Prevalence of Asymptomatic Apical Periodontitis and its Association with Coronary Artery Disease in a Brazilian Subpopulation

Introduction

Asymptomatic apical periodontitis (AAP) is defined as a chronic inflammation and destruction of apical periodontium caused in response to bacterial infection of the root canal system, which appears as an apical radiolucent area, and does not produce clinical symptoms (1). Epidemiological studies on the prevalence of AAP in different countries such as Canada (2), Japan (3), Colombia (4), Spain (5) and Nigeria (6) have revealed that this pathology is an oral health problem that affects significant proportions of people throughout the world.

In recent years, a growing number of studies have found evidence that there is an association between chronic oral infections and the development of adverse systemic health conditions (7). This topic has emerged as one of the main areas of research in Periodontics. Some studies have found links between chronic periodontal disease and coronary heart disease (8), stroke (9), acute myocardial infarct size (10), cerebro-
Apical Periodontitis and Coronary Artery Disease

de Oliveira et al.

Materijali i metode

Nakon odobrenja Etičkoga povjerenstva (Federalno sveučilište Pernambuco – UFPE, Recife, Brazil) prikupljene su informacije na temelju odgovarajućeg uzorka medicinskih kartona pacijenata koji su tražili pomoć specijalista endodoncije UFPE-a između travnja 2003. i ožujka 2010. Uključeni su samo zapisi koji su sadržavali detalje medicinske amanuze, kliničku procjenu parodontološkog statusa, uključujući sondiranje i nalaze kliničkog pregleda zuba na kojemu se trebalo obaviti endodontsko liječenje, a uključivao je test vitaliteta, perkusiju i palpciju te rendgenske snimke.

Iz svakog kartona izdvojene su sljedeće varijable: spol, broj endodontski kompromitiranih zuba, dijagnosticirana endodontska bolest i BKA. AAP je dijagnosticiran kao apikalna radiolucencija dvostruko veće širine od normalnoga parodontnog ligamenta oko asimptomatskoga nekrotičnog zuba (1, 23). Sve varijable bilježio je jedan istraživač. Tako bi se izbjegle dvojbe, iz istraživanja su bili isključeni pušači, pacijenti s dijagnosticiranom kroničnom parodontnom bolesti ili dijabetesom.

Dobivene informacije uvrštene su u tablicu te analizirane deskriptivnom statistikom i Pearsonovim hi-kvadrat testom s razinom značajnosti postavljenom na pet posto. Korišten je statistički paket za društvene znanosti, verzija 21 (SPSS, Chicago, IL, SAD).

Rezultati

Uključeno je ukupno 1600 endodontski kompromitiranih zuba 1346 pacijenata. Među njima je bilo 908 žena (67,5 %). AAP je otkriven na 641 zubu (40,1 %, tablica 1.), odnosno kod 574 pacijenata (42,6 %, tablica 2.). Oba spola (39,2 % muškaraca i 44,2 % žena, p = 0,082) i sve dobne skupine (p = 0,190, tablica 2.) bili su slično pogodjeni.

U gornjoj čeljusti sjekutići su bili najčešće (52,8 %) zahtjevani AAP-om (p < 0,001, tablica 1.), a u donjoj čeljusti cular disease (11), and development of atheromatous plaques (12). Despite numerous differences between chronic inflammatory diseases of periodontal and endodontic origins, both have important characteristics in common: they are chronic infections of the oral cavity; they share a common gram-negative anaerobic microbiota (13) and they are both accompanied by increased local levels of inflammatory markers which may extend to systemic levels (14, 15). It can, therefore, be assumed that AAP is associated with the same systemic disorders that are related to the periodontal disease (16).

The available scientific evidence shows that the periapical health status of patients may be directly related to their status of cardiovascular health (14, 16-22). However, the evidence remains limited. Therefore, the purpose of the present study was to evaluate the prevalence of AAP in a Brazilian subpopulation, as well as its association with coronary artery disease (CAD).

Materials and Methods

After approval by the Ethics Committee (Federal University of Pernambuco – UFPE, Recife, Brazil), information from a convenience sample of medical records of patients that had sought dental care in the Specialization Course in Endodontics of UFPE between April 2003 and March 2010 were collected. Only medical records containing full details of medical history and systemic health conditions that was self-reported during the process of medical history taking, and confirmed by an attached medical report; clinical assessments of periodontal status, including periodontal probing; and examination of the teeth referred for root canal treatment by means of pulp vitality tests, percussion and palpation, and periapical radiographs were included.

From each medical record, the following variables were recorded: gender, age, number of the endodontically compromised teeth, endodontic pathologies diagnosed, and history of CAD. AAP was diagnosed as an apical radiolucency over twice the width of the normal periodontal ligament in an asymptomatic necrotic tooth (1, 23). All variables were recorded by 1 observer. To exclude possible confounding factors, smoker patients, or those who were diagnosed with chronic periodontal disease or diabetes were excluded from the study.

The information obtained was tabulated and analyzed using descriptive statistics, applying the Pearson’s chi-square test, adopting the significance level of 5%. The Statistical Package for Social Sciences, version 21 (SPSS, Chicago, IL) was used.

Results

A total of 1600 endodontically compromised teeth of 1346 patients were evaluated. Of those, 908 individuals were female (67.5%). AAP was detected in 641 teeth (40.1%, Table 1) and in 574 patients (42.6%, Table 2). Both genders (39.2% male and 44.2% female, p = 0.082) and all age groups (p = 0.190, Table 2) were affected similarly.

In the upper arch, the incisors (52.8%) were the dental elements most affected by AAP (p < 0.001, Table 1), while in

www.ascro.hr
Tablica 1. Prevalencija asimptomatskoga apikalnog parodontitisa prema vrsti zuba

Dental groups	Zubi • Teeth	S AAP-om • With AAP	Bez AAP-a • Without AAP	p vrijednost • p value	
GORNJI • MAXILLARY	Svi zubi • All teeth	n	%	n	%
Sjekutić • Incisors	320	169	52.8	151	47.2
Očnjak • Canines	62	28	45.2	34	54.8
1. prekutnjak • 1st Premolars	160	63	39.4	97	60.6
2. prekutnjak • 2nd Premolars	164	61	37.2	103	62.8
1. kutnjak • 1st Molars	212	65	30.7	147	69.3
2. kutnjak • 2nd Molars	78	16	20.5	62	79.5
3. kutnjak • 3rd Molars	8	3	37.5	5	62.5
Ukupno • Subtotal	1004	405	40.3	599	59.7

DONJI • MANDIBULAR

Zubi • Teeth	S AAP-om • With AAP	Bez AAP-a • Without AAP	p vrijednost • p value		
Svi zubi • All teeth	n	%	n	%	
Sjekutić • Incisors	38	15	39.5	23	60.5
Očnjak • Canines	19	5	26.3	14	73.7
1. prekutnjak • 1st Premolars	61	27	44.3	34	55.7
2. prekutnjak • 2nd Premolars	93	43	46.2	50	53.8
1. kutnjak • 1st Molars	246	99	40.2	147	59.8
2. kutnjak • 2nd Molars	116	43	37.1	73	62.9
3. kutnjak • 3rd Molars	23	4	17.4	19	82.6
Ukupno • Subtotal	596	236	39.6	360	60.4

UKUPNO • TOTAL | 1600 | 641 | 40.1 | 959 | 59.9 |

AAP: asimptomatski apikalni parodontitis • asymptomatic apical periodontitis
(*) statistički značajna razlika na razini 5.0 % • Significant association to the level of 5.0%
(a): Pearsonov hi-kvadrat test • Using Pearson’s chi-square test

Tablica 2. Prevalencija asimptomatskoga apikalnog parodontitisa prema dobnoj skupini

Dobna skupina • Age group (godine • years)	Pacijenti • Patients	S AAP-om • With AAP	Bez AAP-a • Without AAP	p vrijednost • p value	
Svi pacijenti • All patients	n	%	n	%	
≤ 18	226	84	37.2	142	62.8
19 – 29	300	133	44.3	167	55.7
30 – 39	334	132	39.5	202	60.5
40 – 49	266	124	46.6	142	53.4
50 – 59	165	74	44.8	91	55.2
≥ 60	55	27	49.1	28	50.9

Ukupno • Total | 1346 | 574 | 42.6 | 772 | 57.4 |

AAP: asimptomatski apikalni parodontitis • asymptomatic apical periodontitis
(a): Pearsonov hi-kvadrat test • Using Pearson’s chi-square test

Tablica 3. Prevalencija bolesti koronarnih arterija u odnosu na asimptomatski apikalni parodontitis

AAP	Pacijenti • Patients	S BKA-om • With CAD	Bez BKA • Without CAD	p vrijednost • p value	OR (IP 95 %) • OR (CI 95%)		
Sa • With	574	16	2.8	558	97.2	p_a = 0.307	1.45 (0.71 – 2.95)
Bez • Without	772	15	1.9	757	98.1	1.00	

UKUPNO • TOTAL | 1346 | 31 | 2.3 | 1315 | 97.7 |

AAP: asimptomatski apikalni parodontitis • asymptomatic apical periodontitis
BKA • CAD: bolest koronarnih arterija • coronary artery disease
(a): Pearsonov hi-kvadrat test • Using Pearson’s chi-square test
OR: Odds ratio
IP • CI: interval pouzdanosti • Confidence Interval
drugi pretkutnjaci (46,2 %) \((p = 0,187)\). AAP s jednako
cuštaošću poguđa gornju i donju čeljust (40,3 % i 39,6 %, \(p = 0,770)\).

Prevalencija BKA iznosila je 2,3 posto. Pacijenti s AAP-
om imali su 1,45 veću vjerojatnost od obolijevanja od BKA
u usporedbi s pacijentima bez AAP-a \((p = 0,307, \text{ tabla 3}).\)

Rasprava

Primarna svrha ovoga presječnog istraživanja bila je, ana-
lizom medicinskih kartona pacijenata liječenih u klinici na
sjeveroistoku Brazila, opisati cuštaošću asimptomatskoga api-
kalog parodontitisa i njegovu povezanost s BKA-om u bra-
ziloj kojnoj urbanjoj subpopulaciji. Budući da pacijenti uključeni
u ovo istraživanje nisu slučajno uzorkovani, nego su odabrani
među onima koji su tražili liječenje, treba biti oprezan pri ek-
strapolaciji rezultata za braziloj populaciju u cijelji.

Prevalencija AAP-a u ovom istraživanju (40,1 % zuba) bi-
la je u skladu s istraživanjima provedenim u drugim popula-
cijama, kao u Rabatu u Maroku (24), Barceloni u Španjolskoj
(5) i Ile-Ifeu u Nigeriji (6), gdje se kretala između 38 i 63 posto.
No cuštaošću je bila veća nego u objavljenim istraživanjima
provedenima na engleskoj (4,1 %) (25) i štokskoj (5,8 %)
(26) te kosovskoj (12,3 %) populaciji.

Razlike uočene u rezultatima navedenih istraživanja mo-
gu se opravdati različitim stupnjevima društenog i
pogodarskog razvoja u tim zemljama te nedostatkom homog-
jenosti između analiziranih populacija, ali i nedostatak
standardizacije metoda evaluacije, što su čimbenici koji ote-
žavaju usporedbu rezultata različitih istraživanja.

Uzorak u našem istraživanju uglavnom su činile pacijen-
tice (67,5 %). U ranijim istraživanjima postignuti su slični re-
zultati, te je istaknuto da se spolna diskrepancija događa zato
što se žene više brinu o svojem zdravlju i izgledu negoli muš-
kari (28). S druge strane, u našem je istraživanju prevalenci-
ja AAP-a kod muškaraca i žena bila slična (39,2 % i 44,2 %, \(p = 0,082\)), što pokazuje da nije povezan sa spolom, kao što
je to prije bilo istaknuto u drugim istraživanjima (29 – 31).

Autors poput Kamberija i suradnika (27), Paesa da Silve
Ramosa Fernandes u njegovoj kolega (30) te Petersa i surad-
nika (31), pokazali su povećanu prevalenciju AAP-a u odno-
su na dob bolesnika. Iako su naši rezultati otkrili da ne po-
stoje statistički značajna razlika između dobnih skupina (\(p = 0,190\)), prevalencija AAP-a bila je veća ako je bolesnik bio
stariji od 60 godina (49,1 %), a pojedinci mladi od 18 godi-
ina imali su nižu (37,2 %). Prema Terčasu i suradnicima
(29) ovaj je rezultat očekivan s obzirom na to da je tijekom
godina zub izložen karijesu, periodontalnim bolestima, tjenju
i raznim operativnim postupcima koji povećavaju cuštaošću
upale pulpe.

Rezultati našeg istraživanja pokazuju da su središnji i gor-
nji bočni sjekutići najčešće pogodeni AAP-om (\(p < 0,001\)).
Ovi rezultati mogu se objasniti socijalno-ekonomskim statu-
son uzorka populacije (pacijent ne može platiti naknadu za
dugotrajno protetičko liječenje, pa je vjerojatno izabralo ek-
trakciju kompromitiranih stražnjih zuba, te zadržavanje gor-
njih prednjih zuba zbog estetskih razloga). Uz to, središnji

the lower jaw, the second premolars (46.2%) were the most
frequently affected teeth \((p = 0.187)\). AAP affects the maxilla
and the mandible with equal frequency \((40.3\% \text{ and } 39.6\%,
respectively, \(p = 0.770)\).

The prevalence of CAD was 2.3%. The patients with
AAP presented 1.45 times more chances of exhibiting CAD
compared to those without AAP \((p = 0.307, \text{ Table 3}).\)

Discussion

The primary objective of this cross-sectional study was
to describe the prevalence of asymptomatic apical periodon-
titis, as well as its association with CAD in a Brazilian ur-
ban subpopulation by analysis of medical records of pa-
tients treated in a walk-in clinic in the Northeast of Brazil.
Since the patients studied did not represent a random sample
of the population, but instead constituted individuals who
had sought dental treatment, the extrapolation of results for
the Brazilian population in general should be made with
cautin.

The prevalence of AAP in this study (40.1% of teeth) was
in accordance with studies conducted in other populations
such as in Rabat in Morocco (24), Barcelona in Spain (5) and
Ile-Ife in Nigeria (6), where AAP ranged from 38-63% of the
teeth examined. However, these scores were higher than those
reported in other surveys conducted in English (4.1%) (25),
Scottish (5.8%) (26), and Kosovan (12.3%) populations (27).

The discrepancies observed between the results of the
above-mentioned studies can be justified by different degrees
of social and economic development among populations, as
well as the lack of homogeneity among the analyzed popula-
tion, and the lack of standardization of evaluation methods,
factors that hamper the comparison of the results from dif-
f erent studies.

The sample in our survey was mostly composed of female
patients (67.5%). Previous research reported similar results,
stating that this gender discrepancy occurs because women
take care of their health and appearance better than men
(28). On the other hand, in our study, men and women ex-
hibited similar AAP prevalence (39.2% and 44.2%, respec-
tively, \(p = 0.082\)), showing that AAP is not related to gender,
as previously reported by other studies (29-31).

Some authors such as Kamberi et al. (27), Paes da Silva
Ramosa Fernandes et al. (30), and Peters et al. (31) have
demonstrated an increased prevalence of AAP with the advance
of patient age. Although our results revealed that there was no
statistically significant difference between the age groups
\((p = 0.190)\), the prevalence of AAP was higher in patients older
than 60 years (49.1%), while the individuals younger than 18
years had a lower prevalence (37.2%). According to Terčas et
al. (29), this result is expected since, with the advance of age,
the tooth is exposed to caries, periodontal disease, friction
and various surgical procedures that increase the incidence of
pulpal inflammation.

The results of our study showed that the central and later-
al upper incisors were the teeth which were most commonly
affected by AAP \((p < 0.001)\). These results can be explained by
the socioeconomic status of the population sample. Since

Apikalni parodontitis i koronarna arterijska bolest

Oliveira i sur.

110

Glavno ograničenje našeg istraživanja odnosi se na nedostatak pristupa detaljnim informacijama o kardiovaskularnom zdravlju uključenih pacijenata. Zato je vjerojatno broj osoba s BKA-om podcijenjen, bilo zbog neznanja dijela pacijenata o stvarnom stanju njihova kardiovaskularnog sustava, bilo zbog izostavljanja te informacije.

Zaključak

Na temelju rezultata ovog istraživanja može se zaključiti da je prevalencija AAP-a u obuhvaćenoj populaciji visoka i slična onoj u drugim zemljama. Bila su obuhvaćena oba spoja i sve dobre skupine. Gornji sjekutići bili su najčešće zahvaćeni AAP-om. Nadalje, pronađena je pozitivna korelacija između AAP-a i BKA, no statistički nije bila značajna.

Conclusions

From the results obtained in this study, we concluded that the prevalence of AAP in this population was high and similar to that observed in other countries. Both genders, and all age groups were affected indistinctly. Upper incisors were affected most frequently by AAP. Moreover, a positive but not statistically significant association was found between AAP and CAD.
Abstract

Objective: The aim of the present study was to determine the prevalence of asymptomatic apical periodontitis (AAP) and its association with coronary artery disease (CAD) in a Brazilian subpopulation, and to examine the correlation of AAP with gender, age and most frequently affected dental elements. Methods: The data were collected from medical records of the patients (n = 1346) treated at the Specialization in Endodontics Clinic of the Federal University of Pernambuco in the period between 2003 and 2010. From each patient, the following variables were recorded: gender, age, endodontically compromised teeth, endodontic diseases diagnosed and the history of CAD. The data were analyzed using Pearson’s chi-square test adopting a significance level of 5%. Results: AAP was diagnosed in 574 patients (42.6%), corresponding to 641 teeth (40.1%). Both genders (p = 0.082), and all age groups (p = 0.190) were affected similarly. The upper incisors (52.8%, p <0.001) had a higher prevalence of AAP. The patients with AAP showed 1.45 times more chance of exhibiting CAD (p = 0.307). Conclusions: The results pointed out that the prevalence of AAP in this population was high and similar to that observed in other countries. A positive association, but not statistically significant, between AAP and CAD was found. Keywords: Endodontics; Apical Periodontitis; Coronary Artery Disease; Epidemiology

Conflict of interest

The authors deny any conflicts of interest related to this study.

Acknowledgments

This study was supported by (THE) grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES – Brazil. The English version of this study has been revised by Sidney Pratt, Canadian, BA, MAT (The Johns Hopkins University), RSAdip (TEFL) University of Cambridge.

References

1. AAE Consensus Conference Recommended Diagnostic Terminology. J Endod. 2009 Dec;35(12):1619-20.
2. Dugas NN, Lawrence HP, Teplitsky PE, Pharoah MJ, Friedman S. Periapical health and treatment quality assessment of root-filled teeth in two Canadian populations. Int Endod J. 2003 Mar;36(3):181-92.
3. Tsuneishi M, Yamamoto T, Yamana R, Tamaki N, Sakamoto T, Tsujii K, et al. Radiographic evaluation of periapical status and prevalence of endodontic treatment in an adult Japanese population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005 Nov;100(5):631-5.
4. Moreno JD, Alves FR, Gonçalves LS, Martinez AM, Rôças IN, Siqueira JF Jr. Periapical radiographic status of root canal fillings and coronal restorations in an urban Brazilian population. Int Endod J. 2013 May;39(5):600-4.
5. Abella F, Patel S, Durán-Sindreu F, Mercadé M, Bueno R, Roig M. An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone-beam computed tomography. Int Endod J. 2014 Apr;47(4):387-96.
6. Oginni AO, Adeleke AA, Chandler NP. Root canal treatment and prevalence of apical periodontitis in a Nigerian adult subpopulation: a radiographic study. Oral Health Prev Dent. 2015;13(1):85-90.
7. Cotti E, Mercuro G. Apical periodontitis and periapical diseases: previous findings and ongoing research. Int Endod J. 2015 Oct;48(10):926-32.
8. Bokhari SA, Khan AA, Butt AK, Hanif M, Izhari M, Tatakis DN, et al. Periodontitis in coronary heart disease patients: strong association between bleeding on probing and systemic biomarkers. J Clin Periodontol. 2014 Nov;41(11):1048-54.
9. Vražić D, Mlodzić Z, Strożek M, Puhar I, Badovinac A, Božić D, et al. Periodontal Disease and its Association with Angiographically Verified Coronary Artery Disease. Acta Stomatol Croat. 2015 Mar;49(1):14-20.
10. Lafon A, Pereira B, Dufour T, Rigouby V, Giroud M, Béjot Y, et al. Periodontal disease and stroke: a meta-analysis of cohort studies. Eur J Neurol. 2014 Sep;21(9):1155-61, e66-7.
11. Marfil-Álvarez R, Mesa F, Arrebola-Moreno A, Ramírez-Hernández JA, Magán-Fernández A, O’Valle F, et al. Acute myocardial infarct size is related to periodontitis extent and severity. J Dent Res. 2014 Oct;93(10):993-8.
12. Leira Y, Blanco M, Blanco J, Castillo J. Association between peri-odontal disease and cerebrovascular disease. A review of the literature. Rev Neurol. 2015 Jul 1;61(1):29-38.
13. Serra e Silva Filho W, Casarin RC, Nicolela EL Jr, Passos HM, Salum AW, Gonçalves RB. Microbial diversity similarities in periapical pockets and atheromatous plaques of cardiovascular disease patients. PLoS One. 2014 Oct 16;9(10):e109761.
14. Sundqvist G. Ecology of the root canal flora. J Endod. 1992 Sep;18(9):427-30.
15. Caplan DJ, Chassen JB, Krall EA, Cai J, Kang S, Garcia RI, et al. Lesions of endodontic origin and risk of coronary heart disease. J Dent Res. 2006 Nov;85(11):996-1000.
16. Segura-Egea JJ, Castellanos-Cosano L, Machuca G, López-López J, Martín-González J, Velasco-Ortega E, et al. Diabetes mellitus, periapical inflammation and endodontic treatment outcome. Med Oral Patol Oral Cir Bucal. 2012 Mar 1;17(2):e356-61.
17. Costa TH, de Figueiredo Neto JA, de Oliveira AE, Lopes e Maia Mde F, de Almeida AL. Association between chronic apical periodontitis and coronary artery disease. J Endod. 2014 Feb;40(2):164-7.
18. Ishihira KI, Pitiphat W, Hung HC, Willett WC, Colditz GA, Douglass CW. Pulpal inflammation and incidence of coronary heart disease. J Endod. 2006 Feb;32(2):99-103.
19. Cotti E, Dessì C, Piras A, Mercuro G. Can a chronic dental infection be considered a cause of cardiovascular diseases? A review of the literature. Int J Cardiol. 2011 Apr;148(1):4-10.
20. Pasqualini D, Bergandi L, Palumbo L, Borraccino A, Dambra V, Alvisi M, et al. Association among oral health, apical periodontitis, CD14 polymorphisms, and coronary heart disease in middle-aged adults. J Endod. 2012 Dec;38(12):1570-7.
21. Petersen J, Glaßl EM, Nasserí P, Crismani A, Lugier AK, Schoenherr E, et al. The association of chronic apical periodontitis and endodontic therapy with atherosclerosis. Clin Oral Investig. 2014 Sep;18(7):1813-23.
22. Gomes MS, Hugo FN, Hilgert JB, Sant’Ana Filho M, Padilha DM, Simonsick EM, et al. Apical periodontitis and incident cardiovascular events in the Baltimore Longitudinal Study of Ageing. Int Endod J. 2016 Apr;49(4):334-42.
23. Khalighinejad N, Aminoshariae MR, Aminoshariae A, Kulild JC, Mickel A, Fouad AF. Association between Systemic Diseases and Apical Periodontitis. J Endod. 2016 Oct;42(10):1427-34.
24. Patel S, Wilson R, Dawood A, Mannocci F. The detection of periapical pathosis using periapical radiography and cone beam computed tomography - part 1: pre-operative status. Int Endod J. 2012 Aug;45(8):702-10.
25. Chala S, Abouqal R, Abdallaoui F. Prevalence of apical periodontitis and factors associated with the periradicular status. Acta Odontol Scand. 2011 Nov;69(6):355-9.
26. Di Filippo G, Sidhu SK, Chong BS. Apical periodontitis and the technical quality of root canal treatment in an adult sub-population in London. Br Dent J. 2014 May;216(10):E22.
27. Dutta A, Smith-Jack F, Saunders WP. Prevalence of periradicular periodontitis in a Scottish subpopulation found on CBCT images. Int Endod J. 2014 Sep;47(9):854-63.
28. Kamberi B, Hoxha V, Stavileci M, Dragusha E, Kuçi A, Kqiku L. Prevalence of apical periodontitis and endodontic treatment in a Kosovar adult population. BMC Oral Health. 2011 Nov;11:32.
29. Berlinck T, Tinoco JM, Carvalho FL, Sassone LM, Tinoco EM. Epidemiological evaluation of apical periodontitis prevalence in an urban Brazilian population. Braz Oral Res. 2015;29:51.
30. Terças AG, de Oliveira AE, Lopes FF, Lopes FF, Maia Filho EM. Radiographic study of the prevalence of apical periodontitis and endodontic treatment in the adult population of São Luís, MA, Brazil. J Appl Oral Sci. 2006 Jun;14(3):183-7.
31. Paes da Silva Ramos Fernandes LM, Ordinola-Zapata R, Húngaro Duarte MA, Álvares Capeloza AL. Prevalence of apical periodontitis detected in cone beam CT images of a Brazilian subpopulation. Dentomaxillofac Radiol. 2013;42(1):80179163.
32. Peters LB, Lindeboom JA, Elst ME, Wesselink PR. Prevalence of apical periodontitis relative to endodontic treatment in an adult Dutch population: a repeated cross-sectional study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011 Apr;111(4):523-8.
33. Gomes MS, Blattner TC, Sant’Ana Filho M, Grecca FS, Hugo FN, Fouad AF, et al. Can apical periodontitis modify systemic levels of inflammatory markers? A systematic review and meta-analysis. J Endod. 2013 Oct;39(10):1205-17.