Review Article

Novel Approach for the Sonographic Evaluation of the Anorectal Anatomical Structure of Fetuses

Takashi Kaji

Abstract

Imperforate anus (IA) is a relatively common congenital anomaly, with an estimated incidence of 1:1,500–1:5,000 live births. Imperforate anus usually necessitates prompt assessment and treatment after birth. Moreover, >50% of cases with IA are associated with other congenital or chromosomal abnormalities, such as VATER association and trisomy 21. Accordingly, the prenatal diagnosis of IA is considered ideal for optimizing neonatal treatment.

Imperforate anus had rarely been diagnosed prenatally because of the absence of effective screening and diagnostic methods. Although the prenatal diagnosis of IA remains uncommon, cases of IA diagnosed prenatally have been increasing due to advances in the sonographic evaluation of the anorectal anatomical structure of fetuses. In this review article, we present recent advances in the sonographic diagnosis of fetal IA.

Nonspecific Sonographic Sign for the Prenatal Diagnosis of IA: An Abnormally Dilated Distal Bowel or Rectum with or without Calcified Intraluminal Meconium

An abnormally dilated distal bowel or rectum with or without calcified intraluminal meconium has been used as an ultrasonographic sign for detecting fetal IA (Fig. 1). The accuracy of such findings for the prenatal diagnosis of IA is severely limited due to the high false-negative and false-positive rates. The distal bowel or rectum in normal fetuses often seems somewhat dilated in the third trimester, which makes it rather difficult to differentiate fetuses with IA from normal ones. Although the etiology of calcified intraluminal meconium has not been fully elucidated, it has been suggested that the admixture of fetal urine and meconium results in calcification. In other words, calcification formation demands the passage of urine into the bowel/rectum through a fistula. Therefore, in the absence of a fistula connecting the bowel/rectum and urinary system, calcification does not occur, even in fetuses with IA. Therefore, only 15.9% of IA cases were diagnosed prenatally according to this nonspecific sign: the abnormally dilated distal bowel or rectum with or without calcified intraluminal meconium.

Specific Sonographic Sign for the Prenatal Diagnosis of IA: Absence or Abnormal Appearance of the Anal Sphincter Muscles and Anal Canal Mucosa in the Tangential View of the Fetal Perineum

Recently, visualization of the fetal perineum using two-dimensional (2D) sonography is highly useful for the prenatal diagnosis of IA. The 2D sonography of the fetal perineum can show the anal sphincter muscles and anal canal mucosa (ASCM) is depicted as a hypoechoic ring with a hyperechoic center in the tangential view of the fetal perineum. The hypoechoic ring and hyperechoic center are considered to represent the sphincters and mucosa, respectively. The absence or abnormal appearance of the ASCM strongly indicates IA.
Imperforate anus is classified into three types (high-, intermediate-, and low-type IA) according to the relationship between the distal rectal pouch and the puborectalis muscle.4,5 The types of IA are now considered to affect the accuracy of the prenatal diagnosis of IA.13,14 Prenatal diagnosis of low-type IA is much more difficult than that of high- and intermediate-type IAs. Several factors, including the presence of an anocutaneous or anovestibular fistula and well-developed anal sphincters, which can be visualized as an image similar to the normal ASCM (Fig. 4), may account for difficulties in diagnosing low-type IA.13–15

In light of the neonatal treatment, the classification of IA is critical because it determines the surgical approach. A low-type IA is generally treated by transperineal anoplasty, whereas high- and intermediate-type IAs are treated initially by diverting colostomy, followed by posterior sagittal anorectoplasty.16,17 Regarding the classification of the type of IA, sonographic assessment of the fistula location, which is closely related to the IA type, is now favored for use in neonates with IA because of its high accuracy and the absence of radiation exposure.18–21 Kaji et al. recently reported that the fistula location can be assessed sonographically, even in fetuses.15

Prenatal Diagnosis and the Type of IA

Imperforate anus is classified into three types (high-, intermediate-, and low-type IA) according to the relationship between the distal rectal pouch and the puborectalis muscle.4,5 The types of IA are now considered to affect the accuracy of the prenatal diagnosis of IA.13,14 Prenatal diagnosis of low-type IA is much more difficult than that of high- and intermediate-type IAs. Several factors, including the presence of an anocutaneous or anovestibular fistula and well-developed anal sphincters, which can be visualized as an image similar to the normal ASCM (Fig. 4), may account for difficulties in diagnosing low-type IA.13–15

In light of the neonatal treatment, the classification of IA is critical because it determines the surgical approach. A low-type IA is generally treated by transperineal anoplasty, whereas high- and intermediate-type IAs are treated initially by diverting colostomy, followed by posterior sagittal anorectoplasty.16,17 Regarding the classification of the type of IA, sonographic assessment of the fistula location, which is closely related to the IA type, is now favored for use in neonates with IA because of its high accuracy and the absence of radiation exposure.18–21 Kaji et al. recently reported that the fistula location can be assessed sonographically, even in fetuses.15

High-frequency Linear Transducer

We have been using a 3–8-MHz linear transducer that generates images of higher resolution than conventional convex transducers.15 The high-frequency linear transducer facilitates a clear demonstration of the ASCM. This enables us to differentiate between the internal and external sphincters (Fig. 5). The internal sphincter is depicted as a very hypoechoic and narrow ring, while the external sphincter is depicted as an echogenic ring surrounding the internal sphincter (Fig. 5A). We expect that the precise image of ASCM will lead to an improvement in the prenatal diagnosis of IA, even low-type IA.

Sagittal View of the Fetal Pelvis

As mentioned above, the absence or abnormal appearance of ASCM in the tangential view of the fetal perineum does not always diagnose IA prenatally. Additional visualization of the sagittal or coronal view of the fetal perineum showing the longitudinal
aspect of the ASCM may further improve the diagnostic accuracy for IA.14,15 In particular, the sagittal view obtained using the fetal infracoccygeal or perineal approaches allows us to define the precise anatomy of the rectum, anal canal, internal and external sphincters, and perineum (Fig. 5B). The sagittal view may be the best way to locate fistulas in fetuses with IA.15

HDlive Images of the Fetal Perineum

Inspection of the perineum is the first and most important step in the diagnosis and assessment of IA after birth. However, 2D ultrasound has difficulties in revealing the surface appearance of the fetal perineum and anus. HDlive is a surface-rendering mode in three-dimensional (3D) ultrasound imaging, which uses an adjustable light source to increase depth perception.22,23 Kaji et al. reported that HDlive images can show a realistic appearance of the fetal perineum, similar to those obtained after birth, due to the increase in depth perception.24 HDlive can depict a normal anus as a dimple (Fig. 6), and also show the absence of the anal dimple in most fetuses with IA (Fig. 7).24

Transvaginal 2D and 3D Ultrasound

In breech presentation, transvaginal ultrasound can show clear 2D and 3D images of the anal canal and sphincters. In particular, 3D ultrasound can show three orthogonal planes of the anus, which helps us to understand the spatial anatomy of the anal canal and sphincters (Fig. 8).

Conclusion

Imperforate anus has been regarded as one of the most difficult gastrointestinal anomalies to diagnose before birth due to the absence of effective screening and diagnostic methods. A specific sonographic sign, an absent or abnormal anal image in the tangential view of the fetal perineum, now allows us to diagnose
Prenatal Ultrasound for Anorectal Anomaly

IA prenatally. However, the prenatal diagnosis of some IA, mainly low-type IA, remains challenging. Several new sonographic techniques showing precise anorectal anatomy, such as the sagittal view of the fetal pelvis, transvaginal approach, high-frequency linear transducer, and 3D ultrasound, seem promising in terms of improving the diagnostic accuracy further, which may lead to better treatment planning and parental counseling.

REFERENCES

1. Cho S, Moore SP, Fangman T. One hundred three consecutive patients with anorectal malformations and their associated anomalies. Arch Pediatr Adolesc Med 2001;155(5):587–591. DOI: 10.1001/archpedi.155.5.587.
2. Levitt MA, Peña A. Anorectal malformations. Orphanet J Rare Dis 2007;26(2):33. DOI: 10.1186/1750-1172-2-33.
3. Christensen K, Madsen CM, Hauge M, et al. An epidemiological study of congenital anorectal malformations: 15 Danish birth cohorts followed for 7 years. Paediatr Perinat Epidemiol 1990;4(3):269–275. DOI: 10.1111/j.1365-3016.1990.tb00650.x.
4. Santulli TV, Kieseewetter WB, Bill AH. Anorectal anomalies: a suggested international classification. J Pediatr Surg 1970;5(3):281–287. DOI: 10.1016/0022-3468(70)90184-3.
5. Murphy F, Puri P, Hutson JM, et al. Incidence and frequency of different types, and classification of anorectal malformations. In: Holschneider AM, Hutson JM, ed. Anorectal Malformations in Children. Springer; 2006.
6. Brantberg A, Blaas HG, Haugen SE, et al. Imperforate anus: a relatively common anomaly rarely diagnosed prenatally. Ultrasound Obstet Gynecol 2006;28(7):904–910. DOI: 10.1002/uog.3862.
7. Pohl-Schickinger A, Henrich W, Degenhardt P, et al. Echogenic foci in the dilated fetal colon may be associated with the presence of a rectourinary fistula. Ultrasound Obstet Gynecol 2006;28(3):341–344. DOI: 10.1002/uog.2852.
8. Khatib N, Bellossesky R, Marwan O, et al. Fetal bowel calcifications: a sign of anal atresia with rectourethral fistula. J Clin Ultrasound 2010;38(6):332–334. DOI: 10.1002/jcu.20706.
9. Morgan CL, Grossman H, Novak R. Imperforate anus and colon calcification in association with the prune belly syndrome. Pediatr Radiol 1978;7(1):19–21. DOI: 10.1007/BF00975332.
10. Guzman ER, Ranzini A, Day-Salvatore D, et al. The prenatal ultrasonographic visualization of imperforate anus in monoamniotic twins. J Ultrasound Med 1995;14(7):547–551. DOI: 10.7863/jum.1995.14.7.547.
11. Vijayaraghavan SB, Prema AS, Suganyadevi P. Sonographic depiction of the fetal anus and its utility in the diagnosis of anorectal...
malformations. J Ultrasound Med 2011;30(1):37–45. DOI: 10.7863/jum.2011.30.1.37.
12. Ochoa JH, Chiesa M, Vildoza RP, et al. Evaluation of the perianal muscular complex in the prenatal diagnosis of anorectal atresia in a high-risk population. Ultrasound Obstet Gynecol 2012;39(5):521–527. DOI: 10.1002/uog.9083.
13. Lee MY, Won HS, Shim JY, et al. Sonographic determination of type in a fetal imperforate anus. J Ultrasound Med 2016;35(6):1285–1291. DOI: 10.7863/ultra.15.08056.
14. Su YM, Lin Y, Chen SQ, et al. Prenatal evaluation for detection of anorectal atresia: value of ultrasound. J Ultrasound Med 2019;38(6):1501–1509. DOI: 10.1002/jum.14836.
15. Kaji T, Maeda K, Sogawa E, et al. Sonographic detection and localization of fistulas in fetuses with imperforate anus: case reports. J Obstet Gynaecol Res 2021. DOI: 10.1111/jog.14824. Online ahead of print.
16. Levitt MA, Peña A. Management in the newborn period anorectal malformations in children: embryology, diagnosis, surgical treatment, follow-up. In: Holschneider AM, Hutson JM, ed. Anorectal malformations in children. Springer; 2006.
17. Van der Steeg HJJ, Schmiedeke E, Bagolan P, et al. European consensus meeting of ARM-Net members concerning diagnosis and early management of newborns with anorectal malformations. Tech Coloproctol 2015;19(3):181–185. DOI: 10.1007/s10151-015-1267-8.
18. Kim IO, Han TJ, Kim WS, et al. Transperineal ultrasonography in imperforate anus: identification of the internal fistula. J Ultrasound Med 2000;19(3):211–216. DOI: 10.7863/jum.2000.19.3.211.
19. Choi YH, Kim IO, Cheon JE, et al. Imperforate anus: determination of type using transperineal ultrasonography. Korean J Radiol 2009;10(4):355–360. DOI: 10.3348/kjr.2009.10.4.355.
20. Hosokawa T, Yamada Y, Tanami Y, et al. Diagnostic accuracy of sonography for detection of a fistula on the birth day in neonates with an imperforate anus: comparison of diagnostic performance between suprapubic and perineal approaches. J Ultrasound Med 2017;36(10):1989–1995. DOI: 10.1002/jum.14227.
21. Hosokawa T, Yamada Y, Tanami Y, et al. Sonography for an imperforate anus: approach, timing of the examination, and evaluation of the type of imperforate anus and associated anomalies. J Ultrasound Med 2017;36(9):1747–1758. DOI: 10.1002/jum.14228.
22. Kagan KO, Pintoffl K, Hoopmann M. First-trimester ultrasound images using HDlive. Ultrasound Obstet Gynecol 2011;38(5):607. DOI: 10.1002/uog.10112.
23. Hata T, Hanaoka U, Tenkumo C, et al. Three- and four-dimensional HDlive rendering images of normal and abnormal fetuses: pictorial essay. Arch Gynecol Obstet 2012;286(6):1431–1435. DOI: 10.1007/s00404-012-2505-1.
24. Kaji T, Maeda K, Hichijo A, et al. Three-dimensional HDlive rendering of fetal perineum in anorectal atresia. Ultrasound Obstet Gynecol 2016;47(6):784–785. DOI: 10.1002/uog.15776.

Figs 8A to C: Transvaginal three-dimensional ultrasound showing three orthogonal planes of the anal sphincter muscles and anal canal mucosa: (A) Sagittal plane; (B) Axial plane; (C) Coronal plane. ACM, anal canal mucosa; ES, external sphincter, IS, internal sphincter; R, rectum.