Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism

Joan Miro-Blanch1,2 and Oscar Yanes1,2*

1 Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain,
2 Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain

Gut microbiota communities have coevolved for millions of years in a symbiotic relationship with their mammalian hosts. Elucidating and understanding the molecular mechanisms by which microbiota interacts with its host and how this contributes to the homeostasis of the host is crucial. One of these molecular relationships is the so-called chemical crosstalk between microbiota and host metabolisms, including the poorly explored epigenetic regulation of host tissues by the metabolic activity of gut microbiota in response to changes in diet. DNA methylation and histone modifications are epigenetic marks partly regulated by enzymes such as methylases and acetylases, whose activity depend on host and microbiota metabolites that act as substrates and cofactors for these reactions. However, providing a complete mechanistic description of the regulatory interactions between both metabolisms and the impact on the expression of host genes through an epigenetic modulation, remains elusive. This article presents our perspective on how metabolomic, metagenomic, transcriptomic, and epigenomic data can be used to investigate the “microbiota–nutrient metabolism–epigenetics axis.” We also discuss the implications and opportunities this knowledge may have for basic and applied science, such as the impact on the way we structure future research, understand, and prevent diseases like type 2 diabetes or obesity.

Keywords: microbiota, epigenetics, metabolomics, metabolism, histones, omics

CROSSTALK BETWEEN HOST AND GUT MICROBIOTA METABOLISMS

The human body co-habit with a diverse community of symbiotic microorganisms and their set of genes, collectively known as the microbiome (Ursell et al., 2013). The acquisition of the initial microbiome is a dynamic rather than a static process during early life (Ferretti et al., 2018). A recent estimation of the number of bacterial cells over human cells in our body has reduced the ratio from 10:1 (Savage, 1977) to a 1.3:1 (Sender et al., 2016a; Sender et al., 2016b). This implies a similar number of bacterial and human cells in and on the human body. However, the human microbiome encodes for at least 100 times more genes than our genome (Qin et al., 2010). Therefore, the corresponding higher functionality of bacterial genes is a key aspect to understand existing metabolic interactions between the host and its microbiota.

The microbiota helps their hosts to digest dietary fiber; produces some important neurotransmitters (Sampson and Mazmanian, 2015; Yano et al., 2015; Strandwitz et al., 2018), hormones, and vitamins...
(Kau et al., 2011; Trial et al., 2016); helps in training the host immune system (Kau et al., 2011; Chu and Mazmanian, 2013); and protects against pathogens (Watanabe et al., 2017), among many other functions. However, unbalanced microbiota can also cause disease. Some common diseases in western societies such as obesity and type 2 diabetes are associated with shifts in the relative abundance of gut bacteria composition and functionality, compared to the ones observed in healthy individuals. The cause of the microbiota imbalance (dysbiosis) of unhealthy individuals across age and geography has been mainly correlated with dietary habits (Turnbaugh et al., 2008; De Filippo et al., 2010; Mueggge et al., 2011; Wu et al., 2011; Arumugam et al., 2011; Menni et al., 2017). Therefore, the so-called chemical crosstalk between the microbiota and its host has tangible consequences for the physiological state of the host (Sharon et al., 2014; Caesar et al., 2015; Ussar et al., 2016). However, the molecular mechanisms by which microbiota chemically interacts with host cells and regulate gene expression remain largely unknown. In this regard, the role that certain host-microbiota derivate metabolites may exert on epigenetic events at the DNA, RNA, and histone level needs to be further investigated.

THE “MICROBIOTA–NUTRIENT METABOLISM–HOST EPIGENETIC” AXIS

Differences in the microbiota or epigenome in two genetically identical organisms, such as same-sex inbred mice or monozygous twins, can create differences in susceptibilities to diseases including obesity and type 2 diabetes (Ling and Groop, 2009; Franks and Ling, 2010). As with gut microbiota, new studies have demonstrated that epigenetic events are highly dynamic, changing in response to nutrient availability (Bouchard et al., 2010; Hullar and Fu, 2014) or physical exercise (Laker et al., 2017). DNA methyltransferases, DNA hydroxylases, histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases are enzymes responsible for adding or removing these dynamic epigenetic modifications. In this regard, endogenous metabolites can regulate gene expression through epigenetic events in host cells (Katada et al., 2012). For instance, histone deacetylation regulated by sirtuin family deacetylases is regulated by the NAD+/NADH ratio, acetyl-CoA, O-acetyl-ADP-ribose, and nicotinamide (Peleg et al., 2016; Ringel et al., 2018). Whether gut microbiota metabolism is regulating the concentration and/or activity of endogenously produced metabolites by the host remains largely unexplored, and it is only recently that an increasing number of researchers have started to investigate this possibility (Krautkramer et al., 2016; Aleksandrova et al., 2017; Romano et al., 2017). Krautkramer and colleagues (2016) have demonstrated that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner.

Short-chain fatty acids (SCFAs) are exclusively produced by the microbial fermentation of dietary carbohydrates, and their abundances are regulated by the composition of the microbiota (Chen et al., 2007; Cai et al., 2011). Importantly, SCFAs, particularly butyrate and acetate, produced by the microbiota, inhibit histone deacetylases (Figure 1) (Maslowski and MacKay, 2011). Increased levels of histone acetylation promote decondensation and relaxation of chromatin, supporting a more transcriptionally active state of chromatin (Bolduc et al., 2017).

Alteration of chromatin state is a possible mechanism by which gut microbiota induces host immune maturation (Cani et al., 2012; Seeley et al., 2018). Recognition of a “self” antigen should not only be limited to mammalian host antigens, but also symbiotic microbiota antigens forming part of the whole human ecosystem in a healthy state. The human leukocyte antigen (HLA) or major histocompatibility complex (MHC) gene system encodes many antigen-presenting proteins, which are essential to recognize and distinguish “self” from “non-self” antigens. Colonization of germ-free mice has demonstrated the capacity of microbiota-specific species to activate MHC class II genes (Umesaki et al., 1995). However, little is known about the immunomodulatory effect of microbial metabolites. A poorly explored possibility is that epigenetically relevant metabolites such as SCFA, highly influenced by microbiota composition, would regulate MHC gene expression by coordinating activity of enzymes that acetylate and methylate histones and DNA allowing chromatin accessibility (Ting and Trowsdale, 2002).

Regulation of DNA and histone methylation may be driven by complex microbiota–host metabolism interactions involving S-adenosyl methionine (SAM), derived from the essential amino acid methionine through diet (Poirier et al., 2001). Folate plays an essential role by re-methylating homocysteine to methionine (Figure 1), thereby ensuring the provision of SAM (Kim, 2005; Krautkramer et al., 2017). In this regard, enzymes that are depleted in obese microbiomes are frequently involved in cofactor and vitamin metabolism (Greenblum et al., 2012), including the production of cobalamin (vitamin B12), pyridoxal phosphate (the active form of vitamin B6), tetrahydrofolate, and folate (Arumugam et al., 2011; Kau et al., 2011; Yatsunenko et al., 2012). Taken together, dysbiosis of microbiota can influence SAM levels and, as a result, alter the methylation status of DNA and histones. Whether dysbiosis of microbiota can alter α-ketoglutarate and succinate levels in specific peripheral host tissues, and regulate the rate of DNA demethylation, is a plausible but little explored possibility. Ten-eleven translocation (TET) enzymes are a key family of DNA and histone demethylases that use α-ketoglutarate as co-substrate. However, due to the structural similarity with α-ketoglutarate, Tets are susceptible to competitive inhibition by fumarate and succinate, causing an increase in histone and DNA methylation levels (An et al., 2017).

Another modification that could be regulated by microbial metabolism is histone phosphorylation. In response to a low ATP/AMP ratio indicative of energy status, the AMP-activated protein kinase (AMPK) can translocate to chromatin and phosphorylate histone H2B (Bungard et al., 2010). Changes in AMPK activity have been reported in obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease (Kola et al., 2008). Interestingly, germ-free mice were resistant to obesity and insulin resistance that develop after consuming a Western-style, high-fat, and sugar-rich diet (Bäckhed et al., 2007). The persistently lean phenotype of germ-free animals was associated with increased skeletal muscle and liver levels of phosphorylated AMPK. It is also tempting to speculate that phosphotransferase systems (PTS) overrepresented in the Western diet microbiomes...
Turnbaugh et al., 2008; Turnbaugh et al., 2009 could have an impact on this histone modification.

In short, dysbiosis and reduction of the microbiota diversity can potentially alter the levels of nutrients and metabolites that can potentially act as regulators of DNA methylation and histone modifications either by directly inhibiting enzymes that catalyze the processes, or by altering the availability of substrates necessary for the enzymatic reactions.

HOLOBIONTS, MULTIFACTORIAL DISEASES, AND OMIC TECHNOLOGIES

Hosts and their microbiota have a very intimate relationship and should be considered as a single biological and evolutionary unit, termed holobiont (Youle et al., 2013; Carrier and Reitzel, 2017; Groussin et al., 2017; van de Guchte et al., 2018). In this regard, we could arguably talk about holo–genome, --transcriptome, --proteome, or --metabolome, referring to the combination of both, host and host microbiota molecular layers or modules of information at the DNA, RNA, protein, or metabolite level, respectively (Figure 2). To investigate the dynamics of the holobiont ecosystem network, multi-omic approaches bring unprecedented advantages. Diseases such as obesity and diabetes are known to be multifactorial, and the collection of several -omic data (Table 1) from the same holobiont specimen, may provide a detailed molecular description and new mechanistic insights of how dietary nutrients and gut microbiota metabolism can regulate the host phenotype through gene expression and epigenetic and metabolic regulation.
To study a complex metabolic disorder such as familial type 1 diabetes mellitus (T1D), Heintz-Buschart et al. (2016) used a combination of host genomics and proteomics together with metagenomics, metatranscriptomics, and metaproteomics to demonstrate a pronounced family membership effect in the structuration and functionality of the microbiomes. They observed a correlation between certain human pancreatic enzymes and the expression of specific microbial genes involved in key T1D metabolic transformations. Krautkramer et al. (2016) used a combination of metabolomic, proteomics of histones, transcriptomic, and metagenomic techniques in conventional and germ-free mice, to demonstrate how SCFAs produced by the microbiota, or supplemented exogenously to germ-free mice, regulate histone post-translational modifications (PTMs). Comparing histone PTMs and transcriptional profiles between conventional, germ-free mice and germ-free mice supplemented with SCFAs, Krautkramer et al. concluded that SCFAs alone are partially causative for histone PTMs. In the same direction, Thaiss et al. (2016) used a combination of metagenomics, transcriptomics, epigenomics, and metabolomics together with imaging electron microscopy, to identify a diurnal rhythmicity in the microbiome biogeography, metabolic profile, and metagenomic functionality as critical orchestrators of host epigenetic marks and gene expression. Thaiss et al. have demonstrated that host epigenetic and transcriptional circadian oscillations are partially dependent on environmental signals such as microbiome...
TABLE 1 | Popular omic techniques in the fields of epigenomics, metagenomics, metabolomics, and proteomics.

Omics	Focus	Trait studied	Techniques used	Reference
Epigenomics	DNA modifications	5-methylcytosine	WGBS (whole genome bisulfite Seq)	(Lister et al., 2009)
		6-methyladenosine	RRBS (reduced representation bisulfite Seq)	(Xi et al., 2012)
		5-hydroxymethylation	MedIP-Seq (methylated DNA IP Seq)	(Down et al., 2008)
		DNA modifications	oxBS-Seq (oxidative bisulfite Seq)	(Booth et al., 2012)
	DNA 3D structure	DNA structure and protein interaction	ATAC-Seq (assay transposase accessible chromatin Seq)	(Buenrostro et al., 2013)
			Hi-C (chromatin conformation capture)	(Lieberman-Aiden et al., 2009)
	RNA transcripts	Transcribed DNA	qTOF-MS (quadrupole mass spectrometry)	(Boyle et al., 2008)
Metagenomics	Marker gene	Hypervariable region	DNA-Seq (DNA size/strand Seq)	(Mortazavi et al., 2008)
	Whole metagenome	Whole genome	RNA-Seq (regular RNA Seq)	(Core et al., 2008)
	Metatranscriptome	RNA	GRO-Seq (global run-on-sequencing Seq)	(Churchman and Weissman, 2011)
Metabolomics	Targeted	Known metabolites	NET-Seq (native elongating transcript Seq)	(Kivioja et al., 2012)
	Untargeted profiling	Unknown metabolites	UMI method (unique molecular identifiers)	
Proteomics	Histones PTMs	H2A, H2B, H3, and H4 modifications	5methyladenosine	(Booth et al., 2012)

The integration and combination of these techniques have the potential to reveal more mechanistic insights on how gut microbiota influence epigenetics and gene expression, ultimately affecting host health. IP, immune precipitation; Seq, sequencing; m6A, 6’methyl adenosine; MS, mass spectrometry; LC, liquid chromatography; GC, gas chromatography; PTMs, posttranslational modifications; MALDI, Matrix-assisted laser desorption ionization.

metabolite dynamics in the intestines and that peripheral organs “sense and adapt” to this circadian metabolite rhythms in a similar manner.

Overall, multi-omic approaches will facilitate the structuration of future research, improve patient stratification toward a more personalized care, and open new avenues to evaluate the effectiveness of functional probiotics, functional foods, or nutritional interventions aimed at regulating host gene expression in health and disease.

OPPORTUNITIES FOR BIOMEDICAL AND CLINICAL RESEARCH

The development and improvement of new technologies and bioinformatic tools are advancing biomedical research at a fast pace. Multi-omic experiments are allowing researchers to obtain mechanistic insights on the human holobiont homeostasis, improving decision-making for next experiments to be performed. In a research context, extensive collection of -omic data will allow integration of information into modulable and controlled models of microbial communities (Franzosa et al., 2015). However, it is important to identify confounding factors in longitudinal -omic studies. Standardization of methods and techniques to reduce noise and bias in microbiome research will improve how we translate lab findings into the clinic (Knight et al., 2018).

Using germ-free or gnotobiotic mouse models provide a framework to manipulate the gut microbial composition in a controlled manner. These models can be used to study the chemical crosstalk between host and microbiota by uncovering specific epigenetic changes in host cells induced by colonization of specific bacterial strains. Colonizing gnotobiotic mice with single strains or small bacterial consortia, instead of whole fecal transplants, might bring more accurate information to understand specific molecular mechanisms and molecular pathways involved in the host epigenetic regulations. Microbiota-induced dysbiosis with antibiotics might provide a useful approach to validate findings in gnotobiotic models by partially restoring the effects of absence of microbiota or a reduction in the microbial diversity. Interestingly, organoids might also provide a challenging but very useful in vitro culturing system to study host–microbiota interactions (Williamson et al., 2018).

In a clinical context, gaining knowledge on the “microbiota–nutrient metabolism–host epigenetics axis” using multiple -omic approaches in combination with microbiota modulation therapies, has the potential to prevent and treat more efficiently metabolic diseases:

1. Fecal microbiota transplantation (FMT): The use of microbiota modulation therapies such as FMT to treat recurrent *Clostridium difficile* infections has been proved significantly more efficient than a vancomycin treatment (Petrof and Khoruts, 2012; van Nood et al., 2013). Recently, the potential of FMT as microbiome modulation technique for treating metabolic (Kootte et al., 2017) (Gupta et al., 2016), neurological (Kang et al., 2017), and immunological disorders (Pamer, 2014) has been tested, improving these conditions by partially restoring microbiota diversity and
functionality. Assessing long-term host epigenetic effects of FMT has to be further investigated.

(2) Microbiota as drug target: The unique microbiome composition of each person is probably responsible for different susceptibilities to the same nutrient, pollutant, or drug treatment (Koppel et al., 2017). Microbiota-derived metabolites can enter the bloodstream and interact with drug treatments, impacting the efficacy, toxicity, and clearance of the drug. Diagnosing or treating diseases using microbiota-targeted drugs, probiotics, and use of bacteriophages or engineered bacteria has recently re-emerged (Bhat and Kapila, 2017; Landry and Tabor, 2017; Manrique et al., 2017; Maier et al., 2018).

(3) Nutritional intervention, probiotics, and prebiotics: The acute consumption of a cocktail of probiotics containing a selection of five strains of Lactobacillus and five strains of Enterococcus modulates the microbiome and enhances SCFAs production in human and mice (Nagpal et al., 2018). The consumption of some probiotics has proven to be beneficial and ameliorates stress felt in healthy women (Tillisch Kirsten, 2013), improves insulin sensitivity (Gomes et al., 2014), protects against infections (Reid and Burton, 2002), and helps to restore microbiota after distortion by antibiotics (Langdon et al., 2016), among other benefits. Promoting SCFAs producing bacteria in the host gut by a nutritional intervention that increases fiber consumption (Zhao et al., 2018) may have an epigenetic effect in the host (Krautkramer et al., 2016).

CONCLUSIONS AND PERSPECTIVE

The study of the “microbiota–nutrient metabolism–host epigenetic” axis has great potential to reveal the molecular mechanisms by which gut microbiota composition affects the expression of genes in their hosts. In a human holobiont context, this axis is relevant to understand, prevent, diagnose, and treat the existing epidemic of metabolic disorders such as type 2 diabetes and obesity. Microbiota is a key player in health outcomes due to the potential myriad of metabolites that can produce and interact with any cell of our body through systemic circulation. Those metabolites are coming from direct transformations of nutrients available in the gut microbiota or from secondary transformed host products. The link between epigenetic marks and gut microbes appears to be mediated by host-microbial metabolites that act as substrates and cofactors for key epigenetic enzymes in the host. A disruption in the composition of the gut microbiota may lead to unbalanced key metabolites that sequentially may impact epigenetic pathways and alter gene expression. The implementation of multi-omic approaches to study the human holobiont will facilitate the stratification of patients toward a personalized-oriented care, improving disease prevention, diagnostics, drug election, and treatment efficiency.

DATA AVAILABILITY

All datasets analyzed for this study are cited in the manuscript and/or the supplementary files.

AUTHOR CONTRIBUTIONS

JM and OY designed, wrote, revised, and approved the submitted version of the manuscript.

FUNDING

This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 675610. OY thanks the following bodies for funding: Ministerio de Economia y Competitividad (MINECO) (BFU2017-87958-P) and the Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), an initiative of Instituto de Investigacion Carlos III (ISCIII).

REFERENCES

Aleksandrova, K., Romero-Mosquera, B., and Hernandez, V. (2017). Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. *Nutrients* 9, 1–13. doi: 10.3390/nutrients9090962

An, J., Rao, A., and Ko, M. (2017). TET family dioxygenases and DNA demethylation in stem cells and cancers. *Exp. Mol. Med.* 49, 1–12. doi: 10.1038/emm.2017.5

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. (2011). Enterotypes of the human gut microbiome. *Nature* 473, 174–180. doi: 10.1038/nature09944

Bäckhed, F., Manchester, J. K., Semenkovich, C. E., and Gordon, J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. *Proc. Natl. Acad. Sci.* 104, 979–984. doi: 10.1073/pnas.0605374104

Barski, A., Wei, G., Cepede, I., Wang, Z., Cui, K., Zhao, K., et al. (2007). High-resolution profiling of histone methylations in the human genome. *Cell* 129, 823–837. doi: 10.1016/j.cell.2007.05.009

Bhat, M. I., and Kapila, R. (2017). Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. *Nutr. Rev.* 75, 374–389. doi: 10.1093/nutrit/nux001

Bolduc, J.-F., Hany, L., Barat, C., Ouellet, M., and Tremblaya, M. J. (2017). Epigenetic metabolite acetate inhibits class I/II histone deacetylases, promotes histone acetylation, and increases HIV-1 Integration in CD4 T cells. *J. Virol.* 91, 1–15. doi: 10.1128/JVI.01943-16

Booth, M. J., Branco, M. R., Ficz, G., Oxléy, D., Kraeger, E., Reik, W., et al. (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. *Science* (80-.). 336, 934–937. doi: 10.1126/science.1220671

Booth, M. J., Marsico, G., Bachman, M., Beraldin, D., and Balasubramanian, S. (2014). Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. *Nat. Chem.* 6, 435–440. doi: 10.1038/nchem.1893

Bouchard, L., Rabasa-Lhoret, R., Faraj, M., Lavoie, M. É., Mill, J., Pérusse, L., et al. (2010). Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. *Am. J. Clin. Nutr.* 91, 309–320. doi: 10.3945/ajcn.2009.29085

Boyle, A. P., Davis, S., Shulha, H. P., Melzer, P., Margulies, E. H., Weng, Z., et al. (2008). High-resolution mapping and characterization of open chromatin across the genome. *Cell* 132, 311–322. doi: 10.1016/j.cell.2007.12.014

Brindle, J. T., McKeeligan, E., Tranter, G., Clarke, S., Holmes, E., Nicholson, J. K., et al. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. *Nat. Med.* 8, 1439–1445. doi: 10.1038/nm802
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf, W. J. (2013). Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics. Nat. Methods 10, 1215–1221. doi:10.1038/nmeth.2686

Bungard, D., Benjamini, J., Fueth, Zeng, P.-Y., Fasburt, B., Maas, N., et al. (2010). Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science (80-). 329, 1201–1205. doi:10.1126/science.1191241

Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., and Patrice, D. (2015). Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668. doi:10.1016/j.cmet.2015.07.026

Cai, L., Sutter, B. M., Li, B., and Tu, B. P. (2011). Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437. doi:10.1016/j.molcel.2011.05.004

Cani, P. D., Osto, M., Geurts, L., and Everard, A. (2012). Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3, 37–41. doi:10.4169/gmic.19625

Carrier, T. J., and Reitzel, A. M. (2017). The hologenome across environments and evolutionary time. Nat. Commun. 8, 1–12. doi:10.1038/ncomms14139

Gupta, S., Allen-Vercoe, E., and Petroff, E. O. (2016). Fecal microbiota transplantation: In perspective. Therap. Adv. Gastroenterol. 9, 229–239. doi:10.1177/1758844116623815

Hassig, C. A., Tong, J. K., and Schreiber, S. L. (1997). Fiber-derived butyrate and the prevention of colon cancer. Chem. Biol. 4, 783–789. doi:10.1016/S1074-5517(97)90111-3

Heintz-Buschart, A., May, P., Laczny, C. C., Lebrun, L. A., Bellora, C., Krishna, A., et al. (2016). Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2, 1–12. doi:10.1038/nmicrobiol.2016.180

Hullar, M. A. J., and Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. Cancer J. (United States) 20, 170–175. doi:10.1097/PPO.0000000000000553

Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., et al. (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 11–16. doi:10.1186/s40168-016-0255-7

Katada, S., Imhof, A., and Sassone-Corsi, P. (2012). Connecting threads: epigenetics and metabolism. Cell 148, 24–28. doi:10.1016/j.cell.2012.01.001

Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., and Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336. doi:10.1038/nature10213

Kim, Y.-I. (2005). Nutritional epigenetics: impact of folate deficiency on dna methylation and colony cancer susceptibility. J. Nutr. 135, 2694–2697. doi:10.1093/jn/135.11.2703

Kivioja, T., Vihavaino, A., Karlsson, K., Bonke, M., Enge, M., Linmarsson, S., et al. (2012). Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74. doi:10.1038/nmeth.1778

Knight, R., Navas, J., Quinn, R. A., Sanders, J. G., and Zhu, Q. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422. doi:10.1038/s41579-018-0029-9

Kola, B., Grossman, A. B., and Korbinits, M. (2008). The role of AMP-activated protein kinase in obesity. Front. Horm. Res. 36, 198–211. doi:10.1159/000115366

Koote, R. S., Levin, E., Salojärvi, J., Smits, L. P., Hartstra, A. V., Udayappan, S. D., et al. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e6. doi:10.1016/j.cmet.2017.09.008

Koppal, N., Reldal, V. M., and Balbous, E. P. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science (80-). 356, 1246–1257. doi:10.1126/science.aag2770

Krautkramer, K. A., Krezzar, J. H., Romano, K. A., Vivas, E. L., Barrett-Wilt, G. A., Rabaglia, M. E., et al. (2016). Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992. doi:10.1016/j.molcel.2016.10.025

Krautkramer, K. A., Rey, F. E., and Denu, J. M. (2017). Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J. Biol. Chem. 292, 8582–8593. doi:10.2337/db09-1003

Lahiri, S., Sun, N., Solis-Mezarino, V., Fedisch, A., Ninkovic, J., Feuchtinger, A., et al. (2016). In situ detection of histone variants and modifications in mouse brain using imaging mass spectrometry. Proteomics 16, 437–447. doi:10.1002/pmc.301500345

Laker, R. C., Garde, C., Camara, D. M., Smiles, W. J., Zierath, J. R., Hawley, J. A., et al. (2017). Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans. Sci. Rep. 7, 1–12. doi:10.1038/s41598-017-15420-7

Landry, P. B., and Tabor, J. J. (2017). Engineering diagnostic and therapeutic gut bacteria. Microbiol. Spectr. 5, 1–12. doi:10.1128/microbiolspec.BAD-0020-2017

Langdon, A., Crook, N., and Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 1–16. doi:10.1186/s13073-016-0292-9

Lieberman-Aiden, E., Berkum5, van, N. L., Williams, L., Imakaev2, M., Raska, T., et al. (2009). Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science (80-). 326, 289–293. doi:10.1126/science.1181369

Ling, C., and Group, L. (2009). Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718–2725. doi:10.2337/db09-1003

Lister, R., Pelizzola, M., Downen, R. H., Hawkins, R. D., Hon, G., Nery, J. R., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322. doi:10.1038/nature08514

Liu, S., Da Cunha, A. P., Rezende, R. M., Ciaclia, R., Wei, Z., and Lui, L., et al. (2016). The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe 19, 32–43. doi:10.1016/j.chom.2015.12.005
study gastrointestinal microbiota and luminal physiology. Cmgh 6, 301–319. doi: 10.1016/j.cmg.h.2018.05.004
Woese, C. R., and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. 74, 5088–5090. doi: 10.1073/pnas.74.11.5088
Wu, G. D., Chen, J., Hoffmann, C., Bitsinger, K., Chen, Y., Sue, A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (80-). 334, 105–108. doi: 10.1126/science.1208344
Xi, Y., Bock, C., Müller, F., Sun, D., Meissner, A., and Li, W. (2012). RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics 28, 430–432. doi: 10.1093/bioinformatics/btr668
Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276. doi: 10.1016/j.cell.2015.02.047
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. doi: 10.1038/nature11053
Youle, M., Knowlton, N., Rohwer, F., Gordon, J., and Relman, D. A. (2013). Superorganisms and holobionts. Microbe Mag. 8, 152–153. doi: 10.1128/microbe.8.152.1
Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Shi, Y., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Sci. 1156, 1151–1156. doi: 10.1126/science.aao5774

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Miro-Blanch and Yanes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.