Hyperbolic groups admit proper affine isometric actions on l^p-spaces

Guoliang Yu

1 Introduction

Let X be a Banach space and Γ be a countable discrete group. An affine and isometric action α of Γ on X is said to be proper if $\lim_{g \to \infty} \|\alpha(g)\xi\| = \infty$ for every $\xi \in X$. If Γ admits a proper isometric affine action on Hilbert space, then Γ is said to be of Haagerup property [9] or a-T-menable [12].

Bekka, Cherix and Valette proved that an amenable group admits a proper affine isometric action on Hilbert space [3]. This result has important applications to K-theory of group C^*-algebras [13] [14].

It is well known that an infinite Property (T) group doesn’t admit a proper affine isometric action on Hilbert space. The purpose of this paper is to prove the following result.

Theorem 1.1. If Γ is a hyperbolic group, then there exists $2 \leq p < \infty$ such that Γ admits a proper affine isometric action on an l^p-space.

We remark that the constant p depends on the hyperbolic group Γ (in the special case that Γ is the fundamental group of a negatively curved compact manifold, p depends on the dimension of the manifold), and p is strictly greater than 2 if the hyperbolic Γ is infinite and has Property (T). Recall that a theorem of A. Zuk states that hyperbolic groups are generically of Property (T) [22].

Partially supported by NSF and NSFC.
In [1], Bader and Gelander studied Property (T) for L^p-spaces. Their work has extremely interesting applications in Fisher and Margulis’ theory of local rigidity [6]. Bader and Gelander raised the question if any affine isometric action of a Property (T) group on an L^p-space has a fixed point (Question 12 in [1]). Theorem 1.1 implies that the answer to this question is negative for infinite hyperbolic groups with Property (T).

The proof of Theorem 1.1 is based on a construction of Igor Mineyev [18] and is reminiscent of Alain Connes’ construction of Chern character of finitely summable Fredholm modules for rank one groups [5].

The author wishes to thank Igor Mineyev for very helpful comments on the exposition of this note, Erik Guentner for bringing [1] to my attention, and Nigel Higson for pointing out that an unpublished result Y. Shalom implies that $Sp(n, 1)$ admits a proper affine isometric action on some uniformly convex Banach space.

2 Hyperbolic groups and bicombings.

In this section, we recall the concepts of hyperbolic groups and bicombings.

2.1 Hyperbolic groups.

Let Γ be a finitely generated group. Let S be a finite generating set for Γ. Recall that the Cayley graph of Γ with respect to S is the graph G satisfying the following conditions:

1. the set of vertices in G, denoted by $G^{(0)}$, is Γ;
2. the set of edges is $\Gamma \times S$, where each edge $(g, s) \in \Gamma \times S$ spans the vertices g and gs.

We endow G with the path metric d induced by assigning length 1 to each edge. Notice that Γ acts freely, isometrically and cocompactly on G. A geodesic path in G is a shortest edge path. The restriction of the path metric d to Γ is called the word metric.
A finitely generated group Γ is called hyperbolic, if there exists a constant $\delta \geq 0$ such that all the geodesic triangles in G are δ-fine in the following sense: if a, b, and c are vertices in G, $[a, b]$, $[b, c]$, and $[c, a]$ are geodesics from a to b, from b to c, and from c to a, respectively, and points $\bar{a} \in [b, c]$, $v, \bar{c} \in [a, b]$, $w, \bar{b} \in [a, c]$ satisfy
\[
d(b, \bar{c}) = d(b, \bar{a}), \quad d(c, \bar{a}) = d(c, \bar{b}), \quad d(a, v) = d(a, w) \leq d(a, \bar{c}) = d(a, \bar{b}),
\]
then $d(v, w) \leq \delta$.

The above definition of hyperbolicity does not depend on the choice of the finite generating set S. See [8] for other equivalent definitions.

For vertices a, b, and c in G, the Gromov product is defined by
\[
(b|c)_a := d(a, \bar{b}) = d(a, \bar{c}) = \frac{1}{2} \left[d(a, b) + d(a, c) - d(b, c) \right].
\]
The Gromov product can be used to measure the degree of cancellation in the multiplication of group elements in G.

2.2 Bicombings.

Let Γ be a finitely generated group. Let G be its Cayley graph with respect to a finite generating set. A bicombing q in G is a function assigning to each ordered pair (a, b) of vertices in G an oriented edge-path $q[a, b]$ from a to b. A bicombing q is called geodesic, if each path $q[a, b]$ is geodesic, i.e. a shortest edge path. A bicombing q is Γ-equivariant if $q[g \cdot a, g \cdot b] = g \cdot q[a, b]$ for each $a, b \in G^{(0)}$ and each $g \in \Gamma$.

3 A construction of Mineyev.

The purpose of this section is to recall Mineyev’s contraction for hyperbolic groups and its properties [18].

Let Γ be a hyperbolic group and G be a Cayley graph of Γ with respect to a finite generating set. We endow G with the path metric d, and identify Γ with $G^{(0)}$, the set of vertices of Γ. Let $\delta \geq 1$ be a positive integer such that all the geodesic triangles in G are δ-fine.
The ball \(B(x, R) \) is the set of all vertices at distance at most \(R \) from the vertex \(x \). The sphere \(S(x, R) \) is the set of all vertices at distance \(R \) from the vertex \(x \). Pick an equivariant geodesic bicombing \(q \) in \(G \). By \(q[a, b](t) \) we denote the point on the geodesic path \(q[a, b] \) at distance \(t \) from \(a \). Recall that \(C_0(\Gamma, \mathbb{Q}) \) is the space of all finitely supported 0-chains (in \(\Gamma = G^{(0)} \)) with coefficients in \(\mathbb{Q} \), i.e. \(C_0(\Gamma, \mathbb{Q}) = \{ \sum_{\gamma \in \Gamma} c_{\gamma} \gamma : c_{\gamma} \in \mathbb{Q} \}, \) where \(\sum_{\gamma \in \Gamma} c_{\gamma} \gamma \) is finitely supported.

For each \(p \geq 1 \), endow \(C_0(\Gamma, \mathbb{Q}) \) with the \(l^p \)-norm \(|| \cdot ||_p \). We identify \(\Gamma \) with the standard basis of \(C_0(\Gamma, \mathbb{Q}) \). Therefore the left action of \(\Gamma \) on itself induces a left action on \(C_0(G, \mathbb{Q}) \).

For \(v, w \in \Gamma \), the flower at \(w \) with respect to \(v \) is defined to be

\[
Fl(v, w) := S(v, d(v, w)) \cap B(w, \delta) \subseteq \Gamma.
\]

For each \(a \in \Gamma \), we define \(pr_a : \Gamma \to \Gamma \) by:

1. \(pr_a(a) := a \);
2. if \(b \neq a \), \(pr_a(b) := q[a, b](t) \), where \(t \) is the largest integral multiple of \(10\delta \) which is strictly less than \(d(a, b) \).

Now for each pair \(a, b \in \Gamma \), we define a 0-chain \(f(a, b) \) in \(\Gamma \) inductively on the distance \(d(a, b) \) as follows:

1. if \(d(a, b) \leq 10\delta \), \(f(a, b) := b \);
2. if \(d(a, b) > 10\delta \) and \(d(a, b) \) is not an integral multiple of \(10\delta \), let \(f(a, b) := f(a, pr_a(b)) \);
3. if \(d(a, b) > 10\delta \) and \(d(a, b) \) is an integral multiple of \(10\delta \), let

\[f(a, b) := \frac{1}{\# Fl(a, b)} \sum_{x \in Fl(a, b)} f(a, pr_a(x)). \]

The following result is due to Mineyev [18].

Proposition 3.1. The function \(f : \Gamma \times \Gamma \to C_0(\Gamma, \mathbb{Q}) \) defined above satisfies the following conditions.
(1) For each \(a, b \in \Gamma \), \(f(b, a) \) is a convex combination, i.e. its coefficients are non-negative and sum up to 1.

(2) If \(d(a, b) \geq 10\delta \), then \(\text{supp} f(b, a) \subseteq B(q[b, a](10\delta), \delta) \cap S(b, 10\delta) \).

(3) If \(d(a, b) \leq 10\delta \), then \(f(b, a) = a \).

(4) \(f \) is \(\Gamma \)-equivariant, i.e. \(f(g \cdot b, g \cdot a) = g \cdot f(b, a) \) for any \(g, a, b \in \Gamma \).

(5) There exist constants \(L \geq 0 \) and \(0 \leq \lambda < 1 \) such that, for all \(a, a', b \in \Gamma \),
\[
\| f(b, a) - f(b, a') \|_1 \leq L \lambda^{(a|a')_b}.
\]

Let \(p \geq 2 \). For each pair \(b, a \in \Gamma \), define
\[
h(b, a) = \frac{1}{\| f(b, a) \|_p} f(b, a),
\]
where \(f \) is as in Proposition 3.1.

Corollary 3.2. The function \(h : \Gamma \times \Gamma \to C_0(\Gamma, \mathbb{Q}) \) defined above satisfies the following conditions.

(1) For each \(a, b \in \Gamma \), \(\| h(b, a) \|_p = 1 \).

(2) If \(d(a, b) \geq 10\delta \), then \(\text{supp} h(b, a) \subseteq B(q[b, a](10\delta), \delta) \cap S(b, 10\delta) \).

(3) If \(d(a, b) \leq 10\delta \), then \(h(b, a) = a \).

(4) \(h \) is \(\Gamma \)-equivariant, i.e. \(h(g \cdot b, g \cdot a) = g \cdot h(b, a) \) for any \(g, a, b \in \Gamma \).

(5) There exist constants \(C \geq 0 \) and \(0 \leq \rho < 1 \) such that, for all \(a, a', b \in \Gamma \),
\[
\| h(b, a) - h(b, a') \|_p \leq C \rho^{(a|a')_b}.
\]

Proof: (1), (2), (3) and (4) of Corollary 3.2 follow from Proposition 3.1.

By (2) of Proposition 3.1, we have
\[
\# \text{supp} h(b, a) \leq \# S(b, 10\delta), \quad \# \text{supp} h(b, a') \leq \# S(b, 10\delta).
\]

It follows that
\[
\| h(b, a) - h(b, a') \|_p \leq 2(\# S(b, 10\delta))^{\frac{1}{p}} \| h(b, a) - h(b, a') \|_1.
\]

Now (5) of Corollary 3.2 follows from (5) of Proposition 3.1.
4 Proof of the main result.

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1:

Let $v > 0$ such that $\#B(x, r) \leq v^r$ for all $x \in \Gamma$ and $r > 0$. Let ρ be as in Corollary 3.2. Choose $p \geq 2$ such that $\rho^p v < \frac{1}{2}$.

Let $l_p(\Gamma)$ be the completion of $C_0(\Gamma, \mathbb{Q})$ with respect to the norm $\| \cdot \|_p$. Notice that the Γ action on $C_0(\Gamma, \mathbb{Q})$ can be extended to an isometric action on $l_p(\Gamma)$.

Let $X = \{ \xi : \Gamma \to l_p(\Gamma) : \| \xi \|_p = \left(\sum_{\gamma \in \Gamma} \| \xi(\gamma) \|_p \right)^{\frac{1}{p}} < \infty \}$. Observe that X is isometric to $l_p(\Gamma \times \Gamma)$.

Let π be the isometric action of Γ on X defined by:

$$(\pi(g)\xi)(\gamma) = g(\xi(g^{-1}\gamma))$$

for all $\xi \in X$ and $g, \gamma \in \Gamma$.

Define $\eta \in X$ by:

$$\eta(\gamma) = h(\gamma, e)$$

for all $\gamma \in \Gamma$, where e is the identity element in Γ.

For each $g \in \Gamma$, by Corollary 3.2 and the choice of p, we have:

$$\| \pi(g)\eta - \eta \|_p^p = \sum_{\gamma \in \Gamma} \| g(\xi(g^{-1}\gamma, e)) - h(\gamma, e) \|_p^p$$

$$\leq \sum_{\gamma \in \Gamma} \| h(\gamma, g) - h(\gamma, e) \|_p^p$$

$$\leq \sum_{\gamma \in \Gamma} C \rho^p (\rho(\delta(\gamma, e) - \delta(g, e)))$$

$$\leq \sum_{n=0}^{\infty} C \rho^p (\rho(n - \delta(g, e))) \cdot v^n$$

$$\leq 2C \rho^{-pd(g, e)}.$$

It follows that $\pi(g)\eta - \eta$ is an element in X for each $g \in \Gamma$.

We now define an affine isometric action α on X by Γ by:
\[\alpha(g)\xi = \pi(g)\xi + \pi(g)\eta - \eta \]
for all \(\xi \in X \) and \(g \in \Gamma \).

If \(\gamma \) is a vertex on the oriented geodesic \(q[g, e] \) satisfying \(d(\gamma, e) \geq 10\delta \) and \(d(\gamma, g) \geq 10\delta \), we have

\[
B(q[\gamma, e](10\delta), \delta) \cap B(q[\gamma, g](10\delta), \delta) = \emptyset.
\]

Otherwise, if there exists \(z \in B(q[\gamma, e](10\delta), \delta) \cap B(q[\gamma, g](10\delta), \delta) \), then

\[
d(g, e) \leq d(g, z) + d(z, e) \\
\leq (d(g, q[\gamma, g](10\delta)) + \delta) + (\delta + d(q[\gamma, e](10\delta), e)) \\
= ((d(g, \gamma) - 10\delta) + \delta) + (\delta + (d(\gamma, e) - 10\delta)) \\
= d(g, e) - 18\delta.
\]

This is a contradiction since \(\delta > 0 \).

By (2) of Corollary 3.2, we have

\[
supp h(\gamma, g) \cap supp h(\gamma, e) = \emptyset
\]
if \(\gamma \) is a vertex on the oriented geodesic \(q[g, e] \) satisfying \(d(\gamma, e) \geq 10\delta \) and \(d(\gamma, g) \geq 10\delta \).

It follows that there exist at least \(d(g, e) - 100\delta \) number of vertices \(\gamma \) on the oriented path \(q[g, e] \) such that

\[
\|g(h(g^{-1}\gamma, e)) - h(\gamma, e)\|_p = \|h(\gamma, g) - h(\gamma, e)\|_p \geq 1.
\]

Hence

\[
\|\pi(g)\eta - \eta\|_p^p \geq d(g, e) - 100\delta
\]
for all \(g \in \Gamma \).

As a consequence, for every \(\xi \in X \), we have

\[
\|\alpha(g)\xi - \pi(g)\xi\|_p \rightarrow \infty
\]
as \(g \rightarrow \infty \).
This, together with the fact that $\pi(g)$ is an isometry, implies that α is proper.

We should mention that it remains an open question if $SL(n,\mathbb{Z})$ admits a proper affine isometric action on some uniformly convex Banach space for $n \geq 3$. A positive answer to this question would have interesting applications to K-theory of group C^*-algebras [16].

References

[1] U. Bader and T. Gelander, Propert (T) and unitary representations on L_p. Preprint, 2004.

[2] P. Baum and A. Connes, K-theory for discrete groups, Operator Algebras and Applications, (D. Evans and M. Takesaki, editors), Cambridge University Press (1989), 1–20. Bekka, M. E.

[3] M. E. B. Bekka, P.-A. Cherix, and A. Valette, Proper affine isometric actions of amenable groups. Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 1–4, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995.

[4] N. Brown and E. Guentner, Uniform embedding of bounded geometry spaces into reflexive Banach spaces. Preprint, 2003.

[5] A. Connes, Noncommutative Geometry, Academic Press, 1994.

[6] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), 345–388.

[7] D. Fisher and G. A. Margulis, Almost isometric actions, Property (T), and local rigidity. Preprint, 2004.

[8] M. Gromov, Hyperbolic groups, MSRI Publ. 8, 75-263, Springer, 1987.
[9] M. Gromov, Asymptotic invariants for infinite groups, Geometric Group Theory, (G. A. Niblo and M. A. Roller, editors), Cambridge University Press, (1993), 1–295.

[10] M. Gromov, Problems (4) and (5), Novikov Conjectures, Index Theorems and Rigidity, Vol. 1, (S. Ferry, A. Ranicki and J. Rosenberg, editors), Cambridge University Press, (1995), 67.

[11] M. Gromov, Spaces and questions. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part I, 118–161.

[12] U. Haagerup, An example of a nonnuclear C^*-algebra, which has the metric approximation property. Invent. Math. 50 (1978/79), no. 3, 279–293.

[13] N. Higson and G. G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electronic Research Announcements, AMS 3 (1997), 131–141.

[14] N. Higson and G. G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144 (2001), no. 1, 23–74.

[15] G. Kasparov and G. Yu, Uniform convexity and the coarse geometric Novikov conjecture. Preprint, 2004.

[16] G. Kasparov and G. Yu, Uniform convexity and K-theory of group C^*-algebras. In preparation.

[17] V. Lafforgue, K-thorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math. 149 (2002), no. 1, 1–95.

[18] I. Mineyev, Straightening and bounded cohomology of hyperbolic groups. Geom. Funct. Anal. 11 (2001), no. 4, 807–839.

[19] I. Mineyev and G. Yu, The Baum-Connes conjecture for hyperbolic groups. Invent. Math. 149 (2002), no. 1, 97–122.
[20] M. Puschnigg, The Kadison-Kaplansky conjecture for word-hyperbolic groups. Invent. Math. 149 (2002), no. 1, 153–194.

[21] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.

[22] A. Zuk, Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal. 13 (2003), no. 3, 643–670.

Department of Mathematics
1326 Stevenson Center
Vanderbilt University
Nashville, TN 37240, USA
e-mail: gyu@math.vanderbilt.edu