Characterization and luminescent properties of zinc–Schiff base complexes for organic white light emitting devices

Vandna Nishal, Devender Singh, Raman Kumar Saini, Vijeta Tanwar, Sonika Kadyan, Ritu Srivastava and Pratap Singh Kadyan

Cogent Chemistry (2015), 1: 1079291
Characterization and luminescent properties of zinc–Schiff base complexes for organic white light emitting devices

Vandna Nishal,1§, Devender Singh,1§, Raman Kumar Saini,1 Vijeta Tanwar,1, Sonika Kadyan,1 Ritu Srivastava2 and Pratap Singh Kadyan1*

Abstract: Zinc complexes with Schiff base ligands bis(salicylidene)ethylene-1,2-diamine (salen), bis(salicylidene)propylene-1,3-diamine (salpen), bis(salicylidene)butylene-1,4-diamine (salbutene), bis(salicylidene)hexylene-1,6-diamine (salhexene), bis(salicylidene)heptylene-1,7-diamine (salheptene) were synthesized and characterized. All these metal complexes exhibited high thermal stability. The photo-physical properties of zinc complexes were investigated by taking their UV–vis absorption and photoluminescent spectra. The complexes of Schiff bases with zinc gave blue luminescence (430–450 nm) under excitation of ultraviolet energy source which can be efficiently used for the generation of white light for display applications.

Subjects: Chemistry; Inorganic Chemistry; Materials Chemistry

Keywords: luminescence; characterization; zinc–Schiff base complexes; blue emission

1. Introduction

Organic light-emitting device (OLED) developed with Tris(8-hydroxyquinolinato)aluminum (Alq3) (Tang & VanSlyke, 1987) paved the path to search metal complexes to produce all colors in the visible spectrum for the optoelectronic devices. Organic compounds complexed with metals can easily be tuned to produce the desired emission through different substituents. Zinc complexes are important as light-emitting materials (Hamada et al., 1993; Kim, Kim, Shin, Kim, & Ha, 2001; Tao et al., 1997; Yu, Liu, Song, Wu, & Zhu, 2001) as well as exhibit electron transport ability, light-emitting efficiency, high thermal and redox stability and tunable electronic properties (Bhattacharjee, Das, Mondal, & Rao, 2010; Pucci et al., 2009), ternary complexes as electron transport and electroluminescent materials (Kumar et al., 2013).
Transition metal complexes with Schiff bases have been studied extensively because of their easy synthesis, high thermal stability, and use in many applications as analytical reagents (Cimernman, Galic, & Bosner, 1997). These also serve in oxygen storage devices (Chantarasiri, Tuntulani, Tongraung, Magee, & Wannatong, 2000), molecular architectures (Costamagna, Vargas, Lattorre, Alvrado, & Mena, 1992), OLED applications, lasers, transistors, and fluorescent sensors (Eltayeb, Teon, Adnan, Tech, & Fun, 2011; Garnovskii, Nivorozhkin, & Minkin, 1993; Kim, Kim, & Sohn, 2001; Yu et al., 2006, 2008). Substituted Schiff base complexes with zinc metal exhibit good photoluminescent (PL) and electroluminescent properties. Luminescence properties of zinc(II) complexes originate from organic ligand rather than LMCT because d shell of central ion is completely filled (Basak et al., 2007). Molecular structures, degree of conjugation, and substitutes of ligands have a large effect on PL characteristics of zinc–Schiff base complexes. Zinc complexes based on salicylidimino Schiff base ligands emit light in blue (Costamagna et al., 1992), green (Eltayeb et al., 2011), and red region (Luizzu, Oberhauser, & Pucci, 2010). These compounds show good color purity and there is a possibility to incorporate them in the list of electroluminescent complexes used for the fabrication of full colored OLEDs. Nonetheless, blue light-emitting zinc complexes are rare compared to green and yellow green light-emitting materials (Son et al., 2008; Wu, Lavigne, Tao, D’Iorio, & Wang, 2000).

White light emission can be obtained by using orange dye and blue light-emitting materials (Kumar et al., 2010). Also, blue light-emitting zinc complexes can be used as dopant materials for the production of white light; recently, Schiff base zinc complexes have been used for fabrication of white light emitting devices (Dumur et al., 2014). Zinc complexes with bissalicylidenehexylenediamine (Hamada et al., 1993), N,N-bis salicylideneethylenediamine (Vashchenko et al., 2010), and bis(salicylidene)propylene-1,3-diamine (Nishal et al., 2014) are also reported as electroluminescent emissive materials.

Here in this communication, we present a series of luminescent zinc–Schiff base complexes using organic ligands prepared with different spacer diamines and salicylaldehyde. The compounds were characterized with various analysis techniques. The luminescent properties of metal complexes were analyzed by UV–visible absorption and PL emission spectroscopy.

2. Experimental

2.1. Materials
Salicylaldehyde, ethylene-1,2-diamine, propylene-1,3-diamine, butylene-1,4-diamine, hexylene-1,6-diamine, heptylene-1,7-diamine were purchased from Fluka. High-purity reagent-grade chemicals and solvents were used without further purification.

2.2. Instrumentations
The elemental analysis of C, H, N were performed on Elemental Analyzer Perkin-Elmer 2400 CHN. IR spectra were recorded with FTIR Model Alpha Bruker of Germany. 1H NMR spectra were run on FT NMR Spectrometer model Avance-II (Bruker). Thermal gravimetric analyses (TGA) were carried on the Perkin Elmer STA-6000 instrument. The excitation and emission spectra of complexes were taken in methanol solvent using Horiba Jobin YVON spectrophotometer and Fluolog Model FL 3-11 spectrometers, respectively.

2.3. Synthesis of the Schiff bases
Schiff bases were synthesized according to general procedure taking a methanolic solution of salicylaldehyde and diamines (ethylene-1,2-diamine/propylene-1,3-diamine/butylene-1,4-diamine/hexylene-1,6-diamine/heptylene-1,7-diamine) in 2:1 M proportion. The mixture was refluxed at 60°C for 2 h. After completion of reaction, the off-white precipitates formed were filtered and washed with deionized water. The compound was recrystallized with methanol and dried in oven. The yield of products was ~80–90%.
2.4. Synthesis of Schiff base–zinc complexes

The metal complex was prepared by reaction of Schiff base ligand with zinc acetate (ligand and metal) in 1:1 M ratio in methanol. The Schiff base ligand salen (1 mM)/salpen (1 mM)/salbutene (1 mM)/salhexene (1 mM)/salheptene (1 mM) was separately taken in 50 ml methanol and heated on a magnetic stirrer at 60°C for 1 h. The aqueous solution of zinc acetate (1 mM) was added dropwise to the flask with magnetic stirring. The mixture was kept at 60°C temp for 2 h on magnetic stirrer. After completion of the reaction, cream-colored precipitate of the respective complex separated from the reaction mixture which were filtered, washed with deionized water, ethanol and dried at 100°C (Scheme 1).

All the zinc complexes were sparingly soluble in methanol and showed good solubility in DMSO.

3. Results and discussion

The Schiff base complexes [Zn(salen)], [Zn(salpen)] and [Zn(salhexene)] have been previously reported. Here we synthesized above zinc complexes and related new Schiff base complexes of zinc [Zn(salbutene) and Zn(salheptene)] using different spacers. Complexes were further characterized and confirmed by various spectroscopic techniques (Table 1).

3.1. Thermal characteristics

The thermal properties of metal complexes were studied by TGA to investigate thermal stability of prepared zinc complexes of Schiff bases. The TGA of zinc metal complexes was taken over a temperature range from 25 to 600°C at a scan rate of 10°C/min in nitrogen atmosphere. All the prepared complexes of zinc exhibited high thermal stability as shown in Figure 1. The onset temperature of weight loss was greater than 320°C for all zinc complexes except [Zn(salbutene)]. Above 380°C, all

S. No.	Compound	ν(O–H)	ν(C–H)	ν(C=N)	ν(C–O)
1	(salen)	3050	2955	1678	1219
2	(salpen)	3051	2944	1645	1209
3	(salbutene)	3051	2944	1672	1210
4	(salhexene)	3066	2964	1633	1214
5	(salheptene)	3070	2984	1646	1212
6	[Zn(salen)]	–	2944	1620	1197
7	[Zn(salpen)]	–	2938	1622	1195
8	[Zn(salbutene)]	–	2912	1622	1186
9	[Zn(salhexene)]	–	2930	1624	1186
10	[Zn(salheptene)]	–	2931	1625	1185
Figure 1. Thermogravimetric curves of zinc complexes.

Figure 2. UV–visible absorption spectra of zinc complexes with Schiff bases at 10^{-4} M concentration in DMSO solvent.

Table 2. Photo-physical data of zinc–Schiff base complexes at 10^{-4} M concentration

S. No.	Compound	UV–vis (nm)	PL at excitation wavelength of $(n \rightarrow \pi^*)$	CIE	Relative	TGA (°C)		
		$\pi \rightarrow \pi^*$	$n \rightarrow \pi^*$	λ_{max}	X	Y	PL:QE	
1	[Zn(salen)]	262	352	447	0.15	0.11	1.05	350
2	[Zn(salpen)]	263	349	440	0.15	0.11	1.17	380
3	[Zn(salbutene)]	269	364	436	0.15	0.07	1.055	280
4	[Zn(salhexene)]	273	384	433	0.15	0.09	1.077	370
5	[Zn(salheptene)]	272	363	430	0.15	0.13	1.268	380
the complexes lost their weight and decomposed. These studies showed that all metal complexes exhibited good thermal stability and it is expected that no decomposition will take place during their other analysis and applications.

Figure 3. PL spectra (Taken at 10^{-4} M concentration in DMSO solvent) and photographs of zinc–Schiff base complexes under UV radiation (365 nm).

Figure 4. CIE chromaticity diagram of prepared zinc complexes of Schiff bases.
3.2. UV–visible absorption and luminescent characterization

The UV–visible absorption bands of zinc complexes matched closely with the protonated ligand precursor. The electronic absorption spectra of zinc complexes showed metal perturbed ligand centred $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ electronic transitions (Aazam, Husseiny, & Al-Amri, 2012). Upon excitation at absorption wavelengths, the complexes fluoresced in visible region of the spectrum. The ultraviolet
absorption and PL emission spectra of synthesized metal complexes were recorded in DMSO solvent using \(10^{-4}\) molar concentration of solute. Absorption spectra of zinc complexes are shown as curves A, B, C, D, and E in Figure 2. The detail of absorption bands due to various ligand-centered electronic transitions are mentioned in Table 2. The molar absorptivity of zinc complexes [Zn(salen)], [Zn(salpen)], [Zn(salbutene)], [Zn(salhexene)], and [Zn(salheptene)] were 11690, 8452, 12080, 2397, 592 \(\text{M}^{-1}\ \text{cm}^{-1}\), respectively, at absorption wavelength.

On excitation at these wavelengths, these materials fluoresced at 447, 440, 436, 433, and 430 nm, respectively, in visible region as shown in Figure 3. The complexes showed good luminescence in solid state as well as solution state. Since there are no d–d transitions in zinc complexes, hence the emission of light is assigned as relaxation from higher energy level to lower energy level due to intra-ligand transitions.

Images showing emission of light in solid state under UV light are also shown in Figure 3 and all photo-physical properties are presented in Table 2. Here we are using different bridging groups, i.e. diamines for Schiff base synthesis. The PL properties of the complexes change with change in these bridging groups. The increase in number of alkyl groups in bridging diamines result in slight blue shift in emission wavelengths of metal complexes. This shift may be due to slight decrease in conjugation and increase in band gap between excited and ground states of complexes.

The color coordinates for the zinc complexes were calculated from emission spectra. The value of \(x\) and \(y\) coordinates are shown in Table 2 and also in Figure 4.

The relative PL quantum yield of metal complexes was calculated based on Alq\(_3\) as standard and using the following equation:

\[
\Phi_f(x) = \frac{A_x}{A_s} \left(\frac{F_x}{F_s} \right) \left(\frac{n_x}{n_s} \right)^2 \Phi_f(S)
\]

where \(\Phi_f\) is the fluorescence quantum yield, \(A\) is the absorbance at the excitation wavelength, \(F\) is the area under emission curve, and \(n\) is the refractive index of the solvents used. Subscripts s and x refer to the standard and sample, respectively (Forgues & Lavabre, 1999).

The results are summarized in Table 2, the PL quantum yield of [Zn(salen)] and [Zn(salheptene)] complexes was found to be higher than other prepared zinc complexes of this series and with Alq\(_3\) as suggested by other reports (Ghedini, Deda, Aiello, & Grisolia, 2003). The optical band gap energy was calculated from absorption spectrum (Singh et al., 2011). Figure 5(a)–(c) shows square of absorption vs. energy for the synthesized zinc complexes. The optical band gap energy was found to be 3.14, 3.15, 3.04, 2.8, and 3.08 eV for [Zn(salen)], [Zn(salpen)], [Zn(salbutene)], [Zn(salhexene)], and [Zn(salheptene)], respectively.

The results showed that the zinc–Schiff base complexes could be suitably used as blue light-emitting materials for generating white light for various optoelectronic applications (Kumar et al., 2010).

4. Conclusions

A series of Schiff base ligands of salicylaldehyde with different diamines were synthesized and their complexes with zinc were prepared. These synthesized complexes emitted blue light (430–450 nm) under UV radiations. On increasing the number of alkyl groups in bridging chain, there was slight decrease in conjugation chain and blue shift in emission wavelengths was observed. This was done to tune the color for full color displays and to use these metal complexes as emissive materials in OLEDs. The results show that the metal complexes can be used as good blue light-emitting source which can be suitably used for generation of white light for optoelectronic display device applications.
Funding
The authors gratefully recognize the financial support from the University Grant Commission (UGC) [grant number MRP-40-51/2011(SR)]. JRF to Vandana Nishal by Council of Scientific and Industrial Research (CSIR) New Delhi, India.

Author details
Vandana Nishal1
E-mail: nishalvandna@gmail.com
Devender Singh1
E-mail: devyajkhor@gmail.com
Raman Kumar Saini1
E-mail: ramansaini07@gmail.com
Vijeta Tanwar1
E-mail: vijeta.tanwar30@gmail.com
Sonika Kadyan1
E-mail: sonikasangwan27@gmail.com
Ritu Srivastava2
E-mail: ritu@mail.nplindia.org
Pratap Singh Kadyan1
E-mail: pskadyan@rediffmail.com

1 Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
2 OLED Lab, National Physical Laboratory, Center for Organic Electronics, New Delhi 110012, India.

References

Aazam, E. S., Husseiny, A. F. E. L., & Al-Amri, H. M. (2012). Synthesis and photoluminescent properties of a Schiff-base ligand and its mononuclear Zn(II), Cu(II), Ni(II) and Pd(II) metal complexes. Arabian Journal of Chemistry, 5, 45–53. doi:10.1016/j.arabjc.2010.07.022

Basok, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G., & Rodriguez, M. T. G. (2007). Three new pseudoohalide bridged dinuclear Zn(II) Schiff base complexes: Synthesis, crystal structures and fluorescence studies. Polyhedron, 26, 5104–5112. doi:10.1016/j.poly.2007.07.025

Bhattacharjee, C. R., Das, G., Mondal, P., & Rao, N. V. S. (2010). Novel photoluminescent hemi-disiloxane liquid crystalline Zn(II) complexes of [N₂O₂]₄ donor 4-alkoxy substituted salicylidine Schiff base with aromatic spacer. Polyhedron, 29, 3089–3096. doi:10.1016/j.poly.2010.08.017

Chantarassiri, N., Tuntulani, T., Tongraung, P., Magee, R. S., & Wonnotong, W. (2000). New metal-containing epoxy polymers from diglycidyl ether of bisphenol A and tetradeutate Schiff base metal complexes. European Polymer Journal, 36, 695–702. doi:10.1016/S0014-0795(99)00127-5

Cimerman, Z., Golic, N., & Bosnar, B. (1997). The Schiff bases of salicyldialdehyde and aminopyridines as highly sensitive analytical reagents. Analytica Chimica Acta, 343, 145–153. doi:10.1016/S0003-2670(96)00587-9

Costamagna, J., Vargas, J., Lattorre, R., Alvadra, A., & Mena, G. (1992). Coordination compounds of copper, nickel and iron with Schiff bases derived from 3-hydroxynaphthaldehydes and salicylaldehydes.

Coordination Chemistry Reviews, 119, 67–88. doi:10.1016/0010-8555(92)80030-U

Dumur, F., Beouch, L., Tehfe, M., Contal, E., Lepetitier, M.,Wantz, G., & Gigmes, D. (2014). Low-cost zinc complexes for white organic light-emitting devices. Thin Solid Films, 564, 351–360. doi:10.1016/j.tsf.2014.06.006

Elhayeb, N. E., Teon, S. G., Adnan, R., Tech, J. B. J., & Fun, H. K. (2011). Synthesis, crystal structure and luminescent properties of some Zn(II) Schiff base complexes: Experimental and computational study. Journal of Fluorescence, 21, 1393–1400. doi:10.1007/s10895-010-0822-y

Forgues, S. F., & Lavabre, D. (1999). Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. Journal of Chemical Education, 76, 1260–1264.

http://dx.doi.org/10.1021/ed076p1260

Garnovski, A. D., Nivorozhkin, A. L., & Minkin, Y. I. (1993). Ligand environment and the structure of Schiff base adducts and tetracoordinated metal-chelates. Coordination Chemistry Reviews, 126, 1–69. doi:10.1016/0010-8555(93)85032-Y

Ghedini, M., Dedda, M. L., Aiello, I., & Grisolia, A. (2009). Synthesis and photophysical characterisation of soluble photoluminescent metal complexes with substituted 8-hydroxyquinolines. Synthetic Metals, 138, 189–192. doi:10.1016/S0379-6779(02)01261-4

Hamada, Y., Sano, T., Fujito, M., Fujii, T., Nishio, Y., & Shibata, K. (1993). Blue electroluminescence in thin films of azomethin–zinc complexes. Japanese Journal of Applied Physics, 32, LS11–LS13. doi:10.1143/JJAP.32.LS11

Kim, S. M., Kim, J. S., Shin, D. M., Kim, Y. K., & Ha, Y. (2001). Synthesis and application of the novel azomethine metal complexes for the organic electroluminescence devices. Bulletin of the Korean Chemical Society, 22, 743–747. Retrieved from http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JC2001_v22n7_743&ordernum=18

Kim, S. M., Kim, J. S., & Sohn, B. C. (2001). Synthesis and application of the aromatic spaced azomethine metal complexes for the organic electroluminescence devices. Journal of the Korean Chemical Society, 130, 1516–1520. doi:10.1002/ejic.200900536

Liuzzo, V., Oberhauser, W., & Pucci, A. (2010). Synthesis of new red photoluminescent Zn(II)-salicylaldiminate complex. Inorganic Chemistry Communications, 13, 686–688. doi:10.1016/j.inoche.2010.03.020

Nishal, V., Singh, D., Kumar, A., Tanwar, V., Singh, S., Srivastava, R., & Kadyan, P. S. (2014). A new zinc Schiff-base complex as an electroluminescent material. Journal of Organic Semiconductors, 2, 15–20. doi:10.1007/s10895-014-94276-7

Pucci, D., Aiello, I., Bellusci, A., Gispini, A., Ghedini, A., & Dedda, M. (2009). Coordination induction of nonlinear molecular shape in mesomorphic and luminescent Zn II complexes based on salen-like frameworks. European Journal of Inorganic Chemistry, 2009, 4274–4281. doi:10.1002/ejic.200900536
© 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Chemistry (ISSN: 2331-2009) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Singh, K., Kumar, A., Srivastava, R., Kadyan, P. S., Kamalasanan, M. N., & Singh, I. (2011). Synthesis and characterization of 5,7-dimethyl-8-hydroxyquinoline and 2-(2-pyridyl) benzimidazole complexes of zinc(II) for optoelectronic application. Optical Materials, 34, 221–227. doi:10.1016/j.optmat.2011.08.014
Son, H. J., Hon, W. S., Chun, J. Y., Kang, B. K., Kwon, S. N., Ko, J., ... Kang, S. O. (2008). Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: Syntheses, characterizations, and organic light emitting device applications of 4-coordinated bis(2-oxazolylphenolate) zinc(II) complexes. Inorganic Chemistry, 47, 5666–5676. doi:10.1021/ic702491j
Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letter, 51, 913–915. doi:10.1063/1.987999
Tao, X., Suzuki, H., Watanebe, T., Lee, S. H., Miyata, S., & Sassabe, H. (1997). Metal complex polymer for second harmonic generation and electroluminescence applications. Applied Physics Letters, 70, 1503–1505. doi:10.1063/1.118366
Vaschenko, A. A., Lepnev, L. S., Vitukhnovskii, A. G., Kotova, O. V., Eliseeva, S. V., Kuz’mina, N. P. (2010). Photo- and electroluminescent properties of zinc(II) complexes with tetridentate Schiff bases, derivatives of salicylic aldehyde. Optics and Spectroscopy, 108, 463–465. doi:10.1134/S0030400X10030227
Wu, Q., Lovighe, J. A., Tao, Y., D’Italia, M., & Wang, S. (2000). Blue-luminescent/electroluminescent Zn(II) compounds of 7-azaindole and N-(2-pyridyl)-7-azaindole: Zn(7-azaindole)2(CH3COO)2, Zn(NPA)(CH3COO)2, and Zn(NPA)((S)-(+)-CH2CH2CH(CH3)COO)2 (NPA = N-(2-pyridyl)-7-azaindole). Inorganic Chemistry, 39, 5248–5254. doi:10.1021/ic000465s
Yu, G., Liu, Y. Q., Song, Y. R., Wu, X., & Zhu, B. B. (2001). A new blue light-emitting material. Synthetic Metals, 117, 211–214. doi:10.1016/S0379-6779(00)00366-0
Yu, T., Su, W., Li, W., Hong, Z., Luo, R., Li, M., ... Hu, Z. Z. (2006). Synthesis, crystal structure and electroluminescence properties of a Schiff base zinc complex. Inorganica Chimica Acta, 359, 2246–2251. doi:10.1016/j.ica.2006.01.019
Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Qian, L., ... Qiu, Y. (2008). Synthesis, crystal structure and photoluminescent properties of an aromatic bridged Schiff base ligand and its zinc complex. Inorganica Chimica Acta, 361, 233–240. doi:10.1016/j.ica.2007.07.012