Title
Complete genome sequence of Meiothermus silvanus type strain (VI-R2).

Permalink
https://escholarship.org/uc/item/1w07x0f0

Journal
Standards in genomic sciences, 3(1)

ISSN
1944-3277

Authors
Sikorski, Johannes
Tindall, Brian J
Lowry, Stephen
et al.

Publication Date
2010-07-29

DOI
10.4056/sigs.1042812

Peer reviewed
Complete genome sequence of *Meiothermus silvanus* type strain (VI-R2T)

Johannes Sikorski¹, Brian J Tindall¹, Stephen Lowry², Susan Lucas², Matt Nolan², Alex Copeland², Tijana Glavina Del Rio³, Hope Tice², Jan-Fang Cheng², Cliff Han²³, Sam Pitluck², Konstantinos Liolios², Natalia Ivanova², Konstantinos Mavromatis², Natalia Mikhailova², Amrita Pati², Lynne Goodwin²³, Amy Chen¹, Krishna Palaniappan¹, Miriam Land²⁵, Loren Hauser²³, Yun-Juan Chang²³, Cynthia D. Jeffries²³, Manfred Rohde⁶, Markus Göker¹, Tanja Woyke², James Bristow², Jonathan A. Eisen²⁷, Victor Markowitz⁴, Philip Hugenholtz², Nikos C. Kyrpides², Hans-Peter Klenk¹, and Alla Lapidus²*

1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
2 DOE Joint Genome Institute, Walnut Creek, California, USA
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
7 University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Alla Lapidus

Keywords: thermophilic, aerobic, biofouler, colored biofilm in paper industry, Gram-negative, *Thermales, Deinococci*, GEBA

Meiothermus silvanus (Tenreiro et al. 1995) Nobre et al. 1996 belongs to a thermophilic genus whose members share relatively low degrees of 16S rRNA gene sequence similarity. *Meiothermus* constitutes an evolutionary lineage separate from members of the genus *Thermus*, from which they can generally be distinguished by their slightly lower temperature optima. *M. silvanus* is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. This is the second completed genome sequence of a member of the genus *Meiothermus* and only the third genome sequence to be published from a member of the family *Thermaceae*. The 3,721,669 bp long genome with its 3,667 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain VI-R2T (T (= DSM 9946 = ATCC 700542 = BCRC 17112) was first described as *Thermus silvanus* by Tenreiro et al. in 1995 [1]. One year later it was formally named and transferred from the genus *Thermus* into the then novel genus *Meiothermus* by Nobre et al. [2]. Currently, there are nine species within the genus *Meiothermus* [3,4]. The genus name derives from the Greek words ‘meion’ and ‘thermos’ meaning ‘lesser’ and ‘hot’ to indicate an organism in a less hot place [2,3]. The species name was given in honor of Manuel T. Silva, a Portuguese microbiologist and immunologist [1]. Strain VI-R2T was isolated from the hot spring (vent temperature, 56°C; pH 8.9) located at the end of a 450 m tunnel and from thermal water (temperature 33°C; pH 8.8) piped to a spa at Vize-lia in northern Portugal [1]. Members of the genus *Meiothermus* have been isolated from natural hot springs and artificial thermal environments [2,5] in Russia [6], Central France [7], Northern and Central Portugal [1,8], North-Eastern China [9], Northern Taiwan [10], Iceland [11] and the Azores [4]. Interestingly, the genus *Meiothermus* is heterogeneous with respect to pigmentation. The yellow pigmented species also form
a distinct group on the basis of the 16S rRNA gene sequence similarity, whereas the red/orange pigmented strains form two groups, one comprising *M. silvanus* and the other the remaining species [8,9]. Like all members of the class *Deinococci*, the lipid composition of the cell membrane of members of the genus *Meiothermus* contains unusual and characteristic structures.

M. silvanus is well known to form colored biofilms in the paper industry, which makes this species an economic threat [12,13]. *M. silvanus* uses thread-like organelles for adhesion and biofilm formation to grow on stainless steel [14]. However, coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of *M. silvanus* [14]. Other strategies to combat *M. silvanus* in the paper industry include electrochemical inactivation (oxidation) using different levels of chloride concentration [15]. Here, the inactivation was mainly due to the electrochemically generated chlorine/hypochlorite [15]. A patent based on different natural plant extracts inhibiting biofilm formation of thermophilic species in paper or board machines, amongst them *M. silvanus*, has been recently issued [16].

The 16S rRNA genes of the seven other type strains in the genus *Meiothermus* share between 88.5% (*Meiothermus chliarophilus* [1]) and 89.8% (*Meiothermus cerbereus* [11]) sequence identity with strain VI-R2\(^T\), whereas the other type strains from the family *Thermaceae* share 85.8 to 87.8% sequence identity [17]. In addition to being found on paper and board machines [12] uncultured clone 16S rRNA gene sequences very similar to *M. silvanus* VI-R2\(^T\) (X84211) have also been detected in the gut of an invasive wood-boring beetle (98% identity, EU148672) [18] and in seawater adjacent to a *Pacillopora meandrina* coral colony at Palmyra Atoll (99% identity, EU249942). Environmental samples and metagenomic surveys do not surpass 84% sequence similarity to the 16S rRNA gene sequence of strain VI-R2\(^T\) (status May 2010). Here we present a summary classification and a set of features for *M. silvanus* VI-R2\(^T\), together with the description of the complete genomic sequencing and annotation.

Classification and features

A physiological description based on five strains of the species is given by Tenreiro *et al.* [1]. The cells are described as Gram-negative nonmotile rods with variable lengths and 0.5 to 0.8 µm in width (Table 1 and Figure 1). On *Thermus* medium colonies are orange-red pigmented and 0.5 to 1.2 µm in diameter after 72 h of growth [1]. The optimum pH is between 8.0 and 8.5; growth does not occur at pH 5.0 or 10.0. Yeast extract is required for growth [1]. All strains are oxidase positive and catalase negative. Nitrate is reduced to nitrite. Strain VI-R2\(^T\) is negative for the enzyme α-galactosidase but positive for β-galactosidase. Casein, elastin, gelatin, hide powder azure, and starch are degraded. The hydrolysis of fibrin is weak or negative. Strain VI-R2\(^T\) utilizes D-glucose, D-fructose, D-mannose, D-galactose, D-xylose, maltose, lactose, D-melibiose, glycerol, D-mannitol, D-sorbitol, ribitol, pyruvate, L-glutamate, L-asparagine, L-serine, L-glutamine, and L-proline [1]. Strain VI-R2\(^T\) does not utilize L-arabinose, L-rhamnose, sucrose, D-cellobiose, D-trehalose, D-raffinose, meso-erythritol, galactitol, *myo*-inositol, acetate, succinate, citrate, salicin, or acetamide [1]. Further metabolic traits are listed elsewhere [7]. Also, strain VI-R2\(^T\) produces polysaccharide inclusions [1].

![Figure 1. Scanning electron micrograph of *M. silvanus* VI-R2\(^T\).](http://standardsingenomics.org)
Figure 2 shows the phylogenetic neighborhood of *M. silvanus* VI-R2T in a 16S rRNA-based tree. The sequences of the two 16S rRNA gene copies in the genome of *M. silvanus* VI-R2T do not differ from each other, but differ by six nucleotides from the previously published 16S rRNA sequence from DSM 9946 (X842111).

Chemotaxonomy

Thin-layer chromatography of the polar lipids from *M. silvanus* revealed a single phospholipid (PL-2) and two prominent glycolipids GL-la and GL-lb [37]. Although the structure of the major phospholipid has not been investigated from *M. silvanus* it has the same Rf value as the 2'-O-(1,2-diacyl-sn-glycero-3-phospho)-3'-O-(α-N-acetyl-glucosaminyl)-N-glyceroyl alkylamine from *M. ruber* [38]. The glycolipids are derivatives of a Glcp->Galp->GalNAcyl->Glcp->diacyl glycerol [37].

Based on mass spectral data it appears that there may be three distinct derivatives, differing in the fatty acid amide linked to the galactosamine [37]. These may be divided into one compound containing exclusively 2-hydroxylated fatty acids (mainly 2-OH iso-17:0) and a mixture of two compounds that cannot be fully resolved by thin layer chromatography, carrying either 3-hydroxylated fatty acids or unsubstituted fatty acids. The basic glycolipid structure dihexosyl – N-acyl-hexosaminyl – hexosyl – diacylglycerol is a feature common to all members of the genera *Thermus* and *Meiothermus* examined to date. There is currently no evidence that members of the family *Thermaceae* (as currently defined) produce significant amounts of polar lipids containing only two aliphatic side chains. The consequences of having polar lipids containing three aliphatic side chains on membrane structure has yet to be examined. Such peculiarities also indicate the value of membrane

Figure 2. Phylogenetic tree highlighting the position of *M. silvanus* VI-R2T relative to the type strains of the other species within the genus and to the other type strains within the family *Thermaceae*. The tree was inferred from 1,442 aligned characters [30,31] of the 16S rRNA gene sequence under the maximum likelihood criterion [32] and rooted in accordance with the current taxonomy [33]. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 900 bootstrap replicates [34] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [35] are shown in blue, published genomes in bold, i.e. *Thermus ther- mophilus* (AP008226) and the type species of the genus, *M. ruber* [36].
composition in helping to unravel evolution at a cellular level [36]. The major fatty acids of the total polar lipids are anteiso-C_{15:0} (22.4%), iso-C_{15:0} (16.8%) and iso-C_{18:0} (12.2%), followed by iso-C_{17:0}-2OH (10.5%) and iso-C_{17:0} and anteiso-C_{17:0} (each 8.5%) [37]. The glycolipid GL-la is characterized by a large amount of the fatty acid iso-C_{17:0}-2OH (19.2%), which is nearly completely absent from GL-lb and the phospholipid PL-2 [37]. Menaquinone 8 was the only respiratory lipoquinone detected in all strains [1]. The structure of the red pigment has not been characterized in contrast to that of *M. ruber* [39].

Table 1. Classification and general features of *M. silvanus* VI-R2 according to the MIGS recommendations [19]

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	Bacteria	TAS [20]
	Phylum	‘Deinococcus -Thermus’	TAS [21,22]
	Class	Deinococci	TAS [23-25]
	Order	Thermales	TAS [26,27]
	Family	Thermaceae	TAS [24,27]
	Genus	Meiothermus	TAS [2,7]
	Species	*Meiothermus silvanus*	TAS [1,6]
	Type strain VI-R2		TAS [6]
	Gram stain	negative	TAS [1]
	Cell shape	rod	TAS [1]
	Motility	nonmotile	TAS [1]
	Sporulation	no	TAS [1]
	Temperature range	40°C–65°C	TAS [1]
	Optimum temperature	55°C	TAS [1]
	Salinity	does not grow with 1% or more NaCl	TAS [1]
MIGS-22	Oxygen requirement	aerobic	TAS [1]
	Carbon source	a diverse set of sugars	TAS [1]
	Energy source	carbohydrates	TAS [1]
MIGS-6	Habitat	hot springs	TAS [1]
MIGS-15	Biotic relationship	free-living	TAS [1]
MIGS-14	Pathogenicity	not reported	
	Biosafety level	1	TAS [28]
	Isolation	hot spring	TAS [1]
MIGS-4	Geographic location	Vizela, Portugal	TAS [1]
MIGS-5	Sample collection time	1995 or before	TAS [1]
MIGS-4.1	Latitude	41.38	
MIGS-4.2	Longitude	8.32	NAS
MIGS-4.3	Depth	unknown	
MIGS-4.4	Altitude	157 m	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [29]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.
Meiothermus silvanus type strain (VI-R2T)

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [40], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [41]. The genome project is deposited in the Genome OnLine Database [35] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Table 2. Genome sequencing project information
MIGS ID
MIGS-31
MIGS-28
MIGS-29
MIGS-31.2
MIGS-30
MIGS-32
INS DC ID
Genbank Date of Release
GOLD ID
NCBI project ID
Database: IMG-GEBA
MIGS-13
Project relevance

Growth conditions and DNA isolation

M. silvanus VI-R2T, DSM 9946, was grown in DSMZ medium 86 (Castenholz Medium) [42] at 50°C. DNA was isolated from 0.5-1 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) following the standard protocol as recommended by the manufacturer, with modifications to account for overlap redundancy and adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the Arachne assembler. Possible misassemblies were corrected and gaps between contigs were closed editing in Consed, custom primer walks from sub-clones or PCR products. A total of 323 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. 9,068,515 Illumina reads were used to improve the final consensus quality using an in-house developed tool (the Polisher) [43]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 se-
sequencing platforms provided 26.9× coverage of the genome. The final assembly contains 42,181 Sanger reads and 335,557 pyrosequencing reads.

Genome annotation

Genes were identified using Prodigal [44] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [45]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [46].

Genome properties

The genome consists of a 3,249,394 bp long chromosome, and two plasmids of 347,854 bp and 124,421 bp lengths, respectively, with a total G+C content of 62.7% (Figure 3 and Table 3). Of the 3,722 genes predicted, 3,667 were protein-coding genes, and 55 RNAs; 158 pseudogenes were also identified. The majority of the protein-coding genes (64.5%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

![Figure 3](http://standardsingenomics.org)

Figure 3. Graphical circular map of the genome and the larger of the two plasmids (not drawn to scale). From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	3,721,669	100.00%
DNA Coding region (bp)	3,283,226	88.22%
DNA G+C content (bp)	2,334,056	62.72%
Number of replicons	3	
Extrachromosomal elements	2	
Total genes	3,722	100.00%
RNA genes	55	1.48%
rRNA operons	2	
Protein-coding genes	3,667	98.52%
Pseudo genes	158	4.25%
Genes with function prediction	2,400	64.48%
Genes in paralog clusters	740	19.89%
Genes assigned to COGs	2,530	67.97%
Genes assigned Pfam domains	2,797	75.15%
Genes with signal peptides	1,249	33.56%
Genes with transmembrane helices	796	21.39%
CRISPR repeats	16	

Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	151	5.4	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	166	6.0	Transcription
L	195	7.0	Replication, recombination and repair
B	2	0.1	Chromatin structure and dynamics
D	33	1.2	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	43	1.6	Defense mechanisms
T	120	4.3	Signal transduction mechanisms
M	128	4.6	Cell wall/membrane/envelope biogenesis
N	26	0.9	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	53	1.9	Intracellular trafficking, secretion, and vesicular transport
O	107	5.5	Posttranslational modification, protein turnover, chaperones
C	168	6.1	Energy production and conversion
G	218	7.9	Carbohydrate transport and metabolism
E	292	10.5	Amino acid transport and metabolism
F	85	3.1	Nucleotide transport and metabolism
H	110	4.0	Coenzyme transport and metabolism
I	88	3.2	Lipid transport and metabolism
P	152	5.5	Inorganic ion transport and metabolism
Q	52	1.9	Secondary metabolites biosynthesis, transport and catabolism
R	362	13.0	General function prediction only
S	227	8.2	Function unknown
-	1,192	32.0	Not in COGs

Meiothermus silvanus type strain (VI-R2T)
Acknowledgements
We would like to gratefully acknowledge the help of Helga Pomrenke for growing M. silvanus cultures and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2 and SI 1352/1-2.

References
1. Tenreiro S, Nobre MF, da Costa MS. Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int J Syst Bacteriol 1995; 45:633-639. PubMed doi:10.1099/00207713-45-4-633
2. Nobre MF, Trüper HG, Da Costa MS. Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. Int J Syst Bacteriol 1996; 46:604-606. doi:10.1099/00207713-46-2-604
3. Euzéby JP. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int J Syst Bacteriol 1997; 47:590-592. PubMed doi:10.1099/00207713-47-2-590
4. Albuquerque L, Rainey FA, Nobre MF, da Costa MS. Meiothermus granaticius sp. nov., a new slightly thermophilic red-pigmented species from the Azores. System Appl Microbiol 2010; Epub ahead of print May 6, 2010
5. Masurat P, Fru EC, Pedersen K. Identification of Meiothermus as the dominant genus in a storage system for spent nuclear fuel. J Appl Microbiol 2005; 98:727-740. PubMed doi:10.1111/j.1365-2672.2004.02519.x
6. Loginova LG, Egorova LA, Golovacheva RS, Seregina LM. Thermus ruber sp. nov., nom. rev. Int J Syst Bacteriol 1984; 34:498-499. doi:10.1099/00207713-34-4-498
7. Albuquerque L, Ferreira C, Tomaz D, Tiago I, Veríssimo A, da Costa MS, Nobre MF. Meiothermus rufus sp. nov., a new slightly thermophilic red-pigmented species and emended description of the genus Meiothermus. Syst Appl Microbiol 2009; 32:306-313. PubMed doi:10.1016/j.syapm.2009.05.002
8. Pires AL, Albuquerque L, Tiago I, Nobre MF, Empadinhas N, Veríssimo A, da Costa MS. Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiol Lett 2005; 245:39-45. PubMed doi:10.1016/j.femsle.2005.02.011
9. Zhang XQ, Zhang WJ, Wei BP, Xu XW, Zhu XF, Wu M. Meiothermus cateniformans sp. nov., a slightly thermophilic species from north-eastern China. Int J Syst Evol Microbiol 2010; 60:840-844. PubMed doi:10.1099/ijs.0.007914-0
10. Chen MY, Lin GH, Lin YT, Tsay SS. Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int J Syst Evol Microbiol 2002; 52:1647-1654. PubMed doi:10.1099/ijs.0.02189-0
11. Chung AP, Rainey F, Nobre MF, Burghardt J, Costa MSD. Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Bacteriol 1997; 47:1225-1230. PubMed doi:10.1099/00207713-47-4-1225
12. Ekman J, Kosonen M, Jokela S, Kolar M. Korhonen PI, Salkinoja-Salonen M. Detection and quantitation of colored deposit-forming Meiothermus spp. in paper industry processes and end products. J Ind Microbiol Biotechnol 2007; 34:203-211. PubMed doi:10.1007/s10295-006-0187-z
13. Kolar M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS. Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 2003; 30:225-238. PubMed
14. Raulio M, Järn M, Ahola J, Peltonen J, Rosenholm J, Tervakangas S, Kolehmainen J, Ruokolainen T, Narko P, Salkinoja-Salonen M. Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods. J Ind Microbiol Biotechnol 2008; 35:751-760. PubMed doi:10.1007/s10295-008-0343-8

http://standardsingenomics.org
Meiothermus silvanus type strain (VI-R2T)

15. Särkkä H, Vepsäläinen M, Pulliainen M, Sillanpää M. Electrochemical inactivation of paper mill bacteria with mixed metal electrode oxide. *J Hazard Mater* 2008; 156:208-213. PubMed doi:10.1016/j.jhazmat.2007.12.011

16. Kolari M, Salkinoja-Salonen M, Latikainen H, Tammela P, Vuorela P, Vaatnen P, Hatunen Tj. 2006. Inhibiting biofilm formation by thermophilic microbes in paper and board machines. United States Patent.

17. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. *Int J Syst Evol Microbiol* 2007; 57:2259-2261. PubMed doi:10.1099/ijs.0.64915-0

18. Vasanthakumar A, Handelsman J, Schloss PD, Bauer LS, Rafa KF. Gut microbiota of an invasive subcortical beetle, *Agrilus planipennis* Fairmaire, across various life stages. *Environ Entomol* 2008; 37:1344-1353. PubMed doi:10.1603/0046-225X(2008)37[1344:GMOAIS]2.0.CO;2

19. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angioli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; 26:541-547. PubMed doi:10.1038/nbt1360

20. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains *Archaea, Bacteria, and Eucarya*. *Proc Natl Acad Sci USA* 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

21. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzéby J, Tindall BJ. Taxonomic outline of the *Bacteria* and *Archaea*, Release 7.7 March 6, 2007. Part 2 - The Bacteria: Phyla "*Aquificae*, "*Thermotogae*", "*Deinococcus-Thermus*", "*Chrysiogenetes*", "*Chloroflexi*", "*Thermomicrobia*", "*Nitrospira*", "*Delemirel bacteres*", "*Cyanobacteria*", and "*Chlorobi*". http://www.taxonomicoutline.org/

22. Weisburg WG, Giovannoni SJ, Woese CR. The *Deinococcus-Thermus* phylum and the effect of rRNA composition on phylogenetic tree construction. *Syst Appl Microbiol* 1989; 11:128-134. PubMed

23. Garrity GM, Holt JG. Class I. *Deinococcus* class. nov. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 395.

24. List Editor. Validation List no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. *Int J Syst Evol Microbiol* 2002; 52:685-690. PubMed doi:10.1099/ijs.0.02358-0

25. Garrity GM, Holt JG. Class I. *Deinococcus* class. nov. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer New York, 2001, p.395.

26. Rainey FA, da Costa MS. Order II. *Thermales* ord. nov. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematics Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 403.

27. daCosta MS, Rainey FA. Family I. *Thermaceae* fam. nov. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematics Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 403-404.

28. Classification of. *Bacteria* and *Archaea* in risk groups. [http://www.baua.de TRBA 466](http://www.baua.de).

29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. *Nat Genet* 2000; 25:25-29. PubMed doi:10.1038/75556

30. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; 17:540-552. PubMed

31. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

32. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Syst Biol* 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

33. Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? *Lect Notes Comput Sci* 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

34. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? *Lect Notes Comput Sci* 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

45 Standards in Genomic Sciences
35. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markovitzz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346-D354. PubMed doi:10.1093/nar/gkp848

36. Tindall BJ, Sikorski J, Lucas S, Goltsman E, Copeland A, Glavina Del Rio T, Nolan M, Tica H, Cheng JF, Han C, et al. Complete genome sequence of *Meiothermus ruber* type strain (21T). Stand Genomic Sci 2010; (this issue).

37. Ferreira AM, Wait R, Nobre MF, da Costa MS. Characterization of glycolipids from *Meiothermus* spp. Microbiology 1999; 145:1191-1199. PubMed doi:10.1099/13500872-145-5-1191

38. Yang YL, Yang FL, Jao SC, Chen MY, Tsay SS, Zou W, Wu SH. Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles *Thermus* and *Meiothermus*. J Lipid Res 2006; 47:1823-1832. PubMed doi:10.1194/jlr.M600034-JLR200

39. Burgess ML, Barrow KD, Gao C, Heard GM, Glenn D. Carotenoid glycoside esters from the thermophilic bacterium *Meiothermus ruber*. J Nat Prod 1999; 62:859-863. PubMed doi:10.1021/np980573d

40. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

41. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea*. Nature 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

42. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.

43. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: an effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

44. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

45. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. Nat Methods 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

46. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393