Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice

Nobuhisa Iwata1,2, Misaki Sekiguchi1, Yoshino Hattori2, Akane Takahashi2, Masashi Asai2, Bin Ji3, Makoto Higuchi3, Matthias Staufenbiel4, Shin-ichi Muramatsu6 & Takaomi C. Saido1

1Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan, 2Laboratory of Molecular Biology and Biotechnology, Department of Molecular Medicinal Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan, 3Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan, 4Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland, 5Division of Neurology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsukesu-shi, Tochigi 329-0498, Japan.

Accumulation of amyloid-β peptide (Aβ) in the brain is closely associated with cognitive decline in Alzheimer’s disease (AD). Stereotaxic infusion of neprilysin-encoding viral vectors into the hippocampus has been shown to decrease Aβ in AD-model mice, but more efficient and global delivery is necessary to treat the broadly distributed burden in AD. Here we developed an adeno-associated virus (AAV) vector capable of providing neuronal gene expression throughout the brains after peripheral administration. A single intracardiac administration of the vector carrying neprilysin gene in AD-model mice elevated neprilysin activity broadly in the brain, and reduced Aβ oligomers, with concurrent alleviation of abnormal learning and memory function and improvement of amyloid burden. The exogenous neprilysin was localized mainly in endosomes, thereby effectively excluding Aβ oligomers from the brain. AAV vector-mediated gene transfer may provide a therapeutic strategy for neurodegenerative diseases, where global transduction of a therapeutic gene into the brain is necessary.

Accretion and deposition of amyloid-β peptide (Aβ) in the brain are triggering events of the long-term pathological cascade of Alzheimer’s disease (AD), and are closely associated with the metabolic balance between Aβ anabolic and catabolic activities1,2. As almost all familial AD mutations cause an increase in the anabolism of a particular form of Aβ, Aβ1-42, leading to Aβ deposition and accelerating AD pathology, a chronic reduction in the catabolic activity would also promote Aβ deposition1,2. Neprilysin (EC 3.4.24.11) is a rate-limiting peptidase involved in brain Aβ catabolism, as proven by in vivo experiments tracing the catabolism of radiolabeled Aβ in brain and by reverse genetics studies for candidate peptidases in mice3,4. Neprilysin gene-disruption caused a gene dosage-dependent elevation of endogenous Aβ levels in mouse brain, suggesting that a subtle but long-term reduction in neprilysin activity would contribute to AD development by promoting accumulation of Aβ3.

Mounting evidence that expression levels of neprilysin are decreased in the hippocampus and cerebral cortex of AD patients from the early stages of disease development and also with aging in humans, as well as mice, suggests a close association of neprilysin with the etiology and pathogenesis of AD2. Indeed, reduced activity of neprilysin in mouse brain elevates the levels of highly toxic Aβ oligomers at the synapses, and leads to impaired hippocampal synaptic plasticity and cognitive function even before apparent amyloid deposition is observed in the brain1. Thus, a decline in neprilysin activity appears to be at least partly responsible for the memory-related symptoms of AD, and up-regulation of neprilysin is considered to be a promising strategy for therapy and prevention of AD.

Experimental gene therapy to transfer neprilysin gene into the brains of AD model mice has been reported, and for this purpose various kinds of recombinant viral vectors carrying wild-type neprilysin or its variants that are truncated at the transmembrane region and can be released to extracellular space have been utilized6,7. Viral vector-mediated delivery of neprilysin gene successfully retarded amyloid deposition in the brains of AD model mice6,7. Beneficial potential of gene therapy has also been shown in other neurodegenerative diseases, including Parkinson’s disease (PD). Gene transfer of dopamine-synthesizing enzymes into the putamen alleviated motor
symptoms in PD patients. However, infusion of viral vectors via stereotaxic surgery is not necessarily appropriate if the therapeutic gene should be delivered to broad areas of the brain.

In this study we have successfully developed a new gene delivery system by employing the combination of rAAV9 with a neuron-specific promoter, and we have shown that this system can provide functional gene expression throughout the brains of mice after intracardiac administration. The AAV vector can achieve comprehensive gene expression of neprilysin in the brain of young neprilysin-deficient mice, eventually decelerating Aβ accumulation and alleviating cognitive dysfunction based on a water maze test in aged APP transgenic (tg) mice. We show that the majority of the exogenous neprilysin is localized in late and early endosomes, where newly generated Aβ is concentrated, and this may be the reason why Aβ can be effectively excluded from the brain.

Results
Expression profile of neprilysin in the brain after AAV-mediated gene transfer. To deliver an AAV vector from circulating blood to the brain, we employed intracardiac administration, i.e., injection into the left ventricle of the heart, because this provides a direct route to the brain. To evaluate gene expression of neprilysin, we injected rAAV9 vectors that encode either an active or an inactive form of neprilysin in neprilysin-deficient mice and examined the outcome by means of specific immunochemical staining for neprilysin. This staining generated specific signals of endogenous neprilysin in wild-type mice, but not in neprilysin-deficient mice without vector treatment (Fig. 1a,b). Expression of exogenous neprilysin after a single injection of rAAV9-NEP vector (4 × 10^11 vector genome [v.g.]) into the left ventricle of the heart of neprilysin-deficient mice was spread over the limbic region on the neprilysin-null background (Fig. 1c,d), and presented a scattered distribution, but with locally intense signals. The total amount of exogenous neprilysin expression was dependent on amount of vector injected into the mice over a range of 0.5–4.0 × 10^11 v.g., as far as we examined (data not shown). On the other hand, intracardiac administration of rAAV9-NEP vector did not cause prominent gene expression of neprilysin in heart, lung, kidney or liver (Supplementary Fig. 1).

Next, we examined the localization of neprilysin in the brain by confocal double immunostaining for neprilysin and several marker proteins, after the injection of rAAV9-NEP vector into neprilysin-deficient mice. Neprilysin was present in vesicular structures of NeuN-positive neurons (Fig. 2a–c), but not in glial fibrillary acidic protein (GFAP)-positive astrocytes (data not shown). In addition, we found that exogenous neprilysin is colocalized with late endosomal marker proteins Rab-related protein 7 (Rab7) (Fig. 2d–f) and Rab9 (Fig. 2g–i), and also in part with early endosomal markers Rab5 (Fig. 2j–l) and early endosome antigen 1 protein (EEA1) (Fig. 2m–o), but not with presynaptic markers SV2 (Fig. 2p–r) and syntaxin 1, secretory vesicle marker Rab3a, clathrin-coated vesicle marker clathrin heavy chain, somato-dendritic marker microtubule-associated protein 2 (MAP2), or postsynaptic marker PSD-95 (data not shown).

Functional expression of neprilysin. We investigated functional expression of neprilysin and subsequent reduction of Aβ levels in the brain. Four weeks after the single intracardiac injection of rAAV-NEP_{WT} vector into neprilysin-deficient mice, neprilysin activity in the limbic region including the neocortex and hippocampus was significantly increased compared to that after injection of rAAV-NEP_{MT} vector, although the increased level of neprilysin activity was less than 10% of the level observed in intact wild-type mice (Fig. 3). The injection of rAAV-NEP_{WT} vector into neprilysin-deficient mice significantly reduced Aβ₄₀, Aβ₄₂ and total Aβ levels in the limbic region compared to those in the mice injected with rAAV-NEP_{MT}. The partially compensated neprilysin activity was sufficient to achieve a 50% reduction of the elevated Aβ levels in the neprilysin-deficient mice.

Figure 1 | Intracardiac injection of rAAV9 with SynI promoter leads to widespread gene transduction of neprilysin in the brain. Brain sections from intact wild-type mice (a), intact neprilysin-deficient mice (b), and neprilysin-deficient mice 14 days after intracardiac injection of 4 × 10^11 genome vectors of rAAV9-SynI::NEP_{WT} (c) or rAAV9-SynI::NEP_{MT} (d). Scale bars, 200 μm.
Figure 2 | Localization of the exogenous neprilysin in the brain. Brain sections from neprilysin-knockout mice 14 days after intracardiac injection of 4×10^{11} genome vectors of rAAV9-SynI::NEP_{WT}. Exogenous neprilysin was localized in NeuN-positive neurons (a–c), and was also observed in endosomes as confirmed by colocalization with Rab7 (d–f), Rab9 (g–i), Rab5 (j–l), EEA1 (m–o), and SV2 (p–r). Scale bars, 20 μm.
Rescue of aged mutant APP tg mice from Aβ accumulation and subsequent impairment of memory and learning function. We next investigated the potential of intracardiac injection of rAAV9 vector to reverse the impaired memory and learning function in mutant APP tg mice (APP23)\(^1\). Since Aβ production in APP23 mice is about 10-fold higher than that of wild-type mice, a nearly 4-fold higher dose of vector was used than in the above-mentioned treatment of nephrilysin-deficient mice. We examined reference memory as an indication of spatial memory and learning function, using a Morris water maze task. Under our experimental conditions, impairment of reference memory function of mutant APP tg mice was detected at the age of 15 months (Fig. 4a), and so we randomly divided mice of this age into two groups, which were given intracardiac administration of rAAV9-NEP\(_{MT}\) or rAAV-NEP\(_{WT}\). Five months after the gene transfer, we re-examined their memory functions. The escape latency of rAAV9-NEP\(_{WT}\)-injected APP tg mice was significantly shorter than that of rAAV9-NEP\(_{MT}\)-injected mice (\(p < 0.05\)), in which the escape latency was not shortened at all and the learning and memory function remained impaired (Fig. 4b). The cognitive function of the rAAV9-NEP\(_{WT}\)-injected APP tg mice was restored nearly to the level of intact wild-type mice. In addition, it is reported that anxiety-like behaviors affect performance in spatial learning tasks\(^2\), and we cannot rule out the possibility that the effect of nephrilysin gene transfer involved, at least in part, alleviation of anxiety-like behaviors that might have been exacerbated by the amyloid burden.

Next, we assessed plaque deposition and glial activation in the brains of rAAV9-injected APP tg mice by positron emission tomography (PET) with radioligands for amyloid (Pittsburgh Compound-B \(^{11}C\)PIB) and 18-kDa translocator protein (TSPO) (\([^{11}C]Ac5216\)), respectively (Fig. 4c,d)\(^3\). Plaque deposition in both the hippocampus and neocortex was clearly reduced in the rAAV9-NEP\(_{WT}\)-injected mice compared to rAAV9-NEP\(_{MT}\)-injected mice (\(p < 0.05\)). Mice treated with rAAV9-NEP\(_{WT}\) showed a tendency of enhanced TSPO upregulation, and the TSPO/amyloid burden ratio was significantly different between the two treatment groups (\(p < 0.05\)). This observation is attributable to reinforcement of TSPO-positive, neuroprotective astroglia surrounding Aβ plaques\(^4\). Thus, in vivo assessments supported the potential effectiveness of gene therapy by intracardiac administration of rAAV9-NEP\(_{WT}\) in a pathological animal model.

Therapeutic effects of NEP gene transfer on Aβ pathologies in the brain. After PET imaging analysis (i.e., 6 months after the gene transfer), functional expression of nephrilysin was estimated by measurement of enzyme activity using a standard fluorescent substrate, and amyloid deposition was assessed by immunohistochemical staining using specific antibodies against either the unmodified amino-terminus of Aβ, N1D, or the modified amino-terminus of Aβ, N3pE\(^4\). Nephrilysin-dependent endopeptidase activity in both the hippocampus and the neocortex maintained a 1.5-fold increase in the rAAV9-NEP\(_{WT}\)-injected mice compared to that in rAAV9-NEP\(_{MT}\)-injected mice (\(p < 0.05\)) (Fig. 5a), and both N1D- and N3pE-positive amyloid deposits were consistently and significantly decreased (\(p < 0.05\)) (Fig. 5b,c).

We further investigated membrane-associated Aβ oligomers, which were extracted with Triton X-100 from the membrane fraction, using western blotting (Fig. 5d,e). Membrane-associated Aβs were detected as oligomers, consisting mainly of trimers/tetramers, followed by dimer, and with only a trace of monomer. The Aβ trimers/tetramers, which were not detected from non-tg (wild-type) mouse brain, were significantly decreased by the rAAV9-NEP\(_{WT}\) administration (20% reduction; \(p < 0.05\)), compared to that in the rAAV9-NEP\(_{MT}\) group. According to the current hypothesis that Aβ oligomers are the primary molecules responsible for cognitive dysfunction, rather than Aβ fibrils\(^7\)–\(^9\), the reduction of Aβ oligomers following rAAV9-NEP\(_{WT}\) administration may contribute directly to the alleviation of abnormal spatial learning and memory function in aged mutant APP tg mice.

Discussion

Recombinant AAV vectors are among the most promising vehicles for gene delivery to the central nervous system. Stereotoxic infusion of AAV vector carrying nephrilysin gene into the hippocampus has been shown to decrease Aβ in AD model mice\(^6\). However, when it was infused into the neocortex or hippocampal formation, expression of exogenous nephrilysin and its effects on Aβ degradation were locally restricted\(^12\). Since the extent of the Aβ burden is broad in AD, a more efficient and widespread delivery technology is necessary. Among more than one hundred primate AAVs, AAV9 has gained much attention, showing high efficiency of gene transduction in neurons after intravenous administration in neonatal mice\(^20\). Here...
we showed that intracardiac administration of AAV9 can deliver neprilysin gene into broad areas of the adult mouse brain, and results in a marked and widespread reduction of Aβ levels. Although the mechanism by which AAV9 penetrates the blood-brain barrier (BBB) remains unknown, tyrosine mutation of the adeno-associated viral capsid protein may contribute to the enhanced expression levels of transgenes delivered by AAV21.

It is noteworthy that a relatively small increase of neprilysin activity in the brain was sufficient to yield a significant reduction of Aβ, with subsequent alleviation of abnormal spatial learning and memory function. The exogenous neprilysin was abundantly present in late and early endosomes of neurons throughout the brain, including the neocortex and hippocampal formation. This localization appears to provide a rationale for the effective degradation of Aβ, as discussed below. It is considered that Aβ is generated in late endosomes, then is secreted from presynaptic terminals of neurons by neuronal activity-dependent exocytosis22, and is temporally concentrated and may be oligomerized/aggregated. In addition, Walsh et al. reported that Aβ oligomerization occurred after generation of the peptide within specific intracellular vesicles including recycling endosomes23, which could be modulated by Aβ per se24, and the oligomers are subsequently secreted from the cell. This observation is supported by the fact that the mildly acidic environment (pH 5–6) in endosomes appears to promote Aβ oligomerization/aggregation25. After this event, Aβ or Aβ oligomers impair neuronal transmission via binding to N-methyl-D-aspartic acid (NMDA) or acetylcholine a7 nicotinic (α7nACh) receptors and prion protein17–19. Aβ/Aβ oligomers are diffused in the synaptic clefts after secretion, but they maintain a higher concentration in endosomal membrane, and may also be tethered in part at the plasma membrane. Although neprilysin is a neutral endopeptidase, its pH optimum is around 6.026, so neprilysin could degrade Aβ oligomers efficiently under the mildly acidic conditions in endosomes.

We succeeded in excluding membrane-associated Aβ oligomers from the brain by means of neprilysin gene transfer, ameliorating the impairment of spatial learning and memory function, although the contribution of a reduction in the total amount of amyloid deposition cannot be neglected. However, mounting evidence suggests that Aβ oligomers are highly neurotoxic17–19 and may be more directly responsible for the pathological and symptomatic changes in AD.

Figure 4 | NEP gene transfer ameliorated impaired spatial learning and memory function, amyloid burden, and modified glial activation in aged APP tg mice. (a) Impaired reference memory function of APP tg mice at the ages of 15 months was detected, and they were divided into two groups, followed by administration of AAV9-Synl::NEPMT or AAV9-Synl::NEPWT (1.5 × 10^11 genome copies). Data represent mean ± s.e.m. (b) Five months after the gene transfer, their memory functions were re-examined. Two-way ANOVA showed a significant main effect of neprilysin gene transfer (F(2,160) = 6.287; p < 0.05). Post hoc analysis revealed that the escape latency of rAAV9-Synl::NEPMT-injected APP tg mice was significantly different from the other groups (p < 0.05). Data represent mean ± s.e.m. (c) Plaque deposition and glial activation in living brains of APP tg mice 5 months after injection of AAV9-Synl::NEPWT and AAV9-Synl::NEPWT assessed by PET with radioligands for amyloid [(11C)PIB] (top) and TSPO [(11C)Ac5216] (bottom). Amyloid and TSPO images are derived from the same individuals. Data represent mean ± s.e.m. (d) The levels were estimated as SUVRs. TSPO upregulation relative to amyloid abundance was also determined by calculating the quotient of the SUVRs for [11C]Ac5216 and [11C]PIB (right). The main effect of the treatment was significant on amyloid load (F(1,12) = 9.17, p < 0.05) and TSPO-to-amyloid ratio (F(1,10) = 16.4, p < 0.01) but insignificant on TSPO level (F(1,10) = 4.2, p > 0.05) by repeated-measures 2-way ANOVA. The p values show significant differences between rAAV9-Synl::NEPWT and rAAV-Synl::NEPWT. Data represent mean ± s.e.m.
such as synaptic dysfunction and subsequent cognitive dysfunction. This concept appears to be reinforced by a lesson from the failure of a clinical trial of
Ab vaccine, and thus supports the notion that reduction in neprilysin-sensitive and membrane-associated Ab oligomers may be the key factor in the alleviation of cognitive impairment.

Ab that accumulates and forms amyloid plaques in AD brain consists mostly of amino-terminally truncated and modified Ab, $\text{Ab}N3pE$, and this implies that Ab secreted from neurons undergoes posttranslational modifications in the process of plaque formation. Although this fact has been known for decades, this specific form of Ab, $\text{Ab}N3pE$, has become of interest again since it was reported that PIB probe recognized $\text{Ab}N3pE$ with higher affinity than it did amino-terminally intact $\text{Ab}1-42$. $\text{Ab}N3pE$ is more hydrophobic and more easily self-aggregated (250-fold) than $\text{Ab}1-42$, and is more resistant to proteolytic degradation (by 4-fold) (Iwata and Saido, unpublished data). Recently, it was reported that $\text{Ab}N3pE$ could be a seed for oligomerization/aggregation, and showed more potent neurotoxicity than $\text{Ab}N1D$. Schilling, et al. reported that administration of a synthetic inhibitor specific to glutaminyl cyclase (QC), which is involved in cyclization of the third glutamate residue of Ab, reduced not only production of $\text{Ab}N3pE$, but also the total amount of amyloid deposition, and it also alleviated cognitive impairment in AD-model mice (Tg2576). In this study, we found that the gene transfer abolished any increase in amyloid fibrils composed of $\text{Ab}N3pE$, as well as amino-terminally intact Ab, in the brains of aged APP tg mice (APP23). This result may be attributed to degradation of newly produced Ab by exogenous neprilysin in endosomes, rather than direct degradation of $\text{Ab}N3pE$. Because $\text{Ab}N3pE$ acquires proteolytic resistance once it is formed from $\text{Ab}1-x$, Ab degradation in endosomes immediately after its production should be favorable for efficient degradation. This notion appears to be supported by the finding that we could not detect $\text{Ab}N3pE$ or its oligomeric forms in the membrane fraction (i.e., their concentrations were below the detection limit of western blot analysis)(data not shown).

Therapeutic intervention by neprilysin gene transfer could be monitored in vivo by using microPET with 11CPIB probe. TSPO is a marker protein in activated glia, such as astrocytes and microglia. Ji et al. reported that most TSPO-positive glial cells in aged APP tg mouse brains were astrocytes, which expressed glial cell line-derived neurotrophic factor at a high level, suggesting that TSPO-positive astrocytes may play neuroprotective roles in decelerated amyloid plaque formation and alleviation of abnormal spatial

Figure 5 | Gene therapeutic effects of NEP gene transfer on Ab pathologies in the brains. Seven months after the gene transfer into 15-month-old APP tg mice, brains were removed and analyzed biochemically and immunohistochemically. (a) NEP activities in the hippocampal formation and neocortex. (b) Amyloid burden. Brain sections were immunostained with N-terminal specific antibodies for Ab (N1D and N3pE, mouse monoclonal). Scale bar, 500 μm. (c) Amyloid load is expressed as percent of the measured area. Data represent mean ± s.e.m. The p values show significant differences between rAAV9-SynI::NEP_{MT} and rAAV-SynI::NEP_{WT}. (d) A representative blot of Ab and its oligomers. Triton X-100-extractable membrane fractions (20 μg protein) from the hippocampal formation of APP tg mice with rAAV9-NEP_{MT} or rAAV9-NEP_{WT} and non-transgenic (wild type) mice were subjected to western blot analyses using N-terminal specific antibody N1D (rabbit polyclonal). A single asterisk shows Ab dimer, and a double asterisk shows trimer and tetramer. The blot was reprobed with anti-β-actin antibody. (e) Ab oligomers in the blots were quantified by densitometry. Synthetic $\text{Ab}1-42$ (0.1, 0.2, 0.4 ng) run on the same gel as indicated in d was used for calibration within a linear range. The p values show significant differences between rAAV9-SynI::NEP_{MT} and rAAV-SynI::NEP_{WT}. Data represent mean ± s.e.m.
learning and memory function. The precise mechanism through which up-regulation of neprilysin activates astrocytes in the brain remains unclear, but neprilysin-generated proteolytic fragments of substrate peptides may be involved in this process.

In conclusion, we have demonstrated that the new gene delivery system based on rAAV9 with a neuron-specific promoter can achieve functional gene expression throughout the brain, but not in peripheral tissues, after intracardiac administration. In our animal model, it could block Aβ accumulation and alleviate cognitive dysfunction based on a water maze test. Furthermore, the expression of neprilysin specifically in endosomes is considered to be advantageous for efficient degradation of Aβ oligomers.

Methods

Recombinant AAV vector production. The AAV vector plasmids contained an expression cassette, consisting of a mouse synapsin I promoter, followed by cDNA encoding neprilysin or its inactive mutant with E583V amino acid substitution, and a woodchuck hepatitis virus post-translational regulatory element between the inverted terminal repeats of the AAV3 genome. The synthesized AAV9 vp cDNA sequence was identical to that previously described,"},natural_text
3. Iwata, N. et al. Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. 6, 143–150 (2000).

4. Iwata, N. et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552 (2001).

5. Huang, S. M. et al. Neprilysin-sensitive synapse-associated amyloid-β peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. 281, 17941–17951 (2006).

6. Iwata, N. et al. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-β peptide in mouse brain. J. Neurosci. 24, 991–998 (2004).

7. Nilsson, P. et al. Gene therapy in Alzheimer’s disease - potential for disease modification. J. Cell. Mol. Med. 14, 741–757 (2010).

8. Muramatsu, S. et al. A phase I study of aromatic L-aminoo acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther. 18, 1731–1735 (2010).

9. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

10. Lu, B. et al. Neutral endopeptidase modulation of septic shock. J. Exp. Med. 181, 2271–2275 (1995).

11. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13287–13292 (1997).

12. Miyakawa, T. et al. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11, 763–775 (2001).

13. Maeda, J. et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J. Neurosci. 27, 10957–10968 (2007).

14. Maeda, J. et al. In vivo positron emission tomographic imaging of glial responses to amyloid-β and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J. Neurosci. 31, 4720–4730 (2011).

15. Ji, B. et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer’s and other CNS pathologies. J. Neurosci. 28, 12255–12267 (2008).

16. Saído, T. C. et al. Dominant and differential distribution of distinct amyloid peptide species, Aβ(n-40), in senile plaques. Neuron 14, 457–466 (1995).

17. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid-β-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112 (2007).

18. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Rev. Biochem. 15, 349–357 (2012).

19. Larsson, M. E. & Lesnic, S. E. Soluble Aβ oligomer production and toxicity. J. Neurochem. 120 Suppl 1, 125–139 (2012).

20. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

21. Peterson, H. et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol. Ther. 19, 293–301 (2011).

22. Carrito, J. R. et al. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58, 42–51 (2008).

23. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 465, 533–539 (2002).

24. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).

25. Bharadwaj, P. R. et al. Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J. Cell. Mol. Med. 13, 412–421 (2009).

26. Kerr, M. A. & Kenny, A. J. The molecular weight and properties of a neutral metallo-endopeptidase from rabbit kidney brush border. Biochem. J. 137, 489–495 (1974).

27. Selkoe, D. J. Alzheimer’s disease is a synaptic failure. Science 298, 789–791 (2002).

28. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

29. Schilling, S. et al. On the seeding and oligomerization of pβu-amyloid peptides (in vitro). Biochemistry 45, 12393–12399 (2006).

30. Nussbaum, J. M. et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485, 651–655 (2012).

31. Schilling, S. et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111 (2008).

32. Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

33. Li, X. G. et al. Viral-mediated temporally controlled dopamine production in a rat model of Parkinson disease. Mol. Ther. 13, 160–166 (2005).

34. Fukushima, S. et al. Aβ-degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely corresponding with Aβ pathology. Neurosci. Res. 43, 39–56 (2002).

35. Tai, Y. C. et al. Performance evaluation of the microPET focus: a third generation microPET scanner dedicated to animal imaging. J. Nucl. Med. 45, 453–463 (2005).

36. Roques, B. P. et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286–288 (1980).

Acknowledgements
The authors thank Naomi Takino, Hitomi Miyayu, Keiko Aihara (Jichi Med. Univ.), Kaori Watanabe (Nagasaki Univ.) and Ryo Fujikawa (Riken) for technical assistance. We also thank Dr. Craig Gerard (Harvard Medical School) for providing neprilysin-knockout mice. This work was supported in part by a research grant from RIKEN BSI, a grant-in-aid for scientific research from JSPS (23590473), a grant-in-aid via the research committee on CNS degenerative diseases from the MHLW, and grants-in-aid for the Japan Advanced Molecular Imaging Program and for scientific research on innovative areas (Synapse Neurocircuit Pathology) from the MEXT.

Author contributions
S.M. designed and prepared the AAV vectors; N.I. and M. Sekiguchi performed the in vivo experiments, N.I., Y.H., A.T., M.A. performed biochemical and histochemical analyses; B.I. and M.H. performed the PET imaging analysis; M. Staufenbiel provided APP tg mice; N.I., S.M., M.H., M. Staufenbiel and T.C.S. designed the experimental plan and wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

How to cite this article: Iwata, N. et al. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci. Rep. 3, 1472; DOI:10.1038/srep01472 (2013).