsis. The PfAG5 gene was earlier and higher expressed in the resistant (R) than the susceptible (S) P. fugax plants. Furthermore, one protein (FRIGIDA-like protein) interacting with PfAG5 in R P. fugax was identified by the yeast two-hybrid system with relevance to flowering time regulation.

Conclusions: These results suggest that the PfAG5 gene is prominently involved in modulating early flowering in P. fugax. This study provides the first evidence for the regulation mechanism of early flowering in an herbicide resistant weed species.

Background

Flowering is the most dramatic transition from the vegetative phase to reproductive phase in a life cycle of flowering plants, and hence an important agronomic trait. To achieve reproductive success, the optimal flower timing is critical for flowering plants [1]. Flowering time is regulated autonomously and by environmental factors, such as stress-induced flowering in addition to photoperiodic flowering and vernalization [2].

Many stress factors have been reported to induce flowering, such as light intensity, UV light,
temperature, nutrition and drought, as summarized in previous reviews [3-4]. Herbicide application is also a stress to weedy plants, and it can select for evolution of herbicide resistance [5]. Adaptive changes in seed germination and seedling emergence, flower bud formation and flowering time have also been observed in herbicide resistant biotypes [6-10].

In agriculture, frequent and regular disturbances from plowing and harvesting likely exert a strong selection on weeds for rapid flowering and seed set [11]. For example, highly effective weed seed collection techniques at harvest may exert intense selection for earlier flowering (likely early seed shattering) phenotypes to evade collection, and genetically diverse Raphanus raphanistrum exhibited significant standing genetic variations to adapt to flowering time selection [12]. The ability to reach inflorescence emergence and flowering earlier is an advantage to weed populations allowing them to escape potential eradication by late-season weed management strategies or harvesting [13].

MADS-box genes are key regulators of many aspects of plant reproductive development, especially in flowering time control, inflorescence architecture, floral organ identity determination and seed development. Based on their evolutionary origin, MADS-box genes have been divided into two classes, namely, type I and II. The plant-specific type II MIKC MADS box genes are key regulators of developmental processes, such as flowering time, fruit and seed development [14]. In Arabidopsis, four genes, AGAMOUS (AG), SHATTER PROOF1 (SHP1), SHP2 and SEEDSTICK (STK), compose the monophyletic AG-subfamily within the MADS-box gene phylogeny [15-16]. Members of the AG-subfamily are involved in the specification of floral reproductive organs and required for normal development of carpels and fruits [17]. For instance, when expressed in Arabidopsis the AG-subfamily genes from Gossypium hirsutum regulate flower development and fruit formation [18]. The MIKC-type genes can be subdivided into 12 major gene clades, including floral promoters (e.g. AGAMOUS-like24, SOC1) and repressors (e.g. FLM/MAF1, FLC). These flowering genes generally exert their function by influencing ‘meristem identity genes’ which control the transition from inflorescence to floral meristems [19].

In our previous study, we found that the R Polypogon fugax population was resistant to ACCase-inhibiting herbicides clodinafop-propargyl, fluazifop-p-butyl, haloxyfop-R-methyl, quizalofop-p-ethyl
and fenoxaprop-p-ethyl, relative to the susceptible population [20]. Plants of the R. P. fugax population were found earlier in head emergence, flowering, and seed maturation than that of the S population [21]. Transcriptome analysis identified a flowering-related contig (CL10710.contig2) belonging to the AGAMOUS-subfamily of the MADS-box gene family, that had significantly higher expression at the flowering stage in the R. P. fugax versus the S. P. fugax [22]. To determine the role of the contig (CL10710.contig2, and thereafter named as PfAG5) in flowering time regulation, we cloned the full-length cDNA sequence of the PfAG5 gene from R. P. fugax and transformed Arabidopsis. We analyzed the expression pattern of PfAG5 gene as well as other six endogenous flowering regulation genes in transgenic Arabidopsis plants. Furthermore, we identified a PfAG5 interaction protein in R. P. fugax by the yeast two-hybrid system. This is the first study on the regulation mechanism of early flowering in a weedy plant species. This knowledge will aid in future genetic approaches for better weed control strategies.

Results

Cloning of PfAG5 cDNA coding sequence from R. P. fugax

The PfAG5 coding sequence (GenBank accession number MK559453) is 831 bp encoding a 277-amino acid protein with 91% and 88% identity respectively to Hordeum vulgare subsp. Vulgare AGAMOUS-like protein 1 HvAG1 (AAL93196.1) and Aegilops tauschii WAG-2f MADS box transcription factor (ALM58837.1). A phylogenetic tree was constructed to determine the relationship of PfAG5 protein with AGAMOUS-like proteins of other plant species. As shown in Supplementary Fig. S1A, PfAG5 belongs to the family of AGAMOUS homologs from monocots, and is closely related to AGAMOUS-like proteins from H. vulgare subsp. Vulgare, Triticum aestivum and A. tauschii. Sequence alignment revealed that PfAG5 has a conserved DNA-binding SRF-type TF domain, MADS-box domain and AG Motif (Supplementary Fig. S1B).

Overexpression of PfAG5 in Arabidopsis induces early flowering with abnormal flowers

Phenotypes of 20 independent homozygous T3 transgenic lines were examined. Arabidopsis plants overexpressing PfAG5 flowered 15–16 days earlier and produced 5–6 fewer rosette leaves than wild type Arabidopsis (WT) and empty plasmid transgenic (Mock) plants under long day (LD) conditions.
(Table 1, Fig. 1A). Under short day (SD) conditions, PfAG5 transgenic plants flowered approximately 50–60 days earlier and produced 35–38 fewer rosette leaves than control plants (Table 1, Fig. 1B).

Treatment	Rosette leaves	Flower time (day)	Pod Numbers	Plant Height (cm)	Seed Yields (g plant⁻¹)
Long day condition					
WT	14.0 ± 0.25 b	27.7 ± 0.23 b	272 ± 12 b	38.2 ± 0.48 b	0.1466 ± 0.0023 b
PfAG5	9.0 ± 0.22 a	12.9 ± 0.17 a	43 ± 4 a	12.9 ± 0.93 a	0.0113 ± 0.0013 a
Mock	14.0 ± 0.27 b	28.5 ± 0.23 b	276 ± 9 b	41.4 ± 1.19 b	0.1461 ± 0.0052 b
Short day condition					
WT	47.0 ± 1.12 b	77.8 ± 0.95 b	63 ± 1 b	49.0 ± 0.36 b	0.0323 ± 0.0007 b
PfAG5	10.5 ± 0.17 a	21.5 ± 0.31 a	15 ± 1 a	20.1 ± 0.28 a	0.0033 ± 0.0001 a
Mock	45.1 ± 0.90 b	81.2 ± 1.60 b	64 ± 1 b	50.3 ± 0.31 b	0.0326 ± 0.0006 b

Different letters in a column indicate significant difference by Duncan's multiple comparison test P < 0.01.

In contrast to control plants, all the PfAG5 transgenic Arabidopsis plants displayed abnormal growth as narrow and curly leaves in the seedling stage, and very short petals (Fig. 2). No differences were observed in morphology of pods and seeds (Supplementary Fig. S2), but plant height, pod number and seed yield were all lower in PfAG5 transgenic plants than in WT and Mock controls (Fig. 1 and Table 1). Thus, expression of PfAG5 in Arabidopsis resulted in the phenotype of early-flowering with abnormal flowers.

Expression pattern of PfAG5 and Endogenous Genes Involved in Flowering in transgenic Arabidopsis

Expression pattern of pfAG5 in different tissues of transgenic Arabidopsis plants (35S::PfAG5) were analyzed by qRT-PCR. Results showed that PfAG5 was constitutively expressed in leaves and flowers, and the expression level of PfAG5 was significantly higher in leaves and flowers, but lower in young pods than controls (Fig. 3). This is similar to the MADS-box gene of Brachypodium distachyon BdMADS33 which showed weak expression signal in young seed [23].

In PfAG5 transgenic Arabidopsis plants, higher expression of other Arabidopsis endogenous genes CONSTANS (CO), SUPPRESSOR OF CONSTANS OVEREXPRESSION1 (SOC1), and lower expression of the FLOWERING LOCUS C (FLC) gene were found in comparison to WT, in the whole-above ground material at the flowering stage. No difference in APETALA1 (AP1) expression was found (Fig. 4).

Identification of PfAG5 interaction proteins in R P. fugax

Three proteins (AD1, AD2, AD3) interacting with PfAG5 in R P. fugax were identified by the yeast two-
hybrid system and validated as positives in yeast by one-to-one interaction experiment (Fig. 5A).
The AD1 showing 91% and 87% amino acid sequence identity to A. tauschii subsp. tauschii FRIGIDA-like protein 3 (XM_020321692) and B. distachyon FRIGIDA-like protein 3 (XM_003577031.4), respectively. The AD2 showing 82% and 77% sequence identity to A. tauschii subsp. tauschii Agamous-like MADS-box protein AGL66 (XM_020339220.1) and Panicum hallii Agamous-like MADS-box protein AGL104 (XM_025966163.1), respectively. And the AD3 showing 93% sequence identity to Lolium perenne MADS2 (AY198327.1) and Avena sativa fruitful-like MADS-box transcription factor (FUL2) (DQ792967.1), respectively.

Expression pattern of PfAG5 and the interacting proteins in P. fugax
The expression patterns of PfAG5 and the three interacting proteins were compared at different developmental stages (the seedling, tillering and flowering stages) and between R and S plants. The early flowering stage of the R plants corresponded to the heading stage of the S plants. The expression of PfAG5 in both S and R plants was significantly increased (by 5.7- and 10.2-fold, respectively) at the flowering stage as compared to the seedling stage. However, PfAG5 expression was significantly higher in the R than the S plants at the tillering and flowering stages (Fig. 5B). For instance, the transcript level of PfAG5 reached 3-fold higher in the early flowering stage of R than that of S (while S still at the heading stage) (Fig. 5B).
Conversely, the expression of AD-1 was 1.86-fold lower at the early flowering stage of R than the S plants, while there was no significant differences at the seedling and tillering stages. While the expression of AD-2 was consistently lower in the R than in the S plants at all stages, there was no clear pattern in the expression of AD-3 (Fig. 5B).

Discussion
Flowering time of many weedy species is synchronized with that of crops [24], so weeds often mature concurrently with crops. Due to herbicide and non-herbicide weed control selection pressures, changes in weed growth and reproduction have been evolved to adapt to the environment, including changes in flowering time [6, 12]. For instance, in a glyphosate resistant population of Conyza bonariensis from Brazil, the first floral bud formation was observed 28 days earlier than the
glyphosate susceptible population [9]. An ALS resistant population of *Apera spica-venti* flowered 13 days earlier than the susceptible population at a certain crop density [10]. Panicles of the ACCase herbicide resistant (due to the 2041 mutation) *Hordeum glaucum* biotype emerged approximately 20 days earlier than that of susceptible biotype in the field [25]. The ACCase herbicide resistant (due to the 1781 mutation) *Setaria viridis* plants flowered and matured earlier, but producing 24% more seeds than the susceptible plants [6].

In our previous study, we found that an ACCase inhibitor resistant (due to the 2041 mutation) *P. fugax* population reached the tiller and panicle emergence and seed shedding stages 6, 10 and 12 days respectively earlier than the S population [26]. Working with this early flowering population, we identify an AGAMOUS- subfamily gene *PfAG5* that is involved in early flowering in R population in this study. The AG-like gene subfamily includes members involved in the specification of stamen, carpel and ovule. Phylogenetic analysis showed that *PfAG5* groups into AG-like clade in MADS-box genes of other plants, and is homologous to the *A. tauschii* AG-type genes as WAG-2f and WAG-2 g [27], and *Triticum aestivum TaAGL39* [28]. Overexpression of AGL79 in Arabidopsis result in the narrow leaf shape, fewer number of leaves and early flowering [29], which are consistent with the phenotypes of *PfAG5* transgenic Arabidopsis plants.

It is known in Arabidopsis that the floral integrator FLOWERING LOCUS T (*FT*) is a key regulator of flowering time [30], and transcription factor *CO* activates the expression of *FT* [31], promoting early flowering. In deed in our experiment, we found that the expression of *FT* and *CO* in transgenic Arabidopsis (35S::*PfAG5*) were significantly higher than in WT (Fig. 4). So, we speculate that the *PfAG5* gene promotes the expression of *CO* in transgenic plants, and the high expression of *CO* in turn activates the expression of *FT*. In contrast, the expression of *FLC* can represses the transcriptional activation of the floral integrator genes *FT* and *SOC1* [32], hence inhibiting flowering. In this study, *FLC* expression was inhibited in *PfAG5* transgenic plants, which may release repression of *FT* and *SOC1* (Fig. 4).

Available genetic and molecular evidence suggests that *LFY* and *API* together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional
programs [33]. It is known that AP1 plays a role in differentiation of sepals and petals [34]. However, in the current study, no difference in the expression of AP1 was detected in PfAG5 transgenic Arabidopsis plants and WT at the flowering stage. In this case we speculate that the morphological change in petals of PfAG5 transgenic plants may be related to genes other than AP1. Similarly, expression of DcaAP1, DcaAP2 and DcaAP3 in Dianthus caryophyllus did not significantly differ in petals of different flower phenotypes [35]. It was found that overexpression of LEAFY (LFY) resulted in early flowering [36], likely via causing precocious development of flowers, converting the inflorescence shoot into a single terminal flower [37]. So the high expression of LFY in PfAG5 transgenic plants may be related to the early flowering and abnormal flower (Fig. 4).

Plants with a shorter vegetative phase have less time to build up resource-gathering organs for seed production, so early flowering can be expected to decrease the reproductive output [38]. Indeed, we found that overexpression of PfAG5 in Arabidopsis resulted in not only early flowering and flower morphological changes, but also significant decline in seed production (Table 1). Arabidopsis plants transformed with Carnation AG genes (DcaAGa, DcaAGb) also showed petal loss, short siliques, and seed sterility [35], and this is similar to the flower phenotype of PfAG5 transgenic plants, except for seed activity. These results imply that PfAG5 gene is a flowering time promoter for the efficient expression of other flowering time regulatory genes, causing early flowering and abnormal flowers. But how about the possible flowering regulation pathways of PfAG5 in R P. fugax population? In this current study we identified three PfAG5 interacting proteins sequences of AD-1, AD-2 and AD-3, with homology to FRI3, AGL66 and FUL2 gene respectively. In Arabidopsis, the FRI promotes later flowering by enhancing the expression of the flowering repressor gene FLC [39], and RNA silencing of FRI-like protein 3 (FRL3) mRNA induces early flowering in tomato plants [40]. Despite the central role of FLC, most of the variations in flowering time have been correlated with natural allelic diversity of FRI [41]. For instance, among FRIGIDA orthologues the BnaA3.FRI is tightly associated with flowering time variation in B. napus [42]. In our study, the FRI-like gene (AD-1) was inhibited at the flowering stage of R P. fugax plants, contrary to the high expression of PfAG5 (Fig. 5B). Therefore, inhibition of the FRI (AD-1) gene caused by overexpression of the PfAG5 gene is likely responsible for early flowering in
the resistant *P. fugax* R population.

AGAMOUS LIKE-66 (AGL66), together with other *AGL* genes, constituted a regulatory network for regulating the germination of male germ cells which is related to the flower formation [43]. In this study, the expression of the homology gene *AD-2* was found to be consistently lower in the R than in S *P. fugax* populations (Fig. 5B). We speculate that the inflorescence morphological changes in *P. fugax* R population [26] may be related to the expression of this gene. As there was no clear trend in the expression of *AD-3* (homology to *FUL*), and as *AP1/FUL* gene (*FUL2*) may play a general role in regulating flowering time in monocots [44], we assume that *AD-3* may not play a major role in flowering regulation in *P. fugax*.

Flowering time regulation is a coherent and sophisticated event, involving many genes. But how herbicide resistant (R) *P. fugax* have got higher expression of the flowering genes such as PfAG5 as compared to herbicide susceptible (S) population? Or how early flowering trait is correlated to herbicide resistance? According to Baucam [45], an alteration in a life-history trait in a resistant lineage can be caused by the resistance allele itself (a pleiotropic effect) or could result from genetic linkage between the resistance allele and genes that control the life-history trait. However, the herbicide resistance allele in the R *P. fugax* population was a point Ile-2041-Asn mutation in the plastidic ACCase gene [46], and there has no evidence showing ACCase correlation with flowering time regulation. Rather, genetic linkage between the resistance ACCase allele and flowering genes may be possible. Standing genetic variations in flowering time may exist in *P. fugax* populations, herbicide application may not only have selected for herbicide resistance but also by chance for plants with higher expression of flowering genes. Alternatively, higher expression of flowering genes can be induced by herbicide application, and becomes fixed overtime by such as epigenetic mechanisms in plants having the herbicide resistance allele. The letter can be examined by methylation analysis of the candidate flowering genes. Nevertheless, early flowering (likely early pod shedding) will be a disadvantage for later season weed control strategies aiming to reduce seed bank in the soil via mechanic seed capture at harvest. With the explosion of herbicide resistance evolution, adoption for non-chemical weed control (e.g. mechanical weed seed harvester and destructor) is on
the increase, and hence weed biotypes adapting to this practice will eventually evolved.

Conclusion
This study identified and cloned a gene (PfAG5) and its interacting proteins that are evidently involved in early-flowering regulation in an ACCase inhibitor resistant P. fugax population. This information is useful for better understanding of adaptation to abiotic (herbicide) stress, pleiotropic effect of herbicide resistance evolution in weedy plants, and helpful for better integrated weed management.

Methods

Plant material and growth conditions
Seeds of a P. fugax population resistant to ACCase-inhibiting herbicides (referred to as R population) were collected from Qingsheng County (29° 54’ 1” N, 103° 48’ 57” E), Sichuan Province, China, where clodinafop-propargyl has been used for over five years and failed to control P. fugax in wheat and canola. A susceptible population of P. fugax (referred to as S population) were collected from a non-cultivated area in Xichang City of Sichuan (27° 50’ 56” N, 102° 15’ 53” E), where herbicides have never been used. The original R and S populations of P. fugax were identified by Dr. Wei Tang (China National Rice Research Institute) and Dr. Fengyan Zhou (Anhui Academy of Agricultural Sciences) [20], and these populations were obtained from the wild without any specifically permissive requirement and now are deposited in the specimen room of Anhui Academy of Agricultural Sciences. The current experiments were conducted in the glasshouse of Anhui Academy of Agricultural Sciences, and no specific permissions were required for samples collection. We stated that the field studies were in accordance with local legislation and no specific licenses were required.

Seeds of the fourth generations of the R and S populations were generated by self-crossing and used in this study. After germination, the seedlings were transplanted into individual 1-L pots containing potting medium (1:1:1:2 vegetable garden soil/compost/ peat/dolomite, pH 6.3). Plants were grown in a glasshouse with average day/night temperatures of 20/10°C under natural sunlight.

Arabidopsis thaliana (L.) Heynh Columbia (Col) was obtained from the SALK collection (http://signal.salk.edu/), and used as the wild-type (WT) for transgenic manipulation. The transformed
and untransformed control Arabidopsis seedlings were transplanted into individual 0.25L pots containing potting medium (4:1:1 sphagnum-vermiculite/perlite) and grown at 19°C under 100 µmol m⁻² s⁻¹ photo density of cool white fluorescent light with a photoperiod of either 16/8 h (long day condition, LD), or 8/16 h, light/dark (short day, SD).

Cloning of the PfAG5 cDNA from P. fugax

Total RNA from *P. fugax* R and S plants were isolated using the SGTriEx Total RNA extract Kit (SinoGene), and then used for reverse transcription by Thermo First cDNA Synthesis Kit (SinoGene) according to manufacturer’s instructions. The *PfAG5* cDNA fragment was amplified using the primer pair S1 and S2 based on the contig sequence (Table 2), ligated into the pMD18-T vector, and confirmed by sequencing as partial sequence of an *AGAMOUS*-like gene. The full-length coding sequence of the *PfAG5* gene was obtained using 5’-RACE and 3’RACE with the gene-specific primers GSP1 and GSP2 (Table 2) (Clontech, US), and amplified from plants by the primers FK and RB (Table 2) which include introduced *Hind* III and *EcoR* I restriction sites based on the known 5’ and 3’ sequences.

Primer	Sequences (5'-3')	Purpose
S1	AATGAGCATGAGCAGGACATTGAGC	Clone cDNA fragment
S2	GTCGAAGGCTTGCTGGCGGAGGCTG	5' RACE and 3' RACE
GSP1	GATTTCTGACCTTGGCGCCTTTTGACTC	5'RACE and 3'RACE
GSP2	GAGATCAAGCCCGATCAGAGAACAACAC	Clone full-length cDNA fragment
FK	GGCGCTACATGAGCATGAGCATGAAGGACCG	
RB	GGCGATCCATAGTTGAAGGCGGAGCCG	
pfAG5-F	CATGGAAGCCGAAATTCATGAGCATGATGAGC	Bait vector construction
pfAG5-R	GGCGATCCATAGTTGAAGGCGGAGCCG	
ACTIN8-F	CGTCTTCTGGCCTTGTGACAC	Reference gene for Arabidopsis
ACTIN8-R	CGAACAATTCAGCAGGATCATATT	
FLC-F	GCCCTTCTGCTGCTGCTTC	Analysis of Flowering locus C gene expression in Arabidopsis
FLC-R	GTTCTGCTTCTTGGGCTC	
CO-F	AAGGTGATAAAGATCGGCAAGGAG	Analysis of Constans gene expression in Arabidopsis
CO-R	GGAGCCATATTTGATATTGAACTGA	
SOCI-F	TCAGAACTTGGGCTACTC	Analysis of Suppressor of over-expression of CO1 gene expression in Arabidopsis
SOCI-R	TTCTTTGCTGTCTCCGCTTCC	
API-F	TAAGCAACATCAGCCACAC	Analysis of Apetala 1 gene expression in Arabidopsis
API-R	TTCTTCTGATACAGACACCC	
FT-F	TGCTTGGAGAAGACCTCAGGAAAAC	Analysis of Flowering locus T gene expression in Arabidopsis
FT-R	TGGCAGGCTGTCGGAAGAACATAT	
LFY-F	TGCGAATCTGGCCTGCTGTC	Analysis of LEAFY gene expression in Arabidopsis
LFY-R	TAATACCGCCAACTAAAGCC	
EFI-F	GAACACTTCCAGCCGCTATTG	Reference gene for P. fugax
EFI-R	CAAGACTTCCAGGAGAAGCAAGAAGACA	
pfAG5-F	CAGGCTGGAGAAAGGACATAG	Analysis of pfAG5 expression in P. fugax
pfAG5-R	GGCGATCCATAGCTGGCTTCC	
AD1-F	GCTGAAAACAGCAGAGAAGG	Analysis of AD1 expression in P. fugax
AD1-R	AGTCAAGCTCTATGAGCAGACA	
AD2-F	CCAGTGGACAGAGCAGTGAAGC	Analysis of AD2 expression in P. fugax
AD2-R	TGCTTCTGTCTGCTGTAGGTG	
AD3-F	AGTCAAGCTCTGAGGAGAAGAA	Analysis of AD3 expression in P. fugax
AD3-R	GGCGATCCATTTGTCGCTTTC	

Molecular characterization and phylogenetic analysis of PfAG5

The open reading frame (ORF) of PfAG5 cDNA sequence was identified using the ORF finder software (https://www.ncbi.nlm.nih.gov/orffinder/). For homology analysis, the amino acid sequence of PfAG5 was aligned and compared with the sequences of other species. Phylogenetic analysis was conducted using the neighbor-joining method implemented in MEGA software version 5.0, and the robustness of the inferred phylogeny was validated by including 1000 bootstrap replicates.

Plasmid Construction And Arabidopsis Transformation

The pCAMBIA2300 and pCAMBIA1303 plasmid vectors were digested by Hind III and EcoR I, respectively. The (CaMV) 35S promoter of pCAMBIA2300 (1008 bp) and the large skeleton of pCAMBIA1303 were recovered and purified. Then, T4 DNA ligase (TaKaRa) was used to connect the two parts and a new two-element expression vector pCAMBIA1303-35S:35ST including the 35S
promoter was obtained.
The full-length ORF of PfAG5 gene was ligated into the binary vector pCAMBIA1303-35S:35ST (empty plasmid control, Mock) to generate the plasmid pCAMBIA1303-35S-35ST:PfAG5 (Fig. 6A). The plasmid was transferred into WT Arabidopsis plants (Col) using the floral dipping method. All transgenic Arabidopsis seeds (T₀) were screened on 1/2 MS solid medium containing 50 mg-L⁻¹ hygromycin. Positive transgenic lines (T₁, n = 40) were confirmed by PCR amplification of the hygromycin gene, and the target gene (PfAG5) was visualized by the GUS gene histochemical localization (Fig. 6B). Introduction of the target gene (PfAG5) in T2 generation plants was verified by PCR, and positive plants (n = 27) all showed an early flowering phenotype. Twenty of these lines were used to produce the T3 generation and were used in the following experiments.

Flowering Time And Seed Production Measurements

To measure flowering time, seeds of WT (Col), empty plasmid control (Mock) and PfAG5 transgenic Arabidopsis plants (35S::PfAG5) were surface sterilized with 10% hypochlorite, then placed on MS agar medium and stratified at 4°C for 48 h before being placed at 19°C. Ten-day-old seedlings (at the four leaf stage) were transferred to growth medium (1:4:1 of vermiculite, sphagnum and perlite), and grown under LD or SD conditions.

The flowering time of 20 T3 transgenic lines were recorded from the day of transplanting until the first Arabidopsis flower bloomed. Rosette leaf numbers were recorded when peduncle was 1–2 cm in length, and above-ground plant height and pod numbers were determined on day 55 after transplanting. Seeds were collected on day 62 after transplanting, and weighed after drying at 37°C for 24 h.

Yeast Two-hybrid Assay

Above-ground plant tissue of three R P. fugax plants at early flowering stage were harvested randomly, and the cDNA library (cloned into Prey vector pGADT7) was obtained using the Clontech kit (catalog number 630490). The full-length PfAG5 (with yeast codon optimization) was cloned into vector pGBK7T (Bait vector) and then transformed into the yeast strain Y2HGold (Clontech).
The Matchmaker™ Gold Yeast Two-Hybrid System (Clontech, US) was used to screen the PfAG5 interaction proteins from the R P. fugax library according to the manufacturer’s instructions. The primers used for pGBK7 vector construction were listed in Table 2. To confirm the interactions, the identified Prey and Bait vectors were validated by one-to-one interaction hybridization.

PfAG5 expression analysis in Arabidopsis and P. fugax

To analyze the expression pattern of PfAG5 in different tissues of transgenic Arabidopsis plants, leaf, flower and pod samples from 3–5 T3 lines were collected at the seedling (6–8 leaves), flowering (full open) and podding (new formation) stages. Harvested samples were snap frozen in liquid nitrogen and stored at -80°C until use. In addition, the whole above ground part of PfAG5 transgenic and WT Arabidopsis plants were collected before midday (Zeitgeber time 6, ZT6) at the flowering stage (13 and 28 d after transplanting, respectively) for analysis of the expression patterns of six other Arabidopsis genes relevant to flowering regulation: **CO, SOC1, FT, LFY, FLC** and **AP1**.

Tissue samples of the R and S P. fugax plants were collected at the seedling and tillering stages, and the samples collected at the early flowering stage of R plants correspond to the heading stage of the S plants. The expression of PfAG5 and interacting proteins (AD-1, AD-2 and AD-3) were compared between R and S samples which were collected at the same time.

Total RNA was extracted using the SGTriEx Total RNA extract Kit (SinoGene), and DNA contamination removed by RNase-free DNaseI (Fermentas). The DNA-free RNA was then used for reverse transcription by Thermo First cDNA Synthesis Kit (SinoGene). The primer sequences used for Real-time quantitative PCR are provided in Table 2. The ACTIN8 and EF1 gene was used respectively for normalization of Arabidopsis and P. fugax samples. The qPCR amplification was conducted for up to 40 cycles using the following thermal profile: denaturation at 95°C for 15 s, annealing at 55°C for 15 s and extension at 72°C for 45 s. The RT-qPCR results were presented as means ± SE of three biological replicates each performed in triplicate. Gene expression level was estimated as $2^{-\Delta\Delta Ct}$.

Abbreviations

FLC, Flowering locus C; **CO**, Constans; **SOC1**, Suppressor of over-expression of **CO1**; **AP1**, Apetala 1; **FT**, Flowering
locus T; LFY, LEAFY; FRI, FRIGIDA.

Declarations

Ethics approval and consent to participate

Not applicable

Consent to publish

Not applicable

Availability of data and materials

The identified PfAG5 sequence in this paper has been deposited in the GenBank (accession no. MK559453). Experimental materials are available upon request by qualified researchers to the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was financially supported by the National Key Research and Development Program of China (2016YFD0201305), the National Natural Science Foundation of China (31501658) and the Scientific and Technological Innovation Team for the Application and Evaluation of Pesticide Safety in Anhui Academy of Agricultural Sciences (15C1105). The funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Authors' Contributions

FYZ, QY and YZ conceived and designed the experiments. FYZ, CCY, YJH and YS performed the experiments. FYZ and QY wrote the article. All authors read and approved the final manuscript.

Acknowledgments

We thank Dr. Wei Tang (China National Rice Research Institute) for providing the resistant (R) and susceptible (S) population seeds of Polypogon fugax; Dr. Xiaorong Tao (Nanjing Agriculture University) for providing pCAMBIA2300 and pCAMBIA1303 plasmids.

References

1. Wei J, Liu D, Liu G, Tang J, Chen Y. Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene **SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1**
1. Takeno K. Stress-induced flowering: the third category of flowering response. J Exp Bot. 2016;67:4925-34.

2. Wada KC, Takeno K. Stress-induced flowering. Plant Signaling Behavior. 2010;5:944-7.

3. Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2016;67:47-60.

4. Powles SB, Yu Q. Evolution in action: Plants resistant to herbicides. Annu Rev Plant Biol. 2010;61:317-47.

5. Wang T, Picard JC, Tian X, Darmency H. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity. 2010;105:394-400.

6. Kleemann SGL, Gurjeet SG. Seed Dormancy and Seedling Emergence in Ripgut Brome (Bromus diandrus) Populations in Southern Australia. Weed Sci. 2013;61:222-9.

7. Owen MJ, Martinez NJ, Powles SB. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 2014;54:314-24.

8. Kaspary TE, Lamego FP, Cutti L, de Morais Aguiar AC. Gonsiorkiewicz R, Carlos A, Basso CJ. Growth, phenology, and seed viability between glyphosate-resistant and glyphosate-susceptible hairy fleabane. Bragantia. 2017;76:92-101.

9. Babineau M, Mathiassen SK, Kristensen M, Kudsk P. Fitness of ALS-Inhibitors herbicide resistant population of Loose Silky Betntrass (Apera spica-venti). Front Plant Sci. 2017;8:1660.

10. Barrett SH. Crop mimicry in weeds. Econ Bot. 1983;37:255-82.

11. Ashworth MB, Walsh MJ, Flower KC, Vila-Aiub MM, Powles SB. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish). Evol Appl. 2016;9:619-29.

12. Hill EC, Renner KA, VanGessel MJ, Bellinder RR, Scott BA. Late-Season Weed Management to Stop Viable Weed Seed Production. Weed Sci. 2016;64:112-6.
4. Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM. The Emerging Importance of Type I MADS Box Transcription Factors for Plant Reproduction. Plant Cell. 2011;23:865–72.

5. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L. MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003;15:2603–11.

6. Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS Subfamily of MADS Box genes in Angiosperms. Genetics. 2004;166:1011–23.

7. Dreni L, Kater MM. MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol. 2014;201:717–32.

8. Moura SM, Artico S, Lima C, Nardeli SM, Berbel A, Oliveira-Neto OB, Grossi-de-Sá MF, Ferrándiz C, Madueño F, Alves-Ferreira M. Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones. Plant Reprod. 2017;30:19–39.

9. Becker A, Theißen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol. 2003;29:464–89.

10. Tang W, Zhou F, Chen J, Zhou X. Resistance to ACCase-inhibiting herbicides in an Asia minor bluegrass (Polypogon fugax) population in China. Pestic Biochem Phys. 2014;108:16–20.

11. Tang W, Xu X, Shen G, Chen J. Effect of Environmental Factors on Germination and Emergence of Aryloxyphenoxy Propanoate Herbicide-Resistant and -Susceptible Asia Minor Bluegrass (Polypogon fugax). Weed Sci. 2015;63:669–75.

12. Zhou F, Zhang Y, Tang W, Wang M, Gao T. Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax). BMC Genom. 2017;18:953.

13. Wei B, Zhang RZ, Guo JJ, Liu DM, Li AL, Fan RC, Mao L, Zhang XQ. Genome-Wide Analysis of the
MADS-Box Gene Family in *Brachypodium distachyon*. Plos One. 2014;9:e84781.

4. Tremblay R, Colasanti J. Floral Induction, Annual Plant Reviews Volume 20: Flowering and its Manipulation, ed. by Charles A, Blackwell Publishing Ltd, Oxford. 2007; pp. 28–62.

5. Shergill LS, Boutsalis P, Preston C, Gill GS. Fitness costs associated with 1781 and 2041 ACCase-mutant alleles conferring resistance to herbicides in *Hordeum glaucum* Steud. Crop Prot. 2016;87:60–7.

6. Tang W, Chen J, Yu X, Zhang J, Lu Y. Growth. Fecundity and Competition between Aryloxyphenoxypropionate Resistant and Susceptible Asia Minor Bluegrass (*Polypogon fugax*). Weed Sci. 2019;67:546–51.

7. Wang QH, Yang ZJ, Wei SH, Jiang ZY, Yang YF, Hu ZS, Sun QX, Peng ZS. Molecular cloning, characterization and expression analysis of WAG-1 in the pistillody line of common wheat. Genet Mol Res. 2015;14:12455–65.

8. Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. Characterization and expression of 42 MADS-box genes in wheat (*Triticum aestivum* L.). Mol Gen Genomics. 2006;276:334–50.

9. Gao R, Wang Y, Gruber MY, Hannoufa A. *miR156/SPL10* Modulates Lateral Root Development, Branching and Leaf Morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79. Front Plant Sci. 2018;8:2226.

10. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development. 2008;135:767–74.

11. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316:1033–6.

12. Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. The Arabidopsis FLC protein interacts directly in vivo with *SOC1* and *FT* chromatin and is part of a high-molecular-weight protein complex. Plant J. 2006;46:183–92.

13. Winter CM, Yamaguchi N, Wu MF, Wagner D. Transcriptional programs regulated by both LEAFY...
and APETALA1 at the time of flower formation. Physiol Plantarum. 2015;155:55–73.

4. Pabon-Mora N, Ambrose BA, Litt A. Poppy. APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 2012;158:1685–704.

5. Wang Q, Dan N, Zhang X, Lin S, Bao M, Fu X. Identification, Characterization and Functional Analysis of C-Class Genes Associated with Double Flower Trait in Carnation (*Dianthus caryophyllus* L.). Plants. 2020;9:87.

6. Nilsson O, Lee I, Blazquez MA, Weigel D. Flowering- time genes modulate the response to LEAFY activity. Genetics. 1998;150:403–41.

7. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995;377:495–500.

8. Kralemann LEM, Scalone R, Andersson L, Hennig L. North European invasion by common ragweed is associated with early flowering and dominant changes in FT/TFL1 expression. J Exp Bot. 2018;69:2647–58.

9. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell. 2001;13:935–41.

10. Adkar-Purushothama CR, Sano T, Perreault J-P. Viroid-derived small RNA induces early flowering in tomato plants by RNA silencing. Mol Plant Pathol. 2018;19:2446–58.

11. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11:949–56.

12. Yi L, Chen C, Yin S, Li H, Li Z, Wang B, King GJ, Wang J, Liu K. Sequence variation and functional analysis of a FRIGIDA orthologue (*BnaA3.FRI*) in *Brassica napus*. BMC Plant Biol. 2018;18:32.

13. Verelst JS, Twell D, Folter de S, Immink GH. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol. 2007;8:R249.

14. Preston JC, Kellogg E. A. Reconstructing the evolutionary history of paralogous
5. Baucom RS. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New Phytol. 2019;223:68-82.

6. Tang W, Zhou F, Chen J, Zhou X. Resistance to ACCase-inhibiting herbicides in an Asia minor bluegrass (Polypogon fugax) population in China. Pestic Biochem Phys. 2014;108:16-20.

Figures
Representative flowering phenotypes of PfAG5 transgenic Arabidopsis plants under long day (LD) (A) and short day (SD) conditions (B). Photos were taken 18, 27 and 56d after transplanting under LD conditions, and 24, 70 and 85d after transplants under SD conditions.
Representative images showing phenotypic changes of PfAG5 transgenic Arabidopsis plants compared with the controls (WT and Mock). A. Phenotypic differences in leaves of PfAG5 transgenic plants 14 d after transplanting. B. Flower phenotype diversity of PfAG5 transgenic plants.
Figure 3

RT-qPCR analysis of PfAG5 gene expression in different tissues of Arabidopsis transgenic plants (35S::PfAG5). **indicates significant difference, $P < 0.01$.
RT-qPCR analysis other endogenous flowering-related genes in WT and PfAG5 Arabidopsis transgenic plants (above-ground materials) at the flowering stage. The ACTIN8 gene was used as an internal control. The transcript level in WT was set as the standard, with a value of 1. * indicates significant difference p<0.05; ** Significant difference P<0.01. FLC, Flowering locus C; CO, Constans; SOC1, Suppressor of over-expression of CO1; FT, Flowering locus T; LFY, LEAFY.
Assays of the yeast two-hybrid and expression. (A) Protein interaction was indicated by the ability of yeast cells to grow on synthetic dropout medium lacking Leu/Trp/His/Ade. Genes for PfAG5 and three
interaction proteins identified were cloned into pGBK7T (shown as BD) and pGADT7 (shown as AD), respectively. (B) RT-qPCR analysis of PfAG5 and three interaction protein genes in the resistant population of P. fugax. ** indicates significant difference p<0.01. SS: Susceptible plants at the seedling stage; RS: Resistant plants at the seedling stage; ST: Susceptible plants at the tillering stage; RT: Resistant plants at the tillering stage; SH: Susceptible plants at the heading stage; RF: Resistant plants at the flowering stage.

Figure 6

Construction of PfAG5 transgenic vector and positive lines verification (A) Schematic diagram of the T-DNA region of the binary plasmid (PfAG5 and Mock) used in this study. (B) Expression patterns of the pfAG5 gene in representative transgenic Arabidopsis plants. Plants were grown under long day conditions for 8 d and the whole plants used for GUS staining. WT, wild-type; 35S::pfAG5, PfAG5 transgenic Arabidopsis; Mock, empty plasmid control.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SupplementaryFiguresrevised.docx