Species distributed across climatic gradients will typically experience spatial variation in selection, but gene flow can prevent such selection from causing population genetic differentiation and local adaptation. Here, we studied genomic variation of 415 individuals across 34 populations of the common wall lizard (Podarcis muralis) in central Italy. This species is highly abundant throughout this region and populations belong to a single genetic lineage, yet there is extensive phenotypic variation across climatic regimes. We used redundancy analysis to, first, quantify the effect of climate and geography on population genomic variation in this region and, second, to test if climate consistently sorts specific alleles across the landscape. Climate explained 5% of the population genomic variation across the landscape, about half of which was collinear with geography. Linear models and redundancy analyses identified loci that were significantly differentiated across climatic regimes. These loci were distributed across the genome and physically associated with genes putatively involved in thermal tolerance, regulation of temperature-dependent metabolism and reproductive activity, and body colouration. Together, these findings suggest that climate can exercise sufficient selection in lizards to promote genetic differentiation across the landscape in spite of high gene flow.

Heredity (2022) 128:271–278; https://doi.org/10.1038/s41437-022-00518-0

INTRODUCTION

Understanding how the spatial distribution of environments shapes population differentiation is a shared goal of biogeography, ecology, and evolutionary biology. The balance between selection and gene flow determines the extent to which populations will diverge genetically along environmental gradients and exhibit adaptation to local environmental conditions (Savolainen et al. 2013; Tigano and Friesen 2016; Yeaman and Otto 2011). Local adaptation is common in nature (e.g., Fraser et al. 2011; Halbritter et al. 2018; Hargreaves et al. 2020) and can occur even with high levels of gene flow if selection is strong (Yeaman and Otto 2011; Savolainen et al. 2013; Tigano and Friesen 2016). When phenotypic variation is polygenic, populations can exhibit pronounced adaptive phenotypic divergence with weak geographic genetic differentiation (Yeaman 2015). However, spatial selection mosaics in regions with high gene flow will also tend to promote a genetic architecture with a few divergent genes of large effect (Yeaman and Whitlock 2011), and these genes can therefore exhibit strong genetic differentiation across the landscape.

Climatic gradients commonly impose strong divergent selection across the landscape and can promote adaptive genetic differentiation (Keller et al. 2013; Halbritter et al. 2018). Empirical studies of plants and animals have identified population genetic differentiation across climatic regimes, even over small geographic scales, and loci that reliably associate with temperature, precipitation, and seasonality (e.g., Yeaman et al. 2016; Gibson and Moyle 2020). Adaptive divergence is facilitated when there are severe restrictions on dispersal imposed by geography (e.g., terrestrial vertebrates on islands; Bassitta et al. 2021). However, divergence can also occur in the absence of such barriers if dispersal distances are short, which is commonly the case in small vertebrates like lizards (Clobert et al. 2012; Olsson and Shine 2003; Warner and Shine 2008). As a result, even highly abundant and continuously distributed lizard species can show substantial variation in morphology and colouration across climatic regimes (Ortega et al. 2019; Ruiz Miñano et al. 2021). Furthermore, common garden experiments suggest that local physiological adaptation along climatic gradients is very common (Pettersen 2020). In line with these phenotypic effects, genotype-environment associations have been able to identify genetic differentiation of particular loci associated with climate (e.g., Rodríguez et al. 2017; Prates et al. 2018; Farleigh et al. 2021; see also Campbell-Staton et al. 2016, 2017, 2020). Yet, it remains poorly understood to what extent climate is able to cause genome-wide population differentiation when the opportunity for gene flow is high.

Common wall lizards (Podarcis muralis) in central Italy are well suited to quantify the degree of population genetic differentiation across climatic regimes in the absence of physical barriers to gene flow, and to investigate if local adaptation is accompanied by differentiation at particular loci. The climatic gradients in central Italy can be steep, with a hot, dry Mediterranean climate on the western coast and Tuscan hills, transitioning into a cooler and wetter climate in the Apennine Mountains (Fig. 1; Ruiz Miñano et al. 2021). Podarcis muralis is highly abundant throughout this
region, but is absent from the hottest and driest locations and occurs only sparsely above 2000 metres elevation (Sindaco et al. 2006). There are several reasons to expect that common wall lizards are experiencing strong local selection as a result of climate. Firstly, climate commonly imposes selection on reproductive biology with lizards typically differing consistently in reproductive characteristics across latitudes and altitudes (e.g., Telemeco et al. 2010; Horvathova et al. 2013; reviewed in Uller and While 2015). Secondly, cool climate imposes selection on the thermal physiology of embryos with, for example, developmental rate evolving in response to modest climatic differences (Oufiero and Angilletta 2006; reviewed in Pettersen 2020) and very rapidly (including in P. muralis; Feiner et al. 2018; While et al. 2015b).

In addition to the patterns of adaptive divergence in thermal physiology and life history under natural selection, common wall lizards in this region also show remarkable (genetically determined) variation in body size, shape, and colour. This variation likely results from climatic effects on the strength of sexual selection (or the balance between sexual and natural selection; MacGregor et al. 2017; While et al. 2015a; Yang et al. 2020; Ruiz Miñano et al. 2021). Highly exaggerated colours, large heads, and heavy bodies occur in hot and dry areas, whereas lizards in cooler, more seasonal climate are lighter and exhibit the brown, dull, phenotype characteristic of other genetic lineages of the same species (Ruiz Miñano et al. 2021). Yet, it is currently unknown to what extent these patterns of local phenotypic adaptation to climate are accompanied by genetic differentiation.

To quantify the extent to which climate has caused population genetic differentiation across the landscape, we used reduced representation sequencing and distance-based spatial models. We first investigated the evidence for genetic structure according to climate and geography, and quantified their unique and shared contribution to the overall genetic variation within this region. Second, we used genotype-environment association (GEA) analyses to investigate the evidence for, and distribution of, putative signatures of climatic selection in the genome.

METHODS

Study system and data collection

The common wall lizard (Podarcis muralis) is a small lizard occurring throughout southern Europe (Schulte 2008). While this species has a
monotypic brown phenotype across most of its range, there is a pronounced phenotypic variation across central Italy, especially in Latium, Tuscany, and Umbria (Böhme 1986; Ruiz Miñano et al. 2021). This has stimulated the description of a number of subspecies (Böhme 1986), but it is now clear that lizards throughout this area belong to a single evolutionary lineage (the ‘Tuscan’ or [Central] Italian lineage, here referred to as the IT lineage; Yang et al. 2018, 2022). In the northeast of the IT lineage’s distribution, there is a well-characterised hybrid zone with the distantly related ‘Southern Alps’ lineage and, further north, the river Po forms a natural barrier to gene flow with other lineages (for details, see Yang et al. 2018, 2020, 2022).

Between 2012 and 2018, we collected tail-tip tissue samples of 346 T. mauritanica from 71 locations across central and northern Italy (Fig. 1; Table S1; see below and Ruiz Miñano et al. 2021). We refer to each location as a ‘population’. The genomic data for each population was derived from up to fifteen individuals (typically 14; seven females and seven males), using double-digest restriction site-associated DNA sequencing (ddRAD-Seq) on an Illumina HiSeq 2500 platform (Novogene; Hong Kong). Library preparation for ddRAD-Seq data was implemented following the protocol in Peterson et al. (2012) and Yang et al. (2018). In brief, DNA was digested by the restriction enzymes EcoR I and MspI (New England Biolabs, USA; no methylation sensitive). We used 500 ng of DNA for each individual and amplified with QS High-Fidelity DNA Polymerase at selected size of 300–700 bp (New England Biolabs, USA) with 12 cycles. The libraries were distributed and sequenced in four separate runs of 19 arrays (total of five runs with a read length of 150 bp). We obtained approximately 1 Gb for each sample, with expected read depth of 30×. Firstly, sequence reads with low-quality score (Phred score <30), ambiguous base calls, and incomplete barcode calls were removed using “process_radtags” module in STACKS v2.41 (Catchen et al. 2013). We used STACKS to obtain single nucleotide polymorphisms (SNPs) using “ref_map” pipeline (Catchen et al. 2013) by mapping clean reads to the reference genome of T. mauritanica (PodMur_1.0; Andrade et al. 2019). The total assembly of the reference genome is 1.51 Gb with 2162 contig, the N50 size is 92.4 Mb, and the L50 size is 7. SNPs were estimated under a Maruki low model (Maruki and Lynch 2017) with p-value 0.05. SNPs with depth <10 were removed as low-quality score loci, and SNPs with depth >95th percentile were removed to avoid PCR duplicates, possible paralogs, and SNPs from high complexity regions (Fan et al. 2016). The individuals with average depth of coverage of <10 for all SNPs were also removed from the data set. PLINK (Chang et al. 2015) was used to filter the SNPs with minimum minor allele frequency (MAF) <0.05, and with missing rate >0.1 in each population. Finally, we excluded individuals with genotyping rate <70% across loci.

Given that our aim was to study population genetic structure within the IT lineage, we first removed all individuals that showed any sign of introgression from other lineages (see Yang et al. 2018; Ruiz Miñano et al. 2022). To this end, we retained only the first SNP per RAD locus (reducing the data from 103,918 SNPs to 35,227 SNPs) and quantified the probability of being assigned to the IT lineage based on CONTU with K = 2. We subsequently removed all individuals with probability of being assigned to the IT lineage was <0.99. This resulted in the retention of 415 individuals from 34 populations (Fig. 1), all belonging to the IT lineage, with an average of 12 (range 4–15; see Table S1) individuals genotyped per population. These individuals were subsequently subject to spatial analyses with distance-based Moran Eigen- vector Maps (dbMEM) and genotype-environment associations as described in detail below.

Climatic variables

We ran principal component analyses on 19 bioclimatic variables extracted from WorldClim 2.0 (Fick 2017) at a 30-arc sec spatial (~1 km2) resolution for the 34 sampling locations analysed. The first three axes explained 90% (51.5, 20.4, and 17.7%, respectively) of the variation (Fig. 1 illustrates these with spatial interpolation, using the idw function in the rpackage: Table S2). PC1 represents a gradient from hot and dry (high values) to cool and wet (low values) climate, and the geographic distribution of the scores clearly separates lowland regions from mountains (Fig. 1). High values for PC1 are found at the highest elevation in the region, with a consistently high temperature across the year (i.e., mild winters and hot summers) and high precipitation seasonality (wet winters and dry summers), which results in a pronounced shift in PC2 from the southwest towards the northeast (Fig. 1). Values for PC3 capture variation that represents locations that are relatively cool and dry (high values) to warm and wet (low values; Fig. 1). These principal components adequately capture the Köppen–Geiger climate classification for Italy (Beck et al. 2018) and were used in all further analyses.

Spatial genetic structure

We investigated the spatial structure of genetic variation using the data set derived from a single SNP per RAD locus. We used multivariate regression models, redundancy analyses (RDAs), and distance-based Moran Eigen- vector Maps (dbMEM). The methods are explained by Legendre and Legendre (2012), and all analyses were carried out in R using the package ade4 (Dray et al. 2008; Peres-Neto et al. 2018). Redundancy analyses are an extension of linear regression models for multivariate response variables and are suitable for the analyses of genomic data (Forrest et al. 2018). dbMEM variables are the eigenvectors of a spatial matrix calculated from the geographical coordinates of the sampling locations (Dray et al. 2006; Legendre and Legendre 2012). These eigenvectors represent orthogonal spatial descriptors of the genetic variation across sampling locations at different spatial scales (defined by Moran’s I). dbMEM variables can therefore be used as spatial explanatory variables in multiple regression or redundancy analysis of genetic variation.

We created a matrix of geographic distance between locations using the coordinates of each sampling location. Locations were linked within a minimum geographic distance of 20 km using the longest edge in a minimum spanning tree (Fortin and Dale 2005). We calculated allele frequencies per population and transformed the data using Hellinger transformation (Borcard et al. 2018). This transformation consists of dividing each value in the data matrix by its row sum and taking the square root of the quotient, and thus gives low weight to variables with low counts or lots of zeros (i.e., rare alleles). Isolation by distance (spatial autocorrelation) is expected for population genetic data and this relationship should be removed before further analysis of dbMEMs (Legendre and Legendre 2012). We removed the linear trend (i.e., isolation by distance) by running a linear model of allele frequencies regressed on geographical coordinates and used the residuals for further analyses (Legendre and Legendre 2012). We subsequently ran a global RDA on the detrended population genetic data and used forward selection to identify significant dbMEMs (Blanche et al. 2008). The significant dbMEMs were subsequently used as independent variables in the final RDA of the genetic data, resulting in one or more canonical axes that represent the spatially structured variation of population allele frequencies across the landscape. We then tested whether these canonical axes were associated with our climatic predictors (PC1, PC2, and PC3) using linear regressions. In addition, we performed a variance partitioning analysis (Legendre and Legendre 2012; Peres-Neto et al. 2006). This method is implemented in the vegan package (Oksanen et al. 2019) and uses partial redundancy analyses to quantify the unique and shared fractions of the genetic variation explained by the three main predictors: the linear (i.e., isolation by distance) and non-linear (i.e., dbMEMs) spatial structure, and climate (i.e., the three climatic PCs). Since the linear trend should be included in the variance partitioning, the data was not detrended before analysis (Legendre and Legendre 2012). Statistical significance and unique and shared contributions of isolation by distance, non-linear spatial structure, and climate were determined by ANOVA using 999 permutations (Borcard et al. 2018).

Genotype-environment associations

Analysis of genotype-environment association (GEA) aims to detect polygenic responses to selection by investigating changes in allele frequencies (Brauer et al. 2018; Forester et al. 2018). To identify outliers associated with the three climatic principal components, we filtered the 103,918 SNPs obtained after quality control (described above) for the 415 individuals with respect to linkage disequilibrium (LD). To ensure that our results were robust, we ran the subsequent analyses for two conservative cut-offs for LD: r2 = 0.8 and r2 = 0.5. We used the QTL approaches to identify SNPs associated to climate: latent factor models (LFMM; Frichot et al. 2013) and redundancy analyses (Bouret et al. 2014). Both LFMM and RDA assume linear relationships between genetic data and environmental variables (for a methodological review, see Forester et al. 2018). LFMM is a univariate approach that identifies associations between a single locus and environmental variables, using latent factors to correct for underlying effects. We used the lfmm package (Caye et al. 2019) to run latent factor models. As population structure is known to be an important confounding factor when detecting genotype associations (Caye et al. 2019), we first investigated the evidence for population structure using principal component analyses, and by estimating the number of ancestry
results for the data set filtered at $r^2 = 0.8$. A principal component analysis and the broken stick method did not support a significant genetic clustering (Fig. 54), but SNMF identified six clusters (Fig. S5). We therefore set $K = 6$ in the LFMF analyses. The LFMF identified 221 candidate loci, of which 75 were associated with climatic PC1, 57 with PC2, and 89 with PC3. Manual adjustment of the genomic inflation factors (GIF) had only minor effect on these numbers.

The RDA returned three significant axes, on which we identified 820 unique candidate loci. The majority of these SNPs were most strongly associated with climatic PC1 (361), followed by PC3 (247) and PC2 (212). GO enrichment for these RDA outliers can be found in Table S6.

Out of these candidate SNPs, 48 were detected by both LFMF and RDA (the corresponding number for LD filtering at $r^2 = 0.5$ was 43, which 38 were shared with results for $r^2 = 0.8$). These 48 outliers were dispersed throughout the genome, found on 16 of the 19 chromosomes; 23 outliers were most strongly associated with climatic PC1, 11 with PC2, and 14 with PC3. These SNPs were associated with 37 annotated genes (see Discussion and Table S7). The GO enrichment for these genes identified molecular functions related to catabolic processes (GO:0044248, GO:1901575, and GO:0009056), metabolic processes (GO:0044237 and GO:0008152), and oxidoreductase activity (GO:0016491).

DISCUSSION

Quantifying the extent of climate-associated population genetic differentiation, and its spatial scale, is important for understanding past and future adaptation to climatic regimes. In this study, we investigated the relationship of genome-wide SNPs with climatic and spatial data across 34 populations of the common wall lizard (*Podarcis muralis*) in central Italy. This region is characterised by very high lizard densities, no physical barriers to gene flow, consistently high estimates of population genetic diversity (even at climatic extremes), and a genetic structure characterized by isolation by distance (Ruiz Miñano et al. 2021; Yang et al. 2018). Overall, our results demonstrate that climatic selection is sufficient to overcome high levels of gene flow and cause genetic differentiation, consistently sorting particular alleles across the landscape according to climatic regimes. As a result, we expect wall lizards to show pronounced local adaptation in morphology, physiology, and behaviour even across relatively small spatial scales.

In support of previous work (Yang et al. 2018), most of the genetic structure within central Italy, accounting for 12.9% of the total population genomic variation, represents a linear trend that is consistent with isolation by distance. The fine- to medium-scale spatial structure was less pronounced (uniquely explaining ~4.5% of population genetic variation), which is consistent with the lack of physical barriers to gene flow and absence of historical isolation of allopatric populations within the region (Yang et al. 2022). Excluding the additional variation explained by climate (see below), it is therefore perhaps not surprising that >80% of
population genomic variation remained unexplained. Nevertheless, we cannot exclude that some of this unexplained variation is caused by historical or more recent gene flow from peripheral populations or lineages (Yang et al. 2022).

Our emphasis in this study was to test if the climatic variation within this region contributed to genome-wide patterns of genetic diversity and population differentiation. While there was no evidence that populations at climatic extremes have lower genetic variation, climate explained about 5% of the population genomic variation across the 34 populations. This result contributes to a growing literature on climate-associated genome-wide population differentiation in lizards (e.g., Rodríguez et al. 2017; Farleigh et al. 2021; for a study testing non-climate environmental influence on genome-wide population differentiation of three species of lizard, see Krohn et al. 2019). While these studies do support a role for climate in shaping genetic differentiation, they are also somewhat limited by virtue of being largely descriptive. Further work would therefore benefit from sampling at spatial scales and across climatic regimes that allow more explicit tests of, for example, the diluting effect of gene flow on adaptive population divergence. Lineages or species that evolve along similar climatic gradients

Table 1. Redundancy analysis of the detrended genetic data with the four significant dbMEMs.

Coefficients	df	Variance	F	P-value
RDA1	1	0.009	2.15	0.001
RDA2	1	0.006	1.39	0.027
RDA3	1	0.005	1.32	0.034
RDA4	1	0.005	1.22	0.045
Residual	29	0.116		

Significance determined using ANOVA with 999 permutations; Full model: \(F_{4,29} = 1.52, P = 0.001; \) Adjusted \(R^2 = 0.059. \)

Fig. 2 Results from the dbMEM analyses and variance partitioning of the allele frequency data. A RDA triplots of the Hellinger transformed allele frequency data. Dots represent sampling locations and arrows the four dbMEMs retained following forward selection. B dbMEM fitted scores for the four significant canonical axes of the redundancy analysis. Black dots represent positive values and white dots negative values. C Variance partitioning of the allele frequency data with unique and shared fractions of explained variation.
would also be interesting contrasts, in particular for identifying the extent to which climatic adaptation makes use of similar genes and pathways (e.g., Feiner et al. 2018).

About half of the genomic variation explained by climate was collinear with a linear shift in allele frequencies. This collinearity reflects the transition from a temperate, hot, and dry climate of the south-west coast, to a more oceanic climate with no dry season in the Apennine mountains and in the north-east of the distribution of the IT lineage of *P. muralis* (see Yang et al. 2022 for the phylogeography of this species). The two percent of genomic variation explained uniquely by climate represents fine- to medium-scale climatic variation not captured by either the linear or non-linear spatial structure. Common wall lizards are extremely abundant throughout central Italy and inhabit a wide range of microhabitats except for the hottest and driest environments. Common wall lizards may also be involved in guanine synthesis or transport in iridophores (Stuckert et al. 2019), another cell type that can be responsible for the difference between brown and green skin in lizards (Eisenraut 1950; Kuriyama et al. 2017; Kuriyama et al. 2020). Thus, we hypothesize that this gene is involved in the expression of the conspicuous black and green colour ornamentation (i.e., *P. muralis nigroviridis*; Böhme 1986) that is closely associated with coastal climate in *P. muralis* from western central Italy (Ruiz Miñano et al. 2021).

It is encouraging to find candidate genes that have previously been shown to be involved in both thermal physiology and animal colouration. However, genotype-environment associations are limited in the extent to which they can inform us about causality. Thus, these candidates remain putative loci of adaptation until quantitative experiments confirm the results. Furthermore, RAD data only covers a small part of the genome and most major effect candidates will therefore go undetected. Nevertheless, the results of this study indicates that climatic selection may affect a broad range of genes dispersed throughout the genome. Whole-genome sequences across steep climatic gradients, accompanied by transitions in phenotype (Ruiz Miñano et al. 2021), could help to further identify such genomic targets of climatic selection.

In summary, this study demonstrates that climate exercises an effect on population genetic differentiation in an abundant lizard with extensive gene flow. Further, the analyses suggest that particular alleles are consistently favoured in certain climatic regimes. More targeted approaches, combining functional studies with whole-genome sequencing, will be necessary to identify additional genes underlying population differentiation and local adaptation.

DATA AVAILABILITY

All sequence data are available at GenBank, accession number: PRJNA466080. Population level data included as supplementary information (Table S1).

REFERENCES

Andrade P, Pinho C, Pérez i de Lanuza G, Alonso S, Brejcha J, Rubin C-J et al. (2019) Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard, Proc Natl Acad Sci USA 201820320

Banerjee D, Uppadyay RC, Chaudhary UB, Kumar R, Singh S, Ashutosh et al. (2014) Seasonal variation in expression pattern of genes under HSP70. Cell Stress Chaperones 19:401–408

Bassitta M, Brown RP, Pérez-Cembranos A, Pérez-Mellado V, Castro JA, Picornell A et al. (2021) Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard. Sci Rep 11:6136

Blanchet FG, Legendre P, Borcard D (2008) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336

Böhme W (1986) Handbuch der Reptilien und Amphibien Europas. Aula-Verlag, Wiesbaden, Germany

Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R. Springer Verlag.
Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC et al. (2016) Yu G, Wang LG, Han Y, He QY (2012) clusterPro.

Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol Biol 19:85

Taylor JD, Hadley ME (1970) Chromatophores and color change in the lizard, Anolis carolinensis. Z für Zelforsch und Mikroskopische Anat 104:282–294

Telemerco RS, Radder RS, Baird TA, Shine R (2010) Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biol J Linn Soc 106:642–655

Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164

Uller T, Olsson M (2003) Life in the land of the midnight sun: are northern lizards adapted to longer days? Oikos 101:317–322

Van Buskirk J, Jansen van Rensburg A (2020) Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution 74:962–978

Uller T, While GM (2015). Evolutionary ecology of reproductive investment in lizards. In: Rühbert JL, Siegel DS and Trauth SE (eds) Reproductive biology and phylogeny of lizards and Tuatara. CRC Press.

Warner DA, Shine R (2008) Determinants of dispersal distance in free-ranging juvenile lizards. Ethology 114:361–368

While GM, Williamson J, Prescott G, Horvathova T, Fresnillo B, Beeton NJ et al. (2015b) Adaptive responses to cool climate promote persistence of a non-native lizard. Proc R Soc Lond B 282:1803

While GM, Michaelides S, Heathcote RJP, MacGregor HEA, Zajac N, Beninde J et al. (2015a) Sexual selection drives asymmetric introgression in wall lizards. Ecol Lett 18:1366–1375

Yang W, While GM, Laakkonen H, Sacchi R, Zuffi MAL, Scali S et al. (2018) Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol Ecol 27:4213–4224

Yang W, Feiner N, Laakkonen H, Sacchi R, Zuffi MAL, Scali S et al. (2020) Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74:1289–1300

Yang W, Feiner N, Salvi D, Laakkonen H, Jablonski D, While GM et al. (2022) Ancient lineage divergence, introgression and genomic diversity of common wall lizards (Podarcis muralis) reflect the dynamic history of the Mediterranean Basin. Mol Biol Evol, 39:msab311

Yeaman S (2015) Local adaptation by alleles of small effect. Am Nat 186:574–589

Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65:2123–2129

Yeaman S, Whilotlock MC (2011) The genetic architecture of adaptation under migration-selection balance. Evolution 65:1897–1911

Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC et al. (2016) Convergent local adaptation to climate in distantly related conifers. Science 353:1431–1433

Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

Zhang J, Storey KB (2012) Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica. Cell Cycle 11:1727–1742

ACKNOWLEDGEMENTS

We are grateful to Roberto Sacchi and Marco Zuffi for logistic support, Sozlos Michaelides, Hannah MacGregor, Natalia Zajac, Ben Halliwel, Lindall Kidd, Rachel Lewandowsky, Hanna Laakkonen, Valentina Titone, and Nathalie Feiner for field assistance, Hanna Laakkonen for assistance in the molecular laboratory, Brenna Forester and Olivier François for statistical advice, and Nathalie Feiner for help with the preparation of figures. Three reviewers provided helpful feedback on the analyses and manuscript. The Ministry of Education, University and Research (MIUR) provided all the authorizations for the study, 2012–2013: Aut. Prot. PNMM-0009344; 2014–2015: Aut. Prot. PNMM-0011379; 2016–2018: Aut. Prot. PNMM-0002154. This work was funded by the Royal Society of London (University Research Fellowship), the National Geographic Society, the British Ecological Society, the Swedish Research Council (2014-04465, 2017-03846), and a Wallenberg Academy Fellowship from the Knut and Alice Wallenberg Foundations (all to TU).

AUTHOR CONTRIBUTIONS

MRM, GMW, and TU designed and coordinated the study; MRM, GMW, DS, and TU performed fieldwork and collected samples; WY coordinated, and MRM and WY performed, laboratory work; MRM, GMW, and TU analysed data; MRM, GMW, WY, CPB, and TU interpreted the results. MRM and TU wrote the manuscript with comments from, and final version approved by, all authors.

FUNDING

Open access funding provided by Lund University.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41437-022-00518-0.

Correspondence and requests for materials should be addressed to Tobias Uller.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and indicate if changes were made.