Production and Optimization of Pullulanase by *Stenotrophomonas maltophilia* under Submerged Fermentation Using Response Surface Methodology (RSM)

Euphemia Afoma Ikegwuonu a and Francis Sopuruchukwu Ire b*

a Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
b Department of Microbiology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMB/2022/v22i1030506

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sciarticle5.com/review-history/91215

Received 28 June 2022
Accepted 02 September 2022
Published 17 September 2022

ABSTRACT

Pullulanase is a starch debranching enzyme, that cleaves the α-1,6, glucosidic linkage. The research investigates the screening, production, and optimization of pullulanase from bacterial isolates. Five different soil samples were collected from Choba (River State) and Oshodi (Lagos State). The total culturable heterotrophic bacterial counts ranged from 2.21x10⁶ to 3.2 x 10⁶ Cfu/ml. A total of eight bacterial isolates exhibited the potential to degrade pullulan which produced a clear halo zone at 70% around the colonies. The isolate with the highest pullulanase degradation was further investigated for production using wheat bran as substrate under submerged fermentation (SmF) applying RSM. Identification and characterization of the isolate were done using both conventional and molecular techniques. This isolate was identified molecularly as *Stenotrophomonas maltophilia*. The 16S rRNA sequence was deposited in GenBank under accession number MH225448.1. The optimum production of pullulanase obtained using One-factor-at-a-time (OFAT) was achieved with wheat bran (2.469U/ml) at 48h, pH 7 and temperature of 37⁰ C. Optimization using RSM revealed the following optimum conditions:

Corresponding author: E-mail: francis.ire@uniport.edu.ng;
Pullulanase is one of the members of the family 13 glucosyl hydrolase, which is also called the α-amylase family. Pullulanase has an interesting characteristic, where it can specifically attach branch points in pullulan, starch, and dextrans. Pullulanase belongs to (pullulan α-glucano hydrolase; EC 3.2.1.41) an enzyme which debranches the extracellular yeast polysaccharide and pullulan. This was first discovered by [1] from the mesophilic organism Klebsiella pneumoniae (formerly known as Aerobacter aerogenes or Klebsiella aerogenes).

Pullulanase is responsible for the hydrolysis of pullulan and amylpectin to produce maltotriose [2]. These enzymes attract more interest because of its specific action on α-1,6 linkages in pullulan, a linear α-glucan consisting basically of maltotriosyl units connected by 1,6 α-bonds. There are three kinds of bonds that are cleaved by an enzyme called neopullulanase (EC 3.2.1.35), isopullulanase (EC 3.2.1.57), and pullulanase (EC 3.2.1.41). “The pullulanase is sub-divided into two categories based on substrate specificity: (i) Pullulanase type I, which specifically cleaves the α 1,6-glycosidic linkages in pullulan and branched oligosaccharides, forming maltotriose and linear oligosaccharides, respectively and (ii) Pullulanase type II, or amylopullulanase, which hydrolyse both α 1,6-glycosidic bond and α 1,4-glycosidic bonds are capable of amylose degradation, yielding glucose, maltose, maltotriose, and other oligosaccharides. However, in the absence of a debranching enzyme capable of hydrolyzing the α 1,6-glycosidic bond, amylopectin degradation is incomplete” [3]. Some of the Bacillus species that produce pullulanase are Bacillus acidopullulyticus, Klebsiella planticola, Geobacillus steatothemophilus, Bacillus deramificans and Bacillus cereus FD-13 [4].

“The fermentation during the last century aimed specifically at the production strains, made it possible to manufacture enzymes as purified well characterized preparations even on the large scale. This development allowed the production of enzymes into true industrial products and processes” [5].

“Pullulanase is a very potent enzyme for the degradation of starch to maltose and glucose. It is widely used in industries in the saccharification of starch. Pullulanase enzyme is used on a large scale in maltose syrup industries and glucose. It converts starch into glucose and maltose which are used in the production of glucose syrup more effectively” [6]. Pullulanase are used in laundry detergent for the removal of starch under alkaline conditions and industry as an effective additive in dish washing [7] baking industry, used as a dental plaque control agent [8], and for the production of cyclodextrins which in turn is used in the production of biotechnological products and low-calorie beer. Pullulanase is of great importance to the potential applications. Cyclodextrin glucosyl transferase (CGTase) is used with α-amylase. But the α-1,6 glucosidic linkage of amylopectin blocks the action of (CGTase). These linkages are broken by the pullulanase enzyme hence improving the percentage yield of cyclodextrin production. To produce pullulanase, the fermentation process is carried out using submerged fermentation (SmF) for pullulanase production. The main advantage of using substrates is that nutrients rich in waste materials can be easily recycled in cheaper substrates. In this study, various isolates were found from different soil samples and screened for pullulanase production under submerged fermentation the best screened isolates were selected as reference culture, which was further utilized for optimization for the various process parameter for the enhanced production of pullulanase under submerged fermentation. The selected bacterial culture was further screened by submerged fermentation for pullulanase production and the best selected bacterial culture was further utilized for the optimization process. Besides, the study using the Response surface methodology (RSM) techniques may also

Keywords: Pullulanase; optimisation; Stenotrophomonas maltophilia; submerged fermentation; Response Surface Methodology (RSM).
improve the pullulanase enzyme and its production.

“Response surface methodology (RSM) is a statistical design used as a modelling and optimization technique for identifying effective factors and interactions among factors, which have a significant influence on the final yield of product, in many bioprocesses” [9,10]. “The central composite design (CCD) of RSM helps in estimating the key factors out of a large number of media components and fermentation conditions by performing low experimental runs” [11]. This design helps to estimate the coefficient of the quadratic model and has been extensively used for bioprocess optimization. This study evaluated the isolation, production, and optimization of cultural and nutritional parameters for the production of pullulanase from Stenotrophomonas maltophilia under submerged fermentation using statistical techniques (RSM).

2. MATERIALS AND METHODS

2.1 Collection of Samples

Five soil samples were collected from different locations at Choba (Rivers State) and Oshodi (Lagos State) using a sterile plastic container. All the soil samples were collected from the surface (0-5cm depth) using the soil auger and transferred into the plastic containers. These plastic bags were maintained at 4°C to ensure minimal biological activity. To provide homogenized soil samples, the soil was thoroughly mixed together.

2.2 Isolation of Bacteria

The soil suspension was prepared by mixing 1g of soil sample in 9ml of sterile distilled water (Saline). It was stirred and allowed to settle to ensure that the microorganisms came into the water phase. The suspension was serially diluted from 10^1 to 10^{10}. The diluted suspensions were picked from dilutions of 10^4, 10^5, and 10^6 for the isolation of microorganisms. Nutrient agar and pullulan agar was weighed. 0.1ml of each dilution was spread on the agar medium plates in duplicates using the pour plate method. The plates were sterilized at 121°C for 15min in an autoclave and incubated at 37°C for 24h. The colonies obtained from the plates were marked and numbered. They were further sub-cultured from their respective medium to obtain a pure culture. Bacterial pure culture were maintained on nutrient agar slants and stored for further analysis.

2.3 Identification of Microorganisms by Biochemical Characterization of Pullulanase Isolates

The morphological characteristics of the isolated bacterial strains or colonial properties such as colonial size, shape, color, margin, elevation, and opacity were examined macroscopically. These isolates were identified based on phenotypic characteristics and biochemical tests which include oxidase, catalase, motility, sugar fermentation, urease, citrate, methyl red/vogues proskauer, indole, triple sugar iron agar, and casein hydrolysis according to the ninth edition of Bergey's Manual of Systematic Bacteriology [12].

2.4 Molecular Identification of Bacterial Isolates

The isolated bacterial strains were further subjected to molecular identification using 16S ribosomal deoxyribonucleic acid (rDNA) for confirmation.

2.5 DNA Extraction

Zymo Fungal/Bacteria DNA extraction kit was used according to the manufacturer’s instructions. DNA extraction on the isolates, the most useful way to estimate DNA concentration and purity is through absorbance measures using a NANODROP (ND 1000) Spectrophotometer (Thermo Scientific, USA). Samples were shown as DNA yield between 5ng - 25ng, and the extracted DNA was optimally pure showing A260/A280 between 1.60-1.80.

2.6 PCR Amplification of the ITS Gene

The PCR reaction was carried out using the Solis Biodyne 5X HOT FIREPol Blend Master mix. PCR test was carried out to amplify the ITS gene of the bacteria using the primer pair ITS-4 (5'-TCCCTCCGCTATTGATATGC) and ITS-1 (5'-TCCGTAAGGTGAACCTGCGG). PCR was performed in 25 µl of a reaction mixture, and the reaction concentration was brought down from 5x concentration to 1X concentration containing 1X Blend Master mix buffer Buffer (Solis Biodyne), 1.5 mM MgCl₂, 25pMol of each primer (BIOMERS, Germany), 2 unit of Hot FIREPol DNA polymerase (Solis Biodyne 200μM) of each deoxynucleoside triphosphates (dNTP)(Solis Biodyne).
Biodyne); however, additional Taq DNA polymerase was incorporated into the reaction mixture to make a final concentration of 2.5 units of Taq DNA polymerase, Proofreading Enzyme, 2µl of the extracted DNA, and sterile distilled water was used to make up the reaction mixture.

2.7 PCR Amplification of the 16SrRNA Gene (27F and 1492R)

Polymerase chain reaction experiment was carried out to amplify the 16SrRNA gene of the bacteria using the primer pair 27F- 5'-AGAGTTTGATCCTGGCT CAG -3', and 1492R 5'-GTTACCTTGTTACGACTT -3'. The PCR reaction was carried out using the Solis Biodyne 5X HOT FIREPol Blend Master mix. PCR was performed in 25 µl of a reaction mixture, and the reaction concentration was brought down from 5x concentration to 1X concentration containing 1X Blend Master mix buffer (Solis Biodyne), 1.5 mM MgCl2, 200µM of each deoxynucleoside triphosphates (dNTP)(Solis Biodyne), 25pMol of each primer (BIOMERS, Germany), 2 unit of Hot FIREPol DNA polymerase (Solis Biodyne), Proofreading Enzyme, 5µl of the extracted DNA, and sterile distilled water was used to make up the reaction mixture. Thermal cycling conducted in an Eppendorf Vapo protect thermal cycler (Nexus Series) for denaturation of 95°C for 15 minutes followed by 35 amplification cycles of 30 seconds at 95°C; 1 minute at 61°C and 1 minute 30 Seconds at 72°C and the final step of 10 minutes at 72°C. The amplification products were separated on a 1.5% agarose gel and stained. 100bp DNA ladder (Solis Biodyne) was used as DNA molecular weight marker.

2.8 Sequencing

All PCR products were purified with Exo sap and sent to Epoch Life science (USA) for Sanger sequencing. The online blast for corresponding sequences were identified using search at http://blast.ncbi.nlm.nih.gov/Blast.cgi.

2.9 Primary Screening for Bacterial Isolates

“Eight bacterial isolates were screened for pullulanase production by culturing in pullulan agar. The medium consisted of (w/v): Pullulan powder (1%), yeast extract (0.5%), MgSO4·7H2O (0.02%), K2HPO4 (0.03%), (NH4)2SO4 (0.1%), CaCl2·2H2O (0.02%), MnCl2·4H2O (0.0001%), FeSO4·7H2O (0.001%), bacteriological agar (3.5%) and pH was adjusted to 7 and sterilized at 121°C for 15min. Pullulan is a unique carbon source for screening hydrolyzing pullulan strains” [13]. Point inoculation was done at the centre of the plates and was incubated at 37°C at 48h. Several pullulanase producing bacterial colonies were identified after flooding the plates with gram's iodine solution [14]. “The presence of a transparent zone of hydrolysis around the colonies after 48h of incubation indicates the presence of pullulanase producers. Where halo zone diameter H in (mm) and the colony diameter C in (mm) were measured. The degradation of efficiency of all the pullulanase producers was calculated using this formular (H/C)%” [15]. The bacterial isolates which indicated the degradation efficiency is 33% and 70% were selected for further experiments [16].

2.10 Submerged Fermentation

2.10.1 Preparation of wheat bran (Triticum aestivum)

Wheat bran was gotten from Oshodi market, Lagos State. The wheat bran was grinded in powdered and kept for fermentation analysis.

2.10.2 Inoculum preparation for submerged fermentation

The stock culture on the nutrient agar medium slant was first inoculated on a fresh nutrient agar medium and incubated at 37°C for 24h to get the pure culture that was used for the production of enzyme. The activated isolates were removed and suspended in Tween 80 and 2 ml of bacterial suspension was used for inoculation in a Submerged Fermentation flask [17].

2.10.3 Enzyme production

Enzyme production was carried out under submerged fermentation (SmF). The fermentation medium consisted of (g/l) (1) pullulan, (5) yeast extract, 0.3 K3HPO4, (0.2) MgSO4·7H2O, (1) (NH4)2SO4, (0.2) CaCl2·2H2O, (0.01) FeSO4·7H2O and (0.001) MnCl2·4H2O which is the same as the one used for screening except that it does not contain agar. The pH was adjusted to 7 [13]. “Wheat bran (4.5g) was weighed into 150ml of each Erlenmeyer flask containing the fermentation medium and was
autoclaved (DIXON) at 121°C for 15min allowed to cool and 2ml of the bacterial suspension was inoculated into the Erlenmeyer flask. The incubation was done at 37°C for 3days in a shaker incubator (New Brunswick Scientific Co INC). The flasks were taken out at the end of fermentation and 10ml of contents were extracted and centrifuged (Hettich EBA 8S) at 10,000rpm for 10min. The supernatant was used as a source of crude pullulanase for further analysis” [18].

2.10.4 Pullulanase assay

The method described by [16] was used to determine the pullulanase activity. The reaction mixture this enzyme activity was measured in 0.46ml of 1% pullulan in 0.5ml potassium phosphate buffer, pH 7, and concentration of the extracellular enzyme crude 0.5ml incubated at 40°C for 10min. The released sugars were assayed by the DNS method using spectrophotometer. After incubation, the reaction was stopped by cooling the tube in an ice bath or water bath and the reducing sugar release by enzymatic hydrolysis of soluble starch and pullulan was determined by the addition of 1ml dinitrosalicic acid (DNSA) reagent then incubated in boiling water for 100°C for 5min and the enzyme activity was measured using glucose standard at 540nm in spectrophotometer [13]. “Sample blank was also used to correct the non-enzymatic release of reducing sugars. One unit of pullulanase was described as the amount of enzyme required to catalyse the release of reducing sugar equal to 1µmol of D-glucose per minute under the assay conditions” [19]. “Protein concentration in the supernatant was determined by the method” described by [20] optical density was read at 600nm wavelength of the spectrophotometer.

2.10.5 Protein concentration determination

Lowry method of quantitative estimation of protein was used. Solution A alkaline sodium carbonate solution (20 g/l) in 4 g sodium hydroxide, solution B copper sulphate sodium potassium tatarate solution 5g/l CuSO₄.5H₂O in 10g/l NaKtatarate. The alkaline solution was prepared by mixing solution A in 50ml and solution B in 1.0ml. 0.2ml of the enzyme extract was measured into a tube, and 0.8ml of distilled water was added to it. Thereafter, 5ml of alkaline copper reagent was added to the mixture properly and the mixture was allowed to stand for 10mins at room temperature. 0.5ml for Folin Cicautua solution was added to all tubes and allow to stay for 30 minutes after which the optical density was read at 600nm wavelength of the spectrophotometer against a blank prepared with 0.2 ml buffer. A standard curve was constructed with each experiment using bovine serum albumin as a known protein. The amount of the soluble protein was calculated from the standard curve as mg protein per ml of test samples. The protein concentration was estimated using values extrapolated from the standard graph.

2.10.6 Optimization of cultural condition for pullulanase production

This study also involved the optimization of dissimilar parameters governing pullulanase production. The effects of various temperatures, pH, incubation time, pullulan concentration on pullulanase production using the Response surface methodology (RSM) method, effects of various carbon sources and nitrogen sources using one factor at a time method (OFAT). The effects of these parameters were tested by taking the fermentation media at different temperatures, pH, incubation time, and pullulan percentage. The fermentation media was withdrawn daily for pullulanase production till a decline time. “The activity was measured daily using a UV spectrophotometer (T70 UV/VIS spectrophotometer PG Instrument LtD). The amount of protein present was assayed using bovine serum albumin (BSA) as standard”. [18].

2.11 Design of Experiment for Optimization of Pullulanase Production

2.11.1 One-factor-at-a-time (OFAT)

A preliminary investigation using One-factor-at-a-time (OFAT) method was applied to select the independent variables which influence pullulanase production by the selected bacterial strain. This was performed by evaluating one factor while the other variables were kept constant. The nutritional parameters such as carbon sources (glucose, maltose, xylose, and pullulan) and nitrogen sources (KNO₃, NH₄NO₃, and yeast extract) were studied to select the best among them. The different carbon and nitrogen sources were substituted equivalently to the original amounts in the basal medium.
Table 1. RSM design showing the experimental plan for optimization

Runs	pH	Temp(°C)	Incubation time(h)	Pullulan (%)
1	12.5	20	72	2.5
2	12.5	60	0	2.5
3	2.5	60	72	0.5
4	2.5	60	0	2.5
5	7.5	40	36	1.5
6	2.5	20	72	0.5
7	7.5	40	36	1.5
8	2.5	60	72	2.5
9	12.5	20	0	2.5
10	2.5	20	72	2.5
11	12.5	60	72	2.5
12	2.5	60	0	0.5
13	7.5	40	36	1.5
14	12.5	60	0	0.5
15	7.5	40	36	3.5
16	12.5	60	72	0.5
17	-2.5	40	36	1.5
18	7.5	80	36	1.5
19	7.5	40	36	1.5
20	7.5	0	36	1.5
21	7.5	40	108	1.5
22	2.5	20	0	0.5
23	12.5	20	0	0.5
24	17.5	40	36	1.5
25	2.5	20	0	2.5
26	7.5	40	36	1.5
27	7.5	40	36	1.5
28	12.5	20	72	0.5
29	7.5	40	36	1.5
30	7.5	40	36	-0.5

2.11.2 Effect of carbon sources on pullulanase production

Carbon sources play a vital role in the production of pullulanase. Among different carbon sources used are glucose, maltose, xylose, and pullulan. This experiment was done by using one factor at a time (OFAT). Wheat bran (4.5g) was weighed into 150ml of Erlenmeyer flask containing fermentation medium as it was stated in enzyme production and were autoclaved at 121° C for 15 minutes allowed to cool, 2ml of the bacterial suspension was added to the flask and distributed to each bijou bottles containing 0.5% of each carbon source at a time was incubated at 37° C for 4 days at pH 7, the broth were centrifuged at 10,000rpm at 10minutes. Supernatant were assayed for enzyme activity, protein concentration, and specific activity was measured.

2.11.3 Effect of nitrogen sources on pullulanase production

Among the two inorganic and organic nitrogen sources KNO₃, NH₄NO₃, and yeast extract. This experiment was done by using one factor at a time (OFAT). 4.5g of wheat bran was weighed into 150ml of Erlenmeyer flask containing fermentation medium as it was stated in enzyme production and were autoclaved at 121° C for 15min allowed to cool, 2ml of the bacterial suspension was added to the flask and distributed to each bijou bottle containing 2% of each carbon source at a time was incubated at 37° C for 4 days at pH 7, the broth were centrifuged at 10,000rpm at 10min. “Supernatant were assayed for enzyme activity, protein concentration, and specific activity was measured. The amount of protein present was
assayed using bovine serum albumin (BSA) as standard" [18].

2.11.4 Response surface methodology (RSM)

Response surface methodology (RSM) is a statistical design approach for selecting most favourable conditions for a multivariable system, as it studies the integration among variables with less experimentation, time, and cost. The central composite design (CCD) with 3 factors and 3 levels, including 6 replicates, all the centre points has used for a second order response surface.

The central composite design (CCD) was developed as an imbedded fractional factorial design with centre points and star points are at some distance from centre based on the properties desired for the design and the number of factors in the design. The response surface methodology was applied to understand the interaction of various variables and then used to find the optimum concentration of the significant independent variables (carbon source, nitrogen source, pH, and metal ion) and the effects of their natural interactions on pullulanase production. The statistical analysis of the data was performed using Design Expert ver.10.0.7.0 (State-Ease, Inc. Minneapolis, USA) was used for RSM experimental design and data analysis. From the experimental data according to the design, a second-order polynomial regression model equation was derived to define the response in terms of the independent variables. The graph obtained were used to explain the effect of variables individually, combination, and to determine the most favourable levels for highest pullulanase production (Table 1).

$$Y = \beta_0 + \beta_1 A + \beta_2 B + \beta_3 C + \beta_4 D + \beta_1^2 A^2 + \beta_2^2 B^2 + \beta_3^2 C^2 + \beta_4^2 D^2 + \beta_{12} AB + \beta_{13} AC + \beta_{14} AD + \beta_{23} BC + \beta_{24} BD + \beta_{24} CD$$

Where

Y: Predicted response

β_0: Intercept, A: pH, B: temperature, C: Incubation time, D: Pullulan percentage

$\beta_1, \beta_2, \beta_3$ and β_4 are the linear coefficients, $\beta_{11}, \beta_{22}, \beta_{33}$ and β_{44} are the squared coefficients, $\beta_{13}, \beta_{14}, \beta_{24}$, and β_{34} are the interaction coefficients,

$A^2, B^2, C^2, D^2, AB, AC, AD, BC, BD,$ and CD are the interactions between the variables as significant terms.

3. RESULTS AND DISCUSSION

3.1 Isolation, Screening, and Identification of Bacterial Isolates

The unknown bacteria were observed for the colonial characteristics as the result were illustrated by analysing the colonial characteristics on nutrient agar plates, the colonies of desired enzyme producing strain were found as translucent colonies of 3-5 and 1-2mm size, shape oval and entire. The pullulanase producing strains were gram-negative bacterial organisms. When viewed under a microscope with x40. The isolate FFW 10 was found to be Stenotrophomonas maltophilia strain based on 16SrRNA gene sequence. The ribosomal RNA gene sequence has been submitted to the GenBank and accession number MH225448.1. Table 2 [2] reported pullulanase production by Bacillus sp. [18] and [16] have identified pullulanase producing bacterial isolates based on their microscopic and biochemical parameters.

![Image 1. PCR amplification image of Stenotrophomonas maltophilia](image1.png)

The isolate FFW 10 was found to be Stenotrophomonas maltophilia strain on the basis of 16SrRNA gene sequence. The ribosomal RNA gene sequence has been submitted to the GenBank and accession number MH225448.1.

3.2 Screening of Pullulanase Producing Bacterial isolates

Table 3 showed the screening results of the 8 bacterial isolates which were able to produce
pullulanase with different diameters of pullulan hydrolysis zones. The ratio of pullulan hydrolysis zones of the bacterial isolates ranged between 20-70%. The highest percentage degradation efficiency was recorded with isolate FFW 10 (70%), followed by FFW 8 (33%) while isolate RFW 7 had the least degradation efficiency of 20%. Among the 8 bacterial strains screened, only isolate FFW 8 and FFW 10 exhibited the ability to degrade pullulan. Hence, isolate FFW 10 was selected for further studies. [16] reported “correlation between colony diameter (zone of clearance) and pullulanase production from the bacterial isolates were efficiency above 50% were selected and subjected to secondary screening” [18] reported that “the colony which showed a clear hollow zone around isolate after addition of KI solution on pullulan agar plate was observed as pullulanase producer. The screening of these bacterial isolates on pullulan agar showed that the isolates FFW10 were able to produce pullulanase with the diameter of pullulan hydrolysis zones at 37 °C incubation”.

Fig. 1 shows the preliminary study (with OFAT) on pullulanase production in submerged fermentation (SmF) using wheat bran and potato starch as substrates. The result revealed that both substrates encouraged pullulanase production by the bacterial strain although wheat bran proved to be better than potato starch in all fermentation periods under study. The highest pullulanase productions (2.50 U/ml) were achieved after 48 h of incubation as against when wheat bran was used as 1.52 U/ml was recorded with potato starch. However, optimum pullulanase production was obtained after 48 h of fermentation for both substrates. Wheat bran was selected as a substrate for further analysis. Submerged fermentation was explored and efforts were made to utilize natural substrates that contained starch as the substrates for pullulanase production at an incubation time of 48h, pH 7 and temperature at 37° C. The data showed that wheat bran played a positive role in the production of pullulanase by Stenotrophomonas maltophilia. Related results were reported from Bacillus sp. in the production of pullulanase [13]. “Another work showed a high level of pullulanase production by Bacillus halodurans after 5 days of incubation” [18]. [13] reported temperature 40° C, pH 7, and incubation time 48h. [16] also reported incubation time 48h, pH 7.5, and temperature at 37° C for the pullulanase production.

Table 2. Biochemical characterization of the bacterial isolate

Basic characteristic	Stenotrophomonas maltophilia
Catalase	+
Oxidase	+
Gram stain	G-
Casein	+
Shape	Rod
Methyl red (M-R)	-
Urease	-
Vogasproskuer (V-P)	-
Citrate	-
Spore shape	+
Motility	+
H₂S Production	-
Glucose	+G
Sucrose	+G
Lactose	+G
Galactose	+G
Fructose	+G

Note: + = positive, - = negative, G = gas, G+ = gram positive and G- = gram negative
Table 3. Screening for the potentials of pullulanase producing bacterial isolates obtained from soil samples collected from different locations in Rivers State and Lagos States

S/No	Sample code	Halo zone H (mm)	Colony size C (mm)	Degradation efficiency (H/C) %
1	FFW 10	34	20	70
2	FFW 8	20	15	33
3	OFW 1	22	18	22
4	RFW 7	24	20	20
5	OFW 3	26	20	30
6	OBW 5	24	18	31
7	FFW 11a	22	17	29
8	FFW 11b	22	18	22

Fig. 1. Preliminary study on pullulanase production in submerged fermentation (SmF) using wheat bran and potato starch as substrates

3.3 Effect of Carbon Source on Pullulanase Production

Fig. 2 showed the effect of different carbon sources on growth and pullulanase production by the isolate was determined by growing the bacterial isolates in SmF medium in which any of the following carbon sources: glucose, maltose, xylose, and pullulan were used as a sole carbon source. The maximum pullulanase production was shown when pullulan was used as sole carbon source at an incubation period at 48 h, followed by maltose at the same incubation time on isolate A and B, and the least carbon source occurred on glucose and xylose. The several carbon sources tested, pullulan was found to be the best carbon source for the substrates.

3.4 Effect of Nitrogen Sources on Pullulanase Production

Fig. 3 showed the effect of organic nitrogen source (yeast extract) and inorganic nitrogen sources (NH₄NO₃ and KNO₃) on pullulanase production by S. maltophilia. The maximum production by Stenotrophomonas maltophilia (2.87U/ml) was observed with yeast extract for the isolate at the same incubation time.

3.5 Optimization Studies

Optimization processes were done with quadratic models of the central composite design (CCD) of response surface methodology, using Stat-Ease Design Expert 10.0 software. Pullulanase
produced by *Stenotrophomonas maltophilia* were optimized respectively using the quadratic models of the CCD. The factors considered as independent variables were Temperature, pH, pullulan percentage, and incubation time. The results of Central Composite Design showed the significance on the production of pullulanase as the various optimum condition were noted; temperature 36ºC (A), pH 7.5 (B), incubation period 36h (C), and pullulan percentage production of 1.5% (D) by *Stenotrophomonas maltophilia* (Table 4). The interaction of the various variables (A, B, C, D), respectively in this study was found to be significant. [21] reported that “the central composite design of response surface methodology was applied to understand the relationship between the procedure for pullulan production by *Aureobasidium pullulans* MTCC 2195 using a second order quadratic model”.

![Fig. 2. Effect of various carbon sources on pullulanase production by *Stenotrophomonas maltophilia*.](image1)

![Fig. 3. Effect of various nitrogen sources on pullulanase production by *Stenotrophomonas maltophilia*.](image2)
Fig. 4. RSM for 3D-dimensional representation of pullulanase concentration (U/ml) produced by *Stenotrophomonas maltophilia* under varied pullulan (%) and incubation time, and pH 7.5 and Temperature 40°C.

Fig. 5. Contour representation of pullulanase concentration (U/ml) produced by *Stenotrophomonas maltophilia* under varied pullulan (%) and incubation time, and pH 7.5 and temperature 40°C.
Fig. 6. RSM for 3Dimensional representation of pullulanase concentration (U/ml) produced by *Stenotrophomonas maltophilia* under varied pullulan (%) and temperature (° C), and pH 7.5 and incubation time 36h

Fig. 7. Contour representation of pullulanase concentration (U/ml) produced by *Stenotrophomonas maltophilia* under varied pullulan (%) and temperature (° C), and actual pH 7.5 and incubation time 36h
Table 4. RSM design the actual and predicted values of the pullulanase produced by \textit{Stenotrophomonas maltophilia}

Runs	pH	Temperature (°C)	Incubation time (h)	Pullulan (%)	Actual Pullulanase (U/ml)	Predicted Pullulanase (U/ml)
1	12.5	20	72	2.5	1.75	2.02
2	12.5	60	0	2.5	1.01	1.54
3	2.5	60	72	0.5	1.19	1.36
4	2.5	60	0	2.5	1.32	1.65
5	7.5	40	36	1.5	5	4.78
6	2.5	20	72	0.5	1.21	1.15
7	7.5	40	36	1.5	3.1	4.78
8	2.5	60	72	2.5	1.78	2.06
9	12.5	20	0	2.5	1.11	1.43
10	2.5	20	72	2.5	2.1	2.24
11	12.5	60	72	2.5	2.5	2.24
12	2.5	60	0	0.5	1	1.19
13	7.5	40	36	1.5	2.12	1.20
14	12.5	60	0	0.5	1.3	1.65
15	7.5	40	36	3.5	2.71	2.31
16	12.5	60	72	0.5	1.78	2.11
17	-2.5	40	36	1.5	2	1.51
18	7.5	80	36	1.5	2.2	1.72
19	7.5	40	36	1.5	5.2	4.78
20	7.5	0	36	1.5	1.88	1.40
21	7.5	40	108	1.5	2	1.96
22	2.5	20	0	0.5	0.34	1.09
23	12.5	20	0	0.5	0.97	1.15
24	17.5	40	36	1.5	2.21	1.75
25	2.5	20	0	2.5	1.81	1.95
26	7.5	40	36	1.5	5.3	4.78
27	7.5	40	36	1.5	5.1	4.78
28	12.5	20	72	0.5	1.33	1.49
29	7.5	40	36	1.5	5	4.78
30	7.5	40	36	-0.5	1.87	1.32

4. CONCLUSION

The cultural conditions and composition of media for optimal production of pullulanase by \textit{Stenotrophomonas maltophilia} have been developed in this study. The outcome of this study indicated that optimum production of pullulanase by the bacterium was at 40° C, pH 7, and incubation time of 48 h. Various carbon sources were investigated as media components using OFAT and pullulan 2.844 U/ml were observed to be the best for pullulanase production by \textit{S. maltophilia}, while maltose, xylose, and glucose were the least/lowest. Optimal enzyme production (2.87 U/ml) was with organic yeast extract as nitrogen source. The Central Composite Design of RSM was employed to optimize the fermentation medium for pullulanase production. The results of RSM showed that optimum production for temperature was achieved at 36°C, pH 7.5, incubation period of 36 h, and pullulan percentage concentration of 1.5% using \textit{Stenotrophomonas maltophilia}. It can be concluded that \textit{Stenotrophomonas maltophilia} can be an excellent producer of pullulanase which could find applications in various industries.
COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Bender H, and Wallenfels K. Untersuchungen an Pullulan. II. Spezifisher Abbau durch ein Bacterielles Enzym. Biochemical. 1961;334:79-95.
2. Sarina PK, Lavanya BG, Mahima M, Sandhya J. Screening, Purification and Characterization of Pullulanase from Soil Bacteria and Enhancement of Its Stability by Immobilization and Nanoforms. International Journal of Emerging Trends in Science and Technology. 2016; 3(8):4483-4492.
3. Ryan SM, Fitzgerald GF, Van Sinderen D. Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Applied and Environmental Microbiology. 2006;72: 5289-5296.
4. Hii SL, Tan JS, Ling TC, Ariff AB. Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Research. 2012;1-14.
5. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Current Opinion in Biotechnology. 2002;13:345-351.
6. Ramadas M, Archana T, Malviya SN, Mahaveer Y. Effect on media composition and culture condition on pullulanase enzyme from extremophile bacteria species. International Journal of Biomedical and Advance Research. 2012; 3(9):692-699.
7. Van D, Willem R. Dishwashing detergents containing enzyme capable of breaking α-1,6-glucoside linkage, Brit. UK Patent Applied. 1990;GB2:228, 945.
8. Marotta M, Martino A, De Rosa A, Farina E, Carteni M, De Rosa M. Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. Process Biochemistry. 2002; 38(1):101-180.
9. Oskouei SFG, Tabandeh F, Yakhchali B, Eftekhar F. Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Biochemical Engineering Journal. 2008; 39:37-42.
10. Smith NK, Gilmour SG, Rastall RA. Statistical optimization of enzymatic synthetic of derivatives of trehalose and sucrase. Enzyme Microbiology Technology. 1997;21:349–354.
11. Prakash G, Shrivastva AK. Statistical media optimization for cell growth and azadirachtin production in Azadirachta indica (A. Juss) suspension cultures, Process Biochemistry. 2005;40:3795–3800.
12. Bergey DHJG. Bergeys manual of determinative bacteriology. Lippincott Williams and Wikins Philadelphia; 2000.
13. Khalaf AK, Aldeen SB. Optimum condition of pullulanase production by liquid state and solid state fermentation (SSF) method from Bacillus licheniformis (BS18). Iraqi Journal of Science. 2013;54(1):35-94.
14. Deepti G, Mehvish MN. Isolation and characterization of bacterial strain producing thermostable α- amylase. International Journal of Pharmacy. 2015; 5(4):1318-1326.
15. Sreedevi S, Reddy B. Screening for efficient phytase producing bacterial strains from different soils. International Journal of Biosciences. 2013;3:76-85.
16. Waleed M, Faiza AA, Nizar I. Production optimization of pullulanase enzyme produced by Bacillus cereus isolated from syrian sources. International Food Research Journal. 2015;22(5): 1824-1830.
17. Pooya RY, Poonam BC, Mayur G, Hirenbai P. Isolation, screening and optimization of process parameters for enhanced production of cellulase by solid state fermentation. International Journal of Advanced Research in Biological Sciences. 2016;3(5):21-27.
18. Asha R, Niyonzima FN, Sunil SM. Purification and properties of pullulanase from Bacillus halodurans. International Research Journal of Biological Sciences. 2013;2(3):35 43.
19. Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagiwara H, Kawai S, Ito S. Purification and characterization of an alkaline amylopullulanase with both alpha-1,4 and alpha-1,6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378. Biochemical Biophysica Acta. 1995;1243: 315-324.
20. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Quantitation of protein using Folin Ciocalteu reagent, Journal Biological Chemistry. 1951;193, 265.
21. Rama Krishna GVS, Sambasiva Rao KRS, Usha Kiranmayi M, Vijaya Lakshmi M, Sudhakar Poda. Production of pullulan using jaggery as substrate by Aureobasidium pullulans MTCC 2195, Current Trends in Biotechnology and Pharmacy. 2016;10(2):153-160.

© 2022 Ikegwuonu and Ire; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/91215