Structural insights into non-covalent ubiquitin activation of the cIAP1-UbcH5B–ubiquitin complex

Received for publication, September 28, 2018, and in revised form, November 30, 2018 Published, Papers in Press, December 6, 2018, DOI 10.1074/jbc.RA118.006045

Amrita Patel, Gary J. Sibbet, and Danny T. HuangFrom the Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, United Kingdom and the Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom

Edited by George N. DeMartino

Ubiquitin (Ub)-conjugating enzymes and Ub ligases control protein degradation and regulate many cellular processes in eukaryotes. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a central role in apoptosis and tumor necrosis factor signaling. It harbors a C-terminal RING domain that homodimerizes to recruit E2–Ub (where ~ denotes a thioester bond) complex to catalyze Ub transfer. Noncovalent Ub binding to the backside of the E2 Ub-conjugating enzyme UbcH5 has previously been shown to enhance RING domain activity, but the molecular basis for this enhancement is unclear. To investigate how dimeric cIAP1 RING activates E2–Ub for Ub transfer and what role noncovalently bound Ub has in Ub transfer, we here determined the crystal structure of the cIAP1 RING dimer bound to both UbcH5B covalently linked to Ub (UbcH5B–Ub) and a noncovalent Ub to 1.7 Å resolution. The structure along with biochemical analyses revealed that the cIAP1 RING domain interacts with UbcH5B–Ub and thereby promotes the formation of a closed UbcH5B–Ub conformation that primes the thioester bond for Ub transfer. We observed that the noncovalent Ub binds to the backside of UbcH5B and abuts UbcH5B’s α1β1-loop, which, in turn, stabilizes the closed UbcH5B–Ub conformation. Our results disclose the mechanism by which cIAP1 RING dimer activates UbcH5B–Ub and indicate that noncovalent Ub binding further stabilizes the cIAP1-UbcH5B–Ub complex in the active conformation to stimulate Ub transfer.

Post-translational modification of proteins by ubiquitin (Ub),2 achieved via the sequential actions of Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), and Ub-ligase (E3), governs vast arrays of eukaryotic cellular processes (1, 2). E1 activates and transfers the C terminus of Ub to the E2’s catalytic cysteine to produce an E2~Ub thioester intermediate (where ~ denotes a thioester bond). E3 binds E2~Ub and substrate to promote Ub transfer from E2 to a nucleophile, which is usually a lysine side chain. There are three major types of E3s: RING, HECT, and RING-in-between-RING (RBR) (3, 4). RING E3s harbor a RING domain that binds and activates E2–Ub to promote the direct transfer of Ub from E2 to the substrate. In contrast, HECT E3s contain a catalytic cysteine and catalyze a two-step Ub transfer reaction in which Ub is initially transferred from E2 to HECT E3’s catalytic cysteine and then to the substrate. RBR E3s share common features from both RING and HECT E3s, where a RING-like domain (RING1) recruits E2–Ub and transfers Ub to the catalytic cysteine on RING2 prior to transfer to substrate.

Cellular inhibitor of apoptosis protein-1 (cIAP1) is a RING-type E3 and belongs to the inhibitor of apoptosis (IAP) family of proteins. The RING-mediated ubiquitin ligase activity of cIAP1 is essential for its function in both cell death and survival pathways. In cell death pathways, cIAP1 inhibits apoptosis by sequestering and ubiquitinating second mitochondria-derived activator of caspase (SMAC) for degradation by the proteasome, thereby freeing XIAP to bind and inhibit caspases (5–7). Moreover, cIAP1 has been shown to target caspases for ubiquitination and degradation by the proteasome (8). In the cell survival pathway, tumor necrosis factor receptor 1 signaling complex recruits RIP kinase 1 (RIPK1) and various adaptor proteins, including TRADD, TRAF2, and TRAF5, that lead to the recruitment of cIAP1 and cIAP2 (9). cIAP1 and cIAP2 ubiquitinate RIPK1 and components within this complex to enable the recruitment of a linear Ub chain assembly complex that ultimately activates NF-kB signaling (10–16).

cIAP1 contains three N-terminal baculoviral IAP repeat domains (BIR1–3), followed by a Ub-associated domain (UBA), a caspase-recruiting domain (CARD), and a C-terminal RING domain. Dimerization of its C-terminal RING domain is important for E2–Ub recruitment and ligase activity (17, 18). Studies showed that the N-terminal BIR3-UBA-CARD domain sequesters the RING domain in an inactive conformation to prevent...
RING dimerization (19, 20). The addition of SMAC or SMAC mimic induces conformational changes that restore activity by allowing RING dimerization (19, 21). Currently, how RING dimerization activates cIAP1’s ligase activity, and the structure of cIAP1 RING domain bound to E2–Ub, are not known. However, there are several structures of RING E3s bound to E2 covalently linked to Ub (E2–Ub; en dash denotes covalent linkage) (22–32). Collectively, these structures show that the RING domain binds and stabilizes E2–Ub in a closed conformation such that the thioester bond is optimized for Ub transfer (33). For dimeric RING E3s, such as BIRC7, an IAP family protein, the C-terminal tails of each subunit of the RING dimer function to stabilize the closed E2–Ub conformation to enhance ligase activity (23). It seems likely that cIAP1 RING dimer utilizes a similar mechanism for activating E2–Ub.

cIAP1 has been shown to function with the UbcH5 family of E2s to catalyze substrate ubiquitination (34, 35). This family of E2s has a noncovalent Ub binding site on its backside. This backside Ub-UbcH5 interaction is important for processivity of poly-Ub chain formation (25, 36–39). Our recent structural study on the monomeric RING E3 RNF38 showed that backside-bound Ub (UbB) stimulates RNF38-catalyzed Ub transfer by restricting the flexibility of UbcH5B’s α1 and α1β1-loop to stabilize the closed active RNF38 RING-UbcH5B–Ub complex, thereby enhancing the rate of catalysis (25). It remains unclear whether this mechanism is conserved for dimeric RING E3s.

To better understand how dimeric cIAP1 RING domain (cIAP1R) activates E2–Ub for Ub transfer and how UbB could influence this process, we present a crystal structure of cIAP1R bound to UbcH5B–Ub and UbB. Structural and biochemical analyses showed that cIAP1R forms multiple contacts with UbcH5B–Ub to stabilize it in a closed conformation. Notably, the C-terminal tail of cIAP1R functions in trans to stabilize the closed UbcH5B–Ub conformation, thereby explaining the importance of RING domain dimerization, and consistent with prior examples of dimeric RING E3s. Last, UbB restrains UbcH5B’s α1β1-loop conformation to stabilize contacts with donor Ub (i.e. Ub conjugated to UbcH5B; hereafter Ub5). This interaction augments stabilization of the closed UbcH5B–Ub conformation, thereby enhancing Ub transfer. Our results reveal a conserved UbB-stimulatory mechanism for both monomeric and dimeric RING E3s in mediating UbcH5B–Ub transfer.

Results

UbB stimulates cIAP1R-mediated Ub transfer

Previously, we showed that the addition of UbΔGG (lacking the C-terminal diglycine motif) can serve as UbB and bind to UbcH5B’s backside to stimulate UbcH5B–Ub discharge catalyzed by the monomeric RING E3 RNF38 and dimeric RING E3 XIAP. To assess whether UbB can exert similar effects on cIAP1R-catalyzed Ub transfer, we performed single-turnover lysine discharge assays using WT and S22R UbcH5B. S22R substitution abrogates the UbB-UbcH5B interaction and was therefore used as a control (25, 36). UbcH5B variants were precharged with equimolar concentrations of 32P-Ub and then chased by the addition of cIAP1R alone and in the presence of UbΔGG, which cannot be charged by E1 but can still bind to the backside of UbcH5B WT. The addition of 300 μM UbΔGG stimulated the discharge of UbcH5B–Ub but had no effect on UbcH5B S22R–Ub (Fig. 1A), indicating that UbB stimulates cIAP1R-catalyzed Ub transfer.

Synergistic binding enhancement between UbB, cIAP1R, and UbcH5B–Ub

Our prior study showed that UbB stimulates RNF38 and XIAP-catalyzed Ub transfer by enhancing RING E3 affinity for UbcH5B–Ub by ~5–10-fold (25). To determine whether UbB functions in a similar manner to stimulate cIAP1R-catalyzed Ub transfer, we performed surface plasmon resonance (SPR) experiments to investigate the effects of UbB on cIAP1R’s affin-
Activation of UbcH5B–Ub by cIAP1 and non-covalent ubiquitin

Table 1

Immobilized protein	Analyte	Kd (µM)
GST-cIAP1R	UbcH5B	223 ± 4
GST-cIAP1R	UbcH5B–Ub	0.83 ± 0.05
GST-cIAP1R	UbcH5B–Ub + 0.6 mM UbΔGG	0.22 ± 0.01
GST-cIAP1R	UbcH5B-S22R–Ub	0.90 ± 0.01
GST-cIAP1R	UbcH5B-S22R–Ub + 0.6 mM UbΔGG	0.99 ± 0.05
GST-UbcH5B	UbcH5B–Ub + excess cIAP1R	13 ± 2

Table 2

Data collection and refinement statistics

Data collection	cIAP1R–UbcH5B–Ub–Ub complex
Cell dimensions	C 1 2 1
a, b, c (Å)	79.19, 53.60, 78.54
α, β, γ (degrees)	90, 107.57, 90
Resolution (Å)	23.52–1.70 (1.74–1.70)
Rmerge	0.063 (0.539)*
Completeness (%)	98.8 (94.7)
Redundancy	3.3 (2.7)

Refinement

Resolution (Å)	23.52–1.70
No. of reflections	34,206
Rmerge/Rwork	0.170/0.197
No. of atoms	2,029
Protein	1,722
Water	182
RMSDs	33.0
Bond angles (degrees)	0.922
Ramachandran (%)	97.8
Mostly favored (%)	0.0
Outliers (%)	0.0

*Values in parenthesis are for the highest-resolution shell.

Shows that cIAP1R dimerizes via the RING domain, the C-terminal tail, and a helix that precedes the RING domain similar to other IAP family RING E3s, such as cIAP2, XIAP, and BIRC7 (17, 23, 41). cIAP1R’s RING domain binds both UbcH5B and UbD and stabilizes the UbcH5B–Ub complex in a closed conformation. Additionally, the C-terminal tail of the second subunit in the cIAP1R dimer packs against UbD in trans to stabilize the closed UbcH5B–Ub conformation. These features are similar to those observed in other structures of dimeric RING E3–E2–Ub complexes, such as BIRC7, RNF4, and MDM2–MDMX (22, 23, 30). In our structure, UbD binds to the backside of UbcH5B centering on the Ser22 surface, as reported previously (25, 36).

Interactions important for the closed UbcH5B–Ub conformation

Because this is the first structure of cIAP1R bound to E2–Ub, we investigated how cIAP1R stabilizes the closed UbcH5B–Ub conformation to promote Ub transfer. The closed UbcH5B–Ub conformation is stabilized by multiple contacts involving 1) cIAP1R–UbcH5B, 2) cIAP1R–UbD, 3) cIAP1R tail–UbD, and 4) UbD–UbcH5B interactions.

The cIAP1R–UbcH5B interaction closely resembled that observed in the structure of cIAP2R–UbcH5B complex (17), which was expected because cIAP1R and cIAP2R share ~90% sequence identity. The interaction primarily involves cIAP1R’s Met575 and the hydrophobic core surrounding Val573 contacting UbcH5B’s α1-helix and L1 and L2 loops (Fig. 3A). Despite having nearly identical RING domain sequences, the cIAP1R–UbcH5B portion of the structure and the cIAP2R–UbcH5B structure only superpose with a root mean square deviation (RMSD) of ~1.0 Å for all Ca atoms. When superimposition was performed using only the RING domain (RMSD of 0.62 Å for Ca atoms), the oblong shape of UbcH5B tilts ~8°, suggesting...
subtle differences in UbcH5B-RING domain contacts (Fig. 3B). Similar E2 shifts were also observed in the structures of TRAF6 (from human)-Ubc13 and TRAF6 (from *Danio rerio*)-Ubc13–Ub complexes (31, 42). It is unclear whether this E2 movement results from formation of the closed E2–Ub conformation or is due to crystal packing. Nonetheless, the primary RING-E2 interaction is maintained.

Our structure shows that cIAP1R's C-terminal tail, RING domain, and UbcH5B stabilize the closed UbD conformation. cIAP1R's C-terminal tail interactions involve Arg614 and Phe616 from the other cIAP1R protomer in the dimer. Arg614 forms a hydrogen bond with the carbonyl oxygen of UbD's Asp32, and Phe616 packs against UbD's Gly35 surface (Fig. 4A). This *trans* tail packing arrangement is similar to those observed in the structures of BIRC7, RNF4, and MDM2-MDMX bound to UbcH5–Ub (22, 23, 30). These RING E3s all contain a Phe or Tyr corresponding to Phe616 on cIAP1R that disrupted ligase activity when substituted with histidine or alanine. Likewise, substitution on the corresponding Phe in cIAP2 also disrupted activity (17, 23). To determine the importance of this residue, we mutated cIAP1R's Phe616 to His and performed lysine discharge assays to assess the effect on Ub transfer. cIAP1R F616H was defective in discharging UbcH5B–Ub (Fig. 4B), consistent with an earlier study showing that deletion of cIAP1's C-terminal residues abrogates activity (20). Thus, the *trans* tail-UbD interaction explains the importance of RING domain dimerization.

The cIAP1R-UbD interactions primarily involve His588, Ile604, and Cys605 from cIAP1R's RING domain contacting Leu80.
and Ile36 patches of UbD. Crucially, cIAP1R’s Arg606 forms hydrogen bonds with the carbonyl oxygen of Arg72 and the side chain of Gln40 from UbD and the carbonyl oxygen of Gln92 from UbcH5B (Fig. 4A). This Arg606 is commonly known as the “linchpin Arg” (33), and its interaction network is conserved in several structures of RING E3–E2–Ub complexes (22–30). To assess the importance of this interaction in cIAP1R, we generated Ub I36A and cIAP1R R606A and tested their effects in UbcH5B/H11011 Ub discharge assays. Although charging of UbcH5B/H11011 Ub I36A was incomplete, as observed previously (23, 25), in the presence of cIAP1R, UbcH5B/H11011 Ub I36A discharged slower than the WT UbcH5B/H11011 Ub (Fig. 4C). Similarly, cIAP1R R606A was defective in discharging UbcH5B/H11011 Ub.

The UbD–UbcH5B interaction involves UbD’s Ile44 patch contacting the Ser108 region in UbcH5B’s α2-helix (Fig. 5A). Additional interactions are also observed between Lys48 and Arg42 of UbD and UbcH5B’s Asp42, Lys101, Leu104, and Asp112 (Fig. 5A). To investigate the importance of these interactions, we performed UbcH5B/H11011 Ub discharge assays using Ub I44A and UbcH5B S108R. In both cases, cIAP1R-mediated Ub transfer was impaired (Fig. 5B).

The C-terminal tail of UbD is extended and lies along UbcH5B’s active site cleft (Fig. 5C). The C-terminal tail of UbD is stabilized by hydrophobic interactions between UbcH5B’s Ile88 and UbD’s Leu73 and numerous hydrogen bonds involving UbcH5B’s Asn77, Asp87, and Asn114 and UbD’s C-terminal tail. To validate the importance of these interactions, we generated Ub L73D and UbcH5B I88A and assessed their effects in UbcH5B/H11011 Ub discharge assays. UbcH5B loaded with Ub L73D and UbcH5B I88A charged with WT Ubc were defective in discharge catalyzed by cIAP1R (Fig. 5B). Collectively, our data showed that cIAP1R initiates multiple contacts to stabilize UbcH5B–Ub in the closed conformation to promote Ub transfer similar to other RING E3s (22–32).
UbB-stimulatory mechanism in dimeric cIAP1R-mediated Ub transfer

UbB binds UbcH5B via the Ile44 hydrophobic patch of UbB and UbcH5B's β1–3 surface surrounding Ser22 (Fig. 6A). This binding mode resembles other available structures of UbcH5 family E2s bound to UbB (25, 36, 39, 43). In our structure, UbB does not contact cIAP1R or UbD (Fig. 2). In addition to UbcH5B's Ser22 surface, UbB also contacts UbcH5B's α1β1-loop, which in turn packs against UbD (Fig. 6, A and B). Here, UbB's Lys6 and His68 form hydrogen bonds with carbonyl oxygens of UbcH5B's Pro17 and Pro19, respectively, and Leu14 packs against UbcH5B's Gin20, thereby placing Gin20 within hydrogen-bonding distance of the backbone amide of UbD's Gly47 (Fig. 6B). To test the importance of Gin20, we used UbcH5B Q20A to perform cIAP1R-mediated UbcH5B–Ub discharge assays. The discharge of UbcH5B Q20A–Ub in the presence and absence of excess of UbD remains similar, suggesting that Gin20 plays an important role in UbB-mediated stimulation of Ub transfer (Fig. 6C).

Previously, we have determined the structures of a monomeric RING E3, RNF38, bound to UbcH5B–Ub alone and in complex with UbB (25). These structures showed that in the absence of UbB, UbcH5B's α1β1-loop adopts various conformations that are not optimal for interaction with UbD. The presence of UbB locks UbcH5B's α1β1-loop into a conformation that helps optimize UbD for transfer (Fig. 6, D and E) (25). Superimposition of the structures of cIAP1R-UbcH5B–Ub–UbB and RNF38–UbcH5B–Ub–UbB complexes by overlaying the UbcH5B structure reveals that UbB in cIAP1R-UbcH5B–Ub–UbB rotates by 10° and shifts by 1.5–4 Å in different regions across UbB (Fig. 6F). Whereas the UbB Ile44 and UbcH5B Ser22 interacting interface is largely maintained, UbcH5B's β1β2-loop packs more closely to UbcH5B's α1β1-loop in cIAP1R-UbcH5B–Ub–UbB (Fig. 6F). In this manner, UbB's Lys6 moves closer to UbcH5B's α1β1-loop and forms an additional hydrogen bond with UbcH5B's Asp16 located at the C terminus of α1; this interaction was not observed in RNF38-UbcH5B–Ub–UbB (Fig. 6, B and D). To test the importance of the UbB Lys6–UbcH5B Asp16 interaction in UbB-mediated stimulation of Ub transfer, we generated UbcH5B D16A and Ubc K6A and performed cIAP1R-mediated UbcH5B–Ub discharge assays. The discharge of UbcH5B D16A–Ub remained similar in the presence or absence of excess of UbD (Fig. 6C), suggesting that UbcH5B's Asp16 plays a role in UbB-mediated stimulation of Ub transfer. Correspondingly, the addition of excess K6A to precharged UbcH5B–Ub was slower than WT Ub in stimulating cIAP1R-mediated UbcH5B–Ub discharge (Fig. 6G). Thus, the additional contact between UbB Lys6 and UbcH5B Asp16 contributes to UbB-mediated stimulation of Ub transfer. Despite this slight difference, the conformation of UbcH5B's α1β1-loop is nearly identical in both structures, which further supports our proposed UbB-stimulatory mechanism, whereby UbB binding reorganizes UbcH5B's α1β1-loop to help stabilize UbD in a conformation primed for transfer.

Discussion

The structure of cIAP1R-UbcH5B–Ub–UbB reported here provides insight into the UbB-stimulatory mechanism of dimeric RING E3-catalyzed Ub transfer. The cIAP1 RING domain forms a homodimer and utilizes a general mechanism that is shared by other RING E3s to stabilize UbcH5B–Ub in a closed conformation to activate the thioester bond for catalysis (3). UbB functions by reorganizing UbcH5B's α1β1-loop conformation to reinforce UbD in the closed conformation, thereby enhancing Ub transfer in a manner consistent with our prior study with the monomeric RING E3 RNF38 (25). Our current work demonstrates that the UbB-stimulatory mechanism is conserved in both monomeric and dimeric RING E3-catalyzed reactions with the UbcH5 family of E2s.

The closed E2–Ub conformation has been shown to be important for Ub transfer, and the role of the RING domain is to promote the transition to this conformation to enhance the rate of Ub transfer (22, 23, 33, 44, 45). In addition to the established contacts between RING-E2, RING-UbD, and UbD-E2, several RING E3s have evolved different mechanisms to facilitate this process (3). For cIAP1, the RING dimer arrangement enables cIAP1R to utilize the C-terminal tail of the other dimeric cIAP1R protomer to stabilize UbD. This mechanism is observed in several dimeric RING E3s containing a Phe or Tyr residue in their C-terminal tail, such as BIRC7, RNF4, and MDM2-DMDMX (22, 23, 30).

Noncovalent Ub binding to the backside of UbcH5 family E2 has been shown to increase the processivity of Ub transfer (25, 36–39). Mechanistically, we have recently shown that UbB binding improved RING E3’s affinity for the E2–Ub complex and that the RING E3-E2–Ub complex displayed higher affinity for UbB using the monomeric RING E3 RNF38 (25). Here we observed a similar synergistic effect with the dimeric RING E3, cIAP1. We have shown previously that the K\textsubscript{d} for the UbB-UbcH5B interaction was ~280 μM (25). In the presence of the cIAP1R, UbcH5B–Ub complex is primed into the closed conformation, and the K\textsubscript{d} for UbB-UbcH5B binding improved to ~13 μM (Table 1). Our structure showed that the closed UbcH5B–Ub conformation stabilizes UbcH5B's α1β1-loop, which in turn forms optimal interaction with UbB and could explain the drop in K\textsubscript{d}. The total cellular Ub concentration is ~20–85 μM, depending on cell type. Within this total concentration, Ub presents as a mixture of monoubiquitinated substrates, free Ub, thioester intermediates of ligation machinery, and poly-Ub chains (46, 47). A previous study (25) and our current study showed that these forms of Ub can serve as sources of UbB, and hence the total cellular Ub concentration could serve as the guide for the availability of UbB. The formation of cIAP1-UbcH5B–Ub complex lowers the K\textsubscript{d} for the UbB-UbcH5B interaction to a value in which the UbB interaction would be favorable in cells. We anticipate that noncovalent Ub binding would have an impact on cIAP1-UbcH5B–catalyzed ubiquitination in cells. In both crystal structures of cIAP1R-UbcH5B–Ub–UbB and RNF38-UbcH5B–Ub–UbB (25) complexes, UbB alters UbcH5B's α1β1-loop into a nearly identical configuration to buttruss UbD in the closed conformation. The
subtle differences in Ub^B conformation seen in the two structures could potentially arise from crystal packing. Nonetheless, the cIAP1R-UbcH5B–Ub–Ub^B structure presented here provides a more detailed view of how Ub^B could make an additional contact with UbcH5B's α1 C terminus and α1β1-loop to optimize these elements in stabilizing the closed Ub^D conformation. In conclusion, our work shows that Ub^B serves as an allosteric activator of RING E3-E2–Ub complexes and that the Ub^B-stimulatory mechanism is conserved for both monomeric and dimeric RING E3s.
Experimental procedures

Protein expression and purification

All constructs were expressed in *Escherichia coli* BL21 (DE3) Gold (Stratagene). All proteins used are from humans unless otherwise specified. cIAP1 RING domain (residues 556–C; cIAP1R) was cloned into pGEX4T1 (GE Healthcare), which contains an N-terminal GST tag followed by a tobacco etch virus protease cleavage site. cIAP1R was purified by GSH affinity chromatography, followed by tobacco etch virus cleavage to release the GST tag. The released GST tag was removed by GSH affinity chromatography, and the cleaved cIAP1R was purified by size-exclusion chromatography. *Arabidopsis thaliana* Uba1, untagged UbcH5B variants, [32P]-Ub, Ub, and Ub lacking the C-terminal diglycine motif (Ub[ΔGG]) were prepared as described previously (25). Fluorescently labeled Ub was prepared as described previously (30). UbcH5B–Ub, UbcH5B[Ser22R]–Ub, and UbcH5B[Ser22R, Phe62A, Pro95D]–Ub were generated and purified as described previously (25). Protein concentrations were determined by Bradford assay using BSA as a standard. Ub concentration was determined by measuring the absorbance at 280 nm and the molar extinction coefficient calculated from the protein sequence. Proteins were stored in 25 mM Tris–HCl (pH 7.6), 0.15 M NaCl, and 1 mM DTT at −80 °C.

Crystallization

cIAP1R–UbcH5B–Ub–Ub^B complex was assembled by mixing cIAP1R (8.5 mg/ml), UbcH5B–Ub (20 mg/ml), and Ub (100 mg/ml) at 1:1:1.2 molar ratio. Crystals were obtained by mixing protein complex with an equal volume of reservoir solution containing 0.2 M ammonium fluoride and 15% (w/v) PEG 3350 using sitting drop vapor diffusion at 19 °C. The crystals were harvested and flash-frozen in 0.2 M ammonium fluoride, 18% (w/v) PEG 3350, and 20% (v/v) ethylene glycol.

Data collection and processing

Data were collected at beamline I03 at Diamond Light Source, processed using xia2 pipeline (48), and integrated with automated XDS (49). Initial phases of cIAP1R-UbcH5B–Ub–Ub^B complex were obtained by molecular replacement with PHASER (50) using UbcH5B and Ub from PDB entry 3ZNI and cIAP2 RING from PDB entry 3EB6. All models were built in COOT (51) and refined using PHENIX (52). cIAP1R–UbcH5B–Ub–Ub^B complex was refined to a resolution of 1.7 A. The final model contains one copy of cIAP1R (chain A, residues 556–C), one copy of Ub^B (chain B residues 1–74), one copy of UbcH5B (chain C residues 2–147), and one copy of Ub^B (chain D, residues 1–76). All figure models were generated using PyMOL.

Lysine discharge assays

UbcH5B variant (15 μM) was charged with equimolar Ub variant (15 μM), [32P]-Ub (15 μM), or fluorescently labeled Ub (15 μM) in a reaction containing 50 mM Tris–HCl, pH 7.6, 50 mM NaCl, *Arabidopsis* Uba1 (1 μM), BSA (1 mg/ml), 5 mM MgCl₂, and 5 mM ATP for 15 min at 23 °C as described previously (25). The charged reaction was stopped by adding 0.01 units/ml apyrase and 30 mM EDTA for 2 min at 23 °C. The lysine discharge reaction was initiated by adding a mixture containing 50 mM Tris–HCl, pH 7.6, 50 mM NaCl, BSA (1 mg/ml), I-lysine (20 mM), and cIAP1R variant (0.5 μM) in the presence or absence of UbΔGG (300 μM for Figs. 1A, 4 (B and C), 5B, and 6C; 20 μM for Fig. 1B) or UbcH5B S22R,F62A,P95D–Ub (20 μM; Fig. 1B). WT Ub (300 μM) and K6A Ub (300 μM) were used to perform lysine discharge assays in Fig. 6G. Final concentrations are shown in parenthesis except for UbcH5B and Ub variants, which were ~5 μM. Reactions were quenched with 2X SDS-loading buffer at the indicated time points and resolved by SDS-PAGE and visualized by staining with InstantBlue. Reactions performed using [32P]-Ub were dried and visualized using autoradiography. Fluorescently labeled UbcH5B–Ub was visualized by a LI-COR Odyssey scanner, followed by staining with InstantBlue.

SPR

All SPR experiments were performed at 25 °C on a Biacore T200 system with a CM-5 chip. For cIAP1R-UbcH5B and cIAP1R-UbcH5B–Ub variant binding experiments, GST-cIAP1R was coupled to CM-5 chips as described previously (25). UbcH5B and UbcH5B–Ub variants were serially diluted in running buffer containing 25 mM Tris–HCl, pH 7.6, 150 mM NaCl, 0.1 mg/ml BSA, 1 mM DTT, and 0.005% (v/v) Tween 20. For experiments with UbΔGG, UbcH5B–Ub variants were serially diluted in running buffer containing 0.6 mM UbΔGG. For the Ub^B, UbcH5B backside binding experiment, GST–was captured on a CM-5 chip, and UbcH5B–Ub was mixed with a 2.4-fold molar excess of cIAP1R (100 μM UbcH5B–Ub and 240 μM cIAP1R) and then serially diluted in running buffer containing 10 μM cIAP1R to ensure that all UbcH5B–Ub concentration ranges were saturated with cIAP1R (cIAP1R binds UbcH5B–Ub with a *K_d* of ~0.8 μM; Table 1). Binding was measured at the indicated concentration ranges as in Fig. S1. Data reported are the differences in SPR signal between GST–cIAP1R and GST alone or GST–Ub and GST alone. The data were analyzed by steady-state affinity analysis using Biacore T200 BIAevaluation software (GE Healthcare) and Scrubber2 (BioLogic Software).

**Figure 6. Ub^B interactions. A, cartoon representation showing the UbcH5B–Ub^B portion of the structure of the cIAP1R–UbcH5B–Ub–Ub^B complex. Ile⁴⁴ of Ub^B and Ser²² of UbcH5B are indicated. B, close-up view of Ub^B–UbcH5B–Ub–Ub^B binding interface. UbcH5B’s α1β1-loop is indicated by an arrow. Hydrogen bonds are shown as dotted lines. All coloring in A and B is the same as in Fig. 2. C, nonreduced SDS-PAGE of lysine discharge reactions showing the disappearance of UbcH5B variant –Ub bands over time in the presence and absence of UbΔGG catalyzed by cIAP1R. *, contaminating band from other reaction components. D, close-up view of Ub^B–UbcH5B–Ub–Ub^B binding interface in the structure of the complex (PDB entry 4V3L). E, UbcH5B is shown in cyan, Ub^B in yellow, and Ub^B in wheat. F, close-up view of UbcH5B’s α1β1-loop in the structure of the complex (PDB entry 4V3L). G, Superimposition was performed on all Ca atoms of the UbcH5B portion of the structure. Ribbon representations of the UbcH5B–Ub^B portion from both structures are shown. Ub^B’s β2 loop is indicated by an arrow. H, UbcH5B and Ub^B from cIAP1R–UbcH5B–Ub–Ub^B structure are colored in cyan and gray, respectively. I, nonreduced SDS-PAGE of lysine discharge reactions showing the disappearance of the UbcH5B–Ub band over time in the presence of excess WT Ub or Ub K6A catalyzed by cIAP1R.
References

1. Herskho, A., and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 CrossRef Medline
2. Pickart, C. M., and Edds, M. J. (2004) Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 CrossRef Medline
3. Buetow, L., and Huang, D. T. (2016) Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 CrossRef Medline
4. Dye, B. T., and Schulman, B. A. (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 CrossRef Medline
5. Dynek, J. N., and Vucic, D. (2013) Antagonists of IAP proteins as cancer therapeutics. Cancer Lett 322, 206–214 CrossRef Medline
6. Hu, S., and Yang, X. (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J. Biol. Chem. 278, 10055–10060 CrossRef Medline
7. Eckelman, B. P., and Salvesen, G. S. (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J. Biol. Chem. 281, 3254–3260 CrossRef Medline
8. Choi, Y. E., Butterworth, M., Malladi, S., Duckett, C. S., Cohen, G. M., and Bratton, S. B. (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J. Biol. Chem. 284, 12772–12782 CrossRef Medline
9. Peltzer, N., Darding, M., and Walczak, H. (2016) Holding RIPK1 on the Ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26, 445–461 CrossRef Medline
10. Bertrand, M. J., Mitiocinovic, S., Dickson, K. M. H., Wo, W. C., Boudreault, A., and Vucic, D. (2013) Essentiality of a non-RING element in priming donor ubiquitin for catalysis. Proc. Natl. Acad. Sci. U.S.A. 102, 16182–16187 CrossRef Medline
11. Varfolomeev, E., Goncharov, T., Fedorova, A. V., Dynek, J. N., Zobel, K., and Vucic, D. (2013) Antagonists of IAP proteins as cancer therapeutics. Cancer Lett 322, 206–214 CrossRef Medline
12. Haas, T. L., Emmerich, C. H., Cordier, S. M., Schmukle, A. C., Rieser, E., and Silke, J. (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 CrossRef Medline
13. Imamura, F., Nakagawa, T., Pasparakis, M., Iwai, K., et al. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 CrossRef Medline
14. Dueber, E. C., Schoeffler, A. J., Lingel, A., Elliott, J. M., Fedorova, A. V., Giannetti, A. M., Zobel, K., Maurer, B., Varfolomeev, E., Wu, P., Wallweber, H. J., Hymowitz, S. G., Deshayes, K., Vucic, D., and Fairbrother, W. J. (2011) Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334, 376–380 CrossRef Medline
15. Gupta, S. K., Linke, K., Anderson, H. D., Au, C. A., and Vucic, D. (2005) Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proc. Natl. Acad. Sci. U.S.A. 102, 16182–16187 CrossRef Medline
16. Lopez, J. A., T., T., Rautureau, G. J., Hinds, M. G., Franca-lanci, F., and S., M., C., H., E., and Meier, P. (2011) CARD-mediated autoinhibition of cIAP1’s E3 ligase activity suppresses cell proliferation and migration. Mol. Cell 42, 569–583 CrossRef Medline
17. Buetow, L., Sakata, S., Deshayes, K., and Iwai, K. (2011) SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 CrossRef Medline
18. Ikeda, F., Deribe, Y. L., Skånland, S. S., Steigel, B., Grabbe, C., Franz-Wachtel, M., van Wijk, S. J., Goswami, P., Nagy, V., Terzic, I., Tokunaga, F., Androulidaki, A., Nakagawa, T., Pasparakis, M., Iwai, K., et al. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 CrossRef Medline
19. Mace, P. D., Linke, K., Feltham, R., Schwamcher, F. R., Smith, C. A., Vaux, D. L., Silke, J., and Day, C. L. (2008) Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633–31640 CrossRef Medline
20. Silke, J., Kratina, T., Dunn, P. G., F., and Day, C. L., and Vaux, D. L. (2005) Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proc. Natl. Acad. Sci. U.S.A. 102, 16182–16187 CrossRef Medline
21. Dueber, E. C., Schoeffler, A. J., Lingel, A., Elliott, J. M., Fedorova, A. V., Giannetti, A. M., Zobel, K., Maurer, B., Varfolomeev, E., Wu, P., Wallweber, H. J., Hymowitz, S. G., Deshayes, K., Vucic, D., and Fairbrother, W. J. (2011) Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334, 376–380 CrossRef Medline
22. Lopez, J., John, S. W., Tenev, T., T., Rautureau, G. J., Hinds, M. G., Franca-lanci, F., Wilson, B., and Santoro, M. M., Day, C. L., and Meier, P. (2011) CARD-mediated autoinhibition of cIAP1’s E3 ligase activity suppresses cell proliferation and migration. Mol. Cell 42, 569–583 CrossRef Medline
23. Bertrand, M. J., Mitiocinovic, S., Dickson, K. M. H., Wo, W. C., Boudreault, A., and Vucic, D. (2013) Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 20, 962–986 CrossRef Medline
24. Buetow, L., Gabrielsen, M., Anthony, N. G., Dou, H., Patel, A., Atkenhead, H., Silke, J. G., Smith, B. O., and Vaux, D. T. (2015) Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Mol. Cell 58, 297–310 CrossRef Medline
Activation of UbcH5B→Ub by cIAP1 and non-covalent ubiquitin

reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 CrossRef Medline
34. Bertrand, M. J., Lippens, S., Staes, A., Gilbert, B., Roelant, R., De Medts, J., Gevaert, K., Declercq, W., and Vandenberghe, P. (2011) cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIK1–4). PLoS One 6, e22356 CrossRef Medline
35. Dynek, J. N., Goncharov, T., Dueber, E. C., Fedorova, A. V., Izrael-To-rimoto, E., Tanaka, K., Wakatsuki, S., and Kato, K. (2010) Crystal structure of UbcH5b–Ub conjugates. Structure 18, 138–147 CrossRef Medline
36. Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W., and Klevit, R. E. (2006) A UbcH5/ubiquitin noncovalent complex is required for proressive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 CrossRef Medline
37. Ranaweera, R. S., and Yang, X. (2013) Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J. Biol. Chem. 288, 18939–18946 CrossRef Medline
38. Li, S., Liang, Y. H., Mariano, J., Metzger, M. B., Stringer, D. K., Hristova, R. L., Campos, A. D., Myszka, D. G., Lenardo, M. J., Darnay, B. G., and Wu, H. (2009) E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 CrossRef Medline
39. Sakata, E., Satoh, T., Yamamoto, S., Yamaguchi, Y., Yagi-Utsumi, M., Kuriyama, D., and Kato, K. (2011) Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42, 75–83 CrossRef Medline
40. Cheung, H. H., Plenchette, S., Kern, C. J., Mahoney, D. J., and Korneluk, R. G. (2008) The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways. Mol. Biol. Cell 19, 2729–2740 CrossRef Medline
41. Nakatani, Y., Kleffmann, T., Linke, K., Condon, S. M., Hinds, M. G., and Day, C. L. (2013) Regulation of ubiquitin transfer by XIAP, a dimeric RING E3 ligase. Biochem. J. 450, 629–638 CrossRef Medline
42. Yin, Q., Lin, S., Lamotte, B., Lu, M., Lo, Y. C., Hura, G., Zheng, L., Rich, R. L., Campos, A. D., Myszka, D. G., Lenardo, M. J., Darnay, B. G., and Wu, H. (2009) E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16, 658–666 CrossRef Medline
43. Bosanac, I., Phu, L., Pan, B., Zilberleyh, I., Maurer, B., Dixit, V. M., Hy- mowitz, S. G., and Kirkpatrick, D. S. (2011) Modulation of K11-linkage formation by varying loop residues within UbcH5A. J. Mol. Biol. 408, 420–431 CrossRef Medline
44. Wickliffe, K. E., Lorenz, S., Wemmer, D. E., Kuriyan, J., and Rape, M. (2011) The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144, 769–781 CrossRef Medline
45. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schul-man, H., and Kopito, R. R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods 8, 691–696 CrossRef Medline
46. Siepmann, T. J., Bohnsack, R. N., Tokgoz, Z., Baboshina, O. V., and Haas, A. L. (2003) Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278, 9448–9457 CrossRef Medline
47. Winter, G. (2010) xia2: an expert system for macromolecular crystallog-raphy data reduction. J. Appl. Cryst. 43, 186–190 CrossRef Medline
48. Kabsch, W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 CrossRef Medline
49. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Stor-roni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 CrossRef Medline
50. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molec-ular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 CrossRef Medline
51. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., Mc- Coy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Cryst-allogr. 58, 1948–1954 CrossRef Medline