SCANNING ELECTRON MICROSCOPY OF
TOBACCO MOSAIC VIRUS-LABELED
LYMPHOCYTE SURFACE ANTIGENS*

BY U. HÄMMERLING, A. POLLIACK,† N. LAMPEN, M. SABETY, AND E. DE HARVEN

(From the Memorial Sloan-Kettering Cancer Center, New York 10021, and the Hadassah University
Hospital & Hebrew University Medical School, Jerusalem, Israel)

The study of surface antigens by immuneelectron microscopy has been hampered by
the fact that thin sections of cells provide only a view of the cell perimeter in an essentially
two-dimensional fashion. Although the reconstruction of the entire cell from serial
sections has been accomplished (1), it remains too exacting a technique and will find only
exceptional application. Carbon-platinum replicas (2) allow the inspection of larger
surface areas and therefore are better suited for studying the distribution of antigens (3).
But since only relatively smooth surfaces will yield stable replicas, cells with large
numbers of microvilli are not amenable to this technique.

Despite its limited resolution, scanning electron microscopy (SEM) seems to be the
method of choice because it can provide a view of almost half of the surface of a cell close
to its natural configuration, particularly after critical point or freeze drying (4, 5).
Immunological-labeling methods have not yet been routinely applied to SEM although
both latex spheres (6) and hemocyanin (7) have been used with some success. The optimal
visual marker should possess the following properties: be of a distinctive shape, chemically
stable, and have per se a low binding affinity for cell surfaces. Tobacco mosaic virus
(TMV), a marker with which we are familiar in transmission electron microscopy (8),
seems to meet these demands; it has rod-like shape and defined dimensions (15 x 300 nm)
and in addition it can easily be distinguished from surface microvilli. As the hybrid
antibody technique (9) is also applicable to TMV, we have attempted to combine such
immunological labeling with SEM. We present evidence that surface antigens can indeed
be visualized by SEM, using the TMV marker in conjunction with the hybrid antibody
technique.

Material and Methods

A general description of the hybrid antibody technique has been previously reported (10). Murine
lymphocytes (lymph node or thymus cells) were labeled in suspension by the sequential incubation at
4°C in mouse alloantibody (e.g., a 1:20 dilution anti-Thy-1, anti-la (11), or 1:40 diluted anti-H-2
antibody, respectively), wash medium, hybrid anti(a)-TMV/αIgG antibody (3) at 50-100 µg/ml, wash
medium, and finally TMV. After the final wash the cells were collected by aspiration onto silver
membranes (12) and processed for SEM using the critical point drying technique (13-15). Samples
were inspected in a Cambridge S4 (Cambridge Thermionic Corp., Cambridge, Mass.) or Jeol JSM-35
scanning electron microscope (courtesy of Jeol U. S. A., Electron Optics Div., Medford, Mass.)

*Supported by grants from the National Cancer Institute (CA-08748, and CA-16889, the National
Science Foundation (GB-34299A), the American Cancer Society (DT-31), and The Leukemia
Research Foundation.
†Recipient of a U. S. Public Health Service International Postdoctoral Fellowship
Discussion and Results

Scanning micrographs revealed the presence of TMV as long rods, some of which appeared perpendicular to the cell surface, while others were bent or curled (Figs. 1 and 5). The length of the rods varied in our TMV preparation due probably to breakage during thawing of deep frozen stored material. Furthermore, the apparent length of TMV rods varies according to the angle of view, and could only be accurately measured on stereopair pictures. Consequently, length cannot be used as a reliable criterion to distinguish TMV from cellular microvilli. Fortunately, on the basis of their constant width which is mostly independent of their orientation, TMV were easily identified in most cases, even on villous lymphocytes (Fig. 1) despite the presence of relatively large numbers of microvilli (15–19).

The serological specificity of labeling was established in control preparations which yielded only very little labeling or none at all. These controls included: (a) substitution of anti-Thy-1.1 for anti-Thy-1.2 antiserum to label C57BL/6 thymocytes; (b) substitution of ASW strain lymphocytes for A-strain lymphocytes in Ia-antigen labeling; (c) omission of hybrid antibody; and (d) omission of marker. TMV antigens were not seen in most controls, with the exception of the ASW control for Ia where a consistent but sparse labeling was observed. We surmise that this background labeling is due to cross-reaction of the hybrid IgG/αTMV with B-cell surface immunoglobulin, but as this aspect is dealt with in detail in a separate report, we shall not elaborate on it here.

The serological specificity of labeling was established in control preparations which yielded only very little labeling or none at all. These controls included: (a) substitution of anti-Thy-1.1 for anti-Thy-1.2 antiserum to label C57BL/6 thymocytes; (b) substitution of ASW strain lymphocytes for A-strain lymphocytes in Ia-antigen labeling; (c) omission of hybrid antibody; and (d) omission of marker. TMV antigens were not seen in most controls, with the exception of the ASW control for Ia where a consistent but sparse labeling was observed. We surmise that this background labeling is due to cross-reaction of the hybrid IgG/αTMV with B-cell surface immunoglobulin, but as this aspect is dealt with in detail in a separate report, we shall not elaborate on it here.

The study of Thy-1 and Ia antigens seemed to be an excellent choice because the two antigen systems could be expected to be represented on different cells, namely Thy-1 on T lymphocytes and Ia predominantly on B lymphocytes (11). As seen in Fig. 2, Thy-1 treatment of lymph node cells results in almost selective, dense labeling of the smooth category of lymphocytes which are believed to represent T cells. Cells with multiple microvilli, most of which are believed to be B lymphocytes, did not carry significant numbers of TMV (Fig. 2), but occasionally densely labeled villous cells were found. Again, we can invoke surface Ig to explain attachment of TMV to villous cells. On the other hand, it is possible that they represent moderately villous T cells (15–19). Hybrid antibody with exclusive gamma-chain specificity such as IgG-Fc/αTMV is needed to avoid cross-reactivity with surface Ig, and a recent experiment with this hybrid antibody indeed shows a higher degree of specificity, i.e., no detectable labeling of surface Ig was seen by transmission electron microscopy.

When lymph node lymphocytes were coated with anti-Ia antibody which is selective for B cells (11), we find the TMV on approximately one-third of the population (Fig. 3), in accordance with the known proportion of lymph node B cells. Most of the unlabeled (Ia−, Ig+) cells had a relatively smooth surface confirming our previous findings that T lymphocytes, under the conditions employed, display a "smoother" surface architecture. However, the labeled Ia+ Ig+ population consisted of villous cells (Fig. 1) in somewhat lower numbers than

---

1 Lipscomb, M. F., K. V. Holmes, E. S. Vitetta, J. W. Uhr, and U. Hämmerling. 1975. Localization of lymphocyte surface immunoglobulin by scanning electron microscopy. *Eur. J. Immunol.* In press.
FIG. 1. Ia antigen on lymphocytes. (C57BL/6 x A) F₁, lymph node cells were treated with:
(ATH x B10.S) F₁, anti-(ATH x B10.S) lymphocytes (courtesy of G. Hammerling and H. O.
McDevitt) ("congenic anti-Ia"); hybrid antimouse IgG/anti-TMV; and TMV. Villous B cell
showing dense labeling with TMV. The difference between microvilli (arrows) and the
narrower rod shaped TMV is easily discernible (x 18,000).

FIG. 2. Thy-1 antigen on lymphocytes. Lymph node cells of C57BL/6 mice were labeled in
succession with the serum: (A/Thy-1.1 x AKR/H-2b) F₁, anti-A-strain leukemia ASL 1
("congenic anti-θ"); hybrid antimouse IgG/anti-TMV; and TMV. The smaller smooth T
lymphocyte is diffusely labeled with TMV. Some of the TMV are bent and curled, others are
expected, and a substantial number of labeled cells with smoother morphology was also seen (Fig. 3). Three possible explanations can be advanced. Firstly, a proportion of T cells may express the Ia antigen. Secondly, not all B cells necessarily have a villous appearance, as was indeed suggested in previous reports (17, 19) where a proportion of murine B cells purified in two independent ways were smooth or displayed only moderate numbers of microvilli. Thirdly, the process of attachment of layers of antibodies and marker may cause some cells to re-
tract their microvilli. The latter effect was particularly striking in lymph node cells labeled with anti-H-2 antibody. In this case, the overwhelming majority of cells were labeled in a diffuse pattern covering the entire surface (see Fig. 4), and although it was often difficult to discern microvilli among the maze of TMV we felt that a deficit existed in the expected minimum proportion of villous cells, suggesting a loss of microvilli. That this can indeed occur followed from a series of experiments in which lymphocytes were exposed at 0° to anti-H-2 serum or anti-Thy-1.2 serum alone. Cells so treated showed alterations of surface morphology, resulting at times in a decrease in the number of villous cells. It is possible that these effects are due to low temperature (20), or perhaps to forces exerted by strongly cross-linking antibodies.

The hybrid antibody technique, employing TMV as a marker, can thus be applied to labeling SEM with adequate immunological specificity. This can be of significance in the investigation of the distribution of cell surface antigens, and may in turn contribute to resolving the question of whether alloantigens are largely mobile within the lipid matrix of the plasmalemma (21), or whether restrictions are imposed on mobility, and areas of predominant representation of alloantigens can be discerned.

We thank Mrs. Dorothy Saltzer for secretarial assistance, Mr. Juan Marchese and Mr. Mark Van Boeckel for photographic assistance, and Miss Elizabeth Chen for devoted technical help.

Received for publication 31 October 1974.

References

1. Stackpole, C. W., T. Aoki, E. A. Boyse, L. J. Old, J. Lumley-Frank, and E. de Harven. 1971. Cell surface antigens: serial sectioning of single cells as an approach to topographic analysis. Science (Wash. D. C.). 172:472.
2. Stackpole, C. W. 1971. Topography of cell surface antigens. Transplant Proc. 3:1199.
3. Koo, G. C., C. W. Stackpole, E. A. Boyse, U. Hämmerling, and M. P. Lardis. 1973. Topographical location of H-Y antigen on spermatozoa by immunoelectronmicroscopy. Proc. Natl. Acad. Sci. U. S. A. 70:1502.
4. Porter, K. R., D. Kelly, and P. M. Andrews. 1972. The preparation of cultured cells and soft tissues for scanning electron microscopy. Proceedings of the Fifth Annual Stereoscan Colloquium, April, Morton Grove, Ill. 1.
5. Boyde, A., R. A. Weiss, and P. Vesely. 1972. Scanning electron microscopy of cells in culture. Exp. Cell Res. 71:313
6. LoBuglio, A. F., J. J. Rinehart, and S. P. Balcerzak. 1972. A new immunologic marker for scanning electron microscopy. Proceedings of the Fifth Annual Scanning Electron Microscope Symposium, IITRI, Chicago, Ill. 314.
7. Fonte, V., K. Weller, and K. R. Porter. Scanning studies of cell surfaces. 1973. Proceedings of the 31st Annual Meeting of the Electron Microscopy Society of America, New Orleans. 609.
8. Aoki, T., H. A. Wood, L. J. Old, E. A. Boyse, E. de Harven, M. P. Lardis, and C. W. Stackpole. 1971. Another visual marker of antibody for electron microscopy. Virology. 65:858.
9. Hämmerling, U., T. Aoki, E. de Harven, E. A. Boyse, and L. J. Old. 1968. Use of hybrid antibody with anti-γG and anti-ferritin specificities in locating cell surface
antigens by electron microscopy. J. Exp. Med. 128:1461.
10. Hämmerling, U., C. W. Stackpole, and G. C. Koo. 1973. Hybrid antibodies for
labeling cell surface antigens. Methods Cancer Res. 9:255.
11. Hämmerling, G. J., B. D. Deak, G. Mauve, U. Hämmerling, and H. O. McDevitt.
1974. B-lymphocyte alloantigens controlled by the I region of the major histocompati-
bility complex in mice. Immunogenetics. 1:68.
12. De Harven, E., N. Lampen, T. Sato, and C. Friend. 1973. Scanning electron
microscopy of cells with a murine leukemia virus. Virology. 51:240.
13. Anderson, T. F. 1951. Techniques for preservation of 3-dimensional structure in
preparing specimens for electron microscopy. Trans. N. Y. Acad. Sci. 13:130.
14. Cohen, A. L., D. F. Marlow, and G. E. Garner. 1968. A rapid critical point method
using fluorocarbons ("Freons") as intermediate and transitional fluids. J. Microsc.
(Paris). 7:331.
15. Polliack, A., N. Lampen, B. D. Clarkson, E. de Harven, Z. Bentwich, F. P. Siegal, and
H. G. Kunkel. 1973. Identification of human B and T lymphocytes by scanning
electron microscopy. J. Exp. Med. 138:607.
16. Lin, P. S., A. G. Cooper, and H. H. Wortis. 1973. Scanning electron microscopy of
human T-cell and B-cell rosettes. N. Engl. J. Med. 289:548.
17. Polliack, A., N. Lampen, and E. de Harven. 1974. Scanning electron microscopy of
lymphocytes of known B and T derivation. Proceedings of Seventh Annual Scanning
Electron Microscope Symposium, ITRI, Chicago, Ill. 673.
18. Polliack, A., S. M. Fu, S. D. Douglas, Z. Bentwich, N. Lampen, and E. de Harven.
1974. Scanning electron microscopy of human lymphocyte-sheep erythrocyte rosettes.
J. Exp. Med. 140:146.
19. Polliack, A., U. Hämmerling, N. Lampen, and E. de Harven. 1975. Surface
morphology of murine B and T lymphocytes: a comparative study by scanning
electron microscopy. Eur. J. Immunol. In Press.
20. Lin, P. S., D. F. H. Wallach, and S. Tsai. 1973. Temperature-induced variations in
the surface topology of cultured lymphocytes are revealed by scanning electron
microscopy. Proc. Natl. Acad. Sci. U. S. A. 70:2492.
21. Singer, S. J., and G. L. Nicoison. 1972. The fluid mosaic model of the structure of cell
membranes. Science (Wash. D. C.). 175:720.