A guanosine-based 2-formylphenylborate ester hydrogel with high selectivity to K⁺ ions

Hongwei Qiao, †a Jiakun Bai, †b Sichun Zhang a and Chao Li, *b

a Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

†H. W. Qiao and J. K. Bai contributed equally to this work.

Contents

General procedure for G-2FPB-K⁺ hydrogel preparation...S2
Rheology Procedure..S2
Morphological Assay...S2
Powder X-ray Diffraction (PXRD) Assay...S2
Circular Dichroism (CD) Assay...S2
FTIR Spectroscopy Assay..S2
VT ¹H NMR and VT ¹¹B NMR Assay of Diluted G-2FPB-K⁺ Assembly Solution..S2
Procedure for Diffusion-Ordered Spectroscopy Measurements...S3
Fluorescence assay...S3
UV-Vis assay...S3

Fig. S1. The CD spectra of G-2FPB-M⁺ solution with various concentration...S4
Fig. S2. FTIR spectra of G-2FPB-Na⁺ and G-2FPB-K⁺..S4
Fig. S3. ¹H NMR spectra of G-2FPB-K⁺ hydrogel and 2-formylphenylboronic acid..S5
Fig. S4. DOSY spectrum of G-2FPB-K⁺ hydrogel...S5
Fig. S5. The contents of guanosine 2-formylphenylborate ester 3 in 50 mM G-2FPB-M⁺ at different temperature...........................S6
Fig. S6. UV-Vis spectra of the G-2FPB-K⁺ hydrogel with different concentration of berberine ...S6
Fig. S7. The fluorescence spectra of G-2FPB-Na⁺/BBR anti-ion interference assays...S7
Fig. S8. The ISE reports of the China-Japan Friendship Hospital...S7
General procedure for G-2FPB-K⁺ hydrogel preparation

283.0 mg of guanosine (1, 1.0 mmol, 1 equiv) and 150.0 mg of 2-formylphenylboronic acid (2, 1.0 mmol, 1 equiv) was added to a 50 mL round bottom flask. Then 56.0 mg of KOH solids (1.0 mmol, 1 equiv) and 20 mL of ultrapure water were added. The suspension was stirred and heated to 95 °C in an oil bath until all the substances were dissolved and the solution became clear. When the solution was cooled to room temperature, a transparent and stable supramolecular G-2FPB-K⁺ hydrogel (50 mM) was formed. The G-2FPB-M⁺ solution with other alkali metal ions (Li⁺, Na⁺, Rb⁺, and Cs⁺) were prepared similarly.

Rheology Procedure

Gels were prepared at 50 mM G-2FPB-K⁺, following the general gel procedure. All rheological data was collected using an AR2000ex stress-controlled rheometer from TA instruments. Rheological experiments were performed at 20 °C using parallel plate geometry (40 mm diameter) and a solvent trap to minimize sample drying during measurements. The gel samples were allowed to equilibrate on the plate for 10 min. Frequency sweeps were performed at 1% strain. Stress sweeps were performed at 10 rad/sec by ramping the stress from 0.5 to 1000 Pa.

Morphological Assay

Transmission electron microscopy (TEM) images were obtained on a JEM 1200EX, operating at accelerating voltages of 100 kV. Ten μL of a freshly prepared solution of G-2FPB-K⁺ assembly (5 mM or 10 mM) was cast onto carbon-coated copper grids (300 mesh) for 3 min. The sample was dried under an ambient temperature.

Atomic force microscopy (AFM) images were performed on freshly cleaved fluorophlogopite mica (1 cm × 1 cm). A total of 5 μL of the freshly prepared solution of the G-2FPB-K⁺ assembly (5 mM) was spincoated for 30 s, and the mica was briefly dried under a stream of N₂ (g). AFM imaging was performed with a Nanoscope IIIa (Digital Instruments) in tapping mode in air, using Si tips. The probes were commercially available silicon tips with a spring constant of 42 N m⁻¹.

Powder X-ray Diffraction (PXRD) Assay

A 50 mM G-2FPB-K⁺ hydrogel was prepared and lyophilized to form a white powder. X-ray powder diffraction measurements were performed with a Cu radiation source at 20 °C using a LabX PXRD-6000 with a LynxEye detector.

Circular Dichroism (CD) Assay

All experiments were performed with a Jasco J-815 spectropolarimeter. CD spectroscopy of various assemblies solution was measured with a 0.01 mm cell. Three scans were accumulated and averaged by the computer. All experiments were carried out at 25 °C. A hot G-2FPB-M⁺ solution with various concentration was added in cell. The samples were used directly to test when they cooled down to room temperature.

FTIR Spectroscopy Assay

FTIR spectra were recorded on a Nicolet FTIR spectrometer (Nicolet iS5, USA). A 50 mM G-2FPB-M⁺ system was lyophilized and mixed with dry potassium bromide (KBr). The spectra were recorded from 400 to 4000 cm⁻¹.

VT ¹H NMR and VT ¹¹B NMR Assay of Diluted G-2FPB-K⁺ Assembly Solution

All VT NMR spectra of G-2FPB-K⁺ hydrogel were recorded on a Bruker AV-400 nuclear magnetic resonance spectrooscope in D₂O and the temperature was controlled from 5 to 85°C. BF₃·(CH₂CO₂)₂ was used as an external standard for VT ¹¹B NMR and 2,2,3,3-(d₄)-3-(trimethylsilyl) propionic acid sodium salt (0.31 mM) was used as an
internal standard for VT 1H NMR. A total of 600 μL of the 50 mM G-2FPB-K$^+$ hydrogel containing an internal standard or external standard was added to the NMR sample tube as the sample of VT 1H NMR or VT 11B NMR.

Procedure for Diffusion-Ordered Spectroscopy Measurements

A 50 mM G-2FPB-Na$^+$ solution (1, 2, and NaOH 50 mM each) was prepared in D$_2$O according to the general preparation procedure. The warm gel (600 μL) was then transferred into a NMR tube, and the gel was allowed to cool overnight. Diffusion experiments were performed on a Bruker AVIII-600, using a Stimulated Echo Pulse Gradient sequence in FT mode. Experiments consisted of 32 points at 100 scans with a delay of 5 s, a gradient pulse length of 1.65 ms, and Δ value of 60.0 ms. The temperature was controlled at 25.0 °C, and the measurements were repeated at least 3 times.

Fluorescence assay

Fluorescence Spectra were recorded on HITACHI F-7000 Fluorescence spectrophotometer. Standard quartz cuvettes with a 1 cm light path were used for all fluorescent spectra measurements. All the fluorescent experiments were repeated three times and were carried out at 25 °C. Other parameter: excitation wavelength: 371 nm; emission wavelength: 523 nm; EX Slit: 5.0 nm; EM Slit: 5.0 nm; PMT Voltage: 400 V

UV-Vis assay

A 5 μL (or 10 μL) of solution of berberine hydrochloride (3.1 mM) was added in a 1 mL of G-2FPB-K$^+$ thermal solution (50 mM), and then cooled room temperature. UV–vis titration spectra were recorded on HITACHI UHS300 spectrophotometer. A path length cell of 0.01 mm was used and all experiments were performed at room temperature.

G-2FPB-Na$^+$/BBR anti-ion interference assay

A total of 2000 μL of the 100 mM G-2FPB-Na$^+$ PB buffer solution (pH=7.4) containing 3.1 mM berberine was added to the standard quartz cuvettes. 20 μL of the corresponding M$^{n+}$ solutions (20 mM, 200 mM or 2000 mM) were added to obtain a fluorescence spectra. Then 20 μL of 20 mM KCl solution was added to obtain another fluorescence spectra. See Figure S3 for details.

The detection assays of human blood serum samples

A total of 1800 μL of the 111 mM G-2FPB-Na$^+$ PB buffer solution (pH=7.4) containing 3.44 mM berberine was added to the standard quartz cuvettes. 200 μL of the corresponding blood serum samples were added to obtain a fluorescence spectra.
Fig. S1. The CD spectra of G-2FPB-M⁺ solution with various concentration. (A) Li⁺, (B) Na⁺, (C) Rb⁺, (D) Cs⁺. (guanosine 1.0 equiv, 2-formylphenylboronic acid 1.0 equiv, LiOH, NaOH, RbOH or CsOH 1.0 equiv)

Fig. S2. FTIR spectra of G-2FPB-Na⁺ (black line) and G-2FPB-K⁺ (red line).
Fig. S3. 1H NMR spectra of a 50 mM G-2FPB-K$^+$ hydrogel and 2-formylphenylboronic acid in KOH at 25 ºC.

Fig. S4. (A) DOSY spectrum of a 50 mM G-2FPB-K$^+$ hydrogel at 25 ºC. (B) The possible visible species in hydrogel. (C) The diffusion coefficients of various species.
Fig. S5. The contents of guanosine 2-formylphenylborate ester 3 in 50 mM G-2FPB-M⁺ (Li⁺, Na⁺, K⁺, Rb⁺, and Cs⁺) at different temperature.

Fig. S6. UV-Vis spectra of the G-2FPB-K⁺ hydrogel with different concentration of berberine at 25 °C.
Fig. S7. The fluorescence spectra of G-2FPB-Na\(^+\)/BBR anti-ion interference assays. (A) 100 equiv Li\(^+\); (B) 100 equiv Na\(^+\); (C) 1 equiv Rb\(^+\); (D) 100 equiv Cs\(^+\); (E) 10 equiv NH\(_4^+\); (F) 1 equiv Ca\(^{2+}\); (G) 10 equiv Mg\(^{2+}\); (H) 1 equiv Zn\(^{2+}\); (I) 1 equiv Cu\(^{2+}\); (J) 1 equiv Mn\(^{2+}\); (K) 1 equiv Fe\(^{3+}\).
item name	value	range
Cysc	1.08	0.50–1.03
CR	44.1	35–106
GLU	7.26	3.61–6.11
CO2	26.9	4.35
CL	97.7	90–110
IP	1.12	0.81–1.78
eGFR	116.4	ml/min/1.73m²

item name	value	range
Urea	3.16	2.78–7.85
UA	310	150–420
GA	17.4	11.0–16.0
Clq	197	150–233
Na	134	135–145
Ca	1.94	2.00–2.75
B2-MG	1.98	1.00–2.75

item name	value	range
ALB	26.1	35.0–55.0
Pre-A	30.71	200–200
TP	5.90	4.00–5.50
A/G	1.02	1.30–2.50
GGT	1.10	0–1.00
MAO	9.20	<12
ADA	9.20	<12
CHE	4855.84	150–1200
SOD	82.00	120–216
Urea	3.14	2.78–7.65
UA	106.0	50–200
GA	35.9	11.0–16.0
Clq	211	150–253
Na	134	135–145
Ca	1.90	2.00–2.75
B2-MG	3.41	1.00–1.78
eGFR	116.4	ml/min/1.73m²

item name	value	range
AST	13	0–42
ALP	4.27	0.00–7.00
Pre-A	30.71	200–200
TP	5.90	4.00–5.50
A/G	1.02	1.30–2.50
GGT	1.10	0–1.00
MAO	9.20	<12
ADA	9.20	<12
CHE	4855.84	150–1200
SOD	82.00	120–216
Urea	3.14	2.78–7.65
UA	106.0	50–200
GA	35.9	11.0–16.0
Clq	211	150–253
Na	134	135–145
Ca	1.90	2.00–2.75
B2-MG	3.41	1.00–1.78
eGFR	116.4	ml/min/1.73m²
Clinical Test Report

Serum

Item	Name	Value	Range
ALT	谷丙转氨酶	29 IU/L	0-40
TBIL	总胆红素	13.09 μmol/L	0-20
TP	总蛋白定量	62.6 g/L	50-80
A/G	白球比	1.25	0.8-2.0
GGT	谷丙转氨酶	17.0 IU/L	0-52
TBA	血清总胆汁酸	1.4 μmol/L	0-10
MAO	单胺氧化酶	7.5 IU/L	<12
ADA	凝血酶	113.84 IU/L	129-216
CHE	血清碱性磷酸酶	6.19 μmol/L	35-106
SOD	血清超氧化物歧化酶	2294.24 IU/L	5400-12000
CR	氯化物	4.38 mmol/L	3.5-5.5
GLU	葡萄糖	5.38 mmol/L	3.6-6.1
CL	钙	4.12 mmol/L	3.5-5.5
TP	胆红素	1.23 mmol/L	0.81-1.78

Emergency Department

Item	Name	Value	Range
AST	丙氨酸氨基转移酶	28 IU/L	0-40
DBIL	直接胆红素	8.71 μmol/L	0-20
ALB	白蛋白	26.1 g/L	40-55
Pre-Alb	前白蛋白	46.9 μg/mL	1500-4000
ALP	碱性磷酸酶	150 IU/L	40-150
GG	卵磷脂酰胆碱	0.1 μmol/L	<2.7
AFU	α-淀粉酶	27 IU/L	5-40
LAP	谷氨酸脱氢酶	57 IU/L	38-75
TPS	血清总蛋白	120 mg/dl	44-75
Urea	尿素	8.20 mmol/L	2.78-7.85
UA	尿酸	243 μmol/L	150-420
CO2	二氧化碳	22.07 mmol/L	21-35
Na	钠	139 mmol/L	155-154
Ca	钙	2.05 mmol/L	2.00-2.75
eGFR	算肾小球滤过率	96.41 ml/min/1	1.75
Fig. S8. The laboratory reports of the China-Japan Friendship Hospital using the ion selective electrode method to test the potassium concentration: (A) sample 1; (B) sample 2; (C) sample 3; (D) sample 4; (E) sample 5.