Research

Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China

Khasbagan* and Soyolt

Address: Institute of Ethnobotany, Inner Mongolia Normal University, Huhhot, 010022, Inner Mongolia, P.R. China

Email: Khasbagan* - ethnobiology@imnu.edu.cn; Soyolt - soyolt@imnu.edu.cn

* Corresponding author

Background

Indigenous knowledge is the systematic information that remains in diverse social structures. It is usually unwritten and preserved only through oral tradition, and it refers to the knowledge system of indigenous people and minority cultures. Traditional knowledge of biodiversity concerns the names, uses, and management of plants and animals as perceived by the local and indigenous people of a given area. Folk names of plants and animals are the roots of traditional biodiversity knowledge. Berlin has indicated a strong need for linking the scientific and folk systems of classification [1]. Examples of such links have been quoted by Berlin et al. who has looked at the relationship between folk names and scientific names [1-4]. For this reason, it has been brought into "Convention on Biological Diversity" (CBD). Precisely, in article 8 of CBD which describes that "subject to its national legislation, respect, preserve and maintain knowledge, innovations and practices of indigenous and local communities embodying traditional lifestyles relevant for the conservation and sustainable use of biological diversity and promote their wider application with the approval and involvement of the holders of such knowledge, innovations and practices and encourage the equitable sharing of the benefits arising from the utilization of such knowledge, innovations and practices". Besides, folk systems of naming and classification transmitted from generation to generation, is constantly recreated by communities and groups in response to their environment. In this case, it undoubtedly fell into the category of "Intangible Cultural Heritage" (ICH) of humanity. In "Convention for the Safeguarding of the Intangible Cultural Heritage", "oral
traditions and expressions, including language as a vehicle of the intangible cultural heritage" and “knowledge and practices concerning nature and the universe" were domains of the ICH.

In pace with social change and development, the Mongols are changing from nomadic people into settlement residents. The knowledge concerning grassland ecosystems is vanishing gradually because the related knowledge is no longer useful to the Mongols who are settled down or engaged in farming or other economic pursuits. The Mongolians in Inner Mongolia have been influenced by the Chinese culture, e.g. in some areas Han Chinese words, including plant names, are more or less mixed up with the Inner Mongolians’ spoken language. This may be leading to the Mongols forgetting traditional botanical knowledge related to the language of plant folk names and classifications.

Both artificial and natural factors lead to degradation of the grassland and desertification. As a result, plant diversity that Mongolians traditionally named and used has decreased. The reduction of plant diversity may also lead to the extinction of the related knowledge of biodiversity. Thus it will be impossible to hand down to future generations. For this reason, collection and analysis of plant folk names of the Mongolians is extremely important.

Ethnobotanical studies in Inner Mongolia have been carried out since the 1980s, having studied useful plants of herdsmen [5], folk nomenclature [6,7]. However, ethnobotanical findings are still preliminary and fragmentary. Particularly, indigenous Mongolian traditional knowledge of desert plant diversity has been neglected by biologists and anthropologists. Biodiversity has social, economic, ecological and ethical value. Understanding ecological functions of biodiversity, respecting the ethics and social importance of biodiversity, and the appropriate exploitation and use of biodiversity are the global issues facing biodiversity today. Scientists have paid close attention to the relationships between biodiversity and cultural diversity [8-11].

Mongolian traditional knowledge of biodiversity includes aspects of folk nomenclature, and traditional use and management of regional biodiversity. In this paper, in accordance with the ethnobotanical collections of the Mongolian folk names of wild plants in the Ejina desert area, the relationship between folk names and scientific names are studied, and the structure of Ejina Mongolian folk botanical nomenclature is also analyzed.

Materials and methods

Study area and ethnic group

The Ejina desert area is located in western Inner Mongolia of China, at 39°52'20" ~ 42°47'20"N and 97°10'23" ~ 103°7'15"E, with a land area of 102461.30 km², the altitude ranges from 820 m to 1400 m. This area has a temperate zone continental climate, with an average annual temperature of 8.3°C, and a mean rainfall of only 38.2 mm. The frost-free period in the area is 145 days [12]. The Ejina desert area is part of the Alashan desert, which is a part of the Middle Asian desert region of the Asia African Desert region. According to the flora regional system of Inner Mongolia, the area belongs to Typical Desert Zone of the Warm-Temperate Desert Zone [13,14]. The main landscape of this area is desert, which includes sandland, oasis, gobi and lower mountain-monadnock rocky desert etc.

According to related materials [13-16], and our investigations, nearly 200 species of vascular plants are distributed in this area. Scientists have attached importance to the biodiversity of the Ejina desert area. Biological and ecological research projects have been carried out in the area. However, previous research mainly focused on the natural ecology [17-21]. Few scientists paid attention to ethnobiological problems of the interrelationship between local people and biodiversity.

Local peoples in this area are the Torgod Mongolians, one of the descendent tribes of the Mongolian nationality. From 1731 A. D. they have occupied this area and engaged in a traditional nomadic livelihood. At present there are more than 5000 Mongolians in this area.

Methods

During 2001 to 2005, the authors have been to the Ejina Banner 6 times. Field work was done in 12 villages and 55 local Mongol herdsmen (informants) were interviewed. Methods of ethnobotanical interviewing, including key informant interviews, free-listing, and open-ended questionnaires were used. After going to each village, the authors identified elder herdsmen’s families and paid a formal visit. Mongolian oral language was used as the working language and findings were originally recorded in Mongolian written language. Scientific names of plants are defined through collection and identification of voucher specimens.

Results and discussion

A total of 119 folk names of local plants are recorded. Based on the results of identifying the specimens, the folk names corresponded with 91 scientific species which belong to 26 families and 70 genera. The rate of Correspondence was 76.47% between folk Mongol names and scientific names (table 1).
Table 1: The Correspondence between folk names of the Mongolians in Ejina desert area and scientific classification

Family	Folk names	Scientific names
Apocynaceae	olus	Poacynum pictum (Schrenk) Baill.
Asclepiadaceae	hucu	Cynanchum cathayense Tsang et Zhang
Boraginaceae	dumug	Arnebia guttata Bunge
Chenopodiaceae	begesun zhanggu; nas wugai ebes	Agriophyllum pungens (Vahl) Link ex A. Dietr.
	sulker	Bassia dasyphylla (Fisch. et Mey.) O. Kuntze
	noosut; noosut hamhag	Chenopodium acuminatum Willd.
	temligen; noil	Chenopodium album L.
	cagan keres; kerest hamhag	Corispermum mongolicum Iljin.
	keres	Halogeton glomeratus (Bieb.) C. A. Mey.
	zag; sagleger zag; xikur zag; yabgan zag	Haloxylon ammodendron (C. A. Mey.) Bunge
	xira kureg; kureg	Kochia scoparia (L.) Schrad. var. sieversiana (Pall.) Ulbr.
	hushit	Micropepsis arachnoidea (Moq.) Bunge
	cagan but	Salsala passerina Bunge
	baglur	Salsala pestifer A. Nelson
	wurgest	Salsala pellucida Litv.
	wulan goyo; sozhung	Sympegma regeli Bunge
Compositae	wunurt xiaralj	Artemisia caespitosa Ledeb.
	cagan xibag; agi	Artemisia dali-lamoe Krasch.
	xiaralj; agi	Artemisia frigida Willd.
	xiar xiabag; tatenghai	Artemisia songarica Schrenk.
	xiar mod	Asterothamnus central-asiaticus Novopokr.
	honggurzul	Cirsim arvense (L.) Scop.
	kuji ebes	Inula salsooides (Turcz.) Osteuf.
	sutai nogo	Ixeris chinesis (Thunb.) Nakai
	dalen toboqi	Karelinia capsa (Pall.) Less.
	gaxiun	Serrata centauroides L.
	gaxiun ebes	Sosonchus arvenisi L.
	sutai nabqi	Taraxacum leucanthum (Ledeb.) Ledeb.
Convolvolaceae	oryamug	Convovulus arvenis L.
	cagan tolgait; elkendeg	Cardaria pubescens (C. A. Mey.) Jarm.
Cruciferae	lalajing	Lepidium obtusum Basin.
Cynomoraceae	shaga	Pugionium crumatum (L.) Gaertn.
Cyperaceae	wulan goyo; sozhung	Cynomorium songaricum Rupr.
	xirki	Eleocharis mitracarpa Steud.
	xirki	Scirpus stroblinus Roxb.
Elaeagnaceae	jigid	Elaeagnus angustifolii L.
Ephedraceae	zergen	Ephedra przewalskii Stapf
Frankenaceae	kureng ebes	Frankenia pulvulentata L.
Gramineae	tongge; deres	Achnatherum splendens (Trin.) Nevski
	ilbar	Aristida adscenionis L.
	cagan ebes	Cleistogenes squarrosa (Trin.) Keng
	budnur; hazaar ebes	Cryptis aculeata (L.) Ait.
	kag	Leymus secalinus (Georgi) Tzvel.
	hulus; acamag; shazxig hulus; shaorag hulus; hanan hulus; ajirgan hana	Phragmites australis (Cav.) Trin. ex Steud.
	suli	Psammothloa villosa (Trin.) Bor.
	narin ebes	Puccinellia hautiana (Trin.) Krecz.
Iridaceae	cakildag; cakirmat	Iris lactea Pall. var. chinensis (Fisch.) Koidz.
Lguminosae	munk hargen	Alhagi maurorum Medic. var. sparsfolium (Shap.) Yakovl.
	hatinggir	Ammobaptanthus mongolicus (Maxim.) Cheng f.
	alten hargen	Astragalus haniensis S. B. Ho
	xiker buyaa	Caragana leucophloea Pojark.
	zara wurges; ortud	Glycyrrhiza uralensis Fisch.
	hor; tom; sogtu ebes	Oxytropis aciphylla Lede.
	horen buyaa	Oxytropis galbra (Lam.) DC.
		Sophora alopecuroides L.
The correspondence between plant folk names & scientific names

The plants folk names and scientific names (species) are not a simply one to one correspondence. It may be organized as below:

(a) One to one correspondence One folk name has correspondence with one scientific species. For example, the folk name sulker only corresponds with Agriophyllum pungens, zhergen with Ephedra przewalskii, jigd with Elaeagnus angustifolia, chegereg with Alhagi maurorum var. sparsifolium, suli with Psammochloa villosa, baglur with Salsola pestifer, humel with Allium mongolicum, taan with Allium polyrhizum and olus/Poacynum pictum etc.

(b) Multitude to one correspondence Two or more folk names have correspondence with only one scientific species. For example, bor bodurgen and xira huhurgene correspond with Kalidium foliatum, wulan goyo and sozhung with Cynomoricum songaricum; zag, sagleger zag, xikur zag, yabgan zag correspondence with Haloxylon ammodendron; hulus, acamag, shaxgig hulus, shaorag hulus, hanan hulus, ajirgan hana correspondence with Phragmites australis etc. In this case, those folk names correspondence with one scientific name are regarded as folk synonym.

(c) One to multitude correspondence One folk name corresponds with two or more scientific species. For example, zherin deleng corresponds with Limonium aureum, Limonium tenellum and Limonium bicolor, noil with Chenopodium acuminatum and Chenopodium album, xirki with Eleocharis mitracarpa and Scirpus strobilinus etc. In this case, those folk names with correspondence with two or more scientific names are regarded as folk homonyms.

Structure of Ejina Mongolian Folk Botanical Nomenclature

A basic step in analyzing the structure of folk botanical nomenclature is to tell the difference between primary and secondary names and to distinguish between the various primary names [22]. According to the result of the Mongolian linguistic analysis, the Mongolian folk names of wild plants in the Ejina desert area are distinguished as primary names and secondary names.
Primary names
A primary name is considered to be 'semantically unitary' which means that it is a single expression, even if composed of more than one constituent. Many primary names have just a single constituent, and they belong to simple primary names, such as bodurgan, boggignuur, boya, chaheldeg, chaherma, chegereg, deres, goyo, hamhag, hargan, harmag, hatingir, heres, hucu, huhurgen, hulusu, humul, jigd, kag, olos, soli, sozhung, suhai, taan, torai, torlog, tunge, tunghul, wusug, xiriki, zhergen etc. In the Mongolian language, these words are proper names which haven't other meanings. Other primary names are composed of more than one constituent which belongs to complex primary names. Complex primary names consist of two Mongol words. Some complex primary names include a word such as bot [shrub] or ebes [grass] which indicates the life form, such as chagan bot, chagan ebes, honht ebes, huji ebes, narin ebes, sogtuu ebes, wumhe ebes etc. In this type of folk classification, a word bot or ebes serves as a taxon such as family or genus in scientific taxonomy. These types of names belong to productive complex primary names. Other complex primary names don't include a word to express a folk taxon, belonging to the productive complex primary name, such as botgon tabag, dalan tobqi, hulnai wundagin, wusun hor, wuyet wulan, zherin deleng etc.

Secondary names
Secondary names are formed from simple primary names by simply adding a modifier which further describes the plant. Among these types of names, simple primary names serve as a folk generic. For example, secondary names wulan suhai (Tamarix ramosissima) and imaan suhai (Tamarix leptostachys) are formed from the simple primary name suhai, and xihir boya (Glycyrrhiza uralensis) and horen boya (Sophora alopecuroides) are formed from boya. A word suhai serves as a folk generic and equals to the scientific genus Tamarix (Tamaricaceae). But a folk generic boya usually is used to name the plants which have fleshy roots, and it isn't specially appointed to a scientific genus. Among the plant folk names in the Ejina desert area, there are 10 folk generic names collected. The relationship between folk specific, folk generic and scientific species and family names can be seen in Table 2.

Discussion
The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. Ejina Mongolians’ folk botanical nomenclature and classification is an important part of their natural culture. This type of knowledge and culture has a great effect on their adaptation to the desert environment, utilization of plant resources and traditional biodiversity management on the community level. The collection and analysis of plant and animal folk names is very useful to the inventory of biodiversity, especially among the rapid rural appraisal (RRA) in studying biodiversity at the community level. Sometimes the folk names lead to finding new species records in a given area. In this study the plant folk name burgas was recorded in advance and based on the descriptions of the plant's char-

Table 2: Relationship between folk specific, folk generic and scientific species and family

Folk generic	Folk specific	Scientific species	Scientific family
bodurgan	bor bodurgan	Kalidium foliatum	Chenopodiaceae
	wulan bodurgan	Reaumuria sonangica	Tamaricaceae
boya	horen boya	Sophora alopecuroides	Leguminosae
	xihir boya	Glycyrrhiza uralensis	Leguminosae
goyo	chagan goyo	Cistanche sinensis	Orobanchaceae
	wulan goyo	Cistanche deserticola	Leguminosae
	herest hamhag,	Conispermum mongolicum	Leguminosae
	noosun hamhag	Bassa dasphylla	Leguminosae
hargan	altan hargan	Caragana leucophoea	Leguminosae
	munh hargan	Ammopiptanthus mongolicus	Leguminosae
harmag	chagan harmag	Nitraria sibirica	Zygophyllaceae
	nohai harmag	Lycium ruthenicum	Solanaceae
heres	heres	Halogoton glomeratus	Chenopodiaceae
	chgan heres	Conispermum mongolicum	Chenopodiaceae
	har heres	Kochia scoparia var. sieversiana	Chenopodiaceae
hucu	hucu	Cynanchum cathayense	Asclepiadaceae
	morin hucu	Convulvulus arvensis	Convolvulaceae
suhai	imaan suhai	Tamarix leptostachys	Tamaricaceae
	wulan suhai	Tamarix ramosissima	Tamaricaceae
xiralji	xiralji	Artemisia sonangica	Compositae
	wunurt xiralji	Artemisia caesipitosa	Compositae
acteristics and habitats specimens were collected afterwards by local herdsmen. The result of the identification of specimens shows that the scientific name of *burgas* is *Salix cheilophila* Schneid. Thus a folk name led to finding this species in this area for the first time.

Authors’ contributions
The field work for data collection and analysis were conducted by all authors. Manuscript preparation was by Khasbagan. All authors read and approved the final manuscript.

Acknowledgements
Financial support was from National Natural Science Foundation of China (No.30160018). I am most grateful to the Ejina Mongolians for their cooperation in the interview. I am also grateful to Ms Huhtala and Dr. Richard Isenberg for their help in improving the writing.

References
1. Berlin B: Ethnobiological Classification: Principles of Categorization of Plant and Animals in Traditional Societies New Jersey: Princeton University Press; 1992.
2. Berlin B: Folk systematics in relation to biological classification and nomenclature. Annual Review of Ecology and Systematics 1973, 4:211-295.
3. Berlin B, Breedlove DE, Raven PH: General Principles of Classification and Nomenclature in Folk Biology. Amer Anthro 1973, 75:42-214.
4. Berlin B, Raven PH, Breedlove D: Principles of Tzeltal Plant Classification: An Introduction to Botanical Ethnography of a Mayan Speaking Community in Highland Capas New York: Academic Press; 1974.
5. Khasbagan: A preliminary study on plants used as Mongolian traditional tea in Inner Mongolia. Acta Botanica Yunnanica 1990, 12(1):43-48. (in Chinese).
6. Khasbagan, Chen: The cultural importance of animals in traditional Mongolian plant nomenclature. In Culture and environment in Inner Asia.2 Society and culture Edited by: Humphrey C, Sneath D. Cambridge: The White Horse Press; 1996:25-29.
7. Khasbagan, Soyolt, Enhebayar: The Mongols traditional knowledge of regional plant species diversity: a case study of Arhorchin Mongolians in Inner Mongolia. In Biodiversity of the Mongolian Plateau and Adjacent Territory Edited by: Garndkhuu J. Ulaanbaatar: Mongolian Academy of Natural Sciences; 2001:202-207.
8. Dasman RF: The importance of cultural and biological diversity. In Biodiversity: culture, conservation, and Ecodevelopment Edited by: Oldfield ML, Alcorn JB. Boulder : Westview Press; 1991:7-15.
9. Pei SJ: Mountain Culture and Forest Resource Management of Himalaya. In Himalaya Ecosystem Edited by: Tewari DW. Indus: Intel Book Distribution; 1995:114-120.
10. Liu AZ, Pei SJ, Chen SY: Yi nationality’s sacred groves and biodiversity conservation in Chuxiong, Yunnan. Chinese journal of Applied Ecology 2000, 11(4):489-492. (in Chinese).
11. Pei SJ: Bio-cultural diversity and development of western China. Journal of Graduate School of the Chinese Academy of Sciences 2002, 19(2):107-115.
12. Editorial Board of the Annals of Ejina Banner: Annals of Ejina Banner Beijing: Local Chronicles Press; 1998.
13. Investigation group of the Chinese Academy of Sciences for Inner Mongolia and Ningxia: Vegetation of Inner Mongolia Beijing: Science Press; 1985:392-419. (in Chinese).
14. Ma YQ: Flora of Inner Mongolia Volume 5. 2nd edition. Hohhot: Inner Mongolia Peoples Press; 1998. (in Chinese).
15. Zhang YL: The geological study on the plant flora in Ejina county of Inner Mongolia. And Zone Research 1997, 14(3):23-32. (in Chinese).
16. Zhu ZY, Wen DS: A report of investigation on the vegetation and flora in Ejinaqi. Acta Scientarium Naturallium Universitatis Innermongolicae 1984, 15(4):417-431. (in Chinese).
17. Wang GX, Cheng GD: Land desertification status and developing trend in the Heihe river basin. Journal of desert Research 1990, 19(4):368-374. (in Chinese).
18. Wang GX, Cheng GD: Study on the landscape pattern of a desert-oasis ecological system: a spatial grid method and its application. Arid Zone Research 1999, 16(3):6-11. (in Chinese).
19. Wang GX, Cheng GD: The spatial pattern and influence caused by water resources in arid desert oasis. Acta Ecologica Sinica 2000, 20(3):363-368. (in Chinese).
20. Wang GX, Cheng GD, Shen YP: Dynamic tendency of arid oasis under the influence of water resources decrease—a case study of Ejina oasis in Heihe river basin. Chinese journal of Applied Ecology 2002, 13(5):564-568. (in Chinese).
21. Liang CZ, Liu ZL, Zhu ZY, Wang W: Specific diversity and distribution characteristics of annual synusia in Alashan desert. Chinese journal of Applied Ecology 2003, 14(4):897-903. (in Chinese).
22. Martin GJ: Ethnobotany: a methods manual London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras: Chapman & Hall; 1995.