Search for invisible dark photon in γe scattering at future lepton colliders

S. C. İnan1,a, A. V. Kisselev2,b

1 Department of Physics, Sivas Cumhuriyet University, 58140 Sivas, Turkey
2 Division of Theoretical Physics, A.A. Logunov Institute for High Energy Physics, NRC “Kurchatov Institute”, Protvino 142281, Russia

Abstract For the first time, the production of a massive dark photon (DP) in the γe^- scattering at the future lepton colliders ILC, CLIC, and CEPC is examined. The invisible decay mode of the DP is addressed. We have studied both the unpolarized scattering and the collision of the Compton backscattered photons with the polarized electron. The missing energy distributions are shown. We have considered the wide range 1–1000 GeV of the DP mass $m_{A'}$. The excluded regions at the 95% CL in the plane (ε, $m_{A'}$), where ε is the kinetic mixing parameter, are obtained. In particular, in the low mass region, 1–10 GeV our bounds for the 90 GeV CEPC are several times stronger than experimental limits obtained by the BaBar collaboration. For the polarized scattering, the excluded bounds for all three colliders are approximately 20% stronger as compared with the unpolarized case.

1 Introduction

One of the main goals of the present and proposed collider experiments is to search for dark matter (DM) particles. The DM makes up approximately 85% of the total mass in the Universe. Its existence is firmly confirmed by gravitational experiments [1,2], but composition and nature are still an open question. We consider a DM scenario in which no DM fields are charged under the SM gauge group, and the lightest stable DM particles, χ, can only interact with SM through the exchange of a vector mediator, dark photon (DP) (also known as hidden or heavy photon) [3–12]. It is usually denoted as A'. In its turn, the DP kinetically mixes with the SM $U(1)'$ hypercharge gauge field at the renormalizable level (kinematic-mixing portal) [7]. Such mixing can be generated by loops of massive particles charged under both $U(1)'$ and secluded $U(1)'$ symmetries. That kinetic-mixing portal model may be extended to 5D by adding one flat ED [13]. The existence of a new light dark sector can be also connected to a generation of neutrino masses [14]. An electroweak gauge extension of the SM by adding an extra $U(1)'$, with mixing with the standard $U(1)$ can also result in a new boson [15–17]. For recent reviews on the DP, see, for instance, [18–25]. In particular, astrophysical constraints on the DP parameters can be found in [26–34], while bounds from $(g-2)_\mu,e$ are presented in [35,36].

The main mechanisms of the DP production are meson decays ($\pi^0, \eta \rightarrow A'\gamma$) [37], bremsstrahlung ($eZ \rightarrow eZA'$ and $pZ \rightarrow pZA'$) [38,39], Drell-Yan ($q\bar{q} \rightarrow A'$), and annihilation ($e^+e^- \rightarrow A'\gamma$). The process of pair annihilation into a dark and an ordinary photon provided a striking benchmark (mono-photon plus missing energy) for the DP search at the LEP [40–43]. A probing new physics in final states containing a photon and missing transverse momentum in proton-proton collisions was presented by the ATLAS and CMS Collaborations [44–47]. For the most recent results on the DPs from the LHC, see [48–51]. The ATLAS and CMS search sensitivities for DPs at the high luminosity LHC can be found in [52,53]. A DP phenomenology at the LHC and HL-LHC was studied in [54–57], and searches of the DPs at the LHeC and FCC-he colliders were discussed in [58].

A probing new light gauge boson similar to the photon in e^+e^- collisions is of particular interest [59–72]. The searches for the DP at e^+e^- colliders [73–78] (see also review papers [18–25]) have looked for its decays to the $e^+e^-, \mu^+\mu^-$ and $\pi^+\pi^-$ final states, as well as for invisible decays of A'. The DP production in the Compton-like $e\gamma \rightarrow A'\gamma e$ process is studied in [79,80]. The inverse process, $A'\gamma \rightarrow e\gamma e$, is recently considered in [81]. The gamma factory’s discovery potential through the low energy dark Compton scattering is analyzed in [82]. In [83] the $\gamma\gamma \rightarrow \gamma A'$ process for MeV scale collider is considered.

In the present paper we examine a novel DP production based on a high energy γe^- scattering at the lepton
colliders ILC [84, 85], CLIC [86, 87], and CEPC [88, 89], the \(\gamma e^- \rightarrow A' e^- \) process. Both unpolarized and polarized collisions are considered in the wide DP mass region 1–1000 GeV. We expect the DP to decay predominantly into invisible dark-sector particles. Let us underline that up to now the DP production at high energy lepton colliders was studied only for the \(e^+ e^- \) mode of these colliders [68–71].

2 Massive dark photon

As it was already mentioned above, the DP does not directly couple to SM fields. But there could be a small coupling to the electromagnetic current \(J_\gamma \) due to kinetic mixing between the SM hypercharge and the field strength tensor of the DP field. Consider the case when the dark sector is represented by just a single extra \(U(1)' \) gauge group. Let \(B_\mu, \tilde{A}_\mu' \) be the mediator fields of the SM \(U(1)' \) symmetry and dark \(U(1)' \) gauge group. The gauge Lagrangian can be taken in the following form

\[
\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu \nu} B^{\mu \nu} - \frac{1}{4} \tilde{F}_{\mu \nu} \tilde{F}^{\mu \nu} - \frac{\varepsilon}{2 c_W} \tilde{F}_{\mu \nu} B^{\mu \nu},
\]

where \(B_{\mu \nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \) and \(\tilde{F}_{\mu \nu} = \partial_\mu \tilde{A}_\nu - \partial_\nu \tilde{A}_\mu \) are the field strength tensors of \(U(1)' \) and \(U(1)' \), respectively, \(c_W \) is the cosine of the Weinberg angle \(\theta_W \), and \(\varepsilon \ll 1 \) is the kinetic mixing parameter. The kinetic mixing can be generated at the one-loop level by massive particles charged under both \(U(1)_Y \) and \(U(1)' \) symmetries. After diagonalization of the gauge fields \(W^3_\mu, B_\mu, \) and DP field \(\tilde{A}'_\mu \) [23],

\[
\begin{pmatrix}
W^3_\mu \\
B_\mu \\
\tilde{A}'_\mu
\end{pmatrix} =
\begin{pmatrix}
c_W & s_W & -s_W e \\
-s_W & c_W & -c_W e \\
t_W e & 0 & 1
\end{pmatrix}
\begin{pmatrix}
Z_\mu \\
A_\mu \\
\tilde{A}'_\mu
\end{pmatrix},
\]

where \(s_W \) and \(t_W \) are the sine and tangent of \(\theta_W \), we obtain the interaction Lagrangian up to \(O(\varepsilon^2) \)

\[
\mathcal{L}_{\text{int}} = e J_\mu A'^\mu - e e J_\mu A'^\mu + e e t_W J'_\mu Z_\mu + e e t'_W J'_\mu A'^\mu + \mathcal{L}_{A'X}.
\]

Here \(A'_\mu \), \(Z_\mu \) are the physical gauge fields, and \(A'^\mu \) is the physical field of the DP. \(J'_\mu \) and \(e' \) are the DM matter current and DP coupling to the dark-sector matter, respectively. In (3) we have added the last term which describes a \(A'X \) interaction, where \(X \) is a dark matter particle. The form of this interaction is left unspecified. As one can see in (3), the coupling of the massive DP the SM fermions is \(-e e \). The \(Z \) gauge boson acquires the coupling strength \(e e t_W \) to the dark sector current.

Thus, there are three unknown parameters: the DP mass, \(m_{A'} \), the mixing parameter, \(\varepsilon \), and the \(A' \rightarrow X \) branching. The latter is taken to be unity, if we assume that \(m_{A'} > 2m_X \). The dimensionless mixing parameter \(\varepsilon \) is a priori unknown and presumably lies in the \(10^{-12} - 10^{-2} \) region, depending on the DP mass [33, 39, 90–95] (see also Fig. 8.16 in [96], where sensitivities for the DP in the plane mixing parameter \(\varepsilon \) versus \(m_{A'} \) are also shown. The figure is taken from [24]).

3 Invisible dark photon production in Compton-like scattering

The production of the DP in the center-of-mass system of the \(\gamma e^- \) scattering,

\[\gamma + e^- \rightarrow A' + e^-, \]

is depicted in Fig. 2. As is known, linear \(e^+ e^- \) colliders can operate in \(\gamma e \) and \(\gamma \gamma \) modes [97–99]. The \(\gamma \gamma \) facilities at the future circular colliders are examined in [100–104]. In particular, a number of processes in \(\gamma e \) and \(\gamma \gamma \) collisions at the CEPC have been studied in [105]. At the lepton collider hard real photons may be generated by the laser Compton backscattering, when soft laser photons collide with electron beams. As a result, a large flux of photons is produced which carry a great amount of the parent electron energy. A \(\gamma e \) (\(\gamma \gamma \)) collider has a number of advantages over \(e^+ e^- \) collider. Among them are (i) Higgs can be s-channel produced; (ii) higher cross sections for charged particles; (iii) higher mass reach in some channels; (iv) pure QED interaction (in \(e^+ e^- \) a Z boson exchange is present); (v) higher polarization of initial states. The \(\gamma e \) and \(\gamma \gamma \) modes were considered for a number of processes at the future lepton colliders [106–117],
but the DP production in γe or γγ collisions have not yet been studied at the ILC, CLIC, or CEPC.

Let E_0 be the energy of the initial laser photon beam, E_e be the energy of the initial electron beam, while $E_γ$ be the energy of the Compton backscattered (CB) photon. The differential cross section for the unpolarized DP production accompanied by electron at the lepton collider operating in the γe mode is defined as

$$\frac{dσ}{d\cos θ} = \int_{x_{min}}^{x_{max}} dx f_{γ/e}(x) \frac{dˆσ}{d\cos θ}.$$ \hspace{1cm} (5)

Here $f_{γ/e}(x)$ is the distribution of the CB photon in the variable $x = E_γ/E_e$,

$$x_{min} = \frac{p^γ_⊥}{E_e^e}, \quad x_{max} = \frac{1}{1 + ζ}, \quad ζ = \frac{4E_0E_e}{m^2},$$ \hspace{1cm} (6)

$p_⊥$ is the transverse momentum of the outgoing particles, m is the electron mass, and $θ$ represents the scattering angle of the outgoing DP (see Fig. 2). The laser beam energy E_0 is chosen to maximize $E_γ$. It is achieved, if $ζ = 4.8$, and we get $x_{max} = 0.83$, see Eq. (6).

The spectrum of the CB photons in formula (5) is defined as follows [97]

$$f_{γ/e}(x) = \frac{1}{g(ζ)} \left[1 - x + \frac{1}{1 - x} - \frac{4x}{ζ(1 - x)} + \frac{4x^2}{ζ^2(1 - x)^2} \right],$$ \hspace{1cm} (7)

where

$$g(ζ) = \left(1 - \frac{4}{ζ} - \frac{8}{ζ^2} \right) \ln (ζ + 1) + \frac{1}{2} + \frac{8}{ζ} - \frac{1}{2(ζ + 1)^2}.$$ \hspace{1cm} (8)

The differential cross section for the process $γe^- → A'e^-$ in the center-of-mass system of the colliding particles is defined as

$$\frac{dˆσ}{d\cos θ} = \frac{1}{32πx} \frac{\sqrt{(δ + m^2_A - m^2)^2 - 4δm^2_A}}{δ - m^2} × |F(δ, \cos θ)|^2,$$ \hspace{1cm} (9)

where $\sqrt{δ} = \sqrt{xx}$ is the center-of-mass energy of the backscattered photon and electron, $δ \geq (m_A + m)^2$. A matrix element of the process (4) is a sum of two diagrams in Fig. 3, in which the $A'e^-e^+$ coupling constant is equal to $-ee$. An explicit expression for the square matrix element $|F|^2$ is given in Appendix A.

The main background comes from the SM process

$$γe^- → e^-ν\bar{ν},$$ \hspace{1cm} (10)

see the diagrams in Figs. 4 and 5. In detector it looks like an event with an isolated electron and missing transverse energy. We apply the cut on the transverse momenta of the final electron, $p_⊥ > 10$ GeV, and its rapidity, $|η| < 2.5$. In order to reduce the SM background, we also impose the cut on an invisible invariant mass, $|m_A' - m_{invis}| < 5$ GeV.
Fig. 5 The ν-channel diagrams for the SM process $\gamma e^- \rightarrow e^- + E$.

In numerical calculations, especially in background calculations, CalcHEP program was also used [118]. We have used the following statistical significance (SS) formula [119],

$$SS = \sqrt{2(S + B) \ln(1 + S/B) - S},$$

where S and B are the numbers of the signal and background events, respectively. Note that $SS \simeq S/\sqrt{B}$ for $S \ll B$.

In Figs. 6, 7 and 8 we present differential cross sections of the $\gamma e^- \rightarrow e^- + E$ scattering as functions of the missing energy for a fixed value of the mixing parameter ε. The results for the colliders CEPC, ILC, and CLIC are given, for the DP masses $m_{A'} = 50$ GeV, 100 GeV, and 200 GeV, respectively. In all figures, red (black) curves correspond to the cross sections with (without) account of the dark photon.
contributions. It turns out that DP is the dominant effect for high missing energy values. We have also made calculations for different values of $m_{A'}$. Our calculations show that deviations of the cross sections from the SM predictions become smaller as the DP mass $m_{A'}$ grows.

The excluded bounds for the massive DP going to invisible final states are presented in Figs. 9 and 10 in the plane the kinetic mixing parameter ε versus DP mass $m_{A'}$. In Fig. 9 the results for the unpolarized $\gamma e^- \rightarrow A' e^-$ collision are given for the CEPC (left panel), ILC (middle panel), and CLIC (right panel). The strongest bound on ε is achieved for the 90 GeV CEPC. In the region $m_{A'} = 1$–10 GeV it is 2–4 orders of magnitude stronger than the experimental bounds obtained by the BaBar collaboration shown in Fig. 1.
Fig. 9 The excluded bounds at the 95% CL on the dark photon mass $m_{A'}$ and kinetic mixing parameter ε for the invisible dark photon production in the *unpolarized* $\gamma e^- \rightarrow A' e^-$ collision.

The constraints for the ILC collider with the energy of 160 GeV and 240 GeV are comparable with the BaBar constraints in this mass region. The sensitivity decreases as $m_{A'}$ grows.

The results for the polarized case are shown in Fig. 10. The polarized electron sources of the future linear colliders have been discussed in the current ILC [85], CLIC [86], and CEPC [88] designs. We consider the *unpolarized CB photons* and $P(e^-) = 80\%$ polarization of the initial electron beam for all three colliders. By analogy with the ILC project, we assume that for the polarized γe^- collision, the CEPC integrated luminosity is 50% less than the integrated luminosity for the unpolarized γe^- scattering. One can see that the obtained excluded bounds are on average 20% better compared to the unpolarized bounds (Fig. 9). For the CLIC, a 10% improve-
ment takes place only for the energy $\sqrt{s} = 380$ GeV. As for the electron beam polarization of $P(e^-) = -80\%$, our calculations show that it does not offer any advantage over the unpolarized case. The reason is that the SM background gets larger for $P(e^-) = -80\%$ with respect to the unpolarized collision, while the signal remains almost the same.

4 Conclusions

In the present paper, we have studied the production of the massive dark photon (DP) in the $\gamma e^- \rightarrow A'e^-$ scattering at the future lepton colliders ILC, CLIC, and CEPC, when the DP decays predominantly into invisible dark matter particles. The real photons are generated by the laser Compton backscattering when the soft laser photons collide with the electron beams. Both the unpolarized and polarized collisions are studied. For the polarized $\gamma e^- \rightarrow A'e^-$ process we have assumed that the incoming CB photon is unpolarized, while the polarization of the electron beam is taken to be 80% for all three colliders. The wide region 1–1000 GeV of the DP mass $m_{A'}$ is considered. The missing energy distributions for signal and background are presented. We have derived the excluded regions at the 95% CL in the plane ($\varepsilon, m_{A'})$, where ε is the kinetic mixing parameter. Our excluded bounds for the polarized collisions at the ILC and CEPC are approximately 20% stronger compared to the unpolarized excluded bounds. In particular, in the low mass region 1–10 GeV our excluded bounds for the 90 GeV CEPC are in average 2–4 orders of magnitude stronger than the experimental bounds obtained by the BaBar collaboration. The CEPC constraints with energies of 160 GeV and 240 GeV are comparable with the BaBar bounds in this mass range, and the ILC excluded bounds are close to them.

Note that up to now the production of the DP at future lepton colliders (both for the visible and invisible DP decays) was studied only for the e^+e^- mode of these colliders.

As was already mentioned in Introduction, the DP production in the Compton-like $\gamma e \rightarrow A'e$ process was studied in the fixed target experiments [79,80,82]. However, these low energy experiments were dealing with low mass DPs ($m_{A'} < 100$ MeV), while we examine heavy DPs ($m_{A'} > 1$ GeV).

Our method can be also applied to dark axionlike pseudoscalars (scalars). Consider the coupling of a pseudoscalar ALP α to a electron field ψ. It is given by the Lagrangian (see, for instance, [120])

$$\mathcal{L} = g_{a\gamma\psi\psi} \partial_{\mu}a \bar{\psi} \gamma^{\mu} \gamma^5 \psi.$$ \hspace{1cm} (12)

Then the amplitude of the process $\gamma e^- \rightarrow ae^-$ will be proportional to the electron mass m_e. So, we expect that the pseudoscalar cross section will be suppressed with respect to the dark photon cross section. Nevertheless, we consider studying axionlike (pseudo)scalars as a future direction.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We give predictions for future colliders.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP³. SCOAP³ supports the goals of the International Year of Basic Sciences for Sustainable Development.

Appendix A

The matrix element of the process (4) is given by the sum of s- and u-channel diagrams presented in Fig. 3. Correspondingly, we get

$$|F(s, \cos \theta)|^2 = (\varepsilon e^2)^2 \left[|F_{s}|^2 + |F_{u}|^2 + (F_{s} F_{u}^* + F_{u}^* F_{s}) \right],$$ \hspace{1cm} (A.1)

where

$$|F_{s}|^2 = \frac{2}{(s - m^2)^2} \left[-su + m^2(3s + u + 2m_{A'}^2) + m^4 \right],$$

$$|F_{u}|^2 = \frac{2}{(u - m^2)^2} \left[-su + m^2(3u + s + 2m_{A'}^2) + m^4 \right],$$

$$F_{s} F_{u}^* = F_{u}^* F_{s} = \frac{2}{(s - m^2)(u - m^2)} \times \left[m_{A'}^2(s + u) - m_{A'}^4 + m^2(s + u - 2m_{A'}^2) + 2m^4 \right].$$ \hspace{1cm} (A.2)

The Mandelstam variable u is equal to

$$u = m_{A'}^2 + m^2 - \frac{1}{2s} \left[(s + m^2)(s + m_{A'}^2 - m^2) + (s - m^2) \sqrt{(s + m_{A'}^2 - m^2)^2 - 4s m_{A'}^2} \cos \theta \right],$$ \hspace{1cm} (A.3)

where θ is a scattering angle of the DP in the center-of-mass frame of the colliding particles (see Fig. 2). For $m_{A'} = 0$, $\varepsilon = 1$, the above formulas coincide with well-known formulas for the Compton scattering [121].
References

1. V. Trimble, Existence and nature of dark matter in the Universe. Annu. Rev. Astron. Astrophys. 25, 425 (1987)
2. G. Bertone, D. Hooper, History of dark matter. Rev. Mod. Phys. 90, 045002 (2018). arXiv:1605.04909
3. P. Fayet, Effects of the spin 1 partner of the goldstino (gravitino) on neutral current phenomenology. Phys. Lett. B 95, 285 (1980)
4. P. Fayet, On the search for a new spin 1 boson. Nucl. Phys. B 187, 184 (1981)
5. L.B. Okun, Limits of electrodynamics: paraphotons? Sov. Phys. JETP 56, 502 (1982) (Zh. Eksp. Teor. Fiz. 83, 892 (1982))
6. P. Galison, A. Manohar, Two Z’s or not two Z’s? Phys. Lett. B 136, 279 (1984)
7. B. Holdom, Two U(1)’s and e charge shifts. Phys. Lett. B 166, 196 (1986)
8. B. Holdom, Searching for e charges and a new U(1). Phys. Lett. B 178, 6 (1986)
9. K.R. Dienes, C.F. Kolda, I. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy. Nucl. Phys. B 492, 104 (1997).
10. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A theory of dark matter. Phys. Rev. D 79, 015014 (2009).
11. M. Pospelov, Secluded WIMP dark matter. Phys. Rev. D 80, 054030 (2009). arXiv:0906.1317
12. B. Holdom, Two Z’s or not two Z’s? Phys. Lett. B 178, 6 (1986)
13. D. Hooper, N. Weiner, W. Xue, Dark forces and light dark matter. Phys. Rev. D 80, 056009 (2012). arXiv:1206.2929
14. E. Bertuzzo, S. Jana, P.A. Machado, R.Z. Funchal, Neutrino masses and mixings dynamically generated by a light dark sector. Phys. Lett. B 791, 210 (2019). arXiv:1808.02500
15. F. Del Aguila, The physics of Z’ bosons. Acta Phys. Pol. B 25, 1317 (1994). arXiv:hep-ph/9604323
16. K.S. Babu, C.F. Kolda, J. March-Russell, leptophobic U(1)’s and the R0-Re crisis. Phys. Rev. D 54, 4635 (1996).
17. T.G. Rizzo, Gauge kinetic mixing and leptophobic Z’ in e6 and SO(10). Phys. Rev. D 59, 015020 (1998)
18. M. Raggi, V. Kozhuharov, Results and perspectives in dark photon physics. Riv. Nuovo Cim. 38, 449 (2015)
19. F. Curciarello, Review on dark photon. EPJ Web Conf. 118, 01008 (2016)
20. M. Battaglieri et al., US cosmic visions: new ideas in dark matter. Phys. Lett. B 791, 210 (2019). arXiv:1808.02500
21. J. Beacham et al., Physics beyond colliders at CERN: beyond the Standard Model working group report. J. Phys. G Nucl. Part. Phys. 47, 010501 (2020). arXiv:1901.09966
22. M. Fabbrichesi, E. Gabrielli, G. Lanfranchi, The physics of the dark photon: a primer, SpringerBriefs in Physics (2020).
23. A. Filippi, M. De Napol, Searching in the dark: the hunt for the dark photon. Rev. Phys. 5, 100042 (2020). arXiv:2006.04640
24. M. Graham, C. Hearty, M. Williams, Searches for dark photons at accelerators. Annu. Rev. Nucl. Part. Sci. 71, 37 (2021)
25. E.D. Carlson, Limits on a new U(1) coupling. Nucl. Phys. B 286, 378 (1987)
26. D.A. Dobrescu, Massless gauge bosons other than the photon. Phys. Rev. Lett. 94, 151802 (2005). arXiv:hep-ph/0411004
27. M. Pospelov, A. Ritz, Astrophysical signatures of secluded dark matter. Phys. Lett. B 671, 391 (2009). arXiv:0810.1502
28. H.K. Dreiner, J.-F. Fortin, C. Hanhart, L. Ubaldi, Supernova constraints on MeV dark sectors from e⁺e⁻ annihilations. Phys. Rev. D 89, 105015 (2014). arXiv:1310.3826
29. K.-Y. Choia, K. Kadota, I. Park, Constraining dark photon model with dark matter from CBM spectral distortions. Phys. Lett. B 771, 162 (2017). arXiv:1701.01221
30. M. Dutra et al., MeV dark matter complementarity and the dark photon portal. JCAP 03, 037 (2018). arXiv:1801.05447
31. J.H. Chang, R. Essig, S.D. McDermott, Revisiting Supernova 1987A constraints on dark photons. JHEP 01, 107 (2017). arXiv:1611.03864
32. J.H. Chang, R. Essiga, S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. JHEP 09, 051 (2018). arXiv:1803.00993
33. X. Bi et al., Axion and dark photon limits from Crab Nebula high-energy gamma rays. Phys. Rev. D 103, 043018 (2021). arXiv:2002.01796
34. G.W. Bennett et al., (Muon g-2 Collaboration), Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035
35. M. Pospelov, Secluded U(1) below the weak scale. Phys. Rev. D 80, 095002 (2009). arXiv:0811.1030
36. P. Ilten, J. Thaler, M. Williams, W. Xue, Dark photons from charm mesons at LHCb. Phys. Rev. D 92, 115017 (2015). arXiv:1509.06765
37. S. Ginnenko, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, The exact tree-level calculation of the dark photon production in high-energy electron scattering at the CERN SPS. Phys. Lett. B 782, 406 (2018). arXiv:1712.05706
38. J.D. Bjorken, R. Essig, P. Schuster, N. Toro, New fixed-target experiments to search for dark gauge forces. Phys. Rev. D 80, 075018 (2009). arXiv:0906.0580
39. G. Abbiendi et al., (OPAL Collaboration), Search for anomalous photonic events with missing energy in e⁺e⁻ collisions at √s = 130 GeV, 136 GeV and 183 GeV. Eur. Phys. J. C 8, 23 (1999). arXiv:hep-ex/9810021
40. M. Acciarri et al., (L3 Collaboration), Single and multiphoton events with missing energy in e⁺e⁻ collisions at √s = 189 GeV. Phys. Lett. B 470, 268 (1999). arXiv:hep-ex/9910009
41. A. Heister et al., (ALEPH Collaboration), Single photon and multiphoton production in e⁺e⁻ collisions at √s up to 209 GeV. Eur. Phys. J. C 28, 1 (2003)
42. J. Abdallah et al., (DELPHI Collaboration), Photon events with missing energy in e⁺e⁻ collisions at √s = 130 to 209 GeV. Eur. Phys. J. C 38, 395 (2005). arXiv:hep-ex/0406019
43. G. Aad et al., (ATLAS Collaboration), Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at √s = 8 TeV with the ATLAS detector. JHEP 11, 088 (2014). arXiv:1409.0746
44. M. Aaboud et al., (ATLAS Collaboration), Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector. JHEP 06, 059 (2016). arXiv:1604.01306
45. V. Khachatryan et al., (CMS Collaboration), A search for pair production of new light bosons decaying into muons. Phys. Lett. B 752, 146 (2016). arXiv:1506.04424
46. A.M. Sirunyan et al., (CMS Collaboration), Search for new physics in final states with a single photon and missing transverse momentum in proton-proton collisions at √s = 13 TeV. JHEP 02, 074 (2019). arXiv:1810.01996
47. G. Aad et al., (ATLAS Collaboration), Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector. Phys. Rev. D 103, 112006 (2021). arXiv:2102.10874
49. G. Aad et al. (ATLAS Collaboration), Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector. arXiv:2109.00925

50. A.M. Sirunyan et al., (CMS Collaboration), Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at \(\sqrt{s} = 13 \) TeV. Eur. Phys. J. C 81, 13 (2021). arXiv:2008.04735

51. A.M. Sirunyan et al., (CMS Collaboration), Search for dark photons in Higgs boson production via vector boson fusion in proton–proton collisions at \(\sqrt{s} = 13 \) TeV. JHEP 03, 011 (2021). arXiv:2009.14009

52. ATLAS Collaboration, Search prospects for dark-photons decaying to displaced collimated jets of muons at HL-LHC. ATL-PHYS-PUB-2019-002 (2019)

53. CMS Collaboration, Search sensitivity for dark photons decaying to displaced muons with CMS at the high-luminosity LHC. CMS-PAS-FTT-18-002 (2018)

54. D. Curtin, R. Essig, S. Goric, J. Shelton, Illuminating dark photons with high-energy colliders. JHEP 02, 157 (2015). arXiv:1412.0018

55. E. Gabrielli, M. Heikinheimo, B. Mele, R. Raidal, Dark photons and resonant monophoton signatures in Higgs boson decays at the LHC. Phys. Rev. D 90, 055032 (2014). arXiv:1405.5196

56. A. Berlin, F. Kling, Inelastic dark matter at the LHC lifetime frontier: ATLAS, CMS, LHCb, CODEX-b, FASER, and MATHUSLA. Phys. Rev. D 99, 015021 (2019). arXiv:1810.01879

57. M. Cobal et al., Z-boson decays into an invisible dark photon at the LHC, HL-LHC, and future lepton colliders. Phys. Rev. D 102, 035027 (2020). arXiv:2006.15945

58. M. D’Onofrio, O. Fischer, Z.S. Wang, Searching for dark photons at the LHeC and FCC-he. Phys. Rev. D 101, 015020 (2020). arXiv:1909.02312

59. P. Fayet, U-boson production in e⁺e⁻ annihilations, \(\Sigma \) and \(\Upsilon \) decays, and light dark matter. Phys. Rev. D 75, 115017 (2007). arXiv:hep-ph/0702176

60. R. Essig, P. Schuster, N. Toro, B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson \(A' \) decaying to e⁺e⁻. JHEP 02, 009 (2011). arXiv:1001.2557

61. L. Barze et al., Radiative events as a probe of dark forces at e⁺e⁻ colliders. Eur. Phys. J. C 71, 1680 (2011). arXiv:1007.4984

62. M. Karliner, M. Low, J.L. Rosner, L.-T. Wang, Radiative return to displaced collimated jets of muons at HL-LHC. ATL-PHYS-PUB-2019-002 (2019)

63. M. He, X.-G. He, C.-K. Huang, Dark photon search at a circular e⁺e⁻ collider. Int. J. Mod. Phys. A 32, 1750138 (2017). arXiv:1701.08614

64. B. Wojtsekhowski, M. Gabrielli, M. Heikinheimo, B. Mele, Dark-photon searches via ZH production at e⁺e⁻ colliders. Phys. Rev. D 96, 055012 (2017). arXiv:1703.00402

65. M. He, X.-G. He, C.-K. Huang, G. Li, Search for a heavy dark photon at future e⁺e⁻ colliders. JHEP 03, 139 (2018). arXiv:1712.09095

66. L. Marsicano et al., Dark photon production through positron annihilation in beam-dump experiments. Phys. Rev. D 98, 015031 (2018). arXiv:1802.03794

67. J. Jiang et al., Production and constraints for a massive dark photon at electron-positron colliders. Chin. Phys. C 44, 023105 (2020). arXiv:1910.07161

68. J.-J. Blaising, P. Roloff, A. Sailer, U. Schnoor, Physics performance for dark matter searches at \(\sqrt{s} = 3 \) TeV at CLIC using mono-photons and polarised beams. arXiv:2103.06006

69. J. Kalinowski, W. Kotlarski, P. Sopicki, A.F. Zarnecki, Simulating hard photon production with WHIZARD. Eur. Phys. J. C 80, 634 (2020). arXiv:2004.14486

70. J. Kalinowski, W. Kotlarski, M. Mekala, P. Sopicki, A.F. Zarnecki, Sensitivity of future e⁺e⁻ colliders to processes of dark matter production with light mediator exchange. Eur. Phys. J. C 81, 955 (2021). arXiv:2107.11194

71. J. Kalinowski, W. Kotlarski, M. Mekala, P. Sopicki, A.F. Zarnecki, Dark matter searches with mono-photon signature at future e⁺e⁻ colliders, Proceedings of the XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2021), Stony Brook University, New York, USA, 12-16 April 2021. arXiv:2107.12730

72. X. Chen, Z. Hu, Y. Wu, K. Yi, Search for dark photon and dark matter signatures around electron–positron colliders. Phys. Lett. B 814, 136076 (2021). arXiv:2001.04382

73. J.P. Lees et al., (BaBar Collaboration), Search for a dark photon in e⁺e⁻ collisions at BaBar. Phys. Rev. Lett. 113, 201801 (2014). arXiv:1406.2980

74. J.P. Lees et al., (BaBar Collaboration), Search for invisible decays of a dark photon produced in collisions at BaBar. Phys. Rev. Lett. 119, 131804 (2017). arXiv:1702.03327

75. A. Ablikim et al. (BESIII Collaboration), Dark photon search in the mass range between 1.5 and 3.4 GeV/c². Phys. Lett. B 774, 252 (2017). arXiv:1705.04265

76. A. Anastasi et al., (KLOE Collaboration), Limit on the production of a low-mass vector boson in e⁺e⁻ → Uγ, \(U \rightarrow e⁺e⁻ \), with the KLOE experiment. Phys. Lett. B 750, 663 (2015). arXiv:1509.00740

77. A. Anastasi et al., (KLOE-2 Collaboration), Combined limit on the production of a light gauge boson decaying into \(μ⁺μ⁻ \) and \(π⁺π⁻ \). Phys. Lett. B 784, 336 (2018). arXiv:1807.02691

78. E. KOU et al. (Belle II collaboration), The Belle II Physics Book, Phys. Prog. Theor. Exp. Phys. 2019, 123C01 (2019). arXiv:1808.10567 (Erratum, Prog. Theor. Exp. Phys. 2020, 029201 (2020))

79. S.S. Chakraborty, I. Jaeglé, Search for dark photon, axion-like particles, dark scalar, or light dark matter in Compton-like processes. arXiv:1903.06225

80. M. Smirnov et al., Dark light bosons in the JUNO-TAO neutrino detector. arXiv:2109.04276

81. Y. Hochberg, B. von Krosigk, E. Kuflik, T.C. Yu, The impact of dark Compton scattering on direct dark matter absorption searches. arXiv:2109.08168

82. S. Chakraborti et al., Gamma factory searches for extremely weakly-interacting particles. Phys. Rev. D 104, 055023 (2021). arXiv:2105.10289

83. X. WONG, Y. Huang, Dark photon production via \(e⁺e⁻ \rightarrow γ\gamma \rightarrow γA' \). Eur. Phys. J. C 81, 442 (2021). arXiv:2103.15079

84. T. Behnke et al., The International Linear Collider technical design report—volume 1: executive summary. arXiv:1306.6327

85. P. Bambade et al., The International Linear Collider: a global project. arXiv:1903.01629

86. H. Braun et al. (CLIC Study Team), CLIC 2008 parameters, CERN-OPEN-2008-021, CLIC-NOTE-764

87. M.J. Boland et al. (CLIC and CLICdp Collaborations), Updated baseline for a staged Compact Linear Collider, CERN-2016-004. arXiv:1608.07537

88. The CEPC Study Group, CEPC Conceptual Design Report: Volume 1—accelerator. arXiv:1809.00285

89. The CEPC Study Group, CEPC Conceptual Design Report: Volume 2—physics & detector. arXiv:1811.10545

90. N. Arkani-Hamed, N. Weiner, LHC signals for a superunified theory of dark matter. JHEP 12, 104 (2008). arXiv:0810.0714
