Ichthyotoxic *Cochlodinium polykrikoides* red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

Moo Joon Lee¹, Hae Jin Jeong²,³,* , Jae Seong Kim⁴, Keon Kang Jang⁴, Nam Seon Kang⁵, Se Hyeon Jang⁶, Hak Bin Lee⁶, Sang Beom Lee⁶, Hyung Seop Kim⁶ and Choong Hyeon Choi⁶

¹Department of Marine Biotechnology, Anyang University, Incheon 23038, Korea
²School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
³Advanced Institutes of Convergence Technology, Suwon 16229, Korea
⁴Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
⁵Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
⁶School of Marine Life and Applied Sciences, Kunsan National University, Kunsan 54150, Korea

Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of *C. polykrikoides* in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals m⁻³. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on *C. polykrikoides* and *Prorocentrum* spp. were 0.018 and 0.029 d⁻¹, respectively. Therefore, calanoid copepods may not control populations of *C. polykrikoides* or *Prorocentrum* spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates *Polykrikos* spp. and *Gyrodinium* spp., which were grazers on *C. polykrikoides* and *Prorocentrum* spp., respectively, were 0.008 and 0.047 d⁻¹, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

Key Words: copepod; dinoflagellate; food web; harmful algal bloom; predation

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received September 29, 2017, Accepted November 28, 2017

Corresponding Author
E-mail: hjjeong@snu.ac.kr
Tel: +82-2-880-6746, Fax: +82-2-874-9695
INTRODUCTION

Metazooplankton including copepods, cladocerans, chaetognaths, larvae of invertebrates, and hydrozoans are a major component of the marine ecosystem (Fulton 1984, Kang et al. 1996, Uye and Liang 1998, Calbet 2001, Gallienne and Robins 2001, Puelles et al. 2003, Kimmel and Roman 2004, Turner 2004, Tseng et al. 2009). They are consumers of phytoplankton and heterotrophic protists and are in turn prey for larval fish and other metazoans (Porter et al. 1985, Houde and Roman 1987, Turner et al. 1988, Stoecker and Capuzzo 1990, Sanders and Wickham 1993, Carlsson et al. 1995, Croll et al. 2005, Jeong et al. 2007, Waggett et al. 2008, Lazareva and Kopylov 2011). Thus, the dynamics of metazooplankton affect the population dynamics of diverse marine organisms.

Red tides or harmful algal blooms are caused by exclusively autotrophic, mixotrophic, and heterotrophic protists (Smayda 1997, Jeong et al. 2010, 2013, 2015, Lee et al. 2015, Yoo et al. 2015, Aktan and Keskin 2017) and often cause great economic losses in the aquaculture and tourism industries (Smayda 1990, Glibert et al. 2005, Anderson et al. 2012, Fu et al. 2012). Thus, understanding the processes of red tides and predicting their outbreak, persistence, and decline are needed to minimize loss (e.g., Jeong et al. 2015). There have been many studies on the feeding of metazooplankton on red tide organisms, but fewer studies on the grazing impacts of metazooplankton on red tide organisms (Uye 1986, Turner and Granéli 1992, Turner and Tester 1997, Calbet et al. 2003). Thus, it is worthwhile to explore the effects of metazooplankton on red tide organisms in natural environments. In general, many heterotrophic protists are effective grazers on red tide organisms and are in turn prey for metazooplankton (Houde and Roman 1987, Jeong and Latz 1994, Carlsson et al. 1995, Jeong 1999, Jeong et al. 1999, 2001, 2003, Kim and Jeong 2004, Tillmann 2004, Cohen et al. 2007, Yoo et al. 2010, 2013b, Park et al. 2013). An assessment of predation impacts of metazooplankton on populations of heterotrophic protists that graze on red tide organisms is needed to understand the dynamics and interactions among these three components.

Red tides frequently occur in the South Sea of Korea where there is a high concentration of aquacages (Jeong et al. 2013, 2017, Kim et al. 2013a, Lim et al. 2017). These red tides often cause a great loss in the aquaculture industry (e.g., Park et al. 2013). The causative species for red tides in this region are *Cochlodinium polykrikoides*, *Prorocentrum* spp., *Alexandrium* spp., *Ceratium* spp., *Karenia* spp., and diatoms (e.g., Jeong et al. 2017). In particular, red tides dominated by *C. polykrikoides* have caused 1-60 M US dollars-worth of damage (Park et al. 2013). Thus, predicting the process of red tides is a critical step in minimizing damage. There have been several studies on the effects of physical, and chemical, biological environmental factors on the growth of *C. polykrikoides* (Jeong et al. 2004, 2008, 2017, Kim et al. 2004, Oh et al. 2006, Lim et al. 2014, 2017). However, few studies have investigated the grazing impact by metazooplankton on *C. polykrikoides* (Kim 2005, Kim et al. 2013a). Therefore, it is worthwhile to explore this topic.

In the present study, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals, from May to November 2014, to investigate the roles of metazooplankton in the red tide dynamics of *C. polykrikoides* in the South Sea of Korea. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The results of the present study provide a basis for understanding the interactions among red tide organisms, heterotrophic protists, and metazooplankton, and help understand the roles of metazooplankton in red tide dynamics.

MATERIALS AND METHODS

Study area

Plankton samples were collected from 60 sampling stations located centrally along the southern coast of the Korean peninsula between Goheung to Tongyoung (approximately 140 km × 40 km, 34.3° E-34.8° E and 127.3° N-128.4° N) (Fig. 1). The water depth for all sampling stations ranged from 4-53 m. The stations in the western area were shallower than those in the eastern area at the same latitude.

Sampling and analyses of physicochemical and biological properties

Sixteen sampling cruises were carried out at 1-2-week intervals between May 7 and Nov 10, 2014 (Fig. 2). A 2-day sampling was carried out by two ships as in Jeong et al. (2017) and Lim et al. (2017). On the first day, water
samples were collected from one ship at stations 101-115, whereas the other ship collected samples at stations 201-309. On the second day, one ship collected water samples at stations 501-507 and 601-608, whereas the other ship collected at stations 701-703, 801-805, and 901-904. The sampling time at the first station in each sampling day was between 07:30-08:00 h and at the last station between 14:00-15:00 h.

Water temperature and salinity in the water column were measured using two CTDs (YSI6600; YSI Inc., Yellow Springs, OH, USA and Ocean seven; Idronaut S.r.l., Milan, Italy). The data obtained from the CTDs were calibrated in each cruise. Additionally, the temperature, salinity, pH, and dissolved oxygen (DO) for each sampling depth were measured using a YSI Professional Plus instrument (YSI Inc.). The chlorophyll-α concentration (Chl-α) was measured as described in American Public Health Association (1995).

Metazooplankton samples were collected at every station by towing a 303 µm mesh, 45 cm diameter conical plankton net with a flowmeter vertically from the bottom to the surface (or 30 m if the bottom depth was more than 30 m) every sampling interval from May to November 2014. Each plankton sample was poured into a 500-mL
polykrikoides, Prorocentrum spp., P. kofoidii, and Gyrodinium spp., respectively.

The grazing coefficients \((g, d^{-1})\) were calculated as

\[
g = CR \times PC \times 24
\]

(1)

, where \(CR\) (mL predator\(^{-1}\) h\(^{-1}\)) is the clearance rate of the predator on a target prey at a prey concentration and \(PC\) is a predator concentration (predator mL\(^{-1}\)). The CR values were calculated as

\[
CR = IR / X
\]

(2)

, where \(IR\) (cells eaten predator\(^{-1}\) h\(^{-1}\)) is the ingestion rate of a predator on the target prey and \(X\) (cells mL\(^{-1}\)) is the prey concentration. These CR values were corrected using \(Q_{10} = 3.2\) (Hansen et al. 1997) because the in-situ water temperature and the temperature used in the laboratory for this experiment (20-22°C) were sometimes different.

Fig. 2. Environmental factors in the South Sea of Korea from May 7 to Nov 10, 2014. (A) Average water temperature (T, °C). (B) Average salinity (S). (C) pH. (D) Average chlorophyll-a concentrations (Chl-a, mg m\(^{-3}\)). (E) Dissolved oxygen (DO, mg L\(^{-1}\)). Symbols represent average ± standard error.

Data on phytoplankton, including red tide species and heterotrophic protist, were obtained from Jeong et al. (2017) and Lim et al. (2017) in which sampling was conducted at the same times and stations as in this study.

Grazing impact

The calanoid copepods *Acartia* spp. are known to feed on various species of dinoflagellates such as *Cochlodinium polykrikoides*, *Prorocentrum donghaiense*, *Polykrikos kofoidii*, and *Oxyrrhis marina* (Jeong et al. 2001, Kim 2005). Thus, it was assumed that the ingestion rate of *Acartia* spp. on dinoflagellates *C. polykrikoides*, *P. donghaiense*, *P. kofoidii*, and *O. marina* were the same as the ingestion rate of total calanoid copepods on the *C. polykrikoides*, *Prorocentrum* spp., *P. kofoidii*, and *Gyrodinium* spp., respectively.

Species identification and determination of metazooplankton abundance was performed using dissecting and inverted microscopes at magnifications of ×40 and ×200.

polyethylene bottle and preserved with 4% formalin. Species identification and determination of metazooplankton abundance was performed using dissecting and inverted microscopes at magnifications of ×40 and ×200.
Data process

The spatiotemporal distributions of each taxon of metazooplankton communities were plotted by Surfer (Golden software, LLC, Golden, CO, USA). The correlation coefficients between physical, chemical, and biological properties were calculated using the Pearson’s correlation (Conover 1980, Zar 1999). By combining field data on the abundance of predator and prey species with the ingestion rates of the predator on the prey obtained in the literatures with some assumptions, we estimated the grazing coefficients.

RESULTS

Environmental properties

The mean surface water temperature during the study varied from 15.6 to 24.7°C with the highest temperature occurring in August 2014 and the lowest temperature in May (Fig. 2A). The mean surface salinity ranged from 31.4 to 34.1 with the highest salinity occurring in May and the lowest salinity in August (Fig. 2B). The pH ranged from 8.02 to 8.22 and the Chl-a from 1.0 to 3.6 µg L⁻¹ with a peak on Sep 1 (Fig. 2C & D). DO ranged from 7.2 to 8.3 mg L⁻¹ (Fig. 2E).

Species composition of metazooplankton

During the study 23 copepods, 4 cladocerans, 10 invertebrate larva, and 10 other metazooplankton taxa were found (Appendix 1). These included the copepods Acratia erythraea, A. omorii / hongi, Calanopia thompsoni, Calanus sinicus, Centropages tenuiremis, Corycaeus affinis, Euchaeta sp., Labidocera euchaeta, Labidocera rounta, Labidocera sp., Neocalanus sp., Oithona similis, Oithona sp., Oncaea sp., Paracalanus parvus, Pseudodiaptomus marinus, Sinocalanus tenuellus, Temora turbinata, Temora discaudata, Tortanus forcipatus, harpacticoid copepods, and copepodites, the cladocerans Evadne nordmanni, E. tergestina, Penilia avirostris, and Podon polyphemoids. In addition, barnacle larvae, decapod zoea, chaetognaths, siphonophores, and appendicularians were observed.

Of these metazooplankton, A. omorii / hongi, C. affinis, barnacle nauplii, decapod zoea, decapod mysid, echinoderm larvae, gastropod larvae, polychaete larvae, chaetognaths, hydromedusa, siphonophores, amphipods, and appendicularians were present at all sampling times (Appendix 1). However, C. abdominalis, Neocalanus sp., S. tenellus, and E. nordmanni were only present during one sampling.

Abundance of metazooplankton

The abundance of total metazooplankton at each sampling during this study were 1-13,131 individuals (inds.) m⁻³ and mean abundance was 297-1,119 inds. m⁻³ (Table 1, Fig. 3). The mean abundance of total metazooplankton was high from Jun 23 to Aug 13 (Fig. 3B).

Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated (Fig. 3). The maximum mean abundance of copepods was 453 inds. m⁻³ on May 21. Furthermore, cladocerans and benthic invertebrate larvae dominated metazooplankton assemblages on Jun 23 with the maximum mean abundance of cladocerans and benthic invertebrate larvae being 274 and 178 inds. m⁻³, respectively (Fig. 3). Moreover, chaetognaths, hydrozoans, and other metazooplankton taxa were abundant from Jun 23 to Aug 13 (Fig. 3). The maximum mean abundance of chaetognaths, hydrozoans, and other metazooplankton was 87, 210, and 178 inds. m⁻³, observed on Sep 28, Jul 22, and Jun 23, respectively (Fig. 3).

Spatiotemporal distributions of the total metazooplankton

Metazooplankton predominantly inhabited the marginal and shallower regions (<30 m depth) of the study area. From May 7 to Aug 13, metazooplankton occurred in high concentrations (<13,200 inds. m⁻³) near the shallow waters of Goheung and Yeosu (Fig. 4). In contrast, on Sep 1, metazooplankton were regionally concentrated

Table 1. The range of abundance of total metazooplankton and each taxon, and water temperatures and salinity where each taxon was found in the South Sea of Korea from May to November 2014

Taxon	Temperature (°C)	Salinity	Abundance (inds. m⁻³)
Total metazooplankton	14.6-27.5	18.7-34.3	1-13,131
Total copepod	14.6-27.5	18.7-34.3	0-4,280
Total cladocerans	14.9-27.5	18.7-34.3	0-7,545
Larvae of invertebrates	14.6-27.5	18.7-34.3	0-2,419
Chaetognaths	14.6-27.5	18.7-34.3	0-846
Hydrozoans	14.6-27.5	18.7-34.3	0-2,138
Others*	14.6-27.5	18.7-34.3	0-2,841

*See Appendix 1.
Fig. 3. The period of red tides and abundance (inds. m$^{-3}$) of metazooplankton taxa. (A) The period of red tides dominated by diatoms (Dia), *Prorocentrum donghaiense* (Pd), *Ceratium furca* (Cf), *Alexandrium fraterculus* (Af), and *Cochlodinium polykrikoides* (Cp). Average abundance of total metazooplankton (B), total copepods (C), total cladocerans (D), larvae of invertebrates (E), chaetognaths (F), hydrozoans (G), and others (H). Bars represent average ± standard error.
Fig. 4. Distributions (inds. m$^{-3}$) of total metazooplankton (TMZ), total copepods (TCop), and total cladocerans (TCla) in the study area for each cruise from May 7 to Nov 10, 2014.
Fig. 4. Continued.
Fig. 5. Distributions (inds. m$^{-3}$) of larvae of invertebrates (LIV), chaetognaths (CHA), and hydrozoans (HYD) in the study area for each cruise from May 7 to Nov 10, 2014.
Fig. 5. Continued.
(<2,700 inds. m\(^{-3}\)) in the shallow waters of Tongyoung, and abundance of total metazooplankton was high (<1,800 inds. m\(^{-3}\)) in the shallow waters of Goheung from Sep 15 to 27 (Fig. 4). Furthermore, metazooplankton were distinctively more concentrated (<1,900 inds. m\(^{-3}\)) in the offshore region (>30 m depth) than the shallow waters in November (Fig. 4). In general, the distributions of total copepods and larvae of invertebrates were similar to that of total metazooplankton (Figs 4 & 5).

Correlations between abundance of major metazooplankton taxa and environmental factors

The abundance of total metazooplankton was significantly positively correlated with the concentration of total phototrophic dinoflagellates, but negatively correlated with pH (Table 2). The abundance of copepods was significantly positively correlated with salinity, but negatively correlated with water temperature (T), pH, and DO (Table 2). Moreover, the abundance of cladocerans was significantly positively correlated with DO (Table 2).

The abundance of invertebrate larvae was significantly positively correlated with T, Chl-\(a\), and abundance of phototrophic dinoflagellates and tintinnid ciliates (TCI) but negatively correlated with salinity and pH (Table 2). Furthermore, the abundance of the chaetognaths was significantly positively correlated with T, but negatively correlated with salinity, pH, and DO (Table 2). However, the abundance of chaetognaths significantly positively correlated with Chl-\(a\) and TCI (Table 2). In addition, the abundance of the hydrozoans was significantly positively correlated with temperature, but negatively correlated with pH (Table 2).

At the species level, the abundance of *C. sinicus*, echi-noderm larvae, and siphonophores was significantly positively correlated with the abundance of total diatoms, whereas the abundance of *C. affinis*, barnacle nauplii, decapod zoea, echinoderm larvae, fish larvae, and siphonophores was significantly positively correlated with the abundance of the diatom *Pseudo-nitzschia* spp. (Table 3). Furthermore, the abundance of *C. affinis*, *L. euchaeta*, *L. rotunda*, barnacle nauplii, decapod zoea, fish larvae, hydromedusa and siphonophores was significantly positively correlated with that of total phototrophic dinoflagellate (Table 4). In addition, the abundance of *C. affinis*, *L. euchaeta*, *L. rotunda*, *P. parvus*, *P. avirostris*, barnacle nauplii, decapod zoea, fish larvae, chaetognaths, hydromedusa, and siphonophores was significantly positively correlated with that of the dinoflagellate *P. donghaiense* (Table 4). The abundance of *C. affinis*, *L. euchaeta*, *L.

Components	Physical and chemical factor	Biological Factor
C. sinicus	pH	TCI
C. affinis	Salinity	NCI
L. euchaeta	Temperature	
L. rotunda	DO	
P. parvus	DO	
P. avirostris	DO	
Barnacle nauplii	DO	
Decapod zoea	DO	
Fish larvae	DO	
Siphonophores	DO	
Echinoderm larvae	DO	
Chaetognaths	DO	
Hydromedusa	DO	
Others	DO	

Table 2. Correlations between the abundance of metazooplankton and physical, chemical, and biological factors in the South Sea of Korea from May to November 2014
Components

Total metazooplankton
Copepods
Cladocerans
Larvae of invertebrates
Chaetognaths
Hydrozoans
Others

L, temperature; S, salinity; DO, dissolved oxygen; NO₃, nitrate; PO₄, phosphate; SiO₂, silicate; Chl-\(a\), chlorophyll-\(a\); CRY, cryptophytes; HTD, heterotrophic dinoflagellates; TCI, tintinnid ciliates; NCI, naked ciliates.

See Appendix 1.
Table 3. Correlations between the abundance of metazooplankton taxa and the abundance of potential diatom prey species in the South Sea of Korea from May to November 2014

Components	DIA	Caf	Cco	Ccu	Cde	Cso	Ezo	Lbo	Lda	Lme	Lmi	Ppu	Psp	Sco	Tni	Tde	
Acartia erythræa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
A. oranoi / hongi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Calanus sinicus	-0.076* -0.063* -0.090** -0.072*	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Corycaeus affinis	-	-	-0.089* -0.073** -0.072*	0.108** -0.063*	-	-	-	-	-	-	-	-	-	-	-		
Labidocera euchaeta	-	-	-	-	-	-	-	-	-	-	0.150**	-	-	-	-	-	
L. rotunda	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Paracalanus parvus	-	-0.069* -0.071*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Pseudodiaptomus marinus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Temora turbinata	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
T. discocaudata	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Tortanus forcipatus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Copepodite	-	-	-	0.110**	-	-	-	-	-	-	-	-	-	0.088**	-		
Eudanæ terestina	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Penilia avrostris	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Barnacle nauplius	-	-	-	-	-	0.114**	-	-	-	-	-	-	-	0.256**	-		
Decapod zoea	-	-	-	-	-	-	-	-	-	-	-	-	-	0.182**	-	-	
Decapod mysid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Echinoderm larvae	0.066* -0.083*	-	-	-	-	-	-	-	-	-	-	-	-	-	0.091**	-	
Fish larvae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.085*	
Appendicularia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Chaetognatha	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Salpida	-	-	-	0.069*	-	-	-	-	-	-	-	-	-	-	-	-	
Hydromedusa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Siphonophora	0.065* -0.134** 0.070*	-	-	-	-	-	-	-	-	-	-	-	-	-	0.136**	-	
Fish eggs	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

DIA, diatoms; Caf, Chaetoceros affinis; Cco, Chaetoceros compressus; Ccu, Chaetoceros curvisetus; Cde, Chaetoceros decipiens; Cso, Chaetoceros socialis; Ezo, Eucampia zodiacus; Lbo, Leptocylindrus borealis; Lda, Leptocylindrus danicus; Lme, Leptocylindrus mediterraneus; Lmi, Leptocylindrus minimus; Ppu, Pseudo-nitzschia pungens; Psp, Pseudo-nitzschia sp.; Sco, Skeletonema costatum; Tni, Thalassiosira decipiens.

*p < 0.05, *p < 0.01.
Table 4. Correlations between the abundance of metazooplankton taxa and the abundance of potential phototrophic dinoflagellate prey species in the South Sea of Korea from May to November 2014

Components	PTD	Asa	Asp	Cpo	Cfu	Cko	Ctr	Dca	Gsp	Pba	Pdo	Pmi	Ptr	Str	Sym
Acartia erythraea					-0.070	0.195	0.107								
A. omorii / hongi					0.063	0.088									
Calanus sinicus						-0.077									
Corycaeus affinis	0.148				-0.076	- 0.064	0.083	0.215				0.124			0.090
Labidocera euchaeta	0.067														
L. rotunda	0.064														
Paracalanus parvus															
Pseudodiaptomus marinus															
Temora turbinata									0.085						
T. discodonta															
Tortanus forcipatus															
Copepodite															
Evadne terestina					0.080				0.092						
Penilia avirostris															
Barnacle nauplius	0.124				0.112			0.072	0.164	0.076					
Decapod zoea	0.227				0.107										
Decapod mysid															
Echinoderm larvae															
Fish larvae	0.094							0.077	-0.068						
Appendicularia															
Chaetognatha															
Salpida															
Hydromedusa	0.093	0.118													
Siphonophora	0.087														
Fish eggs															

PTD, phototrophic dinoflagellates; Asa, Akashiwo sanguinea; Asp, Alexandrium sp.; Cpo, Cochlodinium polykrikoides; Cfu, Ceratium furca; Cfs, Ceratium fusus; Cko, Ceratium kofoidii; Ctr, Ceratium tripos; Dca, Dinophysis caudata; Gsp, Gonyaulax sp.; Pba, Prorocentrum balticum; Pdo, Prorocentrum donghaiense; Pmi, Prorocentrum minimum; Ptr, Prorocentrum triestinum; Str, Scrippsiella trochoidea; Sym, Symbiodinium sp.

*p < 0.05, **p < 0.01.
Grazing impact by calanoid copepods on red-tide organisms and heterotrophic dinoflagellates

When the abundance of the phototrophic dinoflagellate *C. polykrikoides* and co-occurring calanoid copepods was 1-2,990 cells mL\(^{-1}\) and 1-2,480 inds. m\(^{-3}\), respectively, the calculated grazing coefficient attributable to calanoid copepods on co-occurring *C. polykrikoides* was up to 0.018 d\(^{-1}\) (Jeong et al. 2017) (Fig. 6). Furthermore, when the abundance of the phototrophic dinoflagellate *Prorocentrum* spp. and co-occurring calanoid copepod species was 0.2-2,725 cells mL\(^{-1}\) and 0.9-1,076 inds. m\(^{-3}\), respectively, the calculated grazing coefficients attributable to total calanoids on co-occurring *Prorocentrum* spp. were 0.001-0.029 d\(^{-1}\) (Jeong et al. 2017) (Fig. 7).

When the abundance of the heterotrophic dinoflagellates *Gyrodinium* spp. and co-occurring calanoid copepods was up to 42 cells mL\(^{-1}\) and 2,940 inds. m\(^{-3}\), respectively, the calculated grazing coefficients attributable to calanoid copepods on co-occurring *Gyrodinium* spp. were 0.0003-0.047 d\(^{-1}\) (Lim et al. 2017) (Fig. 8). When the abundance of the heterotrophic dinoflagellates *Polykrikos* spp. and co-occurring calanoid copepods was 0.02-79 cells mL\(^{-1}\) and up to 1,035 inds. m\(^{-3}\), respectively, the calculated grazing coefficients attributable to calanoid copepods on co-occurring *Polykrikos* spp. were 0.0001-0.008 d\(^{-1}\) (Lim et al. 2017) (Fig. 9).

Table 5. Correlations between the abundance of metazooplankton taxa and the abundance of potential prey species in the South Sea of Korea from May to November 2014

Components	EUG	CRY	HTD	TCI	NCI	Mru	Nsc	Pko	Ppa	Prsp	Tfu	Ttu
Acartia erythroea	-	-	-	-	-	-	-	0.140	-	-	-	-
A. omorii / hongi	-	-	-	-	-	-	-	-	-	-	-	-
Calanus sinicus	-	-	-	-	-	-	-	-	-	-	-	-
Corycaeus affinis	-	-	-	-	-	-	-	0.063	-	0.204	-	-
Labidocera euchaeta	-	-	-	-	-	-	-	-	-	-	0.069	-
L. rotunda	-	-	-	0.069	-	-	-	-	-	0.210	-	-
Paracalanus parvus	-	-	-	-	-	-	-	-	-	-	0.096	-
Pseudodiaptomus marinus	-	-	-	-	-	-	-	-	-	-	-	-
Temora turbinate	-	-	-	-	-	-	-	-	-	-	-	-
T. discatauda	-	-	-	-	-	-	-	-	-	-	-	-
Tortanus forcipatus	-	-	-	-	-	-	-	0.136	-	-	-	-
Copepodite	-	-	-	-	-	-	-	-	-	-	0.065	-
Evadne terestina	-	-	-	-	-	-	-	-	-	-	0.128	-
Penilia avirostris	0.230	-	0.155	-	-	-	-	0.072	-	0.341	-	-
Barnacle nauplii	-	-	-	-	-	-	-	-	-	-	0.175	-
Decapod zoea	-	-	-	0.117	-	-	-	-	-	0.369	-	-
Decapod mysid	-	-	-	-	-	-	-	0.119	-	-	-	-
Echinoderm larvae	-	-	-	-	-	-	-	-	-	-	0.161	-
Fish larvae	-	-	-	-	-	-	-	0.066	-	-	-	0.132
Appendicularia	-	-	-	-	-	-	-	-	-	-	-	-
Chaetognatha	-	-	-	0.110	-	-	-	-	-	0.218	-	-
Salpida	-	-	-	-	-	-	-	-	-	-	-0.070	-
Hydromedusa	-	-	-	-	-	-	-	0.080	-	0.181	-	-
Siphonophora	-	-	-	-	-	-	-	-	-	0.173	-	-
Fish eggs	-	-	-	-	-	-	-	0.125	-	-	-	-

EUG, euglenophytes; CRY, cryptophytes; HTD, heterotrophic dinoflagellates; TCI, tintinnid ciliates; NCI, naked ciliates; Mru, Mesodinium rubrum; Nsc, Noctiluca scintillans; Pko, Polykrikos kofoidii; Ppa, Protoperidinium parvum; Prsp, Protoperidinium sp.; Tfu, Tiarina fusus; Ttu, Tintinnopsis tubulosoides.

*p < 0.05, **p < 0.01.
Fig. 6. Calculated grazing coefficients (g, d⁻¹) attributable to calanoid copepods on co-occurring *Cochlodinium polykrikoides*, based on assumption (see text) in the study area for each cruise from May 7 to Nov 10, 2014.
Fig. 7. Calculated grazing coefficients (g. d⁻¹) attributable to calanoid copepods on co-occurring *Prorocentrum* spp., based on assumption (see text) in the study area at each cruise from May 7 to Nov 10, 2014.
Fig. 8. Calculated grazing coefficients (g, d⁻¹) attributable to calanoid copepods on co-occurring heterotrophic dinoflagellates **Gyrodinium** spp., based on assumption (see text) in the study area for each cruise from May 7 to Nov 10, 2014.
Fig. 9. Calculated grazing coefficients (g, d$^{-1}$) attributable to calanoid copepods on co-occurring heterotrophic dinoflagellates Polykrikos spp., based on assumption (see text) in the study area for each cruise from May 7 to Nov 10, 2014.
DISCUSSION

Abundance of metazooplankton

The maximum abundance of total metazooplankton obtained during this study (1.3 × 10⁴ inds. m⁻³) is comparable to that in Jinhae Bay, Kangjin Bay, Seomjin River Estuary, and coastal waters of Yeosu which are located in the South Sea of Korea and Balearic Sea of Mallorca, but slightly lower than that in the Masan Bay (Korea), Newport River Estuary (UK), and NW Mediterranean (Table 6). Chl-a concentrations in the water from which the maximum abundance of total metazooplankton was obtained (2.4 µg L⁻¹) is also comparable to that in the Seomjin River Estuary, Yeosu, NW Mediterranean, and the Balearic Sea of Mallorca, but much lower than that in Masan Bay (Calbet et al. 2001, Puelles et al. 2003, Youn et al. 2010, Kim et al. 2013, Oh et al. 2013). Thus, in general, the maximum abundance of total metazooplankton is likely to be affected by Chl-a. Furthermore, the maximum abundance of total copepods during this study (0.4 × 10⁴ inds. m⁻³) is comparable to or slightly lower than that in Kangjin Bay, coastal waters of Yeosu, the NW Mediterranean, and the Balearic Sea of Mallorca, but considerably lower than that in Masan Bay, Fukuyama Harbor (Japan), the NE Atlantic Ocean, and the Pearl River Estuary (China) (Table 6). Chl-a concentrations coinciding with the maximum abundance of copepods were much lower than that in Masan Bay and Fukuyama Harbor (Uye and Liang 1998, Kim et al. 2013a). Thus, the lower Chl-a in this study may be partially responsible for the lower maximum abundance of copepods.

Effect of environmental factors on the abundance of metazooplankton taxa

During this study, the abundance of total metazooplankton was not significantly affected by T, S, DO, and the concentrations of NO₃, PO₄, and SiO₂. Furthermore, it was also not significantly affected by the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates. However, it was significantly affected by the abundance of phototrophic dinoflagellates. During this study, four phototrophic dinoflagellate species such as P. donghaiense, C. furca, A. fraterculus, and C. polykrikoides formed red tides (Jeong et al. 2017). Thus, dinoflagellate red tides may positively affect the abundance of total metazooplankton (Griffin et al. 2001, Turner and Borkman 2005, Jansen et al. 2006, Kim et al. 2013a).

During this study, P. donghaiense formed red tides from June to July (Jeong et al. 2017). The abundance of the copepods C. affinis, L. euchaeta, L. rotunda, P. parvus, barnacle nauplii, decapod zoea, fish larvae, chaetognaths, and

Study area	MA (inds. m⁻³)	Chl-a (µg L⁻¹)	Reference
Total metazooplankton			
South Korea, Korea	1.3 × 10⁴	2.4	This study
Jinhae Bay, Korea	0.4 × 10⁴	-	Kang et al. (1996)
Kangjin Bay, Korea	0.5 × 10⁴	-	Hue et al. (2002)
Seomjin River Estuary, Korea	1.8 × 10⁴	2.0	Youn et al. (2010)
Yeosu, Korea	2.3 × 10⁴	2.0	Oh et al. (2013)
Yeosu, Korea	0.7 × 10⁴	-	Kim et al. (2013b)
Masan Bay, Korea	5.3 × 10⁴	30	Kim et al. (2013a)
Newport River Estuary, UK	2.2 × 10⁴	-	Fulton (1984)
NW Mediterranean, USA	7.8 × 10⁴	2.2	Calbet et al. (2001)
Balearic Sea, Mallorca	0.9 × 10⁴	1.3	Puelles et al. (2003)
Copepods			
South Korea, Korea	0.4 × 10⁴	2.2	This study
Kangjin Bay, Korea	0.4 × 10⁴	-	Hue et al. (2002)
Yeosu, Korea	0.5 × 10⁴	-	Kim et al. (2013b)
Yeosu, Korea	2.2 × 10⁴	2.0	Oh et al. (2013)
Jinhae Bay, Korea	0.5 × 10⁴	-	Kang et al. (1996)
Masan Bay, Korea	4.9 × 10⁴	30	Kim et al. (2013a)
Fukuyama Harbor, Japan	6.4 × 10⁴	322	Uye and Liang (1998)
NE Atlantic Ocean	1.5 × 10⁴	-	Gallienne and Robins (2001)
NW Mediterranean, USA	2.8 × 10⁴	0.7	Calbet et al. (2001)
Balearic Sea, Mallorca	0.7 × 10⁴	0.3	Puelles et al. (2003)
Pearl River Estuary, China	4.4 × 10⁴	-	Tan et al. (2004)

*Mean values.
hydromedusa, siphonophores, and the cladoceran *P. avirostris* is significantly positively correlated with that of *P. donghaiense*. However, there have been no studies on feeding by these metazooplankton taxa on *P. donghaiense* and thus, it is worthwhile to explore this topic. During this study, *Ceratium* spp. formed red tides from July to August (Jeong et al. 2017). The abundance of the cladocerans *E. tergestina* and *P. avirostris*, barnacle nauplii, and echinoderm larvae is significantly positively correlated with that of two *Ceratium* species. The cladocerans *E. nordmanni*, *P. avirostris*, and *Podon intermedius* are known to feed on diverse algal species including *Ceratium* spp. (Katechakis and Stibor 2004). However, there have been no studies measuring ingestion rates of these metazooplankton taxa on *Ceratium* spp. and thus it is worthwhile to investigate.

Grazing impact by dominant metazooplankton on red tide organisms

In this study, calanoid copepods dominated metazooplankton assemblages at most sampling times. The calculated grazing coefficients attributable to calanoid copepods on co-occurring *C. polykrikoides* were up to 0.018 d⁻¹ (i.e., up to 1.8% of the population of *C. polykrikoides* was removed by calanoids in a day). Furthermore, the calculated grazing coefficients attributable to calanoid copepods on co-occurring *Prorocentrum* spp. were up to 0.029 d⁻¹ (i.e., up to 2.9% of the population of *Prorocentrum* spp. was removed by calanoid copepods in a day). Therefore, calanoid copepods may not control populations of *C. polykrikoides* or *Prorocentrum* spp. Furthermore, this maximum grazing coefficient is much lower than that by heterotrophic dinoflagellates and ciliates (Lim et al. 2017). In Masan Bay in 2004-2005, the grazing impact by the dominant calanoid copepod *Acartia* spp. on populations of *Prorocentrum minimum* was also much lower than that by the heterotrophic dinoflagellates and ciliates (Kim et al. 2013a, Yoo et al. 2013a). The abundance of copepod grazers is usually much lower than that of heterotrophic protist grazers although the ingestion rates of the former are greater than those of the latter. Thus, lower copepod abundance may be partially responsible for a lower grazing impact on populations of red tide dinoflagellates.

The calculated grazing coefficients attributable to total calanoid copepods on the co-occurring heterotrophic dinoflagellates *Gyrodinium* spp. were up to 0.047 d⁻¹ (i.e., up to 4.6% of the population of *Gyrodinium* spp. were removed by total calanoids in a day). Furthermore, the calculated grazing coefficients attributable to total calanoid copepods on co-occurring *Polykrikos* spp. were up to 0.008 d⁻¹ (i.e., up to 0.8% of the population of *Polykrikos* spp. were removed by total calanoids in a day). Therefore, calanoid copepods may not control populations of *Gyrodinium* spp. and *Polykrikos* spp.

During this study, the heterotrophic dinoflagellates *Gyrodinium* spp. were abundant during the red tides dominated by *P. donghaiense* (Jeong et al. 2017, Lim et al. 2017). Furthermore, the calculated grazing coefficients attributable to *Gyrodinium dominans* / *G. moestripii* on co-occurring *P. donghaiense* were up to 0.58 d⁻¹ (i.e., up to 44% of the population *P. donghaiense* were consumed in 1 d). Therefore, populations of *P. donghaiense* might be affected by the grazing of *Gyrodinium* spp., but the grazing impact could be lowered by the predation of calanoid copepods. Moreover, *C. polykrikoides* populations were affected by grazing of *Polykrikos* spp. (Lim et al. 2017). However, the grazing impact may not be lowered by predation of calanoid copepods.

Red tides have occurred in coastal waters of many countries (Holmes et al. 1967, Hallegaard 1993, Anderson 1997, Sordo et al. 2001, Kang et al. 2013, Jeong et al. 2017). The results of this study suggest that red tides could affect the abundance of metazooplankton and in turn the grazing impact by metazooplankton could sometimes affect the abundance of red tide organisms in the South Sea of Korea. Thus, to understand interactions among red-tide organisms, heterotrophic protists, and metazooplankton, and the roles of heterotrophic protists and metazooplankton in the dynamics of red-tide organisms, the temporal and spatial variations in their distributions should be simultaneously investigated. Additionally, the grazing impact by heterotrophic protists and metazooplankton on populations of red tide organisms and in turn the predation impact on populations of heterotrophic protists should be quantified.

ACKNOWLEDGEMENTS

We thank Sang Pil Han, Seong Uk Kim, Young Seok Rho, Cheol Hee Kang for technical support. This research was supported by the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2015M1A5A1041806; NRF-2017R1E1A1A01074419) and Pilot project for predicting the outbreak of *Cochlodinium polykrikoides* red tides funded by MSI (NRF-2014M4A1H5009428), the Useful Dinoflagellate Program of Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and
Fulton, R. S. 1984. Distribution and community structure of estuarine copepods. Estuaries 7:38-50.

Gallienne, C. P. & Robins, D. B. 2001. Is Oithona the most important copepod in the world’s oceans? J. Plankton Res. 23:1421-1432.

Gilbert, P. M., Anderson, D. M., Gentien, P., Granéli, E. & Sellner, K. G. 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18:136-147.

Griffin, S. L., Herzfeld, M. & Hamilton, D. P. 2001. Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecol. Eng. 16:373-394.

Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99.

Hansen, P. J., Bjørnson, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-μm body size range. Limnol. Oceanogr. 42:887-704.

Holmes, R. W., Williams, P. M. & Eppley, R. W. 1967. Red water in La Jolla Bay, 1964-1966. Limnol. Oceanogr. 12:503-512.

Houde, S. E. L. & Roman, M. R. 1987. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40:69-77.

Hue, H. K., Kim, D. H. & Ahn, S. H. 2002. Community structure and distributions of zooplankton in Gangjin Bay in 1999. Koean J. Environ. Biol. 20:46-54.

Jansen, S., Riser, C. W., Wassmann, P. & Bathmann, U. 2006. Copepod feeding behaviour and egg production during a dinoflagellate bloom in the North Sea. Harmful Algae 5:102-112.

Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396.

Jeong, H. J., Kang, H., Shim, J. H., Park, J. K., Kim, J. S., Song, J. Y. & Choi, H. J. 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar. Ecol. Prog. Ser. 218:77-86.

Jeong, H. J., Kim, J. S., Song, J. Y., Kim, J. H., Kim, T. H., Kim, S. K. & Kang, N. S. 2007. Feeding by heterotrophic protists and copepods on the heterotrophic dinoflagellates Pfiesteria piscicida, Sloeckeria algicida, and Luciella masanensis. Mar. Ecol. Prog. Ser. 349:199-211.

Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Kim, T. H., Park, M. G., Lee, C. H., Seong, K. A., Kang, N. S. & Shim, J. H. 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultural grazers. J. Eukaryot. Microbiol. 50:274-282.
Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Song, J. Y., Kim, T. H., Seong, K. A., Kang, N. S., Kim, M. S., Kim, J. H., Kim, S., Ryu, J., Lee, H. M. & Yih, W. H. 2008. Control of the harmful alga *Cochlodinium polykrikoides* by the naked ciliate *Strombidinopsis jeokjo* in mesocosm enclosures. Harmful Algae 7:368-377.

Jeong, H. J. & Latz, M. I. 1994. Growth and grazing rates of the heterotrophic dinoflagellate *Protoperdinium* spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106:173-185.

Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tides generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.

Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Yih, W., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. H., Kim, S. Y., Park, J. Y. & Kim, K. W. 2017. Ichthyotoxic *Cochlodinium polykrikoides* red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130.

Jeong, H. J., Shim, J. H., Lee, C. W., Kim, J. S. & Koh, S. M. 1999. Growth and grazing rates of the marine planktonic ciliate *Strombidinopsis* sp. on red-tide and toxic dinoflagellates. J. Eukaryot. Microbiol. 46:69-76.

Jeong, H. J., Yoo, Y. D., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S. & Yih, W. 2004. Mixotrophy in the phototrophic harmful alga *Cochlodinium polykrikoides* (Dinophyceae): prey species, the effects of prey concentration, and grazing impact. J. Eukaryot. Microbiol. 51:563-569.

Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:85-91.

Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tides organisms and environmental factors. Harmful Algae 30(Suppl. 1):S57-S88.

Kang, N. S., Lee, K. H., Jeong, H. J., Yoo, Y. D., Seong, K. A., Potvin, É., Hwang, Y. J. & Yoon, E. Y. 2013. Red tides in Shihwa Bay, western Korea: a huge dike and tidal power plant established in a semi-enclosed embayment system. Harmful Algae 30(Suppl. 1):S114-S130.

Kang, Y. S., Park, J. S., Lee, S. S., Kim, H. G. & Lee, P. Y. 1996. Zooplankton community and distributions of copepods in relation to eutrophic evaluation in Chinhae Bay. Korean J. Fish. Aquat. Sci. 29:415-430.

Katechakis, A. & Stibor, H. 2004. Feeding selectivities of the marine cladocerans *Penilia avirostris*, *Podon intermedium* and *Eudine nordmannii*. Mar. Biol. 145:529-539.

Kim, D. I., Matsuyama, Y., Nagasoe, S., Yamaguchi, M., Yoon, Y. H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate *Cochlodinium polykrikoides* Margalef (Dinophyceae). J. Plankton Res. 26:61-66.

Kim, J. S. & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates *Gyrodinium dominans* and *G. spirale* on the red-tides dinoflagellate *Prorocentrum minimum*. Mar. Ecol. Prog. Ser. 280:85-94.

Kim, J. S., Jeong, H. J., Yoo, Y. D., Kang, N. S., Kim, S. K., Song, J. Y., Lee, M. J., Kim, S. T., Kang, J. H., Seong, K. A. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea, in 2004-2005: III. Daily variations in the abundance of metazooplankton and their grazing impacts on red-tide organisms. Harmful Algae 30(Suppl):S102-S113.

Kim, M. J., Yoon, S. H., Kim, J. Y. & Oh, C. W. 2013b. Feeding characteristics of the Japanese anchovy, *Engraulis japonicus* according to the distribution of zooplankton in the coastal waters of southern Korea. Korean J. Environ. Biol. 31:275-287.

Kim, S. T. 2005. *The interactions between dominant copepod Acartia spp. and red-tides organisms and protozoans in the coastal waters in the west and south coast in Korea, egg production rates and grazing impact in the coastal waters off the Saenankeum and Kwangyang Bay, Kunsan National University, Gunsan, 157 pp.*

Kimmel, D. G. & Roman, M. R. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Mar. Ecol. Prog. Ser. 267:71-83.

Lazareva, V. I. & Kopylov, A. I. 2011. Zooplankton productivity at the height of eutrophication of a plain reservoir ecosystem: the role of invertebrate predators. Usp. Sovrem. Biol. 131:300-310.

Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in the nematocyst-teniacyst complex-bearing phototrophic dinoflagellate *Polykrikos hartmannii*. Harmful Algae 49:124-134.

Lim, A. S., Jeong, H. J., Jang, T. Y., Jang, S. H. & Franks, P. J. S. 2014. Inhibition of growth rate and swimming speed of the harmful dinoflagellate *Cochlodinium polykrikoides* by diatoms: implications for red tide formation. Harmful Algae 37:53-61.

Lim, A. S., Jeong, H. J., Seong, K. A., Lee, M. J., Kang, N. S., Jang, S. H., Lee, K. H., Park, J. Y., Jang, T. Y. & Yoo, Y. D.
2017. Ichthyotoxic *Cochlodinium polykrikoides* red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222.

Oh, H. J., Moon, S. Y. & Soh, H. Y. 2013. Seasonal changes of zooplankton communities along the coast of Geoju Archipelago, Yeosu. Korean J. Environ. Biol. 31:192-203.

Oh, S. J., Yoon, Y. H., Kim, D. I., Shimasaki, Y., Oshima, Y. & Honjo, T. 2006. Effects of light quantity and quality on the growth of the harmful dinoflagellate, *Cochlodinium polykrikoides* Margalef (Dinophyceae). Algae 21:311-316.

Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143.

Porter, K. G., Sherr, E. B., Sherr, B. E., Pace, M. & Sanders, R. W. 1985. Protozoa in planktonic food webs. J. Eukaryot. Microbiol. 32:409-415.

Puelles, M. F., Grás, D. & Hernández-León, S. 2003. Annual cycle of zooplankton biomass, abundance and species composition in the neritic area of the Balearic Sea, Western Mediterranean. Mar. Ecol. 24:123-139.

Sanders, R. W. & Wickham, S. A. 1993. Planktonic protozoa and metazoan: predation, food quality and population control. Mar. Microb. Food Webs 7:197-223.

Smayda, T. J. 1990. *Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic*. RWS-North Sea Directorate, Rijswijk, pp. 29-40.

Smayda, T. J. 1997. What is a bloom? A commentary. Limnol. Oceanogr. 42:1132-1136.

Sordo, I., Barton, E. D., Cotos, J. M. & Pazos, Y. 2001. An inshore poleward current in the NW of the Iberian Peninsula detected from satellite images, and its relation with *G. catenatum* and *D. acuminata* blooms in the Galician Rias. Estuar. Coast. Shelf Sci. 53:787-799.

Stoecker, D. K. & Capuzzo, J. M. 1990. Predation on protozoa, its importance to zooplankton. J. Plankton Res. 12:891-908.

Tan, Y., Huang, L., Chen, Q. & Huang, X. 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China. Cont. Shelf Res. 24:1949-1968.

Tillmann, U. 2004. Interactions between planktonic microalgae and protozoan grazers. J. Eukaryot. Microbiol. 51:156-168.

Tseng, L. C., Dahms, H. U., Chen, Q. C. & Hwang, J. S. 2009. Copepod feeding study in the upper layer of the tropical South China Sea. Helgol. Mar. Res. 62:327-337.

Turner, J. T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43:255-266.

Turner, J. T. & Borkman, D. G. 2005. Impact of zooplankton grazing on *Alexandrium* blooms in the offshore Gulf of Maine. Deep Sea Res. Part II Top. Stud. Oceanogr. 52:2801-2816.

Turner, J. T. & Granéli, E. 1992. Zooplankton feeding ecology: grazing during enclosure studies of phytoplankton blooms from the west coast of Sweden. J. Exp. Mar. Biol. Ecol. 157:19-31.

Turner, J. T. & Tester, P. A. 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr. 42:1203-1213.

Turner, J. T., Tester, P. A. & Ferguson, R. L. 1988. The marine cladoceran *Penilia avirostris* and the “microbial loop” of pelagic food webs. Limnol. Oceanogr. 33:245-255.

Uye, S. 1986. Impact of copepod grazing on the red-tides flagellate *Chattonella antiqua*. Mar. Biol. 92:35-43.

Uye, S. & Liang, D. 1998. Copepods attain high abundance, biomass and production in the absence of large predators but suffer cannibalistic loss. J. Mar. Syst. 15:495-501.

Waggett, R. J., Tester, P. A. & Place, A. R. 2008. Anti-grazing properties of the toxic dinoflagellate *Karldiniun veneficum* during predator–prey interactions with the copepod *Acartia tonsa*. Mar. Ecol. Prog. Ser. 366:31-42.

Yoo, Y. D., Jeong, H. J., Kang, N. S., Kim, J. S., Kim, T. H. & Yoon, E. Y. 2010. Ecology of *Gymnodinium aureolum*. II. Predation by common heterotrophic dinoflagellates and a ciliate. Aquat. Microb. Ecol. 59:257-272.

Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101.

Yoo, Y. D., Seong, K. A., Myung, G., Kim, H. S., Jeong, H. J., Palenik, B. & Yih, W. 2015. Ingestion of the unicellular cyanobacterium *Synechococcus* by the mixotrophic red tide ciliate *Mesodinium rubrum*. Algae 30:281-290.

Yoo, Y. D., Yoon, E. Y., Jeong, H. J., Lee, K. H., Hwang, Y. J., Seong, K. A., Kim, J. S. & Park, J. Y. 2013b. The newly described heterotrophic dinoflagellate *Gyrodinium moestrupii*, an effective protistan grazer of toxic dinoflagellates. J. Eukaryot. Microbiol. 60:13-24.

Youn, S. H., Oh, G. S. & Chung, M. H. 2010. Zooplankton community structure and copepod production in the Seomjin River Estuary. J. Korean Soc. Mar. Environ. Saf. 16:369-379.

Zar, J. H. 1999. *Biostatistical analysis*. 4th ed. Prentice Hall, Upper Saddle River, NJ, 663 pp.
Appendix 1. List of metazooplankton species and taxa present in the South Sea of Korea from May to November 2014

Taxon	May 7	May 21	Jun 5	Jun 12	Jun 23	Jul 1	Jul 11	Jul 22	Aug 6	Aug 13	Aug 21	Sep 1	Sep 15	Oct 9	Nov 10
Copepods															
Acartia erythrea	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A. omorii / hongi	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Calanopia thomsoni	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calanus sinicus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Centropages abdominalis	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Centropages tenuiremis	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Corycaeus affinis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Euchaeta sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Labidocera euchaeta	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Labidocera rotunda	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Labidocera sp.	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Neocalanus sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oithona similis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oithona sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oncaea sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Paracalanus parvus	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pseudodiaptomus marinus	-	-	-	+	+	+	-	+	-	+	+	+	+	+	+
Sinocalanus tenellus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temora turbinata	-	-	-	-	-	-	-	+	+	+	+	+	+	+	+
Temora discataulta	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+
Tortanus forcipatus	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Harpacticoid	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
Copepodite	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
Cladocerans															
Eudiadne nordmanni	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-
Eudiadne tergestina	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
Penilia avirostris	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Podon polyphemoides	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-
Larvae															
Barnacle nauplius	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Barnacle crypris	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bivalve larvae	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Decapod megalopa	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Decapod zoea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Gastropoda larvae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Neocalanus sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chaetognaths	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hydromedusa	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Siphonophora	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Amphipod	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Appendicularia	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Euphausia	+	-	-	-	-	-	+	+	+	+	+	+	+	+	+
Dolololida	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Salpida	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Ostracoda	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Fish egg	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

https://doi.org/10.4490/algae.2017.32.11.28