Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water

Behnam Nayebi, Navid Rabiee, Behzad Nayebi, Mehdi Shahedi Asl, Seeram Ramakrishna, Ho Won Jang, Rajender S Varma and Mohammadreza Shokouhimehr

1. Introduction

Transition metal catalyzed organic reactions have contributed remarkably to the chemical processes and industries [1–4]. In particular, palladium (Pd) has shown promising catalytic activity in the form of complexes, heterogeneous catalysts, and nanoparticles (NPs) [5–9]. Pd NPs possess a large number of merits, among which distinctive quantum properties as well as adjustable size are of the most conspicuous ones. From the application viewpoint, nanostructures containing Pd NPs are known as a practical class of the effective heterogeneous catalysts that are widely used for a variety of organic transformations due to the high surface-to-volume ratio [10–14]. For example, Pd NPs have been extensively employed in many common catalytic reactions such as hydrogenations, cross-coupling reactions, oxidations, etc [15–17]. However, active surface atoms often lead to Pd NPs aggregation, causing a rapid catalyst deactivation [18–22]. In addition, these precious nanocatalysts may encounter various challenges derived by their precipitation and instability as well as low recoverability, limiting their practical applications [23–26]. These drawbacks, however, can be resolved using the heterogeneous systems containing insoluble solid supports and Pd nanocatalysts [27–29]. In other words, the aforementioned limitations could be resolved by using supporting materials which have high surface area, appropriate physiochemical stability, etc. Although Pd NPs individually presents appealing catalytic behavior, their stabilization on solid supports generally present improved catalytic activity (e.g., high durability, stability, and reusability) compared with unsupported ones [30–32]. While several materials including bentonite,
hydroxyapatite, carbon, polymers, and ceramics have been used as the supports for Pd NPs, 2-dimensional nanostructures seem to be promising candidates due to their favorable characteristics, e.g., physicochemical and mechanical stability [33–38]. Accordingly, several inspiring efforts have been dedicated to using graphite flakes as the supporting materials for Pd NPs, resulted in excellent yields for chemical transformations. However, some applications may evoke high strength of the applied supports, particularly when the catalyst is used in highly erosive and/or oxidizing environments [39]. Therefore, other 2-dimentional nanostructured materials such as hexagonal boron nitride (BN) can be considered as potential supports of Pd NPs. The material is recently attended by researchers with various backgrounds, as it presents magnific physical and chemical properties such as low density (2.1 g cm⁻³), preeminent chemical stability, oxidation resistance, high surface area and biocompatibility [40–42]. Some types of BN have highly polar B–N bonds are remarkably stronger than the nonpolar C–C bonds in the graphite structure, which exposes them as very appropriate material with high hardness and chemical stability under oxidative and reductive conditions [43]. Consequently, efforts are already focused on using h-BN in a wide range of applications including organic pollutant adsorption, water purification, energy storage, and catalyst supports [44–46]. However, the application of BN as metal nanocatalysts support is relatively new and essentially limited to the recent research works [47–49]. Sajiki et al has reported a successful application of BN supported Pd NPs for the semi-hydrogenation of alkynes [50, 51]. In addition, BN supported Pd catalyst has also been utilized for the oxidation of lactose and alcohols [52]. BN is also capable of removing contaminants in wastewater treatment, particularly aromatic pollutants which should be removed through degradation reactions [53].

Nitroaromatics basically consist of one or two nitro groups. Having released in the environment, these chemical compounds can give rise to severe environmental pollution [54]. For example, it has been indicated that some nitroaromatics such as nitrobenzene, can negatively affect both animals and humans. Traces of the compound have been detected in malignancies, digestive system disorders, and other metabolic dysfunctions [55–57]. This chemical seems to be highly environmentally destructive, as it is widely used in several industries such as dye, petrochemical, drug, and herbicides, which relatively produce the large volumes of wastewater [58–62]. The United States Environmental Agency has listed nitrobenzene as one of the most hazardous pollutant. It has been estimated that roughly 10,000 tons of nitrobenzene compounds are released in the ecosystem, annually [63]. Hence, it is among the researchers’ high priority to deal with the aforementioned environmental side effects of nitrobenzene derivatives, particularly from the wastewater treatment approach.

There are several methods to refine the ecosystem off the contaminated wastewater, including physicochemical treatments to degrade the toxic compounds. Adsorption, advanced oxidation processes (introducing highly oxidant reagents), chemical oxidation of the pollutants (ozonation), and the reduction of nitroaromatics can be considered as the most common related wastewater treatment methods [64, 65]. The latter process, the reduction of nitroaromatics, is known as an important chemical process to remove the organic amines derived by agrochemical, pharmaceutical, polymer and pigment industries. In addition, this method purifies contaminated water safely, as fewer amounts of hazardous chemical oxidants enters into the environment [66–70].

In this study, we synthesized BN supported Pd NPs (BN-Pd) nanostructured catalyst using a facile and green method for the nitrobenzene reduction process. The catalytic activity of the prepared nanostructured catalyst and its reusability was also investigated.

2. Experimental

2.1. Synthesis of BN-Pd nanostructured catalyst
All chemicals were purchased from Aldrich, Merck, and Fluka companies and were applied without any additional purification. BN-Pd nanostructured catalyst was synthesized through a simple and green mixing process using a mild reductant. At the first step, the BN flakes (2 g) were dispersed in water/ethanol (10:1) medium and ultrasonicated for 30 min. Then, Pluronic F-127 (200 mg) was added in the solution followed by K₂PdCl₄ (200 mg). The mixture was stirred at room temperature for 7 h. Finally, the obtained BN-Pd nanostructured catalyst was filtered and washed with distilled water and ethanol repeatedly, and dried in a vacuum oven.

2.2. Characterizations
The structural properties of the BN-Pd nanostructured catalyst was characterized using a transmission electron microscope (TEM: JEOL JEM 3000 F), and a scanning transmission electron microscope (STEM: JEOL, JEM F200) equipped with an energy-dispersive x-ray spectroscopy detector (EDS). The composition of the BN-Pd nanostructured catalyst was investigated using an x-ray photoelectron spectroscopy (XPS, Sigma probe, VG
The loading amount of Pd NPs on BN support was analyzed by an inductively coupled plasma atomic emission spectrometer (ICP-AES, Shimadzu ICPS-7500 Japan).

2.3. Catalytic reductions

The process in which nitrobenzene is reduced to aminobenzene was catalyzed via a BN-Pd nanostructured catalyst at room temperature in the present of NaBH4. The hydrogenation process took place in 15 min. In a typical experiment, catalyst (1 mol%) was added to 20 ml of distillated water. Afterwards, 1 mmol of nitrobenzene accompanied by 1.5 mmol of NaBH4 added to the mixture in the glass flask. Then, the BN-Pd nanostructured catalyst was separated from the solution after the complete progression of the reduction reaction. The yield of the products and potential intermediate reactions were monitored using a gas chromatography mass spectrometry (GC-MS: Agilent Technologies 7693 Autosampler).

3. Results and discussion

TEM images of the produced BN-Pd nanostructured catalyst is presented in figure 1. While figure 1(a) shows the smooth surface of the commercially available BN flakes, other nanographs of figure 1 clarify the uniform distribution and nanostructure of Pd NPs dispersed on BN support. As can be seen, the Pd NPs have been homogenously dispersed and adorned on BN support, which leads to efficient catalytic performance. The Fast Fourier transform (FFT) of a Pd NP presented in figure 1(e) also confirms the crystallinity of the dispersed NPs, and shows a good adjustment to the previously published reports. The average size of the Pd particles contributed in the BN–Pd nanostructured catalyst can also be measured as ~3 nm, using the high resolution TEM (HRTEM) nanographs presented in figure 1(c). The presence of the Pd NPs in the BN–Pd nanostructured catalyst can also be confirmed, in the EDS elemental map of the material (figure 2). The elemental map also reveals the homogenous distribution of Pd element through the bed consisted of boron and nitrogen atoms. XPS analysis of the synthesized BN–Pd nanostructured catalyst is presented in figure 3, which confirms the aforementioned discussions of Pd NPs distribution and composition of the materials. In addition, the Pd NPs loading on BN support can be simply controlled by particular amount of BN and tuning the ratio of Pd precursor and F127 as mild reducing agent, measured by ICP-AES, was found to be ~2.1 wt%.

The potential and efficiency of the BN–Pd nanostructured catalyst as an active and stable catalyst were investigated in the reduction of nitrobenzene derivatives in water. First, various control experiments were performed to find the most appropriate reaction conditions for the heterogeneous reduction of nitrobenzene.
Figure 2. (a) STEM image of the Pd-BN catalyst, and (b) related EDS elemental spectrum and maps.

Figure 3. XPS analysis of BN-Pd nanostructured catalyst including (a) survey scan, and deconvoluted analyses of (b) B, (c) N, and (d) Pd elements.
Table 1. Optimization of reaction conditions for reduction of nitrobenzene using BN-Pd nanostructured catalyst.a

Entry	BN-Pd nanostructured catalyst (mol\%)	Time (min)	NaBH\(_4\) (equiv.)	Yield (%)b
1	0.5	15	2	58
2	0.75	15	2	77
3	1	15	1	80
4	1	10	1.5	89
5	1	5	2	55
6	1	10	2	84
7	1	15	1.5	98

a Nitrobenzene (1 mmol), H\(_2\)O (20 ml), r.t.

b The yields were determined by GC-MS.
After finding the optimized conditions, to extend the application of the BN-Pd nanostructured catalyst, under the optimized reaction conditions (1 mol% Pd, 1 nitrobenzene derivatives, 1.5 equiv. NaBH₄, 15 min, H₂O), the reduction of several structurally diverse nitrobenzene derivatives was investigated. As shown in table 2, the Pd nanocatalysts showed high catalytic activity for reduction of various nitroaromatics under mild reaction conditions to afford the corresponding amines in high yields. The nitro group of nitroarenes with different functional groups was selectively reduced to the amino moiety. The halogen groups remained intact.

Entry	Nitroaromatic	Product	Yield (%)
1			98
2			93
3			92
4			92
5			89
6			87
7			82
8			80
9			85

Table 2. Heterogeneous reduction of nitrobenzene derivatives.

(a) Substituted nitrobenzene (1 mmol), NaBH₄ (1.5 equiv.), Pd nanocatalyst (1 mol%), H₂O (20 ml), r.t., 15 min.

(b) The yields were determined by GC-MS.

(c) 3 equiv. of NaBH₄ was used.
under the reaction conditions (table 2, entries 2–4). An arene with more than one nitro group could be reduced with good efficiency (table 2, entry 7).

We also compared the catalytic activity of BN-Pd nanostructured catalyst prepared by F127 with other supported Pd NPs, which were synthesized conventionally by using NaBH₄, the result of which is depicted in table 3. Various supported Pd NPs were characterized by TEM analysis (figure 4). The solid catalysts were prepared using NaBH₄ on different supports, namely Pd NPs supported on carbon, mesoporous carbon, hydroxyapatite, SiO₂ NPs, zirconia, and SBA-15 mesoporous silica. Indeed, the agglomeration of Pd NPs prepared under harsh reduction conditions is inevitable. The result shows that the catalytic performances of these catalysts were poor to moderate in the reduction process. It is noteworthy mentioning that BN supported Pd NPs prepared by NaBH₄ also presented agglomerated and polydispersed Pd NPs. On the other hand, BN-Pd nanostructured catalyst prepared under mild reduction of F127 presented monodispersed and uniform Pd NPs providing more efficiently catalytic reduction. Furthermore, the BN-Pd nanostructured catalyst provided higher catalytic activity than the commercially available charcoal supported Pd NPs under identical reaction conditions. It is worth noting that the eminent attributes exhibited by the BN-Pd nanostructured catalyst provided superior activity for the nitroaromatics reduction in shorter reaction time and under milder conditions and in comparison with those summarized for some of the previously reported heterogeneous catalysts (table 4).

Table 3. The reduction of nitrobenzene catalyzed by different supported Pd NP catalysts.

Entry	Catalyst	Yield (%)
1	BN-Pd nanostructured catalyst prepared by F127	98
2	BN supported Pd NPs prepared by NaBH₄	82
3	Alumina supported Pd NPs prepared by NaBH₄	80
4	Carbon supported Pd NPs prepared by NaBH₄	75
5	Commercial charcoal supported Pd NPs	77
6	Hydroxyapatite supported Pd NPs prepared by NaBH₄	81
7	SBA supported Pd NPs prepared by NaBH₄	85
8	SiO₂ supported Pd NPs prepared by NaBH₄	79
9	Zirconia supported Pd NPs prepared by NaBH₄	81

a Nitrobenzene (1 mmol), NaBH₄ (1.5 equiv.), Pd catalyst (1 mol %), H₂O (20 ml), r.t., 15 min.
b The yields were determined by GC-MS.
The durability and reusability of the BN-Pd nanostructured catalyst are important criteria for the practical industrial applications. To verify these issues, we investigated the recycling of the synthesized BN-Pd nanostructured catalyst in the reduction of nitrobenzene under the optimal conditions. The BN-Pd nanostructured catalyst was successfully recycled and reused for six consecutive cycles (Figure 5). There was a small decrease in catalytic activity of the BN-Pd nanostructured catalyst after five runs. ICP-AES analysis of the reaction solution after the six cycles of reaction and recycle of the BN-Pd nanostructured catalyst showed that 1.2% of Pd species remained in the solution. The catalytic activity decline seems to result from the loss of the BN-Pd nanostructured catalyst during the steps of washing and separation in the consecutive reuses.

4. Conclusions

We have developed a new recyclable and efficient heterogeneous catalyst, containing boron nitride and palladium nanoparticles in water. This catalyst presents efficient catalytic activity in the reduction of nitrobenzene derivatives under mild reaction conditions. Furthermore, the introduced heterogeneous catalyst allows an applicable catalyst reuse in the reduction of nitrobenzene for several runs. The simplicity of this novel approach introduces an attractive and practical heterogeneous catalyst class for other chemical processes. The present environmentally friendly method has potential applications for the use in laboratories and industrial scale reactions.

Acknowledgments

This research was supported by the financial support from the Future Material Discovery Program (2016M3D1A1027666), Basic Science Research Program (2017R1A2B3009135) through the National Research Foundation of Korea.
Conflicts of interest

The authors declare no competing interest.

ORCID iDs

Navid Rabiee https://orcid.org/0000-0002-6945-8541
Ho Won Jang https://orcid.org/0000-0002-6952-7359
Mohammadreza Shokouhimehr https://orcid.org/0000-0003-1416-6805

References

[1] Luo P, Xu K, Zhang R, Huang L, Wang J, Xing W and Huang J 2012 Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles Catal. Sci 2 301–4
[2] Hong K, Sajjadi M, Suh J M, Zhang K, Nasrollahzadeh M, Jang H W, Varma R S and Shokouhimehr M 2020 Palladium nanoparticles on assorted nanostructured supports: applications for Suzuki, Heck, and Sonogashira cross-coupling reactions ACS Appl. Nano Mater. 3 2070–103
[3] Polshettivari V, Len C and Fhiri A 2009 Silica-supported palladium: sustainable catalysts for cross-coupling reactions Coord. Chem. Rev. 253 2599–626
[4] Alamgirhooli H et al 2020 Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid J. Colloid Interface Sci. 567 126–35
[5] Baig R N and Varma R S 2013 Magnetically retrievable catalysts for organic synthesis Chem. Commun. 49 752–70
[6] Adahi A, Rostamnia S, Panahi P, Wilson L D, Kong Q, An Z and Shokouhimehr M 2019 Palladium comprising dicationic bipyridinium supported periodic mesoporous organisocarbons (PMO): Pd@Bipy–PMO as an efficient hybrid catalyst for Suzuki–Miyaura cross-coupling reaction in water Catalysts 9 140
[7] Balanta A, Godard C and Claver C 2011 PD catalysts for C–C coupling reactions Chem. Soc. Rev. 40 6973–85
[8] Fhiri A, Bouhrara M, Nkoueouahahrabi B, Basset J M and Polshettivari V 2011 Nanocatalysts for Suzuki cross-coupling reactions Chem. Soc. Rev. 40 5181–203
[9] Zhang K, Cha J H, Leon S Y, Kirlikovali K O, Ostadhassan M, Rasouli V, Farha O K, Jang H W, Varma R S and Shokouhimehr M 2020 Pd modified prussian blue frameworks: multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics MOL. CATAL. 492 110967
[10] Ching L L, Erathodiyil N and Ying J Y 2013 Nanostructured catalysts for organic transformations Acc. Chem. Res. 46 1825–37
[11] Zaera F 2013 Nanostructured catalysts for applications in heterogeneous catalysis Chem. Soc. Rev. 42 2746–62
[12] Shokouhimehr M, Shin K Y, Lee J S, Hackett M J, Jun S W, Oh M H, Jang J and Hyeon T 2014 Magnetically recyclable core–shell nanocatalysts for efficient heterogeneous oxidation of alcohols J. Mater. Chem. A 2 7593–9
[13] Choi K H, Shokouhimehr M and Sung Y E 2013 Heterogeneous Suzuki cross-coupling reaction catalyzed by magnetically recyclable nanocatalyst Bull. Korean Chem. Soc. 34 1477
[14] Blaser H U, Malan C, Pugin B, Spindler F, Steiner H and Studer M 2003 Selective hydrogenation for fine chemicals: recent trends and new developments Adv. Synth. Catal. 345 103–51
[15] Shokouhimehr M, Kim T, Jun S W, Shin K, Jang Y, Kim B H, Kim J and Hyeon T 2014 Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions APPL. CATAL. A 476 133–9
[16] Beletskaya I P and Cheprakov A V 2000 The Heck reaction as a sharpening stone of palladium catalysis Chem. Rev. 100 5009–66
[17] Sahu D, Sarmah C and Das P 2014 A highly efficient silica-supported palladium catalyst for alcohol oxidation reaction Tetrahedron Lett. 55 3422–5
[18] Baig R N and Varma R S 2012 A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydridation of nitriles to amides Chem. Commun. 48 620–2
[19] Li P, Yu Y, Liu H, Cao C Y and Song W G 2014 A core–shell–satellite structured Fe3O4@MS–NH2@Pd nanocomposite: a magnetically recyclable multifunctional catalyst for one-pot multistep cascade reaction sequences Nanoscale 6 442–8
[20] Rafaei SM, Kim A and Shokouhimehr M 2014 Gadolinium triflate immobilized on magnetic nanocomposites as recyclable Lewis acid catalyst for acetylation of phenols Nanosci. Nanotechnol. Lett. 6 309–13
[21] Zhu Y, Stubbs L P, Ho F, Liu R, Ship C P, Maguire J A and Hosmane N S 2010 Magnetic nanocomposites: a new perspective in catalysis Chem. Cat. Chem. 2 365–74
[22] Jun S W, Shokouhimehr M, Lee D J, Jang Y, Park J and Hyeon T 2013 One-pot synthesis of magnetically recyclable mesoporous silica supported acid-base catalysts for tandem reactions Chem. Comm. 49 7821–3
[23] Landman U and Heiz U 2007 Nanocatalysis (Berlin, Heidelberg, Germany, and New York: Springer)
[24] An K and Somorjai G A 2012 Size and shape control of metal nanoparticles for reactor selectivity in catalysis Chem. Cat. Chem. 4 1512–24
[25] Zecchina A, Bordiga S and Gropppo E 2011 Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis (Hoboken, NJ, USA: Wiley)
[26] Richardson J T 1989 Principles of Catalysts Development (New York, NY, USA: Springer Science+Business Media)
[27] Zhu M and Diao G 2011 Review on the progress in synthesis and application of magnetic carbon nanocomposites Nanoscale 3 2748–67
[28] Perego C and Millini R 2013 Porous materials in catalysis: challenges for mesoporous materials Chem. Soc. Rev. 42 3956–78
[29] Wilson K and Lee A F 2013 Heterogeneous Catalysis for Clean Technology: Spectroscopy, Design, and Monitoring. (New York: Wiley)
[30] Thomas J M and Thomas W J 2014 Principles and Practice of Heterogeneous Catalysis. (New York: Wiley)
[31] Sheldon R A, Arends I and Hanefeld U 2007 Green Chemistry and Catalysis. (New York: Wiley)
[32] Mitsudome T and Kaneda K 2013 Advanced core–shell nanoparticle catalysts for efficient organic transformations Chem. Cat. Chem. 5 1681–91
[33] Nasrollahzadeh M, Baran T, Sajjadi M, Baran N Y and Shokouhimehr M 2020 Bentonite-supported furfural-based Schiff base palladium nanoparticles: an efficient catalyst in treatment of water/wastewater pollutants J. Mater. Sci. Mater. 31 1–16
[34] Shokouhimehr M, Yek S MG, Narasollahzadeh M, Kim A and Varma RS 2015 Palladium nanocatalysts on hydroxyapatite: green oxidation of alcohols and reduction of nitroarenes in water Applied Sciences 9 4183
[35] Xiao F, Jiao G, Shen H, Li K, Ouyang Y, Zhang W, Chen G and Peng Y 2020 Influences of pretreatment of carbon on performance of carbon supported Pd nanocatalyst for nitrobenzene hydrogenation J. Nanosci. Nanotechnol. 20 629–35
[36] Jin Q, Lu B, Pan Y, Tao X, Himmelhauer C, Shen Y, Gu S, Zeng Y and Li X 2019 Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis Catal. Today (https://doi.org/10.1016/j.cattod.2019.12.006)
[37] Feng M, Lu H, Li CY and Cao GP 2019 Carbon nanotube modified ceramic foams as structured palladium supports for polystyrene hydrogenation Ind. Eng. Chem. Res. 58 10793–803
[38] Kim SJ, Choi K, Lee B, Kim Y and Hong B H 2015 Materials for flexible, stretchable electronic graphene and 2D materials Annu. Rev. Mater. Res. 45 63–84
[39] Khalid M F, Riaz I, Jalil R, Mahmood U, Mir R R and Sohail HA 2020 Dielectric properties of multi-layered hexagonal boron nitride Materials Sciences and Applications 11 339–46
[40] Kim J, Han I, Joo M, Kang S, Kim D and Ihm J 2013 High-surface area ceramic-derived boron-nitride and its hydrogen uptake properties J. Mater. Chem. A 1 1104–7
[41] Paine R T and Narula C K 1990 Synthetic routes to boron nitride Chem. Rev. 90 73–91
[42] Maleki M, Reitberger S, Lee J, Shokouhimehr M, Iavdpoor J, Park E J, Chun J and Hwang J 2015 One pot synthesis of mesoporous boron nitride using polystyrene-b-poly (ethylene oxide) block copolymer RSC Adv. 5 6528–35
[43] Maleki M, Reitberger A and Shokouhimehr M 2015 Simple synthesis of two-dimensional micro/mesoporous boron nitride Eur. J. Inorg. Chem. 14 2478–85
[44] Jacobsen CJ 2001 Boron nitride: a novel support for ruthenium-based ammonia synthesis catalysts J. Catal. 201 1–3
[45] Wang M, Li M, Xu L, Wang L, Ju Z, Li G and Qian Y 2011 High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation Catal. Sci. 1 1159–65
[46] Zhang X, Lian G, Zhang S, Cui D and Wang Q 2012 Boron nitride nanocarpet: controllable synthesis and their adsorption performance to organic pollutants Cryst. Eng. Comm. 14 4670–6
[47] Meyer N, Devillers M and Hermans S 2015 Boron nitride supported Pd catalysis for the hydrogenation of lactose Catal. Today 241 200–7
[48] Meyer N, Reketa K, Pirson D, Devillers M and Hermans S 2012 Boron nitride as an alternative support of Pd catalysts for the selective oxidation of lactose Catal. Commun. 29 170–4
[49] Postole G, Caldararu M, Ionescu N I, Bonnetot B, Auroux A and Guimon C 2005 Boron nitride: a high potential support for combustion catalysts Thermochim. Acta 434 130–7
[50] Yabe Y, Yamada T, Nagata S, Sawaya Y, Monguchi Y and Saijiki H 2012 Development of a palladium on boron nitride catalyst and its application to the semihydrogenation of alkynes Adv. Synth. Catal. 354 1264–6
[51] Yabe Y, Sawaya Y, Monguchi Y and Saijiki H 2013 Site-selective deuterated alkene synthesis with palladium on boron nitride Chem. Eur. J. 19 484–8
[52] Meyer N, Pirson D, Devillers M and Hermans S 2013 Particle size effects in selective oxidation of lactose with Pd/h-BN catalysts APPL CATALA-GEN 467 3–73
[53] Yabe Y, Sawaya Y, Yamada T, Nagata S, Monguchi Y and Saijiki H 2013 Easily-controlled chemoselective hydrogenation by using palladium on boron nitride Chem. Cat. Chem. 5 2360–6
[54] Narasollahzadeh M, Baran T, Baran N Y, Sajjadi M, Tabshii M R and Shokouhimehr M 2020 Pd nanocatalyst stabilized on amine-modified zeolite: antibacterial and catalytic activities for environmental pollution remediation in aqueous medium Sep. Purif. Technol. 239 116542
[55] He J, Chen D, Jin N, Xu Q, Li H, He J and Lu J 2020 Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCuAlloy nanoparticles for complete oxidation of toluene Appl. Catal. B 265 118560
[56] Han Y, Qi M, Zhang L, Sang Y, Liu M, Zhao T, Niu J and Zhang S 2019 Degradation of nitrobenzene by synchronous oxidation and reduction in an internal circulation microelectrolysis reactor J. Hazard. Mater. 365 448–56
[57] Li T, Zhou F, Zhang P, Qian K and Zhang T C 2020 Enhancing nitrobenzene biodegradation in aquatic systems: feasibility of using plain soil as an insolulant and effects of adding ascobic acid and peptone Chemosphere 239 124808
[58] Sun Y, Yang Z, Tian P, Sheng Y, Xu J and Han Y F 2019 Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts APPL CATAL B-ENVIRON 244 1–10
[59] Zhao Y, Lin L and Hong M 2019 Nitrobenzene contamination of groundwater in a petrochemical industry site FRONT ENV SCI ENG. 13 29
[60] Jiao W, Yang P, Gao W, Qiao J and Liu Y 2019 Apparent kinetics of the ozone oxidation of nitrobenzene in aqueous solution enhanced by high gravity technology Chem. Eng. Process. 146 107690
[61] Khan A, Khan A, Ambareen H, Ullah H, Abbas S M, Khan Y and Khan R 2017 Solar-light driven photocatalytic conversion of p-nitrophenol to p-aminophenol on CdS nanosheets and nanorods Inorg. Chem. Commun. 79 99–103
[62] Cai Z, Fu J, Du P, Zhao X, Hao X, Liu W and Zhao D 2018 Reduction of nitrobenzene in aqueous and solid phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles Chem. Eng. J. 332 227–36
[63] Duan X, Xu F, Wang Y, Chen Y and Chang L 2018 Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution Electrochem. Acta 282 662–71
[64] Tiwari J, Tarale P, Sivanesan S and Bafana A 2019 Environmental persistence, hazard, and mitigation challenges of nanorobotic compounds Environ. Sci. Pollut. Res. 26 1–18
[65] Tinkov O V, Ognewchenko L N, Kuz’m in V E, Gorb LG, Kosinskaya A P, Muratov N N, Muratov E N, Hill F C and Leszczynski J 2016 Computational assessment of environmental hazards of nitroaromatic compounds: influence of the type and position of aromatic ring substituents on toxicity J. Struct. Chem. 27 191–8
[66] Shokouhimehr M, Hong K, Lee T H, Moon C W, Hong S P, Zhang K, Suh J M, Choi K S, Varma R S and Jang H W 2018 Magnetically retrievable nanocomposite adorred with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media Green Chem. 20 3809–17
[67] Tafesh A M and Weiguny J 1996 A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbarnates, and ureas using CO Chem. Rev. 96 2035–52
[68] Kim A, Rafiae S M, Abolhosseini S and Shokouhimehr M 2015 Palladium nanocatalysts confined in mesoporous silica for heterogeneous reduction of nitroaromatics Energy Environ. Focus 4 18–23
[69] Zhang K, Hong K, Suh J M, Lee T H, Kwon O, Shokouhimehr M and Jang H W 2019 Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution Res. Chem. Interned. 45 599–611
[70] Shokouhimehr M 2015 Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics Catalysis 5 534–60
[71] Shokouhimehr M, Lee J E, Han S I and Hyeon T 2013 Magnetically recyclable hollow nanocomposite catalysts for heterogeneous reduction of nitroarenes and Suzuki reactions Chem. Comm. 49 4779–81
[72] Giri S, Das R, van der Westhuizen C and Maity A 2017 An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite Appl. Catal. B 209 669–78
[73] Guo Y, Li J, Zhao F, Lan G, Li L, Liu Y, Si Y, Jiang Y, Yang B and Yang R 2016 Palladium-modified functionalized cyclodextrin as an efficient and recyclable catalyst for reduction of nitroarenes RSC Adv. 6 7950–4