1. はじめに

Boussinesq 近似は、非一様な密度分布を持つ流体の運動を記述する際にしばしば用いられる近似である。この近似の下での質量の保存式は、流体の速度 u が非発散性であるという条件

$$ \nabla \cdot u = 0 \tag{1} $$

によって置き換える。一方、この近似の下での運動方程式を導く際には、流体の密度 ρに関して、連続

$$ \rho = \rho_0 - \rho_0 \beta T' \tag{2} $$

なる仮定が置かれる (1)。ここで ρ_0 は適当な基準密度、β は流体の熱膨張係数、T'は基準値から測った流体の温度である。また T' の分布は、流体内部に熱源が存在しない場合、

$$ \frac{\partial T'}{\partial t} + u \cdot \nabla T' = \chi \Delta T' \tag{3} $$

により決定される。ただし χ は流体の温度伝導率である。

さてこの近似の下で、流体のエネルギー収支を論ずる際には、当然その位置エネルギーを定義する必要がある。そのためには、位置エネルギーの定義中に現れる単位体積当たりの質量、すなわち密度を定義せねばならない。単純に考えると、運動方程式を導く際に用いた仮定 (2) を密度の定義として用いれば良さそうに思われる。実際、この定義に基づいた Boussinesq 近似の下での流体のエネルギー論が存在する (2)。

しかししながら、次節で説明するように、運動方程式を導くために用いた仮定 (2) を密度の定義として採用することは、物理的に考えれば、到底認められないことである。

2. Boussinesq 近似下での流体の密度

一室の容積 V を持つ容器に入った流体を考えておき、この流体の密度 ρ が (2) で与えられるとすると、その質量 M は

$$ M = \rho_0 V - \rho_0 \beta V T' \tag{4} $$

で与えられることになる。ただし T' は容器内で平均された温度である。この式から、この流体の質量は、それを冷やしたり温めたりすることによって増減することになるが、この結論は明らかに質量の保存則に反している。

次に、今一度その密度 ρ が (2) で与えられる流体を考えよう。この式と (1) 及び (3) を用いると

$$ \frac{\partial \rho}{\partial t} + \nabla \cdot \rho = 0 \tag{5} $$

が得られる。ただし $j = \rho u - \chi \nabla \rho$ である。一般に質量流束密度 j は単位体積の流体の運動量であるから (1)、単位密度の流体の運動量は j/ρ で与えられることになる。その結果、u は単位質量の流体の運動量ではなく、従って $\frac{1}{2} |u|^2$ は単位質量の流体のエネルギーではない、という結論に到達する。この結論もまた、物理的に受け入れられない。

以上の議論から分かるように、Boussinesq 近似の下での流体の密度として (2) を採用することは、物理的に見て容認できない。この近似の下での流体の保存式 (1) に鑑みて、流体の密度は一定值 ρ_0 と見なされるべきである。実際次節で見るように、質量保存則に整合的なこの密度を用いれば、合理的な流体のエネルギー論を展開することが可能なのである。

3. Boussinesq 近似下での流体のエネルギー収支

重力の作用下での、固定領域内的粘性流体の運動を考えよう。この領域には、直交座標系 (x_1, x_2, x_3) が設定され、特に x_3 軸は鉛直上向きに取られているものとする。以下では、正の x_1, x_2, x_3 軸方向の単位ベクトルを e_1, e_2, e_3 で示す。また、添字 i, j, \ldots は数字 1, 2, 3 を表わし、総和の規約が用いられる。

前節で述べた通り、質量の保存式 (1) に鑑みて、Boussinesq 近似の下での流体の密度 ρ

$$ \rho = \rho_0 \tag{6} $$

で与えられるものと見なす。他方、この近似の下でも流体の熱膨張係数 β はゼロではないと仮定する

$$ \beta = v^{-1}(\partial v/\partial T)_p \neq 0 \tag{7} $$

ここに $v = 1/\rho$ は流体の比容であり、T 及び p は流体の温度と圧力を示している。

まず初めに、流体の内部エネルギーの変化を記述する式を導こう。この式は、熱膨張の一般式 (1)

$$ \rho \frac{D T}{Dt} = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \nabla \cdot q \tag{8} $$

から導くことができる。ここに D/Dt は物質微分を表し、s は流体の比エンタルピー、τ_{ij} は粘性ストレステンソルの成分、u_i は流速 u の成分、q は流体内部エネルギーを示している。また右辺第一項は、粘性散逸に伴う加熱項である。

Boussinesq 近似の下では、温度 T と圧力 p は流体中でごくわずかしか変化しないものと仮定される (1)。これに応じて、T

$$ T = T_0 + T' \tag{9} $$

となる。
のように書くことができる。ここで \(T_0 \) は一定の基準温度であり、\(T' \) は \(T_0 \) からの微小な変化を表している。同様に、\(p' \) を微小な摂動圧力として、

\[
p = p_0 + p'
\]

と書ける。ただし \(p_0 \) は静水圧の式を満足し、

\[
p = -\rho_0 g T_0 + \text{constant}
\]

で与えられる。ことに \(g \) は重力加速度である。さて \(Ds/Dt \) を \(T \) と \(p \) で用いて表すと、

\[
\frac{Ds}{Dt} = \left(\frac{\partial s}{\partial T} \right)_p \frac{DT}{Dt} + \left(\frac{\partial s}{\partial p} \right)_T \frac{Dp}{Dt}.
\]

ここで \(\left(\partial s/\partial T \right)_p \) と \(\left(\partial s/\partial p \right)_T \) は、\(C_p \) を流体の定圧比熱として、

\[
\left(\frac{\partial s}{\partial T} \right)_p = \frac{C_p}{T}, \quad \left(\frac{\partial s}{\partial p} \right)_T = -\frac{\partial v}{\partial T} = -v\beta
\]

で与えられる (3)。\(T \) と \(p \) はごくわずかしか変化しないので、(13) で \(C_p \) と \(\beta \) は定数とし、\(T = T_0, \rho = p_0 \) とおいて、熱力学の基本式から \(Ds/Dt \) を得る。ただし (9) と (10) を用いて、

\[
\frac{Ds}{Dt} = \frac{1}{T_0} \frac{De}{Dt} + \frac{p_0 Dv}{Dt}
\]

を得る。ところが \(Dv/Dt = v \nabla \cdot u = 0 \) であるので、結局

\[
\frac{Ds}{Dt} = \frac{1}{T_0} \frac{De}{Dt}
\]

が得られることがある。

さて (6), (9), (14), 及び (16) を用いれば、

\[
\rho_0 T_0 \frac{Ds}{Dt} = \frac{Dp_0}{Dt} + \rho_0 T_0 \frac{Ds}{Dt}
\]

\[
= \frac{De}{Dt} + \rho_0 T_0 \left\{ C_p \frac{DT}{T_0} - \frac{\partial v}{\partial T} \left(\frac{Dp_0}{Dt} + \frac{Dp'}{Dt} \right) \right\}
\]

を得る。ここで \(Dp_0/Dt = -\rho_0 g u_3 \) であることに注意すると、ブラームの付いた変数について一次までの近似で、

\[
\rho_0' T_0 \frac{Ds}{Dt} = \frac{De}{Dt} + \rho_0 T_0 \left\{ C_p \frac{DT}{T_0} - \frac{\partial v}{\partial T} \left(\frac{Dp_0}{Dt} + \frac{Dp'}{Dt} \right) \right\}
\]

が得られる。この結果を (8) に代入すると

\[
\rho_0 Dv = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \nabla \cdot q - \rho_0 \beta T' g u_3
\]

を得る。これを固定領域 \(\Omega \) にわたって積分すれば、

\[
\frac{d}{dt} \int_\Omega \rho_0 v dV = \int_\Omega \tau_{ij} \frac{\partial u_i}{\partial x_j} dV - \int_\Sigma q \cdot ndS - \int_\Omega \rho_0 \beta T' g u_3 dV
\]

となる。ここで \(\Sigma \) は \(\Omega \) の境界を示し、\(n \) は \(\Sigma \) 上での外向き単位法線ベクトルである。また \(\Sigma \) 上では \(u \cdot n = 0 \) という境界条件を置いた。かくして、流体の内部エネルギーの変化を記述する式が得られる。

次に、流体の運動エネルギーについて考えよう。Boussinesq 近似の下での運動方程式は

\[
\frac{Du}{Dt} = -\nabla p' + \frac{\partial^2 u}{\partial x_j^2} + \rho_0 \beta T' g u_3
\]

で与えられる (1)。この方程式から、流体の運動エネルギーの変化を記述する式が

\[
\frac{d}{dt} \int_\Omega \frac{1}{2} \rho_0 |u|^2 dV = \int_\Sigma u_3 \tau_{ij} n_i dS - \int_\Omega \tau_{ij} \frac{\partial u_i}{\partial x_j} dV
\]

\[
+ \int_\Omega \rho_0 \beta T' g u_3 dV
\]

のように求められる。ただし \(n_3 \) は \(n \) の成分である。

一方、流体の位置エネルギーは不変である：

\[
\frac{d}{dt} \int_\Omega \rho_0 g u_3 dV = 0.
\]

すなわち Boussinesq 近似の下では、\(\Omega \) 内で位置エネルギーから他のエネルギー形態への変換は生じない。

最終的に (20), (22), 及び (23) を加え合わせると

\[
\frac{d}{dt} \int_\Omega \rho_0 (\frac{1}{2} |u|^2 + g u_3 + e) dV = \int_\Sigma u_3 \tau_{ij} n_i dS - \int_\Omega q \cdot ndS
\]

が得られる。この式によれば、流体の全エネルギーの変化は、\(\Sigma \) に働く粘性力により生じる仕事をと、\(\Sigma \) を横切る熱輸送によって生ずる。かくして我々は、極めて合理的な結果に到達した。

ここで、再度 (22) をみてみよう。この式の右辺にある項のうち、最後の項は浮力 (buoyancy force) の反応仕事を表している。ただし、ここに言う浮力とは (21) の最後の項で表される力である。さて、この浮力の反応仕事を表す項は、反対符号を伴って (20) にも現れる。このことから我々は、浮力の反応力が、運動エネルギーと内部エネルギー間のエネルギー変換に対応するという事実を知ることになる。すなわちこの仕事は、従来信じられてきたような (4)、運動エネルギーと位置エネルギー間のエネルギー変換に対応するものではないのである。

4. Boussinesq 近似下での流体の温度分布
Boussinesq 近似下での流体の温度分布を決定する式を導くために、(19) を (14) と (16) を用いて書き直そう。結果は、

\[
\rho_0 C_p \frac{DT}{Dt} = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \nabla \cdot q + \left\{ \beta T_0 \left(\frac{Dp_0}{Dt} + \frac{Dp'}{Dt} \right) - \rho_0 \beta T' g u_3 \right\}
\]

となる。中括弧中の項の和は、ブラームの付いた変数について一次までの近似で \(-\rho_0 (\partial s/\partial p_3') Dp_3'/Dt \) に等しい。Boussinesq 近似の下では、粘性散逸に伴う加熱項とともに無視される (1)。かくして

\[
\frac{DT}{Dt} = -\frac{1}{\rho_0 C_p} \nabla \cdot q
\]

を得る。この式を熱伝導に関するフィーリーの法則と組み合わせると、流体の温度分布を決定する式 (3) が導かれる。

この導出過程から、Boussinesq 近似の下での流体の温度分布は、前節で議論した運動エネルギーと内部エネルギー間のエ

エネルギー変換の影響を、粘性散逸に伴う加熱の影響とともに、全く無視して決定されていることが理解される。
5. 議論

Boussinesq 近似の下で、質量保存則に整合的な流体のエネルギー論を展開した。その結果、浮力のない仕事が、従来考えられてきたように運動エネルギーと位置エネルギー間のエネルギー変換に対応するのではなく、運動エネルギーと内部エネルギー間のエネルギー変換に対応することが明らかになった。

そもそも流体の温度変化に伴って発生する浮力は、流体に働く重力が増減して生じるわけではなく、流体の膨張収縮に伴って発生している。このことを考えれば、一見意外とも思える上述の結果は、むしろ合理的であると言えよう。

他方、例えば流体の塩分変化に伴って発生する浮力は、主として流体に働く重力が増減することによって生じる。このことは、塩分変化に伴う浮力の仕事が、運動エネルギーと位置エネルギー間のエネルギー変換に対応することを示唆している。

実際、本稿と同様の議論を経て、この事実を示すことが可能である。ただし、塩分変化を考慮した Boussinesq 近似の拡張では、質量の保存式として（1）を用いることは、流速 \(u \) が単位質量の流体の運動量でなくなってしまいという意味で、物理的に妥当でなく、これを別の簡単な式で置き換える必要があることも同時に明らかとなる。

最後に、本稿 3 節での議論を今一度振り返ってみるとことは有意義であろう。そこにおいて我々は、内部エネルギーと位置エネルギーの方程式を運動エネルギーの方程式（22）と組み合わせて、全エネルギーの方程式（24）を導いた。しかし逆に、全エネルギーの方程式（24）を前提とし、内部エネルギーと位置エネルギーの方程式から、運動エネルギーの方程式（22）を導くこともまた可能である。この手続きに従えば、質量保存則に矛盾する仮定（2）に頼らずとも、運動方程式（21）中に浮力項、すなわち最後の項が必要であることが説明される。つまり、Boussinesq 近似の下で伝統的に採用されてきた仮定（2）は実は不要で、単に運動方程式を導くための便宜に過ぎなかったのである。

参考文献
(1) Landau, L. D. and Lifshitz, E. M., “Fluid Mechanics,” 2nd ed., Butterworth-Heinemann (1987).
(2) Winters, K. B., Lombard, P. N., Riley, J. J. and D’Asaro, E. A., “Available potential energy and mixing in density-stratified fluids,” J. Fluid Mech., 289 (1995), 115–128.
(3) Batchelor, G. K., “An Introduction to Fluid Dynamics,” Cambridge University Press (1967).
(4) 木村 竜治, “地球流体力学入門 〜大気と海洋の流れのしくみ〜,” 東京堂出版 (1983).
(5) Maruyama, K., “Energetics of a fluid under the Boussinesq approximation,” arXiv:1405.1921 (2014).