Developmental regulation of human cortex transcription and its clinical relevance at single base resolution

Andrew E Jaffe1–3, Jooheon Shin1, Leonardo Collado-Torres1,2, Jeffrey T Leek2,4, Ran Tao1, Chao Li1, Yuan Gao1, Yankai Jia1, Brady J Maher1,5,6, Thomas M Hyde1,5–8, Joel E Kleinman1,9 & Daniel R Weinberger1,4–7,9

Transcriptome analysis of human brain provides fundamental insight into development and disease, but it largely relies on existing annotation. We sequenced transcriptomes of 72 prefrontal cortex samples across six life stages and identified 50,650 differentially expression regions (DERs) associated with developmental and aging, agnostic of annotation. While many DERs annotated to non-exonic sequence (41.1%), most were similarly regulated in cytosolic mRNA extracted from independent samples. The DERs were developmentally conserved across 16 brain regions and in the developing mouse cortex, and were expressed in diverse cell and tissue types. The DERs were further enriched for active chromatin marks and clinical risk for neurodevelopmental disorders such as schizophrenia. Lastly, we demonstrate quantitatively that these DERs associate with a changing neuronal phenotype related to differentiation and maturation. These data show conserved molecular signatures of transcriptional dynamics across brain development, have potential clinical relevance and highlight the incomplete annotation of the human brain transcriptome.

The transcriptome of the human brain changes markedly across development and aging, with the largest gene expression changes occurring during fetal life, tapering into infancy1,2. Developmental brain disorders often involve genes that are differentially expressed in fetal as compared with postnatal life3,4. While exploration of the brain transcriptome has been an important approach to understanding brain development and brain disease, previous transcriptome characterizations have used primarily microarray technologies based on probe sequences that capture only a limited proportion of transcriptome diversity. Technological advances in RNA sequencing (RNA-seq) now permit a flexible and potentially unbiased characterization of the transcriptome at high resolution and coverage5. Yet existing published RNA-seq-based characterizations of brain development have used gene- and/or exon-level count-based summarizations6,7, which require an accurate and complete gene annotation. Such feature-based read counts lack the ability to reliably identify new transcriptional activity, but they generally limit the inherent difficulty in transcript assembly and characterization based on short-read sequencing technologies8.

We have implemented a method for RNA-seq analysis at single base resolution to more fully characterize transcription dynamics, which exploits the benefits of both count- and transcript-based methods. We describe herein the results of deep coverage sequencing of the poly(A)+ transcriptomes of human dorsolateral prefrontal cortex (DLPFC) samples across six important life stages: fetal (second trimester), infant, child, teen, adult and late life. We implemented an annotation-agnostic differential expression analysis to exploit the power of RNA-seq without the difficulties of transcript assembly9. This method, called derfinder, identifies differential expression at base-pair resolution and forms differentially expressed regions (DERs) by joining adjacent differentially expressed bases. We tested for differences in average expression across the six age groups and used statistical permutation to calculate a measure of genome-wide significance for each DER10. A DER represents a differentially expressed (here, across age groups) unspliced segment of RNA that can originate from a full-length or, potentially, spliced transcript. The derfinder approach therefore interrogates transcript-level changes in gene expression via differentially expressed segments using only coverage-level RNA-seq data. This approach allows an unconstrained and unbiased search of the transcriptome to identify fragments of interest for more detailed molecular characterization of corresponding full-length transcripts.

After applying this approach to a discovery data set of 36 brain samples, we carried forward DERs that had significant differential expression in a replication data set of 36 more DLPFC samples. Significant and replicated DERs were mapped onto existing reference transcriptomes in databases such as Ensembl11, UCSC12 and Gencode13 to characterize their locations in the genome. We further related the expression levels within DERs to a wide range of publicly available resources, including RNA-seq data from 16 human brain

1Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA. 2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. 3Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. 4McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. 5Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 6Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 7Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 8Department of Biological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 9These authors contributed equally to this work. Correspondence should be addressed to A.E.J. (andrew.jaffe@libd.org) or D.R.W. (drweinberger@libd.org).

Received 27 August; accepted 14 November; published online 15 December 2014; doi:10.1038/nn.3898
RESULTS

Extensive transcriptional changes across brain development
We identified 50,650 DERs associated with development and aging that were both genome-wide significant in our discovery data set (at family-wise error rate ≤ 5%) and were also differentially expressed in a second independent sample of 36 human brains distributed across the same age ranges (at P < 0.05; see Online Methods and Supplementary Table 1). These DERs represent 8.63 megabases (Mb) of expressed sequence (Supplementary Table 2), annotated to 5,985 unique RefSeq genes (and 6,549 unique Ensembl) genes. There were, on average, 7.51 DERs annotated to each RefSeq gene (median = 4; interquartile range, 2–10). Only 1,454 genes contained a single DER (24.3%).

The RefSeq genes containing DERs were strongly enriched for many general developmental and metabolic processes, including organelle organization (GO:0006996; 976 of 2,368 genes, P = 7.13 × 10^{-29}), regulation of gene expression (GO:0010468; 1,314 of 3,442 genes, P = 8.62 × 10^{-23}) and regulation of transcription, DNA-dependent (GO:0006355; 1,127 of 2,916 genes, P = 3.78 × 10^{-21}) (Supplementary Table 3a).

A more focused gene ontology analysis using the 1,000 most significant DERs revealed more specific enrichment for neuron projection morphogenesis (GO:0048812; 49 of 575 genes, P = 4.98 × 10^{-11}), neuron development (GO:0048666; 61 of 838 genes, P = 1.29 × 10^{-10}), axonogenesis (GO:0007409; 43 of 509 genes, P = 1.08 × 10^{-9}) and nervous system development (GO:0007399; 100 of 1,784 genes, P = 3.84 × 10^{-10}) (Supplementary Table 3b).

Most DERs had their highest expression (adjusted for sequencing depth) in the fetal developmental period (N = 41,405; 81.7%), followed by adolescent (N = 3,104; 6.1%) and adult (N = 2,621; 5.2%). The genes containing DERs most highly expressed from infancy through adulthood were consistently enriched for synaptic transmission (GO:0007268; P value range 5.0 × 10^{-12}–5.5 × 10^{-24}), cell-cell signaling (GO:0007267; P value range 4.0 × 10^{-7}–1.7 × 10^{-17}) and other related signaling processes (Supplementary Table 3d–g). Notably, genes containing DERs most expressed in later life (age ≥50 years) were not enriched for these signaling processes, but instead were enriched for processes related to cellular respiration and energy-related processes (Supplementary Table 3h).

Principal component analysis (PCA) of the normalized coverage estimates across the 50,650 DERs revealed that the first principal component represented a linear scaling (either positive or negative) of expression across the lifespan (72% of variance explained; Supplementary Fig. 1a). The second and third principal components explained less variance (combined 15.1%) and represent dynamic expression from infancy to adolescence with relatively similar levels of expression in fetal life and adulthood (Supplementary Fig. 1b,c).

Several of the genes containing the most significant DERs showed patterns consistent with the canonical biology of brain development (Supplementary Fig. 2). These included the high expression of previously identified developmentally important genes during fetal life, such as SOX11 (Fig. 1), which encodes a transcription factor involved in the regulation of embryonic development^{13}, and DCX, which is involved in the migration and organization of neuroblasts^{19}. Expression of SLC6A1 (GAT1), a sodium- and chloride-dependent GABA transporter that removes GABA from the synaptic cleft, followed the well-studied early developmental expression of the GABAergic system^{20}. DERs overlapping NRGN and CAMK2A, two calcium binding proteins important for learning and memory and neuropsychiatric disorders^{21,22}, became most highly expressed in infant and teenage life periods, respectively. Several DERs that had their highest expression during postnatal life have been implicated in brain disorders thought to be developmental, including RGS4, a G protein signaling regulator associated with schizophrenia^{23} that had its highest expression during adolescence, and CNTNAP1, a contactin-associated protein associated with autism^{24} that had its highest expression during adulthood.

Many of the genes associated with DERs also showed developmental regulation across the lifespan using previously published microarray expression profiles of age-associated changes in neuronal phenotypes and CNS disorder-associated genes.

Figure 1 Design of the project. We performed RNA sequencing (RNA-seq) on 36 DLPFC samples from across the lifespan and implemented the derfinder method to identify DERs. These DERs were replicated in an independent DLPFC sample and explored across other brain regions, in the developing mouse cortex, in diverse cell and tissue types, and in the context of disease-associated gene sets. Top right, an example of a DER (see Supplementary Table 2 for links to visualizations all DERs). We also quantified the cell composition of these DLPFC samples and defined regions of expression across the genome by age group. FWER, family-wise error rate; DNAm, DNA methylation; tss, transcriptional start site.
data on 269 individuals without psychiatric disorders1 (obtained from GSE30272; see Online Methods), which both confirms the developmentally regulated genes identified with the DERs and highlights the gains made by using sequencing-based approaches over microarrays. Many individuals in the present RNA-seq study discovery data set (28 of 36) were interrogated in this array-based data set. Most (4,955 of 5,985, or 82.8\%) of the DER-associated genes were present in the processed microarray data, and almost all of these genes were differentially expressed across the lifespan: 4,920 (99.3\%), 4,684 (94.5\%) and 4,304 (86.9\%) were significant at $P < 0.05$, $P < 10^{-6}$ and $P < 10^{-11}$, respectively. Of the 1,030 genes showing significant differential expression only in the RNA-seq data, 432 genes were removed during quality control steps performed by Colantuoni et al.1, suggesting that they may be more difficult to measure using oligonucleotide probes, and the remaining 598 were not included in the microarray design. These genes did not differ in functionality from those included on the microarray (all GO enrichment P values $> 10^{-6}$).

Widespread differential expression of unannotated sequence

Surprisingly, many of the age-associated DERs, while contained within genes, contained expressed sequence annotated as intronic: 21,033 significant regions (41.5\%) overlapped at least one Ensembl-annotated intron (minimum overlap = 20 base pairs; see Online Methods). Furthermore, 4,214 regions (8.3\%), which we term “intergenic,” did not map to any Ensembl annotated genes (that is, exonic or intronic regions); 29,813 regions (58.9\%) crossed at least one annotated exon (Supplementary Fig. 3). Not surprisingly, the exonic DERs had, on average, much higher expression across all samples than DERs annotating to non-exonic sequence (140.8 normalized reads as compared to 14.0 and 8.2 normalized reads for intergenic and intronic DERs, respectively; $P < 10^{-100}$ via linear regression) and were longer (190.3 bp versus 150.4 and 139.4 bp, respectively, $P < 10^{-20}$). Nevertheless, of the 3,056 Ensembl genes containing intron-annotated DERs, 1,765 (57.7\%) genes contained both intronic and exonic DERs. These intronic changes are not likely to be due to technical artifacts, and we observed significant enrichment ($P < 10^{-100}$) of long non-coding RNAs in the intergenic DERs (Online Methods). There were similar percentages of overlapping annotated features using the UCSC hg19 knownGene (based on RefSeq) database (19,575, 6,676 and 26,886 for introns, intergenic and exons, respectively) and Genecode v19 (21,107, 3,994 and 30,016, respectively), further suggesting that the transcriptome contained in commonly accessed databases is notably incomplete, at least across human brain development.

The widespread differential expression across development and age of previously annotated intronic sequence may be due to an abundance of nuclear pre-mRNA present in the total RNA. We therefore sought to better distinguish pre-mRNA from spliced exonic mRNA by sequencing nuclear and cytosolic preparations from another six independent brain samples (three fetal and three adult; Supplementary Table 4). Quantifying the relative concentration of mRNA in the cytosolic and nuclear mRNA fractions provided initial evidence that our differentially expressed regions were present in the cytosol: the mean concentration ratios of cytosolic to nuclear RNA were 204.0 ng/μl:17.6 ng/μl (11.6×) in the fetal samples and 137.0 ng/μl:17.6 ng/μl (7.7×) in the adult samples, showing that most polyadenylated RNA in total polyadenylated RNA originates from the cytosol. We sequenced each mRNA fraction from each sample to characterize the widespread differential expression observed in the total RNA. The relative log2 fold changes of expression, comparing fetal to adult levels, were highly correlated across total and cytosolic poly(A)+ mRNA DERs ($p = 0.914$), including expression of annotated intronic ($p = 0.664$) and intergenic ($p = 0.820$) regions (Supplementary Fig. 4). There was especially high concordance in the directionality of the non-exonic fetal versus adult fold changes: 96.4\% were directionally consistent overall between cytosolic and total poly(A)+ mRNA. These results implicate development-mental regulation of a potentially large subset of intron-containing mRNA in the cytosolic fraction of the human frontal cortex.

Age-associated DERs lack regional specificity

We next explored the representation of our age-associated DERs in other brain regions, including other cortical and subcortical nuclei and cerebellum, using publicly available BrainSpan data14, which included RNA-seq data across prenatal and postnatal developmental periods in 16 brain regions. Our DLPCF-identified DERs showed consistent age-related changes across each brain region with little inter-regional variability. The first principal component of only the BrainSpan normalized mean coverage data across the 50,650 DERs (explaining 59\% of the variability) strongly correlated with age, particularly fetal versus postnatal, and not brain region (Fig. 2). The second principal component (explaining 8.7\% of the variability) strongly correlated with RNA quality (Supplementary Fig. 5). Subsequent lesser principal components differentiated the neocortical regions from the subcortical region and cerebellum (Supplementary Fig. 6). Within a secondary PCA on only non-exonic DERs, the first principal component remained age (here explaining 40.6\% of the variance; Supplementary Fig. 7). There was also significant correlation between log2 fold changes comparing fetal samples to adults in our DLPCF data set and the same fetal versus postnatal comparison within each brain region, including within previously annotated intronic and intergenic sequences (Table 1). The high correlations between fetal versus adult comparisons in our DLPCF samples and the BrainSpan DLPCF samples constitute an independent validation of our identified DERs, including the non-exonic sequences.

Age-associated DERs are conserved in the mouse cortex

We further examined our DERs, particularly the preponderance of non-exonic expression, by exploiting genetic synteny in mice to validate differential expression using a cross-species approach. We downloaded and renormalized publicly available data from mouse cerebral cortex, comparing embryonic day (E) 17 ($N = 4$) to adult ($N = 3$) C57BL/6 mice15, which had previously been interrogated for differences in gene-level expression across development. We used the liftOver tool12 to map the DERs to the mouse genome (mm10), of
Table 1 Correlation of fetal versus adult fold changes across brain regions within DERs

BrainSpan region	All (N = 50,560)	Intragenic (N = 4,221)	Intronic (N = 16,616)	Exonic (N = 29,813)
DFC	0.863	0.702	0.490	0.895
VFC	0.851	0.684	0.429	0.888
MFC	0.856	0.705	0.485	0.891
OFC	0.845	0.674	0.360	0.891
M1C	0.841	0.675	0.388	0.882
S1C	0.830	0.657	0.326	0.878
IPC	0.849	0.681	0.464	0.882
A1C	0.860	0.698	0.517	0.888
STC	0.871	0.720	0.576	0.894
ITC	0.892	0.694	0.473	0.881
V1C	0.867	0.701	0.534	0.894
HIP	0.828	0.660	0.397	0.862
AMY	0.845	0.677	0.444	0.872
STR	0.788	0.607	0.428	0.816
MD	0.699	0.528	0.266	0.731
CBC	0.627	0.434	0.230	0.673

Spearman correlation coefficients were calculated between log2 fold changes comparing fetal to postnatal expression in the DLPCF discovery data set and each brain region in the BrainSpan database across the DERs (All), and within the DERs annotated to specific Ensembl features. DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex; MFC, anterior (rostral) cingulate (medial frontal cortex); OFC, orbital frontal cortex; M1C, primary motor cortex (M1, Brodmann area 4); S1C, primary somatosensory cortex (S1, areas 3, 1 and 2); IPC, posteroinferior (ventral) parietal cortex; A1C, primary auditory cortex (core); STC, posterior (caudal) superior temporal cortex (Tac); ITC, inferolateral temporal cortex (Tev, area 20); V1C, primary visual cortex (striate cortex, V1, area 17); HIP, hippocampus (hippocampal formation); AMY, amygdala complex; STR, striatum; MD, medioventral nucleus of thalamus; CBC, cerebellar cortex.

Age-associated DERs expressed in other cells and tissues

We also explored the cell type specificity of these DERs, and respective intronic and intergenic expression, using publicly available RNA-seq data from human stem cells16 and somatic adult tissues17. After reanalyzing and processing these public data sets, we observed that most DERs had an average coverage >5 reads in at least one sample (22,195, 423 and 2,764 in human-annotated exonic, intergenic and intronic sequence, respectively), suggesting that a subset of these DERs are expressed in the developing mouse cortex. We identified significant correlation between the relative differences in fetal and adult human expression compared to E17 versus adult mouse expression in these syntenic regions (Fig. 3, ρ = 0.771, P < 10−100 via Z-score). The magnitude and directionality of the expression changes in the mouse were similar to many of the human DERs (directionality concordance = 84.1% overall), indicating those annotated as intronic and intergenic, suggesting these age-associated DERs represent conserved expression signatures in the developing mammalian brain.

Age-associated DERs overlap open chromatin

While the DERs overlapping intronic and intergenic Ensembl-annotated sequence aligned with the stem cells in its first principal component (Fig. 4b), these non-exonic DERs appeared to be particular to the fetal human brain. We then contrasted these patterns to the clustering of the global transcriptome based on read counts for all Ensembl-annotated genes (Supplementary Data 1). Here principal component 1 distinguished the brain (fetal and postnatal) from non-brain (stem cell and somatic tissue) samples and principal component 2 distinguished developmentally active tissues (fetal brain and stem cells) from somatic postnatal tissues, including postnatal brain (Fig. 4c). Gene-level expression patterns across the entire transcriptome highlighted tissue-specific features, whereas the DERs target more general developmental transitions. Thus, although the overall transcriptomes of cells at different stages of early differentiation are clearly distinct, the DERs reflect common features of these differentiating cells.

Figure 3 Cross-species comparison of differentially expressed regions (DERs.) Significant DERs were ported to the mouse genome mm10 and RNA-seq coverage was extracted from the reprocessed study by Dillman et al., comparing E17 to adult C57BL/6 mice. Log2 fold changes comparing depth-adjusted mean differences between fetal and adult human samples were highly correlated with E17 versus adult mouse samples within each DER, stratified by human-annotated (a) exonic, (b) intronic and (c) intergenic sequence. Any DER with both exonic and intronic sequence was classified as exonic. Each point represents a single DER; its area indicates the proportion of the DER’s width that was successfully ported over, where the largest points represent 100% mapping, ρ, Spearman correlation; κ, directionality concordance (for example, higher or lower expression in fetal relative to adult in both species).
to intergenic sequence (Supplementary Table 5), demonstrating that the DERs largely reside in actively transcribed regions in the human fetal brain.

Age-associated DERs overlap CNS disease-associated loci

We sought to identify potential overlap between the DERs and genetic loci conferring risk for neurodevelopmental disorders, starting with schizophrenia—specifically, the 108 genome-wide significant loci from the latest Psychiatric Genomics Consortium (PGC) genome-wide association study (GWAS) of over 150,000 subjects. Specifically, 42 loci (of the 108; 38.9%) overlapped at least one DER, which was statistically significant via permutation analysis (P = 0.0013; see Online Methods and Table 2). Stratifying the list of DERs by annotation class yielded more significant overlap for exonic (P = 1.2 × 10^{-4}) and intronic (P = 2.9 × 10^{-4}) DERs but non-significant overlap for intergenic DERs (P = 0.053). These effects represented odds ratios of approximately 2.0 for all, exonic and intronic DERs and 1.8 for intergenic DERs (see Online Methods).

We also assessed the overlap between the genes containing DERs and a series of pre-defined gene sets associated with other neurodevelopmental disorders, including autism, intellectual disability and syndromal neurodevelopmental disorders. There was significant enrichment for genes associated with intellectual disability (P < 10^{-4}), and marginal association with autism (P = 0.017, genes in the SPARi database) and genes associated with syndromal neurodevelopmental disorders (P = 0.027). These associations were in line with a previously published report on genes showing differential expression comparing fetal to postnatal life using microarray data. Overall, these results implicate the genes containing DERs as enriched in those associated with diverse neurodevelopmental disorders.

Lastly, we conducted several analogous analyses in other disorders not typically associated with neurodevelopment, including brain-related (Alzheimer’s disease and Parkinson’s disease) and non-brain-related (type 2 diabetes; see Online Methods) disorders. We identified significant overlap between the age-related DERs and Parkinson’s disease (P = 0.0039) marginal overlap with Alzheimer’s disease (P = 0.039) and no overlap with type 2 diabetes (P = 0.25). Notably, while only a small fraction of DERs were most highly expressed in adult life or later (8.4%), 4 of 7 Alzheimer’s disease–associated and 5 of 11 Parkinson’s disease–associated genetic loci overlapped at least one such later life DER (P = 7.19 × 10^{-5} and 1.01 × 10^{-4} respectively), in contrast to those associated with schizophrenia and other neurodevelopmental syndromes, for which the enrichment was primarily for DERs highly expressed in fetal life.

Fetal brain has the largest fraction of the expressed genome

We used the coverage-level RNA-seq data in our 36 discovery brain samples to barcode regions of expression within each age group (essentially a one-group generalization of the derfinder procedure) regardless of differential expression signal. After normalizing each sample to an 80-million-read library size, we identified contiguous regions where the average within-group expression levels were ≥ 5 normalized reads. While we identified a similar number of expressed sequences across the six age groups, the fetal samples had the largest fraction of the genome expressed across all six age groups — approximately 4% — and had the lowest proportion of expressed sequences overlapping Ensembl-annotated exons (Table 3). Surprisingly, each age group had a very similar proportion of all annotated Ensembl exons and introns covered (55–58%). Lastly, we observed that most PGC risk loci associated with schizophrenia contained expressed sequence in the DLFC, one of the brain regions consistently implicated in schizophrenia. We observed similar metrics and inference using a threshold of ≥ 10 reads as a sensitivity analysis. On the basis of these results, we have created a custom UCSC Track Hub called “LIBD Human DLFC Development” that illustrates the coverage-level sequencing data within each age group (Supplementary Fig. 8).

Table 2 Enrichment of DERs among GWAS-positive regions

Trait	All	Exon	Intron	Intergenic
Schizophrenia	0.0013	0.0001	0.0003	0.0530
Alzheimer’s disease	0.0385	0.2778	0.0117	0.6016
Parkinson’s disease	0.0039	0.0100	0.0035	0.0882
Type 2 diabetes	0.2500	0.1029	0.4307	0.1200

Shown are empirical P values determined by permutation assessing significant overlap between DERs and locations of GWAS positive loci for schizophrenia, Alzheimer’s disease, Parkinson’s disease and type 2 diabetes.
Table 3 Expressed sequences/regions by age group defined by five or more adjusted reads across consecutive bases, adjusted for library size

	Fetal	Infant	Child	Teen	Adult	Age ≥50
No. of regions	459,426	481,029	413,202	365,903	437,935	420,294
No. in DERs	46,813	37,618	33,958	31,818	32,849	31,563
Coverage (Mb)	121.8	107.5	97.1	90.5	92.9	91.4
Genome covered	4.1%	3.6%	3.2%	3.0%	3.1%	3.0%
Exonic	44.0%	46.8%	54.0%	58.8%	53.1%	54.1%
Intronic	77.1%	72.8%	71.1%	70.2%	69.9%	68.9%
Intergenic	11.9%	13.3%	12.9%	12.5%	12.9%	13.4%
Exons (Ensembl)	55.2%	56.8%	56.9%	55.3%	56.5%	55.8%
Introns (Ensembl)	57.6%	58.1%	57.7%	55.4%	57.2%	56.0%
108 PGC2 for SZ	83	84	83	82	83	88
Intronic, ≥10 reads	73.2%	65.6%	64.6%	64.4%	63.7%	62.4%

Exonic, intronic and intergenic rows give the percentages of the expressed regions overlapping annotated features; exons and introns rows give the converse, being the proportion of all Ensembl features (313,836 unique exons and 266,102 unique introns) covered by expressed sequences in each age group. The 108 PGC2 for SZ row gives the number of latest PGC schizophrenia-associated loci overlapping at least one expressed sequence in DLPCF. Lastly, we show, as a sensitivity analysis, the percentage of expressed regions when defined using ten or more adjusted reads.

These data can allow easy visualization of our data integrated with the diverse functionality of the UCSC Genome Browser.

Expression changes across development associate with a changing neuronal phenotype

Changes in gene expression across the lifespan may reflect a combination of changes within individual cellular populations and composition changes of varying cell types in the underlying brain tissue. In particular, a comparison of fetal frontal cortex, which contains predominantly neurons and neural progenitor cells (NPCs), and adult prefrontal cortex, which contains a mixture of neurons and glia, may reflect primarily these changing cell constituents. We therefore performed an in silico estimation34 of neuronal, non-neuronal and neural progenitor cell composition using DNA methylation (DNAm) data from our brain samples projected onto publicly available DNAm data derived from cell lines (Supplementary Table 6), including ES cell-derived NPCs35, and adult cortex tissue separated by fluorescence-activated cell sorting into neuronal and non-neuronal components using the NeuN antibody34,36. These composition estimates (the relative proportion of each cell type in each brain sample; Supplementary Fig. 9a–c) quantitatively confirmed the proliferation of non-neuronal cells across the lifespan (P = 5.56 × 10⁻⁵) and the loss of remaining NPCs at birth (P = 6.01 × 10⁻¹⁷).

We then correlated these cell type proportions with expression levels across individuals within each DER. Most DERs were significantly associated with only the NPC relative composition estimate (92.2% of DERs, Bonferroni-corrected PBonf < 0.05, Supplementary Fig. 9d) and not the NeuN⁻ estimate (1.6% of DERs, PBonf < 0.05). Multivariate statistical modeling incorporating both NPC and NeuN⁻ proportions (which are negatively correlated at ρ = −0.53) indicated that the vast majority of DERs associated only with the loss of NPCs (N = 43,917), and very few DERs associated only with NeuN⁻ (N = 6). These results suggest that the widespread expression changes in human brain1,2 at birth are more reflective of a changing neuronal phenotype—specifically, the differentiation of neural precursor and progenitor cells into mature neurons—than a rise in non-neuronal cell types.

DISCUSSION

We have identified widespread changes in the transcriptomes of the developing human prefrontal cortex, typically involving many genes previously implicated in brain development. However, unlike previous characterizations that rely on existing annotation, we observed extensive age-dependent expression of sequences previously annotated as intronic and intergenic in commonly accessed genomic databases (Ensembl, Genencode and UCSC). The majority of these DERs are most highly expressed in the fetal brain and decrease in expression across the lifespan. These developmental expression changes were largely present in cytosolic RNA from independent brain samples, were present in 15 other brain regions across development, were conserved across mouse development using synteny, and showed considerable overlap with differentiating neural progenitor cells. We further identified enrichment for active chromatin marks and for genomic regions associated with risk of schizophrenia and other neurodevelopmental disorders.

These developmental expression changes at single base resolution complement recent approaches characterizing the entire brain transcriptome within particular age groups, such as fetal37 or postnatal38—for example, comparing expression changes across brain regions39. On the basis of our integration with BrainSpan data, we identified regions that do not appear to be regionally regulated, but rather appear to be generic developmental switches in the brain. This is in contrast to those genes recently reported by Pletikos et al.39 as possibly related to regional parcellation. For example, while most of the genes identified as regionally associated by Pletikos et al.39 were expressed in our data as based on gene level measures (reads per kilobase per million mapped > 1)—87.0% of adult, 81.3% of fetal and 88.2% of infant genes—only a smaller subset were present in the DER-overlapping 5,985 RefSeq genes: 44.4% of adult, 38.2% of fetal, and 29.4% of infant regionally associated genes. In contrast, those genes overlapped by DERs were not likely to be differentially expressed by region: of the 5,985 genes that overlapped DERs, only 5.1% were present in the adult regional association gene list, 16.3% of fetal and 0.09% of infant. We therefore hypothesize that genes associated with regional specificity are a separate subset from those associated with overall developmental processes, perhaps reflecting developmental changes arising from shifting cellular phenotypes in the latter case and regional changes representing different underlying cellular connectivities in the former.

The significant enrichment between the age-associated DERs and genetic loci associated with schizophrenia offers support for the neurodevelopmental hypothesis of the disorder40. The state-of-the-art GWAS study of schizophrenia, involving over 150,000 subjects, identified 108 independent loci associated with risk for illness, and these loci contain approximately 340 potential gene candidates. Because many of the candidates that map to these loci may not be participating in the population level association, a more finely grained analysis of the DERs that map to these loci may help eliminate some of the genes in these loci from the candidate list. Still, the mechanisms by which genes associated with schizophrenia lead to the emergence of the clinical syndrome in early adult life have been increasingly linked to early developmental processes including both prenatal and postnatal factors40. Our evidence from the DER analysis supports this assumption. Similar enrichment of DERs was found for gene
sets associated with risk for autism, intellectual disability and various neurodevelopmental encephalopathy syndromes, all of which involve obvious early developmental clinical phenomena, thus supporting further clinical relevance of the DERs we have identified. Notably, while there was enrichment between DERs and loci implicated in neurodegenerative disorders, these genomic loci showed greater enrichment for DERs that reflect increased gene expression in adult life rather than fetal life.

While the age-associated DERs identified using a conservative statistical threshold occupied a relatively small proportion of the genome (8.63 Mb, 0.3% of the genome), we observed a much larger proportion of the genome being expressed across all age groups, particularly among fetal samples (121.8 Mb, 4.0%). As there were extensive differences among these proportions (for example, 4.0% in fetal brain versus 3.1% in adult brain), our derfinder approach depended on differential expression across six age groups, rather than focusing on fetal versus nonfetal expression differences, which are widespread.

We note that these differences in the proportion of genome expressed could result from the more diverse cellular phenotypes in the fetal brain samples, particularly the residual NPC signature. We ran derfinder with especially conservative parameters (for example, the single-base threshold), sacrificing statistical power in exchange for reducing the number of false positive DERs, an important distinction given the extent of newly identified transcriptional activity outside of previously defined exonic regions. The public availability of our data allow re-analyses with varying statistical thresholds and post hoc tests, particularly within individual genes of interest. We note that our DERs are, by definition, elements of transcripts and not full mRNAs. The limitations of relatively short sequence read length makes full transcript assembly challenging, but the DERs provide entry points for functional genomics.

We anticipate that these data, both processed and raw, will be a resource for interrogating expression change across the lifespan. Our custom UCSC Track Hub can be used to visually discover transcriptional activity in candidate genes, and can be integrated with the other functional genomics tracks. The approach taken here explored one specific question within this rich data set, and our results underscore the complexity of gene expression and cellular differentiation that occurs during brain development and the incomplete nature of current transcriptome annotation.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. BioProject: PRJNA245228. The Track Hub is currently available at: http://genome.ucsc.edu/cgi-bin/hgTrack sdb=hg19&hubUrl=https://s3.amazonaws.com/DLPFC_n36/ humanDLPFC/hub.txt. Values for gene reads per kilobase per million mapped (RPKM) are available in Supplementary Data 1. R code from analyses is available in Supplementary Data 2.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We are grateful for the vision and generosity of the Lieber and Maltz families, who made this work possible. Human brain material was acquired from the Offices of the Chief Medical Examiner of the District of Columbia and those of the Commonwealth of Virginia, Northern District, and processed and stored at the NIH Clinical Center in Bethesda, Maryland. We thank the families who donated to this research and we thank R. Straub for criticism of the data analyses. This work was supported by the Lieber Institute for Brain Development. A.E.J. was partially supported by 1R21MH102791, L.C.-T. was supported by CONACyT México (351533) and J.T.L. was supported by R01GM105705-01A1.

AUTHOR CONTRIBUTIONS

All authors contributed to the writing of the manuscript, plus the following individual contributions: A.E.J. designed the study, performed data analyses on summarized DERs: BrainSpan, mouse, cell and tissue types, histone tail– and disease-associated enrichments, and cell composition. J.S. performed data analysis involving processing the RNA-seq data. L.C.-T. performed data analysis involving the initial global derfinder approach. J.T.L. performed data analysis involving the initial global derfinder approach. R.T. performed RNA extractions and cytologic separations. C.L. performed RNA extractions and cytologic separations. Y.G. created sequencing libraries and oversaw the data generation for the discovery data. Y.J. created sequencing libraries and oversaw the data generation for the validation data. B.J.M. assisted in the biological interpretation of the computational findings. T.M.H. provided brain tissue and demographic data and assisted in biological interpretation of the computational findings. J.E.K. oversaw the project, provided brain tissue and demographic data, and assisted in biological interpretation of the computational findings. D.R.W. designed the project, oversaw the project and assisted in biological interpretation of the computational findings.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.
1. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. *Nature* **478**, 519–523 (2011).
2. Kang, H.J. et al. Spatio-temporal transcriptiontime of the human brain. *Nature* **478**, 483–489 (2011).
3. Birnbaum, R., Jaffe, A.E., Hyde, T.M., Kleinman, J.E. & Weinberger, D.R. Prenatal expression patterns of genes associated with neuropsychiatric disorders. *Am. J. Psychiatry* **171**, 758–767 (2014).
4. Gulsuner, S. et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. *Cell* **154**, 518–529 (2013).
5. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.* **28**, 511–515 (2010).
6. Parkishak, N.N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. *Cell* **155**, 1008–1021 (2013).
7. Wiltsie, A.J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. *Cell* **155**, 997–1007 (2013).
8. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. *Nat. Methods* **10**, 1177–1184 (2013).
9. Frazee, A.C., Sabuncyan, S., Hansen, K.D., Irizarry, R.A. & Leek, J.T. Differential expression analysis of RNA-seq data at single-base resolution. *Biostatistics* (2014).
10. Jaffe, A.E. et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. *Int. J. Epidemiol.* **41**, 200–209 (2012).
11. Flicek, P. et al. Ensembl 2014. *Nucleic Acids Res.* **42**, D749–D755 (2014).
12. Honcich, A.S. et al. The UCSC Genome Browser Database: update 2006. *Nucleic Acids Res.* **34**, D590–D598 (2006).
13. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. *Genome Res.* **22**, 1775–1789 (2012).
14. BrainSpan. Atlas of the Developing Human Brain. http://www.brainspan.org/ (2011).
15. Dillman, A.A. et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. *Nat. Neurosci.* **16**, 499–506 (2013).
16. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. *Cell* **153**, 1134–1148 (2013).
17. Farrell, C.M. et al. Current status and new features of the Consensus Coding Sequence database. *Nucleic Acids Res.* **42**, D865–D872 (2014).
18. Wang, Y., Lin, L., Lai, H., Parada, L.F. & Lei, L. Transcription factor Sox11 is essential for both embryonic and adult neurogenesis. *Dev. Dyn.* **242**, 638–653 (2013).
19. Curtis, M.A. et al. Mapping and analysis of chromatin state dynamics in nine human cell lines. *Cell* **155**, 997–1007 (2013).
20. Krug, A. et al. The effect of neuroginan on neural correlates of episodic memory encoding and retrieval. *Schizophr. Bull.* **39**, 141–150 (2013).
21. Morris, D.W. et al. Confirming RG58 as a susceptibility gene for schizophrenia. *Am. J. Med. Genet. B, Neuropsychiatr. Genet.* **125B**, 50–53 (2004).
22. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. *Nature* **459**, 528–533 (2009).
23. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. *Nat. Biotechnol.* **28**, 1045–1048 (2010).
24. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. *Nat. Biotechnol.* **26**, 1293–1300 (2008).
25. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature* **511**, 421–427 (2014).
26. Baranee-Basu, S. & Packer, A. SFARI Gene: an evolving database for the autism research community. *Dis. Model. Mech.* **3**, 133–135 (2010).
27. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. *Nat. Genet.* **44**, 981–990 (2012).
28. Callicott, J.H. et al. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. *Am. J. Psychiatry* **160**, 2209–2215 (2003).
29. Runyan, B.J. et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. *Bioinformatics* **30**, 1003–1005 (2014).
30. Huseman, E.A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinformatics* **13**, 86 (2012).
31. Kim, M. et al. Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. *Hum. Mol. Genet.* **23**, 657–667 (2014).
32. Guittirana, J., Ayee, M.J. & Kaminsky, Z.A. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. *Epigenetics* **8**, 290–302 (2013).
33. Miller, J.A. et al. Transcriptional landscape of the prenatal human brain. *Nature* **508**, 199–206 (2014).
34. He, Z., Bammann, H., Han, D., Xie, G. & Khaitovich, P. Conserved expression of lncRNA during human and macaque prefrontal cortex development and maturation. *RNA* **20**, 1103–1111 (2014).
35. Plettis, M. et al. Temporal specification and bilaterality of human neocortical topographic gene expression. *Neuron* **81**, 321–332 (2014).
36. Kleinman, J.E. et al. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. *Biol. Psychiatry* **69**, 140–145 (2011).
37. Amur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. *Nat. Struct. Mol. Biol.* **18**, 1435–1440 (2011).
38. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature* **473**, 43–49 (2011).
39. Hupe, M., Li, M.X., Gertow Gillner, K., Adams, R.H. & Stenman, J.M. Evaluation of TRAP-sequencing technology with a versatile conditional mouse model. *Nucleic Acids Res.* **42**, e14 (2014).
40. Ramos, A.D. et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. *Cell Stem Cell* **12**, 616–628 (2013).
ONLINE METHODS

Post-mortem brain samples. Post-mortem human brain tissue was obtained by autopsy primarily from the Offices of the Chief Medical Examiner of the District of Columbia and those of the Commonwealth of Virginia, Northern District, all with informed consent from the legal next of kin (protocol 90-M-0142 approved by the NIMH/NIH Institutional Review Board). Brains tissue was stored and dissected at the Clinical Center, NIH, Bethesda, Maryland and at the Lieber Institute for Brain Development in Baltimore, Maryland. Brain material was transferred to the Lieber Institute under an approved Material Transfer Agreement where tissue processing was performed. Additional post-mortem fetal, infant, child and adolescent brain tissue samples were provided by the National Institute of Child Health and Human Development Brain and Tissue Bank for Developmental Disorders (http://www.BTBank.org/) under contracts NO1-HD-4-3368 and NO1-HD-4-3383. The Institutional Review Board of the University of Maryland at Baltimore and the State of Maryland approved the protocol, and the tissue was donated to the Lieber Institute for Brain Development under the terms of a material transfer agreement. Clinical characterization, diagnoses, and macro- and microscopic neuropathological examinations were performed on all samples using a standardized procedure. Details of tissue acquisition, handling, processing, dissection, clinical characterization, diagnoses, neuropathological examinations, RNA extraction and quality control measures were described previously in Lipska et al.45. The Lieber and Tissue Bank cases were handled in a similar fashion (http://medschool.umaryland.edu/btbank/methods.asp). Toxicological analysis was performed on every case, and subjects with evidence of macro- or microscopic neuropathology, drug use, alcohol abuse or psychiatric illness were excluded.

We selected 6 samples per age group for our discovery data set, balancing for sex (4 male, 2 female) and RNA integrity number (RIN, mean = 8 per group), as our larger collection of fetal samples typically had higher RNA quality (for example, in Colantuoni et al.1). We then selected 36 more samples, also consisting of 6 samples across the 6 age groups as above (fetal, infant, child, teen, adult, and >50), to serve as a replication cohort. Additional demographic information for our discovery and validation data sets is available in Supplementary Table 1, including accession numbers in the Sequencing Read Archive (SRA) for the discovery samples.

RNA extraction and sequencing. Post-mortem tissue homogenates of dorsolateral prefrontal cortex gray matter (DLPFC) approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal samples were obtained from all brains. Total RNA was extracted from ~100 mg of tissue using the RNeasy kit (Qiagen) according to the manufacturer's protocol. The poly(A)-containing RNA molecules were purified from 1 µg DNAase-treated total RNA and, following purification, fragmented into small pieces using divalent cations under elevated temperature. Reverse transcriptase and random primers were used to copy the cleaved RNA fragments into first-strand cDNA, and the second-strand cDNA was synthesized using DNA polymerase I and RNAse H. We performed the sequencing library construction using the TruSeq RNA Sample Preparation v2 kit by Illumina. Briefly, cDNA fragments undergo an end repair process using T4 DNA polymerase, T4 polynucleotide kinase and Klenow DNA polymerase with the addition of a single adenosine using an elevated temperature. Reverse transcriptase and random primers were used to copy the cleaved RNA fragments into first-strand cDNA, and the second-strand cDNA was synthesized using DNA polymerase I and RNAse H. We performed the sequencing library construction using the TruSeq RNA Sample Preparation v2 kit by Illumina. Briefly, cDNA fragments undergo an end repair process using T4 DNA polymerase, T4 polynucleotide kinase and Klenow DNA polymerase with the addition of a single adenosine using a Klenow polymerase lacking 3' to 5' exonuclease activity, and then ligated to the Illumina paired-end (PE) adapters using T4 DNA ligase. An index/barcode was inserted into Illumina adapters, allowing samples to be multiplexed in one lane of a flow cell. These products were then purified and enriched with PCR to create the final cDNA library for high throughput DNA sequencing using an Illumina HiSeq 2000.

RNA sequencing data processing. The Illumina Real Time Analysis (RTA) module performed image analysis, base calling and ran the BCL converter (CASAVA v1.8.2), generating FASTQ files containing the sequencing reads. These reads were aligned to the human genome (UCSC hg19 build) using the spliced-read mapper TopHat (v2.0.4) using the reference transcriptome to initially guide alignment, on the basis of known transcripts of Ensembl Build GRCh37.67 (the “G” argument in the software)46. The total number of aligned reads across the autosomal and sex chromosomes (dropping reads mapping to the mitochondrial chromosome) per sample are provided in Supplementary Table 1.

Derfinder analysis. We implemented the derfinder pipeline, available from http://bioconductor.org/packages/release/bioc/html/derfinder.html, on the 36 discovery samples (Supplementary Table 1). Base-level coverage data (the number of reads crossing each base in the genome) was created from the aligned reads (BAM files). The statistical model was fit at every base, after performing coarse filtering to remove bases without at least 5 reads in at least 1 sample:

\[y_{ij} = \alpha_i + \beta_i \text{Group}_j + \gamma_i M_j + \epsilon_{ij} \]

for coverage \(y_{ij}\) at base \(i\) for sample \(j\), where \(Group\) is a categorical indicator variable for the six age groups and \(M_j\) is the scaled and log-transformed total number of mapped reads per sample, which adjusts for differences in library size between samples. This model is compared to the null model

\[y_{ij} = \alpha_i + \gamma_i M_j + \epsilon_{ij} \]

by constructing an \(F\)-statistic \(F_i\), and the vector of these \(F\)-statistics is then thresholded across the genome. Contiguous regions above the threshold form candidate differentially expressed regions (DERs), ranked by their area statistic (average \(F\)-statistic times region width), described in Jaffe et al.47. We used a per-base cutoff of \(F = 20.509\), which corresponded to a per-base \(P\) value \(< 10^{-8}\) for our given statistical model and sample size. Empirical \(P\) values were calculated by permuting the age group variable, keeping the coverage and library size fixed, 1,000 times and rerunning the full procedure within each permuted data set, recording the null area statistics. R code is available at https://github.com/icollador/libd_n36/. The family-wise error rate (FWER) for each candidate DER was calculated on the basis of the null distribution of the maximum area statistic within each permutation47. Our initial \(F\)-statistic cutoff was quite conservative: 246 of 1,000 permutations did not result in a single genome-wide \(F\)-statistic greater than the threshold. We retained the 63,135 significant DERs at a FWER ≤ 5%.

We then assessed the DERs in an independent but analogous data set of 36 samples. Average coverage per DER was calculated within each of these replication samples, and then we calculated one \(F\)-statistic per DER using equations (1) and (2) above, where \(y_{ij}\) is now the sample-specific average coverage within the DER. We retained DERs that were at least marginally significant (\(P < 0.05\)) in this replication data set, yielding 50,560 (80.1%) genome-wide significant DERs that were also differentially expressed in this independent DLPFC data set, which were used for the analyses described below. Unrelicated DERs, as compared to replicated DERs, were narrower (83.0 bp versus 170.3 bp, \(P < 10^{-10}\)), had smaller areas (mean 2,633.9 versus 7,034.9, \(P < 10^{-10}\)) and therefore lower ranks, and lower coverage (mean 6.6 reads versus 108.7 reads, \(P < 10^{-10}\)) assessed via linear regression.

Gene annotations. We constructed “genomic state” objects for Ensembl version p12, UCSC build hg19 knownGene, and Gencode v19 for rapid annotation of DERs, which, briefly, assigns a single state (exonic, intronic or intergenic) to each base in the genome on the basis of the gene annotation. For a given base, we prioritize exon > intron > intergenic, such that any exonic sequence in any transcript, even if other transcripts were annotated as intronic, was assigned the exon state. Any intronic sequence not overlapping annotated exons was assigned the intron state, and the remaining genome is assigned the intergenic state. We required 20 base pairs (bp) of overlap between significant DERs and Ensembl annotation to be considered overlapping. The 100-bp mappability/alignability and Encode-excluded tracks were obtained from the UCSC Track Browser (http://genome.ucsc.edu/cgi-bin/hgTrackUfHgsid=141019528&wgEncode Mapability). LncRNA and microRNA tracks were obtained from the respective UCSC hg19 tracks as implemented in the TxDb.Hsapiens.UCSC.hg19.lncRNAs-Transcripts48 and TxDb.Hsapiens.UCSC.hg19.knownGene48 R/Biobase packages. Pseudogenes were identified from the latest PseudoPipe Human Database, version 61 (ref. 50).

Technical exploration of widespread differential expression of novel transcriptional activity. RNA-seq data processing and analysis involves a number of well-documented technical biases51–54, but we found little evidence for the significant DERs originating from technical or computational artifacts. For example, 93.7% of DERs had average alignability/mappability measurements of 100-bp reads
greater than 99%, only 61 and 7 regions were in tracks excluded by the Duke site and Data Analysis Center of the Encode project, consisting mainly of BSr/beta satellite repeats, respectively, and only 1.9% of regions mapped to known pseudogenes. We did observe evidence of 3’ bias in the entire set of DERs mapping within genes (the average proportion of nearest exon number to the total number of exons was 0.65, where 1 means the DER was in the last exon and 0.5 means the DER was in the middle exon), a well-described aspect of poly(A) RNA-seq15. However, there was substantial variability in this exonic location proportion when stratified by gene: 43.8% of genes had a DER before their middle exon (that is, the minimum exonic proportion was less than 0.5, by gene) while 52.3% of genes had a DER at the last exon (that is, the maximum exonic proportion was 1.0, by gene). Analyzing the sequence composition, the introns containing a DER had only an average 1.4-fold enrichment for poly(A) ($P = 1.58 \times 10^{-7}$) and poly(T) ($P = 8.61 \times 10^{-5}$) repeats for almost all run lengths beyond 6 bp, as compared to sequences of introns that do not contain a differentially expressed region, assessed by logistic regression, adjusting for intron length. The average GC content of the exonic DERs was significantly higher than the intronic and intergenic DERs (0.492 in exonic, as compared to 0.454 and 0.449 in intergenic and intronic, respectively; $P < 10^{-100}$) assessed via linear regression, although there was a wide range of values (interquartile range spanned −0.15 for each annotation category) and the GC content for all three annotation class was higher than for the background genome ($−0.42$, as based on the hg19 build). Only 23 regions cross an annotated miRNA, but each also overlapped an annotated intron or exon, which is an important negative control given that our poly(A)+ RNA library preparation should not capture these short RNAs. Lastly, of the DERs annotated as intergenic by Ensembl, 12.4% cross a known lncRNA (as determined using the TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts database46), as compared to 3.7% of all DERs ($P < 10^{-100}$) assessed via a Chi-squared test.

Purification of cytosolic and nuclear RNA. We separated total RNA into nuclear and cytosolic fractions using the Cytoplasmic and Nuclear RNA Purification Kit by Norgen (cat. no. 21000, 37400) following the manufacturer’s protocol with an extra step of DNase I treatment in the cytosolic fraction in three independent samples. These were then sequenced on one lane of an Illumina HiSeq 2000, generating approximately 25 M reads per sample. One sample over-clustered in the sequencer, generating ~100 M reads, but its expression was highly correlated with the expression of other samples of the same type. Notably, there was high correlation ($r = 0.603$) and concordance ($\text{concordance} = 0.50,560$) and the subset of DERs that did not overlap an Ensembl-annotated exon ($\text{concordance} = 0.61,000$).

Cross-tissue analysis. Gene counts for the Lieber Institute post-mortem brain data and publicly available sample data were computed using the featureCounts program58 using the Ensembl Homo_sapiens.GRCm38.73 gtf file, which were converted into the reads per kilobase per million mapped (RPKM) normalized count. Both raw and normalized coverage estimates (by total mapped reads) were extracted at the significant replicated brain DERs ($N = 50,560$) and the subset of DERs that did not overlap an Ensembl-annotated exon ($N = 20,837$). Raw coverage counts were used to confirm coverage of >5 reads across tissue and cell line group means.

BrainSpan RNA-seq analysis. Normalized sample-level RNA-seq coverage data were obtained in the bigwig file format (http://download.alleninstitute.org/brainspan/MRF_BigWig_Gencode.v10/) and matched to phenotype data indicating the brain region and age of each sample. Mean coverage levels for each sample over-clustered in the sequencer, generating ~100 M reads, but its expression was highly correlated with the expression of other samples of the same type (after adjusting for library size), and it was therefore included in downstream analyses; see Figure 4. Further demographic material for these independent validation samples is provided in Supplementary Table 4.

Mouse RNA-seq analysis. We downloaded raw single-end 80-bp sequencing reads in the FASTQ file format from the study by Dillman et al.19 from the Sequence Read Archive (SRA)59 following the manufacturer’s protocol with an extra step of DNase I treatment in the cytosolic fraction in three independent adult and three independent fetal samples. Sequencing libraries were constructed as above, using the poly(A) protocol. These were then sequenced on one lane of an Illumina HiSeq 2000, generating approximately 25 M reads per sample. One sample over-clustered in the sequencer, generating ~100 M reads, but its expression was highly correlated with the expression of other samples of the same type (after adjusting for library size), and it was therefore included in downstream analyses; see Table 1. Principal component analysis (PCA) on the log\textsubscript{2} (normalized coverage + 1) matrix is visualized in Figure 2 and Supplementary Figures 5, 6 and 7. Spearman correlation was used to compare fetal versus adult coverage in our DLPCF samples to the fetal versus nonfetal coverage within each brain region.

Enrichment with chromatin marks and disease-associated loci. We downloaded the aligned reads (BED files) from the Epigenome Roadmap Project from the following GEO accession numbers: GSM621393, GSM696255, GSM806937, GSM806945, GSM916061, GSM621410, GSM609938, GSM609946, GSM706850, GSM806934, GSM806942, GSM621457, GSM669624, GSM609935, GSM806943, GSM669623, GSM621427, GSM609946, GSM806949, GSM916054, GSM1027328, GSM530651, GSM599513, GSM599520, GSM599522, GSM599523, GSM599592, GSM599593, GSM599594, GSM599595, GSM665804, GSM665819, GSM878650, GSM878651, GSM878652, GSM669944, GSM706851, GSM806948 and GSM817243. These were fetal brain epigenomic data from H3K27me3, H3K36me3, H3K4me1,
H3K4me3, H3K9ac, H3K9me3, chromatin accessibility and input. CisGenome was used to call one set of significant peaks, comparing each set of biological replicates per mark to the inputs using the default settings. We tiled the hg19 genome into 1-kb bins, dropping bins in the known gaps (centromeres, telomeres, etc.), and then counted how many bins overlapped both a DER and ChiP-seq peak, only a DER, only a ChiP-seq peak, or neither. Each mark therefore generated a 2 × 2 table that summed to the number of genome-wide bins (N = 2,861,069), and we computed the odds ratio of each 2 × 2 table. Significance was assessed with a chi-squared test.

We performed a similar analysis for the PGC2 schizophrenia GWAS results using the chr:start-end of the 108 genomic loci from Supplementary Table 3 of that publication. First we calculated the observed proportion of 108 genomic loci that overlapped at least one DER. Then we performed permutation analysis to determine if this overlap was statistically significant: for a given permutation, we sampled 108 regions of the same widths from the genome (after removing the gaps as described above). Performing this permutation procedure 100,000 times resulted in 100,000 null overlap proportions. We then calculated an empirical P value, defined as the number of null proportions greater than the observed proportion. An R package for this analysis is available from GitHub.

The observed proportions were based on a list of (i) all DERs, (ii) exonic DERs, (iii) intronic DERs and (iv) intergenic DERs. The odds ratios for enrichment were calculated as above, using 1-kb genomic bins and counting the number of bins that overlapped PGC loci and DERs.

An analogous procedure was performed on genome-wide significant and replicated rs numbers available from main or supplementary tables for Alzheimer’s disease, Parkinson’s disease and type 2 diabetes. For each list of rs numbers, we used the SNP tool to find all SNPs with R² > 0.6 in Caucasian 1000 Genomes samples (mirroring the summary statistics from the schizophrenia associations) and then created a linkage disequilibrium–based locus for each index SNP. These loci were lifted over to hg19 and then used to assess the overlap with the significant DERs, both together and stratified by annotated feature.

Lastly, enrichment for disease-associated genes was calculated by first obtaining gene sets for neurodevelopmental gene sets as defined by Birnbaum et al. directly from their Supplementary Table 1. We computed the proportion of genes in each gene set that contained at least 1 DER and assessed the significance of these observed proportions using permutation analysis. Specifically, we defined expressed genes using the featureCounts RPKM output (as described above) greater than 1.0 and resampled the same number of genes per gene set from the expressed genes (by symbol). For each permuted gene set, we calculated the proportion of null genes containing at least 1 DER and then calculated empirical P values based on 1,000 permutations (as above).

Expressed sequence analysis. Base-level coverage counts per sample were normalized to an 80-million-read library size (by dividing by 80 million, akin to the computation of RPMK) to identify contiguous regions above some coverage level that we defined as “expressed”. Average normalized coverage levels were averaged within each age group, and these mean age group coverages were smoothed using a running mean operation with a window size of 7 bases to improve sensitivity and specificity by reducing the number of very short ‘expressed’ regions (unlike in the multi-group derfinder procedure, which did not utilize smoothing). These smoothed age group means were thresholded at a coverage level of 5 reads, a threshold that we previously validated using PCR and that corresponds roughly to a one-sided P value < 0.05 for a one-sample t-test with a sample size of 6, the number of samples per group here. We used a threshold of 10 reads as a sensitivity analysis that had similar results compared to using 5 reads.

Track Hub description. The track hub covers the entire genome at base-level resolution and displays the following by default: (i) the 50,560 significant DERs in dense visibility; (ii) the F-statistic for group differences, with the cutoff used to determine DERs; and (iii) the mean expression levels across the six samples in each of the six age groups, adjusted to an 80-million-read library size for easier interpretability and colored to match Figure 1. Additional tracks are available but hidden by default. These consist of the average adjusted expression within the fetal and infant nuclear and cytosolic mRNA fractions.

Composition analysis using DNA methylation (DNAm) data. We implemented in silico estimation of the relative proportions of three cell types (ES-derived NPCs for derfinder culture35, and adult cortex neuronal and non-neuronal cells from cortex tissue36) using epigenome-wide DNAm data using a recently published algorithm. All data were obtained using the Illumina HumanMethylation450 microarray platform. After normalizing the publicly available data together using the preprocessQuantile function in the minfi Bioconductor package, we picked the cell type–discriminating probes as outlined by Jaffe and Irizarry. This resulted in 227 unique probes that distinguished the three cell types (Supplementary Table 6). We then normalized the DNAm data from our 36 discovery samples and estimated the composition of our samples from the methylation profiles of the homogenate cell types at the 227 probes using nonlinear mixed modeling. Composition estimates were regressed against the normalized and log-transformed expression levels within each DER across the 36 samples, and we obtained a moderated t-statistic and corresponding P value for each cell type and DER. The Bonferroni-adjusted P value was set at 0.05/50,560, or P < 9.89 × 10⁻⁷.

A Supplementary Methods Checklist is available.

45. Lipska, B.K. et al. Critical factors in gene expression in postmortem human brain: Focus on studies in schizophrenia. *Biol. Psychiatry* **60**, 650–658 (2006).
46. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol.* **14**, R36 (2013).
47. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. *Genetics* **138**, 963–971 (1994).
48. Carlson, M. *TxDb.Hsapiens.UCSC.hg19.lncRNAs: annotation package for TransfictDb object(s).* (2014).
49. Carlson, M. *TxDb.Hsapiens.UCSC.hg19.knownGene: annotation package for TransfictDb object(s).* (2014).
50. Zhang, Z. et al. PseudoPipe: an automated pseudogene identification pipeline. *Bioinformatics* **22**, 1437–1439 (2006).
51. Hansen, K.D., Brenner, S.E. & Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. *Nucleic Acids Res.* **38**, e131 (2010).
52. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. *Nucleic Acids Res.* **36**, e105 (2008).
53. Pickrell, J.K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. *Nature* **464**, 768–772 (2010).
54. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L. & Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. *Genome Biol.* **12**, R22 (2011).
55. Levin, I.J. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. *Nat. Methods* **7**, 709–715 (2010).
56. Wheeler, D.L. et al. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* **36**, D13–D21 (2008).
57. Lawrence, M., Gentelman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. *Bioinformatics* **25**, 1841–1842 (2009).
58. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).
59. Brennand, K. et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. *Mol. Psychiatry* published online, doi:10.1038/mp.2014.22 (14 April 2014).
60. Collado-Torres, L. & Jaffe, A.E. enrichedRanges: identify enrichment between two sets of genomic ranges v. 0.0.1. https://github.com/ColladoTorres/enrichedRanges (2014).
61. Johnson, A.D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. *Bioinformatics* **24**, 2938–2939 (2008).
62. Ayee, M.J. et al. Accurate genome-scale percentage DNA methylation estimates from microarray data. *Biostatistics* **12**, 197–210 (2011).
63. Ayee, M.J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA Methylation microarrays. *Bioinformatics* **30**, 1363–1369 (2014).
64. Jaffe, A.E. & Irizarry, R.A. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. *Genome Biol.* **15**, R31 (2014).
65. Smyth, G.K. in *Bioinformatics* and Computational Biology Solutions Using R and Bioconductor* (eds Gentleman, R. et al.) 397–420 (Springer, New York, 2005).

© 2015 Nature America, Inc. All rights reserved.