Investigating gene methylation signatures for fetal intolerance prediction

Yu-Hang Zhang⁴, Zhandong Li⁴, Tao Zeng⁴, Lei Chen⁶, Hao Li⁵, Margarita Gamarra⁸, Romany F. Mansour⁷, José Escorcia-Gutierrez⁹,*, Tao Huang⁴,¹, Yu-Dong Cai¹,*, Romany F. Mansour

1 School of Life Sciences, Shanghai University, Shanghai, China, 2 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America, 3 College of Food Engineering, Jilin Engineering Normal University, Changchun, China, 4 Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 5 College of Information Engineering, Shanghai Maritime University, Shanghai, China, 6 Department of Computational Science and Electronic, Universidad de la Costa, CUC, Barranquilla, Colombia, 7 Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, Egypt, 8 Electronic and Telecommunications Program, Universidad Autónoma del Caribe, Barranquilla, Colombia, 9 CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China

These authors contributed equally to this work.
* jose.escorcia23@gmail.com (JEG); tohuangtao@126.com (TH); cai_yud@126.com (YDC)

Abstract

Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care.
Introduction

Pregnancy is a complicated and long procedure during one or more offspring development inside a woman [1, 2]. Various pathological syndromes and severe situations may occur during pregnancy [3–5]. Fetal intolerance, which is also known as fetal distress, is one of the common but dangerous situations during birth processes [6]. It generally refers to babies suffering from oxygen shortage during the birth processes [6–8]. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health [7]. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death.

The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The following five symptoms according to the clinical syndromes indicate that the baby may suffer from fetal intolerance [9–11]: 1) high heart rate or tachycardia; 2) low heart rate or bradycardia; 3) irregular heart rates or arrhythmia; 4) lack of movement in the womb; and 5) stool found in the amniotic fluid. For example, the alteration of the heart rate is quite normal for newborn babies. However, the constant abnormal heart rate patterns and alterations strongly indicate pathological fetal intolerance [11]. Fetal intolerance is actually a quite severe disease and leads to the death of babies. The medical staff must save the baby after the manifestation of severe symptoms and try to find out an accurate and effective way to predict fetal intolerance (e.g., quick early diagnosis).

With the rapid development of molecule sequencing technologies, liquid biopsy [12–14] combined with high-throughput sequencing or mass spectrum techniques, provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels (e.g., genomics [12], transcriptomics [13], and proteomics [14]). Various genetic variations, such as mutations in IGF-II and H19, have already been confirmed to participate in the pathogenesis of fetal intolerance [15]. The genomic methylation status has also been confirmed to be functionally correlated with fetal intolerance. In 2018, an independent study on the methylation status of SLC9B1 has confirmed that such methylation pattern can actually predict the clinical outcome of potential pregnancy related to fetal intolerance [16]. Gene methylation is functionally correlated with gene expression. Thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance.

We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures for fetal intolerance prediction, for the first time. Moreover, we have applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Furthermore, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in the antenatal care.

Method

Data

We downloaded the gene expression and methylation profiles of fetal intolerance from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107460) [16]. We extracted 22 fetal intolerance and 96 control samples with gene expression and methylation profiles from the original dataset. The expression levels of 15,505 genes
were measured with Illumina HumanHT-12 V4.0 expression beadchip. The methylation data were measured with Illumina HumanMethylation450 BeadChip. The probes with missing values in more than 20% of the samples were removed. Thereafter, the remaining missing values were imputed with function impute.knn (K = 10) by using R package impute (https://bioconductor.org/packages/impute/). Lastly, 449,094 methylation probes were found. We would like to investigate the gene expression and methylation difference between fetal intolerance and control samples.

SMOTE

The dataset we analyzed here has unbalanced numbers of positive and negative samples (i.e., 22 vs. 96). We first applied the synthetic minority oversampling technique (SMOTE) [17] to obtain a balanced data benefitting the classification model construction. SMOTE aims to iteratively produce new samples for the minor sample class (i.e., fetal intolerance samples) to ensure that the sample numbers of this minor sample class will be equivalent to that of the major one (i.e., control samples) when SMOTE is finished. In this study, the tool “SMOTE” in Weka is used to produce equivalent numbers of samples.

Boruta feature filtering

Boruta feature filtering [18] can filter all features relevant to the target outputs on the basis of random forest (RF) in a wrapper manner. This algorithm recognizes important features by comparing the importance scores corresponding to the real and shuffled features. The following are the three main calculation steps for the Boruta approach: i) production of a new shuffled dataset by copying the training dataset and shuffling the feature values; ii) calculation of the importance score of each feature by training a RF classifier on the shuffled dataset; and iii) evaluation of the importance score of each feature in the original training dataset to retain the real features with remarkably higher importance scores than the shuffled features.

Feature ranking and selection

Minimum redundancy maximum relevance. Minimum redundancy maximum relevance (mRMR) [19–22] holds two key assumptions: one is to select features with minimum redundancy among themselves; and the other one is to select features with maximum relevance with class labels. The mRMR filters informative features by selecting the features that simultaneously satisfy the minimum redundancy and maximum relevance measured by mutual information. These factors are important or informative to ensure that the following classification model can distinguish class labels (e.g., fetal intolerance or not in this work).

Incremental feature selection. Incremental feature selection (IFS) [23] can iteratively determine the optimal number of selected features with feature order. First, IFS selects a series of feature subsets from the mRMR ranked features. For example, the first selected feature subset consists of the top-ranked one feature, and the second one is composed of the top-ranked two features. In each training data consisting of features from each feature subset, IFS trains one classification model. The performance is evaluated in the 10-fold cross-validation [24]. Finally, IFS selects the feature subset with optimal performance as the optimum feature subset.

Classification algorithm. RF. RF [25–27] creates an assemble classification model consisting of several tree classifiers. The RF determines the predicted sample class/category by an aggregating vote from multiple tree classifiers (i.e., decision trees). The RF produces the final consensus results by averaging all decision trees’ predictions because a subtle difference exists between each decision tree. Accordingly, overfitting is avoided, and the model performance robustness is improved.
Support vector machine. The support vector machine (SVM) [28–31] is a classification model based on statistical learning theory. This model can map data samples to a given data class/category. SVM aims to transform the original data from a low-dimensional data space to a high-dimensional one by using a given kernel function (e.g., Gaussian kernel). Thereafter, the model can divide the data samples of each class/category by maximizing the data interval in the high-dimensional data space during training. Subsequently, the model further predicts/tests a new sample’ category depending on the interval where this new sample belongs. In this study, we use the sequence minimization optimization algorithm implemented in Weka software [32, 33] to create an SVM for a two-class classification model.

Rule learning classifier RIPPER. We used RIPPER [34] generating classification rules to classify the samples from different classes/categories. RIPPER can predict new data by learning the interpretable classification model in accordance with the IF–ELSE rules. Moreover, RIPPER can learn all rules for each sample class; it learns the rules for one class and then moves to learn the rules for the next class. Learning starts from the minority sample class and then to the second minority sample class until the dominant class. In this study, the “JRip” algorithm implemented in Weka software was used.

Performance evaluation

In this study, a commonly used evaluation method, namely, the Matthew correlation coefficient [35–37] (MCC), is used to evaluate the prediction performance of each classification model within a 10-fold cross-validation. MCC has a value ranging between −1 and +1 and achieves +1 when the classification model has a good performance. In this study, we evaluate the two-class classification models. Thus, the MCC for binary problem is adopted as follows:

\[
MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}},
\]

where TP, TN, FP, and FN are the number of true-positive, true-negative, false-positive, and false-negative samples, respectively. Furthermore, we also counted sensitivity (SN), specificity (SP) and accuracy (ACC) for each model to give a full evaluation.

Results and discussion

In this study, we adopted several advanced computational methods to analyze the gene expression and methylation profiles of fetal intolerance. The whole procedures are illustrated in Fig 1. This section gave the detailed results and performed the discussion on the results.

Results of Boruta and mRMR

The dataset was first analyzed by Boruta to select key features. 15 relevant features were kept, which are provided in S1 Table. These features were further evaluated by mRMR method, a feature list was generated, which are also available in S1 Table.

Selected features and classification models for distinguishing pregnant patients with or without fetal intolerance

Of the obtained feature list, IFS method generated several feature subsets in a way that the top feature comprised the first feature subset, the top two features constituted the second feature subset, and so forth. Fifteen feature subsets were accessed. For each feature subset, a classification model was built using one of the three classification algorithms (RF, SVM and RIPPER). Each model was evaluated by 10-fold cross-validation. This procedure employed SMOTE to
tackle the problem that control samples were much more than fetal intolerance sample. Obtained SNs, SP, ACCs and MCCs are listed in Tables 1–3. For an easy observation, we plotted a curve for the IFS results with each classification algorithm, as shown in Fig 2, in which MCC was set as Y-axis and the number of features was set as X-axis. For SVM, the highest MCC was 0.796, which was obtained by the top 10 features. Thus, we can build an optimum SVM model with these top 10 features. The other three measurements (SN, SP and ACC) of such model are listed in Table 2. The highest MCC was 0.832 for RF when top 11 features were adopted. Accordingly, an optimum RF model was built with these top 11 features. The

tackle the problem that control samples were much more than fetal intolerance sample. Obtained SNs, SP, ACCs and MCCs are listed in Tables 1–3. For an easy observation, we plotted a curve for the IFS results with each classification algorithm, as shown in Fig 2, in which MCC was set as Y-axis and the number of features was set as X-axis. For SVM, the highest MCC was 0.796, which was obtained by the top 10 features. Thus, we can build an optimum SVM model with these top 10 features. The other three measurements (SN, SP and ACC) of such model are listed in Table 2. The highest MCC was 0.832 for RF when top 11 features were adopted. Accordingly, an optimum RF model was built with these top 11 features. The

Table 1. IFS performance with RF and different top features.

Number of features	Sensitivity	Specificity	Accuracy	Matthew correlation coefficient
1	0.677	0.727	0.686	0.322
2	0.813	0.909	0.831	0.601
3	0.854	0.727	0.831	0.520
4	0.906	0.818	0.890	0.672
5	0.906	0.909	0.907	0.738
6	0.917	0.864	0.907	0.723
7	0.927	0.909	0.924	0.775
8	0.917	0.909	0.915	0.756
9	0.938	0.909	0.932	0.796
10	0.958	0.818	0.932	0.777
11	0.969	0.864	0.949	0.832
12	0.938	0.864	0.924	0.764
13	0.938	0.864	0.924	0.764
14	0.938	0.864	0.924	0.764
15	0.948	0.909	0.941	0.817

https://doi.org/10.1371/journal.pone.0250032.t001
SN, SP and ACC of this model are provided in Table 1. Evidently, the optimum RF model was superior to the optimum SVM model. As RF and SVM are black-box algorithms, their classification principle is hard to understand. Thus, few insights can be obtained. In view of this, we further applied RIPPER in a similar way. The IFS performance is shown in Table 3, from which a curve was plotted, as illustrated in Fig 2. The best MCC was 0.687 when top 13 features were used. Thus, an optimum RIPPER model was set up with these features. Other three measurements of this model are listed in Table 3. Clearly, such model was inferior to the optimum RF and SVM models. However, some rules can be extracted from this model, which clearly displayed the classification procedures. Based on top 13 features, we obtained five rules via RIPPER, which are listed in Table 4.

Table 2. IFS performance with SVM and different top features.

Number of features	Sensitivity	Specificity	Accuracy	Matthew correlation coefficient
1	0.938	0.591	0.873	0.560
2	0.875	0.818	0.864	0.620
3	0.885	0.773	0.864	0.603
4	0.885	0.773	0.864	0.603
5	0.885	0.818	0.873	0.636
6	0.865	0.864	0.864	0.638
7	0.917	0.864	0.907	0.723
8	0.927	0.864	0.915	0.743
9	0.927	0.909	0.924	0.775
10	0.938	0.909	0.932	0.796
11	0.948	0.864	0.932	0.785
12	0.927	0.864	0.915	0.743
13	0.927	0.864	0.915	0.743
14	0.927	0.864	0.915	0.743
15	0.927	0.864	0.915	0.743

Table 3. IFS performance with RIPPER and different top features.

Number of features	Sensitivity	Specificity	Accuracy	Matthew correlation coefficient
1	0.802	0.636	0.771	0.380
2	0.750	0.773	0.754	0.428
3	0.823	0.773	0.814	0.512
4	0.833	0.773	0.822	0.526
5	0.760	0.682	0.746	0.369
6	0.865	0.909	0.873	0.671
7	0.854	0.864	0.856	0.623
8	0.865	0.818	0.856	0.604
9	0.875	0.864	0.873	0.654
10	0.875	0.818	0.864	0.620
11	0.875	0.818	0.864	0.620
12	0.896	0.727	0.864	0.586
13	0.896	0.864	0.890	0.687
14	0.875	0.818	0.864	0.620
15	0.885	0.864	0.881	0.670
As previously mentioned, we presented various qualitative and quantitative novel computational approaches to distinguish pregnant patients with fetal intolerance from healthy pregnant women dependent on their personal blood gene expression and methylation profiles. We not only identified a group of effective genes with a specific gene expression or methylation pattern that contributes to the diagnosis of fetal intolerance but also attempted to set up a set of quantitative rules for accurate and interpretable prediction on the basis of our methods. All the predicted gene expression and methylation patterns and their quantitative rules have been confirmed by recent publications. The detailed analysis and discussion on the top-ranked genes and rules can be seen below.

Optimal genes for fetal intolerance diagnosis and monitoring

Our newly presented computational methods identified fifteen methylation sites that are correlated with fetal intolerance and involved in five genes: NHEDC1, COMTD1, DLGAP2, HEG1, and KIAA1875.

The first gene (NHEDC1) with five methylation sites, also known as SLC9B1, has been widely reported to participate in the intracellular pH regulation in germ cells [38]. Such gene has been reported to have quite various biological effects with different methylation statuses [39, 40]. The abnormal methylation of such gene has been confirmed to participate in cell differentiation [39]. Such gene has already been reported as a typical biomarker for the clinical prediction of fetal intolerance [16], thereby validating the efficacy and accuracy of our prediction.

The second gene is COMTD1, which encodes an effective methyltransferase with O-methyltransferase activity [41–43]. No direct evidence confirmed that COMTD1 can independently predict fetal intolerance; however, COMTD1 in a mother’s blood is correlated with several congenital disorders, such as psychotic diseases and autism [44]. Given that congenital

Index	Condition	Result
Rule1	(cg23159165 < 0.4524) and (cg26222765 < 0.8847)	Fetal intolerance sample
Rule2	(cg04944931 < 0.8437) and (cg00510160 < 0.7120)	Fetal intolerance sample
Rule3	(cg19672271 > 0.05775) and (cg00510160 < 0.7221)	Fetal intolerance sample
Rule4	(cg04944931 < 0.6588)	Fetal intolerance sample
Rule5	Others	Control sample

https://doi.org/10.1371/journal.pone.0250032.t004
disorders are among the major inducements for fetal intolerance [45, 46], biomarkers are correlated with such gene to monitor this condition. Furthermore, COMTD1 has been confirmed to be detectable in the blood on the methylation level [43]. This finding confirms the potentials of such gene as an effective biomarker for fetal intolerance prediction and monitoring.

DLGAP2 is the third gene encoding a specific membrane associated protein and has been widely reported to participate in the molecular organization of synapses and neuronal cell signaling [47, 48]. In 2019, an independent study confirmed that the methylation status of such gene in the blood can monitor the blood sugar level of mothers and maternal insulin sensitivity during pregnancy [49, 50]. Considering that the blood sugar level of mothers is also pathologically correlated with fetal intolerance [51, 52], such gene can be regarded as a potential biomarker during fetal intolerance monitoring and diagnosis.

HEG1 is a quite effective regulator for the heart and vessels during the early developmental stage [53]. In 2019, a report confirmed that the abnormal methylation regulation on such gene may induce trophoblast invasion at the maternal–fetal interface, thereby inducing a high level of mothers’ psychological distress [54] and the abnormal development of fetal hearts [54, 55], even though not validated in human beings. Considering that fetal heart development has also been predicted to be correlated with fetal intolerance [56–58], HEG1 can be regarded as an effective biomarker for fetal intolerance prediction. Gene KIAA1875 known as WDR97 has been reported as a blood biomarker with moderate functional annotations [59]. This gene has also been confirmed to be detectable at the epigenomic level in the blood [60]. Thus, KIAA1875 may act as a quality control biomarker to measure the reliability of the samples, although no direct reports at present has confirmed its specific role in fetal intolerance prediction.

Optimal rules for fetal intolerance diagnosis and monitoring

We set up a group of quantitative rules for diagnosing the fetal intolerance in clinical application in addition to above qualitative analysis. The four rules are used to evaluate the risk of pregnant mothers suffering from fetal intolerance. Five methylation sites with specific methylation tendency (hypermethylation or hypomethylation) contribute to the prediction of these rules. Among these methylation sites, two genes are annotated: COMTD1 and NHEDC1. These genes have already been confirmed to be functionally correlated with fetal intolerance in the above analysis.

The hypermethylation of NHEDC1 and the hypomethylation of COMTD1 contribute to the identification of patients with fetal intolerance, thereby revealing the specific methylation tendency (hypermethylation or hypomethylation) from the rules. Recent studies have shown that the methylation of NHEDC1 can indicate the onset of fetal intolerance [16], thereby supporting this prediction. COMTD1 is functionally correlated with fetal intolerance, and its hypomethylation may cause abnormal congenital disorders [41], thereby inducing pathological fetal intolerance. Therefore, these quantitative rules contribute to the accurate prediction of fetal intolerance using blood samples.

Conclusion

In summary, the optimal genes and rules we identified in this study have all been supported by recent publications. The efficacy and accuracy of our prediction have also been validated. The blood gene methylation profiling of certain effective biomarkers may be accurate and effective enough for the clinical monitoring of fetal intolerance during pregnancy by using our newly presented computational approaches. Therefore, this work may not only reveal several
potential pathological factors for fetal intolerance but also set up a set of potential diagnostic standards (biomarkers and rules) for the clinical monitoring and diagnosis of fetal intolerance.

Supporting information
S1 Table. List of ranked features on the basis of mRMR.

Author Contributions
Formal analysis: Yu-Hang Zhang, Zhandong Li, Hao Li.
Methodology: Yu-Hang Zhang, Zhandong Li, Tao Zeng, Lei Chen, Margarita Gamarra, Romany F. Mansour.
Supervision: José Escorcia-Gutierrez, Tao Huang, Yu-Dong Cai.
Writing – original draft: Yu-Hang Zhang, Zhandong Li.
Writing – review & editing: Tao Huang, Yu-Dong Cai.

References
1. Bondas T, Eriksson K (2001) Women’s lived experiences of pregnancy: A tapestry of joy and suffering. Qualitative Health Research 11: 824–840. https://doi.org/10.1177/104973201129119415 PMID: 11710080
2. Macklin R (2010) Enrolling pregnant women in biomedical research. The Lancet 375: 632–633. https://doi.org/10.1016/s0140-6736(10)60257-7 PMID: 20198725
3. Yap S-C, Drenthen W, Pieper PG, Moons P, Mulder BJ, et al. (2008) Risk of complications during pregnancy in women with congenital aortic stenosis. International journal of cardiology 126: 240–246. https://doi.org/10.1016/j.ijcard.2007.03.134 PMID: 17482293
4. Linne Y (2004) Effects of obesity on women’s reproduction and complications during pregnancy. Obesity reviews 5: 137–143. https://doi.org/10.1111/j.1467-789X.2004.00147.x PMID: 15245382
5. Dietl J (2005) Maternal obesity and complications during pregnancy. Journal of perinatal medicine 33: 100–105. https://doi.org/10.1515/JPM.2005.018 PMID: 15843256
6. Wood SL, Newton JM, Wang L, Lesser K (2014) Borderline Amniotic Fluid Index and Its Relation to Fetal Intolerance of Labor: A 2-Center Retrospective Cohort Study. Journal of Ultrasound in Medicine 33: 705–711. https://doi.org/10.7863/ultra.33.4.705 PMID: 24658952
7. Sermer M, Naylor CD, Gare DJ, Keshole AB, Ritchie J, et al. (1995) Impact of increasing carbohydrate intolerance on maternal-fetal outcomes in 3637 women without gestational diabetes: the Toronto Tri-Hospital Gestational Diabetes Project. American journal of obstetrics and gynecology 173: 146–156. https://doi.org/10.1016/0002-9378(95)90183-3 PMID: 7631672
8. Sacks D (1993) Fetal macrosomia and gestational diabetes: what’s the problem? Obstetrics and gynecology 81: 775–781. PMID: 8469471
9. Lockshin MD, Druzin ML, Goei S, Qamar T, Magid MS, et al. (1985) Antibody to cardiolipin as a predictor of fetal distress or death in pregnant patients with systemic lupus erythematosus. New England Journal of Medicine 313: 152–156. https://doi.org/10.1056/NEJM198507183130304 PMID: 3925336
10. Impey L (1993) Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. BJOG: An International Journal of Obstetrics & Gynaecology 100: 959–961. https://doi.org/10.1111/j.1471-0528.1993.tb15120.x PMID: 8217985
11. Laurin J, Lingman G, Marsál K, Persson P (1987) Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstetrics and Gynecology 69: 895–902. PMID: 3554065
12. Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 20: 71–88. https://doi.org/10.1038/s41576-018-0071-5 PMID: 30410101
13. San Lucas F, Allenson K, Bernard V, Castillo J, Kim D, et al. (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Annals of Oncology 27: 635–641. https://doi.org/10.1093/annonc/mdv604 PMID: 26681674
14. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, et al. (2016) Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nature communications 7: 1–10. https://doi.org/10.1038/ncomms11906 PMID: 27350604

15. Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 89: 213–216. https://doi.org/10.1007/s12041-010-0027-9 PMID: 20861572

16. Knight AK, Conneely KN, Kilaru V, Cobb D, Payne JL, et al. (2018) SLC9B1 methylation predicts fetal intolerance of labor. Epigenetics 13: 33–39. https://doi.org/10.1080/15592294.2017.1411444 PMID: 29235940

17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16: 321–357.

18. Kursa M, Rudnicki W (2010) Feature Selection with the Boruta Package. Journal of Statistical Software, Articles 36: 1–13.

19. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. Ieee Transactions on Pattern Analysis And Machine Intelligence 27: 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262

20. Pan X, Li H, Zeng T, Li Z, Chen L, et al. (2021) Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics 11: 626500. https://doi.org/10.3389/fgene.2020.626500 PMID: 33584818

21. Zhang Y-H, Li H, Zeng T, Chen L, Li Z, et al. (2021) Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8: 627302. https://doi.org/10.3389/fcell.2020.627302 PMID: 33505977

22. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 306: 136–144. https://doi.org/10.1016/j.mbs.2018.09.010 PMID: 30296417

23. Liu HA, Setiono R (1998) Incremental feature selection. Applied Intelligence 9: 217–230.

24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; 1995. Lawrence Erlbaum Associates Ltd. pp. 1137–1145.

25. Breiman L (2001) Random forests. Machine learning 45: 5–32.

26. Jia Y, Zhao R, Chen L (2020) Similarity-Based Machine Learning Model for Predicting the Metabolic Pathways of Compounds. IEEE Access 8: 130687–130696.

27. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/bioinformatics/btz757 PMID: 31593226

28. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836

29. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836

30. Zhu Y, Hu B, Chen L, Dai Q (2021) IMPTCE-Hnetwork: a multi-label classifier for identifying metabolic pathway types of chemicals and enzymes with a heterogeneous network. Computational and Mathematical Methods in Medicine 2021: 1573543. https://doi.org/10.1155/2020/1573543 PMID: 32454877

31. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297.

32. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/bioinformatics/btz757 PMID: 31593226

33. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836

34. Cohen WW (1995) Fast Effective Rule Induction. Twelfth International Conference on Machine Learning. pp. 115–123.

35. Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405: 442–451. https://doi.org/10.1016/0005-2795(75)90109-9 PMID: 1180967

36. Zhang Y-H, Zeng T, Chen L, Huang T, Cai Y-D (2021) Detecting the multomics signatures of factorspecific inflammatory effects on airway smooth muscles. Frontiers in Genetics 11: 599970. https://doi.org/10.3389/fgene.2020.599970 PMID: 33519902

37. Liu H, Hu B, Chen L, Lu L (2020) Identifying protein subcellular location with embedding features learned from networks. Current Proteomics.
38. Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 561: 235–248. https://doi.org/10.1016/j.gene.2015.02.050 PMID: 25701605

39. Hargan Calvopina JD (2016) Mechanisms of demethylation in primordial germ cells and the importance of stage-specific demethylation in safeguarding against precocious differentiation: UCLA. https://doi.org/10.1016/j.devcel.2016.07.019 PMID: 27618282

40. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome research 26: 192–202. https://doi.org/10.1101/gr.198291.115 PMID: 26576615

41. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, et al. (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of human genetics 58: 91–97. https://doi.org/10.1038/jhg.2012.140 PMID: 23235336

42. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, et al. (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational psychiatry 4: e339–e339. https://doi.org/10.1038/tp.2013.111 PMID: 24399042

43. Houseman EA, Kim S, Kelsey KT, Wiencke JK (2015) DNA methylation in whole blood: uses and challenges. Current environmental health reports 2: 145–154. https://doi.org/10.1007/s40572-015-0050-3 PMID: 26231364

44. Abdolmaleky HM, Zhou J-R, Thiagalisingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7: 427–449. https://doi.org/10.2217/epi.14.85 PMID: 26077430

45. Zaki M, Boyd P, Impey L, Roberts A, Chamberlain P (2007) Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 29: 284–288. https://doi.org/10.1002/uog.3859 PMID: 17238150

46. Panigrahy N, Lingappa L, Ramadevi AR, Venkataram A (2016) Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. The Indian Journal of Pediatrics 83: 359–360. https://doi.org/10.1007/s12098-015-1895-z PMID: 26365158

47. Poquet H, Faivre L, El Chehadeh S, Cohen H, Klein E, Ben-Shachar D (2010) DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology 13: 347–359. https://doi.org/10.1017/S146114570999071X PMID: 19793403

48. Hivert M-F, Cardenas A, Allard C, Doyon M, Powell CE, et al. (2020) Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 69: 484–492. https://doi.org/10.2337/db19-0798 PMID: 31882564

49. Luoz, Nuyt AM, Delvin E, Fraser WD, Julien P, et al. (2013) Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 21: 210–216. https://doi.org/10.1002/oby.20250 PMID: 23505188

50. El Mallah K, Narchi H, Kulaylat N, Shaban M (1997) Gestational and pre-gestational diabetes: comparison of maternal and fetal characteristics and outcome. International Journal of Gynecology & Obstetrics 58: 203–209. https://doi.org/10.1016/s0020-7292(97)00084-2 PMID: 9252256

51. Donat S, Lourenço M, Paolini A, Otten C, Renz M, et al. (2018) Hg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valveogenesis. Elife 7: e28939. https://doi.org/10.7554/eLife.28939 PMID: 29364115

52. Ramos CJ, Antonetti DA (2017) The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue barriers 5: e1339768. https://doi.org/10.1080/21688370.2017.1339768 PMID: 28632993

53. Groenendijk BC, Hierck BP, Gittenberger-de Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Developmental dynamics: an official publication of the American Association of Anatomists 230: 57–68.

54. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Archives of neurology 33: 696–705. https://doi.org/10.1001/archneur.1976.005010030012 PMID: 897769
57. Chung D, Sim Y, Park K, Yi S, Shin J, et al. (2001) Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics 73: 109–116.

58. Zuspan FP, Quilligan E, Iams JD, van Geijn HP (1979) Predictors of intrapartum fetal distress: The role of electronic fetal monitoring: Report of the National Institute of Child Health and Human Development Consensus Development Task Force. American Journal of Obstetrics & Gynecology 135: 287–291.

59. Vieira SE, Bando SY, de Paulis M, Oliveira DB, Thomazelli LM, et al. (2019) Distinct transcriptional modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis. PloS one 14: e0213501. https://doi.org/10.1371/journal.pone.0213501 PMID: 30845274

60. Lim JH, Kang Y-J, Lee BY, Han YJ, Chung JH, et al. (2019) Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clinical Epigenetics 11: 180. https://doi.org/10.1186/s13148-019-0756-4 PMID: 31801612