INHIBITORY ACTIVITY OF THE ACTIVE COMPOUND OF ETHYL ACETATE FRACTION OF TAMOENJU (Hibiscus surattensis L.) LEAVES AGAINST α-GLUCOSIDASE AND DIPEPTIDYL PEPTIDASE-4 ENZYMES

Yuliet1,2*, EY Sukandar1, Krisyanti Budipramana3, IK Adnyana1
1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung-40132, Indonesia
2Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu-94118, Central Sulawesi, Indonesia
3Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya-60293, Indonesia
*E-mail: yuliet_susanto@yahoo.com

ABSTRACT
The ethyl acetate fraction (EAF) of tamoenju (Hibiscus surattensis L.) leaves, used as a traditional antidiabetic agent in Central Sulawesi, has high inhibitory activity against α-glucosidase and dipeptidyl peptidase-4 (DPP-4). The aim of this study was to isolate the active compound of EAF that was carried out by step gradient polarity extraction, then separated and purified by chromatography. The structure was identified and characterized using NMR spectroscopy and LC-MS. α-glucosidase inhibitory activity was evaluated using the in vitro standard α-glucosidase inhibition test, while DPP-4 activity was evaluated by ex vivo DPP-4 inhibitor test using rat blood serum as the enzyme source. IC50 values were determined by nonlinear regression curve and fit using GraphPad Prism 8 and were expressed as mean ± SEM. In this research, we obtained the isolated compound was identified as kaempferol, which was isolated for the first time from this plant. The isolate exhibited potent α-glucosidase and DPP-4 inhibition with IC50 values of 27.78 ± 0.86 and 7.37 ± 0.06 µg/mL, respectively. Acarbose and sitagliptin as positive control had IC50 values of 17.80 ± 0.27 and 25.56 ± 0.43 µg/mL, respectively. The isolate level by LC-MS was estimated to be 182.23 mg/g isolate. Therefore, tamoenju leaves have great potential as functional foods and in the development of antidiabetic drugs.

Keywords: α-Glucosidase, Antidiabetic, Dipeptidyl peptidase-4, Kaempferol, Tamoenju, Hibiscus surattensis L.

INTRODUCTION
There is high plant diversity in Indonesia, but there are still many plants that have not been utilized. Although modern medicine has developed rapidly, Indonesians have always used plants for medicinal purposes. Indonesia has a huge ethnic and cultural diversity. Many endemic plants found in certain areas are used for the treatment of various diseases by tribes in Indonesia1,2. Tamoenju (Hibiscus surattensis L.) is a plant found in the village of Alindau, Donggala Regency, Central Sulawesi, Indonesia (Fig.-1). In general, these plants, especially the leaves, are used vegetable salad3,4 and traditional medicines for diabetes5 and hepatitis6. Some countries, such as Nigeria, India, West Africa, and Tanzania, use this plant to treat hypertension3, urethritis and venereal diseases3, malaria, wounds, abscesses, gonorrhoea, stomach pain, and cough5. Previous pharmacological studies demonstrated that crude leaf extracts possess anti-inflammatory, antioxidant, analgesic, and anti-diarrhoeal activities10. The essential oil of H. surattensis L. calyces is used as a natural antibacterial1. In our previous research, ethyl acetate fraction (EAF) from ethanol extract (EE) of tamoenju plant leaves was found to exert antidiabetic effect by improving impaired glucose tolerance. Furthermore, EAF exhibited better inhibition of α-glucosidase compared to the crude extract, n-hexane
fraction (NHF), and water fraction (WF)11. The phytochemical constituent analysis of EAF showed high levels of phenolic and flavonoid compounds. EAF showed potent antioxidant activity and inhibitory activity against dipeptidyl peptidase-4 (DPP-4) enzyme. These effects have a positive correlation with the total flavonoid content of EAF9. Flavonoid compounds can influence the biological targets involved in type 2 diabetes mellitus, such as α-glucosidase and DPP-412.

Thus, EAF was a potential fraction to be developed as an antidiabetic agent. Therefore, EAF from EE was selected to isolate the active compounds for further research. Isolation and elucidation of the structure of active compounds contained in extracts or fractions can be used for the development of antidiabetic drugs. Based on this, we report the isolation and identification of isolated compounds from EAF. Enzymes such as α-glucosidase and DPP-4, which are related to insulin secretion, have been reported as new targets for type 2 diabetes mellitus therapy. Therefore, this study was conducted to investigate the α-glucosidase and DPP-4 inhibitory activities of isolate fraction compounds as two of the essential hypoglycemic mechanisms. It is studied for the first time on extracts of tamoenju plant leaves.

Fig.1: Tamoenju Plant (Hibiscus surattensis L.)

EXPERIMENTAL

Materials and Equipment

Solvents were technical grade ethanol, ethyl acetate, and n-hexane, which were purchased from Brataco Chemicals (Bandung, Indonesia). Other chemicals and reagents for analysis were analytical grades. The α-glucosidase enzyme from Saccharomyces cerevisiae G5003-100UN (CAS 9001-42-7), p-nitrophenyl α-D-glucopyranoside (pNPG) (CAS 3767-28-0) and bovine serum albumin was from Sigma Aldrich, USA. Acarbose (Glucobay8), Kaempferol standard (Andalas Sitawa Fitolab, Padang, Indonesia), and DPP-4 Spectrofluorometry Activity Assay Kit were from Sigma Aldrich, USA (Lot. 2L02K07790). The leaves of H. surattensis L. were collected from Alindau, Sindue Tobata, Central Sulawesi, Indonesia, from August to September 2016. The leaves were identified in Herbarium Bandungense, School of Life Sciences and Technology, Bandung Institute of Technology, Indonesia, under the number 1791/ILCO2.2/PL/2017. The instrument used was the nuclear magnetic resonance (NMR) Agilent DD2 spectrometer, which operates at 500 MHz (1H) and 125 MHz (13C) with deuterated acetone ((CD$_3$)$_2$CO) as the solvent. Chromatography column was carried out using Silica gel 60 (Merck) and thin-layer chromatography (TLC) plates (Merck Kieselgel 60 F254). Spots on the TLC plates were detected by reagent spray 10% H$_2$SO$_4$ in ethanol followed with heating at 110°C and nitroborat. Mass Spectra (MS) were measured with Waters UPLC-ESI-TOFMS system (Acquity UPLC Xevo QTof) (Waters Corporation, Milford). Microwell plate (IWAKI Pyrex), microwell for fluorescence (Thermo Scientific™), and microplate reader (Tecan Infinite M200 PRO).

General Procedure

The leaves were ground and macerated using 96% ethanol solvent for five days. The crude EE mixed with warm distilled water (1:1) to remove chlorophyll, filtered, and then partitioned by liquid–liquid partition using solvents having high polarity (n-hexane and ethyl acetate) to obtain the NHF, EAF, and WF. The EAF (20.0 g) was fractionated and isolated by gravity column chromatography on silica gel 60 to produce eight fractions (EAF1-8). EAF2 (997.00 mg) was subjected to column chromatography over silica gel
using the same eluent to produce nine subfractions (SEAF1-9). SEAF2-5 (230.00 mg) were separated on a column of silica gel to produce subfraction SSEAF1-25. SSEAF3-9 (136.50 mg) underwent re-chromatography using the same method to yield IEAF1-64. IEAF34-39 were combined and dried to get pure compounds (17.2 mg). Chromatography was carried out by stepwise gradient elution using solvents of gradually increasing polarity. The mobile phase started from n-hexane:ethyl acetate 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90, and 0:100. The mobile phase was continued with ethyl acetate:methanol 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90, and 0:100. TLC indexing was performed and observed under UV 254 nm.

Detection Method
The purity of yield compounds from the isolation was tested by single eluation TLC with three different eluent compositions and two-dimensional TLC. The chemical structure of the isolate was determined using 1D, 2D NMR (HSQC and HMBC), and liquid chromatography-mass spectroscopy (LC-MS). The obtained isolate was observed based on its ability to inhibit activities of α-glucosidase and DPP-4. The determination of the content of the isolated compound was tested using LC-MS.

Alpha-glucosidase Inhibitory Assay
The α-glucosidase inhibitory activity was determined according to the method described previously with minor modifications. A mixture of 10 μL of the sample (dissolved in DMSO) and acarbose, diluted with phosphate buffer at various concentrations. 40 μL phosphate buffer (100 mM, pH 6.8) and 25 μL of a p-nitrophenyl-α-D-glucopyranoside substrate (p-NPG; 3.2 mM), was preincubated at 37°C for 10 min. The reaction was initiated by the addition of 25 μL of 0.08 unit/mL α-glucosidase enzyme (dissolved in phosphate buffer containing 0.2% bovine serum albumin) and incubated for additional 15 min at 37°C. The reaction stopped with the addition of 100 μL Na\textsubscript{2}CO\textsubscript{3} (200 mM), producing p-nitrophenol. The inhibitory activity was estimated by measuring the absorbance of p-nitrophenol using an ELISA microplate reader at a wavelength of 405 nm. Individual blanks were prepared to correct background absorbance. Negative control was carried out in the same manner as a sample, but the sample was replaced by a phosphate buffer. Acarbose tablets were dissolved in phosphate buffer and 2N HCl (1:1) with a concentration of 1.00% (w/v). The precipitate was collected by centrifugation, and the supernatant up to 10 μL was added to the reaction mixture, similar to the sample. Percentage α-glucosidase inhibitory activity was calculated by using the following equation:

\[
\text{Inhibition activity} = \frac{(NK - B) - (S1 - S0)}{(NK - B)} \times 100
\]

Where, NK = negative control with enzyme addition; B = blank without enzyme addition; S1 = sample with the addition of enzyme; S0 = blank sample without addition of enzyme.

DPP-4 Inhibitory Assay
The inhibition of DPP-4 activity was performed using commercial assay kits according to the manufacturer’s instructions with modification. Sitagliptin was used as the standard inhibitor. DPP-4 was gathered from the blood serum of rats (Wistar). Briefly, 40 μL of DPP-4 assay buffer, 10 μL of DPP-4 enzyme (blood serum), and 10 μL of sample solution (in various concentrations) as the inhibitor, were added into the well. After pre-incubating for 10 min at 37°C, 40 μL H-Gly-Pro-AMC as the fluorogenic substrate was added and incubated for 30 min at 37°C. In the initial activity wells, the inhibitor was replaced by DPP-4 assay buffer. The fluorescence of free 7-amino-4-methyl coumarin (AMC) was measured. The fluorescence product released upon each sample test. Then, the percentage of inhibition was calculated. Percent DPP-4 inhibition was calculated using the formula:

\[
\text{Inhibition activity} = \frac{(IA - B) - (I - IB)}{(IA - B)} \times 100
\]

Where, IA = initial activity without inhibitor addition; I = background without enzyme and inhibitor addition; I = sample as inhibitor (isolate/standard); IB = background sample as inhibitor without enzyme DPP-4 addition.
Data were expressed as mean ± SEM (n=3), and the IC\textsubscript{50} values were determined by nonlinear regression curve and fit using GraphPad Prism 8.0.2 software.

RESULTS AND DISCUSSION

Result of Isolation and Characterization Isolated Compound

Fractionation and isolation of EAF using silica gel column chromatography resulted in eight fractions (EAF1-EAF8). EAF2 was the fraction with the best spot data based on TLC. Further separation and purification of EAF2 were carried out with the same method. Analysis of the fractions was performed using TLC. Subfractions showing similar Rf values were combined. The results of isolation of EAF obtained from 96% EE of tamoenju leaves showed the presence of flavonol compounds. The spots obtained on the TLC plate with isolated compound and standard flavonoid kaempferol is shown in Fig.-2. n-hexane: ethyl acetate (4:6 v/v) was used as the mobile phase.

The isolated compound was obtained as a yellow amorphous powder. The purity test of the isolated compound was carried out by one dimensional TLC evaluation using various eluents: chloroform:methanol (24:1), chloroform:ethyl acetate (5:2), and n-hexane:ethyl acetate (3:7) and showed a single spot with Rf 0.16, 0.47, and 0.81 respectively. Two dimensional TLC using two mobile phase composition: (1) chloroform:methanol (24:1), and (2) ethyl acetate:n-hexane (7:3). This test obtains a single spot indicating that the isolate was pure (Fig.-3).

The electrospray ionization (ESI)-positive mode mass spectrum by LC-ESI-Q trap (QT)/MS showed a molecular ion peak at m/z 287.0599 for [M+H]+ corresponding to the molecular formula of C\textsubscript{15}H\textsubscript{10}O\textsubscript{6} (Fig.-4). The 1H NMR spectrum (Fig.-5) of this compound shows the proton signal of a typical flavanol type compound with the ABX system (6-8 ppm). For the A-ring protons, the presence of a singlet signal at δ\textsubscript{H} 12.17 ppm means there is an -OH group in C-5. Next, a pair of aromatic proton signals at δ\textsubscript{H} 6.26 and 6.53 ppm (J = 2 Hz) are the signal protons from C-6 and C-8, thus in C-7, there is a -OH group. Two proton signals aromatic 2H at δ\textsubscript{H} 7.02 (H-3’ and H-5’) and 8.14 ppm (H-2’ and H-6’) orthopedic coupling (J = 8.9 Hz) shows in-ring B has an -OH group on C-4. The 13C-NMR spectra (Fig.-6) at 94.5 (C-8); 99.2 (C-6); 104.2 (C-10); 116.3 (C-3’ and C-5’); 123.3 (C-1’); 130.5 (C-2’ and C-6’); 136.6 (C-3); 147.0 (C-2); 162.3 (C-5); 160.2 (C-4’); 157.8 (C-9); 164.9 (C-7) and 176.6 (C-4). The 1H and 13C NMR values for all the carbons were assigned based on HSQC and HMBC correlations (Fig.-7 and Table-1). Based on the spectroscopic data, molecular weight data, and reference comparison19,20, the isolated compound was identified as kaempferol. The structure of the isolated compound is shown in Fig.-8. This is the first report of the compound in tamoenju plant. The determination of isolated compound levels was performed by LC-MS because it detects more specific compounds based on molecular weight, and the analysis time is short21. The level of isolates in this study was 182.23 mg/g isolate.
Fig.-3: One and Two Dimensional TLC under Visible Light by Eluents: (a) Chloroform:Methanol (24:1); (b) Chloroform:Ethyl Acetate (5:2); (c) n-Hexane:Ethyl Acetate (3:7); and (d) (1) Chloroform:Methanol (24:1), and (2) Ethyl Acetate:n-Hexane (7:3). The Isolate was pointed with a Blue Circle.

Fig.-4: Mass Spectra of the Isolated Compound

Fig.-5: Spectra 1H NMR of the Isolated Compound
Fig. 6: Spectra 1C NMR of the Isolated Compound

Fig. 7: HMBC NMR Spectrum of the Isolated Compound
Assay for The Antidiabetic Activity of Isolated Compound

The goal of the treatment of DM is to achieve normal blood glucose levels. One therapeutic approach to reduce postprandial hyperglycemia is to slow glucose absorption by inhibiting carbohydrate hydrolyzing enzymes in the intestine, such as α-glucosidase. α-Glucosidase is an enzyme that catalyzes the final step of the digestion of carbohydrates; hence α-glucosidase inhibitors are compounds that can prevent the metabolism of complex carbohydrates into glucose to slow the use of carbohydrates to suppress postprandial hyperglycemia.

DPP enzymes play a role in the conversion of glucagon-like-peptide-1 (GLP-1) to its metabolites. GLP-1 is a peptide hormone that plays a role in the stimulation of insulin release; thus, inhibition of DPP-4 can regulate blood sugar levels in people with diabetes. The inhibition of GLP-1 degradation by DPP-4 inhibitors (incretin enhancers) causes endogenous GLP-1 to remain at normal levels. Therefore, DPP-4 inhibitors have the potential to be antidiabetic agents. Furthermore, DPP-4 inhibitors repair organ systems which deteriorate in diabetes type 2, making this class of drug a target for development in the treatment of diabetes.

There is an increasing number of studies to develop effective new α-glucosidase and DPP-4 inhibitors with minimal side effects, obtained from medicinal plants. This study investigated the antidiabetic activity of the isolated compound by determining the inhibitory activity against α-glucosidase and DPP-4 enzymes in vitro.

The effects of the isolate and acarbose concentrations on α-glucosidase activity are shown in Table-2. The isolate inhibited α-glucosidase with an IC₅₀ value of 27.78 ± 0.86 μg/mL compared to acarbose, as a standard drug, with an IC₅₀ of 17.80 ± 0.27 μg/mL (approximately 1:1.5) (Table-2). The results showed that the isolated compound has an excellent capability to inhibit α-glucosidase. Although

Position	HSQC	HMBC
	C (δ_C, ppm)	H (δ_H, ppm, J Hz)
1		
2	147.0	
3	136.6	
4	176.6	
5	162.3	12.17 (1H; S)
6	99.2	6.26 (1H; D; 2.0 Hz)
7	164.9	
8	94.5	6.53 (1H; D; 2.1 Hz)
9	157.8	
10	104.2	
1'	123.3	
2'	130.5	8.14 (1H; D; 8.85 Hz)
3'	116.3	7.02 (1H; D; 8.9 Hz)
4'	160.2	
5'	116.3	8.14 (1H; D; 8.85 Hz)
6'	130.5	7.02 (1H; D; 8.9 Hz)

Fig.-8: Structure of the Isolated Compound (Kaempferol)
IC\textsubscript{50} values are significantly different, natural bioactive compounds may be safe for use as alternative medicines to manage diabetes mellitus. Several studies also showed kaempferol as an α-glucosidase inhibitor with different IC\textsubscript{50} values12,27,28. The results of this study demonstrated that kaempferol possesses potent α-glucosidase inhibitory activity.

Table-2: Percentage Inhibitory Activity of the Isolated Compound on α-Glucosidase Activity in Comparison with Acarbose (n=3)

Sample	Concentration (µg/mL)	Inhibition percentage (%)	IC\textsubscript{50} (µg/mL)
Isolate	5	29.12 ± 0.33	
	10	30.97 ± 0.47	
	20	34.45 ± 0.81	27.78 ± 0.86
	40	49.29 ± 0.17	
	60	50.29 ± 0.14	
	80	51.89 ± 0.37	
	100	53.56 ± 0.01	
Acarbose	2.5	21.73 ± 0.55	17.80 ± 0.27
	5.0	28.41 ± 0.15	
	10	35.63 ± 0.33	
	20	44.38 ± 1.07	
	40	57.43 ± 0.19	
	80	97.74 ± 0.28	

The isolated compounds from EAF were used to determine DPP-4 inhibitory activity compared to sitagliptin (positive control). The results are shown in Table-3. The highest inhibitory activity was that of the isolated compound with an IC\textsubscript{50} of 7.37 ± 0.06 µg/mL, whereas sitagliptin exhibited an IC\textsubscript{50} of 25.56 ±0.43 µg/mL. These results demonstrated that kaempferol obtained from the EAF of tamoenju leaves were effective in inhibiting DPP-4. Similar results were obtained by Zhao \textit{et al.}29, Sarian \textit{et al.}12, and Gao \textit{et al.}30, although the IC\textsubscript{50} results obtained were slightly different due to different experimental conditions. This supports our conclusion that kaempferol is an active compound from the EAF of tamoenju leaves that have a significant DPP-4 inhibitory potential and is a potential herbal-based DPP-4 inhibitor.

Table-3: Percentage Inhibitory Activity of the Isolated Compound on DPP-4 in Comparison with Sitagliptin (n=3)

Sample	Concentration (µg/mL)	Inhibition percentage (%)	IC\textsubscript{50} (µg/mL)
Isolate	1.25	25.51 ± 0.32	
	2.5	31.85 ± 0.42	
	5	33.41 ± 0.45	7.37 ± 0.06
	10	82.00 ± 0.13	
	20	82.73 ± 0.02	
	40	86.74 ± 0.21	
	80	94.63 ± 0.20	
Sitagliptin	1.25	22.31 ± 1.35	25.56 ± 0.43
	2.5	26.53 ± 0.84	
	5	31.93 ± 0.01	
	20	42.59 ± 1.97	
	40	57.79 ± 1.77	
	200	77.73 ± 0.59	

CONCLUSION

Isolation and identification of chemical compounds from the EAF demonstrated that one of the flavonoid compounds in the leaves of tamoenju was kaempferol. Although this compound was previously reported as an α-glucosidase and DPP-4 inhibitor from other plants, its presence in tamoenju (\textit{Hibiscus surattensis} L.) leaves is reported for the first time, which will further contribute to the chemical profile of the compound. The leaves of this plant are a source for developing α-glucosidase and DPP-4 inhibitors.
ACKNOWLEDGMENT

The authors would like to thank the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia and Indonesia Endowment Fund for Education (LPDP) for the funding through the BUDI DN Scholarship with the cooperation contract number: PRJ-109/LPDP.4/2019. We also thank Editage (www.editage.com) for English language editing.

REFERENCES

1. Elfahmi, H.J. Woerdenbag, and O. Kayser, Journal of Herbal Medicine, 4(2), 51(2014), DOI: 10.1016/j.jhermed.2014.01.002.
2. Muharni, Elfita, R. Adillah, H. Yohandini, and Julinar, Molekul, 13(1), 38(2018), DOI: 10.20884/1 jm.2018.13.1.402.
3. Moorthy, P. M. Rajan, S. Sathyarayanan, K. Muniyandi, D. Sivaraj, S.P. Sasidhuran, P. Thangaraj, Journal of Culinary Science & Technology, 1(2018), DOI: 10.1016/j.culsci.2018.1502110.
4. G. Akarca, Industrial Crops & Products, 137, 285(2019), DOI: 10.1016/j.indcrop.2019.05.043.
5. R. Triani, R. Pitopang, and Yuliet., Biocelebes, 9(1), 28(2015), DOI: 10.22487/j25805991.2015.v9.i1.4388.
6. M. Fajrin, N. Ibrahim, and A. W. Nugrahani, Galenika Journal of Pharmacy, 1(2), 92(2015), DOI: 10.22487/jgjp.2015.v1.2.6239.
7. D. Deb, B.K. Datta, J. Debbarma, and S. Deb, Biodiversitas, 17(1), 256(2016), DOI: 10.13057/biodiv/d170137.
8. A. Gbolade, Journal of Ethnopharmacology, 144, l(2012), DOI: 10.1016/j.jep.2012.07.018.
9. Yuliet, E.Y. Sukandar, and I.K. Adnyana, The Natural Products Journal, (2020 in press), DOI: 10.2174/2210315509666190626125330.
10. S. Sultana, S., A.A Faruq, N. A. Rashid, T. Nasim, and M. Q. Ahsan, European Journal of Pharmaceutical and Medical Research, 5(4), 167(2018).
11. Yuliet, E.Y. Sukandar, and I. K. Adnyana, Indonesian Journal of Pharmaceutical Science and Technology, Supp 1(1), 25(2018), DOI: 10.15416/ijpst.v1i1.16120.
12. M.N. Sarian, Q. U. Ahmed, S. Z. Mat So‘ad, A. M. Alhassan, S. Murugesu, V. Perumal, S. N. A. S. Mohamad, A. Khatib, and J. Latip, BioMed Research International, 2017(8386065), (2017), DOI: 10.1155/2017/8386065.
13. M. Insanu, S.Aziz,, I. Fidrianny, R. Hartati, Elfahmi, Sukrasno and R. Wirasutisna, Rasayan Journal of Chemistry, 12(2), 519(2019), DOI: 10.31788/RJC.2019.1221831.
14. Y.M. Kim, Y.K. Jeong, M.H. Wang, W.Y. Lee, and H.I. Rhee, Nutrition, 21(6), 756(2005), DOI: 10.1016/j.nut.2004.10.014.
15. Kissinger, A. Yamani, and R.M.N. Pitri, Research Journal of Medicinal Plants, 10(5), 356(2016), DOI: 10.3923/rjmp.2016.356.361.
16. Okselni, T., Santoni, A., Dharma, A. & Efdi, M. Rasayan Journal of Chemistry, 12(1), 146(2019), DOI: 10.31788/RJC.2019.1215019.
17. Sigma-Aldrich, DPP-IV Activity Assay Kit (MAK088), Technical Buletin, 2014, https://www.sigmaaldrich.com/catalog/product/sigma/mak088.
18. M. Ekayanti, R. Sauriasari, and B. Elya, Pharmacognosy Journal, 10(1), 190(2018), DOI: 10.5530/pj.2018.1.32.
19. C. Liu, J. Chen, and J.H. Wang, Chemistry of Natural Compounds, 45(6), 808(2009), DOI: 10.1007/s10600-010-9500-1.
20. L.J. Lin, X.B. Huang, and Lv. ZC, SpringerPlus, 5(1), 1649(2016), DOI: 10.1186/s40064-016-3308-9.
21. B.R. Kumar, Journal of Pharmaceutical Analysis, 7(6), 349(2017), DOI: 10.1016/j.jpha.2017.06.005.
22. D.F. Pereira, L. H. Cazarolli, C. Lavado, V. Mengatto, M. S. R. B. Figueiredo, A. Guedes, M. G. Pizzolatti, and F. R. M. B. Silva, Nutrition, 27, 1161(2011), DOI: 10.1016/j.nut.2011.01.008.
23. D.Q. Li, Z.M. Qian, and S.P. Li, Journal of Agricultural and Food Chemistry, 58(11), 6608(2010), DOI: 10.1021/jf100853c.
24. A. Malik, L. Marpaung, M.P. Nasution, and P. Simanjuntak, *Rasayan Journal of Chemistry*, **12**(3), 1175(2019), [DOI: 10.31788/RJC.2019.1235082].

25. A.M. Lambeir, C. Durinx, S. Scharpê, and I. D. Meester, *Critical Reviews in Clinical Laboratory Sciences*, **40**(3), 209(2003), [DOI:10.1080/713609354].

26. R. Chakrabarti, S. Bhavtaran, P. Narendra, N. Varghese, L. Vanchhawng, M. S. Shihabudeen, and K. Thirumurgan, *Journal of Natural Products*, **4**, 158(2011).

27. C. Proenca, M. Freitas, D. Ribeiro, E. F. T. Oliveira, J. L. C. Sousa S. M. Tome, M. J. Ramos, A. M. S. Silva, P. A. Fernandes and E. Fernandes, *Journal of Enzyme Inhibition and Medicinal Chemistry*, **32**(1), 1216(2017), [DOI: 10.1080/14756366.2017.1368503].

28. Z. Sheng, B. Ai, L. Zheng, X. Zheng, Z. Xu, Y. Shen and Z. Jin, *International Journal of Food Science and Technology*, **53**(3), 755(2018), [DOI:10.1111/ijfs.13579].

29. B.T. Zhao, D.D. Le, P.H. Nguyen, M.Y. Ali, J.S. Choi, B.S. Min, H.M. Shin, H.I. Rhee, and M. H. Woo, *Chemico-Biological Interactions*, **253**, 27(2016), [DOI:10.1016/j.cbi.2016.04.012].

30. Y. Gao, Y. Zhang, J. Zhu, B. Li, W. Zhu, J. Shi, Q. Jia, and Y. Li, *Future Medicinal Chemistry*, **7**(8), 1079(2014), [DOI:10.4155/fmc.15.49].

[RJC-5607/2019]
Rasayan Journal of Chemistry

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
India	Biochemistry, Genetics and Molecular Biology Biochemistry Chemical Engineering Chemical Engineering (miscellaneous) Chemistry Chemistry (miscellaneous) Energy Energy (miscellaneous) Pharmacology, Toxicology and Pharmaceutics Pharmacology, Toxicology and Pharmaceutics (miscellaneous)	Rasayan Journal	22

PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	09741466, 09760083	2008-2020	Homepage
How to publish in this journal
editor@rasayanjournal.co.in |
SCOPE

RASAYAN Journal of Chemistry (RJC) signifies a confluence of diverse streams of Chemistry to stir up the cerebral powers of its contributors and readers. By introducing the journal by this name, we humbly intend to provide an open platform to all researchers, academicians and readers to showcase their ideas and research findings among the people of their fraternity and to share their vast repository of knowledge and information. The journal seeks to embody the spirit of inquiry and innovation to augment the richness of existing chemistry literature and theories. We also aim towards making this journal an unparalleled reservoir of information and in process aspire to incubate and expand the research aptitude. RASAYAN Journal of Chemistry (RJC) widely covers all branches of Chemistry including: Organic, Inorganic, Physical, Analytical, Biological, Pharmaceutical, Industrial, Environmental, Agricultural & Soil, Petroleum, Polymers, Nanotechnology, Green Chemistry, Forensic, Phytochemistry, Synthetic Drugs, Computational, as well as Chemical Physics and Chemical Engineering.
C. VEERAVEL 8 months ago

DEAR SIR,
I HAVE SUBMITTED A MANUSCRIPT BEFORE 30 DAYS. KINDLY GIVE ME STATUS OF MANUSCRIPT.

THANK YOU

reply

Melanie Ortiz 8 months ago

Dear Veeravel,

We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus.

Unfortunately, we cannot help you with your request, we suggest you contact the journal's editorial staff, so they could inform you more deeply.

Best Regards, SCImago Team

S. SANTOSO 2 years ago

I want to publish my paper in your journal.
Rasayan Journal of Chemistry
Scopus coverage years: from 2008 to Present
Publisher: Rasayan Journal
ISSN: 0974-1496 E-ISSN: 0976-0083
Subject area: Energy: General Energy, Pharmacology, Toxicology and Pharmacuetics: General Pharmacology, Toxicology and Pharmacuetics, Chemistry: General Chemistry, Chemical Engineering: General Chemical Engineering
Source type: Journal

CiteScore 2020: 2.1
SJR 2020: 0.281
SNIP 2020: 0.880

Improved CiteScore methodology
CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more.

CiteScoreTracker 2021
1.8 = 1,811 Citations to date / 1,001 Documents to date
Last updated on 04 August, 2021 - Updated monthly

CiteScore rank 2020
Category	Rank	Percentile
Energy | #29/65 | 56th
Pharmacology, Toxicology and Pharmacuetics | #32/67 | 52nd

View CiteScore methodology ▶️ CiteScore FAQ ▶️ Add CiteScore to your site ▶️
Editorial Board

Editor-in-Chief:
Sanjay K. SHARMA, FRSC
Professor, Department of Chemistry &
Dean (Research), JECRC University, Jaipur, India
Contact: +91 9804699997
Email: editorjasaparnajurnal@gmail.com
Research interest: green chemistry, organic chemistry and water treatment

Editorial Office:
Pratima SHARMA
Publisher and Managing Editor,
RASAYAN Journal of Chemistry,
23 Anskompo, Jonakpur, Opp. Heensura Power Sub, Ajmer Road,
Jaipur-302024 (India)
Contact: +91 9266388387
Email: rasayanjournal@gmail.com

Bassim H. HAMMADI
Department of Chemical Engineering, College of Engineering, Qatar
University, Doha, Qatar
Contact: +9744441121
Email: b.hammed@qf.edu.qa
Research interest: mass engineering, adsorption technology

Florent ALIUS
Director, R&D Unit of Industrial Agro-Biotechnologies URO ABI -
AgroParisTech, Pommard, France
Contact: +33 1 69 86 00 00
Email: florent.alius@agroparistech.fr
Research interest: Green Chemistry, Bio-based Polymers

Gostam IRRAMACHARI
Professor, Chemistry Department, Visva-Bharati University,
Santiniketan-731235, India.
Contact: +91 9434534545
Email: gostam.rr@nus.edu.in
Research interest: Organic Synthesis, Green Chemistry, Natural products, Medicinal Chemistry

Ishmeel MAKHANE
Professor, Department of Chemistry, University of Botswana,
Gaborone, Botswana
Contact: +267 03995607
Email: makiane@unibot.w建设和
Research interest: Organic synthesis, Natural product Chemistry, Medicinal Chemistry

Eno E. EBIENSO
Professor, North-West University Gauteng, South Africa
Contact: -
Email: eno.ebienso@nwu.ac.za
Research interest: -

Giusy LOPRANO
Department of Environment, University of Salerno, Salerno, Italy
Contact: 0039 347 96 06 676
Email: giusyloprano@unisa.it
Research interest: Nanotechnologies, wastewater treatment, advanced oxidation processes

Hakan ARSLAN
Department of Chemistry, Faculty of Arts and Science, Mersin
University, Mersin, TR-33343, Turkey
Contact: +90 532 361 02 82
Email: hakan.arslan@mersin.edu.tr
Research interest: Coordination chemistry, Heterocyclic Chemistry, Kinetic Studies, X-ray diffraction studies, Spectroscopy

Ismail Bassey GIBOT
Center for Research Excellence in Corrosion Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 409, Dhahran, 31261, Saudi Arabia
Contact: +966 55 860 8283
Email: gibot@kfupm.edu.sa
Research interest: Corrosion and Scale Inhibition, Chemo-informatics, Computational Chemistry
Marei Mailoud El-AJAYL
University of Benghazi, Faculty of Science, Department of Chemistry, Bengaazi, Libya
Contact: 0099617755723
Email: melajay@gmail.com
Research Interests: Metalloid compounds, fungo, applications, corrosion inhibition, molecular docking, DFT studies

Mika SIUUHHJAA
Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein in 2008, South Africa
Contact: 0116000109
Email: mikasa@jinja2.com
Research Interests: Water treatment

Rinku KUMAR
Professor and Head, Department of Chemistry, University of Energy and Petroleum Studies, Dehradun, India
Contact: +91 1355 254288
Email: pkuu@dekpatna.ac.in
Research Interests: Refrains and gasoline, chemical sensors, nano-materials, minimization of industrial wastes

Ramesh L. GADHIA
Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India
Contact: +91 9448209245
Email: gardoss@gmail.com
Research Interests: Physical chemistry, Chemical Thermodynamics, Alternative Solvents

Susheel MITTAL
Senior Professor, School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology (Deemed to be University), Patiala, Patiala-147004, India
Contact: +91-8046251774
Email: mittal.susheel@gmail.com
Research Interests: Nanomaterials Sensors, Pesticides, Bio-sensors, Ambient Air quality and human Health

Willian Aparecido CAMARIO
School of Engineering, Universidad Militar Nueva Granada, Bogota-111211, Colombia
Contact: +57 3132777200
Email: willian.apparecido@unimilitar.edu.co
Research Interests: Materials, batteries, corrosion, coatings, tribology

Man SINGH
Professor and Dean, School of Chemical Sciences, Gujrat central University, Gandhinagar, Gujarat, India
Contact: +91 9450022104
Email: mansingh60@helma.com
Research Interests: Surface Chemistry, Physical Chemistry

Hinubuk Okon EDDO
Professor, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
Contact: +23480392105
Email: hinubuck1@yahoo.com
Research Interests: Physical Chemistry, Computational Chemistry, Nanochemistry, Industrial Chemistry, Environmental Chemistry

ILY SINGH
Ex-Professor, Department of Chemistry, University of Rajasthan, Jaipur, India
Contact: +91 9460404617
Email: ilysingh@hotmail.com
Research Interests: Inorganic Chemistry

Soro YAWA
Laboratoire des Procédés Industriels de Synthèse, de l'Environnement et des Energies Nouvelles (LAPSEN), Institut National Polytechnique (INP-HB), Yaoundé, BP 991 Yaoundé (Côte d'Ivoire)
Contact: +237 61 86 67 00
Email: soro_y@yahoo.fr
Research Interests: Organic synthesis, natural products, waste management

V.K. GARG
Professor and Dean Centre for Environmental Science and Technology School of Environment and Earth Sciences Central University of Punjab, Bathinda- 151001, India
Contact: +91 9999000000
Email: vkgarg@yahoo.com
Research Interests: Pollution Monitoring and Abatement, Solid Waste Management, Micellecology
Volume 13, Number 2, 780-1292, April - June (2020)

ACUTE TOXICITY TEST AND HISTOLOGICAL DESCRIPTION OF ORGANS AFTER GIVING NANO HERBAL ANDALMAM (Zanthoxylum acanthopodium) — Hafez K. Shomrony, Shaliniiaet al., and Ahmed A. Mohamed

FORMULATION AND EVALUATION OF LOTION AND CREAM OF NANOIZED CHITOSAN-MANGOSTEEN (Garcinia mangostana L.) PERICARP EXTRACT — K. N. Sajiventil and A. Maduvalaloko

CHEMICAL CONSTITUENTS AND ANTIOXIDANT ACTIVITY OF Salka tetrasperma ROXB — K. Mohammad, K. Vanitha, and S. Haseeb

ONE-STEP SYNTHESIS OF THERMALLY STABLE SOLID MOLYBDENUM BLUE USING BORON PHOSPHATE — A. Khomkwanchat, C. Aranu, and S. Witoonkwan

THE EFFECT OF MOLYBDENUM DISULFIDE NANOPARTICLES AND SODIUM DODECYL SULFATE ADDITION TOWARDS WEAR PROTECTION PROPERTIES FROM THE SAE 10W-30 STANDARD LUBRICANTS — Saidin, M. Hamiduddin and L. Syarifah

CHARACTERIZATION OF NANO-CURCUMINOID FROM ETHANOL EXTRACT OF Curcuma xanthorrhiza RHIZOME LOADED BY CHITOSAN AND ALGINIC AND ITS ANTIOXIDANT ACTIVITY TEST — S. Akhir, Y. Salee and N. Asron

INHIBITORY ACTIVITY OF THE ACTIVE COMPOUND OF ETHYL ACETATE FRACTION OF TAMOJU (Hibiscus surattensis L) LEAVES AGAINST GLUCOAMYLASE AND DIPERIVIT PEPTIDASE-4 ENZYMES — Adi Setiawanto, Ananta Rachmon, and S. Adyana

A HIGHLY SELECTIVE AND SENSITIVE ANALYTICAL TECHNIQUE FOR THE DETERMINATION OF ISOMALTULOSE IN PRESENCE OF ITS PROCESS RELATED IMPURITIES BY CAPILLARY ELECTROPHORESIS — Sri Rama Krishna Sangareddy, Srinivas Ramachandretti, Krishna Samvin, and Srinivas Reddy
ADSORPTION OF THE ANIONIC DYE OF CONGO RED FROM AQUEOUS SOLUTION USING A MODIFIED NATURAL ZEOLITE WITH BENZALKONIUM CHLORIDE
— S. W. Azad, M. M. Apripta and M. Mudiar

NICS-ACIDA AS AN EFFECTIVE, SYNERGISTIC CATALYTIC SYSTEM FOR THE SYNTHESIS OF FULLY SUBSTITUTED PYRAZIDES
— Gallas R. Kodem, Narvidha R. Kambale, and Venkat T. Kambale

AN AMMONIA OPTICAL SENSOR SILICA MICROSPHERES DOPED WITH NICKEL(II) ION AND REFLECTANCE TRANSDUCTION
— A. Ulloa, O. Andrei, Waggini, Remil and T. Ling Ling

OPTIMIZING PROCESS CONDITION FOR AMIDIFICATION OF STEARIC ACID AND UREA USING RESPONSE SURFACE METHODOLOGY
— Z. Mozumder, N. Sybiri, Khadivi, N. Areola and A. Sinning

THE BEHAVIOURAL ATTRIBUTES ABOUT A COMPRESSION IGNITION ENGINE POWERED WITH DIESEL AND Antocarpus heterophyllus METHYL ESTER BLENDS
— T. Kambale Chavan, S. Kavashandhnan, R. Kaza and K. N. Kabu

PROGRESS IN ELECTRICAL AND OPTICAL PROPERTIES OF VANADIUM IONS DOPED (PVA-ZnO) POLYMER FILMS
— O. Kari, M. Marutha, S. Mitha Mitha and O. Shigma Kaly

IDENTIFICATION AND ANALYSIS OF MAJOR ELEMENTS IN INDIAN HERBAL MEDICINE USING LASER-INDUCED PLASMA SPECTROSCOPY
— Atmane, M. N., Kardell, A. V. Wardaya, M. Usagi and M. Usati

INVESTIGATION OF BIVALVE MOLLUSCAN SEASHELLS FOR THE REMOVAL OF CADMIUM, LEAD AND ZINC METAL IONS FROM WASTEWATER STREAMS
— O. Akhender, R.R. Shakiro, M.M. Budramani, Lakshmi Pray, Shikma Rya and M. Marshka

SILVER DOPING EFFECT ON ANTIBACTERIAL ACTIVITIES OF CADMIUM OXIDE NANOPARTICLES
— J. Christiana Ratha, M. Gadapa, S. Chakramnay, M. Vaniyamani and C. Shanta

A REVIEW ON PROCESS PARAMETERS OF VARIOUS PROCESS INTENSIFICATION TECHNIQUES FOR ETHYL ACETATE PRODUCTION
— Ganesh K. Veti and Himanta Simantakumar

IN-VITRO ANTICANCER ACTIVITY AND DNA BINDING OF BIOLOGICALLY ACTIVE VO(III) COMPLEX WITH ETHYL-4-AMINOBENZOATE AND OH ALUMINUM
— B. Sathyavaththu, R. Rajasekar, S. Balasubramaniam, K. Selvandrun and C. Varad

DETERMINATION OF IMPURITIES OF RISPESIDONE API BY ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY (UPLC)
— S. Sagar, M. M. Josna, M. C. Subbu, Chinnadurai Singh, S. G. Pillai and M. S. Gopa

DECOLORIZATION OF YAMUNA WATER USING PEANUT HULL IN PACKED BED REACTOR
— Yemba Prichid, Apilka Dresch, Prathik C. Niran and Shipra S. Chep ihtiyator

ANTIOXIDANT ACTIVITY, TANNIN CONTENT AND DIETARY FIBER FROM COFFEE HOUST EXTRACT AND POTENTIAL FOR NUTRACEUTICAL
— Anton Resti Prihatu, Ariadi Murjulianto, Delta Kedirin and Nurrosamah

SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY OF MONONUCLEAR IRON(III) COMPLEXES TOWARDS HYDROCARBON OXIDATION AT ROOM TEMPERATURE
— Uday Santra Aparna

QUANTIFICATION OF ISOBENTHININ THREE VARIETIES OF PASSION FRUIT PEEL ETHANOLIC EXTRACT BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY MASS SPECTROMETRY
— E. D. L. Pata, N. Neelkanta, F. K. Herin and N. Mendy
INVESTIGATION OF PHYTOCHEMICAL CONSTITUENTS AND CARDIOPROTECTIVE ACTIVITY OF ETHANOL EXTRACT OF BEETROOT (Beta vulgaris L.) ON DOXORUBICIN INDUCED TOXICITY IN RAT
— S. S. Nupala, K. B. Reddy, L. S. Babu and B. V. Reddy

EFFICIENT REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ALMOND SHELL ACTIVATED CARBON: KINETICS AND EQUILIBRIUM STUDY
— M. K. Raja, B.S. Giri, M. S. Singh and B. N. Raja

NEW NATURAL DYES DEVELOPMENT: Caesalpinia Sepedon L-Curcuma Longa BLENDED DYES
— N. K. Patil, S. J. Patil, A. B. Sathya and S. Muslem

Cu(I) COMPLEXES WITH AN NINO FUNCTIONALIZED HYDRAZONE LIGAND: SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL STUDIES
— S. S. Kalita, M. P. Negi, S. K. Patra and C. P. Paul

REMOVAL OF CATIONIC TEXTILE DYE METHYLENE BLUE (MB) USING STEEL SLAG COMPOSITE
— J. Bhakta, V. Goren, R. S. Naik, R. P. Naik and K. Guvindraju

ENHANCED DELIGNIFICATION OF CORN STRAW WITH ALKALINE PRETREATMENT AT MILD TEMPERATURE
— H. M. Xu, F. X. Sun, J. H. Li, J. R. Wang and D. M. Wang

SPECTROSCOPIC STUDIES OF SOL-GEL SYNTHESIZED CO钛F-EPOXIDE COMPOSITE NANOPOWDER
— S. K. Tripathi, V. B. Harjani and S. Tripathi, S. C. Dhingra

AN EASY, EFFICIENT PTC-MEDIATED SYNTHESIS OF 2-SUBSTITUTED-6-CHLOROQUINOLINES AND ANTIBACTERIAL ACTIVITY
— T. Shiva Shankara Babu, M. Sivakumar, M. Babu and N. Venkateswary

ANTI-CANCER DRUG DOXORUBICIN INDUCED CARDIOTOXICITY: UNDERSTANDING THE MECHANISMS INVOLVED IN ROS GENERATION RESULTING IN MITOCHONDRIAL DYSFUNCTION
— G. V. Reddy and S. B. Desai

DESIGN AND SYNTHESIS OF 5-OXOPYRROLIDINE-3-CARBOXYLIC ACID DERIVATIVES AS POTENT ANTI-INFLAMMATORY AGENTS
— K. M. Patro and P. S. Desai

SORPTION POTENTIAL OF TREATED PLANT RESIDUES WIZ. POTATO PEEL AND NEEM BARK FOR REMOVAL OF SYNTHETIC DYES FROM AQUEOUS SOLUTION
— S. S. Sharma, D. K. Tiwari and S. K. Singh

FERTILIZER ENCAPSULATION TO IMPROVE THE NUTRIENTS USE EFFICIENCY OF PLANT THROUGH SLOW/CONTROLLED RELEASE TO ENSURE FOOD SECURITY
— Deepak and R. S. L. Leman