Risks and Management of Sodium Hypochlorite in Endodontics

Shibu Thomas Mathew*
Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia

Abstract

Aim: The aim of this article is to provide the dental practitioner about the potential inadvertent effects of sodium hypochlorite and its management on encountering a dental emergency.

Summary: As a major objective of root canal treatment is to disinfect the entire root canal system which requires the elimination of pulpal contents and sources of infection by using mechanical instrumentation, chemical irrigants in conduction with intra canal medicaments. However, there remains a risk of extrusion of these irrigants beyond and into the surrounding tissues which causes severe complications.

Conclusion: This article discusses the use of sodium hypochlorite with its inadvertent effects. Complications with the use of sodium hypochlorite can be avoided by the use of specialized needles, avoiding excessive pressure, not wedging the needle tip in the canal. Early recognition and management of inadvertent effects of sodium hypochlorite remains vital for the patient’s safety.

Keywords: Sodium hypochlorite; Root canal treatment; Irrigation; Antifungal; Toxicity; Extrusion; Dissolution

Introduction

Endodontic emergencies are associated with pain and swelling which requires immediate diagnosis and treatment. The main causative factors for these emergencies are pulp and peri-radicular pathosis, traumatic injuries, procedural complications; were sodium hypochlorite accidents can occur. The impetus behind a successful root canal treatment relies on a thorough debridement of tissue remnants, bacteria and toxins from the root canal system. For a proper clean canal, mechanical preparations alone are insufficient, as reviewed by Haapasalo et al. [1]. Several studies shows that instrumentation alone were not 100 % effective to debride and clean the canals but has to be in conjunction with irrigants [2-6]. Uninstrumented areas were reported in 65% of instrumented oval canals, according to Wu and Wesselink [7]. The morphology of the canals makes it difficult for a complete debridement of root canals, as residual pulp tissue and bacteria may persist in the irregularities of the canal. Therefore, irrigants should support and compliment endodontic preparations by flushing out dentinal debris, dissolving organic tissues, disinfecting the canal and providing lubrication during instrumentation without irritating the surrounding tissues. Hydrogen peroxide, chlorhexidine, saline are some of the irrigants used; among which sodium hypochlorite is the commonly used effective antimicrobial and tissue dissolving irrigant. Concentrations of sodium hypochlorite ranges from 0.5%-5.2%, which is applied to the canals during and after mechanical preparation. Effective concentration range of sodium hypochlorite is from 2.6%-5.25% [8, 9].

This article reviews the potential complications that can occur with sodium hypochlorite in clinical practice, discusses the measures that can be taken to minimize the risk and provides details to appropriate management in rare cases of suspected tissue damage.

Rationale behind using sodium hypochlorite

- Due to the high pH ,the hydroxyl ions alters the integrity of cytoplasmic membrane of microorganisms, causes irreversible enzymatic inhibition, biosynthetic alterations in cellular metabolism and phospholipid degradation by liquid peroxidation.
- Antifungal activity (Table 1)
- It disrupts or removes biofilms (Table 2).
- Strong dissolving action in the presence of organic tissue and microorganisms, by breaking down of proteins into aminoacids (Table 3).
- Haemostatic property (Table 4).

Drawbacks

The negative property or drawback of sodium hypochlorite is that it can cause soft tissue inflammation if passed outside the confines of root canals [10-27]. Acute inflammation followed by necrosis results when sodium hypochlorite comes into contact with vital tissue. It causes severe inflammation and cellular destruction in all tissues except heavily keratinized epithelium [28]. The severity of the complication depends on the concentration of solution, its pH and its duration of exposure. Sodium hypochlorite has a pH of 11-12.5 which causes injury by oxidation of proteins. Higher concentrations have some irritating effects on the periodontal ligament [29].

This article reviews the potential complications that can occur with sodium hypochlorite in clinical practice, discusses the measures that can be taken to minimize the risk and provides details to appropriate management in rare cases of suspected tissue damage.

Toxicity of sodium hypochlorite

Sodium hypochlorite when comes in contact with tissue proteins, forms nitrogen, formaldehyde and acetaldehyde in short time and peptide links are broken resulting in dissolution of proteins. During the process, hydrogen in the amino groups is replaced by chlorine thereby...
haemolysis of red blood cells in vitro. As the solution used in this study was isotonic and thus excluded an osmotic pressure gradient, the observed haemolysis and loss of cellular protein was due to the oxidizing effects of Sodium hypochlorite on the cell membrane. Undiluted and 1:10 (v/v) dilutions produced moderate to severe irritation of rabbit eyes whilst intradermal injections of undiluted, 1:2, 1:4 and 1:10 (v/v) dilutions of Sodium hypochlorite caused skin ulcers. Kozol et al. [30] proved Dakin’s solution to be detrimental to neutrophil chemotaxis and toxic to fibroblasts and endothelial cells.

Heggars et al. [31] examined wound healing relative to irrigation and bactERICidal properties of Sodium hypochlorite in vitro and in vivo models. They concluded that 0.025% sodium hypochlorite was the safest concentration to use because it was bactericidal but not tissue-toxic. Zhang et al. [32] evaluated the cytotoxicity of four concentrations of sodium hypochlorite (5.25%, 2.63%, 1.31%, and 0.66%), eugenol, 3% H₂O₂, Ca(OH)₂ paste and MTAD. Results showed that toxicity of sodium hypochlorite was dose-dependent. Barnhart et al. [33] measured the cytotoxicity of several endodontic agents on cultured gingival fibroblast using the CyQuant assay. The results showed that IKI and Ca(OH)₂ were significantly less cytotoxic than Sodium hypochlorite. Most complications of the use of sodium hypochlorite appear to be the result of its accidental injection beyond the root apex which can cause violent tissue reactions characterized by pain, swelling, hemorrhage, and in some cases the development of secondary infection and paraesthesia [34]. A great deal of care should therefore be exercised when using sodium hypochlorite during endodontic irrigation. Ehrich et al. [35] suggested that a clinician should check, both clinically and radiographically for immature apices, root resorption, apical perforations or any other conditions that may result in larger than normal volumes of irrigant being extruded from the root-canal system into the surrounding tissue. Irrigation should be performed slowly with gentle movement of the needle to ensure that it is not binding in the canal. In an in vitro study by Brown et al. [36], the use of a reservoir of irrigation fluid in the coronal access cavity and carried into the root canal during filing resulted in significantly less apical extrusion of irrigation solution than with deep delivery with an irrigation needle.

Complication during irrigation: (review of literature represented in Table 5)

Extrusion beyond the root apex

During root canal irrigation, accidental extrusions can occur. Even minute quantities if extruded causes vascular probabilities in blood vessels due to the damage to the vessels as well as release of chemical mediators such as histamine for the involved tissue. This causes immediate swelling and often profuse bleeding through the root canal.

In a case report, after wedging the irrigating needle into the root canal, 2.5% sodium hypochlorite was extruded beyond the apex of maxillary left central incisor. The patient experienced severe pain during irrigation of root canal system so the root canal preparation was
Sodium hypochlorite reacts with the proteins and fats of oral mucosa which might lead to secondary infections. The patient must be monitored with immediate treatment if swallowed.

Management: Gentle irrigation of the affected eye with normal saline or tap water and then refer to the ophthalmologist.

Recommendations

Extrusion Of Irritant

Complication	Author	Study
Extrusion Of Irritant	Aranda M, Sahil C, Figueiredo R, and Escoda C [37]	Complications following an accidental sodium hypochlorite extrusion: A report of two cases Accidental injection with sodium hypochlorite: Report of a case Effects of sodium hypochlorite on soft tissues after its inadvertent injection beyond the root apex.
Damage to eye	Ingram TA [40], AG Becking [41], Khodabukus, R., Tailouzi, M [42]	RESPONSE OF THE HUMAN EYE TO ACCIDENTAL EXPOSURE TO SODIUM HYPOCHLORITE Complications in the use of sodium hypochlorite during endodontic treatment: report of three cases CHEMICAL EYE INJURIES 1: PRESENTATION, CLINICAL FEATURES, TREATMENT AND PROGNOSIS
Damage to oral mucosa	G. Markose, CJ Cotter, WS Hislop [43], RF de Sermeño, LAB da Silva, HH Herrera [44], Lin J., Messer HH [45]	Severe tissue damage and neurological deficit following extravasation of sodium hypochlorite solution during routine endodontic treatment. Severe facial edema following root canal treatment. The chemical reactions of irrigants used for root canal debridement.

Allergic reactions

Sodium hypochlorite allergic reactions results in urticaria, oedema, shortness of breath, bronchospasm and hypotension.

Management: Refer immediately to intensive care unit following first aid management with administration of intravenous steroids and antihistamines [50].

Signs and Symptoms

Prevention of sodium hypochlorite extrusion

- A good proper straight line access cavity design with adequate coronal preparation.
- Preoperative Periapical radiographs to access the root and canal anatomy.
- Use of specialized needles like leuk lock needles.
- Determine proper working length and carefully adjust the rubber stopper.
- Do not wedge the needle tip in the canal, has to be placed loose inside.
- Avoid using excessive digital pressure especially with the thumb.
- Constant in and out movements of the irrigating needle into the canal.
- Flow back of the solution as it is expressed into the canal, should be observed.

Management (Table 6)

- Immediate irrigation of canal with normal saline to dilute the sodium hypochlorite.
- Let the bleeding response continue to flush the irritant out.
- Advice ice pack compression for 24 hours (15 minutes interval) to minimize the swelling.
- Recommend warm, moist compress after 24 hours (15 minutes interval).
- Prescribe Acetaminophine based narcotic analgesics for 7 days.

- Prescribe Antihistamines [50].
clinical practice, it's essential to recognize and manage these complications. Needle into the canal and most importantly avoid excessive pressure of 2 mm reduction from the working length, and avoiding wedging of treatment, use of Leur lock needle for irrigation, maintain a minimum be avoided and by the use of a sealed rubber dam isolation during causing tissue destruction. So, to prevent this, injudicious use should but, when in contact with vital tissues it becomes a potential irritant

Table 6: Management of NaOCl

Author	Year	Findings
Veeresh et al. [51]	2011	A patient with continuous, severe pain, oedema on left side of face, managed by antibiotics, analgesics, cold compress and 10th day all symptoms suppressed.
Dominic et al. [52]	2014	Patient with NaOCl extrusion followed endodontic treatment in maxillary first molar with excruciating pain, with blood stained fluid from left nostril, all managed by first ENT consultant for nasoscopy and then later root canal treatment completed.
Jonathan et al. [53]	2015	A patient with NaOCl extrusion followed perforation during root canal treatment in maxillary first premolar with swelling, bruising; pain was managed by i.v. antibiotics, analgesics, steroids and then surgical intervention and finally full recovery was observed.
Bernardo et al. [54]	2014	A patient with NaOCl apical extrusion followed root canal returned in 24 hours with extreme pain, burning sensation in maxillary region with oedema and was managed by amoxicillin 500mg orally for 7 days then dexamethasone 4mg I.M. for 3 days. Symptoms subsided after 8 months.

Conclusion

To conclude, sodium hypochlorite is an effective antibacterial agent but, when in contact with vital tissues it becomes a potential irritant causing tissue destruction. So, to prevent this, injudicious use should be avoided and by the use of a sealed rubber dam isolation during treatment, use of Leur lock needle for irrigation, maintain a minimum of 2 mm reduction from the working length, and avoiding wedging of needle into the canal and most importantly avoid excessive pressure during irrigation.

Although a safe root canal irrigating solution, its use may also lead to life-threatening complications [51-55]. So, to ensure best safe, long lasting clinical practice, it’s essential to recognize and manage these complications.

References

1. Haapasalo M, Endal U, Zandi H, Coil JM (2005). Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topica 10: 77-102.
2. Hülsman M, Styya F (1993) Comparison of root canal preparation using different automated devices and hand instrumentation. J Endod 19: 141-145.
3. Hülsmann M, Schade M, Schäfers F (2001) A comparative study of root canal preparation with HERO 642 and Quantec SC rotary NiTi instruments. Int Endod J 34: 538-546.
4. Hülsmann M, Gressmann G, Schäfers F (2003) A comparative study of root canal preparation using FlexMaster and HERO 642 rotary NiTi instruments. Int Endod J 36: 358-366.
5. Versümer J, Hülsmann M, Schäfers F (2002) A comparative study of root canal preparation using ProfiFile.04 and Lightspeed rotary NiTi instruments. Int Endod J 35: 37-46.
6. Hülsmann M, Herbst U, Schäfers F (2003) Comparative study of root canal preparation using Lightspeed and Quantec SC rotary NiTi instruments. Int Endod J 36: 748-756.
7. Wu MK, Wesselink PR (2001) A primary observation on the preparation and obturaton of oval canals. Int Endod J 34: 137-141.
8. Baumgartner JC, Ibay AC (1967) The chemical reactions of irrigants used for root canal debridement. J Endod 13: 47-51.
9. Grossman LI (1981) Preparation of the root canal. In: Endodontic practice (10th edn). Philadelphia: Lea and Feibiger. 200-236.
10. Sen BH, Safavi KE, Spangberg LS (1999) Antifungal effects of sodium hypochlorite and chlorhexidine in root canals. J Endod 25: 235-238.
11. Ferguson JW, Hatton JF, Gillespie MJ (2002) Effectiveness of intracanal irrigants and medications against the yeast Candida albicans. Endod 28: 68-71.
12. Marcia Carneiro Valera (2009) Antiinimicrobial activity of sodium hypochlorite associated with intracanal medication for Candida albicans and Enterococcus faecalis inoculated in root canals. J. Appl. Oral Sci 17: 6.
13. Ruff ML, McClanahan SB, Babel BS (2006) In vitro antifungal efficacy of four irrigants as a final rinse. J Endod 32: 331-333.
14. Spratt DA, Pratten J, Wilson M (2001) An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J 34: 300-307.
15. Clegg MS, Vertucci FJ, Walker C (2006) The effect of exposure to irrigant solutions on apical dentine biofilms in vitro. J Endod 32: 434-437.
16. Ozok AR, WU MK, Luppens SB (2007) Comparison of growth and susceptibility to sodium hypochlorite of mono- and dual-specie biofilms of Fusobacterium nucleatum and Peptostreptococcus (micromonas) micros. J Endod 33: 819-822.
17. Giardino L, Ambru E, Savoldi E (2007) Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraaclean against Enterococcus faecalis biofilms. J Endod 33: 855-857.
18. Grossman LS, Meiman BW (1941) Solution of pulp tissue by chemical agents. J Am Dent Assoc 28: 223-225.
19. Moore WR and Wesselink PR. (2003) Root canal treatment, intra-canal disinfectants and bacterial culture: past and present. Ned Tijdschr Tandheelkd. 110: 174-180.
20. Okino LA, Siqueira EL, Santos M, Bombana AC (2004) Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel. Int Endod J 37: 38-41.
21. Naenni N, Thoma K, Zehnder M. (2004) Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod 30: 785-787.
22. Clarkson RM, Moule AJ, Podlich H (2006) Dissolution of porcine incisor pulps in sodium hypochlorite solutions of varying compositions and concentrations. Aust Dent J 51: 245-251.
23. Marcus Vinicius Reis (2011) Pulp tissue dissolution when the use of sodium hypochlorite and EDTA alone or associated. Rev Odonto Cienc 26: 156-160.
24. Hafez AA, Cox CF, Tarin B (2002) An in vivo evaluation of hemorrhage control using sodium hypochlorite and direct capping with a one- or two-component adhesive system in exposed nonhuman primate pulps. Quintessence Int 33: 261-272.
25. Murina MA, Savel'eva EL, Roshchupkin DI (1989) The direct and indirect antiaggregation action of sodium hypochlorite on thrombocyte-enriched blood plasma. Biull Eksp Biol Med 108: 702-704.
26. Murina MA, Savel'eva EL, Roshchupkin DI (2006) Mechanism of action of biogenic chloramines and hypochlorite on initial aggregation of blood platelets. Biofizika 51: 299-305.
27. Pashley EL, Birdsong NL, Bowman K, Pashley DH (1985) Cytotoxic Effects of sodium hypochlorite and chlorhexidine in root canals. J Endod 11: 52-58.
28. Thé SD, Maltha JC, Plasschaert JM. (1980) Reactions of guinea pig subcutaneous connective tissue following exposure to sodium hypochlorite. Oral Surg Oral Med Oral Pathol. 49: 460-466.
29. Tanomaru Filho M, Leonardo MR, Silva LA (2002) Immunological response to different endodontic irrigating solutions. Int Endod J. 35: 735-739.
30. Kozol RA, Gillies C, Elgebaly SA (1988) Effects of sodium hypochlorite (Dakin’s solution) on cells of the wound module. Arch Surg 123: 420-423.
31. Heggers JP, Szzy JA, Stenberg BD et al. (1991) Bactericidal and wound healing properties of sodium hypochlorite solutions: the 1991 Lindberg Award. J Burn Care Rehabil 12: 420-424.

32. Zhang W, Torabinejad M, Li Y (2003) Evaluation of cytotoxicity of MTAD using the MTT-tetrazolium method. J Endod 29: 654-657.

33. Barnhart RD, Chuang A, Lucca JJ (2005) An in vitro evaluation of the cytotoxicity of various endodontic irrigants on human gingival fibroblasts. J Endod 31: 613-615.

34. Hauman CH, Love RM. (2003) Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 1. Intracanal drugs and substances. Int Endod J 36: 75-85.

35. Ehrich DG, Brian JD Jr, Walker WA. (1993) Sodium hypochlorite accident: inadvertent injection into the maxillary sinus. J Endod 19: 180-182.

36. Brown DC, Moore BK, Brown CE Jr. (1995) An in vitro study of apical extrusion of sodium hypochlorite during endodontic canal preparation. J Endod 21: 587-591.

37. Aranda M, Sahli C, Figueiredo R, Escoda C (2012) Complications following an accidental sodium hypochlorite extrusion: A report of two cases. J Clin Exp Dent 4: e194-e198.

38. Motta MV, Chaves-Mendonca MA, Stirton CG, Cardozo HF (2009) Accidental injection with sodium hypochlorite: Report of a case. Int Endod J 42: 175-182.

39. G. Markose, C. J. Cotter & W. S. Hislop (2009) Facial atrophy following accidental subcutaneous extravasation of sodium hypochlorite. BDJ 206: 263-264.

40. De Sermeño RF, da Silva LA, Herrera H, Herrera H, Silva RA, et al. (2009) Tissue damage after sodium hypochlorite extrusion during root canal treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108: e46-49.

41. Linn JL, Messer HH (1993) Hypochlorite injury to the lip following injection via a labial perforation: Case report. Aust Dent J 38: 280-282.

42. Witton R, Brennan PA (2005) Severe tissue damage and neurological deficit following extravasation of sodium hypochlorite solution during routine endodontic treatment. Br Dent J 198: 749-750.

43. Tosti A, Piraccini BM, Pazzaglia M, Ghedini G and Papadia F (1996) Severe facial edema following root canal treatment. Arch Dermatol 132: 231-233.

44. Baumgartner JC, Ibay AC (1987) The chemical reactions of irrigants used for root canal debridement 13: 47-51.

45. Marx, Hockberger, Wallis. (2006) Rosen’s emergency medicine (6thedn): 931-933

46. Linn JL, Messer HH (1993) Tissue damage after sodium hypochlorite extrusion during root canal treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108: e46-49.

47. Sebaei M, Halabi OH, Hakim IS (2015) Sodium hypochlorite accident resulting in life-threatening airway obstruction during root canal treatment: a case report. Clinical, Cosmetic and Investigational Dentistry 7: 1-4.