Skin Graft Rejection by β_2-microglobulin-deficient Mice

By Maarten Zijlstra,* Hugh Auchincloss, Jr.,† Janet M. Loring,* Catharine M. Chase,‡ Paul S. Russell,‡ and Rudolf Jaenisch*

From the *Whitehead Institute for Biomedical Research, and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142; †The Transplantation Unit of the Surgical Services, and the Department of Surgery and Pathology of the Harvard Medical School at the Massachusetts General Hospital, Boston, Massachusetts 02114

Summary

Mice homozygous for a β_2-microglobulin (β_2-m) gene disruption lack β_2-m protein and are deficient for functional major histocompatibility complex class I (MHC-I) molecules. The mutant mice have normal numbers of CD4$^{+}$8$^{-}$ T helper cells, but lack MHC-I-directed CD4$^{+}$8$^{+}$ cytotoxic T lymphocytes (CTLs). In this study we used the β_2-m mutant mice to study the importance of MHC-I-directed immunity in skin graft rejection. Our results indicate that MHC-I-directed CD8$^{+}$ CTLs are not essential in the rejection of allografts with whole MHC or multiple minor H differences. However, the absence of MHC-I-guided immunity profoundly reduces the ability of mutant mice to reject H-Y disparate grafts. In addition, we show that natural killer cells which vigorously reject MHC-I-deficient bone marrow grafts, are not effective in the destruction of MHC-I-deficient skin grafts.

Several crucial aspects of murine skin graft rejection remain unclear. One controversy concerns the cell surface marker expression and functional properties of the T cell populations effective in mediating graft rejection. Depending on the experimental model and the nature of the graft, a crucial role has been suggested for lymphokine-producing Th cells (1-3), CTLs, reference 4-7, or for a functional interaction between Th and CTLs (8-12). In addition, critical biological significance has been suggested for so called dual function T cells, namely Th cells with cytolytic function or IL-2-producing CTLs (13). Another, related issue is the relative importance of recognition of MHC-I$^{+}$ versus -II molecules by the effector T cells. Under normal circumstances, most cells in the skin only express MHC-I molecules. However, it has been documented that certain lymphokines e.g., IFN-γ, that are most likely produced by many antigen-stimulated Th host cells during skin graft rejection readily induce MHC-II expression on a number of defined cell types in vivo, including endothelia and keratinocytes (14-16). Finally, the presence and migration of highly immunogenic, MHC-II$^{+}$ "passenger" dendritic cells in the skin graft, may be of critical importance (17, 18), but controversy exists over whether these cells express MHC-I (19, 20).

Recently, we described the main characteristics of mutant mice homozygous for a β_2-microglobulin (β_2-m) gene disruption that were generated by homologous recombination in embryonic stem cells (21, 22). The mutant mice lack β_2-m protein and consequently express little if any functional MHC-I cell surface molecules (22). The mutant mice contain normal numbers of CD4$^{+}$8$^{-}$ T cells and MHC-II-guided α/β TCR$^{+}$ CD4$^{+}$8$^{+}$ cells, but are deficient for α/β TCR$^{+}$ CD4$^{+}$8$^{+}$ CTLs, because they lack expression of MHC-I molecules crucial for positive selection of CD8$^{+}$ CTLs in the thymus (22-25). Therefore, these mice lack both the MHC-I-directed CTLs, as well as the MHC-I restriction/target element. Radioresistant NK cells present in MHC-I$^{+}$ recipients vigorously reject bone marrow grafts from MHC-matched β_2-m mutant donors (26, 27). The mutant mice themselves are deficient for this NK cell activity, indicating that MHC-I molecules may be involved in the positive selection or tolerance induction of NK cells (26, 27). In the present study, we used the mutant mice to study the importance of MHC-I-guided T and NK cells in murine skin graft rejection.

Materials and Methods

Mice. Chimeric animals transmitting the disrupted β_2-m gene (21) of the D3 embryonic stem cell line (129/Sv strain-derived,
H-2d) were bred with wild-type 129/Sv mice, and heterozygous mutant offspring were back-crossed three times with wild-type 129/Sv mice. Subsequently, heterozygous 129 mice were interbred to obtain heterozygous (+/-) and homozygous mutant (−/−) 129/Sv mice. In addition, (129/Sv × C57BL/6)F1 +/+ animals were back-crossed three times with C57BL/6 (H-2b) and subsequently interbred to obtain mutant mice on a C57BL/6 background. Furthermore, (129/Sv × C57BL/6)F1 mice were also back-crossed four times with B10.BR (H-2k) mice and thereafter intercrossed to obtain heterozygous and mutant (H-2k) mice.

The β2-m genotype was determined by Southern blot analyses on tail DNA as described in (21). B10.BR back-cross mice were selected for a H-2k genotype by PCR screening for the absence of the Abb gene and the presence of the Eaa gene. The primers were 5'-cttcctccagggaaggactccatt-3' (first intron) and 5'-cagcccaccacccag-3' (third exon) for the Abb gene and 5'-cctagcaacaggatatgggtgggctgagct-3' (first exon) and 5'-ctcaacaggtggatgtcatttt-3' (second intron) for the Eaa gene.

Skin Grafting Skin grafting was performed according to the method of Billingham and Medawar (28). Full-thickness skin (~1.5 cm in diameter) from the back or belly of a donor mouse (6-12-wk-old) was engrafted onto the right side of the thorax of a recipient mouse (2-4-mo-old). The graft was covered with gauze and plaster that were removed on day 9. Grafts were scored daily until rejection (defined as >80% of the grafted tissue), or until 120 d after transplantation.

HY Immunization. Female mice were primed by one intraperitoneal injection of 2,000 rad-irradiated 5 × 10⁷ male spleen cells in 0.5 ml PBS, 4-5 wk before the in vitro generation of CTLs.

In Vitro Generation of HY or Allo-specific CTL. CTLs were generated with minor modifications as described in (29). 10⁶ spleen cells from naïve or in vivo primed mice (3-5 wk after rejection of a skin graft) were cultured with 2,000 rad-irradiated stimulator spleen cells (10⁹) in 80 ml culture medium for 5 d at 37°C in humidified air with 5% CO₂. The culture medium consisted of RPMI 1640 supplemented with 10% FCS, antibodies, and 2-ME (2 × 10⁻⁵ M). After 5 d in culture, viable cells were purified using a Lympholyte-M gradient (Cedarlane Labs., Ltd., Westbury, NY).

Cell-mediated Lymphocytotoxicity. Varying numbers of effectors cells were added to 5 × 10⁴ Na₂CrO₄ (90Cr)-labeled target cells in 0.2 ml of RPMI 1640 supplemented with 10% FCS, antibiotics, and 0.01% NaN₃, and 5 × 10⁵ cells were incubated with mAb in a 4-h-assay (29).

NK Cell Assay. Single cell suspensions were obtained from the spleens of 6-12-wk-old (129 × C57BL/6)F1 +/+ mice injected intraperitoneally 24 h before with 150 μg polyinosinic:polycytidylic acid (poly I:C) in PBS, as described in (33). Erythrocytes were lysed by treatment with an isotonic NH₄Cl solution (29), and thereafter the majority of macrophages and B cells removed by incubation on 16-cm tissue culture dishes for 1.5 h at 37°C, as described in (34). Varying numbers of the nonadherent effector cells and 5 × 10⁵ 90CrO₄-labeled target cells were incubated for 5 h at 37°C in 0.2 ml of RPMI 1640 supplemented with 10% FCS, antibodies, l-glutamine, and 2-ME (2 × 10⁻⁵ M).

Immunofluorescence Staining Analysis. Viable effector cells were washed in flow cytometry buffer (PBS containing 0.5% BSA and 0.01% NaN₃), and 5 × 10⁶ cells were incubated with mAb in a volume of 25 μl. The following mAbs were used: PE-conjugated anti-CD4 (GK.1.5, Becton Dickinson & Co., Mountain View, CA [38]), FITC-conjugated anti-CD8α (53-6.7, Becton Dickinson & Co., [39]), biotin-labeled anti-TCR α/β (H57-597, [40]), FITC-labeled anti-CD3 (45-2C11, [41]), and control rat IgG2b FITC-labeled (Pharmingen, San Diego, CA). To stain cells with bound biotin-labeled antibodies, cells were washed and thereafter incubated with PE-streptavidin (Becton Dickinson & Co.). Cells (10⁶) were analyzed on an Epics C (Coulter Corp. Cytometry, Hialeah, FL) in a two-color mode. Dead cells were excluded based on forward and 90°C light scatter characteristics.

Results

β₂m Mutant Mice Rapidly Reject Whole MHC-disparate MHC Class I Strain Grafts. To evaluate the importance of MHC-I-directed immunity, we used β₂m mutant mice as donors and as recipients for engraftment of whole MHC and minor H antigens mismatched skin grafts. Normal BALB/c (H-2b) mice readily rejected both −/− and +/+ 129 (H-2k) grafts with similar survival times (Table 1). In addition, both (129 × C57BL/6)F1 −/− and +/+ (H-2b) mice rejected wild-type BALB/c (H-2k) grafts. Furthermore, both 129 (H-2k) −/− mutant and +/+ control mice rejected skin grafts from normal B10.BR (H-2b) donors (Table 1).
Table 1. Rejection of MHC Disparate Grafts by Wild-Type and β2-m Mutant Mice

Donor	H-2	β2-m	Host*	H-2	β2-m	MST (mean ± SD)	Fraction rejecting
129	b	− / −	BALB/c	d	+ / +	12.7 ± 1.2	4/4
129	b	+ / +	BALB/c	d	+ / +	12.0 ± 0.8	5/5
BALB/c	d	+ / +	(129 × C57BL/6)F3	b	− / −	9.4 ± 1.2	5/5
BALB/c	d	+ / +	(129 × C57BL/6)F3	b	+ / +	10.3 ± 0.4	3/3
B10.BR	k	+ / +	129	b	− / −	14.2 ± 1.3	5/5
B10.BR	k	+ / +	129	b	+ / +	12.6 ± 0.4	3/3
129	b	+ / +	129	b	− / −	13.7 ± 2.1	4/4
129⁵	b	+ / +	129	b	− / −	12.1 ± 2.1	6/6

* Male skin was transplanted to male recipients.
† β2-m genotype: − / −, homozygous β2-m gene mutant; + / −, heterozygous β2-m mutant; + / +, wild-type.
⁵ Females.

To study the possible effector cells, we tested recipient mice after the rejection of the graft, for the presence of donor-specific CTLs. Spleen cells of recipient mice were restimulated in vitro with irradiated spleen cells of the strain used as skin donor. As expected, strong CTL activity was detected in cultures derived from naive or primed + / − recipients (Fig. 1). No CTL activity was detected in cultures from naive mutant mice (Fig. 1). In contrast, two of the five tested (129 × C57BL/6)F3 mutant mice (H-2b), that had rejected BALB/c (H-2b) grafts, showed weak H-2b-specific CTL activity, and in the other three cultures no CTL activity was seen (data not shown). When mutant 129 (H-2b) mice that had rejected B10.BR (H-2k) skin were tested, two of the four animals showed weak H-2k-specific CTL responses (Fig. 1). The weak CTL activity was specific for MHC-I molecules of H-2b because MHC-II R1.1 (H-2b) T cells were lysed, whereas EL-4 (H-2b) and the variant R1E.TL- (H-2b) target cells, which lack β2-m protein synthesis and consequently MHC-I cell surface expression (30, 31), were not lysed (data not shown). The weak CTL activity was mediated by CD4−/8+ cells because depletion of the effector cells by anti-CD4 mAb plus C had no effect (data not shown), but treatment with anti-CD8 mAb plus C eliminated the lysis of the R1.1 (H-2b) target cells (Fig. 1). Flow cytometric analysis of the effector cells confirmed the presence of a low number of CD3+, TCR-α/β+, CD4−/8+ cells (1–3%) in the mutant effector cells. In contrast, in the effector cells of naive mutant mice and of the two nonresponding primed mutant mice, no CD4−/8+ cells were detected (data not shown). We conclude that the rejection of fully allogeneic skin grafts by mutant mice is accompanied by the generation of a low number of MHC-I-directed CD8+ CTLs in some, but not in other recipients.

Mutant Mice Rapidly Reject "Syngeneic" MHC-I+ Grafts. It was interesting to examine whether the mutant mice would be tolerant for the β2-m protein and syngeneic MHC-class I molecules. For that reason, 129 mutant recipients were engrafted with sex-matched 129 skin + / − skin. Both female and male mutant hosts vigorously rejected these grafts in about 13 d (Table 1). To examine the role of self MHC-I-specific CTLs, we tested restimulated spleen cell cultures of four male

Figure 1. H-2b-specific CTL responses of β2-m mutant (O) and β2-m heterozygous (Q) 129 (H-2b) mice after rejection of a + / + B10.BR (H-2k) skin graft. Spleen cells from mice 3–4 wk after the rejection of the graft or naive mice were stimulated for 5 d with B10.BR spleen cells, as described in Materials and Methods. Lysis by the effector cells was measured against R1.1 (H-2b) T cell targets. No significant lysis was seen against β2-m-deficient R1E.TL- (H-2b) variant cells (data not shown). Each curve represents the CTL activity of an individual responder mouse.
Table 2. Rejection of Skin Grafts with Multiple Minor H Differences in H-2\(^k\) Mice

Donor	Strain	\(\beta_{2\text{-}m}\)	Host*	Strain	\(\beta_{2\text{-}m}\)	MST (mean ± SD)	Fraction rejecting
B10.BR BC\(^3\)	donor 1	- / -	B10.BR	+ / +	16.6 ± 4.2	5/5	
B10.BR BC	donor 2	- / -	B10.BR	+ / +	17.8 ± 2.0	6/6	
B10.BR BC	donor 3	- / -	B10.BR	+ / +	16.3 ± 3.8	3/3	
B10.BR BC	donor 1	+ / -	B10.BR	+ / +	17.4 ± 3.6	5/5	
B10.BR BC	donor 2	+ / -	B10.BR	+ / +	14.6 ± 2.5	6/6	

* Male skin was grafted onto male recipients.
\(\beta_{2\text{-}m}\) genotype (see Table 1 legend).
\(^3\) Derived from \((129 \times C57BL/6)F_1\) mice back-crossed four generations onto a B10.BR (H-2\(^k\)) background.

recipients for the presence of CD8\(^+\) CTLs reactive with EL-4 (H-2\(^b\)) target cells. Only one responder showed CD8\(^+\) CTL activity, and in the other three effector cell populations, no CTL activity was seen (data not shown). Therefore, the generation of H-2\(^b\)-reactive CTLs is not essential for the rejection of syngeneic MHC-I\(^+\) positive grafts.

Mutant Mice Readily Reject Skin Grafts with Multiple Minor H Differences. To study the importance of MHC-I in the rejection of skin grafts with multiple minor H differences, we performed skin grafting in both H-2\(^b\) and H-2\(^k\) mice. Mutant and +/- control skin derived from mice (H-2\(^k/k\)) back-crossed four generations onto a B10.BR background, were transplanted onto wild-type B10.BR (H-2\(^k\)) mice. Only one responder showed CD8\(^+\) CTL activity, and in the other three effector cell populations, no CTL activity was seen (data not shown). Therefore, the generation of H-2\(^b\)-reactive CTLs is not essential for the rejection of syngeneic MHC-I\(^+\) positive grafts.

Similarly, Table 3 shows that wild-type +/- C57BL/6 mice readily rejected both mutant and +/− skin 129 strain grafts (H-2\(^b\), multiple minor H differences). It seems possible that cells of the 129 mutant skin graft absorbed some \(\beta_{2\text{-}m}\) protein from the C57BL/6 host, thereby acquiring some MHC-I surface expression and susceptibility to MHC-I-guided immunity (26, 42). To address this issue, we also grafted mutant skin onto mutant hosts with multiple minor H differences. In both directions, grafts were rapidly rejected by both mutant and control littermates after a similar latency (Table 3). These results indicate that in skin grafts with multiple minor H differences, the expression of MHC-I and MHC-I-guided CTLs are not essential for graft rejection.

MHC-I Expression Profoundly Influences Rejection of H-Y-Disparate Grafts. A vast majority of female H-2\(^b\) mice readily reject H-Y disparate skin grafts which is generally accompanied by the generation of strong MHC-I-restricted H-Y-specific CTLs (43–45). We therefore examined inbred

Table 3. Rejection of Skin Grafts with Multiple Minor H Differences in H-2\(^k\) Mice

Donor	Strain	\(\beta_{2\text{-}m}\)	Host*	Strain	\(\beta_{2\text{-}m}\)	MST (mean ± SD)	Fraction rejecting	
129	- / -	(129 \times C57BL/6)\(F_1\)	+ / -	>120	+ / +	14.0 ± 1.0	8/8	
129	- / -	C57BL/6	+ / +	12.5 ± 0.8	+ / +	13.0 ± 0.8	3/3	
129	+ / -	C57BL/6	+ / +	13.0 ± 1.2	C57BL/6 BC\(^4\)	+ / +	13.0 ± 1.2	4/4
C57BL/6 BC	- / -	129	- / -	13.4 ± 0.4	C57BL/6 BC	+ / +	13.3 ± 0.4	3/3

* Male skin was grafted onto male recipients.
\(\beta_{2\text{-}m}\) genotype (see Table 1 legend).
\(^4\) Derived from \((129 \times C57BL/6)F_1\) mice back-crossed three generations onto a C57BL/6 background.

888 Relevance of MHC Class I Antigens in Murine Skin Graft Rejection
129 (H-2b) mutant and +/- control females for the rejection of male skin grafts. Control +/- females rapidly rejected male +/- grafts with a mean survival time of about 18 d (Fig. 2). In contrast, 9 of 11 mutant females accepted mutant male skin for at least 120 d (Fig. 2), and two other animals rejected it after a long latency. In these animals, a small residual graft was accepted, but because it consisted of <20% of the size of the original graft, they were scored as rejected. To examine the role of H-Y specific CTLs, we tested in vivo immunized mutant and +/- animals for the in vitro generation of H-Y-specific CTLs. To exclude the possible absorption by the target cells of 32-m protein derived from the FCS in the regular culture medium, we performed the CML in serum-free medium. As expected, all four tested immunized +/- females, mounted strong H-Y-specific CTLs (Fig. 3). The CTLs possessed a CD4-8+ phenotype (data not shown). These H-Y-specific CTLs did not lyse mutant male target cells (Fig. 3). This result implies that in the absence of exogenous flu-m protein, the MHC-I molecules cannot present H-Y antigen-derived peptides. Consistent with this conclusion, we could not detect any CTL activity, including H-Y specific, in cultures derived from four tested immunized mutant females (Fig. 3). In the latter experiment, no lysis was observed of con A-stimulated T cell blasts (Fig. 3), nor LPS-stimulated mutant male B cell blasts (data not shown). We therefore conclude that β2-m mutant females do not generate MHC-I-guided H-Y specific CTLs and that this is not compensated for by MHC-II-restricted H-Y specific CTLs.

MHC-I+ Recipients Fail to Reject MHC-I-deficient Skin Grafts. Previous studies have shown that radioresistant NK1.1+ NK cells present in MHC-I+ recipients vigorously reject haemopoietic grafts from MHC-matched β2-m +/- donors (26, 27). NK cell–mediated rejection of skin grafts would severely complicate the interpretation of many of the above described experiments. In addition, we wanted to compare the biology of the NK cells rejecting MHC-deficient bone marrow grafts (26, 27) with those displaying the phenomenon of "hybrid resistance." In the latter situation, irradiated MHC-heterozygous mice often reject haemopoietic cells from one of the homozygous parental strain, but do accept nonlymphoid parental grafts, including skin grafts (46-49). To assess the possible role of NK cells in skin graft rejection, we performed skin grafting in similar combinations that lead to rejection of mutant bone marrow grafts, namely skin from 129 -/- donors to 129 +/- and (129 x C57BL/6)F1 +/- (H-2b) recipients. As can be seen in Table 1, all +/- hosts accepted the mutant graft over a period of at least 120 d. Therefore, NK cells are not effective in the rejection of MHC-I-deficient skin transplants.

Mutant Fibroblasts Are Not Highly Susceptible to Lysis by NK1.1+ NK Cells. To study the difference between the rejection of mutant bone marrow grafts (26, 27) versus the acceptance of mutant skin grafts by +/- hosts (this study), we compared lymphoid and nonlymphoid mutant target cells with respect to NK cell–mediated lysis. As a source of nonlymphoid cells, we used immortalized, embryonic fibroblasts. No difference was seen in the level of NK cell mediated lysis of +/- and +/- fibroblasts (Fig. 4). Most effector cells did not express the NK1.1 cell marker because depletion with
Table 4. MHC Class I* Mice Fail to Reject β2-m Mutant Skin Grafts

Donor Strain	Host Strain	β2-m	Antigenic Disparity	Survival time
129 s + / -	129 s + / -	129 s + / -	None	>120
129 s + / -	(129 × C57BL/6)F1 s + / -	129 s + / -	None	>120
129 s - / -	(129 × C57BL/6)F1 s - / -	129 s - / -	β2-m	>120

* Male skin grafts were transplanted onto male recipients, except for the top group which included seven female grafts engrafted into female recipients.

† β2-m genotype (see Table 1 legend).

‡ Both 129 and (129 × C57BL/6)F1 mice are of H-2b type.

anti-NK1.1 mAb plus C only marginally affected target cell lysis. This is in contrast with the results obtained with -/- and +/- Con A-stimulated T cell blasts (Fig. 4 and reference 27). The NK cells efficiently lysed -/- targets, but did not lyse +/- targets. A similar difference was seen when -/- and +/- LPS-stimulated B cell blasts were compared (data not shown). Furthermore, anti-NK1.1 mAb plus C treatment of the effector cells completely abolished the lysis of the -/- con A targets (Fig. 4 and reference 27). We therefore conclude that the difference in fate between mutant bone marrow (rejected) versus skin (accepted) after engraftment into +/- hosts, can be explained by a difference in susceptibility to NK1.1 + NK cells between lymphoid (susceptible) and nonlymphoid (resistant) mutant cells.

Discussion

The central issue addressed in this study is the need for MHC-I-directed immunity in skin graft rejection, using mutant mice that have normal subsets of TCR-β + CD4 + CD8 - Th cells and γ/δ T cells, but that are deficient for mature CD4 - CD8 + CTLs (22-24). The results suggest that MHC-I-directed CTLs are not essential in the rejection of strong antigenic grafts, such as whole MHC disparate grafts or grafts with multiple minor H differences. In contrast, our experiments indicate that MHC-I-guided immunity is pivotal in the rejection of H-Y disparate grafts.

After the engraftment of whole MHC disparate skin grafts, a low number of graft-specific CD8 + CTLs were detected in some of the recipient mutant mice, but no CTL activity or CD8 + T cells were seen in other recipients. Similar results were obtained with mutant mice grafted with syngeneic MHC-I + grafts. No difference was seen in the survival time of the skin grafts in mice with or without CTL activity. In our view, this suggests that rejection of these grafts by the mutant mice is not dependent on MHC-I-directed CTL. The mechanism leading to the partial rescue of the mutant phenotype is not clear. One possibility is that β2-m protein secreted by the skin graft or skin graft-derived lymphocytes, migrates to the thymus and, temporarily, partially restores the MHC-I-dependent process of positive selection of CD8 + CTLs. Otherwise, direct induction of thymus-independent CD8 + CTLs (50) by cells in the skin graft may occur. Mutant and control skin were both rapidly rejected by allogeneic wild-type hosts. In the presence of FCS-derived,
exogenous β2-m protein, mutant cells can serve as target cells for allo-specific CTLs, although about ninefold less susceptible than wild-type cells (22). This could be still sufficient for rapid skin graft destruction. Alternatively, our results are in concordance with studies showing that purified CD4+8- T cells are able to reject fully allogeneic skin grafts (1-3, 11). After the engraftment of skin with multiple minor H differences, no differences were seen in the survival of mutant versus control grafts. Furthermore, reciprocal grafts between mutant mice with multiple minor H differences were rapidly rejected. This indicates that a strong Th cell response is sufficient for skin graft rejection. This conclusion is consistent with reported studies suggesting that purified CD4+8- T cells can mediate rejection of skin grafts with multiple minor H differences (9, 11).

The β2-m mutation has a profound impact on the ability of the mutant mice to reject H-Y disparate skin grafts. This strongly argues that in normal 129 mice, MHC-I-guided CTLs have a pivotal role in the destruction of H-Y disparate grafts. The same conclusion was made in studies showing that both Th and CTLs are required for the rejection of H-Y disparate grafts (11, 45). Wild-type H-Y-specific CTLs fail to lyse mutant male target cells and no H-Y-specific CTLs could be demonstrated in the mutant mice. These observations indicate that in the absence of endogenous β2-m protein, the MHC-I molecules cannot present H-Y antigen-derived peptides. Because the mutant mice are deficient for both the MHC-I–guided CTLs (22, 24), as well as in the presentation of peptides by MHC-I, no H-Y-specific MHC-I–guided CTLs can be generated by the mutant mice. The failure to reject male grafts can be explained in several ways. It could be that H-Y-specific graft destruction can be mediated exclusively by CD8+ MHC-I–guided CTLs. Alternatively, one might argue that Th cells do have the potential to mediate H-Y–specific graft rejection, but due to the weakness of the primary H-Y–specific Th cell response, no graft destruction occurs in the recipients. Yet perhaps, the strength of the MHC-II–restricted CD4+ T cell response may not be crucial, but an essential component thereof, such as MHC-II–guided CTLs. Indeed, we could not detect any MHC-II–restricted H-Y–specific CTL activity in immunized mutant mice.

Our experiments indicate no significant role for allogeneic MHC-I–specific NK cells in skin graft rejection. This strongly contrasts with the finding that hemopoietic grafts from mutant mice are vigorously rejected by radioresistant NK1.1+ NK cells present in normal MHC-matched recipients (26, 27). Our present study clearly demonstrates that this subset of NK cells is not effective in the rejection of mutant skin grafts. The rejection of mutant haemopoietic cells is consistent with the high susceptibility of mutant T and B cell blasts to NK1.1+ NK cell–mediated lysis. In contrast, mutant fibroblasts seem to be refractory to lysis mediated by these NK cells. Our findings are in concordance with many studies involving MHC-I– tumor cells, in which an inverse correlation is often seen between MHC-I expression and NK cell–mediated lysis (for review see reference 48). However, in these studies a considerable number of exceptions have been reported, notably in the group of nonlymphoid tumors (48). Our results therefore suggest that β2-m mutant fibroblasts may either lack the target antigen(s) recognized by NK cells, or may be devoid of some cell adhesion molecules crucial for NK-target cell interactions. Our skin graft experiment suggests that this may also be true for many cells in a mutant skin graft.

In summary, our experiments allow three main conclusions. First, NK cells highly efficient in the rejection of MHC-I– bone marrow grafts, are not effective in skin graft rejection. Second, CD8+ CTLs are not essential in the rejection of strong antigenic skin grafts. This conclusion implies that MHC-II–guided T cells are sufficient to induce graft rejection, possibly by the generation of lymphokine-induced microvascular lesions, or direct lysis by MHC-II–directed CTLs. Finally, in grafts with a limited number of antigenic differences, e.g., the H-Y antigen, graft-specific CTLs may be pivotal for graft destruction. To explain the need for MHC-I–guided CTLs, we favor the hypothesis that the primary H-Y–specific Th cell response is too weak or limited in functional scope to induce graft rejection. This hypothesis predicts that immunized mutant mice will reject H-Y disparate grafts due to a boosted Th cell response, in the absence of any MHC-I–guided CTLs. This experiment and the adoptive transfer of H-Y–specific Th clones seems to be well suited to dissect the potential of distinct subsets of CD4+ T cells in murine skin graft rejection.

We thank Drs. Ada Kruisbeek, Peter Laird, Michel Sadelain, Paul Soloway, Leo de Waal, and Henry Winn for helpful discussions and critical reading of the manuscript. We thank Susan Shea for her excellent technical assistance in skin grafting, and Stuart Connor for his expertise in the flow cytometric analyses. We thank Pablo Peraira and Mark Bix for their generous gift of PCR primers and/or mAbs, and Dr. P. A. Sharp for his gift of the SV40-6 γ/2 producer cell line.

We acknowledge the National Institutes of Health for financial support (H. Auchincloss, Jr., P. S. Russell, and 5R35 CA-44339 to R. Jaenisch). M. Zijlstra was supported by a Fan Fox & Leslie R. Samuel Foundation Fellowship from the Cancer Research Institute.

Address correspondence to Dr. Rudolf Jaenisch, Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142-1479.

Received for publication 2 December 1991.

891 Zijlstra et al.
Note added in proof: Just as the corrected galley proofs of this paper arrived, we learned of the sudden and unexpected death of Maarten Zijlstra. Maarten was in the process of setting up his laboratory and developing his own exciting scientific program. With him we lost a good friend and colleague as well as an outstanding scientist. His integrity and dedication were an example to us all. His seminal contribution to immunology and biology in general will live on in the mouse model he created.

References

1. Loveland, B.E., P.M. Hogarth, R.H. Ceredig, and I.F.C. McKenzie. 1981. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J. Exp. Med. 153:1044.
2. Loveland, B.E., R.H. Ceredig, M. Hogarth, and I. McKenzie. 1981. The key role of Lyt-1 cells in skin graft rejection in the mouse. Transplant. Proc. 13:1079.
3. Loveland, B.E., and I.F.C. McKenzie. 1982. Cells mediating graft rejection in the mouse. III. Lyt-1 precursor T cells generate skin graft rejection. Transplantation (Baltimore). 33:407.
4. LeFrancois, L., and M.J. Bevan. 1984. A reexamination of the role of Lyt-2-positive T cells in murine skin graft rejection. J. Exp. Med. 159:57.
5. Tyler, J.D., S.J. Galli, M.E. Snider, A.M. Dvorak, and D. Stein-muller. 1984. Cloned Lyt-2+ cytolytic T lymphocytes destroy allogeneic tissue in vivo. J. Exp. Med. 159:234.
6. Rosenberg, A.S., T.I. Munitz, T.G. Maniero, and A. Singer. 1991. Cellular basis of skin allograft rejection across a class I major histocompatibility barrier in mice depleted of CD8+ T cells in vivo. J. Exp. Med. 173:1463.
7. Sprent, J., M. Schaefer, D. Lo, and R. Korngold. 1986. Properties of purified T cell subsets. II. In vivo responses to class I vs. class II H-2 differences. J. Exp. Med. 163:998.
8. Steinmuller, D. 1985. Which T cells mediate allograft rejection? Transplantation (Baltimore). 40:229.
9. Cobbold, S., and H. Waldmann. 1986. Skin allograft rejection by L3/T4+ and Lyt-2+ T cell subsets. Transplantation (Baltimore). 41:634.
10. Ichikawa, T., E. Nakayama, A. Uenaka, M. Monden, and T. Mori. 1987. Effector cells in allelic H-2 class I-incompatible skin graft rejection. J. Exp. Med. 166:982.
11. Rosenberg, A.S., T. Mizuochi, S.O. Sharrow, and A. Singer. 1987. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J. Exp. Med. 165:1296.
12. Kawai, M., Y. Ohta, N. Hamasima, T. Takahashi, A. Uenaka, M. Monden, T. Mori, H. Shiku, and E. Nakayama. 1991. Differential involvement of CD4+ cells in mediating skin graft rejection against different amounts of transgenic H-2Kb antigen. J. Exp. Med. 173:261.
13. Rosenberg, A.S., T. Mizuochi, and A. Singer. 1986. Analysis of T-cell subsets in rejection of K+ mutant skin allografts differing at class I MHC. Nature (Lond.) 322:829.
14. de Waal, R.M.W., M.J.J. Bogman, C.N. Maas, L.M.H. Cornelissen, W.J.M. Tax, and R.A.P. Koene. 1983. Variable expression of I-A antigens on the vascular endothelium of mouse skin allografts. Nature (Lond.). 303:426.
15. Skoskiewicz, M.J., R.B. Colvin, E.E. Schneeberger, and P.S. Russell. 1985. Widespread and selective induction of major histocompatibility complex-determined antigens in vivo by γ interferon. J. Exp. Med. 162:1645.
16. Gaspari, A.A., and S.I. Katz. 1988. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J. Immunol. 140:2956.
17. Schuler, G., and R.M. Steinman. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161:526.
18. Larsen, C.P., R.M. Steinman, M. Witmer-Pack, D.F. Hankins, P.J. Morris, and J.M. Austyn. 1990. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172:1483.
19. Caughman, S.W., S.O. Sharrow, S. Shimada, D. Stephany, T. Mizuochi, A.S. Rosenberg, S.I. Katz, and A. Singer. 1986. IA+ murine epidermal Langerhans cells are deficient in surface expression of the class I major histocompatibility complex. Proc. Natl. Acad. Sci. USA. 83:7438.
20. Lenz, A., C. Heufler, H.G. Rammensee, H. Glassl, F. Koch, N. Romani, and G. Schuler. 1989. Murine epidermal Langerhans cells express significant amounts of class I major histocompatibility complex antigens. Proc. Natl. Acad. Sci. USA. 86:7527.
21. Zijlstra, M., E. Li, F. Sajjadi, S. Subramani, and R. Jaenisch. 1989. Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature (Lond.). 342:435.
22. Zijlstra, M., M. Bix, N.E. Simister, J.M. Loring, D.H. Raulert, and R. Jaenisch. 1990. β2-microglobulin deficient mice lack CD4+8+ cytotoxic T cells. Nature (Lond.). 344:742.
23. Raulert, D.H., D.M. Spencer, Y.H. Hsiang, J.P. Goldman, M. Bix, N.S. Liao, M. Zijlstra, R. Jaenisch, and I. Correa. 1991. Control of γδ T cell development. Immunol. Rev. 120:185.
24. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2-m, MHC class I proteins, and CD8+ T cells. Science (Wash. DC). 248:1227.
25. Marusic-Galesic, S., D.A. Stephany, D.L. Longo, and A.M. Kruisbeek. 1988. Development of CD4+8+ cytotoxic T cells requires interactions with class I MHC determinants. Nature (Lond.). 333:180.
26. Bix, M., N.S. Liao, M. Zijlstra, J. Loring, R. Jaenisch, and D.H. Raulert. 1991. Rejection of class I MHC-deficient hematopoietic cells by irradiated MHC-matched mice. Nature (Lond.). 349:329.
27. Liao, N.S., M. Bix, M. Zijlstra, R. Jaenisch, and D. Raulert. 1991. MHC class I deficiency: Susceptibility to natural killer (NK) cells and impaired NK activity. Science (Wash. DC). 253:199.
28. Billingham, R.E., and P.B. Medawar. 1951. The technique of free skin grafting in mammals. J. Exp. Biol. 28:385.
29. de Waal, L.P., J. de Hoop, M.J. Stukart, H. Gleichman, R.G. P.J. Morris, and J.M. Austyn. 1990. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172:1483.
30. Hyman, R., and V. Stalings. 1976. Characterization of a TL variant of a homozygous TL mouse lymphoma. Immunogenetics. 3:75.
31. Barnes, J., and J.G. Seidman. 1982. Structure of wild-type and mutant mouse β2-microglobulin genes. Cells. 29:661.
32. Jat, P.S., C.L. Cepko, R.C. Mulligan, and P.A. Sharp. 1986.
Recombinant retroviruses encoding simian virus 40 large T antigen and polyoma large and middle T antigens. Mol. Cell. Biol. 6:1204.

33. Karre, K., H.J. Ljunggren, G. Piontek, and R. Kiessling. 1986. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature (Lond.). 319:675.

34. Sturmhofel, K., and G.J. Hammerling. 1990. Reconstitution of H-2 class I expression by gene transfection decreases susceptibility to natural killer cells of an EL4 class I loss variant. Eur. J. Immunol. 20:171.

35. Ceredig, R., J. Lowenthal, M. Nabholz, and R. MacDonald. 1985. Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature (Lond.). 314:89.

36. Cobb, P.S., A. Jayasuriya, A. Nash, T.D. Prospero, and H. Waldmann. 1985. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature (Lond.). 312:548.

37. Koo, G.C., and J.R. Peppard. 1984. Establishment of monoclonal anti NK 1.1 antibody. Hybridoma. 3:301.

38. Dialynas, D.P., D.B. Wilde, P. Marrack, A. Pierres, K.A. Wall, W. Havran, G. Otten, M.R. Loken, M. Pierres, J. Kappler, and F.W. Fitch. 1983. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol. Rev. 74:29.

39. Ledbetter, J.A., and L.A. Herzenberg. 1979. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47:63.

40. Kubo, R.T., W. Born, J.W. Kappler, P. Marrack, and M. Pigeon. 1989. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J. Immunol. 142:1619.

41. Leo, O., M. Foo, D.H. Sachs, L.E. Samelson, and J.A. Bluestone. 1987. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA. 84:1374.

42. Rock, K.L., S. Gamble, L. Rothstein, C. Gramm, and B. Benacerraf. 1991. Dissociation of β2-microglobulin leads to the accumulation of a substantial pool of inactive class I MHC heavy chains on the cell surface. Cell. 65:611.

43. Simpson, E. 1982. The role of H-Y as a minor transplantation antigen. Immunol. Today. 3:97.

44. Fierz, W., M. Brenan, A. Mullbacher, and E. Simpson. 1982. Non-H2 and H-2-linked immune response genes control the cytotoxic T-cell response to H-Y. Immunogenetics. 15:261.

45. Boog, C.J.P., W.M. Kast, H.T.M. Timmers, J. Boes, L.P. de Waal, and C.J.M. Melief. 1985. Abolition of specific immune response defect by immunization with dendritic cells. Nature (Lond.). 318:59.

46. Rembecki, R.M., V. Kumar, C.S. David, and M. Bennett. 1988. Polymorphism of H-1, the mouse hemopoietic histocompatibility locus. Immunogenetics. 28:158.

47. Bennett, M. 1987. Biology and genetics of hybrid resistance. Adv. Immunol. 41:333.

48. Ljunggren, H.G., and K. Karre. 1990. In search of the 'missing self': MHC molecules and NK cell function. Immunol. Today. 11:237.

49. Ohlen, C., G. Kling, P. Hoglund, M. Hansson, G. Scangos, C. Bieberich, G. Jay, and K. Karre. 1989. Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science (Wash. DC). 246:666.

50. Krusebeck, A.M., S.O. Sharrow, B.J. Mathieson, and A. Singer. 1981. The H-2 phenotype of the thymus dictates the self-specificity expressed by thymic but not splenic cytotoxic T lymphocyte precursors in thymus engrafted nude mice. J. Immunol. 127:2168.