Optical diagnostic imaging and therapy for thyroid cancer

Chengying Shao a, b, 1, Zhenfang Li c, 1, Chengchi Zhang d, Wanchen Zhang a, b, Ru He c, Jiajie Xu a, f, 1, Yu Cai e, f, **

** Corresponding author. Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.

* Abbreviations: 131I-BSA@CuS, 131I-labeled BSA-modified CuS nanoparticles; 5-ALA, 5-Aminolevulinic acid; ASIR, age-standardized rates of cancer incidence; ATC, anaplastic thyroid carcinoma; AuNCS@B-1, innovative iodinated gold nanoclusters; Au@MSNs, photo-triggered Gold nanodots capped mesoporous silica nanomaterials; BRAF, V-Raf murine sarcoma viral oncogene homolog B; CBDCA, Carboplatin; CDFI, color doppler flow imaging ultrasound; ECDT, enhanced chemodynamical therapy; CLND, central compartmentalized node dissection; CPDA-131I NPs, the 131I-radiolabeled cerebroid polydopamine nano-particles; CT, Computed Tomography; DOT, Diffuse Optical Tomography; DTC, differentiated thyroid cancer; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; ESMO, European Society of Medical Oncology; FDA, U.S. Food and Drug Administration; FI, fluorescence imaging; FNA, fine-needle aspiration biopsy; FNs, fine needle aspirations; FTC, follicular thyroid carcinoma; GC, germinal center; HAOA, Hyaluronic Acid and Oleic Acid; HYP, hypericin; ICG, indocyanine green; IJV, internal jugular vein; IRR25s@B-PPNs, Polymeric NPs with bevacizumab and IRR25 conjugated on the surface; L-A PTA, laparoscopic photothermal ablation; MDR, multidrug resistance; mETE, microscopic extrathyroidal extension; MTC, medullary thyroid carcinoma; NIR, near-infrared; NIRF, near-infrared fluorescence; NIF, near-infrared fluorescence; NIR-FI, near-infrared fluorescence imaging; NIR-PIT, near-infrared photodynamic therapy; NMRI, Nuclear Magnetic Resonance Imaging; OCT, Optical Coherence Tomography; OS, overall survival; PAI, Photoacoustic Imaging; PD-MOF, porphyrin–palladium metal–organic framework; PDT, photodynamic therapy; PET, Positron Emission Tomography; PGs, parathyroid glands; PLP, porphyrin-HDL nanoparticles; PTA, photothermal reagents; PTC, papillary thyroid carcinoma; PTT, photothermal therapy; RIT, radioactive iodine therapy; ROS, reactive oxygen species; SEC, Selenocysteine; SiRNA, interfering RNA; SV, subclavian vein; TC, thyroid cancer; TD, Thoracic Duct; TF, tissue factor.

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.mtbio.2022.100441

Received 7 August 2022; Received in revised form 22 September 2022; Accepted 24 September 2022

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thyroid cancer (TC) is currently the most common endocrine cancer (Table 1) [1] and has seen a significant increase in incidence over recent decades. However, such an increase in incidence may be attributed to overdiagnosis of thyroid nodules [2-4], thus recommended therapeutic interventions for TC have become increasingly conservative [5,6]. According to guidelines of the European Society for Medical Oncology (ESMO), the main therapeutic options for differentiated thyroid cancer (DTC) include thyroidectomy, lymph node dissection, and 131I therapy [7]. Additionally, radioactive iodine therapy (RIT) when used alone may be sufficient. Yet, there are also studies that suggest the incidence of TC is indeed increasing based on statistical numbers regarding advanced TC and morbidity-based mortality [8]. Papillary carcinomas (PTC, 80%), follicular carcinomas (FTC, 10%), and medullary thyroid carcinomas (MTC, 5–10%) make up the bulk of TCs. An uncommon but deadly form of TC is anaplastic thyroid carcinoma (ATC). Patients with ATC who received multimodal therapy and palliative care had median overall survival (OS) times of 21 months and 3.9 months, respectively [9].

The primary treatment for DTC is surgery, supplemented by endocrine therapy, radiotherapy and others [6,10], yielding a satisfactory prognosis overall. Of these, Transoral/transaxillary thyroidectomy has gained popularity since it addresses issues of neck scars, which is an important aspect for young and middle-aged women - a demographic at the highest risk of DTC. However, complications such as nerve injuries and accidental damage to the parathyroid glands still occur occasionally in lumpectomy procedures, and may include temporary or permanent hypoparathyroidism, injury or paralysis of the recurrent laryngeal nerve, celiac fistula, Horner’s syndrome, cervical motor nerve injury, and hematoma or plasmacytoma formation [11]. Given this, more emphasis is placed on improving the quality-of-life post-surgery. To achieve this goal, surgical treatment of TC tends to minimize the invasion of surrounding normal tissues while ensuring the survival rate. What remains are the more troublesome forms of TC such as ATC, where mortality is close to 100% as a result of the absence of effective therapy. The variety, complexity, and diversity of malignant tumors are often to blame for the monotherapy modality’s low effectiveness and high recurrence rate, and researchers have been exploring novel treatments for TC to overcome such challenges.

To solve the above-mentioned diagnostic and therapeutic challenges of TC, optical diagnostic imaging and phototherapy possessing great potential have entered the view of researchers. Optical imaging (OI), which has benefits such as high spatial and temporal resolution, high sensitivity, high contrast, high throughput, non-invasive, simple equipment, and low cost, uses a variety of optical properties like absorption, scattering, reflection, and fluorescence [12] to visualize specimens such as cells, tissues, organs, and even complete living creatures. OI has been also widely employed in clinical practice for other fields, such as in liver and breast cancer [13,14], gram-negative bacillary infections [15], endocrine diseases [16] and other conditions that have seen success. Additionally optical probes have even been successfully used in environmental science to detect chemical contamination [17-19]. Currently, options of OI include Fluorescence Imaging (FI), Optical Coherence Tomography (OCT), Endoscopy, Photoacoustic Imaging (PAI), Diffuse Optical Tomography (DOT), Raman Spectroscopy, and Super-resolution Microscopy. In this review, we will thoroughly summarize the progress of OI in terms of diagnosis, phototherapy, and combination therapy in TC. The main challenges and opportunities for the clinical application of OI are also discussed.

2. Optical diagnostic imaging for TC

Overdiagnosis of thyroid nodules is seen as one of the reasons for their proliferating global incidence, and could potential be addressed through OI technology. To our knowledge, 22Sistrasonography relies on the image quality, neck coverage area, and interpretation by the diagnostic sonographer. Quite often many ambiguous thyroid nodules require further invasive testing - fine needle aspiration biopsy (FNAB) - to distinguish between benign and malignant nodules. Currently, the fine-needle aspiration biopsy (FNAB) is the gold standard for determining whether to pursue medical interventions for thyroid nodules. For 15–20% of overall cases termed "suspicious" or "inconclusive", total thyroidectomy is typically selected. However, histological investigations showed that only 25-50% of cases that received thyroidectomy are malignant. OI is more effective than traditional medical imaging techniques in numerous areas, including [20]: (1) High biocompatibility and safety; (2) Wide range of imaging windows; (3) Ability to combine with other imaging modalities to create multi-dimensional diagnostic imaging; (4) Capturing high-quality images of ex vivo, in vivo, and in vitro specimens; (5) Providing data on biochemical processes, biological dynamics, and other topics; (6) High molecular specificity achieved through flexible modifiability.

2.1. Fluorescence imaging (FI)

When a fluorescent substance is irradiated by light, it will emit light of different colors and intensities, and when the irradiation stops, the emitted light will soon disappear. Exogenous fluorescent probes can be artificially designed to possess distinctive fluorescence in the ultraviolet, visible or near-infrared spectra. Their situated environment (polarity, refractive index, viscosity, etc.) can sensitively change their fluorescence properties, such as excitation wavelength, emission wavelength, lifetime, and intensity. FI is one of the essential imaging methods for enhancing bio-diagnosis and image-guided surgeries in both basic research and therapeutic applications (Scheme 1). FI provides benefits over conventional imaging methods, including X-ray Computed Tomography (CT), Nuclear Magnetic Resonance Imaging (NMRI), and Positron Emission Tomography (PET) in terms of high spatial and temporal resolution, non-invasiveness, real-time imaging, and cost efficiency. Using this highly sensitive imaging technique, it can provide a good indication of the

Table 1

Age-standardized rates of cancer incidence (ASIR) per 100,000 [1].

Rank	UK	Tumor Location	Cases (%)	ASIR	Sex	Rank	Worldwide	Tumor Location	Cases (%)	ASIR	Sex
19th	Thyroid	5527 (1.2)	6.10	Both	9th	Thyroid	586,202 (3.0)	6.60	Both		
20th	Thyroid	1385 (0.6)	2.90	Male	16th	Thyroid	137,287 (1.4)	3.10	Male		
11th	Thyroid	4142 (2.0)	9.20	Female	5th	Thyroid	448,915 (4.9)	10.10	Female		

Rank	China	Tumor Location	Cases (%)	ASIR	Rank	US	Tumor Location	Cases (%)	ASIR
7th	Thyroid	221,093 (4.8)	11.30	Both	12th	Thyroid	52,912 (2.3)	11.80	Both
9th	Thyroid	53,389 (2.2)	5.40	Male	15th	Thyroid	14,351 (1.2)	6.10	Male
4th	Thyroid	167,704 (8.0)	17.50	Female	6th	Thyroid	38,561 (3.7)	17.40	Female
molecular or cellular level activity, which is indispensable for our understanding of biological processes and disorders. FI has so far been widely used for immunofluorescence analysis, imaging, drug distribution and metabolism detection, and imaging-guided surgery [21].

As one of the vital components of FI, near-Infrared fluorescence imaging (NIR-FI) is a developing non-invasive imaging modality with distinct benefits in biological imaging, disease diagnosis, and surgical navigation due to its high sensitivity and instantaneous nature. The NIR windows are currently divided into NIR-I (750–900 nm) and NIR-II (1000–1700 nm) categories. A narrow absorption peak at 1400–1500 nm caused by water overtones is excluded from the NIR-II window, which is further separated into NIR-IIa (1000–1400 nm) and NIR-IIb (1500–1700 nm) [22]. According to a recent study, the NIR-II region could also be defined as 900–1880 nm, meanwhile, it creatively suggested excellent-performance imaging in 1400–1500, 1700–1880, and 2080–2340 nm wavelengths, designating them as NIR-IIx, NIR-IIc, and NIR-III, respectively [23]. Because of its capacity to penetrate deep tissues, little photon scattering, and constrained autofluorescence, NIR light in the second optical window, such as NIR-IIb, 1500–1700 nm, is well suited for imaging live creatures with great spatiotemporal resolution [24]. As a result, there has been a steady rise in the emphasis of relevant research from NIR-I imaging to NIR-II imaging.

NIR-II imaging molecular probes are clinically important for detecting tumor biomarkers with high sensitivity, monitoring tumor vasculogenesis, and predicting tumor invasiveness and prognosis. NIR-II imaging only offers a two-dimensional picture of the target when used alone for tumor identification, and the absence of fine-grained spatial information may result in erroneous target description [25]. Therefore, dual-modality or even multi-modality diagnostic imaging has become a trend. Xin Chen et al. developed innovative iodinated gold nanoclusters (AuNCs@BSA-I) probes based on dual-mode fluorescence/CT imaging for the visualization of thyroid malignancies [26]. The signal background ratio of AuNCs@BSA-I in normal thyroid tissue is “fast in, slow out,” while in thyroid tumors, a partial fluorescence signal appears at 1.5 h and disappears rapidly at 2.5 h, with a signal background ratio of “slow in, fast out”. AuNCs@BSA-I is a great selective nanoprobe for TC diagnosis. Meanwhile, research [27] has constructed magnetic resonance imaging/fluorescence lifetime dual-modality imaging nanoparticles-targeting two peptides (peptide1 and peptide7) of Galectin-1 conjugated with ultra-small superparamagnetic iron oxide particles (USPIO) or a NIR dye (CF770), embodying the high specificity and sensitivity for the PTC detection of 75% and 100%, respectively. In addition, one study [28] created a multimodal imaging platform called LUCA that combines clinical ultrasound, 16-channel diffuse correlation spectroscopy, and eight-wavelength near-infrared time-resolved spectroscopy in a single device to increase the specificity and sensitivity of TC diagnosis.

In an alternative to direct imaging of the thyroid gland for diagnosis, a number of biochemical metabolites can be detected to facilitate the

![Scheme 1. Schematic diagram of fluorescence imaging.](image)

![Scheme 2. The light from the source is divided into two paths, namely the two arms of the interferometer (the reference arm and the sample arm). In the reference arm, the mirror reflects light. In the sample arm, light has three paths, scattering, absorbing and returning to the source (backscattering). By comparing and analyzing the backscattered light signal of the sample arm and the reference arm, the image is finally obtained.](image)
indirect diagnosis of thyroid disease. The strong correlation is well documented between aberrant Selenocysteine (SEC) levels and a number of disorders, including thyroid, cardiovascular, diabetic, and neurodegenerative diseases [29–31]. In thyroid diseases, SEC and H2O2 levels are negatively correlated. A potential chemical diagnostic for the detection of TC, the radiometric NIR fluorescence probe (Mito-Cy-SEC) was devised and synthesized in research [32]. It allows for the observation and analysis of SEC alterations in thyroid disease-related cell lines and mouse models. A few advanced but inexpensive fluorescent probes can detect tumor-associated markers in vivo with high sensitivity and high infectivity [33,34], which may open a new era of TC diagnosis.

2.2. Optical Coherence Tomography (OCT)

By combining high longitudinal resolution with a high lateral resolution, OCT, a non-contact, non-invasive, and non-damaging imaging technology, may provide data that is comparable to that of tissue pathology (Scheme 2). OCT uses a low-energy NIR light source as the detection light and combines a microscope head, a handheld probe, or an endoscope for routine detection in a non-invasive manner without causing damage to biological tissues. Recent research suggests that the OCT technology may evaluate follicle shape and demonstrate thyroid tissue growth patterns [35,36] (as shown in Fig. 1 [37]), which may also lessen the frequency of fine needle aspirations (FNAs) carried out in benign nodules in multinodular colloid goiter. OCT has since become a helpful supplementary tool in the identification of malignant and benign thyroid nodules and may be able to decrease the need for FNAs by eliminating nodules with clear signs of benignity. The potential rate of false positive diagnoses will be reduced, and the number of nodules requiring further testing for evaluation will be decreased, which will aid in lowering the costs of unnecessary testing for thyroid nodules that were unintentionally discovered. OCT is simple to operate, with short imaging time and high resolution. However, the limited imaging depth of OCT, generally limited to 2 mm, is the biggest obstacle that hinders its translation into clinical diagnostic applications.

2.3. Photoacoustic imaging (PAI)

In contrast to previous optical imaging modalities, photoacoustic imaging (PAI) is a hybrid imaging modality that has emerged in recent years that combines laser and ultrasound detection, taking advantage of the optical properties of sensitive tissues [25] through high ultrasound resolution and strong optical contrast. Photoacoustic imaging uses instantaneous light to irradiate the tissue. Molecules in the tissue produce different degrees of rapid expansion under excitation light of different wavelengths, so as to generate ultrasonic waves that are detected by the ultrasonic detector. The depth is determined by different ultrasonic signal time. The image is reconstructed through data processing to form an image (Scheme 3). The depth of imaging and resolution of PAI is inversely proportional to the frequency of the ultrasound detector used (e.g., a center frequency of 4–6 MHz and a bandwidth of 0.1–10 MHz for an imaging depth of 2–4 cm) [38]. PAI is one of the hot spots of novel diagnostic modalities being explored for various systemic diseases, such as the quantitative functional evaluation of liver fibrosis in mice by photoacoustic imaging explored by Jing Lv et al. [39]. Based on the light absorption properties of certain substances in the body (e.g., hemoglobin and lipids, etc.), PAI displays key functional data, such as oxygen saturation, and detect small vessels that are not detected by color Doppler ultrasound [38,40]. PAI demonstrating the presence of hypoxia and reduced lipid content in malignant thyroid nodules compared to benign

Fig. 1. Hyperplastic nodules (A & B); lymphocytic thyroiditis (C & D); classic variation of PTC (E & F); solid variant of PTC (G & H); follicular variant of PTC (I & J); and thyroid adenoma (K & L) histological and OCT appearances [37] (Reproduced from Ref. [37] with permission. Copyright 2019 Wiley Periodicals, Inc.).

Scheme 3. Using different wavelengths of near-infrared light to illuminate the tissue, the ultrasound signal is generated after different light pulses. Photoacoustic images are generated by the reconstruction of photoacoustic signals.
functional information such as vascularity, oxygenation and in diagnosis of TC. Overall PAI can provide images of thyroid structures and with a short examination duration (~5 min), it has great potential for

sensitivity, positive predictive value and negative predictive value of PAI in differentiating malignant and benign thyroid lesions were 69.2%, 96.9%, 81.8% and 93.9%, respectively [41]. More importantly, the value of PAI in differentiating malignant and benign thyroid lesions were

platform, such as with ultrasound imaging or NIR-II integrated with other imaging modalities to create a multimodal imaging

Chemical Society).

– 44], all of which have shown excellent capabilities in the diagnosis of TC. Overall PAI can provide images of thyroid structures and functional information such as vascularity, oxygenation and inflammation without ionizing radiation or injection of exogenous contrast agents, and with a short examination duration (~5 min), it has great potential for clinical translation.

2.4. Diffuse optical tomography (DOT)

DOT is a thick tissue imaging technique that typically collects light scattering information in the near-infrared spectral range and then analyzes it through statistical models in order to obtain three-dimensional images with an imaging depth of roughly 1–1.5 cm [45,46], promising a non-invasive diagnosis of TC. Traditional DOT requires a high-density array of probes to capture a large amount of biological information in order to reveal biological 3D information, which is very time-consuming (Scheme 4). Some researchers have proposed a novel DOT system that uses a multi-directional emitting light source and a photodetector to replace the traditional high-density probe array, ultimately achieving an imaging depth of 1.5 cm [46]. Whether a high-density probe array combined with multi-directional measurements can obtain satisfactory DOT images while reducing imaging time is to be further explored by researchers. A study claims that DOT can assist in the diagnosis of FTC by detecting the degree of tumor hypoxia [47]. However, the nature of light scattering, refraction and absorption during propagation, and the structure of the thyroid gland adjacent to the trachea and large blood vessels make it more difficult to obtain high-quality images like CT. Some studies have attempted to establish DOT imaging models to reduce the above-mentioned interference [47,48], but there is still a long way to go for thyroid DOT 3D image establishment. Research on the effectiveness of DOT for TC diagnosis and treatment is still in its early stages.

3. Phototherapy in TC

3.1. Photothermal therapy (PTT)

The highly aggressive and treatment-resistant nature of undifferentiated TC [49,50] makes its prognosis extremely poor. Traditional surgery and radiotherapy have little effect on undifferentiated TC and are often associated with numerous complications. The advent of NIR imaging combined with phototheranostics has brought hope to both patients and physicians, as it not only provides a clear diagnosis but also allows targeted localized killing of tumor cells with minimal or no damage to surrounding organ cells.

With benefits of being manageable, non-invasive, and having minimal side effects, PTT is a therapy approach that employs photothermal reagents (PTA) to transform light energy into heat energy for tumor cell ablation under proper external light irradiation [51]. Some of the nanoprobes applied in NIR imaging tend to have good photothermal conductivity, allowing some of them to be used as PTAs in PTT. Meanwhile, by purposefully processing and modifying PTA, they can specifically target certain tumor cells. The following probes can all greatly improve the thermal efficacy (Fig. 3) on thyroid tumor cells, achieving precise local thermal ablation of tumors with no significant cytotoxicity observed in animal experiments: Polymeric NPs with bevacizumab and IR825 conjugated on the surface (IR825@B-PPNs) [52], 125I-radio-labeled cerebellar polydopamine nanoparticles (CPDA-125I NPs) [53], 125I-labeled BSA-modified CuS nanoparticles (125I-BSA@CuS) [54], meso-methoxy-substituted DSPE-PEG-2000-coated boron dipyrromethene (B-Ome-NPs) [55], polypyrrole (Ppy)--poly-(ethylene imine)--siILK nanocomplex (PPR@siILK) [56], functionalized (epidermal growth factor (EGF), holo-transferrin, or lapatinib) HAOA-coated AuNPs [57], and photo-triggered Gold nanodots capped mesoporous silica nanoparticles (Au@MSNs) [58] (Table 2).

The two energy dissipation modalities of PTT and FI are in conflict with one another since energy is conserved. Therefore, the goal of NIR-guided PTT is to develop a method to balance photothermal effects (non-radiative decay) with fluorescence (radiative decay) [59]. Additionally, hyperthermia-induced inflammation might raise the danger of cancer recurrence. PTT in combination with anti-inflammatory medication would thus be more sensible and efficient. According to reports,
hydrogen has a significant advantage in minimizing tissue inflammation brought on by high temperatures. Therefore, the NIR-controlled hydrogen nanoplatform combined with PTT would be a feasible solution. The reported PdH0.2 nanocrystals [60] and the hydrogenated palladium metal–organic framework [61] exhibited good controlled hydrogen release properties and photothermal effects, which have been confirmed.

3.2. Photodynamic therapy (PDT)

PDT activates photosensitizers by laser light at specific wavelengths, which in turn releases a highly reactive free radical oxygen molecule that causes necrosis of cancer cells, especially the blood vessels that nourish cancer cells [51,62]. PDT's three basic components are photosensitizer, light source, and oxygen [63]. PDT is an excellent non-invasive tumor treatment with the advantages of fewer side effects, a strong ability to kill tumor cells, and not interfering with the application of other treatments [62]. However, the tumor's microenvironmental hypoxia and lack of targeting limits its further clinical application. There are two main approaches to solving the former problem: (1) delivering oxygen directly to the tumor region through a carrier [64,65]; (2) generating oxygen through biochemical reactions at the tumor site [66,67]. In addition, the problem of weak targeting can be solved by chemical modification of photosensitizers or the construction of nanosystems containing targeting ligands.

An excellent nanosystem, consisting of a combination of tumor-recognizing specific molecules, photosensitizers, and NIR fluorescent probes, can achieve precise imaging diagnosis and local killing of tumor cells when activated by NIR light and has great potential to be applied to the treatment of TC. It has been demonstrated that the application of porphyrin–HDL nanoparticle (PLP)-mediated PDT in preclinical models of TC can achieve specific ablation of thyroid tumors, preserving normal thyroid tissue without tracheal or nerve damage [68] (Table 3). In addition, chemotherapy combined with PDT can obtain better inhibition of thyroid tumor growth and induction of tumor cell apoptosis [69,70]. The reason may be that PDT contributes to the internalization of chemotherapeutic drugs [70]. Photosensitizers that are currently being investigated are those such as Hypericin [71] (Table 3), a natural photosensitizer, which when combined with PDT can achieve excellent destruction of thyroid tumor cells by inducing intracellular reactive oxygen species (ROS) production and mitochondrial damage. The most interesting aspect that has attracted the attention of researchers is the multimodal imaging of PDT. For example, Xuejian Xing et al. developed a nano-therapeutic platform integrating NIR-FI, PAI, PTT and PDT, which has the potential to realize the application of NIR-FI and PAI for co-guided PDT and PTT treatment.

In practical clinical applications, it is difficult to obtain satisfactory efficacy with PTT or PDT alone because of the heat shock effect in PTT and the hindrance of the hypoxic tumor microenvironment in PDT [72,73]. Thus, combining two treatments may be a promising solution. PDT enhances the effect of PDT by increasing the blood flow rate to increase the oxygen concentration in the tumor microenvironment, and this effect in turn promotes the elimination of heat-resistant tumors in PDT [59]. In addition to PTT, other treatment modalities can also be integrated into the nano-therapeutic platform according to the patient's specific conditions. As illustrated in Fig. 4 [74], the four treatment modes, including H2, PDT, PTT, and enhanced chemodynamical therapy (ECDT), can be combined on a single nanoplatform to constitute an H2-mediated cascade of amplified synergistic therapies. Multimodal treatment nanoplatforms are very promising in the treatment of cancer.

In conclusion, PDT and PTT have their unique advantages over traditional tumor treatment modalities (e.g., surgery, radiofrequency ablation, radiation therapy, chemotherapy, etc.). The design of targeted optical probes and the control of laser irradiation together ensure the precision of phototherapy and minimize the toxic effects that deviate from the target tumor to the surrounding tissues. Non-invasiveness is also one of the great advantages of phototherapy, as surface organs can be treated with non-invasive laser irradiation to stimulate PTT or PDT, while deep organs can be treated with intervention techniques like fiber optic and endoscopic to allow avoidance of dissection and chest opening. Phototherapy is extremely biocompatible and can be safely used multiple times intra-human. Meanwhile, phototherapy has considerable potential...
to be used in combination with other therapies, such as chemotherapy and immunotherapy. With the advanced research on phototherapy, an increasing number of multifunctional probes are demonstrating superior optical properties. However, multifunctional advanced targeting probes may lead to difficulties in chemical preparation and quality control, limiting their translation to the clinic. The clinical application of a technology requires not only the assurance of its therapeutic efficiency, but also the consideration of its preparation, preservation and transportation costs, along with the practicality of the control system and the

Table 2

PTA	Performance	Application	Indication
Bevacizumab (antibody) and IR825 [52]	The treatment efficiency of tumor eradication by near infrared (NIR) laser irradiation was significantly improved.	Build a sequentially targeted nanoplatform (IR825@Bev-PLGA-PPNPNs) for PTT.	ATC
mesoporous polydopamine nanoparticles (MPDA) [53]	Porous nanoparticles show huge advantages in the field of drug delivery, which can effectively improve the loadings of chemotherapeutic drugs or other substances.	MPSNs were used as nanocarriers for loading various drug molecules by virtue of their open pore structure and adjustable pore channels to treat cancer.	ATC
the131I-labeled BSA-modified CuS nanoparticles ([131I]-BSA@CuS) [54]	The synthesized nanomaterial showed uniform dispersion, good stability and aqueous solubility, excellent photothermal properties, and long-term retention in ATC.	As a therapeutic agent, it has shown remarkable efficacy in both ACT radiotherapy and PTT.	ATC
B-OMe-NPs [55]	B-OMe-NPs and laser irradiation mediated therapy and cell proliferation inhibition lead to tumor tissue damage.	It has good photostability and effective photoacoustic imaging and fluorescence imaging ability, and combines PTT and PDT treatment modes.	Cancer
Based on a polypyrrole (Py)-poly-(ethylene imine)-silK nanocomplex (PPR-silK) [56]	Tumors were completely eradicated by photothermal therapy, and the recurrences and metastases were obviously restrained by silK.	It has excellent biocompatibility and stability, and can be modified by surface to achieve charge reversal to load and release silK under appropriate conditions.	PTC
holo-TRANSFERRIN, (IGF and lapatinib-functionalyzed AuNPs (gold nanoparticles) [57]	AuNPs have many advantages, including efficient light-heat conversion and tunable optical properties that can be manipulated by varying the AuNPs's physical characteristics such as size and shape.	For PTT, nanotechnology can change the photothermal properties of the medium and enhance tumor hyperthermia.	ATC
Photo-triggered Gold nanodots capped mesoporous silica nanoparticles Au@MSNs [58]	The capsaicin and Cap-AuMSNs were able to inhibit the migration and invasion of cancer cells.	For PTT, Cap-AuMSNs are in the nano regime and highly stable.	TC

Table 3

Photosensitizer	Performance	Application	Indication
The porphyrin-HDL nanoparticle (PLP) [68]	Providing a safe, minimally invasive, and effective alternative to thyroidectomy for TC therapies.	As a therapeutic agent, it has shown remarkable efficacy in both ACT radiotherapy and PTT.	ATC
Hypericin (HYP) [71]	HYP, isolated from St. John's wort (Hypericum perforatum L.), is regarded as a powerful photosensitizer, which is studied for its photodynamic effects.	It has good photostability and effective photoacoustic imaging and fluorescence imaging ability, and combines PTT and PDT treatment modes.	Cancer

Fig. 4. The schematic representation of the multimodal nano-platform: H₂ mediated cascade enhancing synergetic treatment [74].

selection of the target tumor. Thus, phototherapy is a very promising but complex subject that has the potential to move forward as a next-generation of oncology treatment technology.

4. Combined treatment for TC

4.1. Radiotherapy & chemotherapy

RIT has been available throughout the past sixty years and usually exists as a complementary treatment to surgical treatment. DTC Patients with a high risk of recurrence have benefited from utilizing RIT, whereas DTC patients with low risk have not benefited from its effects on tumor-free and final survival [75]. Even while RIT is often well tolerated, it may have a number of short- and long-term harmful adverse effects [76]. Some studies have attempted to combine ¹³¹I radiation therapy with PTT in TC [54,77]. RIT is now being widely employed in the treatment of TC. Compared with single treatment, the combination of radiation therapy and PTT has stronger anti-tumor activity, and no significant toxic side effects were observed in animal experiments, so the clinical application is promising.

Since chemotherapeutic drugs have a propensity to destroy both tumor cells and healthy cells without discrimination, chemotherapy is not frequently employed in DTC. In contrast, for undifferentiated TC,
radiation therapy and chemotherapy are often combined with surgery. The American Thyroid Association guidelines recommend docetaxel/paclitaxel and platinum in ATC, despite yielding no benefit to survival in advanced ATC [78]. One of the key problems preventing the successful treatment of malignant tumors is multidrug resistance (MDR) [79]. The construction of nanoparticles for precise targeted delivery of chemotherapeutic drugs is expected to solve this problem, and the construction of optical diagnostic imaging, phototherapy, and chemotherapeutic drug delivery in a multimodal nanoplatform has become a popular topic for research. According to one study, carboplatin (CBDCA) and PDT together may more effectively inhibit tumor development and trigger apoptosis in anaplastic TC via modulating EGFR and PI3K as well as activating PTEN delivery [70]. PLGA-Au-TiO2@CPT-11 and PLGA-Au-TiO2@CPT-11 + NIR nanoparticles have shown excellent antitumor characteristics and decreased cell invasion activity in B-CPAP and FTC-133 TC cell lines [79]. We believe that targeted photoexcitation to control the precise release of chemotherapeutic agents, complemented by phototherapy and real-time imaging of tumors can together propel chemotherapy into a new phase.

4.2. RNA therapy

RNA therapy has been extensively researched and developed as a novel diagnostic and therapeutic tool for cancers. The thermodynamic stability and specific targeting of RNA offer the possibility of RNA therapy, which reduces the oncogenic properties of cancer cells by over-expressing cancer-specific genes through small interfering RNA (SiRNA), resulting in apoptosis of cancer cells [80]. The prognosis for ATC, a thyroid subtype, is quite poor, and standard therapies, including surgery, radiation, and chemotherapy, have not been very effective. V-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations are present in 40% of ATC patients, while additional MAPK pathway mutations (downstream of BRAF) are present in 20%–40% of ATC cases. Yanlan Liu et al. designed a NIRF nanoplanform for imaging metastatic ATC combined with RNA therapy [81]. It has been demonstrated that the group’s newly created NIR nanoplanform can make it easier to introduce siBRAF into ATC transplant tumors in vivo. This will cause strong BRAF silencing in the tumor tissues and will effectively stop the growth of the tumor without causing any discernible side effects. Experimental investigations showed the capacity to cause lengthy circulation and substantial tumor accumulation in both xenograft and in situ ATC models (Fig. 5). More remarkably, the systemic administration of siBRAF-carrying NIR nanoparticles dramatically decreased the incidence of intrapulmonary micro-metastases. We believe that excitation by optical localization can achieve aggregated release of siRNA, and may increase the targeting and promotion of cancer cells into programmed death, making it a very promising diagnostic and therapeutic option for malignant tumors. However, its clinical translation needs to overcome the shortcomings of RNA biological instability and short circulating half-life [82]. Experimental data related to RNA therapy combined with optical imaging/therapy for TC are still lacking, and only a few RNA-based nanoparticles of other systems have entered clinical trials. Thus, we expect more research results to emerge.

4.3. Optical imaging-guided surgery

Real-time feedback and the availability of reasonably priced video systems that provide a broad view of the surgical field are two potential benefits of OI [83]. Therefore, the application of OI technology to surgery will enhance the surgeon’s preoperative and intraoperative visualization and improves the accuracy of postoperative assessments, facilitating integration into the daily clinical surgical operation process.

4.3.1. Lumpectomy guidance

Surgery is one of the treatments of choice for the vast majority of solid tumors. Traditional imaging techniques are difficult to apply in the operating room due to low temporal or spatial resolution, cumbersome and large imaging instruments, and poor timeliness [22]. NIR imaging, characterized by high temporal and spatial resolution molecular imaging, has received tremendous focus from researchers. In the last decade, NIR-II imaging with less light scattering, deeper penetration depth, and higher signal-to-noise ratio of imaging compared to NIR-I imaging, has shown great potential for clinical applications. The U.S. Food and Drug Administration (FDA) has approved a number of NIR fluorescent dyes (indocyanine green (ICG), 5-aminolevulinic acid (5-ALA), and methylene blue) and imaging systems for diagnostic and therapeutic applications [86–88]. Among them, ICG has been extensively utilized in clinical applications, including tumor imaging, lymph node imaging, angiography, and tissue perfusion, by virtue of its good biosafety and superior optical properties. ICG, as a NIR-II imaging dye, has been widely applied in tumor resection evaluation. ICG-based tracers can be localized in real-time, effectively and precisely, reducing the chances of missing or mistakenly injuring normal thyroid tissue or important anatomical structures around the thyroid, and maximizing patient prognosis based on complete resection of tumor tissue. It has a high application value in the surgical resection of primary and recurrent tumors in the head and neck [89–91]. Tissue factor (TF) is a prospective diagnostic marker for a number of malignancies, including breast, pancreatic, and TC, among others, according to recent research. A study [92] developed IRDye 800CW-ALT-836 (Fig. 6) based on TF-specific monoclonal antibodies, is a fluorescent dye with superior targeting ability, which showed preliminary effectiveness in preclinical mouse models for the diagnosis and treatment of ATC, facilitating complete in situ resection of ATC tumors. NIR-FI is the most clinically promising OI modality for real-time surgical navigation, assisting surgeons in the complete removal of tumors while minimizing surgical complications.

A study concluded that OCT can differentiate between benign, malignant, and normal thyroid tissue in ex vivo specimens [35]. It has also been shown to be able to distinguish the thyroid and parathyroid glands [37]. The capacity of OCT to conduct real-time surgical navigation during an operation has also been demonstrated [93,94]. According to research [36], in ex vivo thyroidectomy specimens of patients who had undergone surgical excision for the therapy of PTC, optical biopsy employing OCT is a viable alternative to frozen sections for the diagnosis of microscopic extrathyroidal extension (mETE). Using a changing axis of laser scanning, OCT can show high-resolution real-time pictures of the tumor and surrounding envelope in this preliminary study [36]. OCT is simple to use
and may be completed in 3 min or less on average. OCT may eventually be able to do intraoperative “optical biopsies” without the need for fixation, staining, or tissue removal with further advancements in OCT miniaturization and intraoperative sterile probe formats. However, OCT imaging can only penetrate as deep as 1–2 mm, hence intraoperative thyroid imaging is only possible on the exposed surface and superficial tissue.

4.3.2. Mapping metastatic lymph nodes
Lymph node dissection is a critical component of radical TC surgery. The extent of lymph node dissection is still in disagreement, but there is a general consensus that dissection at minimum should cover the central zone (zone VI), since it is often the first station of TC lymph node metastasis. A series of problems, including laryngeal return nerve damage and hypoparathyroidism, can result from over-treating prophylactic lymph node dissection [95]. NIR fluorescence-guided lymph node dissection can reduce these problems to a large extent.

A clinical study [96] found that PTC nodal metastases had a stronger fluorescence intensity than healthy lymph nodes (p < 0.0001) and fat/connective tissue (p < 0.0001) (Fig. 7), confirming that EMI-137 was primarily aggregated in the cytoplasm of TPC1 cell lines and PTC nodal metastases and that the near-infrared fluorescence (NIRF) tracer was internalized in MET-positive cells. The use of NIRF tracer (EMI-137) in the perioperative period to detect PTC lymph node metastases is safe and feasible and may reduce the negativity of prophylactic central compartmentalized node dissection (CLND), ultimately minimizing the incidence of overtreatment and complications during PTC lymph node dissection.

NIR imaging to identify metastatic lymph nodes of TC using fluorescent probes formed by ICG as the basic backbone with targeted functionalization modification is one of the very promising methods that can be applied to surgical navigation to reduce excessive lymph node dissection. For example, the ICG-99mTc-nanocolloid combination designed by Nilda Sütay Süslü et al. [90] and a combination of ICG and carbon nanoparticles (CNs) designed by Xing Zhang et al. [97] have been shown in clinical studies to more accurately identify metastatic lymph nodes. This can provide precise clinical staging and lymph node dissection to improve the prognostic survival quality of patients.

Real-time intraoperative lymph node imaging screening is limited by the 1–2 mm imaging depth of OCT. However, Erickson-Bhatt, Sarah J et al. [93] suggested that in the future, portable intraoperative systems with OCT needle probes could allow in vivo imaging of the surgical cavity and exposed local area lymph nodes after the removal of the tumor. The ability to differentiate between metastatic lymph nodes and healthy lymph nodes has been shown to depend on the nuclear characteristics of papillary TC cell inclusion bodies seen inside the lymph node parenchyma (Fig. 8) [37], which manifests as the lack of homogenous parenchyma on OCT. The primary characteristic that distinguishes metastatic lymph nodes from normal lymph nodes on OCT is the lack of homogenous parenchyma. It was observed in 78% (14/18) of metastatic lymph nodes.

Fig. 6. Serial FI following injection of IRDye 800CW-ALT-836 and image-guided tumor removal seven days later. In vitro fluorescent imaging, strong fluorescent signals were seen in the tumor, but not in the other organs. Blue dashed circles indicated the tumor [92] (Reproduced from Ref. [92] with permission. Copyright 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. A description of the intrinsic fluorescence observed in both normal lymph nodes and formalin-fixed PTC nodal metastases under quantitative spectroscopy conditions [96]. (Reproduced from Ref. [96] with permission. Copyright 2022 The Author(s). Published by Springer Nature).
Images of lymph nodes and parathyroid adenomas could be misinterpreted for one another, failing to discriminate between benign and malignant thyroid nodes.

PAI has not been explored for the early diagnosis and treatment of TC micrometastases. However, its significance has been reported in other diseases, such as in the work of Qian Yu et al. where PAI was concluded to be able to detect in vivo melanoma liver micrometastases up to 7 mm deep with a size of approximately 400 μm. This is more sensitive than the capabilities of that of ultrasound and MRI [14]. Due to its excellent penetration depth and sensitivity for metastasis identification, we can foresee that PAI will have the potential to be an excellent media for surgical navigation.

4.3.3. Identifying parathyroid gland

TC surgery can often be accompanied by numerous complications. Due to accidental excision of the gland or damage to the blood vessels supplying the parathyroid glands, hypoparathyroidism is the most prevalent complication following total or almost total thyroidectomy. According to reports, the percentage of lifelong hypoparathyroidism ranges from 0.4 to 13.8% [11] and may reach 37% in cases of bilateral neck dissection for thyroid malignancy [98].

NIR imaging is very effective in preventing hypoparathyroidism to be believed by most surgeons, because it can be applied to examine the parathyroid glands (PGs) during TC surgery and determine if the blood supply to the glands is compromised [99]. The application of NIR imaging techniques in the prevention of parathyroid injury is divided into two main categories: (1) Imaging of parathyroid autofluorescence; (2) FI with exogenous tracers (e.g., ICG).

By visualizing the parathyroid glands (Fig. 9 shows the green ICGA fluorescence of the residual parathyroid glands [100]), NIR fluorescence-guided surgery is an effective, feasible, and safe method to reduce the incidence of post-thyroidectomy hypoparathyroidism. It reduces the risk of postoperative hypoparathyroidism and hypocalcemia as a result of fluorescence-guided surgical research to be able to improve the early detection, visibility, and preservation of PGs in addition. This imaging method also aids in locating unintentionally removed glands on samples for later autologous transplantation [99]. During thyroid surgery, OCT can be used as a device to assist identifies parathyroid glands. According to studies [37,99,101–103], OCT imaging’s qualitative criteria may be utilized to identify and preserve parathyroid glands during thyroidectomy, and the procedure has no side effects or radiation emissions. However, a study [104] observed a marginally better vision of the gland in white light, presumably because the strong background signal of the hypervascularized tumor tissue interfered with the imaging of FI. Research including 542 patients show no discernible difference in the number of visualized PGs between the NIR autofluorescence and conventional groups [105], because of the surgeon’s extensive experience.

4.3.4. Identification of the thoracic duct

When performing lymph node dissection in zone IV, the thoracic duct is not readily identifiable and is very vulnerable to injury, leading to celiac leakage. So far, there has been no conventional technique for the identification of intraoperative auxiliary thoracic duct (TD). Previous cases have reported the use of ICG for TD identification in the thorax and abdomen in humans [106–108]. One study [109] performed ICG NIR imaging intraoperatively and postoperatively in six patients who underwent left cervical lymphatic dissection (grade II-IV) for TC or melanoma (typical FI is shown in Fig. 10), demonstrating that ICG identification of TD is technically feasible and has the potential to be an important adjunct for surgeons. It will also help to identify the location of the injury and confirm the completion of the repair when intraoperative celiac fluid leakage is observed. Nevertheless, limited by the depth of...
NIR-FI, a great deal of surgical dissection work is required before FI can be visualized optimally, which inevitably prolongs the procedure time.

5. Challenges

We believe that OI diagnosis and treatment will have a broad application prospect in TC, but the exploration of clinical translation has also revealed unavoidable shortcomings. In the diagnosis and treatment of thyroid nodules, fluorescence imaging can only obtain two-dimensional image information of the tumor; OCT is only suitable for surgeons to explore the area of interest during surgery because the imaging depth is limited to 1–2 mm; PAI is easily affected by motion artifacts, thus reducing the image quality; DOT imaging is more time-consuming, and there is still a lack of relevant studies in the field of thyroid. The limited depth of penetration has become the biggest obstacle to the clinical translation of OI. How to avoid the influence of optical properties (scattering, refraction and absorption) on the stability of imaging and ensure the quality of imaging has also become an urgent problem to be addressed. In addition, NIR-II fluorescence imaging, as the most promising imaging modality in OI, still has a long way to go for its clinical translation. The ideal fluorescent probe should have long fluorescence emission time, good photostability and water solubility, non-toxic or low toxicity, easy metabolism, high quantum yield, and tumor-specific enrichment. To date, only three NIR fluorescent probes have been authorized by the FDA for clinical use: ICG, methylene blue, and 5-ALA. More outstanding targeted fluorescent probes remain to be explored. The specific advantages and disadvantages of the four imaging modalities are clearly shown in Table 4.

In the last decade, researchers have explored the utility of OI and therapy in the diagnosis and treatment of TC, but there is a lack of unified parametric standards for OI (e.g., in the assessment of fluorescence signal intensity and quantification time [83]), and no consensus on a system for evaluating the effectiveness of optical therapy. Also, advanced and standardized OI cameras need to be improved and developed. In addition, a large amount of research on optical diagnosis and treatment of TC are still in stages of basic research, and clinical data are relatively lacking. There is still a lot of work to be done in the process of OI to clinical translation.

Concerning optical therapy, we believe that it is still underdeveloped compared to conventional treatments for TC and its clinical translation is still very challenging. DTC, which accounts for more than 95% of TCs, is generally treated by surgical resection (open surgery or lumpectomy), which is economical and has an excellent prognosis. In addition to the advantages of non-invasive nature of optical thermal therapy, other aspects, such as long-term toxic effects and prognostic follow-up, are still blank. The need for OI to ensure the same or even higher treatment efficiency as surgical treatment while controlling medical costs will be a very big challenge. However, for ATC, which is highly malignant, the clinical application of optical therapy has been most significant in improving the quality of survival, prolonging the survival period, and even curing the cancer.

6. Conclusions and further perspectives

Despite the aforementioned drawbacks of OI, it is undeniable that overdiagnosis of thyroid nodules is widespread and there is an urgent need for new and more accurate diagnostic and treatment modalities to be added to reduce the cost of treatment. The diagnosis of thyroid nodules by conventional ultrasound relies on image quality, neck coverage area and interpretation by the diagnostic ultrasonographic. The current gold standard for confirming the diagnosis of TC is FNAB, but it still has a high probability of failing to characterize thyroid nodules as an invasive diagnostic method with minimal coverage area. These may be the reasons for over-treatment of thyroid nodules. The great advantage of OI is that it is highly safe and at the same time highly malleable. The superior multi-modality diagnostic platform needs to be further explored and the
Table 4

Imaging Modality	NIR-II FI	OCT	PA	DOT
Advantages				
Common	1. Non-invasive	2. High biocompatibility	3. No radiation	4. High resolution
Unique	1. Detect small vessels that are not detected by color Doppler ultrasound	2. Displays key functional data (e.g., oxygen saturation)	3. Precise data for clinical staging	4. Real-time feedback for surgical navigation
Disadvantages				
Common	1. Relatively poor depth compared to PET, MRI, or X-ray based techniques	2. Unstable image quality due to optical limitations and thyroid gland structure near the trachea	1. Susceptible to motion artifacts and difficult to control image quality	1. Long imaging time
Unique	1. Limited penetration depth	2. Two-dimensional imaging	1. Penetration-depth and resolution are inversely proportional to the frequency of the ultrasound detector used (center frequency of 4–6 MHz and a bandwidth of 0.1–10 MHz for an imaging depth of 2–4 cm)	

The specific advantages and disadvantages of the four imaging modalities.
References

[1] H. Qiu, S. Cao, R. Xu, Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom on the global epidemiological data released in 2020, Cancer Commun. 41 (10) (2021) 1037–1048, https://doi.org/10.1007/s12119-021-00929-8.

[2] B.A. Kilfoil, T. Zeng, T.R. Holford, X. Han, M.H. Ward, A. Sjodin, T. Zhang, Y. Bai, C. Zhu, G.L. Gu, Y. Zhang, International patterns and trends in thyroid cancer incidence, 1973–2002, Cancer Cause Control 20 (5) (2009) 525–531, https://doi.org/10.1007/s10552-008-9260-4.

[3] L. Davies, H.G.Welch, Current thyroid cancer trends in the United States, JAMA Oncol. Head Neck Surg 140 (4) (2014) 317–322, https://doi.org/10.1001/jamaoncol.2014.141.

[4] S. Vaccarella, S. Franceschi, F. Bray, C.P. Wild, M. Plummer, L. Dal Maso, Worldwide thyroid cancer epidemic: The increasing impact of overdiagnosis, N. Engl. J. Med. 375 (7) (2016) 614–617, https://doi.org/10.1056/NEJMmp1604412.

[5] D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McLeroy, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Stewart, R.M. Tulett, Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer, Thyroid 19 (11) (2009) 1167–1214, https://doi.org/10.1089/thy.2009.0110.

[6] R.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawa, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tulett, L. Wartofsky, 2015 American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer, Thyroid 26 (1) (2016) 1–133, https://doi.org/10.1089/thy.2015.0020.

[7] S. Filetti, C. Durante, D. Hartl, S. Leboulleux, L.D. Locati, K. Newbold, M. Godi, P. Papotti, A. Dituri, Surfactant stabilized gold nanomaterials for environmental sensing applications, Environ. Res. 208 (2022), 112644, https://doi.org/10.1016/j.envres.2022.112644.

[8] H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer complication after thyroidectomy, Adv. Biomed. Res. 8 (1) (2019) 14, https://doi.org/10.4103/abr.abr_3_19.

[9] A. Kachooei, B. Iraj, M. Nazem, M. Kolahdoozan, Assessment of the early and late breast cancer therapy, J. Funct. Biomater. 12 (4) (2021) 75, https://doi.org/10.3390/jfb12040075.

[10] J. Najeeb, U. Farwa, F. Ishaque, H. Munir, A. Rahdar, M. Batool, M.F. Nazar, A. Awan, M.B. Tahir, Fluorescent-based nanosensors for sensitive detection of a biomarker of papillary thyroid cancer using peptide-functionalized imaging probes, Biomolecules 9 (3) (2019) 530, https://doi.org/10.3390/biom9030530.

[11] L. Cortese, G. Lo Presti, M. Zanoletti, G. Aranda, M. Buttassova, D. Contini, A. Dalla Mora, H. Delghani, I. Di Siano, S. De Morra, A. Fanelli, A. Nguyen-Dinh, M. Renna, B. Rosinski, M. Scaurica, A. Toni, U.M. Weigel, S. Wojtkewicz, T. Dur dredan, The LUCA device: a multi-modal platform combining diffuse optics and ultrasound imaging for thyroid cancer screening, Biomed. Opt. Express 12 (1) (2021) 335, https://doi.org/10.1117/12.2191051.

[12] C.M. Weekley, H.E. Harris, Which form is that? The importance of selenium nutrition and cancer, J. Funct. Biomater. 12 (4) (2021) 220, https://doi.org/10.1007/978-3-662-03193-3.

[13] K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer, Thyroid 31 (3) (2021) 337–386, https://doi.org/10.1089/thy.2020.0944.

[14] E. Chahbardizamani, R. Salehidoost, M. Amini, A. Aminoroury, H. Rezvaniyan, A. Kachoei, B. Iraj, M. Nazem, M. Kolahdoozan, Assessment of the early and complication after thyroidectomy, Adv. Biomed. Res. 8 (1) (2019) 14, https://doi.org/10.4103/abr.abr_3_19.

[15] F. Kirfel, Laser–matter interactions: fundamentals and applications, Adv. Biol. Med. Phys. 36 (3) (2007) 216–220, https://doi.org/10.1093/npjqqmd/10062193.3.

[16] I. Fatima, A. Rahdar, S. Sargazi, M. Barani, H. Madry, A. Rahdar, M. Cucchiarini, Quantum dot: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy, J. Funct. Biomater. 12 (4) (2021) 75, https://doi.org/10.3390/jfb12040075.

[17] Q. Yu, S. Huang, Z. Wu, J. Zheng, X. Chen, L. Nie, Label-free visualization of early cancer hepatic micrometastasis and intraoperative guided surgery by photoacoustic imaging, J. Nucl. Med. 61 (7) (2020) 1079–1085, https://doi.org/10.2967/jnumed.120.231315.

[18] M. Barani, M. Zeehan, D. Kalantar-Neyestani, M.A. Farroq, A. Rahdar, N.K. Jha, S. Sargazi, P.K. Gupta, V.K. Thakur, Nanomaterials in the management of gram-negative bacterial infections, Nanomaterials 11 (10) (2021) 2535, https://doi.org/10.3390/nano11102535.

[19] M. Barani, S. Zare, V. Mohammadzadeh, A. Rahdar, S. Pandey, N.K. Jha, P.K. Gupta, V.K. Thakur, Theranostic advances of bionanomaterials against gestational diabetes mellitus: A preliminary review, J. Funct. Biomater. 12 (4) (2021) 54, https://doi.org/10.3390/jfb12040054.

[20] K. Rizwan, A. Rahdar, M. Bilal, H.M.N. Iqbal, MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental samples, J. Chromatogr. A 291 (4) (2021) 152820, https://doi.org/10.1016/j.chroma.2021.152820.

[21] J. Najaee, U. Farwa, F. Ishaque, H. Munir, A. Rahdar, M.F. Nazar, M.N. Zafar, Surfaceart stabilized gold nanomaterials for environmental sensing applications – a review, Environ. Rev. 20 (8) (2022), 112644, https://doi.org/10.1016/j.envres.2022.112644.

[22] M. Batool, M.F. Nazar, A. Awan, M.B. Tahir, A. Rahdar, A.E. Shalan, S. Lancers-Méndez, M.N. Zafar, Rismuth-based heterojunction nanocomposites for photocatalysis and potassium detection applications, Nano-Struct. Nano-Objects 27 (2021), 100762, https://doi.org/10.1016/j.nanonano.2021.100762.

[23] P.N. Prasad, B.R. Masters, Introduction to biophotonics, J. Biomed. Opt. 10 (3) (2005), 039901, https://doi.org/10.1117/1.1936172.
enhanced multimodal imaging-guided phototherapy, Biomaterials 1 (2018), 1001-1004.

[56] X. Song, L. Feng, C. Li, L. Zhang, L. Liu. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperoxidurferocarbonyl to overcome hypoxia associated resistance in cancer therapies, Nano Lett. 16 (10) (2016) 6145-6153, https://doi.org/10.1021/acs.nanolett.6b02601.

[57] S. Phoebre, G. Yang, Q.L. Wei, A. Verma, Y. Zhao, Catalase integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor, ACS Nano 4 (2010), 960107.

[58] H. Chen, J. Tian, W. He, Z. Guo, H2O2 activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells, J. Am. Chem. Soc. 137 (4) (2015) 1593-1602, https://doi.org/10.1021/ja511420n.

[59] S. Mahanna, H.H.L. Chan, J.L. Townsend, C.S. Jin, L. Ding, M.S. Valic, C.M. Douglas, C.M. MacLaughlin, J. Chen, Z. Zheng, J.C. Irish, Photodynamic therapy enables tumor-specific ablation in preclinical models of thyroid cancer, Endocr. Relat. Cancer 27 (2) (2020) 41-53, https://doi.org/10.1016/j.endc.2019.02.058.

[60] S. Chatterjee, R. Khee, P. Chung, R. Ge, J. Ahn, Sulfurophane enhances the efficacy of photodynamic therapy in anaplastic thyroid cancer through ras/RAF/ERK pathway suppression, J. Photochem. Photobiol. B 179 (2018) 46-53, https://doi.org/10.1016/j.jphotbiol.2017.12.013.

[61] R. Biswas, A. Mondal, J. Ahn, Deregulation of EGF-R-PI3K and activation of PTEN by photodynamic therapy combined with carboxyl in human anaplastic thyroid cancer cells and xenograft tumors in nude mice, J. Photochem. Photobiol. B 145 (2015) 118-127, https://doi.org/10.1016/j.jphotobiol.2015.02.024.

[62] H. Kim, S.W. Kim, K.H. Seok, C.W. Huang, J. Ahn, J. Jin, H.W. Kang, Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer, Photochem. Photobiol. 24 (2018) 15-21, https://doi.org/10.1002/pdpb.201800808.

[63] D. Yan, W. Xie, J. Zhai, D. Wang, B.Z. Tang. Donor–Acceptor Red–Bridge manipulation for constructing a stable NIR-II aggregation-induced emission lumogen with balanced phototheranostic performance, Angew. Chem. 60 (51) (2021) 26769-26776, https://doi.org/10.1002/anie.2021011767.

[64] Y. Dai, H. Zhao, X. He, W. Du, Y. Kong, Z. Wang, M. Li, Q. Shen, P. Sun, Q. Fan, N. IR-II excitation photothermal nanomedicine for fluorescence/photocauterumor imaging and targeted photothermal-photodynamic thermodynamic therapy, Small 17 (42) (2021), 2102527, https://doi.org/10.1002/smll.202102527.

[65] Q. Nair, Y. J. Li, J. Shi, N. IR-driven water splitting H 2 production nanoplatform for H2 -mediated cascade-amplifying synergetic cancer therapy, ACS Appl. Mater. Interfaces 12 (2021) 23677-23688, https://doi.org/10.1021/acsami.2c00385.

[66] B. Schmidbauer, K. Menhart, D. Hellwig, J. Gross, Differentiated thyroid cancer—treatment: state of the art, Int. J. Mol. Sci. 18 (6) (2017) 1292, https://doi.org/10.3390/ijms18061292.

[67] E.J. Sherman, S.H. Lim, A.L. Ho, R.A. Ghosein, M.G. Fury, A.R. Shaha, M. Rivero, G. S. Wolden, N. Lee, D.G. Pfister, Concurrent doxorubicin and radiotherapy for anaplastic thyroid cancer: a critical re-evaluation including uniform pathologic review, Radioter. Oncol. 101 (3) (2021) 425-430, https://doi.org/10.1016/j.radonc.2021.09.004.

[68] M. Zhou, Y. Chen, M. Adachi, W. Xin, B. Erwin, O. Mawlawi, S.Y. Lai, C. Li, Single agent nanotherapy for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer, Biomaterials 57 (2015) 41-49, https://doi.org/10.1016/j.biomaterials.2015.05.063.

[69] R.C. Smallridge, K.B. Ain, S.L. Asa, K.C. Bible, J.D. Brierley, K.D. Burman, E. Kebedew, N.Y. Lee, Y.E. Nikiforov, M.S. Rosenthal, M.H. Shah, A.R. Shaha, R.M. Tuttle, American Thyroid Association guidelines for management of patients with anaplastic thyroid carcinoma: official journal of the American Thyroid Association, Ann. Surg. Oncol. 22 (11) (2015) 1104-1113, https://doi.org/10.1245/s10434-015-4302-0.

[70] Y. Yu, L. Tong, Y. Ao, G. Zhang, Y. Liu, H. Zhang, NIR triggered PLGA coated Au@SiO2 core loaded CPT-11 nanoparticles for human Drug Deliv. 27 (1) (2020) 855-863, https://doi.org/10.1002/adma.201757752.

[71] R. Arishad, I. Fatima, S. Sargazi, A. Rahdar, M. Karamadeh-Jahromi, S. Pandey, A.M. Díez-Pascual, M. Bilal, Novel perspectives towards RNA-based nano-theranostics approaches for cancer management, Nanomaterials 11 (12) (2021) 3330, https://doi.org/10.3390/nano11123330.

[72] Y. Liu, V. Gunda, X. Zhu, X. Xu, J. Wu, D. Askhatova, O.C. Farokhzad, S. Parangi, J. Shi, Theranostic near-infrared fluorescent nanoparticle for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer, Proc. Natl. Acad. Sci. U. S. A. 119 (2021) 2422, https://doi.org/10.1073/pnas.2007812119.

[73] R.C. Smallridge, K.B. Ain, S.L. Asa, K.C. Bible, J.D. Brierley, K.D. Burman, E. Kebedew, N.Y. Lee, Y.E. Nikiforov, M.S. Rosenthal, M.H. Shah, A.R. Shaha, R.M. Tuttle, American Thyroid Association guidelines for management of patients with anaplastic thyroid carcinoma: official journal of the American Thyroid Association, Ann. Surg. Oncol. 22 (11) (2015) 1104-1113, https://doi.org/10.1245/s10434-015-4302-0.

[74] Y. Yu, L. Tong, Y. Ao, G. Zhang, Y. Liu, H. Zhang, NIR triggered PLGA coated Au@SiO2 core loaded CPT-11 nanoparticles for human Drug Deliv. 27 (1) (2020) 855-863, https://doi.org/10.1002/adma.201757752.

[75] R. Arishad, I. Fatima, S. Sargazi, A. Rahdar, M. Karamadeh-Jahromi, S. Pandey, A.M. Díez-Pascual, M. Bilal, Novel perspectives towards RNA-based nano-theranostics approaches for cancer management, Nanomaterials 11 (12) (2021) 3330, https://doi.org/10.3390/nano11123330.
C. Shao et al. Materials Today Bio 17 (2022) 100441

[86] T. Namikawa, Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer, World J. Gastroenterol. 21 (29) (2015) 8769, https://doi.org/10.3748/wjg.v21.i29.8769.

[87] A. Matsui, E. Tanaka, H.S. Choi, V. Kianzad, S. Gioux, S.J. Lommes, J.V. Frangioni, Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue, Surgery 148 (1) (2015) 78–86, https://doi.org/10.1016/j.surg.2014.12.003.

[88] L. van Manen, H.J.M. Handgraaf, M. Diana, J. Dijkstra, T. Ishizawa, A. Matsui, E. Tanaka, H.S. Choi, V. Kianzad, S. Gioux, S.J. Lommes, J.V. Frangioni, Near-infrared fluorescence on surgical margins: clinical applications for sentinel lymph node mapping, Ann. Surg. Med. 45 (10) (2013) 654–659, https://doi.org/10.1002/lsm.22195.

[89] K. Böttcher, M.G. Compeer, J.G.R. De Mey, O. Schober, M. Schafers, C. Bremer, B. Riemann, C. Bremer, V. Kianzad, S. Gioux, S.J. Lommes, J.V. Frangioni, Near-infrared fluorescence imaging for lymph node detection in papillary thyroid cancer: novel diagnostic tools for more selective central lymph node compartment dissection, Ann. Surg. Oncol. 24, https://doi.org/10.1210/en.2011-2017.

[90] S. Sommerey, N. Al Arabi, R. Ladurner, C. Chiapponi, H. Stepp, K.K.J. Halfdell, J.K.S. Gallwas, Intraoperative optical coherence tomography imaging to identify parathyroid glands, Surg. Endosc. 29 (9) (2015) 2698–2704, https://doi.org/10.1007/s00464-014-3992-x.

[91] P.K.C. Jonker, M.J.H. Metman, L.H.J. Sondorp, M.S. Sywak, A.J. Gill, L. Jansen, X. Zhang, Y. Shen, J. Li, G. Chen, Clinical feasibility of imaging with indocyanine green combined with carbon nanoparticles for sentinel lymph node identification in papillary thyroid microcarcinoma, Medicine 98 (36) (2019), e16935, https://doi.org/10.1097/MED.00000000000016935.

[92] N.S. Süslü, O. Katar, M. Tuncel, Role of indocyanine green combined with macroaggregated albumin and indocyanine green, Surg. Innovat. 21 (6) (2014) 622–629, https://doi.org/10.1089/surg.2013.0556.

[93] X. Zhang, Y. Shen, J. Li, G. Chen, Clinical feasibility of imaging with indocyanine green combined with carbon nanoparticles for sentinel lymph node identification in papillary thyroid microcarcinoma, Medicine 98 (36) (2019), e16935, https://doi.org/10.1097/MED.00000000000016935.

[94] A. Papadia, S. Imboden, S. Mohr, S. Lanz, K. Nirgianakis, M.D. Mueller, Near-infrared fluorescence imaging in the surgical management of an intrathoracic esophageal fistula: description of a surgical technique, J. Minim. Invasive Gynecol. 22 (7) (2015) 1304–1306, https://doi.org/10.1016/j.jmig.2015.06.014.

[95] L. Hu, Y. Uchida, Transabdominal approach for chylorrhea after esophagectomy by using near-infrared fluorescence imaging and radioimmunotherapy of anaplastic thyroid cancer, Adv. Sci. 7 (13) (2020) 1903595, https://doi.org/10.1002/advs.201903595.

[96] K. Büther, M.G. Compeer, J.G.R. De Mey, O. Schober, M. Schafers, C. Bremer, B. Riemann, C. Bremer, V. Kianzad, S. Gioux, S.J. Lommes, J.V. Frangioni, Near-infrared fluorescence imaging for lymph node detection in papillary thyroid cancer, Adv. Sci. 7 (13) (2020) 1903595, https://doi.org/10.1002/advs.201903595.

[97] R. Ladurner, K.K.J. Halfdell, N. Al Arabi, H. Stepp, S. Mueller, J.K.S. Gallwas, Optical coherence tomography as a method to identify parathyroid glands, Laser Surg. Med. 45 (10) (2013) 654–659, https://doi.org/10.1002/lsm.22195.

[98] K. Pantanowitz, P. Hsiung, T.H. Ko, K. Schneider, P.R. Herz, J.G. Fujimoto, S. Raza, L. van Kooten, S.M.E. Engelen, T. Lubbers, L.P.S. Stassen, N.D. Bouvy, Feasibility of indocyanine green fluorescence imaging for intraoperative identification of parathyroid glands during thyroid surgery, Head Neck 41 (2) (2019) 340–348, https://doi.org/10.1002/hed.25461.

[99] D.H.K. Kim, S.W. Kim, P. Kang, J. Choi, H.S. Lee, S.Y. Park, Y. Kim, Y. Ahn, K.D. Lee, Clinical applications of 5-aminolevulinic acid-mediated fluorescence image-guided surgery for thyroid cancer: utility for preventing hypoparathyroidism, Cancer 13 (15) (2021) 3702, https://doi.org/10.3390/cancers13153792.

[100] A.V. Rudin, E. Berber, Impact of fluorescence and autofluorescence on surgical strategy in benign and malignant neck endocrine diseases, Best Pract. Res. Clin. Endocrinol. Metab. 33 (4) (2019) 101311, https://doi.org/10.1016/j.beem.2019.101311.

[101] L. van Manen, H.J.M. Handgraaf, M. Diana, J. Dijkstra, T. Ishizawa, A. Papadia, S. Imboden, S. Mohr, S. Lanz, K. Nirgianakis, M.D. Mueller, Near-infrared fluorescence imaging may reduce temporary hypoparathyroidism in patients undergoing total thyroidectomy and central neck dissection, Thyroid 31 (9) (2021) 1400–1408, https://doi.org/10.1089/thy.2021.0056.

[102] A. Chakder, L.A. Shirley, A.M. Terando, R. Skoracki, J.E. Phay, Identification of the thoracic duct using indocyanine green during cervical lymphadenectomy, Ann. Surg. Oncol. 26 (3) (2019) 6690–6694, https://doi.org/10.1245/s10434-018-6690-4.

[103] J. Chakedis, L.A. Shirley, A.M. Terando, R. Skoracki, J.E. Phay, Identification of the thoracic duct using indocyanine green during cervical lymphadenectomy, Ann. Surg. Oncol. 26 (3) (2019) 6690–6694, https://doi.org/10.1245/s10434-018-6690-4.

[104] J. Chakedis, L.A. Shirley, A.M. Terando, R. Skoracki, J.E. Phay, Identification of the thoracic duct using indocyanine green during cervical lymphadenectomy, Ann. Surg. Oncol. 26 (3) (2019) 6690–6694, https://doi.org/10.1245/s10434-018-6690-4.

[105] Q. Li, K. Chen, W. Huang, H. Ma, X. Zhao, J. Zhang, Y. Zhang, C. Fang, L. Nie, Minimally invasive photothermal ablation assisted by laparoscopy as an effective preoperative neoadjuvant treatment for orthotopic hepatocellular carcinoma, Cancer Lett. 496 (2021) 169–178, https://doi.org/10.1016/j.canlet.2020.09.024.

[106] H. Kobayashi, P.L. Choyke, Near-infrared photoimmunotherapy of cancer, Accounts Chem. Res. 52 (8) (2019) 2352–2359, https://doi.org/10.1021/acs.accounts.9b00273.

[107] K. Nakano, Progress of molecular targeted therapy for head and neck cancer in clinical aspects, Mol. Biomed. 2 (1) (2021) 15, https://doi.org/10.1186/s43556-021-00032-5.