RESEARCH ARTICLE

AN ANALYSIS OF THE PROBIOTIC BACTERIA IN THE COMMONLY FERMENTED MAIZE, OIL BEAN, AND CASTOR OIL IN NIGERIA

Simon O. Eze
Department of Biology
Federal College of Education, Eha Amufu.

Abstract

Active probiotic organisms are essential bacteria considered live microorganisms obtained from fermented foods. There is increasing evidence that probiotics are necessary for human health. This study aimed to isolate and characterize the active probiotic microorganisms in Nigeria's commonly fermented food samples. Maize, castor oil, and African oil beans were the primary fermentable food samples used in the study. The result revealed the presence of active probiotic organisms such as Pediococcus, Micrococcus, Lactobacillus, and Bacillus species. The study concluded that these organisms are responsible for the fermentation of carbohydrates and protein-rich seeds.

Introduction:

The term Probiotics has been widely used to describe specific biological agents, generally consumed as food supplements, which can positively impact the microbial ecology of the host. Although the exact definition of probiotics continues to evolve, however, they are commonly referred to as live microorganisms with favorable health effects on the host when consumed in adequate amounts (Barbara et al., 2018; Das et al., 2020; Gasbarrini et al., 2016; Gasilina & Belmer, 2015; Haghshenas et al., 2017; Hussein et al., 2021; Jackson & Lovegrove, 2012; Orel, 2013; Salisu, 2014). Nonetheless, the description of probiotics is centered on live microbes, which contrasts to prebiotics that are nondigestible food ingredients. The probiotic bacteria generally belong to the Lactobacillus and Bifidobacterium genera (Rossi et al., 2011; Saarela et al., 2002). Evidence abounds that suggest that the consumption of probiotics favorably influences numerous parts of the innate nonspecific immune system, such as the promotion of mucin production, inhibition of pathogenic bacteria, decrease in gut permeability, macrophage activation, and phagocytic capacity.

Active probiotic organisms are essential microorganisms generally regarded as live microbes found in fermented foods, which enhance the digestive tract and promote the immune system. Probiotics also influence carbohydrate and protein fermentation, enriching microbiota with high saccharolytic activity and low proteolytic activity. Probiotics have attracted huge research attention in the recent decade (Anukam & Reid, 2007; Barba-Vidal et al., 2019; Bronn et al., 2013; Coman et al., 2019; de Melo Perreira et al., 2018; Dowarah et al., 2018; Guemonde & Salminen, 2006; Holvoet et al., 2013; Shokryazdan et al., 2017; Shinde, 2012). Similarly, substantial developments have been recorded relating to the classification of probiotics and the authentication of health-related implications linked with adequate intake of probiotics (Akter et al., 2020; Amin et al., 2020; Beenaat et al., 2012; Bharti et al., 2020; Fernandez & Marette, 2017; Hewadmal & Jangra, 2019; Holvoet et al., 2013; Klerebezem et al., 2019; Park et al., 2014; Shah, 2000). Research has underscored numerous mechanisms of action of probiotics.
relating to prevention and treatment of several diseases, such as antimicrobial activity and suppression of bacterial growth, enhancement of barrier activity, immunomodulation, suppression of human T-cell proliferation, and initiation of an immune response (Peluso et al., 2007; Resta-Lenert & Barrett, 2003; Rioux & Fedorak, 2006).

Maize, African oil bean, and castor oil are among the commonly fermented food crops in Nigeria that has been extensively emphasized in the literature (Abdoulaye et al., 2018; Njoh et al., 2017; Adekoya et al., 2017; Adiaha, 2017; Akande et al., 2012; Olasupo et al., 2016). The fermentation process describes the microbial breakdown of carbohydrates and other substances to release alcohol, carbon dioxide, and energy. The fermentation processes play an essential role in food technology industries. In the traditional fermentation process, natural microorganisms are employed to prepare and preserve different types of food. The methods add to the nutritional value of foods and enhance flavor and other desirable qualities associated with digestibility and edibility. Fermented foods reflect foods that have been subjected to the action of microorganisms or enzymes to achieve desirable biochemical changes cause significant modification to the food (Singh et al., 2012).

The frequently fermented food in Nigeria includes cereals (Maize), beverages (palm wine), legumes (oil bean, castor oil seed), and tubers (cassava). This investigation is aimed to isolate and characterize the active probiotic organisms existing in fermented maize (Zea mays), oil bean (Ricinus communis), and African oil bean (Pentadethra macrophylla Benth).

Materials and Method:
Glassware and other materials were sterilized correctly and dried. The traditional fermented maize, oil bean, and castor oil seed were collected from different sources and subjected to laboratory analysis. According to Da Silva et al. (2013), all media were prepared according to the standard procedures. Furthermore, each fermented food sample’s grams were mashed with laboratory pestle and mortar and mixed with purified water as a diluent in a sterile sample bottle. Nevertheless, characterization and identification of isolates, Gram staining of the isolates, biochemical test for identification of bacteria, catalase test, citrate test, indole test, motility test, methyl red test, plaiting, and sugar fermentation were appropriately employed.

Results:

Table 1: Viable colony count of bacteria isolated from the fermented food samples.

Plates	Samples	Nutrient Agar	De Man Rogosa Sharp (MRS)
1	Zea mays	1.6x10^6	2.2x10^6
2	Zea mays	4.0x10^5	1.12x10^6
3	Pentadethra macrophylla benth	1.6x10^5	1.04x10^6
4	Pentadethra macrophylla benth	1.8x10^6	2.2x10^6
5	Ricinus communis	1.4x10^6	2.68x10^6
6	Ricinus communis	1.08x10^6	2.40x10^6

Table 2: Morphology Characteristics of Isolates.

Plate	Sample name	M e d i a	M o r p h o l o g y	
1	Z. m a y s 1	Nutrient	Cream, smooth, circular, small, flat, entire, transparent	
	Z. m a y s 2	Nutrient Mrs.	p u n c t i f o r	r m
	Z. m a y s 3	M r s .	Cream, smooth, circular, moderate, flat, unulate, transparent filamentous small.	
	Z. m a y s 2	Nutrient	Cream, smooth, circular, big, flat, entire transparent white spindle, moderate amber small punctiform	
	P. macrophylla benth 1	Nutrient	Cream, smooth, circular, big, flat, entire transparent white spindle, moderate amber small punctiform	
	P. macrophylla benth 2	M r s	Cream, smooth, circular, big, flat, entire transparent irregular small punctiform	
	R. communis 1	Nutrient	Cream, smooth, circular, small, flat entire transparent irregular small.	
	R. communis 2	M r s	Cream, smooth, circular, small, flat, entire transparent irregular small.	
	R. communis 1	M r s	Cream, smooth, circular, small, flat, entire transparent irregular small.	
Table 3:- Biochemical Test on the Isolate.

Sample name	Glu	Lau	Suc	Fru	Mann	Indole	Catalase	Citrate	Motility	Oxidase	Methyl red	Gram reaction	Presumptive isolated organisms
Z. m., R. c	AG	A	A G	AG	AG	-	-	+	-	-	-	+ve, rods	Lactobacillus sp
R. communis	AG	A	A G	AG	AG	-	+	-	-	-	-	+ve, cocci	Micrococcus sp
P. macrophylla bent, R.c	A	A	A	A	A	-	+	+	-	-	-	+ve, long rod	Bacillus sp
Z. m. mays	A	A G	AG	AG	AG	-	-	+	-	-	-	+ve, cocci short chains	Pediococcus sp
Z. m. mays	AG	A	AG	AG	AG	-	+	-	-	-	-	+ve, rod	Lactobacillus sp
P. macrophylla bent	AG	A	A G	AG	AG	-	+	-	+	+	-	+ve, cocci single	Micrococcus sp
Z. m. mays	A	A G	AG	AG	AG	-	+	-	-	-	-	+ve, rod single and cluster	Lactobacillus sp

Note: + = positive, - = Negative, A = Acid, AG = Acid gas, Glu = Glucose, G = Gas, Lac = Lactose, Fru = Fructose, Suc = Sucrose, Mann = Mannitol, Z. m = Z. mays, R. c = Ricinus communis.

Discussion:-

The present study intends to isolate and characterize the probiotic bacteria in some fermented food samples. The research shows the microorganisms isolated from the fermented samples as the bacteria grow on the de Man Rogosa Sharpe (MRS) agar and nutrient agar. The viable colony count of bacteria isolated from the fermented foods, maize, castor oil, and oil bean are shown in Table 1. Indeed, the finding agrees with the standard plate count of colony range of 30-300 cfu on a petri-dish. The bacteria isolated from maize ranges from 1.6x10^5 to 2.28x10^6, oil bean from 1.6x10^5 to 2.2x10^6, and castor oil goes from 1.4x10^5 to 2.68x10^6. The bacteriological characteristics of the bacteria colonies were acknowledged through visual counting from the plates comprising the aliquot dilute samples of each fermented food sample, as shown in Table 2. Table 3 shows the probiotic organisms isolated and characterized from maize, castor oil, and oil bean through the biochemical test. The active probiotic organisms isolated were *Pediococcus*, *Micrococcus*, *Lactobacillus*, and *Bacillus* species. These organisms are accountable for fermentation and can utilize constituents of the fermented foods.

The result is aligned with Aworh (2008), who reported that fermentation improves the texture and flavor of foods imparting a pleasantly sour taste. It also enhances the value of food materials giving it higher quality, detoxification, and better preservation. The Lactobacillus produces acid, which further inhibits the growth of non-desirable organisms. The *Pediococcus* are home fermenters that produce lactic acid. This agrees with the observation of Ogueke et al. (2005), which reported that microorganisms isolated from fermented maize, soil bean, and castor oil seed usually contain proteolytic, lipolytic, and amylolytic ability to breakdown protein, carbohydrates, and lipids. The *Bacillus*, *Lactobacillus*, *Micrococcus*, and *Pediococcus* isolated from the three fermented foods are gram-positive and produce lactic acid and acetic acid, identifying them as probiotics.

Conclusion:-

Lactic acid bacteria are among the most severe microorganisms used in food fermentation. Probiotics are not pathogenic organisms in foods that can positively influence the host's health and modulate the gastrointestinal tract. The study finding revealed that the following organisms were isolated from the fermented foods: Maize: *Lactobacillus* and *Pediococcus* species, Oil bean: *Bacillus* and *Micrococcus* species, castor oil: *Lactobacillus* and *Bacillus* species. *Lactobacillus* and *Bacillus* species are found to be expected. It fermented the foods very well and gave them the desired texture, flavor, and taste. Therefore, it could be concluded that these organisms are responsible for the fermentation of carbohydrates and protein-rich seeds to give them desired fermented products (Maize, Oil bean, and Castor oil). However, certain microorganisms were detected and isolated from the sample. Perhaps, the presence of these microorganisms could be attributed to the poor hygienic condition. Therefore, the study recommends observing proper sanitary conditions while preparing food fermentation. Also, foods that contain active probiotics are recommended to enhance immune system responses, prevent infection and reduce inflammation.
References:

1. Abdoulaye, T., Wossen, T., & Awotide, B. (2018). Impacts of improved maize varieties in Nigeria: ex-post assessment of productivity and welfare outcomes. Food Security, 10(2). https://doi.org/10.1007/s12571-018-0772-9

2. Adekoya, I., Njobeh, P., Obadina, A., Chilaka, C., Okoth, S., de Boevre, M., & de Saeger, S. (2017). Awareness and prevalence of mycotoxin contamination in selected Nigerian fermented foods. Toxins, 9(11). https://doi.org/10.3390/toxins9110363

3. Adiaha, M. S. (2017). The economic value of Maize (Zea mays L.) in Nigeria and its impacts on global food production. International Journal of Scientific World, 6(1). https://doi.org/10.1043/ijsw.v6i1.8771

4. Akande, T. O., Odunsi, A. A., Olabode, O. S., & Ojediran, T. K. (2012). Physical and Nutrient Characterization of Raw and Processed Castor (Ricinus communis L.) seeds in Nigeria. World Journal of Agricultural Sciences, 8(1).

5. Amin, T., Thakur, M., & Jain, S. (2020). Microencapsulation—the future of probiotic cultures. Journal of Microbiology and Biotechnology (Vol. 30, Issue 4). https://doi.org/10.4014/jmb.1911.11019

6. Anukam, K. C., & Reid, G. (2007). Probiotics: 100 years (1907-2007) after Elie Metchnikoff's observation. Communicating Current Research and Educational Topics and Trends in Applied Microbiology.

7. Araya, M., Stanton, C., Morelli, L., Reid, G., and Pineiro, M., (2006) “Probiotics in Food: Healthand Nutritional Properties and Guidelines for Evaluation” Combine Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Bacteria, Cordoba Publisher, Journal of Dairy Science, pp. 9-11.

8. Barba-Vidal, E., Martín-Orúe, S. M., & Castillejos, L. (2019). Practical aspects of the use of probiotics in pig production: A review. In Livestock Science (Vol. 223). https://doi.org/10.1016/j.livsci.2019.02.017

9. Beena Divya, J., Kulangara Varsha, K., Madhavan Nampoothiri, K., Ismail, B., & Pandey, A. (2012). Probiotic fermented foods for health benefits. In Engineering in Life Sciences (Vol. 12, Issue 4).

10. Bharti, N., Kaur, R., & Kaur, S. (2020). Health benefits of probiotic bacteria as nutraceuticals. European Journal of Molecular and Clinical Medicine, 7(7).

11. Bron, P. A., Tomita, S., Mercenier, A., & Kleerebezem, M. (2013). Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. In Current Opinion in Microbiology (Vol. 16, Issue 3). https://doi.org/10.1016/j.mib.2013.06.001

12. Coman, M. M., Verdenelli, M. C., Cecchini, C., Belà, B., Gramenzi, A., Orpianesi, C., Cresci, A., & Silvi, S. (2019). Probiotic characterization of Lactobacillus isolates from canine feces. Journal of Applied Microbiology, 126(4). https://doi.org/10.1111/jam.14197

13. de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. In Biotechnology Advances (Vol. 36, Issue 8). https://doi.org/10.1016/j.biotechadv.2018.09.003

14. Dowarah, R., Verma, A. K., Agarwal, N., Singh, P., & Singh, B. R. (2018). Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health, and antioxidant status in weaned piglets. PLoS ONE, 13(3). https://doi.org/10.1371/journal.pone.0192978

15. Fernandez, M. A., & Marette, A. (2017). Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic properties. Advances in Nutrition, 8(1). https://doi.org/10.3945/an.115.011114

16. Food and Agriculture Organization of the United Nations; and World Health Organization. (2001). Regulatory and Clinical aspects of dairy Probiotics Food and Agriculture Organization of UN and WHO. Expert Consultation Report.

17. Guéimonde, M., & Salminen, S. (2006). New methods for selecting and evaluating probiotics. Digestive and Liver Disease, 38(SUPPL. 2). https://doi.org/10.1016/S1590-8658(07)60003-6

18. Hewadmal, N., & Jangra, S. (2019). A Review on Probiotics and Health Benefits of Probiotics. International Journal of Current Microbiology and Applied Sciences, 8(05). https://doi.org/10.20546/ijcmas.2019.805.218

19. Holtvoet, S., Zuercher, A. W., Julien-Javaux, F., Perrot, M., & Mercenier, A. (2013). Characterization of candidate anti-allergic probiotic strains in a Th2-skewed human peripheral blood mononuclear cells model. International Archives of Allergy and Immunology, 161(2). https://doi.org/10.1159/000343703
23. Hui, Y.H, Meunier-Goddik, L., Josephsen, J, Nip, W.K., and Standfield P.S. (2004). Handbook of Food and Beverage Fermentation Technology, CRC Press. Pp 27
24. Kleerebezem, M., Binda, S., Bron, P. A., Gross, G., Hill, C., van Hylckama Vlieg, J. E., Lebeer, S., Satokari, R., & Ouwehand, A. C. (2019). Understanding the mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. In Current Opinion in Biotechnology (Vol. 56). https://doi.org/10.1016/j.copbio.2018.09.007
25. Ogueke, C.C. and Ariraitu, L.E. (2004). Microbial and Organoleptic Changed Associated with Ugba stored and Ambient Temperature. Nigerian Food Journal of Springer Publisher; 22 pp. 133-140.
26. Olasupo, N. A., Okorie, C. P., & Oguntoyinbo, F. A. (2016). The biotechnology of Ugba, a Nigerian traditional fermented food condiment. In Frontiers in Microbiology (Vol. 7, Issue AUG). https://doi.org/10.3389/fmicb.2016.01153
27. Park, K. Y., Jeong, J. K., Lee, Y. E., & Daily, J. W. (2014). Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. In Journal of Medicinal Food (Vol. 17, Issue 1). https://doi.org/10.1089/jmf.2013.3083
28. Shah, N. P. (2000). Probiotic bacteria: selective enumeration and survival in dairy foods. Journal of Dairy Science, 83(4). https://doi.org/10.3168/jds.S0022-0302(00)74953-8
29. Shinde, P. B. (2012). Probiotic: An overview for selection and evaluation. In International Journal of Pharmacy and Pharmaceutical Sciences (Vol. 4, Issue 2).
30. Shokryazdan, P., Faseleh Jahromi, M., Liang, J. B., & Ho, Y. W. (2017). Probiotics: From Isolation to Application. In Journal of the American College of Nutrition (Vol. 36, Issue 8). https://doi.org/10.1080/07315724.2017.1337529
31. Singh, V.P, Pathak, V., Akhilesh, K. and Verma (2012). Fermented Meat Products; Organoleptic Qualities and Biogenic Amines – A Review, American Journal of Food Technology, 7: 278-288.