MACHINE LEARNING BASED ANOMALY DETECTION FOR SMART SHIRT: A SYSTEMATIC REVIEW

A PREPRINT

Eduardo C. Nunes
Tech Team
Mountains of Research Collaborative Laboratory
Braganca, Portugal
enunes@morecolab.pt

March 4, 2022

ABSTRACT

In recent years, the popularity and use of Artificial Intelligence (AI) and large investments on the Internet of Medical Things (IoMT) will be common to use products such as smart socks, smart pants, and smart shirts. These products are known as Smart Textile or E-textile, which has the ability to monitor and collect signals that our body emits. These signals make it possible to extract anomalous components using Machine Learning (ML) techniques that play an essential role in this area. This study presents a Systematic Review of the Literature (SLR) on Anomaly Detection using ML techniques in Smart Shirt. The objectives of the SLR are: (i) to identify what type of anomaly the smart shirt; (ii) what ML techniques are being used; (iii) which datasets are being used; (iv) identify smart shirt or signal acquisition devices; (v) list the performance metrics used to evaluate the ML model; (vi) the results of the techniques in general; (vii) types of ML algorithms are being applied. The SLR selected 11 primary studies published between 2017-2021. The results showed that 6 types of anomalies were identified, with the Fall anomaly being the most cited. The Support Vector Machines (SVM) algorithm is most used. Most of the primary studies used public or private datasets. The Hexoskin smart shirt was most cited. The most used metric performance was Accuracy. On average, almost all primary studies presented a result above 90%, and all primary studies used the Supervisioned type of ML.

Keywords: Machine Learning · Anomaly Detection · Smart Shirt · Smart Textile · Systematic Review

1 Introduction

Population ageing is poised to become one of the most significant social transformations of the 21st century. The number and proportion of people aged 60 and older are increasing. According to the World Health Organization (WHO), the number of people aged 60 and over was 1 billion. This number is increasing to 1.4 billion by 2030, and 2.1 billion by 2050 [54]. This significant change in the global population requires adaptations in all sectors, such as Transportation, Housing, Urban Planning, and Health Care.

Nowadays, the internet is so essential in our lives that it is considered a utility. With this facility of access to the internet, many internet-connected devices are being used in our lives, such as smart TV, home appliances, smartwatch, home security systems, and medical devices. This emergence of connected devices is often referred to as the Internet of Things (IoT). An extension of IoT is the Internet of Medical Things (IoMT), which aims to improve the quality and accessibility of healthcare services using a collection of medical devices and applications that connect to health IT systems. Any internet-connected devices connected to healthcare IT systems are categorized as IoMT devices. The most common are wearable devices such as smartwatches, smart clothing, and other wireless devices (glucose meter, blood pressure monitor, smart oximeter) [19].
The rapid evolution and implementation of emerging technologies such as Artificial Intelligence (AI) in IoMT are expected to make healthcare services more efficient and thus drive market demand. As a result, according to (10) the size of the Global IoMT Market is expected to grow from $60.83 billion in 2019 to $260.75 billion by 2027, delivering at a Compound Annual Growth Rate (CAGR) of 19.8% through 2027. In parallel with the IoMT market, the smart textile market is growing (2) (28). Smart textiles, also known as e-textiles, are clothes that contain integrated actuators that can connect to a device using Wi-Fi or Bluetooth. There are several fashion categories in the smart textile market, including smart socks (46), smart pants (52), and smart shirts (20) where physiological information can be monitored.

A smart shirt is a type of smart textile that can monitor human activities (1) (11) and detect anomalies (17) (7) through sensors such as accelerometers, gyroscopes, magnetometers, electrocardiograms (ECG), skin temperature, and oxygen saturation (SpO2) (12). With all this data available to analyze, it is possible to identify anomalies using Machine Learning (ML) techniques which can bring significant benefits to users, especially the elderly (43).

The main objective of this study is to present a Systematic Literature Review (SLR) to verify the state of the art detection of anomalies in smart shirts using machine learning techniques. It is understood as an anomaly is something unusual in the vital signs of the person wearing a smart shirt. For example, it can be an imminent fall, non-standard heartbeat, fever, oxygen saturation far below average, and another anomaly that a specialist can set.

To the best of our knowledge, there are few studies about machine learning for anomaly detection in smart shirts, which was the main reason for this SLR. The primary studies were read thoughtfully and selected based on the methodology of Kitchenham and Charters (23) concerning the objectives that are: (i) identify machine learning techniques for anomaly detection in the smart shirt; (ii) identify the datasets used to train the ML algorithm; (iii) identify smart shirts or devices for acquiring vital signs; (iv) identify the performance metrics for evaluating the ML model; (v) types of ML being applied. The remainder of this study is divided into five sections: Section 1 provides the main theoretical background. Section 2 describes the methodology used in this SLR. Section 3 lists the results answering this SLR’s questions. And finally, Section 5 contains the conclusion.

2 Theoretical Background

This section gives an overview of the three main research fields related to this article: Smart Textile, Machine Learning, and Anomaly Detection.

2.1 Smart Textile

In the 1980s, Steve Mann was one of the first researchers to develop smart textile, also called the e-textile, at the Massachusetts Institute of Technology (MIT). This was one of the first attempts to connect hardware to clothing. E-textiles can be classified into three main areas: smart clothing, electrical engineering (wearable electronics), and information science (wearable computers), as shown in Figure 1(A) (22; 47).

Smart textile is defined as a product composed of fibres, yarns, filaments, and yarns that integrate electronic components such as sensors, circuits, and communication systems that are powered by some internal or external power supply (25; 26). These communication systems usually use Bluetooth technology, which allows the connectivity of the textile to other smart devices so that it can visualize and analyze data in real-time (25). Smart textile integrate a high level of intelligence and is recognized in three subgroups (22; 26; 48):

- **Passive Smart Textiles**: only able to sense the environment or the user with using textile sensors.
- **Active Smart Textiles**: reactive sensing to stimuli from the environment, which means integrating an actuator function and a sensing device.
- **Very Smart Textile**: able to sense, react and adapt their behavior regarding the ambient conditions.

A review study (25) showed that smart shirts contain several sensors (e.g. Figure 1(b)) for measuring physiological signals such as electrocardiography (ECG), electromyography (EMG), skin temperature, blood oxygen saturation, and respiratory rate. These physiological signals can be used in applications such as healthcare, medicine, transportation and auto use, fashion and entertainment, trackers, and military services (2).

2.2 Machine Learning

The field of ML has received several formal definitions in the literature. Samuel defines machine learning as "the field of study that provides computers with the ability to learn, without being explicitly programmed" (44). For Mohri et al. ML can be broadly defined as computational methods using experience to make predictions, experience (usually in the
form of electronic data) referring to past information available for learning (31). Mitchell on the other hand provides a small formalism in his definition, “a computer program is said to learn from experience (E), with respect to some class of tasks (T) and performance measure (P), if its performance on tasks in (T), as measured by (P), improves with experience (E)” (30). From these definitions, it can summarize that ML is the science of making computers learn and act like humans, improving their learning over time autonomously by feeding them data and information in the form of observations and interactions from the real world.

Learning is the process of acquiring knowledge. Unlike us, computers do not learn by reasoning but learn from computer algorithms. Learning is the process of acquiring knowledge. Unlike us, computers do not learn by reasoning but learn from computer algorithms. ML algorithms are organized into taxonomy, based on the desired outcome of the algorithm, as shown in Figure 2. Common algorithm type includes (5; 41; 37):

- **Supervised Learning**: also known as supervised machine learning, is defined by its use of labeled datasets to train algorithms that can classify the data or make predictions. Supervised learning systems, are used to solve regression and classification problems. Examples of some applications: customer retention (42) and customer segmentation (34) for classification algorithm, and market forecasting (24) and estimating life expectancy (45) for regression algorithm.

- **Unsupervised Learning**: also known as unsupervised machine learning, uses algorithms to analyze and group unlabeled datasets. Examples of some applications: target marketing (4) and recommender systems (14).

- **Semi-Supervised Learning**: offers a combination of supervised and unsupervised learning where part of the data is partially labeled and the labeled part is used to infer the unlabeled portion. Examples of some applications: face recognition (18), customer segmentation (55), and website classification (16).

- **Reinforcement Learning**: is a learning model similar to supervised learning, but here the algorithm is not trained using a dataset. The reinforcement learning model learns based on external feedback given either by a thinking entity or by the environment. An analogous approach is teaching dogs to sit or jump. The dog receives a treat (positive feedback) if it performs the action correctly, otherwise it does not receive the treat (negative feedback). Examples of some applications: robot navigation (21), game artificial intelligence (51), and real time decisions (38).

2.3 Anomaly Detection

Anomaly detection is a process to identify unusual patterns that do not conform to expected behaviour, and these unusual patterns are generally referred to as anomalies and outliers (5). This topic anomaly detection has been used
in several fields of study such as data breaches, identity theft, manufacturing, networking, video surveillance, and medicine (3).

An important aspect is a proper understanding of the nature of anomalies in the development of anomaly detection methods. Anomalies are classified into three categories (35; 33; 3):

- **Point Anomalies**: A data point-based anomaly is an instance of data that is considered an anomaly for the rest of the data, this type of anomaly is simplest and it is usually the focus of most research on anomaly detection. The Figure 3(A) is an example of this category where it illustrates the discharge capacity data obtained from a lithium-ion battery and shows the anomaly points.

- **Contextual Anomalies**: Context-based anomaly is an instance of data that is considered an anomaly if a particular context to the instance is anomaly, but it is not anomaly in another context. Figure 3(B) illustrates an example of a temperature time series that shows a monthly temperature for an area. A temperature of 20°F is considered normal at time t_1 (winter), but a temperature of 20°F at time t_2 (summer) can be a contextual anomaly.

- **Collective Anomalies**: This category defines that a set of data instances are anomalous in relation to the entire dataset. Figure 3(C) illustrates an example of an ECG output and the highlighted region is an anomaly set, this is because the human ECG output should not be below for a long time.

The use of ML-based anomaly detection is increasingly used, and this technique is used to build a model that distinguishes between normal and abnormal classes (33). The anomaly techniques can be divided into three categories based on the data function. The three categories are (33; 3):
Figure 3: Examples of Categories of Anomalies (35).

- **Supervised Anomaly Detection**: requires all instances of the dataset to be labeled "normal" and "anomalous". This technique is basically a type of task that binary classification.
- **Semi-Supervised Anomaly Detection**: requires only instances considered "normal" to be labeled in a dataset. In this technique, the model will only predict normal instances.
- **Unsupervised Anomaly Detection**: does not require instances to be labeled. In these techniques, the model will try to predict which instances are "normal" or "abnormal".

3 Research Method

In this study, a Systematic Literature Review (SLR) was conducted using the methodology of Kitchenham and Charters (23). This study was developed considering the three phases: planning, execution, and analysis of results (Figure 4). In the planning phase, a protocol is defined specifying research questions, keywords, inclusion and exclusion criteria for primary studies, and other topics of interest. In the execution phase, the literature search is conducted following with defined protocol, and this stage that the inclusion and exclusion of primary studies are carried out. Finally, data extraction is done in the results analysis phase, and the results are compared.

Figure 4: SLR phases adapted (13).
3.1 Research Questions

This SLR intends to summarize, clarify and examine the ML techniques and implementations applied in anomaly detection in smart shirts from January 2017 through December 2021 inclusive. Table 1 presents four research questions (RQs) are raised for this purpose.

RQ#	Research Questions	Motivation
RQ1	What anomalies were identified in smart shirt?	Identify which anomaly the primary study tries to detect.
RQ2	Which ML techniques have been used for anomaly detection in smart shirts?	Aims to identify the ML techniques commonly being used in anomaly detection in smart shirts.
RQ3	What kind of empirical validation for anomaly detection in smart shirts is found using the ML techniques found in RQ1?	Assess the empirical evidence obtained.
RQ4.1	Which datasets are used?	Identify datasets reported to be appropriate.
RQ4.2	Which devices are used for data acquisition?	Identify devices being used.
RQ4.3	Which performance measures are used?	Identify the performance of the ML techniques.
RQ4	What is the overall performance of the ML techniques for anomaly detection in smart shirts?	Analyze the results from the performance metric.
RQ5	What types of ML algorithms are being applied in anomaly detection in smart shirts?	Specify which ML types have been applied.

3.2 Search Strategy

The search terms and synonyms were formed according to related studies using machine learning, anomaly detection, and smart textile. All these terms and synonyms were included in the Search Query (SQ), which is presented as follows:

query_01 = ("Smart Shirt" OR "Smart Clothing" OR "Smart Clothes" OR "Smart Cloth" OR "Smart Textiles" OR "Smart Textile" OR "e-textile" OR "Clothing Tech" OR "Wearable Smart Textile" OR "e-clothes" OR "clothing tech")

query_02 = ("Anomaly Detection" OR "Anomalous Detection" OR "Abnormal Detection" OR "Outlier Detection" OR "Machine Learning" OR "Artificial Intelligence" OR "Expert System" OR "Intelligence System" OR "Supervised Anomaly Detection" OR "Semi-Supervised Anomaly Detection" OR "Unsupervised Anomaly Detection")

SQ = query_01 AND query_02

After identifying the search terms, important digital portals were selected. The following six electronic databases were used to search the primary studies:

- ACM Digital Library: https://dl.acm.org/
- Scopus: http://www.scopus.com
- Google Scholar: https://scholar.google.com/
- PubMed: https://pubmed.ncbi.nlm.nih.gov/
- Web of Science: https://www.webofknowledge.com/
- ScienceDirect: https://www.sciencedirect.com/

3.3 Study Selection

The whole process of filtering and searching the primary studies is illustrated in Figure 5. Searches were carried out in the digital databases using the SQ described in Section 3.2, where studies in the determined interval (IC1) were selected. This first step has collected 404 studies, of which 121 came from ScienceDirect, 88 from ACM Digital Library, 76 from Scopus, 56 from Google Scholar, 49 from Web of Science, and 14 from PubMed.

The inclusion (IC) and exclusion (EC) criteria summarized in Table 2 were applied to select the studies in steps two, three, and four. In the second step, the title and abstract of all selected studies were read, where there were 17 duplicate studies, 286 rejected studies, and 101 accepted studies. In the third step, the introduction and conclusion of the studies
accepted in the previous step were read, where there were 16 duplicate studies, 64 rejected studies, and 21 accepted studies. In the fourth step, the studies accepted in the previous step were read in their entirety, where there were no duplicated studies, 10 rejected studies, and finally 11 accepted studies.

Table 2: Inclusion and exclusion criteria.

Inclusion criteria
IC_1 Studies published in the range 2017-2021.
IC_2 Studies written in English.
IC_3 Studies use ML techniques for anomaly detect in smart textile.
IC_4 Studies primary.

Exclusion criteria
EC_1 Studies with no clear publication information.
EC_2 Studies that do not use smart textile.
EC_3 Studies that do not use ML techniques for anomaly detection.
EC_4 Studies that do not use techniques ML in smart textile.
EC_5 Studies that are not written in English.
EC_6 Studies that do not provide the full paper.
EC_7 Studies that do not present the abstract.
EC_8 Studies in which year of publication is before 2017.
EC_9 Books, letters, notes, and patents are not included in the review.

3.4 Quality Assessment Rules

The Quality Assessment Rules (QARs) are fundamental to ensure and assess the quality of the primary studies and are performed in the final step to define which studies will be added for review. Inspired by the study (33), 10 QARs were assigned (Table 3) where each QAR can be assigned a score from 1 to 10. Following the same method as in the study (33), studies will only be accepted if they obtain a score of 5 or more, otherwise, the study is rejected.

3.5 Data Extraction and Data Synthesis

The StArt tool (State of the Art through Systematic Review) (15) was used to support the SLR process, mainly in data extraction and data synthesis. During the data extraction step, within the StArt tool, it was possible to summarize the primary studies such as author name, study title, publication details, devices used in the smart shirt, dataset, evaluation metrics, and machine learning and anomaly techniques.

In summary, the goal in synthesizing data is to accumulate and combine facts and figures from the selected primary studies to reformulate answers and address the research questions (53). To answer these questions, visualization techniques such as line graphs, bar graphs, and box plots were used. Tables were also used to summarize and present the results of this SLR.
Table 3: Quality assessment questions.

Q#	Quality questions
QAR1	Are the study objectives clearly recognized?
QAR2	Are the anomaly detection techniques well defined and deliberated?
QAR3	Is the specific application of anomaly detection clearly defined?
QAR4	Does the paper cover practical experiments using the proposed technique?
QAR5	Are the experiments well designed and justifiable?
QAR6	Are the experiments applied on sufficient datasets?
QAR7	Are estimation accuracy criteria reported?
QAR8	Is the proposed estimation method compared with other methods?
QAR9	Are the techniques of analyzing the outcomes suitable?
QAR10	Overall, does the study enrich the academic community or industry?

4 Result and Discussions

This section presents the results obtained from selected primary studies. First, an overview of the selected works is presented and then the results for each research question in this SLR.

4.1 Description of Primary Studies

After following all the steps of the SLR, Table 4 shows all the accepted primary studies. In total, 11 were considered for meta-analysis. Various graphs and tables are normally used for meta-analysis, but as in this study there were few primary studies accepted, it is possible to see in Table 4 information about the primary studies such as the assignment of an ID to each study, title, year of publication, type, and its respective reference.

A1: Feng et al. (17) propose an architecture called SR-ScatNet to detect abnormal ECG signals in smart shirts. The authors used the MIT-BIH Arrhythmia Database to validate the proposed architecture where it obtained 98% accuracy for abnormal signals.

A2: The focus of the study by Abid et al (1) is to investigate Human Activity Recognition (HAR) using a smart shirt. The study detects 10 types of activities and one of them is fall detection which is an important anomaly in a smart shirt. The experiment involved 44 people and they used 3 machine learning techniques for HAR.

A3: The study by Petz et al (36) describe the development of a smart shirt for recording upper body movement and shows that it is possible to perform posture recognition. Results show the potential of the smart shirt for applications in the field of occupational safety.

A4: Lanata et al (27) propose a sensor suite with a smart shirt for physiological work risk levels. The combination of the wireless sensor and smart fabric allows for worker risk assessment. This study focuses on the description of the sensors and proposes a k-nearest neighbors (KNN) algorithm for risk assessment and detection.

A5: Randhawa et al (39) study aims to recognize if a person is being physically attacked through sensors installed in a smart shirt. The study analyzed the best sensor positions and applied several ML techniques to recognize physical aggressions where these aggressions can be considered anomalies.

A6: Syed et al (50) propose a healthcare framework to monitor the physical activities of the elderly using IoMT and ML algorithms. In total it is proposed to recognize 12 types of activities, and one of the activities to recognize is the elderly’s fall, which can be considered an anomaly.

A7: The study is a Ph.D. thesis by Bastaki (8) where it presents the development of a framework for vital sign anomaly detection for an Ambient Assisted Living (AAL) health monitoring scenario. This study created its own dataset and used three ML techniques.

A8: Resque et al (40) investigate the performance of five ML algorithms in terms of accuracy for Epileptic Seizure Detection. The study concluded that the ML techniques had good accuracy for identifying epileptic seizures from EEG that can also be considered an anomaly in smart shirts.

A9: The aim of the study by Cherif et al (11) is to develop a human activity classification system using a smart shirt. The study used ML techniques. One of the activities is falling which can be considered an anomaly.
Table 4: Selected primary studies.

ID	Title	Year	Type	Refs.
A1	“SR-ScatNet Algorithm for On-device ECG Time Series Anomaly Detection”	2021	Conf.	(17)
A2	"Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers."	2021	Jour.	(1)
A3	"Sensor Shirt as Universal Platform for Real-Time Monitoring of Posture and Movements for Occupational Health and Ergonomics"	2021	Jour.	(36)
A4	"A New Smart-Fabric based Body Area Sensor Network for Work Risk Assessment"	2020	Conf.	(27)
A5	"Violent Activity Recognition by E-textile Sensors based on Machine Learning Methods"	2020	Jour.	(39)
A6	"Smart Healthcare Framework for Ambient Assisted Living using IoMT and Big Data Analytics Techniques"	2019	Jour.	(50)
A7	"Application of Hierarchical Temporal Memory to Anomaly Detection of Vital Signs for Ambient Assisted Living"	2019	Thes.	(8)
A8	"An Investigation of Different Machine Learning Approaches for Epileptic Seizure Detection"	2019	Conf.	(40)
A9	"Physical Activity Classification using a Smart Textile"	2018	Conf.	(11)
A10	"Fall Detection System for Elderly People using IoT and Big Data"	2018	Jour.	(56)
A11	"Context Aware Adaptable approach for Fall Detection bases on Smart Textile"	2017	Jour.	(29)

A10: Yacchirema et al (56) built a framework for fall detection in the elderly. If the system detects a fall, an alert is issued and the system automatically sends it to the groups responsible for providing care to the elderly. The result, the study found high success rates in fall detection in terms of accuracy, precision, and gain.

A11: The study Mezghani et al (29) presents a novel fall detection system using smart textile and ML techniques. The system classifies falls based on their respective orientations among 11 classes. The results showed that the system is 98% accurate for fall detection.

4.2 RQ1: What anomalies were identified in smart shirt?

The anomalies of the primary studies were identified and are shown in Table 5. The most frequent anomaly is the fall present in five studies. A fall is an unintentional displacement of the body to a lower level than the initial position, with the inability to correct it promptly caused by multifactorial circumstances. Fall-related injuries may be fatal or non-fatal.

Primary study A1 addresses the anomaly related to cardiac arrhythmia. Cardiac arrhythmia is characterized by a lack of rhythm in a heartbeat. Tachycardias is when the rhythm is fast, and bradycardias are when the rhythm is too slow, both of which can worsen and lead to heart complications. The study A3 addresses posture recognition where it can be considered an anomaly because postural diseases are caused by poor posture (36). The A5 study presents a smart shirt to detect violent attacks or aggression. The study A7 uses a set of vital signs for monitoring and detecting anomalies in patients. The detection of epilepsy is addressed in study A8 is also considered an anomaly that can issue an alert if the patient is in a crisis. Moreover, finally, the A4 study is a development of a smart shirt to detect risk at work, and the anomaly it wanted to detect was not well defined.
Table 5: Anomalies identified in primary studies.

Anomaly	# of Studies	ID
Fall	5	A2, A6, A9, A10, A11
Cardiac Arrhythmia	1	A1
Posture	1	A3
Violent Attack	1	A5
Vital Signs	1	A7
Epilepsy	1	A8
Undefined	1	A4

4.3 **RQ2: Which ML techniques have been used for anomaly detection in smart shirts?**

This section provides details of the ML techniques used in the primary studies selected in this SLR. With the analysis of the selected studies, the following ML techniques were identified shown in Table 6.

Table 6: Distribution os studies across ML techniques.

Method	# of Studies	Percent	ID
Support Vector Machines (SVM)	7	63.63%	A1, A2, A5, A7, A8, A9, A11
K-Nearest Neighbors (KNN)	6	54.54%	A1, A4, A5, A7, A8, A9
Naive Bayes (NB)	3	27.27%	A5, A6, A8
Decision Trees (DT)	2	18.18%	A5, A10
Linear Discriminant Analysis (LDA)	2	18.18%	A1, A5
Convolutional Neural Network (CNN)	2	18.18%	A1, A2
Long Short-Term Memory (LSTM)	1	09.08%	A3
Principal Component Analysis (PCA)	1	09.08%	A5
Hierarchical Temporal Memory (HTM)	1	09.08%	A7
Random Forest (RF)	1	09.08%	A8
Neural Network (NN)	1	09.08%	A8

Table 6 presents the number and percentage of studies in relation to ML techniques. The analyzed ML techniques frequently used were SVM with seven or 63% of the studies and KNN with six or 54% of the selected studies. The NB, DT, LDA, and CNN techniques were used in three (27%), two (18%), two (18%), two (18%) studies, respectively. Moreover, the LSTM, PCA, HTM, RF, and NN techniques were less used.

4.4 **RQ3: What kind of empirical validation for anomaly detection in smart shirts is found using the ML techniques found in RQ1?**

This section aims to identify the datasets, the devices for data acquisition, and the performance measures used in the selected primary studies.

4.4.1 **RQ3.1: Which datasets are used?**

Data is an essential component of any ML technique. The dataset can be used to train an ML algorithm that aims to find predictable patterns from the entire dataset. In total, 11 datasets were identified, which are shown in the Table 7. Each primary study used only a dataset, where five studies created and used their own dataset, and six studies used public and private datasets.

4.4.2 **RQ3.2: Which Devices are used for data acquisition?**

Sensors capture data from the world around us, and these sensors are integrated into devices so that data can be displayed, analyzed and stored. Using a smart shirt, it is possible to capture vital signs and measure the body’s inertia. Table 8 shows the type of smart textile and the sensors used from the selected primary studies.
Table 7: Description of the datasets found in this SLR.

ID	Dataset	Description
A1	MIT-BIH Arrhythmia (32)	Contains 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained from 47 subjects. It provides around thirty-four different ECG samples.
A2	Own Dataset	Dataset used in this study is acquired by the research team. In the experiments, 44 participants wearing the Hexoskin shirt, performed 10 activities.
A3	Own Dataset	The study does not describe the dataset. The dataset contains three positions 'leaning back', 'straight', and 'leaning forward' were defined and held for 5 seconds or 50 data samples.
A4	Own Dataset	-
A5	Human Motion	Composed of 5K-10K samples distributed in stationary, walking, brisk walking, twisting, and aggressive motion of five classes.
A6	MHEALTH (6)	Comprises body motion and vital signs recordings for ten volunteers in several physical activities. Sensors (2-lead ECG) are placed on different parts of the body to measure acceleration, rate of turn, and magnetic field orientation.
A7	MIMIC-III	It contains data related to health-related of more than forty thousand patients who were in critical care. Data includes demographics, vital signs, laboratory results, medications, etc.
A8	EEG UCI	Contains five classes (seizure activity, tumor area, healthy brain area, patients had their eyes closed, patients had their eyes open) that used EEG signals.
A9	Own Dataset	Contains thirteen volunteers, each participant used a smart shirt to build the dataset.
A10	SisFall (49)	It is a dataset of falls and activities of daily living that was acquired from a device composed of two types of accelerometers and a gyroscope.
A11	Own Dataset	It contains thirteen volunteers where each volunteer wore a smart shirt and performed 11 activities. It was monitored: acceleration data, cardiac activity, and respiratory activity were monitored.

Table 8: Description of the datasets found in this SLR.

ID	Type	Sensor Data
A1	Smart Shirt Prototype	ECG
A2	Hexoskin Smart Shirt	Accelerometer
A3	Smart Shirt Prototype	Accelerometer, Gyroscope, and Magnetometer
A4	Smart Shirt Prototype	ECG, Respiration Sensor, Accelerometer, Gyroscope, Magnetometer, and Sweat Sensor
A5	Smart Shirt Prototype	Pressure Sensor, Stretch Sensor, and Accelerometer
A6	Wearable	ECG, Accelerometer, Gyroscope, and Magnetometer
A7	Wearable	Heart Rate, Arterial Blood Pressure, and Respiratory Rate
A8	Wearable	ECG
A9	Hexoskin Smart Shirt	Acceleration, Cardic Activity, and Respiratory Activity
A10	Wearable	Accelerometer, Gyroscope, and Magnetometer
A11	Hexoskin Smart Shirt	Acceleration
In this SLR, seven smart shirts were identified and only one (Hexoskin) is being sold commercially, the rest are proposals or prototypes. The remaining were classified as wearables, but with one exception, it is wearables that are located in the human’s chest.

Most of the primary studies use an accelerometer sensor in which it is possible to measure the person’s acceleration and an ECG sensor in which it is possible to measure electrical impulses from the heart using a smart shirt. The pressure and sweat sensors were the least used sensors, as they were used in only one study.

The accelerometer sensor is the most used because most of the primary studies are related to the recognition of human activity where one of the activities is fall. However, some selected primary studies aim to solve specific problems. It is common to choose specific sensors, so the less identified sensors are used for particular problems, for example, in study A4.

4.4.3 RQ3.3: Which performance metrics are used?

When implementing an ML technique, the developer must ask himself how good the technique is for anomaly detection. All ML techniques need a metric to evaluate performance. Thus, in total, seven metrics were identified in the primary studies, which are shown in Table 9.

Table 9: Definition of performance metrics related to selected primary studies.

Performance Metric	Definition	ID
Confusion Matrix	The confusion matrix is not exactly a performance metric, but it is a base that other metrics use. It is a table that indicates the errors and successes of the ML model where each cell represents an evaluation factor that are True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).	A1, A2, A3, A5, A6, A10
Accuracy	It is the proportion of the total number of correct predictions divided by the total number of predictions.	A1, A3, A5, A6, A8, A9, A10, A11
Precision	It is a metric that measures the amount of true positives (TP) divided by the sum of all positive values (TP+FP)	A2, A6, A7, A10
Recall	Evaluate the ability of the method to successfully detect results classified as positive (True Positive Rate).	A2, A6, A7, A10
F1-Score	It is a harmonic mean calculated based on precision and recall.	A2, A7
Specificity	It evaluates the ability of the method to detect negative results (True Negative Rate).	A11

Some studies contained the confusion matrix to illustrate the performance of the ML technique. The most used performance metric is Accuracy, followed is closely followed by the Precision and Recall measures. Specificity and F1-Score are other commonly used metrics. The Kappa metric is less used cited in a primary study. The primary study A4 did not mention any metric performance, but as it uses KNN as ML techniques, it could possibly use the metrics shown in Table 9.

4.5 RQ4: What is the overall performance of the ML techniques for anomaly detection in smart shirts?

Table 10 shows all results, types, ML models and performance metrics. Most techniques are classic ML algorithms that do not require significant computational power. Almost all algorithms present satisfactory results in their respective studies.

Primary study A4 did not mention the result because the main objective was to show the development of the smart shirt. After that, according to the authors, they will do a study focusing on machine learning techniques. The primary study A3 did not present an exact value, and it only showed that according to the tests, it obtained an accuracy greater than 80%.
Table 10: Performance metrics and respective results of the selected primary studies.

ID	Type	ML Model	Performance Metrics	Results
A1	Supervised	CNN + SVM	Accuracy	98.30%
A2	Supervised	SVM	Precision	94%
			Recall	92%
			F1-Score	92%
		LDA + KNN	Precision	93%
			Recall	83%
			F1-Score	87%
A3	Supervised	LSTM	Accuracy	>80%
A4	Supervised	KNN	-	-
A5	Supervised	KNN	Accuracy	93.80%
		NB	Accuracy	96.90%
		DT	Accuracy	93%
		SVM	Accuracy	97.60%
A6	Supervised	NB	Accuracy	97.10%
			Precision	96.38%
			Recall	97%
A7	Supervised	HTM	F1-Score	83%
			Recall	87%
			Precision	70%
		KNN	F1-Score	86%
			Recall	90%
		SVM	F1-Score	82%
			Recall	54%
			Precision	27%
A8	Supervised	SVM	Accuracy	97.31%
		RF	Accuracy	97.08%
		NB	Accuracy	95.98%
		NN	Accuracy	93.53%
		KNN	Accuracy	90.01%
A9	Supervised	KNN	Accuracy	96.37%
		SVM	Accuracy	95.40%
A10	Supervised	DT	Accuracy	91.67%
			Precision	93.75%
			Recall	91.67%
A11	Supervised	SVM	Accuracy	98%
			Sensitivity	97.6%
			Specificity	98.5%
4.6 RQ5: What types of ML algorithms are being applied in anomaly detection in smart shirts?

The purpose of this question is to identify the type of ML and anomaly detection for each selected primary study. Table [10] shows that all selected primary studies are of the supervised type. Being of the supervised type is that all studies have classification or multiclassification problems.

5 Conclusion

This paper presents a systematic literature review in order to identify machine learning techniques for anomaly detection in smart shirts. First, the theoretical background of smart textile, machine learning and anomaly detection was described. Second, the adopted research method was described following a systematic series of steps analyzing the quality of the primary studies. In total, eleven primary studies (2017-2021) were selected for analysis. And finally, the results, which are the answers to the research questions of the systematic review, are presented.

From the selected primary studies, six different anomalies were identified, which are: fall, cardiac arrhythmia, posture, violent attack, vital signs and ellipsis, with the fall anomaly being the most frequent being cited in five primary studies. Therefore, it is possible to define a set of anomalies to be detected in smart shirts.

About the machine learning techniques for anomaly detection in smart shirts, eleven different techniques were identified: Support Vector Machines, K-Nearest Neighbors, Naive Bayes, Decision Trees, Linear Discriminant Analysis, Convolutional Neural Network, Long Short-Term Memory, Principal Component Analysis, Hierarchical Temporal Memory, Random Forest, and Neural Network, with the Support Vector Machines technique being the most frequent in seven primary studies.

For the machine learning algorithm training, five primary studies created their dataset and six primary studies used public or private datasets, with each study using a dataset. In general, no dataset was cited more than once.

Evaluating the performance of the machine learning algorithm is a fundamental process. Five different metrics were identified. The accuracy of the performance metric was the most cited metric in eight primary studies. Overall, almost all primary studies showed high (>90%) and good accuracy values on their respective problems. It was also observed that the primary studies used the confusion matrix to validate and show the performance of the machine learning algorithm.

Finally, seven primary studies used or built a smart shirt regarding data acquisition devices, and four studies used a wearable simulating a smart shirt. A smart shirt can contain one or more sensors, and the accelerometer sensor was the most cited since most studies involve fall detection.

This study aims to result in a second study that can contribute some direction in research related to the topic. Furthermore, it is hoped with future work to implement an intelligent system of anomaly detection in smart shirts based on the results of this analysis.
References

[1] Mariem Abid, Amal Khabou, Youssef Ouakrim, Hugo Watel, Safouene Chemcki, Amar Mitiche, Amel Benazza-Benyahia, and Neila Mezghani. Physical activity recognition based on a parallel approach for an ensemble of machine learning and deep learning classifiers. Sensors, 21(14):4713, 2021.

[2] Acumen Research and Consulting. E-textiles and smart clothing market surpass $15,018.9 mn by 2028 carg 32.3% says acumen research and consulting. https://bit.ly/3oxQ4jv, 2021. Accessed: 2022-02-07.

[3] Sridhar Alla and Suman Kalyan Adari. Beginning anomaly detection using python-based deep learning. Springer, 2019.

[4] Azarnoush Ansari, Arash Riasi, et al. Taxonomy of marketing strategies using bank customers’ clustering. *International Journal of Business and Management*, 11(7):106–119, 2016.

[5] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. *New advances in machine learning*, 3:19–48, 2010.

[6] Oresti Banos, Rafael Garcia, Juan A Holgado-Terriza, Miguel Damas, Hector Pomares, Ignacio Rojas, Alejandro Saez, and Claudia Villalonga. mhealthdroid: a novel framework for agile development of mobile health applications. In *International workshop on ambient assisted living*, pages 91–98. Springer, 2014.

[7] Benhur Bakhtiari Bastaki. Application of hierarchical temporal memory to anomaly detection of vital signs for ambient assisted living. PhD thesis, Staffordshire University, 2019.

[8] BioSpace. IoT in healthcare market to reach usd 260.75 billion by 2027– reports and data. https://www.biospace.com/article/iot-in-healthcare-market-to-reach-usd-260-75-billion-by-2027-reports-and-data/, 2021. Accessed: 2022-02-04.

[9] Nour Cherif, Youssef Ouakrim, Amel Benazza-Benyahia, and Neila Mezghani. Physical activity classification using a smart textile. In *2018 IEEE life sciences conference (lsc)*, pages 175–178. Ieee, 2018.

[10] Samundra Deep, Xi Zheng, Chandan Karmakar, Dongjin Yu, Leonard GC Hamey, and Jiong Jin. A survey on anomalous behavior detection for elderly care using dense-sensing networks. *IEEE Communications Surveys & Tutorials*, 22(1):352–370, 2019.

[11] Aline Correa dos Santos, Marcio Eduardo Delamaro, and Fatima LS Nunes. The relationship between requirements engineering and virtual reality systems: A systematic literature review. In *2013 XV Symposium on Virtual and Augmented Reality*, pages 53–62. IEEE, 2013.

[12] Farzad Eskandanian, Bamshad Mobasher, and Robin Burke. A clustering approach for personalizing diversity in collaborative recommender systems. In *Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization*, pages 280–284, 2017.

[13] Sandra Fabbri, Cleiton Silva, Elis Hernandez, Fabio Octaviano, Andre Di Thommaz, and Anderson Belgamo. Improvements in the start tool to better support the systematic review process. In *Proceedings of the 20th international conference on evaluation and assessment in software engineering*, pages 1–5, 2016.

[14] Azadeh Faroughi, Andrea Morichetta, Luca Vassio, Flavio Figueiredo, Marco Mellia, and Reza Javidan. Towards website domain name classification using graph based semi-supervised learning. *Computer Networks*, 188:107865, 2021.

[15] Hsin-Yu Peng, Po-Ying Chen, and Janpu Hsu. Sr-scatnet algorithm for on-device ecg time series anomaly detection. In *SoutheastCon*, pages 1–5. IEEE, 2021.

[16] Quanxue Gao, Yunfang Huang, Xinbo Gao, Weigu Shen, and Hailin Zhang. A novel semi-supervised learning for face recognition. *Neurocomputing*, 152:69–76, 2015.

[17] Deepti Gupta, Olumide Kayode, Smriti Bhatt, Maanak Gupta, and Ali Saman Tosun. Hierarchical federated learning based anomaly detection using digital twins for smart healthcare. *arXiv preprint [arXiv:2111.12241]*, 2021.

[18] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. In *2018 IEEE International Conference on Robotics and Automation (ICRA)*, pages 5129–5136. IEEE, 2018.
[22] Chi-Wai Kan and Yin-Ling Lam. Future trend in wearable electronics in the textile industry. *Applied Sciences*, 11(9):3914, 2021.

[23] Staffs Keele et al. Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report. EBSE, 2007.

[24] Asad Masood Khattak, Habib Ullah, Hassan Ali Khalid, Ammarah Habib, Muhammad Zubair Asghar, and Fazal Masud Kundi. Stock market trend prediction using supervised learning. In *Proceedings of the Tenth International Symposium on Information and Communication Technology*, pages 85–91, 2019.

[25] Hamzeh Khundaqji, Wayne Hing, James Furness, Mike Climentine, et al. Smart shirts for monitoring physiological parameters: scopeing review. *JMIR mHealth and uHealth*, 8(5):e18092, 2020.

[26] Jan Kubicek, Klara Fiedorova, Dominik Vilimek, Martin Cerny, Marek Penhaker, Miroslav Janura, and Jiri Rosicky. Recent trends, construction and applications of smart textiles and clothing for monitoring of health activity: a comprehensive multidisciplinary review. *IEEE Reviews in Biomedical Engineering*, 2020.

[27] Antonio Lanata, Alberto Greco, Stefano Di Modica, Francesco Niccolini, Federico Vivaldi, Fabio Di Francesco, Christian Tamantini, Francesca Cordella, Loredana Zollo, Marco Di Rienzo, et al. A new smart-fabric based body area sensor network for work risk assessment. In *2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT*, pages 187–190. IEEE, 2020.

[28] Markets and Markets. Smart clothing market by textile type, product type (upper wear, lower wear, inner-wear, and others), end-user industry (military and defense, sports and fitness, fashion and entertainment, healthcare), and geography - global forecast to 2024. https://www.marketsandmarkets.com/Market-Reports/smart-clothing-market-56415040.html, 2019. Accessed: 2022-02-07.

[29] Neila Mezghani, Youssef Ouakrim, Md R Islam, Rami Yared, and Bessam Abdulrazak. Context aware adaptable approach for fall detection bases on smart textile. In *2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)*, pages 473–476. IEEE, 2017.

[30] Thomas M. Mitchell. *Machine Learning*. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.

[31] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*. MIT press, 2018.

[32] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. *IEEE Engineering in Medicine and Biology Magazine*, 20(3):45–50, 2001.

[33] Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, and Fatima Mohammad Dakalbab. Machine learning for anomaly detection: a systematic review. *IEEE Access*, 2021.

[34] Şükri Özcan. A case study on customer segmentation by using machine learning methods. In *2018 International Conference on Artificial Intelligence and Data Processing (IDAP)*, pages 1–6. IEEE, 2018.

[35] Michael G. Pecht and Myeongsu Kang. *Machine Learning: Anomaly Detection*, pages 131–162. Wiley-IEEE Press, 2019.

[36] Phillip Petz, Florian Eibensteiner, and Josef Langer. Sensor shirt as universal platform for real-time monitoring of posture and movements for occupational health and ergonomics. *Procedia Computer Science*, 180:200–207, 2021.

[37] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning algorithms in recommender systems: A systematic review. *Expert Systems with Applications*, 97:205–227, 2018.

[38] Simon Ramstedt and Chris Pal. Real-time reinforcement learning. *Advances in neural information processing systems*, 32, 2019.

[39] Princy Randhawa, Vijay Shanthagiri, and Ajay Kumar. Violent activity recognition by e-textile sensors based on machine learning methods. *Journal of Intelligent & Fuzzy Systems*, 39(6):8115–8123, 2020.

[40] Paulo Resque, Alex Barros, Denis Rosário, and Eduardo Cerqueira. An investigation of different machine learning approaches for epileptic seizure detection. In *2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)*, pages 301–306. IEEE, 2019.

[41] Stuart J Russell and Peter Norvig. *Artificial intelligence: a modern approach*. Malaysia; Pearson Education Limited, 2016.

[42] Sahar F Sabbeh. Machine-learning techniques for customer retention: A comparative study. *International Journal of Advanced Computer Science and Applications*, 9(2), 2018.

[43] Edin Šabić, David Keeley, Bailey Henderson, and Sara Nannemann. Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data. *AI & SOCIETY*, 36(1):149–158, 2021.

[44] Arthur L Samuel. Some studies in machine learning using the game of checkers. ii—recent progress. In *Computer Games I*, pages 366–400. Springer, 1988.
[45] Michael B Schultz, Alice E Kane, Sarah J Mitchell, Michael R MacArthur, Elisa Warner, David S Vogel, James R Mitchell, Susan E Howlett, Michael S Bonkowski, and David A Sinclair. Age and life expectancy clocks based on machine learning analysis of mouse frailty. *Nature communications*, 11(1):1–12, 2020.

[46] Sensoria Fitness. https://www.sensoriafitness.com/smartsocks/ Accessed: 2022-02-07.

[47] Kunal Singha, Jayant Kumar, and Pintu Pandit. Recent advancements in wearable & smart textiles: An overview. *Materials Today: Proceedings*, 16:1518–1523, 2019.

[48] Matteo Stoppa and Alessandro Chiolerio. Wearable electronics and smart textiles: A critical review. *sensors*, 14(7):11957–11992, 2014.

[49] Angela Sucerquia, José David López, and Jesús Francisco Vargas-Bonilla. Sisfall: A fall and movement dataset. *Sensors*, 17(1):198, 2017.

[50] Liyakathunisa Syed, Saima Jabeen, S Manimala, and Abdullah Alsaeedi. Smart healthcare framework for ambient assisted living using iot and big data analytics techniques. *Future Generation Computer Systems*, 101:136–151, 2019.

[51] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu, and Diego Perez-Liebana. Deep reinforcement learning for general video game ai. In *2018 IEEE Conference on Computational Intelligence and Games (CIG)*, pages 1–8. IEEE, 2018.

[52] Wearablex. https://www.wearablex.com/pages/how-it-works_v0 Accessed: 2022-02-07.

[53] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. Systematic literature review of machine learning based software development effort estimation models. *Information and Software Technology*, 54(1):41–59, 2012.

[54] World Health Organization. Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health 2021. Accessed: 2022-02-04.

[55] Jin Xiao, Hanwen Cao, Xiaoyi Jiang, Xin Gu, and Ling Xie. Gmdh-based semi-supervised feature selection for customer classification. *Knowledge-Based Systems*, 132:236–248, 2017.

[56] Diana Yacchirema, Jara Suárez de Puga, Carlos Palau, and Manuel Esteve. Fall detection system for elderly people using iot and big data. *Procedia computer science*, 130:603–610, 2018.