Plant-based insect repellents: a review of their efficacy, development and testing

Marta Ferreira Maia¹,2, Sarah J Moore¹,2*

Abstract

Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as “safe” in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field.

Background

Most plants contain compounds that they use in preventing attack from phytophagous (plant eating) insects. These chemicals fall into several categories, including repellents, feeding deterrents, toxins, and growth regulators. Most can be grouped into five major chemical categories: (1) nitrogen compounds (primarily alkaloids), (2) terpenoids, (3) phenolics, (4) proteinase inhibitors, and (5) growth regulators. Although the primary functions of these compounds is defence against phytophagous insects, many are also effective against mosquitoes and other biting Diptera, especially those volatile components released as a consequence of herbivory [1]. The fact that several of these compounds are repellent to haematophagous insects could be an evolutionary relict from a plant-feeding ancestor, as many of these compounds evolved as repellents to phytophagous insects [2], and this repellent response to potentially toxic compounds is well conserved in the lineage of Diptera (True Flies). Insects detect odours when that volatile odour binds to odorant receptor (OR) proteins displayed on ciliated dendrites of specialized odor receptor neurons (ORNs) that are exposed to the external environment, often on the antennae and maxillary palps of the insect, and some ORNs, such as OR83b that is important in olfaction and blocked by the gold-standard synthetic repellent DEET (N, N-diethyl-3-methylbenzamide) [3], are highly conserved across insect species [4,5]. Plants commonly produce volatile “green leaf volatiles” when leaves are damaged in order to deter herbivores [6], and several authors have shown strong responses of mosquito odour receptors to this class of volatiles including geranyl acetate and citronellal [7], 6-methyl-5-hepten-2-one and geranylacetone [8]. Interestingly, the same odour receptors that respond to DEET also respond to thujone eucalyptol and linalool in Culex quinquefasciatus [9]. In Anopheles gambiae, the DEET receptor OR83b is stimulated by citronellal, but is also modulated by the TRPA1 cation channel [10]. However, it is most likely that many plant volatiles are deterrent or repellent because they have high vapour toxicity to insects [11,12].

This repellency of plant material has been exploited for thousands of years by man, most simply by hanging bruised plants in houses, a practice that is still in wide use throughout the developing countries [13]. Plants have also been used for centuries in the form of crude fumigants where plants were burnt to drive away nuisance mosquitoes and later as oil formulations applied to the skin or clothes which was first recorded in

* Correspondence: sarah.moore@lshtm.ac.uk
¹ Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
Full list of author information is available at the end of the article

© 2011 Maia and Moore; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
writings by ancient Greek [14], Roman [15] and Indian scholars [16] (Figure 1). Plant-based repellents are still extensively used in this traditional way throughout rural communities in the tropics because for many of the poorest communities the only means of protection from mosquito bites that are available [13], and indeed for some of these communities [17], as in the Europe and North America [18] “natural” smelling repellents are preferred because plants are perceived as a safe and trusted means of mosquito bite prevention.

The discovery of new plant-based repellents is heavily reliant on ethnobotany. This is the targeted search for medicinal plants through in-depth interviews with key informants knowledgeable in folk-lore and traditional medicine. It is common practice to conduct ethnobotanical surveys using structured interviews, combined with the collection of plant voucher Specimens (Figure 2), to evaluate plant use by indigenous ethnic groups [19]. Questions are asked about plant usage, abundance and source. This is a more direct method of identifying plants with a potential use than general screening of all plants in an area. A second means is bio-prospecting, where plants are systematically screened for a particular mode of action, which is a costly and labour intensive means of identifying new repellents. However, mass screening of plants for repellent activity was the way by which PMD (para-methane 3-8, diol), an effective and commercially available repellent was discovered in the 1960s [20].

PMD from lemon eucalyptus (Corymbia citriodora) extract

Corymbia citriodora (Myrtaceae), also known as lemon eucalyptus, is a potent natural repellent extracted from the leaves of lemon eucalyptus trees (Table 1). It was discovered in the 1960s during mass screenings of plants used in Chinese traditional medicine. Lemon eucalyptus essential oil, comprising 85% citronellal, is used by cosmetic industries due to its fresh smell [21]. However, it was discovered that the waste distillate remaining after hydro-distillation of the essential oil was far more effective at repelling mosquitoes than the essential oil itself. Many plant extracts and oils repel mosquitoes, with their effect lasting from several minutes to several hours (Table 1). Their active ingredients tend to be highly volatile, so although they are effective repellents for a short period after application, they rapidly evaporate leaving the user unprotected. The exception to this is para-methane 3, 8 diol, which has a lower vapour pressure than volatile monoterpenes found in most plant oils [22] and provides very high protection from a broad range of insect vectors over several hours [23], whereas the essential oil is repellent for around one hour [24]. PMD is the only plant-based repellent that has been advocated for use in disease endemic areas by the CDC (Centres for Disease Control) [25], due to its proven clinical efficacy to prevent malaria [26] and is considered to pose no risk to human health [27]. It should be noted that the essential oil of lemon eucalyptus does not have EPA (Environmental Protection Agency) registration for use as an insect repellent.

Citronella

Essential oils and extracts belonging to plants in the citronella genus (Poaceae) are commonly used as ingredients of plant-based mosquito repellents (Table 1), mainly *Cymbopogon nardus* that is sold in Europe and North America in commercial preparations. Citronella has found its way into many commercial preparations through its familiarity, rather than its efficacy. Citronella
was originally extracted for use in perfumery, and its name derives from the French citronelle around 1858 [28]. It was used by the Indian Army to repel mosquitoes at the beginning of the 20th century [29] and was then registered for commercial use in the USA in 1948 [30]. Today, citronella is one of the most widely used natural repellents on the market, used at concentrations of 5-10%. This is lower than most other commercial repellents but higher concentrations can cause skin sensitivity. However, there are relatively few studies that have been carried out to determine the efficacy of essential oils from citronella as arthropod repellents. Citronella-based repellents only protect from host-seeking mosquitoes for about two hours although formulation of the repellent is very important [31,32]. Initially, citronella, which contains citronellal, citronellol, geraniol, citral, α pinene, and limonene, is as effective dose for dose as DEET [33], but the oils rapidly evaporate causing loss of efficacy and leaving the user unprotected. However, by mixing the essential oil of *Cymbopogon winterianus* with a large molecule like vanillin (5%) protection time can be considerable prolonged by reducing the release rate of the volatile oil [34]. Recently, the use of nanotechnology has allowed slower release rates of oils to be achieved, thus prolonging protection time [35]. Encapsulated citronella oil nanoemulsion is prepared by high-pressure homogenization of 2.5% surfactant and 100% glycerol, to create stable droplets that increase the retention of the oil and slow down release. The release rate relates well to the protection time so that a decrease in release rate can prolong mosquito protection time [35]. Another means of prolonging the effect of natural repellents is microencapsulation using gelatin-arabic gum microcapsules, which maintained the repellency of citronella up to 30 days on treated fabric stored at room temperature (22°C) [36]. The use of these technologies to enhance the performance of natural repellents may revolutionize the repellent market and make plant oils a more viable option for use in long-lasting repellents. However, for the time-being
Table 1: An overview of repellent plant efficacy from literature review

Plant Location	Other names	Repellent compound(s)	Tested mode of use	Repellency % protection	Study type	Ref
MYRTACEAE						
Corymbia citriodora Australia, Brazil, Bolivia, China, India, Ethiopia, Tanzania, Kenya	lemon eucalyptus, lemon scented gum quenelling	citronellal, PMD (by product of hidrodistillation) (p-menthane-3,8-diol), citronellol, limonene, geraniol, isopulegol, δ-pinene	30% PMD applied topically, PMD towelette (0.575g) applied topically, 50% PMD applied topically	96.88% protection from mosquitoes for 4 hours, 90% protection from An. arabienesis for 6 hours, 100% protection from An. gambiae and An. funestus for 6-7 hours	field study in Bolivia, laboratory study in Brazil, field study in Tanzania, laboratory study in China, laboratory study in India, laboratory study in Ethiopia, field study in Kenya	[35], [95], [96], [95], [96]
Eucalyptus spp. Guinea-Bissau, Ethiopia, Tanzania, Portugal	eucalyptus	1,8-cineole, citronellal, Z- and α- citral, α-pinene	thermal expulsion (leaves)	72.2% protection from mosquitoes for 2 hours	field study in Guinea Bissau	[99]
E. camaldulensis Ethiopia			thermal expulsion (leaves)	72.2% protection from mosquitoes for 2 hours	field study in Ethiopia	[99]
Eugenia caryophyllus or Syzygium aromaticum or Eugenia aromaticus India	clove lavang	Eugenol, carvacrol, thymol, cinnamaldehyde	100% essential oil applied topically	100% protection against Ae. aegypti for 225 minutes, 100% protection against An. albimanus for 213 minutes, 100% protection against An. dirus for 210 min.	laboratory study	[53]
Lippia spp. Kenya, Tanzania, Ghana, Zimbabwe	lemon bush	myrcene, linalool, α-pinene, eucalyptol	5mg/cm² plant extract applied topically	100% protection against Ae. aegypti for 8 hours, 76.7% protection against An. arabiensis for 4 hours	laboratory study	[100], [101]
L. javanica	allopinanol, camphor, limonene, α-terpened verbenone		5mg/cm² plant extract applied topically	100% protection against Ae. aegypti for 8 hours, 76.7% protection against An. arabiensis for 4 hours	laboratory study	[100], [101]

VERBENACEAE

Maia and Moore Malaria Journal 2011, 10(Suppl 1):S11
http://www.malariajournal.com/content/10/S1/S11
Table 1 An overview of repellent plant efficacy from literature review (Continued)

Plant Type	Country	Plant Name	Plant Part	Protection %a	Study Type	
L. uckambensis	fever tea	potted plant	33.3% protection against An. gambiae s.s	semi-field study in Kenya	[102]	
		periodic thermal expulsion (leaves)	45.9% protection against An. gambiae s.s.	semi-field system in Kenya	[50]	
		periodic direct burning (leaves)	33.4% protection against An. gambiae s.s	semi-field system in Kenya	[50]	
		potted plant	25.01% protection against An. gambiae s.l	field study in Kenya	[98]	
L. cheraliera	eucalyptol, caryophyllene, ipsdienone, p-cymene					
Lantanana camara	Kenya, Tanzania	lantana, spanish flag, West Indian lantana, Wild sage	potted plant	32.4% protection against An. gambiae s.s	semi-field study in Kenya	[102]
		potted plant	27.22% protection against An. gambiae s.l	field study in Kenya	[98]	
		flower extract in coconut oil	94.5% protection against Ae. aegypti and Ae. albopictus for one hour	laboratory study	[103]	
		periodic thermal expulsion (leaves)	42.4% protection against An. gambiae s.s	semi-field study in Kenya	[50]	
LAMIACEAE	*Ocimum spp.*	Tree basil, nchu avum, lime basil, kivumbasi, Myeni, madongo, African blue basil, hairy basil	p-cymene, estragol, linalool, linoleic acid, eucalyptol, eugenol, camphor, citral, thuajone, limonene, ocimene, and others	39.70% protection against An. gambiae s.s	semi-field study in Kenya	[102]
		potted plant	37.91% protection against An. gambiae s.l	field study in Kenya	[98]	
		fresh plants combined with *O. suave* bruised and applied topically	50% protection against An. gambiae s.l	field study in Tanzania	[104]	
		periodic thermal expulsion (leaves and seeds)	43.1% protection against An. gambiae s.s	semi-field study in Kenya	[50]	
		periodic direct burning (leaves and seeds)	20.9% protection against An. gambiae s.s	semi-field study in Kenya	[50]	
		100% essential oil combined with vanillin 5% applied topically	100% protection against Ae. aegypti for 6.5 hours	laboratory study	[26]	
		thermal expulsion (leaves)	73.6% protection from An. arabiensis	field study in Ethiopia	[97]	
		direct burning (leaves)	71.5% protection from An. arabiensis	field study in Ethiopia	[97]	
		periodic thermal expulsion (leaves and seeds)	53.1% protection from An. gambiae s.s	semi-field study in Kenya	[50]	
		periodic direct burning (leaves and seeds)	28.0% protection from An. gambiae s.s	semi-field study in Kenya	[50]	
Table 1 An overview of repellent plant efficacy from literature review (Continued)

Plant	Method	Repellency (%)	Species	Study Details
O. basilicum	thermal expulsion (leaves)	78.7	An. arabiensis	field study in Ethiopia [97]
O. basilicum	direct burning (leaves)	73.1	An. arabiensis	field study in Ethiopia [97]
O. basilicum	100% essential oil applied topically	100	An. arabiensis	laboratory study [23]
O. kilimandscharicum	thermal expulsion (leaves and seeds)	44.54	An. gambiae s.l.	field study in Kenya [98]
O. kilimandscharicum	thermal expulsion (leaves and seeds)	37.63	An. funestus	field study in Kenya [98]
O. kilimandscharicum	periodic thermal expulsion (leaves and seeds)	52.0	An. gambiae s.s.	semi-field study in Kenya [50]
O. kilimandscharicum	periodic direct burning (leaves and seeds)	26.4	An. gambiae s.s	semi-field study in Kenya [50]
O. forskolei	fresh plants hung indoors	53	mosquitoes entering human dwelling	field study in Eritrea [105]
Hyptis spp.	bushmint wild hops wild spikenard hangazimu hortelã-do-campo	myrcene smouldering on charcoal	85.4% repellency against mosquitoes for 2 hours	field study in Guinea Bissau [99]
Mentha spp.	hortelã-do-campo peppermint	menta	41% protection indoors against Mansonia spp	field study in Bolivia [9]
Thymus spp.	China Former Soviet Union Korea Middle-East Mediterranean	thyme	α-terpinene carvacrol thymol p-cymene linalool geraniol	laboratory study [106]
Thymus vulgaris		α-terpinene topically	97.3% protection against Culex pipiens s.lens for 82 min	laboratory study [106]
Thymus vulgaris		carvacrol topically	94.7% protection against C. pipiens s.lens for 80 min	laboratory study [106]
Thymus vulgaris		thymol topically	91.8% protection against C. pipiens s.lens for 70 min	laboratory study [106]
Thymus vulgaris		linalool topically	91.7% protection against C. pipiens s.lens for 65 min	laboratory study [106]
Thymus vulgaris		p-cymene	89.0% protection against C. pipiens s.lens for 45.2 min	laboratory study [106]
Thymus vulgaris		100% essential oil applied topically	100% protection against An. albimanus for 105 minutes	laboratory study [53]
Thymus vulgaris		direct burning (leaves)	85-09% protection for 60-90 min	field study [12]
Pogostemon spp.	China Patchouli	100% essential oil applied topically	100% protection against Ae. aegypti for 120 min	laboratory study [23]
Pogostemon cablin	India Malaysia Thailand	Oriza	100% protection against C. quinquefasciatus for 150 min	
		100% protection against An. dirus for 710 minutes		

POACEAE
Plant	Country 1	Country 2	Country 3	Constituent	Efficacy Details	Study Type	
Cymbopogon spp.	China	India	Indonesia	citronellal	40% essential oil applied topically	laboratory study	
C. nardus	Brazil	citronellal			100% protection for 7-8 hours against An. stephensi	laboratory study	
					100% protection against Ae. aegypti for 120 min	laboratory study	
					100% protection against C. quinquefasciatus for 100 min	laboratory study	
					100% protection against An. dirus for 70 minutes	laboratory study	
					10% applied topically	laboratory study	
					100% protection against Ae. aegypti for 20 minutes	laboratory study	
C. martini	Tanzania	Kenya		palmarosa	(100% essential oil)	field study in India	
				geraniol	100% protection against An. culicifacies for 12 hours	laboratory study	
					98.8% protection against C. quinquefasciatus for 12 hours	laboratory study	
C. citratus	USA	South Africa	Bolivia	lemongrass	(100% essential oil)	field study in Bolivia	
				citral α-pinene	74% protection against An. darlingi for 2.5h	laboratory study	
					95% protection against Mansonia spp. for 2.5 hours	laboratory study	
				Methanol leaf extract applied topically (2.5mg/m²)	78.8% protection against An. arabiensis for 12 hours	laboratory study	
				100% essential oil applied topically	100% protection for 30 minutes	laboratory study	
				100% essential oil applied topically	100% protection against Ae. aegypti for 6.5 hours	laboratory study	
				100% essential oil applied topically	100% protection against C. quinquefasciatus for 8 hours	laboratory study	
				5% applied topically	100% protection against An. dirus for 8 hours	laboratory study	
C. winterianus					66.7% protection against An. arabiensis for 3 hours	laboratory study	
C. excavatus					63.3 protection against An. arabiensis for 3 hours	laboratory study	
Pelargonium reniforme	rose	geranium		alcohol plant extract applied topically	66.7% protection against An. arabiensis for 3 hours	laboratory study	
MELIACEAE	India	Sri Lanka	Pakistan	Neem	azadirachtin saponins	direct burning (leaves)	laboratory study
Azadirachta indica			Ethiopia		76.0% protection from mosquitoes for 2 hours	field study in Guinea Bissau	
			Guinea Bissau		24.5% protection from An. gambiae s.s	semi-field study in Kenya	
			Kenya		1% neem oil volatilized in a kerosene lamp	field study in India	
			Tanzania		94.2% protection from Anopheles spp.	laboratory study	
					80% protection from Culex spp.	laboratory study	
					2% neem oil applied topically	field study in Bolivia	
					56.75% protection from mosquitoes for 4 hours	laboratory study	
ASTERACEAE	Uganda	Zimbabwe	India	Khaki weed	topically	86.4% protection against An. stephensi for 6 hours	laboratory study
Tagetes minuta					topically	84.2% protection against C. quinquefasciatus for 6 hours	laboratory study
				fresh leaves (4Kg)	topically	75% protection against Ae. aegypti for 6 hours	laboratory study
					reduced human landings indoors	field study in Uganda	
travellers to disease endemic areas should not be recommended citronella-based repellents [32]. In contrast, for those communities where more efficacious alternatives are not available, or are prohibitively expensive, the use of citronella to prevent mosquito bites may provide important protection from disease vectors [17].

The second way to use volatile plant repellents is to continuously evaporate them. Citronella and geraniol candles are widely sold as outdoor repellents, however field studies against mixed populations of nuisance mosquitoes show reductions in biting around 50%, although they do not provide significant protection against mosquito bites [37-39].

Neem
Neem is widely advertised as a natural alternative to DEET [40], and it has been tested for repellency against range of arthropods of medical importance, with variable results (Table 1). Several field studies from India have shown very high efficacy of Neem-based preparations [41-43], contrasting with findings of intermediate repellency by other researchers [44,45]. However, these contrasting results may be due to differing methodologies, and the solvents used to carry the repellents. The EPA has not approved Neem for use as a topical insect repellent. It has a low dermal toxicity, but can cause skin irritation, such as dermatitis when used undiluted [46]. Due to the paucity of reliable studies, Neem oil is not recommended as an effective repellent for use by travellers to disease endemic areas [32], although it may confer some protection against nuisance biting mosquitoes.

Natural oils and emulsions
Several oils have shown repellency against mosquitoes. It is likely that they work in several ways 1) by reducing short range attractive cues i.e. kairomones, water vapour
and temperature [47-49]; 2) by reducing the evaporation and absorption of repellent actives due to the presence of long-chained fatty molecules [50]; 3) by containing fatty acids are known to be repellent to mosquitoes at high concentrations [51]. Bite Blocker, a commercial preparation containing lecithin, lemongrass, and andiroba oils of coconut, geranium, and 2% soybean oil can achieve similar repellency to DEET, providing 7.2 hours mean protection time against a dengue vector and nuisance biting mosquitoes in one study [44], and protection for 1.5 hours, equivalent to that of low concentration DEET in a second study [52]. It would appear that the soybean oil in Bite Blocker helps only contributes to repellency as it is not repellent when evaluated on its own [53]. Soybean oil is not EPA registered, but it has low dermal toxicity, although no recommended maximum exposure or chronic exposure limits have been established [54]. Other plant-based oils that have shown some repellent efficacy are coconut oil, palm nut oils [55] and andiroba oil [56], although all of these three oils are far less effective than DEET, they may be useful as carriers for other repellent actives as they are cheap and contain unsaturated fatty acids and emulsifiers that improve repellent coverage and slow evaporation of volatile repellent molecules [50,53,57].

Essential oils

Essential oils distilled from members of the Lamiaceae (mint family that includes most culinary herbs), Poaceae (aromatic grasses) and Pinaceae (pine and cedar family) are commonly used as insect repellents throughout the globe (Table 1). Many members of these families are used in rural communities through burning or hanging them within homes [58-62]. In Europe and North America there is a strong history of use of the oils dating back to Ancient times. Almost all of the plants used as repellents are also used for food flavouring or in the perfume industry, which may explain the association with these oils as safer natural alternatives to DEET despite many oils causing contact dermatitis (Table 2 [63]). Many commercial repellents contain a number of plant essential oils either for fragrance or as repellents including peppermint, lemongrass, geranium, pine oil, pennyroyal, cedar oil, thyme oil and patchouli. The most effective of these include thyme oil, geraniol, peppermint oil, cedar oil, patchouli and clove that have been found to repel malaria, filarial and yellow fever vectors for a period of 60-180 mins [64-66]. Most of these essential oils are highly volatile and this contributes to their poor longevity as mosquito repellents. However, this problem can be addressed by using fixatives or careful formulation to improve their longevity. For example, oils from turmeric and hairy basil with addition of 5% vanillin repelled 3 species of mosquitoes under cage conditions for a period of 6-8 hours depending on the mosquito species [34]. Although essential oils are exempt from registration through the EPA, they can be irritating to the skin and their repellent effect is variable, dependent on formulation and concentration. Repellents containing only essential oils in the absence of an active ingredient such as DEET should not be recommended as repellents for use in disease endemic areas, and those containing high levels of essential oils could cause skin irritation, especially in the presence of sunlight.

Considerations for repellent testing methodology

In a Pubmed search using the terms “plant” and “repellent” and “mosquito” in the past 5 years, 87 results were shown. These studies can be broken down into a series of categories: 1) standard ethnobotanical studies and evaluations of plants that are traditionally used to repel mosquitoes [17,67-70]; 2) standard dose response [33] laboratory evaluations of solvent extractions of plants without DEET positive controls [71]; 3) standard dose response [33] laboratory evaluations of solvent or extractions or essential oils of plants with DEET positive controls [72] coupled with GC-MS (coupled gas chromatography-mass spectrometry) [73]; 4) laboratory evaluations using time to first bite method [74] comparing the plant repellents to DEET [75] and in addition several of those studies also analysed the constituents of the oil through GC-MS [76,77]. In addition there were a large number of studies that did not use the accepted standard methodology [78] (Table 3), and should be interpreted with caution. Only two studies considered safety [79] or adverse effects [80] and only one study considered randomization and blinding [52], and almost all repellent studies did not consider the number of human participants needed to minimize sampling error [81]. It is important for the future development of plant based repellents that the standard WHO methodology is followed [78], including a DEET control to allow simple comparison of multiple studies, and reporting of standard errors to understand the reliability of that repellent compound to provide the observed protection.

Some fallacies about plant based or natural repellents

It is commonly assumed that plant-based repellents are safer than DEET because they are natural. However, some natural repellents are safer than others, and it cannot be assumed that natural equates to safe [18]. DEET has undergone stringent testing and has a good safety profile. An estimated 15 million people in the U.K., 78 million people in the U.S.A. [82], and 200 million people globally use DEET each year [83]. Provided that DEET is used safely, i.e. it is applied to the skin at the
correct dose (such as that in a commercial preparation) and it is not swallowed or rubbed into the mucous membranes then it does not cause adverse effects [84].

DEET has been used since 1946 with a tiny number of reported adverse effects, many of which had a history of excessive or inappropriate use of repellent [85,86]. Its toxicology has been more closely scrutinized than any other repellent, and it has been deemed safe for human use [82,87], including use on children [88], pregnant women [89], and lactating women [84]. In contrast, plant-based repellents do not have this rigorously tested safety record, with most being deemed safe because they have simply been used for a long time [90]. However, many plant-based repellents contain compounds that should be used with caution (Table 1).

It is also commonly stated that plant based repellents are better for the environment than synthetic molecules. While plant volatiles are naturally derived, distillation requires biomass energy, extraction commonly uses organics solvents that must be disposed of carefully, growing the plants uses agrichemicals, such as fertilizers and pesticides (unless sourced from a sustainable and organic source). However, if carefully practiced, cash cropping of plants used for repellents provides a vital source of income for small scale farmers in developing countries [91] and can have beneficial environmental impact when planted in intercropping systems to prevent soil erosions [92]. Therefore, it is important to carefully source of repellent plants to avoid pitfalls associated with unsustainable cropping practices. Another common misconception is that garlic is an effective repellent. It does have a moderate repellent effect when rubbed on the skin [93], although there are far more effective repellents available that also have a more

Common Name	Scientific Name	Safe Concentration	Hazard
Anise	Pimpinella anisum	3.6%	Based on 0.11% methyl eugenol; carcinogen
Basil	Ocimum sp	0.07%	Based on 6% methyl eugenol; carcinogen
Bergamot	Citrus aurantium bergamia	0.4%	Sensitising and phototoxic; skin irritant
Cajeput	Melaleuca alternifolia	0.004%	Based on 97% methyl eugenol; carcinogen
Cedar	Chamaecyparis nootkatensis	1%	Likely allergic contaminants if nootkatone not 98% pure
Cassia	Cinnamomum cassia	0.2% or 9%	Sensitising skin irritant
Citronella	Cymbopogon nardus	2%	Safety is controversial; based on 0.2% methyl eugenol or 1.3% citral; sensitising skin irritant
Citronella (Java)	Cymbopogon winterianus	2%	Based on 0.2% methyl eugenol; carcinogen
Citrus oils	Citrus sp	16-25%	Based on 0.005%-0.0025% bergapten; phototoxic skin irritant
Clove	Syzygium aromaticum	0.5%	Based on 92% eugenol; sensitising skin irritant
Fever tea, lemon bush	Lippia javanica	2%	Based on 5% citral in related species; sensitising skin irritant
Geranium	Pelargonium graveolens	6%	Based on 1.5% citral; sensitising skin irritant
Ginger	Zingiber sp	12%	Based on 0.8% citral; sensitising skin irritant
Huon oil, Macquarie pine	Lantarogrostus franklinii	0.004%	Based on 98% methyl eugenol; carcinogen
Lemongrass	Cymbopogon citratus	0.1%	Based on 90% citral; sensitising skin irritant
Lime	Citrus aurantiifolia	0.7%	Phototoxic skin irritant
Litsea	Litsea cubeba	0.1%	Based on 78% citral; sensitising skin irritant
Marigold	Tagetes minuta	0.01%	Phototoxic skin irritant
Mexican tea, American wormseed	Chenopodium ambrosioides	Prohibited	Toxic
Mint	Mentha piperata and spicata	2%	Based on 0.1% trans-2-hexenal; sensitising skin irritant
Nutmeg	Myristica fragrans	0.4%	Based on 1% methyl eugenol; carcinogen
Palmarosa	Cymbopogon martini	16%	Based on 1.2% farnesol; sensitizing skin irritant
Pennyroyal	Mentha pulegium or Hedeoma pulegioides	Prohibited	Toxic
Pine	Pinus sylvestris	Prepare with antioxidants	Oxidation creates phototoxic skin irritants
Rosemary	Rosmarinus officinalis	36%	Based on 0.011% methyl eugenol; carcinogen
Rue	Ruta chalopensis	0.13%	Based on presence of psoralenes; phototoxic skin irritant
Thyme	Thymus vulgaris	2%	Based on 0.1% trans-2-hexenal; sensitising skin irritant
Violet	Viola odorata	2%	Based on 0.1% trans-2-hexenal; sensitising skin irritant
Ylang-ylang	Canagium odoratum	2%	Based on 4% farnesol; sensitizing skin irritant
pleasing odour. The consumption of garlic however, has not been shown to be effective at repelling mosquitoes.

Promising developments in plant based repellents

The field of plant-based repellents is moving forward as consumers demand means of protection from arthropod bites that are safe, pleasant to use and environmentally sustainable. Perhaps the most important consideration is improving the longevity of those repellents that are effective but volatile such as citronella. Several studies looked at improving formulations of plant oils to increase their longevity through development of nanoemulsions [35,94], improved formulations and fixatives [95-97]; while alternate uses such as spa-tial activity [98-102] and excitorepellency [103,104] have also been investigated. There has been a single clinical study of PMD to lower malaria incidence [26]. This is an exciting discovery since PMD may be recovered from distillation of leaves of *E. citroidora* or chemical modification of citronellal [105] – available from plants of the genus *Cymbopogon*. These plants are already commercially cropped in malaria endemic countries including South America, especially Brazil (6 million trees), southern China, India, Sri Lanka, Congo (Zaire), Kenya and most countries in southern Africa, where it is grown for essential oil production and timber [106]. Local production of insect repellent would remove the high cost of importation in developing countries.

New developments have also been seen in understanding the function of plant-based repellents in insects. Several studies have investigated the behavioural mode of action of repellents through structure-activity studies of contact versus spatial repellency [107], or olfactometry that demonstrated that DEET inhibited mosquito response to human odour whereas *Ocimum forskolei* repels but does not inhibit response to human odour [108]. A further study demonstrates that citronellal directly activates cation channels [10], which is similar to the excitorepellent effect of pyrethrin – another plant based terpine [109], but contrasts with the inhibition effect of DEET [3].

The field of repellent development from plants is extremely fertile due to wealth of insecticidal compounds found in plants as defences against insects [2]. The modern pyrethroids that are the mainstay of the current malaria elimination program that is making excellent progress [110], are synthetic analogues based on the chemical structure of pyrethrins, discovered in the pyrethrum daisy, *Tanacetum cinerariifolium* from the Dalmation region and *Tanacetum coccineum* of Persian origin. The insecticidal component comprising six esters (pyrethrins) is found in tiny oil-containing glands on the surface of the seed case in the flower head to protect the seed from insect attack. Pyrethrins are highly effective insecticides, that are relatively harmless to mammals [111], although it must be emphasised that many other plant produce compounds that are highly toxic to mammals and / or irritating to the skin, and

Table 3 Guidelines on repellent testing adapted from [78]

WHOPES approved repellent testing methodology	
Laboratory Testing	
Use 20% deet in ethanol as a positive comparison	
Human subjects preferable to reflect the end user	
Before the test the test area of skin should be washed with unscented soap then rinsed with 70% ethanol / isopropyl alcohol	
Mosquitoes should be reared under standard 27 ± 2 C temperature, ≥80 ± 10% relative humidity, and a 12:12 (light:dark) photoperiod.	
Mosquitoes should be 3 to 5 days old, nulliparous females, starved for 12 hours preceding the test	
Tests should be conducted with three or more species	
40 x 40 x 40 cm cages with 50 – 100 mosquitoes for effective dose testing	
40 x 40 x 40 cm cages with 200 - 250 mosquitoes for complete protection time testing	
Control arms should be used to estimate mosquito readiness to feed	
Treatment arms should be offered to mosquitoes after avidity has been measured	
Field Testing	
Use 20% deet in ethanol as a positive comparison	
Human subjects preferable to reflect the end user	
Before the test the test area of skin should be washed with unscented soap then rinsed with 70% ethanol / isopropyl alcohol	
Volunteers should sit >20 metres apart	
Design should be completely randomised	
Trials should be conducted with medium biting pressures of representative vector species	
All participants should be recruited on informed consent from the local area and be provided with malaria prophylaxis	
In all testing monitoring of adverse effects should be carried out	
natural does not equate to safe. In the past few years, a plant derived repellent, PMD has been proven to be suitably efficacious and safe to compete with DEET in the field of disease prevention, and repellents have been recognised by WHO as a useful disease prevention tool to complement insecticide-based means of vector control. The field of plant-based repellent evaluation and development had become far more rigorous in recent years and developments in methods of dispensing plant-based volatiles means that extension in the duration of repellency and consequent efficacy of plant-based repellents will be possible in future.

Acknowledgements and funding
Authors receive salary support from Bill and Melinda Gates Foundation 51431. We would like to thank Coronel Mustapha Debboun for permission to reproduce Table 2 and the two anonymous reviewers who greatly improved the manuscript through their comments and suggestions. This article has been published as part of Malaria Journal Volume 10 Supplement 1, 2011: Natural products for the control of malaria. The full contents of the supplement are available online at http://www.malariajournal.com/supplements/10/S1.

Author details
1 Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. 2Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania.

Authors’ contributions
Manuscript drafted by MFM and SJM.

Competing interests
The authors declare that they have no competing interests.

Published: 15 March 2011

References
1. Pichersky E, Gershenson J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biology 2002, 5:237-243.
2. Harvin P, Minks AK, Mollena C. Evolution of plant volatile production in insect-plant relationships. Chemecology 1995, 5:55-73.
3. Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent deet. Science 2008, 319:1833-1842.
4. Faires EA, Dahanukar A, Carlson JR. Insect odor and taste receptors. Annu Rev Entomol 2006, 51:113-135.
5. Piets R, Fox AN, Zwerbel LJ. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the insect Anopheles gambiae. Proc Natl Acad Sci U S A 2004, 101:5058-5063.
6. Gatehouse JA. Plant resistance towards insect herbivores: a dynamic interaction. New Physiologist 2002, 156.
7. Carey AF, Wang G, Su CY, Zwerbel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 2010, 464:66-71.
8. Logan JD, Stanczyk NM, Hassanali A, Kemei J, Santana AEG, Ribeiro KAL, Pickett JA, Mordeau (Luntz) J. Arm-in-cage testing of natural human-derived mosquito repellents. Malar J 2010, 9:239.
9. Syed Z, Ual NS. Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci U S A 2008, 10:1073.
10. Kwun Y, Kim SH, Ronderos DS, Lee Y, Akhtae B, Woodward OM, Guggino WB, Smith DP, Montelli C. Drosophila TRP1 channel is required to avoid the naturally occurring insect repellent citronellol. J Biol 2010, 20:1672-1678.
11. Gershenson J, Dudaeva N. The function of terpene natural products in the natural world. Nature Chemical Biology 2007, 3:408-414.
12. Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag Sci 2001, 57:548-553.
13. Moore SJ, Lenglet A, Hill N. Plant-Based Insect Repellents. In Insect Repellents: Principles Methods, and Use. Boca Raton Florida: CRC Press; Debboun M, Frances SP, Strickman D 2006.
14. Herodotus : Herodotus. The histories. Penguin, 1996.
15. Owen T. Geoponika: Agricultural Pursuits. 1805 [http://www.ancientlibrary.com/geoponika/index.html].
16. Johnson T. CRC Ethnobotany Desk Reference. Boca Raton, Florida: CRC Press, 1998.
17. Moore SJ, Hill N, Ruiz C, Cameron MM. Field Evaluation of Traditionally Used Plant-Based Insect Repellents and Fumigants Against the Malaria Vector Anopheles darlingi in Ribeirata, Bolivian Amazon. J Med Entomol 2007, 44(6):624-630.
18. Trumble JT: Caveat emptor: safety considerations for natural products used in arthropod control. Am Entomol 2002, 48:7-13.
19. Casas A, Valiente-Banuet A, Viveros JL, Caballero J, Cortes L, Davila P, Lira R, Rodriguez I. Plant resources of the Tehuacan-Cuicatlan Valley, Mexico. Econ Bot 2001, 55:129-166.
20. Curtis CF. Traditional use of repellants. In Appropriate technology in vector control. Boca Raton, Florida: CRC Press/Curtis CF 1990:81-82.
21. Veira IG. Estudo de caracteres silviculturais e de produção de óleo essencial de progénies de Corbymia citridora (Hook) K.D.Hill & L.A.S. Johnson procedente de Anhembi SP - Brasil, Ex. Atherton QLD - Austrália. Universidade de Sao Paulo, Escola Superior de Agricultura Luiz de Queiroz, 2004.
22. Barasa SS, Ndiege ID, Luwande W, Hassanali A. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae). J Med Entomol 2002, 39:736-741.
23. Carroll SP, Lorey J: PMD, a registered botanical mosquito repellent with deet-like efficacy. J Am Mosq Contrl Assoc 2006, 22:507-514.
24. Phasomkulsil S, Sowonwra M. Insect repellent activity of madicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health 2010, 41:831-840.
25. Emily Zielinski-Gutierrez RAW, Roger S.Nasci: Protection against mosquitoes, ticks and other insects and arthropods. CDC Health Information for International Travel (The Yellow Book) Atlanta: Centres for Disease Control and Prevention, 2010.
26. Hill N, Lenglet A, Arnez AM, Cainero I. Randomised, double-blind control trial of p-menthane diol repellent against malaria in Bolivia. BMJ 2007, 5.
27. EPA. p-Menthan-3,8-diol (011550) Fact Sheet [http://www.epa.gov/oppbdp1/biopesticides/ingredients/factsheets/factsheet_011550.htm].
28. Dictionary.com: website: [http://dictionary.reference.com/browse/citronella].
29. Covell G. Anti-mosquito measures with special reference to India. Health Bulleten 1943, 11.
30. EPA. Registration Eligibility Decision Document: Oil of Citronella [http://www.epa.gov/oppsrd1/REDs/factsheets/3105fact.pdf].
31. Trongtokit Y, Rangriyam Y, Komalama N, Apiprawises N. Comparative repellency of 38 essential oils against mosquito bites. Phytother Reas 2005, 19:303-309.
32. Goodeyer U, Croft AM, Frances SP, Hill N, Moore SJ, Onyangi SP, Debboun M. Expert review of the evidence base for arthropod bite avoidance. J Travel Med 2010, 17:1708-1805.
33. Curtis CF, Lines JD, Jumba J, Callaghan A, Hill N, Karimzad MA. The relative efficacy of repellents against mosquito vectors of disease. Med Vet Entomol 1987, 1:109-119.
34. Tawatins A, Wratte SD, Scott RR, Thavara U, Techadamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 2001, 26:76-83.
35. Sakuku U, Nuchhucha U, Ulawongyart N, Puttipipatkachorn S, Soottitantawat A, Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 2009, 372:105-111.
59. Ntonifor NN, Ngufor CA, Kimbi HK, Oben BO: Sensory physiological basis for attraction in mosquitoes. *J Am Mosq Control Assoc* 1996, 12:293-294.

60. Lukwa N: Do traditional mosquito repellent plants work as mosquito larvicides. *Central African Journal of Medicine* 1994, 40:306-309.

61. Marazanye T, Chagwedera TE, Adetoye J: Wild local plant derivatives as an alternative to conventional mosquito repellent. *Central African Journal of Medicine* 1988, 34.

62. Seyoum A, Palsson K, Kungá S, Kabiru EW, Lwande W, Kileen GF, Hassanali A, Knols BG: Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental units against *Anopheles gambiae*: ethnobotanical studies and application by thermal expulsion and direct burning. *Trans R Soc Trop Med Hyg* 2002, 96(Suppl 5):225-231.

63. Stoddard D, Frances SP, Debboun M: Chapter 8: Put on something natural. *Prevention of bugs, bites, stings and disease New York: Oxford University Press*, 2009.

64. Trongtokt R, Curtis CF, Rongsriyam Y: Efficacy of repellent products against caged and free flying *Anopheles stephensi* mosquitoes. *Southeast Asian J Trop Med Public Health* 2005, 36:1423-1431.

65. Barnard DR: Repellency of essential oils to mosquitoes (Diptera: Culicidae). *J Med Entomol* 1999, 36:625-629.

66. Rutledge LC, Gupta L: Reanalysis of the C G Macnay Mosquito Repellent Data. *J Vector Ecology* 1995, 21:132-135.

67. Mondal S, Mirdha BR, Mahapatra SC: The science behind sacredness of Tulsi (* Ocimum sanctum L*). *Indian J Physiol Pharmacol* 2009, 53:291-306.

68. Nitra L, Per M, Peter F, Claus B: *Lippia javanica* (Burn F) Spreng: its general constituents and bioactivity on mosquitoes. *Trans Biomed* 2009, 26:85-91.

69. Karunanaahori K, Ilango K, Endale A: Ethnobotanical survey of knowledge and usage custom of traditional insect/mosquito repellent plants among the Ethiopian Oromo ethnic group. *J Ethnopharmacol* 2009, 123:224-229.

70. Kweka EJ, Mosha F, Lowassa A, Mahande AM, Krau J, Matowo J, Mahande MJ, Massenga CP, Tenu F, Feston E, Lyatuu E, Mboya MA, Mndeume R, Chiuwa G, Temu EA: Ethnobotanical study of some mosquito repellent plants in north-eastern Tanzania. *Malar J* 2008, 7:152.

71. Gleiser RM, Bonino MA, Zigagdo JA: Repellency of essential oils of aromatic plants growing in Argentina against *Aedes aegypti* (Diptera: Culicidae). *Parasitol Res* 2010, DOI:10.1007/s00436-010-2042-4.

72. Mzini N, Sulaiman S, Othman H, Omar B: Repellency of essential oil of *Piper aduncum* against *Aedes albopictus* in the laboratory. *J Am Mosq Control Assoc* 2009, 25:442-447.

73. Innocent E, Joseph CC, Gikonyo NK, Nkunya MH, Hassanali A: Constituents of the essential oil of *Sorengudo zonobiansis* leaves are repellent to the mosquito, *Anopheles gambiae* s.s. *J Insect Sci* 2010, 10:57.

74. USDA: Product Performance Test Guidelines. *Insect Repellents for Human Skin and Outdoor Premises*. Insect Repellents for Human Skin and Outdoor Premises Guidelines. *Insect Repellents for Human Skin and Outdoor Premises* City: World Health Organisation; 2009.

75. Magunanyi SK, Webb CE, Manifold S, Russell RC: Are commercially available essential oils from Australian native plants repellent to *mosquitoes?* *J Am Mosq Control Assoc* 2009, 25:292-300.

76. Tabanca N, Bernier UR, Tsikolia M, Becnel JJ, Sampson B, Werle C, Dembiri B, Baser KH, Blythe EK, Pounders C, Wedge DE: *Eupatorium capillifolium* essential oil: chemical composition, antifungal activity, and insecticidal activity. *Nat Prod Commun* 2010, 5:1409-1415.

77. Thomas J, Webb CE, Narkowicz C, Jacobson GA, Peterson GM, Davies NW, Russell RC: Evaluation of repellent properties of volatile extracts from the Australian native plant *Kunzea ambigua* against *Aedes aegypti* (Diptera: Culicidae). *J Med Entomol* 2009, 46:1387-1391.

78. WHOPES: Guidelines for efficacy testing of mosquito repellents. *hr:WHO/HTM/NTD/WHO/2009.4: Book Guidelines for efficacy testing of mosquito repellents for human skin WHO/HTM/NTD/WHO/2009.4 City: World Health Organisation*, 2009.

79. Zhu JJ, Zeng XP, Berkelbee D, Du HJ, Tong Y, Qian K: Efficacy and safety of *catnip (Nepeta cataria)* as a novel fly repellent. *Med Vet Entomol* 2009, 23:209-216.

80. Tuetun B, Chochoote W, Kanjanapothi D, Pattarananchapai E, Chanthong U, Chaiwong P, Jitpakdi A, Tippawangkosol P, Riyong D, Phasawat B: Repellent properties of ceylon, *Apium graveolens L.*, compared with commercial repellents, against mosquitoes under laboratory and field conditions. *Trans R Soc Trop Med Hyg* 2005, 110:1190-1198.

81. Rutledge LC, Gupta RK: Variation in the protection periods of repellents on individual human subjects: an analytical review. *J Am Mosq Control Assoc* 1999, 15:548-535.
82. Goodyer L, Behrens RH: Short report: The safety and toxicity of insect repellents. Am J Trop Med Hyg 1998, 59:323-324.
83. USEPA: Pesticide Registration Standard for N,N-diethyl-m-toluamide (DEET). Book Pesticide Registration Standard for N,N-diethyl-m-toluamide (DEET) City. Office of Pesticides and Toxic Substances Special Pesticide Review Division. United States Environmental Protection Agency; 1980.
84. Koren G, Matsui D, Bailey B: DEET-based insect repellents: safety implications for children and pregnant and lactating women. CMAJ 2003, 169:209-212.
85. Veltin JC, Osmint TG, Bradford DC, Page BC: Retrospective analysis of calls to poison control centers resulting from exposure to the insect repellent N,N-diethyl-m-toluamide (DEET) from 1985-1989. J Toxicol Clin Toxicol 1994, 32:1-16.
86. Fradin MS: Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med 1998, 128:931-940.
87. USEPA: Reregistration Eligibility Decision (RED):DEET, EPA738-R-98-010. Book Reregistration Eligibility Decision (RED):DEET, EPA738-R-98-010 City. United States Environmental Protection Agency; 1998.
88. Sudakin DL, Trevathan WR: DEET: a review and update of safety and risk in the general population. J Toxicol Clin Toxicol 2001, 41:831-839.
89. McGready R, Hamilton KA, Simpson JA, Cho T, Luxemburger C, Edwards R, Duke JA, DuCellier JL: CRC Handbook of alternative cash crops. Noosidum A, Prabaripai A, Chareonviriyaphap T, Chandrapatya A: DEET: a review and update of safety and risk. Mosquitoes and mosquito repellents: a clinician's guide. Ann Intern Med 1998, 128:931-940.
90. Hao H, Wei J, Dai J, Du J: Reregistration Eligibility Decision (RED):DEET, EPA738-R-98-010. DEET: a review and update of safety and risk. Mosquitoes and mosquito repellents: a clinician's guide. Ann Intern Med 1998, 128:931-940.
91. Duke JA, DuCellier JL: CRC Handbook of alternative cash crops. Noosidum A, Prabaripai A, Chareonviriyaphap T, Chandrapatya A: DEET: a review and update of safety and risk. Mosquitoes and mosquito repellents: a clinician's guide. Ann Intern Med 1998, 128:931-940.
92. Zheng H, He K: Intercropping in rubber plantations and its economic benefits. In Agroforestry Systems in China. Ottawa: International Development Research Centre (IDRC); 1993.
93. Greenstock DL, Larrea Q: Garlic as an insecticide. Book Garlic as an insecticide. City: Doubleday Research Association; 1972, 12, pp. 12.
94. Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U: In vitro characterization and mosquito repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech 2009, 10:1234-1242.
95. Moore SJ, Darling ST, Sihuncha M, Padilla N, Devine GJ: A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru. Malar J 2007, 6:101.
96. Choochote W, Chaithong U, Kamsuk K, Jitpakdi A, Tippawangkosol P, Tuetun B, Champakaew D, Pitasawat B: Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 2007, 78:359-364.
97. Trongtokit Y, Rongsriyam Y, Komalamisra N, Krisadaphong P, Apiwathnasorn C: Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors. J Med Entomol 2005, 42:299.
98. Muller GC, Junnila A, Kravchenko VD, Revay EE, Butlers J, Schlein Y: Indoor protection against mosquito and sand fly bites: a comparison between citronella, linalool, and geraniol candles. J Am Mosq Control Assoc 2008, 24:150-153.
99. Ansari MA, Mittal PK, Razdan RK, Sreehan U: Larvicidal and mosquito repellent activities of Pine (Pinus longifolia, family: Pinaceae) oil. J Vector Borne Dis 2005, 42:99-99.
100. Hao H, Wei J, Dai J, Du J: Host-seeking and blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) exposed to vapors of geraniol, citral, citronellol, eugenol, or anisaldehyde. J Med Entomol 2008, 45:533-539.
101. Ritchie SA, Williams CR, Montgomery BL: Field evaluation of new mountain sandalwood mosquito sticks and new mountain sandalwood botanical repellent against mosquitoes in North Queensland, Australia. J Am Mosq Control Assoc 2006, 22:158-160.
102. Bernier UR, Furman KD, Kline DL, Allan SA, Barnard DR: Comparison of contact and spatial repellency of catnip oil and N,N-Diethyl-3-methylbenzamide (Deet) Against Mosquitoes. J Med Entomol 2005, 42:306-311.
103. Noosudum A, Prabaripai A, Chareonviriyaphap T, Chandrapatya A: Exoto-repellency properties of essential oils from Melaleuca leucadendron L., Litsea cubeba (Lour.) Persson, and Litsea salicifolia (Nees) on Aedes aegypti (L.) mosquitoes. J Vector Ecol 2008, 33:305-312.
104. Polsomboon S, Gneeco JP, Acchee NL, Chauhan KR, Tanasinchayakul S, Pothisakorn J, Chareonviriyaphap T: Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. J Am Mosq Control Assoc 2008, 24:513-519.
105. Dell IT: Composition containing P-methan-3, 8-diol and its use as an insect repellent. In Book Composition containing P-methan-3, 8-diol and its use as an insect repellent. Volume 20100278755 City: 2010.
106. Corymbia citriodora.
107. Paluch G, Godzinkty J, Bartholomay L, Coats J: Quantitative structure-activity relationship of botanical sesquiterpenes: spatial and contact repellency to the yellow fever mosquito, Aedes aegypti. J Agric Food Chem 2009, 57:7618-7625.
108. Waka M, Hopkins RJ, Glenwood R, Curtis C: The effect of repellents Ocimum forskolii and deet on the response of Anopheles stephensi to host odours. Med Vet Entomol 2006, 20:373-376.
109. Soderlund DM, Bloomquist JR: Neurotoxic actions of pyrethroid insecticides. Ann Rev Entomol 1989, 34:77-96.
110. Steketee RW, Campbell CC: Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J 2010, 9:299.
111. Cloyd RA: Natural indeed: are natural insecticides safer better than conventional insecticides? Illinois Pesticide Review 2004, 17. [http://www.pesticidesafety.uw.edu/newsletter/html/v17r304.pdf].

Cite this article as: Maia and Moore: Plant-based insect repellents: a review of their efficacy, development and testing. Malaria Journal 2011 10(Suppl 1):S11.