A new species of *Docsia* Winnertz from Central Europe, with DNA barcoding based on four gene markers (*Diptera, Mycetophilidae*)

Jan Ševčík¹², David Kaspřák¹, Björn Rulik³

¹ University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittusiho 10, CZ-710 00 Ostrava, Czech Republic ² Silesian Museum, Nádražní okruh 31, CZ-746 01 Opava, Czech Republic. ³ Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitaetsforschung, Adenauerallee 160, D-53113 Bonn, Germany

Corresponding author: Author (sevcikjan@hotmail.com)

Academic editor: J. Salmela | Received 21 October 2015 | Accepted 23 November 2015 | Published 5 January 2016

Citation: Ševčík J, Kaspřák D, Rulik B (2016) A new species of *Docsia* Winnertz from Central Europe, with DNA barcoding based on four gene markers (*Diptera, Mycetophilidae*). ZooKeys 549: 127–143. doi: 10.3897/zookeys.549.6925

Abstract

A new species of *Docsia* Winnertz, *D. dentata* sp. n., is described and illustrated, based on a single male specimen collected in Muránska planina National Park in Central Slovakia. DNA sequences (COI, COII, CytB, and ITS2) are included and compared for 13 species of *Docsia*. There was found only little congruence between the molecular results and previous scarce data about interspecific relationships based on morphology. The COI and CytB gene markers showed the highest interspecific gene distances while ITS2 showed the lowest ones. An updated key to the 23 Central European species of *Docsia* is also presented.

Keywords

Bibionomorpha, Sciaroidea, fungus gnats, Palaearctic Region, taxonomy, DNA sequences, identification key

Introduction

The species in the genus *Docsia* Winnertz, 1863 are rather uniform, medium sized fungus gnats (*Diptera: Mycetophilidae*) with dark body and unmarked hyaline wings. Their identification is mainly based on the characters on the male and female terminalia.
The genus was traditionally placed in the subfamily Leinae (e.g. Soli 1997), though recent molecular studies challenge this and place *Docosia* among the Gnoristinae genera (Rindal et al. 2009, Ševčík et al. 2013). Data on the biology of *Docosia* are scarce, with the exception of the common mycophagous species *Docosia gilvipes* (Walker, 1856), see the recent reviews by Chandler (2010), Jakovlev (2012) and Ševčík (2010a). One species (*Docosia fumosa* Edwards, 1925) has repeatedly been reared from bird’s nests (cf. Rulik and Kallweit 2006).

Although *Docosia* is a principally Holarctic genus, several species have also been reported from the Neotropical, Afrotropical and Oriental regions (Bechev 2000, Ševčík 2010b, Oliveira and Amorim 2011, Kurina and Ševčík 2012). A total of 32 described species are currently known from Europe (Kurina and Ševčík 2011). Central European species may be identified according to the key and illustrations of the male and female terminalia provided by Laštovka and Ševčík (2006). Their key includes 16 species from the Czech and Slovak Republics. Additional species were described and figured by Ševčík (2006) from Slovakia, by Ševčík and Laštovka (2008) and Kurina (2008) from the Alps, and by Kurina and Ševčík (2011) from Slovakia and Greece.

A further new species of *Docosia* from Slovakia, tentatively announced by Ševčík (2012), is described in this contribution, together with DNA sequence data provided for this and related species, and the opportunity is taken to update the key to the 23 Central European species of the genus. Morphological terminology follows that of Soli (1997).

Material and methods

Material from the Czech and Slovak Republics

The holotype of the new species was collected by the senior author by sweeping in Muránska planina National Park in central Slovakia. This national park belongs to the most valuable protected areas in Slovakia with regard to biodiversity, with many rare and thermophilous species, often reaching there the northernmost limit of their distribution (cf. Ševčík and Kurina 2011a, b). The habitats include mainly karst valleys and limestone rocky slopes, covered mostly by beech and spruce forests.

The material used for DNA extraction was collected with Malaise traps or sweep net at different localities of the Czech and Slovak Republics in the years 2012–2015. The voucher specimens are deposited in the collection of Jan Ševčík (JSEVC) or in the Silesian Museum, Opava, Czech Republic (SMOC).

All the specimens were collected in 70% ethanol. The holotype is stored in the glycerine medium in a plastic pinned microvial. Before placing in glycerol the specimen was incubated in proteinase K to extract DNA.

Genomic DNA was extracted using NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany) following the included protocol. The specimens were cleaned with PBS (Phosphate Buffered Saline) and left in lysis buffer with proteinase K overnight at 56 °C. The primers used for the PCR amplifications were as fol-
A new species of Docosia Winnertz from Central Europe, with DNA barcoding...

Material from Germany

German material discussed here was obtained within the German Barcode of Life Project (GBOL). Specimens used for DNA extraction were collected with Malaise traps at two different localities in Germany in the years 2013 and 2015. All the specimens were collected in pure 96% ethanol.

Genomic DNA was extracted from legs of the specimens using the BioSprint96 magnetic bead extractor by Qiagen (Hilden, Germany). Polymerase chain reaction (PCR) was carried out in total reaction mixes of 20 μl, including 2 μl of undiluted DNA template, 0.8 μl of each primer (10 pmol/μl), 2 μl of ‘Q-Solution’ and 10 μl of ‘Multiplex PCR Master Mix’, containing hot start Taq DNA polymerase and buffers. The latter components are available in the Multiplex PCR kit from Qiagen (Hilden, Germany). PCR reactions were run individually and not multiplexed.

Thermal cycling was performed on GeneAmp PCR System 2700 (Applied Biosystems, Foster City, CA, USA) as follows: hot start Taq activation: 15 min at 95 °C; first cycle set (15 repeats): 35-s denaturation at 94 °C, 90-s annealing at 55 °C (−1 °C/ cycle) and 90-s extension at 72 °C. Second cycle set (25 repeats): 35-s denaturation at 94 °C, 90-s annealing at 40 °C and 90-s extension at 72 °C; final elongation 10 min at 72 °C using the primers LCO1490-JJ: 5´-CHACWAAYCATAAAGATATYGG- 3´ with HCO2198-JJ: 5´-AWACTTCVGGRTGVCCAAARAATCA- 3´ respectively (Astrin and Stüben 2008).

Sequencing of the unpurified PCR products in both directions was conducted at Beijing Genomics Institute (Hongkong, CN) by using the amplification primers. Barcode sequence analysis was done using the Geneious® software version 7.1.7 (http://www.geneious.com).

Vouchers were deposited in the collection of the Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.
Sequence alignment and analyses

The sequences were aligned using MAFFT version 7 (Katoh and Standley 2013) on the MAFFT server (http://mafft.cbrc.jp/alignment/server/) with default settings and then manually edited. The protein-coding gene COI, COII and CytB sequences were checked based on amino-acid translations and yielded indel-free nucleotide alignments. All unreliable aligned regions of ITS2 fragment were removed in GBLOCKS 0.91b program (Castresana 2000) on the Gblocks server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html). We created four alignments, one for each gene, and one concatenated alignment for all gene fragments with 15 taxa, including additional sequences from GenBank (KT316839, KC435639, KC435683 and KC435708). The final molecular dataset consists of 2039 characters: COI–658, COII–546, CytB–433, ITS2–402 bp. The datasets were analysed using maximum likelihood analyses conducted on the CIPRES computer cluster using RAxML-HPC BlackBox 7.6.3 (Stamatakis 2006) employing automatic bootstrapping on the partitioned dataset. All the sequences were deposited into GenBank and BOLD (http://dx.doi.org/10.5883/DS-DOCODENT), where detailed metadata is available (see Table 1). As outgroup taxa we selected two representatives of the subfamily Gnoristinae, in concordance with previous molecular studies (Rindal et al. 2009, Ševčík et al. 2013).

Genetic distances were calculated in MEGA6 (Tamura et al. 2013) using Kimura 2-parameter model (K2P) with pairwise deletion for the treatment and they are demonstrated in Table 2 and Fig. 5.

Species description

Docosia dentata sp. n.
http://zoobank.org/E75577BA-83A0-4596-BC12-61F22A505225
Figures 1–3

Type material. Holotype male, in a pinned microvial with glycerol. SLOVAKIA, Muránska planina National Park, Muráň env., Šiance National Nature Reserve, sweeping along forest edge, N48°46′12″, E20°04′20″, 1005 m a.s.l., 25. May 2012 (J. Ševčík leg.) [SMOC].

Description. Male (n = 1). Length of wing 4.2 mm.

Head blackish brown with numerous pale setae. Three ocelli, with lateral ones almost touching compound eyes, separated from the eye margins by their own diameter. Clypeus blackish, with setae pale. Mouthparts light brownish. Palpus brownish yellow, basally and apically darker. Scape, pedicel and all flagellomeres dark brown. Flagellomeres cylindrical, flagellomeres 1 to 7 about twice as long as broad, apical flagellomeres (8 to 14) slightly conical, three times as long as broad.

All parts of thorax blackish brown. All bristles and setae yellowish white. Scutellum with several marginal and submarginal pale bristles and with numerous setae.
Table 1. List of species, sampling locality and year, and accession numbers.

Species	Voucher code	Sampling locality and year	GenBank accession numbers	BOLD Process ID
Boletina nasuta (Haliday, 1839)	JSGS18	Slovakia, 2013	KT923571 KT923585 KT923598 KT923614	JSDO0011-15
Gnoriste bilineata Zetterstedt, 1852	JSGS4	Czech Republic, 2009	KT316839 KT923584 KT923597 KT923613	JSDO0014-15
Docosia dentata sp. n.	JSDO1	Slovakia, 2012	KT923562 KT923575 KT923600 KT923604	JSDO0001-15
D. diutina Plassmann, 1996	ZFMK-TIS-2516913	Germany, 2013	KU146854 KU146860 KU146858 KU146856	SRDOC0001-15
D. flavicosta Strobl, 1900	JSDO9a	Slovakia, 2012	KT923570 KT923583 KT923596 KT923612	JSDO0009-15
D. fumosa Edwards, 1925	ZFMK-TIS-2556735	Germany, 2015	KU146855 KU146861 KU146859 KU146857	SRDOC002-15
D. fuscipes (Roser, 1840)	JSDO2	Slovakia, 2015	KT923563 KT923576 KT923590 KT923605	JSDO0002-15
D. gilvipes (Walker, 1856)	JSGS29	Slovakia, 2013	KT923572 KT923586 KT923599 KT923615	JSDO0012-15
D. landrocki Laštovka & Ševčík, 2006	JSDO7	Slovakia, 2014	KT923568 KT923581 KT923594 KT923610	JSDO0007-15
D. lastovkai Chandler, 1994	JSDO4	Slovakia, 2013	KT923565 KT923578 KT923591 KT923607	JSDO0004-15
D. montana Laštovka & Ševčík, 2006	JSDO5	Slovakia, 2013	KT923566 KT923579 KT923592 KT923608	JSDO0005-15
D. moravica Landrock, 1916	JSDO6	Slovakia, 2013	KT923567 KT923580 KT923593 KT923609	JSDO0006-15
D. munarica Kurina & Ševčík, 2011	JSM10	Slovakia, 2013	KC435639 KT923587 KC435683 KC435708	JSDO0013-15
D. sciarina (Meigen, 1830)	JSDO8	Czech Republic, 2014	KT923569 KT923582 KT923595 KT923611	JSDO0008-15
D. setosa Landrock, 1916	JSDO3	Slovakia, 2015	KT923564 KT923577 KT923601 KT923606	JSDO0003-15
Table 2. Kimura 2-parameter genetic distances for COI, COII, CytB and ITS2. The lowest and highest values among *Docosia* species are highlighted in bold.

	COI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	*D. dentata* sp. n.															
2	*D. diutina*	8.6%														
3	*D. flavicosa*	9.8%	12.4%													
4	*D. fumosa*	13.3%	13.1%	13.5%												
5	*D. fuscipes*	8.2%	9.4%	11.1%	12.8%											
6	*D. gilvipes*	13.9%	14.6%	14.1%	12.8%	13.5%										
7	*D. landrocki*	9.3%	9.9%	12.3%	13.3%	10.6%	15.9%									
8	*D. lastovkai*	12.6%	13.5%	15.2%	13.9%	11.9%	14.8%	14.0%								
9	*D. montana*	7.5%	10.6%	11.4%	15.3%	10.4%	14.8%	11.7%	14.4%							
10	*D. moravica*	13.2%	15.1%	15.4%	19.1%	14.7%	**19.6%**	15.1%	17.0%	16.4%						
11	*D. muranica*	10.2%	13.0%	14.6%	16.6%	11.3%	16.2%	13.3%	15.5%	12.0%	17.8%					
12	*D. scarina*	9.4%	11.5%	11.8%	14.6%	11.2%	14.3%	12.0%	13.1%	9.0%	15.7%	14.4%				
13	*D. setosa*	**6.0%**	10.0%	10.3%	14.1%	10.3%	14.7%	10.6%	13.9%	7.1%	14.7%	12.3%	9.0%			
14	*Boletina nasuta*	15.9%	17.8%	16.2%	18.6%	16.3%	16.1%	17.4%	16.4%	18.0%	20.1%	16.2%	15.7%	16.1%		
15	*Gnoriste bilinesta*	16.1%	17.9%	18.4%	15.4%	17.0%	15.6%	18.2%	17.5%	18.6%	19.8%	20.3%	17.5%	17.2%	14.9%	

	COII	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	*D. dentata* sp. n.															
2	*D. diutina*	6.6%														
3	*D. flavicosa*	7.5%	8.2%													
4	*D. fumosa*	14.4%	17.2%	14.9%												
5	*D. fuscipes*	7.5%	8.9%	11.0%	17.4%											
6	*D. gilvipes*	7.2%	10.2%	11.9%	16.8%	8.6%										
7	*D. landrocki*	6.8%	5.6%	7.8%	15.2%	8.4%	10.7%									
8	*D. lastovkai*	11.7%	12.9%	14.2%	**19.3%**	11.7%	9.7%	14.8%								
9	*D. montana*	6.2%	7.3%	9.4%	15.8%	9.3%	10.3%	8.4%	13.5%							
A new species of *Docosia* Winnertz from Central Europe, with DNA barcoding...

	D. moravica	6.2%	8.8%	7.3%	16.6%	9.1%	9.3%	12.2%	7.3%					
11	*D. moravica*	8.6%	11.0%	12.9%	16.0%	9.1%	**4.3%**	11.5%	12.2%	11.1%	11.0%			
12	*D. sciarina*	6.7%	8.7%	8.4%	17.4%	10.1%	8.9%	13.0%	6.9%	7.3%	11.6%			
13	*D. setosa*	5.1%	6.4%	7.7%	15.2%	8.2%	10.0%	13.5%	5.6%	6.6%	11.0%	7.4%		
14	*Boletina nasuta*	23.1%	22.8%	20.9%	21.9%	21.2%	22.4%	22.4%	23.1%	21.2%	22.2%	20.0%	22.6%	21.0%
15	*Gnoriste bilineata*	17.7%	18.5%	18.2%	17.7%	19.7%	18.8%	25.4%	18.8%	18.0%	17.4%	18.6%	17.9%	19.1%

	D. dentata sp. n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
2	*D. diutina*	8.3%														
3	*D. flavicoxa*	11.0%	14.5%													
4	*D. fumosa*	19.3%	22.0%	21.0%												
5	*D. fuscipes*	10.9%	12.5%	14.9%	24.1%											
6	*D. gileipes*	19.6%	20.6%	19.9%	19.7%	21.9%										
7	*D. landrocki*	10.1%	9.7%	14.3%	23.6%	12.2%	19.9%									
8	*D. lastovkai*	15.5%	16.4%	15.8%	**26.0%**	18.7%	21.0%	15.4%								
9	*D. montana*	9.4%	12.8%	17.1%	22.9%	13.1%	22.3%	13.5%	21.9%							
10	*D. moravica*	10.0%	11.6%	12.0%	17.8%	14.0%	19.5%	12.0%	16.1%	14.5%						
11	*D. muranica*	7.8%	12.6%	13.6%	21.6%	10.4%	19.4%	12.9%	16.2%	13.1%	13.9%					
12	*D. sciarina*	7.8%	11.0%	10.8%	21.7%	11.4%	19.9%	10.1%	16.1%	11.6%	10.5%	10.7%				
13	*D. setosa*	6.6%	10.3%	10.0%	21.5%	11.0%	16.7%	9.4%	15.7%	10.8%	10.3%	10.2%	7.4%			
14	*Boletina nasuta*	17.4%	18.8%	19.0%	21.9%	22.2%	18.9%	22.3%	20.8%	25.0%	17.9%	23.9%	18.5%	19.9%		
15	*Gnoriste bilineata*	16.0%	18.8%	19.0%	18.9%	20.6%	20.4%	20.3%	21.1%	21.2%	16.0%	20.2%	18.9%	18.4%	17.1%	
ITS2	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
--------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------		
1	*D. dentata* sp. n.															
2	*D. diutina*	1,8%														
3	*D. flavioxa*	2,6%	3,4%													
4	*D. fumosa*	9,6%	9,2%	10,4%												
5	*D. fuscipes*	0,8%	2,3%	3,5%	8,7%											
6	*D. gilvipes*	7,2%	6,9%	9,1%	11,3%	7,2%										
7	*D. landrocki*	2,0%	1,3%	3,7%	9,2%	2,9%	6,0%									
8	*D. lastovkai*	4,3%	5,2%	5,8%	12,7%	4,7%	7,9%	5,2%								
9	*D. montana*	2,0%	3,4%	3,2%	9,6%	2,1%	8,7%	3,7%	6,4%							
10	*D. moravica*	1,3%	3,2%	1,8%	9,2%	1,9%	8,3%	3,5%	4,4%	2,6%						
11	*D. mwanica*	0,3%	2,1%	2,9%	9,6%	0,5%	6,9%	2,3%	4,1%	2,3%	1,3%					
12	*D. sciarina*	1,3%	2,1%	3,4%	9,4%	2,1%	7,9%	2,3%	5,8%	2,1%	2,6%	1,5%				
13	*D. setosa*	1,3%	2,1%	2,3%	9,0%	2,1%	8,2%	2,3%	5,8%	1,8%	2,4%	1,5%	1,0%			
14	*Boletina nasuta*	23,7%	23,3%	23,6%	22,0%	23,4%	21,2%	23,3%	25,1%	23,2%	23,1%	23,3%	21,7%	21,7%		
15	*Gnoriste bilineata*	20,5%	20,5%	20,3%	19,3%	20,2%	20,1%	20,5%	21,1%	19,6%	19,7%	20,1%	19,0%	18,5%	12,8%	
A new species of Docosia Winnertz from Central Europe, with DNA barcoding...

Figures 1–3. *Docosia dentata* sp. n. (holotype), male terminalia; 1 ventral view 2 tergite 9 in dorsal view 3 right gonostylius in dorsal view. Scale bar = 0.1 mm.

Antepronotum and proepisternum with pale bristles and short dark setae. Upper part of antepronotum with a strong pale bristle reaching to the ocellus. Laterotergite and other pleural parts bare. Haltere pale yellow.

Legs. All coxae entirely yellow. Femora yellow with hind femur brownish only around its tip. All trochanters blackish brown. Tibiae and tarsi yellow, tarsal segments seemingly brownish because of dense setulae. Fore tibia apicomedially with a semicircular tibial organ (anteroapical depressed area), without strong setae, only densely covered with fine setulae. Mid tibia with 5 anterior, 4 dorsal, 3 anteroventral and 5–6 posterior setae. Hind tibia with 16 anterior, 12 dorsal, 5 anteroventral and 6 posterior setae.

Wings hyaline, unmarked. Radial veins and r-m brown, other veins paler while m-stem and the base of M₁ are faint, almost not traceable. Sc, Rs and basal third of cu-stem asetose, the other veins setose. Costa reaches to 0.45 of the distance between R₅ and M₁. Sc ends in R at the level of beginning of m-stem. Posterior fork begins before anterior fork, approximately at the level of the middle of r-m.

Abdomen all dark brown. Terminalia (Figs 1–3) dark brown except lighter gonostyli. Tergite 9 in the shape of a rounded square, about as long as broad (Fig. 2). Posteroventral margin of gonocoxites with lateral projections and with two patches of short setae medially (Fig. 1). Gonostylus subtriangular with a row of black megasetae along its ventral margin (Fig. 3).
Female. Unknown.
Biology. Unknown.
Etymology. The species name refers to the structure of gonostylus.

Molecular data
The genetic distances among the 13 species of Docosia and two outgroup species for particular gene markers are presented in Tab. 2. The interspecific differences among Docosia species ranged from 0.3% (in ITS2 between D. dentata and D. muranica) to 26.0% (in CytB between D. fumosa and D. lastovkai), with the mean interspecific distances for particular genes: 12.8% (COI), 10.3% (COII), 14.9% (CytB) and 4.5% (ITS2). The genetic distances for the nuclear ITS2 marker were remarkably lower than for the mitochondrial markers. Fig. 5 shows that the distribution of K2P distances for cytB is rather broad (6.6–28%), while the distributions for COI, COII and ITS2 are relatively narrow.

The phylogenetic tree for the concatenated dataset is presented in Fig. 4. The genus Docosia was found to be monophyletic with maximum bootstrap support value (BV = 100). Surprisingly, D. fumosa branched basally as a sister group to all the other Docosia species included in this analysis, followed by D. gilvipes. All the other Docosia species grouped together as a monophyletic group with maximum support (BV = 100). Within this group, only D. diutina and D. landrocki were found to be closely related (BV = 100) while the other relationships between any two species are less supported. Also the monophyly of the group comprising eight terminal species (see Fig. 4) is highly supported (BV = 100). A sister taxon to this group is D. fuscipes, while D. muranica is sister taxon to the entire latter group. Finally, D. lastovkai is sister taxon to the all Docosia species in this dataset, except D. fumosa and D. gilvipes.

Discussion
Affiliation of the new species
According to the key by Laštovka and Ševčík (2006), the new species runs to couplet 10 (D. montana Laštovka & Ševčík, 2006), because of bare laterotergites, yellow coxae and basal flagellomeres relatively long. The structure of the male terminalia is, however, quite different from this species and also from two other species described later (D. chandleri Ševčík & Laštovka, 2008 and D. matilei Ševčík & Laštovka, 2008), which would run to couplet 10 too. It is thus difficult to find the closest relative of D. dentata according to morphological characters.

Considering the genetic distance, the closest relative of Docosia dentata is D. setosa, based on COI (6.0 %), COII (5.1%) and CytB (6.6%) gene markers. In the phyloge-
A new species of Docosia Winnertz from Central Europe, with DNA barcoding...

Figure 4. Maximum likelihood hypothesis for relationships among selected species of Docosia Winnertz based on DNA sequence data (COI, COII, CytB and ITS2), 2039 characters. Above node number = bootstrap support for ML.

Figure 5. Frequency distributions of genetic distances (K2P) for particular gene markers.

Comparison of the utility of COI, COII, CytB and ITS2 for barcoding of Docosia

The comparison of the four variable gene regions revealed that the genetic distances between Docosia species are quite high for CytB and COI, with the average values being 14.9% and 12.8%, respectively. From this point of view, CytB performs as the best barcoding marker for Docosia species, followed by the traditional animal barcoding
region (COI), COII and ITS2. The ITS2 sequences show remarkably high similarity in the genus *Docosia* and do not appear as a suitable barcode marker in this case. The high uniformity of ITS2 has been reported in several studies (e.g. Lv et al. 2014 or Navajas et al. 1988). At least within Mycetophilidae, the ITS2 marker may thus possibly be more suitable for intergeneric comparisons and higher phylogeny, similarly as the neighbouring ribosomal 28S region. In mycetophilids, ITS2 has already been successfully used for inferring phylogeny at generic or subgeneric level by Ševčík et al. (2013, 2014). This issue definitely deserves further study.

There are many studies comparing the utility of various gene markers for DNA barcoding and the identification of species (e.g. Bourke et al. 2013, Lv et al. 2014, Schwarzfeld and Sperling 2014). Concerning fungus gnats, comparisons between COI and ITS2 were recently provided by Jürgenstein et al. (2015) and Kurina et al. (2015). They both came to the conclusion that COI performed better.

The CytB region has mostly been used in the studies devoted to vertebrates but it was recently used also for barcoding of Calliphoridae (GilArriortua et al. 2013), tse-tse flies (Orji et al. 2015) or aphids (Chen et al. 2012).

Incongruence between molecular and morphological data

There has been no previous phylogenetical hypothesis for *Docosia* species published to date but if we take into account the characters used in most available keys, there is only little congruence between those morphological characters and the molecular results presented here. For example, *Docosia fumosa* does not appear as particularly separated from the other species by morphological characters. It belongs to the group of species with pubescent lateroterites, together with *D. flavicosa, D. gilvipes, D. monavica, D. sciarina*, and several other species, not represented in our molecular dataset. These latter species do not constitute a monophyletic group in the molecular tree (Fig. 4) nor do the species with bare laterotergites. This means that this widely used character (pubescence of laterotergites) has most probably no or little value in reconstructing relationships within the genus.

The second widely used character in the keys is the coloration of legs, mainly the coxae, which also does not help much in defining any group congruent with the clades in the molecular tree presented here.

Further, it is difficult to find clear morphological synapomorphies for the highly supported clades in the tree (Fig. 4), e.g. for the sister relationship of *D. diutina + D. landrocki* (except for the overall resemblance of their male terminalia).

Interestingly, in two of the four trees based on one gene region only (in COI and ITS2, data not shown), *D. gilvipes* (not *D. fumosa*) branched basally as a sister group to the rest of *Docosia*, a result which would be expected on the basis of morphological and ecological data (*D. gilvipes* is the only species in the dataset with Sc setose and ending free, different structure of male terminalia, endomycophagous larvae etc.).
Nevertheless, the number of species included in this analysis is rather limited to reach any final conclusion. A more comprehensive phylogeny of the genus, as well as of other genera of fungus gnats, is thus needed.

Key to Central European species of Docosia

1. Laterotergite pubescent..2
 - Laterotergite bare...9
2 (1) Sc setose and ending free...3
 - Sc bare and ending in R..4
3 (2) Tergite 9 subrectangular, gonostylus with a patch of fine subapical setae..................
 ..D. gilvipes (Walker, 1856)
 - Tergite 9 distinctly broadened posteriorly, gonostylus without a patch of subapical setae (Kurina 2008: figs 10–15)D. pseudogilvipes Kurina, 2008
4 (2) Hind femur completely black or dark brown ...5
 - Hind femur at least partly yellow..6
5 (4) All coxae and palpi black...D. carbonaria Edwards, 1941
 - Coxae yellowish brown, wings slightly smoked ...D. fumosa Edwards, 1925
6 (4) Coxae largely dark (at least basal ½), laterotergal setae short.................................
 ..D. sciarina (Meigen, 1830)
 - Coxae at most parts yellow, laterotergal setae long as usual..7
7 (6) Mid tibia dorsally with longitudinal black band...D. tibialis Laštovka & Ševčík, 2006
 - Mid tibia dorsally yellow ...8
8 (7) Hind coxa basally brown, apical 1/5 and proximoventral part of hind femur darkened..D. moravica Landrock, 1916
 - Hind coxa at most with basal margin darkened, hind femur dark only at tip, its ventral surface yellow ..D. flavicoxa Strobl, 1910
9 (1) All coxae dark brown, hind femur largely dark...10
 - Coxae with at least apical half pale...11
10 (9) Haltere yellowish, male gonocoxites broadly rounded posteriorly (Laštovka and Ševčík 2006: Fig. 7)D. fuscipes (von Roser, 1840)
 - Haltere with a dark knob, male gonocoxites with a deep median incision (Chandler and Blasco-Zumeta 2001: figs 42–47)....D. morionella Mik, 1884
11 (9) All coxae yellow, hind coxa dark at most on basal 1/6..12
 - Hind coxa blackish brown at least on the basal third...17
12 (11) Antenna with long basal segments, flagellomere 1 to 4 about twice as long as wide, lateral ocelli distant from eyes ..13
 - Antennal segments shorter, flagellomere 1 to 4 about 1.5 as long as wide, ocelli touching eyes..16
13 (12) Pedicel yellow ...D. chandleri Ševčík & Laštovka, 2008
 - Pedicel dark brown ...14
14 (13) Posteroventral margin of gonocoxites almost straight, with posterolateral projections, gonostylus short, subtriangular (Figs 1, 3)............D. dentata sp. n.
 – Posteroventral margin of gonocoxites medially with a distinct rounded projection, gonostylus elongated ...15

15 (14) Gonostylus with several unusually thick black megasetae along its ventral margin (Ševčík and Laštovka 2008: fig. 2)D. matilei Ševčík & Laštovka, 2008
 – Gonostylus with black megasetae only apically (Laštovka and Ševčík 2006: fig. 10)..D. montana Laštovka & Ševčík, 2006

16 (12) Costa extends to ½ distance from R₅ to M₁ or slightly more, apical 1/5 of hind femur dark ..13
 – Costa extends only to 2/5 distance from R₅ to M₁, only tip of hind femur dark ..D. landrocki Laštovka & Ševčík, 2006

17 (11) Hind coxa dark only on basal third, haltere entirely yellowish18
 – Basal half or slightly more of hind coxa blackish brown19

18 (17) Lateral ocelli distant from eyes (about a diameter of ocellus), mid coxa dark on basal third, pedicel dark, male tergite 9 subtrapezoidal (Laštovka and Ševčík 2006: fig. 15) ..D. setosa Landrock, 1916
 – Lateral ocelli touching eyes, mid coxa dark on basal fourth or less, pedicel usually pale, male tergite 9 subcircular (Laštovka and Ševčík 2006: fig. 4). . .
 ..D. expectata Laštovka & Ševčík, 2006

19 (17) Costa extends about 2/5 from R₅ to M₁, palpi yellow, haltere darkened
 ..D. nigra Landrock, 1928
 – Costa extends only about 2/7 from R₅ to M₁, palpi darkened, haltere yellow. . .20

20 (19) Male terminalia with tergite 9 short, as long as broad, trapezoid, posterior margin of gonocoxites without distinct medioventral process (Kurina and Ševčík 2011: fig. 2)D. muranica Kurina & Ševčík, 2011
 – Male terminalia with tergite 9 long, about twice as long as broad, posterior margin of gonocoxites with distinct medioventral process, hind tibia with a dark patch of modified setae ...20

21 (20) Male terminalia with lateral lobes of gonocoxites in ventral view distinctly longer than medioventral process of gonocoxites (Laštovka and Ševčík 2006: fig. 3) ..D. diutina Plassmann, 1996
 – Male terminalia with lateral lobes of gonocoxites shorter, at most as long as medioventral process of gonocoxites21

22 (21) Tergite 9 pear-shaped, distinctly broader in posterior half (Laštovka and Ševčík 2006: fig. 13)D. pannonica Laštovka & Ševčík, 2006
 – Tergite 9 subrectangular, not distinctly broader in posterior half (Ševčík 2006: fig. 3) ..D. rohaceki Ševčík, 2006
Acknowledgements

We are grateful to Dr. Jindřich Roháček (Opava, Czech Republic) for his assistance in the field and to the Administration of the Muránska Planina National Park (Revúca, Slovakia) for providing the accommodation and the permission for collecting material. This study was supported by the Ministry of Culture of the Czech Republic by institutional financing of long-term conceptual development of the research institution (the Silesian Museum, MK000100595), internal grant of the Silesian Museum No. IGS201505/2015, and by the internal grant for specific research of the University of Ostrava (SGS28/PF/2015). Part of the results presented here were achieved in the frame of the German Barcode of Life, a project of the Humboldt Ring, grant-funded by the German Federal Ministry for Education and Research (GBOL1: BMBF #01LI1101A). Peter J. Chandler (Melksham, U.K.) and Olavi Kurina (Tartu, Estonia) provided useful comments and suggestions to the text, especially to the key. P. J. Chandler also kindly checked the English of this paper.

References

Astrin J, Stüben P (2008) Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22(5): 503–522.

Bechev D (2000) World distribution of the genera of fungus gnats (Diptera: Sciaroidea, excluding Sciaridae). Studia Dipterologica 7: 543–552.

Beebe NW, Saul A (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction restriction fragment length polymorphism analysis. American Journal of Tropical Medicine and Hygiene 53: 478–481.

Bourke PB, Oliveira PT, Suësdek L, Bergo SE, Sallum MAM (2013) A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae). Parasites & Vectors 6: 111. doi: 10.1186/1756-3305-6-111

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. doi: 10.1093/oxfordjournals.molbev.a026334

Chandler PJ (2010) A dipterist's handbook. Vol. 15. 2nd ed. The Amateur Entomologists' Society, London, U.K.

Chandler PJ, Blasco-Zumeta J (2001) The fungus gnats (Diptera, Bolitophilidae, Keroplatidae and Mycetophilidae) of the Monegros Region (Zaragoza, Spain) and five other new species of Pyratula Edwards and Sciophila Meigen. Zapateri, Revista aragonesa de Entomologia 9: 1–24.

Chen R, Jiang LY, Qiao GX (2012) The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae. PLoS ONE 7(10). doi: 10.1371/journal.pone.0046190
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–297.
GilArriortua M, Salona Bordas MI, Caine LM, Pinheiro F, de Pancorbo MM (2013) Cytochrome b as a useful tool for the identification of blowflies of forensic interest (Diptera, Calliphoridae). Forensic Science International 228: 132–136. doi: 10.1016/j.forsciint.2013.02.037
Jakovlev J (2012) Fungal hosts of mycetophilids (Diptera: Sciaroidea excluding Sciaridae): a review. Mycology 3: 11–23.
Jürgenstein S, Kurina O, Põldmaa K (2015) The Mycetophila ruficollis Meigen (Diptera, Mycetophilidae) group in Europe: elucidating species delimitation with COI and ITS2 sequence data. ZooKeys 508: 15–51. doi: 10.3897/zookeys.508.9814
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. doi: 10.1093/molbev/mst010
Kurina O (2008) Sciaroidea excl. Sciaridae. In: Ziegler J (Ed.) Diptera Stelviana. A dipterological perspective on a changing alpine landscape. Volume 1. Studia Dipterologica Supplements 16: 245–293.
Kurina O, Ševčík J (2011) Three new species of Docosia Winnertz from central and southern Europe (Diptera: Mycetophilidae). Zootaxa 2810: 26–36.
Kurina O, Ševčík J (2012) Notes on Docosia Winnertz (Diptera: Mycetophilidae), with description of six new species from Central Asia and the first generic record from the Afrotropical region. Zootaxa 3570: 25–40.
Kurina O, Õunap E, Põldmaa K (2015) Two new Neuratelia Rondani (Diptera: Mycetophilidae) species from Western Palearctic: a case of limited congruence between morphology and DNA sequence data. ZooKeys 496: 105–129. doi: 10.3897/zookeys.496.9315
Laštovka P, Ševčík J (2006) A review of the Czech and Slovak species of Docosia Winnertz (Diptera: Mycetophilidae), with atlas of the male and female terminalia. Časopis Slezského Zemského Muzea Opava (A), 55: 1–37.
Lv J, Wu S, Zhang Y, Chen Y, Feng C, Yuan X, Jia G, Deng J, Wang C, Wang Q, Mei L, Lin X (2014) Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasites & Vectors 7: 93–103. doi: 10.1186/1756-3305-7-93
Navajas M, Lagnel J, Gutierrez J, Boursout P (1988) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80: 742–752.
Oliveira SS, Amorim DS (2011) Docosia adusta sp. nov. (Diptera, Mycetophilidae) from the Colombian Andes: a Holarctic element in northwestern South America. Canadian Entomologist 143: 688–696.
Orji CU, Onyeocha IO, Shaida SS, Dede PM, Luka PD, Yakubu B, Ella EE (2015) Molecular identification of tsetse fly (Diptera: Glossinidae) species based on mitochondrial DNA (COII and CytB) sequences. African Journal of Biotechnology 14: 1605–1613.
Rindal E, Søli GEE, Bachmann L (2009) Molecular phylogeny of the fungus gnat family Mycetophilidae (Diptera, Mycetophiliformia). Systematic Entomology 34: 524–532.
A new species of Docosia Winnertz from Central Europe, with DNA barcoding...

Rulik B, Kallweit U (2006) A blackbird’s nest as breeding substrate for insects–first record of *Docosia fiumosa* Edwards, 1925 (Diptera: Mycetophilidae) from Germany. Studia Dipterologica, 13: 41–43.

Schwarzfeld MD, Sperling FAH (2014) Species delimitation using morphology, morphometrics, and molecules: definition of the *Ophion scutellaris* Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae). ZooKeys 462: 59–114. doi: 10.3897/zookeys.462.8229

Ševčík J (2006) *Docosia rohaceki* sp. n. and other interesting records of fungus gnats (Diptera: Mycetophilidae) from Polana Biosphere Reserve (Central Slovakia). Časopis Slezského Zemského Muzea Opava (A), 55: 131–134.

Ševčík J (2010a) Czech and Slovak Diptera associated with fungi. Slezské Zemské Muzeum. Opava, 112 pp.

Ševčík J (2010b) *Docosia heikkii* sp. nov., the first Oriental record of *Docosia* (Diptera: Mycetophilidae). Oriental Insects 44: 91–94. doi: 10.1080/00305316.2010.10417609

Ševčík J (2012) Fungus gnats (Diptera: Sciaroidea) of the Gemer region (Central Slovakia): Part 4–additions and corrections. Časopis Slezského Zemského Muzea Opava (A), 61: 187–192.

Ševčík J, Laštovka P (2008) Two new European species of *Docosia* (Diptera: Mycetophilidae). Biologia 63: 117–119. doi: 10.2478/s11756-008-0010-6

Ševčík J, Kurina O (2011a) Fungus gnats (Diptera: Sciaroidea) of the Gemer region (central Slovakia): Part 1–Bolitophilidae, Diadocidiidae, Ditomyiidae and Keroplatidae. Časopis Slezského Zemského Muzea Opava (A), 60: 11–23.

Ševčík J, Kurina O (2011b) Fungus gnats (Diptera: Sciaroidea) of the Gemer region (Central Slovakia): Part 2–Mycetophilidae. Časopis Slezského Zemského Muzea Opava (A), 60: 97–126.

Ševčík J, Kaspářk D, Tóthová A (2013) Molecular phylogeny of fungus gnats (Diptera: Mycetophilidae) revisited: position of Manotinae, Metanepsiini, and other enigmatic taxa as inferred from multigene analysis. Systematic Entomology 38: 654–660. doi: 10.1111/syen.12023

Ševčík J, Kaspářk D, Mantůc M, Ševčíková T, Tóthová A (2014) Molecular phylogeny of the fungus gnat family Diadocidiidae and its position within the infraorder Bibionomorpha (Diptera). Zoologica Scripta 43: 370–378. doi: 10.1111/zsc.12059

Søli GEE (1997) The adult morphology of Mycetophilidae (s.str.), with a tentative phylogeny of the family (Diptera, Sciaroidea). Entomologica Scandinavica Supplement 50: 1–55.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446

Su KFI, Kutty SN, Meier R (2008) Morphology versus molecules: the phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequences data from ten genes. Cladistics 24: 902–916. doi: 10.1111/j.1096-0031.2008.00222.x

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. doi: 10.1093/molbev/mst197