Cracking Failure Analysis on 316L Stainless Steel Elbow

Jiakun Hu1,*, Facai Ren2, Chunxia Fu3
1Qingdao Product Quality Supervision and Testing Research Center Qingdao, China
2Shanghai Institute of Special Equipment Inspection and Technical Research Shanghai, China
3Qingdao Product Quality Supervision and Testing Research Center Qingdao, China
*hujiakun@qtc.org.cn
*Corresponding author e-mail: hjkfcx@126.com

Abstract—The 316L stainless steel elbow used in the pulse soot blower cracked during service, and the cracking occurred at the maximum bending radius of the elbow. There is no obvious plastic deformation at crack and there is much rust deposit on the inner elbow wall of cracked elbow. In order to avoid similar accidents, the methods such as chemical composition analysis, microstructure analysis and crack pattern scanning are adopted to analyze crack reason. The results show that stress corrosion is the main reason to cause crack of 316L stainless steel elbow.

1. INTRODUCTION

Pulse soot blower is a machine which uses the huge sound energy and high temperature and high speed gas produced by the shock wave of deflagration of appropriate mixture such as hydrogen, acetylene and natural gas to vibrate, impact and wash the boiler surface, and blow away the accumulated ash on the boiler surface.

The material of the straight blasting elbow is 316L stainless steel. Lots of cracks occur on the elbow after about half a year the ash blower put to use. This paper analyzes the causes of crack. It is very meaningful to reduce the economic losses and helpful to find a new method to resolve the trouble.

2. MACROSCOPIC EXAMINATION

The crack occurs on the position of maximum bending radius where there is no obvious plastic deformation and the crack is brittle fracture which is shown in Fig. 1(a). There is lots of rust adhered to the inner wall of elbow. The rust distributes near the cracks and the maximum thickness of the rust is 2mm, which is shown in Fig. 1(b). The thickness of the elbow is about 6mm, and the uniformity of the thickness is well.
3. CHEMICAL ANALYSIS
Take a chemical analysis test on the sample from the elbow using Q8 MAGELLAN System spectrum analyzer, and the result is in accordance with the requirements ruled by GB/T20878-2007. The result is shown in Table 1.

Element	Result	Requirement of GB/T20878-2007
C	0.018	≤0.030
Si	0.406	≤1.00
Mn	1.116	≤2.00
S	0.0020	≤0.030
P	0.017	≤0.045
Cr	16.88	16.00～18.00
Ni	10.50	10.00～14.00
Mo	2.175	2.00～3.00

4. MECHANICAL ANALYSIS
Do tensile test by making test samples at the non-broken places, and the test results are shown in Table 2.
TABLE 2. TENSILE TEST RESULT

Items	Requirements by Standard GB/T14976-2012	Sample a	Sample b
Rp0.2	≥175MPa	256MPa	254MPa
R	≥480MPa	504MPa	506MPa
A	≥35%	40%	41%

5. METALLOGRAPHIC ANALYSIS
Take a metallographic analysis on the sample from the crack place using Imager.A1M microscope and the corrosive agent is aqua regia. Fig. 2(a) shows that the microstructure is γ+δ. The crack extends to the inner gradually with arborization and the crack emerges transgranular behavior which are the typical features of stainless steel stress corrosion in the Cl- environments [1, 2] which is shown in Fig. 2(b).

6. FRACTURE MORPHOLOGY ANALYSIS
Take a examination on the fracture and it shows metallic luster from 1mm distance away from the surface from which we could make a prediction that the crack emerges and extends from the inner of the elbow. As shown in Fig. 3, the fracture appearance shows muddy flower pattern. which is the typical pattern of stress corrosion [3, 4]. Energy spectrum shows that element Cl and S exist in both the surface of the fracture and the wall of the elbow as shown in Fig. 4.

![Microstructure](image_url)

Figure 2. Microstructure of crack area.

![Fracture Morphology](image_url)

Figure 3. Fracture appearance shows muddy flower pattern.
Figure 3. Microstructure of fracture.
7. DISCUSSION
The test result shows that the crack originated from the inner of the elbow. The chemical composition of the elbow and mechanical property are in accordance with the product standard. The matrix is \(\gamma + \delta \) and the grain is fine and uniformity. The elbow worked in the environment of high temperature 600~700°C and a large number of Cl- and S2- which are the sensitive medium ion causing stainless stress corrosion crack [5, 6]. At the same time, the ash blower worked by controlling of pulse. So there would be a pulse tensile stress produced at the inner of bending place of the elbow. The stress corrosion crack originated from the inner of the stainless elbow under the both effect by sensitive ion and tensile stress seeing Fig. 5.

8. SUGGESTION
316L stainless steel could show excellent property in corrosive environment, but its advantage will be hard to show under the comprehensive function with high temperature, tensile stress and corrosion. To avoid stress corrosion, we suggest using furnace tube material HP40 eg.
ACKNOWLEDGMENT
The authors are grateful for the support by Shanghai Bureau of Quality and Technical Supervision Research Project (Grant No. 2018-30).

REFERENCES
[1] Z.D. Huang, Metallographic Pictures Collection. China Science Culture Press Publishing, Beijing, 2005.
[2] Z.F. Dai, Stress corrosion test research of 316L austenitic stainless steel in complex medium condition. Zhejiang University of Technology, Zhejiang, 2009.
[3] S. Kobayashi, R. Kobayashi, and T. Watanabe, “Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel,” Acta. Mater., vol. 102, pp. 397-405, 2016.
[4] N.M. Lin, L.X. Zhang, J.J. Zou, Q. Liu, S. Yuan, L.L. Zhao, Y. Yu, Z.Q. Liu, Q.F. Zeng, X.P. Liu, Z.H. Wang, B. Tang, and Y.C. Wu, “A combined surface treatment of surface texturing-double glow plasma surface titanizing on AISI 316 stainless steel to combat surface damage: Comparative appraisals of corrosion resistance and wear resistance,” Appl. Surf. Sci., vol. 493, pp. 747-765, 2019.
[5] S.Y. Lu, Stress corrosion accident analysis of stainless steel and stress corrosion resistant stainless steel. Atomic Energy Press Publishing, Beijing, 1985.
[6] J.H. Huang, Corrosion resistant casting and forging parts materials application manual. China Machine Press Publishing, Beijing, 1999.