Full-Range LED Dimming Driver With Ultrahigh Frequency PWM Shunt Dimming Control

YIFENG WANG1, (Member, IEEE), XIAOCHEN WU1,1, YUQI HOU1, PENGYU CHENG1, YAN LIANG2, AND LEI LI2

1School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2Beijing Huayuan New Arts Film and Television Equipment Limited Company, Beijing 100000, China

Corresponding author: Xiaochen Wu (wxc18822026645@163.com)

\textbf{ABSTRACT} This paper explores an ultrahigh dimming frequency Light-Emitting Diode (LED) pulse width modulation (PWM) shunt dimming driver that achieves the full-range dimming. Firstly, the dimming frequency is improved to 20kHz for avoiding flicker and audible noise in high dimming requirements application, such as film and television shooting. Secondly, this paper reduces dimming ratio loss at ultrahigh dimming frequency by removing output capacitor. As a result, given 1% dimming ratio is achieved. Subsequently, for improving LED current square waveform at ultrahigh dimming frequency, it is necessary to suppress parasitic oscillation at the falling edge in LED current. Therefore, this paper proposes a method which connects a fast recovery diode with LED in series. In such way, parasitic oscillation at the falling edge in LED current is suppressed. Meanwhile, linear dimming performance is improved such as dimming linearity of low ratio and circuit reliability. Finally, a 120 W experimental prototype is built to drive an LED array comprising 9 LEDs in parallel and 15 LEDs in series. The switching frequency and dimming frequency of prototype are 500 kHz and 20 kHz, respectively. In addition, it achieves full dimming range of 1% to 99.99%.

\textbf{INDEX TERMS} Output capacitance, PWM shunt dimming, ultrahigh dimming frequency, full-range dimming, parasitic parameters.

\section{I. INTRODUCTION}
The light-emitting diodes (LEDs) have attracted much attention due to its advantages, such as long lifespan (approximately 25,000 to 50,000 hours), high luminous efficacy (250 lm/W), small size, and zero pollution \cite{1}–\cite{3}. LED has been widely used in many applications, including street lighting, office lighting, residential lighting and film and television shooting \cite{1}–\cite{4}.

LED illuminance is related to the forward current. Due to the non-linear relationship between its voltage and current, a small voltage variation may cause dramatic change of the forward current, thereby leading to a change in LED illuminance \cite{18}. Therefore, to better control LED illuminance and fully utilize its energy-saving, it is necessary to control a constant current driver using the corresponding dimming method to drive the LED \cite{3}, \cite{6}, \cite{19}, \cite{20}. There are mainly two types of LED dimming methods: amplitude-modulation (AM) dimming and pulse-width-modulation (PWM) dimming \cite{3}, \cite{6}, \cite{21}. Smooth current can be obtained by using AM dimming method, which adjust the LED illuminance by directly changing forward current amplitude. It is easy to control but its dimming lacks linearity and leads to a noticeable shift in the chromaticity coordinates \cite{3}. Therefore, AM dimming method cannot be used for high lighting quality requirements applications. PWM dimming involves the control of LED illuminance by adjusting the time taken for constant current to flow through an LED (i.e. dimming ratio). Because the current amplitude has not changed, as a result, pronounced shift in color temperature is prevented \cite{19}. Therefore, PWM dimming method is suitable for high quality LED lighting applications, such as film and television shooting. However, PWM dimming causes flicker if a low dimming frequency is used, which may affect human health and other equipment. For preventing flicker, improving dimming frequency is an efficient method. When dimming frequency is above 1kHz more or less, flicker is not perceived by the human eyes. Whereas, there are some facilities such as
film and television shooting, photographic equipment is more sensitive to flicker than human eyes. It is necessary to further improve dimming frequency. When dimming frequency is synchronous or much higher than camera frames, flicker can be avoided well. In addition, when dimming frequency is lower than 20 kHz, audible noise is produced due to the magnetostrictive effects of the inductors and the piezoelectric effects of the capacitors. Increasing the dimming frequency is also an effective method for eliminating audible noise [5], [22], [23]. Study [5] performs discontinuous conduction mode (DCM) control on a buck converter without an output capacitor using DC driving technology. It controls LED illuminance by adjusting the number of current pulses in the dimming period. By this means, the goals of no flicker and cost optimization are achieved. However, the accuracy of current control is reduced. Study [8] carries out constant current PWM dimming using a dual-bus buck converter and increases the efficiency of converter. Nevertheless, only experimental verification of low-dimming frequency is conducted.

There are three main PWM dimming schemes, namely PWM enable dimming, PWM series dimming, and PWM shunt dimming [6], [21]. PWM enable dimming performs high-frequency on-off switching by applying a logic-level PWM signal. However, the presence of delay time and rise time increases the time taken for the LED current to reach a constant current value. Thereby further improvement in dimming frequency is affected. PWM series dimming is a dimming method based on LED voltage control. As LED voltage fluctuation can easily cause LED current fluctuation, so a large output capacitor is needed to store energy [3], [21]. PWM shunt dimming realizes dimming by connecting the load to a switch in parallel. This method can achieve high dimming frequency and wide dimming range. But short-circuit switching may cause system stability problem, as well as LED current spike and parasitic oscillation. Snubber circuits such as RC and CD are used to absorb the current spike. And a damping resistor connected in series in the loop is used to suppress parasitic oscillation [8], [21].

Due to the non-linear relationship between LED illuminance and dimming ratio, illuminance is more sensitive to change within a low dimming ratio range. The tendency of LED illuminance changing with dimming ratio is shown in Fig. 1. Curve 1 represents the relationship between dimming ratio and LED illuminance. As shown, LED illuminance becomes gradually stronger as dimming ratio increases. Curve 2 denotes the difference in LED illuminance at every 10% dimming ratio within the range of 0% to 100%. Based on Curve 2, it can be concluded that the peak difference of LED illuminance occurs within the dimming ratio of 10% to 20%. However, when the dimming ratio is larger than 20%, the difference of LED illuminance gradually decreases. Hence, it is necessary to fully utilize the dimming capability of the LED at low ratio (<20%). Study [23] uses average current mode control to achieve constant current output in a buck converter without an output capacitor. Meanwhile, it realizes an offline LED driver with dual purposes, namely illumination control and visible light communication (VLC). Both of high dimming frequency and good dimming linearity are obtained. But this paper only provides experimental waveforms within a dimming range of 20% to 80%. Subharmonic oscillation is eliminated in [24] by using average current control (ACC). Besides, the dual-phase mode is employed to achieve good current balance and small current ripples. However, this experiment only exhibits a dimming range of 20% to 80% at a dimming frequency of 20 kHz. The accuracy of average LED current control is enhanced through an autozeroed integrator as stated in [25]. In addition, the employment of a fast-settling technique allows a LED driver to reach steady state within three switching cycles after the dimming signal is triggered. Unfortunately, experimental verification is still conducted within a dimming range of 5% to 95%.

At present, many topologies are used for dimming control, such as buck [5]–[8], boost [9], buck-boost-buck [10], flyback [11], buck-flyback-buck [3], half-bridge [12], Cuk [27], and resonant circuits [2], [13]–[17]. These topologies achieve one or more optimization goals, including high efficiency, wide dimming range, wide input voltage range, and cost-saving, through their corresponding control strategies.

PWM shunt dimming method is beneficial for ultrahigh dimming frequency and full-range dimming. In addition, a buck converter is used widely due to its simplicity, high reliability and high efficiency. Based on the above two points, this paper selects three-switch buck converter as dimming topology. However, in the dimming topology, the switching frequency will be decreased when LED current is zero to increase converter efficiency. Therefore, the inductor current will fluctuate periodically with dimming frequency. And audible noise is produced if dimming frequency is lower than 20 kHz. Besides, flicker should also be not perceived by high quality lighting requirement applications and human eyes. In order to eliminate audible noise and avoid flicker, the dimming frequency is improved as high as 20 kHz in this paper.

Subsequently, both the full-range dimming and better LED current square waveform at ultrahigh dimming frequency should be achieved. During ultrahigh-frequency PWM shunt dimming, the output current pulse width is relatively narrow and short. Therefore, the converter should have enough fast...

FIGURE 1. LED light illuminance at different dimming ratios.
response speed to reduce dimming ratio loss and improve low ratio dimming capacity. Besides, to obtain better LED current square waveform and improve linear dimming performance, it is necessary to suppress parasitic oscillation at the falling edge in LED current.

For achieving the full-range dimming and obtaining better LED current square waveform at ultrahigh dimming frequency, the following studies are carried out:

1) Builds the mathematical model consisting of parasitic parameters. The effect of parasitic parameters on system stability and performance of output port is analyzed.

2) Increases response speed of output port by removing output capacitor. In such way, dimming ratio loss is reduced and low ratio dimming capacity is improved.

3) Suppresses parasitic oscillation of LED current to obtain better LED current square waveform. Meanwhile, linear dimming performance is also improved such as dimming linearity of low ratio and circuit reliability.

This paper is mainly divided into four sections. Section II investigates the effect of parasitic parameters on system stability by establishing a mathematical model of the three-switch buck converter consisting of parasitic parameters. Section III analyzes the effect of output capacitance and parasitic parameters on ultrahigh frequency dimming in detail. Meanwhile, a method for suppressing oscillation at falling edge of LED current is proposed. Section IV presents the experimental results. Section V concludes this paper.

II. SYSTEM MODELING AND STABILITY ANALYSIS WITH CONSIDERATION OF PARASITIC PARAMETERS

The specific converter topology is shown in Fig. 2(a). \(Q_1 \) is the main switch, and \(Q_2 \) is the synchronous switch. Based on the general buck converter, a dimming switch, \(Q_3 \), which is used for output short-circuit, is connected at both ends of the LED in parallel. Inductor current closed-loop control is performed to maintain inductor current at a constant value \(I_{\text{ref}} \). Ultrahigh-frequency PWM shunt dimming is achieved by adjusting the duty cycle of \(V_{g-Q3} \). Fig. 2(b) shows the ideal waveforms, where \(V_{g-Q1} \) is driving voltage of \(Q_1 \), and \(V_{g-Q3} \) is driving voltage of \(Q_3 \). When \(Q_3 \) is turned off, the converter turns into a general buck converter. At this point, \(Q_1 \) and \(Q_2 \) are switched at a high switching frequency (such as 500 kHz), and LED is driven by a constant current \(I_{\text{ref}} \). When \(Q_3 \) is turned on, \(Q_1 \) and \(Q_2 \) are switched at a low switching frequency (such as 50 kHz) to reduce switching losses and improve efficiency. LED voltage is nearly clamped to zero, and it is lower than bias voltage of LED. LED is as an open circuit and LED current is zero. It’s shown that the duty cycle of \(Q_3 \) complements the dimming ratio, \(D_{\text{dim}} \). Thus, a lower duty cycle of \(Q_3 \) results in a higher dimming ratio \(D_{\text{dim}} \). In other words, a lower duty cycle of \(Q_3 \) leads to longer LED constant current driving time and higher LED illuminance.

It should be noted that, the switching frequency of \(Q_1 \) is changeable with \(V_{g-Q3} \). Therefore, the inductor current \(i_L \) fluctuates periodically with dimming frequency actually.

And audible noise is produced if dimming frequency is lower than 20 kHz. In this paper, the dimming frequency is 20kHz, noise audible to human ears which caused by switching converter is eliminated.

This paper considers three main parasitic parameters, including LED junction capacitance \(C_J \), \(Q_3 \) drain-source capacitance \(C_{DS} \), and long wires parasitic inductance \(L_g \). To decrease wires loss, long wires is thick enough and parasitic resistance \(R_s \) is small enough generally. It is not vital for oscillation suppression. Therefore, this paper neglects \(R_s \). The schematic diagram of converter considering these parasitic parameters is shown in Fig.3.

Meanwhile, the LED equivalent circuits in different cases are also shown in Fig.3. As can be seen, high frequency LED equivalent circuit (in case of high frequency LED current) is formed by ideal diode, bias voltage \(V_D \), series equivalent resistance \(R_0 \) and parallel capacitor \(C_J \). Thereby low frequency LED equivalent circuit (in case of low frequency LED current) could be obtained by removing \(C_J \).

In addition, for analyzing the effect of parasitic parameters on system stability and performance of output port, high frequency LED dynamic equivalent circuit (in case of high frequency LED current and \(U_{\text{LED}} > V_D \)) also need to be built.

A. HIGH FREQUENCY LED DYNAMIC EQUIVALENT CIRCUIT

The high frequency LED dynamic equivalent circuit could be obtained by parallel connection of the low frequency LED
The dynamic equivalent circuit (in case of low frequency LED current and $U_{LED} > V_D$) and C_1. Therefore, the low frequency LED dynamic equivalent circuit is established firstly.

Based on [26], the $V-I$ relationship of LED could be expressed by
\[
i_{LED} = a_1 u^2_{LED} + a_2 u_{LED} + a_3 (U_{LED} > V_D) \tag{1}
\]
where i_{LED} is the LED current and U_{LED} is the LED voltage. a_1, a_2, a_3 are the characteristic coefficients. Based on (1), the low frequency LED dynamic mathematical model is expressed
\[
\begin{align*}
i_{LED} &= k \hat{u}_{LED} \\
k &= 2a_1 V_{LED} + a_2
\end{align*} \tag{2}
\]
\[
\hat{u}_{LED} \text{ is the fluctuation of } i_{LED} \text{ and } U_{LED} \text{ respectively, } V_{LED} \text{ is the steady voltage of LED; and } k \text{ is relative coefficient. Based on (2), it can be seen that the low frequency LED dynamic equivalent circuit is an equivalent changeable resistor } 1/k. \text{ Therefore, the high frequency LED dynamic equivalent circuit which is shown in Fig.3 is obtained by parallel connection of } 1/k \text{ and } C_1.
\]

B. STABILITY ANALYSIS WITH CONSIDERATION OF PARASITIC PARAMETERS

Due to the existence of Q_3, the operating state of three-switch buck converter can be divided into LED driving state when Q_3 is turned off, and output short-circuit state when Q_3 is turned on. Stability of the system consisting of parasitic parameters in both two states is analyzed to verify system stability.

1) **STABILITY ANALYSIS IN LED DRIVING STATE**

Fig 4 shows the total high frequency dynamic equivalent circuit in LED driving state (with Q_3 turned off). The mathematical model of three-switch buck converter under this condition is expressed by
\[
\frac{I_L(s)}{d(s)} = \frac{A_1 s^3 + (L_L C_0 U_{in}) s^2 + A_2 s + U_{in}}{A_3 s^4 + (L_L LC_0) s^3 + A_4 s^2 + (L + L_L) s + 1/k} \tag{3}
\]

According to the Routh stability criterion, the system is absolutely stable. Please refer to the appendix for the Routh tabulation. It is evident that the effect of parasitic parameters is not vital for absolute stability of the system in LED driving state.

2) **STABILITY ANALYSIS IN OUTPUT SHORT-CIRCUIT STATE**

Fig 5 shows the total high frequency dynamic equivalent circuit in the output short-circuit state (with Q_3 turned on). R_d is the on-resistance of Q_3. In this case, the mathematical model of three-switch buck converter is expressed by
\[
\frac{I_L(s)}{d(s)} = \frac{(C_3 L_q U_{in} C_{out} R_d / k) s^3 + B_1 s^2 + B_2 s + B_3}{(C_3 L_q C_{out} R_d / k) s^4 + B_4 s^3 + B_5 s^2 + B_6 s + R_d C_{out} / k} \tag{5}
\]

\[
\begin{align*}
B_1 &= L_q U_{in} C_{out} C_1 / k + C_{out} L_q U_{in} R_d \\
B_2 &= C_{out} L_q U_{in} + R_d U_{in} C_{out} C_1 / k + C_{out} R_d U_{in} / k \\
B_3 &= U_{in} C_{out} / k + C_{out} U_{in} R_d \\
B_4 &= C_{out} C_3 L_q / k + L_q L_{out} C_{out} R_d \\
B_5 &= C_{out} L_q L + C_3 L_{out} C_{out} / k + C_{out} C_3 L_q R_d / k + L_{out} R_d / k \\
B_6 &= L_q C_{out} R_d + C_{out} L / k + R_d L C_{out}
\end{align*} \tag{6}
\]

FIGURE 3. LED equivalent circuits and schematic diagram of converter considering parasitic parameters.
Similarly, according to the Routh stability criterion, the system is also absolutely stable. Please refer to the appendix for the Routh tabulation. Therefore, the effect of parasitic parameters is not vital for absolute stability of the system in output short-circuit state as well.

The mathematical model is expressed by
\[
\frac{I_{LED}(s)}{I_L(s)} = \frac{sC_J + k}{sL_gC_0s^2 + L_gC_0ks^2 + (C_0 + C_J)s + k}
\]

Fig 7 shows the frequency characteristic of the network under different values of \(C_{out}\). It is shown that as \(C_{out}\) increases, amplitude crossover frequency \(\omega_c\) decreases, while the response speed of the network decreases. Thus, the rise time becomes longer.

FIGURE 6. High frequency output port dynamic equivalent circuit considering parasitic parameters.

III. THE EFFECT OF OUTPUT CAPACITANCE AND PARASITIC PARAMETERS ON ULTRAHIGH FREQUENCY DIMMING

As seen from Fig 3, all the three parasitic parameters (\(C_J\), \(C_{DS}\), and \(L_g\)) and output capacitor \(C_{out}\) are located outside the inductor current closed loop. Thus, the effect of those parameters on ultrahigh frequency dimming can be analyzed by establishing a mathematical model of output port. In this section, the effect of \(C_{out}\) on dimming ratio loss is firstly analyzed. Subsequently, the effect of three main parasitic parameters on performance of output port is also presented. In addition, the mechanism for the formation of oscillation at falling edge in LED current is studied in detail. Finally, an oscillation suppression method is proposed to obtain better LED current square waveform and linear dimming performance at ultrahigh dimming frequency. Fig 6 shows the high frequency output port dynamic equivalent circuit comprising the parasitic parameters.

A. EFFECT OF \(C_{out}\) ON DIMMING RATIO LOSS

The effect of \(C_{out}\) on dimming ratio loss is shown in two aspects. Namely, the rise time \(t_r\) and the delay time \(t_d\).

1) **THE EFFECT OF \(C_{out}\) ON RISE TIME**

The high frequency output port dynamic equivalent circuit in LED driving state with \(C_{out}\) is shown in Fig.6.

![High frequency output port dynamic equivalent circuit considering parasitic parameters.](image)

FIGURE 7. Frequency characteristic under different values of \(C_{out}\).

FIGURE 8. Waveforms of LED current under different values of \(C_{out}\).

2) THE EFFECT OF \(C_{out}\) ON DELAY TIME

From Fig 8, \(t_{d1}, t_{d2}, t_{d3}\), and \(t_{d4}\) are the delay time of LED current corresponding to \(C_{out1}, C_{out2}, C_{out3}\), and \(C_{out4}\) respectively. \(t_{d1}, t_{d2}, t_{d3}\), and \(t_{d4}\) are the actual delay time of LED current corresponding to \(C_{out1}, C_{out2}, C_{out3}\), and \(C_{out4}\). It’s clearly shown \(t_{d1} < t_{d2} < t_{d3} < t_{d4}\) and \(t_{d1} \approx 0\).

Hence, the following conclusion can be drawn. As \(C_{out}\) increases, the rise time becomes longer, and the dimming ratio loss increases.

The high frequency output port dynamic equivalent circuit in LED driving state with \(C_{out}\) is shown in Fig.6.
calculated by

$$t_d = \frac{C_i V_D}{I_{ref}} = \frac{(C_{out} + C_{DS}) V_D}{I_{ref}}$$ (8)

V_D is bias voltage of LED. I_{ref} is the constant LED current.

Based on (8), it’s clearly shown $t_{d1} < t_{d2} < t_{d3} < t_{d4}$ and $t_{d1} \approx 0$. Hence, as C_{out} increases, the delay time becomes longer, and the dimming ratio loss increases.

In summary, as C_{out} increases, both the rise time and delay time increase, and the dimming ratio loss increases. When given dimming ratio is low, $t_i + t_d$ is probably larger than given dimming time, i_{LED} could not even reach the constant current value, and thus LED could not be driven normally.

B. EFFECT OF PARASITIC PARAMETERS ON LED CURRENT SQUARE WAVEFORM

The effect of three main parasitic parameters on performance of output port is presented after removing C_{out}. In addition, the mechanism for the formation of oscillation at falling edge in LED current is studied in detail.

1) THE EFFECT OF PARASITIC PARAMETERS ON PERFORMANCE OF OUTPUT PORT IN LED DRIVING STATE

The high frequency output port dynamic equivalent circuit in LED driving state without C_{out} is shown in Fig.6. The LED current-to-inductor current transfer function is expressed by

$$\frac{I_{LED}(s)}{I_L(s)} = \frac{SC_1/k + 1}{(C_LkC_{DS}/k)s^3 + (L_gC_{DS})s^2 + Ds + 1}$$ (9)

$$D = C_{DS}/k + C_1/k$$ (10)

Fig 9 shows its corresponding frequency characteristic of the output port under different parasitic parameters.

In the frequency characteristic, resonance peak M_r represents the relative stability of output port; resonance frequency ω_r represents the speed of dynamic response; Based on Fig 9, it indicates that relative stability of the output port increases as C_{DS} and L_g increase but decreases as C_L increases. The response speed of the output port decreases as C_{DS}, L_g, and C_L increase.

2) THE EFFECT OF PARASITIC PARAMETERS ON PERFORMANCE OF OUTPUT PORT IN OUTPUT SHORT-CIRCUIT STATE

The high frequency output port dynamic equivalent circuit in output short-circuit state without C_{out} is shown in Fig.6. The LED current-to-inductor current transfer function is expressed by (11). On this basis, it is evident that the output port is a second-order oscillation element when Q_3 is turned on, while resonance occurs at C_L and L_g.

$$\frac{I_{LED}(s)}{I_L(s)} = \frac{(SC_1/k + 1)R_d}{(C_L/k)s^2 + (C_1R_d/k + L_g)s + (R_d + 1/k)}$$ (11)

Fig 10 shows the frequency characteristic of the output port under different parasitic parameters.

Based on Fig 10, it is shown that as L_g increases, both resonance peak M_r and resonance frequency ω_r decrease. Namely, relative stability of the output port increases and the response speed of the output port decreases. At the same time, the output port is a second-order oscillation element, where M_r and ω_r also represent oscillation amplitude and oscillation frequency in the time domain, respectively. Therefore, as L_g increases, oscillation amplitude decreases and oscillation frequency decreases.

Similarly, as C_L increases, resonance peak M_r increases and resonance frequency ω_r decreases. Both the relative stability and response speed of the output port decrease. Moreover, oscillation amplitude increases but oscillation frequency decreases. At the same time, bandwidth frequency ω_b, which means damping, basically does not change with C_L. The oscillation time (also the settling time) is only related to the
response speed of the output port. Therefore, oscillation time increases as C_J increases.

Fig. 11 shows the simulation waveforms of falling edge in LED current under different values of L_g and C_J. In this Fig.11(a), I_{Lg1}, I_{Lg2}, and I_{Lg3} are LED current values corresponding to L_{g1}, L_{g2}, and L_{g3}, respectively. The oscillation peaks at I_{Lg1}, I_{Lg2}, and I_{Lg3} are noted as A_1, A_2, and A_3. t_1, t_2, and t_3 are times when the first oscillation peak appears at I_{Lg1}, I_{Lg2}, and I_{Lg3}, respectively. It can be seen that $A_1 > A_2 > A_3$, $t_1 < t_2 < t_3$. It indicates that an increase in L_g results in a decrease in the oscillation amplitude and oscillation frequency at the falling edge of LED current.

Based on Fig.11(b), I_{Lc1}, I_{Lc2}, and I_{Lc3} are LED current values corresponding to C_{J1}, C_{J2}, and C_{J3}, respectively. The oscillation peaks at I_{Lc1}, I_{Lc2}, and I_{Lc3} are noted as B_1, B_2, and B_3. t_4, t_5, and t_6 are times when the third oscillation peak appears at I_{Lc1}, I_{Lc2}, and I_{Lc3}, respectively. It is shown that $B_1 < B_2 < B_3$, $t_4 < t_5 < t_6$. It is observed that an increase in C_J results in an increase in the oscillation amplitude and a decrease in the oscillation frequency at the falling edge of LED current. Meanwhile, it is also shown that $t_4 < t_5 < t_6$, indicating an increase in C_J causes an increase in oscillation time.

Table 1 summarizes the effect of parasitic parameters on LED current and the performance of output port.

Parasitic Oscillation Suppression Method
C_{ds}
↑↓

$↑↓$ show the changing trend of parasitic parameters for improving the corresponding performance. Where $↑$ indicates an increase, and $↓$ indicates a decrease.

Parasitic oscillation at the falling edge of LED current is not beneficial for further improvement of LED current square waveform at ultrahigh dimming frequency. Therefore, it is necessary to suppress the current parasitic oscillation.

C. PARASITIC OSCILLATION SUPPRESSION METHOD

Based on the above analysis, oscillation occurs at the falling edge in LED current due to C_J and L_g. From Table 1, it is obvious that reducing C_J could lower both oscillation amplitude and oscillation time. Besides, it can also improve the relative stability and response speed of output port.

However, it is difficult to directly reduce C_J. Therefore, this paper proposes a method which connects a fast recovery diode D_f with LED in series. In such way, C_J is reduced indirectly and the current parasitic oscillation is suppressed. Better LED current square waveform could be obtained. Meanwhile, linear dimming performance is also improved such as dimming linearity of low ratio and circuit reliability. Fig.12 shows the schematic diagram of the dimming driver.
When Q_3 is turned off, D_f conducts current and LED is driven normally. When Q_3 is turned on, D_f is turned off quickly and resonance occurs among C_J, C_{Df} and L_g. The equal capacitance C_{eq} is expressed by

$$C_{eq} = \frac{C_J C_{Df}}{C_J + C_{Df}} < \min(C_J, C_{Df}) \quad (12)$$

C_{eq} is smaller than C_J, which is equivalent to indirectly reduce LED junction capacitance. The oscillation amplitude and oscillation time both are reduced. Fig. 13 shows the related simulation waveforms.

$\text{FIGURE 13. Simulation waveforms without and with a fast recovery diode.}$

I_{LO1} and I_{LO2} are corresponding current values without and with a fast recovery diode when Q_3 is turned on. From Fig 13, it is shown that by connecting a fast recovery diode, the oscillation time and oscillation amplitude can be significantly reduced.

The traditional method which series an external damping resistor R_r with LED can also reduce oscillation amplitude and oscillation time by increasing damping of output port. The proposed method has following advantages compared with the traditional method:

1) Simplify the design process. The value of R_r depends on specific value of L_g and C_J. However, it is unnecessary in the proposed method because C_{eq} must be smaller than C_J.

2) Reduce power loss. A larger R_r will result in a larger power loss. In comparison, the forward voltage of D_f is relatively smaller.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

An 800W AC/DC dimming system prototype is built in the laboratory, as shown in Fig. 14. The dimming system includes three stages, and the proposed three-switch buck dimming driver is stage 3. Input current from grid is continuous and sin waveform, the input current of three-switch buck dimming driver (dimming driver for short) is switching due to the buck topology.

$\text{FIGURE 14. System block diagram of prototype.}$

Table 2 presents the specific parameters of the three-switch buck dimming driver (stage 3), and Fig.12 shows the schematic diagram of the dimming driver.

$\text{TABLE 2. Parameters of the three-switch buck dimming driver.}$

Parameter	Value
Input voltage, V_i	60 V
Output constant current, I_o	2.5 A
LED voltage, V_{LED}	48 V
High switching frequency, f_w	500 kHz
Inductance, L	150 uH
Dimming frequency, f_{dim}	20 kHz
Bias voltage of LED, V_D	40 V
Long wires inductance, L_g	1.3 μH(20kHz)
970nH(500kHz)	900nH(1MHz)
620pF(20kHz)	650pF(500kHz)
680pF(1MHz)	
LED junction capacitance, C_J	23mΩ
Q_1, drain-source capacitance, C_{D1}	392pF
Q_1, Q_2, Q_3	SIR680DP
Output diode D_f	DSEP15-06A
Snubber capacitance, C_s	3nF
Snubber resistance, R_s	20Ω
Junction capacitance of diode, C_{Df}	12pF
turn-on voltage set by chip, V_{turn}	15V

The paper compromises 60V as the input voltage of three-switch buck dimming driver. There are three reasons:

1) When the input voltage of dimming driver is lower, input current RMS is larger at the same output power. Therefore, the dimming driver efficiency is decreased.

2) If any LED bead is breakdown, those LED beads in series will extinguish, the higher input voltage of dimming driver means more LED beads in series. Hence, high input voltage is not conducive to fault tolerance of LED lighting system.

3) The dimming driver is the backward stage of LLC converter. When the input voltage of dimming driver...
(namely, the output voltage of the LLC converter) is larger, it is difficulty to choose LLC MOSFET due to its larger on-resistance (Lower voltage Si MOSFET has lower on-resistance). Hence, too high input voltage of the dimming driver (LLC synchronous rectification MOSFET limited output voltage within 80V) will not conducive to improve the LLC efficiency.

FIGURE 15. The prototype of dimming driver.

Fig.15 shows the prototype of dimming driver. As Fig. 15(a) shows, each lamp holder includes cold and warm light LED beads. Therefore, two identical 120W LED dimming drivers are needed which is shown in Fig 15(b). This paper only shows one channel experiment waveforms.

A. VERIFICATION OF THE EFFECT OF THE OUTPUT CAPACITANCE

When the given dimming ratios are 50% and 10%, respectively, the actual dimming ratios (namely actual constant current dimming ratio) under different values of C_{out} are shown in Table 3.

Given dimming ratio	C_{out}	delay time t_d/μs	rise time t_r/μs	Actual dimming ratio
50%	0 nF	0	0	0%
	100 nF	1.8	0.8	45.2%
	200 nF	3.4	1.5	40.6%
	300 nF	5	2.5	36.5%
10%	0 nF	0	0	10%
	100 nF	1.8	0.8	5.1%
	200 nF	3.4	1.5	0%
	300 nF	Unable to measure	Unable to measure	0%

Based on Table 3, both t_r and t_d are about zero when C_{out} is 0nF. The actual dimming ratio is consistent with the given dimming ratio. But both t_r and t_d increase as output capacitance increases. The actual dimming ratio decreases gradually. Furthermore, the actual dimming ratio is 0 when output capacitance reaches a certain value.

For the sake of clarity, Fig. 16 shows the experimental waveforms at given 50% dimming ratio when C_{out} are 300 nF and 0 nF, respectively. Fig. 17 shows the experimental waveforms at given 10% dimming ratio when C_{out} are 300 nF and 0 nF, respectively. In these figures, I_L is the inductor current; I_{LED} is the LED current; V_{SW} is the drain-source voltage of Q2; and V_{g-Q3} is the driving voltage of Q3.

Based on Fig. 16(b) and Fig. 17(b), when LED current is zero, Q1 operates in low switching frequency to improve efficiency. When LED current is constant value, Q1 operates in 500kHz. Therefore, the inductor current fluctuates periodically with dimming frequency. Besides, it’s noted that regardless of whether the given dimming ratio is 50% or 10%, when C_{out} is 0nF and Q3 is turned off, I_{LED} rises to a constant value of 2.5 A almost without t_r and t_d, so the actual dimming ratio is consistent with the given dimming ratio.

Based on Fig. 16(a), when the given dimming ratio is 50% and Q3 is turned off, t_r and t_d are obvious due to the larger C_{out} of 300nF. And the sum of t_r and t_d is about 13.5%
of dimming period. The actual dimming ratio is 36.5%. In addition, TPS92641 is a chip of LED voltage control mechanism. The switching frequency of Q_1 is decided by detecting LED voltage. t_d includes t_{s1} and t_{s2}. During t_{s1}, the LED voltage is lower than turn-on voltage $V_{\text{turn-on}}$ set by chip. The main switch Q_1 works at a low switching frequency. During t_{s2}, LED voltage becomes higher than turn-on voltage $V_{\text{turn-on}}$ set by chip, Q_1 starts to work at a high switching frequency (500kHz).

Based on Fig. 17(a), the given dimming time is almost 5μs when the given dimming ratio is 10%. However, t_d is almost also 5μs by (8). Therefore, it is impossible to achieve LED constant current drive.

Consequently, the above experiment has verified that dimming ratio loss increases as C_{out} increases. And the actual dimming ratio is consistent with given dimming ratio when C_{out} is removed. Low ratio dimming capacity at ultrahigh dimming frequency is improved. However, as can be seen from Figs. 16-17, an obvious parasitic oscillation occurs at the falling edge in LED current, while an obvious current spike also occurs at the rising edge in LED current. Fig. 18 shows the magnified waveform of parasitic oscillation. The oscillation amplitude is about 2A and oscillation time is approximately 2.5μs. The oscillation frequency is about 5MHz.

FIGURE 17. Experimental waveforms at given 10% dimming ratio when (a)C_{out}=300 nF, and (b) C_{out}=0 nF.

FIGURE 18. Magnified waveform of oscillation at the falling edge in LED current without D_f.

B. VERIFICATION OF THE METHOD FOR SUPPRESSING OSCILLATION AT FALLING EDGE IN LED CURRENT

In this paper, the RC snubber circuit is connected in parallel to the dimming switch Q_1 to absorb current spike at the rising edge in LED current. The fast recovery diode DSEP15-06A is connected in series with LED to suppress parasitic oscillation at the falling edge in LED current.

FIGURE 19. Experimental waveforms after adding the RC snubber circuit and D_f at given (a) 50% dimming ratio and (b) 10% dimming ratio.

Fig. 19 shows the experimental waveforms after adding the RC snubber circuit and D_f. Fig. 19(a) and Fig. 19(b) show...
the experimental waveforms at given 50% and 10% dimming ratio, respectively. By comparing Fig. 16(b) and Fig. 19(a), it’s worth noting that the RC snubber circuit absorbs current spike at the rising edge. Moreover, parasitic oscillation at the falling edge is suppressed with D_f. The same conclusion can be obtained by comparing Fig. 17(b) and Fig. 19(b). Fig. 20 shows the magnified waveform of parasitic oscillation at the falling edge in LED current with D_f. As seen, the oscillation amplitude decreases to 1 A, and the oscillation time is approximately 100 ns.

The experiment waveforms have verified that connecting LED in series with the fast recovery diode can significantly reduce oscillation amplitude and oscillation time at the falling edge in LED current. And both LED current square waveform and linear dimming performance at ultrahigh dimming frequency are improved. Moreover, the RC snubber circuit can also absorb the current spike at the rising edge in LED current. And the lifespan of LED could be prolonged.

C. VERIFICATION OF ULTRAHIGH-FREQUENCY FULL-RANGE DIMMING

Fig. 21 shows the experimental waveforms at the given 1%, 5%, 20%, and 99.99% dimming ratios after adding RC snubber circuit and D_f. It’s observed that the actual dimming ratio is consistent with the given dimming ratio in full dimming range. In addition, the RC snubber circuit can absorb current spike at the rising edge during full dimming range, while D_f can suppress current parasitic oscillation at the falling edge during full dimming range.

Fig. 22 shows the dimming driver efficiency at different dimming ratios. Based on Fig. 22, the efficiency is reduced when the converter includes RC snubber circuit and a fast recovery diode. The difference between curve1 and curve2 is little at low dimming ratio. However, when dimming ratio is larger than 30%, curve2 is about 3% lower than curve1, and curve2 becomes stable at a level larger than 80%. This peak efficiency of curve2 is 85.3%.

The efficiency of the converter is a little bit low due to hard switching. Therefore, it is possible to improve efficiency by...
soft switching technology. Limited to the length of this paper, it will not be described here.

V. CONCLUSION
This paper investigates an ultrahigh dimming frequency, full-range LED dimming driver based on three-switch buck converter. The effect of parasitic parameters on system stability and performance of output port is analyzed. In addition, the mechanism for formation of parasitic oscillation at the falling edge of LED current is presented. Besides, the effect of output capacitance on dimming ratio loss is also studied. On that basis, low ratio dimming capacity at ultrahigh dimming frequency is improved by removing output capacitor. Moreover, LED current parasitic oscillation in falling edge is suppressed by adding a fast recovery diode to connect with LED in series. As a result, better LED current square waveform is obtained. And dimming linearity of low ratio and circuit reliability are improved.

Finally, the experiments of a 120W dimming driver are presented. The switching frequency and dimming frequency are 500 kHz and 20 kHz respectively. 1% to 99.99% full-range dimming is achieved and the peak efficiency is approximately 85.3%.

APPENDIX

LED driving state:

\[
\frac{I_L(s)}{d(s)} = \frac{A_1 s^3 + (L_g C_o U_{in}) s^2 + A_2 s + U_{in}}{A_3 s^4 + (L_g L_C o) s^3 + A_4 s^2 + (L + L_g) s + 1/k}
\]

\[
s_1 C_1 C_o L_g L/k \quad s_2 L_g L_C o \quad s_3 L_g L_C o/k \quad s_4 C_1 L_g L^2 /k^2
\]

Short-circuit state:

\[
\frac{I_L(s)}{d(s)} = \frac{(C_1 L_g U_{in} C^2_{out} R_d /k) s^3 + B_1 s^2 + B_2 s + B_3}{(C_1 L_g C^2_{out} R_d /k) s^4 + B_4 s^3 + B_5 s^2 + B_6 s + R_d C_{out} /k}
\]

REFERENCES
[1] Y. Wang, J. Huang, G. Shi, W. Wang, and D. Xu, “A single-stage single-switch LED driver based on the integrated SEPIC circuit and Class-E converter,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5814–5824, Aug. 2016.
[2] Y. Wang, X. Deng, Y. Wang, and D. Xu, “Single-stage bridgeless LED driver based on a CLCL resonant converter,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1832–1841, Mar. 2018.
[3] G. Z. Abdelmessih, J. M. Alonso, and M. A. Dalla Costa, “Analysis, design, and experimentation of the active hybrid-series-parallel PWM dimming scheme for high-efficient off-line LED drivers,” IET Power Electron., vol. 12, no. 7, pp. 1697–1705, Jun. 2019.
[4] Z. Dong, X. L. Li, and C. K. Tse, “Improved-efficiency quasi-two-stage current-source-mode SIMO LED driver,” IET Power Electron., vol. 12, no. 12, pp. 3286–3294, Oct. 2019.
[5] Q. Wang, T. Li, and Q.-H. He, “Dimmable and cost-effective DC driving technique for flicker mitigation in LED lighting,” J. Display Technol., vol. 10, no. 9, pp. 766–774, Sep. 2014.
[6] H. Han, F. Zhang, and M. Liu, “PWM dimming method for capacitor-clamped current-sharing circuit in LED backlight system,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1190–1197, Sep. 2018.
[7] Y.-M. Li, Q. Tong, X.-B. Yang, K.-K. Wu, H. Chai, C.-B. Wen, and Y.-Z. Qiu, “Fixed-frequency adaptive off-time controlled buck current regulator with excellent pulse-width modulation and analogue dimming for light-emitting diode driving applications,” IET Power Electron., vol. 8, no. 1, pp. 2229–2236, Nov. 2015.
[8] H. Ma, J.-S. Lai, Q. Feng, W. Yu, C. Zheng, and Z. Zhao, “A novel valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting applications,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.
[9] P.-J. Liu, Y.-C. Hsu, and S.-R. Hsu, “Drain-voltage balance and phase-shifted PWM control schemes for high-efficiency parallel-string dimmable LED drivers,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6168–6176, Aug. 2018.
[10] H.-L. Cheng, C.-A. Cheng, Y.-N. Chang, Y.-H. Lin, and C.-H. Chang, “High-power-factor dimmable LED driver with low-frequency pulse-width modulation,” IET Power Electron., vol. 9, no. 10, pp. 2139–2146, Aug. 2016.
[11] C.-S. Moo, Y.-J. Chen, and W.-C. Yang, “An efficient driver for dimmable LED lighting,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4613–4618, Nov. 2012.
[12] J. M. Alonso, M. S. Perdigao, M. A. Dalla Costa, G. Martinez, and R. Osorio, “Analysis and experiments on a single-inductor half-bridge LED driver with magnetic control,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9179–9190, Dec. 2017.
Y. Chen, Y. Nan, and Q. Kong, “A loss-adaptive self-oscillating buck converter for LED PWM dimming,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 979–987, Feb. 2014.

J.-C. Hsieh and J.-L. Lin, “Novel single-stage self-oscillating dimmable electronic ballast with high power factor correction,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 250–262, Jan. 2011.

S. W. Hong, H. J. Kim, J.-S. Park, Y. G. Pu, J. Cheon, D.-H. Han, and K.-Y. Lee, “Secondary-side LLC resonant controller IC with dynamic PWM dimming and dual-slope clock generator for LED backlight units,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3410–3422, Nov. 2011.

D. O. Bamgboje, W. Harmon, M. Tahan, and T. Hu, “Low cost high performance LED driver based on a self-oscillating boost converter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10021–10034, Oct. 2019.

Y. Chen, Y. Nan, and Q. Kong, “A loss-adaptive self-oscillating buck converter for LED driving,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4321–4328, Oct. 2012.

M. Tahan and T. Hu, “Multiple string LED driver with flexible and high-performance PWM dimming control,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9293–9306, Dec. 2017.

Y.-T. Hsieh and Y.-Z. Juang, “Analysis and suppression of overcurrent in boost LED drivers,” J. Display Technol., vol. 9, no. 5, pp. 388–395, May 2013.

R. M. Abdalaal, C. N. M. Ho, C. K. Leung, and H. S.-H. Chung, “A remotely central dimming system for a large-scale LED lighting network providing high quality voltage and current,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 5455–5465, Sep. 2019.

D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. J. Crespo, and M. Rico-Secades, “PWM series dimming for slow-dynamics HPF LED drivers: The high-frequency approach,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 1717–1727, Apr. 2012.

J. Garcia, A. J. Calleja, E. L. Coroninas, D. G. Vaquero, and L. Campa, “Interleaved buck converter for fast PWM dimming of high-brightness LEDs,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2627–2636, Sep. 2011.

K. Modepalli and L. Parsa, “Dual-purpose offline LED driver for illumination and visible light communication,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 406–419, Jan. 2015.

Y. Qu, W. Shu, and J. S. Chang, “A low-EML, high-reliability PWM-based dual-phase LED driver for automotive lighting,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1179–1189, Sep. 2018.

B.-M. Lim, Y.-H. Ko, Y.-S. Jang, O.-H. Kwon, S.-K. Han, and S.-G. Lee, “A 200-V 98.16%-efficiency buck LED driver using integrated current control to improve current accuracy for large-scale single-string LED backlighting applications,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6416–6427, Sep. 2016.

G. Li, S. Yu, and J. Shi, “Dynamic response analysis of buck driver for LED based on second-order model,” Electron. Lett., vol. 52, no. 24, pp. 2005–2007, Nov. 2016.

L. Mohamed, N. F. Abdul Hamid, Z. M. Isa, N. Saudin, N. H. Ramly, and N. B. Ahamad, “Cuk converter as a LED lamp driver,” in Proc. IEEE Int. Conf. Power Energy (PECon), Kinabalu Sabah, Malaysia, Dec. 2012, pp. 262–267.

YIFENG WANG (Member, IEEE) was born in Enshi, Hubei, China, in 1981. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Harbin Institute of Technology, Harbin, China, in 2005, 2007, and 2011, respectively. Since 2011, he has been an Associate Professor with the Department of Electrical and Information Engineering, Tianjin University. His interests include high-frequency and soft-switching power converters, which are used for special power supply, EV charger, residential photovoltaic grid-connected generation systems, distributed smart wind power generation systems, and some other power conversion technology application in hybrid ac/dc micro-grid.

XIAOCHE WU was born in Cangzhou, Hebei, China, in 1995. He received the B.S. degree from Yanshan University, Qianhuangdao, China, in 2018. He is currently pursuing the M.S. degree in electrical engineering with Tianjin University, Tianjin, China.

His current research interest includes LED driving technology.

YUQI HOU was born in Harbin, Heilongjiang, China. She received the B.S. degree in electrical engineering from Northeast Agricultural University, Heilongjiang, in 2018. She is currently pursuing the M.S. degree with Tianjin University, Tianjin, China.

Her current research interests include high-frequency dc/dc converter and energy storage systems.

PENGYU CHENG was born in Handan, Hebei, China, in 1996. He received the B.S. degree from the Hebei University of Engineering, Handan, China, in 2019. He is currently pursuing the M.S. degree in electrical engineering with Tianjin University, Tianjin, China.

His current research interest includes LED driving technology.

YAN LIANG was born in Zhuozhou, Hebei, China. He received the Associate B.S. degree from Tianjin Coastal Polytechnic, Tianjin, China, in 2016. He is currently working as an Engineer with Tianjin University. His current research interests include high-frequency LED driver and dimming technology.

LEI LI was born in Zhuozhou, Hebei, China. He received the Associate B.S. degree from Tianjin Coastal Polytechnic, Tianjin, China, in 2000. He is currently working as an Engineer with Tianjin University. His current research interest includes high power supply.

YIFENG WANG was born in Enshi, Hubei, China, in 1981. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Harbin Institute of Technology, Harbin, China, in 2005, 2007, and 2011, respectively. Since 2011, he has been an Associate Professor with the Department of Electrical and Information Engineering, Tianjin University. His interests include high-frequency and soft-switching power converters, which are used for special power supply, EV charger, residential photovoltaic grid-connected generation systems, distributed smart wind power generation systems, and some other power conversion technology application in hybrid ac/dc micro-grid.

XIAOCHE WU was born in Cangzhou, Hebei, China, in 1995. He received the B.S. degree from Yanshan University, Qianhuangdao, China, in 2018. He is currently pursuing the M.S. degree in electrical engineering with Tianjin University, Tianjin, China.

His current research interest includes LED driving technology.

YUQI HOU was born in Harbin, Heilongjiang, China. She received the B.S. degree in electrical engineering from Northeast Agricultural University, Heilongjiang, in 2018. She is currently pursuing the M.S. degree with Tianjin University, Tianjin, China.

Her current research interests include high-frequency dc/dc converter and energy storage systems.

PENGYU CHENG was born in Handan, Hebei, China, in 1996. He received the B.S. degree from the Hebei University of Engineering, Handan, China, in 2019. He is currently pursuing the M.S. degree in electrical engineering with Tianjin University, Tianjin, China.

His current research interest includes LED driving technology.

YAN LIANG was born in Zhuozhou, Hebei, China. He received the Associate B.S. degree from Tianjin Coastal Polytechnic, Tianjin, China, in 2016. He is currently working as an Engineer with Tianjin University. His current research interests include high-frequency LED driver and dimming technology.

LEI LI was born in Zhuozhou, Hebei, China. He received the Associate B.S. degree from Tianjin Coastal Polytechnic, Tianjin, China, in 2000. He is currently working as an Engineer with Tianjin University. His current research interest includes high power supply.

YIFENG WANG (Member, IEEE) was born in Enshi, Hubei, China, in 1981. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Harbin Institute of Technology, Harbin, China, in 2005, 2007, and 2011, respectively.

Since 2011, he has been an Associate Professor with the Department of Electrical and Information Engineering, Tianjin University. His interests include high-frequency and soft-switching power converters, which are used for special power supply, EV charger, residential photovoltaic grid-connected generation systems, distributed smart wind power generation systems, and some other power conversion technology application in hybrid ac/dc micro-grid.