Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery

Wenxi Wang,‡ Vinayak S. Kale,‡ Zhen Cao,‡ Sharath Kandambeth, Wenli Zhang, Jun Ming, Prakash T. Parvatkar, Edy Abou-Hamad, Osama Shekhah, Luigi Cavallo, Mohamed Eddaoudi,* and Husam N. Alshareef‡

Cite This: ACS Energy Lett. 2020, 5, 2256−2264

ABSTRACT: Aqueous zinc-ion batteries and capacitors are potentially competitive grid-scale energy storage devices because of their great features such as safety, environmental friendliness, and low cost. Herein, a completely new phenanthroline covalent organic framework (PA-COF) was synthesized and introduced in zinc-ion supercapatteries (ZISs) for the first time. Our as-synthesized PA-COF shows a high capacity of 247 mAh g\(^{-1}\) at a current density of 0.1 A g\(^{-1}\), with only 0.38% capacity decay per cycle during 10 000 cycles at a current density of 1.0 A g\(^{-1}\). Although covalent organic frameworks (COFs) are attracting great attention in many fields, our PA-COF has been synthesized using a new strategy involving the condensation reaction of hexaketocyclohexanone and 2,3,7,8-phenazinetetramine. Detailed mechanistic investigations, through experimental and theoretical methods, reveal that the phenanthroline functional groups in PA-COF are the active zinc ion storage sites. Furthermore, we provide evidence for the cointercalation of Zn\(^{2+}\) (60%) and H\(^{+}\) (40%) into PA-COF using inductively coupled plasma atomic emission spectroscopy and deuterium solid-state nuclear magnetic resonance (NMR). We believe that this study opens a new avenue for COF material design for zinc-ion storage in aqueous ZISs.
stability of NTCDI electrode in zinc-ion batteries (ZIBs). It has also been reported that nitrogen-doping in hierarchical porous carbon can promote the chemical adsorption of \(\text{Zn}^{2+} \) ions. Thus, we anticipated that PA-COF with electron-rich backbone and rich nitrogen active sites, as well as the medium pore size of 2–5 nm, might facilitate the reversible mobile ion intercalation. As a result, we have developed and tested this new PA-COF as cathode in ZISs. We demonstrate a high capacity of 247 mAh g\(^{-1}\) at a current density of 0.1 A g\(^{-1}\), with only 0.38% capacity decay per cycle during 10,000 cycles at a current density of 1.0 A g\(^{-1}\). We further extensively studied the intercalation mechanism of PA-COF in aqueous zinc ion supercapattories by experimental and theoretical methods and found it to involve cointercalation of \(\text{Zn}^{2+} \) (60%) and \(\text{H}^+ \) (40%). We believe that this study opens a new avenue for COF material design and application in zinc-ion storage in aqueous electrolytes.

The synthetic process of PA-COF is presented in Figure 1a, which involves a solvothermal condensation reaction of hexaketocyclohexane and 2, 3, 7, 8-phenazinetetramine. The as-synthesized PA-COF is a novel 1,4,5,8,9,12-hexaazatriphenylene (HAT) derivative that introduces nitrogen-rich phenanthroline units into the conjugated and rigid aromatic framework. The incorporation of the phenanthroline structure was confirmed by the emergence of Fourier transform infrared spectroscopy (FT-IR) peaks at 1236 and 1460 cm\(^{-1}\) (Figure 1b), which corresponds to the stretching of \(\text{C}–\text{C=N} \) and \(\text{C=\pi-C} \) from the aza rings. The carbon backbone of PA-COF was verified by \(^{13}\)C solid-state NMR (Figure S1, Supporting Information). The sharp peak with chemical shifts around 138.1 and 109.5 ppm can be assigned to carbon from \(\text{C=C=N} \) and \(\text{C=\pi-C} \), respectively (Figure S1, peaks b and d, Supporting Information). Another two broad peaks around 152.6 and 130.1 ppm can be ascribed to the carbon from \(\text{N}\ldots\text{C=C} \) and \(\text{C=\pi-C} \ldots\text{N} \), respectively (Figure S1, peaks a and c, Supporting Information). This difference in FT-IR and \(^{13}\)C solid-state NMR results confirms the successful preparation of PA-COF and the formation of its rigid conjugated frameworks. Additionally, the thermal stability of as-synthesized PA-COF material was confirmed by the thermogravimetric analysis (TGA) in argon gas (Figure S2, Supporting Information). We find that the weight loss in PA-COF is only 10% when the temperature was increased to 600 °C. In contrast, the hexaketocyclohexane and phenazinetetramine precursors show a weight loss of 85% and 30% at 600 °C, respectively. The higher thermostability of PA-COF compared with its precursors confirms the formation of rigid conjugated frameworks. In addition, two broad peaks at 3.4° and 26.7° can be observed in the powder X-ray diffraction (PXRD) profile of as-synthesized PA-COF (Figure 1c), which can be assigned to (100) and (001) planes. The PXRD result demonstrates the periodic structure of PA-COF. Particularly, the broad peak around 26.7° is mainly due to \(\pi \ldots\pi \) stacking construction, revealing the existence of a multilayered COF structure with an interlayer distance of 3.34 Å. The simulated PXRD patterns of the inset model with an eclipsed orientation (inset in Figure 1c: AA eclipsed model) match well with the experimental results (another two simulated results are shown in Figure S3, and the corresponding crystallographic parameters are shown in Table S1, Supporting Information). The morphology variation of scanning electron microscopy (SEM) images from precursor to as-synthesized COF further verifies the reaction product is PA-COF. The as-synthesized PA-COF is made up of globular particles with diameters around 300 nm (Figure 1d), which is totally different from the irregular morphologies of the precursors and confirms its...
formation (Figure S4a,b, Supporting Information). The uniform elemental distribution of C and N in transmission electron microscopy (TEM) images also demonstrates the homogeneous nature of PA-COF (Figure 1e). In addition, the specific surface area is 19.6 m² g⁻¹ and the mesoporous character with a pore size of 2–5 nm in PA-COF was calculated from the IV-type isotherms (Figure 1f). Such a low surface area and mesoporous nature account for the chemical interaction of ions with host COF material, instead of a simple physical adsorption, as will be discussed later.

The structure of the aqueous ZIS using PA-COF cathode and Zn anode in 1.0 M ZnSO₄ electrolyte is presented in Figure 2a, showing a variation of PA-COF during the discharge and recharge process. The reversibility of the PA-COF cathode in the ZIS can be evaluated directly from the CV profiles as shown in Figure 2b. We observe two pairs of redox peaks around 0.69/0.48 V and 0.64/0.93 V, which correspond to the variation of redox states of COF upon the (de)insertion of ions coupled with electron transfer in the PA-COF skeleton. Furthermore, the CV profiles are almost overlapped after the first, third, fifth, and tenth cycles at the scan rate of 0.1 mV s⁻¹ as shown in Figure S5, implying the electrochemical stability of the PA-COF electrode. The high capacity of PA-COF can be observed in the galvanostatic (dis-)charge curves, where a capacitive-like charge-storage behavior without the obvious voltage plateau²⁴ was demonstrated with a high capacity of 247 mAh g⁻¹ (Figure 2c). The superior cycling performance is further demonstrated at a current density of 0.1 A g⁻¹ (Figure 2d), where the retained capacity was as high as 175 mAh g⁻¹ after 300 cycles. The capacity decay in the initial hundred cycles might result from the formation of byproducts (e.g., Znₓ(OH)₆SO₄·5H₂O) at a low current density, which is a
common phenomenon in aqueous zinc-ion batteries (ZIBs). However, such a high capacity in our devices is due to the chemical intercalation of ions coupled with electron transfer on the active sites of PA-COF, rather than the capacity from an electric double layer. This is because PA-COF shows a specific area of only 19.6 m² g⁻¹, whereas the specific capacity stored through physical absorption–desorption (electric double layer) should be proportional to the specific area (Table S2). Further, we will present a detailed analysis of the storage mechanism of Zn²⁺ and H⁺ in the PA-COF which is dominated by the intercalation process in the subsequent section. Figure 2e shows that the rate capability of the PA-COF electrode, where capacities of 265, 234, 202, 176, 153, 125, 93, and 68 mAh g⁻¹ were obtained at a current densities of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10 A g⁻¹, respectively. The capacity recovers to 240 and 210 mAh g⁻¹ when the current was switched back to 0.05 and 0.1 A g⁻¹, respectively. More importantly, a remarkable cycling stability was achieved with only 0.38% capacity decay per cycle within 10 000 cycles at a current density of 1.0 A g⁻¹ (Figure 2f). Additionally, the particle morphology of the PA-COF electrode after 100 cycles at a current density of 1.0 A g⁻¹ shows only minor changes compared to the pristine sample, indicating a stable framework of the PA-COF material (Figure S6a,b). This cycling stability is the best that has been reported for the COF material in zinc ion batteries or capacitors.

Herein, the charge storage mechanism of PA-COF in aqueous ZIBs was analyzed through the various physicochemical techniques. The electrochemical behaviors of PA-COF electrode in 1.0 M Na₂SO₄ (pH=7), 1.0 M Na₂SO₄ (pH=5), and 1.0 M ZnSO₄ (pH=7) electrolytes were tested, separately. Three different discharged curves were observed. We find that the specific capacity of the PA-COF electrode in 1.0 M ZnSO₄ electrolyte is much greater (i.e., 270 mAh g⁻¹) than that in 1.0 M Na₂SO₄ (pH=7) and 1.0 M Na₂SO₄ (pH=5) electrolytes (Figure 3a). These comparative results demonstrate that the Zn²⁺ intercalation is dominant, even though the radius of hydrated Zn²⁺ (i.e., 0.43 nm) is larger than that of hydrated Na⁺ (0.358 nm) and H⁺ (0.1 nm) ions. The intercalation of Zn²⁺ is further confirmed by the cyclic voltammogram (CV) measurement in the different electrolytes (Figure 3b). We find that the CV curve in 1.0 M ZnSO₄ electrolyte shows the largest integral area, implying the highest specific capacity among the three electrolytes. This is consistent with the highest discharge capacity seen in Figure 3a. In addition, two pairs of reduction–oxidation broad peaks can be observed within a potential window of −0.8−0.6 V (vs Hg₂Cl₂/Hg). The profiles and number of redox peaks are apparently different from those in 1.0 M Na₂SO₄ (pH=7) and 1.0 M Na₂SO₄ (pH=5) electrolytes. In addition, strong evidence for Zn²⁺ intercalation into PA-COF can be observed from the comparative TEM and SEM mapping images after discharge and charge processes. The Zn signal can be clearly observed in the electrode after the second discharge (Figure 3c), whereas the Zn signal is not easy to observe in the electrode after the second recharge (Figure S7, Supporting Information). The same variation can be observed in the SEM mapping images (Figure S8a-b, Supporting Information). These results show that reversible Zn²⁺ (de)intercalation within the PA-COF electrode does indeed take place.

Solid-state NMR was used to further analyze the possible proton intercalation in PA-COF electrodes that were discharged to 0.2 V in deuterium oxide electrolyte. We find that only one D₂O peak around 8.6 ppm can be observed in the pristine electrode, whereas an additional chemical peak around 3 ppm appears in the electrode after the second discharge...
All EIS curves are mainly composed of a semicircle (charge-transfer resistance, R_{ct}) and slope line (ionic diffusion resistance) at the medium- and low-frequency ranges (Figure S11, Supporting Information). Initially, the fresh PA-COF electrode shows almost the same shape of semicircles in 1.0 M Na$_2$SO$_4$ (pH=7), 1.0 M Na$_2$SO$_4$ (pH=5), and 1.0 M ZnSO$_4$ electrolyte except for a slightly higher R_{ct} resistance values in the 1.0 M Na$_2$SO$_4$ (pH=5) electrolyte. However, the electrode shows a noticeable difference in R_{ct} after the 10th cycle in different electrolytes, indicating different Faradaic reactions in the PA-COF electrode. This is caused by the intercalation of different ionic species, including Na$^+$, Na$^+/H^+$, and Zn$^{2+}/H^+$ intercalation, respectively. Furthermore, a longer charge-transfer time constant was measured for the PA-COF electrode in 1.0 M ZnSO$_4$, further confirming the Zn$^{2+}/H^+$ intercalation process in the PA-COF material (Table S3, Supporting Information).

The active sites for the ion storage in PA-COF were further detected by 13C solid-state NMR, where the peak evolution of pristine and discharged sample is shown in Figures 4a and S12. Three groups of peaks can be observed, for which an obvious chemical shift occurs at the carbon in the C−C=N group (i.e., from 138.1 to 140.9 ppm). This should be ascribed to the deshielding effect, which is triggered by Zn$^{2+}/H^+$ intercalation coupled with an electron-transfer process on the covalent scaffold. This result strongly manifests the chemical reaction between the active sites and Zn$^{2+}/H^+$ ions during the discharge process. The reaction sites for Zn$^{2+}/H^+$ intercalation in PA-COF were further analyzed by X-ray photoelectron spectroscopy (XPS) as shown in Figure 4b. We find that the pristine and the charged electrodes display two well-separated N 1s peaks in Figure 4b, whereas the discharged electrode shows only a broad N 1s peak and high Zn 2p signal (Figure 4b). This variation in N 1s peak is clearly correlated with the Zn$^{2+}/H^+$ intercalation process that occurs during the discharge cycle. The binding energy of N=C (398.9 eV) and N−C...
Figure 5. (a) In situ XRD mapping of PA-COF during the first three cycles in 1.0 M ZnSO₄ electrolyte. (b) Zinc percentage calculated from Zn²⁺ and Zn₆(OH)₆SO₄·5H₂O (ZOHS) during the first three discharge cycles. (c) Quantitative analysis of Zn²⁺ and H⁺ contributions to capacity.

Figure 6. Flexible supercapattery fabricated using PA-COF cathodes. (a) Thickness and bending measurements. (b) Digital image of 1.5 V LED light powered by tandem ZISs. (c) (Dis-)charge curves at initial state and after bending. (d) Cycling performance under repeated bending conditions.
(400.2 eV)37 in the pristine electrode is slightly decreased to 398.4 and 399.7 eV after the electrode is discharged to 0.2 V. The binding energy then returns to the initial state after the electrode is recharged to 1.6 V. Accordingly, the electrochemical active sites for Zn2+/H+ binding within the PA-COF skeleton were confirmed by the electrostatic potential surface (EPS) in Figure 4c, as shown in the red region near the corner nitrogen of two nearby phenanthroline rings. The reddish EPS indicates strong chemical affinity for cation coordination. The binding energies of PA-COF bonded with 6, 12, and 18 Zn2+ are negative in Figure 4d, indicating the efficient utilization of the nitrogen sites and a relatively large capacity for zinc batteries. Thus, the hexagonal 2D lattice with phenanthroline unit enriched with negative EPS region can efficiently host cations, such as Zn2+/H+, within the channels of the PA-COF.

The identification of the capacity contribution from Zn2+ and H+ in the PA-COF material is important to understand for the intercalation mechanism. We analyzed the reaction products in the first three (dis-)charge processes by in situ X-ray diffraction (Figure 5a) patterns. A regular variation of the intensity peaks at 16.2\textdegree (002) and 24.3\textdegree (003) can be found during the (dis-)charge process, mainly indicating the formation of the triclinic crystal phase Zn\textsubscript{4}(OH)\textsubscript{6}SO\textsubscript{4}·5H\textsubscript{2}O (ZOHs) (PDF no. 39-0688). This result is consistent with the SEM and elemental mapping images in Figure S8 (Supporting Information), where plenty of zinc hydroxide sulfate flakes can be observed. The growth of ZOHs nanoflakes primarily results from the increased OH− concentration near the cathode, which also reflects the intercalation of H+. A quantitative analysis of zinc and sulfur elements after the (dis-)charge process was then run using inductively coupled plasma atomic emission spectroscopy (ICP-AES). We found that 38.1%, 46.6%, and 48.2% Zn2+ is presented in PA-COF electrode, which accounts for 54.5%, 61.3%, and 60.0% of the total capacity in the first three cycles, respectively (Figure 5b and Table S4, Supporting Information). A regular variation of the fraction (Figure 5a) patterns. A regular variation of the binding energies of PA-COF bonded with 6, 12, and 18 Zn2+ makes primarily results from H+. We further confirm the capacity contributions through capacity measurement in the pure 1.0 M ZnSO\textsubscript{4} and H\textsubscript{2}SO\textsubscript{4} (pH 5) electrolyte, respectively (Figure 5c). The results show a Zn2+ intercalation of 59.3%, 63.3%, and 66%, which is consistent with the capacity contribution calculated from ICP-AES results.

A high-performance flexible supercapacitor was designed and fabricated for practical applications. The flexible supercapacitor has a thickness of 0.3 mm and can be bent to around 120\textdegree (Figure 6a), demonstrating a robust construction. The value of the open-circuit voltage (OCV) is 1.16 V, which is almost identical to that of the coin-cell type supercapattery (Figure S13, Supporting Information). This result demonstrates the reproducibility of the COF electrodes and batteries. A tandem battery was fabricated to achieve a higher voltage for the specific applications, such as lighting the 1.5 V LED lamp (Figure 6b, Video S1, Supporting Information). The flexible devices demonstrated a high stability under the bending conditions (Figure 6c,d). We find that the (dis-)charge profiles are very similar after the bending test, excluding a slight capacity decay (Figure 6c). The cycling measurement indicates that the flexible device tends to be stable after a small capacity fluctuation in the initial 60 cycles at 1.0 A g−1. These features demonstrate that the PA-COF flexible supercapacitor has potential in energy storage and wearable electronics applications.

We have synthesized a new phenanthroline covalent organic framework (PA-COF) and evaluated it as a cathode material for an aqueous zinc ion supercapacitor (ZIS). The as-synthesized PA-COF delivers a high capacity of 247 mAh g−1 at a current density of 0.1 A g−1. Furthermore, the COF cathode shows an average capacity decay of only 0.38% per cycle during 10 000 cycles at a current density of 1.0 A g−1. We confirmed the intercalation mechanism of Zn2+/H+ by electrochemical analysis and 2D solid-state NMR, in which the capacity contribution of Zn2+ and H+ was quantitatively analyzed. In addition, the function of the phenanthroline unit was identified to serve as the active ion-binding sites in PA-COF through the experimental analysis and theoretical simulations. We believe that our new COF design strategy opens a new direction for COF electrodes in aqueous ion batteries.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.0c00903.

Experimental section, Figures S1–S13, and Tables S1–S4 (PDF)

Video S1 (MP4)

AUTHOR INFORMATION

Corresponding Authors

Mohamed Eddaoudi — Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, Functional Materials Design, Discovery and Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0003-1916-9837; Email: mohamed.eddaoudi@kaust.edu.sa

Husam N. Alshareef — Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0001-5029-2142; Email: husam.alshareef@kaust.edu.sa

Authors

Wenxi Wang — Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0002-7088-0539

Vinayak S. Kale — Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, Functional Materials Design, Discovery and Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0001-7869-0660

Zhen Cao — Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Sharath Kandambeth — Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, Functional Materials Design, Discovery and Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Wenli Zhang — Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0002-6781-2826
Jun Ming — State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, PR China; orcid.org/0000-0001-9561-5718

Prakash T. Parvatkar — Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, Functional Materials Design, Discovery and Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Eddy Abou-Hamad — Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Osama Shekhal — Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, Functional Materials Design, Discovery and Development, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0003-1861-9226

Luigi Cavallo — Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; orcid.org/0000-0002-1398-338X

Complete contact information is available at: https://pubs.acs.org/10.1021/acsenergylett.0c00903

Author Contributions

‡W.W., V.S.K., and Z.C. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST) under Award Number OSR-CRG2017-3379.

REFERENCES

(1) Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Zinc-Ion Batteries: Materials, Mechanisms, and Applications. Mater. Sci. Eng., R 2019, 135, 58–84.

(2) Chen, L.; An, Q.; Mai, L. Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries. Adv. Mater. Interfaces 2019, 6 (17), 1900387.

(3) Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564.

(4) Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible Aqueous Zinc/manganese Oxide Energy Storage from Conversion Reactions. Nat. Energy 2016, 1 (5), 16039.

(5) Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniolte-intercalated Manganese Dioxide Nanolayers as a High-performance Cathode Material for An Aqueous Zinc-Ion Battery. Nat. Commun. 2018, 9 (1), 2906.

(6) Kundu, D.; Adams, B. D.; Duffort, V.; Vajragah, S. H.; Nazar, L. F. A High-Capacity and Long-life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nat. Energy 2016, 1 (10), 16119.

(7) He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS, Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7 (11), 1601920.

(8) Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. Layered MgV2O4·nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Lett. 2018, 3 (10), 2602–2609.

(9) Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy. Mater. 2015, 5 (2), 1400930.

(10) Diercks, C. S.; Yaghi, O. M. The Atom, The Molecule, and The Covalent Organic Framework. Science 2017, 355, aaa1585.

(11) Rodriguez-San-Miguel, D.; Zamora, F. Processing of Covalent Organic Frameworks: An Ingredient for a Material to Succeed. Chem. Soc. Rev. 2019, 48 (16), 4373–4386.

(12) Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhang, X.; Brunner, E.; Heine, T.; Berger, R.; Feng, X. A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as A High-Performance Cathode for Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2019, 58 (3), 849–853.

(13) Cote, A. P.; Benin, A. I.; Okcwig, N. W.; O’Keefe, M.; Matzger, A. J.; Yaghi, O. M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166–1170.

(14) Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1 (10), 16068.

(15) Kandambeth, S.; Dey, K.; Banerjee, R. Covalent Organic Frameworks: Chemistry beyond the Structure. J. Am. Chem. Soc. 2019, 141 (5), 1807–1822.

(16) Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; Lu, Z. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141 (24), 9623–9628.

(17) Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwav, S. K.; Lee, S. Y. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141 (14), 5880–5885.

(18) Luo, Z.; Liu, L.; Ning, J.; Lei, K.; Lu, Y.; Li, F.; Chen, J. A Microporous Covalent-Organic Framework with Abundant Accessible Carbyl Groups for Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2018, 57 (30), 9443–9446.

(19) Xu, J.; He, Y.; Bi, S.; Wang, M.; Yang, P.; Wu, D.; Wang, J.; Zhang, F. An Olefin-Linked Covalent Organic Framework as a Flexible Thin-Film Electrode for a High-Performance Micro-Super. capacitor. Angew. Chem., Int. Ed. 2019, 58 (35), 12065–12069.

(20) Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhanu, Z.; Yu, Y.; Zou, Z. A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photooxidation of CO2 to CO. J. Am. Chem. Soc. 2019, 141 (18), 7615–7621.

(21) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133 (49), 19816–19822.

(22) Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated Covalent Organic Frameworks via Michael Addition-Elimination. J. Am. Chem. Soc. 2017, 139 (6), 2421–2427.

(23) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131 (25), 8875–8883.

(24) Khayum M., A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Zinc Ion Interactions in A Two-Dimensional Covalent Organic Framework Based Aqueous Zinc Ion Battery. Chem. Sci. 2019, 10, 8889.

(25) Wang, X.; Chen, L.; Lu, F.; Liu, J.; Chen, X.; Shao, G. Boosting Aqueous Zn2+ Storage in 1,4,5,6-Naphthalenetetraarycalky Diacylhydride through Nitrogen Substitution. ChemElectroChem 2019, 6 (14), 3644–3647.

(26) Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Boosting Zn-Ion Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption. Adv. Mater. 2019, 31, 1904948.

(27) Segura, J. L.; Juarez, R.; Ramos, M.; Seoane, C. Hexaaza- triphenylene (HAT) Derivatives: from Synthesis to Molecular Design,
Self-organization and Device Applications. Chem. Soc. Rev. 2015, 44 (19), 6850−85.
(28) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive Energy Storage and Electric Power Supply Using An Aza-fused π-conjugated Microporous Framework. Angew. Chem., Int. Ed. 2011, 50 (37), 8753−7.
(29) Simpson, M. J.; Simpson, A. J. NMR of Soil Organic Matter. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J. C., Tranter, G. E., Koppenaal, D. W., Eds.; Academic Press: Oxford, 2017; pp 170−174.
(30) Shin, J.; Choi, D. S.; Lee, H. J.; Jung, Y.; Choi, J. W. Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries. Adv. Energy Mater. 2019, 9 (14), 190083.
(31) Uysal, A.; Tuncer, D.; Kir, E.; Koseoglu, T. S. Recovery of Nutrients from Digested Sludge as Struvite with A Combination Process of Acid Hydrolysis and Donnan dialysis. Water Sci. Technol. 2017, 76 (10), 2733−2741.
(32) Wang, X.; Bommier, C.; Jian, Z.; Li, Z.; Chandrabose, R. S.; Rodriguez-Perez, I. A.; Greaney, P. A.; Ji, X. Hydronium-ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as An Electrode. Angew. Chem., Int. Ed. 2017, 56 (11), 2909−2913.
(33) Li, W.; Wang, K.; Cheng, S.; Jiang, K. An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous “Rocking-Chair” Zinc Ion Battery. Adv. Energy Mater. 2019, 9 (27), 1900993.
(34) Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Adv. Mater. 2018, 30 (5), 1705580.
(35) Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. J. Phys. Chem. C 2007, 111 (40), 14925−14931.
(36) Mathis, T. S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective-Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007.
(37) Zhang, X.; Luo, X.; Zheng, X.; Wu, X.; Xu, H. Protonation-assisted Exfoliation of N-Containing 2D Conjugated Polymers. Small 2019, 15, 1903643.