ANY ORDER SUPERCONVERGENCE FINITE VOLUME SCHEMES FOR 1D GENERAL ELLIPTIC EQUATIONS

WAIXIANG CAO *, ZHIMIN ZHANG †, AND QINGSONG ZOU ‡

Abstract. We present and analyze a finite volume scheme of arbitrary order for elliptic equations in the one-dimensional setting. In this scheme, the control volumes are constructed by using the Gauss points in subintervals of the underlying mesh. We provide a unified proof for the inf-sup condition, and show that our finite volume scheme has optimal convergence rate under the energy and L^2 norms of the approximate error. Furthermore, we prove that the derivative error is superconvergent at all Gauss points and in some special case, the convergence rate can reach h^{2r}, where r is the polynomial degree of the trial space. All theoretical results are justified by numerical tests.

1. Introduction. The finite volume method (FVM) attracted a lot of attentions during the past several decades, we refer to [4, 5, 6, 7, 11, 17, 18, 19, 21, 22, 23, 25, 34] and the references cited therein for an incomplete list of references. Due to the local conservation of numerical fluxes, the capability to deal with the problems on the domains with complex geometries, and other advantages, FVM has a wide range of applications in scientific and engineering computations (see, e.g., [18, 21]).

There have been many studies of the mathematical theory for FVM, see, e.g., [4, 25] and the monographs [5, 18, 19]. However, much attention has been paid to linear FVM schemes (see, e.g., [4, 6, 17, 23, 24]), high order FVM schemes have not been investigated as much or as satisfactorily as linear FVM schemes. Moreover, the analysis of high order FVM schemes are often done case by case. For instances, earlier works on quadratic FVM schemes can be traced back to [25, 16, 20], high order FVMs for 1D elliptic equations were derived in [22], and high order FVMs on rectangular meshes were derived and analyzed in [7], the quadratic FVM schemes on triangular meshes have also been intensively studied by [19, 28, 10]. To the best of our knowledge, no analysis of FVM scheme of an arbitrary order has been published yet.

In this paper, we study a family of any order FVM schemes in the one-dimensional setting. Instead of a case-by-case study as in the literature for quadratic and cubic FVM schemes, we adopt a unified approach to establish the inf-sup condition. Earlier works (see, e.g., [20, 19, 28, 11]) utilized element-wise analysis to prove that the bilinear form resulting from FVM is positive definite, which is a stronger property than the inf-sup condition. Hence, some assumption is needed for the mesh, such as quasi-uniformity and shape-regularity (in 2D). The major difference here is that we prove only the inf-sup condition (instead of positive definiteness of the bilinear form) and there is no mesh condition attached. With help of the inf-sup condition, we obtain the optimal rate of convergence in both the H^1 and L^2 norms.

In this paper, we also study the superconvergence property of our FVM schemes. Note that while the superconvergence theory of finite element methods (FEM) has

*College of Mathematics and Scientific Computing, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
†Department of Mathematics, Wayne State University, Detroit, MI 48202, USA. This author is partially supported by the US National Science Foundation through grant DMS-111530, the Ministry of Education of China through the Changjiang Scholars program, and Guangdong Provincial Government of China through the ‘Computational Science Innovative Research Team’ program.
‡College of Mathematics and Scientific Computing and Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China. This author is supported in part by the National Natural Science Foundation of China under the grant 11171359 and in part by the Fundamental Research Funds for the Central Universities of China.
reached its maturity (3, 26, 32, 33), the superconvergence analysis of FVM has also been focused on the linear schemes (see, e.g., [6, 28]). In this paper, it is shown that for a 1D general elliptic equation, the superconvergence behavior of FVM is similar to that of the counterpart finite element method. For instances, the convergence rate at nodal points is h^2, the rate at interior Lobatto points (defined in Section 4) is h^{r+2}, the convergence rate of the derivative error at Gauss points is h^{r+1}. While in some special cases, some surprising superconvergence results have been found and proved. That is, the convergence rate of the derivative error at all Gauss points can reach h^{r+2} or h^2, depending on the coefficient of the elliptic equations. The derivative convergence rate h^2 doubles the global optimal rate h^r, which is much better than the counterpart finite element method’s h^{r+1} rate; the derivative convergence rate h^{r+2} is one order higher than the counterpart finite element method’s h^{r+1}.

We organize the rest of the paper as follows. In Section 2 we present an arbitrary order FVM scheme for elliptic equations in one-dimensional setting. In particular, we use the Gauss points of order $r \geq 1$ to construct the control volumes and choose the trial space as the Lagrange finite element of rth order with the interpolation points being the Lobatto points of order r. In Section 3 we provide a unified proof for the inf-sup condition and establish the optimal convergence rate both under H^1 and L^2 norms. In Section 4, we study the superconvergence property at some special points of our FVM schemes of any order. In Section 5, a post-processing technique based on superconvergence results in the section 4 is proposed to recover the derivative of the solution. Numerical experiments supporting our theory are presented in Section 6. Some concluding remarks are provided in Section 7.

In the rest of this paper, “$A \lesssim B$” means that A can be bounded by B multiplied by a constant which is independent of the parameters which A and B may depend on. “$A \sim B$” means “$A \lesssim B$” and “$B \lesssim A$”.

2. FVM schemes of any order. In this section, we develop finite volume schemes for the following two-point boundary value problem on the interval $\Omega = (a, b)$:

\[-(\alpha u')' + \beta(x)u' + \gamma(x)u = f(x), \quad \forall x \in \Omega,\]
\[u(a) = u(b) = 0, \tag{2.1}\]

where $\alpha \geq \alpha_0 > 0$, $\gamma - \frac{1}{2}\beta' \geq \kappa > 0$, $\alpha, \beta, \gamma \in L^\infty(\bar{\Omega})$, f is a real-valued function defined on $\bar{\Omega}$.

We first introduce the primal partition and its corresponding trial space. For a positive integer N, let $\mathbb{Z}_N := \{1, \cdots, N\}$ and $a = x_0 < x_1 < \ldots < x_N = b$ be $N + 1$ distinct points on $\bar{\Omega}$. For all $i \in \mathbb{Z}_N$, we denote $\tau_i = [x_{i-1}, x_i]$ and $h_i = x_i - x_{i-1}$, let $h = \max_{i \in \mathbb{Z}_N} h_i$ and

\[\mathcal{P} = \{\tau_i : i \in \mathbb{Z}_N\}\]

be a partition of Ω. The corresponding trial space is chosen as the Lagrange finite element of rth order, $r \geq 1$, defined by

\[U^r_\mathcal{P} = \{v \in C(\Omega) : v|_{\tau_j} \in \mathbb{P}_r, \forall \tau_j \in \mathcal{P}, v|_{\partial \Omega} = 0\},\]

where \mathbb{P}_r is the set of all polynomials of degree no more than r. Obviously, $\dim U^r_\mathcal{P} = N r - 1$. 2
We next present a dual partition and its corresponding test space. Let \(G_1, \ldots, G_r \) be \(r \) Gauss points, i.e., zeros of the Legendre polynomial of \(r \)th degree, on the interval \([-1, 1]\). The Gauss points on each interval \(\tau_i \) are defined as the affine transformations of \(G_j \) to \(\tau_i \), that is,

\[
g_{i,j} = \frac{1}{2}(x_i + x_{i-1} + h_i G_j), \quad j \in \mathbb{Z}_r.
\]

With these Gauss points, we construct a dual partition

\[
P' = \{ \tau'_{1,0}, \tau'_{N,r} \} \cup \{ \tau'_{i,j} : (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r_i} \},
\]

where

\[
\tau'_{1,0} = [0, g_{1,1}], \quad \tau'_{N,r} = [g_{N,r}, 1], \quad \tau'_{i,j} = [g_{i,j}, g_{i,j+1}],
\]

here

\[
r_i = \begin{cases}
 r & \text{if } i \in \mathbb{Z}_{N-1} \\
 r - 1 & \text{if } i = N
\end{cases}
\]

and \(g_{i,r+1} = g_{i+1,1}, \forall i \in \mathbb{Z}_{N-1} \).

The test space \(V_{P'} \) consists of the piecewise constant functions with respect to the partition \(P' \), which vanish on the intervals \(\tau'_{1,0} \cup \tau'_{N,r} \). In other words,

\[
V_{P'} = \text{Span} \{ \psi_{i,j} : (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r_i} \},
\]

where \(\psi_{i,j} = \chi_{[g_{i,j}, g_{i,j+1}]} \) is the characteristic function on the interval \(\tau'_{i,j} \). We find that \(\dim V_{P'} = N r - 1 = \dim U_P \).

We are ready to present our finite volume schemes. Integrating (2.1) on each control volume \([g_{i,j}, g_{i,j+1}], (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r_i}\), yields

\[
\int_{g_{i,j}}^{g_{i,j+1}} - (\alpha u')' + \beta(x)u' + \gamma(x)u \, dx = \int_{g_{i,j}}^{g_{i,j+1}} f(x) \, dx.
\]

In other words,

\[
\alpha(g_{i,j})u'(g_{i,j}) - \alpha(g_{i,j+1})u'(g_{i,j+1}) + \int_{g_{i,j}}^{g_{i,j+1}} (\beta(x)u' + \gamma(x)u) \, dx = \int_{g_{i,j}}^{g_{i,j+1}} f(x) \, dx.
\]

(2.2)

Let \(w_{P'} \in V_{P'} \), \(w_{P'} \) can be represented as

\[
w_{P'} = \sum_{i=1}^{N} \sum_{j=1}^{r_i} w_{i,j} \psi_{i,j},
\]

where \(w_{i,j}'s \) are constants. Multiplying (2.2) with \(w_{i,j} \) and then summing up for all \((i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r_i}\), we obtain

\[
\sum_{i=1}^{N} \sum_{j=1}^{r_i} w_{i,j} \left(\alpha(g_{i,j})u'(g_{i,j}) - \alpha(g_{i,j+1})u'(g_{i,j+1}) + \int_{g_{i,j}}^{g_{i,j+1}} (\beta(x)u' + \gamma(x)u) \, dx \right) = \int_{a}^{b} f(x) w_{P'}(x) \, dx,
\]

3
or equivalently,
\[\sum_{i=1}^{N} \sum_{j=1}^{r_i} [w_{i,j}] \alpha(g_{i,j})u'(g_{i,j}) + \sum_{i=1}^{N} \sum_{j=1}^{r_i} w_{i,j} \left(\int_{g_{i,j}}^{g_{i,j+1}} (\beta(x)u'(x) + \gamma(x)u(x)) \, dx \right) \]

\[= \int_{a}^{b} f(x)w_{P'}(x) \, dx, \]

where \([w_{i,j}] = w_{i,j} - w_{i,j-1}\) is the jump of \(w\) at the point \(g_{i,j}\), \((i,j) \in \mathbb{Z}_N \times \mathbb{Z}_r\) with \(w_{1,0} = 0, w_{N,r} = 0\) and \(w_{i,0} = w_{i-1,r}, 2 \leq i \leq N\).

We define the FVM bilinear form for all \(v \in H^1_0(\Omega), w_{P'} \in V_{P'}\) by
\[a_P(v, w_{P'}) = \sum_{i=1}^{N} \sum_{j=1}^{r_i} [w_{i,j}] \alpha(g_{i,j})v'(g_{i,j}) + \sum_{i=1}^{N} \sum_{j=1}^{r_i} w_{i,j} \left(\int_{g_{i,j}}^{g_{i,j+1}} (\beta(x)v'(x) + \gamma(x)v(x)) \, dx \right). \]

The finite volume method for solving equation (2.1) reads as: Find \(u_{P'} \in U_{P'}\) such that
\[a_P(u_{P'}, w_{P'}) = (f, w_{P'}), \quad \forall w_{P'} \in V_{P'}. \]

3. Convergence Analysis. In this section, we prove the inf-sup condition and use it to establish some convergence properties of the FVM solution.

3.1. Inf-sup condition. We begin with some notations and definitions. First we introduce the broken Sobolev space
\[W^{m,p}_{P}(\Omega) = \{ v \in C(\Omega) : v|_{\tau_i} \in W^{m,p}(\Omega), \forall \tau_i \in P \}, \]
where \(m\) is a given positive integer and \(1 \leq p \leq \infty\). When \(p = 2\), we denote \(H^m_P\) for simplicity. For all \(j \geq 0\), we define a semi-norm by
\[|v|_{j,p,P} = \left(\sum_{\tau_i \in P} |v|_{j,p,\tau_i}^p \right)^{\frac{1}{p}} \]
and a norm by
\[\|v\|_{m,p,P} = \left(\sum_{j=0}^{m} |v|_{j,p,P}^p \right)^{\frac{1}{p}}. \]
We often use \(|\cdot|_{m,p}\) instead of \(|\cdot|_{m,2,p}\) and \(\|\cdot\|_{m,p}\) instead of \(\|\cdot\|_{m,2,p}\) for simplicity.

Secondly, for all \(w_{P'} \in V_{P'}, w_{P'} = \sum_{i=1}^{N} \sum_{j=1}^{r_i} w_{i,j} \psi_{i,j}, \) let
\[|w_{P'}|_{1,P'}^2 = \sum_{i=1}^{N} \sum_{j=1}^{r_i} h_i^{-1} |w_{i,j}|^2, \quad \|w_{P'}\|_{0,P'}^2 = \sum_{i=1}^{N} \sum_{j=1}^{r_i} h_i w_{i,j}^2 \]
and
\[\left\| w_{P'} \right\|_{P'}^2 = \left| w_{P'} \right|_{1,P'}^2 + \left\| w_{P'} \right\|_{0,P'}^2. \]

Noticing that \(w_{1,0} = w_{N,r} = 0 \), it is easy to obtain the following Poincaré type inequality
\[\left\| w_{P'} \right\|_{0,P'} \lesssim \left| w_{P'} \right|_{1,P'}, \quad \forall w_{P'} \in V_{P'}, \quad (3.1) \]
where the hidden constant depends only on \(\Omega \) and \(r \).

Thirdly, we denote by \(A_{j,j} \in \mathbb{Z}_r \) the weights of the Gauss quadrature
\[Q_r(F) = \sum_{j=1}^{r} A_{j} F(G_j) \]
for computing the integral
\[I(F) = \int_{-1}^{1} F(x)dx. \]

It is well-known that \(Q_r(F) = I(F) \) for all \(F \in \mathbb{P}_{2r-1}(-1,1) \). Naturally, the weights on interval \(\tau_i, i \in \mathbb{Z}_N \) are
\[A_{ij} = \frac{h_j}{2} A_{j}, \quad j \in \mathbb{Z}_r. \]

Before the presentation of the inf-sup condition, we define a linear mapping \(\Pi_P : U_P \to V_{P'} \) by
\[\Pi_P v_P = \sum_{i=1}^{N} \sum_{j=1}^{r_i} v_{i,j} \psi_{i,j}, \]
where the coefficients \(v_{i,j} \) are determined by the constraints
\[[v_{i,j}] = A_{i,j} v_P'(g_{i,j}), \quad (i,j) \in \mathbb{Z}_N \times \mathbb{Z}_r. \]

Note that \(v_P \in U_P \), the derivative \(v_P' \in \mathbb{P}_{r-1}(\tau_i), i \in \mathbb{Z}_N \), then
\[\sum_{i=1}^{N} \sum_{j=1}^{r_i} A_{i,j} v_P'(g_{i,j}) = \int_{a}^{b} v_P'(x)dx = v_P(b) - v_P(a) = 0. \]

Therefore,
\[v_{N,r-1} = \sum_{i=1}^{N} \sum_{j=1}^{r_i} [v_{i,j}] = \sum_{i=1}^{N} \sum_{j=1}^{r_i} A_{i,j} v_P'(g_{i,j}) - A_{N,r} v_P'(g_{N,r}) \]
\[= -A_{N,r} v_P'(g_{N,r}). \]

In other words, we also have
\[[v_{N,r}] = v_{N,r} - v_{N,r-1} = A_{N,r} v_P'(g_{N,r}). \]
Consequently,
\[
\|\Pi_P v_P\|_{1,p'}^2 = \sum_{i=1}^{N} \sum_{j=1}^{r} h_i^{-1} [v_{i,j}]^2 = \sum_{i=1}^{N} \sum_{j=1}^{r} h_i^{-1} (A_{i,j} v'_{i,j}(g_{i,j}))^2 \sim \int_a^b (v'_{i,j}(x))^2 \, dx.
\]

Namely, we have
\[
\|\Pi_P v_P\|_{1,p'} \sim |v_P|_{1,p}.
\]
(3.2)

With all these preparations, we are now ready to present the inf-sup condition of \(a_P(\cdot, \cdot)\).

THEOREM 3.1. Assume that the mesh size \(h\) is sufficiently small, then
\[
\inf_{v_P \in V_P} \sup_{w_P \in V_P, ||v_P||_{1,p}, \|w_P\|_{p'}} a_P(v_P, w_P) \geq c_0,
\]
(3.3)

where \(c_0 > 0\) is a constant depending only on \(r, \alpha_0, \kappa\) and \(\Omega\).

Proof. It follows from the bilinear form (2.3) that
\[
a_P(v_P, \Pi_P v_P) = I_1 + I_2, \quad \forall v_P \in U_P^r
\]

with
\[
I_1 = \sum_{i=1}^{N} \sum_{j=1}^{r} [v_{i,j}] \alpha(g_{i,j}) v'_{i,j}(g_{i,j}), \quad I_2 = \sum_{i=1}^{N} \sum_{j=1}^{r} v_{i,j} \int_{g_{i,j}}^{g_{i,j}+1} (\beta(x) v'_{i,j}(x) + \gamma(x) v_P(x)) \, dx.
\]

Since \((v'_{i,j})^2 \in P_{2r-2}(\tau_i), i \in \mathbb{Z}_N\), we have
\[
\int_{x_{i-1}}^{x_i} (v'_{i,j}(x))^2 \, dx = \sum_{j=1}^{r} A_{i,j} (v'_{i,j}(g_{i,j}))^2.
\]

Therefore,
\[
I_1 \geq \alpha_0 \sum_{i=1}^{N} \sum_{j=1}^{r} A_{i,j} (v'_{i,j}(g_{i,j}))^2 = \alpha_0 |v_P|^2_{1,p'}.
\]

We next estimate \(I_2\). Let \(V(x) = \int_a^x (\beta(s) v'_{P}(s) + \gamma(s) v_P(s)) \, ds\) and denote by
\[
E_i = \int_{x_{i-1}}^{x_i} v'_{i,j}(x) V(x) \, dx - \sum_{j=1}^{r} A_{i,j} v'_{i,j}(g_{i,j}) V(g_{i,j}),
\]
the error of Gauss quadrature in the interval \(\tau_i, i \in \mathbb{Z}_N\). Then
\[
I_2 = - \sum_{i=1}^{N} \sum_{j=1}^{r} [v_{i,j}] V(g_{i,j}) = - \int_a^b v'_{P}(x) V(x) \, dx + \sum_{i=1}^{N} E_i.
\]

Using the fact that \(v_P(a) = v_P(b) = 0\) and
\[
\int_a^b \beta(x) v'_{P}(x) v_P(x) \, dx = - \frac{1}{2} \int_a^b \beta'(x) v_P^2(x) \, dx,
\]
6
we obtain
\[-\int_a^b v''_P(x) V(x) dx = \int_a^b \left(\gamma(x) - \frac{\beta'(x)}{2} \right) V^2(x) dx \geq \kappa \| v_P \|_0^2. \] (3.4)

On the other hand, by\(^{[14]}\) (p98, (2.7.12)), for all \(i \in \mathbb{Z}_N\)
\[E_i = \frac{h_i^{2r+1}(r!)^4}{(2r+1)(2r)!^3} (v''_P V)^{(2r)}(\xi_i),\]
where \(\xi_i \in \tau_i\). By the Leibnitz formula of derivatives, we have
\[\left| (v''_P V)^{(2r)}(\xi_i) \right| = \sum_{k=r+1}^{2r} \binom{2r}{k} \left| (\beta v''_P + \gamma v_P)^{(k-1)}(v''_P)^{(2r-k)}(\xi_i) \right| \geq c_1 \| v_P \|_{r,\infty,\tau_i}^2\]
with
\[c_1 = \max \{ \| \beta \|_{2r-1,\infty,\tau_i}, \| \gamma \|_{2r-1,\infty,\tau_i} \} \sum_{k=r+1}^{2r} \binom{2r}{k}.\]

Therefore, by the inverse inequality that
\[\| v_P \|_{r,\infty,\tau_i} \lesssim h_i^{-(r-\frac{1}{2})} \| v_P \|_{1,\tau_i},\]
we have
\[|E_i| \leq \frac{c_1(r!)^4}{(2r+1)(2r)!^3} h_i^2 \| v_P \|_{1,\tau_i}^2.\]

Combining the above estimates, we obtain
\[I_2 \geq \kappa \| v_P \|_0^2 - c_1 \| v_P \|_{1,\tau_i}^2.\]

Then for sufficiently small \(h\), we have
\[a_P(v_P, \Pi_P v_P) \geq \frac{\alpha_0}{2} \| v_P \|_{1,\tau_i}^2 + \frac{\kappa}{2} \| v_P \|_0^2 \geq \frac{1}{2} \min \{ \alpha_0, \kappa \} \| v_P \|_{1,\tau_i}^2.\]

Noticing (3.1) and (3.2), we obtain
\[\| \Pi_P v_P \|_{p'} \lesssim \| v_P \|_{1,\tau_i}.\]
Therefore, for any \(v_P \in U_p\),
\[\sup_{w_P \in V_p} \frac{a_P(v_P, w_P)}{\| w_P \|_{p'}} \geq \frac{a_P(v_P, \Pi_P v_P)}{\| \Pi_P v_P \|_{p'}} \geq c_0 \| v_P \|_{1,\tau_i},\]
where \(c_0\) is a constant depending only on \(r, \alpha_0, \kappa\) and \(\Omega\). The inf-sup condition (3.3) follows. \(\square\)

Remark 3.2. In the above proof, the partition \(\mathcal{P}\) does not need to satisfy any quasi-uniform or shape-regularity condition. Moreover, (3.3) holds even the order of polynomials in each sub-interval \(\tau_i\) are different.
3.2. Energy norm error estimate. Following [28], we use the inf-sup condition (3.3) and the framework of Petrov-Galerkin method to present and analyze the finite volume element method (2.4).

We first introduce a semi-norm and a norm in the broken space $H^2_P(\Omega) = W^{2,2}_P(\Omega)$ by

$$
|v|_P^2 = \sum_{\tau_i \in P} |v|_{1,\tau_i}^2 + h_i^2|v|_{2,\tau_i}^2, \quad \|v\|_P^2 = \|v\|_{0,P}^2 + |v|_P^2.
$$

It is straightforward to show that,

$$
|v|_P \sim |v|_{1,P}, \quad \|v\|_P \sim \|v\|_{1,P}, \quad \forall v \in U_P.
$$

With these equivalences, the inf-sup condition (3.3) can be written as

$$
\inf_{v_P \in \mathcal{U}_P} \sup_{w_P' \in \mathcal{V}_P} \frac{a_P(v_P, w_P')}{\|v_P\|_P \|w_P\|_{P'}} \geq c_2, \quad (3.5)
$$

where $c_2 > 0$ also depends only on r, α_0, κ and Ω. Moreover, we define a discrete semi-norm $\| \cdot \|_{G,1}$ for all $v \in H^1_0(\Omega)$ by

$$
|v|_{G,1} = \left(\sum_{i=1}^N \sum_{j=1}^r A_{i,j}(v'(g_{i,j}))^2 \right)^{1/2}.
$$

We next discuss the relationship between $| \cdot |_P$ and $| \cdot |_{G,1}$. First

$$
|v|_{G,1} = |v|_{1,P} \sim |v|_P, \quad \forall v \in U_P.
$$

On the other hand, for all $v \in H^1_0(\Omega) \cap H^2_P(\Omega)$,

$$
(v'(g_{i,j}))^2 \lesssim h_i^{-1}\|v'\|_{L^2(\tau_i)}^2 + h_i\|v''\|_{L^2(\tau_i)}^2, \quad (i,j) \in \mathbb{Z}_N \times \mathbb{Z}_r,
$$

where the hidden constant depends only on r. Thus by the fact $A_{ij} \leq h_i$, we have

$$
|v|_{G,1}^2 = \sum_{i=1}^N \sum_{j=1}^r A_{i,j}(v'(g_{i,j}))^2 \\
\lesssim \sum_{i=1}^N h_i \left(h_i^{-1}\|v'\|_{L^2(\tau_i)}^2 + h_i\|v''\|_{L^2(\tau_i)}^2 \right) = |v|_P^2.
$$

Namely,

$$
|v|_{G,1} \lesssim |v|_P, \quad \forall v \in H^1_0(\Omega) \cap H^2_P(\Omega),
$$

where the hidden constant depends only on r.

We are ready to show our main result.

Theorem 3.3. Assume that u is the solution of (2.1), u_P is the solution of (2.4). Then the finite volume bilinear form $a_P(\cdot, \cdot)$ is variationally exact:

$$
a_P(u, w_{P'}) = (f, w_{P'}), \quad \forall w_{P'} \in V_P', \quad (3.6)
$$
and bounded: for all \(v \in H_0^1(\Omega) \cap H_0^2(\Omega) \), \(w_{P'} \in V_{P'} \),

\[
|a_{P}(v, w_{P'})| \leq M \|v\|_P \|w_{P'}\|_{P'}, \tag{3.7}
\]

where the constant \(M > 0 \) depends only on \(r, \alpha_0, \kappa \) and \(\Omega \). Consequently,

\[
\|u - u_{P}\|_P \leq \frac{M}{c_2} \inf_{v_{P} \in U_{r, P}} \|u - v_{P}\|_P, \tag{3.8}
\]

where \(c_2 \) is the same as in (3.5).

Proof. First, the formula (3.6) follows by multiplying (2.1) with an arbitrary function \(w_{P'} \in V_{P'} \) and then using Newton-Leibniz formula on each control volume \([g_{i,j}, g_{i,j+1}], (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r_i}\).

Next we show (3.7). By the Cauchy-Schwartz inequality, from (2.3) there holds for all \(v \in H_0^1(\Omega) \cap H_0^2(\Omega) \), \(w_{P'} \in V_{P'} \) that

\[
|a_{P}(v, w_{P'})| \leq |v|_{G,1} \left(\sum_{i=1}^{N} \sum_{j=1}^{r_i} \frac{\alpha^2(g_{i,j})}{A_{ij}} (|w_{i,j}|)^2 \right)^{\frac{1}{2}} + \max(|\beta|, |\gamma|) \left(\sum_{i=1}^{N} \sum_{j=1}^{r_i} h_i w_{i,j}^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{N} (|v|_{1, \tau_i}^2 + \|v\|_{0, \tau_i}^2) \right)^{\frac{1}{2}} \leq M \|v\|_P \|w_{P'}\|_{P'},
\]

where the constant \(M \) depends only on \(r, \alpha_0, \kappa \) and \(\Omega \).

Finally, combining the inf-sup condition (3.5), (3.6) and (3.7), we derive (3.8) following similar arguments as in Babuska and Aziz (2), or Xu and Zikatanov (27).

Corollary 3.4. Assume that \(u \in H_0^1(\Omega) \cap H_0^{r+1}(\Omega) \) is the solution of (2.1), and \(u_{P} \) is the solution of FVM scheme (2.4), then

\[
\|u - u_{P}\|_1 \lesssim h^r |u|_{r+1, P}, \tag{3.9}
\]

where the hidden constant is independent of \(P \).

Proof. It follows from the definition of \(\| \cdot \|_P \) and (3.8) that

\[
\|u - u_{P}\|_1 \leq \|u - u_{P}\|_P \lesssim \inf_{v_{P} \in U_{P}} \|u - v_{P}\|_P.
\]

Noticing that

\[
\inf_{v_{P} \in U_{P}} \|u - v_{P}\|_P \leq \|u - u_{I}\|_1 + \left(\sum_{i=1}^{N} h_i^2 |u - u_{I}|_{2, \tau_i}^2 \right)^{\frac{1}{2}},
\]

where \(u_{I} \) is the Lagrange interpolation of \(u \) at the Lobatto points (defined in the next section) in the trial space \(U_{P} \). By the standard approximation theory, we obtain the estimate (3.9). \(\blacksquare \)
4. Superconvergence. In this section, we will present the superconvergence properties of the FVM solution. To this end, we need to use the interpolation of a function on the so-called Lobatto points. This kind of interpolation has been used in the literature for superconvergence analysis, see, e.g., [30, 31]. We denote L_1, L_2, \cdots, L_r the zeros of $P_r(x)$, where $P_r(x)$ is the Legendre polynomial of order r. Moreover, we denote $L_0 = -1$, $L_r = 1$ and $N_r = \{0, 1, \cdots, r\}$ for $r \geq 1$. The family of points $L_j, j \in N_r$ are called Lobatto points of degree r. The Lobatto points on τ_i are defined as the affine transformations of L_j to τ_i, i.e.,

$$l_{i,j} = \frac{1}{2}(x_i + x_{i-1} + h_iL_j), \quad j \in N_r.$$

Let $u_I \in U^r_p$ be the interpolation of u such that

$$u_I(l_{i,j}) = u(l_{i,j}), \quad (i,j) \in Z_N \times N_r,$$

then by [32] (p146, (1.2))

$$|(u - u_I)'(g_{i,j})| \lesssim h^r |u|_{r+2,1,\omega_{i,j}'}, \quad (4.1)$$

where $\omega_{i,j}' = (g_{i,j-1}, g_{i,j})$.

Theorem 4.1. Let $u \in H^1_0(\Omega) \cap H^{r+2}_p(\Omega)$ be the solution of (2.1), and u_P the solution of FVM scheme (2.4). Then

$$|a_P(u - u_I, w_P)| \lesssim h^{r+1}(|u|_{r+2,p} + |u|_{r+1,\infty}) \|w_P\|_{p'}, \quad \forall w_P \in V_{p'}.$$ \quad (4.2)

Consequently,

$$\|u_I - u_P\|_1 \lesssim h^{r+1}(|u|_{r+2,p} + |u|_{r+1,\infty}).$$ \quad (4.3)

Proof. Recall the definition of bilinear form (2.3), integral by part we obtain

$$a_P(u - u_I, w_P) = I_1 + I_2$$

with

$$I_1 = \sum_{i=1}^{N} \sum_{j=1}^{r} [w_{i,j}] (\alpha(g_{i,j})(u - u_I)'(g_{i,j}) - \beta(g_{i,j})(u - u_I)(g_{i,j})), $$

$$I_2 = \sum_{i=1}^{N} \sum_{j=1}^{r} w_{i,j} \int_{g_{i,j}}^{g_{i,j+1}} (\gamma - \beta')(u - u_I).$$

For all $i \in Z_N$, note that

$$(u - u_I)(g_{i,j}) \lesssim h_i^{r+1}|u|_{r+1,\infty,\tau_i}, \quad |u|_{r+2,1,\tau_i} \lesssim h_i^2 |u|_{r+2,\tau_i},$$

by the Cauchy-Schwartz inequality, [31] and the standard approximation theory,

$$a_P(u - u_I, w_P) \lesssim \|w_P\|_{p'} \left(\sum_{i=1}^{N} \sum_{j=1}^{r} \left(h_i^{2(r+1)}|u|_{r+2,2,\tau_i} + h_i^{2r+3}|u|_{r+1,\infty,\tau_i} + \|u - u_I\|_{0,\tau_i}^2 \right) \right)^{1/2},$$

$$\lesssim h^{r+1}(|u|_{r+2,p} + |u|_{r+1,\infty}) \|w_P\|_{p'}.$$
The desired result (4.2) is proved.

We next show (4.3). By the inf-sup condition (3.3),
\[c_0 \|u_I - u_P\|_1 \leq \sup_{w_{P'} \in V_{P'}} \frac{a_P(u_P - u_I, w_{P'})}{\|w_{P'}\|_{P'}} = \sup_{w_{P'} \in V_{P'}} \frac{a_P(u - u_I, w_{P'})}{\|w_{P'}\|_{P'}}. \]
Combining the above inequality with (4.2), we derive (4.3).

As a direct consequence of (4.3), we have the following \(L^2\) error estimate.

Corollary 4.2. Let \(u \in H^1_0(\Omega) \cap H^{r+2}_p(\Omega)\) be the solution of (2.1), and \(u_P\) the solution of FVM scheme (2.4), then
\[\|u - u_P\|_0 \lesssim h^{r+1}\|u\|_{r+2,p}, \] (4.4)
where the hidden positive constant is independent of \(P\).

Proof. By the triangle inequality,
\[\|u - u_P\|_0 \leq \|u - u_I\|_0 + \|u_I - u_P\|. \]
By the Poincaré inequality and (4.3), we have
\[\|u_I - u_P\|_0 \lesssim |u_I - u_P|_1 \lesssim h^{r+1}\|u\|_{r+2,p}. \]
Moreover, by the standard approximation theory,
\[\|u - u_I\|_0 \lesssim h^{r+1}\|u\|_{r+1} \lesssim h^{r+1}\|u\|_{r+2,p}. \]
The desired estimate (4.4) follows.

Remark 4.3. In the above \(L^2\) error estimate, we do not use the so-called Aubin-Nitsche technique. However, we need slightly stronger regularity assumption on the exact solution \(u\).

We next study the superconvergence property at the nodes \(x_i, i \in \mathbb{Z}_{N-1}\).

Theorem 4.4. Let \(u \in W^{2r+1,\infty}_p(\Omega)\), and \(u_P\) the solution of FVM scheme (2.4). If \(u \in W^{2r+1,\infty}_p(\Omega)\), then
\[|(u - u_P)(x_i)| \lesssim h^{2r+1} \sum_{j=r+1}^{2r+1} |u_{j,\infty,p}|, \quad \forall i \in \mathbb{Z}_{N-1}. \] (4.5)

Proof. Let \(e = u - u_P\) and
\[\varepsilon(x) = \int_{a}^{x} \left(\beta(y)e'(y) + \gamma(y)e(y) \right)dy, \quad \forall x \in [a,b]. \]
By the construction of the FVM scheme, both \(u\) and \(u_P\) satisfy (2.2), then for all \((i, j) \in \mathbb{Z}_{N-1} \times \mathbb{Z}_{r_1}\),
\[-(\alpha(g_{i,j+1})e'(g_{i,j+1}) - \alpha(g_{i,j})e'(g_{i,j})) + \varepsilon(g_{i,j+1}) - \varepsilon(g_{i,j}) = 0. \]
Namely,
\[\alpha(g_{i,j})e'(g_{i,j}) - \varepsilon(g_{i,j}) = C_0, \] (4.6)
where \(C_0\) is a constant independent of \(i, j\).
On the other hand, let $G(\cdot, \cdot)$ be the Green function for the problem (2.1). Then for all $v \in H^1_0(\Omega)$,
\[v(x) = \int_a^b \alpha(y)v'(y)\frac{\partial G}{\partial y}(x,y)\,dy + \int_a^b (\beta(y)v'(y) + \gamma(y)v(y))G(x,y)\,dy. \]
In particular, for all $i \in \mathbb{Z}_{N-1}$,
\[e(x_i) = \int_a^b \alpha(y)e'(y)\frac{\partial G}{\partial y}(x_i,y)\,dy + \int_a^b (\beta(y)e'(y) + \gamma(y)e(y))G(x_i,y)\,dy. \]
Noting that $G(x_i, a) = G(x_i, b) = 0$, by (1.6)
\[e(x_i) = \int_a^b (\alpha(y)e'(y) - \varepsilon(y))\frac{\partial G}{\partial y}(x_i,y)\,dy = \sum_{k=1}^N \sum_{j=1}^r A_k j (\alpha(g_{k,j})e'(g_{k,j}) - \varepsilon(g_{k,j}))\frac{\partial G}{\partial y}(x_i,g_{k,j}) + E_1 \]
\[= C_0 \int_a^b \frac{\partial G}{\partial y}(x_i,y)\,dy + E_1 + E_2 = E_1 + E_2, \]
where
\[E_1 = \sum_{k=1}^N b^{2r+1}(r!)^4 \left[\left((\alpha(y)e'(y) - \varepsilon(y))\frac{\partial G}{\partial y}(x_i,y) \right) \right]^{(2r)}_{y=\xi_k}, \]
\[E_2 = -\sum_{k=1}^N \frac{h_k^{2r+1}(r!)^4}{(2r+1)(2r)!} \frac{\partial G}{\partial y}(x_i,y) \left]^{(2r)}_{y=\eta_k} \right. \]
with $\xi_k, \eta_k \in \tau_k$.

We next estimate E_1 and E_2, respectively. Note that $e^{(j)} = u^{(j)}$ for $j > r$ and the Green function $G(x_i, \cdot)$ has bounded derivatives of any order on each $\tau_k, k \in \mathbb{Z}_N$, then
\[|E_1| \lesssim \sum_{k=1}^N b^{2r+1} \left(\sum_{j=0}^r |e|_{j, \infty, \tau_k} + \sum_{j=r+1}^{2r+1} |u|_{j, \infty, \tau_k} \right) \]
\[\lesssim \sum_{k=1}^N b^{2r+1} \left(\sum_{j=0}^r h^{-j}||e||_{0, \infty, \tau_k} + \sum_{j=r+1}^{2r+1} |u|_{j, \infty, \tau_k} \right) \]
\[\lesssim h^r ||e||_{0, \infty, \tau} + b^{2r+1} \sum_{j=r+1}^{2r+1} |u|_{j, \infty, \tau}, \]
where in the second inequality we have used the fact that $[1]
\[|e|_{j, \infty, \tau} \lesssim h^{-j}||e||_{0, \infty, \tau} + h^{r+1-j}||e||_{r+1, \infty, \tau}, \quad \forall j \in \mathbb{Z}_r. \]

We next consider the term $||e||_{0, \infty, \tau}$. By the triangular inequality and the inverse inequality
\[||u_t - u_P||_{0, \infty, \tau} \lesssim h^{\frac{1}{2}}|u_t - u_P| \lesssim h^{\frac{1}{2}}(|u - u_I| + |u_t - u_P|) \]
\[\lesssim h^{r+\frac{1}{2}}|u|_{r+1, \infty, \tau}, \]

12
we have
\[\|e\|_{0,\infty,p} \leq \|u - u_I\|_{0,\infty,p} + \|u_I - u_P\|_{0,\infty,p} \lesssim h^{r+\frac{3}{2}} |u|_{r+1,\infty,p}. \]

Therefore,
\[|E_1| \lesssim h^{2r+\frac{1}{2}} \sum_{j=r+1}^{2r+1} |u|_{j,\infty,p}. \]

As for E_2, a direct calculation shows that
\[|E_2| \lesssim h^{2r} \|G\|_{2r,\infty,p}. \]

Combining E_1 with E_2, we obtain (4.5).

As a direct consequence of (4.5), we have
\[E_{\text{node}} = \left(\frac{1}{N} \sum_{i=1}^{N} (u - u_P)(x_i) \right)^\frac{1}{2} \lesssim h^{2r}. \quad (4.7) \]

We next estimate the term $e(x_i) - e(x_{i-1}), i \in \mathbb{Z}_N$ which plays a critical role in our later superconvergence analysis.

Theorem 4.5. For all $i \in \mathbb{Z}_N$,
\[|(u - u_P)(x_i) - (u - u_P)(x_{i-1})| \lesssim h^{2r+1} \sum_{j=r+1}^{2r+1} |u|_{j,\infty,p}. \quad (4.8) \]

Proof. By the same arguments as Theorem 4.4, we obtain
\[e(x_i) - e(x_{i-1}) \approx \sum_{k=1}^{N} (E^1_{1,k} + E^2_{2,k}), \]

where
\[E^1_{1,k} = \frac{h^{2r+1}(r!)^4}{(2r+1)(2r)!} \left[\left(\alpha(y)e'(y) - \epsilon(y) \right) \left(\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y) \right) \right]^{(2r)} {y=\xi_k}, \]
\[E^2_{2,k} = -\frac{h^{2r+1}(r!)^4}{(2r+1)(2r)!} \left(\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y) \right) {y=\eta_k}^{(2r)} \]

with $\xi_k, \eta_k \in \tau_k$.

Recall the construction of the Green function $G(x_i, \cdot)$, for all $j \in \mathbb{N}_{2r}$,
\[\|\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y)\|_{j,\infty,\Omega \setminus \tau_i} \lesssim h \|G\|_{j+1,\infty,\Omega \setminus \tau_i}, \]

and
\[\|\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y)\|_{j,\infty,\tau_i} \lesssim h \|G\|_{j+1,\infty,\tau_i}. \]
Since the Green function $G(x_i, \cdot) \in C^{2r}(\tau_k), k \in \mathbb{Z}_N$ is bounded, then
\[
\left[\left((\alpha(y)e'(y) - \varepsilon(u) \left(\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y) \right) \right)^{(2r)} \right]_{y=\xi_k} \\
\lesssim \sum_{j=0}^{2r} \binom{2r}{j} \|\alpha e' - \varepsilon\|_{j, \infty, \tau_k} \|\frac{\partial G}{\partial y}(x_i, y) - \frac{\partial G}{\partial y}(x_{i-1}, y)\|_{2r-j, \infty, \tau_k} \\
\lesssim h_k \left(\sum_{j=0}^{r} |e|_{j, \infty, \tau_k} + \sum_{j=r+1}^{2r+1} |u|_{j, \infty, \tau_k} \right).
\]

Following the same estimate for $\sum_{j=0}^{r} |e|_{j, \infty, \tau_k} + \sum_{j=r+1}^{2r+1} |u|_{j, \infty, \tau_k}$ as Theorem 4.4, we obtain
\[
|E'_1, k| \lesssim h_k^{2r+2}, \quad |E'_2, k| \lesssim h_k^{2r+2}, \quad \forall k \in \mathbb{Z}_N,
\]
which yields the inequality (4.8) directly. \(\square\)

Next we present the superconvergence property of u'_P at Gauss points, and u_P at Lobatto points. Before our analysis, we first introduce a special polynomial. For all $v(t) \in H^1([-1, 1])$, we denote by
\[
v_r(t) = \sum_{j=0}^{r} b_j M_j(t)
\]
the rth approximation of $v(t)$ with
\[
b_0 = \frac{v(1) + v(-1)}{2}, \quad b_1 = \frac{v(1) - v(-1)}{2}, \quad b_j = (j - \frac{1}{2}) \int_{-1}^{1} v'(t)L_{j-1}(t)dt, \quad j = 2, \ldots, r.
\]
where M_i is the Lobatto polynomial of degree i and L_j is the Legendre polynomial of degree j. For all $x \in \tau_i, i \in \mathbb{Z}_N$, we denote by
\[
v_r(x) = v_r\left(\frac{x_i + x_{i-1} + h_i t}{2}\right), \quad t \in [-1, 1]
\]
the rth approximation of $v(x)$ on the interval $\tau_i, i \in \mathbb{Z}_N$. Then
\[
|(v - v_r)(l_{i,j})| \lesssim h_r^{r+2} \|v\|_{r+2, \infty, \mathbb{P}}, \quad j \in \mathbb{Z}_{r-1}, \quad (4.9)
\]
and
\[
|(v - v_r)'(g_{i,j})| \lesssim h_r^{r+1} \|v\|_{r+2, \infty, \mathbb{P}}, \quad j \in \mathbb{Z}_r. \quad (4.10)
\]

Theorem 4.6. Let $u \in W^{r+2, \infty}_{\mathbb{P}}(\Omega)$ be the solution of (2.1), and u_P the solution of FVM scheme (2.3). Then
\[
|(u - u_P)'(g_{i,j})| \lesssim h_r^{r+1} \|u\|_{r+2, \infty, \mathbb{P}}, \quad (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_{r-1}, \quad (4.11)
\]
and
\[
|(u - u_P)(l_{i,j})| \lesssim h^{r+2}||u||_{r+2,\infty,\mathcal{P}}, \quad (i, j) \in \mathbb{Z}_N \times \mathbb{Z}_r.
\] (4.12)

Proof. For all \(v \in H^1_0(\Omega)\), let
\[
A(u, v) = (\alpha u', v') + (\beta u + \gamma u, v).
\]
Then we have
\[
v(x) = A(v, G(x, \cdot)), \quad \forall x \in \Omega,
\]
where \(G(x, \cdot)\) is the Green function for the problem (2.1). Let \(G_P\) be the Galerkin approximation of \(G(x, \cdot)\), that is
\[
v_P(x) = A(v_P, G_P), \quad \forall v_P \in U^r_P, \forall x \in \Omega.
\]
Then (see [9](p33))
\[
A(u - u_P, G_P) \lesssim h^{r+2}||u||_{r+2,\infty,\mathcal{P}}.
\]
We next estimate the term \(A(u - u_P, G_P)\). Note that \(G_P \in U^r_P\), then
\[
A(u - u_P, G_P) = \int_a^b (\alpha(y)e'(y) - \varepsilon(y))G'_P(y)dy = \sum_{k=1}^N \sum_{j=1}^r A_{k,j} (\alpha(g_{k,j})e'(g_{k,j}) - \varepsilon(g_{k,j}))G_P(g_{k,j}) + E_3 = C_0 \int_a^b G'_P dy + E_3 = E_3,
\]
where \(e(y), \varepsilon(y)\) and \(C_0\) are the same as in Theorem [4.4] and
\[
E_3 = \sum_{k=1}^N \frac{h_k^{2r+1}(r!)^4}{(2r + 1)!} \left((\alpha(y)e'(y) - \varepsilon(y))G'_P(y) \right)^{(2r)} |_{y=\xi_k}.
\]
Then
\[
E_3 \lesssim \sum_{k=1}^N h_k^{2r+1} \left(||G_P||_{r,\infty,\mathcal{P}} ||e||_{r+2,\infty,\mathcal{P}} \sum_{j=1}^{r-1} ||G_P||_{j,\infty,\mathcal{P}} ||e||_{2r-j-2,\infty,\mathcal{P}} \right)
\]
\[
\lesssim \sum_{k=1}^N ||G_P||_{2,1,\mathcal{P}} \left(h_k^{r+2} ||e||_{r+2,\infty,\mathcal{P}} + \sum_{j=1}^{r-1} h_k^{2r+2-j} ||e||_{2r-j-2,\infty,\mathcal{P}} \right)
\]
\[
\lesssim h^{r+2} ||e||_{r+2,\infty,\mathcal{P}} \lesssim h^{r+2} ||u||_{r+2,\infty,\mathcal{P}}.
\]
Here we have used (5.4) and the inverse inequality
\[
||G_P||_{j,\infty,\mathcal{P}} \lesssim h_k^{j-2} ||G_P||_{2,1,\mathcal{P}}, \quad \forall j \in \mathbb{Z}_r.
\]
and the fact \[|G_p|_{2,1,p} = \sum_{i=1}^{N} \sum_{\tau_k}^{2,1} |G_{p|}^{2,1,\tau_k} \leq C \]

with \(C \) a bounded constance. Note that
\[
(u_r - u_P)(x) = A(u_r - u_P, G_p) = A(u - u_r, G_p) + A(u - u_P, G_p),
\]
then we have
\[
(u_r - u_P)(x) \lesssim h^{r+2}\|u\|_{r+2,\infty,p}.
\]

By inverse inequality,
\[
(u_r - u_P)'(x) \lesssim h^{r+1}\|u\|_{r+2,\infty,p}.
\]

Combing above estimates with (4.9) and (4.10), we obtain (4.11) and (4.12) directly by the triangular inequality.

As a direct consequence, we have
\[
|u - u_P|_{G,1} \lesssim h^{r+1}, \quad |u - u_P|_{l,1} \lesssim h^{r+1} \tag{4.13}
\]
and
\[
|u - u_P|_{L,0} \lesssim h^{r+2}, \quad |u - u_P|_{l,0} \lesssim h^{r+2}, \tag{4.14}
\]
where
\[
|v|_{l,1} = \left(\frac{1}{N^r} \sum_{i=1}^{N} \sum_{j=1}^{r} \sum_{k=r+1}^{2r+1} |u|_{k,\infty,p} \right)^{\frac{1}{2}}
\]
and
\[
|v|_{L,0} = \left(\sum_{i=1}^{N} \sum_{j=0}^{r} w_{i,j} |v|_{(l_{i,j})} \right)^{\frac{1}{2}}, \quad |v|_{l,0} = \left(\frac{1}{N^r} \sum_{i=1}^{N} \sum_{j=0}^{r} |v|_{(l_{i,j})} \right)^{\frac{1}{2}},
\]
here \(w_{i,j} \) are weights of the Lobatto quadrature.

Now we consider a special case that \(\beta = 0 \), we have the following theorem.

Theorem 4.7. Let \(u \) be the solution of (2.1), and \(u_P \) the solution of FVM scheme (2.4). If \(\beta(x) = 0, \forall x \in \Omega, u \in W^{r+2,\infty}(\Omega) \), then
\[
|\alpha(g_{i,j}) -(g_{i,j})'| h^{r+2} \sum_{k=r+1}^{2r+1} |u|_{k,\infty,p}. \tag{4.15}
\]

Proof. First, both \(u \) and \(u_P \) satisfy (2.4), there holds for all \((i,j) \in \mathbb{Z}_N \times \mathbb{Z}_{r-1} \) that
\[
\alpha(g_{i,j+1}) e'(g_{i,j+1}) - \alpha(g_{i,j}) e'(g_{i,j}) = \int_{g_{i,j}}^{g_{i,j+1}} \gamma(x) e(x) dx,
\]
which yields

\[e'(g_{i,j+1}) = \frac{\alpha(g_{i,j})}{\alpha(g_{i,j+1})} e'(g_{i,j}) + \frac{1}{\alpha(g_{i,j+1})} \int_{g_{i,j}}^{g_{i,j+1}} \gamma(x) e(x) dx. \]

(4.16)

On the other hand,

\[e(x_i) - e(x_{i-1}) = \int_{x_{i-1}}^{x_i} e'(y) dy = \sum_{j=1}^{r} A_{i,j} e'(g_{i,j}) + E_i, \]

where by [14](p98, (2.7.12)),

\[E_i = \frac{h^{2r+1}(r!)^4}{(2r+1)![(2r)!]^3} (e')^{(2r)}(\xi_i) \lesssim h^{2r+1} |u|_{2r+1, \infty, \tau_i}, \quad \xi_i \in \tau_i. \]

By Theorem 4.3 and 4.10, we obtain

\[h_i e'(g_{i,1}) + h_i \int_{x_{i-1}}^{x_i} \gamma(x) e(x) dx \lesssim h_i^{2r+1} \sum_{k=r+1}^{2r+1} |u|_{k, \infty, p}. \]

Then

\[e'(g_{i,j}) \lesssim \int_{x_{i-1}}^{x_i} |\gamma(x) e(x)| dx + h_i^{2r+1} \sum_{k=r+1}^{2r+1} |u|_{k, \infty, p}, \quad \forall j \in \mathbb{Z}_r. \]

We next estimate the term \(\int_{x_{i-1}}^{x_i} |\gamma(x) e(x)| dx \). Note that

\[\int_{g_{i,1}}^{g_{i,j}} |\gamma(x) e(x)| dx \leq \|\gamma\|_{\infty} \left(\int_{g_{i,1}}^{g_{i,j}} |(u-u_I)(x)| dx + \int_{g_{i,1}}^{g_{i,j}} |(u_I-u_P)(x)| dx \right) \]

\[\lesssim h^{r+2} |u|_{r+2, \infty, p} + h^{r+2} |u|_{r+2, p} \lesssim h^{r+2} |u|_{r+2, \infty, p}, \]

where in the above inequalities we have used \(|u-u_I| \lesssim h^{r+1} |u|_{r+1, \infty} \lesssim h^{r+1} |u|_{r+2, \infty, p} \) and \(|u_I-u_P| \lesssim h^{r+2} |u|_{r+2, p} \).

Therefore,

\[|(u-u_P)'(g_{i,j})| \lesssim h^{\min\{r+2,2r\}} \sum_{k=r+1}^{2r+1} |u|_{k, \infty, p}. \]

The proof is completed. \(\square \)

In particular, when \(\beta = \gamma = 0 \), we have a better result.

Theorem 4.8. Let \(u \in W^{2r+1, \infty}_P(\Omega) \) be the solution of (2.1), and \(u_P \in U_P^r \) the solution of FVM scheme (2.3). If \(\beta(x) = \gamma(x) = 0, \forall x \in \Omega \), for all \((i, j) \in \mathbb{Z}_N \times \mathbb{Z}_r \), we have

\[|u'(g_{i,j}) - u_P'(g_{i,j})| \lesssim h^{2r} \sum_{k=r+1}^{2r+1} |u|_{k, \infty, p}. \]

(4.17)
Then we define for all \(x \) which is the same as the counterpart finite element method. \(u \) estimates the derivative of the exact solution convergence rate \(h \) by \(\ref{14} \) (p98, (2.7.12)) \(h \) counterpart finite element method’s \(h \) points, the convergence rate \(h \) rate \(u \)

To study the approximation property of \(u \), we have

\[C \sum_{j=1}^{r} A_{i,j} \alpha^{-1}(g_{i,j}) \lesssim h_i^{2r+1} \sum_{k=r+1}^{2r+1} |u|_{k,\infty,P}, \]

which yields \(\ref{1.17} \) directly. \(\square \)

Remark 4.9. We see that at the Gauss points, when \(\beta = \gamma = 0 \), the derivative convergence rate \(h^{2r} \) doubles the global optimal rate \(h^r \), which is much better than the counterpart finite element method’s \(h^{r+1} \) rate, when \(\beta = 0 \), the derivative convergence rate \(h^{r+2} \) is one order higher than the counterpart finite element method’s \(h^{r+1} \); and at the nodal points, the convergence rate \(h^{2r} \) almost doubles the global optimal rate \(h^{r+1} \) and equals to the counterpart finite element method’s \(h^r \) rate; and at the Lobatto points, the convergence rate \(h^{r+2} \) is one order higher than the optimal global rate \(h^{r+1} \), which is the same as the counterpart finite element method.

5. Post processing. We observe from \(\ref{1.11}, \ref{1.15} \) and \(\ref{1.17} \) that \(u_P \) approximates the derivative of the exact solution \(u \) pretty well at the Gauss points. In this subsection, we will recover \(u' \) in the whole domain \(\Omega \).

For all \(i = 1, \ldots, N-1 \), we construct a function \(v_i \in P_{2r-1}([x_{i-1}, x_{i+1}]) \) by letting

\[v_i(g_{l,k}) = u'_P(g_{l,k}), \quad l = i, i+1; \ k = 1, 2, \ldots, r. \]

Then we define for all \(x \in \tau_i = [x_{i-1}, x_i], i = 1, \ldots, N, \)

\[v(x) = \begin{cases} v_1(x), & i = 1, \\ \frac{1}{2}(v_i(x) + v_{i-1}(x)), & 2 \leq i \leq N-1, \\ v_{N-1}(x), & i = N. \end{cases} \]

To study the approximation property of \(u \), we note that in each \([x_{i-1}, x_{i+1}],\)

\[u'(x) = (L_{2r-1}u')(x) + \frac{u(2r+1)(\xi)}{(2r)!} \prod_{j=1}^{r} (x - g_{i,j})(x - g_{i+1,j}), \xi \in [x_{i-1}, x_{i+1}] \]

where the Lagrange interpolant

\[(L_{2r-1}u')(x) = \sum_{l=i}^{i+1} \sum_{j=1}^{r} u'(g_{l,j})w_{l,j}(x), w_{l,j}(x) = \prod_{l' \neq l, j' \neq j} \frac{x - g_{l',j'}}{g_{l,j} - g_{l',j'}}. \]
Noting that
\[v_i(x) = \sum_{l=i}^{i+1} \sum_{j=1}^{r} u_P'(g_{l,j}) w_{l,j}(x), \]
we have
\[u'(x) - v_i(x) = \sum_{l=i}^{i+1} \sum_{j=1}^{r} (u' - u_P') (g_{l,j}) w_{l,j}(x) + \frac{u^{(2r+1)}(\xi)}{(2r)!} \prod_{j=1}^{r} (x - g_{l,j})(x - g_{i+1,j}). \] (5.1)

Since for all \(l = i, i+1, j = 1, \ldots, r \), we have
\[|w_{l,j}(x)| \leq c_r, \forall x \in [x_{i-1}, x_{i+1}], \]
where \(c_r \) is a constant depends only on \(r \), we obtain by (4.11), (4.15) and (4.17) that
\[|u'(x) - v_i(x)| \lesssim h^m \sum_{k=r+1}^{2r+1} |u|_{k,\infty,p}, \]
where \(m = r + 1 \) for general elliptic equations, \(m = r + 2 \) if \(\beta = 0 \), and \(m = 2r \) if \(\beta = \gamma = 0 \). Consequently, we have
\[|u'(x) - v(x)| \lesssim h^m \sum_{k=r+1}^{2r+1} |u|_{k,\infty,p}, \forall x \in \Omega. \]

6. Numerical experiments. In this section, we present numerical examples to demonstrate the method and to verify the theoretical results proved in this paper.

In our experiments, we solve the two-point boundary value problem (2.1) by the FVM scheme (2.4) with \(r = 4 \) or \(r = 5 \). The underlying meshes are obtained by subdividing \(\Omega = (0, 1) \) to \(N = 2, 4, 8, 16, 32, 64 \) subintervals with equal sizes.

Example 1. We consider the two-point boundary value problem (2.1) with
\[\alpha(x) = e^x, \quad \beta(x) = \cos x, \quad \gamma(x) = x, \quad \forall x \in \Omega, \]
and \(f \) is chosen so that the exact solution of this problem is
\[u(x) = \sin x(x^{12} - x^{11}). \]

We list approximate errors under various (semi-)norms in Table 6.1 (for the scheme \(r = 4 \)) and Table 6.2 (for the scheme \(r = 5 \)).

To explicitly show the convergence rate of different approximate errors, we plot the error curves in Figures 6.1 and 6.2. We observe from Figure 6.1 that the convergence rate \(|u - u_P|_1 \) is \(r \) and the convergence rate of \(\|u - u_P\|_0 \) is \(r + 1 \). In other words, the FVM approximate solution converges to the exact solution with optimal convergence rates under both for \(H^1 \) and \(L^2 \) norms, as predicted in (3.9) and (4.4). We also observe that the error \(|u_I - u_P|_1 \) is of order \(r + 1 \), which confirms the convergence result in (4.3). The errors \(|u - u_P|_{\text{aver},0}, |u - u_P|_{L,0} \) and \(E_{\text{node}} \) are presented in Figure 6.2. It is observed that \(|u - u_P|_{\text{aver},0} \) and \(|u - u_P|_{L,0} \) converge with a degree \(r + 2 \) which confirm the superconvergence property at Labatto points given in Theorem 4.6. Since \(E_{\text{node}} \) converges with a rate \(2r \), it confirms our theory in Theorem 4.4.

Example 2. In this example, we test the convergence behavior of derivative error at Gauss points. We consider three cases of Equation (2.1), they are
Table 6.1

| N | \(|u - u_P|_0\) | \(|u - u_P|_1\) | \(|u_I - u_P|_0\) | \(|u_I - u_P|_1\) | \(|u - u_P|_{L,0}\) |
|-----|-------------------|-------------------|-------------------|-------------------|------------------|
| 2 | 1.8618e-03 | 5.1201e-02 | 5.2554e-03 | 3.3420e-04 |
| 4 | 1.4366e-04 | 7.2801e-03 | 3.1271e-04 | 9.8931e-06 |
| 8 | 5.9282e-06 | 5.9099e-04 | 3.1271e-04 | 9.8931e-06 |
| 16 | 1.4386e-04 | 7.2801e-03 | 3.1271e-04 | 9.8931e-06 |
| 32 | 6.3240e-09 | 2.5119e-06 | 3.1271e-04 | 9.8931e-06 |
| 64 | 1.9850e-10 | 1.5766e-07 | 3.1271e-04 | 9.8931e-06 |

Table 6.2

| N | \(|u - u_P|_{aver,0}\) | \(|u - u_P|_{aver,1}\) | \(E_{node}\) |
|-----|------------------------|------------------------|-------------|
| 2 | 2.1895e-04 | 8.0770e-04 | 1.1874e-05 |
| 4 | 6.2680e-06 | 5.3025e-05 | 5.9186e-08 |
| 8 | 1.1716e-07 | 1.9692e-06 | 9.2827e-13 |
| 16 | 3.0260e-11 | 2.0170e-09 | — |
| 32 | 4.7425e-13 | 6.3175e-11 | — |

Case 1: \(\alpha(x) = e^x\), \(\beta(x) = \cos x\), \(\gamma(x) = x\);
Case 2: \(\alpha(x) = e^x\), \(\beta(x) = 0\), \(\gamma(x) = x\);
Case 3: \(\alpha(x) = e^x\), \(\beta(x) = 0\), \(\gamma(x) = 0\).

The exact solution is always \(u(x) = \sin x(x^{12} - x^{11})\) and the right-hand function \(f\) change according to the coefficients in different cases.

Listed in Table 6.3 are errors in the derivative approximation at Gauss points for three different cases for \(r = 4\) and \(r = 5\), respectively. Plotted in Fig. 6.3 are corresponding error curves. We observe that the convergence rate is \(r + 1\) for Case 1, \(r + 2\) for Case 2 and \(2r\) for Case 3. These numerical results are consistent with our theories derived in Section 4.

7. Concluding remarks. The mathematical theory for the FVM has not been fully developed. The analysis in the literature for high-order FVM schemes are often done case by case. It is a challenging task to develop mathematical theory for FVM.
scheme of an arbitrary order. In this article, we provide a unified proof for the inf-sup condition of a family any order FVM schemes in one dimensional setting. Based on this, we show that the FVM solution converges to the exact solution with optimal order, both in \(H^1 \) and \(L^2 \) norm.

We also studied the superconvergence of our FVM schemes. It is shown both
Table 6.3
Gauss points.

N	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
1	4.7633e-03	4.1098e-03	4.1493e-03	1.5667e-03	1.1105e-04	1.0183e-04
2	5.4962e-04	3.1457e-05	2.9493e-05	2.6075e-05	1.9562e-06	8.6701e-09
4	3.5877e-05	4.2964e-07	1.1316e-07	3.9162e-06	2.8751e-08	3.1732e-11
8	1.3338e-06	8.4296e-09	4.3677e-10	6.7553e-08	2.6812e-10	3.6386e-14
16	4.3328e-08	1.4052e-10	1.7002e-12	1.0779e-09	2.1878e-12	—
32	1.3667e-09	2.2319e-12	6.6291e-15	1.6928e-11	1.7284e-14	—

Fig. 6.3. left: $r = 4$, right: $r = 5$

theoretically and numerically that at the nodal and interior Lobatto points, the superconvergence behavior of FVM is similar to that of the counterpart finite element method. Moreover, in some special cases, the superconvergence property of the derivative of the FVM solution at the Gauss points maybe much better than that of the counterpart finite element method. For instances, when $\beta = 0$, the convergence rate of the derivative of the FVM solution is h^{r+2} which is one order higher than the counterpart finite element method’s h^{r+1}; when $\beta = \gamma = 0$, the order is h^{2r} which doubles the global optimal rate h^r, and it is much better than the counterpart finite element method’s h^{r+1} rate. In a recent study [29], it is shown that after a simple post-processing procedure, the FEM solutions can have local conservation property. In this sense, the superconvergence property discovered in this paper become a powerful argument to support that the FVM still has its advantages.

REFERENCES

22
[1] R. A. Adams and J. F. Fournier. *Sobolev spaces*, Singapore press, 1981.
[2] I. Babuška and A.K. Aziz. *Survey lectures on the mathematical foundations of the finite element method*. Technical Note BN-748, University of Maryland, College Park, Washington DC, 1972.
[3] I. Babuška and T. Strouboulis. *The Finite Element Method and Its Reliability*. Oxford Science Publications, 2001.
[4] R. E. Bank and D.J. Rose. Some error estimates for the box scheme. *SIAM J. Numer. Anal.*, 24:777–787, 1987.
[5] T. Barth and M. Ohlberger. *Finite volume methods: foundation and analysis*. Encyclopedia of computational Mechanics, volume 1, chapter 15. John Wiley & Sons, 2004.
[6] Z. Cai. On the finite volume element method. *Numer. Math.*, 58:713–735, 1991.
[7] Z. Cai, J. Douglas, and M. Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations. *Adv. Comput. Math.*, 19:3–33, 2003.
[8] F. Celiker and B. Cockburn. Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. *Math. Comp.*, 76:67–96, 2007.
[9] C. Chen. *Structure Theory of Superconvergence of Finite Elements* (in Chinese). Hunan Science and Technology Press, Hunan, China, 2001.
[10] L. Chen. A new class of high order finite volume methods for second order elliptic equations. *SIAM J. Numer. Anal.*, 47:4021–4043, 2010.
[11] Z. Chen, J. Wu, and Y. Xu, Higher-order finite volume methods for elliptic boundary value problems. *Adv. in Comput. Math.*, in Press.
[12] S.-H. Chou, D.Y. Kwak, and Q. Li, L^p error estimates and superconvergence for covolume or finite volume element methods. *Numer. Meth. PDE Eq.*, 19:463–486, 2003.
[13] S.-H. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem. *Comput. Meth. Appl. Mech. Engrg.*, 196:3706–3712, 2007.
[14] P. J. Davis and P. Rabinowitz, *Methods of Numerical Integration*. 2nd Ed., Academic Press, Boston, 1984.
[15] J. Douglas, Jr. and T. Dupont. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. *Numer. Math.*, 22:99–109, 1974.
[16] Ph. Emonot. *Methods de volumes elements finis : applications aux equations de navier-stokes et resultats de convergence*. Lyon, 1992.
[17] R. Ewing, T. Lin, and Y. Lin. On the accuracy of the finite volume element based on piecewise linear polynomials. *SIAM J. Numer. Anal.*, 39:1865–1888, 2002.
[18] R. Eymard, T. Gallouet, and R. Herbin. *Finite Volume Methods*, In : *Handbook of Numerical Analysis*, VII, 713-1020, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam, 2000.
[19] R. Li, Z. Chen, and W. Wu. *The Generalized Difference Methods for Partial differential Equations*. Marcel Dikker, New Youk, 2000.
[20] F. Liebau. The finite volume element method with quadratic basis function. *Computing*, 57:281–299, 1996.
[21] C. Ollivier-Gooch and M. Altena. A high-order-accurate unconstructed mesh finite-volume scheme for the advection-diffusion equation. *J. Comput. Phys.*, 181:729–752, 2002.
[22] M. Plexousakis and G. Zouraris. On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. *SIAM J. Numer. Anal.*, 42:1226–1260, 2004.
[23] E. Sülü. Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. *SIAM J. Numer. Anal.*, 28:1419-1430, 1991.
[24] E. Sülü. The Accuracy of Cell Vertex Finite Volume Methods on Quadrilateral Meshes. *Math. Comp.*, 59:359–382, 1992.
[25] M. Tian and Z. Chen. Quadratical element generalized differential methods for elliptic equations. *Numer. Math. J. Chinese Univ.*, 13:99–113, 1991.
[26] L.R. Wahlbin. *Superconvergence In Galerkin Finite Element Methods*. Lecture Notes in Mathematics, Volume 1605. Spring, Berlin, 1995.
[27] J. Xu and L. Zikatanov. Some observations on Babuska-Brezzi conditions. *Numer. Math.*, 94:195–202, 2003.
[28] J. Xu and Q. Zou. Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. *Numer. Math.*, 111:469–492, 2009.
[29] S. Zhang, Z. Zhang, and Q. Zou. Flux conserving finite element method. *Preprint*, 2011.
[30] Z. Zhang. Finite element superconvergent approximation for one-dimensional singularly perturbed problems. *Numer. Math. Part. D. E.*, 18:374–395, 2002.
problems. *Math. Comp.* 74:1621–1636, 2005.

[32] Q. Zhu and Q. Lin. *Superconvergence Theory of the Finite Element Method* (in Chinese). Hunan Science Press, Hunan, 1989.

[33] O. Zienkiewicz, R. Taylor, and J.Z. Zhu. *The Finite Element Method*. 6th ed, McGraw-Hill, London, 2005.

[34] Q. Zou. Hierarchical error estimates for finite volume approximation solution of elliptic equations. *Appl. Numer. Math.*, 60:142–153, 2010.