HYPOTHYROIDISM AND DIABETES MELLITUS – A RISKY DUAL GESTATIONAL ENDOCRINOPATHY

ABSTRACT

Objectives: Diabetes mellitus (DM) and hypothyroidism are each associated with increased rate of pregnancy complications. However, their combined morbidity during gestation is poorly studied. Therefore, the aims of this study were to determine the prevalence of the combined morbidity of DM & hypothyroidism and whether it is associated with adverse maternal and neonatal outcome.

Study design: This population based retrospective cohort study included 87,213 women who had 232,293 deliveries. All deliveries were divided into the following groups: 1) hypothyroidism & DM (n=171); 2) hypothyroidism (n=1502); 3) DM (n=13,324); and 4) deliveries of women with neither endocrinopathy, who served as a control group (n=217,296). Results: The prevalence of DM & hypothyroidism in our population was 0.07%. In comparisons to the other study groups, women with DM & hypothyroidism had higher rates of infertility (p<0.001), preeclampsia (p<0.001), chronic hypertension (p<0.001), preterm birth (p<0.001), and cesarean deliveries (p<0.001). In Generalized Estimating Equations (GEE) model, hypothyroidism & DM was an independent risk factor for cesarean section (OR 3.46; 95% CI 2.53-4.75) and for preeclampsia (OR 1.82; 95%CI 1.16-2.84).

Conclusion: The combination of DM & hypothyroidism is rare, yet it is associated with higher rate of infertility, cesarean sections, preterm deliveries, and hypertensive disorders of pregnancy than the rest of the population. This dual endocrinological combination is an independent risk factor for preeclampsia and cesarean section. These findings suggest that these patients are at risk for perinatal complications and should be followed and delivered as high risk pregnancies.
INTRODUCTION

Diabetes mellitus (DM) and hypothyroidism disorders are among the most common endocrinopathies during pregnancy. The prevalence of DM during pregnancy is about 7%, most of them are gestational, of note there is a constant increase of the prevalence of DM due to the gradual increase in pregnant women’s BMI (Body Mass Index) and the epidemic of obesity during recent decades (American Diabetes Association, 2004). Gestational diabetes mellitus (GDM) and especially pregestational DM, are known as risk factors for pregnancy complications, effecting both the mother and the fetus and include among the rest gestational hypertension, cesarean sections, macrosomic fetuses and shoulder dystocia (Casey et al. 1997; Barahona et al. 2005; Langer et al. 2005). These patients also have increased neonatal morbidity including fetal demise, neonatal hypoglycemia, jaundice, polycytemia and hypocalcemia (American Diabetes Association, 2004; Casey et al. 1997; Barahona et al. 2005; Langer et al. 2005). Moreover, maternal diabetes is associated with long term implications on the fetus including increase incidence of future obesity and type II diabetes (American Diabetes Association, 2004).

Hypothyroidism is the second most common endocrinopathy during pregnancy, and its’ incidence range from 2% to 5%. Autoimmune thyroiditis (also known as Hashimoto’s thyroiditis) and iatrogenic thyroid gland destruction as a therapeutic measure for hyperthyroidism are the most common etiologies for this endocrinopathy in pregnant women (Smallridge & Ladenson, 2001; LeBeau & Mandel, 2006; Nambiar et al. 2011).

Pregnant women with hypothyroidism, experience a higher rate of first trimester abortions (McCanlies et al. 1998; Abalovich et al. 2002; Hallengren et al. 2009), anemia, post-partum hemorrhage, gestational hypertension and placental abruption (Poppe & Glinoer, 2003). Fetuses of pregnant women with uncontrolled hypothyroidism are at a greater risk to develop multinodular goiter and have a higher tendency to be small or large for gestational age (Sahu
et al. 2010; Betti, 2011). Moreover, in-utero exposure to maternal hypothyroidism increases the risk for miscarriage, intrauterine fetal death and CNS (Central nervous system) and developmental disorders as well as mental illnesses and lower than average IQ later on in life (Haddow, 1999; Poppe & Glinoer, 2003; Betti, 2011). However, continuous monitoring and balancing of thyroid functions decreases the prevalence of most of these complications (Abalovich et al. 2002)

The association between different types of DM and hypothyroidism was previously reported (Perros et al. 1995; Smithson, 1998; Gallas et al. 2002; Van sen Driessche et al. 2009; Papazafiropoulou et al. 2010). Indeed, autoimmune diseases, such as insulin dependent DM, Hashimoto thyroiditis, pernicious anemia and others, are more prevalent among women, show a familial tendency, and may occur concomitantly in a higher rate than their prevalence in the general population (Van sen Driessche et al. 2009). There is inconsistent evidence regarding the association between hypothyroidism and GDM. Some reports found such an association, while others failed to show this connection, but did show an increased risk for later onset diabetes in women who had hypothyroidism during pregnancy, and women with an increased risk for GDM, especially those with familial history of both DM and hypothyroid disorders, also have an increased prevalence of positive antithyroid autoantibodies (Olivieri et al. 2000; Cleary-Goldman et al. 2008; Mannisto et al. 2010). In the literature review we conducted, the information regarding the influence of the combination of these two endocrinopathies on pregnancy and perinatal outcome is lacking.

The aims of this study were to determine the prevalence of the combination of DM and hypothyroidism in pregnant women and to determine whether this dual gestational endocrinopathy is associated with adverse maternal and neonatal outcome.
MATERIAL AND METHODS

The study is a retrospective population based cohort study which included all pregnant women who delivered at the Soroka University Medical Center since 1988 through April 2010 (n=87,213) who had 232,293 deliveries. All deliveries were divided into the following groups: 1) hypothyroidism & DM (n=171); 2) hypothyroidism (n=1502); 3) DM (n=13,324); and 4) deliveries of women with neither endocrinopathy that served as a control group (n=217,296). Exclusion criteria included: chromosomal abnormalities or structural defects of the fetus, and multiple pregnancies.

The diagnosis of diabetes or hypothyroidism and the data on demographic characteristics, medical and obstetric history, pregnancy outcomes, including maternal and neonatal morbidity and mortality, were obtained from the computerized data base. The diagnoses of the different types of diabetes mellitus and hypothyroidism, used for the statistical analysis, were according to their ICD-9 as recorded in our computerized database. The use of the database was possible as the ‘Soroka’ University Medical Center is a tertiary medical center that exclusively serves the population of the Negev (southern Israel) and all deliveries of the region take place in its labor and delivery suites.

The study complied with the Declaration of Helsinki and ethical approval was obtained by the review board of the Soroka University Medical Center.

Statistical analysis Methods

Continuous variables were presented as mean ± SD, median, minimal and maximal values, and compared between groups using t-test and Kruskal-Wallis test, depending on the distribution of each variable. Categorical variables were described as percentages and compared between groups by Chi-Square test. Variables found to be significantly associated with the study outcomes in the univariable analysis (p value<0.05), were included in a
multivariable analysis. At the last stage of modeling, the list of covariates has been reduced to the main exposures at study as well as factors at 0.05 level of significance or variables which we believed provided a necessary adjustment to the main exposures (even if not significant in the current model). We employed an “enter” method at all steps of multivariable analysis. Adjustment to dependent observations within clusters formed by the same women having more than one delivery within the study period was achieved by Generalized Estimating Equations (GEE) model with binary outcome and logit link function. P-value of 0.05 was considered significant. Analysis was performed on SAS software version 9.0 (Cary, NC, USA).
RESULTS

The prevalence of the combination of DM and hypothyroidism in our study population was 0.17% of all women and 0.07% of all the deliveries at our medical center (Fig. 1).

The epidemiologic characteristics of the four groups are presented in Table 1. Mean maternal age was significantly lower in the group of healthy women by at least 2 years, than in the other groups. Jewish ethnicity was more prevalent in all groups with a single or a combined endocrinopathy, than in healthy population group (63.7% within the 3 groups of disease vs. 49.2% in healthy population; p<0.001). Women in the hypothyroidism and DM group had a higher rate of infertility treatments (11.1% vs. 5.2% in the other study groups; p=0.001), history of preterm birth (15.8% vs. 9.7% in the other study groups; p<0.007) and a history of two or more spontaneous abortions (8.8% vs. 4.2% in the other study groups; p<0.003).

Table 2 presents the perinatal characteristics. Patients in the diabetes only group had higher rates of hydramnios (11.9% vs. 3.1% in the rest of the population; p<0.001), labor dystocia of first and second stage (5.4% vs. 3.3%; p<0.001), non-reassuring fetal heart rate (2.7% vs. 1.9%; p<0.001), and placenta previa (0.7% vs. 0.4%; p<0.001), than the other study groups. Women in the hypothyroidism only group had a higher rate of oligohydramnios (3.1% vs. 2.4%; p=0.066), prelabor rupture of membranes (PROM) (11.7% vs. 7.8%; p<0.001), and preterm delivery and PROM (1.9% vs. 1.2%; p=0.01), than other study groups. Patients with the combination of hypothyroidism and DM had a higher rate of mild and severe preeclampsia (14.0% vs. 4.2%; p=0.001), chronic hypertension (11.1% vs. 1.2%; p<0.001), preterm delivery (14.0% vs. 7.4%; p=0.01), infection in amniotic fluid (1.8% vs. 0.7%; p=0.099), induction of labor (39.2% vs. 17.5%; p<0.001), as well as urgent and non-urgent cesarean sections (44.4% vs. 13.3%; p<0.001).
Table 3 presents neonatal characteristics and outcome. Women with the combined endocrinopathy had a higher rate of preterm delivery between 32-34 weeks (2.3% vs. 0.8%; p=0.024), late preterm birth (8.8% vs. 5%; p<0.024), and a higher rate of newborns with a birthweight below 2500 grams (11.1% vs. 8.2%; p=0.165).

Three GEE models were constructed to determine independent risk factors for cesarean section (Table 4), preterm delivery (Table 5) and preeclampsia (Table 6) after adjustment for confounding factors: 1) Hypothyroidism [OR 1.6; 95% CI 1.52-1.68], DM [OR 1.74; 95% CI 1.52-1.99] and their interaction term (dual endocrinopathy) [OR 3.46; 95% CI 2.53-4.75], were all independent risk factors for cesarean delivery (Table 4). 2) Hypothyroidism, maternal age, infertility treatments, history of preterm birth, infection of amniotic fluid, preterm PROM and chronic hypertension were all independent risk factors for preterm birth. The interaction between DM and hypothyroidism had no significant association with preterm delivery (Table 5). Finally, 3) Hypothyroidism [OR 1.39; 95% CI 1.23-1.57], the combination of hypothyroidism and DM [OR 1.82; 95% CI 1.16-2.84], older maternal age and chronic hypertension were all independent risk factors for preeclampsia (Table 6). However, we did not observe an effect modification of DM by hypothyroidism, as the main effect of DM turned to non-significant in the presence of the interaction.

Conducting a similar sensitivity analysis based on different subtypes of diabetes mellitus (gestational diabetes mellitus, diabetes mellitus type I and diabetes mellitus type II) showed similar results, and therefore is not detailed in this paper.

The principal findings of our study show that the combination of hypothyroidism and DM during pregnancy is associated with an increased rate of infertility, hypertensive disorders of pregnancy, preterm deliveries and cesarean sections. Moreover, this dual endocrinological
combination was found to be an independent risk factor for cesarean section and for the development of preeclampsia.

DISCUSSION

Diabetes and hypothyroidism are the two most common endocrinopathies during pregnancy. Both conditions have been previously shown to be associated with various pregnancy complications affecting both the mother and the neonate. The association between hypothyroidism and metabolic syndrome including DM and insulin resistance is a subject of extensive studies. Feely (1979) reported that among diabetic patients 2.7% had also overt hypothyroidism, while the prevalence of subclinical hypothyroidism reached up to 30% in these patients (Feely & Isles, 1979). Other studies reported a prevalence of 10.8-13.4% of thyroid diseases (mostly hypothyroid disorders) in diabetic patients, and the highest rates were recorded among type I diabetes patients and in females (Perros et al. 1995; Smithson, 1998; Gallas et al. 2002; Van sen Driessche et al. 2009; Papazafiropoulou et al. 2010).

In recent years there has been ongoing research exploring the connection between hypothyroidism and insulin resistance (Maratou et al. 2009; Duntas, Orgiazzi & Brabant, 2011). Mannisto (2010) found that overt hypothyroidism during pregnancy increases one's risk to develop diabetes (OR of 7) later in life (Mannisto et al. 2010). A supportive evidence for this association is the finding that treatment with metformin suppresses TSH secretion (Vigersky, Filmore-Nassar & Glass, 2006; Isidro et al. 2007; Cappelli et al. 2009; Duntas, Orgiazzi & Brabant, 2011). It has been proposed to screen diabetic patients or patients at risk for GDM, for thyroid dysfunction, especially those with DM type I, positive thyroid antibodies, and with TSH concentrations in the upper limits of normal range (Olivieri et al. 2000; Kadiyala, Peter & Okosieme, 2010; Duntas, Orgiazzi & Brabant, 2011).
The study reported herein is the first study to explore the epidemiology of the combined pathology of hypothyroidism and DM during pregnancy. The prevalence of this combined pathology in our population is 0.17% of all women (0.07% of all deliveries). However, the differences in the prevalence of the disease in the different ethnic groups of our region suggest that the prevalence of the disease may be higher and there is under diagnosis of this combined pathology among the rural and nomadic population of our region.

The combination of DM and hypothyroidism during pregnancy, although rare, is associated with a higher rate of hypertensive disorders of pregnancy (See Figure 2). Indeed, our study showed a higher incidence of hypertensive disorders in the combined endocrinopathy group (25%) than each endocrinopathy by itself and the GEE model demonstrated that the patients with combination of hypothyroidism and DM were at higher risk factor for preeclampsia even after controlling for maternal age, parity and other confounding factors.

Preeclampsia – The association between hypothyroidism as well as DM with the development of preeclampsia is well documented. Indeed, the incidence of preeclampsia among women with hypothyroidism range between 11-44%, especially among those with overt hypothyroidism, although both overt and subclinical hypothyroidism patients showed a higher rate of pregnancy related hypertensive disorders than the general population (Davis, Leveno & Cunningham, 1988; Leung et al. 1993; Poppe & Gli noer, 2003; Wilson et al. 2012; Sahu et al. 2010). All types of hypertensive disorders are more prevalent among patients with DM (type I or II and GDM) (Garner et al. 1990; Leung et al. 1993; Hanson & Persson, 1998; Sibai et al. 2000; Bryson et al. 2003; Yang et al. 2006; Coghill, Hansen & Littman, 2011; Sullivan, Umans & Ratner, 2011). Colatrella et al. reported that the prevalence of chronic hypertension was up to 18%, preeclampsia up to 15% (50% when nephropathy is pre-existing), and gestational hypertension up to 28% in pregnant women with different types of
DM (Colatrella et al. 2010). In addition, the risk of developing hypertensive disorders was found to be 1.5 times greater among women with GDM (Bryson et al. 2003), and the risk for eclampsia 1.8 times greater (Coghill, Hansen & Littman, 2011), than other pregnant women. Poor glycemic control as well as the presence of microvascular complications may increase the risk for preeclampsia and its co-morbidities (Hanson & Persson, 1998; Colatrella et al. 2010). A possible underlying mechanism for this observation is the effect of insulin resistance and glucose intolerance on the development of preeclampsia. It was shown that even within the normal range, the level of plasma glucose one hour after a 50 gram oral glucose challenge test correlated with the likelihood of preeclampsia. Insulin resistance might play a role in the development of these hypertensive disorders during pregnancy (Joffe et al. 1998; Erez-Weiss et al. 2005; Ness & Sibai, 2006). Nevertheless, in the current study, DM was not an independent risk factor for preeclampsia while the combined endocrinopathy of hypothyroidism and DM was associated with an adjusted odds ratio of 1.82 (95%CI 1.16-2.84) to develop preeclampsia. Notably, these patients had several additional risk factors for preeclampsia, including advanced maternal age (Coghill, Hansen & Littman, 2011; Joseph et al. 2005), a higher rate of infertility treatments (Erez et al. 2006) and chronic hypertension, which may contribute to the inherent risk of the combined endocrinopathy for the development of preeclampsia. These results may suggest that these two endocrinopathies, which modify an effect of one another, and are influenced by metabolic processes, might have an additive influence on the risk to develop hypertensive disorders during pregnancy. The mechanism through which diabetes and hypothyroidism increase the risk for hypertensive disorders and preeclampsia is complex. Several studies have shown that lipid metabolism disorders, such as hypertriglyceridemia are positively associated with preeclampsia (Ray et al. 2006; Wiznitzer et al. 2009). Both GDM and hypothyroidism are
related to elevated plasma triglycerides concentrations (Wiznitzer et al. 2009; Pearce, 2004). Furthermore, pregnancy is a state in which triglycerides and cholesterol levels are elevated (Wiznitzer et al. 2009; Basaran, 2009). Other studies suggest that endothelial dysfunction may also play a role in the development of preeclampsia (Shanklin & Sibai, 1989).

Patients with hypothyroidism show impaired blood flow in response to tissue ischemia or to the administration of endothelial dependent vasodilators, suggesting endothelial dysfunction in these patients (Taddei et al. 2003; Dagre et al. 2007). Thus, the presence of hypothyroidism might enhance the risk for hypertension and preeclampsia.

Cesarean section – The finding that the combined endocrinopathy is an independent risk factor for cesarean section is novel. The majority of the cesarean deliveries were non-urgent (See Figure 3), this observation may be the result of several contributing factors including: maternal age, high rate of infertility treatments and malpresentation (Bianco et al. 1996; Joseph et al. 2005; Bayrampour & Heaman, 2010). In addition to the indications listed above, hypothyroidism, as well as DM, are associated each with an increased risk for cesarean delivery. Previous studies reported that patients with GDM have an increased rate of cesarean section that may be as high as 23-35% (Casey et al. 1997; Langer et al. 2005; Beucher et al. 2010). Moreover, Sahu (2010) reported a relatively high prevalence of 44-52% cesarean sections in a small group of patients with hypothyroidism, compared to 36% in the control group (Sahu et al. 2010). Wasserstrun (1995) reviewed 43 pregnancies of women with hypothyroidism and reported an increased rate of cesarean section due to fetal distress in women with 'severe hypothyroidism' (Wasserstrum & Anania, 1995). A previous study based on our population database, found a cesarean sections rate of 30% in pregnancies complicated by hypothyroidism (Cohen et al. 2011). Collectively these reports are in accord with our findings, of an incidence of 23% and 27% cesarean section in the hypothyroidism and DM
groups, respectively. Yet, by themselves they cannot serve as an explanation for the high incidence of cesarean delivery observed in the combined endocrinopathy group. This rate reached 44% and aside the possible etiologies, it seems that an additional driving force for this high rate of cesarean sections is the physicians’ decision to operate due to underlying illnesses, advanced maternal age and other pathologies.

Preterm delivery – Both GDM and pregestational diabetes are associated with a higher risk for preterm delivery (Sibai et al. 2000; Yang et al. 2006; Beucher et al. 2010). Sibai (2000) found increasing rates of preterm birth related with the severity of pregestational diabetes (Sibai et al. 2000). The Hyperglycemia and adverse pregnancy outcome (HAPO) study (2008) evaluating the association between glucose concentrations and different pregnancy outcomes, showed slightly higher risk for preterm delivery in women with elevated glucose concentrations at 1 and 2 hours after 75 gram oral glucose tolerance test (HAPO study, 2008). Hypothyroidism is associated with preterm delivery. Casey (2005) conducted a prospective study which found that women with subclinical hypothyroidism were 1.8 times more likely to deliver prior to 34 weeks of gestation (Casey et al. 2005). Stagnaro (2005) showed similar tendency as women with elevated TSH were 3 times more likely to deliver prior to 32 weeks of gestation (Stagnaro-Green et al. 2005). In our study, we also observed that the combined endocrinopathy is associated with a higher rate of preterm birth. Of interest this group had a higher rate of infection in amniotic fluids, hypertensive disorders and PROM, conditions that may lead to induced or spontaneous preterm deliveries. The lack of independent association between the combined endocrinopathy and preterm birth in the GEE model suggest that the higher rate of preterm birth observed in this patients reflects the underlying pregnancy complications that lead to preterm parturition, rather than the effect of the combination of hypothyroidism and DM by itself.
Strength and limitations of the study – The retrospective design and the fact that the diagnoses are based on ICD-9 coding and not by specify the criteria of diagnosis of these endocrinopathies (for example blood test results, presence of autoimmune antibodies etc.) are the limitations of the current study. Moreover, the lack of information regarding how tight the thyroid function and glucose concentrations were under control and the BMI of the patients may also serve as possible confounding factors. Nevertheless, the strength of our study is the large population it includes. There are 87,000 women and more than 232,000 deliveries included in our analysis, and this cohort has sufficient power to characterize such a rare group of patients who have hypothyroidism and DM.

Conclusions – The findings in our study, especially regarding the increased risk for cesarean section and preeclampsia in women with this combined endocrinopathy, emphasizes the importance of managing the pregnancies of these women with extra care, especially since cesarean section and preeclampsia might result in subsequent maternal and neonatal complications. Therefore it might be reasonable and of benefit, to screen women in reproductive age, which have been diagnosed with one of these endocrinopathies for the other, and monitor carefully the blood pressure of these patients.
Acknowledgements

DT, LN, NB-T and OE have designed the study, conducted the statistical analysis and wrote the manuscript. FP, RB-W, AW, and MM helped in the study design, and the writing of the manuscript.

The paper was presented as poster # S-128 at the Annual Scientific Meeting of the Society of Gynecologic Investigation– March 2012, San Diego CA, USA. It was also presented as a poster in the joint Israeli Society of Maternal Fetal Medicine with the Israeli Society of Ultrasound in Obstetrics and Gynecology on November 2012, Tel Aviv, ISRAEL.
References

1. Abalovich M, Gutierrez S, Alcaraz G, Maccallini G, Garcia A & Levalle O. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002;12:63-68.

2. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care 2004;27,Suppl 1:S88-90.

3. Barahona MJ, Sucunza N, Garcia-Patterson A, Hernandez M, Adelantado JM, Ginovart G, De Leiva A & Corcoy R. Period of gestational diabetes mellitus diagnosis and maternal and fetal morbidity. Acta Obstet Gyn Scan 2005;84:622-627.

4. Basaran A. Pregnancy induced hyperlipoproteinemia: review of the literature. Reprod Sci 2009;16:431-7.

5. Bayrampour H & Heaman M. Advanced maternal age and the risk of cesarean birth: a systematic review. Birth 2010;37:219-226.

6. Betti M, Ceccatelli G, Belcari F, Moscuzza F, Cuttano A, Vuerich M. Boldrini A & Ghirri P. Neonatal outcome in newborns from mothers with endocrinopathies. Gynecol Endocrinol 2011;27:248-250.

7. Beucher G, Viaris de Lesegno B & Dreyfus M. Maternal outcome of gestational diabetes mellitus. Diabetes Metab 2010;36:522-37 [Abstract only].

8. Bianco A, Stone J, Lynch L, Lapinski R, Berkowitz G & Berkowitz RL. Pregnancy outcome at age 40 and older. Obstet Gynecol 1996;87:917-22.

9. Bryson CL, Ioannou GN, Rulyak SJ & Critchlow C. Association between gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol 2003;158:1148-53.

10. Cappelli C, Rotondi M, Pirola I, Agosti B, Gandossi E, Valentini U, De Martino E, Cimino A, Chiovato L, Agabiti-Rosei E & Castellano M. TSH-lowering effect of metformin in type 2 diabetic patients. Differences between euthyroid, untreated
hypothyroid and euthyroid on L-T4 therapy patients. Diabetes Care 2009;32:1589–1590.

11. Casey BM, Lucas MJ, Mcintire DD & Leveno KJ. Pregnancy outcomes in women with gestational diabetes compared with the general obstetric population. Obstet Gynecol 1997;90:869-873.

12. Casey MB, Dashe JS, Wells CE, McIntire DD, Byrd W, Leveno KJ & Cunningham FG. Subclinical hypothyroidism and pregnancy outcomes. Obstet Gynecol 2005;105:239-45.

13. Cleary-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, Canick J, Porter TF, Luthy D, Gross S, Bianchi DW & D’alton ME. Maternal Thyroid Hypofunction and Pregnancy Outcome. Obstet Gynecol 2008;112:85-92.

14. Coghill AE, Hansen S & Littman AJ. Risk factors for eclampsia: a population-based study in Washington State, 1987-2007. Am J Obstet Gynecol 2011;205:553.e1-7.

15. Cohen N, Levy A, Wiznitzer A & Sheiner E. Perinatal outcomes in post-thyroidectomy pregnancies. Gynecol Endocrinol 2011;27:314-8.

16. Colatrella A, Loguercio V, Mattei L, Trappolini M, Festa C, Stoppo M & Napoli A. Hypertension in diabetic pregnancy: impact and long-term outlook. Best Pract Res Clin Endocrinol Metab 2010;24:635-51.

17. Dagre AG, Lekakis JP, Protogerou AD, Douridas GN, Papamichael CM & Alevizaki M. Abnormal endothelial function in female patients with hypothyroidism and borderline thyroid function. Int J Cardiol. 2007 18;114(3):332-8.

18. Davis LE, Leveno KJ & Cunningham FG. Hypothyroidism complicating pregnancy. Obstet Gynecol 1988;72:108-12. [Abstract only]
19. Duntas LH, Orgiazi J & Brabant G. The Interface between thyroid and diabetes mellitus. Clin Endocrinol 2011;75:1-9.

20. Erez O, Vardi IS, Hallak M, Hershkovitz R, Dukler D & Mazor M. Preeclampsia in twin gestations: association with IVF treatments, parity and maternal age. J Matern Fetal Neonatal Med 2006;19:141-6.

21. Erez-Weiss I, Erez O, Shoham-Vardi I, Holeberg G & Mazor M. The association between maternal obesity, glucose intolerance and hypertensive disorders of pregnancy in nondiabetic pregnant women. Hypertens Pregnancy 2005;24:125-36.

22. Feely J & Isles TE. Screening for thyroid dysfunction in diabetics. Br Med J 1979;1:1678.

23. Gallas PR, Stolk RP, Bakker K, Endert E & Wiersinga WM. Thyroid dysfunction during pregnancy and in the first postpartum year in women with diabetes mellitus type 1. Eur J of Endocrinol 2002;147:443-51.

24. Garner PR, D'Alton ME, Dudley DK, Huard P & Hardie M. Preeclampsia in diabetic pregnancies. Am J Obstet Gynecol 1990;163:505-8. [Abstract only].

25. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O'Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD & Klein RZ. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. New Engl J Med 1999; 341:549-555.

26. Hallengren B, Lantz M, Andreasson B & Grennert L. Pregnant women on thyroxine substitution are often dysregulated in early pregnancy. Thyroid 2009;19:391-394.

27. Hanson U & Persson B. Epidemiology of pregnancy-induced hypertension and preeclampsia in type 1 (insulin-dependent) diabetic pregnancies in Sweden. Acta Obstet Gynecol Scand 1998;77:620-4.
28. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991–2002.

29. Isidro ML, Penin MA, Nemina R & Cordido F. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocrine 2007;32:79–82.

30. Joffe GM, Esterlitz JR, Levine RJ, Clemens JD, Ewell MG, Sibai BM & Catalano PM. The relationship between abnormal glucose tolerance and hypertensive disorders of pregnancy in healthy nulliparous women. Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol 1998;179:1032-7.

31. Joseph KS, Allen AC, Dodds L, Turner LA, Scott H & Liston R. The perinatal effects of delayed childbearing. Obstet Gynecol 2005;105:1410-8.

32. Kadiyala R, Peter R & Okosiem O. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract 2010;64:1130-9.

33. Langer O, Yogev Y, Most O & Xenakis EM. Gestational diabetes: the consequences of not treating. Am J Obstet Gynecol 2005;192:989-997.

34. LeBeau SO & Mandel SJ. Thyroid disorders during pregnancy. Endocrin Metab Clin 2006;35:117-136.

35. Leung AS, Millar LK, Koonings PP, Montoro M & Mestman JH. Perinatal outcome in hypothyroid pregnancies. Obstet Gynecol 1993;81:349-53. [Abstract only]

36. Mannisto T, Vaarasma M, Pouta A, Hartikainen AL, Ruokonen A, Surc HM, Bloigu A, Jarvelin MR & Suvanto E. Thyroid dysfunction and autoantibodies during pregnancy as predictive factors of pregnancy complications and maternal morbidity in later life. J Clin Endocrinol Metab 2010;95:1084-1094.
37. Maratou E, Hadjidakis DJ, Kollias A, Tsegka K, Peppa M, Alevizaki M, Mitrou P, Lambadiari V, Boutati E, Nikzas D, Tountas N, Economopoulos T, Raptis SA & Dimitriadis G. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur J Endocrinol 2009;160:785-90.

38. McCanlies E, O’leary LA, Foley TP, Kramer MK, Burke JP, Libman A, Swan JS, Steenkiste AR, McCarthy BJ, Trucco M & Dorman JS. Hashimoto's thyroiditis and Insulin Dependent Diabetes Mellitus: Differences among individuals with and without abnormal thyroid function. J Clin Endocrinol Metab 1998;83:1548-1551.

39. Nambiar V, Jagtap VS, Sarathi V, Lila AR, Kamalanathan S, Bandgar TR, Menon PS & Shah NS. Prevalence and impact of thyroid disorders on maternal outcome in Asian-Indian pregnant women. Journal of Thyroid Research 2011; 429097. Epub 2011 Jul 17.

40. Ness RB & Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol 2006;195:40–49.

41. Olivieri A, Valensise H, Magnani F, Medda E, De Angelis S, D’Archivio M, Sorcini M, Carta S, Baccarini S & Romanini C. High frequency of antithyroid autoantibodies in pregnant women at increased risk of gestational diabetes mellitus. Eur J Endocrinol 2000;143:741-747.

42. Papazafiropoulou A, Sotiropoulos A, Kokolaki A, Kardara M, Stamataki P & Pappas S. Prevalence of thyroid dysfunction among greek type 2 diabetic patients attending an outpatient clinic. J Clin Med Res 2010;20:75-8.

43. Pearce EN. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr Cardiol Rep 2004;6:451-6.
44. Perros P, McCrimmon RJ, Shaw G & Frier BM. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diabetic Med 1995;12:622-7. [Abstract only].

45. Poppe K & Glinoer D. Thyroid autoimmunity and hypothyroidism before and during pregnancy. Hum Reprod Update 2003;9:149-161.

46. Ray JG, Diamond P, Singh G & Bell CM. Brief overview of maternal triglycerides as a risk factor for preeclampsia. BJOG 2006;113:379-86.

47. Sahu MT, Das V, Mittal S, Agarwal A & Sahu M. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. Arch Gynecol Obstet 2010;281:215-20.

48. Shanklin DR & Sibai Bm. Ultrastructural aspects of preeclampsia. I. Placental bed and uterine boundary vessels. Am J Obstet Gynecol. 1989 ;161(3):735-41. [Abstract only]

49. Sibai BM, Caritis S, Hauth J, Lindheimer M, VanDorsten JP, MacPherson C, Klebanoff M, Landon M, Miodovnik M, Paul R, Meis P, Dombrowski M, Thurnau G, Roberts J & McNellis D. Risks of preeclampsia and adverse neonatal outcomes among women with pregestational diabetes mellitus. National Institute of Child Health Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 2000;182:364-9.

50. Smallridge RC & Ladenson PW. Hypothyroidism in pregnancy: consequences to neonatal health. J Clin Endocr Metab 2001;86:2349-2353.

51. Smithson MJ. Screening for thyroid dysfunction in a community population of diabetic patients. Diabetic Med 1998;15:148-50.
52. Stagnaro-Green A, Chen X, Bogden JD, Davies TF & Scholl TO. The thyroid and pregnancy: a novel risk factor for very preterm delivery. Thyroid 2005;15:351-7. [Abstract only]
53. Sullivan SD, Umans JG & Ratner R. Hypertension complicating diabetic pregnancies: pathophysiology, management, and controversies. J Clin Hypertens 2011;13:275-84.
54. Taddei S, Caraccio N, Virdis A, Daedano A, Versari D, Ghiadoni L, Salvetti A, Ferrannini E & Monzani F. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88(8):3731-7.
55. Van sen Driessche A, Eenkhoorn V, Van Gaal L & De Block C. Type I and autoimmune polyglandular syndrome: a clinical review. Neth J Med 2009;67:376-387.
56. Vigersky RA, Filmore-Nassar A & Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab 2006;91:225–227.
57. Wasserstrum N, Anania CA. Perinatal consequences of maternal hypothyroidism in early pregnancy and inadequate replacement. Clin Endocrinol (Oxf). 1995 Apr;42(4):353-8 [Abstract only].
58. Wilson KL, Casey BM, McIntire DD, Halvorson LM & Cunningham FG. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol 2012;119:315-20.
59. Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A & Novack L. Association of lipid levels during gestation with preeclampsia and gestational
diabetes mellitus: a population-based study. Am J Obstet Gynecol 2009;201:482.e1-8.

60. Yang J, Cummings EA, O’Connell C & Jangaard K. Fetal and neonatal outcomes of diabetic pregnancies. Obstet Gynecol 2006;108:644-50.
Figure legends:

Figure 1: The Prevalence of Endocrinopathies in the Study Population (% Births)

DM – Diabetes Mellitus; HYPO – Hypothyroidism.

Figure 2: The Prevalence of Hypertensive Disorders Among the Study Groups (% Births)

DM – Diabetes Mellitus; HYPO – Hypothyroidism; PET – Pre-eclamptic Toxemia; HTN – Hypertension.

Figure 3: The Incidence of Urgent and Non-Urgent Cesarean Sections Among the Study Groups (% Births)

DM – Diabetes Mellitus; HYPO – Hypothyroidism; CS – Cesarean Section.
Table 1 – Demographical and medical background

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Maternal age, years Mean ± SD	28.3 ± 5.8	32.9 ± 5.9	31 ± 5.2	33.5 ± 5.9	<0.0001
Jewish origin	49.2%	62.4%	73.8%	77.8%	<0.0001
Gravidity, 1st pregnancy	20.2%	13.9%	22.2%	19.3%	<0.0001
2-5th pregnancy	57.5%	49.1%	59.7%	56.1%	<0.0001
6th pregnancy and more	22.3%	37%	18.1%	24.6%	<0.0001
Parity, 1st delivery	25.4%	19.7%	29.2%	28.9%	<0.0001
2-5th delivery	62.4%	56.7%	62%	56.6%	<0.0001
6th delivery and more	12.3%	23.6%	8.8%	14.5%	<0.0001
Infertility Treatment	4.9%	9.4%	6.3%	11.1%	<0.0001
History of fetal mortality	2.4%	3.8%	1.7%	2.3%	<0.0001
History of preterm birth	9.6%	10.7%	9.1%	15.8%	<0.0001
History of > 2 spontaneous abortions	3.9%	8.1%	6.6%	8.8%	<0.0001
Table 2 – Perinatal characteristics

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Hydramnios	3.1%	11.9%	2.9%	7%	<0.0001
Olygohydramnios	2.4%	1.9%	3.1%	1.8%	0.0002
Mild PET	3.2%	5.5%	4.2%	10.5%	<0.0001
Severe PET	1%	2%	1.2%	3.5%	<0.0001
Chronic HTN	1.2%	6.6%	2.3%	11.1%	<0.0001
NPL stage I	1.7%	3.5%	2.4%	2.9%	<0.0001
NPL stage II	1.6%	1.9%	1.5%	0.6%	0.0159
PROM	7.8%	6.7%	11.7%	10.5%	<0.0001
Preterm delivery	7.4%	9.7%	8.6%	14%	<0.0001
Preterm delivery and PROM	1.2%	1.6%	1.9%	1.8%	0.0001
NRFHR	1.9%	2.7%	0.3%	0%	<0.0001
Placenta Previa	0.4%	0.7%	0.5%	0%	<0.0001
Uterine rupture	0.1%	0.1%	0%	0%	0.7895
Instrumental delivery	3.2%	2.8%	3.7%	3.5%	0.1043
Cesarean section	12.3%	27%	23.4%	44.4%	<0.0001
Malpresentation	4.1%	6.1%	6.2%	7%	<0.0001
Abruption of placenta	0.7%	0.8%	0.5%	1.8%	0.3074
Infection of amniotic fluids	0.7%	1.1%	0.7%	1.8%	<0.0001
Induction	17.5%	35.8%	24.3%	39.2%	<0.0001
Induction and CS	1.9%	6.5%	3.3%	9.4%	<0.0001
Induction and Preterm delivery	1.3%	1.6%	2%	4.7%	<0.0001
Urgent CS	7.1%	14.1%	10.2%	18.7%	<0.0001
Non urgent CS	5.2%	12.9%	13.2%	25.7%	<0.0001

PET – Preeclampsia; HTN – Hypertension; NPL – Non progressive labor; PROM – Prelabor rupture of membranes; NRFHR – Non reassuring fetal heart rate; CS – Cesarean section.
Table 3 – Neonatal characteristics and outcomes

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Male gender	51.2%	52.8%	51.1%	49.7%	0.0048
SGA	5.8%	3.2%	4.4%	2.3%	<0.0001
LGA	9.1%	22.3%	8.3%	21.6%	<0.0001
Weight mean (gr)	3174±549	3329±577	3174±577	3249±638	<0.0001
< 1500gr	1.4%	0.8%	1.3%	0.6%	
1500-2500gr	6.8%	5.9%	8.5%	10.5%	
>2500gr	91.9%	93.3%	90.2%	88.9%	
Gestational age mean (weeks)	39.2±2.3	38.7±1.95	38.96±2.3	38.3±2.3	<0.0001
< 28	0.6%	0.2%	0.9%	0.6%	
28-32	0.8%	0.7%	0.9%	0.6%	
32-34	0.8%	1%	0.8%	2.3%	
34-37	5%	7.6%	6%	8.8%	
> 37	92.8%	90.6%	91.5%	87.7%	
Apgar 1 min <5	5.4%	5.5%	4.6%	5.8%	0.5219
Apgar 5 min <7	3.5%	2.5%	3%	1.8%	<0.0001
Overall fetal mortality	1.4%	0.9%	1.1%	0.6%	0.0002
APD	0.7%	0.5%	0.9%	0.6%	0.0758
IPD	0.1%	0%	0.1%	0%	0.3703
PPD	0.6%	0.3%	0.2%	0%	0.0017
Shoulder distortion	0.2%	0.5%	0%	0%	<0.0001
Malformation of nervous system	0.3%	0.3%	0.3%	0%	0.5524

SGA – Small for gestational age; LGA – Large for gestational age; APD – Antepartum death; IPD – intra-partum death; PPD – postpartum death.
Table 4 – Factors associated with cesarean section based on GEE model

Patients' characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.6 (1.52-1.68)	<0.0001
Diabetes mellitus alone	1.74 (1.52-1.99)	<0.0001
Hypothyroidism and Diabetes Mellitus	3.46 (2.53-4.75)	<0.0001
Age, years	1.1 (1.099-1.106)	<0.0001
Parity, 2-5 deliveries vs. 1 delivery	0.82 (0.79-0.85)	<0.0001
Parity, > 6 deliveries vs. 1 delivery	0.57 (0.54-0.6)	<0.0001
Severe PET	5.68 (5.13-6.28)	<0.0001
Mild PET	1.24 (1.16-1.32)	<0.0001
NPL stage I	27.1 (25.1-29.3)	<0.0001
NPL stage II	3.73 (3.42-4.08)	<0.0001
NRFHR	9.61 (8.91-10.4)	<0.0001
Malpresentation	26.5 (25-28.1)	<0.0001
LGA	1.59 (1.52-1.65)	<0.0001
Male gender	1.09 (1.07-1.12)	<0.0001
Chronic HTN	1.56 (1.43-1.7)	<0.0001

GEE - Generalized estimating equations; PET – Preeclampsia; NPL – Non progressive labor;
NRFHR – Non reassuring fetal heart rate; LGA – Large for gestational age; HTN – Hypertension.
Table 5 – Factors associated with preterm delivery based on GEE model

Patients’ characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.14 (0.996-1.3)	<0.0001
Diabetes mellitus alone	0.86 (0.58-1.28)	0.0567
Hypothyroidism and Diabetes Mellitus	1.86 (0.87-3.98)	0.4613
Age, years	1.02 (1.01-1.03)	0.1101
Parity, 2-5 deliveries vs. 1 delivery	0.42 (0.39-0.46)	<0.0001
Parity, > 6 deliveries vs. 1 delivery	0.4 (0.35-0.46)	<0.0001
Infertility treatment	1.35 (1.13-1.61)	<0.0001
History of preterm delivery	1.75 (1.53-1.99)	0.0008
Infection of amniotic fluid	4.09 (3.37-4.97)	<0.0001
PPROM	5.37 (4.64-6.2)	<0.0001
Male gender	0.91 (0.85-0.97)	<0.0001
Chronic HTN	5.38 (4.66-6.2)	0.0049
> 3 Spontaneous abortion	1.11 (0.91-1.35)	<0.0001

GEE - Generalized estimating equations; PPROM – Preterm prelabor rupture of membranes; HTN – Hypertension.
Table 6 – Factors associated with PET based on GEE model

Patients’ characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.39 (1.23-1.57)	<0.0001
Diabetes mellitus alone	1.04 (0.82-1.31)	0.7631
Hypothyroidism and Diabetes Mellitus	1.82 (1.16-2.84)	0.0090
Age, years	1.05 (1.04-1.06)	<0.0001
Parity	0.46 (0.43-0.48)	<0.0001
Gestational age	0.9 (0.89-0.91)	<0.0001
Infertility treatment	0.97 (0.8-1.19)	0.7806
Chronic HTN	2.57 (1.95-3.39)	<0.0001

GEE - Generalized estimating equations; HTN – Hypertension.
INTRODUCTION

Diabetes mellitus (DM) and hypothyroidism disorders are among the most common endocrinopathies during pregnancy. The prevalence of DM during pregnancy is about 7%, most of them are gestational, of note there is a constant increase of the prevalence of DM due to the gradual increase in pregnant women’s BMI (Body Mass Index) and the epidemic of obesity during recent decades (American Diabetes Association, 2004). Gestational diabetes mellitus (GDM) and especially pregestational DM, are known as risk factors for pregnancy complications, affecting both the mother and the fetus and include among the rest gestational hypertension, cesarean sections, macrosomic fetuses and shoulder dystocia (Casey et al. 1997; Barahona et al. 2005; Langer et al. 2005). These patients also have increased neonatal morbidity including fetal demise, neonatal hypoglycemia, jaundice, polycytemia and hypocalcemia (American Diabetes Association, 2004; Casey et al. 1997; Barahona et al. 2005; Langer et al. 2005). Moreover, maternal diabetes is associated with long term implications on the fetus including increase incidence of future obesity and type II diabetes (American Diabetes Association, 2004).

Hypothyroidism is the second most common endocrinopathy during pregnancy, and its' incidence range from 2% to 5%. Autoimmune thyroiditis (also known as Hashimoto’s thyroiditis) and iatrogenic thyroid gland destruction as a therapeutic measure for hyperthyroidism are the most common etiologies for this endocrinopathy in pregnant women (Smallridge & Ladenson, 2001; LeBeau & Mandel, 2006; Nambiar et al. 2011).

Pregnant women with hypothyroidism, experience a higher rate of first trimester abortions (McCanlies et al. 1998; Abalovich et al. 2002; Hallengren et al. 2009), anemia, post-partum hemorrhage, gestational hypertension and placental abruption (Poppe & Glinoer, 2003). Fetuses of pregnant women with uncontrolled hypothyroidism are at a greater risk to develop multinodular goiter and have a higher tendency to be small or large for gestational age (Sahu)
et al., 2010; Betti, 2011). Moreover, in-utero exposure to maternal hypothyroidism increases the risk for miscarriage, intrauterine fetal death and CNS (Central nervous system) and developmental disorders as well as mental illnesses and lower than average IQ later on in life (Haddow, 1999; Poppe & Glinoer, 2003; Betti, 2011). However, continuous monitoring and balancing of thyroid functions decreases the prevalence of most of these complications (Abalovich et al. 2002)

The association between different types of DM and hypothyroidism was previously reported (Perros et al. 1995; Smithson, 1998; Gallas et al. 2002; Van sen Driessche et al. 2009; Papazafiropoulou et al. 2010). Indeed, autoimmune diseases, such as insulin dependent DM, Hashimoto thyroiditis, pernicious anemia and others, are more prevalent among women, show a familial tendency, and may occur concomitantly in a higher rate than their prevalence in the general population (Van sen Driessche et al. 2009). There is inconsistent evidence regarding the association between hypothyroidism and GDM. Some reports found such an association, while others failed to show this connection, but did show an increased risk for later onset diabetes in women who had hypothyroidism during pregnancy, and women with an increased risk for GDM, especially those with familial history of both DM and hypothyroid disorders, also have an increased prevalence of positive antithyroid autoantibodies (Olivieri et al. 2000; Cleary-Goldman et al. 2008; Mannisto et al. 2010). In the literature review we conducted, the information regarding the influence of the combination of these two endocrinopathies on pregnancy and perinatal outcome is lacking.

The aims of this study were to determine the prevalence of the combination of DM and hypothyroidism in pregnant women and to determine whether this dual gestational endocrinopathy is associated with adverse maternal and neonatal outcome.
MATERIAL AND METHODS

The study was a retrospective population-based cohort study which included all pregnant women who delivered at the Soroka University Medical Center since 1988 through April 2010 (n=87,213) who had 232,293 deliveries. All deliveries were divided into the following groups: 1) hypothyroidism & DM (n=171); 2) hypothyroidism (n=1502); 3) DM (n=13,324); and 4) deliveries of women with neither endocrinopathy that served as a control group (n=217,296). Exclusion criteria included: chromosomal abnormalities or structural defects of the fetus, and multiple pregnancies.

The diagnosis of diabetes or hypothyroidism and the data on demographic characteristics, medical and obstetric history, pregnancy outcomes, including maternal and neonatal morbidity and mortality, were obtained from the computerized database. The diagnoses of the different types of diabetes mellitus and hypothyroidism, used for the statistical analysis, were according to their ICD-9 as recorded in our computerized database. The use of the database was possible as the ‘Soroka’ University Medical Center is a tertiary medical center that exclusively serves the population of the Negev (southern Israel) and all deliveries of the region take place in its labor and delivery suites.

The study complied with the Declaration of Helsinki and ethical approval was obtained by the review board of the Soroka University Medical Center.

Statistical analysis Methods

Continuous variables were presented as mean ± SD, median, minimal and maximal values, and compared between groups using t-test and Kruskal-Wallis test, depending on the distribution of each variable. Categorical variables were described as percentages and compared between groups by Chi-Square test. Variables found to be significantly associated with the study outcomes in the univariable analysis (p_value<0.05), were included in a
multivariable analysis. At the last stage of modeling the list of covariates has been reduced to the main exposures at study as well as factors at 0.05 level of significance or variables which we believed provided a necessary adjustment to the main exposures (even if not significant in the current model). We employed an “enter” method at all steps of multivariable analysis. Adjustment to dependent observations within clusters formed by the same women having more than one delivery within the study period was achieved by Generalized Estimating Equations (GEE) model with binary outcome and logit link function. P-value of 0.05 was considered significant. Analysis was performed on SAS software version 9.0 (Cary, NC, USA).
RESULTS and DISCUSSION

The prevalence of the combination of DM and hypothyroidism in pregnancy in our study population was 0.17% of all women and 0.07% of all the deliveries at our medical center (See Figure 1).

The epidemiologic characteristics of the four groups are presented in Table 1. Mean maternal age was significantly lower in the group of healthy women by at least 2 years, than in the other groups. Jewish ethnicity was more prevalent in all groups with a single or a combined endocrinopathy, than in healthy population group (63.7% within the 3 groups of disease vs. 49.2% in healthy population; p<0.001). Women in the hypothyroidism and DM group had a higher rate of infertility treatments (11.1% vs. 5.2% in the other study groups; p=0.001), history of preterm birth (15.8% vs. 9.7% in the other study groups; p<0.007) and a history of two or more spontaneous abortions (8.8% vs. 4.2% in the other study groups; p<0.003).

Table 2 presents the perinatal characteristics. Patients in the diabetes only group had higher rates of hydramnios (11.9% vs. 3.1% in the rest of the population; p<0.001), labor dystocia of first and second stage (5.4% vs. 3.3%; p<0.001), non-reassuring fetal heart rate (2.7% vs. 1.9%; p<0.001), and placenta previa (0.7% vs. 0.4%; p<0.001), than the other study groups. Women in the hypothyroidism only group had a higher rate of oligohydramnios (3.1% vs. 2.4%; p=0.066), prelabor rupture of membranes (PROM) (11.7% vs. 7.8%; p<0.001), and preterm delivery and PROM (1.9% vs. 1.2%; p=0.01), than other study groups. Patients with the combination of hypothyroidism and DM had a higher rate of mild and severe preeclampsia (14.0% vs. 4.2%; p=0.001), chronic hypertension (11.1% vs. 1.2%; p<0.001), preterm delivery (14.0% vs. 7.4%; p=0.01), infection in amniotic fluid (1.8% vs. 0.7%; p=0.099), induction of labor (39.2% vs. 17.5%; p<0.001), as well as urgent and non-urgent cesarean sections (44.4% vs. 13.3%; p<0.001).
Table 3 presents neonatal characteristics and outcome. Women with the combined endocrinopathy had a higher rate of preterm delivery between 32-34 weeks (2.3% vs. 0.8%; p=0.024), late preterm birth (8.8% vs. 5%; p<0.024), and a higher rate of newborns with a birthweight below 2500 grams (11.1% vs. 8.2%; p=0.165).

Three GEE models were constructed to determine independent risk factors for cesarean section (Table 4), preterm delivery (Table 5) and preeclampsia (Table 6) after adjustment for confounding factors: 1) Hypothyroidism [OR 1.6; 95% CI 1.52-1.68], DM [OR 1.74; 95% CI 1.52-1.99] and the combined endocrinopathy—their interaction term (dual endocrinopathy) [OR 3.46; 95% CI 2.53-4.75], were all independent risk factors for cesarean delivery (Table 4). 2) Hypothyroidism, maternal age, infertility treatments, history of preterm birth, infection of amniotic fluid, preterm PROM and chronic hypertension were all independent risk factors for preterm birth. The interaction between DM and hypothyroidism had no significant association with preterm delivery (Table 5). Finally, 3) Hypothyroidism [OR 1.39; 95% CI 1.23-1.57], the combination of hypothyroidism and DM [OR 1.82; 95% CI 1.16-2.84], older maternal age and chronic hypertension were all independent risk factors for preeclampsia (Table 6). However, we did not observe an effect modification of DM by hypothyroidism, as the main effect of DM turned to non-significant in the presence of the interaction.

Conducting a similar sensitivity analysis based on different subtypes of diabetes mellitus (gestational diabetes mellitus, diabetes mellitus type I and diabetes mellitus type II) showed similar results, and therefore is not detailed in this paper.

The principal findings of our study show that the combination of hypothyroidism and DM during pregnancy is associated with an increased rate of infertility, hypertensive disorders of pregnancy, preterm deliveries and cesarean sections. Moreover, this dual endocrinological
combination was found to be an independent risk factor for cesarean section and for the development of preeclampsia.

DISCUSSION

Diabetes and hypothyroidism are the two most common endocrinopathies during pregnancy. Both conditions have been previously shown to be associated with various pregnancy complications affecting both the mother and the neonate. The association between hypothyroidism and metabolic syndrome including DM and insulin resistance is a subject of extensive studies. Feely (1979) reported that among diabetic patients 2.7% had also overt hypothyroidism, while the prevalence of subclinical hypothyroidism reached up to 30% in these patients (Feely & Isles, 1979). Other studies reported a prevalence of 10.8-13.4% of thyroid diseases (mostly hypothyroid disorders) in diabetic patients, and the highest rates were recorded among type I diabetes patients and in females (Perros et al. 1995; Smithson, 1998; Gallas et al. 2002; Van sen Driessche et al. 2009; Papazafiropoulou et al. 2010).

In recent years there has been ongoing research exploring the connection between hypothyroidism and insulin resistance (Maratou et al. 2009; Duntas, Orgiazzi & Brabant, 2011). Mannisto (2010) found that overt hypothyroidism during pregnancy increases one’s risk to develop diabetes (OR of 7) later in life (Mannisto et al. 2010). A supportive evidence for this association is the finding that treatment with metformin suppresses TSH secretion (Vigersky, Filmore-Nassar & Glass, 2006; Isidro et al. 2007; Cappelli et al. 2009; Duntas, Orgiazzi & Brabant, 2011). It has been proposed to screen diabetic patients or patients at risk for GDM, for thyroid dysfunction, especially those with DM type I, positive thyroid antibodies, and with TSH concentrations in the upper limits of normal range (Olivieri et al. 2000; Kadiyala, Peter & Okosieme, 2010; Duntas, Orgiazzi & Brabant, 2011).
The study reported herein is the first study to explore the epidemiology of the combined pathology of hypothyroidism and DM during pregnancy. The prevalence of this combined pathology in our population is 0.17% of all women (0.07% of all deliveries). However, the differences in the prevalence of the disease in the different ethnic groups of our region suggest that the prevalence of the disease may be higher and there is under diagnosis of this combined pathology among the rural and nomadic population of our region.

The combination of DM and hypothyroidism during pregnancy, although rare, is associated with a higher rate of hypertensive disorders of pregnancy (See Figure 2). Indeed, our study showed a higher incidence of hypertensive disorders in the combined endocrinopathy group (25%) than each endocrinopathy by itself and the GEE model demonstrated that the patients with combination of hypothyroidism and DM were at higher risk factor for preeclampsia even after controlling for maternal age, parity and other confounding factors.

Preeclampsia – The association between hypothyroidism as well as DM with the development of preeclampsia is well documented. Indeed, the incidence of preeclampsia among women with hypothyroidism range between 11-44%, especially among those with overt hypothyroidism, although both overt and subclinical hypothyroidism patients showed a higher rate of pregnancy related hypertensive disorders than the general population (Davis, Leveno & Cunningham, 1988; Leung et al. 1993; Poppe & Glinoer, 2003; Wilson et al. 2012; Sahu et al. 2010). All types of hypertensive disorders are more prevalent among patients with DM (type I or II and GDM) (Garner et al. 1990; Leung et al. 1993; Hanson & Persson, 1998; Sibai et al. 2000; Bryson et al. 2003; Yang et al. 2006; Coghill, Hansen & Littman, 2011; Sullivan, Umans & Ratner, 2011). Colatrella et al. reported that the prevalence of chronic
hypertension was up to 18%, preeclampsia up to 15% (50% when nephropathy is pre-existing), and gestational hypertension up to 28% in pregnant women with different types of DM (Colatrella et al. 2010). In addition, the risk of developing hypertensive disorders was found to be 1.5 times greater among women with GDM (Bryson et al. 2003), and the risk for eclampsia 1.8 times greater (Coghill, Hansen & Littman, 2011), than other pregnant women. Poor glycemic control as well as the presence of microvascular complications may increase the risk for preeclampsia and its co-morbidities (Hanson & Persson, 1998; Colatrella et al. 2010). A possible underlying mechanism for this observation is the effect of insulin resistance and glucose intolerance on the development of preeclampsia. It was shown that even within the normal range, the level of plasma glucose one hour after a 50 gram oral glucose challenge test correlated with the likelihood of preeclampsia. Insulin resistance might play a role in the development of these hypertensive disorders during pregnancy (Joffe et al. 1998; Erez-Weiss et al. 2005; Ness & Sibai, 2006). Nevertheless, in the current study, DM was not an independent risk factor for preeclampsia while the combined endocrinopathy of hypothyroidism and DM was associated with an adjusted odds ratio of 1.82 (95%CI 1.16-2.84) to develop preeclampsia. Notably, these patients had several additional risk factors for preeclampsia, including advanced maternal age (Coghill, Hansen & Littman, 2011; Joseph et al. 2005), a higher rate of infertility treatments (Erez et al. 2006) and chronic hypertension, which may contribute to the inherent risk of the combined endocrinopathy for the development of preeclampsia. These results may suggest that these two endocrinopathies, which modify an effect of interact with one another, and are influenced by metabolic processes, might have an additive influence on the risk to develop hypertensive disorders during pregnancy.
The mechanism through which diabetes and hypothyroidism increase the risk for hypertensive disorders and preeclampsia is complex. Several studies have shown that lipid metabolism disorders, such as hypertriglyceridemia are positively associated with preeclampsia (Ray et al. 2006; Wiznitzer et al. 2009). Both GDM and hypothyroidism are related to elevated plasma triglycerides concentrations (Wiznitzer et al. 2009; Pearce, 2004). Furthermore, pregnancy is a state in which triglycerides and cholesterol levels are elevated (Wiznitzer et al. 2009; Basaran, 2009). Other studies suggest that endothelial dysfunction may also play a role in the development of preeclampsia (Shanklin & Sibai, 1989).

Patients with hypothyroidism show impaired blood flow in response to tissue ischemia or to the administration of endothelial dependent vasodilators, suggesting endothelial dysfunction in these patients (Taddei et al. 2003; Dagre et al. 2007). Thus, the presence of hypothyroidism might enhance the risk for hypertension and preeclampsia.

Cesarean section. The finding that the combined endocrinopathy is an independent risk factor for cesarean section is novel. The majority of the cesarean deliveries were non-urgent (See Figure 3), this observation may be the result of several contributing factors including: maternal age, high rate of infertility treatments and malpresentation (Bianco et al. 1996; Joseph et al. 2005; Bayrampour & Heaman, 2010). In addition to the indications listed above, hypothyroidism, as well as DM, are associated each with an increased risk for cesarean delivery. Previous studies reported that patients with GDM have an increased rate of cesarean section that may be as high as 23-35% (Casey et al. 1997; Langer et al. 2005; Beucher et al. 2010). Moreover, Sahu (2010) reported a relatively high prevalence of 44-52% cesarean sections in a small group of patients with hypothyroidism, compared to 36% in the control group (Sahu et al. 2010). Wasserstrun (1995) reviewed 43 pregnancies of women with hypothyroidism and reported an increased rate of cesarean section due to fetal distress in
women with 'severe hypothyroidism' (Wasserstrum & Anania, 1995). A previous study based on our population database, found a cesarean sections rate of 30% in pregnancies complicated by hypothyroidism (Cohen et al. 2011). Collectively these reports are in accord with our findings, of an incidence of 23% and 27% cesarean section in the hypothyroidism and DM groups, respectively. Yet, by themselves they cannot serve as an explanation for the high incidence of cesarean delivery observed in the combined endocrinopathy group. This rate reached 44% and aside the possible etiologies, it seems that an additional driving force for this high rate of cesarean sections is the physicians' decision to operate due to underlying illnesses, advanced maternal age and other pathologies.

Preterm delivery – Both GDM and pregestational diabetes are associated with a higher risk for preterm delivery (Sibai et al. 2000; Yang et al. 2006; Beucher et al. 2010). Sibai (2000) found increasing rates of preterm birth related with the severity of pregestational diabetes (Sibai et al. 2000). The Hyperglycemia and adverse pregnancy outcome (HAPO) study (2008) evaluating the association between glucose concentrations and different pregnancy outcomes, showed slightly higher risk for preterm delivery in women with elevated glucose concentrations at 1 and 2 hours after 75 gram oral glucose tolerance test (HAPO study, 2008). Hypothyroidism is associated with preterm delivery. Casey (2005) conducted a prospective study which found that women with subclinical hypothyroidism were 1.8 times more likely to deliver prior to 34 weeks of gestation (Casey et al. 2005). Stagnaro (2005) showed similar tendency as women with elevated TSH were 3 times more likely to deliver prior to 32 weeks of gestation (Stagnaro-Green et al. 2005). In our study, we also observed that the combined endocrinopathy is associated with a higher rate of preterm birth. Of interest this group had a higher rate of infection in amniotic fluids, hypertensive disorders and PROM, conditions that may lead to induced or spontaneous preterm deliveries. The lack of independent association
between the combined endocrinopathy and preterm birth in the GEE model suggest that the higher rate of preterm birth observed in this patients reflects the underlying pregnancy complications that lead to preterm parturition, rather than the effect of the combination of hypothyroidism and DM by itself.

Strength and limitations of the study – The retrospective design and the fact that the diagnoses are based on ICD-9 coding and not by specify the criteria of diagnosis of these endocrinopathies (for example blood test results, presence of autoimmune antibodies etc.) are the limitations of the current study. Moreover, the lack of information regarding how tight the thyroid function and glucose concentrations were under control and the BMI of the patients may also serve as possible confounding factors. Nevertheless, the power of our study is the large population it includes. There are 87,000 women and more than 232,000 deliveries included in our analysis, and this cohort has sufficient power to characterize such a rare group of patients who have hypothyroidism and DM.

Conclusions – The findings in our study, especially regarding the increased risk for cesarean section and preeclampsia in women with this combined endocrinopathy, emphasizes the importance of managing the pregnancies of these women with extra care, especially since cesarean section and preeclampsia might result in subsequent maternal and neonatal complications. Therefore it might be reasonable and of benefit, to screen women in reproductive age, which have been diagnosed with one of these endocrinopathies for the other, and monitor carefully the blood pressure of these patients.
Acknowledgements

DT, LN, NB-T and OE have designed the study, conducted the statistical analysis and wrote the manuscript. FP, RB-W, AW, and MM helped in the study design, and the writing of the manuscript.

The paper was presented as poster # S-128 at the Annual Scientific Meeting of the Society of Gynecologic Investigation– March 2012, San Diego CA, USA. It was also presented as a poster in the joint Israeli Society of Maternal Fetal Medicine with the Israeli Society of Ultrasound in Obstetrics and Gynecology on November 2012, Tel Aviv, ISRAEL.
References

1. Abalovich M, Gutierrez S, Alcaraz G, Maccallini G, Garcia A & Levalle O. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid 2002;12:63-68.

2. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care 2004;27,Suppl 1:S88-90.

3. Barahona MJ, Sucunza N, Garcia-Patterson A, Hernandez M, Adelantado JM, Ginovart G, De Leiva A & Corcoy R. Period of gestational diabetes mellitus diagnosis and maternal and fetal morbidity. Acta Obstet Gyn Scan 2005;84:622-627.

4. Basaran A. Pregnancy induced hyperlipoproteinemia: review of the literature. Reprod Sci 2009;16:431-7.

5. Bayrampour H & Heaman M. Advanced maternal age and the risk of cesarean birth: a systematic review. Birth 2010;37:219-226.

6. Betti M, Ceccatelli G, Belcari F, Moscuzza F, Cuttano A, Vuerich M, Boldrini A & Ghirri P. Neonatal outcome in newborns from mothers with endocrinopathies. Gynecol Endocrinol 2011;27:248-250.

7. Beucher G, Viaris de Lesegno B & Dreyfus M. Maternal outcome of gestational diabetes mellitus. Diabetes Metab 2010;36:522-37 [Abstract only].

8. Bianco A, Stone J, Lynch L, Lapinski R, Berkowitz G & Berkowitz RL. Pregnancy outcome at age 40 and older. Obstet Gynecol 1996;87:917-22.

9. Bryson CL, Ioannou GN, Rulyak SJ & Critchlow C. Association between gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol 2003;158:1148-53.

10. Cappelli C, Rotondi M, Pirola I, Agosti B, Gandossi E, Valentini U, De Martino E, Cimino A, Chiovato L, Agabiti-Rosei E & Castellano M. TSH-lowering effect of metformin in type 2 diabetic patients. Differences between euthyroid, untreated
hypothyroid and euthyroid on L-T4 therapy patients. Diabetes Care 2009;32:1589–1590.

11. Casey BM, Lucas MJ, Mcintire DD & Leveno KJ. Pregnancy outcomes in women with gestational diabetes compared with the general obstetric population. Obstet Gynecol 1997;90:869-873.

12. Casey MB, Dashe JS, Wells CE, McIntire DD, Byrd W, Leveno KJ & Cunningham FG. Subclinical hypothyroidism and pregnancy outcomes. Obstet Gynecol 2005;105:239-45.

13. Cleary-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, Canick J, Porter TF, Luthy D, Gross S, Bianchi DW & D’alton ME. Maternal Thyroid Hypofunction and Pregnancy Outcome. Obstet Gynecol 2008;112:85-92.

14. Coughill AE, Hansen S & Littman AJ. Risk factors for eclampsia: a population-based study in Washington State, 1987-2007. Am J Obstet Gynecol 2011;205:553.e1-7.

15. Cohen N, Levy A, Wiznitzer A & Sheiner E. Perinatal outcomes in post-thyroidectomy pregnancies. Gynecol Endocrinol 2011;27:314-8.

16. Colatrella A, Loguercio V, Mattei L, Trappolini M, Festa C, Stoppo M & Napoli A. Hypertension in diabetic pregnancy: impact and long-term outlook. Best Pract Res Clin Endocrinol Metab 2010;24:635-51.

17. Dagre AG, Lekakis JP, Protogerou AD, Douridas GN, Papamichael CM & Alevizaki M. Abnormal endothelial function in female patients with hypothyroidism and borderline thyroid function. Int J Cardiol. 2007 18;114(3):332-8.

18. Davis LE, Leveno KJ & Cunningham FG. Hypothyroidism complicating pregnancy. Obstet Gynecol 1988;72:108-12. [Abstract only]
19. Duntas LH, Orgiazzi J & Brabant G. The Interface between thyroid and diabetes mellitus. Clin Endocrinol 2011;75:1-9.

20. Erez O, Vardi IS, Hallak M, Hershkovitz R, Dukler D & Mazor M. Preeclampsia in twin gestations: association with IVF treatments, parity and maternal age. J Matern Fetal Neonatal Med 2006;19:141-6.

21. Erez-Weiss I, Erez O, Shoham-Vardi I, Holberg G & Mazor M. The association between maternal obesity, glucose intolerance and hypertensive disorders of pregnancy in nondiabetic pregnant women. Hypertens Pregnancy 2005;24:125-36.

22. Feely J & Isles TE. Screening for thyroid dysfunction in diabetics. Br Med J 1979;1:1678.

23. Gallas PR, Stolk RP, Bakker K, Endert E & Wiersinga WM. Thyroid dysfunction during pregnancy and in the first postpartum year in women with diabetes mellitus type 1. Eur J of Endocrinol 2002;147:443-51.

24. Garner PR, D’Alton ME, Dudley DK, Huard P & Hardie M. Preeclampsia in diabetic pregnancies. Am J Obstet Gynecol 1990;163:505-8. [Abstract only].

25. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waibren SE, Faix JD & Klein RZ. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. New Engl J Med 1999;341:549-555.

26. Hallengren B, Lantz M, Andresson B & Grennert L. Pregnant women on thyroxine substitution are often dysregulated in early pregnancy. Thyroid 2009;19:391-394.

27. Hanson U & Persson B. Epidemiology of pregnancy-induced hypertension and preeclampsia in type 1 (insulin-dependent) diabetic pregnancies in Sweden. Acta Obstet Gynecol Scand 1998;77:620-4.
28. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991–2002.

29. Isidro ML, Penin MA, Nemina R & Cordido F. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocrine 2007;32:79–82.

30. Joffe GM, Esterlitz JR, Levine RJ, Clemens JD, Ewell MG, Sibai BM & Catalano PM. The relationship between abnormal glucose tolerance and hypertensive disorders of pregnancy in healthy nulliparous women. Calcium for Preeclampsia Prevention (CPEP) Study Group. Am J Obstet Gynecol 1998;179:1032-7.

31. Joseph KS, Allen AC, Dodds L, Turner LA, Scott H & Liston R. The perinatal effects of delayed childbearing. Obstet Gynecol 2005;105:1410-8.

32. Kadiyala R, Peter R & Okosieme OE. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract 2010;64:1130-9.

33. Langer O, Yoge Y, Most O & Xenakis EM. Gestational diabetes: the consequences of not treating. Am J Obstet Gynecol 2005;192:989-997.

34. LeBeau SO & Mandel SJ. Thyroid disorders during pregnancy. Endocrin Metab Clin 2006;35:117-136.

35. Leung AS, Millar LK, Koonings PP, Montoro M & Mestman JH. Perinatal outcome in hypothyroid pregnancies. Obstet Gynecol 1993;81:349-53. [Abstract only]

36. Mannisto T, Vaaramaki M, Pouta A, Hartikainen AL, Ruokonen A, Surcel HM, Bloigu A, Jarvelin MR & Suvanto E. Thyroid dysfunction and autoantibodies during pregnancy as predictive factors of pregnancy complications and maternal morbidity in later life. J Clin Endocrinol Metab 2010;95:1084-1094.
37. Maratou E, Hadjidakis DJ, Kollias A, Tsegka K, Peppa M, Alevizaki M, Mitrou P, Lambadiari V, Boutati E, Nikzas D, Tountas N, Economopoulos T, Raptis SA & Dimitriadis G. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur J Endocrinol 2009;160:785-90.

38. McCanlies E, O’leary LA, Foley TP, Kramer MK, Burke JP, Libman A, Swan JS, Steenkiste AR, McCarthy BJ, Trucco M & Dorman JS. Hashimoto’s thyroiditis and Insulin Dependent Diabetes Mellitus: Differences among individuals with and without abnormal thyroid function. J Clin Endocrinol Metab 1998;83:1548-1551.

39. Nambiar V, Jagtap VS, Sarathi V, Lila AR, Kamalanathan S, Bandgar TR, Menon PS & Shah NS. Prevalence and impact of thyroid disorders on maternal outcome in Asian-Indian pregnant women. Journal of Thyroid Research 2011; 42:9097. Epub 2011 Jul 17.

40. Ness RB & Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol 2006;195:40–49.

41. Olivieri A, Valensise H, Magnani F, Medda E, De Angelis S, D’Archivio M, Sorcini M, Carta S, Baccarini S & Romanini C. High frequency of antithyroid autoantibodies in pregnant women at increased risk of gestational diabetes mellitus. Eur J Endocrinol 2000;143:741-747.

42. Papazafiropoulou A, Sotiropoulos A, Kokolaki A, Kardara M, Stamatakis P & Pappas S. Prevalence of thyroid dysfunction among greek type 2 diabetic patients attending an outpatient clinic. J Clin Med Res 2010;20:75-8.

43. Pearce EN. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr Cardiol Rep 2004;6:451-6.
44. Perros P, McCrimmon RJ, Shaw G & Frier BM. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diabetic Med 1995;12:622-7. [Abstract only].

45. Poppe K & Glinoer D. Thyroid autoimmunity and hypothyroidism before and during pregnancy. Hum Reprod Update 2003;9:149-161.

46. Ray JG, Diamond P, Singh G & Bell CM. Brief overview of maternal triglycerides as a risk factor for preeclampsia. BJOG 2006;113:379-86.

47. Sahu MT, Das V, Mittal S, Agarwal A & Sahu M. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. Arch Gynecol Obstet 2010;281:215-20.

48. Shanklin DR & Sibai BM. Ultrastructural aspects of preeclampsia. I. Placental bed and uterine boundary vessels. Am J Obstet Gynecol. 1989 ;161(3):735-41. [Abstract only]

49. Sibai BM, Caritis S, Hauth J, Lindheimer M, VanDorsten JP, MacPherson C, Klebanoff M, Landon M, Miodovnik M, Paul R, Meis P, Dombrowski M, Thurnau G, Roberts J & McNellis D. Risks of preeclampsia and adverse neonatal outcomes among women with pregestational diabetes mellitus. National Institute of Child Health Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 2000;182:364-9.

50. Smallridge RC & Ladenson PW. Hypothyroidism in pregnancy: consequences to neonatal health. J Clin Endocr Metab 2001;86:2349-2353.

51. Smithson MJ. Screening for thyroid dysfunction in a community population of diabetic patients. Diabetic Med 1998;15:148-50.
52. Stagnaro-Green A, Chen X, Bogden JD, Davies TF & Scholl TO. The thyroid and pregnancy: a novel risk factor for very preterm delivery. Thyroid 2005;15:351-7. [Abstract only]

53. Sullivan SD, Umans JG & Ratner R. Hypertension complicating diabetic pregnancies: pathophysiology, management, and controversies. J Clin Hypertens 2011;13:275-84.

54. Taddei S, Caraccio N, Virdis A, Daedano A, Versari D, Ghiadoni L, Salvetti A, Ferrannini E & Monzani F. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88(8):3731-7.

55. Van sen Driessche A, Eenkhoorn V, Van Gaal L & De Block C. Type I and autoimmune polyglandular syndrome: a clinical review. Neth J Med 2009;67:376-387.

56. Vigersky RA, Filmore-Nassar A & Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab 2006;91:225-227.

57. Wasserstrum N, Anania CA. Perinatal consequences of maternal hypothyroidism in early pregnancy and inadequate replacement. Clin Endocrinol (Oxf). 1995 Apr;42(4):353-8 [Abstract only].

58. Wilson KL, Casey BM, McIntire DD, Halvorson LM & Cunningham FG. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol 2012;119:315-20.

59. Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A & Novack L. Association of lipid levels during gestation with preeclampsia and gestational
60. Yang J, Cummings EA, O'Connell C & Jangaard K. Fetal and neonatal outcomes of diabetic pregnancies. Obstet Gynecol 2006;108:644-50.
Figure legends:

Figure 1: The Prevalence of Endocrinopathies in the Study Population (% Births)
DM – Diabetes Mellitus; HYPO – Hypothyroidism.

Figure 2: The Prevalence of Hypertensive Disorders Among the Study Groups (% Births)
DM – Diabetes Mellitus; HYPO – Hypothyroidism; PET – Pre-eclamptic Toxemia; HTN – Hypertension.

Figure 3: The Incidence of Urgent and Non-Urgent Cesarean Sections Among the Study Groups (% Births)
DM – Diabetes Mellitus; HYPO – Hypothyroidism; CS – Cesarean Section.
Table 1 – Demographical and medical background

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Maternal age, years Mean ± SD	28.3 ± 5.8	32.9 ± 5.9	31 ± 5.2	33.5 ± 5.9	<0.0001
Jewish origin	49.2%	62.4%	73.8%	77.8%	<0.0001
Gravidity, 1st pregnancy	20.2%	13.9%	22.2%	19.3%	<0.0001
2-5th pregnancy	57.5%	49.1%	59.7%	56.1%	<0.0001
6th pregnancy and more	22.3%	37%	18.1%	24.6%	<0.0001
Parity, 1st delivery	25.4%	19.7%	29.2%	28.9%	<0.0001
2-5th delivery	62.4%	56.7%	62%	56.6%	<0.0001
6th delivery and more	12.3%	23.6%	8.8%	14.5%	<0.0001
Infertility Treatment	4.9%	9.4%	6.3%	11.1%	<0.0001
History of fetal mortality	2.4%	3.8%	1.7%	2.3%	<0.0001
History of preterm birth	9.6%	10.7%	9.1%	15.8%	<0.0001
History of > 2 spontaneous abortions	3.9%	8.1%	6.6%	8.8%	<0.0001
Table 2 – Perinatal characteristics

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Hydramnios	3.1%	11.9%	2.9%	7%	<0.0001
Oligohydramnios	2.4%	1.9%	3.1%	1.8%	0.0002
Mild PET	3.2%	5.5%	4.2%	10.5%	<0.0001
Severe PET	1%	2%	1.2%	3.5%	<0.0001
Chronic HTN	1.2%	6.6%	2.3%	11.1%	<0.0001
NPL stage I	1.7%	3.5%	2.4%	2.9%	<0.0001
NPL stage II	1.6%	1.9%	1.5%	0.6%	0.0159
PROM	7.8%	6.7%	11.7%	10.5%	<0.0001
Preterm delivery	7.4%	9.7%	8.6%	14%	<0.0001
Preterm delivery and PROM	1.2%	1.6%	1.9%	1.8%	<0.0001
NRFHR	1.9%	2.7%	0.3%	0%	<0.0001
Placenta Previa	0.4%	0.7%	0.5%	0%	<0.0001
Uterine rupture	0.1%	0.1%	0%	0%	0.7895
Instrumental delivery	3.2%	2.8%	3.7%	3.5%	0.1043
Cesarean section	12.3%	27%	23.4%	44.4%	<0.0001
Malpresentation	4.1%	6.1%	6.2%	7%	<0.0001
Abruption of placenta	0.7%	0.8%	0.5%	1.8%	0.3074
Infection of amniotic fluids	0.7%	1.1%	0.7%	1.8%	<0.0001
Induction	17.5%	35.8%	24.3%	39.2%	<0.0001
Induction and CS	1.9%	6.5%	3.3%	9.4%	<0.0001
Induction and Preterm delivery	1.3%	1.6%	2%	4.7%	<0.0001
Urgent CS	7.1%	14.1%	10.2%	18.7%	<0.0001
Non urgent CS	5.2%	12.9%	13.2%	25.7%	<0.0001

PET – Preeclampsia; HTN – Hypertension; NPL – Non progressive labor; PROM – Prelabor rupture of membranes; NRFHR – Non reassuring fetal heart rate; CS – Cesarean section.
Table 3 – Neonatal characteristics and outcomes

Characteristic	Healthy (n=217,296 deliveries, N=83,074 women)	Diabetes (n=13,324 deliveries, N=9,771 women)	Hypothyroidism (n=1,502 deliveries, N=1,100 women)	Hypothyroidism + diabetes (n=171 deliveries, N=146 women)	P-value
Male gender	51.2%	52.8%	51.1%	49.7%	0.0048
SGA	5.8%	3.2%	4.4%	2.3%	<0.0001
LGA	9.1%	22.3%	8.3%	21.6%	<0.0001
Weight mean (gr)	3174±549	3329±577	3174±577	3249±638	<0.0001
< 1500gr	1.4%	0.8%	1.3%	0.6%	
1500-2500gr	6.8%	5.9%	8.5%	10.5%	
> 2500gr	91.9%	93.3%	90.2%	88.9%	
Gestational age mean (weeks)	39.2±2.3	38.7±1.95	38.96±2.3	38.3±2.3	<0.0001
< 28	0.6%	0.2%	0.9%	0.6%	
28-32	0.8%	0.7%	0.9%	0.6%	
32-34	0.8%	1%	0.8%	2.3%	
34-37	5%	7.6%	6%	8.8%	
> 37	92.8%	90.6%	91.5%	87.7%	
Apgar 1 min <5	5.4%	5.5%	4.6%	5.8%	0.5219
Apgar 5 min <7	3.5%	2.5%	3%	1.8%	<0.0001
Overall fetal mortality	1.4%	0.9%	1.1%	0.6%	0.0002
APD	0.7%	0.5%	0.9%	0.6%	0.0758
IPD	0.1%	0%	0.1%	0%	0.3703
PPD	0.6%	0.3%	0.2%	0%	0.0017
Shoulder distortion	0.2%	0.5%	0%	0%	<0.0001
Malformation of nervous system	0.3%	0.3%	0.3%	0%	0.5524

SGA – Small for gestational age; LGA – Large for gestational age; APD – Antepartum death; IPD – intra-partum death; PPD – postpartum death.
Table 4 – Factors associated with cesarean section based on GEE model

Patients' characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.6 (1.52-1.68)	<0.0001
Diabetes mellitus alone	1.74 (1.52-1.99)	<0.0001
Hypothyroidism and Diabetes Mellitus	3.46 (2.53-4.75)	<0.0001
Age, years	1.1 (1.099-1.106)	<0.0001
Parity, 2-5 deliveries vs. 1 delivery	0.82 (0.79-0.85)	<0.0001
Parity, > 6 deliveries vs. 1 delivery	0.57 (0.54-0.6)	<0.0001
Severe PET	5.68 (5.13-6.28)	<0.0001
Mild PET	1.24 (1.16-1.32)	<0.0001
NPL stage I	27.1 (25.1-29.3)	<0.0001
NPL stage II	3.73 (3.42-4.08)	<0.0001
NRFHR	9.61 (8.91-10.4)	<0.0001
Malpresentation	26.5 (25.28.1)	<0.0001
LGA	1.59 (1.52-1.65)	<0.0001
Male gender	1.09 (1.07-1.12)	<0.0001
Chronic HTN	1.56 (1.43-1.7)	<0.0001

GEE - Generalized estimating equations; PET – Preeclampsia; NPL – Non progressive labor;
NRFHR – Non reassuring fetal heart rate; LGA – Large for gestational age; HTN – Hypertension.
Table 5 – Factors associated with preterm delivery based on GEE model

Patients' characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.14 (0.996-1.3)	<0.0001
Diabetes mellitus alone	0.86 (0.58-1.28)	0.0567
Hypothyroidism and Diabetes Mellitus	1.86 (0.87-3.98)	0.4613
Age, years	1.02 (1.01-1.03)	0.1101
Parity, 2-5 deliveries vs. 1 delivery	0.42 (0.39-0.46)	<0.0001
Parity, > 6 deliveries vs. 1 delivery	0.4 (0.35-0.46)	<0.0001
Infertility treatment	1.35 (1.13-1.61)	<0.0001
History of preterm delivery	1.75 (1.53-1.99)	0.0008
Infection of amniotic fluid	4.09 (3.37-4.97)	<0.0001
PPROM	5.37 (4.64-6.2)	<0.0001
Male gender	0.91 (0.85-0.97)	<0.0001
Chronic HTN	5.38 (4.66-6.2)	0.0049
> 3 Spontaneous abortion	1.11 (0.91-1.35)	<0.0001

GEE - Generalized estimating equations; PPROM – Preterm prelabor rupture of membranes; HTN – Hypertension.
Table 6 – Factors associated with PET based on GEE model

Patients' characteristic	OR (95% CI)	P-value
Hypothyroidism alone	1.39 (1.23-1.57)	<0.0001
Diabetes mellitus alone	1.04 (0.82-1.31)	0.7631
Hypothyroidism and Diabetes Mellitus	1.82 (1.16-2.84)	0.0090
Age, years	1.05 (1.04-1.06)	<0.0001
Parity	0.46 (0.43-0.48)	<0.0001
Gestational age	0.9 (0.89-0.91)	<0.0001
Infertility treatment	0.97 (0.8-1.19)	0.7806
Chronic HTN	2.57 (1.95-3.39)	<0.0001

GEE - Generalized estimating equations; HTN – Hypertension.
ABSTRACT

Objectives: Diabetes mellitus (DM) and hypothyroidism are each associated with increased rate of pregnancy complications. However, their combined morbidity during gestation is poorly studied. Therefore, the aims of this study were to determine the prevalence of the combined morbidity of DM & hypothyroidism and whether it is associated with adverse maternal and neonatal outcome.

Study design: This population based retrospective cohort study included 87,213 women who had 232,293 deliveries. All deliveries were divided into the following groups: 1) hypothyroidism & DM (n=171); 2) hypothyroidism (n=1502); 3) DM (n=13,324); and 4) deliveries of women with neither endocrinopathy, who served as a control group (n=217,296).

Results: The prevalence of DM & hypothyroidism in our population was 0.17%. In comparisons to the other study groups, women with DM & hypothyroidism had higher rates of infertility (p<0.001), preeclampsia (p<0.001), chronic hypertension (p<0.001), preterm birth (p<0.001), and cesarean deliveries (p<0.001). In Generalized Estimating Equations (GEE) model, hypothyroidism & DM was an independent risk factor for cesarean section (OR 3.46; 95% CI 2.53-4.75) and for preeclampsia (OR 1.82; 95%CI 1.16-2.84).

Conclusion: The combination of DM & hypothyroidism is rare, yet it is associated with higher rate of infertility, cesarean sections, preterm deliveries, and hypertensive disorders of pregnancy than the rest of the population. This dual endocrinological combination is an independent risk factor for preeclampsia and cesarean section. These findings suggest that these patients are at risk for perinatal complications and should be followed and delivered as high risk pregnancies.
ABSTRACT

Objectives: Diabetes mellitus (DM) and hypothyroidism are each associated with increased rate of pregnancy complications. However, their combined morbidity during gestation is poorly studied. Therefore, the aims of this study were to determine the prevalence of the combined morbidity of DM & hypothyroidism and whether it is associated with adverse maternal and neonatal outcome.

Study design: This population based retrospective cohort study included 87,213 women who had 232,293 deliveries. All deliveries were divided into the following groups: 1) hypothyroidism & DM (n=171); 2) hypothyroidism (n=1502); 3) DM (n=13,324); and 4) deliveries of women with neither endocrinopathy, who served as a control group (n=217,296).

Results: The prevalence of DM & hypothyroidism in our population was 0.07%–0.17%. In comparisons to the other study groups, women with DM & hypothyroidism had higher rates of infertility (p<0.001), preeclampsia (p<0.001), chronic hypertension (p<0.001), preterm birth (p<0.001), and cesarean deliveries (p<0.001). In Generalized Estimating Equations (GEE) model, hypothyroidism & DM was an independent risk factor for cesarean section (OR 3.46; 95% CI 2.53–4.75) and for preeclampsia (OR 1.82; 95% CI 1.16–2.84).

Conclusion: The combination of DM & hypothyroidism is rare, yet it is associated with higher rate of infertility, cesarean sections, preterm deliveries, and hypertensive disorders of pregnancy than the rest of the population. This dual endocrinological combination is an independent risk factor for preeclampsia and cesarean section. These findings suggest that these patients are at risk for perinatal complications and should be followed and delivered as high risk pregnancies.
21/2/2013

To

Prof. Scott Grundy,

Academic Editor for PeerJ

Re: manuscript reference No. 2012:11:83:0:1:REVIEW entitled
“Hypothyroidism and Diabetes Mellitus – A Risky Dual Gestational Endocrinopathy”

Dear Prof Grundy

Attached please find the revised version of our manuscript “HYPOTHYROIDISM AND DIABETES MELLITUS – A RISKY DUAL GESTATIONAL ENDOCRINOPATHY”, and our point-by-point responses to each of the comments.

We would like to thank the reviewers for their time and efforts invested in our manuscript. Your comments and those of the reviewers were highly insightful and enabled us to improve the quality of our manuscript.

Regards,

Dr Offer Erez

Acting Director

Maternal Fetal Medicine Unit

Department of Obstetrics and Gynecology "B"

Soroka University Medical Center Faculty of Health Sciences

Ben Gurion University of the Negev

P.O.Box 151

Beer Sheva 84101

Israel

erezof@bgu.ac.il
Responses to the comments of Reviewer #1

1. The authors need to include a further discuss the limitations of the paper. For example, the lack of information about glycemic control and BMI of the women are potential confounding factors. It can be conceivable that there may be a disproportionate obesity rate in the combined endocrinopathy group, which may play a role in hypertension and affect outcomes. If information on weight or BMI is available, the authors may consider adding it and re-assessing the data. If the information is not available, please discuss potential confounding factors.

We accept the comment of the reviewer, one of the limitations of our study is that the database of the birth records we used has no information regarding parameters like glycemic control and thyroid function tests and maternal BMI. We are sure that having this information may have help in our analysis. We have added this point to the Discussion section in the paragraph of ‘Strength and limitations of the study’

2. Overall the paper is written well. I would suggest that the authors consider splitting the Results and Discussion section to increase the general clarity of organization. I would also like to see p values in the Results section whenever a percentage comparison is made.

We thank the reviewer for his comment and following his advice the Results and Discussion section were divided accordingly into smaller sections for clarification. P-values were added in the text and in the tables.

3. On the other hand, I had significant trouble with the Tables section because the annotations of P values and what is statistically significant was not clear. For example, the star marking significance in table 1 (<0.0001) is placed by the title of the table. This would imply to me that every value is significant. I suspect that the authors did not mean to say that there is a statistical significance in the history of fetal mortality between groups (2.4% vs 2.3%). Please revise this. I have similar comments for table 2 and 3.

The reviewer is raising a valid question regarding the statistical significances among the groups, indeed, when comparing between two groups 2.3% (5116/217296) with 2.4% (4/171), the result if not significant. However, the comparison in among the study groups and the calculated p-values reflect the overall difference among all 4 groups (i.e. 3.8% (506/13324) and 1.7% (25/1502), so the differences are indeed statistically significant at p-value<0.0001,
using the Chi-Square test. This results does not refer to a specific difference between two subgroup but rather the difference among all 4 groups.

Additional minor comments:

1. In the Figure section, Figure 1 can be omitted – I do not think it adds much since the section is well explained in the text of the paper.

 We do appreciate the reviewer’s suggestion, but we do think that Figure 1 visually demonstrates the rarity of the dual endocrinopathy among the births in our population, a fact we would like to emphasize and we think it will increase the readability of the paper to some of the readers.

2. I would like clarification of the prevalence of dual endocrinopathy. It is listed in the abstract as 0.07%. My understanding from the paper is that 0.07% is the percentage of births affected by both conditions. The actual prevalence of both conditions in mothers is 146/87,213, which is 0.17%. Please re-word this for accuracy in the abstract.

 We accept the reviewer’s comment. The prevalence of the combination of DM and hypothyroidism in pregnancy in our study population was 0.17% of all women and 0.07% of all deliveries. This specification has been changed in the abstract and manuscript.

3. Women with a dual endocrinopathy appear to have fewer pregnancies (1.17 vs 2.62) in addition to having higher rates of infertility treatment during the study period. If there is a statistically significant difference, you may consider mentioning it in the paper.

 We thank the reviewer’s comment; the tables presented in the article represent data relating to the number of births and not to the number of women. The data in the analysis included the pregnancy’s number in the sequence of births for the specific woman, the endocrinopathy that was presented at the time of this birth, etc. This means that different births of the same woman can be included in several different groups, depending on the time her endocrinopathy was diagnosed. This is the reason that the mean number of pregnancies cannot be calculated from the table. Indication for the gravidity and parity of the women in the group can be found in Table 1 (prevalence of gravidity / parity).
4. Information included in Tables 4-6 would work well presented in a graph form (e.g. forest plot), but still having the actual numbers included, as you did in the table.

We do appreciate the reviewer’s suggestion, but because of multiple comparisons we prefer to leave it as a table, rather than a graph.

5. Please enter a reference for the sentence in the introduction: “Fetuses of pregnant women with uncontrolled hypothyroidism are at a greater risk to develop multinodular goiter and have a higher tendency to be small or large for gestational age.”

6. *We accept the reviewer’s suggestion and added the reference.*

Responses to the comments of Reviewer #2

1. Given the topic, I expected to see an effect modification term (some refer to this as an interaction term) described in the methods. Specifically, the reader will likely be interested in seeing whether the magnitude of association between DM and pregnancy outcome differs significantly by whether hypothyroidism is comorbid. The odds ratios showing these relationships are presented; but the p-value of the effect modification term is not. Thus, the basis for the combination of DM and hypothyroidism is unclear if there is no significant difference in the magnitude of association between one and the pregnancy outcome among strata defined by the other condition. For example, the confidence intervals of the point estimate for the magnitude of association between hypothyroidism and preeclampsia and separately combined hypothyroidism plus DM overlap, suggesting no difference in magnitude comparing isolated versus comorbid hypothyroidism- yet, the manuscript does not provide this level of detail absent a p-value characterizing the effect modification (i.e., interaction) term.

We appreciate this comment. The investigation of the joint effect of DM and hypothyroidism on CS, pre-term delivery and preeclampsia and the p-value was added to the table to emphasize the results of the interaction terms. Which were statistically significant for prediction of CS, but not for preterm delivery and did not signify a real interaction in cases of severe preeclampsia (as one of the main effects was not significant). These finding have been stressed in the text in the Results as well as in the Discussion sections.

2. You may want to refer to the logit link function rather than a binary outcome after introducing the GEE model.
3. It is also preferable that you describe how candidate potentially confounding factors were selected for consideration and what framework was used to perform model reduction and how/why this was chosen.

We thank the reviewer for his comment and added this specification to the manuscript.
Figure 1

The Prevalence of Endocrinopathies in the Study Population

- Healthy: 93.54% (n=217,296)
- DM: 5.74% (n=13,324)
- HYPO: 0.65% (n=1,502)
- HYPO+DM: 0.07% (n=171)
Figure 2

The Prevalence of Hypertensive Disorders Among the Study Groups
Figure 3

The Incidence of Urgent and Non-Urgent Cesarean Sections Among the Study Groups