Short Communication

Nonmelanoma skin cancer in the Federal State of Saarland, Germany, 1995–1999

A Stang*, 1, C Stegmaier2 and K-H Jöckel1
1Epidemiology Unit, Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany;
2Saarland Cancer Registry, Saarbrücken, Germany

We analysed incidence data of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin from the Cancer Registry Saarland, Germany. During 1995 – 1999, the age-standardised incidence rates (world standard population) of BCC and SCC were 43.7 and 11.2 per 100,000 among men and 31.7 and 4.4 per 100,000 among women.

British Journal of Cancer (2003) 89, 1205 – 1208. doi:10.1038/sj.bjc.6601294 www.bjcancer.com
© 2003 Cancer Research UK

Keywords: epidemiology; skin neoplasms; incidence; registries; Germany

Nonmelanoma skin cancer (NMSC) is one of the most common malignant neoplasms in Caucasian populations around the world, and usually refers to either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) (Weinstock, 1994). Epidemiologic studies of these tumours have been limited by the fact that most patients are customarily seen and treated in the offices of physicians and not hospitalised (Scotto et al, 1983). Since the primary source of data for cancer registries is the in-patient hospital file, routinely collected statistics on NMSC are usually incomplete and not comparable with other forms of cancer (Scotto et al, 1996; Lucke et al, 1997). In addition, many cancer registries do not collect information on BCC and the incidence is often determined on the basis of surveys (e.g. Fears and Scotto, 1982; Giles et al, 1988; Green and Battisutta, 1990; Kricker et al, 1990; Roberts, 1990; Serrano et al, 1991; Green et al, 1996). In a recent review on the epidemiology of NMSC incidence, Green concluded that ‘little is known about worldwide trends in incidence of BCC and SCC’ (Green, 1992).

Here, we present the findings of detailed analyses of the NMSC incidence of the Federal State of Saarland for the period 1995–1999. We also report the incidence by histological groups and anatomical sites.

After the introduction of the International Classification of Disease for Oncology (ICD-O, first edition, WHO) in 1976, the population-based Saarland Cancer Registry (about 1.1 million residents) gradually used this classification to code NMSC reports. For the first occurrence of BCC and SCC, we restricted the calculation of incidence rates to the period 1995 – 1999 because before 1995, the annual proportion of unspecified histology codes was too large (>10%). Basal cell carcinoma and SCC counted only if the patient had no prior registered cancer with the same histologic diagnosis. Patients with a report both of BCC and SCC during the registration period were counted as cases within the BCC and SCC analysis.

We calculated site-specific incidence rates based on the fourth digit of the ICD-9 code (ICD-9: 173.0 skin of the lip, 173.1 eyelid, 173.2 external ear, 173.3 skin of other and unspecified parts of face, 173.4 skin of the scalp and neck, 173.5 skin of the trunk, 173.6 skin of the upper limb and shoulder, 173.7 skin of the lower limb and hip, 173.8 overlapping lesions of skin, 173.9 skin, not otherwise specified).

We calculated sex-specific age-standardised incidence rates for BCC and SCC using the World Standard Population (Parkin et al, 1992) for the period 1995–1999. We also calculated age-specific incidence rates. For the study of the anatomical distribution of BCC and SCC, we calculated relative site-specific age-standardised incidence rates per unit area of the skin (RSA) for the period 1995–1999. We therefore divided the site-specific age-standar-
Table 1 Age-specific, crude and age-standardised incidence rates of BCC and SCC among men and women in the Federal State of Saarland, 1995–1999

Age (years)	BCC N	Rate	s.e.	SCC N	Rate	s.e.
30–34	12	5.2	1.49	0	0.0	0.0
35–39	22	9.5	2.02	5	2.2	0.96
40–44	47	22.2	3.24	5	2.4	1.06
45–49	82	43.3	4.78	9	4.8	1.58
50–54	110	73.6	7.02	7	4.7	1.77
55–59	198	104.6	7.44	30	15.9	2.89
60–64	281	165.3	9.86	50	29.4	4.16
65–69	335	244.1	13.34	66	48.1	5.92
70–74	348	234.9	18.49	119	17.9	10.81
75–79	259	453.2	28.16	100	17.5	17.50
80–84	137	455.2	38.89	90	29.9	31.52
85+	116	565.6	52.51	62	302.3	38.39

All ages

| Crude | 1960 | 74.9 | 1.69 | 543 | 20.8 | 0.89 |
| WSR | 1960 | 43.7 | 1.17 | 543 | 11.2 | 0.49 |

Rate: cases per 100 000; s.e. = standard error of the rate; crude = crude rate; WSR = age-standardised rate (World Standard Population); BCC = basal cell carcinoma; SCC = squamous cell carcinoma.

Table 2 Age-specific, crude and age-standardised incidence rates of BCC and SCC among women in the Federal State of Saarland, 1995–1999

Age (years)	BCC N	Rate	s.e.	SCC N	Rate	s.e.
30–34	26	11.7	2.30	0	0.0	0.0
35–39	34	15.4	2.64	0	0.0	0.0
40–44	53	26.3	3.61	4	2.0	0.99
45–49	79	43.8	4.93	1	0.6	0.56
50–54	88	59.8	6.38	5	3.4	1.52
55–59	178	91.2	6.83	17	8.7	2.11
60–64	224	123.9	8.28	24	13.3	2.71
65–69	243	153.0	9.81	23	14.5	3.02
70–74	287	179.1	10.37	50	31.2	4.41
75–79	305	267.8	15.34	72	63.2	7.45
80–84	253	331.5	20.84	83	108.7	11.94
85+	199	274.2	19.43	140	192.9	16.30

All ages

| Crude | 1977 | 71.1 | 1.60 | 420 | 15.1 | 0.74 |
| WSR | 1977 | 51.7 | 1.06 | 420 | 4.4 | 0.31 |

Rate = cases per 100 000; s.e. = standard error of the rate; crude = crude rate; WSR = age-standardised rate (World Standard Population); BCC = basal cell carcinoma; SCC = squamous cell carcinoma.
are easily treated by physicians (e.g. by cryotherapy, currettage, diathermy or excision) without histological confirmation of the diagnosis (Green, 1992) hampering the population-based registration of these tumours via pathology departments by the cancer registry. In addition, a variable proportion of people with skin cancer never present for medical treatment because of lack of symptoms or low levels of medical or public interest and such cases will escape conventional means of detection altogether. On the other hand, new cases of skin cancers, especially SCCs, may not be recognised or correctly diagnosed on presentation to doctors.

REFERENCES

Buettner PG, Raasch BA (1998) Incidence rates of skin cancer in Townsville, Australia. Int J Cancer 78: 587 – 593
Chuang TY, Popescu A, Su WP, Chute CG (1990a) Basal cell carcinoma. A population-based incidence study in Rochester, Minnesota. J Am Acad Dermatol 22: 413 – 417
Chuang TY, Popescu A, Su WP, Chute CG (1990b) Squamous cell carcinoma. A population-based incidence study in Rochester, Minn. Arch Dermatol 126: 185 – 188
Coerbergh JW, Neumann HA, Vrints LW, van der Heijden L, Meijer WJ, Verhagen-Teulings MT (1991) Trends in the incidence of non-melanoma skin cancer in the SE Netherlands 1975 – 1988: a registry-based study. Br J Dermatol 125: 353 – 359
De Hertog SA, Wensveen GA, Bastiaans MT, Kielich CJ, Berhout MJ, Westendorp RG, Vermeer BJ, Bouwes Bavinck JN (2001) Relation between smoking and skin cancer. J Clin Oncol 19: 231 – 238
Elwood JM, Gallagher RP (1998) Body site distribution of cutaneous malignant melanoma in relationship to patterns of sun exposure. Int J Cancer 78: 276 – 280
European Network of Cancer Registries (2000) Nonmelanoma skin cancers ENCR recommendations. Available at: http://www.encr.com.fr/ Accessed Februay, 2002
Fears TR, Scotto J (1982) Changes in skin cancer morbidity between 1971 – 72 and 1977 – 78. J Natl Cancer Inst 69: 365 – 370
Gallagher RP, Ma B, McLean DI, Yang CP, Ho V, Carruthers JA, Warschawski LM (1990) Trends in basal cell carcinoma, squamous cell carcinoma, and melanoma of the skin from 1973 through 1987. J Am Acad Dermatol 23: 413 – 421
Giles GG, Marks R, Foley P (1988) Incidence of non-melanocytic skin cancer treated in Australia. BMJ 296: 103 – 110
Green A (1992) Changing patterns in incidence of non-melanoma skin cancer. Epithelial Cell Biol 1: 47 – 57
Green A, Battistutta D (1990) Incidence and determinants of skin cancer in a high risk Australian population. Int J Cancer 46: 356 – 361
Green A, McCredie M, Giles G, Jackman L (1996) Occurrence of melanomas on the upper and lower limbs in eastern Australia. Melanoma Res 6: 387 – 394
Hannukaela-Svahn A, Pukkala E, Karvonen J (1999) Basal cell carcinoma and other nonmelanoma skin cancers in Finland from 1956 through 1995. Arch Dermatol 135: 781 – 786
Harris RB, Griffith K, Moon TE (2001) Trends in the incidence of nonmelanoma skin cancers in southeastern Arizona, 1985 – 1996. J Am Acad Dermatol 45: 528 – 536
Kricker A, English DR, Randell PL, Heenan PJ, Clay CD, Delaney TA, Armstrong BK (1990) Skin cancer in Geraldton, Western Australia: a survey of incidence and prevalence. Med J Aust 152: 399 – 407
Levi F, Eral G, Te VC, Randimbison L, La Vecchia C (2001) Trends in skin cancer incidence in Neuchatel, 1976 – 98. Tumori 87: 288 – 289
Lucke TW, Hole DJ, MacKie RM (1997) An audit of the completeness of non-melanoma skin cancer registration in Greater Glasgow. Br J Dermatol 137: 761 – 763
Maudsley G, Williams EMJ (1999) What lessons can be learned for cancer registration quality assurance from data users? Skin cancer as an example. Int J Epidemiol 28: 809 – 815
Osterlind A, Hou-Jensen K, Moller Jensen O (1988) Incidence of cutaneous malignant melanoma in Denmark 1978 – 1982. Anatomic site distribution, histologic types, and comparison with non-melanoma skin cancer. Br J Cancer 58: 385 – 391
Parkin DM, Muir CS, Whelan SL, Gao YT, Ferlay J and Powell J (eds) (1992) Cancer Incidence in Five Continents, Vol. VI. Lyon: IARC Scientific Publication
Pearl DK, Scott EL (1986) The anatomical distribution of skin cancer. Int J Epidemiol 15: 502 – 506

Roberts DL (1990) Incidence of non-melanoma skin cancer in West Glamorgan, South Wales. Br J Dermatol 122: 399 – 403
SAS Institute Inc. (1999) SAS/STAT User’s Guide, Version 8, Vol. 2. pp 1365 – 1462. Cary: SAS Institute Inc.
Scotto J, Fears TR, Fraumeni Jr JF (1983) Incidence of Nonmelanoma Skin Cancer in the United States, DHEW Publ. No. (NIH) 83-2433. Washington, DC: US Government Printing Office
Scotto J, Fears TR, Kraemer KH, Fraumeni Jr JF (1996) Nonmelanoma skin cancer. In Cancer Epidemiology and Prevention, Schottenfeld D, Fraumeni Jr JF (eds), 2nd edn. New York: Oxford University Press
Serrano H, Scotto J, Shornick G, Fears TR, Greenberg ER (1991) Incidence of nonmelanoma skin cancer in New Hampshire and Vermont. J Am Acad Dermatol 24: 574 – 579
Stang A, Stabenow R, Eisinger B, Jöckel KH (2003) Site- and sex-specific time trend analyses of the skin melanoma incidence in the former German Democratic Republic including 19,351 cases. Eur J Cancer 39: 1610 – 1618
Weinstock MA (1994) Epidemiology of nonmelanoma skin cancer: clinical issues, definitions, and classification. J Invest Dermatol 102: 4S – 5S
WHO (1976) International Classification of Diseases for Oncology, 1st edn. Geneva: World Health Organization
WHO (1977) Manual of the International Classification of Diseases, Injuries, and Causes of Death (Based on the Recommendations of the Ninth Revision Conference). Geneva: World Health Organization