Compendium of plants used for preparation of traditional alcoholic beverages by four major ethnic communities of Assam, northeast India

DIPANKAR BORAH1,*, TRIDIP GOGOI2, JINTU SARMA3, PUNAM JYOTI BORAH4, BICHITRA GOHAIN5, CHIRANJIB MILI6, ANKUR UPADHYAYA6, JENIMA BASUMATARY7, KASTURI NEOG8, TONLONG WANGPAN2, SUMPAM TANGJANG5

1Department of Botany, Goalpara College. Goalpara-783101, Assam, India. *email: dipankan.borah@goalparacollege.ac.in
2Department of Botany, Guwahati College. Guwahati 781021, Assam, India
3Department of Botany, Cotton University. Guwahati 781001, Assam, India
4Department of Botany, Rajiv Gandhi University. Rono Hills, Dornakal 791112, Arunachal Pradesh, India
5Department of Botany, BP Chaliha College. Nagaon 781127, Assam, India

Manuscript received: 1 March 2021. Revision accepted: 27 March 2021.

Abstract. Borah D, Gogoi T, Sarma J, Borah PJ, Gohain B, Mili C, Upadhyaya A, Basumatary J, Neog K, Wangpan T, Tangjang S. 2021. Compendium of plants used for preparation of traditional alcoholic beverages by different major ethnic communities of Assam, Northeast India. Biodiversitas 22: 2019-2031. This paper deals with the ethnobotanical research on the preparation of traditional alcoholic beverages by Ahom, Bodo, Karbi and Mishing ethnic communities of Assam, India. Along with the information on preparation, the plant species associated with the preparation of alcoholic beverages are also recorded. Field investigations were conducted to cover 32 villages of six districts of Assam, India. The data was generated from 202 respondents using participatory rural appraisal tools including semi-structured questionnaires and personal interviews. The plant species were collected, identified and submitted in the Herbarium of Rajiv Gandhi University, Arunachal Pradesh, India. The study recorded 129 plants falling under 107 genera and 54 families which are exclusively used for the preparation of alcoholic beverages by the studied communities. The study confirmed that the association of traditional alcoholic beverages with their rich indigenous knowledge. The finding also revealed varied forms of protocol followed by these tribes to prepare traditional liquors and the starter cakes for brewing alcohol were prepared locally. However, the Mishing tribe was known to prepare unique rice beer known as Po:ro apong, as the preparation technique and extraction process of this liquor was slightly different. Distillation of alcohol was also observed in all the communities except the Ahom. The rich traditional knowledge of brewing alcohol and the plant species used in the process were worth documenting considering the ongoing alteration of traditional society with the modernization.

Keywords: Alcoholic beverage, ethnobotany, Northeast India, traditional knowledge, tribal society

INTRODUCTION

Fermentation and fermented beverages have always been an integral part to human cultures and traditions since ancient times (Alan 1997). The beer is supposed to have originated in Sumeria before 7000 B.C. (Demain et al. 1998). Traditionally prepared fermented beverages have always been associated with the values and survival of the tribes throughout the world since the dawn of civilization (Alan 1997). It is assumed that the preparation of traditional wine, beer and their varieties in consumption may have probably emerged due to the varied climatic conditions and was heavily dependent on the availability and utilization of locally available natural resources (Roy et al. 2004). The fermented rice beverages of the tribal people are prepared using various plants which are known to possess numerous medicinal properties. It has been reported that the phytochemical components present in these plant species proved to have remarkable therapeutic potential when used alone or in combinations (Prakash et al. 2004; Bhuayan and Baishya 2013). These forms of traditional alcoholic beverages have a considerable impact on health care and provide health benefits of preventing and treating gastrointestinal diseases along with certain physiological disorders (Nath et al. 2019) such as insomnia, headache, diarrhea, body ache and inflammation of body parts, expelling worms along with the treatment of cholera and urinary problems (Samati et al. 2007; Deka and Sarma 2010; Nath et al. 2019). Several reports from different parts of Northeast India have also been claimed the presence of nutritional as well as antioxidant properties in rice beer samples which is due to the presence of compounds such as phenolic acids, polyphenols, and flavonoids (Nath et al. 2019).

Assam is home to diverse ethnic communities and tribal groups, mostly of Mongoloid origin, such as Ahom, Rabha, Deori, Tiwa, Bodo, Karbi, Mishing, Sonowal Kachari, etc. (Sharma 2017). These communities have been preparing and consuming traditional rice beer for about 2500 years and possess a good deal of knowledge about fermented food products (Tamang 2010). As such, a variety of cereal-based alcoholic beverages are prepared and consumed by these communities during many occasions such as ritual ceremonies, marriages and merry-making, festivals and
even death ceremonies (Saikia et al. 2007; Das et al. 2012). The fermentation methods are similar among the ethnic groups with some variations in the preparation of starter cakes which occasionally contain various herbs and rice flour (Das et al. 2012; Das et al. 2019). The current research deals with the ethnobotanical research of important plants used for the preparation of traditional alcoholic beverages by four major ethnic communities (Ahom, Bodo, Karbi, and Mishing) of Assam, India.

MATERIALS AND METHODS

The field study was conducted in six districts of Assam, namely Baksa, Biswanath, Golaghat, Lakhimpur, Sibasagar, and Sonitpur because several ethnic communities reside in these districts (Figure 1), which falls within the upper zone of the state. The boundary of the state extends from 89°42’ E to 96° E longitudes and 24°8’ N to 28° 2’ N latitudes and covers an area of 78,438 km². The elevation ranges from 45 to 1,960 meters above mean sea level and the temperature from 35-38 °C (95-100 °F) during summers and 6-8°C (43-46°F) during winters. It has a mean annual rainfall of 1,524.6 mm. The present population is 31 million and the literacy rate is 72.19% (Census 2011).

Field investigations were conducted from October 2019 to March 2020 to cover thirty two villages of six districts of Assam, India. Selection of respondents was done through purposive stratified sampling from those villagers who accepted the request for an interview voluntarily. A total of 202 respondents (i.e., mostly age-old folks and women), present in these villages were selected for data collection. Data was collected through interviews by various participatory rural appraisal tools such as semi-structured questionnaires and personal interviews. Collection of plant species was done in the presence of respondents and was later processed following the methods of Jain and Rao (1976). It was then identified using relevant literatures (Hooker 1897; Kanjilal et al. 1934-1940), and consulting voucher specimens present in regional herbaria (ARUN, ASSAM) and submitted in Herbarium of Rajiv Gandhi University, Arunachal Pradesh, India.

Figure 1. Map of Assam showing study area, i.e. 6 districts of Assam, India
RESULTS AND DISCUSSION

The study reported a total of 129 plants falling under 107 genera and 54 families used by four major ethnic communities of Assam for the preparation of traditional alcoholic beverages (Table S1). Among the 54 families, Lamiaceae and Lauraceae were the most dominant families with eight species each, followed by Asteraceae (7 spp.), Rubiaceae and Polygonaceae with 6 spp. each (Table 3). Leaf (88%) is the most commonly used plant part, followed by twig (4%) and root (3%) (Figure 2). A brief pictorial account of traditional alcoholic beverages prepared by major ethnic communities Ahom, Bodo, Karbi and Mishing of Assam is depicted in Figure 3.

Table 2. Traditional alcoholic beverages of major tribal communities residing in Assam

Community	Alcoholic-beverage	Starter culture
Ahom	Haaj, Laupani	Haajpitha, Vekurpitha
Bodo	Jou, Bishi	Amao, Angkur
Karbi	Hor/Hor-alank	Thap
Mishing	Poro apong, Sai mod	Apoppitha

Table 3. Table showing ten dominant families of plants used in preparation of traditional alcoholic beverages in Assam, India

Family	Number of species
Asteraceae	7
Fabaceae	5
Lamiaceae	8
Lauraceae	8
Moraceae	4
Piperaceae	5
Poaceae	4
Polygonaceae	6
Rubiaceae	6
Solanaceae	5

Figure 2. Bar diagram showing the percentage of plants parts used in preparation of traditional alcoholic beverages in Assam, India

Preparation of starter cakes

The preparation of starter cakes usually begins with the collection of various plants which add to the starter cakes and are believed to add certain flavor/medicinal value/nutrients to it (Figure 5). The collected plant parts were washed properly and used in either fresh form or dried. Drying was done under smoke or sun for a couple of days. At the same time, rice grains were soaked in water for about 2 to 6 hours and then rinsed to drain out the excess water and ground into powder. The dried plant parts are also grounded separately and mixed with the powdered rice. Subsequently, the dough was prepared, adding a small amount of finely powdered previously prepared starter cake (which serves as inoculants). Small-sized round balls were prepared from the dough, which is then dried and stored above the fireplace until further use. Dried leaves of Thelypteris parasitica (L.) Tardieu, Musa balbisiana Colla, and paddy hay were used to keep the starter balls free from harmful pests and moisture and increase the longevity of the product. The starter cakes and alcoholic beverages acquired different names in different tribal dialects (Table 2).

Preparation of rice beer

Traditional rice beer is usually prepared by fermenting boiled rice mixed with starter cakes (Figure 5). The process starts with the boiling of rice (preferably glutinous varieties). The cooked rice was then spread on banana leaves placed in a winnowing basket and allowed to cool to room temperature. The powdered starter cakes were mixed with the boiled rice and filled in an earthen pot or any vessel, and sealed with banana or Alpinia leaves, straw and a piece of clean cloth. The incubation period of fermentation varied from 5-9 days depending on the season and the climate of the region. After the incubation period, the mixture was taken out and filtered to separate the alcoholic liquid from the fermented rice. The filtered liquid or rice beer is now ready for consumption. Several tribal nomenclatures of rice beer and the materials used are mentioned in Table 2.

Preparation of Po:ro apong

It is worth mentioning that the process of rice beer preparation of all the studied tribes of Assam (Ahom, Mishing, Bodo, and Karbi) was more or less similar, differing only in the plants used (Table S1). But the Mishing tribe is known to prepare an additional unique rice beer known as Po:ro apong. The preparation technique, as well as extraction process of this alcoholic beverage, was slightly different from its counterparts (Figure 6). To prepare this beverage, paddy husk and dried paddy straw were partially burnt to collect the ash in a separate container. The collected ash along with the powdered starter cake was mixed along with the boiled rice. The mixture was then added to an earthen pot (severely fumigated pot, turning its color into blackish) and the mouth was sealed with the help of straw and leaves of Thelypteris parasitica (L.) Tardieu. The fermentation usually takes a week or two (depending on the season of preparation, warmer the climate faster the fermentation process or vice versa, and amount of starter used).
Figure 3. Traditional alcoholic beverages of Assam: A-B. Starter cakes, C. Vessel for rice beer preparation, D. Rice beer (Xaajpani of Ahom), E. Po-ro apong filtration unit, F. The mixture of Po-ro apong, G-H. Distilled alcohol distillation unit

For the extraction of liquid, the cone-shaped bamboo basket called Taksuk was hung from a post. The interior walls of the bamboo basket were covered with banana leaves. A pack of paddy straw (Amrong) was placed at the base of the bamboo basket which serves as a sieve for filtration. The prepared fermented mixture (boiled rice + ash) was then poured inside the Taksuk and warm water were poured from above which usually extracts the soluble components of the rice beer including alcohol. Coldwater is poured at first, to cool the fermented mixture, then hot water is slowly poured, sequentially, however, the filtrate remains cool for the first batches, until the filtrate turns hot, then the process is stopped. The filtrate (Apong) was then collected in a container placed just below the bamboo basket. But excess addition of water is not advised as it is believed to decrease the intoxicating effect as well as the sweetness of the beverage. Nevertheless, the production of Po:ro apong is considered to be a tedious process; thus, it is usually prepared in case of large and important community gatherings such as festivals, rituals and other cultural gatherings.

Preparation of distilled alcohol

The distillation of alcohol was observed among the three studied communities except for the Ahoms (Figure 7). For distillation, the fermented rice beer was diluted by adding water and stored for some time. At the same time, the distillation process can be carried out either at the early stage of rice beer preparation or after harvesting of rice beer. The complete process of distillation may take 4 hours. The quality of alcohol is strong if prepared before harvesting rice beer by adding more amounts of starter cakes, or by adding less water while diluting.

The traditional distillation apparatus has three different chambers which consist of: (i) The lower chamber consists of a metallic utensil containing diluted fermented rice beer. (ii) The middle chamber consists of an earthen pot with a perforated base. It also has a small bowl over the
perforation, inside the pot which acts as a receiver to contain the distilled alcohol. In certain cases, the earthen pot was also found to be fitted with a long bamboo cylindrical tube on the side of the pot, which permits the flow of the distilled alcohol outside of the apparatus. The distilled alcohol is collected in a utensil placed at the end of the cylindrical tube. (iii) The upper chamber entails a metallic utensil, filled with cold water which acts as a condenser.

To prevent the leakage of vapors from the apparatus, the gap between the utensils was sealed with a moist muslin cloth, mud or with the residue of rice beer.

On constant heating, the filtered rice beer in the lowermost utensil forms vapor, passes through the perforated base of the middle compartment before hitting the base of the condenser, after which it settles down and collected by the bowl placed above the perforation, or through the tube directly into a bottle. The water of the condenser was repeatedly replaced so that the condensation continues. The more the alcohol is distilled, the less is the concentration.

The study unveiled the association of traditional alcoholic beverages with the rich indigenous knowledge system of the region. The finding also revealed the varied forms of protocol followed by different tribes of Assam for the preparation of traditional liquors. The starter culture was usually used as a source of yeast strains in the fermentation process. Also, they included various plant species in preparation for starter culture. Such starter culture usually persists for several months at room temperature and in a dry place (Tamang and Sarkar 1998).

There are several pieces of literature mentioned in Table S1 (last column) that corroborate the current findings. Thus, total 39 plants from our record were already reported by previous workers. While, a total of 90 plant species were newly recorded among the Ahom, Mishing, Bodo and Karbi for the preparation of traditional alcoholic beverages. Also, the most commonly added plants were *Ananas comosus* (L.) Merr., *Capsicum annuum* L., *Centella asiatica* (L.) Urb., *Clerodendrum infortunatum* L., *Lygodium flexuosum* (L.) Sw., *Oryza sativa* L., *Piper nigrum* L., *Saccharum officinarum* L. and *Scoparia dulcis* L.. The neighboring Northeastern states of India also retain their unique way of brewing alcohol. For instance, the addition of leaf extracts of *Clerodendrum viscosum* Vent. (synonym of *Clerodendrum infortunatum* L.) and *Calotropis gigantea* (L.) W.T.Aiton to rice, millet and corn to prepare beers in Sikkim (Tsuyoshi et al. 2005). Production of fermented spirit from rice called *U Phandieng* and cocktail of millet and rice beer called *KaKiad* among the Khasis of Meghalaya (Ahmed and Borthakur 2005). Addition of extract of tree barks and fern leaves to rice beer by Meithei tribe of Manipur (Hodson 1999). Germinated rice grains are mixed with powdered rice to produce *Peyazu* by *Angamis* of Nagaland (Sharma et al. 2019). The addition of ash and extracts of *Eleusine coracana* (L.) Gaertn. and *Saurauia roxburghii* Wall. to the broth containing dried or boiled millet or rice and starter yeast powder (called *epo*) by the *Apatani* tribe of Arunachal Pradesh (Tanti et al. 2010).
Our findings assumed that the process of distillation of alcohol which was executed by the three studied tribes of Assam was almost similar. Likewise, in other parts of India, such distilled alcoholic liquor is very commonly consumed, such as Yu angouba of Manipur (Singh and Singh 2006), Chulli of Himachal Pradesh (Thakur and Savitri 2004), fenny of Goa (Nayak and Prabhu 2013), Mahua of Central India (Yadav et al. 2009), Mahuli from Orissa (Behera et al. 2016), Soor from Uttarakhand and Himachal Pradesh (Rana et al. 2004) and Chhang of Western Himalayan region (Ahuja et al. 2014), etc.

In conclusion, the rich traditional knowledge of brewing alcohol and the plant species used in the process were worth documenting considering the alteration of traditional society with the modernization. Also, considering the on-going rapid industrialization, the successful relocation of the traditional beverages from the household to the industrial-scale production with improved quality from a microbiological stance may stimulate the rural economy.

ACKNOWLEDGEMENTS

We are indebted to all the tribal communities for sharing their valuable knowledge. The authors are also grateful to Dakeswari Mili, Purna Tobibi for their help in the collection of field data. We are also thankful to Lt. Hadhori Barukial (Anaï), Lt. Numoli Barukial Gogoi, Lt. Sornalata Gogoi, Lt. Gunomai Gogoi, and Baputi Borah for their immense help. Lastly, we duly acknowledge the instructive comments provided by the reviewers which improved the quality of the manuscript.

REFERENCES

Ahmed AA, Borthakur SK. 2005. Ethnobotanical wisdom of Khasis of Meghalaya. Bishen Singh Mahendra Pal Singh, DehraDun.

Ahuja U, Ahuja SC. 2014. Alcoholic Rice Beverages. In: Selin H. (Eds.) Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures. Springer, Dordrecht.

Alan RE. 1997. Guidelines for Environmental Assessments and Traditional Knowledge. A Report from the Centre for Traditional Knowledge to the World Council of Indigenous People. Environment Canada, Canada.

Arjun J, Verma AK, Prasad SB. 2014. Method of preparation and biochemical analysis of local tribal wine Judima: An indigenous alcohol used by Dimasa tribe of North Cachar Hills. Intl Food Res J 21 (2): 463-470.

Baruah A, Gohain K, Sonowal J. 2010. Plants used in the preparation of starter culture of rice-beer by the Ahom, Deori and Mishing tribes of Dhemaji district, Assam, India. Pleione 4 (2): 288-293.

Basumatary M, Gogoi M. 2014. A traditional alcoholic beverage Jô: Prepared by Bodo community of Assam, India. Int J Multidiscip Res Dev 1 (7): 307-313.

Basumatary TK, Terangpi R, Brahma C, Roy P, Boro H, Narzary H, Daimary R, Medhi S, Brahma BK, Brahma S, Islay A, Swargiary SS, Das S, Begum RH, Bose S. 2014. Jou: The traditional drink of the Boro tribe of Assam and North East India. J Sci Innov Res 3 (2): 239-243.

Behera S, Ray RC, Swain MR, Mohanty RC, Biswal AK. 2016. Traditional and current knowledge on the utilization of mahua (Madhucaalatifolia L.) flowers by the santhal tribe in similipal biosphere reserve, Odisha, India. Annals Trop Res 38 (1): 94-104. DOI: 10.32945/atrr3818.2016
Bhuyan B, Baishya K. 2013. Ethnomedicinal values of various plants used in the preparation of traditional rice beer by different tribes of Assam. Drug Invent Today 5 (4): 335-341. DOI: 10.1016/j.dit.2013.09.002

Bhuyan B, Rajak P. 2019. Natural beverages of Assam and its ethnomedicinal value. In: Guzmézescu A, Holban AM. Natural beverages: Volume 13: The science of beverages. Academic Press.

Pbrahna S, Nazzary H, Brahna J. 2014. Socio-cultural and religious plants used by Bodo tribes of BTC, Assam, India. Int J Sci Res Pub 4 (1): 1-11.

Census. 2011. Directorate of Economics and Statistics. Accessed at (https://des.assam.gov.in/information-service/state-profile-of-assam).

Das A. Deka S, Miyaji T. 2012. Methodology of rice beer preparation and various plant materials used in starter culture preparation by some tribal communities of North-East India: A survey. Int Food Res J 19: 101-107.

Das A. 2016. Medicinal plants used traditionally for the preparation of rice beer by the Tiwa tribe of Morigoan district of Assam, India. Int J Curr Res 8 (11): 40940-40943.

Das AJ, Deka DC. 2012. Mini-review fermented foods and beverages of the North-East India. Intl Food Res J 19 (2): 377-392.

Das AK, Hazarika M. 2015. Study of diversity of ethnombotanical plants used by the Mishang tribes of Golaghat district, Assam and their conservation. Int J Recent Sci Res 6 (7): 4992-4998.

Pdas S, Deb D, Adak A, Khan MR. 2019. Exploring the microbiota and metabolites of traditional rice beer varieties of Assam and their functionalities. 3 Biotech 9: 174. DOI: 10.1007/s13205-019-1702-z.

Deka D, Sarma GC. 2010. Traditionally used herbs in the preparation of rice beer by the Rabha tribe of Goalpara district, Assam. Int J Trad Knowl 19 (3): 459-462.

Demain AL, Pfaffl HJ, Kurtzman CP. 1998. The industrial and agricultural significance of yeasts. In: Kurtzman CP, Fell JW. (Eds). The Yeasts a Taxonomic Study, 4th Edition. Elsevier, Amsterdam.

Deori C, Begum S, Mao AA. 2007. Ethnobotany of Sajjen-A local rice beer of Deori tribe of Assam. Int J Trad Knowl 6 (1): 121-125.

Gogoi B, Dutta M, Mondal P. 2013. Various ethnomedicinal plants used in the preparation of Apong, a traditional beverage use by Mising tribe of upper Assam. J Appl Pharm Sci 3 (4): 85-88. DOI: 10.7324/JAPS.2013.34.S16

Goswami N. 2020. Traditional rice beer of the Tiwa community: An analytical exposition. Int J Sci Technol Res 9 (3): 6265-6268.

Handique P, Deka DC. 2016. Methodology of rice beer preparation by some ethnic communities residing in Sivasagar District of Assam, India: A survey. Int J Multidis Res Dev 3 (1): 337-340.

Hodson TC. 1999. The Mtehis. LPS Publications, New Delhi.

Hooker JD. 1897. The Flora of British India. I-VII. L. Reeve and Company, London, England.

Jain SK, Rao RR. 1976. A Handbook of Field and Herbarium Methods. Today and Tomorrow's Printers and Publishers, New Delhi.

Kanjilal VN, Kanjilal PC, Das A, De RN, Bor NL. 1934-1940. Flora of Assam, I-V Government Press, Shillong, India.

Kardong D, Deori K, Sood K, Yadav RNS, Bora TC, Gogoi BK. 2012. Evaluation of nutritional and biochemical aspects of Picro apong-(saimod)-a homemade alcoholic rice beverage of Mishing tribe of Assam, India. Int J Trad Knowl 11 (3): 499-504.

Nath N, Ghosh S, Rahaman L, Kaipeng DL, Sharma BK. 2019. An overview of traditional rice beer of North-east India: Ethnic preparation, challenges and prospects. Int J Trad Knowl 18: 744-757.

Nayak NP, Prabhoo NBM. 2013. A study on alcohol consumption patterns and preference of liquor over wine amongst the youth in Manipal. J Hospit Tour 1 (1): 77-88.

Pawe D, Gogoi R. 2013. Ethnobotany of Poro Apong or Chai mod-a local rice beer of Mishing tribes of Assam. NeBio 4 (2): 46-49.

Prakash D, Dhakare R, Mishra A. 2004. Carotenoids: The phytochemicals of nutracuetical importance. Int J Agric Biochem 17: 1-8.

Rana TS, Datt B, Rao RR. 2004. Soor: A traditional alcoholic beverage in Tons Valley, Garhwal Himalaya. Int J Trad Knowl 3 (1): 66-71.

Roy B, Kala CP, Farooque NA, Majila BS. 2004. Indigenous fermented food and beverages: A potential for economic development of the high altitude societies in Uttarakral. J Hum Ecol 15: 45-49.

Saikia B, Tag H, Das AK. 2007. Ethnobotany of food and beverages among the rural farmers of Tai Ahom of North Lakhimpur district, Assam. Int J Trad Knowl 6 (1): 126-132.

Samati H, Begam SS, Kaid. 2007. A popular local liquor of War tribe of Jaintia hills district, Meghalaya. Int J Trad Knowl 6: 133-135.

Senapati SS, Gurumayum S. 2016. Medicinal plants used in traditional alcoholic beverage preparation by tribes of Assam. Res J Pharm Biol Chem Sci 7 (5): 1048-1061.

Sharma BK, Nath N, Ghosh S, Rahaman L, Kaipeng DL. 2019. An overview of traditional rice beer of North-east India: Ethnic preparation, challenges and prospects. Int J Trad Knowl 18 (4): 744-757.

Sharma R. 2017. Rice Beer and tribes of Assam. J Hum Soc Sci 22 (7): 13-16. DOI: 10.9790/8083-2207021316

Singh PK, Singh KL. 2006. Traditional alcoholic beverage. Yu of Meitei communities of Manipur. Int J Trad Knowl 5 (2): 184-190.

Tamang JP. 2010. Himalayan Fermented Foods: Microbiology, Nutrition and Ethnic value. CRC Press, Taylor and Francis Group, USA, New York.

Tamang JP, Sarkar PK, Hesseltime CW. 1988. Traditional fermented foods and beverages of Darjeeling and Sikkim- a review. J Sci Food Agric 44: 375-385. DOI: 10.1002/jsfa.27404440410

Tanti B, Gurung L, Sarma H, Buragohain A. 2010. Ethnobotany of starter cultures used in alcohol fermentation by a few ethnic tribes of Northeast India. Int J Trad Knowl 9 (3): 463-466.

Teron R. 2006. Hor, the traditional alcoholic beverage of Karbi tribe in Assam. Nat Prod Radiance 5 (5): 377-381.

Thakur N, Savitri, Bhalha TC. 2004. Characterization of some traditional fermented foods and beverages of Himachal Pradesh. Ind J Trad Knowl 3 (3): 325-335.

Tsuyoshi N, Fudou R, Yamanaka S, Kosaki M, Tamang N, Thapa S, Tamang JP. 2005. Identification of yeast strains isolated from Marcha in Sikkim, a microbial starter for amyolytic fermentation. Int J Food Microbiol 99 (2): 135-146. DOI: 10.1016/j.ijfoodmicro.2004.08.011.

Yadav P, Garg N, Dwivedi D. 2009. Preparation and evaluation of Mahuna (Bassia latifolia) Vermouth. Int J Food Ferment Technol 2 (1): 57-61.
Table S1. Plants used for the preparation of traditional alcoholic beverages by major ethnic communities of Assam: Parts used and previous records. Note: Ah, A= Ahom; M, Mi=Mishing, Bo, B=Bodo and Ka, Ga, G=Karbi

Tribal community	Updated name	Family	Local name	Parts used	Collection number	Previous records
Ah	Achyranthes aspera L.	Amaranthaceae	Uvotahoth (A)	Leaf	TG 1078	-
Ah	Acmella oleracea (L.) R.K. Jansen	Asteraceae	Hu honi bon (A)	Leaf	TG 1079	-
Ah	Acmella paniculata (Wall. ex DC.) R.K. Jansen	Asteraceae	Hu honi bon (A)	Leaf	PB 1039	-
Ah	Actinodaphne sp.	Lauraceae	Baghnola pat (A)	Leaf	TG 1080	-
Ah	Alternanthera sessilis (L.) R.Br. ex DC.	Amaranthaceae	Matikaduri (A)	Leaf	PB 1059	-
Ah	Alternanthera sessilis	Amaranthaceae	Khutura (A)	Leaf	PB 1059	-
Ah	Amonesia solanacea Roxb.	Primulaceae	Tuluthapoka (A)	Leaf	TG 1083	-
Ah	Aporosa octandra (Buch.-Ham. ex D.Don) Vickery	Phyllanthaceae	Khokoracheloch (A)	Leaf	TG 1142	-
Ah	Ardisia solanacea Roxb.	Primulaceae	Tuluthapoka (A)	Leaf	TG 1083	-
Ah	Argyreia nervosa (Burm.f.) Bojer	Convolvulaceae	Bli dhotoroklota/Hunporuah lota/Tukoriyaal (A)	Leaf	TG 1143	-
Ah	Artocarpus chama Buch.-Ham.	Moraceae	Sam kathal (A)	Leaf	TG 1085	-
Ah	Artocarpus heterophyllus Lam.	Moraceae	Belang (M), Kothal (A), Khatol/Khanthal (B)	Leaf	CM 108; BG 002; PB 1030; JS 2346; JB 021; TG 1084	Baruah et al. 2010; Deka and Sarma 2010; Bhuyan and Baishya 2013; Gogoi et al. 2013; Pawe and Gogoi 2013; Basumatary et al. 2014; Basumatary and Gogoi 2014; Senapati and Gurumayum 2016; Das 2016; Bhuyan and Rajak 2019
Ah	Averrhoa carambola L.	Oxalidaceae	Kordoi (A)	Leaf	PB 1056	-
Ah	Bambusa tulda Roxb.	Poaceae	Baah pat (A)	Leaf	PB 1071; TG 1086	-
Ah	Bonnaya ciliata (Colsm.) Spreng.	Linderniaceae	Kasidaria/Horukasi-doriya (A)	Leaf	PB 1057; TG 1145	-
Ah	Bonnaya ruellioiides (Colsm.) Spreng.	Linderniaceae	Bor kasi-doriya (A)	Leaf	TG 1146	-
Ah	Callicarpa arborea Roxb.	Lamiaceae	Tangloti (A)	Leaf	TG 1087	-
Ah	Callicarpa longifolia Lam.	Lamiaceae	Gorokhiyakorai (A)	Leaf	TG 1088	-
Ah	Cannabis sativa L.	Cannabaceae	Bhang gos (A)	Leaf	PB 1068	-
Ah	Capsicum annuum L.	Solanaceae	Jolokia (A)	Leaf	TG 1089	Baruah et al. 2010; Deka and Sarma 2010; Pawe and Gogoi 2013; Gogoi et al. 2013; Bhuyan and Baishya 2013; Basumatary et al. 2014; Basumatary and Gogoi 2014; Senapati and Gurumayum 2016; Das 2016; Bhuyan and Rajak 2019
Mi	Capsicum frutescens L.	Solanaceae	Mirsi (M)	Leaf	CM 111	-
Ah	Centella asiatica (L.) Urb.	Apiaceae	Bor mani-muni (A)	Whole plant	BG 004; TG 1090	Deori et al. 2007; Baruah et al. 2010; Das et al. 2012; Kardong et al. 2012; Gogoi et al. 2013; Pawe and Gogoi 2013; Bhuyan and Baishya 2013; Senapati and Gurumayum 2016; Handique and Deka 2016; Bhuyan and Rajak 2019; Nath et al. 2019
Ah	Chloranthus elatior Link	Chloranthaceae	Gathikaliya (A)	Leaf	TG 1147	-
Ah	Cinnamomum bejolghota (Buch.-Ham.) Sweet	Lauraceae	Patihunda/Naga dalseni (A)	Leaf	TG 1148	-
Ah	Cinnamomum tamala (Buch.-Ham.) T.Nees & C.H.Eberm	Lauraceae	Tuzpat (A)	Leaf	PB 1074	Baruah et al. 2010; Gogoi et al. 2013; Senapati and Gurumayum 2016
Ah	Cinnamonum verum J.Presl	Lauraceae	Dalseni pat (A)	Leaf	TG 1091	-
Ah	Cissampelos pareira	Menispermaceae	Bor tubukilota (A)	Leaf	TG 1092; TG 1149	Saikia et al. 2007; Das et al. 2012; Bhuyan and Baishya 2013; Handique and Deka 2016; Senapati and Gurumayum 2016; Nath et al. 2019
Ah, Mi	Citrus × limon (L.) Osbeck	Rutaceae	Nenutenga (A)	Leaf	TG 1094	-
Ah, Mi	Clematis aphifolia DC.	Ranunculaceae	Horusoi/ Horugorosoi (A), Ramam bon (M)	Leaf	CM 117; TG 1150	-
Ah, Mi	Clematis zeylanica (L.) Poir.	Ranunculaceae	Gop-sori/Soi pan/ Gorobsoi (A)	Leaf	PB 1027; TG 1119	Deori et al. 2007; Baruah et al. 2010; Kardong et al. 2012; Bhuyan and Baishya 2013; Gogoi et al. 2013; Handique and Deka 2016 Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Nath et al. 2019
Ah, Bo	Clerodendrum colebrookeanum Walp.	Lamiaceae	Nefafu (A), Mswkhwna (B)	Leaf	JB 024; PB 1038; JS 2345	Tanti et al. 2008; Baruah et al. 2010; Deka and Sarma 2010; Das et al. 2012; Bhuyan and Baishya 2013; Gogoi et al. 2013; Pawe and Gogoi 2013; Basumatary et al. 2014; Basumatary and Gogoi 2014; Brahma et al. 2014; Das 2016; Handique and Deka 2016; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Nath et al. 2019
Ah, Bo, Ga, Mi	Clerodendrum infortunatum L.	Lamiaceae	Dhopattita (A), Pakkom (M), Samaki (G)	Leaf	JS 001; JS 012; TG 1095	-
Ah	Commelina benghalensis L.	Commelinaeae	Kona himolu (A)	Leaf	PB 1046	-
Ah	Cordyline fruticosa (L.) A.Chev.	Asparagaceae	Panormahi (A)	Leaf	TG 1151	-
Mi	Coriandrum sativum L.	Apiaceae	Dhania (M)	Twig	JS 002	-
Ah	Crosocephalum crepidoidees (Benth.) S.Moore	Asteraceae	Bon kopahi (A)	Leaf	TG 1152	-
Ah	Croton caudatus Geiseler	Euphorbiaceae	Lotamahudi/Mahudi (A)	Leaf	BG 005; PB 1042; TG 1096	Senapati and Gurumayum 2016; Nath et al. 2019
Ah, Ka	Croton jofra Roxb.	Euphorbiaceae	Gochmahudi (A), Marthu (K)	Leaf	DB1067; TG 1097	Teron 2006; Baruah et al. 2010; Bhuyan and Baishya 2013; Senapati and Gurumayum 2016
Ah	Curcuma longa L.	Zingiberaceae	Halodhi (A)	Leaf	TG 1098	Das 2016; Bhuyan and Rajak 2019
Mi	Cuscuta reflexa Roxb.	Convolvulaceae	Rabonlota (M)	Root	JS 004	-
Ah	Cyanthillium cinereum (L.) H.Rob.	Asteraceae	Hohodevi bon (A)	Leaf	TG 1099	-
Ah	Cydonia dactylon (L.) Pers.	Poaceae	Dubori bon (A)	Leaf	PB 1031	-
Ah	Cyperus mindorensis (Steu.d.) Huygh	Cyperaceae	Keya bon (A)	Leaf	PB 1048	-
Ah, Mi | *Desmodium sp.* (L.) Willd. ex Schult. | Fabaceae | Bionihabota (A) | Leaf | PB 1033; TG 1101 | -

Ah | *Drymaria cordata* (L.) Willd. | Fabaceae | Caryophyllaceae | Lai jabori (A), Dobag/porog-tape (M) | Leaf, twig | PB 1051; CM 1102 | Baruah et al. 2010; Das et al. 2012; Gogoi et al. 2013; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019

Ah | *Eclipta prostrata* (L.) | Fabaceae | Asteraceae | Kehrj (A) | Leaf | PB 1057 | -

Ah | *Eryngium foetidum* L. | Fabaceae | Asteraceae | Maandhania (A) | Leaf | PB 1075 | -

Ah, Mi | *Eurya acuminata* DC. | Fabaceae | Pentaphylacacea | Murmuri pat (A) | Leaf | TG 1103 | -

Ah, Mi | *Flemingia strobilifera* (L.) W.T.Aiton | Fabaceae | Makhioti (A, M) | Leaf | JS 005; PB 1035; TG 1105 | Deori et al. 2007; Das et al. 2012; Kardong et al. 2012; Gogoi et al. 2013; Pawe and Gogoi 2013; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Nath et al. 2019;

Ah | *Glochidion zeylanicum* var. *Tomentosum* (Dalzell) Trimen | Phyllanthaceae | Pani madhuri (A) | Leaf | TG 1105 | -

Ah | *Grewia serralata* DC. | Malvaceae | Malvaceae | Kukurhuta (A) | Leaf | TG 1106 | -

Ah, Mi | *Hibiscus rosa-sinensis* L. | Malvaceae | Araliaceae | Leunaapum (M), Joba (A) | Leaf | JS 006; PB 1060; TG 1107 | Baruah et al. 2010; Das et al. 2012; Kardong et al. 2012; Bhuyan and Baishya 2013; Bhuyan and Rajak 2019; Senapati and Gurumayum 2016; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Nath et al. 2019;

Ah | *Hydrocotyle sibthorpioides* Lam. | Araliaceae | Vitaceae | Horumani-muni (A) | Whole plant | BG 008; PB 1034; TG 1107 | -

Ah | *Ixora polyantha* Wight | Rubiaceae | Dhepaijamu/Matikataha (A) | Leaf | TG 1154 | -

Ah | *Jasminum sp.* | Oleaceae | Duamali (A) | Leaf | BG 009 | -

Ah | *Leea indica* (Burm.f.) Merr. | Vitaceae | Kukurathenga (A) | Leaf | PB 1072 | -

Ah, Bo | *Leucas aspera* (Willd.) Link | Lamiaceae | Lamiales | Durun bon (A), Khansisa (B) | Leaf | PB 1037; JB 025; TG 1108 | Saikia et al. 2007; Das et al. 2012; Pawe and Gogoi 2013; Gogoi et al. 2013; Das 2016; Handique and Deka 2016; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Goswami 2020

Mi | *Lippia alba* (Mill.) N.E.Br. ex Britton &P.Wilson | Verbenaceae | Pohukata (M) | Leaf, flower | JS 007 | -

Ah | *Litsea glutinosa* (Lour.) C.B.Rob. | Lauraceae | Lauraceae | Gahnualu (A) | Leaf | TG 1109 | -

Mi | *Litsea monopetala* (Roxb.) Pers. | Lauraceae | Tusip (M) | Leaf | CM 116 | -

Ah | *Litsea nitida* (Roxb. ex Nees) Hook.f. | Lauraceae | Lauraceae | Kothlusa pat (A) | Leaf | TG 1110 | -

Ah | *Litsea salicifolia* (Roxb. ex Nees) Hook.f. | Lauraceae | Lauraceae | Dighloti pat (A) | Leaf | TG 1111 | -

Ah, Mi | *Lygodium flexuosum* (L.) Sw. | Lygodiaceae | Kaphau-dhekia (A), Tisurkosang (M) | Twig | BG 010; PB 1021; CM 113; TG 1112 | Deori et al. 2007; Saikia et al. 2007; Baruah et al. 2010; Das et al. 2012; Bhuyan and Baishya 2013; Gogoi et al. 2013; Pawe and Gogoi 2013; Handique and Deka 2016; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019; Goswami 2020
Code	Species	Family	Part(s) Used	Reference(s)
Ah	Macaranga indica Wight	Euphorbiaceae	Leaf	Nath et al. 2019
Ah	Maesa chisia D.Don	Primulaceae	Leaf	
Ah	Maesa indica (Roxb.) Sweet	Primulaceae	Leaf	
Ah	Melastoma malabathricum L.	Melastomataceae	Leaf	Deori et al. 2007; Gogoi et al. 2013; Das et al. 2012; Arjun et al. 2014; Bhuyan and Rajak 2019
Ah	Mesua ferrea L.	Calophyllaceae	Leaf	
Ah	Mimus pudica L.	Fabaceae	Leaf	Nath et al. 2019
Ah	Morinda angustifolia Roxb.	Rubiaceae	Leaf, Root	Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Morus rubra L.	Moraceae	Leaf	Deori et al. 2007; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Murraya koenigii (L.) Spreng.	Rutaceae	Leaf	
Ah	Musa balbisiana Colla	Musaceae	Leaf	
Ah	Musa ensata roxburghii Hook.f.	Rubiaceae	Leaf	Gogoi et al. 2013; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Nelsonia canescens (Lam.) Spreng.	Acanthaceae	Leaf	Deori et al. 2007; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Olax acuminata Wall. ex Benth.	Oxlidaceae	Leaf	Rau et al. 2010; Das et al. 2012; Gogoi et al. 2013; Handique and Deka 2016; Bhuyan and Rajak 2019
Ah	Oldenlandia corymbosa L.	Rubiaceae	Whole plant	Barua et al. 2010; Das et al. 2012; Gogoi et al. 2013; Senapati and Gurumayum 2016; Handique and Deka 2016; Bhuyan and Rajak 2019
Ah	Ophiobriza sp.	Rubiaceae	Leaf	Deori et al. 2007; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Oryza sativa L.	Poaceae	Seed	
Ah	Oxalis debilis Kunth	Oxalidaceae	Leaf	Das and Hazarika 2015
Ah	Peperomia pellucida (L.) Kunth	Piperaceae	Leaf	
Ah	Persicaria chinensis (L.) H.Gross	Polygonaceae	Leaf	
Bo	Persicaria glabra (Willd.) M.Gomez	Polygonaceae	Leaf	
Ah,Mi	Persicaria hydropiper (L.) Delarbre	Polygonaceae	Leaf	
Mi	Persicaria microcephala (D.Don) H.Gross	Polygonaceae	Leaf	
Ah	Persicaria perfoliata (L.) H.Gross	Polygonaceae	Leaf	
Ah	Phyllanthus fraternus G.L.Webster	Phyllanthaceae	Leaf	Basumatary and Gogoi 2014; Basumatary and Gogoi 2014; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	Physalis angulata L.	Solanaceae	Leaf	
Ah,Mi	Piper betle L.	Piperaceae	Leaf	
Ah	Piper longum L.	Piperaceae	Leaf	

Note: The table above lists various plants used for preparing traditional alcoholic beverages, along with their family, part(s) used, and references. The codes (Ah, Mi, Bo) indicate the order of the plants listed.
Ah	*Piper nigrum* L.	Piperaceae	Juluk (A)	Leaf	PB 1025; TG 1125	Hazarika 2015; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	*Piper* sp.	Piperaceae	Auni pan (A)	Leaf	TG 1126	-
Ah	*Plantago asiatica* L.	Plantaginaceae	Hinga pat (A)	Leaf	TG 1161	-
Ga	*Plumbago zeylanica* L.	Plumbaginaceae	Achetra (M)	Leaf	JS 011	Basumary and Gogoi 2014; Basumary et al. 2014; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah	*Pogostemon benghalensis* (Burm.f.) Kuntze	Lamiaceae	Hukloti (A)	Leaf	PB 1063	-
Ah	*Potentilla indica* (Andrews) Th.Wolf	Rosaceae	Gorukhis (A)	Leaf	PB 1058	-
Ah	*Pouzolzia zeylanica* (L.) Benn. (Vahl) B.Hansen	Urticaceae	Boralibakua (A)	Leaf	PB 1047	-
Ah	*Pseuderanthemum latifolium* (M)	Acanthaceae	Athutangana/Hohakoniya/Pastel flower (A)	Leaf	TG 1162	-
Ah, Mi	*Psidium guajava* L.	Myrtaceae	Madhuri (A)	Leaf	CM 107; BG 013; PB 1041; TG 1128	Deori et al. 2007; Baruah et al. 2010; Deka and Sarma 2010; Das et al. 2012; Pawe and Gogoi 2013; Bhuyan and Baishya 2013; Gogoi et al. 2013; Das and Hazarika 2015; Senapati and Gurumayum 2016; Das 2016; Bhuyan and Rajak 2019; Goswami 2020
Ah	*Psychotria* sp.	Rubiaceae	Pani mudoi/Pani-moori (A)	Leaf	BG 001; PB 1023; TG 1163	-
Ah	*Rotheca serrata* (L.) Steane & Mabb.	Lamiaceae	Nangalvonga (A)	Leaf	TG 1164	Das 2016
Ah	*Rubus moluccanus* L.	Rosaceae	Jetelipoka (A)	Leaf	PB 1036; TG 1130	Bhuyan and Rajak 2019
Ah	*Rubus* sp.	Rosaceae	Jetelipoka (A)	Leaf	TG 1131	-
Ah, Bo	*Saccharum officinarum* L.	Polygonaceae	Lo baruah (A)	Leaf	JB 023; TG 1165	Deori et al. 2007; Baruah et al. 2010; Deka and Sarma 2010; Das et al. 2012; Pawe and Gogoi 2013; Bhuyan and Baishya 2013; Gogoi et al. 2013; Das and Hazarika 2015; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019
Ah, Bo, Mi	*Scoparia dulcis* L.	Plantaginaceae	Senibon/Senigutigoch/Bon tulokhi/Modhumehari (A), Juluk bon (M), Dongfangrakheb (B)	Leaf, Young shoot	BG 014; PB 1022; JB 022; CM 112; JS 2348; TG 1132	Deori et al. 2007; Saikia et al. 2007; Baruah et al. 2010; Deka and Sarma 2010; Kardong et al. 2012; Das et al. 2012; Pawe and Gogoi 2013; Gogoi et al. 2013; Bhuyan and Baishya 2013; Basumary et al. 2014; Basumary and Gogoi 2014; Brahma et al. 2014; Senapati and Gurumayum 2016; Das 2016; Handique and Deka 2016; Bhuyan and Rajak 2019
Ah	*Selaginella* sp.	Selaginellaceae	Khunkhunidheki (A)	Leaf	TG 1133	-
Ah	*Sida rhombifolia* L.	Malvaceae	Hoonbarial (A)	Leaf	PB 1053	Bhuyan and Baishya 2013; Senapati and Gurumayum 2016; Nath et al. 2019
Ah	*Smilax ovalifolia* Roxb. ex D.Don	Smilacaceae	Tikonibaruah (A)	Leaf	PB 1028; TG 1134	-
Ah	*Soemmerni laxiflora* (DC.) H.Ohashi & K.Ohashi	Fabaceae	Beoni-haputa/Beonihabota/ULutak hot (A)	Leaf	BG 007; TG 1166	Baruah et al. 2010
Page	Solanum americanum Mill.	Solanaceae	Loskosi (A)	Leaf	PB 1055	-
------	-------------------------	------------	-------------	------	---------	---
Ah	Solanum nigrum L.	Solanaceae	Bhekuri (A)	Leaf	PB 1065	-
Ah	Solena heterophylla Lour.	Cucurbitaceae	Belipoka, Ghukusmoi (A)	Leaf	TG 1167	Kardong et al. 2012; Gogoi et al. 2013; Pawe and Gogoi 2013; Senapati and Gurumayum 2016
Ah	Spathenicola trilobata (L.) Pruski	Asteraceae	Bhringraj (A)	Leaf	TG 1135	-
Ah	Spondias pinnata (L.f.) Kurz	Anacardiaceae	Omora (A)	Leaf	PB 1067	-
Ah	Stellaria media (L.) Vill.	Caryophyllaceae	Morolia (A)	Leaf	PB 1049	-
Ah	Stenochlaena palustris (Burm.f.) Bedd.	Aspleniaceae	Dhekia loti (A)	Leaf	PB 1032; TG 1136	-
Ah, Mi	Stephensia rotunda Lour.	Menispermacae	Hortubukilota/Tubukilota (A), Nginti (M)	Leaf	PB 1024; CM 114; TG 1093	-
Ah	Stixissuaveolens (Roxb.) Baill.	Resedaceae	Madhoimalati (A)	Leaf, Root	TG 1129	-
Ah	Strebus asper Lour.	Moraceae	Houra pat (A)	Leaf	TG 1137	Das 2016; Goswami 2020
Ah	Tetraceras sarmentosa (L.) Vahl	Dilleniaceae	Otu lata (A)	Leaf	TG 1168	-
Ah, Bo, Mi, Ga	Thelyptis parasitica (L.) Tardeu	Aspleniaceae	Bihlongoni (A), Sarath (G), Dinghka (B)	Frond	PB 1029; BG 006; JS 013; JB 028; TG 1081; CM 109	Pawe and Gogoi 2013
Ah	Thunbergia grandiflora (Roxb. ex Rottler) Roxb.	Acanthaceae	Hetaloti/Kauri thutialota (A)	Leaf	TG 1139	-
Ah, Mi	Tinospora cordifolia (Willd.) Hook.f. & Thomson	Menispermacae	Amrita (M), Hogunilota (A)	Leaf	JS 008; PB 1064	-
Ah	Vitex negundo L.	Lamiaceae	Posotia (A)	Leaf	PB 1066	Senapati and Gurumayum 2016
Ah	Zanthoxylum nitidum (Roxb.) DC.	Rutaceae	Tezmui/Tezmoori (A)	Leaf, Root	BG 015; TG 1140	Tanti et al. 2008; Baruaah et al. 2010; Kardong et al. 2012; Pawe and Gogoi 2013; Senapati and Gurumayum 2016; Handisque and Deka 2016; Bhuyan and Rajak 2019
Ah	Zingiber officinale Roscoe	Zingiberaceae	Ada (A)	Leaf	TG 1141	Desri et al. 2007; Pawe and Gogoi 2013; Senapati and Gurumayum 2016; Bhuyan and Rajak 2019