0. Introduction

In this paper we give a sufficient condition for the tensor product of irreducible finite–dimensional representations of quantum affine algebras to be cyclic. In particular, this proves a generalization of a recent result of Kashiwara [K], and also establishes a conjecture stated in that paper.

We describe our results in some detail. Let g be a complex simple finite–dimensional Lie algebra of rank n, and let U_q be the quantized untwisted affine algebra over $C(q)$ associated to g. For every n–tuple $\pi = (\pi_1, \cdots, \pi_n)$ of polynomials with coefficients in $C(q)[u]$ and with constant term one, there exists a unique (up to isomorphism) irreducible finite–dimensional representation $V(\pi)$ of U_q. For each element w in the Weyl group W of g, let v_w be the extremal vector defined in [K]. In this paper we compute the action of the imaginary root vectors in U_q on the elements v_w. To do this we define in Section 2 an action of the braid group B of g on elements of $(C(q)[u])^n$ and prove that the eigenvalue of v_w is the element $T_w(\pi)$ where $T: W \rightarrow B$ is the canonical section defined in [Bo].

To state our result we assume for simplicity (in the introduction only) that g is simply–laced. We shall again for simplicity, only deal with polynomials in $C(q)[u]$ which split into linear factors. Any such polynomial can be written uniquely as a product

$$\pi(u) = \prod_{r=1}^{k} (1 - a_r q^{m_r - 1}u)(1 - a_r q^{m_r - 3}u) \cdots (1 - a_r q^{m_r - 1}u),$$

where $a_r \in C(q)$ and $m_r \in Z_+$ satisfy

$$\frac{a_r}{a_l} \neq q^{\pm (m_r + m_l - 2m)}, \quad 0 \leq m < \min(m_r, m_l),$$

if $r < l$. Let $S(\pi)$ be the collection of the pairs (a_r, m_r). $1 \leq r \leq k$ defined above. Say that a polynomial $\pi'(u) > \pi(u)$ if

$$\frac{a_r'}{a_l'} \neq q^{m_r' - m_l' - 2p}, \quad 1 \leq p \leq m_l',$n

for all pairs $(a_r', m_r') \in S(\pi')$ and $(a_l, m_l) \in S(\pi)$. Let s_1, s_2, \cdots, s_n be the set of simple reflections in W. Our main result says that:

The tensor product $V(\pi') \otimes V(\pi)$ is cyclic on $v_{w} \otimes v_{\pi}$ if, for all $w \in W$ and for all $i = 1, \cdots, n$ with $\ell(s_i w) = \ell(w) + 1$, we have

$$(T_w \pi')_i > \pi_i.$$

More generally, if V_1, \cdots, V_r are irreducible finite–dimensional representations, then $V_1 \otimes \cdots \otimes V_r$ is cyclic, if every pair $V_j \otimes V_i$ is cyclic for all $j < \ell$.

To make the connection with Kashiwara’s theorem and conjectures, we consider the case
\[\pi_j(u) = 1 \quad (j \neq i), \quad \pi_i(u) = \prod_{s=1}^{m} (1 - q^{m+1-2s} a u) \quad (a \in C(q)). \]

Denoting this \(n \)–tuple of polynomials as \(\pi^i_{m,a} \) and the corresponding representation by \(V_i(m, a) \), we prove the following: Let \(l \geq 1 \) and let \(i_j \in I, m_j \in \mathbb{Z}_{+}, a_j \in C(q) \) for \(1 \leq j \leq l \). The tensor product \(V_i(m_1, a_1) \otimes V_i(m_2, a_2) \otimes \cdots \otimes V_i(m_l, a_l) \) is cyclic on the tensor product of highest weight vectors if for all \(r < s \),
\[\frac{a_r}{a_s} \neq q^{m_r-a_m-p}, \quad \forall \ p \geq 0. \]

The case when \(m_i = 1 \) was originally conjectured and partially proved in [AK] and completely proved in [KV] (and in [KK] for the simply-laced case). The result in the case when the \(m_i \) are arbitrary but \(a_i = 1 \) for all \(i \) was conjectured in [K], [HKOTY].

1. Preliminaries

In this section we recall the definition of quantum affine algebras and several results on the classification of their irreducible finite–dimensional representations.

Let \(q \) be an indeterminate, let \(C(q) \) be the field of rational functions in \(q \) with complex coefficients. For \(r, m \in \mathbb{N}, m \geq r \), define
\[[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}, \quad [m]_q! = [m]_q[m - 1]_q \cdots [2]_q[1]_q, \quad \left[m \atop r \right]_q = \frac{[m]_q!}{[r]_q![m-r]_q!}. \]

Let \(g \) be a complex finite–dimensional simple Lie algebra of rank \(n \), let \(I = \{1, 2, \cdots, n\} \), let \(\{\alpha_i : i \in I\} \) be the set of simple roots and let \(\{\omega_i : i \in I\} \) be the set of fundamental weights. Let \(Q^+ \) (resp. \(P^+ \)) be the non–negative root (resp. weight) lattice of \(g \). Let \(A = (a_{ij})_{i,j \in I} \) be the \(n \times n \) Cartan matrix of \(g \) and let \(\hat{A} = (\hat{a}_{ij}) \) be the \((n+1) \times (n+1)\) extended Cartan matrix associated to \(g \). Let \(\hat{I} = I \cup \{0\} \). Fix non–negative integers \(d_i \) (\(i \in \hat{I} \)) such that the matrix \((d_i a_{ij})\) is symmetric. Set \(q_i = q^{d_i} \) and \([m]_i = [m]_q \).

Proposition 1.1. There is a Hopf algebra \(\hat{U}_q \) over \(C(q) \) which is generated as an algebra by elements \(E_{\alpha_i}, F_{\alpha_i}, K_i^{-1} \) (\(i \in \hat{I} \)), with the following defining relations:
\[K_i K_i^{-1} = K_i^{-1} K_i = 1, \quad K_i E_{\alpha_i} K_{i}^{-1} = q_i^{a_{ij}} E_{\alpha_i}, \]
\[K_i F_{\alpha_i} K_{i}^{-1} = q_i^{-a_{ij}} F_{\alpha_i}, \]
\[[E_{\alpha_i}, F_{\alpha_j}] = \delta_{ij} K_i - K_{i}^{-1}. \]
\[\sum_{r=0}^{1-a_{ij}} (-1)^r \left[\begin{array}{c} 1-a_{ij} \\ r \end{array} \right]_i (E_{\alpha_i})^r E_{\alpha_j} (E_{\alpha_i})^{1-a_{ij}-r} = 0 \quad \text{if} \ i \neq j, \]
\[\sum_{r=0}^{1-a_{ij}} (-1)^r \left[\begin{array}{c} 1-a_{ij} \\ r \end{array} \right]_i (F_{\alpha_i})^r F_{\alpha_j} (F_{\alpha_i})^{1-a_{ij}-r} = 0 \quad \text{if} \ i \neq j. \]
The comultiplication of \hat{U}_q is given on generators by
\[
\Delta(E_{\alpha_i}) = E_{\alpha_i} \otimes 1 + K_i \otimes E_{\alpha_i}, \quad \Delta(F_{\alpha_i}) = F_{\alpha_i} \otimes K_i^{-1} + 1 \otimes F_{\alpha_i}, \quad \Delta(K_i) = K_i \otimes K_i,
\]
for $i \in \hat{I}$.

Set $K_\theta = \prod_{i=1}^{n} K_i^{r_i/d_i}$, where $\theta = \sum r_i \alpha_i$ is the highest root in R^+. Let U_q be the quotient of \hat{U}_q by the ideal generated by the central element K_θ^{-1}; we call this the quantum loop algebra of g.

It follows from [3], [4], [5] that U_q is isomorphic to the algebra with generators $x_{i,r}^\pm (i \in I, r \in \mathbb{Z})$, $K_i^{\pm 1} (i \in I)$, $h_{i,r} (i \in I, r \in \mathbb{Z}\backslash \{0\})$ and the following defining relations:
\[
K_iK_i^{-1} = K_i^{-1}K_i = 1, \quad K_iK_j = K_jK_i, \quad K_i h_{j,r} = h_{j,r} K_i, \\
K_i x_{j,r}^\pm K_i^{-1} = q_i^{-a_{ij}} x_{j,r}^\pm, \\
[h_{i,r}, h_{j,s}] = 0, \quad [h_{i,r}, x_{j,r+s}^\pm] = \pm \frac{1}{r} [r \alpha_{ij}] x_{j,r+s}^\pm, \\
x_{i,r+1}^\pm x_{j,s}^\pm - q_i^{a_{ij} - a_{ji}} x_{j,s}^\pm x_{i,r+1}^\pm = q_i^{a_{ij} - a_{ji}} x_{i,r}^\pm x_{j,s+1}^\pm - x_{j,s+1}^\pm x_{i,r}^\pm, \\
x_{i,r+s}^\pm = \delta_{ij} \psi_{i,r+s}^+ - \psi_{i,r+s}^-, \quad \psi_{i,r+s}^+ = \psi_{i,r}^+ \psi_{r+s}^-, \quad \psi_{i,r+s}^- = \psi_{i,r}^- \psi_{r+s}^+.
\]

for all sequences of integers r_1, \ldots, r_m, where $m = 1 - a_{ij}$, Σ_m is the symmetric group on m letters, and the $\psi_{i,r}^\pm$ are determined by equating powers of u in the formal power series
\[
\sum_{r=0}^{\infty} \frac{u^{r+s}}{r!} \psi_{i,r}^\pm u^{s} = K_i^{\pm 1} \exp \left(\pm (q_i - q_i^{-1}) \sum_{s=1}^{\infty} h_{i,s} u^{s} \right).
\]

For $i \in I$, the preceding isomorphism maps E_{α_i} to $x_{i,0}^+$ and F_{α_i} to $x_{i,0}^-$. The subalgebra generated by E_{α_i}, F_{α_i}, $K_i^{\pm 1}$ ($i \in I$) is the quantized enveloping algebra U_{q}^{fin} associated to g. Let $U_q(<)$ be the subalgebra generated by the elements $x_{i,k}$ ($i \in I, k \in \mathbb{Z}$). For $i \in I$, let U_i be the subalgebra of U_q generated by the elements $\{x_{i,k}^\pm : k \in \mathbb{Z}\}$, the subalgebra U_i^{fin} is defined in the same way. Notice that U_i is isomorphic to the quantum affine algebra $U_{q_i}^{sl_2}$. Let Δ_i be the comultiplication of $U_{q_i}^{sl_2}$.

An explicit formula for the comultiplication on the Drinfeld generators is not known. Also, the subalgebra U_i is not a Hopf subalgebra of U_q. However, partial information which is sufficient for our needs is given in the next proposition. Let
\[
X^\pm = \sum_{i \in I, k \in \mathbb{Z}} C(q) x_{i,k}^\pm, \quad X^\pm (i) = \sum_{j \in I \setminus \{i\}, k \in \mathbb{Z}} C(q) x_{j,k}^\pm.
\]

Proposition 1.2. The restriction of Δ to U_i satisfies,
\[
\Delta(x) = \Delta_i(x) \mod (U_q \otimes (U_q \setminus U_i)).
\]

More precisely:
Clearly any highest weight module has a unique irreducible quotient \(V \neq 0 \).

Definition 1.1. We say that a \(U_q \)-module \(V \) is (pseudo) highest weight, with highest weight \((\lambda, h^\pm)\), where \(\lambda = \sum_{i \in I} \lambda_i \omega_i, \ h^\pm = (h^+_i(u), \cdots, h^+_n(u)) \in A^0 \), if there exists \(0 \neq v \in V_\lambda \) such that \(V = U_q v \) and

\[
x^+_{i,k} v = 0, \quad K_i v = q^{\lambda_i} v, \quad h^+_i(u) v = h^+_i(u) v,
\]
for all \(i \in I, k \in \mathbb{Z} \).

If \(V \) is any highest weight module, then in fact \(V = U_q(\cdot) v \) and so

\[
V_\mu \neq 0 \implies \mu = \lambda - \eta \ (\eta \in Q^+).
\]

Clearly any highest weight module has a unique irreducible quotient \(V(\lambda, h^\pm) \).

The following was proved in \cite{CP2}.

(i) **Modulo** \(U_q X^- \otimes U_q (X^+)^2 + U_q X^- \otimes U_q X^+(i) \), we have

\[
\Delta(x^+_{i,k}) = x^+_{i,k} \otimes 1 + K_i \otimes x^+_{i,k} + \sum_{j=1}^{k} \psi^+_{i,j} \otimes x^+_{i,k-j} \quad (k \geq 0),
\]

\[
\Delta(x^-_{i,k}) = K^{-1}_i \otimes x^+_{i,-k} + x^+_{i,-k} \otimes K^{-1}_i + \sum_{j=1}^{k} \psi^-_{i,-j} \otimes x^+_{i,-k+j} \quad (k > 0),
\]

(ii) **Modulo** \(U_q (X^-)^2 \otimes U_q X^+ + U_q X^- \otimes U_q X^+(i) \), we have

\[
\Delta(x^-_{i,k}) = x^-_{i,k} \otimes K_i + 1 \otimes x^-_{i,k} + \sum_{j=1}^{k-1} x^-_{i,-j} \otimes \psi^+_{i,j} \quad (k > 0),
\]

\[
\Delta(x^-_{i,-k}) = x^-_{i,-k} \otimes K^{-1}_i + 1 \otimes x^-_{i,-k} + \sum_{j=1}^{k} x^-_{i,-k+j} \otimes \psi^-_{i,j} \quad (k \geq 0).
\]

(iii) **Modulo** \(U_q X^- \otimes U_q X^+ \), we have

\[
\Delta(h_{i,k}) = h_{i,k} \otimes 1 + 1 \otimes h_{i,k} \quad (k \in \mathbb{Z}).
\]

Proof. Part (iii) was proved in \cite{Da}. The rest of the proposition was proved in \cite{CP2}.

We conclude this section with some results on the classification of irreducible finite-dimensional representations of quantum affine algebras. Let

\[
\mathcal{A} = \{ f \in \mathbb{C}(q)[[u]] : f(0) = 0 \}.
\]

For any \(U_q \)-module \(V \) and any \(\mu = \sum_{i} \mu_i \omega_i \in P \), set

\[
V_\mu = \{ v \in V : K_i v = q^{\mu_i} v, \ \forall i \in I \}.
\]

We say that \(V \) is a module of type 1 if

\[
V = \bigoplus_{\mu \in P} V_\mu.
\]

From now on, we shall only be working with \(U_q \)-modules of type 1. For \(i \in I \), set

\[
h^\pm_i(u) = \sum_{k=1}^{\infty} \frac{h^\pm_{i,k}}{k} u^k.
\]
Theorem 1. Assume that the pair \((\lambda, h^\pm) \in P \times A^0\) satisfies the following: \(\lambda = \sum_{i \in I} \lambda_i \omega_i \in P^+\), and there exist elements \(a_{i,r} \in \mathbb{C}(q)\) \((1 \leq r \leq \lambda_i, i \in I)\) such that

\[
h^\pm_i(u) = -\sum_{r=1}^{\lambda_i} \ln(1 - a^{\pm 1}_{i,r} u).
\]

Then, \(V(\lambda, h^\pm)\) is the unique (up to isomorphism) irreducible finite-dimensional \(U_q\)-module with highest weight \((\lambda, h^\pm)\).

Remark. This statement is actually a reformulation of the statement in \([\text{CP2}]\). Setting \(\pi(u) = \prod_{i=1}^{\lambda} (1 - a_{i,r} u)\) and calculating the eigenvalues of the \(\psi_{i,k}\) gives the result stated in \([\text{CP2}]\). See also \([\text{CP4}]\).

From now on, we shall only be concerned with the modules \(V(\lambda, h^\pm)\) satisfying the conditions of Theorem \([\text{CP2}]\). In view of the preceding remark, it is clear that the isomorphism classes of such modules are indexed by an \(n\)-tuple of polynomials \(\pi = (\pi_1, \cdots, \pi_n)\), which have constant term 1, and which are split over \(\mathbb{C}(q)\). We shall denote the corresponding module by \(V(\pi)\) and the highest weight vector by \(v_{\pi}\), where \(\lambda = \sum_{i=1}^{\lambda} \deg \pi_i\). For all \(i \in I, k \in \mathbb{Z}\), we have

\[
x^+_{i,k} v_{\pi} = 0, \quad K_i v_{\pi} = q_i^{\deg \pi_i} v_{\pi},
\]

and

\[
\frac{h^\pm_i}{[k]_i} v_{\pi} = h^\pm_i v_{\pi}, \quad (x^-_{i,k})^{\deg \pi_i + 1} v_{\pi} = 0,
\]

where the \(h^\pm_i\) are determined from the functional equation

\[
\exp \left(-\sum_{k \geq 0} h^\pm_i u^k \right) = \pi^\pm_i(u),
\]

with \(\pi^+_i(u) = \pi(u)\) and \(\pi^-_i(u) = u^{\deg \pi_i} \pi_i(u^{-1})/ (u^{\deg \pi_i} \pi_i(u^{-1}))|_{u=0}\).

For any \(U_q\)-module \(V\), let \(V^\ast\) denote its left dual. Let \(- : I \rightarrow I\) be the unique diagram automorphism such that the irreducible \(g\) module \(V(\omega_i) \cong V(\omega_{-i})\). There exists an integer \(c \in \mathbb{Z}\) depending only on \(g\) such that

\[
V(\pi)^\ast \cong V(\pi^\ast), \quad \pi^\ast = (\pi(q^c u), \cdots, \pi(q^c u)).
\]

Analogous statements hold for right duals \([\text{CP3}]\). Recall also, that if a module and its dual are highest weight then they must be irreducible.

Finally, let \(\omega : U_q \rightarrow U_q\) be the algebra automorphism and coalgebra anti-automorphism obtained by extending the assignment \(\omega(x^+_i) = -x^-_{i,-k}\). If \(V\) is any \(U_q\)-module, let \(V^\omega\) be the pull–back of \(V\) through \(\omega\). Then, \((V \otimes V')^\omega \cong (V')^\omega \otimes V^\omega\) and

\[
V(\pi)^\omega = V(\pi^\omega)
\]

where

\[
\pi^\omega = (\pi^-_1(q^c u), \cdots, \pi^-_1(q^c u)),
\]

for a fixed integer \(\kappa\) depending only on \(g\).

We conclude this section with some results in the case when \(g = sl_2\).

Theorem 2.
(i) For $a \in \mathbb{C}(q)$, $m \in \mathbb{Z}^+$, set
\[\pi_{m,a}(u) = \prod_{r=1}^{m}(1 - aq^{m-2r+1}u). \]

The irreducible module $V(m,a)$ with highest weight $\pi_{m,a}$ is of dimension m and is irreducible as a $U_q^{\ell m}$-module.

(ii) For $1 \leq r \leq \ell$, let $a_r \in \mathbb{C}(q)$ and $m_r \in \mathbb{Z}_+$ be such that
\[r < s \implies \frac{a_r}{a_s} \neq q^{m_r - m_s - 2p} \quad (1 \leq p \leq m_r). \]

The tensor product $V(\pi_{m_1,a_1}) \otimes \cdots \otimes V(\pi_{m_\ell,a_\ell})$ is a highest weight module with highest weight $\pi_{m_1,a_1} \cdots \pi_{m_\ell,a_\ell}$ and highest weight vector $v_{\pi_{m_1,a_1} \cdots \pi_{m_\ell,a_\ell}}$.

(iii) Assume that $a_1, \cdots, a_\ell \in \mathbb{C}(q)$ are such that if $r < s$ then $a_r/a_s \neq q^{-2}$. The module $W(\pi) = V(1,a_1) \otimes \cdots \otimes V(1,a_\ell)$ is the universal finite–dimensional highest weight module with highest weight
\[\pi(u) = \prod_{r=1}^{\ell}(1 - a_r u), \]

i.e. any other finite–dimensional highest weight module with highest weight π is a quotient of $W(\pi)$.

(iv) Assume that $\pi = \prod_{j=1}^{m}(1 - b_j u)$ ($b_j \in \mathbb{C}(q)$) and that $V(m_1,a_1) \otimes \cdots \otimes V(m_\ell,a_\ell)$ is highest weight. Then, the module $W(\pi) \otimes V(m_1,a_1) \otimes \cdots \otimes V(m_\ell,a_\ell)$ is also highest weight if
\[b_s/a_r \neq q^{1-s}, \]

for all $1 \leq s \leq m$ and $1 \leq r \leq k$.

Proof. Part (i) is proved in [CP1]. Part (ii) is proved as in Lemma 4.9 in [CP1]. In fact, the proof given there establishes the stronger result stated here. Part (iii) was proved in [CP4] in the case when $\pi(u) \in \mathbb{C}[q, q^{-1}, u]$. In the general case, choose $v \in \mathbb{C}[q, q^{-1}]$ so that $\tilde{\pi}(u) = \pi(uv)$ has all its roots in $\mathbb{C}[q, q^{-1}]$. Let $\tau_v : U_q \to U_q$ be the algebra and coalgebra automorphism defined by sending $x_k^\pm \to v^k x_k^\pm$. The pull back of $V(\pi)$ through τ_v is $V(\tilde{\pi})$ and hence $W(\pi(u)) \cong W(\pi(uv))$. This proves (iii). Part (iv) is now immediate.

Throughout this paper, we shall only work with polynomials in $\mathbb{C}(q)[u]$ which are split and have constant term 1. Let $\pi_{m,a} \in \mathbb{C}(q)$ be the polynomial defined in Theorem 3(i). It is a simple combinatorial fact [CP1] that any such polynomial can be written uniquely as a product
\[\pi(u) = \prod_{j=1}^{s} \pi_{m_j,a_j}, \]

where $m_j \in \mathbb{Z}_+$, $a_j \in \mathbb{C}(q)$ and
\[j < \ell \implies \frac{a_j}{a_\ell} \neq q^{\pm(m_j + m_\ell - 2p)}, \quad 0 \leq p < \min(m_j, m_\ell). \]
If \(\pi \) and \(\pi' \) are two such polynomials, then we say that \(\pi > \pi' \) if for all \(1 \leq j \leq s, 1 \leq k \leq s' \), we have
\[
\frac{a_j}{a_k} \neq q^{m_j-m_k'-2p}, \quad 1 \leq p \leq m_j.
\]
This is equivalent to saying that if \(a \) is any root of \(\pi \) and \(1 \leq k' \leq s' \), then
\[
\frac{a}{a_k'} \neq q^{-1-m_k'}.
\]
Part (iv) of Theorem 2 then says that if \(\pi > \pi' \) the module \(W(\pi) \otimes V(\pi') \) is highest weight.

2. Braid group action

Let \(W \) be the Weyl group of \(g \) and let \(B \) be the corresponding braid group. Thus, \(B \) is the group generated by elements \(T_i \ (i \in I) \) with defining relations:
\[
T_iT_j = T_jT_i, \quad \text{if } a_{ij} = 0,
\]
\[
T_iT_jT_i = T_jT_iT_j, \quad \text{if } a_{ij}a_{ji} = 1,
\]
\[
(T_iT_j)^2 = (T_jT_i)^2, \quad \text{if } a_{ij}a_{ji} = 2,
\]
\[
(T_iT_j)^3 = (T_jT_i)^3, \quad \text{if } a_{ij}a_{ji} = 3,
\]
where \(i, j \in \{1, 2, \ldots, n\} \) and \(A = (a_{ij}) \) is the Cartan matrix of \(g \).

A straightforward calculation gives the following proposition.

Proposition 2.1. For all \(r \geq 1 \), the formulas
\[
T_i e_j = e_j - q_i^{[ra_{ji}]} e_i
\]
define a representation \(\eta_r : B \to \text{end}(V_r) \), where \(V_r \cong \mathbb{C}(q)^n \) and \(\{e_1, \ldots, e_n\} \) is the standard basis of \(V_r \). Further, identifying
\[
\mathcal{A}^n \cong \prod_{r=1}^{\infty} V_r,
\]
we get a representation of \(B \) on \(\mathcal{A}^n \) given by
\[
(T_i h)_j = h_j(u), \quad \text{if } a_{ji} = 0,
\]
\[
(T_i h)_j = h_j(u) + h_i(q^2u), \quad \text{if } a_{ji} = -1,
\]
\[
(T_i h)_j = h_j(u) + h_i(q^3u) + h_i(qu), \quad \text{if } a_{ji} = -2,
\]
\[
(T_i h)_j = h_j(u) + h_i(q^5u) + h_i(q^3u) + h_i(qu), \quad \text{if } a_{ji} = -3,
\]
\[
(T_i h)_i = -h_i(q_i^2u),
\]
for all \(i, j \in I, h \in \mathcal{A}^n \). \(\square \)

Let \(s_i, i \in I \) be a set of simple reflections in \(W \). For any \(w \in W \), let \(\ell(w) \) be the length of a reduced expression for \(w \). If \(w = s_{i_1}s_{i_2} \cdots s_{i_k} \) is a reduced expression for \(w \), let \(T_w = T_{i_1} \cdots T_{i_k} \). It is well–known that \(T_w \) is independent of the choice of the reduced expression. Given \(h \in \mathcal{A}^n \) and \(w \in W \), we have
\[
T_w h = T_{i_1}T_{i_2} \cdots T_{i_k} h = ((T_w h)_1, \ldots, (T_w h)_n).
\]
We can now prove:
Proposition 2.2. Suppose that \(w \in W \) and \(i \in I \) is such that \(\ell(s_i w) = \ell(w) + 1 \). There exists an integer \(N = N(i, w, h) \geq 0 \) and non-negative integers \(p_{r,j} \) (\(j \in I, 1 \leq r \leq N \)) such that

\[
(T_w h)_i = \sum_{j \in I} \sum_{r=1}^{N} p_{r,j} h_j(q^r u),
\]

Proof. Proceed by induction on \(\ell(w) \): the induction clearly starts at \(\ell(w) = 0 \). Assume that the result is true for \(\ell(w) < k \). If \(\ell(w) = k \), write \(w = s_j w' \) with \(\ell(w') = k - 1 \). Notice that \(j \neq i \) since \(\ell(s_i w) = \ell(w) + 1 \). We get

\[
(T_w h)_i = (T_j T_{w'} h)_i = (T_{w'} h)_i(u) + \sum_{s=0}^{[a_{ij}] - 1} (T_{w'} h)_j(q^{2[a_{ij]} - 2s - 1} u).
\]

If \(\ell(s_j w') = \ell(w') + 1 \), the result follows by induction. If \(\ell(s_j w') = \ell(w') - 1 \), we have \(w = s_j s_i w'' \). Suppose that \(a_{ij} a_{ji} = -1 \). Then, \(\ell(s_j w'') = \ell(w'') + 1 \) and we get

\[
(T_j T_{w''} h)_i = (T_j T_{w''} h)_i + (T_s T_{w''} h)_j(q u) = (T_{w''} h)_j(q u).
\]

The result again follows by induction. The cases when \(a_{ij} a_{ji} = 2, 3 \) are proved similarly. We omit the details. \(\square \)

3. THE MAIN THEOREM

Our goal in this section is to obtain a sufficient condition for a tensor product of two highest weight representations to be highest weight.

Let \(V \) be any highest weight finite-dimensional \(U_q \)–module with highest weight \(\pi \) (or \((\lambda, h^\pm) \) as in Theorem [1]). For all \(w \in W \), we have

\[
\dim V_{w, \lambda} = 1.
\]

If \(s_i, \ldots, s_k \) is a reduced expression for \(w \), and \(\lambda = \sum \lambda_i \omega_i \), set \(m_k = \lambda_k \) and define non–negative integers \(m_j \) (depending on \(w \)), for \(1 \leq j \leq k \), by

\[
s_{i,j+1} s_{i,j+2} \cdots s_{i,k} \lambda = m_j \omega_j + \sum_{r \neq j} m_r' \omega_r.
\]

Let \(v_\lambda \) be the highest weight vector in \(V \). For \(w \in W \), set

\[
v_{w, \lambda} = (x_{i_1,0}^-)^{m_1} \cdots (x_{i_k,0}^-)^{m_k} v_\lambda.
\]

If \(i \in I \) is such that \(\ell(s_i w) = \ell(w) + 1 \), then

\[
x_{i,k}^+ v_{w, \lambda} = 0, \quad \forall k \in \mathbb{Z}.
\]

To see this, observe that \(w \lambda + \alpha_i \) is not a weight of \(V \), since \(w^{-1} \alpha_i \in R^+ \) if \(\ell(s_i w) = \ell(w) + 1 \). It is now easy to see that \(v_{w, \lambda} \neq 0 \), \(V_{w, \lambda} = C(q)v_{w, \lambda} \) and

\[
V = U_q v_{w, \lambda}.
\]

Since \(h_{i,k} V_{w, \lambda} \subset V_{w, \lambda} \) for all \(i, k \in \mathbb{Z} \) it follows that

\[
\frac{h_{i,k}}{|k|} v_{w, \lambda} = h_{i,k}^w v_{w, \lambda}, \quad \forall i \in I, \ 0 \neq k \in \mathbb{Z}.
\]
where $h_{i,k}^w \in \mathbb{C}(q)$. Set
\[
\hat{h}_i^w(u) = \sum_{k=1}^{\infty} h_{i,k}^w u^k, \quad h^w = (h_1^w(u), \ldots, h_n^w(u)).
\]
Recall that $h^1 = -(\ln \pi_1(u), \ldots, \ln \pi_n(u))$.

Proposition 3.1. If $w \in W$, then
\[
h^w = T_w h^1.
\]

Proof. We proceed by induction on $\ell(w)$. If $\ell(w) = 0$ then $w = id$ and the result follows by definition. Suppose that $\ell(w) = 1$, say $w = s_j$. Writing $\lambda = \sum_j \lambda_j \omega_j$, we have $v_{s_j \lambda} = (x_{j,0}^-)^{\lambda_j} v_{\lambda}$. We first show that
\[
h_{j,k}(u).v_{s_j \lambda} = -h_j(q^2_j u)v_{s_j \lambda} = (T_j h_j(u))v_{s_j \lambda}.
\]
The subspace spanned by the elements $\{(x_{j}^-)^r.v_{\lambda} : 0 \leq r \leq \lambda_j\}$ is a highest weight module for U, hence it is enough to prove (3.2) for highest weight representations of quantum affine sl_2. In fact it is enough to prove it for the module $W(\pi)$ of Theorem 2. Using Proposition 3.2, we see that the eigenvalue of $h_{i,k}$ on the tensor product of the lowest (and the highest) weight vectors is just the sum of the eigenvalues in each representation. This reduces us to the case of the two-dimensional representation, which is trivial.

Next consider the case $\ell(w) = s_i$, with $i \neq j$. Recall that
\[
[h_{i,r}, x_{j,0}^-] = -\frac{[r a_{ij}]}{r} x_{j,r}^-, \quad [h_{j,r}, x_{j,0}^-] = -\frac{[2r]}{r} x_{j,r}^-.
\]
Hence,
\[
h_{i,r}(x_{j,0}^-)^{\lambda_j} h_{i,r} + [h_{i,r}, (x_{j,0}^-)^{\lambda_j}]
\]
\[
= (x_{j,0}^-)^{\lambda_j} h_{i,r} + \frac{[r a_{ij}]}{[2r]} [h_{j,r}, (x_{j,0}^-)^{\lambda_j}].
\]
This gives
\[
\frac{h_{i,r}}{[r]_i}(x_{j,0}^-)^{\lambda_j} v_{\lambda} = h_{i,r}(x_{j,0}^-)^{\lambda_j} v_{\lambda} + \frac{[r a_{ij}]}{([q_j^+ + q_j^-][r]_i)} \frac{h_{j,r}}{[r]_j} (x_{i,0}^-)^{\lambda(h_{i,r})} v_{\lambda},
\]
\[
= h_{i,r}(x_{j,0}^-)^{\lambda_j} v_{\lambda} + \frac{[r a_{ij}]}{([q_j^+ + q_j^-][r]_i)} (-h_{j,r}(x_{j,0}^-)^{\lambda_j} v_{\lambda} + \frac{h_{j,r}}{[r]_j} (x_{j,0}^-)^{\lambda_j} v_{\lambda},
\]
\[
= h_{i,r}(x_{j,0}^-)^{\lambda_j} v_{\lambda} - \frac{[r a_{ij}]}{([q_j^+ + q_j^-][r]_i)} (h_{j,r} + q_j^2 h_{j,r}).(x_{j,0}^-)^{\lambda_j} v_{\lambda},
\]
\[
= (h_{i,r} - q_j^r [r a_{ij}]/[r]_i)(x_{j,0}^-)^{\lambda_j} v_{\lambda}.
\]
This proves the result when $\ell(w) = 1$. Proceeding by induction on $\ell(w)$, write $w = s_j w'$ with $\ell(w') = \ell(w) - 1$. Since $v_{w \lambda} = (x_{j,0}^-)^{m_j} v_{w' \lambda}$ for some $m_j \geq 0$, the inductive step is proved exactly as in the case $\ell(w) = 1$, with v_{λ} being replaced by $v_{w' \lambda}$. This completes the proof of the proposition. \[\square\]
Lemma 3.1. Let V, V' be finite-dimensional highest weight representations with highest weights π and π' and highest weight vectors v_λ and $v_{\lambda'}$ respectively. Assume that $v_{w_0 \lambda} \otimes v_{\lambda'} \in U_q(v_\lambda \otimes v_{\lambda'})$. Then, $V \otimes V'$ is highest weight with highest weight vector $v_{\lambda} \otimes v_{\lambda'}$ and highest weight $\pi \pi' = (\pi_1 \pi'_1, \cdots, \pi_n \pi'_n)$.

Proof. It is clear from Proposition 1.2 that the element $v_{\lambda} \otimes v_{\lambda'}$ is a highest weight vector with highest weight $\pi \pi'$. It suffices to prove that

$$V \otimes V' = U_q(v_{\lambda} \otimes v_{\lambda'}).$$

Since $x_{i,k}^- v_{w_0 \lambda} = 0$ for all $i \in I$ and $k \in \mathbb{Z}$, it follows from Proposition 1.2 that

$$\Delta(x_{i,k}^-)(v_{w_0 \lambda} \otimes v_{\lambda'}) = v_{w_0 \lambda} \otimes x_{i,k}^- v_{\lambda'}.$$

Repeating this argument we see that $v_{w_0 \lambda} \otimes V' \subset U_q(v_\lambda \otimes v_{\lambda'})$. Now applying the generators E_r, F_r ($i \in I$) repeatedly, we see that $V \otimes V' \subset U_q(v_\lambda \otimes v_{\lambda'})$. This proves the lemma.

Lemma 3.2. Let $w \in W$ and assume that $i \in I$ is such that $\ell(s_i w) = \ell(w) + 1$. Then, $v_{w \lambda} \otimes v_{\lambda'}$ generates a U_1-highest weight module with highest weight $(T_w h)_i, h'_i$.

Proof. This is immediate from Proposition 1.2 and Proposition 3.1.

We can now prove our main result. Given $\pi = (\pi_1, \cdots, \pi_n)$, and $w \in W$, set

$$T_w \pi = (\exp(- (T_w \ln \pi_1(u)))_1, \cdots, \exp(- (T_w \ln \pi_n(u)))_n).$$

Theorem 3. The module $V(\pi_1) \otimes \cdots \otimes V(\pi_r)$ is highest weight if for all $w \in W$ and $i \in I$ with $\ell(s_i w) = \ell(w) + 1$, we have

$$j < \ell \implies (T_w \pi)_j > (\pi)_j.$$

Proof. First observe that by Proposition 2.2, $(T_w \pi)_i$ is indeed a polynomial. If $g = sl_2$, then this is the statement of Theorem 2 (ii). For arbitrary g, proceed by induction on r. If $r = 1$ there is nothing to prove. Let $r > 1$ and let $V' = V(\pi_2) \otimes \cdots \otimes V(\pi_r)$. Then V' is highest weight module with highest weight vector $v' = v_{\pi_2} \otimes \cdots \otimes v_{\pi_r}$ and highest weight $\pi' = \pi_2 \cdots \pi_r$. Setting $\lambda = (\deg \pi_1, \cdots, \deg \pi_n)$, it is enough by Lemma 3.1 to prove that

$$v_{w \lambda} \otimes v' \in U_q(v_{\pi_1} \otimes v').$$

Writing $w_0 = s_{i_1} s_{i_2} \cdots s_{i_N}$ and using Lemma 3.2, it suffices to prove that for all $1 \leq j \leq N$,

$$v_{s_{i_1} s_{i_2} \cdots s_{i_N} \lambda} \otimes v' \in U_{i_j}(v_{s_{i_j+1} \cdots s_{i_N} \lambda} \otimes v').$$

or equivalently that the U_{i_j}-module $U_{i_j} v_{s_{i_1} s_{i_2} \cdots s_{i_N} \lambda} \otimes U_{i_j} v_{\lambda}$ is highest weight. Taking $w = id$, we have $(\pi_1)_{i_j} > (\pi_1)_{i_j}$ if $l < s$. It thus follows from Theorem 2 (ii) that

$$U_{i_j} v' = U_{i_j} v_{\pi_2} \otimes \cdots \otimes U_{i_j} v_{\pi_r}.$$

Since $(T_w \pi_1)_j > (\pi_1)_j$, the result follows from Theorem 2 (iv).
4. Relationship with Kashiwara's results and conjectures

Let us consider the special case when h has the following form,

\[h_j^x(u) = 0, \quad j \neq i, \quad h_i^x(u) = -\sum_{r=1}^{m} \ln(1 - aq_i^{m-2r+1}u), \]

and denote the corresponding n–tuple of power series by $h_{i,m,a}$ and the n–tuple of polynomials by $\pi_{i,m,a}$. We shall prove the following result.

Theorem 4. Let $i_1, i_2, \ldots, i_l \in I$, $a_1, \ldots, a_l \in C(q)$, $m_1, \ldots, m_l \in Z_+$, and assume that

\[r < s \quad \Rightarrow \quad \frac{\alpha_r}{\alpha_s} \neq q^{d_{i_1,m_1} - d_{i_2,m_2} - \cdots - d_{i_s,m_s} - p} \quad \forall \quad p \geq 0. \]

Then, the tensor product $V(\pi_{m_1,a_1}^{i_1}) \otimes \cdots \otimes V(\pi_{m_l,a_l}^{i_l})$ is a highest weight module.

Assume the theorem for the moment.

Remark. In the special case when $m_j = 1$ for all j, it was conjectured in $[\text{AK}]$ that such a tensor product is cyclic if d_{i_j}/a_l does not have a pole at $q = 0$ if $j < l$, and this was proved when g is of type A_n or C_n; subsequently, a geometric proof of this conjecture was given in $[\text{VV}]$ when g is simply–laced; a complete proof was given using crystal basis methods in $[\text{K}].$

The following corollary to Theorem 4 was conjectured in $[\text{K}], [\text{HKOTY}].$

Corollary 4.1. The tensor product $V = V(\pi_{m_1,a_1}^{i_1}) \otimes \cdots \otimes V(\pi_{m_l,a_l}^{i_l})$ is an irreducible U_q–module.

Proof. First observe that if $d_{i_1,m_1} \leq d_{i_2,m_2} \leq \cdots \leq d_{i_l,m_l}$ then the tensor product is cyclic by Theorem 4. We claim that it suffices to prove the corollary in the case when $\ell = 2$. For then, by rearranging the factors in the tensor product we can show that both V and its dual are highest weight and hence irreducible. To see that $V = V(\pi_{m_1,a_1}^{i_1}) \otimes V(\pi_{m_2,a_2}^{i_2})$ is cyclic if $d_{i_1,m_1} > d_{i_2,m_2}$, it is enough to show that V^ω is cyclic, since ω is an algebra automorphism. Now, $V^\omega = V(\pi_{m_2,a_2}^{i_2}) \otimes V(\pi_{m_1,a_1}^{i_1})$ for some fixed v depending only on g, and this is cyclic by the theorem. This proves the result.

\[\square \]

It remains to prove the theorem, for which we must show that, if $j < l$ and $\ell(s_i u) = \ell(u) + 1$, then

\[(T_{w_i} \pi_{m_1,a_1}^{i_j})_i \geq (\pi_{m_1,a_1}^{i_j})_i. \]

Using Proposition 2.2, we see that

\[(T_{w_i} \pi_{m_1,a_1}^{i_j})_i = \prod_{r \geq 0} \pi_{m_1,i}^{r} (q^r u), \]

where r varies over a finite subsubset of Z_+ with multiplicity. This means that any root of $(T_{w_i} \pi_{a_1,a_1})_i$ has the form $q^{d_{i_j}(m_j - 2p + 1) + r} a_j$ where $r \geq 0$ and $1 \leq p \leq m_j$, and hence, using the assumption on a_j/a_l, that

\[\frac{q^{d_{i_j}(m_j - 2p + 1) + r} a_j}{a_l} \neq q^{1-m_l}. \]

This proves (4.1) and the proof of the theorem is complete.
REFERENCES

[AK] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, *Publ. Res. Inst. Math. Sci.* **33** (1997), no. 5, 839-867.

[B] J. Beck, Braided group action and quantum affine algebras, *Commun. Math. Phys.* **165** (1994), 555-568.

[BCP] J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis, *Duke Math. J.* **99** (1999), no. 3, 455-487.

[Bo] N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5,6, Hermann, Paris (1968).

[CP1] V. Chari and A. Pressley, Quantum affine algebras, *Commun. Math. Phys.* **142** (1991), 261-283.

[CP2] V. Chari and A. Pressley, Quantum affine algebras and their representations, in Representations of Groups, (Banff, AB, 1994), 59-78, *CMS Conf. Proc.* **16**, AMS, Providence, RI, 1995.

[CP3] V. Chari and A. Pressley, Minimal affinizations of representations of quantum groups: the simply-laced case, *J. Alg.* **184** (1996), no. 1, 1-30.

[CP4] V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, preprint [math.qa/0004174].

[Da] I. Damiani, *La R-matrice pour les algèbres quantiques de type affine non tordu*, preprint.

[Dr] V.G. Drinfeld, A new realization of Yangians and quantum affine algebras. *Soviet Math. Dokl.* **36** (1988), 212-216.

[HKOTY] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on the fermionic formula, *Contemp. Math* **248** (1999).

[J] N. Jing, On Drinfeld realization of quantum affine algebras. The Monster and Lie algebras (Columbus, OH, 1996), pp. 195-206, *Ohio State Univ. Math. Res. Inst. Publ.* **7**, de Gruyter, Berlin, 1998.

[K] M. Kashiwara, On level zero representations of quantized affine algebras, [math.qa/0010293].

[VV] M. Varagnolo and E. Vasserot, Standard modules for quantum affine algebras, preprint.

VYJAYANTHI CHARI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CA 92521.