TOPOLOGY OF COMPLEXITY ONE QUOTIENTS

YAELE KARSHON AND SUSAN TOLMAN

Abstract. We describe of the topology of the geometric quotients of $2n$ dimensional compact connected symplectic manifolds with $n-1$ dimensional torus actions. When the isotropy weights at each fixed point are in general position, the quotient is homeomorphic to a sphere.

1. Introduction

This paper is a byproduct of our work on the classification of complexity one Hamiltonian torus actions [18, 20, 21, 22, 23], but, in fact, it relies only on elementary aspects of such actions. It is motivated by a number of recent works by toric topologists (specifically, the papers [7, 9, 8, 3] by Buchstaber and Terzic and by Ayzenberg) that explore the topology of the geometric quotients of manifolds with certain torus actions. Our purpose in this paper is to highlight topological aspects of related works in equivariant symplectic geometry and to illustrate how equivariant symplectic methods reproduce some of the recent results in toric topology and yield new examples.

Similar results were recently obtained by Hendrik Süss [28] from the point of view of algebraic geometry.

The examples Buchstaber and Terzic studied include the quotient of the Grassmannian of complex 2-planes in \mathbb{C}^4 by its standard torus action, which they showed is homeomorphic to a five dimensional sphere, and the quotient of the manifold of complete flags in \mathbb{C}^3 by its standard torus action, which they showed is homeomorphic to a four dimensional sphere. We exhibit these examples as special cases of a more general phenomenon: for any Hamiltonian action of a torus T on a compact symplectic manifold M, if the reduced spaces over the interior of the momentum polytope are two dimensional and those over the boundary are single points—this condition holds if and only if the dimension of the torus is one less than the dimension of the manifold and at each fixed point the isotropy weights are in general position—then the geometric quotient M/T is homeomorphic to a sphere.

Acknowledgement. This work is partially funded by the Natural Sciences and Engineering Research Council of Canada. We are grateful to Svjetlana Terzic, Nikita Klemyatin, and Anton Ayzenberg for helpful discussions. We are grateful to Hendrik Süss for useful comments on our draft. We wish Victor Buchstaber a happy birthday.

2. Background and main result

Let T be a torus and t^* the dual to its Lie algebra.

Let (M, ω) be a symplectic manifold with a T action and with a momentum map $\mu : M \to t^*$. Such an action is called Hamiltonian. We recall the definitions and properties of Hamiltonian torus actions in Appendix A. In particular, the momentum map μ is constant on T
orbits, so it induces a map, which is sometimes called the orbital momentum map, on the geometric quotient,
\[\bar{\mu}: M/T \to t^*. \]
In this paper we always assume that \(M \) is compact\(^1\) and connected. Since \(M \) is compact, the fixed set \(M^T \) is not empty. To see this, fix a vector \(\xi \in t \) that generates a dense one-parameter subgroup. Each point \(p \in M \) on which the function \(\langle \mu(\cdot), \xi \rangle : M \to \mathbb{R} \) achieves its minimal value is a fixed point for the one-parameter subgroup, and hence for \(T \).

Local normal form and the convexity package.

The local structure of a Hamiltonian torus action is governed by the local normal form, which describes a neighbourhood of an orbit up to an equivariant symplectomorphism that preserves momentum maps. We recall the statement of the local normal form in an appendix.

We denote \(\Delta := \text{image } \mu \).

We will need the following theorem and corollary.

Theorem 2.1 (Convexity package). \(\Delta \) is a rational\(^2\) convex polytope, and the map \(\mu: M \to \Delta \) is open and has connected fibres.

Corollary 2.2. For any convex subset \(C \) of \(t^* \), the preimage \(\mu^{-1}(C) \) is connected.

The convexity package is due to Guillemin-Sternberg and Atiyah. Relevant references include the papers \([14, 1, 10, 25, 16, 24, 4, 5, 6]\). The corollary follows from the (convexity of \(C \) and \(\Delta \), hence) connectedness of \(C \cap \Delta \) by the following exercise in point set topology: Given an continuous open map with connected fibres, the preimage of any connected subset of the image is connected.

Principal orbit types over faces and in level sets; the complexity

We continue to assume that \(M \) is compact and connected. Let \(T_{\text{eff}} \) be the quotient of \(T \) by the kernel of the action. Because \(M \) is connected, it has a connected open dense subset where the action of \(T_{\text{eff}} \) is free. The formula for the momentum map implies that the affine span of the momentum image of \(M \) is a translation of the annihilator in \(t^* \) of the Lie algebra of the kernel of the action. In particular,
\[
(2.3) \quad \dim T_{\text{eff}} = \dim \Delta.
\]

The action is **toric** if \(\dim T_{\text{eff}} = \frac{1}{2} \dim M \). More generally, the **complexity** of the action is \(\frac{1}{2} \dim M - \dim T_{\text{eff}} \); it measures how far the action is from being toric.

Lemma 2.4. For every face\(^3\) \(F \) of \(\Delta \), its preimage \(M_F \) in \(M \), with the structures induced from \(M \), is a compact connected symplectic manifold with a Hamiltonian \(T \) action.

1 Many of the results in this paper remain true when \(M \) is not necessarily compact but \(\mu \) is proper as a map to some convex subset of \(t^* \).

2 "Rational" means that the facets have rational conormal vectors.

3 Because the convex set \(\Delta \) is locally polyhedral, a subset \(F \) of \(\Delta \) is a face if and only if it is equal either to \(\Delta \) or to the intersection of \(\Delta \) with a supporting hyperplane (a hyperplane that meets \(\Delta \) and such that one of the two half-spaces that it bounds contains \(\Delta \)).
Lemma 2.8. Given a point \(p \in M_F \). The local normal form theorem, together with the openness of the momentum map as a map to its image, imply that the intersection of \(M_F \) with a neighbourhood of \(p \) in \(M \) is a \(T \) invariant symplectic submanifold of \(M \). By Corollary 2.2, \(M_F \) is connected.

\[\square \]

Proof. Let \(p \in M_F \). The local normal form theorem, together with the openness of the momentum map as a map to its image, imply that the intersection of \(M_F \) with a neighbourhood of \(p \) in \(M \) is a \(T \) invariant symplectic submanifold of \(M \). By Corollary 2.2, \(M_F \) is connected.

Remark 2.5. Let \(K \) be the identity component of the kernel of the \(T \) action on \(M_F \). By the definition of the momentum map, the affine span of \(F \) is a translation of the annihilator in \(t^* \) of the Lie algebra of \(K \). Moreover, \(M_F \) is a connected component of \(M^K \), the set of points fixed by \(K \), because the component of \(M^K \) containing \(M_F \) must lie in the preimage of the affine span of \(F \).

Lemma 2.6. Given any face \(F \) and any fixed point \(p \) in the preimage \(M_F \), the complexity of the \(T \) action on \(M_F \) is the number of isotropy weights at \(p \) that are parallel to \(F \) minus the dimension of \(F \). Moreover, the linear span of the weights that are parallel to \(F \) is a translation of the affine span of \(F \).

Proof. By Lemma 2.4, the preimage \(M_F \) of \(F \) in \(M \) is a compact connected symplectic manifold with a Hamiltonian \(T \) action. By Remark 2.5, \(M_F \) is a connected component of \(M^K \), where \(K \) is the identity component of the kernel of the \(T \) action on \(M_F \). Moreover, the affine span of \(F \) is a translation of the annihilator in \(t^* \) of the Lie algebra of \(K \). Hence, the dimension of \(T/K \) is the dimension of \(F \), and the weights for the action on \(T_p M_F \) are those weights for the action on \(T_p M \) that are parallel to \(F \). Therefore, the dimension of \(M_F \) is twice the number of such weights.

Finally, by the local normal form theorem, there is a neighbourhood of \(p \) in \(M_F \) that is equivariantly symplectomorphic to \(T_p M_F \). Since \(K \) is the identity component of the stabilizer of an open dense set of points in \(M_F \), the identity component of the kernel of the isotropy representation on \(T_p M_F \) is also \(K \). Hence, the span of the isotropy weights at \(p \) is the annihilator in \(t^* \) of the Lie algebra of \(K \).

Corollary 2.7. Let \(M_F \) and \(M_{F'} \) be the preimage of faces \(F \) and \(F' \) of \(\Delta \), respectively. If \(F \subseteq F' \), then the complexity of \(M_F \) is less than or equal to the complexity of \(M_{F'} \).

Proof. By Lemma 2.4, \(M_F \) and \(M_{F'} \) are compact connected symplectic manifolds with Hamiltonian \(T \) actions. Consider a fixed point \(p \in M_F \). Since the linear span of the isotropy weights at \(p \) that are parallel to \(F' \) is a translation of the affine span of \(F' \), the number of weights that are parallel to \(F' \) but not \(F \) must be greater than or equal to the codimension of \(F \) in \(F' \).

Given a point \(\beta \in t^* \), let \(M_\beta := \pi^{-1}(\{\beta\}) = \mu^{-1}(\{\beta\})/T \) be the reduced space at \(\beta \). If \(T_{\text{eff}} \) acts freely on \(\mu^{-1}(\{\beta\}) \), then \(M_\beta \) is naturally a manifold. More generally, the following holds.

Lemma 2.8. Given a point \(\beta \) in the relative interior of \(\Delta \), the set of free orbits in the reduced space \(M_\beta \) is a connected open dense subset of \(M_\beta \); moreover, it is naturally a \(2k \) dimensional manifold, where \(k \) is the complexity of the \(T \) action on \(M \).

Proof. This consequence of the local normal form theorem and the convexity package is proved by Lerman and Sjamaar in [26].

The dimension of a reduced space \(M_\beta \) is the dimension of an open dense subset of \(M_\beta \) that is a manifold; it is well defined, by Lemmas 2.4 and 2.8. For any nonnegative integer \(k \), denote
by Δ_k the set of points β in Δ such that $\dim M_\beta = 2k$, and denote $\Delta_{\leq k} := \Delta_0 \cup \ldots \cup \Delta_k$. By the connectedness of the momentum map fibres, Δ_0 is the set of points β in Δ such that the reduced space M_β consists of a single orbit.

Lemma 2.9. For any nonnegative integer k, the set $\Delta_{\leq k}$ is a union of faces of Δ. Consequently, there exists an open convex subset U of t^* such that $\Delta \setminus \Delta_{\leq k} = \Delta \cap U$.

Proof. By Lemma 2.4, the preimage $M_F := \mu^{-1}(F)$ of each face F of Δ is a compact connected symplectic manifold with a Hamiltonian T action. By Corollary 2.7, if $F' \subset F$ for faces F' and F then the complexity of M_F' is less than or equal to the complexity of M_F. The first claim then follows from Lemma 2.8.

To prove the second claim, for each face F in $\Delta_{\leq k}$ choose a supporting hyperplane H_F of Δ such that $F = H_F \cap \Delta$. Then the intersection U of the appropriate open half-spaces bound by these hyperplanes is an open convex set. \hfill \square

Remark 2.10 (Toric manifolds). If we assume that the T action on M is toric, then the quotient M/T is homeomorphic to the disk D^n, where $n = \frac{1}{2} \dim M$. To see this, first note that Lemma 2.4 and Corollary 2.7 together show that the preimage $M_F := \mu^{-1}(F)$ of each face F of Δ is a symplectic toric manifold. Hence, by Lemma 2.8, the reduced space M_β is a point for all $\beta \in \Delta$, that is, $\Delta_0 = \Delta$. Thus, the orbital momentum map $\mu_\beta: M/T \to \Delta$ is a bijection; since it is proper and continuous, this implies that it is a homeomorphism. Since Δ is a convex polytope, this proves the claim.

More generally, consider a complete unimodular fan in \mathbb{R}^n. Even if the fan does not correspond to any convex polytope, we can construct a complex toric manifold M from the fan, as described by Audin in [2]. The geometric quotient M/T is still homeomorphic to a sphere; see [19, Lemma 3.2].

A collection of vectors in the vector space t^* is in general position if every sub-collection of size $< \dim t^*$ is linearly independent.

Lemma 2.11. Assume that M is compact.

1. Assume that the fixed points in M are isolated. Then $\Delta_0 \neq \emptyset$.
2. Assume that the T action on M has complexity ≥ 1 and that the isotropy weights if at every fixed point are in general position. Then $\Delta_0 = \partial \Delta$.

Proof. We first prove Part (1). Since M compact, its momentum image Δ compact. Let v be a vertex of Δ. The affine span of v is $\{v\}$. Hence, by Remark 2.5, the preimage $M_v := \mu^{-1}(v)$ is a connected component of M^T. Since M^T is discrete by assumption, this implies that $v \in \Delta_0$.

We now prove Part (2). First, consider $\beta \in \partial \Delta$. Let $F \subset \Delta$ be the face whose relative interior contains β. By Lemma 2.4, the preimage M_F of F in M is a compact connected symplectic T manifold with a Hamiltonian T action. So it has a fixed point p. Since $\dim F < \dim t^*$ and the isotropy weights at p are in general position, Lemma 2.6 implies that M_F is toric. Therefore, by Lemma 2.8, $\beta \in \Delta_0$. In contrast, if β is in the relative interior of Δ then, since the action of T on M is not toric, Lemma 2.8 implies that β is not in Δ_0. \hfill \square

Remark 2.12. In Part (2) of Lemma 2.11, if the complexity of the T action on M is equal to one, then the converse is true too, so $\Delta_0 = \partial \Delta$ if and only if the isotropy weights at every fixed point are in general position.
When the complexity of the Hamiltonian T action is equal to one, we denote by Δ_{short} the set of points in Δ whose reduced space contains a single orbit and by Δ_{tall} the set of points in Δ whose reduced space is two dimensional. Thus, Δ_{short} is just Δ_0, and $\Delta = \Delta_{\text{short}} \sqcup \Delta_{\text{tall}}$. By Lemma 2.9, Δ_{short} is closed.

Proposition 2.13. Let T be a torus and t^* the dual to its Lie algebra. Let M be a compact connected symplectic manifold with a T action and with a momentum map $\mu: M \to t^*$ with image Δ. Assume that the action has complexity one. Then there exists a connected closed oriented surface Σ and a homeomorphism

$$(M/T)_{\text{tall}} \to \Delta_{\text{tall}} \times \Sigma$$

that intertwines the orbital momentum map $\overline{\mu}$ with the projection map to Δ_{tall}. If Δ_{short} is non-empty, then Σ is a two-sphere.

Proof. By Lemma 2.9, there exists a convex open subset U of t^* such that $\Delta_{\text{tall}} = \Delta \cap U$. The first part of Proposition 2.2 of [21] then implies that there is a homeomorphism $(M/T)_{\text{tall}} \to \Delta_{\text{tall}} \times \Sigma$ as required. By [20, Lemma 5.7], if Δ_{short} is non-empty, then Σ is a sphere. \qed

We now state our main theorem.

Theorem 2.14. Let T be a torus and t^* the dual to its Lie algebra. Let M be a $2n$ dimensional compact connected symplectic manifold with a T action and with a momentum map $\mu: M \to t^*$ with image Δ. Assume that the action has complexity one. Then there exists a connected closed oriented surface Σ and a homeomorphism

$$M/T \to (\Delta \times \Sigma)/\sim,$$

where \sim is the finest equivalence relation with $(x, y) \sim (x, y')$ if $x \in \Delta_{\text{short}}$. Moreover,

(i) If Δ_{short} is non-empty, then Σ is a two-sphere.

(ii) If $\Delta_{\text{short}} = \partial \Delta$, then M/T is homeomorphic to the $(n + 1)$-sphere.

Proof. By Proposition 2.13, there exists a connected closed oriented surface Σ and a homeomorphism

$$(M/T)_{\text{tall}} \to \Delta_{\text{tall}} \times \Sigma$$

that intertwines the orbital momentum map $\overline{\mu}$ and the projection map to Δ_{tall}. Since $\Delta = \Delta_{\text{short}} \sqcup \Delta_{\text{tall}}$ and Δ_{short} consists of those β such that M_β consists of a single orbit, this homeomorphism extends to a unique bijection

$$f: M/T \to (\Delta \times \Sigma)/\sim$$

that intertwines the orbital momentum map $\overline{\mu}$ with the map $\pi: (\Delta \times \Sigma)/\sim \to t^*$ induced by the projection to Δ. Since $(M/T)_{\text{tall}}$ is open in M/T and Δ_{tall} is open in Δ, the map f is continuous and open at every point of $(M/T)_{\text{tall}}$. Since M and Σ are compact, the maps $\overline{\mu}: M/T \to t^*$ and $\pi: (\Delta \times \Sigma)/\sim \to t^*$ are proper. Since t^* is a locally compact Hausdorff space, the proper maps $\overline{\mu}$ and π to t^* are closed. Since π is closed, f is continuous at every point of $(M/T)_{\text{short}}$. Since $\overline{\mu}$ is closed and f is onto, f is open at every point of $(M/T)_{\text{short}}$.

Part (i) follows from Proposition 2.13.

For Part (ii), assume that $\Delta_{\text{short}} = \partial \Delta$. Since M is compact, Δ is a convex polytope; hence, it is homeomorphic to D^{n-1}, where $\dim M = 2n$. Therefore, the map from $D^{n-1} \times S^2$...
that sends \((x, z)\) to \((x, \sqrt{1 - |x|^2}, z)\) induces a map from \((\Delta \times \Sigma)/\sim\) to \(S^{n+1}\). Since \(S^{n+1}\) is a locally compact Hausdorff space, the fact that this map is a continuous proper bijection implies that it’s a homeomorphism. QED

Remark 2.15. Claim (ii) of Theorem 2.14 can be rephrased as follows: If \(\Delta_{\text{short}} = \partial \Delta\), then \(M/T\) is homeomorphic to the join \(\partial \Delta \ast S^2\). To see this, recall that the join \(A \ast B\) of two topological spaces \(A\) and \(B\) is the quotient of \(A \times B \times [0, 1]\) under the identifications \((a, b, 0) \sim (a', b, 0)\) and \((a, b, 1) \sim (a', b', 1)\) for all \(a, a' \in A\) and \(b, b' \in B\). We may assume without loss of generality that \(0 \in \text{interior} \Delta\). Then, since \(\Delta\) is convex, the map \(\partial \Delta \times B \times [0, 1] \to \Delta \times B\) that is defined by \((a, b, t) \mapsto (ta, b)\) descends to a continuous proper bijection \(\partial \Delta \times B \to (\Delta \times B)/\sim\), where here \(\sim\) is the finest equivalence relation with \((x, y) \sim (x, y')\) if \(x \in \partial \Delta\). When \(B\) is a locally compact Hausdorff space, this bijection is a homeomorphism.

Corollary 2.16. Let \(T\) be a torus and \(\frak{t}^*\) the dual to its Lie algebra. Let \(M\) be a compact connected symplectic manifold with a \(T\) action and a momentum map \(\mu : M \to \frak{t}^*\) with image \(\Delta\). Assume that the action has complexity one.

(a) If the fixed point set \(M^T\) is finite, then \(M/T\) is homeomorphic to \((\Delta \times S^2)/\sim\), where \(\sim\) is the finest equivalence relation with \((x, y) \sim (x, y')\) if \(x \in \Delta_{\text{short}}\).

(b) If the isotropy weights at every fixed point are in general position, then \(M/T\) is homeomorphic to a sphere.

Proof. Part (a) follows from Part (1) of Lemma 2.11 and Part (i) of Theorem 2.14. Part (b) follows from Part (2) of Lemma 2.11 and Part (ii) of Theorem 2.14. QED

Part (b) of Corollary 2.16 recovers a result of Ayzenberg [3]: for an action of an \((n - 1)\) torus on a smooth \(2n\) manifold \(M\), if the isotropy weights at every fixed point are in general position, then \(M/T\) is a topological manifold.

Corollary 2.17. Let the circle \(S^1\) act on a compact connected symplectic four-manifold \((M, \omega)\) with momentum map \(\mu : M \to \mathbb{R}\). Then exactly one of the following is true.

1. The fixed point set is finite and \(M/T\) is homeomorphic to a three-sphere.
2. The fixed point set contains one surface, which is a sphere, and \(M/T\) is homeomorphic to a three-disk.
3. The fixed point set contains two surfaces that have the same genus \(g\), and \(M/T\) is homeomorphic to \([0, 1] \times \Sigma\) where \(\Sigma\) is a surface of genus \(g\).

Proof. By rescaling \(\omega\) if necessary, we may assume that the momentum image is the interval \([0, 1]\). Since 0 and 1 are vertices of \([0, 1]\), Lemma 2.4 and Remark 2.5 imply that each of \(\mu^{-1}(\{0\})\) and \(\mu^{-1}(\{1\})\) is a connected component of the fixed point set that is either a single point or a fixed surface. By the local normal form theorem, a fixed point that is not isolated is a local minimum or local maximum of the momentum map; since by the convexity package the momentum map is open as a map to its image \([0, 1]\), such a fixed point must be mapped to 0 or to 1. Hence, there are at most two components of the fixed point set that are not isolated fixed points, and each of them is mapped to 0 or to 1.

Assume first that the fixed point set contains no surfaces. Then the fixed points are isolated, and so none of the isotropy weights at any fixed point are zero. Hence, \(M/T\) is homeomorphic to a three-sphere by Part (b) of Corollary 2.16.

Assume now that the fixed point set contains exactly one surface \(\Sigma\). By replacing \(\omega\) by \(-\omega\) if necessary, we may assume that \(\mu(\Sigma) = 1\). Since \(\Sigma\) is the only fixed surface, \(\mu^{-1}(\{0\})\)
Table 1. Examples of geometric quotients

1	\(G_2(\mathbb{C}^4) = \{ E_2^2 \subset \mathbb{C}^4 \} \)	8	\((S^1)^4/\text{diag}\)	1	homeo \(\cong S^5\)
2	\(F_3 = \{ L_1^2 \subset E_2^2 \subset \mathbb{C}^3 \} \)	6	\((S^1)^3/\text{diag}\)	1	homeo \(\cong S^4\)
3	\(G_2^+(\mathbb{R}^5) = \{ E_2^2 \subset \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R} \} \)	6	\((S^1)^2\)	1	homeo \(\cong S^4\)
4	\(S^1 \circ (S^2)^2 \)	6	\((S^1)^2\)	1	homeo \(\cong S^4\)
5	\(a \cdot (u, v) = (a \cdot u, a \cdot v) \)	4	\(S^1 \)	1	homeo \(\cong S^3\)
6	\(S^1 \circ \mathbb{C}P^2 \)	4	\(S^1 \)	1	homeo \(\cong D^3\)
7	\(S^1 \circ \Sigma_g \times S^2 \)	4	\(S^1 \)	1	homeo \(\cong \Sigma_g \times I\)
8	\((a, b) \cdot (u, v, w) = (a \cdot u, a \cdot v, b \cdot w) \)	6	\(S^1 \times S^1 \)	1	homeo \(\cong S^3 \times I\)
9	\(\mathbb{C}P^5 = \mathbb{P}(\wedge^2 \mathbb{C}^4) \)	10	\((S^1)^4/\text{diag}\)	2	homeo \(\cong \mathbb{C}P^2 \times S^2\)
10	\(G_2(\mathbb{C}^5) = \{ E_2^2 \subset \mathbb{C}^5 \} \)	12	\((S^1)^5/\text{diag}\)	2	homot. \(\cong S^3 \times \mathbb{C}P^2\)

is an isolated fixed point. Hence, \(\Delta_{\text{short}} = \{0\} \). By Part (a) of Corollary 2.16, this implies the \(M/S^1 \) is homeomorphic to \([0,1] \times S^2/\sim\), where \(\sim \) is the finest equivalence relation such that \((0, x) \sim (0, x')\). Define a map from \([0,1] \times S^2 \rightarrow \mathbb{R}^3\) by \((t, x) \mapsto tx\), where we identify \(S^2 \) with the unit sphere in \(\mathbb{R}^3 \). This induces a homeomorphism from \([0,1] \times S^2/\sim\) to the three-disk \(D^3 \), and hence from \(M/T \) to \(D^3 \).

Finally, assume that the fixed point set contains two surfaces, \(\Sigma \) and \(\Sigma' \). By the first paragraph, we may assume that \(\mu^{-1}(\{0\}) = \Sigma \) and \(\mu^{-1}(\{1\}) = \Sigma' \). Hence, \(\Delta_{\text{short}} = \emptyset \), and so Theorem 2.14 implies that \(M/T \) is homeomorphic to \([0,1] \times \Sigma_g \) for some oriented surface \(\Sigma_g \).

3. Examples

In Table 1 we list some examples of symplectic torus actions and their geometric quotients.

We now discuss these examples and give some references.

(1) Let \(M \) be the Grassmannian of complex 2-planes in \(\mathbb{C}^4 \), with the three dimensional torus action induced from the standard action of \((S^1)^4 \) on \(\mathbb{C}^4 \). Then \(M/T \) is homeomorphic to the sphere \(S^5 \); this is shown in [7] and revisited in [9, Section 10]. Alternatively, we can identify \(M \) equivariantly with a coadjoint orbit in \(SU(4) \), where \(T \) is a maximal torus acting through the coadjoint action. There is a natural symplectic structure...
on every coadjoint orbit of any Lie group, and the coadjoint action is Hamiltonian. Hence, since the isotropy weights at each fixed point are in general position, we can apply Corollary 2.16 and conclude that $M/T \simeq S^5$.

(2) Let M be the manifold of complete complex flags in \mathbb{C}^3, with the two dimensional torus action that is induced from standard action of $(S^1)^3$ on \mathbb{C}^3. Then M/T is homeomorphic to the sphere S^4; this is shown in [8] and revisited in [9, Section 13]. Alternatively, M is a coadjoint orbit of $SU(3)$, and so — as in the previous example — $M/T \simeq S^4$ by Corollary 2.16.

(3) Let M be the Grassmannian of oriented (real) 2-planes in $\mathbb{R}^5 \cong (\mathbb{R}^2)^2 \times \mathbb{R}$, with the two dimensional torus action that is induced from the standard action of $(S^1)^2$ on the $(\mathbb{R}^2)^2$ factor. By identifying M with a coadjoint orbit of $SO(5)$, we obtain a symplectic form such that the action is Hamiltonian. Since the isotropy weights at each fixed point are in general position, M/T is homeomorphic to S^4 by Corollary 2.16.

(4) Let (M, ω, μ) be the compact symplectic six manifold with Hamiltonian $(S^1)^2$ action constructed in [29]. The picture drawn in the table shows the momentum map image of the orbit type strata; the dots represent fixed points and the lines between them represent points with circle stabilizer. As the second author showed in [29]; M does not admit any invariant Kähler structure. As in the previous examples, M/T is homeomorphic to S^4 by Corollary 2.16.

(5) Let M be the product of the two-sphere S^2 with itself. There is a standard area form on S^2; the height function is a momentum map for the circle action that rotates the sphere around the vertical axis. Take the product symplectic form on M; then the momentum map for the diagonal circle action sends (u, v) to the sum $u_3 + v_3$. By Corollary 2.17 (alternatively, by Corollary 2.16), M/T is homeomorphic to S^4.

(6) Let $M = \mathbb{C}P^2$, with the Fubini-Study symplectic form, the circle action given by $a \cdot [z_0, z_1, z_2] = [az_0, z_1, z_2]$, and momentum map $[z_0, z_1, z_2] \mapsto \frac{|z_0|^2}{|z_0|^2 + |z_1|^2 + |z_2|^2}$. By Corollary 2.17, M/T is homeomorphic to D^3.

(7) Let $M = \Sigma_g \times S^2$, where Σ_g is a surface of genus g, with the circle acting on the second factor, a product symplectic form, and momentum map $(u, v) \mapsto v_3$. Corollary 2.17 implies that M/T is homeomorphic to $\Sigma_g \times I$; this is also easy to see directly.

(8) Let $M = (S^2)^3$ with the product symplectic form, the $S^1 \times S^1$ action $(a, b) \cdot (u, v, w) = (a \cdot u, a \cdot v, b \cdot w)$, and momentum map $(u, v, w) \mapsto (u_3 + v_3, w_3)$. The momentum image Δ is the rectangle $[-2, 2] \times [-1, 1]$, and $\Delta_{\text{short}} = \{-2, 2\} \times [-1, 1]$. By Theorem 2.14, this implies that M/T is homeomorphic to $S^3 \times I$. Alternatively, this follows from the fact that $S^2/S^1 \simeq I$ and, as we saw above, $(S^2)^2/S^1 \simeq S^3$.

(9) Let M be the projective space $\mathbb{C}P^5$, with the three dimensional torus action induced by the $(S^1)^4$ action on $\wedge^2 \mathbb{C}^4 \cong \mathbb{C}^6$, which itself is induced by the standard action on \mathbb{C}^4. By [7], the quotient M/T is homeomorphic to the join $\mathbb{C}P^2 \ast S^2$.

8
(10) Let M be the Grassmannian of two planes in \mathbb{C}^5, with the four dimensional torus action induced from the standard action of $(S^1)^5$ on \mathbb{C}^5. Theorem 16 in [8] states that M/T is homotopic to the join of the boundary of a polytope and \mathbb{CP}^2.

Appendix A. Hamiltonian T actions

A torus T is a Lie group that is isomorphic to $(S^1)^r$ for some non-negative integer r. A symplectic manifold is a manifold M equipped with a differential two-form ω that is closed and non-degenerate. A momentum map is a map from the manifold to the dual of the Lie algebra of the torus such that, for every element ξ and non-degenerate. A momentum map is a map from the manifold to the dual of the Lie algebra of the torus such that, for every element ξ of the Lie algebra \mathfrak{t} of the torus, the corresponding vector field ξ_M on M (whose value at a point $x \in M$ is $\xi_M(x) = \frac{d}{dt} \exp(t\xi) \cdot x$) and the corresponding component of the momentum map $\mu^\xi : M \rightarrow \mathbb{R}$ (whose value at a point $x \in M$ is $\langle \mu(x), \xi \rangle$ where $\langle \cdot , \cdot \rangle$ is the pairing between \mathfrak{t}^* and \mathfrak{t}) are related by Hamilton’s equations

$$d\mu^\xi = -\iota(\xi_M)\omega \quad \text{for all } \xi \in \mathfrak{t}$$

(where $\iota(\xi_M)\omega(v) = \omega(\xi_M, v)$ for any $v \in TM$). We then call the T action Hamiltonian.

If M is connected, then the affine span of the momentum image $\mu(M)$ is a translate of the annihilator of the Lie algebra of the kernel of the action. This is a consequence of Hamilton’s equations.

The symplectic form is T invariant. We recall why. For any $\xi \in \mathfrak{t}$, the Lie derivative of ω along ξ_M satisfies $L_{\xi_M} \omega = \frac{d}{dt} (\xi_M) \omega + \iota(\xi_M) d\omega$; the first summand vanishes because (by Hamilton’s equation) $\iota(\xi_M) \omega$ is exact; the second summand vanishes because (by assumption) ω is closed.

The momentum map is constant on orbits. We recall why. For any $\xi, \eta, \zeta \in \mathfrak{t}$ we have

$L_{\xi_M} (\omega(\eta_M, \zeta_M)) = (L_{\xi_M} \omega)(\eta_M, \zeta_M) + \omega([\xi_M, \eta_M], \zeta_M) + \omega(\eta_M, [\xi_M, \zeta_M])$; the first summand vanishes because the symplectic form is T invariant; the second and third summands vanish because T is abelian. Hence, $\omega(\eta_M, \zeta_M)$ is constant along T orbits. By Hamilton’s equation, $\omega(\eta_M, \zeta_M) = L_{\eta_M} \mu^\zeta_M$; because for each T orbit the right hand vanishes at the point on the (compact) orbit where μ^ζ_M attains its maximum, $L_{\eta_M} \mu^\zeta_M = 0$. Because $\eta \in \mathfrak{t}$ is arbitrary, μ^ζ_M is constant along T orbits; because $\zeta \in \mathfrak{t}$ is arbitrary, μ is constant along T orbits.

Appendix B. Local normal form

A Hamiltonian T model is a Hamiltonian T-manifold (Y, ω_Y, μ_Y) that is obtained by the following construction. Let a closed subgroup H of T act on \mathbb{C}^n through a homomorphism $H \rightarrow (S^1)^n$ followed by the standard action of $(S^1)^n$ on \mathbb{C}^n; the corresponding quadratic momentum map $\mu_H : \mathbb{C}^n \rightarrow \mathfrak{h}^*$ is $z \mapsto \sum_{j=1}^n \frac{|z_j|}{2} \eta_j$ where $\eta_1, \ldots, \eta_n \in \mathfrak{h}^*_Z$ are the weights for the T action on \mathbb{C}^n. Take Y to be the manifold $T \times_H (\mathfrak{h}_0^0 \times \mathbb{C}^n)$ where \mathfrak{h}_0^0 is the annihilator in \mathfrak{t}^* of the Lie algebra of H. Here, we quotient by the anti-diagonal action of H, in which $a \in H$ acts on Y by right multiplication by a^{-1}, it acts on \mathfrak{h}_0^0 trivially, and it acts on \mathbb{C}^n through the given action. The torus T acts on Y by left multiplication on the T factor. The central orbit in the model Y is the orbit $[a, 0, 0]$. The momentum map is $\mu_Y ([a, \nu, z]) = \alpha + \nu + \mu_H(z)$ for some $\alpha \in \mathfrak{t}^*$, where we have identified \mathfrak{t}^* with $\mathfrak{h}_0^0 \oplus \mathfrak{h}_0^*$ and where μ_H is the quadratic momentum map for the linear H action. The pullback of ω_Y to $T \times \mathfrak{h}_0^0 \times \mathbb{C}^n$ coincides with the pullback by the inclusion map $(a, \nu, z) \mapsto (a, \nu + \Phi_H(z), z)$ of $T \times \mathfrak{h}_0^0 \times \mathbb{C}^n$ into $(T \times \mathfrak{t}^*) \times \mathbb{C}^n$.
where the latter is equipped with the product of the standard symplectic form on $T \times \mathfrak{t}^*$ viewed as the cotangent bundle of T and the standard symplectic form $\sum_{j=1}^n dx_j \wedge dy_j$ on \mathbb{C}^n.

Theorem B.1 (Local normal form). For every orbit in M there exists an equivariant symplectomorphism that preserves the momentum maps from a neighbourhood of the orbit in M to a neighbourhood of the central orbit in some Hamiltonian T model.

References

[1] Michael F. Atiyah, *Convexity and commuting Hamiltonians*, Bull. London Math. Soc. **14** (1982), no. 1, 1–15.

[2] Michèle Audin, *Torus Actions on Symplectic Manifolds*, Birkhäuser, 2004.

[3] Anton Ayzenberg, *Torus actions of complexity one and their local properties*, arXiv:1802.08828v1 [math.AT].

[4] Christina Bjorndahl and Yael Karshon, *Revisiting Tietze-Nakajima: local and global convexity for maps*, Canad. J. Math. vol. **62** (5), (2010), 975–993.

[5] P. Birtea, J-P. Ortega, and T. S. Ratiu, *Openness and convexity for momentum maps*, Trans. Amer. Math. Soc. **361** (2009), no. 2, 603–630.

[6] P. Birtea, J-P. Ortega, and T. S. Ratiu, *A local-to-global principle for convexity in metric spaces*, J. Lie Theory **18** (2008), no. 2, 445–469.

[7] Victor M. Buchstaber and Svjetlana Terzic, *Topology and geometry of the canonical action of T^4 on the complex Grassmanian $G_{4,2}$ and the complex projective space \mathbb{CP}^5*, Mosc. Math. J. **16** (2016), no. 2, 237–273. (Eprint: arXiv:1410.2482v3 [math.AT].)

[8] Victor M. Buchstaber and Svjetlana Terzic, *Toric topology of the complex Grassman manifolds*, arXiv:1802.06449v2 [math.AT].

[9] Victor M. Buchstaber and Svjetlana Terzic, *The foundations of $(2n,k)$-manifolds*, arXiv:1803.05766v1 [math.AT].

[10] M. Condevaux, P. Dazord, and P. Molino, *Géométrie du Moment* (Séminaire Sud-Rhodanien), Publ. département de mathématiques, Université Claude Bernard Lyon I, 1988.

[11] Thomas Delzant, *Hamiltoniens périodiques et image convexe de l’application moment*, Bull. Soc. Math. France **116** (1988), 315–339.

[12] Leonor Godinho, *Blowing up symplectic orbifolds*, Annals of Global Analysis and Geometry **20** (2001), 117–162.

[13] M. Goresky and R. MacPherson, *On the topology of algebraic torus actions*, in: *Algebraic Groups*, Utrecht 1986, Lecture Notes in Mathematics **1271**, Springer–Verlag (1987), 73–90.

[14] Victor Guillemin and Shlomo Sternberg, *Convexity properties of the moment mapping*, Invent. math. **67** (1982), 491–513.

[15] Victor Guillemin and Shlomo Sternberg, *Birational equivalence in the symplectic category*, Invent. math. **97** (1989), 485–522.

[16] J. Hilgert, K.-H. Neeb, and W. Plank, *Symplectic convexity theorems*, Sem. Sophus Lie **3** (1993), no. 2, 123–135.

[17] D. Husemoller, *Fiber Bundles*, Third Edition, Springer-Verlag, New York, Inc. 1994.

[18] Yael Karshon, *Periodic Hamiltonian flows on four dimensional manifolds*, Mem. Amer. Math. Soc. **672**, 1999.

[19] Yael Karshon and Susan Tolman, *The moment map and line bundles over presymplectic toric manifolds*, J. Diff. Geom. **38** (1993), 465–484.

[20] Yael Karshon and Susan Tolman, *Centered complexity one Hamiltonian torus actions*, Trans. Amer. Math. Soc. **353**, no. 12 (2001), pp. 4831–4861.

[21] Yael Karshon and Susan Tolman, *Complete invariants for Hamiltonian torus actions with two dimensional quotients*, J. Sympl. Geom. **2**, no. 1 (2003), 25–82.

[22] Yael Karshon and Susan Tolman, *Classification of Hamiltonian torus actions with two-dimensional quotients*, Geometry and Topology **18** (2014), pp. 669–716.
[23] Yael Karshon and Susan Tolman, Classification of complexity one torus actions (tentative title), in preparation.
[24] Eugene Lerman, Eckhard Meinrenken, Susan Tolman, and Chris Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998), 4831–4861.
[25] Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. vol. 349 no. 10 (1997), 4201–4230.
[26] Eugene Lerman and Reyer Sjamaar, Stratified symplectic spaces and reduction, Annals of Mathematics, 134 (1991), 375–422.
[27] Kathleen Smith, Connectivity and convexity properties of the momentum map for group actions on Hilbert manifolds, Ph.D. thesis, University of Toronto, 2013, and arXiv:1407.4351 [math.SG].
[28] Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes, arXiv eprint, October 2018.
[29] Susan Tolman, Examples of non-Kähler Hamiltonian torus actions, Invent. Math. 131 (1998), 299–310.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, 40 ST. GEORGE STREET, 6TH FLOOR, TORONTO ONTARIO M5S 2E4, CANADA
E-mail address: karshon@math.toronto.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801
E-mail address: stolman@math.uiuc.edu