A review on phytochemical constituents and pharmacological potential of *Calotropis procera*

Barkha Darra Wadhwani, a Deepak Mali,a Pooja Vyas, a Rashmy Nair b and Poonam Khandelwal a.

Calotropis procera is locally known as Aak or Madar in Hindi, milk weed in English and belongs to the family Apocynaceae and subfamily Asclepiadoideae. Although a wasteland plant, it is of sacred use as its flowers are offered for worshipping Lord Shiva, a Hindu God. Tribes all over the world use the plant in treatment of various diseases like snake bite, body pain, asthma, epilepsy, cancer, sexual disorders, skin diseases and many more. This plant contains various phytoconstituents such as flavonoids, terpenoids, cardenolides, steroids oxypregnanes etc. Though literature searches reveal many reviews about ethnomedicinal uses, chemical composition and pharmacological activities, no recent papers are available that provide an overview of the therapeutic potential and toxicity of *Calotropis procera*. Hence, the insight of this review is to provide a systemic summary of phytochemistry, pharmacology, toxicology and therapeutic potential of *Calotropis procera* and to highlight the gaps in the knowledge so as to offer inspiration for future research.

1. Introduction

Calotropis belongs to the Apocynaceae family, which is commonly known as milkweed or Aak. Plants of this genus are known as milkweeds due to the exudation of white and sticky latex from different plant parts. Genus *Calotropis* has two common species viz. *Calotropis procera* (Rakta arka) and *Calotropis gigantea* (Sweeta arka), which are described as possessing vital pharmacological properties in Ayurvedic toxicology and therapeutics. Other species are *C. sussuela* and *C. acia.*

Calotropis procera (Aiton) W. T. Aiton is an erect, soft wooded, evergreen perennial shrub and commonly known as ‘Sodom apple’ or ‘Madar shrub’. In Bengali, it is known as ‘Akanda’ and in Hindi as ‘Aak’. It manifests its wide utilization in Indian, Arabic and Sudanese traditional medicinal systems for healing global range of diseases.

The Dangas tribe in Gujarat, Singhum tribe in Bihar, tribes of Ghatigaon forest in Gwalior, tribes of Andhra Pradesh have been using this plant in the treatment of various disorders such as ear pain, cough, fever, abdominal pain, dysentery and elephantiasis.

Calotropis procera is more toxic than *Calotropis gigantea* and assumed to be even more poisonous than cobra venom. It is interesting that the cobra and other poisonous snakes cannot

Ms Barkha Darra Wadhwani did her Master’s in Organic Chemistry from Bhupal Nobles University, Udaipur, Rajasthan in 2015 and Bachelor’s from Guru Nanak Girls PG College, Udaipur, Rajasthan in 2007. Presently, she is pursuing PhD from Mohanlal Sukhadia University, Udaipur. Her research interests include isolation and characterization of bioactive constituents from plants and synthetic methodology.

Mr Deepak Mali did his Master’s in Organic Chemistry from Mohanlal Sukhadia University, Udaipur, Rajasthan in the year 2016 and Bachelor’s from Seth Mathuradas Binani Government PG College, Nathdwara, Rajasthan in 2014. Presently, he is pursuing PhD from Mohanlal Sukhadia University, Udaipur. His research interests include natural product isolation and synthesis of heterocyclic moieties.
even bear its smell; hence snake charmers of Bengal use this plant for controlling or taming cobras.\(^7\)

Earlier reviews\(^6\)–\(^8\) have discussed on phytochemistry, ethnobotany and pharmacological potential of *Calotropis procera*. Review on *Calotropis* species\(^7\)–\(^9\) comparing *procera* and *gigantea* have deliberated their therapeutic importance. The present review summarizes the phytochemistry, pharmacology, commercial aspects, traditional medicinal uses, toxicology and recent studies on *Calotropis procera*. The future scope of *Calotropis procera* has also been affirmed with a view to establish its multiple biological activities and mode of action.

2. Unique properties of *Calotropis procera*

2.1 Toxicity

C. procera finds its widespread distribution over many regions of the globe. What makes its phytochemistry interesting is the exudation of milky and toxic latex from all the plant parts. The latex is referred to as vegetable mercury as it shows mercury like effects on human body.\(^21\)

Every part of this plant is toxic, but stem (latex) and roots are more poisonous than leaves. The leaves of this plant have three toxic glycosides calotropin, calotoxin and uscharin, whereas its latex contains calotropin, calotoxin and calactin, which are caustic and considered poisonous in nature. Besides this, the concentration of calactin, which is a toxic glycoside, gets increased as defense mechanism on encounter of grasshopper or insect attack and this is the rationale behind the plant not being consumed by cattles or other grazing animals.\(^22\) Other than this, osmotin, a laticifer protein purified from latex also provides protection to plant against phytopathogens.\(^23\) Its milk is irritant, neurotoxic and has anticholinergic activity, which causes toxicity and fatal complications. Madar juice and latex has bitter taste and a burning pain which causes salivation, stomatitis, vomiting, diarrhoea, dilated pupils, titanic convulsion, collapse and death. The fatal period varies from half an hour to eight hours.\(^24\) If latex enters into the eye, it causes kerato-conjunctivitis, corneal edema and dimness of vision without any pain.\(^25\)–\(^27\) Some cases showed permanent endothelial cell damage, which was evident after three weeks.\(^5\)–\(^8\) *C. procera* was found toxic at the dose of 100 mg kg\(^{-1}\) to chick embryo. Its toxicity caused hepato cellular degeneration in liver, brain congestion, dilation of central veins, sinusoids, underdeveloped lung and kidneys.\(^29\) Hence, bearing in mind the toxic effects of certain extracts and glycosides, further studies should be focused to explain toxicity and safe use of *C. procera*.

2.2 Ability to survive under extreme climatic conditions

Another interesting aspect of this plant is its ability to tolerate adverse environmental conditions like scarcity of water, arid environment or any kind of harsh climate. To understand this, Akkhka\(^30\) studied the effect of stress caused due to water scarcity and found that photosynthetic machinery remained un influenced, infact rate of photosynthesis gets raised at mild water

Dr Pooja Vyas served as Assistant Professor at Mehsana Urban Institute of Science, Ganpat University, Mehsana, Gujarat in 2019–2020. Dr Vyas completed her Master’s degree from the Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan in 2014. She received her doctoral degree in 2018 from Mohanlal Sukhadia University, Udaipur. Her areas of research interest include natural product isolation and organic synthesis.

Dr Rashmy Nair is Associate Professor of Organic Chemistry at S.S. Jain Subodh P.G. College, Jaipur, Rajasthan, India. Her academic interests include organic synthesis, green chemistry, spectroscopy and natural product chemistry. Dr Nair completed her Master’s degree from Department of Chemistry, University of Rajasthan, Jaipur in the year 1999. She received her doctoral degree in the year 2004 from University of Rajasthan, Jaipur, India. Her areas of research interest include natural products, synthetic methodology, nanocatalysis, multicomponent reactions and materials science.

Dr Poonam Khandelwal is Assistant Professor of Chemistry at Mohanlal Sukhadia University, Udaipur, Rajasthan, India. Dr Khandelwal completed her Master’s degree from the Department of Chemistry, University of Rajasthan, Jaipur in 2004. She received her doctoral degree in 2008 from the University of Rajasthan, Jaipur. She had worked as Visiting Scientist at School of Agriculture, Meiji University, Kawasaki, Japan in 2017 for two months. She worked as INSA Visiting Scientist at CSIR-Indian Institute of Chemical Technology, Hyderabad in 2019 for two months. Her areas of research interest include natural product isolation and characterization, synthetic methodology and nanocatalysis.
Plant part	Disease	Preparation/administration	References
Root/root bark	Amoebic dysentery	Paste with/without opium taken orally	44–46
Root/root bark	Cholera	Powder orally taken or paste along with black pepper and ginger juice	44
Root/root bark	Dysentery	Powder orally taken	47
Elephantiasis and hydrocele	Paste mixed with fermented rice water applied on the affected area	48–50	
Epilepsy	Grounded with goat milk and used as nasal drops	46	
Indigestion	Powder orally taken	47	
Jaundice	Taken with rice in grounded form	51	
Neuritis	Orally administered with cow butter	46	
Rheumatism	Powder taken with milk and sugar	48	
Snake bite	Powder orally taken. Paste applied on wounds and internally taken with ghee	47 and 52	
Spider and insect bite	Powdered and taken with vinegar	48	
Syphilis	Root bark powder taken orally	46	
Latex	Blisters	Applied externally	46
Black scar on the face	Applied along with turmeric paste	44	
Ascites	Applied externally	47	
Liver and spleen disorder	Taken after dilution	47	
Leprosy	Applied on the affected area	47	
Migraine	Applied on the affected side vein of forehead	44	
Piles (haemorrhoids)	Applied externally	44	
Dog/jackal bite	Applied on wound	44 and 48	
Ring worm	Applied externally	46	
Scabies	Applied externally	46	
Snake bite	Applied on wounds or taken orally (20–30 drops for adults and 15–20 for infants)	46	
Syphilis, leprosy and edema	Five drops with 50 drops of distilled water injected hypodermally	46	
Tooth ache	Applied externally with sesame oil	48 and 50	
Vertigo	Applied on affected parts	48 and 50	
Leaf	Cold, cough, asthma and bronchitis	Warmed along with ghee and bandaged on the chest of infants	44
Calculus, liver and spleen disorder	Powder taken orally	48	
Ear ache or ear troubles	Juice along with fermented boiled rice water used as ear drops	50	
Eczema and skin eruptions	Applied externally along with turmeric and sesame oil	48, 50 and 53	
Oral administration of powder	48 and 51		
Gonorrhoea	Decoction used for washing and taken orally	51	
Inflammatory swellings	Covered on affected part after warming	51	
Joint pain	Powder taken	47	
Malaria and intermittent fever	Oral administration of fresh juice	46, 49 and 51	
Body pain	Paste applied after warming	51	
Paralysis and sciatica	Massaged after preparing decoction with sesame oil	47	
Snake bite	Oral administration of fresh juice	50	
Ulcers, wounds, sores	Powder orally administered or external application	47, 49 and 51	
Flowers	Health tonic	Oral administration of powder	47
Cough	Burnt to produce ash, then taken with honey	44	
Rat bite	Oral administration of powder	47 and 49	
Dog/jackal bite (rabies)	Seven tepals chewed with fine rice on seventh day of biting, continued for seven days decreasing one tepal everyday	44	
Feet pain	Decoction used for fomentation	46	
Epilepsy	Oral administration of paste with black pepper	46	
Asthma and bronchitis	Fruit taken with jaggery	3	
Liver and spleen disorder	Administered along with milk	46	
Fruit	Eye disorder	Decanted ash water applied on eye lids	44
Anemia	Mixed with same quantity of red chilli, mineral salt and taken with milk.	46	
Whole plant	Rheumatic pain and hyperacidity	Paste directly taken	44
Young twigs	Purgative	Juice taken	54
S. no.	Pharmacological activities	Parts/extracts/possible chemical constituents	References
-------	--	--	------------
1	Wound healing potential	Latex: aqueous extract	67
		Latex	68
		Bark: ethanolic extract	69
		Leaves: aqueous extract	70
		Bark: aqueous extract	71
2	Anticoccidial activity	Dried leaves powder	72
3	Toxicity activity	Leaves: aqueous extract	73 and 74
		Leaves and stem bark extracts	75
		Leaves and stem: ethanolic extract	29
		Leaves: ethanolic extract	79
4	Biopesticidal/insecticidal activity	Leaves: extract	80 and 81
		Leaves: methanolic extract, latex protein fraction, flavonoids (quercetin-3-O-rutinoside)	35
5	Antimycoplasmal activity	Leaves: acetone extract	82
6	Hepatoprotective activity	Root bark: methanolic extract	83
		Flowers: hydroethanolic extract	84
		Roots: chloroform extract	85
7	Antimicrobial/antibacterial activity	Leaves: methanolic extract, flavonoids (quercetin-3-O-rutinoside)	86
		Leaves and latex: ethanol, aqueous, and chloroform extract	87
		Leaves and stem: aqueous, ethanolic, methanolic extract	88 and 89
		Endophytic fungi of *C. procera*	90
		Seeds: chloroform extract	91
		Root: pet. ether, methanolic extract	92
		Flowers: ethanolic extract	93
		Latex	94
		Leaves: methanolic extract	95
		Leaves, flower, root bark: ethanolic extract	96
		Leaves and latex: aqueous, ethanolic extract	97 and 98
		Leaves: aqueous, methanolic extract	99
		Latex: aqueous extract	78
8	Central nervous system activity	Latex proteins	100
9	Antioxidant activity	Leaves, fruit, latex	101
		Leaves: aqueous, methanolic extract, quercetin and its derivatives	76
		Leaves: aqueous and methanolic extract	102
		Leaves, flowers and fruits: methanolic extract	103
		Bark: ethanolic extract	69
10	Antinociceptive activity	Latex protein	104
11	Antihelmintic activity	Flowers: crude powder, aqueous and methanolic extract	105
		Latex: fresh, dried aqueous extract	106 and 107
12	Antiinflammatory activity	Dry latex	108 and 109
		Stem bark: chloroform and hydro-alcoholic extract	110
		Latex: hexane, dichloromethane, ethyl acetate, n-butanol and aqueous extract	77
		Latex: pet. ether, acetone, methanol extract	111
		Leaves: aqueous extract	112
		Flowers: ethanolic extract	93
13	Antidiarroheal activity	Bark: Arkamula Tvarka (Ayurvedic preparation)	45
		Latex	113
14	Antifungal activity	Aqueous bark extract	114
		Leaves: aqueous, methanol, acetone and ethanol extract	115
		Root bark	116
	Antimycotic activity against dermatophytes	Latex	117
	Antimycotic activity	Fresh latex	118
15	Larvicidal activity	Crude latex and ethanolic extract of leaf	119
		Leaves: ethanolic extract	120
		Leaves: aqueous extract	121
		Flower, young bud, mature leaves and stems: ethanolic extract	122
		Flowers: aqueous extract	123
16	Tobacco mosaic virus (TMV) inhibitor activity	Latex	124
17	Antifertility activity	Ethanolic extract of roots	125
regime (50%) which can be considered as a compensatory mechanism. Further Ramadana et al.31 studied the influence of light and irrigation on cumulation of β-sitosterol in \textit{C. procera}. They hypothesized that β-sitosterol biosynthesis pathway supported the plant to bear drought and light intensity stress.

2.3 Commercial prospective

2.3.1 As biofuel. \textit{C. procera} is rich in hydrocarbons and contains biologically degradable materials similar to that found in other agricultural crops. Traore32 conducted fermentation experiments and found that it is a good substrate for biogas synthesis. Barbosa \textit{et al.}33 found that oil composition of its seeds varies from 19.7 to 24.0% which proves its future potential as biodiesel, specially in those areas where people rely mainly on wood as source of energy production.

2.3.2 As biopesticide. Laticifer proteins (LP) from \textit{Calotropis procera} were assayed for insecticidal activity against different crop pests to assess the biological role of latex. Diets containing 4% latex led to decreased weight gain ($ED_{50} = 3.07\%$) and affected survival ($LD_{50} = 4.61\%$) of third instars of \textit{Ceratitis capitata}.34 The crude flavonoid fraction (CF), the latex protein fraction (LP) and the leaf methanolic extract showed significant insecticidal activity.35 These studies suggest that it can be developed as natural biopesticidal agent.

2.4 Industrial prospective

2.4.1 Cheese making agent. In West Africa, crude aqueous extract of \textit{C. procera} is used as milk clotting enzyme in traditional method of cheese production.36 It displayed an optimum activity at a temperature of 75 °C, which is essential for cheese production.37 Calotropain enzyme found in the plant is more efficient than papain, ficin and bromelin, moreover it can lead to milk coagulation, digestion of meat, casein and gelatin.38,39 These studies supported its traditional use as cheese making agent.

2.4.2 As surfactant. \textit{C. procera} milk latex was used as a surfactant for facile synthesis of Eu3+ activated La(OH)\textsubscript{3} and
C. procera: plant part/chemical constituent	Cancer cell lines/Model	Method of analysis/assay	Mechanism of action/investigation	Observation
Laticifer proteins (LP) recovered from latex	Two glioblastoma (Hs683, U373) and two colon cancer (HCT-15 and LoVo)	MTT colorimetric assay	Treatment initiated apoptotic mechanism by blocking the cell cycle at S-phase and thus preventing cells from entering proliferative (G2/M) phase	At 40 μg ml⁻¹, late apoptotic cell percentage was increased up to 80%
Root: methanolic extract (0, 5, 10, 20, 40 μg ml⁻¹)	Human Hep 2 Tetrazolium bromide (MTT), Annexin-V FITC method, MTS assay	Growth inhibition action	Apoptosis as shown by the accumulation of cells in the G2/M phase and the decrease of cell percentage in the G0/G1 phase	Uzarigenin showed moderate cytotoxicity
Plant methanolic extract (0, 5, 10, 20, 40 μg ml⁻¹)	Human skin melanoma cells (SK-MEL-2), HT-29, HepG2 (human cancer cell lines), NIH-3T3 (mouse fibroblast cell line)	CellTiter-Blue® cell viability assay	Growth inhibition action	Calotroprocerol A exhibited in vitro growth inhibitory activity in all the three cancer cell lines with effects comparable to those of cisplatin and carboplatin
5-Hydroxy-3,7-dimethoxy-4-benzopyran-2-0-glucopyranoside; uzarigenin; 2-O-b-glucopyranoside; anhydroepidigitoxigenin-3-O-b-D-glucopyranoside	A549 non-small cell lung cancer (NSCLC), U373 glioblastoma (GBM), and PC-3 prostate cancer cell lines	CellTiter-Blue® cell viability assay	Growth inhibition action	Calotroposide K and M exhibited subnanomolar growth inhibition from 0.5 μM against U373 glioblastoma (GBM) and PC-3 prostate cancer cell lines
Calotroprocerol A; calotroproceryl acetate A; calotroprocerone A, B; pseudo-azarerein acetate; taraxasterol; calotropin acetate B; sanciasterol; (E)-octadec-7-enoic acid	A549 and A431 (human cancer cell lines)	CellTiter-Blue® cell viability assay	Growth inhibition action	Calotroposide S showed potent anti-C. procera exerted anti-proliferative 154 growth inhibitory activity.
La$_2$O$_3$ nanophosphors through green mediated hydrothermal route. The latex reflected good capping potency for controlling the morphology and phase of the nanophosphor. Hence its latex can be a good source of natural surfactant.

2.4.3 As corrosion inhibitor. Extract of *C. procera* was studied for its corrosion inhibition action by weight loss, electrochemical, SEM and UV methods, significant corrosion inhibitive effect in sulphuric acid medium on mild steel was observed. Hence, it can be used as green corrosion inhibitor.

2.4.4 As dehairing agent of leather. Latex peptidases of *C. procera* when assayed against skin representative substrates, revealed complete dehaiering process, while no changes in leather structure were observed. Thus, it can be an appropriate environment friendly dehairing agent as compared to toxic sodium sulphite treatment for tanneries.

3. Ethnomedicinal uses

An insight into Ayurveda, Unani and folk uses of different parts of *C. procera* and *C. gigantea* to cure various ailments was compiled by Misra et al. Ethnomedicinal uses of plant parts of *C. procera* in curing various diseases have been summarized in Table 1.

4. Major milestone of *Calotropis* phytochemistry

Phytochemistry of *Calotropis procera* has always attracted the attention of researchers because despite its toxicity, it employs wide applications in traditional medicinal system till date. Dating back to 1936, Hesse et al. identified calotropin as the first compound from this plant. Further Hesse and his coworkers isolated heart poisons or cardiac glycosides namely calotropin, calotoxin, calactin, uscharin, voruscharin and uscharidin. Root powder of this plant is used in tribes to induce abortion in women and as an uterotonic since ancient period. Later it was found that it was due to the compound calotropin. Gupta et al. administered calotropin to gerbils and rabbits and observed reduction in spermatids count by 65% and 94% respectively.

In 1955, Rajagopalan et al. identified chemical constituents of seed viz. coroglaucigenin, corotoxigenin and frugoside (cardenolides). Later Bruschweiler et al. identified three additional cardenolides viz. uzarigenin, syriogenin and procerosid. A novel cardenolide, 2'-oxovoruscharin was isolated from the root bark by Quaquebeke et al. and modified into its semisynthetic derivative, i.e., UNBS1450. Akhtar and Malik isolated a new cardenolide named proceragenin from the hexane-insoluble fraction of *C. procera*.

A fascinating feature of the plant is its potential to curb Alzheimer’s disease (AD), the most predominant root cause of dementia, a neurodegenerative disease. Its dried latex showed attenuation of β-amyloid deposition in mouse brain and cerebral protective activities. Hence, it is imperative to evaluate the mechanism of metabolites, so that it can lead to promising direction to search new scaffolds for AD treatment. In 2015,
Mohamed *et al.* isolated three non-glycosidic cardenolides namely calactoprocin, procegenin A and procegenin B from the latex.\(^6\)

A patent claimed that polar extract of *C. procera* showed anti-ulcerative colitis activity in dose-dependent manner in a subject mammal and was found to be more effective than the standard drug Prednisolone.\(^6\)

5. Pharmacology

Over the last many years, researchers have carried out numerous pharmacological activities, which are summarized in Table 2.

The details enumerated in the Table 2 is indicative of the fact that the different plant parts demonstrate large number of biological activities.

Table 4 Summary of in vivo studies of wound healing potential of *C. procera*

Model	*C. procera* extract/dose/ duration	Negative control	Investigation	Result	References
Guinea pigs	20 mL of 1.0% sterile solution of the latex twice daily for 7 days	Excision wounds	Wounds exhibited marked dryness, no visual sign of inflammation	Significant prohealing property	67
Male albino-Wistar rats	Ethanolic extract of bark (50 mg per wound)	Incision and excision wounds	Extract demonstrated wound healing effect by accelerating wound closure and epithelialization	Excellent dermal wound healing potential	69
Wistar rats	Aqueous extract of *C. procera* (25 mg and 50 mg kg\(^{-1}\))	Incision and excision wounds	Significant \((P < 0.05)\) increase in breaking strength and percentage wound contractions with decreased epithelization period was observed	Significant wound healing property	70

Table 5 Summary of in vivo anti-inflammatory potential of *C. procera*

Model	*C. procera* extract/dose/ duration	Negative control	Investigation	Result	References
Male albino rats and albino guinea pigs	50 mg, 200 mg 500 mg and 1 g kg\(^{-1}\) dry latex	Carrageenan-induced oedema test, cotton pellet granuloma and vascular permeability etc.	Dry latex suppressed fluid exudation, due to its influence on vascular permeability and also delayed the onset and intensity of UV induced erythema At dose 5 mg per rat, showed 71% inhibition in the case of the carrageenan-induced oedema \((P < 0.005)\) and 32% inhibition for the formalin-induced oedema \((P < 0.05)\), At higher dose (50 mg per rat), 96% and 98%, for carrageenin- and formalin-induced oedema groups respectively	Significant anti-inflammatory potential	108
Male albino rats	Dry latex	Carrageenin and formalin-induced pedal oedema test		Potent anti-inflammatory activity	109
Albino rats of either sex	Stem bark: chloroform and hydro-alcoholic extract	Carrageenan-induced paw oedema	Significant reduction in the inflammation at 100, 200 and 400 mg kg\(^{-1}\) displayed by chloroform extract Maximum anti-inflammatory effect (59% and 53% inhibition) by the aqueous and acetone extracts respectively compared to (63%) inhibition exhibited by phenylbutazone	Significant anti-inflammatory potential	110
Male Wistar rats	Dry latex: petroleum ether, acetone, methanol and aqueous extracts (30 mg per rat)	Carrageenan induced paw oedema		Latex of *C. procera* exerted anti-inflammatory property	111
Male Wistar rats	Crude latex: hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous fractions (1.0, 5.0 or 10.0 mg kg\(^{-1}\) and 0.2 mL)	Carrageenan-induced peritonitis		Latex of *C. procera* possess anti-inflammatory property	77
pharmacological activities. Moreover, maximum number of activities were conducted at extract level, therefore horizons for further research is still bright, wherein the active principle constituents responsible for the activities may be identified. Here some of the very vital biological activities are being discussed in detail.

5.1 Cytotoxic potential

Various phytoconstituents and plant extracts were examined for their in vitro anticancer potential on various cancer cell lines, and showed significant cytotoxic activities as summarized in Table 3. Over past decade, cytotoxic activities of various extracts and chemical constituents of C. procera have been carried out. Majority of studies were conducted on various cancer cell line models in vitro, except the one conducted using UNBS1450. UNBS1450, a semi-synthesized cardenolide was compared to reference anticancer agents and classic cardenolides in prostate cancer cell line in vitro and in vivo following s.c. (subcutaneous) and orthotopic prostate cancer cell grafting into mice; it was

Vector species	C. procera extract/dose/duration	Observation	Result	References
Culex quinquefasciatus 3rd instar larvae	Crude latex and ethanolic extract of leaves	100% larval mortality at 300 ppm concentration of latex and at 1000 ppm concentration of ethanolic leaf extract. LC50 values of the latex and ethanolic leaves extract were 57.3 and 388.7 ppm respectively	Crude latex exerted stronger larvicidal potential than ethanolic extract	119
Culex quinquefasciatus 3rd instar larvae	Ethanolic extract of leaves (500 mg L⁻¹)	100% mortality at 500 ppm. LC50 value of the extract 282.5 ppm	Leaves exerted insecticidal potential	120
Anopheles arabiensis and Culex quinquefasciatus 2nd, 3rd, 4th instar larvae	Aqueous extract of leaves (1000, 500, 200 ppm)	LC50 value 273.53, 366.44, 454.99 ppm for 2nd, 3rd and 4th instar larvae	Leaves showed oviposition deterrent, larvicidal and adult emergence activity	121
Anopheles stephensi 3rd instar larvae	Ethanol extracts of different parts viz. flower, young bud, mature leaves and stems (100 to 5000 ppm)	Mature leaves extract exhibited 100% mortality at 2000 ppm after 48 hours of incubation	Mature leaves showed high larvicidal activity against tested larvae	122
Culex species 4th instar	Aqueous extract of flowers (1%, 2.5% and 5%)/24 h	At 1% concentration, the mortality rate was 0%, 60% and 100% and at 2.5% concentration, mortality rate was 20%, 80% and 100% at the end of 1, 3 and 4 days of exposure, and at 5% concentration, 100% mortality was recorded at the end of third day	Flowers exhibited remarkable larvicidal properties against the pupae and late 4th instar larvae of Culex sp.	123

Model	C. procera extract/dose	Compared with drug	Observation	Result	References
In vivo: sheep infected with mixed species of nematodes in vitro: Haemonchus contortus	Crude powder (CP), crude aqueous (CAE) and crude methanolic extracts (CME)	Levasimole	88.4%, 77.8% and 20.9% reduction in egg count percent for CAE, CP and CME respectively	Aqueous extract of C. procera has good anthelmintic potential	105
Earthworms	Aqueous extract of dry latex (5, 10, 50 and 100 mg mL⁻¹) and fresh latex (1.45, 7.25, 29, 72.5 and 145 mg mL⁻¹)	Piperazine	At 5 to 10 mg mL⁻¹ concentration paralysis at 90 min, at 100 mg mL⁻¹ death within 60 min. Fresh latex also showed dose-dependent paralysis	Latex showed wormicidal activity, hence can be used as an anthelmintic agent	106
Table 8 Summary of in vitro studies of antioxidant potential of C. procera

C. procera part	Extract/dose/duration	Investigation	Result	References
Leaves, fruits, flowers and latex	Methanolic solution of dried extract	DPPH radical scavenging assay	Leaves exhibited maximum DPPH radical scavenging activity with IC₅₀ = 0.18 mg mL⁻¹, whereas latex showed minimum activity with IC₅₀ = 0.42 mg mL⁻¹	101
Leaves	Aqueous and methanolic extract (1, 5, 10, 50, 100 and 500 µg mL⁻¹)	DPPH radical scavenging assay	IC₅₀ of the methanol extract was 110.25 µg mL⁻¹, the aqueous extract showed mild antioxidant activity	102
Leaves	2–100 mg mL⁻¹ for quercetin in methanol and 20–100 mg mL⁻¹ for AME and quercetin derivatives with different methoxy substitution	DPPH radical scavenging assay	Varying degrees of antioxidant activity was exerted by quercetin derivatives, but quercetin was found to be most active	76
Leaves, flowers and fruits	Methanolic extracts of the samples of different concentrations (100–1000 ppm)	DPPH radical scavenging assay	IC₅₀ values in leaves, fruits and flowers were 16.08, 16.06 and 10.31 µg mL⁻¹ respectively, showing strong antioxidant activity of C. procera	103

Table 9 Summary of in vitro schizontocidal activity of C. procera

Model	C. procera extract/dose	Investigation	Result	References
Chloroquine sensitive strain, MRC 20 and a chloroquine resistant strain, MRC 76 of Plasmodium falciparum	Ethyl acetate, acetone, methanol fractions of flower, bud, root: (62–125 mg mL⁻¹)	Percentage inhibition varied from 7.51 to 61.38% between the various fractions against MRC 20 and for MRC 76, percentage inhibition varied from 3.437 to 41.08% between the various fractions	At the lower dose range, the root extracts of C. procera found to be the most effective for both P. falciparum MRC 20 and MRC 76. Hence, C. procera exerted antiplasmodial potential	130

Table 10 Summary of in vivo hepatoprotective potential of C. procera

Model	C. procera extract/dose	Negative control	Investigation	Result	References
Albino rats of either sex	Methanol extract (MCP) of root and its sub fractions viz. hexane (HCP), ethyl acetate (ECP) and chloroform (CCP) (200 mg kg⁻¹)	Carbon tetrachloride	MCP and its sub fractions HCP, ECP displayed hepatoprotective effect by reducing the elevated serum levels of, serum glutamic pyruvic transaminase, alkaline phosphatase and serum glutamic oxaloacetic transaminase, it increased high density lipoprotein. CCP does not show effective results	C. procera exerted hepatoprotective potential	83
Wistar rats of either sex	Hydro-ethanolic extract of C. procera flowers (200 mg kg⁻¹ and 400 mg kg⁻¹)	Paracetamol-induced hepatitis	Improvement in the hepatic architecture was observed	C. procera flowers have hepatoprotective effect	84
found to be more effective than tested reference compounds, such as mitoxantrone, taxol, oxaliplatin, irinotecan and temozolomide and less toxic than cardenolides.155,156 Mechanism of UNBS1450 was studied and proven to be a potent sodium pump inhibitor as it inhibits NF-\kappa B transactivation and triggers apoptosis by recruitment of pro-apoptotic Bak and Bax protein thereby leading to cell death.157,158 Carrying out further \textit{in vivo} studies will play a crucial role in ascertaining the safer use of UNBS1450. Therefore, further studies are necessary to obtain the clinically important lead molecules for the development of potent anticancer drugs.

5.2 Wound healing potential

\textit{C. procera} has folk medicinal reputation as a wound healing agent. \textit{In vivo} studies proved its wound healing potential as summarized in Table 4.

These data strongly support its ethnomedicinal use in wound healing potential and skin problems. \textit{In vivo} screening showed considerable results in dose-dependent manner when compared to positive controls. A future perspective of studying the side effects and toxicity of the extracts at the dose level can also be unravelled.

5.3 Anti-inflammatory potential

Anti-inflammatory potential of extracts from \textit{C. procera} have been summarized in Table 5.

On the basis of studies mentioned in Table 5, it can be concluded that the anti-inflammatory effect of dry latex needs to be further characterized as well as the nature of active principle leads responsible for anti-inflammatory activity remains to be identified.

5.4 Larvicidal/insecticidal potential

Aqueous and ethanolic extracts of leaves and other parts of \textit{C. procera} showed significant larvicidal activities against various vector species as summarized in Table 6.

Above studies indicated that aqueous and ethanolic extracts of leaves of \textit{C. procera} possessed phenomenal oviposition deterrent and larvicidal effect, thus it can be developed as environment friendly alternative for the synthetic insecticides for mosquito control.

5.5 Anthelmintic potential

\textit{C. procera} is used as an anthelmintic by ruminant farmers as proved by activities summarized in Table 7.

5.6 Antioxidant potential

Leaves of \textit{C. procera} displayed highest antiradical activity as evident from activities summarized in Table 8.

Above activities proved that quercetin, aqueous and methanolic extracts of leaves of \textit{C. procera} possessed remarkable antiradical activity. Evaluation of the \textit{in vivo} antioxidant potential would be indispensable, so that it can be used as natural antioxidant ingredients in food and drug industries.

5.7 Antiplasmodial potential

Traditional practitioners use \textit{C. procera} as antimalarial agent. Activity summarized in Table 9.

Over past decades, reduction in efficiency of chloroquine has been observed, thus resistivity to antimalarial drugs can be a threat to control malaria. The hunt for analogues with reduced toxicity and improved antimalarial activity still prevails. The possibilities of finding active compounds and correlating with specific dose effective antimalarial activity, from those parts of the plant, which are used separately or together could be further pursued.

5.8 Hepatoprotective activity

\textit{In vivo} experimental study proves that \textit{C. procera} has hepatoprotective potential as summarized in Table 10.

5.9 Miscellaneous activities

Antiangiogenic activity of latex of \textit{C. procera} was carried out by Sayed \textit{et al.} (2016) on catfishes exposed to (100 µg L-1) 4-nonylphenol as chemical pollutant. Significant (\textit{P} < 0.05) decrease in apoptotic cells, enzymes (superoxidase dismutase, acetylcholinesterase cortisol etc.) and ions validated antiangiogenic activity of the crude latex against the toxicity of 4-nonylphenol.152 Hence, crude latex exerted antiangiogenic activities against the toxicity of 4-nonylphenol.

Anti-hyperbilirubinemic activity of leaves was evaluated using phenylhydrazine and paracetamol induced Wistar rats. Significant (\textit{P} < 0.05) decrease in concentrations of serum total bilirubin in hyperbilirubinemic rats proved bilirubin lowering activity of aqueous extracts of \textit{C. procera}.78

Recent studies indicated that \textit{C. procera} has significantly broader range of beneficial effects as it contains bioactive phytochemicals with therapeutic potential. By far only cytotoxic studies on cancer cell lines have been well established in clinical trials, whereas other activities have been evidenced by basic studies. Most of the studies are limited to \textit{in vitro} studies which lack exploration of molecular mechanism of action. Therefore, mechanism based \textit{in vitro} and \textit{in vivo} studies should be carried out, which can lead to understanding of underlying mechanism related to traditional uses.

6. Phytochemistry

\textit{C. procera} contains cardenolides, flavonoids, sterols, oxypregnanes triterpenoids, glycosides and other constituents as elaborated in Table 11.7 Flavonoid and its glycosides (Fig. 1) are the major compounds isolated from the leaves of \textit{C. procera}. Steroids (Fig. 2) and cardenolides (Fig. 3) are the major secondary metabolites found in the latex. Cardenolides have also been reported from other plant genera of the family Apocynaceae or Asclepiadaceae like \textit{Strophanthus, Cerbera, Apocynum, Nerium}, and \textit{Thevetia}.159 Traditionally they are employed in curing of congestive heart failure.160 Cardenolides are C23 steroids with steroid nucleus having a glycoside moiety at C-3 and a lactone moiety at C-17.4 Cardiac glycosides can be novel antineoplastic agents as cancer cells are more prone to these compounds.159 Terpenoids (ursane, olenane type and pentacyclic triterpenes etc.) (Fig. 4) have been
Table 11 Compounds isolated from Calotropis procera

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
1	5-Hydroxy-3,7-dimethoxyflavone-4'-O-β-glucopyranoside (C_{29}H_{34}O_{14})	Ethanol extract	Benzene-chloroform	Stem^{138}
2	Isorhamnetin 3-O-β-D-rutinoside (C_{30}H_{42}O_{12})	Ethanolic extract	85% methanolic extract	Leaves^{76,164}
3	Isorhamnetin 3-O-β-D-robinoside (C_{30}H_{42}O_{12})	Ethanolic extract	85% methanolic extract	Leaves^{76}
4	Isoquercitrin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
5	Quercetin-6-methyl ether (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
6	Quercetin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
7	Isoquercitrin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
8	3,3'-Dimethoxy quercetin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
9	3,6,3',4'-Tetramethoxy quercetin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
10	3,6,7,3',4'-Pentamethoxy quercetin (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
11	Kaempferol 3-O-rutinoside (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
12	Kaempferol (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
13	Quercetin-3-O-rutinoside (C_{22}H_{34}O_{11})	Ethanolic extract	85% methanolic extract	Leaves^{76}
14	Luteolin (C_{15}H_{10}O_{7})	Water extract	Ethyl acetate : water : formic acid	Flowers^{166} root bark^{139,169}
15	Epicatechin (C_{15}H_{10}O_{7})	Water extract	Ethyl acetate : water : formic acid	Flowers^{166} root bark^{139,169}
16	Kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside (C_{22}H_{34}O_{11})	Ethanolic extract	Ethyl acetate : water : formic acid	Flowers^{166} root bark^{139,169}
17	Stigmasterol (C_{25}H_{42}O_{7})	Methanolic extract	Hexane-ethyl acetate	Flowers^{166} root bark^{139,169}
18	β-Sitosterol (C_{25}H_{42}O_{7})	Methanolic extract	Hexane-ethyl acetate	Flowers^{166} root bark^{139,169}
19	Daucosterol or β-sitosterol glucoside (C_{33}H_{48}O_{12})	Ethanolic extract	10% aq. methanol and hexane	Latex, aerial part^{160}, roots^{169}
20	Benzoylineolone (C_{28}H_{36}O_{7})	Ethanolic extract	Benzene-chloroform	Root bark^{170}
21	Benzoylisonolineolone (C_{28}H_{36}O_{7})	Ethanolic extract	Benzene-chloroform	Root bark^{170}
22	Lineolone (C_{21}H_{26}O_{7})	Ethanolic extract	—	Root bark^{170}
23	Isolineolone (C_{21}H_{26}O_{7})	Ethanolic extract	—	Root bark^{170}
24	Cyclosadol (C_{21}H_{26}O_{7})	Ethanolic extract	—	Flowers^{166}
25	β-Sitost-4-en-3-one (C_{25}H_{40}O_{7})	Ethanolic extract	n-Hexane-ethyl acetate (95 : 5)	Flowers^{166}

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
26	Calatrin (C_{20}H_{40}O_{8})	Ethanolic extract	10% aq. methanol and hexane	Roots^{62} latex^{65} aerial part^{168}
27	15β-Hydroxyxalactin (C_{29}H_{40}O_{10})	Ethanolic extract	—	Latex^{65}
28	Calactoprin or 14β,15β-dihydroxy-19-oxo-2α,3β-[2S,3S:4R,6R]-tetrahydro-3-hydroxy-4-methoxy-6-methyl-2H-pyran-2,3-diyi] bis(onyl)-5α-card-20(22)-enolide (3β-methoxy-15β-hydroxy calactin) (C_{29}H_{40}O_{10})	Ethanolic extract	—	Latex^{65}
29	Afroside (C_{25}H_{42}O_{7})	Ethanolic extract	—	Latex^{65}
30	Calotoxin (C_{25}H_{42}O_{10})	Ethanolic extract	—	Aerial part^{168}
31	Calotropin (C_{25}H_{42}O_{10})	Ethanolic extract	—	Root bark^{62} latex and aerial part^{168}
32	12β-Hydroxy coraglaucigenin (C_{28}H_{42}O_{9})	Ethanol extract	—	Latex^{65}
Table 11 (Contd.)

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
33	Procegenin A or 3z,12ß,14ß-trihydroxy-19-hydroxymethyl-5z-card-20(22)-enolide or 3-epi,12ß-hydroxycoroglaucigenin (C_{23}H_{34}O_{5})	Ethanol fraction	Chloroform fraction	Latex65
34	Procegenin B or 3z,12ß,14ß-trihydroxy-19-oxo-5z-card-20 (22)-enolide or 12ß-hydroxy carpogenin (C_{21}H_{25}O_{5})	Ethanol fraction	Chloroform fraction	Latex65
35	Afrogenin (C_{23}H_{20}O_{5})	Ethanol fraction	Chloroform fraction	Latex65
36	Desglucouzarin (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
37	Frugoside (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
38	Uzarigenin (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
39	Uzarigenone (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
40	ß-Anhydroepidigitosigenin-3ß-O-glucopyranoside (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
41	ß-Anhydroepidigitosigenin or 3ß-hydroxy-5z-carda-14(15),20(22)-dienolide (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 1)	Stem171
42	Calotropagenin (C_{15}H_{12}O_{5})	Chloroform extract	Hexane-diethyl ether (9 : 11)	Aerial part174
43	Ischarin (C_{21}H_{18}NO_{5})	Ethanol fraction	Chloroform extract	Aerial part168
44	Ischaridin (C_{25}H_{24}O_{5})	Ethanol fraction	Chloroform extract	Aerial part168
45	2ß-Oxovoroscarin (C_{12}H_{12}NO_{5})	Methanol extract	Dichloromethane-methanol (9 : 2)	Root bark62
46	Proceraside A (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
47	Syriogenin (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
48	Proceroside (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
49	Uscharin (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
50	Voruscharin (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
51	Coroglaucigenin (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
52	Corotoxigenin (C_{21}H_{24}O_{9})	Methanol extract	Chloroform-methanol	Root bark172
53	3-[ß-(4-O-ß-D-glucopyranosyl-ß-D-glucopyranosyl)]oxy-uzarigenin (C_{25}H_{24}O_{9})	70% ethanol fraction	Chloroform-methanol (9 : 1.5)	Stem173
54	Uzarin or 3-[ß-(2-O-ß-D-glucopyranosyl-ß-D-glucopyranosyl)]oxy-uzarigenin (C_{25}H_{24}O_{9})	70% ethanol fraction	Chloroform-methanol (9 : 1.5)	Stem173
55	1ß-Hydroxyuscharin (C_{21}H_{24}NO_{5})	Ethanol extract	Chloroform-methanol (70 : 30)	Root bark172
56	Uscharin (C_{21}H_{24}NO_{5})	Ethanol extract	Chloroform-methanol (70 : 30)	Root bark172
57	Proceragensin or 7ß,14ß-dihydroxy-5z-card-20(22)-enolide (C_{23}H_{34}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 2)	Stem172
58	2ß,19-Epoxy-3ß,1ß-dihydroxy-19-methoxy-5z-card-20(22)-enolide (C_{23}H_{34}O_{5})	Ethanol fraction	Chloroform-methanol (9 : 2)	Stem172
59	Procesterol or (24S)-24-ethyl-stigmaster-4-en-6ß-ol-3-one (C_{25}H_{41}O_{2})	Ethanol fraction	Chloroform-methanol (9 : 2)	Stem172

Terpenes/terpenoids

S. No.	Compound name	Extract/fraction	Eluent	Plant part & references
60	ß-Amyrin (C_{30}H_{50}O)	Methanol extract	Chloroform-methanol (1 : 1)	Flowers176
61	ß-Amyrin (C_{30}H_{50}O)	Methanol extract	Chloroform-methanol (1 : 1)	Flowers176
62	ß-Amyrin acetate (C_{31}H_{52}O_{2})	Methanol extract	Pet. ether-chloroform (1 : 9)	Roots176
63	Methanol extract	Pet. ether-chloroform (1 : 1)	Roots176	
S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
-------	----------------------------------	-----------------	--------	------------------------
64	Calotropenyl acetate or urs-18z-H-12,20(30)-diene-3β-yl acetate (C32H52O2)	Chloroform extract	Benzene-hexane (60 : 40)	Flower, latex and aerial part
65	Calotroposepyl ester or olean-13(18)-en-3β-yl acetate (C32H52O2)	Ethanol extract	Pet. ether	Root bark
66	Calotroposerone A or ursa-5,12,19(29)-diene-3β-yl acetate (C32H52O2)	Ethanol extract	n-Hexane-ethyl acetate	Root bark
67	Calotroposerone B or ursa-5,12,19(29)-diene-3β-yl acetate (C32H52O2)	Ethanol extract	n-Hexane-ethyl acetate	Root bark

Oxypregnane oligoglycosides

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
90	Calotroposepyl ester or olean-13(18)-en-3β-yl acetate (C32H52O2)	Ethanol extract	n-Hexane-ethyl acetate	Root bark
91	Calotroposepyl ester or olean-13(18)-en-3β-yl acetate (C32H52O2)	Ethanol extract	n-Hexane-ethyl acetate	Root bark
92	Calotroposepyl ester or olean-13(18)-en-3β-yl acetate (C32H52O2)	Ethanol extract	n-Hexane-ethyl acetate	Root bark

© 2021 The Author(s). Published by the Royal Society of Chemistry

RSC Adv., 2021, 11, 35854-35878 | 35867
Table 1 (Contd.)

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
94	Calotroposide L or 12-O-benzoylsileno-3-O-β-D-oleandropyranosyl-(1→4)-β-D-glucose-5-ol (C_{68}H_{104}O_{28})	Methanolic extract/n-butanol fraction	Chloroform–methanol (85 : 15)	Root bark[153]
95	Calotroposide M or 12-O-benzoylsileno-3-O-β-D-oleandropyranosyl-(1→4)-β-D-glucose-5-ol (C_{68}H_{104}O_{28})	Methanolic extract/n-butanol fraction	Chloroform–methanol (85 : 15)	Root bark[153]
96	Calotroposide N or 12-O-benzoylsileno-3-O-β-D-oleandropyranosyl-(1→4)-β-D-glucose-5-ol (C_{68}H_{104}O_{28})	Methanolic extract/n-butanol fraction	Chloroform–methanol (85 : 15)	Root bark[154]
97	Calotroposide S or 12-benzoylsileno-3-O-β-D-oleandropyranosyl-(1→4)-β-D-glucose-5-ol (C_{68}H_{104}O_{28})	Methanolic extract/n-butanol fraction	Chloroform–methanol (85 : 15)	Root bark[153]
	Aliphatic and phenolic glycoside			
98	Methyl resorcinol triglucoside or O-methyl resorcinyl-β-D-glucose-5-ol (1→4)-β-D-glucose-5-ol (1→4)-β-D-glucose-5-ol (C_{68}H_{104}O_{28}) (phenolic glycoside)	Methanolic extract	Chloroform–methanol (3 : 2)	Roots[159]
99	Butaneol di-gluconoside or (n-butanol-4-diol-1,β-D-gluconoside) (C_{68}H_{104}O_{28}) (aliphatic glycoside)	Methanolic extract	Chloroform–methanol (4 : 1)	Roots[159]
100	(E)-3-(4-Methoxyphenyl-2-β-D-C_{68}H_{104}O_{28})-methyl propenoate (C_{68}H_{104}O_{28})	Ethanol extract	Water–methanol (1 : 1)	Flowers[149]
101	Methyl 4-β-D-oleandropyranosyl ferulate (C_{68}H_{104}O_{28})	Ethanol extract	Water–methanol (6 : 4)	Flowers[149]
102	7'-Methoxy-3'-O-demethylenol-9-β-D-glucopyranoside (C_{68}H_{104}O_{28})	Ethanol extract	Water–methanol (1 : 1)	Flowers[149]
103	Pinonesinol-4-β-D-glucopyranoside (C_{68}H_{104}O_{28})	Ethanol extract	Water–methanol (1 : 1)	Fruits[49]
104	Syringaresinol-4-β-D-glucopyranoside (C_{68}H_{104}O_{28})	Ethanol extract	Water–methanol (1 : 1)	Fruits[49]
105	Labdan-18-ol-β-D-galactofuranoside (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (9 : 1)	Roots[162]
106	Proceralabdanoside/labdan-13-ol-11,15-o-18,20-dioic acid-3β-galactofuranoside (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (9 : 1)	Roots[162]
	Caffeic acid derivatives			
107	Methyl caffeate (C_{68}H_{104}O_{28})	Ethanol extract	Chloroform–methanol (8.5 : 1.5)	Leaves[76]
108	Caffeic acid (C_{68}H_{104}O_{28})	Ethanol extract	Chloroform–methanol (8.5 : 1.5)	Leaves[76]
109	Rosmarinic acid (C_{68}H_{104}O_{28})	Ethanol extract	Chloroform–methanol (8.5 : 1.5)	Leaves[76]
110	Methyl rosmarinate (C_{68}H_{104}O_{28})	Ethanol extract	Chloroform–methanol (8.5 : 1.5)	Leaves[76]
	Others			
111	2-Propanol-2Z-hydroxethyl carbonate	—	—	Leaves[106]
112	Glyceryl mono-oleoyl-2-phosphate (C_{68}H_{104}O_{28})	Methanolic extract	Pet. ether–chloroform (1 : 3)	Roots[177]
113	Methyl behenate (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (99 : 1)	Roots[177]
114	N-Dotiram-6-ene (C_{68}H_{104}O_{28})	Methanolic extract	Pet. ether–chloroform (3 : 1)	Roots[177]
115	Methyl myristate (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (99 : 1)	Roots[177]
116	Glyceryl-1,2-dipalmitate-3-phosphate (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (99 : 1)	Roots[177]
117	(E)-Octadec-7-enoic acid (C_{68}H_{104}O_{28})	Methanolic extract	n-Hexane–ethyl acetate	Root bark[139]
118	Proceranol or n-triacetan-10β-ol (C_{68}H_{104}O_{28})	Ethanol extract	Chloroform–methanol (8.5 : 1.5)	Leaves[106]
119	Methyl ferulate	Methanolic extract	Chloroform–methanol (8.5 : 1.5)	Leaves[106]
120	1,2-Dihexadecanoyl-3-phosphatyl glycerol (C_{68}H_{104}O_{28})	Methanolic extract	Chloroform–methanol (8.5 : 1.5)	Leaves[106]

53868 | RSC Adv., 2021, 11, 35854–35878 © 2021 The Author(s). Published by the Royal Society of Chemistry
isolated from flowers, root bark and latex. Oxy pregnane glycosides (Fig. 5) have recently been reported from root bark of this plant. They have steroidal skeleton containing a 2-deoxy sugar moiety. These oxy pregnanes have benzoyl moiety at C-12 and a straight 5–7 units sugar chain connected to C-3 of the aglycone. Some glycosides (Fig. 6), lignan glycosides (Fig. 7), terpene glycosides (Fig. 8) and caffeic acid derivatives (Fig. 9) have also been isolated from this plant.

A number of hydrocarbons, saturated and unsaturated fatty acids were also identified from C. procera extract by GC-MS. Similarly fatty acid ester, phthalate derivatives, and pentacyclic triterpenes were identified from chloroform extract of roots of Calotropis procera. Apart from the compounds mentioned in Table 11, terpenoids named α-calotropeol and β-calotropeol have been isolated from ethanolic extract of latex. A cardenolide named 19-

Table 11 (Contd.)

S. No.	Compound name (molecular formula)	Extract/fraction	Eluent	Plant part & references
122	Tricapryl glyceride (C₃₃H₆₂O₆)	Methanolic extract	Pet. ether	Roots²³³²³³
123	Oleodipalmityl glyceride (C₃₃H₆₀O₄)	Methanolic extract	Pet. ether–chloroform (9 : 1)	Roots²³³²³³
124	Tribehenyl glyceride (C₃₃H₅₄O₄)	Methanolic extract	Pet. ether–chloroform (1 : 1)	Roots²³³²³³
125	Capryl glucoside/n-decanoyl-β-D-glucopyranoside (C₁₈H₁₆O₂)	Methanolic extract	Chloroform–methanol (49 : 1)	Roots²³³²³³
126	Palmityl glucoside/n-hexacosanyl-β-D-glucopyranoside	Methanolic extract	Chloroform–methanol (19 : 1)	Roots²³³²³³
127	Stearyl glucoside/n-octadecanoyl-β-D-glucopyranoside (C₂₄H₄₀O₂)	Methanolic extract	Chloroform–methanol (93 : 7)	Roots²³³²³³
Fig. 1 Chemical structures of flavonoids.

Fig. 2 Chemical structures of steroids.
7. Conclusion, discussion and future perspectives

In the present review, the research progress in phytochemistry and pharmacology of *C. procera* have been summarized. There have been acquirements in the research; still some gaps came across our studies which are as follows:

1. Folks and tribes have been using *C. procera* since ancient times; still investigations can be carried out on inception time of traditional uses of *C. procera*.

2. Secondary metabolites of plant vary according to several factors like region, environment, quality of soil, age of plant *etc.* Moreover, latex and root bark seem to be exhaustively investigated for phytoconstituents, not much research on flowers, pods and seeds for phytoconstituents have been conducted.

Dihydrocalotropagenin and flavonoid named *3′*-O-methyl-quercetin-3-O-rutinoside have also been reported from ethanolic extract of aerial parts.*168*
Further exploring these parts can lead to discovery of new phytoconstituents of interest.

(3) The plant can be employed commercially as scientific studies have proved its use as cheese making agent, dehairing of leather, natural surfactant, biopesticide and corrosion inhibitor.

(4) Numerous activities on validation of its cytotoxic and anti-inflammatory potential have been conducted. A few have been carried out on its antimigraine, antiplasmodial and anti-convulsant effects. Carrying out further scientific studies in these fields can provide medical science with effective and promising new drugs.
(5) Most of the cytotoxic activities conducted are in vitro except the one conducted on UNBS1450; a semi-synthesized cardenolide. Further studies should be carried out to examine its in vivo potential.

(6) Right route and right dose can convert a dreadful toxicant into an outstanding drug whereas even a drug in lack of proper dosage and route can become a fatal poison. Folk practitioners have been employing C. procera as antifertility and uterotonic
Further studies using positive controls, study of toxicity and side effects can lead to discovery of effective and natural contraceptive drugs.

Active principles behind many of the activities are unknown, except the one known for cytotoxic, antibacterial, antifertility, antimolluscicidal and insecticidal activity. More research can be carried out to know the active principles so that potent drugs can be made.

Replicable and environment benign sources of energy are the need of hour, *Calotropis procera* being rich source of various hydrocarbons, thus can prove to be a promising biofuel agent.

Overall, the pharmacology, toxicology, traditional uses, use of secondary metabolites, clinical trials and quality control has been reviewed in this paper. However, there seems to be a good correspondence between pharmacological activities and traditional uses. Further research in this field is essential to determine the active principles and the underlying mechanisms.

Author contributions

Barkha Darra Wadhani: literature collection, evaluation and draft manuscript preparation. Deepak Mali and Pooja Vyas: literature collection; pharmacological activity and analyses of chemicals constituents of *C. procera*. Rashmy Nair: reviewing and editing. Poonam Khandelwal: concept development; idea generation; manuscript preparation; reviewing and editing.

Conflicts of interest

The authors confirm that this article content has no conflict of interest.
Acknowledgements

One of the authors (Barkha Darra Wadhwani) is thankful to DST, India for providing WOS-A project sanction no. SR/WOS-A/CS-24/2019(G).

References

1. M. C. Joshi, M. B. Patel and P. J. Mehta, Bull. Med.-ethno-bot. Res., 1980, 1, 8–24.
2. K. Chandra and U. N. Pandey, Some folk medicines of Singhbhum (Bihar), Sachitra Ayurveda, 1984, 37, 253–357.
3. L. S. Bhatnagar, V. K. Singh and G. Pandey, J. Res. Indian Med., 1973, 8(2), 67–100.
4. J. Venkateswarulu, P. V. Bhairavamurthy and N. Rao, The Flora of Visakhapatnam, Andhra Pradesh Academy of Sciences, Hyderabad, 1972, p. 128.
5. H. S. Al-Mezaine, A. A. Al-Rajhi, A. Al-Assiri and M. D. Wagoner, Am. J. Ophthalmol., 2005, 139, 199–202.
6. E. W. C. Chan, N. I. Sweidan, S. K. Wong and H. T. Chan, Rec. Nat. Prod., 2017, 11(4), 334–344.
7. P. M. Ranjit, G. E. Rao, M. Krishnapriya, V. Nagalakshmi, P. Silpa and M. Anjali, FS J. Pharm. Res., 2012, 1, 18–25.
8. R. Sharma, G. Thakur, B. S. Sanodiya, A. Savita, M. Pandey, A. Sharma and P. S. Bisen, IOSR J. Pharm. Biol. Sci., 2012, 4(3), 42–57.
9. P. A. Karale and M. A. Karale, Asian J. Pharm. Clin. Res., 2017, 10, 27–34.
10. G. Parihar and N. Balekar, Thai J. Pharm. Sci., 2016, 40, 115–131.
11. R. K. Upadhyay, Int. J. Green Pharm., 2014, 8(3), 135–146.
12. R. P. Mali, P. S. Rao and R. S. Jadhav, J. Drug. Deliv. Ther., 2019, 9, 947–951.
13. H. S. Alzahrani, M. Mohammd, S. Kulvinder and M. R. Rizgallah, J. Appl. Environ. Biol. Sci., 2017, 7(10), 232–240.
14. A. K. Khairnar, S. R. Bhamare and H. P. Bhamare, Adv. Res. Pharm. Biol., 2012, 2, 142–156.
15. A. Ranade and R. Acharya, Glob. J. Res. Med. Plants Indig. Med., 2014, 3(12), 475–488.
16. Z. Yaniv and H. Koltsi, Isr. J. Plant Sci., 2018, 65, 55–61.
17. S. M. Bairagi, P. Ghule and R. Gilhotra, Ars Pharm., 2018, 59(1), 37–44.
18. N. Ranjan, S. K. Singh and C. Kumari, Int. J. Curr. Microbiol. App. Sci., 2017, 6(4), 1640–1648.
19. Poonam and G. Punia, Global J. Res. Med. Plants & Indigen. Med., 2013, 2(5), 392–400.
20. (a) S. Quazi, K. Mathur and S. Arora, Indian J. Drugs, 2013, 1(2), 63–69; (b) A. Bera, S. Maiti and N. Banerjee, Int. J. Pharm. Sci. Res., 2020, 11(11), 5425–5433; (c) I. Pavanvi and S. Udayavani, World J. Pharm. Res., 2020, 9(14), 1381–1392; (d) A. Kaur, D. R. Batisht, S. Kaur and B. S. Chauhan, Front. Plant Sci., 2021, 12, 690806, DOI: 10.3389/fpls.2021.690806.
21. P. Chandrawat and R. A. Sharma, Res. J. Recent Sci., 2016, 5(1), 61–70.
22. A. K. Meena, A. Yadav and M. M. Rao, Asian J. Tradit. Med., 2011, 6(2), 45–53.
23. C. D. T. de Freitas, J. L. Lopes, L. M. Beltraminii, R. S. B. de Oliveira, J. T. A. Oliveira and M. V. Ramos, Biochim. Biophys. Acta, 2011, 1808, 2501–2507.
24. P. J. Modi, Medical Jurisprudence and Toxicology, 2006, first reprint Dr Mathiharan, K., Dr Patnaik, A.K. Lexis Nexis, New Delhi, 23rd edn, 2007, pp. 234–238.
25. B. Biedner and L. R. A. Witztum, Isr. J. Med. Sci., 1977, 13, 914–916.
26. W. Laukhanjaratand and M. Towanich, Thai. J. Ophthalmol., 1997, 1, 87–90.
27. T. Devasari, Indian J. Pharmacol., 1965, 27, 272–275.
28. S. K. Basak, A. Bhaumik, A. Mohanta and P. Singhal, Indian J. Ophthalmol., 2009, 57(3), 232–234.
29. H. Tavakkoli, A. Derakshshanfar, J. Moayed, A. P. Fard, S. Behrouz, M. A. Piltan and M. N. Soltani-Rad, Comp. Clin. Pathol., 2019, 28, 195–202.
30. A. Akkhha, Biosci. Biotechnol. Res. Asia, 2009, 6(2), 653–658.
31. M. A. Ramadana, A. A. Azeiz, S. Baabada, S. Hassanein, N. O. Gadalla, S. Hassan, M. Algandaby, S. Bakr, T. Khan, H. H. Abouseadaa, H. M. Ali, A. A-Ghamdi, G. Osman, S. Edris, H. Eissa and A. Bahlieldin, Steroids, 2019, 141, 1–8.
32. A. S. Traore, Bioresour. Technol., 1992, 41, 105–109.
33. M. O. Barbosa, J. S. de Almeida-Corte, S. I. da Silva and A. F. M. de Oliveira, J. Am. Oil Chem. Soc., 2014, 91, 1433–1441.
34. M. V. Ramos, C. D. T. Freitas and F. Staniscuaski, Plant Science, 2007, 173, 349–357.
35. G. E. Nenaah, Ind. Crops Prod., 2013, 45, 327–334.
36. O. C. Aworh and S. Nakai, J. Food Sci., 1986, 51, 1569–1570.
37. D. Raheem, N. Suri and P. E. Saris, Int. J. Food Sci. Technol., 2007, 42, 220–223.
38. C. K. Atal and P. D. Sethi, Planta Med., 1962, 10(1), 77–90.
39. D. A. R. Agoussou Yao, Y. Sprycha, S. Porembski and R. Horn, Genet. Resour. Crop. Evol., 2015, 62, 863–878.
40. M. Chandrashekar, H. Nagabhushana, S. C. Sharma, Y. S. Vidya, K. S. Anantharaju, D. Prasad, S. C. Prashanthla, D. Kayashree and P. S. Maiya, Mater. Res. Express, 2015, 2(4), 045402, DOI: 10.1088/2053-5912/4/045402.
41. P. B. Raja and M. G. Sethuraman, Pigm. Resin Technol., 2009, 38(1), 33–37.
42. L. Lopez, C. Viana, M. Errasti, M. L. Garro, J. E. Martegani, G. A. Mazilli, C. D. T. Freitas, I. M. S. Araujo, R. O. da Silva and M. V. Ramos, Bioprocess Biosyst. Eng., 2017, 40, 1391–1398.
43. M. K. Misra, M. K. Mohanty and P. K. Das, Anc. Sci. Life, 1993, 13, 40–56.
44. L. Misra, Sahaja Chikichcha (in Oriya), ed. K. Devi Puri, 1959.
45. P. K. Jain, R. Verma, N. Kumar and A. Kumar, Jour. Res. Ay. Sid., 1985, 6, 88–91.
46. M. Garg, Sudhanidhi (Hindi edition) and D. Karyalaya, Bijoygarh, Uttar Pradesh, 1986, vol. 5, pp. 165–202.
47. K. R. Kirtikar and B. D. Basu, Indian Medicinal Plants, ed. B. Singh and M. Singh, Dehra Dun, 1933, vol. 3, pp. 1606–1611.
95 M. S. Kumar and U. K. Chanhan, Geobios, 1992, 19, 135–137.
96 N. Nawazisht, I. Malik and M. I. D. Chughtai, Pak. J. Sci., 1979, 31, 127–129.
97 A. H. Kavo, A. Mustapha, B. A. Abdullahi, L. D. Rogo, Z. A. Gaiyaand and A. S. Kumurya, Bayero J. Pure Appl. Sci., 2009, 2(1), 34–40.
98 P. O. Akindele, O. A. Fatunla, K. A. Ibrahim and C. O. Afolayan, J. Complement. Altern. Med. Res., 2017, 2(1), 1–14.
99 V. Talsaniya, T. Patel, N. Saiyad, S. Desai, D. Patel and D. Meshram, Int. J. Pharm. Sci. Res., 2014, 25(2), 241–244.
100 R. Lima, N. Lima, E. Chaves, L. Leal, M. Patrocinio, R. Lobato, M. Ramos, F. C. F. Sousa, K. Carvalho and S. Vasconcelos, J. Complement. Integr. Med., 2010, 7, 1–9.
101 S. Gholamshahi, A. V. Mohammad, S. Fatemeh and A. Salehi, Int. J. Biosci., 2014, 4(7), 159–164.
102 M. N. Yesmin, S. N. Uddin, S. Mubassara and M. A. Akond, American-Eurasian J. Agric. & Environ. Sci., 2008, 4(5), 550–553.
103 S. Loonker, W. A. Qadri and J. Singh, Int. J. Cur. Res. Rev., 2015, 7, 55–59.
104 P. M. Soares, S. R. Lima, S. G. Matos, M. M. Andrade, M. C. A. Patrocinio, C. D. T. de Freitas, M. V. Ramos, D. N. Criddle, B. A. Cardi, K. M. Carvalho, A. M. S. Asseuy and S. M. M. Vasconcelos, J. Ethnopharmacol., 2005, 99, 125–129.
105 Z. Iqbal, M. Lateef, A. Jabbar, G. Muhammad and M. N. Khan, J. Ethnopharmacol., 2005, 102, 256–261.
106 Y. M. Shivkar and V. L. Kumar, Pharm. Biol., 2003, 41(4), 263–265.
107 A. A. Al-Qarawi, O. M. Mahmoud, M. A. Sobaib, E. M. Haroun and S. E. I. Adam, Vet. Res. Commun., 2001, 25, 61–70.
108 H. Sangraula, S. Dewan and V. L. Kumar, Inflammopharmacology, 2002, 9(3), 257–264.
109 V. L. Kumar and N. Basu, J. Ethnopharmacol., 1994, 44, 123–125.
110 N. S. Tour and G. S. Talele, Rev. Bras. Farmacogn., 2011, 21(6), 1118–1126.
111 P. K. Majumdar and V. L. Kumar, Phytother. Res., 1997, 11(2), 166–167.
112 C. R. Jangde, C. G. Raut and V. V. Bisan, Livestock Advisor, 1994, 19(3), 29–31.
113 S. Kumar, S. Dewan, H. Sangraula and V. L. Kumar, J. Ethnopharmacol., 2001, 76(1), 115–118.
114 O. J. Olaitan, S. U. R. Wasagu, A. A. Adepoju-Bello, K. U. Nwaeeze and A. Olufunsho, Nig. Q. J. Hosp. Med., 2013, 23(4), 338–341.
115 D. Srivastav and P. Singh, World J. Pharm. Res., 2015, 4(3), 1123–1135.
116 M. Larhsini, M. Bonsaid, H. Lazrek, M. Jana and H. Amarouch, Fitoterapia, 1997, 68(4), 371–373.
117 R. M. Aliyu, M. B. Abubakar, Y. U. Dabai, N. Lawal, M. B. Bello and A. Y. Fardami, J. Intercult. Ethnopharmacol., 2015, 4(4), 314–317.
118 N. Pathak and R. K. Zaidi, Ann. Biol. Res., 2013, 4(4), 1–6.
119 A. M. Mashlawi, M. K. H. Ali and E. S. Tarek, Int. J. Mosq. Res., 2017, 4(1), 1–6.
120 N. Begum, B. Sharma and R. S. Pandey, J. Biofertil. Biopestici., 2010, 1, 101.
121 A. M. Elimam, K. H. Elimalik and F. S. Ali, J. Biol. Sci., 2009, 16, 95–100.
122 H. Doshi, H. Satodiya, M. C. Thakur, F. Parabia and A. Khan, Int. J. Plant Res., 2011, 1(1), 29–33.
123 N. M. Azmathullah, M. A. Sheriff and A. K. S. Mohideen, Int. J. Pharm. Biol. Arch., 2011, 26, 1718–1721.
124 S. M. P. Khurana and S. Singh, Phytopathol. Z., 1972, 73, 341–346.
125 J. V. Kamath and A. C. Rana, Fitoterapia, 2002, 73(2), 111–115.
126 S. M. A. El-Badwi and A. O. Bakhiet, Sci. Res. Essays, 2010, 5(17), 2404–2408.
127 M. A. Qureshi, N. M. Qureshi, R. Arshad and R. Begum, Pak. J. Zool., 1991, 23(2), 161–165.
128 C. Circosta, R. Sanogo and F. Occhiuto, Il Farmaco, 2001, 56, 373–378.
129 M. V. Ramos, C. A. Viana and A. F. Silva, Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(5), 455–463.
130 P. Sharma and J. D. Sharma, J. Ethnopharmacol., 1999, 68, 83–95.
131 S. Y. Mudi and A. Bukar, Biochemistry, 2011, 23, 29–34.
132 S. Dewan, S. Kumar and V. L. kumar, Ind. J. Pharmacol., 2000, 32, 252–253.
133 U. P. Upadhyay, J. Sci. Res. Plant. Med., 1979, 1(1), 52–55.
134 S. S. Jalalpure, Pharm. Biol., 2009, 47(2), 162–167.
136 R. Mathur, S. K. Gupta, S. R. Mathur and T. Velpandian, Indian J. Exp. Biol., 2009, 47(3), 343–348.
137 A. L. Joshi, P. H. Roham, R. Mhaske, M. Jadhava, K. Krishnadasa, A. Kharatb, B. Hardikarc and R. K. Kiran, Nat. Prod. Res., 2015, 29, 2261–2264.
138 K. H. Shaker, N. Morsy, H. Zinecker, J. F. Imhoff and B. Schneider, Phytochem. Lett., 2010, 3, 212–216.
139 S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Y. Banuls, G. V. Goietsenoven, R. Kiss and D. T. A. Youssef, Phytochem. Lett., 2012, 5(3), 490–495.
140 M. Bhagat, J. S. Arora and A. K. Saxena, Int. J. Green Pharm., 2010, 4, 286–288.
141 V. H. Bhaskar and S. A. Sumant, Global J. Pharmacol., 2009, 3, 95–98.
142 V. L. Kumar and S. Roy, Phytother. Res., 2009, 23, 1–5.
143 P. Chaudhary, M. V. Ramos, Md S. Vasconcelos and V. L. Kumar, Pharmacogn. Mag., 2016, 12, 147–151.
144 H. T. Hussein, A. Kamel, M. Abou-Zeid, A. K. H. El-Sebae and M. A. Saleh, Uscharin, J. Chem. Ecol., 1994, 20(1), 135–140.
145 G. Giridhar, S. Santosh and P. Vesudevan, Pesticides, 1988, 22, 31–33.
146 G. Prasad, J. Nat. Med. Assoc., 1985, 27, 7–10.
147 A. Basu, T. Sen, S. Pal, F. Capasso and A. Nagchaudhri, *Phytother. Res.*, 1997, **11**, 163–165.
148 S. K. Bhatnagar and S. K. Verma, *J. Econ. Taxon. Bot.*, 1986, **8**, 489–490.
149 A. M. Al-Taweel, S. Perveen, G. A. Fawzy, A. U. Rehman, A. Khan, R. Mehmod and L. M. Fadda, *Evid. Based Complement. Alternat. Med.*, 2017, **2017**, 1–10.
150 E. O. Iwalewa, A. O. Elujoba and A. Olanrewaju, *Fitoterapia*, 2005, **76**(2), 250–253.
151 S. B. S. Aliyu-Umar and Y. Mustapha, *Unique. Res. J. Agric. Sci.*, 2014, **2**(4), 37–41.
152 A. D. Sayed, N. H. Mohammed, M. A. Ismail, W. M. Abdel-Mageed and A. A. Shoreit, *Ecotoxicol. Environ. Saf.*, 2016, **128**, 189–194.
153 S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. M. Y. Banuls, R. Kiss and D. T. A. Youssef, *Steroids*, 2015, **96**, 63–72.
154 S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala and D. T. A. Youssef, *Rec. Nat. Prod.*, 2016, **10**, 761–765.
155 T. Mijatovic, F. Lefranc, V. E. Quaquebeke, F. V. Vynckt, F. Darro and R. Kiss, *Drug Dev. Res.*, 2007, **68**, 164–173.
156 T. Mijatovic, D. V. Neve, P. Gailly, V. Mathieu, B. Haibe-Kains, G. Bontempi, J. Lapeira, C. Decaestecker, V. Facchin and R. Kiss, *Mol. Cancer Ther.*, 2008, **7**, 1285–1296.
157 T. Juncker, M. Schumacher, M. Diicato and M. Diederich, *Biochem. Pharmacol.*, 2009, **78**, 1–10.
158 T. Juncker, C. Cerella, M. H. Teiten, F. Morceau, M. Schumacher, J. Ghelfi, F. O. Gaascht, M. Schnekenburger, E. Henry, M. Diicato and M. Diederich, *Biochem. Pharmacol.*, 2011, **81**, 13–23.
159 S. Wen, Y. Chen, Y. Lu, Y. Wang, L. Ding and M. Jiang, *Fitoterapia*, 2016, **112**, 74–84.
160 I. Prassas and E. P. Diamandis, *Nat. Rev. Drug. Discov.*, 2008, **7**, 926–935.
161 H. V. Doshi, F. M. Parabia, F. K. Sheth, I. L. Kothari, M. H. Parabia and A. Ray, *Int. J. Plant. Res.*, 2012, **2**(2), 28–30.
162 S. K. Khanzada, W. Shaikh, T. G. Kazi, S. Sofia, A. Kabir, K. Usmanghani and A. A. Kandhro, *Pak. J. Bot.*, 2008, **40**(5), 1913–1921.
163 A. A. Ibrahim and E. H. Tuhami, *Sci. J. Anal. Chem.*, 2019, **4**(2), 20–24.
164 R. S. Gallegos-Olea, M. O. R. Borges, A. C. R. Borges, S. M. F. Freire, L. M. S. Silveira, W. Vilegas, C. M. Rodrigues, A. V. Oliveira and J. L. Costa, *Rev. Bras. Pl. Med., Botucatu.*, 2008, **10**(1), 29–33.
165 N. S. Tour and G. S. Talele, *Chem. Nat. Compd.*, 2012, **48**(4), 708–709.
166 A. Q. Khan and A. Malik, *Fitoterapia*, 1990, **61**(1), 89.
167 S. J. Chundattu, V. K. Agrawal and N. Ganesh, *Arab. J. Chem.*, 2016, **9**, S230–S234.
168 N. I. Sweidan and M. H. Abu Zarga, *J. Asian Nat. Prod. Res.*, 2015, **17**, 900–907.
169 A. Mittal and M. Ali, *Int. J. Pharmotech. Res.*, 2012, **4**(1), 213–217.
170 R. F. Chandler, R. G. Coomebe and T. R. Watson, *Aust. J. Chem.*, 1968, **21**(6), 1625–1631.
171 M. H. A. Elgamal, A. G. Hanna, N. A. M. Morsy, H. Duddock, A. Simon, T. Gati and G. Toth, *J. Mol. Struct.*, 1999, **477**, 201–208.
172 S. R. M. Ibrahim, G. A. Mohamed, L. A. Shaala, L. Moreno, Y. Banuls, R. Kiss and D. T. A. Youssef, *Nat. Prod. Res.*, 2014, **28**, 1322–1327.
173 A. G. Hanna, M. H. A. Elgamal, N. A. M. Morsy, H. Duddock, J. Kovacs and G. Toth, *Magn. Reson. Chem.*, 1999, **37**, 754–757.
174 B. Singh and R. P. Rastogi, *Phytochemistry*, 1972, **11**(2), 757–762.
175 A. Q. Khan, Z. Ahmed, S. N. Kazmi and A. Malik, *J. Nat. Prod.*, 1988, **51**, 925–928.
176 A. Q. Khan and A. Malik, *Phytochemistry*, 1989, **28**, 2859–2861.
177 P. Alam and M. Ali, *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.*, 2009, **48**, 443–446.
178 S. H. Ansari and M. Ali, *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.*, 2000, **39**, 287–290.
179 R. Pant and K. Chaturvedi, *Curr. Sci.*, 1989, **58**, 740–724.
180 S. H. Ansari and M. Ali, *Pharmazie*, 2001, **56**(2), 175–177.
181 A. Mittal and M. Ali, *J. Saudi. Chem. Soc.*, 2015, **19**, 59–63.
182 A. Mittal and M. Ali, *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.*, 2013, **52**, 641–645.
183 A. Mittal and M. Ali, *Int. J. Pharm.*, 2011, **12**(9), 52–54.
184 S. H. Ansari and M. Ali, *J. Mol. Struct.*, 2011, **489**, 1–2.
185 B. Dwivedi, A. Singh, S. Mishra, R. Singh, P. Pant, L. K. Thakur and M. M. Padhi, *World J. Pharm. Res.*, 2014, **3**, 708–715.
186 R. S. Gallegos-Olea, A. V. Oliveira, L. M. Silveira and E. R. Silveira, *Fitoterapia*, 2002, **73**, 263–265.