Platt, D. J., & Trudgian, T. (2019). Fujii's development on Chebyshev's conjecture. *International Journal of Number Theory, 15*(3), 639-644. https://doi.org/10.1142/S1793042119500337

Peer reviewed version

License (if available): Other

Link to published version (if available): 10.1142/S1793042119500337

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via World Scientific at https://doi.org/10.1142/S1793042119500337. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Fujii’s development on Chebyshev’s conjecture

Dave Platt∗
School of Mathematics
University of Bristol, Bristol, UK
dave.platt@bris.ac.uk

Tim Trudgian†
School of Physical, Environmental and Mathematical Sciences
The University of New South Wales Canberra, Australia
t.trudgian@adfa.edu.au

July 30, 2018

Abstract
Chebyshev presented a conjecture after observing the apparent bias towards primes congruent to 3 (mod 4). His conjecture is equivalent to a version of the Generalised Riemann Hypothesis. Fujii strengthened this conjecture; we strengthen it still further using detailed computations of zeroes of Dirichlet L-functions.

1 Introduction
Chebyshev observed that there appear to be more primes congruent to 3 (mod 4) than 1 (mod 4). This bias has spawned much research — see, e.g. the seminal work by Rubinstein and Sarnak [10], and also Ford and Konyagin [2]. In 1853 Chebyshev conjectured that

$$\sum_{p>2} (-1)^{(p-1)/2} e^{-xp} \to -\infty,$$

as $x \to 0$. Hardy and Littlewood [4] and Landau [6] showed that (1) is equivalent to all of the non-trivial zeroes of $L(s, \chi_4)$ having real part $\sigma = \frac{1}{2}$, where we use χ_4 to denote the

∗Supported by Australian Research Council Discovery Project DP160100932 and EPSRC Grant EP/K034383/1.
†Supported by Australian Research Council Discovery Project DP160100932 and Future Fellowship FT160100094.
non-principal Dirichlet character modulo 4. We shall refer to this specialised version of the Generalised Riemann Hypothesis for \(\chi_4\) as ‘GRH for \(\chi_4\).

In this article we examine the attenuation factor \(e^{-xp}\) in (1). Fujii [3, Thm 1] showed that for all \(0 < \alpha < 4.19\) the statement

\[
\sum_{p > 2} (-1)^{(p-1)/2} e^{-xp\alpha} \rightarrow -\infty \text{ as } x \rightarrow 0
\]

is equivalent to GRH for \(\chi_4\). Note that the larger one can take \(\alpha\) the quicker the summands in (2) attenuate, and hence there must be an even greater bias towards primes congruent to 3 \((\text{mod } 4)\).

Fujii’s argument is elegant; his result of \(\alpha < 4.19\) is a result of some numerical calculations involving the first few zeroes \(\beta + i\gamma\) of \(L(s, \chi_4)\). In fact, Fujii only uses the fact that \(\gamma_1 > 6\) and that \(\sum_{\gamma > 0} \gamma^{-2} < 1/5\).

We use some more extensive calculations on the zeroes of \(L(s, \chi_4)\) and some optimisation to improve Fujii’s work. The result is the following theorem.

Theorem 1. Suppose that \(0 < \alpha < 20.40442\). Then the statement

\[
\sum_{p > 2} (-1)^{(p-1)/2} e^{-xp\alpha} \rightarrow -\infty \text{ as } x \rightarrow 0
\]

is equivalent to all of the non-trivial zeroes of \(L(s, \chi)\) having real part \(\sigma = \frac{1}{2}\), where \(\chi\) is the non-principal Dirichlet character modulo 4.

We introduce Fujii’s work in §2, and prove Theorem 1 in §3. We remark at the end of §3 that it appears impossible to improve Theorem 2 further using Fujii’s method.

2 Fujii’s method and some lemmas

Proceeding as in Fujii [3, §3], we have, under the assumption of GRH for \(\chi_4\),

\[
S = \sum_{p > 2} (-1)^{(p-1)/2} e^{-xp\alpha} = S_1 + S_2 + S_3 + S_4,
\]

where

\[
S_1 = -\frac{1}{2} \Gamma \left(\frac{1}{2\alpha}\right) x^{-1/2} + o(x^{-1/2})
\]

\[
S_2 + S_4 = o(x^{-1/2})
\]

\[
|S_3| \leq x^{-1/2} \sum_{\rho} \left| \Gamma \left(\frac{1}{2\alpha} + \frac{i\gamma}{\alpha}\right) \right|.
\]

Therefore, to show that \(S \rightarrow -\infty\) as \(x \rightarrow 0\) it is sufficient to show that

\[
\sum_{\rho} \left| \Gamma \left(\frac{1}{2\alpha} + \frac{i\gamma}{\alpha}\right) \right| < \frac{1}{2} \Gamma \left(\frac{1}{2\alpha}\right).
\]

(3)
We require an explicit version of Stirling’s formula to bound the summands in (3). Many versions abound in the literature: we shall use the one given by Olver [8, p. 294], namely
\[
\log \Gamma(z) = \left(z - \frac{1}{2} \right) \log z - z + \frac{1}{2} \log 2\pi + \frac{\theta}{6z}, \quad (|\arg z| \leq \frac{\pi}{2}). \tag{4}
\]
Using (4) and (3) and that fact that \(\tan^{-1} x < x \) for all \(x \), we see that we have
\[
\left| \Gamma \left(\frac{1}{2} + \frac{i\gamma}{\alpha} \right) \right| \leq (2\pi)^{1/2} \left(\frac{\sqrt{\gamma^2 + \frac{1}{4}}}{\alpha} \right)^{\frac{\alpha - \frac{1}{2}}{2}} \exp \left(-\frac{\pi\gamma}{2\alpha} + \frac{\alpha}{6\sqrt{\gamma^2 + \frac{1}{4}}} \right).
\]
We aim at writing the sum in (3) as \(\Sigma = \Sigma_1 + \Sigma_2 \) where \(0 < \gamma \leq T_1 \) in \(\Sigma_1 \) and \(\gamma > T_1 \) in \(\Sigma_2 \). We shall choose \(T_1 \) such that we have detailed information on the location of zeroes with \(\gamma \leq T_1 \). We shall sum the contribution from these zeroes explicitly. We shall then estimate \(\Sigma_2 \) using (2) and bounds on \(N(T, \chi) \), the number of zeroes of \(L(s, \chi) \) with \(|\gamma| \leq T \). We have such an estimate in [11], namely, that
\[
|N(T, \chi) - \frac{T}{\pi} \log \frac{2T}{\pi e}| \leq C_1 \log 4T + C_2, \quad (T \geq 1), \tag{5}
\]
where \(C_1 \) and \(C_2 \) are explicitly given constants. Note that the definition of \(N(T, \chi) \) counts zeroes with \(|\gamma| \leq T \). We actually wish to count the zeroes with \(\gamma \geq 0 \). Therefore, we divide (5) by 2, giving us
\[
N(T, \chi) = \frac{T}{2\pi} \log \frac{2T}{\pi} - \frac{T}{2\pi} + Q(T),
\]
where
\[
|Q(T)| \leq \frac{C_1}{2} \log 4T + \frac{C_2}{2} \leq \theta_1 \log T, \quad (T \geq T_1)
\]
say. Henceforth we consider everything in terms of \(T_1 \), which will be the truncation point in the sum. We need the following, which is a trivial adaptation of a result by Lehman.

Lemma 1. Let \(\phi(t) \) be a decreasing function with continuous derivative on \([T_1, T_2]\). For \(L(s, \chi) \) the non-principal \(L \)-function with \(\chi \) to the modulus 4 we have, for any \(T_1 \geq 1 \) that
\[
\sum_{T_1 < \gamma \leq T_2} \phi(\gamma) = \frac{1}{2\pi} \int_{T_1}^{T_2} \phi(t) \log \frac{2t}{\pi} \, dt + \theta_1 \left(2\phi(T_1) \log T_1 + \int_{T_1}^{T_2} \frac{\phi(t)}{t} \, dt \right),
\]
where \(C_1 \) and \(C_2 \) are in (5) and \(\theta_1 \) is such that
\[
\theta_1 \geq \frac{C_1}{2} \log 4T_1 + \frac{C_2}{2}.
\]
Proof. The proof follows the proof given in Lehman [7, p. 400]. \(\square \)
We now apply Lemma 1 with
\[
\phi(t) = \exp\left\{ -\frac{\pi t}{2\alpha} \right\}
\]
and send \(T_2 \to \infty \). We obtain
\[
\sum_{\gamma > T_1} \phi(\gamma) \leq \exp\left(-\frac{\pi T_1}{2\alpha} \right) \left[\frac{\alpha}{\pi^2} \log \frac{2T_1e}{\pi} + \theta_1 \log T_1^2e \right].
\] (7)

Putting this together with (2) we find that \(\alpha \) is admissible in Theorem 1 if
\[
2(2\pi)^{1/2} \left(\frac{\sqrt{T_1^2 + \frac{1}{4}}}{\alpha} \right)^{1/2} \frac{\alpha}{\pi} \exp\left(-\frac{\pi T_1}{2\alpha} \right) \left[\frac{\alpha}{\pi^2} \log \frac{2T_1e}{\pi} + \theta_1 \log T_1^2e \right]
+ 2 \sum_{0 < \gamma < T_1} \left| \Gamma \left(\frac{1}{2\alpha} + \frac{i\gamma}{\alpha} \right) \right| \leq \frac{1}{2} \Gamma \left(\frac{1}{2\alpha} \right).
\] (8)

subject to (6). We replicate (6) here for convenience, and choose \(C_1 = 0.315 \) and \(C_2 = 6.445 \) as in [11]. Therefore, we require that (8) be satisfied along with
\[
\theta_1 = \frac{0.1575 \log 4T_1 + 3.2225}{\log T_1}.
\]

3 Computations and proof of Theorem 1

We used “lcalc” [9] to produce a list of the lowest 1 000 zeroes of \(L(s, \chi_4) \). The output gives 11 decimal places reducing to 10 for the highest zeroes. We checked each \(t \) actually did represent a zero by using ARB [5] to rigorously compute
\[
\frac{4^{s/2}}{\pi} \Gamma \left(\frac{s+1}{2} \right) 4^{-s} \left[\zeta \left(s, \frac{1}{4} \right) - \zeta \left(s, \frac{3}{4} \right) \right]
\]
with \(s = 1/2 + i(t - \delta) \) and \(s = 1/2 + i(t + \delta) \) with \(\delta = 10^{-10} \) and checking that we saw a sign change in every case. We then use a rigorous version of Turing’s method [1] to confirm that “lcalc” had (as expected) found all the zeroes with \(\Im \rho \in [0, 1.127] \).

Taking these lowest 1 000 zeroes we can set \(T_1 = 1.127 \) and we see that \(\alpha = 20.40442 \) gives us
\[
\sum_{|\Im \rho| < T_1} \left| \Gamma \left(\frac{1}{2\alpha} + \frac{i\gamma}{\alpha} \right) \right| < 20.1276643
\]
whereas
\[
\frac{1}{2} \Gamma \left(\frac{1}{2\alpha} \right) > 20.1276649.
\]
We also find that the contribution from zeroes with $|\Im \rho| > T_1$ is strictly less in absolute terms than 4×10^{-38} so $\alpha = 20.40442$ is admissible.

Further, if we take $\alpha = 20.40443$ we find that the sum over the zeroes with imaginary part < 1127 exceeds $\Gamma(1/(2\alpha))/2$ even if we ignore the contribution from the rest of the zeroes. Thus regardless of how many more zeroes we consider, how precisely we know their imaginary parts or how small we can make the constant θ_1, we will never be able to show that $\alpha = 20.40443$ is admissible by this method.

References

[1] Booker, A.R. Artin’s conjecture, Turing’s method and the Riemann hypothesis, Exp. Math. 15(4), 385–407, 2006.

[2] Ford, K. and Konyagin, S. Chebyshev’s conjecture and the prime number race, IV International Conference “Modern Problems of Number Theory and its Applications”: Current Problems, Part II (Russian) (Tula, 2001), 6791, Mosk. Gos. Univ. im. Lomonosova, Mekh.-Mat. Fak., Moscow, 2002.

[3] Fujii, A. Some generalizations of Chebyshev’s conjecture, Proc. Japan Acad. Ser. A Math. Sci. 64(7), 260–263, 1988.

[4] Hardy, G.H. and Littlewood, J.E. Contribution to the theory of the Riemann zeta function and the theory of the distribution of primes, Acta Math. 41, 119–196, 1917.

[5] Johansson, F. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Transactions on Computers, 66(8), 1281–1292, 2017.

[6] Landau, E. Über einige alte Vermutungen und Behauptungen in der Primzahltreorie I & II, Math. Z. 1, 1–24, 213–219, 1918.

[7] Lehman, R. S. On the difference $\pi(x) – li(x)$, Acta Arith. 11, 397–410, 1966.

[8] Olver, F. W. J. Asymptotics and Special Functions, Computer Science and Applied Mathematics. Academic Press, New York–London, 1974.

[9] Rubinstein, M. lcalc – The L-function Calculator, http://code.google.com/p/l-calc/.

[10] Rubinstein, M. and Sarnak, P. Chebyshev’s bias, Exp. Math. 3(3), 173–197, 1994

[11] Trudgian, T. S. An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions, Math. Comp. 84(293), 1439–1450, 2015.