THE TUTTE’S CONDITION IN TERMS OF GRAPH FACTORS

HONGLIANG LU AND DAVID G.L. WANG†‡

Abstract. Let G be a connected general graph of even order, with a function $f: V(G) \to \mathbb{Z}^+$. We obtain that G satisfies the Tutte’s condition $o(G - S) \leq \sum_{v \in S} f(v)$ for any nonempty set $S \subset V(G)$, with respect to f if and only if G contains an H-factor for any function $H: V(G) \to 2^\mathbb{N}$ such that $H(v) \in \{J_f(v), J_f^+(v)\}$ for each $v \in V(G)$, where the set $J_f(v)$ consists of the integer $f(v)$ and all positive odd integers less than $f(v)$, and the set $J_f^+(v)$ consists of positive odd integers less than or equal to $f(v) + 1$. We also obtain a characterization for graphs of odd order satisfying the Tutte’s condition with respect to a function.

1. Introduction

This note connects Tutte’s condition with graph factors. Tutte’s theorem states that a graph G has a perfect matching if and only if $o(G - S) \leq |S|$ for any set $S \subset V(G)$, where $o(G - S)$ denotes the number of odd components of the subgraph $G - S$, and $V(G)$ is the vertex set of G. Let $f: V(G) \to \mathbb{Z}^+$ be a function, where \mathbb{Z}^+ denotes the set of positive integers. The Tutte’s condition on G with respect to f is the condition $o(G - S) \leq f(S)$ for any nonempty set $S \subset V(G)$, where $f(S) = \sum_{v \in S} f(v)$. The Tutte’s condition with respect to the constant function $f \equiv 1$ is the condition in Tutte’s theorem.

A considerable large number of literatures on graph factors can be found in Akiyama and Kano’s book [2]. Let $H: V(G) \to 2^\mathbb{N}$ be a set-valued function. A spanning subgraph F of G is called an H-factor if $\deg_F(v) \in H(v)$. In particular, a 1-factor is exactly a perfect matching. For any vertex x of G, denote by G^x the graph obtained from G by adding a new vertex x' together with a new edge xx'.

2010 Mathematics Subject Classification. 05C75 05C70.
Key words and phrases. graph factor, perfect matching, Tutte’s condition, Tutte’s theorem.
Lu is supported by the National Natural Science Foundation of China, No. 11471257.
Wang is supported by the National Natural Science Foundation of China, No. 11671037.
A graph G is said to be H-critical if G contains no H-factors and if the graph G^x has an H^x-factor for every vertex x of G, where

$$H^x(v) = \begin{cases} \{1\}, & \text{if } v = x'; \\ H(v), & \text{otherwise.} \end{cases}$$

Lovász [6] proposed the degree prescribed subgraph problem of determining the distance of a factor from a given integer set function. He [7] considered it with the restriction that the given set function H is allowed, i.e., that every gap of the set $H(v)$ for each vertex v is at most two. He also showed that the problem is NP-complete when the function H is not allowed. Cornuéjols [3] provided a polynomial Edmonds-Johnson type alternating forest algorithm for the degree prescribed subgraph problem with H allowed, which implies a Gallai-Edmonds type structure theorem.

For convenience, we denote the set of positive odd integers by $2\mathbb{N} + 1$, and

$$J_n = \begin{cases} \{1, 3, 5, \ldots, n\}, & \text{if } n \text{ is odd;} \\ \{1, 3, 5, \ldots, n - 1, n\}, & \text{if } n \text{ is even.} \end{cases}$$

Define $J_f(v) = J_{f(v)}$ for all vertices v.

Theorem 1.1 (Cui and Kano [4]). A connected general graph G of even order satisfies the Tutte’s condition with respect to a function $f: V(G) \to 2\mathbb{N} + 1$ if and only if G contains a J_f-factor.

Extending the range of f to be all positive integers, Egawa, Kano, and Yan [5] obtain Theorem 1.2.

Theorem 1.2 (Egawa et al. [5]). Suppose that a connected simple graph G of even order satisfies the Tutte’s condition with respect to a function $f: V(G) \to \mathbb{Z}^+$. Then G contains a J_f-factor.

The particular case $f(v) \equiv 2n$ for some integer n had been solved by Akiyama, Avis and Era [1] for $n = 1$ and by the present authors [8] for $n \geq 2$.

Without restricting the parity of order of G, Akiyama and Kano [2, Problem 6.14 (2)] proposed Problem 1.3. Denote by $2\mathbb{Z}^+$ the set of positive even integers.

Problem 1.3 (Akiyama and Kano [2]). Suppose that a connected simple graph G satisfies the Tutte’s condition with respect to a function $f: V(G) \to 2\mathbb{Z}^+$. Then what factor or property does G have?

In the next section, we will give a characterization of graphs satisfying the Tutte’s condition with respect to a function f, in terms of graph factors, without any restriction on the range of f, and for graphs of any parity of order.
2. Main Result

In terms of graph factors, the authors [9] have characterized graphs satisfying the Tutte’s condition with respect to a function, but with the aid of either 2-colorings, or 2-edge-colorings, or 2-end-colorings; see Theorems 2.1 and 2.3. In this note, we present characterizations in terms of graph factors only; see Theorems 2.2 and 2.4.

Theorem 2.1 (Lu and Wang [9]). A connected general graph G of even order satisfies the Tutte’s condition with respect to a function $f: V(G) \to \mathbb{Z}^+$ if and only if G contains an H-factor for any coloring $g: V(G) \to \{B, R\}$, where

$$H(v) = \begin{cases} J_f(v), & \text{if } g(v) = R; \\ 2\mathbb{N} + 1, & \text{if } g(v) = B. \end{cases}$$

For any function $f: V(G) \to \mathbb{Z}^+$, let $J_f^+(v)$ be the set of positive odd integers that are less than or equal to $f(v) + 1$. In other words,

$$J_f^+(v) = \{m \in 2\mathbb{N} + 1: m \leq f(v) + 1\} = \begin{cases} J_f(v), & \text{if } f(v) \text{ is odd}; \\ J_f(v)+1, & \text{if } f(v) \text{ is even}. \end{cases}$$

Define a set

$$\mathcal{H}_f = \{H: V(G) \to 2\mathbb{N} \mid H(v) \in \{J_f(v), J_f^+(v)\} \text{ for each } v \in V(G)\}.$$

Theorem 2.2. A connected general graph G of even order satisfies the Tutte’s condition with respect to a function $f: V(G) \to \mathbb{Z}^+$ if and only if G contains an H-factor for any $H \in \mathcal{H}_f$.

Proof. Let G be a connected general graph of even order, with a function $f: V(G) \to \mathbb{Z}^+$. We shall show the necessity and sufficiency respectively.

Necessity. Let $H \in \mathcal{H}_f$. Consider the function $f': V(G) \to \mathbb{Z}^+$ defined by

$$f'(v) = \max_{x \in H(v)} x = \begin{cases} f(v) + 1, & \text{if } H(v) = J_f^+(v) \text{ and } f(v) \text{ is even}; \\ f(v), & \text{otherwise}. \end{cases}$$

From the premise, we infer immediately

$$o(G - S) \leq f(S) \leq f'(S) \quad \text{for any set } S \subset V(G).$$

Applying Theorem 2.1 with the coloring g such that $g^{-1}(R) = V(G)$, one obtains that G contains an $J_{f'}$-factor, i.e., an H-factor.

Sufficiency. Let $S \subset V(G)$. Consider the function $H \in \mathcal{H}_f$ defined by

$$H(v) = \begin{cases} J_f(v), & \text{if } v \in S; \\ J_f^+(v), & \text{otherwise}. \end{cases}$$
From premise, the graph G has an H-factor, say, F. Let C be any odd component of the subgraph $G - S$. Then for each $v \in C$, we have $H(v) = J_f(v)$ and thus the degree $d_F(v)$ is odd. By parity argument, we have $E_F(V(C), S) \neq \emptyset$. Therefore, one may deduce that

$$o(G - S) \leq \sum_C |E_F(V(C), S)| \leq f(S).$$

This completes the proof. □

We remark that Theorem 2.2 reduces to Theorem 1.1 if $f(V(G)) \subseteq 2\mathbb{N} + 1$. In fact, when $f(V(G)) \subseteq 2\mathbb{N} + 1$, we obtain $J_f = J_f^+$ and

$$H_f = \{H : V(G) \to 2\mathbb{N} | H(v) = J_f(v) \text{ for each } v \in V(G)\} = \{J_f\}.$$

Theorem 2.3 (Lu and Wang [9]). Let G be a connected general graph. Then G satisfies the Tutte’s condition with respect to a function $f : V(G) \to \mathbb{Z}^+$ if and only if for any coloring $g : V(G) \to \{B, R\}$, the graph G either contains an H-factor or is H-critical, where

$$H(v) = \begin{cases} J_f(v), & \text{if } g(v) = R; \\ 2\mathbb{N} + 1, & \text{if } g(v) = B. \end{cases}$$

By a proof similar to that of Theorem 2.2, one may obtain the following result.

Theorem 2.4. Let G be a connected general graph of odd order. Then G satisfies the Tutte’s condition with a function $f : V(G) \to \mathbb{Z}^+$ if and only if the graph G either contains an H-factor or is H-critical, for any $H \in H_f$.

Proof. Omitted. □

Combining Theorems 2.2 and 2.4 gives an answer to Problem 1.3.

References

[1] J. Akiyama, D. Avis and H. Era, On a $\{1, 2\}$-factor of a graph, TRU Math. 16(2) (1980), 97–102.

[2] J. Akiyama and M. Kano, Factors and Factorizations of Graphs — Proof Techniques in Factor Theory, Springer-Verlag Berlin Heidelberg, 2011.

[3] G. Cornuojol, General factors of graphs, J. Combin. Theory Ser. B 45 (1988), 185–198.

[4] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988), 327–333.

[5] Y. Egawa, M. Kano, and Z. Yan, $(1, f)$-Factors of graphs with odd property, Graphs Combin. 32 (2016), 103–110.

[6] L. Lovász, The factorization of graphs, Combinatorial Structures and their Applications, In: Proc. Calgary Internat. Conf., Calgary, Alta., 1969, pp. 243–246 (1970).
[7] L. Lovász, The factorization of graphs. II, Acta Math. Hungar. 23 (1972), 223–246.
[8] H. Lu and D.G.L. Wang, On Cui-Kano's characterization problem on graph factors, J. Graph Theory 74(3) (2013), 335–343.
[9] H. Lu and D.G.L. Wang, A Tutte-type characterization for graph factors, SIAM J. Discrete Math., 31 (2017), 1149-1159.
[10] T. Niessen, A characterization of graphs having all (g, f)-factors, J. Combin. Theory Ser. B 72 (1998), 152–156.
[11] A. Sebő, General antifactors of graphs, J. Combin. Theory Ser. B 58 (1993), 173–184.
[12] J. Szabó, Good characterizations for some degree constrained subgraphs, J. Combin. Theory Ser. B 99(2) (2009), 436–446.

School of Mathematics and Statistics, Xi’an Jiaotong university, 710049 Xi’an, P. R. China
E-mail address: luhongliang@mail.xjtu.edu.cn

† School of Mathematics and Statistics, Beijing Institute of Technology, 102488 Beijing, P. R. China, ‡ Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, 102488 Beijing, P. R. China
E-mail address: glw@bit.edu.cn