Effect of Sulphur Nutrition in Groundnut: A Review

R. Ariraman, K. Kalaichelvi

ABSTRACT

Sulphur plays a vital role in the development of seed and improving oil quality. Groundnut is rich in oils and protein hence sulphur requirement for this crop is substantially high. Sulphur levels from 20 to 70 kg ha\(^{-1}\) were tried in groundnut among which higher level of sulphur @ 60 kg ha\(^{-1}\) has recorded taller plants, higher leaf area index, dry matter production pod number, pod yield and oil quality in groundnut. Gypsum application at 400 kg ha\(^{-1}\) (200 kg as basal and remaining 200 kg ha\(^{-1}\) during earthing up) has increased the pod yield, oil content and oil yield in groundnut.

Key words: Groundnut, Gypsum, Oil yield, Pod yield, Sulphur.

Sulphur is increasingly being recognised as the fourth major nutrient after nitrogen, phosphorus and potassium (Tandon and Messick, 2002). It is the master nutrient for oilseed production as each unit of sulphur fertilizer generates 3-5 units of edible oil. In oilseeds sulphur plays a vital role in the development of seed and improving the quality (Naser et al., 2013). Sulphur helps in the synthesis of cysteine, methionine, chlorophyll, vitamins (B, biotin and thiamine), metabolism of carbohydrates, oil content, protein content and also associated with growth and metabolism, especially by its effect on the proteolytic enzymes (Najar et al., 2011). Sulphur deficiency results in poor flowering, fruiting, cupping of leaves, reddening of stems, petiole and stunted growth. Since groundnut is rich both in oils and protein, requirement of sulphur for this crop is substantial high. Sulphur improves the chlorophyll, nodulation, increases the availability of other nutrients (Singh 2007).

Effect of sulphur on growth attributes of groundnut

Plant height

Battacharya et al. (1997) reported that application of S @ 20 kg ha\(^{-1}\) significantly increased the plant height, dry matter and nodulation in groundnut than control. Kadam et al. (2000) revealed that sulphur fertilization at 40 kg ha\(^{-1}\) recorded significantly higher plant height against control in groundnut. Chaudhury et al. (2000) registered that application of S at 45 kg ha\(^{-1}\) through gypsum significantly gave higher plant height in groundnut. Kalaiyarasan et al. (2002) reported that growth parameters especially plant height increased significantly with increasing levels of sulphur in groundnut. Singh et al. (2003) observed that sulphur fertilization at 60 kg ha\(^{-1}\) registered significant improvement in plant height at 30, 60 and 90 DAS and at harvest stages over 20 and 40 kg S ha\(^{-1}\) and control in groundnut. Mandal et al. (2005) disclosed that application of gypsum at 400 kg ha\(^{-1}\) significantly recorded highest plant height (65.1 cm) and the lowest plant height in control (46.5 cm) in groundnut. Jat and Ahlawat (2009) disclosed that application of sulphur at 70 kg ha\(^{-1}\) significantly improved the plant height of groundnut over absolute control. Kannan et al. (2016) suggested that application of S through gypsum @ of 400 kg ha\(^{-1}\) in split mode viz., 200 kg as basal and 200 kg as top dressing recorded highest plant height over control in groundnut. Nagesh Yadav et al. (2017) concluded that application of S @ 60 kg ha\(^{-1}\) through gypsum registered significant increase in plant height than other levels and sources in groundnut. Bairagi et al. (2017) reported that application of gypsum @ 500 kg ha\(^{-1}\) significantly increased the plant height of groundnut over control.

Leaf area index

Kamalakannan et al. (2006) reported that application of 40 kg S ha\(^{-1}\) recorded the highest leaf area index in groundnut. Gashti et al. (2009) evaluated the effects of sulphur fertilizer sources and levels on growth indices of peanut (Arachis hypogaea L. CV. NC2) and results indicated that the higher LAI (6.6) were obtained with 90 kg S ha\(^{-1}\) in the form of gypsum. Piri et al. (2012) described that sulphur with its involvement in the metabolic process enhances the meristematic activity and thus causes higher apical growth with the expansion of photosynthetic surface.

Dry matter production

Bandopadhyay and Samui (2000) reported that application of S at 30 kg ha\(^{-1}\) significantly improved the haulm yields of groundnut over control. Kalaiyarasan et al. (2002) reported that dry matter production plant\(^{-1}\) increased significantly with increasing levels of sulphur. Tripathi and Hazra, 2003 reported that application of gypsum @ 500 kg ha\(^{-1}\) gave
higher haulm yield in groundnut. Gupta and Jain (2007) registered that increasing levels of sulphur up to 45 kg ha\(^{-1}\) significantly increased the haulm yield by 28.4 per cent over control. Salke et al. (2011) revealed that application of gypsum at 500 kg ha\(^{-1}\) increased the haulm yield in groundnut. Longkumer and Gohain (2012) observed that increasing levels of sulphur up to 40 kg ha\(^{-1}\) significantly improved the dry matter accumulation over lower levels and control in groundnut. Pinki Pancholi et al. (2017) disclosed that application of sulphur @ 60 kg ha\(^{-1}\) through gypsum significantly increased the haulm yield over control in groundnut.

Effect of sulphur on yield attributes of groundnut

Agasimani et al. (1993) observed that application of sulphur at 20 kg ha\(^{-1}\) gave significantly more number of pods plant\(^{-1}\) and pod yield than control. Dhimree et al. (1993) surmised that every increase in levels of S up to 45 kg ha\(^{-1}\) in groundnut produced significantly more number of pods plant\(^{-1}\), kernels pod\(^{-1}\), pod weight plant\(^{-1}\), biomass production and shell yield over 15 and 30 kg ha\(^{-1}\) and control. Shivraj and Gowda (1993) documented that application of S @ 30 kg ha\(^{-1}\) gave significant increase in shelling percentage, 100-kernel weight, pod yield, haulm yield and oil yield of groundnut.

Kumpawat and Rathore (1994) observed significant increase in pod yield of groundnut with the application of sulphur up to 150 kg ha\(^{-1}\). Tiwari et al. (1994) revealed that pod yield increased progressively with increasing levels of sulphur up to 100 kg ha\(^{-1}\) in groundnut. Singh and Choudhary (1996) concluded that application of sulphur at 50 kg ha\(^{-1}\) gave significantly higher number of pods/plant, pod yield and haulm yield of groundnut over control. Panda et al. (1997) registered that application of S @ 30 kg ha\(^{-1}\) in groundnut enhanced the pod yield significantly over control.

Sahu et al. (1999) divulged that application of S at 45 kg ha\(^{-1}\) significantly increased the pod yield, shelling percentage and uptake of S in rainfed groundnut. Adhikari et al. (2000) reported that application of gypsum at 400 kg ha\(^{-1}\) significantly increased number of pods plant\(^{-1}\) and shelling per cent of groundnut. Dutta et al. (2000) noted significant increase in number of pegs per plant with the application of sulphur at 60 kg ha\(^{-1}\) in groundnut. Bandopadhyay and Samui (2000) surmised that application of S at 30 kg ha\(^{-1}\) significantly improved the yield attributes viz., pods plant\(^{-1}\), kernels pod\(^{-1}\), shelling percentage and 100-kernel weight as well as pod yield, kernel and haulm yields of groundnut over control.

Chauher et al. (2000) disclosed that application of S @ 45 kg ha\(^{-1}\) significantly increased the number of pods plant\(^{-1}\), shelling percentage, 100-kernel weight and pod yield in groundnut. Kumaran (2001) also suggested that application of S through gypsum @ 400 kg ha\(^{-1}\) produced maximum number of seeds per pod in groundnut.

Kalaiyarasan et al. (2002) documented that growth parameters of groundnut viz. plant height and dry matter production plant\(^{-1}\) increased significantly with increasing levels of sulphur. Maity et al. (2003) noted the highest yield attributes and pod yield of groundnut when the crop was applied with sulphur at 30 kg ha\(^{-1}\). Prasad (2003) surmised that significant increase in biological yield was attained when sulphur was applied @ 40 kg ha\(^{-1}\) in groundnut. Kalaiyarasan et al. (2003) revealed that application of S at 45 kg ha\(^{-1}\) through gypsum significantly increased oil and protein content in groundnut kernel.

Singh et al. (2005) reported that application of S at 45 kg ha\(^{-1}\) significantly increased the pod yield of groundnut. Jamal et al. (2006) noted significant increase in number of pods per plant with application of sulphur @ 20 kg ha\(^{-1}\). Singh and Mann (2007) observed that application of 40 kg S ha\(^{-1}\) and 5 kg Zn ha\(^{-1}\) significantly increased the pod yield of groundnut. Gupta and Jain (2007) surmised that application of S at 45 kg ha\(^{-1}\) significantly increased the mean pod yield of groundnut and haulm yield. Vagharia et al. (2007) revealed that application of S at 50 kg ha\(^{-1}\) increased the groundnut yield as well as the high benefit cost ratio. Kalaiyarasan et al. (2007) registered that application of S at 60 kg ha\(^{-1}\) significantly increased the yield attributes and pod yield of groundnut.

Patel et al. (2008) revealed that application of sulphur up to 40 kg ha\(^{-1}\) significantly increased the pod yield of groundnut. Tathe et al. (2008) disclosed that application of sulphur @ 120 kg ha\(^{-1}\) recorded significantly the highest dry pod yield, oil and protein content of groundnut. Krishna Murthy et al. (2009) registered that application of recommended dose of fertilizer + vermmopost + gypsum recorded significantly higher pod yield in groundnut. Patel et al. (2009) concluded that sulphur fertilization at 40 kg ha\(^{-1}\) gave significantly higher number of pods per plant, shelling percentage, 100-kernels weight, weight of pods per plants.

Gunr et al. (2012) divulged that pod yield increased with the increasing levels of gypsum application in groundnut. Pramantharajah and Prapagar (2013) noted that application of S @ 75 kg ha\(^{-1}\) through elemental sulphur significantly increased the pod yield, protein and oil content of groundnut. Tejeswara Rao et al. (2013) concluded that application of sulphur of 45 kg ha\(^{-1}\) through gypsum recorded the highest number of filled pods per plant, 100 pod weights, 100 kernel weight, pod yield, haulm yield and oil content of groundnut. Dash et al. (2013) noticed that the yield attributes and yield of groundnut were significantly increased with increasing levels of sulphur up to 40 kg ha\(^{-1}\). Pancholi (2014) concluded that increase in level of sulphur up to 60 kg ha\(^{-1}\) significantly improved the pods plant\(^{-1}\), seed index, pod, haulm and kernel yield. Dutta et al. (2015) observed that sulphur fertilization at 30 kg ha\(^{-1}\) gave significantly higher number of pods plant\(^{-1}\), shelling percentage, 100-kernels weight as well as pod yield, haulm and kernel yield. Noman et al. (2015) registered that application of sulphur @ 40 kg ha\(^{-1}\) significantly improved the yield attributes viz., pods per plant, kernels pod and shelling percentage as well as pod yield, kernel yield and haulm yields. Naiknavare et al. (2015) documented that application of S @ 40 kg ha\(^{-1}\) resulted in
Effect of Sulphur Nutrition in Groundnut: A Review

maximum number of pods per plant (10.44), shelling (71.16 per cent), kernel yield (1136 kg ha\(^{-1}\)), higher pod yield (1588 kg ha\(^{-1}\)), haulm yield (2196 kg ha\(^{-1}\)), oil content (52.04 per cent) and protein content (23.14 per cent) which were significantly higher than the controlled treatment. Dutta et al. (2015) surmised that sulphur fertilization at 30 kg ha\(^{-1}\) gave significantly higher number of pods plant\(^{-1}\), shelling percentage, 100-kernels weight as well as pod yield, haulm and kernel yield. Sabet and Amiri (2015) recorded that application of S @ 90 kg ha\(^{-1}\) significantly increased the 100 seed weight in groundnut.

Bairagi et al. (2017) disclosed that application of S @ 500 kg ha\(^{-1}\) through gypsum gave significantly increased plant height, number of leaves per plant, number of branches per plant, length of the pod, number of grains per pod, seed index and grain yield as well as yield in groundnut.

Effect of sulphur on seed yield of groundnut

Singh (2007) disclosed that application of 45 kg S ha\(^{-1}\) and 60 kg Ca ha\(^{-1}\) through gypsum gave significantly higher yield in groundnut. Singh and Mann (2007) observed that application of sulphur at 40 kg/ha, being at a par with 60 kg/ha resulted significant increase in pod yield of groundnut. Giri et al. (2011) recorded that application of S @ 15 kg ha\(^{-1}\) through elemental sulphur significantly recorded higher kernel yield (31.11 q ha\(^{-1}\)) than control (17.97 q ha\(^{-1}\)) in groundnut.

Dutta et al. (2015) revealed that application of 45 kg S ha\(^{-1}\) increase in shelling percentage as well as pod and kernel yield of groundnut. Bholanath Saha et al. (2015) surmised that application of S @ 50 kg ha\(^{-1}\) caused an increased yield 73.4 per cent over the control in groundnut. Sisodiya et al. (2016) noted that application of elemental sulphur @ 20 mg kg of soil recorded the highest uptake of nutrients and significantly gave higher yield in groundnut. Kannan et al. (2016) disclosed that application of S through gypsum @ 400 kg ha\(^{-1}\) in split mode viz., 200 kg as basal and 200 kg as top dressing recorded highest plant height, more number of filled pods per plant, 100 kernel weight, pod yield and haulm yield in groundnut.

Rukrsar Banu et al. (2017) documented that sulphur application @ 40 kg ha\(^{-1}\) through gypsum recorded an increase in pod and haulm yield to the tune of 11.51 and 9.69 per cent respectively than elemental sulphur in groundnut. Premanandarajah and Shanika (2017) divulged that application of S @ 75 kg ha\(^{-1}\) increased the pod yield of groundnut. Pinki Pancholi et al. (2017) found that application of sulphur @ 60 kg ha\(^{-1}\) gave highest pod yield, kernel yield, haulm yield, biological yield and seed index over control in groundnut. Manaf et al. (2017) concluded that application of S @ 45 kg ha\(^{-1}\) through SSP increased the seed yield to 81.5 per cent than control in groundnut.

Effect of sulphur on oil quality of groundnut

Agasimani et al. (1993) observed that application of sulphur at 20 kg ha\(^{-1}\) increased the oil content in kernels of groundnut. Kadam et al. (2000) noted significant increment in oil and protein contents in summer groundnut with the application of sulphur at 40 kg ha\(^{-1}\). Sahu et al. (2001) concluded that increasing levels of sulphur upto 40 kg ha\(^{-1}\) brought about significant enhancement in pod yield, shelling percentage, oil content, oil yield in groundnut. Patra et al. (2002) concluded that application of 40 kg S ha\(^{-1}\) as gypsum or pyrite significantly influenced the seed oil and protein content in groundnut.

Dayanand et al. (2002) revealed that protein (23.36%) and oil content (44.97%) of groundnut kernel significantly increased up to 60 kg S ha\(^{-1}\), whereas higher oil yield (0.48 t ha\(^{-1}\)) obtained at 40 kg S ha\(^{-1}\). Sarkar and Surendra Singh (2003) divulged that application of 30 kg S ha\(^{-1}\) through gypsum increased the oil content of groundnut. Kalaiyarasan et al. (2003) documented that application of S at 45 kg ha\(^{-1}\) significantly increased the oil (49.4 per cent) and protein (25.6 per cent) contents of groundnut over control. Dutta and Mondal (2006) surmised that application of 125% RDF along with gypsum @ 500 kg ha\(^{-1}\) significantly gave the highest oil content in kernel and uptake of nutrients (N, P and K) by summer groundnut. Jamal et al. (2006) disclosed that application of S @ 20 kg ha\(^{-1}\) through gypsum gave significant enhancement in the oil yield as well as seed protein content of groundnut. Vagharia et al. (2007) narrated application of sulphur @ 50 and 25 kg ha\(^{-1}\) significantly increased the oil yield as well protein yield over control. Hassan et al. (2007) described that S plays an important role in the chemical composition of seeds and improves the percentage of oil contents. Kalaiyarasan et al. (2007) reported that application of S at 60 kg ha\(^{-1}\) significantly increased the oil content and oil yield of groundnut. Tathe et al. (2008) divulged that application of sulphur @ 120 kg ha\(^{-1}\) through elemental sulphur recorded significantly the highest dry pod yield, oil and protein content of groundnut. Jamat and Ahlawat (2009) noted that application of S at 35 kg ha\(^{-1}\) significantly increased the oil content in groundnut kernel. Kalaiselvi and Mahimairaja (2011) observed that application S increased the protein and oil content of groundnut seeds. Tejeswara Rao et al. (2013) surmised that sulphur at 45 kg ha\(^{-1}\) through gypsum recorded the highest oil content of the kernels. premmantranarajah and Prapagar (2013) reported that application of S @ 75 kg ha\(^{-1}\) through elemental sulphur significantly increased the protein and oil content of groundnut. Dutta et al. (2015) noted that oil content and oil yield of groundnut responded different sources of sulphur fertilization viz., gypsum and elemental sulphur. Rukrsar Banu et al. (2017) documented that sulphur application @ 40 kg ha\(^{-1}\) through gypsum recorded an increase in oil content of 8.18 % than elemental sulphur in groundnut.

Effect of sulphur through gypsum on groundnut

Wali et al. (1994) disclosed that application of sulphur @ 50 kg ha\(^{-1}\) through gypsum gave significant increase in number of pods plant\(^{-1}\), shelling percentage, oil yield and haulm yield than 25 kg ha\(^{-1}\) and control. Singh and Choudhary (1996) observed that application of sulphur at
60 kg ha\(^{-1}\) through gypsum increased the plant height and number of branches plant\(^{-1}\) in groundnut over 0, 20, 40 kg ha\(^{-1}\). Sahu and Das (1997) surmised that application of sulphur @ 40 kg ha\(^{-1}\) through phosphogypsum significantly increased the pod yield and shelling percentage as compared to control and 20 kg ha\(^{-1}\) and other sources in groundnut.

Adhikari et al. (2000) noted that application of gypsum at 400 kg ha\(^{-1}\) significantly increased number of pods plant and shelling per cent of groundnut. Chaufer et al. (2000) surmised that every increase in level of sulphur upto 45 kg ha\(^{-1}\) applied through gypsum brought about significant improvement in number of pods plant\(^{-1}\), 100-kernels weight, shelling percentage and pod yield of groundnut over preceding levels and control. Jagadeeswaran et al. (2001) divulged that application of ferrogypsum in amounts equivalent to recommend dose of 400 kg ha\(^{-1}\) gypsum significantly increased the pod yield, haulm yield, shelling per cent and kernel yield of groundnut.

Kalaiyarasan et al. (2003) observed that application of S at 45 kg ha\(^{-1}\) through gypsum significantly increased oil and protein content in groundnut kernel. Sarkar and Surendra Singh (2003) narrated that application of 30 kg S ha\(^{-1}\) through gypsum increased the oil content of groundnut. Mandal et al. (2005) disclosed that application of gypsum at 400 kg ha\(^{-1}\) significantly increased the plant height, number of pods per plant, number of kernels per pod, 100 kernel weight, shelling percentage, pod and haulm yields in groundnut.

Rao and Shaktawat (2005) registered that application of gypsum @ 250 kg ha\(^{-1}\) enhanced the pod yield of groundnut than control. Jamal et al. (2006) documented that application of S @ 20 kg ha\(^{-1}\) through gypsum gave significant enhancement in the yield components namely seed and oil yield as well as seed protein content of groundnut.

Vagharia et al. (2007) concluded that application of sulphur @ 50 and 25 kg ha\(^{-1}\) through gypsum significantly increased pod and haulm yield over control. Poonia et al. (2008) surmised that application of 40 kg S ha\(^{-1}\) through gypsum proved significantly over 20 kg S ha\(^{-1}\) increasing the number of pods, haulm and kernel yield (38.25 and 22.95 q ha\(^{-1}\)) of groundnut.

Salke et al. (2011) revealed that application of gypsum @ 500 kg ha\(^{-1}\) significantly influenced the yield contributing characters like number of pods plant, pod weight per plant, hundred pod weight, hundred kernel weight, shelling percentage and dry pod and haulm yield of groundnut. Gurur et al. (2012) reported that pod yield increased with the increasing levels of gypsum application in groundnut. Bagarama et al. (2012) suggested that application of the Ca and S rich gypsum improved groundnut kernel yield.

Poonia et al. (2013) surmised that application of sulphur at 40 kg ha\(^{-1}\) through gypsum significantly increased the nitrogen, phosphorus, potash and sulphur uptake over control in groundnut. Tejeswara Rao et al. (2013) reported that application of sulphur at 45 kg ha\(^{-1}\) through gypsum recorded the highest pod yield, haulm yield of the kernels in groundnut. Dutta et al. (2015) narrated that net returns, benefit cost ratio were found more under gypsum than elemental sulphur.

Seran (2016) described that application of gypsum @ 300 kg ha\(^{-1}\) along with NPK fertilizers gave higher seed yield in groundnut. Kannan et al. (2016) surmised that application of S through gypsum @ of 400 kg ha\(^{-1}\) in split mode viz., 200 kg as basal and 200 kg as top dressing recorded highest plant height, more number of filled pods per plant, 100 kernel weight, pod yield and haulm yield in groundnut.

Bairagi et al. (2017) documented that application of S @ 500 kg ha\(^{-1}\) through gypsum gave significantly increased plant height, number of leaves per plant, number of branches per plant, length of the pod, number of grains per pod, seed index and grain yield as well as yield in groundnut. Nagesh Yadav et al. (2017) concluded that application of S @ 60 kg ha\(^{-1}\) through gypsum produced 13.1 and 10.2 per cent higher pod yield and biological yield than other sources and levels in groundnut. Ruksa Banu et al. (2017) reported that sulphur application @ 40 kg ha\(^{-1}\) through gypsum recorded an increase in pod and haulm yield to the tune of 11.51 and 9.69 per cent respectively than elemental sulphur in groundnut. Pinki Pancholi et al. (2017) documented that application of sulphur @ 60 kg ha\(^{-1}\) through gypsum significantly increased the pod yield and haulm yield over control in groundnut.

Effect of sulphur through single super phosphate on groundnut

Mupangwa and Tagwira (2005) recorded that P significantly increased groundnut yield on application of 8.5 kg P ha\(^{-1}\) through single super phosphate. Musa et al. (2015) registered that application of sulphur through SSP increase the pod yield, grain yield and oil content of groundnut. Manaf et al. (2017) concluded that application of S @ 45 kg ha\(^{-1}\) through SSP gave best performance for number of plants per m\(^{2}\), number of pegs plant, number of pods per plant, number of seeds per pod, seed index, harvest index with an increase in grain yield of 81.5 per cent over control in groundnut. Nagesh Yadav et al. (2017) documented that application of S @ 60 kg ha\(^{-1}\) through SSP registered 13.9 and 21.48 per cent increase in crop growth rate than other sources in groundnut.

Effect of sulphur through elemental sulphur on groundnut

Singh (2001) observed an gradual increase in pod yield of groundnut under 20 kg S ha\(^{-1}\) through elemental sulphur. Patil et al. (2003) revealed that application of S @ 20 kg ha\(^{-1}\) as elemental sulphur along with recommended dose of N, P provided significantly higher kernels and haulm yield of groundnut as compared to control. Wenger et al. (2002) narrated that application of elemental sulphur increased the solubility of heavy metals for plant uptake subsequently resulted in higher yields of oilseed crops. Mupangwa and
Tagwira (2005) divulged that gypsum application rates of 100 kg ha\(^{-1}\) increase the growth and yield of groundnut. Tathe et al. (2008) concluded that application of sulphur @ 120 kg ha\(^{-1}\) through elemental sulphur recorded significantly the highest dry pod yield, oil and protein content of groundnut. Giri et al. (2011) disclosed that application of S @ 15 kg ha\(^{-1}\) through elemental sulphur significantly recorded higher kernel yield (31.11 q ha\(^{-1}\)) than control (17.97 q ha\(^{-1}\)) in groundnut. Premanantharajah and Prapagar (2013) suggested that application of S @ 75 kg ha\(^{-1}\) through elemental sulphur significantly increased the pod yield, protein and oil content of groundnut. Sisodiya et al. (2016) concluded that application of elemental sulphur @ 20 mg kg\(^{-1}\) of soil recorded the highest uptake of nutrients and significantly gave higher yield in groundnut. Sisodiya et al. (2017) documented that application of S through elemental sulphur @ 20 mg kg\(^{-1}\) of soil increased the micronutrient uptake and registered higher yield compared to other sources and levels of sulphur application in groundnut.

REFERENCES

Adhikari, J. D., Samanta and R.C. Samui (2000). Effect of gypsum on growth and yield of confectionery groundnut (Arachis hypogaea) varieties in summer season. Indian J. Agric. Sci. 73(2): 108-9.

Agasimani, C.A., H.B. Babalad and P.L. Patil (1993). Response of groundnut to sulphur and boron. J. Maharashtra Agri. Univ. 18(2): 318-319.

Bagarama, F.M., E. Shenkalwa and Z.P. Matata (2012). The effect of gypsum and NPK fertilizer on groundnut performance in western Tanzania. African J. Agri. Res. 3: 389-394.

Bairagi, M.D., A.A. David, T. Thomas and P.C. Gurjar (2017). Effect of Different Level of N P K and Gypsum on Soil Properties and Yield of Groundnut (Arachis hypogaea L.) var. Jyoti. Int. J. Curr. Microbiol. App. Sci. 6(6): 984-991.

Bandopadhyay, P and R.C. Samui (2000). Response of groundnut (Arachis hypogaea) cultivars to levels and sources of sulphur in West Bengal. Indian J. Agron. 45(4): 761-764.

Battacharya, B., A. Chakraborty, S. Bandopadhyay and D. Samanta (1997). Effect of sulphur application and different sowing methods on concentration and uptake of S in summer groundnut (Arachis hypogaea L.). Indian J. Agron. 3(3): 502-503.

Bhalonath Saha, Sushanta Saha, Ritam Saha, G.C. Hazra and Biswapati Mandal (2015). Influence of Zn, B and S on the yield and quality of groundnut (Arachis hypogaea L.). Legume Res. 38(6): 832-836.

Chauber, A.K., S.B. Singh and M.K. Kaushik. (2000). Response of groundnut (Arachis hypogaea) to source and level of sulphur fertilization in mid-western plains of Uttar Pradesh. Indian J. Agron. 45(1): 166-169.

Dash, A.K., B.R. Nayak, N. Panigrahy, S. Mohapatra and P.K. Samant (2013). Performance of groundnut (Arachis hypogaea L.) under different levels of sulphur and irrigation. Indian J. Agron. 58(4): 578-582.

Dayanand, N.L. Meena and A.C. Shivran A.C. (2002). Influence of intercrops and sulphur on nutrient uptake and food quality of groundnut (Arachis hypogaea). Indian J. Agric. Sci. 72(10): 594-596.

Dimple, S., K.N. Dwivedi and Hariram (1993). Effect of sulphur and phosphorus nutrition on yield and yield attributes of groundnut (Arachis hypogaea). Indian J. Agron. 38(2): 327-328.

Dutta, D. and S.S. Mondal (2006). Response of summer groundnut (Arachis hypogaea) to moisture stress, organic manure and fertilizer with and without gypsum under lateritic soil of West Bengal. Indian J. Agron. 51(2): 145-148.

Dutta, D.D. Mudri, P. Murmu and T.L. Thentu. (2015). Response of groundnut to irrigation schedules, sulphur levels and sources in alluvial zone of west Bengal. Indian J. Agron. 60(3): 443-449.

Dutta, R.R., N.C. Deko and K. Neog. (2000). Effect of different levels of sulphur on groundnut in sandy loam soils of Assam. Geobios. 34(2-3): 121-124.

Gashi, A.H., M. Esfahani, J. Asghari, M.N. Safarzadeh and B. Rabiei (2009). Effect of sulphur application on growth indices and yield of peanut (Arachis hypogaea L.). J. Sci. Technol. Agril. and Natural Res. 13(48): 27-39.

Giri, U., P. Kundu, A. Chakraborty and P. Bandopadhyay (2011). Effect of sulphur and different irrigation regimes on growth. J. Crop and Weed. 7(2): 80-83.

Gunn, S.K., G.S. Mandal, A. Sengupta, R. Nath, A.M. Pustee and T. Dey (2012). Effect of sulphur and calcium through application of gypsum on Kharif groundnut in alluvial zone of west Bengal. Extended Summaries International Agronomy Congress. 3(3): 28-30, New Delhi, India.

Gupta, A.K. and N.K. Jain (2007). Sulphur response studies in groundnut wheat cropping system under semi-arid tract of Rajasthan. Indian J. Fert. 5(10): 25-27.

Hassan, F., A.S. Hakim, A. Manaf, G. Qadir and S. Ahmad (2007). Response of sunflower (Helianthus annuus L.) to sulphur and seasonal variations. Int. J. Agri. Biol. 9: 499-503.

Jagadeesanwar, R., V. Murugappan and P. Singaram (2001). Effect of ferrogypsum on yield, nutrient uptake and quality in groundnut. Madras. Agric. J. 88: 210-213.

Jamal, A., I. S. Fazli, S. Ahmad and M.Z. Abdin (2006). Interactive effect of nitrogen and sulphur on yield and quality of groundnut (Arachis hypogaea L.). Korean J. Crop Sci. 51(6): 519-522.

Jat, R.A and I.P.S Ahlawat (2009). Effect of farm yard manure, source and level of sulphur on growth attributes, yield, quality and total nutrient uptake in pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea) intercropping system. Indian J. of Agri. Sci. 79(12): 1016-1019.

Kadam, U.A., V.S. Pawar and H.P. Pardeshi (2000). Influence of planting layouts, organic manure and levels of sulphur on growth and yield of summer groundnut. J. Maharashatra Agric. Univ. 25 (2): 211-213.

Kalaiselvi, P and S. Mahimairaj (2011). Effect of Distillery Spwash on Yield Attributes and Quality of Groundnut Crop. Middle-East J. Sci. Res. 7(2): 189-193.

Kalaiyarasan, C., V. Vaiyapuri and M.V. Sri Ramachandrasekharan (2003). Effect of sulphur sources and levels on the nutrient uptake, crop quality and sulphur use efficiency in groundnut. Ann. Agric. Res. New Series. 24(3): 478-480.

Kalaiyarasan, C., V. Vaiyapuri, M.V. Sri Ramachandrasekharan (2007).
Effect of Sulphur Nutrition in Groundnut: A Review

Effect of sulphur sources and levels on nutrient uptake, crop quality and use in groundnut. J. Int. Academia. 11(1): 55-58.

Kalaiyarasan, C., V. Vajapuri and M.V. Srimanchandrasekharan (2002). Effect of sulphur sources and levels on the growth and yield of groundnut in red laterite soil. Annals Agril. Res. New Series, 23(4): 618-621.

Kamalakannan, P., M. Ravichandran and M.V. Srimanchandrasekharan (2006). Influence of sulphur on groundnut in typic haplustalf, Nutrient Res. Mgt. 182-185.

Kannan, P., C. Swaminathan and S. Ponmmani (2016). Sulfur nutrition for enhancing rainfed groundnut productivity in typical alfisol of semi-arid regions in India. J. Plant Nut. 40(6): 828-840.

Kannan, P., C. Swaminathan and S. Ponmmani (2016). Sulfur nutrition for enhancing rainfed groundnut productivity in typical alfisol of semi-arid regions in India. J. Plant Nut. 40(6): 828-840.

Krishna Murthy, R., H.S. Vasudev, D.M. Devagiri, N. Umashankar and H.R. Raveendra (2009). Effect of integrated nutrient management of growth and yield parameters and nutrient uptake of groundnut (Arachis hypogaea L.), Mysore J. Agri, Sci. 43(4): 696-699.

Kumaran, S. (2001). Response of groundnut to organic manure, fertilizer levels, split application of phosphorus and gypsum application under irrigated condition. Res. on Crops. 2(2): 156-158.

Kumpawat, B.S. and S.S. Rathore (1994). Effect of FYM and Sulphur on yield of groundnut (Arachis hypogaea L.), XIIth National Symposium on Integrated Input Management for Efficient Crop Production. 2-5: 1994. Coimbatore (T.N.): 107.

Kumaran, S. (2001). Response of groundnut to organic manure, fertilizer levels, split application of phosphorus and gypsum application under irrigated condition. Res. on Crops. 2(2): 156-158.

Maity, S.K., G. Giri and P.S. Deshmukh (2003). Effect of phosphorus, sulphur and planting methods on parameters and total yield of groundnut (Arachis hypogaea L.) and sunflower (Helianthus annus L.), Indian J. Plant Physiol. 8(4): 377-382.

Manaf, A., M.N. Akhtar, M.T. Siddique, M. Iqbal and H. Ahmed (2017). Yield and quality of groundnut genotypes as affected by different sources of sulphur under rainfed conditions. Soil Environ. 36(2): 166-173.

Mandal, S., R.C. Samui and A. Mondal (2005). Growth, yield and yield attributes of groundnut (Arachis hypogaea L.) cultivars as influenced by gypsum application. Leg. Res. 28 (2): 119-121.

Mupangwa, W.T. and F. Tagwira (2005). Groundnut yield response to single superphosphate, calcitic lime and gypsum on acid granitic sandy soil. Nutrient Cycling Agroecosystems. 73: 161-169.

Musas, M., A. Singh and A.I. Take-tsaba (2015). Influence of phosphorous sources on the yield and yield components of groundnut varieties in sokoto, semi-arid zone of Nigeria. Int. J. Plant and Soil Sci. 7(3): 188-191.

Nagesh Yadav, S.S. Yadav, Neelam Yadav, M.R. Yadav, Rakesh Kumar, L.R. Yadav, L.C. Yadav and D.P. Sharma (2017). Growth and productivity of groundnut (Arachis hypogaea L.) under varying levels and sources of sulphur in semi-arid conditions of Rajasthan. Legume Res. 3853[1-7].

Naiknaware, M.D., G.R. Pawar and S. B. Murumkar (2015). Effect of varying levels of boron and sulphur on growth, yield and quality of summer groundnut (Arachis hypogaea L.). National Acad. Agric. Sci. 33 (2): 471-474.

Najar, G.R., S.R. Singh, F. Akhtar and S.A. Hakeem (2011). Influence of sulphur levels on yield, uptake and quality of soybean (Glycine max) under temperate conditions of Kashmir valley. Indian J. Agric. Sci. 81(4): 340-343.

Naser, A., Anjum, Sarvaajit, S.Gill, Shahid Umar, Igbal Ahmed, Armando C. Duarte and Eduarda Pereira (2013). Improving growth and productivity of Olferous brassica under changing environment. Significance of nitrogen and sulphur nutrient and underlying mechanisms. The Scientific World Journal. 12.

Noman, H.M. and K.S. Rana (2015). Influence of sulphur and zinc levels and zinc solubilizer on productivity, economics and nutrient uptake in groundnut. Indian J. Agron. 60(2): 301-306.

Pancharloli, P. (2014). Efficacy of herbicidal weed control in groundnut (Arachis hypogaea) at varying levels of sulphur. M.Sc. (Ag.) Thesis, Sri Karan Narendra Agricultural University, Jobner.

Panda, S.C., S.S. Nanda and R.C. Mishra 1997. Response of winter groundnut (Arachis hypogaeal L.) to methods of sowing and sources of sulphur. Indian J. Agron., 42(4): 686-685.

Patel G.M., B.T. Patel, I.N. Dodia, V.K. Bhatt and Bhatt R.K. (2009). Effect of sources and levels of sulphur on yield, quality and nutrient uptake of mustard (Brassica juncea L.) varieties in loamy sand soil. J. of Soils and Crops. 19: 30-35.

Patel, G.N., P.T. Patel and P.H. Patel (2008). Yield, water use efficiency and moisture extraction pattern of summer groundnut as influenced by irrigation schedules, sulphur levels and sources. J. SAT Agril. Res. 6: 1-4.

Patil, C.V., N.A. Yaledahalli and S.S Prakash (2003). Integrated nutrient management for sustainable productivity of groundnut in India. Paper presented at the National Workshop on Groundnut Seed Technology, Raichur.

Patra, A.K., Tripathy, S.K and R.C. Samuni (2002). Response of groundnut varieties to ‘S’ in alluvial soils of West Bengal. Indian J. Agr. 39(2): 137-141.

Pinki Pancholi, S.S. Yadav and Anshul Gupta (2017). The influence of weed control and sulphur fertilization on oil content and production of groundnut (Arachis hypogaea L.) in semi-arid region of Rajasthan. Journal of Pharmacognosy and Phytochemistry. 6(4): 677-679.

Piri, I., A. Rahimi, A. Tavassoli, F. Rastegaripour and M. Babaeian (2013). Improving rainfed groundnut productivity in typical alfisol of semi-arid regions in India. J. Plant Nut. 40(6): 156-158.

Poonia, B.S., O.P. Singh and H.K. Sumeriya (2008). Response of sulphur, PSB and growth regulators on productivity of groundnut (Arachis hypogaea L.) under rainfed conditions. Int. J. Tropicals Agrics. 26: 3-4.

Poonia, B.S., O.P. Singh and H.K. Sumeriya (2013). Response of groundnut (Arachis hypogaea) in rainfed conditions under the influence of sulphur, PSB and growth regulator. Annals of Biology. 18(9): 336-338.
Prasad, B. (2003). Effect of direct and residual effects of different sulfur fertilizers on groundnut and wheat cropping system on typic haplauquentic. J. Plant Nutrition. 26: 979-1008.

Premanandarajah, P. and W. Shanika (2017). Selection of organic source as a substitute for phosphorus and sulphur and the best combination of poultry manure and single super phosphate combination in relation to groundnut yield. Int. C. S. 6(5): 851-858.

Premanantharajah, P. and K. Prapagar (2013). Effect of poultry manure as partial substitute for P and S on the yield and quality of groundnut. Proceedings of the Third International Symposium, Olulvi, Sri Lanka. pp: 94-98.

Rao, S.S. and M.S. Shaktawat (2005). Effect of organic manure, phosphorus and gypsum on nutrient uptake in groundnut. Agropedology. 15(2): 100-106.

Ruskan Banu, C. Jagruti, Shroff and S.N. Shah (2017). Effect of sources and levels of sulphur and biofertilizer on growth, yield and quality of summer groundnut. Int. J. Agril. Sci. 13(6): 67-70.

Sabet, H.S. and E. Amiri (2015). Evaluate the yield of peanuts under irrigation and sulphur fertilizer. Biological Forum. 7(1): 617-620.

Sahu, S.K. and B.B. Das (1997). Effect of source, dose, time and mode of sulphur application to groundnut on lateritic soils, Orissa, India. Int. Arachis Newsletter. 17: 62-63.

Sahu, S.K., S.C. Nayak, J.K. Dhal and R.K. Nayak (1999). Response to sulphur of rainfed groundnut genotypes on lateritic sandy loam in Orissa, India. Int. Arachis Newsletter. 19: 46-47.

Sahu, S.K., S.C. Nayak, R.K. Nayak and J.K. Dhal (2001). Integrated management of sulphur for groundnut on a lateritic soil in Orissa, India. Int. Arachis Newsletter: 49-50.

Sakke, S.R., A.A. Shaike and N.D. Dalai (2011). Effect of phosphatic fertilizers, gypsum and sulphur on groundnut (Arachis hypogaea L.). Bioinfolet. 8(3): 276-277.

Sarkar, A.K. and Surendra Singh (2003). Crop response of secondary and micronutrients in acid soils of India. Fertilizer News. 48: 47-54.

Seran, T.H. (2016). Yield and yield components of Arachis hypogaea L. as influenced by NPK chemical fertilizers, farm yard manure and gypsum. Bangladesh J. Sci. Ind. Res. 51(4): 285-290.

Shivraj, B. and A. Gowda. 1993. Influence of levels and sources of sulphur on yield and quality of groundnut. Current Research University of Agriculture Sciences Bangalore. 22(3-5): 45-47.

Singh, A.L. and V. Choudhary (1996). Interaction of sulphur with phosphorus and potassium in groundnut nutrition in calcareous soil. Indian J. of Plant Physiology. 1(1): 21-27.

Singh, M.V. (2001). Importance of sulfur in balanced fertilizer use in India. Fertilizer News. 46: 55-58.