Probable Entropic Nature of Gravity in Ultraviolet and Infrared Limits—Part I: An Ultraviolet Case

A.E.Shalyt-Margolin

National Centre of Particles and High Energy Physics, Bogdanovich Str. 153, Minsk 220040, Belarus

PACS: 03.65, 05.20
Keywords: entropy, gravity in UV limit, gravitational thermodynamics

Abstract
This work presents a study of the possibility for extending the well-known results of E. Verlinde concerning the entropic nature of gravity to the ultraviolet region (Planck’s energies) and also the derivation of quantum corrections to Einstein Equations.

1 Introduction
In the last 15-20 years new very interesting approaches to gravity studies have been proposed, which may be divided into “thermodynamical” and “theoretical-informational” approaches. The approach suggested in the pioneer work by T. Jacobson [1] has been considerably extended in a series of remarkable papers by T. Padmanabhan [2]–[13]. The paper by E. Verlinde [14] stating a secondary character of the gravitational interaction and its entropic nature was published in 2010 after the appearance in the ArXiv. The paper [14] introducing such specific terms as ”Entropic Force” has been followed by numerous studies (e.g. [15]–[26] and others).

In this work the author studies the possibility for extension of the results given in [14] to the ultraviolet region (Planck’s energies) and presents the derivation of quantum corrections to Einstein Equations using the dimensionless small parameter α introduced by the author in his previous works [27] – [39].

1E-mail: a.shalyt@mail.ru; alexm@hep.by
2 Fundamental Quantities and Their High-Energy Deformation

In this section the author uses the “ideology”, terms, and notation introduced in [14] to extend the corresponding results to the ultraviolet and infrared gravity regions. It may be stated that the results in [14] have been obtained for the “medium” energies, i.e. for the range of well-known energies, where the General Relativity (GR) is valid. But owing to modern knowledge, in the ultraviolet and infrared limits gravity may be modified. As regards the ultraviolet (Planck) scale, this idea has been proposed long ago [40] – [45] and in this situation the word “may” we have to replace by the word “must”. As for low energies, there are many recent publications considering the infrared (for great distances) modification of gravity (e.g. [46], [47]). And the modification can have a solid experimental status in the nearest future [48].

Naturally, when we are concerned with extension of some results to higher or lower energies, the principle of conformity must be executed undeviatingly: on going to the known energy scales the known results must be reproduced. In this Section it is shown that the fundamental quantities \(A, N, T \), defined in [14] and associated with the holographic screen (where \(A \) - its surface area, \(N \) - number of data bits "existing" on \(A \), \(T \) – its temperature), may be supplementary defined for the region of high energies so that at normal energies they be coincident with values given in [14]. In the process we take the corresponding quantities for the stationary Schwarzshild black hole as most natural holographic object.

The idea is as follows: formulae for the correction of the fundamental quantities within the Generalized Uncertainty Principle (GUP) for the holographic screen \(S \) from [14] are similar to those for the black hole.

Let us consider Section 5.2 (Derivation of Einstein Equations) in [14]. In this Section formula (5.32) for a "bit density" on the holographic screen is given as

\[
dN = \frac{dA}{G\hbar},
\]

(1)

However, when the holographic principle [49] – [53] is valid, \(N \) is actually the entropy \(S \) up to the factor \(S \sim N \) and hence from (1) it follows directly
that
\[dS \sim \frac{dA}{G \hbar}. \] (2)

What are the changes in \(S \) on going to high (Planck) energies? The answer to this question is already known owing to the fact that at these energies the Heisenberg Uncertainty Principle (HUP) is replaced by GUP [54]–[61]:
\[\Delta x \geq \frac{\hbar}{\Delta p} + \ell^2 \frac{\Delta p}{\hbar}, \] (3)

where \(\ell^2 = \alpha' l_p^2 \) and \(\alpha' \) is the dimensionless numerical factor. The well-known Bekenstein-Hawking formula for the black hole entropy in the semi-classical approximation [62], [63]
\[S_{BH} = \frac{A}{4 l_p^2} \] (4)
is modified by the corresponding quantum corrections on going from HUP to GUP [64]–[67]. In particular, [65]:
\[S_{BH}^{GUP} = \frac{A}{4 l_p^2} - \frac{\pi \alpha'^2}{4} \ln \left(\frac{A}{4 l_p^2} \right) + \sum_{n=1}^{\infty} \tilde{c}_n \left(\frac{A}{4 l_p^2} \right)^{-n} + \text{const}, \] (5)

where the expansion coefficients \(c_n \propto \alpha'^2(n+1) \) can always be computed to any desired order of accuracy.

The general form of quantum corrections for the black hole entropy derived in [65] remains valid for any horizon spaces and, in particular, for the holographic screen \(S \) from [14]. Specifically, in [68], [69] the logarithmic correction was obtained in the following form:
\[S_{\text{in}} = \frac{A}{4 l_p^2} + \frac{\tilde{\alpha}}{4} \ln \left(\frac{A}{l_p^2} \right), \] (6)

omitting the Boltzmann constant \(k_B \) as a factor and assuming it to be equal to unity in what follows. Higher-order corrections may be derived using the Taylor-series expansion in terms of the small parameter \(l_p^2/A \)
\[S_{GUP} = \frac{A}{4 l_p^2} + \frac{\tilde{\alpha}}{4} \ln \left(\frac{A}{l_p^2} \right) + \sum_{n=1}^{\infty} \tilde{c}_n \left(\frac{A}{l_p^2} \right)^{-n} + \text{const} \] (7)
in a similar way to the Taylor-series expansion of the right-hand side in (9) in terms of the small parameter \(4l_p^2/A\). This is valid as GUP gives the ultraviolet cutoff at the level of \(l_{\text{min}} \sim l_p\).

In this way at high energies we have \(S \to S_{\text{GUP}}\) and hence \(N \to N_{\text{GUP}}\). Assuming in the notation of [14] that

\[S = \frac{1}{4} N, \quad (8) \]

we directly obtain

\[N_{\text{GUP}} = \frac{A}{l_p^2} + \tilde{\alpha} \ln \left(\frac{A}{l_p^2} \right) + 4 \sum_{n=1}^{\infty} \tilde{c}_n \left(\frac{A}{l_p^2} \right)^{-n} + \text{const}, \quad (9) \]

Now, coming back to [14], in terms of \(N_{\text{GUP}}\) we can define the holographic screen area, as measured at high energies, by

\[A_{\text{GUP}} \equiv G\hbar N_{\text{GUP}}, \quad (10) \]

where \(G\) and \(\hbar\) are gravitational and Planck constants, respectively, and \(N_{\text{GUP}}\) is given by (9). Considering that we, similar to [14], assume that the speed of light \(c = 1\), then, according to \(l_p^2 = G\hbar\), from (9) and (10) we have

\[A_{\text{GUP}} = A + G\hbar \tilde{\alpha} \ln \left(\frac{A}{G\hbar} \right) + 4G\hbar \sum_{n=1}^{\infty} \tilde{c}_n \left(\frac{A}{G\hbar} \right)^{-n} + \text{const}. \quad (11) \]

In this case an exact value of the constant in the right-hand side of (11) is of no great importance as further we need the relation (1), being primarily interested in \(dA_{\text{GUP}}\) rather than in \(A_{\text{GUP}}\), i.e. the constant in the right-hand side of (11) is insignificant. So, (1) has a fairly definite analog at high energies

\[dN_{\text{GUP}} = \frac{dA_{\text{GUP}}}{G\hbar}, \quad (12) \]

that on going to the known low energies gives (11). There is a single considerable difference, in [14] the quantity \(N\) was defined in terms of \(A\) and \(dN\) was defined in terms of \(dA\) but in the case under study the situation is
opposite: A_{GUP} is defined in terms of N_{GUP} and dA_{GUP} in terms of dN_{GUP}. The logic series is here as follows:

$$A \Rightarrow N \Rightarrow N_{GUP} \Rightarrow A_{GUP}. \quad (13)$$

The GUP-correction problem of the temperature T for the arbitrary holographic screen S has been studied in [70]. Actually, this case is identical to the case of the Schwarzschild black hole and T_{GUP} was derived as a series (formulas (1),(7) from [70])

$$T_{GUP} = T(1 + \Theta T^2 + ...) = T + \Theta T^3 + ... = T + \tilde{T}_{GUP}, \quad (14)$$

where the factors in the right-hand side(14) may be computed in the explicit form and at low energies $\tilde{T}_{GUP} \rightarrow 0$.

Thus, we can have a GUP - analog of Komar’s mass in ((5.33) from [14])

$$M_{GUP} = \frac{1}{2} \int_S T_{GUP}dN_{GUP} = \frac{1}{2} \int_S (T+\tilde{T}_{GUP})dN_{GUP} = \frac{1}{2\mathcal{G}} \int_S T_{GUP}dA_{GUP}, \quad (15)$$

that in the low-energy limit gives the well-known Komar formula [71],(72, p.289).

It is clear that the ”GUP-deformed Komar’s mass” M_{GUP} in the first term (15) as a summand has the known Komar’s mass [71],((11.2.9 - 11.2.10),72) (5.34), [14]

$$M = \frac{1}{4\pi \mathcal{G}} \int_S TdA. \quad (16)$$

3 N_{GUP},A_{GUP} and M_{GUP} in Terms of Unified Small Parameter

If feasible, it is desirable to express all the above-derived fundamental quantities in terms of a unified parameter. As shown by the author in [39], [73], this is possible for black holes within the scope of GUP and a role of the unified small parameter is played by the parameter introduced previously in [27]–[36] as follows:

$$\alpha_x = l^2_{\text{min}}/x^2, \quad (17)$$
where x is the measuring scale, $l_{\text{min}} \sim l_p$ by virtue of GUP \[3\], and $0 < \alpha \leq 1/4$.

Obviously, the principal results obtained in \[39\], \[73\] remain in force for an arbitrary screen S and may be applied to the quantities $N_{\text{GUP}}, A_{\text{GUP}}, M_{\text{GUP}}$ defined in the preceding Section.

Substituting from GUP (3) $l_{\text{min}} = 2\sqrt{\alpha'}l_p$ and using the formula $A = 4\pi R^2$, where R is the radius of the screen S, we get N_{GUP} (9) of the following form:

$$N_{\text{GUP}} = N + \tilde{\alpha} \ln(\sigma \alpha_R^{-1}) + 4 \sum_{n=1}^{\infty} \tilde{c}_n \sigma^{-n} \alpha_R^n + \text{const.}$$ \hspace{1cm} (18)

Here α_R is a value of α parameter at the point R and σ is equal to $16\alpha'\pi$. It is convenient to refer to the form N_{GUP} derived in (18) as to the α-representation.

Using (10) and (11), we can easily obtain α-representation for A_{GUP}

$$A_{\text{GUP}} = A + \tilde{\alpha} G\hbar \ln(\sigma \alpha_R^{-1}) + 4 G\hbar \sum_{n=1}^{\infty} \tilde{c}_n \sigma^{-n} \alpha_R^n + \text{const.}$$ \hspace{1cm} (19)

Also, it is clear that M_{GUP} (15) may be derived in terms of α_R.

Here α_x is considered as a deformation parameter for the Heisenberg algebra on going from HUP to GUP. Generally speaking, initially the construction of such a deformation was realized with other parameters (e.g. \[60\], \[61\]). But it is easily shown that QFT parameter of the deformations associated with GUP may be expressed in terms of the parameter α that has been introduced in the approach to the density matrix deformation \[38\], \[39\]. Here the notation of \[74\] is used. Then (\[39\], p. 943)

$$[\vec{x}, \vec{p}] = i\hbar(1 + \beta^2 \vec{p}^2 + \ldots)$$ \hspace{1cm} (20)

and

$$\Delta x_{\text{min}} \approx \hbar \sqrt{\beta} \sim l_p.$$ \hspace{1cm} (21)

In this case from (20), (21) it follows that $\beta \sim 1/\mathbf{p}^2$; and for $x_{\text{min}} \sim l_p$, β corresponding to x_{min} is nothing else but

$$\beta \sim 1/F_{\text{pl}}^2,$$ \hspace{1cm} (22)
where P_{pl} is Planck’s momentum: $P_{pl} = \hbar/l_p$.

In this manner β is varying over the following interval:

$$\lambda/P_{pl}^2 \leq \beta,$$

(23)

where λ is a numerical factor and the second term in (20) is accurately reproduced in the momentum representation (up to the numerical factor) by $\alpha_x = l_{\text{min}}^2/x^2 \sim l_p^2/x^2 = p^2/P_{pl}^2$

$$[\vec{x}, \vec{p}] = i\hbar(1 + \beta^2 \vec{p}^2 + ...) = i\hbar(1 + a_1 \alpha_x + a_2 \alpha_x^2 + ...).$$

(24)

In the case under study convenience of using α_x stems from its smallness, its dimensionless character, and ability to test changes in the radius R of the holographic screen S.

4 Quantum Corrections to the Principal Result and Ultraviolet Limit

Based on the aforesaid, we can proceed to generalization of the results from Section 5.2 of [14] and to derivation of equations for a gravitational field within the scope of GUP.

We must consider two absolutely different cases.

4.1 Quantum Corrections to the Principal Result

It is assumed that the screen radius is given by S

$$R \gg l_p.$$

(25)

In terms of the deformation parameter α_x introduced in the previous Section, we have

$$\alpha_R \ll 1/4.$$

(26)

So far we are not concerned with redefinition of the lower limit for α_R. This is interesting when going to the infrared limit.
Then the principal result from the final part of Section 5.2 in [14] re-
 mains valid owing to the replacement of M (formula (5.33) from [14]) by $M_{GUP} = M_{GUP}[\alpha_R]$ (15). The ”α_R – complement” (i.e. the difference $\tilde{M}[\alpha_R] = M_{GUP}[\alpha_R] - M$) to M will be simply a (small) quantum correction for the principal result.

In this way, because in the case of GUP-corrections the left side of formula (5.33) and hence the left side in formulas (5.34), (5.35) from [14] is dependent on α_R, the right sides of the corresponding formulas are also dependent on α_R, in particular the quantities T_{ab}, R_{ab}, g_{ab} from (5.37).

But in fact this relation at low energies ((25) or (26)) is insignificant since α_R at low energies (as distinct from high Planck’s energies) is varying very slowly, practically showing continuity though being discrete in character.

Indeed, as long as there is the minimal length $l_{min} \sim l_p$, all the lengths measured are its multiples and hence α_R is a discrete non-uniformly varying quantity. Then, due to ((25) or (26)), the difference between two successive values of α_R is as follows:

$$\Delta_{\text{min}}[\alpha_R] = \alpha_R - \alpha_{R+l_{min}} \sim \frac{l_{\text{min}}^3}{R^3}, \quad (27)$$

for $R \gg l_p$ or, that is the same, for $R \gg l_{min}$ giving a value close to zero.

And assuming in this case that α_R is continuously varying from R and all the quantities in Section 5.2 of [14] are also continuously dependent on α_R (26), we can write down the (”α – analog” of formula (5.37) in [14]) as

$$2 \int_\Sigma \left(T_{ab}[\alpha] - \frac{1}{2} T[\alpha] g_{ab}[\alpha]\right) n^a \xi^b dV = \frac{1}{4\pi G} \int_\Sigma R_{ab}[\alpha] n^a \xi^b dV, \quad (28)$$

where the dependence of $T_{ab}[\alpha]$ and $R_{ab}[\alpha]$ on $\alpha = \alpha_R$ is completely determined, in accordance with [72,14], by the integral $M_{GUP}[\alpha]$ (15).

Besides, it is assumed that n^a and ξ^b are dependent on α, though the dependence is dropped.

Next, similar to [14], from (28) we can derive the α-deformed Einstein Equations using the method from [1] Note that both this method and its minor modification given in ([14], end of Section 5.2) in this case are valid because α_R is small and continuous, the whole system being continuously dependent on it.
Solutions of the \(\alpha \)-deformed Einstein Equations represent a series in \(\alpha_R \), and for \(\alpha_R \to 0 \) or for \(\alpha' = 0 \) from formula (3) become the corresponding solutions of (Section 5.2 in [14]).

Using the result obtained in [75], we can easily extend the above result to the case with a nonzero cosmological term \(\Lambda \neq 0 \). In [75] Komar’s formula was generalized to the case of a nonzero \(\Lambda \). All the arguments from (Section 5.2 of [14]) in this case remain valid and formula (5.37) takes the following form:

\[
2 \int_\Sigma \left(T_{ab} - \frac{1}{2} T g_{ab} \right) n^a \xi^b dV = \frac{1}{4\pi G} \int_\Sigma (R_{ab} + \Lambda g_{ab}) n^a \xi^b dV. \tag{29}
\]

We can easily obtain the \(\alpha \) - analog of the last formula with the dynamic cosmological term \(\Lambda(\alpha) \) as a corresponding complement to the right-hand side (28). Analysis of the relationship between \(\Lambda \) and \(\alpha \), applicable in this case as well, will be given in Section 4.2.

4.2 Ultraviolet Limit

In the case in question we suggest that the screen \(S \) has a radius on the order of several Planck’s lengths

\[
R \approx \xi l_{\text{min}} = 2\alpha' \xi l_p, \tag{30}
\]

where \(\xi \) is a number on the order of 1 or

\[
\alpha_R \approx 1/4. \tag{31}
\]

The problem is which object puts the limit for such a screen \(S \). It may be assumed that if \(T_{ab} \neq 0 \) then the object may be represented only by Planck’s black hole or by a micro-black hole with a radius on the order of several Planck’s lengths.

Clearly, the methods of [14] and [1] are not in force for such screen \(S \). Specifically, there are no classical analogs of \(N, T, \) and \(M \) for the screen. Moreover, it is impossible to use the result of [1] as ”a very small region the space-time” is no longer ”an approximate Minkowski space” [14].
Also, such micro-black hole is a horizon space, jet at high energies (Planck scales). As is known, for horizon spaces, black holes in particular, at low energies (semiclassical approximation) the results of [12] are valid.

At the horizon (and we are interested in this case only) Einstein’s field Equations may be written as a thermodynamic identity ([12] formula (119))

\[
\frac{hf'(a)}{4\pi} \frac{c^3}{Gh} d\left(\frac{1}{4} 4\pi a^2\right) - \frac{1}{2} c^4da = Pd\left(\frac{4\pi a^3}{3}\right)
\]

(32)

where \(R = a \) is a radius of a black hole (i.e. of the screen \(S \)), \(P = T_R^R \) is the trace of the momentum-energy tensor and radial pressure, and the horizon location will be given by simple zero of the function \(f(R) \), at \(R = a \).

The main ingredients of (32) may be written in terms of the deformation parameter \(\alpha \) with the coefficients containing only the numerical factors and fundamental constants [73].

Also, the work [73] presents two possible variants of high-energy (Planck) \(\alpha \)-deformation \(\alpha \rightarrow 1/4 \) (32).

Hereinafter, we assume that the energy – momentum tensor of matter fields is not traceless

\[
T^a_a \neq 0,
\]

(33)

similar, in particular, to the case under study (32) \(P = T_R^R \neq 0 \)

1. Case of equilibrium thermodynamics ([73], section (6.1))

In this case it is assumed that in the high-energy (ultraviolet (UV)) limit the thermodynamic identity (32) is retained but now all the quantities involved in this identity become \(\alpha \)-deformed \((\alpha \rightarrow 1/4) \). All the quantities \(\Upsilon \) in (32) are replaced by the corresponding quantities \(\Upsilon_{GUP} \) with the subscript GUP. Then the high-energy \(\alpha \)-deformation of equation (32) takes the form

\[
k_B T_{GUP}(\alpha) dS_{GUP}(\alpha) - dE_{GUP}(\alpha) = P(\alpha) dV_{GUP}(\alpha).
\]

(34)

Substituting into (34) the corresponding quantities

\(T_{GUP}(\alpha), S_{GUP}(\alpha), E_{GUP}(\alpha), V_{GUP}(\alpha), P(\alpha) \) and expanding them into a Lau-
rent series in terms of α, close to high values of α, specifically close to $\alpha = 1/4$, we can derive a solution for the high energy α-deformation of the general relativity (34) as a function of $P(\alpha)$. Provided at high energies the generalization of (32) to (34) is possible, we can have the high-energy α-deformation of the metric.

It is noteworthy that in (34) T_{GUP} this time is calculated from ([64], formula (10))

$$T_{GUP}^{BH} = \frac{1}{4\pi} \frac{\hbar R}{2\alpha'^2 l_p^2} [1 - \sqrt{1 - \frac{\alpha'^2 l_p^2}{R^2}}] =$$

$$= \frac{\hbar \alpha R^{-1}}{4\pi \alpha' l_p} [1 - (1 - \alpha R)^{1/2}]$$ \hspace{1cm} (35)

with subsequent replacement of l_p by $\sqrt{G\hbar}$ for $c = 1$.

It is especially interesting to consider the following case.

1. Case of nonequilibrium thermodynamics ([73], section (6.2))

In this case the α-dependent dynamic cosmological term $\Lambda(\alpha) \neq 0$ appears in the right-hand side of (34). Then, with the addition of $\Lambda(\alpha) \neq 0$, the α-representation (34) (for $\hbar = 1$) is given as follows ([73], formula (53)):

$$- \alpha^2 f'(\alpha) - \frac{1}{2} \alpha = 16\pi \alpha^2 P(\alpha) G^2 - G\Lambda(\alpha),$$ \hspace{1cm} (36)

where $\alpha = \alpha R \approx 1/4$,

$$f'(\alpha) = 4\pi k_B T_{GUP}(\alpha)$$ \hspace{1cm} (37)

and the derivative in the left-hand side of (37) is taken with respect to α. $\Lambda(\alpha)$ in the right-hand side of (37) may be subjected to a series expansion in terms of α, in compliance with the holographic principle [49]–[53] as applied to the Universe [76]. In [77], [38], [39], [73] in the leading order this expansion results in the first power, i.e. we have

$$\Lambda(\alpha_R) \sim \alpha_R \Lambda_p,$$ \hspace{1cm} (38)

where Λ_p – initial value of $\Lambda \approx \Lambda_{1/4}$ derived using the well-known procedure of "summation over all zero modes " and the Planck momentum cutoff
Actually, (38) is in a good agreement with the observable \(\Lambda = \Lambda_{\text{observ}} \). Because a radius of the visible part of the Universe is given as \(R = R_{\text{Univ}} \approx 10^{28} \text{cm} \), it is clear that \(\alpha R \approx 10^{-122} \) and (38) is completely consistent with the experiment [79].

Note that, proceeding directly from a quantum field theory but without the use of the holographic principle, we can have only a rough estimate of \(\Lambda \) that, on the whole, is at variance with \(\Lambda_{\text{observ}} \). Such an estimate may be obtained in different ways: by simulation [80]; using the cutoff [78] but now in the infrared limit; with the use of the Generalized Uncertainty Principle for the pair \((\Lambda, V) \), where \(V \) – four-dimensional volume [38], [39]. In the \(\alpha \)-representation in this case the expansion in terms of \(\alpha \) results in the second leading order
\[
\Lambda(\alpha_R) \sim \alpha^2 R^4 \Lambda_p,
\]
that, obviously, is at variance with the accepted facts.

5 Conclusion

I. A very interesting case of the zero energy-momentum tensor for matter fields \(T_{ab} = 0 \) and, specifically the case of \(P(\alpha) = 0 \) in the right-hand side of (36) has remained beyond the scope of the final Section. We can state the problem more specifically: for which conditions in this case we can derive a solution in the form of the de Sitter space with large values of \(\alpha \)?

This problem is also important when we try to find whether it is possible to derive the initial inflation conditions [81], [82] for \(T_{ab} = 0 \) on the basis of the foregoing analysis.

Note that the dynamic cosmological term \(\Lambda(\alpha) \) correlates well with inflation models [81], [82] as the latter require a very high \(\Lambda \) at the early stages of the Universe, and this is distinct from \(\Lambda = \Lambda_{\text{exper}} \) in the modern period.

Of great interest is the recent work [83], where a mechanism of the vacuum energy decay in the de Sitter space is established to support a dynamic nature of \(\Lambda \).

II. The deformation parameter \(\alpha_R \) has a double meaning.
As $\kappa = 1/R$ – curvature with the radius R, $\alpha_R = \kappa^2 l_{\text{min}}^2$ is nothing else but the squared curvature multiplied by the squared minimal area and is explicitly dependent on the energy E. On the other hand, it is seen that, at least at the known energies, from the definition of the bit number N in (14, formula (3.10)) we get $\alpha_R \sim 1/N$. But, because $\alpha_R = \alpha_R[E]$, this suggests that $N = N[E]$, as demonstrated in the text on going to higher energies

$$N \Rightarrow N_{\text{GUP}}.$$

Nevertheless, on going to lower energies, i.e. in the infrared limit, the same should be true: the bit number must be a function of energy.

This problem and the relevant questions touched upon in this paper will be further considered in subsequent works of the author.

References

[1] Jacobson,T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263(1995)

[2] Padmanabhan,T.: A New perspective on gravity and the dynamics of spacetime. Int.Jorn.Mod.Phys. D14, 2263–2270(2005)

[3] Padmanabhan,T.: The Holography of gravity encoded in a relation between entropy, horizon area and action for gravity. Gen.Rel.Grav. 34, 2029–2035(2002)

[4] Padmanabhan,T.: Holographic Gravity and the Surface term in the Einstein-Hilbert Action. Braz.J.Phys. 35, 362–372(2005)

[5] Padmanabhan,T.: Gravity: A New holographic perspective. Int.J.Mod.Phys.D. 15, 1659–1676(2006)

[6] Mukhopadhyay,A., Padmanabhan,T.: Holography of gravitational action functionals. Phys.Rev.D. 74, 124023(2006)

[7] Padmanabhan,T.: Dark energy and gravity. Gen.Rel.Grav. 40, 529–564(2008)
[8] Padmanabhan, T., Paranjape Aseem.: Entropy of Null Surfaces and Dynamics of Spacetime. Phys.Rev.D. 75, 064004(2007)

[9] Padmanabhan, T.: Gravity as an emergent phenomenon: A conceptual description. AIP Conference Proceedings. 939, 114–123(2007)

[10] Padmanabhan, T.: Gravity and the thermodynamics of horizons. Phys.Rept. 406, 49–125(2005).

[11] Paranjape, A., Sarkar, S., Padmanabhan, T.: Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys.Rev.D. 74, 104015(2006).

[12] Padmanabhan, T.: Thermodynamical Aspects of Gravity: New insights. Rep. Prog. Phys. 74, 046901(2010)

[13] Padmanabhan, T.: Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod.Phys.Lett.A. 25, 1129–1136(2010)

[14] Verlinde, E.: On the Origin of Gravity and the Laws of Newton. JHEP. 1104, 029(2011)

[15] Easson, D. A., Frampton P. H., Smoot, G. F.: Entropic Accelerating Universe. Phys. Lett. B. 696, 273–277(2011).

[16] Konoplya, R. A.: Entropic force, holography and thermodynamics for static space-times. Eur.Phys.J.C. 69, 555–562(2010).

[17] Nicolini, P.: Entropic force, noncommutative gravity and ungravity. Phys. Rev. D. 82, 044030(2010).

[18] Gao, C.: Modified Entropic Force. Phys. Rev. D. 81, 087306 (2010).

[19] Myung, Y. S., Kim, Y. W.: Entropic force and entanglement system. Phys. Rev. D. 81, 105012 (2010).

[20] Banerjee, R., Majhi, B. R.: Statistical Origin of Gravity. Phys. Rev. D. 81, 124006 (2010).
[21] Caravelli,F., Modesto,L.: Holographic actions from black hole entropy. Phys.Lett.B. 702, 307-311 (2011).

[22] Modesto,L., Randono, A.: Entropic corrections to Newton’s law. arXiv:1003.1998 (hep-th)

[23] Ho,C. M., Minic D., Ng,Y. J.: Cold Dark Matter with MOND Scaling. Phys.Lett.B. 693, 567–572(2010).

[24] Mureika, J. R., Mann, R. B.: Does Entropic Gravity Bound the Masses of the Photon and Graviton? Mod.Phys. Lett. A. 26, 171–181(2011).

[25] Kiselev, V. V., Timofeev, S. A.: The holographic screen at low temperatures. Mod. Phys. Lett. A. 26, 109–118(2011).

[26] Sahlmann, H.: Newton’s constant from a minimal length: Additional models. Class. Quant. Grav. 28, 015006 (2011).

[27] Shalyt-Margolin, A.E., Suarez, J.G.: Quantum Mechanics of the Early Universe and its Limiting Transition. gr-qc/0302119

[28] Shalyt-Margolin, A.E., Suarez, J.G.: Quantum mechanics at Planck’s scale and density matrix. Int. J. Mod. Phys. D. 12, 1265–1278(2003)

[29] Shalyt-Margolin, A.E.: Tregubovich, A.Ya.: Deformed density matrix and generalized uncertainty relation in thermodynamics. Mod. Phys.Lett. A. 19, 71–82(2004).

[30] Shalyt-Margolin, A.E.: Nonunitary and unitary transitions in generalized quantum mechanics, new small parameter and information problem solving. Mod. Phys. Lett. A. 19, 391–404(2004).

[31] Shalyt-Margolin, A.E.: Pure states, mixed states and Hawking problem in generalized quantum mechanics. Mod. Phys. Lett. A. 19, 2037–2045(2004).

[32] Shalyt-Margolin, A.E.: The Universe as a nonuniform lattice in finite volume hypercube. I. Fundamental definitions and particular features. Intern. Journ. Mod.Phys D. 13, 853–864(2004).
[33] Shalyt-Margolin, A.E.: The Universe as a nonuniform lattice in the finite-dimensional hypercube. II. Simple cases of symmetry breakdown and restoration. Intern. Journ. Mod. Phys. A. 20, 4951–4964 (2005).

[34] Shalyt-Margolin, A.E., Strazhev, V.I.: The Density Matrix Deformation in Quantum and Statistical Mechanics of the Early Universe. In Sidharth B.G. (ed.) Proc. Sixth International Symposium “Frontiers of Fundamental and Computational Physics”, pp. 131–134. Springer, Berlin Heidelberg New York (2006).

[35] Shalyt-Margolin, A.E.: The Density Matrix Deformation in Physics of the Early Universe and Some of its Implications. In Reimer A. (ed.) Quantum Cosmology Research Trends, (Horizons in World Physics. 246), pp. 49–92. Nova Science Publishers, Inc., Hauppauge, NY, (2005).

[36] Shalyt-Margolin, A.E.: Deformed density matrix and quantum entropy of the black hole. Entropy 8, 31–43 (2006).

[37] Shalyt-Margolin, A.E.: Entropy in the Present and Early Universe. Symmetry. 18, 299–320 (2007).

[38] Shalyt-Margolin, A.E.: Entropy in the Present and Early Universe and Vacuum Energy. AIP Conference Proceedings. 1205, 160–167 (2010).

[39] Shalyt-Margolin, A.E.: Entropy In The Present And Early Universe: New Small Parameters And Dark Energy Problem. Entropy. 12, 932-952 (2010).

[40] Garay, L.: Quantum gravity and minimum length. Int. J. Mod. Phys. A. 10, 145–146 (1995).

[41] Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro - black hole Gedanken experiment. Phys. Lett. B. 452, 39–44 (1999).

[42] Maggiore, M. A.: Generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993).
[43] Ashtekar, A., Lewandowski, J.: Background Independent Quantum Gravity: A Status Report. Class. Quant. Grav. 21, R53 (2004).

[44] Kiefer, C.: Quantum Gravity: General Introduction and Recent Developments. Annalen Phys. 15, 129–148 (2005).

[45] Han, M., Huang, W., Ma, Y.: Fundamental Structure of Loop Quantum Gravity. Int. J. Mod. Phys. D16, 1397–1474 (2007).

[46] Rubakov, V. A., Tinyakov, P. G.: Infrared-modified gravities and massive gravitons. Phys. Usp. 51, 759–792 (2008).

[47] Nikiforova, V., Randjbar-Daemi, S., Rubakov, V. A.: Infrared Modified Gravity with Dynamical Torsion. Phys. Rev. D 80, 124050 (2009).

[48] Turyshev, S. G.: Experimental Tests of General Relativity: Recent Progress and Future Directions. Phys. Usp. 52, 1–27 (2009).

[49] ’t Hooft, G.: Dimensional reduction in quantum gravity. Essay dedicated to Abdus Salam. gr-qc/9310026

[50] ’t Hooft, G.: The Holographic Principle, hep-th/0003004

[51] Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

[52] Bousso, R.: The Holographic principle. Rev. Mod. Phys. 74, 825–874 (2002).

[53] Bousso, R.: Covariant entropy conjecture. JHEP 07, 004 (1999).

[54] Veneziano, G. A.: Stringy Nature Needs Just Two Constants. Europhys. Lett. 2, 199–211 (1986).

[55] Amati, D., Ciafaloni, M., Veneziano, G.: Can Space-Time Be Probed Below the String Size? Phys. Lett. B 216, 41–47 (1989).

[56] Witten, E.: Reflections on the Fate of Spacetime. Phys. Today 49, 24–28 (1996).
[57] Adler, R. J., Santiago, D. I.: On gravity and the uncertainty principle. Mod. Phys. Lett. A. 14, 1371–1378 (1999).

[58] Ahluwalia, D. V.: Wave particle duality at the Planck scale: Freezing of neutrino oscillations. Phys. Lett. A275, 31–35 (2000).

[59] Ahluwalia, D. V.: Interface of gravitational and quantum realms. Mod. Phys. Lett. A17, 1135–1146 (2002).

[60] Maggiore, M.: The Algebraic structure of the generalized uncertainty principle. Phys. Lett. B. 319, 83–86 (1993).

[61] Kempf, A., Mangano, G., Mann, R. B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D. 52, 1108–1118 (1995).

[62] Bekenstein, J. D.: Black Holes and Entropy. Phys. Rev. D. 7, 2333–2345 (1973).

[63] Hawking, S.: Black Holes and Thermodynamics. Phys. Rev. D. 13, 191–204 (1976).

[64] Park, M.-I.: The Generalized Uncertainty Principle in (A)dS Space and the Modification of Hawking Temperature from the Minimal Length. Phys. Lett. B. 659, 698–702 (2008).

[65] Medved, A. J. M., Vagenas, E. C.: When conceptual worlds collide: The GUP and the BH entropy. Phys. Rev. D. 70, 124021 (2004).

[66] Kim, Wontae.; Son, Edwin J.; Yoon, Myungseok: Thermodynamics of a black hole based on a generalized uncertainty principle. JHEP. 08, 035 (2008).

[67] Nouicer, K.: Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys. Lett. B. 646, 63–71 (2007).

[68] Zhang, Y., Gong, Y.-g., Zhu, Z.-H.: Modified gravity emerging from thermodynamics and holographic principle. Intern. J. Mod. Phys. D., 20, 1505-1519 (2011).
[69] Cai, R.-G., Cao, L.-M., Hu, Y.-P.: Corrected Entropy-Area Relation and Modified Friedmann Equations. JHEP. 0808, 090(2008).

[70] Setare, M. R., Momeni, D., Myrzakulov, R., Entropic corrections to Newton’s law. Phys. Scr. 85, 065007(2012).

[71] Komar, A.: Covariant Conservation Laws in General Relativity. Phys. Rev. 113, 934–936(1959).

[72] Wald, Robert M.: General Relativity, The University Chicago Press, Chicago and London (1984).

[73] Shalyt-Margolin, A.E.: Quantum Theory at Planck Scale, Limiting Values, Deformed Gravity and Dark Energy Problem. Intern. J. Mod. Phys. D. 21, 1250013(2012).

[74] Kim, Y. W., Lee, H. W., Myung, Y. S.: Entropy bound of local quantum field theory with generalized uncertainty principle. Phys. Lett. B. 673, 293–296(2009).

[75] Magnon, A.: On Komar Integrals in Asymptotically Anti de Sitter Spacetimes. J. Math. Phys. 26, 3112–3117(1985).

[76] Fischler, W., Susskind, L.: Holography and cosmology, hep-th/9806039.

[77] Balazs, C., Szapudi, I.: Naturalness of the vacuum energy in holographic theories, hep-th/0603133.

[78] Zel’dovich, Y.B.: The Cosmological Constant and the Theory of Elementary Particles. Sov. Phys. Uspehi. 11, 381–393(1968).

[79] Weinberg, S. The Cosmological Constant Problem. 61, 1–23(1989).

[80] Markov, M. A.: Ultimate Matter Density as the Universal Low of Nature. Pis’ma v ZHETF. 36, 214–216(1982).

[81] Kolb, E., Turner, M.: The Early Universe. Reading, Addison Wesley, (1990).

[82] Baumann, D.: TASI Lectures on Inflation. arXiv:0907.5424.
[83] Polyakov, A. M.: Decay of Vacuum Energy. Nucl.Phys.B. 834, 316–329 (2010).