Biometric studies of *Ailia coila* (Hamilton, 1822) from river Brahmaputra, Assam, India

PRANAB GOGOI¹, S. K. CHAKARABORTY², B. K. BHATTACHARJYA³, S. K. SHARMA⁴ AND M. RAMTEKE⁴

¹ICAR-Central Inland Fisheries Research Institute, Kolkata Centre, CGO Complex, Salt Lake City
Kolkata - 700 064, West Bengal, India
²ICAR-Central Institute of Fisheries Education, Off-Yari Road, Versova, Mumbai - 400 061, Maharashtra, India
³ICAR-Central Inland Fisheries Research Institute, Regional Centre, Dispur Guwahati - 781 006 Assam, India
⁴ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India
e-mail: pranabgogoi@gmail.com

ABSTRACT

For the study of length-weight relationship, morphometric and meristic characters, a total of 711 specimens (196 male and 515 female) of the Gangetic ailia, *Ailia coila* (Hamilton, 1822) were collected from Uzanbazar and Dhubri landing centres of river Brahmaputra, Assam during September 2013 to April 2014. The length and weight of males ranged from 66 to 154 mm and 1.21 to 20.53 respectively and that of females ranged from 66 to 161 mm and 1.43 to 18.29 g respectively. The length-weight relationship was established as $W = 0.002773 L^{3.18}$ and $W = 0.005794 L^{2.86}$ for male and female, respectively.

The analysis of covariance showed significant difference in ‘b’ values between sexes and student ‘t’ test indicated positive allometric growth for male and isometric growth for female. The morphometric characters were compared; showed maximum co-efficient of correlation (r) in standard and pre-dorsal length (0.98) while lowest was observed in mandibular barbel length (0.69) against the total length. Based on the study of meristic traits, the fin formula can be written as B₆, P₃₋₅, V₅₋₆, C₁₄₋₁₈, A₆₁₋₇₅, GR₁₇₋₂₄. The minor variations in meristic and morphometric characters could be attributed to genetic components and difference in geographical and environmental parameters like temperature and food availability.

Results of the study would help in identification of stock and stock specific management strategies of this species in river Brahmaputra, Assam.

Keywords: *Ailia coila*, Brahmaputra, Length-weight relationship, Meristic, Morphometric

Morphometric and meristic characters play very important role in taxonomic identification for any species. For any method of classification employed, these characters are needed to differentiate taxa and assess their inter-relationships. Meristic characters include the number of fin rays, spines, gill rakers, scales, branchiostegal rays, scutes and vertebrae. However, these counts may differ in their different environmental conditions during their early development period for the same species (Colman, 1976). The knowledge of length-weight relationship of fish is of vital importance in fishery science as it is utilised for stock assessment studies and for knowing the well being of the fish (condition factor). Like morphometric characters, the length-weight relationship also can be used for the differentiation of taxonomic unit, because it changes with various developmental events in life such as metamorphosis, growth and the onset of maturity (Thomas et al., 2003). The length-weight data is a basic parameter for growth monitoring study in fishes, since it provides important information concerning the structure and function of the populations (Anderson and Neumann, 1996). Many workers have studied the length-weight relationship of species under the family Schilbeidae from Indian freshwaters as well as other countries. Some of them include Vinci (1984) on *Silonia childreni* from Nagarjunasagar Reservoir; Konan et al. (2007) on three schilbeid catfishes viz., *Parailia pellucida*, *Schilbe intermedius* and *Schilbe mandibularis* from Ivory coast; Hart and Abowei (2007) and Abowei (2009) on *P. pellucida* from lower Nun River, Nigeria; Hussain et al. (2008) on *Clupisoma naziri* from Indus River, Pakistan; Hossain (2009; 2010) on *Ailia coila* from Ganges and Padma rivers, Bangladesh; Prasad et al. (2012) on *Horabagrus brachysoma* from Periyar River, South Western Ghats and Sarkar et al. (2013) on *Clupisoma garua* from Ganga, Gomti and Tapti rivers.

The Gangetic ailia *Ailia coila* (Hamilton, 1822) belonging to the family Schilbeidae (Order: Siluriformes) forms important diet for the people of Assam and fetches...
high price. It is locally known as ‘Kajoli’ or ‘Bahpati’ in Assamese and contributes a major catch among catfishes in Brahmaputra River. It is a surface to mid water fish, commonly found in shoals. The maximum size recorded is 300 mm with common size of 180 mm in the landings (Talwar and Jhingran, 1991). Although, this high priced medium sized cat fish contributes a substantial amount in the total catch, so far no attempt has been made to study the morphometry, meristic and length-weight relationship of this species from Brahmaputra River. Thus, it was felt that this study would be helpful in identification of stock and probably lead the way to conservation and management of this species in river Brahmaputra, Assam.

For the study of morphometric and meristic characters, a total of 202 specimens of *A. coila* were collected during September, 2013 to April, 2014 from Uzanbazar, Guwahati (26°11'43.25" N; 91°45'20.90" E) and Dhubri landing centre, Dhubri (26°01'23.62" N; 89°59'31.72" E) of Brahmaputra River in Assam at weekly and fortnightly intervals respectively. Morphometric characters (in mm), meristic counts (in nos.) and length-weight measurements (in cm and g) were recorded in fresh condition in the laboratory as described by Lagler *et al.* (1962), Laevastu (1965) and Lowe-Mc Connel (1971). The morphometric characters measured were: total length (TL), standard length (SL), fork length (FL), pre-dorsal length (PDL), pre-anal length (PAL), pre-pelvic length (PPL), pre-pectoral length (PPL), head length (HL), body depth (BD), caudal fin base (CFB), pectoral fin length (PFL), caudal fin length (CFL), anal fin base (AFB), maxillary (MBL), nasal (NBL) and mandibular barbel length, outer and inner MBL (O & I), mouth width (MW), snout length (SNL), inter-orbital length (IOL), post-orbital length (POL) and eye diameter (ED). Meristic characters included for the study were number of spines and rays in pectoral fin, pelvic fin, anal fin, caudal fin, gill rakers on first gill arch and branchiostegal rays. The length ranged from 89.3-158.26 mm and weight from 2.76-1.20 g.

Relationships between the various body measurements to the total length and head length were established. Scattergram of morphometric characters were plotted and linear regression equation was fitted using least square method described by Laevastu (1965) and Snedecor and Cochran (1967) as: $Y = a + bx$ in the usual notations.

Study of length-weight relationship was based on 196 males and 515 females in the size range of 66-154 mm and 66-161 mm weighing 1.21-20.53 g and 1.43-18.29 g respectively. The length-weight relationship was established separately for male and female using the formula by Le Cren (1951):

$$W = a L^b$$

which takes the shape of log $W = \log a + b \log L$. The coefficient of correlation ‘r’ was determined for male and female separately to know the relationship between the two variables. The analysis of covariance was computed to know the variation in ‘b’ values among the sexes at 1% and 5% level of significance by following Snedecor and Cochran (1967). The student’s t-test was employed to predict any significant deviation of the ‘b’ value from 3:

$$t = \frac{b-3}{S_b}$$

where, S_b = Standard error of ‘b’ = $S_b = \sqrt{\frac{1}{(n-2)}[(S/ S)^2-b^2]}$

S_c and S_s are standard deviations of ‘x’ and ‘y’ respectively. The t-value was compared with t-table value for (n-2) degrees of freedom at 1 and 5% level of significance.

Results on various morphometric characters, their range, mean, median, standard error, standard deviation and co-efficient of variation are depicted in Table 1. Maximum coefficient of variation was found in MW (19.95%), while ED (11.49%) showed the lowest co-efficient of variation. Results revealed, the degree of correlation between compared morphometric characters that ranged from 0.49-0.98. SL and PDL showed maximum degree of correlation (0.98) with TL, while MBL showed minimum correlation (0.69). The coefficient of correlation of HL against compared characters ranged from 0.49 (MW) to 0.82 (POL). Correlation between CFB against BD was found to be 0.58. The ‘b’ values indicated highest growth in FL (0.88) followed by SL (0.85) and AFB (0.50) in relation to per unit growth of TL while POL was found to have highest ‘b’ value (0.49) in relation to per unit growth of HL. On the other hand, the lowest growth rate was obtained in HL (0.10) to per unit change of TL. BD in relation to TL and CFB in relation to per unit change in BD showed slow growth rate for the species. The scattergram for the relationships of the above mentioned morphometric characters are presented in Fig. 1 and 2.

Information on the biological aspects of schilbeid catfish is relatively less from river Brahmaputra in Assam. Pioneer work on morphometric relationship among TL, FL and SL for three Schilbeid catfish (*A. coila, Eutropiichthys vacha* and *Neotropius (=Pachypterus) atherinoides*) was done by Hossain (2010) from Padma River, north-western Bangladesh, where length-weight relationships are reported to be highly significant ($p<0.01$), with most of the coefficient of determination (r^2) values >0.89. The present study showed almost similar results to
Table 1. Statistical estimates of various morphometric characters in *A. coila*

Statistical estimates	Range (mm)	Mean (mm)	Median (mm)	Standard Error	Standard Deviation	Coefficient of Variation (%)
TL	80.77 - 158.26	121.09	117.88	1.15	16.38	13.52
FL	78.54 - 140.17	107.6	105.42	1.04	14.81	13.76
SL	72.05 - 136.51	101.02	99.17	1.00	14.33	14.18
PDL	59.82 - 108.95	83.14	81.35	0.83	11.91	14.32
PAL	20.93 - 45.2	32.19	31.61	0.33	4.79	14.88
PPL	13.36 - 25.71	18.12	17.77	0.17	2.43	13.41
PVL	18.26 - 37.85	27.27	26.99	0.28	4.03	14.77
AFB	39.97 - 79.86	59.35	58.53	0.63	9.02	15.19
PFL	11.65 - 23.19	16.11	15.75	0.16	2.35	14.58
CFL	13.15 - 31.17	20.05	19.87	0.2	2.86	14.26
CFB	6.63 - 22.67	9.65	9.46	0.13	1.92	19.89
HL	12.73 - 22.37	15.53	16.2	0.13	1.98	12.74
BD	12.16 - 29.11	19.28	19.31	0.2	2.92	15.14
SNL	3.87 - 7.15	5.39	5.38	0.04	0.68	12.61
IOL	4.38 - 10.94	7.1	7.07	0.07	1.11	15.63
POL	4.63 - 11.18	7.78	7.75	0.08	1.19	15.29
ED	3.14 - 6.06	4.35	4.28	0.03	0.5	11.49
MW	2.25 - 7.2	4.21	4.2	0.05	0.84	19.95
NBL	32.31 - 80.14	51.61	51.07	0.58	8.27	16.02
MBL	35.84 - 83.59	53.46	52.46	0.59	8.52	15.93
MBL (O)	28.24 - 73.79	47.1	47.7	0.63	8.95	19.00
MBL (I)	26.96 - 72.48	46.03	46.82	0.61	8.75	19.00

Fig. 1. Scattergram of total length against SL, FL, PDL, AFB, MB (O and I) and HL of *A. coila*

Fig. 2. Scattergram of head length against POL, SNL and MW of *A. coila*

These morphometric characters but other morphometric characters were found to have some minor variations. These variations may be attributed to the differences in ecological conditions of the habitat (AnvariFar et al., 2011; Khan and Nazir, 2018) or variations in the physiology of animals or both (Le Cren, 1951). Khan and Nazir (2018) studying on *Sperata aor* from river Ganga stated that the differences of morphometric variations were due to differences in environmental factors, mainly water chemistry, turbidity and water colouration of the study sites.

The results of statistical analysis on various meristic characters are shown in Table 2. The analysis indicated that the species possesses 12-15 pectoral fin rays, 5-6 ventral fin rays, 61-75 anal fin rays, 14-18 caudal fin rays...
and 6 branchiostegal rays. The number of gill rakers on their first gill arch of left side varied from 17-24. The coefficient of variation was found to be the highest for gill rakers (11%) and lowest for pectoral fin rays (5.3%). On the basis of the above observation, the fin formula for *A. coila* could be written as: B_{6} P_{12-15} V_{5-6} C_{14-18} A_{61-75}, GR_{17-24}.

The meristic counts showed resemblance with the earlier studies (Day, 1878; Talwar and Jhingran, 1991). Present study revealed minor variation in anal fin rays that ranged from 61 to 75. This minor variation recorded in the meristic counts could be a result of genetic components (Heincke, 1898; Giery *et al.*, 2015; Khan and Nazir, 2018) or environmental parameters like temperature and food availability (Takahashi and Koblmuller, 2011).

The length-weight relationship was established as: $W = 0.002773 L^{3.189}$ for male and $W = 0.005794 L^{2.86}$ for female. The scattergram of power relationship are depicted separately for males and females (Fig. 3a, b).

The coefficient of regression 'b' obtained for female in the present study is below 3.0 which indicated that the rate of increase in body weight is not in proportion to the rate of increase in length. This change may be because of various factors which affect the growth of fish, including season, habitat, gonadal maturity, sex, fullness of stomach, health and preservation techniques (Tesch, 1971; Bagenal and Tesch, 1978). The 'b' value obtained in the present study for male LWR was >3 which indicates that the male of *A. coila* grows as the cube of length. Difference in values of exponent ‘b’ for *A. coila* reported by other workers could be attributed to geographical and ecological differences which led to variations in water quality parameters as well as food availability thereby affecting growth of fish (Mommsen, 1998; Panda *et al.*, 2016).

Since, this high valued catfish contributes a substantial amount to the total fish catch from river Brahmaputra, Assam it would be very much important to estimate the optimum mesh size including standardisation of fishing effort towards this fishery from the river which requires further investigations. Decline in catch of this species from 31,431 kg in 2007 to 11,084 kg in 2012 in this river (Gogoi, 2014), indicate an urgent necessity for management measures. The present investigation on length-weight relationship, morphometric and meristic traits provides baseline information on this species which would help in understanding the stock and further in formulating management strategies in river Brahmaputra, Assam.

Meristic characters	Range (mm)	Mean	Median	Mode	Standard error	Standard deviation	Coefficient of variation (%)
Pectoral fin rays	12-15	13	14	14	0.04	0.7	5.384615
Ventral fin rays	5-6	5.52	6	6	0.03	0.5	9.057971
Anal fin rays	61-75	68	69	69	0.27	3.91	5.75
Caudal fin rays	14-18	16	16	16	0.07	1.12	7
Branchiostegal rays	6-6	6	6	6	0	0	0
Gill rakers	17-24	20	21	18	0.15	2.23	11.15

Table 2. Statistical estimates of various meristic characters in *A. coila*
Fig 3. Length-weight relationship in *A. coila*. (a) Male, (b) Female

Authors	Location	Sex	No. of observations	Intercept	Slope	r²
S. childreni Vinci (1984)	Nagarjunasagar Reservoir	M	45	-5.0162	2.92	0.95
		F	107	-5.7272	3.20	0.97
			Combined sexes	-5.6141	3.13	0.96
E. vacha Soomro et al. (2007)	Indus River, Pakistan	M	142	0.0039	3.15	0.95
		F	128	0.0072	2.95	0.97
			Combined sexes	0.0054	3.05	0.96
P. pellucida Hart and Abowei (2007)	Lower Nun River, Niger Delta	-	-	0.0001	3.03	0.90
P. pellucida	Ivory Coast	-	129	0.001	3.72	0.91
S. intermedius	-	-	34	0.003	3.36	0.99
S. mandibularis Konan et al. (2007)	-	-	1844	0.006	3.08	0.91
C. naziri Hussain et al. (2008)	River Indus, Pakistan	-	-	-3.88	4.19	0.36
P. pellucida Abowei (2009)	Lower Nun River, Niger Delta	-	-	0.0001	3.23	0.90
A. coila Hossain (2009)	Ganges, Bangladesh	-	-	0.008	3.01	0.98
A coila	Padma River, Bangladesh	-	105	0.089	3.07	0.98
E. vacha and *N. atherinodes*	-	130	0.107	3.00	0.98	0.98
H. brachysoma Prasad et al. (2012)	Periyr River, south Western Ghat, India	M	-	0.0093	3.07	0.92
		F	-	0.0079	3.17	0.96
			Combined sexes	0.0084	3.10	0.94
C. garua Sarkar et al. (2013)	Gomti and Tapti	-	25	-3.32	2.53	0.98
		34	-5.34	2.41	0.98	0.98
		50	-2.42	2.22	0.99	0.99
Present study (2014)	Brahmaputra River, Assam	M	196	-2.5570	3.18	0.93
		F	515	-2.2370	2.86	0.88
Acknowledgements

The authors are thankful to Dr. W. S. Lakra, former Director, ICAR-CIFRE, Mumbai for providing necessary facilities for carrying out the research work. The first author is also thankful to the Director, ICAR-CIFRI, Barrackpore for providing laboratory facilities at the Regional Centre of ICAR-CIFRI, Guwahati.

References

Abobi S. M. and Ekau, W. 2013. Growth, mortalities and exploitation rates of Alestes baremze (Joannis, 1835), Brycinus narse (Rupell, 1832) and Schilbe intermedius (Rupell, 1832) from lower reaches of the White Volta River (Yapei), Ghana. J. Agric. Biodiverse. Res., 2(1): 1-10. Doi 10.5897/LIFA2012.0001.

Abowei, J. F. N. 2009. Morphometric parameters of Parailia pellucida (Bouleneger, 1901) from the freshwater reaches of Lower Nun River, Niger Delta, Nigeria. Adv. J. Food Sci. Technol., 1(1): 43-50.

Anderson, O. R. and Neumann, R. M. 1996. Length, weight and associated structural indices, In: Nelsen, L. A. and Johnson, D. L. (Eds.). Fisheries techniques. American Fisheries Society, Bethesda, USA, p. 144-146.

AnvariFar, H., Khyabani, A., Farahmand, H., Vatandoust, S., AnvariFar, H. and Jahageerdar, S. 2011. Detection of morphometric differentiation between isolated up-and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia, 673: 41-52. doi:10.1007/S10750-011-0748-7.

Bagental, T. B. and Tesch, F. W. 1978. Age and growth. In: Ricker, W. E. (Ed.), Methods for the assessment of fish production in freshwaters. International Biological Programme Hand book, No. 3. Blackwell Scientific Publications, UK, p. 159-181.

Colman, J. 1976. Geographical variation in fin ray number in the New Zealand sand flounder (Rhombosolea plebian). N. Z. J. Mar. Freshw. Res., 10(3): 485-497.

Day, F. 1878. The fishes of India. William Dawson and Son, London, 778 pp.

Giery, S. T., Layman, C. A. and Langerhans, R. B. 2015. Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquito fish. Evol. Appl., 8: 679-691. doi:10.1111/eva.12275.

Gogoi, P. 2014. Biology of Ailia coila (Hamilton Buchanan 1822) from river Brahmaputra, Assam, India. M. F. Sc. Dissertation, ICAR-Central Institute of Fisheries Education, Mumbai, 147 pp.

Hart, A. I. and Abowei, J. F. N. 2007. A study of the length-weight relationship, condition factor and age of ten fish species from the Lower Nun River, Niger Delta. Afr. J. Appl. Zool. Environ. Biol., 9: 13-19.

Heincke, F. 1898. Natual history of the herrings. Abhandlungen Deutsh Seefisch Verein, 2: 128-233 (In Luxembourgish).

Hossain, M. Y., Jasmine, S., Ibrahim, A. H. M., Ahmed, Z. F., Rahman, M. M. and Ohtami, J. 2009. Length-weight and length-length relationships of 10 small fish species from Ganges, Bangladesh. J. Appl. Ichthyrol., 25: 117-119. Doi: 10.22034/iij.v6i1.334.

Hossain, M. Y. 2010. Length-weight, length-length relationships and condition factors of three Schilbeid catfishes from the Padma River, North-western Bangladesh. Asian Fish. Sci., 23: 329-339. Doi: 10.1111/j.1439-0426.2012.01954.x.

Hossain, M. Y., Rahman, M., Jewal, A. S., Hossain, A., Ahamed, F., Tumpa, S. A., Abdullah, M. G. and Ohtomi, J. 2012. Conditions and form factor of the five threatened fishes from Jamuna (Brahmaputra River Distributary) River, northern Bangladesh. Sains Malaysiana, 41(6): 671-678.

Konan, K. F., Quattara, A., Quattara, M. and Gourcne, G. 2007. Weight-length relationship of 57 fish species of the coastal rivers in south-eastern Ivory Coast. Ribarstvo, 65(2): 49-60.

Laevastu, T. 1965. Manuals of methods in fisheries biology. Research on fish stocks. FAO Manuals in Fisheries Science, 4: 1-51.

Lagler, K. F., Bardach, J. E. and Miller, R. R. 1962. Ichthyology: The study of fishes. John Wiley and Sons Inc., New York, USA, 545 pp.

Le Cren, E. D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis), J. Anim. Ecol., 20: 201-219. DOI: 10.2307/1540.

Lowe-Mc Connell, R. H. 1971. Identification of freshwater fishes. In: Ricker, W. E. (Ed.), Methods of assessment of fish production in freshwaters. Blackwell Scientific, Oxford and Edinburgh, UK, p. 45-81.

Moomsen, T. P. 1998. Growth and metabolism In: Evans, D. H. (Ed.), The physiology of the fishes. CRC Press, New York, USA, p. 65-97.

Panda, D., Jaiswar, A. K., Sarkar, S. D. and Chakraborthy, S. K. 2016. Growth, mortality and exploitation of bigeye scad, Selar crumenophthalmus off Mumbai, north-west coast of India. J. Mar. Biol. Ass. UK, 96(7): 1411-1416. doi:10.1017/S0025315415001459.

Prasad, G., Ali Anvar, Harikrishnan, M. and Raghavan, R. 2012. Population dynamics of an endemic and threatened yellow catfish, Horabagrus brachysoma (Gunther) from Peryar River, southern Western Ghats, India. J. Threat. Taxa, 4(2): 2333–2342. DOI: 10.11609/JoTT.o2590.2333-2342.

Snedecor, G. W. and Cochran, W. G. 1967. Statistical methods, 6th edn. Oxford and IBH Publishing Co., New Delhi. 593 pp. DOI: 10.12691/env-2-5-3.

Soomro, A. N., Balosh W. A., Jafri S. I. H. and Suzuki, H. 2007. Studies on length-weight relationship of a catfish Eutropiichthys vacha Hamilton (Siluriformes) from Indus River, Sindh, Pakistan. Caspian J. Envt. Sci., 5(2): 143-145.
Sarkar, U. K., Khan, G. E., Dabas, A., Pathak, A. K., Mir, J. I., Rebello, S. C., Pal, A. and Singh, S. P. 2013. Length-weight relationship and condition factor of selected freshwater fish species found in river Ganga, Gomti and Rapti, India. *J. Environ. Biol.*, 34: 951-956.

Sparre, P. J., Ursin, E. and Venema, S. C. 1989. Introduction to tropical fish stock assessment, Part I Manual. *FAO Tech. Pap., No. 306/Rev. 1*, Food and Agriculture Organisation, Rome, Italy, p. 306-337.

Takahashi, T. and Koblmuller, S. 2011. The adaptive radiation of cichlid fish in Lake Tanganyika: a morphological perspective. *Int. J. Evol. Biol.*, 2011: 1-4. doi:10.4061/2011/620754.

Talwar, P. K. and Jhingran, A. G. 1991. *Inland fishes*, Oxford and IBH Publishing Co. Pvt. Ltd., Janpath, New Delhi, India, p. 591-613. DOI: 10.12691/aees-3-3-2.

Tesch, F. W. 1971. *Age and growth*. In: Ricker, W. E. (Ed.), *Methods for assessment of fish production in freshwaters*. Blackwell Scientific Publications, Oxford, UK, p. 99-130.

Thomas, J., Venu, S. and Kurup, B. M. 2003. Length-weight relationship of some deep sea fishes inhabiting the continental slope beyond 250 m depth along the west coast of India. *NAGA, ICLARM Q.*, 26 (2): 17-21.

Vinci, G. K. 1984. Some aspects of the biology of Silonia childreni (Sykes) from Nagarjuna Sagar Reservoir, Andhra Pradesh, India. *J. Inland Fish. Soc. India*, 16 (1 and 2): 25-31.