Borrelia burgdorferi (sensu lato) in ectoparasites and reptiles in southern Italy

Jairo Alfonso Mendoza-Roldan1,2,3, Vito Colella1, Riccardo Paolo Lia1, Viet Linh Nguyen1, Darci Moraes Barros-Battesti2,4, Roberta Iatta1, Filip Dantas-Torres1,5 and Domenico Otranto1*

Abstract

Background: Borrelia burgdorferi (sensu lato) is a complex containing pathogenic bacteria of which some species, such as Borrelia lusitaniae, use birds, small mammals and reptiles as reservoirs. In Italy, the bacteria have been detected in reptilian and avian reservoirs in the northern and central regions.

Results: Here, 211 reptiles from three orders [Squamata (Sauria with seven species in five families and Ophidia with 11 species in three families), Crocodylia (one family and two species), and Testudines (two families and two species)] were examined for ectoparasites and molecular detection of B. burgdorferi (s.l.) in three different sites of southern Italy, an area for which no information was previously available on the occurrence of borreliosis in animals and humans. Borrelia lusitaniae was molecularly detected in larvae and nymphs (11.6%) of Ixodes ricinus infesting lizards (i.e. Podarcis muralis, Podarcis siculus and Lacerta bilineata) and in 12.3% blood samples of P. siculus. Finally, B. lusitaniae and Borrelia garinii were detected in 5.1% (32/630) of questing I. ricinus.

Conclusions: These results show the circulation of B. lusitaniae in southern Italy and suggest that P. siculus could play a role as a reservoir, representing a potential medical threat to humans living in or visiting these localities.

Keywords: Reptiles, Ectoparasites, Borrelia lusitaniae, Borrelia garinii, Ixodes ricinus, Podarcis siculus

Background

The genus Borrelia comprises spirochete bacteria distinguished in the relapsing fever, the reptilian Borrelia, monotreme associated Borrelia, and the Lyme borreliosis groups [1, 2]. The latter includes around 20 species within the Borrelia burgdorferi (sensu lato) complex, nine of which have recognized pathogenic outcomes to animals and/or humans (i.e. Borrelia afzelii, Borrelia bavariensis, Borrelia bissettii, B. burgdorferi (s.s.), Borrelia garinii, Borrelia kurtenbachii, Borrelia lusitaniae, Borrelia spielmanii and Borrelia valaisiana) in Palearctic and Nearctic regions [3, 4].

In Europe, more than 232,000 new cases of Lyme borreliosis are reported each year in human patients [5–8]. However, there are a significant amount of unreported cases [3], mainly due to the pleomorphic clinical presentation of the infection, which ranges from unspecific flu-like symptoms to typical Lyme disease clinical sings (e.g. erythema migrans and other dermatological signs, carditis, chronic arthritis, meningitis and neurological abnormalities) [9]. These bacteria are mainly transmitted by hematophagous arthropods, such as ticks, with nymphs of the castor bean tick, Ixodes ricinus, and other species, such as Ixodes persulcatus, vectors of the pathogens in Europe [3, 10, 11]. The harvest mite Neotrombicula autumnalis is widely distributed in Europe and has been also investigated as potential vector [12]. However, current knowledge indicates that Ixodes spp. (e.g. I. ricinus, Ixodes scapularis, I. persulcatus and Ixodes pacificus) [13] ticks are the main vectors of these pathogens since their immature stages feed on the reservoirs for these spirochetes (i.e. small mammals, passerine birds and reptiles, especially lacertid lizards) [14]. For example, distinct species of lacertid lizards have been pointed out as reservoirs of B. lusitaniae throughout Europe [15]. This pathogen has been isolated from human patients and associated to chronic skin lesions and vasculitis-like syndrome, first in Portugal and thereafter in other Mediterranean regions [16, 17]. Additionally, B. lusitaniae has been detected in ticks and lacertid lizards...
such as *Psammomorus algirus* in Tunisia, *Lacerta agilis* in Germany [18–21]. In Italy, *B. lusitaniae* and other species of the *B. burgdorferi* (s.l.) have been detected in ticks and in birds, small native and invasive rodents, and lizards in Tuscany (central region) and Piedmont and Veneto (northern region) [22–24]. The common and highly synanthropic wall lizard (*P. muralis*) has been indicated as an important natural reservoir for its wide distribution [25]. Moreover, while no information was previously available on the occurrence of borreliosis in southern Italy, sporadic cases of Lyme borreliosis have been unofficially reported in this geographical area. In this study, we investigated the presence of *B. burgdorferi* (s.l.) in mites and ticks, as well as in blood and tissue samples from reptiles in southern Italy, to assess the circulation of these bacteria in reptiles and their ectoparasites and, therefore, the potential risk for human infections.

Methods

Study areas

The study was conducted in two areas of the Apulia region (site 1 and 2), and one of the Basilicata region (site 3), southern Italy. In Apulia, collections were performed in the surrounding areas of the Department of Veterinary Medicine, University of Bari “Aldo Moro” (41°1’31.584”N, 16°54’3.6288”E), in the province of Bari (site 1). This site is inhabited by some species of synanthropic reptiles (*P. muralis, P. siculus, Tarentola mauritanica, Hierophis carbonarius, Natrix natrix and Elaphe quatuorlineata*) [26, 27]. Also, exotic captive-bred reptiles (Ophidia and Testudines) owned by faculty members that lived in Valenzano municipality were examined for ectoparasites. Site 2 was a zoological park in Fasano (province of Brindisi; 40°49’56.8236”N, 17°07’20.17”E) where more than 100 reptile species, both endemic and exotic, are exposed to ectoparasites. Finally, in the Basilicata region, collections were performed in the Gallipoli Cognato Forest (site 3; 40°32’17”N, 16°07’20.17”E), which belongs to the Parco Regionale di Gallipoli Cognato Piccole Dolomiti Lucane. This park is located in a region with a high diversity of herpetofauna, including eight common species of snakes (*H. carbonarius, N. natrix, Natrix tessellata, Coronella austriaca, E. quatuorlineata, Zamenis lineatus, Zamenis situla and V. aspis*), one species of tortoise (*Testudo hermanni*) and six species of lizards (*L. bilineata, P. mularis, P. siculus, T. mauritanica, Hemidactylus turcicus and M. kotschyi*) [26]. The collection sites were chosen based on previous studies on the occurrence and seasonality of questing ticks from the environment [28], and for the occurrence of unofficial reports of human cases of borreliosis (site 3).

Reptile capturing and processing and ectoparasites collection

Lizards and snakes were captured by hand and herpetological hooks at different sites from March to August 2018 (i.e. spring and summer). Species of reptiles were identified using dichotomic identification keys [30–34].

Detection of *B. burgdorferi* (s.l.) DNA

DNA was extracted from mites and ticks using a modified guanidine isothiocyanate protocol, which allowed the preservation of a voucher [35, 36], and from tail tissue (25 mg) from lizards, snakes and other reptiles, by using a Qiagen DNeasy tissue kit (Qiagen, Hilden, Germany). DNA was suspended in Buffer AE (elution buffer) (50 μl) for mites, ticks and tissues and used in PCR (2 μl per reaction). DNA was extracted from reptile blood (~20 μl) by using a Qiagen DNeasy blood mini kit (Qiagen).

The presence of *B. burgdorferi* (s.l.) flagellin gene in mites, ticks and tissues was investigated by PCR, as described previously [37]. DNA samples from ticks positive to *B. afzelii* detected in a previous study [38] were used as positive controls. For PCR-negative ticks, the efficiency of extraction protocol was verified by amplifying the 16S rDNA fragment of ticks [39].

Amplified DNA was subjected to electrophoresis in a 2% agarose gel stained with GelRed (WVR International PBI, Milano, Italy) and viewed on a GelLogic 100 gel documentation system (Kodak, New York, USA). Amplicons were purified using 10 μl of PCR product mixed with 0.5 μl of *Escherichia coli* exonuclease 1 (Exo I; MBI, Fermentas, Lithuania), 1 μl of shrimp alkaline phosphatase (SAP) and 0.5 μl of SAP reaction buffer (MBI, Fermentas, Lithuania) to remove primers and unincorporated dNTPs. This mix was incubated at 37 °C for 20 min, following enzymes inactivation at 85 °C for 15 min. PCR purified products were sequenced using the Taq DyeDoxTerminator Cycle Sequencing Kit (v.2, Applied Biosystems) in an automated
sequencer (ABI-PRISM 377). Sequences were analyzed by Geneious version 11.1.4 software and submitted to BLAST to identify similarities to known sequences [40].

To confirm the morphological identification of ticks, amplified sequences were aligned using ClustalW [41] and with the corresponding mitochondrial 16S rDNA sequences of *I. ricinus* (GU074612, KR870982, GU074594, KX384806, GU074592, GU074595, KM211788, GU074596, KM211785 and KM211787) and *Ixodes inopinatus* (KM211790 and KM211789). In addition, sequences of other *Ixodes* species available in the GenBank database were included and used as outgroups. Phylogenetic analyses were carried out using the maximum likelihood (ML) method with the program MEGA 5 [42]. The ML tree was generated with the Hasegawa-Kishino-Yano model by using a discrete gamma-distribution (+G). The best-fitting substitution models were determined with the Bayesian Information Criterion using the ML model test. Support was tested with 2000 bootstrap pseudoreplicates.

Statistical analysis
To assess the parasitic load of ticks, descriptive statistics was calculated using Quantitative Parasitology software, version 3.0 [43]. Prevalence, mean abundance (number of ticks per total number of hosts) and mean intensity (number of ticks per number of infested hosts) of infestation were determined.

Results
Two hundred and eleven reptiles from three orders [Squamata (Sauria with seven species in five families and Ophidia with 11 species in three families), Crocodylia (one family and two species), and Testudines (two families and two species)] (*n* = 56 in site 1, *n* = 23 in site 2, and *n* = 134 in site 3) were examined, of which 174 were infested by mites and ticks (82.5%; 95% CI: 76.6–87.3%). Specifically, 67.8% (95% CI: 54–79.7%) and 39.1% (95% CI: 19.7–61.4%) of reptiles from site 1 and 2, respectively, were infested solely by mites, whereas 94.8% (127/134; 95% CI: 89.5–97.8%) of animals in site 3 were infested by mites and ticks (Tables 1, 2). Two species of Pterygosomatidae (*Pimeliaphilus insignis* and *Geckobiella stamii*) (Fig. 1a, b), one species of Trombiculidae (*Neotrombicula autumnalis*) (Fig. 1e, f) and two species of Macronyssidae (*Ophionyssus sauracum* and *Ophionyssus natricis*) were identified (Fig. 1c, d) (Table 2). *Ixodes ricinus* was the only tick species detected (Fig. 2). Different host species were co-infested with *N. autumnalis*

Family	Species	Site 1	Site 2	Site 3	Total no. infested
Lacertidae	Podarcis muralis	0/1	–	17/17	17
	Podarcis siculus	29/29	–	102/106	131
	Lacerta bilineata	–	–	5/5	5
Gekkonidae	Tarentola mauritanica	9/10	–	2/2	11
Iguanidae	Iguana iguana	–	2/2	–	2
Teiidae	Salvator merianae	–	0/1	–	0
Scincidae	Tiliqua sp.	–	0/1	–	0
Alligatoridae	Pseudosuchus palpebrus	–	0/1	–	0
	Caiman crocodilus	–	0/1	–	0
Boidae	Boa constrictor	0/4	3/3	–	3
	Eunectes muinus	–	1/1	–	1
Pythonidae	Python molurus	–	0/1	–	0
	Python regius	0/9	0/2	–	0
	Morelia spilota	–	3/4	–	3
Colubridae	Pituophis melanoleucus	–	0/3	–	0
	Panthotis obesus	–	0/1	–	0
	Pantherophis guttatus	0/1	0/1	–	0
	Elaphe quatuorlineata	–	–	1/2	1
	Natrix natrix	–	–	0/1	0
	Hierophilus carbonarius	–	–	0/1	0
Chelydridae	Chelydra serpentina	–	0/1	–	0
Emydidae	Trachemys scripta	0/2	–	–	0
Total		38/56	9/23	127/134	174
and *O. sauracum*, or with *I. ricinus* and *N. autumnalis* (Fig. 1e, Table 2). A total of 654 *I. ricinus* (449 larvae and 205 nymphs) (Fig. 2c, d) were collected from 120 reptiles from site 3 (90.9%; 95% CI: 84.6–95.2%) (*L. bilineata*, *P. muralis*, *P. siculus* and *E. quatuorlineata*) with a mean intensity of 5.5 (95% CI: 5.4–6.2%) and a mean abundance of 5 (95% CI: 4.45–5.6%).

Of the ectoparasite species collected from reptiles, only *I. ricinus* ticks scored positive for *B. burgdorferi* (s.l.), with an overall prevalence of 11.6% (95% CI: 7.9–16.4%). Specifically, 3.6% (95% CI: 1.1–8.1%) of larvae and 21.8% (95% CI: 14.5–30.7%) of nymphs tested positive for the spirochetes DNA. In site 3, a high percentage of reptiles carried infected *B. burgdorferi* (s.l.) ticks (Table 3) as larvae (i.e. 11.9% of *P. siculus*), and/or nymphs (i.e. 31.7% of *P. siculus*, 33.3% of *P. muralis* and 60% of *L. bilineata*). None of the tail tissue samples from 156 lizards and 12 geckos scored positive to *B. burgdorferi* (s.l.), whereas blood

Family	Species	Host	Collection sitea
Pterygosomatidae	*Pimeliaphilus insignis*	*T. mauritanica*	Site 1 and Site 3
	Geckobiella stamii	*I. iguana*	Site 2
Trombiculidae	*Neotrombicula autumnalis*	*P. muralis, P. siculus, L. bilineata*	Site 1 and Site 3
Macronyssidae	*Ophionyssus sauracum*	*P. muralis, P. siculus, L. bilineata*	Site 1 and Site 3
	Ophionyssus natricis	*M. spilota, E. murinus, B. constrictor*	Site 2
Ixodidae	*Ixodes ricinus*	*P. muralis, P. siculus, L. bilineata, E. quatuorlineata*	Site 3

aAll host species from Fasano (site 2) were captive
samples from 14 (12.3%; 95% CI: 6.8–19.7%) P. siculus lizards from site 3 were positive. In particular, 25.9% (95% CI: 14.9–39.6%) of blood samples collected from lizards and snakes infested with ticks in site 3 were positive to B. burgdorferi (s.l.). Overall, 18.5% (95% CI: 6.3–38%) of B. burgdorferi (s.l.)-infected ticks were collected from infected lizards. When both blood and tail from the same reptile were processed, B. burgdorferi (s.l.) was detected only in the former tissue (i.e. 14/84 in blood vs 0/84 in tails). DNA sequences obtained from immature engorged ticks collected from reptiles (28 sequences) and blood (14 sequences) were identified as B. lusitaniae (100% nucleotide identity with GenBank sequence KY213886).

A total of 630 questing adults (144 females and 181 males) and nymphs (305) of I. ricinus were tested for B. burgdorferi (s.l.) and 5.1% (32/630; 95% CI: 3.4–7.1%) yielded positive results. Two different species, namely B. lusitaniae (31/32) and B. garinii (1/32), were identified with 100% and 99.9% nucleotide identity with GenBank sequence KX646194 and KR782222, respectively. The prevalence of B. burgdorferi (s.l.) was higher in nymphs 5.9% (18/305) than in adults 4.3% (14/325). Sequences obtained of the flagellin gene of Borrelia species were deposited in GenBank under the accession numbers MH751501, MH751502 and MH807255. The consensus sequences of mitochondrial 16S gene of I. ricinus from this study (GenBank: MH751500) grouped with other sequences of the same species, distinct from those related to I. inopinatus with high bootstrap support (97%) (Fig. 3).

Discussion

In this study, we identified Lyme borreliosis group species in I. ricinus ticks from the environment, and from blood samples and ticks from reptiles captured in three different locations in southern Italy. Free-living or captive reptiles were parasitized by a range of mites (five species belonging to three different families) and/or

Host species	No. of infested individuals	No. of ticks tested	No. of positive hosts/ ticks	Hosts with B. burgdorferi (s.l.)-infected ticks (95% CI) (%)	Ticks infected with B. burgdorferi (s.l.) (95% CI) (%)
E. quatuorlineata	1	8	0/0	0	0
P. siculus	102	180	14/23	11.9 (3.9–25.6)	31.7 (20.2–44.9)
P. muralis	12	26	0/2	0	33.3 (4.3–77.7)
L. bilineata	5	36	0/3	0	60.0 (14.6–94.7)

Table 3 Molecular detection of B. burgdorferi (s.l.) in immature stages of I. ricinus and in the associated reptile host species

Abbreviation: na not applicable
ticks. The latter can infest a wide number of vertebrate hosts including humans, and act as vectors of pathogens of medical and veterinary significance. For instance, *B. lusitaniae* was found in larvae and nymphs of *I. ricinus* (11.6%) collected from three species of lacertid lizards, in blood of *P. siculus* lizards (12.3%) and in questing *I. ricinus* adults and nymphs (5.1%). These results, together with the high infestation rates of *I. ricinus* on lizards, suggest that these reptiles may contribute in maintaining *B. lusitaniae* endemicity in southern Italy. Although the role of lizards as natural reservoirs of *B. burgdorferi* (s.l.) has been questioned [44, 45], previous reports from endemic regions, such as Czech Republic, Slovakia, Poland and Romania, suggest the participation of these reptiles in the ecology of *B. lusitaniae* [22–25, 46].

The prevalence of *B. lusitaniae* in ticks from lizards (11.6%) is higher than that reported in Poland (6%), lower than that in Slovakia (21%), and similar to that in Romania (13%) [20]. Noteworthy, the prevalence of *B. lusitaniae* in ticks in southern Italy, where no official cases of borreliosis are reported, is higher than that recorded in Piedmont (4%), northern Italy, an area where human Lyme borreliosis is endemic [23]. The finding of *B. lusitaniae* in *P. siculus* suggests that this species may act as a reservoir for this spirochete, as demonstrated for *P. muralis* [22]. However, since tail tissue (poor in muscle, connective tissue and highly keratinized) is not the optimal sample for the detection of *Borrelia* spp. infection [20], the results of this study may have been underestimated. Accordingly, the positivity rate could have been also affected by the intermittent nature of *Borrelia* bacteremia. The finding of positive tick nymphs in negative *L. bilineata* and *P. muralis* lizards may suggest that they fed previously on other positive hosts as larvae. The higher number of positive nymphs compared to larvae indicates that the latter have been infected feeding on other reservoirs (e.g. *P. siculus* lizards, small mammals or birds) and as nymphs on other lacertid lizards. In addition, co-feeding ticks (i.e. feeding at the same site) can favor the spreading of the bacteria, as supported by molecular detection of the pathogen when testing skin biopsies at tick attachment sites [47]. Hence, lizards may play a more significant role than mice in the maintenance and

Fig. 3 Phylogenetic tree based on maximum likelihood analysis of the mitochondrial 16S rDNA sequences obtained from specimens of *I. ricinus* (consensus sequence of this study is highlighted with a circle) collected in southern Italy and sequences from specimens of *I. inopinatus* KM211789 (*I. inopinatus*, Tunisia), KM211790 (*I. inopinatus*, Spain). Other sequences included of *I. ricinus* from Europe and northern Africa are available on GenBank. *Ixodes affinis* (U95879), *Ixodes ventaillo* (KU178963), *Ixodes hexagonus* (KY319189), and *Ixodes trianguliceps* (DQ201845 and KY319190) were used as outgroups.
transmission of *B. lusitaniae* [22, 23], whereas rodents are the main reservoirs of *B. afzelii* in Germany, England and Slovakia [18, 48, 49]. This variation of reservoirs and prevalence of infection among ticks and hosts can be explained by the relative abundance of vertebrate hosts in selected geographical area.

Although other reptiles have been found to harbor pathogenic and non-pathogenic borrelial species [1, 50, 51], we did not find any positive non-lacertid reptile. The overall prevalence of borrelial infections (5.1%) in questing ticks was lower compared to that recorded in other areas (19% in Slovakia, 20.5% in Czech Republic, and 16.7–39% in Tuscany, central Italy) [20, 52, 53]. In Italy, borrelial species have been detected in questing ticks with a lower prevalence in the northern region (1.4–3.8%) than in the central region (17.6%) and in urban or peri-urban areas [25, 54, 55]. Generally, the presence of *Borrelia* spp. in ticks increases through their life stages due to the wide number of hosts they can feed on [56]. Different from other studies, the positivity in questing ticks was higher in nymphs (5.9%), than in adults (4.3%). Although this difference was not significantly higher, this pattern could change due to seasonal variations and hosts availability [57]. In addition, *B. garinii* was herein detected in a questing tick and, before, in ticks from passerine birds [58]. This species is associated with neuroborreliosis in humans, and birds are their main reservoirs [59].

The flagellin gene sequence of *B. lusitaniae* from this study was 99% identical to that of *B. lusitaniae* (KY213886) detected from *I. ricinus* infesting a dog in central Italy [52]. The distribution of *B. lusitaniae* can be associated to the presence of highly synanthropic lizards inhabiting the Mediterranean area, which features a variety of environments (e.g. dry and warm or humid and cold). Indeed, due to their high biological plasticity, lacertid lizards occupy diverse habitats facilitating the dispersal of the tick infestation and, therefore, of borrelial infection [60]. Although *I. inopinatus* has been reported from dry areas of the Mediterranean region parasitizing mainly lizards [34], we identified only *I. ricinus* on this host species, in accordance with previous observations [61].

While most of the species of mites identified are commonly found on reptiles, some are exotic to Italy, such as *G. stamii*, which was reported for the first time in Italy in captive-owned *Iguana iguana* in 2016 [62]. Also, *O. natrix*, an exotic parasite widely distributed in captive reptiles, was herein found infesting snakes (i.e. *M. elia spilota*, *Boa constrictor* and *Eunectes murinus*), highlighting the risk associated with the introduction of exotic reptiles. Indeed, this mite can produce dermatitis, anemia and disec dysis, which were seen on the infested animals in site 2 (data not shown). In addition, *O. natrix* can infest humans and act as vector of reptile pathogens [63, 64]. Furthermore, the most common species of mite found on lizards in sites 2 and 3 was *N. autumnalis* larvae. Due to the transovarial transmission of *Anaplasma phagocytophilum* [65], and possibly of *B. burgdorferi* (s.l.) [12], *N. autumnalis* has been suggested to play a role as vector of these pathogens. Lizards highly infested by *N. autumnalis* did not show signs of detriment associated with the infestation, whereas in other animals and humans *N. autumnalis* can produce dermal lesions called *erethema autumnale* dermatitis, and conjunctivitis [66, 67]. Trombiculosis infestations are common in urban and peri-urban areas and synanthropic lizards can be propagators of this mite species, which can later parasitize mammalian hosts [68]. In this study, all *N. autumnalis* were negative for *B. burgdorferi* (s.l.), therefore suggesting that this species does not act as suitable vector in southern Italy. Accordingly, the rate of infection, the transovarial transmission and the transmission of the infection of *B. burgdorferi* (s.l) by *N. autumnalis* was very low, thus indicating that this mite species has a minor role in the ecology of borreliosis [12]. Nonetheless, further investigations are needed to better understand the role of trombiculid mites in pathogen transmission among animals and humans.

Conclusions

Results of this study revealed that *B. lusitaniae* circulates in southern Italy and indicated *P. siculus* as a potential natural reservoir for this species. Additionally, *B. garinii* was detected in a questing tick and, considering its pathogenicity, deserves further investigations. These results should increase medical awareness on the occurrence of *Borrelia* spp. in southern Italy to refine diagnosis and treatment of human borreliosis, thus facilitating official reports of clinical cases. Additional studies should elucidate the role of synanthropic lizard and other reptiles in the transmission of different *B. burgdorferi* (s.l.) species to humans.

Abbreviations

CI: confidence interval; na: not applicable; s.l: sensu lato

Acknowledgements

The authors are grateful to Egidio Mallia veterinary responsible of the Parco Regionale di Gallipoli Cognato e Piccole Dolomiti Lucane in Basilicata and the park rangers for their support in the sampling procedures and to Piero Laricchiuta and Matteo Legrottaglie from the Zoosafari Zoological Park in Fasano for the herpetological assistance with the reptile captures. The authors would also like to thank Marie Varloud (Ceva Santé Animale, Libourne, France) for supporting the publication costs of this article.

Funding

The Global-Doc program (University of Bari) supported the development of this study. The Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq granted Doctoral scholarships (Doctoral grant No. 142409/2015-4 JMR).

Availability of data and materials

Data supporting the conclusions of this article are included within the article. The newly generated sequences were deposited in the GenBank database.
under the accession numbers (MH751500, MH751501, MH751502 and MH80725).

Authors’ contributions
JAMR, VC and DO conceived the study. JAMR, VC, RPL and VLN performed field collection and laboratory work and analyzed the data. FDT, RI and DMBB collaborated in the sequence alignment, phylogenetic analyses, and molecular analyses. All authors analyzed and discussed the data. All authors read and approved the final manuscript.

Ethics approval
Experimental protocols were approved by the Commission for Bioethics and Animal Welfare of the Department of Veterinary Medicine of the University of Bari and authorized by the Ministry for Environment, Land and Sea Protection of Italy (approval number 0016973/2018), the Societas Herpetologica Italica (approval number SHR-UT-ER-12-2018) and the Istituto Superiore per la Protezione e la Ricerca Ambientale (approval number 41180).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Department of Veterinary Medicine, University of Bari, 70010 Valenzano (BA), Italy. 2 Faculty of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil. 3 Butantan Institute, São Paulo 05503-900, Brazil. 4 Department of Veterinary Pathology, Universidade Estadual Paulista, Jaboticabal 14894-900, Brazil. 5 Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco 50670-420, Brazil.

Received: 17 September 2018 Accepted: 3 January 2019
Published online: 15 January 2019

References
1. Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shinoto T, et al. Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Appl Environ Microbiol. 2010;76:134–6.
2. Loh SM, Gofton AW, Lo N, Gillett A, Ryan UM, Irwin PJ, et al. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasit Vectors. 2016;9:339.
3. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2:123–8.
4. Obigela A, Król N, Otterud C, Nader J, Pfeffer M. The enzootic life-cycle of Borrelia burgdorferi sensu lato and tick-borne rickettsiae: an epidemiological study on wild-living small mammals and their ticks from Saxony, Germany. Parasit Vectors. 2017;10:115.
5. Lindgren E, Jaenson TG. Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. Geneva: World Health Organization; 2006. http://www.euro.who.int/en/publications/abstracts/lyme-borreliosis-in-europe.-influences-measures. Accessed 17 Jun 2018.
6. Majšíková V, Majlíth L, Hromada M, Tryjanowski P, Bona M, Antczak M, et al. The role of the sand lizard (Lacerta agilis) in the transmission cycle of Borrelia burgdorferi sensu lato. Int J Med Microbiol. 2006;296:737–42.
7. Drouillard S, Nollet V, Josset C, Leblond C, Morand M, Duranceau J, et al. Vasculitis-like syndrome associated with Borrelia lusitaniae infection. Clin Rheumatol. 2008;27:1587–91.
8. Richter D, Matuschka FR. Perpetuation of the Lyme disease spirochete Borrelia burgdorferi by lizards. Appl Environ Microbiol. 2006;72:4627–32.
9. Scouil N, Younsi-Kabachi H, Postic D, Nouira S, Gern L, Bouattour A. Reservoir role of lizard Psammommusalsinus in transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2006;43:737–42.
10. De Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, et al. Vectors of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2008;16:74–9.
11. De Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, et al. Vectors of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2008;16:74–9.
12. Antczak M, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, et al. Transmission dynamics of Borrelia lusitaniae and Borrelia afzelii among lizards, lizards, and mice in Tuscany, central Italy. Vector Borne Zoonotic Dis. 2011;11:21–8.
13. Amore G, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, et al. Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, central Italy. J Med Entomol. 2007;44:1278–82.
14. Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, et al. Borrelia diversity and co-infection with other tick-borne pathogens in ticks. Front Cell Infect Microbiol. 2017;7:36.
15. Lindgren E, Jaenson TG. Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. Geneva: World Health Organization; 2006. http://www.euro.who.int/en/publications/abstracts/lyme-borreliosis-in-europe.-influences-measures. Accessed 17 Jun 2018.
16. Majšíková V, Majlíth L, Hromada M, Tryjanowski P, Bona M, Antczak M, et al. The role of the sand lizard (Lacerta agilis) in the transmission cycle of Borrelia burgdorferi sensu lato. Int J Med Microbiol. 2006;296:737–42.
17. Majšíková V, Majlíth L, Hromada M, Tryjanowski P, Bona M, Antczak M, et al. The role of the sand lizard (Lacerta agilis) in the transmission cycle of Borrelia burgdorferi sensu lato. Int J Med Microbiol. 2006;296:737–42.
18. Richter D, Matuschka FR. Perpetuation of the Lyme disease spirochete Borrelia burgdorferi by lizards. Appl Environ Microbiol. 2006;72:4627–32.
19. Scouil N, Younsi-Kabachi H, Postic D, Nouira S, Gern L, Bouattour A. Reservoir role of lizard Psammommusalsinus in transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2006;43:737–42.
20. De Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, et al. Vectors of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2008;16:74–9.
21. Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, et al. Borrelia diversity and co-infection with other tick-borne pathogens in ticks. Front Cell Infect Microbiol. 2017;7:36.
22. Antczak M, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, et al. Transmission dynamics of Borrelia lusitaniae and Borrelia afzelii among lizards, lizards, and mice in Tuscany, central Italy. Vector Borne Zoonotic Dis. 2011;11:21–8.
23. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
24. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
25. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
26. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
27. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
28. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
29. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
30. Landi C, Bifulco A, van Diggelen OP, de Groot J, Siekmann A, et al. First isolation of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol. 2005;12:1116–21.
35. Chomkzynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993;15:532–7.

36. Mendoza-Roldan JA, Bassini-Silva R, Jacinavicius FC, Nieri-Bastos FA, Franco FL, Marcili A, et al. A new species of pit mite (Trombidiformes: Harpopyrrhocidae) from the South American rattlesnake (Viperaidae): morphological and molecular analysis. Entomol Ornithol Herpetol. 2017;6:216–9.

37. Wójcik-Fatla A, Szymanska J, Wdowiak L, Buczek A, Dutkiewicz J. Coincidence of three pathogens [Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti] in ixodes ticks in the Lublin macroregion. Ann Agric Environ Med. 2009;16:151–8.

38. Orrano D, Dantas-Torres F, Giannelli A, Latrofa MS, Cascio A, Cazzin S, et al. Ticks infesting humans in Italy and associated pathogens. Parasit Vectors. 2014;7:328.

39. Black WC, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodidae) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA. 1994;91:10034–8.

40. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.

41. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.

43. Rózsa L, Reitzel J, Majlóthová V, Majlát I, Földvári G. Neglected hosts: the role of reptiles in habitats of the harvest mite, Ophionyssus natricis. J Med Entomol. 1996;33:189–92.

44. Lane RS, Quistad GB. Borreliacidal factor in the blood of the western fence lizard (Sceloporus occidentalis). J Parasitol. 1998;84:29–34.

45. Mendoza-Roldan JA, Bassini-Silva R, Jacinavicius FC, Nieri-Bastos FA, Franco FL, Marcili A, et al. A new species of pit mite (Trombidiformes: Harpopyrrhocidae) from the South American rattlesnake (Viperaidae): morphological and molecular analysis. Entomol Ornithol Herpetol. 2017;6:216–9.

46. Földvári G, Rigó K, Majláthová V, Majlát I, Farkas R, Petö B. Detection of Borrelia burgdorferi sensu lato in lizards and their ticks from Hungary. Vector Borne Zoonotic Dis. 2009;9:331–6.

47. Gern L, Rais O. Efficient transmission of Borrelia burgdorferi between co-feeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol. 1998;35:1044–9.

48. Hanincova K, Schäfer SM, Etti S, Sewell HS, Taragelova V, Ziak D, et al. Comparison of findings for patients with Borrelia garinii and Borrelia afzelii isolated from cerebrospinal fluid. Clin Infect Dis. 2006;43:704–10.

49. Szekeres S, Majláthová V, Majlát I, Földvári G. Neglected hosts: the role of lacertid lizards and medium-sized mammals in the eco-epidemiology of Lyme borreliosis. In: Braks MAH, van Wieren SE, Takken W, Srong H, editors. Ecology and Prevention of Lyme Borreliosis. Wageningen: Wageningen Academic Publishers; 2016. p. 103–26.

50. Mendoza-Roldan JA, Bassini-Silva R, Jacinavicius FC, Nieri-Bastos FA, Franco FL, Marcili A, et al. A new species of pit mite (Trombidiformes: Harpopyrrhocidae) from the South American rattlesnake (Viperaidae): morphological and molecular analysis. Entomol Ornithol Herpetol. 2017;6:216–9.

51. Schwan TG, Piesman J. Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis. 2002;8:115–21.

52. Hanincová K, Taragelová V, Koci J, Schäfer SM, Hails R, Ullmann AJ, et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol. 2003;69:2825–30.

53. Bertolotti L, Tomassone L, Tramuta C, Grego E, Amore G, Ambrogi C, et al. Borrelia lusitaniae and spotted fever group rickettsiae in habitats of the harvest mite, Ophionyssus natricis. Parasite. 2013;20:25.

54. Koci J, Schäfer SM, Hails R, Ullmann AJ, et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol. 2003;69:2825–30.

55. Morganti G, Gavaudan S, Canonico C, Ravagnan S, Olivieri E, Diaferia M, et al. Molecular survey on Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, and Babesia spp. in Ixodes ricinus ticks infesting dogs in central Italy. Vector Borne Zoonotic Dis. 2017:17:743–8.

56. Rauter C, Hartung T. Prevalence of Borrelia burgdorferi sensu lato species in Ixodes ricinus ticks in Europe: a metanalysis. Appl Environ Microbiol. 2005;71:7203–16.

57. Schwab TG, Piesman J. Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis. 2002;8:115–21.