Application of a Software and Hardware Complex to Improve the Operational Reliability of Water Pipelines

I P Bandurina¹, M A Bandurin¹ and I A Prikhodko¹

¹Kuban State Agrarian University named after IT Trubilin, Kalinina st., 13, Krasnodar, 350044, Russia

E-mail: chepuraib@gmail.com

Abstract. This article discusses the issues of using a software and hardware complex to improve the operational reliability of water supply pipelines. The use of a software and hardware complex allows us to automate operational monitoring, and most importantly, significantly speed up the inspection of water supply pipelines for defects and damage by non-destructive testing methods, detect decompression and subsidence of soil around them. With its help, it is possible to characterize various parameters of defects and damages, as well as calculate the predicted residual life of their elements, and the geometric parameters of each defect, namely, the location, depth, width, height, as well as the operational assessment of the residual life, which consists in predicting the total number of freezing and thawing cycles that have passed during the period of operation and remained until the loss of bearing capacity of reinforced concrete elements of water pipelines.

1. Introduction

Water supply pipelines have a large margin of safety, but a number of negative factors, such as non-compliance with construction technology, a lack of geological and hydrological features of the route of the water supply channel during the design, as well as improper operation during the operation of the channel, to some extent reduces the effectiveness of water-permeable properties of the reinforced concrete lining of main channels. The problem of long-term operation of such structures is the lack of knowledge of processes occurring during its time, which makes it necessary to monitor the waterproofness of such structures in case of possible violations of the integrity of concrete coating and formation, various decompressions and voids [1].

2. Materials and methods

The software and hardware complex for improving the operational reliability of water supply pipelines is designed to determine various parameters of defects and damages, as well as calculate the predicted residual life of their elements. The software and hardware complex for improving the operational reliability of water supply pipelines [2] is used for operational monitoring of the technical condition of reinforced concrete water supply pipelines located in the ground, identifying dangerous defects and damage, as well as evaluating and predicting their technical condition and further suitability for operation [3].

Fig. 1 shows the technical part of the software and hardware complex for improving the operational reliability of water supply pipelines, including a stop 6, which is attached to the walls of the water...
supply pipeline 7 with the help of fixing screws and moves the frame 3 with rubber wheels 1 inside the pipeline 7 located in the ground 8 with the help of a telescopic rail 5 [4]. Data from the motion sensor 4 and antenna blocks 2 are sent to the processing unit, where data processing takes place, and an assessment of the technical condition of elements for defects and damage, as well as the surrounding soils 8 for the formation of decompression and subsidence, and a detailed decoding of the data obtained from the antenna blocks and positioning of the location of defects and damage using the GLONASS navigation system [5] takes place.

Figure 1. The technical part of the software and hardware complex for improving the operational reliability of water supply pipelines: 1-rubber wheels; 2-antenna blocks; 3-frame; 4-motion sensor; 5-telescopic rail; 6-stop; 7-water supply pipeline; 8-ground base.

The survey zones include [6]: zone 1 – is examined for defects and damage to the destruction of the bottom part of the water supply pipeline and subsidence of the underlying soil base; zone 2 – is examined for the formation of longitudinal and oblique cracks; zone 3 – is examined for the formation of transverse cracks and soil decompression, zones are assigned along the entire length of the water supply pipeline, each with a width equal to 30 % of the perimeter [7].

The use of the software and hardware complex to improve the operational reliability of water supply pipelines allows us to automate operational monitoring, and most importantly, significantly speed up (up to 5 times) the inspection of water supply pipelines for defects and damage by non-destructive testing methods, detect decompression and subsidence of the soil around them. Together, all this allows us to reliably assess the technical condition of water supply pipelines [8].

A comparative analysis of monitoring of various main channels showed that during construction, the slopes in some cases were not properly aligned and compacted, and therefore, due to subsidence of the soil base, voids of various shapes were formed under individual slabs, which can easily be determined by tapping. In such cases, the plates hung up and, due to their loose fit to each other, filtration through damage significantly increased [9, 10, 11].

During the inspection of right and left slopes of water supply channels, it was found that the sealing of joints between the reinforced concrete slabs was of poor quality. Cracks were formed on each longitudinal construction seam along its entire length, and they were found every 10-15 cm on the transverse seams. During the visual inspection, a number of other violations in the concrete lining were also detected, namely, the opening of the reinforcement, cracks in the plates, violation of the shape of plates, bulge and their displacement.

Based on the survey, the main types of possible violations of protective concrete coatings, destruction of the deformation seam, formation of straight, oblique, smooth and rough cracks in the coating plate, in combination with damage to the solid polyethylene screen, holes, punctures and cracks were identified [12].
In the future, geo-radar sounding and measurement of the concrete strength of water supply pipelines in normal and unsatisfactory operational conditions were performed using a software and hardware complex to increase the operational reliability of water supply pipelines [13, 14]. Fig. 2 shows the profile No. 51 passing along the bottom of the water supply pipeline, which is in an unsatisfactory condition, including 6 reinforced concrete rings, where voids have formed under rings No.1 and 4 and where water seeps due to the destruction of the joint between the rings, which can lead to subsidence of the hydraulic structure. The destruction of the joint is clearly visible between rings No.1 and 2.

![Figure 2. Profile No. 51 at the bottom of the water supply pipeline.](image)

In Fig. 3, the voids formed on top of ring No.9 are visible, the ring No.11 on the contrary is in a satisfactory condition, the reinforcement mesh is clearly visible, there are no sinks and cracks in the concrete surrounding it. Profile No. 52 passing along the top through the entire water supply pipeline, including 16 reinforced concrete rings, demonstrates its technical condition [15, 16]. The destruction of the joint between the rings, rings No.1 and 2, No.2 and 3, No.5 and 6, etc., is clearly visible, the destruction occurs, and the protective layer of concrete is loosened, shells and concrete corrosion are formed in the places where the rings come into contact with the base of the channel.

![Figure 3. Profile No. 52 on the top of the water supply pipeline including 16 reinforced concrete rings.](image)

Next, Figure 4 shows the profile No.53, which runs along the top of the water supply pipeline including 16 reinforced concrete rings [17]. The resulting voids and violations of the butt joints between the rings were isolated. It can be seen that shells have formed at the junction between No.9 and 10 rings and concrete corrosion occurs, and rings No. 4,5 and 12 have formed voids and the reinforcement mesh is exposed and corroded.
3. Conclusion

Automation of monitoring of the technical condition of reinforced concrete rings of the water supply pipeline produced by the software and hardware complex has shown that it is possible to identify characteristic defects and damages that are not visible during visual inspection of the elements of the structure. So, using the example of profile No. 53, rings that are in unsatisfactory condition are identified - No. 5, 10 and 12 require repair, and No. 3, 7 and 13 are in normal operational condition. On the ring No. 10, the reference points of the reinforcement are visible, as they are displaced or absent. Voids were formed under the ring No. 12, as well as the detachment of the concrete protective layer and its corrosion.

The presence of these damages after a long service life of the water supply pipeline is due to the imperfect technology of production and construction and installation works.

4. References

[1] Olgarenko G, Olgarenko V, Olgarenko I and Olgarenko V I 2019 Justification of methodological approaches to standardisation of irrigation as an element of resource saving and minimization of the anthropogenic load on agrobiocenosis *IOP Conference Series: Earth and Environmental Science* **337** (1) 012027

[2] Kireicheva L V and Zakharova O A 2002 The effect of cyclic irrigation with wastewater on the properties of gray forest soils *Eurasian Soil Science* **35**(9) 990-995

[3] Yurchenko I F 2017 Automatization of water distribution control for irrigation International *Journal of Advanced and Applied Sciences* **4**(2) 72-77

[4] Abdrazakov F K, Pankova T A, Zatinatsky S V, Orlova S S, Trushin Yu E 2017 Increasing efficiency of water resources use in forage crops irrigation *International Journal of Advanced Biotechnology and Research*. **8** 283-293

[5] Yurchenko I F 2018 Information support system designed for technical operation planning of reclamative facilities *Journal of Theoretical and Applied Information Technology* **96**(5) 1253-1265

[6] Bandurin M A, Volosukhin V A, Vanzha V V 2018 Technology for water economy monitoring of technical state of closed drainage on irrigation systems *Materials Science Forum* **931** 214-
218

[7] Olgarenko V I, Olgarenko G V and Olgarenko I V 2018 A method of integral efficiency evaluation of water use on irrigation systems *International Multidisciplinary Scientific GeoConference SGEM*. 18(3.1) 3-9

[8] Yurchenko I F 2018 Information support for decision making on dispatching control of water distribution in irrigation *Journal of Physics: Conference Series* 1015 042063.

[9] Kireicheva L V and Khokhlova O B 2000 Elemental composition of different fractions from the sapropel organic matter *Eurasian Soil Science* 33(9) 947-949

[10] Abdrazakov F K, Pankova T A, Zatinatsky S V, Orlova S S and Trushin Yu E 2017 Increasing efficiency of water resources use in forage crops irrigation *International Journal of Advanced Biotechnology and Research* 8 283-293

[11] Degtyareva O G, Degtyarev G V, Togo I A, Terleev V V, Nikonorov A O and Volkova Yu V 2016 Analysis of stress-strain state rainfall runoff control system – buttress dam *Procedia Engineering* 165 1619-1628

[12] Bandurin M A, Yurchenko I F and Bandurina I P 2019 Computer technology to assess the capacity reserve of the irrigation facilities of the agro-industrial complex *International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon* 2019 8933970

[13] Bandurin M A, Volosukhin V A, Mikheev A V, Volosukhin Y V and Bandurina I P 2018 Finite element simulation of cracks formation in parabolic flume above fixed service live *IOP Conference Series: Materials Science and Engineering* 327(2) 022010

[14] Yurchenko I F 2017 Methodological foundations for the creation of an information management system for water use in irrigation *Bulletin of Russian Agricultural Science* 1 13-17

[15] Degtyarev G V, Belokur K A and Sokolova I V 2018 Modeling of the building by numerical methods at assessment of the technical condition of structures *Materials Science Forum* 2018 931 141-147

[16] Bandurin M A, Vanzha V V, Volosukhin V A, Volosukhin Y V and Bandurina I P 2018 Finite-element simulation of permissible load on gate elements of water-conveying structures to assess risks of anthropogenic accidents *Journal of Physics: Conference Series* 1118(1) 012005

[17] Kuznetsov E V, Khadzhidi A E, Kilidi K I and Kurtnezirov A N 2018 Management of agro-resource potential for agricultural landscape stability increase *Plant Archives* 18(2) 2151-2158

[18] Degtyareva O G, Degtyarev G V, Lavrov N L and Aliiev D U 2018 Constructive-technological decisions in regulating the flow of atmospheric precipitation *Magazine of Civil Engineering* 82(6) 32-48

[19] Safronova T, Vladimirov S, Prikhodko I and Sergeyev A 2020 Optimization problem in mathematical modeling of technological processes of economic activity on rice irrigation systems *E3S Web of Conferences* 210 05014

[20] Olgarenko V I, Olgarenko I V and Olgarenko V I 2019 Technical condition diagnostics of the water supply facilities in the irrigation systems *IOP Conference Series: Materials Science and Engineering* 698 (2) 022060