Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong, Jian Weng, Jia-Nan Liu, Yue Zhang,
Yao Tong, Anjia Yang, Yudan Cheng, and Shun Hu
Outline

• Background
• Design Goals
• Our Solution: Fusion
• Performance
Machine Learning as a Service

Server

DL model
Motivation and Design Goals

Security Requirements

- Privacy Preservation
- Model Accuracy
- Computation Correctness

Client → Accurate inference results → Server

Malicious
Design Challenges

Possible Solutions

Model Accuracy
Zero-knowledge proof

Computation Correctness
Maliciously secure 2PC framework

Privacy

Need complex and careful design
An important observation

Client can know some computation results in advance
Our Key Insight

Mix-and-Check

1. Prepare public samples
2. Duplicate each query sample

Model Accuracy

Computation Correctness
Client Detects Server’s Malicious Behaviors

- Low-Quality model
- Incorrect computations for some samples

Inconsistent results
- same samples
- same samples

Inaccurate results
- public samples
Solution: **Fusion**

(I) Mixed Dataset Preparation

Mixed Dataset

- Randomly shuffled

Requested sample 1
Requested sample 2
Public samples

(II) Secure Inference Using Semi-Honest 2PC

Client

Server

DL model

Inference results

(III) Local Effective Checks

(a) Check model accuracy
(b) Check computation correctness
Solution: *Fusion*

- Client:
 - R: query samples
 - T: public samples

- Server:
 - A trained model
Client Prepares a Mixed Dataset

• (1) Prepare Mixed Dataset
Privacy-Preserving Inference Execution

- (2) Obtain Inference Results

Client → Semi-honest secure inference → Server

Inference results
Client Checks Inference Results

• (3) Simple-but-Effective Local Checks

Computation Correctness
Output consistency

Model accuracy
public samples
Optimal Number Selection

Given R, select appropriate B, T

Security Requirement
- Detect server's cheating

Cost Requirement
- Decrease the average cost
Security Requirement

Server succeeds in cheating

(2) Consistent-but-Incorrect

-(1) Model Accuracy

\[
\Pr[E_B] = \frac{\binom{R}{i}(iB)! (RB - iB)!}{(RB)!} \quad (2)
\]

\[
\Pr[E_T] = \frac{\binom{RB+T-iB}{T}}{\binom{RB+T}{T}} \quad (1)
\]
Client Selects Numbers Ensuring Security

Client

Search for the optimal numbers ensuring security

Security Requirements

\[\Pr_{success} \leq 2^{-\lambda} \]

\[\Pr_{success} = \Pr[E_T] \times \Pr[E_B] \]

Cost Optimization

\[\text{arg min}_{B,T} \text{Cost}(B,T,R) = \frac{RB + T}{R} \]
Popular related works

- CCS17’ MiniONN (IPS compiler)
- Usenix18’ Gazelle
- CCS19’ LevioSA
- S&P20’ Cryptflow (TEE)
- S&P21’ SIRNN
- Usenix21’ ABY2.0

Threat Models
- Semi-Honest Security
- Malicious Security

Homomorphic Encryption + Garbled Circuits/Secret Sharing

Model Quality
Table I: Comparison between Cheetah-based Fusion and LevioSA (CCS19)

	Comm. (GiB)	Runtime (min)
LevioSA	0.67	34.6
Fusion	20.7	

Runtime: $48.06 \times$ faster
Communication: $30.90 \times$ less

Table II: Performance of Fusion using different semi-honest inference protocols

Number of Samples	ABY	DELPHI	CRYPTFLOW2	Cheetah
10^{-3}				
10^{-1}				
10^{1}				
10^{3}				
10^{5}				
10^{7}				

(a) MNIST (LAN) (b) MNIST (WAN) (c) MNIST (WAN) (d) CIFAR-10 (LAN) (e) CIFAR-10 (LAN) (f) CIFAR-10 (WAN)
Table III: Performance of Cheetah-based Fusion and comparison with semi-honest inference protocols

Scheme	MNIST		CIFAR-10				
	Comm.	LAN	WAN	Comm.	LAN	WAN	
Fusion	(2^3, 8, 100)	24.499	487.500	850.000	30.080	575.000	975.000
	(2^5, 7, 100)	12.102	228.125	425.000	14.838	284.375	481.250
	(2^7, 6, 100)	8.106	154.688	283.594	9.949	189.844	323.438
	(2^9, 5, 100)	6.210	118.164	215.820	7.617	145.508	246.289
	(2^13, 4, 100)	4.799	90.686	166.968	5.886	112.341	191.724
	(2^19, 3, 100)	3.580	68.204	125.570	4.407	84.297	143.249
CRYPTOFlow2 [59]	12.591	62.499	208.392	15.473	73.736	238.012	
DELPHI [46]	123.412	563.924	1573.318	160.079	617.572	1814.989	
ABY [13]	170.980	741.813	2293.557	207.421	850.366	2591.182	

Table IV: Performance on ResNet50

Scheme	MNIST		CIFAR-10			
	Comm.	LAN	WAN	Comm.	LAN	WAN
Fusion	(2^3, 8, 100)	39.921	20.410	34.241		
	(2^5, 7, 100)	19.714	10.082	16.912		
	(2^7, 6, 100)	13.205	6.750	11.326		
	(2^9, 5, 100)	10.117	5.173	8.678		
CRYPTOFlow2 [59] (SCI_{HE})	26.742	3.988	10.204			
CRYPTOFlow2 [59] (SCI_{OT})	281.497	4.795	39.466			

2.64X slower 1.30X faster 1.18X faster
Conclusion

Strong Security

• Model accuracy
• Computation correctness
• Privacy preservation

High Efficiency

• Low average overhead
• Comparable efficiency with semi-honest protocols