A surface-potential-based drain current model suitable for poly-Si thin film transistors with thin body and thin gate oxide

Zhen Zhu1,2 and Junhao Chu1

1 Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People’s Republic of China

2 School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou 215104, People’s Republic of China

E-mail: manuscript.z.zhu@gmail.com

Abstract. Polycrystalline silicon thin film transistors with thin body and thin gate oxide can realize high performance and relative low power consumption simultaneously. Considering their wide applications, a surface-potential-based drain current model suitable for devices with the above structure is derived on charge sheet approximation considering the double exponential trap state distribution, the interface charge and the effect of the back surface potential. According to the calculated areal density of the charges under the gate oxide, the ionized acceptors and the trapped charges, the areal density of the inversion charge is obtained. Under several mathematical treatments, a surface-potential-based drain current model suitable for devices with thin body and thin gate oxide is developed accompanying the quantitative model-validity conditions for low and high state densities respectively. Under high and low state densities respectively, this proposed surface-potential-based drain current model is verified by 2D-device simulation in devices’ transfer characteristics under various drain biases in the situations without or with interface charge.

1. Introduction
Polycrystalline silicon thin film transistors (poly-Si TFTs) with thin body and thin gate oxide can realize high performance and relative low power consumption simultaneously [1]. Considering their wide applications, the drain current model suitable for devices with the above structure is in dire need of being developed. As the new-generation approach, the surface-potential-based modeling strategy [2, 3] originating from the Pao-Sah model [4] takes the lead position in compact MOSFET modeling. Meanwhile, charge sheet approximation [5] considering both drift and diffusion components with the merit of its simplification and convenience for calculation is widely adopted in device modeling. Therefore, based on the charge sheet approximation, a surface-potential-based drain current model suitable for poly-Si TFTs with thin body and thin gate oxide is to be derived in this work.

2. Model formulation
For n-type fully-depleted poly-Si TFT with the channel length L and the channel width W, it is assumed with the very thick insulator substrate. The z direction is perpendicular to the poly-Si/oxide front interface where z is 0. The y direction is along the channel where $y=0$ at the source end and $y=L$ at the drain end. For devices’ turn-on operation, only the tail and deep acceptor-like trap states in the
bulk are taken into account with the double exponential distribution [6]. Moreover, the role of the interface charge is considered. By calculating the areal density of the trapped charges with the assumed electrostatic potential distribution as

$$\psi = \psi_{sf} + \frac{\psi_{sb} - \psi_{df}}{t_{si}} z$$

where ψ_{sf} is the front surface potential, ψ_{sb} is the back surface potential and t_{si} is the thickness of the poly-Si layer, the areal density of the charges under the gate oxide and the ionized acceptors respectively, the areal density of the inversion charge is obtained as

$$Q_i = -C_{ox} \{ (V_b - V_{fb} - \psi_{sf} - qN_{a0} t_{si}) - \frac{t_{si}}{C_{ox}} \} \frac{N_{deep} K T_d}{\psi_{sf} - \psi_{sb}} \exp\left(\frac{\psi_{sf} - \phi_f - V_c - E_g}{2q}\right)[1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{K T_d / q}\right)]$$

$$+ \frac{N_{tail} q \phi_f}{\alpha (\psi_{sf} - \psi_{sb})} \exp\left(\frac{\psi_{sf} - \phi_f - V_c - E_g}{2q}\right)[1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{\phi_f}\right)]\}$$

where C_{ox} is the gate oxide capacitance per unit area, V_b is the gate voltage, V_{fb} is the flat band voltage, q is the electron charge, N_{a0} is the active acceptor concentration, $N_{deep} = g_a \frac{K \pi T}{\sin\left(\frac{\pi T}{T_d}\right)}$ where g_a is the deep state density at the conduction band edge, T is the absolute temperature, K is the Boltzmann constant and T_d is the characteristic temperature of the deep states, $N_{tail} = g_s KT_s\left[\frac{2 \pi - 4}{3} \left(\frac{T}{T_i}\right)^2 + (6 - 2 \pi) \frac{T}{T_i} + \frac{4 \pi - 8}{3}\right]$ where g_s is the tail state density at the conduction band edge and T_i is the characteristic temperature of the tail states, $\alpha = -\frac{4}{15} \left(\frac{T}{T_i}\right)^2 + \frac{T}{T_i} + \frac{1}{15}$, ϕ_f is the thermal voltage, ϕ_f is the bulk Fermi potential, V_c is the channel potential and E_g is the band gap.

Define $A = V_b - V_{fb} - \psi_{sf} - qN_{a0} t_{si}$ and $B = \frac{N_{deep} K T_d}{\psi_{sf} - \psi_{sb}} \exp\left(\frac{\psi_{sf} - \phi_f - V_c - E_g}{2q}\right)[1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{K T_d / q}\right)]$

$$+ \frac{N_{tail} q \phi_f}{\alpha (\psi_{sf} - \psi_{sb})} \exp\left(\frac{\psi_{sf} - \phi_f - V_c - E_g}{2q}\right)[1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{\phi_f}\right)]$. Therefore, (1) can be rewritten as

$$Q_i = -C_{ox} (A - \frac{t_{si}}{C_{ox}} B)$$

(2)

And it is obviously that

$$B < \frac{N_{deep} K T_d}{\psi_{sf} - \psi_{sb}} [1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{K T_d / q}\right)] + \frac{N_{tail} q \phi_f}{\alpha (\psi_{sf} - \psi_{sb})} [1 - \exp\left(\frac{\psi_{sb} - \psi_{df}}{\phi_f}\right)]$$

(3)

When devices are with low trap densities, the depletion approximation model is adopted [7]. Therefore, the relationship between the front and back surface potential can be expressed as $\psi_{sf} - \psi_{sb} = \frac{q}{2\varepsilon_{si}} N_{a0} t_{si}^2$ where ε_{si} is the silicon permittivity. Substituting this into (3), it can be obtained that
\[B < \frac{2e_{e_s}N_{\text{dep}}KT_d}{qN_{\text{sta}}t_{st}^2} [1 - \exp(-q^2N_{\text{sta}}t_{st}^2)] + \frac{2e_{e_s}N_{\text{tail}}\phi_i}{2e_{e_s}\phi_i} [1 - \exp(-qN_{\text{sta}}t_{st}^2)] = DL \] (4).

When devices are with high trap densities, the \(\psi_{sb} = 0 \) V model is used [7]. So (3) turns into
\[B < \frac{N_{\text{dep}}KT_d}{\psi_{sf}} [1 - \exp(-\frac{-\psi_{sf}}{KT_d/q})] + \frac{N_{\text{tail}}q\phi_i}{\alpha\psi_{sf}} [1 - \exp(\alpha - \frac{-\psi_{sf}}{\phi_i})] < \frac{N_{\text{dep}}KT_d}{\psi_{sf}} + \frac{N_{\text{tail}}q\phi_i}{\alpha\psi_{sf}} \]
\[\leq \frac{N_{\text{dep}}KT_d}{\psi_{sf}(0)} + \frac{N_{\text{tail}}q\phi_i}{\alpha\psi_{sf}(0)} = DH \] (5).

In the meanwhile, it can be obtained that \(A_{\text{min}} = V_g - V_{fb} - \Psi_{sf}(L) - qN_{\text{sta}}t_{st} \frac{t_{st}}{C_{ox}} \). When devices are with low trap densities, if \(\beta A_{\text{min}} \geq \frac{t_{st}}{C_{ox}}DL \) where \(\beta \) is chosen as 0.2, i.e.
\[t_{st} \frac{t_{st}}{C_{ox}} \leq \frac{\beta A_{\text{min}}e_{e_s}}{DL} \] (6),
or when devices are with high trap densities, if \(\beta A_{\text{min}} \geq \frac{t_{st}}{C_{ox}}DH \), i.e.
\[t_{st} \frac{t_{st}}{C_{ox}} \leq \frac{\beta A_{\text{min}}e_{e_s}}{DH} \] (7),
the term \(\frac{t_{st}}{C_{ox}}B \) is negligible compared with the term \(A \) in (2). Therefore, when the condition (6) for devices with low trap densities or the condition (7) for devices with high trap densities is satisfied, (2) turns into
\[Q = -C_{ox}(V_g - V_{fb} - \Psi_{sf}(L) - qN_{\text{sta}}t_{st} \frac{t_{st}}{C_{ox}}) \] (8).

So the drain current based on charge sheet approximation, considering both drift and diffusion currents, can be written as
\[I = \frac{W\mu C_{ox}}{L} \left\{ (V_g - V_{fb} + \phi_i - qN_{\text{sta}} \frac{t_{st}}{C_{ox}}) [\Psi_{sf}(L) - \Psi_{sf}(0)] - \frac{1}{2} [\Psi_{sf}^2(L) - \Psi_{sf}^2(0)] \right\} \] (9)
where \(\mu \) is the channel mobility assumed to be constant.

Obviously, condition (6) or (7) is more likely to be satisfied when devices are with thin body and thin gate oxide. So (9) is a surface-potential-based drain current model suitable for poly-Si TFTs with thin body and thin gate oxide accompanying the quantitative model-validity conditions (6) for low state densities and (7) for high state densities. And as the surface potential is concerned, it can be calculated by the front and back surface potential equation [8]
\[\psi_{sf} = V_g - V_{fb} - \frac{1}{C_{ox}} \left\{ 2qe_{e_s}N_{\text{sta}}(\psi_{sf} - \psi_{sb}) + N_{\text{sta}} \phi_i \exp(-V_c - 2\phi_i) \right\} \exp(\frac{\psi_{sf}}{\phi_i}) - \exp(\frac{\psi_{sb}}{\phi_i}) \]
\[+ N_{\text{dep}} \frac{KT_d}{q} \exp(-\frac{-\phi_{fo} - V_c - \frac{E_g}{2q}}{KT_d/q}) \left\{ \exp(\frac{\psi_{sf}}{KT_d/q}) - \exp(\frac{\psi_{sb}}{KT_d/q}) \right\} + N_{\text{tail}} \frac{\phi_i}{\alpha} \exp(\alpha - \frac{-\psi_{sf} - V_c - \frac{E_g}{2q}}{\phi_i}) \psi_{sf} - \psi_{sb} - V_c - \frac{E_g}{2q} \}
\[- \exp(\alpha - \frac{-\psi_{sf} - V_c - \frac{E_g}{2q}}{\phi_i}) \phi_i \}
\] (10)
where \(Q_{ic} \) is the areal interface charge density, and the coupling effect of the front and back surface potentials [8].
\[
\psi_{ob} = \psi_{of} - \frac{q}{2e\alpha} N_{i\alpha} \cdot \frac{t_s}{e_{ox}}^2 - \frac{q}{e_{ox}} \left(\frac{t_s}{e_{ox}} \right)^2 (N_i^2 \phi_i^2 \exp(\psi_{of}) - \exp(\psi_{of})) + \frac{N_i^2 K T_o}{q} \left(\exp\left(\frac{\psi_{of}}{K T_o/q}\right) - \exp\left(\frac{\psi_{ob}}{K T_o/q}\right) \right) + N_s \phi_s^2 \exp(\psi_{of}) - \exp(\psi_{of}) \right]
\]

\[
+ N_s \phi_s^2 \exp(\psi_{of}) - \exp(\psi_{of}) \right)
\]

\[
\psi_{ob} = \psi_{of} - \frac{q}{2e\alpha} N_{i\alpha} \cdot \frac{t_s}{e_{ox}}^2 - \frac{q}{e_{ox}} \left(\frac{t_s}{e_{ox}} \right)^2 (N_i^2 \phi_i^2 \exp(\psi_{of}) - \exp(\psi_{of})) + \frac{N_i^2 K T_o}{q} \left(\exp\left(\frac{\psi_{of}}{K T_o/q}\right) - \exp\left(\frac{\psi_{ob}}{K T_o/q}\right) \right) + N_s \phi_s^2 \exp(\psi_{of}) - \exp(\psi_{of}) \right]
\]

where \(N_i = N_{i\alpha} \cdot \exp\left(-V_i - \frac{2\phi_{\alpha}}{2q}\right) \), \(N_s = N_{s\alpha\alpha} \cdot \exp\left(\frac{-\phi_{\alpha} - V_s - \frac{E_{\alpha}}{2q}}{K T_o/q}\right) \), and \(N_i = N_{i\alpha} \cdot \exp\left(\frac{-\phi_{\alpha} - V_i - \frac{E_{\alpha}}{2q}}{K T_o/q}\right) \).

By solving (9), (10) and (11), the drain current can be obtained.

3. Result and discussion

For n-type fully-depleted poly-Si TFTs with the very thick insulator substrate, including both tail and deep acceptor-like trap states in the bulk and the interface charge, the above proposed surface-potential-based drain current model (9) suitable for devices with thin body and thin gate oxide is compared with the simulation results of the two-dimensional-device simulator MEDICI [9] from the transfer characteristics of both low and high state densities for without or with interface charge situation respectively. The devices’ parameters used in the model are shown in Table 1.

Figure 1 to figure 4 show transfer characteristics of devices with the low and high state densities under different drain biases when \(Q_{ox} = 0 \) C/cm\(^2\) and \(Q_{ox} = 1.6 \times 10^8 \) C/cm\(^2\) respectively. In figure 1 and figure 3, \(g_d = 1 \times 10^{18} \) cm\(^3\)eV\(^{-1}\) and \(g_d = 5 \times 10^{18} \) cm\(^3\)eV\(^{-1}\) for low state density. In figure 2 and figure 4, \(g_d = 2 \times 10^{19} \) cm\(^3\)eV\(^{-1}\) and \(g_d = 1 \times 10^{20} \) cm\(^3\)eV\(^{-1}\) for high state density. In figure 1 to figure 4, when the gate voltage varies from 2 V to 20 V, the drain current model (9) matches the 2D-device simulation under \(V_d = 0.1 \) V, 0.5 V and 1 V respectively.

4. Conclusion

A surface-potential-based drain current model suitable for poly-Si TFTs with thin body and thin gate oxide is proposed considering the double exponential trap state distribution, the interface charge and the effect of the back surface potential. According to the calculated areal density of the charges under the gate oxide, the ionized acceptors and the trapped charges, the areal density of the inversion charge is obtained. Under several mathematical treatments, a surface-potential-based drain current model suitable for devices with thin body and thin gate oxide is developed based on charge sheet approximation, accompanying the quantitative model-validity conditions for low and high state densities respectively. Under high and low state densities respectively, this proposed surface-potential-based drain current model is verified by 2D-device simulation in devices’ transfer characteristics under various drain biases in the situations without or with interface charge.

References

[1] Chen YH, Ma WCY and Chao TS 2015 Semicond. Sci. Technol. 30 105017
[2] Miura-Mattausch M, Ueno H, Tanaka M et al. 2002 IEDM 109-12
[3] Gildenblat G, Li X, Wu W et al. 2006 IEEE Trans. Electron Devices 53 1979-93
[4] Pao H C and Sah C T 1966 Solid-State Electron. 9 927-37
[5] Brews J R 1978 Solid-State Electron. 21 345-55
[6] Hack M, Shaw J G, LeComber P G et al. 1990 Jpn. J. Appl. Phys. 29 L2360-2
[7] Tsuji H, Kuzuoka T, Kishida Y et al. 2008 Jpn. J. Appl. Phys. 47 7798-802
[8] Zhu Z and Chu J, submitted
[9] Taurus Medici 2010 Medici User Guide, Version D-2010.03 (Synopsys Inc.), chapter15:15-(1-7)
Table 1. Values of parameters used in the model.

Symbol	Parameter	Value
N_{a0}	active acceptor concentration	10^{16} cm$^{-3}$
g_d	deep state density at the conduction band edge	1×10^{18} cm$^{-3}$eV$^{-1}$ (for low state density)
		2×10^{19} cm$^{-3}$eV$^{-1}$ (for high state density)
g_t	tail state density at the conduction band edge	5×10^{18} cm$^{-3}$eV$^{-1}$ (for low state density)
		1×10^{19} cm$^{-3}$eV$^{-1}$ (for high state density)
T_d	characteristic temperature of the deep states	1060K
T_t	characteristic temperature of the tail states	335K
T	absolute temperature	300K
t_{ox}	gate oxide thickness	1 nm
V_{fb}	flat band voltage	-0.6 V
Q_{ic}	areal interface charge density	0 C/cm2 (without interface charge)
		1.6×10^8 C/cm2 (with interface charge)
t_{si}	thickness of the poly-Si layer	60 nm
μ	channel mobility	600 cm2/V\cdotS
W	width of the channel	10 μm
L	length of the channel	10 μm

Figure 1. Transfer characteristics of device with low state density under different drain biases via the drain current model (9) and the 2D-device simulation for $Q_{ic} = 0$ C/cm2.

Figure 2. Transfer characteristics of device with high state density under different drain biases via the drain current model (9) and the 2D-device simulation for $Q_{ic} = 0$ C/cm2.

Figure 3. Transfer characteristics of device with low state density under different drain biases via the drain current model (9) and the 2D-device simulation for $Q_{ic} = 1.6 \times 10^8$ C/cm2.

Figure 4. Transfer characteristics of device with high state density under different drain biases via the drain current model (9) and the 2D-device simulation for $Q_{ic} = 1.6 \times 10^8$ C/cm2.