[0,1] IS NOT A MINIMALITY DETECTOR FOR [0, 1]²

JON CHAIKA

Abstract. This paper shows that there exists a non-minimal sequence \(\bar{x} \in \{0, 1\}^\mathbb{N} \) such that for any continuous function \(f : [0, 1]^2 \to [0, 1] \), the sequence obtained by mapping terms of \(\bar{x} \) by \(f \) is minimal.

Let \((X, d) \) be a compact metric space. \(X^\mathbb{N} \), the set of infinite sequences with terms taken from \(X \), is also a compact metric space under the metric \(d(\bar{x}, \bar{y}) = \sum_{i=1}^{\infty} \frac{d(x_i, y_i)}{2^i} \).

\(X^\mathbb{N} \) has a natural dynamical system, the (left) shift:

\[S : X^\mathbb{N} \to X^\mathbb{N} \quad S((x_1, x_2, x_3, \ldots)) = (x_2, x_3, \ldots). \]

Definition 1. \(\bar{z} \in X^\mathbb{N} \) is called minimal if the closure of \(\{ \bar{z}, S(\bar{z}), S^2(\bar{z}), \ldots \} \) is minimal as a dynamical system under the action of \(S \).

An equivalent formulation is that a sequence is minimal iff for any finite block, \((z_i, \ldots, z_{i+r})\), and \(\epsilon > 0 \) there exists an \(N \in \mathbb{N} \) such that any block of \(\bar{z} \) of length \(N \) has a sub-block of length \(r+1 \) which is within \(\epsilon \) of \((z_i, \ldots, z_{i+r})\). The distance between \(n \)-blocks is given by \(d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{i=1}^{\infty} \frac{d(x_i, y_i)}{2^i} \). (For an introduction to minimality see [1].)

Definition 2. Let \(X, Y \) be compact metric spaces. \(C(X, Y) \) denotes all continuous maps from \(X \) into \(Y \). We say \(Y \) is a minimality detector (MD) for \(X \) if for every \(\bar{x} = (x_1, x_2, \ldots) \in X^\mathbb{N} \), which is not minimal, there exists \(f \in C(X, Y) \) such that \((f(x_1), f(x_2), \ldots) \in Y^\mathbb{N} \) is not minimal.

Remark 1. The continuous image of a minimal sequence is minimal.

Definition 3. If \(Y \) is a minimality detector (MD) for all compact metric spaces \(X \), then \(Y \) is called a universal minimality detector (UMD).

The main result of this note is showing that \([0, 1]\) is not an MD (minimality detector). The following is an earlier result motivating this.

Theorem 1. (Boshernitzan) \([0, 1]^2\) is a UMD (universal minimality detector).

Proof: Let \((X, d) \) be a compact metric and \(\bar{x} \in (X)^\mathbb{N} \) be not minimal. By definition, there exists an \(\epsilon > 0 \) and \((x_1, \ldots, x_{i+r})\), a sub-block of \(\bar{x} \), such that there are arbitrarily long blocks of \(\bar{x} \) having no sub-blocks of length \(r+1 \) within \(\epsilon \) of \((x_1, \ldots, x_{i+r})\). Fix \(\delta > 0 \) such that any \(x_{i+j} \neq x_{i+k}, 0 \leq j, k \leq r \), has \(d(x_{i+j}, x_{i+k}) > 2 \delta \). Fix \(a_j \in [0, 1], 0 \leq j \leq r \) such that \(a_j = a_k \) iff \(x_{i+j} = x_{i+k} \). Let \(f : X \to [0, 1] \) be a continuous function that \(f(y) = a_j \) if \(y \in B(x_{i+j}, \delta) \). (By our choice of \(\delta \) and Tietze extension theorem ([2] Theorem 35.1) such a continuous function exists).

Let \(g : X \to [0, 1] \) by:

\[g(y) = \min_{0 \leq j \leq r} \frac{d(x_{i+j}, y)}{\sup_{x_1, x_2 \in X} d(x_1, x_2)}. \]
The sequence \(\tilde{e} = ((f(x_1), g(x_1)), (f(x_2), g(x_2)), \ldots) \in (\{0, 1\}^2)^\mathbb{N} \) is not minimal because there exists \(\epsilon' \) such that arbitrarily long blocks of \(\tilde{e} \) have no sub-blocks within \(\epsilon' \) of \(((f(x_1), g(x_1)), (f(x_{i+1}), g(x_{i+1})), \ldots, (f(x_{i+r}), g(x_{i+r}))) \). This is because in a sub-block of length \(r + 1 \) in a long block of \(\tilde{e} \) which avoids \((x_1, \ldots, x_{i+r}) \) either some term is far away from an \(x_{i+s} \) or it is close, but appears in the wrong order. In the first case \(g \) notices the difference, while \(f \) notices the difference in the second case.

Remark 2. This argument produces a residual set of functions in \(C(X, [0, 1]^2) \), each of which detects the non-minimality of \(\tilde{e} \). As a result, the non-minimality of any particular countable collection of non-minimal sequences in \(X^\mathbb{N} \) can be detected by a residual set of functions.

Remark 3. It is an observation of Professor B. Weiss [4] that an infinite fan (say \(\{(r \cos(\theta), r \sin(\theta)) : r \in [0, 1], \theta \in \{2\pi, \frac{3\pi}{2}, \ldots\}\} \)) is a UMD. The proof is similar. This stands in contrast to the situation in which the range is \([0, 1]\) as the next theorem shows.

Theorem 2. \([0, 1]\) is not a UMD. In particular, \([0, 1]\) is not an MD for \([0, 1]^2\).

Definition 4. Let \(B = \{b_1, b_2, \ldots\} \) be an infinite sequence. Its 2-Toeplitz sequence is \(\bar{a} = (a_1, a_2, a_3, \ldots) \) where \(a_j = b_i \) \(\forall j \equiv 2^i - 1 \bmod 2^i \).

Remark 4. Equivalently, \(a_j = b_p \) where \(2^{p-1} | j \) and \(2^p \not| j \).

Remark 5. This terminology is not standard. Compare with the sequence A001511 from [3].

The 2-Toeplitz sequence \(\bar{a} \) begins:
\[
(b_1, b_2, b_1, b_3, b_1, b_2, b_1, b_1, b_2, b_1, b_3, b_1, b_2, b_1, b_1, \ldots).
\]
Observe that every block in \(\bar{a} \) appears in \(\bar{a} \) with bounded gaps. In fact, if \(b_i \) is the largest term in a block then that block will appear in any block of \(2^{i+1} \) consecutive terms. This gives the following lemma:

Lemma 1. Let \(B = \{b_1, b_2, \ldots\} \) be a sequence whose elements lie in a compact metric space. Then its 2-Toeplitz sequence is minimal.

The following example provides a toy model for the proof of the main result.

Proposition 1. Let \(\bar{a} = (a_1, a_2, \ldots) \) be the 2-Toeplitz sequence associated with an enumeration of \(\mathbb{Q} \cap [0, 1] \). Then \((c, a_1, a_2, \ldots) \) is minimal for any \(c \in [0, 1] \).

Proof: Choose \(c \). For any \(\epsilon > 0 \) there exists infinitely many \(a_r \) such that \(|a_r - c| < \epsilon \). Choose \(r \) such that \(\frac{1}{2^r} < \epsilon \). \(d(S^{2^r-1}(\bar{a}), (c, a_1, a_2, \ldots)) \leq \epsilon + \frac{1}{2^{2^r}} < 2\epsilon \). The first inequality is because their first coordinates are at most \(\epsilon \) apart and then they agree for the next \(2^r - 1 \) coordinates. By the previous discussion, this block will appear at least every \(2^{r+1} \) terms in \(\bar{a} \).

One obviously can not guarantee minimality for any pair \(c, d \) placed at the start of \(\bar{a} \). However, one can modify this construction so that this is the case by enumerating \(\mathbb{Q}^2 \cap [0, 1]^2 \) and examining the 2-Toeplitz sequence associated with this enumeration (thought of as a sequence in \([0, 1]\]).
1. Building the sequence for Theorem 2

Definition 5. Given a finite sequence \(\bar{x} = (x_1, ..., x_t) \) and a (finite or infinite) sequence \(\bar{y} \), we define \(\bar{x} * \bar{y} \) to be the word formed by concatenating them.

That is, \((\bar{x} * \bar{y})_i = x_i \) if \(i \leq t \) and \(y_{i-t} \) otherwise.

Our sequence will begin \(((0, 0), (1, 0), (0, 1)) \). Before we continue the sequence, it is necessary to define some sets.

Let \(A_1 \) be a countable dense set on the line from \((1, 0)\) to \((0, 1)\).

Let \(A_2 \) be a countable dense set on the line from \((0, 0)\) to \((1, 0)\).

Let \(A_3 \) be a countable dense set on the line from \((0, 0)\) to \((0, 1)\).

Finally, let \(V = \{v_1, v_2, \ldots \} \) be a sequence of all the terms in:
\[
(A_1 \times \{(1, 0)\} \times \{(0, 1)\}) \cup (\{(0, 0)\} \times A_2 \times \{(0, 1)\}) \cup (\{(0, 0)\} \times \{(1, 0)\} \times A_3) \subset \mathbb{R}^6.
\]

Let \(\bar{b} \) be the 2-Toeplitz sequence associated with \(V \). Our sequence is
\[
\bar{x} = ((0, 0), (1, 0), (0, 1)) \ast \bar{b}
\]
thought of as a sequence in \([0, 1]^2\) (so each “letter” in \(\bar{b} \) gives us 3 “letters” in \(\bar{x} \)).

Lemma 2. \(\bar{x} \) is not minimal.

Proof: It suffices to show that no block of 3 consecutive letters after the first 3 gets close to the block of the first 3. To be more precise,
\[
d((0, 0), (1, 0), (0, 1)), (x_i, x_{i+1}, x_{i+2})) \geq \frac{1}{8} \text{ for } i > 1.
\]
If \(x_i = (0, 0) \) then either
\[
x_{i+1} \in A_2 \text{ or } x_{i+2} \in A_3 \text{ and } d((0, 0), (1, 0), (0, 1)), (x_i, x_{i+1}, x_{i+2})) \geq \frac{1}{4}.
\]
If
\[
0 < d((0, 0), x_i) < \frac{1}{\sqrt{2}} \text{ then } x_i \in A_2 \cup A_3.
\]
If \(x_i \in A_2 \) then \(x_{i+1} = (0, 1) \) and
\[
d((0, 0), (1, 0), (0, 1)), (x_i, x_{i+1}, x_{i+2})) \geq \frac{1}{4}\sqrt{2}.
\]
It suffices to consider \(x_i \in A_3 \). Then \(x_{i+1} = (0, 0) \) or \(x_{i+1} \in A_1 \). If \(x_{i+1} = (0, 0) \) then
\[
d((0, 0), (1, 0), (0, 1)), (x_i, x_{i+1}, x_{i+2})) \geq \frac{1}{4}.
\]
If \(x_{i+1} \in A_1 \) then \(x_{i+2} = (1, 0) \) and
\[
d((0, 0), (1, 0), (0, 1)), (x_i, x_{i+1}, x_{i+2})) \geq \frac{1}{4}\sqrt{2}.
\]

Lemma 3. If \(f : [0, 1]^2 \to [0, 1] \) continuously, then \(f(x_1), f(x_2), \ldots \) is minimal.

Proof: Without loss of generality assume \(f((0, 0)) \leq f((1, 0)) \leq f((0, 1)) \). By the intermediate value theorem, for any \(\epsilon > 0 \) there exists \(a \in A_2 \) such that
\[
|f(a) - f((1, 0))| < \epsilon.
\]
By the construction of \(V \), \((0, 0) \ast a \ast (0, 1) = v_i \) for some \(i \). By the construction of \(\bar{x} \),
\[
d(f(x_{3(2^i-1)+1}), f(x_{3(2^i-1)+2}), \ldots), (f(x_1), f(x_2), \ldots)) \leq \frac{1}{4} + \epsilon + 0 + \frac{1}{2^{2^i-1} \text{min}_{-1}}.
\]
In fact, by the construction of \(\bar{x} \), this is achieved with bounded gaps of \(3 \cdot 2^i \). This shows that the image is minimal.

Remark 6. This sequence lives on the triangle. It shows that the interval is not an MD for the triangle.

Remark 7. This proof can be modified to show that no finite graph is an MD for \([0,1]^2\). In fact, with the previous remark, one can show the complete graph on \(n+1 \) vertices has a non-minimal sequence \(\bar{x} \) such that \((f(x_1), f(x_2), \ldots) \) is minimal for any continuous \(f \) from the complete graph on \(n+1 \) vertices to a graph on \(n \) vertices. Compare this to remark 3. In fact, no finite graph is an MD for an infinite fan.

2. Acknowledgments

I would like to thank Professor M. Boshernitzan for posing this problem and helpful conversations. I would like to thank B. Weiss for a helpful correspondence and
the previously mentioned observation. I would like to thank Professor L. Birbrair for helpful conversations, encouragement and suggestions of material to include. I would like to thank J. Auslander for helpful conversations.

REFERENCES

[1] Furstenberg, H: Recurrence in Ergodic Theory and Combinatorial Number Theory. Dover Publications 2008.
[2] Munkres, J: Topology 2nd edition. Prentice Hall 2000.
[3] http://www.research.att.com/~njas/sequences/
[4] Weiss, B: Email 11/14/07