Болезнь Илза — идиопатическая окклюзионная воспалительная вазоконстрикция сетчатки и стекловидного тела, при которой происходит окклюзия сегментов конъюнктивальной вены [1, 2]. По данным литературы, заболевание чаще всего встречается у здоровых молодых людей во втором десятилетии жизни и в 90% случаев протекает с поражением обоих глаз [3]. Данная патология впервые была описана британским офтальмологом Henry Eales в 1880 г. [4]. Эпидемиология болезни Илза изучена не до конца. В последние годы в результате иммунологических, молекулярно-биологических и биохимических исследований показана роль антигена лейкоцитов человека, аутоконъюнктивы, антиоксидантных механизмов, Mycobacterium tuberculosis и свободных радикалов в развитии этого заболевания [5, 6]. Естественное течение болезни довольно вариабельно и сопровождается чередованием ремиссий и обострений [7, 3].

При применении лазерной коагуляции сетчатки при болезни Илза, лазерная коагуляция, оптическая когерентная томография, флюоресцентная ангиография

Rетинальная лазерная коагуляция в управлении болезнью Илза (EALES’)

Takhchidi KhP, Takhchidi EKh, Kasminina TA, Tebina EP, Mokrunova MV

Progov Russian National Medical Research University, Moscow, Russia

Eales’ disease is an idiopathic occlusive inflammatory vasculopathy resulting in peripheral retinal ischemia, neovascularization, recurrent hemophthalmos, and proliferative tissue formation. It is often complicated by tractional retinal detachment, secondary glaucoma, and central retinal vein occlusion. The management of patients with Eales’ disease includes mainly glucocorticosteroid therapy, the use of angiogenesis inhibitors, vitreoretinal surgery and laser photocoagulation. The clinical case reported demonstrates the potential of retinal laser photocoagulation for treatment of the Eales’ disease in the ischemic and proliferative stages. The results of retinal laser photocoagulation used as monotherapy demonstrate the clinical and functional indices improvement: enhanced visual acuity, stabilized central retinal sensitivity value, restored clarity to the ocular media, regression of neovascularization and macular edema in the patient’s eye being in the proliferative (3b) stage, and the process stabilization in the eye being in the ischemic (2a) stage of the disease.

Keywords: Eales’ disease, laser photocoagulation, optical coherence tomography, fluorescein angiography

Author contribution: Takhchidi KhP — study concept and design, manuscript editing; Takhchidi EKh — literature analysis; Tebina EP — manuscript writing; Kasminina TA — laser treatment; Mokrunova MV — data acquisition and processing.

Compliance with ethical standards: The patient submitted informed consent to laser treatment and personal data processing.

Correspondence should be addressed: Ekaterina P. Tebina
Volokolamskoe shosse, 30, str. 2, Moscow, 123182; ekaterinatebina@mail.ru

Received: 20.09.2020 **Accepted:** 12.10.2020 **Published online:** 23.10.2020

DOI: 10.24075/vrgmu.2020.063

В 2007 г. на основании данных офтальмоскопии и ФАГ в 2007 г. была разработана новая классификация болезни Илза [13].
Стадия 1
(1a) Перифлебит мелких сосудов
(1b) Перифлебит крупных сосудов с поверхностными кровоизлияниями сетчатки

Стадия 2
(2а) Капиллярная неперфузия
(2б) Неоваскуляризация в зоне диска зрительного нерва (ДЗН) и/или сетчатки

Стадия 3
(3а) Фиброваскулярная пролиферация
(3б) Гемофталм

Стадия 4
(4а) Тракция и/или регматогенная отслойка сетчатки
(4б) Рубец радужки, неоваскулярная глаукома, осложненная катаракта, атрофия зрительного нерва

Современные методы диагностики и широкий спектр видов лечения значительно улучшают прогноз и исход болезни Илза [3, 7]. Тактика ведения пациентов зависит от клинико-патологической стадии течения заболевания [14–20] и включает в себя: прием глюкокортикостероидов (ГКС) (системных и/или периокулярных) на воспалительных стадиях [7]; интравитреальное введение ингибитора неоангиогенеза [16]; витреоретинальное хирургическое вмешательство (при наличии рецидивирующих гемофталмов, витреоретинальных тракций и/или наличии отслойки сетчатки) [21].

Лазерная коагуляция является одним из методов выбора лечения болезни Илза на стадии ишемии сетчатки и пролиферации [3, 15, 16, 19–22]. По данным клинических исследований зарубежных авторов, после лазерной коагуляции регрессию зон неоваскуляризации сетчатки и витреоретинальных тракций выявляют в 80–90% случаев [16, 23–25]. Кроме того, лазерная коагуляция в областях ишемизированной сетчатки на бессимптомных парных глазах пациентов эффективна в качестве профилактики образования возможных осложнений данного заболевания [16, 26]. На примере клинического случая сделана попытка оценить эффективность и безопасность применения лазерной коагуляции сетчатки при лечении болезни Илза на 2а (ишемической) и 3б (пролиферативной) стадиях.

Описание клинического случая
Пациент А., 20 лет, обратился в Научно-исследовательский центр офтальмологии РНИМУ им. Н. И Пирогова с жалобами на снижение остроты зрения и наличие «плавающих» помутнений в левом глазу. Из анамнеза известно, что вышеописанные жалобы появились внезапно и беспокоят на протяжении шести месяцев. При обращении к офтальмологу по месту жительства у пациента был диагностирован увеит обоих глаз неясной этиологии и проведен курс консервативной терапии, включающий в себя ГКС. На фоне проводимого лечения положительной динамики выявлено не было.
Пациенту было проведено комплексное офтальмологическое обследование: визометрия с оценкой максимальной корригированной остроты зрения (МКОЗ), офтальмоскопия с помощью офтальмоскопа «MaxField» 78D (Ocular Inc.; США), ФАГ и спектральная оптическая когерентная томография (СОКТ) на приборе «Spectralis OCT» OCT2 85 000 Гц (Heidelberg Engineering; Германия), компьютерная периметрия на анализаторе Humphrey Field Analyzer II (Carl Zeiss Meditec Inc.; США) по программе «30-2 SITA standard», компьютерная микропериметрия с определением центральной светочувствительности (СЧ) сетчатки на анализаторе «MBA» (CenterVue Inc.; Италия), Рентгенография органов грудной полости без патологии, проба Манту отрицательна. Результаты серологического тестирования без изменений. Начало заболевания пациент ни с чем не связывает, наследственность не отягощена. Для выполнения лазерной коагуляции использовали офтальмологическую лазерную установку модели «VISULAS Trion» в режиме 532 нм (Carl Zeiss; Германия).
При первичном обследовании было выявлено: МКОЗ правого глаза (OD) — 1,0; левого глаза (OS) — 0,1 н/к. При биомикроскопии переднего отрезка обоих глаз (OU) патологических изменений не обнаружено.
При офтальмоскопии OD: ДЗН бледно-розовый, границы четкие; в макулярной зоне рефлекс сохранен. Паравазально определяется патологический рефлекс, соотношение а : в = 2 : 3. На периферии сетчатки визуализируются аневризматические изменения (желтая стрелка).
и зоны ишемии. На ФАГ в венозной фазе исследования в зонах измененных сосудов на периферии по всей окружности сетчатки обнаружены экстравазальный выхлоп контрастного вещества и участки ишемии (рис. 1). Результаты СОКТ: макулярный профиль сохранен, ретинальные слои структурированы, толщина сетчатки — 310 мкм (рис. 2).

При офтальмоскопии ОС визуализация была затруднена из-за наличия частичного гемофтальма: ДЗН гиперемирован, границы стушеваны, проминирует в полость стекловидного тела; над ДЗН определялся фиброзный тяж с распространением к нижне-наружному квадранту сетчатки, макулярная зона визуализировалась нечетко. Вены расширены, извиты. На периферии в зоне 5 ч был выявлен проминирующий очаг с размытыми краями, ретинальными и преретинальными кровоизлияниями. На ФАГ в венозную фазу исследования была отмечена гиперфлюоресценция ДЗН. В центральной зоне сетчатки — гиперфлюоресценция в виде цветка (макулярный отек). На периферии в нижнем секторе — очаг гиперфлюоресценции с гипофлюоресцентными участками (рис. 3). На СОКТ в макулярной зоне было выявлено увеличение толщины сетчатки до 600 мкм, в наружном и внутреннем ядерных слоях — кистозные полости (рис. 4).

С учетом жалоб, данных анамнеза и комплексного офтальмологического обследования пациенту был поставлен диагноз болезнь Илза, OD — 2а стадии (наличие зон ишемии по данным ФАГ), OS — 3в стадии (наличие пролиферации и гемофтальма).

Было решено провести лечение с использованием лазерной коагуляции. Объем вмешательства определял степень поражения глазного дна: для OD (2а стадия) — расширенная периферическая лазерная коагуляция сетчатки (один сеанс), для OS (3в стадия) — панретинальная лазерная коагуляция сетчатки (четыре сеанса с интервалом месяц). Энергетические лазерные параметры для OD: мощность — 100 мВт, экспозиция — 0,1 с, диаметр пятна — 200 мкм, расстояние между аппликаторами — 300 мкм, общее количество коагулятов — 500; энергетические лазерные параметры для периферии сетчатки OS: мощность — 100–120 мВт, экспозиция — 0,1 с, диаметр пятна — 200 мкм, расстояние между аппликаторами — 300 мкм, общее число коагулятов составило 3000; энергетические лазерные параметры для центральной зоны сетчатки OS — мощность 50–100 мВт, экспозиция — 0,05–0,1 с, диаметр пятна — 100 мкм, расстояние между аппликаторами — 150 мкм.
В результате лечения через месяц МКОЗ OD составила 1,0; МКОЗ OS увеличилась до 0,7 н/к. При офтальмоскопии OD ДЗН был бледно-розового цвета с четкими границами. Соотношение ретинальных сосудов: в = 2 : 3. В макулярной зоне патологии не обнаружено. По всей периферии сетчатки были отмечены пигментированные лазерные коагуляты, аневризматические сосуды и участки ишемии. При осмотре OS было отмечено уменьшение гемофтальма, ДЗН имел бледно-розовый цвет с четкими границами; фиброзный тяж уменьшился в размерах. Соотношение ретинальных сосудов: в = 2 : 3.

В центральной зоне была выявлена частичная регрессия макулярного отека, слабопигментированные лазерные коагуляты (исключая аваскулярную зону). На периферии — пигментированные лазерные коагуляты, проминирующий очаг блокирован.

Через два года МКОЗ OU составила 1,0. По результатам биомикроскопии OU, передний отрезок был без патологических изменений, оптические среды прозрачные. По данным СОКТ, OD без отрицательной динамики (рис. 7). При офтальмоскопии на периферии сетчатки были выявлены пигментированные лазерные коагуляты с четкими контурами, новые патологические очаги отсутствовали. Центральная СЧ сетчатки составила 25,7 дБ.

При офтальмоскопии OS ДЗН имел бледно-розовый цвет, границы четкие, фиброзный тяж над ДЗН уменьшился в размерах. Соотношение ретинальных сосудов: в = 2 : 3. В макулярной зоне обнаружены слабопигментированные лазерные коагуляты (исключая аваскулярную зону). По данным СОКТ, макулярный профиль восстановлен, отек регрессировал (рис. 8). На периферии сетчатки выявлен фиброзированный очаг неоваскуляризации с четкими границами (рис. 9). Паравазально и по всей периферии — пигментированные лазерные коагуляты. Показатель центральной СЧ сетчатки составил 25,4 дБ.
По данным компьютерной периметрии OU, дефектов полей зрения не выявлено.

Обсуждение клинического случая

Успешное применение лазерной коагуляции в качестве монотерапии при неэффективности ГКС-терапии, было продемонстрировано во многих клинических зарубежных [14, 27] и отечественных исследованиях [28, 29]. Однако немаловажную роль в прогнозе лечения заболевания играют применяемые лазерные энергетические параметры. В случае использования “жесткой” лазерной коагуляции сетчатки не исключено развитие осложнений, таких как эксудативная отслойка сетчатки, кистозный макулярный отек, эпиретинальный фиброз, появление дефектов поля зрения, ухудшение цветового зрения и снижение контрастной чувствительности [30–32]. По данным литературы, наиболее часто используемый размер пятна составляет 400–500 микрометров, рекомендуемая продолжительность импульса — от 0,15 до 0,2 с с интервалом 0,15–0,3 с между двумя лазерными аппликациями [3]. Схожие энергетические параметры были использованы и в других исследованиях: диаметр пятна — 400 мкм, длительность — 0,15 с, при этом мощность была подобрана индивидуально и составляла в среднем 160–200 мВт [28, 29]. В данном исследовании с целью улучшения клинико-функциональных результатов лечения пациента с болезнью Илза, в отличие от мирового опыта, была проведена лазерная коагуляция с использованием меньшего диаметра лазерного пятна (200 мкм), мощностью (100–120 мВт) и экспозицией 0,1 с. Безопасность использования лазерной коагуляции сетчатки на 2а стадии (ишемической) и 3b стадии (пролиферативной) болезни Илза с сохранением функциональных свойств сетчатки была подтверждена данными современной диагностики: компьютерной периметрии (отсутствие дефектов поля зрения).
зрения) и компьютерной микрокапиллометрии (сохранение центральной СЧ сетчатки), оптической когерентной томографии (регресс кистозного макулярного отека).

Предложенные энергетические параметры позволили также получить высокие клинико-функциональные результаты в отдаленном послеоперационном периоде, отражающиеся увеличением показателя МКОЗ, стабилизацией показателя центральной СЧ сетчатки, восстановлением прозрачности оптических сред, регрессом неоваскуляризации и макулярного отека на глазу с пролиферативной стадией (3b), а также стабилизацией процесса на глазу в стадии ишемии (2a).

ВЫВОДЫ

Полученные результаты позволяют сделать вывод о том, что применение лазерной коагуляции сетчатки в качестве монотерапии при болезни Илза на ишемической (2a) и пролиферативной (3b) стадиях способствует улучшению клинико-функциональных показателей, а отдаленные результаты лазерного лечения демонстрируют длительную ремиссию.

Литература

1. Therese KL, Deepa P, Therese J, Bagyalakshmi R, Biswas J, Madhavan HN. Association of mycobacteria with Eales’ disease. Indian J Med Res. 2007; 126: 56–62.

2. Yannuzzi LA. The Retinal Atlas. Retinal Vascular Diseases, Eales’ Disease. Elsevier. 2010: 433–8.

3. Das T, Pathengay A, Hussain N, Biswas J. Eales’ disease: diagnosis and management. Eye. 2010; 24 (3): 472–82.

4. Eales H. Retinal haemorrhages associated with epistaxis and constipation. Brim Med. 1880; 9: 262.

5. Madhavan HN, Therese KL, Doraiswamy K. Further investigations on the association of Mycobacterium tuberculosis with Eales’ disease. Indian J Ophthalmol. 2002; 50: 36–39.

6. Patwardhan SD, Azad E, Shah BM, Sharma Y. Role of intravitreal bevacizumab in Eales disease with dense vitreous haemorrhage: a prospective randomized control study. Retina. 2011; 31 (5): 866–70.

7. Biswas J, R R R, Pal B, Gondhale HP, Kharel Sitaus R. Long-Term Outcomes of a Large Cohort of Patients with Eales’ Disease. Ocul Immunol Inflamm. 2018; 26 (6): 870–6.

8. Sen A, Paine SK, Chowdhury IH, Mukherjee A, Choudhury S, Mandal LK, Bhattacharya B. Assessment of gelatinase and tumor necrosis factor-alpha level in the vitreous and serum of patients with Eales disease; role of inflammation-mediated angiogenesis in the pathogenesis of Eales disease. Retina. 2011; 31 (7): 1412–20.

9. Saxena S, Kumar D. Macular involvement in Eales disease. Ann Ophthalmol. 2000; 32 (2): 98–100.

10. Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol. 2014; 28: 95–103.

11. Kumar V, Chandra P, Kumar A. Ultra-wide field angiography in the management of Eales disease. Indian J Ophthalmol. 2016; 64: 504–7.

12. Mwendoza KA, Lauer A. Eales Disease. American Academy of Ophthalmology. 2015. Available from: http://eyewiki.org/Eales_Disease.

13. Saxena S, Kumar D. New classification system-based visual outcome in Eales disease. Indian J Ophthalmol. 2007; 55 (4): 267–9.

14. Biswas J, Ravi RK, Naryanasamy A, Kuldandai LT, Madhavan HN. Eales’ disease — current concepts in diagnosis and management. J Ophthalmic Inflamm Infect. 2013; 3: 11.

15. Das TP, Namperumalsamy P. Photocoagulation in Eales’ disease. Results of pro-spective randomised clinical study. Presented in XXVI Int Cong Ophthalmol – Singapore, 1990.

16. Ishaq M, Niazi MK. Usefulness of laser photocoagulation in managing asymptomatic eyes of Eales disease. J Ayub Med Coll Abbottabad. 2002; 14 (4): 22–25.

17. Ishaq M, Feroze AH, Shahid M, Baig MA, Ameen SS, Feroze SH, Chishti RA. Intravitreal steroids may facilitate treatment of Eales’ disease (idiopathic retinal vasculitis): an interventional case series.
References

1. Therese KL, Deepa P, Therese J, Bagyalakshmi R, Biswas J, MadhavanHN. Asso-ciation of mycobacteria with Eales’ disease. Indian J Med Res. 2007; 126: 56–62.
2. Yannuzzi LA. The Retinal Atlas. Retinal Vascular Diseases, Eales’ Disease. Elsevier. 2010: 433–8.
3. Das T, Pathengay A, Hussain N, Biswas J. Eales’ disease: diagnosis and management. Eye. 2010; 24 (3): 472–82.
4. Eales H. Retinal haemorrhages associated with epistaxis and constipation. Br Med. 1880; 9: 262.
5. MadhavanHN, Therese KL, Doraiswamy K. Further investigations on the association of Mycobacterium tuberculosis with Eales’ disease. Indian J Ophthalmol. 2002; 50 (4): 251–5.
6. Patwardhan SD, Azad E, Shah BM, Sharma Y. Role of intra vitreal bevacizumab in Eales disease with dense vitreous haemorrhage: a prospective randomized control study. Retina. 2011; 31 (7): 1412–20.
7. Biswas J, K R R, Pal B, Gondhale HP, Kharel Sitaula R. Long-term Outcome Of Panretinal Photocoagulation and/or vitrectomy in Eales’ disease. Eur J Ophthalmol. 2005; 15 (3): 379–83.
8. Sen A, Painke SK, Chowdhury H, Mukherjee A, Choudhury S, Mandal LK, Bhattacharya B. Assessment of gelatinase and tumor necrosis factor-alpha level in the vitreous and serum of patients with Eales disease; role of inflammation-mediated angio-genesis in the pathogenesis of Eales disease. Retina. 2011; 31 (5): 866–70.
9. Saxena S, Kumar D. Macular involvement in Eales disease. Ann Ophthalmol. 2000; 32 (2): 98–100.
10. Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol. 2014; 28: 95–103.
11. Kumar V, Chandra P, Kumar A. Ultra-wide field angiography in the management of Eales disease. Indian J Ophthalmol. 2016; 64: 504–7.
12. Mwondoza KA, Lauer A. Eales’ Disease. American Academy of Ophthalmology. 2015. Available from: http://eyewiki.org/Eales_Disease.
13. Saxena S, Kumar D. New classification system-based visual outcome in Eales disease. Indian J Ophthalmol. 2007; 55 (4): 267–9.
14. Biswas J, Ravi RK, Naryanasamy A, Kulandai UT, MadhavanHN. Eales’ disease— current concepts in diagnosis and management. J Ophthalmic Inflamm Infect. 2013; 3: 11.
15. Das TP. Nampersamalsamy P. Photocoagulation in Eales’ disease. Results of pro-spective randomised clinical study. Presented in XXVI Int Cong Ophthalmol – Singapore, 1990.
16. Ishaq M, Niazi MK. Usefulness of laser photocoagulation in managing asymptomatic eyes of Eales disease. J Ayub Med Coll Abbottabad. 2002; 14 (4): 22–5.
17. Ishaq M, Feroze AH, Shahid M, Baig MA, Ameen SS, Feroze SH, Chiisti RA. Intravitreal steroids may facilitate treatment of Eales’ disease (idiopathic retinal vasculitis): an interventional case series. Eye (Lond). 2007; 21: 1403–5.
18. Kumar A, Sinha S. Rapid regression of disc and retinal neovascularization in a case of Eales disease after intra vitreal bevacizumab. Can J Ophthalmol. 2007; 42 (2): 335–6.
19. Margarell LE, Walsh AW, Magargal HO, et al. Treatment of Eales’ disease: retrospective analysis of photocoagulation and/or vitrectomy in 192 eyes. Retina. 2002; 22 (6): 619–22.
20. Talat L, Lightman S, Tomkins-netzer O. Ischemic retinal vasculitis and its manage-ment. J Ophthalmol. 2014; 2014: 197675.
21. Li J, Liu SM, Dong WT, LiF, Zhou CH, Xu XD, Zhong J. Outcomes of transconjunctival sutureless 27-gauge vitrectomy for vitreoretinal diseases. Int J Ophthalmol. 2018; 11 (3): 408–15.
22. El-Asrar AM, Al-Kharashi SA. Full panretinal photocoagulation and early vitrectomy improve prognosis of vitreous haemorrhage associated with tuberculoprotein hypersensitivity (Eales’ disease). Br J Ophthalmol. 2002; 86 (11): 1248–51.
23. Dehghan MH, Ahmadieh H, Sohillian M, Azarmina M, Mashayekhi A, Naghibzakerin J. The therapeutic effects of laser photocoagulation and/or vitrectomy in Eales’ disease. Eur J Ophthalmol. 2005; 15 (3): 379–83.
24. Gopal L, Abraham C. Efficacy of photocoagulation in Eales’ disease. Trans Asia-Pacific Acad. 1983; 10: 689.
25. Nada M, Qanoongo S, Singh SV, Khurana AK. A rare presentation of exudative macroaneurysms in unilateral Eales’ disease. Nepal J Ophthalmol. 2017; 9 (18): 95–98.
26. Murphy RP, Gieser SC, Fine SL, et al. Retinal and vitreous findings in Ealess disease. Invest Ophthalmol Vis Sci. 1986; 27: 121.
27. Nicolescu A, Mocanu C, Dinu L, Olaru A, Ionete M, Stefanescu DA, Unilateral Eales’ disease a case report. Rom J Ophthalmol. 2017; 61 (2): 144–9.
28. Pedanova E, K. , Bryjko D. A. Эффективность лазерокоагуляции при болезни Ильза в свете современных представлений об этиопатогенезе заболевания. Современные технологии лечения витреоретинальной патологии — 2013. 2013: 136. Available from: https://eyeypress.ru/article.aspx?12646.
29. Tolstuhina E. A., Magaramov D. A., Vodyan P. L., Timofeev V. L., Fomin A. V. Лазер-индуцированный регресс периферических ретинальных новообразований при болезни Ильза (клинический случай). Современные технологии в офтальмологии. 2019; 1 (26): 381–3.
30. Mainster MA. Decreasing retinal photocoagulation damage: principles and techniques. Semin Ophthalmol. 1999; 14 (4): 200–9.
31. Moutray T, Evans JR, Lois N, Armstrong DJ, Peto T, Azuara-Blanco A. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2018; 3 (3): CD012314.
32. Reddy SV, Husain D. Panretinal Photocoagulation: A Review of Complications. Semin Ophthalmol. 2018; 33 (1): 83–88.