RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

Bente Köten¹, Maren Simanski¹,², Regine Gläser¹, Rainer Podschun², Jens-Michael Schröder¹, Jürgen Harder¹*

¹Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, ²Institute for Infection Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany

Abstract

Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium.

Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity.

Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts and suggest an important role for RNase 7 in the protection of human skin against E. faecium colonization.

Introduction

Human skin is continuously exposed to a wide variety of potential pathogenic bacteria. Despite these threats, human skin is normally not infected. In the last decade it has become evident that human skin provides, in addition to its physical barrier, also a chemical barrier based on the release of antimicrobial proteins [1–3]. Antimicrobial proteins are endogenous, gene-encoded proteins, which are able to kill bacteria, fungi and viruses at micro- and nanomolar concentrations. Recent in vivo studies confirmed the hypothesis that antimicrobial proteins have the capacity to protect the host against pathogenic microorganisms [4–6]. Some of these antimicrobial proteins are upregulated at sites of infection and inflammation such as the human beta-defensins −2 and −3 (hBD-2, hBD-3) as well as the cathelicidin LL-37 [3,7–9]. Upregulation of hBD-2, hBD-3 and LL-37 in the skin provides a rapid first-line of cutaneous defense against invading microorganisms [10–17]. Other antimicrobial proteins such as psoriasin (S100 A7) are also expressed in high amounts in healthy skin [18]. Psoriasin is mainly active against the gram-negative bacterium E. coli and we recently presented evidence that psoriasin is key for the resistance of human skin against colonization by the gram-negative gut bacterium E. coli [18].

Another antimicrobial protein expressed in healthy skin is RNase 7. RNase 7 is a member of the RNase A superfamily that is characterized by homology with bovine ribonuclease A [19]. Members of this family share a conserved structure of six or eight cysteines linked by disulfide bonds and two histidines and one lysine that form the catalytic site [19]. To date, eight human members (RNase 1–8) of the RNase A superfamily have been described. Moreover, five additional genes in the human genome that are related to the RNase A ribonucleases have also been identified (RNase 9–13) [19]. However, the physiological role of these ribonucleases is still not well understood. Recent data suggest that ribonucleases may also play a role in host defense. Eosinophil-derived neurotoxin (EDN; RNase 2) and eosinophil cationic protein (ECP; RNase 3) are localized to eosinophil secretory granules and exhibit antiviral activities [20,21]. In addition, ECP displays in vitro killing activity against various gram-negative and gram-positive bacteria [22]. Antimicrobial activity was also
reported for RNase 5 (Angiogenin) [23], a protein which was originally identified from its capacity to induce blood vessel growth [24]. RNase 7 was originally isolated from stratum corneum extracts and cloned from keratinocytes [25]. It exhibited a broad-spectrum of antimicrobial activity [23]. Zhang et al. isolated the RNase 7 gene by a genomic database search [26]. RNase 7 mRNA expression was detected in primary keratinocytes and expression was induced by contact with heat-killed bacteria and UV-B radiation [25,27]. Recently, induction of RNase 7 mRNA expression has been reported in skin biopsies of psoriasis and atopic dermatitis patients [28].

The aim of this study was to further assess the role of RNase 7 in cutaneous defense. A detailed analysis of its in vitro as well as in vivo expression together with functional antimicrobial studies suggest that RNase 7 may play a major role in skin defense and contributes to the high resistance of human skin against colonization with the gram-positive gut bacterium E. faecium.

Results

Generation of RNase 7-specific antibodies

First, we successfully expressed RNase 7 in recombinant form in E. coli. The serum of a goat immunized by a mixture of natural and recombinant RNase 7 showed high RNase 7 immunoreactivity. Purification of RNase 7 antibodies from the serum using an RNase 7 affinity column led to the isolation of RNase 7 specific antibodies. These antibodies specifically detected RNase 7 in stratum corneum extracts (Fig. 1A). For quantitative analyses and to determine how RNase 7 is secreted in vivo at different skin sites, we developed an RNase 7-specific enzyme-linked immunosorbent assay (ELISA) using the RNase 7-specific polyclonal antibodies. Fig. 1B shows a representative standard curve using different concentrations of RNase 7 specific antibodies. The specificity of the RNase 7 antibodies was further verified by testing other cationic antimicrobial proteins such as lysozyme, hBD-2, hBD-3 and the closely related (78% identity) RNase 8 [29]. All these proteins were not detected by the RNase 7 ELISA (not shown).

Primary keratinocytes express high levels of RNase 7 mRNA

We used real-time PCR to determine the absolute transcript levels in primary keratinocytes. This quantitative analysis revealed that primary keratinocytes expressed high levels of RNase 7 mRNA when compared to other skin-derived antimicrobial proteins such as human beta-defensin-2 (hBD-2), psoriasin and LL-37 (Fig. 2A).

RNase 7 is secreted in vitro and in vivo

To study whether RNase 7 is secreted by keratinocytes, we analyzed keratinocyte culture supernatants as well as cell extracts by ELISA. High amounts (3–18 ng/1.5 × 10^7 cells) of RNase 7 were detected in the supernatants of primary keratinocytes cultured for 16 h indicating that RNase 7 is efficiently secreted by the keratinocytes (Fig. 2B). A comparison of RNase 7 amounts present in the culture supernatants and cell extracts derived from primary keratinocytes revealed that the main portion of RNase 7 is released (Fig. 2C). To determine whether RNase 7 is secreted in vivo, we investigated the presence of RNase 7 at various skin surface sites. We rinsed standardized 0.5-cm^2 skin areas of healthy human donors with 500 μl 10 mM sodium phosphate buffer containing 150 mM NaCl, pH 7.4 and analyzed the washing fluids for their content of RNase 7 by ELISA. RNase 7 amounts at skin surfaces depended on the donor (n = 10), the skin area, and previous washings for body care. RNase 7 amounts were mainly in the range between 0.3 and 5 ng cm^-2 (Fig. 3). In addition, we investigated the concentration of RNase 7 in perianal swabs derived from six individuals. In all six samples RNase 7 was detectable (range of 3.9–12.2 ng ml^-1; not shown).

RNase 7 is expressed in all epidermal layers of human skin

To investigate the distribution of RNase 7 in healthy skin in vivo, we performed immunohistochemistry using the RNase 7-specific antibodies. Intense RNase 7 immunoreactivity was present in all epidermal layers of the skin with an intensification of the upper more differentiated layers, especially within stratum corneum. Sebaceous glands and hair follicles also stained positively. The outer root sheath of hair follicles showed more intensive immunoreactivity when compared to the inner root sheath (Fig. 4).
Characterization of the antimicrobial activity of RNase 7 against E. faecium

To verify the antimicrobial activity of RNase 7 against E. faecium, we investigated natural RNase 7 for microbicidal activity in an antimicrobial microdilution assay against E. faecium (ATCC 6057). This strain was effectively killed by RNase 7 (lethal dose of 90% (LD90) = 0.4–0.8 µg·ml⁻¹; not shown). To further support the idea of an antimicrobial function for RNase 7 in cutaneous defense, we performed antimicrobial assays in buffers with variable pH (5.5, 6.5 and 7.4). RNase 7 was active under all pH conditions (Fig. 5). In addition, E. faecium was also effectively killed by RNase 7 at 150 mM NaCl (Fig. 5).

The activity of RNase 7 against E. faecium requires no enzymatic activity

To assess whether the ribonuclease activity of RNase 7 might be responsible for its antibacterial activity, we expressed recombinant RNase 7 containing two mutated amino acids in its active site required for enzymatic activity. As shown in Fig. 6A, mutated RNase 7 exhibited no ribonuclease activity whereas the recombinant wildtype RNase 7 showed high ribonuclease activity. However, when tested against E. faecium, no differences in the killing activity of wildtype and mutated RNase 7 were observed, suggesting that the ribonuclease activity of RNase 7 is not necessary for its antibacterial activity (Fig. 6B). Similar results were obtained with E. coli (not shown).

RNase 7 contributes to the killing activity of human stratum corneum extracts against E. faecium and faecalis

To analyze whether RNase 7 contributes to the Enterococcus–killing activity of healthy skin, we determined whether antibodies to RNase 7 affected the killing of E. faecium in skin extracts derived from stratum corneum. First, we analyzed whether RNase 7 antibodies neutralized the antibacterial activity of RNase 7 against E. faecium. For this purpose we tested the activity of RNase 7 against E. faecium in an antibacterial microdilution assay in the presence of RNase 7 antibodies. Fig. 7A shows that application of the RNase 7 antibodies completely blocked the E. faecium-killing
activity of RNase 7. Antimicrobial activity was not inhibited when equivalent concentrations of irrelevant antibodies (antibodies derived from goat preimmune serum) were used. Having established that the RNase 7-specific antibodies neutralized the antimicrobial effect of RNase 7, we used this approach to investigate the role of RNase 7 for the killing activity of human skin extracts. The application of the RNase 7-blocking antibodies to skin extracts derived from stratum corneum before inoculation with E. faecium resulted in a substantial increase in E. faecium growth (Fig. 7B).

Discussion

There is increasing evidence that the skin and other epithelial layers are protected from infection by the release of antimicrobial proteins. Many studies indicate that antimicrobial proteins, like the
Figure 5. Antimicrobial activity of RNase 7 against *E. faecium* at various pH and high salt conditions. The antimicrobial activity of RNase 7 (1.6 μg·ml⁻¹) was tested in a microdilution assay against *E. faecium* (ATCC 6057) at various pH conditions or in the presence of 150 mM NaCl. Results are from triplicate determinations and presented as the mean±S.D. doi:10.1371/journal.pone.0006424.g005

human beta-defensins, cathelicidin LL-37 and S100 protein psoriasin (S100A7), play an important role in cutaneous defense [1,3]. Although several reports suggest that the human RNase A superfamily members ECP (eosinophil cationic protein, RNase 3) and EDN (eosinophil-derived neurotoxin, RNase 2) are important effector molecules of eosinophilic granulocytes [30,31], the role of RNases in epithelial defense is largely unknown. A recent study indicates that a mouse ribonuclease (angiogenin 4) may participate in regulating the intestinal microflora [23].

The recent isolation of the antimicrobial ribonuclease RNase 7 from stratum corneum of healthy skin prompted us to further analyze its role in cutaneous defense. A quantitative analysis revealed that primary keratinocytes express high levels of RNase 7 mRNA when compared to other skin-derived antimicrobial proteins such as psoriasin, hBD-2, and LL-37. This observation further strengthened the hypothesis that RNase 7 may be an important defense molecule in cutaneous innate immunity. To get further insight into RNase 7 protein expression, we generated RNase 7 specific antibodies. Immunohistochemistry using these novel antibodies revealed expression of RNase 7 in all layers of human epidermis with higher intensity in the more outer differentiated epithelial layers. Hair follicles also stained positively which is in concordance with a recent study demonstrating RNase 7 expression in hair follicle epithelium [32]. The expression of RNase 7 in the uppermost epidermal layers and its expression in hair follicles are in concordance with its proposed antimicrobial function, because it is expressed at areas where the first contact with bacteria takes place. Because the deduced RNase 7 precursor contains a signal sequence, we hypothesized that RNase 7 may be efficiently secreted by keratinocytes. Using an RNase 7-ELISA, that we developed, we were able to detect higher RNase 7 protein levels in the supernatants of the primary keratinocyte cultures compared with keratinocyte extracts. These data indicate that RNase 7 is secreted from viable cells and acts primarily outside the cell, which is consistent with the proposed role of RNase 7 in antimicrobial defense.

Based on these in vitro data, we speculated that RNase 7 is secreted in vivo on the body surface. To prove this hypothesis, we determined whether RNase 7 is present at various skin surface sites. We were able to recover various amounts of RNase 7 in skin washing fluids from different body sites, which confirmed that RNase 7 is secreted in vivo. High variability in RNase 7 secretion levels was detected in different persons and skin locations. This suggests that levels of RNase 7 secretion may depend on environmental factors such as microbial colonization.

We recently identified psoriasin as a principal *E. coli*-killing factor that protects the skin from infections with the gut bacterium *E. coli* [18]. However, the high expression of RNase 7 in skin and its very potent activity against *E. faecium* [25] suggest that the skin is also protected against colonization with *E. faecium*. This would explain the low infection rate of skin areas exposed to *E. faecium* such as the perianal region. To prove this hypothesis, we first explored whether the skin has the capacity to kill *E. faecium*. Skin extracts derived from the stratum corneum efficiently killed *E. faecium* indicating that the skin harbors defense mechanisms which inhibit cutaneous colonization with *E. faecium*. To further evaluate whether RNase 7 might contribute to these defense mechanisms, we specifically inhibited the antimicrobial activity of RNase 7 in the skin extracts using RNase 7-specific antibodies. These experiments revealed that RNase 7 contributes to the *E. faecium* killing activity of skin extracts, suggesting an important role for RNase 7 in protecting the skin against *E. faecium* infection.
The high antimicrobial activity of RNase 7 against *E. faecium* raises the question of the responsible molecular killing mechanisms. We speculated that the high ribonuclease activity of RNase 7 might be involved in the RNase 7-mediated killing of *E. faecium*. To address this question, we generated recombinant RNase 7 that lacks enzymatic activity. By making point mutations of the catalytic residues lys-38 and his-123, we found that ablation of ribonuclease activity had no impact on the bactericidal activity of RNase 7 against *E. faecium*. This is consistent with other reports showing that members of the RNase A superfamily exhibit ribonuclease-independent antibacterial activity [33–35], but raises the question of the role of the enzymatic activity. It has been shown that the antiviral activity of the RNases ECP and EDN against respiratory syncytial virus (RSV) requires functional ribonuclease activity [20,21]. These data suggest that the ribonuclease activity of RNase 7 may be necessary for a potential antiviral rather than antibacterial activity. However, this remains to be proven as it is not yet known whether RNase 7 exhibits antiviral activity.

Recently, it has been reported that the ribonuclease inhibitor interacts with RNase 7 and blocks its ribonuclease as well as antimicrobial activity [36]. It is possible that the ribonuclease inhibitor masks the amino acid residues responsible for the antimicrobial action of RNase 7. Another explanation is that the interaction of the ribonuclease inhibitor RI induces a conformational change of RNase 7 as recently reported for the interaction of RNase 1 and the ribonuclease inhibitor [37].

RNase 7 is a highly cationic protein with a pI of approximately 10.7. Many human antimicrobial proteins are cationic and contain a large number of basic amino acids. Examples comprise the alpha- and beta-defensins, the cathelicidins as well as the histatins [7,38,39]. It is believed that the highly cationic character of these molecules results in a high affinity to the negatively charged surface of bacteria, which is prerequisite for efficient killing [40]. Very recently, Huang and colleagues showed by NMR and mutagenesis studies that cationic lysines are critical for the antimicrobial activity of RNase 7 against *P. aeruginosa*. They suggested that RNase 7 may bind to the negatively charged components of the bacterial membrane through the presence of cationic residues which ultimately leads to membrane disruption [34]. It remains to be shown whether this killing mechanism, which has been proposed for many antimicrobial peptides [40], is also responsible for the high killing activity of RNase 7 against *E. faecium*.

In summary, our data suggest that RNase 7 contributes to cutaneous innate immunity against *E. faecium* and probably other bacteria. An interesting speculation is that dysregulation of RNase 7 may result in higher susceptibility to infectious diseases. A better understanding of the role of endogenous antimicrobial proteins such as RNase 7 may result in the development of novel therapeutic strategies that enhance the cutaneous defense system by the application or selective induction of antimicrobial proteins.

Materials and Methods

Ethics Statement

All experiments were performed according to the Declaration of Helsinki protocols and under protocols approved by the Ethics Committee at the Medical Faculty of the Christian-Albrechts-University, Kiel, Germany (A104/06).

Culture of epithelial cells

Keratinocytes were derived from foreskin samples obtained from circumcision surgery after obtaining written informed consent. The protocol was approved by the Ethics Committee at the Medical Faculty of the Christian-Albrechts-University, Kiel, Germany. Foreskin-derived primary keratinocytes were isolated from foreskins as described [41] and cultured in Epilife-medium (Sigma) in a humidified atmosphere with 5% CO2. For stimulation experiments, cells were seeded in 12-well tissue culture plates (3.8 cm²-well⁻¹, BD Biosciences) and used at 60-80% confluence.

RNA isolation and cDNA synthesis

After treatment, cells were washed twice with PBS and harvested using TRIzol reagent (Invitrogen, San Diego, CA) according to the supplier’s protocol. RNA quality and quantity were determined by gel electrophoresis and photometry. Subse-
Real-time PCR analyses were performed in a fluorescence thermal cycler (LightCycler; Roche Diagnostics GMBH). cDNA corresponding to 10 ng RNA served as a template in a 10 μl reaction containing 0.5 μM of each primer and 1 x SYBR Premix Ex Taq mix (TaKaRa). Samples were loaded into capillary tubes and incubated in the fluorescence thermal cycler (LightCycler) for an initial denaturation at 95°C for 10 min followed by 45 cycles, each cycle consisting of 95°C for 15 s, 60°C (touchdown of −1°C-cycle−1) up to 95°C with continuous measurement of fluorescence to confirm amplification of specific transcripts. Cycle-to-cycle fluorescence emission readings were monitored and analyzed using LightCycler Software (Roche Diagnostics GMBH). The specificity of the amplification products was further verified by subjecting the amplification products to electrophoresis on a 2% agarose gel. The fragments were visualized by ethidium bromide staining and the specificity of PCR products was verified by sequencing of representative samples. The following intron spanning primers were used: RNase-7 5'- GGA GTC ACA AGA CGA AGA CCA -3' (forward primer) and 5'- CAT GCC TGA GTT GCA TGC TTG A -3' (reverse primer); hBD-2 5'- TCT TCC AGG TGT TTT TG -3' (reverse primer); LL-37 5'- ATT TGC CCT TTG TTA ATG AGA ATT GAC -3' (forward primer); hBD-2 5'- GCC TCT TCC AGG TGT TTT TG -3' (forward primer) and 5'- GAG ACC ACA GGT GCC AAT TT -3' (reverse primer); psoriasin 5'- AGA CGT GAT GAC AAG ATT GAC -3' (forward primer) and 5'- TGT CCT TTT TCT CAA AGA CGT C -3' (reverse primer); LL-37 5'- GGG CCT GCT TTG AGC ATG AGC CCAA CCA TCA GT -3' (forward primer) and 5'- TGG GTA CAA GAT TCC GCA AA -3' (reverse primer). Standard curves were obtained for each primer set with serial dilutions of plasmids containing the amplification product. Absolute transcript levels are shown per 10 ng total RNA.

Expression of recombinant RNase 7 in E. coli

The cDNA encoding the 128 amino acids containing natural form of RNase 7 was cloned into the expression vector pET-32a (Novagen), which contains an N-terminal His-Tag sequence allowing purification of the fusion-protein by the use of a nickel-affinity column. A 200 ml culture of transformed E. coli (strain BL21pLysS, Novagen) was grown to an optical density of 0.6 and expression was induced by adding 1 mM IPTG. Expression was carried out for 3 h and bacteria were harvested by centrifugation at 6000 x g for 5 min and lysed by sonication. Extracts were purified with a nickel-affinity column [Macherey-Nagel] followed by C8 reversed-phase HPLC as described for the purification of human beta-defensin-3 [37]. The N-terminal part of the purified fusion protein was cleaved off by enterokinase (Invitrogen) and the resulting mature 128 amino acids containing RNase 7 protein was purified by C2/C18 reversed phase HPLC as previously described [32]. Mass analysis using electrospray ionization mass spectrometry (QTOF-II Hybrid-mass spectrometer; Micromass) yielded a mass of 14,546 Da, which exactly corresponds to the mass of natural RNase 7 [25].

Recombinant RNase 7 without ribonuclease activity was generated by site-directed mutagenesis to introduce mutations in the active center of RNase 7. First, histidin at position 123 was mutated to aspartate using the following primer: sense 5'- ACT GAG ATC TGG GTA CCG ACG ACG ACG ACA AGA AGC CCAG AGA TGA CCT C -3', antisense 5'- ATT TGC GGC GCC CTG GTA AAG GAC TCT GTT CCA GTC TAC AGG -3'. The resulting PCR product was digested with the restriction enzymes NcoI and HindIII and subsequently cloned into the expression vector pET-32a. This plasmid was used as a template to mutate lysine at position 30 to arginine using the “QuickChange Multi Site-Directed Mutagenesis Kit” (Stratagene) and the following primers: 5'- GCA CAC AAA ACG GTG CAG AGA CCT CAA CAC C C3', antisense 5'- GGT GTT GAG GTC TCT GGA CCG TTT TGT GTG C-3'. The mutated plasmids were used for expression in E. coli as described above. The correct mass of the resulting protein was verified by electrospray ionization mass spectrometry.

Generation of RNase 7-specific antibodies

0.5 mg natural skin-derived RNase 7 was mixed with 1.3 mg recombinant RNase 7 and the resulting 1.8 mg were used for immunization. 1.2 mg of this RNase 7 preparation was conjugated to keyhole limpet hemocyanine (KLH, Sigma) using glutaraldehyde. Therefore, 1 mg KLH in 1 ml PBS was mixed with 1 μl 25% glutaraldehyde (Serva) and incubated for 1 h at room temperature with gently shaking. After incubation, the reaction mixture was dialyzed and concentrated in 400 μl PBS using a vivaspin 0.5 ml concentrator column (30 kDa cut off, Vivascience). The KLH-glutaraldehyde concentrate (400 μl) was incubated with 600 μl of 1.2 mg RNase 7 in PBS for 1 h at room temperature with gentle rotation. The reaction was stopped by the addition of 3 μl 1 M Tris (pH 8.0), 500 μl of 0.6 mg RNase 7 in PBS was added and the preparation was divided into one 450 μl aliquot for initial immunization and three 350 μl aliquots for booster immunization of a goat. The immunization was carried out by the “ZIKA-Kaninchenbetrieb” (Gottin, Germany). We generated an RNase 7 affinity column to selectively isolate RNase 7 specific antibodies from the serum. Therefore, 1.5 mg of recombinant RNase 7 was coupled to a 1 ml HiTrap NHS-activated column (Amersham Pharmacia Biotech) according to the manufacturer’s protocol. 500 μl of goat anti-RNase 7 serum was loaded onto the affinity column and the column was washed with 10 mM sodium phosphate buffer, pH 7.3. Low-affinity antibodies were eluted using 1 M NaCl (pH 7) and high-affinity RNase 7 antibodies were eluted using 200 mM glycine (pH 5), immediately neutralized with 1 M Tris (pH 7.5) and dialyzed against PBS.

ELISA

96-well immunoplates (MaxiSorp™, Nunc) were coated at 37°C for 1 h with 50 μl affinity-purified goat anti-RNase 7 antibody diluted 1:1000 to 1 mg ml−1 in 0.05 M carbonate buffer, pH 9.6. Subsequently, wells were blocked with 200 μl 1% bovine serum albumin in PBS for 10 min at room temperature. After washing three times with 200 μl PBS+0.1% Tween 20, 50 μl per well of cell culture supernatants and serial dilutions of natural skin-derived RNase 7 in cell culture medium were incubated for 30 min at room temperature. Plates were washed three times with PBS+0.1% Tween 20 and wells were incubated for 30 min at room temperature with 50 μl of biotinylated goat anti-RNase 7 antibody diluted 1:7500 to 1.3 μg ml−1 in PBS+0.1% Tween 20. Plates were washed again three times with PBS+0.1% Tween and filled with 50 μl well−1 of Streptavidin-POD (Roche Diagnostics; 1:10000 in PBS+0.1% Tween 20). The plates were then incubated for 30 min at room temperature, washed six times as described above, and incubated with the development agent 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS; Roche Diagnostics) for 15 min at room temperature in the dark. Absorbance was
measured at 405 nm with a multichannel photometer (Sunrise; Tecan, Crailsheim, Germany). The psoriasin and hBD-2 ELISAs were performed as previously described [18,43].

Western blot

Stratum corneum derived from the heel of healthy individuals was extracted with acidic ethanolic citrate buffer as previously described [44]. Stratum corneum extract was mixed with 4x NuPAGE LDS Sample Buffer (Invitrogen) and 0.5 µg of this extract was separated onto a NuPAGE 4-12% Bis-Tris Gel (Invitrogen). Proteins were transferred to a Protran-nitrocellulose membrane (Schleicher & Schuell Biosience), blocked for 1 h in blocking buffer (5% (w/v) nonfat powdered milk in PBS+0.05% Tween) then incubated for 18 h at 4°C in 3% (w/v) nonfat powdered milk in PBS+0.05% Tween containing RNAse 7 affinity-purified antibody (10 µg·ml⁻¹). The membrane was washed with PBS+0.05% Tween six times for 5 min each, then incubated for 1 h in 3% (w/v) nonfat powdered milk in PBS+0.05% Tween containing 1:20000 dilution of mouse anti-goat IgG HRP conjugate (Dianova). After another six washes, the membrane was incubated for 5 min with chemiluminescent peroxidase substrate (Sigma) and visualized using a Diana III protein detection system (Raytest, Straubenhardt, Germany).

Immunohistochemistry

To localize the protein expression of RNase 7 in human skin biopsies, immunohistochemical staining was performed. Therefore 5 µm vertical paraffin sections were deparaffinized and rehydrated followed by heat-induced antigen retrieval in 0.01 M citrate buffer (pH 6.0). The slides were blocked with normal rabbit serum (1:5, Dako Cytomation) and incubated for 60 min with the self-generated polyclonal goat anti-RNase 7 antibody (10 mg·ml⁻¹, 1:400). Subsequently, the sections were incubated with a biotinylated rabbit anti-goat IgG antibody (1:500, Dianova) followed by incubation with Vector Universal ABC Alkaline Phosphatase Substrate Kit (Vector), development with Vector NovaRED Substrate (Vector) and counterstaining with hematoxylin. Negative control staining was performed by using pre-immune serum.

Antimicrobial and ribonuclease assay

Natural skin-derived RNase 7 was purified from skin extracts as previously described [23] and used for a standard antimicrobial microdilution assay as described previously [29]. Briefly, test organisms were incubated with various concentrations of RNase 7 in 10 mM sodium phosphate buffer (pH 7.4 or the indicated pH conditions) containing 1% (v/v) trypsinase soy broth for 3 h at 37 °C. The antibiotic activity of RNase 7 was analyzed by plating serial dilutions of the incubation mixtures and determining the number of colony-forming units (CFU) the following day.

The ribonuclease activity of recombinant RNase 7 was determined against a standard yeast tRNA substrate as described previously [25].

Antimicrobial activity of stratum corneum extracts

Stratum corneum derived from the heel of healthy individuals was extracted as previously described [44] and dialyzed against 10 mM sodium phosphate buffer (pH 7.4). ELISA analysis revealed concentrations of 7–63 µg RNase 7 per gram stratum corneum. E. faecium (ATCC 6057; 4 x 10⁹/ml) was incubated with 1 µl of stratum corneum in 50 µl 10 mM sodium phosphate buffer (pH 7.4). The same experiment was carried out with application of 10 µl R7 antibody (10 mg·ml⁻¹) or equivalent concentrations of irrelevant antibodies (antibodies derived from goat preimmune serum). Killing activity was analyzed by plating serial dilutions of the incubation mixture and counting the colony-forming units (CFU) the following day.

Acknowledgments

We thank J. Quitzau, K. Schulz, H. Hiurich, E. Jeske, C. Wägus, D. Scharinger, M. Brandt, C. Butzeck-Mehrens, S. Voss for excellent technical assistance and Grace Chen for help with the manuscript.

Author Contributions

Conceived and designed the experiments: BK MS RG RP JMS JH. Performed the experiments: BK MS RG JP JMS JH. Contributed reagents/materials/analysis tools: JMS JH. Wrote the paper: JH.

References

1. Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125: 9–13.
2. Harder J, Schröder JM (2005) Antimicrobial peptides in human skin. Chem Immunol Allergy 86: 22–41.
3. Schroeder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63: 469–486.
4. Chromek M, Shamova Z, Bergman P, Kovacs L, Podracka L, et al. (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12: 636–641.
5. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, et al. (2001) In innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414: 454–457.
6. Saltman NH, Ghosh D, Hunter KM, Paterson Y, Bevins CL (2005) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defense. Nature 422: 522–526.
7. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27: 1337–1347.
8. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395.
9. Zasloff M (2004) Cathelicidins, multifunctional peptides of the innate immunity. Leukos Biol 75: 39–48.
10. Zasloff M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7: 179–196.
11. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, et al. (2004) IL-22 increases the innate immunity of tissues. Immunology 21: 241–254.
12. Wehklamp K, Schwichtenberg L, Schröder JM, Harder J (2006) Peroxidomonas aeruginosa-and IL-beta-mediated induction of human beta-defensin-2 in keratinocytes is controlled by NF-kappaB and AP-1. J Invest Dermatol 126: 121–127.
13. Soerensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, et al. (2005) Differential Regulation of (beta)-Defensin Expression in Human Skin by Microbial Stimuli. J Immunol 174: 4870–4879.
14. Schroeder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31: 645–651.
15. Dorschner RA, Pestonjamasp VK, Tanakawala S, Ohtake T, Rudisill J, et al. (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117: 91–97.
16. Counter K, Nens K, Rudisill J, O’Grady T, Gallo RL (2002) The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 47: 347–350.
17. Harder J, Schröder JM (2005) Psoriasin scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukos Biol 77: 476–486.
18. Glaser R, Harder J, Lange H, Bartels J, Christophers E, et al. (2005) Antimicrobial porcine S100A7 protects human skin from Escherichia coli infection. Nat Immunol 6: 57–64.
19. Dyr K, Rosenberg HF (2006) The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 10: 476–486.
20. Domachowska JB, Dyr K, Adams AG, Leto TL, Rosenberg HF (1998) Esophiloph cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26: 3358–3363.
21. Domachowska JB, Dyr K, Bonville CA, Rosenberg HF (1998) Recombinant human esophiloph-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus, J Infect Dis 177: 1430–1446.
22. Lehrer RI, Szakarcik D, Barton A, Ganz T, Hammann KJ, et al. (1989) Antibacterial properties of esophiloph major basic protein and esophiloph cationic protein. J Immunol 142: 4420–4434.
23. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbialid proteins involved in innate immunity. Nat Immunol 4: 269–273.

24. Fett JW, Strydom DJ, Alderman EM, Bethune JL, et al. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24: 5480–5486.

25. Harder J, Schroeder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277: 46779–46784.

26. Zhang J, Dyer KD, Rosenberg HF (2003) Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 31: 602–607.

27. Glaser R, Navid F, Schuller W, Jantschitsch C, Harder J, et al. (2009) UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J Allergy Clin Immunol 123: 1117–1123.

28. Gambichler T, Strydom J, Tomi NS, Ohlinghaus N, Brockmeyer NH, et al. (2008) Differential mRNA expression of antimicrobial peptides and proteins in atopic dermatitis as compared to psoriasis vulgaris and healthy skin. Int Arch Allergy Immunol 147: 17–24.

29. Rudolph B, Podschun R, Sahly H, Schubert S, Schroeder JM, et al. (2006) Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 50: 3194–3196.

30. Rosenberg HF, Domachowske JB (2001) Eosinophilic, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70: 691–698.

31. Rosenberg HF, Domachowske JB (1999) Eosinophilic, ribonucleases and host defense: solving the puzzle. Immunol Res 20: 261–274.

32. Reithmayer K, Meyer KC, Kleditzsch P, Tiede S, Uppalapati SK, et al. (2009) Human hair follicle epithelium has an antimicrobial defence system that includes the inducible antimicrobial peptide psoriasin (S100A7) and RNase 7, Br J Dermatol.

33. Rosenberg HF (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270: 7876–7881.

34. Huang YC, Liu YM, Chang TW, Wu SJ, Lee YS, et al. (2007) The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem 282: 4626–4633.

35. Nitto T, Dyer KD, Czapiga M, Rosenberg HF (2006) Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. J Biol Chem 281: 25622–25634.

36. Abtin A, Erkhardt I, Milthner M, Ghanadian M, Harder J, et al. (2009) Degradation by Stratum Corneum Proteases Prevents Endogenous RNase Inhibitor from Blocking Antimicrobial Activities of RNase 5 and RNase 7. J Invest Dermatol.

37. Johnson RJ, McCoy JG, Bingman CA, Phillips GN Jr, Raines RT (2007) Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 368: 434–449.

38. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63: 1294–1313.

39. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6: 551–557.

40. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24: 1681–1694.

41. Wiedow O, Harder J, Bartels J, Streit V, Christophers E (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248: 904–909.

42. Harder J, Bartels J, Christophers E, Schroeder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707–5713.

43. Voss E, Welkamp J, Welkamp K, Stange EF, Schroeder JM, et al. (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281: 2005–2011.

44. Schroeder JM, Gregory H, Young J, Christophers E (1992) Neutrophil-activating proteins in psoriasis. J Invest Dermatol 98: 241–247.