Bigler, R., & Aggarwal, V. (2018). ortho-Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp²)–C(sp³) Cross-Coupling Reactions. Angewandte Chemie - International Edition, 57(4), 1082–1086. https://doi.org/10.1002/anie.201711816

Peer reviewed version

License (if available):
CC BY-NC

Link to published version (if available):
10.1002/anie.201711816

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley-VCH at http://onlinelibrary.wiley.com/doi/10.1002/anie.201711816/abstract. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/
Abstract: A new strategy for the coupling of a broad scope of electronically diverse aromatics to boronic esters is reported. The coupling sequence, which relies on the directed ortho-lithiation of chromium arene complexes followed by boronate formation and oxidation, occurs with complete ortho-selectivity and enantiospecificity to give the coupling products in excellent yields and with high functional group tolerance. An intermediate chromium arene boronate complex was characterized by X-ray, NMR and IR to elucidate the reaction mechanism.

While the coupling of aromatic building blocks via the Suzuki-Miyaura cross-coupling is well established in organic and medicinal chemistry, the enantiospecific coupling of secondary and tertiary alkyl boronic esters to aromatics through transition metal catalyzed processes is considerably more challenging. Even though substantial progress has been made over the last two decades, most processes are not generally applicable with erosion of enantiomeric purity often observed.

As an alternative to these palladium catalyzed processes, we and Ready have recently reported a series of transition metal-free, stereospecific couplings of chiral alkyl boronic esters with aryl lithium reagents (Scheme 1a-1c). These processes rely on four basic steps: (i) boronate formation, (ii) activation of the aromatic group, (iii) stereospecific 1,2-migration of the alkyl group, and (iv) elimination and rearomatization. Suitable activators were found for aromatics with electron-donating groups in the meta-positions and electron rich heterocycles (Scheme 1a), phenols (Scheme 1b), and pyridines (Scheme 1c).

However, aromatics without particular functional groups to react with an activating agent could not undergo such couplings (e.g. the simplest phenyl group). We reasoned that such couplings could be achieved if step (ii) in these transformations occurred spontaneously upon formation of the boronate complex. This could be realized if the aromatic possessed a strong electron sink. We therefore considered the possibility of using chromium arene complexes of the type [Cr(CO)₅(phen)] which are easily prepared and known to react readily with organometallic reagents. We queried whether they were sufficiently electron withdrawing to trigger the 1,2-migration without external activation (Scheme 1d). Subsequent oxidation of the resulting cyclohexadienyl anion to the corresponding cation and elimination of the boronic ester moiety would give the chromium arene complex. Further oxidation would lead to removal of the Cr(CO)₅ fragment to give the decomplexed coupled product. An additional attractive feature of chromium arene complexes is that they significantly acidify Ar-H bonds facilitating lithiation including ortho-lithiation, thereby enabling the possibility for ortho-selective cross-coupling. In this paper we report our success in achieving this coupling reaction, although it ultimately differed mechanistically from the planned pathway.

We began our study by reacting Li[Cr(CO)₅(C₆H₆)] (1.25 equiv, generated by lithiation of [Cr(CO)₅(C₆H₆)] (1a) with n-BuLi) with boronic ester rac-2aa in THF to give the corresponding boronate. After 4 h at -78 °C, I₂ (10 equiv) was added and the solution was warmed to rt overnight. To our delight, the decomplexed cross-coupled product rac-3aa was isolated in 21% yield. The major fraction contained a mixture of boron-incorporated products, indicating inefficient elimination of the boronic ester moiety in step (iv). By adding I₂ as a suspension in MeOH, the yield of rac-3aa dramatically increased to 83% and the only observed side product was the Si₂I₂ iodonation product 4-(4-methoxyphenyl)butan-2-yl iodide in 6% yield. The formation of this side product was reduced to 3% by changing form MeOH to n-PrOH, and rac-3aa was obtained in 90% isolated yield. Importantly, when enantioenriched 2a (er = 96:4) was used, 3aa was obtained with identical enantiomeric excess indicating that the reaction occurs with perfect enantiospecificity (Table 1).
When the [Cr(CO)]_2(anisole) (1b) was employed under identical conditions, 3ab was obtained in excellent yield and as a single regiosomer. Perfect ortho-selectivity was also observed for products 3ac and 3ad containing ethoxy and isopropoxy directing groups, respectively. A series of functional groups (i.e., alkyl (3ad), CF_3 (3ae), Cl (3af), OTIPS (3g), OMe (3h), and NMe_2 (3i)) were well tolerated and the sp^3-sp^3 cross-coupling occurred selectively ortho to the methoxy substituent. Interestingly, the 4-substituted product 3ai was obtained as a single regiosomer in the case of the resorcinol derived chromium complex 1l, indicating that the initially formed 2-lithiated arene is too hindered to form the boronate complex and rearranges to the 4-lithiated isomer, which is selectively trapped by 2a.

To highlight the synthetic utility of this method for late stage modification, the estradiol-derived chromium complex 1k was selectively coupled in the 6-position with boronic esters 2a and ent-2a to give the diastereomeric products 3ak and 3ak' in high yields and complete diastereoselectivity. Furthermore, complexes 1l and 1m containing the benzoazole motif, which is widely found in natural products and drugs, were selectively mono-lithiated and coupled to give products 3al and 3am in high yield and complete enantiospecificity.

Besides ethers, acetal groups were also found to be effective directing group as exemplified by 3an, which was obtained in 52% yield when KH_2PO_4 was added to quench HI formed during the reaction. In the absence of base, the free ortho-phenol 3ao was isolated in 83% and with complete enantiospecificity. Again, functional groups were well tolerated as shown for products 3ap–3ar. Even when other directing groups such as fluoro or methoxy were present, the ortho-phenols were obtained selectively.

As halogenated aromatics are important motifs in drugs and agrochemicals, we next investigated the use of fluoro and chloro aromatics. To our delight, the reaction with fluorobenzene (1s) worked similarly well, and the desired product 3as was obtained in 76% yield as a single regiosomer and with complete enantiospecificity. Again, functional groups such as methyl (3t and 3u), OTIPS (3av), OMe (3aw), NMe_2 (3ax), and F (3ay) were well tolerated and the cross-coupling occurred selectively ortho to the fluoro substituent. Finally, the ability of chloride to act as a directing group was exemplified for the chlorinated chromium complexes 1z and 1a, which selectively afforded ortho-cross-coupled products 3az and 3aa in 80% and 51% isolated yield. Our results indicate that the order of ortho-directing ability decreases along the series: OCH_3OEt > F > OR > Cl > alkyl, CF_3, NMe_2, and OTIPS.

The scope of boronic esters was investigated next (Table 2). Boronic esters containing larger alkyl substituents such as ethyl (2b), isopropyl (2c) or cyclopropyl (2d) were well tolerated and the coupled products 3ba–3da were isolated in 79–93% yield. An OTBS group was well tolerated when KH_2PO_4 was added with iodine as shown for 3ea, which was obtained in 74% yield. Similarly to the OCH_3OEt group (vide supra), the OTBS group was cleaved in the absence of base and the free alcohol 3fa was obtained in similar yield. Using KH_2PO_4 as additive, other functional groups such as acetal (3ga), ester (3ha), nitrile (3ia), azide (3jb), or olefin (3kb) were tolerated as well and the

Complex	Yield	Regioselectivity	ER
2a	92%	100%	96:4
3ab	90%	100%	96:4
3ac	90%	100%	96:4
3ad	96%	100%	96:4
3ae	51%	100%	96:4
3af	55%	100%	96:4
3ag	41%	100%	96:4
3ah	87%	> 20:1	
3ai	84%	> 20:1	
3aj	78%	100%	96:4
3ak	71%	100%	96:4
3al	76%	100%	96:4
3am	84%	99%	
3an	91%	97:3	96:4
3ao	83%	100%	96:4
3ap	91%	100%	96:4
3aq	56%	100%	96:4
3ar	77%	100%	96:4
3as	76%	100%	96:4
3at	80%	100%	96:4
3au	84%	99%	

Table 1. Substrate scope of chromium arene complexes 1 for enantiospecific sp^3-sp^3 coupling to access ortho-cross-coupled aromatics. \(^a\)

\(^a\) Reaction were carried out with 0.30 mmol of boronic ester, 1.25 equiv of lithiated chromium arene complex, and 10.0 equiv of I\(_2\). Yields recorded are those of isolated material. \(^b\) No separation achieved by HPLC. \(^c\) Reaction warned to rt after addition of boronic ester. \(^d\) ent-2a was used. \(^e\) KH\(_2\)PO\(_4\) added with I\(_2\) in MeOH.

Ethoxymethyl acetal employed and no base used during oxidation.

Interestingly, the 4-substituted product 3ai was obtained as a single regiosomer in the case of the resorcinol derived chromium complex 1l, indicating that the initially formed 2-lithiated arene is too hindered to form the boronate complex and rearranges to the 4-lithiated isomer, which is selectively trapped by 2a.

To highlight the synthetic utility of this method for late stage modification, the estradiol-derived chromium complex 1k was selectively coupled in the 6-position with boronic esters 2a and ent-2a to give the diastereomeric products 3ak and 3ak’ in high yields and complete diastereoselectivity. Furthermore, complexes 1l and 1m containing the benzoxide motif, which is widely found in natural products and drugs, were selectively mono-lithiated and coupled to give products 3al and 3am in high yield and complete enantiospecificity. Besides ethers, acetal groups were also found to be effective directing group as exemplified by 3an, which was obtained in 52% yield when KH\(_2\)PO\(_4\) was added to quench HI formed during the reaction. In the absence of base, the free ortho-phenol 3ao was isolated in 83% and with complete enantiospecificity. Again, functional groups were well tolerated as shown for products 3ap–3ar. Even when other directing groups such as fluoro or methoxy were present, the ortho-phenols were obtained selectively.

As halogenated aromatics are important motifs in drugs and agrochemicals, we next investigated the use of fluoro and chloro aromatics. To our delight, the reaction with fluorobenzene (1s) worked similarly well, and the desired product 3as was obtained in 76% yield as a single regiosomer and with complete enantiospecificity. Again, functional groups such as methyl (3t and 3u), OTIPS (3av), OMe (3aw), NMe\(_2\) (3ax), and F (3ay) were well tolerated and the cross-coupling occurred selectively ortho to the fluoro substituent. Finally, the ability of chloride to act as a directing group was exemplified for the chlorinated chromium complexes 1z and 1a, which selectively afforded ortho-cross-coupled products 3az and 3aa in 80% and 51% isolated yield. Our results indicate that the order of ortho-directing ability decreases along the series: OCH\(_3\)OEt > F > OR > CI > alkyl, CF\(_3\), NMe\(_2\), and OTIPS.

The scope of boronic esters was investigated next (Table 2). Boronic esters containing larger alkyl substituents such as ethyl (2b), isopropyl (2c) or cyclopropyl (2d) were well tolerated and the coupled products 3ba–3da were isolated in 79–93% yield. An OTBS group was well tolerated when KH\(_2\)PO\(_4\) was added with iodine as shown for 3ea, which was obtained in 74% yield. Similarly to the OCH\(_3\)OEt group (vide supra), the OTBS group was cleaved in the absence of base and the free alcohol 3fa was obtained in similar yield. Using KH\(_2\)PO\(_4\) as additive, other functional groups such as acetal (3ga), ester (3ha), nitrile (3ia), azide (3jb), or olefin (3kb) were tolerated as well and the
products were obtained in high yield and with perfect enantiospecificity. Finally, while the sterically demanding menthol boronic ester 2m was successfully coupled to afford 3mb in 74\% and >20:1 dr, the coupling was unsuccessful with tertiary boronic esters such as AdBpin (2n), possibly because of the increased steric bulk leading to inefficient boronate formation.

To shed light on the reaction mechanism of this new transformation, chromium benzene complex 1a was treated with n-BuLi and MeBpin and the solution was stirred for 4 h at –78 °C in THF, at which point the \(^{11}\)B NMR spectrum showed a singlet at 3.0 ppm characteristic of boronate complex 4 (Scheme 2). To our surprise, the \(^{11}\)B NMR spectrum did not change upon stirring overnight at rt indicating that the chromium tricarbonyl group was not sufficiently electron-withdrawing for the 1,2-migration to occur. Complex 4 was isolated in 73\% after trituration with EtO\(_2\) and the structure was unambiguously proven by X-ray crystallography as the monohydrate THF adduct (Figure 1).\(^{13}\)

The crystal structure of 4 shows a planar arrangement of the six-membered ring with aromaticity clearly intact. The lithium counterion coordinates to an oxygen of the pinacol moiety, two solvent molecules (water and thf), as well as end-on to a CO ligand of the Cr(CO)\(_3\) fragment. When this fragment is compared to the related complex [Cr(CO)\(_5\)(C\(_6\)H\(_5\)CH(OEt))]\(^{10}\), the average C–O (carbon monoxide) bond length in 4 is slightly longer (1.160 Å vs. 1.152 Å) and the average Cr–C bond length is slightly shorter (1.828 Å vs. 1.840 Å). This indicates a stronger backdonation from the metal center, which can be attributed to greater electron donation from the electron rich aromatic ring. This is in agreement with IR spectroscopy, where the CO bands are at considerably lower frequency when compared to the parent chromium complex 1a (1940 and 1825 cm\(^{-1}\) vs. 1982 and 1915 cm\(^{-1}\))\(^{11}\), indicating an electron-rich chromium center.

To explain the observed reactivity we propose the mechanism outlined in Scheme 3. Two reaction pathways are feasible when boronate 4 is treated with I\(_2\). In the minor pathway, it reacts as an organometallic-type nucleophile at the sp\(^3\) carbon to give the S\(_{2,2}\) iodonation product (vide supra)\(^3\). In the major pathway however, oxidation occurs at the electron-rich chromium center. This would render the Cr(CO)\(_3\) motif more electron-withdrawing, triggering the 1,2-migration leading to the cyclohexadienyl complex. In the presence of alcoholic solvent, the boronic ester is eliminated (with formation of H\(^+\)) to give the cross-coupled chromium arene complex. Finally, the arene is decomplexed in the presence of excess iodine.

In conclusion, we have developed a new sp\(^2\)-sp\(^3\) cross-coupling reaction, which relies on the use of easily accessible, electronically diverse chromium arene complexes, which act as traceless mediators to give the desired products in high yield, excellent ortho-selectivity and complete enantiospecificity. Based on the X-ray structure of boronate 4, a mechanism based...
on selective oxidation of \(\text{Cr}(0) \) followed by 1,2-migration and elimination is proposed. Although there has been a recent surge in stereoselective cross-coupling strategies,\(^5\) many of the products presented here are inaccessible by such methods. Thus, the current method is a valuable addition to the ever-growing arsenal of cross-coupling reactions.

Acknowledgements

We thank Dr. Natalie E. Pridmore for X-ray analysis of 4 and the University of Bristol for financial support. R.B. thanks the Swiss National Science Foundation fellowship program (P2EZP2_1652).

Keywords: boronic esters • chromium complexes • aromatics • arylation • cross-coupling

[1] For recent review articles, see: a) D. Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2015, 54, 1082; Angew. Chem. 2015, 127, 1096; b) C. C.-Y. Wang, J. Derosa, M. R. Biscoe, Chem. Sci. 2015, 6, 5105; c) A. H. Chemey, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587.

[2] a) S.-M. Zhou, M.-Z. Deng, L.-J. Xia, M.-H. Tang, Angew. Chem. Int. Ed. 1998, 37, 2845; Angew. Chem. 1998, 110, 3061; b) M. Rubini, M. Rubin, V. Gogvargyan, J. Am. Chem. Soc. 2003, 125, 7188; c) T. Ohmura, T. Awano, M. Suginome, J. Am. Chem. Soc. 2010, 132, 13191; d) T. Awano, T. Ohmura, M. Suginome, J. Am. Chem. Soc. 2011, 133, 20738; e) B. W. Glasspoole, M. S. Oderinde, B. D. Moore, A. Antoff-Finch, C. M. Crudden, Synthesis 2013, 45, 1759; f) D. Imao, B. W. Glasspoole, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc. 2009, 131, 5024; g) S. C. Matthew, B. W. Glasspoole, P. Eisenberger, C. M. Crudden, J. Am. Chem. Soc. 2014, 136, 5828; h) L. Chausset-Boisarie, K. Ghobati, E. LaBine, J. Li, Y. Chen, V. K. Aggarwal, C. M. Crudden, Chem. Eur. J. 2013, 19, 17698.

[3] For related trifluoroborates, see: a) G.-H. Fang, Z.-J. Yan, M.-Z. Deng, Org. Lett. 2006, 8, 357; b) D. L. Sandrock, L. Jean-Gérard, C. Chen, S. D. Dreher, G. A. Mølinder, J. Am. Chem. Soc. 2010, 132, 17108; c) J. C. H. Lee, R. McDonald, D. G. Hall, Nat. Chem. 2011, 3, 894; d) G. A. Mølinder, S. R. Wiśniewski, J. Am. Chem. Soc. 2012, 134, 16856; e) L. Li, S. Zhao, A. Joshi-Pangu, M. Diane, M. R. Biscoe, J. Am. Chem. Soc. 2014, 136, 14027; f) Y. Lou, P. Cao, T. Jia, Y. Zhang, M. Wang, J. Liao, Angew. Chem. Int. Ed. 2015, 54, 12134; Angew. Chem. 2015, 127, 12302.

[4] a) A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat. Chem. 2014, 6, 584; b) J. Llaveria, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137, 10958; c) M. Odachowski, A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2016, 138, 9521; d) V. Ganesh, M. Odatowski, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 9752 – 9756; Angew. Chem. 2017, 129, 9884; e) S. Aichhorn, R. Bigler, E. L. Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9519; f) C. M. Wilson, V. Ganesh, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56, DOI: 10.1002/anie.201710777; g) Angew. Chem. 2017, 129, DOI: 10.1002/ange.201710777.

[5] a) S. Panda, A. Coffin, Q. N. Nguyen, D. J. Tantillo, J. M. Ready, Angew. Chem. Int. Ed. 2016, 55, 2205; Angew. Chem. 2016, 128, 2245; b) S. Panda, J. M. Ready, J. Am. Chem. Soc. 2017, 139, 6038.

[6] E. P. Kündig in Topics in Organometallic Chemistry VII (Eds.: E. P. Kündig), Springer, Berlin, 2004, pp. 3 – 20.

[7] a) M. F. Semmelhack in Comprehensive Organometallic Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, pp. 979 – 1015; b) M. F. Semmelhack, A. Chienov in Topics in Organometallic Chemistry VIII (Ed: E. P. Kündig), Springer, Berlin, 2004, pp. 43 – 69.

[8] a) P. Ricci, K. Krämer, X. C. Cambero, I. Larossa, J. Am. Chem. Soc. 2013, 135, 13258; b) P. Ricci, K. Krämer, I. Larossa, J. Am. Chem. Soc. 2014, 136, 18082; c) D. Whitaker, M. Batuecas, P. Ricci, I. Larossa, Chem. Eur. J. 2017, 23, 12763.

[9] R. Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc. 2011, 133, 16794.

[10] OTIPS and NMe\(_2\) do not act as ortho-directing groups for the lithiation of chromium arene complexes, see: a) N. F. Masters, D. A. Widdowson, J. Chem. Soc., Chem. Commun. 1983, 955; b) R. J. Card, W. S. Tranahovsky, J. Org. Chem. 1980, 45, 2560.

[11] H.-G. Schildzal, T. Volk, D. Bernicke, S. Huneck, Tetrahedron 1997, 53, 9219.

[12] For a related substrate, see: J. C. Gill, B. A. Marples, J. R. Traynor, Tetrahedron Lett. 1987, 28, 2643.

[13] M. F. Costa, M. R. G. Da Costa, M. J. M. Curto, M. Magrinho, A. M. Damas, L. Gales, J. Organomet. Chem. 2001, 632, 27.

[14] For recent review articles, see: a) J. Wang, M. Sánchez-Roselló, J. Luis Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432; b) T. Fujiwara, D. O’Hagan, J. Fluor. Chem. 2014, 167, 16.

[15] CCDC 1585569 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[16] T. M. Gilbert, C. B. Bauer, R. D. Rogers, J. Chem. Crystallogr. 1996, 26, 355.

[17] C. A. L. Mahaffy, P. L. Pauson, Inorg. Synth. 1979, 19, 154.
The sp^2-sp^3 coupling of chromium arene complexes with boronic esters is reported. After ortho-selective lithiation of the aromatic and boronate formation, oxidation at the electron-rich chromium center with I$_2$ triggers the 1,2-migration and Bpin elimination to directly afford the decomplexed ortho-coupled products in high yield and with complete enantiospecificity.