A case report of cardiac amyloidosis presenting with chronic pericardial effusion and conduction block

Kevin John John, Ajay Kumar Mishra, and Ramya Iyyadurai

Department of Medicine, Christian Medical College, Ida Scudder Road, Vellore 632004, Tamil Nadu, India

Background
Amyloidosis is caused by the deposition of abnormal proteins in the extracellular space of various organs. The clinical features of amyloidosis depend on the type of amyloid protein and the organ system involved.

Case summary
A 51-year-old woman developed complete heart block which warranted a permanent pacemaker insertion. She was referred for evaluation of chronic pericardial effusion. The patient had stable vital signs and muffled heart sounds on examination of the cardiovascular system. Her chest X-ray film showed a permanent pacemaker in situ, and echocardiogram showed a chronic pericardial effusion without features of tamponade. On further evaluation, she was found to have an M band on serum electrophoresis, elevated free light chain ratio and amyloid deposits in bone marrow biopsy. Technetium pyrophosphate (Tc-PYP) scintigraphy was consistent with cardiac amyloidosis.

Discussion
Cardiac amyloidosis can have diverse clinical presentations. Chronic pericardial effusion and conduction block can be a rare presentation of cardiac amyloidosis and needs to be considered while evaluating the same. Cardiac magnetic resonance imaging and Tc-PYP imaging can be used in establishing the diagnosis of cardiac amyloidosis, if endomyocardial biopsy is not feasible.

Keywords
Cardiac amyloidosis • Pericardial effusion • Complete heart block • Case report

Learning points
- Cardiac amyloidosis is seen in 20% of patients with systemic amyloidosis and can have diverse clinical presentations.
- Cardiac amyloidosis can present with chronic non-resolving pericardial effusion or conduction abnormality like complete heart block due to infiltration of amyloid into the conduction system.
- Cardiac magnetic resonance imaging and technetium pyrophosphate imaging can be used in establishing the diagnosis of cardiac amyloidosis, if endomyocardial biopsy is not feasible.

Introduction
Amyloidosis is caused by dysfunctional protein folding leading to deposition of amyloid fibrils in the extracellular space leading to protean clinical manifestations. Involvement of various organs like the kidney, heart, liver and bone marrow, causes organ dysfunction leading to morbidity and mortality. Cardiac involvement is seen in about 20% of patients with systemic amyloidosis. Patients with cardiac involvement can present with cardiomyopathy, heart failure, or arrhythmias. Here we describe a rare presentation of cardiac amyloidosis in a patient who presented to us with complete heart block and pericardial effusion.
Timeline

Initial presentation	2 months later	10 months later
Left-sided non-pleuritic chest pain and dyspnoea	Two episodes of syncope, evaluated and diagnosed with complete heart block, permanent pacemaker implanted	Pericardial effusion did not resolve. Hence, admitted for re-evaluation
Found to have pericardial effusion which was treated with an empiric course of anti-tuberculosis therapy	Pericardial effusion did not resolve. Hence, admitted for re-evaluation	Chest X-ray film showed cardiomegaly and the presence of a pacemaker in situ
Echocardiogram showed large pericardial effusion and global left ventricular systolic dysfunction	Echocardiogram showed large pericardial effusion and global left ventricular systolic dysfunction	Serum protein electrophoresis M band positive, Serum free light chain ratio elevated (κ/λ) 5.3
Serum protein electrophoresis M band positive, Serum free light chain ratio elevated (κ/λ) 5.3	Computed tomography scan of the thorax confirmed cardiomegaly and pericardial effusion	Computed tomography scan of the thorax confirmed cardiomegaly and pericardial effusion
The bone marrow biopsy showed pale eosinophilic deposits in the vessel wall and Congo red stain revealed reddish-orange deposits which showed green birefringence under polarizing microscope thus confirming the presence of amyloid	The bone marrow biopsy showed pale eosinophilic deposits in the vessel wall and Congo red stain revealed reddish-orange deposits which showed green birefringence under polarizing microscope thus confirming the presence of amyloid	The patient did not give consent for a pericardial or myocardial biopsy. A final diagnosis of systemic amyloidosis with cardiac involvement causing systolic dysfunction, chronic pericardial effusion, and complete heart block was made.
Technetium pyrophosphate scintigraphy showed moderate uptake of tracer equal to bone activity (Grade 2) in the region of the heart consistent with cardiac amyloidosis	Technetium pyrophosphate scintigraphy showed moderate uptake of tracer equal to bone activity (Grade 2) in the region of the heart consistent with cardiac amyloidosis	Relevant investigations for all but one of the differentials considered were negative. Serum protein electrophoresis showed an M band. The bone marrow biopsy showed pale eosinophilic deposits in the vessel wall and Congo red stain revealed reddish-orange deposits which showed green birefringence under polarizing microscope thus confirming the presence of amyloid (Figure 2). Serum free light chain (sFLC) ratio was elevated. A cardiac magnetic resonance imaging (MRI) scan could not be done as the patient’s pacemaker was not MRI compatible. Technetium pyrophosphate (Tc-PYP) scintigraphy showed moderate uptake of tracer equal to bone activity (Grade 2) in the region of the heart consistent with cardiac amyloidosis (Figure 4). The patient did not give consent for a pericardial or myocardial biopsy. A final diagnosis of systemic amyloidosis with cardiac involvement causing systolic dysfunction, chronic pericardial effusion, and complete heart block was made.
Symptomatic improvement with fluid restriction, diuretics, and angiotensin-converting enzyme-inhibitors	Though further evaluation and treatment was planned patient got discharged to continue further treatment in a hospital near her hometown. No further follow-up	Computed tomography scan of the thorax and abdomen did not give any significant findings other than cardiomegaly and pericardial effusion. Autoimmune workup and serum angiotensin-converting enzyme (ACE) levels were normal.
On examination, she was found to be afebrile, with a blood pressure of 100/70 mmHg in both upper limbs without any evidence of pulsus paradoxus. Her heart rate was 78 beats/min, respiratory rate was 18 breaths/min, and arterial oxygen saturation on room air was 98%. Examination of the cardiovascular system showed muffled heart sounds and an absence of murmurs, rubs, or gallops. Examination of other systems was normal.		

Case presentation

A 51-year-old woman, without any previous comorbidities, illnesses, allergies or addictions, presented with a history of persistent, left-sided, non-radiating, non-pleuritic, chest pain, and insidious onset, gradually progressive dyspnoea of 1-year duration. She had two episodes of syncope, 8 months before. She did not give any history of constitutional symptoms including fever or loss of weight.

Upon initial evaluation in another hospital, she was diagnosed with complete heart block which required a permanent pacemaker insertion. She was also found to have pericardial effusion which was treated with an empiric course of anti-tuberculosis therapy (ATT). Despite taking ATT for 8 months, she did not have resolution of the pericardial effusion and was referred to our hospital for further evaluation.

Discussion

Amyloidosis is a disease where deposition of beta-pleated fibrils of the various proteins, in the extracellular space of organs like the kidney, heart, liver, etc. causes organ dysfunction leading to morbidity
Case report of cardiac amyloidosis

Figure 1 (A) Chest X-ray film showing cardiomegaly and permanent pacemaker in situ. (B) Electrocardiogram showing broad QRS complexes.

Figure 2 Echocardiogram showing left ventricular hypertrophy and pericardial effusion. (A) Apical four-chamber view. (B) Short-axis view. (C) Parasternal long-axis view. (D) Mitral regurgitation.
and mortality. The three most common types of amyloidosis affecting the heart are light chain (AL), familial or senile (ATTR), and secondary (AA) amyloidosis. The amyloid protein in these three types of amyloidosis are monoclonal light chains secondary to a plasma cell dyscrasia, the wild-type (non-mutant) or mutated transthyretin, and fragments of serum amyloid A protein (an acute phase reactant), respectively.

Cardiac amyloidosis can present with heart failure, involvement of the conduction system, pericardial disease, thromboembolism, stroke, syncope, or sudden cardiac death. A progressive disease of

Table 1	Laboratory investigations
Investigations	**Results**
Haemoglobin (g/dL)	14.6 (11–15)
Total count (/cu mm)	5600 (400012 000)
Differential count (%)	N 40, L 47, M 8, E5, B 0
Platelet count (/cu mm)	1 82 000 (1 50 000–4 50000)
HIV, HBV, HCV serology	Negative
Thyroid stimulating hormone (TSH) (μIU/mL)	4.6 (0.3–4.5)
Serum cortisol (µg%)	9.1 (7–25)
Serum sodium (mmol/L)	136 (135–145)
Serum potassium (mmol/L)	4.1 (3.5–5)
Serum creatinine (mg%)	0.61 (0.5–1.1)
Erythrocyte sedimentation rate (ESR) (mm/h)	10 (5–20)
C-reactive protein (CRP) (mg/L)	<3.16 (<3.16)
Anti-nuclear antibody (ANA)	Negative
Rheumatoid factor (RF) (IU/mL)	<9.69 (<9.69)
Serum angiotensin-converting enzyme (ACE) (U/L)	7 (6–52)
Serum M band (%)	0.4
Serum free light chains (sFLC) κ and λ (mg/L)	κ = 160, λ = 30 (κ: 3.3–19.4, λ: 5.7–26.3)
sFLC ratio (κ/λ)	5.3 (0.26–1.65)
Pericardial fluid total white cell count (/cu mm)	310 (N 8%, L 92%)
Pericardial fluid total red cell count (/cu mm)	30 (none)
Pericardial fluid glucose (mg/dL)	88 (70–14)
Pericardial fluid protein (g/dL)	4.9 (0–3)
Pericardial fluid adenosine deaminase (ADA) (U/L)	5 (0–30)
Pericardial fluid cytology	No malignant cells

*Normal ranges for test results given in parentheses.

Figure 3 Photomicrograph of bone marrow biopsy (A) showing pale eosinophilic material around blood vessels (Haematoxylin and Eosin stain, 40×). (B) Congo red stain showing reddish-orange amyloid deposition in the vessel wall (100×).
Figure 4 Nuclear imaging with technetium pyrophosphate showing moderate uptake of tracer equal to bone activity in the region of the heart consistent with ATTR cardiac amyloidosis.
the conduction system is more common with ATTR amyloidosis when compared to AL amyloidosis. High-degree atrioventricular block requiring permanent pacemaker implantation is uncommon but described and was seen in our patient. Pericardial effusion and rarely cardiac tamponade can be caused due to amyloid deposition in the pericardium.

Electrocardiogram changes in patients with cardiac amyloidosis include low-voltage in the limb leads (46%) and a pseudo-infarct pattern (47%). Echocardiography is a non-invasive diagnostic tool which can show an increase in wall thickness and diastolic dysfunction at an early stage. The myocardium may also have a granular or a sparkling appearance. However, this appearance has a low sensitivity and specificity (26–36% and 71–81%, respectively). Other non-invasive diagnostic methods include cardiac MRI and Tc-PYP imaging. Patients like the one presented here, who have contraindications to cardiac MRI, can undergo Tc-PYP imaging which has been proposed as a non-invasive modality to reliably diagnose cardiac amyloidosis. This modality is highly sensitive for ATTR amyloidosis. Although endomyocardial biopsy was not obtained in our patient, evidence of amyloidosis was established in the bone marrow. The presence of M band and abnormal sFLC ratio pointed towards a diagnosis of AL amyloidosis while the Tc-PYP scintigraphy showing moderate uptake equal to bone (Grade 2) was suggestive of ATTR amyloidosis. This posed a diagnostic dilemma. Technetium pyrophosphate scintigraphy is very sensitive for ATTR amyloidosis. Also, monoclonal gammapathy of undetermined significance (MGUS) can be seen in about 3.5% of the population above 50 years of age. Hence ATTR amyloidosis with co-existent MGUS is the most likely diagnosis in our patient.

Medical management of cardiac amyloidosis consists of treatment of heart failure and treatment of the underlying disease. The cornerstone of medical management of heart failure due to cardiac amyloidosis consists of loop diuretics. The role of ACE inhibitors/angiotensin receptor blockers and beta-blockers is a subject of debate. Patients with severe heart failure may require left ventricular assist devices and those with significant conduction system disease may need permanent pacemaker insertion with or without an implantable cardioverter-defibrillator. Atrial fibrillation and thrombo-embolic disease may require rate control therapy and overall anticoagulation, respectively. Specific therapy for AL amyloidosis is chemotherapy followed by autologous stem cell transplantation. Familial ATTR amyloidosis requires liver transplantation; this is not indicated in senile systemic amyloidosis. Tafamidis is a selective transthyretin kinetic stabilizer molecule that inhibits the amyloid cascade and is being investigated as a potential therapy for senile and familial ATTR amyloidosis.

Conclusions

Cardiac amyloidosis is seen in about 20% of patients with systemic amyloidosis and can have diverse clinical presentations. Chronic non-resolving pericardial effusion or conduction abnormality like complete heart block due to infiltration of amyloid into the conduction system can occur rarely. Cardiac MRI and Tc-PYP imaging can be used in establishing the diagnosis of cardiac amyloidosis with ATTR amyloidosis, if endomyocardial biopsy is not feasible. ATTR amyloidosis can sometimes co-exist with MGUS.

Lead author biography

Dr Kevin John John is a doctor at the Believers Church Medical College Hospital, Tiru, India. His areas of interest include heart failure, critical care medicine and health economics.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Acknowledgements

The authors would like to thank Dr John K. John for reviewing the manuscript.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: none declared.

References

1. Kyle RA. Amyloidosis: a convoluted story. Br J Haematol 2001;114:529–538.
2. Dubrey SW, Cha K, Anderson J, Chamartit B, Reisinger J, Skinner M, Falk RH. The clinical features of immunoglobulin light-chain (AL) amyloidosis. Am J Cardiol 2005;95:529–538.
3. Mishra AK, Mani S, George AA, Sudarsanam TD. Recurrent pericardial effusion and tamponade in a patient with Erdheim-Chester disease (ECD). BMJ Case Rep 2015;2015:2015:212483.
4. Mathew V, Olston LJ, Gertz MA, Hayes DL. Symptomatic conduction system disease in cardiac amyloidosis. Am J Cardiol 1997;80:1491–1492.
5. Murtagh B, Hammill SC, Gertz MA, Kyle RA, Tajik AJ, Grogan M. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 2005;95:533–537.
6. Sekanayanam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol 2007;50:2101–2110.
7. Cytawa W, Teodorczyk J, Lass P. Nuclear imaging of amyloidosis. Pol J Radiol 2014;79:222–227.
8. Gilmore JD, Maurer MS, Falk RH, Merlini G, Dany T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glauemans AWJM, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ.
Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133: 2404–2412.

9. Kyle RA, Temen TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, Dispenzieri A, Katzmann JA, Melton LJ. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 2006;354:1362–1369.

10. Gertz MA, Dispenzieri A, Sher T. Pathophysiology and treatment of cardiac amyloidosis. Nat Rev Cardiol 2015;12:91–102.

11. Bulawa CE, Connelly S, DeVit M, Wang L, Weigel C, Fleming JA, Packman J, Powers ET, Wiseman RL, Foss TR, Wilson IA, Kelly JW, Labaudiniere R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci USA 2012;109:9629–9634.