LONG COVID

Natalie F. Holt, MD, MPH
Chief Medical Officer
Great Plains Area Indian Health Service
The Definition

- The many names of COVID
- CDC and WHO Definitions
- Diagnosis of Exclusion
Known by Many Names...

- Long COVID
- Post-COVID Syndrome
- Long-haul COVID
- Post-acute COVID
- Post-acute sequelae of COVID (PASC)

...Still Only One Syndrome (we think)
“The occurrence of new, returning, or ongoing health problems 4 or more weeks after an initial infection with SARS-CoV-2.”

https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html
“Post COVID-19 condition occurs in individuals with a history of probable or confirmed SARS CoV-2 infection, usually 3 months from the onset of COVID-19 with symptoms and that last for at least 2 months and cannot be explained by an alternative diagnosis.”

Common symptoms: include fatigue, shortness of breath, cognitive dysfunction but also others and generally have an impact on everyday functioning.

Symptoms may be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness. Symptoms may also fluctuate or relapse over time.”

https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
Long COVID

- No diagnostic test
- Diagnosis of exclusion

Long COVID

Many other things
Prevalence

Current prevalence of Long COVID is unclear...
- Lack of clarity over case definition
- Difficult to distinguish from other post-illness conditions
Prevalence:
Difficulty in Differentiation

Difficult to separate what is Long COVID versus what is:

- Post-sepsis syndrome
- Post-intensive care syndrome
- Exacerbation of pre-existing conditions
- Complications of treatments
- Complications of interventions that occurred while hospitalized
Prevalence: Post-Intensive Care Syndrome

Symptoms remaining after critical illness from any cause:

• ICU-acquired weakness: Up to 50% of patients who stay for at least one week
• Cognitive dysfunction: 30-80% of patients
• Post-Traumatic Stress Disorder (PTSD), depression, anxiety, difficulty with sleep

https://www.sccm.org/MyICUCare/THRIVE/Post-intensive-Care-Syndrome
Prevalence: Post-Sepsis Syndrome

Symptoms remaining after critical illness from infection:

• Over 1 million individuals in the U.S. survive an episode of sepsis each year
• One-sixth have persistent physical disability
• Many are readmitted to the hospital
• One-third die in the year following the sepsis episode

Prescott HC and Angus DC. JAMA. 2018.
Iwashyna TJ, et al. JAMA. 2010.
Currently experiencing long COVID, as a percentage of all adults

Data from the U.S. Census Household Pulse Survey

- 40% U.S. adults report having had COVID
- 35% U.S. adults who had COVID report ever having long COVID symptoms
- 7.5% U.S. (1 in 13) adults report current long COVID symptoms

https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm
Prevalence of Long COVID may be higher

• Data from international surveys
• 35-54% of patients with mild acute COVID had persistent symptoms at 2-4 months
• 50-76% reported new symptoms not present during acute COVID or that resolved then reappeared
• 9% reported symptoms as severe

Salmon-Ceron et al. J. Infect. 2020.
Petersen et al. Clin Infect Dis. 2020
Nehme et al. Ann Intern Med. 2020.
The Risk Factors for Long COVID

- Not well-known
- Hospitalization during acute infection
- Females > males
- Middle-aged adults > older adults
- High viral load during active infection
- Unvaccinated > vaccinated
| Phase | Jun 1 - Jun 13, 2022 | |
|---|---|---|
| | Percent | 95% CI |
| National Estimate | | |
| United States | 7.5 | 7.1 - 7.9 |
| By Age | | |
| 18 - 29 years | 8.4 | 7.0 - 9.9 |
| 30 - 39 years | 7.8 | 7.0 - 8.6 |
| 40 - 49 years | 8.8 | 7.9 - 9.7 |
| 50 - 59 years | 8.5 | 7.4 - 9.7 |
| 60 - 69 years | 6.6 | 5.8 - 7.5 |
| 70 - 79 years | 5.0 | 4.0 - 6.2 |
| 80 years and above | 2.8 | 2.0 - 3.8 |
| By Sex | | |
| Female | 9.4 | 8.9 - 10.0 |
| Male | 5.5 | 5.0 - 6.0 |
| By Gender identity | | |
| Cis-gender male | 5.3 | 4.8 - 5.8 |
| Cis-gender female | 9.4 | 8.8 - 10.0 |
| Transgender | 14.9 | 9.5 - 21.8 |
| By Sexual orientation | | |
| Gay or lesbian | 6.6 | 4.6 - 9.1 |

Data from the U.S. Census Household Pulse Survey

https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm
One in five patients not requiring supplemental oxygen during hospitalization had abnormal lung function after 6 months.
Long COVID

Highly variable symptoms
Pathophysiology
Evaluation/Treatment
Long COVID Symptoms

Most common:
Fatigue
Headache
Attention Disorder
Dyspnea/Altered breathing
Depression/Anxiety

Lopez-Leon S, et al. Sci Rep. 2021.
Angiotensin-converting enzyme 2 (ACE2) receptor

- Point of entry for SARS-CoV-2
- Elicits a downstream pro-inflammatory response, oxidative stress

Crook H, et al. BMJ. 2021.
SARS-CoV-2 and the Renin Angiotensin System (RAS)

- Virus upregulates the harmful and downregulates the protective arms of RAS
- High levels of Ang II
- Low levels of Ang 1-7, Ang 1-9

Latil M, et al. Drug Discovery Today. 2021.
Viral mediated parenchyma damage; immune mediated microvascular damage

a) Virus binds to ACE2 → cells release DAMPs/PAMPs
b) Macrophages release IL1 and TNF-alpha → neutrophils attracted to site
c) Neutrophils release chemokines → vascular permeability increased, differentiation of fibroblasts into myofibroblasts
d) Release of protein-rich exudate to interstitial space
e) Myofibroblasts release collagen, fibronectin, and ECM in response to TGF-beta → excess scar tissue deposition despite infection resolution

Dyspnea, hypoxia, fatigue, ground glass opacities and pulmonary fibrosis

Pathophysiology: Pulmonary

*DAMP = Damage Associated Molecular Patterns
*TNF = Tumor Necrosis Factor *ACE2 = Angiotensin-Converting Enzyme 2
*PAMP = Pathogen-Associated Molecular Pattern *ECM = Extracellular Matrix

Joshee S, et al. Mayo Clin Proc. 2022.
Long COVID Symptoms: Pulmonary

Presentation	Evaluation/Treatment
• Cough, shortness of breath, fatigue, chest pain, decreased exercise tolerance	• 6-minute walk test, Timed Up and Go (TUG) Test
• Secondary symptoms of palpitations, dizziness, anxiety can be exacerbated by shortness of breath	• Pulmonary function tests
• Chest myopathy from COVID-19 skeletal muscle injury and viral airway hyperresponsiveness contribute	• CT scan – ground glass opacities or fibrotic changes
• Vagal nerve inflammatory mediators and vocal cord dysfunction may be implicated	• Evaluate for sleep apnea – especially those with fatigue
	• Pulmonary rehabilitation
	• Drugs used to treat idiopathic fibrosis (pirfenidone, nintedanib, prednisolone)

Joshee S, et al. Mayo Clin Proc. 2022. www.sandiegocounty.gov/COVIDHealthProfessionals.
Pathophysiology: Cardiovascular

Immune-mediated myocardial and microvascular destruction.

a) Endothelial cell disruption similar to pulmonary
b) Increased cardiometabolic demand → myocardial injury via hypoxia and overuse
c) Chronic myocarditis and IL6 → fibrofatty replacement
d) Fibrofatty replacement → reentrant arrhythmias and sudden cardiac arrest and death
e) Medications also induce cardiotoxicity and electrolyte imbalances

Chest pain, palpitations, pericarditis, myocarditis, fibrosis, arrhythmias/death

Joshee S, et al. Mayo Clin Proc. 2022.

IL = Interleukin
Long COVID Symptoms: Cardiovascular

Presentation	Evaluation/Treatment
• Chest discomfort and palpitations, exercise Intolerance	• EKG may show tachycardia or PVCs
• Dysautonomia (tachycardia and orthostasis)	• Echocardiogram typically normal
• Postural Orthostatic Tachycardia Syndrome (POTS); occurs typically in females of childbearing age	• Orthostatic vital signs and, if needed, tilt-table testing
• Increased troponin, myocarditis, cardiac fibrosis	• Continue ACE-inhibitors, ARBs
• Important to evaluate for hypertrophic cardiomyopathy, particularly in young athletes	• For POTS: propranolol, ivabradine being studied
• Resolution of symptoms generally a very slow process	

Joshee S, et al. Mayo Clin Proc. 2022.
www.sandiegocounty.gov/COVIDHealthProfessionals.
Pathophysiology: Neurological

*BBB = Blood Brain Barrier *PNS = Peripheral Nervous System *HIF-1 = Hypoxia-Inducible Factor I

Immune-mediated damage to BBB & thromboembolism; viral mediated hypoxia and damage to PNS

- a) inflammatory markers increase leakage and allow leukocyte infiltration and basement membrane modification
- b) Megakaryocytes in the parenchyma of alveolar tissue which may travel into the brain tissue due to endothelial disruption
- c) Hypoxia due to hypercoagulable state → HIF-1 increase → increase in BBB permeability and prolonged cytokine release

Neuropsychiatric, cognitive and peripheral nerve pathologies

Joshee S, et al. Mayo Clin Proc. 2022.
Long COVID Symptoms: Neuropsychiatric

Presentation	Evaluation/Treatment
• Symptoms often disabling but poorly defined	• Standard noninvasive screening tools
• Headache, poor cognitive performance, attention deficit, memory deficit, abnormal sensation, ataxia, chronic fatigue	• Several drugs in trial
• Anosmia, olfactory symptoms	• Vaccine may be protective against neurologic sequelae
• Females at greater risk	• For anosmia: nasal steroids
	• Many improve in 6 to 12 months

www.sandiegocounty.gov/COVIDHealthProfessionals
Long COVID Symptoms: Rheumatology

Presentation	Evaluation/Treatment
• Fatigue and pain: joint pain, localized pain - especially back and neck	• Acupuncture, graduated exercise program
• Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: post exertion worsening of symptoms, unrefreshing sleep, cognitive impairment	• Electrotheraphy - TENS for localized pain
• Fibromyalgia: pain generalized, fatigued, unrefreshing sleep (female & prior use of corticosteroids increases risk)	• Replace low vit D, Mg (may help with HA and pain)
• Relapse Triggers: physical activity, stress, exercise, mental activity, menstruation	• Amitriptyline (good w/poor sleep), duloxetine
• Exclude autoimmune disorders that mimic Long COVID	• For neuropathic symptoms:
	• gabapentin, pregabalin

www.sandiegocounty.gov/COVIDHealthProfessionals.
Long COVID Symptoms: Emotional & Mental Health

Presentation	Evaluation/Treatment
• Traumatized with memories of illness, PTSD	• Cognitive Behavioral Therapy
• Disturbed by cognitive symptoms – brain fog	• Breath retraining and relaxation
• Frustrated, angry, sleep-deprived and frightened	• Physical activity
• May feel that symptoms will never resolve	• Natural sunlight helps regulate mood and sleep
• Anxiety and depression may occur or be triggered in patients with previous history	• Address sleep hygiene
• Important to address cognitive impairments	• Compensatory cognitive training for brain fog

www.sandiegocounty.gov/COVIDHealthProfessionals.
Long COVID in children is less well-studied but can occur
Long COVID in Children and Teens

Post-viral airway hyperresponsiveness – exacerbated in those with history of asthma, atopia, smoking parent

Increased anxiety and depression

Cognitive changes most challenging

May unmask diabetes

www.sandiegocounty.gov/COVIDHealthProfessionals
Multisystem Inflammatory Syndrome in Children (MIS-C)

- Presents 2-6 weeks after initial infection
- Diagnostic Criteria – age ≤21 years, fever ≥38°C or ≥24 hours, lab evidence of inflammation, multiorgan system dysfunction
- Fever, rash, GI symptoms, shock
- Increase in inflammatory mediators, "cytokine storm"
- Frequent cardiac involvement

American Academy of Pediatrics. Multisystem Inflammatory Syndrome in Children (MIS-C) Interim Guidance. https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/multisystem-inflammatory-syndrome-in-children-mis-c-interim-guidance/
Long COVID
Treatments

- Supportive/rehabilitative services most useful at this point
- Medications - many ongoing trials, nothing with strong evidence
- Most aimed at re-balancing RAS – antioxidant and anti-inflammatory properties
Melatonin

- Hormone released by pineal gland and other organs
- Good safety profile
- Activator of nuclear factor erythroid 2-related factor (NRF2)
- Promotes production of intracellular antioxidants such as glutathione

Jarrott B, et al. Pharmacol Res Perspect. 2022.
Other Drugs under Review

- Statins
- Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)
- Monoclonal antibodies that block inflammatory mediators (TNF, IL-6)
- Antivirals used to treat mild-moderate COVID-19 (nermatrelvir/ritonavir)
- COVID-19 vaccine

Ayoubkhani D, et al. BMJ. 2022.
Carson E, et al. American J Therapeutics. 2022.
Crook H, et al. BMJ. 2021.
Jarrott B, et al. Pharmacol Res Perspect. 2022.
Longitudinal Study of hospitalized COVID-19 patients from Wuhan, China

At 6 months:
• 68% had at least one persistent symptom
 • Fatigue, muscle weakness (52%)
• 30% reported dyspnea
• 23% reported anxiety or depression

At 1 year:
• 49% had at least one persistent symptom
 • Fatigue, muscle weakness (20%)
• 26% reported dyspnea
• 26% reported anxiety or depression
• 88% of those formerly working had returned to work

Huang L, et al. Lancet. Jan 2021.
Huang L., et al Lancet. Aug 2021.
Much that we don't know
Lessons from prior pandemics:

• H1N1 Pandemic of 1918-1919
 • Individuals born during the pandemic had increased cardiovascular disease in adulthood compared to other birth cohorts
 • They also achieved a lower mean height in young adulthood compared to surrounding birth cohorts

• Influenza A2 outbreak in Helsinki, Finland of 1952
 • Maternal viral infection during the 2nd and 3rd trimester may have increased the risk of adult schizophrenia

• Mouse studies – viral infections affect brain cell development
 • Mazumder B, et al. J Developmental Origins of Health and Disease. 2010.
 • Mednick SA, et al. Arch Gen Psychiatry. 1988.
Influenza Pandemic 1918-1919

Cardiovascular Disease at 60-82 Years of Age by Birth Cohort

Mean Height at 19-27 Years by Birth Cohort at Enlistment 1941-1942

Mazumder B, et al. Journal of Developmental Origins of Health and Disease. 2010.
What is being done to help?

- $1.15 Billion in NIH grants for Long COVID research – Researching COVID to Enhance Recovery (RECOVER)
- Coverage for affected patients under American Disabilities Act 1990
- Some may qualify for Social Security Disability Insurance
COVID-19 Vaccine is the Best Prevention against Long COVID

• CDC recommends COVID-19 primary series vaccines for everyone ages 6 months and older, and COVID-19 boosters for everyone ages 5 years and older, if eligible

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/expect.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html?s_cid=11747:covid%20vaccine%20schedule:sem.ga:p:RG:GM:gen:PTN:FY22
Key Points

Many patients who experience acute COVID-19 have lingering symptoms weeks to months after recovery from initial illness.

Risk of Long COVID is not directly linked to severity of acute COVID infection.

Inflammation appears to play a key role in the etiology of long COVID symptoms.

Multidisciplinary approach to treatment is important, emphasizing nonpharmacologic therapies.

Research is ongoing on possible drug treatments.