ON THE LOCALIZATION PRINCIPLE FOR THE AUTOMORPHISMS OF PSEUDOELLIPSOIDS

MARIO LANDUCCI AND ANDREA SPIRO

(Communicated by Mei-Chi Shaw)

Abstract. We show that Alexander’s extendibility theorem for a local automorphism of the unit ball is valid also for a local automorphism f of a pseudoellipsoid $E^{n}_{(p_{1},\ldots,p_{k})}$, when

$$E^{n}_{(p_{1},\ldots,p_{k})} = \{ z \in \mathbb{C}^{n} : \sum_{j=1}^{n-k} |z_{j}|^{2} + |z_{n-k+1}|^{2p_{1}} + \cdots + |z_{n}|^{2p_{k}} < 1 \}.$$

provided that f is defined on a region $U \subset E^{n}_{(p)}$ such that: i) $\partial U \cap \partial E^{n}_{(p)}$ contains an open set of strongly pseudoconvex points; ii) $U \cap \{ z_{i} = 0 \} \neq \emptyset$ for any $n-k+1 \leq i \leq n$. By the counterexamples we exhibit, such hypotheses can be considered as optimal.

1. Introduction

For a given k-tuple of integers $p = (p_{1},\ldots,p_{k})$, with each $p_{i} \geq 2$, let us denote by $E^{n}_{(p_{1},\ldots,p_{k})}$ (or, more simply, $E^{n}_{(p)}$) the pseudoellipsoid in \mathbb{C}^{n} defined by

$$E^{n}_{(p_{1},\ldots,p_{k})} = \{ z \in \mathbb{C}^{n} : \sum_{j=1}^{n-k} |z_{j}|^{2} + |z_{n-k+1}|^{2p_{1}} + \cdots + |z_{n}|^{2p_{k}} < 1 \}.$$

When $k = 0$, we assume $E^{n}_{(p)}$ to be the unit ball $B^{n} = \{ z \in \mathbb{C}^{n} : |z| < 1 \}$. Now, let us consider the following definition.

Definition 1.1. We define a local automorphism of $E^{n}_{(p)}$ to be any biholomorphic map $f : U_{1} \subset E^{n}_{(p)} \rightarrow U_{2} \subset E^{n}_{(p)}$ between two connected open subsets of $E^{n}_{(p)}$ such that:

a) each of the intersections $\partial U_{i} \cap \partial E^{n}_{(p)}$, $i = 1,2$, contains a boundary open set $\Gamma_{i} \subset \partial E^{n}_{(p)}$;

b) there exists at least one sequence $\{ x_{k} \} \subset U_{1}$ which converges to a point $x_{o} \in \Gamma_{1}$, which is not a limit point of $\partial U_{1} \cap E^{n}_{(p)}$, and so that $\{ f(x_{k}) \}$ converges to a point $\hat{x}_{o} \in \Gamma_{2}$, which is not a limit point of $\partial U_{2} \cap E^{n}_{(p)}$.

We say that a local automorphism $f : U_{1} \subset E^{n}_{(p)} \rightarrow U_{2} \subset E^{n}_{(p)}$ extends to a global automorphism of $E^{n}_{(p)}$ if there exists some $F \in \text{Aut}(E^{n}_{(p)})$ such that $F|_{U_{1} \cap E^{n}_{(p)}} = f|_{U_{1} \cap E^{n}_{(p)}}$.

By a celebrated theorem of Alexander and its generalization obtained by Rudin ([Al, Ru]), when $E^{n}_{(p)} = B^{n}$, any local automorphism extends to a global one.
This crucial extendibility result is often referred to as the localization principle for the automorphisms of \(B^n\), and it has been extended or established under different but similar hypotheses for a wide class of domains besides the unit balls (see e.g. [DS, Pi, Pi1]). On the other hand, even if it is known that the pseudoellipsoids \(E_n(p)\) share many useful properties with \(B^n\) for what concerns the global automorphisms and the proper holomorphic maps (see for instance [We, La, LS, DS]), some simple examples show that Alexander’s theorem cannot be true in full generality for a pseudoellipsoid \(E_n(p)\) different from \(B^n\) (see e.g. Example 3.4 below).

Nonetheless, for each \(E_n(p)\), it is possible to determine, precisely and in an efficient way, the class of local automorphisms that can be extended to global ones. In this short note we give a characterization of such local automorphisms by means of the following generalization of Alexander’s theorem.

Theorem 1.2. Let \(f : U_1 \subset E_n(p) \to U_2 \subset E_n(p)\) be a local automorphism of a pseudoellipsoid \(E_n(p)\), with \(p = (p_1, \ldots, p_k)\), and satisfying the following two conditions:

i) there exists a sequence \(\{x_i\}\) as in (b) of Definition 1.1 whose limit point \(x_o \in \partial E_n(p)\) is Levi non-degenerate;

ii) for any \(n - k + 1 \leq i \leq n\), the intersection \(U_1 \cap \{z_i = 0\}\) is not empty.

Then \(f\) extends to a global automorphism \(f \in \text{Aut}(E_n(p))\).

We point out that the set \(\partial E_n(p) \cap \bigcup_{i=n-k+1}^{n} \{z_i = 0\}\) coincides with the set of points of Levi degeneracy of \(\partial E_n(p)\). So, Theorem 1.2 can be roughly stated by saying that \(f\) is globally extendible as soon as it admits a holomorphic extension to some open subset \(U \subset E_n(p)\), which intersects each of the hyperplanes containing the Levi degeneracy set of \(\partial E_n(p)\) and, at the same time, the boundary \(\partial U\) contains an open set of strongly pseudoconvex points of \(\partial E_n(p)\).

From Example 3.4 it will be clear that such hypotheses can be considered as optimal.

The properties of the pseudoellipsoid used in the proof are basically just two: (1) It admits a finite ramified covering over the unit ball; (2) Its automorphisms are “lifts” of the automorphisms of the unit ball that preserve the singular values of the covering. Since (2) is a consequence of (1), it is reasonable to expect that a similar result should be true for any arbitrary ramified covering of the unit ball.

About this more general problem, we refer to [KLS, KS] for what concerns the classification of the domains in \(\mathbb{C}^2\) that admit a ramified holomorphic covering over \(B^2\).

2. **On the Automorphisms of the Unit Ball**

First of all, we need to recall some basic facts on the automorphisms of the unit ball. Let us denote by \(i : \mathbb{C}^n \to \mathbb{C}P^n\) the canonical embedding

\[
i : \mathbb{C}^n \to \mathbb{C}P^n, \quad i(z) = \begin{bmatrix} z_1 \\
... \\
\vdots \\
z_n \\
1 \end{bmatrix}
\]

and let \(\tilde{\mathbb{C}}^n = i(\mathbb{C}^n) = \mathbb{C}P^n \setminus \{[w] : w_{n+1} = 0\}\). We recall that, via the embedding, \(B^n\) corresponds to the projective open set \(\tilde{B}^n = \{ [w] \in \mathbb{C}P^n : \langle w, w \rangle < 0 \}\).
where we denote by $\langle \cdot, \cdot \rangle$ the pseudo-Hermitian inner product on \mathbb{C}^{n+1} defined by

\begin{equation}
\langle w, z \rangle = \bar{w}^t \cdot I_{n,1} \cdot z , \quad \text{where} \quad I_{n,1} \overset{\text{def}}{=} \begin{pmatrix} I_n & 0 \\ 0 & -1 \end{pmatrix} .
\end{equation}

It is also known that a holomorphic map $F : B^n \to B^n$ is an automorphism of B^n if and only if the corresponding map $\hat{F} = i \circ F \circ i^{-1} : \hat{B}^n \to \hat{B}^n$ is a projective linear transformation which preserves the quadric $\partial \hat{B}^n = \{ [w] : \langle w, w \rangle = 0 \}$ (see e.g. [Ve]). This means that \hat{F} is of the form

\begin{equation}
\hat{F}([z]) = [A \cdot z],
\end{equation}

where A is a matrix in $\text{SU}_{n,1}$, i.e. such that $\hat{\mathcal{A}}^t I_{n,1} \hat{\mathcal{A}} = I_{n,1}$ and with $\det \hat{\mathcal{A}} = 1$.

The correspondence $F \mapsto \hat{F} = i \circ F \circ i^{-1}$ gives an isomorphism between $\text{Aut}(B_n)$ and $\text{SU}_{n,1}/K$, where $K = \{ e^{\frac{2\pi i}{n+1}} I_{n+1} , \ 0 \leq k \leq n \}$.

The identification of the elements of $\text{Aut}(B^n)$ with the corresponding projective linear transformations is often quite useful, for instance in order to establish the following fact (see also [We], §6).

Lemma 2.1. Let $F = (F_1, \ldots, F_n) \in \text{Aut}(B^n)$ be an automorphism such that

\begin{equation}
F(B^n \cap \{ z_i = 0 \}) \subset \{ z_i = 0 \}
\end{equation}

for all $n - k + 1 \leq i \leq n$. Then the components F_i are of the following form:

\begin{equation}
F_j(z) = \frac{\sum_{\ell=1}^{n-k} A_{j\ell} z_\ell + b_j}{\sum_{\ell=1}^{n-k} c^\ell z_\ell + d}, \quad \text{for} \ 1 \leq j \leq n-k ,
\end{equation}

\begin{equation}
F_j(z) = \frac{1}{\sum_{\ell=1}^{n-k} c^\ell z_\ell + d}, \quad \text{for} \ n-k+1 \leq j \leq n ,
\end{equation}

for some $\theta_j \in \mathbb{R}$ and where $A = (A_{ij})$, $b = (b_j)$, $c = (c^\ell)$ and d are such that

\[
\begin{pmatrix} A & b \\ c & d \end{pmatrix} \in \text{SU}_{n-k,1}.
\]

In particular, the maps F_j, $1 \leq j \leq n-k$, coincide with the components of an element of $\text{Aut}(B^{n-k})$, while $\sum_{j=1}^{n-k} c^\ell z_j + d \neq 0$ for any $z \in B^n$.

Proof. By hypothesis, the corresponding automorphism $\hat{F} = i \circ F \circ i^{-1} \in \text{Aut}(\hat{B}^n)$ maps all hyperplanes $H_i = \{ [w] \in \mathbb{C}P^n : w_i = 0 \}$ into themselves and hence fixes their poles relative to the quadric $\partial \hat{B}^n$, i.e. fixes all the points

\[
[e_i] = [0 : \ldots : 0 : 1 \ i-th \ place : 0 : \ldots : 0] , \quad n-k+1 \leq i \leq n .
\]

This implies that the matrix \hat{A} which determines the projective transformation \hat{F} is of the form

\[
\hat{A} = \begin{pmatrix} A & 0 & \cdots & 0 & b \\ 0 & e^{i\theta_{n-k+1}} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & e^{i\theta_n} & 0 \\ c & 0 & \cdots & 0 & d \end{pmatrix},
\]

where A, b, c and d are such that $\hat{\mathcal{A}}' \overset{\text{def}}{=} \begin{pmatrix} A & b \\ c & d \end{pmatrix}$ belongs to $\text{SU}_{n-k,1}$. From this, (2.4) and (2.5) follow immediately. The last claim follows from the fact that the value $\sum_{\ell=1}^{n-k} c^\ell z_\ell + d$ is the last homogeneous coordinate of the element
Given a domain B^n by Theorem 3.1, for any sufficiently small ball E do ellipsoid

Proof. In all the following we will use the symbols Γ for any condition.

Let $\hat{x} \in \partial D$ be a Levi non-degenerate point \hat{x} for some Γ and consider a sequence $\{\hat{x}_j\} \subset \partial D'$ at which $\partial D'$ is C^2 and strictly pseudoconvex, then h extends continuously to all points of a neighborhood V of \hat{x} in \overline{D}.

We may now prove the following lemma.

Lemma 3.2. Let $f : U_1 \subset \mathcal{E}_p \rightarrow U_2 \subset \mathcal{E}_p$ be a local automorphism of a pseudoellipsoid \mathcal{E}_p with $p = (p_1, \ldots, p_k)$ and assume that

i) there exists a sequence $\{x_i\}$ as in (b) of Definition 1.1 whose limit point $x_o \in \partial \mathcal{E}_p$ is Levi non-degenerate;

ii) for any $n-k+1 \leq i \leq n$, the intersection $U_1 \cap \{z_i = 0\}$ is not empty.

Then, up to composition with a coordinate permutation,

$$(z_1, \ldots, z_n) \mapsto (z_{\sigma(1)}, \ldots, z_{\sigma(n)}),$$

the map f sends the points of the hyperplane $\{z_i = 0\}$ into the same hyperplane for $n-k+1 \leq i \leq n$.

Proof. In all the following we will use the symbols Γ, x_o and \hat{x}_o with the same meaning as in Definition 1.1.

First of all, notice that $\hat{x}_o \in \Gamma_1 \subset \partial \mathcal{U}_2$ satisfies the condition (P) and hence, by Theorem 3.1 for any sufficiently small ball $B_{\varepsilon}(\hat{x}_o)$, centered at \hat{x}_o and of radius ε, the holomorphic map $f^{-1} : U_2 \rightarrow U_1$ extends continuously to all points of $B_{\varepsilon}(\hat{x}_o) \cap \Gamma_2$. In particular, we may assume that $f^{-1}(B_{\varepsilon}(\hat{x}_o) \cap \Gamma_2)$ is contained in a neighborhood of $x_o = f^{-1}(\hat{x}_o)$ in Γ_1 in which there are no Levi degenerate points.

Pick a Levi non-degenerate point $x'_o \in B_{\varepsilon}(\hat{x}_o) \cap \Gamma_2$ and consider a sequence $\{x'_o\} \subset B_{\varepsilon}(\hat{x}_o) \cap \Gamma_2$ which converges to \hat{x}_o. By construction, the sequence $\{x'_o = f^{-1}(\hat{x}'_o)\} \subset U_1$ converges to the Levi non-degenerate point $x'_o = f^{-1}(\hat{x}'_o) \in \Gamma_1$. It follows that, replacing x_o by x'_o and \hat{x}_o by \hat{x}'_o and by Theorem 3.1 applied to
f and f^{-1}, there is no loss of generality if we assume that x_o and \hat{x}_o are both Levi non-degenerate and that, for any sufficiently small $\varepsilon_1 > 0$, the map f extends continuously to a map

$$f : U_1 \cup \left(B_{\varepsilon_1}(x_o) \cap \Gamma_1 \right) \to U_2 \cup (B_{\varepsilon}(\hat{x}_o) \cap \Gamma_2),$$

which is a homeomorphism onto its image.

Since the complex Jacobian matrices $J\pi^{(p)}|_{x_o}$ and $J\pi^{(p)}|_{\hat{x}_o}$ are of maximal rank (recall that x_o and $\hat{x}_o \in \partial E^p$ are both Levi non-degenerate), from the fact that x_o is not a limit point of $\partial U_1 \cap E^p$ and by the continuity of f and f^{-1} around x_o and \hat{x}_o, respectively, we may choose ε_1 and ε_2 so that:

a) $\pi^{(p)}|_{B_{\varepsilon_1}(x_o)}$ and $\pi^{(p)}|_{B_{\varepsilon_2}(\hat{x}_o)}$ are both biholomorphisms onto their images;

b) $f(B_{\varepsilon_1}(x_o) \cap U_1) \subset B_{\varepsilon_2}(\hat{x}_o)$ and $f|_{B_{\varepsilon_1}(x_o) \cap U_1}$ extends to a homeomorphism between $B_{\varepsilon_1}(x_o) \cap U_1$ and $f(B_{\varepsilon_1}(x_o) \cap U_1)$ which induces a homeomorphism between $B_{\varepsilon_1}(x_o) \cap \Gamma_1$ and $f(B_{\varepsilon_1}(x_o) \cap \Gamma_1) \subset \Gamma_2$.

Notice that, by definition, x_o is not a limit point of $\partial (B_{\varepsilon_1}(x_o) \cap U_1) \cap E^p$ and, by (b), \hat{x}_o is not a limit point of $\partial f(B_{\varepsilon_1}(x_o) \cap U_1) \cap E^p$. So, if we set

$$U_1 \overset{\text{def}}{=} B_{\varepsilon_1}(x_o) \cap U_1, \quad U_2 \overset{\text{def}}{=} f(U_1) \subset B_{\varepsilon_2}(\hat{x}_o), \quad V_i \overset{\text{def}}{=} \pi^{(p)}(U_i), \quad i = 1, 2,$$

then the maps

$$f|_{U_1} : U_1 \to U_2$$

and

$$\tilde{f} = \pi^{(p)} \circ f \circ \pi^{(p)}|_{V_1} : V_1 \subset B^n \to V_2 \subset B^n$$

are local automorphisms of E^p and of the unit ball, respectively.

By Rudin’s generalization of Alexander’s theorem ([Rud]), this implies that \tilde{f} extends to a global automorphism of B^n, which we denote by \tilde{f} as well. By construction, for any $z \in U_1 = \pi^{(p)}|_{V_1}$, we have

$$(3.2) \quad \tilde{f} \circ \pi^{(p)}(z) = \pi^{(p)} \circ f(z),$$

but since both sides have a holomorphic extension on U_1, we get that (3.2) must be true also for any z in such a larger set.

In particular,

$$(3.3) \quad J(\tilde{f})|_{\pi^{(p)}(z)} \cdot J(\pi^{(p)}|_{z}) = J(\pi^{(p)}|_{f(z)}) \cdot J(f)|_{z}, \quad \text{for any } z \in U_1.$$

Since for any $z \in U_1$, $\det J(f)|_z \neq 0$ and

$$(3.4) \quad \{ J(\pi^{(p)}|_{z}) = 0 \} = \bigcup_{i=n-k+1}^n \{ z_i = 0 \},$$

equality (3.3) implies that, for any $n-k+1 \leq i \leq n$ and $z \in U_1 \cap \{ z_i = 0 \}$, the value of $J(\pi^{(p)}|_{f(z)})$ is 0. By (3.4), this means that $f(U_1 \cap \{ z_i = 0 \})$ is contained in the union $\bigcup_{i=n-k+1}^n \{ z_i = 0 \}$. Indeed, it is contained in exactly one of the hyperplanes $\{z_i = 0\}$, because f is a biholomorphism and consequently $f(U_1 \cap \{ z_i = 0 \})$ is an irreducible analytic variety. From this the conclusion follows. \qed

We proceed by defining a rule that associates an automorphism of B^n with any local automorphism of a pseudoellipsoid (see also [We], §6). Given a local automorphism $f : U \to \mathbb{C}^n$ of E^p, pick a point $x_o \in U \cap \partial E^p$ for which (b) of
Definition 1.1 holds and determine a small ball \(B_\varepsilon(x_0) \) centered in \(x_0 \) as in the proof of the previous lemma. Then, we denote by \(\tilde{f} \in \text{Aut}(B^n) \) the global automorphism of the unit ball that extends \(\tilde{f} \text{ def } \pi(p) \circ f \circ \pi(p)^{-1} \mid_{\pi(p)(V)} \), with \(V \text{ def } B_\varepsilon(x_0) \cap E^n_{(p)} \). By the identity principle of the holomorphic maps, such an automorphism \(\tilde{f} \) depends only on \(f \) and will be called the (global) automorphism of \(B^n \) associated with \(f \).

With the help of such a correspondence, we may state the following criterion for extendibility of local automorphisms.

Proposition 3.3. A local automorphism \(f : U_1 \subset E^n_{(p)} \to U_2 \subset E^n_{(p)} \) of a pseudoellipsoid \(E^n_{(p)} \), \(p = (p_1, \ldots, p_k) \), extends to a global automorphism \(\tilde{f} \in \text{Aut}(E^n_{(p)}) \) if and only if its associated automorphism \(\tilde{f} \in \text{Aut}(B^n) \) satisfies (2.3) at all points where \(f \) is defined (in this case, at all points of \(E^n_{(p)} \)). Then, by Lemma 3.2 and the fact that \(\pi(p) \left(E^n_{(p)} \cap \{ z_i = 0 \} \right) = B^n \cap \{ z_i = 0 \} \), the equality (3.3) implies that, up to a suitable permutation of coordinates, \(f \) satisfies (2.3) for any \(n - k + 1 \leq i \leq n \).

Conversely, assume that \(f = (f_1, \ldots, f_n) : U_1 \subset E^n_{(p)} \to U_2 \subset E^n_{(p)} \) is a local automorphism of \(E^n_{(p)} \) such that (up to a suitable permutation of coordinates) the associated automorphism \(\tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_n) \in \text{Aut}(B^n) \) satisfies (2.3) for any \(n - k + 1 \leq i \leq n \). From (2.4), (2.5) and (3.2), it follows that the components \(f_j \) of \(f \) are of the form

\[
\begin{align*}
(3.5) & \quad f_j(z) = \frac{\sum_{\ell=1}^{n-k} A_{j\ell} z_\ell + b_j}{\sum_{\ell=1}^{n-k} c_{\ell} z_\ell + d} , \quad \text{for } 1 \leq j \leq n-k, \\
(3.6) & \quad f_{n-k+j}(z) = e^{\alpha_j} z_j \left(\frac{1}{\sum_{\ell=1}^{n-k} c_{\ell} z_\ell + d} \right)^{p_j} , \quad \text{for } 1 \leq j \leq k,
\end{align*}
\]

for some fixed definitions of the \(p_j \)-th roots \(w \mapsto w^{1/j} \).

From (3.5) and (3.6) it follows immediately that \(f \) coincides with a globally defined automorphism of \(E^n_{(p)} \) (for the general expressions of the elements in \(\text{Aut}(E^n_{(p)}) \), see [WG, La]).

Now, Theorem 1.2 follows almost immediately. In fact, if \(f : U_1 \subset E^n_{(p)} \to U_2 \subset E^n_{(p)} \) is a local automorphism satisfying the hypotheses of the theorem, by Lemma 3.2 and (3.2), the associated automorphism \(\tilde{f} \in \text{Aut}(B^n) \) satisfies the hypotheses of Proposition 3.3 and the claim follows.

We conclude with the following simple construction of non-extendible local automorphisms of pseudoellipsoids.

Example 3.4. Let \(\tilde{f} \in \text{Aut}(B^n) \) be an automorphism which does not satisfy (2.3) for some \(n - k + 1 \leq j \leq n \). Pick a point \(w_o \in \partial B \cap \{ \prod_{j=n-k+1}^n z_j \neq 0 \} \) so that also its image \(f(w_o) \) is in \(\partial B \cap \{ \prod_{j=n-k+1}^n z_j \neq 0 \} \). Then, let \(z_0 \in \partial E^n_{(p)} \) so that \(\pi(p)(z_0) = w_o \) and consider a connected neighborhood \(U \) of \(z_0 \) with the
following two properties: a) \(\pi^{(p)}|_{\mathcal{U}} \) is a biholomorphism between \(\mathcal{U} \) and its image \(\pi^{(p)}(\mathcal{U}) \); b) \(\tilde{f}(\pi^{(p)}(\mathcal{U})) \) does not intersect \(\{ \prod_{j=n-k+1}^{n} z_j = 0 \} \) (a sufficiently small neighborhood \(\mathcal{U} \) surely satisfies both requirements). Then, we may consider the map

\[
f : \mathcal{U}_1 = \mathcal{U} \cap \mathcal{E}_n^{(p)} \to \mathcal{U}_2 = \mathcal{f}(\mathcal{U}) \cap \mathcal{E}_n^{(p)},
\]

By construction, \(f \) is a local automorphism of \(\mathcal{E}_n^{(p)} \) and its associated automorphism of \(\text{Aut}(B^n) \) is \(\tilde{f} \). By the hypotheses on \(\tilde{f} \) and by Proposition 3.3, \(f \) cannot extend to a global automorphism of \(\mathcal{E}_n^{(p)} \).

REFERENCES

[Al] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256. MR0352531 (50:5018)

[DS] G. Dini and A. Selvaggi Primicerio, Localization principle of automorphisms on generalized pseudoellipsoids, J. Geom. Anal. 7 (4) (1997), 575–584. MR1669231 (99m:32032)

[FR] F. Forstnerič and J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239–252. MR919504 (89c:32001)

[KLS] K.-T. Kim, M. Landucci and A. Spiro, Factorization of proper holomorphic mappings through Thullen domains, Pacific J. Math. 189 (2) (1999), 293–310. MR1696125 (2000c:32033)

[KS] K.-T. Kim and A. Spiro, Moduli space of ramified holomorphic coverings of \(B^2 \), in “Complex geometric analysis in Pohang (1997)”, pp. 227–239, Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999. MR1669055 (99m:32033)

[La] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (2) (1984), 807–811. MR732122 (85a:32033)

[LS] M. Landucci and A. Spiro, Proper holomorphic maps between complete Reinhardt domains in \(C^2 \), Complex Var. Theory Appl. 29 (1) (1996), 9–25. MR1381999 (97a:32028)

[Pi] S. Pinčuk, The analytic continuation of holomorphic mappings, Math. USSR Sb. 27 (1975) 375–392 (translation from Mat. Sb. (N.S.) 98 (140) (1975), 416–435). MR0393562 (52:14371)

[Pi1] S. Pinčuk, Holomorphic mappings of real-analytic hypersurfaces, Math. USSR Sb. 34 (1978), 503–519. MR046595 (80c:32022)

[Ru] W. Rudin, Holomorphic maps that extend to automorphisms of a ball, Proc. Amer. Math. Soc. 81 (1981), 429–432. MR607691 (82c:32012)

[Ve] E. Vesentini, Capitoli scelti della teoria delle funzioni olomorfe, Unione Matematica Italiana, Bologna: Pitagora Ed., 1984.

[We] S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51 (1979), 155-169. MR0528021 (81e:32020)

DIP. MATHEMATICA APPLICATA “G. SANSONE”, UNIVERSITÀ DI FIRENZE, VIA DI SANTA MARTA 3, I-50139 FIRENZE, ITALY
E-mail address: mario.landucci@unifi.it

DIP. MATEMATICA E INFORMATICA, UNIVERSITÀ DI CAMERINO, VIA MADONNA DELLE CARCERI, I-62032 CAMERINO (MACERATA), ITALY
E-mail address: andrea.spiro@unicam.it