Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: A systematic review and meta-analysis

Ziying Zhang1 | Peng Chen2 | Hui Xie3 | Peiguo Cao1

Abstract
Purpose: A meta-analysis was formulated to appraise the diagnostic accuracy of circulating tumor DNA (ctDNA) in hepatocellular carcinoma (HCC).

Materials and Methods: We enrolled all relevant studies published until September 2019. Four primary subgroups were investigated: the subgroup of quantitative or qualitative analysis of ctDNA, the subgroup of Ras association domain family 1 isoform A (RASSF1A) methylation in ctDNA and the subgroup of the combined alpha-fetoprotein (AFP) and ctDNA assay. We analyzed the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) as well as the area under the curve (AUC).

Results: A total of 33 qualified articles with 4113 subjects were incorporated into our meta-analysis. The combined SEN, SPE, and DOR in quantitative studies were 0.722 (95% confidence interval (95% CI): 0.686-0.756), 0.823 (95% CI: 0.789-0.854), 18.532 (95% CI: 8.245-41.657), respectively, yielding an AUC of 0.880. For qualitative studies, the corresponding value was 0.568 (95% CI: 0.548-0.587), 0.882 (95% CI: 0.867-0.897), 10.457 (95% CI: 7.270-15.040) and 0.767, respectively. Detection of RASSF1A methylation yielded an AUC of 0.841, with a SEN of 0.644 (95% CI: 0.608-0.678) and a SPE of 0.875 (95% CI: 0.847-0.900). AFP combined with ctDNA assay achieved an AUC of 0.944, with a SEN of 0.760 (95% CI: 0.728-0.790) and a SPE of 0.920 (95% CI: 0.893-0.942).

Conclusion: Circulating tumor DNA displays a promising diagnostic potential in HCC. However, it is not independently sufficient and can serve as an assistant tool combined with AFP for HCC screening and detection.

Keywords
circulating tumor DNA, diagnostic accuracy, hepatocellular carcinoma, meta-analysis, methylation
1 | INTRODUCTION

Liver cancer, with over 841,000 patients globally, has currently become the second most frequent reason for tumor-related deaths.\(^1,2\) Hepatocellular carcinoma (HCC), as the most common pathologic subtype of primary liver tumors, occupies approximately 90% of all patients.\(^3,4,5\) The prognosis of untreated HCC patients is undesirable with a median survival of 2-14 months.\(^2,4,5\) Compelling observational data have demonstrated that earlier HCC detection and therapeutic interventions are conducive to boosting the overall survival of patients.\(^6\)

Currently, surgical intervention, such as partial hepatic resection and hepatic transplantation remain the primary therapeutic strategies for HCC patients. Indeed, if patients with early HCC that is currently hard to recognize and delineate could be accurately diagnosed, the 5-year survival rate for HCC patients who have received surgery would reach up to 90%.\(^7\) Unfortunately, a large proportion of HCC individuals are usually diagnosed at an advanced stage on account of the non-specific clinical symptoms and the limitations in detection methods, thus triggering that fewer than 30% of the patients are qualified for surgical treatment.\(^8,9\) Early screening for HCC has been conducted in several cohorts following the Asian-Pacific Association for the Study of the Liver guidelines, which advocates that HCC surveillance should be implemented for clinical subjects with liver cirrhosis and those with positive surface antigen of hepatitis B virus (HBsAg) by utilizing liver ultrasonography (US) and serum alpha-fetoprotein (AFP) test every 6 months.\(^10\)

Nevertheless, the diagnostic efficiency of AFP assay for HCC is not satisfactory, with a sensitivity (SEN) of 25%-65% and a specificity (SPE) lower than 82%, respectively.\(^11\) When liver US is applied for the detection of HCC nodules smaller than one cm, its SEN is approximately 60%.\(^12\) Additionally, the fluctuation in AFP levels is also associated with inflammation and liver disease type.\(^13\) For example, AFP levels may be enhanced in non-HCC conditions, including chronic liver diseases (such as liver cirrhosis and hepatic inflammatory), other tumors (such as intrahepatic cholangiocarcinoma and metastatic colon cancer) as well as pregnancy.\(^14-16\) Therefore, the detection of HCC with these methods remains suboptimal, it is imperative to develop additional biomarkers for early detection and diagnosis of HCC in a minimally invasive, convenient and accurate manner.

Accumulating evidence has indicated that the cumulation of genetic and epigenetic changes in liver tissue results in the tumorigenesis and development of HCC, which is intimately associated with the surrounding microenvironment.\(^17\) Recent progresses in the field have highlighted that the minimally invasive detection of circulating tumor DNA (ctDNA) confers a promising opportunity for the early screening and diagnosis of HCC. This assay, in conjunction with circulating tumor cells and circulating cell-free DNA, is termed “liquid biopsy”.\(^18\) Circulating tumor DNA is generally derived from apoptotic or necrotic tumor cells and further released into the circulation,\(^19\) which carries cancer-specific modifications in gene or epigenetics, including single nucleotide mutation,\(^20\) copy number aberration (CNA),\(^21\) and DNA methylation\(^19\) or 5-hydroxymethylcytosines.\(^16\) Quantitative alteration and qualitative alteration of ctDNA are primarily detected in HCC patients. The former is associated with measuring the quantity of ctDNA that is generally increased in HCC patients,\(^22\) and the latter refers to monitoring tumor-specific genetic aberrations. Specifically, with the booming development of next generation sequencing, a growing number of studies have been concentrating on the “methylation pattern” of ctDNA in HCC patients and demonstrated that tumor-specific alterations in methylation may represent a novel discriminatory tool for the screening, detection, and diagnosis of HCC. Thus, by deciphering the information of deoxyribonucleic acid derived from HCC patients’ circulation, clinicians can utilize this “liquid biopsy” technology to confer precise diagnosis and appropriate therapy for HCC patients.

Although a considerable number of studies have revealed the diagnostic efficiency of ctDNA for HCC, the results are very diverse partially ascribed to the discrepancies in study design and assay methods for ctDNA among studies. Thus, prior to its clinical utilization, a comprehensive analysis and evaluation of the diagnostic value of ctDNA in HCC is imminently required. Herein, we implemented a meta-analysis to objectively assess the diagnostic performance of ctDNA assays for HCC, which potentially confers guideline for technology improvement and clinical applications.

2 | MATERIALS AND METHODS

2.1 | Search strategy

All potentially relevant articles that were published up to September 2019 were retrieved and the following electronic databases were independently queried by two authors: PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure. The query terms were as follows: “circulating tumor DNA” OR “circulating DNA” OR “ctDNA” OR “plasma DNA” OR “serum DNA” OR “blood DNA” AND “liver cancer” OR “hepatocellular carcinoma” OR “liver neoplasms” OR “hepatic carcinoma” OR “liver tumor” AND “diagnosis” OR “sensitivity” OR “specificity” OR “accuracy”. The language of all articles was limited to English. We also manually screened the reference from the included articles and relevant reviews for enlarged retrieval.
2.2 | Inclusion and exclusion criteria

The publications that conformed to the following criteria were incorporated: (a) ctDNA indicators were used for the first diagnosis rather than the recurrent diagnosis of HCC; (b) the numerical value of SEN and SPE could be collected either directly from the papers or could be calculated in each study; and (c) specimens were extracted from peripheral blood. The exclusion criteria were as follows: (a) review, case report, letter or conference abstract; (b) the sample size of studies was less than 10; and (c) duplicate or overlapping publications that included the same population and gene. Two authors independently evaluated the eligibility of studies. Discrepancies were resolved via consensus.

2.3 | Data extraction

Two authors independently conducted data extraction from the included studies and further summarized the ultimate results. The information extracted from the incorporated publications was as follows: the first author's name, publication year, region/country, study design, participant characteristics (including sample size, control type), detection details (including source of specimens, sampling time, experimental

FIGURE 1 A PRISMA flow diagram of the literature search. CAN, copy number aberration; CNKI: China National Knowledge Infrastructure; ctDNA: circulating tumor DNA; HBV: hepatitis B virus; HCC, hepatocellular carcinoma; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; SEN, sensitivity; SPE, specificity
methods, reference gene, cutoff values), diagnostic performance (including SEN and SPE, true positive (TP), true negative (TN), false positive (FP), and false negative (FN), positive likelihood ratio (PLR) and negative likelihood ratio (NLR), and diagnostic concordance).

2.4 Quality assessment

Based on the revised Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the risk of bias and concerns about applicability of all included publications were evaluated as “low risk”, “high risk” and “unclear risk” through four key domains including patient selection, index test, reference standard, and flow and timing.23 All the studies were independently assessed and rated by two authors. Divergence was discussed until an agreement was reached. If an article was evaluated to be of poor quality by two authors, it would be excluded.

2.5 Statistical analysis

We utilized RevMan Manager 5.3 and Meta-Disc 1.4 software to conduct this diagnostic meta-analysis. The pooled SEN and SPE, PLR, NLR, diagnostic odds ratio (DOR) and corresponding 95% confidence interval (95% CI) were calculated as evaluation indicators.24 Simultaneously, the summary receiver operating characteristic (SROC) curve and its corresponding area under the curve (AUC) value were formulated to evaluate the overall test accuracy.25-28 The closer the AUC value was to 1, the higher was the diagnostic efficiency.29,30 The AUC range of 0.5-0.7, 0.7-0.9, 0.9-1.0 corresponded to low, moderate or high accuracy, respectively.29,30 The Spearman correlation coefficient and its corresponding P value were used to identify the presence of the threshold effect. Generally, threshold effect was considered to exist when the P value was lower than 0.05. If heterogeneity resulted from non-threshold effect, we utilized the chi-square and I² test to evaluate the heterogeneity among the studies.31 The Deek's funnel plot was formulated to examine the existence of potential publication bias.32 A result with P value < .05 was considered to be statistically significant.

3 RESULTS

3.1 Study characteristics

Figure 1 shows a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram adapted from Moher et al34 depicting the retrieval strategy of databases to incorporate qualified publications. Initially, a total of 610 publications were queried through our search strategy. Eventually, 33 eligible articles22,35-66 published from 2000 to 2019 were incorporated into this diagnostic meta-analysis following the exclusion of duplicate studies, the examination of title and abstract as well as the comprehension of full text. Specifically, all the included studies consisted of quantitative analysis to measure ctDNA concentration (n = 5)22,56-59 and qualitative analysis to unravel tumor-specific single-gene methylation in ctDNA (n = 25),35-55,63-66 as well as both quantitative and qualitative analysis (n = 3).50-62 Among these 33 publications, 11 articles described the diagnostic role of circulating Ras association domain family 1 isoform A (RASSFIA) methylation in HCC37,39,40,48-50,52,60-62,65 and eight articles evaluated the diagnostic performance of ctDNA combined with AFP assay in HCC38,40,44,54,56 Nine articles assessed the diagnostic accuracy of AFP assay for HCC37,40-44,62-64. Our study enrolled a total population of 2268 HCC patients and 1845 control individuals (1318 patients with benign liver disorders and 527 healthy volunteers). The primary characteristics of all participants are summarized in Table 1. An overwhelming majority of participants were Asian (n = 3808), with the residual 160 participants from America and 145 individuals from Egypt. Twelve researches belonged to retrospective (n = 8) or prospective trial (n = 4), respectively, and the remaining publications (n = 21) did not definitely describe the study design. Among 19 studies with known time point of sampling, most of the samples were collected before treatment (n = 14) and ctDNA was obtained from plasma (n = 13), serum (n = 18), both plasma and serum (n = 2). The assay methods to measure the concentrations of ctDNA were real-time quantitative polymerase chain reaction (RT-qPCR) (n = 5), ultraviolet transilluminator (n = 1), enzyme-linked immunosorbent assay (ELISA) (n = 1) and droplet digital PCR DNA (DdPCR) (n = 1). For qualitative analysis of ctDNA, methylation-specific polymerase chain reaction (MSP) was the most common method used (n = 25).

3.2 Quality assessment

The quality assessment outcome of the eligible 33 publications is revealed in Figure 2 and Figure S1. A majority of the literature exhibited a moderate-high quality, indicating that the overall quality of the included studies was commonly robust. Nevertheless, 13 studies might generate an unknown risk of bias in index test because of insufficient information about predefined threshold. Additionally, 12 studies did not mention whether the patient selection was consecutive.
First author, year	Country/Region	Study type	Control type	No. of HCC/BD/HC	Timing sample	Sample source	Detection methods	Assay indicators	Diagnostic concordance
Kisiel, 2019	USA	Retrospective	LC	21/30/-	During surgery	Plasma	MSP Methylation (EMX1)	NA 76.0 100.0 100.0	16 0 5 20
Wei, 2018	China	NA	BD/HC	119/157/50	Pre surgery	Plasma	MSP Methylation (SOCS3)	NA 28.6 95.2 95.2	34 10 10 197
Dong, 2017	China	NA	CHB and LC/HC	98/165/80	NA	Serum	MSP Methylation (RASSF1A)	NA 52.0 93.1 93.1	16 4 8 2
Mansour, 2017	Egypt	NA	HCV infection	45/40/-	NA	Serum	MSP Methylation (RASSF1A)	8 copies/µL 86.7 72.5 72.5	53 10 10 197
Hu, 2017	China	NA	LC, CHB	80/80/-	Pre treatment	Serum	MSP Methylation (UBE2Q1)	NA 66.3 [53.8] 57.5 [87.5]	53 10 10 197
Huang, 2015	China	NA	CHB	190/120/-	Pre treatment	Serum	MSP Methylation (RASSF1A)	NA 64.2 [80.9] 89.8 [93.4]	53 10 10 197
Li, 2014	China	NA	CHB	136/46/-	Pre treatment	Serum	MSP Methylation (IGFBP7)	NA 65.4 82.6 82.6	93.4 93.4
Kuo, 2014	Taiwan	NA	BD	39/-/34	During surgery	Plasma	MSP Methylation (HOXA9)	>0.88	93.3 93.3
Liu, 2014	China	NA	CHB	309/217/-	During surgery	Plasma	MSP Methylation (MT1M)	NA 69.8 83.8 83.8	122 122
Kuo, 2013	China	NA	CHB	309/217/-	During surgery	Plasma	MSP Methylation (MT1G)	NA 69.8 83.8 83.8	122 122
Zhang, 2013	China	NA	CHB	309/217/-	During surgery	Plasma	MSP Methylation (MT1G)	NA 69.8 83.8 83.8	122 122

(Continues)
First author, year	Country/Region	Study type	Control type	No. of HCC/BD/HC	Timing sample	Sample source	Detection methods	Assay indicators	Cutoff value	SEN (%)	SPE (%)	PLR	NLR	Diagnostic concordance			
Sun, 2010	Hong Kong	Retrospective	LC/HC	35/16/12	NA	Plasma	RT-qPCR	Methylation (LMNB1)	NA	80.0	82.0	4.444	0.244	0.810			
Hu, 2010	China	Retrospective	HC	35/-/10	Pre surgery	Serum	MSP	Methylation (RASSF1A)	NA	40.0	100.0	Infinity	0.600	0.533			
Chang, 2008	China	NA	LC	26/-/16	NA	Plasma	MSP	Methylation (RASSF1A)	NA	26.9	81.3	1.459	0.899	0.476			
Zhang, 2007	Taiwan	Prospective	HC	50/-/50	Closest to diagnosis	Serum	MSP	Methylation (P16)	NA	44.0	96.0	11.00	0.583	0.700			
														22	2	28	48
Zhang, 2007	Taiwan	Prospective	HC	50/-/50	Closest to diagnosis	Serum	MSP	Methylation (P16)	NA	22.0	100.0	Infinity	0.780	0.610			
														11	0	39	50
Wang, 2006	China	NA	LC	328/-/-	NA	Serum	MSP	Methylation (GSTP1)	NA	50.0	62.5	1.333	0.800	0.525			
Yeo, 2005	Hong Kong	NA	HC	40/-/-	Pre surgery	Plasma	MSP	Methylation (RASSF1A)	NA	42.5	100.0	Infinity	0.575	0.540			
Lin, 2005	China	NA	BD/HC	64/15/20	Pre- and post-surgery	Serum	MSP	Methylation (p16)	NA	76.6	100.0	0.234	0.848				
Chu, 2004	Korea	NA	LC	46/23/-	NA	Serum	MSP	Methylation (p16NK4a)	NA	47.8	82.6	2.747	0.632	0.594			
Wong, 2003	Hong Kong	Prospective	BD/HC	45/30/20	Pre-, intra- and post-surgery	Serum/ plasma	MSP	Methylation (p16NK4a)	NA	31.1	100.0	Infinity	0.689	0.674			
Wong, 2000	Hong Kong	Prospective	BD/HC	25/35/20	Pre surgery	Serum/plasma	MSP	Methylation (p16)	NA	60.0	100.0	Infinity	0.400	0.594			
Gai, 2018	Hong Kong	NA	HBV carriers and LC/HC	40/29/30	NA	Plasma	DdPCR	ctDNA	370 copies/mL	93.0	60.0	2.325	0.117	0.674			
Huang, 2012	China	NA	HC	72/-/41	Pre treatment	Plasma	RT-qPCR	ctDNA	18.2 ng/mL	90.2	90.3	9.299	0.109	0.903			
Yang, 2011	China	case control	HBV infection/HC	60/21/29	Pre treatment	Plasma	RT-qPCR	hTERT	1.87 × 10^6 copies/ul	64.0	90.0	6.400	0.400	0.903			
Dong, 2008	China	NA	LC, CH and AH/HC	117/152/40	Pre surgery	Plasma	ELISA	TGF-b1	1.2 μg/L	89.7	91.1	10.08	0.113	0.755			
Ren, 2006	China	NA	LC/HC	79/20/20	Pre surgery	Plasma	Ultraviolet transilluminator	ctDNA	36.6 ng/mL	51.9	77.5	2.307	0.113	0.906			

Abbreviations: AH, acute hepatitis; CDO1, Cysteine dioxygenase 1; CH, chronic hepatitis; CHB, Chronic hepatitis B; CLD, chronic liver diseases; DdPCR, droplet digital PCR; ELISA, enzyme-linked immunosorbent assay; EMX1, empty spiracles homeobox 1; FN, false negative; FP, false positive; GPC-3, glypican-3; HBV, hepatitis B virus; HCV, hepatitis C virus; IGFBP7, insulin-like growth factor-binding protein 7; LC, liver cirrhosis; LMNB1, Lamin B1; MSP, methylation-specific polymerase chain reaction; NA, not applicable; NLR, negative likelihood ratio; No. of HCC/BD/HC, number of hepatocellular carcinoma/benign liver diseases/healthy controls; RASSF1A, Ras association domain family 1 isoform A; PLR, positive likelihood ratio; RT-qPCR, real-time quantitative polymerase chain reaction; SEN, sensitivity; SPE, specificity; TGR5, G-protein-coupled bile acid receptor Gpbar1; TN, true negative; TP, true positive.

The SEN and SPE, PLR and NLR, diagnostic concordance, TP, TN, FP and FN of the ctDNA combined with AFP for HCC detection are presented in [1].

A limit of detection (LOD) of 5%.

Methylation index.
3.3 | Diagnostic accuracy

3.3.1 | Diagnostic value of quantitative and qualitative analysis of ctDNA for HCC

The quantitative detection of ctDNA discriminated HCC patients from control individuals with a SEN of 0.722 (95% CI: 0.686-0.756) and a SPE of 0.823 (95% CI: 0.789-0.854) (Figure 3A,B). The numerical value of PLR, NLR and DOR was 4.208 (95% CI: 2.526-7.009), 0.264 (95% CI: 0.145-0.483), 18.532 (95% CI: 8.245-41.657), respectively. This also corresponded to the SROC curve with an AUC of 0.880 (Figure 5A), indicating a higher level of moderate overall accuracy to differentiate HCC patients from control subjects. Among the included quantitative studies, there was significant heterogeneity (SEN: $I^2 = 94.3\%$, $P = .000$; SPE: $I^2 = 88.3\%$, $P = .000$; DOR: $I^2 = 80.7\%$, $P = .000$) and the Spearman correlation coefficient was 0.283 ($P = .460$), indicating that heterogeneity among studies was derived from nonthreshold effects.

Similarly, in the qualitative analysis group associated with tumor-specific single-gene methylation, a SEN of 0.568 (95% CI: 0.548-0.587), a SPE of 0.882 (95% CI: 0.867-0.897) and a DOR of 10.457 (95% CI: 7.270-15.040) were revealed (Figure 4C,D). The value of PLR, NLR and DOR was 4.525 (95% CI: 2.757-7.426) and 0.439 (95% CI: 0.345-0.557) and the DOR was 12.550 (95% CI: 7.262-20.126). The AUC for RASSF1A was 0.841 (Figure 5D), indicating that ctDNA RASSF1A methylation can be considered as a potential HCC diagnostic biomarker with a higher level of moderate overall accuracy.

3.3.2 | Diagnostic value of ctDNA combined with AFP assay for HCC

Initially, we evaluated the diagnostic efficiency of AFP assay in HCC. The AFP test yielded an AUC of 0.638, with a SEN of 0.478 (95% CI: 0.447-0.509) and a SPE of 0.840 (95% CI: 0.809-0.867) (Figure S2). The value of PLR, NLR and DOR were 3.368 (95% CI: 1.913-5.929), 0.611 (95% CI: 0.506-0.738), and 6.284 (95% CI: 3.109-12.700), respectively. Furthermore, the combination of ctDNA and AFP assay yielded an AUC of 0.944 (Figure 5C), with a SEN of 0.760 (95% CI: 0.728-0.790) and a SPE of 0.920 (95% CI: 0.893-0.942) (Figure 4A,B). This corresponded to a PLR of 9.469 (95% CI: 5.178-17.313), an NLR of 0.234 (95% CI: 0.154-0.357) and a DOR of 54.864 (95% CI: 19.980-150.66), highlighting that compared with the ctDNA assay or AFP test alone, the detection of ctDNA integrated with AFP could distinguish HCC patients from control individuals with a remarkably increased high level of accuracy (Table 2).

3.3.3 | Diagnostic value of circulating RASSF1A methylation for HCC

In the qualitative analysis of ctDNA, circulating RASSF1A promoter methylation is the most frequently detected epigenetic change in HCC. Thus, we also estimated the diagnostic efficacy of RASSF1A methylation in discriminating HCC patients from controls. In the 11 studies describing circulating RASSF1A methylation, the pooled SEN and SPE was 0.644 (95% CI: 0.608-0.678) and 0.875 (95% CI: 0.847-0.900), respectively (Figure 4C,D). The pooled PLR and NLR was 4.525 (95% CI: 2.757-7.426) and 0.439 (95% CI: 0.345-0.557), respectively, and the DOR was 12.550 (95% CI: 7.262-20.126). The AUC for RASSF1A was 0.841 (Figure 5D), indicating that ctDNA RASSF1A methylation can be considered as a potential HCC diagnostic biomarker with a higher level of moderate overall accuracy.
3.4 Subgroup analysis and meta-regression analysis

Subgroup analysis was performed based on different covariates: region (Asia vs non-Asia), sample size (≥100 vs <100), control type (benign disease vs healthy controls), sample source (plasma vs serum), assay methods (RT-qPCR vs other methods in the quantitative study; MSP vs other methods in the qualitative studies) and methylation gene location (RASSF1A vs other gene targets in the qualitative studies) (Table 3). For the quantitative analysis of ctDNA, subgroup analyses based on sample source revealed that compared with sample collected from serum, sampling from plasma achieved an increased diagnostic accuracy in discriminating HCC from control subjects, with SEN of 0.777 (95% CI: 0.731-0.819) vs 0.654 (95% CI: 0.598-0.708), and SPE of 0.846 (95% CI: 0.805-0.880) vs 0.773 (95% CI: 0.703-0.834) as well as an AUC of 0.902 vs 0.843, respectively. Another subgroup analysis associated with control type showed that the SEN, SPE and AUC for quantitative ctDNA assay to distinguish HCC patients from healthy subjects was 0.775 (95% CI: 0.731-0.814), 0.843 (95% CI: 0.804-0.877) and 0.895, respectively. While the corresponding indicators to discriminate HCC from benign liver diseases were much lower at 0.697 (95% CI: 0.657-0.735), 0.817 (95% CI: 0.780-0.851) and 0.868, respectively. Similarly, in term of subgroup analysis related to control type in the included qualitative analysis of
ctDNA, studies using healthy controls were characterized with more satisfactory diagnostic efficiency compared with those utilizing subjects with benign liver disorders, displaying SEN of 0.604 (95% CI: 0.563-0.644) vs 0.556 (95% CI: 0.533-0.579) and SPE of 0.938 (95% CI: 0.916-0.955) vs 0.852 (95% CI: 0.831-0.872), respectively. These results highlighted a more robust capability of the ctDNA assay to differentiate HCC patients from healthy individuals than from benign patients. We also performed the meta-regression analysis to further explore the source of heterogeneity. As has been revealed in Table 4, the parameter of “control type” potentially was the primary source of heterogeneity in the qualitative analysis group (P = .022). None of parameters might generate significant heterogeneity in the quantitative analysis group (both P > .05).

3.5 Publication bias

We examined the potential publication bias of the incorporated articles by performing Deek’s funnel plot asymmetry test. Our results revealed that no significant publication bias existed in the group of quantitative analysis (Figure 6A, P = .114), in the group of qualitative analysis (Figure 6B, P = .725), in the group of ctDNA combined with AFP assay (Figure 6C, P = .079), or in the group of RASSF1A methylation detection (Figure 6D, P = .449).

4 DISCUSSION

HCC is a high-grade malignant neoplasm with undesirable prognosis and high mortality, which is largely attributable to its low early diagnostic rate. Therefore, it is essential to disclose novel and effective biomarkers for the detection and diagnosis of early-stage HCC. Applying novel molecular technologies to liquid biopsies has advanced our understanding of the effect of ctDNA detection on HCC diagnosis. In this diagnostic meta-analysis, we aimed to incorporate these published results for the first time and systematically estimate the diagnostic accuracy of ctDNA for HCC.

In our meta-analysis, compared with the group of quantitative analysis, the group of qualitative analysis yielded a lower SEN (0.568 vs 0.722) and AUC (0.787 vs 0.880), and that was probably because some genetic loci selected for test were predominantly expressed in non-HCC individuals. However, the SPE (0.882) of the qualitative group was superior to that of the quantitative group (0.823). Notably, we specifically concentrated on RASSF1A methylation in the qualitative analysis of ctDNA RASSF1A is a well-acknowledged tumor suppressor and is continually inactivated by promoter hypermethylation in HCC. It has the capability to trigger autophagy defects to facilitate oxidative stress and genome instability, thus accelerating tumorigenesis. We revealed that RASSF1A methylation discriminated HCC patients from control individuals with a SEN of 0.644 and a SPE of 0.875, contributing to an improvement of AUC from...
0.787 to 0.841. These results indicate that circulating tumor DNA \textit{RASSF1A} methylation can serve as a potential biomarker to screen HCC.

Our results also showed that AFP, as the most frequently used biomarker for HCC diagnosis, exhibited an unsatisfactory diagnostic performance on account of a low SEN of merely 0.478, which was relatively lower than the result of Farinati et al (the SEN was 0.540).68 Thus, quantitative or qualitative analysis of ctDNA was more sensitive and feasible, and the diagnostic accuracy of ctDNA was superior to the AFP assay alone (the AUC was merely 0.638). Additionally, the combined detection of ctDNA and AFP assay resulted in a remarkably increased diagnostic accuracy with a SEN of 0.760 and a SPE of 0.920 as well as an AUC of 0.944 in discriminating HCC from control individuals. This encouraging result highlights that the combined AFP and ctDNA assay for diagnosing and evaluating HCC can generate much more favorable accuracy than does either method on its own and that ctDNA detection potentially develops into a novel auxiliary tool for AFP in the screening and detection of HCC.

Furthermore, we also analyzed the DOR to evaluate the diagnostic accuracy in each group. The discriminatory test performance would be considered satisfactory when the numerical value of DOR was higher than 10.25 In our results, the DOR for quantitative and qualitative ctDNA assay to distinguish HCC cases from control subjects was 18.532 and 10.457, respectively. The DOR of \textit{RASSF1A} methylation detection of ctDNA (12.550) was slightly higher than that of qualitative ctDNA assay (10.457). While the DOR for AFP assay to discriminate HCC and controls was much lower at 6.284. The DOR was dramatically improved to 54.864 when utilizing the combined detection of ctDNA and AFP, indicating a powerful capability of integrating ctDNA analysis with AFP to exactly screen and diagnose HCC.

In our report, the value of PLR in quantitative and qualitative detection of ctDNA was 4.208 and 4.378, respectively, manifesting that HCC cases have an approximately four to five fold higher chance of being ctDNA assay-positive in comparison with control individuals. Compared with the quantitative detection of ctDNA, the qualitative detection of ctDNA displayed a higher NLR (0.489), implying that the probability for cases with negative qualitative assay results to have HCC is 48.9%. Thus, a negative ctDNA test result should be explained prudently when single-gene methylation is independently utilized to screen and detect HCC. Nevertheless, addition of AFP statistically boosted the overall accuracy and robustness, with a PLR of 9.469 and an NLR of 0.234.

Publication bias was not revealed in our meta-analysis by formulating Deek’s funnel plot. Furthermore, a meta-regression analysis was performed to explore the potential source
of heterogeneity, thus demonstrating that in these quantitative studies, none of the parameters (such as sample source, sample size, control types and assay methods) represented a primary source of heterogeneity. Heterogeneity might have arisen because of additional reasons, including enrolled patients’ age, tumor size, lymph node invasion, lesion metastasis, TNM staging and discrepancies in the surgical protocol, which failed to be evaluated in this study on account of partial deficiency of the data or illegible details. Furthermore, the covariate of “control types” potentially exerted certain influence on heterogeneity in the qualitative analysis group. Therefore, further large clinical trials should reasonably select control individuals to boost the diagnostic performance of ctDNA in HCC.

Notably, several limitations deserve to be discussed in our meta-analysis. Firstly, in spite of the thorough literature search, we did not incorporate several valuable articles because we failed to access their full texts. Moreover, a relatively smaller number of publications were incorporated into the quantitative group, thus potentially diminishing the statistical significance. Thirdly, some bias was potentially generated in this analysis because we merely included English-language articles. Ultimately, we failed to include some covariates that were not depicted in these included studies, such as neoplasm size, lymph node invasion, lesion metastasis, and TNM staging of tumors. Therefore, more large-scale prospective clinical researches that delineate the diagnostic value of ctDNA detection for HCC are needed to further identify the conclusions of this meta-analyses.
TABLE 3 Subgroup analysis of diagnostic performance of ctDNA assay for HCC

Analysis	Group	Subgroup	SEN (95% CI)	SPE (95% CI)	DOR (95% CI)	AUC
Quantitative analysis	Control type	HC	0.775 (0.731-0.814)	0.843 (0.804-0.877)	21.320 (6.848-66.377)	0.895
		BD	0.697 (0.657-0.735)	0.817 (0.780-0.851)	16.015 (6.334-40.496)	0.868
	Sample size	≥100	0.693 (0.652-0.732)	0.864 (0.829-0.895)	20.501 (6.323-66.466)	0.887
		≤100	0.848 (0.773-0.906)	0.672 (0.580-0.756)	15.676 (7.740-31.750)	0.855
	Sample source	Plasma	0.777 (0.731-0.819)	0.846 (0.805-0.880)	23.762 (6.321-89.324)	0.902
		Serum	0.654 (0.598-0.708)	0.773 (0.703-0.834)	10.632 (6.199-18.236)	0.843
	Assay method	RT-qPCR	0.693 (0.647-0.736)	0.817 (0.765-0.862)	17.568 (8.502-36.304)	0.873
		Other methods	0.775 (0.717-0.827)	0.828 (0.780-0.870)	18.307 (2.271-147.58)	0.875
Qualitative analysis	Region	Asian	0.554 (0.534-0.575)	0.886 (0.869-0.900)	9.883 (6.672-14.639)	0.767
		Other areas	0.744 (0.672-0.808)	0.842 (0.769-0.900)	15.206 (7.798-29.653)	0.860
	Control type	HC	0.604 (0.563-0.644)	0.938 (0.916-0.955)	22.151 (14.827-33.093)	0.893
		BD	0.556 (0.533-0.579)	0.852 (0.831-0.872)	6.990 (4.661-10.483)	0.740
	Sample size	≥100	0.557 (0.533-0.580)	0.880 (0.862-0.897)	10.196 (6.694-15.529)	0.770
		≤100	0.541 (0.508-0.574)	0.911 (0.890-0.929)	9.878 (5.667-17.218)	0.802
	Sample source	Plasma	0.516 (0.476-0.555)	0.934 (0.909-0.953)	11.476 (5.024-26.212)	0.718
		Serum	0.586 (0.563-0.609)	0.861 (0.841-0.880)	10.170 (6.782-15.251)	0.800
	Assay method	MSP	0.553 (0.533-0.574)	0.885 (0.869-0.900)	9.483 (6.433-13.980)	0.750
		Other methods	0.767 (0.694-0.829)	0.848 (0.773-0.906)	20.130 (10.035-40.381)	0.908
	Methylation gene location	RASSF1A	0.644 (0.608-0.678)	0.875 (0.847-0.900)	12.550 (7.826-20.126)	0.841
		Other gene location	0.535 (0.511-0.559)	0.886 (0.867-0.904)	10.031 (6.266-16.058)	0.750

Abbreviations: 95% CI: 95% confidence interval; AUC: area under the curve; BD, benign live diseases; ctDNA, circulating tumor DNA; DOR, diagnostic odds ratio; HC, healthy controls; HCC, hepatocellular carcinoma; MSP, methylation-specific polymerase chain reaction; RT-qPCR, real-time quantitative polymerase chain reaction; SEN, sensitivity; SPE, specificity.
In summary, we performed the first integrated meta-analysis on the overall diagnostic accuracy of circulating tumor DNA assays in HCC. The diagnostic performance of quantitative and qualitative analysis of ctDNA was superior to the classical HCC biomarker AFP. Specifically, ctDNA RASSF1A methylation potentially serves as an effective diagnostic biomarker.

TABLE 4 Meta-regression of impacts of study features on diagnostic value of ctDNA for HCC

Analysis	Covariates	Coefficient	SE	P value	RDOR (95% CI)
Quantitative	Control type	1.649	0.959	0.184	5.20 (0.25-109.94)
	Sample size	0.541	1.129	0.665	1.72 (0.05-62.41)
	Sample source	0.264	1.227	0.843	1.30 (0.03-64.73)
	Assay method	0.679	1.108	0.583	1.97 (0.06-67.02)
Qualitative	Region	-0.779	0.589	0.196	0.46 (0.14-1.53)
	Control type	1.146	0.473	0.022	3.15 (1.20-8.27)
	Sample size	0.401	0.385	0.307	1.49 (0.68-3.28)
	Sample source	0.109	0.421	0.798	1.11 (0.47-2.64)
	Assay method	-0.756	0.671	0.269	0.47 (0.12-1.85)
	Methylation gene location	0.289	0.416	0.493	1.34 (0.57-3.13)

Abbreviations: 95% CI: 95% confidence interval; ctDNA: circulating tumor DNA; HCC, hepatocellular carcinoma; RDOR: relatively diagnostic odds ratio; SE: standard error.

FIGURE 6 Funnel plots to evaluate the publication bias for (A) the quantitative detection subgroup; (B) the qualitative detection subgroup; (C) the subgroup of ctDNA combined with AFP assay; and (D) the RASSF1A methylation detection subgroup. AFP, alpha-fetoprotein; ctDNA, circulating tumor DNA; DOR, diagnostic odds ratio; ESS, effective sample sizes

5 CONCLUSION

In summary, we performed the first integrated meta-analysis on the overall diagnostic accuracy of circulating tumor DNA
for HCC. Notably, because of deficiency of robustness, the ctDNA assay cannot be utilized as an independent diagnostic tool. The combined assays of ctDNA and AFP yielded a higher level of discriminatory power in HCC detection. Therefore, quantitative and qualitative analysis of ctDNA can be used as a complementary strategy integrated with AFP assay for the early detection and diagnosis of HCC. Larger sample studies are needed to further confirm our conclusions and to make the ctDNA approach more sensitive and specific.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest.

AUTHOR CONTRIBUTIONS
PG Cao, ZY Zhang designed/planned the study and wrote the paper. ZY Zhang, P Chen, H Xie performed the computational modeling, acquired and analyzed clinical data. H Xie and P Chen performed the imaging analysis. ZY Zhang, H Xie, P Chen, PG Cao participated in discussion of related data.

ORCID
Peiguo Cao https://orcid.org/0000-0002-8828-9755

REFERENCES
1. Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer. 2019;18(1):114.
2. Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Terap. 2019;4:41.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30.
4. Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv238–iv255.
5. Islami F, Miller KD, Siegel RL, Fedewa SA, Ward EM, Jemal A. Disparities in liver cancer occurrence in the United States by race/ethnicity and state. CA Cancer J Clin. 2017;67(4):273-289.
6. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014;11(4):e1001624.
7. Tang J-C, Feng Y-L, Guo T, Xie A-Y, Cai X-J. Circulating tumor DNA in hepatocellular carcinoma: trends and challenges. Cell Biosci. 2016;6:32.
8. European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908-943.
9. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301-1314.
10. Omata M, Cheng A-L, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11(4):317-370.
11. Kondo Y, Kimura O, Shimosegawa T. Significant biomarkers for the management of hepatocellular carcinoma. Clin J Gastroenterol. 2015;8(3):109-115.
12. Li J, Han XU, Yu X, et al. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. J Exp Clin Cancer Res. 2018;37(1):213.
13. Richardson P, Duan Z, Kramer J, Davila JA, Tyson GL, El-Serag HB. Determinants of serum alpha-fetoprotein levels in hepatitis C-infected patients. Clin Gastroenterol Hepatol. 2012;10(4):428-433.
14. Zamcheck N, Paszta Zs G. CEA, AFP and other potential tumor markers. CA Cancer J Clin. 1975;25(4):204-214.
15. Gamil M, Alborai M, El-Sayed M, et al. Novel scores combining AFP with non-invasive markers for prediction of liver fibrosis in chronic hepatitis C patients. J Med Virol. 2018;90(6):1080-1086.
16. Cai J, Chen L, Zhang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. 2019;68(12):2195-2205.
17. Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179(2):561-577.e22.
18. Qu C, Wang Y, Wang P, et al. Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy. Proc Natl Acad Sci USA. 2019;116(13):6308-6312.
19. Xu R-H, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155-1161.
20. Huang Y-L, Wu J-R, Fang M, et al. The role of ERCC1 and AFP gene polymorphism in hepatocellular carcinoma. Medicine. 2019;98(14):e15090.
21. Jiang P, Chan CWM, Chan KCA, et al. Lengthening and shortening of DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci USA. 2015;112(11):E1317-E1325.
22. Gai W, Ji LU, Lam WKJ, et al. Liver- and colon-specific DNA methylation markers in plasma for investigation of colorectal cancers with or without liver metastases. Clin Chem. 2018;64(8):1239-1249.
23. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-536.
24. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. MetaDiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31.
25. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56(11):1129-1135.
26. Jaeschke R, Guyatt GH, Sackett DL. Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA. 1994;271(9):703-707.
27. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58(10):982-990.
28. Arends LR, Hamza TH, van Houwelingen JC, Heijenbrok-Kal MH, Hunink M, Stijnen T. Bivariate random effects meta-analysis of ROC curves. Med Decis Making. 2008;28(5):621-638.
29. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285-1293.
30. Walter SD. Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med. 2002;21(9):1237-1256.
31. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
32. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559-1573.
33. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882-893.
34. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
35. Kissel JB, Dukek BA, V.S.R. Kanipakam R, et al. Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase i pilot, and phase II clinical validation. Hapatology. 2019;69(3):1180-1192.
36. Wei L, Huang Y, Zhao R, et al. Detection of promoter methylation status of suppressor of cytokine signaling 3 (SOCS3) in tissue and plasma from Chinese patients with different hepatic diseases. Clin Exp Med. 2018;18(1):79-87.
37. Dong X, Hou Q, Chen Y, Wang X. Diagnostic value of the methylation of multiple gene promoters in serum in hepatitis B virus-related hepatocellular carcinoma. Dis Markers. 2017;2017:2929381.
38. Hu NA, Fan X-P, Fan Y-C, et al. Hypomethylated Ubiquitin-Conjugating Enzyme2 Q1 (UBE2Q1) gene promoter in the serum is a promising biomarker for hepatitis B virus-associated hepatocellular carcinoma. Tohoku J Exp Med. 2017;242(2):93-100.
39. Huang W, Li T, Yang W, et al. Analysis of DNA methylation in plasma for monitoring hepatocarcinogenesis. Gene Test Mol Bioma. 2015;19(6):295-302.
40. Dong X, He H, Zhang W, Yu D, Wang X, Chen Y. Combination of serum RASSF1A methylation and AFP is a promising non-invasive biomarker for HCC patient with chronic HBV infection. Diagn Pathol. 2015;10:133.
41. Huang G, Krocker JD, Kirk JL, et al. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma. Clin Chem Lab Med. 2014;52(6):899-909.
42. Han LY, Fan YC, Mu NN, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int J Med Sci. 2014;11(2):164-171.
43. Yang Y, Fan Y-C, Gao S, et al. Methylated cysteine dioxygenase-1 gene promoter in the serum is a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Tohoku J Exp Med. 2014;232(3):187-194.
44. Kuo C-C, Lin C-Y, Shih Y-L, et al. Frequent methylation of HOXA9 gene in tumor tissues and plasma samples from human hepatocellular carcinomas. Clin Chem Lab Med. 2014;52(8):1235-1245.
45. Zhang P, Wen X, Gu F, et al. Methylation profiling of serum DNA from hepatocellular carcinoma patients using an Infinium Human Methylation 450 BeadChip. Hep Int. 2013;7(3):893-900.
46. Sun F-K, Fan Y-C, Zhao J, et al. Detection of TP72 methylation in the serum of hepatocellular carcinoma patients. Dig Dis Sci. 2013;58(4):1010-1015.
47. Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res. 2010;9(1):70-78.
48. Hu L, Chen G, Yu H, Qiu X. Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol. 2010;4(1):423-432.
65. Huang Z-H, Hu YU, Hua D, Wu Y-Y, Song M-X, Cheng Z-H. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp Mol Pathol. 2011;91(3):702-707.

66. Chu HJ, Heo J, Seo SB, et al. Detection of aberrant p16INK4A methylation in sera of patients with liver cirrhosis and hepatocellular carcinoma. J Korean Med Sci. 2004;19(1):83-86.

67. Li W, Yue F, Dai Y, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2019;26(8):1379-1395.

68. Farinati F, Marino D, De Giorgio M, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither? Am J Gastroenterol. 2006;101(3):524-532.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Zhang Z, Chen P, Xie H, Cao P. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: A systematic review and meta-analysis. Cancer Med. 2020;9:1349–1364. https://doi.org/10.1002/cam4.2799