Gene expression profiling of colorectal adenomas and early invasive carcinomas by cDNA array analysis

K Nosho*1, H Yamamoto1, Y Adachi1, T Endo1, Y Hinoda2 and K Imai1
1First Department of Internal Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo 060-8543, Japan; 2Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, Ube. 755-8505, Japan

It is generally accepted that most colorectal carcinomas arise in pre-existing adenomas. Morphologically, colorectal adenomas can be divided into two groups, protruded type and flat type. The aim of this study was to clarify relevant alterations of gene expression associated with the early stage of colorectal carcinogenesis. Using cDNA array, we analysed the expression profiles of 550 cancer-related genes in 36 colorectal adenomas (18 flat-type and 18 protruded-type adenomas) and 14 early invasive carcinomas. Among the 550 genes, we chose 32 genes the average expression levels of which were at least three-fold up- or downregulated in tumour tissues compared with levels in matched normal tissues. A total of 13 and 19 genes were identified as up- and downregulated genes in tumour tissues, respectively. Among the upregulated genes, the average expression levels of E1A2, bone morphogenetic protein (BMP)-4, insulin-like growth factor (IGF)-2, inducible nitric oxide synthase (iNOS), tissue inhibitors of metalloproteinase (TIMP)-1, Smad4, and nm23 in tumour tissues were over five times higher than those in matched normal tissues. Colorectal adenomas and early invasive carcinomas were divided into two major clusters by clustering analysis. Moreover, flat- and protruded-type adenomas were divided into two major clusters by clustering analysis. The expression profiles obtained by the cDNA array clearly indicate that colorectal adenomas and early invasive carcinomas have specific expression profiles. Likewise, the gene expression profiles of flat- and protruded-type adenomas are different. These results indicate that molecular classification of early colorectal tumours by a cDNA array is feasible.

Keywords: colorectal adenoma; early invasive colorectal carcinoma; cDNA array

Colorectal carcinoma is one of the most common human malignancies in the world. Although alternative pathways exist, it is generally accepted that most colorectal carcinomas arise in pre-existing adenomas (Jass et al, 2002). Despite a large number of studies, little is known about molecular alterations associated with the heterogeneity of colorectal carcinomas.

Morphologically, early colorectal tumors can be divided into two groups, protruded type and flat type. Recently, flat-type colorectal tumours have been reported not only in Japan (Sakashita et al, 2000) but also in Western countries (Olschwang et al, 1998). Previous studies showed that flat-type colorectal tumours tended to reach deeper layers earlier and to show higher rates of lymphatic invasion and lymph node metastasis than did protruded-type tumours (Kuramoto and Oohara, 1989; Mueller et al, 1998). Moreover, it has been thought that some flat-type cancers correspond to de novo cancers, which contain no observable adenomatous component and may develop through a distinct genetic pathway (Yashiro et al, 2001). Thus, it would be interesting to examine gene expression profiles of colorectal adenomas and early invasive colorectal carcinomas, because comparison of these two groups of tumours will provide information about genes that play an important role during progression from adenoma to carcinoma.

DNA array technology enables measure of the mRNA expression levels of thousands of genes in a single assay. Mainly advanced cancer has been analysed in gene expression profiling-based studies on colorectal cancer (Alon et al, 1999; Backert et al, 1999; Hegde et al, 2001; Kitahara et al, 2001; Notterman et al, 2001; Takemasa et al, 2001; Agrawal et al, 2002; Birkenkamp-Demtroder et al, 2002; Lin et al, 2002; Zou et al, 2002; Frederiksen et al, 2003; Muro et al, 2003; Tureci et al, 2003; Williams et al, 2003; Bertucci et al, 2004). Only a small number of adenoma and early invasive cancer tissues have been analysed in previous studies, and the issue of flat- and protruded-type adenoma tissues has not been directly addressed (Notterman et al, 2001; Agrawal et al, 2002; Lin et al, 2002; Williams et al, 2003).

In this study, we therefore applied cDNA array technology to analyse the gene expression profiles of 36 colorectal adenomas (18 flat-type and 18 protruded-type adenomas) and 14 early invasive carcinomas. This is the first study showing molecular classification of early colorectal tumours by a cDNA array analysis.

MATERIALS AND METHODS

Patients and tissue samples

A total of 50 paired specimens of colorectal tumour and nontumour tissues were obtained by polypectomy or surgical
treatment. These tumour samples consisted of 36 colorectal adenomas and 14 early invasive carcinomas (pT1 in the TNM classification of the Union International Contre Cancer). Normal epithelial tissue samples and tumour tissue samples were carefully macrodissected by expert pathologists. In case of early invasive carcinomas, tumour tissue samples were taken from the macroscopically visible deepest invading part of the tumour after surgical resection. Each tissue specimen was divided into two pieces after resection. For total RNA extraction, one sample was immediately frozen in liquid nitrogen at the time of surgery and stored at −80°C until extraction. The other sample was processed for pathological examination using haematoxylin and eosin staining for the evaluation of the tumour cell content. Only specimens containing more than 80% tumour cells were used for analysis (Horiuchi et al, 2003). The histopathological features of the carcinoma specimens were classified according to the TNM classification system. Locations of the colorectal tumours were divided into proximal colon (caecum and ascending and transverse colon) and distal colon (descending and sigmoid colon and rectum). Macrosopic types were divided into protruded type (height of tumour ≥3 mm) and flat type (height of tumour <3 mm). It was difficult to divide early invasive carcinoma into protruded type or flat type because colorectal tumours become thick when they have invaded the submucosal layer. Therefore, macroscopic type was classified in only colorectal adenomas. The clinicopathological characteristics of colorectal tumours are shown in Table 1. Informed consent was obtained from each subject, and the institutional review committee approved this study.

cDNA array analysis

Total RNA was extracted from specimens using the acid guanidinum thiocyanate–phenol–chloroform extraction method and treated with DNase I. Biotin-labelled cDNA targets were made from 2.5 μg of total RNA using Gene Navigator cDNA amplification system (Toyobo, Osaka, Japan), including random 9-mer, biotin-16-dUTP, and ReverTraAceTM reverse transcriptase. Free biotin-16-dUTP in the reaction was removed by ethanol precipitation. Gene Navigator cDNA array filter (human cancer, Toyobo) consisted of 550 cancer-related genes and 11 housekeeping genes in duplicate. A complete list is available on the Internet (http://www.toyobo.co.jp). Hybridisation was performed overnight at 68°C in PerfectHybTM (Toyobo). Filters were washed three times in 2 × SSC/0.1% SDS at 68°C for 10 min each, followed by three washes in 0.1 × SSC/0.1% SDS at 68°C for 10 min each. Specific signals on the filters were detected by the chemiluminescence detection kit (Imaging HighTM, Toyobo). CDP-Star was used as the chemiluminescent substrate. Quantitative assessment of the signals on the filters was performed by scanning on a Fluor-S Multimager System (Bio-Rad, Richmond, CA, USA) followed by image analysis using ImaGene software (BioDiscovery, Los Angeles, CA, USA). The data were analysed with normalisation to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The average of three experiments was calculated.

Statistical analysis

Expression of each target gene was assessed for associations with clinicopathological characteristics using Mann–Whitney U-test for average tumour expressions.

RESULTS

cDNA array analysis

To clarify relevant alterations of gene expression associated with early colorectal carcinogenesis, we analysed the gene expression profiles of tumour tissues by a cDNA array (Yamamoto et al, 2002). Gene Navigator cDNA array filter (human cancer, Toyobo) consisted of 550 cancer-related genes and 11 housekeeping genes in duplicate. Among the 550 genes the expression profiles of which were analysed, we chose 32 genes the average expression levels of which were at least three-fold up- or downregulated in 50 tumour tissues compared with levels in 50 matched normal tissues. Besides, since many colorectal tumours have been demonstrated to have a diversity of gene expression profiles, we examined the ratios of the selected 32 genes in all 50 tumour/normal pairs individually. The selected genes were classified as commonly changed if their ratio was three-fold up- or downregulated in more than one-third (15 of 50) of the patients. Among the selected 32 genes, all genes satisfied these criteria. A total of 13 genes (insulin-like growth factor (IGF)-2 bone morphogenic protein (BMP)-4, EGF-1, E1AF, FAK, Rho GD(d)j, nm23, tissue inhibitors of metalloproteinase (TIMP)-1, GSTP1, GST-II, Smad4, inducible nitric oxide synthase (iNOS), and c-jun) and 19 genes (Egr-2, PMS1, Eph, gp130, Rho 8, Ras-GAP, p120, GAK, Erk1, Lamin β3, Cdc42, zn-catenin, MMP-15, Galectin-1, HLA-DQ, MUC-2, MDR1, Mucin3, and p21) were identified as up- and downregulated genes in tumour tissues, respectively. These genes were associated with transcription (Egr-2 and E1AF), DNA repair or protection (PMS1, GSTP1, and GST-II), cell signalling (Eph, gp130, Rho 8, Ras-GAP, p120, GAK, Rho GD(d)j, Erk1, FAK, and Lamin β3), cell cycle (Cdc42), growth factor (IGF-2, BMP-4, and ECGF-1), tumour suppressor (nm23 and Smad4), oncogene (c-jun), cell adhesion (zn-catenin), extracellular matrix-degrading enzymes (MMP-15, TIMP-1, and Galectin-1), human leucocyte antigen (HLA-DQ), glycoprotein (MUC-2, MDR1, and Mucin3), CDK inhibitor (p21), and angiogenesis (iNOS).

Among the 13 genes the average expression levels of which were at least three-fold upregulated in tumour tissues compared with levels in matched normal tissues, the average expression levels of E1AF, BMP-4, IGF-2, INOS, TIMP-1, Smad4, and nm23 genes in tumour tissues were over five times higher than those in matched normal tissues (Table 2). Semiquantitative reverse transcriptase–polymerase chain reaction (RT–PCR) analysis of these differentially expressed genes gave results consistent with those by a cDNA array analysis (Figure 1).

Colorectal adenomas (n = 36) and early invasive carcinomas (n = 14) were divided into two major clusters by clustering analysis (Figure 2). The average expression levels of 10 (IGF-2, E1AF, INOS, Rho GD(d)j, GSTP1, c-jun, ECGF1, nm23, Smad4, and TIMP-1) of the 32 genes were significantly higher in the early invasive carcinoma group than in the adenoma group. On the other hand, the average expression levels of 12 (Eph, gp130, GST-II, Rho 8, MUC-2, Ras-GAP, p120, MDR1, zn-catenin, Egr-2, PMS1, and

Table 1

Characteristics	Early invasive carcinoma (n = 14)	Protruded type (n = 18)	Flat type (n = 18)
Age (years, mean ± s.d.)	69.1 ± 7.3	67.9 ± 5.8	71.1 ± 4.9
Size (mm, mean ± s.d.)	25.7 ± 10.0	105.4 ± 5.4	142.1 ± 12.7

Gender	Male	Female	
Age (years, mean ± s.d.)	69.1 ± 7.3	67.9 ± 5.8	71.1 ± 4.9
Size (mm, mean ± s.d.)	25.7 ± 10.0	105.4 ± 5.4	142.1 ± 12.7

Location	Proximal	Distal	
Age (years, mean ± s.d.)	69.1 ± 7.3	67.9 ± 5.8	71.1 ± 4.9
Size (mm, mean ± s.d.)	25.7 ± 10.0	105.4 ± 5.4	142.1 ± 12.7

Characteristics: Age, sex, and location. Early invasive carcinoma: n = 14. Protruded type: n = 18. Flat type: n = 18.
The average expression levels of 16 (PMS1, nm23, p21, FAK, Smad4, c-jun, ECGF-1, Erk1, GAK, GSTP1, IGF-2, Laminin β-3, MMP-15, Mucin3, Rho GDIβ, and TIMP-1) of the 32 genes were significantly higher in the flat-type group than in the protruded-type group.

Among the 32 genes, the average expression levels of eight genes (Rho GDIβ, c-jun, iNOS, TIMP-1, ECGF1, nm23, and Smad4) and four genes (MUC-2, aN-catenin, PMS1, and GAK) were significantly lower and higher, respectively, in both the flat- and protruded-type adenoma groups than in the early invasive carcinoma group. The average expression levels of two genes (Cdc42 and Galectin-1) and four genes (p21, Erk1, Mucin 3, and Laminin β-3) were significantly lower and higher, respectively, in the flat-type adenoma group than those in the early invasive carcinoma group (Table 5).

On the other hand, the average expression levels of seven genes (Erk1, Mucin 3, Laminin β-3, IGF-2, MMP-15, and E1AF) and nine genes (Cdc42, Eph, gp130, GST-II, Rho 8, Ras-GAP, p120, MDR1, and Egr-2) were significantly lower and higher, respectively, in the protruded-type adenoma group than in the early invasive carcinoma group (Table 5).

DISCUSSION

Using a cDNA array, we analysed the gene expression profiles of 36 colorectal adenoma and 14 early invasive carcinoma tissues to clarify characteristic changes associated with the early stage
of colorectal carcinogenesis. The reason why we chose early invasive carcinoma is that it represents the early stage of colorectal carcinoma. Among the 550 genes the expression profiles of which were analysed, we chose 32 genes the average expression levels of which were at least three-fold up- or downregulated in 50 tumour tissues compared with levels in 50 matched normal tissues. Among the 13 upregulated genes, the expression levels of E1AF, BMP-4, IGF-2, iNOS, TIMP-1, Smad4, and nm23 genes were over five-times higher than those in matched normal tissues.

E1AF (human PEA3/ETV4) is an ets family transcriptional factor. We recently reported that E1AF plays a key role in the progression of colorectal carcinoma (Horiuchi et al., 2003). Thus, our results of cDNA array analysis extend roles of E1AF in the late stage to early stage of colorectal carcinogenesis. BMP-4 is a member of the TGF-β superfamily of growth factors. It has been reported that BMP-4 is overexpressed and secreted by human colon cancer cells with mutant APC genes (Kim et al., 2002). Our results suggest that BMP-4 overexpression plays an important role in the early stage of colorectal carcinogenesis. iNOS has been

Table 3

Gene name	Accession no.	Gene function	P-value	CA<AD
Eph	M18391	Cell signalling	0.0342	
Gpi-30	MS7230	Cell signalling	0.0122	
GST-Ⅱ	U77604	DNA repair or protection	0.0108	
Rho 8	X95282	Cell signalling	0.0069	
MUC-2	M74027	Glycoprotein	0.0046	
Ras-GAP	AF051311	Cell signalling	0.0035	
PI-20	AF062324	Cell signalling	0.0029	
MDR1	AF016535	Glycoprotein	0.0019	
aN-catenin	M94151	Cell adhesion	0.0014	
Egr-2	X53700	Transcription	0.0011	
PMS1	U13695	DNA repair or protection	0.0002	
GAK	D88435	Cell signalling	0.0001	
IGF-2	M29645	Growth factor	0.0491	
E1AF	D12765	Transcription	0.0187	
INOS	AB022318	Angiogenesis	0.0084	
Rho GD1/2	L20688	Cell signalling	0.0002	
GSTP1	X06547	DNA repair or protection	<0.0001	
c-jun	J04111	Oncogene	<0.0001	
ECGF1	M63193	Growth factor	<0.0001	
nm23	X17620	Tumour suppressor	<0.0001	
Smad4	U44378	Tumour suppressor	<0.0001	
TIMP1	X03124	Extracellular matrix-Degrading enzymes	<0.0001	CA<AD
BMP-4	D30751	Growth factor	0.7494	
Cdc42	MS7298	Cell cycle	0.65	
Erk1	X60188	Cell signalling	0.2101	
FAK	L13616	Cell signalling	0.0878	
Galectin-1	J04456	Extracellular matrix-degrading enzymes	0.136	
HLA-DQ	U77589	Human leucocyte antigen	0.8289	
Laminin-β3	D37766	Cell signalling	0.7134	
MMP-15	Z48482	Extracellular matrix-degrading enzymes	0.8289	
Mucin 3	AF143371	Glycoprotein	0.2897	
P21-1	U03106	CDK inhibitor	0.1734	

CA = early invasive carcinoma group; AD = adenoma group.

Figure 3 A two-dimensional hierarchical clustering of 32 genes across 36 colorectal adenomas. The colour in each well represents relative expression of each gene (vertical axis) in each paired sample (horizontal axis); red, increased in adenoma tissues; green, decreased in adenoma tissues. In the sample axis, flat- and protruded-type adenomas were separated into two different trunks.
Table 4 Genes the expression levels of which differed significantly in the flat-type adenoma group and the protruded-type adenoma group (Mann–Whitney U-test)

Gene name	Accession no.	Gene function	P-value	
PMS1	U13695	DNA repair or protection	0.0136	P<0.0001
nm23	X17620	Tumour suppressor	0.0004	P<0.0001
p21	U03106	CDK inhibitor	0.001	P<0.0001
FAK	L13616	Cell signalling	0.0017	P<0.0001
Smad4	U44378	Tumour suppressor	0.0429	P<0.0001
c-Jun	J0111	Oncogene	<0.0001	P<0.0001
ECGF1	M63193	Growth factor	<0.0001	P<0.0001
Erk1	X60188	Cell signalling	<0.0001	P<0.0001
GAK	D88435	Cell signalling	<0.0001	P<0.0001
GSTP1	X06547	DNA repair or protection	<0.0001	P<0.0001
IGF-2	M29645	Growth factor	<0.0001	P<0.0001
Laminin b-3	D37766	Cell signalling	<0.0001	P<0.0001
MMP-15	Z48462	Extracellular matrix-degrading enzymes	<0.0001	P<0.0001
Mucin 3	AF13371	Glycoprotein	<0.0001	P<0.0001
Rho GDI	L20688	Cell signalling	<0.0001	P<0.0001
TIMP1	X03124	Extracellular matrix-degrading enzymes	<0.0001	P<0.0001
HLA-DQ	U77589	Human leucocyte antigen	0.0003	P<0.0001
Cdc42	M57298	Cell cycle	<0.0001	P<0.0001
Egr-2	X53700	Transcription	<0.0001	P<0.0001
EphA4	M18391	Cell signalling	<0.0001	P<0.0001
Galectin-1	J4456	Extracellular matrix-degrading enzymes	<0.0001	P<0.0001
Gpl130	M57230	Cell signalling	<0.0001	P<0.0001
GST-II	U77604	DNA repair or protection	<0.0001	P<0.0001
MDR1	AF016535	Glycoprotein	<0.0001	P<0.0001
p120	AF062324	Cell signalling	<0.0001	P<0.0001
Ras-GAP	AF051311	Cell signalling	<0.0001	P<0.0001
Rho B	X95282	Cell signalling	<0.0001	P<0.0001
E1AF	D12765	Transcription	0.1488	
INOS	ABO2318	Angiogenesis	0.1639	
BMP-4	D30751	Growth factor	0.1966	
Muc-2	M74027	Glycoprotein	0.4107	
sal-catenin	M94151	Cell adhesion	0.5478	

F = flat-type adenoma group; P = protruded-type adenoma group.

reported to play a crucial role in cancer development by promoting angiogenesis (Jenkins et al, 1993). Our results are consistent with those of previous studies showing an important role of iNOS in the early stage of colorectal carcinogenesis (Xu et al, 2005). Interestingly, nitric oxide (NO), generated by iNOS, reportedly augments the synergistic interaction between E1AF and its transcription coactivator CBP/p300, resulting in the facilitation of induction of tumour-related genes, such as COX-2 (Liu et al, 2005; Reinacher-Schick et al, 2004). Nevertheless, the reason for the overexpression of Smad4 in early colorectal tumour tissues remains unknown. It may be induced to inhibit tumour growth by some compensatory mechanisms. Further analysis is needed to clarify this issue.

The nm23 gene was first identified as a gene the expression level of which was reduced in highly metastatic rodent tumours relative to poorly metastatic tumour cells (Steeg et al, 1988). The transfection of nm23 cDNA into various cancer cell lines resulted in suppression of the metastatic potential of motility, invasion, or colonisation (Suzuki et al, 2004). However, Bertucci et al (2004) recently reported over- and downexpression of nm23 in colorectal cancer tissues and in those with poor prognosis, respectively. The reason why nm23 gene was highly expressed in tumour tissues in the current study may be due to the fact that all tumour samples were significantly elevated in colorectal cancer patients compared to healthy donors, and high plasma TIMP-1 levels were associated with short survival of colorectal cancer patients (Holten-Andersen et al, 2005). Therefore, TIMP-1 appears to be a novel marker for detection of early colorectal cancer and for prognostic stratification of colorectal cancer patients.

Smad4 is an intracellular transmitter of TGF-β signals and its tumour suppressor function is presumed to reside in its capacity to mediate TGF-β-induced growth inhibition. However, there is accumulating evidence that this hypothesis may be too simple (Muller et al, 2002). Although functional inactivation of Smad4 in colorectal cancer frequently occurs at late stages when tumours acquire invasive and metastatic capabilities, the roles of TGF-β signals in carcinogenesis are complex and also comprise tumour-promoting functions in colorectal carcinogenesis (Muller et al, 2002; Reinacher-Schick et al, 2004). Furthermore, the reason for the overexpression of Smad4 in early colorectal tumour tissues remains unknown. It may be induced to inhibit tumour growth by some compensatory mechanisms. Further analysis is needed to clarify this issue.
Table 5 Genes the expression levels of which differed significantly in the early invasive carcinoma group and the protruded-type (28 genes) or flat-type (18 genes) adenoma group (Mann-Whitney U-test)

Gene name	Accession no.	P-value	P-value
BMP-4	D30751	0.6128	0.2968
Cdcl4	M57298	0.0001	0.0135
c-jun	J04111	<0.0001	CA > AD (F)
E1AF	D12765	0.0086	CA > AD (F)
ECGF1	M63193	<0.0001	CA > AD (F)
Egr-2	X53700	<0.0001	CA > AD (F)
Eph	M18391	0.0005	CA > AD (F)
Erk-1	X60188	<0.0001	0.0276
FAK	L13616	0.0304	CA < F (P)
GAK	D88435	0.0227	CA < F (P)
Galectin-1	J04456	0.704	CA < F (P)
Gpl130	M57230	<0.0001	CA < AD (P)
GST-8	U77604	<0.0001	CA < AD (P)
GSTP1	X06547	<0.0001	0.0006
HLA-DQ	U77589	0.1489	CA > AD (F)
IGF-2	M29645	0.0034	CA > AD (F)
INOS	A6022318	0.0402	CA > AD (F)
Laminin	D37766	0.0016	CA > AD (F)
MDR1	AF06533	<0.0001	CA < AD (P)
MMP-15	Z48482	0.025	0.0627
MUC-2	M74027	0.0044	CA > AD (F)
Mucin-3	AF143371	<0.0001	CA > AD (F)
nm23	X17620	<0.0001	CA > AD (F)
p120	AF623226	<0.0001	0.0941
p21	U03106	0.7324	CA > AD (F)
PMS1	U13695	0.0044	CA > AD (F)
Ras-GAP	AF051311	<0.0001	CA > AD (F)
Rho 8	X95282	CA < AD (F)	
Rho GDII	L20688	<0.0001	CA > AD (F)
Smad4	U43738	<0.0001	CA > AD (F)
TIMP1	X03124	<0.0001	0.0024
αN-catenin	M94151	0.0014	CA < AD (F)

CA = early invasive carcinoma group; AD (F) = protruded-type adenoma group; AD (P) = flat-type adenoma group.

Consisted of early colorectal tumours without metastasis. Further analysis is needed to clarify this issue.

We identified 22 genes the expression levels of which differed significantly in colorectal adenomas and early invasive carcinomas. Colorectal adenomas and early invasive carcinomas were divided into two major clusters by clustering analysis. This result is consistent with that of a recent study showing that nine colorectal adenomas were separated from 11 differentiated colorectal carcinomas by using oligonucleotide arrays (Lin et al, 2002). The expression profiles obtained by our cDNA array demonstrated that colorectal adenomas and early invasive carcinomas have specific expression profiles. Among the seven upregulated genes the expression levels of which were over five times higher than those in the matched normal tissues, the expression levels of IGF-2, E1AF, INOS, nm23, Smad4, and TIMP-1 genes were significantly higher in the early invasive carcinoma group than in the adenoma group. These results suggest that these genes play an important role in the progression from adenoma to carcinoma.

On the other hand, GAK was the most downregulated gene in the early invasive carcinoma group relative to the adenoma group. GAK is a serine/threonine kinase that shows high homology outside its kinase domain with auxilin. Like auxilin, GAK has been shown to be a cofactor for uncoating clathrin vesicles in vitro. Zhang et al (2004) reported that downregulation of GAK by small hairpin RNA increased the levels of epidermal growth factor (EGF) receptor expression and tyrosine kinase activity, resulting in a large increase in the levels of activated extracellular signal-regulated kinase 5 and Akt. Moreover, downregulation of GAK has been reported to result in outgrowth of monkey kidney CV1P cells in soft agar, raising the possibility that loss of GAK function may promote tumorigenesis. Thus, our results suggest that downregulation of GAK plays an important role in the progression from colorectal adenoma to carcinoma.

The adenoma–carcinoma sequence (ACS) is widely accepted as a pathogenesis of colorectal carcinoma. A multistep genetic model for colorectal carcinogenesis based on the ACS has been proposed (Vogelstein et al, 1988). In the ACS sequence, mutations in the K-ras gene and various tumour suppressor genes, such as APC and p53, are known to accumulate during the progression from normal to malignant tissue. Although coexistence of all three mutations has been reported to be a rare occurrence (Smith et al, 2002), the majority of sporadic colorectal carcinomas are still thought to develop and progress through this pathway. It has been thought that de novo cancers develop from normal colonic mucosa directly. However, critical genetic abnormality is not known. Most protruded-type colorectal cancers have adenomatous elements in the periphery when found at an early stage, suggesting that these cancers have arisen from pre-existing adenomas. On the other hand, adenomatous components are not detectable microscopically in some flat-type cancers, suggesting that flat-type cancers correspond to de novo cancer (Yashiro et al, 2001). The reason why we could not detect any changes in the expression of APC, p53, and K-ras genes may be due to the fact that mutations of these genes do not necessarily result in alterations of mRNA expression levels.

In the current study, flat- and protruded-type adenomas were divided into two major clusters by clustering analysis. We identified 27 genes the expression levels of which differed significantly in flat- and protruded-type adenomas. The expression levels of 16 genes (PMS1, nm23, p21, FAK, Smad4, c-jun, ECGF-1,
Erk1, GAK, GSTP1, IGF-2, Laminin β-3, MMP-15, Mucin3, Rho GDβ, and TIMP-1) were significantly higher in the flat-type group than in the protruded-type group. On the other hand, the expression levels of 11 genes (HLA-DQ, Cdc42, Egr-2, Eph, Galectin-1, gp130, GST-II, MDR1, p120, Ras-GAP, and Rho 8) were significantly lower in the flat-type group than in the protruded-type group.

Among the 18 genes the expression levels of which were significantly different in the early invasive carcinoma group and the flat-type adenoma group, the expression levels of 8 genes (p21, MUC-2, Erk1, Mucin 3, zN-catenin, PMS1, Lamin β3, and GAK) and 10 genes (Rho GDβ, c-jun, Cdc42, INOS, Galectin-1, TIMP-1, GSTP1, ECGF1, nm23, and Smad4) were significantly higher and lower, respectively, in the flat-type adenoma group than in the early invasive cancer group. On the other hand, among the 28 genes the expression levels of which were significantly different in the early invasive carcinoma group and the protruded-type adenoma group, the expression levels of 13 genes (GAK, MUC-2, PMS1, zN-catenin, Cdc42, Eph, gp130, GST-II, Rho 8, Ras-GAP, p120, MDR1, and Egr-2) and 15 genes (INOS, FAK, MMP-15, E1A, IGF-2, Laminin β3, Smad4, TIMP1, nm23, Rho GDβ, GSTP1, c-jun, ECGF1, Erk1, and Mucin 3) were significantly higher and lower, respectively, in the protruded-type adenoma group than in the early invasive cancer group. These results suggest that flat- and protruded-type adenomas have specific expression profiles and that genes that play a crucial role in the progression from each type of adenoma to carcinoma are different.

In conclusion, the expression profiles obtained by the cDNA array clearly indicate that colorectal adenomas and early invasive carcinomas have specific expression profiles. Likewise, the gene expression profiles of flat- and protruded-type adenomas are different. These results indicate that molecular classification of early colorectal tumours by a cDNA array is feasible.

ACKNOWLEDGEMENTS
This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (HY and KI) and from the Ministry of Health, Labor and Welfare of Japan (HY and KI).

REFERENCES
Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, Cantor A, Coppola D, Yeatman TJ (2002) Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 94: 513 – 521
Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96: 6745 – 6750
Backer S, Gelos M, Kobalz U, Hanski ML, Bohm C, Mann B, Lovin N, Gratchev A, Mansmann U, Moyer MP, Riecken EO, Hanski C (1999) Differential gene expression in colon cancer cells and tissues detected with a cDNA array. Int J Cancer 82: 868 – 874
Bertucci F, Salas S, Eyster S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovannini M, Delpero JR, Nguyen C, Viens P, Mognes G, Bijnens L, Houlgatte R (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23: 1377 – 1391
Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, Ollendorff V, Fert V, Giovannini M, Delpero JR, Nguyen C, Viens P, Mognes G, Bijnens L, Houlgatte R (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23: 1377 – 1391
Frederiksen CM, Knudsen S, Laurberg S, Orntoft TF (2003) Classification of Dukes’ B and C colorectal cancers using expression arrays. J Clin Res Oncol 129: 263 – 271
Hegde P, Qi R, Gasparid R, Abernathy K, Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, Sharov V, Lee NH, Yeatman TJ, Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (2002) Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 94: 513 – 521
Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92: 4392 – 4396
Kawamoto K, Onodera H, Kan S, Kondo S, Imamura M (1999) Possible paracrine mechanism of insulin-like growth factor-2 in the development of liver metastases from colorectal carcinoma. Cancer 85: 18 – 25
Kawamoto K, Onodera H, Kan S, Kondo S, Ikeuchi D, Maetani S, Imamura M (1998) Expression of insulin-like growth factor-2 can predict the prognosis of human colorectal cancer patients: correlation with tumor progression, proliferative activity and survival. Oncology 55: 242 – 248
Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T (2002) Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 62: 2744 – 2748
Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R, Nita ME, Takagi T, Nakamura Y, Tsunoda T (2001) Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res 61: 3544 – 3549
Kuramoto S, Oohara T (1989) Flat early cancers of the large intestine. Cancer 64: 950 – 955
Lambert S, Vivario J, Boniver J, Gol-Winkler R (1990) Abnormal expression and structural modification of the insulin-like growth-factor-II gene in human colorectal tumors. Int J Cancer 46: 403 – 410
Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y (2002) Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene 21: 4120 – 4128
Liu Y, Borchert GL, Phang JM (2004) Polymere enhancer activator 3, an ets transcription factor, mediates the induction of cyclogenesin-2 by nitric oxide in colorectal cancer cells. J Biol Chem 279: 18694 – 18700
Mueller JD, Haege N, Keller G, Mueller E, Saretzky G, Bethke B, Stolte M, Hofler H (1998) Loss of heterozygosity and microsatellite instability in novo versus 2-adeno carcinomas of the colorectum. Am J Pathol 153: 1977 – 1984
Muller N, Reinauer-Schick A, Baldus S, van Hengel J, Berx G, Baar A, van Roy F, Schmiegel W, Schwarte-Waldhoff I (2002) Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene 21: 6049 – 6058
Murashige M, Miyahara M, Shiraishi N, Saito T, Kohno K, Kobayashi M (1996) Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors. Jpn J Clin Oncol 26: 303 – 309
Nuno S, Takemasa I, Oba S, Matoba R, Ueno N, Murayama C, Yamashita R, Sekimoto M, Yamamoto H, Nakamori S, Monden M, Ishii S, Kato K (2003) Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data. Genome Biol 4: R21
Notterman DA, Alon U, Sierk AJ, Levine AJ (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61: 3124 – 3130

OLSCHWANG S, SLEZAK P, ROZE M, JARAMIELLO R, NAKANO H, KOIZUMI K, RUBIO CA, LAURENT-PUIG P, THOMAS G (1998) Somatically acquired genetic alterations in flat colorectal neoplasias. Int J Cancer 77: 366 – 369

PETERS G, GONGOLL S, LANGNER C, MENGEL M, PISO P, KLEMPNAUER J, RUSCHOFF J, KREIPE H, VON WASIELEWSKI R (2003) IGF-1R, IGF-1 and IGF-2 expression as potential prognostic and predictive markers in colorectal-cancer. Virchows Arch 443: 139 – 145

REINACHER-SCHICK A, BALDUS SE, ROMDHANA B, LANDSBERG S, ZAPATKA M, MONIG SP, HOLSCHER AH, DIENES HP, SCHMIEGEL W, SCHWARTZ-WALDOFF I (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202: 412 – 420

SAKASHITA M, AOYAMA N, MAEKAWA S, KURODA K, SHIRASAKA D, ICHIHARA T, KURODA Y, MINAMI R, MAEDA S, KASUGA M (2000) Flat-elevated and depressed, subtypes of flat early colorectal cancers, should be distinguished by their pathological features. Int J Colorectal Dis 15: 275 – 281

SMITH G, CAREY FA, BEATTIE J, WILKIE MJ, LIGHTFOOT TJ, COXHEAD J, GARNER RC, STEELE RJ, WOLF CR (2002) Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA 99: 9433 – 9438

STEENS BS, BEVILACQUA G, KOPPER L, THORGEIRSSON UP, TALMADGE JE, LIOTTA LA, SOBEL ME (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80: 200 – 204

SUZUKI E, OTA T, TSUKUDA K, OKITA A, MATSUOKA M, MURIKAMI D, DOIYAMA H, SHIMIZU N (2004) nm23-H1 reduces in vitro cell migration and the liver metastatic potential of colon cancer cells by regulating myosin light chain phosphorylation. Int J Cancer 108: 207 – 211

TAKEMASA I, HIGUCHI H, YAMAMOTO H, SEKIMOTO M, TOMITA N, NAKAMORI S, MATOBA R, MONDEN M, MATSUBARA K (2001) Construction of preferential cDNA microarray specialized for human colorectal carcinoma: molecular sketch of colorectal cancer. Biochem Biophys Res Commun 285: 1244 – 1249

TURECI O, DING J, HILTON H, BIAN H, OKAHWA H, BRAXENTHALER M, SEITZ G, RADDRIZZANI L, FRIESS H, BUSCHER M, SAHIN U, HAMMER J (2003) Computational dissection of tissue contamination for identification of colon cancer-specific expression profiles. FASEB J 17: 376 – 385

VOGELSTEIN B, FEARON ER, HAMILTON SR, KERN SE, PREISINGER AC, LEPPERT M, NAKAMURA Y, WHITE R, SMITS AM, BOS JL (1988) Genetic alterations during colorectal tumor development. N Engl J Med 319: 525 – 532

WILLIAMS NS, GAYNOR RB, SCOGGIN S, VERMA U, GOKASLAN T, SIMMANG C, FLEMING J, TAVANA D, FRENKEL E, BECERRA C (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res 9: 931 – 946

XU MH, DENG CS, ZHU YQ, LIN J (2003) Role of inducible nitric oxide synthase expression in aberrant crypt foci—adenoma—cancer sequence. World J Gastroenterol 9: 1246 – 1250

YAMAMOTO H, IMSUMAN A, FUKUSHIMA H, ADACHI Y, MIN Y, IKU S, HORIUCHI S, YOSHIDA M, SHIMADA K, SASAKI S, ITOH F, ENDO T, IMAI K (2002) Analysis of gene expression in human colorectal cancer tissues by cDNA array. J Gastroenterol 37(Suppl 14): 83 – 86

YASHIRO M, CARETHERS JM, LAGHI L, SAIKO K, SLEZAK P, JARAMILLO E, RUBIO C, KOIZUMI K, HIRAKAWA K, BOLAND CR (2001) Genetic pathways in the evolution of morphologically distinct colorectal neoplasms. Cancer Res 61: 2676 – 2683

ZHANG L, GJOERUP O, ROBERTS TM (2004) The serine/threonine kinase cyclin G-associated kinase regulates epidermal growth factor receptor signaling. Proc Natl Acad Sci USA 101: 10296 – 10301

ZOU TT, SELARU FM, XU Y, SHUSTOVA V, YIN J, MOLI Y, SHIBATA D, SATO F, WANG S, OLARU A, DEACU E, LIU TC, ABRAHAM JM, MEITZLER SJ (2002) Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 21: 4855 – 4862