Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Cornelis, Marilyn C., Keri L. Monda, Kai Yu, Nina Paynter, Elizabeth M. Azzato, Siiri N. Bennett, Sonja I. Berndt, et al. 2011. “Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption.” Edited by Greg Gibson. PLoS Genetics 7 (4): e1002033. https://doi.org/10.1371/journal.pgen.1002033.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41426755

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption

Marilyn C. Cornelis1,*, Keri L. Monda2,*, Kai Yu3,*, Nina Paynter4,*, Elizabeth M. Azzato3, Siiri N. Bennett5, Sonja I. Berndt3, Eric Boerwinkle6, Stephen Chanock3, Nilanjan Chatterjee3, David Couper7, Gary Curhan8, Gerardo Heiss3, Frank B. Hu1, David J. Hunter1, Kevin Jacobs3, Majken K. Jensen1, Peter Kraft9, Maria Teresa Landi7, Jennifer A. Nettleton6, Mark P. Purdue9, Preetha Rajaraman3, Eric B. Rimm1, Lynda M. Rose4, Nathaniel Rothman3, Debra Silverman3, Rachael Stolzenberg-Solomon3, Amy Subar3, Meredith Yeager3, Daniel I. Chasman5,*, Rob M. van Dam10,*, Neil E. Caporaso3,*,

Abstract

We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10−6), near AHR, and 15q24 (P = 5.2 × 10−15), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.

Citation: Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, et al. (2011) Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption. PLoS Genet 7(4): e1002033. doi:10.1371/journal.pgen.1002033

Editor: Greg Gibson, Georgia Institute of Technology, United States of America

Received November 17, 2010; Accepted February 6, 2011; Published April 7, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: caporasni@mail.nih.gov (NEC); ephrmvd@nus.edu.sg (RMvD); dchasman@rics.bwh.harvard.edu (DIC)

These authors contributed equally to this work.

These authors were joint senior authors on this work.

1 Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 3 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 4 Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 5 Collaborative Health Studies Coordinating Center, University of Washington, Seattle, Washington, United States of America, 6 Division of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America, 7 Department of Biostatistics, Collaborative Studies Coordinating Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 8 Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 9 Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 10 Department of Epidemiology and Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Author Summary

Caffeine is the most widely consumed psychoactive substance in the world. Although demographic and social factors have been linked to habitual caffeine consumption, twin studies report a large heritable component. Through a comprehensive search of the human genome involving over 40,000 participants, we discovered two loci associated with habitual caffeine consumption: the first near AHR and the second between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates, as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2. Caffeine intake has been associated with manifold physiologic effects and both detrimental and beneficial health outcomes. Knowledge of the genetic determinants of caffeine intake may provide insight into underlying mechanisms and may provide ways to study the potential health effects of caffeine more comprehensively.

Introduction

Caffeine (1,3,7-trimethylxanthine) is the most widely consumed psychoactive substance in the world with nearly 90% of adults reporting regular consumption of caffeine-containing beverages and foods [1,2]. Although demographic and social factors have been linked to habitual caffeine consumption, twin studies report heritability estimates between 43 and 58% for caffeine use; 77% for heavy use, and 45, 40, and 35%, respectively, for caffeine toxicity, tolerance and withdrawal symptoms [3]. Genetic association studies focused on candidate genes related to the pharmacokinetic and pharmacodynamic properties of caffeine have identified genes encoding cytochrome P-450 (CYP)1A2, as the primary enzyme involved in caffeine metabolism [3,4]. The genome-wide association approach has emerged as a powerful means for discovering novel loci related to habitual use of a second substance in the world. Although demographic and social factors have been linked to habitual caffeine consumption, twin studies report a large heritable component. Through a comprehensive search of the human genome involving over 40,000 participants, we discovered two loci associated with habitual caffeine consumption: the first near AHR and the second between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates, as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2. Caffeine intake has been associated with manifold physiologic effects and both detrimental and beneficial health outcomes. Knowledge of the genetic determinants of caffeine intake may provide insight into underlying mechanisms and may provide ways to study the potential health effects of caffeine more comprehensively.

Table 1. Descriptive characteristics of studies participating in meta-analysis.

Study	Description	N	Female, %	Age, years	Caffeine, mg/day	Current smokers, %	Platform
ARIC	Cohort	8,945	52.8	54.3 (5.7)	332.9 (311.1)	24.4	Affymetrix 6.0
PLCO	Cohort: nested case-control**	4,942	23.5	67.7 (5.4)	491.1 (494.1)	22.1	Illumina 240K
							Illumina 310K
							Illumina 550k
							Illumina 610Q
NHS T2D	Cohort: nested T2D case-control	3,135	100	51.1 (10.5)	284.5 (206.3)	14.8	Affymetrix 6.0
NHS CHD	Cohort: nested CHD case-control	1,102	100	53.5 (10.6)	316.7 (218.0)	30.0	Affymetrix 6.0
NHS KS	Cohort: nested KS case-control	488	100	47.7 (11.7)	264.4 (203.6)	15.3	Illumina 610Q
NHS BrC	Cohort: nested BrC case-control	2,049	100	52.3 (9.6)	286.5 (204.0)	15.6	Illumina 550k
HPFS T2D	Cohort: nested T2D case-control	2,381	0	55.5 (8.4)	250.9 (227.6)	7.6	Affymetrix 6.0
HPFS CHD	Cohort: nested CHD case-control	1,099	0	56.7 (8.7)	243.2 (230.7)	9.9	Affymetrix 6.0
HPFS KS	Cohort: nested KS case-control	543	0	48.8 (6.8)	230.5 (241.6)	6.4	Illumina 610Q
WGHS	Cohort	22,658	100	54.7 (7.1)	298.5 (232.9)	11.5	Illumina HumanHap300

Total: 47,341

*Values are mean (standard deviation) for age and caffeine; percent for female and current smokers.
**Includes samples from prostate cancer case-control (n = 1885), bladder cancer case-control (n = 572), glioma case-control (n = 3), lung cancer case-control (n = 1758), pancreatic cancer case-control (n = 299), renal cancer case-control study (n = 271).
doi:10.1371/journal.pgen.1002033.001
we also conducted a sensitivity analysis restricting our sampling to individuals with genotyped data (Table 2). Regression coefficients remained essentially unchanged, but P-values were less significant reflecting the reduced sample size (rs4410790: $P = 4.0 \times 10^{-18}$; rs2470893 $P = 9.5 \times 10^{-18}$). Similar results were also observed when men and women were examined separately (Table S2). Had the analysis been performed instead by discovery at genome-wide significance (P, 5×10^{-8}) in the WGHS followed by replication in meta-analysis of the remaining cohorts, only SNPs at the same loci would have met Bonferroni corrected standards of significance. In a post-hoc investigation of study heterogeneity in which we compared WGHS to the remaining studies combined, there was significant heterogeneity for rs4410790 ($P = 0.01$), although this could be attributable to chance.

Based on the well-established biological link between smoking and AHR [8], and $CYP1A2$ [9] and caffeine consumption behavior [2], we explored the role of cigarette smoking (Table 3). Compared to our primary model that adjusted for smoking, a model not adjusted for smoking yielded slightly attenuated associations and when restricting analyses to ‘never smokers’ similar regression coefficients were observed as for the complete study population. These findings suggest that smoking is unlikely the cause of the associations observed in our GWAS of caffeine intake.

We further conducted 21 candidate gene analyses and found significant gene-based associations (Bonferroni corrected for the total number of human genes) between $CYP2C9$ ($P = 0.023$), and $ADORA2A$ ($P = 0.011$) and caffeine intake in addition to $CYP1A2$ and AHR (Table 4).

Discussion

In the first GWAS of caffeine intake in a total of 47,341 individuals from five U.S. studies, loci at 15q24 and 7p21 achieved genome-wide significance. $CYP1A2$ at 15q24 and AHR at 7p21 are attractive candidate genes for caffeine intake. At plasma concentrations typical of humans (<100 μM), caffeine is predominantly (~95% of a dose) metabolized by $CYP1A2$ via N1-, N3-, and N7-demethylation to its three dimethylxanthines, namely, theobromine, paraxanthine, and theophylline, respectively [10]. $CYP1A2$ expression and activity vary 10- to 60-fold between individuals [11]. Human $CYP1A2$ is located immediately adjacent to $CYP1A1$ in reverse orientation and the two genes share a common 5′-flanking region [12]. At least 15 AHR response elements (AHRE) reside in this bidirectional promoter region and rs2470893 is located in AHRE6 (originally reported as AHRE5[7]) which correlates with transcriptional activation of both $CYP1A1$ and $CYP1A2$ [6,7]. $CYP1A1$ expression in the liver (the target tissue for caffeine metabolism) is low and there is little evidence that this enzyme contributes to caffeine metabolism. This contrasts with the tissue specific expression of $CYP1A2$ in the liver, which suggests...
Table 2. Genome-wide meta-analytic results for caffeine consumption (*P < 10^-8). Further evidence supporting its role in caffeine metabolism. The observation that a stronger association exists for SNPs upstream of the gene suggests that variation in CYP1A2 gene expression probably affects caffeine intake. The protein product of AHR, AhR, is a ligand-activated transcription factor that, upon binding, partners with ARNT and translocates to the nucleus where it regulates the expression of a number of genes including CYP1A1 and CYP1A2. There is marked variation in AhR binding affinity across populations, but so far no polymorphisms have been identified that account for this variation [13]. The most studied SNP, rs2066853 (R554K), is located in exon 10, a region of AHR that encodes the transactivation domain [13]. Although this SNP was associated with caffeine in the current study (P = 0.0004), our strongest signal mapped upstream of AHR, suggesting variation in AHR expression has a key role in propensity to consume caffeine. An interaction between CYP1A2 and AHR could be biologically plausible; however, we did not find any evidence supporting statistical interaction between the top two loci (data not shown).

Human and animal candidate gene studies for caffeine intake and related traits have focused on various other genes linked to caffeine’s metabolism and targets of action. In our candidate gene analyses, we observed significant gene-based associations between CYP2C9 and ADORA2A and caffeine intake in addition to CYP1A2 and AHR. CYP2C9 catalyzes the N^-demethylation and C^-hydroxylation of caffeine to theophylline and 1,3,7-trimethyluric acid (a minor metabolite), respectively; but its role relative to CYP1A2 is generally small [10]. In amounts typically consumed from dietary sources, caffeine antagonizes the actions of adenosine at the adenosine A2A receptor (ADORA2A) [2], which plays an important role in the stimulating and reinforcing properties of caffeine [14,15]. Polymorphisms of ADORA2A have been previously implicated in caffeine-induced anxiety as well as habitual caffeine intake [16,17].

All studies contributing to our GWAS of caffeine intake were US-based. Consistent with the adult caffeine consumption pattern of this country, coffee contributed to well over 80% of caffeine intake. Previous studies suggest that some of the heritability underlying specific caffeine sources (i.e. coffee and tea) may be distinct in relation to total caffeine intake [18]. To evaluate the robustness of findings, we conducted an additional GWAS analysis using caffeinated coffee intake as the outcome variable yielding the same strong signals (rs4410790: 1.4 x 10^-9, rs2470893: 3.6 x 10^-9).

Imprecision in phenotypic assessment and differences across studies could have limited the scope of our discovery. Although dietary intake obtained by FFQ is subject to misclassification, validation studies in subsamples of the included studies indicated that the consumption of caffeine-containing beverages is assessed with good accuracy [19,20,21]. The cubic root transformation we applied to reported caffeine intakes, however, limits interpretation of the effect estimates. The crude weighted mean difference in caffeine intake between homozygote genotypes was 44 mg/d for rs4410790 and 38 mg/d for rs2470893 (Table S3 and S4). The two SNPs together, however, explained between 0.06 and 0.72% of the total variation in caffeine intake across studies suggesting additional variants remain to be discovered [22]. Finally, our GWAS assumed an additive genetic model and based on study-level results (Figure 1 and Figure 2) potential non-linear effects will require confirmation in future studies.

Caffeine intake has been associated with pleotropic physiologic effects in relation to both detrimental and beneficial health outcomes [23]. Our current study provides insights into the primary pathways underlying caffeine intake. Knowledge of the genetic determinants of caffeine intake may provide insight into underlying mechanisms and may provide ways to study the
potential health effects of caffeine more comprehensively by using genetic determinants as instrumental variables for caffeine intake or by taking into consideration caffeine-gene interactions. With the exception of nicotine dependency and the associated nicotinic receptor, genes that influence traits associated with dependency have been difficult to identify. The association of caffeine consumption with genes involved in metabolism or its regulation (CYP1A2 and AhR, respectively) illustrates that it is feasible to use GWAS to identify genetic determinants of other behavioral traits that are assessed with lower accuracy. We also recognize that the identified variants could influence regulation of their genomic elements distant from the known, high profile, neighboring candidate genes. In conclusion, we identified two loci related to caffeine consumption that will be worthy of further investigation with regard to both beneficial and toxic effects of caffeine as well as the extensive group of carcinogens, drugs, and xenobiotics also metabolized through action of the regulation of the gene products of CYP1A2 and AHR.

Material and Methods

Ethics Statement

This study was conducted according to the principles expressed in the Declaration of Helsinki. All participants in the contributing studies gave written informed consent including consent for genetic analyses. Local institutional review boards approved study protocols.

Study Populations

We conducted a meta-analysis of 47,341 individuals of European descent, sourced from Atherosclerosis Risk in Communities (ARIC, N = 8,976), the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO, N = 4,942), the Nurses’ Health Study (NHS, N = 6,774), the Health Professionals Follow-Up Study (HPFS, N = 4,023), and the Women’s Genome Health Study (WGHS, N = 22,658) to identify novel loci associated with habitual caffeine consumption. Study population descriptions and genotyping quality control for data generated with either the Affymetrix 6.0 or the Illumina Infinium arrays (HumanHap300, 550 or 610 arrays) are provided in Text S1 and Table S5 and S6.

Caffeine Intake Assessment

In the NHS, every 2 to 4 years of follow-up diet was assessed using a validated semi-quantitative food frequency questionnaire (FFQ) [24]. For the present analysis, we included the participants’ mean caffeine intakes of the 1984 (first year in which caffeinated and decaffeinated coffee were differentiated) and 1986 FFQs. The following caffeine-containing foods and beverages were included in the FFQ: coffee with caffeine, tea, cola and other carbonated
beverages with caffeine, and chocolate. For each item, participants were asked how often, on average, they had consumed a specified amount of each beverage or food over the past year. The participants could choose from nine frequency categories (never, 1–3 per month, 1 per week, 2–4 per week, 5–6 per week, 1 per day, 2–3 per day, 4–5 per day and 6 or more per day). Intakes of nutrients and caffeine were calculated using US Department of Agriculture food composition sources. In these calculations, we assumed that the content of caffeine was 137 mg per cup of coffee, 47 mg per cup of tea, 46 mg per can or bottle of cola or other caffeinated carbonated beverage, and 7 mg per 1 oz serving of chocolate candy. We assessed the total intake of caffeine by summing the caffeine content for the specified amount of each food multiplied by a weight proportional to the frequency of its use. In a validation among a subsample of this cohort, we obtained high correlations between intake of caffeinated coffee and other caffeinated beverages from the FFQ and four 1-week diet records (coffee, r = 0.78; tea, r = 0.93; and caffeinated sodas, r = 0.85) [21].

In the WGHS, caffeine intake was assessed at baseline (1991) using the same FFQ and caffeine algorithm as the NHS [25]. HPFS participants have been followed with repeated FFQs every 4 years. Caffeine-intake was assessed by the same methods as described above for the NHS cohort. In a validation study in a subsample of participants, we obtained high correlations between consumption of coffee and other caffeinated beverages estimated from the FFQ and consumption estimated from repeated 1-wk diet records (coffee: r = 0.83; tea: r = 0.62; low-calorie caffeinated sodas: r = 0.67; and regular caffeinated sodas: r = 0.56) [21]. For the present analysis, we included the participants mean caffeine intakes of the 1986 (baseline) and 1990 FFQs.

In the ARIC study, caffeine consumption was quantified at the baseline (1987–1989) examination from an interview-administered...
consumed in decaffeinated form (almost never or never, about
participants were asked the proportion of the time each were
"6 or more cups per day." For all three of the above beverages,
were queried together as cups per unit time ranging from "none"
with three possible portion size response categories:
summed across all beverages to obtain a total caffeine intake value.
Caffeine intake in the PLCO trial was assessed at the
randomization phase (between 1992–2001) using responses from
a FFQ developed at the National Cancer Institute called the Diet
History Questionnaire (DHQ). The DHQ was previously
validated against four 24 hour dietary recalls [26] and asks about
the recalls were placed in food groups consistent with items on
the DHQ, and weighted mean nutrient values based on survey data
were derived for adults stratified by sex using methods previously
described [28].

Table 4. Candidate gene-based association results.*

Chr	Gene	#SNPs	#simulations	start position	stop position	Gene-based P
1	ADORA3	43	1000	111827492	111908120	0.69
2	FM03	26	1000	169326659	169353583	0.17
3	ADORA1	43	1000	201363458	201403156	0.13
5	DXH	47	1000	31410691	31491115	0.22
6	DRD1	33	100000	174800280	174803769	0.10
7	AHR	18	1000000	17304831	17352299	<1 x 10^-6
7	CYP3A4	11	1000	99192539	99219744	0.56
7	CYP3A43	3	1000	99263571	99302109	0.58
8	NAT1	3	1000	18111894	18125100	0.52
8	NAT2	32	1000	18293034	18303003	0.62
10	CYP2C9	23	100000	96688404	96739138	0.023
10	CYP2C8	20	100000	96786518	96819244	0.05
10	CYP2E1	16	1000	135190856	135202610	0.23
11	DRD2	34	100000	112785526	112851211	0.077
12	TAS2R7	4	1000	10845397	10846493	0.96
12	TAS2R14	1	1000	10982119	10983073	0.72
15	CYP1A2	11	1000000	72828236	72835994	<1 x 10^-6
17	ADORA2B	15	1000	15788955	15819935	0.30
17	PPP1R1B	19	1000	35036704	35046404	0.74
19	CYP2A6	45	1000	46041282	46048192	0.43
19	CYP2A7	28	1000	46073183	46080497	0.60
22	COMT	41	1000	18309308	18336530	0.27
22	ADORA2A	8	100000	23153529	23168325	0.011

*Gene-based analyses were performed using VEGAS [37]. See Materials and Methods for details.
doi:10.1371/journal.pgen.1002033.t004

66-item semi-quantitative FFQ[19,20]. The Harvard Nutrition
Database was used to assign caffeine (and nutrient) content to each
of the food and beverage line items. Line items quantifying
consumption of caffeine-containing beverages included sodas
(regular and diet), coffee, and tea. The frequency of consumption
corresponding to its own caffeine content and summed across all beverages to obtain a total caffeine intake value.

Phenotype Harmonization and Model Selection

The algorithm used for the calculation of caffeine intake was
study-specific to allow for differences in questionnaires and
consumption habits in different study populations. Two
coefficient of transformations, we found that a cubic-root
transformation was very close to the most optimal transformation
identified by the Box-Cox procedure and was used to ensure normality of the residuals. Our final models were also adjusted for

Survey of Food Intake by Individuals (CSFII)[27], a nationally
representative survey conducted during the period when the DHQ
was being administered. Individual foods/beverages reported on
the recalls were placed in food groups consistent with items on
the DHQ, and weighted mean nutrient values based on survey data
were derived for adults stratified by sex using methods previously
described [28].

Imputation

Each study used either MACH [29] (ARIC, NHS, HPFS, WGHS) or IMPUTE [30] (PLCO) to impute up to ~2.5 million
toments were imputed for SNPs not present in the genome-wide arrays or for those
where genotyping had failed to meet the quality control criteria. Imputation results are summarized as an “allele dosage” (a fractional value between 0 and 2), defined as the expected number of copies of the minor allele at that SNP.
age (continuous), sex, case-control status (if applicable), study-site (if applicable), smoking status (never, former, and current: 2 categories), and study specific eigenvectors (see Table S5 for study-specific models). Adjustment for smoking status was appropriate given the strong correlation between smoking and caffeine intake that might impede our ability to uncover caffeine-specific loci. Each study collected information on smoking status at the time FFQ were administered. A flexible modeling approach was used to accommodate the different methods by which smoking was collected across studies, but all included never, former and two categories of current smokers. Further adjustments for body-mass-index did not change results appreciably.

Study-Level GWAS

Each study performed genome-wide association testing for normalized caffeine-intake across ~2.5 million SNPs, based on linear regression under an additive genetic model. Analyses were adjusted for additional covariates as described above and further detailed in Table S5. Imputed data (expressed as allele dosage) were examined using ProbABEL[31] or R (scripts developed in-house). The genomic inflation factor \(\lambda \) for each study as well as the meta-analysis was estimated from the median \(\chi^2 \) statistic.

Meta-Analysis

Meta-analysis was conducted using a fixed effects model and inverse-variance weighting as implemented in METAL (see URLs in Text S1). The software also calculates the genomic control parameter and adjusts each study’s standard errors. Fixed effects analyses are regarded as the most efficient method for discovery in the GWAS setting [32]. Heterogeneity across studies was investigated using the \(I^2 \) statistic[33]. We applied stringent quality filters to imputed SNPs prior to meta-analysis; removing those with \(<0.02\) MAF and/or with low imputation quality scores. The latter was defined as \(\text{Rsq} \leq 0.80 \) for SNPs imputed with MACH and proper_info\(\geq 0.7 \) for SNPs imputed with IMPUTE. X and Y chromosome, pseudosomal and mitochondrial SNPs were not included for the present analysis. We retained only SNP-phenotype associations that were based on results from at least 2 of the 10 participating studies and if greater than 50% of the samples contributing to the results were genotyped. Additional checks for experimental biases were implemented for notable associations including manual inspection of SNP (if imputed, an assayed SNP in high LD) cluster plots, and evaluation of HWE, and comparison of study MAFs to the HapMap CEU panel. We considered P-values \(<5 \times 10^{-8}\) to indicate genome-wide significance [34].

Candidate Gene–Based Analyses

We examined 515 SNPs in 23 genes (\(\pm 50 \) kb) either previously studied or members of the key biological pathway: ‘Caffeine metabolism’ (KEGG [35], supplemented with candidates from[10,36]) for association with caffeine consumption in our GWAS meta-analysis sample. SNPs mapping to \(T A S 2 R 1 0 , 4 3 \) and \(4 6 \), implicated in the oral detection of caffeine, did not pass our stringent QC criteria and thus were not included. Gene-based analyses were performed using VEGAS [37]. The software applies a test that incorporates information from a set of markers within a gene (or region) and accounts for LD between markers by using simulations from the multivariate normal distribution. The number of simulations per gene is determined adaptively. In the first stage, 1000 simulations are performed. If the resulting empirical P value is less than 0.1, 10000 simulations are performed. If the empirical P value from 100000 simulations is less than 0.0001; the program will perform 10000000 simulations. At each stage, the simulations are mutually exclusive. For computational reasons, if the empirical P value is 0, then no more simulations will be performed. An empirical P value of 0 from 1000000 simulations can be interpreted as \(P < 1 \times 10^{-6} \), which exceeds a Bonferroni-corrected threshold of \(P < 2.8 \times 10^{-8} \) [10,05/17,878 (number of autosomal genes)].

Supporting Information

Figure S1 QQ plots for study-level GWAS of caffeine consumption. Results for genotyped and imputed SNPs denoted by red and blue points, respectively. (TIFF)

Figure S2 Regional association plots of the two caffeine-associated loci. SNPs are plotted with their meta-analysis P-values (as -\(\log_{10} \) values) as a function of genomic position (NCBI Build 36). In each panel, the index association SNP is represented by a diamond. Estimated recombination rates (taken from HapMap CEU) are plotted to reflect the local LD structure. SNP color indicates LD with the index SNP according to a scale from \(r^2 = 0 \) to \(r^2 = 1 \) based on pairwise \(r^2 \) values from HapMap CEU. Plots were created using LocusZoom (see URLs). (TIFF)

Table S1 Genome-wide meta-analysis of caffeine consumption: All SNPs \(P < 10^{-4} \). (DOCX)

Table S2 Genome-wide meta-analysis of caffeine consumption \(P < 10^{-6} \): Gender and study effects. (DOCX)

Table S3 Mean caffeine intakes (mg/d) by rs4410790 genotype. (DOCX)

Table S4 Mean caffeine intakes (mg/d) by rs2470893 genotype. (DOCX)

Table S5 Study-specific genotyping, imputation and statistical analysis. (DOCX)

Table S6 Sample quality control. (DOCX)

Text S1 Study population descriptions and URLs. (DOC)

Acknowledgments

ARIC: The authors thank the staff and participants of the ARIC study for their important contributions.

NHS and HPFS: The NHS Breast Cancer GW scan was performed as part of the Cancer Genetic Markers of Susceptibility initiative of the NCI. We particularly acknowledge the contributions of R. Hoover, A. Hutchinson, K. Jacobs and G. Thomas. The NHS/HPFS type 2 diabetes GWAS is a component of a collaborative project that includes 13 other GWAS funded as part of the Gene Environment-Association Studies (GENEVA) under the NIH Genes, Environment and Health Initiative (GEI). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GENEVA Coordinating Center and Genotyping Centers (Broad Institute of MIT and Harvard, and Johns Hopkins University Center for Inherited Disease
We acknowledge the study participants in the NHS and HPFS for their contribution in making this study possible. PLCO: The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer Institute, the Screening Center investigators and staff of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff, Information Management Services, Inc., Ms. Barbara O’Brien and staff, Westat, Inc. We recognize Mr. Tim Sheehy and staff, of the DNA Extraction and Staging Laboratory, SAIC-Frederick, Inc. and Ms. Jackie King and staff, BioReliance, Inc. Most importantly, we acknowledge the study participants for their contributions to making this study possible.

References

1. Farry CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105: 110–113.
2. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133.
3. Yang A, Palmer AA, de Wit H (2010) Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl).
4. Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105: 1067–1079.
5. Tobacco and Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42: 441–447.
6. Jorge-Nebert LF, Jiang Z, Chakrabarty R, Watson J, Jin L, et al. (2010) Analysis of human CYP1A1 and CYP1A2 genes and their shared bidirectional promoter in eight world populations. Hum Mutat 31: 27–40.
7. Ueda R, Iketaki H, Nagata K, Kimura S, Gonzalez FJ, et al. (2006) A common regulatory region functions bidirectionally in transcriptional activation of the human CYP1A1 and CYP1A2 genes. Mol Pharmacol 69: 1924–1930.
8. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43: 309–334.
9. Zhou SF, Wang B, Yang LP, Liu JP (2010) Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 42: 268–354.
10. Kot M, Daniel WA (2008) The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: an in vitro comparative study with cDNA-expressed P450s including CYP2C19 isoforms. Biochem Pharmacol 76: 543–551.
11. Gunes A, Dahl ML (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9: 625–637.
12. Corcherio J, Pimprale S, Kimura S, Gonzalez FJ (2001) Organization of the CYP1A cluster on human chromosome 15: implications for gene regulation. Pharmacogenomics 4: 1743–1750.
13. Landrin C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, et al. (1997) Aggressiveness, hypalgesia and high blood pressure in mice lacking the Adora2a receptor. Nature 388: 674–678.
14. Rogers PJ, Hohoff C, Heatherley SV, Mullings EL, Maxfield PJ, et al. (2010) Isoforms to the four caffeine oxidation pathways: an in vitro comparative study. Pharmacol Rev 51: 83–133.
15. Landrin C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, et al. (1997) Aggressiveness, hypalgesia and high blood pressure in mice lacking the Adora2a receptor. Nature 388: 674–678.
16. Landrin C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, et al. (1997) Aggressiveness, hypalgesia and high blood pressure in mice lacking the Adora2a receptor. Nature 388: 674–678.
17. Cornelis MC, El-Sohemy A, Campos H (2007) Genetic polymorphism of the Adenosine A2A receptor is associated with habitual level of caffeine consumption. Am J Clin Nutr 86: 240–244.
18. Luciano M, Kirk KM, Heath AC, Martin NG (2005) The genetics of tea and coffee drinking and preference for source of caffeine in a large community sample of Australian twins. Addiction 100: 1510–1517.
19. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, et al. (1983) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122: 51–65.
20. Stevens J, Metcalf P, Deniss B, TeLg; Shimakawa T, et al. (1996) Reliability of a food frequency questionnaire by ethnicity, gender, age and education. Nutrition Research 16: 735–745.
21. Feinman R, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, et al. (1993) Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 93: 796–796.
22. Marai M, Wacholder S, Gail MH, Peters U, Jacobs KB, et al. (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42: 570–573.
23. Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46: 101–123.
24. Willett WC (1999) Nutritional Epidemiology. New York: Oxford University Press.
25. Reilly PM, Chasman DJ, Zee RY, Parker A, Rose L, et al. (2008) Rationale, design, and methodology of the Women’s Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin Chem 54: 249–255.
26. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, et al. (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154: 1089–1099.
27. Tippett K, Cypel Y (1997) Design and Operation: The Continuing Survey of Food Intakes by Individuals and the Diet and Health Knowledge Survey, 1994–96. U.S. Department of Agriculture, Agricultural Research Service.
28. Subar AF, Midthune D, Kulloffel M, Brown CG, Thompson FE, et al. (2000) Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am J Epidemiol 152: 279–286.
29. LI Y, Alocasia GR (2008) Caffeine intake and risk of non-Hodgkin’s lymphoma in a large prospective study. Cancer Epidemiol Biomarkers Prev 17: 2511–2516.
30. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39: 906–913.
31. Aldegonso YS, Struchalin MV, van Dijm CM (2010) ProABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11: 134.
32. Pereira TV, Patapoikolas NA, Salani G, Ioannidis JP (2009) Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol 170: 1197–1206.
33. Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Heterogeneity in meta-analyses of genome-wide association studies. PLoS ONE 2: e841. doi:10.1371/journal.pone.0000841.
34. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32: 381–385.
35. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30.
36. Meyerhoff W, Baranz C, Kulun G, Brockhoff A, Chudoba E, et al. (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35: 157–170.
37. Lin JZ, McRea AF, Nyholt DR, Medland SE, Wray NR, et al. (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87: 139–145.