Implosion uniformity improvement of fuel target in heavy ion fusion

T Karino¹, S Kawata¹, T Suzuki¹, S Kondo¹, T Iinuma¹, D Barada¹ and A I Ogoyski²
¹ Utsunomiya University, Utsunomiya 321-8585, Japan
² Varna Technical University, Varna 9010, Bulgaria

E-mail: mt146615@cc.utsunomiya-u.ac.jp, kwt@cc.utsunomiya-u.ac.jp

Abstract. A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [Phys. Plasmas 19, 024503 (2012)]. In the present paper the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude and the wavelength of the wobbling perturbation applied.

1. Introduction

The dynamic stabilization for the Rayleigh-Taylor instability (RTI) has been studied for a uniform compression of a fusion fuel target in inertial confinement fusion [1-7]. The RTI dynamic stabilization was proposed many years ago in inertial fusion; the oscillation amplitude of the driving acceleration should be sufficiently large to stabilize RTI. In inertial fusion, the fusion fuel compression is essentially important to reduce an input driver energy, and the implosion uniformity is one of critical issues to release the fusion energy stably [8-9].

The heavy ion accelerator could provide a beam axis wobbling with a high frequency. The wobbling heavy ion beams also define the perturbation phase. This means that the perturbation phase is known, and so the perturbations successively imposed are superposed in the plasma. The heavy ion beams accelerate the fusion target fuel with a large acceleration in inertial fusion. The wobbling heavy ion beams would provide a small oscillating acceleration perturbation in an inertial fusion fuel target during the target implosion. So the RTI growth would be reduced by the phase-controlled superposition of perturbations in heavy ion inertial fusion.

If there are other sources of perturbations in the physical system except the driven-beam illumination non-uniformity, the dynamic mitigation mechanism proposed here does not work. For example, when the shell thickness of an inertial fusion fuel target is not uniform at the target fabrication process, the dynamic mitigation mechanism does not work. In this sense, the dynamic mitigation mechanism is not almighty but works well to mitigate the RTI growth originated by the driver beam non-uniformity itself.

In this paper we discuss the robustness of the dynamic mitigation mechanism for instabilities presented in Refs. [10-12]. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, amplitude and wavelength of the wobbling perturbation applied. The promising results presented in this paper ensure the viability of the mechanism of the dynamic instability mitigation.

2. Dynamic instability mitigation
Let us consider an unstable system, which has one mode of \(a = a_0 e^{i k x + t} \). Here \(a_0 \) is the amplitude, \(k = 2 \) is the wave number, \(\Omega \) is the frequency, \(\delta g \) is the growth rate of the instability. An example initial perturbation is shown in Fig. 1(a). At \(t=0 \) the perturbation is imposed. The initial perturbation grows with \(\delta g \). After \(\Delta t \), if another perturbation, which has an inverse phase, is actively imposed (see Fig. 1(b)), the overall amplitude is the superposition of all the perturbations, and so the actual perturbation amplitude is well mitigated as shown in Fig. 1(c). This is an ideal example for the dynamic instability mitigation [10-12].

In plasmas the perturbation phase and amplitude cannot be measured. So the perfect feedback control cannot be realized in plasmas and fluids. However, a heavy ion beam accelerator can also provide a controlled wobbling or oscillating beam with a high frequency. It would provide the defined phase and amplitude of perturbations [13, 14].

When the instability driver wobbles uniformly in time, the imposed perturbation for a physical quantity of \(F \) at \(t = \tau \) may be written as

\[
F = \delta F e^{i \Omega \tau} e^{i \gamma (t - \tau) + i k \cdot \vec{x}}
\]

(1)

Here \(\delta F \) is the amplitude, \(\Omega \) the wobbling or oscillation frequency defined actively by the driving wobbler, and \(\Omega \tau \) the phase shift of superimposed perturbations. At each time \(t \), the wobbler or the modulated driver provides a new perturbation with the phase and the amplitude actively defined by the driving wobbler itself. The superposition of the perturbations provides the actual perturbation at \(t \) as follows:

\[
\int_0^t d\tau \; \delta F e^{i \Omega \tau} e^{i \gamma (t - \tau) + i k \cdot \vec{x}} \propto e^{\frac{\gamma + i n \Omega}{\gamma^2 + \Omega^2}} \delta F e^{i \Omega \tau} e^{i k \cdot \vec{x}}
\]

(2)

When \(\Omega \geq \gamma \), the perturbation amplitude is reduced by the factor of \(\gamma / \Omega \), compared with the pure instability growth (\(\Omega = 0 \)) based on the energy deposition non-uniformity[10,11]. The result in Eq. (2) presents that the perturbation phase should oscillate with \(\Omega \geq \gamma \) for the effective amplitude reduction.

Figure 2 shows an example simulation for RTI, which has a single mode. In this example, two stratified fluids are superimposed under an acceleration of \(g = g_0 + \delta g \). The density jump ratio between the two fluids is 10/3. In this specific case the wobbling frequency \(\Omega \) is \(\gamma \), the amplitude of \(\delta g \) is 0.1\(g_0 \), and the results shown in Figs. 2 are those at \(t = 5/\gamma \). In Fig. 2(a) \(\delta g \) is constant and drives the RTI as usual, and in Fig. 2(b) the phase of \(\delta g \) is shifted or oscillates with the frequency of \(\Omega \) as stated above for the dynamic instability mitigation. The RTI growth mitigation ratio is 72.9% in Fig. 2. The growth mitigation ratio is defined by \(\left(H_0 - H_{\text{mitigate}} \right) / H_0 \times 100\% \). Here \(H \) is defined as shown in Fig. 2(a), \(H_0 \) shows the deviation amplitude of the two-fluid interface in the case in Fig. 2(a) without the oscillation (\(\Omega = 0 \)), and \(H_{\text{mitigate}} \) presents the deviation for the other cases with the oscillation (\(\Omega \neq 0 \)). The example simulation results support well the effect of the dynamic mitigation mechanism.

3. Dynamic instability mitigation

In order to check the robustness of the dynamic instability mitigation mechanism, here we study the effects of the change in the phase, the amplitude and the wavelength of the wobbling perturbation \(\delta F \), that is, \(\delta g \) in Fig. 2 on the dynamic instability mitigation.

When the perturbation amplitude \(\delta F = \delta F(t) \) depends on time or oscillates slightly in time, the dynamic mitigation mechanism is examined first. We consider \(\delta F(t) = \delta F_0\left(1 + \Delta e^{i \Omega t}\right) \) in Eq. (1).
Here $\Delta \ll 1$. In this case, Eq. (2) is modified as follows:

$$\int_0^\infty dt \: \delta F e^{i \Delta t} e^{i \lambda \gamma (t-\tau)} \approx \left \{ \frac{\gamma + \Omega}{\Omega^2 + \Omega^2} + \Delta \frac{\gamma + (\Omega + \Omega')}{\Omega^2 + (\Omega + \Omega')^2} \right \} \delta F_0 e^{i \lambda \gamma \tau} e^{i \lambda \gamma \varphi} \quad (3)$$

When $\Delta \ll 1$ in Eq. (3), just a minor effect appears on the dynamic mitigation of the instability.

$$\int_0^\infty dt \: \delta F e^{i \Delta t} e^{i \lambda \gamma (t-\tau)} \approx \frac{\gamma + \Omega}{\Omega^2 + \Omega^2} \delta F_0 e^{i \lambda \gamma \tau} e^{i \lambda \gamma \varphi} \quad (3)$$

Figure 2. Example simulation results for the Rayleigh-Taylor instability (RTI) mitigation.

(a) $\delta F(t) = \delta g \left(1 - \Delta \sin \Omega' t \right)$
(b) $\Omega(t) = \Omega(1 + \Delta \sin \Omega' t)$
(c) $k(t) = k_0 + \Delta k e^{i \Omega' \tau}$

Figure 3. Fluid simulation results for the RTI mitigation for the time-dependent amplitude, oscillation frequency and wave number.

We also performed the fluid simulations. In the simulations $\delta F(t) = \delta g \left(1 - \Delta \sin \Omega' t \right)$. The RTI is simulated again based on the same parameter values shown in Fig. 2 except the perturbation amplitude oscillation $\delta F(t)$. In the simulations we employ $\Omega' = 3 \Omega$, Ω and $\Omega/3$ in Eq. (3). For $\Delta=0.1$ and 0.3, and for $\Omega' = 3 \Omega$, Ω and $\Omega/3$, the RTI growth reduction ratio is 54.9--72.9% at $t = 5/\gamma$. The results by the fluid simulations and Eq. (3) demonstrate that the perturbation amplitude oscillation $\delta F = \delta F(t)$ is uninformative as long as $\Delta \ll 1$. Figure 3(a) shows the RTI growth reduction ratio of 61.3% for $\Omega' = \Omega$.

When the oscillation frequency Ω of the perturbation δF depends on time ($\Omega = \Omega(t)$), the time-dependent frequency means that $\Omega(t)$ would consist of multiple frequencies: $e^{i \Omega' t} = \sum \Delta_l e^{i \Omega_l t}$. In this case Eq. (3) becomes

$$\int_0^\infty dt \: \delta F e^{i \Delta t} e^{i \lambda \gamma (t-\tau)} \approx \sum \Delta_l \frac{\gamma + \Omega_l}{\Omega_l^2 + \Omega_l^2} \delta F_0 e^{i \lambda \gamma \tau} e^{i \lambda \gamma \varphi} \quad (4)$$

The result in Eq. (4) shows that the highest frequency of Ω_l contributes to the instability mitigation. In a real system the highest frequency would be the original wobbling frequency Ω or so, and the largest amplitude of Δ_l is also that for the original wobbling mode. So when the frequency change is slow, the original wobbler frequency of Ω contributes to the mitigation.

The fluid simulations are also done for the RTI with $\Omega(t) = \Omega(1 + \Delta \sin \Omega' t)$ together with the same parameter values employed in Fig. 2. In this case $\Delta=0.1$ and 0.3, and $\Omega' = 3 \Omega$, Ω and $\Omega/3$. The growth reduction ratio was 66.9--74.0% at $t = 5/\gamma$. The little oscillation of the imposed perturbation oscillation frequency $\Omega(t)$ has a minor effect on the dynamic instability mitigation. Figure 3(b) shows the RTI growth reduction ratio of 68.8% for $\Omega' = \Omega$.

When the wobbling wavelength $\lambda = 2 \pi / k$ depends on time, one can expect as follows in a real system: $k(t) = k_0 + \Delta k e^{i \Omega' \tau}$ and $k_0 \gg \Delta k$. In this case the wobbling wavelength changes slightly in time, and Eq. (3) becomes as follows:

$$\int_0^\infty dt \delta F e^{i \Delta t} e^{i \lambda \gamma (t-\tau)} \approx \delta F e^{i \gamma \tau + ik_0 \lambda} \int_0^\infty dt e^{i (\Omega - \gamma) \tau} \sum_{m=-\infty}^{\infty} i^m \int_0^\infty m (\Delta k \cdot x) \: e^{i m \lambda \gamma \varphi}$$
\[\propto \sum_{m=-\infty}^{\infty} i^m J_m(\Delta k \cdot x) \int_0^t dt \ e^{i(\Omega + m \Omega' k') \tau - \gamma \tau} \propto \sum_{m=-\infty}^{\infty} i^m J_m(\Delta k \cdot x) \frac{\gamma + i(\Omega + m \Omega' k')}{\gamma^2 + (\Omega + m \Omega' k')^2} \] \hfill (5)

Here \(J_m \) is the Bessel function of the first kind. The result in Eq. (5) demonstrates that the instability growth reduction effect is not degraded by the small change in the wobbling wavelength. In actual situations the mode \(m = 0 \) contributes mostly to the instability mitigation, and in this case the original reduction effect shown in Eq. (2) is recovered.

The fluid simulations are also performed for this case \(k(t) = k_0 + \Delta k e^{i \Omega' k' t} \) together with the same parameter values employed in Fig. 2. In this case \(\Delta = 0.1 \) and \(\Omega' = 3 \Omega, \Omega \) and \(\Omega/3 \). The growth reduction ratio was 68.8–93.3\% at \(t = 5/\gamma \). The little oscillation of the imposed perturbation oscillation frequency \(\Omega(t) \) has a minor effect on the dynamic instability mitigation. For a realistic situation \(\Omega' k \sim \Omega \), where \(\Omega \) is the wobbling or modulation frequency. Figure 3(c) shows the RTI growth reduction ratio of 93.3\% for \(\Omega' k = \Omega \).

All the results shown above demonstrate that the dynamic instability mitigation mechanism proposed is rather robust against the changes in the amplitude, the phase and the wavelength of the wobbling or modulating perturbation of \(\delta F \) in general or \(\delta g \) in RTI.

4. Conclusions

We have discussed the dynamic mitigation method, in which the perturbation growth is controlled and mitigated by the wobbler or the driver modulation. In this paper we focus on the robustness of the dynamic mitigation mechanism of the instability. The changes in the perturbation frequency, amplitude and wavelength were examined. The theoretical and simulation results demonstrate that the dynamic instability mitigation mechanism is rather robust against the changes in the perturbation frequency, the amplitude and the wavelength of the driver wobbling motion or the driver modulation. The results in this paper show the viability of the mechanism of the dynamic instability mitigation.

The wobbling or the modulation defines the imposed perturbation phase and amplitude at each time. Consequently the overall superposition of all the perturbations mitigates its growth through the control of the wobbling or modulating motion. The dynamic mitigation would work for the mitigation of instabilities in which the imposed perturbation phase is controlled actively.

Acknowledgements

This work was partly supported by MEXT, JSPS, ASHULA, ILE/Osaka Univ., CORE/Utsunomiya Univ., CDI/Utsunomiya Univ., and Japan/U.S. Fusion Research Collaboration Program, Japan.

References

[1] Wolf G H 1970 Phys. Rev. Lett. 24 444
[2] Troyon F and Gruber R 1971 Phys. Fluids 14 2069
[3] Boris J P 1977 Comments Plasma Phys. Cont. Fusion 3 1
[4] Betti R, McCrory R L and Verdon C P 1993 Phys. Rev. Lett. 71 3131
[5] Piriz A R, Prieto G R, Diaz I M and Cela J J L 2010 Phys. Rev. E 82 026317
[6] Piriz A R, Piriz S A and Tahir N A 2011 Phys. Plasmas 18 092705
[7] Nuckolls J, Wood L, Thiessen A and Zimmerman G 1972 Nature 239 139
[8] Emery M H, Orens J H, Gardner J H and Boris J P 1982 Phys. Rev. Lett. 48 253
[9] Kawata S and Niu K 1984 J. Phys. Soc. Jpn. 53 3416
[10] Kawata S, Sato T, Teramoto T, Bandoh E, Masubuchi Y, Watanabe H and Takahashi I 1993 Laser Part. Beams 11 757
[11] Kawata S, Iizuka Y, Kodera Y, Ogoyski A I and Kikuchi T 2009 Nucl. Inst. Meth. Phys. Res. A 606 152
[12] Kawata S 2012 Phys. Plasmas 19 024503
[13] Qin H, Davidson R C and Logan B G 2010 Phys. Rev. Lett. 104 254801
[14] Arnold R C, Colton E, Fenster S, Foss M, Magelssen G and Moretti A 1982 Nucl. Inst. Meth. 199, 557