Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment

Jin Woo Lee1,2, Hwa-Yong Lee3,4

1Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
2Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
3Department of Biomedical Science, Jungwon University, Goesan, Korea
4Division of Science Education, Kangwon National University, Chuncheon, Korea

Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.

Keywords: Cancer stem cells, Stem cell-like characteristics, Drug resistance, Recurrence

Introduction

Head and neck cancer, including oral cancer, is the sixth leading type of cancer worldwide (1), representing approximately 6% of all solid tumors. Approximately 90% of diagnosed cases of head and neck cancers are oral squamous cell carcinoma (SCC), which is the most common malignancy in the oral cavity (2). In recent decades, the five-year survival rate after treatment of oral cancer is still approximately 50% for most countries (3-5), which indicates a poor prognosis for the developing world (6). Several chemotherapeutic agents for the treatment of oral cancer have been tested individually or in combination with other anticancer drugs, such as cetuximab, cisplatin, docetaxel, 5-fluorouracil, methotrexate, and paclitaxel.
Given the functional similarities between somatic stem cells and CSCs, researchers have attempted to determine whether CSCs arise from tissue-resident stem/progenitor cells or differentiated cells that acquire stem cell-like characteristics during the malignant process. However, the origin of cancer stem cells remains elusive, because the origin of CSCs varies greatly depending on the malignancy (33, 34). Tissue-resident stem/progenitor cells exhibit unique biological features, such as long-term reconstitution, self-renewal, and transdifferentiation capacity. Functionally, stem cells self-renew asymmetrically but also give rise to daughter cells that are committed to lineage-specific differentiation to reconstitute specific tissues and maintain homeostasis. The tissue-resident stem cells that give rise to cancer are an attractive hypothesis, given that the multistage theory of tumor development requires actively dividing and long-lived stem cells in which consecutive genetic mutations can accumulate (35).

Similarly, intermediate progenitor cells, which are more abundant in specific tissues than stem cells and commonly undergo limited cell proliferation, aberrantly acquire enhanced self-renewal capacity, and ultimately become the long-lived target that acquires consecutive genetic mutations (36). Indeed, a number of studies have hypothesized that tissue-resident stem cells or certain cells with stem cell characteristics can directly give rise to CSCs. Some characteristics and functions of leukemic CSCs with hierarchically arranged subpopulations (similar to those observed with normal bone marrow stem cells) support the stem-cell origin hypothesis (37). Interestingly, in some tissues, fully differentiated cells can also revert to the stem cell phenotype through dedifferentiation or reprogramming (38).

Therefore, some researchers have hypothesized that cancer cells could be derived from mature and fully differentiated cells that re-acquire stem cell-like properties under certain conditions. In the “differentiated cell origin model”, the requisite of consecutive oncogenic mutations may lead to the dedifferentiation of mature cells into pluripotent stem cell-like cells. The corresponding mechanisms or physiological conditions that determine which cell types would undergo dedifferentiation have not been completely elucidated. Surprisingly, this dedifferentiation process can be accelerated by simple genetic modifications (39, 40). Indeed, Takahashi et al. (40) induced the dedifferentiation of fully differentiated somatic cells into pluripotent stem cells with multidifferentiation potential by introducing only four pluripotency-associated genes (Oct3/4, Sox2, c-Myc, and Klf4). Regardless of their cellular origin, whether tissue-resident stem/progenitor cells or differentiated somatic cells, CSCs are defined as the subpopulation of cells that retain stem cell-like characte-
Therapeutic Implications of Oral CSCs in Cancer Therapy

The majority of cancer cells in heterogeneous bulk tumors have limited proliferative potential, tumor-forming capacity, and resistance to chemotherapy. The diverse phenotypic heterogeneity and plasticity among cancer cells in bulk tumors have been explained by the CSC model of hierarchically organized tumors (42). After their identification from leukemia, CSCs were first isolated and characterized from solid breast cancer tumors. The CD44+/CD24−/low and epithelial cell adhesion molecule-positive phenotypes may be typically considered pluripotency-associated characteristics in breast CSCs (43, 44). As few as 100 cells exhibiting these cellular properties can grow rapidly in vitro and effectively form new tumors in vivo after reconstitution (43). The evidence of oral CSCs has been first suggested by the study, which showed that even just a small fraction of oral squamous cell carcinoma cells with “stem-like” characteristics is able to rapidly reconstitute a new bulk tumor after reconstitution (45). The isolation of oral CSCs from tumor masses has mainly been conducted using the cell surface marker CD44, which is an important cell surface marker for isolating stem-like cells from breast cancer (46, 47). Although CD44 was originally identified as a receptor for hyaluronic acid, it has also been suggested as a putative marker for various types of stem cells (48, 49) and a key regulator for the maintenance of the properties of various CSCs (50, 51). Aldehyde dehydrogenases (ALDH), a family of intracellular enzymes that catalyze cellular detoxification and subsequent drug resistance via oxidation of intracellular aldehydes, has been proposed as a putative biomarker for oral CSCs (52). Interestingly, ALDH-positive subpopulations isolated from head and neck squamous cell carcinoma have typical CSC characteristics and enhanced tumorigenic potential in vivo (53, 54). Overall, acquired resistance to standard chemotherapy or radiation therapy is an important cause of treatment failure. Emerging evidence indicates that CSC subpopulations are more resistant to standard chemotherapeutic drugs when compared to non-CSC subpopulations (55). CSC-mediated drug resistance has been previously demonstrated in multiple types of cancer, such as brain (56), breast (57), colorectal (58), leukemias (59), skin (60), and pancreatic (19) cancers. In addition, CSC-mediated radioresistance has also been reported in brain (61) and breast (62) cancers. Oral CSCs are also commonly resistant to various conventional chemotherapeutic agents (23-25) and radiation therapies (27, 63, 64) that target proliferating cells (Fig. 1). Therefore, the remaining resistant oral CSCs can proliferate extensively and reconstitute new tumors in patients and may ultimately lead to the failure of durable clinical responses. Therefore, research efforts are underway to develop novel therapeutic strategies for selectively eradicating resistant oral CSCs without affecting normal cells (65-67).

Several Strategies for the Selective Targeting of Oral CSCs

Therapeutic efficiency could be enhanced by selectively targeting subtle expression differences in surface markers and alterations in various signaling regulators between CSC subpopulations and non-CSC subpopulations. Currently, many researchers have identified several promising therapeutic targets for oral CSCs, including signaling pathways, cell surface markers, pluripotency-associated genes, and transcription factors that can selectively eliminate oral CSCs and subsequently reduce the risk of cancer recurrence (Fig. 2).
nous ALDH activity may be associated with increased resistance in oral CSCs (27, 53, 72, 73). ALDH1 protein expression levels are positively correlated with the tumor formation ability of neck squamous cell carcinoma and negatively correlated with patients’ responses to ongoing treatments (27).

Consistently, as few as 5×10^6 ALDH-positive cells of head and neck squamous cell carcinoma were able to reconstitute visible tumors in vivo, and these subpopulations showed increased 3D sphere-forming ability in vitro, higher migratory capacity, and enhanced radiation resistance (27, 53). Interestingly, the ALDH$^{\text{high}}$ subpopulation significantly overlaps with the CSC surface marker CD44-expressing populations (50.6%~74.4%). Conversely, when CD44-positive subpopulations were sorted for ALDH activity, only 9.8%~23.6% of the CD44$^+$ cells overlapped with high ALDH activity (53). This result suggests that ALDH activity can be used as a selective marker for CSCs in head and neck squamous cell carcinoma (53). In addition, ALDH$^+$-stem-like populations were also associated with epithelial-to-mesenchymal transition (EMT), which is a key process in metastasis during malignant progression in head and neck squamous cell carcinoma (27).

CD44: CD44 is a transmembrane receptor for hyaluronic acid, which is highly expressed in many cancers, and regulates cell migration and invasion processes (74). The CD44-hyaluronic acid signaling axis can promote tumor progression and subsequent metastasis by increasing self-renewal capacity, cell survival, and drug resistance (75, 76). CD44 can also bind to several growth factors and some metalloproteinases (MMPs), such as MMP-2, MMP-9, and MMP-14, resulting in an increased ability for metastasis (77, 78), angiogenesis (79), and drug resistance (80). CD44-positive subpopulations with high tumorigenic potential have been identified in multiple types of CSCs, such as in cervical (81), prostate (82), lung (83), breast (43), colon (84), ovarian (85), gastric (86), bladder (87), and pancreatic (88) cancer. In this context, the CD44$^{\text{high}}$ subpopulation with elevated tumorigenicity and metastatic ability is an attractive therapeutic strategy for the treatment of multiple cancer types. Emerging evidence has revealed the association of CD44 with tumor aggressiveness and its prognostic impact on patients with oral squamous cell carcinoma (89, 90). Consistently, it has been described that certain CD44 (i.e., v3, v6, v10) variant isoforms seem to act as metastasis genes and are associated with metastasis and cancer progression in oral squamous cell carcinoma (91). CD44-positive cell subpopulations express high levels of Bmi-1, which plays a key role in the self-renewal capacity of various stem cell types and is involved in vitro clonogenic activity, tumorigenic properties, and drug resistance in oral CSCs (27, 53, 72, 73).

Pluripotency-associated surface marker targeting strategy

A rare subpopulation of CSCs can be identified and isolated from the tumor mass by using single or combinations of multiple surface markers, thus providing a more effective CSC-targeted therapeutic strategy (68). Currently, magnetic cell sorting, flow cytometry, fluorescent antibody staining, and real-time PCR are commonly used to isolate and characterize heterogeneous CSCs within a tumor mass. Although considerable progress has been achieved in identifying CSCs on the basis of their specific surface markers, the development of selective CSC therapies remains a challenge, largely due to the many common properties between CSCs and normal stem cells.

Aldehyde dehydrogenases (ALDHs) are a superfamily of intracellular enzymes that play important roles in cellular detoxification and subsequent drug resistance by metabolizing various intracellular aldehyde derivatives. Over two decades ago, ALDHs were first known to confer resistance to chemotherapeutic alkylating agents such as cyclophosphamide in hematopoietic and leukemic stem cells (69). ALDH-positive subpopulations were found in breast (70) and brain (71) cancers. In these tumors, cells with high ALDH activity were characterized as having enhanced self-renewal capacity and subsequent tumorigenic potential in vivo, which are typical characteristics of CSCs. Indeed, many recent studies have revealed that high levels of endogenous ALDH activity may be associated with increased...
in tumorigenesis (22). Since then, many previous studies have suggested that CD44-positive cells exhibit a significantly higher potential for 3D sphere-forming ability in vitro, higher migratory capacity, and drug resistance in both primary tumor tissues and cell lines of oral squamous cell carcinoma (22, 92-96). In addition, the frequency of CD44-positive cells was significantly associated with poor prognosis and higher rates of recurrence and metastasis after radiation therapy in patients with oral squamous cell carcinoma (92).

CD133: CD133 (also known as AC133 and prominin-1), a 5-pass transmembrane glycoprotein with a molecular mass of 120 kDa, has been identified as a novel marker for hematopoietic stem/precursor cells and endothelial progenitor cells in various organs (97). However, several previous studies have indicated that CD133 can also be used as a marker for the identification of CSCs in many solid tumors, including hepatocellular carcinoma (98), oral squamous carcinoma (99), renal cell carcinoma (101), and thyroid carcinoma (102). Consistently, CD133-positive subpopulations from the head and neck squamous cell carcinoma cell line Hep-2 have a markedly increased capacity for tumor formation in vivo when compared with CD133-negative cells (103). Previous studies have revealed a significant correlation between enhanced levels of CD133 and poor prognosis in patients with oral squamous cell carcinoma (104, 105). Moreover, CD133-positive cells showed increased drug resistance, self-renewal ability in vitro, tumorigenesis in vivo, and expression levels of pluripotency-associated genes, such as ALDH, NANOG, OCT4, and SOX2 (28). Elevated expression of CD133 was observed in oral cancer stem-like cells from patients with oral squamous cell carcinoma (104). Its expression is also correlated with increased migration, tumorigenicity, and the expression level of the ABC transporter gene ABCG2 (104). Additionally, oral cancer patients who are NANOG/OCT4/CD133 triple-positive were predicted to have the worst survival prognosis. However, due to differences in research design, sample size, and target population, the functions and mechanisms of CD133 in various aspects of oral CSCs are still not clear, and further investigation is necessary.

CD117: CD117, also known as the c-kit receptor, is a transmembrane protein with tyrosine kinase activity that plays a pivotal role in the maintenance and proliferation of hematopoietic stem cells (106). CD117 depletion in the bone marrow or spleen leads to a significant decrease in the number of cells from the erythrocyte and lymphocyte lineages (107). The CD117 signaling cascade is activated when CD117 binds to its cognate ligand, the stem cell fac-
ful for developing CSC-specific therapeutic strategies that avoid the deleterious side effects caused by affecting normal somatic cells or tissue-resident stem cells.

Wnt/β-catenin signaling pathway: Wnt proteins are a group of secreted glycoproteins that bind to cell surface receptors, including their cognate Frizzled (Fzd) receptors, and cause an accumulation of β-catenin in the cytoplasm (124). It regulates numerous processes essential for embryogenesis, tissue homeostasis, and cancer development (41, 125). Wnt/β-Catenin-mediated signaling, which is implicated in controlling various aspects of CSC-related tumorigenicity, has also been found to be involved in the maintenance, survival, metastasis, and drug resistance of various CSC types, including acute myeloid leukemia (126), breast (127), colon (128), liver (129), and lung (130) cancer. Iwai et al. (131) suggests that the Wnt/β-catenin signaling pathway plays a critical role in the oncogenesis of oral squamous cell carcinoma. They also demonstrated that the aberrant cytoplasmic accumulation of β-catenin can enhance the invasion and migration of oral squamous cell carcinoma by upregulating MMP-7 expression and inducing epithelial-mesenchymal transition (EMT) (131). Consistently, Yang et al. (132) reported that introducing a β-catenin gene into oral squamous cell carcinoma cells using a retrovirus vector-mediated transfection system resulted in a significantly increased resistance to TNF-α-induced apoptosis in transfected cells. Warrier et al. (133) also clearly demonstrated that Wnt/β-catenin signaling can increase the in vitro sphere-forming capacity and drug resistance of oral CSCs. They also reported that oral CSCs from squamous cell carcinoma are chemo sensitized by naturally occurring Wnt inhibitors (sFRP4), via increasing apoptosis and/or reducing pluripotency (133). All-trans-retinoic acid (ATRA) reduced the self-renewal capacity of oral CSCs in vitro and subsequent tumorigenicity in vivo by inhibiting Wnt/β-catenin signaling from squamous cell carcinoma (134).

Notch signaling pathways: Notch signaling is an evolutionarily conserved intercellular signaling pathway that regulates various aspects of development and disease progression (135, 136). Therefore, dysfunction frequently results in a variety of congenital anomalies and diverse pathological disorders (41). The Notch receptors are four conserved single-pass transmembrane proteins (Notch1-4) and contain multiple arranged epidermal growth factor-like repeats (EGFR) that bind to Notch ligands (137). Among their family members, Notch 1 and 2 share the highest degree of similarity and are the most widely expressed in a large number of fetal and adult tissues, while Notch 3 is primarily limited to vascular smooth muscle cells, and Notch 4 is most predominantly expressed in endothelial cells (138). While the pro-oncogenic functions of dysregulated Notch signaling have been relatively well characterized in multiple types of cancers (138-140), its role in many aspects of CSCs is just emerging. Notch1 mutations are found in approximately 10%–15% of patients with oral squamous cell carcinoma, suggesting its possible roles in the unique biological features of oral CSCs, such as long-term reconstitution, self-renewal, and transdifferentiation capacity (141-143). Shrivastava et al. (144) demonstrated that Notch1 was highly expressed in oral squamous cell carcinoma-derived 3D sphere-forming cells compared to monolayer cells. Consistently, they also observed the activation of Hes1, a well-known target of Notch signaling, in oral squamous cell carcinoma-derived sphere-forming cells as compared to adjacent monolayer cells (144). Moreover, Lee et al. (145) found that prolonged exposure to tumor necrosis factor alpha (TNF-α), a major proinflammatory cytokine, significantly enhanced multiple oral CSC-associated characteristics such as self-renewal capacity, pluripotency-associated genes, drug resistance, and tumorigenic potential in vivo by activating the Notch-Hes1 signaling cascade. Zou et al. (146) also reported that Notch2 expression was markedly increased in ALDH-positive CSC-like subpopulations in tongue squamous cell carcinoma. These results suggest that activation of the Notch signaling pathway can be mechanistically associated with the various characteristics of oral CSCs.

Hh signaling pathways: Hedgehog signaling was initially discovered as a critical segment polarity gene of pattern formation during early embryonic development in *Drosophila*, and its dysfunction frequently results in critical developmental anomalies and diverse pathological disorders (147, 148). It plays an essential role in regulating diverse cellular functions such as cell growth, survival/apoptosis, cell migration/invasion, and embryonic cell differentiation (149-152). While only one Hh gene has been identified in *Drosophila*, three different Hh family members have been found in vertebrates: the Desert Hedgehog (Dhh), Indian Hedgehog (Ihh), and Sonic Hedgehog (Shh) (153-155). Upon binding to its cognate receptor Patched-1 (a 12-pass transmembrane glycoprotein), Hh initiates signal transduction through the transcription factor Gli, either dependently or independently (156). Many previous studies on several different types of human cancer, such as breast cancer (157), chronic myeloid leukemia (158), colorectal cancer (159), glioblastoma (160), lung cancer (161), multiple myeloma (162), and pancreatic cancer (163), have indicated that the Hh signal-
ing network can possibly increase the self-renewal capacity, drug resistance, and tumorigenic potential of various CSC types. Consistently, Takebe et al. (164) provided a comprehensive survey of the Hh signaling pathway as a major regulator of many fundamental functions of CSCs, such as drug resistance, tumorigenic potential, pluripotency, and self-renewal capacity. Wang et al. (165) demonstrated that Shh is highly expressed in approximately 70% of oral squamous cell carcinoma specimens. In addition, statistical analyses showed that Shh overexpression is highly associated with the enhanced expression of the well-known Hh target gene Gli-1 and Hh receptor Ptch, suggesting that Hedgehog signaling is likely activated in oral squamous cell carcinoma cells (165). Consistently, Ptch expression is significantly associated with recurrence rates in patients with oral squamous cell carcinoma (165). Therefore, targeting dysregulated Hh signaling activity may provide effective diagnostic and therapeutic strategies for the treatment of oral cancers.

Hippo-YAP signaling pathways: The Hippo-YAP signaling cascades have been found as important oncogenic signaling pathways in various types of cancers (166). Its signaling activity is regulated by key downstream transcription co-activator Yes-associated protein 1 (YAP1) with PDZ-binding motif (TAZ) (167). In addition, YAP1 is an essential transcription factor for maintaining undifferentiated state of embryonic stem cells by increasing the expression levels of various pluripotency-associated factors (168, 169). Importantly, significantly deregulated Hippo-YAP signaling pathway is widely observed in multiple types of human cancers including oral squamous cell carcinoma (170, 171). Indeed, local amplification of 11q22 locus in the human YAP1 gene is observed in 8.6% of patients with head-and-neck squamous cell carcinoma (172) and it signaling activity is closely related with poor prognosis and malignant phenotypes both in vitro and in vivo (172, 173). Endogenous YAP1 hyperactivation promotes surprisingly rapid and highly reproducible tumorigenesis of head-and-neck squamous cell carcinoma (174). Importantly, Li et al. (175) found that Hippo-TAZ signaling cascades enriched in CSCs subpopulation (CD44+/CD133+) by promoting the expression of pluripotency-associated transcription factor SOX2 in head neck squamous cell carcinoma. Similarly, several lines of evidence suggested that YAP1 could transcriptionally induce the expression of re-programming factor SOX2 through a physical interaction with pluripotency-associated gene OCT4 to promote self-renewal capacity of CSCs subpopulation in lung cancer model (176).

Oral CSCs and Their Potential Clinical Implications

Since the identification of CSC subpopulations in oral squamous cell carcinoma (22), a number of studies have described the positive correlation between the presence of oral CSCs and poor clinical outcomes (177, 178). Chen et al. (179) showed that the relative expression levels of ALDH1 and CD44 were significantly higher in high-grade oral squamous cell carcinoma. They also found that curcumin I (JSI-124) can effectively induce the apoptosis of CD44+/ALDH1+ oral squamous cell carcinoma subpopulations through STAT3 signaling pathways (179). Likewise, Chen et al. (27) also demonstrated that ALDH1-positive cell subpopulations from oral squamous cell carcinoma have higher tumorigenic potential and are more resistant to chemotherapeutic agents and radiation than adjacent ALDH1-negative cell subpopulations. In this context, chemotherapy and radiation, the most commonly used therapeutic strategies together with surgery, often fail, as they do not effectively eliminate quiescent oral CSCs, which can reconstitute the entire bulk tumor. Therefore, it appears that establishing new adjuvant therapeutic approaches that can effectively eliminate oral CSCs within the tumor mass may provide a more effective treatment strategy to overcome therapeutic resistance and subsequent recurrence. Identifying highly selective oral CSC surface markers, as well as establishing effective therapeutic strategies, still requires intensive investigation (180, 181). Currently, therapeutic attempts to selectively target oral CSCs have not yet been used in clinical applications. Moreover, various pluripotency-associated CSC surface markers are not exclusively unique for oral CSCs, and they overlap with their tissue-resident stem cells as well as normal somatic cells (182). Therefore, a better understanding of CSC characteristics and the development of novel therapeutic approaches that selectively target oral CSCs are urgently needed to increase the clinical outcome in patients with different types of malignancies.

Conclusions

After the identification of CSCs from leukemia over 40 years ago, they were first isolated and characterized from solid breast cancer tumors. CSCs not only play an essential role in cancer initiation, maintenance, and tumor progression, but they are also particularly important for mediating resistance to chemotherapeutic drugs and radiation, subsequently leading to the failure of these conven-
tional therapeutic approaches. In this context, identifying and selectively targeting CSCs with specific pluripotency-associated signaling pathways and/or surface markers is a potential therapeutic strategy for inhibiting various types of cancer. However, no single cell surface marker that can specifically target the oral CSC subpopulation is currently available. The identification of specific surface markers or their signaling regulators is the first step in uncovering the characteristics and functions of oral CSCs. Indeed, combinations of a set of putative cell surface markers and/or signaling pathways representing the pluripotency-associated phenotypes will be helpful in achieving a better chance of developing new therapeutic alternatives for patients with oral cancer.

Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2020R1H1A2061281).

Potential Conflict of Interest
The authors have no conflicting financial interest.

References

1. Williams HK. Molecular pathogenesis of oral squamous carcinoma. Mol Pathol 2000;53:165-172
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225-249
3. Kantola S, Parikka M, Jokinen K, Hyrynkangs K, Soini Y, Alho OP, Salo T. Prognostic factors in tongue cancer - relative importance of demographic, clinical and histopathological factors. Br J Cancer 2000;83:614-619
4. Sankaranarayanan R, Masuyer E, Swaminathan R, Ferlay J, Whelan S. Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res 1998;18: 4779-4786
5. Carvalho AL, Magrin J, Kowalski LP. Sites of recurrence in oral and oropharyngeal cancers according to the treatment approach. Oral Dis 2003;9:112-118
6. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90
7. Catimel G, Verweij J, Mattijsen V, Hanuske A, Piccart M, Wanders J, Franklin H, Le Bail N, Clavel M, Kaye SB. Docetaxel (Taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. EORTC Early Clinical Trials Group. Ann Oncol 1994;5:533-537
8. Clavel M, Vermorken JB, Cognetti F, Cappelaere P, de Mulder PH, Schornagel JH, Tueni EA, Verweij J, Wildiers J, Clerico M, Dalesio O, Kirkpatrick A, Snow GB. Randomized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck. A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Ann Oncol 1994;5:521-526
9. Haddad R, Sonis S, Posner M, Wirth L, Costello R, Braschayko P, Allen A, Mahadevan A, Flynn J, Burke E, Li Y, Tisher RB. Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer. Cancer 2009;115:4514-4523
10. Vermorken JB, Mesia R, Rivera F, Remenan E, Kawecki A, Rottey S, Erfan J, Zabolotny D, Kienzer HR, Cupissol D, Peyrade F, Benasso M, Vynnuchenko I, De Raucourt D, Bokemeyer C, Schueler A, Amellal N, Hirt R. Platinum-based chemotheraphy plus cetuximab in head and neck cancer. N Engl J Med 2008;359:1116-1127
11. Greenberg JS, El Naggar AK, Mo V, Roberts D, Myers JN. Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Implication for therapeutic decision making. Cancer 2003;98:508-515
12. Shah JP, Lydiatt W. Treatment of cancer of the head and neck. CA Cancer J Clin 1995;45:352-368
13. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012;10:717-728
14. Hemmati HD, Nakano I, Lazareff JA, Mastermank-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003;100:15178-15183
15. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-110
16. Fukuda K, Sai kawa Y, Ohashi M, Kumagai K, Kitajima M, Okano H, Matsuzaki Y, Kitagawa Y. Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol 2008;34:755-760
17. Abdulmajeed AA, Dalley AJ, Farah CS. Putative cancer stem cell marker expression in oral epithelial dysplasia and squamous cell carcinoma. J Oral Pathol Med 2013;42: 755-760
18. Eramo A, Lotti F, Sette G, Pilozzi E, Bi ffini M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008;15:506-514
19. Hermann PC, Huber SL, Herrler T, Aicher A, Elbhawi JW, Guba M, Bruns CJ, Hesschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313-323
20. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-10951
21. da Silva SD, Hier M, Mlynarek A, Kowalski LP, Alosui-Jamali MA. Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol 2012; 3:149
22. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973-978
23. Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhatia SK. Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol 2013;49:854-862
24. Todoroki K, Ogasawara S, Akiba J, Nakayama M, Naito Y, Seki N, Kusukawa J, Yano H. CD44v3+/CD24- cells possess cancer stem cell-like properties in human oral squamous cell carcinoma. Int J Oncol 2016;48:99-109
25. Pozzi V, Sartini D, Rocchetti R, Santarella A, Rubini C, Morganti S, Giulianti R, Calabrese S, Di Ruscio G, Orlando F, Provenziali M, Saccucci F, Lo Muzio L, Emanuelli M. Identification and characterization of cancer stem cells from head and neck squamous cell carcinoma cell lines. Cell Physiol Biochem 2015;36:784-798
26. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol 2009;45:633-639
27. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai HK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL. Aldhyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous amorous cancer. Biochem Biophys Res Commun 2009;385:307-313
28. Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 2010;289:151-160
29. Khammanivong A, Gopalakrishnan R, Dickerson EB. SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol Cancer 2014;13:260
30. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973-978
31. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 2011;71:5317-5326
32. Boman BM, Huang E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol 2008;26:2828-2838
33. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008;12:374-390
34. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-9344
35. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525-532
36. Passegê E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 2003;100(Suppl 1):11842-11849
37. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5:738-743
38. Zhou D, Luo Y, Dingli D, Traulsen A. The invasion of de-differentiating cancer cells into human oral squamous cell carcinoma. PLoS Comput Biol 2019;15:e1007167
39. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920
40. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872
41. Abdou AG, Marae AH, El-Sayed EM, Elnaidany NF. Immunohistochemical expression of ezrin in cutaneous basal and squamous cell carcinomas. Ann Diagn Pathol 2011;15:394-401
42. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-111
43. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983-3988
44. Fillmore CM, Kupershaw C, Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008;10:R25
45. Mackenzie IC. Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J Oral Pathol Med 2004;33:71-78
46. de Moraes FP, Lourenço SV, Ianez RC, de Sousa EA, Silva MM, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camilo GM. Expression of stem cell markers in oral cavity and oropharynx squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2017;123:113-122
47. Mohanta S, Siddappa G, Valiyaveedan G, Dodda
Thimmasandra Ramanjanappa R, Das D, Pandian R, Khora SS, Kuriakose MA, Suresh A. Cancer stem cell markers in patterning differentiation and in diagnosis of oral squamous cell carcinoma. Tumour Biol 2017;39:101428317703656

48. Thapa R, Wilson GD. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int 2016;2016:2087204

49. Morath I, Hartmann TN, Orian-Rousseau V. CD44: more than a mere stem cell marker. Int J Biochem Cell Biol 2016;81(Pt A):166-173

50. Wang L, Zuo X, Xie K, Wei D. The role of CD44 and cancer stem cells. Methods Mol Biol 2018;1692:31-42

51. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 2015;4:1033-1043

52. Tian S, Liu DH, Wang D, Ren F, Xia P. Aldehyde dehydrogenase 1 (ALDH1) promotes the toxicity of TRAIL in non-small cell lung cancer cells via post-transcriptional regulation of MEK-1 expression. Cell Physiol Biochem 2018;51:217-227

53. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010;32:1195-1201

54. Bertrand G, Maalouf M, Boivin A, Battiston-Montagne P, Beuve M, Levy A, Jalade P, Fournier C, Ardail D, Magné N, Alphonse G, Rodriguez-Lafrasse C. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev Rep 2014;10:114-126

55. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310-1316

56. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R. Chemoresistance of glioblastoma stem cells with aldehyde dehydrogenase. Head Neck 2010;32:1239-1246

58. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Bertrand G, Maalouf M, Boivin A, Battiston-Montagne P, Beuve M, Levy A, Jalade P, Fournier C, Ardail D, Magné N, Alphonse G, Rodriguez-Lafrasse C. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev Rep 2014;10:114-126

57. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Obara O, Akashi K, Harada M, Shultz LD. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007;25:1315-1321

59. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MI. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005;65:4320-4333

60. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glialoma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-760

61. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006;98:1777-1785

62. Gemenetzidis E, Gammon L, Biddle A, Emich H, Mackenzie IC. Invasive oral cancer stem cells display resistance to ionising radiation. Oncotarget 2015;6:43964-43977

63. Chikamatsu K, Ishii H, Takahashi G, Okamoto A, Moriyama M, Sakakura K, Masuyama K. Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck 2012;34:336-343

64. LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res 2010;16:3121-3129

65. Lacerda L, Puszta L, Woodward WA. The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat 2010;13:99-108

66. Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 2010;13:109-118

67. Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells. Tumor Biol 2010;31:243-253

68. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Cavin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 1990;75:1947-1950

69. Gimenez C, Hur MH, Carafa-Jauffret E, Monville F, Ginesi C, Hur M, Charafe-Jauffret E, Monville F, Marville M, Chiou GY, Chang SC, Kao SY, Chiou SH, Lo WL. Cytotoxic effect of aldehyde dehydrogenase 1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1:555-567

70. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C, Schlegel J. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 2010;12:1024-1033

71. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiu SH. Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol 2011;2011:609259

72. Chen YC, Chang CJ, Hsu HS, Chen YW, Tai K, Tseng LM, Chiu SH, Chang SC, Kao SY, Chiu SH, Lo WL.
Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol 2010;46:158-165
74. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018;11:64
75. Orian-Rousseau V, CD44, a therapeutic target for metastasizing tumours. Eur J Cancer 2010;46:1271-1277
76. Chikamatsu K, Takahashi G, Sakakura K, Ferrone S, Masuyama K. Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head Neck 2011;33:208-215
77. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999;13: 35-48
78. Kim HR, Wheeler MA, Wilson CM, Iida J, Eng D, Simpson MA, McCarthy JB, Bullard KM. Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 2004;64:4569-4576
79. Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB. Hyaluronate acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res 2008;68:483-491
80. Yu Q, Toole BP, Stamenkovic I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 1997;186:1985-1996
81. Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, Wei H, Tian Z. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep 2009;22:1129-1134
82. Dubrovskova A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA. The role of Pten/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 2009;106:268-273
83. Leung EL, Fiscus RR, Tung JW, Yin VP, Cheng LC, Sihoe AD, Fink LM, Ma Y, Wong MP. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 2010;5:e14062
84. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009;27:1006-1020
85. Yang YM, Chang JW. Bladder cancer initiating cells (BCICs) are among EMA-CD44+6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest 2008;26:725-733
86. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008;26:2806-2812
87. Yang YM, Chang JW. Bladder cancer initiating cells (BCICs) are among EMA-CD44+6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest 2008;26:725-733
88. Boxberg M, Götz C, Haidari S, Dorfner C, Jesinghaus M, Drecoll E, Bock M, Wolf KD, Weichert W, Haller B, Kolk A. Immunohistochemical expression of CD44 in oral squamous cell carcinoma in relation to histomorphological parameters and clinicopathological factors. Histopathology 2018;73:559-572
89. Ortíz RC, Lopes NM, Amôr NG, Ponce JB, Schmerling CK, Lara VS, Moyes RA, Rodini CO. CD44 and ALDH1 immunoeXpression as prognostic indicators of invasion and metastasis in oral squamous cell carcinoma. J Oral Pathol Med 2018;47:740-747
90. Wang SJ, Gong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope 2009;119:1518-1530
91. Wang SJ, Gong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope 2009;119:1518-1530
92. Joshua B, Kaplan MJ, Dowek I, Pai R, Weissman IL, Prince ME, Ailles LE. Frequency of cells expressing CD44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck 2012;34:42-49
93. Oliveira LR, Oliveira-Costa JP, Araujo IM, Soave DF, Zanetti JS, Soares FA, Zucoloto S, Ribeiro-Silva A. Cancer stem cell immunophenotypes in oral squamous cell carcinoma. J Oral Pathol Med 2011;40:135-142
94. Su J, Xu XH, Huang Q, Lu HQ, Li DJ, Xue F, Yi F, Ren JH, Wu YP. Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line. Arch Med Res 2011;42:15-21
95. Gammon L, Biddle A, Fazil B, Harper L, Mackenzie IC. Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients. J Oral Pathol Med 2011;40:143-152
96. Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med 2007;36: 594-603
97. Corbeil D, Marzecso AM, Wilcks-Braüning M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 2010;584:1659-1664
98. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351:820-824
99. Yu CC, Hu FW, Yu CH, Chou MY. Targeting CD133 in human prostate stem cells and malignant cancer-initiating cells. Biochem Biophys Res Commun 2006;351:820-824
100. Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 2008;68:9703-9711
101. Kim K, Ihm H, Ro JY, Cho YM. High-level expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis. Oncol Lett 2011;2:1095-1100

102. Bi Y, Meng Y, Wu H, Cui L, Luo Y, Xue X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: a ten-year follow-up and prognostic analysis. J Surg Oncol 2016;113: 144-151

103. Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope 2007;117:455-460

104. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku IH, Lo JF. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008;14:4085-4095

105. Oliveira LR, Castilho-Fernandes A, Oliveira-Costa JP, Soares FA, Zucoloto S, Ribeiro-Silva A. CD44+/CD133+/immunophenotype and matrix metalloproteinase-9: influence on prognosis in early-stage oral squamous cell carcinoma. Head Neck 2014;36:1718-1726

106. An N, Cen B, Cai H, Song JH, Kraft A, Kang Y. Pim1 kinase regulates c-Kit gene translation. Exp Hematol 2016;5:31

107. Kimura Y, Ding B, Imai N, Nolan DJ, Butler JM, Rafii S. c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One 2011;6:e26918

108. Zhao N, Wang C, Ngai S. Ovarian cancer stem cells: a new target for cancer therapy. Biomed Res Int 2013;2013: 916819

109. Miettinen M, Lasota J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations of the c-kit protooncogene transcripts in small cell lung cancer. Cancer Res 1991;51:2416-2419

110. Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol 2005;124: 71-76

111. Tsai LL, Yu CC, Lo JF, Sung WW, Lee H, Chen SL, Chou MY. Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1. J Dent Sci 2012;7:111-117

112. Märgäritescu C, Pirici D, Simionescu C, Stepan A. The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol 2011;52(3 Suppl):985-993

113. Silva Galbiatti-Dias AL, Fernandes GMM, Castanhole-Ashmore M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Takeda M, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda S. CD44+/CD133+/CD117+ cancer stem cells phenotype and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005;13:205-220

114. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: a new paradigm for cancer? Cancer Res 2015;75:1691-1702

115. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19:106-111

116. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep 2017;50:408-415

117. Liu Z, Zhang Y, Lin H, Chen X. The potential cancer stem cell markers CD133 and CD44 in oral cavity, pharynx, and larynx. Virchows Arch 2004;444:231-234

118. Moll R. CD34+ fibrocytes, alpha-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 2004;444:231-234

119. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, Lee HY, Hong IS, Nam JS. Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting S. c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One 2011;6:e26918

120. Barth PJ, Schenck zu Schweinsberg T, Ramaswamy A, Moll R. CD34+ fibrocytes, alpha-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 2004;444:231-234

121. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 2009; 19:106-111

122. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BRM Rep 2017;50:285-298

123. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med 2009;15:1010-1012

124. Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L, Virshup DM. Wnt proteins synergize to activate β-catenin signaling. J Cell Sci 2017; 130:1532-1544

125. Routledge D, Scholpp S. Mechanisms of intercellular Wnt transport. Development 2019;146:dev176073

126. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ. Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2012;26:414-421

127. Jiang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, Lee HY, Nam JS. Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res 2015;75:1691-1702

128. Jiang GB, Kim JY, Cho SD, Park KS, Jung JY, Lee HY, Hong IS, Nam JS. Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting S. c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One 2011;6:e26918
CSC-like phenotype. Sci Rep 2015;5:12465

129. Gedaly R, Galuppo R, Dailly MF, Shah M, Maynard E, Chen C, Zhang X, Esser KA, Cohen DA, Evers BM, Jiang J, Spear BT. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One 2014;9:e99272

130. Teng Y, Wang X, Wang Y, Ma D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun 2010;392:373-379

131. Iwai S, Yonekawa A, Harada C, Hamada M, Katagiri W, Nakazawa M, Yura Y. Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol 2010;37:1095-1103

132. Yang F, Zeng Q, Yu G, Li S, Wang CY. Wnt/β-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal 2006;18:679-687

133. Warrier S, Bhuvanalakshmi G, Arfuso F, Rajan G, Millward M, Dharmarajan A. Cancer stem-like cells from head and neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition. Cancer Gene Ther 2014;21:381-388

134. Lim YC, Kang HJ, Kim YS, Choi EC. All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur J Cancer 2012;48:3310-3318

135. Yin L, Velazquez OC, Liu ZJ. Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 2010;80:690-701

136. Penton AL, Leonard LD, Spinner NB. Notch signaling in cancer. Int J Oncol 2010;37:1157-1160

137. Mohler J, Vani K. Molecular organization and embryonic Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 2017;41:228-241

138. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

139. Lee JJ, Spear BT. Targeting the Wnt/β-catenin signaling of head and neck squamous cell carcinoma. Cancer Res 2014;74:1101-1104

140. Lee SJ, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

141. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

142. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

143. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

144. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

145. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

146. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

147. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

148. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64

149. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2012;424:58-64
...