Crossover between Fermi liquid and non-Fermi liquid behavior in the non-centrosymmetric compound Yb$_2$Ni$_{12}$P$_7$

S Jang1,2,3, B D White1,2, P-C Ho4, N Kanchanavatee1,2, M Janoschek1,2,5, J J Hamlin1,2,6 and M B Maple1,2

1 Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
2 Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093, USA
3 Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
4 Department of Physics, California State University, Fresno, CA 93740-8031, USA
E-mail: mbmaple@ucsd.edu

Received 30 June 2014, revised 2 September 2014
Accepted for publication 5 September 2014
Published 2 October 2014

Abstract
A crossover from a non-Fermi liquid to a Fermi liquid phase in Yb$_2$Ni$_{12}$P$_7$ is observed by analyzing electrical resistivity $\rho(T)$, magnetic susceptibility $\chi(T)$, specific heat $C(T)$, and thermoelectric power $S(T)$ measurements. The electronic contribution to specific heat, $C_e(T)$, behaves as $C_e(T)/T \sim -\ln(T)$ for $5 \text{ K} < T < 15 \text{ K}$, which is consistent with non-Fermi liquid behavior. Below $T \sim 4 \text{ K}$, the upturn in $C_e(T)/T$ begins to saturate, suggesting that the system crosses over into a Fermi-liquid ground state. This is consistent with robust $\rho(T) - \rho_0 = AT^2$ behavior below $T \sim 4 \text{ K}$, with the power-law exponent becoming sub-quadratic for $T > 4 \text{ K}$. A crossover between Fermi-liquid and non-Fermi liquid behavior suggests that Yb$_2$Ni$_{12}$P$_7$ is in close proximity to a quantum critical point, in agreement with results from recent measurements of this compound under applied pressure.

Keywords: non-Fermi liquid, correlated electrons, quantum critical point

(Some figures may appear in colour only in the online journal)

1. Introduction
For more than four decades, rare-earth- and actinide intermetallic compounds containing Ce, Pr, Sm, Eu, Tm, Yb, and U have received considerable attention due to their unusual properties, which are generally related to, or consequences of, an f-electron valence instability. The low-temperature properties are associated with hybridization of the localized f-electron and conduction electron states [1, 2] as described by the Friedel–Anderson model [3]. There are many models for this subtle electronic state that are neither localized nor truly itinerant, but a common feature is the existence of a characteristic energy scale $k_B T^*$ that delineates high-temperature magnetic (Curie–Weiss law) behavior from low-temperature nonmagnetic (Pauli-like) behavior of the f-electrons. When the strength of the hybridization is especially large, the f-electron shell may fluctuate between two f-electron configurations f^n and f^{n-1}, where n is an integer. The unit-cell volume of a system with rare-earth ions in such a ‘valence-fluctuating’ state [4] is intermediate between those of the integral-valence states that correspond to the configurations f^n and f^{n+1}. This results in a deviation of the unit-cell volume from the corresponding volumes of trivalent lanthanide ions associated with the lanthanide contraction. Furthermore, the electrical resistivity, $\rho(T)$, of valence fluctuating systems typically shows a Fermi liquid-like quadratic temperature dependence at low temperature and a shoulder in $\rho(T)$ at high temperatures [4–7].

The element Yb has an ambivalent character in a number of metallic compounds, resulting in an intermediate-valence state...
consisting of a temporal admixture of Yb$^{3+}$ (4f13) and Yb$^{2+}$ (4f14) [8]. In particular, Yb compounds are also of interest because the trivalent Yb ion can be thought of as the 4f hole counterpart of the trivalent Ce ion, which has one electron in its 4f shell. As in the case of Ce compounds [9], the Yb-based intermetallic compounds exhibit a rich diversity of physical properties that are not completely understood [10].

The low-temperature ground states of f-electron compounds, and the quantum phase transitions between them, often generate striking quantum phenomena and phases. Quantum phase transitions, or quantum critical points (QCPs), and their effect on the physical properties at finite temperatures have attracted considerable attention since the 1990s [11]. In metallic systems, strong deviations from Fermi-liquid (FL) behavior for example, the electronic contribution to specific heat divided by temperature, C_e/T, shows characteristic $-\ln T$ behavior at low temperatures instead of becoming temperature independent. The electronic resistivity, $\rho(T)$, is proportional to T^n with an exponent of $n = 1 - 1.5$ instead of the FL result where $n = 2$ [12]. While a large number of Ce- and U-based heavy-fermion (HF) systems have been discovered and thoroughly investigated [11], there are comparatively fewer Yb-based HF systems in which a QCP can be accessed without external tuning) [13]. These factors motivated us to search for and study the low-temperature properties of other Yb-based systems that are situated near magnetic QCPs.

Compounds with the non-centrosymmetric Zr$_2$Fe$_{12}$P$_7$-type hexagonal crystal structure (space group $P6$) with the general formula Ln$_2$T$_{12}$P$_n$ (where Ln = lanthanide, T = transition metal, and P_n = P or As) have been studied for the past 50 years [14–17]. Most of these studies have involved efforts to synthesize the materials and study their crystal structure, so that their physical properties are still mostly unreported. Recently, some interesting correlated electron behavior has been reported for several compounds with this structure, such as heavy-fermion behavior and ferromagnetism in Sm$_2$Fe$_{12}$P$_7$ [18], and local-moment antiferromagnetism in U$_2$Fe$_{12}$P$_7$ [19]. The temperature-magnetic field phase diagram in Yb$_2$Fe$_{12}$P$_7$, which exhibits a crossover from one NFL regime on a QCP, there are no comprehensive studies of this compound that have been made to very low temperature; such a study is necessary to elucidate details of the possible QCP. Motivated by these previous studies, and in order to study the low-temperature behavior of Yb$_2$Ni$_{12}$P$_7$ further, we performed measurements of ρ, χ, and C on high-quality single crystalline samples at temperatures down to 100 mK for $\rho(T)$, and 2 K for $\chi(T)$ and $C(T)$. We also performed measurements of the thermoelectric power, $S(T)$. In agreement with previous reports, an IV Yb state is clearly observed in the physical properties and the valence is estimated to be ~2.76 based on analysis of the $\chi(T)$ data. A robust quadratic temperature dependence for ρ (i.e. $\rho \sim T^n$ where $n = 2$) is observed below ~4 K, which indicates that Yb$_2$Ni$_{12}$P$_7$ has a FL ground state. The electronic contribution to the specific heat exhibits $C_e(T)/T = -\ln T$ behavior for 5 K $< T < 15$ K, which is consistent withNFL behavior. Below ~5 K, the upturn in $C_e(T)/T$ begins to saturate, suggesting that the system crosses over into a FL ground state. The possibility of a crossover between FL and NFL states near ~5 K is strengthened by analysis of the temperature dependence of the power–law exponent, $n(T)$, of the electrical resistivity, which becomes sub-quadratic at temperatures above 4 K. A crossover between FL and NFL behavior is consistent with Yb$_2$Ni$_{12}$P$_7$ being in proximity to an unidentified QCP.

2. Experiment

Single-crystalline samples of Yb$_2$Ni$_{12}$P$_7$ and La$_2$Ni$_{12}$P$_7$ were prepared from elemental Yb (small dendritic pieces) or La (small chunks), Ni (small dendritic pieces), and P (small lumps). The crystals were grown by reacting elements with purities of 99.9% (or better) with the initial atomic ratios $\text{Yb: Ni: P: Sn} = 1: 4: 2: 30$ in a molten Sn flux. The starting materials were sealed under vacuum in a quartz tube, heated to 1150 °C, dwelled for 24 h, and cooled slowly to 600 °C over a span of 168 h. The Sn flux was spun off using a centrifuge. Any residual Sn on the surface of the crystals was etched away in dilute HCl. Needle-shaped single crystals were obtained with typical dimensions of $4 \times 0.5 \times 0.5 \text{mm}^3$.

Polycrystalline samples of Yb$_2$Ni$_{12}$P$_7$ for thermoelectric power measurements were prepared from elemental Yb (small dendritic pieces), Ni (powder), and P (small lumps). The starting materials were sealed under vacuum in quartz tubes, slowly heated to 1000 °C, and held at this temperature for 3 d. After the initial reaction, the sample was ground into a powder, pressed into a pellet, and annealed at 1135 °C for 3 d. Finally, the sample was re-ground again and fired at 1135 °C for 3 d.
X-ray diffraction measurements were performed on powdered single crystals using a Bruker D8 Discoverer x-ray diffractometer. The resulting powder diffraction patterns were refined by means of Rietveld analysis [24] implemented in the program suite GSAS [25]. The stoichiometry was further verified using energy dispersive x-ray spectroscopy (EDX) measurements with a FEI Quanta 600 and an INCA EDX detector from Oxford instruments. Isothermal magnetization $M(H)$ and magnetic susceptibility $\chi(T) = M(T)/H$ were measured for $T = 2$–300 K in magnetic fields $\mu_0 H$ up to 7 T using a Quantum Design (QD) Magnetic Property Measurement System. The magnetic field, H, was applied both parallel and perpendicular to the crystallographic c axis. We measured specific heat between 2 K and 50 K in a QD Physical Property Measurement System DynaCool using a standard thermal relaxation technique. Electrical resistivity measurements were carried out in a four-wire configuration in a pumped 4He dewar to 1.1 K and in an Oxford Kelvinox dilution refrigerator between $T = 100$ mK and 20 K and in magnetic fields of $\mu_0 H = 0$ T and 9 T.

Measurements of the thermoelectric power were performed by applying a static temperature gradient of $\Delta T/T = 2\%$, where ΔT was measured using two Cernox 1050 thermometers and a Lakeshore 340 Temperature Controller. Copper leads were attached to the sample using silver epoxy in a two-wire configuration. The thermoelectric voltage generated by the sample was measured using a Keithley 2182 Nanovoltmeter and was corrected for a background contribution arising from a slight compositional asymmetry of the alloys used in the twisted pairs of wires running from the sample to the external electronics at room temperature.

3. Results

3.1. Crystal structure

The unit-cell volume of Yb$_2$Ni$_{12}$P$_7$ was determined from powder x-ray diffraction measurements at room temperature to be 259.4 Å3. In figure 1, the unit-cell volume of Ln$_2$Ni$_{12}$P$_7$ is plotted versus lanthanide ion Ln where open circles are taken from [16]. Starting with La, one observes the typical reduction of the volume due to the contraction of the ionic radii of the lanthanides with increasing atomic number. However, the cases of Ln = Ce and Eu exhibit behavior that reflects their tendency toward assuming tetravalent and divalent states, respectively. Our result for Yb$_2$Ni$_{12}$P$_7$ is in good agreement with other reported values within experimental uncertainty [22, 26]. According to the trend of the unit-cell volumes, the Yb ion in Yb$_2$Ni$_{12}$P$_7$ appears to be nearly trivalent at room temperature.

3.2. Magnetic susceptibility

Magnetic susceptibility, $\chi(T)$, measurements were performed for Yb$_2$Ni$_{12}$P$_7$ in a magnetic field of $\mu_0 H = 0.5$ T with the field applied parallel and perpendicular to the c axis. The data are shown in figure 2. Curie–Weiss (CW) behavior was observed at temperatures between 200 K and 300 K with CW temperatures $\theta_{\text{CW}} = -34$ K and -52 K for $H \perp c$ and $H \parallel c$, respectively (see lines in figure 2(b)). Effective magnetic moments, $\mu_{\text{eff}} = 4.1 \mu_B$ and $3.4 \mu_B$, for $H \perp c$ and $H \parallel c$, respectively, were also obtained from our analysis. These two values are lower than the previously reported value of $\mu_{\text{eff}} = 5.1 \mu_B$, which was obtained from a fit over the temperature range 50–300 K; however, we note that the orientation of H with respect to the c axis was not specified in that report [23]. These effective magnetic moments are intermediate between the Hund’s rule values for Yb$^{3+}$ ($\mu = 4.5 \mu_B$ for the free ion) and nonmagnetic Yb$^{2+}$ ($\mu = 0 \mu_B$) configurations. This result suggests that the Yb ions in this compound assume an intermediate valence.

Below 100 K, $\chi(T)$ saturates and exhibits temperature-independent Pauli paramagnetic behavior with $\chi_0 = 0.014$ cm3/mol-Yb and 0.009 cm3/mol-Yb for $H \perp c$ and $H \parallel c$, respectively. These values are comparable to a previously reported value of $\chi_0 = 0.012$ cm3/mol-Yb.
and suggest a moderately-enhanced effective mass for the conduction electrons [23]. Measurements of M versus H are displayed in figure 2(c), which were performed at 2 K, 20 K, and 100 K. These temperatures are at or lower than the crossover from Curie–Weiss to Pauli paramagnetic behavior, and the M versus H data are consistent with that interpretation. This type of behavior is common for mixed-valent Ce- and Yb-based compounds as seen, for instance, in CeRhIn and YbCuAl [27, 28]. The sharp rise of $\chi(T)$ below 20 K is probably due to the presence of Yb$_2$O$_3$ as a secondary impurity phase in the samples; though it could also be consistent with NFL behavior [29, 22, 30–32].

The behavior of $\chi(T)$ can be interpreted within the framework of the inter-configuration fluctuation (ICF) model [1, 32]. In the ICF model, which was applied to Yb$_2$Ni$_{12}$P$_7$ in [22], expected values for measured physical quantities (e.g., Yb valence, Mössbauer isomer shift, magnetic susceptibility, etc) are calculated by averaging over the occupied 4fn and 4f$^{n-1}$ multiplet states. The energy difference between the ground state and excited-state configurations is defined as E_{exc}. The $\chi(T)$ data, and the fit to $\chi(T)$ using the ICF model, are plotted as a function of temperature for both orientations ($H \parallel c$ and $H \perp c$) in figure 2(a). The ground state of Yb (Yb$^{2+}$, 4f14) has total angular momentum $J = 0$ and effective magnetic moment $\mu_\text{eff}^2 = 0$, while the excited state (Yb$^{3+}$, 4f13) has $J = 7/2$ and $\mu_\text{eff}^3 = 4.54 \mu_B$. The temperature dependence of the susceptibility of the mixed-valence Yb ions in the ICF model is given by [33]

$$\chi(T) = (1 - n_{\text{imp}}) \frac{N(\mu_\text{eff}^2)^2 P(T)}{3k_B(T + T_{\text{vf}})} + n_{\text{imp}} \frac{C}{T} + \chi_0,$$

where

$$P(T) = \frac{8}{8 + \exp[E_{\text{exc}}/k_B(T + T_{\text{vf}})]}.$$

$P(T)$ is the fractional occupation probability for the 4f13 contribution, T_{vf} is the valence-fluctuation temperature, χ_0 is a temperature-independent contribution to the magnetic susceptibility (but is not the enhanced Pauli susceptibility), and N is the number of Yb ions. The Curie term in equation (1), weighted by a scale factor n_{imp}, is introduced to account for the upturn in $\chi(T)$ at low temperatures that is likely caused by paramagnetic impurities containing Yb$^{3+}$ ions. The other $1 - n_{\text{imp}}$ fraction of Yb ions in the single crystals produce the intrinsic magnetic susceptibility of Yb$_2$Ni$_{12}$P$_7$ (characterized in equation (1) by the ICF model term). A least-squares fitting procedure was used to fit equation (1) to the experimentally observed $\chi(T)$ data plotted in figure 2(a). The best fits are shown as solid lines in figure 2(a) with the following parameters: $E_{\text{exc}} = 325$ K, $T_{\text{vf}} = 140$ K, $n_{\text{imp}} = 0.016$, and $\chi_0 = 5.46 \times 10^{-3}$ cm3 mol$^{-1}$ for $H \perp c$, and $E_{\text{exc}} = 453$ K, $T_{\text{vf}} = 198$ K, $n_{\text{imp}} = 0.013$, and $\chi_0 = 5.27 \times 10^{-3}$ cm3 mol$^{-1}$ for $H \parallel c$. The valence of the Yb ion in Yb$_2$Ni$_{12}$P$_7$ is calculated at room temperature using equation (2) to be 2.79 and 2.76 for $H \perp c$ and $H \parallel c$, respectively. These parameters agree reasonably well with values of $E_{\text{exc}} = 278$ K, $T_{\text{vf}} = 68$ K, and a value of 2.79 that were obtained in a previous ICF model analysis of $\chi(T)$ data for a polycrystalline sample of Yb$_2$Ni$_{12}$P$_7$ [22]. The values of T_{vf} are also comparable to values reported for other Yb-based mixed-valence compounds, such as YbAl$_3$ [34]. The best-fit E_{exc} values are comparable to those of certain Yb compounds, such as YbB$_4$ [33], but are about a factor of two larger than the value for the compound YbAl$_3$ [34].

From the analysis of $\chi(T)$ data using the ICF model, we estimate an impurity ratio of $\sim 1\%$. This value is comparable to the impurity concentration that is estimated from the entropy associated with AFM order in Yb$_2$O$_3$ in $C(T)/T$ data as discussed below. Since the contribution to $\chi(T)$ from the impurity phase can be large at low temperature, even though the impurity concentration is low, the upturn probably originates from the presence of Yb$_2$O$_3$ in the sample. Another possible explanation for the upturn in $\chi(T)$ between 2–10 K is that it

![Figure 2](image-url)
could be a manifestation of NFL behavior; this explanation would suggest that the upturn is an intrinsic property of Yb$_2$Ni$_{12}$P$_7$ rather than being extrinsic (i.e. from impurities). We find that the upturn can be described by a weak power law or with a logarithmic temperature dependence of the form $\chi_{ab}(T) = a - b \ln(T - c)$ where best-fit values were found to be $a = 0.016$ cm3 mol$^{-1}$, $b = 7.82 \times 10^{-4}$ cm3 mol$^{-1}$, and $c = 1.94$ K. Such a temperature dependence for the magnetic susceptibility is a significant departure from FL behavior; however, we cannot ignore the compelling evidence for a small amount of magnetic impurities in our samples. While these impurities likely play a significant role in producing the low-temperature upturn, we also cannot rule out the possibility that it arises from a combination of NFL behavior (intrinsic) and Curie-law behavior (extrinsic).

3.3. Electrical resistivity

The electrical resistivity, $\rho(T)$, of Yb$_2$Ni$_{12}$P$_7$, measured in magnetic fields $\mu_0 H = 0$ T and 9 T, is shown in figure 3 between 100 mK and 300 K. $\rho(T)$ decreases linearly between 180–300 K with decreasing temperature. At lower temperatures, there is a gentle roll off with decreasing temperature that could be related to splitting of the $J = 7/2$ multiplet of Yb by the crystalline electric field. The curvature in $\rho(T)$ has also been previously attributed to typical behavior for IV Yb-based compounds with low values of E_{exc} and T_K [22]. To characterize $\rho(T, H)$ at low temperature, the data were fitted with a power law,

$$\rho(T) = \rho_0 + A T^n,$$ \hspace{1cm} (3)

where the best fit was determined from a plot of $\ln(\rho - \rho_0)$ versus $\ln(T)$. We note that A is an important quantity in FL systems (i.e. for $n = 2$), but in other cases where $n \neq 2$, A would just be interpreted as a coefficient. The value of ρ_0 was selected to maximize the linear region of the fit extending from low T. Such fits always resulted in $n = 2$ as is emphasized in the plot of ρ versus T^2 shown in the inset of figure 3, where it is apparent that the electrical resistivity follows a FL-like T^2 temperature dependence at low T [5,35]. A quadratic temperature dependence for ρ at low T is observed in many other Yb- and Ce-based mixed-valence and heavy-fermion compounds (e.g. CeInP$_4$ and YbAgCu$_4$) [36,37]. From these fits, we find that $\rho_0 \sim 15.8 \mu$Ω cm and 16.3 μΩ cm and that $A = 0.0458 \mu$Ω cm K$^{-2}$ and 0.0462 μΩ cm K$^{-2}$ for $\mu_0 H = 0$ T and 9 T, respectively. These results suggest that applied magnetic fields $\mu_0 H \leq 9$ T have a negligible effect on the FL ground state.

3.4. Specific heat

The specific heat of Yb$_2$Ni$_{12}$P$_7$ is plotted in figure 4 as C/T versus T as measured in $\mu_0 H = 0$ T and 9 T applied magnetic fields. There appears to be very little difference between the data measured in $\mu_0 H = 0$ T and 9 T magnetic fields. The upturn in C/T at low temperature prevents us from extracting the Sommerfeld coefficient, γ, from a fit of C/T versus T^2 at temperatures $T \leq \Theta_D/50$. If we estimate γ by extrapolating C/T to zero temperature, denoted herein as γ_0, we obtain $\gamma_0 \sim 192$ mJ Yb mol K$^{-2}$ and 196 mJ (Yb-mol K2)$^{-1}$ for $\mu_0 H = 0$ T and 9 T, respectively. These values for γ_0 are comparable to other values that were reported previously [22,23]. A small peak near $T_N = 2.3$ K is observed in figure 4(a) (data measured in $\mu_0 H = 0$ T) which is due to antiferromagnetic (AFM) ordering of Yb$_2$O$_3$ impurities [38]. These impurities are probably present on the surface of the single crystals. The presence of Yb$_2$O$_3$ impurities was also reported in other studies of Yb$_2$Ni$_{12}$P$_7$ [22]. The entropy associated with this anomaly, presumably proportional to the concentration of the impurity phase that produces it, is about 1.2% of $R \ln 2$. Figure 4(b) shows the electronic contribution to specific heat, C_e/T, obtained by subtracting the lattice contribution from C/T. In the temperature range from $T = 2$ K to 17 K, C_e/T appears to increase with decreasing temperature. This same behavior was reported in [22] despite the presence of a larger Yb$_2$O$_3$ contribution (characterized by feature at $T_N \sim 2.3$ K) than we observed in our single crystal samples. In the inset of figure 4(b), C_e/T is plotted on a semi-log scale to emphasize the logarithmic character of $C_e/T \sim -\ln T$ down to ~ 5 K. This behavior is consistent with typical NFL behavior observed in many other systems [39–43]. Below 5 K, the logarithmic divergence in C_e/T begins to saturate which might indicate a crossover into a FL state at low temperature. A similar situation is observed in the compound YbCo$_2$Zn$_{20}$ at $T \sim 0.2$ K [44].

3.5. Thermoelectric power

Figure 5 displays the thermoelectric power, $S(T)$, for Yb$_2$Ni$_{12}$P$_7$ between 2–300 K. The sign of $S(T)$ is negative over the entire measured temperature range. Large, negative values for $S(T)$ are commonly observed in other Yb-based Kondo lattice systems [45,46]. The deep minimum near ~ 40 K could be related to spin fluctuations [45,47] like in YbCu$_4$Si$_2$. However, a single minimum is also predicted for a generic Yb-based Kondo lattice system in which hybridization between localized and itinerant electron states is strong enough to facilitate an intermediate Yb valence [48]. This latter
Figure 4. (a) Specific heat, C, divided by temperature, T, for Yb$_2$Ni$_{12}$P$_7$, measured in applied magnetic fields $\mu_0 H = 0$ T and 9 T. Filled and open circles represent $\mu_0 H = 0$ T and $\mu_0 H = 9$ T data, respectively. (b) Electronic contribution to specific heat, C_e/T, obtained by subtracting the phonon contribution. The inset displays C_e/T plotted on a logarithmic temperature scale. The upturn in C_e/T has a logarithmic character down to ~ 5 K, below which, it tends to saturate with decreasing T.

Figure 5. (a) Thermoelectric power, $S(T)$, for Yb$_2$Ni$_{12}$P$_7$ plotted on a semilogarithmic scale. A large negative peak is observed in $S(T)$ near 40 K. (b) $S(T)$ divided by temperature, $S(T)/T$, plotted on a semilogarithmic scale. An arrow explicitly designates a temperature, T_{FL}, associated with a crossover from non-Fermi liquid to Fermi liquid behavior for $T \leq T_{FL}$ observed in our measurements of specific heat and electrical resistivity.

4. Discussion

In order to evaluate potential HF behavior, we calculated the Kadowaki–Woods ratio, $R_{KW} = A/\gamma^2$, where γ is the

scenario is consistent with the evidence for an intermediate Yb valence in Yb$_2$Ni$_{12}$P$_7$ from our magnetic susceptibility data.

Figure 5(b) displays $S(T)$ data divided by T, $-S(T)/T$, plotted on a logarithmic T scale. The $-S(T)/T$ data increase upon cooling for $T \geq 13$ K, reaching a maximum value of 1.34 μV K$^{-2}$ at $T_{max} \sim 13$ K. The maximum value of $S(T)/T$ is almost 2 orders of magnitude larger than the maximum values for simple metals such as Cu where $S/T \sim -30$ nV K$^{-2}$ [49]. Enhanced values of $S(T)/T$ have been reported for many HF compounds [49–51] and are considered to be closely related to the strongly-enhanced values of $C(T)/T$. As can be seen in figure 5(b), $-S(T)/T$ exhibits a break in slope at a temperature we denote T_{FL}. These observations are qualitatively consistent with a FL ground state as previously inferred from the electronic contribution to specific heat, C_e/T, in which a potential crossover between NFL and FL behavior is observed at T_{FL}. Though there is reasonable evidence for such a crossover in both C_e/T and $\rho(T)$ data (see next section), we note that we are unable to definitively identify any evidence for NFL behavior in our S/T data for $T > T_{FL}$.

If we extrapolate $S(T)/T$ to zero temperature, we obtain a value of $-S_0/T \sim 1.1(2)$ μV K$^{-2}$. A FL state can be characterized by the ratio of $S_0(T)/T$ to γ [49, 52, 53]. A ‘quasi-universal’ ratio, $q = (N_A e/\gamma)S_0(T)/T \approx \pm 1$, is expected to be obeyed for FL systems where N_A is Avogadro’s number and e is the charge of an electron. The sign of q depends on the dominant type of charge carriers. Although a single band and scattering process is generally insufficient to explain the strong correlation effects in materials like HF systems, given that $C(T)/T$ and $S(T)/T$ are most sensitive to the position of the heavy band, a quasi-universal ratio is expected to hold at low temperature [54, 55]. Using our value of $S_0(T)/T \sim 1.1(2)$ μV K$^{-2}$ and $\gamma_0 \sim 192$ mJ (Yb-mol K2)$^{-1}$, we obtain $q \approx -0.6(1)$. This calculated value of q is close to the expected value for an Yb-based FL system, supporting the evidence from specific heat for a FL ground state in Yb$_2$Ni$_{12}$P$_7$.

4. Discussion

In order to evaluate potential HF behavior, we calculated the Kadowaki–Woods ratio, $R_{KW} = A/\gamma^2$, where γ is the
Figure 6. (a) The exponent, \(n \), defined in the expression, \(\rho = \rho_0 + A T^n \), and calculated as described in the text, is plotted versus \(\log T \). Inset: \(\rho \) versus \(T^2 \) data; the red line emphasizes the temperature range over which \(\rho \) exhibits a quadratic temperature dependence. (b) \(\rho(T) \) data for Yb$_2$Ni$_{12}$P$_7$ and La$_2$Ni$_{12}$P$_7$. The \(\rho(T) \) data for La$_2$Ni$_{12}$P$_7$ have been scaled by a factor of 0.95 so that the slope \((d\rho/dT) \) at high temperature is equal to the slope of the \(\rho(T) \) data for Yb$_2$Ni$_{12}$P$_7$. (c) The 4f electron contribution to \(\rho(T) \) in Yb$_2$Ni$_{12}$P$_7$, \(\rho_{4f} \), plotted versus \(T \). The \(\rho_{4f} \) contribution was obtained by subtracting the scaled \(\rho(T) \) data for La$_2$Ni$_{12}$P$_7$ from the \(\rho(T) \) data for Yb$_2$Ni$_{12}$P$_7$.

The coefficient of electronic specific heat and \(A \) is the coefficient of the \(T^2 \) contribution to \(\rho \). In the original treatment, Kadowaki and Woods reported a universal value \(R_{KW} \sim 10^{-5} \mu \Omega \text{cm} \) (mol K m$^{-1}$)2 for all HF compounds [56]. More recently, it has been found that many (but not all) Yb-based HF systems are characterised by \(R_{KW} \) values that can be two orders of magnitude smaller than the conventional Kadowaki–Woods ratio value. This result is related to the fact that the ground-state degeneracy of \(N = 8 \) for Yb modifies the conventional Kadowaki–Woods ratio so that it becomes \(R_{KW} \approx 1 \times 10^{-5}/(\frac{4}{3} N(N - 1)) \mu \Omega \text{cm} \) (mol K m$^{-1}$)$^2 = 0.36 \times 10^{-6} \mu \Omega \text{cm} \) (mol K m$^{-1}$)2 [57]. Using our values of \(y_0 \sim 192 \text{mJ} \) (Yb-mol K$^{-2}$) and \(A \sim 0.0458 \mu \Omega \text{cm} \) K$^{-2}$, both obtained for \(\mu_0 H = 0 \text{T} \), we calculate \(R_{KW} \sim 1.24 \times 10^{-6} \mu \Omega \text{cm} \) (mol K m$^{-1}$)2. This value of \(R_{KW} \) suggests that Yb$_2$Ni$_{12}$P$_7$ has a heavy FL ground state. Similar results are obtained in the case of \(\mu_0 H = 9 \text{T} \) where \(R_{KW} \sim 1.20 \times 10^{-6} \mu \Omega \text{cm} \) (mol K m$^{-1}$)2 (calculated using \(y_0 \sim 196 \text{mJ} \) (Yb-mol K$^{-2}$) and \(A \sim 0.0462 \mu \Omega \text{cm} \) K$^{-2}$). Identifying the ground state of Yb$_2$Ni$_{12}$P$_7$ as being a heavy FL seems to be at odds with the logarithmic divergence with decreasing \(T \) in \(C_e/T \) as plotted in the inset of figure 4(b). The \(C_e/T \sim -\ln T \) behavior for \(5 \leq T \leq 15 \) is a typical characteristic of NFL behavior [12]. However, below \(T \sim 5 \text{K} \), \(C_e/T \) tends to saturate with decreasing \(T \), which is indicative of a crossover between FL and NFL behavior in the vicinity of \(T \sim 5 \text{K} \).

To further investigate the possibility that there is a crossover between FL and NFL behavior in Yb$_2$Ni$_{12}$P$_7$, an analysis of the evolution of the exponent, \(n \), (as defined in equation (3)) with temperature was conducted and is plotted in figure 6(a). It is important to note that equation (3) is only valid in temperature regions where electron–phonon scattering and other contributions are negligible (i.e. at low temperature). Since electron–phonon scattering contributes an additive term to \(\rho(T) \) that is a power law in temperature according to the Bloch–Grüneisen theory, it is important to subtract this contribution so that \(n(T) \) can be meaningfully calculated. Measurements of \(\rho(T) \) for Yb$_2$Ni$_{12}$P$_7$ and a non-magnetic reference compound, La$_2$Ni$_{12}$P$_7$, are shown in figure 6(b). The \(\rho(T) \) data for La$_2$Ni$_{12}$P$_7$ have been scaled by a factor of 0.95, so that their slope matches the slope of \(\rho(T) \) data for Yb$_2$Ni$_{12}$P$_7$ at high temperatures. The result of subtracting the scaled \(\rho(T) \) data for La$_2$Ni$_{12}$P$_7$ from data for Yb$_2$Ni$_{12}$P$_7$ is plotted in figure 6(c). The data plotted in figure 6(c) are expected to obey a \(\rho_{4f} \sim T^n \) temperature dependence at moderately-low temperatures. The exponent, \(n(T) \), is calculated by differentiating \(\ln(\rho(T)) \) with respect to \(T \) (i.e. \(n = d\ln(\rho - \rho_0)/d\ln T \)). As was already shown in the inset of figure 3, \(n = 2 \) at low temperature, indicating a FL ground state; however, above \(T \sim 4 \text{K} \), \(n \) continuously deviates from \(n = 2 \), rapidly becoming sub-quadratic. This is consistent with \(\rho \) versus \(T^2 \) data in the inset of figure 6(a) in which a red line emphasises the deviation from a quadratic temperature dependence above \(T \sim 4 \text{K} \). It would be reasonable to expect the quadratic temperature dependence of \(\rho_{4f} \) to extend to temperatures on the order of \(T_{sf} \), which plays the role of an effective Fermi temperature in Yb$_2$Ni$_{12}$P$_7$. Since 4 K is much smaller than the \(T_{sf} \) values we extracted from our analysis of the magnetic susceptibility data (i.e. \(T_{sf} = 140 \text{K} \) or 198 K depending on the direction of the applied magnetic field), we feel that this deviation from a quadratic temperature dependence is an important observation. In analogy with the behavior of \(C_e/T \), this behavior is consistent with a crossover between a FL ground state and NFL behavior in the vicinity of \(T \sim 4 \text{K} \).
Evidence for a crossover between a FL ground state and NFL behavior is observed in both \(C_s(T)/T \) and \(\rho(T) \) data. These mutually-reinforcing results strongly suggest the possibility that \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) is in close proximity to a QCP. The possibility of a nearby QCP has also been discussed by Nakano et al in their study of \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) under applied pressure [21]. There are several types of QCP phase diagrams that have been observed in other systems [12]; one commonly observed scenario involves the suppression of an ordered FL state to zero temperature using a non-thermal control parameter \(\delta \) (i.e. pressure, magnetic field, chemical composition, etc) such that a QCP is observed at \(\delta_c \). This QCP may or may not be protected by a superconducting phase, but in either case, increasing \(\delta \) further leads to a region where there is a crossover between a FL state at low temperature and NFL behavior at higher temperature [12]. It is possible that \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) is in such a region where \(\delta > \delta_c \). Further work tuning \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) with applied pressure, chemical substitution, and magnetic field will be necessary to observe and identify any QCP that may be present in this system.

The possibility of tuning a system containing IV Yb ions to a QCP or for such a system to exhibit NFL behavior is relatively uncommon. However, we note that the Yb ions in \(\beta\text{-YbAlB}_4 \), a compound that exhibits NFL behavior and is the only known Yb-based HF superconductor [58], has a strongly-intermediate Yb valence of 2.75 [59]. This is comparable to the valences of 2.76 and 2.79 that we obtained for Yb in \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) from our analysis of magnetic susceptibility data. Furthermore, evidence for a zero-magnetic field QCP [13], protected by the superconducting state below \(T_c = 0.08 \text{ K} \), has been observed in \(\beta\text{-YbAlB}_4 \). Quantum valence criticality is also believed to be responsible for the NFL behavior observed in \(\text{YbRh}_2(\text{Si}_0.95\text{Ge}_0.05)_2 \) [60] and has also been proposed to be the mechanism driving NFL behavior and unconventional superconductivity in the system \(\text{CeCu}_3(\text{Si}_{1-x}\text{Ge}_x)_{1.2} \) [61]. Therefore, it appears that \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) could be the newest member of a growing list of IV systems that are near a QCP or that exhibit NFL behavior.

5. Concluding remarks

From measurements of \(\rho(T, H) \), \(\chi(T, H) \), \(C_s(T, H) \), and \(S(T) \) on high-quality single-crystalline samples, we are able to conclude that \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) exhibits a moderately-heavy FL ground state with an enhanced value for \(\gamma_{0} \sim 192 \text{ mJ (Yb-mol K}^2\text{)}^{-1} \) and a large coefficient \(A \) of the \(T^2 \) term in the electrical resistivity. These results lead to a Kadowaki–Wood ratio value of \(R_{KW} \sim 1.24 \times 10^{-6} \mu \Omega \text{ cm (mol K mJ}^2\text{)}^{-1} \).

An IV Yb state in \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) is inferred from an analysis of \(\chi(T) \) data within the context of the ICF model, where an Yb valence of 2.76 is obtained. An intermediate Yb valence is also suggested by the character of \(S(T) \). A logarithmic divergence of the electronic contribution to specific heat (i.e. \(C_v/T \sim -1/T \)) above \(\sim5 \text{ K} \) is strong evidence for NFL behavior; however, \(C_v/T \) saturates below 5 K, becoming less temperature-dependent indicating that there is a FL ground state. An analysis of the power-law exponent, \(n(T) \), characterizing the electron–electron scattering contribution to the electrical resistivity yields \(n = 2 \) at low temperature, which also indicates a FL ground state; however, above \(T \sim 4 \text{ K} \), \(n \) continuously decreases and reaches \(n = 1 \) at \(\sim20 \text{ K} \). This behavior is consistent with a crossover in the vicinity of \(\sim5 \text{ K} \) from a NFL to a FL ground state, strongly suggesting the possibility that \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) is in close proximity to a QCP. Further efforts to tune \(\text{Yb}_2\text{Ni}_12\text{P}_7 \) with applied pressure, chemical substitution, and/or magnetic field will be necessary to observe and then study the potential QCP.

Acknowledgments

Sample synthesis and screening for superconductivity was funded by the Air Force Office of Scientific Research (AFOSR) MURI (Grant No. FA9550-09-1-0603), sample characterization and physical properties measurements were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Material Science and Engineering under award Grant No. DE-FG02-04-ER46105, and low-temperature measurements were funded by the National Science Foundation (Grant No. DMR-1206553). Research at California State University, Fresno was supported by the National Science Foundation Grant No. DMR-1104544.

References

[1] Maple M B, DeLong L E and Sales B C 1972 Handbook on the Physics and Chemistry of Rare Earths vol 1 (Amsterdam: North-Holland), chapter 11 pp 797–846
[2] Fisk Z, Hess D W, Pethick C J, Pines D, Smith J L, Thompson J D and Willis J O 1988 Science 239 33
[3] Anderson P W 1961 Phys. Rev. 124 41
[4] Lee W H, Hu H C and Shelton R N 1987 Phys. Rev. B 36 5739
[5] Buffat B, Chevalier B, Tuillier M H, Lloret B and Etourneau J 1986 Solid State Commun. 59 17
[6] Fujii H, Inoue T and oh Y, Takabatake T, Satoh K, Maeno Y, Fujita T, Sakurj and Yamaguchi Y 1989 Phys. Rev. B 39 6840
[7] Takabatake T, Teshima F, Fuji H, Nishigori S, Suzuki T, Fujita T, Yamaguchi Y, Sakurj and Jaccard D 1990 Phys. Rev. B 41 9607
[8] Gscheidner K A Jr 1969 J. Less-Common Met. 17 13
[9] Klasse J C P, de Boer F R and de Chatelet P F 1981 Physica B 106 178
[10] Sarrao J L et al 1999 Phys. Rev. B 59 6855
[11] Stewart G R 2001 Rev. Mod. Phys. 73 797
[12] Maple M B, Baumbach R E, Butch N P, Hamlin J and Janoscheck M 2010 J. Low. Temp. Phys. 161 4
[13] Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A and Coleman P 2011 Science 331 316
[14] Gangberger E 1968 Monatsch. Chem. 99 557
[15] Jeitschko W, Braun D J, Ashcraft R H and Marchand R 1978 J. Solid State Chem. 25 309
[16] Jeitschko W, Pollmeier P G and Meisen 1993 J. Alloys Compounds 196 105
[17] Hellmann A and Mewis A 2001 Z. Anorg. Allg. Chem. 627 1357
[18] Janoscheck M, Baumbach R E, Hamlin J J, Lum I K and Maple M B 2011 J. Phys.: Condens. Matter 23 094221
[19] Baumbach R E, Hamlin J J, Janoscheck M, Lum I K and Maple M B 2011 J. Phys.: Condens. Matter 23 094222
[20] Baumbach R E, Hamlin J J, Shu L, Zocco D A, O’Brien J R, Ho P C and Maple M B 2010 Phys. Rev. Lett. 105 106403
[21] Baumbach R E, Hamlin J J, Janoscheck M, Singleton J and Maple M B 2013 in preparation
[22] Cho B K, DiSalvo F J, Kim J S, Stewart G R and Bud’ko S 1998 Physica B 253 40
[23] Nakano T, Satoh R, Tsuchiya K, Takeda N, Matsubayashi K and Uwatoko Y 2012 J. Phys.: Conf. Ser. 391 012052
[24] Rietveld H M 1969 J. Appl. Cryst. 2 65
[25] Larson A and Dreele R V 2000 Los Alamos National Laboratory Report LAUR pp 86–748
[26] Jeitschko W and Jaberg B 1981 J. Less-Common Met. 79 311
[27] Adroja D T, Malik S K, Padalia B D and Vijayaraghavan R 1989 Phys. Rev. B 39 4831
[28] Mattens W C M, Elenbaas R A and de Boer F R 1977 Commun. Phys. 2 147
[29] Havinga E E, Buschow K H J and van Daal H J 1973 Solid State Commun. 13 621
[30] Fisher I R, Bud’ko S L, Fisk Z, Canfield P C, Ozawa T, Kubo R, Tokiwa G, Uwatoko Y 2012 J. Phys.: Condens. Matter 26 425601
[31] Nakano T, Satoh R, Tsuchiya K, Takeda N, Matsubayashi K and Uwatoko Y 2012 J. Phys.: Conf. Ser. 391 012052
[32] Maple M B and Wohlleben D K 1974 AIP Conf. Proc. No. 18 ed C D Graham Jr and J Rhyne (American Institute of Physics, New York, 1974) p 447
[33] Sales B C and Wohlleben D K 1975 Phys. Rev. Lett. 35 1240
[34] Béard-Monod M T and Lawrence J M 1980 Phys. Rev. B 21 5400
[35] Andres K, Graebner J E and Ott H R 1975 Phys. Rev. Lett. 35 1779
[36] Malik S K, Adroja D T, Slaski M, Dunlap B D and Umezawa A 1989 Phys. Rev. B 40 9378
[37] Rossel C, Yang K N, Maple M B, Fisk Z, Zirngiebl E and Thompson J D 1987 Phys. Rev. B 35 1914
[38] Béard-Monod M T and Lawrence J M 1980 Phys. Rev. B 21 5400
[39] Seaman C L, Maple M B, Lee B W, Ghamaty S, Torikachvili M S, Kang J S, Liu L Z, Allen J W and Cox D L 1991 Phys. Rev. Lett. 67 2882
[40] Andraka B and Tsvelic A M 1991 Phys. Rev. Lett. 67 2886
[41] Gajewski D A, Allen-Spaeth P, Seaman C L and Maple M B 1994 Physica B 199–200 419
[42] Andraka B and Stewart G R 1993 Phys. Rev. B 47 3208
[43] Amitsuka H, Hitazumi H, Honma T, Mitamura H and Sakakibara T 1993 Physica B 186–188 337
[44] Yamanaka R, Matsubayashi K, Saiga Y, Kawae T and Uwatoko Y 2012 J. Phys.: Conf. Ser. 391 012078
[45] Andreica D, Alami-Yadri K, Jaccard D, Amato A and Schenck D 1999 Physica B 259 144
[46] Deppe M, Hartmann S, Macovei M E, Oeschler N, Nicklas M and Geibel C 2008 New J. Phys. 10 093017
[47] Friedemann S 2008 Physica B 403 1254
[48] Zlatić V and Monnier R 2005 Phys. Rev. B 71 165109
[49] Behnia K, Jaccard D and Flouquet J 2004 J. Phys.: Condens. Matter 16 5187
[50] Iwasa K, Behnia K, Matsuda Y, Shishido H, Settai R, Onuki Y and Flouquet J 2007 Phys. Rev. Lett. 99 147005
[51] Hartmann S, Oeschler N, Krellner C, Geibel C, Paschen S and Steglich F 2010 Phys. Rev. Lett. 104 096401
[52] Grenzebach C, Anders F B, Czycholl G and Pruschke T 2006 Phys. Rev. B 74 195119
[53] Zlatić V, Monnier R, Freericks J K and Becker K W 2007 Phys. Rev. B 76 085122
[54] Miyake K and Kohno H 2005 J. Phys. Soc. Japan 74 254
[55] Kontani H 2003 Phys. Rev. B 67 014408
[56] Kadowaki K and Woods S B 1986 Solid State Commun. 58 507
[57] Tsujii N, Kontani H and Yoshimura K 2005 Phys. Rev. Lett. 94 057201
[58] Nakatsuji S et al 2008 Nat. Phys. 4 603
[59] Okawa M et al 2010 Phys. Rev. Lett. 104 247201
[60] Watanabe S and Miyake K 2010 Phys. Rev. Lett. 105 186403
[61] Yuan H Q, Grosche F M, Deppe M, Sparn G, Geibel C and Steglich F 2006 Phys. Rev. Lett. 96 047008