ON QUASI κ-METRIZABLE SPACES

VESKO VALOV

Abstract. The aim of this paper is to investigate the class of quasi κ-metrizable spaces. This class is invariant with respect to arbitrary products and contains Schepin’s κ-metrizable spaces as a proper subclass.

1. Introduction

Recall that a κ-metric on a space X is a non-negative function $\rho(x,C)$ on a space X is a non-negative function $\rho(x,C)$ of two variables, a point $x \in X$ and a regularly closed set $C \subset X$, satisfying the following conditions:

$K1)$ $\rho(x,C) = 0$ iff $x \in C$;
$K2)$ If $C \subset C'$, then $\rho(x,C') \leq \rho(x,C)$ for every $x \in X$;
$K3)$ $\rho(x,C)$ is continuous function of x for every C;
$K4)$ $\rho(x,\bigcup C_\alpha) = \inf_\alpha \rho(x,C_\alpha)$ for every increasing transfinite family $\{C_\alpha\}$ of regularly closed sets in X.

A κ-metric on X is said to be regular if it satisfy also next condition

$K5)$ $\rho(x,C) \leq \rho(x,C') + \overline{\rho}(C',C)$ for any $x \in X$ and any two regularly closed sets C,C' in X, where $\overline{\rho}(C',C) = \sup\{\rho(y,C') : y \in C\}$.

We say that a function $\rho(x,C)$ is an quasi κ-metric (resp., a regular quasi κ-metric) on X if it satisfies the axioms $K2) - K4)$ (resp., $K2) - K5)$ and the following one:

$K1)^*$ For any C there is a dense open subset V of $X \setminus C$ such that $\rho(x,C) > 0$ iff $x \in V$.

Obviously, we can assume that $\rho(x,C) \leq 1$ for all x and C, in such a case we say that ρ is a normed quasi κ-metric.

Quasi κ-metrizable spaces were introduced in [8]. Our interest of this class was originated by Theorem 1.4 from [8] stating that a compact space is quasi κ-metrizable if and only if it is skeletally generated.

1991 Mathematics Subject Classification. Primary 54C10; Secondary 54F65.
Key words and phrases. compact spaces, continuous inverse systems, I-favorable spaces, skeletal maps.
Research supported in part by NSERC Grant 261914-13.
Unfortunately, the presented proof of the implication that any skeletally generated compactum is quasi κ-metrizable is not correct. Despite of this incorrectness, the class of quasi κ-metrizable is very interesting. It is closed with respect to arbitrary products and contains as a proper subclass the κ-metrizable spaces. The aim of this paper is to investigate the class of quasi κ-metrizable spaces, and to provide a correct characterization of skeletally generated spaces.

Let me note that skeletally generated spaces were introduced in [9] and, by [8, Theorem 1.1], a space is skeletally generated iff it is I-favorable in the sense of [2]. Recall that a map $f : X \to Y$ is skeletal if $\text{Int}_f(U) \neq \emptyset$ for every open $U \subset X$. A space X is skeletally generated [9] if there is an inverse system $S = \{X_\alpha, p_\beta^\alpha\}$ of separable metric spaces X_α and skeletal surjective bounding maps p_β^α, satisfying the following conditions: (1) the index set A is σ-complete (every countable chain in A has a supremum in A); (2) for every countable chain $\{\alpha_n\}_{n \geq 1} \subset A$ with $\beta = \sup\{\alpha_n\}_{n \geq 1}$ the space X_β is a (dense) subset of $\lim\left\langle X_\alpha, p_\alpha^{\alpha_n+1}\right\rangle$; (3) X is embedded in $\lim S$ and $p_\alpha(X) = X_\alpha$ for each α, where $p_\alpha : \lim S \to X_\alpha$ is the α-th limit projection. If in the above definition all bounding maps p_α^β are open, we say that X is openly generated.

All topological spaces are Tychonoff and the single-valued maps are continuous. The paper is organized as follows: Section 2 contains the proof that any product of quasi κ-metrizable spaces is also quasi κ-metrizable. In Section 3 we provide some more properties of quasi κ-metrizable spaces. For example, it is shown that this property is preserved by open and perfect surjections, and that the Čech-Stone compactification of any pseudocompact quasi κ-metrizable space is quasi κ-metrizable. It also follows from the result from Section 3 that there exist quasi κ-metrizable spaces which are not κ-metrizable. In Section 4 we introduce a similar wider class of spaces, the weakly κ-metrizable spaces, and proved that a compact space is skeletally generated if and only if it is weakly κ-metrizable. This implies that every skeletally generated space is also weakly κ-metrizable.

2. Products of quasi κ-metrizable spaces

Let \mathcal{B} be a base for a space X consisting of regularly open sets. A real-valued function $\xi : X \times \mathcal{B} \to [0, 1]$ will be called a π-capacity if it satisfies the following conditions:

E1) $\xi(x, U) = 0$ for $x \notin U$, and $0 \leq \xi(x, U) \leq 1$ for $x \in U$.

E2) For any $U \in \mathcal{B}$ the set $\{x \in U : \xi(x, U) > 0\}$ is dense in U.

E3) For any \(U \) the function \(\xi(x, U) \) is lower semi-continuous, i.e if \(\xi(x_0, U) > a \) for some \(x_0 \in X \) and \(a \in \mathbb{R} \), then there is a neighborhood \(O_{x_0} \) with \(\xi(x, U) > a \) for all \(x \in O_{x_0} \).

E4) For any two mappings \(U : T \to \mathcal{B} \) and \(\lambda : T \to X \), where \(T \) is a set with an ultrafilter \(\mathcal{F} \), such that the limit \(\bar{\lambda} = \lim_{\mathcal{F}} \lambda(t) \) exists and \(\lim_{\mathcal{F}} \xi(\lambda(t), U(t)) > a > 0 \), then there exists \(\tilde{U} \in \mathcal{B} \) such that \(\tilde{U} \subseteq \lim_{\mathcal{F}} U(t) \) and \(\xi(\bar{\lambda}, \tilde{U}) > a \). Here, \(\lim_{\mathcal{F}} U(t) = \bigcap_{F \in \mathcal{F}} \bigcup_{t \in F} U(t) \).

A capacity is called regular if it satisfies also the following condition:

E5) If \(\xi(x, U) > a > 0 \), there exists \(U_a \in \mathcal{B} \) such that \(\xi(x, U_a) \geq a \) and \(\xi(y, U) \geq \xi(x, U) - a \) for all \(y \in U_a \).

Our definition of a \(\pi \)-capacity is almost the same as the Schepin’s definition [6] of capacity, the only difference is that Schepin requires \(\xi(x, U) > 0 \) for all \(x \in U \).

Lemma 2.1. Suppose \(\xi : X \times \mathcal{B} \to [0, 1] \) is a (regular) \(\pi \)-capacity on \(X \). Then the function \(\rho_{\xi}(x, C) \), \(\rho_{\xi}(x, C) = 0 \) if \(x \in C \) and \(\rho_{\xi}(x, C) = \sup\{\xi(x, U) : U \cap C = \emptyset\} \) otherwise, is a (regular) quasi \(\kappa \)-metric on \(X \).

Proof. Suppose \(\xi \) is a \(\pi \)-capacity on \(X \). Clearly, \(\rho_{\xi} \) satisfies condition K2). According to the proof of [7] Proposition 6, chapter 3 \(\rho_{\xi} \) also satisfies conditions K3) – K4). To check condition K1)*, let \(C \) be a proper regularly closed subset of \(X \). Then there is a subfamily \(\{U_\alpha : \alpha \in \mathcal{A}\} \) of \(\mathcal{B} \) covering \(X \setminus C \). For every \(\alpha \) the set \(V_\alpha = \{x \in U_\alpha : \xi(x, U_\alpha) > 0\} \) is dense in \(U_\alpha \). So \(V = \bigcup_{\alpha \in \mathcal{A}} V_\alpha \) is dense in \(X \setminus C \) and \(\rho_{\xi}(x, C) > 0 \) for all \(x \in V \).

Let show that if \(\xi \) is a regular \(\pi \)-capacity, then \(\rho_{\xi} \) satisfies condition K5). Suppose \(C, C' \) are two regularly closed subsets of \(X \) and \(x \in X \). Obviously, \(\rho_{\xi}(x, C) \leq \rho_{\xi}(x, C') \) implies \(\rho_{\xi}(x, C) \leq \rho_{\xi}(x, C') + \overline{\rho_{\xi}(C', C)} \). So, let \(\rho_{\xi}(x, C) > \rho_{\xi}(x, C') \), and choose an integer \(m \) such that \(\rho_{\xi}(x, C) > \rho_{\xi}(x, C') + 1/n \) for all \(n \geq m \). Hence, there is \(U \in \mathcal{B} \) such that \(U \cap C = \emptyset \) and \(\xi(x, U) > a_n = \rho_{\xi}(x, C') + 1/n \). So, according to condition E5), there is \(U_{a_n} \in \mathcal{B} \) such that \(\xi(x, U_{a_n}) \geq a_n \) and \(\xi(x, U) \leq \xi(y, U) + a_n \) for all \(y \in U_{a_n} \). Since \(\xi(x, U_{a_n}) \geq a_n \), \(U_{a_n} \cap C' \neq \emptyset \) (otherwise we would have \(\rho_{\xi}(x, C') \geq \rho_{\xi}(x, C') + 1/n \)). Hence, \(\xi(x, U) \leq \xi(z, U) + a_n \) for every \(z \in U_{a_n} \cap C' \), which yields \(\xi(x, U) \leq \overline{\rho_{\xi}(C', C)} + \rho_{\xi}(x, C') + 1/n \) for all \(n \geq m \) and \(U \in \mathcal{B} \) with \(U \cap C = \emptyset \). Therefore, \(\rho_{\xi}(x, C) \leq \rho_{\xi}(x, C') + \overline{\rho_{\xi}(C', C)}. \)

Lemma 2.2. Let \(\rho \) be a (regular) normed quasi \(\kappa \)-metric on \(X \) and \(\mathcal{B} \) be a base for \(X \) consisting of regularly open sets. Then the formula
\[\xi(x, U) = \sup \{ \rho(x, C) : C \cup U = X \} \text{ defines a (regular) } \pi \text{-capacity on } X. \]

Proof. It is easy to show that \(\xi \) satisfies conditions E1) and E3). Condition E4) was established in [8, Lemma 3] in the case \(\rho \) is a \(\kappa \)-metric, but the same proof works for quasi \(\kappa \)-metrics as well. Let show condition E2). We fix \(U \in \mathcal{B} \) and consider the family \(\mathcal{B}_U = \{ G \in \mathcal{B} : G \subseteq U \} \). For every \(G \in \mathcal{B}_U \) the set \(V_G = \{ x \in G : \rho(x, C_G) > 0 \} \) is open and non-empty, where \(C_G = X \setminus G \). Hence, \(V = \bigcup_{G \in \mathcal{B}_U} V_G \) is dense in \(U \).

Moreover, \(\xi(x, U) \geq \rho(x, C_G) \) for every \(G \in \mathcal{U} \) and \(x \in V_G \) because \(U \cup C_G = X \). So, \(\xi(x, U) > 0 \) for all \(v \in V \).

It remains to show that \(\xi \) is regular, i.e. it satisfies E5), provided \(\rho \) is regular. Let \(U \in \mathcal{B} \) and \(\xi(x, U) > a > 0 \) for some \(x \in U \). Then, according to our definition, there is a regularly closed set \(C \subset X \) such that \(C \cup U = X \) and \(\rho(x, C) > \max \{ a, \xi(x, U) - a \} \).

The set \(W = \{ y \in U : \rho(y, C) > \xi(x, U) - a \} \) is open and non-empty because \(\rho(., C) \) is continuous and \(x \in W \). Choose \(U_a \in \mathcal{B} \) with \(U_a \subset W \), and let \(C' = X \setminus U_a \). Then, by K5), \(\rho(x, C) \leq \rho(x, C') + \bar{\rho}(C', C) \). Consequently, \(\rho(x, C') \geq \rho(x, C) - \bar{\rho}(C', C) \). On the other hand, \(\bar{\rho}(C', C) = \sup_{y \in C'} \rho(y, C) = \sup_{y \in C' \cap W} \rho(y, C) \) because \(\rho(y, C) = 0 \) for all \(y \in C \). Observe also that \(C' \setminus C \subset U \), and since \(\rho(y, C) > \xi(x, U) - a \) for all \(y \in W \) and \(\rho(y, C) \leq \xi(x, U) - a \) for all \(y \in U \setminus W \), we have \(\bar{\rho}(C', C) = \sup_{y \in C' \cap W} \rho(y, C) \). Therefore, \(-\bar{\rho}(C', C) = -\sup_{y \in C' \cap W} \rho(y, C) \leq -\xi(x, U) + a \leq -\rho(x, C) + a \), so \(\rho(x, C') \geq a \). Since \(U_a \cup C' = X \), the last inequality implies \(\xi(x, U_a) \geq a \). Finally, \(\xi(y, U) \geq \rho(y, C) \geq \xi(x, U) - a \) for all \(y \in U_a \) because \(U_a \subset W \). Hence, \(\xi \) satisfies E5). \(\square \)

Let consider the following condition, where \(\rho(x, C) \) is a non-negative function with \(C \) being a regularly closed subset of \(X \):

K1) For any regularly closed \(C \subseteq X \) there is \(y \not\in C \) with \(\rho(y, C) > 0 \) and \(\rho(x, C) = 0 \) for all \(x \in C \).

Remark 2.3. Observe that in the previous lemma we actually proved the following more general statement: Suppose \(\rho \) satisfies conditions K1)** and K2) - K4), and \(\rho(x, C) \leq 1 \) for all \(x \in X \) and all regularly closed sets \(C \subset X \). Then \(\xi(x, U) = \sup \{ \rho(x, C) : C \cup U = X \} \) defines a \(\pi \)-capacity on \(X \). Moreover, \(\xi \) is regular if \(\rho \) satisfies also K5).

Corollary 2.4. Suppose there is a function \(\rho \) on \(X \) satisfying conditions K1)** and K2) - K4). Then there is a quasi \(\kappa \)-metric \(d \) on \(X \). Moreover, \(d \) is regular if \(\rho \) satisfies also condition K5).

Proof. We can suppose that \(\rho \) is normed. Then, by Lemma 2.2, there is a \(\pi \)-capacity \(\xi \) on \(X \). Finally, Lemma 2.1 implies the existence of a
quasi κ-metric d on X. Moreover, if ρ satisfies condition $K5$), then ξ is regular, so is d.

Theorem 2.5. Any product of (regularly) quasi κ-metrizable spaces is (regularly) quasi κ-metrizable.

Proof. Suppose $X = \prod_{\alpha \in A} X_{\alpha}$ and for every α there is a normed (regular) quasi κ-metric ρ_{α} on X. Following the proof of [6, Theorem 2], for every α we fix a base B_{α} on X_{α}, and let B be the standard base for X consisting of sets of the form $U = \bigcup_{i=1}^{n} \pi_{\alpha^{-1}}(U_{i})$ with $U_{i} \in B_{\alpha}$ and $U_{i} \neq X_{\alpha_{i}}$, where $\pi_{\alpha} : X \rightarrow X_{\alpha}$ is the projection. Denote by $v(U)$ the collection $\{\alpha_{1}, ..., \alpha_{n}\}$. According to Lemma 2.2, for every α there exists a (regular) π-capacity ξ_{α} on X_{α}. Consider the function $\xi : X \times B \rightarrow \mathbb{R}$ defined by $\xi(x, U) = \inf_{\alpha \in v(U)} \xi_{\alpha}(\pi_{\alpha}(x), \pi_{\alpha}(U))/|v(U)|$.

Obviously, condition $E1$) is satisfied. Moreover, since for each α_{i} the set $W_{i} = \{z \in X_{\alpha_{i}} : \xi_{i}(z, U_{i}) > 0\}$ is open and dense in U_{i}, the set $W = \bigcup_{i=1}^{n} \pi_{\alpha_{i}^{-1}}(W_{i})$ is dense in U. Schepin has shown that the function ξ is a (regular) capacity provide each ξ_{α} is so, see the proof of [7, Theorem 15] and [6, Theorem 2]. The same arguments show that ξ also satisfies conditions $E2) – E4)$, and condition $E5)$ in case each ξ_{α} is regular. Therefore, ξ is a (regular) π-capacity. Finally, by Lemma 2.1 there exists a (regular) quasi κ-metric on X. \Box

3. SOME MORE PROPERTIES OF QUASI κ-METRIZABLE SPACES

Proposition 3.1. Let X be a quasi κ-metrizable space and $Y \subset X$. The Y is also quasi κ-metrizable in each of the following cases: (i) Y is dense in X; (ii) Y is regularly closed in X; (iii) Y is open in X.

Proof. If ρ is a quasi κ-metric on X and $Y \subset X$ is dense, the equality $d(y, \overline{Y}) = \rho(y, \overline{X})$, where $U \subset Y$ is open defines a quasi κ-metric on Y. The second case follows from the observation that every regularly closed subset of Y is also regularly closed in X. The third case follows from the first two because every open subset of X is dense in its closure. \Box

Let consider the following condition.

$K4)^* \rho(x, \bigcup C_{n}) = \inf_{n} \rho(x, C_{n})$ for every increasing sequence $\{C_{n}\}$ of regularly closed sets in X.

Lemma 3.2. Suppose X is a space admitting a non-negative function $\rho(x, C)$ satisfying conditions $K1)^*$, $K2)$, $K3)$ and $K4)^*$. Then X is quasi κ-metrizable provided X has countable cellularity. In particular, every compact space admitting such a function ρ is quasi κ-metrizable.
Proof. It suffices to show that \(\rho \) satisfies condition \(K4) \) if \(X \) is of countable cellularity. So, let \(\{ C_\alpha \} \) be an increasing transfinite family of regularly closed sets in \(X \). Then \(\bigcup \alpha C_\alpha = \bigcup \alpha U_\alpha \) and \(\{ U_\alpha \} \) is also increasing, where \(U_\alpha \) is the interior of \(C_\alpha \). Since \(X \) has countable cellularity, there are countably many \(\alpha_i \) such that \(\bigcup_{i \geq 1} U_{\alpha_i} \) is dense in \(\bigcup \alpha U_\alpha \). We can assume that the sequence \(\{ \alpha_i \} \) is increasing, so is the sequence \(\{ U_{\alpha_i} \} \). Because \(\rho \) satisfies condition \(K4) \)*, we have \(\rho(x, \bigcup C_{\alpha_i}) = \inf_i \rho(x, C_{\alpha_i}) \). This implies that \(\rho(x, \bigcup C_{\alpha_i}) = \inf \alpha \rho(x, C_{\alpha_i}) \). Indeed, since \(\bigcup C_{\alpha_i} = \bigcup C_{\alpha_i} \), \(\inf \alpha \rho(x, C_{\alpha_i}) < \inf_i \rho(x, C_{\alpha_i}) \) for some \(x \in X \) would imply the existence of \(\alpha_0 \) with \(\rho(x, C_{\alpha_0}) < \inf_i \rho(x, C_{\alpha_i}) \) for all \(i \). Because any two elements of the family \(\{ C_{\alpha_i} \} \) are comparable with respect to inclusion, the last inequality means that \(C_{\alpha_0} \) contains all \(C_{\alpha_i} \). Hence, \(C_{\alpha_0} = \bigcup \alpha C_{\alpha_i} \) and \(\rho(x, C_{\alpha_0}) \) would be equal to \(\inf_i \rho(x, C_{\alpha_i}) \), a contradiction.

It was shown in [3, Theorem 1.4] that every compact space \(X \) admitting a non-negative function \(\rho(x, C) \) satisfying conditions \(K1) \)*, \(K2) \), \(K3) \) and \(K4) \)* is skeletonally generated, and hence \(X \) has countable cellularity. Therefore, any such compactum is quasi \(\kappa \)-metrizable.

It was shown by Chigogidze [11] that the Čech-Stone compactification of every pseudocompact \(\kappa \)-metrizable space is \(\kappa \)-metrizable. We have a similar result for quasi \(\kappa \)-metrizable spaces.

Theorem 3.3. If \(X \) is a pseudocompact (regularly) quasi \(\kappa \)-metrizable space, then \(\beta X \) is (regularly) quasi \(\kappa \)-metrizable.

Proof. Suppose \(\rho(x, C) \) is a quasi \(\kappa \)-metric on \(X \). We can assume that \(\rho(x, \overline{X}) \leq 1 \) for all \(x \in X \) and all open \(U \subseteq X \) (\(\overline{U} \) denotes the closure of \(U \) in \(X \)). For every open \(W \subseteq \beta X \) consider the function \(f_W \) on \(X \) defined by \(f_W(x) = \rho(x, \overline{W \cap X}) \). Let \(\tilde{f}_W : \beta X \to \mathbb{R} \) be the continuous extension of \(f_W \), and define \(d(y, W) = \tilde{f}_W(y), y \in \beta X \). Obviously, \(d(y, \overline{W}) = 0 \) if \(y \in W \cap X \). Since \(W \cap X \) is dense in \(\overline{W} \), \(d(y, \overline{W}) = 0 \) for all \(y \in \overline{W} \). Moreover, if \(\overline{W} \neq \beta X \), then \(\overline{W \cap X} \neq X \). So, there is an open dense subset \(V \) of \(X \setminus \overline{W} \) with \(\rho(x, \overline{W \cap X}) > 0 \) for all \(x \in V \). Since \(f_W \) is continuous, the set \(\tilde{V} = \{ y \in \beta X : f_W(y) > 0 \} \) is open in \(\beta X \) and disjoint from \(\overline{W} \). Finally, because \(V \subset \tilde{V} \) and \(V \) is dense in \(X \setminus \overline{W} \), \(\tilde{V} \) is dense in \(\beta X \setminus \overline{W} \). So, \(d \) satisfies condition \(K1) \)*. Conditions \(K2) \) and \(K3) \) also hold. Hence, by Lemma 3.2, it suffices to show that \(d \) satisfies \(K4) \)*. To this end, let \(\{ \overline{W_n} \} \) be an increasing sequence of regularly closed subsets of \(\beta X \) and \(W = \bigcup_{n \geq 1} W_n \). We have \(d(y, \overline{W}) \leq \inf_n d(y, \overline{W_n}) \) for all \(y \in \beta X \). Moreover, since \(\rho \) satisfies
K4), \(d(y, \overline{W}) = \inf_n d(y, \overline{W}_n)\) if \(y \in X\). Suppose there is \(y_0 \in \beta X \setminus X\) with \(d(y_0, \overline{W}) < \inf_n d(y_0, \overline{W}_n)\). Consequently, for every \(n\) there exists a neighborhood \(V_n\) of \(y_0\) in \(\beta X\) such that \(\delta < d(y, \overline{W}_n)\) for all \(y \in V_n\), where \(d(y_0, \overline{W}) < \delta < \inf_n d(y_0, \overline{W}_n)\). We also choose a neighborhood \(V_0\) of \(y_0\) with \(d(y, \overline{W}) < \delta\) for all \(y \in V_0\). This implies that \(d(y, \overline{W}) < \delta \leq \inf_n d(y, \overline{W}_n)\) provided \(y \in V = \bigcap_{n>1} V_0 \cap V_n\). But \(V \cap X \neq \emptyset\) because \(X\) is pseudocompact. Thus, \(d(y, \overline{W}) < \inf_n d(y, \overline{W}_n)\) for any \(y \in V \cap X\), a contradiction.

It follows from the definition of \(d\) that it satisfies condition K5) provided \(\rho\) is regular. \(\square\)

Corollary 3.4. Every pseudocompact quasi \(\kappa\)-metrizable space \(X\) is skeletally generated.

Proof. We already noted that every quasi \(\kappa\)-metrizable compactum is skeletally generated, see [8]. So, by Theorem 3.3, \(\beta X\) is skeletally generated. Finally, by [2] and [8], every dense subset of a skeletally generated space is also skeletally generated. \(\square\)

Proposition 3.5. Suppose \(f : X \to Y\) is a perfect open surjection and \(X\) is (regularly) quasi \(\kappa\)-metrizable. Then \(Y\) is also (regularly) quasi \(\kappa\)-metrizable.

Proof. Let \(\rho\) be a quasi \(\kappa\)-metric on \(X\). Since \(f\) is open, \(f^{-1}(\overline{U}) = \overline{f^{-1}(U)}\) for any open \(U \subset Y\). So, \(f^{-1}(\overline{U})\) is regularly closed set in \(X\) and we define

\[
d(y, \overline{U}) = \sup\{\rho(x, f^{-1}(\overline{U})) : x \in f^{-1}(y)\}.
\]

One can check that \(d\) satisfies conditions K2) and K4), and condition K5) in case \(\rho\) is regular. Moreover, \(\overline{U} \neq Y\) implies \(f^{-1}(\overline{U}) \neq X\). So, there is a dense open subset \(V \subset X \setminus f^{-1}(\overline{U})\) such that \(\rho(x, f^{-1}(\overline{U})) > 0\) iff \(x \in V\). Then \(f(V)\) is a dense and open subset of \(Y \setminus \overline{U}\) such that \(f^{-1}(y) \cap V \neq \emptyset\) for all \(y \in f(V)\). Hence, \(d(y, \overline{U}) > 0\) if \(y \in f(V)\). If \(y \notin f(V)\), then \(f^{-1}(y) \cap V = \emptyset\). Thus, \(d(y, \overline{U}) > 0\) iff \(y \in f(V)\). Finally, let check continuity of the functions \(d(., \overline{U})\). Suppose \(d(y_0, \overline{U}) < \varepsilon\) for some \(y_0\) and \(U\). Then \(\rho(x, f^{-1}(\overline{U})) < \varepsilon\) for all \(x \in f^{-1}(y)\). Consequently, there is a neighborhood \(W\) of \(f^{-1}(y)\) with \(\rho(x, f^{-1}(\overline{U})) < \varepsilon\) for all \(x \in W\). Since, \(f\) is closed, \(y_0\) has a neighborhood \(G\) such that \(f^{-1}(G) \subset W\). This implies that \(d(y, \overline{U}) < \varepsilon\) for all \(y \in G\). Now, let \(d(y_0, \overline{U}) > \delta\) for some \(\delta \in \mathbb{R}\). So, there exists \(x_0 \in f^{-1}(y_0)\) with \(\rho(x_0, f^{-1}(\overline{U})) > \delta\). Choose a neighborhood \(O\) of \(x_0\) such that \(\rho(x, f^{-1}(\overline{U})) > \delta\) for all \(x \in O\). Then, \(f(O)\) is a neighborhood of \(y_0\) and \(d(y, \overline{U}) > \delta\) for any \(y \in f(O)\). Therefore, each \(d(., \overline{U})\) is continuous. \(\square\)
Proposition 3.6. Let $f : X \to Y$ be a proper irreducible surjection, and Y is (regularly) quasi κ-metrizable. Then X is also (regularly) quasi κ-metrizable.

Proof. Suppose ρ is a quasi κ-metric on Y. For every regularly closed $C \subset X$ define $d(x, C) = \rho(f(x), f(C))$. This definition is correct because $f(C)$ is regularly closed in Y. Indeed, let $C = \bigcup_{\alpha} C_{\alpha}$, where $U_{\alpha} = \{y \in Y : f^{-1}(y) \subset U\} = Y \setminus f(X \setminus U)$ is open in Y. It is easily seen that d satisfies conditions $K2)$ and $K3)$. Condition $K4)$ follows from the equality $f(\bigcup_{\alpha} C_{\alpha}) = \bigcup_{\alpha} f(C_{\alpha})$ for any family of regularly closed sets in X. To see that d satisfies also condition $K1)^*$, we observe that for every regularly closed $C \subset X$ there is a dense open subset $V \subset Y \setminus f(C)$ such that $\rho(y, f(C)) > 0$ iff $y \in V$. Then $W = f^{-1}(V)$ is open in X and disjoint from C. Moreover, $d(x, C) > 0$ iff $x \in W$. It remains to show that W is dense in $X \setminus C$. And that is really true because for every open $O \subset X \setminus C$ the set O_{\sharp} is a non-empty open subset of $Y \setminus f(C)$. So, $O_{\sharp} \cap V \neq \emptyset$, which implies $W \cap O \neq \emptyset$.

One can also see that d is regular provided so is ρ. \hfill \Box

Corollary 3.7. The absolute of any (regularly) quasi κ-metrizable space is (regularly) quasi κ-metrizable.

Remark 3.8. The last corollary shows that the class of κ-metrizable spaces is a proper subclass of the quasi κ-metrizable spaces. Indeed, let X be a κ-metrizable compact infinite space. Then its absolute aX is quasi κ-metrizable. On the other hand, aX being extremally disconnected can not be κ-metrizable (otherwise, it should be discrete by [7, Theorem 11]).

Corollary 3.9. Every compact space co-absolute to a quasi κ-metrizable space is skeletally generated.

Proof. Let X and Y be compact spaces having the same absolute Z. So, there are perfect irreducible surjections $g : Z \to Y$ and $f : Z \to X$. If Y is quasi κ-metrizable, then so is Z, see Proposition 3.6. Hence, Z is skeletally generated, and by [4, Lemma 1], X is also skeletally generated. \hfill \Box

Recall that the hyperspace $\exp X$ consists of all compact non-empty subsets F of X such that the sets of the form

$$[U_1, ..., U_k] = \{H \in \exp X : H \subset \bigcup_{i=1}^{k} U_i \text{ and } H \cap U_i \neq \emptyset \text{ for all } i\}$$
form a base B_{\exp} for $\exp X$, where each U_i belongs to a base B for X, see [5].

Proposition 3.10. If X is (regularly) quasi κ-metrizable, so is $\exp X$.

Proof. Let B be a base for X and ρ be a (regular) quasi κ-metric on X. Then ρ generates a (regular) π-capacity $\xi_\rho : X \times B \to \mathbb{R}$ on X. Following the proof of [6, Theorem 3], we define a function $\xi : \exp X \times B_{\exp} \to \mathbb{R}$ by

$$\xi(F, [U_1, \ldots, U_k]) = \frac{1}{n} \min \{ \inf_{x \in F} \max_i \xi_\rho(x, U_i), \min_i \sup_{x \in F} \xi_\rho(x, U_i) \}.$$

It was shown in [6] that ξ satisfies conditions $E1), E3) and E4)$, and that ξ is regular provided ξ_ρ is regular. Let show that ξ satisfies condition $E2)$. Since ξ satisfies $E3)$, it suffices to prove that for every $[U_1, \ldots, U_k]$ there is a dense subset $V_{\exp} \subset [U_1, \ldots, U_k]$ with $\xi(F, [U_1, \ldots, U_k]) > 0$ for all $F \in V_{\exp}$. To this end, for each i fix an open dense subset V_i of U_i such that $\xi_\rho(x, U_i) > 0$ if $x \in V_i$. Let V_{\exp} consists of all finite sets $F \subset X$ such that $F \subset \bigcup_{i=1}^n V_i$ and $F \cap V_i \neq \emptyset$ for all i. Then V_{\exp} is dense in $[U_1, \ldots, U_k]$ and $\xi(F, [U_1, \ldots, U_k]) > 0$ for all $F \in V_{\exp}$. Hence, by Lemma 2.1, $\exp X$ is (regularly) quasi κ-metrizable.

Schepin [6] Theorem 3a] has shown that if $\exp X$ is κ-metrizable, then so is X. We don’t know if a similar result is true for quasi κ-metrizable spaces.

4. Skeletally generated spaces

In this section we provide a characterization of skeletally generated compact spaces in terms of functions similar to quasi κ-metrics. We say that a non-negative function $d : X \times C \to \mathbb{R}$ is a weak κ-metric, where C is the family of all regularly closed subsets of X, if it satisfies conditions $K1)^*, K2) - K3)$ and the following one:

$K4)$ For every increasing transfinite family $\{C_\alpha\}_\alpha \subset C$ the function $f(x) = \inf_\alpha d(x, C_\alpha)$ is continuous.

Theorem 4.1. A compact space is skeletally generated if and only if it is weakly κ-metrizable.

Proof. First, let show that every skeletally generated compactum X is weakly κ-metrizable. We embed X as a subset of \mathbb{R}^τ for some cardinal τ. Then, according to [8 Theorem 1.1], there is a function $e : T_X \to T_{\mathbb{R}^\tau}$ between the topologies of X and \mathbb{R}^τ such that: (i) $e(U) \cap e(V) = \emptyset$
provided \(U \) and \(V \) are disjoint; (ii) \(e(U) \cap X \) is dense in \(U \). We define a new function \(e_1 : T_X \to T_{\mathbb{R}^\tau} \),

\[
e_1(U) = \bigcup \{ e(V) : V \in T_X \text{ and } \nabla \subseteq U \}.
\]

Obviously \(e_1 \) satisfies conditions (i) and (ii), and it is also monotone, i.e. \(U \subseteq V \) implies \(e_1(U) \subseteq e_1(V) \). Moreover, for every increasing transfinite family \(\gamma = \{ U_\alpha \} \) of open sets in \(X \) we have \(e_1(\bigcup_\alpha U_\alpha) = \bigcup_\alpha e_1(U_\alpha) \). Indeed, if \(z \in e_1(\bigcup_\alpha U_\alpha) \), then there is an open set \(V \in T_X \) with \(\nabla \subseteq \bigcup_\alpha U_\alpha \) and \(z \in e(V) \). Since \(\nabla \) is compact and the family is increasing, \(V \) is contained in some \(U_\alpha \). Hence, \(z \in e(V) \subseteq e_1(U_\alpha) \). Consequently, \(e_1(\bigcup_\alpha U_\alpha) \subseteq \bigcup_\alpha e_1(U_\alpha) \). The other inclusion follows from monotonicity of \(e_1 \).

Because \(\mathbb{R}^\tau \) is \(\kappa \)-metricizable (see [8]), there is a \(\kappa \)-metric \(\rho \) on \(\mathbb{R}^\tau \). For every regularly closed \(C \subseteq X \) and \(x \in X \) we can define the function \(d(x, C) = \rho(x, \overline{e_1(\text{Int}C)}) \), where \(e_1(U) \) is the closure of \(e_1(U) \) in \(\mathbb{R}^\tau \). It is easily seen that \(d \) satisfies conditions \(K2 \) - \(K3 \). Let show that it also satisfies \(K4_0 \) and \(K1^* \). Indeed, assume \(\{ C_\alpha \} \) is an increasing transfinite family of regularly closed sets in \(X \). We put \(U_\alpha = \text{Int}C_\alpha \) for every \(\alpha \) and \(U = \bigcup_\alpha U_\alpha \). Thus, \(e_1(U) = \bigcup_\alpha e_1(U_\alpha) \). Since \(\{ e_1(U_\alpha) \} \) is an increasing transfinite family of regularly closed sets in \(\mathbb{R}^\tau \), for every \(x \in X \) we have

\[
\rho(x, \bigcup_\alpha e_1(U_\alpha)) = \inf_\alpha \rho(x, e_1(U_\alpha)) = \inf_\alpha d(x, C_\alpha).
\]

Hence, the function \(f(x) = \inf_\alpha d(x, C_\alpha) \) is continuous on \(X \) because so is \(\rho(\cdot, \bigcup_\alpha e_1(U_\alpha)) \). To show that \(K1^* \) also holds, observe that \(d(x, C) = 0 \) if and only if \(x \in X \cap \overline{e_1(\text{Int}C)} \). Because \(e_1(\text{Int}C) \cap X \) is dense in \(C \), \(C \subseteq e_1(\text{Int}C) \). Hence, \(V = X \setminus \overline{e_1(\text{Int}C)} \) is contained in \(X \setminus C \) and \(d(x, C) > 0 \) if \(x \in V \). To prove \(V \) is dense in \(X \setminus C \), let \(x \in X \setminus C \) and \(W_x \subseteq X \setminus C \) be an open neighborhood of \(x \). Then \(W \cap \text{Int}C = \emptyset \), so \(e_1(W) \cap e_1(\text{Int}C) = \emptyset \). This yields \(e_1(W) \cap X \subseteq V \). On the other hand, \(e_1(W) \cap X \) is a non-empty subset of \(W \), hence \(W \cap V \neq \emptyset \). Therefore, \(d \) is a weak \(\kappa \)-metric on \(X \).

The other implication was actually established in the proof of Theorem 1.4] from [8], and we sketch the proof here. Suppose \(d \) is a weak \(\kappa \)-metric on \(X \) and embed \(X \) in a Tychonoff cube \(\mathbb{I}^4 \) with uncountable \(A \), where \(I = [0, 1] \). For any countable set \(B \subseteq A \) let \(\mathcal{A}_B \) be a countable base for \(X_B = \pi_B(X) \) consisting of all open sets in \(X_B \) of the form \(X_B \cap \prod_{\alpha \in B} V_{\alpha} \), where each \(V_{\alpha} \) is an open subinterval of \(I \) with rational end-points and \(V_{\alpha} \neq \mathbb{I} \) for finitely many \(\alpha \). Here \(\pi_B : \mathbb{I}^A \to \mathbb{I}^B \) denotes the projection, and let \(p_B = \pi_B|X \). For any open \(U \subseteq X \) denote by \(f_U \)
the function \(d(x, \overline{U}) \). We also write \(p_B \prec g \), where \(g \) is a map defined on \(X \), if there is a map \(h : p_B(X) \to g(X) \) such that \(g = h \circ p_B \). Since \(X \) is compact this is equivalent to the following: if \(p_B(x_1) = p_B(x_2) \) for some \(x_1, x_2 \in X \), then \(g(x_1) = g(x_2) \). We say that a countable set \(B \subset A \) is \(d \)-admissible if \(p_B \prec f_{p_B^{-1}(V)} \) for every \(V \in \mathcal{A}_B \). Denote by \(\mathcal{D} \) the family of all \(d \)-admissible subsets of \(A \). We are going to show that all maps \(p_B : X \to X_B, B \in \mathcal{D} \), are skeletal and the inverse system \(S = \{ X_B : p_B^B : D \subset B, D, B \in \mathcal{D} \} \) is \(\sigma \)-continuous with \(X = \lim S \).

It was shown in [8] that for any countable set \(B \subset A \) there is \(D \in \mathcal{D} \) with \(B \subset D \), and the union of any increasing sequence of \(d \)-admissible sets is also \(d \)-admissible. So, we need to show only that \(p_B : X \to X_B \) is a skeletal map for every \(B \in \mathcal{D} \).

Suppose there is an open set \(U \subset X \) such that the interior in \(X_B \) of \(\overline{p_B(U)} \) is empty. Then \(W = X_B \setminus \overline{p_B(U)} \) is dense in \(X_B \). Let \(\{ W_m \}_{m \geq 1} \) be a countable cover of \(W \) with \(W_m \in \mathcal{A}_B \) for all \(m \). Since \(\mathcal{A}_B \) is finitely additive, we may assume that \(W_m \subset W_{m+1}, m \geq 1 \). Because \(B \) is \(d \)-admissible, \(p_B \prec f_{p_B^{-1}(W_m)} \) for all \(m \). Hence, there are continuous functions \(h_m : X_B \to \mathbb{R} \) with \(f_{p_B^{-1}(W_m)} = h_m \circ p_B, m \geq 1 \). Recall that \(f_{p_B^{-1}(W_m)}(x) = d(x, \overline{p_B^{-1}(W_m)}) \) and \(p_B^{-1}(W) = \bigcup_{m \geq 1} p_B^{-1}(W_m) \).

Therefore, \(f_{p_B^{-1}(W)}(x) = d(x, \overline{p_B^{-1}(W)}) \leq f(x) = \inf_m f_{p_B^{-1}(W_m)}(x) \) for all \(x \in X \). Moreover, \(f \) is continuous and \(f_{p_B^{-1}(W_{m+1})}(x) \leq f_{p_B^{-1}(W_m)}(x) \) because \(W_m \subset W_{m+1} \). The last inequalities together with \(p_B \prec f_{p_B^{-1}(W_m)} \) yields that \(p_B \prec f \). So, there exists a continuous function \(h \) on \(X_B \) with \(f(x) = h(p_B(x)) \) for all \(x \in X \). But \(f(x) = 0 \) for all \(x \in p_B^{-1}(W) \), so \(f(\overline{p_B^{-1}(W)}) = 0 \). This implies that \(h(\overline{W}) = 0 \). Since \(p_B(\overline{p_B^{-1}(W)}) = \overline{W} = X_B \), we have that \(h \) is the constant function zero. Consequently, \(f(x) = 0 \) for all \(x \in X \). Finally, the inequality \(d(x, \overline{p_B^{-1}(W)}) \leq f(x) \) yields that \(d(x, \overline{p_B^{-1}(W)}) = 0 \) for all \(x \in X \). On the other hand, \(\overline{p_B^{-1}(W)} \cap U = \emptyset \). So, according to K1\(^{*}\), there is an open subset \(U' \) of \(U \) with \(d(x, \overline{p_B^{-1}(W)}) > 0 \) for each \(x \in U' \), a contradiction. \(\square \)

Because any compactification of a skeletally generated space is skeletally generated (see [8]) and the weakly \(\kappa \)-metrizability is a hereditary property with respect to dense subsets, we have the following

Corollary 4.2. Every skeletally generated space is weakly \(\kappa \)-metrizable.

All results in Section 3, except Proposition 3.10, remain valid for weakly \(\kappa \)-metrizable spaces. Theorem 4.4 and a result of Kucharski-Plewik [4, Theorem 6] imply that Proposition 3.10 is also true for
weakly κ-metrizable compacta. But the following questions are still open.

Question 4.3. Is any product of weakly κ-metrizable spaces weakly κ-metrizable?

Question 4.4. Is any weakly κ-metrizable space with a countable cellularity skeletally generated?

References

[1] A. Chigogidze, *On κ-metrizable spaces*, Uspehi Mat. Nauk **37** (1982), no. 2, 241–242 (in Russian).

[2] P. Daniels, K. Kunen and H. Zhou, *On the open-open game*, Fund. Math. **145** (1994), no. 3, 205–220.

[3] A. Kucharski and S. Plewik, *Skeletal maps and I-favorable spaces*, Acta Univ. Carolin. Math. Phys. **51** (2010), 67–72.

[4] A. Kucharski and S. Plewik, *Game approach to universally Kuratowski-Ulam spaces*, Topology Appl. **154** (2007), no. 2, 421–427.

[5] K. Kuratowski, *Topology, vol. I*, Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw 1966.

[6] E. Shchepin, *On κ-metrizable spaces*, Math. USSR Izvestija **14** (1980), no. 2, 1–34.

[7] E. Shchepin, *Topology of limit spaces of uncountable inverse spectra*, Russian Math. Surveys **315** (1976), 155–191.

[8] V. Valov, *I-favorable spaces: Revisited* Topology Proc. **51** (2018), 277–292.

[9] V. Valov, *External characterization of I-favorable spaces*, Mathematica Balkanica **25** (2011), no. 1-2, 61–78

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca