Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in 208Pb from a Bayesian Approach

Jun Xu(徐骏)1,2*

1The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

(Received 17 December 2020; accepted 25 January 2021; published online 6 April 2021)

The remaining uncertainties in relation to isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although neutron-skin thickness data or isovector giant dipole resonance data in 208Pb can constrain only one isovector interaction parameter, correlations among other parameters can also be built. Using combined data for both the neutron-skin thickness and the isovector giant dipole resonance helps to significantly constrain all isovector interaction parameters; as such, it serves as a useful methodology for future research.

DOI: 10.1088/0256-307X/38/4/042101

Extracting the properties of nuclear interactions from observables in finite nuclei is an effective approach to understanding strong interactions with fewer uncertainties. Thanks to pioneering studies by nuclear physicists, isoscalar nuclear interactions are so far better constrained; however, larger uncertainties still exist, mainly in relation to isovector nuclear interactions, impeding a more accurate understanding of the properties of radioactive nuclei, dynamics in nuclear reactions induced by neutron-rich nuclei, and many other interesting astrophysical phenomena, such as gravitational waves emerging from neutron-star mergers. On the one hand, isovector nuclear interactions can be manifested in the isospin-dependent part of the nuclear matter equation of state, i.e., the nuclear symmetry energy E_{sym}, which is generally characterized by the value E_{sym}^0 at the saturation density $\rho_0 = 0.16 \text{fm}^{-3}$, as well as its slope parameter $L = 3\rho_0(dE_{\text{sym}}/d\rho)_{\rho_0}$ around the saturation density. In recent years, constraints of $E_{\text{sym}}(\rho_0) = 31.7 \pm 3.2 \text{MeV}$ and $L = 58.7 \pm 28.1 \text{MeV}$ have been obtained from surveying 53 analyses carried out by 2016, using various terrestrial nuclear laboratory data and astrophysical observations; however, more accurate constraints are still called for. On the other hand, isovector nuclear interactions also determine the properties of single-nucleon potentials in neutron-rich medium. As a result of momentum-dependent single-nucleon potential, nucleons move with an effective mass, m^*, rather than a free mass, m, in nuclear matter, similarly to the case of electron dynamics near the gap between energy bands in semiconductors. Different neutron and proton effective masses affect not only isospin-dependent nucleon dynamics in heavy-ion collisions, but also the properties of neutron-rich nuclei. Since both nuclear symmetry energy E_{sym} and neutron-proton effective mass splitting $m_n^*-m_p^*$ originate from isovector nuclear interactions, it is not surprising that they are related to each other through the Hugenholtz–van Hove theorem.

This study serves as an attempt to constrain isovector nuclear interactions manifested by nuclear symmetry energy and neutron-proton effective mass splitting via the properties of 208Pb, a heavy spherical nucleus free from ambiguities in terms of clustering, deformation, etc. We focus primarily on the isovector giant dipole resonance (IVGDR) and the neutron-skin thickness in 208Pb. The isovector giant dipole resonance can be considered as a collective excitation mode, with neutrons and protons moving relatively to each other in a nucleus like a harmonic oscillator, where the symmetry energy acts as a restoring force while the nucleon effective mass, which is an analogue of the oscillator mass, may also affect the dynamics as such, the de-excitation spectrum, measured experimentally, can function as a means of probing both properties. The neutron-skin thickness, defined as the difference between neutron and proton rms radii in a nucleus, is primarily due to a stronger pressure for neutrons than that for protons, and is one of the most robust and sensitive probes of the symmetry energy slope parameter. Although each observable is not expected to pin down both symmetry energy and neutron-proton effective mass splitting, we will show that using both observables in the same way will lead to more accurate constraints of isovector nuclear interactions.
The 208Pb nucleus helps to constrain significantly isovector nuclear interactions.

For the theoretical calculation of isovector giant dipole resonance and neutron-skin thickness, we use the Skyrme–Hartree–Fock (SHF) model, originating from the following effective interaction between two nucleons at \(r_1 \) and \(r_2 \):

\[
v(r_1, r_2) = t_0 (1 + x_0 P_\rho) \delta(r) + \frac{1}{2} t_1 (1 + x_1 P_\rho) |k|^2 \delta(r) + \delta(r) k^2 + t_2 (1 + x_2 P_\rho) k \cdot \delta(r) k + \frac{1}{6} t_3 (1 + x_3 P_\rho) \rho^a \rho^b \delta(r) + i W_0 (\sigma_1 + \sigma_2) \cdot [k' \times \delta(r) k].
\]

(1)

Here, \(r = r_1 - r_2 \) and \(R = (r_1 + r_2)/2 \), respectively, represent the relative and the central coordinate, \(k = (\nabla_1 - \nabla_2)/2i \) is the relative momentum operator, with \(k' \) as its complex conjugate acting on the left, and \(P_\rho = (1 + \sigma_1, \sigma_2)/2 \) is the spin exchange operator, with \(\sigma_1(2) \) being the Pauli matrices. The spin-orbit coupling constant is fixed at \(W_0 = 133.3 \text{ MeV fm}^3 \). Instead of the usual fitting process, the other 9 SHF parameters, \(t_0, t_1, t_2, t_3, x_0, x_1, x_2, x_3, \) and \(\alpha \), can be inversely solved from 9 macroscopic quantities characterizing the saturation properties of nuclear matter,\({}^{[34]}\) including the isoscalar and isovector nucleon effective mass \(m_s^* \) and \(m_\alpha^* \) at the Fermi momentum in normal nuclear matter, and the symmetry energy \(E_{\text{sym}}^0 \) and its slope parameter \(L \) at the saturation density. The isoscalar nucleon effective mass, \(m_s^* \), is the nucleon effective mass in isospin symmetric nuclear matter, while the isovector nucleon effective mass, \(m_\alpha^* \), is the proton (neutron) effective mass in pure neutron (proton) matter. Up to the linear order of the isospin asymmetry, \(\delta \), neutron-proton effective mass splitting is related to \(m_s^* \) and \(m_\alpha^* \) via the relation

\[
m_s^* - m_\alpha^* \approx \frac{2m_s^*}{m_\alpha^*} (m_s^* - m_\alpha^*) \delta.
\]

(2)

Determining the SHF parameters from expressions of macroscopic quantities\({}^{[34]}\) provides the possibility of changing the value of only one of them, while keeping the same values for others; in this way, one can investigate the effect on observables from only one particular macroscopic quantity. In this study, we fix \(m_s^* = 0.83m \) in order to approximately reproduce the excitation energy of the isoscalar giant quadrupole resonance, independent of other macroscopic quantities, and change only one individual quantity, e.g., \(E_{\text{sym}}^0 \), \(L \), or \(m_\alpha^* \), at a time, while keeping the values of other macroscopic quantities at their empirical values given in Table I of Ref.\({}^{[34]}\).

Based on the Hartree–Fock method, the effective interaction in Eq. (1) leads to the standard SHF energy-density functional\({}^{[35]}\) with time-odd terms neglected in the calculation of spin-saturated spherical nuclei. With the single-nucleon Hamiltonian obtained via the variational principle from the energy-density functional,\({}^{[36]}\) the nucleon wave functions can be calculated based on the Schrödinger equation, giving us the nucleon density distributions. The Reinhard SHF code\({}^{[37]}\) is used to calculate the nucleon density distribution and the neutron-skin thickness \(\Delta r_{\text{np}} \) in 208Pb via the above standard procedure.

With the nucleon wave functions obtained from the Hartree–Fock method, the random-phase approximation (RPA) method can be used to calculate the strength function of a particular nucleus resonance,

\[
S(E) = \sum_{\nu} |\langle \nu | F_j | 0 \rangle|^2 \delta(E - E_\nu),
\]

(3)

where the square of the reduced matrix element, \(|\langle \nu | F_j | 0 \rangle|^2 \), represents the transition probability from the ground state, \(|0\rangle \), to the excited state, \(|\nu\rangle \), with \(F_j \) being the operator of the nucleus excitation. For IVGDR, the operator can be expressed as

\[
\hat{F}_{1M} = \frac{N}{A} \sum_{i=1}^{Z} r_i Y_{1M}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^{N} r_i Y_{1M}(\hat{r}_i),
\]

(4)

where \(N, Z, \) and \(A \) represent the neutron, proton, and nucleon numbers in a nucleus, respectively, \(r_i \) is the coordinate of the \(i \)-th nucleon with respect to the center-of-mass of the nucleus, and \(Y_{1M}(\hat{r}_i) \) denotes the spherical Bessel functions, with the magnetic quantum number \(M \) degenerate in spherical nuclei. The two observables characterizing the strength function of IVGDR, i.e., the centroid energy, \(E_{-1} \), and the electric polarizability, \(\alpha_D \), can be obtained from the moments of the strength function

\[
m_k = \int_0^\infty dE E^k S(E)
\]

(5)

through the relations

\[
E_{-1} = \sqrt{m_1/m_{-1}}, \quad \alpha_D = \frac{8\pi e^2}{9} m_{-1}.
\]

(6)

The open source code developed in Ref.\({}^{[38]}\) is used to calculate the \(E_{-1} \) and \(\alpha_D \) of the IVGDR in 208Pb, using the RPA method, based on the SHF model.

We have employed the Bayesian analysis method to obtain the probability distribution function (PDF) of the symmetry energy \(E_{\text{sym}} \), and the isovector nucleon effective mass \(m_\alpha^* \) from the neutron-skin thickness \(\Delta r_{\text{np}} \), as well as the centroid energy \(E_{-1} \) and the electric polarizability \(\alpha_D \) in 208Pb. How the experimental data improves our knowledge of model parameters can be described by Bayes’ theorem, formally written as

\[
P(M|D) = \frac{P(D|M)P(M)}{\int P(D|M)P(M) dM}.
\]

(7)
Here, $P(M|D)$ is the posterior PDF for the model M, given the experimental data D, which is seen to be normalized by the denominator of the right-hand side. $P(M)$ denotes the prior PDF of the model M prior to being confronted with the experimental data, and we choose the prior PDFs of the model parameters $p_1 = L$, uniformly distributed within $(0, 120)$ MeV, $p_2 = E_{35}^{0}$, uniformly distributed within $(25, 35)$ MeV, and $p_3 = m_{c}^{*}/m$, uniformly distributed within $(0.5, 1)$. In this way, we investigate what information Δr_{np} and/or IVGDR alone can provide in terms of the model parameters, though the use of PDFs from previous studies may introduce additional information on the posterior PDFs of these parameters. Within these large prior distribution ranges of isovector interaction parameters, the binding energies and charge radii of ^{208}Pb deviate by only a few percent at most, demonstrating that we are exploring a reasonable parameter space. Here, $P(D|M)$ is the likelihood function, describing how well the theoretical model, M, predicts the experimental data, D, and it is defined as

$$P[D|d_{1,2,3}][M(p_{1,2,3})] = \frac{1}{\sqrt{2\pi}\sigma_{i}} \exp \left[-\frac{(d_{i}^{\exp} - d_{i}^{\text{theo}})^{2}}{2\sigma_{i}^{2}} \right],$$

where $d_{1,2,3}$ represent the experimental data of Δr_{np}, E_{-1}, and α_{D} in ^{208}Pb, respectively, and d_{i}^{theo} denote, respectively, the theoretical result and the mean value of the experimental result of the ith observable. In principle, σ_{i}, denoting the width of the likelihood function, represents both the experimental and theoretical error, while it is chosen as the 1σ error bar of the experimental measurement for the purposes of this study. For the IVGDR in ^{208}Pb, the centroid energy E_{-1} = 13.46 MeV was accurately measured from photon-neutron scatterings, and the electric polarizability $\alpha_{D} = 19.6 \pm 0.6$ fm3 was obtained from polarized proton inelastic scatterings with the quasi-deuteron excitation contribution subtracted. An artificial error bar of 0.1 MeV is used for the well-determined E_{-1} value of the IVGDR. For the neutron-skin thickness in ^{208}Pb, the values of Δr_{np} are different, based on different measurements. For example, $\Delta r_{np} = 0.211^{+0.054}_{-0.063}$ fm and 0.16 ± 0.07 fm were obtained from proton and pion scattering, respectively, $\Delta r_{np} = 0.18 \pm 0.04$ fm was obtained from the annihilation of antiprotons on the nuclear surface, and $\Delta r_{np} = 0.33^{+0.15}_{-0.14}$ fm was measured from purity-violating electron scatterings. In our study, we use the imagined experimental data of $\Delta r_{np} = 0.15$ and 0.20 fm, each with imagined error bars of 0.02 and 0.06 fm, while awaiting new data from the lead (^{208}Pb) radius experiment at the Jefferson Laboratory, and the Mainz radius experiment at the Mainz energy recovery superconducting accelerator. The calculation of the posterior PDFs is based on the Markov–Chain Monte Carlo approach, using the Metropolis–Hastings algorithm, and the samples are analyzed after convergence without the initial burn-in steps. The PDF of a single model parameter p_{i} is given by

$$P[p_{i}|D] = \int \frac{P(D|M)P(M)\Pi_{j \neq i} dp_{j}}{\int P(D|M)P(M)\Pi_{j} dp_{j}},$$

while the correlated PDF of the two model parameters, p_{i} and p_{j}, is given by

$$P[p_{i}, p_{j}|D] = \int \frac{P(D|M)P(M)\Pi_{k \neq i, j} dp_{k}}{\int P(D|M)P(M)\Pi_{k} dp_{k}}.$$
Although neutron-skin thickness data and the IVGDR data, taken individually, can each pin down only one isovector interaction parameter, the data can lead to correlations between other parameters, based on the Bayesian approach. Combining both the neutron-skin thickness and the IVGDR data in 208Pb helps significantly to constrain all three isovector interaction parameters, m_{sym}^*, L, and E_{sym}^0, as shown in Figs. 3 and 4. We note that incorporating the IVGDR data slightly reduces the MAP value of the L PDF, from about 35 MeV to 31 MeV for $\Delta r_{np} = 0.15 \pm 0.02$ fm, and from about 74 MeV to 55 MeV for $\Delta r_{np} = 0.20 \pm 0.02$ fm, respectively. On the other hand, incorporating the neutron-skin thickness data has almost no effect on the PDF of m_{sym}^*. Since L and E_{sym}^0 are correlated, E_{sym}^0 is also constrained around a MAP value of about 30 MeV based on $\Delta r_{np} = 0.15 \pm 0.02$ fm and IVGDR data, but is greater than 35 MeV for $\Delta r_{np} = 0.20 \pm 0.02$ fm and IVGDR data, if the range of E_{sym}^0 is enlarged. Again, neutron-skin thickness data with a larger error bar of 0.06 fm do not change the PDF of m_{sym}^*, but lead to broader PDFs of both L and E_{sym}^0. This study calls for real data with respect to the neutron-skin thickness in 208Pb, taken from a more reliable experimental measurement.

To summarize, we have studied the constraints on the isovector interaction parameters, i.e., the symmetry energy at the saturation density E_{sym}^0, the slope parameter of the symmetry energy L, and the isovector nucleon effective mass, m_{sym}^*, based on the imagined neutron-skin thickness data and the real isovector giant dipole resonance (IVGDR) data in 208Pb, via a Bayesian approach. Although the neutron-skin thickness data can only constrain L, and the IVGDR data can only constrain m_{sym}^*, they facilitate correlations between other parameters. Combining both the neutron-skin thickness data and the IVGDR data helps to constrain significantly all three isovector interaction parameters.
This study is based on theSkyrme–Hartree–Fockmodel, together with the random-phaseapproximation method. We note that the correlationbetween model parameters can be built with givenexperimen-tal data, e.g., the neutron-skin thickness and IVGDR,while the Bayesian analysis serves as a useful tool withwhich to reveal that correlation. A slightly differentcorrelation could be obtained from different theoreti-cal models, e.g., the relativistic mean-field model. Itwould be very interesting to investigate the model-depencence of this type of study, and to use additionalexperimental data in order to offer a more robust con-straint of model parameters by employing a Bayesiananalysis.

The author thanks Bao-An Li and Wen-Jie Xie forhelpful discussions.

References

[1] Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335
[2] Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325
[3] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109
[4] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[5] Li B A and Han X 2013 Phys. Lett. B 727 276
[6] Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007
[7] Li B A, Cai B J, Chen L W and Xu J 2018 Prog. Part. Nucl. Phys. 99 29
[8] Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607
[9] Trippa L, Colò G and Vigezzi E 2008 Phys. Rev. C 77 061304(R)
[10] Reinhard P G and Nazarewicz W 2010 Phys. Rev. C 81 051303(R)
[11] Piekarewicz J, Agrawal B K, Colò G, Nazarewicz W, Paar N, Reinhard P G, Roca-Maza X and Vretenar D 2012 Phys. Rev. C 85 041302(R)
[12] Vretenar D, Nin Y F, Paar N and Meng J 2012 Phys. Rev. C 85 044317
[13] Roca-Maza X, Brenna M, Colò G, Centelles M, Vi N X, Agrawal B K, Paar N, Vretenar D and Piekarewicz J 2013 Phys. Rev. C 88 024316
[14] Colò G, Garg U and Sagawa H 2014 Eur. Phys. J. A 50 26
[15] Roca-Maza X, Vi N X, Centelles M, Agrawal B K, Colò G, Paar N, Piekarewicz J and Vretenar D 2015 Phys. Rev. C 92 064304
[16] Zhang Z and Chen L W 2015 Phys. Rev. C 92 035801(R)
[17] Zheng H, Burrello S, Colonna M and Baran V 2016 Phys. Rev. C 94 014313
[18] Xu J and Qin W T 2020 Phys. Rev. C 102 024306
[19] Zhang Z and Chen L W 2016 Phys. Rev. C 93 034335
[20] Kong H Y, Xu J, Chen L W, Li B A and Ma Y G 2017 Phys. Rev. C 95 034324
[21] Brown B A 2000 Phys. Rev. Lett. 85 5296
