Double-finger-gate controlled spin-resolved resonant quantum transport in the presence of a Rashba–Zeeman gap

Chi-Shung Tang¹, Shu-Ting Tseng², Vidar Gudmundsson³ and Shun-Jen Cheng²,⁴

¹ Department of Mechanical Engineering, National United University, Miaoli 36003, Taiwan
² Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
³ Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
⁴ Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan

E-mail: cstang@nuu.edu.tw and sjcheng@mail.nctu.edu.tw

Received 27 September 2014, revised 10 December 2014
Accepted for publication 12 January 2015
Published 5 February 2015

Abstract

We investigate double finger gate (DFG) controlled spin-resolved resonant transport properties in an n-type quantum channel with a Rashba–Zeeman (RZ) subband energy gap. By appropriately tuning the DFG in the strong Rashba coupling regime, resonant state structures in conductance can be found that are sensitive to the length of the DFG system. Furthermore, a hole-like bound state feature below the RZ gap and an electron-like quasi-bound state feature at the threshold of the upper spin branch can be found that is insensitive to the length of the DFG system.

Keywords: quantum transport, spin–orbit interaction, Rashba, Zeeman

(Some figures may appear in colour only in the online journal)

1. Introduction

Spintronics utilizing the spin degree of freedom of conduction electrons is an emerging field due to its applications from logic to storage devices with high speed and very low power dissipation [1–3]. Manipulating the spin information offers the possibility to scale down certain semiconductor spintronic devices to the nanoscale and is favorable for applications in quantum computing [4–6]. Various spin–orbit (SO) effects present in semiconductor structures provide a promising path to spin manipulation in 2D electron gases (2DEG) [7, 8]. Particularly, the Rashba SO interaction is of importance in spintronic devices, such as the gate-controllable spin field-effect transistor [9–13].

The SO interaction can be induced when the transported electron experiences a strong electric field due to an asymmetry in the confinement potential. Namely, the Rashba SO interaction is caused by a structure inversion asymmetry (SIA) [14]. Especially, the Rashba SO interaction due to SIA can be significantly induced in 2DEG confined by an asymmetric potential in semiconductor materials. Experimentally, the Rashba interaction has been shown to be effective for electron spin manipulation by using bias-controlled gate contacts [15]. Recently, several approaches were proposed to engineer a spin-resolved subband structure utilizing magnetic fields [16–21] or ferromagnetic materials [22, 23]. The combination of a Rashba SO interaction and an external in-plane magnetic field may modify the subband structure producing a spin-split Rashba–Zeeman (RZ) subband gap feature [24, 25]. To implement a quantum information storing and transfer, not only coherent manipulation [12] but also resonant features involving SO interactions are of importance [26]. This can be achieved by utilizing a double finger gate (DFG) forming a quantum dot in between the fingers where electrons are subjected to the Rashba SO coupling and the Zeeman interaction.

In this work, we consider a split-gate induced narrow constriction that is fabricated in a 2DEG in a narrow band gap semiconductor heterostructure. A very asymmetric structure in the 2DEG leads to strong SO coupling with the result that the Rashba effect is dominant. We shall explore spin-resolved
quantum transport properties that are manipulated by a double finger gate (DFG) under an external in-plane magnetic field as shown in figure 1. Various resonant transport mechanisms in the conductance will be demonstrated analytically and numerically, including resonant states (RS), hole-like bound states (HBS) and electron-like quasi-bound states (EQBS).

The organization of the rest of this paper is as follows. In section 2 we describe the propagation-matrix approach of tunneling through a DFG system under an in-plane magnetic field. In section 3 we present our calculated results on the spin-split subband structure and the spin-resolved conductance. Concluding remarks are given in section 4.

2. DFG-controlled transport model

In this section, we shall show how the split-gate confined quantum device influenced by the RZ effect can be described by a Hamiltonian technique in order to obtain the spin-split subband structures. The corresponding group velocity and effective mass will be obtained to analyze the spin-resolved quantum channel system without the DFG control. The spin-resolved resonant quantum transport properties, we applied the DFG on top of the split gate with an antiparallel in-plane magnetic field that is selected to be antiparallel to the Zeeman effect H_Z. The first term is a bare quantum channel that is described by the ideal Hamiltonian

$$H_0 = \frac{\hbar^2 k^2}{2m^*} + U_c(y),$$

where W being the width of the quantum channel that can be controlled by applying a split-gate with negative voltage.

In the second term of equation (1), we consider a (0 0 1) crystallographic 2DEG system and hence the Rashba SO Hamiltonian $H_R = \alpha (\sigma \times k) \cdot \hat{z}$ couples the Pauli spin matrix σ to the momentum $p = \hbar k$ can be reduced as a k-linear form

$$H_R = \alpha (\sigma_x k_y - \sigma_y k_x),$$

where the Rashba coupling strength α is proportional to the electric field along \hat{z} direction perpendicular to the 2DEG [15].

The third term in equation (1) describes an applied external in-plane magnetic field that is selected to be antiparallel to the channel in the [1 0 0] direction and has the form $B = B\hat{z}$ ($B < 0$). The longitudinal in-plane magnetic field induced Zeeman term can be expressed as

$$H_Z = g\mu_B B\sigma_z,$$

in which $g = g_s/2$ indicates half of the effective gyromagnetic factor ($g_s = -15$ for InAs) and $\mu_B = 5.788 \times 10^{-2}$ meV T$^{-1}$ is the Bohr magneton. In comparison with the Zeeman Hamiltonian H_Z, we may rewrite equation (4) in a narrow channel in the form $H_R = g\mu_B B_R \sigma_y$, where the effective Rashba magnetic field $B_R = B_R\hat{y} = -\alpha k_y/(g\mu_B)\hat{y}$. Hence, the spin-resolved quantum channel system without the DFG may be described by the unperturbed Hamiltonian

$$\tilde{H}_0 = H_0 + g\mu_B (B_R \sigma_y + B_R \sigma_y).$$

In order to manipulate the spin-resolved resonant transport properties, we applied the DFG on top of the split gate with an insulator in between, as shown in figure 1. We consider that the width of the finger-gate scattering potential, W, should be less than the Fermi wave length $\lambda_F = 31.4$ nm to be described as a delta potential. We consider a high-mobility semiconductor material so that impurity effects can be neglected. The considered DFG system is then described by the scattering potential energy

$$U_{sc}(x) = \frac{1}{2} \sum_{j=1}^{2} V_j \delta(x - x_j),$$

where V_j - the potential at the jth finger gate with a well width of the finger-gate scattering potential, W. Hence, the spin-resolved quantum channel system with the DFG may be described by the unperturbed Hamiltonian

$$\tilde{H}_0 = H_0 + g\mu_B (B_R \sigma_y + B_R \sigma_y).$$
where V_j indicates the bias potential applied by the finger gate j. The DFG system under investigation is thus described by the Schrödinger equation

$$\left[\hat{H}_0 + U_{\text{sc}}(x) \right] \Psi(x, y) = E \Psi(x, y).$$ (8)

The eigenfunction $\Psi(x, y)$ in equation (8) can be obtained by summing over all occupied subbands, n, for the product of the spatial wave functions and the spin states, given by

$$\Psi(x, y) = \sum_n \phi_n(y) e^{i k_n x} \chi_n.$$ (9)

Here the transverse wave function in subband n, of the split-gate induced confining potential energy (3), is of the form $\phi_n(y) = (\pi / W)^{1/2} \sin(n \pi y / W)$ with quantized bare subband energy

$$\varepsilon_{y,n} = \frac{\hbar^2}{2m^*} \left(\frac{n \pi}{W} \right)^2.$$ (10)

After some algebra, the corresponding eigenenergies of (8) can be obtained

$$E_n^\sigma(k_x) = \frac{\hbar^2 k_x^2}{2m^*} + \varepsilon_{y,n} + \sigma \mu_B B_{\text{RZ}},$$ (11)

where $\sigma = \pm$ is the spin index and $B_{\text{RZ}}^2 = B^2 + \Delta B^2$ is the effective RZ magnetic field with $B_0 = 2ak_j / (\mu_B \mu_B)$ being a momentum dependent magnetic field due to the Rashba effect. This expression indicates that the subband spin-split energy gap $\Delta E_{\text{RZ}} = E_n^+ - E_n^-$ can be changed by tuning the effective RZ magnetic field. It is interesting to note that this spin-split energy gap ΔE_{RZ} is reduced to $\Delta E_Z = 2\mu_B B$ in the zero momentum limit.

For simplicity, we employ the Fermi-level in a 2DEG as an energy unit, namely $E^* = E_F = \hbar^2 k_F^2 / 2m^*$ with m^* and \hbar being, respectively, the effective mass of an electron and the reduced Planck constant. In addition, one selects the inverse wave number as a length unit, namely $l^* = k_F^{-1}$. Correspondingly, the magnetic field is in units of $B^* = \mu_B \mu_B E^*$ and the Rashba SO-coupling constant α is in units of $\alpha^* = E^* l^*$. In the following we consider a sufficient narrow channel by assuming the channel width $W = \pi l^* = 15.7 \text{ nm}$ so that the bare subband energy due to $U_j(y)$ is simply $\varepsilon_{y,n} = n^2 \hbar^2 / 2m^*$. The energy dispersion can thus be expressed as

$$E_n^\sigma = k_x^2 + n^2 + \sigma \sqrt{(g B)^2 + (2ak_j)^2},$$ (12)

where $\sigma = \pm$ indicates the upper (+) and lower (−) spin branches. A sufficiently low temperature $k_B T < 0.1 \Delta E$ or $T < 23 \text{ K}$ is required to avoid the thermal broadening effect.

2.2. Spin-resolved quantum transport

In order to investigate the DFG-controlled spin-resolved quantum transport properties, we shall explore how the spin-mixing effect due to the RZ coupling influences the propagating and evanescent modes for a given energy of an incident electron. The energy dispersion relation (12) can be rewritten in the form

$$k_x^4 - \left[4a^2 - (K_n^\sigma)^2 \right] k_x^2 + \left(K_n^\sigma \right)^2 -(g B)^2 = 0,$$ (13)

where $K_n^\sigma = E_n^\sigma - n^2$ indicates the ideal kinetic energy of an electron in the transverse subband n in the absence of a RZ effect. To proceed, one has to label the four longitudinal wave numbers k_x as the right-going k_0 and left-going q_0, in which the notation $\sigma = +$ indicates spin-up mode and $\sigma = -$ stands for spin-down mode.

Below, we focus on a sufficiently narrow quantum channel to explore the first two conductance steps associated with the two spin branches of a transported electron occupying the lowest subband. We calculate the quantum transport properties by using a generalized spin-resolved propagation matrix method, in which the spin branches as well as spin-flip scattering mechanisms are taken into account. The energy dispersion shown in figure 3(a) essentially divides the energy spectrum into three regimes. In the low kinetic energy $E_{\text{bottom}} < E < E_{\text{top}}$ and the high kinetic energy $E > E_{\text{top}}$ regimes, there are four propagating modes with real k_0 and real q_0. It should be noted that there are two propagating and two evanescent modes in the intermediate kinetic energy regime or the RZ energy gap region where the evanescent modes manifest a bubble behavior with imaginary wave vectors [12].

The spin-resolved wave functions around the scattering potential U_{sc} located at x_j given by equation (7) can be formally expressed as

$$\psi(x) = \sum_{\sigma = \pm} A_{\sigma} e^{i k_0 x} \chi(k_0) + \sum_{\sigma = \pm} B_q e^{i q_0 x} \chi(q_0), \quad x < x_j$$ (14)

$$\psi(x) = \sum_{\sigma = \pm} C_{\sigma} e^{i k_0 x} \chi(k_0) + \sum_{\sigma = \pm} D_{q} e^{i q_0 x} \chi(q_0), \quad x > x_j$$ (15)

where A_σ and C_σ indicate the right-going wave amplitude corresponding to k_0, while B_q and D_q represents the left-going wave amplitude corresponding to q_0 and χ_σ stands for the momentum dependent spin states. It is possible to obtain the propagation matrix equation by matching suitable boundary conditions as shown below around the free space or the scattering potential induced by the finger gates. The electronic wave function is continuous

$$\psi(x_j^-) = \psi(x_j^+)$$ (16)

and the derivative of wave function is discontinuous by a deduction of delta scattering potential energy, given by

$$\psi'(x_j^-) = \psi'(x_j^+) - eV_j \psi(x_j^+).$$ (17)

Before matching the above boundary conditions, it is convenient to define the reflection coefficient $r_{\sigma, \bar{\sigma}} = B_{\bar{\sigma}} / A_\sigma$ and the transmission coefficient $t_{\sigma, \bar{\sigma}} = C_{\sigma} / A_\sigma$ that involves the spin flip states ($\sigma \neq \bar{\sigma}$) and spin non-flip states ($\sigma = \bar{\sigma}$). Taking into account the possible incident spin states σ and $\bar{\sigma} allows us to write the propagation matrix equation (PME) in terms of the total propagation matrix P_T

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = P_T \begin{bmatrix} t_{\sigma, \sigma} & t_{\bar{\sigma}, \sigma} \\ r_{\sigma, \bar{\sigma}} & r_{\bar{\sigma}, \bar{\sigma}} \end{bmatrix}$$ (18)
To proceed, we match the wave functions equations (14) and (15) using the boundary conditions equations (16) and (17) corresponding to $U_{\alpha}(j)$. We then we rearrange these equations into a 4×4 interface propagation matrix $P^i(j)$ of the delta scattering potential j. Moreover, one has to construct a spin-resolved free-space propagation matrix $P^F(L)$ with length L between the finger gates, given by $P^F(L) = \exp(-ik_{\alpha}L)\delta_j$, in which $k_{\alpha} = k_{\alpha_1} = k_{\alpha_2} = k_{\alpha_3} = -q_\alpha$ and $k_{\alpha_4} = -q_\beta$. The total propagation matrix P^T thus consists of the matrices for the first and second scattering delta potentials $P^i(1)$ and $P^i(2)$ induced by the DFG as well as a free space propagation matrix $P^F(L)$ between them, given by

$$P^T = P^i(1)P^F(L)P^i(2).$$

Solving the PME numerically, we may obtain the reflection and transmission coefficients of the scattering intermediate and final states in the presence of the DFG.

We consider an electron injected from the left reservoir (source electrode) and transported to the right reservoir (drain electrode) for a given incident energy. Solving for the spin non-flip and flip reflection coefficients $r_{\alpha,\sigma}$ and $r_{\alpha,\bar{\sigma}}$, as well as the spin non-flip and flip transmission coefficients $t_{\alpha,\sigma}$ and $t_{\alpha,\bar{\sigma}}$, we can calculate numerically the conductance based on the Landauer-Büttiker framework [27, 28].

$$G = G_0 \sum_{\alpha,\sigma} v_{\alpha,\sigma} |r_{\alpha,\sigma}|^2.$$ \tag{20}

Here $G_0 = e^2/h$ is the conductance quantum per spin branch and σ_L and σ_R indicate, respectively, the spin branches of the incident and transmitted waves in the left and right leads. Therefore, $v_{\alpha,L}$ and $v_{\alpha,R}$ represent the group velocity of corresponding modes in the left and right reservoirs, respectively.

3. Numerical results

Calculations presented below are carried out under the assumption that the electron effective mass $m^* = 0.023m_0$, which is appropriate for the InAs-In$_{1-x}$Ga$_x$As semiconductor interface with the typical electron density $n_e \sim 10^{12}$ cm$^{-2}$ [15]. Accordingly, the energy unit is $E^* = 66$ meV, the length unit $l^* = 5.0$ nm, the magnetic field unit $B^* = 1.14$ kT and the spin–orbit coupling parameter is in units of $\alpha^* = 330$ meV nm. In addition, the bias potential of the finger gate is in units of $V^* = 330$ mV nm. By using the above units, all physical quantities presented below are dimensionless [12].

3.1. Subband structures with Rashba–Zeeman effect

It is known that the presence of an in-plane magnetic field may split the spin degenerate parabolic energy dispersion vertically toward the higher and lower energy and manifests an energy difference $\Delta E_Z = 2gB$, as shown by the black dotted line in figure 2. In addition, the Rashba SO coupling may let the subband structure shift horizontally toward the positive and negative momentum directions. In the intermediate Rashba coupling regime $2\alpha^2 = gB$, the spin-up branch is still parabolic while the spin-down branch develops a flat subband bottom and $\Delta E_{RZ} = \Delta E_Z$, as shown by the red dashed line in figure 2. In the strong Rashba coupling regime $gB < 2\alpha^2 < 4gB$, the combination of the Rashba and Zeeman interactions provide a possibility to generate a RZ gap with a significant subband in the spin-down branch, as shown by the green dash-dotted line in figure 2. A significant zero point energy of a transported electron in the DFG system occurs at the subband top of the spin-down branch. Furthermore, we shall show below that, in the ultra-strong coupling regime $\alpha^2 > 2gB$, the zero point energy will be changed to the subband bottom of the spin-down branch.

In figure 3(a), we show the energy dispersion of the first subband with the Rashba coefficient $\alpha = 0.2$ and an in-plane magnetic field $gB = 0.015$. This is within the strong Rashba coupling regime, $2\alpha^2/(gB) > 1$. The subband bottom of the upper spin branch is at $E_{\text{bottom}} = 1 + gB$. However, the subband bottom at $k_x = 0$ of the lower spin branch becomes a subband top with the same energy $E_{\text{top}} = 1 - gB$. Therefore, the RZ energy gap of the plus and minus branches ΔE_{RZ} is exactly the Zeeman energy ΔE_Z.

In order to explore the spin-resolved transport properties, it is important to define the group velocity of an electron in the σ spin branch

$$v_{\sigma} = \frac{dE_{\sigma}}{dk_x} = 2k_x + \frac{4\alpha^2 k_x}{\sqrt{(gB)^2 + 4\alpha^2 k_x^2}}$$ \tag{21}

as shown in figure 3(b). Defining the velocity allows us to determine a local minimum and a maximum in the subband structures by setting the group velocity identically zero. We see that there are two subband bottoms in the lower spin branch at $k_x = \pm \sqrt{\alpha^2 + (gB/2\alpha^2)^2}$ with the same energy $E_{\text{bottom}} = 1 - \sqrt{\alpha^2 + (gB/2\alpha^2)^2}$.

To identify an electron-like $(m^* > 0)$ and a hole-like $(m^* < 0)$ nature, it is necessary to define the effective mass by performing a second derivation of the energy band, given by

$$\frac{1}{m^*_\sigma} = \frac{d^2 E_{\sigma}}{dk_x^2} = 2 + \frac{4\alpha^2 (gB)^2}{[(gB)^2 + (2\alpha k_x)^2]^{3/2}}.$$ \tag{22}
Figure 3. (a) The first spin-split subband structure with Rashba coefficient $\alpha = 0.2$ and magnetic field $gB = 0.015$. The spin-up branch (blue dash) is parabolic while the spin-down branch (red solid) manifests a top and two bottoms of the same energy. (b) Corresponding group velocity of spin-up (blue dash) and spin-down (red solid) branches. (c) Corresponding effective mass in momentum space. The effective mass of a spin-up electron is always positive (blue dash). However, the effective mass of the spin-down electron is positive for a large wave number k (blue shadow) but is negative for small k (red shadow) due to the strong RZ effect.

This expression allows us to define hole-like bound states (HBS) that occur when the effective mass goes to infinity, as shown in figure 3(c). The corresponding HBS wave number can be analytically expressed as

$$k_{\text{HBS}} = \sqrt{\left(\frac{(gB)^2}{4\alpha^2}\right)^{2/3} - \left(\frac{gB}{2\alpha}\right)^2}.$$ \hspace{1cm} (23)

The fact that k_{HBS} goes to zero if $2\alpha^2 = gB$ implies the HBS feature can be found only in the strong Rashba coupling regime $2\alpha^2 > gB$.

It is clearly sown in figure 3(c) that the effective mass is always positive in the spin-up branch (blue dashed line) while the effective mass in the spin-down branch (red solid line) is allowed to be negative in the small momentum regime $|k_x| < k_{\text{HBS}}$ (red shadow). The corresponding HBS energy can be obtained as

$$E_{\text{HBS}} = 1 - \left(\frac{gB}{2\alpha}\right)^2 + \left[\left(\frac{gB}{4\alpha}\right)^{2/3} - \left[2\alpha^2 (gB)^2\right]^{1/3}\right] \quad (24)$$

to investigate the HBS in the conductance as we shall demonstrate in the next section. Having a finite group velocity but an infinite effective mass implies that the electron will be restricted to the energy level corresponding to the inflection point in energy. This is recognized as a HBS in the lower spin branch. The HBS nature will significantly influence the spin-resolved resonant quantum transport behavior.

3.2. DFG controlled transport

In this section, we discuss how the conductance is influenced by the DFG to manifest various electron-like and hole-like peak structures due to the presence of the RZ coupling. The length L between the two finger gates is tuned to demonstrate these spin-resolved quantum transport features.

Figure 4 shows the spin-split energy dispersion and its corresponding influence on the conductance. Obvious are the peaks corresponding to the resonant ground state in the low energy regime and the first excited state in the high energy regime. In figure 4(a), we show the spin-split energy dispersion by taking the Rashba coefficient $\alpha = 0.2$ (66 meV nm) and $gB = 0.02 (B = 3 T)$ to ensure that the system is in the strong SO coupling regime ($2\alpha^2 > gB$). The upper spin branch E^+ manifests a single band bottom $E_{\text{bottom}}^+ = \varepsilon_y,1 + gB = 1.02$. The lower spin branch E^- exhibits a single band top at energy $E_{\text{top}}^- = \varepsilon_y,1 - gB = 0.98$ and two band bottoms with the same energy $E_{\text{bottom}}^- = \varepsilon_y,1 - \left[\alpha^2 + (gB/2\alpha)^2\right] = 0.958$.

![Figure 4. (a) Energy dispersion and (b) corresponding conductance as a function of incident electron energy with different length L between the two finger gates. The ideal case without DFG is shown by the black dotted line. The distance between the gate fingers L is selected as 150 nm (red solid), 160 nm (blue dashed), 170 nm (green short dashed). Other parameters are $\alpha = 0.2$, $gB = 0.02$ and $V_1 = V_2 = 0.6$.](image-url)
In figure 4(b), we demonstrate how the transport properties are affected by the applied DFG by fixing the finger gate voltage $V_1 = V_2 = 0.6$ while tuning the length L between the two finger gates. In the low kinetic energy regime $E_{\text{bottom}} < E < E_{\text{top}}$, there are two different resonant features in conductance. The first resonant feature at a lower energy is a resonant state (RS) due to multiple scattering between the two finger gates. When the transported electron is in the double scattering potential induced by the finger gates, it is quasi located in an imaginary quantum well embedded in the quantum channel. The mth RS states are sensitive to the length L between the finger gates and can be approximately estimated by the theoretical formula

$$E_{\text{RS},m}^b = E_{\text{zero}} + \varepsilon_{x,m},$$

(25)

in which $\varepsilon_{x,m} = (m\pi/L)^2$ is the mth energy level due to the DFG with zero point energy E_{zero}. When the Rashba coupling strength is within the ultra-strong coupling regime $\alpha^2 > 2gB$ as shown in figure 4, the zero point energy E_{zero} is identical to the subband bottom of the spin-down branch E_{bottom}^-. Theoretically, the first RS structures in conductance are at $E_{\text{RS},1} = E_{\text{bottom}}^- + \varepsilon_{x,1} = 0.968, 0.966, 0.965$ for $L = 150, 160, 170$ nm, respectively. In figure 4(b), the numerical calculation by means of the propagation matrix method gives $E_{\text{RS},1} = 0.965, 0.963$ and 0.961 for $L = 150, 160, 170$ nm, respectively. To estimate the accuracy of our theoretical estimation, we define the mean absolute percentage error (MAPE) in energy as

$$M = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{E_{L_i} - E_{\text{RS},i}^b}{E_{L_i}} \right|,$$

(26)

where n is the number of selected lengths L_i of the DFG system. This formula gives the MAPE of the RS structure in conductance to be $M_{\text{RS},1} = 0.36\%$. Similarly, the theoretical estimation of the fourth RS structures in conductance are $E_{\text{RS},4}^b = E_{\text{bottom}}^- + \varepsilon_{x,4} = 1.118, 1.098, 1.082$ for $L = 150, 160, 170$ nm, respectively. In the high kinetic energy regime $E > E_{\text{bottom}}^-$, we can find RS peaks in the conductance at $E_{\text{RS},4} = 1.078, 1.057$ and 1.04 for $L = 150, 160, 170$ nm, respectively. The MAPE of the fourth RS peak in the conductance is $M_{\text{RS},4} = 3.86\%$.

The transport mechanisms of these conductance peaks are schematically shown by solid blue arrows in figure 5. These conductance peaks are associated with resonant bound energy levels $\varepsilon_{x,m}$ and can be tuned by changing the length L between the two finger gates. They will be closer to the lower subband bottom when the length L is increased. We note in passing that the second and the third RS structures $E_{\text{RS},2}$ and $E_{\text{RS},3}$ cannot be found in the conductance, these RS features are suppressed due to the formation of the RZ energy gap.

The second resonant feature in the conductance shown in figure 4 is a hole-like bound state (HBS) at the same energy $E_{\text{HBS}} = 0.978$ for $L = 150, 160, 170$ nm. The corresponding theoretical prediction based on equation (24) is given by $E_{\text{HBS}} = 0.972$. The corresponding MAPE is $M_{\text{HBS}} = 0.62\%$. It is found that such HBS structure in the conductance is independent of the distance L between the two finger gates. In the intermediate kinetic energy regime (i.e. in the RZ gap energy regime), a small peak in the conductance can be found at the threshold of the upper spin branch. This structure is recognized as a electron-like quasi-bound state (EQBS). In comparison with the case of a single finger gate system [12], the EQBS feature is a peak structure instead of dip structure in conductance.

This HBS mechanism is schematically shown by red arrows in figure 6 indicating an electron occupying an inner mode in the low kinetic energy regime $E_{\text{bottom}}^- < E < E_{\text{top}}^-$, forming a HBS below the subband top of the spin-down branch. However, the electron with energy E_{HBS} occupying the outer mode is at off-resonant energy and cannot be transmitted through the DFG system, as is shown by the blue dashed arrows in figure 6.

In figure 7, we show the conductance as a function of energy in an in-plane magnetic field $gB = 0.01$ ($B = 1.5$ T) while tuning the Rashba coefficient to be figure 7(a) $\alpha = 0.135$ within the strong coupling regime and figure 7(b) $\alpha = 0.18$ within the ultra-strong coupling regime. In both cases, we compare results for the distance $L = 150$ nm (red solid line) and $L = 170$ nm (blue dashed line) between the two finger gates.
is subject to the same positive potential 170 nm (blue dash) between the two finger gates. The DFG system down branch, namely the theoretical estimation predicts the zero point energy of the RS state E_{top} to E_{bottom}. Furthermore, the RS conductance peak feature can be significantly enhanced. We note in passing that in the intermediate Rashba coupling regime $2\alpha^2 \simeq gB$ (not shown) [12], the zero point energy of the RS peaks will be changed to the subband bottom of the spin-up branch.

4. Concluding remarks

In conclusion, we have investigated the interplay of the Rashba SO coupling and the in-plane magnetic field induced Zeeman effect and its influence on the spin-resolved subband structure forming the Rashba–Zeeman effect induced energy gap. Moreover, we have demonstrated analytically and numerically the subband structure and the spin-resolved resonant quantum transport properties of a DFG system in the presence of a Rashba–Zeeman gap.

Manipulating the DFG system and the Rashba parameter in the strong Rashba regime, $gB < 2\alpha^2 < 4gB$, or in the ultra-strong Rashba coupling regime, $\alpha^2 > 2gB$, allows us to investigate various bound state features. These resonant transport features in the DFG controlled n-type quantum channel include resonant states with various zero point energy in different Rashba coupling regimes, hole-like bound states below the subband top of the spin-down branch and electron-like quasi-bound states at the threshold of the spin-up branch. Our theoretical findings paving the way for the design of RZ-effect based spintronic devices.

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan through Contract No. MOST 103-2112-M-239-001-MY3 and the National Science Council, Taiwan under Contracts No. NSC100-2112-M-239-001-MY3, No. NSC-100-2112-M-009-013-MY2 and No. NSC102-2112-M-009-009-MY2, the Icelandic Research and Instruments Funds and the Research Fund of the University of Iceland.

References

[1] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[2] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Moln S, Roukes M L, Chichkelanova A Y and Treger D M 2001 Spintronics: a spin-based electronics vision for the future Science 294 1488
[4] Awschalom D D, Samarth N and Loss D (ed) 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
[5] Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153
[6] Heedt S, Morgan C, Weis K, Bürgler D E, Calarco R, Hardtdegen H, Grützmacher D and Schäpers T 2012 Nano Lett. 12 4437
[7] Winkler R 2003 Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Tracts in Modern Physics vol 191) (Berlin: Springer)
[8] Meier L, Salis G, Shorubalko I, Gini E, Schon S and Ensslin K 2007 Nat. Phys. 3 650
[9] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[10] Bandyopadhyay S and Cahay M 2004 Appl. Phys. Lett. 85 1814
[11] Koo H C, Kwon J H, Eom J H, Chang J Y, Han S H and Johnson M 2009 Science 325 1515
[12] Tang C S, Chang S Y and Cheng S J 2012 Phys. Rev. B 86 125321
[13] Sadreev A F and Sherman E Y 2013 Phys. Rev. B 88 115302
[14] Rashba E I 1960 Sov. Phys. Solid State 2 1109
Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[15] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[16] Mucciolo E R, Chamon C and Marcus C M 2002 Phys. Rev. Lett. 89 146802

Watson S K, Potok R M, Marcus C M and Umansky V 2003 Phys. Rev. Lett. 91 258301
[17] Brataas A, Tserkovnyak Y, Bauer G E W and Halperin B I 2002 Phys. Rev. B 66 60404
[18] Zhang P, Xue Q K and Xie X C 2003 Phys. Rev. Lett. 91 196602
[19] Wang B G, Wang J and Guo H 2003 Phys. Rev. B 67 092408
[20] Serra L, Sánchez D and Rosa López 2005 Phys. Rev. B 72 235309
[21] Scheid M, Bercioux D and Richter K 2007 New J. Phys. 9 401
[22] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[23] Zeng W, Wu J L, Wang B G, Wang J, Sun Q F and Guo H 2003 Phys. Rev. B 68 113306
[24] Pershin Y V, Nesteroff J A and Privman V 2004 Phys. Rev. B 69 121306
[25] Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336
[26] Zhang P, Xiang Z-L and Nori F 2014 Phys. Rev. B 89 115417
[27] Landauer R 1970 Phil. Mag. 21 863
[28] Büttiker M 1990 Phys. Rev. B 41 7906