The Limiting Values of Moments And Deformations Ratio in Strength Calculations Using Specified Material Diagrams

N I Karpenko¹, V A Eryshev ², V I Rimshin³

¹ Research Institute of building physics of RAASN, 127238, Lokomotivniy proezd, 21, Moskow, Russia
² Togliatti State University, 445020, Belorussskaya str., 14, Tolyatti, Russia
³ Corresponding member of Russian Academy of Architecture and Construction Sciences, Doctor of Technical Sciences, Professor, Head of the Institute of urban development of Russian Academy of Architecture and Construction Sciences, Moscow 107031, Russia

E-mail: niisf_lab9@mail.ru, gsx@tltsu.ru, v.rimshin@niisf.ru

Abstract. The authors compare the results of calculating bent reinforced concrete elements strength and deformations using specified concrete and reinforcement diagrams with different outlines and analytical relationships between deformations and stresses with experimental data in the article. In order to improve the deformation calculation methods, the energy laws of the deformation mechanics of solids are used in the proposed technique. From the energy standpoint, concrete and reinforcement in the section under load are stored with potential energy, according to the diagram outline used in the calculation; a stress diagram is formed in the compressed zone concrete. A connection is established between the efforts in concrete and the work spent on the deformations of concrete sample (prism, cylinder) under the load numerically equal to the area used in calculating the specified diagram. Flat cross-section hypothesis is applied in the derivation of the resolving balance equations. The condition of balanced forces in an element section is checked by the method of successive approximation. Element curvature is assumed as a variable approximation parameter.

1. Introduction

Calculation the strength of reinforced concrete elements using the nonlinear deformation model is carried out based on concrete axial compression diagrams, reinforcement expansion and flat cross-section hypothesis. There are different types of diagrams in domestic and foreign normative documents [1,2,3], which are approximating the experimental curves of concrete deformation, steel reinforcement, as curvilinear, simplified piecewise-linear, corresponding to mechanical materials properties. Discussions continue on the establishment of an analytic connection between strains and stresses [4, 5, 6]. The variety of specified material diagrams and the ambiguous values of its limiting parameters necessitate the evaluation of limiting moment’s values and its correspondence to experimental data. Deformation models developed on complex modes of loading structures, when the load varies according to some cyclic laws [7-11], numerical methods for solving nonlinear problems are improved [12-14], and research is actively carried out in the field of mechanical safety and survivability of buildings [15-27].
2. Materials and methods

In order to establish the relationship between the values of the limiting moments and deformations for calculation the strength of the reinforced concrete element normal section using a nonlinear deformation model, the authors use the specified diagrams of the concrete under compression state (deformation) \(\varepsilon_b - \sigma_b \): bilinear, three-linear (Fig. 1a), curvilinear with a falling branch (Fig.1b) - according to recommendations [1] and similar: simplified bilinear, parabolic-linear, curvilinear - according to recommendations [2]. The changing stresses from deformations laws, depending on the diagrams outline, are presented in the normative documents, as well as in [5, 6, 9, 10]. As a design diagram for the deformation of reinforcing bars under tension \(\varepsilon_s - \sigma_s \) (included the class A500), a single bilinear diagram is recommended in [1,2], where the boundary of the elastic part of the strains is limited by the deformations \(\varepsilon_{so} = \sigma_{0.2}/E_s \) (\(\sigma_{0.2} \)-characteristic value of the yield strength of reinforcing steel).

In [11,12], an algorithm for describing the full diagram (the oepku branch) is proposed, where the boundary of the elastic section of the strains is limited by stresses equal to the reinforcement elastic limit \(\sigma_s = \sigma_{s,el} \) (Fig.1c). Next, the algorithm for calculating the strength using specified diagrams in [1] is considered, and then it is tested in calculations with diagrams in [2].

![Deformation diagrams](image)

Figure 1. The deformation diagrams of concrete on compression: a - piecewise linear (two-line and three-linear), b - curvilinear; c - reinforcement for tension.

In the complete diagrams of the reinforcement (when \(\sigma_s \geq \sigma_{s,el} \)) and curvilinear diagrams of concrete, the relationship between strains and stresses in the norms [1] is accordingly taken into the form and curvilinear diagrams of concrete, the relationship between strains and stresses in the norms [1] is accordingly taken in the form

\[
\sigma_s = \varepsilon_s V_s E_s; \quad \sigma_b = \varepsilon_b V_b E_b, \tag{1}
\]

where \(V_s, V_b \) - the variation coefficients of the secant modulus of reinforcement and concrete [6].

For a rectangular cross-section with reinforcement in the lower zone with reinforcement in the area and in the upper zone with square \(A_s \) and in the upper zone square \(A_s' \) (Fig. 2 a) taking into account the distribution of the relative deformations of concrete and reinforcement by linear law (Fig.2 b) stress diagrams are shown in the figure 2 c,d,e. Based on the linear law of distribution relative deformations with respect to the height of the element:

\[
\frac{1}{\rho} = \chi = \frac{\varepsilon_{sn}}{h_0 - x} = \frac{\varepsilon_{bn}}{x} = \frac{\varepsilon_{bn} + \varepsilon_{sn}}{h_0} \tag{2}
\]
where h_0 – cross-sectional height; x - the compressed zone height; ε_{bn} – relative deformations on the extreme fiber of concrete of the compressed zone; χ - element curvature; ρ - curvature radius; ε_{sn} - relative deformations in the stretched reinforcement.

Figure 2. The forces, stresses and deformations schemes in the cross section of a bent non-stressed element for calculation strength using piecewise linear (c-two-linear, d-three-linear) and e-curved diagrams of concrete for compression.

The section strength is checked from the conditions:

$$
|\varepsilon_{b,max}| \leq \varepsilon_{b,ult}, \\
|\varepsilon_{s,max}| \leq \varepsilon_{s,ult},
$$

(3)

where $\varepsilon_{b,max}, \varepsilon_{s,max}$ - maximum relative strain from external load; $\varepsilon_{b,ult} = \varepsilon_{b,2} = 3.5 \%$ - limiting relative deformations of compressed concrete (for a curvilinear diagram $\varepsilon_{b,ult}$ is calculated at a stress level $\eta = 0.85$); $\varepsilon_{s,ult} = \varepsilon_{s,2} = 25 \%$ - limiting relative deformations of stretched reinforcement. The corresponding element of concrete or the reinforcement rod is switched off because of deformations above the limit.

In the general case, when the branches of a diagram are described by nonlinear equations (fig.1b), separate small sections are deposited along the axis of deformations $\Delta \varepsilon_{b,i}$ (i - area number) using computer modeling. Relative deformations in diagrams $\Delta \varepsilon_{b,i}$ in the compressed zone of the element corresponds to the height of the elementary section $\Delta h_{b,i} = \Delta \varepsilon_{b,i} / \chi$, with the amount of stresses $\sigma_{b,i}$. The square of i - th section of the diagram is determined by the formula: $A_{b,i} = \Delta \varepsilon_{b,i} \sigma_{b,i}$. The equation of balanced forces in the section of the reinforced concrete element is written in the form:

$$
N_b + N'_s - N_s = 0
$$

(4)

The deformations of the reinforcement are calculated from the expressions:

$$
\varepsilon'_s = \varepsilon_{bn} - \chi a', \varepsilon_s = \chi h_0 - \varepsilon_{bn}
$$

(5)

Value of effort N_b, perceived concrete concave zone in the limiting state for a strip of unit width ($b = 1$), is calculated by the formula

$$
N_b = N_{b,d} / \chi,
$$

(6)
where in the general case \(N_{b,d} = \sum_{i=1}^{n} A_{b,i} = \sum_{i=1}^{n} \sigma_{b,i} \Delta \varepsilon_{b,j} \) - is the work expended on the deformation of the sample under load up to their limiting values, numerically equal to the sum of the squares of elementary sections in the area bounded by the branches of the concrete compression diagrams. Taking into account the obtained dependences, the balance equation (4) with width \(b \) is written

\[
\frac{N_{b,d} b}{\chi} + \sigma_i A_i' - \sigma_i A_i = 0. \tag{7}
\]

The verification of the balance equation (7) is carried out by the method of successive approximations (by the iteration method). At the first approximation, the limiting values of deformations are taken on the extreme fiber concrete of the compressed zone and the stretched reinforcement \(\varepsilon_{bn} = \varepsilon_{b,ult} \); \(\varepsilon_{sn} = \varepsilon_{s,ult} \). Accordingly to the accepted signs, two cases arise before the terms on the left-hand side of equation (7): 1 - the left-hand side of equation (7) is greater than zero, that indicates a lack of section reinforcement; 2 - the left-hand side of equations (7) is less than zero, which means - a re-cross section. When the first case arises, it is necessary to reduce, at constant values \(\varepsilon_{s,ult} \), the deformations of the first approximation \(\varepsilon_{bn}^{(1)} \) by \(\Delta \varepsilon_{b}^{(k)} \) until the specified accuracy of approximation is reached:

\[
\Delta \varepsilon_{b}^{(k)} \leq 0.01 \varepsilon_{bn}^{(1)} \tag{8}
\]

When the second case is realized, that is, when the left-hand side of the equation is less than zero, the algorithm for checking the balance equation (7) is satisfied in the same sequence. However, the deformations in the reinforcement, adopted in the first approximation \(\varepsilon_{sn}^{(1)} = \varepsilon_{s2} = 25/00 \), decrease in the second iteration cycle by the increment value \(\varepsilon_{s}^{(2)} = \varepsilon_{sn}^{(1)} - \Delta \varepsilon_{s}^{(1)} \) at constant values of deformations on the extreme fibres of the compressed zone of concrete \(\varepsilon_{b,ult} = 3.5/00 \). Calculations are performed until a sufficient (predetermined) accuracy is achieved for condition \(\Delta \varepsilon_{s}^{(k)} \). Distances between efforts in reinforcement \(N_{s} \), \(N_{b} \) and efforts in concrete \(N_{b} \) to the neutral axis, respectively, are: to the neutral axis, respectively, are:

\[
z_s' = \varepsilon_{b}^{(k)} - a \frac{\chi^{(k)}}{\chi^{(k)}} ; \quad z_s = \frac{\chi^{(k)} b_0 - \varepsilon_{b}^{(k)}}{\chi^{(k)}} ; \quad z_b = \frac{S_{b,d}}{\chi^{(k)} N_{b,d}} = \frac{\varepsilon_{b,c}}{\chi^{(k)}} , \tag{9}
\]

where \(S_{b,d} = \sum_{i=1}^{n} A_{b,i} \varepsilon_{b,i} = \sum_{i=1}^{n} \sigma_{b,i} \Delta \varepsilon_{b,i} \varepsilon_{b,i} \) - a moment numerically equal to the sum of the products of the areas of elementary sections in the concrete diagrams by the distances of its centers of gravity to the stress axis \(\sigma_b \); \(\varepsilon_{b,c} = S_{b,d} / N_{b,d} \) - distance from stress axis, \(\sigma_b (\varepsilon_{b,c} ^{d}, \varepsilon_{b,c} ^{t}, \varepsilon_{b,c} ^{k}) \) - in Figure 1a, b) diagrams of concrete to its gravity centers \(O_1, O_2, O_3 \); \(\chi^{(k)} \) - curvature of the element after the condition (8) is satisfied at the \(k \)-th iteration.

The equation for calculating the limiting bending moment takes the form:

\[
M_{ult} = N_{b} b z_{b} + \sigma_s A_s z_{s} + \sigma_i' A_i' z_{s} , \tag{10}
\]
In order to determine the bending moment M_{ult} use the values $\varepsilon_{bu} = \varepsilon^{(k)}_{b}$ - for the first case, $\varepsilon_{sult} = \varepsilon^{(k)}_{s}$ - for the second case, $\chi^{(k)}$, obtained at the last iteration cycles, after condition (8) is satisfied.

A comparative analysis of the calculated strength parameters and its experimental values was made for reinforced concrete elements of rectangular cross-section with height $h = 18$ cm, width $b = 12$ cm, span $l = 194$ cm. The samples were made from one concrete composition. The compressive strength of concrete was $\sigma_b = 30.6$ MPa, elastic modulus $E_s = 3.07 \cdot 10^4$ MPa, which values were determined from the test results of standard prism samples with a proportional increase in the load before failure. In the compressed and stretched zone, two diameters of an A400 class reinforcement were installed. By saturation with the reinforcement, the samples are divided into three series: B-8 with percent reinforcement $\mu = \mu^{(k)}_{s} = 0.52\%$; B-10 with $\mu = \mu^{(k)}_{s} = 0.82\%$; B-12 with $\mu = \mu^{(k)}_{s} = 1.18\%$. The procedure of successive approximation during checking the balance equation (7) using piecewise linear and nonlinear diagrams of normative documents [1, 2] was performed according to the developed program on a computer. The calculated deformation parameters of the reinforced concrete section, using, as an example, curvilinear diagrams in [1, 2] after checking the balance equation (7) in the k-th approximation: $\varepsilon^{(k)}_{bn}$ - deformation on the extreme fiber of concrete of the compressed zone, $\chi^{(k)}$ – the height of the compressed zone, and calculations: M_{ult} - by the formula (10), f – deflection in the middle of the span of beam structures according to the formulas of structural mechanics, experimental values M_{ult} are presented in Table 1.

μ	National Codes and Standards of Belarus [2]	Set of rules [1]	Experience
	$\varepsilon_{bu}^{(k)}$, $\chi^{(k)}$, M_{ult}, f, ε_{sult}, $\chi^{(k)}$, M_{ult}, f, M_{ult}	$\varepsilon_{bu}^{(k)}$, $\chi^{(k)}$, M_{ult}, f, ε_{sult}, $\chi^{(k)}$, M_{ult}, f, M_{ult}	$\varepsilon_{bu}^{(k)}$, $\chi^{(k)}$, M_{ult}, f, ε_{sult}, $\chi^{(k)}$, M_{ult}, f, M_{ult}
0.52	1.56, 2.16, 7.28, 30.6, 25, 1.84, 7.41, 73.5, 7.6	0.52, 1.56, 2.16, 7.28, 30.6, 25, 1.84, 7.41, 73.5, 7.6	0.52, 1.56, 2.16, 7.28, 30.6, 25, 1.84, 7.41, 73.5, 7.6
0.82	2.02, 2.69, 12.2, 31.2, 21, 2.3, 12.2, 63.5, 12.1	0.82, 2.02, 2.69, 12.2, 31.2, 21, 2.3, 12.2, 63.5, 12.1	0.82, 2.02, 2.69, 12.2, 31.2, 21, 2.3, 12.2, 63.5, 12.1
1.18	2.31, 3.0, 16.5, 32.0, 18, 2.6, 16.6, 56.0, 16.8	1.18, 2.31, 3.0, 16.5, 32.0, 18, 2.6, 16.6, 56.0, 16.8	1.18, 2.31, 3.0, 16.5, 32.0, 18, 2.6, 16.6, 56.0, 16.8

In the calculations, taking into account the notations adopted in the norms, the limiting deformations of concrete for specified diagrams in [1, 2] were assumed to be equal to $\varepsilon_{b2} = \varepsilon_{cu} = 3.5$, and the limiting deformations of the reinforcement in the diagrams [1] is $\varepsilon_{s,ult} = \varepsilon_{s2} = 25$, and in the norms [2], respectively $\varepsilon_{s,ult} = \varepsilon_{su} = 10$. The limiting moments in the reinforcement range and in the specified diagrams of concrete and reinforcement in accordance with the recommendations of the norms [1, 2] differ by 2-3%, and correspond to their experimental values. The limiting deformations in the diagrams of reinforcement and concrete determines the general deformations (deflections) of the element. The procedure for reducing the force in an element cross section differs according to the norms. If in norms [1], balance is achieved by reducing the limiting deformations in reinforcement with constant limiting deformations in concrete, then in the norms of [2] the limiting deformations in the reinforcement are retained, increasing reinforcement percentage, deformations increase on the extreme concrete fiber of the compressed zone (increases the completeness of using diagrams of concrete deformation). The limiting deformations in the diagrams
of concrete and reinforcement: in norms [1], equivalence is achieved with the percentage of reinforcement $\mu = 0.6\%$, the limiting moment is $M_{ut} = 8.56 \text{ Knm}$; in the norms [2], respectively $\mu = 5.36\%$ and $M_{ut} = 69.2 \text{ Knm}$ with the plastic character of the cross section destruction.

3. Conclusions

The strength of the reinforced concrete element normal section in the deformation model calculations does not depend on the shape of the concrete deformation diagrams. Increasing in the specified values of limiting deformations in the reinforcement results in inefficient use of the strength and deformation properties of concrete.

The deformation model, taking into account the specified values of the limiting deformations, can be used in calculations of statically determinate structures under the effects of extreme loads of a natural and technogenic character, while retaining its limited work capacity. In order to use the diagrams in practical calculations of statically indeterminate systems, taking into account the redistribution of internal forces, it is necessary to limit boundary values of deformations in the deformation diagrams of concrete for axial compression and reinforcement for axial extension.

References

[1] SR 63.13330.2012. 2013 Concrete and reinforced concrete structures. Basic provisions. Actualized edition of SNiP 52-01-2003 (Moscow: the Ministry of Regional Development of Russia) p 175

[2] SNB 5.03.01-02 2013 Concrete and reinforced concrete structures (Building norms of the Republic of Belarus) p 139

[3] Eurocode 2: Design of Concrete Structures. 1992 Part 1: General rules and Rules for Building. European Prestandard, Iune pp 598-755.

[4] Akimov P A 2015 On the development of a discrete-continual approach to the numerical modeling of the state of load-bearing systems of high-rise buildings, Industrial and Civil Construction vol 3, pp 16 - 20.

[5] Karpenko N I 1996 General models of mechanics of reinforced concrete (Moscow: Stroyizdat) p 416

[6] Murashkin G V, Mordovaevsky S S 2013 Application of deformation diagrams for calculating the bearing capacity of eccentrically compressed reinforced concrete elements Housing construction vol 3 pp 38 - 40

[7] Eryshev V A 2014 Method for calculating concrete deformations under complex loading regimes (Tolyatti: Monograph) pp 130

[8] Karpenko N I, Eryshev V A, Latysheva E V 2015 Stress-strain Dia-grams of Concrete Under Repeated Loads with Compressive Stresses, Procedia Engineering vol 111 pp 371-377

[9] Mailian L R, Bekkiev M Yu 1984 The work of concrete and reinforcement with a few times repeated loading (Nalchik) p 55

[10] Karpenko N I, Eryshev V A 2014 Method for constructing diagrams of concrete defor-mation by repeated compression loads, Journal of Housing Construction vol 7

[11] Karpenko N I, Eryshev V A, Latysheva E V 2014 Method for calculating the parameters of deformation of concrete during unloading from compression stresses, Bulletin MGUS vol 3

[12] Karpenko N I, Karpenko S N, Petrov A N, Paluvinina S N 2013 Model of deformation of re-inforced concrete in increments and calculation of beams-walls and bent plates with cracks Petro-factory: Publishing house of PetrSU 156 p.

[13] Fedorov V S, Shavykina M V, Yusupova E V 2017 Deflections of reinforced concrete structures in the limiting state. Construction and reconstruction vol 4 (72) pp 80 - 85

[14] Fedorov V S, Bashirov Kh Z 2015 Technique of deflection of composite reinforced con-crete structures, Industrial and civil construction vol 3

[15] Travush V I, Kolchunov V I, Klyueva N V 2015 Some directions of the development of the
theory of living of structural systems of buildings and structures, Industrial and civil construction vol 3 pp 4-11

[16] Bondarenko V M, Kolchunov V I 2004 Calculated models of power resistance of rein-forced concrete: Monograph (Moscow: Publisher ASV) p 472

[17] Kolchunov V I, Klyueva N V, Androsova N B 2014 Survivability of buildings and structures with over-design impact (Moscow: Publisher ASV) p 208.

[18] Almazov V O 2013 Dynamics of the progressive destruction of monolithic multi-storey carcass (Moscow: Publisher ASV) p 128

[19] Geniev G A 1992 On the evaluation of dynamic effects in rod systems of brittle materials, Concrete and reinforced concrete vol 9 pp 25-27

[20] Travush V I 2006 Safety and Sustainability in Priority Directions of the Development of Russia Academia vol 2 pp 9-12

[21] Cherkas A, Rimshin V 2017 Application of composite reinforcement for modernization of buildings and structures, MATEC Web of Conferences Editors: S. Jemiolo, A. Zbiciak, M Mitew-Czajewska, M. Krezeminski, M. Gajewski. P. 00027

[22] Telichenko V I, Rimshin V I, Karelskii A V, Labudin B V, Kurbatov V L 2017 Strengthen-ing technology of timber trusses by patch plates with toothed-plate connectors, Journal of Industrial Pollution Control vol 33 (1) pp 1034-1041

[23] Shubin I L, Zaitsev Y V, Kurbatov V L, Sultygova P S 2017 Fracture of high performance materials under multiaxel compression and thermal effect, Engineering Solid Mechanics vol 5(2) pp 139-144

[24] Korotaev S A, Kalashnikov V I, Rimshin V I, Erofeeva I V, Kurbatov V L 2016 The impact of mineral aggregates on the thermal conductivity of cement, Ecology, Environment and Conservation vol 22(3) pp 1159-1164

[25] Erofeev V T, Zavalisin E V, Rimshin V I, Kurbatov V L, Stepanovich M B 2016 Frame composites based on soluble glass, Research Journal of Pharmaceutical, Biological and Chemical Sciences vol 7(3) pp 2506-2517

[26] Krishan A L, Troshkina E A, Rimshin V I, Rahmanov V A, Kurbatov V L 2016 Load-bearing capacity of short concrete-filled steel tube columns of circular cross section, Research Journal of Pharmaceutical, Biological and Chemical Sciences vol 7(3) pp 2518-2529

[27] Bazhenov Y M, Erofeev V T, Rimshin V I, Markov S V, Kurbatov V L 2016 Changes in the topology of a concrete porous space in interactions with the external medium Engineering Solid Mechanics vol 4(4) pp 219-225