エンドミルびびり模様の二次元離散フーリエ変換による振動の逆解析に関する
ボクセルモデルによる模様形成メカニズムと推定精度の検証

尾崎 信利*1，峯高 晴生*2，松井 翔太*1，廣垣 俊樹*3，青山 栄一*3

Verification of pattern formation mechanism using voxel model and estimation accuracy
for inverse analysis of vibration phenomenon
using two-dimensional discrete Fourier transform of end mill chatter mark

Nobutoshi OZAKI*1, Haruki MINETAKA*2, Shota MATSUI*1, Toshiki HIROGAKI*3 and Eiichi AYOYAMA*3

*1,*2 Graduate School at Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
*3 Department of Mechanical Engineering, Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan

Abstract
The vibration generated at the contact point between a tool blade and a machined surface during cutting significantly influences the generation mechanism of regenerated chatter vibration. However, it is difficult to measure the vibrations generated at this contact point. In our previous research, we focused on the chatter mark formed on a machined surface owing to the chatter vibration during cutting, and analyzed the periodicity of the pattern using a two-dimensional discrete Fourier transform. Furthermore, we proposed a method for inversely analyzing the chatter vibration information generated at the contact point during cutting from the periodicity of the chatter mark, and demonstrated its effectiveness. The proposed method is based on the formation mechanism of the chatter mark estimated from the geometrical relationship between the tool blade and the machined surface, and the validity of this formation mechanism has not been directly investigated. In this research, the movement of the tool blade during cutting was reproduced based on the vibration displacement of the tool shank measured in the cutting experiment. A voxel model cutting simulation was then performed using the reproduced tool blade movement, and the chatter mark was reproduced in the simulation. By comparing this reproduced pattern with the chatter mark obtained by actual processing, the validity of the inverse-analysis model proposed was verified more directly than the previous research.

Keywords: Chatter vibration, Chatter mark, Cutting, Two-dimensional Fourier transform, Voxel model

1. 緒 言

切削加工におけるびびり振動の中でも再生効果によって引き起こされる再生びびり振動は、その発生機構が複雑な振動現象である。特にエンドミルの側面切削においては、断続切削や刃のねじれによって再生びびり振動の発生機構（社本, 2011）がさらに複雑となる。このエンドミル側面切削における再生びびり振動の発生条件を事前に予測する理論は多く提案されている（Mann et al., 2008）（鈴木, 2010）ものの、複雑な発生機構のため、加工中に変化する様々なパラメータ（工具摩擦や主軸温度の変化など）の影響（Matsubara et al., 2013）をすべて考慮し、発生条件を厳密に製作現場で予想することは現状では難しい。その一方で、切削時にびびり振動が生じるとその振動変位によって加工面にびびり模様と呼ばれる周期的な模様（縞模様）が生じることが広く知られており（土井, 加藤, 1954），その情報は製作現場でも容易に取得可能である。先行研究ではこの模様の中でも、特に

No.21-00095 [DOI: 10.1299/transjsme.21-00095]
*1 学生員, 同志社大学大学院 理工学研究科 機械工学専攻 博士後期課程（〒610-0394 京都府京田辺市多田羅都谷1-3）
*2 同志社大学大学院 理工学研究科 機械工学専攻 博士前期課程
*3 正員, 同志社大学 理工学部
E-mail of corresponding author: ctwc0562@gmail.com

© The Japan Society of Mechanical Engineers
じれ刃を有するエンドミル側面切削時の再生びびり振動によって形成されたびびり模様に注目し、びびり模様の周期性から切削時のびびり振動の振動数と位相差を逆解析する手法を提案した。さらに、得られたびびり振動現象の情報を基に、単一の振動数で成長する再生びびり振動をフィードバック的に抑制する手法を提案し、振動数1 kHz付近のびびり振動現象においてその効果を示した（廣垣他、2017）。しかし、この研究ではびびり模様の周期性を画像の縞模様の間隔から目で読み取っていたため、安定して周期性を読み取るには高度な熟練が必要であった。そこでさらに、びびり模様の周期性の解析に2次元離散フーリエ変換を導入することで、びびり模様の撮影画像から安定してびびり振動情報を自動的に逆解析できる手法を提案した（尾崎他、2019）。このびびり模様からの逆解析手法の推定精度は、切削時の工具ホルダ変位を変位センサで計測することで得られたびびり振動数と、逆解析手法で推定したびびり振動数を比較することで検証され、十分高いことが示されている。

一方、本手法の本質は加工面情報に基づく工具刃先と加工面の相対的な振動現象の逆解析であるが、この相対的な振動現象を加工中に直接計測することは困難であるため、先行研究では工具ホルダと刃先の振動現象の関係や、びびり模様の形成メカニズムについて十分な検討に至っていなかった。また、本手法は加工面模様が工具刃先（あるいは被削材）の振動変位によって創成されることを前提としているが、一般に振動数が高くなると振動変位はその振動数の二乗に反比例して小さくなる。エンドミル側面切削時には高いものでおよそ5 kHz付近のびびり振動頻数が発生することが報告されている（松田他、2019）が、先行研究では、高い振動数のびびり振動現象を対象にしてびびり模様の周期性を逆解析精度の検証が十分でなかった。そこで本報は、切削にロングシャンクエンドミルを用いることで従来よりも高い2.5 kHz付近のびびり振動数で創成されたびびり模様の逆解析を検証した。さらに、作業者の熟練度に依存せず自動的にびびり振動情報を逆解析できる手法（尾崎他、2019）を提案した。

2. びびり模様の2次元離散フーリエ変換によるびびり振動情報の逆解析の基本原理

本章では本研究が提案している、びびり模様の周期性を2次元離散フーリエ変換により空間周波数領域で解析することで再生型のびびり振動情報を逆解析する手法の概要を述べる。ある刃の切削時に生じた振動は加工面に起伏として残り、切取り厚さとして次の刃の切削時に影響を与える。これを再生効果と言い、再生効果によって形成される振動系が不安定となっているときに生じるびびり振動を特に再生型の自励びびり振動という（鈴木、2010）。単一のびびり振動数のびびり振動は、ある刃がその次の刃の切削時に生じた振動間の位相差εc [rad] が、その振動系の安定・不安定を決定する重要なパラメータ（杜本、2011）となる。先行研究では、まず加工面に形成されたびびり模様（図1）の縦間隔g、横間隔eが同切削条件の下ではびびり振動数fcとその位相差εcによって決定されることを着目し、びびり模様の撮影画像から目で測定した縦間隔g、eによって、びびり振動のびびり振動数fc、εcを逆解析する手法（廣垣他、2017）を提案した。しかし、びびり模様画像から安定して縦間隔g、eを読み取るには高度な熟練が必要であった。そのため、びびり模様形成過程を図2のように推定することで、2次元離散フーリエ変換により空間周波数領域でびびり模様の周期性を同定し、作業者の熟練度に依存せず自動的にびびり振動情報を逆解析できる手法（尾崎他、2019）を提案した。

ねじれ刃を有するエンドミル側面切削の場合、工具ねじれによって刃先は被削材の下端から上端を順次切削する。この切削プロセスを工具送りで加工面全体を移動させながら繰り返しているため、刃先の切り込み位置は図2のY軸に沿って速度Vで移動する。ただし、図2のS[min⁻¹]は主軸回転数、Z[-]は工具の刃数、D[mm]は工具径、θ [rad]は工具ねじれ角、f [mm/tooth]は一刃あたりの工具送り量、V [mm/s]は工具軸方向の速度成分、Vf [mm/s]は工具送り方向の速度成分を示す。切削時に生じた加工面に対して法線方向（以下、加工面法線方向）の振動はY軸に沿って、再生効果で伝わるよう加工面起伏として残る。従って、式(1)、(2)で計算される位置Ts、Asの加工面起伏を読みとり、式(3)で計算される（工具刃先が加工面の下端に切り込んだ瞬時からの）切削時間r
にプロットすることで、ある刃の切削時に生じていた、加工面法線方向の振動の時系列データを得ることができる。なお加工面上の座標は、図2に定義された座標系TS、NSを用いることとする。

\[T_S = \eta + \xi \cos \alpha \]
\[A_S = \xi \sin \alpha \]
\[r' = \xi / V \]

ここで、\(\xi \)は媒介変数、\(\eta \)は工具刃先が加工面の下端に切り込んだ位置である。この切削時振動の読み取り作業を、読み取り位置\(\eta \)を一度あたりの工具送り\(f_t \)だけずらしながら繰り返すことで各刃の切削時に生じていた2次元の振動データ\(u'[r', i] \)（\(r' \): 切削時間、\(i \): 被削材を切削した刃の数）を作成する。この各刃の切削時振動データ\(u'[r', i] \)から次式で定義される2次元離散フーリエ変換によって図2中の右図に示すように2次元の周波数スペクトル\(U[r, i] \)を作成する。

\[U[r, i] = \sum_{r=0}^{N_r-1} \sum_{i=0}^{N_i-1} (u'[r', i] - \bar{u}) e^{-2\pi i (\frac{r}{N_r} + \frac{i}{N_i})} \]

ここで\(\bar{u} \)は2次元振動データ\(u'[r', i] \)の平均値、\(j \)は虚数単位である。びびり模様が加工面に明確に現れた時の周波数スペクトル\(|U[r, i]| \)にはびびり振動に由来するピーク\(C \)が生じる。ここでピーク\(C \)が見られる位置\(r_c, i_c \)が持つ意味について考える。図1のびびり模様に注目するとびびり模様は、工具振動が記録される切削パス\(\xi \)の軸方向だけでなく、工具送り方向に対しても周期的であることがわかる。これは切削時のびびり振動の位相が位相差\(\varepsilon_c \)によって各刃で少しずつずれ、位相ずれの蓄積が\(2\pi \)に達することで一定区間ごとに元の振動位相に戻っていることが原因であると考えられる。したがって周波数スペクトルの\(\tau \)は次式でびびり振動の位相差\(\varepsilon_c \)に変換できる。

\[\varepsilon_c = 2\pi i_c / N_i \]

また周波数スペクトルの\(\tau \)軸は切削時間\(r \)を周波数変換したものであるため、ピークが見られる位置\(\tau_c \)はびびり振動の振動数\(f_c \) [Hz]に相当する。以上の手法によってびびり模様から、工具刃先と加工面の接触点で生じていた加工面法線方向のびびり振動を逆解析することが可能である。一般に実際の加工面には様々な外乱が含まれることが予想されるが、本研究の手法は2次元離散フーリエ変換によって空間周波数領域でびびり振動情報を検出することで、周期性のない不規則な外乱を除きS/N比を向上させることができる。

Fig. 1 Example of a chatter mark appearing on the machined surface of the end mill side cutting. The chatter mark forms a striped pattern because it is periodic in both the tool axis and feed direction.

Fig. 2 Modeled end mill side cutting process. The end mill blade cuts the workpiece while following the path \(\xi \). As this process is performed for each blade cutting, each blade passes through the cutting path \(\xi_i \) on the machined surface for each tool feed amount \(f_t \).

3. 切削時の工具振動を入力としたボクセルモデルによる加工面模様シミュレーション

本報は、切削時に測定した工具シャンク部の振動変位に基づき、ボクセルモデルに用いた加工面形状のシミュレーションによってびびり模様を再現することで、本研究で提案する逆解析モデル（図2）の妥当性を検証する。ただしこの切削実験では工具の突き出し量を長くし、工具を支配的に振動させることで、被削材の振動は無視できたものとした。また振動する刃先運動の実加工面への転写性はその波長や振幅により影響を受けることが判明（河野他、2009）しているが、本報では転写性を100%と仮定してシミュレーションを遂行した。
図3に本報で用いた加工面模様シミュレータの概要を示す。工具は3D-CADで作成した刃先のみのモデルを微小薄板要素に分割したモデル、被削材は微小要素に分割したボクセルモデルを使用した。本報で被削材にボクセルモデルを用いたのは、CSG(Constructive Solid Geometry)表現や境界表現、あるいはポリゴンモデルに比べ加工面の微細な起伏や切削による逐次の変形の計算処理に優れ、またZ-Mapモデルでは一方向しかできない衝突計算を任意方向で行えるため今後曲面形状の加工面のびびり模様解析などにも応用が期待できるためである。なお、工具の各薄板要素はポリゴンモデルで再現した。被削材は微小要素に分割したボクセルモデルを使用した。

切削シミュレーションをおこなう微小時間間隔Δtは、ボクセルモデルの微小要素Δdを小さくするほど、短い時間に設定する必要がある（西田他、2018）が、本報の場合は工具挙動の再現に実切削で計測した工具シャンク部変位を要するため、センサの時間分解能の制約がある。このため、本報では図4のような手順で被削材の微小要素の除去をおこなった。ある時間tiでの切削を考えるとき、まず時間tiとその直前の時間ti-1 (= ti−Δt)における、刃先を構成する多角形の座標をそれぞれ計算する（図4-(a)）。次に刃先を構成する各頂点の移動軌跡を直線で近似できるとし、時間ti、ti-1における同一の頂点どうしを直線で結ぶ（図4-(b)）。このようにして求められた線分群によって構成される最も外側の多角形（輪郭）を求め、最後にその多角形の内側に存在する被削材の微小要素を除く（図4-(c)）。この処理を微小薄板要素ごとにおこなうことで切削を再現した。以上の方法で被削材の切削を再現し、シミュレーション後に得られた加工面のびびり模様と実切削で得られたびびり模様を比較した。

Fig. 3 Outline of the cutting simulation performed in this study. In the simulation, the movement of the tool blade is determined by the movement of the entire tool by the machine tool S, Vf and vibration during actual cutting δni(t), δti(t). The workpiece, which is divided into minute elements (voxel model), is sequentially removed by the tool blade.

Fig. 4 A method to calculate the workpiece element cut between times ti and ti-1 approximately. The cutting of the workpiece was simulated according to the procedure of (a)-(c).
4. 実験装置および方法

切削時の工具刃先の振動変位は、刃先がセンサを傷つけない懸念がある。回転体の変位量は円筒形でなければ測定が難しいなどの理由から直接の計測が困難である。そのため、まず切削実験で切削時に生じたびびり振動を工具シャンク部の変位から計測し、さらに工具の刃先を傷つけないため、工具の変位量は円筒形でなければ測定が難しいなどの理由から直接の計測が困難である。切削時に生じたびびり振動を工具シャンク部の変位から工具刃先の変位を推定し、切削シェルジュレーションに用いた。

4・1 エンドミルシャンク部でのびびり振動を測定対象とした切削実験

図3に切削実験の概要を示す。主軸回転数の指令値は3900 min⁻¹に設定したが、変位センサの波形の周期から求めた実際の主軸回転数は3897.7 min⁻¹であった。また被削材の中央付近（作用点L）で集中荷重が生じるモデルに近似した。なお、図6に示す工具たわみモデルは静剛性試験から工具剛性および工具基部の変位を求めるために用いており、切削実験で得られた工具シャンク部の変位から刃先の変位を推定する際には断絶する有限要素モデルを用いた。

Table 1 Cutting conditions.

	Value
Spindle speed S [min⁻¹]	3897.7 (3900)
Tool feed per tooth f	0.06
End mill diameter D	8.0
Axial depth of cut A	10.06
Radial depth of cut R	0.3
Workpiece material	S50C
静剛性試験の概要を図7に示す。切削実験と同じ位置関係で、工作機械のテーブルを0.00 mmから0.30 mmまで0.05 mmずつ送ることで、工具刃先を被削材に図7のY方向に押し当て、その際生じたY方向の抗力を工作機械のテーブルに設置した圧電型動力計によりを後述する手法によって測定し、工具の旋廻角は工具刃先が被削材の(工具軸方向に)L = 58.5 mmで接触するように調整し、工具たわみモデルに近い位置で荷重が作用するようにした。また切削時の工具剛性をなるべく正確に計測するために、切削実験の直後に静剛性試験をおこなった。式(6)の各係数をさらに次式に置き換えた、以上の方法で得られた抗力と各計測位置の変位を後述する手法によって測定し、工具の旋廻角は工具刃先が被削材の(工具軸方向に)L = 58.5 mmで接触するように調整し、工具たわみモデルに近い位置で荷重が作用するようにした。また切削時の工具剛性をなるべく正確に計測するため、切削実験の直後に静剛性試験をおこなった。式(6)の各係数をさらに次式に置き換えた、以上の方法で得られた抗力と各計測位置の変位を後述する手法によって測定した。

ただし、工具の剛性は主軸回転によって変化することが知られている(Matsubara et al., 2013)が、本報では切削時と主軸静止時の剛性は大きく変化しないものとした。

$$\delta(l) = P(a_k(3L - l)l^2 + b_kll + c_k)$$ (7)

本報で用いる工具たわみモデルは未知数を3つ持つため、最低でも3か所の工具変位を計測する必要があり、さらに正確にパラメータを求めるにはより多くの箇所で工具変位を計測する必要がある。一方で、直径8 mm程度のエンドミルの突出し部にダイヤルゲージなど接触式センサを多数配置しての同時多点の計測は難しく、さらにレーザ変位などの非接触センサを多数用いると高価となる。そこで本報では、工作機械のテーブル送りとデジタルカメラを用いて同時多点の工具変位を容易に計測できる次の手法を用いた。

図8に実際の静剛性試験時の様子を示す。市販のデジタルカメラTough TG-5・Tough TG-6（オリンパス株式会社製）を、ジグを介して工作機械のテーブルに取り付け、コンピュータソフトによって作成・印刷したマーカを工具のシャンク部に貼り付けた。マーカには、誤検出が有りよう周囲にない彩度の高い色を採用した。デジタルカメラのインターバル撮影機能を用いて、マーカを一定時間ごとに撮影することで、画像中のマーカの変位を計測する。ただし、静剛性試験時の撮影画像だけでは、ピクセル値を実際の寸法へ変換するには、校正実験をおこなう必要がある。本報では校正実験として、静剛性試験をおこなう前に工具を工作機械の送り運動によって図9のように一定間隔で動かし、図9の各赤点で撮影をおこなった。工具を各赤点へ移動させたときの撮影画像からマーカの座標を読み取ることで、撮影画像のピクセル値と実際の変位量の対応関係からホモグラフィ変換によって、静剛性試験時のマーカの実際の変位量を求めることができる。このマーカの変位量はテーブルの送り量から主軸に固定された工具の変位(たわみ)量を引いたものであるため、試験時にテーブルの送り量をモニタリングしておくことで、デジタルカメラの撮影画像から被削材やマシンバイスの弾性変形に影響されない工具自身の変位量を求めることができるようになると考える。ただし、工具シャンク部は荷重方向、すなわち工具送りに方向にしか変位しないとし、また作業機械の送り精度は十分高いものとした。

Fig. 6 Tool deflection model used in this study. It is assumed that a concentrated load P is applied to the tool. In addition the deflections of the spindle and tool holder are approximately represented by k_x^{-1} and k_θ^{-1}. Fig. 7 Outline of the tool stiffness test. The force and tool displacements that occurred when the workpiece was pressed against the blade of the long shank end mill by the machine tool were measured. The red marker indicates the position where the tool displacement was measured. The turning angle of the tool was adjusted so that the tool blade and workpiece came into contact near the center of the workpiece.
5. 実験結果および考察

5・1 デジタルカメラ画像に基づく静剛性試験

静剛性試験の結果を図 10 に示す。図 10 のマーカ座標 Y_m は事前の校正実験の際に設定した原点からの移動量を示している。荷重が増えるにつれて、マーカの座標 Y_m が線形的に変位していることが確認でき、本報で用いたデジタルカメラによる計測方法でも、マーカの微小な変位を捉えられていることがわかる。ここで、本報で用いる工具たわみモデルには次式が成り立つ。

$$
\delta(l)^{i} = P^{(i)} C_M(l) + \varepsilon^{(i)} \tag{8}
$$

$$
\delta(l)^{i} = Y_T^{(i)} - (Y_m^{(i)}(l) - Y_o(l)) \tag{9}
$$

$$
C_M(l) = a_k(3L - l)^2 + b_kLL + e_k \tag{10}
$$

ただし、添字(i) は静剛性試験の各測定値であることを示し、$Y_m^{(i)}(l)$ は各計測位置 l におけるマーカ座標、$Y_o(l)$ は工具刃先が被削材に接触した直後（工具に荷重がかからないとき）の各計測位置 l におけるマーカ座標、$P^{(i)}$ は荷重、$Y_T^{(i)}$ はテーブルの送り量、$\varepsilon^{(i)}$ は測定誤差を表す。また$C_M(l)$ は式(7)で表される工具たわみモデルを機械的なコンプライアンスに置き換えた関数である。工具たわみの原点である$Y_o(l)$ は、工具刃先が被削材に接触した瞬間の検出が本報の静剛性試験では難しいこと、測定結果（図10）にはノイズも多分に含まれていることから、正確に求めることが困難である。このため、本報ではテーブルの押し付け量$Y_T^{(i)}$ が異なる 2 点の測定値 i,j の差分を、次式のように求め、工具のたわみ剛性$C_M^{(ij)}(l)$ を算出した。

$$
C_M^{(ij)}(l) = C_M(l) + \varepsilon^{(ij)} = \frac{(Y_T^{(j)} - Y_m^{(j)}(l)) - (Y_T^{(i)} - Y_m^{(i)}(l))}{P^{(j)} - P^{(i)}} \tag{11}
$$

式(11)の条件が成り立つ全ての$C_M^{(ij)}(l)$ を求めた結果を、図11にヒストグラムで示す。図11から計測位置 l が大きくなるにつれて$C_M^{(ij)}(l)$ の分布が機械的コンプライアンスの大きい方に偏移していることがわかり、工具の変位として妥当な結果が得られていると考えられる。したがって本報では、式(11)の条件が成り立つ全ての$C_M^{(ij)}(l)$ から最小二乗法によって式(7)の各係数を求めた。表2に最小二乗法で得られた式(7)の各係数を示す。
Fig. 10 Marker displacement obtained in the tool stiffness test. As the displacement on the vertical axis of the graph indicates the amount of movement from the origin when calibrating the camera coordinate system, the relative amount of change is important. The displacement of the marker is proportional to the reaction force P.

Table 2 Coefficient of Eq. (7) obtained in the tool stiffness test.

Symbol	Unit	Value
a_k	[1/N/mm2]	1.52×10^{-9}
b_k	[rad/N/mm]	1.03×10^{-7}
c_k	[mm/N]	1.70×10^{-4}

Fig. 11 Mechanical compliance $C_{M}^{(0)} (l)$ of the tool calculated from the results of the tool stiffness test. The average value of the distribution of $C_{M}^{(0)} (l)$ increases as it approaches the tip of the tool.

5・2 切削実験によるびびり振動数の同定と加工面のびびり模様

図 12 に切削実験で得られた工具シャンク部の加工面法線, 接線方向変位の時系列データ $\delta_{n0}(t)$, $\delta_{t0}(t)$, 図 13 に加工面に現れたびびり模様を示す。なお, 変位の方向については, $\delta_{n0}(t)$ は図 2 の N_S 軸, $\delta_{t0}(t)$ は T_S 軸を基準とした。また, 工具変位の時系列データには 10000 Hz 付近の振動成分が見られたが, この振動成分は空転時, 加工時にかかわらず常に確認されたことから, センサノイズであると考える。このため, 工具変位の時系列データは 7000 Hz 以下のローパスフィルタを通したものを利用。図 12-(b), (c) より, 工具変位の時系列データには切削時と非切削時を示す波形が断続切削周期で現れ, エンドミルの断続切削を捉えていることが見てとれる。また切削時には断続切削周期よりも短い周期の振動が現れ, 切削時にびびり振動が生じていたことがわかる。さらに, 図 13 には明確なびびり模様が現れ, 加えてその模様の周期性は概ね定常であることがわかる。したがって本報では切削時間中央付近（図 12 の 4.0 - 5.0 s）で生じていたびびり振動現象に注目し, 解析を進めることとする。図 12 に示す加工面法線方向の工具変位 $\delta_{n0}(t)$ から, 図 12-(b) のように切削時を示す区間の中でも, 比較的振動条件が一定な区間（具体的な区間は後述）を抜き出し, それぞれの振動データをフーリエ解析することで切削時に生じていたびびり振動数を計測した。なお, データ点数はゼロパディング（Jason and Jeffrey, 2007）による 2000 点に拡張することで解析上の周波数分解能を向上させている。その結果, 切削時間 4.0 - 5.0 s の区間で生じていたびびり振動数の平均は 2580.7 Hz であった。また, 図 12 に示す加工面接線方向の工具変位 $\delta_{t0}(t)$ から同様にびびり振動数を求めたところ, その平均は 2589.8 Hz となり, 加工面法線方向で得られた値と概ね一致していたことから, 本実験では同一のびびり振動が加工面法線, 接線方向に現れていたことがわかる。
本報では、切削シミュレーションをより正確に実施するため工具変位の時系列データを基に実切削時における主軸回転数 \(S \) を求めた。本切削実験では、工具送り方向に対し水平な矩形ワークを切削しているため、切削時と非切削時に示す波形が現れるタイミングは各断続切削周期で一致するはずである。このことを利用し、工具変位の時系列データを仮定した断続切削周期ごとに切り分け、それらの工具変位波形同士の相関係数を求めたところ、実主軸回転数 \(S = 3897.7 \text{ min}^{-1} \) と仮定したときの相関係数が最も高くなることがわかった（工作機械の指令回転数は \(3900 \text{ min}^{-1} \)）。この実主軸回転数 \(S = 3897.7 \text{ min}^{-1} \) のときの断続切削周期で、工具波形を切り分けた結果を図14に2次元で示す。ただし、切り分けた工具変位波形は、法線方向の変位 \(\delta_{\text{n0}}(t) \) のうち、工具変位が比較的定常的に生じていると見られる図12の2.0 - 7.0 sの区間である。図14から工具変位の波形には断続切削周期のサイクルごとで遷移が見られず、3897.7 \text{ min}^{-1} が実主軸回転数 \(S \) として妥当であることがわかる。

![図12: タイムシリーズデータの工具変位](image12.jpg)

- (a) 正常方向に対する切削面（全体）。
- (b) 正常方向に対する切削面（一部）。
- (c) タンジェンシャル方向に対する切削面（一部）。

Fig. 12 Time-series data of tool displacement obtained in the cutting experiments. As waveforms indicating cutting and non-cutting section can be observed in the time-series data, the intermittent cutting of the end mill is captured. Additionally, it can be observed from the vibration waveform that chatter vibration occurred during the cutting process.

![図13: チャートマーカのイメージ](image13.jpg)

- (a) フルチャートマーカイメージ。
- (b) チャートマーカの一部。

Fig. 13 Image of chatter marks obtained in the cutting experiment. A chatter mark clearly appeared on the machined surface, and the periodicity of the mark at the bottom of the machined surface was more stable than that at the top.

![図14: 法線方向の工具変位を周期ごとに選択](image14.jpg)

Fig. 14 Result of dividing the tool displacement in the normal direction by each intermittent cutting cycle, assuming the actual spindle speed is 3897.7 \text{ min}^{-1}. Even when the cutting time elapses, the waveform does not shift.
5.3 有限要素法を用いた工具振動のモードシェイプ解析による刃先振動の推定

本節では有限要素解析によって、切削試験で得られた工具シャンク部の振動変位から工具刃先の動的な振動運動を推定する。加振方向に沿った工具の振動現象を考えると、工具の有限要素モデルは図15のように1次元の有限要素でモデル化できる。ただし、\(\delta_i(t), \theta_i(t)\)は各節点の変位および傾き角である。また、図15の節点1、2の位置は切削実験における加工面法線、接線方向の工具変位の測定位置に対応する。図15で示された有限要素モデルの要素質量マトリックス\([M_e]\)、要素剛性マトリックス\([K_e]\)はそれぞれ次式で表される（安田、2006）。

\[
[M_e] = \frac{\rho A h_i}{420} \begin{bmatrix}
156 & 22h_i & 54 & -13h_i \\
22h_i & 4h_i^2 & 13h_i & -3h_i^2 \\
54 & 13h_i & 156 & -22h_i \\
-13h_i & -3h_i^2 & -22h_i & 4h_i^2
\end{bmatrix}
\]

\[
[K_e] = \frac{EI}{h_i^3} \begin{bmatrix}
12 & 6h_i & -12 & 6h_i \\
6h_i & 4h_i^2 & -6h_i & 2h_i^2 \\
-12 & -6h_i & 12 & -6h_i \\
6h_i & 2h_i^2 & -6h_i & 4h_i^2
\end{bmatrix}
\]

ただし、\(h_i\)は各節点間の長さであり、図15のモデルによって決定される。\(A\)は工具の断面積であり本報では一定に\(\pi \frac{D^2}{4}\)とした。\(\rho\)は工具の密度であり、工具の重量を体積で除することで実験的に同定した。\(EI\)は表2で求めた\(aK\)から式(6)、(7)の関係より求めた。式(12)、(13)のマトリックスを各節点について足し合わせることで全体質量マトリックス\([M]\)，全体剛性マトリックス\([K]\)が得られる。さらに全体剛性マトリックス\([K]\)には境界条件として次式のよう、静剛性試験で求めた\(k_x, k_\theta\)（\(EI\)と同様に\(bK, cK\)から得られる）を足し合わせることで、主軸および工具ホルダのたわみを反映できる。

\[
[K'] = [K] + \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]

ここで境界条件を反映させた全体剛性マトリックスを\([K']\)とおく。次に切削実験後に実施したハンマリング試験によって、図15のモデルの妥当性を検証する。ハンマリング試験によって求めた工具の1次固有振動数は1117Hzとなり、\([M]\)と\([K']\)から解析した工具の1次固有振動数は1093Hzとなった。それぞれの解析で得られた固有振動数は概ね一致していたことから図15の有限要素モデルの妥当性が確かめられる。一方で、工具の1次固有振動数が、図12に示す切削実験の工具振動から解析したびびり振動数（2580.7Hz）と大きく異なっていることもハンマリング試験からわかる。この原因として、突き出し量の大きいドリル切削では刃先が被削材に接触すると、接触剛性により刃先が自由端のときの剛性は高くななることが知られており（藤井他、1985）、さらに突き出し量が長いボールエンドミル加工においても同様に刃先が被削材に接触することで固有振動数が高くなることが確認されている。したがって本報のように突き出し量が大きさのロングシャンクエンドミルの切削でも、切削時には工具が被削材に接触することで先端が弾性支持となり、先端が自由端の場合に比べて固有振動数が高くなったものと考えられる。すなわち、片端が自由端である図15の有限要素モデルは非切削時の工具振動の要因であるが、切削時における工具振動モデル（以下、切削時モデル）は図16のように接触剛性を考慮したモデルになると考える。このときの全体剛性マトリックスを\([K']\)と置く。さらにパネ係数\(k_p\)には静剛性試験の定常時における工具の力のとり合いから次式が成り立つ。

\[
P^{(i)} = k_p \left(Y_T^{(i)} - Y_o - P^{(i)}C_M(L) \right)
\]

© The Japan Society of Mechanical Engineers
ただし、Y_n は工具刃先が被削材に接触した直後のテーブルの送り量である。式(15)は k_p, Y_n 以外の変数が全て静剛性試験によって既知であるため、最小二乗法によって k_p を求めることができ、同定された k_p は 23762 N/mm となり、工具基節の弹性変位を表す $k_e = 5898$ N/mm (α_k の逆数) のおよそ 4 倍程度であった。このようにして求めた $[M]$ と $[K']$ から解析した工具の 1 次固有振動数はおよそ 2834 Hz となり、$[K']$ から求めた固有振動数よりも切削時のびびり振動数に近くなったことから、図 16 に示す工具の切削時モデルは妥当であると考えられる。以上の方法で得られた有限要素モデルによって解析した、変位$\delta(t)$ のステップ応答（切削時モデルで解析）・インパルス応答（非切削時モデルで解析）を、切削実験で得られた加工面法線方向の工具変位$\delta_n(t)$ と比較した結果を図 17 に示す。図 17 には振動波形の算出に用いた微分方程式も示している。なお全体減衰マトリクス $[C]$ は剛性比例減衰を想定した（横川, 中島, 2010）。図 17 より有限要素モデルで解析された振動波形が実際に計測された波形と概ね一致していることがわかる。さらに、切削時には工具刃先と加工面の接触によって、非切削時よりも固有振動数および減衰が増大することが知られている。同定した工具振動の有限要素モデルの妥当性は明らかである。また工具突出し量が長い場合、被削材と刃先の接触支持剛性を考慮した曲げモデルが必要であることが判明した。

同定された有限要素モデルを用いて切削試験で実測した工具シャンク部の変位データから工具刃先の変位を推定する。加工面法線方向における工具シャンク部の変位$\delta_n(t)$ を入力、工具刃先の各節点の変位$\delta_n(t)$ を出力として周波数応答関数$H_n(j\omega)$ の解析方法の概要を図 18 に示す。まず、有限要素解析を用いてある周波数ω の正弦波加振力 $P(j\omega)$ に対する各節点の応答を求める。このとき、各節点の応答もやはり周波数ω の正弦波を用いる。「フーリエ解析を用いることで、周波数ω の正弦波入力$\delta_n(t)$ に対する周波数応答関数$H_n(j\omega)$ を各節点でそれぞれ求めることができる。この解析を必要な周波数ω についてそれぞれおこなうことで各節点の$H_n(j\omega)$ を得る。ただし、実際の断続切削では図 17 のように切削時モデルと非切削時モデルの振動を交互に繰り返すことが予想される。このモデルの厳密な再現は困難である。本報では切削時の工具振動を重要とするため、正弦波 $P(t)$ に対する各節点の応答は切削時正弦波を用いて解析した。なお、工具シャンク部の変位$\delta_n(t)$ は有限要素モデル（図 16）における変位$\delta_1(t)$ に対応する。以上で求められた周波数応答関数$H_n(j\omega)$ により、切削実験で得られた工具シャンク部変位の時系列データ$\delta_n(t)$ を離散フーリエ変換し、$H_n(j\omega)$ を乗じて逆離散フーリエ変換することで、工具刃先の変位$\delta_n(t)$ の時系列データが各節点で得られる。また加工面法線方向の工具刃先の傾き角$\delta_n(t)$ についても、有限要素モデルによる解析を同様におこなうことで、工具シャンク部の変位$\delta_n(t)$ から推定することができる。さらに推定された工具刃先の変位$\delta_n(t)$、傾き角$\delta_n(t)$ に基づく 3 次関数（安田, 2006）により、各節点間の工具変位を補間することで、任意の位置における工具刃先の変位$\delta_n(t)$ が推定可能となる。以上の解析を、加工面法線方向についても同様におこなうことで、実測された工具シャンク部の接線方向変位$\delta_n(t)$ から、工具刃先の任意の位置における接線方向変位$\delta_n(t)$ を推定可能となる。ただし、法線方向の工具シャンク部の変位$\delta_n(t)$ は図 16 における変位$\delta_n(t)$ に対応する。このようにして任意の位置での推定可能となった工具刃先の加工面法線、接線方向の変位$\delta_n(t)$、$\delta_n(t)$ を基に、次節の加工面形状シミュレーションに必要な工具刃先の各薄板要素の変位$\delta_n(t)$、$\delta_n(t)$ をそれぞれ求めた。入力を工具シャンク部の加工面法線方向変位$\delta_n(t)$ とし、この処理によって得られた工具先端 $l = 64$ mm の変位時系列データ$\delta_n(t, 64)$ を図 19 に示す。ただし、離散フーリエ変換ではノイズ現象によっ
Finite element model used for end mill vibration analysis. The load acting on the tool is approximated by the concentrated load. The deflection of the spindle and tool holder are represented in the model by k_x, k_θ. The node position of the tool shank corresponds to the measurement position of the tool displacement in the cutting experiment.

![Finite element model used for end mill vibration analysis](image)

Table: Order of nodes counted from fixed end vs. Node position [mm] (Distance from fixed end)

Order	Node position [mm]
0	0
1	20 (= h_0)
2	30 (= $h_0 + h_1$)
3	53
4	54.1
5	58.5
6	64

Finite element model of the tool vibration during cutting. By setting the spring constant k_p, the contact stiffness between the tool blade and the workpiece is represented.

![Finite element model of the tool vibration during cutting](image)

Point of application of P

\[
b = [0 \cdots 0 1 0 \cdots 0]^T
\]

\[
x = [\delta_0 \delta_1 \delta_2 \cdots]^T
\]

P_i: Impulse input
\[
[C'] = \beta[K']
\]

P_s: Step input
\[
[C''] = \beta[K'']
\]

Results of analyzing the step and impulse response of the displacement $\delta_1(t)$ of the tool shank by the finite element model used in the experiment. The two responses are almost in agreement with the displacement of the tool shank in the normal direction $\delta_{n0}(t)$ with respect to the machined surface measured in the cutting experiment.

![Results of analyzing the step and impulse response](image)
Fig. 18 Calculation method of the response function $H_{nk}(\omega)$ with the displacement of the tool shank $\delta_{n0}(t)$ as input and of the blade $\delta_{nk}(t)$ as output. $H_{nk}(\omega)$ is calculated from the frequency responses of the corresponding two nodes using Fourier analysis.

Fig. 19 Result of estimating the displacement of the tool end $\delta_{n}(t)$ from the displacement of the tool shank in the normal direction $\delta_{n0}(t)$ with respect to the machined surface obtained in the cutting experiment by finite element analysis.

At the tool end, the displacement of low-frequency components is larger than that of high-frequency components.

5.4 工具の振動変位を入力としたポクセルモデルによる加工面模様シミュレーションの結果

前節までの結果より, 本実験で生じていた切削時のびびり振動は概ね定常であったことから, 本報では切削シミュレーションをおこなう時間区間を図 12 に示す 4.0 - 5.0 s の区間に限定した。被削材の微小要素の間隔 Δd は 0.005 mm, 微小時間間隔 Δt は 5×10^{-5} s とし, 工具変位の時系列データと工具の旋回角を, 図 20 に示すように, 時系列データの変位が増大を始めた時刻で, 切削面の下端を切削する刃が被削材に接触するようタイミングを合わせた。計算結果は被削材の微小要素の間隔 Δd, 工具の旋回角 θ_A を用いて, 図 21, 22, 23 に示すように加工面形態をシミュレーションに反映させ, レーザ顕微鏡の加工面形状を計測し, レーザ顕微鏡の座標補正を行った。なお, レーザ顕微鏡の座標補正には本報では次式で示すような補正を行った。

$$\begin{bmatrix} A_S' \\ T_S' \\ N_S' \end{bmatrix} = R(\theta_A)R(\theta_T)R(\theta_N) \begin{bmatrix} A_S \\ T_S \\ N_S \end{bmatrix} + \begin{bmatrix} \epsilon_A \\ 0 \\ 0 \end{bmatrix}$$ (16)

ただし, $R(\theta_A)$, $R(\theta_T)$, $R(\theta_N)$ はそれぞれ A_S', T_S', N_S' 軸回りの回転行列であり, A_S, T_S, N_S は座標系の並進オフセット量である。本報では切削シミュレーションで得られた加工面形態を基に, レーザ顕微鏡の座標補正を行ったが, 本報では工具の旋回角を含むべき座標系の並進オフセット量である。本報では工具の旋回角を含むべき座標系の並進オフセット量である。
を10000×10000点に拡張した。それぞれの結果のびびり模様がよく一致していることが図25よりわかる。以上のことから、本報のびびり振動時に生じる工具刃先の変位を入力とした、ボクセルモデルによる加工面模様のシミュレーションモデルの妥当性が確かめられた。また刃先振動の加工面へ転写性を100％とした切削シミュレーションのびびり模様と実測のびびり模様がよく一致していたことから、本研究で確認されているびびり模様は、加工面法線方向のびびり振動がむしれ等の影響を受けずに精度よく加工面に転写されることで形成される模様であることが確認できた。

図13には工具送り方向に沿った横線が現れており、その上部ではびびり模様にゆがみが生じていることがわかる。この現象は本研究では以前から確認されており、先行研究（尾崎他、2019）では被削材と工具の幾何学的関係から、工具ねじりによって工具刃先が加工面上部から徐々に抜けすることで切削抵抗・工具たわみが徐々に減少し、切込み量が増大した痕跡であると予想していた。図21、22、24を確認するとびびり模様のゆがみが見られる加工面上部Ao ≥ 8 mmの領域でいずれもその痕跡（切込み深さの増大による湾曲）が見られる。特に図22は加工面法線方向の工具変位δn(t)のみを入力したシミュレーション結果であるため、法線方向の工具たわみが加工面上部のびびり模様のゆがみに関与していることが確かめられる。図21、22に見られるびびり模様からフーリエ解析によって縞模様の頂点のみを推定・抽出することで、加工面法線・接線方向の刃先変位δn(t), δt(t)を入力したシミュレーション（図21）と、法線方向の刃先変位δn(t)のみを入力したシミュレーション（図22）のびびり模様を比較した結果を図26に示す。図21のびびり模様は、加工面上部 Ao ≥ 8 mmの領域では図22のびびり模様とよく一致しているのに対し、加工面下部 Ao < 8 mmの領域では図22のびびり模様に対して加工面接線方向に遷移していることがある。図26からわかる。このことから加工面上の切削位置は、加工面下部の切削時には工具たわみによってずれるが、加工面上部の切削時には工具たわみが減少することで本来の位置に戻っていることが確かめられた。また接線方向の工具たわみもびびり模様のゆがみに関与していることがわかった。以上の結果より、加工面上部でびびり模様がゆがむのは、切削時の工具たわみによって（たわみ方向に関わらず）生じる刃位置のズレが、加工面上部で徐々に元に戻ることで図2の切削パスξが湾曲し、その切削パスに沿ってびびり模様が転写されることが原因であることが実験的に確かめられた。

本報のシミュレーションは工具刃先の運動を工作機械による工具本来の動きに変位センサで計測したシャンク部の変位から推定した刃先変位を加えることで実現した。この工具刃先運動を用いた切削シミュレーションによって得られる加工面形状は、上記の解析から実際の加工面とよく一致していることが明らかとなった。したがって、本研究が提案している切削時に生じた加工面法線方向のびびり振動を加工面模様から逆解析する解析モデルの妥当性を定量的に確かめることができたと考えられる。また本報はねじれ刃を有するエンドミル側面切削のダウンカットについて取り扱ったが、アップカットの場合でも、ダウンカットと同様の切削工程（ただし、刃は逆方向）、切削パスξをとるため、図2のびびり模様の形成メカニズムが成り立てと考える。ただし、アップカットはダウンカットと切削抵抗および工具たわみの方向が異なるため、びびり模様が安定して現れる加工面領域や再生効果による変成方向・びびり振動方向がダウンカットと異なると考えられる。これらから、アップカットの場合でも、加工面法線方向にびびり振動が現れていれば、解析範囲を適切に選択することで提案手法を適応できると考える。

Fig. 20 Synchronization of the tool turning angle on the simulator with the time-series data of the tool blade displacement. The turning angle of the tool was adjusted so that the blade cutting the lower end of the machined surface would come into contact with the workpiece when the time-series data of the tool displacement begins to increase.
Fig. 21 Cutting simulation with a tool that reproduced vibration during cutting in the normal and tangential directions ($\delta_n(t)$ and $\delta_t(t)$) with respect to the machined surface. As a chatter mark appeared on the simulated machined surface, it was confirmed that the chatter mark was formed by the chatter vibration during cutting.

Fig. 22 Cutting simulation with a tool that reproduced vibration during cutting in the normal direction ($\delta_n(t)$) with respect to the machined surface. As a chatter mark appeared on the simulated machined surface, it was confirmed that the chatter mark was formed by the chatter vibration in the normal direction with respect to the machined surface.

Fig. 23 Cutting simulation with a tool that reproduced vibration during cutting in the tangential direction ($\delta_t(t)$) with respect to the machined surface. As a chatter mark did not appear on the simulated machined surface, it was confirmed that the chatter vibration in the tangential direction with respect to the machined surface did not form a chatter mark.
Fig. 24 Actual machined surface measured with a laser microscope. The extremely high values at both ends of the machined surface are because the measurement range was exceeded as the measurement was performed outside the machined surface. It can be observed that the chatter mark and slope on the machined surface are in good agreement with the simulation results.

Fig. 25 Result of comparing the simulated chatter mark with the actual mark by two-dimensional Fourier transform. The comparison was made at the bottom of the machined surface where the chatter mark appeared stably. It can be observed that the periodicities of the chatter marks in the three results are well matched.

Fig. 26 Results of comparing the vertices of the chatter marks simulated by \(\delta_n(t) \) and \(\delta_t(t) \) with that simulated by \(\delta_n(t) \). The vertices of the chatter marks were estimated by Fourier transforming the profile curve obtained by extracting the simulated machined surface in each row along the tangential direction.
レーザ顕微鏡で計測し座標系を補正した前節のびびり加工面（図24）を、2章で述べた2次元離散フーリエ変換によって解析することで得られた周波数スペクトルを図27に示す。解析時にはびびり振動数の解析上の分解能が10 Hz、振動の位相差が0.5 deg.となるようにゼロパディング処理をデータに施した。解析範囲は図25のように加工面の下部6×6 mmの領域である。なお、びびり振動数解析に用いた図12-bの区間を、2次元の周波数スペクトルには2つのピークが見られたが、ピークDは位相差が0 deg.の位置に現れている、すなわち工具送り方向に周期性を持たないことがわかる。また図24-bに示す加工面下部でわずかにごうりが見られ、低周波域で現れているピークDはこの加工面下部のごうりを示していることがある。これらより、びびり模様に由来するピークは図27のピークCであると考えられる。ピークCが現れた位置からびびり振動情報を解析したところ、びびり振動数f_cは2530 Hz、振動の位相差ε_cは1.46 radとなった。図12の加工面法線方向の工具振動から解析したびびり振動数f_cの平均値は2580.7 Hzであり、びびり模様から得られた値との相対誤差は1.96 %となることから、十分な精度でびびり振動数を推定できることが確認される。図21のびびり模様は図22のびびり模様に対し加工面下部で接線方向にずれており、その周期性にはほとんど差がないことが図25、26からわかる。これにより、びびり振動が加工面法線・接線方向の両方向に現れていても、それが同一の振動数であれば、法線方向にびびり振動の周期性を正しく転写されることがわかる。また図26より図21、22のびびり模様のズレ量は加工面下部においてほとんど変化していないことがわかる。これは図12-cからわかるように、接線方向の工具たわみが各断続切削で概ね一定であることが原因であると考えられる。すなわち、工具たわみによって切断位置にずれが生じても、そのズレ量が各断続切削で大きく変動しなければ切削パスξは湾曲しないため、法線方向のびびり振動は図2のモデルに従ってびびり模様に転写される。ただし、びびり振動以外の振動が極端に激しい場合や、本報の切削実験のように加工面上部で工具たわみ量が切削中に変化する場合は切断パスが湾曲してしまうことが予想される。加えて、図23からは接線方向にしか現れない振動は、加工面模様からは逆解析できないこともわかる。ここで、提案手法が適応できるびびり振動の最低周波数$f_{cl}[Hz]$について考える。びびり振動情報のスペクトルの低周波領域には、図27のピークDのように加工面のごうりが低周波成分として現れる。このスペクトル上のごうり成分とびびり模様を判別するためには、びびり模様が軸方向に少なくとも1周期以上含まれている必要があると考えられる。したがって、最低びびり振動数f_{cl}は式(17)で計算できる。

$$f_{cl} = \frac{V_S}{A_d} \tag{17}$$

式(17)より本報の切削条件下における最低びびり振動数f_{cl}はおよそ281 Hzであることがわかった。式(17)の最低びびり振動数f_{cl}は切削条件に依存するため、主軸回転数S、工具径Dが小さく、工具ねじれ角θ、軸方向切込み量A_dが大きくなるほどより低い振動数のびびり振動が測定可能となる。ただし、工具たわみの顕著な変動によってびびり模様がゆがむ場合には、本報のように解析領域を制限する、あるいは切削パスξの湾曲を厳密に同定してびびり模様のゆがみを補正する必要があると考える。以上から、びびり振動としては高い振動数（本報の場合で2.5 kHz程度）まで対象として、切削時振動が加工面法線方向に現れていれば、切削パスξが著しく湾曲していない領域の加工面模様から、びびり振動情報を逆解析可能であることを示すことができた。
Fig. 27 Two-dimensional frequency spectrum obtained by two-dimensional discrete Fourier transform of the actual chatter mark measured with a laser microscope. Two peaks were observed in the two-dimensional frequency spectrum; however, peak D had no periodicity in the tool feed direction. Thus, it is considered that the peak derived from the chatter mark is peak C. The chatter frequency analyzed from the appearance position of the peak C was 2530 Hz, and the phase shift of the vibration was -1.46 rad.

6. 結 言

本報は、突き出し量が長いストレートエンドミルの側面加工のびびり振動を対象にし、静剛性試験等の結果から同定した工具の有限要素モデルによって、切削実験で得られたびびり振動時の工具シャンク部の実変位から工具刃先の動的な運動を推定した。さらにその刃先の運動と工作機械指令による運動を合成することで再現した切削時における工具刃先の挙動によって、ボクセルモデルを用いた切削シミュレーションをおこなうことで、創成される加工面形状やびびり模様を解析した。その結果、次の結論を得た。

1. びびり振動時の工具シャンク部の実振動変位を基に、刃先変位の加工面への転写性を100%とした加工面模様のシミュレーションによって得られたびびり模様は、実際のびびり模様とよく一致していた。この結果から、加工面に創成されるびびり模様が切削面法線方向のびびり振動によって形成されることを定性的に確認することができた。

2. ねじれ刃を有するエンドミルの側面加工において、加工面上部でびびり振動がゆがむ現象は、工具ねじれによって工具刃先が加工面上部から徐々に抜けることで切削抵抗・工具たわみが徐々に減少し、切削パスが湾曲することが原因であることが実験とシミュレーションによって確かめられた。

3. 加工面びびり模様を2次元離散フーリエ変換して解析することで、実びびり振動数とその位相差を逆解析する手法は、高い振動数（2.5kHz程度）においても十分な精度を有していることが確認できた。

4. 加工面法線・接線方向にびびり振動が同時に現れている場合でも、接線方向の振動変位に影響されず、法線方向の振動が、びびり模様の周期性に正確に転写されていることがわかった。ただし、びびり振動以外の激しい振動や工具たわみに大きな変動が生じた場合は切削パスが湾曲しごびびり模様にゆがみが生じてしまうため、提案手法の適応が困難になる場合も考えられる。

文 献

土井静雄, 加藤仁, 旋盤主軸に原因するびびりの発生 (第3報), 日本機械学会論文集, Vol. 20, No. 90 (1954), pp. 61-65.

藤井洋, 丸山悦男, 江馬諭, ドリルのびびり振動の発生機構, 日本機械学会論文集 C編, Vol. 51, No. 462 (1985), pp. 436-445.

廣垣俊樹, 金川栄一, 塩田亮祐, 青谷凱斗, エンドミル加工面のびびり振動模様に基づく現象の逆解析と安定ポケットの探索方法, 日本機械学会論文集, Vol. 83, No. 848 (2017), DOI:10.1299/transjme.16-00362.

Jason NG and Jeffrey J. GOLDBERGER, Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms, Journal of Cardiovascular Electrophysiology, Vol. 18, Issue 6 (2007), pp. 680-685.

河野大輔, 松原厚, 小池雄介, 山路伊和夫, 計測融合型加工システムによる工具刃先運動の転写率の測定, 精
References

Doi, S. and Kato, S., On the cause of chatter vibration of main spindle of lathe (third report), Transactions of the Japan Society of Mechanical Engineers, Vol. 20, No. 90 (1954), pp. 61-65(in Japanese).

Fujii, H., Marui, E. and Enma, S., Chatter generation mechanism of drill, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 51, No. 462 (1985), pp. 436-445 (in Japanese).

Hirogaki, T., Aoyama, E., Shiota, Y. and Aotani, K., Control method of chatter vibration based on inverse analysis of end milling chatter mark, Transactions of the JSME (in Japanese), Vol. 83, No. 848 (2017), DOI:10.1299/transjsme.16-00362.

Jason NG and Jeffrey J. GOLDBERGER, Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms, Journal of Cardiovascular Electrophysiology, Vol. 18, Issue 6 (2007), pp. 680-685.

Kono, D., Matsubara, A., Koike, Y. and Yamaji, I., Measurement of the Copying Rate of Tool Edge Motions by Using a Measurement-Fused Machining System, Journal of the JSPE, Vol. 75, No. 4 (2009), pp. 520-524 (in Japanese).

Mann, BP., Edes, BT., Easley, SJ., Young, KA. and Ma, K., Chatter vibration and surface location error prediction for helical end mills, International Journal of Machine Tools and Manufacture, Vol. 48 (2008), pp. 350-361.

Matsubara, A., Yamazaki, T. and Ikenaga, S., Non-contact measurement of spindle stiffness by using magnetic loading device, International Journal of Machine Tools and Manufacture, Vol. 71 (2013), pp. 20-25.

Ozaki, N., Matsui, S., Higotaki, T. and Aoyama, E., State estimation based on image processing of chatter mark on end-milled surface by two-dimensional discrete Fourier transform, Transactions of the JSME (in Japanese), Vol. 85, No. 879 (2019), DOI:10.1299/transjsme.19-00292.
Sato, R., Noguchi, S., Hokazono, T., Nishida, I. and Shirase, K., Time domain coupled simulation of machine tool dynamics and cutting forces considering the influences of nonlinear friction characteristics and process damping, Precision Engineering, Vol. 61 (2020), pp. 103-109.

Shamoto, E., Mechanism and Suppression of Chatter Vibrations in Cutting. Electric Furnace Steel, Vol. 82, No. 2 (2011), pp. 143-155 (in Japanese).

Suzuki, N., Chatter vibration in processing, Part 1, Transactions of the JSPE, Vol. 76, No. 3 (2010), pp. 280-284 (in Japanese).

Yasuda, K., Vibration Engineering—Fundamentals, 1st edition, 8th impression (2006), Corona publishing Co., Ltd., pp. 185-190 (in Japanese).

Yamamoto, T., Matsuda, R., Shindou, M., Hirogaki, T. and Aoyama, E., Investigation of spindle state diagnosis and processing phenomenon monitoring with a wireless multifunctional tool holder system, Journal of the Japan Society for Abrasive Technology, Vol. 64, No. 2 (2020), pp. 91-97 (in Japanese).

Yokokawa, H. and Nakajima, A., Consideration about influence of damping construction method in viaduct on its modal damping ratio, Journal of structural engineering, A, Vol. 56A (2010), pp. 315-323 (in Japanese).