Abstract

Reading comprehension QA tasks have seen a recent surge in popularity, yet most works have focused on fact-finding extractive QA. We instead focus on a more challenging multi-hop generative task (NarrativeQA), which requires the model to reason, gather, and synthesize disjoint pieces of information within the context to generate an answer. This type of multi-step reasoning also often requires understanding implicit relations, which humans resolve via external, background commonsense knowledge. We first present a strong generative baseline that uses a multi-attention mechanism to perform multiple hops of reasoning and a pointer-generator decoder to synthesize the answer. This model performs substantially better than previous generative models, and is competitive with current state-of-the-art span prediction models. We next introduce a novel system for selecting grounded multi-hop relational commonsense information from ConceptNet via a pointwise mutual information and term-frequency based scoring function. Finally, we effectively use this extracted commonsense information to fill in gaps of reasoning between context hops, using a selectively-gated attention mechanism. This boosts the model’s performance significantly (also verified via human evaluation), establishing a new state-of-the-art for the task. We also show promising initial results of the generalizability of our background knowledge enhancements by demonstrating some improvement on QAngaroo-WikiHop, another multi-hop reasoning dataset.

1 Introduction

In this paper, we explore the task of machine reading comprehension (MRC) based QA. This task tests a model’s natural language understanding capabilities by asking it to answer a question based on a passage of relevant content. Much progress has been made in reasoning-based MRC-QA on the bAbI dataset (Weston et al., 2016), which contains questions that require the combination of multiple disjoint pieces of evidence in the context. However, due to its synthetic nature, bAbI evidences have smaller lexicons and simpler passage structures when compared to human-generated text.

There also have been several attempts at the MRC-QA task on human-generated text. Large scale datasets such as CNN/DM (Hermann et al., 2015) and SQuAD (Rajpurkar et al., 2016) have made the training of end-to-end neural models possible. However, these datasets are fact-based and do not place heavy emphasis on multi-hop reasoning capabilities. More recent datasets such as QAngaroo (Welbl et al., 2018) have prompted a strong focus on multi-hop reasoning in very long texts. However, QAngaroo is an extractive dataset where answers are guaranteed to be spans within the context; hence, this is more focused on fact finding and linking, and does not require models to synthesize and generate new information.

We focus on the recently published NarrativeQA generative dataset (Kočiský et al., 2018) that contains questions requiring multi-hop reasoning for long, complex stories and other narratives, which requires the model to go beyond fact linking and to synthesize non-span answers. Hence, models that perform well on previous reasoning tasks (Dhingra et al., 2018) have had limited success on this dataset. In this paper, we first propose the Multi-Hop Pointer-Generator Model (MHPGM), a strong baseline model that uses multiple hops of bidirectional attention, self-attention, and a pointer-generator decoder to effectively read and reason within a long passage and synthesize
a coherent response. Our model achieves 41.49 Rouge-L and 17.33 METEOR on the summary subtask of NarrativeQA, substantially better than the performance of previous generative models.

Next, to address the issue that understanding human-generated text and performing long-distance reasoning on it often involves intermittent access to missing hops of external commonsense (background) knowledge, we present an algorithm for selecting useful, grounded multi-hop relational knowledge paths from ConceptNet (Speer and Havasi, 2012) via a pointwise mutual information (PMI) and term-frequency-based scoring function. We then present a novel method of inserting these selected commonsense paths between the hops of document-context reasoning within our model, via the Necessary and Optional Information Cell (NOIC), which employs a selectively-gated attention mechanism that utilizes commonsense information to effectively fill in gaps of inference. With these additions, we further improve performance on the NarrativeQA dataset, achieving 44.16 Rouge-L and 19.03 METEOR (also verified via human evaluation). We also provide manual analysis on the effectiveness of our commonsense selection algorithm.

Finally, to show the generalizability of our multi-hop reasoning and commonsense methods, we show some promising initial results via the addition of commonsense information over the baseline on QAngaroo-WikiHop (Welbl et al., 2018), an extractive dataset for multi-hop reasoning from a different domain.

2 Related Work

Machine Reading Comprehension: MRC has long been a task used to assess a model’s ability to understand and reason about language. Large-scale datasets such as CNN/Daily Mail (Hermann et al., 2015) and SQuAD (Rajpurkar et al., 2016) have encouraged the development of many advanced, high performing attention-based neural models (Seo et al., 2017; Dhhingra et al., 2017). Concurrently, datasets such as bAbI (Weston et al., 2016) have focused specifically on multi-step reasoning by requiring the model to reason with disjoint pieces of information. On this task, it has been shown that iteratively updating the query representation with information from the context can effectively emulate multi-step reasoning (Sukhbaatar et al., 2015).

More recently, there has been an increase in multi-paragraph, multi-hop inference QA datasets such as QAngaroo (Welbl et al., 2018) and NarrativeQA (Kočiský et al., 2018). These datasets have much longer contexts than previous datasets, and answering a question often requires the synthesis of multiple contiguous pieces of evidence. It has been shown that models designed for previous tasks (Seo et al., 2017; Kadlec et al., 2016) have limited success on these new datasets. In our work, we expand upon Gated Attention Network (Dhingra et al., 2017) to create a baseline model better suited for complex MRC datasets such as NarrativeQA by improving its attention and gating mechanisms, expanding its generation capabilities, and allowing access to external commonsense for connecting implicit relations.

Commonsense/Background Knowledge: Commonsense or background knowledge has been used for several tasks including opinion mining (Cambria et al., 2010), sentiment analysis (Poria et al., 2015, 2016), handwritten text recognition (Wang et al., 2013), and more recently, dialogue (Young et al., 2018; Ghazvininejad et al., 2018). These approaches add commonsense knowledge as relation triples or features from external databases. Recently, large-scale graphical commonsense databases such as ConceptNet (Speer and Havasi, 2012) use graphical structure to express intricate relations between concepts, but effective goal-oriented graph traversal has not been extensively used in previous commonsense incorporation efforts. Knowledge-base QA is a task in which systems are asked to find answers to questions by traversing knowledge graphs (Bollacker et al., 2008). Knowledge path extraction has been shown to be effective at the task (Bordes et al., 2014; Bao et al., 2016). We apply these techniques to MRC-QA by using them to extract useful commonsense knowledge paths that fully utilize the graphical nature of databases such as ConceptNet (Speer and Havasi, 2012).

Incorporation of External Knowledge: There have been several attempts at using external knowledge to boost model performance on a variety of tasks: Chen et al. (2018) showed that adding lexical information from semantic databases such as WordNet improves performance on NLI; Xu et al. (2017) used a gated recall-LSTM mechanism to incorporate commonsense information into token representations in dialogue.
In MRC, Weissenborn et al. (2017) integrated external background knowledge into an NLU model by using contextually-refined word embeddings which integrated information from ConceptNet (single-hop relations mapped to unstructured text) via a single layer bidirectional LSTM. Concurrently to our work, Mihaylov and Frank (2018) showed improvements on a cloze-style task by incorporating commonsense knowledge via a context-to-commonsense attention, where commonsense relations were extracted as triples. This work represented commonsense relations as key-value pairs and combined context representation and commonsense via a static gate.

Differing from previous works, we employ multi-hop commonsense paths (multiple connected edges within ConceptNet graph that give us information beyond a single relationship triple) to help with our MRC model. Moreover, we use this in tandem with our multi-hop reasoning architecture to incorporate different aspects of the commonsense relationship path at each hop, in order to bridge different inference gaps in the multi-hop QA task. Additionally, our model performs synthesis with its external, background knowledge as it generates, rather than extracts, its answer.

3 Methods

3.1 Multi-Hop Pointer-Generator Baseline

We first rigorously state the problem of generative QA as follows: given two sequences of input tokens: the context, \(X^C = \{w_1^C, w_2^C, \ldots, w_n^C\}\) and the query, \(X^Q = \{w_1^Q, w_2^Q, \ldots, w_m^Q\}\), the system should generate a series of answer tokens \(X^a = \{w_1^a, w_2^a, \ldots, w_m^a\}\). As outlined in previous sections, an effective generative QA model needs to be able to perform several hops of reasoning over long and complex passages. It would also need to be able to generate coherent statements to answer complex questions while having the ability to copy rare words such as specific entities from the reading context. With these in mind, we propose the Multi-Hop Pointer-Generator Model (MHPGM) baseline, a novel combination of previous works with the following major components:

- **Embedding Layer**: The tokens are embedded into both learned word embeddings and pre-trained context-aware embeddings (ELMo (Peters et al., 2018)).

- **Reasoning Layer**: The embedded context is then passed through \(k\) reasoning cells, each of which iteratively updates the context representation with information from the query via BiDAF attention (Seo et al., 2017), emulating a single reasoning step within the multi-step reasoning process.

 - **Self-Attention Layer**: The context representation is passed through a layer of self-attention (Cheng et al., 2016) to resolve long-term dependencies and co-reference within the context.

 - **Pointer-Generator Decoding Layer**: A attention-pointer-generator decoder (See et al., 2017) that attends on and potentially copies from the context is used to create the answer.

The overall model is illustrated in Fig. 1, and the layers are described in further detail below.

Embedding layer: We embed each word from the context and question with a learned embedding space of dimension \(d\). We also obtain context-aware embeddings for each word via the pre-trained embedding from language models (ELMo) (1024 dimensions). The embedded representation for each word in the context or question, \(e_i^C\) or \(e_i^Q\in \mathbb{R}^{d+1024}\), is the concatenation of its learned word embedding and ELMo embedding.

Reasoning layer: Our reasoning layer is composed of \(k\) reasoning cells (see Fig. 1), where each incrementally updates the context representation. The \(t\)th reasoning cell’s inputs are the previous step’s output (\(\{e_i^{c-1}\}_{i=1}^n\)) and the embedded question (\(\{e_i^Q\}_{i=1}^m\)). It first creates step-specific context and query encodings via cell-specific bidirectional LSTMs:

\[
\mathbf{u}^t = \text{BiLSTM}(c^{t-1}); \quad \mathbf{v}^t = \text{BiLSTM}(e^Q)
\]

Then, we use bidirectional attention (Seo et al., 2017) to emulate a hop of reasoning by focusing on relevant aspects of the context. Specifically, we first compute context-to-query attention:

\[
S_{ij}^t = W_1^t\mathbf{u}_i^t + W_2^t\mathbf{v}_j^t + W_3^t(\mathbf{u}_i^t \odot \mathbf{v}_j^t)
\]

\[
p_{ij}^t = \frac{\exp(S_{ij}^t)}{\sum_{k=1}^m \exp(S_{ik}^t)}
\]

\[
(c_{qj})_i^t = \sum_{j=1}^m p_{ij}^t v_j^t
\]

where \(W_1^t, W_2^t, W_3^t\) are trainable parameters, and \(\odot\) is elementwise multiplication. We then compute a query-to-context attention vector:

\[
m_i^t = \max_{1 \leq j \leq m} S_{ij}^t
\]
where W_4, W_5, W_6 are trainable parameters.

The output of the self-attention layer is generated by another layer of bidirectional LSTM.

$$c'' = \text{BiLSTM}([c'; c^{SA}; c' \odot c^{SA}])$$

Finally, we add this residually to c^k to obtain the encoded context $c = c^k + c''$.

Pointer-Generator Decoding Layer: Similar to the work of See et al. (2017), we use a pointer-generator model attending on (and potentially copying from) the context.

At decoding step t, the decoder receives the input x_t (embedded representation of last timestep’s output), the last time step’s hidden state s_{t-1} and context vector a_{t-1}. The decoder computes the current hidden state s_t as:

$$s_t = \text{LSTM}(x_t; a_{t-1}, s_{t-1})$$

This hidden state is then used to compute a probability distribution over the generative vocabulary:

$$P_{gen} = \text{softmax}(W_{gen} s_t + b_{gen})$$

We employ Bahdanau attention mechanism (Bahdanau et al., 2015) to attend over the context (c being the output of self-attention layer):

$$\alpha_t = v^T \tanh(W_c c_t + W_a s_t + b_{attn})$$
Figure 2: Commonsense selection approach.

\[\hat{C}_{i} = \exp(\alpha_{i}) \sum_{j=1}^{n} \exp(\alpha_{j}) \]

\[a_{t} = \sum_{i=1}^{n} \hat{C}_{i} c_{i} \]

We utilize a pointer mechanism that allows the decoder to directly copy tokens from the context based on \(\hat{C}_{i} \). We calculate a selection distribution \(p_{sel} \in \mathbb{R}^{2} \), where \(p_{1}^{sel} \) is the probability of generating a token from \(P_{gen} \) and \(p_{2}^{sel} \) is the probability of copying a word from the context:

\[o = \sigma(W_{a} a_{t} + W_{x} x_{t} + W_{s} s_{t} + b_{ptr}) \]

\[p_{sel} = \text{softmax}(o) \]

Our final output distribution at timestep \(t \) is a weighted sum of the generative distribution and the copy distribution:

\[P_{t}(w) = p_{1}^{sel} P_{gen}(w) + p_{2}^{sel} \sum_{i: w_{i}^{C} = w} \hat{C}_{i} \]

3.2 Commonsense Selection and Representation

In QA tasks that require multiple hops of reasoning, the model often needs knowledge of relations not directly stated in the context to reach the correct conclusion. In the datasets we consider, manual analysis shows that external knowledge is frequently needed for inference (see Table 1).

Even with a large amount of training data, it is very unlikely that a model is able to learn every nuanced relation between concepts and apply the correct ones (as in Fig. 2) when reasoning about a question. We remedy this issue by introducing grounded commonsense (background) information using relations between concepts from ConceptNet (Speer and Havasi, 2012)\(^1\) that help inference by introducing useful connections between concepts in the context and question.

Due to the size of the semantic network and the large amount of unnecessary information, we need an effective way of selecting relations which provides novel information while being grounded by the context-query pair. Our commonsense selection strategy is twofold: (1) collect potentially relevant concepts via a tree construction method aimed at selecting with high recall candidate reasoning paths, and (2) rank and filter these paths to ensure both the quality and variety of added information via a 3-step scoring strategy (initial node scoring, cumulative node scoring, and path selection). We will refer to Fig. 2 as a running example throughout this section.\(^2\)

3.2.1 Tree Construction

Given context \(C \) and question \(Q \), we want to construct paths grounded in the pair that emulate reasoning steps required to answer the question. In this section, we build ‘prototype’ paths by constructing trees rooted in concepts in the query with the following branching steps\(^3\) to emulate multi-hop reasoning process. For each concept \(c_{1} \) in the question, we do:

Direct Interaction: In the first level, we select relations \(r_{1} \) from ConceptNet that directly link \(c_{1} \) to a concept within the context, \(c_{2} \in C \), e.g., in Fig. 2, we have \(\text{lady} \rightarrow \text{church} \), \(\text{lady} \rightarrow \text{mother} \), \(\text{lady} \rightarrow \text{person} \).

Multi-Hop: We then select relations in ConceptNet \(r_{2} \) that link \(c_{2} \) to another concept in the context, \(c_{3} \in C \). This emulates a potential reasoning.

Dataset	Outside Knowledge Required
WikiHop	11%
NarrativeQA	42%

Table 1: Qualitative analysis of commonsense requirements. WikiHop results are from Welbl et al. (2018); NarrativeQA results are from our manual analysis (on the validation set).

\(^1\)A semantic network where the nodes are individual concepts (words or phrases) and the edges describe directed relations between them (e.g., (island, UsedFor, vacation)).

\(^2\)We release all our commonsense extraction code and the extracted commonsense data at: https://github.com/yicheng-w/CommonSenseMultiHopQA

\(^3\)If we are unable to find a relation that satisfies the condition, we keep the steps up to and including the node.
ing hop within the context of the MRC task, e.g.,
church → house, mother → daughter, person → lover.

Outside Knowledge: We then allow an unconstrained hop into c3’s neighbors in ConceptNet, getting to c4 ∈ nbh(c3) via r3 (nbh(v) is the set of nodes that can be reached from v in one hop). This emulates the gathering of useful external information to complete paths within the context, e.g., house → child, daughter → child.

Context-Grounding: To ensure that the external knowledge is indeed helpful to the task, and also to explicitly link 2nd degree neighbor concepts within the context, we finish the process by grounding it again into context by connecting c4 to c5 ∈ C via r4, e.g., child → their.

3.2.2 Rank and Filter

This tree building process collects a large number of potentially relevant and useful paths. However, this step also introduces a large amount of noise. For example, given the question and full context (not depicted in the figure) in Fig. 2, we obtain the path “between → hard → being → cottage → country” using our tree building method, which is not relevant to our question. Therefore, to improve the precision of useful concepts, we rank these knowledge paths by their relevance and filter out noise using the following 3-step scoring method:

Initial Node Scoring: We want to select paths with nodes that are important to the context, in order to provide the most useful commonsense relations. We approximate importance and saliency for concepts in the context by their term-frequency, under the heuristic that important concepts occur more frequently. Thus we score c ∈ \{c2, c3, c5\} by: score(c) = count(c)/|C|, where |C| is the context length and count() is the number of times a concept appears in the context. In Fig. 2, this ensures that concepts like daughter are scored highly due to their frequency in the context.

For c4, we use a special scoring function as it is an unconstrained hop into ConceptNet. We want c4 to be a logically consistent next step in reasoning following the path of c1 to c3, e.g., in Fig. 2, we see that child is a logically consistent next step after the partial path of mother → daughter. We approximate this based on the heuristic that logically consistent paths occur more frequently. Therefore, we score this node via Pointwise Mutual Information (PMI) between the partial path c1→3 and c4:

\[
\text{PMI}(c_4, c_{1→3}) = \log\left(\frac{\Pr(c_4, c_{1→3})}{\Pr(c_4)\Pr(c_{1→3})}\right),
\]

where

\[
\Pr(c_4, c_{1→3}) = \frac{\# \text{ of paths connecting } c_1, c_2, c_3, c_4}{\# \text{ of distinct paths of length } 4}
\]

\[
\Pr(c_4) = \frac{\# \text{ of nodes that can reach } c_4}{|\text{ConceptNet}|}
\]

\[
\Pr(c_{1→3}) = \frac{\# \text{ of paths connecting } c_1, c_2, c_3}{\# \text{ of paths of length } 3}
\]

Further, it is well known that PMI has high sensitivity to low-frequency values, thus we use normalized PMI (NPMI) (Bouma, 2009):

\[
\text{score}(c_4) = \text{PMI}(c_4, c_{1→3})/(-\log \Pr(c_4, c_{1→3})).
\]

Since the branching at each juncture represents a hop in the multi-hop reasoning process, and hops at different levels or with different parent nodes do not ‘compete’ with each other, we normalize each node’s score against its siblings:

\[
n\text{-score}(c) = \text{softmax}_{\text{siblings}(c)}(\text{score}(c)).
\]

Cumulative Node Scoring: We want to add commonsense paths consisting of multiple hops of relevant information, thus we re-score each node based not only on its relevance and saliency but also that of its tree descendants.

We do this by computing a cumulative node score from the bottom up, where at the leaf nodes, we have c-score = n-score, and for c1 not a leaf node, we have c-score(c1) = n-score(c1) + f(c1) where f of a node is the average of the c-scores of its top 2 highest scoring children.

For example, given the paths lady → mother → daughter, lady → mother → married, and lady → mother → book, we start the cumulative scoring at the leaf nodes, which in this case are daughter, married, and book, where daughter and married are scored much higher than book due to their more frequent occurrences. Then, to cumulatively score mother, we would take the average score of its two highest scoring children (in this case married and daughter) and compound that with the score of mother itself. Note that the poor scoring of the irrelevant concept book does not affect the scoring of mother, which is quite high due to the concept’s frequent occurrence and the relevance of its top scoring children.

Path Selection: We select paths in a top-down breath-first fashion in order to add information relevant to different parts of the context. Starting at the root, we recursively take two of its children with the highest cumulative scores until we reach a leaf, selecting up to $2^4 = 16$ paths. For example,
if we were at node *mother*, this allows us to select the child node *daughter* and *married* over the child node *book*. These selected paths, as well as their partial sub-paths, are what we add as external information to the QA model, i.e., we add the complete path \{lady, AtLocation, church, RelatedTo, house, RelatedTo, child, RelatedTo, their\}, but also truncated versions of the path, including \{lady, AtLocation, church, RelatedTo, house, RelatedTo, child\}. We directly give these paths to the model as sequences of tokens.4

Overall, our sampling strategy provides the knowledge that a *lady* can be a *mother* and that *mother* is connected to *daughter*. This creates a logical connection between *lady* and *daughter* which helps highlight the importance of our second piece of evidence (see Fig. 2). Likewise, the commonsense information we extracted create a similar connection in our third piece of evidence, which states the explicit connection between *daughter* and *Esther*. We also successfully extract a more story context-centric connection, in which commonsense provides the knowledge that a *lady* is at the location *church*, which directs to another piece of evidence in the context. Additionally, this path also encodes a relation between *lady* and *child*, by way of *church*, which is how *lady* and *Esther* are explicitly connected in the story.

3.3 Commonsense Model Incorporation

Given the list of commonsense logic paths as sequences of words: \(X^{CS} = \{w_1^{CS}, w_2^{CS}, \ldots, w_f^{CS}\}\) where \(w_i^{CS}\) represents the list of tokens that make up a single path, we first embed these commonsense tokens into the learned embedding space used by the model, giving us the embedded commonsense tokens, \(e_i^{CS} \in \mathbb{R}^d\). We want to use these commonsense paths to fill in the gaps of reasoning between hops of inference. Thus, we propose Necessary and Optional Information Cell (NOIC), a variation of our base reasoning cell used in the reasoning layer that is capable of incorporating optional helpful information.

NOIC This cell is an extension to the base reasoning cell that allows the model to use commonsense information to fill in gaps of reasoning. An example of this is on the bottom left of Fig. 1, where we see that the cell first performs the operations done in the base reasoning cell and then adds optional, commonsense information.

At reasoning step \(t\), after obtaining the output of the base reasoning cell, \(c^t\), we create a cell-specific representation for commonsense information by concatenating the embedded commonsense paths so that each path has a single vector representation, \(u_i^{CS}\). We then project it to the same dimension as \(c_i^t\): \(v_i^{CS} = \text{ReLU}(W_u v_i^{CS} + b)\) where \(W\) and \(b\) are trainable parameters.

We use an attention layer to model the interaction between commonsense and the context:

\[
S_{ij}^{CS} = W_{1}^{CS}c_i^t + W_{2}^{CS}v_j^{CS} + W_{3}^{CS}(c_i^t \odot v_j^{CS})
\]

\[
p_{ij}^{CS} = \frac{\exp(S_{ij}^{CS})}{\sum_{k=1}^{l}\exp(S_{ij}^{CS})}
\]

\[
c_i^{CS} = \sum_{j=1}^{l} p_{ij}^{CS} v_j^{CS}
\]

Finally, we combine this commonsense-aware context representation with the original \(c_i^t\) via a sigmoid gate, since commonsense information is often not necessary at every step of inference:

\[
z_i = \sigma(W_z c_i^{CS} c_i^t + b_z)
\]

\[
(c_o)^t_i = z_i \odot c_i^t + (1 - z_i) \odot c_o^{CS}
\]

We use \(c_o^{t}\) as the output of the current reasoning step instead of \(c^t\). As we replace each base reasoning cell with NOIC, we selectively incorporate commonsense at every step of inference.

4 Experimental Setup

Datasets: We report results on two multi-hop reasoning datasets: generative NarrativeQA (Kočiský et al., 2018) (summary subtask) and extractive QA\-Angaroo WikiHop (Welbl et al., 2018). For multiple-choice WikiHop, we rank candidate responses by their generation probability. Similar to previous works (Dhingra et al., 2018), we use the non-oracle, unmasked and not-validated dataset.

Evaluation Metrics: We evaluate NarrativeQA on the metrics proposed by its original authors: Bleu-1, Bleu-4 (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and Rouge-L (Lin, 2004). We also evaluate on CIDEr (Vedantam et al., 2015) which emphasizes annotator consensus. For WikiHop, we evaluate on accuracy.

More dataset, metric, and all other training details are in the supplementary.
Model	BLEU-1	BLEU-4	METEOR	Rouge-L	CIDEr
Seq2Seq (Kočiský et al., 2018)	15.89	1.26	4.08	13.15	-
ASR (Kočiský et al., 2018)	23.20	6.39	7.77	22.26	-
BiDAF† (Kočiský et al., 2018)	33.72	15.53	15.38	36.30	-
BiAttn + MRU-LSTM† (Tay et al., 2018)	36.55	19.79	17.87	41.44	-
MHPGM	40.24	17.40	17.33	41.49	139.23
MHPGM+ NOIC	43.63	21.07	19.03	44.16	152.98

Table 2: Results across different metrics on the test set of NarrativeQA-summaries task. † indicates span prediction models trained on the Rouge-L retrieval oracle.

Model	Dev	Test
BiDAF (Welbl et al., 2018)	42.1	42.9
Coref-GRU (Dhingra et al., 2018)	56.0	59.3
MHPGM	56.2	57.5
MHPGM+ NOIC	58.5	57.9

Table 3: Results of our models on WikiHop dataset, measured in % accuracy.

5 Results

5.1 Main Experiment

The results of our model on both NarrativeQA and WikiHop with and without commonsense incorporation are shown in Table 2 and Table 3. We see empirically that our model outperforms all generative models on NarrativeQA, and is competitive with the top span prediction models. Furthermore, with the NOIC commonsense integration, we were able to further improve performance (\(p < 0.001\) on all metrics\(^5\)), establishing a new state-of-the-art for the task.

We also see that our model performs reasonably well on WikiHop, and further achieves promising initial improvements via the addition of commonsense, hinting at the generalizability of our approaches. We speculate that the improvement is smaller on WikiHop because only approximately 11% of WikiHop data points require commonsense and because WikiHop data requires more fact-based commonsense (e.g., from Freebase (Bollacker et al., 2008)) as opposed to semantics-based commonsense (e.g., from ConceptNet (Speer and Havasi, 2012)).\(^6\)

5.2 Model Ablations

We also tested the effectiveness of each component of our architecture as well as the effectiveness of adding commonsense information on the NarrativeQA validation set, with results shown in Table 4. Experiment 1 and 5 are our models presented in Table 2. Experiment 2 demonstrates the importance of multi-hop attention by showing that if we only allow one hop of attention (even with all other components of the model, including ELMo embeddings) the model’s performance decreases by over 12 Rouge-L points. Experiment 3 and 4 demonstrate the effectiveness of other parts of our model. We see that ELMo embeddings (Peters et al., 2018) were also important for the model’s performance and that self-attention is able to contribute significantly to performance on top of other components of the model. Finally, we see that effectively introducing external knowledge via our commonsense selection algorithm and NOIC can improve performance even further on top of our strong baseline.

5.3 Commonsense Ablations

We also conducted experiments testing the effectiveness of our commonsense selection and incorporation techniques. We first tried to naively add ConceptNet information by initializing the word embeddings with the ConceptNet-trained embeddings, NumberBatch (Speer and Havasi, 2012) (we also change embedding size from 256 to 300). Then, to verify the effectiveness of our commonsense selection and grounding algorithm, we test our best model on in-domain noise by giving each context-query pair a set of random relations grounded in other context-query pairs. This should teach the model about general commonsense relations present in the domain of NarrativeQA but does not provide grounding that fills in specific hops of inference. We also experimented with a simpler commonsense extraction method of using a single hop from the query to the context. The results of these are shown in Table 5, where we see that neither NumberBatch nor random-relations nor single-hop commonsense

\(^5\)Stat. significance computed using bootstrap test with 100K iterations (Noreen, 1989; Efron and Tibshirani, 1994).

\(^6\)All results here are for the standard (non-oracle) unmasked and not-validated dataset. Welbl et al. (2018) has reported higher numbers on different data settings which are not comparable to our results.
Table 4: Model ablations on NarrativeQA val-set.

#	Ablation	B-1	B-4	M	R	C
1	-	42.3	18.9	18.3	44.9	151.6
2	\(k = 1\)	32.5	11.7	12.9	32.4	95.7
3	- ELMo	32.8	12.7	13.6	33.7	103.1
4	- Self-Attn	37.0	16.4	15.6	38.6	125.6
5	+ NOIC	46.0	21.9	20.7	48.0	166.6

Table 5: Commonsense ablations on NarrativeQA val-set.

Commonsense	B-1	B-4	M	R	C
None	42.3	18.9	18.3	44.9	151.6
NumberBatch	42.6	19.6	18.6	44.4	148.1
Random Rel.	43.3	19.3	18.6	45.2	151.2
Single Hop	42.1	19.9	18.2	44.0	148.6
Grounded Rel.	45.9	21.9	20.7	48.0	166.6

6 Human Evaluation Analysis

We also conduct human evaluation analysis on both the quality of the selected commonsense relations, as well as the performance of our final model.

Commonsense Selection: We conducted manual analysis on a 50 sample subset of the NarrativeQA test set to check the effectiveness of our commonsense selection algorithm. Specifically, given a context-query pair, as well as the commonsense selected by our algorithm, we conduct two independent evaluations: (1) was any external commonsense knowledge necessary for answering the question?; (2) were the commonsense relations provided by our algorithm relevant to the question? The result for these two evaluations as well as how they overlap with each other are shown in Table 6, where we see that 50% of the cases required external commonsense knowledge, and on a majority (34%) of those cases our algorithm was able to select the correct/relevant commonsense information to fill in gaps of inference. We also see that in general, our algorithm was able to provide useful commonsense 48% of the time.

Model Performance: We also conduct human evaluation to verify that our commonsense incorporated model was indeed better than MHPGM.

7 Conclusion

We present an effective reasoning-generative QA architecture that is a novel combination of previous work, which uses multiple hops of bidirectional attention and a pointer-generator decoder to effectively perform multi-hop reasoning and synthesize a coherent and correct answer. Further, we introduce an algorithm to select grounded, useful paths of commonsense knowledge to fill in the gaps of inference required for QA, as well as a Necessary and Optional Information Cell (NOIC) which successfully incorporates this information during multi-hop reasoning to achieve the new state-of-the-art on NarrativeQA.

Acknowledgments

We thank the reviewers for their helpful comments. This work was supported by DARPA (YFA17-D17AP00022), Google Faculty Research Award, Bloomberg Data Science Research Grant, and NVidia GPU awards. The views contained in this article are those of the authors and not of the funding agency.
References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In ICLR.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pages 65–72.

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. 2016. Constraint-based question answering with knowledge graph. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 2503–2514.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 1247–1250. ACM.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question answering with subgraph embeddings. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 615–620.

Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation extraction. Proceedings of GSCL, pages 31–40.

Erik Cambria, Amir Hussain, Tariq Durrani, Catherine Havasi, Chris Eckl, and James Munro. 2010. Sentient computing for patient centered applications. In Signal Processing (ICSP), 2010 IEEE 10th International Conference on, pages 1279–1282. IEEE.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2018. Neurall natural language inference models enhanced with external knowledge. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2406–2417. Association for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine reading. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 551–561.

Christopher Clark and Matt Gardner. 2018. Simple and effective multi-paragraph reading comprehension. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 845–855.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. 2018. Neural models for reasoning over multiple mentions using coreference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), volume 2, pages 42–48.

Bhuwan Dhingra, Hanxiao Liu, Zhihui Yang, William Cohen, and Ruslan Salakhutdinov. 2017. Gated-attention readers for text comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1832–1846.

Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap. CRC press.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and Michel Galley. 2018. A knowledge-grounded neural conversation model. In AAAI.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems, pages 1693–1701.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. 2016. Text understanding with the attention sum reader network. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 908–918.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference for Learning Representations.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gáabor Melis, and Edward Grefenstette. 2018. The narrativeqa reading comprehension challenge. Transactions of the Association of Computational Linguistics, 6:317–328.

J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data. Biometrics, pages 159–174.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out.

Todor Mihaylov and Anette Frank. 2018. Knowledgeable reader: enhancing cloze-style reading comprehension with external commonsense knowledge. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 821–832. Association for Computational Linguistics.

Eric W Noreen. 1989. Computer-intensive methods for testing hypotheses. Wiley New York.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the
A.1 Experimental Setup

Datasets We test our model with and without commonsense addition on two challenging datasets that require multi-hop reasoning and external knowledge: NarrativeQA (Kočiský et al., 2018) and QAngaroo-WikiHop (Welbl et al., 2018). NarrativeQA is a generative QA dataset where the passages are either stories or summaries of stories, and the questions ask about complex aspects of the narratives such as event timelines, characters, relations between characters, etc. Each question has two answers which are generated by human annotators and usually cannot be found in the passage directly. We focus on the summary subtask in this paper, where summaries have lengths of up to 1000 words.

We also test our model on WikiHop, a fact based, multi-hop dataset. Questions in WikiHop often require a model to read several documents in order to obtain an answer. We focus on the multiple-choice part of WikiHop, where models are tasked with picking the correct response from a pool of candidates. We rank candidate responses by calculating their generation probability based on our model. As this is a multi-document QA task, we first rank the candidate documents via TF-IDF cosine distance with the question, and then take the top k documents such that their combined length is less than 1300 words.
Evaluation Metrics We evaluate NarrativeQA on the metrics proposed by its original authors: Bleu-1, Bleu-4 (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and Rouge-L (Lin, 2004). We also evaluate on CIDEr (Vedantam et al., 2015) as it places emphasize on annotator consensus. For WikiHop, we evaluate on accuracy.

Training Details In training for both datasets, we minimize the negative log probability of generating the ground-truth answer with the Adam optimizer (Kingma and Ba, 2015) with an initial learning rate of 0.001, a dropout-rate of 0.2 (dropout is applied to the input of each RNN layer) and batch size of 24. We use 256 dimensional word embeddings and a hidden size of 128 for all RNNs and \(k = 3 \) hops of multi attention. At inference time we use greedy decoding to generate the answer. For both NarrativeQA and WikiHop, we reached these parameters via tuning on the full, official validation set.

A.2 Commonsense Extraction Examples
In Tables 8, 9, and 10 (see next page), we demonstrate extracted commonsense examples for questions that require commonsense to reach an answer. We bold words in the question and in the extracted commonsense in cases where the commonsense knowledge explicitly bridges gaps between implicitly connected words in the context or question. The relevant context is also displayed, with context words that are key to answering the question (via commonsense) marked in bold. These are then followed by a context visualization described in the next section.

A.3 Commonsense Integration Visualization
We also visualize how much commonsense information is integrated into each part of the context by providing a visualization of the \(z_i \) value (see end of Sec. 3.3 of main file) for \(i \in \{1, 2, 3\} \), which is the gate value signifying how much commonsense-attention representation is used in the output context representation. In the following examples (next page), we use shades of blue to represent the average of \((1 - z_i)\) at each word in the context (normalized within each hop), with deeper blue indicating the use of more commonsense information. As a general trend, we see that in the earlier hops, words which are near tokens that occur in both the context and commonsense paths have high activation, but the activation becomes more focused on the passage’s key words w.r.t. the question, as the number of hops increase.
maurya has lost her husband, and five of her sons to the sea. As the play begins, nora and cathleen receive word from the priest that a body, that may be their brother michael, has washed up on shore in donegal, the island farthest north of their home island of inishmaan. bartley is planning to sail to connemara to sell a horse, and ignores maurya's pleas to stay. he leaves gracefully. maurya predicts that by nightfall she will have no living sons, and her daughters chide her for sending bartley off with an ill word. maurya goes after bartley to bless his voyage, and nora and cathleen receive clothing from the drowned corpse that confirms it is their brother. maurya returns home claiming to have seen the ghost of michael riding behind bartley and begins lamenting the loss of the men in her family to the sea, after which some villagers bring in the corpse of bartley, who has fallen off his horse into the sea and drowned. this speech of maurya's is famous in irish drama: (raising her head and speaking as if she did not see the people around her) they're all gone now, and there is n't anything more the sea can do to me... i'll have no call now to be up crying and praying when the wind breaks from the south, and you can hear the surf is in the east, and the surf is in the west, making a great stir with the two noises, and they hitting one on the other. i'll have no call now to be going down and getting holy water in the dark nights after samhain, and i wo n't care what way the sea is when the other women will be keening. (to nora) give me the holy water, nora; there's a small sup still on the dresser.

Figure 3: Example 1 visualized activation values of first attention hop ($1 - z_1$).

maurya has lost her husband, and five of her sons to the sea. As the play begins, nora and cathleen receive word from the priest that a body, that may be their brother michael, has washed up on shore in donegal, the island farthest north of their home island of inishmaan. bartley is planning to sail to connemara to sell a horse, and ignores maurya's pleas to stay. he leaves gracefully. maurya predicts that by nightfall she will have no living sons, and her daughters chide her for sending bartley off with an ill word. maurya goes after bartley to bless his voyage, and nora and cathleen receive clothing from the drowned corpse that confirms it is their brother. maurya returns home claiming to have seen the ghost of michael riding behind bartley and begins lamenting the loss of the men in her family to the sea, after which some villagers bring in the corpse of bartley, who has fallen off his horse into the sea and drowned. this speech of maurya's is famous in irish drama: (raising her head and speaking as if she did not see the people around her) they're all gone now, and there is n't anything more the sea can do to me... i'll have no call now to be up crying and praying when the wind breaks from the south, and you can hear the surf is in the east, and the surf is in the west, making a great stir with the two noises, and they hitting one on the other. i'll have no call now to be going down and getting holy water in the dark nights after samhain, and i wo n't care what way the sea is when the other women will be keening. (to nora) give me the holy water, nora; there's a small sup still on the dresser.

Figure 4: Example 1 visualized activation values of second attention hop ($1 - z_2$).
Commonsense Extraction and Visualization Examples

Question	What shore does Michael's corpse wash up on?
Context	"..as the play begins nora and cathleen receive word from the priest that a body, that may be their brother michael, has washed up on shore in donegal, the island farthest north of their home island of inishmaan."
Answers	the shore of donegal / donegal

Extracted Commonsense
up → RelatedTo → wind → Antonym → her → RelatedTo → person
up → RelatedTo → north → RelatedTo → up
up → RelatedTo → down
wash → RelatedTo → water → PartOf → sea → RelatedTo → fish
up → RelatedTo → wind
wash → RelatedTo → water → PartOf → sea
shore → RelatedTo → sea
wash → RelatedTo → body
wash → Antonym → making
up → Antonym → down → Antonym → up
wash → RelatedTo → water → PartOf → sea → MadeOf → water
up → RelatedTo → wind → Antonym → her
wash → RelatedTo → water
up → RelatedTo → south
shore → RelatedTo → sea → MadeOf → water → AtLocation → bucket → RelatedTo → horse
wash → RelatedTo → clothing
wash → RelatedTo → water → PartOf → sea → MadeOf → water → PartOf → sea
shore → RelatedTo → sea → MadeOf → water
wash → Antonym → getting
up → RelatedTo → north
corpse → RelatedTo → body
shore → RelatedTo → sea → MadeOf → water → AtLocation → fountain
corpse → RelatedTo → body → RelatedTo → corpse
corpse → RelatedTo → body → RelatedTo → water
wash → HasContext → west
up → RelatedTo → wind → Antonym → her → RelatedTo → person → MadeOf → water
up → RelatedTo → wind → AtLocation → sea
wash → RelatedTo → water → AtLocation → can
shore → RelatedTo → sea → MadeOf → water → AtLocation → bucket
wash → RelatedTo → will
shore → RelatedTo → sea → MadeOf → water → AtLocation → fountain → RelatedTo → water

Table 8: Example 1 selected commonsense paths.
maurya has lost her husband, and five of her sons to the sea. as the play begins nora
and cathleen receive word from the priest that a body, that may be their brother
michael, has washed up on shore in donegal, the island farthest north of their home
island of mishmaan. bartley is planning to sail to connemara to sell a horse, and
ignores maurya’s pleas to stay. he leaves gracefully. maurya predicts that by
nightfall she will have no living sons, and her daughters chide her for sending
bartley off with an ill word. maurya goes after bartley to bless his voyage, and nora
and cathleen receive clothing from the drowned corpse that confirms it is their
brother. maurya returns home claiming to have seen the ghost of michael riding
behind bartley and begins lamenting the loss of the men in her family to the sea.
after which some villagers bring in the corpse of bartley, who has fallen off his
horse into the sea and drowned. this speech of maurya’s is famous in irish drama: (raising her head and speaking as if she did not see the people around her) they’re all
gone now, and there’s n’t anything more the sea can do to me …. i’ll have no call
now to be up crying and praying when the wind breaks from the south, and you can
hear the surf is in the east, and the surf is in the west, making a great stir with the
two noises, and they hitting one on the other, i’ll have no call now to be going
down and getting holy water in the dark nights after samhain, and i wo n’t care what
way the sea is when the other women will be keening. (to nora) give me the holy
water, nora; there’s a small sup still on the dresser.

Figure 5: Example 1 visualized activation values of third attention hop $(1 - z_3)$.

Question	What species lives in the nearby mines?
Context	“…the nearby mines are inhabited by a race of goblins…”
Answers	the goblins / goblins.
Extracted Commonsense	species → RelatedTo → kingdom → RelatedTo → queen species → RelatedTo → kingdom → RelatedTo → queen → UsedFor → people → HasA → feet mines → FormOf → mine lives → FormOf → life species → RelatedTo → mine → AtLocation → home → RelatedTo → person species → RelatedTo → kingdom → RelatedTo → queen → UsedFor → people species → RelatedTo → kingdom → DerivedFrom → king → RelatedTo → master species → RelatedTo → kingdom → RelatedTo → queen → RelatedTo → person → Desires → feet mines → FormOf → mine → AtLocation → home → RelatedTo → line → RelatedTo → thread species → RelatedTo → kingdom → DerivedFrom → king → RelatedTo → leader → AtLocation → company species → RelatedTo → kingdom species → RelatedTo → kingdom → DerivedFrom → king → RelatedTo → leader species → RelatedTo → kingdom → DerivedFrom → king mines → FormOf → mine → AtLocation → home → RelatedTo → line species → RelatedTo → race mines → FormOf → mine → AtLocation → home species → RelatedTo → kingdom → RelatedTo → queen → RelatedTo → person species → RelatedTo → kingdom → DerivedFrom → king → RelatedTo → master → RelatedTo → young

Table 9: Example 2 selected commonsense paths.
eight-year-old princess irene lives a lonely life in a castle in a wild, desolate, mountainous kingdom, with only her nursemaid, lootie, for company. her father, the king, is normally absent, and her mother is dead. unknown to her, the nearby mines are inhabited by a race of goblins, long banished from the kingdom and now anxious to take revenge on their human neighbors. one rainy day, the princess explores the castle and discovers a beautiful, mysterious lady, who identifies herself as irene’s namesake and great-great-grandmother. the next day, princess irene persuades her nursemaid to take her outside; after dark they are chased by goblins and rescued by the young miner, curdie, whom irene befriends. at work with the rest of the miners, curdie overhears the goblins talking, and their conversation reveals to curdie the secret weakness of goblin anatomy: they have very soft, vulnerable feet. curdie sneaks into the great hall of the goblin palace to eavesdrop on their general meeting, and hears that the goblins intend to flood the mine if a certain other part of their plan should fail. he later conveys this news to his father, in the palace, princess irene injures her hand, which her great-great-grandmother heals. a week later irene is about to see her great-great-grandmother again, but is frightened by a long-legged cat and escapes up the mountain; whereupon the light from her great-great-grandmother’s tower leads her home, where her great-great-grandmother gives irene a ring attached to a thread invisible except to herself, which thereafter connects her constantly to home. when curdie explores the goblins’ domain, he is discovered by the goblins and stamps on their feet with great success; but when he tries to stamp on the queen’s feet she is uninjured due to her stone shoes, the goblins imprison curdie, thinking he will die of starvation; but irene’s magic thread leads her to his rescue, and curdie steals one of the goblin queen’s stone shoes. irene takes curdie to see her great-great-grandmother and be introduced; but she is only visible to irene; curdie later learns that the goblins are digging a tunnel in the mines towards the king’s palace, where they plan to abduct the princess and marry her to goblin prince harelip. curdie warns the palace guards about this, but is imprisoned instead and contracts a fever through a wound in his leg, until irene’s great-great-grandmother heals the wound. meanwhile, the goblins break through the palace floor and come to abduct the princess; but curdie escapes from his prison room and stamps on the goblins’ feet, upon the goblins’ retreat, irene is believed a captive; but curdie follows the magic thread to her refuge at his own house, and restores her to the king; when the goblins flood the mines, the water enters the palace, and curdie warns the others; but the goblins are drowned, the king asks him to serve as a bodyguard; but curdie refuses, saying he can not leave his mother and father, and instead accepts a new red petticoat for his mother, as a reward.
eight-year-old princess Irene lives a lonely life in a castle in a wild, desolate, mountainous kingdom, with only her nursemaid, Lootie, for company. Her father, the King, is normally absent, and her mother is dead. Unknown to her, the nearby mines are inhabited by a race of goblins, long banished from the kingdom, and now anxious to take revenge on their human neighbors. One rainy day, the princess explores the castle and discovers a beautiful, mysterious lady, who identifies herself as Irene's namesake and great-great-grandmother. The next day, Princess Irene persuades her nursemaid to take her outside. After dark, they are chased by goblins and rescued by the young miner, Curdie, whom Irene befriends. At work with the rest of the miners, Curdie overhears the goblins talking, and their conversation reveals to Curdie the secret weakness of goblin anatomy: they have very soft, vulnerable feet. Curdie sneaks into the great hall of the goblin palace to eavesdrop on their general meeting, and hears that the goblins intend to flood the mine if a certain other part of their plan should fail. He later conveys this news to his father. In the palace, Princess Irene injures her hand, which her great-great-grandmother heals. A week later, Irene is about to see her great-great-grandmother again, but is frightened by a long-legged cat and escapes up the mountain; whereupon the light from her great-great-grandmother's tower leads her home, where her great-great-grandmother gives Irene a ring attached to a thread invisible except to herself, which thereafter connects her constantly to home. When Curdie explores the goblins' domain, he is discovered by the goblins and stamps on their feet with great success; but when he tries to stamp on the queen's feet, she is uninjured due to her stone shoes. The goblins imprison Curdie, thinking he will die of starvation; but Irene's magic thread leads her to his rescue, and Curdie steals one of the goblin queen's stone shoes. Irene takes Curdie to see her great-great-grandmother and be introduced; but she is only visible to Irene. Curdie later learns that the goblins are digging a tunnel in the mines towards the King's palace, where they plan to abduct the princess and marry her to Goblin Prince Harelip. Curdie warns the palace guards about this, but is imprisoned instead and contracts a fever through a wound in his leg. Until Irene's great-great-grandmother heals the wound, meanwhile, the goblins break through the palace floor and come to abduct the princess; but Curdie escapes from his prison room and stamps on the goblins' feet upon the goblins' retreat. Irene is believed a captive; but Curdie follows the magic thread to her refuge at his own house, and restores her to the King. When the goblins flood the mines, the water enters the palace, and Curdie warns the others; but the goblins are drowned. The King asks him to serve as a bodyguard; but Curdie refuses, saying he cannot leave his mother and father, and instead accepts a new red petticoat for his mother, as a reward.

Figure 7: Example 2 visualized activation values of second attention hop ($1 - z_2$).
eight-year-old princess irene lives a lonely life in a castle in a wild, desolate, mountainous kingdom, with only her nursemaid, lootie, for company. her father, the king, is normally absent, and her mother is dead. unknown to her, the nearby mines are inhabited by a race of goblins, long banished from the kingdom and now anxious to take revenge on their human neighbors. one rainy day, the princess explores the castle and discovers a beautiful, mysterious lady, who identifies herself as irene’s namesake and great-great-grandmother. the next day, princess irene persuades her nursemaid to take her outside. after dark they are chased by goblins and rescued by the young miner, curdie, whom irene befriends. at work with the rest of the miners, curdie overhears the goblins talking, and their conversation reveals to curdie the secret weakness of goblin anatomy: they have very soft, vulnerable feet. curdie sneaks into the great hall of the goblin palace to eavesdrop on their general meeting, and hears that the goblins intend to flood the mine if a certain other part of their plan should fail. he later conveys this news to his father. in the palace, princess irene injures her hand, which her great-great-grandmother heals. a week later, irene is about to see her great-great-grandmother again, but is frightened by a long-legged cat and escapes up the mountains. whereupon the light from her great-great-grandmother’s tower leads her home, where her great-great-grandmother gives irene a ring attached to a thread invisible except to herself, which thereafter connects her constantly to home. when curdie explores the goblins’ domain, he is discovered by the goblins and stamps on their feet with great success; but when he tries to stamp on the queen’s feet she is uninjured due to her stone shoes. the goblins imprison curdie, thinking he will die of starvation; but irene’s magic thread leads her to his rescue, and curdie steals one of the goblin queen’s stone shoes. irene takes curdie to see her great-great-grandmother and be introduced; but she is only visible to irene. curdie later learns that the goblins are digging a tunnel in the mines towards the king’s palace, where they plan to abduct the princess and marry her to goblin prince harelip. curdie warns the palace guards about this, but is imprisoned instead and contracts a fever through a wound in his leg. until irene’s great-great-grandmother heals the wound, meanwhile, the goblins break through the palace floor and come to abduct the princess; but curdie escapes from his prison room and stamps on the goblins’ feet. upon the goblins’ retreat, irene is believed a captive; but curdie follows the magic thread to her refuge at his own house, and restores her to the king. when the goblins flood the mines, the water enters the palace, and curdie warns the others; but the goblins are drowned. the king asks him to serve as a bodyguard; but curdie refuses, saying he can not leave his mother and father, and instead accepts a new red petticoat for his mother, as a reward.

Figure 8: Example 2 visualized activation values of third attention hop ($1 - z_3$).
What duty does Ruth have to fulfill when her aunt dies?

"...Ruth anvoy, a young American woman with a wealthy father, comes to Britain to visit her widowed aunt lady coxon..."

"...Having made a promise to her now-deceased husband, lady coxon has for years been seeking to bestow a sum of 13,000 pounds upon a talented intellectual whose potential has been hampered by lack of money. Having failed to find such a person, lady coxon tells anvoy that upon her death the money will be left to her, and she must carry on the quest..."

"...Anvoy, having lost nearly all her wealth, has only the 13,000 pounds from lady coxon, with a moral but not legal obligation to give it away..."

"...She awards the coxon fund to saltram, who lives off it exactly as he lived off his friends, producing nothing of intellectual value..."

She must give away the 13,000 pounds to an appropriate recipient. / Bestow 13000 to the appropriate person

Table 10: Example 3 selected commonsense paths.
Frank Saltram is a man who apparently has a towering intellect, but one that manifests itself only in sparkling table-talk. He has a real and power gift to delight with his conversation, particularly when intoxicated, but other than conversation he produces nothing. Saltram also recognises no obligations or duties, is ungrateful and utterly unreliable, and is apparently prone to immoral acts. He lives off others, particularly the Mulvilles, who, convinced of Saltram's genius and genuinely enjoying his talk, host him for months at a time. In the opinion of the unnamed narrator, Saltram is not a deliberate conman; he simply suffers from a want of dignity. The story revolves around Saltram and a group of people who are fascinated by him. Ruth Anvoy, a young American woman with a wealthy father, comes to Britain to visit her widowed aunt Lady Coxon. There she meets George Gravener, a man with a real intellect and a future in politics, and the two become engaged. She also meets Saltram, and is fascinated and impressed by his talk and intellect, though aware that he has shortcomings of character, having made a promise to her now-deceased husband. Lady Coxon has for years been seeking to bestow a sum of 13,000 pounds upon a talented intellectual whose potential has been hampered by lack of money. Having failed to find such a person, Lady Coxon tells Anvoy that upon her death the money will be left to her, and she must carry on the quest. Anvoy's father suffers heavy financial losses and loses most of what he has. He dies, and shortly afterwards Lady Coxon dies. Anvoy, having lost nearly all her wealth, has only the 13,000 pounds from Lady Coxon, with a moral but not legal obligation to give it away. Gravener urges her to keep the money, as it could be used to buy them a house once they are married. She refuses, and their relationship becomes strained. Later, she entertains the idea of giving the money to Saltram, who Gravener despises as a fraud and not a gentleman. Eventually their engagement is broken off. Finally, the unnamed narrator is given a sealed letter and asked to give it to Anvoy. The letter is understood to contain a denunciation of Saltram's most immoral acts. The narrator must decide whether to blight Saltram's prospects by delivering the letter. He is willing to do so if it will save his friend Gravener's engagement with Anvoy, but Gravener is unable to assure him of this. Eventually he does offer the letter to Anvoy, but Anvoy declines to read it. She awards the Coxon fund to Saltram, who lives off it exactly as he lived off his friends, producing nothing of intellectual value, thus the only result of the award is the Mulvilles and others lose the pleasure of Saltram's conversation.

Figure 9: Example 3 visualized activation values of first attention hop \((1 - z_1)\).
Frank Saltram is a man who apparently has a towering intellect, but one that manifests itself only in sparkling table-talk. He has a real and powerful gift to delight with his conversation, particularly when intoxicated, but other than conversation he produces nothing. Saltram also recognises no obligations or duties, is ungrateful and utterly unreliable, and is apparently prone to immoral acts. He lives off others, particularly the Mulvilles, who, convinced of Saltram's genius and genuinely enjoying his talk, host him for months at a time. In the opinion of the unnamed narrator, Saltram is not a deliberate conman; he simply suffers from a want of dignity. The story revolves around Saltram and a group of people who are fascinated by him. Ruth Anvoy, a young American woman with a wealthy father, comes to Britain to visit her widowed aunt, Lady Coxon. There she meets George Gravener, a man with a real intellect and a future in politics, and the two become engaged. She also meets Saltram, and is fascinated and impressed by his talk and intellect, though aware that he has shortcomings of character. Having made a promise to her now-deceased husband, Lady Coxon has for years been seeking to bestow a sum of 13,000 pounds upon a talented intellectual whose potential has been hampered by lack of money. Having failed to find such a person, Lady Coxon tells Anvoy that upon her death the money will be left to her, and she must carry on the quest. Anvoy's father suffers heavy financial losses and loses most of what he has. He dies, and shortly afterwards Lady Coxon dies. Anvoy, having lost nearly all her wealth, has only the 13,000 pounds from Lady Coxon, with a moral but not legal obligation to give it away. Gravener urges her to keep the money, as it could be used to buy them a house. Once they are married, she refuses, and their relationship becomes strained. Later, she entertains the idea of giving the money to Saltram, who Gravener despises as a fraud and not a gentleman. Eventually their engagement is broken off. Finally, the unnamed narrator is given a sealed letter and asked to give it to Anvoy. The letter is understood to contain a denunciation of Saltram's most immoral acts. The narrator must decide whether to blight Saltram's prospects by delivering the letter. He is willing to do so if it will save his friend Gravener's engagement with Anvoy, but Gravener is unable to assure him of this. Eventually he does offer the letter to Anvoy, but Anvoy declines to read it. She awards the Coxon fund to Saltram, who lives off it exactly as he lived off his friends, producing nothing of intellectual value. Thus, the only result of the award is the Mulvilles and others lose the pleasure of Saltram's conversation.

Figure 10: Example 3 visualized activation values of second attention hop (1 − z₂).
Frank Saltram is a man who apparently has a towering intellect, but one that manifests itself only in sparkling table-talk. He has a real and power gift to delight with his conversation, particularly when intoxicated, but other than conversation he produces nothing. Saltram also recognises no obligations or duties, is ungrateful and utterly unreliable, and is apparently prone to immoral acts. He lives off others, particularly the Mulvilles, who, convinced of Saltram’s genius and genuinely enjoying his talk, host him for months at a time. In the opinion of the unnamed narrator, Saltram is not a deliberate conman; he simply suffers from a want of dignity. The story revolves around Saltram and a group of people who are fascinated by him. Ruth Anvoy, a young American woman with a wealthy father, comes to Britain to visit her widowed aunt Lady Coxon. There she meets George Gravener, a man with a real intellect and a future in politics, and the two become engaged. She also meets Saltram, and is fascinated and impressed by his talk and intellect, though aware that he has shortcomings of character. Having made a promise to her now-deceased husband, Lady Coxon has for years been seeking to bestow a sum of 13,000 pounds upon a talented intellectual whose potential has been hampered by lack of money. Having failed to find such a person, Lady Coxon tells Anvoy that upon her death the money will be left to her, and she must carry on the quest. Anvoy’s father suffers heavy financial losses and loses most of what he has. He dies, and shortly afterwards Lady Coxon dies. Anvoy, having lost nearly all her wealth, has only the 13,000 pounds from Lady Coxon, with a moral but not legal obligation to give it away. Gravener urges her to keep the money, as it could be used to buy them a house once they are married. She refuses, and their relationship becomes strained. Later, she entertains the idea of giving the money to Saltram, who Gravener despises as a fraud and not a gentleman, eventually their engagement is broken off. Finally, the unnamed narrator is given a sealed letter and asked to give it to Anvoy. The letter is understood to contain a denunciation of Saltram’s most immoral acts. The narrator must decide whether to blight Saltram’s prospects by delivering the letter. He is willing to do so if it will save his friend Gravener’s engagement with Anvoy, but Gravener is unable to assure him of this. Eventually he does offer the letter to Anvoy, but Anvoy Declines to read it. She awards the Coxon fund to Saltram, who lives off it exactly as he lived off his friends, producing nothing of intellectual value. Thus the only result of the award is the Mulvilles and others lose the pleasure of Saltram’s conversation.

Figure 11: Example 3 visualized activation values of third attention hop ($1 - z_3$).