Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development

Gregory A. Cary, Brenna S. McCauley, Olga Zueva, Joseph Pattinato, William Longabaugh & Veronica F. Hinman

The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmarl, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions.
The regulatory program that controls development is unidirectional and hierarchical. It initiates with early asymmetries that activate highly coordinated cascades of gene regulatory interactions known as a gene regulatory network (GRN). GRNs function to orchestrate the intricate cellular and morphogenetic events that comprise embryogenesis, and their topologies must be structured in ways that permit the robust development needed to reliably produce viable embryos. While genetic variation can arise anywhere in the genome and affect any part of an individual GRN, the need to form a viable embryo provides a constraint on the types of variation that pass the filter of selection. The timing and mechanisms of potential development constraint persist as topics of intense debate.

The expression of many of the regulatory genes within the vegetal pole (Fig. 1a), but their expression is partitioned into adjacent cells by midway through gastrulation. The activation of Pmar1, therefore, indirectly leads to the exclusion of PHB genes, and is found only in sea urchins. No clear ortholog of Pmar1 exists in available genomes or transcriptomes. However, it is a known repressor of hesC in sea urchins. The Delta and HesC are engaged in a canonical regulatory motif, when transplanted to the animal pole or to animal blastomeres (Fig. 2a–c), which in turn represses delta expression (Fig. 2d, e). Thus, we demonstrated that the change in upstream regulation between sea urchin and sea star blastulae that results in co-expression of Delta and hesC at blastula stage allows for lateral inhibition (LI) regulatory interactions in sea stars, compared to the inductive mechanism used in sea urchins (Fig. 2h).

Partitioning of mesodermal subtypes involves Delta/Notch lateral inhibition. Given that Delta, Notch, and HesC engage in canonical LI, we sought to understand how this process might function in specifying cell types in the sea star mesoderm. The sea star mesoderm originates from the central vegetal pole of the late blastula, a molecularly uniform territory (Fig. 3a, b and Supplementary Fig. 4). During gastrulation this territory sits at the top of the archenteron and segregates into at least two distinct cell types—blastocoelar mesenchyme and coelomic epithelium (Supplementary Fig. 4). These two lineages become molecularly distinct by mid-gastrula stage (~36 h) and ets1 expressing mesenchyme cells begin ingressing at 46 h (Fig. 3c–f). Each ets1+ cell is generally separated from another ets1+ cell by two intervening nuclei of ets1− cells (Fig. 3g) while the intervening cells express six3 (Fig. 3h), a gene that is also initially broadly mesodermal in blastulae, but is later expressed in the coelomic epithelium (Supplementary Fig. 3). ets1+ cells also express the transcript encoding the Delta ligand (Fig. 3i). From these data we propose a model in which lateral inhibition leads to the restricted expression of ets1 in the delta+ cell and six3 in the neighboring cell.

We inhibited Notch signaling to explicitly test the lateral inhibition model. The model predicts that such a treatment would lead to an expansion of the primary cell type (i.e., delta+ presumptive mesenchyme) and a concomitant reduction of the secondary cell type (i.e., presumptive coelomic mesoderm). Indeed, inhibition of Notch results in an increase in cells expressing the mesenchyme genes ets1 and erg (Fig. 4a–f), and a
Asymmetric expression of Delta-Notch regulation of lateral inhibition when co-expressed and induction when partially non-overlapping domains during blastula stage (e) and morpholino knockdown (KD) of blimp1 results in an expansion of the expression domain of hesC (d). Morpholino knockdown of sea star Tgif produces a mesoderm-specific decrease in hesC expression (e). Schematic showing non-overlapping expression domains of sea urchin hesC and delta transcripts at blastula stage (f). Regulatory inputs to the hesC gene that are specific to sea urchin embryos, sea star embryos, and those that are common to both (g). Data shown are double fluorescent WMISH showing both hesC expression (green) and either expression of delta or blimp1 (magenta) (a–e) and colorimetric WMISH (d, e). Data are representative of two biologically independent experiments consisting of at least ten embryos each. Scale bar represents 50 μm; applicable to all images in the panel.

Conserved Six3-Pax6 circuit is necessary for appropriate coelomogenesis. In sea star embryos, Delta-Notch LI segregates mesenchyme from celom. While hesC expression is associated with cells fated to the celom, hesC expression is no longer detected in the mesoderm by 48 h (Supplementary Fig. 5e), shortly after the completion of cell type partitioning and coincident with the onset of epithelial-mesenchymal transition. The Delta-Notch LI must then “hand-off” to another set of genes to stabilize and maintain coelomic restricted gene expression. Correspondingly, this stage is also the first time that we observe the expression of pax6 and eya in this territory 35. pax6, eya, six1/2, dach, and six3 are expressed in coelomic-fated mesoderm in both sea stars and sea urchins along with other genes from the highly conserved retinal determination gene

Fig. 1 Sea star hesC is positively regulated downstream of the mesoderm kernel and co-expressed with delta. Sea star hesC and delta transcripts are co-expressed in the vegetal mesoderm (a) until mid-gastrula stage (b), or 36 hours post fertilization (hpf). Sea star hesC and blimp1 are expressed in partially non-overlapping domains during blastula stage (c) and morpholino knockdown (KD) of blimp1 results in an expansion of the expression domain of hesC (d). Morpholino knockdown of sea star Tgif produces a mesoderm-specific decrease in hesC expression (e). Schematic showing non-overlapping expression domains of sea urchin hesC and delta transcripts at blastula stage (f). Regulatory inputs to the hesC gene that are specific to sea urchin embryos, sea star embryos, and those that are common to both (g). Data shown are double fluorescent WMISH showing both hesC expression (green) and either expression of delta or blimp1 (magenta) (a–e) and colorimetric WMISH (d, e). Data are representative of two biologically independent experiments consisting of at least ten embryos each. Scale bar represents 50 μm; applicable to all images in the panel.

Fig. 2 Testing lateral inhibition of delta and hesC by inhibition of Notch signaling (DAPT) and morpholino knockdown (KD) of HesC. Using DAPT, an inhibitor of the proteolytic gamma-secretase necessary for notch signal transduction, we observe both a down-regulation of hesC (c) and an upregulation of delta transcripts (g). Importantly the down-regulation of hesC is phenocopied by injection of a morpholino targeting the delta transcript into one of the first two blastomeres (b). Knockdown of HesC with an antisense morpholino yields an upregulation of both hesC and delta transcripts. Lateral inhibition network showing relationships tested by previous experiments (h); red letters indicate figure panel above supporting connection. All images are colorimetric WMISH with the probes to the indicated genes. Images are representative of two biologically independent experiments consisting of at least ten embryos each. Scale bar represents 50 μm; applicable to all images in the panel. Numbers in the lower left corner of (c, e, and g) represent normalized log2 fold-change values of perturbed expression compared with control (i.e., a, d, and f) as measured by qPCR.

Reduction in cells expressing coelomic epithelium genes six3 and pax6 (Fig. 4g–j). Moreover, we also observe a consistent morphological shift with an increase in the number of cells ingressing into the blastocoel from the archenteron and a reduction in the epithelium. These data confirm our hypothesis that the sea star mesoderm partitions through the action of Delta-Notch-mediated lateral inhibition. This also shows a consequence of the changes to the regulation of hesC that allow co-expression with delta—a switch in the mode of Delta-Notch signaling between lateral inhibition when co-expressed and induction when spatially distinct. Asymmetric expression of Delta-Notch regulators typically produces an inductive mode of signaling 34, and these results suggest that the incorporation of Pmar1 into the early sea urchin network has contributed to this switch.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20023-4 | www.nature.com/naturecommunications
network (RDGN)35,36. In the sea urchin celom, these genes are wired together in a network topology considered to be homologous to that of the RDGN37. We examined the regulatory interactions between \textit{pax6}, \textit{six3}, \textit{eya}, \textit{dach}, and \textit{six1/2} to determine if a similar network is involved in the maintenance of sea star coelomic mesoderm. We find a similar activation of \textit{six3} by \textit{pax6}, of \textit{six1/2} by itself, and of \textit{eya} by \textit{pax6}, \textit{six3}, and \textit{dach} (Fig. 5a). Thus, these genes interact in a similar regulatory sub-network in both sea star and sea urchin coelomic mesoderm, and this subcircuit is highly similar to the \textit{Drosophila} RDGN (Fig. 5b), suggesting even deeper conservation of this network architecture. While Delta-Notch-mediated lateral inhibition is responsible for early segregation of mesenchymal and coelomic cell fates in sea stars, a \textit{pax6} and \textit{six3}-mediated network is necessary for proper coelomogenesis after the completion of lateral inhibition (Supplementary Fig. 5).

Discussion

We present a comprehensive GRN for the specification of sea star endomesoderm; the new data presented here links the previously described GRN for the early specification of endoderm and mesoderm in the sea star to the later events during gastrulation. This GRN was produced using the same experimental approaches as those used to generate the sea urchin network20 to allow for a meaningful comparison; i.e., whole-mount in situ hybridization (WMISH) to determine spatiotemporal gene expression, and quantitative reverse transcription PCR (qRT-PCR) and WMISH in control and morpholino antisense oligonucleotide and small molecule inhibitor-induced knockdown of protein function. This network, comprising 42 nodes and 84 edges, approaches in scope the GRN for endomesoderm specification of equivalent stages in sea urchin9, at present comprising 72 nodes and 271 edges. Although gene perturbation by morpholino knockdown has

![Fig. 3 Segregation of mesodermal subtypes into interleaved cells by 36 hpf.](image-url) Sea star \textit{ets1} and \textit{six3} transcripts are co-expressed in the vegetal mesoderm of blastula stage embryos (a, b) at 24 h post fertilization (hpf). The expression of the \textit{ets1} transcript was assessed every 2 h from the onset of gastrulation by colorimetric WMISH. At 32 hpf the expression of \textit{ets1} is uniform throughout the mesoderm (c). At 36 hpf there is a discontinuity in the expression of \textit{ets1} transcript (d, asterisks). Patches of \textit{ets1} expression become more distinct by 40–42 hpf (e, line), and \textit{ets1} expressing cells start to ingress beginning at 46 hpf (f). Cells expressing \textit{ets1} transcript (green) at the tip of the archenteron are adjacent to cells with no detectable \textit{ets1} expression (g), using fluorescent WMISH with a DAPI counterstain (blue), and are interleaved by cells expressing \textit{six3} transcript (magenta) (h). Cells expressing \textit{ets1} transcript also express the transcript encoding the Delta ligand (i). Data are representative of two biologically independent experiments consisting of at least ten embryos each. Scale bars represent 50 μm; scale bar in (a) applicable to (a–f) and (i), scale bar in (g) applicable in (g–h), which show a magnified region at the tip of the archenteron.

![Fig. 4 Testing the lateral inhibition model of mesodermal subtype segregation.](image-url) The expression of \textit{ets1} transcript (magenta) appears in a salt-and-pepper distribution throughout the mesoderm at 36 h post fertilization (hpf) by fluorescent WMISH (a) with DAPI stained nuclei (white). Treatment with the Notch inhibitor DAPT beginning at the 2-cell stage results in a uniform expression of \textit{ets1} in this territory (b). By 48 hpf, the mesenchyme cells expressing \textit{ets1} and \textit{erg} (c, e) ingress into the blastocoel while cells that do not ingress express \textit{pax6} and \textit{six3} (g, i). DAPT treatment results in an increase in cells expressing \textit{ets1} and \textit{erg} (d, f) and a reduction in cells expressing \textit{pax6} and \textit{six3} (h, j). There is also a consistent morphological shift with an increase in the number of ingressing cells and a reduction in the epithelium when Notch signaling is blocked. Data shown in (c–j) are colorimetric WMISH. Data are representative of two biologically independent experiments consisting of at least ten embryos each. Scale bar represents 50 μm; applicable to all images in the panel.
Subcircuit including pax6, six3, eya, dach1, and six1/2 involved in sea star coelomogenesis. a Data shown are colorimetric WMISH using the probes indicated on the left in the conditions listed along the top. Scale bar represents 50 μm; applicable to all images in the panel. six3 expression is normally distributed throughout the mesodermal bulb of the archenteron at 48 hpf, while pax6, six1/2, dach1, and eya are normally expressed at the posterior aspect of the mesodermal bulb, having been cleared earlier from anterior regions of the mesoderm. Phenotypic effect of the perturbation of each gene is indicated, including no difference (nd), increase (↑), decrease (↓). The number of embryos assessed and percent of embryos expressing the phenotype are also reported. Some reported phenotypes are localized to the top of the archenteron and are highlighted (dashed line); e.g., the effect of Pax6 knockdown on six3 expression is reported specifically for the anterior region of archenteron (dashed line). Some Pax6 knockdown embryos exhibited a bifurcated archenteron (e.g., boxed panel, "split archenteron"). Data are representative of two biologically independent experiments consisting of at least ten embryos each and specific phenotype counts are detailed in Supplementary Table 3. These results enabled the construction of a sub-network for sea star coelomic epithelium (b) and we note a similar regulatory sub-network in both sea star and sea urchin coelomic mesoderm, which is strikingly similar to the retinal determination gene network (RDGN) in Drosophila.
historically been a useful tool for disentangling these networks, it is important to recognize that the drawn links are largely provisional until fully borne out by independent perturbation methods (e.g. CRISPR) and cis-regulatory analyses to test whether the indicated interactions are indeed direct.

The summary view of these results permits a global comparison of these echinoderm GRN topologies (Fig. 6A), which are the synthesis of over a decade of work including the present study. Immediately apparent are the several distinct subcircuits found in common between these networks. Common modules include ets1, erg, hex, and tgif in the mesoderm; otx, gatae, bra, and foxa in the endoderm; and pax6, eya, six3, dach, and six1/2 in the celom (Fig. 5). In contrast, entire subcircuits present in sea urchin embryos are absent from the sea star network. This comparison also reveals that similarly regulated subcircuits are highly positively cross regulated, in keeping with the previous demonstration of evolutionary stability of these subcircuits remains unclear and it will be important to define additional such network motifs to begin to understand whether the observed stability is a cause or a consequence of the observed highly recursive regulatory wiring of these motifs.

From these data we propose a model of how changes in the GRN are incorporated while maintaining an overall network stability. We have detailed how the network incorporates novel circuitry into early development, in this example, the Pmar1-HesC double-negative gate. These networks use the same signaling pathways at the same places in the GRN but utilize different signaling modalities of the pathways; the networks use binary versus dosage dependence of n-negative gate. These networks use the same signaling pathways at the same places in the GRN but utilize different signaling modalities of the pathways; the networks use binary versus dosage dependence of signaling pathways may be a common source of evolutionary change in these GRNs. The disruption caused by such changes would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. The disruption caused by such changes would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features. Indeed, despite this transition in Delta-Notch signaling, we would be limited if they are surrounded by stabilization features.

Methods

Animal and embryo handling. Adult *Patiria miniata* were obtained from the southern coast of California, USA (Pete Halmy or Marinus Scientific) and were used to initiate embryo cultures following the protocol by Cheale Jarvela and Hinman. Briefly, testes and ovaries dissected from adult *P. miniata* and oocytes and sperm were isolated. Oocytes were allowed to mature in artificial seawater (ASW) plus 10 μM 1-methyladenine (Spectrum Chemical, product # M3096) for 45 min prior to fertilization. Embryos were cultured in ASW at 16 °C with occasional mixing by agitation.
Whole-mount staining. Embryos were fixed and in situ hybridization was performed following the protocol of Hinman, Nguyen and Davidson18. Briefly, embryos were fixed in a solution of 4% paraformaldehyde in MOPS-buffer (1 M MOPS, pH 7.5, 2 mM MgSO4, 1 mM EGTA, and 800 mM NaCl) for 90 minutes at 25 °C and transferred to a solution of 70% ethanol for long term storage at ~20 °C. In situ hybridization experiments were performed using digoxigenin-labeled antisense RNA probes hybridized at 65 °C. Probes were designed using gene model sequence predictions from legacy.echinobase.org39. In situ hybridization was performed using an anti-digoxigenin AP-conjugate antibody (Roche Cat# 11093729410) followed by an NBT/BCIP reaction (Roche). For two-color FISH, a second dinitrophenyl-labeled antisense RNA probe was hybridized simultaneously29 and probes were detected using both anti-digoxigenin POD-conjugate antibody (Roche Cat# 11207739910, RED185, 514500) and anti-DNP HRP-conjugate antibody (Perkin Elmer Cat# FP1129) followed by tyramide signal amplification (Perkin Elmer). Images of colorimetric whole-mount specimens were taken using a LeicaDMI 4000B microscope equipped with a Leica DFC 420C camera and fluorescent specimens were photographed using a Zeiss LSM 880 scanning laser confocal microscope. At least two independent biological replicate experiments were performed for each in situ staining experiment, examining the pattern of at least 10 specimens per replicate.

Quantitative PCR. RNA was extracted using the GenElute Mammalian Total RNA Kit (Sigma-Alrich) and DNA was removed using the DNA-free™ DNA Removal Kit (Invitrogen). Quantitative real-time PCR was performed using the qScript One-Step SYBR Green qRT-PCR Kit (QuantBio) and the on and run on an Applied Biosystems 7300 Real-Time PCR instrument. The sequence of all qPCR primers used is available in Supplementary Table 2. Measured Ct values for reported genes were normalized to the Ct of an internal control laminB2 receptor (GenBank ID: KJ8142511.25). The qPCR reactions were performed using the primer sequences listed in Supplementary Data 2 and can be viewed using the BioTapestry desktop application.

Perturbation of gene expression. Zygotes were injected with morpholino anti-sense oligonucleotides (MASOs; GeneTools) following the protocol by Cheatle and 3 and 55. For all MASOs, the GeneTools standard control MASO was injected into sibling embryos. The observed phenotype of each MASO knockdown was confirmed by injecting a second MASO designed to the same transcript. The sequence and effective concentration used for each MASO used is reported in Supplementary Table 1. Notch perturbations were achieved by bathing embryos in 32 μM DAPT39 or dimethyl sulfoxide as a control from the two-cell stage. WMISH was performed on at least three independent sets of perturbed embryos. At least ten embryos were assessed per replicate and phenotype categories were counted and a summary is reported in Supplementary Table 3. Quantitative measures of perturbation were achieved by performing qPCR on perturbed compared with control siblings. Each assay was performed on at least two qPCR replicates in each of two biological replicates. Log2-transformed fold-change values between control and experimental groups are shown.

Gene regulatory network construction. The GRN model depicting sea star endomesoderm was constructed using BioTapestry33,34. The network was constructed by reviewing literature, spanning the years 2003–2019, which describes both embryonic gene expression and gene regulation in Patiria miniata. The experimental evidence supporting each node and edge is provided in Supplementary Data 1 and all references to work cited in the GRN experimental evidence utilized are herein cited19,35,38,41,45,47,52,55. The edges of the network are backed by the results of perturbation experiments (e.g., MASO knockdown of the source gene or drug perturbation of a signaling pathway). To ensure only high confidence links are used, we used a threshold of at least twofold change observed in a minimum of two independent perturbation experiments. We also utilize multiple MASOs targeting the same transcript to ensure specificity of the observed phenotypes (see Supplementary Table 1). While there is no guarantee that these links are in fact direct, direct edges that can be explained through an indirect path can be omitted through a parsimonious approach to adding links to the network.

Links, like nodes, are also shown as “on” or “off” in the model at each point in space and time, simply based on the expression of the source gene at that same point. Notably, this depiction says nothing explicit about the actual cis-regulatory logic that is encoded in the target gene. Just because a link is shown as colored and incident on a target gene does not mean that it has been shown to be necessary at that point in space and time to cause expression of the target gene. To make that conclusion, much more targeted experiments are required to make that claim. However, the on/off state of the target gene and the inbound links can provide clues to generate hypotheses and suggest further experiments. For example, if all the links into a gray (off) target are colored (on), that suggests that there must be other unknown inputs into the target gene. This model is not purging to be complete but is instead a systems-level summary of the existing state of knowledge about the causal mechanisms underpinning P. miniata development driven by the GRN. It is certainly missing genes, and in fact since it is heavily based on orthology to genes present within the sea urchin GRN, we expect this network is biased towards including just those transcription factors. Furthermore, it has not been validated by computational simulations, and involves no detailed modeling of the transcriptional and signal transduction mechanisms that control gene expression. In this regard, it is like the sea urchin network, which was first developed using gene expression and perturbation data6 many years before boolean simulations were performed to ascertain the ability of the model to explain the observed behavior.

Data availability. The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files or from the corresponding author upon reasonable request. The data used to synthesize the network models presented in this paper are summarized in an online resource hosted at http://grns.BioTapestry.org/PmEndomes. The interactive network visualization accessible through this URL provides detail about all the experimental evidence supporting the expression timing and localization of each node in the network as well as experimental perturbations to support the behavior of the network. The BioTapestry model is designed to summarize the known information about the P. miniata developmental GRN, obtained both from literature and from our experimental results, and it is crucial to use the interactive online version to best understand the behavior of the network. The differential temporal and spatial expression patterns of the genes in the network, as determined by expression and known with a high degree of confidence, are depicted by showing the genes as “on” or “off” (colored or gray, respectively) in the various regions of the model at each time point. In nodes where variable levels of expression are crucial (viz. the gradient of nuclearized beta catenin/TCF from Mesoderm to Veg1 Ectoderm that is present in the early Endomesoderm 10–24 h summary model) the nodes are depicted using intermediate levels of gray to colored. Note that by hovering over vertex names and selecting Experimental Data from the pop-up menu, you can view the underlying experimental expression data for the gene, as well as experimental data supporting inputs to the gene. The edges of the network are also based upon literature and experimental results. Of course, there are many different levels of confidence that can be assigned to each edge, based upon the type of experiment, and colored diamonds below the link terminus on target genes are used to indicate confidence. The highest confidence based upon detailed cis-regulatory analysis of a target gene64, is depicted with a green diamond, see e.g., Tbr activation of otx in the GRN model. However, most links in the network are backed by the results of perturbation experiments (e.g., MASO knockdown of the source gene or drug perturbation of a signaling pathway).

Received: 22 July 2020; Accepted: 9 November 2020; Published online: 04 December 2020

References
1. Levine, M. & Davidson, E. H. Gene regulatory networks for development. Proc. Natl Acad. Sci. USA 102, 4936–4942 (2005).
2. Peter, I. S. & Davidson, E. H. Genomic control of patterning. Int. J. Dev. Biol. 53, 707–716 (2009).
3. Slack, J. M., Holland, P. W. & Graham, C. F. The zootype and the phylotypic stage. Nature 361, 490–492 (1993).
4. Levin, M. et al. The mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).
5. Domazet-Lolo, D. & Wagner, G. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818 (2010).
6. Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).
7. Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814 (2010).
8. Davidson, E. H. & Erwin, D. H. Evolutionary innovation and stability in animal gene networks. J. Exp. Zool. 314, 182–186 (2010).
9. Davidson, E. H. et al. A genomic regulatory network for development. Science 319, 1699–1702 (2008).
10. Peter, I. S. & Davidson, E. H. A gene regulatory network controlling the embryonic specification of endoderm. Nature 474, 635–639 (2011).
11. Peter, I. S., Faure, E. & Davidson, E. H. Predictive computation of genomic logic processing functions in embryonic development. Proc. Natl Acad. Sci. USA 109, 1643–16442 (2012).
12. Oliveri, P., Carrick, D. M. & Davidson, E. H. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–222 (2002).
13. Revilla-i-Domingo, R., Oliveri, P. & Davidson, E. H. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative logic processing functions in embryonic development. Proc. Natl Acad. Sci. USA 105, 13887–13888 (2008).
14. Yamazaki, A. et al. pma1/shb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms. Development 147, dev182139 (2020).
15. Dylus, D. V. et al. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Ecol. Evol. 6, 946–959 (2016).
16. Hall, M. R. et al. The crown-of-thorns starfish genome as a guide for bioncontrol of this coral reef pest. Nature 554, 231–234 (2017).
17. Erkenbrack, E. M. & Davidson, E. H. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoderm subclasses. Proc. Natl Acad. Sci. USA 112, E4073–E4084 (2015).
18. Sinakov, O. et al. Hemicordate genomes and deuterostome origins. Nature 527, 459–465 (2015).
19. Gildor, T., Cary, G. A., Lalzar, M., Hinman, V. F. & Ben-Talouh-de-Leon, S. Developmental transcriptomes of the sea star, Patiria miniata, illuminate how gene expression changes with evolutionary distance. Sci. Rep. 9, 16201 (2019).
20. Materna, S. C. & Oliveri, P. A protocol for unraveling gene regulatory networks. Nat. Protoc. 3, 1876–1887 (2008).
21. Yamazaki, A., Kidachi, Y., Yamaguchi, M. & Minokawa, T. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Development 141, 2669–2679 (2014).
22. Howard-Ashiby, M. et al. Identification and characterization of homeobox transcription factor microarrays in Stronglyocentrotus purpuratus, and their expression in embryonic development. Dev. Biol. 300, 74–89 (2006).
23. Sharma, T. & Ettenson, C. A. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 137, 1149–1157 (2010).
24. Smith, J. & Davidson, E. H. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea embryo. Proc. Natl Acad. Sci. USA 104, 20089–20094 (2007).
25. Sherwood, D. R. & McClay, D. R. Identification and localization of a sea urchin Notch homolog: insights into vegetal plate regionalization and Notch receptor regulation. Development 124, 3363–3374 (1997).
26. Sherwood, D. R. & McClay, D. R. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126, 1703–1713 (1999).
27. Croce, J. C. & McClay, D. R. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137, 83–91 (2010).
28. Materna, S. C. & Davidson, E. H. A comprehensive analysis of Delta signaling in pre-gastrula sea urchin embryos. Dev. Biol. 364, 76–87 (2012).
29. Sweet, H. C., Gehring, M. & Ettenson, C. A. LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129, 1945–1955 (2002).
30. Sjoqvist, M. & Andersson, E. R. Do as I say, Not(ch) as I do: Lateral control of cell fate. Dev. Biol. 447, 58–70 (2019).
31. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).
32. Powell, B. C., Passmore, E. A., Nesci, A. & Dunn, S. M. The Notch signaling pathway in hair growth. Mech. Dev. 78, 189–192 (1998).
33. Afelik, S. & Jensen, J. Notch signaling in the pancreas: patterning and cell fate specification. Curr. Opin. Dev. Biol. 2, 531–544 (2013).
34. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).
Acknowledgements
We thank Dr. William Hatleberg for helpful feedback during the preparation of the manuscript. This work was supported by the Binational Science Foundation grant number 2015031 to V.F.H., the National Science Foundation grants IOS 1557431 and MCB 1715721 to V.F.H. and the National Institute of Health grant P41HD071837 to V.F.H.

Author contributions
G.A.C., B.S.M., and V.F.H. conceived of and designed experiments. G.A.C., B.S.M., O.Z. and J.P. carried out experiments. G.A.C. and B.S.M. analyzed data and V.F.H. was instrumental in the interpretation of the results. G.A.C. and W.L. constructed the network model. G.A.C. wrote the manuscript with significant input from B.S.M. and V.F.H. All authors read and approved of the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20023-4.

Correspondence and requests for materials should be addressed to V.F.H.

Peer review information Nature Communications thanks Maria Ina Arnone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.