Magneto-optical properties of topological insulator thin films with broken inversion symmetry

Kulsoom Rahim¹, Ahsan Ullah¹, Muhammad Tahir² and Kashif Sabeeh¹

¹ Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
² Department of Physics, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

E-mail: ksabeeh@qau.edu.pk

Received 18 April 2017, revised 21 July 2017
Accepted for publication 14 August 2017
Published 19 September 2017

Abstract
We determine the optical response of ultrathin film topological insulators in the presence of a quantizing external magnetic field taking into account both hybridization between surface states, broken inversion symmetry and explicit time reversal symmetry breaking by the magnetic field. We find that breaking of inversion symmetry in the system, which can be due to interaction with a substrate or electrical gating, results in Landau level crossings and opening of additional optical transition channels that were previously forbidden. We show that by tuning the hybridization and symmetry breaking parameters, a transition from the normal to a topological insulator phase occurs with measureable signatures in both static (dc) and dynamic (optical) conductivity. Moreover, we find that these signatures in the optical Hall conductivity remain robust against a significant range of disorder strength.

Keywords: thin film topological insulator, broken inversion symmetry, Landau level crossing, phase transitions, optical and dc Hall conductivity

1. Introduction
Topological insulators (TIs) fall in a class of materials known as symmetry protected topological phases. In these systems the gapless Dirac spectrum of the surface states is protected by symmetries such as charge conservation, time reversal and spatial inversion. Breaking of these symmetries leads to opening of a gap in the spectrum. A major challenge in the field has been to find a way of accessing the transport and optical response of the gapless surface states; which are often dominated by the bulk response. A possible way out has been found by making the three dimensional (3D) TI bulk samples thin. An advantage of thin films is that bulk contribution to transport and optical response can be neglected in comparison to the surface state contribution. Thin films of topological insulators have been experimentally fabricated for various 3D TI materials such as Sb₂Te₃, Bi₂Se₃ and Bi₂Te₃ [1]. Optical response in the Terahertz range has been a particular focus of attention; terahertz response in the linear regime and large Kerr rotation from the surface states of Bi₂Se₃ was found in [25, 26]. In the presence of a strong terahertz electric field, nonlinear response was recently investigated and electromagnetic transparency was achieved in Bi₂Se₃ thin films [27]. The bulk gap in thin film topological insulators is typically of the order of 0.3 eV for topological insulators such as Bi₂Se₃ [2]. The penetration depth of the surface states within the insulating bulk decreases as bulk gap increases. Moreover, splitting of the Landau levels (LLs) in the system is also of the order of a few meV. Hence surface states lie deep in the bulk gap and we can ignore interaction of surface and bulk bands. If the chemical potential is tuned in the gap it guarantees that transport and optical properties of surface states can be studied independently of bulk. These surface states are themselves gapless for thick films.

In this work, we consider a subclass of these systems which are ultrathin TIs with gapped Dirac cones on their top
is the Fermi velocity, and $v_f = 0.1 \text{ nm}$. In this case surface states on both sides hybridize, resulting in a finite gap typically of the order of a few meV. This has also been confirmed by GW calculations of the band structure of ultra thin films of Bi$_2$Te$_3$ with thickness of 2 QL [6]. This gap can be tuned by varying the thickness of ultra thin films [6, 7]. Therefore in addition to breaking of the aforementioned symmetries, gap opening in thin films is also possible through hybridization. We investigate the role of gap opening through symmetry breaking and hybridization on transport and optical response of the system. Specifically, we study the magneto-optical response of TI ultra thin films with inversion symmetry breaking. Inversion symmetry breaking occurs in thick films grown on a substrate and can also be tuned by electrical gating [4, 8]. In both cases, chemical potential on the two surfaces can be different with the result that the dirac points are not at the same energy on the two surfaces. In the absence of an applied magnetic field, intrinsic optical response was studied in [28]. But more relevant to our work, it was revealed that ultra thin film topological insulators show interesting physics when time reversal symmetry is broken; either by magnetic ordering or by the application of external magnetic field [12–17]. It was shown that through gap tuning, the system can make a transition from the normal insulator (NI) to a TI phase with finite dc Hall conductivity [13, 15, 17].

The main focus of the present work, and which distinguishes it from earlier work, is the investigation of inversion symmetry breaking effects on the magneto-optical response of TI ultra thin films. In addition to inversion symmetry, time reversal symmetry can also be explicitly broken by a magnetic field applied to our system, which we consider. Inversion symmetry breaking generates additional gap in the spectrum of topological insulator thin films [4]. This energy gap is not only controlled by thickness of the films [7] and external exchange field/magnetic field [12], but it can also be generated through interaction with a substrate and can be tuned by electrical gating [18, 19]. In this paper, we show that in the presence of inversion symmetry breaking, new features appear in the LL spectrum; (i) LL crossings (ii) new optical transition channels that can be observed in transport as well as optical response. These channels were previously forbidden in the presence of inversion symmetry. Further, we determine the dc and the optical conductivity in the quantum Hall regime and show the presence of Hall steps and plateaus even in the ac regime. We also show that by tuning the hybridization and symmetry breaking parameters, a transition from the normal to a topological insulator phase occurs with measurable signatures in transport and magneto-optical response. Moreover, we find that the signatures in the optical Hall conductivity remain robust against a significant range of disorder strength.

The paper is organized as follows: in section 2, we present our model system. Section 3 is devoted to the calculation of the optical conductivity tensor for our system. Results for optical Hall conductivity in the quantum Hall regime are presented in section 4 with conclusions and summary of results in section 5.

2. Model

Our system is a topological insulator thin film, thin enough for hybridization of surface states on the top and bottom, and broken inversion symmetry which can be either due to gating or substrate. In order to highlight the effects of time reversal (TR) symmetry breaking we include a term in the Hamiltonian which can arise due to magnetic ordering in the presence of magnetic dopants in the proximity of the top surface which are exchange coupled to the electronic spins. This term has been included here to illustrate the effects of TR symmetry breaking on the energy spectrum. The effective low energy Hamiltonian is [4, 8, 12]

$$H = \hbar v_f \tau_z \otimes (\sigma I_{\sigma} \Delta_k \tau_z \otimes I + \Delta_{ib} \tau_z \otimes I + \Delta I \otimes \sigma I_{\sigma})$$

(1)

with the basis: $|t \uparrow\rangle$, $|t \downarrow\rangle$, $|b \uparrow\rangle$, and $|b \downarrow\rangle$. Here, $t$ denotes the top and bottom surface states and $\uparrow, \downarrow$ represent the spin up and down states. $v_f$ is the Fermi velocity, and $I$ is the identity matrix, $\sigma = (x, y, z)$ and $\tau = (x, y, z)$ are Pauli matrices acting on spin space and opposite surface space (surface pseudospin). $\Delta_k$ represents the hybridization between the two surface states. For large thickness $\Delta_k \approx 0$, hybridization of top and bottom surface states can be neglected, however when thickness is sufficiently reduced $\Delta_k$ generates finite gap in the Dirac spectrum. $\Delta_{ib}$ is the inversion symmetry breaking term between the two surfaces, it can result from interaction between the TI thin film and the substrate or by an electric field applied perpendicular to the surface of the thin film [4]. $\Delta_c$ can be the exchange field along the $z$-axis introduced by possible ferromagnetic ordering of the magnetic impurities. The energy spectrum of the above Hamiltonian is given by

$$e_s^c(k) = (-1)\alpha \sqrt{\hbar^2 v_f^2 k^2 + \Delta_k^2 + \Delta_{ib}^2 + \Delta_c^2 + 2 \sqrt{\hbar^2 v_f^2 k^2 \Delta_k^2 + \Delta_{ib}^2 \Delta_c^2 + \Delta_c^2 \Delta_{ib}^2}}$$

(2)

where $\alpha = 1$ represents the states in valence band and $\alpha = 0$ represents the states in conduction band. $\pm$ correspond to upper and lower surface. Figure 1 shows the band structure for our system at different values of $\Delta_k$, $\Delta_{ib}$, and $\Delta_c$. For $\Delta_k = \Delta_{ib} = \Delta_c = 0$, the bands are degenerate separated by insulating gap $\Delta_0$. For the case of inversion asymmetry and finite hybridization with the system preserving time reversal symmetry ($\Delta_c = 0$), a Rashba-like splitting in the band structure occurs; figure 1(c). The bands are degenerate at $k = 0$ as $e_s^c(0) = e_s^c(0) = \epsilon_0(0) \in$ conduction band and $\epsilon_0^c(0) = e_s^c(0) = \epsilon_0(0) \in$ valence band. In the limit of $\Delta_0$ and $\Delta_{ib}$ while for $k \neq 0$ the bands are not degenerate. This $k = 0$ degeneracy is lifted by the introduction of time reversal symmetry breaking term $\Delta_c$, with the result that the degeneracy does not exist for any value of $k$. As the value of $\Delta_c$ is increased the lower gap decreases. At a
particular value of $\Delta z$, the gap closes. This gapless point represents the phase transition point. As $\Delta z$ is increased further, the gap reopens (see figures 1(e)–(f)). The red lines (the blue lines) represent dispersion of upper (lower) surface.

Figure 1. Schematic representation of surface band structure. (a) $\Delta_h = \Delta_b = \Delta_z = 0$ (b) $\Delta_h \neq 0$, $\Delta_b = \Delta_z = 0$ (c) $(\Delta_h, \Delta_b) \neq 0$ (d) $\Delta_z < \sqrt{\Delta_h^2 + \Delta_b^2}$ (e) $\Delta_z = \sqrt{\Delta_h^2 + \Delta_b^2}$ (f) $\Delta_z > \sqrt{\Delta_h^2 + \Delta_b^2}$. The red lines (the blue lines) represent dispersion of upper (lower) surface.

Now we consider the effect of Landau quantization on the system by the application of an external magnetic field along $z$-axis directed perpendicular to the surface of TI thin film aligned in the $xy$-plane. The magnetic field explicitly breaks TR symmetry. In the rest of the paper we will not consider the effect of magnetic ordering. The Hamiltonian of our system takes the form [15, 17],

$$H_{\tau z} = \hbar v_F \tau_z \otimes \left[ \sigma_x \pi_y - \sigma_y \pi_x \right] + \Delta_h \tau_x \otimes I + \Delta_b \tau_z \otimes I + \Delta_z I \otimes \sigma_z,$$

$\pi = k + eA/\hbar$ is the two dimensional canonical momentum with vector potential $A$. Here $\Delta_z = g\mu_B B/2$ is the Zeeman energy associated with the applied magnetic field $B \parallel B_z$, with $g$ effective Lande factor, $\mu_B$ is the Bohr magneton. We choose the Landau gauge for the vector potential $A = (0, xB, 0)$. Since $p_x$ and $x$ do not commute, it is convenient to write the Hamiltonian in terms of dimensionless operators.
\[ \hat{H}_{\sigma \tau} = \frac{\hbar \nu_f}{\sqrt{2}l_B} \tau_z \otimes \left[ \sigma_x \hat{I}_B \hat{P} + \sigma_y \hat{Q} \right] + \Delta_h \tau_x \otimes I + \Delta_{ib} \tau_z \otimes I + \Delta_z I \otimes \sigma_z, \]

where \( l_B = \sqrt{c/eB} \) is the magnetic length. \( \hat{Q} = -i \hbar \rho_x \) and \( \hat{P} = p_z + \frac{eB}{2\hbar} x \) such that \( [\hat{Q}, \hat{P}] = i\hbar \). Employing the ladder operators \( a = 1/\sqrt{2}l_B(\hat{Q} + i\hbar \hat{P}) \) and \( a^\dagger = 1/\sqrt{2}l_B(\hat{Q} - i\hbar \hat{P}) \), we may express the Hamiltonian as:

\[ H = \frac{i\hbar \nu_B}{\sqrt{2}} \tau_z \otimes (\sigma^+ a - \sigma^- a^\dagger) + \Delta_h \tau_x \otimes I + \Delta_{ib} \tau_z \otimes I + \Delta_z I \otimes \sigma_z \]  

(3)

where \( \omega_B = v_F/l_B \), which plays a role analogous to the cyclotron frequency in the LL spectrum of a regular 2DEG. We can write single particle eigenstates in the following form

\[ |n \alpha \sigma \rangle = u_{\alpha n}^\sigma |n - 1, T, \uparrow \rangle + u_{\alpha n}^{\sigma \dagger} |n, T, \downarrow \rangle + u_{\alpha n}^{\sigma \dagger} |n - 1, B, \uparrow \rangle + u_{\alpha n}^{\sigma \dagger} |n, B, \downarrow \rangle. \]  

(4)

Here \( |n, T(B), \uparrow (\downarrow) \rangle \) is the \( n \)th LL eigenstate on the top (bottom) surface with spin up (down), \( \alpha = 0, 1 \) and \( s = \pm \) label the four eigenstates of equation (3), corresponding to each LL index \( n = 0, ..., \infty \), and \( u_{\alpha n}^\sigma \) are the corresponding complex four component spinor wave functions.

Thus the Hamiltonian equation (3) can be written in a \( 4 \times 4 \) matrix

\[
H = \begin{pmatrix}
\Delta_z + \Delta_\sigma & -i\hbar \omega_B \sqrt{2n} & \Delta_h & 0 \\
-i\hbar \omega_B \sqrt{2n} & -\Delta_z + \Delta_\sigma & 0 & \Delta_{ib} \\
\Delta_h & 0 & \Delta_z - \Delta_{ib} & i\hbar \omega_B \sqrt{2n} \\
0 & \Delta_{ib} & -i\hbar \omega_B \sqrt{2n} & -(\Delta_z + \Delta_{ib})
\end{pmatrix}
\]  

(5)

Diagonalizing the Hamiltonian in equation (5), we find the following LL spectrum,

\[ \epsilon_{\alpha n} = \left(-1\right)^n \sqrt{\Delta_h^2 + \Delta_{ib}^2 + \Delta_z^2 + 2n\hbar^2 \omega_B^2 + 2r \sqrt{\Delta_h^2 \Delta_z^2 + \Delta_h^2 \Delta_{ib}^2 + \Delta_z^2 \Delta_{ib}^2 + 2n \Delta_h^2 \hbar^2 \omega_B^2}}. \]  

(6)

The LL energy spectrum is shown in figure 2. An important feature of the spectrum is that its electron–hole symmetric for \( n \neq 0 \). The LL spectrum consists of two sets: (i) \( \epsilon_{\alpha n0} \) and (ii) \( \epsilon_{\alpha n1} \), where \( \epsilon_{\alpha n0} \) represents spectrum for occupied states below \( \mu = 0 \) and \( \epsilon_{\alpha n1} \) represent the unoccupied states above \( \mu = 0 \). For both sets of occupied and unoccupied LLS each LL splits in a doublet for \( s = \pm 1 \). Here \( s \) refers to low energy and high energy doublet of an LL. This splitting results from time reversal symmetry breaking (\( \Delta_h \)), broken inversion symmetry (\( \Delta_h \)) and the hybridization (\( \Delta_{ib} \)) in the Hamiltonian. When inversion symmetry is preserved, splitting of each LL in a doublet depends on simultaneous presence of hybridization (\( \Delta_{ib} \)) and broken TR symmetry (\( \Delta_z \)) and it vanishes if either of them is absent; figure 2(a). Whereas broken inversion symmetry alone splits each LL in a doublet without the presence of hybridization and Zeeman term, figure 2(b). However, it must be noted that the zeroth LL doublet remains electron–hole like pair, as seen in figures 2(a) and (b) when inversion symmetry is preserved. On the contrary, in the presence of inversion symmetry breaking, in addition to splitting of LLs there is the shift of zeroth LL doublet from electron–hole like pair to hole–like pair, see figure 2(c). It will be shown that this changes the selection rules for transitions between LLS. There are two other situations where splitting can vanish, if (i) the system has inversion symmetry (\( \Delta_{ib} = 0 \)) and broken TR symmetry
along with no hybridization ($\Delta_h = 0$) (ii) system has both TR symmetry ($\Delta_z = 0$) and inversion symmetry ($\Delta_{ib} = 0$) with no constraint on the hybridization (for zero hybridization with both TR and inversion symmetry thin film TI will behave like gapless Dirac material with only one level at $\mu = 0$). Note that the $n = 0$ LL, only splits when either $\Delta_h$ or $\Delta_{ib}$ is nonzero. A novel feature of LLs in the presence of broken inversion symmetry is their crossings within each set, between $n$th and $(n + 1)$th levels with opposite $s$ values, at certain values of magnetic field. There is no crossing of $n = 0$ LL in our system at any value of magnetic field. We consider terms linear in $k$. However, for large values of $k$ hybridization terms must be redefined as $\frac{\Delta}{2} - Bk^2$. This results in crossing of the $n = 0$ LLs. This crossing becomes an anti-crossing in the presence of inversion symmetry breaking [20].

The $n = 0$ LLs behaves differently compared to $n \neq 0$ LLs. For $n = 0$ equation (4) shows that the electrons are fully spin-polarized in these levels; only spin down levels are occupied. Hence $n = 0$ levels are split into two sublevels with spin down unlike other levels which are split into four sublevels, two with spin up and two with spin down. The corresponding $n = 0$ wavefunctions (un-normalized) are

$$u_0^{s\alpha} = \{0, s(-1)^{\alpha} \frac{(-\Delta_{ib} + s\sqrt{\Delta_{ib}^2 + \Delta_h^2})}{\Delta_h}, 0, 1\}.$$  

The corresponding LL energies are

$$\epsilon_{0\alpha\alpha} = (-1)^{\alpha} \left| \Delta_z + s\sqrt{\Delta_{ib}^2 + \Delta_h^2} \right|.$$  

Explicitly

$$u_0^{0-1} = \{0, \frac{\Delta_{ib} + \sqrt{\Delta_{ib}^2 + \Delta_h^2}}{\Delta_h}, 0, 1\},$$

$$u_0^{11} = \{0, \frac{-\Delta_{ib} - \sqrt{\Delta_{ib}^2 + \Delta_h^2}}{\Delta_h}, 0, 1\}.$$  

for $\Delta_z < \sqrt{\Delta_{ib}^2 + \Delta_h^2}$:

$$\epsilon_{00-1} = \left| \Delta_z - \sqrt{\Delta_{ib}^2 + \Delta_h^2} \right|, \quad \epsilon_{011} = -\left| \Delta_z + \sqrt{\Delta_{ib}^2 + \Delta_h^2} \right|.$$  

For $\Delta_z > \sqrt{\Delta_{ib}^2 + \Delta_h^2}$, $u_0^{0-1}$ is replaced by $u_0^{1-1}:

$$u_0^{1-1} = \{0, \frac{\Delta_{ib} + \sqrt{\Delta_{ib}^2 + \Delta_h^2}}{\Delta_h}, 0, 1\},$$

with energy given by

$$\epsilon_{10-1} = -\left| \Delta_z - \sqrt{\Delta_{ib}^2 + \Delta_h^2} \right|.$$  

We see that the nature of $n = 0$ LLs changes from an electron–hole like pair for $\Delta_z < \sqrt{\Delta_{ib}^2 + \Delta_h^2}$ to a hole-like doublet when $\Delta_z > \sqrt{\Delta_{ib}^2 + \Delta_h^2}$. This transition occurs at $\Delta_z = \sqrt{\Delta_{ib}^2 + \Delta_h^2}$ where the system undergoes change from a particle-hole symmetric spectrum (equal number of LLs above and below the Fermi level) i.e. NI phase at $\Delta_z < \sqrt{\Delta_{ib}^2 + \Delta_h^2}$ to the TI phase with an extra filled LL below the Fermi level at $\Delta_z > \sqrt{\Delta_{ib}^2 + \Delta_h^2}$. In the NI phase the zeroth LL states are $u_0^{0-1}$ and $u_0^{11}$, and in TI phase the states are $u_0^{1-1}$ and $u_0^{0-1}$. The $n = 0$ LL spectrum can therefore be used to distinguish the field induced phases of the system as evident in figure 2(b).

2.1. Density of states

The green function associated with our Hamiltonian is

$$G(\omega, n, \alpha, s) = \sum_{\omega = -\infty}^{\infty} \frac{1}{\omega - (-1)^{\alpha} \sqrt{\Delta_{ib}^2 + \Delta_h^2} + 2n\hbar\omega + 2\sqrt{\Delta_{ib}^2 + \Delta_h^2} + 2n\hbar\Delta_{ib} + i\eta}.$$  

From which we can compute density of states as

$$D(\omega) = -\frac{1}{2\pi\hbar^2} \sum_{n \neq 0} \text{Im} G(\omega, n, \alpha, s),$$

$$D(\omega) = -\frac{1}{2\pi\hbar^2} \left( \sum_{n \neq 0} \text{Im} G(\omega, n, \alpha, s) + \text{Im} G(\omega, 0, \alpha, s) \right).$$

The density of states are shown in figure 3. For $\Delta_z < \sqrt{\Delta_{ib}^2 + \Delta_h^2}$ panel represents the normal insulator phase in which the LL spectrum has particle-hole symmetry. For $\Delta_z > \sqrt{\Delta_{ib}^2 + \Delta_h^2}$ both $n = 0$ levels move into the valence band and are filled, thus breaking particle-hole symmetry for LL spectrum across $\epsilon = 0$. This shift in the LL spectrum is associated with transition from NI phase to the TI phase. We notice two interesting features of the density of states: (i) at certain values of $\omega$ two adjacent peaks are closely spaced such that they tend to merge in a single peak. (ii) Some peaks have higher weight than all other peaks. These two distinct features are attributed to crossing (or near crossing) of two LLs at certain values of magnetic field, see figure 2. The parameters chosen in these plots are $\Delta_{ib} = 0.006$ eV, $\Delta_h = 0.004$ eV and $\hbar^2eB = 1.6 \times 10^{-4}$ B.

3. Magneto-optical conductivity

To determine the magneto-optical conductivity tensor we need eigenfunctions of the Hamiltonian given in equation (5). The explicit form of the eigenfunctions $u_{\alpha}^{\alpha\alpha}$ in equation (4) is

$$u_{\alpha}^{\alpha\alpha} = (u_{\alpha T \uparrow}^{\alpha\alpha}, u_{\alpha T \downarrow}^{\alpha\alpha}, u_{\alpha B \uparrow}^{\alpha\alpha}, u_{\alpha B \downarrow}^{\alpha\alpha}),$$

$$u_{\alpha T \uparrow}^{\alpha\alpha} = \frac{-i}{d_N} (N_1 + sn_2(\Delta_{ib} + \Delta_z) + \epsilon_{\alpha\alpha}(\Delta_{ib} + \Delta_z + sn_2)), $$

$$u_{\alpha T \downarrow}^{\alpha\alpha} = \frac{1}{d_N} (\Delta_{ib} + sn_2 + \epsilon_{\alpha\alpha}\Delta_{ib}),$$

$$u_{\alpha B \uparrow}^{\alpha\alpha} = \frac{-1}{d_N} (N_1 - \Delta_{ib} - \Delta_z + \epsilon_{\alpha\alpha}(\Delta_{ib} - \Delta_z - \epsilon_{\alpha\alpha})),$$

$$u_{\alpha B \downarrow}^{\alpha\alpha} = \frac{1}{d_N} (N_1 + \Delta_{ib} - \Delta_z - \epsilon_{\alpha\alpha}(\Delta_{ib} + \Delta_z - \epsilon_{\alpha\alpha})).$$
\[ \sigma_{\alpha\beta}(\omega) = \frac{i\hbar}{2\pi}\sum_{\alpha',\alpha''} \frac{f(\epsilon_{\alpha''} - \epsilon_{\alpha''}) - f(\epsilon_{\alpha'} - \epsilon_{\alpha''})}{\epsilon_{\alpha'} - \epsilon_{\alpha''}} (\langle j_{\alpha''} | n' \alpha' \rangle \langle n' \alpha' | j_{\alpha''} \rangle \max) \]

where \( j_{\alpha} = \frac{e}{\hbar}\frac{\partial}{\partial \epsilon_{\alpha}} \) and \( f(\epsilon_{\alpha_{\max}}) = \frac{1}{1 + \exp[\beta(\epsilon_{\alpha_{\max}} - \mu)]] \) is the Fermi distribution function with \( \beta = 1/k_BT \) and \( \mu \) is the chemical potential. We note that transitions between occupied LLs are Pauli blocked. So the only allowed transitions will be from the occupied LLs in valence band to unoccupied LLs in conduction band (i.e. across chemical potential \( \mu = 0 \)). After evaluating the matrix elements we have found that the selection rules for allowed transitions is \( n' = n \pm 1 \). The absorptive part of the conductivity for \( n = 0 \) LL above and below \( \mu = 0 \) is

\[
\left\{ \begin{align*}
\frac{\text{Re}\sigma_{\alpha\beta}(\omega)/\sigma_0}{\text{Im}\sigma_{\alpha\beta}(\omega)/\sigma_0} & = \text{hev}^2B \sum_{\alpha'} (f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))N(1, 0, s, 1, 1) \times \eta \\
& \pm \sum_{\alpha'} (f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))N(0, 0, 1, 1, s) \times \eta \\
& \pm \sum_{\alpha'} \frac{(f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))M(n, s, s', \alpha, \alpha') \times \eta}{\omega_{\alpha'} - \omega_{\alpha_{\max}} + \mu} \times \eta \\
& \pm \sum_{\alpha'=s} \frac{(f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))M(n, s, s', \alpha, \alpha') \times \eta}{\omega_{\alpha'} - \omega_{\alpha_{\max}} + \mu} \times \eta.
\end{align*} \right.
\]

and for the case when both \( n = 0 \) LLs are hole-like LLs, the conductivity is

\[
\left\{ \begin{align*}
\frac{\text{Re}\sigma_{\alpha\beta}(\omega)/\sigma_0}{\text{Im}\sigma_{\alpha\beta}(\omega)/\sigma_0} & = \text{hev}^2B \sum_{\alpha'} (f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))N(1, 0, s, 1, 1) \times \eta \\
& \pm \sum_{\alpha'} (f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))N(0, 0, 1, 1, s) \times \eta \\
& \pm \sum_{\alpha'} \frac{(f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))M(n, s, s', \alpha, \alpha') \times \eta}{\omega_{\alpha'} - \omega_{\alpha_{\max}} + \mu} \times \eta \\
& \pm \sum_{\alpha'=s} \frac{(f(\epsilon_{\alpha'}) - f(\epsilon_{\alpha_{\max}}))M(n, s, s', \alpha, \alpha') \times \eta}{\omega_{\alpha'} - \omega_{\alpha_{\max}} + \mu} \times \eta.
\end{align*} \right.
\]

Here \( \sigma_0 = e^2/h, \eta = \hbar/2\tau \) is the scattering rate related to broadening of the LLs and

\[
M(n, \alpha, s, \alpha', s') = \begin{cases} 
[u_{\alpha\beta,nT}^{s,s'}]^* u_{\alpha'\beta,n+1T}^{s,s'} & \text{if } n_{\alpha\beta}^{s,s'} \neq n_{\alpha'\beta,n+1}^{s,s'} \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
N(n, \alpha, s, \alpha', s') = \begin{cases} 
[u_{\alpha\beta,nT}^{s,s'}]^* u_{\alpha'\beta,n+1T}^{s,s'} & \text{if } n_{\alpha\beta}^{s,s'} \neq n_{\alpha'\beta,n+1}^{s,s'} \\
0 & \text{otherwise}
\end{cases}
\]

where * denotes complex conjugation. First let us consider the conductivity at zero temperature. The features of the spectrum to bear in mind are: all \( n \neq 0 \) levels are split in a doublet \((s = \pm)\) finite value of Zeeman energy and hybridization. The inversion symmetry breaking term \( \Delta_{ib} \) results in crossing of LLs at different values of Zeeman field strength. There are not only the allowed transitions between LLs with same \( s \) but transitions can also occur between LLs with different \( s \). These transitions are not allowed in the presence of inversion symmetry [17]. Hence inversion symmetry breaking opens optical transition channels which were previously forbidden.
Figure 4 shows results for absorptive peaks from equations (21) and (22). All the absorptive peaks result from the transitions between LLs across $\mu = 0$. Figures 4(a) and (b), represents the NI phase with particle-hole symmetric LLs, the first peak corresponds to transition from $n = 0$ and $n = 1$ LL with $\omega = \epsilon_{00} - \epsilon_{11}$. This is a single transition peak and is close to the 2nd absorption peak between the LL, $\omega = \epsilon_{10} - \epsilon_{01}$. Next two peaks are small and are also contributed by the LL transition between $n = 0$ and $n = 1$. The set of transitions involving $n = 0$ and $n = 1$ in NI phase are $\epsilon_{11} \rightarrow \epsilon_{00} - 1$ and $\epsilon_{01} \rightarrow \epsilon_{10}$. As the magnetic field is increased which increases Zeeman energy such that at $\Delta_z = \sqrt{\Delta_{ib}^2 + \Delta_h^2}$, zeroth LL becomes partially filled. At this stage peaks corresponding to zeroth electron like LL and $n = 1$ ($\epsilon_{11} \rightarrow \epsilon_{00} - 1$) transition disappears, as shown in figure 4(c). At this stage the system undergoes a phase transition from NI phase to TI phase. Increasing Zeeman energy further by increasing the magnetic field such that it is greater then 4.25 T the $n = 0$ doublet becomes hole like doublet in TI phase and LL $\epsilon_{00} - 1$ changes to $\epsilon_{01} - 1$. The allowed transitions for $n = 0$ are $\epsilon_{01} \rightarrow \epsilon_{10}$ and $\epsilon_{01} - 1 \rightarrow \epsilon_{10}$ represented by peaks at $\omega = \epsilon_{10} - \epsilon_{01}$ and $\omega = \epsilon_{10} - \epsilon_{01}$. The transitions $\epsilon_{11} \rightarrow \epsilon_{00} - 1$ in NI is replaced by $\epsilon_{01} \rightarrow \epsilon_{10}$ in the TI phase. The absorption peaks for $n \neq 0$ shift to higher energy in TI phase because at high magnetic field the gap between LL increases, see figure 4(d). It must be noted that when inversion symmetry is preserved, the selection rules for transitions are $s = s', n = n \pm 1$ [15]. When inversion symmetry is broken, the selection rule for transitions is no longer only $s = s'$, $n = n \pm 1$ but $s \neq s'$, $n = n \pm 1$ transitions are also allowed. This opens new transition channels.

To understand the behavior of $\text{Im} \sigma_{xy}$ we must keep in mind the minus sign between the two terms in equations (21) and (22). The first two peaks result from transition between $n = 0$ and $n = 1$ levels, one having positive amplitude and the other having negative amplitude. The transition peaks involving $n \neq 0$ transitions have decreased in height which is due to the negative sign. For example, the transitions from $n = 2$ to $n = 1$ LL and $n = 1$ to $n = 2$ have same denominator and the mismatch between numerators of the two transitions results in a net negative amplitude. Figure 5(a) shows the imaginary part transverse conductivity for absorption peaks due to photon absorption in the NI phase and figure 5(b) shows the imaginary part transverse conductivity in the TI phase.

The behavior of absorption peaks at finite chemical potential is shown in figures 6 and 7. For finite value of $\mu$ in the conduction band, in addition to filled LLs in valence band there are also filled LLs in conduction band resulting in allowed
transition within same band (intraband transitions). Here interband and intraband transitions are defined with respect to the position of the chemical potential. These intraband absorption peaks shift to lower energy and do not split. The allowed transition within same bands (intraband transitions) have greater probability as compared to interband transitions.

Figures 9 and 10 illustrate the allowed transitions between LLs at different values of magnetic field. The blue lines are for \( s = -1 \) LLs and green lines are for \( s = 1 \) LLs. Except for \( n = 0 \) all the other LLs have perfect particle-hole symmetry. The chemical potential is represented by thick black line. The vertical arrows show the allowed interband transitions. The shift of chemical potential from \( \mu = 0 \) to some finite value results in additional intraband transitions.

4. Optical Hall conductivity

To calculate Hall conductivity we use wavefunctions from equation (4) in the Kubo formula given in equation (20) and obtain

![Figure 5](image-url) Imaginary part of the transverse conductivity \( \sigma_{xy}(\omega) \) of thin film TI in units of \( e^2/h \) as a function of \( \omega \) in eV. (a) Normal phase, (b) TI phase.

![Figure 6](image-url) Real part of the longitudinal conductivity \( \sigma_{xx}(\omega) \) of thin film TI in units of \( e^2/h \) as a function of \( \omega \) in eV for \( B = 2 \) T. Red peak represents absorption peak for intraband transition while blue peaks represent absorption peaks for interband transitions.

![Figure 7](image-url) Imaginary part of the transverse conductivity \( \sigma_{xy}(\omega) \) of thin film TI in units of \( e^2/h \) as a function of \( \omega \) in eV for \( B = 5 \) T. Blue dotted peak represents absorption peak for intraband transition while purple peaks represent absorption peaks for interband transitions.

![Figure 8](image-url) Schematic representation of the allowed transitions between LLs in normal insulator phase at \( B = 2 \) T. The blue lines are for \( s = -1 \) LLs and green lines are for \( s = 1 \) LLs. The chemical potential is represented by the thick black line.
Figure 9. Schematic representation of the allowed transitions between LLs in quantum Hall phase at $B = 5$ T. The blue lines are for $s = -1$ LLs and the green lines are for $s = 1$ LL. The chemical potential is represented by the thick black line.

Figure 10. Static Hall conductivity (blue) and optical Hall conductivity (red) as a function of chemical potential at magnetic field $B = 2$ T. For optical Hall conductivity $w = 0.02$ eV.

Figure 11. Static Hall conductivity (blue) and optical Hall conductivity (red) as a function of chemical potential at magnetic field $B = 4.25$ T. For optical Hall conductivity $w = 0.02$ eV.

Figure 12. Static Hall conductivity (blue) and optical Hall conductivity (red) as a function of chemical potential at magnetic field $B = 5.8$ T. For optical Hall conductivity $w = 0.02$ eV.

Figure 13. (a) DC Hall conductivity for different values of $\eta$ in TI phase; $\Delta_\lambda > \sqrt{\Delta_\alpha^2 + \Delta_\beta^2}$. The structure associated with $n = 0$ LLs remains while the steps for large $|n|$ diminish as $\eta$ is increased. (b) For optical Hall conductivity the $n = 0$ LLs remains robust while for large $|n|$ the step-like structure diminishes more rapidly with increasing $\eta$ as compared to the static case. Here $\omega$ is set at 0.02 eV.
For optical Hall conductivity the $n = 0$ LLs remains robust while for large $|n|$ the step-like structure diminishes more rapidly with increasing $\eta$ as compared to the static case. Here $\omega$ is set at 0.02 eV.

$$\sigma_{\alpha\beta}(\omega) = \frac{1}{h \nu} \sum_{\text{maximal } \alpha' \alpha'} \left( \frac{f(\varepsilon_{\max}) - f(\varepsilon_{\max}')}{\varepsilon_{\max} - \varepsilon_{\max}'} \right) M(\alpha, \alpha, \alpha', \alpha')$$

The effects of broken inversion symmetry that are reflected in the LL spectrum and crossing of LLs are also revealed in the dc and optical Hall conductivity, which we now discuss. In figures 11–13 plots with blue color show the results for dc Hall conductivity ($\sigma_{xy}(\omega = 0)$) with $B = 2$ T (perfect particle hole symmetry across $\mu = 0$), $B = 4.27$ T (one $n = 0$ LL is partially filled at $\mu = 0$) and $B = 5.8$ T (one extra filled LL for negative value of $\mu$) at temperature 1 K respectively. The results are presented as a function of the chemical potential $\mu$. The LL spectrum is also shown to emphasize the unusual behavior of steps and plateaus at specific magnetic fields. These steps and plateaus show clear deviation from previous results, [16], which were in the presence of inversion symmetry. For $\eta > 1$ the plateau widths and step heights are not symmetrical within the same band due to LLs crossings. The contribution of $n = 0$ LLs to Hall conductivity plateaus shows interesting behavior. For chemical potential fixed at $\mu = 0$, the static (dc) Hall conductivity jumps from 0 for $\Delta_z < \sqrt{\Delta_{b}^2 + \Delta_{h}^2}$ to a finite value for $\Delta_z > \sqrt{\Delta_{b}^2 + \Delta_{h}^2}$. This is an indication of phase transition from NI phase to TI phase driven by the magnetic field.

For $\Delta_z < \sqrt{\Delta_{b}^2 + \Delta_{h}^2}$ the $n = 0$ doublet has one electron like ($u_0^{0,1}$) LL and one hole like ($u_0^{-1}$). When magnetic field is increased such that $\Delta_z > \sqrt{\Delta_{b}^2 + \Delta_{h}^2}$ both $n = 0$ LLs become hole like, thus increasing the Hall conductivity. For $n = 0$ LLs the Hall conductivity jump depends on magnetic field according to $[\text{sgn}(\Delta_z - \sqrt{\Delta_{b}^2 + \Delta_{h}^2}) + 1]$. In figures 10–12 red plots represent optical Hall conductivity. The steps and plateaus are robust for low values of $n = (0, 1)$ but as the value of $n$ increases, they no longer remain robust especially for $n > \pm 2$. We note that as the value of magnetic field is increased the number of robust steps also increases, which is expected. The steps structure is symmetric across $\mu = 0$ except for steps involving $n = 0$ LLs. The steps corresponding to low value of $n$ are however robust unless frequency $\omega$ is close to a resonance. In the case of static Hall conductivity these steps are always robust.
Next we examine the robustness of step-like structure in the optical Hall conductivity as a function of disorder strength in both the phases of the system. The degree of disorder can be characterized by the scattering rate parameter $\eta$ [22]. We present the results of our calculation for TI phase in figure 13. We can see that for dc Hall conductivity the step-like structure remains for fairly large values of $\eta$. The step-like structure for large $|\eta|$ begin to diminish when $\eta$ is increased. However, the step corresponding to $n = 0$ LLs always remains robust. For ac Hall conductivity the step-like structure is less robust against increase in $\eta$. For $\eta \approx \omega$ the plateaus are nearly washed out for large $|\eta|$, while the $n = 0$ is again robust. For the case of NI phase a similar behavior is observed; see figure 14.

In figures 15 and 16 we show real part of $\sigma_{xy}(\omega)$ as a function of $\omega$, we find that real part of $\sigma_{xy}(\omega)$ exhibits sharp cyclotron resonance peaks at transition energies for transition involving $n = 0$ LL. These resonance peaks change sign near each allowed transition frequency. As for experimental realization, since the Faraday rotation angle is directly proportional to optical Hall conductivity, it is possible to observe the steps in optical Hall conductivity that are predicted here by performing Faraday rotation measurements [22–27].

5. Conclusions

To conclude, we have determined the LL spectrum, density of states and the magneto-optical conductivity tensor with in linear response regime for thin film topological insulators with finite hybridization between the surface states. We find that breaking of time reversal and inversion symmetry can have profound effects on the optical response. We have shown that inversion symmetry breaking, in addition to time reversal symmetry breaking and hybridization, significantly affects the spectrum, transition channels and magneto-optical response of the system. In the inversion symmetry broken TI thin films, we have found the following: the system can exist in normal insulating (NI) and topological insulating (TI) phases. The degree of hybridization as well as by breaking symmetries: time reversal/inversion symmetry or both. The LL spectrum exhibits level crossings which were not present in the inversion symmetric system. New optical transition channels have been found which were previously forbidden. We show that there are observable signatures of the phase transition from NI to TI phase in both the static (dc) and optical Hall conductivity. We also observe robustness of optical Hall conductivity as a function of disorder strength in both the phases of the system.

Acknowledgment

Kashif Sabeeh would like to acknowledge the support of the Higher Education Commission (HEC) of Pakistan through project No. 20-1484/R&D/09 and the Abdus Salam International Center for Theoretical Physics (ICTP) for support through the Associateship Scheme.

References

[1] Zhang T, Ha J, Levy N, Kuk Y and Stroscio J 2013 Phys. Rev. Lett. 111 056803
[2] Zhang Y et al 2009 Nat. Phys. 5 438
[3] Linder J, Yokoyama T and Sudbo A 2009 Phys. Rev. B 80 205401
[4] Zhang Y et al 2010 Nat. Phys. 6 584
[5] Lu H-Z, Shan W-Y, Yao W, Niu Q and Shen S-Q 2010 Phys. Rev. B 81 115407
[6] Förster T, Krüger P and Rohlfing M 2016 Phys. Rev. B 93 205442
[7] Liu C-X, Zhang H, Yan B, Qi X-L, Frauenheim T, Dai X, Fang Z and Zhang S-C 2010 Phys. Rev. B 81 041307
[8] Shan W-Y, Lu H-Z and Shen S-Q 2010 New J. Phys. 12 043048
[9] Chang C-Z et al 2013 Science 340 167
[10] Lu H-Z, Zhao A and Shen S-Q 2013 Phys. Rev. Lett. 111 146802
[11] Wang J, Lian B, Zhang H and Zhang S-C 2013 Phys. Rev. Lett. 111 086803
[12] Yu R, Zhang W, Zhang H-J, Zhang S-C, Dai X and Fang Z. 2010 Science 329 61
[13] Lasia M and Brey L 2014 Phys. Rev. B 90 075417
[14] Zyuzin A A, Hook M D and Burkov A A and 2011 Phys. Rev. B 83 245428
[15] Zyuzin A A and Burkov A A 2011 Phys. Rev. B 83 195413
[16] Tahir M, Sabeeh K and Schwingenschlögl U 2013 J. Appl. Phys. 113 043720
[17] Ullah A and Sabeeh K 2014 J. Phys.: Condens. Matter 26 505303
[18] Wang J, Mabuchi H and Qi X-L 2013 Phys. Rev. B 88 195127
[19] H Li, Shao J M, Zhang H B and Yang G W 2014 Nanoscale 6 3127
[20] Zhang S B et al 2015 Sci. Rep. 5 13277
[21] Qi X-L, Hughes T L and Zhang S-C 2008 Phys. Rev. B 78 195424
[22] Morimoto T, Hatsugai Y and Aoki H 2009 Phys. Rev. Lett. 103 116803
[23] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Mareland D and Kuzmenko A B 2011 Nat. Phys. 7 48
[24] Shimano R, Yumoto G, Yoo J Y, Matsumaga R, Tanabe S, Hibino H, Morimotoand T and Aoki H 2013 Nat. Commun. 4 1841
[25] Sushkov A B, Jenkins G S, Schmadel D C, Butch N P, Paglione J and Drew H D 2010 Phys. Rev. B 82 125110
[26] Valdés Aguilar R et al 2012 Phys. Rev. Lett. 108 087403
[27] Flavio Giorgianni et al 2016 Nat. Commun. 7 11421
[28] Rostami H and Asgari R 2014 Phys. Rev. B 89 115413