Desfechos após inserção de balão intra-aórtico em pacientes de cirurgia cardíaca

Outcomes after intra-aortic balloon pump insertion in cardiac surgery patients

RESUMO

Objetivo: Avaliar se o momento de inserção de um balão intra-aórtico pré-operatório em comparação com o intraoperatorário se associa com menor mortalidade em 30 dias ou diminuição do tempo de permanência no hospital entre pacientes que passaram por inserção de um balão intra-aórtico para cirurgia cardíaca.

Métodos: Este foi um estudo observacional de pacientes submetidos à inserção de um balão intra-aórtico no período pré-operatório ou intraoperatorário de cirurgia cardíaca em nosso departamento entre 2000 e 2012. Avaliamos a associação entre a inserção pré-operatorária em comparação com a intraoperatorária de um balão intra-aórtico e a mortalidade em 30 dias em uma análise de regressão logística multivariada, incluindo a classificação pré-operatorária segundo a New York Heart Association, a presença de fibrilação atrial pós-operatorária, a reoperação, a creatinina pós-operatorária e a cirurgia de revascularização do miocárdio isolada como cofatores. Utilizamos um modelo linear multivariado para avaliar se a inserção pré-operatorária do balão intra-aórtico, em comparação com a intraoperatorária, associou-se com o tempo de permanência no hospital após a cirurgia, com ajuste para reoperação, cirurgia de revascularização do miocárdio isolada, cirurgia valvar, sexo, idade, tempo de bypass cardiopulmonar, tempo de oclusão aórtica, condição pré-operatorária do paciente (cirurgia eletiva, de urgência ou emergência) e infarto do miocárdio pré-operatorário.

Resultados: Foram submetidos à cirurgia cardíaca aberta em nosso departamento 7.540 pacientes consecutivos, tendo sido inserido um balão intra-aórtico em momento pré-operatorário ou intraoperatorário em 322 (4,2%) pacientes. A média de idade foi 67 ± 10,2 anos, e a mortalidade em 30 dias foi de 12,7%. O tempo mediano de permanência no hospital foi de 9 dias (7 - 13). A inserção pré-operatorária de balão intra-aórtico, em comparação com a intraoperatorária, não afetou o tempo de permanência no hospital após a cirurgia (β = 5,3; IC95% 1,6 - 12,8; p = 0,13).

Conclusão: Em comparação com a inserção intraoperatorária, a inserção pré-operatorária de um balão intra-aórtico não se associou com menor mortalidade em 30 dias nem reduziu o tempo de permanência no hospital.

Descritores: Balão intra-aórtico; Cirurgia cardíaca; Disfunção ventricular esquerda; Baixo débito cardíaco; Mortalidade

INTRODUÇÃO

O balão intra-aórtico (BIA) é amplamente utilizado como dispositivo mecânico de suporte circulatório para prevenir e tratar a síndrome de baixo débito cardíaco...
em pacientes com cardiopatia isquêmica instável, síndrome coronária aguda, insuficiência cardíaca e submetidos à cirurgia cardíaca. A inserção perioroperatoria do BIA pode melhorar o débito cardíaco em 10% - 30%, particularmente em pacientes com condições pré-operatórias de baixa fração de ejeção ventricular esquerda (FEVE) e síndrome de baixo débito cardíaco submetidos a cirurgias cardíacas.¹⁻³

A eficácia do BIA reside na capacidade de reduzir a demanda miocárdica de oxigênio, enquanto facilita e aumenta o suprimento de oxigênio para o miocárdio. Isso é obtido por meio de uma série de efeitos hemodinâmicos, que incluem aumento da pressão diastólica e diminuição da pós-carga.¹⁻³ Além disso, o BIA é indicado em pacientes de alto risco com FEVE < 30%, cardiopatia esquerda importante com consequências hemodinâmicas (instabilidade hemodinâmica) e insuficiência cardíaca aguda ou crônica, além de pacientes com dificuldade para desmame do bypass cardiopulmonar (BCP) durante cirurgias cardíacas.¹⁻⁴

No presente estudo, avaliamos os fatores de risco associados com desfechos após inserção de BIA em pacientes submetidos à cirurgia cardíaca aberta. Nosso objetivo primário foi avaliar se a inserção pré-operatória ou intraoperatoria do BIA se associou com menor mortalidade em 30 dias ou permanência mais curta no hospital entre pacientes que receberam inserção de BIA nos períodos pré ou intraoperatorio de cirurgia cardíaca.

MÉTODOS

Entre 2000 e 2012, 7.540 pacientes consecutivos foram submetidos à cirurgia cardíaca aberta em nosso serviço, tendo sido inserido um BIA pré-operatório ou intraoperatorio em 322 (4,2%) pacientes (Figura 1). Todos os dados pré-operatórios, intraoperatorios e pós-operatorios foram registrados em nossa base de dados. Em todos os pacientes, a inserção do BIA foi obtida por via percutânea, através da artéria femoral comum esquerda ou direita.

Este foi um estudo observacional, que incluiu 322 pacientes de cirurgia cardíaca submetidos à inserção de BIA (pré-operatorio ou intraoperatorio). Este estudo foi aprovado pelo Comitê de Ética médico do hospital.

O seguimento dos pacientes foi realizado em nosso ambulatório, tendo a primeira consulta de seguimento sido realizada 30 dias após a alta. A segunda consulta de seguimento ocorreu 6 meses após a primeira, e uma nova consulta foi realizada após 1 ano. Quando os pacientes receberam alta e não compareceram ao ambulatório, a incidência de mortalidade foi registrada após contato telefônico com o paciente (processo obrigatório no hospital). Em nosso estudo, o tempo mediano de seguimento dos pacientes foi de 10 (1 - 49) meses.

Figura 1 - Pacientes submetidos à cirurgia cardíaca aberta, BIA - balão intra-aórtico; UTI - unidade de terapia intensiva; IQR - intervalo interquartil.
Incluímos, neste estudo, pacientes submetidos a toda a gama de cirurgias cardíacas em nosso serviço (excluindo cirurgia de revascularização do miocárdio - CRM - sem bomba): CRM isolada, CRM com endarterectomia da artéria descendente esquerda, substituição de válvula cardíaca, substituição de raiz da aorta (cirurgia de Bentall modificada), substituição de aorta ascendente e cirurgias cardíacas combinadas.

Indicações e ocasião da inserção do balão intra-aórtico

As indicações para inserção do BIA (em todos os pacientes) foram: índice cardíaco inferior a 2,2L/min/m², pressão arterial sistólica (PAS) inferior a 80mmHg, pressão arterial média inferior a 50mmHg, ecocardiografia transtorácica intraoperatoria com FEVE inferior a 20% - 25% e acidose metabólica grave, apesar de suporte vasoativo/inotrópico máximo (ajustado para cada paciente, dependendo da área de superfície corpórea, PAS pulmonar, resistência vascular sistêmica, pressão venosa central e índice cardíaco).

Além disso, para fins de análise, os pacientes foram divididos em dois grupos:

- **Pré-operatório:** inserção do BIA na sala cirúrgica, antes da intubação do paciente, ou na unidade de terapia intensiva (UTI) cardiológica, ou laboratório de cateterismo.
- **Intraoperatorio:** inserção do BIA na sala cirúrgica, após intubação do paciente ou a qualquer momento antes que o paciente fosse transferido da sala cirúrgica para a UTI.

Métodos estatísticos

As variáveis contínuas são apresentadas como valores médios ± desvio-padrão, ou medianas (faixa interquartis), para variáveis com distribuição não normal. As variáveis categóricas são apresentadas como valores absolutos (contagem) e percentagens. A normalidade das variáveis contínuas foi testada com o critério de Kolmogorov-Smirnov ou avaliada graficamente por meio de gráficos P-P.

As diferenças nas variáveis contínuas entre os grupos de pacientes, segundo o momento da inserção do BIA, isto é, mortalidade após episódio de síndrome coronária aguda (SCA) ao final do seguimento de 10 anos, foram avaliadas por meio do teste t de Student para amostras independentes ou com o teste não paramétrico de Mann-Whitney e o teste do qui-quadrado, para variáveis nominais.

Subsequentemente, aplicamos uma análise de regressão logística para avaliar a associação entre os preditores basais e o risco de desenvolver mortalidade em 30 dias e mortalidade hospitalar (variável dependente) após ajuste quanto a diversos fatores de confusão. Os desfechos primários foram mortalidade em 30 dias e taxa de sobrevida, enquanto os desfechos secundários foram mortalidade hospitalar e tempo de permanência no hospital. O tamanho do efeito, isto é, o risco do desfecho primário, foi relatado como razões de propensão (razão de chance - RC) e os intervalos de confiança de 95% (IC95%) correspondentes. Utilizamos uma análise de regressão linear multivariável para predizer o tempo de permanência no hospital, com base nos fatores pré-operatórios e intraoperatórios. Além disso, foram usados modelos de risco proporcional de Cox para examinar a associação entre as variáveis de interesse e os principais desfechos do estudo em um ambiente de sobrevida.

As associações foram apresentadas como taxas de risco (HR) com IC95%. Utilizamos também, na análise da sobrevida, o log rank test e as curvas de Nelson-Aalen, para risco cumulativo de óbito durante o seguimento. Adicionalmente, realizamos uma análise de risco competitivo para avaliar a associação dos preditores basais do desfecho específico de choque cardiogênico fatal, com base no modelo de Fine-Gray de sub-risco proporcional. Em detalhe, morte por choque cardiogênico foi sinalizada como desfecho de interesse, enquanto outras causas de óbito (sepsis ou falência de múltiplos órgãos) foram assinaladas como riscos competitivos. Curvas de incidência cumulativa estimaram a probabilidade desse tipo de óbito no ambiente em que reconhecíamos existir a competição de outros riscos. Construímos modelos de regressão multivariável (logística ou de sobrevida) com a abordagem de Collett: todos os preditores univariados de óbito significantes (p < 0,05) foram inicialmente inseridos em um modelo completamente ajustado e subsequentlymente selecionados por meio de curvas de seleção adiante e retrograda. Incluímos, nos modelos univariáveis finais, certas variáveis de interesse biológico, isto é, idade e sexo. A qualidade do ajuste (goodness of it) para os modelos de regressão logística foi avaliada pelo teste de Hosmer-Lemeshow.

A análise estatística foi realizada com o pacote STATA, versão 11.1 (StataCorp, College Station, Texas, USA). Estabelecemos a significância estatística como p < 0,05. Para evitar excesso de ajuste nos modelos finais de regressão multivariável, mantivemos uma proporção de 5 – 10 eventos por covariável em todas as análises.25

RESULTADOS

Detalhes pré-operatórios

Dentre os 322 pacientes que receberam BIA, 79,8% eram do sexo masculino, com uma média de idade de 67 ± 10,2 anos. Dentre os pacientes com dispneia, a maioria (65,5%) foi categorizada como classe I da New York Heart Association (NYHA), enquanto a maior parte dos pacientes (41,3%) com angina teve categorização I, segundo a classificação da Canadian Cardiovascular Society (CCSC). Além disso,
40,7% dos pacientes tinham SCA pré-operatória recente (< 90 dias), e 19,9% tinham cardiopatia esquerda > 50%. O valor pré-operatório médio de creatinina foi de 1,3mg/dL. A FEVE pré-operatória foi classificada em três categorias (≤ 35%, > 35 - < 50% e ≥ 50%). As características demográficas e os dados pré-operatórios da população do estudo são apresentados na tabela 1.

Tabela 1 - Características demográficas

Sexo	n (%)	Idade (anos)	ASC (m²)	NYHA
Masculino	257 (79,8)	67 ± 10,2	1,86 ± 0,19	
Feminino	65 (20,2)			

NYHA	n (%)	Média ± Desvio-Padrão
I	211	(65,5)
II	35	(10,9)
III	13	(4,0)
IV	63	(19,6)

CCSC	n (%)	Média ± Desvio-Padrão
D	84	(26,1)
I	133	(41,3)
II	29	(9)
III	9	(2,8)
IV	67	(20,8)

Síndrome coronária aguda pré-operatória	n (%)
Cardiopatia esquerda (> 50%)	64 (19,9)
Creatinina pré-operatória (mg/dL)	1,3 ± 0,9
Fração de ejeção ventricular pré-operatória (%)	
≤ 35	103 (32)
> 35 - < 50	113 (35)
≥ 50	106 (33)

Detalhes intraoperatoriais

Os detalhes perioperatoriais são apresentados na tabela 2. A maioria dos pacientes (81,4%) tinha condição pré-operatória eletiva, e 91,3% dos pacientes receberam o BIA no período intraoperatorário. Em geral, 61,5% dos pacientes foram submetidos à CRM isolada, enquanto os demais tipos de cirurgia são listados na tabela 2. Dentre os pacientes submetidos à CRM isolada, o número médio de enxertos foi de dois. Substituição de válvula aórtica foi a cirurgia mais frequente no grupo de pacientes com substituição de válvula cardíaca. Noventa pacientes foram submetidos a cirurgias combinadas.

Detalhes pós-operatoriais e dados de seguimento

Os detalhes pós-operatoriais e dados de seguimento, inclusive a causa do óbito, são apresentados na tabela 3.

Um total de 22,4% pacientes teve lesão renal aguda (LRA) no pós-operatorário (definimos LRA pós-operatorário como aumento de duas vezes nos níveis pós-operatoriais de creatinina em comparação com os níveis basais), e 23,6% tiveram pelo menos um episódio pós-operatorário de fibrilação atrial paroxística. Acidentes cerebrovasculares pós-operatoriais e amputação da perna direita foram registrados, respectivamente, em três e um dos pacientes. O tempo mediano de permanência na UTI e no hospital foi, respectivamente, de 4 e 9 dias. Além disso, a mortalidade em 30 dias e a mortalidade hospitalar (além do dia 30)
foram, respectivamente, de 12,7% e 4,3%. Observamos mortalidade hospitalar durante um seguimento mediano de 10 meses em 55 pacientes (17,1%).

Tabela 3 - Detalhes pós-operatórios, dados de seguimento e causa do óbito

Detalhes pós-operatórios e dados do seguimento	
Valor da troponina pós-operatória (pg/mL)	
Imediatamente após a cirurgia	9,66 (5,2 - 17,1)
Pico após a cirurgia	19,5 (9,1 - 44)
Creatinina pós-operatória máxima após a cirurgia (mg/dL)	1,5 (1,1 - 2,5)
Lesão renal aguda	72 (22,4)
Fibrilação atrial pós-operatória	76 (23,6)
Permanência na unidade de terapia intensiva (dias)	4 (2 - 6)
Permanência no hospital (dias)	9 (7 - 13)
Mortalidade em 30 dias	41 (12,7)
Causas do óbito	
Falência de múltiplos órgãos	13 (31,7)
Choque cardiológico	22 (53,7)
Sepse	6 (14,8)
Mortalidade hospitalar (álém dos 30 dias)	14 (4,3)
Causas do óbito	
Falência de múltiplos órgãos	4 (28,6)
Choque cardiológico	2 (14,3)
Sepse	8 (57,1)
Mortalidade geral	55 (17,1)
Seguimento mediano (meses)	10 (1 - 49)

Resultados expressos como mediana (intervalo interquartil) ou n (%).

Momento da inserção do balão intra-aórtico (pré-operatório versus intraoperatório)

Foi registrada inserção pré-operatória do BIA em 28 pacientes - cirurgias eletivas com FEVE < 25% e cardiopatia isquêmica em 18 pacientes, cirurgias de emergência com SCA e choque cardiogênico em três, cirurgias de emergência após impossibilidade de intervenção coronária percutânea (ICP) no laboratório de cateterismo com SCA e instabilidade hemodinâmica em dois, cirurgias de emergência por complicações mecânicas por SCA em dois (ruptura do septo interventricular e fragmento de ruptura ventricular esquerda), cirurgia de emergência com trombose esquerda e instabilidade hemodinâmica em um, cirurgia de emergência após impossibilidade de ICP no laboratório de cateterismo sem SCA e instabilidade hemodinâmica em um e parada cardíaca pré-operatória no centro cirúrgico em um.

Quando a população do estudo foi dividida em dois subgrupos, com base no momento da inserção do BIA, os pacientes com tratamento intraoperatório com o BIA foram classificados na classe mais grave de angina (CCSC IV) e tiveram maior probabilidade de ser tratados com cirurgia de emergência (Tabela 4). Além disso, o grupo com BIA pré-operatório teve menores aumentos pós-operatórios da creatinina, menor tempo de oclusão aórtica (OA) e tempo de BCP, e menor tempo de permanência no hospital e na UTI, quando comparado com o grupo com BIA intraoperatório (Tabela 4).

É interessante observar que a inserção pré-operatória do BIA se associou favoravelmente com o tempo de permanência no hospital (p = 0,02). Ainda, utilizamos uma análise de regressão linear multivariável para calcular o possível efeito do momento da inserção do BIA sobre o tempo de permanência no hospital. Após ajuste para reoperação, CRM isolada, cirurgia cardíaca valvar, cirurgia combinada, sexo, idade, tempo de BCP, tempo de OA, condição pré-operatória do paciente, FEVE e infarto do miocárdio (IM) pré-operatório, o momento da inserção do BIA não predisse o tempo de permanência no hospital (β = 5,3, p = 0,13, IC95%: -1,58 - 12,8).

Mortalidade em 30 dias e mortalidade hospitalar

Após análise de regressão logística univariável, dentre as variáveis de interesse, sexo (p = 0,006), classe NYHA (p < 0,001), creatinina pós-operatória (p = 0,004), nível pós-operatório máximo de troponina (p = 0,004), cirurgia de válvula cardíaca (p = 0,012), cirurgia de Bentall modificada (p = 0,016), reoperação (p < 0,001), tempo de OA (p = 0,006), fibrilação atrial pós-operatória (p < 0,001) e CRM isolada em vez de combinada (p < 0,001) se correlacionaram com a mortalidade em 30 dias, enquanto idade (p = 0,066), SCA pré-operatória (p = 0,052) e cardiopatia esquerda (p = 0,055) não se associaram com a mortalidade em 30 dias. Após múltiplos ajustes, apenas classe da NYHA, fibrilação atrial pós-operatória, reoperação, creatinina pós-operatória e cirurgia isolada de CRM determinaram a mortalidade em 30 dias, enquanto o momento da inserção do BIA não afetou a incidência de óbitos em 30 dias (Tabela 5). A condição pré-operatória dos pacientes (eletiva, urgente ou emergência) não se associou com a mortalidade geral no seguimento de nosso estudo (p = 0,863).

Quando analisados individualmente os óbitos por choque cardiogênico (n = 24), apenas três parâmetros determinaram a incidência desse desfecho, independentemente da idade e sexo: classe NYHA (RC = 1,51; p = 0,011), tipo de cirurgia (CRM isolada versus cirurgia combinada; RC = 0,10; p = 0,004) e tempo de OA (RC = 1,01; p = 0,047).

Análise da sobrevivência

Durante o seguimento mediano de 10 meses, foram registrados 55 óbitos (Figura 2A). Dentre os...
Desfechos após inserção de balão intra-aórtico

Tabela 4 - Comparação entre pacientes com inserção pré-operatória e intraoperatória de balão intra-aórtico, em termos de características basais, pré-operatórias e pós-operatórias

Variável	Inserção pré-operatória de BIA n = 28	Inserção intraoperatória de BIA n = 294	Valor de p
Idade (anos)	64 (11,1)	67.3 (10,1)	0,142
Sexo masculino	7 (25,0)	19 (19,73)	0,507
Classe NYHA IV	4 (16,0)	59 (22,18)	0,823
Classe CCSC IV	14 (56)	53 (19,9)	0,003*
Cardiopatia esquerda	6 (21,43)	64 (21,77)	0,967
Lesão renal aguda	3 (10,71)	69 (23,55)	0,280
Fração de ejeção ventricular esquerda ≤ 35%	12 (42,86)	91 (33,58)	0,604
Reoperação	1 (3,57)	41 (13,95)	0,119
Ponte coronária isolada	21 (75,0)	177 (60,20)	0,124
Cirurgia cardíaca valvar	0 (0)	23 (7,82)	0,125
Cirurgia combinada	5 (17,86)	85 (28,91)	0,213
Fibrilação atrial pós-operatória	4 (14,29)	72 (24,49)	0,224
Condição pré-operatória eletiva	16 (57,14)	244 (82,99)	0,001*
Condição pré-operatória de emergência	7 (25,0)	8 (2,72)	< 0,001*
Creatinina pré-operatória (mg/dL)	0,9 (0,45)	1,1 (0,5)	0,018*
Pico pós-operatório de creatinina (mg/dL)	1,25 (0,85)	1,5 (1,4)	0,023*
Troponina após a cirurgia (pg/mL)	7,19 (9,2)	9,89 (12,2)	0,042*
Pico de troponina após a cirurgia (pg/mL)	12,8 (22,9)	19,9 (36,9)	0,113
Número de enxertos na CRM	2 (1)	2 (2)	0,65
Tempo de oclusão aórtica (minutos)	72 (53)	96 (55)	0,023*
Tempo de bypass cardiopulmonar (minutos)	110 (65)	135 (75)	0,001*
Permanência na unidade de terapia intensiva (dias)	3 (2)	4 (4)	0,027*
Permanência no hospital (dias)	7 (3)	10 (6)	0,002*
Mortalidade em 30 dias	3 (10,71)	38 (12,93)	0,737
Mortalidade hospitalar além de 30 dias	0 (0)	14 (4,76)	0,238
Mortalidade geral	3 (10,71)	52 (17,69)	0,349

BIA – balão intra-aórtico; NYHA - New York Heart Association; CCSC - Canadian Cardiovascular Society; CRM – cirurgia de revascularização do miocárdio. O valor de p é derivado de amostras independentes. Teste t para variáveis contínuas ou teste de Mann-Whitney e teste do qui-quadrado para variáveis nominais. *Nível de significância estatística estabelecido como p < 0,05. Resultados expressos como n (%) ou mediana (intervalo interquartil).

Tabela 5 - Resultados dos modelos de regressão logística com múltiplos ajustes que avaliaram os fatores de risco para mortalidade em 30 dias

Fatores de risco	Mortalidade em 30 dias		
	RC	IC95%	Valor de p
Momento da inserção do BIA (pré-operatório versus intraoperatório)	0,69	0,15 - 3,12	0,63
Idade	1,024	0,975 - 1,076	0,34
Sexo	1,21	0,438 - 3,32	0,71
NYHA pré-operatória	1,46	1,1 - 1,95	0,01*
Reoperação	4,58	1,43 - 14,7	0,01*
Revascularização do miocárdio isolada	0,155	0,052 - 0,460	0,001*
Cirurgia valvar isolada	0,271	0,062 - 1,18	0,08
Creatinina pós-operatória	1,24	1,001 - 1,52	0,04*
Fibrilação atrial pós-operatória	0,092	0,011 - 0,783	0,02*

RC - razão de chance; IC95% - intervalo de confiança de 95%; BIA - balão intra-aórtico; NYHA - New York Heart Association. Fatores de risco no modelo final de regressão logística multivariada para o desfecho (mortalidade em 30 dias) selecionados pelo método de Collett, conforme descrito em análise estatística. *Nível de significância estatística estabelecido como p < 0,05.

numerosos parâmetros basais, o modelo multivariável final para previsão de óbito incluiu idade (HR = 1,05; p = 0,009), sexo (HR = 0,832; p = 0,606), classe NYHA (HR = 1,36; p = 0,002), creatinina pós-operatória máxima (HR = 1,26; p < 0,001), troponina pós-operatória máxima (HR = 1,002; p = 0,024) e cirurgia de CRM isolada versus combinada (HR = 0,213; p < 0,001). O momento da inserção do BIA não se associou com o desfecho de sobrevida em nosso estudo (logrank test, p = 0,374) (Figura 2B).

Quando concluída a análise de regressão do risco, apenas a realização de CRM isolada em vez de combinada (HR = 0,113; p = 0,003) e classe NYHA (HR = 1,41; p = 0,008) (Figura 2C) predisseram óbito por choque cardiogênico independentemente de idade, sexo e todos os fatores basais de confusão. O momento da inserção do BIA não foi um preditor significante (HR = 0,654; p = 0,487) de óbito por choque cardiogênico na análise de risco competitivo.
DISCUSSÃO

Nos últimos anos foram propostos muitos dispositivos de suporte circulatório para apoiar o controle hemodinâmico de pacientes críticos nas áreas de cardiologia, UTI e cirurgia cardíaca. Atualmente, os dispositivos mais comumente utilizados no suporte circulatório são a oxigenação por membrana extracorpórea (ECMO), o suporte circulatório mecânico percutâneo, os dispositivos de assistência ventricular esquerda, os dispositivos de assistência biventricular e o BIA, particularmente no choque cardiogênico, devido à cardiopatia aguda ou crônica. Por outro lado, foram observadas muitas complicações sérias e fatais durante e após a instalação desses dispositivos. Em comparação a outros dispositivos, o BIA tem vantagens em razão de sua inserção, verificação do posicionamento correto e controle mais fácil. Por essas razões, o BIA pode ser implantado em hospitais e departamentos sem suporte de cirurgia cardíaca. Além disso, o BIA persiste como dispositivo útil em pacientes críticos de cirurgia cardíaca com síndrome de baixo débito cardíaco pré-operatório que são submetidos à cirurgia cardíaca eletiva ou emergencial. A taxa de mortalidade nos pacientes de cirurgia cardíaca que receberam BIA é elevada e varia entre 10% e 40%, sendo afetada por decisões relativas à indicação de cirurgia cardíaca e à seleção do momento da inserção (pré-operatória, intraoperatória ou pós-operatória), da idade do paciente e do tipo de cirurgia cardíaca.

Como observamos em muitos estudos recentes, a inserção pré-operatória do BIA tem muitos benefícios, em relação à mortalidade hospitalar e a eventos adversos pós-operatórios cardíacos.\(^{(6-9)}\) Nosso estudo teve resultados comparáveis aos desses artigos, e concluímos que a inserção pré-operatória do BIA diminuiu o tempo de permanência no hospital e na UTI, enquanto o uso intraoperatório e pós-operatório não se associou claramente a benefícios clínicos.\(^{(5,6)}\) Outra revisão recente (9.212 pacientes), conduzida por Deppe et al., dá suporte ao efeito benéfico da inserção pré-operatória do BIA em pacientes de alto risco antes de CRM, com diminuição do risco de mortalidade, infarto do miocárdio, insuficiência renal e da permanência no hospital e na UTI.\(^{(7)}\) Em 2010, um estudo com 7.440 pacientes concluiu que a mortalidade hospitalar e o risco ajustado de óbito foram mais baixos quando utilizado o BIA antes (10%) do que durante (16%) ou após (29%) cirurgia cardíaca.\(^{(8)}\) Isso também foi apoiado por outro estudo realizado no mesmo ano, que demonstrou que pacientes com choque cardiogênico, como complicação de infarto agudo do miocárdio, submetidos ao BIA com assistência por ICP tiveram desfecho hospitalar mais favorável e menor mortalidade hospitalar do que os pacientes que receberam o BIA após a ICP.\(^{(9)}\) Contudo, estudo com 173 pacientes publicado em 2013 sugeriu que o uso pós-operatório do BIA é mais promissor, demonstrando que a mortalidade acumulada em 30 dias foi de 44% no grupo de pacientes com BIA pré-
operatório e 37% no grupo de pacientes que tiveram a inserção pós-operatória do BIA.\(^{(10)}\) Contrastando com os estudos mencionados, recente pesquisa realizada em 2014 concluiu que o tratamento com BIA iniciado antes ou após a ICP não foi um preditor independente de mortalidade.\(^{(11)}\) Por outro lado, pacientes de cirurgia cardíaca são diferentes dos submetidos à ICP; na cirurgia cardíaca, temos, em nosso arsenal, escores prognósticos para desfecho desfavorável (taxas de mortalidade preditas pelo EuroSCORE - sistema europeu para avaliação do risco cirúrgico cardíaco, e o escote da Society of Thoracic Surgeons - STC). Talvez a inserção pré-operatória do BIA devesse ser considerada como fator preditivo no EuroSCORE II ou no STS, para avaliar os possíveis benefícios da instalação pré-operatória do BIA em pacientes críticos.

Outro fator importante de risco que parece se associar com a mortalidade em 30 dias e hospitalar de pacientes com BIA é a idade do paciente. A maior parte dos estudos identificou que pacientes mais velhos têm taxas de mortalidade maiores. Esses incidentes não surpreendem, pois o número de pacientes idosos vem crescendo, e estes têm mais doenças coexistentes (como nefropatia crônica, doença vascular periférica e outras) que afetam os desfechos dos pacientes críticos, particularmente os pacientes de cirurgia cardíaca (independentemente da necessidade de suporte com BIA).\(^{(12,13)}\) Mais especificamente, um estudo de 2016, com 522 pacientes, identificou que a idade acima de 70 anos foi um fator de risco independente para mortalidade em 30 dias.\(^{(12)}\) Além disso, em 2015, outro grupo de trabalho analisou 572 pacientes e concluiu que pacientes com mais de 65 anos submetidos a suporte com BIA tiveram taxas de mortalidade hospitalar mais altas em comparação aos mais novos.\(^{(14)}\) Na mesma direção, dois estudos, em 2015 e 2016, incluíram idade avançada como um dos mais importantes preditores de mortalidade hospitalar e prognóstico adverso em longo prazo.\(^{(15,16)}\) Finalmente, um estudo com 134 pacientes idosos mostrou que, após inserção de BIA, aqueles acima dos 80 anos de idade tiveram taxas de mortalidade mais elevadas do que os com menos de 80 anos.\(^{(17)}\) Após análise multivariada em nosso estudo, mostramos que a idade dos pacientes foi fator de risco para a sobrevivência após inserção de BIA (p < 0,009). É digno de nota que o número de pacientes mais idosos com comorbididades submetidos à cirurgia cardíaca tem aumentado nos últimos anos, e isso afeta diretamente os desfechos dos pacientes que recebem um BIA.

Atualmente, há poucos dados publicados a respeito dos tipos de cirurgia cardíaca (com instalação de BIA) como fatores de risco para a mortalidade em 30 dias e no hospital. Em nosso estudo, comparamos as taxas de mortalidade entre pacientes com CRM isolada, combinada ou cirurgia de substituição de válvulas. Em 2016, um estudo com 522 pacientes sugeriu que a CRM em combinação com cirurgia valvar deveria ser identificada como fator independente de risco para mortalidade em 30 dias. Dentre os pacientes que passaram por esse tipo de cirurgia, 47,5% morreram dentro de 30 dias; dentre os que não tiveram esse procedimento, a taxa de mortalidade foi de 26,3%.\(^{(12)}\) Em 2010, outro estudo, com 136 pacientes com necessidade de BIA, concluiu que a mortalidade “específica para a operação” foi mais alta na população com cirurgia valvar. Mais especificamente, as taxas de mortalidade foram de 21,2%, 50% e 64,3% entre os pacientes com CRM isolada, CRM e cirurgia valvar e cirurgia valvar isolada, respectivamente.\(^{(18)}\) Em nosso estudo, após análise de regressão logística com múltiplos ajustes, encontramos que CRM isolada foi um fator de risco para mortalidade aos 30 dias (p = 0,001), e isso foi possivelmente porque a maioria desses pacientes foi submetida à CRM de emergência.

Limitações do estudo

Este estudo incluiu um pequeno número de pacientes de um único serviço. Mais ainda, o número de pacientes que receberam o BIA no pré-operatório (em comparação com o intraoperatório) foi muito pequeno para que fossem obtidas conclusões seguras. É necessário seguimento em longo prazo, para demonstrar os potenciais benefícios da inserção pré-operatória do BIA em pacientes de cirurgia cardíaca já em alto risco pré-operatório e intraoperatorário.

CONCLUSÃO

A mortalidade geral em 30 dias é substancial em pacientes com necessidade de implantar um balão intra-aórtico, seja no período pré-operatório ou intraoperatorário da cirurgia cardíaca. A inserção pré-operatória do balão intra-aórtico não se associou com menor mortalidade em 30 dias e nem com menor tempo de permanência no hospital, em comparação com a inserção intraoperatorária, após ajuste quanto a potenciais fatores de confusão.
ABSTRACT

Objective: To assess whether preoperative versus intraoperative insertion of an intra-aortic balloon pump is associated with lower 30-day mortality or reduced length of hospital stay among patients who had an intra-aortic balloon pump inserted for cardiac surgery.

Methods: This was an observational study of patients who had an intra-aortic balloon pump inserted in the preoperative or intraoperative period of cardiac surgery in our department between 2000 and 2012. We assessed the association between preoperative versus intraoperative insertion of an intra-aortic balloon pump and 30-day mortality in a multivariable logistic regression analysis, including preoperative New York Heart Association class, postoperative atrial fibrillation, reoperation, postoperative creatinine and isolated coronary bypass grafting as cofactors. We used a multivariate linear model to assess whether a preoperative versus intraoperative intra-aortic balloon pump was associated with length of postoperative hospital stay, adjusting for reoperation, isolated coronary bypass grafting, heart valve surgery, sex, age, cardiopulmonary bypass time, aortic cross-clamp time, preoperative patients' status (elective, urgency or emergency surgery) and preoperative myocardial infarction.

Results: Overall, 7,540 consecutive patients underwent open heart surgery in our department, and an intra-aortic balloon pump was inserted pre- or intraoperatively in 322 (4.2%) patients. The mean age was 67 ± 10.2 years old, the 30-day mortality was 12.7%, and the median length of hospital stay was 9 days (7 - 13). Preoperative versus intraoperative intra-aortic balloon pump insertion did not affect the incidence of 30-day mortality (adjusted OR = 0.69; 95%CI, 0.15 - 3.12; p = 0.63) and length of postoperative hospital stay (β = 5.3; 95%CI, -1.6 to 12.8; p = 0.13).

Conclusion: Preoperative insertion of an intra-aortic balloon pump was not associated with a lower 30-day mortality or reduced length of postoperative hospital stay compared to intraoperative insertion.

Keywords: Intra-aortic balloon pump; Heart surgery; Ventricular dysfunction, left; Cardiac output, low; Mortality

REFERÊNCIAS

1. Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156-67.
2. Pilarczyk K, Boening A, Jakob H, Langebartels G, Haake N, et al. Preoperative intra-aortic counterpulsation in high-risk patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg. 2016;49(1):5-17.
3. Parissis H, Graham V, Lampridis S, Lau M, Hooks G, Mhandu PC. IABP: history-evolution-pathophysiology-indications: what we need to know. J Cardiothorac Surg. 2016;11(1):122.
4. Moulopoulos SD. Intra-aortic balloon counterpulsation 50 years later: initial conception and consequent ideas. Artif Organs. 2011;35(9):843-8.
5. Poirier Y, Voisine P, Plourde G, Barria Perez A, Costerousse O, et al. Efficacy and safety of preoperative intra-aortic balloon pump use in patients undergoing cardiac surgery: a systematic review and meta-analysis. Int J Cardiol. 2016;207:67-79.
6. Kapelos C, Terrovitis JV, Siskas P, Kontogiannis C, Repasos E, Nanas JN. Counterpulsation: a concept with a remarkable past, an established present and a challenging future. Int J Cardiol. 2014;172(2):318-25.
7. Deppe AC, Weber C, Moulopoulos OJ, Zerouh M, Slottoch I, Schemer M, et al. Preoperative intra-aortic balloon pump use in high-risk patients prior to coronary artery bypass graft surgery decreases the risk for morbidity and mortality-A meta-analysis of 9,212 patients. J Card Surg. 2017;32(3):177-85.
8. Lavana JD, Fraser JF, Smith SE, Drake L, Tesar P, Mullany DV. Influence of timing of intraaortic balloon placement in cardiac surgical patients. J Thorac Cardiovasc Surg. 2010;140(1):80-5.
9. Abdel-Wahab M, Saad M, Kynast J, Geist V, Sherif MA, Richardt G, et al. Comparison of hospital mortality with intra-aortic balloon counterpulsation insertion before versus after primary percutaneous coronary intervention for cardiogenic shock complicating acute myocardial infarction. Am J Cardiol. 2010;105(7):967-71.
10. Cheng JM, van Leeuwen MA, de Boer SP, Wai MC, den Uil CA, Jewbali LS, et al. Impact of intra-aortic balloon pump support initiated before versus after primary percutaneous coronary intervention in patients with cardiogenic shock from acute myocardial infarction. Int J Cardiol. 2013;168(4):3758-63.
11. Bergh N, Angeläus D, Albertsson P, Dworeck C, Matejka G, Haraldsson I, et al. Does the timing of treatment with intra-aortic balloon counterpulsation in cardiogenic shock due to ST-elevation myocardial infarction affect survival? Acute Card Care. 2014;16(2):57-62.
12. Kamiya H, Schilling M, Akhbari P, Ruhrwarw A, Kallenbach K, Kaick M, et al. Outcome analysis for prediction of early and long-term survival in patients receiving intra-aortic balloon pumping after cardiac surgery. Gen Thorac Cardiovasc Surg. 2016;64(10):584-91.
13. Levi TM, de Souza SP, de Magalhães JG, de Carvalho MS, Cunha AL, Dantas JG, et al. Comparison of the RIFLE, AKIN and KDIGO criteria to predict mortality in critically ill patients. Rev Bras Ter Intensiva. 2013;25(4):290-6.
14. Cao J, Liu W, Zhu J, Zhao H. Risk factors and clinical characteristics of in-hospital death in acute myocardial infarction with IABP support. Int J Clin Exp Med. 2015;8(5):8032-41.
15. Schwarz B, Abdel-Wahab M, Robinson DR, Richardt G. Predictors of mortality in patients with cardiogenic shock treated with primary percutaneous coronary intervention and intra-aortic balloon counterpulsation. Med Clin Intensivmed Notfallmed. 2016;111(8):715-22.
16. Kami ski KA, Tycki ska AM, Stepek T, Szpakowicz A, Ol dzia E, Dobrzynki S, et al. Natural history and risk factors of long-term mortality in acute coronary syndrome patients with acute myocardial infarction. Adv Med Sci. 2014;59(2):156-60.
17. Wu XP, Liu HW, Zhao XN, Cao J, Zhu P. Factors influencing outcomes of intra-aortic balloon counterpulsation in elderly patients. Chin Med J (Engl). 2013;126(14):2632-5.
18. Parissis H, Leotsinidis M, Akbar MT, Apostolakis E, Dougenis D. The need for intra-aortic balloon pump support following open heart surgery: risk analysis and outcome. J Cardiothorac Surg. 2010;5:20.