Static Embeddings as Efficient Knowledge Bases?

Philipp Dufter*, Nora Kassner*, Hinrich Schütze
Center for Information and Language Processing (CIS), LMU Munich, Germany
{philipp,kassner}@cis.lmu.de

Abstract
Recent research investigates factual knowledge stored in large pretrained language models (PLMs). Instead of structural knowledge base (KB) queries, masked sentences such as “Paris is the capital of [MASK]” are used as probes. The good performance on this analysis task has been interpreted as PLMs becoming potential repositories of factual knowledge. In experiments across ten linguistically diverse languages, we study knowledge contained in static embeddings. We show that, when restricting the output space to a candidate set, simple nearest neighbor matching using static embeddings performs better than PLMs. E.g., static embeddings perform 1.6% points better than BERT while just using 0.3% of energy for training. One important factor in their good comparative performance is that static embeddings are standardly learned for a large vocabulary. In contrast, BERT exploits its more sophisticated, but expensive ability to compose meaningful representations from a much smaller subword vocabulary.

1 Introduction
Pretrained language models (PLMs) (Peters et al., 2018; Howard and Ruder, 2018; Devlin et al., 2019) can be finetuned to a variety of natural language processing (NLP) tasks and then generally yield high performance. Increasingly, these models and their generative variants (e.g., GPT, Brown et al., 2020) are used to solve tasks by simple text generation, without any finetuning. This motivated research on how much knowledge is contained in PLMs: Petroni et al. (2019) used models pretrained with a masked language objective to answer cloze-style templates such as:

(Ex1) Paris is the capital of [MASK].

Using this methodology, Petroni et al. (2019) showed that PLMs capture some knowledge implicitly. This has been interpreted as suggesting that PLMs are promising as repositories of factual knowledge. In this paper, we present evidence that simple static embeddings like fastText perform as well as PLMs in the context of answering knowledge base (KB) queries. Answering KB queries can be decomposed into two subproblems, typing and ranking. Typing refers to the problem of predicting the correct type of the answer entity; e.g., “country” is the correct type for [MASK] in (Ex1), a task that PLMs seem to be good at. Ranking consists of finding the entity of the correct type that is the best fit (“France” in (Ex1)). By restricting the output space to the correct type we disentangle the two subproblems and only evaluate ranking. We do this for three reasons. (i) Ranking is the knowledge-intensive step and thus the key research question. (ii) Typed querying reduces PLMs’ dependency on the template. (iii) It allows a direct comparison between static word embeddings and PLMs. Prior work has adopted a similar approach (Xiong et al., 2020; Kassner et al., 2021).

For a PLM like BERT, ranking amounts to finding the entity whose embedding is most similar

Model	Vocabulary Size	LAMA	LAMA-UHN
Oracle	22.0	23.7	
BERT	30k	39.6	30.7
mBERT	110k	36.3	27.4

Table 1: Results for majority oracle, BERT, mBERT and fastText. Static fastText embeddings are competitive and outperform BERT for large vocabularies. BERT and mBERT use their subword vocabularies. For fastText, we use BERT/mBERT’s vocabularies and newly trained wordpiece vocabularies on Wikipedia.
to the output embedding for [MASK]. For static embeddings, we rank entities (e.g., entities of type country) with respect to similarity to the query entity (e.g., “Paris” in (Ex1)). In experiments across ten linguistically diverse languages, we show that this simple nearest neighbor matching with fastText embeddings performs comparably to or even better than BERT. For example for English, fastText embeddings perform 1.6% points better than BERT (41.2% vs. 39.6%, see Table 1, column “LAMA”). This suggests that BERT’s core mechanism for answering factual queries is not more effective than simple nearest neighbor matching using fastText embeddings.

We believe this means that claims that PLMs are KBs have to be treated with caution. Advantages of BERT are that it composes meaningful representations from a small subword vocabulary and handles typing implicitly (Petroni et al., 2019). In contrast, answering queries without restricting the answer space to a list of candidates is hard to achieve with static word embeddings. On the other hand, static embeddings are cheap to obtain, even for large vocabulary sizes. This has important implications for green NLP. PLMs require tremendous computational resources, whereas static embeddings have only 0.3% of the carbon footprint of BERT (see Table 4). This argues for proponents of resource-hungry deep learning models to try harder to find cheap “green” baselines or to combine the best of both worlds (cf. Poerner et al., 2020).

In summary, our contributions are:

i) We propose an experimental setup that allows a direct comparison between PLMs and static word embeddings. We find that static word embeddings show performance similar to BERT on the modified LAMA analysis task across ten languages.

ii) We provide evidence that there is a trade-off between composing meaningful representations from subwords and increasing the vocabulary size. Storing information through composition in a network seems to be more expensive and challenging than simply increasing the number of atomic representations.

iii) Our findings may point to a general problem: baselines that are simpler and “greener” are not given enough attention in deep learning.

Code and embeddings are available online.1

We follow the LAMA setup introduced by Petroni et al. (2019). More specifically, we use data from TREx (Elsahar et al., 2018). TREx consists of triples of the form (object, relation, subject). The underlying idea of LAMA is to query knowledge from PLMs using templates without any finetuning: the triple (Paris, capital-of, France) is queried with the template “Paris is the capital of [MASK].” TREx has covers 41 relations. Templates for each relation were manually created by Petroni et al. (2019). LAMA has been found to contain many “easy-to-guess” triples; e.g., it is easy to guess that a person with an Italian sounding name is Italian. LAMA-UHN is a subset of triples that are “hard-to-guess” created by Poerner et al. (2020).

Beyond English, we run experiments on nine additional languages using mLAMA, a multilingual version of TREx (Kassner et al., 2021). For an overview of languages and language families see Table 2. For training static embeddings, we use Wikipedia dumps from October 2020.

3 Methods

We describe our proposed setup, which allows to compare PLMs with static embeddings.

3.1 PLMs

We use the following two PLMs: (i) BERT for English (BERT-base-cased, Devlin et al. (2019)), (ii) mBERT for all ten languages (the multilingual version BERT-base-multilingual-cased).

Petroni et al. (2019) use templates like “Paris is the capital of [MASK]” and give arg max w∈V p(w|t) as answer where V is the vocabulary of the PLM and p(w|t) is the probability that word w gets predicted in the template t.

We follow the same setup as (Kassner et al.,

Table 2: Overview of the ten languages in our experiments, including language family and script.

Language	Code	Family	Script
Arabic	AR	Afro-Asiatic	Arabic
German	DE	Indo-European	Latin
English	EN	Indo-European	Latin
Spanish	ES	Indo-European	Latin
Finnish	FI	Uralic	Latin
Hebrew	HE	Afro-Asiatic	Hebrew
Japanese	JA	Japanese	Japanese
Korean	KO	Koreanic	Korean
Turkish	TR	Turkic	Latin
Thai	TH	Tai-Kadai	Thai

1https://github.com/pdufter/staticlama
In this section, we compare the performance of BERT and fastText, analyze their resource consumption, and give evidence that BERT composes meaningful representations from subwords.
4.1 BERT vs. fastText

Results for English are in Table 1. The table shows that when increasing the vocabulary size, static embeddings and BERT exhibit similar performance on LAMA. The Oracle baseline is mostly outperformed. Only for small vocabulary sizes, fastText is worse. Performance of fastText increases with larger vocabulary sizes and with a vocabulary size of 1000k we observe a 1.6% absolute performance increase of fastText embeddings compared to BERT (41.2% vs. 39.6%). The performance gap between fastText and BERT increases to 2.7% points on LAMA-UHN, indicating that fastText is less vulnerable to misleading clues about the subject.

Only providing results on English can be prone to unexpected biases. Thus, we verify our results for nine additional languages. Results are shown in Table 3 and the conclusions are similar: for large enough vocabularies, static embeddings consistently have better performance. For languages outside the Indo-European family, the performance gap between mBERT and fastText is much larger (e.g., 31.7 vs. 17.2 for Arabic) and mBERT is sometimes worse than the Oracle.

Our fastText method is quite primitive: it is a type-restricted search for entities similar to what is most prominent in the context (whose central element is the query entity, e.g., “Paris” in (Ex1)). The fact that fastText outperforms BERT raises the question: Does BERT simply use associations between entities (like fastText) or has it captured factual knowledge beyond this?

4.2 BERT vs fastText: Diversity of Predictions

The entropy of the distribution of predicted objects is 6.5 for BERT vs. 7.3 for fastText. So BERT’s predictions are less diverse. Of 151 possible objects on average, BERT predicts (on average) 85, fastText 119. For a given relation, BERT’s prediction tend to be dominated by one object, which is often the most frequent correct object – possibly because these objects are frequent in Wikipedia/Wikidata. When filtering out triples whose correct answer is the most frequent object, BERT’s performance drops to 35.7 whereas fastText’s increases to 42.5. See Table 7 in the appendix for full results on diversity. We leave investigating why BERT has these narrower object preferences for future work.

4.3 Contextualization in BERT

BERT’s attention mechanism should be able to handle long subjects – in contrast to fastText, for which we use simple averaging. Figure 1 shows that fastText’s performance indeed drops when the query gets tokenized into multiple tokens. In contrast, BERT’s performance remains stable. We conclude that token averaging harms fastText’s performance and that the attention mechanism in BERT composes meaningful representations from subwords.

We try to induce static embeddings from BERT by feeding object and subject surface forms to BERT without any context and then averaging the hidden representations for each layer. Figure 2 analyzes whether a nearest neighbor matching over this static embedding space extracted from BERT’s representations is effective in extracting knowledge from it. We find that performance on LAMA is significantly lower across all hidden layers with the first two layers performing best. That simple averaging does not work as well as contextualization indicates that BERT is great at composing meaningful representations through attention. In future work, it would be interesting to extract better static representations from BERT, for example by extracting the representations of entities in real sentences.

4.4 Resource Consumption

Table 4 compares resource consumption of BERT vs. fastText following Strubell et al. (2019). fastText can be efficiently computed on CPUs with a drastically lower power consumption and computation time. Overall, fastText has only 0.3% of the
carbon emissions compared to BERT. In a recent study, Zhang et al. (2020) showed that capturing factual knowledge inside PLMs is an especially resource hungry task.

These big differences demonstrate that fastText, in addition to performing better than BERT, is the environmentally better model to “encode knowledge” of Wikipedia in an unsupervised fashion. This calls into question the use of large PLMs as knowledge bases, particularly in light of the recent surge of knowledge augmented LMs, e.g., (Lewis et al., 2020; Guu et al., 2020).

5 Related Work

Petroni et al. (2019) first asked: can PLMs function as KBs? Subsequent analysis focused on different aspects, such as negation (Kassner and Schütze, 2020; Ettinger, 2020), easy to guess names (Perner et al., 2020), finding alternatives to a cloze-style approach (Bouraoui et al., 2020; Heinzerling and Inui, 2020; Jiang et al., 2020) or analyzing different model sizes (Roberts et al., 2020).

There is a recent surge of work that tries to improve PLMs’ ability to harvest factual knowledge: Zhang et al. (2019), Peters et al. (2019) and Wang et al. (2020) inject factual knowledge into PLMs. Guu et al. (2020), Lewis et al. (2020), Izacard and Grave (2020), Kassner and Schütze (2020) and Petroni et al. (2020) combine PLMs with information retrieval and Bosselut et al. (2019), Liu et al. (2020) and Yu et al. (2020) with knowledge bases.

In contrast, we provide evidence that BERT’s ability to answer factual queries is not more effective than capturing “knowledge” with simple traditional static embeddings. This suggests that learning associations between entities and type-restricted similarity search over these associations may be at the core of BERT’s ability to answer cloze-style KB queries, a new insight into BERT’s working mechanism.

6 Conclusion

We have shown that, when restricting cloze-style questions to a candidate set, static word embeddings outperform BERT. To explain this puzzling superiority of a much simpler model, we put forward a new characterization of factual knowledge learned by BERT: BERT seems to be able to complete cloze-style queries based on similarity assessments on a type-restricted vocabulary much like a nearest neighbor search for static embeddings.

However, BERT may still be the better model for the task: we assume perfect typing (for BERT and fastText) and only evaluate ranking. Typing is much harder with static embeddings and BERT has been shown to perform well at guessing the expected entity type based on a template. BERT also works well with small vocabularies, storing most of its “knowledge” in the parameterization of subword composition. Our results suggest that increasing the vocabulary size and computing many more atomic entity representations with fastText is a cheap and environmentally friendly method of storing knowledge. In contrast, learning high quality composition of smaller units requires many more resources.

fastText is a simple cheap baseline that outperforms BERT on LAMA, but was not considered in the original research. This may be an example of a general problem: “green” baselines are often ignored, but should be considered when evaluating resource-hungry deep learning models. A promising way forward would be to combine the best of both worlds, e.g., by building on in work that incorporates large vocabularies into PLMs after pretraining.

Acknowledgements. This work was supported by the European Research Council (# 740516) and the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibility for its content. The first author was supported by the Bavarian research institute for digital transformation (bidt) through their fellowship program. We thank Yanai Elazar and the anonymous reviewers for valuable comments.
References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguistics, 5:135–146.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-Piotr Bojanowski, Edouard Grave, Armand Joulin, and references.

Hady Elsahar, Pavlos Vougiouklis, Arslan Remaci, Zied Bouraoui, José Camacho-Collados, and Steven Schockaert. 2020. Inducing relational knowledge from BERT. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7462–7479. AAAI Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, SamMcCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Hady Elsahar, Pavlos Vougiouklis, Arslan Remaci, Christophe Gravier, Jonathon Hare, Frederique Laforest, and Elena Simperl. 2018. T-REx: A large scale alignment of natural language with knowledge base triples. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018), Miyazaki, Japan. European Languages Resources Association (ELRA).

Allyson Ettinger. 2020. What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Trans. Assoc. Comput. Linguistics, 8:34–48.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. REALM: retrieval-augmented language model pre-training. Computing Research Repository, abs/2002.08909.

Benjamin Heizerling and Kentaro Inui. 2020. Language models as knowledge bases: On entity representations, storage capacity, and paraphrased queries. Computing Research Repository, abs/2008.09036.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 328–339, Melbourne, Australia. Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2020. Leveraging passage retrieval with generative models for open domain question answering. Computing Research Repository, abs/2007.01282.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How can we know what language models know. Trans. Assoc. Comput. Linguistics, 8:423–438.

Nora Kassner, Philipp Dufter, and Hinrich Schütze. 2021. Multilingual LAMA: investigating knowledge in multilingual pretrained language models. Computing Research Repository, abs/2102.00894.

Nora Kassner and Hinrich Schütze. 2020. Bert-knn: Adding a knn search component to pretrained language models for better QA. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November 2020, pages 3424–3430. Association for Computational Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7811–7818, Online. Association for Computational Linguistics.

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiyuan Wang, Qi Ju, Haozhang Deng, and Ping Wang. 2020. K-BERT: enabling language representation with knowledge graph. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2901–2908. AAAI Press.
Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith. 2019. Knowledge enhanced contextual word representations. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 43–54, Hong Kong, China. Association for Computational Linguistics.

Fabio Petroni, Patrick S. H. Lewis, Aleksandra Pikts, Tim Rocktäschel, Yuxiang Wu, Alexander H. Miller, and Sebastian Riedel. 2020. How context affects language models’ factual predictions. In Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, June 22-24, 2020.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H. Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 2463–2473. Association for Computational Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. 2020. E-BERT: Efficient-yet-effective entity embeddings for BERT. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 803–818, Online. Association for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. How much knowledge can you pack into the parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 5418–5426. Association for Computational Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan, March 25-30, 2012, pages 5149–5152. IEEE.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645–3650, Florence, Italy. Association for Computational Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang, and Ming Zhou. 2020. K-adapter: Infusing knowledge into pre-trained models with adapters. Computing Research Repository, abs/2002.01808.

Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2020. Pretrained encyclopedia: Weakly supervised knowledge-pretrained language model. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Yadollah Yaghoobzadeh, Heike Adel, and Hinrich Schütze. 2018. Corpus-level fine-grained entity typing. J. Artif. Intell. Res., 61:835–862.

Donghan Yu, Chenguang Zhu, Yiming Yang, and Michael Zeng. 2020. JAKET: joint pre-training of knowledge graph and language understanding. Computing Research Repository, abs/2010.00796.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and Samuel R. Bowman. 2020. When do you need billions of words of pretraining data? Computing Research Repository, abs/2011.04946.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced language representation with informative entities. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 1441–1451. Association for Computational Linguistics.
A Resource Consumption

We follow Strubell et al. (2019) for our computation. The measured peak energy consumption of our CPU-server was 618W. Considering the power usage effectiveness the required kWh are given by

\[p_t = 1.58 \cdot t \cdot 618/1000. \]

Training the English fastText on Wikipedia took around 5 hours. Training all languages took 20 hours. The estimated CO\(_2\)e can then be computed by

\[\text{CO}_2\text{e} = 0.954 \cdot p_t. \]

B Reproducibility Information

For computation we use a CPU server with 96 CPU cores (Intel(R) Xeon(R) Platinum 8160) and 1024GB RAM. For BERT and mBERT inference we use a single GeForce GTX 1080Ti GPU.

Getting the object predictions for BERT and fastText is fast and takes a negligible amount of time. Training fastText embeddings takes between 1 to 5 hours depending on Wikipedia size.

BERT has around 110M parameters, mBERT around 178M. The fastText embeddings have \(O(nd) \) parameters where \(n \) is the vocabulary size and \(d \) is the embedding dimension. We use \(d = 300 \). Thus, for most vocabulary sizes, fastText has significantly more parameters than the BERT models. But overall they are cheaper to train.

We did not perform any hyperparameter tuning. Table 6 gives an overview on third party software. Table 5 gives an overview on the number of triples in the dataset. Note that no training set is required, as all methods are completely unsupervised.

C Examples

Table 11 shows randomly sampled triples to perform an error analysis.

Language	#Triples	#Triples UHN
ar	17129	13699
de	29354	23493
en	33981	27060
es	28169	22683
fr	30643	24487
he	14769	12033
ja	22920	17832
ko	14217	11439
th	8327	7065
tr	13993	11274

Table 5: Overview on number of triples.

Table 6: Overview on third party software.

System	Parameter	Value
fastText	Facebook Research	Version0.9.1
	Embedding Dimension	300
BERT	Huggingface Transformer	Version 2.8.0
Tokens	Huggingface Tokens	Version 0.5.2

Table 7: Analysis of the diversity of predictions. \(p1-mf \) is the \(p1 \) when excluding triples whose correct answer is the most frequent object. \(\text{entropy} \) is the entropy of the distribution of predicted objects. \#pred. denotes the average number of distinct objects predicted by the model across relations. The average number of unique objects in the candidate set across relations is 151. fastText has more diverse predictions, as the entropy is higher and the set of predicted objects is on average much larger.

D Additional Results

In this section we show additional results. Table 8 shows the same as Table 1 but with precision at five. Analogously Table 9. Table 10 shows the same as Table 3 but for LAMA-UHN. The trends and key insights are unchanged. Table 7 analyses the diversity of predictions by the different models.

Table 8: Results for BERT, mBERT and fastText. Same as Table 1 but with \(p5 \).

Model	Vocabulary Size	LAMA	p5
Oracle		57.9	49.7
BERT	30k	64.1	59.7
mBERT	110k	59.7	53.5
fastText		52.7	53.5

Table 9: Results for BERT, mBERT and fastText. Same as Table 1 but with \(p5 \).
Model	Vocab. Size	AR	DE	ES	FI	HE	JA	KO	TH	TR
Oracle	48.8	48.4	48.6	49.6	50.1	49.0	49.2	51.9	50.3	
mBERT	110k	33.8	51.3	53.9	46.2	38.2	36.5	43.0	37.0	55.5
mBERT-110k	26.0	40.5	42.9	43.8	27.7	24.0	31.9	33.9	50.3	
fastText	120k	51.6	48.9	55.2	49.7	54.1	44.1	54.8	56.0	60.9
	30k	38.5	28.8	33.9	38.9	26.4	34.1	45.8	42.7	
	250k	55.0	56.0	59.1	55.4	58.1	49.2	59.2	59.5	63.9
	500k	57.0	59.1	61.5	58.0	59.2	50.9	59.7	61.0	64.6
	1000k	56.4	60.7	62.2	59.1	58.9	51.7	57.5	57.2	63.7

Table 9: p_5 for mBERT and fastText on mLAMA. Numbers across languages are not comparable as the number of triples varies.

Model	Vocab. Size	AR	DE	ES	FI	HE	JA	KO	TH	TR
Oracle	23.1	23.8	23.2	22.9	24.5	22.5	22.6	25.1	24.6	
mBERT	110k	12.1	26.1	27.6	15.8	11.0	11.8	15.1	10.8	27.7
mBERT-110k	7.8	14.3	16.9	15.0	6.6	6.4	8.0	7.4	19.4	
fastText	30k	12.4	8.9	9.0	9.4	13.8	7.4	9.4	14.8	14.5
	120k	20.2	18.9	23.8	18.1	22.1	15.4	21.0	23.8	26.1
	250k	22.7	24.0	27.3	22.6	26.3	18.0	23.8	28.3	28.7
	500k	24.3	26.6	30.1	24.3	27.4	20.0	35.0	27.6	29.4
	1000k	23.7	27.6	30.1	25.6	27.5	20.4	23.2	27.2	29.8

Table 10: p_1 for mBERT and fastText on mLAMA-UHN. Numbers across languages are not comparable as the number of triples varies.
Table 11: We sample two random triples where either BERT or fastText[1000k] is correct per relation. One can see for example that BERT mostly predicts “jazz” for relation P136.

Relation	Subject Template	Object	BERT	fastText
P1412	William James	[X] used to communicate in [Y]. English	English	Irish
P1413	Berrnadino Ochino	[X] used to communicate in [Y]. Italian	Spanish	Italian
P1414	Mack Lally	[X] used to communicate in [Y]. Irish	English	Irish
P1415	Robert Nauton	[X] used to communicate in [Y]. English	English	Welsh
P1416	Steve Jobs	[X] works for [Y]. Apple Inc.	Microsoft	Apple Inc.
P1417	Steve Wozniak	[X] works for [Y]. IBM	IBM	Apple Inc.
P1418	Grady Booch	[X] works for [Y]. IBM	IBM	Apple Inc.
P1419	Philip Dan Estadge	[X] works for [Y]. IBM	IBM	Apple Inc.
P1420	Safari	[X] is developed by [Y]. Apple Inc.	Intel	Apple Inc.
P1421	PostScript	[X] is developed by [Y]. Adobe	Adobe	Apple Inc.
P1422	Active Directory	[X] is developed by [Y]. Microsoft	Microsoft	Apple Inc.
P1423	Internet Explorer	[X] is developed by [Y]. Microsoft	Microsoft	Google
P1424	Long Perion	[X] is a [Y]. village	village	pub
P1425	Israel	[X] used to work in [Y]. angel	village	angel
P1426	alfuzosin	[X] is a [Y]. medication	protein	medication
P1427	Crawfordsmen	[X] is a [Y]. village	village	suburb
P1428	Cook County	The capital of [X] is [Y]. Chicago	Chicago	Williamson
P1429	Cayuga County	The capital of [X] is [Y]. Auburn	Auburn	Greenville
P1430	Grand Est	The capital of [X] is [Y]. Strasbourg	Strasbourg	France
P1431	Caldo Parish	The capital of [X] is [Y]. Shreveport	Shreveport	Shreveport
P1432	The Vampire	[X] was written in [Y]. English	English	Gothic
P1433	Empire	[X] was written in [Y]. English	English	Persian
P1434	Polinika	[X] was written in [Y]. Serbian	Latin	Serbian
P1435	Lenta	[X] was written in [Y]. Russian	German	Russian
P1436	Drake & Josh	[X] was originally aired on [Y]. Nickelodeon	Nickelodeon	Fox Arena
P1437	Salute You Shorts	[X] was originally aired on [Y]. Nickelodeon	Nickelodeon	Lifetime
P1438	Yo Momma	[X] was originally aired on [Y]. MTV	CBS	MTV
P1439	Hey Arnold!	[X] was originally aired on [Y]. Nickelodeon	CBS	Nickelodeon
P1440	X-Men	[X] is owned by [Y]. Microsoft	Microsoft	Nintendo
P1441	Eiffel Tower	[X] is owned by [Y]. Paris	Boring	Paris
P1442	Lotus Software	[X] is owned by [Y]. IBM	IBM	Microsoft
P1443	Lexus	[X] is owned by [Y]. Toyota	Chrysler	Toyota
P1444	Black Narcissus	The original language of [X] is [Y]. English	English	Irish
P1445	The God Delusion	The original language of [X] is [Y]. English	English	Hebrew
P1446	Vecinos	The original language of [X] is [Y]. Spanish	Latin	Spanish
P1447	Jani Joni	The original language of [X] is [Y]. Indonesian	Marathi	Indonesian
P1448	Halle Berry	[X] is a [Y] by profession. model	lawyer	organizer
P1449	Gregory Chaitoff	[X] is a [Y] by profession. astronomer	lawyer	astronomer
P1450	Karl Taylor Compton	[X] is a [Y] by profession. physicist	lawyer	playwright
P1451	Herbert Romanus O'Connor	[X] is a [Y] by profession. lawyer	lawyer	playwright
P1452	System Controller Hub	[X] is produced by [Y]. Intel	Intel	Apple Inc.
P1453	Daft Punk	[X] is produced by [Y]. Toyota	Honda	Toyota
P1454	British Rail Class 360	[X] is produced by [Y]. Siemens	Siemens	Volvo Cars
P1455	Daimler	[X] is produced by [Y]. Ferrari	Sony	Ferrari
P1456	Howard Florey	[X] is produced by [Y]. London	Lille	Montgomery
P1457	Alberts Kvejlas	[X] used to work in [Y]. Riga	Stockholm	Riga
P1458	Ramsay MacDonald	[X] used to work in [Y]. London	London	Scotland
P1459	Juan March	[X] used to work in [Y]. Madrid	Paris	Madrid
P1460	United States of America	[X] is a member of [Y]. NATO	NATO	PBS
P1461	Croatia	[X] is a member of [Y]. FIFA	FIFA	CONCACAF
P1462	Mexico national football team	[X] is a member of [Y]. FIFA	FIFA	NATO
P1463	Estonia	[X] is a member of [Y]. Boria	Boria	France
P1464	Germany	[X] is named after [Y]. Rovaria	Rovaria	Rovaria
P1465	GNU	[X] is named after [Y]. Unix	Ardile	Unix
P1466	solar mass	[X] is named after [Y]. Sun	carbon	carbon
P1467	Torino FC	[X] is named after [Y]. Turin	Turin	Apple Inc.
P1468	Edward Burnett Tylor	[X] works in the field of [Y]. anthropology	medicine	anthropology
P1469	Austinagrass	[X] works in the field of [Y]. philosophy	philosophy	philosopher
P1470	Adam Cardinal	[X] works in the field of [Y]. comedian	psychology	comedian
P1471	physical systems	[X] works in the field of [Y]. physics	physics	physics
P1472	Augustine Kandathil	[X] has the position of [Y]. archbishop	minister	archbishop
P1473	John XXI	[X] has the position of [Y]. pope	bishop	pope
P1474	Photinos of Sirmium	[X] has the position of [Y]. pope	bishop	pope
P1475	Samson of Dol	[X] has the position of [Y]. bishop	bishop	God
P1476	Holy See	[X] maintains diplomatic relations with [Y]. Italy	Italy	Malta
P1477	Malta	[X] maintains diplomatic relations with [Y]. Italy	Italy	Malta
P1478	Liechtenstein	[X] maintains diplomatic relations with [Y]. Austria	Switzerland	Austria
P1479	Saudi Arabia	[X] maintains diplomatic relations with [Y]. Kuwait	Qatar	Kuwait
P1480	Georg Solti	[X] is represented by music label [Y]. Decca	EMI	Decca
P1481	The Temptations	[X] is represented by music label [Y]. Motown	EMI	Motown
P1482	David Bowie	[X] is represented by music label [Y]. EMI	EMI	Barclay
P1483	Maria Callas	[X] is represented by music label [Y]. EMI	EMI	Decca
P1484	Florence	[X] is the capital of [Y]. Tuscany	Italy	Tuscany
P1485	Canberra	[X] is the capital of [Y]. Australia	Australia	Queensland
P1486	Hexadon	[X] is the capital of [Y]. Crete	Greece	Crete
P1487	Islamabad	[X] is the capital of [Y]. Pakistan	Pakistan	Karachi
P1488	Jatiya Sangsad	[X] is a legal term in [Y]. Bangladesh	India	Bangladesh
P1489	Legislative Yuan	[X] is a legal term in [Y]. Taiwan	Singapore	Taiwan
P1490	Manitoba Act, 1870	[X] is a legal term in [Y]. Canada	Canada	Ontario
P1491	Yang di-Pertuan Agong	[X] is a legal term in [Y]. Malaysia	Malaysia	Brunei
P1492	soppessatra	[X] was created in [Y]. Italy	Peru	Peru
P1493	Kefalosyri	[X] was created in [Y]. Greece	Cyprus	Greece
P1494	Degrass High	[X] was created in [Y]. Canada	Canada	Jordan
P1495	Fox Soccer News	[X] was created in [Y]. Canada	Australia	Canada

Table 11: We sample two random triples where either BERT or fastText[1000k] is correct per relation. One can see for example that BERT mostly predicts “jazz” for relation P136.
Relation	Subject	Template	Object	BERT	fastText
P527	army	[X] consists of [Y].	infantry infantry cavalry		
P527	Windward Islands	[X] consists of [Y].	Barbados Bermuda Barbados		
P527	taxon	[X] consists of [Y].	organism grass organism		
P530	Humanties	[X] consists of [Y].	art art linguistics		
P1303	Kenny G	[X] plays [Y].	saxophone guitar saxophone		
P1303	Stuart Duncan	[X] plays [Y].	fiddle guitar fiddle		
P1303	Herbie Nichols	[X] plays [Y].	piano piano harmonica		
P1303	Nat "King" Cole	[X] plays [Y].	piano piano saxophone		
P190	Uzhhorod	[X] and [Y] are twin cities.	Lviv Moscow Moscow Liv		
P190	Vienna	[X] and [Y] are twin cities.	Budapest Budapest Vienna		
P190	Cali	[X] was born in twin cities.	Guadalajara Santiago Santiago Guadalajara		
P190	Mindelo	[X] and [Y] are twin cities.	Porto Santiago Porto		
P47	Montreal	[X] shares border with [Y].	Palermo Italy Palermo		
P47	Afghan	[X] shares border with [Y].	Pakistan Afghanistan Pakistan		
P47	Ukraine	[X] shares border with [Y].	Russia Ukraine Russia		
P47	Edmonton	[X] shares border with [Y].	Antwerp Amsterdam Antwerp		
P47	Balham Valley	[X] is located in [Y].	Antarctica Africa Antarctica		
P47	Southern Netherlands	[X] is located in [Y].	Europe Europe Africa		
P47	Pittsford	[X] is located in [Y].	Oceania Antarctica Oceania		
P47	arithmetic	[X] is part of [Y].	mathematics logical mathematics logical		
P561	agriculture science	[X] is part of [Y].	agriculture science agriculture science		
P561	zoology	[X] is part of [Y].	biology science biology		
P561	neuroscience	[X] is part of [Y].	psychology science psychology		
P103	Muppalauna Shiva	The native language of [X] is [Y].	Telugu Marathi Telugu		
P103	Joseph Hovhanessian	The native language of [X] is [Y].	French English French English		
P103	Raymond Queneau	The native language of [X] is [Y].	French French French French		
P103	Lindsey Davis	The native language of [X] is [Y].	English English English English		
P20	James Northcote	[X] died in [Y].	London London Morris		
P20	George Frampton	[X] died in [Y].	London London Chapman		
P20	Peter Strudel	[X] died in [Y].	Vienna Paris Vienna		
P20	Gaetano Gandolfi	[X] died in [Y].	Bologna Rome Bologna		
P27	August Gaillit	[X] is [Y] citizen.	Estonia Luxembourg Estonia		
P27	Ada Edma	[X] is [Y] citizen.	Israel India Israel		
P27	Enrique Llanes	[X] is [Y] citizen.	Mexico Mexico Spain		
P27	Timothy Angle	[X] is [Y] citizen.	Canada Canada Engand		
P27	Ciliary neurotropic factor	[X] is a subclass of [Y].	protein protein antiinflammation		
P27	Decorin	[X] is a subclass of [Y].	protein protein perfume		
P27	shine	[X] is a subclass of [Y].	sanctuary Buddhism sanctuary		
P27	articled clerk	[X] is a subclass of [Y].	apprentice jurist apprentice		
P19	Frans Plotz I	[X] was born in [Y].	Antwerp Amsterdam Antwerp		
P19	Sajjad Ali	[X] was born in [Y].	Lahore Tehran Lahore		
P19	Henry Mayhew	[X] was born in [Y].	London London Fowler		
P19	Rob Lee	[X] was born in [Y].	London London Gary		
P19	Swedish Orphan Biovitrum	The headquarters of [X] is in [Y].	Stockholm Stockholm Gothenburg		
P19	Canadian Jewish Congress	The headquarters of [X] is in [Y].	Ottawa Ottawa Winnipeg		
P19	Florida International University	The headquarters of [X] is in [Y].	Miami Miami Miami		
P19	Edipresse	The headquarters of [X] is in [Y].	Lausanne Lausanne Lausanne		
P413	Markus Halst	[X] plays in [Y] position.	midfielder midfielder midfielder goalmaker		
P413	Luca Danilo Pini	[X] plays in [Y] position.	midfielder midfielder midfielder goalmaker		
P413	Mike Teel	[X] plays in [Y] position.	quarterback quarterback quarterback backquarterback		
P413	Doug Belfone	[X] plays in [Y] position.	linebacker linebacker linebacker linebacker		
P37	Sorenjo	The official language of [X] is [Y].	Italian Portuguese Italian		
P37	Palajoki	The official language of [X] is [Y].	Finnish English Finnish		
P37	Vallonia	The official language of [X] is [Y].	French French Basque		
P37	Biel/Bienne	The official language of [X] is [Y].	French French French French		
P410	gaatama buddha	[X] is affiliated with the [Y] religion.	Buddhism Hindu Buddhism Hindu		
P410	Christianization	[X] is affiliated with the [Y] religion.	Christianity Christian Christianity		
P410	Alblinans	[X] is affiliated with the [Y] religion.	Christian Christian Muslim Christian		
P470	SNCF	[X] was founded in [Y].	Paris Paris France		
P470	Odeon	[X] was founded in [Y].	Singapore Germany Singapore		
P470	Comerica	[X] was founded in [Y].	Detroit Prague Detroit		
P470	Pink Fairies	[X] was founded in [Y].	London London Gold		
P276	Saint-Domingue expedition	[X] is located in [Y].	Haiti France Haiti		
P276	2002 Australian Op (X)	is located in [Y].	Melbourne Australia Melbourne Australia		
P276	2013 German federal election	[X] is located in [Y].	Germany Berlin Germany		
P276	Cantabrian Wars	[X] is located in [Y].	Spain Spain Cataluna		
P276	Giulio Caccini	[X] plays [Y] music.	opera jazz opera		
P276	Nicolas Dalayrac	[X] plays [Y] music.	opera jazz opera		
P276	Geoge Auld	[X] plays [Y] music.	jazz jazz ballad		
P276	Choe Records	[X] plays [Y] music.	jazz jazz reggae		
P17	Eibenstock	[X] is located in [Y].	Germany Germany Austria		
P17	Vrienden van het Platteland	[X] is located in [Y].	Netherlands Belgium Netherlands		
P17	Fawkner	[X] is located in [Y].	Australia Lebanon Australia		
P17	Wakefield Park	[X] is located in [Y].	Australia Australia The Bahamans		
P131	Squatzi Pond State Park	[X] is located in [Y].	Connecticut Connecticut Connecticut Connecticut		
P131	Ballyfermot	[X] is located in [Y].	Dublin Ireland Dublin		
P131	Downton East Village, Calgary	[X] is located in [Y].	Alberta Alberta Toronto Alberta Alberta Toronto		
P131	Edmonton City Centre Airport	[X] is located in [Y].	Alberta Alberta Toronto Alberta Alberta Toronto		

Table 12: Table 11 continued.