The Complete Mitochondrial Genomes of the Fenton's Wood White, Leptidea morsei, and the Lemon Emigrant, Catopsilia pomona

Authors: Hao, Juan-Juan, Hao, Jia-Sheng, Sun, Xiao-Yan, Zhang, Lan-Lan, and Yang, Qun

Source: Journal of Insect Science, 14(130) : 1-22

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.014.130
The complete mitochondrial genomes of the Fenton’s wood white, *Leptidea morsei*, and the lemon emigrant, *Catopsilia pomona*

Juan-Juan Hao,1a Jia-Sheng Hao,1b* Xiao-Yan Sun,2c Lan-Lan Zhang,1d and Qun Yang2e*

1College of Life Sciences, Anhui Normal University, 241000 Wuhu, China
2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

The complete mitochondrial genomes of *Leptidea morsei* Fenton (Lepidoptera: Dis-morphiinae) and *Catopsilia pomona* (F.) (Lepidoptera: Pieridae: Coliadinae) were determined to be 15,122 and 15,142 bp in length, respectively, with that of *L. morsei* being the smallest among all known butterflies. Both mitogenomes contained 37 genes and an A+T-rich region, with the gene order identical to those of other butterflies, except for the presence of a tRNA-like insertion, tRNA^Leu^ (UUR), in *C. pomona*. The nucleotide compositions of both genomes were higher in A and T (80.2% for *L. morsei* and 81.3% for *C. pomona*) than C and G; the A+T bias had a significant effect on the codon usage and the amino acid composition. The protein-coding genes utilized the standard mitochondrial start codon ATN, except the COI gene using CGA as the initiation codon, as reported in other butterflies. The intergenic spacer sequence between the tRNA^Ser^ (UCN) and ND1 genes contained the ATACTAA motif. The A+T-rich region harbored a poly-T stretch and a conserved ATAGA motif located at the end of the region. In addition, there was a triplicated 23 bp repeat and a microsatellite-like (TA)₃(AT)₃ element in the A+T-rich region of the *L. morsei* mitogenome, while in *C. pomona*, there was a duplicated 24 bp repeat element and a microsatellite-like (TA)₃ element. The phylogenetic trees of the main butterfly lineages (Hesperiidae, Papilionidae, Pieridae, Nymphalidae, Lycaenidae, and Riodinidae) were reconstructed with maximum likelihood and Bayesian inference methods based on the 13 concatenated nucleotide sequences of protein-coding genes, and both trees showed that the Pieridae family is sister to Lycaenidae. Although this result contradicts the traditional morphologically based views, it agrees with other recent studies based on mitochondrial genomic data.
Introduction

The animal mitochondrial genomes (mitogenomes) are usually circular molecules of 14-19 kb in size, containing 37 genes (including 13 protein-coding genes, two rRNA genes, and 22 tRNA genes) and a non-coding A+T-rich region that regulates the transcription and replication of the mitogenome (Clayton 1992). Due to its simple and compact structure, fast evolutionary rate, and maternal inheritage, it has been used frequently in the studies of population genetics, molecular evolution, phylogenetics, phylogeography, and evolutionary biology (Simon et al. 1994). In recent years, as the DNA sequencing technology has been progressing rapidly, more and more complete animal mitogenome sequences have been determined. To date, more than 240 complete or near-complete mitochondrial DNA sequences have been identified from insects, including 67 from lepidopterans. Of these, the available sequences are mainly from six superfamilies (Bombycoidea, Geometroidea, Papilionoidea, Noctuoidea, Tortricoidea, and Pyraloidea). In total, 33 of these lepidopteran mitogenomes are from butterflies (Table 1).

Pieridae is one of the largest families of Papilionoidea, containing 76 genera and approximately 1,100 species worldwide, mostly distributed in tropical Africa and Asia (Courtney 1986, Watt et al. 1996, Brunton 1998, Stavenga et al. 2004, Kemp et al. 2005). Their adults are generally of medium size and typically white, orange, and yellow in color (Chapman 1895). Taxonomically, they are currently divided into four subfamilies (Dismorphiinae, Pierinae, Coliinae, and Pseudopontiinae). In addition, phylogenetically, they may stand as a key group to clarify the intra-familiar butterfly relationships. For example, they were traditionally considered to be the sister to the Papilionidae (Ehrlich 1958, Scott 1985). However, more and more evidence indicated that they were sister to the grouping of (Nymphalidae (Riodinidae, Lycaenidae)) (Kristensen 1976, de Jong et al. 1996, Weller et al. 1996, Ackery et al. 1999, Wahlberg et al. 2005) or sister to (Riodinidae + Lycaenidae) (Kim, M. J. et al. 2010, Chai et al. 2012). To our dissatisfaction, up to the present, only four mitogenomes of pierid species (Artogeia melete [Menetries], Pieris rapae [L.], Delias hyparete [L.], and Aporia crataegi [L.]) are available, and thus more pierid mitogenome data are needed to enrich the taxon sampling for use in phylogenetic studies.

The Fenton’s wood white, Leptidea morsei Fenton, and the lemon emigrant, Catopsilia pomona (F.), are the two representative species of the family Pieridae. Leptidea morsei is distributed mainly throughout Europe, Siberia, Ussuri, Korea, northern China, and Japan. It is found occasionally in damp, grassy vegetation at the sunny edges of woods, as well as in grassy woodland. Its larvae feed on peas, and adults are seen twice a year from April to May and June to July. Catopsilia pomona is ubiquitously distributed from areas of southeast Asia (Sikkim, Malaysia, Philippines) to Australia. It is found often in secondary forests, along river courses, and even in the hot arid deserts throughout the year. Its colors are usually variable, chiefly lemon-yellow with an apical black margin (Rienks 1985).

In this study, we determined and analyzed the complete mitogenome sequences of these two pierid species and compared these sequences with those of other butterfly species available to clarify the phylogenetic relationships among the main butterfly lineages. The new sequence data will provide valuable information for the studies of lepidopteran comparative genomics, molecular evolution, and other relevant areas.
Materials and Methods

Sample collection
Adult individuals of *L. morsei* and *C. pomona* were collected from Shanxi and Hainan Provinces, China, in August 2008 and July 2009, respectively. After sample collection, the fresh materials were placed into 100% ethanol immediately for DNA fixation and stored at -20°C until used for genomic DNA extraction.

DNA extraction and amplification by PCR
Total genomic DNA of *L. morsei* and *C. pomona* was extracted from the thoracic muscle of an adult individual by using the glass bead method after Hao et al. (2005). Insect universal primers were used for the amplification of the COI, CytB, 16S rRNA, and 12S rRNA genes (Simón et al. 1994). Primers for the ND2, ND4, COIII, and ND5 amplification were designed via the alignment of the respective sequences from all the butterflies available by using Clustal X1.8 software (Thompson et al. 1997, Singh et al. 1998). Seven long fragments (COI–COIII, COIII–ND5, ND5–CytB, CytB–16S, 16S–12S, 12S–ND2, ND2–COI) were amplified via long PCR using Takara LA Taq™ (Takara Co., www.takara-bio.com). The long PCR conditions were as follows: an initial denaturation at 95°C for 5 min, followed by 30 cycles of denaturation at 95°C for 50 sec, annealing at 50–55°C (depending on primer pairs) for 50 sec, and elongation at 68°C for 150 sec during the first 15 cycles and then an additional 5 sec per cycle during the last 15 cycles, and a final extension at 68°C for 10 min. All PCR fragments were sequenced directly in both strands after purification with the QIA quick PCR Purification Kit (QIAGEN, www.qiagen.com), except for the 12S–ND2 fragment of *L. morsei*, which was sequenced after cloning. All of the long PCR fragments were sequenced by using the primer walking strategy.

Sequence analysis
The raw sequences from the overlapping fragments were proofread and assembled in BioEdit version 7.0 (Hall 1999). Protein-coding genes, rRNA genes, and A+T-rich regions were determined via the alignment of the sequences by using Clustal X1.8 software (Thompson et al. 1997). The nucleotide sequences of the protein-coding genes were translated based on the invertebrate mtDNA genetic code. The tRNAs were identified by tRNAscan-SE software version 1.21 (Lowe and Eddy 1997). The putative tRNAs that could not be found by tRNAscan-SE were confirmed by sequence comparisons between the Pieridae and other butterfly tRNAs. Nucleotide composition and codon usage were calculated by using MEGA5.1 software (Kumar et al. 2004), and the tandem repeats in the A+T-rich regions were predicted by the Tandem Repeats Finder available online (http://tandem.bu.edu/trf/trf.html) (Benson et al. 1999). Sequence data were deposited in the GenBank database under the accession numbers JX274648 for *L. morsei* and JX274649 for *C. pomona*.

Phylogenetic analysis
For the phylogenetic analysis, 13 concatenated nucleotide sequences of protein-coding genes of 33 available butterfly mitogenome sequences (two newly sequenced in this study and 31 extracted from GenBank, Table 1) were aligned by using Clustal X1.8 (Thompson 1997). The phylogenetic trees were then reconstructed with the maximum likelihood and Bayesian inference methods using the moth species *Adoxophyes honmai* Yasuda (Lepidoptera: Tortricidae) (GenBank accession number DQ073916) as the outgroup.
In the maximum likelihood and Bayesian inference analyses, the third position of all the codons was excluded, and the best fitting substitution model GTR + I + G (Lanave et al. 1984) was selected via a comparison of Akaike Information Criterion scores (Akaike 1974), calculated by using the Modeltest software version 3.7 (Posada and Crandal 1998). The maximum likelihood analyses were conducted in PAUP version 4.0b8 (Swofford 2002) under the following conditions: tree searching by TBR (tree bisection and reconnection) branch swapping (10 random-addition sequences); specifying the number of substitution rate categories as four; and using a BIONJ distance-based tree as the starting tree. The confidence values of each node of the maximum likelihood tree were evaluated via the bootstrapping test with 1,000 iterations. Bayesian analyses were performed by using the program MrBayes 3.1 (Huelsenbeck and Ronquist 2001). Two independent runs of four incrementally heated MCMC chains (one cold chain and three hot chains) were simultaneously run for one million generations in all datasets. Each set was sampled every 100 generations with a burn-in of 25%, and when the average standard deviation of split frequencies was less than 0.01, stationarity was considered to be reached. The confidence values of the Bayesian inference tree were presented as the Bayesian posterior probabilities in percentages.

Results and Discussion

General features
The complete mtDNA sequences of *L. morsei* and *C. pomona* were 15,122 and 15,142 bp in length, respectively, with that of *L. morsei* being the shortest among all known sequences of butterfly species (Table 2). Each genome was composed of the typical 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one major non-coding A+T-rich region. The gene order was identical to that of other sequences of butterflies but different from that found in the ancestral insects with respect to the location of tRNA*Met*. That is to say, the tRNA*Met* was located between the control region and tRNA*Ile*, giving the derived control region (CR)-Met (M)-Ile (I)-Glu (Q) arrangement instead of that of the insect ground plan CR-I-Q-M (Fig. 1). The total sizes of protein-coding genes, rRNAs, and tRNAs were all well within the corresponding ranges of those found in other butterfly species (Table 2). The size proportions of coding genes to the whole genome of these two and four other pierid species were slightly higher than those of butterflies of other families (Table 3). By contrast, their non-coding sequences, including intergenic spacers and the A+T-rich region, were slightly shorter than those of butterflies of other families (Table 3). The majority strand coding nine protein-coding genes and 14 tRNAs were 7,804 and 7,836 bp, respectively, whereas the minority strand coding four protein-coding genes, eight tRNAs, and two rRNA genes were 6,901 and 6,934 bp, respectively, for the two pierid species.

The nucleotide compositions of the two entire mitogenome sequences were biased significantly toward A and T (Table 5). These A+T contents were generally consistent with those of other butterfly mitogenomes, which ranged from 79.1% in *Eumenis autonoe* Esper (Lepidoptera: Nymphalidae) (Kim, M. J. et al. 2010) to 82.7% in *Coreana raphaelis* Oberthür (Lepidoptera: Lycaenidae) (Kim, I. et al. 2006). The base composition bias of an individual strand can be described by A+T skewness, calculated by (A%−T%)/(A%+T%),
and G+C skewness, calculated by $(G\%-C\%)/(G\%+C\%)$. The A+T and G+C skewness values in majority strands were calculated to be -0.122 and -0.121, respectively, for *L. morsei*, and -0.119 and -0.087, respectively, for *C. pomona*.

Protein-coding genes

All the protein-coding genes in *L. morsei* and *C. pomona* started with a typical ATN codon, with the only exception represented by the CGA start codon of the COI gene. For *L. morsei*, three genes (*ND2, ND5, ND6*) started with ATT, one (*ATP8*) with ATC, two (*ND3, ND4*) with ATA, and six (*ATP6, ND1, COII, COIII, ND4L, CytB*) with ATG. In comparison with *L. morsei*, *ATP8, ND3*, and *ND6* in *C. pomona* possessed different start codons, namely ATT, ATT, and ATC, respectively. These start codons were well-conserved in the sequenced butterfly mitogenomes. For instance, the *ND2* gene usually used ATT as the start codon, whereas the *COII* and *ATP6* genes frequently used ATG as the start codon (Table 6).

Nine protein-coding genes were terminated with the standard stop codon TAA, whereas the *COI, COII, ND4*, and *ND5* genes used T as a truncated stop codon. The only difference in stop codons between the two pierid species was found in the *ND3* gene, that is, *L. morsei* used TAA instead of TAG, which appeared in *C. pomona*. Furthermore, incomplete stop codons were detected frequently in the *COI, COII*, and *ND5* genes in most insects, including all sequenced butterfly species (Table 6). Incomplete stop codons would produce functional stop codons after polycistronic transcript cleavage and polyadenylation (Ojala et al. 1981).

Previous studies reported that most lepidopterans used the codon CGA as the start codon for *COI* (Fig. 2). However, exceptions have been reported; for example, TTG was proposed as the start codon in *Acraea issoria* Hübner (Lepidoptera: Nymphalidae) (Hu et al. 2010), *Caligula boisduvalii* Eversmann (Lepidoptera: Saturniidae) (Kim, I. et al. 2006), and *Fabriciana nerippe* Felder (Lepidoptera: Nymphalidae) (Kim, M. J. et al. 2011a); ATT in *A. crataegi* (Park et al. 2012) and *Ctenoptilum vasava* Moore (Lepidoptera: Hesperiidae) (Hao et al. 2012); TTAG in *Bombyx mori* L. (Lepidoptera: Bombycidae) (Yukuhiro et al. 2002) and *C. raphaelis* (Hong, G. Y. et al. 2009); and ATTTAG in *Ostrinia nubilalis* Hübner and *Ostrinia furnacalis* Guenée (Lepidoptera: Crambidae) (Coates et al. 2005). In this study, a typical ATN initiator for *COI* in *L. morsei* and *C. pomona* was not detected at their starting sites. The putative ATT start codon is commonly located upstream of the *COI* gene and frequently followed immediately by the TAG or TAA stop codon; thus, the CGA, not ATT, probably acted as the start codon here as in most butterflies.

Excluding stop codons, the A+T contents of protein-coding genes in *L. morsei* and *C. pomona* were 79.16% and 80.02% (Table 5), respectively, and these values were similar to those detected in other butterflies, which ranged from 76.8% in *E. autonoe* (Kim, M. J. et al. 2010) to 81.5% in *C. raphaelis* (Kim, I. et al. 2006) (Table 2). When the first, second, and third codon positions were considered separately, the highest A+T contents were in the third positions for *L. morsei* and *C. pomona*. In addition, the highest T contents were detected in the second positions, and the lowest G contents in the third positions (Table 5).

Exclusive of the stop codon, 3,713 and 3,724 amino acids were encoded by the mitogenomes of *L. morsei* and *C. pomona*, respectively (Table 2). The amino acid numbers were well within the size range of 3,586
in *Sasakia charonda kuriyamaensis* Shirozu (Lepidoptera: Nymphalidae) (Hakozaki et al., unpublished, GenBank accession number NC_014223.1) to 3,740 in *Abisara fylloides* Moore (Lepidoptera: Riodinidae) (Shi et al. unpublished, College of Life Sciences, Anhui Normal University, China) detected in other butterflies. Among the amino acids, UUU (Phe), UUA (Leu), AUU (Ile), AUA (Met), and AAU (Asn) were the most frequently used codons in *L. morsei* and *C. pomona* (Table 7), and similar codons were found in other butterfly species, such as *C. vasava* (Hao et al. 2012), *A. crataegi* (Park et al. 2012), and *Sericinus montela* Gray (Lepidoptera: Papilionidae) (Ji et al. 2012).

Transfer RNAs and ribosomal RNAs

There were 22 tRNA genes (two each for serine and leucine, and one for each of the other amino acids) identified within the two pierid mitogenomes. An additional tRNA-like sequence (*tRNA*\(^{Leu}\) [UUR]) located within the 16S rRNA gene was detected in the mitogene- nome of *C. pomona*. The 22 tRNA genes ranging in size from 60 to 71 bp were interspersed throughout the two whole mitogenomes. The total sizes of the *L. morsei* and *C. pomona* tRNAs were 1,416 and 1,446 bp, respectively, with 80.68 and 81.05% A+T contents, respectively. All tRNAs could be folded into the typical clover leaf secondary structure, whereas *tRNA*\(^{Ser}\) (AGN) in both mitochondrial genomes lacked the dihydrouridine (DHU) loop. This feature has been shown in the majority of metazoan mitogenomes, including all those sequenced from butterflies (Kim, I. et al. 2006; Hong, G. Y. et al. 2009; Hu et al. 2010; Kim, M. I. et al. 2009; Xia et al. 2011; Wang et al. 2011; Kim, M. J. et al. 2010, 2011a, 2011b; Chen et al. 2012; Shi et al. 2012; Tian et al. 2012). The anticodon for *tRNA*\(^{Ser}\) (AGN) in mitogenomes of butterfly species was either TCT, GCT, or ACT, whereas only GCT was detected in all other sequenced mitogenomes of pierid species (*P. rapae*, *A. crataegi*, *D. hyparete*, and *A. melete*) (Hong, G. Y. et al. 2009, Mao et al. 2010, Park et al. 2012, Shi et al. 2012). The tRNA-like structure (*tRNA*\(^{Leu}\) [UUR]) was detected in the 16S rRNA gene of *C. pomona*, and a similar observation had been made in *C. vasava* (Hao et al. 2012). Interestingly, the 81 bp insertion of the tRNA-like sequence was made up completely of A and T, without G and C nucleotides. The *L. morsei* and *C. pomona* anticodon sequences of each tRNA isotype were identical to those of all other sequenced butterfly mitogenomes. As in other insects, unmatched base pairs were also detected in the stems of tRNAs. For *L. morsei*, there were 32 unmatched base pairs, consisting of 25 G-U, one A-A, and six U-U mismatches, whereas in *C. pomona*, 21 G-U, two A-A, and six U-U mismatches were identified.

Both of the two pierid mitogenomes harbored a large and a small ribosomal RNA subunit (16S rRNA and 12S rRNA), located between *tRNA*\(^{Leu}\) (CUN) and *tRNA*\(^{Val}\), and between *tRNA*\(^{Val}\) and the A+T-rich region, respectively. The length of the 16S rRNA and 12S rRNA genes in *L. morsei* were 1,337 and 764 bp, respectively, with A+T contents of 84.29 and 83.25%, respectively; the 16S rRNA and 12S rRNA in *C. pomona* were 1,332 and 779 bp in length, respectively, with A+T contents of 85.21 and 85.11%, respectively (Table 2).

Intergenic spacers and overlapping sequences

The mitogenomes of *L. morsei* and *C. pomona* harbored 11 and 15 intergenic spacers, ranging from 1 to 39 bp (94 bp in total) and 1 to 24 bp (87 bp in total), respectively (Table 3). Among these, only three intergenic spacers were longer than 10 bp in both pierid species.
(Table 3). The longest intergenic spacers, located between the tRNAGln and ND2 genes in *L. morsei* and *C. pomona*, were 39 and 24 bp in length, respectively, with A+T contents of 90.35 and 91.67% respectively. This spacer is present in all of the butterfly mitogenomes sequenced to date, whereas absent in all non-lepidopteran insects. Another long spacer harboring the 7 bp ATACTAA motif, located between the tRNASer(UCN) and ND1 genes, has been observed commonly in most insect groups including all other butterflies.

In addition, there were 33 overlapping nucleotides scattered over 13 locations in *L. morsei*, and 26 nucleotide overlaps scattered over eight locations in *C. pomona* (Table 2). Among these overlaps in the two pierid species, the longest one was 8 bp in length and located between *tRNATrp* and *tRNACys* with the 7 bp motif AGCCTTA; the second longest one was 7 bp in length and located between *ATP8* and *ATP6* with the 7 bp motif ATGATAA. Both of these motifs have been observed in the mitogenomes of many butterfly species, including all the other pierids sequenced.

The A+T-rich region

The A+T-rich regions of *L. morsei* and *C. pomona* were 356 and 313 bp in length, respectively, with A+T contents of 89.60 and 97.13%, respectively. Among the A+T-rich regions of all the butterfly mitogenomes sequenced, that of *C. pomona* was the shortest in length and the highest in A+T content (Table 2). The A+T-rich regions of *L. morsei* and *C. pomona* contained the motif ATAGA, followed by a 19 and 18 bp poly-T stretch, respectively (Fig. 3). Besides, the regions also included microsatellite-like elements, such as (TA)	extsubscript{9}(AT)	extsubscript{3} in *L. morsei* and (TA)	extsubscript{9} in *C. pomona*, which were preceded by the ATTA motif characteristic of lepidopteran mitogenomes. Additionally, a triplicated 23 bp and a duplicated 24 bp repeat element of unknown function were found in *L. morsei* and *C. pomona*, respectively (Fig. 3), and similar repeat elements were detected in other butterflies, such as *A. melete* (Hong, G. Y. et al. 2009), *E. autonoe* (Kim, M. J. et al. 2010), and *Agehana maraho* (Shiraki and Sonan) (Lepidoptera: Papilionidae) (syn. *Papilio maraho*) (Wu et al. 2010).

Phylogenetic analysis

Several competing hypotheses exist on the phylogenetic family relationships in butterflies. Ehrlich (1967), Ehrlich and Ehrlich (1967), and Scott (1985) demonstrated the close relationship between the Nymphalidae and Lycaenidae and that between the Pieridae and Papilionidae via numerical taxonomic methods and morphological characters. Son and Kim (2011) and Wahlberg et al. (2005) obtained results consistent with the traditional view of the sister relationship between the Pieridae and the Nymphalidae + Lycaenidae group, with Papilionidae as the basal lineage, in agreement with the earlier hypothesis of Kristensen (1976) and supported by several recent studies (Akaike 1974, Kristensen 1976, de Jong et al. 1996, Ackery et al. 1999, Wahlberg et al. 2005, Liao et al. 2010, Kim, M. I. et al. 2010, Kim, M. J. et al. 2011b, Son et al. 2011). However, Chai et al. (2012) and Zhang et al. (2012), on the basis of mitochondrial genomic data, proposed a close relationship between the Pieridae and Lycaenidae, with the Nymphalidae being the sister group, in agreement with the hypothesis of Robbins (1988). Therefore, controversy exists regarding the relationships among the Nymphalidae, Pieridae, and Lycaenidae.

In this study, we conducted phylogenetic analyses via Bayesian inference and maximum likelihood methods, using concatenated
nucleotide datasets of 13 protein-coding genes (6,582 aligned sites, 910 gaps, and 3,746 excluded positions), resulting in similar tree topologies of the butterfly families Papilionidae, Pieridae, Lycaenidae, and Nymphalidae (Fig. 4A and B). The presented trees showed two major clusters (Fig. 4A and B). The first one had the Papilionidae as the basal lineage, and the other one included the rest of the butterfly families. Maximum likelihood and Bayesian inference trees suggest a close relationship between Pieridae and Lycaenidae (Fig. 4A and B), in agreement with the prevailing phylogeny of butterfly families (Hesperiidae (Papilionidae (Nymphalidae (Pieridae, Lycaenidae)))). Although the close relationship of the Pieridae and Lycaenidae proposed herein is contradictory to the traditional view (Pieridae (Nymphalidae, Lycaenidae)), the result is consistent with those of recent studies (Kim, M. J. et al. 2010, Chai et al. 2012, Hao et al. 2012, Zhang et al. 2012). However, uncertainty does exist regarding the sister relationship of the Pieridae and Lycaenidae as shown in the maximum likelihood tree (Fig. 4A). We also note that this relationship has been derived mainly from the protein-coding genes of the mitochondrial genome of butterflies.

In conclusion, although it may still be immature to suggest that the phylogeny of butterfly families is resolved, we do suggest that the sister relationship of the Pieridae and Lycaenidae is supported at the mitogenomic level in this study. We believe that the problem of butterfly phylogeny should be resolved step by step as gene sequence data and morphologic characters are being accumulated, and hopefully more sophisticated analytic tools will become available.

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No.41172004), the Chinese Academy of Sciences (Grant No. KZCX22YW2JC104), and a grant from the State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (Grant No. 104143).

References

Ackery, P. R., R. de Jong, and R. I. Vane-Wright. 1999. The butterflies: Hedyloidea, Hesperioidea, and Papilionoidea, pp. 263–300. In N. P. Kirstensen (ed.), Lepidoptera, moths and butterflies, vol. 1, Evolution, systematics, and biogeography (Handbook of zoology series). De Gruyter, Berlin, Germany.

Akaike, H. 1974. A new look at the statistical model identification. IEEE Control Systems Society 19: 716–723.

Benson, G. 1999. Tandem Repeats Finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573–580.

Brunton, C.F.A. 1998. The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): a phylogeny using mitochondrial DNA. Heredity 80: 611–616.

Chai, H. N., Y. Z. Du, and B. P. Zhai. 2012. Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). International Journal of Biological Sciences 8: 561–579.

Chapman, T. A. 1895. Notes on butterfly pupae, with some remarks on the phylogensis
of the Rhopalocera. Entomologist’s Record and Journal of Variation 6: 101–107, 125–131, 147–152.

Chen, M., L. L. Tian, Q. H. Shi, T. W. Cao, and J. S. Hao. 2012. Complete mitogenome of the lesser purple emperor Apatura ilia (Lepidoptera: Nymphalidae: Apaturinae) and comparison with other nymphalid butterflies. Zoological Research 33: 191–201.

Clayton, D. A. 1992. Transcription and replication of animal mitochondrial DNA. International Review of Cytology 141: 217–232.

Coates, B. S., D. V. Sumerford, R. L. Hellmich, and L. C. Lewis. 2005. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. International Journal of Biological Sciences 1: 13–18.

Courtney, S. P. 1986. The ecology of pierid butterflies: dynamics and interactions. Advances in Ecological Research 15: 51–131.

de Jong, R., R. I. Vane-Wright, and P. R. Ackery. 1996. The higher classification of butterflies (Lepidoptera): problems and prospects. Insect Systematics and Evolution 27: 65–101.

Ehrlich, P. R. 1958. The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). University of Kansas Science Bulletin 39: 305–364.

Ehrlich, P. R., and A. H. Ehrlich. 1967. The phenetic relationships of the butterflies. I. Adult taxonomy and the non-specificity hypothesis. Systematic Zoology 16: 301–317.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hao, J. S., C. X. Li, X. Y. Sun, and Q. Yang. 2005. The phenetic relationships of the butterflies based on mitochondrial 16S rRNA sequences. Chinese Science Bulletin 12: 1205–1211.

Hao, J. S., Q. Q. Sun, H. B. Zhao, X. Y. Sun, Y. H. Gai, and Q. Yang. 2012. The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comparative and Functional Genomics 2012: 328049. doi:10.1155/2012/328049.

Hong, G. Y., S. T. Jiang, M. Yu, Y. Yang, F. Li, F. S. Xue, and Z. J. Wei. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochimica et Biophysica Sinica 41: 446–455.

Hong, M. Y., E. M. Lee, Y. H. Jo, H. C. Park, S. R. Kim, J. S. Hwang, B. R. Jin, P. D. Kang, K. G. Kim, Y. S. Han, and I. Kim. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413: 49–57.

Hu, J., J. S. Hao, D. X. Zhang, D. Y. Huang, S. Cameron, and C. D. Zhu. 2010. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique...
tRNA translocation event. *Molecular Biology Reports* 37: 3431–3438.

Huelsenbeck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. *Bioinformatics* 17: 754-755.

Ji, L. W., J. S. Hao, Y. Wang, D. Y. Huang, J. L. Zhao, and C. D. Zhu. 2012. The mitochondrial genome of the dragon swallowtail, *Sericinus montela* Gray (Lepidoptera: Papilionidae), and its phylogenetic implication. *Acta Entomologica Sinica* 55: 91–100.

Kemp, D. J., R. L. Rutowski, and M. Mendoza. 2005. Colour pattern evolution in butterflies: a phylogenetic analysis of structural ultraviolet and melanic markings in North American sulphurs. *Evolutionary Ecology Research* 7: 133–141.

Kim, I., E. M. Lee, K. Y. Seol, E. Y. Yun, Y. B. Lee, J. S. Hwang, and B. R. Jin. 2006. The mitochondrial genome of the Korean hairstreak, *Coreana raphaelis* (Lepidoptera: Lycaenidae). *Insect Molecular Biology* 15: 217–225.

Kim, M. I., J. Y. Baek, M. J. Kim, H. C. Jeong, K. G. Kim, C. H. Bae, Y. S. Han, B. R. Jin, and I. Kim. 2009. Complete nucleotide sequence and organization of the mitogenome of the red spotted Apollo butterfly, *Parnassius bremeri* (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. *Molecules and Cells* 28: 347–363.

Kim, M. I., X. L. Wan, M. J. Kim, H. C. Jeong, N. H. Ahn, K. G. Kim, Y. S. Han, and I. Kim. 2010. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from *COI, 16S rRNA* and *EF-1α* sequences. *Molecules and Cells* 30: 409–425.

Kim, M. J., X. L. Wan, K. G. Kim, J. S. Hwang, and I. Kim. 2010. Complete nucleotide sequence and organization of the mitogenome of endangered *Eumenis autonoe* (Lepidoptera: Nymphalidae). *African Journal of Biotechnology* 9: 735–754.

Kim, M. J., H. C. Jeong, S. R. Kim, and I. Kim. 2011a. Complete mitochondrial genome of the nerippe fritillary butterfly, *Argynnis nerippe* (Lepidoptera: Nymphalidae). *Mitochondrial DNA* 22: 86–88.

Kim, M. J., A. R. Kang, H. C. Jeong, K. G. Kim, and I. Kim. 2011b. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, *Spindasis takanonis* and *Protantigius superans* (Lepidoptera: Lycaenidae). *Molecular Phylogenetics and Evolution* 61: 436–445.

Kristensen, N. P. 1976. Remarks on the family level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). *Zeitschrift für Zoologische Systematik und Evolutionsforschung* 14: 25-33.

Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. *Briefings in Bioinformatics* 5: 150-163.

Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating evolutionary substitution rates. *Journal of Molecular Evolution* 20: 86–93.
Liao F., L. Wang, S. Wu, Y. P. Li, L. Zhao, G. M. Huang, C. J. Niu, Y. Q. Liu, and M. G. Li. 2010. The complete mitochondrial genome of the fall webworm, *Hyphantria cunea* (Lepidoptera: Arctiidae). *International Journal of Biological Sciences* 6: 172–186.

Lowe, T. M., and S. R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Research* 25: 955–964.

Mao, Z. H., J. S. Hao, G. P. Zhu, J. Hu, M. M. Si, and C. D. Zhu. 2010. Sequencing and analysis of the complete mitochondrial genome of *Pieris rapae* Linnaeus (Lepidoptera: Pieridae). *Acta Entomologica Sinica* 5: 1295–1304.

Ojala, D., J. Montoya, and G. Attardi. 1981. tRNA punctuation model of RNA processing in human mitochondria. *Nature* 290: 470–474.

Park, J. S., Y. Cho, M. J. Kim, S. H. Nam, and I Kim. 2012. Description of complete mitochondrial genome of the black-veined white, *Aporia crataegi* (Lepidoptera: Papilionoidea), and comparison to papilionoid species. *Journal of Asia-Pacific Entomology* 15: 331–341.

Posada, D., and K. A. Crandal. 1998. Modeltest: testing the model of DNA substitution. *Bioinformatics* 14: 817–818.

Qin, X. M., Q. X. Guan, D. L. Zeng, F. Qin, and H. M. Li. 2012. Complete mitochondrial genome of *Kallima inachus* (Lepidoptera: Nymphalidae: Nymphalinae): comparison of *K. inachus* and *Argynnis hyperbius*. *Mitochondrial DNA* 23(4):318–320.

Rienks, J. H. 1985. Phenotypic response to photoperiod and temperature in a tropical pierid butterfly. *Australian Journal of Zoology* 33: 837–847.

Robbins, R. K. 1988. Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications. *Proceedings of the Entomological Society of Washington* 90: 133–154.

Scott, J. A. 1985. The phylogeny of butterflies (Papilionoidea and Hesperioidea). *Journal of Research on the Lepidoptera* 23: 241–281.

Shi Q. H., J. Xia, X. Y. Sun, J. S. Hao, and Q. Yang. 2012. Complete mitogenome of the Painted Jezebel, *Delis hyparete* Linnaeus (Lepidoptera: Pieridae) and its comparison with other butterfly species. *Zoological Research* 33: 111–120.

Simon, C., F. Frati, A. Beckenbach, B. Cresp, H. Liu, and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America* 87: 651–701.

Singh, V. K., A. K. Mangalam, S. Dwivedi, and S. Naik. 1998. Primer Premier: program for design of degenerate primers from a protein sequence. *Bio Techniques* 24: 318–319.

Son, Y., and Y. Kim. 2011. The complete mitochondrial genome of *Grapholita molesta* (Lepidoptera: Tortricidae). *Annals of the Entomological Society of America* 104: 788–799.
Stavenga, D. G., S. Stowe, K. Siebke, J. Zeil, and K. Arikawa. 2004. Butterfly wing colours: scale beads make white pierid wings brighter. Proceedings of the Royal Society of London B 271: 1577–1584.

Swofford, D. L. 2002. PAUP: Phylogenetic analysis using parsimony (and other methods) version 4.10. Sinauer Associates, Sunderland, MA.

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.

Tian, L. L., X. Y. Sun, M. Chen, Y. Gai, J. S. Hao, and Q. Yang. 2012. Complete mitochondrial genome of the five-dot sergeant Parathyma sulphitiae (Nymphalidae: Limenitidinae) and its phylogenetic implications. Zoological Research 33: 133–143.

Wahlberg, N., M. F. Braby, A. V. Z. Brower, R. de Jong, M. M. Lee, S. Nylin, N. Pierce, F. A. Sperling, R. Vila, A. D. Warren. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B: Biological Sciences 272: 1577-1586.

Wang, X. C., X. Y. Sun, Q. Q. Sun, D. X. Zhang, J. Hu, Q. Yang, and J. S. Hao. 2011. The complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae). Zoological Research 32: 465–475.

Watt, W. B., K. Donohue, and P. A. Carter. 1996. Adaptation at specific loci. VI.

Weller, S. J., D. P. Pashley, and J. A. Martin. 1996. Reassessment of butterfly family relationships using independent genes and morphology. Annals of the Entomological Society of America 89: 184–192.

Wu, L. W., D. C. Lees, S. H. Yen, C. C. Lu, and Y. F. Hsu. 2010. The complete mitochondrial genome of the near-threatened swallowtail, Agehana maraho (Lepidoptera: Papilionidae): evaluating sequence variability and suitable markers for conservation genetic studies. Entomological News 121: 267–280.

Xia, J., J. Hu, G. P. Zhu, C. D. Zhu, and J. S. Hao. 2011. Complete mitochondrial DNA sequence of Calinaga davidis. Acta Entomologica Sinica 54: 555–565.

Yukuhiro, K., H. Sezutsu, M. Itoh, K. Shimizu, and Y. Banno. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkworm, Bombyx mandarina, and its close relative, the domesticated silkworm, Bombyx mori. Molecular Biology and Evolution 19: 1385–1389.

Zhang, M., X. P. Nie, T. W. Cao, J. P. Wang, T. Li, X. N. Zhang, Y. P. Guo, E. B. Ma, and Y. Zhong. 2012. The complete mitochondrial genome of the butterfly Apatura metis (Lepidoptera: Nymphalidae). Molecular Biology Reports 39: 6529–6536.
Figure 1. Map of the circular mitochondrial genome of *L. morsei*. Genes encoded in the H-strand (clockwise orientation) are colored in red or blue. Genes encoded in the L-strand (anticlockwise orientation) are colored in orange or green. Abbreviations for the genes: *COI-III* for cytochrome oxidase subunits, *CYTB* for cytochrome b, and *ND1-6* for NADH dehydrogenase components. tRNAs are denoted as one-letter symbols according to the IUPAC-IUB single-letter amino acid codes. High quality figures are available online.
Figure 2. Alignment of the initiation codons of the COI genes of lepidopterans, including those of *L. morsei* and *C. pomona*. The first four or five codons for COI and their amino acids are shown on the right-hand side of the figure. Underlined nucleotides indicate the adjacent partial sequence of tRNA\(^{\text{TYR}}\). Arrows indicate the transcriptional direction. Boxed nucleotides indicate the currently proposed translation initiators for the COI gene of lepidopteran insects. The start codon for *L. morsei* and *C. pomona* is designated as CGA. High quality figures are available online.
Figure 3. Structures of the A+T-rich regions in the mitogenomes of *L. morsei* (A) and *C. pomona* (B). High quality figures are available online.
Figure 4. Phylogenetic trees of the butterflies in this study based on the nucleotide sequences of 13 protein-coding genes. (A) Maximum likelihood tree. (B) Bayesian inference tree. Numbers at each node indicate bootstrap percentage of maximum likelihood analysis and posterior probability of Bayesian inference analysis. High quality figures are available online.
Table 1. Mitogenomes of the 33 butterfly species used in this study.

Family	Subfamily	Species	GenBank Acc. No.	References
Nymphalidae	Argynninae	Argyres hyperbius	JF439070	Wang et al., 2011
Nymphalidae	Apaturinae	Apatura ilia	JF437925	Chen et al., 2012
Nymphalidae	Apaturinae	Apatura metis	JF801742	Zhang et al., 2012
Nymphalidae	Apaturinae	Sasakia charonda kuriyamaensis	AP011825	Hakozaki et al., unpublished
Nymphalidae	Apaturinae	Sasakia charonda	AP011824	Wang et al., 2012
Nymphalidae	Calinaginae	Calinaga davidis	HQ658143	Xia et al., 2011
Nymphalidae	Danaina	Euploea mulciber	HQ378507	Sun et al., unpublished
Nymphalidae	Heliconiinae	Acraea issoria	GQ376195	Hu et al., 2010
Nymphalidae	Heliconiinae	Issoria lathonia	HM243590	Qin et al., unpublished
Nymphalidae	Heliconiinae	Fabriciana nerippe	JF504707	Kim M.I. et al., 2011a
Nymphalidae	Limenitinae	Parathyama sulphita	JQ347260	Tian et al., 2012
Nymphalidae	Libytheinae	Libythea celtis	HQ378508	Sun et al., unpublished
Nymphalidae	Nymphalinae	Melitaea cynthia	GQ398377	Xu et al., unpublished
Nymphalidae	Nymphalinae	Kallima inachus	JN857943	Qin et al., 2012
Nymphalidae	Satyrinae	Eumenis autonoe	GQ868707	Kim M.J. et al., 2010
Papilionidae	Papilioninae	Teinopalpus aureus	HM563681	Qin et al., 2012
Papilionidae	Papilioninae	Papilio maraho	GQ868707	Wu et al., 2010
Papilionidae	Papilioninae	Papilio machaon	HM243594	Xu et al., unpublished
Papilionidae	Papilioninae	Papilio bianor	NC018040	Xu et al., unpublished
Papilionidae	Papilioninae	Troides aeacus	EU625344	Jiang et al., unpublished
Papilionidae	Parnassinae	Parnassius bremeri	FJ871125	Kim et al., 2009
Papilionidae	Parnassinae	Sericinus montela	HQ259122	Ji et al., 2012
Lycaenidae	Aphinaeinae	Spindasis takanonis	HQ184266	Kim M.J. et al., 2011b
Lycaenidae	Theclinae	Coreana raphaelis	DQ102703	Kim I. et al., 2006
Lycaenidae	Theclinae	Protantigius superans	HQ184265	Kim M.J. et al., 2011b
Riodinidae	Nemeobinae	Abisara fylloides	HQ259069	Zhao et al., unpublished
Pieridae	Coliadinae	Catopsilia pomona	JX274649	This study
Pieridae	Dismorphininae	Leptidea morsei	JX274648	This study
Pieridae	Pierinae	Artogelia melete	EU597124	Hong G.Y. et al., 2009
Pieridae	Pierinae	Pieris rapae	HM156697	Mao et al., 2010
Pieridae	Pierinae	Delias hyparete	JX094279	Shi et al., 2012
Pieridae	Pierinae	Aporia crataegi	JN796473	Kim et al., 2012
Hesperiidae	Pyrginae	Ctenopeltum vasava	JF713818	Hao et al., 2012
Table 2. Characteristics of mitogenomes of the 33 butterfly species available.

Taxon	Size (bp)	A+T content (%)	No. codons*	PCG*	16S rRNA Size (bp)	12S rRNA Size (bp)	A+T-rich region			
Argyresia hyperbius	15,156	80.8	3,718	79.4	1,330	84.5	778	85.2	349	95.4
Apatura ilia	15,242	80.5	3,711	78.9	1,333	86.0	776	84.9	403	92.5
Apatura metis	15,236	80.5	3,707	78.9	1,333	84.5	779	84.8	394	92.9
Sasakia charonda kuriyamaensis	15,222	79.9	3,586	78.2	1,311	84.2	775	85.0	380	91.8
Sasakia charonda	15,244	79.9	3,695	78.2	1,323	84.4	775	85.0	380	91.8
Calinaga davidis	15,267	80.4	3,737	78.8	1,337	83.8	773	85.9	389	92.0
Euploea malaciber	15,166	81.5	3,713	80.2	1,314	84.6	776	85.3	399	93.5
Acrasia issoria	15,245	79.7	3,717	78.1	1,331	83.9	778	83.7	430	96.0
Issoria lathonia	15,172	81.2	3,718	79.9	1,319	84.4	771	85.1	361	96.1
Fabriciana nerique	15,140	80.9	3,719	79.6	1,321	84.4	773	84.9	329	95.4
Parathyma supitopia	15,282	81.9	3,729	80.6	1,319	84.7	779	85.7	349	94.6
Libythea calpis	15,164	81.2	3,732	80.1	1,335	84.7	774	85.4	328	96.3
Melitaea cinxia	15,170	80.0	3,718	78.6	1,336	84.6	772	84.6	338	92.9
Kallima inachus	15,183	80.3	3,704	79.2	1,335	82.8	774	85.1	376	92.0
Eumenis autonoe	15,489	79.1	3,728	76.8	1,335	83.7	775	85.3	678	94.5
Telrapalus aureus	15,242	79.8	3,720	78.3	1,320	82.4	781	85.6	395	93.1
Papilio maraho	16,094	80.5	3,717	78.1	1,333	83.7	779	85.5	1,270	93.7
Papilio machaon	15,185	80.3	3,720	79.0	1,319	83.5	772	84.2	362	92.5
Papilio bianor	15,340	80.6	3,719	79.0	1,324	83.4	773	85.4	498	94.0
Troides aeacus	15,263	80.2	3,636	79.1	1,234	83.2	784	84.9	418	89.7
Parnassius bremi	15,389	81.3	3,734	80.2	1,344	83.8	773	85.1	504	93.6
Sericinus montela	15,242	80.9	3,691	79.8	1,338	83.6	760	84.6	408	94.1
Spindasis tayronicola	15,349	82.4	3,719	81.0	1,333	85.6	777	84.7	371	94.6
Coreana raphaelis	15,314	82.7	3,708	81.5	1,330	85.3	777	85.8	375	94.1
Protagonitis superans	15,248	81.7	3,712	80.3	1,331	85.0	739	85.5	361	93.6
Abisara filloides	15,301	81.2	3,740	79.8	1,334	85.4	771	85.6	423	91.0
Catopsilia pomona	15,142	81.3	3,724	80.0	1,332	85.2	779	85.1	313	97.1
Leptidea morsei	15,122	80.2	3,713	79.2	1,337	84.3	764	83.2	366	89.3
Arctoega melita	15,140	79.8	3,715	78.4	1,319	83.4	777	86.9	351	88.0
Pieris rapae	15,157	79.7	3,721	78.2	1,330	84.0	764	85.0	393	91.6
Delias hyparete	15,186	79.8	3,703	78.4	1,336	83.7	774	85.1	377	92.0
Aporia crataegi	15,140	81.3	3,708	79.9	1,326	85.4	779	85.5	354	95.2
Ctenoploptilum vasava	15,468	80.5	3,698	78.9	1,343	84.1	774	86.4	429	88.1

\(^{a} \) Termination codons were excluded from total codon count.
\(^{b} \) Protein coding genes.
Table 3. Summarized characteristics of the mitogenomes of *L. morsei* (*Lm*) and *C. pomona* (*Cp*).

Gene	Direction	Nucleotide No.	Size (bp)	IGNe	Start codon/Stop codon		
		Lm	*Cp*	*Lm*	*Cp*		
tRNA^Met	F	1-64	1-67	64	67	0	3
tRNA^As	F	65-128	71-134	64	64	-3	1
tRNA^Gln	R	126-194	136-204	69	69	39	24
ND2	F	234-1250	229-1260	1017	1032	-2	6
tRNA^Tyr	F	1249-1314	1267-1332	66	66	-8	-8
tRNA^Gly	R	1307-1368	1325-1386	62	62	4	5
tRNA^Ser	R	1373-1436	1392-1456	64	65	2	2
COI	F	1439-2969	1459-2989	1531	1531	0	0
tRNA^Leu(UUR)	F	2970-3036	2990-3055	67	66	0	0
COII	F	3037-3712	3056-3731	676	676	0	0
tRNA^Lys	F	3713-3783	3732-3801	71	70	-1	-1
tRNA^Arg	F	3783-3848	3801-3868	66	68	0	0
ATP8	F	3849-4007	3869-4030	159	162	-7	-7
ATP6	F	4001-4684	4024-4701	684	678	-1	-1
COII	F	4684-5475	4701-5492	792	792	2	3
tRNA^Glu	F	5478-5542	5496-5561	65	66	0	0
ND3	F	5543-5896	5562-5915	354	354	3	-2
tRNA^His	F	5900-5965	5914-5982	66	69	-1	-1
tRNA^Thr	F	5965-6027	5982-6048	65	67	11	16
tRNA^Ile	F	6039-6103	6065-6130	65	66	-1	1
tRNA^Ser(AGN)	F	6103-6163	6132-6191	61	60	-1	1
tRNA^Gln	F	6163-6228	6193-6259	66	67	2	0
tRNA^Phe	R	6227-6290	6260-6326	64	67	0	0
ND5	R	6291-8028	6327-8064	1738	1738	-3	0
tRNA^Ala	R	8026-8089	8065-8130	64	66	0	0
ND4	R	8090-9413	8131-9466	1325	1336	12	-4
ND4L	R	9426-9704	9463-9744	279	282	2	3
tRNA^Ser	F	9707-9769	9748-9811	63	64	0	0
tRNA^Pro	R	9770-9835	9812-9877	66	66	2	2
ND6	R	9838-10365	9880-10407	528	528	3	1
CytB	F	10365-11513	10411-11565	1149	1155	-2	-2
tRNA^Ser(UCN)	F	11512-11578	11564-11629	67	66	16	16
ND1	R	11595-12533	11646-12584	939	939	1	1
tRNA^Leu(CUN)	R	12535-12601	12586-12652	67	67	0	0
tRNA^Glu	F	12602-13938	12653-13984	1337	1332	0	0
tRNA^Ala	R	13939-14002	13985-14050	64	66	0	0
srRNA	R	14003-14766	14051-14829	764	779	0	0
A+T-rich region	R	14767-15122	14830-15142	356	313	356	313

IGNc: intergenic nucleotide length, the positive number indicates interval nucleotides (base pairs) between genes, while the negative number indicates the overlapped nucleotides (base pairs) between genes.
Table 4. Size proportion of coding genes, intergenic spacers, and the A+T-rich region to the whole genome of the butterflies in this study.

Taxon	Total Size (bp)	Gene Size (bp)	%	Intergenic spacer Size (bp)	%	A+T-rich region Size (bp)	%
Argynnis hyperbius	15,156	14,707	97.0	97	0.6	349	2.3
Apatura ilia	15,242	14,718	96.6	155	1.0	403	2.6
Apatura metis	15,236	14,676	96.3	161	1.1	394	2.6
Sasakia charonda kuriyamaensis	15,222	14,340	93.6	608	4.0	380	2.5
Sasakia charonda	15,244	14,643	96.1	321	2.1	380	2.5
Calinaga davidis	15,267	14,775	96.8	130	0.9	389	2.5
Euploea mulciber	15,166	14,682	96.6	117	0.8	399	2.6
Acraea issoria	15,245	14,746	96.7	88	0.6	430	2.8
Issoria lathonia	15,172	14,733	97.0	107	0.7	361	2.4
Fabriciana nerippe	15,140	14,748	97.2	98	0.6	329	2.2
Parathyma sulpitia	15,268	14,919	96.4	213	1.4	349	2.3
Libythea celtis	15,164	14,766	97.2	97	0.6	328	2.2
Melitaea cinxia	15,170	14,751	97.1	96	0.6	338	2.2
Kallima inachus	15,183	14,756	97.0	88	0.6	376	2.5
Euploea mulciber	15,166	14,682	96.6	117	0.8	399	2.6
Teinopalpus aureus	15,242	14,713	96.5	107	0.7	395	2.6
Papilio maraho	16,094	14,705	91.4	111	0.7	1270	7.9
Papilio machaon	15,185	14,733	97.0	125	0.8	362	2.4
Papilio bianor	15,340	14,742	96.1	127	0.8	498	3.2
Trorides aeacus	15,263	14,433	94.4	446	2.9	418	2.7
Parnassius bremeri	15,389	14,745	95.8	138	0.9	504	3.3
Sericinus montela	15,241	14,667	96.2	166	1.1	408	2.7
Spindasis takanonis	15,349	14,743	96.1	219	1.4	371	2.4
Coreana raphaelis	15,314	14,689	95.9	177	1.2	375	2.4
Protantigius superans	15,248	14,663	96.2	217	1.4	361	2.4
Abisara fylloides	15,301	14,820	96.5	118	0.8	423	2.8
Catopsilia pomona	15,142	14,770	97.4	87	0.6	313	2.1
Leptidea morsei	15,122	14,707	97.0	94	0.6	356	2.3
Artogeia melete	15,140	14,677	96.9	117	0.8	351	2.3
Pieris rapae	15,157	14,682	96.9	112	0.7	393	2.6
Delias hyparete	15,186	14,699	96.8	153	1.0	377	2.5
Aporia crataegi	15,140	14,677	96.9	111	0.7	354	2.3
Ctenoptilum vasava	15,468	14,887	96.1	179	1.2	429	2.8
Table 5. Nucleotide compositions in *L. morsei* (*Lm*) and *C. pomona* (*Cp*).

Feature	A (%)	C (%)	G (%)	T (%)	A+T (%)
Whole genome	38.51	39.45	11.83	11.07	7.93
Protein-coding genes	34.09	34.35	10.39	9.56	10.46
1st codon positions	37.95	37.65	10.48	9.56	15.35
2nd codon positions	22.25	22.13	15.84	16.03	13.14
3rd codon positions	42.07	43.29	4.85	3.22	2.88
tRNA genes	39.69	41.24	10.93	7.26	8.36
mLN genes	45.62	43.84	5.46	5.18	10.25
mLS genes	44.50	46.34	5.63	4.88	11.13
A+T-rich region	41.29	46.65	7.58	2.56	2.81

* Stop codons excluded.

Table 6. The 13 protein-coding gene initiation and termination codons in the mitogenomes of the 33 butterfly species in this study.

Species	Predicted initiation and termination codons												
	ND2	CO1	CO2	ATP8	ATP6	COOH	ND3	ND6	ND4	ND4L	ND6	CysR	ND1
Argynnis hyperbius	AT3T	AA5	ATG										
Apatana ilia	AT3T	AA5	ATG										
Apatana melis	AT3T	AA5	ATG										
Sasaia charonda kuriyamaeuei	AT3T	AA5	ATG										
Sasaia charonda	AT3T	AA5	ATG										
Calinaga davidis	AT3T	AA5	ATG										
Euploea multiplicata	AT3T	AA5	ATG										
Acraea assoria	AT3T	AA5	ATG										
Zérrara lathonia	AT3T	AA5	ATG										
Fabriciana sericea	AT3T	AA5	ATG										
Parathyma sulphita	AT3T	AA5	ATG										
Libythea celitis	AT3T	AA5	ATG										
Melitaea cynthia	AT3T	AA5	ATG										
Kalima inachus	AT3T	AA5	ATG										
Euxanthes aurescens	AT3T	AA5	ATG										
Temenopteryx auratus	AT3T	AA5	ATG										
Papilio maraho	AT3T	AA5	ATG										
Papilio machaon	AT3T	AA5	ATG										
Papilio bianor	AT3T	AA5	ATG										
Troilus oenops	AT3T	AA5	ATG										
Parnassius hyperbius	AT3T	AA5	ATG										
Scaraboma menieria	AT3T	AA5	ATG										
Spindalis takamai	AT3T	AA5	ATG										
Caresana raphaelli	AT3T	AA5	ATG										
Parnassiodes superans	AT3T	AA5	ATG										
Actinura fuligilis	AT3T	AA5	ATG										
Catopilla pomona	AT3T	AA5	ATG										
Lepidopus morsei	AT3T	AA5	ATG										
Arionia molyche	AT3T	AA5	ATG										
Pieris rapae	AT3T	AA5	ATG										
Deltana hyperne	AT3T	AA5	ATG										
Aporia crataegi	AT3T	AA5	ATG										
Cleophasia yasii	AT3T	AA5	ATG										
Table 7. The codon usage in the mitogenomes of *L. morsei* (*Lm*) and *C. pomona* (*Cp*).

| Amino acid | Codon | \(N \) | \(\text{Lm} \) | \(\text{Cp} \) | \(\text{RSCU} \) | Amino acid | Codon | \(N \) | \(\text{Lm} \) | \(\text{Cp} \) | \(\text{RSCU} \) |
|------------|-------|--------|---------|---------|--------|------------|-------|--------|---------|---------|--------|--------|
| Phe | UUU | 338 | 4.86 | 349 | 5.31 | UUU | 169 | 2.81 | 177 | 1.84 | 1.84 |
| | UUC | 34 | 0.18 | 25 | 0.13 | UUC | 18 | 0.03 | 15 | 0.16 | 0.16 |
| Leu | UUA | 454 | 6.88 | 470 | 6.51 | UUA | 59 | 0.98 | 59 | 1.79 | 1.79 |
| | UUG | 11 | 0.17 | 9 | 0.10 | UUG | 7 | 0.21 | 7 | 0.21 | 0.21 |
| | CUU | 52 | 0.75 | 33 | 0.57 | CUU | 61 | 1.94 | 63 | 2.00 | 2.00 |
| | CUC | 4 | 0.06 | 3 | 0.04 | CUC | 2 | 0.06 | 0 | 0.00 | 0.00 |
| | CUA | 28 | 0.39 | 16 | 0.21 | CUA | 247 | 1.84 | 241 | 1.91 | 1.91 |
| | CUG | 0 | 0.00 | 0 | 0.00 | CUG | 21 | 0.16 | 12 | 0.09 | 0.09 |
| Ile | AUU | 435 | 6.53 | 444 | 6.77 | AAA | 93 | 1.38 | 103 | 1.87 | 1.87 |
| | AUC | 33 | 0.48 | 15 | 0.23 | AAG | 9 | 0.13 | 7 | 0.14 | 0.14 |
| Met | AUA | 283 | 4.28 | 298 | 4.29 | GAU | 52 | 0.73 | 57 | 1.78 | 1.78 |
| | AUG | 18 | 0.26 | 22 | 0.31 | GAC | 8 | 0.12 | 7 | 0.13 | 0.13 |
| Val | GUU | 68 | 1.02 | 66 | 1.01 | GAA | 68 | 1.03 | 71 | 1.87 | 1.87 |
| | GUC | 1 | 0.01 | 3 | 0.05 | GAG | 12 | 0.18 | 5 | 0.30 | 0.30 |
| | GAU | 47 | 0.68 | 58 | 0.86 | UGU | 21 | 1.62 | 28 | 1.81 | 1.81 |
| | GUG | 5 | 0.07 | 3 | 0.05 | UGC | 5 | 0.38 | 3 | 0.19 | 0.19 |
| Ser | UCU | 102 | 1.53 | 110 | 1.55 | UGA | 89 | 1.38 | 97 | 2.00 | 2.00 |
| | UCC | 10 | 0.15 | 5 | 0.08 | UGG | 7 | 0.15 | 0 | 0.00 | 0.00 |
| | UCA | 85 | 1.28 | 86 | 1.30 | CGU | 15 | 1.09 | 19 | 1.46 | 1.46 |
| | UCG | 2 | 0.03 | 2 | 0.03 | CGC | 0 | 0.00 | 1 | 0.08 | 0.08 |
| | CCU | 72 | 1.09 | 74 | 1.09 | CGA | 38 | 2.16 | 31 | 2.38 | 2.38 |
| | CCC | 9 | 0.14 | 9 | 0.14 | CGG | 2 | 0.15 | 1 | 0.08 | 0.08 |
| | CCA | 39 | 0.59 | 40 | 0.59 | AGU | 41 | 1.03 | 32 | 0.82 | 0.82 |
| | CCG | 1 | 0.01 | 0 | 0.00 | AGC | 3 | 0.08 | 1 | 0.03 | 0.03 |
| Pro | ACU | 76 | 1.19 | 95 | 1.35 | AGA | 76 | 1.91 | 72 | 1.85 | 1.85 |
| | ACC | 9 | 0.14 | 7 | 0.14 | AGG | 0 | 0.00 | 3 | 0.08 | 0.08 |
| | ACA | 65 | 1.01 | 50 | 0.88 | GGU | 47 | 0.98 | 55 | 1.09 | 1.09 |
| | ACG | 0 | 0.00 | 0 | 0.00 | GGC | 5 | 0.10 | 1 | 0.02 | 0.02 |
| Thr | GCU | 70 | 1.12 | 75 | 1.25 | GGA | 102 | 2.14 | 120 | 2.39 | 2.39 |
| | GCC | 13 | 0.21 | 6 | 0.10 | GGG | 37 | 0.77 | 25 | 0.50 | 0.50 |
| | GCA | 34 | 0.54 | 37 | 0.54 | UAA | 0 | 0.00 | 0 | 0.00 | 0.00 |
| | GCG | 1 | 0.02 | 1 | 0.02 | UAG | 0 | 0.00 | 0 | 0.00 | 0.00 |

Start and stop codons excluded from total codon counts; \(N \), frequency of codon use; RSCU, relative synonymous codon usage.