A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: evaluation of the present-day climatology and sensitivity to surface processes

H. Teyssèdre¹, M. Michou¹, H. L. Clark¹, B. Josse¹, F. Karcher¹, D. Olivié¹, V.-H. Peuch¹, D. Saint-Martin¹, D. Cariolle², J.-L. Attié³, P. Ricaud³, R. J. van der A⁴, and F. Chéroux¹

¹GAME/CNRM (Météo-France, CNRS) Centre National de Recherches Météorologiques, Toulouse, France
²Centre Européen de Recherches et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
³Laboratoire d’Aérologie (Université Toulouse III, CNRS), Toulouse, France
⁴KNMI (Royal Netherlands Meteorological Institute), De Bilt, The Netherlands

Received: 26 June 2007 – Accepted: 31 July 2007 – Published: 2 August 2007
Correspondence to: H. Teyssèdre (hubert.teyssedre@meteo.fr)
Abstract

We present the chemistry-climate configuration of the Météo-France Chemistry and Transport Model, MOCAGE-Climat. MOCAGE-Climat is a state-of-the-art model that simulates the global distribution of ozone and its precursors (82 chemical species) both in the troposphere and the stratosphere, up to the mid-mesosphere (∼70 km). Surface processes (emissions, dry deposition), convection, and scavenging are explicitly described in the model that has been driven by the ECMWF operational analyses of the period 2000–2005, on T21 and T42 horizontal grids and 60 hybrid vertical levels, with and without a procedure that reduces calculations in the boundary layer, and with online or climatological deposition velocities. Model outputs have been compared to available observations, both from satellites (TOMS, HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instrument measurements (ozone sondes, MOZAIC and aircraft campaigns) at climatological timescales. The distribution of long-lived species is in fair agreement with observations in the stratosphere putting apart shortcomings linked to the large-scale circulation. The variability of the ozone column, both spatially and temporarily, is satisfactory. However, the too fast Brewer-Dobson circulation accumulates too much ozone in the lower to mid-stratosphere at the end of winter. Ozone in the UTLS region does not show any systematic bias. In the troposphere better agreement with ozone sonde measurements is obtained at mid and high latitudes than in the tropics and differences with observations are the lowest in summer. Simulations using a simplified boundary layer lead to ozone differences between the model and the observations up to the mid-troposphere. NO\textsubscript{x} in the lowest troposphere is in general overestimated, especially in the winter months over the northern hemisphere, which might result from a positive bias in OH. Dry deposition fluxes of O\textsubscript{3} and nitrogen species are within the range of values reported by recent inter-comparison model exercises. The use of climatological deposition velocities versus deposition velocities calculated on-line had greatest impact on HNO\textsubscript{3} and NO\textsubscript{2} in the troposphere.
1 Introduction

The modelling of chemistry-climate interactions has become increasingly complex over the last twenty years. A first approach was to use climatologies of the trace gases that have a radiative impact upon climate, such as carbon dioxide (CO₂), methane (CH₄) or ozone (O₃). Then a simplified chemistry of stratospheric O₃ was introduced in models, like the linear scheme developed by Cariolle and Déqué (1986), or described in McLinden et al. (2000) for instance. Large scale perturbations of the atmosphere, e.g., the Antarctic ozone hole or the evolution of the halogen loading of the atmosphere are thus taken into account. The Cariolle and Déqué (1986) scheme has been introduced in many models such as the ARPEGE-Climat General Circulation Model (GCM) (Déqué et al., 1994; Cariolle et al., 1990) or the European Center for Medium-Range Weather Forecasts (ECMWF) IFS model (Oikonomou and O’Neill, 2006). A more sophisticated approach deals with the chemistry of a few tens of chemical species of the stratosphere (Lefèvre et al., 1994; Chipperfield et al., 1994), and the stratospheric composition can then be simulated at seasonal or longer time-scales. The REPROBUS Lefèvre et al. (1994) scheme has been coupled to the ARPEGE-Climat GCM (WMO, 1998). For a comprehensive description of the atmospheric chemistry, that should include the modelling of the chemistry of the troposphere, much shorter time-scales have to be considered to represent processes such as scavenging or dry deposition at the surface. The chemistry of short-lived chemical species, with a lifetime of several hours like many Volatile Organic Compounds (VOCs), needs to be accounted for, and this substantially increases modelling costs.

Very few models nowadays consider the chemistry of the entire atmosphere up to the mesosphere with a detailed description of the complex chemical reactions in the troposphere, though it has become more and more evident that it is crucial to take into account both the stratosphere and the troposphere to better simulate the coupling between these two layers. For example, the description of one of these models and its direct evaluation with in-situ and satellite data appears in Jöckel et al. (2006).
In this article we present the chemistry-climate version of the tropospheric and stratospheric Chemistry and Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) that is an evolution of the Lefèvre et al. (1994) stratospheric model. MOCAGE is the multiscale 3-D CTM of Météo-France representing processes from the regional to the planetary scale, and extending from the surface up to the middle stratosphere. The model comprises several levels of two-way nested domains, the parent global grid providing fully-consistent boundary conditions to the inner grids. This set-up enables the model to be used for a wide range of scientific applications, from the study of climate-chemistry interactions and global-scale redistributions of species (Cathala et al., 2003; Josse et al., 2004; Pradier et al., 2006), to “chemical weather” forecasting, down to the regional scale (Dufour et al., 2004; Drobinski et al., 2007), and chemical data assimilation (Geer et al., 2006; Clark et al., 2007). MOCAGE has been evaluated against several observational campaigns such as ESCOMPTE (Etude sur Site pour Contraindre les Modèles de Pollution atmosphérique et de Transport d’Emissions, Dufour et al., 2004), or ICARTT/ITOP (International Consortium for Atmospheric Research on Transport and Transformation /Intercontinental Transport of Ozone and Precursors, Bousserez et al., 2007). In addition, it is part of a number of international projects, and it has been run in operational mode (24h/7d) since the summer of 2005 on the Météo-France supercomputers for air quality simulations on the French Prévair national platform http://www.prevair.org, Honoré et al., 2007.

MOCAGE-Climat is the chemistry-climate version of MOCAGE which was developed for the study of climate-chemistry interactions. Therefore, this version of the model covers the whole troposphere and the whole stratosphere. The objective of our work here is to evaluate efficiently how the MOCAGE-Climat CTM represents the climatological chemical state of the atmosphere when driven by ECMWF meteorological forcing com-

Honoré, C., Rouil, L., Vautard, R., Beekmann, M., Bessagnet, B., Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud, J.-M., Menut, L., Martin, D., Peuch, V.-H., Peuch, A., and Poisson, N.: Predictability of regional air quality in Europe: the assessment of three years of operational forecasts and analyses over France, J. Geophys. Res., submitted, 2007.
monly used for this kind of exercise. This objective is achieved by analysing comprehensive comparisons with observations. Such a thorough review is required before undertaking the coupling of MOCAGE-Climat with a GCM and to allow it to become one of the actors of international projects such as World Climate Research Programme (WCRP) Stratospheric Processes And their Role in Climate (SPARC) Chemistry-Climate Model Validation Activity (CCMVal) (http://www.pa.op.dlr.de/CCMVal/) that has involved an increasing number of models in recent years. We also show in this paper the results of a number of sensitivity studies. The aim here is twofold, on the one hand improve our knowledge of the impact of the lower troposphere on the rest of the atmosphere, and on the other hand evaluate if and how CPU time could be reduced in order to perform longer chemistry-climate simulations.

We present MOCAGE-Climat in Sect. 2. Section 3 provides a description of the observations to which we compared the model outputs. These include climatological mean distributions of a number of species, both in the stratosphere and in the troposphere. In Sect. 4 we evaluate the model focusing on quantities that are important for the simulation of ozone and that can be validated against observations. We first present long-lived species, as they are an indication of the robustness of the transport, and then we describe the reservoir and short-lived species. These comparisons enable us to identify strengths and weaknesses in the chemistry. The final evaluation section deals with ozone, that is affected by all the compounds first presented, and that is the trace gas most observed in the atmosphere. Finally, results from a sensitivity study to surface processes appear in Sect. 5 and conclusions in Sect. 6.

2 Model description

2.1 General features

The horizontal and vertical resolutions of MOCAGE-Climat are specific to the study of global processes, with a special focus on studies pertaining to the stratosphere and
Upper Troposphere Lower Stratosphere (UTLS) regions. In the horizontal, Gaussian
grids are used as they are closer to the original Numerical Weather Prediction (NWP)
calculations. In the vertical, the coverage of the model has been extended, 60 vertical
levels cover the troposphere, the whole stratosphere and the lower mesosphere, up
to 0.07 hPa (approximately 70 km). The number of vertical levels and their distribution
are identical to those of the ECMWF analyses used in this paper (see Sect. 4.1). This
vertical distribution agrees with the recommendations of Strahan and Polansky (2006)
for a realistic representation of the middle atmosphere.

The model has been run in an off-line mode, driven by a variety of meteorological
inputs, including data from NWP models, such as the analyses or forecasts of the
ECMWF system. Wind, temperature, humidity, and pressure, available every 3 or 6 h,
are then linearly interpolated to yield hourly values, which is the time step for advect-
ion. Shorter time steps are used for physical processes and chemistry. Large-scale
transport of chemical constituents or tracers is ensured by a semi-Lagrangian advec-
tion scheme (Williamson and Rasch, 1989); a simple correction scheme is applied in
order to guarantee total mass conservation during transport. Turbulent diffusion follows
Louis (1979), while the convection scheme (mass-flux type) adopted after a number of
studies is that of Bechtold et al. (2001). For further details on the transport in MOCAGE
and its evaluation see Josse et al. (2004).

Wet removal by precipitation is included. In convective clouds, it is parameterized
according to Mari et al. (2000); convective transport and scavenging are therefore com-
puted simultaneously. In large-scale precipitation clouds, removal follows the first order
scheme of Giorgi and Chamedeis (1986). Below clouds, the recommendations of Liu et
al. (2001) (again a first order scheme) are used. Wet removal has been evaluated with
simulations of 210Pb, a highly soluble tracer, by comparing model outputs with both
climatologies and fine temporal resolution observations. At the crossroads between
dynamics, physics and chemistry, we use the mixing ratios of the ECMWF analyses up
to the 380 K isentropic level for the representation of water vapour. Part of this for-
cing is then located in the lowermost stratosphere. The numerical diffusion of H_2O into
the stratosphere is thus reduced and the stratospheric profile is still satisfactory since the ECMWF analyses include a simple parameterization of water vapour production by methane oxidation (Oikonomou and O'Neill, 2006).

Radiation is taken into account through the thermodynamical balance of the atmosphere via the external meteorological forcings provided to the model, and its impact onto the chemical species is considered using a multi-entry look-up table computed off-line with TUV (Tropospheric Ultraviolet-Visible model version 4.0, see Madronich and Flocke, 1998). The impact of clouds on the photolysis rates is calculated on-line, increasing (weakening) photolysis rates above (below) clouds according to Brasseur et al. (1998).

The chemistry scheme of MOCAGE-Climat comprises both tropospheric and stratospheric species. It is a combination of the RELACS scheme described in Crassier et al. (2000), which is a simplified version of the tropospheric RACM scheme (Stockwell et al., 1997), and of the REPROBUS scheme (Lefèvre et al., 1994) relevant to the stratosphere that includes the heterogeneous stratospheric chemistry described in Carslaw et al. (1995). A total of 82 chemical species (see Tables 1 and 2) are considered throughout 242 thermal reactions. 65 of these species are transported while the remaining 17 are assumed at instantaneous chemical equilibrium, as described in Brasseur and Solomon (1986). This scheme is a compromise between a detailed representation of the tropospheric-stratospheric chemistry and the CPU time that strongly constrains multi-year CTM simulations. As for the chemistry of the stratosphere, the scheme allows the description of the nitrogen, chlorine, and bromine species, from source to radical form, through reservoir species. In the troposphere, both inorganic and organic species are taken into account. The use of RELACS versus RACM was evaluated in Crassier et al. (2000) for clean to polluted conditions and showed that RELACS compared favorably with RACM for ozone and other atmospheric oxidants. Similar conclusions were made when RELACS was included in MOCAGE-Climat. About 30% of the computer time is saved making simulations with RELACS instead of RACM.
A specific procedure can be applied in the boundary layer of MOCAGE-Climat, again for the sake of saving computer time. The computing of the chemical tendencies within the boundary layer represents about 90% of the time dedicated to chemistry, due to the large number of chemical species with a short lifetime (less than 1 min). We then deal with the chemical evolutions in the boundary layer considering it as one layer only. The boundary layer is simply defined as the 10 levels closest to the surface. First, we calculate at time \(t \) the average mixing ratios of each chemical species and necessary meteorological parameters. These vertical averages are weighted by the air density profile. Then the chemistry scheme simulates the new averages at \(t + \Delta t \), and we deduce mean evolutions between \(t \) and \(t + \Delta t \), noted here \(\tau \) for a specific compound. \(\tau \) is then applied to the original full vertical profile, yielding to the entire profile at \(t + \Delta t \). Simulations at all levels of the boundary layer are performed every 6 h. With this procedure, an extra 30% of computer time is saved, leading to a final cost of 23 min of CPU-time per day simulated at T42 with 60 layers, on the Fujitsu VPP5000 of Météo-France. We will present in this paper results from simulations considering or not the boundary layer as a bulk boundary layer.

In addition to the RELACS chemical scheme, MOCAGE-Climat can consider a parameterization of the linear ozone chemistry as first presented in Cariolle and Déqué (1986) and recently revised by Cariolle and Teyssèdre (2007). This parameterization is essentially valid for the middle-atmosphere, with “linear ozone” mainly driven by dynamics in the UTLS, and with increasing photochemical influence as the altitude increases.

2.2 Surface exchanges

The set of emissions that we used for our simulations is multi-fold. Most of the emissions from anthropogenic sources are those of the model inter-comparison exercise, so-called “2030 Photocomp experiment” (referenced hereafter as 2030PE, see Den- tener et al., 2006). The baseline emission scenario is considered as representative of the year 2000 and consists of International Institute for Applied Systems Analysis
(IIASA) emissions and EDGAR v3.2 biomass burning emissions normalized with the results presented in van der Werf et al. (2003). For further information on these emission datasets see Dentener et al. (2004). With regard to emissions from biogenic sources, the 2030PE only made recommendations on the total emissions which are emitted annually. We adopted these recommendations and thus complemented the set of anthropogenic emissions as follows: NO\textsubscript{x} emitted by soils, CH\textsubscript{4} by oceans, and CO from vegetation and oceans are those of a personal communication from L. Emmons and J.-F. Lamarque (NCAR, 2004). CH\textsubscript{4} from wetlands are taken from Matthews and Fung (1987) (monthly data for the reference year 1895), and emissions from termites are described in Fung et al. (1991). SO\textsubscript{2} from volcanoes are presented in Andres and Kasgnoc (1998). Biogenic emissions of hydrocarbons from vegetation include isoprene, monoterpenes, and other VOC emissions; monthly distributions are taken from Guenther et al. (1995).

N\textsubscript{2}O data, not provided for the 2030PE, are available from the Global Emissions Inventory Activity (GEIA) web site; we used the dataset described in Bouwman et al. (1995) that we grouped into broad IPCC (1995) categories (reference year 1990). It can be noted that our annual total emissions of N\textsubscript{2}O (IPCC, 1995) are higher than those of other models (Michou and Peuch, 2002). Finally for the emissions of chlorofluorocarbons, spatial distributions of CFC–11 and CFC–12 are the ones of the GEIA v1 datasets, and for the other compounds listed in Table 3 they are those of Olivier et al. (1996); we adopted the annual totals of WMO (2002) for the year 2000.

The splitting of the original VOCs into the VOCs of the RELACS chemical scheme, both from anthropogenic and biogenic sources, has been made according to the recommendations of the IPCC Third Assessment Report (TAR) and to Crassier et al. (2000). The annual global totals are presented in Table 4.

The version of MOCAGE-Climat used in this paper does not include NO\textsubscript{x} emissions from lightning (total estimated to 7 Tg(N) yr-1). Implementation in MOCAGE of a parameterization of these emissions is on-going and the first results have been reported in Bousserez et al. (2007).
All the emission datasets have an original horizontal resolution of 1° × 1° and, depending on the source, vary according to the month or remain constant throughout the year. Table 3 details this temporal resolution, as well as the total amounts emitted. We used the same emissions for the six years of our simulations (2000–2005, see Sect. 4.1). Emissions are distributed in the eight lowest levels of the model (that correspond on average to a layer of 600 m), in order to avoid too strong vertical gradients, as proposed in Josse et al. (2004).

In addition to dealing with surface emissions, the surface module of MOCAGE-Climat enables the simulation of the dry deposition sink of gaseous species and aerosols (Nho-Kim et al., 2004). To compute realistic time-dependent fluxes at the surface, a 2-D interface (Michou and Peuch, 2002) between MOCAGE and outputs of NWP models has been developed. The dry deposition velocity of about a hundred compounds including O₃, SO₂, nitrogen-containing compounds, as well as long-lived and short-lived intermediate organic compounds, was parameterized on the basis of Wesely (1989), considering the ‘big-leaf’ resistance approach. The module calculates dry deposition velocities from three resistances in series, aerodynamic, laminar, and surface. In the case of the work reported here these resistances are computed using the surface meteorological fields of the 6 hourly analyses of the ECMWF NWP model. The original surface resistance scheme was modified with the introduction of a specific parameterization for the stomatal resistance depending upon environmental factors; it is based on Noilhan and Mahfouf (1996), and follows the Jarvis-type meteorological approach that attempts to modify a minimum stomatal resistance defined a priori through external factors, such as moisture and radiation availability. This parameterization of the stomatal resistance has been first validated in Michou and Peuch (2002) and further analyzed in the context of Mediterranean regions in Michou et al. (2004), as the coupling with meteorological analyses allows the study of specific events.

We present in Sect. 5 results of a sensitivity study to the deposition velocity.
3 Observations used for the evaluation

We present below the main characteristics of the observational datasets we used. We retained both satellite and in-situ observations for which derived climatologies have been evaluated and described in the literature (see Table 5 for a summary). Unless otherwise specified, the satellite instruments from which information on atmospheric trace gas constituents is retrieved fly in near-polar, sun synchronous, low earth orbits; for low and mid latitudes, this results in observations at a constant local time. Global satellite climatologies are already available for several chemical species in the stratosphere, and the last decade has seen the implementation of satellite measurements of tropospheric constituents.

3.1 NIWA-TOMS

The assimilated NIWA data base combines satellite-based ozone measurements from four Total Ozone Mapping Spectrometer (TOMS) instruments, three different retrievals from the Global Ozone Monitoring Experiment (GOME) instruments, and data from four Solar Backscatter Ultra-Violet (SBUV) instruments. Comparisons with the global ground-based World Ozone and Ultraviolet Data Center (WOUDC) Dobson spectrophotometer network have been used to remove offsets and drifts between the different datasets to produce a global homogeneous total ozone column dataset that combines the advantages of good spatial coverage of satellite data with good long-term stability of ground-based measurements. Updated versions of the TOMS (version 8), GOME (version 3.1) and SBUV (version 8) retrieval software, together with assimilated total column ozone fields from Royal Netherlands Meteorological Institute (KNMI), have been used to compute this climatological dataset which comprises global monthly fields from 1978 to 2005 at 1.25° (longitude) by 1° (latitude) resolution. Trends in the satellite data, particularly Earth Probe TOMS data from 2002 onwards, have been corrected. For further details on the NIWA dataset see Bodeker et al. (2005).

Total ozone columns derived from the TOMS measurements (WMO, 1988) represent
the primary source of information of the NIWA dataset. Since the first launch in 1978, the TOMS measures radiances of the solar UV radiation backscattered by the atmosphere, at six different wavelengths, and the ozone amount is determined by the ratio of measurements in different channels from the Beer-Lambert equation with a typical resolution of 60 to 38 km. A daily total ozone column dataset is generated, except over polar night regions due to the instrument characteristics. Accuracy is of about 1%, but decreases at large zenithal angles (McPeters et al., 1996). Because of the length of its measurement record, TOMS data are very useful for ozone model validation.

3.2 HALOE-MLS-CLAES/UARS

We worked with two climatologies of a number of stratospheric compounds derived from measurements made on-board the Upper Atmosphere Research Satellite (UARS) on an asynchronous orbit. Both climatologies use the results of the version 19 retrieval software for the Halogen Occultation Experiment (HALOE) that utilises the solar occultation technique and daily observes up to 15 sunrise and 15 sunset profiles. HALOE has been validated against a variety of measurements; generally, the accuracy of the retrievals decreases near the tropopause (see Table 5 for typical values for the various trace gases).

The Grooss and Russel (2005) climatology has been built from the instrument data of HALOE that observed mixing ratios of important trace species in the stratosphere for more than ten years, starting in 1991. A zonal climatology has been compiled for O_3, H_2O, CH_4, NO_x, and HCl. In this article we used data on 5 degree latitude bins and 22 pressure levels from 316 to 0.1 hPa. Seasonal dependence is taken into account with monthly data derived from 1991–2002 observations. The most recent data since September 2002 have not been included in this climatology, since in 2002 a very unusual major warming occurred in Antarctica, and as observations have been less frequent after 2002.

The primary data analyzed in the Randel et al. (1998) climatology are HALOE vertical profile measurements covering the period 1991–1997. Data have been combined as
monthly zonal averages, on 4 degree bins equivalent latitudes (i.e., the latitude of an equivalent potential vorticity distribution arranged symmetrically about the pole), and on 16 pressure levels spanning 100–0.32 hPa (approximately 16–56 km), with a vertical spacing of about 2.5 km. HALOE data have been complemented with Microwave Limb Sounder (MLS) (version 4) and Cryogenic Limb Array Etalon Spectrometer (CLAES) (final retrieval version) instrument data, both with measurements of additional chemical species and measurements in winter polar latitudes where HALOE observations are unavailable. The period of observations for CLAES is much shorter however, that is October 1991–May 1993. We analyse in this article simulations of HNO$_3$, N$_2$O and ClO against CLAES HNO$_3$, N$_2$O, and MLS ClO observations.

3.3 SMR/ODIN

The Odin mini-satellite is a Swedish-led project funded jointly by Sweden, Canada, France, and Finland (Murtagh et al., 2002). It was launched in February 2001, and is still operational. Odin includes two instruments that measure various compounds: the Optical Spectrograph and Infrared Imager System (OSIRIS) and the Sub-Millimeter Radiometer (SMR) (Frisk et al., 2003). In this study we used retrievals of the 502.296-GHz N$_2$O line obtained from the SMR data (see a description of the retrieval method in (Rodgers, 2000)). Measurements have been analyzed using V222 up to July 2005 (Urban et al., 2005) and version V225 after October 2005. N$_2$O can then be retrieved from about 100 hPa to pressures below 1 hPa with a vertical resolution of about 2–3 km. The total systematic error covers 3–35 ppbv for mixing ratios from 0 to ~150 ppbv, respectively. Validation of the N$_2$O observations appears in Urban et al. (2005).

For the present study, we restricted our evaluation to N$_2$O data with a measurement response greater than 0.75, i.e., where a priori information is in minority. Measurements have been monthly averaged into 10° latitude boxes from August 2001 to December 2005 in the vertical domain 100-1 hPa.
3.4 MOPITT/TERRA

The Measurements Of Pollution In The Troposphere (MOPITT) instrument, on-board the NASA satellite Terra, has been making nadir observations since March 2000. MOPITT views the Earth over all latitudes with a pixel size of 22 km by 22 km and a cross-track swath that gives a near-global distribution of CO every 3 days, providing the first continuous global measurements of CO in the troposphere (Drummond and Mand, 1996). MOPITT measures the infrared radiance upwelling from the Earth’s surface and atmosphere; retrievals cannot therefore be performed over cloudy regions. CO mixing ratio profiles and total column amounts are retrieved, although there is considerable correlation between levels with about 1.5–2 independent pieces of information. Since the inversion of the measured radiances is an ill-posed problem, meaning there is not a unique solution, it is necessary to constrain the retrievals with a priori information. In polar regions, MOPITT CO retrievals are weighted by the a priori profile much more heavily than in other regions, and therefore contain less information. Similarly, night-time MOPITT retrievals often contain less information than day-time retrievals, especially over land. A summary of the retrieval technique appears in Deeter et al. (2003). Generally the accuracy is better than 10%; validation results are provided in Emmons et al. (2004, 2007).

In this study we used level 3 version 3 monthly profiles available from the ftp site ftp://l0dps01u.ecs.nasa.gov/MOPITT/MOP03M.003/, which consist of averages gridded on a global 1°×1° grid. Mixing ratios on 7 vertical levels (surface, 850, 700, 500, 350, 250, and 150 hPa) are provided together with the averaging kernels.

3.5 SCIAMACHY/ENVISAT

SCIAMACHY (SCanning Imaging Absorption spectrometR for Atmospheric CartogRaphy) is an instrument on-board ESA’s environmental satellite Envisat launched in March 2002, having an equator crossing time at 10:00 a.m. on descending mode. SCIAMACHY observes earthshine radiance in limb and nadir viewing geometry, and
solar and lunar light transmitted through the atmosphere in occultation viewing geometry. Vertical profiles and columns of a variety of atmospheric constituents are inferred, but we considered here NO$_2$ columns only. The typical size of the nadir ground-pixel for NO$_2$ is $30 \text{ km} \times 60 \text{ km}$, and SCIMACHY provides a global coverage at the equator within 6 days. A complete description of SCIAMACHY and its mission can be found in Bovensmann et al. (1999) and references therein. Piters et al. (2006) present an overview of SCIAMACHY validation. For the NO$_2$ columns, the largest uncertainties are due to clouds, but other large errors come from surface albedo, and a priori profile shape. Generally, the accuracy is better than $10^{15} \text{ molec cm}^{-2}$, but the discrepancy with other measurements can be as high as $3.5 \times 10^{15} \text{ molec cm}^{-2}$ at polluted sites of the northern hemisphere. Several comparisons of the NO$_2$ columns with ground-based and other satellite observations have recently been published (Schaub et al., 2007; Blond et al., 2007; Boersma et al., 20072).

We obtained the data from the Tropospheric Emission Monitoring Internet Service (TEMIS) web site http://www.temis.nl/airpollution/no2col/data/. They consist of global, monthly, total and tropospheric columns at $0.25^\circ \times 0.25^\circ$ horizontal resolution. We chose to evaluate our model results against SCIAMACHY retrievals rather than GOME ones, as the GOME data were available until June 2003 only. The slant columns from SCIAMACHY observations are derived by the Belgian Institute for Space Aeronomy (see Eskses and Boersma, 2003 for details on the method). The retrieval technique of TEMIS includes a data assimilation technique to estimate the stratospheric part of the NO$_2$ column (KNMI, TM4 model), which is an essential step in determining quantitatively accurate tropospheric NO$_2$ and total columns (see Boersma et al., 2004 for details).

2Boersma, K. F., Jacob, D. J., Eskses, H. J., Pinder, R., Wang, J., van der A, R. J.: Intercomparison of SCIAMACHY and OMI tropospheric NO$_2$ columns: observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res., submitted, 2007.
3.6 MOZAIC

The European Measurement of OZone and water vapor by Alrbus in-service airCraft program (MOZAIC) aims to document the global distribution of some chemical species in the troposphere and the lower stratosphere using instruments on-board regular long-range aircraft (Marenco et al., 1998). This project results from the collaboration of the aeronautics industry, airline companies, and research laboratories for the development and operation of specific instruments, the distribution of observations, and their use for the validation of models (Law et al., 1998, 2000). Five long-range aircraft were equipped for the regular measurements of meteorological and chemical parameters during whole flights. Flight parameters (time, geographical coordinates, pressure, and aircraft speed) are measured every 4 s, together with thermodynamical (temperature, wind speed) and chemical (O$_3$, H$_2$O, CO, and NO$_y$) parameters in the vicinity of the aircraft. During phase I of MOZAIC (from 1993 to 1996), O$_3$ and H$_2$O were the only chemical compounds measured. New instruments were developed during phase II (from 1997 to 1999) for sampling CO (Nédélec et al., 2003) and NO$_y$ (Volz-Thomas et al., 2005), while O$_3$ and H$_2$O measurements were on-going. Since the installation of these new instruments (phase III), CO and NO$_y$ measurements complement O$_3$ and H$_2$O observations. Almost 20 000 flights have been documented between the beginning of MOZAIC in 1994 and May 2006. The spatial coverage of the MOZAIC measurements is interesting, as aircraft fly over most of the northern hemisphere. However, the main air corridors, between Europe and North America, represent almost half of the sampled flights; some flights cross the Equator. About 90% of the MOZAIC measurements are made during the cruise, between 9 and 12 km. The remaining measurements are performed during ascent and descent phases, providing information on the vertical structure of the tropospheric chemistry.

We chose to use data from the MOZAIC database (http://mozaic.aero.obs-mip.fr/web/) evaluated in the literature that are averaged data every 1 min and/or every 150 m along the vertical axis for the period extending from 1 January 2000 to 30 April 2004.
For NO$_y$ measurements, only the reliable data have been retained excluding values below the detection limit (Volz-Thomas et al., 2005). No comparison was conducted for water vapor measurements because MOCAGE-Climat H$_2$O mixing ratios in the UTLS are those of the ECMWF analyses already evaluated in Oikonomou and O’Neill (2006).

We averaged data in 3-D boxes, 2.8°×2.8° along the horizontal, and in the vertical the layer between the 340 and 350 K isentropic levels, where most of the observations are performed. We further made averages over 3-month periods to look into the seasonal variability; monthly periods included too few data. In addition to this climatological analysis, we computed histogram distributions that take into account all the 1 min data available in six regions of the world, to distinguish among mid and tropical latitudes, oceans and continents. These regions cover North America (130–90 W, 30–70 N), South America (80–40 W, 45 S–10 N), the northern Atlantic ocean (60–15 W, 10–60 N), Europe (10 W–30 E, 30–70 N), Africa (15 W–45 E, 35 S–30 N), and Siberia/Asia (45–155 E, 10–60 N).

3.7 Other non-satellite observations

We used part of the climatology of Logan (1999a) which includes observations from a number of ozonesonde stations, mainly from the WOUDC. We analyzed data from 23 stations that we retained, which represent about two thirds of the stations in the Logan (1999a) dataset, namely those that included observations after 1980, and with a climatology for all the months of the year. Only five of these stations are located in the 30 S–30 N band; the others are situated at higher latitudes, in polluted as well as pristine areas. The monthly profiles include data on 22 pressure levels, both in the troposphere and in the stratosphere, from the surface up to 10 hPa (10 levels up to 200 hPa).

We also made comparisons with the three-dimensional climatology distribution of tropospheric OH by Spivakovsky et al. (2000). Although advances have been made in measuring concentrations of OH, one has to rely on models to provide an integrated measure of the oxidative capacity of the atmosphere because of the extreme variability
of OH in time and space. The monthly distribution of Spivakovsky et al. (2000) has been computed using observations of a number of precursors for OH, including for instance O$_3$, H$_2$O, and various nitrogen species, over the period 1978–1996. The distribution of OH was then derived as a function of these precursors, temperature and cloud cover on a 8° lat×10° lon grid, from the surface up to 100 hPa in the tropics (200 elsewhere).

Finally, we completed our reference set with the data compiled by Emmons et al. (2000) that consist of tropospheric measurements of ozone and its precursors from a number of aircraft campaigns. Although these are not climatologies in the sense of a long term average, they provide a unique picture of the global distribution of these species. We used averaged profiles over a number of regions of the world with a 1 km vertical resolution.

4 Model results and evaluation

4.1 Description of the simulations performed

We ran MOCAGE-Climat with the analyses of the NWP model of ECMWF (IFS). We integrated MOCAGE-Climat over six years with the same vertical resolution as IFS, 60 layers from the surface up to 0.1 hPa, from 1 January 2000 to 31 December 2005, at two truncations T21 and T42. For each horizontal resolution, we performed simulations with and without the simplified treatment of the boundary layer (see Sect. 2.1); four simulations have been made, noted in the rest of the paper by T21, T21BL1, T42 and T42BL1. In general, unless otherwise specified, we analyse climatological model monthly means calculated over the 2000–2005 period.

The initial conditions of the stratospheric species have been derived from a zonal climatology built from a 6-year simulation performed using the ARPEGE-Climat GCM coupled to the REPROBUS CTM (WMO, 1998). This climatology that reflected the mid-90s chemical conditions was adapted to the year 2000 conditions, reducing for instance the mean chlorine mixing ratio from 3.62 to 3.54 ppbv, according to the values
reported in WMO (2002). The climatological state provided to the model allows us to reduce the spin-up in the stratosphere. For the tropospheric species, a mean global value is used in the lowest levels of the model that correspond approximately to the boundary layer; this crude initial state is rapidly lost, within a few days.

Another 6-year simulation was performed with the “cheapest” configuration of MOCAGE-Climat (i.e., T21BL1) in order to analyze the model stability over a longer time period, initializing 1 January 2000 with the conditions of 31 December 2005 obtained from the first 6-year sequence, and driving the CTM again with the 2000–2005 ECMWF analyses (experiment T21BL1bis).

Finally, a 6-year simulation was performed as a sensitivity test to the dry deposition velocity; forcings were identical to the T21 forcings, except for the deposition velocities that were climatological (simulation T21DvClim, see Sect. 5 for details and results). A summary of the six simulations performed appears in Table 6.

Prior to these experiments, specific simulations had been done to evaluate the transport processes in MOCAGE-Climat. Considering idealized tracers only, a total of 20 years were simulated using repeatedly the ECMWF operational analyses of 2000 and 2001. These simulations were performed according to the Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (SCOUT-O3) specifications; for instance, the use of a continuous and linearly increasing source in the tropical troposphere allowed us to access to age of air, and thus to transport accuracy; we present a summary of the results obtained in the following section.

4.2 Age of air (AOA)

Transport in the stratosphere involves a meridional circulation, the so-called Brewer-Dobson circulation, mixing with mid-latitudes, and vertical diffusion. Mixing with mid-latitudes is highly inhomogeneous with transport barriers in the subtropics, and at the edge of winter time polar vortices. Air parcels coming from the troposphere enter the stratosphere at tropical latitudes. Once in the stratosphere, they are elevated by the Brewer-Dobson circulation, meridionally transported towards the winter pole and
descend at mid- and high latitudes. The longer a parcel stays in this stratospheric circulation, the higher is the probability that it can be chemically or photo-chemically affected. Therefore, the correct representation of this circulation in a CTM is of primary importance as it determines the accurate simulation of long-lived chemical components originating from the troposphere (the stratospheric source species). One way to assess the quality of this transport is to follow air parcels from the troposphere to the lower polar stratosphere. As there is an infinity of pathways corresponding to the so-called “age spectrum”, an alternative way is to determine the mean age of air (AOA) that is the first moment of the age spectrum; for doing so, a simple tropospheric tracer is continually emitted with a linear growth in time (Hall and Waugh, 1997).

MOCAGE-Climat simulations were performed at T21 and T42 resolutions with the injection of a tracer between 10S and 10N, in the surface-500 hPa layer. According to the Brewer-Dobson circulation, the oldest air is to be found at high latitudes of the lower stratosphere. However, results from MOCAGE-Climat show deviations from this statement due to young air mixed out of the tropics in the lower stratosphere; the oldest air is then found in the upper stratosphere (see Fig. 1).

The zonal distribution shows the AOA to have minimum values in the tropical lower stratosphere, illustrating the rapid motion of air through the tropopause. AOA is maximum in the upper stratosphere with a smoother latitudinal gradient as altitude increases. Simulations of MOCAGE-Climat show much younger AOA than deduced from observations of SF$_6$ (Harnisch et al., 1996; Boering et al., 1996): at 20 km of altitude, measured AOA ranges from 1 year in the tropics up to 4.5–6 years at polar latitudes. The simulated AOA differs depending on the horizontal resolution, from 0.5 to 2.3 years for the T21 simulation, and from 0.3 to 1.8 years for the T42 simulation, indicating that the transport is really too fast in the stratosphere of MOCAGE-Climat when driven by the ECMWF operational analyses. This was noted by Bregman et al. (2006) for their CTM TM5 using ECMWF forcing. We might expect the age of air to increase with increasing horizontal resolution as has been observed in several Eularian CTMs (Norton, 2000). In this case, with increasing horizontal resolution, the age of air has slightly de-
increased which is perhaps surprising but consistent with results presented later in the paper. We repeated the same AOA experiment driving MOCAGE-Climat with the meteorological outputs of the ARPEGE-Climat GCM; the resulting AOA is about twice as old as the one obtained with the ECMWF forcings, agreeing better with observations, but still too young. We chose however to drive our simulations with the ECMWF meteorological analyses rather than the ARPEGE-Climat outputs as these analyses are the closest to the real atmospheric fields and are therefore the best to use for an evaluation of the CTM against observations. Outputs from ARPEGE-Climat will be used for long-term simulations.

4.3 Numerical stability of simulations

Before looking further into the results, it is important to make sure that the model is conservative, that it does not produce or destroy mass during the simulations, especially for climate purposes when simulations should run over decades. One way to assess the numerical stability is to look at the evolution of the global mean of the ozone column (zonal and latitudinal average), as ozone is directly or indirectly linked to all other chemical species. Drifts of individual species could in the end compensate and result in no drift of the ozone column, but analyzing the evolution of this parameter provides a first estimation of the robustness of the model.

Figure 2 shows the evolutions of the global means obtained with the various simulations. The annual cycle of ozone is quite obvious, with a maximum occurring during the boreal winter in association with stronger activity of planetary waves. The model reaches equilibrium around 290 Dobson units (DU) for the T21 simulation, 292 for T21BL1, 308 for T42, and 309 for T42BL1; these figures are consistent with the generally accepted value of 300 DU.

A bias smaller than 2 DU exists between the T21 and the T21BL1 simulations while the T42 simulations lead to ozone columns higher by 17–18 DU than the T21 case. This increase, in parallel with an increase in horizontal resolution, could be related to stronger meridional circulation, and to less numerical diffusion that would counteract
the rapidity of the circulation. The same behaviour has been found when using the linear ozone chemistry within MOCAGE-Climat. This tends to confirm the hypothesis of dynamical causes for higher ozone columns when the horizontal resolution increases.

In the T21BL1bis simulation, similar to the T21BL1 one except for the initial state, MOCAGE-Climat rapidly simulated total ozone columns which were comparable to those obtained during the T21BL1 experiment (we note that, by coincidence, the global total column of December 2005 is close in value to the column of January 2000, which is not the case for December 2003 for instance). This shows that the decreasing modeled ozone columns between 2001 and 2005 are not linked to the initial conditions, but principally to chemical equilibrium driven by the meteorological forcing. Using climatological deposition velocities in experiment T21DvClim, the resulting ozone is quasi-identical to that obtained with the T21 simulation which included a detailed calculation of these velocities.

According to this simple test, the numerical stability of the various simulations completed with MOCAGE-Climat appears satisfactory as there is no drift in the total ozone column even after a 12-year integration of the model. Therefore, more detailed comparisons to observations can be pursued.

4.4 Long-lived species

Chemical species that have a rather long lifetime, typically more than one year, are often sources of stratospheric radicals and reservoirs. The chemistry of these source species is rather simple and mostly restricted to photo-dissociation or thermal reaction with OH or O(\(^{1}\)D), the latter being mainly present in the middle atmosphere. Therefore, long-lived species are well-mixed within the troposphere and their concentrations start to decrease once they enter the stratosphere. As a consequence, they can be relatively good markers of transport processes, particularly in the UTLS region, as used for
instance by El Amraoui et al. (2007). They are also of primary importance for validating photo-dissociation rates, and as they determine the nitrogen, chlorine or bromine contents of the atmosphere of the model.

4.4.1 Methane (CH$_4$) and water vapor (H$_2$O)

CH$_4$ is an atmospheric gas emitted at the surface that has a major radiative impact on the atmosphere, and that interacts with the whole atmospheric chemistry through reacting with OH, and therefore with several chemical cycles such as those involving halogens (Brasseur and Solomon, 1986). In 2000, the average mixing ratio at the surface ranged from 1708 to 1784 ppbv (WMO, 2002). The mean global growth for the period 1983–2000 is estimated as 8.5 ppbv yr$^{-1}$; however, in the past few years, this rate has displayed striking fluctuations, with for instance a negative rate in 2000 (Simpson et al., 2002). The reason for these changes in behaviour is still unclear and shows that extrapolations for the future are hazardous. The strengths of many of the sources are still uncertain due to the difficulty in assessing the global emission rates of the biospheric sources which are highly variable in space and time (e.g., emissions from wetlands that represent approximately 160 Tg (CH$_4$) yr$^{-1}$). Due to its long lifetime, around 8.4 years (Houghton et al., 2001), methane is a good dynamical tracer and may be used to verify the simulations of meridional transport and diabatic descent in the polar vortices. The ability to correctly simulate CH$_4$ (and H$_2$O) is a useful benchmark for numerical models of the middle atmosphere (Randel et al., 1998). In the stratosphere, the overall structure and variability of CH$_4$ is strongly coupled with H$_2$O: as a first approach, it can be considered that the destruction of one molecule of CH$_4$ yields to the production of two molecules of H$_2$O.

3El Amraoui, L., Peuch, V.-H., Ricaud, P., Massart, S., Urban, J., Semane, N., Teyssèdre, H., Cariolle, D., and Karcher, F.: Ozone loss in the 2002/2003 Arctic vortex deduced from the assimilation of Odin/SMR O$_3$ and N$_2$O measurements: H$_2$O as dynamical tracer, Q. J. R. Meteorol. Soc., submitted, 2007.
Comparisons between outputs of the MOCAGE-Climat T21 simulation and the zonal \(\text{CH}_4 \) from Grooss and Russel (2005) are shown in Fig. 3, between 100 and 0.1 hPa, for the months of March and September. Though simulations are in quite good agreement with observations, with absolute relative differences lower than 10% over large parts of the stratosphere, \(\text{CH}_4 \) mixing ratios from the model appear generally too low in the upper stratosphere, except over parts of the highest levels. Consequently, \(\text{H}_2\text{O} \) mixing ratios (not shown) are underestimated throughout the stratosphere, with relative differences between simulations and observations varying from –10% to –25%. Some typical features are fairly well reproduced by the model: the diabatic descent in the southern polar vortex in September is not as marked in the simulations (see Fig. 3) as it will be seen also in Sect. 4.4.3 for \(\text{N}_2\text{O} \) comparisons. The dehydration is however very similar in the simulations and observations (not shown). In addition, the distinctive “rabbit-ears” shape in the observations in March associated with the equatorial quasi-biennial oscillation (Randel et al., 1998) is not clearly simulated, but transforms in September into an axis of maximum mixing ratios shifted towards northern latitudes, both in the model and in the observations. Overall, \(\text{CH}_4 \) shows a fairly realistic distribution in the stratosphere.

4.4.2 Carbon monoxide (CO)

Carbon monoxide is a precursor to tropospheric ozone, it influences the abundance of OH and hence the tropospheric oxidation capacity and methane, and it is a source of carbon dioxide. It thus affects the three most important greenhouse gases. Because of its relatively long lifetime in the troposphere (~1 month) it provides a view of transport processes in the model in this layer. Tropospheric CO is directly emitted at the Earth’s surface and is also chemically produced by the oxidation of hydrocarbons in the troposphere. Both direct and indirect sources include a mixture of contributions from natural (e.g., oceans or vegetation) and anthropogenic activities (e.g., biomass burning). Of all the tropospheric primary pollutants, CO is among the best observed in the troposphere at the global scale from satellites. It is the only pollutant for which global satellite data
We applied the monthly averaging kernels available with the MOPITT data set (1° grid) to the monthly outputs of the T42 simulation interpolated on the same 1° grid. We therefore obtained transformed model data, comparable to the MOPITT data (Emmons et al., 2004). Figure 4 presents comparisons between the model and the observations as latitude-longitude maps on pressure levels. We focus on January and July which are monthly means of the six years of data as the initial state is lost after about one month. These months are intermediate between April, where there is a springtime maximum of CO in the northern hemisphere, and October, with the peak of the southern hemisphere biomass burning season linked to biomass burning emissions in South America, southern Africa, the maritime continent, and northern Australia (see Shindell et al., 2006; Edwards et al., 2006). Two pressure levels that contain vertically independent information are shown, the 700 hPa level gives an indication of the agreement in the lowest levels of the troposphere, while the 350 hPa level gives additional insight on the transport processes.

MOCAGE is able to capture some of the characteristics of the global spatial distribution of CO as observed by MOPITT. For instance, at 700 hPa the model successfully reproduces the maxima over Africa north of the Equator in January and south of the Equator in July, while the maximum over South America in July is about 1 to 2 months too early. This temporal shift induces positive biases of more than 40% (around 30 ppbv) that extend over the tropical western Pacific following trade winds. Agreement between model outputs and observations is better in July than in January, and better at 350 than at 700 hPa. The model underestimates the concentration of CO in the northern hemisphere in January, and north of 30 N in July, with relative differences varying from less than 20% at 350 hPa over most of the globe in July to around 30% over large parts of the northern hemisphere at 700 hPa in January. In contrast, the model overestimates the concentration of CO in the southern hemisphere, for both seasons and pressure levels, with the largest relative differences (above 40%) essentially at low mixing ratios (<60 ppbv). The model accumulates CO over northern India and the Hi-
malaya, and this is related to high emissions in the populated regions at the base of the mountains further relayed by the Asian summer monsoon. Li et al. (2006) reported on how the anthropogenic emissions are “trapped” by the Tibetan anticyclone. However, the accumulation by the model is too large compared with observations.

The time versus latitudes diagrams at 700 hPa clearly show that the variability is lower in the model. Some large structures are correctly reproduced, such as the lower mixing ratios between 70S and 30 S around the boreal winter time, and the higher mixing ratios between 30 S and the Equator that appear too early, as already mentioned, and with a duration being too long. Between the Equator and 30N, the seasonality is correctly simulated but with an overestimation of the minima and an underestimation of the maxima. The major discrepancy is north of 30N, and this also appears in the diagram at 350 hPa.

On-going validation of the MOPITT CO is reported in the literature and gives a context to these results. Emmons et al. (2004) validated MOPITT measurements from the beginning of operations until December 2002 with a variety of aircraft in-situ profiles. Over North America, they report at 700 hPa a positive bias of 7–14% (±7–18%) consistent with that of Emmons et al. (2007) who validated MOPITT measurements over North America during several aircraft experiments in the summer of 2004. At 350 hPa the bias was estimated as ∼3% (±6–8%). Emmons et al. (2004) indicate that larger biases are seen in clean environments, such as the south Pacific.

Further insight on model simulation of CO is given in Shindell et al. (2006) who analyzed present-day and future carbon monoxide simulations in 26 state-of-the-art atmospheric chemistry models against MOPITT observations and local surface measurements. The models showed large underestimations of northern hemisphere extratropical CO, while typically performing reasonably well elsewhere. Shindell et al. (2006) attributed the negative bias to a substantial underestimation of CO emissions, that are the same emissions we used here. It is also probable that some of the underestimation is due to the fact that there is no seasonality in the anthropogenic emissions that dominate over these regions. In the southern hemisphere, the overestimation of
MOCAGE-Climat that we show seems to indicate that emissions of CO south of the Equator, which are mainly from a biomass burning origin, are too strong. It could be also that the transport from the Equator towards the polar regions is too fast, bringing too much CO towards latitudes where its lifetime is longer.

In the UTLS, systematic CO observations are mainly ensured by MOZAIC measurements. For our evaluation, we made on-line interpolations during the simulations to get model outputs coincident in time and space with the MOZAIC observations. At aircraft cruise level (Fig. 5), MOZAIC shows a strong meridional gradient between the Equator and 70N, modulated by a seasonal cycle; the highest CO mixing ratios are encountered at low latitudes, with values up to 100 ppbv that extend in summer to mid-latitudes. This gradient is related to air sampling, as aircraft fly in the lower stratosphere at mid-latitudes, and in the troposphere at low latitudes. MOCAGE-Climat captures both the latitudinal gradient and the seasonal cycle. However, the model generally overestimates CO in boreal summer while there is no systematic bias in winter.

When looking at frequency distributions of CO with MOZAIC measurements made at all flight levels, over various regions of the globe (see Sect. 3.6 for their definition, and Fig. 6), MOCAGE-Climat exhibits narrower distributions than MOZAIC, with the T42 simulation closer to observations than the T21 simulation, probably in relation to a better description of the convection and to a better resolution of the tropopause. In the tropical band, while the model clearly underestimates measurements over South America, the agreement is very good over Africa, particularly for the T42 simulation. At northern mid-latitudes, MOCAGE-Climat underestimates the highest CO mixing ratios, as already seen in the comparisons with the MOPITT observations.

4.4.3 Nitrous oxide (N\textsubscript{2}O)

N\textsubscript{2}O is considered as one of the three most important anthropogenic greenhouse gases along with CO\textsubscript{2} and CH\textsubscript{4}; it is also the major source of stratospheric nitrogen that can affect O\textsubscript{3} (Randeniya et al., 2002). Its atmospheric burden has increased regularly from 295–299 ppbv in 1978 up to 315–317 ppbv in 2002, as reported by Prinn et al. 2002.
al. (2000) and WMO (2002). Surface emissions represent the only source of N$_2$O, and comprise anthropogenic emissions (cultivated soils, industrial processes, and biomass burning), and natural emissions (continental soils and oceans). Its principal sinks are photo-dissociation and reaction with O(1D) in the stratosphere. Both reactions produce molecular nitrogen N$_2$, but can also lead to NO$_x$ production. In this case, the main channel is N$_2$O+O(1D)→2×NO with a relatively fast chemical reaction rate. The lifetime of N$_2$O has a mean value of 120 years (WMO, 2002), it is therefore rather well mixed within the troposphere. Nevertheless, Ricaud et al. (2007) showed from ODIN N$_2$O observations that this compound can have spatial variations in the upper troposphere-lower stratosphere, especially in the tropics.

Figure 3 presents the UARS climatology of Randel et al. (1998) and model outputs from the T21 simulation for March and September: the modeled N$_2$O field is consistent with the observations, maximizing in the lower stratosphere and decreasing as the altitude increases. The vertical gradient is well reproduced by MOCAGE-Climat, revealing that the photodissociation rate of N$_2$O is reasonable. In the lower stratosphere, MOCAGE-Climat simulates a smoother N$_2$O field than UARS. At the lowest levels of the UARS measurements (i.e., around 100 hPa), the model exhibits higher mixing ratios than measurements, especially in the tropics where troposphere to stratosphere exchanges sometimes take place in association with convective events, as shown by Ricaud et al. (2007).

For comparison with ODIN/SMR observations, the simulated N$_2$O fields have been averaged in 10° latitude boxes. Figure 7 shows the evolutions between 2001 and 2005 of the zonal averages over three latitude bands with different dynamical characteristics, 80 S–70 S, 10 S–EQ, and 50 N–60 N. In the tropical low stratosphere (10 S-EQ), MOCAGE-Climat reproduces N$_2$O in good agreement with ODIN, and this reflects the accuracy of the ECMWF analyses as the N$_2$O field is driven mainly by dynamics. In the tropical high troposphere, that corresponds to the lowest altitudes ODIN can observe, N$_2$O is rather well mixed both in MOCAGE-Climat and in satellite observations. However, as mentioned before, some variability appears around the 100 hPa level observed
by ODIN with a minimum occurring during the spring of 2004; this minimum is not re-
produced by the model. At higher latitudes (80 S–70 S and 50 N–60 N), agreement
between the model and the observations is not as good. Because of the importance
of the mesosphere with strong subsidence of mesospheric N₂O during winter, the lack of
its representation in the ECMWF analyses leads to an overestimation of N₂O at polar
latitudes. However, the seasonal cycle of larger and smaller mixing ratios at a given
level is well reproduced by the model.

On average, MOCAGE-Climat reproduces rather well the N₂O distribution that is
mainly constrained by the Brewer-Dobson circulation in the middle atmosphere. Thus
we can expect that this N₂O distribution of the model will lead to reasonable amounts
of nitrogen oxides in the stratosphere.

4.4.4 Total nitrogen oxides (NOₓ)

All chemical species that include the N atom, with the exception of N₂O that is very
stable, are members of the NOₓ family. This family should be seen as a global “en-
velope” for these species, either in a radical (see Sect. 4.5.1) or a reservoir form (see
Sect. 4.6.1) The main interaction between N₂O and NOₓ is through the photolysis re-
action that destroys N₂O. As MOCAGE-Climat simulated reasonable N₂O fields (see
Sect. 4.4.3), the next step is to validate the NOₓ mixing ratios. For doing so, we used
measurements from the MOZAIC program, as reported in Figs. 5 and 6.

The model has a positive bias, over all regions of the globe presented in Fig. 6.
According to MOZAIC measurements, very low mixing ratios (≤0.4 ppbv) represent one
of the most encountered class during flights. For the model, peaks of NOₓ distributions
are always shifted to higher values, 2 to 4 times higher, depending on the region. This
bias has a seasonal dependence: as shown in Fig. 5, the model overestimation is
higher in summer months when the chemistry that controls NOₓ is the most effective.
The bias conforms with the overestimation of the UARS observations of N₂O in the
lower stratosphere (see Fig. 3).
4.5 Short-lived species

Long-lifetime species can degrade into chemical species that are rather “aggressive” and therefore, have short lifetimes as they may react with a large number of chemical constituents in the atmosphere.

4.5.1 Nitrogen oxides (NO\(_x\))

Generally, the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO\(_2\)) is referred to as ‘nitrogen oxides’ (NO\(_x\)). These two components are strongly linked to each other as in the atmosphere they can change from one form to the other very quickly. Hence the NO\(_x\) family is more stable than its two components. These species control the ozone budget, particularly in the lower stratosphere (Brasseur and Solomon, 1986), and so their correct representation is essential to simulate a realistic ozone distribution there. In MOCAGE-Climat, NO\(_x\) is a so-called family that gathers NO, NO\(_2\), nitrogen trioxide (NO\(_3\)), and atomic nitrogen (N) that is mainly present in the middle atmosphere with mixing ratios weaker than a few pptv. The use of NO\(_3\) within the NO\(_x\) family allows us to take into account the equilibrium with NO\(_2\) that occurs at night-time; NO\(_3\) mixing ratios have maximum values of 320 pptv in the stratosphere, around 40–45 km, but the average mixing ratio at night-time at these altitudes is around 200 pptv (Hauchecorne et al., 2005), whereas under sunlight conditions, the NO\(_3\) mixing ratio is almost nil due to its very large photolysis frequency. In any case, the NO\(_3\) mixing ratio is at least one order of magnitude smaller than the one of NO\(_2\) as the latter reaches values at night, also around 40 km, between 14 and 16 ppbv (Hauchecorne et al., 2005). Therefore, the NO\(_x\) family defined within MOCAGE-Climat can be considered as consistent with the NO\(_x\) Grooss and Russel (2005) climatology, compiled from sunset measurements.

Figure 8 presents the stratospheric mixing ratios, from 100 to 0.01 hPa, of MOCAGE-Climat and of Grooss and Russel (2005), for January, May, and September. The general features of the NO\(_x\) distribution are quite well reproduced by the model, both spatially and temporally: the vertical gradient conforms with observations, with a rapid
increase and then a decrease around a maximum centered at \(\sim 3\) hPa. The seasonal cycle appears correctly simulated with higher mixing ratios in the mid-upper stratosphere at all latitudes in the summer season. Furthermore, the “rabbit-ear” shape clearly exists both in model results and in observations in May. Above the stratopause, the model overestimates \(\text{NO}_x\) in all seasons, which means that nitrogen species mainly remain in their reactive form (\(\text{NO}_x\)) instead of being converted to reservoir forms. At such altitudes, the nitrogen oxide reservoir is linked to chlorine through chlorine nitrate (\(\text{ClONO}_2\)). As we will see in Sects. 4.5.2 and 4.6.2, \(\text{ClO}\) there is mainly converted to \(\text{HCl}\) (its primary reservoir form), and is therefore unable to convert \(\text{NO}_x\), and especially \(\text{NO}_2\), into \(\text{ClONO}_2\).

Total (sum of stratospheric and tropospheric) \(\text{NO}_2\) columns from MOCAGE-Climat at 10:00 a.m. local time for May and September are shown in Fig. 9, together with monthly total columns derived from SCIAMACHY measurements interpolated on the T42 grid. High values are correctly simulated above regions of strong emissions of \(\text{NO}_x\) from fossil fuel combustion (e.g., over China or Western Europe) or biomass burning. Furthermore, the seasonality of biomass burning appears similarly in both simulations and observations, with in May relative maxima in Africa along 10\(^\circ\) N and 5\(^\circ\) S, and in September strong emissions in southern Africa and Central South America. In September also, smaller columns are correctly simulated in the 15\(^\circ\) N–15\(^\circ\) S equatorial band. However, values from MOCAGE-Climat are generally higher than those from SCIAMACHY. In May, the model is within ±20\% of the observations over most of the northern hemisphere and South America. In September, relative differences are higher, overestimation is particularly important in regions of biomass burning emissions. This is coherent with the overestimation we identified for \(\text{CO}\). Our bias is similar to the one presented in Bousserez et al. (2007) who compared tropospheric \(\text{NO}_2\) columns from MOCAGE with those from SCIAMACHY, over the northern Atlantic from the USA to Europe, in July–August 2004. Above southern oceans, where the total column is almost entirely of stratospheric origin, model mixing ratios show a pattern that is linked to the way we estimated off-line the amounts of \(\text{NO}_2\) at 10:00 a.m. Indeed, we computed these amounts...
from the 6-hourly 3-D archive, with a linear interpolation to yield hourly values. As NO$_2$ exhibits strong discontinuities between day and night, such a linear interpolation even though not fully adequate, still produces valuable results.

MOCAGE-Climat simulations lead to larger biases during the boreal winter than during other seasons. In the winter months, ratios between tropospheric and total columns from MOCAGE-Climat are larger than 0.7 over most of the northern hemisphere (north of 30 N, not shown). These ratios are much larger than the SCIAMACHY ones; there is no such dissimilarity between the model and the observations during the rest of the year. However, one has to keep in mind that detailed validation of NO$_2$ satellite products is ongoing, with special attention to tropospheric NO$_2$ (Piters et al., 2006). It should also be noted that Savage et al. (2004) who compared measurements of NO$_2$ by GOME to outputs from the TOMCAT global CTM reported measurements to model ratios of 1.4 for North America and 1.9 for Europe (mean values for an entire year). Several hypotheses could explain the overestimation of NO$_2$ in MOCAGE-Climat (and TOMCAT). Firstly, there is no heterogeneous loss of N$_2$O$_5$ on tropospheric aerosols in the model at present. Noije et al. (2006) and references therein indicate that considering such reactions could reduce the tropospheric NO$_x$ concentrations at middle and high latitudes by up to 80% in winter and 20% in summer, and in the tropics and subtropics by 10–30%. Secondly, too high mixing ratios near the surface could be related to the local vertical diffusion scheme of Louis (1979) that we use. Savage et al. (2004) reported that the boundary layer mixing in the model has been improved by replacing the Louis (1979) scheme by a non-local vertical diffusion scheme. Finally, the biases of MOCAGE-Climat could be related to how the various species within the NO$_x$ family are handled; indeed, if the repartition of these species is satisfactory for the stratosphere (Lefèvre et al., 1994), the NO$_2$ mixing ratios modelled here reveal that further investigation on the use of this family concept in the troposphere should be pursued.
4.5.2 Chlorine monoxide (ClO)

As suggested by Farman et al. (1985) and confirmed by various studies reported in WMO (1998), the amount of chlorine monoxide is of primary importance for ozone depletion throughout the stratosphere, and especially for the representation of the ozone hole. In the upper part of the stratosphere, the ozone controlling regime is mainly driven by the amount of chlorine, whereas at lower altitudes it is driven by nitrogen oxides.

Figure 10 presents the MOCAGE-Climat T21 monthly mixing ratios of ClO (day values only), between 100 and 0.3 hPa, in January and July along with the Randel et al. (1998) climatology, and their relative differences. On the whole, the model reproduces the typical structures of the observations, i.e., the two cells with higher values at about 3 hPa, and their seasonal shift towards high latitudes of the summer hemisphere, as well as the relative maxima between 50 and 20 hPa at high latitudes of the winter hemisphere. These relative maxima appear somewhat too large and shifted towards higher pressures. This might result from the use of different criteria in the satellite and model processing to retain day-time only mixing ratios. Modeled ClO mixing ratios seem too low throughout most of the stratosphere. As it will be confirmed in Sect. 4.6.2 active chlorine transforms more into its reservoir form (HCl) in the model than in the observations.

4.5.3 Hydroxyl radical (OH)

OH is the primary oxidant in the troposphere and is responsible for the removal of many reduced compounds; in addition, it determines the lifetimes of CH₄, CO, and other pollutants. Errors of 15–25% in the global mean concentration of OH may signify major misconceptions about the chemistry or the abundance of precursors of OH in the troposphere (Spivakovsky et al., 2000).

Zonal means of OH from MOCAGE-Climat at T21 resolution, as shown by Spivakovsky et al. (2000), for January and July between 1000 and 100 hPa, are presented in Fig. 11. Both model and observations reveal the seasonality of the OH mixing ra-
tios, with higher values in the northern hemisphere from March to September, that reflects variations in sunlight and water vapor. In general, simulated mixing ratios are larger than Spivakovsky et al. (2000), from the surface up to 800 hPa, and lower from 500 hPa up to the tropopause that is the upper limit of the Spivakovsky et al. (2000) dataset. In the lower troposphere, the overestimation exceeds 80% at most latitudes.

Biases in OH mixing ratios are reported in recent publications: Bousserez et al. (2007) also found that MOCAGE overestimated the observations performed from research aircraft during the ITOP campaign between the surface and 4 km, by a factor of 2, while it underestimated them for altitudes higher than 7 km, with analysed H$_2$O consistent with the observations. They suggested that the positive OH bias in the lower troposphere may be due to photochemical effects of aerosols not included in the MOCAGE used, i.e., aerosol scattering, absorption of ultraviolet radiation and reactive uptake of HO$_2$, NO$_2$ and NO$_3$. As another example, Ren (2007) found that their box model over-predicted OH by a factor of 1.7 throughout much of the troposphere in northern mid-latitudes; their analysis suggested the presence of unknown atmospheric constituents or unknown reactions with OH that are suppressing the observed OH at mid-latitudes.

Finding the causes of these discrepancies appears necessary for understanding the global-scale tropospheric oxidation capacity. Spivakovsky et al. (2000) indicated that the available tests did not establish significant errors in their estimates of OH except for a possible underestimate in winter in the northern and southern tropics by 15–20% and 10–15%, respectively, and an overestimate in southern extratropics by ~25%. However, the sparsity of observations did not allow for an unambiguous characterization of the distributions.

4.6 Reservoir species

Reservoir species, whose lifetime is longer than that of radical species, store radicals that they eventually release, and by doing so they modulate chemical cycles. For instance, the highly reactive radicals chlorine monoxide and nitrogen dioxide can react...
together to form chlorine nitrate that has a much longer lifetime and inhibits ozone destruction by these two radicals.

4.6.1 Nitric acid (HNO₃)

Nitric acid is likely to be the main reservoir of nitrogen species in the troposphere and the lower stratosphere. It is a highly soluble species and therefore, strongly affected by precipitation in the troposphere. It is a sink for nitrogen species in the stratosphere.

Figure 8 presents the zonal monthly HNO₃ mixing ratios for the model and the observations, in January, May and September, from 100 to 0.3 hPa. HNO₃ is evidently very dependent on the season at high latitudes, with an “eye-glasses” shape distribution, and maximum values in the winter hemisphere. The model reproduces quite accurately this distribution, both in terms of its latitudinal and vertical distributions, and its seasonality; however, mixing ratios that are too large at very high latitudes of the southern hemisphere in September reveal that the sedimentation of HNO₃, associated with Polar Stratospheric Cloud Particles, is too weak in MOCAGE-Climat.

We have evaluated HNO₃ in the troposphere by comparing model outputs to a selection of observations obtained from aircraft campaigns, as compiled by Emmons et al. (2000) and presented in Horowitz et al. (2003). We display in Fig. 12 model outputs that correspond to profiles that are averages over the region and for the months of the campaign. Our agreement with observations in the troposphere above 4 km is quite satisfactory at most locations shown. However, simulations are generally higher than observations in the layer between the surface and 3 km where model mixing ratios present a maximum between a sharp decrease towards the surface where HNO₃ dry deposition is very efficient, and another decrease to reach, at around 4 km, a mixing ratio that will remain constant up to the tropopause. The HNO₃ concentrations are very sensitive to the parameterization of the wet deposition, and this needs to be further investigated in MOCAGE-Climat. Another possible source of discrepancy could be higher biomass burning emissions in the model compared to the emissions at the time of the observations, and this could explain for instance the profile in the E-Brazil
region. Furthermore, this overestimation of HNO$_3$ is coherent with the overestimation of the NO$_2$ mixing ratios shown in Sect. 4.5.1 as HNO$_3$ is basically produced by the oxidation of NO$_2$. One has to mention however that many other current 3-D CTM overestimate HNO$_3$ concentrations at many locations throughout the troposphere (Horowitz et al., 2003). Hauglustaine et al. (2004) and references therein also outline the difficulty to simulate nitric acid in CTMs.

4.6.2 Chloridric acid (HCl)

Chloridric acid is the main chlorine reservoir in the upper stratosphere and mesosphere. It is formed by thermal reactions between ClO$_x$ and HO$_x$ and therefore is mainly present in the upper atmosphere where both families exist simultaneously.

Figure 10 presents the zonal monthly HCl mixing ratios for the model and the UARS observations, in January and July, from 100 to 0.1 hPa, together with the relative differences. Most of the time, the values from the model are higher than the observations, at all seasons and all latitudes, except for the low values from the model at high latitudes in the winter hemisphere, particularly in July, that do not appear in the observations. The positive bias in the model is mostly in the range of the uncertainties reported by Grooss and Russel (2005) who indicate that the combined systematic and random uncertainty of single HCl profiles in the lower stratosphere is between 14 and 24%, and between 12 and 15% in the upper stratosphere. In addition, Grooss and Russel (2005) note that HCl mixing ratios increased monotonically over the investigated time period, i.e., from about 2.8 ppbv to 3.35 ppbv at 0.3 hPa between 1992 and 1997; however, much slower mean changes have been observed thereafter (WMO, 2002). The model values might therefore be in better agreement with observations performed during the period of simulations (2000 to 2005). Nevertheless, the spatial characteristics of model outputs and observations are quite similar, with a positive gradient from the low stratosphere to the mesosphere, and with an equatorial low up to around 10 hPa; at lower pressures, zonal mixing ratios do not show any latitudinal gradient.

As already mentioned in Sect. 4.5.2, active chlorine in the model mainly ends up in
the reservoir form HCl in the stratosphere whilst it remains more in an active form in the observations. This is not the case at polar latitudes during winter and spring. At seen in Sect. 4.6.1, HNO$_3$ sedimentation appears too weak, thus heterogeneous reactions occurring onto particles formed from HNO$_3$ deplete HCl too much. As a consequence CIO amounts are too high in polar vortices (see Fig. 10).

4.7 Ozone (O$_3$)

Ozone is the most abundant trace constituent of the stratosphere. It is produced by a cycle initiated by photolysis of O$_2$ in the upper stratosphere (Chapman, 1930). Additional reactions, involving nitrogen oxides, chlorine and bromine species consume ozone; these reactive species can be temporarily removed from catalytic cycles being stored in reservoir species. It should be mentioned that though ozone mixing ratios in the stratosphere can be greater than 10 ppmv, it is in “chemical equilibrium” with trace species whose mixing ratios can be from one thousand to one million times smaller.

Interest in tropospheric ozone results from its impact both on the radiative forcing (Ramaswamy et al., 2001), on human health (WHO, 2003) and on vegetation. Present and future conditions of air quality are a subject of concern and scientific studies have recently turned to the potential influence of climate change on future levels of ozone (Stevenson et al., 2006, and references therein). There are two sources of tropospheric ozone: transport from the stratosphere, and in situ chemical production. Ozone production takes place when carbon monoxide and hydrocarbons are photo-oxidized in the presence of nitrogen oxides. The main ozone precursors are emitted by human activities, but also have significant natural sources. The ozone budget is closed by two loss processes: dry deposition to the Earth’s surface, and chemical destruction (Wild, 2007). Ozone destruction occurs mainly via reactions with water vapor (following photolysis) and with hydroperoxyl (HO$_2$) and hydroxyl radicals.
4.7.1 Total ozone column

The evolution between 2000 and 2005 of the zonally averaged total ozone column from the model is in fair agreement with the NIWA climatology (see Fig. 13). The well-known features of highest ozone values in northern spring, low ozone values in the tropics with a small seasonal cycle, a relative ozone maximum in the mid-latitudes of the southern hemisphere in late winter/early spring, and a minimum ozone column above the Antarctic are well represented. However, two positive biases appear: first, there is too much ozone at high and mid-northern latitudes, especially at the end of the boreal winter. This bias is consistent with the ECMWF forcings that drove our simulations; as shown in Sect. 4.2, the Brewer-Dobson circulation is too fast, resulting in too large a decrease in the amount of tropical ozone while accumulating too much ozone in the polar lower stratosphere in winter. As a result, the band of minimum ozone columns in the tropics is too narrow, inducing stronger meridional gradients than observed. This stratospheric circulation becomes even faster when increasing the resolution to T42: maxima of total ozone reach then unrealistic values over the pole (up to 600 DU, not shown). It should be noted that a similar positive bias exists in most of the thirteen coupled chemistry-climate models (CCMs) evaluated in Eyring et al. (2006).

A second bias appears in the modeled Antarctic ozone hole that is not deep enough in comparison to the NIWA climatology. One has to note however that observations at high zenith angles have larger uncertainties (McPeters et al., 1996). Most of the CCMs assessed in Eyring et al. (2006) underestimate the area and the mass deficit of the ozone hole, and this is related to an overestimation of the total global ozone column. Interestingly, the variability in area and depth of the ozone hole is well captured by MOCAGE-Climat. For instance, in September 2002 when the ozone hole split up into two cores, MOCAGE-Climat reproduced the two structures (not shown). This original feature of the ozone hole is mainly driven by atmospheric dynamics.

Figure 14 shows latitude/longitude distributions of the ozone column in January and
July. MOCAGE-Climat reproduces total ozone extrema in association with tropospheric meteorological systems that affect the tropopause height, inducing variations in the ozone column. For instance, the two maxima over the Labrador and Aleutian Islands, linked to winter depressions, are well reproduced by the model. However, the northern Atlantic ridge brings too much ozone from the tropics towards northern high latitudes; this could be due to wave breaking in the ECMWF analyzes being too strong, or to too strong horizontal diffusion linked to the T21 resolution. Over the western tropical Pacific, a minimum related to convection activated by warm sea-surface temperatures can be seen in the observations and is well captured by the model. In July, the total ozone distribution in the northern hemisphere is mainly driven by photochemistry, and therefore by solar zenith angle, leading to latitudinal bands of total ozone, with weak zonal gradients. Relative differences are smaller than in January, are lower than 10% over most of the globe.

The variability of the daily total ozone columns over a month is presented in Fig. 15 for January, April, July and October. TOMS and MOCAGE-Climat standard deviations show similar patterns. Low standard deviations are found in the tropics, with values typically smaller than 10 DU; the main source of variation is related to convection that can inject tropospheric air which is poor in ozone into the lower stratosphere during sporadic convective events. Higher standard deviations are calculated near synoptic depressions in winter or spring, for instance in April south of Greenland and east of Japan (40 DU for the TOMS). Even larger deviations appear at the edge of the polar vortices: in the northern Hemisphere they reach 60 DU in January, while in the southern hemisphere TOMS deviations linked to the polar vortex are above 75 DU in October. Effectively, if the polar vortex of the northern hemisphere is subject to strong planetary wave breaking, inducing high geographical variations of its shape, the differences in total ozone between the inside and the outside of the vortex are almost similar to the differences observed in relation to the moving of a depression. In contrast, in Antarctica the meteorological situation consists of a huge vortex almost centered over the South Pole, surrounded by several depressions. In the vortex, heterogeneous chemi-
istry occurs during austral spring and strongly depletes ozone. Thus, the ozone column is minimum within the vortex while it is maximum over the neighbouring depressions. During the austral spring, distortion of the vortex due to baroclinic activity can then lead to rapid changes in the ozone amount, and to large standard deviations.

The main patterns of the standard deviation are well reproduced by MOCAGE-Climat, showing that the model is able to capture the principal features of the variability of the total ozone column.

4.7.2 Stratospheric ozone

The total ozone column reflects especially the ozone amount in the lower stratosphere, and thus is not representative of what occurs at higher levels. Therefore, it is worth comparing modeled ozone with available climatologies. Figure 16 shows MOCAGE-Climat T21 zonal monthly mixing ratios of \(\text{O}_3 \) in April and October against the Grooss and Russel (2005) climatology, between 300 and 0.1 hPa. The vertical distribution is well reproduced by the model, with a clearly marked maximum at tropical latitudes around 10 hPa; this maximum is a little larger in the model (with relative differences smaller than 10%). The broad envelope of large mixing ratios distorts depending on the season, and the model correctly reproduces these distortions. The minimum at high latitudes of the southern hemisphere in October, in the polar vortex below 30 hPa, is more pronounced in the observations. Simulated ozone mixing ratios in the mid-mesosphere below 0.3 hPa are higher than the measurements. This could be linked to the peculiarities of the mesospheric chemistry which involves species under ion forms (see Brasseur and Solomon, 1986) that are not considered in MOCAGE-Climat. The homogeneous gas-phase chemistry of the model may therefore not be representative for the mesosphere, though it appears to provide reasonable upper boundary conditions. Another reason for these too high mixing ratios could be that, as chlorine is mainly under its reservoir form (HCl) at these levels (see Sects. 4.5.2 and 4.6.2), the mesospheric \(\text{O}_3 \) sink is weakened.
4.7.3 Ozone in the UTLS region

Figure 5 shows MOZAIC O_3 observations between the 340 and 350 K isentropic levels, for winter (DJF) and summer (JJA), MOCAGE-Climat T42 fields, and relative differences. The model tends to underestimate UTLS mixing ratios at mid and northern latitudes, and overestimate them in the tropics; this behaviour is somewhat seasonally dependent. For instance, discrepancies are less important in autumn, when the planetary wave activity increases and transports ozone towards the polar lower stratosphere, but discrepancies have also an inter-annual variability, with a different behaviour in 2002 for instance (not shown). The fact that modeled O_3 is weaker than MOZAIC O_3 is in apparent contradiction with comparisons with TOMS observations (model columns larger than TOMS ones at northern latitudes see Sect. 4.7.1). However, Figs. 17 and 16 throw some light on this as it shows that, at the same location, MOCAGE-Climat can both underestimate mixing ratios in the UTLS region and overestimate them at lower pressures that drive the total column value (see for example the profile at Resolute in July).

Two types of O_3 distributions can be distinguished, depending on the region of the world (see Fig. 6): at northern mid-latitudes, with sampling in the UTLS, MOCAGE-Climat and MOZAIC have similar shapes, with fewer occurrences of the smallest mixing ratios (0–20 ppbv) and a spread of large ones, but MOCAGE-Climat shifts the maxima towards larger mixing ratios and has fewer occurrences of very high mixing ratios typical of the stratosphere. At tropical latitudes, with narrow distributions centered around low mixing ratios, typical of the troposphere, the model reproduces the atmosphere well.

Our results are different from those of Law et al. (2000) who compared ozone from five tropospheric CTMs to MOZAIC observations. They found that models underestimated the tropospheric O_3 while they mainly overpredicted the stratospheric O_3. They explained that the overprediction could be due, in addition to horizontal and vertical resolutions, to the stratospheric influx as the evaluated CTMs, mainly tropospheric, had
a rather “poor” representation of the stratosphere. MOCAGE-Climat describes both layers, and tends to slightly underestimate stratospheric O$_3$, especially at high mixing ratios. This would seem to confirm the Law et al. (2000) argument.

4.7.4 Tropospheric ozone

Figures 17 and 18 show vertical profiles of O$_3$ mixing ratios, from from 1000 to 10 hPa, at various sites of the Logan (1999a) climatology, in January, April, July and October; both MOCAGE-Climat T21 and T42 simulations appear together with observations and their standard deviation.

At a number of mid-latitudes stations in the northern hemisphere, such as Hohenpeissenberg or Sapporo, simulations show ozone concentrations to be higher than the observations up to the tropopause, except in July where agreement with observations is quite good. In July, however, simulated concentrations are larger in the boundary layer at a few sites, and this is in part related to the higher levels of ozone precursors emitted from the surface in 2000. For the Wallops Island site for instance, the period of observations spans the years 1980–1993. Wild (2007) who explored the variability in current CTMs when they simulate the tropospheric ozone budget concluded on the importance of the emissions of the surface precursors. Seasonal variations in the boundary layer and the lower troposphere, reflecting variations in photochemistry and/or in the O$_3$ precursors linked for instance to the seasonal cycle of the biomass burning activity, are correctly simulated (see for example Wallops Island or Natal). At the tropical stations, the model tends to slightly overestimate mixing ratios in the lower part of the troposphere, and somewhat underestimate them in its upper part. This could reflect some weaknesses in the convection as well as in the deposition processes. O$_3$ in the upper-part of the tropical troposphere would also be greatly enhanced with the introduction in MOCAGE-Climat of a parameterization of NO$_x$ emissions from lightning, as outlined in Labrador et al. (2005). The resolution of the tropopause is better at mid-latitudes than at high ones (e.g., Resolute and Syowa stations). At these high latitudes, the model overestimates the height of the tropopause, with a smoother vertical gradi-
ent; the agreement between model and observations in the UTLS region is better for tropical stations (see Natal and Hilo). Simulations at T42 lead to outputs that conform better with observations in the UTLS region.

A closer insight into the simulated seasonal cycle of ozone at selected stations is provided in Figs. 19 and 20 with mixing ratios at three pressure levels (800, 500, and 300 hPa). At 800 hPa the model simulates quite well the spring maximum that exists at most sites. Values at pristine air sites at high latitudes or at mid-latitudes (e.g., Lauder) are in the range of observations, i.e., lower than 60 ppbv the whole year. At tropical sites, the seasonal cycle is quite similar to observations with a clear maximum at some stations linked to the biomass burning activity (e.g., Brazzaville, Natal), somewhat too accentuated in the model. At 500 hPa, the seasonal cycle is correctly simulated at about half of the sites studied, with good simulations of the tropical sites (e.g., Natal, Samoa). For the other half of the sites, mixing ratios are within the ±1 standard deviation range during half of the year, from May to October, while they are too high during the rest of the year. At 300 hPa, simulations are well within the range of observations, except for Brazzaville, with large standard deviations of observations at high latitudes (e.g., Alert, Syowa) reflecting stratospheric air intrusion. The coincidence between observations and simulations is particularly good at Lauder and Naha.

4.8 Summary statistics

We provide in this section a synthesized view of how the four simulations T21, T21BL1, T42 and T42BL1 compare with observations. This is shown in Fig. 21 as three Taylor plots (Taylor, 2001). The horizontal and vertical axes give the normalized standard deviation (model standard deviation/observation standard deviation), the curved axis gives the correlation coefficient, and the distance between the model and the observations (not plotted at 1 on the horizontal axis) is a measure of the centered root mean square error.

The first plot (see (a)) shows model outputs and observations in the stratosphere (100-1 hPa) against the Grooss and Russel (2005) and Randel et al. (1998) climatolo-
gies for all the chemical species previously analysed in the paper, i.e., N$_2$O, CH$_4$, NO$_x$, ClO, HNO$_3$, HCl, O$_3$. The dots that represent the four simulations are almost coincident for O$_3$, HNO$_3$ and N$_2$O. Furthermore, the dots for the simulations with and without the simplified boundary layer (T42 and T42BL1 for instance) are very close for all chemical species except for ClO. This is because we present daytime mixing ratios against the observations for the T21 simulation, that we recomputed in a second step as ClO observations appeared to be daytime observations. For the other three simulations we used for the Taylor diagram 6-hourly averages, hence the discrepancy between the ClO dots. The T21 simulation is closer to observations than the T42 simulation for CH$_4$, NO$_x$ and HCl. Overall, although there are minor differences between the four simulations, the T21 simulation is the one that provides the best comparisons to the Grooss and Russel (2005) and Randel et al. (1998) climatologies with correlation coefficients higher than 0.9 and variabilities very comparable to the variabilities of the observations. This could be due to the coherence between the horizontal resolutions of the observations and the model.

The second plot (see (b)) displays statistical information between the model and the MOZAIC observations in the UTLS (340–350 K layer), for O$_3$, CO and NO$_y$. Three simulations are shown as coincident outputs with aircraft observations but have not been produced for the T21BL1 simulation. The correlation coefficient for NO$_y$ is poor (∼0.3) while those for O$_3$ and CO are near 0.8. For O$_3$, the variability of the T42 simulation is closer to the variability of the observations than that of the T21 simulation. This is not the case for CO. The T42 and T42BL1 simulations have very close dots, and agree better with the observations than the T21 simulation.

The third plot (see (c)) presents information on ozone in the troposphere. O$_3$ modeled and measured mixing ratios over various latitude bands, i.e., latitudes higher than 60 S or 60 N (high latitudes), latitudes between 30 N and 30 S (tropics), and mid-latitudes, and for two pressure layers, 1000–800 hPa and 800–400 hPa, are shown. Clearly, simulations are further apart from observations in the tropical latitudes, with the lowest correlation coefficient for the 800–400 hPa layer. The closest group of dots
to observations is the high latitudes 800–400, then comes the mid-latitudes 800–400, with model variability very similar to observation variability and a correlation coefficient close to 0.8. The T21 simulation gets slightly better statistical scores than the T42 simulation, except for the 1000–800 hPa layer in the tropics. The Taylor plot does not indicate differences in biases that we show in Table 7: again, BL1 simulations, both at T21 and T42 resolutions are further away from observations, with for instance a bias of 21.3 ppbv for the T21BL1 simulation at mid-latitudes between 1000 and 800 hPa versus 13.5 for the T21 simulation. Biases are the smallest for the T21 simulation, except for the T42 case in the tropics between 800–400 hPa where the small bias of 0.6 ppbv is a blend of a positive bias at the highest pressures of the layer considered and of a negative bias at the lowest ones. Overall, these scores for O$_3$ in the troposphere are satisfactory given the effect of the horizontal resolution of models on ozone production efficiency. For instance, Liang and Jacobson (2000) and references therein, point out that integrated ozone production may be overpredicted by as much as 60% in coarse-model grid cells exposed to different air masses.

5 Sensitivity to surface processes

A number of recent studies have outlined the response of CTMs to surface emissions, running the models with various emission scenarios (Lamarque et al., 2005; Dentener et al., 2006; Stevenson et al., 2006; Shindell et al., 2006). We present in this section results related to the response to the sink component of the surface processes, that is the dry deposition process. Our objective is to complement with a climatological perspective the few results already published on the sensitivity of the boundary layer mixing ratios and of the deposition fluxes to the dry deposition velocity (Ganzeveld and Lelieveld, 1995; Ganzeveld et al., 1998). For doing so, we performed an additional 6-year simulation (2000–2005) noted T21DvClim. T21DvClim is similar to the T21 simulation except for the deposition velocities that are climatological monthly deposition velocities calculated from the on-line velocities of the T21 simulation. We com-
puted hourly climatologies as the diurnal cycle of the deposition velocity of a number of species (e.g., HNO$_3$, O$_3$) is well marked (Michou et al., 2004). We outline in Sect. 5.1 results about mixing ratios over the whole atmosphere, and we describe in Sect. 5.2 how dry deposition fluxes have been impacted by this change in the deposition velocities.

5.1 Mixing ratios

We synthesized the main differences between the T21 and T21DvClim simulations with regards to mixing ratios as follows: we analysed absolute relative differences of zonal monthly averages, and for each model level we looked the maximum of these relative differences. In the lines below we write “Relative differences” in place of “maximum of the relative differences” to be more concise. The highest relative differences are found for HNO$_3$, reaching 58%, with an average value of 17%; the largest differences appear in the troposphere: below 200 hPa relative differences are higher than 20% but are close to zero above 100 hPa. In general, for all the species presented here, relative differences are close to zero above 100 hPa. The next species in terms of large relative differences is NO$_2$, linked to HNO$_3$, with a maximum of 41%, and a mean of 10%; in the end, total NO$_2$ columns differ by about 1% on average over the whole globe and the year, and by a maximum of 35% (not shown). Then comes OH and O$_3$ with maxima of 25 and 21%, and means of 5 and 2% respectively. For O$_3$, the relative differences decrease rapidly from the surface up to about 800 hPa (lowest 10 levels of the model); the highest differences appear in May. Finally, all relative differences are below 6% for CO throughout the whole atmosphere. As for ClO and HCl they have non significant relative differences in the troposphere due to their very small mixing ratios, and relative differences lower than 10% in the stratosphere. For N$_2$O, relative differences are almost nil throughout the atmosphere.
5.2 Dry deposition fluxes

We have computed deposition fluxes (moles m$^{-2}$ s$^{-1}$) as the product of the gas concentration at the lowest level of the model (moles m$^{-3}$) and of its dry deposition velocity (m s$^{-1}$). Deposition fluxes may differ by region/model because of differences in the geography of the emissions, the strength and quality of the atmospheric transport, the chemical reactions involved from emission to deposition, and the processes covered to calculate the dry deposition velocity.

Our T21 O$_3$ deposition flux of 794 Tg(O$_3$) yr$^{-1}$ is lower than those simulated by a number of recent models: Stevenson et al. (2006) presented results from simulations performed by 26 chemistry models; the O$_3$ deposition flux of the ensemble mean for 2000 was of 1003 Tg(O$_3$) yr$^{-1}$, with a standard deviation of 200 Tg(O$_3$) yr$^{-1}$. Models included deposition schemes of varying levels of sophistication, but all used resistance type formulations (Wesely, 1989) coupled to prescribed land cover distributions, as we do in MOCAGE-Climat. These ozone deposition fluxes are larger than those of the IPCC TAR (Prather et al., 2001), that reported a mean O$_3$ flux of 770 Tg(O$_3$) yr$^{-1}$. Stevenson et al. (2006) indicated that the reasons for this change were not immediately obvious, but probably partially related to the higher total NO$_x$ emissions used compared to earlier studies; also isoprene emissions were somewhat higher; and NMHC schemes have developed in sophistication over the last five years. Our emissions of NO$_x$ are lower than those of Stevenson et al. (2006), by about 9%; so are our emissions of isoprene (15% lower) and monoterpenes (60% lower). Wild (2007) indicate also that at coarse resolution the dry deposition flux is systematically underestimated, 5–8% at the 300–600 km grid scales investigated.

The ratio of northern hemisphere flux to southern hemisphere flux is of 2.2; both the hemispheric repartition of land and ocean, that induces higher deposition velocities in the northern hemisphere, and the hemispheric repartition of industrialized regions, that generate higher surface O$_3$ concentrations, contribute to this unequal repartition of the fluxes. Deposition over oceans amounts to only 38% of the global deposition. Monthly
fluxes are shown in Fig. 22 for the T21 simulation. The strong seasonal cycle over the continents of the temperate latitudes of the northern hemisphere, with larger deposition fluxes from May to September, is essentially driven by the deposition velocity (not shown here); in the tropical latitudes, a seasonal cycle exists with maxima from July through September south of the Equator, linked to higher O$_3$ surface concentration due to emissions from biomass burning; at high latitudes, a very small deposition velocity prevents deposition any time of the year.

In addition to studying the O$_3$ deposition flux, we have also analyzed the flux of nitrogen species, as all these species are closely linked to each other. After their emissions, NO and NO$_2$ undergo a series of chemical reactions and deposition, either dry deposition at the surface or wet removal by rain. MOCAGE-Climat has a reasonable description of the chemistry relevant to nitrogen species. Our nitrogen flux is the flux of the so-called NO$_{fl}$ species, where NO$_{fl}$=HNO$_3$+NO$_2$+NO+PAN; the dry deposition flux from other nitrogen species can be neglected, because of very low mixing ratios or deposition velocities. The T21 run simulated a global mean NO$_{fl}$ dry deposition flux of 21.5 Tg(N) yr$^{-1}$, that represents 52% of the nitrogen emitted. This ratio is in line with recent studies: Dentener et al. (2006), who reported results from 26 models, essentially focussed on wet nitrogen deposition, quoting that dry deposition was an equally important process to remove nitrogen species, but that use of the dry deposition measurements which are not global was beyond the scope of their analysis. The relative importance of dry deposition for removal of NO$_y$ varied significantly among models, from 30 to 60%.

In Lamarque et al. (2005), who investigated nitrogen deposition with six CTMs, the total deposition over land ranged from 25 to 40 Tg(N) yr$^{-1}$ and represented about 70% of the total nitrogen emitted, the rest being oceanic deposition as models are at steady state or close to it. Our dry deposition over land is of 34% (coherent with the 70% just cited), while the amounts deposited over Asia 5.3 Tg(N) yr$^{-1}$, Europe (3.3), and North America (3.0) are very close to those of Lamarque et al. (2005) (∼5,∼3, and ∼3 respectively). In addition, our maximum deposition rates (not shown) are of 0.4–
0.5 g(N) m\(^{-2}\) yr\(^{-1}\) over part of Western Europe, of the Eastern USA and of China; these rates are consistent with the total nitrogen deposition rates of Lamarque et al. (2005). Rates over Africa also are similar, while those over South America are lower than the ones of the mean model in Lamarque et al. (2005); over the South American continent however deposition variability among models is the highest in Lamarque et al. (2005). The largest part of our NO\(_\text{II}\) dry deposition flux is due to the HNO\(_3\) flux (65%); then comes the NO\(_2\) flux (26%, see Table 8). The NO\(_2\) dry deposition flux is still very controversial, in particular because of debate on the dry deposition velocity (Holland et al., 2004; Kirkman et al., 2002), but also on how to consider the rapid in-air reactions between NO, NO\(_2\), and O\(_3\) that may occur between the soil and the height at which the deposition velocity is computed. Wesely and Hicks (2000) noted that such a task represented a significant challenge to modelers, especially if the processes were to be described adequately in regional and large-scale models. At last, Trebs et al. (2006) reported that NO\(_2\) significantly accounted for N dry deposition over a tropical pasture in the Amazon Basin, based on measurements valid for the entire year.

With regard to the dry deposition fluxes, the T21DvClim and the T21 simulations produced very similar O\(_3\) fluxes (785 Tg yr\(^{-1}\) versus 794), and likewise for NO\(_2\) (5.5 Tg(N) yr\(^{-1}\) versus 5.6) (see Table 8), with mixing ratios at the surface of the model highly correlated (r > 0.99). Locally however these fluxes may differ by up to 20% (see Fig. 22). As for HNO\(_3\), outputs from the two simulations differ more, with a global flux for T21DvClim about being 20% lower, and quasi-systematically lower mixing ratios at the surface (not shown). The variability of the HNO\(_3\) deposition velocity is high as it is driven by the aerodynamic resistance and thus the stability of the atmosphere. It is not surprising that the use of climatological deposition velocities instead of deposition velocities calculated on-line has a great impact on HNO\(_3\) amounts. Furthermore, as HNO\(_3\) is at the end of the oxidation chain, changes in the budgets of various other species seem to have a cumulative effect for HNO\(_3\), hence the large differences we see here between the T21 and T21DvClim simulations.
6 Conclusions

We have presented the chemistry-climate configuration of the Météo-France Chemistry and Transport Model MOCAGE-Climat. The model, which includes 82 chemical species and 242 thermal reactions, simulates the global 3-D distribution of ozone and its precursors, both in the troposphere and the stratosphere, up to the mid-mesosphere (~70 km). The version of MOCAGE-Climat discussed in this paper has been driven by the ECMWF operational analyses, on T21 and T42 horizontal grids and 60 hybrid vertical levels. At the surface, emissions and dry deposition are taken into account: these emissions consist of monthly or yearly inventories, representative of the year 2000, and include both anthropogenic and biogenic sources; dry deposition is calculated on-line using the 6-hourly meteorology of the ECMWF. The model can run with or without a procedure that considers the model’s lowest levels as one layer for chemistry; this procedure significantly reduces computing cost.

Several 6-year simulations have been performed with the meteorology of the years 2000–2005, at two horizontal resolutions, with and without the reduced boundary layer, and with on-line or climatological deposition velocities. Model outputs have been compared thoroughly to observations, both from satellite and in-situ measurements at climatological timescales. This comparison exercise highlighted the strong linkages, that are non-linear, between the chemical species of MOCAGE-Climat.

A number of discrepancies between the model and the observations are probably related to the meteorological forcing in the stratosphere. Indeed, age of air simulations confirmed that the Brewer-Dobson circulation of the ECMWF analyses is at least two times too fast, and that this discrepancy increases with the horizontal resolution. This accumulates too much ozone in the lower to mid-stratosphere in our model as shown by the comparisons to the NIWA/TOMS total columns, to the UARS measurements, or to the ozone sondes. At the same time, ozone mixing ratios are too low in the tropical lower stratosphere. Experiments to simulate age of air driving the CTM with another meteorological model, i.e., the ARPEGE-Climat GCM, revealed that much older age of
air could be obtained. This is promising for long-term chemistry-climate interactions as further steps will be to drive the full CTM with ARPEGE-Climat.

In the stratosphere, setting aside shortcomings linked to the meteorology, \(\text{N}_2\text{O} \) is in fair agreement with observations (UARS and ODIN satellites); \(\text{CH}_4 \) variability, both spatially and seasonally, is satisfactory, though modelled mixing ratios slightly underestimate observations; consequently \(\text{H}_2\text{O} \) mixing ratios are also too low throughout the stratosphere. \(\text{HNO}_3 \) is also quite accurately simulated, but sedimentation of nitric acid included in polar stratospheric clouds appears too weak. As for chlorine species, model evaluation revealed that the reservoir form \(\text{HCl} \) is somewhat too abundant, leading to an overestimation of \(\text{O}_3 \) at the upper boundary of the model. Conversion between a radical and a reservoir form is also problematic for \(\text{NO}_x \) above the stratopause; in the rest of the stratosphere \(\text{NO}_x \) is correctly simulated.

Ozone in the UTLS does not show any systematic bias; differences with observations, either MOZAIC or ozone sondes, vary depending on the season, but also on the latitude and on the year. These results confirm those of Law et al. (2000), the stratosphere and the troposphere are together mandatory to simulate correctly ozone in the UTLS. In the troposphere, better agreement is obtained at mid and high latitudes than in the tropics; at equatorial stations, the model underestimates observations over the entire free troposphere while mixing ratios are too high in the boundary layer. This reflects weaknesses both in the dry deposition over these regions, where very few measurements enable validation, and in the convective transport that does not seem strong enough. Though the model seems to capture some of the seasonal variability of the tropospheric ozone, agreement with observations is better in summer.

\(\text{NO}_2 \) total columns are in general overestimated, as revealed by comparisons to SCIAMACHY \(\text{NO}_2 \) columns. This overestimation is more important in the winter months over the northern hemisphere. Parallel to this positive bias and linked to it, \(\text{HNO}_3 \) is also overestimated in the first 3–4 km of the troposphere when compared with aircraft measurements, while it matches well with the observations above 4 km. This bias of \(\text{HNO}_3 \) could also reflect insufficient loss via the wet deposition process. Overall, as \(\text{OH} \) is bi-
ased high in the lower troposphere, this could generate too much oxidation in the model that would lead to a positive bias in HNO$_3$, then in NO$_x$ and finally in tropospheric O$_3$.

A general feature for CO is that the model underestimates observations in the northern hemisphere and overestimates them in the southern hemisphere. A similar underestimation exists in many current CTMs and seems to be related to the emissions of CO.

Simulations with the simplification of the boundary layer lead to model outputs being less similar to observations from ozone sondes, not only at the lowest levels of the model, but also up to the mid-troposphere. The impact of the bulk boundary layer is negligible in the rest of the atmosphere, so it appears that this simplified boundary layer is an interesting option for long-term integrations of the model. Comparisons of the T21 and T42 resolution outputs lead to the conclusion that the T21 outputs are closer to observations in the stratosphere, and also, more surprisingly, in the troposphere. In the UTLS however the T42 simulation obtains better scores.

Dry deposition fluxes of O$_3$ and nitrogen species are within the range of values reported by recent inter-comparison model exercises, though at the low end. The use of climatological deposition velocities versus on-line ones impacted the most HNO$_3$ and NO$_2$ in the troposphere; O$_3$ was impacted essentially up to 800 hPa, and deposition fluxes differed locally up to 20%. However, given the uncertainties not only on this deposition process but also on the model chemistry and dynamics, the climatological deposition velocity option appears reasonable for the study of chemistry-climate interactions. The benefit will be a reduction in computer time.

The future, besides the on-going evolution of the operational, air quality version of the CTM that has repercussions on all versions of the model, will be to make simulations over decades or centuries with MOCAGE-Climat coupled to the GCM ARPEGE-Climat. Ultimately, both models will be part of the global Earth modelling system of CNRM.

Acknowledgements. This work was partially funded by EC within the QUANTIFY Integrated Project under contract no. 003893 (GOCE). The authors acknowledge the EU MOZAIC project (EVK2-1999-00141) for data collection and analysis at CNRS, Forschungszentrum Jülich, Uni-
versity of Cambridge, and Météo-France. We also acknowledge MOZAIC support from EADS Airbus and the airlines Air France, Deutsche Lufthansa, Sabena, and Austrian Airlines who carry the MOZAIC instruments free of charge and perform maintenance. We would like to thanks the EU funded project SCOUT-O3 and the SPARC/CCM-Val project for their help and making available their data. We want to particularly mention G. E. Bodeker (NIWA), W. J. Randel (NCAR), and C. M. Spivakovsky (U. of Harvard) for their help with the data.

References

Andres, R. J. and Kasgnoc A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25251–25261, 1998. 11303

Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass flux convection scheme for regional and global models, Quart. J. Roy. Meteorol. Soc., 127, 869–886, 2001. 11300

Blond, N., Boersma, K. F., Eskes, H. J., van der A, R. J., Van Roozendael, M., De Smedt, I., Bergametti, G., and Vautard, R.: Intercomparison of SCIAMACHY nitrogen dioxide observations, in-situ measurements, and air quality modeling results over Western Europe, J. Geophys. Res., in press, 2007. 11309

Bodeker, G. E., Shiona, H., and Eskes, H.: Antarctic ozone depletion indicators, Atmos. Chem. Phys., 5, 3811–3845, 2005, http://www.atmos-chem-phys.net/5/3811/2005/. 11305, 11365

Boering, K. A., Wofsy, S. C., Daube, B. C., Schneider, H. R., Loewenstein, M., Podolske, J. R., and Conway, T. J.: Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide, Science, 274, 1340–1343, 1996. 11314

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO\textsubscript{2} retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962, 2004. 11309

Bousserez, N., Attié, J.-L., Peuch, V.-H., Michou, M., Pfister, G., Edwards, D., Emmons, L., Mari, C., Barret, B., Arnold, S. R., Heckel, A., Richter, A., Shlager, H., Lewis, A., Avery, M., Sachse, G., Browell, E. V., and Hair, J. W.: Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment, J. Geophys. Res., in press, 2007. 11298, 11303, 11325, 11328
Bouwman, A. F., Van der Hoek, K. W., and Olivier, J. G. J.: Uncertainties in the global source distribution of nitrous oxide, J. Geophys. Res., 100, 2785–2800, 1995. 11303
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, 1999. 11309
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere, D. Reidel Publishing Company, 1986. 11301, 11317, 11324, 11334
Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie, X. X.: MOZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res., 103, 28 265–28 289, 1998. 11301
Bregman, A., Meijer, E., and Scheele, R.: Key aspects of stratospheric tracer modeling using assimilated winds, Atmos. Chem. Phys., 6, 4529–4543, 2006, http://www.atmos-chem-phys.net/6/4529/2006/. 11314
Cariolle, D. and Déqué, M.: Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model, J. Geophys. Res., 91, 10 825–10 846, 1986. 11297, 11302
Cariolle, D., Lasserre-Bigorry, A., Royer, J.-F., and Geleyn, J.-F.: A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes, J. Geophys. Res., 95, 1883–1898, 1990. 11297
Cariolle D. and Teyssèdre, H.: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations, Atmos. Chem. Phys., 7, 1655–1697, 2007, http://www.atmos-chem-phys.net/7/1655/2007/. 11302
Cathala, M.-L., Pailleux, J., and Peuch, V.-H.: Improving global chemical simulations of the upper troposphere-lower stratosphere with sequential assimilation of MOZAIC data, Tellus, 55B, 1–10, 2003. 11298
Carslaw, K. S., Luo, B., Peter, T., and Clegg, S. L.: Vapour pressures of H$_2$SO$_4$/HNO$_3$/HBr/H$_2$O solutions to low stratospheric temperatures, Geophys. Res. Lett., 22, 247–250, 1995. 11301
Chapman, S.: A Theory of Upper-Atmospheric Ozone, Memoirs of the Royal Meteorological Society, 3, 103–25, 1930. 11331
Chipperfield, M. P., Cariolle, D., and Simon, P.: A 3D transport model study of chlorine activation during EASOE, Geophys. Res. Lett., 21, 1467–1470, 1994. 11297
Clark H. L., Cathala, M.-L., Teyssèdre, H., Cammas, J.-P., and Peuch, V.-H.: Cross-tropopause
fluxes of ozone using assimilation of MOZAIC measurements in a global CTM, Tellus, 59B, 39–49, 2007. 11298

Crassier, V., Suhre, K., Tulet, P., and Rosset, R.: Development of a reduced chemical scheme for use in mesoscale meteorological models, Atmos. Environ., 34, 2633–2644, 2000. 11301, 11303

Deeter, M. N., Emmons, L. K., Francis, G. L., et al.: Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res., 108, 4399, doi:10.1029/2002JD003186, 2003. 11308

Dentener, F., Stevenson, D., Cofala, J., Mechler, R., Amann, M., Bergamaschi, P., Raes, F., and Derwent, R.: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030, Atmos. Chem. Phys., 4, 8471–8538, 2004, http://www.atmos-chem-phys.net/4/8471/2004/. 11303

Dentener, F., Drevet, J., Lamarque, J.-F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D., Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S., Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T., Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V., Muller, J.-F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M., Sudo, K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672, 2006. 11302, 11339, 11342

Déqué, M., Dreveton, C., Braun, A., and Carillole, D.: The ARPEGE-IFS atmosphere model: a contribution to the French community climate modelling, Clim. Dyn., 10, 249–266, 1994. 11297

Drummond, J. R. and Mand, G. S.: The Measurements of pollution in the troposphere (MOPITT) instrument: overall performance and calibration requirements, J. Atmos. Oceanic Technol., 13, 314–320, 1996. 11308

Dufour, A., Amodei, M., Aancellet, G., and Peuch, V.-H.: Observed and modelled “chemical weather” during ESCOMPTÉ, Atmos. Res., 74, 161–189, 2004. 11298

Drobinski, P., Saïd, F., Aancellet, G., Arteta, J., Augustin, P., Bastin, S., Brut, A., Caccia, J.-L., Campistron, B., Cautenet, S., Colette, A., Cros, B., Corsemer, U., Coll, I., Dabas, A., Delbarre, H., Dufour, A., Durand, P., Guénard, V., Hasel, M., Kalthoff, N., Kottmeier, C., Lemonsu, A., Lohou, F., Masson, V., Menut, L., Moppert, C., Peuch, V.-H., Puygrenier, V., and Reitebuch, O.: Regional transport and dilution during high pollution episodes in southeastern

11349
France: summary of findings from the ESCOMPTE experiment, J. Geophys. Res., in press, 2007. 11298
Edwards, D. P., Pétron, G., Novelli, P. C., Emmons, L. K., Gille, J. C., and Drummond, J. R.: Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT), J. Geophys. Res., 111, D16303, doi:10.1029/2006JD007079, 2006. 11319
Emmons, L. K., Hauglustaine, D. A., Muller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D., Staehelin, J., Thouret, V., and Marenco, A.: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., 105, 20497–20538, 2000. 11312, 11329, 11365, 11382
Emmons, L. K., Deeter, M. N., Gille, J. C., Edwards, D. P., Attié, J.-L., Warner, J., Ziskin, D., Francis, G., Khattatov, B., Yudin, V., Lamarque, J.-F., Ho, S.-P., Mao, D., Chen, J. S., Drummond, J., Novelli, P., Sachse, G., Coffey, M. T., Hannigan, J. W., Gerbig, C., Kawakami, S., Kondo, Y., Takegawa, N., Schlager, H., Baehr, J., and Ziereis, H.: Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles, J. Geophys. Res., 109, D03309, doi:10.1029/2003JD004101, 2004. 11308, 11319, 11320, 11365
Emmons, L. K., Pfister, G. G., Edwards, D. P., Gille, J. C., Sachse, G., Blake, D., Wofsy, S., Gerbig, C., Matross, D., and Nédélec, P.: MOPITT validation exercises during Summer 2004 field campaigns over North America, J. Geophys. Res., INTEX-A special section, accepted, 2007. 11308, 11320
Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, 2003, http://www.atmos-chem-phys.net/3/1285/2003/. 11309
Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Bruhl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006. 11332
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica
reveal seasonal ClO_x/NO_x interaction, Nature, 315, 207–210, 1985. 11327
Frisk, U., Hagström, M., Ala-Laurinaho, J., et al.: The Odin satellite I: Radiometer design and test, Astron. Astrophys., 402(3), L27–L34, doi:10.1051/0004-6361:20030335, 2003. 11307
Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Three-dimensional model synthesis of the global methane cycle, Geophys. Res., 96, 13 033–13 065, 1991. 11303
Ganzeveld, L. and Lelieveld, J.: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res., 100, 20 999–21 012, 1995. 11339
Ganzeveld, L., Lelieveld, J., and Roelofs, G.-J.: A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model, J. Geophys. Res., 103, 5679–5694, 1998. 11339
Geer, A. J., Lahoz, W. A., Bekki, S., Bormann, N., Errera, Q., Eskes, H. J., Fonteyn, D., Jackson, D. R., Juckes, M. N., Massart, S., Peuch, V.-H., Rharmili, S., and Segers, A.: The ASSET intercomparison of ozone analyses: method and first results, Atmos. Chem. Phys., 6, 5445–5474, 2006, http://www.atmos-chem-phys.net/6/5445/2006/. 11298
Giorgi, F. and Chamedeis, W. L.: Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 91, 14 367–14 376, 1986. 11300
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerda, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile compound emissions, J. Geophys. Res., 100, 8873–8892, 1995. 11303
Grooss, J.-U., and Russell, J. M. III: Technical note: A stratospheric climatology for O_3, H_2O, CH_4, NO_x, HCl and HF derived from HALOE measurements, Atmos. Chem. Phys., 5, 2797–2807, 2005, http://www.atmos-chem-phys.net/5/2797/2005/. 11306, 11318, 11324, 11330, 11334, 11337, 11338, 11365, 11371, 11378, 11380, 11387, 11396
Hall, T. M. and Waugh, D. W.: Timescales for the stratospheric circulation derived from tracers, J. Geophys. Res., 102, 8991–9001, 1997. 11314
Harnisch, J., Borchers, R., Fabian, P., and Maiss, M.: Tropospheric trends for CF_4 and C_2F_6 since 1982 derived from SF_6 dated stratospheric air, Geophys. Res. Lett., 23, 1099–1102,
Hauchecorne, A., Bertaux, J.-L., Dalaudier, F., Cot, C., Lebrun, J.-C., Bekki, S., Marchand, M., Kyrola, E., Tamminen, J., Sofieva, V., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Théodore, B., Guiulet, M., Snoeij, P., Koopman, R., Saavedra de Miguel, L., Fraisse, R., and Renard, J.-B.: First simultaneous global measurements of nighttime stratospheric NO₂ and NO₃ observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003, J. Geophys. Res., 110, D18301, doi:10.1029/2004JD005711, 2005

Hauglustaine, D. A., Jourdain, L., Filiberti, M.-A., Walters, S., Lamarque, J.-F., and Holland, E. A.: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation, J. Geophys. Res., 109, D04314, doi:10.1029/2003JD003957, 2004.

Holland, E. A., Braswell, B. H., Sulzman, J., and Lamarque, J.-F.: Nitrogen deposition onto the United States and western Europe: a synthesis of observations and models, Ecological Applications, 15, 38–57, 2005.

Horowitz, L. W., Walters, S., Mauzerall, D. L., et al.: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2, J. Geophys. Res., 108, 4784, doi:10.1029/2002JD002853, 2003.

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D.: Climate Change 2001: The Scientific Basis, contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) Cambridge University Press (Eds.), UK, 2001.

Intergovernmental Panel on Climate Change, Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emissions scenarios, Cambridge University Press (Eds.), UK, 1995.

Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., and Lelieveld, J.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067–5104, 2006, http://www.atmos-chem-phys.net/6/5067/2006/.

Josse, B., Simon, P., and Peuch, V.-H.: Rn–222 global simulations with the multiscale CTM MOCAGE, Tellus, 56B, 339–356, 2004.
Kirkman, G. A., Gut, A., Ammann, C., Gatti, L. V., Cordova, A. M., Moura, M. A. L., Andreae, M. O., and Meixner, F. X.: Surface exchange of nitric oxide, nitrogen dioxide, and ozone at a cattle pasture in Rondonia, Brazil, J. Geophys. Res., 107, 8083, doi:10.1029/2001JD000523, 2002.

Labrador L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC, Atmos. Chem. Phys., 5, 1815–1834, 2005, http://www.atmos-chem-phys.net/5/1815/2005/.

Lamarque, J.-F., Kiehl, J. T., Brasseur, G. P., Butler, T., Cameron-Smith, P., Collins, W. D., Collins, W. J., Granier, C., Hauglustaine, D., Hess, P. G., Holland, E. A., Horowitz, L., Lawrence, M. G., McKenna, D., Merilees, P., Prather, M. J., Rasch, P. J., Rotman, D., Shindell, D., and Thornton, P.: Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition, J. Geophys. Res., 110, D19303, doi:10.1029/2005JD005825, 2005.

Law, K. S., Plantevin, P.-H., Shallcross, D. E., Rogers, H. L., Grouhel, C., Thouret, V., Marenco, A., and Pyle, J. A.: Evaluation of modelled O_3 using MOZAIC data, J. Geophys. Res., 103, 25721–25740, 1998.

Law, K. S., Plantevin, P.-H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Müller, J.-F., Hauglustaine, D. A., and Kanakidou, M.: Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data, J. Geophys. Res., 105, 1503–1526, 2000.

Lefèvre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.: Chemistry of the 1991-1992 stratospheric winter: three-dimensional model simulations, J. Geophys. Res., 99, 8183–8195, 1994.

Li, Q., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W., Zhang, Y., Wang, B., Filipiak, M. J., Davis, C. P., Turquety, S., Wu, S., Park, R. J., Yantosca, R. M., and Jacob, D. J.: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations, Geophys. Res. Lett., 32, L14826, doi:10.1029/2005GL022762, 2006.

Liang, J., and Jacobson, M. Z.: Effects of subgrid segregation on ozone production efficiency in a chemical model, Atmos. Environ., 34, 2975–2982, 2000.

Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from ^{210}Pb and ^{7}Be on wet
deposition and transport in a global three-dimensional chemical-transport model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12 109–12 128, 2001. 11300
Logan, J. A.: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone, J. Geophys. Res., 104, 16 115–16 149, 1999a. 11311, 11336, 11365, 11388, 11392, 11396
Logan, J. A.: An analysis of ozonesonde data for the lower stratosphere: Recommendations for testing models, J. Geophys. Res., 104, 16 151–16 170, 1999b. 11365
Louis, J.-F.: A parametric model of vertical eddy-fluxes in the atmosphere, Bound. Lay. Meteor., 17, 187–202, 1979. 11300, 11326
McLinden, C., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and Sundet, J.: Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux, J. Geophys. Res., 105, 14 653–14 665, 2000. 11297
Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, Handbook of Environmental Chemistry, edited by P. Boule, 1–26, Springer-Verlag, New York. 11301
Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., Von Wrede, R., Hume, C., and Cook, T.: Measurement of ozone and vapor by Airbus in-service aircraft: The MOZAIC airborne program, An overview, J. Geophys. Res., 103, 631–642, 1998. 11310, 11365
McPeters, R. D. and Labow, G. J.: An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS Version 7 ozone data by comparison with the Dobson network, Geophys. Res. Lett., 23, 3695–3698, 1996. 11306, 11332
Mari, C., Jacob, D. J., and Bechtold, P.: Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 22 255–22 267, 2000. 11300
Matthews, E. and Fung, I.: Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Glob. Biogeochem. Cycles, 1, 61–86, 1987. 11303
Michou, M. and Peuch, V.-H.: Surface exchanges in the MOCAGE multiscale Chemistry and Transport Model, Journal of Water Science, 15, 173–203, 2002. 11303, 11304
Michou, M., Laville, P., Serça, D., Fotiadi, A., and Peuch, V.-H.: Measured and modeled dry deposition velocities over the ESCOMPTE area, Atmos. Res., 74, 89–116, 2004. 11304, 11340
Murtagh, D., Frisk, U., Merino, F., et al.: An overview of the Odin atmospheric mission, Can. J. of Phys., 80, 309–319, 2002. 11307
Nédélec, P., Cammas, J.-P., Thouret, V., Athier, G., Cousin, J.-M., Legrand, C., Abonnel, C., Lecoeur, F., Cayez, G., and Marizy, C.: An Improved Infra-Red Carbon Monoxide Analyser for Routine Measurements aboard Commercial Airbus Aircraft: Technical Validation and First Scientific Results of the MOZAIC III Program, Atmos. Chem. Phys., 3, 1551–1564, 2003, http://www.atmos-chem-phys.net/3/1551/2003/. 11310, 11365

Nho-Kim, E.-Y., Michou, M., and Peuch, V.-H.: Parameterization of size dependent particle dry deposition velocities for global modeling, Atmos. Environ., 38, 1933–1942, 2004. 11304

Noilhan, J. and Mahfouf, J.-F.: The ISBA land surface parameterisation, Glob. Plan. Change, 13, 145–159, 1996. 11304

Norton, W., et al.: TOwards the Prediction of stratospheric Ozone (TOPOZ-2), Final report, European Commission, ENV4-CT97-0542, 2000. 11314

Oikonomou, E. K. and O’Neill, A.: Evaluation of ozone and water vapor fields from the ECMWF reanalysis ERA-40 during 1991–1999 in comparison with UARS satellite and MOZAIC aircraft observations, J. Geophys. Res., 111, D14109, doi:10.1029/2004JD005341, 2006. 11297, 11301, 11311

Olivier, J. G. J., Bouwman, A. F., Van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L.: Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1°x1° grid, RIVM Rep 771060002/TNO MEP report nr. R96/119, RIVM, Bilthoven, The Netherlands, 1996. 11303

Piters, A. J. M., Bramstedt, K., Lambert, J.-C., and Kirchhoff, B.: Overview of SCIAMACHY validation: 2002-2004, Atmos. Chem. Phys., 6, 127–148, 2006, http://www.atmos-chem-phys.net/6/127/2006/. 11309, 11326

Pradier, S., Attié, J.-L., Chong, M., Escobar, J., Peuch, V.-H., Lamarque, J.-F., Khattatov, B., and Edwards, D.: Evaluation of 2001 springtime CO transport over West Africa using MOPITT CO measurements assimilated in a global chemistry transport model, Tellus, 58B, 3, 163–176, 2006. 11298

Prather, M., et al.: Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., et al., 239–287, Cambridge Univ. Press, New York, 2001. 11341

Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O’Doherty, 11355
ACPD
7, 11295–11398, 2007

MOCAGE-Climat: a chemistry-climate model
H. Teyssèdre et al.

S., Salameh, P., Miller, B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A.: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105, 17 751–17 792, 2000. 11321

Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., and Solomon, S.: Radiative forcing of climate change, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., et al., 349–416, Cambridge Univ. Press, New York, 2001. 11331

Randeniya, L. K., Vohralik, P. F., and Plumb, I. C.: Stratospheric ozone depletion at Northern mid latitudes in the 21st century: the importance of future concentrations of greenhouse gases nitrous oxide and methane, Geophys. Res. Lett., 29, 1051, doi:10.1029/2001GL014295, 2002. 11321

Randel, W. J., Wu, F., Russell, J. M. III, Roche, A., and Waters, J. W.: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data J. Atmos. Sci., 55, 163–185, 1998. 11306, 11317, 11318, 11322, 11327, 11337, 11338, 11365, 11371, 11378, 11380, 11396

Ricaud, P., Barret, B., Attié, J.-L., Le Flochmoën, E., Motte, E., Teyssèdre, H., Peuch, V.-H., Livesey, N., Lambert, A., and Pommereau, J.-P.: Impact of land convection on troposphere-stratosphere exchange in the tropics, Atmos. Chem. Phys. Discuss., 7, 3269–3300, 2007, http://www.atmos-chem-phys-discuss.net/7/3269/2007/. 11322

Ren, X., et al.: HOx observation and model comparison during INTEX-NA 2004, J. Geophys. Res., in press, 2007. 11328

Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, World Sci., River Edge, N. J., 1st ed., 2000. 11307

Russell, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Tuck, A. F., Harries, J. E., Ciccerone, R. J., Crutzen, P. J., and Frederick, J. E.: The Halogen Occultation Experiment, J. Geophys. Res., 98, 10 777–10 798, 1993.

Savage N. H., Law, K. S., Pyle, J. A., Richter, A., Nub, H., and Burrows, J. P.: Using GOME NO2 satellite data to examine regional differences in TOMCAT model performance, Atmos. Chem. Phys., 4, 1895–1912, 2004, http://www.atmos-chem-phys.net/4/1895/2004/. 11326

Schaub, D., Boersma, K. F., Keller, J., Folini, D., Brunner, D., Buchmann, B., Berresheim, H.,
and Staehelin, J.: SCIAMACHY tropospheric NO₂ over the Alpine region and importance of pixel surface pressure for the column retrieval, Atm. Chem. Phys. Disc., 7, 429–468, 2007.

Simpson, I. J., Blake, D. R., Rowland, F. S., and Chen, T.-Y.: Implications of the recent fluctuations in the growth rate of tropospheric methane, Geophys. Res. Lett., 29, doi:10.1029/2001GL014521, 2002.

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105, 8931–8980, 2000.

Shindell, D. T., Faluvegi, G., Stevenson, D. S., Krol, M. C., Emmons, L. K., Lamarque, J.-F., Pétron, G., Dentener, F. J., Ellingsen, K., Schultz, M. G., Wild, O., Amann, M., Atherton, C. S., Bergmann, D. J., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Strahan, S. E., Sudo, K., Szopa, S., Unger, N., van Noije, T. P. C., and Zeng, G.: Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100, 2006.

Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-F., Lawrence, M. G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.: Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338, 2006.

Stockwell, W. R., Kirchner, F., Khun, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modelling, J. Geophys. Res., 102, 25 847–25 879, 1997.

Strahan, S. E., and Polansky, B. C.: Meteorological implementation issues in chemistry and transport models, Atmos. Chem. Phys., 6, 2895–2910, 2006, http://www.atmos-chem-phys.net/6/2895/2006/.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, 2001.

Trebs, I., Lara, L. L., Zeri, L. M. M., Gatti, L. V., Artaxo, P., Dlugi, R., Slanina, J., Andreae, M. O., and Meixner, F. X.: Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondonia, Brazil), Atmos. Chem. Phys., 6, 447–469, 2006, http://www.atmos-chem-phys.net/6/447/2006/.

Urban, J., Lautié, N., Le Flochmoën, E., Jimenez, C., Eriksson, P., de la Noë, J., Dupuy, E., El Amraoui, L., Frisk, U., Jegou, F., Murtagh, D., Olberg, M., Ricaud, P., Camy-Peyret, C., Payan, S., Dufour, G., Huret, N., Pirre, M., Robinson, A. D., Harris, N. R. D., Bremer, H., Kleinbohl, A., Kullmann, K., Kunzi, K., Kuttipurath, J., Ejiri, M., Nakajima, H., Sasano, Y., Sugita, T., Yokota, T., Piccolo, C., Raspolini, P., and Ridolfi, M.: Odin/SMR Limb Observations of Stratospheric Trace Gases: Validation of N$_2$O, J. Geophys. Res., 110, D09301, doi:10.1029/2004JD005394, 2005.

van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Giglio, L.: Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biology, 9, 547–562, 2003.

van Noije, T. P. C., Eskes, H. J., Dentener, F. J., Stevenson, D. S., Ellingsen, K., Schultz, M. G., Wild, O., Amann, M., Atherton, C. S., Bergmann, D. J., Bey, I., Boersma, K. F., Butler, T., Cofala, J., Drevet, J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-F., Lawrence, M. G., Martin, V., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M. J., Pyle, J. A., Richter, A., Rodriguez, J. M., Savage, N. H., Strahan, S. E., Sudo, K., Szopa, S., and van Roozendael, M.: Multi-model ensemble simulations of tropospheric NO$_2$ compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943–2979, 2006, http://www.atmos-chem-phys.net/6/2943/2006/.

Volz-Thomas, A., Berg, M., Heil, T., Houben, N., Lerner, A., Petrick, W., Raak, D., and Pätz, H.-W.: Measurements of total odd nitrogen (NO$_y$) aboard MOZAIC in-service aircraft: instrument design, operation and performance, Atmos. Chem. Phys., 5, 583–595, 2005.

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, 1989.

Wesely, M. L., and Hicks, B. B.: A review of the current status of knowledge on dry deposition, Atmos. Environ., 34, 2261–2282, 2000.

Wild, O.: Modelling the global tropospheric ozone budget: exploring the variability in current
Williamson, D. L., and Rash, P. J.: Two-dimensional semi-lagrangian transport with shape-preserving interpolation, Mon. Wea. Rev., 117, 102–129, 1989.

World Health Organization: Health aspects of air pollution with particulate matter, ozone, and nitrogen dioxide, Rep. EUR/03/5042688, Bonn, 2003.

World Meteorological Organisation: Report of the international ozone trends panel-1988, WMO report, 18, 1988.

World Meteorological Organisation: Scientific assessment of ozone depletion-1998, WMO report, 44, 1998.

World Meteorological Organisation: Scientific assessment of ozone depletion-2002, WMO report, 47, 2002.
Table 1. Transported trace gases of the RELACS chemical scheme.

Species	Name/Group
1	N₂O nitrous oxide
2	CH₄ methane
3	H₂O water vapor
4	HNO₃ nitric acid
5	N₂O₅ dinitrogen pentoxide
6	CO carbon monoxide
7	OCIO chlorine dioxide
8	HCl chloridric acid
9	ClONO₂ chlorine nitrate
10	HOCl hypochlorous acid
11	Cl₂ diatomic chlorine
12	H₂O₂ hydrogen peroxide
13	ClNO₂ chlorine nitrite
14	HBr hydrogen bromide
15	BrONO₂ bromide nitrate
16	HNO₄ peroxynitric acid
17	Cl₂O₂ dichlorine peroxide
18	HOB₃ hypobromous acid
19	BrCl bromochlorine
20	HCHO formaldehyde
21	MO₂ methyl peroxy radical (CH₃O₂)
22	OP1 methyl hydrogen peroxy (CH₃O₂H)
23	CFC11 chlorofluorocarbon-11
24	CFC12 chlorofluorocarbon-12
25	CFC113 chlorofluorocarbon-113
26	CCl₄ chlorofluorocarbon-10
27	CH₃CCl₃ methyl chloroform
28	CH₃Cl methyl chloride
29	HCFC22 hydrochlorofluorocarbon-22
30	CH₃Br methyl bromide
31	H1211 halon-1211
32	H1301 halon-1301
Table 1. Continued.

Species	Name/Group
33 H₂SO₄	sulfuric acid
34 PSC	polar stratospheric cloud tracer
35 HONO	nitrous acid
36 SO₂	sulfur dioxide
37 ETH	ethane
38 ALKANEbis	alkanes, alcohols, esters, and alkynes
39 ALKENEbis	ethene, terminal alkenes, internal alkenes, butadiene and other anthropogenic dienes
40 ISOTOT	isoprene, α-pinene, d-limonene, and other terpenes
41 AROMATIC	toluene, xylene, cresol, and other aromatics
42 ALD	acetaldehyde and higher aldehydes
43 KET	ketones
44 MACR	glyoxal, methyglyoxal, and other alpha-carbonyl aldehydes, unsaturated dicarbonyls, macrolein and other unsaturated monoaldehydes, unsaturated dihydroxy dicarbonyl, hydroxy ketone
45 ONIT	organic nitrate
46 PAN	peroxyacetal nitrate and higher saturated PANs, unsaturated PANs
47 OP2	higher organic peroxides, peroxyacetic acid and higher analogs
48 LINO₃	linear ozone
49 HCBP	peroxy radicals formed from ALKANEbis
50 OLIP	peroxy radicals formed from ALKENEbis
51 ISOP	peroxy radicals formed from ISOTOT
52 PHO	phenoxy radical and similar radicals
53 TOLP	peroxy radicals formed from AROMATIC
54 ACO3	acetyl peroxy and higher saturated acyl peroxy radicals, unsaturated acyl peroxy radicals, peroxy radicals formed from RACM species KET
55 OLNN	NO₃-alkene adduct
56 XO2	accounts for additional NO to NO₂ conversion
57 SULF	sulfate
58 O₃	odd oxygen
59 NOₓ	nitrogen oxides
60 ClO₃	chloride oxides
61 BrOₓ	bromide oxides
62 NOₙ	total nitrogen family (radicals + reservoirs)
63 Clₙ	total chlorine family (radicals + reservoirs)
64 Brₙ	total bromine family (radicals + reservoirs)
65 TRACEUR.FROID	cold tracer
Table 2. Trace gases at chemical equilibrium for RELACS.

Species	Name/Group
1	O(3P) atomic oxygen
2	O(1D) atomic oxygen
3	O$_3$ ozone
4	N atomic nitrogen
5	NO nitrogen monoxide
6	NO$_2$ nitrogen dioxide
7	NO$_3$ nitrogen trioxide
8	ClO chlorine monoxide
9	Cl atomic chlorine
10	BrO bromine monoxide
11	Br atomic bromine
12	H atomic hydrogen
13	OH hydroxyl radical
14	HO$_2$ hydroperoxyl radical
15	CH$_3$ methyl radical
16	CH$_3$O methyl-oxygen
17	ADDT product from aromatic-OH combination
Table 3. Surface emissions considered in MOCAGE-Climat, A. for annual data, M. for monthly data (see references in the text).

Species	Source	Total
N₂O Tg(N) yr⁻¹	Oceans	3.0 A.
	Continental soils	9.5 A.
	Anthropogenic	2.2 A.
	All sources	14.7
NOₓ Tg(N) yr⁻¹	Industrial	10.2 A.
	Traffic	16.1 A.
	Domestic	1.5 A.
	Continental soils	5.0 M.
	Bioma. burning	8.5 M.
	All sources	41.3
CH₄ Tg(CH₄) yr⁻¹	Industrial	83.6 A.
	Land use	216.2 A.
	Termites	24.9 A.
	Wetlands	159.7 M.
	Oceans	14.9 M.
	Bioma. burning	21.3 M.
	All sources	520.6
CO Tg(CO) yr⁻¹	Industrial	37.5 A.
	Traffic	194.3 A.
	Domestic	238.0 A.
	Oceans + Vegetation	100.6 M.
	Bioma. burning	444.1 M.
	All sources	1013.4
COVNM anth. Tg yr⁻¹	Industrial	39.3 A.
	Traffic	47.7 A.
	Domestic	28.8 A.
	Bioma. burning	31.2 M.
	All sources	147.0
COV bio. Tg(C) yr⁻¹	Isoprene	501.6 M.
	Monoterpenes	114.4 M.
	Other VOC	259.6 M.
SO₂ Tg(S) yr⁻¹	Industrial	43.8 A.
	Traffic	5.6 A.
	Domestic	4.8 A.
	Bioma. burning	1.2 M.
	Volcanoes	14.6 A.
	All sources	70.0
CFC−11 Gg yr⁻¹	all	86 A.
CFC−12 Gg yr⁻¹	all	122 A.
CFC−113 Gg yr⁻¹	all	23 A.
CH₃CCl₂ Gg yr⁻¹	all	5 A.
Table 4. Surface emissions of the VOCs of RELACS that are emitted.

Species	Tg(C) yr\(^{-1}\)
ALKANEbis	281.8
ALKENEbis	23.6
ALD	3.9
AROMATIC	21.1
ETH	5.9
HCHO	0.4
ISOTOT	616.0
KET	21.8
Table 5. Main characteristics of the observational datasets.

Species	Horiz. resol.	Vert. extens.	Temp. resol.	Period of obs.	Reference
O₃ column	1° lat × 1.25° lon	tot.	month	1978-2005	Bodeker et al. (2005)
O₃	~10 km, 2.8° × 2.8° UTLS and tropo.	1 min, season	2000–2004	Marenco et al. (1998)	
NO₂ column	0.25° × 0.25° tot. and tropo.	month	2003–	http://www.temis.nl	
NO₃	~10 km, 2.8° × 2.8° UTLS and tropo.	1 min, season	2000-2004	Volz-Thomas et al. (2005)	
Strato. CH₄, H₂O	5° lat	316–0.1 hPa	month. clim.	1991–2002	Grooss and Russel (2005)
Strato. NOₓ, HCl, O₃	5° lat	316–0.1 hPa	month. clim.	1991–2002	Grooss and Russel (2005)
Strato. HNO₃	4° lat	100–0.32 hPa	month. clim.	1991–1993	Randel et al. (1998)
Strato. N₂O	4° lat	100–0.32 hPa	month. clim.	1991–1993	Randel et al. (1998)
Strato. ClO	4° lat	100–0.32 hPa	month. clim.	1991–1997	Randel et al. (1998)
Strato. N₂O	10° lat	100–1 hPa	month	2001–2005	Urban et al. (2005)
Tropo. CO	1° × 1° surf. -150 hPa	month	2000–	Emmons et al. (2004)	
CO	~10 km, 2.8° × 2.8° UTLS and tropo.	1 min, season	2000–2004	Nédélec et al. (2003)	
Tropo. OH	8° lat × 10° lon	1000–200 hPa	month. clim.	1978–1996	Spivakovsky et al. (2000)
Tropo. O₃	~40 stations	surf.-10 hPa	month. clim.	1980–1993	Logan (1999a,b)

11365
Table 6. Summary of the 6-year simulations completed with MOCAGE-Climat (see text for details).

Name	Characteristics
T21	full version of MOCAGE-Climat at T21
T21BL1	same as T21 but with a simplified boundary layer
T21BL1bis	same as T21BL1 with a different initial state
T21DvClim	same as T21 but with climatological deposition velocities
T42	full version of MOCAGE-Climat at T42
T42BL1	same as T42 but with a simplified boundary layer
Table 7. Biases between modeled and observed tropospheric O₃ (model-obs, ppbv).

	High lats 1000-800	High lats 800-400	Mid lats 1000-800	Mid lats 800-400	Tropics 1000-800	Tropics 800-400
T21	1.5	4.3	13.5	12.9	14.1	3.9
T21BL1	4.2	7.9	21.3	18.7	18.9	7.6
T42	7.5	6.9	14.7	12.0	15.8	0.6
T42BL1	9.6	9.9	18.6	16.6	19.8	4.3
Table 8. Summary of results from the T21 and T21DvClim simulations related to dry deposition: annual dry deposition fluxes, and global annual mean mixing ratios at the surface, with standard deviation in parentheses.

	T21	T21DvClim
O$_3$ dep. flux (Tg yr$^{-1}$)	794	785
HNO$_3$ dep. flux (Tg(N) yr$^{-1}$)	13.9	11.1
NO$_2$ dep. flux (Tg(N) yr$^{-1}$)	5.6	5.5
NO dep. flux (Tg(N) yr$^{-1}$)	0.01	0.01
PAN dep. flux (Tg(N) yr$^{-1}$)	2.0	1.9
NO$_x$ dep. flux (Tg(N) yr$^{-1}$)	21.5	18.6
O$_3$ mix. ratio (ppbv)	24.8 (12.1)	24.1 (11.9)
HNO$_3$ mix. ratio (pptv)	140.3 (220.4)	108.9 (183.4)
NO$_2$ mix. ratio (ppbv)	0.8 (2.3)	0.8 (2.2)
Fig. 1. Latitude-pressure cross sections of the resulting age of air (years) when MOCAGE-Climat is driven by the ECMWF operational analyses, at T21 (left) and T42 resolutions (middle), and by outputs from the ARPEGE-Climat GCM at T42 resolution (right). Fields are those of the last month of the simulation (December).
Fig. 2. Evolution of the daily global total ozone column for various experiments completed with MOCAGE-Climat (see text).
Fig. 3. First two columns: MOCAGE-Climat T21 zonal monthly mixing ratios of CH$_4$ (ppmv) against the Grooss and Russel (2005) climatology, and relative differences (100×((Model − Obs)/Obs)), between 100 and 0.1 hPa, in March (left panels) and September (right panels). Last two columns: MOCAGE-Climat T21 zonal monthly mixing ratios of N$_2$O (ppmv) against the Randel et al. (1998) climatology, and relative differences (100×(Model − Obs)/Obs)), between 100 and 0.3 hPa, in March (left panels) and September (right panels).
Fig. 4. MOCAGE-Climat CO mixing ratios (ppbv) from the T42 simulation versus MOPITT mixing ratios (see text), and relative differences ($100 \times ((\text{Model} - \text{Obs})/\text{Obs})$), in January (2 upper rows) and July (2 middle rows), at 700 and 350 hPa. The time versus latitude diagrams are also shown.
Fig. 4. Continued.
Fig. 5. Three upper lines: distribution of CO mixing ratio (ppbv) in 3-D boxes (2.8° × 2.8° along the horizontal, 340–350 K potential temperature layer), as seen by MOZAIC (top panels), simulated by MOCAGE-Climat (T42 experiment, middle panels) and relative differences (bottom panels) (100×(MOCAGE-MOZAIC)/MOZAIC) for winter (DJF, left) and summer (JJA, right) of the 2000/2004 period. Three middle lines: NO_y mixing ratios (ppbv). Three bottom lines: O_3 mixing ratios (ppbv).
Fig. 6. Left column: histograms of CO classes (20 ppbv bins) measured by MOZAIC (black) and simulated by MOCAGE-Climat at T21 (red) and T42 (blue), for North America (N.AM), South America (S.AM), northern Atlantic (ATL), Europe (EUR), Africa (AFR), and Asia (ASIA) (see 3.6 for the definition of the geographical areas). Middle column: same as CO for NOy classes (0.4 ppbv bins). Right column: same as CO for O3 classes (20 ppbv bins).
Fig. 6. Continued.
Fig. 7. Time/pressure series for N$_2$O zonally averaged bands of 10 degrees, 80 S–70 S (left panels), 10 S–EQ (middle panels) and 50 N–60 N (right panels), for ODIN observations (upper line, in white no observations), simulated by MOCAGE-Climat (middle line) and absolute differences (model - observations) (ppbv) (bottom line).
Fig. 8. First two columns: MOCAGE-Climat T21 zonal monthly mixing ratios of NO$_x$ (ppbv) against the Grooss and Russel (2005) climatology, between 100 and 0.1 hPa, in January (upper panels), May (middle panels), and September (lower panels). Last two columns: MOCAGE-Climat T21 zonal monthly mixing ratios of HNO$_3$ (ppbv) against the Randel et al. (1998) climatology, between 100 and 0.3 hPa, in January (upper panels), May (middle panels), and September (lower panels).
Fig. 9. MOCAGE-Climat T42 total NO$_2$ columns (10^{15} molec cm$^{-2}$) versus SCIAMACHY columns at T42 resolution also, and relative differences (100 × ((Model – Obs)/Obs)), in May (left panels) and September (right panels).
Fig. 10. Left columns: MOCAGE-Climat T21 zonal monthly mixing ratios of ClO (ppbv, day values only) against the Randel et al. (1998) climatology, and relative differences (100 × ((Model − Obs)/Obs)), between 100 and 0.3 hPa, in January (left panels) and July (right panels). Right columns: MOCAGE-Climat T21 zonal monthly mixing ratios of HCl (ppbv) against the Grooss and Russel (2005) climatology, and relative differences (100 × ((Model − Obs)/Obs)), between 100 and 0.1 hPa, in January (left panels) and July (right panels).
Fig. 11. MOCAGE-Climat T21 zonal OH mixing ratios (pptv) versus Spivakovsky et al. (2000) mixing ratios, between 1000 and 100 hPa, in January (left panels) and July (right panels).
Fig. 12. MOCAGE-Climat T42 mean vertical profiles of HNO₃ mixing ratios (pptv, in green) against aircraft field campaign observations (Emmons et al., 2000). Regions of the world are as presented in Horowitz et al. (2003); vertical is between the surface and 11 km. The observations are shown as mean (red lines), ±2 standard deviations (blue dotted lines).
Fig. 12. Continued.
Fig. 13. Evolutions between 2000 and 2005 of the zonal mean total ozone column (DU) on a T21 grid, as in the NIWA climatology (top panel, in white no observations), simulated by MOCAGE-Climat (middle panel), and relative differences (100×(model – obs)/obs).
Fig. 14. Total ozone columns (DU) for January (left panels) and July (right panels) on a T21 grid, in the NIWA climatology (top panels, in white no observations), simulated by MOCAGE-Climat (middle panels), and relative differences (100×(model − obs)/obs).
Fig. 15. Standard deviation of the daily total ozone column (DU) for January (first line), April (second line), July (third line), and October (bottom line) on a T21 grid, as observed by TOMS (left panels, in white no observations) and simulated by MOCAGE-Climat (right panels).
Fig. 16. MOCAGE-Climat T21 zonal monthly mixing ratios of O$_3$ (ppmv) against the Grooss and Russel (2005) climatology, and relative differences ($100 \times ((\text{Model} - \text{Obs})/\text{Obs})$), between 300 and 0.1 hPa, in April (left panels) and October (right panels).
Fig. 17. MOCAGE-Climat vertical profiles of O$_3$ mixing ratios (log ppbv) against Logan (1999a) observations, from 1000 to 10 hPa (black curve, ±1 standard deviation as grey curves), at various sites in January (left column), April (middle left), July (middle right), and October (right). MOCAGE-Climat T21 simulations appear as red profiles, T42 simulations as green ones (both axes have a logarithmic scale).
Fig. 17. Continued.
Fig. 18. As in Fig. 17.
Fig. 18. Continued.
Fig. 19. MOCAGE-Climat monthly O$_3$ mixing ratios (ppbv) at three different pressure levels, 800 (left), 500 (middle), and 300 hPa (right), against Logan (1999a) observations (black curve, ±1 standard deviation as grey curves). MOCAGE-Climat T21 simulations appear as the red curves.
Fig. 19. Continued.
Fig. 20. As in Fig. 19.
Fig. 20. Continued.
Fig. 21. Taylor type plot of modeled mixing ratios from the T21, T21BL1, T42 and T42BL1 simulations: (a) in the stratosphere 100-1 hPa against the Grooss and Russel (2005) and Randel et al. (1998) climatologies. (b) in the UTLS, 340–350 K layer against MOZAIC data. (c) in the troposphere against the Logan (1999a) climatology, over various latitude bands, latitudes higher than 60 S or 60 N (H), latitudes between 30 N and 30 S (T), and mid-latitudes (M), and for two pressure layers, 1000–800 hPa and 800–400 hPa.
Fig. 21. Continued.
Fig. 22. MOCAGE-Climat T21 O₃ dry deposition fluxes (g m⁻² month⁻¹), and relative differences (100×((T21DvClim – T21)/T21)), in January (left, 2 upper panels), March (middle, 2 upper panels), May (right, 2 upper panels), July (left, 2 bottom panels), September (middle, 2 bottom panels), and November right, 3 bottom panels).