CNOT circuits need little help to implement arbitrary Hadamard-free Clifford transformations they generate

Dmitri Maslov and Willers Yang
IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

A Hadamard-free Clifford transformation is a circuit composed of quantum Phase (P), CZ, and CNOT gates. It is known that such a circuit can be written as a three-stage computation, \(-P-CZ-CNOT-\), where each stage consists only of gates of the specified type.

In this paper, we focus on the minimization of circuit depth by entangling gates, corresponding to the important time-to-solution metric and the reduction of noise due to decoherence. We consider two popular connectivity maps: Linear Nearest Neighbor (LNN) and all-to-all. First, we show that a Hadamard-free Clifford operation can be implemented over LNN in depth \(5n\), i.e., in the same depth as the \(-CNOT-\) stage alone. This allows us to implement arbitrary Clifford transformation over LNN in depth no more than \(7n-4\), improving the best previous upper bound of \(9n\). Second, we report heuristic evidence that on average a random uniformly distributed Hadamard-free Clifford transformation over \(n\geq6\) qubits can be implemented with only a tiny additive overhead over all-to-all connected architecture compared to the best-known depth-optimized implementation of the \(-CNOT-\) stage alone. This suggests the reduction of the depth of Clifford circuits from \(2n+O(\log^2(n))\) to \(1.5n+O(\log^2(n))\) over unrestricted architectures.

I. INTRODUCTION

Clifford circuits are ubiquitous in quantum computing. They appeared early in the study of quantum computations. For example, Bernstein–Vazirani algorithm [1], which is a Clifford circuit in its entirety, served to establish a separation between quantum and classical computations in the black-box model. In early (as well as modern) experimental work, randomized benchmarking [2, 3], performed entirely by Clifford circuits, was found to be a powerful tool for establishing the quality of quantum gates/computations. Quantum error correction is based on Clifford circuits, including both logical state encoding (as well as the underlying formalism) [4, 5] and state purification required to obtain non-Clifford the quality of quantum gates/computations. Quantum error correction is based on Clifford circuits, including both logical state encoding (as well as the underlying formalism) [4, 5] and state purification required to obtain non-Clifford gates on the logical level [6]. Fault-tolerant and even physical-level circuits (although slightly less so) are frequently considered over Clifford+T and/or Clifford+R, libraries—the role of the Clifford circuits follows from the library names themselves. Other notable use cases include shadow tomography [7], study of entanglement [8], and more.

There are two popular choices to evaluate a circuit cost by a single number: weighted gate count, and weighted depth. The weights depend on whether one works with physical-level or logical-level circuits and the details of physical-level control and error correcting approach, correspondingly. Given that logical-level Clifford circuits can often be implemented transversely, the costs are most likely determined by the physical-level constraints. Both leading quantum technologies, superconducting circuits [9] and trapped ions [10], offer single-qubit gates at a fraction of the cost of the two-qubit gates. It thus makes the most sense to discard the single-qubit gates and simply count the entangling gates. We furthermore choose to focus on optimizing the depth by entangling gates rather than the gate count. We believe this to be a better choice since the depth most accurately reflects the time to solution, and the purpose of any computation is above all to optimize this figure of merit. Secondly, minimizing depth helps to optimize the fidelity in computations where noise is dominated by decoherence, such as the case in current superconducting circuit devices [9]. For quantum technologies where noise may be dominated by a coherent source, such as the trapped ions [11], one may too prefer to optimize depth, since the noise due to random over/underrotations may scale sublinearly with the number of gates [11] or even as slow as the square root [12], whereas the effect of the decoherence is always linear with time. Thus, a smaller decoherence noise channel may cause a larger disturbance in sufficiently deep computations compared to a coherent over/underrotation channel, due to coherent error cancellations.

All quantum computations need to be broken down into single-qubit and two-qubit gates, which are then implemented in hardware. A single-qubit gate can be implemented by directly addressing the respective physical qubit, but the two-qubit gates require addressing a pair of qubits. Depending on the technology and particulars of the controlling apparatus, it may not always be possible. Of the two leading technologies, trapped ions [10] is generally said to offer all-to-all qubit connectivity. However, this does not remain the case for arbitrary numbers of qubits, and it is possible that keeping all-to-all connectivity beyond 100 qubits can be challenging [11]. In our work, we address the possibility of unrestricted architectures by considering the task of depth optimization without limiting the pairs of qubits to which an elementary two-qubit gate can apply. In contrast, superconducting circuits technology [9] offered limited connectivity at the offset, including the first 5-qubit IBM quantum processor that premiered in 2016 [13]. Current offerings by the companies focusing on superconducting technology include a 2-dimensional square lattice (Google), heavy hexagonal lattice (where each edge of a hexagonal lattice contains a qubit in the middle, IBM), 2-dimensional
square lattice with diagonal terms (IBM, presently retired Tokyo architecture), and a square lattice with octagons (Rigetti). What unites these is the ability to find a chain subgraph in each, that is, embed the Linear Nearest Neighbor (LNN) architecture. A chain is frequently a subgraph of many other graphs and lattices. As a result, and due to its universality, we also focus on implementing Clifford circuits over the LNN architecture.

Clifford circuits have been studied quite extensively, leading to numerous efficient implementations addressing a number of metrics of value. A first noteworthy result in this area was the development of an 11-stage layered decomposition -H-CNOT-P-CNOT-P-CNOT-H-P-CNOT-P-CNOT- [14], which, together with gate-count asymptotically optimal synthesis algorithm for linear reversible circuits [15] settled the asymptotic gate complexity. This asymptotically optimal algorithm can be parallelized [16, 17] to offer depth upper bound guarantee of $O(n / \log(n))$, leading to asymptotic depth optimality. However, the leading constant in front of the $n / \log(n)$ term is as high as 20 [16], resulting in circuits that become advantageous compared to those featuring a higher asymptotic complexity of $O(n)$ only when the number of qubits exceeds 1,345,000 or more [16, 18]. Indeed, [18] offers an improvement over [16], implying that the performance crossover number 1,345,000 was likely pushed higher by the newer work. In either case, we do not anticipate executing Clifford circuits spanning this many qubits on quantum computers. This suggests that the currently known constructions achieving asymptotic optimality offer theoretical guarantees but are not necessarily practical. We also note that constructions offering asymptotic optimality and exploring ancillary space have also been considered [17]. However, leading constants are high [16].

A more practical approach to implementing Clifford circuits would be to first start with a short layered decomposition -X-Z-P-CNOT-CZ-H-CZ-H-P- [19, 20], offering only three entangling stages, as opposed to the original five [14], and noting that a -CZ- stage is ‘simpler’ than a -CNOT- stage. Then, depending on the qubit connectivity:

- over LNN: -X-Z-P-CNOT-CZ-H-CZ-H-P- can be rewritten as -X-P-CNOT-CZ-H-CZ-H-P-, where -CZ- is a -CZ- stage together with qubit reversal. The -CNOT- stage can be implemented in depth at most $5n$ [21], and -CZ- can be implemented in depth $2n+2$ [22], which combined with some local optimizations leads to the depth 9n implementation of arbitrary Clifford circuits;
- over all-to-all: both -CZ- and -CNOT- stages are best implemented according to [18], resulting in depth $2n + O(\log^2(n))$ circuits.

Here, we show that a -CNOT-CZ- stage can always be implemented in depth $5n$ over LNN, leading to Clifford circuit depth guarantee of no more than $7n-4$. We also show computational evidence that a -CNOT-CZ- stage can be implemented in depth $n + O(\log^2(n))$ over all-to-all architecture, leading to a likely upper bound of $1.5n + O(\log^2(n))$ on the depth of Clifford circuits in unrestricted architectures.

The rest of the paper is organized as follows. Section II discusses basic background on the subject of CZ and CNOT circuits, highlighting how sets of linear functions can form a basis in the linear space of CZ circuits. Section III focuses on developing circuits over LNN architecture. It describes a depth-$5n$ implementation of the joint -CNOT-CZ- stage and offers an $O(n^3)$ algorithm to construct it. We employ this construction to implement arbitrary Clifford operation in depth $7n-4$. Section IV reports a heuristic solution to the problem of optimizing circuit depth of the implementation of the -CNOT-CZ- stage in the all-to-all connected architecture. Final remarks and conclusion can be found in Section V.

II. BACKGROUND

The core of technical discussions is the study of quantum circuits composed with Phase (P), CZ, and CNOT gates. These gates can be defined as the unitary matrices or by the transformations they perform over basis states, as follows:

$$P(x) : |x\rangle \mapsto i^x |x\rangle,$$

$$CZ(x, y) : |x, y\rangle \mapsto (-1)^{xy} |x, y\rangle,$$ and

$$CNOT(x, y) : |x, y\rangle \mapsto |x, x \oplus y\rangle.$$

Such circuits compute Hadamard-free Clifford transformations and form a finite group. It was shown [22] that the circuits with Phase, CZ, and CNOT gates can be computed as a three-stage layered computation -P-CZ-CNOT-, where each layer can be composed using the gates of its specified type, and the layers can come in any order. This layered decomposition offers an efficient way of implementing Hadamard-free circuits. Indeed, -P- layer may consist of the gates ID (identity), $P, Z = P^2$, and $P^3 = P^3$ on each qubit, and thus is trivial to compose. A -CZ- layer can be implemented straightforwardly and optimally by the CZ gates alone (see next paragraph). A -CNOT- layer, also known as linear reversible circuits, has been studied extensively [15, 17, 18, 21, 23]. We note that both -CZ- layer can
be implemented more efficiently by utilizing P and CNOT gates [22] and linear reversible circuits can be improved by utilizing P and H (Hadamard) gates [20]. Here, we employ related rules to reduce the depth of the decomposition -P-CZ-CNOT- by mixing the individual layers.

First, recall some basic properties of circuits composed with CZ gates. CZ(x, y) = CZ(y, x), meaning the order of control and target does not matter. A CZ gate is self-inverse; in other words, two neighboring CZ gates operating over the same set of qubits can be removed from the circuit without affecting its functionality. Any two CZ gates commute. This means that any pair of identical CZ gates can be removed and allows to express arbitrary CZ circuit over n qubits by listing a set of at most $\binom{n-1}{n/2}$ pairs of qubits to which such gates apply. We further conclude that CZ circuits span the linear space $F_2^{(n-1)n/2}$ over the binary field $F_2 := \{0, 1\}$. A linear space has a basis, which will become an important consideration in future discussions. The standard basis is $\{CZ(i, j) | 1 \leq i < j \leq n\}$.

A CZ circuit can also be implemented by inserting Phase gates into linear reversible circuits, by considering phase polynomials. To illustrate how this works, consider a well-known circuit identity:

$$|x\rangle \quad \begin{array}{c|c}
|y\rangle \\
\hline
P \quad P \quad P^\dagger
\end{array}$$

On the left hand side, we have a CZ(x, y) which applies the phase $-1^{x \cdot y} = i^{2x \cdot y}$; and on the right hand side, we have three Phase gates, $P|x\rangle$, $P|y\rangle$, and $P^\dagger|x \oplus y\rangle$, which apply phases i^x, i^y and $i^{-x \cdot y}$. The equality holds due to the mixed arithmetic identity $2x \cdot y \equiv x + y \mod 4$. Since the primary variables, x and y, are available to experience the application of Phase gates on the input side of the circuit, it shows that the gate CZ(x, y) can be computed via Phase gate insertion by a linear reversible circuit that computes the linear function $x \oplus y$ at some point. Furthermore, a linear reversible circuit spanning qubits $x_1, x_2, ..., x_n$ and computing linear functions $x_i \oplus x_j$ for all $i,j: 1 \leq i < j \leq n$ offers enough opportunity to insert Phase gates to compute arbitrary CZ gate transformation, since $\{CZ(i, j) | 1 \leq i < j \leq n\}$ is a basis.

Next consider a linear function $f = x_{i_1} \oplus x_{i_2} \oplus ... \oplus x_{i_k}$, spanning a subset of k qubits. It is known and is easy to verify explicitly that up to a layer of Phase gates applied to primary variables on the input side of the circuit, a Phase gate applied to f is equivalent to the CZ circuit $\prod_{1 \leq s \leq k} CZ(x_s, x_t)$). This observation offers a natural way to treat arbitrary linear functions as CZ circuits or otherwise vectors in the $\frac{(n-1)n}{2}$-dimensional linear space spanning CZ circuits.

Finally, we recall another important identity, that we express using phase polynomials as follows:

$$a + b + c - a \oplus b - a \oplus c - b \oplus c + a \oplus b \oplus c \equiv 0 \mod 4. \quad (1)$$

Here, each literal corresponds to some linear function of primary variables. A summand with the positive sign expresses the application of the P gate to it, a summand with the negative sign indicates the application of the P^\dagger gate, and the sum is taken modulo 4 to reflect the phase identity $i^4 = 1$. This seven-term identity says that a circuit implementing the set of seven Phase operations participating as summands computes the identity function. For the purpose of our work, Eq. (1) is a very important identity that establishes linear dependence of linear functions as vectors in the space $F_2^{(n-1)n/2}$—not to mistake with the linear dependence as regular linear functions. Applying this identity most frequently comes in the form of rewriting one of seven terms as a combination of the remaining six; it lies at the core of the constructions that follow. In particular, we focus on the discovery of a full CZ basis in the linear functions computed inside a -CNOT- stage as means for merging a -CZ- stage with the -CNOT- stage.

III. -CNOT-CZ- CIRCUITS OVER LINEAR NEAREST NEIGHBOUR ARCHITECTURE

First, consider the LNN architecture, where qubits are arranged in a line and only adjacent qubits are allowed to interact. Our main result can be summarized as follows.

Theorem 1. Any Hadamard-free Clifford transformation over n qubits can be implemented over LNN architecture as a circuit with the two-qubit gate depth of at most 5n.

At first glance, Theorem 1 may be surprising. In the LNN architecture, a -CNOT- layer alone requires a circuit of depth 5n when constructed using the best known synthesis algorithm [21]. Since Hadamard-free Clifford transformations can be written as a three stage computation -P-CZ-CNOT- [22], our result implies that the -CZ- layer adjacent to a -CNOT- layer can be implemented “for free” (without increasing the two-qubit gate depth) over the LNN architecture through P gate insertions. As we’ll show in Section 7, Theorem 1 also allows us to implement any Clifford operation as a circuit of depth 7n–4 over LNN, improving the prior best-known upper bound of 9n [20].
In the remainder of this section, we take a closer look at the -CNOT- synthesis algorithm of [21] in Subsection III A before describing an efficient Hadamard-free synthesis algorithm (Subsection III B) that achieves the advertised upper bound in Theorem 1.

A. -CNOT- Synthesis over LNN

The best-known synthesis algorithm for CNOT circuit synthesis over LNN achieves depth 5\(n\) by starting with two back-to-back copies of the sorting network, \(C_1\) and \(C_2\), and modifying them according to a set of rules [21]. Since a CNOT transformation corresponds to a linear reversible operation, we can represent it as an \(n \times n\) invertible Boolean matrix \(M\). Application of the CNOT gate performs modulo-2 addition (EXOR, denoted \(\oplus\)) of the matrix column corresponding to the control qubit to the column corresponding to the target qubit of the given CNOT gate. The synthesis of \(M\) using CNOT gates can therefore be thought of as the diagonalization of \(M\) via column operations. The diagonalization is done in two steps [21]: first, \(M\) is transformed into a northwest-triangular matrix \(M'\) using a modification of the CNOT circuit \(C_1\) of depth at most 2\(n\), and then, \(M'\) is diagonalized by modifying the sorting network \(C_2\) in depth at most 3\(n\) [21]. An \(n \times n\) matrix is called northwest-triangular if all entries below the antidiagonal are 0. The combined circuit \(C_1C_2\) diagonalizes \(M\) and has depth at most \(2n + 3n = 5n\); therefore, \((C_1C_2)^{-1}\) is a depth-5\(n\) circuit that implements \(M\).

We focus our attention on \(C_2\), the circuit diagonalizing a northwest-triangular matrix, since it has a well-defined structure. In Subsection III B, we prove that \(C_2\) always generates enough linear functions to induce any -CZ- circuit via Phase gate insertions. \(C_2\) starts as the sorting network [21] and uses \((n−1)n/2\) “boxes” in \(n\) alternating layers, each being either SWAP or SWAP\(^+\). The SWAP\(^+\) gate is a two-qubit gate that acts on its inputs as follows,

\[
\text{SWAP}^+(x, y) = |x\rangle \otimes |y\rangle \rightarrow |y\rangle \otimes |x\rangle \oplus |y\rangle.
\]

Whether a box within the sorting network is a SWAP or SWAP\(^+\) is determined by the corresponding northwest-triangular matrix [21]. In fact, the correspondence between northwest-triangular matrices and such sorting networks is bijective, which can be established by the counting argument. An example of a sorting network on 6 qubits and the northwest-triangular matrix it diagonalizes is given in Figure 1.

\[
M = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
C: \begin{align*}
x_4 \oplus x_6 : & \quad x_1 \\
x_3 \oplus x_4 \oplus x_5 : & \quad x_2 \\
x_1 \oplus x_3 \oplus x_4 : & \quad x_3 \\
x_2 \oplus x_3 : & \quad x_4 \\
x_1 \oplus x_2 : & \quad x_5 \\
x_1 : & \quad x_6
\end{align*}
\]

FIG. 1: Initially, qubit \(i\) contains the linear function represented by the \(i^{th}\) column of \(M\). Circuit \(C\) diagonalizes the matrix \(M\). Outputs of the circuit \(C\) are the primary variables.

We next label qubits and boxes of the sorting network and define an ordering of the boxes. Using the labeling and ordering, we make several important observations on the structure of the sorting network that lie at the heart of our algorithm.

First, label each qubit \(i\) on the output side of the circuit with the label \(n+1−i\) in the input side. This is justified by the observation that the sorting network inverts the order of the qubits. When a box (either SWAP or SWAP\(^+\)) acts
on the qubits i and $i+1$ with labels l_i and l_{i+1}, we swap the labels. As shown in [21, Section 7.3], the label of a qubit always equals to the largest index of the primary variable stored in that qubit. For example, in Figure 1, the first qubit initially holds the value $x_4 \oplus x_6$, corresponding to its label, $6=6+1-1$. It can also be shown that for each pair of labels $i \neq j$, there is exactly one box that changes i and j, and this box always shuffles the larger label downward and the smaller label upward. That is, whenever a box swaps two labels $(i,j) \mapsto (j,i)$, then $i > j$. It follows that we can uniquely label each box with two indices i and j, where i and j are the labels of the qubits it swaps. An example of this labeling is shown in Figure 2.

Due to the above observations, boxes in the same bottom-left to top-right diagonal layers share a common first index, as illustrated in Figure 2. We label each diagonal layer by the index they share, which gives rise to the following labeling in [22]. For two distinct boxes, $\text{box}(i,j)$ and $\text{box}(k,l)$, where $i < j$ and $k < l$, we write $\text{box}(i,j) \prec \text{box}(k,l)$ when i precedes k in P_n, and $\text{box}(i,j) = \text{box}(k,l)$ when $i = k$.

Intuitively, boxes are ordered by the diagonal layers they belong to, from left to right. As the content of a qubit travels from left to right, it either stays in the same layer (when the qubit is shuffled up) or goes to the next layer (when the qubit is shuffled down or is left out of a round of shuffling). The layer ordering gives us an important guarantee that aids in proofs that follow:

Proposition 1. For each k and $i < j$, $\text{box}(j,k) \prec \text{box}(i,j)$ implies $\text{box}(i,k) \preceq \text{box}(i,j)$.

Proof. We can show that the contrapositive is true: $\text{box}(i,k) \succ \text{box}(i,j)$ implies $\text{box}(i,k)$ is ordered by k (i.e. $k < i < j$) and i precedes k in P_n implies $\text{box}(k,j)$ is also ordered by k, $\text{box}(k,j) \succ \text{box}(i,j)$.

The validity of the proposition may also be established intuitively by tracking the qubits that the qubit x_j comes in contact with. At $\text{box}(i,j)$, which is located in layer i, a linear function containing x_j comes in contact with a linear function containing x_i. Suppose x_j was also brought in contact with x_k through $\text{box}(j,k)$ before layer i. If $k > i$, then $\text{box}(i,k)$ is in the layer i. Otherwise, if $k < i < j$, then both $\text{box}(i,k)$ and $\text{box}(j,k)$ are in the layer k, which comes before layer i since $\text{box}(j,k)$ comes before $\text{box}(i,j)$. Putting them together, we have that x_k and x_i meet either in the layer i or in some layer before.

B. Inducing Arbitrary CZ Circuits

We now have enough vocabulary to prove Theorem 1. An outline of the proof is as follows: we show that a northwest-triangular matrix diagonalization circuit generates a set of linear functions of primary variables that forms a basis in the CZ circuit space by induction on k, the number of SWAP$^+$ boxes it contains. Then, in Subsection III C we describe an algorithm to find a schedule of Phase gates that induces a CZ circuit in $O(n^3)$ time, where n is the number of qubits.

We focus on the northwest-triangular matrix diagonalization circuit C. We first deal with the base case $k=0$.

Lemma 1. Let C be a northwest-triangular diagonalization circuit consisting of only SWAP gates. Then, C generates the basis $\{x_i \oplus x_j | 1 \leq i < j \leq n\}$ in the space of CZ circuits.
We omit the proof, since it has been addressed in Section II and overall is easy to obtain by noting that the SWAP generates EXOR of the input qubits when implemented by the CNOT gates, and that in the sorting network each qubit i meets every other qubit j exactly once.

Assume C has $k>0$ SWAP$^+$ boxes. Consider the leftmost SWAP$^+$ in C in the smallest layer by its order. Let us refer to this box as box(i,j), where i and j are its labels, $i<j$. If we replace box(i,j) with a SWAP, we obtain another circuit C' with the corresponding matrix M' that has $k-1$ SWAP$^+$ boxes. By the induction hypothesis, C' contains a CZ basis. An example of C and C' is shown in Figure 3.

![Image of diagrams showing linear functions generated by C and C']

FIG. 3: For simplicity, qubit concatenation refers to (output) qubit label EXORs. The shaded box represents a SWAP$^+$ gate, whereas the unshaded box represents a SWAP gate. Leftmost SWAP$^+$s in the smallest order layer labeled by $(2,7)$ is enclosed by the red box—this is the one we focus on in the induction. All linear functions generated by the circuit after box$(2,7)$ in higher layer order are enclosed by the dashed lines; they are identical in C and C'. All linear functions generated by boxes can be written as the EXORs of two inputs. The differences between linear functions computed by C and C' are highlighted in red.

We make two observations. First, the subcircuits following box(i,j) compute identical linear functions between C and C'. Also, all boxes box(k,l) such that box$(k,l) \succ box(i,j)$ generate the same linear functions in both C and C' (for illustration, see dashed boxes in Figure 3). Second, the circuit preceding box(i,j) consists of only SWAP gates, and as such it only swaps the linear functions without introducing new ones. For all boxes box$(k,l) \preceq box(i,j)$, box(k,l) generates $c_i \oplus c_k$ in C and $c'_i \oplus c'_k$ in C'. We know from the first observation that the linear function stored in each qubit after layer i must be identical between C and C'. Matching the outputs of the boxes on layer i, we can show that all but one initial input of C and C' are identical; that is, $c_k = c'_k$ for all $k \neq j$, and $c'_j = c_i \oplus c_j$ (or equivalently $c_j = c'_i \oplus c'_j$). We formalize these observations in the following Lemma:

Lemma 2. Let C be a modification of the sorting network with $k>0$ SWAP$^+$ boxes, and let C' be the circuit obtained from it by replacing the leftmost and first in layer order SWAP$^+$ box, labeled with (i,j), with a SWAP. Let c_i and c'_i be the initial inputs of circuits C and C' respectively. Then:

1. c_i differs from c'_i in exactly one input. In particular, $c_j = c'_j \oplus c'_i$, and $c_k = c'_k$ for all $k \neq j$.

2. At most $n-1$ boxes generate different linear functions between C and C'. In particular, box(k,j) generates $c_k \oplus c_j$ in C and $c'_k \oplus c'_j = c_k \oplus c_i \oplus c_j$ in C', if and only if box$(k,j) \preceq box(i,j)$.

We next show that we can always express the applications of Phase gates to linear functions generated by C that are different from those generated by C' using a constant number of Phase gates applied elsewhere by employing the identity Eq. (1).
Lemma 3. Let C and C' be given as above, where c_i and c_i' denote input linear functions and box(i, j), $i<j$ denotes the leftmost first in order SWAP$^+$ box in C. For each Phase gate applied inside C', there exists a corresponding schedule of either 1 or 6 Phase gates found in C that computes this phase. We give these schedules explicitly:

1. A P gate applied to the unique c_j' in C' such that $c_j' \neq c_j$ is equivalent to the P gate applied inside box(i, j) in C.

2. ("inversely" to the above) A P gate applied inside box(i, j) in C' is equivalent to the P gate applied to c_j in C.

3. For box(k, j)-box(i, j), a P gate applied inside box(k, j) in C' is equivalent to a schedule of P1 gates applied to/in c_i, c_j, c_k, box(i, j), box(i, k), and box(j, k) in C.

4. A P gate applied to any other location in C' is equivalent to the P applied to the same location in C.

Proof. We begin by pointing out that box(i, j), box(j, k), and box(i, k) are located on or before the layer i. This is clearly the case for box(i, j) and box(j, k) by construction. box$(i, k) \leq$ box(i, j) as shown in Proposition 1. The linear functions generated by those boxes are the EXORs of two inputs.

First two cases follow from Lemma 2. First, $c_j' = c_i \oplus c_j$, and $c_i \oplus c_j$ is generated by the box(i, j) in C. The linear function generated by box(i, j) in C' is $c_j' \oplus c_j' = c_j$, and c_j is an initial input to C.

In case 3, box(k, j) generates $c_k' \oplus c_j'$ in C'. We can rewrite the application of the Phase gate to this linear function using the identity Eq. (1) as follows:

$$c_j' \oplus c_k' = (c_i \oplus c_j) \oplus c_k = c_j \oplus c_k + c_i \oplus c_k + c_i \oplus c_j - c_i - c_j - c_k \pmod{4}$$

The application of the P gates to the linear function in the circuit c' on the right hand side of the equation is thus generated by the P and P1 gates applied to the linear functions c_i, c_j, c_k, box(i, j), box(i, k), and box(i, k) in the circuit C. We note in passing that this involves the introduction of the P1 gates, which can be rewritten as $P^1 = PZ$ and Pauli-Z can be moved to the side of a Clifford circuit, or better yet by allowing to multiply the identity in Eq. (1) by modulo-4 integers, and thus allowing to treat arbitrary powers of the P gate.

Finally, case 4 also follows from Lemma 2, since all other linear functions generated are equal in C and C'.

C. Algorithm and Runtime Analysis

ALGORITHM 1: InitializeS

Input: -P-CZ-

Initialize: $S \leftarrow n \times n$ zero matrix

for $P^i(i) \in$ -P- do

$S[i, i] \leftarrow k$

end for

for $CZ(i, j) \in$ -CZ- do

$(i, j) \leftarrow (\min(i, j), \max(i, j))$

$S[i, j] \leftarrow 3$

$S[i, i] \leftarrow (S[i, i] + 1) \pmod{4}$

$S[j, j] \leftarrow (S[j, j] + 1) \pmod{4}$

end for

Return: S

Finally, we discuss the algorithm that offers the construction of a depth-5\$n^2 \choose 2$ implementation of arbitrary Hadamard-free Clifford circuit in time $O(n^3)$. For simplicity, we assume that the -P-CZ-CNOT- decomposition [22] and the depth-5\$n^2 \choose 2$ implementation of the -CNOT- layer [21] are given. The algorithm starts by considering the SWAP$^+$-free case of the northwest-triangular matrix diagonalization circuit and sets the Phases according to Lemma 1, see Algorithm 1. This part has complexity $O(n^2)$. The Phase schedule is then updated iteratively, based on the proof of Theorem 1, as shown in the Algorithm 2. This part has complexity $O(n^3)$, since adding one SWAP$^+$ box requires updating at most $O(n)$ Phase schedules $S[i, j]$, with each update taking constant effort, and there can be at most $n(\frac{n-1}2) = O(n^2)$ SWAP$^+$ boxes in the northwest-triangular matrix diagonalization circuit. The overall complexity is thus $O(n^3)$.
Algorithm 2: FindPhaseSchedule

Input: \text{-P-CZ-CNOT-}

\begin{align*}
C & \leftarrow \text{InitializeC(-CNOT-)} \\
S & \leftarrow \text{InitializeS(-P-CZ-)} \\
& \text{/* Now, we iteratively add SWAP+ boxes in descending layer order */} \\
& \text{/* and update } S \text{ */} \\
& \text{for } Box(i, j) \in C.\text{GetSWAP+} \text{ do} \\
& \text{/* Case 1 & 2 - Switch the } P \text{ gates applied to box}(i, j) \text{ and } c_j */ \\
& \quad (S[j, j], S[i, j]) \leftarrow (S[i, j], S[j, j]) \\
& \quad \text{for } \{k = 1, k \leq n, k \leftarrow k + 1\} \text{ do} \\
& \quad \quad \text{if } Box(k, j) \prec Box(i, j) \text{ then} \\
& \quad \quad \quad \text{/* Case 3 - Replace the } P \text{ gates applied to box}(k, j) \text{ with } 6 \text{ } P \text{ (or } P^\dagger \text{) gates */} \\
& \quad \quad \quad \quad p_k \leftarrow S[k, j] \\
& \quad \quad \quad \quad \text{for } (w_1, w_2) \in \{(i, i), (j, j), (k, k)\} \text{ do} \\
& \quad \quad \quad \quad \quad S[w_1, w_2] \leftarrow (S[w_1, w_2] + 3p_k) \% 4 \\
& \quad \quad \quad \quad \text{end for} \\
& \quad \quad \quad \quad \text{for } (w_1, w_2) \in \{(i, j), (i, k)\} \text{ do} \\
& \quad \quad \quad \quad S[w_1, w_2] \leftarrow (S[w_1, w_2] + p_k) \% 4 \\
& \quad \quad \quad \quad \text{end for} \\
& \quad \quad \text{end if} \\
& \quad \text{end for} \\
& \text{end for} \\
& \text{Return: } S
\end{align*}

D. Extension to Clifford circuits

The ability to implement \text{-CNOT-CZ-} circuits in depth $5n$ over the LNN architecture coupled with the ability to implement \text{-CZ-} circuits in depth $2n+2$ [22] directly implies the ability to implement arbitrary Clifford circuits in depth $5n + 2n + 2 = 7n + 2$ by relying on the decomposition \text{-X-Z-P-CX-CZ-H-CZ-H-P-} [20, Lemma 8]. However, by considering local optimizations, one may reduce this figure to $7n - 4$.

Lemma 4. Any Clifford transformation over n qubits can be implemented over the LNN architecture as a circuit with the two-qubit gate depth of at most $7n - 4$.

Proof. Recall that the decomposition \text{-X-Z-P}^-\text{CZ}_1^-\text{-CX-H}_1^-\text{CZ}_2^-\text{-H}_2^-\text{-P}_2^- [20] (here we changed the order of \text{-CX-} and \text{-CZ-}, which is allowed, mark all stages with subscripts, and use \text{^} to denote operation together with the qubit reversal) features the stage \text{-H}_1^- \text{-with the Hadamard gates applying to all qubits.}

We first express \text{-CZ}_2^- \text{-as a depth } 2n+2 \text{ circuit according to [22]. The layer } \text{-H}_1^- \text{-and the first four layers of the implementation of } \text{-CZ}_2^- \text{ can be rewritten by pushing Hadamards through to the right and flipping the controls and targets of the CNOT gates, as follows (illustrated for } n=7),

\[
\begin{array}{c}
\text{H} \\
\end{array}
= \begin{array}{c}
\text{H} \\
\end{array}
\]

This is justified since Phase gates need not be applied until after the first depth-4 S stage [22]. This means that the depth-4 CNOT layer can be merged into the \text{-CX-} layer to its left, offering savings of 4 layers in depth compared to the baseline construction of depth $7n + 2$.

We next assume that n is odd and show how to reduce the depth by additional 2 layers. To this end, focus on the last three two-qubit gate stages in the decomposition of \text{-CZ}_2^-\text{-CX-} into the depth $5n$ circuit, the layer \text{-H}_1^- \text{-, and the}
first two-qubit gate stage in the now-reduced decomposition of $\hat{\text{CZ}_2}$. Note that the gates in these four layers apply only to pairs of qubits $(1, 2), (3, 4), \ldots$. For each pair of qubits $(k, k+1)$, the last three two-qubit gate stages in the decomposition of $\hat{\text{CZ}_1}\text{-CX}$ are either SWAP or SWAP+, with Phase gate or without it; the -H_1 is always the layer of two Hadamards, and the first two-qubit gate stage of $\hat{\text{CZ}_2}$ is a set of P gates followed by the CNOT$(k, k+1)$. We group these cases into the following three and show that each can be implemented as a circuit of depth at most 2 (here, $a, b, c, d,$ and e take Boolean values to indicate if the given gate is present, 1, on not, 0).

a. Case 1: Last box is SWAP.

\[
\begin{align*}
\text{P}_b \text{H} \text{P}_d = \text{P}_c \text{P}_a \text{H} \text{P}_e \text{P}_d
\end{align*}
\]

b. Case 2: Last box is SWAP+ and $e=0$.

\[
\begin{align*}
\text{P}_b \text{H} \text{P}_d = \text{P}_b \text{P}_{a+c} \text{H} \text{P}_d
\end{align*}
\]

c. Case 3: Last box is SWAP+ and $e=1$.

\[
\begin{align*}
\text{P}_b \text{H} \text{P}_d = \text{P}_b \text{P}_{a+c} \text{H} \text{P}_{d+1}
\end{align*}
\]

This means that for odd n a Clifford circuit can be implemented in depth $7n-4 = 7n+2 - 4 - 2$. The case of even n is handled similarly, except to enable the gate cancellations in the routine reducing the depth by 2, we implement the inverse of -CX- and list the gates in inverted order.

IV. $\text{-CNOT-CZ- CIRCUITS OVER ALL-TO-ALL ARCHITECTURE}$

We next turn our attention to the all-to-all connected architecture. There are a number of methods available to synthesize a CNOT circuit, targeting various optimization criteria. Here, we consider two methods: MZ synthesis method that achieves the circuit depth $n + O(\log^2 n)$ [18], which is currently the best known method for the number of qubits up to $1,345,000$, and the PMH method achieving asymptotically optimal gate count of $O(n^2 / \log(n))$ [15].

Our goal is to establish a CZ basis in the CNOT circuits found by these algorithms, and when this is impossible, find the smallest number of CZ gate insertions that allows generating a CZ basis. We note that the basis must contain $(n-1)n/2$ functions, and thus for the algorithms showing sub-quadratic scaling such as the PMH [15], this will eventually become impossible without the addition of CZ gates. However, given the high leading constant [16] and our experiments in Figure 5, we do not anticipate this to happen for reasonably small numbers n. We also note that due to the input-dependent structure of the circuits generated by MZ and PMH algorithms, it is difficult to come up with proofs of performance guarantee. We thus resort to the combination of heuristics and random tests.

A. A Heuristic Algorithm

In case there are insufficient linear functions in a given CNOT circuit to form a CZ basis, we can seek to conditionally add CZ gates to generate new linearly independent vectors in the space $F_2^{(n-1)n/2}$. The algorithm accomplishing it works as follows. First, find the CZ subspace spanned by the linear functions generated, with a basis B, and its orthogonal complement, with the basis B^\perp. $\text{dim}(B^\perp)$ specifies how many linearly independent conditional CZ gates need to be added since each linearly independent CZ gate reduces the dimensionality of B^\perp by one. We obtain B and B^\perp by performing Gaussian elimination on the CZ vectors generated. These observations allow establishing the exact minimum number of the CZ gates that need to be added and computing them, thus addressing the scenario of the gate count minimization. We next consider depth minimization.

For each layer in the given CNOT circuit, we greedily add the CZ to it, so long as it applies to two unoccupied qubits and reduces the dimensionality of B^\perp. If no such opportunity exists, we create a new layer at the end of the circuit and add the necessary CZ to it.
ALGORITHM 3: InsertCZ

Input: -CNOT-

1. $Z \leftarrow$ CZ vectors generated by the -CNOT- layer
2. $B \leftarrow$ basis for Z
3. $B_\bot \leftarrow$ basis for the orthogonal complement of B

for $CZ(x_i, x_j) \in B_\bot$ do

 for (i, j) s.t. $x_i \in l_i, x_j \in l_j$ and wires i, j are unoccupied in layer l do

 $v \leftarrow$ CZ vector corresponding to $l_i \oplus l_j$

 /* Checking whether v is spanned by B */

 for $b \in B$ do:

 if $b \cdot v = 1$ then

 $v \leftarrow v \oplus b$

 end if

 end for

 if $v \neq 0$ then

 $l.add(CZ(i, j))$

 $B.add(v)$

 if $v_{i,j} = 1$ then

 /* The added CZ generates $CZ(x_i, x_j)$ as desired */

 Continue

 else

 /* The added CZ generates a different missing basis vector in B_\bot */

 $B_\bot.remove(v)$

 end if

 end if

 end for

 /* $CZ(x_i, x_j)$ cannot be inserted without increasing depth */

 -CNOT-.add($CZ(x_i, x_j)$)

end for

Return: -CNOT-

The runtime of the algorithm depends on two steps: performing Gaussian elimination, and checking whether $l_i \oplus l_j$, the EXOR of linear functions on a pair of unoccupied qubits in a given layer, is spanned by B. Gaussian elimination algorithm takes $O(n^6)$ time, since CZ vectors have dimension $(n - 1)n/2 = O(n^2)$ and the number of linear functions generated is $O(n^2)$. It takes time $O(n^4)$ to check whether each $l_i \oplus l_j$ is spanned by B; however, the number of times this check is invoked depends on the number of missing basis vectors as well as the available spots to go through, which can be $O(n^4)$ in the worst case.

Given the performance of the above simple heuristic, we found it to be not worth the time to investigate other approaches to finding a full basis.

B. Algorithm Performance on Two Synthesis Methods

In this section, we test the Algorithm 3 on random CNOT circuits offered by the two synthesis algorithms considered, MZ [18] and PMH [15].

We sample linear reversible transformations uniformly at random using the method given by [20, Alg. 4]. We next apply MZ and PMH algorithms to generate two CNOT circuits. We check whether the CNOT circuits generate enough linear functions to form a basis in the CZ space via Gaussian elimination; if not, we apply the heuristic algorithm that conditionally inserts the CZ gates on the available qubits to generate the remaining linear functions. Finally, we compare the circuit depth and gate count before and after the CZ gate insertion.

The results for the depth-optimized MZ synthesis algorithm [18] are summarized in Figure 4. Remarkably, we found that the CNOT circuits synthesized generate a CZ basis in about 30% of cases when the number of qubits is between 25 and 125. When there are basis vectors missing, the insertion of a linearly independent CZ gate via Algorithm 3 most often comes at no increase in the total depth. The average increase in depth is less than 1 for each number of qubits n tested over 10,000 trials.

For PMH algorithm [15], we focus on the minimization of the gate count. The results are summarized in Figure 5. We found that for circuits spanning 45+ qubits, the linear functions generated always form a basis in the CZ circuit space over 1000 random linear reversible operations tried for each number of qubits n up to 100.
FIG. 4: MZ algorithm [18]: the probability that MZ implementation of a random linear reversible function contains a CZ basis (blue), the probability the depth increases (orange), the fraction of missing basis vectors (green), and the average increase in depth (red) as a function of the number of qubits.

(a) Proportion of the CZ vectors generated as a function of the number of qubits.

(b) Gate counts before and after CZ gate insertions as a function of the number of qubits.

FIG. 5: Summary of results for the PMH algorithm [15].

V. DISCUSSION AND CONCLUSION

In this paper, we studied the ability to insert Phase gates into CNOT circuits to induce arbitrary Hadamard-free Clifford transformation generated by the given linear reversible function. The reason this is often possible to accomplish is the application of Phase gates to linear functions computed inside the CNOT circuit generates vectors in the linear space spanning CZ circuits, and if sufficiently many independent vectors are found that form the basis in the CZ circuits space, this guarantees the ability to implement any CZ transform. In particular, we showed a depth upper bound of $5n$ for the implementation of arbitrary Hadamard-free Clifford transformation, matching the best-known upper bound of $5n$ to generate arbitrary linear reversible transformation over LNN architecture. We also developed a heuristic that offers an average depth increase of less than 1 for all number of inputs n tried ($n \leq 200$) to turn a linear reversible circuit into a Hadamard-free Clifford circuit generated by it over all-to-all architecture. In other words, depths of best-known Hadamard-free Clifford and linear reversible computations appear to be essentially equal in at least two scenarios—LNN and all-to-all architectures. This is surprising, given the difference between group sizes—$2^{n^2} + O(1)$ for linear reversible computations vs $2^{1.5n^2 + O(1)}$ for Hadamard-free Clifford circuits. Indeed,
one would expect the bigger group to demand higher circuit complexity.

We would like to highlight the important role the sorting network (also known as the qubit reversal circuit) composed with SWAP gates plays over the LNN architecture. A modification of the sorting network that removes a subset of the CNOT gates (each SWAP can be implemented by three CNOT gates) and inserts Phase gates implements arbitrary -CZ- transformation up to qubit reversal in depth $2n+2$ [22]. A modification of the sorting network that erases a subset of the CNOTs implements arbitrary qubit swapping circuit in depth no more than $3n$ [21]. A modification of the set of two back-to-back sorting networks that removes a subset of the CNOT gates implements arbitrary linear reversible function in depth no more than $5n$ [21]. A modification of the set of two back-to-back sorting networks that removes a subset of the CNOT gates and inserts Phase gates implements arbitrary Hadamard-free Clifford circuit in depth no more than $5n$. Finally, a modification of the set of three back-to-back sorting networks with a Hadamard layer between some two of them that removes a subset of the CNOT gates and inserts Phase gates, together with a few local optimizations, implements arbitrary Clifford circuit in depth no more than $7n-4$.

ACKNOWLEDGEMENT

We would like to thank Ben Zindorf (University College London) for his helpful discussions during the early stage of this research.

[1] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the twenty-fifth annual ACM Symposium on Theory of Computing, pages 11–20, 1993.
[2] Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R. Brad Blakestad, John D. Jost, Chris Langer, Roeo Ozeri, Signe Seidelin, and David J. Wineland. Randomized benchmarking of quantum gates. Physical Review A, 77(1):012307, 2008.
[3] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Physical Review Letters, 106(18):180504, 2011.
[4] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Technology, 1997.
[5] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. American Association of Physics Teachers, 2002.
[6] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.
[7] Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 325–338, 2018.
[8] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters. Mixed-state entanglement and quantum error correction. Physical Review A, 54(5):3824, 1996.
[9] Google Quantum AI, IBM Quantum, Rigetti. https://quantumai.google/, https://quantum-computing.ibm.com/, https://www.rigetti.com/. Accessed: 2022-10-22.
[10] IonQ, Quantum. https://ionq.com/, https://www.quantinuum.com/. Accessed: 2022-10-22.
[11] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114(13):3305–3310, 2017.
[12] Earl Campbell. Shorter gate sequences for quantum computing by mixing unitaries. Physical Review A, 95(4):042306, 2017.
[13] IBM Press Release. IBM makes quantum computing available on IBM cloud to accelerate innovation. https://uk.newsroom.ibm.com/2016-May-04-IBM-Makes-Quantum-Computing-Available-on-IBM-Cloud-to-Accelerate-Innovation. Date: 2016-05-04.
[14] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical Review A, 70(5):052328, 2004.
[15] Ketan N. Patel, Igor L. Markov, and John P. Hayes. Optimal synthesis of linear reversible circuits. Quantum Information and Computation, 8(3):282–294, 2008.
[16] Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche. Reducing the depth of linear reversible quantum circuits. IEEE Transactions on Quantum Engineering, 2:1–22, 2021.
[17] Jiaqing Jiang, Xiaoming Sun, Shang-Hua Teng, Bujiao Wu, Kewen Wu, and Jialin Zhang. Optimal space-depth trade-off of CNOT circuits in quantum logic synthesis. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 213–229. SIAM, 2020.
[18] Dmitri Maslov and Ben Zindorf. Depth optimization of CZ, CNOT, and Clifford circuits. IEEE Transactions on Quantum Engineering, 3:2500408, 2022.
[19] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John Van De Wetering. Graph-theoretic simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, 2020.
[20] Sergey Bravyi and Dmitri Maslov. Hadamard-free circuits expose the structure of the Clifford group. *IEEE Transactions on Information Theory*, 67(7):4546–4563, 2021.

[21] Samuel A. Kutin, David Petrie Moulton, and Lawren M. Smithline. Computation at a distance. *arXiv preprint quant-ph/0701194*, 2007.

[22] Dmitri Maslov and Martin Roetteler. Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations. *IEEE Transactions on Information Theory*, 64(7):4729–4738, 2018.

[23] Cristopher Moore and Martin Nilsson. Parallel quantum computation and quantum codes. *SIAM Journal on Computing*, 31(3):799–815, 2001.