Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion

Juliana Mikaelly Dias Soares, Ana Ediléia Barbosa Pereira Leal, Juliane Cabral Silva¹, Jackson R. G. S. Almeida, Helinando Pequeno de Oliveira

Federal University of Sao Francisco Valley, PE, ¹Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil

Submitted: 07-03-2017 Revised: 31-07-2017 Published: 13-11-2017

ABSTRACT

Background: The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogues. Objective: To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. Methods: The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, ScIELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Results: Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and ScIELO databases. Conclusion: According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. Key words: Diabetes, flavones, flavonoids, insulin, insulin-secreting cells, islets of Langerhans

SUMMARY

- The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes control
- In addition to their typical antioxidant properties, flavonoids contribute to the insulin secretion
- The modulation of insulin secretion is induced by flavonoids according to different mechanisms.

INTRODUCTION

Insulin is produced in β-cells being considered as a key metabolic hormone[1] and essential for maintaining glucose homeostasis. Insulin circulates in the blood and acts at skeletal myocytes and adipocytes to facilitate glucose uptake through membrane insertion of the insulin-sensitive glucose transporter 4 (GLUT4), stimulating fuel storage in liver, fat, and skeletal muscle.[2] Insulin secretion is extremely sensitive to changes in blood glucose.[3] The stimulus for insulin secretion by glucose takes place with increase in the intracellular ATP levels. In the intracellular medium, the increase of ATP levels leads to closure of ATP-sensitive K⁺ channels (K⁺ATP) resulting in the membrane depolarization capable of opening the voltage-dependent Ca²⁺ channels, which promote influx of extracellular Ca²⁺, inducing insulin secretion.[3–5]
The glucose is the most potent stimulator of insulin secretion and can achieve acute and long-term regulation of insulin secretion.[30] However, other nutrients also are capable of triggering insulin release or amplify glucose-stimulated insulin secretions (GSISs)[30] such as hormones,[10] proteins,[11,12] and pharmacological agents.[13]

In recent years, different therapeutic strategies to increasing or improving insulin secretion in vivo or in vitro by the use of natural products have been explored. Scheen reported that new insulin secretagogues should offer advantages over sulfonylureas in the near feature. Most of the plants contain substances that have antidiabetic effect and insulin secretagogue as plant extracts, functional foods,[15-18] and some isolated as triterpenes and derivatives,[19,20] phytosterols,[21,22] stilbene,[23] and iridoid glycoside[24] have shown activity which stimulates or potentiates insulin secretion in pancreatic islets.

Flavonoids represent a class of phenolic compounds (benzopyran heterocycle linked to a benzene ring) divided into subclasses based on the degree of oxidation of the C4 position, hydroxylation pattern, and substitution of the C3 position.[22] The basic flavonoid skeleton offers numerous substituents that can subdivide into major subclasses as flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones and into smaller subclasses as dihydroflavonols, flavan-3,4-diols, coumarins, chalcones, dihydrochalcones, and aurones.[24]

Studies indicate several benefits of flavonoids due to their antioxidant properties.[27-29] Furthermore, the plant extracts and/or its fractions containing flavonoids can act on insulin secretagogue.[30] Thus, in this review, we focus on findings related to the insulin secretion due to the flavonoids action, highlighting the mechanism of modulation of insulin secretion.

METHODS

Search strategy and databases

The internet bibliographic search on flavonoids and their insulin secretion mechanisms was conducted in 2016. The following databases and platforms were consulted: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect on April 8, 2016. The MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Different combinations of these keywords were used. This systematic review was conducted in accordance with the guidelines of Transparent Reporting of Systematic Reviews and Meta-analyses (PRISMA statement).[31]

Selection of papers

Complete articles were included in the review by observing the following inclusion criteria: studies that show the mechanism of insulin secretion of isolated flavonoids. Studies were excluded according to the following exclusion criteria: studies which reported the insulin secretion mechanism of the extracts or fractions containing flavonoids or their metabolites and/or derivatives, studies that no explain the mechanism of insulin secretion, and those articles related to review articles, meta-analysis, abstracts, conference proceedings, editorials/letters, and others.

Discrepancies on the study inclusion/exclusion were decided with the reach of a consensus. All electronic search titles, selected abstracts, and full-text articles were reviewed by a minimum of two reviewers.

Data extraction

Data were extracted employing standardized forms. Extracted information included data regarding type of flavonoid, doses, concentration or quantity utilized, animal used, parameters assessed, and results and mechanisms of action of insulin secretion.

RESULTS

Corresponding literature was in the order of 820 productions/scientific papers, including original articles, reviews, and book chapters. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases.

Reviews, book chapters, and posters were excluded, and it was performed after a screening for relevant titles and full papers and also removed all repeated. Twelve articles met the inclusion and exclusion criteria established. All of the checked steps and article description are described in the following flow chart [Figure 1].

From these documents, it was observed the increasing interest in the application of flavonoids to treatment of diabetes. The development of new medications from natural compounds offers potential for the management of diabetes through therapies with products of natural sources solely or by association with synthetic drugs, which can avoid the side effects of antidiabetic drugs, such as insulin and oral hypoglycemic agents.[32,33]

In general, flavonoids or its fractions have shown that their hypoglycemic activities are due to the inhibition of glucose transport, upregulatory
activities of glucose uptake, improved GSIS, and/or restoration of insulin secretion capacity besides that, it plays a protective role on osmotic fragility of cells, resembling the insulin. Table 1 summarizes the insulin secretion mechanism described by the papers included in this study.

Table 1: Insulin secretion mechanism of flavonoids

Authors, year, country	Flavonoids	Doses, concentration, or quantity	In vitro or in vivo model	Mechanisms
Hii and Howell, 1985, England	Epicatechin and quercetin, Genistein	0.01 and 0.8 mmol/L, 0.01 mmol and 0.1 mmol/L, 1, 5, 10, 20, 50 µg/mL	Islets from male Wistar rats, MIN6 cells	Epicatechin and quercetin act by alterations in Ca²⁺ fluxes
Ohno et al., 1993, Japan	Genistein	0.01, 0.1, 1, 5, 10 and 100 µM	INS-1, mouse MIN6 cells and isolated mouse islets	Genistein acts through calcium influx extracellular and elevation the concentration of cAMP
Liu et al., 2006, USA	Genistein	1 µM, 5 µM, 25 µM, 50 µM, 100 µM, 200 µM	INS-1 rat insulinoma cells and Sprague-Dawley (SD) islet cells	Genistein stimulates intracellular cAMP accumulation and activates PKA via PTK independent and estrogen receptor independent
Lee et al., 2009, Korea	Genistein	1 µM, 5 µM, 25 µM, 50 µM, 100 µM, 200 µM	INS-1E cells, mouse islets were isolated from male C57BL/6J mice and human islets	Genistein acts by stimulation of ATP-generating nutrients mainly leucine/glutamine and its effect potential effect on insulin secretion resulted from the activation of CaMK II. Besides, PKA and PKC activation was not involved in potentiation effect
Fu and Liu, 2009, USA	Genistein	1, 5, 10 µM	INS-1E cells, mouse islets were isolated from male C57BL/6J mice and human islets	Genistein enhances GSIS in long-term activity and on cAMP/PKA-mediated one with elevation in the intracellular Ca²⁺ concentration and new protein synthesis. Moreover, the effect of genistein on insulin secretion is not due to a modulation of insulin synthesis or an adverse effect on the cells, not mediated through modification in glucose metabolism or K_{ATP} channel activity and PTK independent.
Youl et al., 2010, France	Quercetin	0.2, 2, 20, 200 µmol/L	INS-1 cells and rat pancreatic islets	Quercetin might act through an increase in basal (Ca²⁺) and subsequent ERK1/2 activation
Zhang and Liu, 2011, China	Kaempferol	0.01, 0.1, 1 and 10 µM	INS-1E beta-cells or human islets	Kaempferol might improve ATP generation in beta-cells and provide increase in the transcriptional activation of insulin mediated by CAMP signaling
Bardy et al., 2013, France	Quercetin	2 to 20 mmol/L	INS-1 cells and rat isolated pancreatic islets	Quercetin promotes the entry of extracellular Ca²⁺ rather than to the mobilization of intracellular Ca²⁺ from the endoplasmic reticulum activating of L-type Ca²⁺ channels
Kappel et al., 2013, Brazil	Rutin	50 mg/kg (0.04 M)	Male Wistar rats and islets isolated	Rutin increase the insulin secretion by modulates Ca²⁺ uptake in pancreatic islets by opening L-VDCC, PLC, and PKC signaling pathways, characterizing K_{ATP} channel-independent pathways
Chen et al., 2014	Silibinin	30 µM	Rat insulinoma INS-1 cells	Silibinin may upregulate expression of Insig-1, IRS-2, PDX-1 and insulin mRNA and downregulate SREBP-1c transcription and thus increase insulin secretion
Hu et al., 2014, China	2′,4′-Dihydroxy-6′-methoxy-3′,5′-dime thylchalcone (DMC)	2 and 20 µM	RIN-5F cells derived from rat pancreatic β-cells	DMC may mimic GLP-1 to enhance the expression of GLP-1R mediating PDX-1 translocation and to promote the expression of GLUT2 and GCK
Balamurugan et al., 2015, India	2R, 3R taxifolin 3-O-rhamnoside	50 µg/kg	Male Wistar rats	2R, 3R taxifolin 3-O-rhamnoside acts through closure of K_{ATP} channels and the opening of cell-surface Ca²⁺ channels signaling pathway

CAMP: Cyclic adenosine monophosphate; K_{ATP}: ATP-sensitive K⁺ channels; GCK: GLUT2 and glucokinase; GLUT2: Glucose transporter 2; PDX-1: Pancreatic and duodenal homeobox 1; GLP-1: Glucagon-like peptide-1; GLP-1R: Glucagon-like peptide 1 receptor; SREBP-1c: Sterol regulatory element binding protein-1c; IRS-2: Insulin receptor substrate 2; L-VDCCs: L-type voltage-dependent Ca²⁺ channels; PLC: Phospholipase C; PKC: Protein kinase C; ERK1/2: Extracellular signal-regulated protein kinases 1 and 2; GSIS: Glucose-stimulated insulin secretion; ATP: Adenosine triphosphate

DISCUSSION

All of the types of flavonoids have an important antioxidant activity, which explain some of its beneficial effects. They can exhibit antiviral, anti-inflammatory, antihyperglycemic, and antihypertensive effects.
anti-inflammatory,[60–63] anticancer,[54–56] and hypoglycemic activity,[57–62] among others.[63,64] Thus, to better comment on the major classes of flavonoids and corresponding characteristics, we discuss the insulin secretion mechanism by subgroups of flavonoids.

Flavonol

The flavonols comprise one of the major groups of flavonoids. Usually, flavonols are found in woody angiosperms.[65] The main flavonols are most commonly found as O-glycosides.[66] Different disposition of phenolic OH groups on 3 hydroxyflavone molecule can be explored for production of new compounds.

Quercetin is the most abundant of the flavonol. It is found in a variety of food and medicinal botanicals.[66,67] Reports studied that quercetin can improve glucose uptake in peripheral insulin,[68] providing reduction in the blood glucose level of diabetic rats to normal values, which is attributed to its ability to regenerate pancreatic β-cells and to increase insulin release.[69] Furthermore, quercetin may be considered as a partially useful supplement for the treatment of diabetic depression.[70] However, the oral bioavailability of quercetin is poor which hinders wide applications,[71] which are directed to the determination of improved bioavailability from the incorporation in nanomaterials.[72,73]

Kaempferol is a flavonol present in a variety of plants and fruits showing several antioxidant effects. Kaempferol may act as α-glucosidase inhibitor,[74] improving the insulin resistance[75] and glucose homeostasis.[76] Concerning rutin, it is chemically a flavonol glycoside compound of quercetin and disaccharide rutinose that present multiple pharmacological activities.[77] Rutin showed antioxidant activity.[78,79]

In terms of insulin secretion mechanisms (described in the literature), until now, there are five studies describing such modulation mechanisms of insulin secretion by flavonol. Reports that used the flavonol quercetin involve the modulation of Ca\(^{2+}\), either through influx or increase basal or by intracellular mobilization from the endoplasmic reticulum activating of L-type Ca\(^{2+}\) channels.[40,42,43] The rutin has a similar activity in comparison with calcium uptake in pancreatic islets through L-type voltage-dependent Ca\(^{2+}\) channels (L-VDCCs).[41] Kaempferol might improve ATP generation in β-cells and provide an increase in the transcriptional activation of insulin mediated by cysgenic adenosine monophosphate (cAMP) signaling.[41] These processes are integrated by Ca\(^{2+}\) signals in the insulin granule exocytosis.[82]

The increased level of Ca\(^{2+}\) stimulates processes to trigger many different cellular pathways[43] and into β-cells since calcium is crucial to insulin secretion. Thus, the flavonols may directly or indirectly act on the calcium modulation and thus can be an alternative to available hypoglycemic drugs. However, more studies are necessary to validate the bioavailability and adverse effects of these flavonols.

Flavan-3-ol

Catechin is a phytoneutrient member of flavon family such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate, and epigallocatechin-3-gallate.[84] Studies indicate that flavan-3-ol can exert both inhibitory activities[86] as stimulus for insulin secretion.[87] EC is found in large amounts in grape pomace[88] and has been considered a strong antioxidant. Typical mechanism of insulin secretion was described in 1985 by Hii and Howell, who showed that EC and quercetin (as above) may act by alterations in Ca\(^{2+}\) fluxes to enhance insulin secretion.[89] Indeed, the increase in intracellular calcium concentration promotes the insulin secretion.

Isoflavones

Isoflavone aglycones are two aromatic rings linked by a heterocyclic pyran ring. They are present mainly in plants of Leguminosae family and generally found in soybeans, red clover, and kudzu root in highest concentrations.[89] The main isoflavones in soybean are genistein and daidzein.

Genistein is a phytoestrogen characterized by a wide variety of health benefits,[90] considered a pluripotent and promising therapeutic agent to diabetes, with activity in inhibition of glucose uptake in mature adipocyte, enhancement in the GSIS, improvement in insulin resistance state, and reduction in the reactive oxygen species-induced β cell damage.[91] El-Kordya EA, Alshahrani AM recently reported that genistein has a protective effect on pancreatic β-cells damage, and in high dosage, it possesses the ability to regenerate β-cells and consequently improves serum levels and decreases high serum glucose in diabetic rats.[92] Furthermore, the study of Lee et al. showed that genistein derivatives stimulates glucose uptake and the mechanism can be established by adenosine monophosphate-activated protein kinase activation, GLUT4 and GLUT1 expressions, and protein tyrosine phosphatase 1B inhibition.[93]

Until now, a few studies described the corresponding mechanism, in which genistein is able to improve or increase insulin secretion. In 1993, Ohno et al. demonstrated that genistein increases insulin secretion in a dose-dependent manner up to 20 μg/mL and this should be through calcium influx extracellular and elevation the concentration of cAMP.[96] Liu et al. showed that genistein stimulates insulin secretion in a dose of 0.01–5 μM stimulating intracellular cAMP accumulation, which subsequently activates protein kinase A (PKA) via protein tyrosine kinase (PTK) independent and estrogen receptor independent.[97]

In 2009, Lee et al. reported that the concentration of 50 μM of genistein exhibit improved effect on insulin secretion stimulated by ATP-generating nutrients mainly leucine/glutamine activating of Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMK II) and PKA and PKC independent.[98] Fu and Liu showed that genistein at 5 μM has the maximal increase in the insulin secretion in long-term acting in the cAMP/PKA and the elevation of intracellular Ca\(^{2+}\) concentration is independent on K\(_{ATP}\) channel activity and PTK.[99]

Based on this information, genistein has the potential to improve and increase insulin secretion by increasing the calcium concentration into intracellular medium which characterizes the primary signal in the regulation of insulin secretion and cAMP, an important molecule that acts as a type of cellular secondary messenger. When activated, the cAMP exerts a regulatory effect in multiple peripheral tissues, enhances insulin sensitivity, stimulates glucose uptake, and promotes gene expression.[94,95] It might also generate ATP into cells and activate CaMK II. CaMKII participates in GSIS in several steps of this process, such as the modulation of cytoplasmic content of ATP and the synthesis of insulin granules.[96] Furthermore, all possible mechanisms are independent of PKC.

Flavonolignans

Flavonolignan has in its composition a portion of flavonoid and other of lignan. Silibinin is the major pharmacologically active compound of Silymarin, an isomeric mixture from the *Silybum marianum* that containing at least six flavonolignans.[97–100] Extracts and flavonoids from *S. marianum* have been reported in the literature as hypoglycemicant and applied for pancreas recovery for diabetes.[101,102] This activity can be associated to Silibinin. According to Chen et al., Silibinin protects β-cells from glitotoxicity and can improve GSIS and upregulate expression of insulin-induced gene 1 (Insig-1), insulin receptor substrate 2 (IRS-2), pancreatic and duodenal homeobox 1 (PDX-1), and insulin mRNA and downregulate sterol regulatory element binding protein-1c (SREBP-1c) transcription.[46]
PDX-1 is involved in the regulation factor in the cascade regulating insulin secretion, regulating the transcription of insulin and other insulin secretion-related genes.\cite{39} IRS-2 mediates effects of insulin and insulin-like growth factor 1, and Insig-1 negatively regulates SREBP1s. Therefore, this transcription factors and genes contribute to insulin secretion, as well as some studies have showed.\cite{104, 105}

Chalcone

Chalcones are aromatic ketone with two phenyl rings that are precursors of flavonoids and isoflavonoids and exert several of biological and pharmacological activities.\cite{106, 107} Generally, natural chalcones occur as petal pigments and have been found in the heartwood, bark, leaf, fruit, and root.\cite{108} Different studies have showed that chalcones present antihyperglycemic properties, while chalcone with iodine substitution showed great potential in reducing glucose medium concentration,\cite{110} increasing insulin secretion,\cite{111} and increasing glucose uptake.\cite{112}

In a study published Hu et al., it was reported that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethyl chalcone may increase insulin secretion under the condition of elevated glucose by mimicking glucagon-like peptide-1 (GLP-1) to enhance the expression of glucagon-like peptide 1 receptor (GLP-1R)-mediated PDX-1 translocation and to promote the expression of GLUT2 and glucokinase (GCK).\cite{113} GLP-1 promotes insulin secretion, maintains a blood sugar balance, and improves pancreatic islet cell function.\cite{113, 114}

Besides, it has been used as alternative to conventional hypoglycemic agents and insulin injectable therapies since it has a lower risk of causing hypoglycemia\cite{115} because the GLP-1 has alternative mechanisms may act as negative feedback pathway for insulin secretion, activating the K\(_{\text{ATP}}\) channels through phosphatidlyinositol-4,5-bisphosphate 3-kinase (PI3K)-dependent pathway.\cite{116}

The different mechanisms of activity of GLP-1 are regulated by the GLP-1R. The GLP-1R induces in the cytosol PKA activity that regulates the insulin gene transcription factor of pancreatic duodenal homeobox-1 (PDX-1) by increasing its expression and its nuclear translocation\cite{116, 117} and this activation leads to insulin secretion. On the other hand, the 2',6'-dihydroxy-4'-methoxy-3',5'-dimethyl chalcone might stimulate the secretion of insulin by increasing the GLUT2 and GCK. The GLUT 2 facilitates transport of glucose and thus initiates the GSIS by the uptake of glucose.\cite{118} After, glucose is then phosphorylated by glucokinase and further metabolized through the glycolytic route. Thereby, this process increases the production of ATP into the cell that increases calcium influx and leads to insulin secretion.

Flavanone

Flavanones are flavonoids that have generally a disaccharide glycosylated or its products (genes), as PDX-1, GLP-1, IRS-2, Insig-1, and so on. The subclasses flavonol and isoflavones show the better activities of modulation and evidence that can be promising to treatment of diabetes. Despite of these findings, more studies are needed to prove the long-term effects of flavonoids in insulin secretion and to ensure its applicability in diabetic patients.

Financial support and sponsorship

This work was supported by Brazilian Funding Agency FACEPE, CAPES, FINEP, CNPq, and FAPESB.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetess Rev 2013;9:25-63.
2. Amisten S, Salehi A, Rosman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013;139:359-91.
3. Cantley J, Ashcroft FM. Q and A: Insulin secretion and type 2 diabetes: Why do α-cells fail? BMC Biol 2015;13:33.
4. Henquin JC. Regulation of insulin secretion: A matter of phase control and amplitude modulation. Diabetologia 2009;52:739-51.
5. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 2003;33:362-9.
6. Bryan J, Crane A, Vila-Carnies WH, Babenko AP, Aguilar-Bryan L. Insulin secretagogues, sulfonylurea receptors and K (ATP) channels. Curr Pharm Des 2005;11:2699-716.
7. Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984;312:446-8.
8. Szillossi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin JC. Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old β-cells lacking ATP-sensitive K+ channels. J Biol Chem 2007;282:1747-66.
9. Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: Pancreatic secretion and adipocyte regulation. Domest Anim Endocrinol 2016;54:76-84.
10. Kwon HJ, Park HS, Park SH, Park JH, Shin SK, Song SE, et al. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta-cells. Biochem Biophys Res Commun 2016;469:216-21.
11. Gao J, Zhong X, Ding Y, Bai T, Wang H, Wu H, et al. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β-cells. Eur J Pharmacol 2016;777:41-8.
12. Chen Y, Carlensi R, Watz N, Cruzat VF, Keane K, John AN, et al. Pigment epithelium-derived factor (PEDF) regulates metabolism and insulin secretion from a clonal rat pancreatic beta-cell line BRIN-BD11 and mouse islets. Mol Cell Endocrinol 2016;426:50-60.
13. Anderson RL, Randall MD, Chan SL. The complex effects of cannabinoids on insulin secretion from rat isolated islets of Langerhans. Eur J Pharmacol 2013;706:56-62.
14. Scheen AJ. Investigational insulin secretagogues for type 2 diabetes. Expert Opin Invest Drugs 2016;25:405-22.
15. Schmidt S, Jakab M, Jaw S, Streif D, Pittschmann A, Zehl M, et al. Extracts from Leonurus sibiricus L. increase insulin secretion and proliferation of rat INS-1E insulinoma cells. J Ethnopharmacol 2013;150:85-94.
16. Aggarwal S, Shailendra G, Ribnicky DM, Burk D, Karki N, Góngora Wang MS. An extract of Artemisia dracunculus L. stimulates insulin secretion from β-cells, activates AMPK and suppresses inflammation. J Ethnopharmacol 2015;170:98-105.
17. Meenatchi P, Purushothaman A, Maneenega S. Antioxidant, antilgycogenic and insulinotropic properties of Coccinia grandis (L.) in vitro. Possible role in prevention of diabetic complications. J Tradit Complement Med 2016;7:54-64.
18. Kazeem MI, Davies TC. Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. J Funct Foods 2016;20:122-38.
19. Castro AJ, Cazavollii LH, de Carvalho FK, da Luz G, Altenhofen D, dos Santos AR, et al. Acute effect of Sβ-hidroxihop-22 (2β) ene on insulin secretion is mediated by GLP-1, potassium and...
calcinium channels for the glucose homeostasis. J Steroid Biochem Mol Biol 2015;150:112-22.

d. da Luz G, Frederico MJ, Castro AJ, Moraes AL, de Carvalho FK, Espindola L et al. Triterpene derivative: A potential signaling pathway for the fmr-911-ene-2α,3β-diol on insulin secretion in pancreatic islet. Life Sci 2016;154:58-65.

29. Balamanou R, Durapanyand V, Ignacimuthu S. Antidiabetic activity of y-sisosteryl isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur J Pharmacol 2013;667:410-8.

32. Subash-Babu P, Ignacimuthu S, Alchati AA. Nymphaline increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem Biol Interact 2015;226:72-81.

33. Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking KATP and Kβ channels of beta cells. Eur J Pharmacol 2007;568:209-77.

34. Zhang Y, Ding Y, Zhong X, Guo Q, Wang H, Gao J et al. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/AMP signaling and ion channels. Mol Cell Endocrinol 2016;430:89-96.

35. Testal L. Flavonoids and mitochondrial pharmacology: A new paradigm for cardiprotection. Life Sci 2016;135:68-76.

36. Crozzer A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep 2009;26:1001-43.

37. Hu G, Yu J, Yang W, Kinmatu BM, Fang Y, Ma N et al. Identification of flavonoids from Flammulina velutipes and its neuroprotective effect on pheochromocytoma-12 cells. Food Chem 2016;204:234-62.

38. Ben Sghaier M, Skandranki I, Nasr N, Franca MG, Cheik-Ghedia L, Ghedira K. Flavonoids and sesquieterpenes from Tecomum ramosissimum promote antiapoptosis of human cancer cells and enhances antioxidant activity: A structure-action relationship study. Environ Toxicol Pharmacol 2011;32:336-48.

39. Maruyama H, Sumitou Y, Sakamoto T, Araki Y, Hara H. Antihypertensive effects of flavonoids isolated from Brazilian green propolis in spontaneously hypertensive rats. Biol Pharm Bull 2009;32:1244-50.

40. Bharucha B, Divvedi M, Laddha NC, Begum R, Hardikar AA et al. Antioxidant rich flavonoids from Oroxandra integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult. BMC Complement Altern Med 2011;11:126.

41. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097.

42. Mentreddy S, Mohamed AI, Rimando AM. Medicinal plants with hypoglycemic/anti-hyperglycemic properties: A review. Proc Assoc Adv Ind Crop Conf 2005;20:341-53.

43. Pal D, Verma P. Flavonoids: A powerful and abundant source of antioxidants. Int J Pharm Sci Healthc Res 2017;8:153-64.

44. Yahsir A, Uddin G, Siddiqui BS, Khan H, Shah SU, Ben Hadda T et al. Antiinflammatory and anti-infectious activities of flavonoids isolated from Picea integerrima galls. Complement Ther Med 2016;25:132-8.

45. Freitas M, Ribeiro D, Tomé SM, Silva AM, Fernandes E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur J Med Chem 2014;88:153-64.

46. Abdallah HM, Almowallad FM, Esrat A, Shehata IA, Abdel-Sattar EA. Anti-inflammatory activity of flavonoids from Oenothera linifolia. Phytochem Lett 2015;13:74-80.

47. Homonov VS, Kandhare AD, Kadarm PP, Khedkar VM, Sarkar D, Bodhankar SL. et al. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. Int Immunopharmacol 2016;33:8-17.

48. Lee JC, Won SJ, Choi CL, Wu FL, Liu HS, Ling P et al. Monacins induces apoptosis and suppresses NFκB activity in human colorectal HT-29 cells. Biochem Biophys Res Commun 2008;372:236-42.

49. Yang DS, Peng WB, Yang YP, Liu KC, Li XL, Xiao WL. Cytotoxic prenylated flavonoids from Macaranga indica. Fitoterapia 2015;103:187-91.

50. Zheng ZP, Yan Y, Xia J, Zhang S, Wang M, Chen J et al. A phenylacetaldheyde-flavonoid adduct, 8-C-(E-phenylethyl)-2-orotocarotenin, exhibits intrinsic apoptosis and MAPK pathways-related anticancer potential on HepG2, SMMC-7721 and QGY-7703. Food Chem 2016;197(Pt B):1085-92.

51. Keshari AK, Kumar G, Kushwaha PS, Bhaward M, Kumar P, Rastaw A. et al. Isolated flavonoids from Ficus racemosa stem bark possess antioxidant, hypolipidemic and protective effects in albino Wistar rats. J Ethnopharmacol 2016;181:252-62.

52. Shethya MA, Rayhana B, Ali A, Pillai KK, Aeri V, Sharma M. et al. Inhibition of α-glucosidase by new prenylated flavonoids from Euphorbia hirta L. herb. J Ethnopharmacol 2015;168:1-18.

53. Li D, Peng C, Xie Y, Xao Y, Liu M, Cao Z. et al. Antidiabetic effect of flavonoids from Malus toringoides (Rehd.) Hughes leaves in diabetic mice and rats. J Ethnopharmacol 2014;153:561-7.

54. Zhang X, Huang H, Zhao X, Lv Q, Sun C, Li X et al. Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 2015;14:144-53.

55. Yan F, Zhang J, Zhang L, Zheng X. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of glycogen accumulation in human HepG2 cells. Food Funct 2016;7:425-33.

56. Yang X, Yang I, Xu C, Huang M, Zhou Q, Lv J. et al. Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in type 2 diabetic KK-ay mice. J Ethnopharmacol 2015;171:161-70.

57. Feng LJ, Yu CH, Ying KJ, Hua J, Da XY. Hypolipidemic and antioxidant effects of total flavonoids of Penila frutescens leaves in hyperlipidemic rats induced by high-fat diet. Food Res Int 2011;44:404-9.

58. Ai G, Liu Q, Hua W, Huang Z, Wang D. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: In vitro and in vivo studies. J Ethnopharmacol 2013;146:794-802.

59. Pal D, Verma P. Flavonoids: A powerful and abundant source of antioxidants. Int J Pharm Pharm Sci 2013;5:95-8.

60. Kelly GS. Quercetin. Monograph. Altern Med Rev 2011;16:172-94.

JULIANA MIKAELLY DIAS SOARES, et al.: Influence of Flavonoids on Mechanism of Inosulin Secretion
β-

El‑Kordya EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin‑induced diabetic rats: Histological and immunohistochemical study. JMAU 2015;3:108‑19.

Lee MS, Kim CH, Hoang DM, Kim BY, Sohn CB, Kim MR, et al. Genistein‑derivatives from Tetraceras scandens stimulate glucose uptake in L6 myotubes. Biol Pharm Bull 2009;32:504‑8.

Towler MC, Hardie DG. AMP‑Activated protein kinase in metabolic control and insulin signaling. Circ Res 2007;100:329‑41.

Long YC, Zierath JR. AMP‑activated protein kinase signaling in metabolic regulation. J Clin Invest 2006;116:1776‑83.

Easson RA. CaM kinase II: A protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes 1999;48:675‑84.

Hackett ES, Twedt DC, Gustafson DL. Milk thistle and its derivative compounds: A review of opportunities for treatment of liver disease. J Vet Intern Med 2013;27:10‑4.

Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother Res 2010;24:1423‑32.

Kvasnicka F, Biba B, Sveck R, Volzich M, Krátká J. Analysis of the active components of silymarin. J Chromatogr A 2003;990:239‑45.

Cheiani A, Sturm S, Intemann D, Seger C, Stuppern H. Head‑to‑head comparison of ultra‑high‑performance liquid chromatography with diode array detection versus quantitative nuclear magnetic resonance for the quantitative analysis of the silymarin complex in silybum marianum fruit extracts. J Agric Food Chem 2010;64:1618‑26.

Maghrani M, Zegzag‑NA, Lemenahi A, El Amraoui M, Michel JB, Eddouks M. Study of the hypoglycaemic activity of fraxinus excelsior and Silybum marianum in an animal model of type 1 diabetes mellitus. J Ethnopharmacol 2004;91:309‑16.

Soto C, Mena R, Luna J, Cerbón M, Larrieta E, Vital P, et al. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci 2004;75:2167‑80.

Keneto H, Miyasaka T, Kavarnover M, Matsusaka TA. Pleiotropic roles of PDF1‑X in the pancreas. Rev Diabet Stud 2007;4:209‑25.

Yang KC, Qi Z, Yan Y, Shirouzu Y, Lu DH, Lee HS, et al. Cell coupling regulates Ins1, Pdx‑1 and Maafa to promote insulin secretion in mouse pancreatic beta cells. Process Biochem 2011;46:1853‑60.

Nakajima‑Nagata N, Sugai M, Sakura T, Miyazaki J, Tabata Y, Shimmizu A, Pdx‑1 enables insulin secretion by regulating synaptotagmin 1 gene expression. Biochem Biophys Res Commun 2004;318:631‑5.

Chen K, Jin P, He HH, Xie YH, Xie XY, Mo ZH. Overexpression of Insag‑1 protects β cell against glucolipotoxicity via SREBP‑1c. J Biomed Sci 2011;18:57.

Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur J Med Chem 2015;92:839‑65.

Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur J Med Chem 2014;85:758‑77.

Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. Phytother Res 2016;15:87‑120.

Hsieh CT, Hsieh TJ, El‑Shazly M, Chuang DW, Tsai YH, Yen CT, et al. Synthesis of chalcone derivatives as potential anti‑diabetic agents. Bioorg Med Chem Lett 2012;22:3912‑5.

Damazio RG, Zanatta AP, Cazarolli LH, Mascarello A, Chiaradia LD, Nunes RJ, et al. Nitrochalcones: Potential antidiabetic drugs. Arch Biochem Biophys 2008;477:162‑70.

Enoki T, Ohnogi H, Nagamine K, Kudo Y, Sugiyama K, Tanabe M, et al. Naturally occurring chalcones and their biological activities. Phytochem 2004;64:25:149‑164.

Hunyadi A, Martins A, Hsieh T, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti‑diabetic activity of Monus alba leaf extract on type II diabetic rats. PLoS One 2012;7:e60519.

Fernandes AA, Novelli EL, Okoshi K, Okosho MR, Di Muzio BP, Guimãrães JF, et al. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 2010;64:214‑9.

Dhanay R, Arun KB, Syama HP, Nisha P, Sundaresan A, Santhosh Kumar TR, et al. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem 2014;158:546‑54.

Tian R, Yang W, Xue Q, Gao L, Huo J, Ren D, et al. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrfl2 signaling pathway in rats. Eur J Pharmacol 2016;771:84‑92.

Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage‑dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 2004;279:7966‑61.

Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11‑21.

Lambert JD, Sang S, Yang CS. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Nutr 2007;4:819‑25.

Kaneko YK, Taki M, Kojima Y, Yokosawa H, Ishikawa T. Structure‑dependent inhibitory activities of those metabolites. Mol Pharm 2007;4:819‑25.

Li C, Allen A, Kwag J, Doliba NM, Qin W, Najafi H, et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 2006;281:10214‑21.

Huang CF, Chen YY, Yang CY, Lin HY, Way TD, Chang W, et al. Extract of lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J Agric Food Chem 2011;59:1087‑94.

Lafka T, Sinanoglou V, Lazos ES. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem 2007;104:1206‑14.

Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruerer CE, Rimbach G, et al. Analytical and compositional aspects of isoflavones in food and their biological effects. Mol Nutr Food Res 2009;53 Suppl 2:2566‑309.

Dixon RA, Ferreira D. Genistein. Phytochemistry 2002:60:205‑11.

Bethoul N, Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 2013;688:31‑8.

El‑Kordya EA, Alishahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic β‑cells of streptozotocin‑induced diabetic rats: Histological and immunohistochemical study, JMAU 2015;3:108‑19.
GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 2000;275:23751-8.

119. Nibbs AE, Scheidt KA. Asymmetric methods for the synthesis of flavanones, chromanones, and azaflanones. Eur J Org Chem 2012;2012:449-62.

120. Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. J Funct Foods 2015;14:363-73.

121. Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 2014;210:77-85.

122. Zhang B, Chen T, Chen Z, Wang M, Zheng D, Wu J, et al. Synthesis and anti-hyperglycemic activity of hesperidin derivatives. Bioorg Med Chem Lett 2012;22:7194-7.

123. Klein-Schwartz W, Stassinios GL, Isbister GK. Treatment of sulfonylurea and insulin overdose. Br J Clin Pharmacol 2016;81:496-504.