A GENERALIZATION OF THE CASSELS-TATE DUAL EXACT SEQUENCE

CRISTIAN D. GONZÁLEZ-AVILÉS AND KI-SENG TAN

Abstract. We extend the well-known Cassels-Tate dual exact sequence for abelian varieties A over global fields K in two directions: we treat the p-primary component in the function field case, where p is the characteristic of K, and we dispense with the hypothesis that the Tate-Shafarevich group of A is finite.

1. Introduction

Let K be a global field and let m be a positive integer which is prime to the characteristic of K (in the function field case). Let A be an abelian variety over K. Then there exists an exact sequence of discrete groups

$$0 \to \Sha(A)(m) \to H^1(K, A)(m) \to \bigoplus_{v} H^1(K_v, A)(m) \to \text{Coker}(H^1(K, A)(m) \to \bigoplus_{v} H^1(K_v, A)(m)) \to 0,$$

where K_v is the henselization of K at v, $M(m)$ denotes the m-primary component of a torsion abelian group M, and $\text{Coker}(H^1(K, A)(m) \to \bigoplus_{v} H^1(K_v, A))$. The Pontrjagyn dual of the preceding exact sequence is an exact sequence of compact groups

$$0 \leftarrow \Sha(A)(m)\hat{*} \leftarrow H^1(K, A)(m)\hat{*} \leftarrow \prod_{v} H^0(K_v, A')(\hat{*}) \leftarrow \text{Coker}(H^1(K, A)(m)\hat{*} \to \bigoplus_{v} H^1(K_v, A)) \leftarrow 0,$$

where A' is the abelian variety dual to A and, for any abelian group M, $M\hat{*}$ denotes the m-adic completion $\varprojlim_n M/m^n$ of M. Now, if $\Sha(A)(m)$ is finite (or, more generally, if $\Sha(A)(m)$ contains no nontrivial elements which are divisible by m^n for every $n \geq 1$), then $\Sha(A)(m)\hat{*}$ and $\text{Coker}(H^1(K, A)(m)\hat{*} \to \bigoplus_{v} H^1(K_v, A))$ are canonically isomorphic to $\Sha(A')(m)$

2000 Mathematics Subject Classification. Primary 11G35; Secondary 14G25.

Key words and phrases. Selmer groups, Tate-Shafarevich groups, Cassels-Tate dual exact sequence.

C.G.-A. is partially supported by Fondecyt grant 1061209 and Universidad Andrés Bello grant DI-29-05/R.

K.-S.T. is partially supported by the National Science Council of Taiwan, NSC91-2115-M-002-001, NSC94-2115-M-002-010.
and $A_i'(K)^\sim$, respectively, and the preceding exact sequence induces an exact sequence

$$0 \leftarrow \bigoplus (A_i')(m) \leftarrow H^1(K, A)(m)^* \leftarrow \prod_{v} H^0(K_v, A_i') \leftarrow A_i'(K)^\sim \leftarrow 0$$

which is known as the Cassels-Tate dual exact sequence [3, 11]. See [9, Theorem II.5.6(b), p.247]. The aim of this paper is to extend the isomorphism $B(A)(m)^* \simeq A_i'(K)^\sim$ recalled above to the case where m is divisible by the characteristic of K (in the function field case) and no hypotheses are made on $\bigoplus (A_i')$. The following is the main result of the paper. Let m and n be arbitrary positive integers. Set

$$\text{Sel}(A_i')_{m^n} = \text{Ker} \left[H^1(K, A_i'_{m^n}) \to \bigoplus_{v} H^1(K_v, A_i') \right]$$

and

$$T_m \text{Sel}(A_i') = \lim_{\leftarrow n} \text{Sel}(A_i')_{m^n}.$$

Then the following holds\(^1\):

Main Theorem. For any positive integer m, there exists a natural exact sequence of compact groups

$$0 \leftarrow \bigoplus (A_i')(m)^* \leftarrow H^1(K, A)(m)^* \leftarrow \prod_{v} H^0(K_v, A_i') \leftarrow T_m \text{Sel}(A_i') \leftarrow 0.$$

It should be noted that a similar statement holds true if above the henselizations of K are replaced by its completions. See [9, Remark I.3.10, p.58].

This paper grew out of questions posed to the authors by B.Poonen, in connection with the forthcoming paper [10]. We expect that the above theorem will be useful in [op.cit.].

Acknowledgements

K.-S.T. thanks J.Milne for the helpful outline [8] which led to a complete proof of the p-primary part of the Main Theorem of this paper under the assumption that $\bigoplus (A_i')$ is finite. C.G.-A. thanks B.Poonen for suggesting Proposition 3.3 below and, more generally, for suggesting that the above finiteness assumption can be dispensed.

\(^1\)To see why the exact sequence of the theorem extends the Cassels-Tate dual exact sequence recalled above, see exact sequence (6) below and note that $T_m \bigoplus (A_i'_{m-div})$ vanishes if $\bigoplus (A_i')_{m-div} = 0$.
with in the relevant proofs of [9] if \(A(K) \) is replaced with \(T_m \text{Sel}(A) \) throughout\(^2\).

2. Settings and notations

Let \(K \) be a global field and let \(A \) be an abelian variety over \(K \). In the function field case, let \(p \) denote the characteristic of \(K \). All cohomology groups below are either Galois cohomology groups or flat cohomology groups. For any non-archimedean prime \(v \) of \(K \), \(K_v \) will denote the field of fractions of the henselization of the ring of \(v \)-integers of \(K \). If \(v \) is an archimedean prime, \(K_v \) will denote the completion of \(K \) at \(v \), and we will write \(H^0(K_v, A) \) for the quotient of \(A(K_v) \) by its identity component. Note that, for any prime \(v \) of \(K \), the group \(H^1(K_v, A) \) is canonically isomorphic to \(H^1(\hat{K}_v, A) \), where \(\hat{K}_v \) denotes the completion of \(K \) at \(v \). See [9, Remark I.3.10(ii), p.58]. Now let \(X \) denote either the spectrum of the ring of integers of \(K \) (in the number field case) or the unique smooth complete curve over the field of constants of \(K \) with function field \(K \) (in the function field case). In what follows, \(U \) denotes a nonempty open subset of \(X \) such that \(A \) has good reduction over \(U \). When \(N \) is a quasi-finite flat group scheme on \(U \), we endow \(H^r(U,N) \) with the discrete topology. Now let \(m \) and \(n \) be arbitrary positive integers, and let \(M \) be an abelian topological group. We will write \(M/m^n \) for \(M/m^nM = M \otimes_{\mathbb{Z}} \mathbb{Z}/m^n \) and \(\hat{M} \) for the \(m \)-adic completion \(\lim \leftarrow n M/m^n \) of \(M \). Further, we set \(\mathbb{Z}_m = \prod_{\ell | m} \mathbb{Z}_\ell \), \(\mathbb{Q}_m = \mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Q} \) and define \(M^* = \text{Hom}_{\text{cts}}(M, \mathbb{Q}/\mathbb{Z}) \). Finally, the \(m \)-primary component of a torsion group \(M \) will be denoted by \(M(m) \).

3. Proof of the Main Theorem

Both \(A \) and its dual variety \(A^t \) extend to abelian schemes \(A \) and \(A^t \) over \(U \) (see [2, Ch.1, §1.4.3]). By [5, VIII.7.1(b)], the canonical Poincaré biextension of \((A^t, A) \) by \(\mathbb{G}_m \) extends to a biextension over \(U \) of \((A^t, A) \) by \(\mathbb{G}_m \). Further, by [op.cit., VII.3.6.5], (the isomorphism class of) this biextension corresponds to a map \(A^t \otimes^L A \to \mathbb{G}_m[1] \) in the derived category of the category of smooth sheaves on \(U \). This map in turn induces (see [9, p.283]) a canonical pairing \(H^1(U,A^t) \times H^1_c(U,A) \to H^3_c(U,\mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z} \), where the \(H^r_c(U,A) \) are

\(^2\)After this paper was completed, we learned that the existence of a natural duality between \(B(A)(m) \) and \(T_m \text{Sel}(A^t) \) had already been observed by J.W.S.Cassels in the case of elliptic curves over number fields. See [3, p.153]. Therefore, the Main Theorem of this paper may be regarded as a natural generalization of Cassels’ result.
Remark 3.1. The smoothness of \mathcal{A} implies that the groups $H^r(U, \mathcal{A})$ and $H^r_c(U, \mathcal{A})$ agree with the analogous groups defined for the étale topology. See [9, Proposition III.0.4(d), p.272].

For any positive integer m and any $n \geq 1$, the above pairing induces a pairing

$$H^1(U, \mathcal{A}_m^t) \times H^1_c(U, \mathcal{A})/m^n \to \mathbb{Q}/\mathbb{Z}. \quad (1)$$

On the other hand, the map $\mathcal{A}_m^t \otimes L \mathcal{A} \to \mathbb{G}_m[1]$ canonically defines a map $\mathcal{A}_m^t \times \mathcal{A}_m^t \to \mathbb{G}_m$, which induces a pairing

$$H^1(U, \mathcal{A}_m^t) \times H^2_c(U, \mathcal{A}_m^t) \to \mathbb{Q}/\mathbb{Z}. \quad (2)$$

The preceding pairing induces an isomorphism

$$H^2_c(U, \mathcal{A}_m^t) \cong H^1(U, \mathcal{A}_m^t)^*. \quad (3)$$

See [9, Corollary II.3.3, p.217] for the case where m prime to p, and [op.cit., Theorem III.8.2, p.361] for the case where m is divisible by p. The pairings (1) and (2) are compatible, in the sense that the following diagram commutes:

$$\begin{array}{ccc}
H^1(U, \mathcal{A}_m^t) \times H^1_c(U, \mathcal{A})/m^n & \xrightarrow{\text{id} \times \partial} & \mathbb{Q}/\mathbb{Z} \\
\downarrow \quad \downarrow & & \\
H^1(U, \mathcal{A}_m^t) \times H^2_c(U, \mathcal{A}_m^t) & \to & \mathbb{Q}/\mathbb{Z},
\end{array} \quad (4)$$

where $\partial: H^1_c(U, \mathcal{A})/m^n \to H^2_c(U, \mathcal{A}_m^t)$ is induced by the connecting homomorphism $H^1_c(U, \mathcal{A}) \to H^2_c(U, \mathcal{A}_m^t)$ coming from the exact sequence

$$0 \to \mathcal{A}_m^t \to \mathcal{A} \to \mathcal{A} \to 0.$$

Now define

$$\text{Sel}(A^t)_m = \text{Ker} \left[H^1(K, \mathcal{A}_m^t) \to \bigoplus_{\text{all } v} H^1(K_v, A^t) \right]$$

and

$$T_m \text{Sel}(A^t) = \lim_{\longrightarrow} \text{Sel}(A^t)_m.$$

By the proof of [9, Proposition I.6.4, p.92], there exists an exact sequence

$$0 \to A^t(K)/m^n \to \text{Sel}(A^t)_m \to \text{III}(A^t)_m \to 0. \quad (5)$$
Taking inverse limits, we obtain an exact sequence
\begin{equation}
0 \to A'(K)^\sim \to T_m \Sel(A') \to T_m \III(A') \to 0.
\end{equation}

See [1, Proposition 10.2, p.104]. Now define\footnote{In these definitions, the products extend over all primes of \(K \), including the archimedean primes, not in \(U \).}
\[D^1(U, A^t_{m^n}) = \Ker \left[H^1(U, A^t_{m^n}) \to \prod_{v \notin U} H^1(K_v, A^t) \right] \]
and
\[D^1(U, A^t) = \Im \left[H^1(U, A^t) \to H^1(U, A^t) \right] = \Ker \left[H^1(U, A^t) \to \prod_{v \notin U} H^1(K_v, A^t) \right]. \]

Note that the pairing \(H^1(U, A^t) \times H^1_c(U, A) \to \Q/\Z \) induces a pairing \(D^1(U, A^t) \times D^1(U, A) \to \Q/\Z \).

By [9, Proposition III.0.4(a), p.271] and the right-exactness of the tensor product functor, there exists a natural exact sequence
\begin{equation}
\bigoplus_{v \notin U} H^0(K_v, A)/m^n \to H^1_c(U, A)/m^n \to D^1(U, A)/m^n \to 0.
\end{equation}

Lemma 3.2. The map \(H^1(U, A^t_{m^n}) \hookrightarrow H^1(K, A^t_{m^n}) \) induces an isomorphism
\[D^1(U, A^t_{m^n}) \simeq \Sel(A^t_{m^n}). \]

Proof. By [9, Lemma II.5.5, p.246] and Remark 3.1 above, the map \(H^1(U, A^t) \hookrightarrow H^1(K, A^t) \) induces an isomorphism
\[D^1(U, A^t_{m^n}) \simeq \III(A^t_{m^n}). \]

Now \(H^1(U, A^t_{m^n}) \to \prod_{v \notin U} H^1(K_v, A^t) \) factors through \(H^1(U, A^t) \to \prod_{v \notin U} H^1(K_v, A^t) \), which is the zero map (see [9, (5.5.1), p.247] and Remark 3.1 above). Consequently, \(H^1(U, A^t_{m^n}) \hookrightarrow H^1(K, A^t_{m^n}) \) maps \(D^1(U, A^t_{m^n}) \) into \(\Sel(A^t_{m^n}) \). To prove surjectivity, we consider the commutative diagram
\[\begin{array}{cccccc}
0 & \to & A^t(U)/m^n & A^t(U) & \to & H^1(U, A^t_{m^n}) & \to & H^1(U, A^t)/m^n & \to & 0 \\
\downarrow & & & & \downarrow & & & \downarrow & & \downarrow \\
0 & \to & A^t(K)/m^n & A^t(K) & \to & H^1(K, A^t_{m^n}) & \to & H^1(K, A^t)/m^n & \to & 0.
\end{array} \]

Note that the properness of \(A^t \) over \(U \) implies that the left-hand vertical map in the above diagram is an isomorphism (see [op.cit., p.242]). Now let \(c \in \Sel(A^t)_{m^n} \), write \(c' \) for its image in \(\III(A^t)_{m^n} \) under the map in (5) and let \(\xi' \in D^1(U, A^t)_{m^n} \subset H^1(U, A^t)_{m^n} \) be the pullback of
c' under the isomorphism $D^1(U, \mathcal{A}^t)_{m^n} \simeq \text{III}(A^t)_{m^n}$ recalled above. Then the fact that the left-hand vertical map in the above diagram is an isomorphism implies that ξ' can be pulled back to a class $\xi \in H^1(U, \mathcal{A}_{m^n})$ which maps down to c. Clearly $\xi \in D^1(U, \mathcal{A}_{m^n})$, and this completes the proof. \[\square \]

The following proposition generalizes [9, Theorem II.5.2(c), p.244].

Proposition 3.3. There exists a canonical isomorphism $(T_m \text{Sel}(A^t))^* \xrightarrow{\sim} H^2_c(U, \mathcal{A})(m)$.

Proof. There exists a commutative diagram

$$
0 \longrightarrow H^1_c(U, \mathcal{A})/m^n \longrightarrow H^2_c(U, \mathcal{A}_{m^n}) \longrightarrow H^2_c(U, \mathcal{A})_{m^n} \longrightarrow 0
$$

where the vertical map is the isomorphism (3). Clearly, the above diagram induces an isomorphism $\text{Coker } c \simeq H^2_c(U, \mathcal{A})_{m^n}$. On the other hand, there exists a natural exact commutative diagram

$$
\bigoplus_{v \notin U} H^0(K_v, \mathcal{A})/m^n \longrightarrow H^1_c(U, \mathcal{A})/m^n \longrightarrow D^1(U, \mathcal{A})/m^n \longrightarrow 0
$$

where the top row is (7), the right-hand vertical map ψ is the composite of the natural map $D^1(U, \mathcal{A})/m^n \rightarrow D^1(U, \mathcal{A}_{m^n})^*$ induced by the pairing $D^1(U, \mathcal{A}^t) \times D^1(U, \mathcal{A}) \rightarrow \mathbb{Q}/\mathbb{Z}$ and the natural map $D^1(U, \mathcal{A}^t)_{m^n} \rightarrow D^1(U, \mathcal{A}_{m^n})^*$, and the left-hand vertical map is induced by the canonical Poincaré biextensions of (A^t, \mathcal{A}) by \mathbb{G}_m over K_v for each $v \notin U$. That the latter map is an isomorphism follows from [9, Remarks I.3.5 and I.3.7, pp.53 and 56, and Theorem III.7.8, p.354] and the fact that the pairings defined in [loc.cit.] are compatible with the pairing induced by the canonical Poincaré biextension (see [4, Appendix]). The above diagram and the identification $\text{Coker } c = H^2_c(U, \mathcal{A})_{m^n}$ yield an exact sequence

$$
D^1(U, \mathcal{A})/m^n \rightarrow D^1(U, \mathcal{A}_{m^n})^* \rightarrow H^2_c(U, \mathcal{A})_{m^n} \rightarrow 0
$$

\[\text{4}\text{The commutativity of this diagram follows from that of diagram (4).}\]
Taking direct limits, we obtain an exact sequence

\[D^1(U, \mathcal{A}) \otimes \mathbb{Q}_m/\mathbb{Z}_m \to (\varprojlim D^1(U, \mathcal{A}^t_m))^* \to H^2_c(U, \mathcal{A})(m) \to 0 \]

But \(D^1(U, \mathcal{A}) \otimes \mathbb{Q}_m/\mathbb{Z}_m = 0 \) since \(D^1(U, \mathcal{A}) \) is torsion and \(\mathbb{Q}_m/\mathbb{Z}_m \) is divisible. Now lemma 3.2 completes the proof. \(\square \)

By Remark 3.1 and [9, proof of Lemma II.5.5, p.247, and Proposition II.2.3, p. 203], there exist exact sequences

\[H^1(U, \mathcal{A}) \xrightarrow{c_U} \bigoplus_{v \notin U} H^1(K_v, \mathcal{A}) \to H^2_c(U, \mathcal{A}) \]

and

\[0 \to H^1(U, \mathcal{A}) \xrightarrow{i_U} H^1(K, \mathcal{A}) \xrightarrow{\lambda_U} \bigoplus_{v \in U} H^1(K_v, \mathcal{A}), \]

where \(c_U \) and \(\lambda_U \) are natural localization maps and \(i_U \) is induced by the inclusion \(\text{Spec} \mathbb{K} \hookrightarrow U \). If \(U \subset V \) is an inclusion of nonempty open subsets of \(X \), then there exists a natural commutative diagram

\[
\begin{array}{ccc}
H^1(V, \mathcal{A}) & \xrightarrow{c_V} & \bigoplus_{v \notin V} H^1(K_v, \mathcal{A}) \\
\downarrow & & \downarrow \\
H^1(U, \mathcal{A}) & \xrightarrow{c_U} & \bigoplus_{v \notin U} H^1(K_v, \mathcal{A}).
\end{array}
\]

Define

\[B(A)_U = \text{coker} \left[c_U : H^1(U, \mathcal{A}) \to \bigoplus_{v \notin U} H^1(K_v, \mathcal{A}) \right], \]

which we regard as a subgroup of \(H^2_c(U, \mathcal{A}) \). The preceding diagram shows that an inclusion \(U \subset V \) of nonempty open subsets of \(X \) induces a map \(B(A)_V \to B(A)_U \). Define

\[B(A) = \varinjlim B(A)_U = \text{coker} \left[H^1(K, \mathcal{A}) \to \bigoplus_{\text{all } v} H^1(K_v, \mathcal{A}) \right], \]

where the limit is taken over the directed family of all nonempty open subsets \(U \) of \(X \) such that \(A \) has good reduction over \(U \), ordered by

\[^5 \text{In the second exact sequence, } "v \in U" \text{ is shorthand for } "v \text{ is a closed point of } U". \]
\(V \leq U \) if and only if \(U \subset V \). For each \(U \) as above and every \(n \geq 1 \), there exists an exact sequence
\[
\bigoplus_{v \notin U} H^1(K_v, A)_m^n \to (B(A)_U)_m^n \to (\text{Im } c_U)/m^n.
\]
Since \(\text{Im } c_U \) is torsion, we conclude that there exists a surjection
\[
\bigoplus_{v \notin U} H^1(K_v, A)(m) \xrightarrow{(8)} B(A)_U(m)
\]
On the other hand, by the proof of [9, Corollary I.6.23(b), p.111], there exists a natural injection \(T_m \text{Sel}(A^i) \hookrightarrow \prod_v H^0(K_v, A^i)^{*} \) and hence a surjection
\[
\bigoplus_{v} (H^0(K_v, A^i)^{*}) \to (T_m \text{Sel}(A^i))^*.
\]
Further, as noted in the proof of Proposition 3.3, the canonical Poincaré biextensions induce an isomorphism
\[
\bigoplus_{v} (H^0(K_v, A^i)^{*}) \simeq \bigoplus_{v} H^1(K_v, A)(m),
\]
whence there exists a surjection
\[
\bigoplus_{v} H^1(K_v, A)(m) \xrightarrow{(9)} (T_m \text{Sel}(A^i))^*.
\]
The maps (8) and (9) fit into a commutative diagram
\[
\begin{array}{ccc}
\bigoplus_{v} H^1(K_v, A)(m) & \xrightarrow{(9)} & (T_m \text{Sel}(A^i))^* \\
& \uparrow & \downarrow \\
\bigoplus_{v \notin U} H^1(K_v, A)(m) & \xrightarrow{(8)} & B(A)_U(m),
\end{array}
\]
where the isomorphism on the top row exists by Proposition 3.3. Taking the direct limit over \(U \) in the above diagram, we conclude that there exists an isomorphism
\[
B(A)(m) \sim (T_m \text{Sel}(A^i))^*,
\]
as desired.

Remark 3.4. Recently [7, Theorem 1.2], the Cassels-Tate dual exact sequence has been extended to 1-motives \(M \) over number fields under the assumption that the Tate-Shafarevich group of \(M \) is finite. Now, using [6, Remark 5.10], it should not be difficult to extend this result
to global function fields, provided the p-primary components of the groups involved are ignored, where p denotes the characteristic of K. In this paper we have removed the latter restriction when M is an abelian variety, but the problem remains for general 1-motives M.

References

[1] Atiyah, M. and MacDonald, I.: Introduction to Commutative Algebra. Addison-Wesley, Reading, MA., 1969.
[2] Bosch, S., Lütkebohmert, W. and Raynaud, M.: Néron Models. Springer Verlag, Berlin 1989.
[3] Cassels, J.W.S: Arithmetic of curves of genus 1. VII. The dual exact sequence. J. Reine Angew. Math. 216, no. 1, pp. 150-158 (1964).
[4] González-Avilés, C.D.: Brauer groups and Tate-Shafarevich groups. J. Math. Sciences, Univ. Tokyo 10, no. 2 pp. 391-419 (2003).
[5] Grothendieck, A.: Groupes de Monodromie en Géométrie Algébrique I, Séminaire de Géométrie Algébrique du Bois Marie 1967-69 (SGA 7 I). Lecture Notes in Math., vol. 288, Springer, Heidelberg, 1972.
[6] Harari, D. and Szamuely, T.: Arithmetic duality theorems for 1-motives. J. reine angew. Math. 578, pp. 93-128 (2005).
[7] Harari, D. and Szamuely, T.: On the arithmetic of 1-motives. In preparation. Available from http://www.renyi.hu/~szamuely.
[8] Milne, J.S.: Letter to K.-S.Tan, March 19th, 1991.
[9] Milne, J.S.: Arithmetic Duality Theorems. Persp. in Math., vol. 1. Academic Press Inc., Orlando 1986.
[10] Poonen, B. and Voloch, F.: The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields. In preparation.
[11] Tate, J.: Duality theorems in Galois cohomology over number fields. Proceedings of the International Congress of Mathematicians, Stockholm, 1962, pp. 288-295.

Departamento de Matemáticas, Universidad Andrés Bello, Chile
E-mail address: cristiangonzalez@unab.cl

Department of Mathematics, National Taiwan University, Taiwan
E-mail address: tan@math.ntu.tw