Table 1.

| Demographics | Carba-S (60) | Carba-NS (21) | P-value |
|--------------|-------------|--------------|---------|
| Age, y       | 61.2 ± 14.1 | 51.7 ± 17.8  | 0.02    |
| Female sex   | 24 (40%)   | 7 (33%)      |         |
| Height, cm   | 169.3 ± 10.8 | 172.5 ± 12.6 | 0.26    |
| Weight, kg   | 75.2 ± 26.1 | 68.0 ± 35.8  | 0.23    |
| IMI kg/m²    | 26.7 ± 11.2 | 25.1 ± 11.2  | 0.10    |
| C/CL, ml/min | 42.5 ± 48.75 | 70 ± 43.5    | 0.03    |
| Charlson Comorbidity Index | 4.3 ± 3.3  | 3.1 ± 3.5    | 0.11    |
| APACHE II    | 16.5 ± 8.9  | 21 ± 7.7     | 0.03    |
| Immuno suppressed | 19 (32%) | 7 (33%)      | 0.89    |
| Infection    |             |              |         |
| Pneumonia    | 14 (25%)   | 15 (71%)     |         |
| Bacteremia   | 46 (77%)   | 6 (29%)      |         |
| Bacteremia source control | 12 (26%) | 1 (17%)      | 0.74    |
| Bacteremia source unknown | 1 (2%)   | 0 (0%)       |         |
| Bone and joint | 3 (7%)     | 0 (0%)       |         |
| Cardiovascular | 1 (2%)    | 0 (0%)       |         |
| Central line | 8 (17%)    | 2 (33%)      | 0.32    |
| Lower Respiratory Tract | 8 (17%) | 1 (17%)      |         |
| SSTI         | 4 (9%)     | 0 (0%)       |         |
| Sepsis        | 5 (11%)    | 0 (0%)       |         |
| Urinary Tract | 12 (26%)  | 2 (33%)      | 0.65    |
| Unknown       | 5 (11%)    | 1 (17%)      |         |

Treatment

| Time to effective therapy, h | 2.5 ± 10.3 | 5.5 ± 9.7 | 0.31 |
| Empiric β-lactam duration, d | 3.8 ± 6.3 | 4.0 ± 8.2 | 0.24 |
| Empiric β-lactam agent |         |         |       |
| Aztreonam   | 7 (12%)    | 0 (0%)    |       |
| Cefepime    | 19 (32%)   | 6 (29%)   |       |
| Cefazolin   | 0 (0%)     | 4 (19%)   | 0.004 |
| Ceftriaxone-avibactam | 0 (0%) | 1 (13%)   | 0.26 |
| Piperacillin-tazobactam | 34 (57%) | 9 (43%)  |       |
| Empiric combination therapy | 4 (7%) | 3 (15%) | 0.16 |
| Isolation therapy | 10 (17%) | 2 (9.7) |       |
| Oral step down therapy | 22 (37%) | 1 (10%) | 0.02 |
| Total treatment duration, d | 14.2 ± 8.0 | 13.0 ± 9.4 | 0.69 |

Outcomes

| 14 day mortality | 9 (15%) | 1 (5%) | 0.44 |
| 30 day mortality | 10 (17%) | 2 (10%) | 0.72 |
| 30 day recurrence | 5 (8%) | 1 (5%) | 1.0 |
| Length of stay, d | 8.0 ± 12.6 | 21 ± 40.7 | 0.001 |
| Infection-related length of stay, d | 6.0 ± 12.6 | 10.6 ± 29.2 | 0.001 |

Data presented as mean ± SD, n (%), or median [IQR]

Disclosures. All authors: No reported disclosures.

2270. Initial Treatment Selection Among Patients with Recurrent Pseudomonas aeruginosa (PSA) Infections (Infxs): Does Prior PSA Antibiotic Susceptibility Result Effect Subsequent Empiric Treatment Decisions? Laura Poznani, PhD, MPH1, Vikas Gupta, PharmD, BCPS2, Ryan 1Dillen, MSc1, Kabvin Yu, MD1, John Murray, MSc1, Thomas Lodise, PharmD, PhD1, Duygu 5Ozkinay; Professor 2Kurugol; Professor 1Becton, Dickinson and Company; Franklin Lakes, New Jersey; 1Alberty College of Pharmacy and Health Sciences, Albany, New York

Session: 246. Clinical Outcomes of Infections with Resistant Organisms Saturday, October 5, 2019: 12:15 PM

2271. Bacteremia Due to Multi-Drug-Resistant Organisms Is an Independent Risk Factor for Death Among Patients Supported by Extracorporeal Membrane Oxygenation (ECMO) Ryan Rivosecchi, PharmD, BCCCP1; Penny Sappington, MD2; Lloyd Clarke, MD3; Robert Clarke, MD3; Mith Huyen Nguyen, MD4; UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania; 1University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; 2University of Pittsburgh, Pittsburgh, Pennsylvania

Session: 246. Clinical Outcomes of Infections with Resistant Organisms Saturday, October 5, 2019: 12:15 PM

Background. Resistance to commonly used anti-pseudomonal β-lactams (AP-BL) like piperacillin-tazobactam (TZP), meropenem (MER) and cefepime (CEF) among patients (patients) with PSA infx is increasing. To minimize receipt of DAT among patients with PSA infx, clinicians need to consider the patient’s risk of having a PSA infx that is NS to commonly used AP-BLs. A well-described risk factor for having a NS AP-BL PSA infx is recent history of an NS AP PSA infx. The study evaluates the likelihood that a patient with a PSA infx receives an AP-BL that was found to be NS on a prior PSA culture.

Methods. This was a retrospective cohort study of a single intensive care unit. All patients receiving ECMO therapy between 7/1/13 and 4/28/18 were evaluated. Multidrug-resistant (MDR) pathogens were defined as non-susceptible to ≥2 agents in ≥2 antimicrobial classes, and vancomycin-resistant Enterococcus (VRE).

Results. 471 patients received ECMO therapy, accounting for 4,739 ECMO days. Thirty-six patients (7.6%) had ≥1 episode of BSI; 47 episodes occurred, resulting in 10 events per 1,000 ECMO days. The most common organisms were Enterobacteriaceae (26%), of which were MDR; Staphylococcus aureus (26%), which were MRSA; Propionibacterium acnes (17%), which were MRSA; and Nocardia spp. (17%), which were NS AP PSA infx. This study evaluates the likelihood that a patient with a PSA infx receives an AP-BL that was found to be NS on a prior PSA culture.

Conclusions. The findings highlight the importance of considering prior PSA culture and susceptibility data when selecting initial antibiotic therapy for patients who present with a suspected or documented PSA infx and have a history of a prior PSA infx. Patients with history of a PSA infx that was NS to ≥2 AP-BL may benefit from initial use of novel AP-BL therapies.

Disclosures. All authors: No reported disclosures.

2272. Evaluation of Clinical Features, Carbapenem Resistance and Risk Factors of Klebsiella Species: A 4-Year Retrospective Study in Turkey Yahual Ural, MD1,2; Zermet Gökmen, MD1,2; Gulhadiye Avcu, MD1,2; Duygu Bozkurt, MD1,2; Zafer Kuruoglu, Professor Doctor2; Fadi Vardar, Professor3; Ferha Cilli, Professor Doctor3; Ferda Ozkinay, Professor Doctor 1; Medical School of Ege University, Department of Infectious Diseases, Pediatric, Borova, Izmir, Turkey; 2Division of Infectious Disease; Department of Pediatrics, Borova, Izmir, Turkey; 3Department of Microbiology, Medical School of Ege University, Borova, Izmir, Turkey; Pediatric Infectious Diseases, Borova, Izmir, Turkey; 4Pediatric Infectious Diseases, Borova, Izmir, Turkey; 5Medical Microbiology, Borova, Izmir, Turkey

Session: 246. Clinical Outcomes of Infections with Resistant Organisms Saturday, October 5, 2019: 12:15 PM

Background. Carbapenem-resistant bacteria are an important part of healthcare-associated infections and cause morbidity and mortality. The aim of this study was to determine the epidemiological, clinical features, carbapenem resistance rates and risk factors of bloodstream infections of children with Klebsiella spp.

Methods. In this retrospective study, medical records of 85 episodes of 77 patients caused by with Klebsiella spp. bacteremia who admitted to Ege University Faculty of Medicine, Pediatric Hospital in Turkey between 2014 and 2017 were evaluated. Conventional biochemical methods were performed using the automated systems of MALDI-TOF SS / VITEK 2 (Biomerieux, France). According to EUCAST recommendations, VITEK 2 (Biomerieux, France) automated microdilution method was used in sensitivity tests.

Results. The mean age of 85 episodes included in the study was 3.49 (±5.4) years. 53 episodes (62.4%) were male, whereas 22 episodes (26%) were female. Eighty-eight percent (88%) of the patients were inpatients. The most common service was newborn service (30.6%). Neutropenia was 26% and thrombocytopenia was 55% at the time of diagnosis. Klebsiella pneumoniae was 93% and Klebsiella oxytoca was 7%. Carbapenem resistance rate was found to be 30.6% in Klebsiella spp. Carbapenem resistance was found 18% in 2014, 38% in 2015, 42% in 2016 and 25% in 2017. In patients who developed carbapenem-resistant Klebsiella