Classical Verification of Quantum Computations

Urmila Mahadev

UC Berkeley

September 12, 2018
Classical versus Quantum Computers

- Can a classical computer verify a quantum computation?
 - Classical output (decision problem)

- Quantum computers compute in superposition
 - Classical description is exponentially large!

- Classical access is limited to measurement outcomes
 - Only n bits of information
Can a classical computer verify the result of a quantum computation through interaction (Gottesman, 2004)?
- Classical complexity theory: $\text{IP} = \text{PSPACE}$ [Shamir92]

- $\text{BQP} \subseteq \text{PSPACE}$: Quantum computations can be verified, but only through interaction with a much more powerful prover

- Scaled down to an efficient quantum prover?
Relaxations

Error correcting codes
[BFK08][ABE08][FK17][ABEM17]

Bell inequalities
[RUV12]
In this talk: use post quantum classical cryptography to control the BQP prover

To do this, require a specific primitive: trapdoor claw-free functions
Core Primitive

- **Trapdoor claw-free functions** f:
 - Two to one
 - Trapdoor allows for efficient inversion: given y, can output x_0, x_1 such that $f(x_0) = f(x_1) = y$
 - Hard to find a claw (x_0, x_1): $f(x_0) = f(x_1)$
 - Approximate version built from learning with errors in [BCMVV18]

- Quantum advantage: sample y and create a superposition over a random claw

\[
\frac{1}{\sqrt{2}}(|x_0\rangle + |x_1\rangle)
\]

which allows sampling of a string $d \neq 0$ such that

\[
d \cdot (x_0 \oplus x_1) = 0
\]
\[
\frac{1}{\sqrt{2}}(|x_0\rangle + |x_1\rangle) \text{ or } d \cdot (x_0 \oplus x_1) = 0
\]

- Classical verifier can challenge quantum prover
 - Verifier selects \(f \) and asks for \(y \)
 - Verifier has leverage through the trapdoor: can compute \(x_0, x_1 \)

- First challenge: ask for preimage of \(y \)

- Second challenge: ask for \(d \)
\[\frac{1}{\sqrt{2}}(|x_0\rangle + |x_1\rangle) \quad \text{or} \quad d \cdot (x_0 \oplus x_1) = 0 \]

- In [BCMVV18], used to generate randomness:
 - Hardcore bit: hard to hold both \(d \) and either \(x_0, x_1 \) at the same time
 - Prover must be probabilistic to pass
\[\frac{1}{\sqrt{2}} (|x_0\rangle + |x_1\rangle) \quad \text{or} \quad d \cdot (x_0 \oplus x_1) = 0 \]

- **Verification:**
 - TCFs are used to constrain prover
 - Use extension of approximate TCF family built in [BCMVV18]
 - Require [BCMVV18] hardcore bit property: hard to hold both \(d \) and either \((x_0, x_1)\)
 - Require one more hardcore bit property: there exists \(d \) such that for all claws \((x_0, x_1)\), \(d \cdot (x_0 \oplus x_1) \) is the same bit and is hard to compute
How to Create a Superposition Over a Claw

\[\frac{1}{\sqrt{2}} (|x_0\rangle + |x_1\rangle) \]

1. Begin with a uniform superposition over the domain:

\[\frac{1}{\sqrt{|X|}} \sum_{x \in X} |x\rangle \]

2. Apply the function f in superposition:

\[\frac{1}{\sqrt{|X'|}} \sum_{x \in X'} |x\rangle |f(x)\rangle \]

3. Measure the last register to obtain y
\[\frac{1}{\sqrt{2}} (|x_0\rangle + |x_1\rangle) \]

- Performing a Hadamard transform on the above state results in:
 \[\frac{1}{\sqrt{|x'|}} \sum_d ((-1)^{d \cdot x_0} + (-1)^{d \cdot x_1}) |d\rangle \]

- By measuring, obtain a string \(d \) such that
 \[d \cdot (x_0 \oplus x_1) = 0 \]
Goal: classical verification of quantum computations through interaction

- Define a measurement protocol
 - The prover constructs an n qubit state ρ of his choice
 - The verifier chooses 1 of 2 measurement bases for each qubit
 - The prover reports the measurement result of ρ in the chosen basis

- Link measurement protocol to verifiability

- Construct and describe soundness of the measurement protocol
\[|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \]

- Standard: obtain \(b \) with probability \(|\alpha_b|^2\)
- Hadamard:

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]

\[
H |\psi\rangle = \frac{1}{\sqrt{2}} (\alpha_0 + \alpha_1) |0\rangle + \frac{1}{\sqrt{2}} (\alpha_0 - \alpha_1) |1\rangle
\]

Obtain \(b \) with probability \(\frac{1}{2} \left| \frac{1}{\sqrt{2}} (\alpha_0 + (-1)^b \alpha_1) \right|^2 \)
Measurement Protocol Definition

Measurement protocol: interactive protocol which forces the prover to behave as the verifier’s trusted measurement device.

![Diagram](image.png)
Key issue: adaptivity; what if ρ changes based on measurement basis?

- Maybe the prover never constructs a quantum state, and constructs classical distributions instead
• **Soundness:** if the verifier accepts, there exists a quantum state *independent of the verifier’s measurement choice* underlying the measurement results.
Measurement Protocol Soundness

Soundness: if P is accepted with high probability, there exists a state ρ such that for all h, $D_{\rho,h}$ and $D_{P,h}$ are computationally indistinguishable.
• The measurement protocol implements the following model:

• Prover sends qubits of state ρ and verifier measures

• Next: show that quantum computations can be verified in the above model
Quantum Analogue of NP

- To verify an efficient classical computation, reduce to a 3-SAT instance, ask for satisfying assignment and verify that it is satisfied

\[
\begin{align*}
3\text{-SAT} & \iff \text{Local Hamiltonian} \\
n \text{bit variable assignment } x & \iff n \text{ qubit quantum state} \\
\text{Number of unsatisfied clauses} & \iff \text{Energy}
\end{align*}
\]

- To verify an efficient quantum computation, reduce to a local Hamiltonian instance \(H \), ask for ground state and verify that it has low energy
 - If the instance is in the language, there exists a state with low energy
Quantum Analogue of NP

3 SAT \iff Local Hamiltonian
Assignment \iff Quantum state
Number of unsatisfied clauses \iff Energy

To verify that a state has low energy with respect to $H = \sum_i H_i$:

- Each H_i acts on at most 2 qubits
- To measure with respect to H_i, only Hadamard/standard basis measurements are required [BL08]
Verification with a Quantum Verifier

- Prover sends each qubit of ρ to the quantum verifier

- The quantum verifier chooses H_i at random and measures, using only Hadamard/standard basis measurements [MF2016]

- Measurement protocol can be used in place of the measurement device to achieve verifiability
• Use a TCF with more structure: pair \(f_0, f_1 \) which are injective with the same image

• Given \(f_0, f_1 \), the honest quantum prover entangles a single qubit of his choice with a claw \((x_0, x_1) (y = f_0(x_0) = f_1(x_1))\).

\[
|\psi\rangle \rightarrow \sum_{b \in \{0, 1\}} \alpha_b |b\rangle |x_b\rangle = \text{Enc}(|\psi\rangle)
\]

• Once \(y \) is sent to the verifier, the verifier now has leverage over the prover’s state: he knows \(x_0, x_1 \) but the prover does not
• The verifier generates a TCF f_0, f_1 and the trapdoor.

• Given f_0, f_1, the honest quantum prover entangles a single qubit of his choice with a claw (x_0, x_1) ($y = f_0(x_0) = f_1(x_1)$).

$$|\psi\rangle = \sum_{b \in \{0,1\}} \alpha_b |b\rangle \rightarrow \sum_{x \in \mathcal{X}} \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x\rangle |f_b(x)\rangle$$

$$f_b(x) = y \quad \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle = \text{Enc}(|\psi\rangle)$$

• Given y, the verifier uses the trapdoor to extract x_0, x_1.
• Upon receiving y, the verifier chooses either to test or to delegate measurements

• If a test round is chosen, the verifier requests a preimage (b, x_b) of y

• The honest prover measures his encrypted state in the standard basis:

$$\text{Enc}(|\psi\rangle) = \sum_{b\in\{0,1\}} \alpha_b |b\rangle |x_b\rangle$$

• Point: the verifier now knows the prover’s state must be in a superposition over preimages
Delegating Hadamard Basis Measurements

- Prover needs to apply a Hadamard transform:

\[\text{Enc}(|\psi\rangle) = \sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle \rightarrow H(\sum_{b \in \{0,1\}} \alpha_b |b\rangle) = H|\psi\rangle \]

- Issue: \(x_0, x_1 \) prevent interference, and prevent the application of a Hadamard transform

- Solution: apply the Hadamard transform to the entire encoded state, and measure the second register to obtain \(d \)
• This results in a different encoding (X is the bit flip operator):

$$\text{Enc}(|\psi\rangle) \xrightarrow{H} X^{d \cdot (x_0 \oplus x_1)} H |\psi\rangle$$

• Verifier decodes measurement result b by XORing $d \cdot (x_0 \oplus x_1)$

• Protocol with honest prover:
Measurement Protocol So Far

- **Soundness**: there exists a quantum state *independent of the verifier’s measurement choice* underlying the measurement results.

- **Necessary condition**: messages required to delegate standard basis must be computationally indistinguishable.

- **To delegate standard basis measurements**: only need to change the first message.
Delegating Standard Basis Measurements

- Let g_0, g_1 be trapdoor injective functions: the images of g_0, g_1 do not overlap
 - The functions (f_0, f_1) and (g_0, g_1) are computationally indistinguishable

- If prover encodes with g_0, g_1 rather than f_0, f_1, this acts as a standard basis measurement:
 \[
 \sum_{b \in \{0,1\}} \alpha_b |b\rangle \rightarrow \sum_{b \in \{0,1\}, x} \alpha_b |b\rangle |x\rangle |g_b(x)\rangle
 \]

- With use of trapdoor, standard basis measurement b can be obtained from $y = g_b(x)$
Delegating Standard Basis Measurements

- Protocol is almost the same, except f_0, f_1 is replaced with g_0, g_1

- Verifier ignores Hadamard measurement results; only uses y to recover standard basis measurement
Measurement Protocol Recap

- Goal: use the prover as a blind, verifiable measurement device
- Verifier selects basis choice; sends claw free function for Hadamard basis and injective functions for standard basis
- Verifier either tests the structure of the state or requests measurement results
Soundness Intuition: Example of Cheating Prover

- Recall adaptive cheating strategy: prover fixes two bits, b_H and b_S, which he would like the verifier to stores as his Hadamard/standard basis measurement results.

- Assume there is a claw (x_0, x_1) and a string d for which the prover knows both x_{b_S} and $d \cdot (x_0 \oplus x_1)$.

- How to cheat:
 - To compute y: prover evaluates received function on x_{b_S} ($y = g_{b_S}(x_{b_S})$ or $y = f_{b_S}(x_{b_S})$).
 - When asked for a Hadamard measurement: prover reports d and $b_H \oplus d \cdot (x_0 \oplus x_1)$.
Soundness rests on two hardcore bit property of TCFs:

1. For all $d \neq 0$ and all claws (x_0, x_1), it is computationally difficult to compute both $d \cdot (x_0 \oplus x_1)$ and either x_0 or x_1.

2. There exists a string d such that for all claws (x_0, x_1), the bit $d \cdot (x_0 \oplus x_1)$ is the same and computationally indistinguishable from uniform.
How to Prove Soundness

Key step: enforcing structure in prover’s state

[BFK08][ABE08][FK17][ABEM17] [RUV12]
Verifier sends qubits encoded with secret error correcting code to the prover.
Verifier plays CHSH with the provers and checks for a Bell inequality violation. If prover passes, he must be holding Bell pairs.
Enforcing structure?

- No way of using previous techniques
- Use test round of measurement protocol as starting point

At some point in time, prover’s state must be of the form:

$$\sum_{b \in \{0,1\}} \alpha_b \left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle$$

or

$$\left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle$$
Why is this format useful in proving the existence of an underlying quantum state?

\[\sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle |\psi_{b,x}\rangle \quad \text{or} \quad |b\rangle |x_b\rangle |\psi_{b,x}\rangle \]

- Can be used as starting point for prover, followed by deviation from the protocol, measurement and decoding by the verifier
 - Deviation is an arbitrary unitary operator U
 - Verifier’s decoding is $d \cdot (x_0 \oplus x_1)$

- The part of the unitary U acting on the first qubit is therefore \textit{computationally randomized}, by both the initial state and the verifier’s decoding
 - Pauli twirl technique?
Why is this format useful in proving the existence of an underlying quantum state?

\[\sum_{b \in \{0,1\}} \alpha_b |b\rangle |x_b\rangle |\psi_{b,x_b}\rangle \quad \text{or} \quad |b\rangle |x_b\rangle |\psi_{b,x_b}\rangle \]

- Difficulty in using Pauli twirl: converting this computational randomness into a form which can be used to simplify the prover’s deviation
 - Rely on hardcore bit properties regarding \(d \cdot (x_0 \oplus x_1) \)
Conclusion

- Verifiable, secure delegation of quantum computations is possible with a classical machine

- Rely on quantum secure trapdoor claw-free functions (from learning with errors)
 - Use TCF to characterize the initial space of the prover
 - Strengthen the claw-free property to complete the characterization and prove the existence of a quantum state
Thanks!