An NFKB1 Promoter Insertion/Deletion Polymorphism Influences Risk and Outcome in Acute Respiratory Distress Syndrome among Caucasians

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Bajwa, Ednan K., Paul C. Cremer, Michelle N. Gong, Rihong Zhai, Li Su, B. Taylor Thompson, and David C. Christiani. 2011. “An NFKB1 Promoter Insertion/Deletion Polymorphism Influences Risk and Outcome in Acute Respiratory Distress Syndrome among Caucasians.” Edited by Amanda Ewart Toland. PLoS ONE 6 (5): e19469. https://doi.org/10.1371/journal.pone.0019469.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41426782

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
An NFKB1 Promoter Insertion/Deletion Polymorphism Influences Risk and Outcome in Acute Respiratory Distress Syndrome among Caucasians

Ednan K. Bajwa¹, Paul C. Cremer¹, Michelle N. Gong², Rihong Zhai³, Li Su³, B. Taylor Thompson¹, David C. Christiani¹,²,³*

¹Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, ²Division of Critical Care Medicine, Department of Medicine, Montefiore Medical Center, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America, ³Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Background: Nuclear factor-κB (NF-κB) is required for transcription of many pro-inflammatory genes and has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS). We hypothesized that a known functional polymorphism in the promoter of the NFKB1 gene may affect susceptibility to and outcome from ARDS.

Methods: A case control study was conducted among a cohort of patients admitted to the intensive care unit (ICU) with risk factors for the development of ARDS. 379 patients with ARDS and 793 at-risk controls were studied. Patients were followed for 60 days with development of ARDS as a primary outcome; ARDS-related mortality and organ dysfunction were secondary outcomes.

Results: Patients homozygous for the 4 base pair deletion in the promoter of NFKB1 (del/del) did not have an increased odds ratio (OR) of developing ARDS in unadjusted analysis but were more likely to develop ARDS in the presence of a significant interaction between the del/del genotype and age (OR 5.21, 95% CI 1.35–20.0). In multivariate analysis, patients with ARDS and the del/del genotype also had increased 60 day mortality (HR 1.54, 95% CI 1.01–2.36) and more severe daily organ dysfunction (P<.001) when compared to ARDS patients with other genotypes.

Conclusion: The del/del genotype is associated with an age-dependent increase in odds of developing ARDS. Patients with the del/del genotype and ARDS also have increased hazard of 60 day mortality and more organ failure.

Introduction

The acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality [1]. Common causes of ARDS include sepsis, pneumonia, aspiration, trauma, and multiple transfusions [2]. However, most individuals with these exposures do not develop ARDS [3]. Genetic variations in pro- and anti-inflammatory cytokines could account for some of this variability in risk, and several candidate genes involved in inflammation have been implicated in the development, severity, and mortality of ARDS [4–12].

Given its known functions in transcriptional regulation of chemokines and cytokines, Nuclear Factor Kappa-Beta (NF-κB) has been implicated in the pathogenesis of asthma, systemic inflammatory response syndrome (SIRS), and ARDS [13]. The NF-κB pathway is important for lung inflammation in mouse epithelial cells, and individuals with ARDS have increased activation of NF-κB in alveolar macrophages when compared to controls [14,15].

Prior to stimulation, NF-κB dimers reside primarily in the cytoplasm as an inactive complex with nuclear factor-κ B inhibitor (IκB). In response to extracellular stimuli, IκB is phosphorylated. This phosphorylation allows the NF-κB dimer to dissociate and translocate to the nucleus where it can bind DNA promoter sequences of pro-inflammatory genes [16]. However, genes in the NF-κB family do not ubiquitously upregulate innate immunity. One example is NFKB1, a gene on chromosome 4q that encodes a 105 kD protein. This protein can undergo cotranslational processing to produce a 50 kD protein (p50). p50 contains the N-terminal Rel homology domain common to all NF-κB family members but lacks the COOH-terminal transactivation domain. The N-terminal Rel homology domain is responsible for dimerization and DNA binding while the COOH-terminal transactivation domain is necessary for positive regulation of gene expression. Since p50 lacks this COOH-terminal transactivation domain, homodimers may repress transcription [16–18].
A four base pair insertion/deletion polymorphism in the promoter of *NFKB1* (-94ins/delATTG, rs28362491) has been previously identified, and *in vitro* assays have demonstrated decreased promoter activity with the deletion allele [19]. Therefore, patients with the deletion allele may have decreased transcription of repressive p50 subunits and inappropriate upregulation of pro-inflammatory genes. Adamzik and colleagues demonstrated that this deletion allele was associated with worse lung injury scores but not increased mortality in patients with ARDS [10]. However, the study had low statistical power because of small sample size. Their study also did not assess whether the deletion allele conferred a risk for the development of ARDS because only patients with established ARDS were included.

Given the possible role of the NF-κB pathway in the inflammatory process of ARDS and the potential for the deletion polymorphism in the promoter of *NFKB1* to affect transcriptional regulation, we examined whether the insertion/deletion polymorphism in the promoter of *NFKB1* might contribute to susceptibility to ARDS. In addition, we examined ARDS-related mortality and organ dysfunction as secondary outcomes.

**Methods**

**Study Enrollment and Design**

Study criteria and exclusion criteria have been previously described [5]. Briefly, adult ICU admissions to the Massachusetts General Hospital (Boston, MA) from September 1999 to May 2005 were screened for risk factors for ARDS development including sepsis, septic shock, pneumonia, aspiration, trauma, and massive transfusion. Eligible patients were approached and enrolled prospectively after informed written consent was obtained from subjects or appropriate surrogates. Patients were excluded if they had previously been enrolled, had a history of ARDS, self- or surrogate reported a non-Caucasian race, or were on immunosuppression. After November 2000, patients on corticosteroids were no longer excluded given the increased use in sepsis. Study design is illustrated in Figure 1. Patients were screened daily until death or intensive care unit (ICU) discharge and were defined as having ARDS if they developed respiratory failure requiring intubation and met American-European Consensus Committee (AECC) criteria for ARDS [2]. A case control design was employed using ARDS patients as cases and patients without ARDS as controls. By assuming a recessive model of inheritance with a high-risk allele frequency of 0.4 and genotypic relative risk of 2, 379 patients with ARDS and 759 controls would provide 80% power. The Massachusetts General Hospital Institutional Review Board approved the study.

**Genotyping**

Genomic DNA was extracted from whole blood samples using PureGene kits (Gentra Systems, Research Triangle, NC). The *NFKB1* promoter polymorphism (rs28362491) on chromosome 4q24 was genotyped using 5` nuclease (Taqman) assays with custom primers and probes (Applied Biosystems, Foster City, CA). Genotyping was performed by laboratory personnel blinded to case-control status. All samples were successfully genotyped, and 5% of samples (59) were randomly reanalyzed for quality control. Two separate readers (RZ and LS) interpreted results, and no genotyping differences were found.

**Statistical Analysis**

Hardy-Weinberg equilibrium of alleles was tested using PROC ALLELE in the SAS genetics software package (version 9.1, SAS computing). Univariate analysis was performed using chi-square tests for categorical variables and Wilcoxon Rank Sum or t-tests for continuous variables as appropriate. Variables were selected for inclusion into the final logistic regression model for ARDS development using a backwards stepwise selection algorithm at a threshold value of $P>0.1$. Age by decade and severity of illness (APACHE III score) were forced into the model after removing PaO$_2$/FiO$_2$ and age from the APACHE III score to avoid collinearity in the model [20]. Effect modification by covariates was evaluated by addition of interaction terms to the model; interaction terms were removed if they did not reach statistical significance. A recessive model was chosen for genotype (del/del patients vs. all other patients). We selected this model as a previous study demonstrated a statistically significant increase in ARDS severity among del/del patients when compared to other genotypes; a statistically significant difference was not seen when ins/del patients were compared to ins/ins patients [10].

Patients who developed ARDS were studied for secondary outcomes including 60-day mortality and organ dysfunction as determined by daily MODS score. Mortality was analyzed in a time-to-event analysis in a Cox proportional hazards model using patients with and without the del/del genotype as comparison groups. Age by decade and revised APACHE III score were forced into the model and the remainder of the covariates for the model were chosen using a stepwise selection algorithm as above. Covariates in the final model were tested for compliance with the proportional hazards assumption; no violations of the assumption were found. Multiple Organ Dysfunction (MODS) scores were recorded daily for 28 days or until death or ICU discharge. Average daily MODS scores over time were compared between cases and controls using repeated-measures ANOVA for unadjusted analysis, and using a mixed-effects model (PROC MIXED, SAS Software) adjusting for baseline severity of illness.

**Results**

**Study Population**

From October 1999 to February 2005, 18,332 adult ICU admissions were screened, and 1,376 patients were enrolled in the cohort for this study. Excluded patients included those of non-Caucasian ancestry (n = 99), those previously enrolled or with a...
history of ARDS (n = 97), and those excluded for other reasons such as indeterminate ancestry (n = 8). The final analysis included 379 patients with ARDS and 793 controls.

Characteristics of the study population are shown in Table 1. Patients with ARDS were significantly younger and had higher APACHE III scores than controls. They were also more likely to have septic shock, a pulmonary source of infection, to have received blood transfusion, presence of direct pulmonary injury, septic shock, and diabetes, as well as an interaction term between genotype and age that was found to be significantly associated with development of ARDS.

The interaction between age and genotype was further investigated by stratifying the analysis according to the median age of 65. Patients under 65 had increased odds of developing ARDS in the presence of the del/del genotype (ORadj 3.60; 95% CI 1.35–20.0). Covariates in the final model included age, APACHE III score, bilirubin level, receipt of any blood transfusion, presence of direct pulmonary injury, septic shock, and diabetes, as well as an interaction term between genotype and age that was found to be significantly associated with development of ARDS.

Univariate analysis did not demonstrate a significant difference in ARDS risk between cases and controls according to NFKB1 genotype (Table 2, p = 0.62). The results of the multivariate analysis of genotype association with ARDS risk are shown in Table 4. Patients homozgyous for the deletion allele had greater odds of developing ARDS than did patients who were wild-type homozgyous or heterozygous (adjusted odds ratio [ORadj] 5.21; 95% confidence interval [CI] 1.35–20.0). Covariates in the final model included age, APACHE III score, bilirubin level, receipt of any blood transfusion, presence of direct pulmonary injury, septic shock, and diabetes, as well as an interaction term between genotype and age that was found to be significantly associated with development of ARDS.

Genotype association with secondary outcomes

60-day mortality was higher among del/del patients when compared to all others (48% vs. 41%), but this was not statistically significant on univariate analysis (P = .22). The results of Cox proportional hazard analysis are shown in Table 5. The del/del genotype was associated with increased hazard of mortality at 60 days among patients with ARDS when compared to other genotypes (P = .04). Kaplan-Meier survival analysis is demonstrated graphically in Figure 2. When daily organ dysfunction scores were compared using repeated-measures ANOVA, del/del patients had significantly greater likelihood of more organ failures during their ICU stay (P < .0001). When this analysis was adjusted for baseline APACHE III score and presence of preexisting organ failure, the association remained significant (P < .0001). Daily MODS score compared by genotype are represented graphically in Figure 3.

Discussion

On unadjusted analysis, our study failed to show an association between patients homozgyous for the deletion allele in the promoter of NFKB1 and an increased risk of developing ARDS.

### Table 1. Characteristics of Study Population.

| Characteristic                  | At-risk controls | ARDS | P-value |
|--------------------------------|------------------|------|---------|
| Total n                        | 793              | 379  |         |
| Age (mean ± SD)                | 63.4±17.1        | 60.0±18.7 | 0.003  |
| Female gender                  | 327 (41%)        | 158 (42%) | 0.88   |
| APACHE III score (mean ± SD)   | 68.0±23.1        | 77.3±23.8 | <0.0001|
| Sepsis syndrome                | 299 (38%)        | 102 (27%) | 0.0003 |
| Pulmonary source               | 152 (19%)        | 82 (22%) | <0.0001|
| Extrapulmonary source          | 147 (19%)        | 20 (5%)  |         |
| Septic shock                   | 345 (44%)        | 219 (58%) | <0.0001|
| Pulmonary source               | 165 (21%)        | 161 (43%) | <0.0001|
| Extrapulmonary source          | 180 (23%)        | 58 (15%)  |         |
| Trauma                         | 64 (8%)          | 29 (8%)  | 0.80    |
| Received blood transfusion     | 406 (51%)        | 234 (62%) | 0.0006 |
| Aspiration                     | 59 (7%)          | 34 (9%)  | 0.36    |
| >1 risk factor for ARDS        | 73 (9%)          | 49 (13%) | 0.05    |
| Direct pulmonary injury        | 383 (48%)        | 275 (73%) | <0.0001|
| Diabetes                       | 213 (27%)        | 67 (18%) | 0.001   |
| Alcohol abuse history          | 70 (9%)          | 49 (13%) | 0.04    |
| Serum bilirubin (mg/dL, mean ± SD) | 1.2±2.9       | 1.8±4.0 | 0.008   |

doi:10.1371/journal.pone.0019469.t001

### Table 2. Genotype Frequencies.

| -94ins/delATTG genotype | At-risk controls (n = 793) | ARDS (n = 379) | P-value |
|-------------------------|---------------------------|---------------|---------|
| ins/ins                 | 326 (41%)                 | 146 (39%)     | 0.62    |
| ins/del                 | 347 (44%)                 | 177 (47%)     |         |
| del/del                 | 120 (15%)                 | 56 (15%)      |         |

doi:10.1371/journal.pone.0019469.t002
However, del/del patients did have an increased risk of developing ARDS in the presence of a significant interaction between genotype and age. Among patients who developed ARDS, the del/del genotype was associated with increased hazard of 60 day mortality and more severe daily organ dysfunction.

This study has a number of strengths. First, phenotype misclassification is minimized by prospectively determining ARDS using the AECC definition. Second, we use critically ill patients with ARDS risk factors as controls rather than healthy subjects or population-based controls. Although data collection and enrollment are simplified by use of such controls, healthy individuals, even those with a genetic predisposition to developing ARDS, would not be expected to do so in the absence of clinical risk factors. Similarly, population-based controls lack an appropriate stimulus for developing ARDS and therefore would not represent a group at equivalent risk for the disease. Including patients with different risk factors in the study reduces confounding from an association between the gene and any individual risk factor. Third, analysis was restricted to one ethnic group which minimizes the likelihood of false-positive results due to population stratification. However, since ancestry was self-reported, false-positive results due to population stratification are still possible. Generalizations to populations other than Caucasians may also be limited. Due to the study design, the results may not be generalized to immunocompromised patients and patients with other risk factors for ARDS. Another limitation is that NF-κB activity was not measured, and the functional significance of this polymorphism is not entirely clear. Furthermore, we cannot exclude the possibility that this polymorphism is in linkage disequilibrium with the causal variant. This work represents ongoing research into the genetics of ARDS among a cohort of critically ill patients [5,6,8,9,11,12].

### Table 3. Characteristics of Study Population by genotype.

| Characteristic                      | del/del patients | All other patients | p-value |
|-------------------------------------|------------------|--------------------|---------|
| Total n                             | 176              | 996                |         |
| Age (mean ± SD)                     | 61.8±17.6        | 62.4±18.5          | 0.66    |
| Female gender                       | 67 (38%)         | 418 (42%)          | 0.33    |
| APACHE III score (mean ± SD)        | 72.0±24.5        | 70.1±24.7          | 0.52    |
| Sepsis syndrome                     | 59 (34%)         | 342 (34%)          | 0.84    |
| -Pulmonary source                   | 37 (63%)         | 197 (58%)          | 0.46    |
| -Extrapulmonary source              | 22 (37%)         | 145 (42%)          |         |
| Septic shock                        | 84 (48%)         | 480 (48%)          | 0.91    |
| -Pulmonary source                   | 49 (58%)         | 277 (58%)          | 0.91    |
| -Extrapulmonary source              | 35 (42%)         | 203 (42%)          |         |
| Trauma                              | 9 (5%)           | 84 (8%)            | 0.13    |
| Received blood transfusion          | 84 (48%)         | 556 (56%)          | 0.05    |
| Aspiration                          | 20 (11%)         | 73 (7%)            | 0.07    |
| >1 risk factor for ARDS             | 16 (9%)          | 106 (11%)          | 0.53    |
| Direct pulmonary injury             | 102 (58%)        | 556 (56%)          | 0.60    |
| Diabetes                            | 29 (17%)         | 251 (25%)          | 0.01    |
| Alcohol abuse history               | 14 (8%)          | 105 (11%)          | 0.29    |
| Serum bilirubin (mg/dL, mean ± SD)  | 1.5±3.3          | 1.4±2.6            | 0.81    |

doi:10.1371/journal.pone.0019469.t003

### Table 4. Multivariate Analysis of risk of developing ARDS.

| Variable                          | OR adj*  | 95% CI   | p   |
|-----------------------------------|----------|----------|-----|
| Genotype (del/del)                | 5.21     | 1.35–20.0| 0.02|
| Age (per decade increase)         | 0.90     | 0.83–0.98| 0.02|
| Age×genotype interaction          | 0.97     | 0.95–0.99| 0.007|
| Apache III Score (per unit increase) | 1.01 | 1.00–1.02 | 0.008 |
| Septic Shock (yes/no)             | 1.80     | 1.35–2.41| <0.001|
| Direct Pulmonary Injury (yes/no)  | 3.46     | 2.58–4.65| <0.001|
| Blood transfusion (per unit received) | 1.04 | 1.02–1.06 | 0.002 |
| Diabetes history (yes/no)         | 0.59     | 0.42–0.82| 0.002|
| Serum bilirubin (per 1 mg/dL increase) | 1.03 | 0.99–1.08 | 0.12 |

*Odds ratio for effect on ARDS development, determined from logistic regression modeling.
doi:10.1371/journal.pone.0019469.t004

### Table 5. Multivariate analysis of risk of 60-day mortality (ARDS Only).

| Variable                          | HR adj*  | 95% CI   | p   |
|-----------------------------------|----------|----------|-----|
| Genotype (del/del)                | 1.54     | 1.01–2.36| 0.04|
| Age (per decade increase)         | 1.37     | 1.23–1.52| <0.0001|
| Apache III Score (per unit increase) | 1.03 | 1.02–1.04 | <0.0001|
| Blood transfusion (per unit received) | 1.03 | 1.02–1.04 | <0.0001|
| Trauma (yes/no)                   | 0.09     | 0.012–0.64| 0.02|
| Diabetes history (yes/no)         | 1.00     | 0.99–1.00| 0.26|
| Aspiration (yes/no)               | 1.36     | 0.81–2.29| 0.25|

*Hazard ratio for 60 day mortality among ARDS patients, determined from Cox proportional hazards modeling.
doi:10.1371/journal.pone.0019469.t005
ARDS is biologically plausible, the risk of Type I error is increased when multiple hypotheses of genetic association are tested. NF-κB is required for transcription of most proinflammatory molecules including cell adhesion molecules, chemokines, and cytokines. Given this central role in acute inflammatory processes, a common polymorphism in the promoter of NFKB1 may modulate the natural course of ARDS. In an in vitro promoter assay, cells transfected with the deletion allele of NFKB1 showed less activity than comparable constructs containing the insertion allele [19]. Therefore, patients with the del/del genotype may have decreased levels of p50.

**Figure 2. Kaplan-Meier analysis of 60-day survival by genotype.** Graph depicts 60-day survival for del/del patients vs. all other patients. P-value stated is for Cox proportional hazards model of adjusted hazard of death within 60 days. doi:10.1371/journal.pone.0019469.g002

**Figure 3. Plot of average daily MODS score by genotype.** Graph depicts 28-day MODS for del/del patients vs. all other patients. P-value stated is for mixed effects model adjusting for APACHE III severity of illness score and preexisting organ dysfunction. doi:10.1371/journal.pone.0019469.g003
Unlike other NF-kB members, p50 does not contain the COOH-terminal transactivation domain that is necessary for the positive regulation of gene expression. p50 may consequently form inhibitory homodimers that function as transcriptional repressors [21]. Mice lacking p50 are more sensitive to lipopolysaccharide (LPS)-induced shock syndrome by increased TNF-α levels and decreased survival [22]. During bacterial pneumonia in mice, p50 deficiency increases cytokine expression and worsens lung injury [23]. Furthermore, mice lacking p50 have increased neutrophilic lung inflammation after exposure to LPS [24]. In patients with the del/del genotype, decreased p50 synthesis may lead to decreased repressive homodimers and increased active heterodimers of the NF-kB complex. This balance may perpetuate the inflammatory injury of ARDS.

The relationship between age, the del/del genotype, and the development of ARDS also requires further clarification. Age-varying genetic associations have been found and validated recently in multiple populations and are now thought to contribute to inconsistent genetic association studies for complex disease [25]. Such age related effects of genotype frequency and gene effects and age related differences in inflammatory response have been shown in multiple studies [26–28]. Additionally, this type of interaction has been previously described in another ARDS candidate gene study [6].

**Immune dysregulation may be more likely as patients age.** In patients with septic shock, TNF-α levels are higher in elderly when compared to younger individuals [29]. This propensity for exuberant inflammation may overwhelm the presumed increase in innate immunity conferred by the del/del genotype. In younger patients without this inflammatory diathesis, the gene effect may be more clinically relevant. However, given that the inflammatory state of our patients was not examined, this finding should be used for hypothesis generation.

In conclusion, our study demonstrates an increased risk of ARDS in patients homozygous for the deletion allele of the NFKB1 polymorphism, with a significant interaction with age. Patients with this genotype who develop ARDS also have increased mortality and more severe organ dysfunctions. This study should be repeated in an independent population.

**Author Contributions**

Conceived and designed the experiments: EB MG BT DC. Performed the experiments: RZ LS. Analyzed the data: EB PC. Contributed reagents/materials/analysis tools: LS DC MG. Wrote the paper: EB PC MG BT DC. Genotyping: RZ LS.

**References**

1. Piantadosi CA, Schwartz DA (2004) The acute respiratory distress syndrome. Ann Intern Med 141: 460–470.
2. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, et al. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 816–824.
3. Hudson LD, Milberg JA, Anand D, Maunner RJ (1995) Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med 151: 293–301.
4. Marshall RP, Webb S, Hill MR, Humphries SE, Laurent GJ (2002) Genetic polymorphisms associated with susceptibility and outcome in ARDS. Chest 121: 685–698.
5. González MN, Zhou W, Williams PL, Thompson BT, Poiber L, et al. (2005) −308GA and TNFβ polymorphisms in acute respiratory distress syndrome. Eur Respir J 26: 382–389. doi:10.1183/09031936.05.00000505.
6. González MN, Thompson BT, Williams PL, Zhou W, Wang MZ, et al. (2006) Interleukin-10 polymorphism in position −1082 and acute respiratory distress syndrome. Eur Respir J 27: 674–681. doi:10.1183/09031936.06.00014605.
7. Hsu W-C, Grenmann M, van Griensven M, Meier S, Haesevoets S, et al. (2007) Association of IL-8−251A/T polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine 37: 192–199. doi:10.1016/j.cyto.2007.03.008.
8. Liu Z, Zhan P, Gong MG, Thompson BT, Su L, et al. (2007) Inhibitor kappa-b-alpha haemoptysis GTTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians. Crit Care Med 35: 893–900. doi:10.1097/01.CCM.0000256845.92640.38.
9. Bajwa EK, Yu C-L, González MN, Thompson BT, Christianson DC (2007) Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 35: 1290–1295. doi:10.1097/01.CCM.0000262043.22758.F4.
10. Adamczik M, Frey UH, Rieman K, Sext S, Beierleinde M, et al. (2007) Insertion/deletion polymorphism in the promoter of NFKB1 influences severity but not mortality of acute respiratory distress syndrome. Intensive Care Med 33: 1199–1203. doi:10.1007/s00134-007-0649-9.
11. Su L, Zhai R, Sheu C-C, Gallagher DC, González MN, et al. (2009) Genetic variants in the angiotensin 2 gene are associated with increased risk of ARDS. Intensive Care Med 35: 1024–1030. doi:10.1007/s00134-009-1413-8.
12. Sheu CC, Zhai R, Su L, Tejera P, González MN, et al. (2009) Sex-specific association of epidermal growth factor gene polymorphisms with acute respiratory distress syndrome. Eur Respir J 33: 543–550. doi:10.1183/09031936.00094109.
13. Christman JW, Sadilok RT, Blackwells TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117: 1482–1487.
14. Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, et al. (1996) Nuclear factor-kappaB signaling in alveolar macrophages of patients with acute respiratory distress syndrome. Crit Care Med 24: 1285–1292.
15. Cheng DS, Han W, Chen SM, Sherrill TP, Chont M, et al. (2007) Airway epithelial controls lung inflammation and injury through the NF-kappaB pathway. J Immunol 178: 6504–6513.
16. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071. doi:10.1056/NEJM199704103361506.
17. Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8: 837–840. doi:10.1038/nri2423.
18. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132: 344–362. doi:10.1016/j.cell.2008.01.020.
19. Karban AS, Okazaki T, Pannyanuel C, Gallegos T, Potter J, et al. (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 35–45. doi:10.1093/hmg/ddh080.
20. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, et al. (1991) The APACHE II prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100: 1619–1636.
21. Bonizzi G, Karin M (2004) The two NF-kappab activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 290–298. doi:10.1016/j.it.2004.03.008.
22. Gadeva M, Tomczak MF, Zhang M, Wang YY, Dull K, et al. (2004) A role for NF-kappaB subunits p50 and p65 in the inhibition of lipopolysaccharide-induced shock. J Immunol 173: 5786–5793.
23. Mizgerd JP, Lupa MM, Kogan MS, Warren HB, Kobzik L, et al. (2003) Nuclear factor-kappaB p50 limits inflammation and prevents lung injury during Escherichia coli pneumonia. Am J Respir Crit Care Med 168: 810–817. doi:10.1164/rccm.200303-412OC.
24. Han W, Joo M, Everhart MB, Christman JW, Vuil FE, et al. (2009) Myeloid cell control termination of lung inflammation through the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 296: L320–327. doi:10.1152/ajplung.90485.2008.
25. Lasky-Su J, Lyon HE, Emison V, Heald IM, Molony C, et al. (2006) On the replication of genetic associations: timing can be everything! Am J Hum Genet 82: 499–516. doi:10.1086/ajhg.2006.01.18.
26. Invidia I, Salvisti S, Altinari S, Piermini M, Panouria MP, et al. (2010) The frequency of Klotho K-VS polymorphism in a large Italian population, from young subjects to centenarians, suggests the presence of specific time windows for its effect. Biogerontology 11: 67–73. doi:10.1007/s10522-009-9229-9.
27. Albani D, Batielli S, Polito L, Prato F, Pesarini M, et al. (2009) Interleukin-6 plasma level increases with age in an Italian elderly population (*The Trento Longevity”-Trelong-study) with a sex-specific contribution of rIL60750 polymorphism. Age (Dordr) 31: 155–162. doi:10.1007/s11357-009-9202-9.
28. Di Bona D, Vasto S, Capurso C, Christiansen L, Deiana L, et al. (2009) Effect of interleukin-6 polymorphisms on human longevity: a systematic review and meta-analysis. Aging Rev 8: 36–42. doi:10.1016/j.arcger.2008.09.001.
29. Marki PE, Zaloga GP (2001) The effect of aging on circulating levels of proinflammatory cytokines during septic shock. Naresert H Study Investigators. J Am Geriatr Soc 49: 5–9.