DENSITY OF SMALL DIAMETER SUBGRAPHS IN K_r-FREE GRAPHS

ENG KEAT HNG AND DOMENICO MERGONI CECCHELLI

Abstract. We denote by $\text{ex}(n, H, F)$ the maximum number of copies of H in an n-vertex graph that does not contain F as a subgraph. Recently, Grzesik, Győri, Salia, Tompkins considered conditions on H under which $\text{ex}(n, H, K_r)$ is asymptotically attained at a blow-up of K_{r-1}, and proposed a conjecture. In this note we disprove their conjecture.

1. Introduction

Let G, H and F be graphs. We say that G is F-free if it does not contain F as a (not necessarily induced) subgraph. Write $\mathcal{N}(H, G)$ for the number of (unlabelled) copies of H in G. We denote by $\text{ex}(n, H, F)$ the generalized Turán number, which is the maximum value of $\mathcal{N}(H, G)$ in an F-free graph G on n vertices.

A prominent topic of research in extremal graph theory is the behaviour of $\text{ex}(n, H, F)$. The classical case $H = K_2$ was studied by Turán [7] for $F = K_r$ and then by Erdős, Simonovits and Stone [3, 2] for general F. Alon and Shikhelman [1] introduced and initiated the systematic study of $\text{ex}(n, H, F)$ for general choices of H and F.

Extending this line of study, Lidický and Murphy [6] conjectured that given a graph H and an integer $r > \chi(H)$ (where $\chi(H)$ denotes the chromatic number of H), there exists a complete $(r - 1)$-partite graph with asymptotically as many copies of H as possible in a K_r-free graph (which is by definition $\text{ex}(n, H, K_r)$). Grzesik, Győri, Salia and Tompkins [5] recently showed that for every $r \geq 3$ there is a counterexample to the conjecture of Lidický and Murphy. We need some extra definitions to describe their counterexamples.

Let us denote with P_n the path on n vertices and, given a graph G and a positive integer r, let us write G^r for the graph obtained from G by joining every pair of vertices at distance at most k in G. Moreover, given a graph H and a vertex v in $V(H)$, let the graph H' be obtained from H by replacing v with an independent set I_v of size a and by adding a complete bipartite graph between $N_H(v)$ and I_v. We say that H' is obtained from H by blowing up v by a factor of a; we also say that H' is a blow-up of H.

As mentioned above, Grzesik, Győri, Salia and Tompkins [5] constructed a counterexample to Lidický and Murphy’s conjecture. This was done by building a sequence $(F_r)_{r \geq 3}$ of graphs where F_r is obtained from P_{2r-2}^r by blowing up its two endvertices by a large factor dependent on r. Let us note that Gerbner [4] very recently extended the construction of Grzesik, Győri, Salia and Tompkins [5] to general F-free graphs. In the same paper, Grzesik, Győri, Salia and Tompkins [5] proposed a new version of the conjecture.

Conjecture 1 (Grzesik, Győri, Salia and Tompkins [5]). If G is a graph with $\chi(G) < r$ and diameter at most $2r - 2$, then $\text{ex}(n, G, K_r)$ is asymptotically achieved by a blow-up of K_{r-1}.

Date: July 2022.

Research supported by Czech Science Foundation project GX21-21762X and with institutional support RVO:67985807.
2. Counterexamples to conjecture 1

Our main result states that for \(r \geq 4 \) there exists a counterexample to Conjecture 1.

Theorem 1. For any \(r \geq 4 \) and \(\delta > 0 \) there is a graph \(G \) of diameter 2 such that for all sufficiently large \(n \) and any \((r-1)\)-partite graph \(T \) on \(n \) vertices we have

\[\delta \cdot \text{ex}(n, G, K_r) > N(G, T). \]

Proof. Let \(r \geq 4 \). Let \(H \) be the graph obtained from the disjoint union of a copy \(K \) of \(K_{r-3} \) and a copy \(P \) of \(P_6 \) by inserting all edges between \(V(K) \) and \(V(P) \). Write \(x \) and \(y \) for the two endvertices of \(P \) in \(H \). Several examples of \(H \) are depicted in Figure 1 with the vertices \(x \) and \(y \) marked. Fix a positive constant \(\varepsilon < \frac{1}{100(r+1)} \) and a positive integer \(a \) such that \(\frac{\delta}{2} \varepsilon^{r+1} (1 - \varepsilon (r+1))^2a \geq \frac{1}{20^2} \). Write \(G \) for the graph obtained from \(H \) by blowing up both \(x \) and \(y \) by a factor of \(a \). Let \(X \) and \(Y \) be the independent sets corresponding to \(x \) and \(y \) respectively. Observe that the diameter of \(G \), which is equal to the diameter of \(H \), is exactly 2. Observe that \(\chi(G) < r \).

Let \(T \) be a complete \((r-1)\)-partite graph on \(n \) vertices. Let us count the number of labelled copies of \(G \) in \(T \). Observe that \(G \) has a unique \((r-1)\)-colouring (up to relabelling of the colours), and this colouring has the property that all vertices in \(X \) get the same colour, all vertices in \(Y \) get the same colour, and these two colours are different. Hence, there are at most \(n^{r+1} \left(\frac{n}{2} \right)^{2a} \) labelled copies of \(G \) in \(T \).

On the other hand, let us denote by \(Q \) the graph obtained from the disjoint union of a copy \(K \) of \(K_{r-3} \) and a copy \(C \) of \(C_5 \) by inserting all edges between \(V(K) \) and \(V(C) \); let us note that \(Q \) can be obtained from \(H \) by contracting the vertices \(x \) and \(y \) to a new vertex \(z \). Write \(S \) for the graph obtained from \(Q \) by blowing up the vertex \(z \) by a factor of \(n - (r+1)\lfloor \varepsilon n \rfloor \) and every other vertex by a factor of \(\lfloor \varepsilon n \rfloor \). Several examples of \(S \) are depicted in Figure 2. Since \(C_5 \) is triangle-free, we have that \(S \) is \(K_r \)-free. Now since we have at least \(\lfloor \varepsilon n \rfloor^{r+1} \) choices for the vertices of \(Q \setminus z \) and at least \(n - (r+1)\lfloor \varepsilon n \rfloor \) choices for the vertices in \(X \cup Y \), the number of labelled copies of \(G \) in \(S \) is at least

\[\lfloor \varepsilon n \rfloor^{r+1} (n - (r+1)\lfloor \varepsilon n \rfloor)^{2a} - o(n^{2a}). \]

Then, by the definition of \(\text{ex}(n, G, K_r) \) and our choice of \(\varepsilon \) and \(a \) we have

\[\delta \cdot \text{ex}(n, G, K_r) \geq \delta \cdot N(G, S) > N(G, T) \]

as required. \(\square \)

References

[1] N. Alon and C. Shikhelman, *Many T copies in H-free graphs*, J. Combin. Theory Ser. B 121 (2016), 146–172.
Figure 2. Graphs S for $r = 4, 7, 11$

[2] P. Erdős and A. H. Stone, *On the structure of linear graphs*, Bull. Amer. Math. Soc. **52** (1946), 1087–1091.
[3] P. Erdős and M. Simonovits, *A limit theorem in graph theory*, Studia Sci. Math. Hung, 1965.
[4] D. Gerbner, *On weakly Turán-good graphs*, 2022.
[5] A. Grzesik, E. Győri, N. Salia, and C. Tompkins, *Subgraph densities in K_r-free graphs*, arXiv preprint arXiv:2205.13455 (2022).
[6] B. Lidický and K. Murphy, *Maximizing five-cycles in K_r-free graphs*, European J. Combin. **97** (2021), Paper No. 103367, 29.
[7] P. Turán, *Eine extremalaufgabe aus der graphentheorie*, Mat. Fiz. Lapok **48** (1941), 436–452.

(EKH) Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic
Email address: hng@cs.cas.cz

(DMC) London School of Economics, Department of Mathematics, Houghton Street, London WC2A 2AE, UK
Email address: d.mergoni@lse.ac.uk