Catalyst Behavior Analyzed via General Regression Model with the Parameters Depending on a Covariate

Mohammad Hossein Dehghan,*† Zahra Yavari,*‡§ and Meissam Noroozifar*†§

†Department of Statistics, ‡Department of Chemistry, and §Renewable Energies Research Institute, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran

ABSTRACT: In this work, the catalytic activity of modified glassy carbon electrodes with xPd−yLaNi0.5Fe0.5O3−chitosan as an anodic catalyst for the polymeric fuel cell was investigated with cyclic voltammetry and controlled potential coulometry techniques; x and y are the mass loading of noble metal and mixed oxide, respectively. For the first time, the statistical regression mixed models were used to compare the electrocatalytic ability of nanocomposites in a fuel cell. The nonlinear regression model of \(y_j = f(x_i, s_j) + \epsilon_i \) was considered and simulated, where \(X_i \) is a random variable, \(s_j \) is a covariate value, \(\epsilon_i \) is a normal random error variable, and \(\theta \) is a P-dimensional vector of parameters of the mentioned model. A strategy to make a mixed model was proposed by using the maximum likelihood or mean square error methods. Then, the appropriate linear and nonlinear models were applied to the electrochemical results. The equations of current density vs time were obtained via the coulometry techniques; and the mass loadings of noble metal and mixed oxide, respectively. In the following discussion, for the first time, use of the nonlinear regression model to analyze the behavior of prepared catalysts is described as

\[
y_{ij} = f(x_{ij}, \theta(s_j)) + \epsilon_i
\]

for \(i = 1, 2, ..., n \) and \(j = 1, 2, ..., J_i \); where \(X_i \) is a random variable, \(s_j \) is a covariate value, \(\epsilon_i \) is a normal random error variable with

\[
E(\epsilon) = \mathbf{0}, \quad V(\epsilon) = E(\epsilon\epsilon^T) = \sigma^2 I
\]
and θ is a P-dimensional vector of parameters of the mentioned model and it can be modeled as

$$\theta_l = g(s_j; \gamma) + \epsilon_l$$ \hspace{1cm} (3)

for $l = 1, 2, \ldots, P$ and $j = 1, 2, \ldots, J$ as another regression model, where γ is the L-dimensional vector of the parameters and ϵ is a normal random error variable with

$$E(\epsilon) = 0, \quad V(\epsilon) = E(\epsilon^2) = \delta^2 I$$ \hspace{1cm} (4)

We proposed a strategy to make a mixed model by using the maximum likelihood or mean square error (MSE) methods.\(^{19,20}\)

For this, first, a regression model of θ_l on s_j where $j = 1, 2, \ldots, J$ was estimated. Then, the new models were taken instead of each related parameter. To illustrate the idea, studies were conducted by using the simulation method\(^{21}\) and this strategy was applied to the electrochemical results. To do this, assume according to the lth parameter of the main regression model, a model of θ_l on s_j in the form

$$\hat{\theta}_l s_j = g(s_j; \hat{\gamma}) + \hat{\epsilon}_l$$ \hspace{1cm} (5)

for $j = 1, 2, \ldots, J$ and $l = 1, 2, \ldots, P$ is possible to estimate. Therefore, one can estimate the latter mentioned model as follows

$$\hat{\theta}_l s_j = \hat{g}(s_j; \hat{\gamma}) + \hat{\epsilon}_l$$ \hspace{1cm} (6)

for $l = 1, 2, \ldots, P$ or

$$\hat{\theta}_l s_j = b_0 + b_1 s_j + b_2 s_j^2 + \cdots + b_k s_j^k$$ \hspace{1cm} (7)

for $l = 1, 2, \ldots, P$ and $k \geq 1$.

EXPERIMENTAL SECTION

All chemicals were purchased from Merck and employed without further purification. Chitosan with medium molecular weight (400,000 Da) was purchased from Fluka. All solutions were prepared in distilled water.

Table 1. List of All Modified Electrodes Employed in the Present Study

modified electrode	Pd (mg cm$^{-2}$) A component	$\text{LaNi}_{0.5}\text{Fe}_{0.5}\text{O}_3$ (mg cm$^{-2}$) B component
GC/A−4B−CH	0	4
GC/0.8A−3.2B−CH	0.8	3.2
GC/1.6A−2.4B−CH	1.6	2.4
GC/2.4A−1.6B−CH	2.4	1.6
GC/3.2A−0.8B−CH	3.2	0.8
GC/4A−0B−CH	4	0

Figure 1. Cyclic voltammograms of methanol oxidation at (a) +0.5 to +1.5 V, (b) −1.0 to +0.7 V, and (c) −1.0 to +1.5 V vs Hg/HgO on modified electrodes in 0.80 M methanol and 1.00 M KOH.
On the basis of our previous work, the glassy carbon (GC) electrode was modified with palladium nanoparticles (A component) and LaNi$_{0.5}$Fe$_{0.5}$O$_3$ (B component) nanoparticles dispersed into chitosan (CH) polymer. These modified electrodes have been denoted as GC/xA−yB−CH (x and y can be 0, 0.8, 1.6, 2.4, 3.2, and 4 mg cm$^{-2}$). Table 1 offers the list of all modified electrodes. The electrochemical behavior of modified electrodes was investigated by SAMA Electroanalyser (Isfahan, Iran) by using cyclic voltammetry and controlled potential coulometry techniques in a three-electrode cell at room temperature ($T = 301$ K), for 500 s and different potentials. In this way, the working, counter, and reference

S	A	B	C	A	B	C
2	78.624 82	−26.237 80	2.922 020	80.93023	−27.123 25	3.069 766
25	113.523 39	−31.337 22	3.429 315	112.900 95	−31.000 21	3.397 758
50	152.139 06	−37.089 04	4.008 089	149.966 83	−36.578 75	3.905 945
75	192.271 20	−43.443 97	4.674 282	190.976 54	−42.737 10	4.572 127
100	235.479 65	−51.744 36	5.471 440	234.830 06	−50.975 26	5.396 304
125	282.504 34	−60.825 51	6.382 312	282.427 39	−60.793 23	6.378 474
150	332.452 32	−71.685 63	7.468 529	333.268 55	−72.191 02	7.518 639
175	385.991 24	−83.990 52	8.697 364	387.453 52	−85.168 62	8.816 798
200	444.877 12	−98.589 45	10.161 934	446.322 31	−99.126 03	10.272 952
225	507.882 04	−115.488 37	11.847 271	508.654 92	−115.863 26	11.887 099
250	576.417 46	−135.105 15	13.812 550	574.771 34	−134.580 30	13.659 241

Figure 2. Estimated parameter curves of (a) A, (b) B, and (c) C vs a covariate value (s).
electrodes were the modified GC, platinum, and Hg/HgO electrodes, respectively. A mixture of potassium hydroxide solution with a known methanol concentration (1 M KOH + 1.54 M methanol) was considered as the electrolyte.

RESULTS AND DISCUSSION

Cyclic Voltammetry Investigations. The cyclic voltammmograms of methanol oxidation on different modified electrodes were recorded at three potential ranges (Figure 1). On the basis of Figure 1a, for the GC/0A−4B−CH electrode, the peak of methanol oxidation appeared at 1.28 V. By increasing the contribution of A to B component in the catalyst, the current density was increased so the peak at 1.28 V was detected with difficulty. As seen from Figure 1b, the peak comparison for GC/4A−0B−CH and GC/3.2A−0.8B−CH electrodes proved that the presence of B components shifted the potential and current to more negative and higher values, respectively. By decreasing the contribution of A to B component in the catalyst, the peak methanol oxidation disappeared. Figure 1c shows the cyclic voltammograms of methanol oxidation on different modified electrodes at a wider potential range. According to this, there are two peak methanol oxidations (1.28 V for B component and 0.43 V for A component, individually) at forward sweep for modified electrodes. To include both peaks of methanol oxidation on such electrodes with different contributions of A and B components, the potential 1.2 V was selected for the controlled potential coulometry technique.

Simulation Study. To study this approach, the model is defined as

$$Y|\varepsilon = f(A, B, C, D, x) + \varepsilon$$

where

$$f(A, B, C, D, x) = A + Bx + Cx^2 - \text{IID}$$

$$\varepsilon \sim N(s, 10)$$ is a random variable, the sample size $n = 100$, the iteration number $N = 1000$, the main random variable $x = \text{seq}(0, 10, \text{length} = 10)$, the fixed values of $D = \text{seq}(1.8, 2.8, \text{length} = 11)$, and the covariate values $s = (2, 2.5, 50, 75, 100, 125, 150, 175, 200, 225, \text{and} 250)$. We assume that there is a relation between the parameters and the covariate given by the equation

$$Y|s = A(s) + B(s)x + C(s)x^2 + \varepsilon$$

The mixed model is extracted as

$$\hat{Y}|s = \hat{A}(s) + \hat{B}(s)x + \hat{C}(s)x^2$$

Not only is this a generalized model but it can also estimate the response variable according to optional values of the covariate.

Table 3. Individual and General Regression Models for Estimating the Current Density

A percent	B percent	model = $f(t, P_A)$	sig value
0	100	$\log(J/t) = 1.40 - [0.718 \times \log(t)] + [0.153 \times \log(t)^2]$	2×10^{-10}
40	60	$\log(J/t) = 1.58 - [0.692 \times \log(t)] + [0.144 \times \log(t)^2]$	2×10^{-10}
60	40	$\log(J/t) = 1.74 - [0.775 \times \log(t)] + [0.154 \times \log(t)^2]$	2×10^{-10}
100	0	$\log(J/t) = 1.97 - [0.708 \times \log(t)] + [0.200 \times \log(t)^2]$	2×10^{-10}

$$P_A = 1 - P_B$$

where P_A is the individual and general estimations of variables.
i.e., $s = 10, 40, \text{ and } 230$. We hope the estimated model, with all mentioned models being significant, can help us to forecast the response variable even in impossible situations. We used the maximum likelihood estimator and mean square error (MSE) methods to estimate the regression (linear and/or nonlinear) of the involved models by usage R (SPSS) software. The results of

![Figure 4. Current density vs time curves on the basis of the experimental and estimated data for (a) GC/0A−4B−CH, (b) GC/0.8A−3.2B−CH, (c) GC/1.6A−2.4B−CH, (d) GC/2.4A−1.6B−CH, (e) GC/3.2A−0.8B−CH, and (f) GC/4A−0B−CH electrodes.](image-url)
the simulation are subsequently stated. The estimated parameters are displayed in Table 2 where
\[
\hat{A}_s = 78.44 + 1.27s + 0.00287s^2
\]
(12)
and
\[
\hat{B}_s = -26.17 - 1.109s - 0.00127s^2
\]
(13)

The curves of estimated parameters are shown in Figures 2 and 3.

Table 5. Integrated Charge Exchanged over Time Intervals for $P_{A=0.00}$

$P_{A=0.00}$	$\int_{t_1}^{t_2} f(t) \, dt$
t_1	t_2
0.00	90.16
0.00	135.26
0.00	171.49
0.00	202.93
0.00	231.24
0.00	257.27
0.00	281.56
0.00	304.45
0.00	326.17
0.00	346.91
0.00	366.81
0.00	385.97
0.00	404.48

Table 6. Integrated Charge Exchanged over Time Intervals for $P_{A=0.40}$

$P_{A=0.40}$	$\int_{t_1}^{t_2} f(t) \, dt$
t_1	t_2
0.00	190.18
0.00	272.63
0.00	336.56
0.00	390.82
0.00	438.82
0.00	482.47
0.00	522.70
0.00	560.25
0.00	595.60
0.00	629.12
0.00	661.05
0.00	691.62
0.00	720.99

Table 7. Integrated Charge Exchanged over Time Intervals for $P_{A=0.60}$

$P_{A=0.60}$	$\int_{t_1}^{t_2} f(t) \, dt$
t_1	t_2
0.00	1277.21
0.00	389.33
0.00	474.90
0.00	546.79
0.00	609.97
0.00	666.97
0.00	719.31
0.00	767.94
0.00	813.57
0.00	856.68
0.00	897.63
0.00	936.73
0.00	974.20

The curves of estimated parameters are shown in Figures 2 and 3.
Table 8. Integrated Charge Exchanged over Time Intervals for $P_A = 1.00$

P_A	t_2	t_1	$f(t)$	t_f
1.00	1418.10	1515.29	0.00	1680.16
0.60	1402.20	1503.30	0.00	1679.30
0.40	1401.40	1502.50	0.00	1678.50
0.20	1400.60	1501.70	0.00	1677.70

Real Data. For real data, we consider the following two conditions. First case: For constant potential at $+1.2$ V, the proposed model was considered for experimental data of different percentages of A and B to find a general model. The general model can predict the value of the response variable (output) for each percentage of A and B. Second case: For constant percentage of A and B, the proposed model was considered for experimental data of different values of the potential to find a general model. The general model can predict the value of the response variable (output) for each applied potential. According to the percentages of A and B components, several nonlinear regressions of current density were chosen in $J/(\text{mA cm}^{-2})$ for these data. The exchanged charge over this time based on the A-level percentage was $P_A \times A \times (1 - P_A) \times B$. Let $P_A = \{0.00, 0.20, 0.40, 0.60, 0.80, 1.00\}$ and $t = \{0.2, ..., 300\}$ per second. The results are as follows and show that all models are significant. The summary of the model equivalent to $P_A = 0.00, P_B = 1.00$ follows.

Formula:

$$J/(\text{mA cm}^{-2}) \sim a + bT + cT^2$$

parameters estimate	std. error	t-value	P-value
a	1.400190	0.002894	483.8
b	-0.718050	0.003431	-209.3
c	0.153938	0.001019	151.1

Residual standard error: 0.01307 on 1497 degrees of freedom; achieved convergence tolerance: 2.257×10^{-16}.

The summary of the model equivalent to $P_A = 0.20, P_B = 0.80$ follows.

Formula:

$$J/(\text{mA cm}^{-2}) \sim a + bT + cT^2$$

parameters estimate	std. error	t-value	P-value
a	1.654462	0.004048	408.7
b	-0.753021	0.003493	-156.9
c	0.143733	0.001425	100.9

Residual standard error: 0.01829 on 1497 degrees of freedom; achieved convergence tolerance: 1.377×10^{-16}.

The summary of the model equivalent to $P_A = 0.40, P_B = 0.60$ follows.

Formula:

$$J/(\text{mA cm}^{-2}) \sim a + bT + cT^2$$

parameters estimate	std. error	t-value	P-value
a	1.582293	0.006851	230.97
b	-0.692841	0.008122	-85.31
c	0.144265	0.002411	59.84

Residual standard error: 0.03095 on 1497 degrees of freedom; achieved convergence tolerance: 7.564×10^{-16}.

The summary of the model equivalent to $P_A = 0.60, P_B = 0.40$ follows.

Formula:

$$J/(\text{mA cm}^{-2}) \sim a + bT + cT^2$$

parameters estimate	std. error	t-value	P-value
a	1.741539	0.004149	419.8
b	-0.775603	0.004919	-157.7
c	0.154073	0.001460	105.5

Residual standard error: 0.01874 on 1497 degrees of freedom; achieved convergence tolerance: 2.055×10^{-16}.

The summary of the model equivalent to $P_A = 0.80, P_B = 0.20$ follows.

Formula:

$$J/(\text{mA cm}^{-2}) \sim a + bT + cT^2$$

parameters estimate	std. error	t-value	P-value
a	2.139579	0.009003	237.64
b	-1.019560	0.010674	-95.52
c	0.181744	0.003169	57.36

Residual standard error: 0.04067 on 1497 degrees of freedom; achieved convergence tolerance: 8.595×10^{-16}.
follows.

To have an estimation of exchanged charge over time intervals (Figure 4) can be possible. These values are shown in the following Tables 5.

Then, the fitting of the related graphs and calculation of the exchanged charge over time intervals (Figure 4) can be possible. These values are shown in the following Tables 5–8. It is noteworthy that we considered the logarithm of the response variable with a base of 10, as \(\log_{10}(J/(\text{mA cm}^{-2}))/t(s) \); hence, it is easy to calculate the original response variable, \(J/(\text{mA cm}^{-2}) \), to use the last mixed robust model by putting a new \(p_A \) value and the time values to estimate the related response variable.

Figure 5. Graphs of the current density vs time for methanol oxidation at 1.2 V potential by (a) the individual and general models and forecasting for the new 90% of the A component and (b) the experiment vs its statistical general estimation for \(p_A = 0.9 \) and \(p_B = 0.10 \).

Table 9. Individual and General Regression Models for Estimating the Current Density for \(p_A = 0.40 \) and \(p_B = 0.60 \)

V level	model = \(f(t) \)	sig value
0.2	\(\log_{10}(J \times t) = 0.962 - \{0.997 \times \log_{10}(t)\} + \{0.1895 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
0.4	\(\log_{10}(J \times t) = 1.1498 - \{0.797 \times \log_{10}(t)\} + \{0.084 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
0.6	\(\log_{10}(J \times t) = 1.085 - \{0.378 \times \log_{10}(t)\} + \{0.0041 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
0.8	\(\log_{10}(J \times t) = 1.28 - \{0.355 \times \log_{10}(t)\} + \{0.0073 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
1	\(\log_{10}(J \times t) = 1.296 - \{0.323 \times \log_{10}(t)\} + \{0.0199 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
1.2	\(\log_{10}(J \times t) = 1.4954 - \{0.494 \times \log_{10}(t)\} + \{0.089 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-10} \)
\(\nu \)	\(\log_{10}(J \times t) = (0.8690 + 0.473v) - \{[1.484 + 2.6289v - 1.47t^2] \times \log_{10}(t)\} + \{[0.344 - 0.88v + 0.55t^2] \times \log_{10}(t^2)\} \)	\(2 \times 10^{-10} \)

Table 10. Individual and General Regression Models for Estimating the Current Density for \(p_A = 0.80 \) and \(p_B = 0.20 \)

V level	model = \(f(t) \)	sig value
0.2	\(\log_{10}(J \times t) = 0.838 - \{0.794 \times \log_{10}(t)\} + \{0.17 \times \log_{10}(t^2)\} \)	\(2 \times 10^{-11} \)
0.4	\(\log_{10}(J \times t) = 0.804330 454.85 <2 \times 10^{-16} \)	\(2 \times 10^{-11} \)
0.6	\(\log_{10}(J \times t) = -0.708535 0.005133 -138.03 <2 \times 10^{-16} \)	\(2 \times 10^{-11} \)
0.8	\(\log_{10}(J \times t) = 0.129911 0.001524 85.25 <2 \times 10^{-16} \)	\(2 \times 10^{-11} \)
1	\(\log_{10}(J \times t) = 1.370 + 0.780 \times \log_{10}(t) \)	\(2 \times 10^{-11} \)
1.2	\(\log_{10}(J \times t) = 1.370 + 0.780 \times \log_{10}(t) \)	\(2 \times 10^{-11} \)
\(\nu \)	\(\log_{10}(J \times t) = (0.8690 + 0.473v) - \{[1.484 + 2.6289v - 1.47t^2] \times \log_{10}(t)\} + \{[0.344 - 0.88v + 0.55t^2] \times \log_{10}(t^2)\} \)	\(2 \times 10^{-10} \)

The summary of the model equivalent to \(p_A = 1.00, p_B = 0.00 \) follows.

Formula: \(J/(\text{mA cm}^{-2}) \sim a + bT + cT^2 \)

parameters estimate	\(P_a > \beta \)
\(a \)	1.969494 0.004330 454.85 <2 \times 10^{-16} \)
\(b \)	0.708535 0.005133 -138.03 <2 \times 10^{-16} \)
\(c \)	0.129911 0.001524 85.25 <2 \times 10^{-16} \)

Residual standard error: 0.01956 on 1497 degrees of freedom; achieved convergence tolerance: \(1.165 \times 10^{-8} \).

By combining the parameter estimators from these models

\[
\hat{\beta}_0 = 1.370 + 0.780 \times P_A
\]

\[
\hat{\beta}_1 = -(0.718 + 0.135P_A)
\]

\[
\hat{\beta}_2 = (0.152 - 0.020 \times P_A + 0.014 \times P_A^2)
\]

and putting them in the main model, the mixed regression model was obtained. Finally, this nonlinear regression model can easily estimate the response value, the current density, \(J/(\text{mA cm}^{-2}) \), on the basis of the collaborated participation of A percentage level (B percentage level) and time.

Examples of regression models estimating the current density are reported in Table 3. By combining the A and B levels such as \(P_A \times A \) and \((1 - P_A) \times B \), the resulting robust model is

\[\log_{10}(J \times tP_A) = \hat{\beta}_0(P_A) + \hat{\beta}_1(P_A) \times \log_{10}(t) + \hat{\beta}_2(P_A) \times \log_{10}(t^2)\] (18)

To have an estimation of exchanged charge over time, we consider the values for \(t_1 \) and \(t_2 \) as displayed in Table 4.

Then, the fitting of the related graphs and calculation of the exchanged charge over time intervals (Figure 4) can be possible. These values are shown in the following Tables 5–8.
5 shows that the estimation for $P_A=0.90$ is reasonably located between the two levels $P_A=0.80$ and $P_A=0.10$.

At first, we consider the fixed percentages $p_A = 0.40$ ($p_B = 0.60$) and $p_B = 0.80$ ($p_B = 0.20$) of A and B, respectively. Let the applied potential be considered as $E = \{0.2, 0.4, 0.6, 0.8, 1.0, 1.2\}$. It was chosen by several nonlinear regressions of current density, $J/(mA\ cm^{-2})$, for these data. The exchanged charge over this time was measured on the basis of the measures mentioned above at $t = \{0.2,..., 300\}$ per second. The results are as follows and show that all models are significant.

For example, following is the summary of the model equivalent to $P_A = 0.40$, $P_B = 0.60$, and $E = 0.2$ V.

$$\text{Formula: } J/(mA\ cm^{-2}) \sim a + bT + cT^2$$

| Parameter | Estimate | Std Error | t-value | P_t (>|t|) |
|-----------|----------|-----------|-----------|-------------|
| a | 0.961945 | 0.001445 | 665.5 | <2 x 10^{-16} |
| b | -0.997022| 0.001530 | -651.4 | <2 x 10^{-16} |
| c | 0.189549 | 0.000404 | 469.2 | <2 x 10^{-16} |

Residual standard error: 0.006902 on 2494 degrees of freedom.

A convergence tolerance of 1.754×10^{-8} was achieved. By combining the parameters’ estimators from these models

$$\hat{\alpha}_0(v) = 0.8690 + 0.473v$$

(19)

$$\hat{\alpha}_1(v) = 1.484 + 2.6289v - 1.47v^2$$

(20)

$$\hat{\alpha}_2(v) = 0.344 - 0.88v + 0.55v^2$$

(21)

and putting them in the main model, the mixed regression model was obtained. Finally, this nonlinear regression model can easily estimate the response value, the current density, $J/(mA\ cm^{-2})$, on the basis of the participation potential level and the time.

Examples of regression models to estimate the current density are reported in Tables 9 and 10. By combining the fixed mentioned levels of A and B and potential levels, the resulting robust model is

$$\log_{10}(J \times t^v) = \hat{\alpha}_0(v) + \hat{\alpha}_1(v) \times \log_{10}(t) + \hat{\alpha}_2(v) \times \log_{10}(t^2)$$

(22)

Hence, the fitting of the related graphs and calculation of the exchanged charge over time intervals (Figure 6 and 7) can be possible.
CONCLUSIONS

In this work, the catalytic activity of modified glassy carbon electrodes with α-Pd−γ-LaNi5–Fe3−χO4−ϕ−chitosan as an anodic catalyst toward methanol oxidation was investigated with cyclic voltammetry and controlled potential coulometry techniques; x and ϕ are the mass loading of noble metal and mixed oxide, respectively. The results of the simulation method to extract a suitable mixed model and robust model show that on the basis of the skill of the statistician, this strategy usually works well. It would be better, before starting the related trials, to consult a statistician, and the points of the covariate values should be more. For example, it is impossible to repeat the trials for all arbitrary percentages of the A and B components without spending time and chemicals. But with the use of this method, the same results can be obtained with less expense and time. Although we can estimate the regression model for each value of the percentage, it is possible to estimate the regression model for another new value of percentage; meaning, not only by use of the mixed model can we estimate the response variable for all possible percentage values but we can also forecast it for each arbitrary value of the covariate \(P_x 0 \leq P_x \leq 1 \).

AUTHOR INFORMATION

Corresponding Authors
*E-mail: mhdehghan@math.usb.ac.ir (M.H.D.).
*E-mail: z_yavari@chem.usb.ac.ir (Z.Y.).
*E-mail: mnoorozifar@chem.usb.ac.ir (M.N.)

ORCID
Zahra Yavari: 0000-0003-1049-0448
Meissam Noroozifar: 0000-0001-7997-0461

Notes
The authors declare no competing financial interest.

REFERENCES

(1) Lamy, C.; Belgir, E. M.; Léger, J. M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). J. Appl. Electrochem. 2001, 31, 799–809.
(2) Wang, Z.; Yin, G. P.; Zhang, J.; Sun, Y. C.; Shi, P. F. Investigation of ethanol electrooxidation on a Pt-RuNi/C catalyst for a direct alcohol fuel cell. J. Power Sources 2006, 160, 37–43.
(3) García-Rodríguez, S.; Somodi, F.; Borbáth, I.; Margitfalvi, J. L.; Peña, M. A.; Rojas, J. L. G. S. Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn-Pt interaction Application in CO and ethanol electrooxidation reactions. Appl. Catal., B 2009, 91, 83–91.
(4) Tsiovvaras, N.; Martínez-Huerta, M. V.; Paschos, O.; Stimming, U.; Fierro, J. L. G.; Peña, M. A. PdRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int. J. Hydrogen Energy 2010, 35, 11478–11488.
(5) Zhang, S.; Yuan, Z.; Hin, J. N. C.; Wang, H.; Friedrich, K. A.; Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 2009, 194, 588–600.
(6) Xu, H.; Song, P.; Yan, B.; Wang, J.; Gao, F.; Zhang, Y.; Du, Y. Superior ethylene glycol electrocatalysis enabled by Au-decorated PdRu nanopopcorns. J. Electroanal. Chem. 2018, 814, 31–37.
(7) Peng, C.; Yang, W.; Wu, E.; Ma, Y.; Zheng, Y.; Nie, Y.; Zhang, H.; Xu, J. PdAg alloy nanotubes with porous walls for enhanced electrocatalytic activity towards ethanol electrooxidation in alkaline media. J. Alloys Compd. 2017, 698, 250–258.
(8) Deshpande, K.; Mukasyan, A.; Varna, A. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells. J. Power Sources 2006, 158, 60–68.
(9) Saha, M. S.; Li, R.; Sun, X. Composite of Pt-Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochim. Commun. 2007, 9, 2229–2234.
(10) Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393–13398.
(11) Xu, H.; Song, P.; Fernandez, C.; Wang, J.; Zhu, M.; Shiraishi, Y.; Du, Y. Sophisticated construction of binary PdAl alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation. ACS Appl. Mater. Interfaces 2018, 10, 12659–12665.
(12) Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S.; Wang, C.; Du, Y.; Yang, P. Sub-5nm monodispersed PdCu nanoplate with enhanced catalytic activity towards ethylene glycol electrooxidation. Electrochim. Acta 2018, 261, 521–529.
(13) Xu, H.; Song, P.; Zhang, Y.; Du, Y. 3D-2D heterostructure of PdRuNiZn oxyspecies with improved durability for electrocatalytic methanol and ethanol oxidation. Nanoscale 2018, 10, 12605–12611.
(14) Jurzinsky, T.; Bär, R.; Cremers, C.; Tübbe, J.; Elsner, P. Highly active carbon supported palladium-rhodium PdXRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells (AEM-DMFCs). Electrochim. Acta 2015, 176, 1191–1201.
(15) Yavari, Z.; Noroozifar, M.; Khorasani-Motlagh, M. Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell. J. Appl. Electrochem. 2015, 45, 439–451.
(16) Zhu, J.; Zhao, Y.; Tang, D.; Zhao, Z.; Carabineiro, S. A. C. Aerobic selective oxidation of alcohols using LixCexCeOy perovskite catalysts. J. Catal. 2016, 340, 41–48.
(17) Chen, C.; Li, Y.; Liu, S. Fabrication of macroporous platinum using monodisperse silica nanoparticle template and its application in methanol catalytic oxidation. J. Electroanal. Chem. 2009, 632, 14–19.
(18) Noroozifar, M.; Yavari, Z.; Khorasani-Motlagh, M.; Ghasemi, T.; Rohani-Yazdi, S. H.; Mohammadi, M. Fabrication and performance evaluation of a novel membrane electrode assembly for DMFCs. RSC Adv. 2016, 6, 563–574.
(19) Manski, C. F. Adaptive estimation of non-linear regression models. Econ. Rev. 1984, 3, 145–194.
(20) Ritz, C.; Streibig, J. C. Nonlinear Regression with R: Springer: Denmark, 2008; Chapter 7, Vol. 1, pp 93–108.
(21) Thompson, J. R.; Tapia, R. A. Nonparametric Function Estimation, Modeling, and Simulation; SIAM: Texas, 1990; Chapter 3, Vol. 1, pp 92–101.