The Zinc Finger Cluster Domain of RanBP2 Is a Specific Docking Site for the Nuclear Export Factor, Exportin-1*

(Received for publication, May 7, 1999, and in revised form, September 18, 1999)

Brij B. Singh, Hemal H. Patel, Ronald Roepman, Diana Schick, and Paulo A. Ferreira§

From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and the §Department of Human Genetics, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands

The retinal Ran-binding protein 2 (RanBP2) is a scaffold protein composed of multiple, distinct, and well defined structural modules mediating, singly or in combination, the recruitment of protein machines (e.g. regulatory subunits of the 26 S proteasome) and molecular switches (e.g. Ran-GTPase) possibly involved in protein biogenesis (e.g. red/green opsins) in cone photoreceptors (3, 6). The ubiquitin (SUMO-1)-like modified Ran-GTPase-activating protein appears also to associate with RanBP2 (7–10). We have shown that the combination of Ran-binding domain 4 and cyclophilin domains are required to enhance in vivo the production of functional opsin receptor (3) and generate an opsin isoform with low propensity to self-aggregate. In addition, the 19 S regulatory subunits of the proteasome associated specifically and selectively in retinal tissue with the cyclophilin-like domain (CLD) of RanBP2 (2, 4). To this end, we have proposed that the association of RanBP2 with the proteasome may lead to the processing of RanBP2 and production of at least another smaller RanBP2 isoform in retinal cells (2). Altogether these results suggest that at least some subunits of the 19 S cap of the proteasome may play a selective surveillance role during the processing of opsins and RanBP2.

RanBP2 appears to belong to a large family of proteins, nucleoporins, due to its localization at the vicinity of the nuclear pore complex (NPC) (5, 11, 12). Other “atypical” proteins have been also localized at the NPC, such as Sec13p (and the related, Seh1p) (13), a protein involved in endoplasmic reticulum to Golgi transport (14). Nucleoporins are characterized, albeit not exclusively, for the presence of the degenerate peptide-repeat motifs, FXFG, GLFG, and/or XFXFG (11). RanBP2 contains FXFG signature repeats (5, 12, 15) and associates with Ran in a GTP-dependent fashion via interaction with its Ran-binding domains (3–5, 16) homologous to the small Ran-binding protein, RanBP1 (17). RanBP1 stabilizes Ran-GTP (18, 19) and, together with the cytosolic Ran-GTPase-activating protein, increases the hydrolysis of Ran-GTP (19, 20).

Ran-GTPase is shuttled between the nucleus and cytoplasm (21–23). Ran is critical in coordinating the nuclear import (24, 25) and export (26–28) of substrates. Their import and export are, in part, coded by signature sequences in the substrates and proteins machines are composed of assemblies of many distinct protein molecules (1). Many are ubiquitous throughout cells, and emerging evidence shows that networks of interwining protein machines underline many cellular processes. Protein complexes allow channeling of substrates and, consequently, compartmentalization of biological activity in an extremely coordinated and efficient manner. Furthermore, protein-protein interactions within protein machines allow biological processes to be tightly regulated. Whereas many of these protein-protein interactions occur in a stable fashion, others may be transient in nature. This allows the fluid recruitment of substrates into higher order complexes and modulation of biological responses.

*This work was supported by National Institutes of Health Grant EY11993, the Karl Kirchgresser Foundation, and Fight for Sight, Inc. (to P. A. F.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank®/EMBL Data Bank with accession number(s) AF133723.

1 The abbreviations used are: RanBP2, Ran-binding protein 2; ZnF, zinc fingers; ZnF-BP, zinc finger-binding protein; kb, kilobase pair; RT-PCR, reverse transcriptase-polymerase chain reaction; CHAPS, 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid; GST, glutathione S-transferase; MALDI, matrix-assisted laser desorption ionization; TOF, time of flight; MS, mass spectrometer; DJT, dithiothreitol; PAGE, polyacrylamide gel electrophoresis; CLD, cyclophilin-like domain; NES, nuclear export signals; NPC, nuclear pore complex; TPEN, N,N,N',N'-tetrakis[2-pyridylmethyl]ethylenediamine; LMB, leptomycin B; HPLC, high pressure liquid chromatography; CYC, cyclophilin; GTP-γS, guanosine 5′-O-(thio)triphosphate; ATP-γS, adenosine 5′-O-(thiophosphoryl); AMP-PNP, adenosine 5′-(β,γ-imino)triphosphate; CCR, central conserved region.
designated as, respectively, nuclear localization signals (NLS) and leucine-rich nuclear export signals (NES) (30–33). The former associate with nuclear import receptors such as importins (importin-α) and karyopherins (23, 34), and the latter associate with the nuclear export receptors, exportins (35). The cellular apoptosis susceptibility protein (36) is also an exportin-related protein; however, it appears particularly to be required in export of importin-α (37). Another class of escort proteins, transportins (38, 39), are nuclear import receptors of substrates containing the noncanonical nuclear export and import signal, M9, present for example in human ribonucleoprotein A1 (40, 41).

The vectorial nature of the nuclear transport is based on a proposed nuclear-to-cytoplasm Ran-GTP to Ran-GDP asymmetric distribution of Ran-GTPase. The nucleotide-bound state of Ran, in concert with transport proteins, mediates the vectorial nucleocytoplasmic delivery of substrates (27, 28, 42). In particular, RanBP2 has been proposed to participate in the nuclear import of proteins based on the nuclear import inhibition of a test substrate upon injection of an anti-RanBP2 antibody into cytoplasm of HeLa cells (5). The nucleocytoplasmic movement of substrates has been proposed to occur via a stochastic process through reiterated steps of docking-undocking reactions between degenerate FXFG, and GLFG, repeats of nucleoporins and subunits of nuclear transport factors (43, 44).

To understand better the role of RanBP2 in nucleocytoplasmic transport and retinal function, we have taken a novel systematic approach in isolating and identifying components that interact specifically with selective and well defined domains of RanBP2 (2–4, 6). Here, we report that the zinc finger cluster domain of bovine RanBP2 associates with high specificity to the conserved chromosome region maintenance protein 1, CRM1 (45). This protein was found to shuttle between the nucleus and cytoplasm mediating the export of substrates containing nuclear export signals (NES) (46–50) and thereby was renamed exportin-1 (50). Thus, the zinc finger cluster domain of RanBP2 likely constitutes a cytoplasmic docking domain for the delivery of nuclear cargo transported by exportin-1 to the cytoplasmic machinery. We discuss the implications of these findings on RanBP2 function in nucleocytoplasmic export and protein kinesin and biogenesis.

MATERIALS AND METHODS

Molecular Cloning of Zinc Finger Cluster Motif—The ~1.5- and 1.9-kb bovine and human zinc finger domain cDNAs, respectively, were isolated at least four times by RT-PCR of bovine and human tissues and mRNA of cells as indicated. Poly(A) RNA was extracted directly from bovine retinas using the Poly(A) Tract System 1000 (Promega) as directed by the manufacturer. First strand cDNA synthesis was carried out with 1 μg of mRNA using the antisense-specific primer against the 5'-end of bovine Ran-binding domain-2 (RBD2), 5'-GTCTCTAGCTGTATAAGGCTATCAT. This reverse primer and the forward primer, 5'-GAATTTCAGGTTGCAAAGAAGAGAAG, against the 3'-sequence of Ran-binding domain-1 (RBD1) were derived from cDNA clones comprising RBD2 and RBD1 domains of bovine RanBP2 that were isolated from the screening of a randomly primed bovine retinal cDNA library using two-hybrid and standard library screening procedures.2 These primers were also 100% identical to the RanBP2 sequence isolated from HeLa and lymphocyte cells. RT-PCR was performed using SuperScript reverse transcriptase II (Life Technologies, Inc.) as recommended by the manufacturer. PCR reactions contained 20 μM Tris-HCl, pH 8.5, 50 mM KC1, 1.5 mM MgCl2, 0.2 mM concentration of dNTP, 20 pmol of each amplification primer, first strand cDNA, and 2.5 units of Taq DNA polymerase. Thirty-five cycles of PCR were performed at the following conditions: 94 °C denaturation for 30 s, 55 °C annealing for 45 s, and 68 °C extension for 3 min. PCR products were separated on a 1% agarose gel. The ~1.5-kb bovine retinal cDNA product was eluted and subcloned into a TA cloning vector (Invitrogen). The EcoRI fragment having ~1.5-kb gene product was double-strand sequenced and subcloned in-frame into the pGEX-KG (77) vector digested with EcoRI. At least 10 clones were analyzed for the right orientation of the insert. Similarly, the ~1.9-kb cDNA products from mRNA of human retinas and HeLa cells were isolated by the same exact methods, conditions, and primer sequences. At least two double-strand cDNA clones were sequenced using standard sequencing methods to overcome nucleotide mis-incorporation occurred by PCR.

Radiation Hybrid Mapping of the Zinc Finger Cluster Domain of RanBP2—Radiation hybrid mapping was performed with the Stanford G3 Radiation Hybrid Panel (Research Genetics). PCR reactions were performed using 25 ng of DNA from a human hybrid cell line, 4 pmol of primer 2740 (gtgcttaggaataagagact, specific for zinc fingers 5–7) and primer 2741 (cttagtgacacctcctaa, reverse primer, specific for zinc fingers 4–6, 10 μM Tris-HCl, pH 8.3, 50 mM KC1, 1.5 mM MgCl2, 5 μM DTT, 0.2 mM of each dNTP, and 0.4 units of Taq DNA polymerase (Life Technologies, Inc.). Amplification was performed for 35 cycles at 95 °C for 30 s, 56 °C for 45 s, and 72 °C for 1 min in an ABI 9600 thermal cycler (Perkin-Elmer). The localizations of the cDNA fragments in the Stanford G3 Radiation Hybrid Map was determined at the Stanford Human Genome Center. The highest LOD scores were obtained for the markers SHGC-1639 (LOD score 7.82, DIST. 24 cRs) and SHGC-37095 (LOD score 5.71, DIST. 36 cRs) on chromosome 2 (51, 52), which correlates with chromosome 2 map position. Recombinant RanBP2 was previously isolated from rice (SHGC-36406, in reference interval D2S293-D2S121 (122.4–127.9 centimorgans), which correlates to chromosome 2 map position 252–265, thus confirming the mapping results of the zinc finger domain.

Expression of GST-Zinc Finger Motifs of Bovine RanBP2—Expression of GST fusion and GST-cleaved proteins was carried out as described previously (4, 77) with the following exceptions. Escherichia coli-expressing cultures were supplemented with 60 μM ZnSO4 at the time of induction. The cell pellet was resuspended in PBST buffer (4) without EDTA and supplemented with 100 μM ZnSO4 and 2 mM Pefabloc (Roche Molecular Biochemicals). Cells were lysed by passing the cell suspension through a French press at 1200 pounds/square inch. Cell debris was removed by centrifugation at 11,000 × g for 15 min. The supernatant was loaded on a glutathione-Sepharose affinity column (Amersham Pharmacia Biotech), and protein purification was carried out on an AKTA explorer FPLC system (Amersham Pharmacia Biotech). All buffers were supplemented with 60 μM ZnSO4.

Analytical GST-ZnF Binding Assays—Incubation reactions of GST-fused constructs (2.2 μM) with CHAPS-solubilized bovine retinal extracts (~2.5 mg of total protein) were carried out exactly as described previously (4, 6). The other tissue extracts (liver, brain, and spleen) were prepared similarly to that of retina, and GST pull-down assays were performed similarly using ~2.5 mg of total protein. Chicken retinal extracts reactions contained about 1.2 mg of total protein extract and 2.2 μM GST-fused construct. When applicable, nonhydrolyzable nucleotides (Sigma) were added at a concentration of 400 μM. Unfused construct (competitor) was used at 5-fold molar excess, except with RBD2-2.2, a 10-fold molar of unfused protein was used. For exportin-1 elution assays, EDTA, DTT, and/or TPEN were added to the washed pellets of incubation reactions at a concentration of 50, 10, and 5 mM, respectively, for 10 min at 4 °C. Zn2+-ZnF reconstitution assays were carried out by incubating GST-ZnF with retinal extracts, washing of the coprecipitates, elution of exportin-1 with 1 mM TPEN for 10 min at 4 °C followed by the addition of Zn2+ (ZnSO4) at different concentrations for 30 min at 24 °C and SDS-PAGE analysis of the pellets and supernatants of the incubation reactions. Leptomycin B was dissolved in MeSO and used at 250 mM concentration. All coprecipitates were analyzed on 7.5% SDS-PAGE after boiling in SDS sample buffer with exception of those reactions shown in Fig. 6 that were analyzed in a 12% SDS-PAGE. When applicable, the proteasome inhibitors, lactacystine and MG132 (Biomol), were used at 20 mM and 20 μM, respectively.

Purification of Retention 110-kDa ZnF-binding Protein—For purification of retinal 110-kDa ZnF-binding protein, analytical reactions were scaled up to ~500-fold between 18 15-ml conical tubes. The washings of coprecipitates were scaled up accordingly, and the divalent cations, Ca2+ and Mg2+, were omitted in the regular washing buffer (2–4, 6). Thirty cycles of PCR were performed on 25 μl of each input and of each aliquot with 2.2 μM of each primer, 10 μM EDTA, 10 μM DTT, and 1 mM TPEN were used for 10 min at 4 °C. The reactions were subjected to rapid centrifugation (10,000 rpm, 1 min) and the supernatant was collected. To avoid contamination of GST beads along with GST-fused protein, CytoSignal-spin filters (CytoSignal, CA) were used to filtrate the supernatant through a mesh that retains the contaminating glutathione S-agrose beads. The remaining beads were again incubated with EDTA, DTT, and TPEN, and the

2 P. A. Ferreira et al., manuscript in preparation.
supernatant was collected similarly as described. Eluted protein was concentrated in Centricon-50 and boiled in SDS sample buffer for 3 min and loaded on 6% SDS-PAGE. This was stained with Fast Stain followed by electrophoresis of P10 bands and mock (blank) neighboring gel bands into Centrifil. Eluted samples were concentrated and buffer exchanged twice in 100 mM ammonium bicarbonate and then lyophilized. 5% (v/v) of the total concentrated and purified protein was resolved in SDS-PAGE in parallel with coprecipitates of analytical retinal binding reactions and analyzed by silver stain as described (2, 4). Trypsin digestion of the remaining protein and mock sample (1:50 of trypsin:substrate) was carried out overnight in 50 mM Tris, pH 7.8, at 27 °C. A small aliquot of the trypsin digest mixture was first screened by peptide mass mapping in a matrix-assisted laser desorption ionization-time-of-flight mass spectrometer (MALDI-TOF, Perkin-Elmer Voyager DE-Pro) and compared against protein data bases. The remaining trypsin digest mixture and mock sample were resolved by HPLC on a C18 reverse-phase column. All collected fractions were analyzed by MALDI for identification of purified peptides. Two fractions, numbers 37 and 53, were subjected to Edman degradation.

Western Blot Analysis of GST-ZnF Retinal Coprecipitates—GST-ZnF retinal coprecipitates were resolved on SDS-PAGE and blotted onto a polyvinylidene difluoride membrane, and Western blot analysis was carried out exactly as described previously (2, 4). CRM1/exportin-1 (gift from Dr. G. Grosveld) and Ran (Santa Cruz Laboratories) antiserum carried out exactly as described previously (2, 75). Primers used in this study for RT-PCR and cDNA amplification of zinc finger-rich domain of RanBP2 are 100% conserved in bovine, mouse, and human and are noted as arrows. a, RT-PCR of zinc finger cluster domain of RanBP2. 200 and 350 ng of mRNA from bovine and human tissues, respectively, was reverse-transcribed and cDNA-amplified with primers against the flanking domains, RBD1 and RBD2. Approximately half of the PCR products was analyzed on a 1% agarose gel. The ZnF cDNA fragments amplified from human retina (bRet) and HeLa (bHeLa) cells were about 1.9 kb in size, whereas those from the bovine retina (bRet) and liver (bLiv) were just 1.5 kb. Std, DNA molecular weight standards.

RESULTS

The Bovine RanBP2 Transcript Encodes a Protein with Five Zinc Finger Motifs—To generate a GST-fused construct containing the Zinc finger cluster domain of bovine RanBP2, RT-PCR was carried out on bovine retinal mRNA with primers against the flanking and conserved domains of bovine Ran-binding domains 1 and 2 (RBD1 and RBD2, Fig. 1, a and b). Analysis of the size of PCR products (Fig. 1b) and nucleic acid sequence comparison of the bovine ZnF domain with the HeLa counterpart sequence showed that it contained only four out of the eight ZnF motifs previously reported in human RanBP2. (Fig. 2). The 5th and 6th and either the 4th or 7th fingers were absent in bovine retinal RanBP2 (Fig. 2). Moreover, the bovine 4th zinc finger is missing the 2nd cysteine. To investigate whether the lack of these fingers was due to species- or tissue-specific differences in RanBP2, RT-PCR was also performed with the same primers on bovine liver, human, retinal, and HeLa cell mRNAs (Fig. 1b). These results confirmed that the bovine ranbp2 gene encodes a protein with only five zinc fingers in contrast to eight and six present in its human and mouse orthologues, respectively (5, 12, 15) (Fig. 2).

Sequence analysis of the zinc finger cluster domain of human RANBP2 revealed that the unique 5th and 6th zinc finger motifs, and their immediate downstream flanking sequences, were 100% identical to each other at nucleic acid level (Fig. 2a). To rule out unequivocally that these two motifs arose from a very recent "illegitimate" recombination event and the human RT-PCR product amplified was derived from the same human RANBP2 gene previously mapped (51, 52), we physically mapped these zinc finger motifs onto the human genome. Radiation hybrid mapping confirmed that the human zinc finger motifs amplified colocalized only in chromosome 2 at the same locus previously reported for the human RANBP2 gene (51, 52).

The Zinc Finger Cluster Domain of RanBP2 Associates Specifically with a 110-kDa Retinal Protein—We continued the structure-function analysis of RanBP2 by focusing this time on the zinc finger cluster domain (ZnF) of RanBP2 (Fig. 1a). We used the bovine five zinc finger motifs of RanBP2 to screen for specific ZnF-interacting proteins in bovine retinal extracts by the same methods previously reported (2, 4). Briefly, this method consists of pull-down assays of retinal extract reactions incubated in the presence of GST-fused protein and, parallel reactions, coincubated with GST-fused, 5–10-fold of cleaved (unfused) protein. Retinal protein(s) that specifically associate with the fused protein moiety are identified among those with binding activity in incubation reactions with GST-fused protein but not in those with the combination of GST-fused and -cleaved (unfused) proteins (2, 4).

Comparison of incubation reactions of GST-ZnF and, GST-ZnF and unfused (free) ZnF, with retinal extracts followed by analysis of the coprecipitates by silver stain of SDS-polyacrylamide gels showed that a retinal protein with an apparent molecular mass of 110 kDa (ZnF-BP) associated with high specificity to GST-ZnF (Fig. 3a). This binding was highly specific because only the association of the novel ZnF-BP with GST-ZnF was completely disrupted in presence of free (unfused) ZnF (Fig. 3a). To test further the binding specificity of ZnF-BP to GST-ZnF, we carried out coinubcation reactions in the presence of other free RanBP2 domains such as RBD4. To
this end, RBD4 had no effect on the interaction of ZnF-BP with GST-ZnF (Fig. 3). Then we determined the effect of nonhydrolyzable nucleotides in the binding of retinal ZnF-BP to RanBP2 because we had previously shown a nucleotide-dependent interaction of Ran-GTPase, 19 S regulatory subunits of the proteasome and a putative kinesin with RanBP2 (2). Association of ZnF-BP to GST-ZnF, however, was independent of the presence of the nucleotide analogues, GTP$_\gamma$S, ATP$_\gamma$S, and AMP-PNP (Fig. 3a).

The biological activity of zinc finger-containing proteins critically depends on the presence of Zn$^{2+}$ for the formation of properly folded and active proteins (53). Thus, we investigated whether binding of retinal ZnF-BP to GST-ZnF required the presence of Zn$^{2+}$. To this end, we compared the degree of release of ZnF-BP from GST-ZnF in the presence of a ubiquitous chelator, EDTA, and selective heavy metal chelator, N,N,N9,N9-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) (54–57). SDS-PAGE analysis of the supernatants, obtained upon addition of EDTA or TPEN to washed GST-ZnF retinal coprecipitates, showed the specific release to the supernatant of just the 110-kDa ZnF-BP (Fig. 3c). In comparison with EDTA, this dissociation was increased and almost complete in the presence of 10-fold lower concentration of TPEN (Fig. 3c, 2nd and 3rd lanes).

Fig. 2. Sequence alignment of nucleic acid (a) and amino acid (b) sequences of zinc finger domains of bovine, human, and mouse RanBP2 isoforms.

Sequence analysis and multiple alignment of all Zn$^{2+}$ fingers present in RanBP2 isoforms expressed in bovine retina (75), HeLa (12), and murine F9 cells (15) showed that the HeLa and murine RanBP2 isoforms contained, respectively, three and one additional zinc finger motifs, in contrast to the bovine counterpart expressed in retina and liver. Zinc finger domains 5 and 6 of HeLa RanBP2 are 100% identical to each other. Zinc finger 4 of HeLa RanBP2 represents the additional domain not present in the bovine RanBP2 because, in contrast to HeLa, a stretch of 15 nucleotides was absent. RanBP2 of the murine F9 cell line harbors zinc finger motifs. A large part of the downstream sequence flanking the murine 3rd Zn$^{2+}$ finger is missing, and the 4th Zn$^{2+}$ finger appears to be an exogeneous inserted sequence since it is missing in the bovine counterpart. The cysteine codon (TG(T/C)) parts of the Zn$^{2+}$ fingers, tryptophan (TGG, first codon) and asparagine (AAT, in the middle of the zinc finger loop) codons, are 100% conserved in all Zn$^{2+}$ fingers, with the exception of the bovine 4th zinc finger which is missing the second cysteine. The conserved tryptophan (boxed), asparagine (shaded dark gray), and cysteine (shaded light gray) codons (A) and amino acids (B) are shown. The bovine Zn-sequence was deposited in GenBank™ with accession number AJ137329. Numerals before the Zn-motifs of each species refer to the identity of each zinc finger; Bov, bovine.
Zn\(^{2+}\) (10 mM) to the elution reactions led to the complete reassociation of ZnF-BP with GST-ZnF (Fig. 3c, 7th and 8th lanes), in contrast to that of the addition of just 0.1 and 1 mM Zn\(^{2+}\) (Fig. 3c, 4th to 6th lanes).

Finally, we had previously shown that association of RanBP2 to the 19 S regulatory subunits of the proteasome was selective for the retina. To this end, we determined whether association of ZnF to zinc domain of RanBP2 was tissue-specific and also species-specific by incubating GST-ZnF with extracts from other tissue sources and chicken retinas. These were normalized to the concentrations of those used in bovine retinal extracts. As shown in Fig. 3, d, and c (4th lane) respectively, GST-ZnF associated with ZnF-BP from bovine liver, brain, and spleen as well as cone-rich chicken retinas.

Purification of RanBP2 Zinc Finger-binding Protein—To determine the identity of ZnF-BP, we scaled up the analytical incubation reactions 500-fold and purified ZnF-BP. GST-ZnF retinal coprecipitates were extensively washed, and retinal ZnF-BP was specifically eluted from GST-ZnF-ZnF-BP complex by addition of EDTA/TPEN (50:1) and DTT followed by SDS-PAGE and electrophoresis of purified ZnF-BP by methods similar to those previously reported (2, 4). We confirmed the large scale purification of ZnF-BP by running a small aliquot of purified ZnF-BP (5% v/v) in parallel with analytical reactions (Fig. 4). The remaining purified protein and a mock SDS-PAGE sample were then subjected to trypsin digestion. Then we carried out MALDI-TOF mass mapping on an aliquot of the tryptic peptide mixture followed by data base searches. CRM1/Exportin1 (45, 47–50, 58) was tentatively identified as the 110-kDa ZnF-BP because the masses of all peptides isolated and identified matched those predicted from the tryptic digestion of exportin-1 (and not from any other known zinc finger sequences). An arginine preceded all three peptides reported in the data base matched 100% counterpart sequences of human chromosome maintenance region 1 protein (hCRM1) (Fig. 5). An arginine preceded all three peptides reported in the data base matched 100% counterpart sequences of human chromosome maintenance region 1 protein (hCRM1) (48, 58) (Fig. 5). Comparison of these sequences against other proteins in the data base matched 100% counterpart sequences of human chromosome maintenance region 1 protein (hCRM1) (48, 58) (Fig. 5), confirming the results obtained initially by MALDI peptide mapping. This protein was recently renamed, exportin-1 (and...
In ZnF-binding protein (R.E., lanes 2nd and 5th lanes), in parallel with the binary complex (7th lane). The leptomycin B solvent, dimethyl sulfoxide, by itself, had no effect on Ran association with the binary complex (6th lane).

We have previously shown that the RBD4-CY supradomain of RanBP2 associates with Ran with high affinity in a GTP-dependent and CY-independent manner (3–4). We compared the relative amount of Ran that associated with the binary complex, ZnF domain of RanBP2 and exportin-1, to that with RBD4-CY. This also helped to confirm the GTP loading and guanine nucleotide-dependent binding of Ran to these substrates. To this purpose, control reactions with retinal extracts were carried out with 10-fold lower concentrations of RBD4-CY in the presence or absence of guanine nucleotides analogues (Fig. 6d). As shown in Fig. 6c, RBD4-CY does not interact with exportin-1. However, Ran interaction with RBD4 occurs in a GTP-dependent fashion and with very high affinity even when GST-RBD4-CY was used at 10-fold lower concentration compared with that of GST-fused ZnF (e.g. compare 2nd and 4th lanes of Fig. 6d with 2nd and 7th lanes of Fig. 6b).

DISCUSSION

In this report, evidence is now provided that the zinc finger cluster domain of RanBP2 associates specifically to a key nuclear export factor, exportin-1 (45–50). Like other Zn2+ finger homologous domains (53), this binding is dependent on the structural integrity of the Zn2+ finger domain and presence of Zn2+. Removal of Zn2+ from this domain reversibly destroys its ability to associate with exportin-1. In contrast to CLD of RanBP2 (2), association of exportin-1 with ZnF domain is independent of the presence of nucleotides (Figs. 3a and 6, a and c) and is observed across different tissues (Fig. 3d) and species (Fig. 3c). Furthermore, the formation of the binary complex, ZnF-exportin-1, is insensitive to leptomycin B, a cytotoxin shown to uncouple the cooperative binding of nuclear cargo and Ran-GTP from exportin-1 (46). It has been proposed that this is

B. B. Singh, H. H. Patel, and P. A. Ferreira, unpublished observations.
achieved by blocking the cooperative association of Ran-GTP (46) and NES present in cargo proteins to exportin-1 (46–49). The data presented here indicate that the leptomycin B-binding site in exportin does not overlap with its ZnF binding domain. Thus, these results suggest that exportin-1 contains distinct NES and ZnF receptor domains. The interaction of the N terminus of importin-β with Ran (34) and homology of the N terminus of exportin-1 with this domain, commonly designated as the CRIME domain (58), also support that the Zn-F docking domain in exportin-1 likely lies outside its N terminus. Finally, while this manuscript was under revision, two reports by Kudo et al. (65) and Neville and Rosbash (66) have shown that a single cysteine, located in the central conserved region (CCR) of exportin-1 and conserved among LMB-sensitive organisms, was the residue responsible for determining LMB sensitivity to exportin-1. Thus, its also unlikely that this region contributes to the docking reaction of exportin-1 to RanBP2. Based on these results, the RanBP2 docking domain in exportin-1 may lay between the CRIME and CCR domains and/or on the C-terminal domain downstream of CCR.

We have also found that Ran was part of the exportin-1-ZnF complex. In contrast to exportin-1, this association, however, was significantly decreased by the presence of the non-hydrolyzable analogue, GTPγS (Fig. 6b, 3rd lane 3), or leptomycin B (Fig. 6b, 4th lane). The GDP-dependent Ran association with the exportin-ZnF complex appears to be consistent with current models whereby Ran-GTP export from the nucleus leads ultimately to hydrolysis of GTP. Thus, Ran-GTP hydrolysis may be required to disassemble the nuclear cargo from exportin-1 before or upon docking of exportin-1 to the ZnF domain of RanBP2. This would lead to Ran dissociation from exportin-1 and its possible transfer to the ZnF domain of RanBP2 and/or a closely linked component part of the RanBP2 macromassary complex. In support of this hypothesis is also the observation that the counterpart ZnF domain of human RANBP2 (with and without the C-terminal junction sequence between ZnF and RBD2) still associates with Ran but not with exportin-1. This latter effect is most likely due to partial misfolding of this significantly larger recombinant isoform.

Leptomycin B also led to a drastic reduction, in the absence of GTP, of binding of Ran to the binary complex comprised by ZnF domain of RanBP2 and exportin-1 (Fig. 6, 4th lane). This result is apparently unexpected if we consider, as described, the GTP-dependent and leptomycin B-sensitive association of Ran with exportin-1. One possible explanation is that binding of exportin-1 to leptomycin B also inhibits by steric hindrance the association of Ran-GDP (or free nucleotide Ran) to a Ran-GDP binding domain within the ZnF domain of RanBP2. This may be due to a reported conformational change of exportin-1 upon leptomycin B binding (46). Thus, leptomycin B may have a dual effect; it inhibits the cooperative formation of a competent nuclear cargo complex and the apparent weaker association (in comparison with exportin-1) of Ran-GDP with RanBP2 docking complex. These results appear to be in partial agreement with the data of a recent report published while this manuscript was under review where the recombinant zinc finger domain of human RANBP2 was shown to associate exclusively with recombinant Ran-GDP but not Ran-GTP (67). However, further studies need to be carried out to determine whether this association is, indeed, specific.

It remains unclear whether there is any functional significance for the presence of one and three additional zinc fingers in the mouse and human RANBP2 isoforms, respectively (Fig. 2). To narrow down the exportin-1-binding domain in RanBP2, we have attempted the expression of several Zinc finger bovine and human mutant constructs. However, these proved difficult to express or obtain in a folded competent form. Furthermore, it is interesting to note that the human 5th and 6th zinc finger motifs and flanking nucleotide sequences are 100% identical to each other suggesting a very recent genetic duplication in hu-
mans. In any case, the extra zinc fingers of human and mouse may likely play a redundant role in the association of the ZnF domain of RanBP2 with exportin-1 and Ran-GDP.

Nucleoporins are also characterized for the presence of small peptide motifs (11). The repeat, FXG, is present throughout the RanBP2 sequence as well as some other nucleoporins such as CAN/NUP214 (68) and NUP153 (69, 70). These are localized at the cytoplasmic and nucleoplasmic face of the nuclear pore complex, respectively. NUP153 is the only other nucleoporin known to contain a zinc finger cluster domain homologous to the RanBP2 counterpart domain (5) and proposed to associate with nuclear DNA based on its ability to bind DNA in vitro (69). The FXG repeats have also been postulated to constitute sites for stochastic docking and undocking reactions potentially required for the nucleocytoplasmic translocation (in a saltatory fashion) of importin-β-like transport factors (43). In this respect, the yeast FXG sequences of Nup and Nup2 nucleoporins have been shown to associate in vitro with karyopherin heterodimers (43). In analogy to this model, it is thought that nuclear export of exportin-1 may undergo a similar mechanism. This is supported by the fact that exportin-1 associates with the C-terminal domain of CAN/NUP214 that contains FXG repeats (58).

Nevertheless, it is difficult to conceive the vesticular transport of substrates primarily through a stochastic mechanism even in the presence of an asymmetric distribution of Ran-bound nucleotide for the following reasons. We have shown that different RanBP2 domains, as well as containing FXG motifs, associate in a rather stable and, more importantly, specific fashion, with red opsin (3, 6), Ran (3, 4), 19 S regulatory particle of the proteasome (2), and some other tissue-restricted proteins.4 For example, Leptomycin B-insensitive Association of Exportin-1 with RanBP2

4 B. B. Singh and P. A. Ferreira, manuscript in preparation.

deline a picture where RanBP2 emerges as a primary candidate in mediating the translocation of nuclear cargo to cytoplasmic machinery such as the 19 S regulatory particle of the proteasome. An analogous pathway has been proposed to occur during nuclear export of the specific pre-messenger ribonucleoprotein complexes, the Balbiani ring particles, in the salivary glands of Chironomus tentans (73, 74). In light of RanBP2-dependent production of red/green opsins (3, 6) and high expression in cone photoreceptors (75), it is interesting to note that the highly expressed cognate transcripts of red/green opsins have also been localized at the perinuclear region of cone photoreceptors (76). This is in contrast to the broad cytoplasmic distribution of their counterpart rhodopsin transcript in rod photoreceptors (76). Further identification and characterization of the components associated with RanBP2 macroassembly complex will provide us with a framework to understand the molecular mechanisms associated with nucleocytoplasmic transport of mRNAs and their translation in photoreceptors.

Acknowledgments—We thank Jerry Shay (University of Texas, SW) for advice, Minoru Yoshida (University of Tokyo) and Barbara Wolff (Novartis, Austria) for leptomycin B, Gerard Grosveld (St. Jude Children Research Hospital) for CRM1/exportin-1 antisemur, and Michael Peregkas and Xuegong Zhu for protein and MALDI-MS analysis.

REFERENCES

1. Alberts, B. (1998) Cell 92, 293–294
2. Ferreira, P., Yunfei, C., Schick, D., and Roepman, R. (1998) J. Biol. Chem. 273, 24676–24682
3. Ferreira, P., Nakayama, T., Pak, W., and Travis, G. (1996) Nature 383, 637–640
4. Ferreira, P. (2000) Methods Enzymol., 455–468
5. Yokoyama, N., Hayashi, N., Seki, T., Pante, N., Ohba, T., Nishih, K., Kuma, K., Hayashida, T., Miyata, A., and Hirose, M., and Nishimoto, T. (1995) Nature 376, 184–188
6. Ferreira, P., Nakayama, T., and Travis, G. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 1556–1561
7. Saitoh, H., R., Cavenagh, M., and Dasso, M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3736–3741
8. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) Cell 88, 97–107
9. Mahajan, R., Gerace, L., and Melchior, F. (1997) J. Cell Biol. 140, 259–270
10. Manutz, M., Coutavas, E., and Blobel, G. (1997) J. Cell Biol. 135, 1457–1470
11. Davis, L. I. (1995) Annu. Rev. Biochem. 64, 865–896
12. Wu, J., Matunis, Y., Kraemer, D., Blobel, G., and Coutavas, E. (1995) J. Biol. Chem. 270, 14209–14213
13. Snniosogilou, S., Wing, C., Rieger, M., Yuee, V., Tokhote, H., Weise, C., and Emig, S., Segrel, A., and Hurt, E. C. (1996) Cell 84, 265–275
14. Pryer, N. K., Salama, N. R., Schekman, R. W., and Kaiser, C. A. (1993) J. Cell Biol. 120, 865–875
15. Wilken, N., Senecal, J-L., Scheer, U., Dabouva, M-C. (1995) Eur. J. Cell Biol. 68, 211–219
16. Melchior, F., Guan, T., Yokoyama, N., Nishimoto, T., and Gerace, L. (1995) J. Cell Biol. 113, 571–581
17. Coutavas, E., Ren, M., Oppenheim, D-E., Ustachiev, P., and Rush, M-G. (1993) Nature 366, 585–587
18. Lounsbury, K., Reddow, A. L., and Macara, I. G. (1994) J. Biol. Chem. 269, 11285–11290
19. Bischoff, F. R., Krebber, H., Siminov, H., Dong, W., and Ponstingl, H. (1995) J. Biol. Chem. 270, 14209–14213
20. Bidwell, A. L., Richards, S. A., Oren, N., and Macara, I. G. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3328–3332
21. Dasso, M., and Ru, P. T. (1998) Am. J. Hum. Genet. 63, 311–316
22. Moore, M. S. (1998) J. Biol. Chem. 273, 22857–22860
23. Ohno, M., Fornerod, M., and Mattaj, I. W. (1998) Cell 92, 327–336
24. Moore, M. S., and Blobel, G. (1993). Nature 365, 661–663
25. Melchior, F., Paschal, B., Evans, J., and Gerace, L. (1993) J. Cell Biol. 123, 463–473
26. Moreo, L., and Blobel, G. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4318–4322
27. Izaurralde, E., Kutz, Y., von Kobbe, C., Mattaj, I. W., and Gorlich, D. (1997) EMBO J. 16, 6555–6564
28. Richards, S. A., Carey, K. L., and Macara, I. G. (1997) Science 276, 1842–1844
29. Jans, D. A., and Hubner, S. (1996) Physiol. Rev. 76, 651–665
30. Fischer, U., Huber, J., Beelen, W. C., Mattaj, I. W., and Luhrmann, R. (1995) Cell 82, 475–483
31. Wen, W., Meinloch, J. L., Tsirop, R., and Taylor, S. S. (1995) Cell 82, 463–473
32. Murphy, R., and Wente, S. R. (1996) Nature 383, 357–360
33. Arenzana-Seisdedos, F., Turpin, P., Rodriguez, M., Thomas, D., Hay, R. T., Virelizier, J. L., Dargemont, C. (1997-J. Cell. Biol. 110, 369–378
34. Gorlich, D. (1997) Curr. Opin. Cell Biol. 9, 412–419
35. Ullman, K. S., Powers, M. A., and Forbes, D. J. (1997) Cell 90, 967–970
36. Brinkmann, U., Brinnmann, E., Gallo, M., and Pastan, I. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10427–10431
37. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R., and Gorlich, D. (1997) Cell 90, 1061–1071
38. Aitchison, J. D., Blobel, G., and Rout, M. P. (1996) Science 274, 624–627
39. Pollard, V. W., Michael, W. M., Nakielny, S., Siomi, M. C., Wang, F., and Dreyfuss, G. (1996) Cell 86, 5584–5594
40. Siomi, H., and Dreyfuss, G. (1995) J. Cell Biol. 129, 551–560
41. Michael, W. M., Choi, M., and Dreyfuss, G. (1995) Cell 83, 415–422
42. Gorlich, D., Pante, N., Kutay, U., Aebi, U., and Bishoff, F. R. (1999) J. Cell Biol. 155, 585–594
43. Rexach, M., and Blobel, G. (1995) Cell 83, 683–692
44. Radu, A., Moore, M. S., and Blobel, G. (1995) Cell 81, 215–222
45. Adachi, Y., and Yanagida, M. (1989) J. Cell Biol. 108, 1195–1207
46. Fornerod, M., Deursen, J. V., van Baal, S., Reynolds, A., Davis, D., Murti, K. G., Fransen, J., and Grosveld, G. (1997) EMBO J. 16, 807–816
47. Hamamoto, T., Seto, H., and Beppu, T. (1983) J. Antibiotics XXXVI, 646–650
48. Kudo, N., Matsumori, N., Taoka, H., Fujiwara, D., Shreiner, E., Wolff, B., Yoshida, M., and Horinouchi, S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9112–9117
49. Neville, M., and Rosbash (1999) EMBO J. 18, 3749–3756
50. Stutz, F., Kantor, J., Zhang, D., McCarthy, T., Neville, M., and Rosbash, M. (1997) Genes Dev. 11, 2517–2528
51. Ferreira, P., Hom, J., and Pak, W. (1995) J. Biol. Chem. 270, 23179–23188
52. Danenholt, B. (1997) Cell 88, 585–588
53. Nishi, K., Abe, K., and Horinouchi, S. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 5516–5521
54. Raymond, P. A., Barthel, L., Kessels, F. M., Sullivan, S. A., and Knight, J. K. (1999) Neuron 10, 1161–1174
55. Guan, K. L., and Dixon, J. E. (1991) Anal. Biochem. 192, 262–267