Design Conceptual of 800MWt Long Life Pressurized Water Reactor Using (Th-U)O₂ Fuels with Gd₂O₃ and Pa-231 as Burnable Poisons

Duwi Hariyantoᵃ,¹ and Sidik Permanaᵃᵇ,²*
ᵃNuclear Physics and Biophysics Research Division, Department of Physics, ᵇDepartment of Nuclear Science and Engineering, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Indonesia

E-mail : ¹duwi_hariyanto@students.itb.ac.id, ²psidik@fi.itb.ac.id

Abstract. A long-life pressurized water reactor (PWR) has been reviewed as an innovative reactor design that can fulfill electricity demand. This study aimed to find out the optimum design of 800MWt long life PWR using Thorium-Uranium dioxide (Th-U)O₂ fuels with Gadolinium (Gd₂O₃) and Protactinium-231 (Pa-231) as the burnable poisons. An established computer code of SRAC 2006 with JENDL 4.0 as data nuclear library had been used for the analysis. A two-dimensional R-Z geometry and fuel volume fraction of 40% were used for core geometry analysis. The different fraction of Uranium dioxide, Uranium-235, Gadolinium, and Protactinium-231 had been carried out. The result of this study was a design of PWR 800MWt using Uranium dioxide fuel of 60% with enrichment 11%-12%-13% Uranium-235 and the addition of 0.025% Gd₂O₃ and 1.0% Pa-231 that could operate for ten years without refueling. The reactor could produce a power density of 45.4 watts/cc with excess reactivity about 3.6% dk/k. This study is expected to be a reference for a long-life pressurized water reactor using the Thorium-Uranium fuel cycles.

1. Introduction
The Energy Information Administration (EIA) predicted that the demand for primary energy will increase by 28% between 2015 and 2040, with the electricity demand will double [1]. In Indonesia, electricity consumption will be double in the last ten years, especially in the household sector and the commercial sector [2]. Fossil fuels cannot be utilized sustainably due to the limitations of the earth's natural resources and the impact on the environment [3]. Nuclear energy is one of the solutions to the growing demand for electricity consumption [4]. Lately, nuclear power has attracted many developing countries for utilizing nuclear reactors to fulfill their national energy needs [5]. The main nuclear power plant type that has been put into commercial operation and has been used to generate 16% of total electricity in the world is a pressurized water reactor (PWR) type [6,7]. Even though new generation reactor designs have been successfully developed as innovative power reactor type, and its development based on the PWR type reactor is still being carried out because of its experiences in operation and maintenance as well as this type is already proven and well commercialized worldwide.

* Corresponding author.
E-mail address: psidik@fi.itb.ac.id
until now [8]. The Thorium fuel as a potential fuel candidate because of the exist of fissile Uranium-233 as by product material that has a superiority of η value for some neutron energy rage of thermal and epithermal energy region in comparing to other fissile nuclides, and in the same time Thorium gives a negative void reactivity coefficient as well as obtains higher breeding capability [9-10].

A long-life reactor type is one of the innovative, effective, and efficient reactor designs that can be used to meet electricity demand [11]. The PWR using Thorium-Uranium fuel cycles has been reviewed as a reactor that can operate for a long time without refueling [12-15]. The study conducted in paper [14] utilized and compared the performance of three types of burnable poisons namely Gadolinium (Gd$_2$O$_3$), Protactinium-231 (Pa-231), and Neptunium (Np-237) to reduce excess reactivity in long-life PWR, where Gd$_2$O$_3$ and Pa-231 as burnable poisons that provide the best performance. Burnable poison Np-237 can reduce excess reactivity, but Np-237 has received a significant concern as a potential material for weapon manufacturing [16]. Based on these, the purpose of this study was to find out the optimum design of 800MWt long-life PWR using Thorium-Uranium dioxide ((Th-U)O$_2$) fuels with Gadolinium (Gd$_2$O$_3$) and Protactinium (Pa-231) as burnable poisons. This study is expected to be a reference for long-life PWR using Thorium-Uranium fuel cycles.

2. Calculation Method and Design Concept

In this study, SRAC 2006 code made by Japan Atomic Energy Agency (JAEA) was used with Japanese Evaluated Nuclear Data Library (JENDL) 4.0 as data nuclear library for calculating the reactor design [17,18]. The procedure carried out in this study was the determination of the reactor core dimensions and configuration, atomic density calculation, and then cell and core calculation using PIJ and CITATION in SRAC 2006. The pressurized water reactor core was designed to generate the thermal power of 800 MWt. The radius and height of the reactor core were 138,6 cm and 307,4 cm, respectively. The reflector widths were set into 22,68 cm for the radial and axial directions. The reactor design parameters, which was analyzed in this study, are shown in Table 1.

Parameters	Value
Thermal power output	800 MWt
Active core diameter	277.2 cm
Active core height	307.4 cm
Pin pitch	1.26 cm
Clad thickness	0.057 cm
Reflector width	22.68 cm
Reflector material	Stainless steel +H$_2$O
Fuel	(Th-U)O$_2$
UO$_2$ percentage	40%-60%
U-235 enrichment	9.13%
Gd$_2$O$_3$	0,0125-0,0375%
Pa-231	0,5-2.0%
Moderator	H$_2$O
Cell geometry	Square cell
Fuel volume fraction	40%

A long-life pressurized water reactor design used Thorium-Uranium fuel cycles with some additional materials of Gadolinium (Gd$_2$O$_3$) and Protactinium-231 (Pa-231) as burnable poisons. This study utilized the isotope Thorium-232 (Th-232) and Uranium-238 (U-238) with enriched Uranium-235 (U-235). For obtaining the optimum reactor core design, the different fractions of Uranium dioxide, Uranium-235, Gadolinium, and Protactinium-231 in the fuels had been carried out. The neutronic analysis was carried out to obtain the optimum fuel configuration with low reactivity during
burn up operation. A two-dimensional R-Z geometry and the fuel volume fraction of 40% was used in this study. The two-dimensional R-Z geometry which was divided into three fuel regions in the radial and axial directions with different enrichment Uranium-235 is shown in Figure 1.

![Figure 1](image)

Figure 1. The pressurized water reactor core design.

3. Results and Discussions

The optimum core reactor design in this study was based on the effective multiplication factor \(k_{\text{eff}}\) and the power density distribution. The PWR core design was optimized so that it could operate for a long time without refuelling. The effective multiplication factor \(k_{\text{eff}}\) of the different fractions of Uranium dioxide, Uranium-235, Gadolinium, and Protactinium-231 are presented in Figure 2.

![Figure 2](image)

Figure 2. Results (a) \(k_{\text{eff}}\) of 40% and 60% UO\(_2\) enrichment 9-13% U-235 no burnable poison, (b) \(k_{\text{eff}}\) of 60% UO\(_2\) enrichment 11%-12%-13% U-235 with burnable poison Gd\(_2\)O\(_3\) of 0,0125-0,0375%, (c) \(k_{\text{eff}}\) of 60% UO\(_2\) enrichment 11%-12%-13% U-235 with burnable poison Pa-231 of 0,5-2,0%, (d) \(k_{\text{eff}}\) of 60% UO\(_2\) enrichment 11%-12%-13% U-235 with burnable poison Gd\(_2\)O\(_3\) of 0,025% and Pa-231 of 0,5-1,5%.
Figure 2 (a) shows the effect of Uranium dioxide fraction and enrichment Uranium-235 in the fuels. The Uranium dioxide (UO$_2$) of 40% and Thorium dioxide (ThO$_2$) of 60% provide criticality less than six years while UO$_2$ of 60% and ThO$_2$ of 40% provide criticality less than eleven years. The UO$_2$ of 40% and enrichment Uranium-235 in fuel1-fuel2-fuel3 of 11%-12%-13% provide excess reactivity about 14,4% at the beginning of life (BOL). Then, The UO$_2$ of 40% with enrichment Uranium-235 of 9%-10%-11% and 10%-11%-12% provide excess reactivity about 11,6% and 13,1%, respectively. The Uranium dioxide of 60% with enrichment 11%-12%-13% Uranium-235 provides excess reactivity about 20,1% at the beginning of life. Whereas, Uranium dioxide of 60% with enrichment 9%-10%-11% and 10%-11%-12% Uranium-235 provide excess reactivity about 18,2% and 19,3% respectively. These results indicate that increasing the percentage of fissile isotope enrichment (Uranium-235) be able to increase reactivity at the BOL. However, a large enrichment Uranium-235 would provide a reactor that could operate for a long time because it could produce more fissile isotopes in the reactor such as Uranium-233 and Plutonium-239. The optimum result is Uranium dioxide of 60% with enrichment Uranium-235 in fuel1-fuel2-fuel3 of 11%-12%-13%.

Figure 2 (b) shows the effect of burnable poison Gadolinium (Gd$_2$O$_3$) in UO$_2$ fuel of 60% with enrichment 11%-12%-13% U-235. The effective multiplication factor with the addition of 0,0125% Gd$_2$O$_3$ declined by 4,9% than without burnable poison at the BOL. Then, the reduction of the effective multiplication factor using 0,025% and 0,037% Gd$_2$O$_3$ are 8,6% and 11,6%, respectively. After burning up for two years, the effective multiplication factors do not show significant change with the addition of Gadolinium that carried out. The addition of 0,025% Gadolinium shows the optimum result. In this case, the excess reactivity of 60% UO$_2$ fuel with enrichment 11%-12%-13% U-235 and the addition of 0,025% Gd$_2$O$_3$ as burnable poison is 12,5% at the beginning of life.

Figure 2 (c) shows the effect of burnable poison Protactinium (Pa-231) in UO$_2$ fuel of 60% with enrichment 11%-12%-13% U-235. The burnable poison Pa-231 of 0,5% can reduce the effective multiplication factor about 7,2% than without burnable poison at the BOL. Whereas, the effective multiplication factor with the addition of 1,0%, 1,5%, and 2,0% Pa-231 declined by 12,5%, 16,7%, and 20,2%, respectively. The Protactinium-231 of 2,0% provides a subcritical reactor ($k_{\text{eff}}<1$). That is due to the addition of 2,0% Pa-231 decreases the effective multiplication factor higher than the excess reactivity of 60% UO$_2$ fuel with enrichment 11%-12%-13% U-235 without burnable poison.

Figure 2 (d) shows the effect of burnable poison Pa-231 in 60% UO$_2$ fuel with enrichment 11%-12%-13% U-235 and the addition of 0,025% Gd$_2$O$_3$. At the BOL, Pa-231 of 0,5% and 1,0% are able to reduce the effective multiplication factor about 6,7% and 11,6%, respectively. Meanwhile, Pa-231 of 1,5% can reduce the k_{eff} of 15,5%. Therefore, the addition of 1,5% Protactinium-231 in the fuels provides a subcritical reactor at the BOL. The optimal result is indicated by using Protactinium-231 of 1,0% that provides average excess reactivity of 3,6% dk/k and criticality for ten years.

Figure 3 shows the distributions of power density in the radial (R) and axial (Z) axes using 60% UO$_2$ fuel with enrichment U-235 of 11%-12%-13% and the addition of 0,025% Gd$_2$O$_3$ and 1,0% Pa-231 at the beginning of life (BOL) and the end of life (EOL). The power density distributions of the core are flat in the radial (R) and axial (Z) directions. The reactor can produce a power density of 38,6 watts/cc at the beginning of life and 45,4 watts/cc at the end of life.

Figure 3. Distributions of power density at (a) the beginning of life (BOL) and (b) the end of life (EOL)
4. Conclusions
Analysis design of 800MWt long life PWR using Thorium-Uranium dioxide ((Th-U)O₂) with the addition of Gadolinium (Gd₂O₃) and Protactinium (Pa-231) as burnable poisons had been conducted. The criticality of 60% ThO₂ and 40% UO₂ fuels were less than 6 years while criticality of 40% ThO₂ and 60% UO₂ fuels were less than 11 years. Additional materials of Gadolinium and Protactinium-231 in the fuels indicated a good performance to reduce excess reactivity. The result of this study for 800MWt PWR design which can operate for ten years without refuelling was adopting 60% UO₂ fuel with enrichment 11%-12%-13% U-235 and the addition of 0,025% Gd₂O₃ and 1,0% Pa-231. The reactor obtained an average power density of 45,4 watts/cc with excess reactivity about 3,6% dk/k. This study can be used as a reference for a long life pressurized water reactor design using the Thorium-Uranium fuel cycles.

Acknowledgments
The author would like to thank Mr. Rouf and Prof. Zaki Su’ud for discussions that have been conducted to complete this paper. The author would like to acknowledge to Decentralization Research Program of the Ministry of Research, Technology and Higher Education for the support and to Lembaga Pengelola Dana Pendidikan (LPDP) - Ministry of Finance, the Republic of Indonesia for supporting the first author by providing educational scholarships.

References
[1] Energy Information Administration (EIA) 2018 International Energy Outlook 2017 (U. S.)
[2] Kementerian Energi dan Sumberdaya Mineral 2018 Handbook of Energy and Economic Statistic of Indonesia (Jakarta: Center for Data and Information on Energy and Mineral Resources. Ministry Energy and Mineral Resources)
[3] Waris A and Sekimoto H 2001 Ann. Nucl. Energy 28 153–167
[4] Liberge R and Arslan M 2010 Nuclear fuel cycle: Which Strategy to Sustain Nuclear Renaissance? Proc. the 18th Int. Conf. on Nucl. Eng. (Xi’an, China) vol 1 p 457-463
[5] Permana S, Takaki N, and Sekimoto H 2007 Breeding Capability of Uranium and Thorium Fuel Cycles for Water Cooled Reactors Int. Conf. on Advances in Nucl. Sci. and Eng. (Bandung, Indonesia) p 233-238
[6] Takei T and Yamaji A 2018 Nuclear Engineering and Design 333 45-54
[7] Chen J, Zhou T, and Ran K 2010 The Energy-Saving Diagnosis of PWR Nuclear Power Station Based on The Thermo-Economic Analysis Model Proc. the 18th Int. Conf. on Nucl. Eng. (Xi’an, China) vol 1 p 137-144
[8] Irwanto D and Su’ud Z 2005 Design Study of Long Life Thorium-based Pressurized Water Reactor (PWR) Using Annular Fuel System and Protactium as Burnable Poison Proc. of Asian Physics Symposium (Bandung, Indonesia) p 307-313
[9] Permana S, Takaki N, and Sekimoto H 2007 J. Nucl. Sci. Technol. 44 946-957
[10] Permana S, Pramutadi A, Pramuditya S, and Irvanto D 2018 J. Physics: Conf. Ser. 1090 1
[11] Permana S 2016 J. Physics: Conf. Ser. 887 1
[12] Subkhi M N, Su’ud Z, Waris A and Permana S 2016 ARPN J. Eng. and Appl. Sci. 11 830-832
[13] Rouf and Su’ud Z 2016 J. Physics: Conf. Ser. 739 1
[14] Rouf and Su’ud Z 2016 Indian J. Sci. and Tech. 9 1-8
[15] Setiadipura T, Subkhi M N, Astuti Y, and Su’ud Z 2005 Neutronic Design Study of Small Long-live PWR with (Th-U)O₂ Fuel Proc. GLOBAL (Tsukuba, Japan)
[16] Barchevtsev V, Ninokata H, and Artisyuk V 2002 Ann. Nucl. Energy 29 595–608
[17] Okumura K, Kugo T, Kaneko K, and Tsuchihashi K 2007 SRAC2006: A Comprehensive Neutronics Calculation Code System (Japan Atomic Energy Research Institute (JAERI))
[18] Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kanieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, and Katakura J 2011 J. Nucl. Sci. Technol. 48 1-30