Structural and Optical Properties of Thermally Oxidized Zirconium Dioxide Films

Venkataiah Sunke and Uthanna Suda

Department of Physics, Sri Venkateswara University, Tirupati – 517 502, India

Email address: uthanna@rediffmail.com, svt487@gmail.com

Keywords: ZrO₂ thin films; Magnetron sputtering; Thermal oxidation; Structure, Optical properties.

Abstract. Zirconium oxide (ZrO₂) thin films were grown by thermal oxidation of metallic zirconium films deposited by sputtering of zirconium target by DC magnetron sputtering technique. The zirconium films were thermally oxidized in oxygen atmosphere at temperatures in the range 300-500°C. The as-deposited and oxidized films were characterized for chemical composition by energy dispersive X-ray analysis, structure by X-ray diffraction, chemical binding configuration with Fourier transform infrared spectroscopy and optical absorption using UV-Vis NIR spectrophotometer. Metallic zirconium film was polycrystalline in nature with hexagonal structured Zr. The films oxidized at 300°C were of mixed phase of Zr and ZrO₂. The zirconium films were transformed into monoclinic structured ZrO₂ with polycrystalline in nature at oxidation temperature of 400°C. Crystallite size of the ZrO₂ films increased from 19 nm to 27 nm with increase of oxidation temperature form 400°C to 500°C. The optical band gap increased from 5.42 eV to 5.46 eV and refractive index decreased from 2.05 to 2.02 with increase of oxidation temperature from 400°C to 500°C.

1. Introduction

The combination of electrical, mechanical and optical properties of zirconium dioxide (ZrO₂) find useful in wide range of applications. It is thermally and chemically stable compound which is potential for protective coating for application in corrosive, high temperature and harsh environments [1]. It has high dielectric constant (25) and thermodynamically stable with silicon, hence a promising substitute for silicon dioxide in gate dielectrics (transistor) with low leakage current densities [2, 3]. It is widely used catalyst in artificial photosynthesis and photocatalytic decomposition of water and carbon dioxide [4]. Nonstoichiometric zirconium dioxide exhibit switching behavior with good retention characteristics in high and low resistance states [5]. Because of its high refractive index, high transparency, wide band gap and low optical losses in the visible and infrared ranges find applications as high reflectivity mirrors and optical waveguides [6], high power lasers [7] and light emitting diodes [8]. It is also used as buffer layer in superconducting coatings [9] and sensing of oxygen gas [10]. These wide range of applications mainly based on its property of polymorphism. It exists in three different crystalline phases namely monoclinic, tetragonal and cubic structured zirconium dioxide in thin films form based on the process temperature [11,12]. These different phases can be tailored made in thin films achieve required hardness, refractive index and optical band gap. Various physical deposition techniques such as thermal oxidation of zirconium films [12,13], electron beam evaporation [14-17], pulsed laser deposition [18,19], vacuum arc deposition [20,21], DC magnetron sputtering [22-25], RF magnetron sputtering [26-30], molecular beam epitaxy [31], and chemical deposition methods namely, chemical bath deposition [32], spray pyrolysis [33], sol-gel process [34-36] and atomic layer deposition [37,38] were employed for the growth of zirconium dioxide thin films. Among these techniques, magnetron sputtering has the advantage in the growth of films on large area substrates and at low substrate temperatures. There are various sputter parameters such as substrate temperature, substrate bias, sputter pressure and sputter power mainly control the physical properties of the deposited films. Thermal oxidation of metallic films leads to the growth metal oxide films. Bae et al. [12] prepared ZrO₂ thin films by two step process by deposition of metallic...
zirconium films with and without substrate bias voltage followed by thermal oxidation. The films formed with substrate bias leads to high dielectric constant and low leakage currents. Larjani et al. [13] reported that the optical band gap of ZrO₂ thin films formed by thermal oxidation of sputter deposited zirconium films increased from 3.85 eV to 3.96 eV and the refractive index decreased from 2.8 to 2.2 with increase of oxidation temperature from 400°C to 550°C respectively. High refractive index and large band gap of zirconium dioxide thin films find application in broad band filters and active optoelectronic devices. Hence in this investigation, an attempt is made on the growth of zirconium dioxide thin films by thermal oxidation of zirconium films prepared by DC magnetron sputtering of metallic zirconium target. The influence of oxidation temperature on the structural and surface morphology, chemical binding configuration and optical properties of the zirconium dioxide films were systematically studies.

2. Experimental Details

Metallic thin films of zirconium were deposited onto quartz, aluminium and n- silicon (100) substrates by sputtering of zirconium target (50 mm diameter) using DC magnetron sputter deposition method. The sputter up configuration was used for growth of the films. Schematic diagram of the sputter system employed deposition of zirconium films is shown in Fig. 1. The sputter chamber was evacuated with diffusion pump and rotary pump combination. Pinning and Pirani gauges were used for measurement of pressure in the sputter chamber. Quartz and aluminium substrates were cleaned with degreasing solution followed by washing in deionized water. Later, the substrates were ultrasonically cleaned in distilled water for 15 minutes and dried with nitrogen gas before transfer in to the sputter chamber. Silicon substrates were cleaned with standard RCA (Radio Corporation of America) procedure. The silicon substrates were immersed in a mixture of ammonia, hydrogen peroxide and water with ratio of 1:1:5 for 10 minutes at temperature of 75°C to remove the organic contaminants. In order to remove the metallic contaminants, the substrates were dipped in the solution contained hydrochloric acid, hydrogen peroxide and water with ratio of 1:1:6 for 10 minutes at 75°C. Finally, the silicon substrates were immersed in the solution with mixture of hydrofluoric acid and water with ratio of 1:50 for 20 seconds followed by rinsing in distilled water and blown with nitrogen gas in order to remove the native oxide before loaded into the sputter chamber for deposition of the films. The target to substrate distance maintained was 70 mm. After achieving the base pressure of 5x10⁻⁶Torr, pure argon gas was admitted in to the sputter chamber through fine controlled needle valves to achieve the sputter pressure of 6x10⁻³Torr. The films were deposited on the unheated substrates and DC power fed to the sputter target was 60 W. The deposition conditions fixed for the growth of zirconium films are given in Table 1.

Figure 1. Schematic diagram of magnetron sputter system for deposition of zirconium thin films.
The As-deposited metallic zirconium films were thermally oxidized in oxygen atmosphere for two hours at different temperatures in the range 300 - 500°C in order to transform zirconium into ZrO\textsubscript{2} films. As-deposited Zr films and thermally oxidized ZrO\textsubscript{2} films were characterized for chemical composition by energy dispersive X-ray analysis using Oxford Instruments Inca Penta FETX3.

Table 1. Deposition conditioned for the growth of zirconium thin film.

Deposition method	DC magnetron sputtering
Sputter target	Zirconium (50 mm dia.)
Target to substrate distance	70 mm
Base pressure	5x10^{-6}Torr
Sputter pressure	6x10^{-3}Torr
Sputter power	60 Watt
Deposition	120 sec

Crystallographic structure and crystallite size of the films were determined with X-ray diffraction (XRD) using copper Kα radiation with wavelength of 0.15406 nm. Chemical binding configuration of the films was analyzed with Fourier Transform Infrared spectroscopy (FTIR) (Thermo-Nicolet 6700) in the wavenumber range 400 - 2000 cm-1. Surface morphology of the films was examined with scanning electron microscope. Optical absorption in the films was recorded using UV-Vis-NIR double beam spectrophotometer (JASCO V-570) in the wavelength range 185 – 900 nm in order to determine the optical band gap and refractive index.

3. Results and Discussion

Thickness of the zirconium film determined with Veeco Dektak depth profilometer was 240 nm. Chemical composition of zirconium films and the films oxidized at different temperatures were determined with energy dispersive X-ray analysis (EDAX). Fig. 2 shows the EDAX of zirconium and zirconium dioxide films. The EDAX spectrum of Zr film contains the peak of zirconium without any other elements which indicated the growth of metallic zirconium as shown in Fig. 2a. The film oxidized at 300°C contains the peaks of oxygen along with zirconium (Fig. 2b). As the oxidation temperature increased to 400°C and 500°C the content of oxygen increased and the content of zirconium decreased as shown in Figs. 2c and 2d. Chemical composition of the films was calculated from the intensity of the elemental peaks and their respective sensitivity factors. Chemical composition of as-deposited and oxidized films are given in the Table 2. The as-deposited films were zirconium. The film oxidized at 300°C contain the chemical composition of Zr = 60.5 at.% and O = 39.5 at.%. At the oxidation temperature of 400°C the content of oxygen in the films increased to 64.8 at.% and zirconium decreased to 35.2 at.%. Further increase of oxidation temperature to 500°C the films contained the Zr = 34.3 at.% and O = 65.7 at.%.

International Letters of Chemistry, Physics and Astronomy Vol. 77
Figure 2. EDAX spectra of thermally oxidized ZrO$_2$ films: (a) as-deposited Zr film and thermally oxidized at temperatures of (b) 300°C, (b) 400°C and (b) 500°C.

Table 2. Chemical composition of thermally oxidized ZrO$_2$ films.

Sample	Zirconium (at.%)	Oxygen (at.%)
Zr film	100.0	---
Oxidized at 300°C	60.5	39.5
Oxidized at 400°C	35.2	64.8
Oxidized at 500°C	34.3	65.7

It clearly indicated that the films oxidized at 300°C were of mixed phase of Zr and ZrO$_2$. The films annealed at 400°C and above were of nearly stoichiometric ZrO$_2$. It is also confirmed in the X-ray diffraction studies as discussed in the next section.

3.1 Structural properties

Crystallographic structure of the films was determined from the X-ray diffraction. Fig.3 shows the X-ray diffraction profiles of as-deposited Zr and thermally oxidized ZrO$_2$ films. As-deposited films contain the diffraction peak at 29.2° indicated (001) reflection of hexagonal structured zirconium (JCPDS card No. 26-1399). It revealed the as-grown zirconium films were of polycrystalline in nature. The films oxidized at temperature of 300°C contained X-ray diffraction peak (111) related to ZrO$_2$ and (201) correspond to Zr. It clearly indicated that the films oxidized at 300°C were of mixed phase of Zr and ZrO$_2$. The films oxidized at temperature of 400°C exhibited four diffraction peaks at 26.7°, 46.9° and 56.9° and 60.1° related to the (111), (211), (310) and (302) reflections of monoclinic phase of ZrO$_2$. It is in good agreement with the standard X-ray
diffraction data of JCPDS card NO. 78-1807. It confirmed that the Zr films were transformed in to ZrO$_2$ films at the oxidation temperature of 400°C. Further increase of oxidation temperature to 500°C intensity of the diffraction peaks enhanced with the presence of additional reflections of (111) and (132) of ZrO$_2$. Lajirani et al. [13] noticed that the sputter deposited Zr films were transformed in to ZrO$_2$ films at the oxidation temperature of 500°C with presence of mixed monoclinic and tetragonal phases. Hembram et al. [22] achieved single phase zirconium dioxide thin films at oxidation temperature of 600°C in magnetron sputtered films. In the present investigation, magnetron sputtered zirconium thin films were transformed in to single phase monoclinic ZrO$_2$ at low oxidation temperature of 400°C. At higher temperature of 500°C the grown crystallites were of larger in size. The thickness of the ZrO$_2$ films was higher when compared with the zirconium films. The thickness of the films oxidized at 400°C was 255 nm, further increased to 280 nm at higher temperature of 500°C. Increase of film thickness with oxidation temperature was due to the large unit cell volume of ZrO$_2$ than zirconium. As the oxidation temperature increased the diffusion of oxygen into the Zr films takes place and transformed in to ZrO$_2$. The crystallite size (D) of the as-deposited Zr and thermally oxidized ZrO$_2$ films was calculated from the full width at half maximum intensity (β) of the X-ray diffraction angle (θ) of the peak and the wavelength (λ) of copper X-ray radiation employing Debye-Scherrer’s relation [39] assuming that no strains were developed in the films,

$$D = \frac{K\lambda}{\beta\cos\theta},$$

where K is a constant with the value of 0.89 for copper X-ray radiation and θ the diffraction angle. The full width at half maximum intensity of the films decreased with increase of oxidation temperature. Crystallite size of the zirconium film was 15 nm. As the oxidation temperature increased from 400°C to 500°C the crystallite size increased from 19 nm to 27 nm. It revealed that the crystallinity of the ZrO$_2$ films was accelerated by the temperature.

\[\text{Figure 3. X-ray diffraction profiles of Zr and thermally oxidized ZrO}_2\text{ films.}\]

Surface morphology of the films was analyzed with scanning electron microscope. Fig. 4 shows the scanning electron micrographs of Zr and the ZrO$_2$ films oxidized at different temperatures. The micrographs of the films showed the smooth surface. When the oxidation temperature increased there was an increase in the size of spherical shaped grains. These grains were uniformly distributed over the surface of the films. Fourier transform infrared transmittance spectra was recorded on the films formed on silicon substrates. Fig. 5 shows Fourier transform
infrared transmittance spectra of zirconium films oxidized at temperatures of 400°C and 500°C. The spectra showed the broad band between 400 cm⁻¹ and 500 cm⁻¹. The films oxidized at 400°C showed the absorption bands at 420 cm⁻¹, 505 cm⁻¹, 605 cm⁻¹ and 739 cm⁻¹ which were related to the vibration modes of monoclinic ZrO₂. The films oxidized at higher temperature of 500°C exhibited decrease in the intensity of 505 cm⁻¹ absorption band and absence of 739 cm⁻¹ band.

Figure 4. Scanning electron micrographs of ZrO₂ films oxidized at (a) 300°C, (b) 400°C and (c) 500°C.

In the literature, it was reported that the absorption bands at 410 cm⁻¹, 520 cm⁻¹, 610 cm⁻¹ and 720 cm⁻¹ were the characteristic vibration modes of the monoclinic phase of ZrO₂ [19,40]. FTIR studies also confirmed that the films oxidized at temperature of 400°C and above were of ZrO₂.

Figure 5. Fourier transform infrared transmittance spectra of ZrO₂ films oxidized at 400°C and 500°C.

3.2 Optical properties

Optical transmittance of metallic zirconium films formed on quartz substrate and thermally oxidized zirconium dioxide films were recorded in the wavelength range 185 - 900 nm in order to determine the optical absorption and optical band gap. Fig. 6 shows the optical transmittance spectra of Zr and ZrO₂ thin films. Zr films showed the optical transmittance of about 3% due to the reflective nature of the metallic films. The films oxidized at 300°C exhibited the transmittance of about 50% at (wavelength of 550 nm). As the oxidation temperature increased to 400°C the transmittance enhanced to 80% and at higher temperature of 500°C it further increased to 85% due to the oxide nature of the films. Low transmittance in the films oxidized at 300°C was mainly due
the mixed phase of Zr and ZrO\textsubscript{2} as noted in X-ray diffraction. The films oxidized at 400°C and above were of fully transformed in to ZrO\textsubscript{2}. The fundamental optical absorption edge of the films shifted towards lower wavelength side with increase of oxidation temperature. The absorption coefficient (\(\alpha\)) of the films was calculated from the optical transmittance (\(T\)) and the thickness (\(t\)) using the relation
\[
\alpha = \frac{(1/t) \ln T}{\lambda L}.
\]
(2)

By assuming the direct transitions transition takes place in the films that is the transition of electrons from the top of the valance band to the bottom of the conduction band due to the absorption of photon, the optical band gap (\(E_g\)) of the films was determined from the optical absorption coefficient and photon energy (\(h\nu\)) using the Tauc’s relation [41]
\[
(\alpha h\nu)^2 = A (h\nu - E_g),
\]
(3)

where A is the edge width parameter. From the plots of \((\alpha h\nu)^2\) versus photon energy the optical band gap of zirconium dioxide films was evaluated by extrapolating the linear portion of the plots to \(\alpha = 0\). Fig. 7 shows the plots of \((\alpha h\nu)^2\) versus photon energy of Zr and thermally zirconium dioxide films. The optical band of the films oxidized at 300°C was 3.49 eV. As the oxidation temperature from 400°C to 500°C the optical band gap of the films increased from 5.42 eV to 5.48 eV respectively. The low optical band gap in the films oxidized at 300°C was due to the mixed phase of Zr and ZrO\textsubscript{2} films. These results clearly indicated that the films oxidized at 400°C and above were transformed in to ZrO\textsubscript{2}. In the literature, Lirijani et. al. [13] was reported that the optical band gap increased from 3.85 eV to 3.96 eV with increase of oxidation temperature in the magnetron sputtered films. Pakma et al. [32] noticed the optical band gap was in the range 2.40 - 3.96 eV depending on the constituents in the chemical bath and the process temperature of the films formed by chemical bath deposition. Korkmaz et al. [20] reported that the band gap increased from 3.85 eV to 3.96 eV with increase of annealing temperature from 350°C to 550°C respectively in the films formed by thermionic vacuum arc method. Hembram et al. [22] noticed that the optical band gap of as-deposited ZrO\textsubscript{2} films was 4.37 eV and it increased to 4.83 eV when annealed at 600°C in magnetron sputtered films. Zhao et al. [26] reported the optical band gap of 5.74 eV in RF magnetron sputtered films at substrate bias voltage of -110 V. It clearly indicated that the optical band gap increased with the annealing, oxidation temperature or substrate bias voltage due to filling up of oxygen ion vacancies and produced ZrO\textsubscript{2} films. Refractive index of the films determined with ellipsometry at wavelength 550 nm. The refractive index of the films decreased from 2.05 to 2.02 increase of oxidation temperature from 400°C to 500°C respectively. Larijani et al. [13] noticed high refractive index of 2.8 in the films oxidized at 400°C and it decreased to 2.2 in at temperature of 550°C.
4. Conclusions

Thin films of zirconium (Zr) were formed by DC magnetron sputtering method followed by thermal oxidation to transform into zirconium dioxide (ZrO₂). As-deposited Zr and thermally oxidized ZrO₂ films were physically characterized for their chemical composition, structure and optical properties. The effect of oxidation temperature on the physical properties was systematically investigated. The as-deposited Zr films were polycrystalline in nature with hexagonal structure with crystallite size of 12 nm. The films oxidized at 300°C were mixed phase of zirconium and zirconium dioxide. While those oxidized at temperature of 400°C and above were of ZrO₂. The crystallite size of the zirconium dioxide films increased from 19 nm to 27 nm with increase of oxidation temperature. Scanning electron micrographs of zirconium dioxide films exhibited the
growth of spherical shaped grains. Infrared spectroscopic studies showed the characteristic vibrational modes of ZrO\textsubscript{2} in the films oxidized at temperatures \(\geq 400^\circ \text{C} \). The optical transmittance of the films increased with increase of oxidation temperature and the fundamental optical absorption edge shifted towards lower wavelength side. The optical band gap of zirconium dioxide films evaluated from the Tauc’s plots increased from 5.42 eV to 5.46 eV with increase of oxidation temperature from 400°C to 500°C respectively. The refractive index of zirconium dioxide films determined from ellipsometry decreased from 2.05 to 2.02 with increase of oxidation temperature from 400°C to 500°C. In conclusion, zirconium dioxide films grown by thermal oxidation at temperatures \(\geq 400^\circ \text{C} \) will be quite useful for application in the broad band filters for active optoelectronic devices.

Acknowledgements

One of the authors, S. Venkataiah is thankful to the University Grants Commission, India for the award of UGC-BSR-RFSMS Junior Research Fellowship. Dr. S. Uthanna is thankful to the University Grants Commission for the award of UGC-BSR Faculty Fellowship.

References

[1] J. Gao, Y. He, D. Wang, Fabrication and high temperature oxidation resistance ZrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} microlaminated coatings on stainless steel, Mater. Chem. Phys. 123 (2010) 731-736.

[2] G.D. Wilk, R.M. Willack, J.M. Anthony, High-k gate dielectrics, current status and materials properties consideration, J. Appl. Phys. 89(10) (2001) 5243-5275.

[3] J. Okabayashi et al., Chemical reaction and metallic cluster formation by annealing temperature control in ZrO\textsubscript{2} gate dielectrics on Si, Appl. Phys. Lett. 85(24) (2004) 5959-5961.

[4] K. Sayama, H. Arakawa, Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO\textsubscript{2} catalyst, J. Phys. Chem. 97(3) (1993) 531-533.

[5] D.S. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for non-volatile memory applications, IEEE Electron Dev. Lett. 26(10) (2005) 719-721.

[6] S. Venkataraj et al., Structural and optical properties of thin zirconium oxide films by reactive direct current magnetron sputtering, J. Appl. Phys. 92(7) (2002) 3599-3607.

[7] R.W. Lambert et al., Facet passivation processes for the improvement of Al-containing semiconductor laser diodes, J. Light Technol. 24(2) (2006) 956-961.

[8] K. Joy et al., Effect of sol concentration on the structural, morphological, optical and photoluminescence properties of zirconium thin films, Thin Solid Films. 520 (2012) 2683-2688.

[9] Y.S. Yang et al., Ferroelectricity and electric conduction characteristics of Sr-modified lead zirconium titanate thin film capacitors, J. Appl. Phys. Part I. 36(2) (1997) 749-753.

[10] L.A. Peyser et al., Photoactivated fluorescence from individual silver nanoclusters, Science. 291 (2001) 103-106.

[11] G. Slefanic, S. Music, A. Sekulic, Influence of precipitation chemistry and ball milling on the thermal behaviour of zirconium hydroxide, Thermochim. Acta. 273 (1996) 119-133.

[12] J.W. Bae et al., Preparation of ZrO\textsubscript{2} dielectric layers by subsequent oxidation after Zr film deposition with negative substrate bias voltage, Metals and Materials International. 16(3) (2010) 447-452.
[13] M.M. Larijani, E. Hasani, S. Safa, Annealing temperature effect on the optical properties of thermally oxidized nanocrystalline ZrO₂ thin films grown on glass substrates, Appl. Surf. Sci. 290 (2014) 490-494.

[14] M.G. Krishna, K.N. Rao, S. Mohan, Optical and structural characterization of evaporated zirconia films, Appl. Phys. Lett. 57(6) (1990) 557-559.

[15] A. Banarji, A. Hassanpour, Modification of laser induced damage threshold of ZrO₂ thin films by using time-temperature gradient annealing, Appl. Surf. Sci. 258 (2012) 2397-2403.

[16] X. Ling et al., Influence of oxygen partial pressure on the laser induced damage resistance of ZrO₂ films in vacuum, Vacuum. 119 (2015) 145-150.

[17] A. Singh et al., Investigation on depth resolved composition of electron beam deposited ZrO₂ thin films, Appl. Surf. Sci. 419 (2017) 337-341.

[18] W.T. Tang et al., Synthesis and characterization of HfO₂ and ZrO₂ thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature, Thin Solid Films. 518 (2010) 5442-5446.

[19] W. Zhang et al., Infrared and Raman spectroscopic studies of optically transparent zirconia (ZrO₂) films deposited by plasma-assisted reactive pulsed laser deposition, Appl. Spectroscopy. 65(5) (2011) 522-527.

[20] S. Korkmaz et al., Thermal treatment effect on the optical properties of ZrO₂ thin films deposited by thermionic vacuum arc, Vacuum. 86(12) (2012) 1930-1933.

[21] W. Li et al., Structure and properties of zirconia (ZrO₂) films fabricated by plasma-assisted cathodic arc deposition, J. Phys. D: Appl. Phys. 40(8) (2007) 2293-2299.

[22] K.P.S.S. Hembram et al., Electrical and structural properties zirconia thin films prepared by reactive magnetron sputtering, Physica B. 399 (2007) 21-26.

[23] G. Sethi et al., Influence of reactive sputterdeposition conditions on crystallization of zirconium oxide thin films, J. Vac. Sci. Technol. A. 27(3) (2009) 577-583.

[24] R. Yusoh et al., Determination of the thickness and optical constants of ZrO₂ by spectroscopic ellipsometry and spectrophotometric method, Procedia Eng. 8 (2011) 223-227.

[25] S. Uthanna et al., Influence of annealing temperature on Electronic and dielectric properties of ZrO₂ thin films on Si, AIP Proc. 1451 (2012)242-244.

[26] S. Zhao et al., Optical properties and structural characterization of bias sputtered ZrO₂ films, J. Alloys Compd. 453 (2008) 453-457.

[27] H.H. Zhang, C.Y. Ma, Q.Y. Zhang, Scaling behaviour and structure transition of ZrO₂ films deposited by RF magnetron sputtering, Vacuum. 83(11) (2009) 1311-1316.

[28] N. Li et al., Evaluation of ion conductivity of ZrO₂ thin films prepared by reactive sputtering in O₂, HfO₂ and H₂O+H₂O₂ mixed gases, Thin Solid Films. 520 (2012) 5137-5140.

[29] N. Li et al., Effects of substrate temperature on the ion conductivity of hydrated ZrO₂ thin films prepared by reactive sputtering in H₂O atmosphere, Solar Energy Mater. Sol. Cells. 99 (2012) 160-165.

[30] U.S. Patil et al., Investigation of various properties for zirconium oxide films synthesized by sputtering, Procedia Technol. 23 (2016) 336-343.

[31] J.H. Hong, W.J. Choi, J.M. Myoung, Properties of ZrO₂ dielectric layers grown by metal-organic molecular beam epitaxy, Microelectronic Engineering. 70(1) (2003) 35-40.

[32] O. Pakma et al., Wet chemical methods for producing mixing crystalline phase ZrO₂ thin film, Appl. Surf. Sci. 337 (2016) 159-166.
[33] S. Cherneva et al., Nanoindentation investigation of mechanical properties of ZrO₂, ZrO₂-Y₂O₃, Al₂O₃ and TiO₂ thin films deposited on stainless steel OC 404 substrate by spray pyrolysis, Mater. Sci. Eng. B. 183 (2014) 12-16.

[34] J.J. Yu, J.Y. Zhang, I.W. Boyd, Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing, Appl. Surf. Sci. 186(1) (2002) 190-194.

[35] K. Joy et al., Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO₂ thin films prepared by sol gel route, J. Phys. Chem. Solids. 72 (2011) 673-677.

[36] I.J. Berlin, K. Joy, Optical enhancement of Au doped ZrO₂ thin films by sol gel dip coating method, Physica B. 457 (2015) 182-187.

[37] J. Aarik et al., Influence of carrier gas pressure and flow rate on atomic layer deposition of HfO₂ and ZrO₂ thin films, Appl. Surf. Sci. 252(16) (2006) 5723-5734.

[38] B.R. Konda et al., High-k ZrO₂ dielectric thin films on GaAs semiconductor with reduced regrowth of native oxides by atomic layer deposition, Chem. Phys. Lett. 583 (2013) 74-79.

[39] D.B. Cullity, Elements of X-ray diffraction, 2nd Ed. Addition Wesley, 1978.

[40] G.M. Rignanese et al., First-principles investigation of high-k dielectrics, comparison between the silicates and oxides of hafnium and zirconium, Phys. Rev. B. 69(18) (2004) 184301.

[41] J. Tauc, Amorphous and liquid semiconductors, Plenum Press, New York, 1974.