High quality electromagnetically induced transparency spectroscopy of 87Rb in a buffer gas cell with a magnetic field

Hong Cheng(成红)1,2, Han-Mu Wang(王汉睦)1,2, Shan-Shan Zhang(张珊珊)1,2, Pei-Pei Xin(辛培培)1,2, Jun Luo(罗军)1,2, and Hong-Ping Liu(刘红平)1,2,†

1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
2University of Chinese Academy of Sciences, Beijing 100049, China

(Received 16 January 2017; revised manuscript received 9 March 2017; published online 17 May 2017)

We have studied the phenomenon of electromagnetically induced transparency (EIT) of 87Rb vapor with a buffer gas in a magnetic field at room temperature. It is found that the spectral lines caused by the velocity selective optical pump effects get much weaker and wider when the sample cell is mixed with a 5-Torr N$_2$ gas while the EIT signal is kept almost unchanged. A weighted least-square fit is also developed to remove the Doppler broadening completely. This spectral method provides a way to measure the Zeeman splitting with high resolution, for example, the Λ-type EIT resonance splits into four peaks on the D$_2$ line of 87Rb in the thermal 2-cm vapor cell with a magnetic field along the electric field of the linearly polarized coupling laser. The high-resolution spectrum can be used to lock the laser to a given frequency by tuning the magnetic field.

Key words: electromagnetically induced transparency, Zeeman effect, coherent interaction

PACS: 42.50.Gy, 32.60.+i, 32.80.Qk, 32.70.Jz

1. Introduction

The interesting coherent interaction of atoms with laser fields in three-level Λ configurations has attracted increasing attention in the studies of nonlinear and quantum optics and spectroscopy recently. Electromagnetically induced transparency (EIT) is a quantum coherence effect which has a number of important applications such as laser cooling,$^{[1]}$ lasing without inversion,$^{[2]}$ information storage,$^{[3]}$ and magnetometry.$^{[4]}$

EIT resonance line-shape and line-width are of interest for many EIT applications. A narrow and high contrast EIT resonance is useful in many fields, especially for spectroscopy$^{[5,6]}$ and precision metrology.$^{[7,8]}$ In a three-level Λ scheme, the line-width caused by the nonlinear effects in EIT is governed by the relaxation rate of the ground state coherence, which is predominantly determined by the interaction time of the atom with the applied laser fields, i.e., the average time-of-flight of the atom through the laser beam.$^{[9,10]}$ To obtain a narrower EIT resonance, a buffer gas can be added to the atomic vapor to prolong the interaction time.$^{[9,11]}$ The addition of the buffer gas slows the diffusion of the coherently prepared atoms through the laser beam by simultaneously preserving the ground state coherence as a result of the collisions over millions of buffer gas.$^{[12]}$ The line-width can be reduced by several orders of magnitude.$^{[13-15]}$

The line-shape of the EIT resonance is also affected by the thermal motion of the atoms in a vapor cell filled with a mixture of alkali atoms and inert gas at several Torr.$^{[16-20]}$ For example, Sarkisyan studied the effect of different pressure of buffer gas on the EIT resonances,$^{[16]}$ while Eugeny et al. studied the influence of the laser detuning on the line shape of the EIT and observed that in the presence of a buffer gas, an absorption resonance appears, that is different from the Lorentzian shape of the usual EIT resonance.$^{[17,21]}$

What is more, compared to the case without buffer gas, the velocity selective optical pump (VSOP) effects will disappear when the vapor cell is filled with a buffer gas; this is due to the pumping process being overridden by velocity-changing. Therefore, the EIT resonance will grow up on a broadened Gaussian background, which simplifies the analysis of the spectra and supplies a good way for us to study the EIT splitting with a high resolution spectrum in a magnetic field.$^{[22]}$

The EIT resonance in the Λ system of the D$_1$ or D$_2$ line of Rb atoms in a magnetic field has been studied a lot both theoretically and experimentally.$^{[23-26]}$ In most cases, the magnetic field is either parallel to the laser propagation direction, where both coupling and probe fields are seen as a combination of left- and right-circularly polarized ones, or orthogonal to the laser propagation direction but along the electric field of the probe laser, where only the coupling beam is seen as a combined field.$^{[27]}$

However, for the case with the magnetic field along the...
electric field of the coupling laser, the Zeeman-splitting in magnetic fields is rarely studied. In our work, we use a vapor cell filled with ^{87}Rb and 5 torr N$_2$ to remove the VSOP peaks in the Λ-type EIT for D$_2$ line at room temperature and present an experimental observation of Λ-type EIT by applying an external magnetic field along the electric field of the coupling laser. A skill of weighted least-square fit is used to remove the Doppler broadened background. The observed spectrum is well explained by our theoretical simulation.

2. Experimental setup

Our experimental setup for the Λ-type EIT of ^{87}Rb in a magnetic field is shown in Fig. 1(a) and the relative transition energy level diagram is shown in Fig. 1(b). The arrangement of the optical elements has been described in detail in our previous work. The coupling laser frequency is locked to a saturation absorption spectroscopy (SAS) system and the probe laser is scanned across the D$_2$ line levels.

![Fig. 1. (color online) (a) Experimental setup for EIT spectral measurement. PBS: polarizing beam splitter; PM: permanent magnet; PD: photo detector. (b) Magnetic sublevels diagram of ^{87}Rb atoms in the presence of the magnetic field. All possible polarization combinations for the Λ-EIT scheme are shown.](image)

The polarizations of the coupling and probe lasers are linear and mutually orthogonal. The beam size is around 1 mm2 for each laser. The coupling and probe laser beams are carefully superimposed on one polarization beam splitter (PBS) and then adjusted to overlap almost completely throughout the cell. The spherical-shaped Rb vapor cell is made of pyrex glass and has a diameter of 2 cm. The cell is filled with pure ^{87}Rb and N$_2$ buffer gas at a pressure of 5 Torr at room temperature. There is no magnetic field shielding outside the Rb vapor cell. A long permanent magnet is placed near the cell to apply the magnetic field to the Rb atoms. The magnetic field direction is along the y axis, which is parallel to the electric field of the coupling laser, and the strength can be controlled by changing the distance between the magnet and the cell. The maximum magnitude can be up to 500 Gs. The coupling field couples the hyperfine level $F=2$ of the ground state 5S$_{1/2}$ and $F'=2$ of the excited state 5P$_{3/2}$. while the probe laser scans over the transitions from the ground state $F=1$ to the excited states 5P$_{3/2}$ $F'=0, 1, \text{ and } 2$.

3. Results and discussion

In fact, the D$_2$ line of the ^{87}Rb atoms is of multi-levels, and there will be some satellite peaks along with the EIT line due to the Doppler effect in the Λ configuration, which causes the very complicated spectrum observed. In our work, we use a pure ^{87}Rb vapor cell filled with N$_2$ buffer gas to decrease or remove this effect and only keep the EIT signal for high spectroscopy, which further helps us to study the EIT splitting in the magnetic field.

Figure 2 shows the observed EIT spectra without and with N$_2$ buffer gas. The coupling laser is locked to the transition $F=2$ to $F'=1&2$, where $F'=1&2$ means the cross-over peak between $F'=1$ and 2 due to the Doppler broadening in the SAS configuration. In the case without buffer gas, we can see an EIT peak with several VSOP peaks. Obviously, the EIT signal is much narrower than that of VSOP. If we fill the cell with 5 Torr N$_2$, all the VSOP peaks will become much broader and their magnitudes also decrease greatly. This feature lets the EIT peak emerge on a very broadened background, and therefore the effects of VSOP will not affect our observation of the spectral change of the atom in an external field in the ground state.

![Fig. 2. (color online) The experimental observation of the EIT spectra without and with buffer gas. The coupling laser is locked to the crossover between $F'=1$ and 2.](image)
As observed in many previous works,[17,30–32] the EIT spectral line-shape becomes asymmetric when the coupling laser is detuned far away from the resonance, which is re-investigated in our experiment as shown in Fig. 4. The detuning of the coupling laser varying from -78.5 MHz to 346 MHz causes the EIT resonance shifting within the absorption profile of the probe laser and the line-shape of the detuned EIT resonance becomes asymmetric and non-Lorentzian. In addition, an increasing detuning of the coupling frequency leads to a significant reduction of the amplitude of the EIT peaks,[25] even inducing a dispersive line shape. For example, when the coupling field frequency is detuned to 346 MHz, an obvious dispersion-like resonant absorption peak appears. Our simulation considering the detuning coincides well with the experimental spectrum. If we apply a magnetic field to the atom, the hyperfine energy levels will split and the coupling laser detunes away from the resonant energies as well. It also causes the EIT spectral lines to have an asymmetric structure as shown in Fig. 3(b).

Unlike the case of the atom in zero magnetic field, the degeneracy of the hyperfine levels is destroyed due to the Zeeman effect, forming 13 nondegenerate magnetic sublevels as shown in Fig. 1(b). Specifically, for the case with the magnetic field parallel to the electric field of the coupling laser along y-axis, we can simplify the complex transitions by decomposition. The coupling process corresponds to a π transition, while the probe beam has a σ one that can be decomposed to be the combination of σ^+ and σ^- transitions with the same weight. All possible transitions can form six A-type subsystems. The two sub-EIT peaks in the outside each contain one single subsystem, corresponding to the transitions from $F = 1, m_F = 1$ via $F' = 2, m_F = 2$ to $F = 2, m_F = 2$ and $F = 1, m_F = -1$ via $F' = 2, m_F = -2$ to $F = 2, m_F = -2$, respectively. The two sub-EIT peaks in the middle both contain two subsystems.

Figure 5 shows the spectrum of 87Rb in a magnetic field along the y-axis. The magnetic field varies from $B = 16$ Gs to $B = 98$ Gs. Firstly, we can see that the four EIT peaks are linearly shifted away with the magnetic field increasing. Secondly, in the low magnetic field ($B = 16$ Gs), the amplitudes of the middle two peaks are smaller than those of the two peaks outside. An interesting phenomenon is that with the magnetic field increasing, the amplitudes of the two middle peaks become larger and larger than the ones outside. They do not keep a constant ratio at all as expected.

Usually the spectral line intensity is determined directly by the transition probability between different Zeeman sublevels, in our case, from $F = 2$ to $F' = 2$. For example, the transition probabilities from $F = 2, m_F = \pm 2$ to $F' = 2, m_F = \pm 2$...
\[\pm 2 \text{ (corresponding to the two outside peaks) are twice as large as those of the transitions } F = 2, m_F = \pm 1 \text{ to } F' = 2, m_F = \pm 1 \text{ (corresponding to the two inside peaks).} \]

It agrees with the observation at the low magnetic field, i.e., at \(B = 16 \text{ Gs} \).

However, as discussed previously, the magnitude of the resonance is also dependent on the detuning of the coupling laser frequency from the corresponding atomic transition. To show the influence of the detuning caused by the magnetic field on the magnitude of the EIT resonance, we further compare the results with and without considering the detuning in our calculation, which is shown in Fig. 6. The blue and red lines indicate the calculated results with and without considering the detuning, respectively. In the low magnetic field as shown in Fig. 6(a), the simulated spectral line intensity ratio \(A_1'/A_2' \) having considered the detuning is almost the same as the ratio \(A_1/A_2 \) of the transition intensity, which indicates that in the low magnetic field, the amplitudes of the EIT peaks are mainly determined by the transition intensities between different sub-levels and we can ignore the influence of the detuning on the amplitudes.

However, the detuning plays a more and more important role for the line intensity and position when the magnetic field increases, as shown in Fig. 6(b). We can see that the amplitude ratio \(A_1'/A_2' \) considering the detuning decreases to 1 from its original ratio \(A_1/A_2 = 3.8 \). This is because the outside EIT peaks possess a much larger red- or blue-detuning, which distorts the resonant line shape and reduces the amplitudes of their spectral line intensities significantly.\(^{[30]}\)

For example, at the magnetic field of \(B = 98 \text{ Gs} \) shown in Fig. 5(e), the detunings of the coupling laser for the two outside peaks can reach more than 200 MHz, resulting in a remarkable reduction of the spectral amplitudes. In addition, the simulated spectral line position also shifts a little. It also indicates that we have to choose a zero detuning line if this Doppler free technique is used for a laser frequency locking.

4. Conclusion

We have obtained a high resolution of EIT splittings in a Rb vapor cell with \(N_2 \) buffer gas in a magnetic field at room temperature. With the additional 5 Torr \(N_2 \), the VSOP peaks due to optical pumping almost disappear and only the EIT signals are kept in the spectra due to the collision effects by the buffer gas. We present a method by a least-square fit to remove the Doppler broadening completely which keeps only the EIT peaks. These two techniques simplify the analysis of the observed EIT spectral splittings in the magnetic field. The dependence of the splitting line shape and intervals of sub-EIT windows on the magnetic field have been investigated. When the applied magnetic field is along the polarization direction of the coupling laser, the EIT peak splits into four sub-ones. An asymmetric spectral line shape can be observed for the deep detunings caused by the Zeeman level splitting. All experimental observations are well explained by a simulation considering the detuning effect. Our work provides a method to lock the laser to a given frequency by tuning the magnetic field.

References

\[1\] Peng A, Johnsson M, Bowen W P, Lam P K, Bacher H A and Hope J J 2005 Phys. Rev. A 71 033809
\[2\] Mompart J and Corbalán R 2000 J. Opt. B 2 R7
\[3\] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
\[4\] Karpa L, Nikoghosyan G, Vewinger F, Fleischhauer M and Weitz M 2009 Phys. Rev. Lett. 103 093601
\[5\] Yang Z W and Jiao C Y 2016 Acta Phys. Sin. 65 103201 (in Chinese)
\[6\] Slavov D, Sargsyan A, Sarkisyan D, Mirzoyan R, Krasteva A, Wilson-Gordon A D and Cartaleva S 2014 J. Phys. B 47 035001
\[7\] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2009 Opt. Express 17 15821
\[8\] Wu J C, Liu Z D and Zheng J 2013 Chin. Phys. B 22 044203
\[9\] Mikhailov E E, Novikova I, Rostovtsev Y V and Welch G R 2004 Phys. Rev. A 70 033806
\[10\] Novikova I, Xiao Y, Phillips D F and Walsworth R L 2005 J. Mod. Opt. 52 2381
\[11\] Halkhumyan G, Sargsyan A, Leroy C, Pashayan-Leroy Y, Papoyan A and Sarkisyan D 2010 Opt. Express 18 14577
\[12\] Mikhailov E E, Sautenkov V A, Novikova I and Welch G R 2004 Phys. Rev. A 69 063808
\[13\] Brandt S, Nagel A, Wynands R and Meschede D 1997 Phys. Rev. A 56 R1063
\[14\] Nikolic S N, Radonjie M, Krmptov A J, Lucic N M, Zlatkovic B V and Jelenkovic B M 2013 J. Phys. B 46 075501
\[15\] Liu Z, Wang J Y, Diao W T, He J and Wang J M 2013 Chin. Phys. B 22 043201
\[16\] Sarkisyan D, Halkhumyan G, Sargsyan A, Mirzoyan R, Leroy C and Pashayan-Leroy Y 2010 SPIE. 16th International School on Quantum Electronics: Laser Physics and Applications 7747 77470C
\[17\] Erhard M and Helm H 2001 Phys. Rev. A 63 043813
\[18\] Boudot R, Dzubau P, Hasegawa M, Chutani R K, Galliou S, Giordano V and Gorecki C 2011 J. Appl. Phys. 109 014912
\[19\] Hossain M M, Mitra S, Ray B and Ghosh P N 2009 Laser Phys. 19 2008
[20] Mikhailov E E, Sautenkov V A, Rostovtsev Y V and Welch G R 2004 J. Opt. Soc. Am. B 21 425
[21] Yang H, Yan D, Zhang M, Fang B, Zhang Y and Wu J H 2012 Chin. Phys. B 21 114207
[22] Zheng A, Green A, Crescimanno M and O’Leary S 2016 Phys. Rev. A 93 043825
[23] Sargsyan A, Mirzoyan R and Sarkisyan D 2012 JETP Lett. 96 303
[24] Sargsyan A, Mirzoyan R, Vartanyan T and Sarkisyan D 2014 J. Exp. Theor. Phys. 118 359
[25] Sargsyan A, Sarkisyan D and Papoyan A 2006 Phys. Rev. A 73 033803
[26] Jiang X, Zhang H and Wang Y 2016 Chin. Phys. B 25 034204
[27] Wei X G, Wu J H, Sun G X, Shao Z, Kang Z H, Jiang Y and Gao J Y 2008 Phys. Rev. A 72 023806
[28] Cheng H, Zhang S S, Xin P P, Cheng Y and Liu H P 2016 Chin. Phys. B 25 114203
[29] Chakrabarti S, Pradhan A, Ray B and Ghosh P N 2005 J. Phys. B 38 4321
[30] Pei L, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P and Zuo Z 2013 Phys. Rev. A 87 063822
[31] Wang M, Lu X G, Bai J H, Pei L Y, Miao X X, Gao Y L, Wu L A, Fu P M, Yang S P, Pang Z G, Wang R Q and Zuo Z C 2015 Chin. Phys. B 24 114205
[32] Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M and Zuo Z C 2015 Acta Phys. Sin. 64 154208 (in Chinese)
[33] Wang B, Han Y, Xiao J, Yang X, Xie C, Wang H and Xiao M 2006 Opt. Lett. 31 3647