Modulation of the Phagosome Proteome by Interferon-γ

Isabelle Jutras‡, Mathieu Houde‡, Nathan Currier§, Jonathan Boulais‡, Sophie Duclos‡, Sylvie LaBoissière§, Eric Bonneil§¶, Paul Kearney§, Pierre Thibault§¶, Eustache Paramithiotis§, Patrice Hugo§, and Michel Desjardins‡§

Macrophages are immune cells that function in the clearance of infectious particles. This process involves the engulfment of microbes into phagosomes where these particles are lysed and degraded. In the current study, we used a large scale quantitative proteomics approach to analyze the changes in protein abundance induced on phagosomes by interferon-γ (IFN-γ), an inflammatory cytokine that activates macrophages. Our analysis identified 167 IFN-γ-modulated proteins on phagosomes of which more than 90% were up-regulated. The list of phagosomal proteins regulated by IFN-γ includes proteins expected to alter phagosome maturation, enhance microbe degradation, trigger the macrophage immune response, and promote antigen loading on major histocompatibility complex (MHC) class I molecules. A dynamic analysis of IFN-γ-sensitive proteins by Western blot indicated that newly formed phagosomes display a delayed proteolytic activity coupled to an increased recruitment of the MHC class I peptide-loading complex. These phagosomal conditions may favor antigen presentation by MHC class I molecules on IFN-γ-activated macrophages. Molecular & Cellular Proteomics 7:697–715, 2008.

The first line of defense against microbial infection involves the direct removal of pathogens by a variety of phagocytic cells including macrophages, polymorphonuclear neutrophils, and dendritic cells. These cells have evolved unique functions enabling them to engulf microorganisms in a specialized organelle, the phagosome, where they are killed and degraded (1). The innate ability of phagosomes to perform this task relies on the coordinated assembly of a variety of molecular machines through a complex process of organelle maturation (2). For instance, newly formed phagosomes acquire the vacuolar ATPase (V-ATPase)† complex, a proton pump that acidifies the phagosome lumen (3). This acidification process activates several lysosomal hydrolases delivered to phagosomes through fusion events with endosomes and lysosomes. Furthermore peptides derived from the degradation of microorganisms are loaded on both MHC class I and class II molecules for their presentation at the cell surface, a process that triggers an efficient adaptive immune response (4). Phagosomes are therefore pivotal platforms in linking both the innate and adaptive immune responses.

IFN-γ is a crucial factor in the clearance of infection as impaired production of IFN-γ or defects in the IFN-γ signaling pathway result in increased susceptibility to various bacterial (5) and viral infections (6). During the innate inflammatory response, IFN-γ is produced mainly by natural killer cells and subsets of T lymphocytes, including natural killer T cells and CD8+ T cells (7). Production of IFN-γ by these cells is stimulated by interleukin-12, a cytokine secreted by macrophages and dendritic cells in response to microbial stimulation of Toll-like receptors (TLRs) (8). On binding to its receptor, IFN-γ alters the expression of hundreds of genes in activated macrophages (5, 9, 10) by triggering complex signaling cascades, notably the JAK-STAT (Janus kinase-signal transducers and activators of transcription) signal transduction pathway (7). The ensuing IFN-γ-induced protein expression program enhances the microbicidal capacity of macrophages, which also respond to IFN-γ by increasing antigen presentation and by secreting inflammatory cytokines that contribute to the recruitment of immune cells to the site of infection (7). As the microbicidal capacity of macrophages involves many phagosome-associated functions, significant modifications in the protein content of phagosomes are thus expected to occur in response to IFN-γ. Several studies have examined the IFN-γ-induced expression program both at the transcriptional and the translational levels (5, 10, 11); however, the IFN-γ-induced protein expression profile has never been assessed on isolated phagosomes. In the present study, we took advantage of a unique proteomics platform developed to perform large scale comparative analyses and characterize the changes occurring to phagosomes in IFN-γ-treated cells. The results

†The abbreviations used are: V-ATPase, vacuolar ATPase; ER, endoplasmic reticulum; IFN-γ, interferon-γ; MHC, major histocompatibility complex; MDS, multidimensional scaling; TLR, Toll-like receptor; mAb, monoclonal antibody; pAb, polyclonal antibody; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; 2-D, two-dimensional; IGTP, interferon-γ-induced GTPase; GBP, guanylate-binding protein; LRP, low density lipoprotein receptor-related protein; VAMP, vesicle-associated membrane protein.
obtained reveal a complex series of modifications in a wide range of phagosomal molecular machines coordinated to enhance both innate and adaptive immunity.

EXPERIMENTAL PROCEDURES

Antibodies—The rat anti-Lamp1 luminal ID4B mAb was from the Developmental Studies Hybridoma Bank. The rabbit anti-V-ATPase A1 subunit pAb was raised against peptide MFDSKLPKRIREDKEC. The rabbit anti-Rab7 pAb was a gift from Dr. Stéphane Méresse. The rabbit anti-calnexin pAb was a gift from Dr. John Bergeron. The rabbit anti-Erp57 pAb and the chicken anti-calreticulin pAb were from Abcam. The mouse anti-GRP78 and anti-EEA1 mAbs were from BD Biosciences. The mouse anti-transferrin receptor mAb was from Chemicon International. The rabbit anti-gp91phox pAb was from Upstate. The rabbit anti-Lmp2 (20 S proteasome subunit β1) pAb was from Affiniti.

Cell Culture and Phagosome Formation—RAW 264.7 murine macrophages were cultured in Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% heat-inactivated fetal bovine serum, 10 mM Heps, pH 7.3, 100 units/ml penicillin, and 100 μg/ml streptomycin at 37 °C in 5% CO₂. For cytotoxic-treated cells, 100 units/ml IFN-γ (PBL Biomedical Laboratories) was added in the medium 24 h prior to the isolation of phagosomes. Phagosomes were formed by the internalization of 0.8-μm blue-dyed latex beads (Estapor® Microspheres) (12). For 2-D gel or quantitative proteomics analyses, cells were allowed to internalize beads for 1 h, washed with ice-cold PBS, and incubated in new medium for 1 h. For the dynamic analysis of phagosome proteins, internalization and chase periods were as indicated in Fig. 5. Phagosomes were isolated on a sucrose gradient as described previously (13). Phagosome samples prepared using this method have been shown to be devoid of major subcellular contaminants (14).

SDS-PAGE and Western Blotting—Purified phagosomes or total cell lysates were resuspended in Laemmli lysis buffer. The amount of proteins and latex beads in the samples were quantified, respectively, by EZQ™ Protein Quantification kit (Molecular Probes) and spectrophotometry. Proteins were separated by SDS-PAGE prior to Western blotting, which was revealed using ECL reagent. The bands obtained from Western blotting were quantified using ImageQuant 5.2 software (GE Healthcare).

Large Scale Quantitative Proteomics Analysis (CellCarta®)—Phagosome samples (six control and four IFN-γ-treated samples) were resuspended in 50 mM ammonium carbonate, pH 8.1, containing 1 M urea and digested first with Lys-C (Wako Chemicals, Richmond, VA) for 4 h at 37 °C with subsequent reduction of disulfide bonds using 25 mM tris(2-carboxyethyl)phosphine at 37 °C for 1 h. The extracts were subsequently diluted to 0.1 M urea and 50 mM ammonium bicarbonate and then digested with Promega trypsin (Fisher Scientific) overnight at 37 °C with moderate shaking. Lys-C and/or trypsin were added to a mass ratio of 1:50 trypsin to total protein extract. Samples were evaporated to dryness and reconstituted at a concentration of 0.5 μg/μl in 0.2% formic acid and 5% acetonitrile. Chromatographic separations were performed using a modular CapLC liquid chromatograph with a Waters C18 Symmetry precolumn and a home-made analytical column (10 cm × 150-μm inner diameter, Jupiter 5-μm C18, Phenomenex, Torrance, CA). Peptide elution was achieved using a linear gradient of 10–60% acetonitrile (0.2% formic acid) in 60 min at a flow rate of 600 nl/min. The strong cation exchange columns were connected directly to the switching valve and were on line with the C18 precolumn during sample loading and toggled off line during reversed-phase peptide separation on the analytical column. Peptides were sequentially eluted from each strong cation exchange column onto a separate C18 precolumn at a flow rate of 20 μl/min for 3 min using 20-μl salt plugs of 0, 55, 65, 80, 100, 150, 400, and 1 M ammonium acetate, pH 3.5. Simultaneous peptide elution from both C18 precolumns and analytical columns was achieved using a linear gradient of 10–60% acetonitrile (0.2% formic acid) in 60 min at a flow rate of 600 nl/min.

Isotopic peak detection was automatically applied to every LC-MS and LC-MS/MS analysis and represented as isotope maps. Peak lists were generated with MassLynx version 4.0 using default parameters. The isotope maps were converted into peptide maps by Savitzky-Golay smoothing in both the mz and retention time dimensions followed by peak fitting to a four-dimensional (m/z, charge, retention time, and intensity) peptide isotope map. The identification of peptide features is based on two-dimensional correlation of time and isotopic peaks for peaks above a user-defined intensity threshold, typically set to 25 counts, to minimize the detection of MS background noise and interfering peaks. Co-eluting ions were matched to a model based on the average distribution of peptide isotopic ions similar to that described by Senko et al. (15) and provided a false positive detection rate lower than 25% at this level. Peptides ions showing up or down abundance changes were manually validated to ensure data consistency. The peptide maps were normalized for retention time using a dynamic and nonlinear correction algorithm applied across all comparable LC-MS and LC-MS/MS injections of the study. This software tool allows tracking between two or more LC-MS or LC-MS/MS injections independent of the LC column, mass spectrometer, or time of the analysis and is able to reduce the retention time variability to less than 7 s. Following normalization, peptides were matched across all samples in the study and clustered according to fraction, mass, retention time, and charge using standard hierarchical clustering techniques adapted to the proteomics context. A representative median mass and median retention time were calculated to represent the peptide clusters. Peptide clustering of the same peptide observed in different samples across the study enabled the detection of peptides that were modulated by IFN-γ. IFN-γ-modulated peptides were selected on the basis of their statistical significance (p ≤ 0.05 using a paired t test) and reproducibility of the control to IFN-γ-treated peptide intensity ratio (at least 1.6-fold in four of six samples). The false discovery rate for peptides selected with these parameters was determined by performing 1000 permutations of the expression data and hence estimated below 5%, a commonly accepted threshold. Multidimensional scaling (MDS) was used to visualize differences and detect bias using in-house software tools developed with Matlab (Mathworks). Peptides demonstrating a statistically significant change in intensity were targeted for sequencing by LC-MS/MS. For this purpose, the target peptides were compiled into an inclusion list containing retention time, charge state, and m/z for each target peptide.

Database searching of LC-MS/MS spectra for peptide identification was accomplished using Mascot version 1.8.01 (Matrix Science) and the non-redundant National Center for Biotechnology Information (nrNCBI) rodent protein database (April 1, 2004). A total of 288,692 protein entries were searched in that database. Mascot parameters specified trypsin proteolysis with one allowed missed cleavage and with variable modification of methionine (oxidation), asparagine/glu-tamine (deamidation), and serine/threonine/tyrosine (phosphorylation). Mass tolerances were 0.25 Da for both precursor and fragment ions. The identified proteins were clustered by sequence homology using BlastClust at 95% homology over 50% of the sequence length. Homology clustering groups proteins that are likely redundant but are not differentiated by the identified peptides. Proteins identified by a single peptide with Mascot scores lower than 25 were eliminated. The MS/MS spectra for single peptide-based protein identifications are available upon request.

The minimum threshold for MS/MS has been identified previously through manual validations of several hundred MS/MS peptide spec-
tra and determination of the likelihood of proper MS/MS search engine peptide assignment correlated with search engine-reported peptide score values. The protein assignment of the IFN-γ-modulated peptides was verified by BLAST (Basic Local Alignment Search Tool) using UniProt. The peptide list was annotated to include UniProtKB accession numbers and remarks on protein function.

The relative protein abundance values were calculated using an experimentally determined differential intensity to differential abundance conversion formula ($dA = 2dI – 1$). The CellCarta platform measures peak height rather than peak volume. Peak volume is proportional to peptide and protein abundance. Through controlled spiking experiments we have established that the relationship between differential peak height (dI) and differential peak volume (dA) is $dA = 2dI – 1$. Peak height was used for the raw measurements, because it is less affected by co-eluting peptides and therefore a more accurate estimate. For example, for a peptide with a differential peak intensity of 3 between two samples, the estimated differential peak volume is 5. This is then the estimate of differential protein abundance between the samples.

High Resolution 2-D Gel Electrophoresis—Isolated phagosomal proteins were separated by 2-D gel electrophoresis and identified as described previously (16, 17). Briefly isolated phagosomes were re-suspended in lysis/rehydration buffer (8 M urea, 2 % thiourea, 4 % (w/v) CHAPS, 40 mM dithioerythritol, 20 mM Tris, 2 % IPG buffer, and bromphenol blue) and vortexed for 1 h. Sample loading in the first dimension was performed overnight by in-gel reswelling of linear immobilized 3–10 pH gradient 18-cm strips (Amersham Biosciences). Following the first dimension isoelectric focusing separation, the strips were equilibrated in a 13 mM DTT solution for 10 min and in a 2.5 % iodoacetamide solution for 5 min. The second dimension was performed using standard SDS-PAGE. The resulting gels were silver-stained, and the protein patterns were analyzed using the ImageMaster software (Amersham Biosciences). Densitometry measurements were obtained from silver-stained gels, to determine relative abundance changes in protein extracts. Protein spots were excised, destained, and trypsin-digested with the resulting tryptic peptides extracted with 0.2 % urea in 50 % aqueous acetonitrile. Each digested spot was analyzed by nano-LC-MS/MS using a Waters CapLC coupled to a Q-TOF Ultima (Waters).

RESULTS AND DISCUSSION

Large Scale Quantitative Proteomics Analysis—To characterize the phagosomal proteins that are modulated by IFN-γ, we used a quantitative proteomics platform (referred to as CellCarta) based on LC-MS intensity measurements of peptides matched across all samples according to m/z, charge, and retention time (18). CellCarta demonstrates high specificity, given its ability to easily differentiate between artificially introduced, low concentration, spiked proteins and the background protein content of a complex plasma sample; the platform is also highly sensitive as it can detect small differences (2–4-fold) in spiked protein concentrations in the plasma sample (supplemental Fig. 1). Large scale analysis of the proteome of phagosomes from control or IFN-γ-treated macrophages using the platform identified 8179 peptide precursors found in at least four of six control and IFN-γ-treated phagosome samples. Of these, 1253 peptide precursors (15% of all peptides) demonstrated statistically significant differences in their peptide intensities and were thus considered as modulated by IFN-γ.

MDS plots allow the observation of higher level structure within complex proteomics data sets by simplifying the order within those data sets and representing trends and relationships between variables (samples) in dimensionless space. The differences in peptide content between the control and IFN-γ-treated samples were reduced to one data point per sample based on the LC-MS intensity data for all peptides in the study. As shown in Fig. 1A, the separation between control and IFN-γ-treated samples is clearly evident. This suggests that the peptides detected, and the intensities measured for them, are distinct and unique to a high degree between the two groups of samples. When only the 1253 IFN-γ-modulated peptides between the two study groups were plotted (Fig. 1A, right panel) there is even greater evidence of group separation, underlining the unique and distinct nature of the IFN-γ-modulated peptides. Hence global proteomics analysis using CellCarta clearly distinguishes between control and IFN-γ-treated samples.

Further high level representation of the proteomics data using a heat map format for the intensity profile of each peptide allows illustration of similarities and differences between the control and IFN-γ-treated groups (Fig. 1B). The extremes of the plot highlight the peptides displaying the greatest difference in intensity between the control and IFN-γ-treated samples with the most up-regulated and down-regulated peptides found, respectively, on the left and right extremes. Fig. 1B clearly indicates that a majority of the IFN-γ-modulated peptides were up-regulated by IFN-γ. Fig. 1C illustrates the distribution of the values for the -fold intensity difference of the IFN-γ-modulated peptides as a function of their statistical significance. Of the 1253 peptides found to be modulated by IFN-γ in this study, 82% were up-regulated after IFN-γ treatment, whereas only 18% were down-regulated (Fig. 1C). A majority of the up-regulated peptides were increased by 4-fold or less with a p value between 0.005 and 0.05, whereas most of the down-regulated peptides were decreased by 2.5-fold or less with a p value between 0.01 and 0.05. Our study thus indicates that macrophage activation by IFN-γ takes place mostly through the up-regulation of proteins. However, the significant number of down-regulated peptides indicates a complex pattern of protein modulation by IFN-γ on the phagosome.

The sequences of the 1253 IFN-γ-modulated peptides were submitted to MS/MS, and the sequenced peptides were assigned to the proteins listed in Tables I and II. This process reduced the total number of IFN-γ-modulated peptides to 298 peptides due to the elimination of peptides with low Mascot scores and to redundant assignments with variable modifications such as deamidation and oxidation. These IFN-γ-modulated peptides could be attributed to 147 proteins, 135 (92%) that were up-regulated and 12 (8%) that were down-regulated by IFN-γ (Tables I and II). 63 proteins had more than one peptide identified, and of these, 10 proteins (16%) had peptides with -fold intensity values that were up-regulated along
Interferon-γ-modulated Phagosome Proteome

![Diagram of high level representation of the quantitative proteomics data from control and IFN-γ-treated phagosomes.](image)

Fig. 1. **High level representation of the quantitative proteomics data from control and IFN-γ-treated phagosomes.** A. MDS three-dimensional plot of intensity measurements from 8179 peptide precursors found in at least four of six control (−) or IFN-γ-treated (+) samples (left panel) or from the subset of 1253 peptide precursors identified as modulated by IFN-γ (right panel). The three dimensions (MDS1, MDS2, and MDS3) plotted represent the three most significant data trends within the study. B, heat map representation of LC-MS intensity measurements across the six control and six IFN-γ-treated study samples (y axis) from the subset of 1253 peptide precursors (x axis) identified as modulated by IFN-γ (bottom panel). Increasing LC-MS detection intensity is represented in a gradual color scale from lowest intensity (red) to medium intensity (yellow) to highest intensity (green). C, volcano plot of the log2 of the mean -fold intensity difference (x axis) between control and IFN-γ-treated sample pairs as a function of the −log of the p value (y axis) from a paired t test for the 1253 peptide precursors identified as modulated by IFN-γ (p ≤ 0.05). A majority (82%) of IFN-γ-modulated peptides were up-regulated by the IFN-γ treatment.

with a subset of down-regulated peptides. There are several reasons why peptides assigned to the same protein may differ in the direction of regulation including post-translational modifications, splice variants, or errors in peptide-to-protein assignment. The mean peptide -fold intensity value is shown for each protein in Table I, and the identified peptide sequences are shown in Table II. To illustrate the data obtained using CellCarta, two examples of up-regulated proteins in the IFN-γ-treated samples were chosen, GRP78/BiP and the V-ATPase subunit A1 isoform (Fig. 2). As shown in Fig. 2A, the seven peptides assigned to GRP78/BiP demonstrated a consistent pattern of modulation by IFN-γ. Similarly four up-regulated peptides were detected for the V-ATPase subunit A1 isoform A, and these showed a coherent pattern of up-regulation (Fig. 2C). Western blot analysis confirmed the up-regulation of both GRP78/BiP and V-ATPase subunit on phagosomes from IFN-γ-treated macrophages (Fig. 2, B and D).

High Resolution 2-D Gel Electrophoresis—To compare and further validate the IFN-γ-modulated proteins identified with CellCarta, we used high resolution 2-D gel electrophoresis. As shown in Fig. 3, phagosomes purified from control or IFN-γ-treated macrophages displayed complex protein patterns. Differential protein abundance measurements were obtained by comparing the peak volumes of aligned spots from 2-D gel analyses. A total of 395 spots were identified, and a subset of 121 spots showed at least a 2-fold change in protein abundance upon IFN-γ treatment. Of these, 47 spots corresponding to 40 different proteins were identified by MS/MS analysis (Table III). Notably half of the proteins identified by 2-D gel analysis had also been identified using the proteomics platform. The differences in the proteins identified by 2-D gel analysis and by quantitative proteomics analysis can likely be attributed to the distinct advantages and limitations of both proteomics approaches. For instance, the highly resolutive separation power of the 2-D gel approach highlighted an increase in discrete isoforms of cathepsin B on IFN-γ-treated phagosomes, most likely corresponding to differentially glycosylated forms of the enzyme (Fig. 3, inset). The 2-D gels, however, failed to identify membrane proteins, a known limitation of this approach. In contrast, more than 30% of the IFN-γ-modulated proteins identified using the platform were membrane proteins. The proportion of membrane proteins in phagosomes is expected to approximate 30%, indicating that the large scale approach was highly efficient in identifying membrane proteins. Together these results strengthen the validity of the IFN-γ-modulated proteins identified using CellCarta.

IFN-γ-modulated Functions on the Phagosome—The IFN-γ-modulated proteins identified in our proteomics analysis (Tables I, II, and III) were analyzed for their reported participation in functional biomodules as illustrated in Fig. 4. The protein networks that emerge from four of the IFN-γ-modulated proteins (LIMP2, VAMP8, NADPH oxidase gp91phox, and ERP57) were shared by other proteins identified in our proteomics analysis. This finding underscores the relevance of the proteins that we identified as regulated by IFN-γ and suggests that other members of these interactomes may be modulated by IFN-γ.
Interferon-γ-modulated Phagosome Proteome

The number of different peptides identified, the mean peptide-fold intensity values (± mean deviation for proteins with multiple peptides) and the differential protein abundance values are indicated for each protein. Positive-fold intensity values indicate proteins that are up-regulated by IFN-γ (ratio of IFN-γ/control), and negative values indicate proteins that are down-regulated by IFN-γ (ratio of control/IFN-γ). The relative protein abundance values were calculated using an experimentally determined differential intensity to differential abundance conversion formula (ΔA = 2ΔI − 1). SNAP, N-ethylmaleimide-sensitive factor attachment protein; NEM, N-ethylmaleimide; LPS, lipopolysaccharide; ABC, ATP-binding cassette; TGN, trans-Golgi network.

TABLE I

Protein name	UniProtKB accession no.	Remarks	Peptide no.	Peptide -fold intensity	Relative protein abundance
α2-Macroglobulin	Q6GQT1	Plasma proteinase inhibitor. Binds to LRP.	1	3.4	5.8
Acid ceramidase	Q78P93	Lysosomal.	3	3.5 ± 1.3	6.0
Acid sphingomyelinase-like phosphodiesterase	P58242	Lysosomal. Belongs to the acid sphingomyelinase family.	1	1.7	2.4
Arf6	P62331	ADP-ribosylation factor 6. Regulates endosomal membrane traffic.	1	1.7	3.6
Arf10b	Q8VEH3	ADP-ribosylation factor-like 10B. Regulates lysosome motility.	5	2.3 ± 0.6	3.6
Aminopeptidase N	P97449	Also known as CD13. Plasma membrane-bound metalloproteinase. Internalized into phagosomes.	2	5.1 ± 1.2	9.2
Annexin A1	P10107	Ca²⁺-regulated membrane-binding protein.	1	2.9	4.8
Annexin A2	P07356	Ca²⁺-regulated membrane-binding protein.	4	4.2 ± 1.2	7.4
Annexin A4	P97429	Ca²⁺-regulated phospholipid-binding protein.	3	4.7 ± 0.9	8.4
Annexin A5	P48036	Ca²⁺-regulated phospholipid-binding protein.	6	2.8 ± 1.0	4.6
Apolipoprotein D	P51910	Plasma glycoprotein.	1	5.1	9.2
β₂-Microglobulin	P01887	Light chain of MHC class I molecules. Functions in antigen presentation.	1	4.8	8.6
BasiGin	P18572	Membrane glycoprotein also known as CD147.	1	2.5	4.0
Calnexin	P35564	ER chaperone. Mediates the assembly of MHC class I molecules.	2	3.4 ± 1.2	5.8
Calreticulin	P14211	ER chaperone. Mediates the assembly of MHC class I molecules.	1	4.5	8.0
Cathepsin A	P16675	Also known as Lysosomal protective protein and carboxypeptidase C.	2	2.6 ± 2.5	4.2
Cathepsin B	P10605	Lysosomal cysteine protease.	2	3.8 ± 1.6	6.6
Cathepsin C	P97821	Also known as dipeptidyl-peptidase I.	1	1.8	2.6
Cathepsin Z	Q9WWU7	Lysosomal cysteine protease.	1	3.2	5.4
C-C chemokine receptor type 7	P47774	Promotes cell migration.	1	3.8	6.6
CD36	Q08857	Scavenger receptor. Functions as a phagocytic receptor for bacteria.	3	9.7 ± 10	18.4
CD45	P06800	May down-regulate interferon receptor activation.	1	2.1	3.2
CD98 heavy chain	P10852	Also known as 4F2 cell surface heavy chain.	1	3.9	6.8
Coflin	P18760	Cytoplasmic. Regulates actin filament dynamics.	1	2.0	3.0
Cyclooxygenase-2	Q5769	Functions as the rate-limiting enzyme in the synthesis of prostaglandins.	5	10.2 ± 9.5	19.4
Cyclophilin C-associated protein	O35649	Binds to Galectin-3. Down-regulates proinflammatory responses.	2	1.8 ± 1.4	2.6
Dendritic cell-associated transmembrane protein	Q99P91	Type I transmembrane protein.	1	2.4	3.8
Elongation factor 1-α	P62631	Cytoplasmic. Functions in translation.	1	1.9	2.8
ERP57	P27773	ER chaperone. Functions in the assembly of MHC class I molecules.	7	3.5 ± 1.9	6.0
Ezrin/Moesin/Radixin protein	P26041	Identified peptide shared by ERM family of proteins.	1	2.0	3.0
Ferritin heavy chain	P09528	Functions as an intracellular iron storage protein.	1	−4.4	−7.8
Ferritin light chain	P29391		1	−3.7	−6.4
Flotillin-1	O08917	Lipid raft-associated membrane protein.	4	2.7 ± 0.2	4.4
Flotillin-2	Q60634		3	4.8 ± 0.7	8.6
G protein G, α subunit	Q9DC51	GTPase subunit of heterotrimeric G proteins.	2	2.7 ± 0.3	4.4
G protein β1 subunit	P62874	Subunit of heterotrimeric G proteins.	2	3.9 ± 0.7	6.8
G protein β2 subunit	P62880	Subunit of heterotrimeric G proteins.	2	5.1 ± 0.5	9.2
TABLE I—continued

Protein name	UniProtKB accession no.	Remarks	Peptide no.	Peptide fold-intensity	Relative protein abundance
Galectin-3	P16110	Also known as Mac-2.	2	2.2 ± 0.1	3.4
GAPDH	P16858	Cytoplasmic.	1	3.6	6.2
GBP-5	Q8C8F8	Also known as interferon-induced guanylate-binding protein 5.	4	9.1 ± 3.1	17.2
Glucosylceramidase	P17439	Lysosomal.	6	3.1 ± 1.3	5.2
GRP78/Bip	P20029	Glucose-regulated protein 78. Also known as Bip.	7	4.0 ± 2.8	7.0
GRP94	P08113	Also known as gp96. ER chaperone. Involved in antigen cross-presentation.	2	1.9 ± 0.1	2.8
GTP-binding protein 1	Q01514	Also known as interferon-induced guanylate-binding protein 1.	1	3.4	5.8
Hexosaminidase B	P20060	Lysosomal.	3	2.5 ± 1.2	4.0
HSC-71	P63017	Heat shock cognate protein 71.	2	1.8 ± 1.2	2.6
HSP-90β	P11499	Also known as HSP-84.	2	2.5 ± 0.1	4.0
ICAM-1	P13597	Cell surface membrane protein internalized during phagocytosis.	1	5.9	11
IGTP	Q811M6	Interferon-γ-induced GTPase. Belongs to the p47 GTPase family.	1	4.5	8.0
IIGP-1	Q9QZ85	Interferon-γ-induced GTPase. Belongs to the p47 GTPase family.	2	16.8 ± 6.8	33
IIGP-2	Q99K68	Interferon-γ-induced GTPase. Belongs to the p47 GTPase family.	2	6.6 ± 1.1	12
Interferon-induced transmembrane protein chain	Q99J93	Belongs to the IFN-induced transmembrane protein family.	2	2.8 ± 0.1	4.6
Lactate dehydrogenase A chain	P06151	Cytoplasmic.	1	2.0	3.0
LAMP-1	P11438	Lysosomal-associated membrane glycoprotein 1.	2	2.2 ± 0.2	3.4
LAMP-2	P17046	Lysosomal-associated membrane glycoprotein 2.	1	1.8	2.6
Leucyl-cystinyl aminopeptidase	Q8C129	Also known as placental leucine aminopeptidase (P-LAP).	6	3.1 ± 1.3	5.2
LIMP-2	Q35114	Lysosomal membrane protein 2.	4	3.2 ± 1.5	5.4
Lipoprotein lipase	P11152	Functions in lipid uptake and metabolism.	3	5.3 ± 1.8	9.6
LRG-47	Q60766	Interferon-γ-induced GTPase. Belongs to the induced p47 GTPase family.	9	6.3 ± 2.4	11.6
LRP	Q920Y4	Low density lipoprotein receptor-related protein. Also known as CD91.	2	−2.9 ± 0.1	−4.8
Lysosomal acid lipase	Q9Z0M5	Functions in the hydrolysis of lipids. MD-1/Rp105 complex functions in LPS-mediated responses.	2	1.8 ± 0.3	2.6
MD-1	O88188	Functions in antigen presentation.	1	3.0	5.0
MHC class I heavy chain	Q61643	Functions in antigen presentation.	2	5.9 ± 3.0	11
MLN64 N-terminal domain homolog	Q9DC3	Also known as MENTHO. Localizes to late endosomes.	1	4.1	7.2
MP1	Q88653	Functions as a scaffold protein that binds MEK1 and facilitates ERK1 activation.	1	2.0	3.0
MP1-interacting protein	Q9JHS3	Also known as p14. Functions as a late endosomal adaptor protein for MP1.	1	4.0	7.0
N-Acylethanolamine-hydrolyzing acid amidase	Q9D7V9	Lysosomal. Belongs to the acid ceramidase family.	4	11.7 ± 4.1	22
NADPH oxidase p22phox	Q61462	NADPH oxidase generates superoxide, a bactericidal reactive oxygen species.	1	3.4	5.8
NADPH oxidase gp91phox	Q61093		1	1.8	2.6
Na+/K+-ATPase α 3 subunit	Q66C6	Sodium pump, catalytic subunit.	2	1.9 ± 0.1	2.8
Napsin A	O09043	Aspartic protease.	1	5.1	9.2
NEM-sensitive fusion protein	P46460	Vesicle-fusing ATPase	2	1.2 ± 0.7	1.4
Protein name	UniProtKB accession no.	Remarks	Peptide no.	Peptide -fold intensity	Relative protein abundance
--	--------------------------	---	-------------	-------------------------	---------------------------
Neutral amino acid transporter ASCT2	Q9ESU7	Transports neutral amino acids across cell membrane.	1	2.0	3.0
Nicastrin	P57716	Functions as a substrate-binding component in the γ-secretase complex.	2	2.7 ± 0.9	4.4
Niemann-Pick C1 protein	O35604	Functions in intracellular sterol trafficking and regulation of cholesterol homeostasis.	1	4.5	8.0
Palmitoyl-protein thioesterase	O88531	Removes fatty acyl groups during lysosomal degradation.	6	4.9 ± 1.3	8.8
Peroxiredoxin 1	P35700	Cytoplasmic. Detoxifies reactive oxygen and nitrogen species.	7	2.9 ± 0.6	4.8
Peroxiredoxin 4	O08807	Cytoplasmic. Detoxifies reactive oxygen and nitrogen species.	1	2.3	3.6
Peroxosomal membrane protein 69	O89016	Belongs to the ABC transporter family.	1	3.4	5.8
Protein-disulfide isomerase A6	P09103	ER chaperone. Functions in the assembly of MHC class I molecules.	2	4.7 ± 0.4	8.4
Pyruvate kinase, isozyme M2	P52480	Cytoplasmic.	4	2.4 ± 1.0	3.8
Rab1	Q5SW88	Localizes to the ER and Golgi.	2	1.4 ± 0.8	1.8
Rab2	Q6PDZ3	Localizes in an ER/Golgi intermediate compartment.	1	2.1	3.2
Rab5c	P35278	Localizes to early endosomes.	1	1.7	2.4
Rab7	P51150	Regulates late endosomal and phagosomal traffic.	7	2.8 ± 0.8	4.6
Rab9a	Q9ROM6	Localizes to late endosomes and lysosomes.	1	3.7	6.4
Rab10	P61027	Localizes to the trans-Golgi and TGN.	1	2.4	3.8
Rab14	Q91V41	May function in membrane trafficking between the Golgi apparatus and endosomes.	1	2.6	4.2
Rab32	Q9CZE3	Localizes to mitochondria.	1	3.1	5.2
Rac1	P63001	Associates with the plasma membrane.	1	−2.3	−3.6
Rac2	Q05144	Associates with the plasma membrane.	1	4.1	7.2
Ral	Q9JIW9	Belongs to the Ras-related small GTPase superfamily.	1	4.5	8.0
Receptor-interacting protein Ser/Thr kinase 3	Q9QZL0	Also known as RIP3. Functions as a proapoptotic protein.	1	−2.0	−3.0
Rho-associated protein kinase 2	P70336	Also known as Rock-2. Functions in actin dynamics.	1	2.2	3.4
Rp105	Q62192	Rp105/MDF-1 complex functions in LPS-mediated responses.	1	4.1	7.2
Sacsin	Q9JLC8	May function in chaperone-mediated protein folding.	1	1.8	2.6
Septin-7	O55131	Distributed along stress fibers.	1	6.0	11
Signal peptide peptidase-like protein α-SNAP	Q9DB05	Functions in membrane fusion events.	1	2.2	3.4
α-SNAP	Q9DB05	Functions in membrane fusion events.	1	2.2	3.4
SNAP-29	Q9CWZ7	Functions in membrane fusion events.	1	−2.7	−4.4
SNAP-29	Q9CWZ7	Functions in membrane fusion events.	1	2.6	4.2
Solute carrier family 2	Q5SXE0	Facilitated glucose transporter.	4	2.6 ± 1.6	4.2
Solute carrier family 6	Q5SXE0	Facilitated glucose transporter.	4	2.6 ± 1.6	4.2
Stomatin	O88988	Lipid raft-associated membrane protein. Localizes to late endosomes and lysosomes.	2	14 ± 10	27
Stomatins	Q9MR3	Potassium/chloride transporter.	2	2.8 ± 0.1	4.6
Solute carrier family 12	Q9MR3	Potassium/chloride transporter.	2	2.8 ± 0.1	4.6
Solute carrier family 37	Q6P4P0	Glycerol 3-phosphate transporter.	2	2.1 ± 0.2	3.2
Solute carrier family 38	Q6P4P0	Glycerol 3-phosphate transporter.	2	2.1 ± 0.2	3.2
Solute carrier family 38	Q8CFE6	Amino acid transporter.	1	−3.3	−5.6
Syntaxin	O88988	Lipid raft-associated membrane protein. Localizes to late endosomes and lysosomes.	2	14 ± 10	27
Strontal cell-derived factor receptor 2	Q8K385		1	−2.8	−4.6
Cu,Zn-superoxide dismutase	P08228	Detoxifies radicals within cells.	1	3.0	5.0
Syntaxin	P70452	Functions in membrane fusion events. Involved in vesicle exocytosis.	1	2.8	4.6

TABLE I—continued

Interferon-γ-modulated Phagosome Proteome

Molecular & Cellular Proteomics 7.4 703
Protein name	UniProtKB accession no.	Remarks	Peptide no.	Peptide -fold intensity	Relative protein abundance
Syntaxin 7	O70439	Functions in membrane fusion events in the endosomal pathway. Associates with maturing phagosomes.	1	1.7	2.4
Syntaxin 8	O88983	Functions in membrane fusion events in the endosomal pathway.	1	2.5	4.0
Syntaxin 12/13	Q9ER00	Functions in membrane fusion events in the endosomal pathway.	3	2.7 ± 0.4	4.4
Syntenin 1	O08992	Localizes to endocytic compartments. Binds to syndecans, several receptors, and Rab5.	2	2.4 ± 0.8	3.8
Thioredoxin	P10639	Participates in various redox reactions and catalyzes dithiol-disulfide exchange reactions.	1	1.8	2.6
Toll-like receptor 3	Q99MB1	Functions in innate immunity. Binds to viral doubled-stranded RNA.	2	4.6 ± 0.6	8.2
Toll-like receptor 7	P58681	Functions in innate immunity. Binds to viral single-stranded RNA.	1	17	33
Toll-like receptor 9	Q9EQU3	Functions in innate immunity. Binds to bacterial unmethylated CpG-containing DNA.	1	7.9	15
Transferrin receptor protein 1	Q62351	Functions in the cellular uptake of iron. Major constituent of microtubules.	5	−1.5 ± 1.0	−2.0
Tubulin β-chain	P99024	Functions in the cellular uptake of iron. Major constituent of microtubules.	1	2.7	4.4
Tweety homolog 3	Q6P5F7	Major constituent of microtubules.	1	2.9	4.8
Uncharacterized protein C2orf18	Q8VE96	Functions in membrane fusion events involving late endosomes and lysosomes.	1	4.5	8.0
Uncharacterized protein C12orf23	Q9DAM7	Functions in membrane fusion events involving late endosomes.	1	5.8	11
VAMP7	Q7Z409	Also known tetanus-insensitive VAMP. Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.9	4.8
VAMP8	O70404	Also known as Endobrevin. Functions in membrane fusion events involving early and late endosomes.	2	3.0 ± 0.1	5.0
V-ATPase A subunit A (catalytic)	P50516	Proton pump. Functions in ATP-dependent phagosome acidification.	4	4.4 ± 2.3	7.8
V-ATPase B subunit isoform 2	P62814	Functions in membrane fusion events involving late endosomes and lysosomes.	5	1.4 ± 1.4	1.8
V-ATPase E subunit	P50518	Functions in membrane fusion events involving late endosomes and lysosomes.	4	3.5 ± 2.1	6.0
V-ATPase V₅ subunit a₃ isofrom	Q9JL12	Functions in membrane fusion events involving late endosomes and lysosomes.	5	2.5 ± 0.6	4.0
V-ATPase V₅ subunit d₁ isofrom	P51863	Functions in membrane fusion events involving late endosomes and lysosomes.	2	2.4 ± 0.1	3.8
V-ATPase V₅ subunit d₂ isofrom	Q80SY3	Functions in membrane fusion events involving late endosomes and lysosomes.	1	−1.7	−2.4
Voltage-dependent anion channel 1	Q60932	Functions in membrane fusion events involving late endosomes and lysosomes.	2	2.5 ± 0.3	4.0
Voltage-dependent anion channel 2	Q60930	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.4	3.8
Voltage-dependent anion channel 3	Q60931	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.2	3.4
Voltage-dependent P/Q-type calcium channel, α₁A subunit	O00555	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.4	3.8
40 S ribosomal protein S25	P62852	Functions in membrane fusion events involving late endosomes and lysosomes.	1	−2.1	−3.2
60 S acidic ribosomal protein P0	P14869	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.1	3.2
60 S ribosomal protein L3	P27659	Functions in membrane fusion events involving late endosomes and lysosomes.	2	2.4 ± 0.2	3.8
60 S ribosomal protein L5	P47962	Functions in membrane fusion events involving late endosomes and lysosomes.	1	6.9	12.8
60 S ribosomal protein L12	P35979	Functions in membrane fusion events involving late endosomes and lysosomes.	1	1.6	2.2
60 S ribosomal protein L14	Q9CR57	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.1	3.2
60 S ribosomal protein L31	P62900	Functions in membrane fusion events involving late endosomes and lysosomes.	1	1.7	2.4
A630077B13Rik protein	Q8C9E8	Functions in membrane fusion events involving late endosomes and lysosomes.	1	5.6	10
3110005G23Rik protein	Q8V8U8	Functions in membrane fusion events involving late endosomes and lysosomes.	1	3	5.0
4930506M07Rik protein	Q8K2Q9	Functions in membrane fusion events involving late endosomes and lysosomes.	1	1.9	2.8
9030624J02Rik protein	Q80XN3	Functions in membrane fusion events involving late endosomes and lysosomes.	1	2.4	3.8
TABLE II

IFN-γ-modulated phagosome proteins identified by the large scale quantitative proteomics analysis

The identified peptide sequences, m/z, charge, and maximal Mascot score are indicated for each protein. SNAP, N-ethylmaleimide-sensitive factor attachment protein; NEM, N-ethylmaleimide.

Protein name	UniProtKB accession no.	Peptides	m/z	Charge	Score
α2-Macroglobulin	Q6GQT1	ALLAYAFALAGNQER	804.4217	2	53.83
Acid ceramidase	Q78P93	WYYVQTNYDR	672.3703	2	34.08
Acid sphingomyelinase-like phosphiesterase	P58242	DLVTYFLNLR	627.3804	2	50.16
Arf6	P62331	ILMLGLDAAGK	559.3684	2	30.11
Arf10b	Q8VEH3	LWDIGGQPR	521.3006	2	51.27
Aminopeptidase N	P97449	AVNQQTAVQPPATVR	790.5159	2	43.37
Annexin A1	P10107	GLGTDEDLIELLTR	873.9611	2	50.78
Annexin A2	P07356	TNQEOLEINR	622.8378	2	61.88
Annexin A4	P97429	DIESGSGDLFR	613.3285	2	69.5
Annexin A5	P48036	GLGTDEDSILNLTSR	852.5292	2	98.12
Apolipoprotein D	P51910	DILTSNNIDIEK	687.9158	2	67.5
β2-Microglobulin	P01887	TPQIQVYSR	546.3511	2	67.01
Basigin	P18572	VLOEDTPLDHTK	503.6281	3	32.34
Calnexin	P35564	GSLSGWILSK	524.3249	2	14.9
Calreticulin	P14211	VHVINFYK	510.3049	2	42.26
Cathepsin A	P16675	LYQSMNSOYIK	687.8408	2	56.97
Cathepsin B	P10605	HFGYTSYSNNSVK	788.8767	2	24.16
Cathepsin C	P97821	NVQGVNVYSPVR	666.4252	2	62.89
Cathepsin Z	Q9WUU7	NVNGVNASYTR	647.8851	2	45.95
C-C chemokine receptor type 7	P47774	DLGCLSEQLQR	655.8563	2	47.73
CD45	Q08857	SSMFQTR	428.7483	2	26.61
CD98 heavy chain	P06800	DLVSMIQDLEK	581.3459	2	31.33
Collin	P10852	LLLSTDSAR	488.3124	2	46.84
Cyclooxygenase-2	Q05769	YALYDATYETK	669.3823	2	51.78
Cyclophilin C-associated protein	O35649	VEIFYR	413.7286	2	33.49
Dendritic cell-associated transmembrane protein	Q99P91	AVDOWSTETISHEDIER	696.3339	3	60.42
Elongation factor 1-α	P62631	IGIGGITVPGVR	513.3278	2	51.11

Interferon-γ-modulated Phagosome Proteome

Molecular & Cellular Proteomics 7.4 705
Protein name	UniProtKB accession no.	Peptides	m/z	Charge	Score
ERp57	P27773	FISDKDASVVGFFR, LSKDPNVIAK, FVMQEEFSR, TADGVSHLK, YGVSGYPTLK, EATNPPIIEEKPQ, FAHTNIESLVK	529.9733	3	16.3
Ezrin/Moesin/Radixin protein	P26041	ALELEQER	494.3083	2	35.97
Ferritin heavy chain	P09528	MGAPAEAGAMEYLFDK	815.424	3	46.72
Ferritin light chain	P28391	TOAMEAALAMEK	711.9133	2	46.72
Flotillin-1	O08917	AQQVEAOQEIEAR, MRGEAEAFAGAR, TEAIAHALETLEGHQR, VTVGLILSRSR	734.4863	2	37.96
Flotillin-2	Q60634	VDEIVLSDNKS, RAFELOK, MALVLEALPOIAAK	687.9185	3	45.91
G protein Gα, α subunit	Q9DC51	ISQNYTPIPTQDVLR, LLLLAGEGSK, IYAMHWGTDSCR, IYAMHWGTDSCR	529.2919	2	64.6
G protein β 1 subunit	P62874	KACDATLSQTNNDIPVGR, IYAMHWGTDSCR	696.4256	3	15.76
G protein β 2 subunit	P62880	KACGDSLTQTAGLDVPVGR, IYAMHWGTDSCR	668.8292	2	57.08
Galectin-3	P16110	VAVNDAHLLQYNHR, QSAFFESGKFPK	550.6506	2	60.1
GAPDH	P16858	RVIISAPSDAPMFVMGHNHEK, AIGHYQLMSEK, GTGAEVLOETLYNAK, IKAQEAOQLR, ALQQGQHRMHR	795.7856	3	35.59
GBP-5	Q8CFB4	AIGHYQLMSEK, GTGAEVLOETLYNAK, IKAQEAOQLR, ALQQGQHRMHR	464.6093	3	36.51
Glucosylceramidase	P17439	GFGHAMTDATALNILASPTQK, LKIPLHQLALK, SYFSTNGIEYVR, NFVDSPVIDPK, IPLLHQLALK	759.1015	3	15.16
GRP78/BIP	P20029	ITPSYVAFTPEGER, TFAPEESIAMVLT, VEIIANDQGNR, DAGTIAGLNVMR, ELEEIQPIK	783.937	3	95.12
GRP94	P08113	FAOAQEAVNR, ELNASADLKD, IHMPTELQLELLDLHR, LOPALWPFPR, MVLEJR	541.3016	2	34.72
GTP-binding protein 1	Q01514	IHPMTETLQLELLDLHR	649.3769	3	95.12
Hexosaminidase B	P20060	LOPALWPFPR, MVLEJR, VPEFDTPGHTQSGWKG	614.885	2	69.57
HSC-71	P63017	MVNHFIAEFK, FEELNALFR, VEKVTISNR	627.3250	3	39.84
HSP-90β	P11499	HELINPDPHVETL, VKEKTISNR	595.0472	3	22.94
ICAM-1	P13597	KADGALLPGVWK	640.8979	2	30.43
IGTP	Q811M6	DLEAAEVSSEDDTANL	918.0155	2	52.02
IIGP-1	Q9QZ85	TGVVEAOQFPR, TVFGVDETSLQR, IAVTGDGNSGMSSFINALR	560.8367	2	60.8
IIGP-2	Q99K68	DGNLTLSVGVIK, IAVTGDGNSGMSSFINALR	552.3447	2	44.84
Interferon-induced transmembrane protein	Q99J93	KMVDGVTGAQAYASTAK	566.6761	3	49.83

Table II—continued

Interferon-γ-modulated Phagosome Proteome
Protein name	UniProtKB accession no.	Peptides	m/z	Charge	Score
Lactate dehydrogenase A chain	P06151	MVGDVTGAQAYASTAK	785.4711	2	88.93
	P11438	VTLTPEEEAR	572.8466	2	59.25
LAMP-1	P17046	YLDIFIAVK	558.3606	2	37.76
Leucyl-cystinyl aminopeptidase	Q8C129	ALQATVGNSYK	576.3551	2	82.25
		YFAATQFEPLAAR	742.8694	2	39.7
		IGVQVHALDITIK	716.9418	2	52.4
		ILEALASSEVDHKE	706.3557	2	34.46
		SYLSEDVFR	558.3096	2	41.43
		YFETAVSRPGLGEPR	550.3593	3	15.35
		AALSANVLTLJEKE	700.4776	2	50.38
		IETAAAMDTGLR	589.3498	2	48.3
Lysosomal acid lipase	Q9Z20M5	NGAPIIMSFPHFYQADEK	689.3701	3	48.92
		QIOQSNLNR	543.3179	2	42.06
		YFETAVSRPGLGEPR	550.3593	2	13.53
		LLLVQDASER	572.3749	2	71.59
MHC class I heavy chain	Q61643	KLTDVGFIK	581.9071	2	32.67
		VESFLPQPTDEIR	839.5182	2	34.92
		HYDPDFLR	531.8079	2	55.3
		TAVAQVIGDR	515.3365	2	51.79
NADPH oxidase p22phox	Q61462	ERPOVQGTIK	542.8339	2	48.53
NADPH oxidase gp91phox	Q61093	GHHFIFNK	481.2672	2	42.97
Na"/K"-ATPase α 3 subunit	Q6PCIC	NMPVQQALVIR	634.894	2	48.17
Napsin A	Q60943	FAIQYGTGR	506.7857	2	32.53
NEM-sensitive fusion protein	P46460	AENSNLNIJK	573.3654	2	52.59
Neutral amino acid transporter	Q9ESU7	EIVLDSFLDTVRS	653.4058	2	86.65
Niaastrin	P57716	LENIDSFVELGOVALR	902.0338	2	77.7
Niemann-Pick C1 protein	O35604	ALANAVTLVAR	549.8902	2	54.14
Palmitoyl-protein thioesterase	O88531	TSDADYTDAMK	551.8035	2	30.57
Peroxiredoxin 1	P35700	ATAVMPDGQFK	582.8516	2	62.77
		QITINDLPVGR	613.4182	2	44.63
		TIAODYGVKL	554.3593	2	21.0
TABLE II—continued

Protein name	UniProtKB accession no.	Peptides	m/z	Charge	Score
Peroxiredoxin 4	O08807	SVDEILR	416.2751	2	21.7
Peroxisomal membrane protein 69	O89016	DISLSEYK	477.7984	2	18.7
Protein-disulfide isomerase	P09103	KQGLGPNIPLISDPK	594.3902	3	18.3
		QGGLGPNIPLISDPK	819.0374	2	41.92
Protein-disulfide isomerase A6	Q922R8	TGEIAVIDAALSAR	693.9184	2	28.25
Pyruvate kinase, isozyme M2	P52480	P52480	613.4182	2	44.63
Rab1	Q5SW88	EFADSGLPFELETSAK	862.9417	2	46.65
Rab2	Q6PD23	GAAGALLVYDTR	660.3863	2	86.74
Rab5c	P35278	QASPNIIVALNGK	698.4722	2	86.7
Rab7	P51150	TSLMNQYVNNKK	442.5623	3	32.47
Rab9a	Q9R0M6	DSTDNAAAFEAADVR	740.3617	2	47.78
Rab10	P61027	FHTTTSYRY	644.8179	2	35.66
Rab14	Q19V41	NLTNPNTVIILNGK	812.5272	2	65.96
Rab32	Q9CZE3	DNINIDEAAT	580.8464	2	29.74
Rac1	P63001	LTPITYQGGLAMAK	752.4446	2	52.04
Rac2	Q05144	KLAPITYQGGLAMAK	528.7022	3	36.23
RaI	Q6IJW9	VIMVSGGGSVGGK	502.2769	2	44.25
Receptor-interacting protein Ser/Thr kinase 3	Q9QZL0	DSDKVDAVESV	580.8036	2	42.16
Rho-associated protein kinase 2	P70336	KDQAQPSFQNLHLLK	580.0491	2	55.25
Rp105	Q62192	KYKGGAPSFQNLHLLK	488.2644	2	36.76
Sacsin	Q9JLC8	MVDVLLD	481.2899	2	30.34
Septin-7	O55131	LKDEESALQ	594.8431	2	28.86
Signal peptide peptidase-like protein	Q9JFJ9	ETLGDSVT	545.8401	2	36.35
α-SNAP	Q9DB05	NSQFSGLFGSGSA	775.4192	2	38.73
γ-SNAP	Q9CWZ7	LIENVDPEK	528.8044	2	33.38
SNAP-29	Q9EBR0	DLPDPGDPADIDR	640.8755	2	32.81
Solute carrier family 2	Q5SEX0	VSWAAR	409.7102	2	29.64
		ADSEHWEFEIQQR	701.3907	3	31.36
		TEGLYDTPPEPVPATPG	1047.599	2	34.62
		SLEIEAEFFHTT	493.2777	3	35.32
Solute carrier family 6	Q35316	EGATPFHSSR	501.3051	2	45.69
Solute carrier family 12	Q99MR3	AFVIDTLSPS	652.9274	2	39.54
Solute carrier family 37	Q6PA04	EGGSACISL	763.4035	2	69.81
Solute carrier family 38	Q8CF6E	SHYADVDPQNSNLGESLQGK	797.4274	3	59.25
Solute carrier family 38	O89988	VIAAEGMNASR	624.3629	2	54.6
Stomatin	O89988	VIAAEGMNASR	624.3629	2	54.6
Stromal cell-derived factor receptor 2	Q8K385	HSOQPLTVEK	672.3431	2	37.75
Cu,Zn-superoxide dismutase	P08228	VISLGGHGGIR	684.4114	2	45.28
Syntaxin 4	P70452	HSEIQLQER	570.2924	2	32.76
Syntaxin 7	O70439	TNLQGTPQDSPAR	835.0197	2	95.81
Syntaxin 8	O89983	QNLLDDLVR	593.8851	2	47.58
Syntaxin 12/13	Q9ER00	ISQATAQIK	480.323	2	41.68
Interferon-γ-modulated Phagosome Proteome	708	Molecular & Cellular Proteomics 7.4			
Protein name	UniProtKB accession no.	Peptides	m/z	Charge	Score
--------------	-------------------------	----------	------	--------	--------
Syntenin 1	O08992	SLMDHTIPEV	571.2788	2	22.29
		SIDNGIFVLQVANSAPLSVGLR	1200.221	2	99.34
Thioredoxin	P10639	EAFQEAALAAAGDK	660.8969	2	64.21
Toll-like receptor 3	Q99MB1	LFAOZNALQPLNHLTEK	683.7533	3	39.6
		SFYGLSNLR	528.7764	2	44.32
Toll-like receptor 7	P58681	LEVLPGLTNFIK	681.4485	2	39.46
Toll-like receptor 9	Q8EQU3	SAGALPYDAFVFDK	836.0295	2	24.18
Transferrin receptor protein 1	Q62351	VEYHFLSPYVSPR	797.4265	2	47.3
		SSYGTGLLLK	487.8438	2	24.46
		VPQLQGNOVR	542.8553	2	30.22
		LDLTEALGQ	591.3636	2	42.99
		QLSQNTYTPR	604.2576	2	51.23
Tubulin β-chain	P99024	ISVYYNEATGGK	651.3888	2	29.58
Tweety homolog 3	Q6P5F7	ALVEMODWAEWL	793.5172	2	75.49
Uncharacterized protein C2orf18	Q8VE96	WRLPTQEOEG	510.3114	3	34.99
Uncharacterized protein C12orf23	Q9DAM7	VTGGIFSVTK	504.8397	2	50.34
VAMP7	Q7Z409	FQOTTYSGR	480.2396	2	29.02
VAMP8	O70404	NIMQTGNVER	552.8273	2	62.03
V-ATPase A subunit A (catalytic)	P50516	ALDEYDKHTEFVPLR	536.5445	4	27.09
		FSMVQWVPVR	624.8929	2	75.47
		EHMGEILYK	506.3077	2	30.01
V-ATPase B subunit isoform 2	P62814	IPISFAAHLPHNEAAICR	707.7505	3	66.99
		TPVESDMLGR	552.8332	2	52.94
		RIPQSLSEFYP	797.4686	2	74.55
V-ATPase E subunit	P50518	IMEYVYK	468.2249	2	22.52
		GALFGANANK	559.8666	2	29.88
		KQDFPLVK	487.8902	2	29.47
V-ATPase V$_0$ subunit a3 isoform	Q9JL12	LFKEYK	700.7505	3	66.99
		GFLGANANK	559.8666	2	29.88
V-ATPase V$_0$ subunit d1 isoform	P51863	LYPREGYK	615.8457	2	41.14
		SIAELVK	428.7575	2	26.02
V-ATPase V$_0$ subunit d2 isoform	Q80SY3	TLEDVFYER	586.3655	2	34.57
Voltage-dependent anion channel 1	Q60932	LTLALSADLG	515.8151	2	99.65
		VNNSSLIGLGYTQLKPGIK	701.7679	3	54.39
Voltage-dependent anion channel 2	Q60930	YQLDPTASIK	647.3296	2	54.68
Voltage-dependent anion channel 3	Q60931	LTLTIFIPNTGK	709.9737	2	48.99
Voltage-dependent P/Q-type calcium channel, α-1A subunit	O00555	DPCGSAGLDAR	523.3228	1	28.72
40 S ribosomal protein S25	P62358	LTPAASVR	542.8225	2	30.22
60 S acidic ribosomal protein P0	P14869	GHLHNPENAEL	611.3461	2	35.12
60 S ribosomal protein L3	P27659	HQSLGFLPR	492.3196	2	57.85
60 S ribosomal protein L5	P47962	RFPQVDSEK	593.3472	2	26.85
60 S ribosomal protein L9	P35979	IGPLGSPK	441.3189	2	32.13
60 S ribosomal protein L14	Q8CR57	LVAVVIDONR	677.9423	2	70.76
60 S ribosomal protein L31	P62900	SAINEXIT	494.8081	2	29.56
A630077B13Rik protein	Q8C9E8	DWQESIALYTFNPK	856.4212	2	35.78
3110005G23Rik protein	Q8VDU8	AKPLPVDLLEEK	684.4012	2	37.45
4930506M07Rik protein	Q8K2Q9	LENEALKH	477.3475	2	32.23
9030624J02Rik protein	Q80XN3	ISSMCVDSR	523.3381	2	34.14
Our proteomics analysis identified many proteins associated with the microbicidal function of phagosomes, consistent with the previously described effects of IFN-γ on macrophages (5, 7). The IFN-γ-up-regulated proteins shown in Tables I, II, and III include more than 10 different lysosomal hydrolases; four subunits of the V-ATPase complex, the proton pump that acidifies the phagosome lumen; and two subunits of NADPH oxidase, the protein complex that generates reactive oxygen species within phagosomes. IFN-γ treatment validated IFN-γ-modulated proteins identified by the quantitative proteomics analysis. A, plot of the normalized mean MS intensity evaluated across the six control and six IFN-γ-treated samples for each of the seven peptides assigned to GRP78/Bip. The mean values were normalized to the lowest intensity measured for all peptides such that the base value becomes 1 with which all other peptide intensities are compared. B, Western blot validation of GRP78/Bip up-regulation by IFN-γ. The relative abundance of GRP78/Bip was compared in total cell lysates (TCL) or in phagosome preparations from control (−) or IFN-γ-treated (+) cells. Equal amounts of proteins from total cell lysates or phagosome preparations were loaded in each lane prior to Western blotting. The intensities of the bands obtained were quantified, and the values were normalized to the highest value. Histograms represent the mean of two independent preparations of total cell lysates and phagosomes. Representative blots, corresponding to identical expositions for total cell lysates and phagosomes, are shown. C, plot of the normalized mean MS intensity evaluated as in B for each of the four peptides assigned to the catalytic subunit A1 isomor of V-ATPase. D, Western blot validation of V-ATPase up-regulation by IFN-γ as in C. E, Western blot of GAPDH as in C. GAPDH was not significantly modulated by IFN-γ on phagosomes.

Fig. 2. Validation of IFN-γ-modulated proteins identified by the quantitative proteomics analysis. A, plot of the normalized mean MS intensity evaluated across the six control and six IFN-γ-treated samples for each of the seven peptides assigned to GRP78/Bip. The mean values were normalized to the lowest intensity measured for all peptides such that the base value becomes 1 with which all other peptide intensities are compared. B, Western blot validation of GRP78/Bip up-regulation by IFN-γ. The relative abundance of GRP78/Bip was compared in total cell lysates (TCL) or in phagosome preparations from control (−) or IFN-γ-treated (+) cells. Equal amounts of proteins from total cell lysates or phagosome preparations were loaded in each lane prior to Western blotting. The intensities of the bands obtained were quantified, and the values were normalized to the highest value. Histograms represent the mean of two independent preparations of total cell lysates and phagosomes. Representative blots, corresponding to identical expositions for total cell lysates and phagosomes, are shown. C, plot of the normalized mean MS intensity evaluated as in B for each of the four peptides assigned to the catalytic subunit A1 isomor of V-ATPase. D, Western blot validation of V-ATPase up-regulation by IFN-γ as in C. E, Western blot of GAPDH as in C. GAPDH was not significantly modulated by IFN-γ on phagosomes.

Our proteomics analysis identified many proteins associated with the microbicidal function of phagosomes, consistent with the previously described effects of IFN-γ on macrophages (5, 7). The IFN-γ-up-regulated proteins shown in Tables I, II, and III include more than 10 different lysosomal hydrolases; four subunits of the V-ATPase complex, the proton pump that acidifies the phagosome lumen; and two subunits of NADPH oxidase, the protein complex that generates reactive oxygen species within phagosomes. IFN-γ treatment
TABLE III

IFN-γ-modulated phagosome proteins identified by high resolution 2-D gel electrophoresis

The proteins identified and their relative abundance (based on 2-D gel densitometry measurements) are indicated for each spot. TNF, tumor necrosis factor; MAP, mitogen-activated protein; MEK, mitogen-activated protein kinase/extracellular signal-regulated kinase.

Spot no.	Protein name	UniProtKB accession no.	Remarks	Relative protein abundance
1	Calreticulin	P14211	ER chaperone. Mediates the assembly of MHC class I molecules.	2
2, 3, 4, 5, 9	Cyclophilin C-associated protein precursor	O35649	Binds to Galectin-3. Down-regulates proinflammatory responses.	2
6	Reticulocalbin 2 precursor	O70341	ER Ca\(^{2+}\)-binding protein.	2
7, 30, 31, 33	Cathepsin D	P18242	Lysosomal aspartyl protease.	2
8	Hypothetical protein	Q9CQ22	Unknown.	3
9	Cytochrome b\(_6\)	P68395	ER hemoprotein. Functions as an electron carrier.	2
10, 11, 12	Cathepsin C	P97821	Also known as dipeptidyl-peptidase I. Lysosomal cysteine protease.	2
13	Cathepsin S	O70370	Lysosomal cysteine protease. Functions in the removal of the invariant chain from MHC class II molecules.	2
14, 15	Cathepsin B	P10605	Lysosomal cysteine protease.	4
16	Cathepsin Z	Q9WU7	Lysosomal cysteine protease.	2
17, 18	HSP-60	P63038	Mitochondrial. Heat shock protein 60 kDa.	3
19	Protein-disulfide isomerase A6	Q922R8	ER chaperone.	2
20	ATP synthase subunit β	P56480	Mitochondrial.	3
21	Protein-disulfide isomerase	P09103	ER chaperone. Functions in the assembly of MHC class I molecules.	3
22	GRP94	P08113	Also known an gp96. ER chaperone. Involved in antigen cross-presentation.	2
23	GRP78/BiP	P20029	Glucose-regulated protein 78. Also known as BiP. ER chaperone.	2
24	Ferritin light chain	P29391	Functions as an intracellular iron storage protein.	3
25	Ferritin heavy chain	P09528	Cytoplasmic. Adenine phosphoribosyltransferase.	2
26	CREG1	O75629	Cellular repressor of E1A-stimulated genes 1.	2
27	Peroxiredoxin 4	O08807	Cytoplasmic. Detoxifies reactive oxygen and nitrogen species.	3
28	TRAIL	P60592	TNF-related apoptosis-inducing ligand.	2
29	ERp29	P57759	ER chaperone.	2
30	Coronin-1A	P31146	Cytoplasmic. Actin-binding protein.	2
31	GRB2 adaptor protein	P62994	Links growth factor receptors to the Ras signaling pathway.	2
32	β-Glucuronidase	P12265	Lysosomal hydrolase.	2
33	ERp57	P27773	ER chaperone. Functions in the assembly of MHC class I molecules.	2
34	T-complex protein 1 epsilon	P80316	Cytoplasmic chaperone.	2
35	T-complex protein 1α	P80314	Cytoplasmic chaperone.	2
36	T-complex protein 1α B	P11983	Cytoplasmic. Adenine phosphoribosyltransferase.	2
37	Hexosaminidase B	P20060	Lysosomal.	3
38	V-ATPase B subunit isoform 2	P62814	Proton pump.	2
39	MEK-binding partner 1	O88653	Enhances the efficiency of the MAP kinase cascade.	2
40	Cathepsin A	P16675	Also known as lysosomal protective protein and carboxypeptidase C.	2
41	Phosphoglycerate mutase 1	P25113	Cytoplasmic chaperone.	2
42	Annexin A2	P07356	Ca\(^{2+}\)-regulated membrane-binding protein.	3
43	Palmitoyl-protein thioesterase	O88531	Removes fatty acyl groups during lysosomal degradation.	2
44	Nucleoside-diphosphate kinase B	Q01768	Cytoplasmic. Functions in the synthesis of nucleoside triphosphates.	2
45	V-ATPase E subunit	P50518	Proton pump.	4
46	Proteasome subunit α type 6	Q9QUM9	Cytoplasmic. Functions in antigen processing for MHC class I molecules.	2
Interferon-\(\gamma\)-modulated Proteome

Fig. 4. IFN-\(\gamma\)-modulated functions on the phagosome. The IFN-\(\gamma\)-modulated proteins identified in the current study are in color. Four of the up-regulated proteins were used as input nodes to build interactomes using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database (proteins are identified by their gene name). Dots corresponding to proteins identified in this study are in green. PDI, protein-disulfide isomerase; \(\beta_2\)-microglobulin.

up-regulated several phagosomal proteins involved in fusion with endocytic compartments, including syntaxin 7, syntaxin 13, Rab7, LIMP2, VAMP8, annexin A2, and Arl10b (also known as Arl8a). Syntaxin 7, syntaxin 13, and Rab7 function in phagosome maturation (19, 20), whereas LIMP2 appears to be involved in the maintenance and biogenesis of lysosomes (21), and VAMP8 functions in the fusion between early and late endosomes (22). Actin polymerization has been shown to occur on isolated phagosomes and to facilitate fusion with late endosomes (23), a process that may necessitate annexin A2, a protein that probably organizes actin assembly sites on membranes (24). The up-regulation of Arl10b on phagosomes from IFN-\(\gamma\)-treated cells may also promote phagosome maturation as overexpression of Arl10b and Arl10c (also known as Arl8b) results in increased lysosome motility (25). Taken together, these findings suggest that IFN-\(\gamma\) alters the fusogenicity of phagosomes toward late endosomes and lysosomes and therefore regulates phagosome maturation.

Phagosomes from IFN-\(\gamma\)-treated cells were found to have increased levels of several IFN-\(\gamma\)-induced GTP-binding proteins, notably four members of the p47 GTPase family (IGTP, IIGP-2, IIGP-1, and LRG-47). These GTPases play essential roles in innate immunity against bacterial and parasitic infections (26, 27). The underlying mechanisms for the protective effect of p47 GTPases against infections are unclear; however, p47 GTPases are suggested to function in controlling phagosome maturation (26, 28). The p47 GTPases studied so far are mostly membrane-bound and localize to endoplasmic reticulum (ER) or Golgi compartments in IFN-\(\gamma\)-treated cells; however, during phagocytosis, p47 GTPases relocalize rapidly to nascent phagosomes (29). GBP-5 is another IFN-\(\gamma\)-induced GTPase that we identified for the first time on phagosomes. GBPs belong to the dynamin family of large GTPases and display high GTPase activity. The function of GBPs is uncertain, although they demonstrate mild antiviral activity (30). Thus IFN-\(\gamma\) up-regulates several phagosomal proteins that are specifically involved in the control of infections.

The IFN-\(\gamma\)-modulated proteins on phagosomes include several receptors and signaling proteins, such as syntenin 1, a scaffolding protein suggested to couple receptors to the cytoskeleton (31). Two receptors, LRP/CD91 and the transferrin receptor, were found to be down-regulated by IFN-\(\gamma\) on phagosomes. The decrease in LRP/CD91, a receptor involved in the phagocytosis of apoptotic cells (32), may signify that activated macrophages reduce their uptake of apoptotic cells in inflammatory conditions. The down-regulation of the transferrin receptor is consistent with the role of IFN-\(\gamma\) in reducing the uptake of nutrients such as iron, an effect that limits the intraphagosomal growth of bacteria (33). The IFN-\(\gamma\)-modulated receptors on phagosomes also included three Toll-like receptors (TLR-3, TLR-7, and TLR-9), essential players in the immune response to microbes. These TLRs bind to bacterial or viral nucleic acids present in endocytic compartments in contrast to other TLRs such as TLR-4 that bind to microbial ligands at the cell surface. In line with the up-regulation of TLRs, GRP94/gp96, a protein recently shown to function as an essential chaperone for TLRs (34), was up-regulated by IFN-\(\gamma\) on phagosomes. Cyclooxygenase-2, a key enzyme in the production of proinflammatory mediators (35), was also up-regulated on phagosomes following IFN-\(\gamma\) treatment. These results indicate that phagosomal proteins play a role in several aspects of the macrophage immune response to IFN-\(\gamma\).

The up-regulation of antigen presentation is a well-described effect of IFN-\(\gamma\) on macrophages and phagosomes from IFN-\(\gamma\)-treated cells contained increased levels of several proteins involved in MHC class I antigen presentation (7). As illustrated in Fig. 4, phagosomes from IFN-\(\gamma\)-treated cells contained increased levels of a proteasome subunit (subunit \(\alpha\) type 6), MHC class I molecules (composed of an \(\alpha\)-heavy chain and of \(\beta_2\)-microglobulin), and components of the MHC class I peptide-loading complex (GRP78/BiP, ERP57, protein-disulfide isomerase, and calreticulin) (36, 37). Several studies have demonstrated that the contribution of these ER proteins to phagosomes defines a pathway that leads to the loading
and presentation of exogenous peptide antigens on MHC class I molecules, a process referred to as antigen cross-presentation (17, 38, 39). IFN-γ-activated macrophages are thus expected to demonstrate enhanced antigen cross-presentation.

Dynamic Analysis of IFN-γ-regulated Proteins on the Phagosome—The large scale proteomics analysis has allowed us to highlight important functions modulated on phagosomes by IFN-γ, such as microbe inactivation, protein degradation, and antigen presentation. To simplify the readout, our analysis focused on a single temporal window (phagosomes formed by a 1-h pulse period followed by a 1-h chase period) in the phagosome maturation process. Phagosomes, however, continuously exchange material with various intracellular compartments as they mature into phagolysosomes, a process that makes their proteome highly dynamic (2). To obtain a more comprehensive view of the changes occurring on IFN-γ-treated phagosomes, a selection of relevant markers on phagosomes from control or IFN-γ-treated macrophages was analyzed dynamically by Western blotting. As shown in Fig. 5, IFN-γ-regulated proteins were differently modulated during phagolysosome biosynthesis, and some proteins responded to IFN-γ only at specific stages during phagosome maturation. Hence EEA1 was up-regulated on early phagosomes from treated cells but returned to control levels at later stages in phagosome maturation (Fig. 5). The increase in EEA1, an early endosomal marker that functions in membrane fusion, indicates that IFN-γ may stimulate phagosome fusion with early endosomes.

Resistance to infection is critically dependent on the function of the NADPH oxidase in phagocytic cells (40). In macrophages, the NADPH oxidase (gp91phox subunit) was also up-regulated on early phagosomes by IFN-γ (Fig. 5). The NADPH oxidase complex produces reactive oxygen species that consume protons in the phagosome lumen, thereby restricting the acidification of phagosomes in various phagocytic cells (41, 42). The recruitment of this complex to early phagosomes may thus limit the acidification caused by the V-ATPase proton pump. In agreement with this suggestion, Russell and co-workers (43) have recently shown that IFN-γ treatment reduced the acidification rate of early phagosomes. The function of the NADPH oxidase in controlling phagosomal pH has also recently been shown to maintain phagosome conditions that limit antigen degradation and favor antigen cross-presentation (42). In relation with this finding, our proteomics analysis demonstrated the up-regulation of several components of MHC class I peptide-loading complex (Fig. 4). In the dynamic analysis, two of these proteins, calreticulin and ERp57, were increased by IFN-γ throughout the phagosome maturation process (Fig. 5). In contrast, calnexin, an ER protein not directly involved in antigen loading, displayed a very different dynamic profile with little variation in abundance between control and IFN-γ-treated phagosomes (Fig. 5). These results thus indicate that IFN-γ specifically up-regulates the components of the MHC class I peptide-loading complex on early phagosomes.

MHC class I peptide antigens are generated by the proteolytic activity of proteasomes. IFN-γ treatment is known to up-regulate immunoproteasomes, subsets of proteasomes that contain three substituted β subunits, including Lmp2 (44). As shown in Fig. 5, IFN-γ treatment increased the recruitment of the immunoproteasome subunit Lmp2 on early phagosomes as shown previously (17). IFN-γ macrophages demonstrated a delayed acquisition of cathepsin B and of the lysosomal marker Lamp1, consistent with the recent finding that IFN-γ down-regulates the degradative capacity of early phago-

Figure 5. Phagosome-associated proteins are dynamically modulated by IFN-γ. The relative abundance of the indicated proteins was compared between phagosomes isolated from control (−) or IFN-γ-treated (+) macrophages following the indicated internalization/chase periods in minutes. Equal amounts of proteins from each sample were loaded prior to Western blotting for the indicated proteins. The intensities of the bands obtained were quantified, and the values were normalized over the highest value. Graphs represent the mean of three independent experiments, which were analyzed separately. Error bars indicate the mean deviations. Representative blots, corresponding to identical expositions for control or IFN-γ-treated samples, are shown. GAPDH was not significantly modulated by IFN-γ on phagosomes.

Time (min)	Early Markers	ER Markers	Late Markers	
150/300	+ IFN-γ	EEA1	Calnexin	Rab7
60/240	+ IFN-γ	-	-	-
0.2	0.4	0.6	0.8	1.0
gp91phox	+ IFN-γ	Lamp1	-	-
0.2	0.4	0.6	0.8	1.0
Cathepsin B	+ IFN-γ	Lmp-2	-	-
0.2	0.4	0.6	0.8	1.0
GAPDH	+ IFN-γ	-	-	-
0.2	0.4	0.6	0.8	1.0
Interferon-γ-modulated Phagosome Proteome

Fig. 6. Integrated model of the IFN-γ-modulated functions that favor antigen cross-presentation. The increased recruitment of the NADPH oxidase complex may limit the acidification of the phagosome lumen by the V-ATPase proton pump. Delayed acidification and phagolysosome fusion, together with the increased association of immunoproteasomes, may limit protein degradation by lysosomal proteases and favor protein processing by the immunoproteasomes. The resulting peptide antigens could then associate with the upregulated MHC class I peptide-loading complex (composed of transporter associated with antigen processing (TAP), tapasin, calreticulin, ERpS7, protein-disulfide isomerase (PDI), and the MHC class I heterodimer), leading to enhanced antigen cross-presentation by IFN-γ-activated macrophages. β2M, β2-microglobulin; CathB, cathepsin B.

The delay in phagosome maturation occurred despite the efficient recruitment of Rab7, a small GTPase that regulates phagolysosome fusion (43). The delay in phagosome maturation occurred despite the efficient recruitment of Rab7, a small GTPase that regulates phagolysosome fusion (Fig. 5), suggesting that other factors may regulate phagosome fusion events in IFN-γ-treated cells. Rab14, an upregulated protein in our study (Table I), is one possible factor as the recruitment of Rab14 has been suggested to block phagosome maturation (45). Taken together, the dynamic analysis of this selection of phagosomal proteins suggests that IFN-γ enhances the conditions that favor the production of peptide antigens and their loading on MHC class molecules as illustrated in Fig. 6. The current study demonstrates the efficiency of a quantitative large-scale proteomics approach to outline general features of the response to cytokines. In addition, our study has allowed us to point out specific functions that are targeted by IFN-γ on phagosomes and to identify susceptible players in these processes. IFN-γ indeed modulates proteins involved in phagosome maturation, microbe degradation, innate immune response, and antigen presentation. Using these findings, we could focus on the dynamic behavior of a selection of IFN-γ-modulated proteins during phagosome maturation to refine the model inferred from the proteomics data. Globally, this approach led us to propose a new working hypothesis whereby the production of antigen-loaded MHC class I molecules increases in phagosomes of IFN-γ-activated macrophages.

Acknowledgments—We thank Matthias Trost for helpful discussions and Guillaume Goyette for the Web link.

REFERENCES
1. Underhill, D. M., and Ozinsky, A. (2002) Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852
2. Gotthardt, D., BlanchetEA, V., Bosserhoff, A., Ruppert, T., Delorenzi, M., and Soldati, T. (2006) Proteomics fingerprinting of phagosome maturation and evidence for the role of a Gα during uptake. Mol. Cell. Proteomics 12, 2228–2243
3. Nishi, T., and Forgac, M. (2002) The vacuolar (H+)-ATPases: nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103
4. Jutras, I., and Desjardins, M. (2005) Phagocytosis: at the crossroads of innate and adaptive immunity. Annu. Rev. Cell Dev. Biol. 21, 511–527
5. Boehm, U., Klamp, T., Groot, M., and Howard, J. C. (1997) Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795
6. Novelli, F., and Casanova, J. L. (2004) The role of IL-12, IL-23 and IFN-γ in immunity to viruses. Cytokine Growth Factor Rev. 15, 367–377
7. Schroder, K., Hertzog, P. J., Ravasi, T., and Hume, D. A. (2004) Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189
8. Trinchieri, G. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146
9. Ehr, S., Schnappinger, D., Bekiranov, S., Drenkow, J., Shi, S., Gingeras, T. R., Gaasterland, T., Schoolnik, G., and Nathan, C. (2001) Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140
10. Yan, W., Lee, H., Yi, E. C., Reiss, D., Shannon, P., Kwieciszewski, B. K., Coito, C., Li, X. J., Keller, A., Eng, J., Galitski, T., Goodlett, D. R., Aebersold, R., and Katze, M. G. (2004) System-based proteomic analysis of the interferon response in human liver cells. Genome Biol. 5, R54
11. Der, S. D., Zhou, A., Williams, B. R., and Silverman, R. H. (1998) Identification of genes differentially regulated by interferon-γ, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. U. S. A. 95, 15623–15628
12. Desjardins, M., Celis, J. E., van Meer, G., Dieplinger, H., Jahraus, A., Griffiths, G., and Huber, L. A. (1994) Molecular characterization of phagosomes. J. Biol. Chem. 269, 32194–32200
13. Jutras, I., Laplante, A., Boulais, J., Brunet, S., Thinakaran, G., and Desjardins, M. (2005) γ-Secretase is a functional component of phagosomes. J. Biol. Chem. 280, 36330–36337
14. Stuart, L. M., Boulais, J., Charriere, G. M., Hennessy, E. J., Brunet, S., Jutras, I., Goyette, G., Rondeau, C., Letarte, S., Huang, H., Ye, P., Morales, F., Kocks, C., Badier, J. S., Desjardins, M., and Ezekowitz, R. A. (2007) A systems biology analysis of the Drosophila phagosome. Nature 445, 95–101
15. Senko, M. W., Beu, S. C., and McLafferty, A. F. W. (1999) Determination of...
monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 6, 229–233
16. Garin, J., Diez, R., Kieffer, S., Dermine, J. F., Duclos, S., Gagnon, E., Sadoul, R., Rondeau, C., and Desjardins, M. (2001) The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180
17. Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F., Thibault, P., Sacks, D., and Desjardins, M. (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406
18. Lamontagne, J., Butler, H., Chaves-Olarte, E., Hunter, J., Schirm, M., Paquet, C., Tian, M., Kearney, P., Hamäid, L., Chelsky, D., Moryon, I., Moreno, E., and Paramithiotis, E. (2007) Extensive cell envelope modulation is associated with virulence in Brucella abortus. J. Proteome Res. 6, 1519–1529
19. Collins, R. F., Schreiber, A. D., Grinstein, S., and Trimble, W. S. (2002) Syntaxis 13 and 7 function at distinct steps during phagocytosis. J. Immunol. 169, 3250–3256
20. Rupper, A., Grove, B., and Cardelli, J. (2001) Rab7 regulates phagosome maturation in Dictyostelium. J. Cell Sci. 114, 2449–2460
21. Kuronita, T., Eskelinen, E. L., Fujita, H., Saftig, P., Himeno, M., and Tanaka, Y. (2002) A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J. Cell Sci. 115, 4117–4131
22. Antonin, W., Holroyd, C., Tikkanen, R., Honing, S., and Jahn, R. (2000) The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion of early endosomes and late endosomes. Mol. Biol. Cell 11, 3289–3298
23. Kjeken, R., Egberg, M., Habermann, A., Kuehnel, M., Peyron, P., Floetemeyer, M., Walther, P., Jahraus, A., Defacque, H., Kuznetsov, S. A., and Griffiths, G. (2004) Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol. Biol. Cell 15, 345–358
24. Hayes, M. J., Rescher, U., Gerke, V., and Moss, S. E. (2004) Annexin-actin interactions. Traffic 5, 571–576
25. Hofmann, I., and Munro, S. (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci. 119, 1494–1503
26. MacMicking, J. D., Taylor, G. A., and McKinney, J. D. (2003) Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659
27. Martens, S., Parvanova, I., Zerrahn, J., Griffiths, G., Schell, G., Reichmann, G., and Howard, J. C. (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog. 1, e24
28. Singh, S. B., Davis, A. S., Taylor, G. A., and Deretic, V. (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441
29. Martens, S., Sabel, K., Lange, R., Uthaiha, R., Wolf, E., and Howard, J. C. (2004) Mechanisms regulating the positioning of mouse p47 resistance GTPases LRG-47 and IIGP1 on cellular membranes: retargeting to plasma membrane induced by phagocytosis. J. Immunol. 173, 2594–2606
30. Vestal, D. J. (2005) The guanylate-binding proteins (GBPs): proinflammatory cytokine-induced members of the dynamin superfamly with unique GTPase activity. J. Interferon Cytokine Res. 25, 435–443
31. Gimferrer, I., Ibáñez, A., Farnos, M., Sarrià, M. R., Fenutria, R., Roselló, S., Zimmerman, P., David, G., Vives, J., Serra-Pages, C., and Lozano, F. (2005) The lymphocyte receptor CD6 interacts with syntxin-1, a scalloping protein containing PDZ domains. J. Immunol. 175, 1406–1414
32. Ogden, C. A., deCathelineau, A., Hoffmann, P. R., Bratton, D., Ghebrehiwet, B., Fadok, V. A., and Henson, P. M. (2001) C1q and mannos binding lectin engagement of cell surface calreticulin and CD91 initiates macroinopcytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795
33. Olakanmi, O., Schlesinger, L. S., Ahmed, A., and Britigan, B. E. (2002) Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-γ and hemochromatosis. J. Biol. Chem. 277, 49727–49734
34. Yang, Y., Liu, B., Dai, J., Srivastava, P. K., Zammitt, D. J., Lefrançois, L., and Li, Z. (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26, 215–226
35. Smith, W. L., DeWitt, D. L., and Garavito, R. M. (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182
36. Ackerman, A. L., and Cresswell, P. (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol. 5, 678–684
37. Park, B., Lee, S., Kim, E., Cho, K., Riddell, S. R., Cho, S., and Ahn, K. (2006) Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 127, 369–382
38. Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P., and Amigorena, S. (2003) ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402
39. Ackerman, A. L., Kyritis, C., Tampe, R., and Cresswell, P. (2003) Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc. Natl. Acad. Sci. U. S. A. 100, 12889–12894
40. Pollock, J. D., Williams, D. A., Gifford, M. A., Li, L. L., Du, X., Fisherman, J., Orkin, S. H., Doerschuk, C. M., and Dinauer, M. C. (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209
41. Segal, A. W., Geisow, M., Garcia, R., Harper, A., and Miller, R. (1981) The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290, 406–409
42. Savina, A., Jancic, C., Hugues, S., Guermonprez, P., Vargas, P., Moura, I. C., Lennon-Dumenil, A. M., Seabra, M. C., Raposo, G., and Amigorena, S. (2006) NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218
43. Yates, R. M., Hermetter, A., Taylor, G. A., and Russell, D. G. (2007) Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8, 241–250
44. Parmer, E., and Cresswell, P. (1998) Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol. 16, 323–358
45. Kyei, G. B., Vergne, I., Chua, J., Roberts, E., Harris, J., Junutula, J. R., and Deretic, V. (2006) Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J. 25, 5250–5259