First steps toward a simple but efficient model-free control synthesis for variable-speed wind turbines

Frédéric Lafont
Aix Marseille Université, Université de Toulon
CNRS, ENSAM, LIS UMR 7020
13397 Marseille, France
lafont@univ-tln.fr

Jean-François Balmat
Aix Marseille Université, Université de Toulon
CNRS, ENSAM, LIS UMR 7020
13397 Marseille, France
balmat@univ-tln.fr

Cédric Join
Université de Lorraine, CRAN (UMR CNRS 7039)
BP 239, 54506 Vandœuvre-lès-Nancy, France
cedric.join@univ-lorraine.fr
&
AL.I.E.N
7 rue Maurice Barrès, 54330 Vézelise, France
cedric.join@alien-sas.com

Michel Fliess
École polytechnique, LIX (UMR CNRS 7161)
91128 Palaiseau, France
michel.fliess@polytechnique.edu
&
AL.I.E.N
7 rue Maurice Barrès, 54330 Vézelise, France
michel.fliess@alien-sas.com

Abstract—Although variable-speed three-blade wind turbines are nowadays quite popular, their control remains a challenging task. We propose a new easily implementable model-free control approach with the corresponding intelligent controllers. Several convincing computer simulations, including some fault accommodations, shows that model-free controllers are more efficient and robust than classic proportional-integral controllers.

Index Terms—Variable-speed wind turbine, three-blade wind turbine, power control, model-free control, intelligent controllers, proportional-integral controllers, fault accommodation.

I. INTRODUCTION

Wind energy has been the focus of growing interest for many years. Improving the performances and profitability of wind turbines is currently a burgeoning research topic. Deriving efficient control strategies plays therefore a key rôle (see, e.g., [1]–[5]). Advanced techniques are often investigated in the academic literature.

Our study concerns the three-blade machines. They gradually became dominant during the late 1980s. To control such a turbine, a distinction (Fig. 1) is made between the variable speed operating mode (low-speed region) and the power regulation mode (high-speed region) [6], [7]. In the low-speed region, the wind turbine operates under the nominal power. The purpose of the control is to make maximum use of wind energy and to vary the rotor speed according to the generator torque. In the high-speed region, blade pitch and generator torque can be used for power control. The objective is no longer to maximize the wind energy capture but rather to regulate the energy produced around a nominal value, i.e., around the rated electrical power P_{rated} of the turbine: See Fig. 1.

Although the severe shortcomings of Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers are well known [8], [9], they remain most popular in the industrial world, including wind turbines. Therefore they are still studied in the academic literature on wind turbines [10]–[12].

This paper is devoted to the utilization of model-free control (MFC) in the sense of [13]:

- It keeps the benefits of PIs and PIDs, and, especially, the futility of almost any mathematical modeling.
- Most of the deficiencies of PIs and PIDs are mitigated.
- Its implementation turns out to be often simpler, when compared to PIs and PIDs.

MFC has been successfully applied all over the world as demonstrated by the references in [13]–[15]. See already [16], [17] for its relevance to wind turbine. We show here the interest of MFC to control the pitch angle and the generator torque for low and high winds.

Remark 1: The enormous difficulty of writing down a suitable mathematical modeling of wind turbines explains why other model-free settings have been proposed (see, e.g., [18]). They are mostly based on various optimization techniques.

Remark 2: A patent (Électricité de France (EDF) and École polytechnique) has been associated to the use of MFC for hydroelectric power plants [19], i.e., to another green energy production.

Our paper is organized as follows. For the sake of computer simulations Section II provide short mathematical descriptions of wind turbines and of the wind. MFC is briefly recalled in Section III. Computer simulations are presented in Section IV where fault accommodations are considered: They show a striking superiority of MFC with respect to a classical PI.
Some concluding suggestions for future research are sketched in Section V.

II. MATHEMATICAL MODELINGS FOR COMPUTER SIMULATIONS

A. Wind turbine

Let us emphasize that the model below is more or less improper for deriving control laws. What follows is borrowed from [7], [20]–[22].

See Table I for some useful parameters where

Variable	Value
J_t (kgm²)	$3.89 \cdot 10^4$
K_i (Nm/rad/s)	400
ρ (kg/m³)	1.29
R (m)	21.65
$\text{max} \ T_g$ (kNm)	162
P_{rated} (kW)	600

- ρ is the air density (kg/m³),
- R is the radius of the blade (m),
- V is the wind speed (m/s),
- T_g is the generator torque (Nm),
- $\text{max} \ T_g$ is the maximum value of T_g,
- J_t is the combined inertia of the turbine and generator (kgm²),
- K_i is the damping coefficient of the turbine (Nm/rad/s),
- $C_p (\lambda, \beta)$ is the power conversion coefficient. It depends on the tip-speed ratio λ and the pitch angle β:

$$C_p (\lambda, \beta) = c_1 \left(\frac{c_2}{\lambda_i} - c_3 \beta - c_4 \right) \exp \left(\frac{-c_5}{\lambda_i} \right) + c_6 \lambda$$

$$1 \leq \frac{1}{\lambda_i} = \frac{1}{\lambda + 0.08 \beta} - \frac{0.035}{\beta^3 + 1}$$

See Table II for the coefficients c_k, $k = 1, \ldots, 6$.

Coefficient	Value
c_1	0.4
c_2	116
c_3	0.4
c_4	5
c_5	21
c_6	0.02

The output power of wind turbines is given by

$$P_t (W) = \frac{1}{2} \rho \pi R^3 C_p (\lambda, \beta) V^3$$

The tip-speed ratio is defined by

$$\lambda = \frac{R \omega_t}{V}$$

where ω_t is the turbine angular speed (rad/s).

Write the turbine torque

$$T_t = \frac{1}{2} \rho \pi R^3 V^2 C_p (\lambda, \beta)$$

If a perfectly rigid low-speed shaft is assumed, a one-mass model of the turbine (see Fig. 2) may be expressed by

$$J_t \dot{\omega}_t = T_t - K_i \omega_t - T_g$$

B. Wind

The wind speed V may vary considerably. Its variation may be modeled as a finite sum of harmonics in the frequency range 0.1-10 Hz:

$$V = V_{\text{moy}} \left[1 + \sum_{k=1}^{\text{finite}} A_k \sin(\omega_k t) \right]$$

V_{moy} is the mean speed, A_k is the magnitude of the kth sine wave of frequency ω_k [23]. Eq. (1) reads here

$$V = V_{\text{moy}} \left[1 + A_1 \sin(0.1047t) + A_2 \sin(0.2674t) + A_3 \sin(1.3097t) + A_4 \sin(3.696t) \right]$$

See Table III for the coefficients A_1, \ldots, A_4.

| Coefficient Magnitudes with Respect to the Mean Wind Speed |
|-------------|-------------|-------------|-------------|-------------|
| Mean wind speed | A_1 | A_2 | A_3 | A_4 |
| 7 | 0.029 | 0.206 | 0.143 | 0.029 |
| 8 | 0.025 | 0.25 | 0.125 | 0.025 |
| 9 | 0.022 | 0.222 | 0.111 | 0.022 |
| 16 | 0.0125 | 0.125 | 0.0625 | 0.0125 |
| 20 | 0.01 | 0.1 | 0.05 | 0.01 |

III. MODEL-FREE CONTROL AND INTELLIGENT CONTROLLERS

For the sake of notational simplicity, let us restrict ourselves to single-input single-output (SISO) systems.

A. The ultra-local model

The unknown global description of the plant is replaced by the following first-order ultra-local model:

$$\dot{y} = F + \alpha u$$

(2)

where:

1) The control and output variables are respectively u and y.
2) $\alpha \in \mathbb{R}$ is chosen by the practitioner such that the three terms in Equation (2) have the same magnitude.

The following comments are useful:

• F is data driven: it is given by the past values of u and y.
• F includes not only the unknown structure of the system but also any disturbance.

1See [13] for more details.
B. Intelligent controllers

Close the loop with the intelligent proportional controller, or iP,

$$u = - \frac{F_{est} - \dot{y}^* + K_P e}{\alpha}$$ \hspace{1cm} (3)$$

where

- y^* is the reference trajectory,
- $e = y - y^*$ is the tracking error,
- F_{est} is an estimated value of F
- $K_P \in \mathbb{R}$ is a gain.

Equations (2) and (3) yield

$$\dot{e} + K_P e = F - F_{est}$$

If the estimation F_{est} is “good”: $F - F_{est}$ is “small”, i.e., $F - F_{est} \simeq 0$, then $\lim_{t \to +\infty} e(t) = 0$ if $K_P > 0$. It implies that the tuning of K_P is straightforward. This is a major benefit when compared to the tuning of “classic” PIDs (see, e.g., [8], [9], [24]).

C. Estimation of F

Mathematical analysis [25] tells us that under a very weak integrability assumption, any function, for instance F in Eq. (2), is “well” approximated by a piecewise constant function.

1) First approach: Rewrite then Eq. (2) in the operational domain [26]:

$$sY = \frac{\Phi}{s} + \alpha U + y(0)$$

where Φ is a constant. We get rid of the initial condition $y(0)$ by multiplying both sides on the left by $\frac{d}{ds}$:

$$Y + s \frac{dY}{ds} = - \frac{\Phi}{s^2} + \alpha \frac{dU}{ds}$$

Noise attenuation is achieved by multiplying both sides on the left by s^{-2}, i.e., via integration [27]. It yields in the time domain the real-time estimate, thanks to the equivalence between $\frac{d}{ds}$ and the multiplication by $-t$,

$$F_{est}(t) = - \frac{6}{\tau^3} \int_{t-\tau}^{t} (\tau - 2\sigma) y(\sigma) + \alpha \sigma (\tau - \sigma) u(\sigma)) \, d\sigma$$

where $\tau > 0$ might be quite small. This integral, which is a low pass filter, may of course be replaced in practice by a classic digital filter.

2) Second approach: Close the loop with the iP (3). It yields:

$$F_{est}(t) = \frac{1}{\tau} \left[\int_{t-\tau}^{t} (\dot{y}^* - \alpha u - K_P e) \, d\sigma \right]$$

Remark 3: Let us emphasize that implementing our intelligent controllers is easy [13], [28].

D. MIMO systems

Consider a multi-input multi-output (MIMO) system with m control variables u_i and m output variables y_i, $i = 1, \ldots, m$, $m \geq 2$. It has been observed in [29] and confirmed by all encountered concrete case-studies (see, e.g., [30]), that such a system may usually be regulated via m monovariable ultra-local models:

$$y_i^{(\text{est})} = F_i + \alpha_i u_i$$

where F_i may also depend on u_j, y_j, and their derivatives, $j \neq i$.

IV. Simulation results

Write P_e the electrical power of the turbine. Define, according to Fig. 1, the following regions:

- Low-speed region: $V_{\text{cut-in}} \leq V < V_{\text{rated}}$, $P_e < P_{\text{rated}}$.
- High-speed region: $V_{\text{rated}} \leq V \leq V_{\text{cut-off}}$, $P_e = P_{\text{rated}}$.

A. Simulation with an alternating wind in the low-speed region

Fig. 3 presents the monovariable structure of the controller with a low-speed wind. See Table IV.

TABLE IV

Variable	Control of T_g
K_P	0.45
α	0.0005
τ	20

Fig. 5 shows the efficiency of the iP controller:

- The turbine angular speed ω oscillates around the reference value.
- This reference value varies in function of the wind speed value.
- The blade pitch angle β varies between 0 and 2 degrees.
- Blades are positioned to recover the maximum energy.
- The generator torque T_g is limited to 162 kNm.

2) PI: For T_g, the Ziegler-Nichols method (see, e.g., [24]) yield the coefficients of the PI controller: see Table V.

TABLE V

Variable	Control of T_g
K_P	500
K_I	10

See Fig. 6 for the results.
3) Performances comparison of the two controllers: The aim is to maximize the wind energy P_t. The mean absolute error (MAE) and the corresponding standard deviation for each controller are evaluated for the iP and PI. See Table VI. The mean of the output power, which is calculated between $t = 60$ s, where the steady state is established, and the final time $t = 600$ s, is higher with the iP. The iP is thus more efficient.

Table VI

Controller	iP	PI
MAE	0.43	0.61
Standard deviation	0.55	0.70

B. Simulation with an alternating wind in the high-speed region

Fig. 7 exhibits the new MIMO control structure with 2 control and output variables. See Fig. 8 for the wind. There are two operating points:

- if $t < 300$ s then $V_{moy} = 16$ m/s,
- if $t > 300$ s then $V_{moy} = 20$ m/s.

1) iP's: See Table VII for the choice K_P, α and τ. As depicted by Fig. 9

- P_e remains stable around $P_{\text{rated}} = 600$ kW,
- ω_t remains close to the reference,
- 1) the initial value of β is equal to 30 degrees,
- 2) then it is approximately equal to 21 degrees until $t = 300s$ when the steady state is established,
- 3) for $t > 300s$ it fluctuates around 29 degrees when the mean wind speed increases to 20 m/s,
- the value of T_g stays around 130 kNm when the steady state is established.

Table VII

Variable	Control of β	Control of T_g
K_P	-4	3
α	1	1000
τ	20	20

2) PI's: See Table VIII for the gains of the two PIs which are again determined via the Ziegler-Nichols method. According to Fig. 10, their performances are poorer.

Table VIII

Variable	Control of β	Control of T_g
K_P	-0.006	-0.00003
K_I	0.52	-0.00026

3) Performances comparison of the two controllers: The main objective is not to maximize the electrical production but to maintain it close to $P_{\text{rated}} = 600$ kW as shown in Fig. 1. As in Section IV-A3 MAE and standard deviation are reported in Table IX. They confirm the marked superiority of iP's.

Remark 4: The advantages of intelligent controllers with respect to PIs were already noticed several times. See [31], [32] for two recent most convincing examples.

Table IX

Controller	Intelligent P	Classical PI	
ω_t (rad/s)	mean	0.33	0.38
Standard deviation	0.39	0.45	
P_e (kW)	mean	32	48
Standard deviation	38	56	

C. Fault accommodation and iP

Simulate, as proposed by [33], an actuator fault, occurring at $t = 300$ s with a wind speed equal to 16 m/s, with respect to the electromagnetic torque T_g:

- a loss of efficiency equal to 15%: $T_{g \text{ actuator}} = 0.85\times T_g$ where $T_{g \text{ actuator}}$ is the control applied to the turbine;
- a bias fault equal to 50 kNm, i.e., $T_{g \text{ actuator}} = T_g - 50$

1) Loss of efficiency: Fig. 11 depicts the good results for the iP. Let us emphasize that our setting is modifying β.
2) Bias fault: Fig. 12 exhibits similar results to those in Section IV-C1.

V. CONCLUSION

The promising simulations depicted here need of course to be confirmed, especially via some concrete plants. The behavior of our control strategy with respect to the unavoidable vibrations (see, e.g., [34], [35]) should of course be clarified. For a better energy management, some forecasting of the wind power is crucial. It would be rewarding to extend the time series techniques for photovoltaic energy [36], which bears some similarity with MFC.
Fig. 1. Operating range [7]

Fig. 2. One-mass model of a wind turbine [22]
Fig. 3. Block diagram in the low-speed region

Fig. 4. Alternating wind in the low-speed region
Fig. 5. Control of ω_t and P_e with an alternating wind in the low-speed region (iP controller)

Fig. 6. Control of ω_t and P_e with alternating wind in the low-speed region (PI controller)
Fig. 7. Block diagram in the high-speed region

Fig. 8. Alternating wind in the high-speed region
Fig. 9. Control of ω_t and P_e with alternating wind in the high-speed region (iP controller)

Fig. 10. Control of ω_t and P_e with alternating wind in the high-speed region (PI controller)
Fig. 11. Fault accommodation with iP (loss of efficiency)

Fig. 12. Fault accommodation with iP (bias fault)