Potential Antibacterial Activity of Bioactive β-sitosterol from Root Bark of Rhizophora apiculata from Lampung Coastal

Rahmat Kurniawana,1,\#, Tati Suhartatib,2, Yandrib,2, Desi Meriยิยantib,4, Sukrasnoc,5

a Organic Chemistry, Science Department, Institute Technology of Sumatera, Lampung, Indonesia
b Department of Chemistry, Faculty of Sciences and Mathematics, University of Lampung, Lampung, Indonesia
c Center for Research and Innovation of Biological and Natural Materials, Institute Technology of Sumatera, Lampung, Indonesia
\# corresponding author: (1,\#) rahmat.kurniawan@ki.tera.ac.id; (2) tati.suhartati@fmipa.unila.ac.id; (3) yandri@fmipa.unila.ac.id; (4) desimeriยิยanti@gmail.com; (5) sukrasno@itera.ac.id

https://doi.org/10.14730/jksa.2021.4.114-119

Abstract

β-sitosterol is an essential bioactive phytosterol naturally present in plant cell membranes. It has a coincident structure with animal cholesterol. This investigation reported isolation, structure analysis, and an antimicrobial assay of β-sitosterol from the root bark of Bakau Minyak (Rhizophora apiculata) from Lampung coastal. The isolation of β-sitosterol was carried out through maceration using methanol, separation by vacuum liquid chromatography (VLC), and purification by column chromatography (CC) using ethyl acetate/n-hexane (2:8) as eluent. The structure of the β-sitosterol was determined using spectroscopic analysis (UV–Vis, FT–IR, 1H–NMR, 13C–NMR, DEPT, and GC–MS). The pure β-sitosterol has 107.4 mg of white needle crystalline compound, the compound melting point about 140.7–141.2°C, the molecular mass confirmed by m/z 414, and UV absorption detected at λ 203.9 nm. The β-sitosterol antimicrobial bioactivity assay has shown potential activity to be developed as a lead compound against E. coli.

1. Introduction

β-sitosterol (stigmast–5–en–3β–ol) is a bioactive secondary metabolite type phytosterol naturally found in plant cell membrane surfaces, providing a chemical structure similar to that of mammalian cholesterol [1]. This compound is commonly found in various higher plant parts such as seed, wood, and root bark [2]. Bioactivity of β-sitosterol has been widely reported that it has antibacterial activity [3], non–alcoholic fatty liver disease (NAFLD) protecting agent [4], analgesic [5], anticancer [6], immunomodulatory [7], lipid–lowering effect [8], hepatoprotective [9], anti–diabetic [10], respiratory protecting effect [11], wound recovery effect [10], antioxidant [12] and anti–inflammatory [13]. β–sitosterol is a potential micronutrient and has been confirmed by the Food and Drug Administration (FDA) to degrade blood cholesterol levels, reduce heart disease risk, and have no prominent side effects identified [14, 15].

Mangrove forests found in Indonesia’s coastal areas exhibit habitats with high biodiversity of animals, plants, and microorganisms [11]. Mangroves have been reported to generate steroid, alkaloids, and terpenoids [16], which have biological benefits such as antidiabetic [17], antibacterial [18], anticer [19], and antioxidant abilities [20, 21]. These bioactivity properties of mangroves have impressed pharmaceutical industry interest [22]. This plant has been used as traditional medicines to treat diarrhea and asthma [23], scabies treatment, and rheumatism [24]. R. apiculatae known as Bakau Minyak in Lampung (Figure 1), is common mangrove growing on the coastal zones of Lampung. This plant is hardy, tannin–rich, and has a high density, mainly used for construction and charcoal making [23].
Bakau Minyak has a high salt tolerance. These natural properties provide several bioactive compounds produced in response to environmental stresses. The root bark of Bakau Minyak, which part has direct interaction with seawater, is mainly reported containing tannins and steroids [25], indicating it has a potential source of β-sitosterol.

Although R. apiculata plays an essential role in traditional medicine in many tropical countries [11, 23], including Indonesia, only limited research has been scientifically reported to explore the bioactive and antimicrobial compound activity of this plant. Thus, the present study aims to investigate the antimicrobial activity of the bioactive β-sitosterol from the root bark of R. apiculata to increase the potential of mangrove forests on the Lampung coast. β-sitosterol was isolated using several chromatography techniques. Structural elucidation was carried out by spectroscopy analysis. The antimicrobial assay was determined by the agar diffusion method against Escherichia coli, Bacillus subtilis, and Aspergillus niger.

2. Methodology

The root bark of Bakau Minyak was obtained from the Research Center of Marine Development Cultivation (Balai Besar Pengembangan Budidaya Laut) Lempasing Coastal, Lampung, Indonesia. The specimen was determined as R. apiculata (Specimen number: IT IS.507389) by Botany Herbarium Bogorensis in the Biology Research Center of The Indonesian Institute of Sciences (LIPI) Cibinong, West Java.

2.1. Equipment/ Tool/ Material

The chemicals were ethyl acetate, methanol p.a. (Merck), n-hexane, acetone p.a. (Merck), 1.5% cerium sulfate/sulfuric acid (2 N), benzene p.a. (Sigma), chloroform p. a. (Merck), dichloromethane (Sigma), silica gel G 60 (Merck), silica gel 35–70 Mesh 60 (Merck), silica gel 60 F254 0.25 mm TLC plate (Merck), and by exposure using cerium sulfate vapor. The methanol extracts were obtained by rotary evaporator HEI-VAP (Heidolph). The UV spectrum was obtained using UV-Vis (Shimadzu 1200). The melting point was measured using Melting Point Apparatus (Toledo HL.3A). The β-sitosterol crystals were placed in a capillary glass tube, which was then inserted on the heating side. The crystals were heated until they melted, and the temperature was recorded. The IR spectra were obtained by FTIR spectroscopy (Scimitar 2100) using KBr pellets. The mass spectrum were acquired by GC-MS model QP2010 (Shimadzu) equipped with a VF5 column mass spectrometer (flow rate 1.8 mL/min) with diameter of 0.25 mm, length of 30 m, thickness of 0.25 μm and under 200°C ion source/–70 eV at 40–650°C with a flow rate of 4°C/min (carrier gas was He). 1H and 13NMR spectra were obtained by JEOL variant 500 MHz spectroscopy in acetone-d_6 and TMS as the zero-shift standards.

2.2. Extraction and Isolation

All extraction and isolation steps of β-sitosterol are shown in Figure 2. The dried powder of R. apiculata root bark (532 g) was extracted with methanol (4×2 L) under low pressure to obtain a final residue (58.7 g) of crude methanol extract (CME). The extraction occurred in about 72 hours with further removal of the solvent at a rotary evaporator at 50°C/120 rpm. CME was partitioned in a solvent to present hexane (HE) (17.2 g) and ethanol (21.4 g) extracts (EE). This study focused on the HE fractions because the EE fraction has high tannin content, making it more difficult to eliminate the tannin in the separation process [25]. 15.5 g HE was chromatographed using the vacuum liquid chromatography method, eluted using a gradient solvent by increasing the polarity of the eluent (hexane/ethyl acetate) to produce 33 fractions. The fractions 3, 4, and 5 were re-chromatographed using silica gel G-60 and eluted with hexane: ethyl acetate (4:1, v/v). Among the 16 fractions obtained, fractions 3–9 were purified using a silica gel column to give a compound mixture (403.7 mg). The fraction of 403.7 mg was chromatographed on the silica gel column to produce 12 fractions. Fractions 4–9 yielded compound 1 (115.8 mg). After recrystallization in hexane, this fraction was identified as β-sitosterol (107.4 mg).

![Figure 1](image1.png)

Figure 1. Bakau Minyak (R. apiculata) from Lempasing, South Lampung.

![Figure 2](image2.png)

Figure 2. The flow chart of β-sitosterol isolation.
2.3. Antimicrobial Assay

The fungal and bacterial strains were acquired from the microbiology laboratory of The Indonesian Institute of Sciences LIPI-Cibinong and Biochemistry laboratory of the Chemistry department, University of Lampung collections. The antimicrobial assay was determined against E. coli, B. subtilis, and A. niger by the agar diffusion method. Both fungi and bacterial were cultured in nutrient broth (NB) medium with a conical flask serial, incubated at 37°C/24 h. Pre-warmed NB agar plates were seeded with 10⁴–10⁶ CFU suspension of bacteria and fungi. The paper discs (5 mm Whatman assay disc) were drilled into the wells plate, then the compound and the extract were slowly added until discs were filled. After all filled discs were placed in an upright position and then incubated at 37°C for 24 h, the inhibition zones were measured in millimeters (mm). The antimicrobial assay protocol was carried out under aseptic conditions, based on a standard procedure adapted from Balouiri et al. [26] with some modification.

3. Results and Discussion

![Figure 3. The IR spectrum of β-sitosterol](image)

About 107.4 mg of pure white needle crystalline compound was isolated with the melting point of 140.7–141.2°C. The molecular mass was at m/z 414, confirmed by the GC-MS chromatogram, and the UV absorption peak was detected at λ of 203.9 nm in methanol. Based on Figure 3, the FTIR spectrum exhibits the absorptions band (cm⁻¹) for stretching O-H at 3435.33, CH₂ at 2925.10, CH₃ at 2854.62, and both absorptions C-H (sp²) stretching for asymmetrical and symmetrical, respectively. Non-conjugated olefinic (C=C) at 1638.23, methylene in non-aromatic cyclic groups (CH₂) at 1461.39, C-H bending is for scissoring and rocking of the germinal dimethyl group at 1382.09 and C-OH from secondary alcohol at 1037.39. The FTIR spectrum analysis has detected the nature of oxygen identified as a hydroxyl group. The FTIR spectrum also detects the existence of one C-C in the structure. The FTIR data are summarized in Table 1.

The NMR spectrum (Figure 4) exhibits the existence of fifty protons containing six methyl (CH₃), eleven methylene (CH₂), nine methines (CH), and one hydroxy group. The presence of two singlets at δ 0.84 and 0.83 ppm confirm the existence of two CH₃ attached to the quaternary carbons. The appearance of two multiplet signals at δ 2.3 ppm indicates that two methylene protons are adjacent to the carbon attached to the hydroxyl group. A proton signal at δ 3.52 ppm in multiple properties presents a proton connected to the carbon, which is correlated with the OH groups. The overlapping triplets at δ 5.38 ppm are assigned to the olefinic protons.

Absorption band (cm⁻¹)	Functional Groups
3435-33	O-H stretching
2925.10	C-H (sp²) stretching
2854.62	C-H (sp²) stretching
1638.23	C=C (cyclic alkene) stretching
1461.39	C-H (CH₃) bending
1383.09	O-H (C-OH) bending

Figure 4. The Spectrum H–NMR of β-sitosterol

The ¹³C-NMR spectrum (Figure 5) shows the appearance of 29 carbon signals. The DEPT-135 spectrum (Figure 6) displays the peaks for the CH₃ and CH while peaks that appear in the 20-40 ppm region indicate the presence of eleven CH₂ groups. Three signals that do not appear in the DEPT 135 spectrum (Figure 6) confirm the three quaternary carbons.

![Figure 5. The ¹³C-NMR of β-sitosterol](image)

The carbon signals at δ 121.61 and 142.4 ppm are assigned to the olefinic carbons (C=O) of G₁ and G₂. The C₃ attached to the β-OH group at δ 71.76 ppm and the signal at δ 12.28 and 19.37 ppm are assigned to the angular methyl carbons of G₄ and G₅, respectively.
Figure 6. The DEPT 135 of β-sitosterol

The mass molecular ion peak at m/z 414 indicates that the compound has a calculated theoretical value for C_{30}H_{48}O as shown in Figure 7. The peak at m/z 301 corresponds to [M−113] or the loss of (-C_{6}H_{12}), the peak at m/z 273 resembles to [M−141] or loss of aliphatic chain (-C_{6}H_{12}), and the peak at m/z 36 parallels to [M−18] or loss of hydroxy group. Based on spectroscopy analysis and comparison data from the previous report, the structure of the pure isolated compound is determined as β-sitosterol.

Figure 7. The GC-MS spectrum of β-sitosterol

The chemical shift data in Table 2 show that the NMR spectrum is similar to the β-sitosterol data reported by Patra et al. [27]. All the NMR data of β-sitosterol are summarized in Table 2 and modelled in Figure 8.

Table 2. The Spectrum 1H-NMR, 13C-NMR, and DEPT 135 of β-sitosterol

No.	13C-NMR (δ, ppm)	DEPT 135	1H-NMR (δ, ppm)	13C-NMR (δ, ppm)	DEPT 135	1H-NMR (δ, ppm)
1	38.29 CH₂		37.28 CH₂			
2	31.69 CH₂	2.3 (m)	31.69 CH₂	2.31 (m)		
3	71.76 CH-OH	3.52 (1H, m)	71.82 CH-OH	3.52 (1H, m)		
4	43.41 CH₂	2.3 (m)	42.33 CH₂	2.31 (m)		
5	142.4 C		140.7 C			
6	121.62 CH	5.38 (1H, d)	121.72 CH	5.36 (d)		
7	32.68 CH₂	2.01	31.69 CH₂	2.08 (d)		
8	32.84 CH		31.93 CH			
9	51.26 CH		50.17 CH			
10	37.36 C		36.52 C			
11	21.84 CH₂		21.1 CH₂			
12	40.71 CH₂		39.8 CH₂			
13	43.44 C		42.33 C			
14	56.96 CH		56.79 CH			
15	23.79 CH₂		24.37 CH₂			
16	29.02 CH₂		28.25 CH₂			
17	57.71 CH		56.09 CH			
18	12.28 CH₃	0.68 (3H, s)	11.86 CH₃	0.68 (3H, s)		
19	19.27 CH₃		19.4 CH₃			
20	36.99 CH		36.52 CH			
21	19.27 CH₃		18.79 CH₃			
22	34.74 CH₂		33.98 CH₂			
23	26.77 CH₂		26.14 CH₂			
24	46.76 CH		45.88 CH			
25	29.2 CH		28.91 CH			
26	20.15 CH₃	0.84 (3H, d)	19.8 CH₃	0.83 (3H, d)		
27	19.11 CH₃	0.82 (3H, d)	18.79 CH₃	0.85 (3H, d)		
28	23.79 CH₂		23.1 CH₂			
29	12.32 CH₃	0.84 (3H, d)	11.99 CH₃	0.86 (3H, d)		

The crude extract exhibits more inhibition zones than pure isolated of β-sitosterol because the crude extract contains many other bioactive compounds that have not been identified as shown in Figure 9. Based on the zone of inhibition (ZOI) classification, according to Davis and Stout [28], the four strength that correspond to ZOI diameters: > 20 mm are classified as very strong inhibition, 10–20 mm as strong inhibition, 5–10 mm as moderate inhibition and < 5 mm is classified as no inhibition. The β-sitosterol had the potential to fight E. coli with moderate activity compared to the two positive controls as summarized in Table 3.
Figure 9. The Antimicrobial activity of β-sitosterol against (A) E. coli; (B) B. Subtilis and (C) A. niger; (E) Crude extract, (Y) β-sitosterol against; (X) Compound X; (+) and (+++) positive control; (-) acetone.

Table 3. Antimicrobial activity of β-sitosterol from the root bark of R. apiculata.

Samples	Concentrations (mg/mL)	Zone of inhibition in mm		
		E. coli	B. subtilis	A. niger
Crude extract	10	16 ± 2	14 ± 1	10 ± 2
β-sitosterol	10	8 ± 2	-	-
+ Chloramphenicol	10	26 ± 3	29 ± 2	17 ± 2
++ Clotrimazole	10	21 ± 1	19 ± 3	24 ± 4
- Negative control	0	-	-	-

Previous reports have exhibited that β-sitosterol has antibacterial activity against S. aureus and E. coli [29]. The β-sitosterol inhibited the growth of E. coli (14.5 ± 1.84 mm) and S. aureus (17.83 ± 0.58 mm) [30]. The differences in the β-sitosterol activity to generate an inhibition zone are presumably dependent on the condition of the antimicrobial assay. The different antimicrobial assay conditions have different sample solvents and microbial test concentrations [31]. The β-sitosterol has been registered as a non-toxic and safe supplement. β-sitosterol has been registered as a non-toxic and safe supplement. It has potential bioactivities in several applications, including antibacterial activity.

4. Conclusion

This study reported the isolation and structure elucidation of β-sitosterol from the root bark of Bakau Minyak from Lempasing coastal, South Lampung. This study supported the use of Bakau Minyak as a traditional medicine to treat several diseases such as infections by E. coli. The antibacterial activity of β-sitosterol from the root bark of R. apiculata exhibited potential bioactivity to be developed as a lead compound for bacterial infections. The high potency of β-sitosterol and its analogs in treating various diseases classifies this compound as an essential drug in the future.

Acknowledgment

The authors are grateful to Biochemistry Laboratory, Universitas Lampung for technical assistance, LP3 ITERA for funding support of the GBUAS program, and LIPI-Cibinong for obtaining the NMR spectra.

References

[1] Shyamaladevi Babu, Selvaraj Jayaraman, An update on β-sitosterol: A potential herbal nutraceutical for diabetic management, Biomedicine & Pharmacotherapy, 131, (2020), 110702
[2] J. L. Weihrauch, J. M. Gardner, Sterol content of foods of plant origin, Journal of the American Dietetic Association, 73, 1, (1978), 39–47
[3] Mesfin Medihin Ododo, Manash Kumar Choudhury, Ahmed Hussen Dekebo, Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora, SpringerPlus, 5, 1, (2016), 1210 https://doi.org/10.1186/s40064-016-2894-x
[4] Simin Feng, Ling Gan, Chung S. Yang, Anna B. Liu, Wenyun Lu, Ping Shao, Zhuqing Dai, Pellung Sun, Zisheng Luo, Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis, Journal of Agricultural and Food Chemistry, 66, 13, (2018), 3417-3425 https://doi.org/10.1021/jacsafc.7b00646
[5] Santosh B. Dighe, B. S. Kuchekar, S. B. Wankhed, Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata, International Journal of Pharmacological Research, 6, 3, (2016), 109–113
[6] Ramalingam Sharmila, Ganapathy Sindhu, Evaluate the Antigenotoxicity and anticancer role of β-Sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen activated protein Kinases, C-fos, C-jun, and endothelial growth factor receptor, Pharmacognosy magazine, 13, 49, (2017), 95-101
[7] Lorenzo Fraile, Elisa Oslci, Lorena Córdoba, María A. Navarro, Jesús Osada, María Montoya, Immunomodulatory properties of Beta-sitosterol in pig immune responses, International Immunopharmacology, 13, 3, (2012), 316–321 https://doi.org/10.1016/j.intimp.2012.04.017
[8] Chuanxun Yuan, Xuexu Zhang, Xue Long, Jing Jin, Risheng Jin, Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid–lowering in hyperlipidemic mice, Lipids in Health and Disease, 18, 1, (2019), 157 https://doi.org/10.1186/s12144-019-1096-2
[9] Shyamaladevi Babu, Madhan Krishnan, Ponnulakshmi Rajagopal, Vijayalakshmi Periyasamy, Vishnu Priya, Veeraraghavan, Ramajayam Govindan, Selvaraj Jayaraman, Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats, European Journal of Pharmacology, 873, (2020), 173004 https://doi.org/10.1016/j.ejphar.2020.173004
[10] Yong Joo Park, In Jae Bang, Mi Ho Jeong, Ha Ryong Kim, Da Eun Lee, Jigy Hwan Kwak, Kyu Hyuck
