The boundedness of multilinear commutators on locally compact Vilenkin groups

Canqin Tang

(Communicated by Hans Triebel)

2000 Mathematics Subject Classification. 43A70, 43A75.

Keywords and phrases. Multilinear commutator, Hardy space, Vilenkin group.

Abstract. Let G be a locally compact Vilenkin group. In this paper, the authors investigate the boundedness of multilinear commutators of fractional integral operator on Lebesgue spaces on G. Furthermore, the boundedness on Hardy spaces are also obtained in this paper.

1. Introduction

The commutators have been studied by many authors for a long time. A well known result which is discovered by Coifman, Rocherg and Weiss ([3], [6], [9]) is that the commutators $[b, T]$ of singular integral operators are bounded on some $L^p(\mathbb{R}^n)(1 < p < \infty)$ if and only if $b \in BMO$, where $[b, T]$ is defined by

$$[b, T]f(x) = b(x)Tf(x) - T(bf)(x).$$
A natural generalization of the commutator T^m_b is given by

\[(1.1) \quad T^m_b(f)(x) = \int_{\mathbb{R}^n} [b(x) - b(y)]^m K(x, y)f(y)dy,\]

where $m \in \mathbb{N}$. It was shown in [1] that it is bounded on $L^p(\omega)(1 < p < \infty)$ when $\omega \in A_p$. And in [2], the authors prove the $L^p(\omega)(1 < p < \infty)$-boundedness for multilinear commutators. And similar results can be found in [10]. This is the motivation of considering the boundedness for multilinear commutators of fractional integral operator on locally compact Vilenkin group G.

In order to state our results more precisely we first introduce some notations and definitions.

Throughout this paper, G will denote a bounded locally compact Vilenkin group, that is, G is a locally compact Abelian group containing a strictly decreasing sequence of compact open subgroups $\{G_n\}_{n=-\infty}^{\infty}$ such that

(a) $\cup_{n=-\infty}^{\infty} G_n = G$ and $\cap_{n=-\infty}^{\infty} G_n = \{0\}$;

(b) $\sup\{\text{order}(G_n/G_{n+1}) : n \in \mathbb{Z}\} = B < \infty$.

Choose Haar measure dx on G so that $|G_0| = 1$, where $|A|$ denotes the measure of a measurable subset A of G. Let $|G_n| = (m_n)^{-1}$ for each $n \in \mathbb{Z}$. Since $2m_n \leq m_{n+1} \leq Bm_n$, it follows that

$$\sum_{n=k}^{\infty} (m_n)^{-\alpha} \leq c(m_k)^{-\alpha}$$

and

$$\sum_{n=-\infty}^{k} (m_n)^{\alpha} \leq c(m_k)^{\alpha}$$

for any $\alpha > 0, k \in \mathbb{Z}$, where c is a constant independent of k. For each $n \in \mathbb{Z}$ we choose elements $z_{l,n} \in G(l \in \mathbb{Z}^+)$ so that the subsets $G_{l,n} := z_{l,n} + G_n$ of G satisfy $G_{k,n} \cap G_{l,n} = \phi$ if $k \neq l$ and $\cup_{l=0}^{\infty} G_{l,n} = G$; moreover, we choose $g_{0,n}$ such that $G_{0,n} = G_n$. We now define the function $d : G \times G \to \mathbb{R}$ by $d(x,y) = 0$ if $x - y = 0$ and $d(x,y) = (m_n)^{-1}$ if $x - y \in G_n \setminus G_{n+1}$. Then d is a metric on G and the topology on G generated by this metric is the same as the original topology on G. For $x \in G$, set $|x| = d(x,0)$. Then $|x| = (m_n)^{-1}$ if and only if $x \in G_n \setminus G_{n+1}$. Let $S(G)$ be the space of test functions and $S'(G)$ be the distribution space on G. And χ_{G_n} is the characteristic function of G_n. C can be denote various constants.

We also recall the definition of space of bounded mean oscillation. For $x_0 \in G$, set $I_j = x_0 + G_j$, we say a locally integrable function b has bounded
mean oscillation, \(b \in BMO(G) \), if
\[
\sup_{I_j \ni x} \inf_{c \in \mathbb{R}} \left(\frac{1}{|I_j|} \int_{I_j} |f(y) - c| \, dy \right) \leq \infty,
\]
where the supremum is taken over all cosets \(I_j \subset G \) (see[4]). Since the topological nature of \(G \) at any \(x \in G \) is the same as it is at 0, we choose \(x_0 = 0 \) in our article.

2. Main results and proofs

Define multilinear commutator of fractional integral operator \(I_{\alpha} \) as
\[
[b, I_{\alpha}]f(x) = \int_{G} \prod_{j=1}^{m} \left[b_j(x) - b_j(y) \right] \frac{f(y)}{|x-y|^{1-\alpha}} dy
\]
and maximal function
\[
f^{*}_{\alpha,r}(x) = \sup_{x \in G} |G_k|^\alpha \left(\frac{1}{|G_k|} \int_{G_k} |f(y)|^r \, dy \right)^{1/r}.
\]

Given any positive integer \(m \), for all \(1 \leq j \leq m \), we denote by \(C^m_j \) the family of all finite subsets \(\sigma = \{ \sigma(1), \ldots, \sigma(j) \} \) of \(\{1, \ldots, m\} \) of \(j \) different elements. For any \(\sigma \in C^m_j \), we associate the complementary sequence \(\sigma' \) given by \(\sigma' = \{1, 2, \ldots, m\} \setminus \sigma \), and
\[
[b_{\sigma}, I_{\alpha}]f(x) = \int_{G} \left[b_{\sigma(1)}(x) - b_{\sigma(1)}(y) \right] \cdots \left[b_{\sigma(j)}(x) - b_{\sigma(j)}(y) \right] \frac{f(y)}{|x-y|^{1-\alpha}} dy.
\]
suppose \(\|b_i\|_{BMO} = 1 \) for \(i = 1, 2, \ldots, m \). Let \(p' \) is adjoint index of \(p \). We have the following theorem.

Theorem 2.1. Let \(b = (b_1, \ldots, b_m) \), \(b_i \in BMO \), \(1/q = 1/p - \alpha \), \(1 < p < 1/\alpha \), \(0 < \alpha < 1 \), then \([b, I_{\alpha}]\) maps \(L^p(G) \) into \(L^q(G) \).

To prove this theorem, we need the following lemmas.

Lemma 2.1 (see [7]). Let \(p > 1, 1/q = 1/p - \alpha, 0 < \alpha < 1 \), then
\[
\|I_{\alpha}f\|_q \leq C\|f\|_p.
\]

Lemma 2.2 (see [5] and [8]). Let \(r < p < 1/\alpha \), \(1/q = 1/p - \alpha \), \(0 < \alpha < 1 \), then
\[
\|f^{*}_{\alpha,r}\|_q \leq C\|f\|_p.
\]
Lemma 2.3. Let $b = (b_1, \cdots, b_m)$, $b_i \in \text{BMO}$, $0 < \delta < \epsilon < 1$, then there exist a constant C depends on δ, ϵ, and choose p that $1 < p_1 < p < \frac{1}{\alpha}$ such that

$$M^\#_\delta([b, I_\alpha]f)(x) \leq C \left\{ M(I_\alpha f)(x) + \sum_{j=1}^{m-1} M_j([b_{\sigma'} , I_\alpha]f)(x) + M_{\alpha, p_1}(x) \right\}.$$

Proof. We firstly consider the case of $m = 1$, that is,

$$[b, I_\alpha]f(x) = \int_G [b(x) - b(y)] f(y) \frac{dy}{|x - y|^{1-\alpha}} = [b(x) - \lambda] I_\alpha f(x) - I_\alpha [(b - \lambda)f](x).$$

Fix x, let $x \in G_k$, since $||\alpha||^\delta - ||\beta||^\delta \leq |\alpha - \beta|^\delta$ for any $\alpha, \beta \in R$, $0 < \delta < 1$, then we have

$$\left(\frac{1}{|G_k|} \int_{G_k} \left| [b, I_\alpha]f(y) \right|^\delta dy \right)^{1/\delta} \leq \left(\frac{1}{|G_k|} \int_{G_k} \left| [b, I_\alpha]f(y) \right|^\delta dy \right)^{1/\delta}.$$

$$= C \left(\frac{1}{|G_k|} \int_{G_k} \left| [b(y) - \lambda] I_\alpha f(y) \right|^\delta dy \right)^{1/\delta}$$

$$+ C \left(\frac{1}{|G_k|} \int_{G_k} \left| I_\alpha [(b - \lambda)f](y) \right|^\delta dy \right)^{1/\delta} = I + II.$$

choose $\lambda = b_{G_k}$ and $1 < q < \epsilon/\delta$, using Hölder inequality and Jenson inequality, we can deduce that

$$I \leq C \left(\frac{1}{|G_k|} \int_{G_k} |b(y) - \lambda|^\delta q' dy \right)^{1/\delta q'} \left(\frac{1}{|G_k|} \int_{G_k} |I_\alpha f(y)|^\delta q dy \right)^{1/\delta q} \leq C ||b||_{\text{BMO}} M(I_\alpha f)(x).$$

To estimate II, let $f = f_1 + f_2$, $f_1 = f \chi_{G_k}$, then

$$II \leq C \left(\frac{1}{|G_k|} \int_{G_k} |I_\alpha [(b - \lambda)f_1](y)|^\delta dy \right)^{1/\delta}$$

$$+ \left(\frac{1}{|G_k|} \int_{G_k} |I_\alpha [(b - \lambda)f_2](y) - c|^\delta dy \right)^{1/\delta} = III + IV.$$
For III, we have
\[III \leq C \frac{1}{|G_k|} \int_{G_k} |I_\alpha[(b - \lambda) f]\| dy \]
\[\leq C \frac{1}{|G_k|} \int_{G_k} \int_{G_k} |b(y) - \lambda| \frac{|f(y)|}{|x - y|^{1-\alpha}} dy dx \]
\[\leq C \frac{1}{|G_k|^{1-\alpha}} \int_{G_k} |b(y) - \lambda||f(y)|| dy, \]
choose \(p_1 \) such that \(1 < p < 1/\alpha \), then
\[III \leq C \left(\frac{1}{|G_k|} \int_{G_k} |b(y) - \lambda|^{p_1} dy \right)^{1 \prime / p_1} |G_k|^\alpha \left(\frac{1}{|G_k|} \int_{G_k} |f(y)|^{p_1} dy \right)^{1 \prime / p_1} \]
\[\leq C \|b\|_{BMO} f_{\alpha, p_1}(x). \]
Next, we turn to estimate IV. Let
\[c = (I_\alpha[(b - \lambda) f_2])_{G_k}, \]
then
\[IV \leq C \frac{1}{|G_k|} \int_{G_k} |I_\alpha[(b - \lambda) f_2](y) - (I_\alpha[(b - \lambda) f_2])_{G_k}| dy \]
\[= C \frac{1}{|G_k|} \int_{G_k} \int_{G_k \setminus G_k} \left\{ \frac{b(\omega) - \lambda f(\omega)}{|y - \omega|^{1-\alpha}} d\omega \right\} dy \]
\[= C \frac{1}{|G_k|} \int_{G_k} \left\{ \frac{b(\omega) - \lambda f(\omega)}{|z - \omega|^{1-\alpha}} d\omega \right\} dy \]
\[\leq C \frac{1}{|G_k|} \int_{G_k} \sum_{i=-\infty}^{k-1} \int_{G_i \setminus G_{i+1}} |b(\omega) - \lambda f(\omega)| \]
\[\times \left\{ \frac{|y - z|}{|z - \omega|^{2-\alpha}} d\omega dz dy \right\} \]
\[\leq C \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{1-\alpha}} \int_{G_i} |b(\omega) - \lambda f(\omega)| d\omega \]
\[\leq C \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{1-\alpha}} \left(\frac{1}{|G_i|} \int_{G_i} |b(\omega) - \lambda|^{p_1} d\omega \right)^{1 \prime / p_1} \]
\[\times \left(\frac{1}{|G_i|} \int_{G_i} |f(\omega)|^{p_1} d\omega \right)^{1 \prime / p_1} \]
where

$$\frac{1}{|G_n|} \int_{G_n} |b - b_{G_{n+1}}| dx \geq \frac{1}{|G_{n+1}|} \int_{G_{n+1}} |b(x) - b_{G_{n+1}}| dx \leq \frac{|G_{n+1}|}{|G_n|} \|b\|_{BMO} \leq \frac{1}{2} \|b\|_{BMO},$$

for any $n \in \mathbb{Z}$, and

$$|b_{G_i} - b_{G_k}| = |b_{G_i} - b_{G_{i+1}}| + |b_{G_{i+1}} - b_{G_{i+2}}| + \cdots + |b_{G_{k-1}} - b_{G_k}| = \frac{1}{2} (k - i) \|b\|_{BMO}.$$

Therefore, we have proved that

$$M_\lambda^a([b, I_\alpha] f)(x) \leq C \|b\|_{BMO} [M_\epsilon (I_\alpha f)(x) + f_{\alpha, p_i}^*(x)]$$

for $m = 1$.

If $m \geq 2$, let $\lambda = (\lambda_1, \cdots, \lambda_m)$, we have

$$[b, I_\alpha] f(x) = \int_{G} \prod_{j=1}^{m} [(b_j(x) - b_j(y)] \frac{f(y)}{|x - y|^{1 - \alpha}} dy$$

$$= \int_{G} \prod_{j=1}^{m} [(b_j(x) - \lambda_j + \lambda_j - b_j(y)] \frac{f(y)}{|x - y|^{1 - \alpha}} dy$$

$$= \prod_{j=1}^{m} [(b_j(x) - \lambda_j) I_\alpha f(x) + (-1)^m I_\alpha (\prod_{j=1}^{m} (b_j(x) - \lambda_j) f)(x)]$$

$$+ \sum_{j=1}^{m-1} \sum_{\sigma \subseteq \alpha} C_{m, j} [b(x) - \lambda_\sigma] \omega_\sigma I_\alpha [f](x),$$
where $C_{m,j}$ are constants depending on m and j.

Now, for fixed $x \in G$, for any number c and $G_k \ni x$, since $0 < \delta < 1$, we have

\[
\left(\frac{1}{|G_k|} \int_{G_k} ||[b, I_\alpha]f(y)||^\delta - |c|^\delta \, dy \right)^{1/\delta} \\
\leq \left(\frac{1}{|G_k|} \int_{G_k} |[b, I_\alpha]f(y) - c|^\delta \, dy \right)^{1/\delta} \\
\leq C \left(\frac{1}{|G_k|} \int_{G_k} \left| \prod_{j=1}^m [b_j(y) - \lambda_j I_\alpha(f)(y)] \right| \, dy \right)^{1/\delta} \\
+ \sum_{j=1}^{m-1} \sum_{\sigma \in C_m} \left(\frac{1}{|G_k|} \int_{G_k} |[b(y) - \lambda_\sigma]_{\sigma}[b_{\sigma'}, I_\alpha](f)(y)|^\delta \, dy \right)^{1/\delta} \\
+ C \left(\frac{1}{|G_k|} \int_{G_k} |I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f \right](y) - c|^\delta \, dy \right)^{1/\delta} \\
= I + II + III.
\]

For the first two parts I and II, choose $\lambda_j = (b_j)_{G_k}, j = 1, 2, \ldots, m$, and $1 < q < \delta/\epsilon$, similar to the case of $m = 1$, we can deduce that

\[I \leq CM_\epsilon(I_\alpha f)(x), \]

and
\[II \leq C \sum_{j=1}^{m-1} \sum_{\sigma \in C_m} M_\epsilon \left([b_{\sigma'}, I_\alpha]f \right)(x). \]

For III, let $f = f_1 + f_2$, $f_1 = f \chi_{G_k}$, then

\[III \leq C \left\{ \frac{1}{|G_k|} \int_{G_k} |I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f_1 \right](y)|^\delta \, dy \right\}^{1/\delta} \\
+ C \left\{ \frac{1}{|G_k|} \int_{G_k} |I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f_2 \right](y) - c|^\delta \, dy \right\}^{1/\delta} \\
= IV + V. \]

By Jensen inequality, we have

\[III \leq C \frac{1}{|G_k|} \int_{G_k} |I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f_1 \right](y) \, dy \]

\[\leq C \frac{1}{|G_k|} \int_{G_k} \int_{G_k} \prod_{j=1}^m |b_j(z) - \lambda_j| \frac{|f(z)|}{|y-z|^{1-\alpha}} \, dz \, dy. \]
To estimate \(V \), let

\[
c = \left(I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f_2 \right] \right)_{G_k},
\]

similar to the case in \(m = 1 \), it can follow that

\[
IV \leq C \frac{1}{|G_k|} \int_{G_k} \left| I_\alpha \left[\prod_{j=1}^m (b_j - \lambda_j) f_2 \right] (y) - \left[I_\alpha \left(\prod_{j=1}^m (b_j - \lambda_j) f_2 \right) \right]_{G_k} \right| dy
\]

\[
\leq C \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{2-\alpha}} \int_{G_i} \prod_{j=1}^m |b_j(\omega) - \lambda_j| |f(\omega)| d\omega
\]

\[
\leq C \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{2-\alpha}} \left(\frac{1}{|G_i|} \int_{G_i} \prod_{j=1}^m |b_j(\omega) - \lambda_j|^{p'_i} d\omega \right)^{1/p'_i}
\]

\[
\times \left(\frac{1}{|G_i|} \int_{G_i} |f(\omega)|^{p_1} d\omega \right)^{1/p_1}
\]

\[
\leq C \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|} f_{\alpha, p_1}^*(x) \times \prod_{j=1}^m \left[\left(\frac{1}{|G_i|} \int_{G_i} |b_j(\omega) - (b_j)_{G_i}|^{mp'_i} d\omega \right)^{1/mp'_i}
\]

\[
+ |(b_j)_{G_i} - (b_j)_{G_k}| \right]
\]

\[
\leq C \sum_{i=-\infty}^{k-1} \frac{m_i}{m_k} (k - i)^m f_{\alpha, p_1}^*(x) \|b\|_{BMO}
\]

\[
\leq C \|b\|_{BMO} f_{\alpha, p_1}^*(x).
\]

Combine with I, II, IV, V, we finish the proof of Lemma 2.3. \(\square \)

Proof of Theorem 2.1. We first take it for granted that \(M([b, I_\alpha]f) \in L^q(G) \) and we’ll check this to the end of the proof.
We proceed by induction on m. For $m = 1$, by lemma 2.1, 2.2 and 2.3, we have
\[
\| [b, I_{\alpha}] f \|_q \leq C \| M_\delta^l ([b, I_{\alpha}] f) \|_q \\
\leq C \| M_\epsilon (I_{\alpha} f) \|_q + C \| f \|_{p_1} \\
\leq C \| I_{\alpha} f \|_q + C \| f \|_p \\
\leq C \| f \|_p.
\]
Suppose now that for $m - 1$ the theorem is true, and let us prove it for m. The same argument as used above and the induction hypothesis give
\[
\| [b, I_{\alpha}] f \|_q \leq C \| (M_\epsilon (I_{\alpha} f)) \|_q + C \sum_{j=1}^{m-1} \sum_{\sigma \in C_j^m} \| M_\epsilon ([b_\sigma', I_{\alpha}] f) \|_q + C \| f \|_p \\
\leq C \| f \|_p.
\]
Now let us check that $M ([b, I_{\alpha}] f) \in L^q(G)$. By the boundedness of maximal operator, we only need to prove $[b, I_{\alpha}] f \in L^q(G)$. Suppose for any $j(j = 1, 2, \ldots, m)$, b_j is bounded, since $C_c^\infty(G)$ is dense in $L^p(G)(p > 1)$, we only need to consider the function f with compact support. Suppose $\text{supp } f \subset G_k$, we have
\[
\| [b, I_{\alpha}] f \|_q = \left(\int_{G_k} \| [b, I_{\alpha}] (f) (x) \|^q dx \right)^{1/q} + \left(\int_{G \setminus G_k} \| [b, I_{\alpha}] (f) (x) \|^q dx \right)^{1/q} = A_1 + A_2.
\]
Using the boundedness of b_1, we get
\[
A_1 \leq C \left(\int_{G_k} \left(\int_G |b(x) - b(y)| \frac{f(y)}{|x-y|^{1-\alpha}} dy \right)^q dx \right)^{1/q} \\
\leq C \left(\int_{G_k} |I_{\alpha} (f) (x) |^q dx \right)^{1/q} \\
\leq C \| f \|_p.
\]
For the second term, according to the boundedness of b_i and $x \notin G_k$, $y \in G_k$, $|x-y| \sim |x|$, we have
\[
\| [b, I_{\alpha}] f \| \leq C \int_{G_k} \prod_{j=1}^m |b_j (x) - b_j (y)| \frac{|f(y)|}{|x-y|^{1-\alpha}} dy \\
\leq C \int_{G_k} \frac{|f(y)|}{|x-y|^{1-\alpha}} dy
\]
Locally compact Vilenkin groups

\[\leq C \frac{1}{|x|^{1-\alpha}} \int_{G_k} |f(y)| dy \]

\[\leq C |G_k|^\alpha \left(\frac{1}{|G_k|} \int_{G_k} |f(y)|^{p_1} dy \right)^{1/p_1} \]

\[\leq C f_{\alpha, p_1}^*(x), \]

Thus,

\[A_2 \leq C \left(\int_{G \setminus G_k} |f_{\alpha, p_1}^*(x)|^q dx \right)^{1/q} \leq C \| f_{\alpha, p_1}^* \|_q, \]

which is finite by lemma 2.2.

For the general case, we will truncate the symbols \(b_j \) as follows. Denote \(b_N^j = \min\{b_j, N\} \), take into account the fact that \(f \) has compact support, we deduce that any product \(b_{N_1}^j \cdots b_{N_m}^j f \) converges in any \(L^q(G) (q > 1) \) to \(b_{j_1} \cdots b_{j_l} f \) as \(N \to \infty \). By the above discussion, we have

\[\|[b^N, I_\alpha](f)\|_q \leq C \|b^N\|_{BMO} \|f\|_p. \]

By Fatou’s lemma, we conclude that the theorem holds for this general case. The theorem is proved. \(\square \)

Furthermore, we can discuss the boundedness on Hardy spaces.

Definition 2.1. Let \(0 < p \leq 1 \leq q \leq \infty, p \neq q \), a nonnegative integer \(s \geq [1/p - 1], b = (b_1, \cdots, b_m), b_i \in BMO(G), i = 1, 2, \cdots, m \). A function \(a(x) \in L^p_{loc}(G) \) is said to be a \((p, q, b)\)-atom if it satisfies:

(i) for some \(k \in \mathbb{Z}, \ \text{supp} \ a \subset G_k; \)

(ii) \(\|a\|_q \leq |G_k|^{1/q - 1/p}; \)

(iii) \(\int_{G_k} a(y)dy = \int_{G_k} a(y)\Pi_{i \in \sigma} b_i(y)dy = 0, \) for any \(\sigma \in C^m_j, 1 \leq j \leq m. \)

Definition 2.2. The Hardy spaces \(H^p_b(G) \) are defined by

\[H^p_b(G) = \left\{ f : f \in S'(G), f = \sum_{k=-\infty}^{\infty} \lambda_k a_k, a_k \text{ is } (p, q, b)\text{-atom,} \right. \]

\[\left. \sum_{k=-\infty}^{\infty} |\lambda_k|^p < \infty \right\}, \]

and

\[\|f\|_{H^p_b(G)} \sim \inf \left\{ \left(\sum_{k=-\infty}^{\infty} |\lambda_k|^p \right)^{1/p} \right\}, \]

where the infimum is taken over all the decomposition of \(f \) as above.
Theorem 2.2. Let b be the same as Theorem 2.1. Let $1/2 < p \leq 1$, $1/q = 1/p - \alpha$, $0 < \alpha < 1$, then $[b, I_\alpha]$ is a bounded operator from $H^p_b(G)$ into $L^q(G)$.

Proof. We only need to prove theorem for the (p, ∞, b)-atom. Suppose $\text{supp} \ a \subset G_k$, then

$$\| [b, I_\alpha] a \|_q \leq \left(\int_{G_k} |[b, I_\alpha] a(x)|^q dx \right)^{1/q} + \left(\int_{G \setminus G_k} |[b, I_\alpha] a(x)|^q dx \right)^{1/q} = I + II.$$

Choose p_1, q_1 such that $1 < p_1 < q_1 < \infty$ and $1/q = 1/p - \alpha$, then $q < q_1$. By Hölder inequality and Theorem 2.1, we have

$$I \leq C \left(\int_{G_k} \left| [b, I_\alpha] a(x) \right|^{q_1} dx \right)^{1/q_1} |G_k|^{1/q - 1/q_1},$$

$$\leq C \| a \|_{p_1} |G_k|^{1/q - 1/q_1},$$

$$\leq C \| a \|_\infty |G_k|^{1/p_1 + 1/q - 1/q_1},$$

$$\leq C |G_k|^{1/p_1 - 1/p + 1/q - 1/q_1},$$

$$= C.$$

Note that $x \in G \setminus G_k$, and $y \in G_k$, let $\lambda_j = (b_j)_{G_k}$ for any j, then

$$\left| [b, I_\alpha] a(x) \right| = \left| \int_{G_k} \prod_{j=1}^m \left[b_j(x) - b_j(y) \right] \frac{a(y)}{|x - y|^{1-\alpha}} dy \right|$$

$$= \sum_{j=0}^m \sum_{\sigma \in C_j^m} C |b(x) - \lambda|_\sigma \int_{G_k} \frac{|b(x) - \lambda|_\sigma}{|x - y|^{1-\alpha}} \frac{a(y)}{|x - y|^{1-\alpha}} dy.$$

Using the vanishing moment condition (iii), we get

$$\left| [b, I_\alpha] a(x) \right| \leq \sum_{j=0}^m \sum_{\sigma \in C_j^m} C |b(x) - \lambda|_\sigma \int_{G_k} \frac{|b(x) - \lambda|_\sigma}{|x - y|^{1-\alpha}} \frac{1}{|x - y|^{1-\alpha}} dy$$

$$\leq C \sum_{j=0}^m \sum_{\sigma \in C_j^m} \frac{|G_k|}{|x|^{2-\alpha}} \int_{G_k} \frac{|b(x) - \lambda|_\sigma a(y)}{|y|^{2-\alpha}} dy.$$
Similar to the proof of Theorem 2.1, we deduce that

\[
\begin{align*}
\Pi & \leq C \sum_{j=0}^{m} \sum_{\sigma \in C_j} \int_{G_k} |[b(x) - \lambda]_{\sigma} a(y)| \, dy \\
& \times \left[\sum_{i=-\infty}^{k-1} \int_{G_i \setminus G_{i+1}} |b(x) - \lambda|_{\sigma}^q \left(\frac{|G_k|}{|x|^{2-\alpha}} \right)^q \, dx \right]^{1/q} \\
& \leq C \sum_{j=0}^{m} \sum_{\sigma \in C_j} \int_{G_k} |[b(x) - \lambda]_{\sigma} a(y)| \, dy \\
& \times \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{2-\alpha}} \left(\int_{G_i \setminus G_{i+1}} |b(x) - \lambda|_{\sigma}^q \, dx \right)^{1/q} \\
& \leq C \|a\|_{\infty} \sum_{j=0}^{m} \sum_{\sigma \in C_j} |G_k| \left(\frac{1}{|G_k|} \int_{G_k} |[b(x) - \lambda]_{\sigma}| \, dy \right)^{1/q} \\
& \times \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{2-\alpha}} |G_i|^{1/q} \left(\frac{1}{|G_i|} \int_{G_i} |[b(x) - \lambda]_{\sigma}|^q \, dx \right)^{1/q} \\
& \leq C \|a\|_{\infty} \|b\|_{BMO} \sum_{i=-\infty}^{k-1} \frac{|G_k|}{|G_i|^{2-\alpha-1/q}} (k-i)^m \\
& \leq C \|b\|_{BMO} \sum_{i=-\infty}^{k-1} \frac{|G_k|^{2-\alpha-1/p}}{|G_i|^{2-\alpha-1/q}} (k-i)^m \\
& \leq C \|b\|_{BMO},
\end{align*}
\]

Here \(m \geq 1, \) \(1/2 < p \leq 1 \) and \(1/q = 1/p - \alpha. \)

Therefore, Theorem 2.2 is proved. \(\square \)

References

[1] C. Perez, *Sharp estimates for commutators of singular integrals via interactions of the Hardy-littlewood maximal function*, J. Fourier Anal. Appl., 3 (1997), 743–756.

[2] C. Perez and R. Trujillo-Gonzalez, *Sharp weighted estimates for multilinear commutators*, J. London Math. Soc., 65 (2002), 672–692.

[3] R. R. Coifman, R. Rochberg and G. Weiss, *Factorization theorems for Hardy spaces in several variables*, Ann. of Math., 103 (1976), 611–635.

[4] J. E. Daly and D. S. Kurtz, *BMO and singular integrals over local fields*, J. Austral. Math. Soc. (Series A.), 54 (1993), 321–333.
[5] T. Guo and Y. Wang, *The boundedness of fractional integral operators on Morrey spaces in Vilenkin groups*, Math. in Practice and Theory, 35 (8) (2005), 221–223.

[6] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math., 16 (1978), 263–270.

[7] S. Lan, *Boundedness of fractional integral operators in Herz-type spaces on locally compact Vilenkin groups*, Approx. Theory & its Appl., 18 (2002), 15–25.

[8] T. S. Quek and D. Yang, *Generalized Calderón-Zygmund operators on bounded locally compact Vilenkin group*, Advance in Math., 30 (6) (2001), 515–524.

[9] A. Uchiyama, *On the compactness of operators of Hankel type*, Tōhoku Math. J., 30 (1978), 163–171.

[10] W. Zhou, *The boundedness of multilinear commutators of singular integral and fractional integral*, Thesis, Hunan University, 2003.

Department of Mathematics
Dalian Maritime University
Dalian, Liaoning
P. R. China, 116026
(E-mail : tangcq2000@yahoo.com.cn)

(Received : November 2005)
Submit your manuscripts at http://www.hindawi.com