Single-Gene Congenic Strain Reveals the Effect of Zbtb16 on Dexamethasone-Induced Insulin Resistance

Michaela Krupková1, František Liška1, Ludmila Kazdová2, Lucie Šedová1,3, Adéla Kábelová1, Drahomíra Křenová1, Vladimír Křen1 and Ondřej Šeda1*

1 The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia, 2 Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia, 3 Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Prague, Czechia

Background: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene.

Methods: Adult male rats of SHR-Lx.PD5Zbtb16 (n = 9) and SHR-Lx.PDZbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose.

Results: The differential segment of SHR-Lx.PDZbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PDZbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PDZbtb16 strain compared with SHR-Lx.PDZbtb16, however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PDZbtb16 strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PDZbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains.
Conclusion: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.

Keywords: ZBTB16, dexamethasone, rat models, congenic strain, pharmacogenetics and pharmacogenomics, insulin resistance

INTRODUCTION

Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases (1). The therapeutic effect of GCs administration has been repeatedly shown to vary interindividually due to numerous factors like gender, age, and particularly, genetic constitution of the treated individual. One extreme of the range of varied responses is a near- to complete failure to respond to GC therapy, described as GC insensitivity or resistance (2, 3). Similar variation is observed in unwanted, side effects accompanying GCs therapy—lower bone mineral density and osteoporosis, diabetes, dyslipidemia, obesity, impaired wound healing, or muscle wasting (4). Manifestation of the adverse effects is, to certain extent, dependent on the therapeutic dose and time of treatment; however, pharmacogenetic interactions have been implicated as substantial contributing factors (5, 6). Variation in genes coding for proteins directly involved in GC genomic actions were shown to alter GC sensitivity, namely, the GC receptor (NR3C1), recently summarized by Nicolaides and Charmandari (7). Clearly, other genes can also mediate the clinically relevant adverse effects or changes in response to GC. For instance, genome-wide association study (GWAS) of response to inhaled GCs in asthma patients identified a polymorphism in glucocorticoid-induced transcript 1 gene (GLCCI1) and further replicated the lower response of individuals carrying two copies of the variant allele in four independent cohorts (8). In another GWAS performed in acute lymphoblastic leukemia patients, dexamethasone (DEX)-induced pleiotropic side effects were significantly associated with variation in F2RL1 (F2R like trypsin receptor 1) gene (9). In an experimental, genetically designed model strain set, we showed previously that several genomic loci affect sensitivity toward DEX-induced unfavorable changes in carbohydrate and lipid metabolism (10). Later, we reported that a presence of defective Cd36/Fat-containing genomic segment substantially blunted DEX-induced glucose intolerance and dyslipidemia (11). Also, we have isolated a small region of rat chromosome 8, which sensitized its carrier toward DEX-induced, muscle-specific insulin resistance (IR). In the process of positional cloning of gene(s) connected to several aspects of metabolic syndrome based on results of linkage and association studies in segregating populations and recombinant inbred strains, we derived congenic strain SHR-Lx.PD5 (12). This strain harbors a limited rat chromosome 8 segment of polydactylyous rat (PD/Cub) origin on the genomic background of the spontaneously hypertensive rat (SHR). While SHR represents one of the most studied models of essential hypertension (13), it shows also IR, dyslipidemia, and other features of metabolic syndrome (14). By contrast, the PD/Cub strain is a model of metabolic syndrome without elevated blood pressure (15), particularly sensitive to nutritional and pharmacologic challenges (10, 16–18). We have hypothesized that a PD/Cub-derived, GC-responsive gene present within the isolated region, Zbtb16 (zinc finger and BTB domain containing 16), is a prime candidate for the observed pharmacogenetic interaction (12). Our previous sequence analysis revealed a conservative amino acid substitution (T208S) and a 2,964-bp deletion in intron 2 of PD/Cub's Zbtb16 gene (19). Zbtb16 is a pleiotropic transcription factor involved, among others, in processes underlying pathogenesis of practically all major constituents of metabolic syndrome, as reviewed recently (20). In this study, we created two new models, one of them carrying only the Zbtb16 gene from the original segment to test its effect on DEX-induced metabolic syndrome features by comparing their metabolic profiles including global and tissue-specific insulin sensitivity.

MATERIALS AND METHODS

Ethics Statement

All experiments were performed in agreement with the Animal Protection Law of the Czech Republic (311/1997) which is in compliance with the European Community Council recommendations for the use of laboratory animals 86/609/ECC and were evaluated and approved by the Ethical committee of the First Faculty of Medicine and the Ministry of Education, Youth and Sports of the Czech Republic (protocol ID MSMT-1461/2015-17). The health of the rats was examined daily and monitored every 1 h during the experimental procedures. There were no unexpected deaths throughout the experiment. All efforts were made to minimize suffering of the experimental animals.

Derivation of the SHR-Lx.PD5PD-Zbtb16 and SHR-Lx.PD5SHR-Zbtb16 Congenic Strains

The SHR/OlaCpc (SHR hereafter, RGD ID no. 631848) and SHR-Lx.PD5 (RGD ID no. 1641851) strains were maintained at the Institute of Medical Biology and Genetics, Charles University in Prague. To derive SHR-Lx.PD5PD-Zbtb16 and SHR-Lx.PD5SHR-Zbtb16 congenic strains, a marker-assisted backcross breeding approach was used, as described previously (12, 22, 23). In short, SHR rats were crossed with SHR-Lx.PD5 rats, and the subsequent F1 hybrids were repeatedly backcrossed to SHR. The differential segments in the respective strains were fixed by intercrossing heterozygotes and selecting the progeny with homozygous...
SHR-Lx.PD5-derived chromosome 8 segments. The congenic status of the new strains was validated with a whole-genome marker scan.

DNA Extraction and Genotyping

Rat DNA was isolated from tail samples by the modified phenol extraction method. Primer nucleotide sequences were obtained from public databases, particularly the Rat Genome Database (RGD, http://rgd.mcw.edu), or designed using Primer3 (24). Polymerase chain reaction (PCR) was used for genotyping markers polymorphic between progenitor strains. PCR was performed in 20 µl reaction volume containing 50–100 ng of genomic DNA, 1 U Taq polymerase (Fermentas), 1X KCl reaction buffer (Fermentas), 1 M betaine (Sigma-Aldrich), 1.5 mM MgCl₂, 50 µM of each DNTP, 200 nM of each forward and reverse primers, and 5 mM cresol red (Sigma-Aldrich, for instant gel loading purpose). Cycling conditions were as follows: initial denaturation for 2 min 30 s at 93°C, then 35 cycles of denaturation at 93°C/30 s, annealing at 53°C/40 s and elongation at 72°C/50 s; 72°C/5 min final elongation. Zbtb16 2,964 bp deletion was genotyped using Phusion DNA polymerase (New England Biolabs) according to the manufacturer’s protocol, cycling conditions were as follows: initial denaturation for 30 s at 98°C, then 30 cycles of denaturation at 98°C/10 s, annealing at 63°C/30 s and elongation at 72°C/1 min 30 s; 72°C/5 min final elongation. We estimated incorporation of [U-14C] glucose into neutral lipids. Briefly, fat was removed from incubation medium, rinsed with saline, and immediately placed into chloroform. Pieces of tissue were dissolved using a teflon pestle homogenizer, methanol was added (chloroform:methanol 2:1), and lipids were extracted over 16 h in chloroform:methanol after which 2% KH₂PO₄ was added and the solution centrifuged. The organic phase was removed and evaporated under N₂. The resulting pellet was dissolved in isopropyl alcohol, and the TG content was determined by enzymatic assay (Erba-Lachema, Brno, Czech Republic).

Basal- and Insulin-Stimulated Glycogen Synthesis in Muscle, and Glucose Utilization in Isolated White Adipose Tissue

Diaphragmatic muscles were immediately after excision incubated in Krebs-Ringer bicarbonate buffer (pH 7.4) containing 0.1 μCi of [U-14C] glucose, 5 mmol/l of unlabeled glucose, and 2.5 mg/ml of bovine serum albumin (Fraction V; Sigma-Aldrich, St. Louis, MO, USA) in the presence (250 μU/ml) or absence of insulin in incubation media. All incubations were performed in a 95% O₂ + 5% CO₂ atmosphere in sealed vials at 37°C in a shaking water bath. After 2 h incubation tissue glycogen was extracted, and basal and insulin-stimulated incorporation of [U-14C] glucose was determined.

Pieces of epididymal fat were rapidly dissected and incubated for 2 h in Krebs-Ringer bicarbonate buffer with 5 mmol/l glucose, 0.1 μCi [U-14C] glucose/ml (UVVR, Prague, Czech Republic), and 2% bovine serum albumin, gaseous phase 95% O₂ + 5% CO₂ in the presence (250 μU/ml) or absence of insulin in incubation media. All incubations were performed at 37°C in sealed vials in a shaking water bath. We estimated incorporation of [U-14C] glucose into neutral lipids. Briefly, fat was removed from incubation medium, rinsed in saline, and immediately placed into chloroform. Pieces of tissue were dissolved using a teflon pestle homogenizer, methanol was added (chloroform:methanol 2:1), and lipids were extracted at 4°C overnight. The remaining tissue was removed, KH₂PO₄ was added, and the clear extract was taken for further analysis. An aliquot was evaporated, reconstituted in scintillation liquid, and radioactivity measured by scintillation counting. Incremental glucose utilization was calculated as the difference between the insulin-stimulated and basal incorporation of glucose into neutral lipids.
RESULTS

Genomic Characterization of the SHR-Lx.PD5 Congenic Substrains

The derivation of the original SHR-Lx.PD5, initial genomic characterization and detailed genetic scan including *in silico* analysis and manual sequencing of the coding parts of the genes and selected conserved non-coding regions was reported previously (12, 19). We utilized the same extensive set of polymorphic markers to characterize the span of rat chromosome 8 (RNO8) differential segments in the newly derived SHR-Lx.PD5SHR-Lx.PD5 congenic substrains. As shown in Figure 1, the SHR-Lx.PD5SHR-Lx.PD5 harbors a 254 kb segment of the PD/Cub origin including only the Zbtb16 gene on SHR genomic background while the SHR-Lx.PD5SHR-Lx.PD5 carries the SHR variant of the Zbtb16 gene together with remaining 563 kb-long part of the original SHR-Lx.PD5 segment. Since we did not identify any additional non-SHR alleles throughout the genomic scan of polymorphic markers in either of the new strains, the congeneric status of SHR-Lx.PD5SHR-Lx.PD5 and SHR-Lx.PD5SHR-Lx.PD5 can be considered as validated.

Morphometric and Metabolic Profile Comparison

Both before an after DEX administration, the SHR-Lx.PD5PD5 and SHR-Lx.PD5PD5 rats were significantly heavier in comparison with SHR-Lx.PD5PD5 strain. Weights of liver, heart, kidneys, and the visceral and retroperitoneal adipose tissue depots were higher in SHR-Lx.PD5PD5 rats (Table 1). When corrected for body weight, morphometric parameters did not differ between the two strains except for liver, which remained significantly heavier in SHR-Lx.PD5PD5. In fed state, we observed significantly higher TG concentrations in SHR-Lx.PD5PD5 in combination with lower TG content in liver when compared with SHR-Lx.PD5PD5. The concentrations of FFAs, insulin, TG in muscle, and serum CRP were comparable in the two strains (Table 1).

When fed standard diet (STD), the glycemia time courses during the OGTT were nearly identical (Figure 2A). The levels of insulin also did not differ until the second hour of the test, when the SHR-Lx.PD5PD5 exhibited lower values compared with SHR-Lx.PD5PD5 (Figure 2C). The fasting concentrations of FFA were significantly higher in SHR-Lx.PD5PD5 yet in the remaining time points of OGTT the two strains did not diverge. No significant differences were observed for TG concentrations. After the DEX challenge (performed in the identical animals assessed under STD conditions), fasting glycemia and glucose concentrations during the first hour of OGTT were significantly higher in SHR-Lx.PD5PD5 in comparison with SHR-Lx.PD5PD5 with no difference in insulin levels all the way through the test. The suppression of FFA levels by insulin was less effective in SHR-Lx.PD5PD5 as evidenced in Figure 2B, ending in significantly higher FFA concentrations 120 min after

FIGURE 1 | The rat chromosome 8 (RNO8) differential segments in SHR-Lx.PD5 congenic strains. The schematic representation of RNO8 with indication of the relative position and extent of the differential segments in the congeneric strains is shown at the top. The portrayed region corresponds to the interval between 53 and 53.7 Mb [based on rat genome assembly: Rnor_6.0 (GCA_000001895.4)]. The gene track shows the RefSeq genes present within the differential segments: Zbtb16 (zinc finger and BTB domain containing 16), Htr3a (5-hydroxytryptamine receptor 3A), Htr3b (5-hydroxytryptamine receptor 3B), Usp28 (ubiquitin specific peptidase 28), Zw10 (zw10 kinetochore protein), Tmprss5 (transmembrane protease, serine 5), and Drd2 (dopamine receptor D2). SHR-Lx.PD5PD5 harbors only 254 kb segment of the PD/Cub origin (black bar) including only the Zbtb16 gene on SHR genomic background (open bar) while the SHR-Lx.PD5PD5 carries the remaining 563 kb-long part of the original SHR-Lx.PD5 segment (black bar), while the rest of RNO8 and its genome is of the SHR origin (open bar). The position of selected polymorphic markers is shown under the chromosome schemes. The complete annotation of markers used for genotypic characterization of the differential segments is given in Table S1 in Supplementary Material.
TABLE 1 | Morphometric and metabolic profile of the congenic rat strains.

Trait	SHR-Lx. PDS^{PD_{Zbtb16}}	SHR-Lx. PDS<sup>SHR-Zbtb16</sub>	P
N	9	8	
Body weight (pre-DEX), g	299 ± 8	276 ± 7	0.040
Body weight, g	267 ± 7	265 ± 4	0.030
Liver weight, g	11.9 ± 0.7	9.0 ± 0.5	0.004
Heart weight, g	1.19 ± 0.03	1.07 ± 0.02	0.003
Kidney weight, g	2.52 ± 0.10	2.18 ± 0.09	0.018
Adrenals weight, mg	55.0 ± 5.5	54.0 ± 6.8	0.91
EFP weight, g	2.27 ± 0.10	1.71 ± 0.16	0.010
RFP weight, g	1.10 ± 0.03	0.82 ± 0.07	0.046
TG (fed), mmol/l	2.08 ± 0.13	1.64 ± 0.10	0.015
FFA (fed), mmol/l	0.61 ± 0.03	0.59 ± 0.06	0.77
Insulin (fed), μmol/l	0.32 ± 0.04	0.32 ± 0.10	0.99
TG in liver, μmol/g	4.96 ± 0.55	6.48 ± 0.37	0.026
TG in muscle, μmol/g	0.89 ± 0.29	0.90 ± 0.20	0.94
CRP, mg/l	526 ± 54	449 ± 52	0.52

The significance levels of pair-wise, inter-strain comparisons between the two congenic strains are shown in third column. Significant differences highlighted in bold, non-significant ones in italics.

EFP, epididymal fat pad; RFP, retroperitoneal fat pad; FFA, free fatty acid; TG, triacylglycerol; CRP, C-reactive protein; DEX, dexamethasone.

Morphometric and metabolic profile of SHR-Lx.PDS^{PD_{Zbtb16}} vs. SHR-Lx.PDS^{SHR-Zbtb16} male rats after 3-day administration of dexamethasone. Values are shown as mean ± SEM. The procedure was then repeated in the same animals after administration of dexamethasone (values for SHR-Lx.PDS^{PD_{Zbtb16}} shown as black squares, SHR-Lx.PDS^{SHR-Zbtb16} shown in open squares).

DISCUSSION

In a follow-up to previous identification of limited genomic region responsible for DEX-induced dyslipidemia and muscle-specific IR, we present in this study further evidence that GC-inducible transcription factor Zbtb16 (25) plays a major role in such sensitization. Zbtb16, also known as Plzf (promyelocytic leukemia zinc finger), belongs to POK (POZ and Krüppel zinc finger) family of proteins and is involved in plethora of physiological the glucose bolus administration. Contrasting with baseline conditions, SHR-Lx.PDS^{PD_{Zbtb16}} exhibited elevated TG at fasting state and 30 min into the OGTT, then the values converged (Figure 2D).

Insulin Sensitivity of Visceral Adipose Tissue and Skeletal Muscle

While the insulin sensitivity of visceral adipose tissue did not differ between the two congenic strains, both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were substantially reduced in SHR-Lx.PDS^{PD_{Zbtb16}} in comparison with SHR-Lx.PDS^{SHR-Zbtb16} (Figure 3).
processes including maintenance of spermatogenesis (26), stem cell self-renewal (27), hematopoiesis (28), limb development (29, 30) and regulation of metabolism (31, 32). The gene is quite conserved in mammals, the human and rat ZBTB16/Zbtb16 proteins show 96% identity over 673 amino acids constituting the protein. The new, single-gene congenic strain carrying the variant of Zbtb16 gene (3 kb intronic deletion + T208S substitution) showed increased plasma TG and diminished insulin sensitivity of skeletal muscle tissue. Both these observations correspond to the original findings in parental strain SHR-Lx.PD5 (with seven genes in its differential segment, including Zbtb16) when compared with SHR (12). Reduced visceral adiposity observed in the previous study was not confirmed despite the matching difference trend (P = 0.06). The concept of DEX-induced IR of muscle tissue is well known, and several mechanisms have been proposed to convey this effect including direct effects on glucose transporter GLUT4 trafficking (33), increase in glycogen synthase phosphorylation together with decrease in expression.

FIGURE 3 | Insulin sensitivity of peripheral tissues in the SHR-Lx.PD5^{Zbtb16} and SHR-Lx.PD5^{Shr-Zbtb16} male rats. Basal- and insulin-stimulated \([\text{U-14C}]\) glucose incorporation into total lipids of epididymal (visceral) adipose tissue (lipogenesis (A)) and into glycogen of the diaphragm (glycogenesis (B)) in the SHR-Lx.PD5^{Zbtb16} (full bars) and SHR-Lx.PD5^{Shr-Zbtb16} (open bars) are shown. Data are expressed as mean ± SEM (n = 8 individual rats/group). Adjusted statistical significance levels using the unpaired t-test are indicated as *P < 0.05; **P < 0.01; and ***P < 0.001.
and insulin-stimulated phosphorylation of protein kinase B (34) or dysregulation of intramyocellular lipid metabolism (35). To the best of our knowledge, involvement of Zbtb16 in this process has not been reported so far. We have recently reviewed in detail the pleiotropic connections of Zbtb16 to the facets of metabolic syndrome, including IR and dyslipidemia (20). Zbtb16 is strongly induced by GCs (36) and at the same time it negatively regulates the insulin signaling pathway by decreasing the phosphorylation of IRS1, Akt, and FoxO1 in normal mice (32). This presents potential basis for a cross-talk involving DEX, Zbtb16, and insulin sensitivity of muscle, somewhat similar to the one reported for the role of Zbtb16 in regulation of hepatic gluconeogenesis previously. In the suggested model, Zbtb16 acts as a downstream effector of the PGC-1α/GR complex, activated by gluconeogenic signals. Activated PGC-1α/GR then induces Zbtb16 expression, triggering hepatic gluconeogenesis and, at the same time, negatively regulating the insulin signaling pathway (32). The insulin sensitivity of skeletal muscle determined repeatedly in DEX-treated SHR [unpublished data and Ref. (12)] is comparable to that of SHR-Lx.PD5SRB-Zbtb16 strain (SHR basal 121 ± 13; insulin-stimulated 226 ± 25 nmol glucose/g/120 min vs. SHR-Lx.PD5SRB-Zbtb16 basal 173 ± 23; insulin-stimulated 247 ± 38 nmol glucose/g/120 min) contrasting with decreased sensitivity in the single-gene congenic strain with the PD/Cub mutant allele of Zbtb16 gene as well as the original SHR-Lx.PD5 strain (SHR-Lx.PD5 basal 82 ± 6; insulin-stimulated 142 ± 10 nmol glucose/g/120 min vs. SHR-Lx.PD5PD-Zbtb16 basal 55 ± 9; insulin-stimulated 144 ± 16 nmol glucose/g/120 min). In skeletal muscle, GCs were shown to cause IR by reducing transcription of IRS1, while increasing expression of proteins that interfere with insulin action, including protein tyrosine phosphatase type 1B, leukocyte common antigen-related protein (LAR) and p38MAPK (37). However, over 170 potential GC targets have been identified in muscle (38) affecting not only insulin sensitivity but also protein metabolism with effects extending to other organs, as documented in the muscle-specific GR knockout animals (39). While interactions between Zbtb16 and several of the implicated genes have been described, the identification of crucial perturbed pathways in the SHR-Lx.PD5PD-Zbtb16 remains to be established. The enhanced TG storage in liver due to GC administration (40) was more prominent in the SHR-Lx.PD5SRB-Zbtb16 strain. In an experimental model with TALEN (transcription activator-like effector nuclease)-mediated Zbtb16 knockout, the heterozygous SHR-Plzf+/− animals showed decreased concentrations of TG and cholesterol in liver and plasma (41). Hepatic Zbtb16 is upregulated in several murine models showing severe hepatic steatosis (52). However, given the higher fasting and satiety plasma concentrations of TG in SHR-Lx.PD5PD-Zbtb16, we can speculate that DEX-induced activation of liver Zbtb16 in the single congenic strain could cause a decrease of phosphorylation of FoxO1 (32), which in turn activated both gluconeogenesis (leading to increased glycemia) and increased expression of microsomal triglyceride transfer protein, augmenting very low-density lipoprotein, TG-rich particles assembly and secretion (42). The reduced total body weight and relative weight of liver in the original SHR-Lx.PD5 strain compared with SHR is consistent with the morphometric profile of the strain without the variant Zbtb16 allele, i.e., the SHR-Lx.PD5SRB-Zbtb16 strain. Although at this point it is impossible to pinpoint any of the six genes present in the differential segment as a major contributor, the serotonin receptor Htr3a was recently shown to modulate energy expenditure and weight gain via adipose tissue (43) and can be thus considered as a potential candidate. The limitations of this study include the use of only male rats as sex-specific genetic architecture of the metabolic syndrome and its components was demonstrated (44). Also, as the experimental protocol was set up to mimic the original set of experiments comparing SHR rats to SHR-Lx.PD5 congenic, only one dose of DEX and a short-term administration in 5-month-old animals was used. It is possible that the sensitizing effect would be modified under different conditions, yet the observed robust changes, particularly regarding the blunted insulin sensitivity of the skeletal muscle tissue, would most likely not be affected. Further studies should address in detail the mechanisms and pathways, through which the Zbtb16 mediates the sensitization to DEX-induced IR of skeletal muscle.

Also, the relevance of our findings for human condition needs to be validated. So far, there is not any pharmacogenetic study involving variation in human ZBTB16 gene available. In a study of 1517 non-diabetic subjects without hypolipidemic treatment, several single nucleotide polymorphisms in ZBTB16 gene were associated with adiposity measures, LDL, and total cholesterol (45), suggesting the importance of ZBTB16 for metabolic syndrome in humans. The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.

ETHICS STATEMENT

All experiments were performed in agreement with the Animal Protection Law of the Czech Republic (311/1997) which is in compliance with the European Community Council recommendations for the use of laboratory animals 86/609/ECC and were approved by the Ethical committee of the First Faculty of Medicine and the Ministry of Education, Youth and Sports of the Czech Republic (protocol ID MSMT-1461/2015-17).

AUTHOR CONTRIBUTIONS

VK and DK derived the new congenic substrains. OS, LS, MK, and AK carried out the experimental components of the study and performed the statistical analysis. OS, LS, MK, and LK conceived the study, participated in its design and coordination, and helped to draft the manuscript. All the authors participated in the manuscript preparation and read and approved the final manuscript.

FUNDING

This work was supported by Czech Science Foundation Project 15-04871S and Charles University in Prague [PROGRES-Q25/LF1, SVV 260367].
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fendo.2018.00185/full#supplementary-material.

REFERENCES

1. Vandewalle J, Luyssaert A, De Bosscher K, Libert C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab (2018) 29(1):42–54. doi:10.1016/j.tem.2017.10.010
2. Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet (2009) 373(9678):1905–17. doi:10.1016/S0140-6736(09)60326-3
3. Hampel R, Vondra K. Peripheral sensitivity to steroids revisited. Physiol Res (2017) 66(Suppl 3):S293–303.
4. Brotman DJ, Girod JP, Garcia MJ, Patel JV, Gupta M, Posch A, et al. Effects of short-term glucocorticoids on cardiovascular biomarkers. J Clin Endocrinol Metab (2003) 90(6):3202–8. doi:10.1210/jc.2004-002379
5. Cuzzoni E, De Iudicibus S, Franca R, Stocco G, Luaco M, Pelin M, et al. Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics (2015) 16(14):1631–48. doi:10.2217/pgs.15.101
6. Jackson RK, Irving JA, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia. Br J Haematol (2016) 173(1):13–24. doi:10.1111/bjh.13924
7. Nicolaides NC, Charmandari E. Novel insights into the molecular mechanisms underlying generalised glucocorticoid resistance and hypersensitivity syndromes. Hormones (Athens) (2017) 16(2):124–38. doi:10.14510/horm.2002.1728
8. Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med (2011) 365(13):1173–83. doi:10.1056/NEJMo0911353
9. Ramsey LB, Pounds S, Cheng C, Cao X, Yang W, Smith C, et al. Genetics of pleiotropic effects of dexamethasone. Pharmacogenet Genom (2017) 27(8):294–302. doi:10.1002/pmg3.20029
10. Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, et al. Dynamic isolation of a genomic region affecting most components of metabolic syndrome in a chromosome-16 congenic rat model. PLoS One (2016) 11(3):e0152708. doi:10.1371/journal.pone.0152708
11. Undergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res (2012) 40(15):e115. doi:10.1093/nar/gks596
12. Weinmann M, Mansha M, Kohler A, Awan AR, Barab ME, Kohler R. Promyelocytic leukemia zinc finger protein (PLZF) enhances glucocorticoid-induced apoptosis in leukemic cell line NALM6. Pak J Pharm Sci (2012) 25(3):617–21.
13. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet (2004) 36(6):653–9. doi:10.1038/ng1367
14. Plaisier CL, Bennett BJ, He A, Guan B, Lusis AJ, Reue K, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res (2012) 40(15):e115. doi:10.1093/nar/gks596
15. Chen S, Qian J, Shi X, Gao T, Liang T, Liu X. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol (2014) 28(12):1987–98. doi:10.1210/me.2014-1164
16. Plaisier CL, Bennett BJ, He A, Guan B, Lusis AJ, Reue K, et al. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes (2012) 2:e46. doi:10.1038/nd.2012.21
17. Chen S, Qian J, Shi X, Gao T, Liang T, Liu C. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol (2014) 28(12):1987–98. doi:10.1210/me.2014-1164
18. Morgan SA, Gathercole LL, Simonet C, Hassan-Smith ZK, Bujalska I, Guest P, et al. Regulation of lipid metabolism by glucocorticoids and 11beta-HSD1 in skeletal muscle. Endocrinology (2013) 154(7):2374–84. doi:10.1210/en-2012-2214
36. Fahnenstich J, Nandy A, Milde-Langosch K, Schneider-Merck T, Walther N, Gellersen B. Promyelocytic leukaemia zinc finger protein (PLZF) is a glucocorticoid- and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod (2003) 9(10):611–23. doi:10.1093/molehr/gag080
37. Almon RR, Dubois DC, Jin JY, Jusko WI. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol (2005) 184(1):219–32. doi:10.1677/joe.1.05953
38. Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol (2013) 380(1–2):79–88. doi:10.1016/j.mce.2013.03.003
39. Shimizu N, Maruyama T, Yoshikawa N, Matsumiya R, Ma Y, Ito N, et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun (2015) 6:6693. doi:10.1038/ncomms7693
40. John K, Marino JS, Sanchez ER, Hinds TD Jr. The glucocorticoid receptor: cause of or cure for obesity? Am J Physiol Endocrinol Metab (2016) 310(4):E249–57. doi:10.1152/ajpendo.00478.2015
41. Liska F, Landa V, Zidek V, Mlejnek P, Silhavy J, Simakova M, et al. Downregulation of Plzf gene ameliorates metabolic and cardiac traits in the spontaneously hypertensive rat. Hypertension (2017) 69(6):1084–91. doi:10.1161/HYPERTENSIONAHA.116.08798
42. Kamagate A, Dong HH. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle (2008) 7(20):3162–70. doi:10.4161/cc.7.20.6882
43. Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun (2015) 6:6794. doi:10.1038/ncomms7794
44. Seda O, Tremblay J, Gaudet D, Brunelle PL, Gurau A, Merlo E, et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension (2008) 51(4):1156–62. doi:10.1161/HYPERTENSIONAHA.107.105247
45. Bendlova B, Vankova M, Hill M, Vaccino G, Lukasova P, VejraZkova D, et al. ZBTB16 gene variability influences obesity-related parameters and serum lipid levels in Czech adults. Physiol Res (2017) 66(Suppl 3):S425–31.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Krupková, Liška, Kazdová, Šedová, Kábelová, Křenová, Křen and Šeda. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.