Research Article

Construction of 1D/2D α-Fe₂O₃/SnO₂ Hybrid Nanoarrays for Sub-ppm Acetone Detection

Huimin Gong,¹ Changhui Zhao,¹ Gaoqiang Niu,¹ Wei Zhang,² and Fei Wang³

¹School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
²Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Correspondence should be addressed to Changhui Zhao; zhaoch@sustech.edu.cn and Fei Wang; wangf@sustech.edu.cn

Received 24 September 2019; Accepted 19 December 2019; Published 13 February 2020

Copyright © 2020 Huimin Gong et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Exhaled acetone is one of the representative biomarkers for the noninvasive diagnosis of type-1 diabetes. In this work, we have applied a facile two-step chemical bath deposition method for acetone sensors based on α-Fe₂O₃/SnO₂ hybrid nanoarrays (HNAs), where one-dimensional (1D) FeOOH nanorods are in situ grown on the prefabricated 2D SnO₂ nanosheets for on-chip construction of 1D/2D HNAs. After annealing in air, ultrafine α-Fe₂O₃ nanorods are homogenously distributed on the surface of SnO₂ nanosheet arrays (NSAs). Gas sensing results show that the α-Fe₂O₃/SnO₂ HNAs exhibit a greatly enhanced response to acetone (3.25 at 0.4 ppm) at a sub-ppm level compared with those based on pure SnO₂ NSAs (1.16 at 0.4 ppm) and pure α-Fe₂O₃ nanorods (1.03 at 0.4 ppm), at an operating temperature of 340°C. The enhanced acetone sensing performance may be attributed to the formation of α-Fe₂O₃–SnO₂ n-n heterostructure with 1D/2D hybrid architectures. Moreover, the α-Fe₂O₃/SnO₂ HNAs also possess good reproducibility and selectivity toward acetone vapor, suggesting its potential application in breath acetone analysis.

1. Introduction

As a potential alternative for the noninvasive diagnosis of disease, exhaled breath analysis has been proposed and developed over the past decades [1–3]. The exhaled breath of human beings includes not only nitrogen, oxygen, carbon dioxide, nitric oxide, and water vapor but also a mixture of volatile organic compounds (VOCs) and some other nonvolatile molecules. Encouragingly, a few of them have been regarded as biomarkers to diagnose diseases (Table S1). For example, formaldehyde (lung cancer) [4], tolue (lung cancer) [5], ammonia (hemodialysis) [6], H₂S (halitosis) [7], isoprene (heart disease) [8], benzene (smoker) [9], and pentane (acute asthma) [10] at few dozens to few thousands of ppb are known as biomarkers for patients. Researchers have also found that exhaled acetone can intuitively correlate with type-1 diabetes, which may exceed 1.8 ppm (only 0.3–0.9 ppm for healthy people) [1, 11]. Therefore, an ultrasensitive acetone sensor is of great importance to detect acetone vapor at a sub-ppm level.

Metal oxide semiconductors (MOXs), such as SnO₂, ZnO, α-Fe₂O₃, CuO, and NiO, have been widely explored in the field of gas detection owing to their simple and cost-effective synthesis, high sensitivity, and good stability. Among these MOXs, α-Fe₂O₃ is a multifunctional n-type semiconductor with a direct bandgap (Eₚ = 2.2 eV at 300 K) that has been intensively investigated in the field of gas sensing [12–15]. Several effective strategies have been designed to improve the gas sensing properties of these MOXs, such as doping, surface modification, porous/hollow structures, and hierarchical architectures [16–18]. Recently, construction of hybrid nanostructures is rapidly emerging as a fascinating strategy that combines different MOXs with precise control of their morphologies, such as hollow ZnO/ZnFe₂O₄ heterostructures that were synthesized by growing ultrathin ZnFe₂O₄ nanosheets on the outer surface of ZnO hollow microspheres [19], NiO nanoparticle-decorated SnO₂ nanosheets [20], CuO nanosheets/ZnO nanorods (NRs) [21], and Fe₂O₃ nanoparticle-decorated CuO NRs [22]. For this purpose, the rational combination of SnO₂ and α-Fe₂O₃ has been proven to improve their gas sensing performances (Table S2). The results show that the α-Fe₂O₃/SnO₂ composites present excellent sensing performances to acetone [23, 24], ethanol [25–30], toluene [31], and LPG [32, 33]. Moreover, their gas sensing properties can be largely affected by the size and shape of nanobuilding blocks (α-Fe₂O₃ and SnO₂). As far as
we know, only a few reports about α-Fe₂O₃–SnO₂ system have concerned on the detection of ultralow concentrations of acetone.

In this work, we report a two-step chemical bath deposition (CBD) method to construct the α-Fe₂O₃/SnO₂ hybrid nanoarrays (HNAs) on-chips with subsequent annealing in air. The one-dimensional (1D) α-Fe₂O₃ NRs are distributed homogenously on the surface of the 2D SnO₂ nanosheets to construct novel 1D/2D HNAs. In comparison with pure SnO₂ NSAs and α-Fe₂O₃ NRs, the α-Fe₂O₃/SnO₂ HNAs show a dramatically enhanced response to acetone (down to sub-ppm). Moreover, the α-Fe₂O₃/SnO₂ HNAs also possess a superior selectivity to acetone against other interfering gases (formaldehyde, toluene, benzene, and ammonia). A possible sensing mechanism based on the formation of α-Fe₂O₃–SnO₂ n-n heterostructure is proposed.

2. Results and Discussion

2.1. Morphological Characteristics. As illustrated in Figure 1(a), a chip with interdigital Au electrodes (200 μm lines separated by 200 μm gaps) was fabricated on a (100) silicon substrate with a 2 μm thermally grown SiO₂ layer, and the SnO₂ NSAs were prepared with an on-chip growth method similar to our previous work [34]. The chip was vertically dipped into the mixed solution (containing Sn²⁺ and CO(NH₂)₂) during this process, and then the prefabricated SnO₂ NSAs were immersed in another aqueous solution (containing Fe²⁺ and CO(NH₂)₂) for depositing FeOOH NRs on SnO₂ NSAs. After annealing in air, the as-prepared sensors were placed on a CGS-4TP gas sensing measurement system. A schematic of the gas sensing measurement systems used in this work is illustrated in Figure S1. Figure 1(b) presents a schematic diagram of the test platform used in this work. A hotplate was used to adjust the operating temperature, and two pins of a sensor were connected with a pair of probes. A digital photograph of the gas sensing chip (3 mm × 6 mm in size) with α-Fe₂O₃/SnO₂ HNAs is given in the inset of Figure 1(b). During the test, four sensors were measured simultaneously, as shown Figure 1(c), and the electrical resistance of each sensor was recorded.

Figure 2 shows the morphologies of as-prepared pure SnO₂ NSAs and α-Fe₂O₃/SnO₂ HNAs. It can be seen from Figure 2(a) that the pure SnO₂ NSAs are composed by oriented growth of nanosheets, where the adjacent SnO₂ nanosheets will interconnect with each other and form a semiopen network. From the cross-sectional scanning electron microscope (SEM) images of SnO₂ NSAs (Figure 2(b)), the flake-like SnO₂ stands vertically on the chip with a uniform film thickness (~100 nm), and the SnO₂ NSAs are robustly adhered to the substrate. After the growth of α-Fe₂O₃ NRs, it is obvious that the surface morphology of α-Fe₂O₃/SnO₂ HNAs is much different from that of the pure SnO₂ NSAs. As shown in Figure 2(c), numerous ultrathin α-Fe₂O₃ NRs are homogeneously distributed among the interconnected SnO₂ NSAs. A SEM close-up image of α-Fe₂O₃ NRs (inset Figure 2(c)) reveals that the diameter of NRs ranges from 9 nm to 20 nm, and the average diameter is about 12.7 nm. Otherwise, for the second-step (CBD method), the α-Fe₂O₃ NRs tend to form irregular aggregates without a substrate (Figure S2). The cross-sectional SEM images of α-Fe₂O₃/SnO₂ HNAs in Figure 2(d) further indicate that the 1D α-Fe₂O₃ NRs are in situ grown on the surface of 2D SnO₂ nanosheets, and novel 1D/2D hybrid nanoarrays can be achieved by a facile two-step CBD method. At the same time, the average film thickness of α-Fe₂O₃/SnO₂ HNAs increases up to 220 nm.

To get further insight into the definite morphology of pure SnO₂ NSAs and α-Fe₂O₃/SnO₂ HNAs, transmission electron microscope (TEM) images were taken from the
scraped-off products. As shown in Figure 2(e), SnO2 NSAs made up of interconnecting flakes with a thickness of <10 nm are obtained. Because of the vertical direction of growth, the thickness of a SnO2 nanosheet can be easily measured in Figure 2(e) (marked by arrows, ~8 nm). These 2D nanosheets have an edge length of tens of nanometers, which agree well with the SEM observation (Figure 2(a)).

For α-Fe2O3/SnO2 HNAs, the overall TEM image (Figure 2(g)) indicates that the hybrid composites are constructed by interconnected 2D nanosheets and some disordered 1D nanorods with respect to their different structural features. The inset of Figure 2(g) shows an individual nanorod grown on the surface of the nanosheet. The diameter of the rod is around 9 nm, and the length is estimated to be 57 nm. Figure 2(h) provides the HRTEM image of the selected region from the inset of Figure 2(g) (marked by a dashed rectangle). The lattice fringes with d-spacings of 0.270 and 0.336 nm can be indexed to the (104) plane of α-Fe2O3 and (110) plane of SnO2, respectively. These results further confirm the construction of the 1D/2D hybrid nanostructure of α-Fe2O3/SnO2 HNAs.

Moreover, XPS analysis was used to obtain more information about the chemical valences of our samples. Figure 4(a) displays the high-resolution Sn 3d spectra of SnO2 NSAs and α-Fe2O3/SnO2 HNAs. In the pure SnO2 NSAs, the two peaks centered at 487.4 and 495.8 eV can be ascribed to the peaks of Sn 3d5/2 and Sn 3d3/2, respectively, which are in good agreement with Sn4+. With the modification of α-Fe2O3, a slight negative shift of the binding energies is observed in α-Fe2O3/SnO2 HNAs, shifting to 487.3 and 495.7 eV, respectively, as a result of the formation of α-Fe2O3/SnO2 heterojunction interface. In the spectrum of Fe 2p in Figure 4(b), interference peaks are detected at 717.6 eV in SnO2 NSAs and 716.5 eV in α-Fe2O3/SnO2 HNAs, which come from the Sn 3p peak. The Fe 2p peaks are not found in α-Fe2O3/SnO2 HNAs due to the strong interference peak. In comparison, the two peaks at 711.9 and 725.2 eV detected in pure α-Fe2O3 NRs are attributed to Fe 2p 3/2 and Fe 2p 1/2, respectively, corresponding to Fe3+ in α-Fe2O3.

2.2. Gas Sensing Properties. As is well-known, the gas sensing properties of MOXs are highly dependent on the operating temperature. To confirm it, the as-prepared gas sensors were examined at various temperatures (280-380°C) toward 5 ppm acetone. The sensor response is defined as \(R_a/R_g \), where \(R_a \) and \(R_g \) are the sensor resistance in air and target gas, respectively. As shown in Figure 5(a), the response of α-Fe2O3/SnO2 HNA-based sensor increases with the increase in operating temperature and reaches its maximum value (13.63) at 340°C, then decreases with the further increase of operating temperature. Therefore, 340°C can be chosen as the optimum operating temperature of α-Fe2O3/SnO2 HNAs. Differently, the pure SnO2 NSA-based sensor exhibits no obvious variation over the whole temperature range (2.00, at 340°C). The pure α-Fe2O3 NR-based sensor shows a monotonic decrease of the response with an increase in operating

![Figure 2: Top view SEM images of (a) SnO2 NSAs and (c) α-Fe2O3/SnO2 HNAs. Cross-sectional SEM images of (b) SnO2 NSAs and (d) α-Fe2O3/SnO2 HNAs. The inset of (c) shows a SEM close-up image of α-Fe2O3 NRs. (e) TEM and (f) HRTEM images of the pure SnO2 NSAs. (g) TEM and (h) HRTEM images of α-Fe2O3/SnO2 HNAs. The inset of (g) shows an individual α-Fe2O3 rod grown on the surface of SnO2 nanosheet.](image-url)
temperature, and the highest response value is about 4.28 at 280°C. It is clear that the α-Fe₂O₃/SnO₂ HNA-based sensor displays the highest response in the three sensors, revealing that the acetone sensing properties of SnO₂ NSAs can be significantly enhanced by the modification of α-Fe₂O₃ NRs.

Figure 5(b) gives the acetone sensing properties of the above three sensors at the same operating temperature of 340°C. It is clear that the sensor response increases with the acetone concentration ranging from 0.4 to 20 ppm for each sensor. Especially, in the case of α-Fe₂O₃/SnO₂ HNAs, the response increases rapidly over the whole concentration range, which is rather different from the other two sensors. The response values of α-Fe₂O₃/SnO₂ HNAs are 3.25, 4.64, 5.37, 7.68, 9.91, 10.69, 12.34, 16.55, and 21.26 toward 0.4,
0.8, 1, 2, 3, 4, 5, 10, and 20 ppm acetone, respectively. In comparison, the response values of pure SnO$_2$ NSAs and α-Fe$_2$O$_3$ NRs toward acetone can be as low as 1.16 and 1.03, respectively, at a concentration of 0.4 ppm, and their values are still less than 3.1 even toward 20 ppm acetone. Therefore, the α-Fe$_2$O$_3$/SnO$_2$ HNA-based sensor exhibits the highest response values toward acetone in the three sensors, indicating the improvement of sensitivity.

Figure 5(c) plots the corresponding transient response curves of the pure SnO$_2$ NSAs and α-Fe$_2$O$_3$/SnO$_2$ HNAs. Resistance curves of (d) SnO$_2$ NSAs and (e) α-Fe$_2$O$_3$/SnO$_2$ HNAs at 340°C. (f) Selectivity of the sensors to various gases (1 ppm) at 340°C.

The response and recovery times (t_{res} and t_{rec}) are very important parameters for high-performance gas sensors. The response time t_{res} (or recovery time t_{rec}) is defined as the time required to reach 90% resistance change when the sensor is exposed to target gas (or air). As shown in Figure S4, the α-Fe$_2$O$_3$/SnO$_2$ HNA-based sensor shows a faster t_{res} (14 s, at 1 ppm) at 340°C compared with that of the SnO$_2$ NSAs (37 s, at 1 ppm). On the contrary, the t_{rec} of the α-Fe$_2$O$_3$/SnO$_2$ HNA-based sensor always exceeds one minute (62–159 s, in the range 0.4–20 ppm), which is apparently higher than that of the SnO$_2$ NSA-based sensor (22–34 s, in the range 0.4–20 ppm). According to the previous studies, the vertically ultrathin SnO$_2$ NSAs can provide as much surface area as possible to adsorb gas molecules and facilitate the adsorption/desorption of the acetone gas. When the α-Fe$_2$O$_3$ NRs were introduced, the branched α-Fe$_2$O$_3$ NRs on the surface of SnO$_2$ NSAs will adsorb more acetone molecules, making the α-Fe$_2$O$_3$/SnO$_2$ HNAs more sensitive and present faster response toward acetone.
To study the selectivity in the above sensors, some interfering gases (formaldehyde, toluene, benzene, and ammonia) were measured at 340°C with a low concentration of 1 ppm. It can be seen in Figure 5(f) that the α-Fe2O3/SnO2 HNA-based sensor exhibits higher responses toward all gases than those of pure SnO2 NSAs and α-Fe2O3 NRs. Especially, all the sensors obtain their highest responses toward acetone compared with other interfering gases. In the case of the α-Fe2O3/SnO2 HNA-based sensor, it shows the highest response toward acetone (5.37), then toward formaldehyde (1.23) and toluene (1.16) and is almost insensitive toward ammonia (1.11) and benzene (1.09). On the other hand, the corresponding responses of pure SnO2 NSAs toward above gases are 1.33, 1.02, 1.02, 1.02, and 1.01 in turn (for α-Fe2O3 NRs: 1.30, 1.03, 1.02, 1.03, and 1.03). These results suggest that the α-Fe2O3 NRs, indeed, have a significant impact on the selectivity of the SnO2 NSAs toward acetone.

The reproducibility of the sensors at 340°C has been investigated by continuously testing the sensors to 5 ppm and 1 ppm acetone with 5 cycles for each. As shown in Figures 6(a)–6(c), all the sensors maintain their response...
values without obvious variation (less than 4%) during the cyclic testing, indicating excellent reproducibility of our devices. By comparison, Figure 6(d) illustrates the statistical analysis of the results of sensor responses (for SnO\(_2\) NSAs sensor: 1.32 ± 0.02 at 1 ppm and 2.00 ± 0.01 at 5 ppm; \(\alpha\)-Fe\(_2\)O\(_3\) NRs sensor: 1.33 ± 0.03 at 1 ppm and 2.02 ± 0.06 at 5 ppm; \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNAs sensor: 5.05 ± 0.11 at 1 ppm and 11.80 ± 0.29 at 5 ppm), further demonstrating their robustness as acetone sensors.

To assess the long-term stability of our sensor, we tested the \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor for 93 days toward 5 ppm acetone at 340°C. The mean response of the \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor is 11.62 with a standard deviation estimated to be 0.93 during the whole period, suggesting its stability for acetone detection over a long period. Furthermore, it can be clearly seen that there is no obvious change between the nanostructures of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNAs before (Figure 2(c)) and after (inset of Figure 6(e)) a number of gas sensing tests. This observation is consistent with the good long-term stability of the \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor.

It is well-known that human exhaled breath is highly humid (RH ≥ 80%) and the existence of water vapor has a significant influence on the gas sensing performance for MOX-based gas sensors. As shown in Figure 6(f), the response of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor to 5 ppm acetone was measured as a function of relative humidity (20%–90%). The responses of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNAs under 20%, 40%, 60%, 80%, and 90% RH were 12.34, 6.02, 4.69, 3.86, and 3.62, respectively. Obviously, the response of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNAs is highly dependent on relative humidity, and some available approaches (such as employing water filtering membranes) are needed to eliminate the influence of water vapor.

Considering the previous reports in Table 1 [11, 35–38], the \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor in this work possesses relatively medium sensitivity (or operating temperature). We can conclude that the acetone sensing properties of MOXs can be further enhanced by constructing heterostructures or modifying with noble metals. As mentioned before, the acetone detection capability (or resolution) for the diagnosis of diabetes mellitus should be as low as sub-ppm, all of which need sufficient and reliable sensors for acetone. In this sense, the high sensitivity, good selectivity, and excellent reproducibility of the \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNA-based sensor imply that it can potentially be used for breath acetone analysis.

2.3. Sensing Mechanism. For n-type MOXs (SnO\(_2\) and \(\alpha\)-Fe\(_2\)O\(_3\)), their acetone sensing mechanisms can be briefly understood as the reaction between the adsorbed oxygen species and acetone molecules on the active sites of sensitive materials. [24] In general, an electron depletion layer (EDL) can be formed on the near surface of SnO\(_2\) nanosheets (Figure 7(a)) owing to the adsorbed oxygen species (\(O_2^\ast\), \(O_2^-\)), and \(O_2^\ast\) after exposing to air and makes the adsorbed oxygen species capture free electrons from the conduction band of SnO\(_2\). This results in a decrease of electron concentration (or width of EDL) and thus a relatively high resistance in air atmosphere. The generation and transformation processes of the oxygen species at different operating temperatures have the following expressions [39]:

\[
\begin{align*}
O_2(\text{gas}) & \longleftrightarrow O_2(\text{ads}) \\
O_2 + e^- & \longleftrightarrow O_2^- \\
O_2^- + e^- & \longleftrightarrow 2O^- \\
O^- + e^- & \longleftrightarrow O^{2-}
\end{align*}
\]

On the contrary, upon exposure to reducing gases such as acetone, acetone molecules will react with the absorbed oxygen species, as expressed by Equation (2) and release free electrons back to the SnO\(_2\) nanosheets. Hence, the electron concentration increase will cause an increase in conductivity (or a decrease in sensor resistance), and the width of EDL also becomes broader. According to the SEM and TEM observations, the vertically distributed SnO\(_2\) nanosheets connect with each other to construct an interlaced electron transport network on the substrate. However, the modulation mechanism of this type of transport network is not efficient because of the same energy band structure in the pure SnO\(_2\) NSAs. In other words, the \(R_s\) of the pure SnO\(_2\) NSA-based sensor is rather low (Figure 5(d)), which is too difficult to obtain dramatic change, especially at low acetone concentrations.

\[
\begin{align*}
\text{CH}_3\text{COCH}_3 + 8O^\ast & \longrightarrow 3\text{CO}_2 + 3\text{H}_2\text{O} + 8e^- \\
\text{CH}_3\text{COCH}_3 + 8O^{2-} & \longrightarrow 3\text{CO}_2 + 3\text{H}_2\text{O} + 16e^-
\end{align*}
\]

In the case of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) HNAs, the sensor exhibits enhanced sensitivity toward acetone, this may be attributed to the following reasons: (1) In the formation of \(\alpha\)-Fe\(_2\)O\(_3\)/SnO\(_2\) n–n heterostructures, by combining these two MOXs
with different work functions (SnO$_2$: $\Phi = 4.9$ eV; α-Fe$_2$O$_3$: $\Phi = 5.88$ eV) [40, 41], the free electrons tend to transfer from the higher side to the lower side, until the equilibrium Fermi level is reached (Figure 7(c)) [26, 42]. In this process, the SnO$_2$ nanosheet near the heterostructure interface will lose more electrons, which leads to a broader conduction region in air (Figure 7(b)) [43]. Similar to other reports, the R_s of the α-Fe$_2$O$_3$/SnO$_2$ HNAs in this work is much higher than that of the pure SnO$_2$ NSAs.

(2) In the novel 1D/2D α-Fe$_2$O$_3$/SnO$_2$ hybrid architectures, when the sensor is exposed to acetone, the stretched-out α-Fe$_2$O$_3$ NRs provide an extra surface area and active sites for the gas adsorption. Thus, more oxygen species and acetone molecules can be adsorbed on the surface of α-Fe$_2$O$_3$/SnO$_2$ HNAs (Figure 7(b)), which provides more opportunities for Equation (2). The conduction region in SnO$_2$ nanosheets will be broadened as well as a decrease in R_s. On the other hand, the free electrons generated on the surface of α-Fe$_2$O$_3$ NRs will flow to SnO$_2$ NSAs and allow a dramatic decrease in the width of the electron depletion region at the interface of the α-Fe$_2$O$_3$/SnO$_2$ heterostructure. It may further result in an increase of sensor response toward acetone. So the modulation mechanism of α-Fe$_2$O$_3$/SnO$_2$ HNAs becomes more efficient than that of pure SnO$_2$ NSAs. Additionally, much hard work is still needed to study the influence of ambient humidity, filter units, and clinical tests, making it more suitable for breath acetone analysis.

3. Conclusion

The α-Fe$_2$O$_3$/SnO$_2$ HNA-based acetone sensor has been fabricated via a facile two-step on-chip growth (or CBD method) process. The results indicate that the as-prepared sensor presents a well-defined 1D/2D hybrid architecture, where the ultrathin α-Fe$_2$O$_3$ NRs (an average diameter ~12.7 nm) are distributed among the interconnected SnO$_2$ NSAs. Gas sensing measurements show that the α-Fe$_2$O$_3$/SnO$_2$ HNA-based sensor exhibits superior acetone sensing properties (high sensitivity, good reproducibility, and selectivity), even at a sub-ppm level, compared with those of the pure SnO$_2$ NSA- and α-Fe$_2$O$_3$ NR-based sensors. The improved acetone sensing performance may be due to the formed α-Fe$_2$O$_3$–SnO$_2$ heterostructures and their
unique hybrid nanostructures. Our work suggests that the α-Fe$_2$O$_3$/SnO$_2$ HNAs can be a promising candidate for sub-ppm acetone detection in breath analysis.

4. Materials and Methods

4.1. Preparation of α-Fe$_2$O$_3$/SnO$_2$ HNAs. In brief, 0.6 mmol SnCl$_2$·2H$_2$O and 0.8 mmol CO(NH$_2$)$_2$ were dissolved into 20 mL deionized water and stirred for 15 min at room temperature. Then a piece of chip with several Au electrodes was washed with acetone and ethanol and deionized water for several times, which was afterwards vertically dipped into the above solution and maintained at 95°C for 8 h. After washing and drying at 60°C in an oven, the prefabricated SnO$_2$ NSAs were immersed in an aqeous solution (containing 0.1 M FeSO$_4$·7H$_2$O and 1.0 M CO(NH$_2$)$_2$) and kept at 80°C for 1 h. Similarly, the chip was washed and dried again at 60°C. The final chip was annealed at 400°C for 3 h in air to achieve α-Fe$_2$O$_3$/SnO$_2$ HNAs.

In addition, the pure SnO$_2$ NSAs were also annealed under the same conditions. For a pure α-Fe$_2$O$_3$ NR-based sensor, 0.1 M FeSO$_4$·7H$_2$O and 1.0 M CO(NH$_2$)$_2$ were mixed and maintained at 80°C for 1 h, and the collected precipitate was dip-coated on the Au electrodes and then annealed at 400°C in air for 3 h.

4.2. Characterization and Gas Sensing Measurements. The morphologies and compositions of as-prepared products were investigated by a scanning electron microscope (SEM, Zeiss Gemini 300) equipped with energy dispersive X-ray (EDX) spectroscopy and a high-resolution transmission electron microscope (HRTEM, FEI Tecnai G2 F30). The chemical states of the surface species were determined by using X-ray photoelectron spectroscopy (XPS, ESCALB 250Xi). The gas sensing properties of sensors were performed on a commercial CGS-4TPs system (Beijing Elite Tech Co., Ltd., China). Gaseous acetone diluted with dry air was injected by a syringe. The operating temperature ranges from 280 to 380°C with a relative humidity around 20%.

Conflicts of Interest

All authors declare that there is no competing financial interest.

Authors’ Contributions

Huimin Gong, Changhui Zhao, and Fei Wang designed the experiments and contributed to the manuscript. Gaoqiang Niu and Wei Zhang carried out the material characterizations. The initial draft was edited by Changhui Zhao and Fei Wang. All authors reviewed the final version.

Acknowledgments

The TEM characterization was performed in the Materials Characterization and Preparation Center, Southern University of Science and Technology. This work was supported in part by the Shenzhen Science and Technology Innovation Committee under Grant JCYJ20170412154426330; the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China, under Grant 2018KQNX226; and Guangdong Natural Science Funds under Grants 2016A030306042 and 2018A050506001.

Supplementary Materials

Figure S1: schematic drawing of the gas sensing measurement systems. Figure S2: SEM images of pure α-Fe$_2$O$_3$ NRs. Figure S3: transient response curve of α-Fe$_2$O$_3$ NRs toward different acetone concentrations at 340°C and the corresponding resistance curve. Figure S4: response/recovery time vs. acetone concentration (0.4-20 ppm) with SnO$_2$ NSAs and α-Fe$_2$O$_3$/SnO$_2$ HNAs at 340°C. Table S1: brief summary of results reported on exhaled breath analysis. Table S2: gas sensing properties of Fe$_2$O$_3$–SnO$_2$ systems toward various gases. (Supplementary Materials)

References

[1] C. Di Natale, R. Paolesse, E. Martinelli, and R. Capuano, “Solid-state gas sensors for breath analysis: a review,” Analytica Chimica Acta, vol. 824, pp. 1–17, 2014.

[2] K. Schmidt and I. Podmore, “Current challenges in volatile organic compounds analysis as potential biomarkers of cancer,” Journal of Biomarkers, vol. 2015, Article ID 981458, 16 pages, 2015.

[3] T. Arakawa, T. Suzuki, M. Tsuji et al., “Real-time monitoring of skin ethanol gas by a high-sensitivity gas phase biosensor (bio-sniffer) for the non-invasive evaluation of volatile blood compounds,” Biosensors and Bioelectronics, vol. 129, pp. 245–253, 2019.

[4] A. T. Güntner, S. Abegg, K. Wegner, and S. E. Pratsinis, “Zeolite membranes for highly selective formaldehyde sensors,” Sensors and Actuators B: Chemical, vol. 257, pp. 916–923, 2018.

[5] N.-H. Kim, S.-J. Choi, D.-J. Yang, J. Bae, J. Park, and I.-D. Kim, “Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO$_3$ nanofibers for potential diagnosis of halitosis and lung cancer,” Sensors and Actuators B: Chemical, vol. 193, pp. 574–581, 2014.

[6] M.-Y. Chuang, C.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-J. Lu, “Organic gas sensor with an improved lifetime for detecting breath ammonia in hemodialysis patients,” ACS Sensors, vol. 2, no. 12, pp. 1788–1795, 2017.

[7] I. Lee, S.-J. Choi, K.-M. Park et al., “The stability, sensitivity and response transients of ZnO, SnO$_2$ and WO$_3$ sensors under acetone, toluene and H$_2$S environments,” Sensors and Actuators B: Chemical, vol. 197, pp. 300–307, 2014.

[8] J. van den Broek, A. T. Güntner, and S. E. Pratsinis, “Highly selective and rapid breath isoprene sensing enabled by activated alumina filter,” ACS Sensors, vol. 3, no. 3, pp. 677–683, 2018.

[9] E. Marco and J. O. Grimalt, “A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic cigarette smokers,” Journal of Chromatography A, vol. 1410, pp. 51–59, 2015.

[10] C. O. Olopade, M. Zakkar, W. I. Swedler, and I. Rubinstein, “Exhaled pentane levels in acute asthma,” Chest, vol. 111, no. 4, pp. 862–865, 1997.
[11] Y. Xie, R. Xing, Q. Li, L. Xu, and H. Song, “Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing,” Sensors and Actuators B: Chemical, vol. 211, pp. 255–262, 2015.

[12] S. Liang, J. Li, F. Wang, J. Qin, X. Lai, and X. Jiang, “Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, vol. 238, pp. 923–927, 2017.

[13] X. Li, D. Lu, C. Shao, G. Lu, X. Li, and Y. Liu, “Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels,” Sensors and Actuators B: Chemical, vol. 258, pp. 436–446, 2018.

[14] M. Dai, L. Zhao, H. Gao et al., “Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors,” ACS Applied Materials & Interfaces, vol. 9, no. 10, pp. 8919–8928, 2017.

[15] K. Wei, S. Zhao, W. Zhang et al., “Controllable synthesis of Zn-doped α-Fe2O3 nanowires for H2S sensing,” Nanomaterials, vol. 9, no. 7, p. 994, 2019.

[16] N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors and Actuators B: Chemical, vol. 5, no. 1-4, pp. 7–19, 1991.

[17] D. R. Miller, S. A. Akbar, and P. A. Morris, “Nanoscale metal oxide-based heterojunctions for gas sensing: a review,” Sensors and Actuators B: Chemical, vol. 204, pp. 250–272, 2014.

[18] J.-H. Lee, “Gas sensors using hierarchical and hollow oxide nanostructures: overview,” Sensors and Actuators B: Chemical, vol. 140, no. 1, pp. 319–336, 2009.

[19] X. Li, C. Wang, H. Guo et al., “Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors,” ACS Applied Materials & Interfaces, vol. 7, no. 32, pp. 17811–17818, 2015.

[20] G. Niu, C. Zhao, H. Gong, Z. Yang, X. Leng, and F. Wang, “NiO nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance,” Microsystems & Nanotechnology, vol. 5, no. 1, article 21, 2019.

[21] P. Lu, W. Zhou, Y. Li, J. Wang, and P. Wu, “CuO nanosheets/ZnO nanorods synthesized by a template-free hydrothermal approach and their optical and magnetic characteristics,” Ceramics International, vol. 43, no. 13, pp. 9798–9805, 2017.

[22] S. Park, Z. Cai, J. Lee, J. I. Yoon, and S.-P. Chang, “Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles,” Materials Letters, vol. 181, pp. 231–235, 2016.

[23] P. Sun, Y. Cai, S. Du et al., “Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties,” Sensors and Actuators B: Chemical, vol. 182, pp. 336–343, 2013.

[24] Q. Yu, J. Zhu, Z. Xu, and X. Huang, “Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors,” Sensors and Actuators B: Chemical, vol. 213, pp. 27–34, 2015.

[25] P. Sun, C. Wang, J. Liu et al., “Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 Hollow nanospheres with enhanced ethanol sensing properties,” ACS Applied Materials & Interfaces, vol. 7, no. 34, pp. 19119–19125, 2015.

[26] S. Yan, J. Yue, and Q. Wu, “Synchronous synthesis and sensing performance of α-Fe2O3/SnO2 nanofiber heterostructures for conductometric C2H5OH detection,” Sensors and Actuators B: Chemical, vol. 275, pp. 322–331, 2018.

[27] Y.-J. Chen, C.-L. Zhu, L.-J. Wang, P. Gao, M.-S. Cao, and X.-L. Shi, “Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core-shell nanorods,” Nanotechnology, vol. 20, no. 4, article 045502, 2008.

[28] C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, and E. Xie, “Effects of SnO2 additives on nanostructure and gas-sensing properties of α-Fe2O3 nanotubes,” Sensors and Actuators B: Chemical, vol. 195, pp. 486–493, 2014.

[29] K. S. Choi, S. Park, and S.-P. Chang, “Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, vol. 238, pp. 871–879, 2017.

[30] P. Sun, X. Zhou, C. Wang, K. Shimanoee, G. Lu, and N. Yamazoe, “Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors,” Journal of Materials Chemistry A, vol. 2, no. 5, pp. 1302–1308, 2014.

[31] H. Shan, C. Liu, L. Liu et al., “Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes,” ACS Applied Materials & Interfaces, vol. 5, no. 13, pp. 6376–6380, 2013.

[32] L. A. Patil, M. D. Shinde, A. R. Bari, V. V. Deo, D. M. Patil, and M. P. Kaushik, “Fe2O3 modified thick films of nanostructured SnO2 powder consisting of hollow microspheres synthesized from pyrolysis of ultrasonically atomized aerosol for LPG sensing,” Sensors and Actuators B: Chemical, vol. 155, no. 1, pp. 174–182, 2011.

[33] D. D. Vuong, K. Q. Trung, N. H. Hung, N. V. Hieu, and N. D. Chien, “Facile preparation of large-scale α-Fe2O3 nanorod/SnO2 nanorod composites and their LPG-sensing properties,” Journal of Alloys and Compounds, vol. 599, pp. 195–201, 2014.

[34] H. Gong, C. Zhao, and F. Wang, “On-chip growth of SnO2/ZnO core–shell nanosheet arrays for ethanol detection,” IEEE Electron Device Letters, vol. 39, no. 7, pp. 1065–1068, 2018.

[35] J. Shin, S.-J. Choi, I. Lee et al., “Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes,” Advanced Functional Materials, vol. 23, no. 19, pp. 2357–2367, 2013.

[36] M.-S. Yao, W.-X. Tang, G.-E. Wang, B. Nath, and G. Xu, “MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance,” Advanced Materials, vol. 28, no. 26, pp. 5229–5234, 2016.

[37] W.-T. Koo, S. Yu, S.-J. Choi, J. S. Jang, J. Y. Cheong, and I. D. Kim, “Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath,” ACS Applied Materials & Interfaces, vol. 9, no. 9, pp. 8201–8210, 2017.

[38] C. Liu, L. Zhao, B. Wang et al., “Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit,” Journal of Colloid and Interface Science, vol. 495, pp. 207–215, 2017.

[39] N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, no. 3, pp. 143–167, 2001.

[40] F. Li, X. Gao, R. Wang, T. Zhang, and G. Lu, “Study on TiO2–SnO2 core–shell heterostructure nanofibers with different work function and its application in gas sensor,” Sensors and Actuators B: Chemical, vol. 248, pp. 812–819, 2017.
[41] H. Xu, W. Li, R. Han et al., "Enhanced triethylamine sensing properties by fabricating Au@SnO$_2$/α-Fe$_2$O$_3$ core-shell nano-needles directly on alumina tubes," Sensors and Actuators B: Chemical, vol. 262, pp. 70–78, 2018.

[42] B. Wang, X. Fu, F. Liu, S. L. Shi, J. P. Cheng, and X. B. Zhang, “Fabrication and gas sensing properties of hollow core–shell SnO$_2$/α-Fe$_2$O$_3$ heterogeneous structures,” Journal of Alloys and Compounds, vol. 587, pp. 82–89, 2014.

[43] B. Zhang, W. Fu, X. Meng, A. Ruan, P. Su, and H. Yang, "Enhanced ethanol sensing properties based on spherical-coral-like SnO$_2$ nanorods decorated with α-Fe$_2$O$_3$ nanocrystallites," Sensors and Actuators B: Chemical, vol. 261, pp. 505–514, 2018.