ORIGINAL RESEARCH PAPER

Fuzzy filtering-based fault detection for a class of discrete-time conic-type nonlinear systems

Jiancheng Wang | Shuping He

Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education), School of Electrical Engineering and Automation, Anhui University, Hefei, People's Republic of China

Correspondence
Shuping He, Key Laboratory of Intelligent Computing and Signal Processing (Ministry of Education), School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China. Email: shuping.he@ahu.edu.cn

Funding information
National Natural Science Foundation of China, Grant/Award Number: 61673001

Abstract
The authors investigate the problem of fuzzy fault detection filter (FFDF) design for a class of discrete-time conic-type nonlinear systems. By applying Takagi–Sugeno fuzzy models, the conic-type dynamic FFDF system is established. Then, utilizing the Lyapunov function method to find a sufficient condition which ensures that the conic-type dynamic FFDF system is asymptotically stable. After that, using linear matrix inequalities techniques, the FFDF design problem is transformed into an optimization algorithm. Finally, the simulation results demonstrate that the designed FFDF is effective for detecting the faults.

1 | INTRODUCTION

In recent years, due to the increasing requirements for security and stability in modern industrial systems, the fault detection (FD) problem of the dynamic systems has been widely studied by many scholars [1–3]. In the existing FD results, the model-based FD [4–6] is a more effective one. Within the FD procedure, the residual signal can be obtained by designing a measurable output estimator and construct an evaluation function to judge whether the faults occur. Then, a predefined threshold has to be selected. If the evaluation function exceeds the given threshold, a fault alarm will be generated. As a kind of model-dependent FD methods, the H_∞ filtering-based scheme is widely used. In the H_∞ filtering formulation, an H_∞ performance index is designed that makes the fuzzy fault detection filter (FFDF) system be sensitive to faults and robust to external disturbances. In fact, the H_∞ filtering problem has been widely adopted to detect the faults for uncertain systems [7,8], discrete systems [9,10], nonlinear systems [11,12], etc.

On the other hand, by employing a group of fuzzy IF-THEN rules, the Takagi–Sugeno (T–S) fuzzy models were first presented in [13]. By this linearized method, T–S fuzzy models are employed to denote the local linear relations associated with the nonlinear systems [14]. Applying the fuzzy membership functions, the corresponding T–S fuzzy model is established and a reasonable framework for representing the nonlinear systems by a range of linear models is given. Based on this framework, the robust control theory and technology is applied in linear systems to the design of complex nonlinear systems. Hence, many significant consequences about the T–S fuzzy models have been published, such as [15–18] and the references therein. In [19], through switching the fuzzy model, the relaxed stability criterion of T–S fuzzy control systems was studied. Considering the discontinuous measurements in T–S fuzzy systems, the FD scheme was designed [20]. In [21], by applying the fuzzy model to linearize nonlinear systems, the FD problem of nonlinear Markov jump systems was investigated.

As a special kind of nonlinearities, the so-called conic-type nonlinear dynamics have attracted a great deal of attention recently. Practically, a wide variety of engineering nonlinearities may be converted into conic-type nonlinearities, such as, Lipschitz nonlinearities, locally sinusoidal nonlinearities, diodes and amplifiers with dead zone nonlinearities, etc. In [22], the problem of robust H_∞ control for conic nonlinear stochastic jump systems with partially unknown transition probabilities was investigated. In [23], a second-order conic-type programming was studied to deal with disparate applications in power systems, such as operation and expansion planning. In [24], some significant works of the finite-time sliding mode control strategy on a class of conic-type nonlinear system was realised. As far as we know, the FD problems for conic-type nonlinear
systems have yet been comprehensively investigated. It prompts us to study this topic.

This study considers the design problem of FFDF for a class of discrete-time conic-type nonlinear systems by H_{∞} filtering-based method. Initially, the conic-type FFDF system is constructed based on T-S fuzzy models. Then, an optimal FFDF needs to be designed that satisfies the H_{∞} filtering index to minimise the difference between the designed FFDF and the reference model. Moreover, by applying linear matrix inequalities (LMIs) techniques [25] and the Lyapunov function method, sufficient conditions for the existence of the FFDF are verified. Finally, the FFDF design problem is transformed into an optimisation algorithm. The effectiveness of the designed method is illustrated by simulation examples.

To better understand the proposal in this paper, the following flow chart is designed to describe the process of FD in Figure 1.

In Figure 1, the residual signal $r(k)$ of the dynamic FFDF system is generated by $y(k)$ and $r_f(k)$. Then the H_{∞} filtering problem is converted to minimise the difference between the reference model and the FFDF to be designed. Besides, an appropriate threshold and an evaluation function have to be selected. Once the value of residual evaluation function exceeds the pre-defined threshold, an alarm of faults is generated.

The symbols presented in this study are listed in Table 1.

2 | PROBLEM FORMULATION

Consider a class of discrete-time conic-type nonlinear systems formulated by:

\[
\begin{align*}
 x(k+1) &= \Psi(x(k), d(k), f(k)) + Bu(k), \\
 y(k) &= Cx(k) + Dd(k) + D_f f(k),
\end{align*}
\]

where $x(k) \in \mathbb{R}^n$ is the state, $y(k) \in \mathbb{R}^m$ is the measured output, $u(k) \in \mathbb{R}^r$ is the controlled input, $d(t) \in L_2^2[0, \infty]$ is the external disturbance and $f(k) \in L_2^2[0, \infty]$ is the fault signal. Nonlinear function $\Psi(x(k), d(k), f(k))$ satisfies the following conic sector description: $2\|\Psi(x(k), d(k), f(k)) - [Ax(k) + B_d d(k) + B_f f(k)]\| \leq \|Gx(k) + Ed(k) + Hf(k)\|$

Remark 1 The conic-type nonlinear function $\Psi(x(k), d(k), f(k))$ lies in an n-dimensional hypersphere whose centre is a linear system described by $Ax(k) + B_d d(k) + B_f f(k)$, and whose radius is bounded by another linear system $Gx(k) + Ed(k) + Hf(k)$.

Further, conic-type nonlinear systems (1) can be described by T-S fuzzy models as stated by authors and are as follows: System Rule i:

If $\varpi_i(k) = F_{i1}, \varpi_2(k) = F_{i2}, ..., \varpi_S(k) = F_{iS}$ Then

\[
\begin{align*}
 x(k+1) &= A_{i} x(k) + B_{di} d(k) + B_{fi} f(k), \\
 y(k) &= C_{i} x(k) + D_{di} d(k) + D_{fi} f(k),
\end{align*}
\]

where $A_{i}, B_{di}, B_{fi}, C_{i}, D_{di}, D_{fi}$ are known constant matrices, $\varpi_i(k) = [\varpi_{i1}(k), \varpi_{i2}(k), ..., \varpi_{iS}(k)]$ is the premise variable. $F_{is}, i = 1, 2, ..., S$ represent the fuzzy sets and R is the number of IF-THEN rules.

Assumption 1 $g(k)$ is a nonlinear function which satisfies $g(k) = \Psi(x(k), d(k), f(k)) - [Ax(k) + B_d d(k) + B_f f(k)]$. Then, we have:

\[
g^T(k)g(k) \leq (G_{i} x(k) + E_{i} d(k) + H_{i} f(k))^T \times (G_{i} x(k) + E_{i} d(k) + H_{i} f(k)),
\]

where G_{i}, E_{i}, H_{i} are known constant matrices with appropriate dimensions.

TABLE 1 The notations

Notation	Denotes
\mathbb{R}^n	n-dimensional Euclidean space
$\mathbb{R}^{n \times m}$	$n \times m$ real matrix
I	Unit matrix
0	Zero matrix
A^{-1}	Matrix inverse
A^T	Matrix transpose
$\text{diag}[A B]$	Block-diagonal matrix of A and B
$*$	Symmetric matrix
$P > (\leq, \geq)$	Positive (negative, non-negative, non-positive)
≤ 0	-Definite matrix
The overall conic-type fuzzy model is given by:

\[
\begin{align*}
 x(k + 1) &= \sum_{i=1}^{R} b_i(\omega(k))[A_i x(k) + B_d d(k)] \\
 &\quad + B_f f(k) + B_i u(k) + g(k), \\
 y(k) &= \sum_{i=1}^{R} b_i(\omega(k))[C_i x(k) + D_d d(k) + D_f f(k)],
\end{align*}
\]

where

\[
b_i(\omega(k)) = \frac{\prod_{i=1}^{R} \mu_i(\omega_i(k))}{\sum_{i=1}^{R} \prod_{i=1}^{R} \mu_i(\omega_i(k))},
\]

in which \(\mu_i(\omega_i(k))\) is the grade of the membership of \(\omega_i(k)\). In addition, the fuzzy basis function satisfies:

\[
b_i(\omega(k)) \geq 0, \quad \sum_{i=1}^{R} b_i(\omega(k)) = 1, \quad i = 1, 2, ..., R.
\]

Further, we are interested in designing the following fuzzy filter:

Filter Rule \(i\):

If \(\omega_1(k) = F_{1i}, \omega_2(k) = F_{2i}, \ldots,\) and \(\omega_R(k) = F_{Ri}\), then

\[
\begin{align*}
 \bar{x}(k + 1) &= A_{F_i} \bar{x}(k) + B_{F_i} y(k), \\
 r_{ij}(k) &= C_{F_i} \bar{x}(k) + D_{F_i} y(k).
\end{align*}
\]

The global T-S FFDF model can be constructed as:

\[
\begin{align*}
 \bar{x}(k + 1) &= \sum_{i=1}^{R} b_i(\omega(k))[A_{F_i} \bar{x}(k) + B_{F_i} y(k)], \\
 r_{ij}(k) &= \sum_{i=1}^{R} b_i(\omega(k))[C_{F_i} \bar{x}(k) + D_{F_i} y(k)],
\end{align*}
\]

where \(\bar{x}(k) \in \mathbb{R}^n\) is the filter state and \(r(k) \in \mathbb{R}^m\) is the filter output. \(A_{F_i}, B_{F_i}, C_{F_i}, D_{F_i}, i = 1, 2, ..., R\) are FFDF parameters to be obtained. Thus, the conic-type dynamic FFDF system can be presented as:

\[
\begin{align*}
 \bar{x}(k + 1) &= \widetilde{A}(b_u) \bar{x}(k) + \widetilde{B}(b_u) \bar{w}(k) + \bar{g}(k), \\
 r(k) &= \widetilde{C}(b_u) \bar{x}(k) + \widetilde{D}(b_u) \bar{w}(k),
\end{align*}
\]

where

\[
\begin{align*}
 \bar{x}(k) &= [x_T(k) \ x_T(k)]^T, \\
 \bar{g}(k) &= [g_T(k) \ 0]^T, \\
 \bar{w}(k) &= [u_T(k) \ d_T(k) \ f_T(k)]^T, \\
 r(k) &= y(k) - r_f(k) \quad \text{and}
\end{align*}
\]

\[
\begin{align*}
 \widetilde{A}(b_u) &= \sum_{i=1}^{R} b_i(\omega(k)) \sum_{i=1}^{R} b_i(\omega(k)) \begin{bmatrix} A_i & 0 \\ B_{Fi} C_i & A_{Fi} \end{bmatrix}, \\
 \widetilde{B}(b_u) &= \sum_{i=1}^{R} b_i(\omega(k)) \sum_{i=1}^{R} b_i(\omega(k)) \begin{bmatrix} B_i & B_{Fi} \\ 0 & B_{Fi} D_{Fi} \end{bmatrix}, \\
 \widetilde{C}(b_u) &= \sum_{i=1}^{R} b_i(\omega(k)) \sum_{i=1}^{R} b_i(\omega(k)) \begin{bmatrix} C_i & -C_{Fi} \end{bmatrix}, \\
 \widetilde{D}(b_u) &= \sum_{i=1}^{R} b_i(\omega(k)) \sum_{i=1}^{R} b_i(\omega(k)) \begin{bmatrix} D_{di} - D_{Fi} D_{di} \\ 0 \\ D_{di} - D_{Fi} D_{di} \end{bmatrix}.
\end{align*}
\]

Referring to [26, 29], the FFDF design problem analysed can be expressed as the \(H_{\infty}\) filtering problem. Therefore, the aim of FD is how to find the appropriate FFDF parameters, such that the conic-type dynamic FFDF system (9) satisfies the following two objectives:

(a) It shows asymptotically stable when \(\bar{w}(k) \equiv 0\).

(b) Given a scalar \(\eta > 0\), under zero initial condition, it satisfies the following \(H_{\infty}\) performance index:

\[
\|r(k)\|_2 \leq \eta \|\bar{w}(k)\|_2,
\]

where

\[
\|r(k)\|_2 = \sqrt{\sum_{k=0}^{\infty} r(k) r(k)}, \quad \|\bar{w}(k)\|_2 = \sqrt{\sum_{k=0}^{\infty} \bar{w}(k) \bar{w}(k)}.
\]

Before conducting the research, we need to propose some important Lemmas for the latter developments.

Lemma 1 [27] Let \(X\) and \(Y\) be real matrices of appropriate dimensions. For a given scalar \(\mu > 0\), and vectors \(x, y \in \mathbb{R}^n\), we have:

\[
2x^T X^T Y y \leq \mu^{-1} x^T X^T X x + \mu y^T Y^T Y y.
\]

Lemma 2 [28] Let \(\Omega_1\) and \(\Omega_3\) be real matrices of appropriate dimensions. After that, for any matrix \(\Omega_2\) satisfying \(\Omega_2^T \Omega_2 \leq I\) and given a scalar \(\nu > 0\), we have:

\[
\Omega_1 \Omega_2 \Omega_3 + (\Omega_1 \Omega_2 \Omega_3)^T \leq \nu^{-1} \Omega_1 \Omega_1^T + \nu \Omega_3^T \Omega_3.
\]

3 MAIN RESULTS

Theorem 1 For a given scalar \(\eta > 0\), the conic-type dynamic FFDF system (9) is asymptotically stable and satisfies
the given H_{∞} performance index (10), if there exist positive scalars μ_1, μ_2, ξ, positive-definite symmetric matrices P_1, P_2 and matrices Y_a, Z_a such that

$$\Phi_i < 0, \ i = 1, 2, \ldots R,$$

$$\Phi_is + \Phi_i < 0, \ i < s, \ i, s = 1, 2, \ldots R,$$

where

$$\Phi_i = \begin{bmatrix} P_1 & P_2 \\ \ast & \Pi_4 \end{bmatrix}.$$

$$\Pi_1 = \begin{bmatrix} \Theta_1 & -P_2 & 0 & \Theta_2 & \Theta_3 & A_t^TP_1 + C^T_tZ_t \\ * & -P_2 & 0 & 0 & 0 & Y_t^T \\ * & * & -\eta I & 0 & 0 & B_t^TP_1 \\ * & * & * & \Theta_4 & \Theta_5 & B^T_{di}P_1 + D^T_{di}Z_t \\ * & * & * & * & \Theta_6 & B^T_{fi}P_1 + D^T_{fi}Z_t \\ * & * & * & * & * & -P_1 \end{bmatrix},$$

$$\Pi_2 = \begin{bmatrix} \Theta_7 & C^T_t - C^T_tD^T_{fi} & A^T_tP_1 + C^T_tZ_t \\ Y_t^T & -C^T_{fi} & Y_t^T \\ B^T_{fi}P_2 & 0 & 0 \\ \Theta_8 & D^T_{di} - D^T_{di}D^T_{fi} & 0 \\ \Theta_9 & D^T_{fi} - D^T_{fi}D^T_{fi} & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\Pi_3 = \begin{bmatrix} \Theta_{10} & 0 & 0 & 0 \\ Y_t^T & 0 & 0 \\ 0 & B^T_{di}P_1 + D^T_{di}Z_t & B^T_{di}P_2 + D^T_{di}Z_t \\ 0 & B^T_{fi}P_1 & B^T_{fi}P_2 \\ 0 & B^T_{fi}P_1 + D^T_{fi}Z_t & B^T_{fi}P_1 + D^T_{fi}Z_t \\ 0 & 0 & 0 \end{bmatrix},$$

$$\Pi_4 = \begin{bmatrix} -P_2 & 0 & 0 & 0 & 0 \\ * & -I & 0 & 0 & 0 \\ * & * & -\mu_1I & 0 & 0 \\ * & * & * & -\mu_1I & 0 \\ * & * & * & * & -\mu_2I \end{bmatrix},$$

with

$$\Theta_1 = -P_1 + (\xi + \mu_1 + \mu_2)G^T_tG_t,$$

$$\Theta_2 = (\xi + \mu_1 + \mu_2)G^T_tE_t,$$

$$\Theta_3 = (\xi + \mu_1 + \mu_2)E^T_tH_t,$$

$$\Theta_4 = -\eta I + (\xi + \mu_1 + \mu_2)E^T_tE_t,$$

$$\Theta_5 = (\xi + \mu_1 + \mu_2)E^T_tH_t,$$

$$\Theta_6 = -\eta I + (\xi + \mu_1 + \mu_2)H^T_tH_t,$$

$$\Theta_7 = A^T_tP_2 + C^T_tZ_t,$$

$$\Theta_9 = B^T_{fi}P_2 + D^T_{fi}Z_t,$$

$$\Theta_{10} = A^T_tP_2 + C^T_tZ_t.$$

Moreover, the FFDF gains are given by

$$\Theta_i = B^T_{fi}P_2 + D^T_{fi}Z_t,$$

$$\Theta_{10} = A^T_tP_2 + C^T_tZ_t.$$

Proof: Choose a Lyapunov function as:

$$V(\bar{x}(k)) = \bar{x}^T(k)\mathcal{P}\bar{x}(k),$$

where \mathcal{P} is a positive-definite symmetric matrix and the difference of $V(\bar{x}(k))$ can be obtained:

$$\Delta V(\bar{x}(k)) = V(\bar{x}(k + 1)) - V(\bar{x}(k))$$

$$= \bar{x}^T(k + 1)\mathcal{P}\bar{x}(k + 1) - \bar{x}^T(k)\mathcal{P}\bar{x}(k)$$

$$= (A(h_1)\bar{x}(k) + \bar{B}(h_2)\bar{w}(k))^T$$

$$\times \mathcal{P}(A(h_1)\bar{x}(k) + \bar{B}(h_2)\bar{w}(k))$$

$$+ 2\bar{g}^T(k)\mathcal{P}\bar{A}(h_1)\bar{x}(k) + \bar{g}(k)\mathcal{P}\bar{g}(k)$$

$$+ 2\bar{g}^T(k)\mathcal{P}\bar{B}(h_2)\bar{w}(k) - \bar{x}^T(k)\mathcal{P}\bar{x}(k).$$

For convenient analysis, let $\mathcal{P} = \begin{bmatrix} P_1 & P_2 \\ \ast & P_2 \end{bmatrix}$ and assume $0 < \mathcal{P} \leq \xi I$, where ξ is a positive scalar. According to Lemma 1, we have:

$$2\bar{g}^T(k)\mathcal{P}\bar{A}(h_1)\bar{x}(k) \leq$$

$$\mu_1^{-1}\bar{x}^T(k)\bar{A}^T(h_1)\mathcal{P}\bar{A}(h_1)\bar{x}(k) + \mu_1\bar{g}^T(k)\bar{g}(k),$$

$$2\bar{g}^T(k)\mathcal{P}\bar{B}(h_2)\bar{w}(k) \leq$$

$$\mu_2^{-1}\bar{w}^T(k)\bar{B}^T(h_2)\mathcal{P}\bar{B}(h_2)\bar{w}(k) + \mu_2\bar{g}^T(k)\bar{g}(k),$$

$$\bar{g}^T(k)\mathcal{P}\bar{g}(k) \leq \xi \bar{g}^T(k)\bar{g}(k).$$

Submitting inequalities (17) into Equation (16), the following equation can be obtained:

$$\Delta V(\bar{x}(k)) = V(\bar{x}(k + 1)) - V(\bar{x}(k))$$

$$\leq \bar{x}^T(k)\bar{A}^T(h_1)\mathcal{P}\bar{A}(h_1)\bar{x}(k)$$

$$+ \bar{x}^T(k)\bar{A}^T(h_1)\mathcal{P}\bar{B}(h_2)\bar{w}(k)$$

$$+ \bar{w}^T(k)\bar{B}^T(h_2)\mathcal{P}\bar{B}(h_2)\bar{w}(k)$$

$$+ \mu_1^{-1}\bar{x}^T(k)\bar{A}^T(h_1)\mathcal{P}\bar{A}(h_1)\bar{x}(k)$$

$$+ \mu_1\bar{g}^T(k)\bar{g}(k) + \mu_2^{-1}\bar{w}^T(k)\bar{B}^T(h_2)\bar{w}(k)$$

$$+ \mu_2\bar{g}^T(k)\bar{g}(k) + \mu_2^{-1}\bar{g}^T(k)\bar{g}(k) + \xi \bar{g}^T(k)\bar{g}(k).$$

(18)
Under zero initial condition, the conic-type dynamic FFDF system (9) satisfies the H_∞ performance index:

$$J = \sum_{0}^{\infty} [r^T(k)r(k) - \eta^2\bar{\omega}^T(k)\bar{\omega}(k) + \Delta V(k)] < 0.$$ \hspace{1cm} (19)

Recalling to the inequality condition shown in (3), inequality (19) can be rewritten as:

$$J = J + J',$$ \hspace{1cm} (20)

where

$$J = \Xi^T \Xi,$$

$$J' = 2\bar{g}^T(k)\mathcal{P}A(h_a)\bar{x}(k) + 2\bar{g}^T(k)\mathcal{P}B(h_a)\bar{\omega}(k) + \bar{g}(k)\mathcal{P}\bar{g}(k) < 0,$$

with

$$\Xi = [\bar{x}(k) \bar{\omega}^T(k)]^T,$$

$$\mathcal{P} = \left[\begin{array}{ccc} A_{(h_a)} & 0 & 0 \\ B_{Fi}C_i & F_i & A_{Fi} \end{array}\right]^T,$$

$$\bar{A}(h_a) = \left[\begin{array}{ccc} A_i & 0 & 0 \\ B_{Fi}C_i & F_i & A_{Fi} \end{array}\right],$$

$$\bar{B}(h_a) = \left[\begin{array}{ccc} B_i & B_{di} & B_{fi} \\ 0 & B_{Fi}D_{fi} & B_{Fi}D_{di} \end{array}\right],$$

$$\bar{C}(h_a) = \left[\begin{array}{ccc} C_i - D_{Fi}C_i & -C_{Fi} \end{array}\right],$$

$$\bar{D}(h_a) = \left[\begin{array}{ccc} 0 & D_{di} - D_{Fi}D_{di} & D_{fs} - D_{Fi}D_{fs} \end{array}\right].$$

Applying schur complements, the following is obtained:

$$\mathcal{P} = \left[\begin{array}{ccc} -\bar{A}(h_a) & \bar{\omega}^T(h_a) & \mathcal{C}^T(h_a) \\ * & -\eta^2I & \bar{B}^T(h_a) \bar{D}^T(h_a) \\ * & * & -\mathcal{P}^{-1} \end{array}\right].$$ \hspace{1cm} (21)

Using diag{I, I, \mathcal{P}, I} to pre- and post-multiply matrix Φ_{hi}, we have:

$$\mathcal{P} = \left[\begin{array}{ccc} -\bar{A}(h_a) & \bar{\omega}^T(h_a) & \mathcal{C}^T(h_a) \\ * & -\eta^2I & \bar{B}^T(h_a) \bar{D}^T(h_a) \\ * & * & -\mathcal{P}^0 \end{array}\right].$$ \hspace{1cm} (22)

Then, substituting inequalities (17) and (22) into Equation (20), using schur complements and letting $Y_i = P_iA_{Fi}$, $Z_i = P_iB_{Fi}$, we obtain:

$$\Xi^T \left[\sum_{i=1}^{R} b_i \sum_{i=1}^{R} b_i \Phi_{hi} \right] \Xi < 0.$$ \hspace{1cm} (23)

It can be shown that inequality (23) is similar to the following condition:

$$\sum_{i=1}^{R} b_i^2 \Phi_{hi} + \sum_{i=1}^{R} b_i \left\{\sum_{i=1}^{R} b_i \left[\Phi_{hi} + \Phi_{hi} \right]\right\} < 0,$$ \hspace{1cm} (24)

which will lead to LMIs (13) and (14). The proof is complete.

Theorem 2 To get an optimized fault detection performance lever against the external disturbance, the FFDF performance lever η^2 can decrease to the minimum feasible value if LMIs (13) and (14) are satisfied. The optimisation problem that is considered by the authors here can be represented by:

$$\min_{\delta} \delta,$$

s.t. LMIs (13, 14) with $\delta = \eta^2$. \hspace{1cm} (25)

Remark 2 In order to solve the nonlinear problem conveniently, we give the range of matrix \mathcal{P}.

4 THRESHOLDS COMPUTATION

For the purpose of detecting the faults sensitively, a suitable threshold J_{th} and an evaluation function $J(r)$ have to be set. Here, the threshold J_{th} is defined as:

$$J_{th} = \sup_{d(k) \in L_2, f(k) = 0, k = k_0} \sum_{k=k_0}^{k_0+\rho} r^T(k)r(k).$$ \hspace{1cm} (26)

The evaluation function $J(r)$ is determined by:

$$J(r) = \sum_{k=k_0}^{k_0+\rho} r^T(k)r(k),$$ \hspace{1cm} (27)

where k_0 represents the initial time of the simulation and ρ denotes the time steps. Thus, the following logical relationship is used to detect the faults:

$$\begin{align*}
J(r) > J_{th} & \rightarrow \text{alarm of fault,} \\
J(r) \leq J_{th} & \rightarrow \text{no fault.}
\end{align*}$$ \hspace{1cm} (28)
5 | NUMERICAL EXAMPLES

Example 1 Consider a class of conic-type nonlinear systems represented by:
\[
A_1 = \begin{bmatrix} -0.6 & 0.25 \\ 0.12 & -0.3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -0.46 & 0.46 \\ 0.1 & -0.3 \end{bmatrix},
\]
\[
B_1 = B_2 = \begin{bmatrix} 0.5 \\ 1.2 \end{bmatrix}, \quad B_{d1} = B_{d2} = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix},
\]
\[
B_{f1} = B_{f2} = \begin{bmatrix} -0.4 \\ 0.8 \end{bmatrix}, \quad D_{d1} = D_{d2} = \begin{bmatrix} 0.5 \end{bmatrix},
\]
\[
C_1 = C_2 = \begin{bmatrix} 0.2 \\ 0.1 \end{bmatrix}, \quad D_{f1} = D_{f2} = 0.5,
\]
\[
G_1 = G_2 = \begin{bmatrix} -0.0016 & 0 \\ 0 & 0 \end{bmatrix},
\]
\[
E_1 = E_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},
\]
\[
H_1 = H_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]
\[
g(k) = \begin{bmatrix} -0.00062(|x_1| + 1) - |x_1 - 1| \end{bmatrix}
\]

By solving the main results in Theorems 1 and 2, the performance level \(\eta = 2.4646 \) is obtained. Therefore, the relevant FFDF gain matrices can be obtained as
\[
A_{F1} = \begin{bmatrix} -0.1431 & 0.0328 \\ 0.0341 & -0.1260 \end{bmatrix}, \quad B_{F1} = \begin{bmatrix} 0.9235 \\ -1.1627 \end{bmatrix},
\]
\[
C_{F1} = \begin{bmatrix} -0.0085 \\ -0.0108 \end{bmatrix}, \quad D_{F1} = 0.9661,
\]
\[
A_{F2} = \begin{bmatrix} -0.1025 \\ 0.0928 \end{bmatrix}, \quad B_{F2} = \begin{bmatrix} 0.3897 \\ -0.2020 \end{bmatrix},
\]
\[
C_{F2} = \begin{bmatrix} 0.0002 \\ -0.0154 \end{bmatrix}, \quad D_{F2} = 0.9852.
\]

In order to verify the effectiveness of the designed FFDF, it is assumed that the external disturbance \(d(k) \) is a random noise within \([-1, 1]\). The fault signal \(f(k) \) is the sine wave which is given by:
\[
f(k) = \begin{cases} 0 & 0 < k < 8 \\ 2 \sin 2k & 8 \leq k \leq 20 \\ 0 & 20 < k < 25 \end{cases}
\]

The fault signal \(f(k) \) is shown in Figure 2 and the residual signal \(r(k) \) generated by the presented method is shown in Figure 3.

Figure 4 depicts the response of the residual function \(J(r) \) to the fault case and the fault-free case. The threshold is selected as \(J_{b} = \sup_{d(k) \in L_2} \sum_{k=0}^{25} r^T(k)r(k) = 1.61 \), based on the simulation results, we can get that \(f(r) = \sum_{k=0}^{10} r^T(k)r(k) = 1.65 > J_{b} \). Therefore, the appeared fault will be detected in two time steps after it has occurred.

Example 2 Consider a tunnel diode-circuit system established in [30]. Let \(x_1(t) = v_C(t), \ x_2(t) = i_L(t), \) where \(v_C(t) \) is the capacitor voltage and \(i_L(t) \) is the inductance current. Then, the tunnel diode circuit system is described by:
\[
\begin{align*}
C_{x_1}(t) &= -0.002x_1(t) - 0.01x_1^3 + x_2(t) \\
L_{x_2}(t) &= -x_1(t) - Rx_2(t) + d(t) \\
\gamma(t) &= 5x(t) + d(t)
\end{align*}
\]

where \(x(t) = [x_1^T(t) \ x_2^T(t)]^T \) is the state variable, \(d(t) \) and \(\gamma(t) \) are the external disturbance and the measured output,
respectively. \(S = [1 \ 0] \) is the sensor matrix. In the circuit model, the relevant parameters are presented as follows: \(C=200 \) mF, \(L=1 \) H and \(R = 1 \)Ω. Consider the nonlinearities in the tunnel diode circuit system satisfying the conic sector description. The sampling time is selected as \(T = 0.05 \) s. Then the conic-type nonlinear FFDF system can be described by:

\[
\begin{align*}
\dot{x}(k+1) &= \sum_{i=1}^{R} b_i(m(k))[A_i x(k) + B_i d(k)] + g(k), \\
y(k) &= \sum_{i=1}^{R} b_i(m(k))[C_i x(k) + D_i d(k)].
\end{align*}
\]

Assuming \(m(k) \in [-2 \ 2] \) and appropriate membership function is selected as:

\[
\begin{align*}
b_1(m(k)) &= 1 - \frac{1}{4} m^2(k), \\
b_2(m(k)) &= \frac{1}{4} m^2(k).
\end{align*}
\]

The parameter matrices are given by

\[
A_1 = \begin{bmatrix} 0.0995 & 0.25 \\ -0.05 & 0.95 \end{bmatrix}, A_2 = \begin{bmatrix} 0.9095 & 0.25 \\ -0.05 & 0.95 \end{bmatrix},
\]

\[
B_1 = B_2 = \begin{bmatrix} 0 \\ 0.05 \end{bmatrix},
\]

\[
C_1 = C_2 = [1 \ 0],
\]

\[
D_1 = D_2 = 1,
\]

\[
g(k) = \begin{bmatrix} -0.00062(|x_1| + 1) - |x_1 - 1| \\ 0 \end{bmatrix}.
\]

Solving the optimization problem (25), we can get \(\eta = 4.2908 \) and the FFDF gain matrices as:

\[
A_{F1} = \begin{bmatrix} 0.0053 & 0.0462 \\ -0.0586 & -0.2048 \end{bmatrix}, B_{F1} = \begin{bmatrix} -0.2017 \\ -0.6958 \end{bmatrix},
\]

\[
C_{F1} = [-0.0385 -0.0021], D_{F1} = 0.9411,
\]

\[
A_{F2} = \begin{bmatrix} -0.0083 & 0.0373 \\ -0.0898 & 0.1921 \end{bmatrix}, B_{F2} = \begin{bmatrix} -0.3188 \\ -1.0198 \end{bmatrix},
\]

\[
C_{F2} = [-0.0349 -0.0003], D_{F2} = 0.9946.
\]

Select the same disturbance signal \(d(k) \) as Example 1 and the fault signal \(f(k) \) as the square wave which is given by:

\[
f(k) = \begin{cases} 20 \text{ for } 1 \leq k \leq 20 \\ 0 \text{ otherwise} \end{cases}
\]

The residual signal \(r(k) \) is determined in Figure 5 and the residual function \(J(r) \) generated by the presented method is shown in Figure 6.

Figure 6 describes the response of the residual function \(J(r) \) to the fault case and the fault-free case. Selecting the threshold \(J_{th} = \sup_{d(k) \in L_2} J_F(r(k)) = 2.5 \), from the simulation results, \(J(r) = \sum_{k=0}^{10} r^T(k) r(k) = 2.8 > J_{th} \) is obtained. Thus, the fault will be detected in two time steps.

Remark 3 In [31], the dynamic observer approach was employed to deal with the FD problem. However, \(H_{\infty} \) filtering scheme is adopted to find a proper
compromise that achieves robustness to external disturbances and shows sensitivity to faults. Comparing with these two results, it can be seen that our approach has a fast detection speed. Besides, it is worth pointing out that the proposed approach in [31] is not fit for this experiment because of the conic-type nonlinearities in the systems. In this paper, the conic-type nonlinearity has been linearized by the designed method. In addition, an applicable experiment of a tunnel diode-circuit system is applied to verify the capability of the presented method.

6 CONCLUSIONS

The authors, by using the T-S fuzzy models, investigated the FFDF design problem for a class of conic-type nonlinear systems. Based on the Lyapunov function method and LMIs techniques, sufficient conditions on the existence of the FFDF are verified and the FFDF design problem is transformed into an optimisation algorithm. Numerical examples show the feasibility of the designed scheme. The authors pay more attention to FD in their analysis, not the isolation and estimation. Further, the authors have planned to study the fault isolation and fault estimation problems for nonlinear systems with time-varying actuator faults and the faults governed by stochastic dynamics in the future.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (No. 62073001, No. 61673001), the Foundation for Distinguished Young Scholars of Anhui Province (No. 160808305), the Key Support Program of University Outstanding Youth Talent of Anhui Province (No. gxyzd2017001) and the open fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University.

ORCID

Shuping He https://orcid.org/0000-0003-1869-2116

REFERENCES

1. Li, Y., et al.: Optimal residual generation for fault detection in linear discrete time-varying systems with uncertain observations. J. Franklin Inst. 355(7), 3330–3353 (2018)
2. Chibani, A., et al.: Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications. Automatica. 93, 42–54 (2018)
3. Boem, F., et al.: Distributed fault-tolerant control of large-scale systems: an active fault diagnosis approach. IEEE Trans. Control Netw. Syst. 7(1), 268–301 (2020)
4. Wang, J., Yang, G., Liu, J.: An LMI approach to H_∞ index and mixed H_∞/H_∞ fault detection observer design. Automatica. 43(9), 1656–1665 (2007)
5. Jung, D., Sundstrom, C.: A combined data-driven and model-based residual selection algorithm for fault detection and isolation. IEEE Trans. Control Syst. Technol. 27(2), 616–630 (2019)
6. Luo, Z., Fang, H.: Fault detection for non-linear system with unknown input and state constraints. IET Signal Proc. 7(9), 800–806 (2013)
7. Kim, H., Park, J., Joo, Y.: Fuzzy filter for nonlinear sampled-data systems: Intelligent digital redesign approach. Int. J. Control Automat. Syst. 15(2), 1–8 (2017)
8. Zhong, M., et al.: An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica. 39(3), 543–550 (2003)
9. Guo, F., et al.: Fault detection for discrete-time Lipschitz nonlinear systems with signal-to-noise ratio constrained channels. Neurocomputing. 194, 317–325 (2016)
10. Chen, W., Saif, M.: Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems. IET Control Theory Appl. 1(6), 1672–1680 (2007)
11. He, S.: Fault detection filter design for a class of nonlinear Markovian jumping systems with mode-dependent time-varying delays. Nonlinear Dyn. 91(3), 1871–1884 (2018)
12. Yang, G., Fan, Q.: Adaptive fault-tolerant control for affine non-linear systems based on approximate dynamic programming. IET Control Theory Appl. 10(6), 655–663 (2016)
13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. 15(1), 116–132 (1985)
14. He, S., Liu, F.: Resilient fault detection observer design of fuzzy Markovian jumping systems with mode-dependent time-varying delays. J. Franklin Inst. 353(13), 2943–2965 (2016)
15. Wang, X., et al.: Delay-dependent fuzzy sampled-data synchronization of t-s fuzzy complex networks with multiple couplings. IEEE Trans. Fuzzy Syst. 28(1), 178–189 (2020)
16. Rong, N., Wang, Z.: Fixed-time stabilization for it2 T-S fuzzy interconnected systems via event-triggered mechanism: an exponential gain method. IEEE Trans. Fuzzy Syst. 28(2), 246–258 (2020)
17. Nanda, S., Dash, P.: Field programmable gate array implementation of fuzzy variable step size adaptive linear model for adaptive frequency estimation. IET Signal Proc. 11(9), 1083–1094 (2017)
18. Dash, P., Nanda, S.: FPGA implementation of fuzzy variable step size ADALINE for adaptive frequency estimation. IET Signal Proc. 11(9), 1083–1094 (2017)
19. June, W., Jen, C., Hsun, S.: Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function. IEEE Trans. Cybernet. 37(3), 551–559 (2007)
20. Yan, Z., Lam, J., Gao, H.: Fault detection for fuzzy systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 398–410 (2009)

21. He, S., Liu, F.: Fuzzy model-based fault detection for Markov jump systems. Int. J. Robust Nonlinear Control. 19(11), 1248–1266 (2009)

22. Zhang, Y., et al.: H_∞ control for conic non-linear jump systems with partially unknown transition probabilities. Int. J. Syst. Sci. 48(10), 2976–2984 (2017)

23. Haghighat, H., Bo, Z.: Stochastic and chance-constrained conic distribution system expansion planning using bilinear benders decomposition. IEEE Trans. Power Syst. 33(3), 2696–2705 (2018)

24. He, S., Song, J., Liu, F.: Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding mode control strategy. IEEE Trans. Syst. Man Cybernet. Syst. 48(11), 1863–1873 (2018)

25. Yaz, E.: Linear matrix inequalities in system and control theory. Proc. IEEE. 86(12), 2473–2474 (1994).

26. Li, X., Yang, G.: Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybernet. 44(8), 1446–1458 (2014).

27. He, S., Song, J.: Finite-time sliding mode control design for a class of uncertain conic nonlinear systems. IEEE/CAA J. Automat. Sinica. 4(4), 809–816 (2017)

28. Khargonekar, P., Petersen, I., Zhou, K.: “Robust stabilization of uncertain linear systems: quadratic stabilizability and H_{∞} control theory. IEEE Transact. Automat. Control. 35(5), 356–361 (2002)

29. Guan, Y., Ge, X., Jiang, X.: Cluster and local mode-dependent H_{∞} filtering for distributed Markovian jump systems in lossy multi-sensor networks. IET Signal Proc. 11(3), 295–303 (2017)

30. Assawinchaichote, W., Nguang, S., Shi, P. “Robust H_{∞} fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: An LMI approach. Inform. Sc. 177(7), 1699–1714 (2007).

31. Li, X., Yang, G.: Dynamic observer-based robust control and fault detection for linear systems. IET Control Theory Appl. 6(17), 2657–2666 (2012)

How to cite this article: Wang J, He S. Fuzzy filtering-based fault detection for a class of discrete-time conic-type nonlinear systems. IET Signal Process. 2021;15:153–161. https://doi.org/10.1049/sil2.12016