RetinotopicNet: An Iterative Attention Mechanism Using Local Descriptors with Global Context

Thomas Kurbiel and Shahrzad Khaleghian

Abstract—Convolutional Neural Networks (CNNs) were the driving force behind many advancements in Computer Vision research in recent years. This progress has spawned many practical applications and we see an increased need to efficiently move CNNs to embedded systems today. However traditional CNNs lack the property of scale and rotation invariance: two of the most frequently encountered transformations in natural images. As a consequence CNNs have to learn different features for same objects at different scales. This redundancy is the main reason why CNNs need to be very deep in order to achieve the desired accuracy.

In this paper we develop an efficient solution by reproducing how nature has solved the problem in the human brain. To this end we let our CNN operate on small patches extracted using the log-polar transform, which is known to be scale and rotation equivariant. Patches extracted in this way have the nice property of magnifying the central field and compressing the periphery. Hence we obtain local descriptors with global context information. However the processing of a single patch is usually not sufficient to achieve high accuracies in e.g. classification tasks. We therefore successively jump to several different locations, called saccades, thus building an understanding of the whole image. Since log-polar patches contain global context information, we can efficiently calculate following saccades using only the small patches. Saccades efficiently compensate for the lack of translation equivariance of the log-polar transform.

Index Terms—convolutional neural networks, log-polar transform, spatial transformer, scale and rotation equivariance

1 INTRODUCTION

Convolutional neural networks have become ubiquitous in computer vision. However, their complexity is quite high and usually requires expensive GPU or FPGA implementation, which is not cost-effective for many embedded systems. With recent industrial recognition of the benefits of artificial neural networks for product capabilities, the demand emerged for efficient algorithms to run in real-time on cost-effective hardware.

We identify the main reason, why traditional CNNs have to be deep and complicated in order to achieve high accuracies, in the lacking property of scale and rotation invariance. However scale and rotation belong to the group of the most frequently encountered transformations in natural images. Hence traditional CNNs have no means to generalize features learnt on e.g. small objects to help identifying similar objects at larger scales. Since CNNs have to relearn features for same objects of different sizes, they require lots of training data and lots of network parameters to do it.

In this paper we propose the use of the scale and rotation equivariant log-polar transform, which is also utilized by nature in lower visual areas (e.g., V1 through V5) of our brains. Furthermore humans do not look at a scene in fixed steadiness, but instead move the eyes around, locating informative parts crucial for understanding of the scene.

We exploit this concept of saccades to account for the missing translation equivariance of the log-polar transform. Combining both the concept of log-polar transform and the concept of saccades allows for a computationally efficient implementation, whilst achieving state-of-the-art accuracies at the same time.

2 RELATED WORK

To meet the demand of running convolutional neural networks efficiently on embedded, mobile hardware, many approaches have been pursued in the recent past. A very successful engineering oriented approach was to directly reduce the computational cost of traditional convolutional neural networks [5][7].

Another approach was to directly tackle the problem of missing scale and rotation equivariance in traditional CNNs by giving neural networks the ability to actively spatially transform feature maps. The most prominent representant of this family is the Spatial Transformer Network [9]. Spatial Transformer helped both to achieve higher accuracies and to reduce the computational burden.

The traditional concept of “image pyramids” allows for scale invariance, introduces however many additional parameters and makes this approach not eligible to run in real-time on cost-effective hardware.

The log-polar transform has in the past successfully been applied in the classical computer vision task of image registration [15]. A successful coupling of log-polar sampling with state-of-the-art deep networks has been performed in [2] to obtain richer and more scale-invariant representations.

* Thomas Kurbiel is with Aptiv, Wuppertal, Germany e-mail: Thomas.Kurbiel@aptiv.com.
* Shahrzad Khaleghian is with the Department of Marketing, Mercator School of Management, University Duisburg-Essen, Germany e-mail: Shahrzad.Kurbiel@uni-due.de.
used for keypoint matching. The authors in [3] introduce the Polar Transformer, a special case of the Spatial Transformer that achieves rotation and scale equivariance by using a log-polar sampling grid. In this approach the center of the log-polar transform is determined on the whole input image. Furthermore only a single saccade is used.

The concept of saccades has only recently been introduced for object detection, where the authors utilize 5 keypoints as informative parts for detection: the object center and 4 bounding box corners [11]. This approach is not operating in the log-polar space.

3 LOG-POLAR TRANSFORM

In order to understand the log-polar transform, we briefly have to review the concept of polar coordinates. In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point \((x, y)\) on a plane is represented as an angle and radius \((\varphi, r)\), where \(r\) is the distance from a reference point \((x_c, y_c)\) and \(\varphi\) is the angle (in degrees) from the \(x\)-axis. The reference point (analogous to the origin of a Cartesian coordinate system) is called the pole and can be chosen arbitrarily.

![Fig. 1. Point \((x, y) = (4, 2)\) in Cartesian coordinates is transformed into \((\varphi, r) = (18.44^\circ, 3.16)\) in polar coordinates with pole \((x_c, y_c) = (1, 1)\)](image)

Now if take the logarithm of \(r\) we arrive at the definition\(^1\) of the log-polar transform:

\[
\rho = \log r = \log \sqrt{(x - x_c)^2 + (y - y_c)^2}, \quad (1)
\]

\[
\varphi = \tan^{-1} \left(\frac{y - y_c}{x - x_c} \right), \quad (2)
\]

The transformation from log-polar coordinates back to Cartesian coordinates is:

\[
x = e^{\rho} \cdot \cos (\varphi) + x_c, \quad (3)
\]

\[
y = e^{\rho} \cdot \sin (\varphi) + y_c, \quad (4)
\]

In the following examples we will assume a pole coinciding with the origin of the Cartesian coordinate system, i.e. \((x_c, y_c) = (0, 0)\). To gain more familiarity with the properties of the log-polar transform, we will use an oversimplified example consisting of the following four points:

\(x\)	\(y\)	\(\varphi\)	\(\log r\)
1.	3.0	3.0	1.45
2.	4.5	3.0	1.69
3.	4.5	4.5	1.85
4.	3.0	4.5	1.69

1. Definition in terms of Cartesian coordinates

We will follow the convention of drawing the \(\varphi\) values on the vertical axis and the \(r\) values on the horizontal axis. This way we achieve that points lying close to the origin, will be depicted on the left side, while points further away from the origin will be on the right side.

![Fig. 2. Point transformations](image)

We see that the representation of the square in the log-polar space is distorted. In the figure above we have connected the transformed points by straight lines for simplicity reasons. If we actually transformed the original lines, they would have been mapped onto curves. Since the log-polar transform is a conformal mapping the angles between the single curves would have been preserved [14].

What is so special about this simple transform, that nature chose to utilize it in lower visual areas (e.g., V1 through V5) of our brains? In these areas the neurons are organized in an orderly fashion called topographic or retinotopic mapping, which is well approximated by the log-polar transform [13].

To see the properties we will first rotate the four points by 30° clockwise in the Cartesian coordinate system. The result is depicted below:

![Fig. 3. Rotation by 30° clockwise](image)

As can be seen, the 30° rotation manifests as a circular shift along the \(\varphi\)-axis in the log-polar space.

Next we will scale all four points by the factor of 1.9. The result is depicted in Fig. 4. Please note that in the Cartesian coordinate system the size of the rectangle has almost doubled. In real word scenarios, i.e. applied on images, that operation corresponds to a zoom of the original image by a factor of 1.9.
As can be seen, the scaling manifests as a shift this time along the r-axis in the log-polar space. This can easily also be shown mathematically:

$$\tilde{x} = c \cdot x, \quad \tilde{y} = c \cdot y$$

$$\tilde{\rho} = \log \sqrt{x^2 + y^2} = \log c \cdot \sqrt{x^2 + y^2} = \rho + \log c$$

We have seen that the log-polar transform is equivariant to scale and rotations, which is a very desirable property as the following example illustrates. Imagine a traditional convolutional neural network is fed with the two images of an eye depicted in Fig. 5. Image (a) is used for training and image (b) is used during test time.

![Input images](source: [1])

Even though image (b) is just a rotated and scaled version of image (a) a convolutional neural network will have no basis of generalizing the learnt features. Convolutional neural networks are not equivariant to transformations such as changes in the scale or rotation of the image.

![Input images in log-polar space](source: [1])

If we however transform both images to the log-polar space prior to feeding them into a convolutional neural network, than image (b) should be a translated version of image (a), as depicted in Fig. 6. Traditional CNNs are invariant to translations, mainly as a result of the pooling operation, hence features learnt to classify image (a) can now easily be reapplied for image (b). Please note that the local context (the eyebrow) is visible in both images, while the global context (the beard) is visible only in image (a).

Another important property of the log-polar transform is, that it magnifies the central field and compresses the periphery, as depicted in Fig. 7.

![Magnification of the central field and compression of the periphery](source: [1])

We see that the left half of the log-polar space is dedicated to a relatively small area around the origin in the Cartesian coordinate system. In contrast the right half of the log-polar space is dedicated to a large area further away from the origin, called peripheral area. We hence have high central resolution and progressively decreasing resolution for the peripheral area. This property is the reason why we call log-polar transformed images as local descriptors with global context.

There is however one huge drawback of the log-polar transform, which in the past prevented it to become more often applied: it is not translation equivariant. Let us take the example in Fig. 2 and shift it by 2 units to the left and by 2 units to the top.

![Shift to the left and to the top by 2 units](source: [1])

A rather small shift in the Cartesian coordinate system has lead to a big distortion of the original representation of the square in the log-polar space.
4 Saccadic Eye Movements

Nature has solved the shortcoming of translational equivariance by introducing saccadic eye movement that constantly shifts the center of gaze from one part of the visual field to another. The places where people fixate however are not randomly distributed. Fixations are rather attracted by “salient” objects which are in the periphery of the visual field [4].

In normal viewing, several saccades are made each second and their destinations are selected by cognitive brain process without any awareness being involved, see Fig. 9. While the eyes move around, locating interesting parts of the scene, the brain is building up a mental map of the scene. Hence an aggregation of previously seen details to gain a whole understanding of the image is occurring.

In the subsequent sections, we will mimic the saccade mechanism using tools provided by Deep Learning.

5 Log-Polar Transform for Images

Transforming an image from Cartesian coordinates into the log-polar space is performed by applying an image warping technique called reverse mapping [6]. To this end the pixels in the destination image (log-polar space) are defined to lie on a regular grid \(G \) of pixels:

\[
G_{i,j} = (\varphi_i, \rho_j) = \left(i \cdot \frac{2\pi}{H'}, \log \frac{r_{\text{max}} - \log r_{\text{min}}}{W'} \right),
\]

with \(i = 0, \ldots, H' - 1 \) and \(j = 0, \ldots, W' - 1 \). Here \(H' \) and \(W' \) denote the height and width of the log-polar space, which is chosen to be much smaller than the height \(H \) and width \(W \) of the source image. Next the regular spatial grid \(G \) over the destination image is transformed back to the source image using the reverse mapping defined in (3) and (4):

\[
(x_i, y_j) = T_0(G_{i,j}) = (e^{\rho_j} \cdot \cos(\varphi_i), e^{\rho_j} \cdot \sin(\varphi_i) + y_c),
\]

where only two parameters \(\theta = (x_c, y_c) \) are required, which define the center of the patch to be transformed. Please note that \((x_i, y_j) \) define the points at which the source image is sampled. If the resulting sample points lie between pixels of the source image, we apply bilinear interpolation using the adjacent four pixels, depicted in Fig. 10.

As has been shown in [9] reverse mapping with bilinear interpolation gives us a differentiable sampling mechanism, allowing loss gradients to flow back not only to the input feature map, but also to the sampling grid coordinates (6), and thus back to the transformation parameters \(\theta = (x_c, y_c) \).

6 Our Approach

Before we dive into details of our approach, we should emphasize the fact, that the input provided to our neural network only consists of small patches (32x32 or 64x64 pixels) iteratively obtained by log-polar mapping. This makes our approach computationally very efficient.
The backbone of our architecture, depicted in Fig. 12, is a small CNN network, which has the task to produce a translation invariant feature vector representing the semantics of the log-polar patch. The reason why the backbone is comparably small (usually consisting of only few layers) is the following: traditional convolutional neural networks lack the property of scale and rotation equivariance. They have to learn different features for same objects at different scales and rotations. This is a highly redundant task and the main reason why for real world applications CNNs usually have to learn different features for same objects at different positions. Since the log-space (and assuming correct positioning) the features can be translated and rotations. This is a highly redundant task and the main reason why for real world applications CNNs usually have to learn different features for same objects at different positions.

In all our convolution layers we use a special kind of padding optimized for the log-polar space. Since the log-polar space is periodic along the ρ-axis, we can use the "wrap" padding (cde|abcde|abc) for this axis. For the ϕ-axis we use the "reflect" padding (cba|abcde|edc).

The second component of our architecture is a modified Spatial Transformer Network consisting of a Grid Generator, a Sampler and a Localisation Network [9]. The Grid Generator receives as only input the reference point (x_r, y_r) which defines the center of the sampling grid, see Fig. 11. The Sampler transforms the input image into the log-polar space. As we have discussed previously the loss gradient can flow through the Sampler back to the Localisation Network, hence allowing for an end-to-end learning of the whole architecture.

The Localisation Network receives its input from an early layer of the backbone CNN network, see Fig. 12. This way a high spatial resolution is maintained, needed for identifying interesting points for the next saccade. Besides sharing common layers further reduces the amount of needed parameters. The Localisation Network is designed as a fully convolutional network consisting only of 1×1 convolution layers. The reasoning behind this design decision is that each pixel in the feature maps of the backbone CNN network represents a different coordinate in the log-polar space. Hence if the network identifies a certain pixel to be interesting, it can directly obtain its corresponding position in the log-polar space, and hence in the Cartesian coordinate system using (3) and (4). In contrast, if we instead used a fully connected layer this correspondence would be lost, since each node of the fully connected layer is calculated as a weighted sum of all spatial positions. The fully connected network would thus have to painfully relearn an already given relation. Our numerous experiments showed that this approach does not perform very well.

The last layer of the Localisation Network consists of a spatial softmax with a single feature map. This feature map is multiplied (element wise) with a constant grid representing the spatial positions of the pixels in the log-polar space, see Fig. 13. A subsequent averaging of the product gives us the desired coordinate of the next saccade in log-polar coordinates. Finally, to obtain the Cartesian coordinates of the saccade, we use the reverse mapping (which is differentiable) applying (3) and (4) and the last position from the previous saccade.

7 Multitask Learning

Ideally we would like to perform only one saccade to correctly classify an object. To achieve this goal we are training the module in Fig. 12 in a greedy manner. The whole process consists only of two iterations: in the initial iteration we feed the network with a random initial position (of the sampling grid) and ask the Localisation Network to determine the optimal saccade (next position). No classification is performed yet. In the second iteration we first sample the image using the just obtained position and then perform a classification. Needless to say that in each iteration the same network weights are used. By choosing a random initial position the network is forced to learn all possible scenarios and we avoid overfitting. Using only two iterations has furthermore the advantage of avoiding the vanishing gradient problem. The greedy approach is our first learning task.

However, during our experiments, we observed that often one saccade was not sufficient to confidently classify an object. We therefore must introduce additional (auxiliary) saccades by further unrolling the architecture in Fig. 12. We have mentioned in Sec. 4 that an aggregation of previously seen patches is needed to gain an understanding of the whole image. We achieve this by feeding the output of the last dense layer in Fig. 12 into a vanilla recurrent neural network (RNN). The classification is performed on the output of the RNN after the last saccade was performed. The aggregation approach constitutes our second learning task.

Fig. 13. Last layer of the Localisation Network

Fig. 14. Aggregation of previously seen patches used to gain an understanding of the whole image
8 Evaluation

We have performed experiments on the widely used datasets: CIFAR-10, MNIST and Fashion-MNIST, each coming with 10 classes. In all our experiments we have used only four saccades. The prediction made in the last saccade is used to evaluate the performance on the test set. We have used the following concrete implementations of the four modules depicted in Fig. 12.

CNN backbone

The CNN backbone is a fully convolutional neural network consisting of three convolutional layers each followed by a max-pooling layer. We use kernel sizes of 3x3, a combination of “wrap” and “reflect” padding as described in Sec. 6 and the “tanh” activation function. The sizes of feature maps are 32, 64 and 128, respectively. The output of the last layer is flattened using average pooling.

Classifier

The classification net consists of three fully connected layers with “tanh” activation functions in the hidden layers and the “softmax” activation function in the last layer. The number of nodes is 128, 96, 10.

Localisation Net

The Localisation Net get its input from the second layer of the CNN backbone. It consists of two 1x1 convolutional layers with “tanh” activation function in the hidden layer and the “softmax” activation function in the last layer. The number of nodes is 64, 64, 1. The Localisation Net is followed by the hard wired transformation of log-polar coordinates into Cartesian coordinates, as discussed in the last section.

RNN

We use the vanilla version of RNN, which receives its input from the second fully connected layer and hence has 96 nodes.

8.1 CIFAR-10

CIFAR-10 is a well-understood dataset and widely used for benchmarking computer vision algorithms in the field of machine learning [10]. The dataset is comprised of 60,000 32x32 pixel color photographs of objects from 10 classes, such as frogs, birds, cats, ships, etc. The dataset already has a well-defined train (50,000 examples) and test dataset (10,000) that we have used. Top performance on the CIFAR-10 has been achieved by deep learning convolutional neural networks with a classification accuracy above 90% on the test dataset.

During training we used the following four color augmentations: hue, saturation, brightness and contrast. In addition we use flipping and zooming, which is a powerful augmentation that can make a network robust to (small) changes in object size. We achieve an accuracy of above 80% on the test set using the small network described above.

8.2 MNIST

MNIST is a well-known benchmark of handwritten digit images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 gray scale image, associated with a label from 10 classes. We achieve an accuracy of above 99% on the test set using the small network described above.

8.3 Fashion-MNIST

Fashion-MNIST is a dataset of Zalando’s article images. It is intended to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. We achieve an accuracy of above 90% on the test set using the small network described above.

9 Conclusion and Future Work

In this paper we have introduced an object recognition mechanism inspired by the human visual system. Objects are easily recognized by the human visual system despite variation in the size of the object, its position in the environment, or even its rotation (as in television viewing while lying on the couch). This is mainly achieved by the use of the scale and rotation equivariant log-polar transform. To compensate for the lack of translation equivariance of the log-polar transform we have introduced the concept of saccades, which allows for a guided scanning of the whole image. The huge advantage of our approach is that all calculations (both the classification and the calculation of the next position to be visited) are performed on the rather small log-polar patches. Furthermore by achieving true scale and rotation invariance, the network can reuse features learnt for e.g. small size objects to classify large objects. Another huge advantage is that networks trained on small images like CIFAR-10 can still be applied to perform classification on large images by just adapting the size of the sampling grid.

In our future work we will concentrate on the following two topics: we have successfully used the proposed approach for object detection. We performed experiments on the COCO dataset using only 64x64 pixel sized input patches. We will present our results in an upcoming paper.

Furthermore we have successfully applied the same principle of log-polar based attention on tasks coming from the domains of speech recognition and neural machine translation similar to the approach presented in [12].
REFERENCES

[1] Seth Benton. Fractal-mosaics. https://s-ben.github.io/Fractal-Mosaics/, 2014.
[2] Patrick Ebel, Anastasiia Mishchuk, Kwang Moo Yi, Pascal Fua, and Eduard Trulls. Beyond cartesian representations for local descriptors. arXiv, 2019.
[3] Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar transformer networks. ICLR 2018 Conference, 2018.
[4] Tom Foulsham, Alan Kingstone, and Geoffrey Underwood. Turning the world around: Patterns in saccade direction vary with picture orientation. Vision Research, pages 1777–1790, 2008.
[5] Ido Freeman, Lutz Roese-Koerner, and Anton Kummert. Effnet: An efficient structure for convolutional neural networks. arXiv, 2018.
[6] Gonzalez and Woods. Digital Image Processing. Prentice Hall, 3rd edition, 2008.
[7] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv, 2017.
[8] Hans-Werner Hunziker. "eye movements during the first 2 seconds of viewing a picture. based on data by yarbus, a. l.", 1967. License: CC BY 3.0.
[9] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer networks. arXiv, 2015.
[10] Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of features from tiny images. 2009.
[11] Shiyi Lan, Zhou Ren, Larry S. Davis Yi Wu, and Gang Hua. Saccadenet: A fast and accurate object detector. arXiv, 2020.
[12] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural machine translation. arXiv, 2015.
[13] RB Tootell, MS Silverman, E Switkes, and RL DeVlois. Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science, 218:902–904, 1982.
[14] V. Javier Traver and Alexandre Bernardino. A review of log-polar imaging for visual perception in robotics. Robotics and Autonomous Systems, pages 378–398, 2010.
[15] George Wolberg and Siavash Zokai. Robust image registration using log-polar transform. Proceedings 2000 International Conference on Image Processing, 2000.