Abstract

Background: The lipoprotein lipase (LPL) hydrolyses circulating triacylglycerol-rich lipoproteins. Thereby, LPL acts as a metabolic gate-keeper for fatty acids partitioning between adipose tissue for storage and skeletal muscle primarily for energy use. Transgenic mice that markedly over-express LPL exclusively in muscle, show increases not only in LPL activity, but also in oxidative enzyme activities and in number of mitochondria, together with an impaired glucose tolerance. However, the role of LPL in intracellular nutrient pathways remains uncertain. To examine differences in muscle nutrient uptake and fatty acid oxidative pattern, transgenic rabbits harboring a DNA fragment of the human LPL gene (hLPL) and their wild-type littermates were compared for two muscles of different metabolic type, and for perirenal fat.

Results: Analyses of skeletal muscles and adipose tissue showed the expression of the hLPL DNA fragment in tissues of the hLPL group only. Unexpectedly, the activity level of LPL in both tissues was similar in the two groups. Nevertheless, mitochondrial fatty acid oxidation rate, measured ex vivo using [1-14C]oleate as substrate, was lower in hLPL rabbits than in wild-type rabbits for the two muscles under study. Both insulin-sensitive glucose transporter GLUT4 and muscle fatty acid binding protein (H-FABP) contents were higher in hLPL rabbits than in wild-type littermates for the pure oxidative semimembranosus proprius muscle, but differences between groups did not reach significance when considering the fast-twitch glycolytic longissimus muscle. Variations in both glucose uptake potential, intra-cytoplasmic binding of fatty acids, and lipid oxidation rate observed in hLPL rabbits compared with their wild-type littermates, were not followed by any modifications in tissue lipid content, body fat, and plasma levels in energy-yielding metabolites.

Conclusions: Expression of intracellular binding proteins for both fatty acids and glucose, and their following oxidation rates in skeletal muscles of hLPL rabbits were not fully consistent with the physiology rules. The modifications observed in muscle metabolic properties might not be directly associated with any LPL-linked pathways, but resulted likely of transgene random insertion into rabbit organism close to any regulatory genes. Our findings enlighten the risks for undesirable phenotypic modifications in micro-injected animals and difficulties of biotechnology in mammals larger than mice.
Background
The endothelial cell-associated lipoprotein lipase (LPL) works to break down triacylglycerol-rich dietary fats absorbed after a meal, thus generating free fatty acids transported in the blood. Earlier works suggested that LPL acts as a metabolic gate-keeper for fatty acid partitioning between adipose tissue for storage and muscle primarily for energy use [1]. Then, variation of LPL activity among fat depots as well as ratio of adipose tissue to skeletal muscle LPL activity, have been proposed to be linked to the development of regional obesity under certain genetic predisposition [2]. Transgenic mouse lines that highly over-express LPL exclusively in muscles, further evidence a role of LPL in the intracellular fate of nutrients into skeletal muscles. Indeed, induced mutant mice over-expressing human LPL (hLPL) exclusively in muscles have, proportional to the level of LPL transgene expression, increases in LPL activity and free FA concentration in muscle [3], a higher number of metabolic organelles (mitochondria, peroxisomes) in muscles [4], and elevated muscle oxidative enzymes activities [3,4]. Thus, a greater use of lipids for energy production during fasting has been suggested in transgenic hLPL mice [5]. In agreement with the inverse relative rates of fatty acid oxidation and glucose utilization in muscle first proposed by Randle and coworkers [6], mice with over-expression of hLPL specifically in muscles show alterations in muscle glucose metabolism, such as elevated blood glucose levels [7], increased glycogen stores [3] or glucose-6-phosphate content [5], and(or) impaired glucose tolerance [5,8]. Finally, as shown in mice over-expressing a mutant defective hLPL, enhanced lipoprotein uptake into cells may also occur via pathways independent of LPL catalytic activity, resulting in a mitochondrialopathy as well as in muscle glycogen accumulation similar to the pattern observed in mice expressing active hLPL [9]. However, another point not studied so far in hLPL transgenic animals is that uptake of nutrients and(or) intra-myocellular trafficking to target organelles are facilitated to a great extent by specific transporters and(or) binding proteins. Convincing data are available for the involvement of both membrane-associated and cytoplasmic fatty acid-binding proteins in fatty acid uptake by skeletal muscles [10,11]. Especially, a permissive action of heart-type fatty acid binding protein (H-FABP), also known as muscle FABP or FABP3, in delivering fatty acids to mitochondrial β-oxidation systems has been shown [12,13]. Facilitated glucose transport across membranes of muscle cells mediated by GLUT4 is usually considered as rate-limiting for glucose utilization by skeletal muscles in laboratory rodents [14]. However, it remains to determine whether LPL effects on muscle oxidative pathways involve modifications in the intracellular binding of nutrients.

Results
Tissue LPL level
An amplification product corresponding to hLPL fragment was evidenced in adipose tissue, semimembranosus proprius and longissimus muscles of hLPL group, proving the expression of the transgene in tissues of the rabbit organism. On the contrary, no signal was detected in the same tissues of wild-type animals (figure 1). Surprisingly, hLPL rabbits and their wild-type littermates exhibited...
Table 1: Lipoprotein lipase activity\(^1\) in tissues of wild-type and hLPL transgenic rabbits

Tissues	Wild-type rabbits	hLPL rabbits
Perirenal fat	1305 ± 336	1420 ± 500
SMP muscle	2036 ± 583	1546 ± 397
LL muscle	493 ± 111	396 ± 58

\(^1\) Activities are presented as mean ± SEM in perirenal fat, semimembranosus proprius (SMP) and longissimus (LL) muscles (nmol free fatty acids released, min\(^{-1}\) per g of tissue). There were no differences among groups (P > 0.10).

Table 2: Plasma triglycerides, free fatty acids and glucose levels\(^1\) in wild-type and hLPL transgenic rabbits

Plasma metabolites	Wild-type rabbits	hLPL rabbits
Triglycerides	0.69 ± 0.13	0.81 ± 0.14
Free fatty acids	0.41 ± 0.10	0.41 ± 0.11
Glucose	9.21 ± 0.60	8.60 ± 0.27

\(^1\) Concentrations are presented as mean + SEM (mmol/L). There were no differences among groups (P > 0.10).

Table 3: Lipids and intracellular nutrient trafficking\(^1\) in perirenal fat and skeletal muscles in wild-type and hLPL transgenic rabbits

Muscle	Wild-type rabbits	hLPL rabbits
Perirenal fat	677 ± 25	691 ± 31
Semimembranosus proprius muscle	198 ± 18	248 ± 30
H-FABP	46.5 ± 4.8	42.9 ± 6.5
GLUT4	222 ± 19	289 ± 20
LL muscle	96.8 ± 14.9	131.4 ± 8.5
H-FABP	13.1 ± 2.3	11.8 ± 1.3
GLUT4	20.4 ± 4.6	32.0 ± 6.0
Longissimus muscle	76.3 ± 11.8	94.4 ± 12.2

\(^1\) Data are presented as mean ± SEM in perirenal fat, semimembranosus proprius (SMP) and longissimus (LL) muscles. Abbreviation used: au (arbitrary units).

Discussion

Despite a clear evidence for expression of the hLPL transgene in the tissues under study in the hLPL rabbits only, total LPL (human +native) activity in skeletal muscles or perirenal adipose tissue was similar in hLPL rabbits and in their wild-type littermates. This situation contrasts with the moderately enhanced LPL activity in post-heparin plasma reported in another line of hLPL transgenic rabbits [17], and with the marked elevation of LPL activity observed in adipose tissue [18] or skeletal muscle [3,4,7] of hLPL mice. A preliminary study in the heart of our hLPL transgenic rabbits and their wild-type littermates using polyclonal [19] and monoclonal [20] antibodies which recognize different epitopes of the LPL molecule, did not evidence any significant differences in total LPL protein content between groups with both antibodies (data not shown). Furthermore, plasma triglyceride concentration was currently found similar in hLPL transgenic rabbits and wild-type animals, which is again in favor to a similar content in LPL protein among groups rather than to a catalytically defective hLPL enzyme in transgenic rabbits. Indeed, triglyceridemia is consistently found lower in transgenic animals over-expressing a catalytic active hLPL VII,17 and mutant catalytic defective enzyme [9], although this effect may be less pronounced on some genetic backgrounds [9]. Then, a possible explanation is that failure in hLPL mRNA traduction currently resulted in no hLPL protein, due to lack of regulatory essential elements in the transgene sequence [21]. A second explana-

Similar LPL activity for adipose tissue and muscles (table 1).

Plasma metabolites and tissue lipids

Plasma concentrations in triglycerides, free fatty acids, and glucose, were similar in the two genetic groups (table 2). Moreover, there were no differences between the two groups for lipid contents in muscles and perirenal adipose tissue (table 3), as well as for fat proportion relative to body weight (18.8 ± 1.0 g/kg and 20.6 ± 0.9 g/kg in wild-type and hLPL rabbits, respectively).

Nutrient oxidative pathways

Muscle content in H-FABP (responsible for cytoplasmic binding of fatty acids in muscle cells), was 30% higher in semimembranosus proprius samples of hLPL rabbits compared with wild-type littermates (table 3). The difference between the two groups (+56%) did not reach significance level in the longissimus muscle. This was probably related to a high intra-assay variability, due to the low expression of H-FABP in low-fat glycolytic muscles. The content in insulin-sensitive glucose transporter GLUT4 (the first step in glucose utilization by tissues) was 36% higher (P = 0.07) in hLPL rabbits than in wild-type animals for semimembranosus proprius muscle, but it did not vary in other sites under study (table 3). The mitochondrial oxidation rates of oleate were reduced by 45% and 41% (P < 0.05) in semimembranosus proprius and longissimus muscles, respectively (figure 2), in hLPL rabbits compared with wild-type littermates. By contrast, oxidation rate in peroxisomes did not vary between groups.
tion may be that expression of hLPL in transgenic animals led to a down regulation of native LPL.

Surprisingly, despite the lack of difference in LPL activity, many metabolic differences were found between hLPL rabbits and their wild-type littermates in semimembranosus proprius (a muscle composed exclusively of slow-twitch type I fibers), and to a lesser extent in the fast-twitch glycocytic longissimus muscle. However, unlike results in mice, our findings reported a lower muscle fatty acid oxidation rates in hLPL rabbits. Others have observed that over-expression of hLPL gene specifically in skeletal muscle of transgenic mice rather led to a dose-dependent increase in oxidative enzymes and to a proliferation of the oxidative specialized organelles [3,4].

According to the well-known fatty acid-glucose cycle in skeletal muscles [6], decreased fat oxidation is generally associated with increased glucose utilization. In accordance with this rule, the muscle content in insulin-sensitive glucose transporter GLUT4, i.e., the first step of glucose utilization in skeletal muscle [14], was currently found higher in the pure oxidative muscle of hLPL rabbits compared with their wild-type littermates. However, possibly enhanced utilization of glucose was not followed by any variations in blood glucose level. Either elevated blood level [7] or similar plasma concentration in glucose [3] have been observed in hLPL mice compared with wild-type animals.

Finally, the reason for a higher content of intra-cytoplasmic fatty acid binding proteins (H-FABP) in semimembranosus proprius muscle of our hLPL rabbits compared with wild-type animals remains largely unknown. Indeed, a preferential involvement of H-FABP in delivering intracellular fatty acids to sites of oxidation has been widely suggested [22]. Here, fatty acid oxidation rate was decreased in hLPL rabbits compared with wild-type littermates, but muscle lipid content and body fat did not vary among groups. One hypothesis may be that fatty acids bound to H-FABP within cell cytoplasm would by-pass any muscle metabolic pathways. If true, fatty acids would be immediately re-exported into the blood circulation and subsequently oxidized in the liver, presumably to prevent muscle from toxicity due to increased fatty acids entry. In vitro and ex vivo findings indeed recently suggest that non-adipose tissue, such as cardiomyocytes, can re-export fatty acids when influx exceeds oxidation rate [23]. However, there is no clear evidence for such a mechanism in our hLPL rabbits, since plasma concentration of free fatty acids was found similar in the two genetic groups. Various results are reported in the literature data on free fatty acids concentration in serum of hLPL transgenic mammals, with either similar, increased, or decreased levels [3,4] depending of mice strain and level of hLPL over-expression.

Altogether, the various metabolic disruptions in skeletal muscles of hLPL rabbits are in favor to a random integration of the micro-injected hLPL DNA within or close to endogenous genes. In transgenic mice, estimates of the frequency of these insertional mutations range from 7 to 20% [24]. This may have resulted in a loss of function of neighboring genes, aberrant expression patterns, and therefore in unexpected phenotypes. However, genes coding for LPL, H-FABP, GLUT4, and oxidative pathway (e.g. carnitine palmitoyl-transferase I) are not clustered on the same chromosome in the human genome [25] and likely, although not available, in the rabbit map. Therefore, if any, the integration site of the foreign DNA must have conflicted with regulatory elements of any molecular factors able to modify whole nutrient metabolic cascade.

Conclusions

During the last 15 years, transgenesis has been extended from mice to larger mammals, with the aim of benefiting...
human health. Transgenic rabbits for LPL gene may offer useful models to test the relationships between uptake of nutrients, intracellular trafficking and subsequent metabolic fate in a species sharing a lipoprotein profile closely similar to that in Human. However, we currently reported alterations of nutrient bindings and oxidative metabolism in skeletal muscles of hLPL rabbits, despite the lack of difference in tissue LPL activity between transgenic rabbits and their wild-type littersmates. It is thus suggested that hLPL phenotype emerged from insertional mutation of hLPL DNA within or close to endogenous genes. This study underlined the risk of unpredictable phenotypic properties in micro-injected transgenic rabbits, and thereby the difficulty of animal biotechnology in mammals larger than mice. Nevertheless, transgenic rabbits remain useful tools for understanding the relative importance of the various metabolic pathways involved in the control of tissue lipid content, especially when the genetic map now under progress will be available in the rabbit.

Methods
Rabbits
The Genetic Committee of the French Ministry of Agriculture approved the experiment. Rabbits were reared and killed in accordance with the French regulations for humane care and use of animals in research. New-Zealand White rabbit does were super-ovulated by injections of porcine-follicle-stimulating hormone, as previously described [26], and were mated to males of the same genetic background. Embryos were collected 17 hours later. The human LPL (hLPL) fragment of genomic DNA, inserted into a 90-kilobase P1 phagemid together with regulatory elements, was kindly provided by N. Duverger (Aventis, Evry, France). The expression of hLPL fragment in the host organism was governed by the P1 phagemid promoter. DNA solution was injected into the male pronuclei, and the injected embryos were transferred to the pseudo-pregnant females (INRA, Laboratoire de Biologie Cellulaire, Jouy-en-Josas, France). Genomic DNA was extracted from ear biopsy in the offspring [27]. Presence or absence of hLPL DNA was screened by PCR using 5’-TTCTGTGAAGAATGAAGTGG-3’ as sense and 5’-AGTGCTTGACA-CTGTCTCCTAA-3’ as anti-sense primers. These primers framed a 137 bp fragment in the exon 10 of hLPL gene, Evry, France). In each sample, the absence of genomic DNA contamination was checked by performing RT-PCR reaction without reverse transcriptase.

RNA analysis for expression of the transgene
Total RNA from 600 mg of tissues was extracted by acid guaniudium thiocyanate-phenol chloroform method [30], and was reverse transcribed into cDNA using pd(N)6 random primers (Amersham Biosciences, Orsay, France). Nested PCR (Quiagen, Courtaboeuf, France) was carried out (35 cycles) using hLPL cDNA specific primers, as follows. 5’-TTCCTGTGAAGAATGAGTGG-3’ as sense and 5’-AGTGCTTGACA-CTGTCTCCTAA-3’ as anti-sense primers framed a 137 bp fragment in the exon 10 of hLPL gene. PCR products were loaded on 2% agarose gel. The amplified fragment was picked up and sequenced (ESGS Cybergene, Evry, France). In each sample, the absence of genomic DNA contamination was checked by performing RT-PCR reaction without reverse transcriptase.

Lipoprotein lipase activity
Lipoprotein lipase (LPL) activity was assessed after homogenization of the tissues in a buffer composed of ammonia-HCl (25 mM) pH 8.2, containing EDTA (5 mM), Triton-X-100 (8 g/l), sodium dodecyl sulfate (0.10 g/l), heparin (5000 IU/l) and peptidase inhibitors. Insol-
able material was discarded by centrifugation at 20000 \times g for 20 min at 4°C. As previously described [31], rat serum was used as activator, and Intralipid® (Pharmacia, Stockholm, Sweden), into which [3H] triolein has been incorporated, was used as the substrate. Liberated [3H]-free fatty acids were quantified by liquid scintillation.

Biochemical analyses

Tissue lipid content was determined after chloroform/methanol extraction [32]. Muscle content in H-FABP was determined by ELISA analysis on cytosolic protein preparations [33] using a rat polyclonal antibody [34]. Taken into account yields of proteins in cytosolic fractions, results were converted into arbitrary densitometric (DO) units per g tissue wet weight. Insulin-sensitive glucose transporter GLUT4 content was investigated by Western-blot analysis [35] using a polyclonal antibody raised against a synthetic peptide of the C-terminal part of GLUT4, on tissue preparations obtained for LPL activity determination. Results were converted into arbitrary densitometric (DO) per g tissue wet weight, after taking into account yields of proteins in tissue preparations.

Rates of fatty acid oxidation

Oxidation rate of oleic acid was determined in freshly excised muscles as described earlier for rat and bovine muscles [28], with minor modifications to take into account rabbit specificity [29]. Briefly, samples were minced with scissors and homogenized at a tissue concentration of 60 mg/mL in 0.25 M sucrose, 2 mM EDTA, and 10 mM Tris-HCl ice-cold buffer (pH = 7.4), using a glass-glass homogenizer. A tracer amount of [1-14C]oleic acid bound to defatted albumin in a 5:1 molar ratio was used as substrate. Olate oxidation was measured using L-carnitine and other cofactors, in the absence (total oxidation as substrate. Oleate oxidation was measured using L-car

Statistics

The Kruskal-Wallis non-parametric test was used to analyze differences between groups (SAS Inst, Cary NC, NY, USA). All data are presented as mean ± SEM.

Authors’ contributions

FG, JFH and PH conceived of the study, participated in its design and co-ordination. FG, SB and JFH carried out biochemical analyses. MD carried out pup genotyping. CV and LMH carried out micro-injection and provide transgenic breeder animals. FG, JFH and MD drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported in part by a grant of the Animal Nutrition and Breeding department of INRA (France). We thank Nicolas Duvenger (Aventis, France) for the kind gift of hLPL transgene construction.

References

1. Eckel RH: Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989, 320:1060-1068.
2. Zeichner R: The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr Opin Lipidol 1997, 8:77-88.
3. Levak-Franck S, Radner H, Walsh A, Stollberger R, Knipping G, Hoefler G, Sattler W, Weinstock PH, Breslow JL, Zeichner R: Muscle-specific expression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest 1995, 96:976-986.
4. Leffer G, Noether C, Leva-Frank S, El-Shabrawy Y, Schauer S, Zeichner R, Radner H: Muscle-specific overexpression of human lipoprotein lipase in mice causes increased intracellular free fatty acids and induction of peroxisomal enzymes. Biochimie 1997, 79:163-168.
5. Ferrera LD, Pulawa UK, Jensen DR, Eckel RH: Prevention of dietary-induced obesity in transgenic mice overexpressing mouse lipoprotein lipase. J Biol Chem 1996, 271:R683-R689.
6. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore JK, Pyper M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI: Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001, 98:7522-7527.
7. Merkel M, Kako Y, Radner H, Cho IS, Ramsassy R, Brunzell JD, Goldberg IJ, Breslow JL: Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci USA 1998, 95:13841-13846.
8. Glatz JFC, van der Vusse GJ: Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996, 35:243-282.
9. Stahl A: A current review of fatty acid transport proteins. Pfeigers Arch 2004, 447:722-727.
10. Glatz JFC, Schap FG, Binas B, Bonen A, van der Vusse GJ, Luiken JJFP: Cytoplastic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol Scand 2003, 178:367-371.
11. Haunerland NH, Spener F: Fatty acid-binding proteins—insights from genetic manipulations. Prog Lipid Res 2004, 43:328-349.
12. Furler SM, Jenkins AB, Storlien LH, Kraegen EW: The rate-limiting step of hexose uptake in muscle and brain tissue of rats. Am J Physiol 1991, 261(3 pt 1):E337-E347.
13. Taylor M: Transgenic rabbit models for the study of atherosclerosis. Ann NY Acad Sci 1997, 811:146-151.
14. Fan J, Challah M, Watanabe T: Transgenic rabbit models for biomedical research: current status, basic methods and future perspective. Pathology Intern 1999, 49:583-594.
15. Fan J, Unoki H, Kojima N, Sun H, Shimoyamada H, Deng H, Okazaki M, Shikama H, Yamada N, Watanabe T: Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 2001, 276:40071-40079.
16. Zsigmond E, Scheffler E, Forte TM, Potenz R, Wu W, Chan L: Transgenic mice overexpressing human lipoprotein lipase driven by the mouse metallothionein promoter. J Biol Chem 1994, 269:18757-18766.
17. Singh-Bist A, Malheux P, Azhar S, Chen Y-D I, Komaromy MC, Kraemer FB: Generation of antibodies against a human lipoprotein lipase fusion protein. Life Sci 1995, 57:1709-1715.
20. Chang S-F, Reich B, Brunzell JD, Will H: Detailed characterization of the binding site of the lipoprotein lipase-specific monoclonal SD2. J Lipid Res 1998, 39:2350-2359.
21. Wells KD, Wall RJ: One gene is not enough: transgene detection, expression and control. In In: Transgenic animals in Agriculture. Edited by: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MM, CAB International; 1999:37-56.
22. Zimmerman AW, Veerkamp JH: New insights into the structure and function of fatty acid binding proteins. Cell Mol Life Sci 2002, 59:1096-1116.
23. Park BH, Lee Y, Walton M, Duplomb L, Unger RH: Demonstration of reverse fatty acid transport from rat cardiomyocytes. J Lipid Res 2004, 45:1992-1999.
24. Van Reenen CG, Meuwissen THE, Hopster H, Oldenbroek K, Kruij TAM, Blockhuis HJ: Transgenesis may affect farm animal welfare: a case for systematic risk assessment. J Anim Sci 2001, 79:1763-1779.
25. The Human Genome [http://www.ncbi.nlm.nih.gov/Genomes/index.html]
26. Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L, Laine B, Fievet C, Castro G, Fruchart JC, Houdebine LM, Denefle P: Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol 1996, 16:1424-1429.
27. Attal J, Cajero-Juarez M, Houdebine LM: A simple method of DNA extraction from whole tissues and blood using glass powder for detection of transgenic animals by PCR. Transgenic Res 1995, 4:149-150.
28. Piot C, Veerkamp JH, Bauchart D, Hocquette JF: Contribution of mitochondria and peroxisomes to palmitate oxidation in rat and bovine tissues. Comp Biochem Physiol part B 1998, 121:185-194.
29. Gondret F, Damon M, Jadhoa SB, Houdebine LM, Herpin P, Hocquette JF: Age-related changes in glucose utilization and fatty acid oxidation in a muscle-specific manner during rabbit growth. J Muscle Res Cell Motil 2004, 25:405-410.
30. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156-159.
31. Folch J, Lee M, Sloane Stanley GH: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957, 226:497-509.
32. Bazin R, Ferré P: Assays of lipogenic enzymes. Methods Mol Biol 2001, 155:121-127.
33. Piot C, Hocquette JF, Herpin P, Veerkamp JH, Bauchart D: Dietary coconut oil affects more lipoprotein lipase activity than the mitochondria oxidative capacities in muscles of preruminant calves. J Nutr Biochem 2000, 11:231-238.
34. Hocquette JF, Bornes F, Balage M, Ferré P, Grizard J, Vermorel M: Glucose transporters (GLUT-4) protein content in oxidative and glycolytic skeletal muscles from calf and goat. Biochem J 1995, 305:465-470.