Studies

Morphological, ecological and geographic differences between diploids and tetraploids of Symphytum officinale (Boraginaceae) justify both cytotypes as separate species

Lucie Kobrlová, Martin Duchoslav and Michal Hroneš

Plant Biosystematics & Ecology RG, Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic

*Corresponding author’s e-mail address: lucie.kobrlova@upol.cz

Evolution & Diversity. Chief Editor: Jeremy Beaulieu

Associate Editor: João Loureiro

Abstract

Polyploidization is generally considered to be an important evolutionary driver affecting the genetic diversity, that can alter the morphology, physiology or ecology of plants, which in turn may make the taxonomy of polyploids more difficult. One such example is the Symphytum officinale complex, a polyploid species group represented by three major cytotypes: tetraploids (2n = 48), less common, geographically restricted diploids (2n = 24) and hypotetraploids (2n = 40). In most European floras only one polymorphic species, S. officinale, is widely recognized, while the particular cytotypes are usually considered conspecific. Our study provided a thorough evaluation of the ploidy level diversity, morphological and ecological variation, with a special attempt to clarify the status of ‘white-flowered’ diploids. Using flow cytometry, we identified three cytotypes: widespread tetraploids (76.1 %); less frequent diploids (23.6 %) with scattered distribution across the range of tetraploids and confined only to several areas of Europe; and extremely rare triploids (0.3 %). Diploids and tetraploids showed diffuse parapatric pattern of distribution, with only four mixed-cytotype populations (2.7 %) found, but almost entirely without triploids, suggesting reproductive isolation between di- and tetraploids. Niche of diploids falls nearly completely within the niche of tetraploids that showed niche expansion. Tetraploids also showed a shift in niche optimum towards a less continental and colder climate, coupled with expansion to more disturbance-prone sites with higher nutrient availability. Diploids were clearly distinguishable morphologically from tetraploids. The morphological differentiation of studied cytotypes appears to be taxonomically significant, especially in combination with ecological differences and the apparent presence of hybridization barriers. Both cytotypes should be treated as separate species (i.e. S. bohemicum and S. officinale s. str.).

Keywords: Autopolyploidy; Boraginaceae; cyto geography; flow cytometry; niche modelling; taxonomy.

Introduction

Polyploidization is generally considered as a major evolutionary force in higher plants (Otto and Whitton 2000). Chromosome doubling acts as an immediate strong re productive barrier and affects many important processes and traits at different levels of organization from genome to individual plant (Levin 2002). After formation, polyploids often diverge from their diploid progenitors in morphology, physiology and ecology, which may affect their distribution pattern, resulting in shifts in range between diploid and polyploid relatives (Ramsey and Schemske 2002; te Beest et al. 2012; van de Peer et al. 2017). However, frequently reported wider ranges or more extreme niches of polyploids are not a general trend in plants, and in many mixed-ploidy complexes, even the opposite relationship is known to occur (Husband et al. 2013; Visger et al. 2016; Spoelhof et al. 2017). One likely reason for the various distribution patterns of the cytotypes might be the different routes leading to polyploidization. Two main paths are usually considered, autopolyploidization (polyploidization on intraspecific level) and allopolyploidization (polyploidization coupled with interspecific hybridization). Autopolyploidy, in contrast to allopolyploidy, does not inevitably produce transgressive traits to boost adaptive ecological divergence (Parisod et al. 2010) and autopolyploids might escape from minority cytotype disadvantage (Levin 1975) and achieve establishment alternatively also by spatial separation unaccompanied by niche divergence, e.g. by a chance colonization of recently opened (disturbed) habitat (te Beest et al. 2012; Godsoe et al. 2013). Moreover, there is still different perception of allo- and autopolyploids in taxonomy, as alloplooids are usually considered as different taxa given their divergent morphology from the diploid ancestors while autopolyploids are regarded as conspecific with diploids due to their high morphological similarity (Soltis et al. 2007). In their review, Soltis et al. (2007) argued for...
taxonomy with respect to diploids and tetraploids. We summarized the geographic distribution of the cytotypes and asked whether the observed spatial patterns might be explained by a combination of abiotic factors. In addition, we investigated whether morphology correlates with the established ploidy levels and therefore can be used for unequivocal determination of taxa. For that, we (i) revised published chromosomal counts, (ii) investigated the diversity and distribution of cytotypes throughout Europe using flow cytometry, (iii) examined the morphological differences between cytotypes using multivariate morphometrics and (iv) studied the ecological differences between cytotypes on the continental scale using niche analyses and on local spatial scales in the area of sympatry using records of vegetation surrounding occurrence points. More specifically, we placed particular emphasis on the white-flowered plants and their relation to the name Symphytum bohemicum, in order to deal with the taxonomic chaos that is connected with this taxon.

Table 1. Historical overview of taxonomic treatments in Symphytum officinale complex.

Author(s)	Year	Subspecies	Variety	Geographic Distribution
Kuznetsov (1910)	1910	S. officinale	var.	Throughout Europe
Pawłowski (1961)	1961	S. officinale	var.	Throughout Europe
Gadella (1967, 1972)	1967-1972	S. officinale	var.	Throughout Europe
Peruzzi et al. (2001)	2001	S. officinale	var.	Throughout Europe
Slavík (2000)	2000	S. officinale	var.	Throughout Europe
Schmelz and Friesen (1988)	1988	S. officinale	var.	Throughout Europe
Späth (2007)	2007	S. officinale	var.	Throughout Europe
Cecchi and Selvi (2015, 2017)	2015, 2017	S. officinale	var.	Throughout Europe

In this study, we focus on the Symphytum officinale complex, which includes the most widespread Symphytum (Boraginaceae, Boragineae; Chacón et al. 2016) representatives in Europe. An extensive cytological variation has been observed in this complex which corresponds to three main cytotypes: diploid (2n = 24), tetraploid (2n = 48) and dysploid (hypotetraploid, 2n = 40). Tetraploids are presumably of autopolyploid origin (Gadella and Kliphuis 1972) and represent the most frequently documented ploidy level covering the whole range of the complex, whereas the reports of diploids are rather solitary and scattered across Europe (Basler 1972; Gadella and Kliphuis 1972; Wille 1998; Peruzzi et al. 2001). Zones with occasional sympatric growth of diploids and tetraploids have been observed in some parts of Europe (Gadella and Kliphuis 1967; Wille 1998), but there are almost no records of triploids (2n = 36; Basler 1972). The hypotetraploids are the rarest of the three main ploidy levels and they also have very scattered distribution (Gadella and Kliphuis 1967; Májovský and Uhríková 1985; Peruzzi et al. 2001).

The complex is known for its high morphological variability that led to confusion and non-uniformity of taxonomic concepts across European floras (Table 1). Flower colour varying from pure white to dark purple, corolla shape and size, and decurrency of leaves to stem are considered the most important characters for taxonomy of this group (Smejkal 1978; Májovský and Hegedüšová 1993; Peruzzi et al. 2001). However, it is not always clear how the morphology is connected with a particular ploidy level. In the Czech Republic and Slovakia, the diploids are linked to the name Symphytum bohemicum (Fig. 1A) and tetraploids to S. officinale s. str. (Fig. 1B). Elsewhere in Europe, diploids and tetraploids are mainly considered as mere cytotypes of S. officinale, while hypotetraploids are almost exclusively called Symphytum tanaicense (Table 1; Fig. 1C). Dysploidy contrary to autopolyploidy is generally considered a strong reproductive barrier (Mandáková and Lysák 2018); therefore, based on chromosome number and morphological differences, Symphytum tanaicense is generally considered as a separate species (Table 1).

Here, our objective was to explore the cytotype diversity of the S. officinale complex in Europe and its implications for taxonomy with respect to diploids and tetraploids. We summarized the geographic distribution of the cytotypes and asked whether the observed spatial patterns might be explained by a combination of abiotic factors. In addition, we investigated whether morphology correlates with the established ploidy levels and therefore can be used for unequivocal determination of taxa. For that, we (i) revised published chromosomal counts, (ii) investigated the diversity and distribution of cytotypes throughout Europe using flow cytometry, (iii) examined the morphological differences between cytotypes using multivariate morphometrics and (iv) studied the ecological differences between cytotypes on the continental scale using niche analyses and on local spatial scales in the area of sympatry using records of vegetation surrounding occurrence points. More specifically, we placed particular emphasis on the white-flowered plants and their relation to the name Symphytum bohemicum, in order to deal with the taxonomic chaos that is connected with this taxon.
Materials and Methods

Study species

The members of the *Symphytum officinale* complex are traditionally placed in the sect. *Symphytum* characterized by fusiform, ± vertical rhizomes, decurrent leaves, broadly triangular lanceolate, acute, densely papillate faucal scales, stamens with connectives projecting beyond thecae and smooth, shiny nutlets (Pawłowski 1961). The complex consists of widespread *S. officinale* (Fig. 1B) and several local taxa sometimes recognized in regional floras (Table 1), i.e. *S. tanaicense* (Fig. 1C) from the Don river delta in the south-western Russia, *S. uliginosum* from Hungary and *S. bohemicum* (Fig. 1A) from the Elbe basin in the Czech Republic. The conspecificity of *S. tanaicense* and *S. uliginosum* has already been discussed.

Figure 1. The members of the *Symphytum officinale* complex. (A) *Symphytum bohemicum* (2x), (B) *S. officinale* (4x), (C) *S. tanaicense* (4x–). (D) Distribution of cytotypes of *S. officinale* complex in Europe. Diamonds represent chromosome number reports, whereas flow cytometric data are marked with dots. Yellow—diploids; violet—tetraploids; red—hypotetraploids. Authors of photographs: L. Kobrlová (A), M. Duchoslav (B), D. Ditě (C).
flow cytometry, the number of individuals sampled per population varied from 1 to 15 (mean ± SD: 5 ± 2). Voucher specimens are deposited in the Herbarium of Palacký University in Olomouc (OL).

Flow cytometry and chromosome number review
DNA-ploidy level (Suda et al. 2006) and absolute genome size (AGS; Greilhuber et al. 2005) were estimated using flow cytometry. Generally, fresh leaf tissue has been used (for both the relative genome size, RGS and AGS), but in some cases silica-dried material has also been analysed (only for RGS). Samples were prepared according to the protocol described by Koblová et al. (2016) and were carried out on the following flow cytometers using two different fluorochromes staining: (i) BD Accuri C6 (BD Biosciences, San Jose, CA, USA)—propidium iodide (PI); (ii) Partec PAS (Partec GmbH, Münster, Germany)—PI; (iii) Partec Cy Flow ML (Partec GmbH)—4,6-diamidino-2-phenylindole (DAPI). Pisum sativum ‘Ciriad’ (2C = 9.09 pg; Doležel et al. 1998) and Zea mays ‘CE-777’ (2C = 5.92 pg, the value recalculated to the primary standard P. sativum) were used as internal references. The ploidy level of each sample was determined by the position of its G0/G1 peak relative to the G0/G1 peak of an internal standard. Generally, for measurements using both PI and DAPI, histograms with coefficients of variation (CV) for the G0/G1 peaks of the analysed sample and the standard less than 5% were accepted. For each sample, the fluorescence intensity of 3000 and 5000 particles was recorded for DNA-ploidy level (RGS) and for AGS (expressed as 2C value) estimations, respectively. For AGS estimation, each sample was prepared and analysed three times. The general rule that the variation between the highest and the lowest obtained AGS value for one sample does not exceed 2% has been followed (see Doležel et al. 2007). The ploidy level was calibrated using population ID 38 from which previous chromosome record exists (Murín and Májovský 1982).

In addition, a complete bibliographic review of published chromosome counts was performed [see Supporting Information—Table S2] to find out the karyological variability of the complex. Together with flow cytometric data, the compiled chromosome counts were used to build a distribution map of the S. officinale complex. Only data with given localities were used and georeferenced.

Estimation of niches in environmental space at large spatial scale and distribution modelling analyses
Climatic and soil data related to different ecophysiological constraints of plant species were downloaded from various open-source databases. The WorldClim 2.1 database (Fick and Hijmans 2017) was used for the extraction of annual trends and extreme limiting conditions related to precipitation, temperature and solar radiation (bio1–19 variables; mean annual solar radiation [kW·m⁻²]). Quantitative physical and chemical soil variables were downloaded from the SoilGrid database (Hengl et al. 2017). All downloaded variables had a resolution of 30 arcseconds (~1 km).

All data handling and calculations were conducted in R 4.4.4 (R Development Core Team 2021). To trim the predictor set to reduce collinearity, all downloaded environmental variables were examined for pairwise correlations in ENMTools 1.0 (Warren et al. 2021), using data from the entire study area (5°W–35°E, 40°N–60°N). After evaluation, 14 variables not highly correlated (|r| ≤ 0.75) were retained (Table 2) and used in further analyses.

Table 2. Mean relative contribution (%) of each environmental variable for mean MaxEnt model predicting the probability of di- (2x) and tetraploid (4x) occurrences in studied range. The percentages are based on a heuristic method that estimates the proportional contribution of each variable to the model training gain for every iteration during model fitting. Values of three variables with highest average relative contribution to the model training for each cytotype are in bold.

Variable	Relative contribution (%)	
	2x	4x
Mean annual solar radiation (SRAD)	25.9	32.6
Annual mean temperature (bio1)	17.6	15.3
Max temperature of warmest month	11.3	0.4
(bio5)		
Mean temperature of wettest quarter	8.6	2.9
(bio8)		
Weight percentage of the clay particles in soil (<0.0002 mm) (clyppt)	7.9	8.0
Temperature annual range (bio7)	6.4	12.2
Precipitation seasonality (bio15)	5.2	12.3
Min temperature of coldest month	5.1	2.6
(bio6)		
Mean diurnal range (bio2)	4.0	7.6
Cation exchange capacity of soil	2.5	1.9
(cecsol)		
Available soil water capacity (volumetric fraction) until wilting point (WWP)	2.3	0.7
Precipitation of driest quarter (bio17)	2.3	1.0
Volumetric percentage of coarse fragments (>2 mm) (crfvol)	0.7	1.4
pH index measured in water solution (pH)	0.3	1.2
Georeferenced location data showed highly unequal sampling. After preliminary analyses, different thinning settings were selected for each cytotype. To remove aggregation and to obtain reasonable number of both diploids and tetraploids occurrences, occurrences closer than a distance of 5/15 km (diploids/tetraploids) from each other were removed, separately for each cytotype, in Humboldt 1.0 (Brown and Carnaval 2019). This resulted in 224 localities (2x, n = 77, 4x, n = 147), which were used for subsequent analyses.

The environmental niche space occupied by diploids and tetraploids was constructed using environmental principal component analysis (PCAv; Broennimann et al. 2012). Niche overlap was estimated by Schoener's D calculated directly from environmental niche space (Warren et al. 2008). The background area was taken from 200-km buffer zones around thinned occurrences. The number of background points equalled 10 000 per cytotype. Niche equivalency and similarity between diploids and tetraploids were tested by niche equivalency and similarity tests (Broennimann et al. 2012).

To compare the niches in terms of optima and breadths, 100 random pixels, weighted by density along PC1 and PC2, were sampled in the niche of each cytotype and their scores were extracted (Broennimann et al. 2012). The niche optimum and the niche breadth were calculated as the median and the variance of the sampled scores along the PCA axes. This procedure was repeated 100 times. The distributions of values of niche optimum and breadth for each PCA axis were compared between cytotypes using randomization test using t-statistics and 999 permutations. Niche change of tetraploids relative to diploids was estimated using the indices of niche change (Petitpierre et al. 2012; Guisan et al. 2014): niche expansion (E), i.e. proportion of the niche space of the tetraploids not overlapping the niche of the diploids; niche unfilling (U), i.e. proportion of the niche of the diploids not overlapping the niche of the tetraploids; and niche stability (S, S), i.e. proportion of the niche of either diploids (S) or tetraploids (S), shared with the other cytotype. All environmental niche analyses were performed using ecospat 3.2 (Di Cola et al. 2017).

Cytotype distribution modelling analyses were performed with maximum entropy modelling (MaxEnt) using MAXENT 3.4.4 (Phillips et al. 2006, 2008). Spatial predictive models were created based on the same subset of environmental variables and occurrence data as PCAenv, plus 10 000 pseudo-absences sampled randomly within the predefined study area based on known distribution of S. officinale complex, separately for each cytotype. To reduce uncertainty and to produce robust models, we used 10 replicate runs with cross-validation. The presence localities of each cytotype were divided randomly into training (80%) and test (20%) subsets. We used the default settings of the program. Models were evaluated based on the area under curve of the receiver operator characteristic (AUC of ROC), and combined final model is presented for each cytotype. Relative contribution of each environmental variable to the MaxEnt model was determined for each run and averaged over replicated runs (Table 2). Response curves of selected environmental variables with high average percent contribution to the models for both or one of cytotypes were reported. To visualize the relative suitability within studied range, final models with the log-log (clog-log) format were used as model output for each cytotype. Subsequently, the final models were converted to a binary format using the threshold rule ‘maximum training sensitivity and specificity’ (Liu et al. 2016) and visualized.

Ecological differences between cytotypes on the local spatial scale

To test ecological differentiation of cytotypes on local spatial scales, the Elbe basin area (Central Bohemia, Czech Republic) has been selected. We acquired 3809 phytosociological relevés from the Czech National Phytosociological Database (Chytrý and Rafajová 2003) with the presence of either S. bohemicum or S. officinale, which correspond to diploids and tetraploids, as indicated by our results. Subsequently, only the relevés recorded in the localities with the confirmed occurrence of S. bohemicum (see Kaplan et al. 2016) were selected, resulting in 54 relevés. When more than two relevés from the same locality were available, only two relevés were randomly selected. Relevés with the occurrence of S. officinale were then selected from the data set based on their position within an approximately 20 km radius from the nearest S. bohemicum relevé (considered as sympatric occurrences to S. bohemicum relevés), resulting in additional 78 relevés.

The ecological differences of both cytotypes were established using Ellenberg-type indicator values (EIVs) derived for the Czech flora (Chytrý et al. 2018). Ellenberg-type indicator values for nutrients, light, temperature, moisture, soil reaction and salinity were calculated for each relevé in Juice 7.1 (Tichý 2002), excluding EIVs for both Symphytum taxa from the calculation. Differences in cover-unweighted average EIVs between relevés with the presence of either S. bohemicum or S. officinale were analysed using one-way ANOVA with the modified permutation test with 499 permutations using MoPeT 1.2 (Zelený and Schaffers 2012).

Morphometric analyses

In total, 151 plants (40 diploids, 111 tetraploids) from 18 populations (5 diploid, 13 tetraploid) were morphologically investigated [see Supporting Information—Table S1]. Only well-developed plants with at least five flowers were collected. For each plant, 37 quantitative and four qualitative (Table 3) morphological characters were measured in situ using a digital calliper or retractable meter. Nine additional ratios were calculated and several measured characters were thus excluded from the analyses (Table 3).

Descriptive statistics were calculated for each quantitative character and each cytotype. Intercytotype differences in quantitative traits were tested using t-test and proportional differences in qualitative traits were tested using χ² tests. Bonferroni correction was applied to adjust the P-values of these tests.

The correlations of quantitative characters of the initial data matrix were tested using the Pearson’s correlation coefficient. One character of pair of highly correlated characters (|r| ≥ 0.85) was excluded from further analyses (Table 3). Principal component analysis was run to provide insight into the overall pattern of morphological variation and to observe the grouping of individuals in the ordination space. We performed PCA both with and without qualitative data and the results were almost identical (not shown); therefore, only PCA with qualitative data included is shown here. Canonical discriminant analysis (CDA; Legendre and Legendre 1998) was performed to determine the extent of morphological separation between cytotypes. A step-wise forward selection
Table 3. Morphological differentiation of diploids (2x) and tetraploids (4x) of S. officinale complex. *t*-results of *t*-tests. *χ*²—results of *χ*² tests. *P*-values in bold indicate significant difference after Bonferroni correction. Numbers are rounded to mm, minor inaccuracies in the totals may occur.

Quantitative morphological character	Abbreviation	2x	4x	*t*	*P*		
		Mean (mm) ± SD	Min–max (mm)	Mean (mm) ± SD	Min–max (mm)		
Height of stem	ST_h	734 ± 272	389–1512	692 ± 176	401–1152	1.092	0.276
Width of stem	ST_w	8 ± 3	4–16	9 ± 2	6–13	-4.272	<0.001
Width of stem cavity	CAV_w	2 ± 2	0–7	3 ± 1	0–6	-0.500	0.618
Width of stem wall	STW_w	5 ± 1	2–9	6 ± 1	3–10	-5.364	<0.001
Stem/cavity width ratio	r_ST_CAV	4 ± 3	0–15	3 ± 2	0–11	0.812	0.418
Number of branches	no_BR	4 ± 2	0–11	5 ± 2	1–10	-4.254	<0.001
Length of rosette leaf	R_LF_l	363 ± 96	168–644	401 ± 128	160–784	-1.715	0.088
Length/width ratio of rosette lamina	R_LAM_r	3 ± 1	2–5	2 ± 0	1–4	2.782	0.006
Width of lower petiole wing	PET_WING_w	3 ± 1	1–5	4 ± 2	2–19	-2.873	0.005
Length of lower leaf	L_LF_l	325 ± 124	119–687	302 ± 93	146–686	1.243	0.216
Length/width ratio of lower leaf lamina	L_LAM_r	3 ± 1	2–5	3 ± 0	2–4	-0.043	0.966
Internode length/wing width below lower leaf ratio	r_LINT_WING	2 ± 1	0–7	2 ± 2	0–15	0.265	0.791
Width of wing below lower leaf	WING_L_w	1 ± 1	0–2	2 ± 1	0–5	-4.241	<0.001
Length of middle leaf	M_LF_l	227 ± 65	96–402	225 ± 56	118–386	0.133	0.894
Length/width ratio of middle leaf lamina	M_LAM_r	3 ± 1	2–5	3 ± 1	2–5	-2.314	0.022
Internode length/wing width below middle leaf ratio	r_MINT_WING	1 ± 0	0–2	1 ± 1	0–3	1.512	0.133
Width of wing below middle leaf	WING_M_w	1 ± 1	0–3	3 ± 2	0–8	-6.868	<0.001
Length of upper leaf	U_LF_l	147 ± 44	75–255	138 ± 32	62–217	1.238	0.218
Length/width ratio of upper leaf lamina	U_LAM_r	3 ± 1	2–7	4 ± 1	2–5	-2.972	0.003
Internode length/wing width below upper leaf ratio	r_UINT_WING	1 ± 0	0–2	1 ± 0	0–4	3.222	0.002
Width of wing below upper leaf	WING_U_w	2 ± 1	0–3	3 ± 1	0–8	-5.363	<0.001
Number of flowers	no_FLW	51 ± 24	22–108	58 ± 16	32–96	-2.145	0.034
Length of peduncle	PED_l	5 ± 1	3–7	8 ± 1	4–13	-11.253	<0.001
Length of calyx	CAL_l	7 ± 1	6–9	10 ± 1	7–13	-12.454	<0.001
Length of calyx lobe	CALL_l	5 ± 1	4–7	7 ± 1	5–9	-10.583	<0.001
Width of calyx lobe	CALL_w	2 ± 0	2–3	3 ± 0	2–4	-6.565	<0.001
Length of corolla	COR_l	13 ± 1	10–16	15 ± 1	13–18	-9.417	<0.001
Length of lowered corolla part	CORT_l	7 ± 1	5–9	9 ± 1	7–10	-11.073	<0.001
Width of corolla	COR_w	6 ± 1	5–8	7 ± 1	5–9	-8.919	<0.001
Width of lowered corolla part	CORT_w	4 ± 0	3–5	5 ± 1	3–6	-10.205	<0.001
Length of style	STY_l	15 ± 1	12–18	16 ± 1	13–9	-7.164	<0.001
Corolla/style length ratio	r_COR_STY	1 ± 0	1–1	1 ± 0	1–1	-2.657	0.009
of characters with 999 permutations was used to find a set of most important characters used for discrimination. A multistate qualitative character flower colour was excluded from the data set prior to CDA performance. Principal component analysis and CDA were performed in Morphotools 1.1 (Koutecký 2015) in R 4.4.4. All analyses used individuals as operational taxonomic units (OTUs).

Results

Ploidy variation, genome size and cytogeography

Bibliographic review of 298 chromosome counts [see Supporting Information—Table S2] from the *S. officinale* complex confirmed the occurrence of three major cytotypes in Europe: (i) diploids (2n = 2x = 24 + 0–4 B); (ii) tetraploids (2n = 4x = 48) and (iii) hypotetraploids (2n = 4x– = 40; Fig. 1D) and additional 12 rare cytotypes. The most common and widespread cytotype is tetraploid (154 records, 51.7 %) that occurred across Europe. On the contrary, diploids (76 records, 25.5 %) have a very scattered distribution through Europe and have been reported from Great Britain, France, The Netherlands, Italy, Germany, Czech Republic, Poland, Slovakia and Hungary. Hypotetraploid cytotype (25 records, 8.4 %) has been detected in the Netherlands, Germany, Slovakia and Italy. Furthermore, several aneuploid chromosome counts have also been documented (29 records, 9.7 %: 1 record from diploid and 28 records from tetraploid populations, respectively), and additional 14 chromosome reports (4.7 %) were assessed as unclear and mostly belonging to other taxa than *S. officinale* complex [see Supporting Information—Table S2].

Three DNA-ploidy levels were detected by flow cytometry: diploids (183 plants/35 populations), triploids (2 plants/1 population) and tetraploids (591 plants/118 populations; see Supporting Information—Table S3). Tetraploids have been confirmed in France, Switzerland, Italy, Slovenia, Germany, Austria, Czech Republic, Slovakia, Hungary, Romania and Ukraine, while diploids have been found in Germany, Czech Republic, Hungary and Italy (Fig. 1D; see Supporting Information—Table S1). We were unable to confirm the presence of hypotetraploids due to the lack of *S. tanaicense* populations in our sampling as we did not focus the sampling on them. The RGS of all ploidy levels formed non-overlapping groups (Fig. 2A) which allowed all individuals to be unambiguously assigned to their ploidy level. Furthermore, in one tetraploid population (ID 68) an individual with ca. 30 % RGS higher than regular was recorded (see 4x in Fig. 2A; see Supporting Information—Table S1; note that a pentaploid ploidy level cannot be excluded). Considering populations with at least two individuals analysed (149 populations, 95.5 %), most of them comprised a single cytotype and only four mixed-ploidy populations (ID 9, 76, 130—2x + 4x; ID 133—2x + 3x) were discovered [see Supporting Information—Table S1].

The mean AGS was 2.46 ± 0.10 pg in diploids and 4.41 ± 0.13 pg in tetraploids, with the mean monoploid genome size (1Cx value) 1.23 pg and 1.10 pg, respectively (Fig. 2B; see Supporting Information—Table S4).

Environmental niches at large spatial scale and cytotype distribution modelling analyses

The first two PCAenv axes explained 35.6 % and 25.3 % of the total variation in the environmental space available...
within the studied ranges of cytotypes (Fig. 3A). The PC1 axis mirrored increasing mean (bio1, bio8) and maximal temperatures (bio5) and increasing seasonality in temperature (bio2, bio7) and precipitation (bio15) (Fig. 3A). Additionally, soil pH increased along PC1. The PC2 axis mirrored the gradient of soil physical variables, from more clayey soils (clyppt) with higher cation exchange capacity (cesol) and higher available soil water capacity (WWP) to more sandy soils with lower WWP and cesol. Both cytotypes avoided the coldest climatic conditions with less seasonality in temperature and precipitation of the available environmental space (Fig. 3C and D).

The niche overlap (Schoener’s D) between the cytotypes was 0.668, suggesting a moderate to high niche overlap. Niche equivalency test suggested marginally non-significant differences between the niches of di- and tetraploids (P = 0.054). Niche similarity tests suggested that the niches of cytotypes were significantly more similar than expected by chance, regardless of the direction of the test (all P < 0.006). The niche of diploids falls nearly completely within the niche of tetraploids (Fig. 3B), i.e. tetraploids have greater niche breadth than diploids (Fig. 3F). Consequently, tetraploids showed niche expansion (E = 0.182) and an almost complete filling of the diploid niche (Δ = 0.818, U = 0.026). Tetraploids also showed a shift in niche optimum (Fig. 3E) towards a less continental and colder climate, occasionally coupled with expansion to more sandy soils with lower cation exchange capacity.

Ten averaged runs of MaxEnt models for diploids and tetraploids had mean (±SD) AUC of ROC values of 0.926 (±0.038) and 0.863 (±0.045), respectively, showing very good predictive ability. The predicted distributions showed the nestedness of the distribution of diploids within that of tetraploids (Fig. 4), except for the Veneto and Po regions in northern Italy, where only diploids were predicted. Across the geographic range studied, the model showed high habitat suitability for diploids in several lowland or mid-elevation regions of Central and Western Europe, but avoidance of Northern and Eastern Europe, and most part of South Europe (Fig. 4A). Concerning tetraploids, the model showed high habitat suitability for tetraploids over most part of Western, Central and the western part of Eastern Europe, but also for the Southern Scandinavia (Fig. 4B).

Two variables that contributed the most to the average model for both diploids and tetraploids were SRAD and bio1 (Table 2). SRAD (mean annual solar radiation) and bio1 (annual mean temperature) had negative and positive effect, respectively, on the predicted probability of presence changes in both cytotypes [see Supporting Information—Fig. S1]. However, tetraploids were predicted to occur, though with a lower probability, even in areas with low mean annual temperature, while diploids were not. Although tetraploids were predicted to occur in a wide range of bio5 (maximal temperature of the warmest month), the model showed a lower suitability of low bio5 values for diploids [see Supporting Information—Fig. S1]. Regarding bio7 (temperature annual range), diploids were predicted to occur more likely at intermediate values, while tetraploids were predicted to occur in a wide range of low and intermediate values [see Supporting Information—Fig. S1]. Soil variables had a generally low percentual contribution to the average models for both cytotypes (Table 2). Only the volumetric percentage of coarse fragments (crfvol) in the soil had a positive effect on the suitability for both cytotypes [see Supporting Information—Fig. S1].

Ecological differences between cytotypes on the local spatial scale
The mean site EIVs for nutrients and salinity but not for light, temperature, moisture and soil reaction differed significantly between cytotypes [see Supporting Information—Fig. S2]. Diploids grow on heavier and more mineral-rich (salinity EIV, F = 9.388, P < 0.05) and nutrient-poorer (nutrients EIV, F = 22.278, P < 0.01) soils than tetraploids.

Morphological differences between cytotypes
Principal component analysis revealed two groups distributed along the first axis corresponding to diploid and tetraploid cytotypes (Fig. 5A and B). The first two PCA axes explained 23.1 % and 11.2 % of the total variation. The colour of flowers and plants, calyx, corolla, peduncle, and style lengths and corolla width contributed most to the observed pattern (Fig. 5D–I). The cytotypes differed significantly from each other by 22 of 32 quantitative and all four qualitative morphological characters, and 15/4 characters remained significant even after Bonferroni correction, respectively (Table 2; see also Supporting Information—Fig. S3). However, the ranges of variation of all quantitative and qualitative (with one exception) characters overlap between cytotypes. Therefore, no single character can be used...
Figure 3. Niches of diploids (2x) and tetraploids (4x) of *Symphytum officinale* complex in the environmental space along the first two axes of PCA (PCAenv). (A) The correlation circle shows the loadings of the individual environmental variables to the first two PCA axes. bio1 (mean annual temperature), bio2 (mean diurnal temperature range), bio5 (maximal temperature of warmest month), bio6 (minimal temperature of coldest month), bio7 (temperature annual range), bio8 (mean temperature of wettest quarter), bio15 (precipitation seasonality), bio17 (precipitation of driest quarter), cecso (cation exchange capacity of soil, mmol(c) kg−1), clyppt (weight percentage of clay particles < 0.0002 mm), crfvol (volumetric percentage of coarse fragments > 2 mm), pH (soil acidity measured in KCl solution), SRAD (mean annual solar radiation, kW·m−2), WWP (available soil water capacity until wilting point, %). (B) The niche overlap between diploids and tetraploids and (C, D) niches of the respective cytotypes (2x, 4x). Niche overlap is shown in blue, and parts of niche of the one cytotype unfilled by that of the second are in yellow (2x) and purple (4x). Shading shows the density of the
for the unambiguous determination of cytotypes except for the colour of flowers, where yellowish/greenish white corollas are confined solely to diploids, while pure white and all shades of purple corollas are confined to tetraploids (Fig. 5E). Canonical discriminant analysis resulted in a clear morphological separation between the two cytotypes \((F = 11.692, P = 0.001; \text{Fig. 5C}) \). The contribution of individual characters to the observed pattern is given in Supporting Information—Table S5. The most important combination of characters for inclusion in one of the respective groups resulting from forward selection were length of calyx + plant colour + width of wing below lower leaf + length of peduncle + width of lowered part of corolla + width of wing below upper leaf + length/width ratio of middle leaf lamina.

Discussion

Cytotype diversity

Our flow cytometric ploidy screening and a review of published chromosome counts of *S. officinale* complex revealed the occurrence of 15 different chromosome counts with three main cytotypes, corresponding to diploids (2\(n = 24\)), hypotetraploids (2\(n = 40\)) and tetraploids (2\(n = 48\)).

As previously reported, the occurrence of triploids (2\(n = 36\)) is extremely rare, which is consistent with our discovery of only two triploids in a single diploid population. These two individuals probably resulted from the fusion of reduced and unreduced diploid gametes. Some of the few published reports of triploids (Strey 1931; Tischler 1935; Májovský 1974; Wille 1998) may not even be based on plants from *S. officinale* complex. As already noted by Gadella and Kliphuis (1972), at least some of these reports represent the hybrid taxon *S. × uplandicum* (*S. officinale* × *S. asperum*) or its backcrosses with one of the parental taxa. Thus, only reliable record of triploid occurrence besides our data is from mixed diploid–tetraploid population from the Netherlands (Basler 1972). The origin of these triploids may come from a cross between diploids and tetraploids as well as from a fusion of reduced and unreduced gametes of diploids.

Several other chromosome counts (2\(n = 54, 56\)) have also been published for *S. officinale* (Markowa and Iwanova 1970; Gadella and Kliphuis 1978; Gadella et al. 1983; van Loon 1987), although the origin of these plants is unclear (Gadella et al. 1983). Furthermore, aneuploid chromosome numbers ranging from 2\(n = 40\) to 2\(n = 47\) have been discovered in pure tetraploid populations (Gadella and Kliphuis 1967, 1978; Gadella et al. 1974; Shirato et al. 1985; Wille 1998). Similarly, the published chromosome record of 2\(n = 26\) (Gadella and Kliphuis 1963) suggests the occurrence of aneuploidy in diploids; however, the same authors abandoned this view in their consequential studies and only reported the presence of B chromosomes (Gadella and Kliphuis 1967, 1970). Supernumerary B chromosomes have been repeatedly observed in the karyotype of diploids, occurring in various numbers (1–4; Gadella and Kliphuis 1967, 1970; Kamari et al. 2001; Peruzzi et al. 2001), and have never been identified in other cytotypes. However, since chromosomes of *S. officinale* complex are quite small (1.1–2.4 µm, Mekki et al. 1987), confusion with A chromosomes cannot be ruled out in other ploidy levels, particularly in tetraploids, where the aneuploid counts can, in fact, represent B chromosomes. Furthermore, the great variation in the nuclear DNA content within tetraploids was detected in our flow cytometric data (Fig. 2A), which may be caused by aneuploidy (reviewed in Šmarda and Bureš 2010) or the presence of B chromosomes. In some studies, the positive correlation between genome size and the presence of B chromosomes has even been found (Trivers et al. 2004; Levin et al. 2005). However, this variation could also be caused by other chromosomal polymorphisms (Greilhuber 1998) or differences in the content of repetitive DNA (Macas et al. 2013). Last but not least, methodological errors or the effect of secondary metabolites (Loureiro et al. 2006; Kolarčík et al. 2018; Kobrlová and Hroneš 2019) cannot be ruled out.

Geographic distribution of cytotypes and population cytotype composition

Our study corroborates the common occurrence of tetraploids of the *S. officinale* complex in Europe, which is consistent with previously published chromosome counts [see Supporting Information—Table S2]. Compared to the broad geographic distribution of tetraploids, diploids have a scattered distribution throughout Europe and inhabit typically calcareous fens in floodplains and moist places in karst areas (Fig. 1D). The overall rarity of diploids may be caused by anthropogenic pressure and consequent loss of their habitats (Janssen et al. 2016) or by over competition by tetraploids (see below). We acknowledge that the distributional data presented here are partly geographically biased due to the lack of records from Eastern Europe, but clearly show the general large-scale distribution patterns of cytotypes of *S. officinale* complex. At the same time, it is possible that in some areas, diploids are overlooked and mistakenly associated with white-flowered tetraploids. In addition to these two major ploidy levels, hypotetraploids are even more scattered than diploids (except for the Netherlands) and occupy mineral-rich fens (Gadella and Kliphuis 1967, 1973; Gadella et al. 1983).

Geographic areas inhabited by two or more conspecific cytotypes are of particular interest (Mráz et al. 2008; Kolář...
et al. 2009; Duchoslav et al. 2020; Melichárková et al. 2021), providing the opportunity to study the evolutionary processes within polyploid complexes (Petit et al., 1999; Kolář et al. 2017) and dynamics of ploidy coexistence (Čertner et al. 2017, 2022; Castro et al. 2018). Our results indicate that diploids and hypotetraploids occur primarily in mosaic regional parapatry (sensu Kolář et al. 2017) with tetraploids. Consequently, mixed-ploidy populations appear to be rare in *S. officinale* complex because out of 156, only three mixed diploid–tetraploid populations analysed by flow cytometry have been detected. At the same time, we have not detected triploids in these ploidy-mixed populations, so the possibility of gene flow appears to be excluded or extremely rare at present. This is consistent with previously published comprehensive cytotaxonomic studies of *S. officinale* complex in the Netherlands with no triploids detected in mixed diploid–tetraploid populations, indicating the existence of a strong reproductive barrier between these cytotypes (Gadella and Kliphuis 1967, 1972). The only exception is the study of Basler (1972), who detected two triploids (both white-flowered) in mixed diploid–tetraploid population in the Schleswig-Holstein region, Northern Germany. However, their origin has never been confirmed by molecular or experimental methods. Similarly, the crossing experiments resulted in extremely low reciprocal cross-ability of diploids and white-flowered tetraploids of Dutch origin, with only two triploids produced (i.e. 0.1 %), which were not able of flowering and thus producing viable seeds (Gadella and Kliphuis 1969; Gadella 1972).

Figure 4. Predicted suitability areas (black) for the occurrence of diploids and tetraploids of *Symphytum officinale* complex over studied region (average of 10 replicate MaxEnt runs, binary output).
Niche differentiation between cytotypes at various spatial scales

Adaptation of newly established autopolyploids to new ecological niches is considered as a way to avoid competition with their diploid ancestors and consequently an important speciation mechanism (Fowler and Levin 1984). Therefore, it is hypothesized that polyploids will have wider niches and be better adapted to the abiotic extremes (Levin 2002) and this hypothesis was supported by several studies (Spoelhof et al. 2017; Baniaga et al. 2020). However, the niches of diploids and autopolyploids may differ (Arnold et al. 2015; Visger et al. 2016), but also overlap or even be equivalent (Godsoe et al. 2013; Casazza et al. 2016; Duchoslav et al. 2020). We found slight differences from niche equivalency between diploids and tetraploids of S. officinale complex. Visger et al. (2016) argued that even minor differences from niche equivalency in autopolyploids may be important for escape from the minority cytotype exclusion process. However, we also found that tetraploids have a much wider niche than diploids, with the niche of diploids almost entirely contained within the tetraploid niche. Moreover, observed shift towards more extreme abiotic conditions in tetraploids is pronounced by

Figure 5. Morphological variation of diploids and tetraploids of the Symphytum officinale complex. (A) Spider plot PCA with individuals as OTUs (first and second axis explaining 23.1 % and 11.2 %, respectively, are displayed). (B) PCA of characters (for character abbreviations, see Table 3). (C) Histogram of canonical scores of CDA. (D–F) Percentage stacked bar charts of selected qualitative traits. (G–I) Representative box plots of selected quantitative morphological characters.
their tendency to occupy also colder areas with lower precipitations and their ability to inhabit also mineral-poor, sandy soils. Better tolerance to lower mean temperatures in polyploids is a commonly reported trait that strengthens their frequent occurrence at higher latitudes and/or altitudes (Husband et al. 2013; Rice et al. 2019).

Incorporating data from the local scale also suggests that tetraploids prefer nutrient-richer soils that are frequently associated with both natural and anthropically disturbed sites, such as gravel bars, riverbanks, road edges and various types of perennial ruderal vegetation on moist soils, as shown by Kobrlová (2017), who analysed data on habitat conditions of both cytotypes extracted from herbarium sheets collected in the Czech Republic. Tetraploids can be thus viewed as more generalist with tendency to occupy also places with higher nutrient (N, P) content, while diploids are a little bit more specialized to mineral-richer soils. This perfectly fits with estimated indices of ecological specialization for Czech flora (Zelený and Chytrý 2019) with diploids (i.e. S. bohemicum) being more specialized than tetraploids (S. officinale). The stronger synanthropic affinity of polyploids, in contrast to their diploid congeners, has recently been reported in several polyploid complexes (Zozomová-Lihová et al. 2014; Chung et al. 2015; Němečková et al. 2019; Rejlová et al. 2019; Urfus et al. 2021). Alternatively, observed pattern in niche differentiation between diploids and tetraploids may result from stronger competitive ability of tetraploids, unless they are confined to nutrient-poor and/or more-stressful substrates that do not allow the tetraploids to exploit their advantage.

Morphological variation of S. officinale in the Czech Republic

There has been a long-lasting debate about the taxonomical identity of diploids that are exclusively ‘white-flowered’, but in most European floras no or only negligible taxonomic significance is attributed to them (Table 1). Most of the authors consider diploids to be morphologically indistinguishable from tetraploids, belonging to one polymorphic species S. officinale s. str. This is evidenced by Basler (1972), who provided a morphological evaluation of both cytotypes in the Schleswig-Holstein region (Northern Germany) and did not treat diploids and tetraploids as separate taxa; the only detected significant differences he found were some microscopic features (pollen, stomata, cell size). However, Wille (1998), evaluating a morphological variation of S. officinale complex in Southern and Central Hesse (Central Germany), distinguishes between tetraploids (S. officinale s. str.) and diploids (S. bohemicum) quite well, although not every individual can be unequivocally identified by its morphological characteristics. This difficulty can be easily avoided by evaluating the whole population (Kobrlová 2017). Rather surprisingly, within the framework of the long-time study of S. officinale complex provided in the Netherlands, authors never considered diploids as a separate taxon, but only as a morphotype of S. officinale (Gadella and Kliphuis 1967, 1972; Gadella et al. 1970, 1983; Gadella 1972).

Our results clearly show that diploids and tetraploids are morphologically distinct. The best morphological characters to discriminate between these two cytotypes are the colour of flowers and plants, the width of the wing below lower and upper leaf, the length/width ratio of the middle leaf lamina, the calyx, corolla, peduncle, and style lengths and corolla width (Fig. 5D–I; see Supporting Information—Fig. S3). This morphological pattern has been observed within all investigated European populations, but it has been examined in more detail only within the Czech populations, due to a limited sampling outside the Czech Republic. The corolla of diploids are always yellowish to greenish white, never pure white as reported in most works (Gadella and Kliphuis 1967, 1969; Basler 1972; Peruzzi et al. 2001). In contrast, pure white corollas are rarely and randomly found only in tetraploids (Fig. 5E) and have never been observed in hypotetraploids of S. tanaicense (Gadella and Kliphuis 1973; Smejkal 1978; Májovský and Hagedušová 1993; Peruzzi et al. 2001). The ignorance of the corolla colour differences (yellowish white vs. pure white) might stand behind the long-lasting negligence of diploids as a separate taxon. The combination of quantitative and qualitative morphological traits presented here has previously been successfully applied by the first author during the revision of herbarium vouchers of S. officinale complex in the Czech Republic (Kobrlová 2017).

In contrast, less abundant hypotetraploids that have flower colour similar to tetraploids (dark purple or purplish-violet) are distinguished as a separate taxon by most of the authors. Based on previous studies, they differ by generally unbranched stems, not or only very shortly decurrent leaves, both sparsely hairy to almost glabrous, and calyx lobes with long hairs along margins and at midribs (Gadella and Kliphuis 1973; Smejkal 1978; Májovský and Hagedušová 1993; Peruzzi et al. 2001). The taxonomic treatment of polyploids, especially autoploids, has often been controversial, and different taxonomists may have various criteria (Solé et al. 2007). On the basis of our findings, the morphological differentiation of all three major cytotypes is obvious and appears to be taxonomically significant, especially in combination with slight ecological segregation and the apparent presence of hybridization barriers (Gadella and Kliphuis 1969).

Taxonomic implications

We showed that both major cytotypes of the S. officinale complex are morphologically well-differentiated. Although we did not morphologically evaluate diploids from other parts of their range, our field observations confirm that the diploids are readily distinguishable from tetraploids. As the different ploidy level act as a strong mating barrier, as indicated by rare occurrence of triploids, both cytotypes should be treated as separate species. As far as we know, the oldest validly published name for diploids is S. bohemicum (Kirschner et al. 2007). Subsequent studies should focus on the evolutionary pathways of the origin of the tetraploid cytotype (single or multiple, which may explain its broader niche) and also on detailed revision (morphology, ecology, etc.) of hypotetraploids, in connection with the name S. tanaicense, to support the taxonomic value of this species. The relationships between all cytotypes should be examined also by molecular approaches to shed light on the evolution of this complex and to clarify its taxonomic concept.

Supporting Information

The following additional information is available in the online version of this article—
Table S1. Locality details for 156 Symphytum officinale agg. populations, including number of analysed plants, information on which populations have been subjected to morphometric analysis, detected ploidy level and detailed results of flow cytometry analyses.

Table S2. List of revised karyological data reported for Symphytum officinale complex.

Table S3. Relative DNA content of Symphytum officinale complex assessed using flow cytometry; propidium iodide (PI) and 4,6-diamidino-2-phenylindole (DAPI) staining.

Table S4. The genome size (2C value) of the S. officinale cytotypes.

Table S5. Total canonical structure expressing correlations of traits with canonical axes in discriminate analysis (CDA). Values that exceed the level of 0.2 are in bold.

Figure S1. Response curves that show how each environmental variable affects the MaxEnt prediction.

Figure S2. Variation of the mean site Ellenberg-type indicator values (EIVs) derived from phytocoenological relevés with results of one-way ANOVA with the modified permutation test with 499 permutations.

Figure S3. Box plots of quantitative morphological characters and their ratios. Box plot body define the 25th and 75th percentiles, horizontal lines show the median, whiskers are from the 10 to 90 percentiles, circles show extreme values.

Sources of Funding
This study was supported by the Internal Grant Agency of Palacký University (IGA PrF-2021-001, IGA PrF-2022-002) and IAPT Research Grant of the International Association for Plant Taxonomy.

Conflict of Interest
None declared.

Contributions by the Authors
L.K. conceived and designed the research; and conducted field collection with the participation of M.H. L.K. performed the bibliographic review, morphological analysis and flow cytometric estimations. L.K., M.H. and M.D. analysed data and organized it in figures and tables. L.K. wrote the first draft of the manuscript; M.H. and M.D. edited the final version of the manuscript. All authors participated in the discussion and approved the submitted version.

Acknowledgements
We acknowledge all the people mentioned in the Supporting Information—Table S1 for their help in collecting samples of Symphytum officinale complex. We thank P. Koutecký for FCM analysis of population ID 129 and D. Ditě for providing the photograph of S. tanaicense. Two reviewers are acknowledged for their comments, which helped improving the paper.

Data Availability
The original contributions presented in the study are included in the article/Supporting Information; further inquiries can be directed to the corresponding author.

Literature Cited
Arnold B, Kim ST, Bomblek S. 2015. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Molecular Biology and Evolution 6:1382–1395.

Baniaga AE, Marx HE, Arrigo N, Barker MS. 2020. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters 23:68–78.

Basler A. 1972. Cytotaxonomische Untersuchungen an der Boragineen-Gattung Symphytum L. Botanische Jahrbücher für Systematik, Pflanzengeographie und Pflanzengeographie 92:508–553.

Broennimann O, Fitzpatrick MC, Pearson PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21:481–497.

Brown JL, Carnaval AC. 2019. A tale of two niches: methods, concepts and evolution. Frontiers of Biogeography 11:e4158.

Buch C, Loss GH, Keil P. 2007. Aspekte der flora und vegetation des NSG “Rheinaue Friemersheim” in Duisburg. Dechenniana (Bonn) 160:133–153.

Bucknall C. 1913. A revision of the genus Symphytum, Tourn. Journal of the Linnean Society of London, Botany 41:491–556.

Casazza G, Boucher FC, Minuto L, Randin CF, Conti E. 2016. Do floral and niche shifts favour the establishment and persistence of newly arisen polyploids? A case study in an Alpine primrose. Annals of Botany 119:81–93.

Castro M, Castro S, Figueiredo A, Husband B, Loureiro J. 2018. Complex cytogeographical patterns reveal a dynamic tetraploid–octoploid contact zone. AoB PLANTS 10:py012; doi:10.1093/aobpla/ply012.

Cecchi L, Selvi F. 2015. Synopsis of Boraginaceae subfam. Boraginae tribus Boragineae in Italy. Plant Biosystems 149:630–677.

Cecchi L, Selvi F. 2017. Flora critica d’Italia. Boraginaceae–Boragineae. Firenze, Italy: Fondazione per la Flora Italiana.

Čertner M, Fenclová E, Kúr P, Kolář F, Koutecký P, Krahulcová A, Suda J. 2017. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Annals of Botany 120:303–315.

Čertner M, Rydlo J, Dudáš M, Hroudírová Z. 2022. A unique diploid–triploid contact zone provides insights into the evolutionary mechanisms of cytotype coexistence in flowering rush (Butomus umbellatus). Perspectives in Plant Ecology, Evolution and Systematics 54:125659.

Chacón J, Luebert F, Hilger HH, Ovchininkova S, Selvi F, Cecchi L, Guiliams CM, Hasenstab-Lehman K, Sutory K, Simpson MG, Weigend M. 2016. The borage family (Boraginaceae s.s.): a revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon 65:523–546.

Chung MY, López-Pujol J, Chung JM, Kim K-J, Park SJ, Chung MG. 2015. Polyploidy in Lilium lancifolium: evidence of autotriploidy and no niche divergence between diploid and triploid cytotypes in their native ranges. Flora 213:57–68.

Chytrý M, Rafaíová M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation plot-data. Preslia 75:1–15.

Chytrý M, Tichý L, Dřevojan P, Sádlo J, Zelený D. 2018. Ellenberg-type indicator values for the Czech flora. Preslia 90:83–103.

Czerpeanov SK. 2007. Vascular plants of Russia and adjacent states (the former USSR), 1st edn. Cambridge: Cambridge University Press.

Danihelka J, Chrtek J, Kaplan Z. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84:647–811.

Degen A. 1930. Bemerkungen über einige orientalische Pflanzenarten (EIVs) derived from phytocoenological relevés with results of one-way ANOVA with the modified permutation test with 499 permutations.

Figure S1. Response curves that show how each environmental variable affects the MaxEnt prediction.

Figure S2. Variation of the mean site Ellenberg-type indicator values (EIVs) derived from phytocoenological relevés with results of one-way ANOVA with the modified permutation test with 499 permutations.

Figure S3. Box plots of quantitative morphological characters and their ratios. Box plot body define the 25th and 75th percentiles, horizontal lines show the median, whiskers are from the 10 to 90 percentiles, circles show extreme values.

Sources of Funding
This study was supported by the Internal Grant Agency of Palacký University (IGA PrF-2021-001, IGA PrF-2022-002) and IAPT Research Grant of the International Association for Plant Taxonomy.

Conflict of Interest
None declared.

Contributions by the Authors
L.K. conceived and designed the research; and conducted field collection with the participation of M.H. L.K. performed the bibliographic review, morphological analysis and flow cytometric estimations. L.K., M.H. and M.D. analysed data and organized it in figures and tables. L.K. wrote the first draft of the manuscript; M.H. and M.D. edited the final version of the manuscript. All authors participated in the discussion and approved the submitted version.

Acknowledgements
We acknowledge all the people mentioned in the Supporting Information—Table S1 for their help in collecting samples of Symphytum officinale complex. We thank P. Koutecký for FCM analysis of population ID 129 and D. Ditě for providing the photograph of S. tanaicense. Two reviewers are acknowledged for their comments, which helped improving the paper.

Data Availability
The original contributions presented in the study are included in the article/Supporting Information; further inquiries can be directed to the corresponding author.
Kobrlová et al. – Morphological, ecological and geographic differences between diploids and tetraploids

Di Cola V, Broennimann O, Petittierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A. 2017. Ecospat: a R package to support spatial analyses and modelling of species niches and distributions. *Ecography* 40:774–787.

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. *Annals of Botany* 82:17–26.

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. *Nature Protocols* 2:2233–2244.

Duchoslov M, Janová M, Kobllová L, Šařáfová L, Brus J, Vojtěchová K. 2020. Intricate distribution patterns of six cytotypes of *Allium oleraceum* at a continental scale: niche expansion and innovation followed by niche contraction with increasing ploidy level. *Frontiers in Plant Science* 11:591137.

Fedorov AA, ed. 2001. *Flora of Russia: the European part & bordering regions*, Vol. 5. Boca Raton, FL: CRC Press.

Fick SE, Hijmans RJ. 2017. *WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas*. *International Journal of Climatology* 37:4302–4315.

Fischer MA, Oswald K, Adler W. 2008. *Flora of Russia: the European part & bordering regions*, vol. 127. St. Louis, MO: Missouri Botanical Garden Press.

Flora I. Botanica Helvetica Symphytum Officinalia and Symphytum aggreg. of the genus *Symphytum* L. In: Talavera S, Andrés C, Arista M, Fernández Piedra MP, Gallego MJ, Ortiz PL, Romero Zarco C, Salgueiro FJ, Silvestre S, Quintana A, eds. *Flora iberica*, *Gentianaceae–Boraginaceae*. Madrid, Spain: Real Jardín Botánico, 332–336.

Greilhuber J. 1998. Intraspecific variation in genome size: a critical reassessment. *Annals of Botany* 82:27–35.

Greilhuber J, Doležel J, Lysák MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms ’genome size’ and ’C-value’ to describe nuclear DNA contents. *Annals of Botany* 95:255–260.

Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. *Trends in Ecology & Evolution* 29:260–269.

Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, Klilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B. 2017. SoilGrids250m: global gridded soil information based on machine learning. *PLoS One* 12:e0169748.

Hultén E, Fries M. 1986. *Atlas of North European vascular plants north of the Tropic of Cancer*, Vol. 1–3. Konigstein, Germany: Koeltz Scientific Books.

Hubbard BC, Baldwin SJ, Suda J. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber J, Doležel J, Wendel J, eds. *Plant genome diversity 2: physical structure, behaviour and evolution of plant genomes*. Vienna, Austria: Springer, 255–276.

Jäger EJ, ed. 2009. *Rothmaler—Exkursionsflora von Deutschland*. Bd. 3: Gefäßpflanzen: Atlashandel, Heidelberg: Spektrum Akademischer Verlag.

Janssens JAM, Rodwell DS, Criado MG, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Symank A, Tahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma RJ, Biorfert C, Bítž-Nicolae C, Biurrun I, Calix M, Capelo J, Čarni A, Chyrty M, Denger J, Dimopoulou, Essl F, Gardjill H, Gigante D, Giussodel Galdo G, Hajek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molnár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Šumberková K, Toivonen H, Tonteri T, Tisripidis I, Tzonev R, Valachovič M, et al. 2016. *European Red List of habitats. Part 2. Terrestrial and freshwater habitats*. Luxembourg: Publications Office of the European Union.

Jørgensen PM, Nee MH, Beck SG, eds. 2014. *Catálogo de las plantas vasculares de Bolivia*. Monographs in systematic botany from the Missouri Botanical Garden, vol. 127. St. Louis, MO: Missouri Botanical Garden Press.

Kamari G, Blačché C, Garbari F. 2001. *Monodernie* chromosome number reports: 11. *Flora Mediterranea* 11:435–483.

Kaplan Z, Danikhelka J, Lepsí M, Lepsí P, Ekrt L, Chrtěk J Jr, Kocián J, Černý P, Koblová L, Hronec M, Suda J. 2016. Distributions of vascular plants in the Czech Republic. Part 3. *Preslia* 88:459–544.

Király G, Virók V, Molnár VA. 2011. *Új magyar fiúsvészkyöngy*. Magyarország hatá Doszko, József, Hun. Agtekeli Nemzeti Park Igazgatóság.

Kirschner J, Kirschnerová L, Štepánek J. 2007. Generally accepted plant names based on material from the Czech Republic and published in 1753–1820. *Preslia* 79:323–365.

Koblová L. 2017. *Rod Symphytum (kostiva)* v České republice II. Šofr, Botanické zprávy České Botanické Společnosti 52:175–223.

Koblová L, Hronec M. 2019. First insights into the evolution of genomes in the borage family—complete data set of Boraginaceae in the Czech Republic. *Botanical Journal of the Linnean Society* 189:115–131.

Koblová L, Hronec M, Konáková N, Drábek P, Štefánik M, Trávníček B. 2016. *Symphytum tuberosum* complex in central Europe: cytogeography, morphology, ecology and taxonomy. *Preslia* 88:77–112.

Kolář F, Čertner M, Suda J, Schönwetter P, Hubbard BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. *Trends in Plant Science* 22:1041–1055.
Smejkal M. 1978. Rod *Symphytum* L. v Československu. *Zprávy Československé Botanické Společnosti* 13:145–161.

Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? *Taxon* 56:13–30.

Spoelhof JP, Soltis PS, Soltis DE. 2017. Pure polyploidy: closing the gaps in autoploidy research. *Journal of Systematics and Evolution* 55:340–352.

Stace C. 2010. *New flora of the British Isles*, 3rd edn. Cambridge: Cambridge University Press.

Strey M. 1931. Karyologische Studien an Boraginoideae. *Planta* 14:682–730.

Suda J, Krahulcová A, Trávníček P, Krahulec F. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. *Taxon* 55:447–450.

Suda J, Krahulcová A, Trávníček P, Rasenbaumová R, Peckert T, Krahulec F. 2007. Genome size variation and species relationships in *Hieracium* sub-genus *Pilosella* (Asteraceae) as inferred by flow cytometry. *Annals of Botany* 100:1323–1335.

ten Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. *Annals of Botany* 109:19–45.

Tichý L. 2002. JUICE, software for vegetation classification. *Journal of Vegetation Science* 13:451–453.

Tischler G. 1935. Die Bedeutung der Polyploidie für die Verbreitung der Angiospermen: erläutert an den Arten Schleswig-Holsteins, mit Ausblicken auf andere Floreneinheiten. *Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie* 67:1–36.

Trivers R, Burt A, Palestis BG. 2004. B chromosomes and genome size in flowering plants. *Genome* 47:1–8.

Urfus T, Kopecký M, Urfusová R, Chrtek J. 2021. Whole genome duplication increases ecological niche breadth of the perennial herb *Urtica dioica*. *Preslia* 93:305–319.

van de Peer Y, Mizrachi E, Marchal K. 2019. Ecological specialization indices for species of the Czech flora. *Preslia* 91:93–116.

van Loon JCH. 1987. *A cytotaxonomical atlas of the Balkan flora*. Berlin/Stuttgart: J. Cramer.

Veselý P, Šmarda P, Bureš P. 2013. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non-geophytic relatives. *Annals of Botany* 112:1193–1200.

Visger CJ, Gemmaut-Abrey CC, Pati M, Sessa EB, Soltis PS, Soltis DE. 2016. Niche divergence between diploid and autotetraploid *Tobinia*. *American Journal of Botany* 103:1396–1406.

Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. *Evolution* 62:2868–2883.

Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, Glor RE, Huron NA, Simões M, Iglesias TL, Piquet JC, Dinnage R. 2021. ENMTools 1.0: an R package for comparative ecological biogeography. *Ecography* 44:504–511.

Zelený D, Chytrý M. 2019. Ecological specialization indices for species of the Czech flora. *Preslia* 91:93–116.

Zelený D, Schaffers AP. 2012. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. *Journal of Vegetation Science* 23:419–431.

Zhu GL, Riedl H, Kamelin R. 1995. *Boraginaceae*. In: Wu CY, Raven PH, Hong DY, eds. *Flora of China* 16. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press, 329–427.

Zonneveld BJM. 2001. Nuclear DNA contents of all species of *Helleborus* (Ranunculaceae) discriminate between species and sectional divisions. *Plant Systematics and Evolution* 229:125–130.

Zozomová-Lihová J, Krak K, Mandáková T, Shimizu KK, Španiel S, Vit P, Lysák MA. 2014. Multiple hybridization events in *Cardamine* (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy. *Annals of Botany* 113:817–830.