The Petersburg paradox and failure probability

Jake Fontana
U.S. Naval Research Laboratory
455 Overlook Ave. SW, Washington, D.C. 20375

Peter Palffy-Muhoray*†
Advanced Materials and Liquid Crystal Institute
Kent State University
Kent, OH 44242
(Dated: February 7, 2020)

The Petersburg paradox provides a simple paradigm for systems that show sensitivity to rare events. Here, we demonstrate a physical realization of this paradox using tensile fracture, experimentally verifying for six decades of spatial and temporal data and two different materials that the fracture force depends logarithmically on the length of the fiber. The Petersburg model may be useful in a variety fields where failure and reliability are critical.

PACS numbers: 83.60.Uv, 83.60.-a, 62.25.+g, 83.85.Tz

Failure of materials is ubiquitous. In failure, breakdown often depends on the occurrence of rare events, such as large defects in mechanical and dielectric breakdown. Although the Weibull model has been used extensively over the last century to describe such events, the model is empirically founded with no firm theoretical basis. It is of considerable interest then to further elucidate the relationship between material strength and scale.

The Petersburg paradox is a game in which the expectation value of winnings does not agree with the dictates of common sense. A single trial in the Petersburg game consists of flipping a true coin until it lands heads; if this occurs on the nth flip, the payout is 2^n dollars. The expectation value of the payout from a single trial is $\sum_{i=1}^{\infty} \left(\frac{1}{2} \right)^i 2^i = \infty$; however, in a typical trial, only a few dollars are won. The paradox is that the expected outcome dramatically differs from the typical one. The first full resolution of the paradox was given by Feller.

Given a sequence of N coin tosses, i.e. (10110...100101), where 1 and 0 correspond to the coin landing heads or tails, the mean number of clusters of length n is $\langle m(n) \rangle = (1 - p)^2 p^n N$ where p is the probability of the coin landing tails. For large N, the system is expected to have many small clusters, and fewer large clusters. No clusters of size n are expected to occur with $n > n_{\text{max}}$ where $(1 - p)^2 p^{n_{\text{max}}} N = 0.5$. The largest expected cluster size in a single chain is thus $n_{\text{max}} = \frac{-\ln(2N(1-p)^2)}{\ln(p)}$; that is, n_{max} depends linearly on the logarithm of the chain length.

In this Letter, we report a physical realization of such behavior, by measuring the tensile force required to fracture fibers over six decades of fiber length and time for two materials. Our results show that the force required to fracture a fiber depends linearly on the logarithm of the fiber length and is nearly independent of the strain rate. In addition to material failure, these results may have applications in fields such as weather forecasting, financial markets, internet congestion and hydrology.

There is a fundamental connection between the Petersburg paradox and systems that show a sensitivity to rare events. In the Petersburg game, large profits result from the rare occurrence of long clusters of tails, i.e. (10000...00001). In failure, breakdown results from the rare occurrences of large defects. If n_{max} is a measure of the size of the largest defect in a fiber length L and if the force required to fracture the fiber is a linear function of the defect size, then the force F required to fracture the fiber can be taken to depend linearly on the logarithm of the fiber length. Then

$$\frac{F}{F_0} = \alpha \ln \left(\frac{L}{L_0} \right) + \beta$$

where α and β are constants. L_0 and F_0 are normalizing constants and are set to the shortest fiber lengths that were measured in the experiments, described below, since the length and corresponding force required to fracture a defect free fiber is initially unknown.

To validate Eq. 1, we carried out tensile fracturing experiments on polyester and polyamide fiber samples with lengths ranging from 1 mm to 1 km (Fig. 1). For fiber samples greater than one meter, the terminal end was clamped to a fixed anchor support, the other was laced over pulley 1, attached to a lever that pushes on a force gauge (Omegadyne LC101 - 25), and is then anchored onto pulley 2 (diameter= 24 cm). Pulley 2 is attached to the shaft of an electric motor (Dayton 1/4 hp, 323.5 : 1, 0.905 rev/s, AC gearmotor). Software (LabVIEW 8.0) using a data acquisition card (DAQ card PCI-6063E) and a relay controlled the motor, rotating pulley 2, and measuring the applied load on the fiber from the force gauge until fracture occurred. The fibers rarely fractured near the fiber ends; if this occurred, the data point was discarded. The experiments were carried out...
FIG. 1. Schematic of the tensometer and force evolution on a fiber. (a) The tensile load was applied and measured on the fiber samples as a function of length and time using a tensometer. (b) A representative graph of the measured force as a function of time from a polyester fiber (Gutermann white sewing thread, filament diameter= 0.025 mm, fiber diameter= 0.125 mm). The top left inset shows a microscope image of a polyester fiber sample and the bottom a polyamide fiber sample (Eagle Claw 6 lbs Nylon monofilament fishing line, diameter= 0.22 mm). The scale bars in both images are equal to 0.1 mm.

out on a straight 1 km paved bicycle trail during times of favorable weather. Several supports were used to prevent the longer fibers from rubbing on the ground.

For fiber samples less than one meter, pulley 2 was changed to another with a diameter of 2 cm to reduce the strain rate, preventing any wave formation or propagation along the fibers, and was conducted indoors. The fibers were placed between two clamps, one fixed to the anchor support and the other to a sleigh clamp. The sleigh clamp was connected to pulley 2 using copper wire (18 ga.). To prevent the fibers from slipping out of the clamps, epoxy drops were placed at the ends of the polyester fibers. The polyamide fiber ends were tied (Snell knot) to the eyes of fishing hooks. The epoxy beads or fishing hooks were then placed into both the sleigh and anchor clamps. The strain rate of the tensometer was further reduced by detaching the copper wire from pulley 2, lacing it over pulley 3 and attaching it to a water vessel. Using a valve the flow of the water into the vessel was controlled, from drops to full stream, thereby controlling the time required to fracture the fibers from days to seconds. The time evolution of the force applied to a fiber is shown for a 5.3 m length polyester fiber (Fig. 1b). Initially, a slight tension is applied to enable accurate measurements of the length of each fiber. The electric motor is then started and tension builds until the fiber

FIG. 2. Normalized fracture force for different length fibers. Normalized fracture force for the (a) polyester ($L_0=1.2 \text{ mm}$, $F_0=17.84 \text{ N}$) and (b) polyamide ($L_0=1.0 \text{ mm}$, $F_0=42.60 \text{ N}$) fibers as a function of fiber length from 1 mm to 1 km. The data sets were fit using the two parameter (α, β) Petersburg, Weibull and mean field models and are summarized in the tables above each graph. R_{adj}^2 was used as a figure of merit.
The Weibull model asserts the probability, \(P \), that a single link will fracture at force \(f \) is \(P(f) = 1 - e^{-\phi(f)} \). The probability of \(n \) items not failing can then be written as \((1 - P)^n = e^{-n\phi(f)} \). Declaring \(\phi(f) \) of the form \(((f - f_0)/f_0)^m \), where \(f \geq f_0 \) and \(f_0 > 0 \), and differentiating \(P \) with respect to \(f \) gives \(P_w \), the Weibull distribution. Letting \(n \) be proportional to \(L \) and maximizing \(P_w \) gives the most probable force \(F \) for link fracture, \(F/F_0 = \alpha(L/L_0)^\beta \).\[4\]

To reveal how the fracture force depends on fiber length, the normalized fracture force for the polyester and polyamide fibers as a function of fiber length from \(1 \) mm to \(1 \) km are plotted (Fig. 2). The data sets are fitted using the logarithmic Petersburg model (Eq. 1), the Weibull model, predicting a power law dependence, and a mean field model \[10\], \(F/F_0 = \alpha \sqrt{\ln(L/L_0)} + \beta \), combining both a logarithmic and power law form.

The adjusted coefficient of determination, \(R_{adj}^2 \), was used as a figure of merit to compare the three models. For both the polyester and polyamide data sets in Fig. 2 the Petersburg \(R_{adj}^2 \) was closest to unity, indicating that the logarithmic dependence of the fiber strength on length, predicted by the Petersburg model, agrees best with experimental results.

We note, properly the mean field model should depend on three fitting parameters, since scaling \(L_0 \) in the \(\sqrt{\ln(L) - \ln(L_0)} \) term does not simply scale \(\alpha \) and \(\beta \). However, if the scaling factor of \(L_0 \) is close to unity, the scaling can be approximated by the change in \(\alpha \) and \(\beta \). We have therefore included the mean field model for the sake of completeness.

The length of a defect free fiber can now be determined, \(L_f = L_0 e^{-\frac{\phi}{\phi_0}} \), from Eq. 1 when \(\frac{\phi}{\phi_0} = 1 \). Using the fitting parameters retrieved from the tables in Fig. 2, we find for the polyester fiber, \(L_f = 1.5 \) mm and for the polyamide fiber, \(L_f = 0.022 \) mm.

To probe how the strain rate affects the fiber fracture force, the water vessel loading setup, discussed above, was used to vary the time required to fracture the fibers at a fixed length (Fig. 3). The fracture force deviated from the average by 8.7% and 6.2% for the polyester (\(L = 6.2 \) m) and polyamide (\(L = 3.8 \) m) fibers, respectively, over a time span of six orders of magnitude demonstrating a small, but non-negligible, creep dependence.

In conclusion, we demonstrated a physical realization of the Petersburg paradox using tensile fracture. Our experiments show that the force required to fracture fibers with lengths from \(1 \) mm to \(1 \) km using two different materials, depends linearly on the logarithm of the fiber length. These results indicate a fundamental connection between the Petersburg paradox and systems that show a sensitivity to rare events.

FIG. 3. Fracture force for fibers at different strain rates. The force to fracture a polyester and polyamide fiber as a function of strain rate.

The adjusted coefficient of determination, \(R_{adj}^2 \), was used as a figure of merit to compare the three models. For both the polyester and polyamide data sets in Fig. 2 the Petersburg \(R_{adj}^2 \) was closest to unity, indicating that the logarithmic dependence of the fiber strength on length, predicted by the Petersburg model, agrees best with experimental results.

We note, properly the mean field model should depend on three fitting parameters, since scaling \(L_0 \) in the \(\sqrt{\ln(L) - \ln(L_0)} \) term does not simply scale \(\alpha \) and \(\beta \). However, if the scaling factor of \(L_0 \) is close to unity, the scaling can be approximated by the change in \(\alpha \) and \(\beta \). We have therefore included the mean field model for the sake of completeness.

The length of a defect free fiber can now be determined, \(L_f = L_0 e^{-\frac{\phi}{\phi_0}} \), from Eq. 1 when \(\frac{\phi}{\phi_0} = 1 \). Using the fitting parameters retrieved from the tables in Fig. 2, we find for the polyester fiber, \(L_f = 1.5 \) mm and for the polyamide fiber, \(L_f = 0.022 \) mm.

To probe how the strain rate affects the fiber fracture force, the water vessel loading setup, discussed above, was used to vary the time required to fracture the fibers at a fixed length (Fig. 3). The fracture force deviated from the average by 8.7% and 6.2% for the polyester (\(L = 6.2 \) m) and polyamide (\(L = 3.8 \) m) fibers, respectively, over a time span of six orders of magnitude demonstrating a small, but non-negligible, creep dependence.

In conclusion, we demonstrated a physical realization of the Petersburg paradox using tensile fracture. Our experiments show that the force required to fracture fibers with lengths from \(1 \) mm to \(1 \) km using two different materials, depends linearly on the logarithm of the fiber length. These results indicate a fundamental connection between the Petersburg paradox and systems that show a sensitivity to rare events.

\[jake.fontana@nrl.navy.mil \]
\[mpalffy@kent.edu \]

[1] G. E. Dieter and D. Bacon. *Mechanical metallurgy*, Vol. 3 (McGraw-Hill New York, 1986).
[2] P. Palffy-Muhoray, R. Barrie, B. Bergersen, I. Carvalho, and M. Freeman, J. Stat. Phys. 35 (1984).
[3] P. Palffy-Muhoray, in *XX Winter Meeting on Statistical Physics*.
[4] W. Weibull, Journal of Applied Mechanics-Transactions of the Asme 18, 1622 (2000).
[5] M. J. Alava, P. K. V. V. Nukala, and S. Zapperi, Advances in Physics 55, 349 (2006).
[6] Z. P. Baˇ zant, Proceedings of the National Academy of Sciences 101, 7101 (2004).
[7] I. Todhunter, *A history of the mathematical theory of probability* (Chelsea, New York, 1949).
[8] W. Feller, *An Introduction to Probability Theory and Its Applications*, 2nd ed., Vol. 2 (Wiley, New York, 1957).
[9] S. L. Phoenix and I. J. Beyerlein, Phys. Rev. E 62, 1622 (2000).
[10] W. A. Curtin, Physical Review Letters 80, 1445 (1998).