Aspirin Minimized the Pro-Metastasis Effect of Sorafenib and Improved Survival by Up-Regulating HTATIP2 in Hepatocellular Carcinoma

Lu Lu1*, Hui-Chuan Sun1*, Wei Zhang2,3, Zong-Tao Chai1, Xiao-Dong Zhu1, Ling-Qun Kong1, Wen-Quan Wang4, Ke-Zhi Zhang1, Yuan-Yuan Zhang1, Qiang-Bo Zhang1, Jian-Yang Ao1, Jia-Qi Li1, Lu Wang1, Wei-Zhong Wu1, Zhao-You Tang1*

1 Liver Cancer Institute and Zhongshan Hospital, Fudan University; Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, P.R. China, 2 Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital (TJCIH); Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, P.R. China, 3 Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, P.R. China

Abstract

Background & Aims: We previously demonstrated the pro-metastasis effect of sorafenib in hepatocellular carcinoma (HCC), which is mediated by down-regulation of tumor suppressor HTATIP2. The aim of the present study was to determine whether aspirin minimizes this effect and improves survival.

Methods: The effects of sorafenib, aspirin, and combined sorafenib and aspirin were observed in HCCLM3 and HepG2 xenograft nude mice. Tumor growth, intrahepatic metastasis (IHM), lung metastasis, and survival were assessed. Polymerase chain reaction (PCR) array, real-time (RT)-PCR, and Western blotting were used to examine gene expression. The anti-invasion and anti-metastasis effects of aspirin were studied in HTATIP2-knockdown and HTATIP2-overexpressing HCC cell lines. The molecular mechanism of HTATIP2 regulation by aspirin was explored.

Results: Aspirin suppressed the pro-invasion and pro-metastasis effects of sorafenib in HCC and up-regulated HTATIP2 expression. Aspirin did not inhibit the proliferation of HCC cells, but it decreased the invasiveness of HCC with lower expression of HTATIP2 and increased expression of a set of markers, indicating a mesenchymal-to-epithelial transition in tumor cells. The up-regulation of HTATIP2 expression by aspirin is most likely mediated through inhibition of cyclooxygenase (COX) 2 expression.

Conclusions: Aspirin minimized the pro-metastasis effect of sorafenib by up-regulating the tumor suppressor HTATIP2; this mechanism is mediated through inhibition of COX2.

Citation: Lu L, Sun H-C, Zhang W, Chai Z-T, Zhu X-D, et al. (2013) Aspirin Minimized the Pro-Metastasis Effect of Sorafenib and Improved Survival by Up-Regulating HTATIP2 in Hepatocellular Carcinoma. PLoS ONE 8(5): e65023. doi:10.1371/journal.pone.0065023

Editor: Chun-Ming Wong, University of Hong Kong, Hong Kong

Received February 19, 2013; Accepted April 19, 2013; Published May 31, 2013

Copyright: © 2013 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported jointly by the National Key Project for Infectious Diseases (2012ZX10002012-004), the National Natural Science Foundation of China (No. 81101564, 81020108025), the Shanghai Natural Science Foundation (12ZR1442300), and the National ‘211’ Project for Higher Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zytang88@163.com

These authors contributed equally to this work.

Introduction

Hepatocellular carcinoma (HCC) is the sixth-most common cancer and the third-most common cause of cancer death worldwide [1]. Because of late diagnosis, most HCC patients are not candidates for radical therapy [2,3]. Sorafenib, a tyrosine kinase inhibitor (TKI), has become the first-line therapy for advanced HCC. However, sorafenib prolongs patients’ median survival time by less than 3 months; many patients have to reduce their dosage or discontinue drug therapy because of its adverse effects [4,5]. Although the literature contains no reports of HCC outcomes after discontinuation of sorafenib, rebound of tumor growth has been reported for other cancers or after discontinuation of other angiogenesis inhibitors [6–10]. Preclinical studies have demonstrated that, in some situations, anti-angiogenesis drugs may promote metastasis in addition to inhibiting the primary tumor [10,11]. Our previous study confirmed that sorafenib promotes invasiveness and metastasis of HCC in xenograft models, as indicated by increased intrahepatic metastasis (IHM), lung metastasis, and circulating tumor cells of tumors with higher expression of HTATIP2 [12]. Because sorafenib is the only approved molecular-target drug for HCC, there is an urgent need for a therapeutic approach that overcomes these adverse effects to improve sorafenib’s efficacy.

Aspirin, a nonsteroidal anti-inflammatory drug (NSAID), is widely used as an antipyretic and analgesic and to treat rheumatism and prevent cardiovascular disease. Recently, its
therapeutic and prophylactic effects with regard to malignant tumors have been of interest to us [13–19].

In this study, we found that aspirin minimized the pro-invasion and pro-metastasis effects of sorafenib. This synergistic anti-tumor effect can be attributed to up-regulation of HTATIP2.

Materials and Methods

Cell Culture and Transfection

Six human HCC cell lines were used, including HCCLM3-wt (HCCLM3 without modification, Liver Cancer Institute, Fudan University [20]), HepG2-wt (HepG2 without modification, Shanghai Institute of Cell Biology), and cell lines derived from HCCLM3-wt and HepG2-wt. HCCLM3-LV-shHTATIP2 and HCCLM3-LV-shNon cells were obtained by infecting HCCLM3-wt cells with lentiviral vectors (LVs) encoding shRNA for HTATIP2 (LV-shHTATIP2) to eliminate its expression; LV-shNon (transfected with a vector) was a control. HepG2-LV-HTATIP2 and HepG2-LV-Non cells were constructed by LVTATIP2 or LV-GFP infection of HepG2-wt cells, which were gifts from Guo and Zhao’s laboratory [21,22]. All the cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS).

Animal Models and Treatments

Male, 6-week-old BALBc nu/nu mice were obtained from the Shanghai Institute of Material Medica, Chinese Academy of Science. All mice were bred in laminar flow cabinets under specific pathogen-free conditions. The experimental protocol was approved by the Shanghai Medical Experimental Animal Care Committee. HCCLM3-wt, HCCLM3-LV-shHTATIP2, HepG2-wt, and HepG2-LV-HTATIP2 cells (1×10⁷) were subcutaneously inoculated into the right flanks of the nude mice. After 3–4 weeks, non-tumor samples were then extracted for further analysis.

Sorafenib (Bayer Healthcare) was prepared as previously described [23,24]. Briefly, for the in vivo study, sorafenib was formulated at 4 times the highest dose in a Cremophor EL/ethanol/water (12.5:12.5:75, the vehicle solution). This 4 stock solution was prepared with endotoxin-free distilled water (Life Technologies) and mixing it by vortexing immediately before dosing. Sorafenib was finally prepared as a 6 solution with 103 cells/well) and anti–E-cadherin (Cell Signaling Technology; Denver, MA), anti–vimentin (Santa Cruz Biotechnology, Santa Cruz, CA), anti–HTATIP2, anti–STAT3, anti–pSTAT3, anti–NF-κB(p65), anti–COX2 (Abcam, Hong Kong), and anti–COX1, anti–β-catenin (Epitomics; Burlingame, CA) and anti–β-actin (Kangcheng Technology, Shanghai).

Detection of Metastasis by Hematoxylin-eosin Staining

Tumors were excised and their largest (a) and smallest (b) diameters were measured to calculate tumor volume, \(V = \frac{\pi}{6}ab^2\). The excised tumors and lungs were fixed with 4% formaldehyde and embedded in paraffin. Serial sections were cut at 5 μm for histologic study. For each mouse, 30 intermittently selected sections were stained with hematoxylin and cosin and examined for the presence of intrahepatic metastasis (IHM) and lung metastasis. Two pathologists who were blinded to the groups independently evaluated the number of metastatic nodules. The standardized number of lung metastases (SNLM) was increased when the number of lung metastases was standardized by liver tumor size.

PCR Microarray Analysis of Gene Expression in Tumors

Six tumors from each group were pooled to extract total RNA and were studied using the Human Cancer PathwayFinder RT² Profiler PCR Array, according to the manufacturer’s instructions (http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-033A.html).

Quantitative Real-time PCR Analysis

RT-PCR procedures are described elsewhere [23]. The following primers for amplification of human genes were used: HTATIP2, forward 5’-TACACGGAGCAGGACGCT-3’, and reverse 5’-CTACTGAGCTCTAGACCCA-3’; and β-actin, forward 5’-CACCAGGAAGATACAGATTTGC-3’, and reverse 5’-GGCCGGACTCATGTACTCTGC-3’.

Western Blot Assay

Procedures are described elsewhere [23]. Primary antibodies included anti–E-cadherin (Cell Signaling Technology; Denver, MA), anti–N-cadherin (Abcam; Cambridge, MA), anti–vimentin (Santa Cruz Biotechnology; Santa Cruz, CA), anti–HTATIP2, anti–STAT3, anti–pSTAT3, anti–NF-κB(p65), anti–COX2 (Abcam, Hong Kong), and goat–anti–COX1, anti–β-catenin (Epitomics; Burlingame, CA) and anti–β-actin (Kangcheng Technology, Shanghai).

Immunofluorescence and Immunohistochemistry

To assess the distribution of HTATIP2 in HCC cells, HCCLM3-wt, HCCLM3-LV-shNon, HCCLM3-LV-shHTATIP2, HepG2-wt, HepG2-LV-Non, and HepG2-LV-HTATIP2 were stained by immunofluorescence. First, cultured cells were grown on slides and then washed and fixed. Cells were then incubated with primary antibody to HTATIP2 (Abcam, Hong Kong) and goat–anti–rabbit tetramethyl rhodamine isothiocyanate-conjugated secondary antibody (Santa Cruz Biotechnology; Santa Cruz, CA) before staining with 4’, 6-diamidino-2-phenylindole (DAPI). The fluorescent images were visualized using a confocal microscope (FV-1000; Olympus). The tumor sections were incubated with primary antibody to HTATIP2 (Abcam, Hong Kong) and goat–anti–rabbit IgG/horseradish peroxidase (Santa Cruz Biotechnology; Santa Cruz, CA) as the secondary antibody. For negative controls, primary antibodies were replaced with phosphate-buffered saline. Staining was independently evaluated by 2 observers.

Cell Proliferation and Invasion Assay

Cell proliferation was counted with a CCK-8 assay (Dojindo; Tokyo, Japan). HCCLM3-wt, HCCLM3-LV-shNon, HCCLM3-LV-shHTATIP2, HepG2-wt, HepG2-LV-Non, and HepG2-LV-HTATIP2 cells were incubated in 96-well plates (5×10³ cells/well).
with or without aspirin for 48 hours. The procedure for cell proliferation is described elsewhere [23]. For cell invasion assay, transwell chamber inserts (Corning Inc; Corning, NY) with a filter membrane pore size of 8 μm were coated with 80 μL Matrigel (0.8 mg/mL, BD Bioscience). HCCLM3-wt, HCCLM3-LV-shHTATIP2, HepG2-wt, and HepG2-LV-HTATIP2 cells were seeded at a concentration of 5 × 10⁴/mL in serum-free DMEM and incubated with 0.1 mmol/L and 0.5 mmol/L aspirin or vehicle at the upper chamber. DMEM containing 10% FBS was added to the lower compartment. Seventy-two hours later, cells were harvested and assayed for invasion.

Results

1. Aspirin Suppressed the Pro-invasion and Pro-metastasis Effects of Sorafenib in HCC

In both the HCCLM3-wt model and the HepG2-wt model, sorafenib (30 mg·kg⁻¹·d⁻¹) prolonged survival and decreased tumor volume (Figure 1 A,B). However, in the HCCLM3-wt model, the number of IHM was increased in the sorafenib group (Figure 1 C,E,F), which is in accordance with the previous result. Moreover, although there were fewer lung metastases in the sorafenib-treated mice, the standardized number of lung metastases (SNLM) was greater when the number of lung metastases was standardized by liver tumor size (Figure 1D). In the HepG2-wt model, sorafenib did not promote invasion and metastasis compared with untreated tumors (Figure 1 C,E). When tumors were treated with a combination of aspirin and sorafenib, the median survival was longer compared to that of the untreated group, in both the HCCLM3-wt model and the HepG2-wt model (Figure 1A), and the number of IHM was significantly less compared to the sorafenib group in the HCCLM3-wt model (Figure 1C,E,F), and tumor margins were clearer than in the sorafenib group in the HepG2-wt model (Figure 1 C,E). The number of lung metastases, the SNLM, and the incidence of lung metastasis in the HCCLM3-wt model were all lower in the combination treatment group than in the sorafenib group (Figure 1D). However, the aspirin group had neither decreased tumor volume nor prolonged survival compared with control mice (Figure 1 A,B).

2. Aspirin Up-regulated Tumor Suppressor Gene HTATIP2, which Was Down-regulated by Sorafenib

We demonstrated in a previous study that sorafenib promotes the invasiveness and metastatic potential of HCC, which is associated with changes in the expression of a number of genes, as shown by a PCR array [12]. We therefore investigated which genes might be responsible for the effect of aspirin. A PCR array profiling the expression of 84 genes representative of the 6 biological pathways involved in transformation and tumorigenesis showed that, in the HCCLM3-wt xenograft model, mice treated with combined sorafenib and aspirin had significantly different expression of 3 genes compared with the sorafenib group (Figure 2 A,B). HTATIP2, which was confirmed as the key gene down-regulated by sorafenib to promote the invasiveness and metastatic potential of HCC, was also identified as the key gene up-regulated by combined aspirin and sorafenib. Down-regulation of HTATIP2 by sorafenib and up-regulation of HTATIP2 by combination treatment were confirmed by RT-PCR and Western blotting in the HCCLM3-wt model (Figure 2 C,D). Sorafenib did not down-regulate mRNA and protein expression of HTATIP2 in HepG2-wt tumors compared with untreated tumors, probably because HepG2-wt has low expression of HTATIP2. However, combination treatment significantly up-regulated HTATIP2 expression in the HepG2-wt xenograft model (Figure 2 C,D).

As we showed in the previous study, sorafenib down-regulated HTATIP2 expression in the HCCLM3-wt cell line, but not the HepG2 cell line. Sorafenib combined with aspirin distinctly up-regulated HTATIP2 expression when compared with the sorafenib groups of both HCCLM3-wt and HepG2-wt cell lines (Figure 2 E,F).

3. Aspirin Inhibited the Invasiveness but not Proliferation of HCC Cells, and Reversed Epithelial-to-mesenchymal Transition by Up-regulating HTATIP2 Expression

HCCLM3-LV-shHTATIP2 (down-regulating HTATIP2 by siRNA), HCCLM3-LV-shNon (transfected with vector), HepG2-LV-HTATIP2 (up-regulating HTATIP2), and HepG2-LV-Non were used to explore the effect of aspirin on HTATIP2 expression. RT-PCR, Western blotting, and immunofluorescence showed that 0.5 mmol/L aspirin up-regulated HTATIP2 expression in all HCC cell lines except HCCLM3-LV-shHTATIP2 (Figures 3 A C and S1).

A 48-hour proliferation assay showed that aspirin had little effect on tumor cells at a concentration of 0.1–1 mmol/L, but it significantly inhibited proliferation at a concentration of 10 mmol/L in HCCLM3-wt and at a concentration of 2–10 mmol/L in HepG2-wt (Figure S2A). Because the concentration of aspirin in human plasma was 0.15–0.3 mmol/L, when the plasma aspirin concentration was taken at 100–300 mg/d for prevention of cerebro-cardiovascular diseases according to the drug instruction, we used 0.1 and 0.5 mmol/L in the following assays. A 48-hour proliferation assay showed that 0.1–0.5 mmol/L aspirin has no effect on HCCLM3-LV-shNon, HCCLM3-LV-shHTATIP2, HepG2-LV-Non, or HepG2-LV-HTATIP2 (Figure S2B). Cell invasion assay demonstrated that 0.5 mmol/L aspirin inhibited invasiveness of HCCLM3-wt, HepG2-wt, and HepG2-LV-HTATIP2 cells, but not HCCLM3-LV-shHTATIP2 cells (Figure 3F).

HTATIP2-knockdown HCCLM3-LV-shHTATIP2 cells had down-regulated expression of E-cadherin and up-regulated expression of N-cadherin and vimentin compared with HCCLM3-wt cells, whereas overexpression of HTATIP2 in HepG2-LV-HTATIP2 cells changed a panel of epithelial-to-mesenchymal transition markers toward mesenchymal-to-epithelial transition compared with HepG2-wt cells. HTATIP2 was significantly up-regulated with 0.1–0.5 mmol/L; as a result, E-cadherin was up-regulated and N-cadherin and vimentin were down-regulated in HepG2-wt. However, in HCCLM3-LV-shHTATIP2, aspirin had no effect on expression of HTATIP2 and epithelial-to-mesenchymal transition markers (Figure 3C).

4. Aspirin Up-regulated HTATIP2 Expression and Suppressed Invasiveness and Metastatic Potential in the HepG2-wt Xenograft Model

Immunohistochemistry and Western blotting revealed that aspirin significantly up-regulated HTATIP2 expression in HepG2-wt tumor tissues, had a mild effect on HTATIP2, and that the HepG2-wt xenograft model, sorafenib did not promote invasion and metastasis compared with untreated tumors, probably because HepG2-wt has low expression of HTATIP2. However, combination treatment significantly up-regulated HTATIP2 expression in the HepG2-wt xenograft model (Figure 2 C,D).
Aspirin suppressed the pro-invasion and pro-metastasis effects of sorafenib in orthotopic HCC models. (A) Median survival was improved by sorafenib treatment with or without aspirin in orthotopic HCCLM3 and HepG2 models. Moreover, sorafenib combined with aspirin significantly prolonged median survival compared to sorafenib alone (98.5±3.85 days vs 81.0±4.31 days in the HCCLM3-wt model, P = 0.0076; 92.3±3.82 days vs 77.7±3.54 days in the HepG2-wt model, P = 0.0122). (B) In the HCCLM3-wt model (left panel), tumor size was 1.70±0.12 cm³ in the sorafenib group (P < 0.001), 1.27±0.08 cm³ in the group treated with both sorafenib and aspirin (P < 0.001), and 3.68±0.18 cm³ in the control group. In the HepG2-wt model (right panel), tumors were smaller in the sorafenib group (1.02±0.11 cm³, P < 0.001), and the group treated with combined sorafenib and aspirin (0.84±0.11 cm³, P < 0.001), compared with controls (2.90±0.29 cm³). (C) In the HCCLM3-wt model (left panel), the sorafenib group had more intrahepatic metastases (IHM), although tumor size was smaller, and the group treated with combined sorafenib and aspirin had significantly fewer IHM. The HepG2-wt model (right panel), was characterized by invasive growth, and sorafenib did not further increase its invasiveness and metastasis. However, tumor margins became clearer in the group treated with combined sorafenib and aspirin. (D) In the HCCLM3-wt model, there were obviously fewer lung metastases in the sorafenib group (9.67±1.71) compared to the control group (17.67±1.94, P = 0.0129). The incidence of lung metastasis (6/6) was not decreased in the sorafenib group. However, the standardized number of lung metastases (SNLM) was greater in the sorafenib group (5.72±0.24) than in the control group (4.77±0.33, P = 0.0457). In the group treated with combined aspirin and sorafenib, the incidence of lung metastasis (4/6) and SNLM were distinctly decreased compared with the group treated with sorafenib alone (2.84±1.94 vs 5.72±0.24, P = 0.0421). (E) Hematoxylin-eosin staining confirmed that sorafenib induced more IHM in the HCCLM3-wt model, and aspirin was able to reverse the adverse effect. In addition, aspirin was able to effect a clearer margin in the HepG2-wt model. (F) Comparison of IHM in the HCCLM3-wt model. The number of IHM was greater in the sorafenib group compared to the control group (6.00±1.65 vs 0.50±0.34, P = 0.0225) and lower in the sorafenib and aspirin combined therapy group compared to the sorafenib group (0.17±0.17 vs 6.00±1.65, P = 0.0171).

doi:10.1371/journal.pone.0065023.g001
expression in HCCLM3-wt and HepG2-LV-HTATIP2, and had no effect on HTATIP2 expression in HCCLM3-LV-shHTATIP2 tumor tissues (Figure 4 A,B).

In a xenograft HCC model, aspirin significantly suppressed invasiveness in HepG2-wt cells with low expression of HTATIP2. Tumor margins were clearer in aspirin-treated mice than in control mice. However, aspirin had no effect in the HTATIP2-knockdown HCCLM3-LV-shHTATIP2 xenograft model; IHM occurred regardless of whether aspirin had been administered (Figure 4 C,D).

5. Aspirin Up-regulated HTATIP2 Expression by Inhibiting COX2 Expression

We have reported that HTATIP2 was down-regulated by sorafenib through the JAK/STAT pathway [12]. In the present study, we detected pSTAT3 and some downstream substrates of aspirin including, NF-κB, COX1, COX2, and β-catenin [25], to study whether they are affected by aspirin. As a result, COX1 and COX2 expression were evidently down-regulated by aspirin in all tested HCC cell lines (Figure 5A). Furthermore, the specific COX2 inhibitor NS-398, but not specific COX1 inhibitor FR122047, had an effect similar to aspirin in up-regulating HTATIP2 expression in HepG2-wt, but it had no effect in HCCLM3-wt and HepG2-LV-HTATIP2 (Figure 5 B,C).

Discussion

The present study demonstrated the synergistic effect of sorafenib and aspirin in prolonging median survival in 2 xenograft HCC models. Furthermore, aspirin suppressed the pro-invasion...
and pro-metastasis effects of sorafenib in HCC through up-regulation of HTATIP2, which was probably mediated by inhibition of COX2 expression.

An increasing number of preclinical studies have revealed that, in certain situations such as dose reduction or discontinuation of treatment, TKIs may promote invasiveness and metastatic potential of tumors despite inhibiting the growth of the tumors [6,26–28]. Potential mechanisms are intratumoral hypoxia [29], induction of other angiogenic cytokines when one is blocked [30], modulation of host environment [10], selection of more invasive and metastatic tumors by blockade of vascular endothelial growth factor pathways [11], and induction of metabolic changes in the tumor [31]. In a previous study we found that low-dose sorafenib promoted invasiveness and metastatic potential of HCC with higher expression of HTATIP2, although it inhibited primary tumor growth [12]. Because sorafenib is currently the only drug approved for advanced HCC, there is an urgent need for a therapeutic approach that improves its efficacy by mitigating its pro-tumor effects.

Inflammation has decisive roles in tumor initiation, promotion, invasion, and metastasis [32]. Aspirin, an anti-inflammatory agent [33], has shown usefulness in the prevention and treatment of cancers, especially those in the digestive tract [13–15,18]. The anti-platelet effect of aspirin prevented HCC and improved survival in a mouse model of chronic hepatitis B by reducing the number of intrahepatic HBV-specific CD8+ T cells and HBV-nonspecific inflammatory cells and the severity of liver fibrosis [34]. More recently, in a large randomized controlled study, aspirin decreased the incidence of HCC and death from chronic hepatic diseases [35], and another study showed that aspirin was associated with a reduced risk of hepatitis B virus-related HCC recurrence after liver resection [36], which highlights the role of aspirin in HCC. Preclinical studies have also demonstrated the anti-tumor effect of aspirin in HCC. High concentrations (>1 mM) of aspirin inhibited growth of cultured hepatoma cells as well as the synthesis of proteins and nucleic acids [37]. Intratumoral injection of 0.4 mL of 5% aspirin inhibited tumor growth in a rabbit VX2 tumor model [16]. Aspirin inhibited hepatocyte growth factor (HGF)-induced invasiveness of HepG2 cells by inhibiting the kinase activity of extracellular signal-regulated kinase (ERK) 1/2, resulting in the suppression of transcriptional activity of Elk-1 as well as nuclear factor-kB (NF-kB) and AP-1 [17]. In chemically induced HCC, aspirin suppressed lung metastasis by down-regulating intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) or by inhibiting NF-κB signaling [38,39]. The present study demonstrated that low-dosage aspirin (0.1–0.5 mM) did not inhibit the proliferation of HCC cells; however, it did inhibit the invasiveness of HCC cells with lower expression of HTATIP2, which is a known tumor suppressor gene [21,22,40].

Figure 3. Up-regulation of HTATIP2 by aspirin reversed epithelial-to-mesenchymal transition (EMT) and inhibited invasion in HCC cell lines. (A) Expression of HTATIP2 mRNA was detected by RT-PCR (columns, mean of 6 samples in each group; bars, SEM; *, P<0.05). (B) Invasion of HCC cell lines with different expression levels of HTATIP2 was measured by transwell assay. Left panel: migrated tumor cells. Right panel: quantification of invasion assay. (C) Levels of HTATIP2 protein and EMT markers, including E-cadherin, N-cadherin, and vimentin, were revealed by Western blotting.

doi:10.1371/journal.pone.0065023.g003
the xenograft HepG2-wt model, tumor margins became clearer in the aspirin group than in the control group, but tumor volume did not change in the aspirin-treated HCCLM3-wt and HepG2-wt models. This indicates that aspirin alone may not be effective in inhibiting primary tumor growth in HCC, even in a HepG2-wt model with low expression of HTATIP2. This is also supported by the results of the in vitro study, which showed that aspirin did not inhibit proliferation but did inhibit invasiveness in HCC cells with lower expression of HTATIP2. The present findings suggest that a combination of sorafenib and aspirin will achieve a better result than either alone, similar to the result of another study wherein aspirin enhanced doxorubicin-induced apoptosis and reduced tumor growth in HCC [41]. The combination of sorafenib and aspirin should be given to patients regardless of HTATIP2 expression status.

A recent study of ours revealed that sorafenib may down-regulate HTATIP2 through the JAK/STAT pathway [12]. The present study showed HTATIP2 can be up-regulated by aspirin, probably through inhibition of COX2 expression, but not pSTAT3, β-catenin, NF-κB, or COX1, although all these factors have been demonstrated as target molecules of aspirin [25]. Other mechanisms that may contribute to the anti-invasion effect of aspirin were not investigated in the present study, eg, inhibition of HGF-induced invasion of HepG2 through ERK1/2 [17];
initiation of cell cycle arrest and apoptosis mediated by increased metabolic and oxidative stress [42]; and inhibition or delay of immune-mediated hepatocarcinogenesis [34].

The main side effect of aspirin in clinical application was gastrointestinal hemorrhage [43,44]. Patients with cirrhosis often have coagulopathy and thrombocytopenia, and approximately 80% of patients with HCC have cirrhosis. Therefore, caution is warranted when using aspirin for HCC patients. The risk of gastrointestinal bleeding was significantly reduced when the dosage of aspirin was decreased [45]. Pharmacokinetic data showed that the concentration of aspirin in human plasma is 0.15–0.3 mmol/L when patients take a lower dosage (100–300 mg daily) according to the drug instruction. At 0.1 and 0.5 mmol/L, the working concentrations in the in vitro assays were considered low dosages. A dosage of 15 mg/kg aspirin in animals was equivalent to 75–100 mg daily dosage in human beings, when it was converted based on drug mass per body surface area [46]. In addition, aspirin in combination with a histamine-receptor inhibitor or proton-pump inhibitor reduced the risk of gastrointestinal bleeding [47–50]. A dosage of 15 mg/kg aspirin in animals was equivalent to 75–100 mg daily dosage in human beings, when it was converted based on drug mass per body surface area [46]. In addition, aspirin in combination with a histamine-receptor inhibitor or proton-pump inhibitor reduced the risk of gastrointestinal bleeding [47–50].

In conclusion, we found that aspirin reduced the invasiveness and metastasis of HCC through up-regulation of HTATIP2 expression, which is mediated by inhibition of COX2 expression. Sorafenib may down-regulate HTATIP2 expression, resulting in greater invasiveness and metastasis. Therefore, aspirin could be used to improve the efficacy of sorafenib, regardless of HTATIP2 expression in HCC tumor cells.

Supporting Information

Figure S1 HTATIP2 protein expression was revealed by immunofluorescence. Changes in HTATIP2 protein level were similar to those detected by Western blotting. (TIF)

Figure S2 Proliferation assay for HCC cell lines treated with different concentrations of aspirin. (A) Proliferation assay was conducted in HCCLM3-wt and HepG2-wt cells treated with different concentrations of aspirin for 48 hours. (B) Proliferation assay was conducted in 6 cell lines treated with aspirin for 48 hours. (TIF)
Acknowledgments

The authors thank Dr. Ya-Jun Guo and Dr. Jian Zhao for their generous support in sending us the HTATIP2 knockdown and overexpressing cell lines.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.
2. Zou Y, D’Ambrosia BO, Chen LT, Tanaka K, Lau WY, et al. (2009) Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 10: 1111–1118.
3. Tang ZY (2005) Hepatocellular carcinoma surgery-review of the past and prospects for the 21st century. J Surg Oncol 91: 95–96.
4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359: 378–390.
5. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, et al. (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: 25–34.
6. Desar IM, Mulder SF, Sillebroer AB, van Spronsen DJ, van der Graaf WT, et al. (2009) Aspirin minimised the negative effect of sorafenib. PLoS ONE 4(9): e7031.

Author Contributions

Conceived and designed the experiments: Z-YT. Performed the experiments: LL, WZ, ZC, YW, DZ. Contributed reagents/materials/analysis tools: L-QK, K-ZF, Y-Y, Q-BJ, Y-Q, J-Q, W-ZL. Wrote the paper: LL, H-CS, Z-YT.

Aspirin Minimized the Negative Effect of Sorafenib

apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 59: 561–574.
25. Langley RE, Burden S, Tierney JF, Caffery F, Parmar MK, et al. (2011) Aspirin and cancer: has aspirin been overlooked as an adjuvant therapy? Br J Cancer 105: 1107–1113.
26. de Groot JF, Fuller G, Kumar AJ, Piao Y, Erecovic K, et al. (2010) Tumor invasion after treatment of glialboma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12: 233–242.
27. Yu C, Friday BB, Lai JPY, Yang L, Sarkaria J, et al. (2006) Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NHR- terminal kinase pathways. Cancer Res 66: 2477–2481.
28. Carter CA, Chen C, Brink G, Vincent P, Maximenko YY, et al. (2007) Sorafenib is tolerable and in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol 59: 183–195.
29. De Beuck K, Maamone Z, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8: 393–403.
30. Casanova O, Hecklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2: 299–309.
31. Keunen O, Johansson M, Oudin A, Sanzeby M, Rahim SA, et al. (2011) Anti- VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108: 3749–3754.
32. Grénvall H, Petren FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 833–899.
33. Dinarello CA (2010) Anti-inflammatory Agents: Present and Future. Cell 140: 1299–1304.
34. Siita G, Aiolfi D, Ri Lucia P, Mainetti M, Fiocchi A, et al. (2012) Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci U S A 109: E2163–2172.
35. Sahasrabuddhe VV, Gunja MZ, Graubard BI, Trabert B, Schwartz LM, et al. (2012) Nonsteroidal Anti-inflammatory Drug Use, Chronic Liver Disease, and Hepatocellular Carcinoma. J Natl Cancer Inst. 95: 1175–1181.
36. Yu CY, Chen YJ, Ho HJ, Hsu YC, Kuo KN, et al. (2012) Association between nucleoside analogues and risk of hepatitis B virus-related hepatocellular carcinoma recurrence following liver resection. JAMA 309: 1906–1914.
37. Hidal V, De Millo MC, Horakova Z, Beaven MA (1977) Anti- proliferative activity of anti-inflammatory drugs in two mammalian cell culture lines. J Pharmocol Exp Ther 202: 446–454.
38. Futakuchi M, Ogawa K, Sano M, Tamanos Takeda, Okamaya H, et al. (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220–231.
39. Zhang W, Sun HC, Wang WQ, Zhang QB, Zhuang PY, et al. (2012) Sorafenib Down-regulates Expression of HTATIP2 to Promote Invasiveness and Metastasis of Orthotopic Hepatocellular Carcinoma Tumors in Mice. Gastroenterology.
40. Rodwll PM, Wilson M, Elvin CE, Nørving B, Alaga A, et al. (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376: 1741–1750.
41. Rodwll PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, et al. (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual participant data from eight randomised controlled trials. Lancet 377: 31–41.
42. Rodwll PM, Wilson M, Price JF, Belch JF, Meade TW, et al. (2012) Effect of daily aspirin on cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379: 1391–1601.
43. Haas-Hosse R, Baud RS, House WS (2008) Effects of acetylsalicylic acid and acetic acid solutions on VX2 liver carcinoma in rabbits. In vivo analysis. Acta Cir Bras 22: 299–308.
44. Abiru S, Nakao K, Ichikawa T, Migita K, Shigeno M, et al. (2002) Aspirin and NS-390 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology 35: 1117–1124.
45. Rodwll PM, Wilson M, Elvin CE, Nørving B, Alaga A, et al. (2010) Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 376: 1692–1612.
46. Holmes MD, Chen WY, Li L, Hertzmark E, Spiegelman D, et al. (2010) Aspirin intake and survival after breast cancer. J Clin Oncol 28: 1467–1472.
47. Li Y, Tian B, Yang J, Zhao L, Wu X, et al. (2004) Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 130: 460–468.
48. Zhao J, Lu B, Xu H, Tong X, Wu G, et al. (2008) Thirty-kidendon Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 48: 265–273.
49. Zou Y, D’Ambrosia BO, Chen LT, Tanaka K, Lau WY, et al. (2009) Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 10: 1111–1118.
50. Holmes MD, Chen WY, Li L, Hertzmark E, Spiegelman D, et al. (2010) Aspirin intake and survival after breast cancer. J Clin Oncol 28: 1467–1472.
51. Li Y, Tian B, Yang J, Zhao L, Wu X, et al. (2004) Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 130: 460–468.
52. Chan FK, Ching YJ, Hung LG, Wong WY, Leung VK, et al. (2005) Clodogrel versus aspirin and esomprazole to prevent recurrent ulcer bleeding. N Engl J Med 353: 238–244.
53. Chan FK, Ching SC, Siu BY, Lee YT, Leung WK, et al. (2001) Preventing recurrent upper gastrointestinal bleeding in patients with Helicobacter pylori infection who are taking low-dose aspirin or naproxen. N Engl J Med 344: 967–973.

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e65023
49. Lai KC, Lam SK, Chu KM, Wong BC, Hui WM, et al. (2002) Lansoprazole for the prevention of recurrences of ulcer complications from long-term low-dose aspirin use. N Engl J Med 346: 2033–2038.

50. Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, et al. (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345: 494–502.