Resumo

Objetivo: Avaliar critérios de identificação de lesão no nervo fibular comum (NFC) por ressonância magnética (RM) em pacientes com lesão aguda e subaguda no canto posterolateral (CPL) e avaliar a reprodutibilidade na identificação de alterações do NFC.

Materiais e Métodos: Foram incluídos, retrospectivamente, 38 pacientes consecutivos submetidos a RM e com diagnóstico de lesão aguda ou subaguda no CPL, constituintes um grupo de pacientes. Outros 38 pacientes com RM normal foram utilizados como grupo controle. Dois radiologistas musculosqueleticos (A e B) analisaram as imagens. A lesão neural foi classificada em neurapraxia, axoniotmese ou neurotmese. Foi medida a intensidade do sinal no NFC, no nervo tibial (NT) e em uma veia superficial (VS), e calculadas as razões de sinal NFC/NT e NFC/VS. Estruturas do CPL, incluindo tendão popliteo, ligamento arqueado, ligamento colateral lateral e tendão do bíceps, foram classificadas como normal, rotura parcial ou rotura completa. Os ligamentos cruzados também foram avaliados segundo os mesmos critérios. O teste kappa foi utilizado para avaliar a concordância interobservador para as classificações semiquantitativas. Curva ROC foi utilizada para análise quantitativa.

Resultados: O radiologista A encontrou alterações no NFC em 15 casos (39,4%): 8 neurapraxias, 7 axoniotmeses e nenhuma neurotmese. O radiologista B encontrou alterações no NFC em 14 casos (36,8%): 9 neurapraxias, 5 axoniotmeses e nenhuma neurotmese. O teste kappa mostrou alta concordância interobservador. No grupo controle, a razão NFC/NT variou entre 0,63–1,1 e a razão NFC/VS variou entre 0,16–0,41. Para o grupo de pacientes, a razão NFC/NT variou entre 1,30–4,02 e a razão NFC/VS variou entre 0,27–1,08. A análise com curva ROC demonstrou alta especificidade (93,3%) com relação à razão NFC/NT, usando um valor de corte de 1,39. Houve boa especificidade (81,3%) para a razão NFC/VS usando um valor de corte de 0,41.

Conclusão: As alterações do NFC são detectadas com frequência nas lesões do CPL nas imagens de RM, com concordância interobservadores quase perfeita. Usando as razões de intensidade de sinal entre o NFC e o NT e entre o NFC e a VS, aumenta a confiança no diagnóstico. Recomendamos a análise sistemática do NFC nos casos de lesão do CPL.

Unitermos: Nervo fibular/diagnóstico por imagem; Traumatismos do joelho/diagnóstico por imagem; Joelho/inervação; Ressonância magnética.

Abstract

Objective: To evaluate qualitative and quantitative magnetic resonance imaging (MRI) criteria for injury of the common peroneal nerve (CPN) in patients with acute or subacute injuries in the posterolateral corner (PLC) of the knee, as well as to evaluate the reproducibility of MRI evaluation of CPN alterations.

Materials and Methods: This was a retrospective study of 38 consecutive patients submitted to MRI and diagnosed with acute or subacute injury to the PLC of the knee (patient group) and 38 patients with normal MRI results (control group). Two musculoskeletal radiologists (designated radiologist A and radiologist B, respectively) evaluated the images. Nerve injury was classified as neurapraxia, axonotmese, or neurotmese. Signal strength was measured at the CPN, the tibial nerve (TN), and a superficial vein (SV). The CPN/TN and CPN/SV signal ratios were calculated. The status of each PLC structure, including the popliteal tendon, arcuate ligament, lateral collateral ligament, and biceps tendon, was classified as normal, partially torn, or completely torn, as was that of the cruciate ligaments. For the semiquantitative analysis of interobserver agreement, the kappa statistic was calculated, whereas a receiver operating characteristic (ROC) curve was used for the quantitative analysis.

Results: In the patient group, radiologist A found CPN abnormalities in 15 cases (39.4%)—neurapraxia in eight and axonotmese in seven—whereas radiologist B found CPN abnormalities in 14 (36.8%)—neurapraxia in nine and axonotmese in five. The kappa
INTRODUÇÃO

A ressonância magnética (RM) é um método excelente de imagem para o diagnóstico de lesões no sistema musculoesquelético e tem sido cada vez mais usado para a detecção de doenças nos nervos periféricos. É o exame de escolha para o diagnóstico de lesões traumáticas nas partes moles do joelho, especialmente quando envolvem meniscos, ligamentos, músculos e tendões. O canto posterolateral (CPL) é um complexo anatômico localizado na região posterior e lateral do joelho, sendo formado por estruturas miotendíneas, ligamentares e ósseas, que promovem estabilidade biomecânica. Essas estruturas resistem à angulação em varo, translação posterior e rotação movem estabilidade biomecânica. Essas estruturas resistentes e músculos e tendões, o que o torna mais suscetível a lesões.

A literatura é pobre em estudos direcionados a avaliar as alterações do NFC relacionadas a lesões do CPL, embora o comprometimento neurológico priorize implicações clínicas futuras. O objetivo deste estudo, portanto, é avaliar, de modo retrospectivo, alterações de imagem do NFC em pacientes com lesão aguda ou subaguda, em comparação com os tecidos visuais e subcutâneos. Além disso, a possibilidade de aumentar a acurácia no diagnóstico do dano neural.

MATERIAS E MÉTODOS

Pacientes

Após aprovação do estudo pelo comitê de ética e pesquisa da instituição, foram pré-selecionados 68 pacientes submetidos a exames de RM do joelho no hospital universitário. O período de 2010 a 2013, com o diagnóstico de lesão traumática aguda ou subaguda, em relação a uma lesão da articulação da articulação ou ao contrário, foi observado durante 30 dias após a realização do exame. Os exames foram rastreados por meio do sistema informatizado da radiologia da instituição. Pesquisamos as palavras “canto posterolateral”, “ligamento colateral lateral”, “tendão poplíteo”, “cápsula posterolateral”, “ligamento arqueado” e “tendão do bíceps femoral”. Foram encontrados 47 pacientes que preenchiam esses critérios.

protocolos da RM

A aquisição de imagem de 32 pacientes foi realizada com aparelho de RM de 1,5 T (Achieva; Koninklijke Philips N.V., Amsterdam, Holanda) e nos demais, em aparelho de 3,0 T (Discovery MR750w; GE Healthcare, Chicago, EUA). O protocolo de imagem para 1,5 T incluiu T1 (TR/TE: 532/10), corona, sagital e axial com FSE T2, com saturação de gordura (2635/60), e T2 volumétrico sagital com saturação de gordura (2500/65). Foi utilizado campo de visão de 16 cm em todas as imagens. A espessura de corte foi de 4 mm em todas as sequências, exceto na sinal sagital volumétrica, que apresentava espessura de 1,4 mm. A matriz na sequência sagital volumétrica foi de 300 x 258 e a matriz em todas as outras sequências foi de 176 x 220. O protocolo de imagem para 3,0 T incluiu T1 (TR/TE: 459/11) e T2 em todos os eixos com saturação de gordura (1950–2000/60), com campo de visão de 18 cm e espessura de corte de 4 mm em todas as sequências e matiz de 384 x 256 (T2) e 512 x 256 (T1).

Keywords: Peroneal nerve/diagnostic imaging; Knee injuries/diagnostic imaging; Knee/innervation; Magnetic resonance imaging.
Interpretação das imagens

Dois radiologistas musculoesqueléticos fizeram a análise retrospectiva das imagens de RM de forma cega e independente: um radiologista com 15 anos de experiência em diagnóstico por imagem do sistema musculoesquelético (radiologista A) e o outro radiologista em treinamento em radiologia musculoesquelética e 4 anos de experiência profissional (radiologista B).

O NFC foi analisado em relação ao seu trajeto, morfologia e sinal e classificado em normal, neuropraxia, axoniotmese e neurotmese, de acordo com o proposto pela literatura\(^4\),\(^1\),\(^1\),\(^1\). O critério para classificar o nervo como normal foi não apresentar alteração de sinal ou de sua área seccional transversa (Figura 1).

![Figura 1. Imagem axial ponderada em T2 com saturação de gordura mostra exemplo de NFC normal. O nervo tem intensidade de sinal normal e padrão fascicular preservado (seta).](image1)

Neuropraxia – Lesão discreta envolvendo apenas a bainha de mielina. A RM mostra hipersinal do nervo nas imagens ponderadas em T2 e sensíveis a líquido e pode haver discreto aumento da área seccional transversa.

Axoniotmese – Ocorre descontinuidade axonal e degeneração walleriana no segmento distal, sem comprometimento do epineuro e perineuro. A RM mostra espessamento do nervo, indefinição e descontinuidade dos fascículos neurais (Figura 2).

![Figura 2. Imagem axial ponderada em T2 com saturação de gordura mostra exemplo de axoniotmese. O NFC tem aumento na intensidade de sinal, dimensões claramente aumentadas e indefinição dos fascículos (seta).](image2)

Neurotmese – Forma grave, com descontinuidade completa da estrutura neural. A RM mostra o nervo descontínuo e o intervalo entre os cotos preenchido por líquido ou tecido de granulação.

Foi também realizada a mensuração da intensidade de sinal no interior do NFC, do nervo tibial (NT) e de uma veia superficial (VS) próxima ao nervo fibular, usando o software DICOM Viewer (ClearCanvas Workstation; Synaptive Medical Inc., Ontário, Canadá), conforme mostrado na Figura 3. As imagens eram magnificadas de forma padronizada para evitar o efeito de volume parcial com o tecido circundante durante as mensurações. Foi feito o cálculo da razão da intensidade de sinal entre essas estruturas (NFC/NT e NFC/VS). A mensuração do sinal no NFC foi realizada na imagem onde ele apresentava, subjetivamente, a maior intensidade de sinal. O sinal do NT e da VS foi mensurado na mesma imagem em que foi medido o sinal no NFC. Quando não havia VS adequada para mensuração no nível de corte analisado, fazia-se a medida na imagem consecutiva anterior ou seguinte. A análise foi conduzida da mesma maneira para os casos do grupo controle.

Os dois radiologistas analisaram sistematicamente, de forma individual e independente, as seguintes estruturas do CPL, com a finalidade de identificar possíveis lesões: unidade miotendínea do músculo poplíteo, ligamento arqueado e cápsula posterolateral, ligamento colateral lateral e tendão do bíceps femoral. Tendo em vista que o ligamento arqueado constitui um espessamento da cápsula posterolateral e pode ser inconstante\(^1\), consideramos essas duas estruturas como únicas para efeito da análise. Os radiologistas analisaram em separado os ligamentos cruzado anterior e cruzado posterior. Todas essas estruturas foram classificadas em normal, lesão parcial ou lesão completa. Um tendão ou ligamento foi definido como normal quando a orientação, a intensidade de sinal e a espessura estavam preservados. Os critérios para lesão parcial incluíram alteração de sinal, espessamento, afilamento ou rotura de parte do ligamento ou tendão. O critério utilizado para definir uma lesão completa incluiu a presença de descontinuidade de espessura completa e inequívoca com sinal...
de líquido no defeito focal resultante. Por fim, foi avaliada a cabeça da fíbula, classificada em normal, presença de edema ósseo sem traço de fratura, fratura alinhada e fratura desalinizada. O radiologista B também refez a análise das imagens, três meses após a interpretação inicial, para avaliação intraobservador.

Análise estatística

Usamos o teste kappa (κ) para avaliação da concordância interobservador entre os radiologistas e concordância intraobservador para o radiologista B, no caso da classificação de possíveis lesões do NFC e para a classificação das estruturas do CPL. A interpretação dos resultados de concordância foi baseada nos seguintes critérios: κ < 0, ausência de concordância; κ entre 0 e 0,19, concordância pobre; κ entre 0,20 e 0,39, concordância razoável; κ entre 0,40 e 0,59, concordância moderada; κ entre 0,60 e 0,79, concordância substancial; κ entre 080 e 1,00, concordância quase perfeita (12).

Utilizamos odds-ratio (OR) e risco relativo (RR) em busca de possível correlação entre lesões específicas das estruturas ligamentares ou tendíneas, individualmente, e a presença de lesão neural. Realizamos a correlação de Spearman para avaliar a relação entre o número de estruturas ligamentares ou tendíneas acometidas, conjuntamente, e a lesão no nervo. Realizamos a classificação da lesão em grau 1 quando apenas uma estrutura ligamentar/tendínea foi acometida, grau 2 quando duas estruturas foram consideradas alteradas, e assim por diante.

Comparamos as razões (NFC/NT e NFC/VS) do grupo com lesão no CPL com as mesmas razões do grupo controle, para avaliar se haveria diferença estatística dessas mensurações entre os grupos. Finalmente, usamos a análise da curva ROC para identificar o melhor cut-off na tentativa de diferenciar os dois grupos.

RESULTADOS

Analisamos 38 pacientes com lesão no CPL. O radiologista A identificou alterações no NFC em 15 pacientes (39,4%): 8 neuropraxias, 7 axoniotmeses e nenhum caso de neurATOMese. O radiologista B observou alterações neurais em 14 pacientes (36,8%): 9 neuropraxias, 5 axoniotmeses e, também, nenhum caso de neurATOMese. Os achados nos ligamentos e tendões (Figura 4) são demonstrados na Tabela 1. Em relação à classificação das alterações da fíbula, o radiologista A diagnosticou 29 casos normais (76,3%), 8 com edema ósseo (21,0%), 1 com fratura alinhada (2,6%) e nenhuma fratura desalinizada. O radiologista B diagnosticou 29 casos normais (76,3%), 7 com edema ósseo (18,4%), 1 com fratura alinhada (2,6%) e 1 fratura desalinizada (2,6%).

Houve concordância interobservador quase perfeita para a detecção de lesão do NFC (κ = 0,85). A concordância interobservador também foi ótima para os achados no ligamento cruzado anterior, ligamento cruzado posterior, ligamento colateral lateral e tendão popliteo, com κ entre 0,81 (ligamento cruzado anterior) e 0,91 (ligamento cruzado posterior) para o mesmo intervalo de confiança. No caso do tendão do biceps femoral e do ligamento arqueado, a concordância interobservador foi boa, com κ de 0,72 e 0,79, respectivamente. Todas essas associações foram avaliadas para um intervalo de confiança de 95% (IC 95%).
Em relação à análise intraobservador, para um IC 95%, houve concordância quase perfeita para a análise das seguintes estruturas: NFC, ligamento cruzado anterior e ligamento colateral lateral, com κ entre 0,84 (CFN) e 0,91 (ligamento colateral lateral). A concordância foi substancial para ligamento cruzado posterior, tendão do bíceps femoral e ligamento arqueado, com κ entre 0,62 e 0,74. Para o tendão poplíteo, a concordância também foi substancial ($\kappa = 0,60$).

Utilizando o cálculo do RR e OR em busca de associação entre lesão no NFC e alteração nas estruturas tendíneas e ligamentares, sendo feito o cálculo para cada uma das estruturas analisadas individualmente, não encontramos associação estatística para um IC 95%. Da mesma forma, não encontramos correlação estatisticamente significante entre o número de estruturas ligamentares ou tendíneas acometidas, em conjunto, e a presença de lesão no NFC ($R = 0,31; p = 0,05$). Porém, existe uma tendência de que o aumento do número de estruturas acometidas seja acompanhado pelo aumento do dano neural.

Também comparamos as razões NCF/NT e NCF/VS entre o grupo de pacientes e o grupo controle, usando a curva ROC para análise quantitativa. Os resultados da análise da curva ROC estão expostos na Tabela 2, que mostra os resultados do radiologista A.

Tabela 1—Achados de RM nas estruturas tendíneas e ligamentares.

Achado	Ligamento cruzado anterior	Ligamento cruzado posterior	Ligamento colateral lateral	Tendão poplíteo	Tendão do bíceps femoral	Ligamento arqueado
Normal						
Radiologista A	6 (15%)	19 (50%)	0 (0%)	9 (23%)	10 (26%)	9 (23%)
Radiologista B	7 (18%)	18 (47%)	1 (2%)	8 (21%)	15 (39%)	7 (18%)
Lesão parcial						
Radiologista A	11 (28%)	7 (18%)	21 (55%)	25 (65%)	17 (44%)	25 (65%)
Radiologista B	9 (23%)	9 (23%)	18 (47%)	24 (63%)	12 (31%)	25 (65%)
Lesão completa						
Radiologista A	21 (55%)	12 (31%)	17 (44%)	4 (10%)	11 (28%)	4 (10%)
Radiologista B	22 (57%)	11 (28%)	19 (50%)	6 (15%)	11 (28%)	9 (23%)

Tabela 2—Cut-off, especificidade e sensibilidade para detecção de dano neural em relação ao grupo controle (IC 95%).

	Radiologista A	
	NFC/NT	NFC/VS
Cut-off	1,27	0,40
Especificidade	98,8%	89,9%
Sensibilidade	88,1%	71,6%

Figura 4. Paciente do sexo masculino de 43 anos sofreu trauma jogando futebol. **A:** Imagem coronal T2 com saturação de gordura mostra lesão do CPL, destacando-se ruptura do tendão poplíteo (seta). Também havia lesão da cápsula articular e do LCL (não demonstrados). **B:** Imagem axial T2 com saturação de gordura mostra o nervo fibular comum (cabeça de seta), considerado normal neste caso.
DISCUSSÃO

A anatomia do CPL está descrita em diversos artigos e revisões da literatura e não é o objetivo do presente estudo detalhar esta região\(^1\)\(^–\)\(^3\),\(^13\)\(^–\)\(^16\). Há divergência na literatura sobre as estruturas que formam o CPL. Seebacher et al.\(^1\)\(^7\) dividiram a região em três camadas: superficial, média e profunda. Com estudos subsequentes\(^1\),\(^18\), outros autores propuseram mudanças nessa definição, alterando a descrição das camadas, o que permite abordagem mais padronizada e sistematizada. A camada profunda é a de maior importância na estabilização biomecânica e é a que apresenta maior variabilidade anatômica. O não reconhecimento de lesões no CPL constitui potencial causa de instabilidade persistente, falência de enxertos de ligamentos cruzados e osteoartrite\(^1\)\(^8\)\(^–\)\(^24\).

O NFC é a divisão lateral do nervo isquiático. Ele apresenta trajeto posterolateral no joelho, contornando o tendão bicapital e a cabeça fibular para se trifurcar, geralmente, ao nível do colo da fibula, em nervo fibular profundo, nervo fibular superficial e ramo articular ou recorrente. O nervo fibular profundo proporciona inervação motora para os músculos do compartimento anterior da perna (tibial anterior, extensor dos dedos, extensor longo do hálix e fibular terceiro). O nervo fibular superficial gera inervação motora para os músculos do compartimento lateral (músculos fibular curto e longo) e sensitiva para o lado anterolateral da perna. O ramo recorrente promove informação sensitória da articulação tibiofibular proximal\(^3\)\(^,\)\(^5\)\(^,\)\(^2\)\(^5\),\(^2\)\(^6\).

Em decorrência de particularidades anatômicas, como sua superficialidade, seu trajeto e a escassa quantidade de epineuro, o NFC e seus ramos são suscetíveis a lesões, traumáticas ou não\(^6\)\(^–\)\(^9\),\(^2\)\(^7\)\(^–\)\(^3\)\(^5\). Esses estudos demonstraram a relação entre traumas eluxações no joelho e lesão do nervo fibular\(^6\)\(^–\)\(^9\),\(^2\)\(^7\)\(^–\)\(^3\)\(^5\). Trappeniers et al.\(^9\) relataram três casos de lesão do NFC após trauma na região posterolateral do joelho. Jia et al.\(^5\) demonstraram a proximidade anatômica entre o NCF e o CPL, em que a distância entre o nervo e as estruturas do CPL pode ser de 8 mm. A proximidade entre o NFC e o CPL está ilustrada em espécime cadavérico (Figura 5). Bottomley et al.\(^2\)\(^8\) identificaram deslocamento do NFC em lesões do CPL, especialmente quando há avulsão distal do tendão do bíceps femoral, devido o cirurgião estar atento a essa possibilidade para evitar dano neural durante o ato cirúrgico.

Uma série de trabalhos recentes publicados no Brasil tem ressaltado a importância dos métodos de imagem na avaliação do sistema musculoesquelético\(^3\)\(^6\)\(^–\)\(^4\)\(^0\). No nosso estudo identificamos elevada prevalência de alterações de imagem no NFC, o que foi observado entre 36,8% e 39,4% dos casos, com concordância entre observador e intraobservador quase perfeita para essas anormalidades (Figura 6). A grande maioria das lesões neurais que identificamos por imagem de RM foi classificada como neuropatias, que são lesões discretas, transitórias e de bom prognóstico. Pelo caráter retrospectivo do estudo, tivemos dificuldade de obtenção de informações clínicas a respeito dos pacientes e não foi possível, portanto, de forma geral, identificar se os pacientes apresentavam alterações de sensibilidade ou motricidade, como parestesia na face lateral da perna ou dificuldade na dorsoflexão do pé. Acreditamos que lesões neurais discretas, como a neuropatia, possam ser assimptomáticas ou oligossintomáticas, e que por isso não estavam adequadamente relatadas no prontuário clínico. Apenas dois pacientes tinham relato de prejuízo funcional neural, com parestesia e pé-caído, ambos tendo o NFC classificado nas imagens de RM como axoniotmese e as razões NFC/NT e NFC/VS estando francamente alteradas. Alguns pacientes tinham danos múltiplos e complexos, envolvendo outros sistemas, o que pode ter dificultado a avaliação da parte neurológica periférica em questão.

Não detectamos associação estatística entre lesão de uma estrutura ligamentar ou tendínea específica e lesão do NFC. Isoladamente, a lesão de nenhuma das estruturas anatômicas analisadas do CPL aumentou ou diminuiu o risco para lesão do NFC. Contudo, quando as estruturas foram analisadas em conjunto, ou seja, mais de uma estrutura acometida, foi detectada uma tendência a maior chance de dano neural.

Considerando a classificação de lesão do nervo periférico realizada pelo radiologista A como padrão de referência, as razões de sinal NFC/NT e NFC/VS mostraram elevadas sensibilidade e especificidade para lesão neural e, neste sentido, têm potencial de auxiliar um radiologista menos experiente nesta decisão diagnóstica. No caso da razão NFC/NT, para um cut-off de 1,27, a especificidade e a sensibilidade foram de 98,8% e 88,1%, respectivamente. Já para a razão NFC/VS, a especificidade e a sensibilidade

Figura 5. Seção transversal de um joelho de cadáver na região da articulação femorotibial. A ponta do nervo está localizada no fóliculo femoral. Pode-se notar sua proximidade com a cápsula articular posterolateral (asterisco).
foram de 89,9% e 71,6%, respectivamente, usando um cut-off de 0,40. Sugerimos que o uso dessas razões, e em especial a razão NFC/NT, seja uma ferramenta útil para detecção de alteração do NFC, aumentando a confiabilidade diagnóstica. A relação de sinal entre o nervo doente e uma veia adjacente foi utilizada previamente por Chhabra et al. ao pesquisarem neuropatias no nervo ciático, apresentando alta acurácia para detecção de alterações neurais. No nosso trabalho acrescentamos, ainda, a razão com o NT, que também demonstrou ser um bom instrumento para elevar a acurácia e fortalecer o diagnóstico.

Algumas limitações do presente estudo precisam ser mencionadas. A maior limitação se deve ao caráter retrospectivo do estudo, que não nos permitiu obter informações seguras referentes à apresentação clínica dos pacientes ou à evolução clínica e de imagem, que poderiam demonstrar implicações futuras para as anormalidades de imagem encontradas nas fases aguda e subaguda. Em um trabalho prévio com pacientes diferentes dos nossos, mas com perfil epidemiológico semelhante, foram investigados, de forma prospectiva e longitudinal, cinco pacientes com lesão crônica do CPL identificada inicialmente por RM e que foram avaliados, no controle evolutivo, por exames de imagem e por exame físico detalhado, identificando que lesões crônicas do NFC classificadas inicialmente como neuropatia nas imagens de RM tiveram pouca ou nenhuma repercussão clínica na evolução, mas os casos classificados na primeira RM como axoniotmese apresentaram sequelas sensitivas e motoras. Outra limitação se relaciona à presença de edema nos tecidos moles nos casos de lesão traumática do CPL, não sendo possível cegar completamente os radiologistas que fizeram as avaliações em relação a qual grupo pertencia o paciente. Além disso, não tínhamos dados cirúrgicos disponíveis, especialmente em relação ao estado do NFC.

CONCLUSÃO

Nós detectamos alta prevalência de alterações no NFC nas imagens de RM nos pacientes previamente diagnosticados com lesão do CPL, com concordância interobservador e intraobservador quase perfeita. Sugerimos usar as relações da intensidade de sinal com o NT e com a VS (NFC/NT e NFC/VS) para aumentar a confiância no diagnóstico. Recomendamos a análise cuidadosa do NFC nos casos de lesão do CPL.

REFERÊNCIAS

1. Davies H, Unwin A, Aichroth P. The posterolateral corner of the knee. Anatomy, biomechanics and management of injuries. Injury. 2004;35:68–75.
2. Sanchez AR 2nd, Sugalski MT, LaPrade RF. Anatomy and biomechanics of the lateral side of the knee. Sports Med Arthrosc Rev. 2006;14:2–11.
3. Vinson EN, Major NM, Helms CA. The posterolateral corner of the knee. AJR Am J Roentgenol. 2008;190:449–58.
4. Chhabra A, Andreisek G, Soldatos T, et al. MR neurography: past, present, and future. AJR Am J Roentgenol. 2011;197:583–91.
5. Van den Bergh FRA, Vanhoenacker FM, De Smet E, et al. Peroneal nerve: normal anatomy and pathologic findings on routine MRI of the knee. Insights Imaging. 2013;4:287–99.
6. Gruber H, Peer S, Meirer R, et al. Peroneal nerve palsy associated with knee luxation: evaluation by sonography—inital experiences. AJR Am J Roentgenol. 2005;185:1119–25.
7. Jia Y, Gow U, Geng I, et al. Anatomic proximity of the peroneal nerve to the posterolateral corner of the knee determined by MR imaging. Knee. 2012;19:766–8.
8. Tomaino M, Day C, Papageorgiou C, et al. Peroneal nerve palsy following knee dislocation: pathoanatomy and implications for treatment. Knee Surg Sports Traumatol Arthrosc. 2000;8:163–5.
9. Trappeners L, De Maeseneer M, Van Roy P, et al. Peroneal nerve injury in three patients with knee trauma: MR imaging and correlation with anatomic findings in volunteers and anatomic specimens. Eur Radiol. 2003;13:1722–7.
10. Seddon HJ, Medawar PB, Smith H. Rate of regeneration of peripheral nerves in man. J Physiol. 1943;102:191–215.
11. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74:491–516.
12. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.
13. Jadhav SP, More SR, Riascos RF, et al. Comprehensive review of the anatomy, function, and imaging of the popliteus and associated pathologic conditions. Radiographics. 2014;34:496–513.
14. Arciero RA. Anatomic posterolateral corner knee reconstruction. Arthroscopy. 2005;21:1147.
15. Raheem O, Philpott J, Ryan W, et al. Anatomical variations in the anatomy of the posterolateral corner of the knee. Knee Surg Sports Traumatol Arthrosc. 2007;15:895–900.
16. Apsingi S, Eachempati KK, Shah GKJ, et al. Posterolateral corner injuries of the knee—a review. J Indian Med Assoc. 2011;109:400–3.
17. Seelacher JB, Inglis AE, Marshall JL, et al. The structure of the posterolateral aspect of the knee. J Bone Joint Surg Am. 1982;64:536–41.
18. Geiger D, Chang E, Pathria M, et al. Posterolateral and posteromedial corner injuries of the knee. Radiol Clin North Am. 2013;51:413–32.
19. Baker CI, Jr, Norwood LA, Hughston JC. Acute posterolateral rotatory instability of the knee. J Bone Joint Surg Am. 1983;65:614–8.
20. Covey DC. Injuries of the posterolateral corner of the knee. J Bone Joint Surg Am. 2001;83:106–18.
21. Freeman RT, Duri ZA, Dowd GSE. Combined chronic posterior cruciate and posterolateral corner ligamentous injuries: a comparison of posterior cruciate ligament reconstruction with and without reconstruction of the posterolateral corner. Knee. 2002;9:309–12.
22. Jakobsen BW, Lund B, Christiansen SE, et al. Anatomic reconstruction of the posterolateral corner of the knee: a case series with isolated reconstructions in 27 patients. Arthroscopy. 2010;26:918–25.
23. LaPrade RF, Terry GC. Injuries to the posterolateral aspect of the knee. Association of anatomic injury patterns with clinical instability. Am J Sports Med. 1997;25:433–8.
24. LaPrade RF, Wentorf FA, Oslos EJ, et al. An in vivo injury model of posterolateral knee instability. Am J Sports Med. 2006;34:1313–21.
25. Chhabra A, Faridian-Aragnh N, Chalian M, et al. High-resolution 3-T MR neurography of peroneal neuropathy. Skeletal Radiol. 2012;41:257–71.