Intake of coffee, caffeine and other methylxanthines and risk of Type I vs Type II endometrial cancer

S Uccella\(^1\), A Mariani\(^1\), A H Wang\(^2\), R A Vierkant\(^2\), W A Cliby\(^1\), K Robien\(^3\), K E Anderson\(^3\) and J R Cerhan\(^*,4\)

\(^1\)Department of Obstetrics and Gynecology, Division of Gynecologic Surgery, Rochester, MN 55901, USA; \(^2\)Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55901, USA; \(^3\)Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA and \(^4\)Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55901, USA

Background: Coffee and other sources of methylxanthines and risk of Type I vs Type II endometrial cancer (EC) have not been evaluated previously.

Methods: Prospective cohort of 23 356 postmenopausal women with 471 Type I and 71 Type II EC cases.

Results: Type I EC was statistically significantly associated with caffeinated (relative risk (RR) = 0.65 for 4 + cups per day vs ≤1 cup per month: 95% confidence interval (CI): 0.47–0.89) but not decaffeinated (RR = 0.76; 95% CI: 0.50–1.15) coffee intake; there were no associations with tea, cola or chocolate, or for Type II EC. The inverse association with caffeinated coffee intake was specific to women with a body mass index ≥30 kg m\(^{-2}\) (RR = 0.56; 95% CI: 0.36–0.89).

Conclusion: Coffee may protect against Type I EC in obese postmenopausal women.

Following water and tea, coffee is the third most consumed beverage in the world (Bushman, 1998; La Vecchia and Tavani, 2007). A recent meta-analysis reported an inverse association of coffee intake with endometrial cancer (EC) risk (Je and Giovannucci, 2011). The presence of antioxidants and other chemopreventive compounds in coffee may explain its anticarcinogenic effect (Vivani, 1993; Cavin et al., 2002). However, it is not clear whether coffee \textit{per se}, caffeine or other methylxanthines (e.g., theophylline and theobromine) are most relevant. Also unexplored is whether there is heterogeneity by Type I vs Type II EC, which may have different aetiologies (Bokhman, 1983; Doll et al., 2008; Mendivil et al., 2009). The aim of the present study was to evaluate the association of coffee consumption (with and without caffeine) and other sources of methylxanthines with risk of Type I vs Type II EC, overall and stratified on body mass index (BMI), smoking history and hormone therapy (HT) use.

*MATERIALS AND METHODS

Details regarding the Iowa Women’s Health Study (IWHS) have been published (Folsom \textit{et al.}, 1990). In brief, 41 836 women aged 55–69 years completed a self-administered survey at enrolment in 1986. The baseline survey included a 126-item semiquantitative food-frequency questionnaire (FFQ) (Willett \textit{et al.}, 1988), which included the average intake in the past year of the following items: caffeinated coffee; decaffeinated coffee; tea (excluding herbal teas); regular and sugar-free carbonated beverages with caffeine; chocolate; chocolate bars; and brownies. The FFQ was reliable and valid in this population (Munger \textit{et al.}, 1992).

Incident EC cases were identified through 2005 via annual linkage with the Iowa Cancer Registry. Cancer data were coded according to the International Classification of Diseases for Oncology (Fritz \textit{et al.}, 2000). Type I or Type II were classified

*Correspondence: Dr JR Cerhan; E-mail: cerhan.james@mayo.edu

Received 16 April 2013; revised 25 July 2013; accepted 13 August 2013; published online 10 September 2013

© 2013 Cancer Research UK. All rights reserved 0007 – 0920/13
Intake of Coffee (cups)	Type I (N = 71)	Type II (N = 71)
Total coffee intake (cups)		
Never or once per month	39	82
<1 cup per week	41	86
1 cup per week	37	83
2–3 cups per day	46	83
4+ cups per day	44	83
Caffeinated coffee (cups)		
Never or once per month	61	110
<1 cup per week	65	110
1 cup per week	60	109
2–3 cups per day	64	109
4+ cups per day	66	109
Decaffeinated coffee (cups)		
Never or once per month	145	263
<1 cup per week	148	263
1 cup per week	148	263
2–3 cups per day	147	263
4+ cups per day	149	263
Joint intake of caffeinated and decaffeinated coffee intake (cups)		
Never or once per month	24	87
Decaffeinated only, 1–3 cups per day	63	109
Decaffeinated only, 4+ cups per day	22	44
Caffeinated only, 1–3 cups per day	87	132
Caffeinated only, 4+ cups per day	35	60
Caffeinated 1+ cups per day and decaffeinated 1+ cups per day	30	60
Tea (cups), not herbal		
Never or once per month	161	314
<1 cup per month	162	314
1+ cups per month	161	314
Cola, regular or low calorie (glass, bottle or can)		
Never or once per month	234	466
1–3 cups per month	57	109
4+ cups per month	82	110
Age- and energy-adjusted RR (95% CI)		
Type I		
Age and energy-adjusted RR		
Type II		
Age and energy-adjusted RR		
P-trend		
Multivariable-adjusted RR (95% CI)		
P-trend		
P-heterogeneity		

Table 1. Association of coffee and sources of caffeine and methylxanthines with risk of Type I and Type II endometrial cancer, Iowa Women’s Health Study, 1986–2005.
Table 1. (Continued)

Chocolate (bars or pieces)	Type I (N = 471)	Type II (N = 71)										
Never or < once per month	171,617	232	1.00	1.00 (reference)	0.47	30	1.00	1.00 (reference)	0.071	1.00 (reference)	0.085	0.062
1–3 bars per pieces a month	122,065	143	0.87	0.87 (0.70, 1.09)	20	1.01	1.00 (0.55, 1.80)	21	1.80	1.79 (0.98, 3.26)		
1 + per week	80,237	96	0.90	0.94 (0.73, 1.21)	21	1.80	1.79 (0.98, 3.26)					

Candy bars												
Never or < once per month	208,240	269	1.00	1.00 (reference)	0.76	33	1.00	1.00 (reference)	0.044	1.00 (reference)	0.087	0.090
1–3 bars a month	113,664	141	0.97	0.98 (0.79, 1.21)	26	1.58	1.46 (0.85, 2.50)	12	1.80	1.71 (0.84, 3.48)		
1 + per week	52,015	61	0.93	0.96 (0.71, 1.29)	12	1.80	1.71 (0.84, 3.48)					

Brownies (one)												
Never or < once per month	229,481	297	1.00	1.00 (reference)	1.00	43	1.00	1.00 (reference)	0.71	1.00 (reference)	0.82	0.83
1–3 servings a month	110,854	135	0.95	1.02 (0.82, 1.26)	23	1.21	1.12 (0.65, 1.92)	5	0.97	1.00 (0.38, 2.58)		
1 + per week	33,584	39	0.92	0.98 (0.68, 1.40)	5	0.97	1.00 (0.38, 2.58)					

Caffeine (mg per day)												
<29.7	92,717	138	1.00	1.00 (reference)	0.0015	13	1.00	1.00 (reference)	0.76	1.00 (reference)	0.84	0.38
29.7–158.3	93,302	132	0.95	0.93 (0.72, 1.18)	22	1.74	1.65 (0.82, 3.29)	23	1.84	1.80 (0.90, 3.59)		
158.4–385.0	93,896	107	0.77	0.80 (0.61, 1.04)	23	1.84	1.80 (0.90, 3.59)	13	1.09	0.98 (0.43, 2.23)		
>385.0	94,004	94	0.68	0.80 (0.61, 1.05)	13	1.09	0.98 (0.43, 2.23)					

Abbreviations: CI = confidence interval; HT = hormone therapy; ICD = International Classification of Diseases; RR = relative risk.

*Type I defined as ICD-O codes 8000, 8010, 8140, 8210, 8262, 8263, 8380, 8480, 8560 and 8570; and Type II defined as ICD-O codes 8050, 8260, 8310, 8323, 8441, 8460, 8950, 8951 and 8990.

**Frequency of use (‘never or less than once per month’, ‘1–3 per month’, ‘1 per week’, ‘2–4 per week’, ‘5–6 per week’, ‘1 per day’, ‘2–3 per day’, ‘4–5 per day’, ‘6 + per day’) was asked for the following items: (1) caffeinated coffee (1 cup); (2) decaffeinated coffee (1 cup); (3) tea (1 cup), not herbal tea; (4) Coke, Pepsi or other cola with sugar; (5) caffeine-free Coke, Pepsi or other cola with sugar; (6) low calorie cola, for example, Tab with caffeine; (7) low calorie caffeine-free cola, for example, Pepsi free; (8) chocolate bars or pieces, for example, Hershey’s, M&M’s; (9) candy bars, for example, Snickers, Milky Way, Reese; and (10) brownies (1). Total coffee is the sum of caffeinated plus decaffeinated coffee intake.

*Adjusted for age, diabetes, duration of HT use, hypertension, age at menarche, age at menopause, quartiles of body mass index, waist-to-hip ratio, smoking status, pack years of smoking, total energy and alcohol use.
based on registry codes (see Table 1 footnote) as described previously (Uccella et al., 2011); there was no central pathology review. Deaths were ascertained by follow-up surveys, annual linkage with Iowa death certificates and linkage to the National Death Index.

Women with history of cancer before baseline, except non-melanoma skin cancer (n = 3830); hysterectomy before baseline (n = 14,350); extreme dietary intake (< 600 or > 5000 kcal per day) or incomplete FFQ questionnaires (≥ 30 blank food items) (n = 3096); or who were not postmenopausal at baseline (n = 569) were excluded from the present analysis (not mutually exclusive), yielding a final sample size of 23,356 study participants.

At study baseline, there were 23,356 women in the at-risk cohort, of whom 5218 (22.3%) were obese (BMI ≥ 30 kg m⁻²) and 6843 (29.3%) drank 4 cups per day of coffee (caffeinated or decaffeinated). The correlation of coffee intake with EC risk factors is shown in Table 2.

During the 20-year follow-up period, we identified a total of 542 incident cases of EC, 471 Type I and 71 Type II. The mean age at diagnosis of Type I EC was 71.8 years (range, 57.2–89.5 years) and Type II EC was 72.8 years (range, 60.2–89.3 years).

There was an inverse association of caffeinated coffee consumption with risk of Type I EC after multivariate adjustment (RR = 0.65 for 4 cups per day compared with ≤ 1 cup per month; P-trend = 0.033), but there were no statistically significant trends with intake of total coffee, decaffeinated coffee, tea, colas or other sources of methylxanthines, although the highest intake of total coffee and decaffeinated coffee did have RRs < 0.8 (Table 1). Compared with women who did not drink either caffeinated or decaffeinated coffee, those who drank 4 cups per day of caffeinated coffee only (RR = 0.73; 95% CI: 0.52–1.02) or 1–4 cups per day of both types of coffee (RR = 0.69; 95% CI: 0.47–1.01) had lower EC risk, whereas the association was weaker and not statistically significant for women who drank 4 cups per day of decaffeinated coffee only (RR = 0.81; 95% CI: 0.52–1.27).

Caffeine intake showed a suggestive inverse associated with risk (RR = 0.80 for > 385 mg per day compared with < 29.7 mg per day; P-trend = 0.059). In contrast, coffee and other sources of methylxanthines were not associated with risk of Type II EC.

We next examined coffee intake with risk of Type I EC within strata defined by BMI (30 + vs < 30 kg m⁻²), smoking history (ever/never) and HT use (ever/never); the sample size was too small to conduct these analyses for risk of Type II EC. As shown in Table 3, the inverse associations for total and caffeinated coffee, caffeine and perhaps decaffeinated coffee were only observed among obese women and not among women with a BMI < 30 kg m⁻². There was no striking or consistent heterogeneity in the associations for coffee or caffeine intake when stratified on smoking status (Supplementary Table 1) or HT use (Supplementary Table 2).

RESULTS

At study baseline, there were 23,356 women in the at-risk cohort, of whom 5218 (22.3%) were obese (BMI ≥ 30 kg m⁻²) and 6843 (29.3%) drank 4 cups per day of coffee (caffeinated or decaffeinated). The correlation of coffee intake with EC risk factors is shown in Table 2.

During the 20-year follow-up period, we identified a total of 542 incident cases of EC, 471 Type I and 71 Type II. The mean age at diagnosis of Type I EC was 71.8 years (range, 57.2–89.5 years) and Type II EC was 72.8 years (range, 60.2–89.3 years).

There was an inverse association of caffeinated coffee consumption with risk of Type I EC after multivariate adjustment (RR = 0.65 for 4 cups per day compared with ≤ 1 cup per month; P-trend = 0.033), but there were no statistically significant trends with intake of total coffee, decaffeinated coffee, tea, colas or other sources of methylxanthines, although the highest intake of total coffee and decaffeinated coffee did have RRs < 0.8 (Table 1). Compared with women who did not drink either caffeinated or decaffeinated coffee, those who drank 4 cups per day of caffeinated coffee only (RR = 0.73; 95% CI: 0.52–1.02) or 1–4 cups per day of both types of coffee (RR = 0.69; 95% CI: 0.47–1.01) had lower EC risk, whereas the association was weaker and not statistically significant for women who drank 4 cups per day of decaffeinated coffee only (RR = 0.81; 95% CI: 0.52–1.27).

Caffeine intake showed a suggestive inverse associated with risk (RR = 0.80 for > 385 mg per day compared with < 29.7 mg per day; P-trend = 0.059). In contrast, coffee and other sources of methylxanthines were not associated with risk of Type II EC.

We next examined coffee intake with risk of Type I EC within strata defined by BMI (30 + vs < 30 kg m⁻²), smoking history (ever/never) and HT use (ever/never); the sample size was too small to conduct these analyses for risk of Type II EC. As shown in Table 3, the inverse associations for total and caffeinated coffee, caffeine and perhaps decaffeinated coffee were only observed among obese women and not among women with a BMI < 30 kg m⁻². There was no striking or consistent heterogeneity in the associations for coffee or caffeine intake when stratified on smoking status (Supplementary Table 1) or HT use (Supplementary Table 2).

Table 2. Correlation of coffee intake with selected endometrial cancer risk factors, Iowa Women’s Health Study (1986)

Intake of coffee	Never or ≤ 1 per month (N = 2340)	< 1 cup per week (N = 2638)	1 cup per day (N = 3040)	2–3 cups per day (N = 8495)	4+ cups per day (N = 6843)
Mean ± s.d.					
Age (years)	62.1 ± 4.2	62.7 ± 4.2	62.9 ± 4.2	62.3 ± 4.2	61.4 ± 4.1
Body mass index (kg m⁻²)	27.6 ± 5.6	27.3 ± 5.5	27.0 ± 5.0	26.8 ± 4.9	26.5 ± 5.0
Waist-to-hip ratio	0.843 ± 0.086	0.837 ± 0.082	0.838 ± 0.083	0.832 ± 0.081	0.828 ± 0.086
Total energy (kcal per day)	1785 ± 613	1718 ± 600	1785 ± 602	1804 ± 584	1871 ± 648
Pack years of smoking	5.7 ± 15.0	5.9 ± 14.4	5.6 ± 14.0	8.3 ± 16.4	15.7 ± 21.4
Percent distribution					
Adult-onset diabetes (ever)	7.1%	6.9%	6.3%	5.3%	4.8%
Hypertension (ever)	36.7%	38.5%	38.3%	34.9%	30.1%
Alcohol use	22.9%	35.9%	39.6%	50.0%	54.9%
Age at menarche > 12 years	55.8%	58.9%	60.7%	59.1%	57.9%
Age at menopause > 50 years	63.2%	62.0%	64.3%	64.1%	59.7%
Never used HT	74.4%	73.9%	73.1%	73.1%	73.3%
Smoking history					
Current	7.6%	8.6%	8.0%	12.7%	27.7%
Former	12.8%	15.8%	15.8%	20.7%	22.8%
Never	79.6%	75.6%	76.3%	66.6%	49.4%

Abbreviation: HT = hormone therapy.
Table 3. Association of coffee and caffeine with risk of Type I endometrial cancer, stratified by BMI, Iowa Women’s Health Study, 1986–2005

Total coffee intake	Person-years	Cases	Multivariable-adjusted RR*	P-trend	Person-years	Cases	Multivariable-adjusted RR*		
Never or < once per month	27,242	25	1.00 (reference)	0.75	9961	39	1.00 (reference)	0.010	0.554
<1 cup per week	31,426	28	1.09 (0.62, 1.94)	10,140	36	0.62 (0.52, 1.31)			
1 cup per day	37,451	29	1.00 (0.57, 1.77)	11,176	26	0.60 (0.36, 0.99)			
2–3 cups per day	108,294	110	1.33 (0.83, 2.14)	28,501	78	0.72 (0.49, 1.07)			
4+ cups per day	88,005	59	0.99 (0.59, 1.66)	21,725	41	0.53 (0.34, 0.84)			

Caffeinated coffee	Person-years	Cases	Multivariable-adjusted RR*	P-trend	Person-years	Cases	Multivariable-adjusted RR*		
Never or < once per month	80,699	74	1.00 (reference)	0.801	25,668	94	1.00 (reference)	0.0079	0.63
<1 cup per week	53,029	46	1.02 (0.70, 1.49)	15,410	40	0.66 (0.45, 0.97)			
1 cup per day	27,278	23	0.97 (0.59, 1.59)	7,420	14	0.51 (0.28, 0.91)			
2–3 cups per day	72,716	75	1.21 (0.86, 1.69)	18,740	46	0.71 (0.50, 1.02)			
4+ cups per day	58,245	33	0.77 (0.50, 1.19)	14,264	26	0.56 (0.36, 0.89)			

Decaffeinated coffee	Person-years	Cases	Multivariable-adjusted RR*	P-trend	Person-years	Cases	Multivariable-adjusted RR*		
Never or < once per month	125,409	110	1.00 (reference)	0.95	37,716	114	1.00 (reference)	0.32	0.58
<1 cup per week	63,908	54	0.94 (0.67, 1.32)	16,331	36	0.73 (0.50, 0.98)			
1 cup per day	28,922	24	0.93 (0.59, 1.46)	8,072	18	0.71 (0.43, 1.19)			
2–3 cups per day	49,781	45	1.06 (0.74, 1.51)	13,344	42	1.05 (0.73, 1.50)			
4+ cups per day	24,397	18	0.90 (0.53, 1.53)	6,039	10	0.58 (0.30, 1.11)			

Caffeine (mg per day)	Person-years	Cases	Multivariable-adjusted RR*	P-trend	Person-years	Cases	Multivariable-adjusted RR*		
<29.7	71,320	63	1.00 (reference)	0.66	21,397	75	1.00 (reference)	0.038	0.19
29.7–158.3	71,693	71	1.11 (0.78, 1.58)	21,609	61	0.80 (0.56, 1.12)			
158.4–385.0	74,716	64	1.00 (0.69, 1.44)	19,179	43	0.67 (0.46, 0.99)			
>385.0	74,687	53	0.94 (0.64, 1.38)	19,317	41	0.70 (0.47, 1.04)			

Abbreviations: BMI = body mass index; HT = hormone therapy.
*Adjusted for age, duration of HT use, diabetes, hypertension, age at menarche, age at menopause, BMI (continuous), waist-to-hip ratio, smoking status, pack years of smoking, total energy and alcohol use.

DISCUSSION

Coffee consumption was most strongly associated with a lower risk of Type I EC among obese postmenopausal women, and these associations were generally stronger and statistically significant for caffeinated relative to decaffeinated coffee intake. There were no statistically significant associations of coffee consumption with Type I EC among non-obese women or for Type II EC. Tea, cola and chocolate intake were not associated with risk of Type I or Type II EC.

A recently updated meta-analysis of 6 cohort and 10 case–control studies (Je and Giovannucci, 2011) reported a pooled RR of 0.71 (95% CI: 0.62–0.81) for the risk of EC for the highest vs lowest categories of coffee intake, with the strongest inverse association observed in Japanese studies (RR = 0.40; 95% CI: 0.25–0.63), intermediate for North American studies (RR = 0.69; 95% CI: 0.60–0.79) and weakest but still evident for European studies (RR = 0.79; 95% CI: 0.63–0.99). Consistent with our results, four recent studies found an inverse association of coffee with EC, particularly among women with BMI ≥30 kg m⁻² (Friberg et al, 2009; Giri et al, 2011; Gunter et al, 2011; Je et al, 2011). For the first time, we extend this association specifically to Type I EC and to coffee but not other common sources of methylxanthines, which were not addressed by these prior studies.

The exact mechanisms involved in any putative beneficial effect of coffee on EC remain largely unknown. Coffee is a major source of caffeine, and this methylxanthine may increase levels of circulating sex-hormone-binding globulin, thus reducing the concentrations of bioavailable sex-steroid hormones, in particular free oestradiol, and consequently modifying the hormonal milieu leading to downregulation of endometrial hyperproliferation (Ferrini and Barrett-Connor, 1996; Nagata et al, 1998). However, coffee, irrespective of caffeine content, also contains additional compounds with antioxidant activities. These compounds vary widely depending on the type of coffee, roasting and preparation, and many have been found to inhibit the proliferation of tumour cells in vitro (Vivani, 1993; Cavin et al, 2002).

An intriguing hypothesis suggests that coffee may be an insulin sensitiser (Wu et al, 2005; Huxley et al, 2009; Loopstra-Masters et al, 2011). Coffee (both caffeinated and decaffeinated) and caffeine intake were inversely associated with levels of circulating C-peptide, a marker of insulin secretion and resistance, and this association was much stronger in overweight and obese women (Wu et al, 2005).

An inverse association with coffee was not observed for Type II EC, although our analysis was limited by the relatively small number of Type II cases and by the absence of central pathology review. Type I and Type II EC may have different aetiologic pathways and distinct risk factors (Uccella et al, 2011). From a molecular point of view, Type II EC is often associated with p53 mutations, which commonly lead to DNA derangements, chromosomal instability and a more aggressive clinical behaviour (Doll et al, 2008). Conversely, alterations of p53 have been reported...
in only a small proportion of Type I tumours and, when they occur, they are usually a late event (Doll et al, 2008). Apoptosis of rapidly growing cells induced by caffeine in vitro is dependent on the presence of a functional p53 product, so when p53 is mutated cellular growth is not inhibited by caffeine (He et al, 2003).

In conclusion, our results suggest that coffee consumption, perhaps in part related to caffeine, may be relevant for chemoprevention of Type I EC, particularly among obese women.

ACKNOWLEDGEMENTS

This study was supported by the National Institutes of Health (NIH) Grant R01 CA39742, and was approved by the IRB of the University of Minnesota.

REFERENCES

Bolhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15(1): 10–17.

Bushman JL. (1998) Green tea and cancer in humans: a review of the literature. Nutr Cancer 31(3): 151–159.

Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B (2002) Caffeol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol 40(8): 1155–1163.

Doll A, Abal M, Rigau M, Monge M, Gonzalez M, Demajo S, Colas E, Llaudaro M, Alazzouzi H, Planaguma J, Lohmann MA, Garcia J, Castelli S, Ramon y Cajal J, Gil-Moreno A, Xercavins J, Alameda F, Llaurado M, Alazzouzi H, Planaguma J, Lohmann MA, Garcia J, Castelli S, Ramon y Cajal J, Gil-Moreno A, Xercavins J, Alameda F, Reventos J (2008) Novel molecular profiles of endometrial cancer – new light through old windows. J Steroid Biochem Mol Biol 108(3–5): 221–229.

Ferrini RL, Barrett-Connor E (1996) Caffeine intake and endogenous sex steroid levels in postmenopausal women. The Rancho Bernardo Study. Am J Epidemiol 144(7): 642–644.

Folsom AR, Kaye SA, Prineas RJ, Potter JD, Gapstur SM, Wallace RB (1990) Caffeine intake and endogenous sex steroid levels in postmenopausal women. The Rancho Bernardo Study. Am J Epidemiol 131(5): 794–803.

Friberg E, Orsini N, Mantzoros CS, Wolk A (2009) Coffee drinking and risk of endometrial cancer – a population-based cohort study. Int J Cancer 125(10): 2413–2417.

Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin L, Parkin DM, Whelan S (2000) International Classification of Diseases for Oncology. 3rd edn. World Health Organization: Geneva, Switzerland.

Giri A, Sturgeon SR, Luisi N, Bertone-Johnson E, Balasubramanian R, Reeves KW (2011) Caffeinated coffee, decaffeinated coffee and endometrial cancer risk: a prospective cohort study among US postmenopausal women. Nutrients 3(11): 937–950.

Gunter MJ, Schaub JA, Xue X, Freedman ND, Gaudet MM, Rohan TE, Hollenbeck AR, Sinha R (2011) A prospective investigation of coffee drinking and endometrial cancer incidence. Int J Cancer 131: E530–E536.

He Z, Ma WY, Hashimoto T, Bode AM, Yang CS, Dong Z (2003) Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res 63(15): 4396–4401.

Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22): 2053–2063.

Je Y, Giovannucci E (2011) Coffee consumption and risk of endometrial cancer: findings from a large up-to-date meta-analysis. Int J Cancer 131(7): 1700–1710.

Je Y, Hankinson SE, Twoorger SS, De Vivo I, Giovannucci E (2011) A prospective cohort study of coffee consumption and risk of endometrial cancer over a 26-year follow-up. Cancer Epidemiol Biomarkers Prev: 2487–2495.

Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145(1): 72–80.

La Vecchia C, Tavani A (2007) Coffee and cancer risk: an update. Eur J Cancer Prev 16(5): 385–389.

Lunn M, McNeil D (1995) Applying Cox regression to competing risks. Biometrics 51(2): 524–532.

Mendivil A, Schuler KM, Gehrig PA (2009) Non-endometrioid adenocarcinoma of the uterine corpus: a review of selected histological subtypes. Cancer Control 16(1): 46–52.

Munger RG, Folsom AR, Kushi LH, Haffner SM, Wagenknecht LE, Hanley AJ (2011) Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 54(2): 320–328.

Reeves KW (2011) Caffeinated coffee, decaffeinated coffee and endometrial cancer risk: a prospective cohort study among US postmenopausal women. Int J Cancer 127(2): 108–114.

Roopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2011) Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 54(2): 320–328.

Lunn M, McNeil D (1995) Applying Cox regression to competing risks. Biometrics 51(2): 524–532.

Mendivil A, Schuler KM, Gehrig PA (2009) Non-endometrioid adenocarcinoma of the uterine corpus: a review of selected histological subtypes. Cancer Control 16(1): 46–52.

Munger RG, Folsom AR, Kushi LH, Kaye SA, Sellers TA (1992) Dietary assessment of older Iowa women with a food frequency questionnaire: nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews. Am J Epidemiol 136(2): 192–200.

Nagata C, Kabuto M, Shimizu H (1998) Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr Cancer 30(1): 21–24.

Uccella S, Mariani A, Wang AH, Vierkant RA, Robien K, Anderson KE, Cerhan JR (2011) Dietary and supplemental intake of one-carbon nutrients and the risk of type I and type II endometrial cancer: a prospective cohort study. Ann Oncol 22(9): 2129–2136.

Vivani R (1993) The composition of coffee. In Caffeine, Coffee and Health, Garattini S (ed), pp 17–41. Rave Press Ltd: New York, NY, USA.

Willett WC, Sampson L, Browne ML, Stampler MJ, Rosner B, Hennekens CH, Speizer FE (1988) The use of a self-administered questionnaire to assess nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews. Am J Epidemiol 136(2): 192–200.

Wu T, Willett WC, Hankinson SE, Giovannucci E (2005) Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care 28(6): 1390–1396.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)