Forbidden pairs for equality of edge-connectivity and minimum degree

Junfeng Du
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing 100081, P.R. of China
e-mail: djfdjf1990@163.com

Ziwen Huang
School of Mathematics and Computer Science
& Center of Applied Mathematics
Yichun University
Yichun 336000, P.R. of China
e-mail: zwhuang@aliyun.com

Liming Xiong
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing 100081, P.R. of China
e-mail: lxiong@bit.edu.cn

Abstract

Let \mathcal{H} be a class of given graphs. A graph G is said to be \mathcal{H}-free if G contains no induced copies of H for any $H \in \mathcal{H}$. In this article, we characterize all pairs $\{R, S\}$ of graphs such that every connected $\{R, S\}$-free graph has the same edge-connectivity and minimum degree.

Keywords: forbidden subgraph; edge-connectivity; minimum degree

1 Introduction

We use Bondy and Murty [1] for terminology and notations not defined here and consider finite simple graphs only.

Let $G = (V(G), E(G))$ be a connected graph. We use $n(G), e(G), \kappa(G), \kappa'(G)$ and $\delta(G)$ to denote the order, size, connectivity, edge-connectivity and minimum degree of G, respectively. Let u be a vertex of G. We use $N_G(u)$ to denote the set of vertices which is adjacent with u (also called the neighbors of u) in the graph G. Let S be a subset of $V(G)$ (or $E(G)$). The induced subgraph of G is denoted by $G[S]$. Furthermore, we use $G - S$ to denote the subgraph $G[V(G) \backslash S]$ (or $G[E(G) \backslash S]$), respectively. For $x, y \in V(G)$, the length of a shortest path joining x and y is called the distance between x and y and denoted by $d_G(x, y)$. The diameter of a graph G, denoted by $\text{dim}(G)$, is the greatest distance between two vertices of G.
Let H be a given graph. A graph G is said to be H-free if G contains no induced copies of H. If G is H-free, then H is called a forbidden subgraph of G. Note that if H_1 is an induced subgraph of H_2, then every H_1-free graph is also H_2-free. For a class of graphs \mathcal{H}, the graph G is \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$. For two sets \mathcal{H}_1 and \mathcal{H}_2 of connected graphs, we write $\mathcal{H}_1 \preceq \mathcal{H}_2$ if for every graph $H_2 \in \mathcal{H}_2$, there exists a graph $H_1 \in \mathcal{H}_1$ such that H_1 is an induced subgraph of H_2. If $\mathcal{H}_1 \preceq \mathcal{H}_2$, then every \mathcal{H}_1-free graph is also \mathcal{H}_2-free.

As usual, we use K_n to denote the complete graph of order n, and $K_{m,n}$ to denote the complete bipartite graph with partition sets of size m and n. So the K_1 is a vertex, K_3 is a triangle, $K_{1,r}$ is a star (the $K_{1,3}$ is also called a claw). The clique C is a subgraph of a graph G such that $G[V(C)]$ is a complete graph, and the clique number $\omega(G)$ of a graph G is the maximum cardinality of a clique of G. Then we will show some special graphs which are needed: (see Figure 1).

- P_i, the path with i vertices (note that $P_1 = K_1$ and $P_2 = K_2$);
- Z_i, a graph obtained by identifying a vertex of a K_3 with an end-vertex of a P_{i+1};
- H_1, a graph obtained by identifying a vertex of a K_3 with the one-degree vertex of a Z_1;
- $T_{i,j,k}$, a graph consisting of three paths P_{i+1}, P_{j+1} and P_{k+1} with the common starting vertex.

![Figure 1: Some special graphs: P_i, Z_i, H_1 and $T_{i,j,k}$.](image)

Let X and Y be nonempty subsets of $V(G)$, we denote by $E[X,Y]$ the set of edges of G with one end in X and the other end in Y, and by $e(X,Y)$ their number. When $Y = V(G) \setminus X$, the set $E[X,Y]$ is called the edge cut of G associated with X. The edge cut set S with the minimum number of edges is called the minimum edge cut. It is well-known that $\kappa(G) \leq \kappa'(G) \leq \delta(G)$. In [9], Wang, Tsuchiya and Xiong characterize all the pairs R, S such that every connected $\{R, S\}$-free graph G has $\kappa(G) = \kappa'(G)$.

Theorem 1. (Wang, Tsuchiya and Xiong [9]) Let S be a connected graph. Then G being a connected S-free graph implies $\kappa(G) = \kappa'(G)$ if and only if S is an induced subgraph of P_3.

Theorem 2. (Wang, Tsuchiya and Xiong [9]) Let $\mathcal{H} = \{R, S\}$ be a set of two connected graphs such that $R, S \neq P_3$. Then G being a connected \mathcal{H}-free graph implies $\kappa(G) = \kappa'(G)$ if and only if $\mathcal{H} \preceq \{Z_1, P_3\}$, $\mathcal{H} \preceq \{Z_1, K_1, 4\}$, $\mathcal{H} \preceq \{Z_1, T_{1,1,2}\}$, $\mathcal{H} \preceq \{P_1, H_0\}$ or $\mathcal{H} \preceq \{K_{1,3}, H_0\}$, where H_0 is the unique simple graph with degree sequence $4, 2, 2, 2, 2$.

2
In [4], Hellwig and Volkmann introduce a lot of sufficient conditions for $\kappa'(G) = \delta(G)$.

Theorem 3. Let G be a connected graph satisfying the one of following conditions:

1. (Chartrand [3]) $n(G) \leq 2\delta(G) + 1$,
2. (Lesniak [6]) $d_G(u) + d_G(v) \geq n(G) - 1$ for all pairs u, v of nonadjacent vertices,
3. (Plesnık [8]) $\dim(G) = 2$,
4. (Volkmann [8]) G is bipartite and $n(G) \leq 4\delta(G) - 1$,
5. (Plesnık and Znám [7]) there are no four vertices u_1, u_2, v_1, v_2 with
 $d_G(u_1, u_2), d_G(u_1, v_2), d_G(v_1, u_2), d_G(v_1, v_2) \geq 3$,
6. (Plesnık and Znám [7]) G is bipartite and $\dim(G) = 3$,
7. (Xu [10]) there exist $\lceil n(G)/2 \rceil$ pairs (u_i, v_i) of vertices such that $d_G(u_i) + d_G(v_i) \geq n(G)$ for $i = 1, 2, \cdots, \lceil n(G)/2 \rceil$,
8. (Dankelmann and Volkmann [3]) $\omega(G) \leq p$ and $n(G) \leq 2(p\delta(G)/p - 1) - 1$.

Then $\kappa'(G) = \delta(G)$.

In this paper, we also consider and characterize the forbidden subgraphs for $\kappa'(G) = \delta(G)$.

Theorem 4. Let S be a connected graph. Then G being a connected S-free graph implies $\kappa'(G) = \delta(G)$ if and only if S is an induced subgraph of P_4.

Theorem 5. Let $\mathcal{H} = \{R, S\}$ be a set of two connected graphs such that R and S are not an induced subgraph of P_4. Then G being a connected \mathcal{H}-free graph implies $\kappa'(G) = \delta(G)$ if and only if $\mathcal{H} \subseteq \{H_1, P_5\}$, $\mathcal{H} \subseteq \{Z_2, P_6\}$, or $\mathcal{H} \subseteq \{Z_2, T_{1,1,3}\}$.

Note that all families of connected graphs satisfies $\kappa(G) < \kappa'(G)$ or $\kappa'(G) < \delta(G)$ should be $\kappa(G) < \delta(G)$ by Theorems 1 and 2 we may get the following corollaries.

Corollary 6. Let S be a connected graph. Then G being a connected S-free graph implies $\kappa(G) = \delta(G)$ if and only if S is an induced subgraph of P_3.

Corollary 7. Let $\mathcal{H} = \{R, S\}$ be a set of two connected graphs such that R and S are not an induced subgraph of P_3. Then G being a connected \mathcal{H}-free graph implies $\kappa(G) = \delta(G)$ if and only if $\mathcal{H} \subseteq \{H_0, P_4\}$, $\mathcal{H} \subseteq \{Z_1, P_5\}$, or $\mathcal{H} \subseteq \{Z_1, T_{1,1,2}\}$.

In fact, we also present a general result as follow. Now Corollaries 6 and 7 follow easily from Theorems 1, 2, 3, 4, 5, and 8. Note that P_4 may be one of the pair of forbidden subgraphs, see Theorem 5, while P_4 is the forbidden subgraph from Theorem 4, this means that the other subgraph may be any subgraph of G when P_4 is one of a pair of forbidden subgraphs.
Theorem 8. Let \(G \) be a connected graph, and \(f(G), g(G), t(G) \) are three invariants of \(G \) with \(f(G) \leq g(G) \leq t(G) \). If the following statements hold:

1. \(G \) is \(H \)-free implies \(f(G) = g(G) \) if and only if \(H \in H_1 \);
2. \(G \) is \(H \)-free implies \(g(G) = t(G) \) if and only if \(H \in H_2 \),

then \(G \) is \(H \)-free implies \(f(G) = t(G) \) if and only if \(H \in H_1 \cap H_2 \). Here \(H_i \) is the set of class of given graphs, i.e., each element of \(H_i \) is a class of given graphs \(H \), for \(i \in \{1, 2\} \).

\(H_1 \cap H_2 := \{ H_1 \cap H_2 | H_1 \in H_1, H_2 \in H_2, \text{and } |H_1| = |H_2| \} \), and \(H_1 \cap H_2 \) is the set with order \(|H_1| \), which each element is the common induced subgraph of one graph in \(H_1 \) and one graph in \(H_2 \), respectively.

Proof. First suppose \(G \) is \(H \)-free and \(H \in H_1 \cap H_2 \), then \(H \in H_1 \) and \(H \in H_2 \). By (1) and (2), \(f(G) = g(G) \) and \(g(G) = t(G) \). It means that \(f(G) = g(G) = t(G) \). This completes the sufficiency.

Now we prove the necessity. Suppose that \(f(G) = t(G) \). Then \(f(G) = g(G) = t(G) \) since \(f(G) \leq g(G) \leq t(G) \). Therefore, both \(H \in H_1 \) and \(H \in H_2 \) must hold, by (1) and (2). It means that \(H \in H_1 \cap H_2 \). This completes the proof. \(\square \)

2 The necessity part of Theorems 4 and 5

We first construct some families of connected graphs \(G_i, i = 1, \cdots, 7 \) (see Figure 2). It is easy to see that each \(G \in G_i \) satisfies \(1 = \kappa'(G) < \delta(G) = 2 \).

![Figure 2: Some classes of graphs satisfies 1 = κ'(G) < δ(G) = 2.](image)

The necessity part of Theorem 4. Let \(S \) be a graph such that every connected \(S \)-free graph is \(\kappa'(G) = \delta(G) \). Then \(S \) is an induced subgraph of all graphs in \(G_i, i = 1, \cdots, 7 \).

Note that the common induced subgraph of the graphs in \(G_1 \) and \(G_2 \) is a path. Since the largest induced path of the graphs in \(G_1 \) is \(P_4 \), \(S \) must be an induced subgraph of \(P_4 \). This completes the proof of the necessity part of Theorem 4. \(\square \)
The sufficiency part of Theorem 5. Let R and S are not an induced subgraph of P_3 graphs such that every connected $\{R, S\}$-free graph is $\kappa'(G) = \delta(G)$. Then all graphs in $G_i, i = 1, \cdot \cdot \cdot , 7$ should contain either R or S as an induced subgraph. Without loss of generality, we may assume that R is an induced subgraph of all graphs in G_1. Note that all graphs in G_1 contain no induced cycle with length at least 4 as an induced subgraph, so we need to consider the following four cases.

Case 1. R contain a clique K_t with $t \geq 4$. It means that, for $i \in \{2, 3, 4, 5, 6, 7\}$, all graphs in G_i are R-free, and should contain S as an induced subgraph. Note that all graphs in G_2 are K_3-free, and all graphs in G_3 are $K_{1,3}$-free, so S should be a path. Since the largest induced path of the graphs in G_4 is P_4, S should be an induced subgraph of P_4, a contradiction.

Case 2. R don’t contain the clique K_t with $t \geq 4$, but contain two K_3. Since R is an induced subgraph of all graphs in G_1, R should be H_1. It means that, for $i \in \{2, 3, 5, 6, 7\}$, all graphs in G_i are R-free, and should contain S as an induced subgraph. Note that all graphs in G_2 are K_3-free, and all graphs in G_3 are $K_{1,3}$-free, so S should be a path. Since the largest induced path of the graphs in G_5 is P_5, S should be an induced subgraph of P_5. So $H = \{R, S\} \leq \{H_1, P_3\}$.

Case 3. R don’t contain the clique K_t with $t \geq 4$, but contain exactly one K_3. Since R is an induced subgraph of all graphs in G_1, R should be an induced subgraph of Z_2. It means that, for $i \in \{2, 6, 7\}$, all graphs in G_i are R-free, and should contain S as an induced subgraph. Note that the common induced subgraph of all graphs in G_2 and G_7 are a tree with the maximum degree 3 or a path. If S is a tree with the maximum degree 3, since the common induced tree with the maximum degree 3 of all graphs in G_6 and G_7 are $T_{1,1,3}$, S should be an induced subgraph of $T_{1,1,3}$. So $H = \{R, S\} \leq \{Z_2, T_{1,1,3}\}$. If S is a path. Since the largest induced path of the graphs in G_6 is P_6, S should be an induced subgraph of P_6. So $H = \{R, S\} \leq \{Z_2, P_6\}$.

Case 4. R is a tree.

Since all graphs in G_1 are $K_{1,3}$-free, R should be a path. Note that the largest induced path of the graphs in G_1 is P_4, so R should be an induced subgraph of P_4, a contradiction. From the proofs above, we have that $H \leq \{H_1, P_3\}, H \leq \{Z_2, P_6\},$ or $H \leq \{Z_2, T_{1,1,3}\}$. This completes the proof of the necessity part of Theorem 5. □

3 The sufficiency part of Theorems 4 and 5

The sufficiency part of Theorem 4. Let G be a connected P_4-free graph. Then $\text{dim}(G) \leq 2$. If $\text{dim}(G) = 1$, G must be a complete graph and $\kappa'(G) = \delta(G) = n - 1$. If $\text{dim}(G) = 2$, by Theorem 3 (3), $\kappa'(G) = \delta(G)$. This completes the proof of the sufficiency part of Theorem 4. □

The sufficiency part of Theorem 5. Let G be a connected \mathcal{H}-free graph such that $\kappa'(G) < \delta(G)$, where $\mathcal{H} \leq \{H_1, P_3\}, \{Z_2, P_6\}$, or $\{Z_2, T_{1,1,3}\}$. Then there must exists a minimum edge cut, say M, such that $|M| = \kappa'(G) < \delta(G)$. Let G_1 and G_2 are the
components of \(G - M \), and let \(S_i = V(G_i) \cap V(M) \), \(i \in \{1, 2\} \). Then \(|S_i| \leq |M| = \kappa'(G) < \delta(G) \), say \(|S_i| = s_i \), \(i \in \{1, 2\} \).

Claim 1. For \(i \in \{1, 2\} \), \(V(G_i - S_i) \neq \emptyset \). Moreover, for any \(x \in V(G_i - S_i) \), \(N_G(x) \cap V(G_i - S_i) \neq \emptyset \).

Proof. We will count the number of edges of \(G_i \) for \(i \in \{1, 2\} \).

\[
|E(G_i)| = \frac{1}{2} \left(\sum_{x \in V(G_i)} d_G(x) - \kappa'(G) \right) \\
\geq \frac{1}{2} \left(\delta(G)|V(G_i)| - \kappa'(G) \right) \\
\geq \frac{1}{2} \left(\delta(G)s_i - \kappa'(G) \right) \\
> \frac{1}{2} \kappa'(G) (s_i - 1) \\
\geq \frac{1}{2} s_i (s_i - 1)
\]

Note that the complete graph \(K_{s_i} \) has \(\frac{1}{2} s_i (s_i - 1) \) edges. It means that \(|V(G_i)| > s_i \), i.e., \(V(G_i - S_i) \neq \emptyset \).

Moreover, for any \(x \in V(G_i - S_i) \), since \(d_G(x) \geq \delta(G) > \kappa'(G) \geq s_i \), \(N_G(x) \cap V(G_i - S_i) \neq \emptyset \). This completes the proof of Claim 1. \(\square \)

Now we will distinguish the following two cases to complete our proof.

Case 1. \(G \) contains a \(P_4 = x_0x_1x_2x_3 \) with \(x_0 \in V(G_1 - S_1) \), \(x_1 \in S_1 \), \(x_2 \in S_2 \), and \(x_3 \in V(G_2 - S_2) \).

Subcase 1.1. \(\mathcal{H} \preceq \{H_1, P_5\} \).

By Claim 1, there exist two vertices \(x_0' \in V(G_1 - S_1) \) and \(x_3' \in V(G_2 - S_2) \) such that \(x_0x_0', x_3x_3' \in E(G) \). Then \(G[x_0', x_0, x_1, x_2, x_3, x_3'] \cong H_1 \) (if \(x_1x_0', x_2x_3' \in E(G) \)), or \(G[x_0', x_0, x_1, x_2, x_3] \cong P_5 \) (if \(x_1x_0' \notin E(G) \)), or \(G[x_0', x_0, x_1, x_2, x_3] \cong P_5 \) (if \(x_2x_3' \notin E(G) \)), a contradiction.

Subcase 1.2. \(\mathcal{H} \preceq \{Z_2, P_5\} \).

By Claim 1, there exist two vertices \(x_0' \in V(G_1 - S_1) \) and \(x_3' \in V(G_2 - S_2) \) such that \(x_0x_0', x_3x_3' \in E(G) \). Then \(G[x_0', x_0, x_1, x_2, x_3, x_3'] \cong P_5 \) (if \(x_1x_0', x_2x_3' \notin E(G) \)), or \(G[x_0', x_0, x_1, x_2, x_3] \cong Z_2 \) (if \(x_1x_0' \in E(G) \)), or \(G[x_0', x_0, x_1, x_2, x_3] \cong Z_2 \) (if \(x_2x_3' \in E(G) \)), a contradiction.

Subcase 1.3. \(\mathcal{H} \preceq \{Z_2, T_{1,1,3}\} \).

By Claim 1, \(N_G(x_0) \cap V(G_1 - S_1) \neq \emptyset \) and \(N_G(x_3) \cap V(G_2 - S_2) \neq \emptyset \).

Suppose that \(|N_G(x_0) \cap V(G_1 - S_1)| \geq 2 \) or \(|N_G(x_3) \cap V(G_2 - S_2)| \geq 2 \). Without loss of generality, we may assume that \(|N_G(x_0) \cap V(G_1 - S_1)| \geq 2 \), it means there exist two vertices \(x_0', x_0'' \in V(G_1 - S_1) \) such that \(x_0x_0', x_0x_0'' \in E(G) \). Then \(G[x_0', x_0'', x_0, x_1, x_2, x_3] \cong T_{1,1,3} \) (if \(x_0x_0', x_0'x_1, x_0''x_1 \notin E(G) \)), or \(G[x_0', x_0'', x_0, x_1, x_2] \cong Z_2 \) (if \(x_0x_0' \in E(G) \) and \(x_0'x_1, x_0''x_1 \notin E(G) \)), or \(G[x_0', x_0, x_1, x_2, x_3] \cong Z_2 \) (if \(x_0'x_1 \in E(G) \)), or \(G[x_0'', x_0, x_1, x_2, x_3] \cong Z_2 \) (if \(x_0''x_1 \in E(G) \)), a contradiction.
Suppose that \(N_G(x_0) \cap V(G_1 - S_1) = \{ x'_0 \} \) and \(N_G(x_3) \cap V(G_2 - S_2) = \{ x'_3 \} \). Note that \(N_G(x_0) \subseteq \{ x'_0 \} \cup S_1 \) and \(N_G(x_3) \subseteq \{ x'_3 \} \cup S_2 \). Then \(d_G(x_0) \leq s_1 + 1 \) and \(d_G(x_3) \leq s_2 + 1 \). Since \(d_G(x_0) \geq \delta(G) > \kappa'(G) \geq s_1 + 1 \) and \(d_G(x_3) \geq \delta(G) > \kappa'(G) \geq s_2 + 1 \) and \(d_G(x_3) \geq s_2 + 1 \). Therefore \(d_G(x_0) = s_1 + 1 \) and \(d_G(x_3) = s_2 + 1 \). It means that \(N_G(x_0) = S_1 \cup \{ x'_0 \} \), \(N_G(x_3) = S_2 \cup \{ x'_3 \} \), and \(s_1 = s_2 = \kappa'(G) \). Since \(|M| = \kappa'(G) = s_1 = s_2 \), each vertex in \(S_1 \) is just adjacent to exactly one vertex which is in \(S_2 \), and vice versa. Suppose \(s_1 \geq 2 \). Then there exists a vertex \(x'_i \in S_1 \) such that \(x'_i \neq x_1 \). Therefore \(G[\{ x'_0, x'_0, x'_1, x_1, x_2, x_3 \}] \cong T_{1,1,3} \) (if \(x_0x'_1, x_0x_1, x'_1x_1 \notin E(G) \)), or \(G[\{ x'_0, x'_0, x_0, x_1, x_2 \}] \cong Z_2 \) (if \(x'_0x'_1 \in E(G) \) and \(x'_0x_1, x'_1x_1 \notin E(G) \)), or \(G[\{ x'_0, x_0, x_1, x_2, x_3 \}] \cong Z_2 \) (if \(x'_0x_1 \in E(G) \)), or \(G[\{ x'_1, x_0, x_1, x_2, x_3 \}] \cong Z_2 \) (if \(x'_1x_1 \in E(G) \)), a contradiction. Suppose \(s_1 = 1 \). Then \(s_2 = \kappa'(G) = 1 \) and \(\delta(G) = 2 \). Assume \(d_G(x_1) \geq 3 \). Then there exists a vertex \(x'_i \in V(G_1 - S_1) \), such that \(x'_i, x_i \in E(G) \) and \(x'_i \neq x_0 \). Therefore \(G[\{ x_0, x'_0, x'_1, x_1, x_2, x_3 \}] \cong T_{1,1,3} \) (if \(x_0x'_1, x_0x_1, x'_1x_1 \notin E(G) \)), or \(G[\{ x_0, x'_0, x_1, x_2, x_3 \}] \cong Z_2 \) (if \(x_0x'_1 \in E(G) \)), or \(G[\{ x_0, x_0, x_1, x_2, x_3 \}] \cong Z_2 \) (if \(x_0x_1 \in E(G) \)), or \(G[\{ x_1, x_0, x_1, x_2, x_3 \}] \cong Z_2 \) (if \(x'_1x_1 \in E(G) \)), a contradiction. Assume \(d_G(x_1) = 2 \). Then it means that \(N_G(x_1) = \{ x_0, x_2 \} \) and \(d_G(x) = d_G(x) \) for any \(x \in V(G_1 - \{ x_0, x_1 \}) \). Since \(\delta(G) = 2 \) and \(d_G(x) \geq 1 \), there exist some vertices in \(V(G_1 - S_1) \) such that their degree in \(G \) are at least 3. Then we choose a vertex \(y_0 \in V(G_1 - S_1) \), such that \(d_G(y_0) \geq 3 \) and \(d_G(y_0, x_1) \) as small as possible. Let \(P' \) is the shortest path between \(x_1 \) and \(y_0 \). Then all inner vertices of \(P' \) should have degree two. Let \(y_1, y_2 \in N_G(y) \) and \(y_1, y_2 \notin V(P') \). Then \(G[\{ y_1, y_2, x_2, x_3 \} \cup V(P')] \) contains an induced \(T_{1,1,3} \) (if \(y_1y_2 \notin E(G) \)), or \(G[\{ y_1, y_2, x_2 \} \cup V(P')] \) contains an induced \(Z_2 \) (if \(y_1y_2 \notin E(G) \)), a contradiction.

Case 2. \(G \) contains no \(P_4 = x_0x_1x_2x_3 \) with \(x_0 \in V(G_1 - S_1) \), \(x_1 \in S_1 \), \(x_2 \in S_2 \), and \(x_3 \in V(G_2 - S_2) \).

Let \(S'_1 = \{ x \in S_1 : N_G(x) \cap V(G_i - S_i) \neq \emptyset \} \), and \(S'_2 = S_i - S'_i \) for \(i = 1, 2 \). Then \(S'_1 \neq \emptyset \) and \(E(S'_1, S'_2) = \emptyset \). By the minimality of \(M \) and the definition of \(S_i \), \(E(S'_1, S'_2), E(S'_1, S'_3), E(S'_2, S'_3) \neq \emptyset \). Now we choose a path \(P_0 \) between \(x_1 \) and \(x_2 \), such that \(x_1 \in S'_1 \) and \(x_2 \in S'_2 \), and the length of path as small as possible. Then \(|V(P_0)| \geq 3 \) and all inner vertices of \(P_0 \) must be in \(S'_1 \). Let \(x_0 \in V(G_1 - S_1) \) and \(x_3 \in V(G_2 - S_2) \), such that \(x_0x_1, x_2x_3 \in E(G) \). Then \(G[V(P_0) \cup x_0, x_3] \) is an induced path with at least 5 vertices.

Subcase 2.1. \(H \preceq \{ H_1, P_0 \} \).

\(P_0 \) is an induced path with at least 5 vertices, a contradiction.

Subcase 2.2. \(H \preceq \{ Z_2, P_0 \} \).

By Claim 1 there exist a vertex \(x'_0 \in V(G_1 - S_1) \) such that \(x_0x'_0 \in E(G) \). Then \(G[\{ x'_0 \} \cup V(P_1)] \) contains an induced \(P_6 \) (if \(x_1x'_0 \notin E(G) \)), or an induced \(Z_2 \) (if \(x_1x'_0 \in E(G) \)), a contradiction.

Subcase 2.3. \(H \preceq \{ Z_2, T_{1,1,3} \} \).

By Claim 1 and \(|S'_1| < s_1 < \delta(G) \), there exist two vertices \(x'_0, x'_0 \in V(G_1 - S_1) \) such that \(x_0x'_0, x_0x'_0 \in E(G) \). Then \(G[\{ x'_0 \} \cup V(P_1)] \) contains an induced \(T_{1,1,3} \) (if \(x'_0x'_0, x_0x_1, x'_0x_1 \notin E(G) \)), or an induced \(Z_2 \) (if \(x'_0x'_0 \in E(G) \) and \(x'_0x_0, x'_0x_1 \notin E(G) \)), or an induced \(Z_2 \) (if \(x'_0x_1 \in E(G) \) and \(x'_0x_1 \in E(G) \)), a contradiction.

This completes the proof of the sufficiency part of Theorem 5. □
4 Concluding remark

In this paper, we give a completely characterzation of all pairs \(\{R, S\} \) of graphs such that every connected \(\{R, S\}\)-free graph has the same edge-connectivity and minimum degree. All graphs in Figure 2 have edge-connectivity one, we also can construct some graphs for arbitrarily large edge-connectivity to show that Theorem 4 also hold. But for forbidden pairs \(\mathcal{H} = \{R, S\} \), we have not enough graphs to see that whether could get more wide forbidden pairs to guarantee the graphs having the same edge-connectivity and minimum degree, when we increase the edge-connectivity.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.

[2] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math., 14 (1966) 778-781.

[3] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin., 40 (1995) 270-278.

[4] A. Hellwig and L. Volkmann, Sufficient conditions for graphs to be \(\lambda'\)-optimal, super-edge-connected, and maximally edge-connected, J. Graph Theory, 48 (2005) 228-246.

[5] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math., 8 (1974) 351-354.

[6] J. Plesnık, Critical graphs of given diameter, Acta Fac. Rerum Nat. Univ. Commenian. Math., 30 (1975) 71-93.

[7] J. Plesnık and S. Znám, On equality of edge-connectivity and minimum degree of a graph, Arch. Match.(Brno), 25 (1989) 19-25.

[8] L. Volkmann, Bemerkungen zum \(p \)-fachen Kantenzusammenhang von Graphen, An. Univ. Bucuresti Mat., 37 (1988) 75-79.

[9] S. Wang, S. Tsuchiya and L. Xiong, Forbidden pairs for equality of connectivity and edge-connectivity of graphs, submitted.

[10] J. -M. Xu, A sufficient condition for equality of arc-connectivity and minimum degree of a digraph, Discrete Math., 133 (1994) 315-318.