Research Article

The Solvability of Fractional Elliptic Equation with the Hardy Potential

Siyu Gao,1 Shuibo Huang,1,2 Qiaoyu Tian,1 and Zhan-Ping Ma3

1School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu 730030, China
2Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu 730030, China
3School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454003, China

Received 8 April 2020; Revised 12 May 2020; Accepted 15 May 2020; Published 28 May 2020

Guest Editor: Chun-Lai Li

Copyright © 2020 Siyu Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the existence and nonexistence of solutions to fractional elliptic equations with the Hardy potential

\[(-\Delta)^s u - \lambda \frac{u}{|x|^{2s}} = u^{r-1} + \delta g(u), \quad \text{in } \Omega, \]

\[u(x) > 0, \quad \text{in } \Omega, \]

\[u(x) = 0, \quad \text{in } \mathbb{R}^N \setminus \Omega, \]

where \(\Omega \subset \mathbb{R}^N \) is a bounded Lipschitz domain with \(0 \in \Omega \), \(s \in (0, 1) \), \(N > 2s \), \(2 < r < r(\lambda, s) \equiv ((N + 2s - 2\alpha_1)/(N - 2s - 2\alpha_1)) + 1 \), \(0 < \lambda < \Lambda_{N,s} \), and \(\Lambda_{N,s} = 2^s ((\Gamma^2 ((N + 2s)/4))/\Gamma^2 ((N - 2s)/4)) \) is the sharp constant of the Hardy–Sobolev inequality; the fractional Laplace operator \((-\Delta)^s\) is defined by

\[(-\Delta)^s u = C(N, s) \text{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N + 2s}} \, dy, \]

where \(\text{P.V.} \) stands for the Cauchy principal value and constant \(C(N, s) \) is a constant.

Recently, much attention has been devoted to the study of fractional Laplacian equations. One of the reasons comes from the fact that the fractional Laplacian arises in various areas and different applications, such as phase transitions, finance, stratified materials, flame propagation, ultrarelativistic limits of quantum mechanics, and water waves. For more details, see [1–6] and references therein.

For fractional elliptic problems with the Hardy potential, Abdellaoui et al. [7] obtained the existence and summability of solutions to a class of nonlocal elliptic problem:

\[(-\Delta)^s u - \lambda \frac{u}{|x|^{2s}} = f(x, u), \quad \text{in } \Omega, \]

\[u(x) > 0, \quad \text{in } \Omega, \]

\[u(x) = 0, \quad \text{in } \mathbb{R}^N \setminus \Omega, \]
with \(f \in L^m(\Omega) \) and \(0 < \lambda < \Lambda_{N,s} \). They mainly considered the summability of solutions to (3) with \(f(x,u) = f(x) \) and the existence and regularity of solutions to (3) with \(f(x,u) = h(x)/u^p \). Mi et al. [8] obtained the combined influence of the Hardy potential and lower order terms on the existence and regularity of solutions to the problem:

\[
\begin{cases}
(-\Delta)^s u - \lambda \frac{u}{|x|^s} + u^p = f(x), & \text{in } \Omega, \\
u > 0, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

Barrios et al. [9] discussed the existence and multiplicity of solutions to the following fractional elliptic equation:

\[
\begin{cases}
(-\Delta)^s u - \lambda \frac{u}{|x|^s} = u^p + \mu \delta, & \text{in } \Omega, \\
u > 0, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

where \(0 < \lambda < \Lambda_{N,s} \), \(0 < q < 1 \), \(1 < p < p(\lambda,s) = \frac{N + 2s - 2\alpha_1}{N - 2s - 2\alpha_1} \)

and \(\alpha_1 \in (0,(N-2s)/2) \) is a parameter depending on \(\lambda \). They show that problem (5) has at least one solution if \(1 < p < p(\lambda,s) \) and problem (5) has no solution if \(p > p(\lambda,s) \).

Recently, Shang et al. [10] studied the existence and multiplicity of positive solutions to the following problem:

\[
(-\Delta)^s u - \mu \frac{u}{|x|^s} = \lambda g(x)u^p + K(x)u^{s^* - 1},
\]

where \(s \in (0,1), N > 2s, 0 < p < 2^*_s - 1 \), and \(0 < \mu < \Lambda_{N,s} \). Some other results of fractional elliptic equations with the Hardy potential, see [7, 9, 11–14] and references therein.

The local version of quasilinear problem related to problem (8) has been considered by Boccardo et al. [15]. They analyzed the existence of nontrivial solutions to the following problem:

\[
\begin{cases}
-\Delta_p u = |u|^{p-2}u + \lambda g(u), & \text{in } \Omega, \\
u > 0, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega \subset \mathbb{R}^N \) is a smooth bounded domain, \(1 < p < N, r > p, g: \Omega \times \mathbb{R} \to \mathbb{R} \) is a Carathéodory function, and there exist constants \(c_1 > 0 \) and \(q \in (1,p) \) such that \(g(s) \leq c_1 s^{q-1} \) for any \(s > 0 \).

Motivated by the above works, the aim of this paper is to study the existence of solutions to problem (1) by the method of subsuper solutions and taking into advantage the combined effect of concave and convex nonlinearity.

We make the following assumptions:

\[
\begin{align*}
(F1) & \quad 2 < r < r(\lambda, s) \equiv \frac{N + 2s - 2\alpha_1}{N - 2s - 2\alpha_1} + 1, \\
(F2) & \quad g: \Omega \times \mathbb{R} \to \mathbb{R} \text{ is Carathéodory function, and there exist constants } c_1 > 0 \text{ and } q \in (1,2), \text{ such that, for any } \sigma > 0, \\
& \quad g(\sigma) \leq c_1 \sigma^{q-1}.
\end{align*}
\]

Theorem 1. Suppose (F1) – (F4) hold. Then, there exists a positive constant \(\delta_0 \) such that, for all \(\delta \in (\lambda_1/M_0, \delta_0) \), problem (1) has at least a nonnegative solution if \(M_0 > (\lambda_1/\delta_0) \), where \(M_0 \) is defined by (12).

Remark 1. In order to prove the above theorem, we study directly to the pseudodifferential operator, without the harmonic extension to an extra dimension by transforming the nonlocal problem into a local problem due to Caffarelli and Silvestre [16].

Remark 2. To establish the upper bound for \(r \) (see (9)), we consider a radial solution \(w = A|x|^{(2s-N)/2} + \) with constant \(A > 0 \) to the problem:

\[
(-\Delta)^s w - \lambda \frac{w}{|x|^s} = w^{r-1}.
\]

We obtain

\[
A_{\beta}|x|^{2s-\epsilon((2s-N)/2)+\beta} - \lambda A|x|^{2s-\epsilon((2s-N)/2)+\beta} = A^{r-1}|x|^{((2s-N)/2)+\beta}(r-1),
\]

Complexity

\[
2 < r < r(\lambda, s) \equiv \frac{N + 2s - 2\alpha_1}{N - 2s - 2\alpha_1} + 1,
\]
where
\[
\gamma_\beta := \frac{\pi^2 \Gamma((N + 2s + 2\beta)/4) \Gamma((N + 2s - 2\beta)/4)}{\Gamma((N - 2s - 2\beta)/4) \Gamma((N - 2s + 2\beta)/4)}.
\] (16)

In order to have homogeneity, we have
\[
2s - N + \beta = \frac{-2s}{r - 2}.
\] (17)

Thus, we deduce that \(\gamma_\beta - \lambda = A^{-2}\). Since \(A > 0\), we conclude that \(\gamma_\beta - \lambda > 0\). Note that the map \(\gamma: [0, (N - 2s)/2) \mapsto (0, \lambda(1,1)]\) is decreasing about \(\beta\), see [17, 18]. Hence, there is a unique element \(\alpha_i\) such that \(\gamma_{\alpha_i} = \lambda\). Thus, we have \(\alpha_i > \beta\), that is,
\[
\alpha_i > \frac{-2s}{r - 2} + \frac{N - 2s}{2},
\] (18)

which implies that
\[
r < \frac{N + 2s - 2\alpha_i}{N - 2s - 2\alpha_i} + 1 = r(\lambda, s).
\] (19)

Therefore, we can construct a supersolution to problem (1) for \(r < r(\lambda, s)\), just modifying the \(\nu\) found above. Thus, \(r(\lambda, s)\) is the threshold for the existence to problem (1).

Moreover, by (10) and (13), we have for any \(r > 1\),
\[
M_1(r) \delta_0 \leq M_1(1) \delta_0 \leq c_1 \delta_0 \inf_{0 < \varepsilon \leq 1} |\varepsilon|^{\beta - 2} \equiv c_1 \delta_0 \lambda_{-1}^{(\beta - 2)/(r - 2)}.
\] (23)

Thus, for any \(r > 1\), \(M_1(r) \leq c_1 \lambda_{-1}^{(\beta - 2)/(r - 2)}\). Hence, problem (1) has no solution at least \(\delta > c_1 \lambda_{-1}^{(\beta - 2)/(r - 2)}\). Therefore, the result of the above theorem is more general than [9].

Remark 4. We consider the function
\[
g(\sigma) = \frac{\sigma|\sigma|^{\beta - 1}}{1 + |\sigma|^{\alpha T}},
\] (24)

for \(0 < \alpha < \beta < 1\). We easily deduce that conditions (10) and (11) are fulfilled and \(M_0 = \infty\). On the contrary,
\[
M_1(r) = \inf_{0 \leq z \leq (r \lambda_{-1})^{(\beta - 1)/(r - 2)}} z^{\beta - 1} \left(1 + z^a\right)^{-1}.
\] (25)

If \(\alpha > \beta - 1\), the function \(z^{\beta - 1} / (1 + z^a)\) is monotonically decreasing for \(z \geq 0\). Then,
\[
M_1(r) = \frac{\left(r \lambda_{-1}\right)^{(\beta - 1)/(r - 2)}}{1 + \left(r \lambda_{-1}\right)^{a(r - 2)}}.
\] (26)

Similarly, in this case, problem (1) has no solution provided

Now, we consider the nonexistence of solution to problem (1).

Theorem 2. Suppose \((F1) - (F4)\) hold. Then, problem (1) has no solution in \(H_0^1\) if for some \(r > 1\), \(M_1(r) > 0\), and \(\delta > \lambda_i / M_1(\tau_i)\), where \(M_0\) and \(M_1\) are defined by (12) and (13), respectively.

The following two examples also appeared in [15].

Remark 3. An example of function \(g(\sigma) \equiv \sigma^q\) with \(0 < q < 1\), which satisfies conditions (10) and (11) for any \(\delta < (0, \delta_0)\), such that problem (1) has at least one positive solution. In this condition \(M_0 = \infty\), by (52), we have \(\eta^{r - 1} c_1 c_2^{-q} (C_1 - C_2) > 0\). Define
\[
\Phi(C_1) = \eta^{r - q} c_1 c_2^{-q} (C_1 - C_2).
\] (20)

It is easy to see that
\[
\frac{d}{dC_1} \Phi(C_1) = 0 \iff C_1 = C_{1,0} := \left(\frac{3 - q}{2 - q + r}\right)^{1/(r - 1)}.
\] (21)

We have to prove that \(\delta\) is smaller than the minimum of \(\Phi(C_1)\). Therefore, we have

\[
\delta > \lambda_1^{(r - \beta)/(r - 2)} \left(1 + \lambda_1^{\alpha(r - 2)}\right).
\] (27)

Remark 5. The function \(T \mapsto M_1(T)\) is nonincreasing. Hence, if \(\delta > \lambda_1 / M_1(T_0)\), for some \(T_0 > 1\), the results of Theorem 1 will be true for any \(T > T_0\).

The paper is organized as follows. In Section 2, we present some definitions and preliminary tools, which will be used in the Proof of Theorems 1 and 2. The Proof of Theorems 1 and 2 are given in Section 3 and Section 4, respectively.

2. Preliminaries and Function Setting

In this section, we recall some known results for reader’s convenience.

Denote the space
\[
\mathcal{X} = \left\{ u: \mathbb{R}^N \rightarrow \mathbb{R} \text{ is measurable: } \int_{\mathbb{R}^N} \frac{|u(x)|}{1 + |x|^{N+2\alpha}} \, dx < \infty \right\},
\] (28)

equipped with the norm
\[
\|u\|_{\mathcal{X}} := \int_{\mathbb{R}^N} \frac{|u(x)|}{1 + |x|^{N+2\alpha}} \, dx.
\] (29)
Let Ω be an open subset of \mathbb{R}^N. Given $u \in \mathcal{S}^\prime$ and φ in the Schwartz class, the distribution $(-\Delta)^s u$ in $\mathcal{D}'(\Omega)$ is defined as

$$\langle (-\Delta)^s u, \varphi \rangle = \int_{\Omega} \frac{\partial}{\partial \nu} u (-\Delta)^s \varphi \mathrm{d}x, \quad \text{for any } \varphi \in C_c^\infty(\Omega).$$

(30)

We give some useful facts for the fractional Sobolev space.

Definition 1. Let $s \in (0, 1)$, and define the fractional Sobolev space:

$$H^s(\mathbb{R}^N) = \{u \in L^2(\mathbb{R}^N) : |\xi|^s \hat{u} \in L^2(\mathbb{R}^N)\}. \quad (31)$$

We need to consider the space $X^s_0(\Omega)$, which is defined as

$$X^s_0(\Omega) = \{u \in H^s(\mathbb{R}^N), u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega\}, \quad (32)$$

with the norm

$$\|u\|_{X^s_0(\Omega)} = \left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} \mathrm{d}x \mathrm{d}y \right)^{1/2}, \quad (33)$$

where $Q = \mathbb{R}^{2N} \setminus (Q' \times Q')$. The pair $(X^s_0(\Omega), \|\cdot\|_{X^s_0(\Omega)})$ yields a Hilbert space (see Lemma 7 in [19]).

We have to use the classical Sobolev theorem.

Theorem 3 (see [20], Theorem 6.5). Let $s \in (0, 1)$, then there exists a positive constant $S = S(N, s)$, such that, for any measurable and compactly supported function $u : \mathbb{R}^N \rightarrow \mathbb{R}$, we have

$$\|u\|_{L_2^*(\mathbb{R}^N)} \leq S \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} \mathrm{d}x \mathrm{d}y, \quad (34)$$

where 2^* is the so-called Sobolev critical exponent.

In this paper, we consider the existences of energy solution to problem (1) with the critical and subcritical cases.

Definition 2. We say that $u \in X^s_0(\Omega)$ is an energy solution to problem (1), if for any $\varphi \in X^s_0(\Omega)$,

$$\begin{align*}
\int_{\Omega} |u|^{-2} u \varphi \mathrm{d}x &< \infty, \\
\int_{\Omega} \frac{\varphi u}{|x|^{2s}} \mathrm{d}x &< \infty, \\
\frac{C(N,s)}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(u(x) - u(y)) (\varphi(x) - \varphi(y))}{|x - y|^{N+2s}} \mathrm{d}x \mathrm{d}y &+ \lambda \int_{\Omega} \frac{u \varphi}{|x|^{2s}} \mathrm{d}x \\
&= \int_{\Omega} u^{-1} \varphi \mathrm{d}x + \delta \int_{\Omega} g(u) \varphi \mathrm{d}x.
\end{align*}$$

(35)

We also need to consider the weak solution to problem (1).

Definition 3. We say that $u \in L^1(\Omega)$ is a weak solution to problem (1), if $u \geq 0$ a.e. in Ω, $u = 0$ in $\mathbb{R}^N \setminus \Omega$,

$$\int_{\Omega} \left(\lambda \frac{u}{|x|^{2s}} + u^{-1} + \delta g(u) \right) \varphi \mathrm{d}x < \infty, \quad (36)$$

and for all $\varphi \in C^{2s+\delta}(\Omega) \cap C^1(\overline{\Omega}), \beta > 0$,

$$\int_{\Omega} u(-\Delta)^s \varphi \mathrm{d}x = \int_{\Omega} \left(\lambda \frac{u}{|x|^{2s}} + u^{-1} + \delta g(u) \right) \varphi \mathrm{d}x, \quad (37)$$

where $\varphi = 0$ in $\mathbb{R}^N \setminus \Omega$ and $\delta(x) = \text{dist}(x, \partial \Omega)$.

Definition 4. If u satisfies

$$\begin{cases}
(-\Delta)^s u - \lambda \frac{u}{|x|^{2s}} \geq u^{-1} + \delta g(u), & \text{in } \Omega, \\
u \geq 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \quad (38)$$

in the weak sense, we say that u is a supersolution to problem (1).

If u satisfies

$$\begin{cases}
(-\Delta)^s u - \lambda \frac{u}{|x|^{2s}} \leq u^{-1} + \delta g(u), & \text{in } \Omega, \\
u \leq 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \quad (39)$$

in the weak sense, we say that u is a subsolution to problem (1).

Now, we recall the comparison lemma.

Lemma 1 (see [9]). Let $u \in H^s(\mathbb{R}^N)$ and $\nu \in H^s(\mathbb{R}^N)$ be solutions, respectively, to

$$\begin{cases}
(-\Delta)^s u = f_1, & \text{in } \Omega, \\
u = g_1, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \quad (40)$$

Then, $u(x) \leq \nu(x)$ for all $x \in \mathbb{R}^N$ if $f_1 \leq f_2$ and $g_1 \leq g_2$.

For the supercritical case, we need a priori regularity result, see [9], Lemma 2.2.

Lemma 2. Given $f \in L^1(\Omega, \delta(x) \mathrm{d}x)$, where $\delta(x) = \text{dist}(x, \partial \Omega)$. There exists a unique weak solution $\nu(x) \in L^1(\Omega)$ to

$$\begin{cases}
(-\Delta)^s \nu = f, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \quad (41)$$

in the sense that

$$\int_{\Omega} \nu(-\Delta)^s \theta \mathrm{d}x = \int_{\Omega} f \theta \mathrm{d}x, \quad (42)$$

for all $\theta \in C^2(\overline{\Omega})$ with $\theta = 0$ in $\mathbb{R}^N \setminus \Omega$.

Moreover, $||\nu||_{L^1(\Omega)} \leq C ||f||_{L^1(\Omega, \delta(x) \mathrm{d}x)}$, for some constant C independent of f. In addition, if $f \geq 0$
Complexity

\[
\begin{aligned}
\begin{cases}
(-\Delta)^s v = f, & \text{in } \Omega, \\
v \geq 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\end{aligned}
\] (43)

Then, \(v \geq 0 \text{ a.e. in } \Omega. \)

3. The Existence Result

We are now ready to prove Theorem 1 by employing the idea contained in [9, 15], whose proof will be split into several steps.

Proof of Theorem 1.

Step 1: subsolution to problem (1). We first consider the eigenvalue problem:

\[
\begin{aligned}
\begin{cases}
(-\Delta)^s \varphi_1 = \lambda_1 \varphi_1, & \text{in } \Omega, \\
\varphi_1 = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\end{aligned}
\] (44)

Note that the eigenfunction \(\varphi_1 \geq 0 \) belongs to \(X_0^s \cap L^\infty (\Omega). \)

Suppose \(\delta M_0 > \lambda_1 \), where \(M_0 \) is given in (12), by (F4), for all \(\delta \in (\lambda_1 / M_0, \delta_0) \), taking \(t \) small enough, we have

\[
g(\varphi_1) \frac{\lambda_1}{\delta}. \] (45)

Therefore, for \(x \in \Omega \),

\[
\begin{aligned}
(-\Delta)^s (t \varphi_1) &= \lambda_1 t \varphi_1 < \delta g(t \varphi_1) \leq \delta g(t \varphi_1) + (t \varphi_1)^{-1} + \lambda \frac{t \varphi_1}{|x|^{2s}}. \\
\end{aligned}
\] (46)

Therefore,

\[
\begin{aligned}
\begin{cases}
(-\Delta)^s (t \varphi_1) \leq \delta g(t \varphi_1) + (t \varphi_1)^{-1} + \lambda \frac{t \varphi_1}{|x|^{2s}}, & \text{in } \Omega, \\
t \varphi_1 = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\end{aligned}
\] (47)

Thus, \(u = t \varphi_1 \) is a subsolution to problem (1).

Next, we consider supersolution to problem (1) in the subcritical and supercritical case, respectively.

Step 2: supersolution for subcritical and critical case: \(2 < r \leq 2^*_s \). We look for a supersolution of the form \(w(x) = A |x|^{-\beta} \) with \(A \geq 0 \) and \(\beta > 0 \) as real parameters and verify

\[
\beta < \frac{N - 2s}{2}.
\] (48)

Since \(r \leq 2^*_s \), we obtain

\[
(r - 1)\beta < \beta + 2s,
\] (49)

\[
\beta r < N.
\] (50)

By (49), we deduce that

\[
(-\Delta)^s w - \lambda \frac{w}{|x|^{2s}} \geq w^{r - 1}, \text{ in } \Omega,
\] (51)

for the appropriate choice of \(A \).

Let \(\eta = \inf_\Omega w > 0 \). Taking \(\bar{u} = C_1 w \) with \(0 < C_1 < 1 \), which is a suitable constant such that, for \(\delta \) small enough, and by (10) we have

\[
\eta^{-p} \geq \frac{\delta C_1}{C_1^{-q}(C_1 - C_1^q)},
\] (52)

where \(\delta \) appears in (1).

By (52), we obtain

\[
\begin{aligned}
\begin{cases}
(-\Delta)^s \bar{u} - \lambda \frac{\bar{u}}{|x|^{2s}} \geq \bar{u}^{r - 1} + \delta g(\bar{u}), & \text{in } \Omega, \\
\bar{u} \geq 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\end{aligned}
\] (53)

Thus, we have concluded that \(C_1 w \) is a supersolution to (1) for \(2 < r \leq 2^*_s \). Moreover, by (48) and (50), we obtain that

\[
\begin{aligned}
\bar{u} \in L^r (\Omega), \\
\frac{\bar{u}^2}{|x|^{2s}} \in L^1 (\Omega).
\end{aligned}
\] (54)

Define \(\{w_j\} \) in \(L^1 (\mathbb{R}^N) \) is the weak solution to

\[
\begin{aligned}
\begin{cases}
(-\Delta)^s w_{j + 1} = w_{j + 1}^{r - 1} + \lambda \frac{w_j}{|x|^{2s}} + \delta g(w_j), & \text{in } \Omega, \\
w_{j + 1} = 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\end{aligned}
\] (55)

for \(j \geq 1 \) and \(w_0 = u \). We now check that this definition makes sense and \(\{w_j\} \) are monotone and satisfy

\[
0 \leq w_1 \leq w_2 \leq \cdots \leq w_j \leq \cdots \leq w_j \leq \cdots \leq \bar{u} \text{ a.e. } \Omega.
\] (56)
For u, there is nothing to prove. Suppose the result is true up to order j. Then,

$$
\begin{align*}
(-\Delta)^j w_{j+1} &= w_{j+1} - \lambda \frac{w_j}{|x|^{2j}} + \delta g(w_j), \\
\leq & \|
\end{align*}
$$

(57)

So $\{w_j\}$ is well-defined by (54) and Lemma 2. By the induction hypothesis, for $x \in \Omega$,

$$
(-\Delta)^j (w_{j+1} - w_j)
$$

(58)

and $w_{j+1} - w_j = 0$, in $\mathbb{R}^N \setminus \Omega$. Then, by Lemma 1, we obtain $w_{j+1} \geq w_j$ in Ω.

Similarly, for any $x \in \Omega$,

$$
(-\Delta)^j (\bar{u} - u_j) \geq \left(\bar{u}^{r-1} - w_j^{r-1} \right) + \lambda \frac{\bar{u} - u_j}{|x|^{2j}} + \delta g(\bar{u}) - g(w_j) \right) \geq 0,
$$

(59)

and $\bar{u} - w_{j+1} \geq 0$ in $\mathbb{R}^N \setminus \Omega$. Then, $w_{j+1} \leq \bar{u}$ a.e. in Ω. We conclude that (56) holds.

We can define $u_0 := \lim_{j \to \infty} w_j$ in $L^1(\Omega)$. Moreover, by (9), (54), and (56),

$$
\left\| (-\Delta)^{\frac{1}{2}} u \right\|_{L^2(\mathbb{R}^N)} = \lambda \int_{\Omega} \frac{\nabla u \cdot \nabla w_{j+1}}{|x|^{2j}} dx + \int_{\Omega} w_j \nabla w_{j+1} \nabla dx \\
+ \delta \int_{\Omega} \nabla \nabla \nabla g(w_j) dx \leq \lambda \int_{\Omega} \frac{\bar{u}^2}{|x|^{2j}} dx + \int_{\Omega} \frac{\bar{u}}{|x|^{2j}} dx
$$

(60)

Hence, up to a subsequence, we know that $w_j \to u_0$ in $X_0(\Omega)$. By monotony, the whole sequence weakly converges. Therefore, we can pass to the limit in (55) and conclude that $u_0 \geq 0$ is a minimal energy solution of (1).

Step 3: supersolution for supercritical case: $2^* < r < r(\lambda, s)$. If $r < r(\lambda, s)$, where $r(\lambda, s)$ is given in (9). For constant $A \geq 0$, there exists a radial function $v(x) = A|x|^{-2s(r-2)}$ such that

$$
(-\Delta)^j v - \frac{v}{|x|^{2j}} = v^{r-1}, \quad \text{in } \mathbb{R}^N.
$$

(61)

Since $r > 2^* > ((2N - 2s)(N - 2s))$, then

$$
\forall \int_{\mathbb{R}^N} v^{r-1} dx
$$

(62)

Taking $\bar{u} = C_1 v$, where the constant $C_1 > 0$ is given by (54), we obtain

$$
\left\| (-\Delta)^j \bar{u} - \lambda \frac{\bar{u}}{|x|^{2j}} \right\| \geq \delta g(\bar{u}), \quad \text{in } \Omega,
$$

(63)

$$
\bar{u} > 0, \quad \text{in } \mathbb{R}^N \setminus \Omega.
$$

(64)

Note that (F2) and (F4) hold, for all $\delta \in (\lambda_1/M, \delta_0]$, define w_1 as the solution of

$$
\left\{ (-\Delta)^{\frac{1}{2}} w_1 = \frac{u^{r-1}}{|x|^{2j}} + \delta g(u), \quad \text{in } \Omega,\right.
\left. \int_{\Omega} w_1 dx = 1, \quad \text{in } \mathbb{R}^N \setminus \Omega.
ight.
$$

(65)

Set

$$
F(u) = u^{r-1} + \frac{\lambda}{|x|^{2j}} + \delta g(u) + \langle \psi \rangle^{r-1} + \lambda \frac{\psi_1}{|x|^{2j}} + \delta g(\psi_1).
$$

(66)

Then, $w_1 \in W^{1,p}_{0} \cap L^{\infty}(\Omega)$. By (44), we obtain that

$$
\left\{ (-\Delta)^j w_1 = F(u), \quad \text{in } \Omega, \right.
\left. w_1 = 0, \quad \text{in } \mathbb{R}^N \setminus \Omega. \right.
$$

(67)

We deduce from the comparison principle that $u \leq w_1$ in Ω. Complexity
On the contrary, by (11), the function F is nondecreasing. Therefore,
\[
\begin{cases}
(-\Delta)\Pi \geq F(\Pi) \geq F(u) = (-\Delta)^s u_1, & \text{in } \Omega, \\
\Pi \geq u_1, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]
(68)

By the comparison principle we deduce that $u_1 \leq \Pi$ in Ω. In particular, for all $x \in \Omega$, $\{u_1\}$ is a nondecreasing sequence which is bounded. Therefore, $\{u_1\}$ monotone converges in $L^1(\mathbb{R}^N)$ to a weak nonnegative solution u_δ to (1) for $2^*_s < r < r(\lambda, s)$.

Therefore, for δ small enough, we have built a minimal solution in both subcritical and supercritical case. Let $M = \sup\{\delta > 0 : \text{problem (1) has a solution}\}$, (69)

that is, we show that $M > 0$.

Step 4: $M < \infty$, for $2 < r < r(\lambda, s)$. We consider the following eigenvalue problem with the Hardy potential:
\[
\begin{cases}
(-\Delta)^s \psi_1 - \lambda \frac{\psi_1}{|x|^{2s}} = \lambda_1 \psi_1, & \text{in } \Omega, \\
\psi_1 = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]
(70)

Since $0 < \lambda < \Lambda_{N, s}$, problem (70) is well defined. Taking ψ_1 as a test function in problem (1), we obtain that
\[
\int_{\Omega} \left(\psi_1 (x) - \psi_1 (y) \right) (u(x) - u(y)) \frac{dx}{|x - y|^{2s}} + \lambda \int_{\Omega} \frac{\psi_1 u}{|x|^{2s}} \frac{dx}{|x|^{2s}} \\
= \int_{\Omega} u^{r-1} \psi_1 dx + \delta \int_{\Omega} g(u) \psi_1 dx.
\]
(71)

Since ψ_1 is a solution to (70), it follows that
\[
\int_{\Omega} \left(u^{r-1} + \delta g(u) \right) \psi_1 dx = \lambda_1 \int_{\Omega} u \psi_1 dx.
\]
(72)

If $2^*_s < r < r(\lambda, s)$. Taking φ_1 as a test function in (1), where $\varphi_1 \geq 0$ is solution to problem (44), we have
\[
\int_{\Omega} u (-\Delta)^s \varphi_1 dx = \int_{\Omega} \left(\lambda \frac{u}{|x|^{2s}} + \lambda^{r-1} + \delta g(u) \right) \varphi_1 dx \\
\geq \int_{\Omega} \left(u^{r-1} + \delta g(u) \right) \varphi_1 dx.
\]
(73)

Moreover, φ_1 is also a classical solution (see Remark 2.1 in [21]). From (72), we immediately deduce that
\[
\int_{\Omega} \lambda \frac{\varphi_1}{|x|^{2s}} dx \geq \int_{\Omega} \left(u^{r-1} + \delta g(u) \right) \varphi_1 dx.
\]
(74)

Since there exist structural positive constants b_0 and b_1 such that $|t|^{r-1} + \delta g(t) \geq b_0 \delta^\delta t$, for any $t > 0$. From (70) and (73), we obtain that $b_0 \delta^\delta < \lambda_1$. This implies that $M < \infty$ for $2 < r < r(\lambda, s)$.

We complete the Proof of Theorem 1. \qed

4. Nonexistence Result

In this section, we consider the nonexistence of solution to problem (1) in H^s_0.

Proof of Theorem 2. Suppose that problem (1) has a solution $u \in H^s_0$ under the conditions of Theorem 2. Then, there exists a constant $\delta > 0$ such that $\delta \varphi_1 \leq u$ in Ω, where φ_1 is the first eigenfunction of $(-\Delta)^s$, that is, φ_1 satisfies (44).

Let $\mu \in (\lambda_1, \lambda_1 + \epsilon)$, where $\epsilon > 0$ is a small constant. Denote $\psi = \delta \varphi_1$. Then, we have
\[
\begin{cases}
(-\Delta)^s \psi = \lambda_1 \psi \leq \mu \psi \leq (\lambda_1 + \epsilon) u, & \text{in } \Omega, \\
\psi = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]
(75)

Furthermore, for any $\tau > 1$, $\delta < \lambda_1 / M(t)$; then, for ϵ small enough, we deduce that
\[
\begin{cases}
(\lambda_1 + \epsilon) u \leq u^{r-1} + \delta g(u) + \mu \frac{u}{|x|^{2s}} \equiv (-\Delta)^s u, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]
(76)

Thus, according to (75) and (76), we have
\[
\begin{cases}
(-\Delta)^s \psi \leq \mu \psi, & \text{in } \Omega, \\
(-\Delta)^s u \geq \mu u, & \text{in } \Omega, \\
u \geq \psi, & \text{in } \Omega, \\
u = \psi = 0, & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]
(77)

Hence, it is possible to construct the subsolution and supersolution to the problem:
\[
\begin{cases}
(-\Delta)^s u = \mu u, & \text{in } \Omega, \\
u = 0, & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]
(78)

with $\mu \in (\lambda_1, \lambda_1 + \epsilon)$. However, this is impossible. \qed

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
Acknowledgments

This research was partially supported by the National Natural Science Foundation of China (no. 11761059), Program for Yong Talent of State Ethnic Affairs Commission of China (no. XBMU-2019-AB-34), Fundamental Research Funds for the Central Universities (no. 31920200036), and First-Rate Discipline of Northwest Minzu University.

References

[1] S. Huang and Q. Tian, “Marcinkiewicz estimates for solution to fractional elliptic laplacian equation,” Computers & Mathematics with Applications, vol. 78, no. 5, pp. 1732–1738, 2019.
[2] S. Huang and Q. Tian, “Harnack-type inequality for fractional elliptic equations with critical exponent,” Mathematical Methods in the Applied Sciences, vol. 43, no. 8, pp. 5380–5397, 2020.
[3] M. Ri, S. Huang, and C. Huang, “Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data,” Electronic Research Archive, vol. 28, no. 1, pp. 165–182, 2020.
[4] L. Silvestre, “Regularity of the obstacle problem for a fractional power of the laplace operator,” Communications on Pure and Applied Mathematics, vol. 60, no. 1, pp. 67–112, 2007.
[5] Q. Tian and Y. Xu, “Effect of the domain geometry on the solutions to fractional brezis-nirenberg problem,” Journal of Function Spaces, vol. 2019, Article ID 1093804, 4 pages, 2019.
[6] Y. Ye, H. Liu, Y. Wei, M. Ma, and K. Zhang, “Dynamic study of a predator-prey model with weak Allee effect and delay,” Advances in Mathematical Physics, vol. 2019, Article ID 7296461, 15 pages, 2019.
[7] B. Abdellaoui, M. Medina, I. Peral, and A. Primo, “The effect of the hardy potential in some Calderón-Zygmund properties for the fractional laplacian,” Journal of Differential Equations, vol. 260, no. 11, pp. 8160–8206, 2016.
[8] Y. Mi, S. Huang, and C. Huang, “Combined effects of the hardy potential and lower order terms in fractional laplacian equations,” Boundary Value Problems, vol. 2018, no. 1, p. 61, 2018.
[9] B. Barrios, M. Medina, and I. Peral, “Some remarks on the solvability of non-local elliptic problems with the hardy potential,” Communications in Contemporary Mathematics, vol. 16, no. 4, Article ID 1350046, 2014.
[10] X. Shang, J. Zhang, and R. Yin, “Existence of positive solutions to fractional elliptic problems with hardy potential and critical growth,” Mathematical Methods in the Applied Sciences, vol. 42, no. 1, pp. 115–136, 2019.
[11] K. Bogdan, T. Grzywny, T. Jakubowski, and D. Pilarczyk, “Fractional laplacian with hardy potential,” Communications in Partial Differential Equations, vol. 44, no. 1, pp. 20–50, 2019.
[12] S. Dipierro, L. Montoro, I. Peral, and B. Sciunzi, “Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential,” Calculus of Variations and Partial Differential Equations, vol. 55, p. 99, 2016.
[13] N. Ghoussoub, F. Robert, S. Shakerian, and M. Zhao, “Mass and asymptotics associated to fractional Hardy-Schrödinger operators in critical regimes,” Communications in Partial Differential Equations, vol. 43, no. 6, pp. 859–892, 2018.
[14] S. Rastegarzadeh and N. Nyamoradi, “Existence of positive solutions for hardy nonlocal fractional elliptic equations involving critical nonlinearities,” Topological Methods in Nonlinear Analysis, vol. 53, pp. 731–746, 2019.
[15] L. Boccardo, M. Escobedo, and I. Peral, “A Dirichlet problem involving critical exponents,” Nonlinear Analysis: Theory, Methods & Applications, vol. 24, no. 11, pp. 1639–1648, 1993.
[16] L. Caffarelli and L. Silvestre, “An extension problem related to the fractional laplacian,” Communications in Partial Differential Equations, vol. 32, no. 8, pp. 1245–1260, 2007.
[17] J. Dávila, L. Dupaigne, L. Dupaigne, and M. Montenegro, “The extremal solution of a boundary reaction problem,” Communications on Pure & Applied Analysis, vol. 7, no. 4, pp. 795–817, 2008.
[18] R. L. Frank, E. H. Lieb, and R. Seiringer, “Hardy-Lieb-thirring inequalities for fractional schrodinger operators,” Journal of the American Mathematical Society, vol. 21, no. 4, pp. 925–950, 2008.
[19] R. Servadei and E. Valdinoci, “Mountain pass solutions for non-local elliptic operators,” Journal of Mathematical Analysis and Applications, vol. 389, no. 2, pp. 887–898, 2012.
[20] E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional sobolev spaces,” Bulletin des Sciences Mathématiques, vol. 136, no. 5, pp. 521–573, 2012.
[21] X. Ros-Oton and J. Serra, “The dirichlet problem for the fractional laplacian: regularity up to the boundary,” Journal de Mathématiques Pures et Appliquées, vol. 101, no. 3, pp. 275–302, 2014.