An Anytime Algorithm for Task and Motion MDPs

Siddharth Srivastava*, ‡, Nishant Desai†, Richard Freedman§, Shlomo Zilberstein§
‡Arizona State University, †United Technologies Research Center, §University of Massachusetts

Abstract

Integrated task and motion planning has emerged as a challenging problem in sequential decision making, where a robot needs to compute high-level strategy and low-level motion plans for solving complex tasks. While high-level strategies require decision making over longer time-horizons and scales, their feasibility depends on low-level constraints based upon the geometries and continuous dynamics of the environment. The hybrid nature of this problem makes it difficult to scale; most existing approaches focus on deterministic, fully observable scenarios. We present a new approach where the high-level decision problem occurs in a stochastic setting and can be modeled as a Markov decision process. In contrast to prior efforts, we show that complete MDP policies, or contingent behaviors, can be computed effectively in an anytime fashion. Our algorithm continuously improves the quality of the solution and is guaranteed to be probabilistically complete. We evaluate the performance of our approach on a challenging, realistic test problem: autonomous aircraft inspection. Our results show that we can effectively compute consistent task and motion policies for the most likely execution-time outcomes using only a fraction of the computation required to develop the complete task and motion policy.

1 Introduction

In order to be truly helpful, robots will need to be able to accept commands from humans at high-levels of abstraction, and autonomously execute them. Consider the problem of inspecting an aircraft (Fig. 1). In order to autonomously plan and execute such a task, the robots (UAVs in this case) will need to be able to make high-level inspection decisions on their own, while satisfying low-level constraints that arise from environment geometries and the limited capabilities of the UAVs. High-level decisions can include selecting where to go next, with whom to communicate, and what to inspect. These decisions need to take into account the uncertainty in the UAV’s actions.

For instance, at the start of an aircraft’s inspection, one may know that the left wing has a structural problem, but the location of the fault may not be known precisely. When a UAV inspects the left wing, its sensors may succeed with probability 0.9, and so on. In order to solve this task autonomously, the UAV needs to select which pose to fly to next, which trajectory to use in order to do so, and the order in which to carry out inspections while making sure that it always has sufficient battery to return to the docking station and that it does not collide with any object in the environment. The feasibility of a high-level strategy for inspection therefore depends on the battery power required for each high-level operation such as “move to left wing”; “inspect left wing”, etc., which in turn depends on the low-level motion plan selected, which in turn depends on the hangar’s geometric layout and the physical geometry of the UAV. Throughout this paper, we will use the term “high-level” to represent a discrete MDP and “low-level” to refer to a motion planning problem.

The framework of Markov decision processes (MDPs) can express discrete sequential decision making (SDM) problems. Numerous advances have been made in solving MDPs [Russell et al., 2015]. However, the scalability of these approaches relies upon a few key properties, including a bounded branching factor (or the set of possible actions) and the ability to express a problem accurately using discrete state variables. Both of these properties fail to hold in problems such as those described above. Recent work on deterministic, integrated task and motion planning [Kaelbling and Lozano-Pérez, 2011; Erdem et al., 2011; Srivastava et al., 2014; Danam et al., 2016] shows that hierarchical approaches are useful for such problems.

Computing task and motion policies for MDPs presents a
new set of challenges not encountered in computing task and motion plans for deterministic scenarios. In particular, selecting an action for a state while ensuring a feasible refinement requires knowing the history of actions used to reach that state, since effects on properties that were abstracted away (such as battery usage) cannot be modeled accurately at the high level. A direct application of classical task and motion planning techniques is further limited by the number of possible high-level action paths that can be taken during an execution. Indeed, the task and motion planning literature makes it clear that computing a single high-level sequence of actions that is feasible with low-level constraints is a challenge; the extension to MDPs expands the problem to computing a feasible high-level sequence of actions for every possible stochastic outcome of a high-level action.

In this paper, we investigate the problem of computing task and motion policies and show that principles of abstraction can be used to effectively model the problem, as well as to solve it by dynamically refining the abstraction used. We address the problem of computational complexity by developing an anytime algorithm that rapidly produces feasible policies for a high likelihood of scenarios that may be encountered during execution. Our methods can therefore be used to start the execution before the complete problem is solved; computation could continue during execution. The continual policy computation reports the probability of encountering situations which have not been resolved yet. This can be used to select the point at which execution is started in a manner appropriate to the application. In the worst case, if an unlikely event is encountered before the ongoing policy computation resolves it, execution could be brought to a safe state; in situations where this is not possible, one could wait for the entire policy to be computed with motion plans. In this way our approach offers a trade-off between pre-execution guarantees and pre-computation time requirements.

The rest of this paper is organized as follows. Sec. 2 introduces the main concepts that we draw upon from prior work. Sec. 3 presents our formalization of abstractions and representations. This is followed by a description of our algorithms (Sec. 4). Sec. 5 presents an empirical evaluation of our approach in a test scenario that we created using open-source 3D models of aircraft and various hangar components. Sec. 6 discusses the relationship of the presented work and contributions with prior work.

2 Background

A Markov decision process (MDP) \((S, A, T, R, \gamma)\) is defined by a set of states \(S\), a set of actions \(A\), a transition function \(T: S \times A \to \mu S\) that gives the probability distribution over result states upon the application of an action on a state; a reward function \(R: S \to \mathbb{R}\); and a discounting factor \(\gamma \leq 1\). We will use \(T(s, a)\) as a function that maps a state to its probability. We will be particularly interested in MDPs with absorbing states and \(\gamma = 1\), or, stochastic shortest path problems [Bertsekas and Tsitsiklis 1991]. In this class of MDPs, the reward function yields negative values (action costs) for states except the absorbing states \(G\). Absorbing states give zero rewards; once the agent reaches an absorbing state, it stays in it: \(\forall a \in A, g \in G, R(g) = 0; T(g, a)(g) = 1\). We will consider SSPs that have a known initial state \(s_0\) and a finite time horizon, \(h\), which represents an upper bound on the number of discrete decision making steps available to the agent.

Solutions to MDPs are represented as policies. A policy \(\pi: S \times \{1, \ldots, h\} \to A\) maps a state and the timestep at which it is encountered, to the action that the agent should execute while following \(\pi\). Given an MDP, the optimal “policy” of the agent is defined as one that maximizes the expected long-term reward \(\sum_{i=1}^{h} r_i\), where \(r_i\) is the reward obtained at timestep \(i\) following the function \(R\). Our notion of policies includes non-stationary policies since the optimal policy in a finite horizon MDP need not be stationary. In principle, dynamic programming can be used to compute the optimal policy in this setting just as in the infinite horizon setting:

\[
V^0(s) = R(s) \tag{1}
\]

\[
V^i(s) = R(s) + \max_{a} \sum_{s'} T(s, a)(s')V^{i-1}(s') \tag{2}
\]

Here \(V^i\) is the \(i\)-step-to-go value function. Since we are given the initial state \(s_0\), non-stationary policies can be expressed as finite state machines (FSMs). We will consider policies that are represented as tree-structured FSMs, also known as contingent plans. Several algorithms have been developed to solve SSPs. The LAO* algorithm [Hansen and Zilberstein 2001] was developed to incorporate heuristics while computing solution policies for SSPs. Kolobov et al. [2011] developed general methods for solving SSPs in the presence of dead-ends.

Specifying real-world sequential decision making problems as MDPs using explicitly enumerated state lists usually results in large, unwieldy formulations that are difficult to modify, maintain, or understand. Lifted, or parameterized representations for MDPs such as FOMDPs [Sanner and Boutilier 2009], RDDL [Sanner 2010] and PPDDL [Younes and Littman 2004] have been developed for overcoming these limitations. Such languages separate an MDP domain, constituting parameterized actions, functions and predicate vocabularies, from an MDP problem, which expresses the specific objects of each type and a reward function. We refer to [Helmer 2009] for a general introduction to these concepts. W.l.o.g, we consider the vocabulary to consist of predicates alone, since functions can be represented as special predicates. A grounded predicate is a predicate whose parameters have been substituted by the objects in an MDP problem. For instance, Boolean valuations of the grounded predicate \textit{faultLocated(LeftWing)} express whether the LeftWing’s fault’s precise location was identified. In our framework, states are defined as valuations of grounded predicates in a given problem. Although this framework usually expresses discrete properties, it can be extended naturally to model actions that have continuous action arguments and depend on and affect geometric properties of the environment.

Example 1. Fig. 2 shows the specification for an inspect action in the aircraft inspection domain in a language similar to PPDDL (some syntactic elements have
been simplified for readability). This action models the act of inspecting a structure \(s \) while following the path \(tr \). We use \(\text{batterySufficient}(tr) \) as an abbreviation for \(\text{batteryRemaining} - \text{batteryRequired}(tr) \). Intuitively, the specification states that if this action is executed in a state where the battery is sufficient and the selected trajectory satisfies constraints for being an inspection trajectory (the precondition is satisfied), it will result in locating the fault with the probability 0.8. In any case, the battery’s charge will be depleted by an amount depending on the trajectory used for inspection \(c(tr) \). The \(\text{inspects}(c, tr) \) predicate is true if the trajectory \(tr \) “covers” the given structure. Different interpretations for such predicates would result in different classes of coverage patterns.

3 Formal Framework

Let \(X \) be a set of states and \(S \) a set of abstract states. We define a **state abstraction** as a surjective function \(\alpha : X \rightarrow S \). We focus on **predicate abstractions**, where the abstraction function effectively projects the state space into a space without a specified set of predicates. Given a set of predicates \(\mathcal{P} \) that are retained by a predicate abstraction, the states of the abstract state space are equivalence classes defined by the equivalence relation \(s_1 \sim s_2 \) iff \(s_1 \) and \(s_2 \) agree on the evaluations of every predicate in \(\mathcal{P} \), grounded using the objects in the problem.

For any \(s \in S \), the concretization function \(\gamma_\alpha(s) = \{x \in X : \alpha(x) = s\} \) denotes the set of concrete states represented by the abstract state \(s \). For a set \(C \subseteq X \), \(|C|_\alpha \) denotes the smallest set of abstract states representing \(C \). Generating the complete concretization of an abstract state can be computationally intractable, especially in cases where the concrete state space is continuous and the abstract state space is discrete. In such situations, the concretization operation can be implemented as a **generator** that incrementally computes or samples elements from an abstract state’s concretization.

Action abstraction functions can be defined similarly. The main form of an action abstraction function is to drop action arguments, which leads to predicate abstractions to eliminate all predicates that used the dropped arguments in the action’s description. This process can also model non-recursive temporal abstractions since a macro or a high-level action with multiple implementations [Marthi et al., 2007] can be modeled as an action whose arguments include the arguments of its possible implementations as well as an auxiliary argument for selecting the implementation. The concretization of an action abstraction function is the set of actions corresponding to different instantiations of the dropped action arguments. Concretization functions for action abstraction functions can also be implemented as generators.

Formally, the concretization of each high-level action corresponds to a set of motion planning problems. We will use the notation \(a(x_1 \rightarrow o_1) \) to denote a grounded action, whose \(x_1 \) argument has been instantiated with the element \(o_1 \) defined by the underlying MDP problem (Sec. 2). Let \(a(\vec{x}, \vec{y}) \) be a concrete action where \(\vec{x} \) and \(\vec{y} \) are ordered, typed discrete (continuous) arguments. The concretization of the instantiated abstract action \(\gamma(a(\vec{x} \rightarrow \vec{o})) \) is the set of actions \(\{a(\vec{x} \rightarrow \vec{o} \rightarrow \vec{o'}) : \vec{o'} \text{ is a tuple of elements with types and arity specified by } \vec{y}\} \). Predicates in action preconditions specify the constraints that these arguments need to satisfy. Common examples for continuous arguments include robot poses and motion plans; predicates about them may include \(\text{collisionFree}(tr) \), which is true exactly when the trajectory \(tr \) has no collisions as well as \(\text{inspects}(Eg. 1) \).

Both state and action abstractions affect the transition function of the MDP. The actual transition probabilities of an abstract MDP depend on the policy being used and are therefore difficult to estimate accurately [Bai et al., 2016; Li et al., 2006; Singh et al., 1995]. In this paper, we will use an optimistic estimate of the true transition probabilities when expressing the abstract MDP. Such estimates are related to upper bounds for reachability used in prior approaches for reasoning in the presence of hierarchical abstractions (e.g., [Marthi et al., 2007; Ha and Haddawy, 1996]).

Example 2. Consider the action presented in Eqs. Consider such actions are difficult to plan with however, since the \(tr \) argument is a high-dimensional real-valued vector. We can abstract away this argument to construct the following abstraction:

Action: \(\text{inspect}(\text{Structure } s) \)

precondition	batterySufficient
effect	faultLocated(s)

Dropping the \(tr \) argument from each predicate that results in abstract predicates of lower arities. The zero-arity batterySufficient becomes a Boolean state variable and batteryLevel becomes a numeric variable. The symbol \(\gamma \) indicates that this action affects the predicates batteryLevel and batterySufficient, but its effects on these predicates cannot be determined due to abstraction.

An optimistic representation of this abstract action would state that it does not reduce batteryLevel and consequently, does not make batterySufficient false.

This approach for abstraction is computationally better than a high-level representation that discretizes the continuous variables, as it does not require the addition of constants representing discrete pose or trajectory names to the vocabulary. This is desirable because the size of the state space would be exponential in the number of such discretized values that are included.

4 Overall Algorithmic Framework

The ATM-MDP algorithm (Alg. 1) presents the main outer loop of our approach for computing a task and motion policy. It assumes the availability of an SSP solver that can generate tree-structured policies (starting at a given initial state) for
Theorem 1. Let t be the time since the start of the algorithm at which the refinement of any root-to-leaf path is completed. If path costs are accurate and constant then the total probability of unrefined paths at time t is at most $1 - \text{opt}(t)/2$, where $\text{opt}(t)$ is the best possible refinement (in terms of the probability of outcomes covered) that could have been achieved in time t.

The proof follows from the fact that the greedy algorithm achieves a 2-approximation for the knapsack problem. In practice, the true cost of refining a path cannot be determined prior to refinement. We therefore estimate the cost as the product of the parameter ranges covered by the generator of each action in the path. This results in lower bounds on the ratios p/c modulo constant factors, since a path could be refined before all the generator ranges are exhausted. In this way it doesn’t over-estimate the relative value of refining a path. As we show in the empirical section, the resulting algorithm yields the concave performance profiles desired of anytime algorithms.

The while loop iterates over these paths while recomputing the priority queue keys after each iteration. Within each iteration, the algorithm tries to compute a full motion planning refinement of the path. First, the entire path (pathToRefine) is extracted from the leaf (line 6). The refinePath subroutine attempts to find a motion planning refinement (concretization) for pathToRefine. If it is unable to find a complete refinement for this path, it either (a) returns with a reason for failure along with a partial trajectory going up to the deepest node in the path for which it was able to compute a feasible motion plan, or (b) backtracks to return a partial trajectory that will result in a future refinePath call for a parent node of a node for which a motion planning refinement couldn’t be found.

For partial trajectories under (a) (line 9), Alg[1] calls an
SSP solver after adjusting its initial state and domain definitions to include the FailureReason. The policy computed by the SSP solver is then merged with the existing policy and the while loop continues. For partial trajectories along case (b) (line 12), the path is added back to the queue with a partial, successful trajectory that results in backtracking.

If refinePath is successful in computing a full refinement, the while loop continues with an updated priority queue. In each iteration of the while loop, we compute the total probability of refined paths—this probability gives us the likelihood of being able to successfully execute the policy in its current state of refinement.

The refinePath subroutine (Alg. 2) attempts to compute a motion plan for each action in a given path. More precisely, it uses a generator to sample the possible concretizations for each action and test their feasibility. A feasible solution to any one of these motion planning problems is considered a feasible refinement of that abstract action. refinePath starts by selecting the first node in the path that needs to be refined in line 1 (Alg. 1 may result in situations where a prefix of a path has already been refined by a prior call to refinePath, due to line 14 in that algorithm).

It then iterates over possible target poses for the selected action (lines 8 through 11). If a feasible motion plan is found, then the algorithm refines the next action in the path. If not, it stochastically chooses to either re-invoke the SSP by returning a FailureReason, or to backtrack by invalidating the current node’s path (line 15) by removing it from partialPathTraj and returning to follow lines 12-13 in Alg. 1.

Though a backtracking search through all possible motion plans is required to guarantee the completeness of the algorithm, we find in practice that replanning with a new initial state and replacing the subtree rooted at a failed node with a new SSP solution is often more time efficient. This is because backtracking to an ancestor of the failed node invalidates the motion plans associated with all paths passing through that ancestor, often causing a large amount of previously completed work to be thrown out. This situation is illustrated in Figure 3. For this reason, we stochastically choose between backtracking and replanning and settle for probabilistic completeness of the search algorithm.

Properties of the Algorithm Our algorithm solves the dual problems of synthesizing a strategy as well as computing motion plans while ensuring that the computed strategy has a feasible motion plan. It factors a hybrid planning problem into a succession of discrete SSPs and motion planning problems. The algorithm can compute solutions even when most discrete strategies have no feasible refinements. A few additional salient features of the algorithm are:

- The representational mechanisms for encoding SSPs do not require discretization, thus providing scalability.
- The SSP model dynamically improves as the motion planning problems reveal errors in the high-level model in terms of FailureReasons.
- Prioritizing paths of relative value gives the algorithm a desirable anytime performance profile. This is further evaluated in the empirical section.

5 Empirical Evaluation

We implemented the algorithms presented in Sec. 4 using an implementation of LAO* [Hansen and Zilberstein, 2001] as the SSP solver. We used the OpenRAVE [Diankov, 2010] system for modeling and visualizing test environments and its collision checkers and RRT [LaValle and Kuffner Jr, 2000] implementation for motion planning. Since there has been very little research on the task and motion planning problem in stochastic settings, there are no standardized benchmarks.

We evaluated our algorithms by creating a hangar model in OpenRAVE for the aircraft inspection problem (Fig. 1). UAV actions in this domain include actions for moving to various components of the aircraft, such as the left and right wings, nacelles, fuselage, etc. Each such action could result in the UAV reaching the specified component or a region around the component. The inspection action for a component had the stochastic effect of localizing a fault’s location. The environment included docking stations that the UAV could reach and recharge on reserve battery power. Generators for concretizing all actions except the inspect action uniformly sampled poses in the target regions. Some of these poses naturally lead to shorter trajectories and therefore lower battery usage, depending on the UAV’s current pose. However, we used uniform-random samples to evaluate the performance of the algorithm while avoiding domain-specific enhancements. The generator for inspect(s) simulated an inspection pattern by randomly sampling five waypoint poses in an envelope around s and ordering them along the medial axis of the component. We used a linear function of the trajectories to keep track of battery usage at the low level and to report insufficient battery as the failureReason when infeasibility was detected. This function was used to provide failure reasons to the high-level when the battery level was found to be insufficient.

Fig. 4 shows the performance of our approach for producing execution strategies with motion planning refinements as a function of the time for which the algorithm is allowed to run. The red lines show the number of nodes in the high-level policy that have been evaluated, refined, and potentially replaced with updated policies that permit low-level plans. The blue lines show the probability with which the policy available at any time during the algorithm’s computation will be able to handle all possible execution-time outcomes. The different plots show how these relations change as we increase the level of uncertainty in the domain. The horizon is fixed at ten high-level decision epochs (each of which can involve ar-
bitrarily long movements) and the number of parts with faults is fixed at two. The policy generated by LAO* is unrolled into a tree prior to the start of refinement. The reported times include the time taken for unrolling.

Our main result is that our anytime algorithm balances complexity of computing task and motion policies with time very well and produces desirable concave anytime performance profiles. Fig. 4 shows that when noise in the agent’s actuators and sensors is set at 5%, with 10% of computation our algorithm computes an executable policy that misses only the least likely 10% of the possible execution outcomes. This policy is computed in less than 10 seconds. In the worst case, with a 20% error rate in actuators and sensors (sensors used in practice are much more reliable), we miss only about 20% of the execution trajectories with 40% of the computation.

6 Other Related Work

There has been a renewed interest in integrated task and motion planning algorithms. Most research in this direction has been focused on deterministic environments [Cambon et al., 2009; Plaku and Hager, 2010; Hertle et al., 2012; Kaelbling and Lozano-Pérez, 2011; Garrett et al., 2015; Dantam et al., 2016]. Kaelbling and Lozano-Pérez [2013] consider a partially observable formulation of the problem. Their approach utilizes regression modules on belief fluents to develop a regression-based solution algorithm. Sucan and Kavraki [2012] use an explicit multigraph to represent the plan or policy for which motion planning refinements are desired. Hadfield-Menell et al. [2013] address problems where the high-level formulation is deterministic and the low-level is determined using most likely observations. In contrast, our approach employs abstraction to bridge MDP solvers and motion planners to solve problems where the high-level model is stochastic. In addition, the transitions in our MDP formulation depend on properties of the refined motion planning trajectories (e.g., battery usage).

Principles of abstraction in MDPs have been well studied [Hostetler et al., 2014; Bai et al., 2016; Li et al., 2006; Singh et al., 1995]. However, these directions of work assume that the full, unabstracted MDP can be efficiently expressed as a discrete MDP. Marecki et al. [2006] consider continuous time MDPs with finite sets of states and actions. In contrast, our focus is on MDPs with high-dimensional, uncountable state and action spaces. Recent work on deep reinforcement learning (e.g., [Hausknecht and Stone, 2016; Mnih et al., 2015]) presents approaches for using deep neural networks in conjunction with reinforcement learning to solve MDPs with continuous state spaces. We believe that these approaches can be used in a complementary fashion with our proposed approach. They could be used to learn maneuvers spanning shorter-time horizons, while our approach could be used to efficiently abstract their representations and to use them as actions or macros in longer-horizon tasks.

Efforts towards improved representation languages are orthogonal to our contributions [Fox and Long, 2002]. The fundamental computational complexity results indicating growth in complexity with increasing sizes of state spaces, branching factors, and time horizons remain true regardless of the solution approach taken. It is unlikely that a uniformly precise model, a simulator at the level of precision of individual atoms, or even circuit diagrams of every component used by the agent will help it solve the kind of complex tasks on which humans would appreciate assistance. On the other hand, not using any model at all would result in dangerous agents that would not be able to safely evaluate the possible outcomes of their actions. Our results show that these divides can be bridged using hierarchical modeling and solution approaches that simplify the representational requirements and offer computational advantages that could make autonomous robots feasible in the real world.

7 Conclusions

Our experiments showed that starting with an imprecise model, refining it based on the information required to evaluate different courses of action is an efficient approach for the synthesis of high-level policies that are consistent with constraints that may be imposed by aspects of the model that are more abstract or imprecise. While full models of realistic problems can overwhelm SDM solvers due to the uncountable branching factor and long time horizons, our hierarchical approach allows us to use SDM solvers while addressing more realistic problems involving physical agents.
Acknowledgements
This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center Pacific (SSC Pacific) under Contract No. N66001-16-C-4050. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DARPA or SSC Pacific.

References
Aijun Bai, Siddharth Srivastava, and Stuart J Russell. Markovian state and action abstractions for MDPs via hierarchical MCTS. In Proc. IJCAI, 2016.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16(3):580–595, 1991.

Stephane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to intricate motion, manipulation and task planning. IJRR, 28:104–126, 2009.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Maria Fox and Derek Long. PDDL+: Modeling continuous.

Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon University, 2010.

Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkkan Patoglu, and Tansel Uras. Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In Proc. ICRA, 2011.

Maria Fox and Derek Long. PDDL+: Modeling continuous time dependent effects. In Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. FFrob: An efficient heuristic for task and motion planning. In Proc. WAFR, 2015.

Vu Ha and Peter Haddawy. Theoretical foundations for abstraction-based probabilistic planning. In Proc. UAI, 1996.

Dylan Hadfield-Menell, Edward Groshev, Rohan Chitnis, and Pieter Abbeel. Modular task and motion planning in belief space. In Proc. IROS, 2015.

Eric A Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space. In Proc. ICLR, 2016.

Malte Helmert. Concise finite-domain representations for pddl planning tasks. Artificial Intelligence, 173(5):503 – 535, 2009.

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search. In Proc. AAAI, 2014.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the now. In Proc. ICRA, 2011.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion planning in belief space. The International Journal of Robotics Research, 32(9-10):1194–1227, 2013.

A Kolobov, Mausam, DS Weld, and H Geffner. Heuristic search for generalized stochastic shortest path mdps. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2011.

S.M. LaValle and J.J. Kuffner Jr. Rapidly-exploring random trees: Progress and prospects. 2000.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for mdps. In ISAIM, 2006.

Janusz Marecki, Zvi Topol, Milind Tambe, et al. A fast analytical algorithm for mdps with continuous state spaces. In AAMAS-06 Proceedings of 6th Workshop on Game Theoretic and Decision Theoretic Agents, 2006.

Bhaskara Marthi, Stuart J Russell, and Jason Wolfe. Angelic semantics for high-level actions. In Proc. ICAPS, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

E. Plaku and G. D. Hager. Sampling-based motion and symbolic action planning with geometric and differential constraints. In Proc. ICRA, 2010.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and beneficial artificial intelligence. AI Magazine, 36(4):105–114, 2015.

Scott Sanner and Craig Boutilier. Practical solution techniques for first-order MDPs. Artificial Intelligence, 173(5-6):748–788, 2009.

Scott Sanner. Relational dynamic influence diagram language (rddl): Language description. http://users.cecs.anu.edu.au/~ssanner/1PPC_2011/RDDL.pdf, 2010.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning with soft state aggregation. In Proc. NIPS, pages 361–368, 1995.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter Abbeel. A modular approach to task and motion planning with an extensible planner-independent interface layer. In Proc. ICRA, 2014.

Ioan A S¸ucan and Lydia E Kavraki. Accounting for uncertainty in simultaneous task and motion planning using task motion multigraphs. In Proc. ICRA, 2012.

Håkan LS Younes and Michael L Littman. PPDDL 1.0: An extension to pddl for expressing planning domains with probabilistic effects. Technical Report CMU-CS-04-162, 2004.