Measurement of tensor analyzing powers in deuteron photodisintegration.

I.A.Racheck, L.M.Barkov, S.L.Belostotsky, V.F.Dmitriev, M.V.Dyug, R.Gilman, R.J. Holt, B.A.Lazarenko, S.I.Mishnev, V.V.Nelyubin, D.M.Nikolenko, A.V.Osipov, D.H. Potterveld, R.Sh.Sadykov, Yu.V.Shestakov, V.N.Stibunov, D.K.Toporkov, H.de Vries, and S.A.Zevakov

1 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
2 Saint-Petersburg Institute of Nuclear Physics, 188350 Gatchina, Russia
3 Rutgers University, Piscataway, NJ 08855, USA
4 Argonne National Laboratory, Argonne, IL 60439, USA
5 Institute of Nuclear Physics at Tomsk Polytechnic University, 634050 Tomsk, Russia
6 NIKHEF, P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

(Dated: March 30, 2022)

A new accurate measurement of the tensor analyzing powers T_{20}, T_{21}, and T_{22} in deuteron photodisintegration has been performed. Wide-aperture non-magnetic detectors allowed broad kinematic coverage in a single setup: $E_p = 25$ to 600 MeV, and $\theta_p^\text{cm} = 24^\circ$ to 48° and 70° to 102°. The new data provide a significant improvement over the few existing measurements. The angular dependency of the tensor asymmetries in deuteron photodisintegration is extracted for the first time.

PACS numbers: 24.70.+s, 24.20.-x

The simplest nucleus, the deuteron, is a natural laboratory for the study of nuclear forces. One of the most fundamental processes on the deuteron is two-body photodisintegration (PD) $\gamma + d \rightarrow p + n$. It has been a subject of intensive experimental and theoretical research for over 70 years (see Ref. [1] for a comprehensive review). However several important observables still are measured with insufficient accuracy or not measured at all. The tensor analyzing powers accessible through measurement of target asymmetries in PD of tensor polarized deuterons are among the most poorly known. Polarization observables are expected to be sensitive to important dynamical details and thus allow in general much more stringent tests of theoretical models. The tensor polarizations are especially interesting because there is a correlation between the degree of tensor polarization and the spatial alignment of the deuteron. For example, spatial alignment of the target deuterons can lead to large asymmetries from final state interactions in PD.

A general expression for the cross-section of the two-body PD of the polarized deuteron is written as follows:

$$
\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left\{ 1 - \sqrt{3/4} P_z \sin \theta_H \sin \phi_H T_{11} + \sqrt{1/2} P_{zz} \left[\left(3/2 \cos^2 \theta_H - 1/2 \right) T_{20} - \sqrt{3/8} \sin 2\theta_H \cos \phi_H T_{21} + \sqrt{3/8} \sin^2 \theta_H \cos 2\phi_H T_{22} \right] \right\},
$$

with σ_0 the unpolarized cross-section, P_z (P_{zz}) the degree of vector (tensor) polarization of the target, θ_H the angle between polarization axis and momentum of γ-quantum, and ϕ_H the angle between the polarization plane (containing the polarization axis and momentum of the photon) and the reaction plane (containing momenta of the proton and neutron). The tensor analyzing powers $T_{2\ell}$ are functions of photon energy E_γ and proton emission angle θ_p^cm.

Only three measurements of tensor polarization observables in deuteron PD have been reported prior to this experiment [2, 3, 4]. Here we present the results of a new measurement of the tensor analyzing power components T_{20}, T_{21} and T_{22}.

The measurements were performed at the 2 GeV electron storage ring VEPP-3. A thin-wall open-ended storage cell fed by polarized deuterium gas from an Atomic Beam Source (ABS) was used as an internal target [5]. The ABS provides a polarized deuterium gas jet with an intensity of up to 8×10^{10} atoms/s and a very high degree of tensor polarization $\sim 98\%$ from extreme values ($+1$ or -2), while vector polarization was always close to zero ($|P_z| < 0.02$). Polarization of the gas stored inside the cell is degraded due to various depolarizing processes. The target polarization was determined by the “Low–Q” polarimeter [6]. Tensor polarization averaged over the whole run of data taking was found to be $P_{zz}^+ = 0.341 \pm 0.025 \pm 0.011$, where the first uncertainty is statistical and the second one is systematic. The ratio $P_{zz}^-/P_{zz}^+ = -1.70 \pm 0.15$ is obtained by the analysis of the data collected on polarized and unpolarized deuterium target.

In this experiment we measured the counting rate asymmetry for two signs of tensor polarization of the deuterium target in dissociation of the deuteron by a 2-GeV electron scattered forward, i.e. at an angle $\theta_e \approx 0^\circ$. In final state we detect the proton and neutron in coincidence, the scattered electron is not detected. Scattering of an electron at 0º is equivalent to the radiation of a real photon, which is then absorbed by a deuteron – that is why in such a set-up it is the photo–disintegration, that is studied.

During the run the polarization settings were switched every 30 seconds to suppress systematic uncertainties. It takes less than a second to alternate the polarization by changing a resonance magnetic field in the rf-transition unit, located inside the ABS. The experimental tensor target asymmetry is defined as

$$
a_T^\ell = \sqrt{2}(N^+ - N^-)/(P_{zz}^N N^- - P_{zz}^- N^+),
$$

where $N^+ (N^-)$ denotes the number of events detected with positive (negative) target polarization.
In order to disentangle the three components of tensor analyzing power we collected data for three settings of the magnetic field, defining the polarization axis: $\theta_{H10} = 0^\circ$, $\theta_{H11} = 54.7^\circ$ and $\theta_{H12} = 125.3^\circ$, with ϕ_H close to 0° for all settings. According to Eq. 1 the target asymmetry in these cases is proportional to $a_0 \sim \cos \theta$.

FIG. 1: Schematic side view of the particle detectors.

The particle detector consists of two pairs of arms for detecting protons and neutrons in coincidence, as shown in Fig. 1. The first (second) pair covers an angle range of 24° to 48° (70° to 102°). Each proton arm includes wire chambers for tracking and 3 layers of plastic scintillators (2 + 12 + 12 cm thick). Neutron arms consist of plastic scintillators: 2-cm charged particle veto counters followed by 20-cm or 12 + 12 cm scintillator bars placed at the largest available distance from the target, about 3 m, for the best TOF measurement. Azimuthal angular acceptance was $\Delta \phi = 20^\circ$ for all arms.

Particle identification was based on the veto signal and TOF analysis for neutrons and on TOF and $\Delta E/E$ analysis for protons. Further event selection relies on kinematic correlations characteristic of the two-body PD – see Fig 2a–c. One such property is a coplanarity of proton and neutron momenta (|$\phi_p - \phi_n| = \pi$). Assuming deuteron two-body disintegration by a photon emitted along the electron beam direction, one can reconstruct E_{γ} and γ angles from the momentum vector of a single detected proton or neutron. This provides two more selection criteria: $E_\gamma^{(p)} = E_\gamma^{(n)}$ and $\theta_\gamma^{(p)} + \theta_\gamma^{(n)} = \pi$.

Such cuts allow both to reject the background and to constrain the electron scattering angle to $\theta_\gamma < 0.5^\circ \ldots 2.0^\circ$, depending on E_γ. An amount of inseparable residual background, which comes mostly from three-body PD $d(\gamma, pn)E_\gamma^2$, was estimated from the analysis of a tail in the out-of-plane events distribution. The shape of the tail is determined by selecting the events of a similar 3-body disintegration process $d(\gamma, pp)\pi^-$ – see Fig 2l. The background analysis was performed separately for each polarization state. After applying all cuts the fraction of unseparated background events was estimated to be from 1.5% (low E_γ region) to 5.6% (high E_γ region). The uncertainty from the unseparated background events is included in the statistical uncertainty.

The main source of systematic uncertainty is the uncertainty in the target polarization. The degree of polarization enters as a common factor for all data points. Other systematic uncertainties come from the inaccuracy of reconstruction of E_γ and proton CM–emission angle. Contribution of these parameters dominates at small E_γ where tensor analyzing powers change fast with energy. The false asymmetry related to fluctuations of other experimental parameters, such as electron beam lifetime, target density variations, PMT gain instability, etc is negligible because these fluctuations were completely unsynchronized with the reversing of polarization, and characteristic time of fluctuations was much higher than the period of reversing of polarization (30 s). Moreover, the beam current integral and time spent in each polarization state were measured precisely and taken into account in the analysis.

In Figures 4a–3 systematic errors are presented as shaded bands at top or bottom of the plots.

Tensor analyzing powers are functions of two variables, and usually E_{γ}^{ab} and θ_{γ}^{cm} are chosen. Our data cover substantially broad continuous regions of both variables. Binning of the experimental data was done in order to provide both sufficient statistical precision and a reasonable number of bins to display the dependence of tensor moments on kinematic variables.

To compare the new data with the results of earlier measurements [4], a subset of the data, where the kinematic acceptances of two measurements overlap, was selected[12].
see Fig. 3. One can see that two measurements are consistent within uncertainties.

To compare the data to theoretical predictions we have performed an event weighted averaging of the theory over the phase-space of each experimental bin. The calculation [7] starts from a one-body current using the Bonn OBEPRENN potential with the major part of meson exchange currents (MEC) included implicitly via the Siegert operators; this model is denoted as “normal” (N). Then explicit pion exchange currents (“+MEC”), isobar configurations (“+IC”) and the leading order relativistic corrections (“+RC”) are added successively. The calculation of [8] was done in a diagrammatic approach with all MEC, including heavy-meson ones, introduced explicitly, and isobar configurations and relativistic corrections added. This calculation is restricted to \(E_\gamma \) below pion production threshold. In [9] the deuteron PD beyond pion production threshold is studied in a coupled–channel approach including \(NN\) and \(\pi d \) channels, with the dynamical treatment of the pion. In consequence the \(NN\) potential and \(\pi\text{–MEC} \) become retarded and electromagnetic loop corrections have been incorporated. In [10] this concept was further elaborated and numerical results for various observables were obtained.

The dependence of tensor analyzing powers on \(E_\gamma \) is plotted in Fig. 2. Here the whole dataset is divided into two \(\theta_{\gamma}^\text{cm} \) bins, each related to the data from one pair of detector arms. Alternately, in Fig. 5 the tensor moments versus \(\theta_{\gamma}^\text{cm} \) are shown for eight \(E_\gamma \)-bins. The numerical results are available from [11].

Figures 4 and 5 show that up to about pion production threshold, there is little variation between the theoretical calculations [7,8], and there is good agreement between these calculations and the data. The most noticeable difference is that \(T_{22} \) tends to be slightly more positive than calculated. Above pion production, the calculations become significantly more complex due to the larger effects of relativity and the increasing importance of additional channels, as the pion can propagate on-shell, and the energy approaches the \(\Delta \) resonance region. We see greater variations between the older calculation of [7] and the more modern calculation of [10]. The more modern calculations improve the description of \(T_{20} \) and \(T_{22} \), but do worse for \(T_{21} \). Despite the disagreement in details, it is clear that there is a good overall qualitative description of the polarization data, which is a difficult test for theory. As both calculations are grounded in fits to nucleon-nucleon and meson photoproduction data, one would hope that the refinements in theory over time and the improvements in the description of the underlying reactions would lead to a clear improvement in all the deuteron PD data, but this is not the case. The pattern of agreement between theory and experiment is similar to that seen for other polarization observables such as \(p_\gamma \) and \(\Sigma\); the quality of the agreement decreases at higher energies.

In summary, a new measurement of tensor analyzing powers \(T_{20}, T_{21} \) and \(T_{22} \) in deuteron photodisintegration, substantially enhancing the quality and kinematic span of the existing experimental data, has been performed. This enable an accurate test of available models. Theoretical calculations provide an excellent description of these polarization data below pion production threshold, while above pion production threshold a very good description of \(T_{20} \) and \(T_{22} \) is demonstrated by a novel approach incorporating a \(\pi\text{–MEC} \) retardation mechanism. The remaining discrepancies could reflect the theoretical uncertainties or some missing or poorly modeled underlying dynamics.

We gratefully acknowledge the staff of VEPP–3 accelerator facility for excellent performance of the ring during the data taking. We are grateful to H. Arenhövel, M. Levchuk and M. Schwamb for useful discussions and for providing us with the results of their calculations. This work was supported in part by Russian Foundation for Basic Research, grants 01-02-
FIG. 5: (color online) Tensor analyzing powers vs. proton emission angle for eight E_γ-bins. Each θ_p^{em} bin is 4° wide. See Fig. 4 for notation.

16929, 04-02-16434, 05-02-17080 and 05-02-17688, the U.S. Department of Energy, Office of Nuclear Physics, under contract no. W-31-109-ENG-38, and the U.S. National Science Foundation, grant PHY-03-54871.

[1] R. Gilman and F. Gross, J. Phys. G28, R37 (2002).
[2] M.V. Mostovoy, et al., Phys. Lett. B189, 181 (1987).
[3] K.H. Althoff et al., Z. Phys. C43, 375 (1989).
[4] S.I. Mishnev et al., Phys. Lett. B302, 23 (1993).
[5] M.V. Dyug et al., Nucl. Instrum. Methods A495, 8 (2002).
[6] M.V. Dyug et al., Nucl. Instrum. Methods A536, 344 (2005).
[7] K.-M. Schmitt and H. Arenhövel, Few-Body Syst. 7, 95 (1989), H. Arenhövel and M. Sanzone, Few-Body Syst. Suppl. 3, 1 (1991), F. Ritz, H. Arenhövel, and T. Wilbois, Few-Body Syst. 24, 123 (1998)
[8] M.I. Levchuk, Few-Body Syst. 19, 77 (1995) and private communication.
[9] M. Schwamb, H. Arenhövel, Nucl. Phys. A 690, 647 (2001), and Nucl. Phys. A 696, 556 (2001)
[10] M. Schwamb, habilitation thesis, Johannes Gutenberg-Universität at Mainz, 2006
[11] http://www.inp.nsk.su/~ruchek/photodisintegration.html
[12] Note that the data from [4] were corrected by re-analysis of the target polarimeter data, resulting in a target polarization P_{zz} = 0.48 instead of P_{zz} = 0.58 used in [4].