Proteomic Analysis of *Pseudomonas putida* Reveals an Organic Solvent Tolerance-Related Gene *mmsB*

Ye Ni‡, Liang Song, Xiaohong Qian, Zhihao Sun

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China

Abstract

Organic solvents are toxic to most microorganisms. However, some organic-solvent-tolerant (OST) bacteria tolerate the destructive effects of organic solvent through various accommodative mechanisms. In this work, we developed an OST adapted strain *Pseudomonas putida* JUCT1 that could grow in the presence of 60% (v/v) cyclohexane. Two-dimensional gel electrophoresis was used to compare and analyze the total cellular protein of *P. putida* JUCT1 growing with or without 60% (v/v) cyclohexane. Under different solvent conditions, five high-abundance protein spots whose intensity values show over 60% discrepancies were identified by MALDI-TOF/TOF spectra. Specifically, they are arginine deiminase, carbon-nitrogen hydrolase family putative hydrolase, 3-hydroxyisobutyrate dehydrogenase, protein chain elongation factor EF-Ts, and isochorismatase superfamily hydrolase. The corresponding genes of the latter three proteins, *mmsB*, *tsf*, and *PSEEN0851*, were separately expressed in *Escherichia coli* to evaluate their effect on OST properties of the host strain. In the presence of 4% (v/v) cyclohexane, *E. coli* harboring *mmsB* could grow to 1.70 OD₆₀₀, whereas cell growth of *E. coli* JM109 (the control) was completely inhibited by 2% (v/v) cyclohexane. Transformants carrying *tsf* or *PSEEN0851* also showed an increased resistance to cyclohexane and other organic solvents compared with the control. Of these three genes, *mmsB* exhibited the most prominent effect on increasing OST of *E. coli*. Less oxidation product of cyclohexane was detected because *mmsB* transformants might help keep a lower intracellular cyclohexane level. This study demonstrates a feasible approach for elucidating OST mechanisms of microorganisms, and provides molecular basis to construct organic-solvent-tolerant strains for industrial applications.

Introduction

Whole-cell catalyzed reactions offer many advantages over those catalyzed by isolated enzymes. Biocatalytic processes involving multiple enzymes or co-factor regeneration are more feasible with whole-cell system. Additionally, the intracellular environment of microbial cells (such as pH, temperature, and ionic concentration) is usually favorable for enzymatic activity and stability [1]. However, aqueous/organic solvent biphasic system is often introduced in biotransformation reactions for improved substrate/product solubility, reduced inhibitory effect, as well as easier product recovery [2]. In an octanol/water two-phase reaction system equipped with hollow-fiber membrane, 3-methylcatechol is produced from toluene by an organic-solvent-tolerant (OST) *Pseudomonas putida* [3], and similarly, bioconversion of glucose to phenol is achieved in a biphasic system catalyzed by *P. putida* cells [4]. In our previous study, a dibutyl phthalate/water biphasic system was used to produce (R)-2-hydroxy-4-phenylbutyric acid by *Candida krusei* [5]. Most organic solvents used in reaction system are toxic to microbial cells and could compromise their viability. Organic solvent molecules disrupt the lipid bilayer of cell membrane, and thus break the structural and functional integrity of cells. The accumulation of various solvents in cell membrane is a major cause for the toxicity of organic solvents, which are often structurally unrelated [6,7]. Some microorganisms can assimilate toxic organic solvents when the solvent concentrations are low [8,9]. For some organic solvents, toluene for example, concentration as low as 0.1% (v/v) was toxic enough to microbial cells. It is therefore important to understand the mechanisms of OST in microorganisms for the development of solvent-tolerant strains of industrial interest.

Since the first OST *Pseudomonas putida* strain was isolated in 1989 [10], OST mechanisms of microorganisms have been investigated over the past two decades. In *P. putida*, cell membrane fluidity and solvent tolerance could be adjusted by compositions of membrane lipids and lipopolysaccharide [11]. Iken and de Bont first reported an energy-dependent toluene export system in *P. putida* [12]. Later, three toluene efflux pumps (TtgABC, TtgDEF, and TtgGHI), energy transduction complex (TonB), as well as flagellum biosynthesis genes were proven to be correlated with innate solvent tolerance of *P. putida* [13−17].

Several OST *Escherichia coli* mutants were obtained by spontaneous or nitrosoguanidine (NTG) mutations [18]. Similar OST mechanisms (such as membrane properties and efflux pumps) also exist in *E. coli*. A low-level adherence of solvent to OST *E. coli* cells...
was observed due to their less hydrophobic cell surface than parent strains [19]. As a probable member of mar-sox regulon, outer-membrane protein TolC is a portion of AcrAB-TolC solvent-extruding pump and plays an important role in maintaining and elevating the OST of E. coli [20,21].

In order to elucidate the microbial OST mechanisms, Hayashi and Shimizu et al. investigated the gene expression profiling by DNA microarray. Membrane-associated proteins FruA and GlpC were recognized as OST-related proteins, which may change the cell surface properties and reduce the hydrophobicity of cytomembrane [22,23]. Additionally, the over-expression of pueR and manXZ could result in increased solvent-tolerance of E. coli JA300, whereas the individual expression of manX, man1, or manZ has no such effect [24,25].

Two-dimensional gel electrophoresis (2-DE) is commonly used to characterize proteomic differences associated with progression of certain phenotype. In proteomics analysis of Pseudomonas putida, Segura and Volkers et al. identified several energy transport and stress-related proteins (CspA, XenA, ATP synthase, etc.) which participate in OST response [26,27]. In this study, proteomics analysis using 2-DE was also adopted in the exploration of microbial solvent tolerance.

Here, we used 2-DE to compare and analyze the total cellular protein of an OST adapted strain P. putida JUCT1 growing with or without organic solvent cyclohexane. We also identified protein spots with significantly enhanced expression level by MALDI-TOF/TOF spectra. It is confirmed that three genes (mmsB, tsf, and PSEEN0851) contribute to the OST phenotype of P. putida. The function of these genes suggests that OST mechanisms in microbial cells could also be related to mar-sox regulon, some undefined stress-response mechanism, and amino acids metabolic pathways.

Results

Adaptation of P. putida in Cyclohexane

An OST strain P. putida JUCT1 was obtained through gradient adaptation in medium containing cyclohexane over 12 serial transfers. Fig. 1 shows the tolerant level of P. putida JUCT1 towards various organic solvents including decalin (Log Pow = 4.8), methyl cyclohexane (Log Pow = 3.7), cyclohexane (Log Pow = 3.2), and toluene (Log Pow = 2.5). Log Pow is defined as the common logarithm of a partition coefficient (Pow) of the solvent between n-octanol and water, and is regarded as an index of the solvent toxicity for most microorganisms [6,10]. Compared with cell growth in medium without solvent (1.0 OD660 for both P. putida JUCT1 and JWCS), OST adapted strain P. putida JUCT1 could grow well in the presence of 60% (v/v) of all solvents tested. Cell densities (OD660) of 0.94 (decalin), 0.91 (methyl cyclohexane), 0.86 (cyclohexane) and 0.78 (toluene) were attained after 5-h incubation in various solvents. In contrast, the growth of parent strain P. putida JWCS was almost restrained by high concentration of toluene (OD660 increase <0.1), while around 0.15 to 0.45 OD660 increase was observed with decalin, methyl cyclohexane and cyclohexane. Our results also indicate that the Log Pow of organic solvent is closely related to their inhibition on cell growth, the lower the Log Pow value, the higher the toxicity of the solvent [9,10].

2-DE Analysis of Total Cellular Protein of P. putida JUCT1

Various chaotropes, surfactants, and reducing agents were added to extract the total cellular protein of P. putida JUCT1, and about 6 mg protein was extracted from 0.1 g wet cells. From the image of 2-D gels, 486 spots were detected (Fig. 2). The quantity of total protein spots is similar to P. putida UW4 in a previous report [28]. In total cellular protein of P. putida JUCT1 grown in the presence of 60% (v/v) cyclohexane (Fig. 2b), the expression level of 22 proteins were detected to be significantly higher than their counterpart without solvent (Fig. 2a), showing over 50% discrepancies in intensity values between two samples. In the 2-DE images, a majority of 22 protein spots are low-abundance proteins, and 5 high-abundance proteins whose expression levels were up-regulated for over 60% were chosen for further study (Fig. 2h, 2c).

Protein Identification by MALDI-TOF/TOF

Five high-abundance proteins were in-gel digested and analyzed by MALDI-TOF/TOF spectra based on search against NCBI database. For each protein, 1–4 unique matching peptide was observed, and over 60% of amino acids sequences were covered by matching peptides (7–24 peptides/protein) (Table 1). According to above stringent database comparison, five proteins match corresponding Pseudomonas proteins: arginine deiminase, carbon-nitrogen hydrolase family putative hydrolase, 3-hydroxyisobutyrate dehydrogenase, protein chain elongation factor EF-Ts, and isochorismatase superfamily hydrolase, which are encoded by arcA (GenBank: C017111), PSEE01090 (GenBank: C013980), mmsB (GenBank: JC7926), tsf (GenBank: C016908), and PSEE0851 (GenBank: C013762) respectively (Table 2).

Arginine deiminase pathway is known as a major energy source in many bacteria and archaea. In accordance with our study, the expression level of arginine deiminase was also enhanced in the proteomics analysis of Pseudomonas putida DOT-T1E under toluene shock, and the elevated arginine deiminase is presumed to be helpful for generating enough energy to repel organic solvents [26]. Carbon-nitrogen hydrolase family putative hydrolase, sharing over 90% similarity with amino acid sequence of nitrate/cyanide hydratase and apolipoprotein N-acyltransferase (YP_001667192) from Pseudomonas putida GB-1, has not been previously reported in OST-related mechanism, and its role in the solvent response of P. putida is currently under investigation. 3-Hydroxyisobutyrate dehydrogenase is essential for valine metab-
olism, as well as the degradation of leucine and isoleucine. It catalyzes the reversible oxidation of L-3-hydroxyisobutyrate to methylmalonate semialdehyde [29]. Protein chain elongation factor EF-Ts plays an important role in the protein translation process, and catalyzes the regeneration of EF-Tu-GDP complex. Similarly, translation-related proteins have been identified to respond to toluene stress in P. putida strains DOT-T1E and S12, such as translation elongation factor Tuf-1 [26] and elongation

Table 1. MALDI-TOF/TOF analysis of peptides from 5 high-abundance proteins.

SSP	Protein	No. of peptides	No. of unique peptides	Total sequence	Sequence coverage (%)
3001	arginine deiminase	24	3	418	68.6
2904	putative hydrolase, carbon-nitrogen hydrolase family	10	2	263	73.1
3202	3-hydroxyisobutyrate dehydrogenase	11	1	295	64.8
6302	protein chain elongation factor EF-Ts	19	4	287	81.5
6101	isochorismatase superfamily hydrolase	7	1	206	67.2

*Number of peptides identified for individual protein in MALDI-TOF/TOF analysis.

**Number of unique peptides identified for individual protein.

†Total amino acid sequence of peptides identified for individual protein.

‡Percentage of amino acid sequence covered by peptides of individual protein.

doi:10.1371/journal.pone.0055858.t001
factor TuB [27]. The function and mechanism of isochorismatase superfamily hydrolase are however still unclear [30]. In this study, the latter three genes, \textit{mmsB}, \textit{tsf}, and \textit{PSEEN0851}, were further investigated for their roles in microbial OST.

Solvent Tolerance of \textit{mmsB}, \textit{tsf}, and \textit{PSEEN0851} Transforms

DNA sequencing analysis demonstrates that gene sequence of the open reading frame (including promoter) of \textit{mmsB}, \textit{tsf}, and \textit{PSEEN0851} from \textit{P. putida} JUCT1 are completely the same as those from its parent strain, indicating that no mutation was occurred, and the enhanced expression level of these genes is mainly responsible for the solvent tolerance under cyclohexane condition.

In order to validate the OST-related function of above three genes, recombinant plasmids harboring \textit{mmsB}, \textit{tsf}, and \textit{PSEEN0851} were constructed and over-expressed in \textit{E. coli} JM109 individually (Fig. 3). The recombinant strains were cultured in LBGMg medium till 0.2 OD\textsubscript{660} when cyclohexane was added. As shown in Fig. 4, all 3 transforms expressed higher cyclohexane tolerance than the control (\textit{E. coli} JM109 carrying empty pQE-80L) when grown in the presence of 4% (v/v) cyclohexane. Especially for recombinant strain over-expressing \textit{mmsB} gene, a stunning cell density of 1.70 OD\textsubscript{660} was reached after 8 h. The expression of \textit{PSEEN0851} and \textit{tsf} also contributed to the higher OST of recombinant \textit{E. coli}, rendering 0.58 and 0.25 increase in OD\textsubscript{660} respectively. For the control strain, however, no appreciable growth was observed after the addition of cyclohexane.

Colony-forming efficiency, a commonly used experiment to evaluate the OST of microbial cells [25], was also adopted in this study to examine the effect of three genes. Approximately 107, 105, 103, 102, and 101 cells were dropped in the spots on agar plate which was then overlaid with decalin (Fig. 5). Similar as liquid cultivation in 4% cyclohexane, \textit{mmsB} transformants exhibited the highest OST among three genes. The colony-forming efficiency of \textit{E. coli} JM109 was markedly increased by over-expression of \textit{PSEEN0851}. The expression of \textit{tsf} also slightly increased the solvent tolerance of JM109. Therefore, three genes (\textit{mmsB}, \textit{tsf} and \textit{PSEEN0851}) identified in 2-DE analysis of \textit{P. putida} JUCT1 could be associate with the OST performance of other Gram-negative strains such as \textit{E. coli}.

Furthermore, the potential oxidation or ring cleavage of cyclohexane might also contribute to the observed OST performance. In this study, the cyclohexane oxidation by \textit{mmsB} transformants and \textit{E. coli} JM109 (the control) was tested. Based on GC-MS analysis, cyclohexane was oxidized to cyclohexanol by both strains (Table 3). Compared with the control, lower cyclohexanol (0.206 g/L vs 0.431 g/L) and higher cyclohexane (0.695 g/L vs 0.452 g/L) levels were detected in the supernatant of \textit{mmsB} transformants cell suspension. Apparently, 3-hydroxyisobutyrate dehydrogenase (encoded by \textit{mmsB}) does not catalyze the oxidation or ring cleavage of cyclohexane. It is presumed that 3-hydroxyisobutyrate dehydrogenase, which exhibited prominent effect on enhancing OST of \textit{E. coli}, could help keep a relative lower intracellular cyclohexane concentration by affecting cell membrane composition and accelerating organic solvent extrusion, and as a result, less cyclohexane was oxidized into cyclohexanol by cytoplasmic enzyme system of \textit{mmsB} transformants.

Discussion

Adaptation of microorganisms to certain environment is a favorable method to obtain strain with improved phenotype. In this study, an OST strain \textit{P. putida} JUCT1 capable of growing in the presence of 60% (v/v) cyclohexane as well as high concentration of other organic solvents was obtained after adaptation in cyclohexane. Adaptation of \textit{E. coli} strains to organic solvents was also conducted, but all of them failed to grow in the presence of 2% (v/v) cyclohexane (data not shown).

Table 2. Five high-abundance protein spots identified by MALDI-TOF/TOF.

SSP	Protein	Gene	Intensity values of spot
3001	arginine deiminase	arcA	21910.2±174.6 36522.2±298.7
2904	putative hydrolase, carbon-nitrogen hydrolase family	PSEE1080	6575.6±34.1 12626.5±139.6
3022	3-hydroxyisobutyrate dehydrogenase	mmsB	4699.5±46.4 11110.1±66.9
6302	protein chain elongation factor EF-Ts	tsf	8314.4±51.7 14962.7±102.4
6101	Isochorismatase superfamily hydrolase	PSEE0851	8520.3±32.6 15962.7±82.2

*The expression level of \textit{P. putida} JUCT1 grown in nutrient medium without solvent.

*The expression level of \textit{P. putida} JUCT1 grown in the presence of 60% (v/v) cyclohexane.

![Figure 3. SDS-PAGE analysis of expression of \textit{mmsB}, \textit{PSEE0851}, and \textit{tsf} in \textit{E. coli} JM109.](image)

The transformants were grown in LB at 37°C and induced by 1 mM IPTG. Lanes: M, molecular mass marker; 1, pQE-80L (as control); 2, pQE-\textit{mmsB}; 3, pQE-\textit{PSEE0851}; 4, pQE-\textit{tsf}. Arrowheads indicate the locations of recombinant proteins.

doi:10.1371/journal.pone.0055858.g003
As a powerful protein separation technique, 2-DE is widely used in the characterization of complex protein samples associated with certain phenotype. Matching protein spots between gels of similar samples could be quantified using software package such as PDQuest. In order to identify proteins associated with OST of \textit{P. putida} JUCT1 and further understand its mechanisms, 2-DE was applied in this study to analyze its total cellular protein samples under different solvent conditions. Three proteins were identified to be important for solvent tolerance, specifically 3-hydroxyisobutyrate dehydrogenase, protein chain elongation factor EF-Ts, and isochorismatase superfamily hydrolase.

Both liquid cultivation and colony-formation experiments indicate that the expression of 3-hydroxyisobutyrate dehydrogenase (encoded by \textit{mmsB}) conducted to the highest OST among three proteins identified. Enhanced expression of 3-hydroxyisobutyrate dehydrogenase under solvent stress could be an important way to produce more energy for extruding toxic organic solvents, because this enzyme plays an essential role in the catabolism of amino acids including valine, leucine and isoleucine. Additionally, the enzymatic mechanism and evolutionary origin of 3-hydroxyisobutyrate dehydrogenase is similar to that of 6-phosphogluconate dehydrogenase, and both of them belong to the 3-hydroxyacid dehydrogenase family [29,31,32]. In \textit{E. coli}, the 6-phosphogluconate dehydrogenase encoding gene \textit{zwf} belongs to the \textit{mar-sox} regulon genes, which are important for the regulation of a number of stress response genes (several regulator genes such as \textit{robA}, \textit{soxS}, \textit{marA} have similar functions), and the efflux pump such as AcrAB-TolC is under the control of stress response genes [20,22]. In \textit{P. putida}, similar mechanism (such as Mex efflux systems) also exists [14,33]. It is therefore speculated that 3-hydroxyisobutyrate dehydrogenase is involved in the OST regulation in \textit{P. putida} and dedicates to the enhanced solvent tolerance.

In \textit{E. coli}, isochorismatase catalyzes the hydrolysis of isochorismate to 2,3-dihydroxy-2,3-dihydrobenzoate and pyruvate, although the specific function of isochorismatase superfamily hydrolase in \textit{Pseudomonas} is unknown [30]. Amino acid sequence alignment shows that the similarity between isochorismatase

Table 3. The oxidation of cyclohexane by \textit{E. coli} strains.

	\textit{E. coli JM109 (pQE80L-\textit{mmsB})}	\textit{E. coli JM109}
Cyclohexane (g/L)	0.695±0.010	0.452±0.012
Cyclohexanol (g/L)	0.206±0.013	0.431±0.006

Incubation condition: 37°C for 8 h with cyclohexane (1%, w/v).

doi:10.1371/journal.pone.0055858.t003
superfamily hydrolase in *P. putida* JUCT1 and *E. coli* is more than 94%. The two enzymes may share similar activity as well as OST-related functions by unknown mechanisms.

Protein chain elongation factor EF-Ts (encoded by *tsf*) is another protein identified from 2-DE images based on its intensity discrepancy. Our result shows that the OST of *E. coli* was slightly enhanced by the over-expression of protein chain elongation factor EF-Ts (encoded by *tsf*), suggesting that EF-Ts might assist in the expression of certain stress-response proteins to improve the solvent tolerance. Similar result has been reported in toluene expression of certain stress-response proteins to improve the OST (enhanced by the over-expression of protein chain elongation factor EF-Ts (encoded by *tsf*)) in *P. putida*, suggesting that EF-Ts might assist in the expression of certain stress-response proteins to improve the solvent tolerance. Similar result has been reported in toluene expression of certain stress-response proteins to improve the OST (enhanced by the over-expression of protein chain elongation factor EF-Ts (encoded by *tsf*)) in *P. putida*.

The OST mechanisms in Gram-negative bacteria are not completely understood so far. Despite their different taxonomy, several similar mechanisms in overcoming the destructive effects of organic solvents have been reported in *Pseudomonas* and *E. coli* strains, such as efflux pump and changing of membrane structure. This study demonstrates a feasible approach to explain microbial OST mechanisms, and provides molecular basis to construct OST microorganisms in industrial applications such as whole-cell biocatalysis, alcohol production.

Materials and Methods

Bacterial Strains and Plasmids

Pseudomonas putida JUCS capable of growing in the presence of 1% (v/v) toluene was isolated from wastewater, and was identified as *Pseudomonas putida* based on morphological and biochemical characterization, as well as 16S rRNA sequence analysis. *P. putida* JUCS is deposited at China General Microbiological Culture Collection Center (CGMCC) under the accession number CCTCC M 2011442. *P. putida* JUCT1 was obtained by gradient adaptation in cyclohexane from *P. putida* JUCS. *E. coli* JM109 (traDS6, proAB+, lacIq, lacZ AM1.5) is an organic-solvent sensitive strain and was used as the host strain. The *vi* repressed pQE-80L kan vector was purchased from Qiagen Co. (Germany).

Growth and Adaptation Conditions

Pseudomonas putida JUCS cells was grown in nutrient broth medium (consisting of 1% (w/v) peptone, 0.3% beef extract, 0.5% NaCl, pH 7.0) under 30°C in a shaker. To maintain the solvent tolerance, 1% (v/v) toluene was added to the nutrient broth medium. *E. coli* JM109 cells was grown in LB medium at 37°C. Cell growth was monitored by measuring optical density at 600 nm.

P. putida JUCS was initially cultured under 1% (v/v) toluene, and transferred to nutrient medium containing 5% (v/v) cyclohexane. Then the culture was transferred to nutrient medium agar plate (11 cm) overlaid with 500 µL cyclohexane. The colonies obtained from agar plate were further cultured under higher cyclohexane concentration of 10% (v/v), followed by isolating from agar plate overlaid with 1 ml of cyclohexane. The cultivation for each transfer step was at 30°C for 12 h. As a result of adaptation in medium supplemented with escalating cyclohexane in each transfer; a cyclohexane-tolerant *P. putida* strain, referred as *P. putida* JUCT1, capable of growing in the presence of 60% (v/v) cyclohexane was finally obtained.

Extraction of Total Cellular Protein

Microorganism protein sample was prepared as follows. *P. putida* JUCT1 was cultivated aerobically to mid-exponential phase (0.8 A660) at 30°C in the presence of 60% (v/v) cyclohexane, and the strain grown in nutrient medium was used as control. Cells were harvested by centrifugation at 6,000 × g and 4°C for 5 min, and the cell pellet was washed three times with cold water to reduce the ion concentration. Then the cell pellet was resuspended in ice buffer (0.167 g wet cells/ml) containing 8 M urea, 2 M thiourea, 65 mM DTT, 4% (w/v) CHAPS, 40 mM Tris-base and 0.001% (w/v) bromophenol blue. The cells were disrupted by ultrasonication (300 w, pulse 1 s, pause 3 s for 30 min) in ice bath. The cell-free extract was obtained by centrifugation at 20,000 × g and 4°C for 15 min, and was used as total cellular protein for further 2-DE analysis. The protein concentration was determined by RC-DC Protein Assay Kit (Bio-Rad).

2-D Electrophoresis

In our preliminary experiment, IPG 3-10 strips (7 cm, GE Healthcare, Pittsburgh, PA) were used to determine zone allocation of protein samples. The result indicates that most proteins locate on the pH 4 to 7 region of the IPG strips (image not shown). The total cellular protein samples were then separated by IPG 4–7 strips (13 cm, GE Healthcare). Briefly, the Immobiline IPG Drystrip was hydrated with 400 µg of total cellular protein sample in 250 µl of rehydration buffer which contains 8 M urea, 2 M thiourea, 65 mM DTT, 4% (w/v) CHAPS, 0.2% (v/v) IPG buffer (pH 4–7), 40 mM Tris-base and 0.001% (w/v) bromophenol blue for 16 h at 20°C. The isoelectric focusing (IEF) was carried out using Ettan IPGphor 3 system (GE Healthcare) at 20°C as follows: 50 V for 30 min, gradient to 150 V for 30 min, gradient to 500 V for 1 h, gradient to 1,000 V for 2 h, gradient to 4,000 V for 3 h, gradient to 8,000 V for 3 h, holding at 8,000 V, 40,000 V/h, and for the total of 67,400 Vh. After IEF, the IPG strips were incubated in equilibration buffer I for 15 min, then with the equilibration buffer II for 15 min. Equilibration buffer I contains 8 M urea, 2% (w/v) SDS, 0.375 M Tris-HCl (pH 8.8), 20% (v/v) glycerin and DTT (20 mg ml⁻¹); and equilibration buffer II is the same as I except iodoacetamide (25 mg ml⁻¹) is used instead of Dithiothreitol (DTT). The IPG strips were then washed twice with ultrapure water and transferred onto 12% SDS-polyacrylamide gel. The second dimension electrophoresis was conducted at 10°C with two steps: step 1, 2 w gel⁻¹ for 1 h; step 2, 8 w gel⁻¹ for 4 h.

After 2-DE was completed, the 2-D gel was stained for 2 h with coomassie brilliant blue dye and de-stained in solution containing 10% (v/v) methanol and 10% (v/v) acetic acid. The de-stained gel

Table 4. Primers for PCR amplification of genes mmsB, tsf, and PSEEN0851.
Primer
mmsB-F
mmsB-R
tsf-F
tsf-R
PSEEN0851-F
PSEEN0851-R

The underlined sequences are the restriction enzymes sites.

doi:10.1371/journal.pone.0055858.t004
images were obtained by ImageScanner III (GE Healthcare, Pittsburgh, PA) and analyzed by PDQuest™ 2-D Analysis Software (Bio-Rad). The 2-DE experiment was conducted with three biological replicates.

Protein Identification by MALDI-TOF/TOF

Protein spots were excised from 2-D gel, and subjected to in-gel digestion. Peptides from tryptic digestion were analyzed using 4800 Plus MALDI TOF/TOF™ Analyzer (Applied Biosystems, USA). Combined peptide mass fingerprinting PMF and MS/MS queries were performed by using the Mascot search engine (Matrix Science, Ltd.) embedded into GPS-Explorer Software (Applied Biosystems) against database NCBI Bacteria (320879). The following settings were used: mass accuracy was ±100 ppm, MS/MS fragment tolerance was 0.8 Da, carbamidomethyl and oxidized methionine were set as fixed and variable modifications respectively, one missed cleavage was allowed in trypsin cleavage.

The following settings were used: mass accuracy was ±100 ppm, MS/MS fragment tolerance was 0.8 Da, carbamidomethyl and oxidized methionine were set as fixed and variable modifications respectively, one missed cleavage was allowed in trypsin cleavage. A GPS-Explorer protein confidence index of ≥95% was used for further manual validation.

Cloning and Expression of mmsB, tsf, and PSEEN0851

Chromosomal DNA of *P. putida* JUCS was prepared and used as the template to amplified the genes of mmsB (GenBank accession number: JG7926), tsf (GenBank accession number: C49169908), and PSEEN0851 (GenBank accession number: CAK13742). A set of primers were used as summarized in Table 4. The cis-repressed pQE-80L vector and PCR product were digested with restriction enzyme suitably. After ligation, the recombinant plasmid was transformed into *E. coli* JM109 by heat shock method. The recombinant plasmids were verified by double-enzyme cleavage, and the expression of recombinant protein was analyzed by SDS-PAGE after 1 mM IPTG induction.

References

1. de Carvalho CCC (2011) Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnol Adv 29: 75–83.
2. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74: 961–973.
3. Husken LC, Oomes M, Schoon K, Tramper J, de Bont JAM, et al. (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotecnol 96: 281–289.
4. Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of *P. putida* and *Candida krusei* for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74: 961–973.
5. Zhang W, Ni Y, Sun Z, Zheng P, Lin W, et al. (2009) Biocatalytic synthesis of ethyl [(R)-2-hydroxy-4-phenylbutate by Candida foxii SW2026: A practical process for high enantipurity and product titer. Process Biochem 44: 1270–1273.
6. Aono R, Kobayashi H, Jobjin KN, Horikoshi K (1994) Effects of organic solvents on growth of *Escherichia coli* K-12. Biosci Biotechnol Biochem 58: 2009–2014.
7. Kieboom J, Dennis JH, Zylstra GJ, de Bont JAM (1998) Active efflux of organic solvents by *Pseudomonas putida* S12 is induced by solvent. J Bacteriol 180: 6789–6799.
8. Kobayashi H, Yamamoto M, Aono R (1998) Appearance of a stress response protein, phage shock protein A, in *Escherichia coli* exposed to hydrophobic organic solvents. Microbiology 144: 353–359.
9. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153: 263–266.
10. Iinoe A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 327: 261–263.
11. Bernal P, Segura A, Ramos JL (2007) Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of *Pseudomonas putida* DOT-T1E. Appl Environ Microbiol 73: 1658–1664.
12. Iken S, de Bont JA (1996) Active efflux of toluene in a solvent tolerant *Escherichia coli* K-12 strain. J Bacteriol 178: 6036–6050.
13. Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in tolerance of *Pseudomonas putida* DOT-T1E. J Bacteriol 180: 3323–3329.
14. Rojas A, Duque E, Mosquera G, Golden G, Hurtado A, et al. (2001) Three efflux pumps are required to provide efficient tolerance to toluene in *Pseudomonas putida* DOT-T1E. J Bacteriol 183: 3967–3973.
15. Rojas A, Segura A, Guazzaroni ME, Teran W, Hurtado A, et al. (2003) In vivo and in vitro evidence that Tsf is the specific regulator of the TsfGH multidrug and solvent efflux pump of *Pseudomonas putida*. J Bacteriol 185: 4755–4763.
16. Godoy A, Ramos-Gonzalez MI, Ramos JL (2004) Involvement of the TonB system in tolerance to solvents and drugs in *Pseudomonas putida* DOT-T1E. J Bacteriol 183: 5285–5292.
17. Segura A, Hurtado A, Duque E, Ramos JL (2004) Transcriptional phase variation at the flhD gene of *Pseudomonas putida* DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol 186: 1905–1909.
18. Aono R, Abe K, Inoue A, Horikoshi K (1991) Preparation of organic solvent tolerant mutants from *Escherichia coli* K-12. Agric Biol Chem 55: 1935–1938.
19. Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of *Escherichia coli* K-12. Appl Environ Microbiol 63: 3637–3642.
20. Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-vex regulon, in regulation and improvement of organic solvent tolerance of *Escherichia coli* K-12. J Bacteriol 180: 936–940.
21. Kawarai T, Ogihara H, Furukawa S, Aono R, Kishima M, et al. (2005) High hydrostatic pressure treatment impairs AerAB-ToLC pump resulting in differential loss of deoxycholate tolerance in *Escherichia coli*. J Biosci Bioeng 99: 613–616.
22. Hayashi S, Aono R, Hanaï T, Mori H, Kobayashi T, et al. (2003) Analysis of organic solvent tolerance in *Escherichia coli* using gene expression profiles from DNA microarrays. J Biosci Bioeng 95: 379–383.
23. Shimizu K, Hayashi S, Kato T, Suzuki M, Tsukagoshi N, et al. (2005) Discovery of gfpN, an organic solvent tolerance-related gene in *Escherichia coli*, using gene expression profiles from DNA microarrays. Appl Environ Microbiol 71: 1093–1096.
24. Shimizu K, Hayashi S, Doukyu N, Kobayashi T, Honda H (2003) Time-course data analysis of gene expression profiles reveals a TolC regulon concerned in organic solvent tolerance in *Escherichia coli*. J Biosci Bioeng 99: 72–74.

OST Assay

In our preliminary tests, *E. coli* JM109 is an organic-solvent-sensitive strain, and the cell growth was completely inhibited by as low as 2% (v/v) of cyclohexane (Log _P_90 = 3.2). To examine the effect of the above three genes on solvent tolerance, the transformants were grown in LBGMg medium (consisting of LB medium, 0.1% glucose (w/v), 10 mM MgSO₄) at 37°C, and cyclohexane was added to the medium in a final concentration of 4% (v/v) when OD₆₀₀ reached 0.2. The mixture was further cultured at 37°C and monitored by cell density (OD₆₀₀).

The agar medium analysis was used to measure the colony-forming efficiency. The colonies were grown in LBGMg medium until the cell density (OD₆₀₀) reached 1.0. A series of 10-fold dilutions of cultures were prepared and 4 μl of each cell suspension was spotted on the LBGMg agar medium. The LBGMg medium was then overlaid with organic solvent and incubated at 37°C for 24 h.

Furthermore, the potential oxidation (or ring cleavage) of cyclohexane by *E. coli* strains was determined in potassium phosphate buffer (0.2 mol/L, pH 7.0) containing cyclohexane (1%, w/v), 1 g of wet cells, glucose (5%, w/v) with a total volume of 10 ml. After incubation at 37°C for 8 h, the cell suspension was centrifuged, and the supernatant was extracted with ethyl acetate, then the organic phase was subjected to GC and GC-MS analysis. The products were analyzed using a Varian 3900 gas chromatography (Palo Alto, CA) equipped with a PEG-2000 column (30 m × 0.32 mm × 0.4 μm) using an flame ionization detector. The oxidation products of cyclohexane were identified by an Agilent 6890-5973 GC/MS equipped with the same column (Santa Clara, CA).

Author Contributions

Conceived and designed the experiments: YN LS ZS. Performed the experiments: LS Analyzed the data: LS YN XQ. Wrote the paper: YN LS.
25. Okochi M, Kurimoto M, Shimizu K, Honda H (2007) Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli. J Microbiol Biotechnol 73: 1394–1399.

26. Segura A, Godoy P, Van Dillewijn P, Hurtado A, Arroyo N, et al. (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 17: 5937–594.

27. Volkers RJM, De Jong AL, Hulst AG, Van Baar BLM, de Bont JAM, et al. (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8: 1674–1679.

28. Cheng Z, Woody OZ, Song J, Glick BR, McConkey BJ (2009) Proteome reference map for the plant growth-promoting bacterium Pseudomonas putida UW4. Proteomics 9: 4271–4274.

29. Chowdhury EK, Akaishi Y, Nagata S, Misono H (2003) Cloning and overexpression of the 3-hydroxyisobutyrate dehydrogenase gene from Pseudomonas putida E23. Biosci Biotechnol Biochem 67: 430–441.

30. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, et al. (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24: 673–679.

31. Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C (1994) Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure 2: 651–668.

32. Hawes JW, Harper ET, Crabb DW, Harris RA (1996) Structural and mechanistic similarities of 6-phosphogluconate and 3-hydroxyisobutyrate dehydrogenases reveal a new enzyme family, the 3-hydroxyacid dehydrogenases. FEBS Lett 389: 263–267.

33. Poole K, Krebs K, McNally C, Neshat S (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175: 7363–7372.