Comparative Assessment of Retinal Blood Flow Velocity Changes Following Brimonidine and Brinzolamide Administration Using Retinal Function Imaging

Tim J. Enz1,2, Mario Bittner1, James R. Tribble2, Pete A. Williams2, Michael A. Thiel1, Martin K. Schmid1, Lucas M. Bachmann1, and Frank Bochmann1

1 Department of Ophthalmology, Cantonal Hospital Lucerne, Lucerne, Switzerland
2 Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden

Correspondence: Frank Bochmann, Department of Ophthalmology, Cantonal Hospital Lucerne, Lucerne, Switzerland. e-mail: frank.bochmann@luks.ch
Received: July 14, 2021
Accepted: January 1, 2022
Published: February 1, 2022

Keywords: glaucoma; ocular blood flow; retinal blood flow velocity; vasoprotection; neuroprotection; brimonidine; brinzolamide; retinal function imager

Citation: Enz TJ, Bittner M, Tribble JR, Williams PA, Thiel MA, Schmid MK, Bachmann LM, Bochmann F. Comparative assessment of retinal blood flow velocity changes following brimonidine and brinzolamide administration using retinal function imager. Transl Vis Sci Technol. 2022;11(2):1, https://doi.org/10.1167/tvst.11.2.1

Purpose: Impaired ocular blood flow has been associated with the etiopathogenesis of glaucoma. Topical brimonidine lowers intraocular pressure, a major glaucoma risk factor. However, brimonidine’s influence on retinal blood flow remains to be fully elucidated. Our aim was to compare the effect of topical brimonidine and brinzolamide administration on retinal blood flow velocity in second and third order vessels in healthy adults using the retinal function imager.

Methods: In 10 healthy probands between 23 and 32 years of age, one eye was randomly selected to receive 2 treatment rounds with 3 single doses of brimonidine 2 mg/mL and brinzolamide 10 mg/mL at 12-hour intervals each. The fellow eyes served as intra-individual controls. Immediately before the first drop and 2 hours after the last drop of each treatment round, all subjects were examined, including Goldmann tonometry, Pascal tonometry, assessment of retinal blood flow velocity using the retinal function imager, as well as blood pressure and pulse measurements.

Results: Intraocular pressure decreased significantly in treated eyes while remaining stable in control eyes, indicating reliable application of brimonidine and brinzolamide drops. In contrast, retinal blood flow velocities did not demonstrate any significant differences between groups after both treatment rounds.

Conclusions: Neither brimonidine nor brinzolamide appear to alter retinal blood flow velocity in a clinically relevant manner. The slight velocity changes detected in our study are likely physiologic fluctuations. Our findings do not support the rationale of a detrimental effect of topical brimonidine on ocular blood flow and hence brimonidine may be further administered for lowering intraocular pressure with the appropriate caution. However, our study is strongly limited by the small sample size and, thus, further research with larger cohorts of healthy volunteers and patients with glaucoma is needed to confirm the results.

Translational Relevance: The study provides information about the effect of the topically administered antiglaucoma medications brimonidine and brinzolamide on the ocular blood flow and its regulation. The findings indicate that beside the lowering of IOP there is no evidence for an additional effect on the development of glaucoma.

Introduction

Glaucoma is an irreversible neurodegenerative disease characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs) and their axons, which make up the optic nerve. The disease clinically presents with deterioration of visual sensitivity and progressive visual field deficits. Projected to affect up to 110 million patients worldwide until 2040, glaucoma is the most prevalent irreversible blinding disorder and is a significant health and
Brimonidine’s Effect on Ocular Blood Flow Velocity

To maintain OBF in case of vasocostriction following brimonidine application, RBFV is expected to increase according to the laws of fluid physics (flow = cross-section area \times RBFV). However, RBFV may also increase as a result of decreased vascular resistance following IOP-lowering. To dissect the potential mechanism of brimonidine on OBF and RBFV (stimulation of \(\alpha_2 \)-adrenoceptors or an indirect reduction of IOP), it is necessary to compare the effects of brimonidine to another IOP-lowering medication which does not stimulate \(\alpha_2 \)-adrenoceptors. Brinzolamide is a highly specific carbonic anhydrase inhibitor, which lowers IOP by reducing aqueous humor production via decelerating the formation of bicarbonate ions and subsequently reducing sodium and fluid transport in the ciliary bodies.32–34 As such, brinzolamide is not presumed to directly affect retinal vessels. Thus, a comparative analysis of blood flow parameter changes following both brimonidine and brinzolamide application may allow for a conclusion regarding a possible mechanism of action.

Retinal function imaging is a noninvasive diagnostic method that allows for a quantitative mapping of RBFV by direct observation of erythrocyte movement. The retinal function imager (RFI) has proven to be a valuable tool in assessing various retinal conditions and their treatments.35,36 The aim of this study was to explore and compare the effects of topical brimonidine and brinzolamide administration on RBFV in second and third order peri-foveolar vessels in healthy adults using the RFI.

Methods

This study was conducted in accordance with the Declaration of Helsinki and was approved by the competent ethics committee (Ethikkommission Nordwest - und Zentralschweiz EKNZ, #2015-315). Potential study probands were personally approached and asked to participate. Individuals meeting the inclusion criteria were informed about the study and included when interested. Written informed consent was obtained from all volunteers after explanation of the nature and possible consequences of the study.

As part of this study, IOP was measured by Goldmann applanation tonometry and Pascal tonometry. Within this manuscript, IOP refers to a measurement by Goldmann applanation tonometry unless otherwise stated.

Inclusion Criteria and Probands’ Characteristics

A total of 10 healthy volunteers over the age of 18 years were enrolled. Probands’ age range was from 23 to 32 years (mean 28.46 ± 2.5 years [± standard deviation]; median 29 years). All study participants were Caucasians. In five individuals, the right eye was selected for treatment (\(n = 5 \)) and in five
individuals the left eye was selected for treatment ($n = 5$). All probands were men, as brimonidine is contraindicated in pregnancy and thus female candidates would have had to perform a pregnancy test prior to enrollment. Inclusion criteria comprised: no known hypersensitivity to any of brimonidine and brinzolamide’s tartrate’s constituents, fully dilating pupils, no signs or history of OHT or other ophthalmic pathology (as assessed upon a clinical examination, including ophthalmoscopy and optical coherence tomography of the macula and the optic disc), no ocular surgery or trauma within ≤ 3 months, and no severe media opacity or high refractive error ($\geq +10$ dpt or -6 dpt). Furthermore, we did not include individuals with a history of epileptic or any other type of seizure because the RFI uses a stroboscopic flash light, nor probands currently under treatment with monoaminoxidase inhibitors or other antidepressants, in which case brimonidine is contraindicated.

Clinical Assessment

All data evaluated in this study was collected from four visits per proband on four different evenings (treatment [t]1 to t4) each. Upon the first visit (t1), one eye in each subject was randomly selected to receive 3 single doses of brimonidine 2 mg/mL at 12-hour intervals, whereas the fellow eyes constituted the intraindividual control group. Immediately before the first drop (t1) and 2 hours after the last drop (t2), all subjects were examined, including Goldmann applanation tonometry, Pascal tonometry, and retinal function imaging after pupil dilatation (tropicamide 0.5% drops), as well as arterial blood pressure (BP) and pulse measurement. Mean arterial BP and mean ocular perfusion pressure (OPP; 2/3 of the mean arterial BP minus IOP) were assessed mathematically. The second examination (t2) was conducted 2 hours after the last brimonidine administration as the maximum pharmacological effect is likely to have occurred by this timepoint. Four to 6 months later (t3), probands were seen again, and the procedure described above was repeated with identical examinations and with treatment of the same eyes, yet with 3 doses of brinzolamide 10 mg/mL drops at 12-hour intervals instead of brimonidine 2 mg/mL. The final examination (t4) was again performed 2 hours after the last brinzolamide administration.

Retinal Function Imager Measurements

The RFI (Optical Imaging, Rehovot, Israel) has been designed to measure RBFV (mm/s) in the second and third branch retinal vessels, following successful application of the technology for neurovascular imaging of the cerebral cortex. The operating principle is based on the fact that under green illumination, hemoglobin can be used as a natural, high-contrast chromophore (wavelength 530–590 nm). Thus, images are acquired using a stroboscopic flashlight and a charge-coupled camera. The system is capable of capturing 8 consecutive pictures within no more than 20 ms between the flashes (50–100 Hz), allowing for direct observation of erythrocyte movement. The cross-correlation of moving patterns of erythrocytes and single erythrocytes, respectively, over the eight consecutive pictures renders flow velocity measurement possible. Recording the patient’s pulse pattern with a heartbeat synchronization probe attached to a finger or earlobe, flow velocity measurements are standardized for the effect of heart pulsation. With the feasibility of tracking single erythrocytes, even capillaries can be depicted in so called “capillary perfusion maps.” By detecting the direction of blood flow with integrated software, arterioles and venules can be distinguished. Furthermore, by measuring parameters of oxygen utilization and retinal response to photic stimulation, information about oximetry and metabolism can be deducted. The RFI provides measurements of RBFV for individual vessel segments with a variability of 10.9%.

In our study, RBFV measurements were performed minutes before the first brimonidine (t1) and brinzolamide (t3) application, as well as 2 hours after the last drop applications (t2 and t4). The field of vision was set to 35 degrees. Three series with the best image quality, each with at least four consecutive images, were used for the RBFV analysis. In each retinal hemisphere, 3 arterioles and 3 venules were measured using the automated integrated software, resulting in a total of 12 vessel segment measurements per proband, 6 venules and 6 arterioles. Mean RBFV were calculated based on these 12 measurements.

Statistical Analysis

Differences in RBFV between interventional and control eyes (t1 to t4) as well as changes between pretreatment (t1 and t3) and post-treatment (t2 and t4) timepoints were defined as primary outcomes. Changes in IOP, mean arterial BP, and heart rate were defined as secondary outcomes. All statistical analysis was performed in R software (R Foundation for Statistical Computing, Vienna, Austria). Descriptive analysis with calculation of mean values and standard deviation was performed. Data were tested for normality with a Shapiro Wilk test. Normally distributed data were compared by a paired Student’s t-test. Non-normally
distributed data were compared by a Wilcoxon signed-rank test. Correlations were assessed by a Pearson’s correlation test or Spearman’s rank correlation test for normally distributed and non-normally distributed data respectively. Any P values < 0.05 was considered statistically significant. For box plots, the center hinge represents the median with upper and lower hinges representing the first and third quartiles; whiskers represent 1.5 times the interquartile range; *P < 0.05, **P < 0.01, ***P < 0.001. Fisher’s exact test was performed to compare changes in individual arterial and venous vessel segments before and after treatment with brimonidine and brinzolamide. Frequency distributions based on five equally spaced bins according to the minimum and maximum RBFV values in the total data set (n = 60 measurements / cohort / time, minimum = 1.2, maximum = 9.9, bin values: 0 > 2, 2 > 4, 4 > 6, 6 > 8, and 8 > 10) were generated. All vessels (arterioles and venules) before versus after brimonidine (t1 versus t2) and before versus after brinzolamide (t3 versus t4) treatment were tested. There were no significant differences in frequency distributions in any of the interventional groups (see Supplementary Table S1).

Results

Exemplary presentation of RFI images with RBFV measurements of two study participants (#2 and #7) are shown in Figure 1. Additionally, all measured RBFV and corresponding vessel type and order as well as RBFV differences during both treatment rounds (t2 versus t1 and t4 versus t3) of the same two study participants are shown in Table 1.

Brimonidine Treatment Lowers Intraocular Pressure Without Relevantly Altering Retinal Blood Flow Velocity

Before brimonidine treatment (t1), IOP was within normal limits in all eyes (10–21 mm Hg). There was no significant difference comparing control and interventional eyes before treatment for mean IOP (t1; P > 0.34), mean ocular pulse amplitude (OPA; P = 1), mean OPP (P > 0.26), mean arterial RBFV (P > 0.54), mean venous RBFV (P > 0.66), or mean overall RBFV (P > 0.57). Mean arterial BP and mean heart rate were 88.9 (+11.59) mm Hg and 69.4 (+7.14) beats per minute, respectively. Following treatment (t2), mean IOP decreased (−5.1 mm Hg, −36.17%, P < 0.05) and mean OPP increased distinctly and significantly (P < 0.05) in interventional eyes, whereas remaining stable in control eyes (mean IOP = P > 0.24; mean OPP = P > 0.06). In both groups, mean overall RBFV increased (interventional eyes: +0.209 mm/s, +5.98%, P > 0.18, 95% confidence interval [CI] = −0.123 to −0.543 mm/s; control eyes: +0.461 mm/s, +13.61%, P > 0.01, CI 0.106–0.816 mm/s), without demonstrating significant differences between the two groups (P > 0.47). The changes in mean arterial RBFV and mean venous RBFV in each group were relatively similar. Mean arterial BP was 95.1 (±5.55) mm Hg and mean heart rate was 63.4 (±8.19) beats per minute. No correlation was found among mean RBFV and mean arterial BP, mean heart rate, mean IOP, or mean OPP post-treatment (all P > 0.25). Ophthalmic parameters before and after brimonidine treatment are shown in Table 2 and Figure 2.

Brinzolamide Treatment Lowers Intraocular Pressure Without Relevantly Altering Retinal Blood Flow Velocity

Mean IOP was within normal limits before application of brinzolamide (t3), and similar between control and interventional eyes (P > 0.78), as well as mean OPA (P > 0.10), mean OPP (P > 0.69), mean arterial RBFV (P > 0.77), mean venous RBFV (P > 0.69), and mean overall RBFV (P > 0.93). Mean arterial BP and mean heart rate were 93.8 (±3.99) mm Hg and 69 (±8.87) beats per minute, respectively. Following treatment (t4), mean IOP decreased (−5.2 mm Hg, −34.9%, P < 0.005) and mean OPP increased (P < 0.005) again significantly in interventional eyes, whereas no relevant changes were found in control eyes (P > 0.13). Mean overall RBFV increased slightly in both interventional eyes (±0.019 mm/s, +0.52%, P > 0.9, CI = −0.323 to −0.361 mm/s) and control eyes (±0.148 mm/s, ±4.07%, P > 0.5, CI = −0.333 to −0.63 mm/s), showing no significant differences between groups (P > 0.19). The changes in mean arterial RBFV and mean venous RBFV in each group were relatively similar. Mean arterial BP was 92.7 (±5.02) mm Hg and mean heart rate was 59.6 (13.71) beats per minute. No correlation was found among mean RBFV and mean arterial BP, mean heart rate, mean IOP, or mean OPP post-treatment (all P > 0.25). Ophthalmic parameters before and after brinzolamide treatment are shown in Table 3 and Figure 3.

Discussion

Main Findings

In this exploratory pilot study, we assessed RBFV changes following brimonidine and brinzolamide
application. Although both drugs lower IOP, only brimonidine is presumed to have a direct pharmacological vasoconstrictive effect. Following both treatment rounds, mean IOP decreased significantly in interventional eyes while remaining stable in control eyes, indicating reliable application of brimonidine and brinzolamide drops. In contrast, RBFV increased synchronically in both groups following both treatment rounds. No significant differences in mean RBFV were found between control and interventional eyes at any measurement timepoint (t1 to t4). No correlation was found among mean RBFV and mean arterial BP, mean heart rate, mean OPA, or mean OPP post-treatment (t2 and t4).

We hypothesized that RBFV might rise following IOP-lowering either as a result of a direct pharmacological vasoconstrictive effect (only brimonidine) or via reduction of external vascular resistance (brimonidine and brinzolamide). In our cohort, RBFV increased after treatment with both

Figure 1. Exemplary presentation of RFI images with RBFV measurements of two study participants. Left columns (study participant #2): RFI images of study participant #2 before (t1) and after (t2) brimonidine treatment as well as before (t3) and after (t4) brinzolamide treatment, with the left eye being the control eye and the right eye being the interventional eye. Right columns (study participant #7): RFI images of study participant #7 before (t1) and after (t2) brimonidine treatment as well as before (t3) and after (t4) brinzolamide treatment, with the right eye being the interventional eye and the left eye being the control eye.
brimonidine and brinzolamide, which may appear suggestive for an effect mediated by reduction of external vascular resistance. However, as RBFV increased synchronically in interventional and control eyes it seems more likely that these changes have occurred independently from the medications’ influence.

After brimonidine treatment, the increases in RBFV were more pronounced in venules compared to arterioles. If there was a direct pharmacological vasoconstrictive effect, it would be more intuitive to expect RBFV to rise in arterioles rather than venules, given the arterioles’ bigger vasoconstrictive potential. On the other hand, evidence suggests that RBFV to rise in arterioles rather than venules, given the arterioles’ bigger vasoconstrictive potential. However, as RBFV increased only marginally in interventional eyes.

Considering our findings and interpretations, we deem it likely that in this cohort both brimonidine and brinzolamide did not affect OBF in a clinically relevant manner. It is most credible that the changes in RBFV that could be measured after brimonidine and brinzolamide treatment in both control and interventional eyes represent only physiologic fluctuations. The observation that the RBFV remained mostly stable whereas the OPP changed significantly could be explained by the fact that our measurements were obtained from young and healthy individuals. This could be seen as an indicator for an intact vascular autoregulation. Future research could explore patients with glaucoma with clinical signs of vascular dysregulation in which the findings may be different.
Table 2. Ophthalmic Parameters in Control and Interventional Eyes Before (t1) and After (t2) Brimonidine Treatment

Parameter	Control Eyes	Interventional Eyes	P Values Control Versus Interventional Eyes
Pre-brimonidine (t1)			
Intraocular pressure (Goldmann; mm Hg)			
Mean	14.8	14.1	P = 0.3428
Standard deviation	1.99	2.385	
Median	16	13	
Range	12–18	12–18	
Intraocular pressure (Pascal; mm Hg)			
Mean	16.72	16.930	P = 0.8206
Standard deviation	1.969	1.951	
Median	17	17	
Range	13.8–20.5	14.4–20.1	
Ocular Pulse Amplitude (Pascal; mm Hg)			
Mean	2.53	2.53	P = 1
Standard deviation	1.019	1.185	
Median	2	2	
Range	1.2–4.4	0.9–5.0	
Ocular perfusion pressure (mm Hg)			
Mean	44.444	45.167	P = 0.2676
Standard deviation	7.317	7.887	
Median	45	46	
Range	25.333–52.222	25.556–56	
Overall retinal blood flow velocity (mm/s)			
Mean	3.388	3.493	P = 0.5778
Standard deviation	0.659	0.436	
Median	3.358	3.4	
Range	2.367–4.45	2.892–4.183	
Arterial retinal blood flow velocity (mm/s)			
Mean	3.680	3.823	P = 0.5409
Standard deviation	0.793	0.647	
Median	3.542	3.817	
Range	2.383–5.183	3.017–5.050	
Venous retinal blood flow velocity (mm/s)			
Mean	3.097	3.162	P = 0.667
Standard deviation	0.581	0.400	
Median	2.925	3.142	
Range	2.350–4.000	2.683–4.000	
Post-brimonidine (t2)			
Intraocular pressure (Goldmann; mm Hg)			
Mean	14.1 (P = 0.2449)	9 (P = 0.005729)	P = 0.0006184
Standard deviation	1.972	2.098	
Median	14	9	
Range	10–17	6–12	
Intraocular pressure (Pascal; mm Hg)			
Mean	16.17 (P = 0.7507)	12.52 (P = 0.0003099)	P = 0.01727
Standard deviation	3.792	2.426	
Median	15	12	
Range	9.1–21.9	9.4–17.4	
Ocular Pulse Amplitude (Pascal; mm Hg)			
Mean	2.03 (P = 0.01767)	1.61 (P = 0.008418)	P = 0.005121
Standard deviation	0.996	0.902	
Median	2	1	
Range	1–4.4	0.7–3.6	
Ocular perfusion pressure (Goldmann; mm Hg)			
Mean	49.3 (P = 0.06445)	54.4 (P = 0.006485)	P = 0.0006184
Standard deviation	4.189	3.724	
Median	49	53	
Range	39–54	48–61.333	
Overall retinal blood flow velocity (mm/s)			
Mean	3.849 (P = 0.01654)	3.702 (P = 0.1879)	P = 0.4776
Standard deviation	0.505	0.475	
Median	3.788	3.684	
Range	3.308–4.892	2.833–4.658	
Arterial retinal blood flow velocity (mm/s)			
Mean	4.078 (P = 0.1248)	3.898 (P = 0.07557)	P = 0.4767
Standard deviation	0.684	0.672	
Median	4.167	3.983	
Range	3.067–5.150	2.850–4.983	
Venous retinal blood flow velocity (mm/s)			
Mean	3.620 (P = 0.009298)	3.507 (P = 0.05437)	P = 1
Standard deviation	0.559	0.548	
Median	3.483	3.492	
Range	3.133–5.050	2.617–4.333	
Brionidine’s Effect on Ocular Blood Flow Velocity

Figure 2. Intraocular pressure and retinal blood flow velocity in the control eyes and the interventional eyes before and after brimonidine treatment. **Top row:** Box and whisker plots showing intraocular pressures (mm Hg) in the control and interventional eyes before (t1) (A) and after (t2) (B) brimonidine treatment, as well as changes within the control (C) and the interventional group (D) before (t1) and after (t2) brimonidine treatment. Red and blue lines represent increases and decreases, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. **Bottom row:** Box and whisker plots showing overall mean retinal blood flow velocities in the control and interventional eyes before (t1) (E) and after (t2) (F) brimonidine treatment, as well as changes within the control (G) and the interventional group (H) before (t1) and after (t2) brimonidine treatment. Red and blue lines represent increases and decreases, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. Intraocular pressures and mean retinal blood flow velocities were comparable in both groups before brimonidine treatment. After treatment, intraocular pressures decreased significantly in interventional eyes, whereas remaining stable in control eyes. Blood flow velocities increased slightly in both interventional and control eyes, showing no significant difference between groups.

Results in Context of Pre-Existing Literature

Given the different mechanisms of action and the various localizations of the \(\alpha_2 \)-adrenergic receptors, it has been hypothesized that brimonidine possibly affects OBF through a direct pharmacological vasoconstrictive effect and/or indirectly via reducing IOP and, hence, vascular resistance. However, the influence of brimonidine on retinal hemodynamics remains to be fully elucidated, and published evidence is conflicting. Rolle and colleagues documented an increase in OBF after topical brimonidine application assessed by the Heidelberg Retina Flowmeter in patients with glaucoma.\(^{28}\) This effect, however, was only observed shortly (2 hours) after the application of brimonidine. After 30 days, the effect was no longer detectable. Vetrugno et al. documented an increase in pulsatile OBF after brimonidine administration in patients with POAG, as assessed by Goldmann applanation tonometry and the Langham system.\(^{29}\) Rosa et al. found a heterogeneous vasomotor response mediated by activation of \(\alpha_2 \)-adrenoceptors in porcine retinal vessels after brimonidine application, whereas vasoconstriction increased with higher brimonidine concentration.\(^{30}\) However, evidence discarding a detrimental effect of brimonidine on OBF prevails. Lachkar et al. used DUS for examining OBF in a number of different ocular and periocular vessels before and...
Table 3. Ophthalmic Parameters in Control and Interventional Eyes Before (t3) and After (t4) Brinzolamide Treatment

Parameter	Control Eyes	Interventional Eyes	P Values Control Versus Interventional Eyes
Pre-brinzolamide (t3)			
Intraocular pressure (Goldmann; mm Hg)			
Mean	14.7	14.9	P = 0.7835
Standard deviation	3.551	3.081	
Median	13	14	
Range	10–21	10–21	
Intraocular pressure (Pascal; mm Hg)			
Mean	14.870	15.64	P = 0.3647
Standard deviation	2.122	2.36	
Median	15	16	
Range	10.7–18.5	10.5–19.2	
Ocular Pulse Amplitude (Pascal; mm Hg)			
Mean	1.9	2.07	P = 0.1088
Standard deviation	0.548	0.701	
Median	2	2	
Range	1–2.9	1.2–3.5	
Ocular perfusion pressure (mm Hg)			
Mean	47.811	47.611	P = 0.6926
Standard deviation	3.61	3.563	
Median	48	49	
Range	40.778–52.667	40.778–52.667	
Overall retinal blood flow velocity (mm/s)			
Mean	3.640	3.628	P = 0.9392
Standard deviation	0.546	0.480	
Median	3.554	3.550	
Range	2.883–4.525	2.883–4.675	
Arterial retinal blood flow velocity (mm/s)			
Mean	3.768	3.818	P = 0.7721
Standard deviation	0.533	0.462	
Median	3.708	3.633	
Range	2.867–4.833	3.133–4.650	
Venous retinal blood flow velocity (mm/s)			
Mean	3.512	3.437	P = 0.6941
Standard deviation	0.709	0.615	
Median	3.283	3.542	
Range	2.650–4.750	2.633–4.700	
Post-brinzolamide (t4)	(P values for intra-group changes between pre and post)	(P values for intra-group changes between pre and post)	
Intraocular pressure (Goldmann; mm Hg)			
Mean	12.8 (P = 0.1355)	9.7 (P = 1.049e-05)	P = 5.344e-05
Standard deviation	1.6	2.41	
Median	13	9	
Range	10–15	6–14	
Intraocular pressure (Pascal; mm Hg)			
Mean	15.060 (P = 0.8275)	13.550 (P = 0.0254)	P = 0.0254
Standard deviation	2.109	1.766	
Median	16	13	
Range	10.7–17.6	11.3–16.7	
Ocular Pulse Amplitude (Pascal; mm Hg)			
Mean	2.03 (P = 0.7984)	1.93 (P = 0.2359)	P = 0.635
Standard deviation	0.718	0.592	
Median	2	2	
Range	1.2–3.9	1.4–3.5	
Ocular perfusion pressure (mm Hg)			
Mean	48.676 (P = 0.358)	51.967 (P = 0.002336)	P = 5.344e-05
Standard deviation	3.221	3.347	
Median	48	52	
Range	42.111–54.778	45.111–58.778	
Overall retinal blood flow velocity (mm/s)			
Mean	3.788 (P = 0.5035)	3.647 (P = 0.9017)	P = 0.1998
Standard deviation	0.585	0.664	
Median	3.742	3.758	
Range	2.8–4.675	2.508–4.908	
Arterial retinal blood flow velocity (mm/s)			
Mean	4.007 (P = 0.404)	3.865 (P = 0.8308)	P = 0.4637
Standard deviation	0.755	0.795	
Median	4.317	3.817	
Range	2.850–4.933	2.633–5.567	
Venous retinal blood flow velocity (mm/s)			
Mean	3.570 (P = 0.7866)	3.428 (P = 0.9621)	P = 0.464
Standard deviation	0.674	0.663	
Median	3.550	3.267	
Range	2.367–4.467	2.383–4.583	
Brimonidine’s Effect on Ocular Blood Flow Velocity

Figure 3. Intraocular pressure and retinal blood flow velocity in the control eyes and the interventional eyes before and after brinzolamide treatment. Top row: Box and whisker plots showing intraocular pressures (mm Hg) in the control and interventional eyes before (t3) (A) and after (t4) (B) brinzolamide treatment, as well as changes within the control group (C) and the interventional group (D) before (t3) and after (t4) brinzolamide treatment. Red and blue lines represent increases and decreases, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. Bottom row: Box and whisker plots showing overall mean retinal blood flow velocities in the control and interventional eyes before (t3) (E) and after (t4) (F) brinzolamide treatment, as well as changes within the control group (G) and the interventional group (H) before (t3) and after (t4) brinzolamide treatment. Red and blue lines represent increases and decreases, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. Intraocular pressures and retinal blood flow velocities were comparable in both groups before brinzolamide treatment. After treatment, intraocular pressures decreased significantly in interventional eyes, while remaining stable in control eyes. Blood flow velocities increased marginally in both interventional and control eyes, showing no significant difference between groups.

after brimonidine application in patients with OHT and found no significant blood flow velocity changes. Similarily, Jonescu-Cuypers et al. found no relevant changes in retrobulbar blood flow velocities and arteriovenous passage time following 2 weeks of brimonidine treatment in healthy volunteers, as assessed by DUS and FA. Assessment of long-term effect of brimonidine on OBF, also using DUS, showed no significant retrobulbar hemodynamic changes when measured after 3 months of brimonidine treatments compared to Latanoprost and Dorzolamide. In a study by Carlsson et al. using SLDF, no significant difference in OBF and OBF velocity was found between the brimonidine-treated group and the placebo group.

More recent studies evaluated retinal perfusion after brimonidine application in patients with OHT and normal-tension glaucoma by OCTA, and found no evidence for a significant effect.

Our study is the first to assess OBF using the RFI. Demonstrating no relevant changes in OBF parameters, our findings are consistent with other studies based on modern examination techniques and provide further evidence against a detrimental effect of brimonidine on OBF.

Strengths and Limitations

The strength of our study is its prospective design and the use of retinal function imaging, an innovative and unique diagnostic method enabling direct
observation of erythrocyte movement in the retinal vessels. Furthermore, our study offers exclusive insights into the interaction of IOP-lowering agents and ocular blood flow dynamics because we comparatively assessed the effects of two different IOP-lowering agents with distinguished pharmacological features in the same individuals. Previous studies compared blood flow alterations following IOP-lowering treatment only in different individuals. In contrast, it needs to be emphasized that our study is only exploratory and is strongly limited by the small sample size. Based on this pilot study, only restricted inferences can be made regarding the general population. Furthermore, because the investigated subjects were all healthy volunteers, only restricted conclusions can be drawn on patients with pre-existing ocular pathologies, yet setting the stage for investigating patients with compromised retinal vascular dysregulation. In addition, retinal function imaging allows only for indirect evaluation of OBF by measuring RBFV. A change in RBFV does not necessarily signify a clinically relevant alteration in ocular blood supply. It is conceivable that a reduction of vessel diameter is compensated by higher RBFV and thus ocular blood supply remains sufficient. Furthermore, the observation period was short. No statements can be made regarding the long-term course. Given these limitations, further research is needed to confirm our conclusions.

Implications for Research

The exact interaction between α2-adrenoceptor stimulation and possible subsequent retinal vasoconstriction as well as IOP-lowering, reduction of external vascular resistance, and subsequent vessel dilation remains to be fully elucidated and warrants further investigation. Unfortunately, the RFI only allows for measurement of RBFV and does not provide direct information on vessel size. We are therefore projecting a sequel study using a multimodal retinal imaging approach with which to assess RBFV and vessel size simultaneously in healthy volunteers treated with brimonidine, possibly by combining RFI with OCTA. Future research may be warranted to explore RBFV changes following brimonidine application in patients with glaucoma.

Conclusion

We demonstrate that neither brimonidine nor brinzolamide alter RBFV in a clinically relevant manner in our cohort of healthy adults. These findings are consistent with prevailing evidence and recent studies based on other modern examination techniques, reporting no relevant changes in OBF parameters after topical brimonidine administration. Our findings do not support the rationale of a detrimental effect of topical brimonidine administration on OBF. Provisionally, topical brimonidine may continue to be clinically used for managing IOP with the appropriate caution. Given the small sample size and other limitations adherent to our study, further research is needed to confirm our conclusions.

Acknowledgments

Funded by an unrestricted grant from Novartis Schweiz AG, Basel, Switzerland. P.A.W. is supported by Karolinska Institutet in the form of a Board of Research Faculty Funded Career Position and by St. Erik Eye Hospital philanthropic donations.

Authorship: All named authors take responsibility for the integrity of the work as a whole and have given their approval for this version of the manuscript to be published.

Disclosure: T.J. Enz, None; M. Bittner, None; J.R. Tribble, None; P.A. Williams, None; M.A. Thiel, None; M.K. Schmid, None; L.M. Bachmann, None; F. Bochmann, None

References

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. *Ophthalmology*. 2014;121(11):2081–2090.
2. Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. *Curr Opin Ophthalmol*. 2016;27(2):94–101.
3. Mursch-Edlmayer AS, Bolz M, Strohmaier C. Vascular Aspects in Glaucoma: From Pathogenesis to Therapeutic Approaches. *Int J Mol Sci*. 2021;22(9):4662.
4. Almasieh M, MacIntyre JN, Pouliot M, et al. Acetylcholinesterase inhibition promotes retinal vasoprotection and increases ocular blood flow in experimental glaucoma. *Invest Ophthalmol Vis Sci*. 2013;54(5):3171–3183.
5. Harris A, Ciulla TA, Kagemann L, Zarfati D, Martin B. Vasoprotection as neuroprotection for
the optic nerve. *Eye (Lond).* 2000;14 (Pt 3B):473–475.
6. Flammer J, Haefliger IO, Orgül S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? *J Glaucoma.* 1999;8(3):212–219.
7. Gaspar AZ, Flammer J, Hendrickson P. Influence of nifedipine on the visual fields of patients with optic-nerve-head diseases. *Eur J Ophthalmol.* 1994;4(1):24–28.
8. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. *Arch Ophthalmol.* 1995;113(12):1514–1517.
9. Greenfield DS, Liebmann JM, Ritch R. Brimonidine: a new alpha2-adrenoceptor agonist for glaucoma treatment. *J Glaucoma.* 1997;6(4):250–258.
10. Mittag TW, Tormay A. Drug responses of adenylate cyclase in iris-ciliary body determined by adenine labelling. *Invest Ophthalmol Vis Sci.* 1985;26(3):396–399.
11. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S.; Group . A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. *Am J Ophthalmol.* 2011;151(4):671–681.
12. Arthur S, Cantor LB. Update on the role of alphaagonists in glaucoma management. *Exp Eye Res.* 2011;93(3):271–283.
13. Bockman CS, Jeffries WB, Abel PW. Binding and functional characterization of alpha-2 adrenergic receptor subtypes on pig vascular endothelium. *J Pharmacol Exp Ther.* 1993;267(3):1126–1133.
14. McGillivray-Anderson KM, Faber JE. Effect of reduced blood flow on alpha 1- and alpha 2-adrenoceptor constriction of rat skeletal muscle microvessels. *Circ Res.* 1991;69(1):165–173.
15. Faber JE, Meininger GA. Selective interaction of alpha-adrenoceptors with myogenic regulation of microvascular smooth muscle. *Am J Physiol.* 1990;259(4 Pt 2):H1126–H1133.
16. Ehrlich R, Harris A, Kheradiya NS, Winston DM, Ciulla TA, Wirostko B. Age-related macular degeneration and the aging eye. *Clin Interv Aging.* 2008;3(3):473–482.
17. Luo X, Shen YM, Jiang MN, Lou XF, Shen Y. Ocular Blood Flow Autoregulation Mechanisms and Methods. *J Ophthalmol.* 2015;2015:864871.
18. Trinh M, Kalloniotis M, Nivison-Smith L. Vascular Changes in Intermediate Age-Related Macular Degeneration Quantified Using Optical Coherence Tomography Angiography. *Transl Vis Sci Technol.* 2019;8(4):20.
19. Toto L, Borrelli E, Mastropasqua R, et al. Association between outer retinal alterations and microvascular changes in intermediate stage age-related macular degeneration: an optical coherence tomography angiography study. *Br J Ophthalmol.* 2017;101(6):774–779.
20. Garhöfer G, Chua J, Tan B, Wong D, Schmidl D, Schmetterer L. Retinal Neurovascular Coupling in Diabetes. *J Clin Med.* 2020;9(9):2829.
21. Schmidt KG, Klingmüller V, Gouveia SM, Osborne NN, Pillunat LE. Short posterior ciliary artery, central retinal artery, and choroidal hemodynamics in brimonidine-treated primary open-angle glaucoma patients. *Am J Ophthalmol.* 2003;136(6):1038–1048.
22. Lachkar Y, Migdal C, Dhanjil S. Effect of brimonidine tartrate on ocular hemodynamic measurements. *Arch Ophthalmol.* 1998;116(12):1591–1594.
23. Jonescu-Cuypers CP, Harris A, Ishii Y, et al. Effect of brimonidine tartrate on ocular hemodynamics in healthy volunteers. *J Ocul Pharmacol Ther.* 2001;17(3):199–205.
24. Inan UU, Ermis SS, Yücel A, Oztürk F. The effects of latanoprost and brimonidine on blood flow velocity of the retrolublar vessels: a 3-month clinical trial. *Acta Ophthalmol Scand.* 2003;81(2):155–160.
25. Lin YH, Su WW, Huang SM, Chuang LH, Chen LC. Optical Coherence Tomography Angiography Vessel Density Changes in Normal-tension Glaucoma Treated with Carteolol, Brimonidine, or Dorzolamide. *J Glaucoma.* 2021;30:690–696.
26. Chihara E, Dimitrova G, Chihara T. Increase in the OCT angiographic peripapillary vessel density by ROCK inhibitor ripasudil instillation: a comparison with brimonidine. *Graefes Arch Clin Exp Ophthalmol.* 2018;256(7):1257–1264.
27. Simsek T, Yanik B, Conkbayir I, Zilelioglu O. Comparative analysis of the effects of brimonidine and dorzolamide on ocular blood flow velocity in patients with newly diagnosed primary open-angle glaucoma. *J Ocular Pharmacol Therapeut.* 2006;22(2):79–85.
28. Rolle T, Cipullo D, Vizzeri GM, Triggiani A, Brogliatti B. Evaluation and comparison between the effects on intraocular pressure and retinal blood flow of two antiglaucomatous drugs administered in monotherapy: brimonidine and latanoprost. Preliminary results. *Acta Ophthalmol Scand Suppl.* 2000;(232):50–52.
29. Vetrugno M, Maino A, Cantatore F, Ruggeri G, Cardia L. Acute and chronic effects of brimonidine 0.2% on intraocular pressure and pulsatile
ocular blood flow in patients with primary open-angle glaucoma: an open-label, uncontrolled, prospective study. *Clin Ther.* 2001;23(9):1519–1528.

30. Rosa RH, Hein TW, Yuan Z, et al. Brimonidine evokes heterogeneous vasomotor response of retinal arterioles: diminished nitric oxide-mediated vasodilation when size goes small. *Am J Physiol Heart Circ Physiol.* 2006;291(1):H231–H238.

31. Carlsson AM, Chauhan BC, Lee AA, LeBlanc RP. The effect of brimonidine tartrate on retinal blood flow in patients with ocular hypertension. *Am J Ophthalmol.* 2000;129(3):297–301.

32. Herkel U, Pfeiffer N. Update on topical carbonic anhydrase inhibitors. *Curr Opin Ophthalmol.* 2001;12(2):88–93.

33. DeSantis L. Preclinical overview of brinzolamide. *Surv Ophthalmol.* 2000;44(Suppl 2):S119–S129.

34. Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. *Subcell Biochem.* 2014;75:349–359.

35. Su D, Garg S. The retinal function imager and clinical applications. *Eye Vis (Lond).* 2018;5:20.

36. Wang L, Jiang H, Grinvald A, Jayadev C, Wang J. A Mini Review of Clinical and Research Applications of the Retinal Function Imager. *Curr Eye Res.* 2018;43(3):273–288.

37. Grinvald A, Bonhoeffer T, Vanzetta I, et al. High-resolution functional optical imaging: from the neocortex to the eye. *Ophthalmol Clin North Am.* 2004;17(1):53–67.

38. Izhaky D, Nelson DA, Burgansky-Eliash Z, Grinvald A. Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals. *Jpn J Ophthalmol.* 2009;53(4):345–351.

39. Nelson DA, Burgansky-Eliash Z, Barash H, et al. High-resolution wide-field imaging of perfused capillaries without the use of contrast agent. *Clin Ophthalmol.* 2011;5:1095–1096.

40. Landa G, Rosen RB. New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). *Br J Ophthalmol.* 2010;94(1):54–58.

41. Chhablani J, Bartsch DU, Cheng L, et al. Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager. *Graefes Arch Clin Exp Ophthalmol.* 2013;251(12):2665–2670.

42. Garhofer G, Werkmeister R, Dragostinoff N, Schmetterer L. Retinal blood flow in healthy young subjects. *Invest Ophthalmol Vis Sci.* 2012;53(2):698–703.