Species Delimitation in Taxonomically Difficult Fungi: The Case of Hymenogaster

Benjamin Stielow1, Zoltan Bratek2, Akos Kund I Orczan2, Szabolcs Rudn0y3, Gunnar Hensel3, Peter Hoffmann1, Hans-Peter Klenk1, Markus Goeke1*

1 DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Plant Physiology and Molecular Plant Biology, ELTE University, Budapest, Hungary, 3 Fungarium Gunnar Hensel, Merseburg, Germany

Abstract

Background: False truffles are ecologically important as mycorrhizal partners of trees and evolutionarily highly interesting as the result of a shift from epigeous mushroom-like to underground fruiting bodies. Since its first description by Vittadini in 1831, inappropriate species concepts in the highly diverse false truffle genus Hymenogaster has led to continued confusion, caused by a large variety of prevailing taxonomical opinions.

Methodology: In this study, we reconsidered the species delimitations in Hymenogaster based on a comprehensive collection of Central European taxa comprising more than 140 fruiting bodies from 20 years of field work. The ITS rDNA sequence dataset was subjected to phylogenetic analysis as well as clustering optimization using OPTSIL software.

Conclusions: Among distinct species concepts from the literature used to create reference partitions for clustering optimization, the broadest concept resulted in the highest agreement with the ITS data. Our results indicate a highly variable morphology of H. citrinus and H. griseus, most likely linked to environmental influences on the phenology (maturity, habitat, soil type and growing season). In particular, taxa described in the 19th century frequently appear as conspecific. Conversely, H. niveus appears as species complex comprising seven cryptic species with almost identical macro- and micromorphology. H. intermedius and H. huthii are described as novel species, each of which with a distinct morphology intermediate between two species complexes. A revised taxonomy for one of the most taxonomically difficult genera of Basidiomycetes is proposed, including an updated identification key. The (semi-)automated selection among species concepts used here is of importance for the revision of taxonomically problematic organism groups in general.

Introduction

The construction of a comprehensive phylogenetic classification of the fungi is a formidable task for modern systematics. As morphological characters alone are often insufficient for recognizing natural units, the analysis of nucleic acid sequences has significantly accelerated the progress towards achieving this challenging systematic goal. Particularly the taxonomy of the homobasidiomycetes has been entirely revolutionized by the use of molecular techniques, e.g. regarding the identification of (pseudo-)cryptic species and the specificity of mycorrhizal symbiosis [1,2,3]. The difficulties in defining characters and their states, and particularly the fact that distinct taxonomists assigned distinct weights to morphological characters, have probably been the largest obstacles to the establishment of broadly acceptable classifications of numerous difficult groups of fungi. Considerable morphological variation has been observed within genera and even within species [4,5]. Hypogeous fungi, the morphologically defined group of mushrooms that form spores in enclosed basidio- and ascomata, are well suited to illustrate the intricacies involved in fungal taxonomy.

Traditional systematics has assigned these gastroid taxa to a group of their own, but several studies have proven that at least some hypogeous basidiomycetes share morphological and genetic relations to epigeous sister taxa [6,7,8,9]. Within the hebelomatoid-cortinarioid mushrooms only a few transition forms (so-called secatoiod taxa) exist (e.g., Thaxterogaster, Setchelliongaster) in addition to several taxa with hymenothecia such as Helenium, Naucoria, Gymnopilus and Cortinarius [9,10,11,12]. Among the hebelomatoid-cortinarioid fungi, the Hymenogasteraceae exclusively comprise hypogeous ectomycorrhizal taxa such as the genera Tungovirt, Destuntzia and Hymenogaster, which are dispersed in temperate and (sub-)tropical habitats [11,12,13,14,15]. Fruiting body morphology, spore ornamentation and ectomycorrhizal habit of these genera allowed their affiliation with the epigeous hebelomatoid-cortinarioid taxa [8,16]. Molecular data confirmed that the hypogeous genus Hymenogaster is linked through secatoiod forms to the epigeous mushrooms [8,10].

Numerous authors [17,18,19,20,21,22,23] have reported Hymenogaster taxa from the southern hemisphere, mainly from Australia and New Zealand. With approximately 170 species within
Hymenogaster (sensu lato) described from the northern and southern hemispheres and submitted to the MycoBank database [24], **Hymenogaster** is the most species-rich genus of false truffles. Since the first description of **Hymenogaster** was published by Vittadini [25], the generic limits of this heterogeneous, confusing assemblage of fungi were redefined several times [26,27,28,29]. On several occasions taxa of false truffles with a brown-beige-greyish, loculate, non-gelatinized gleba completely enclosed within a periidium have incorrectly been placed within **Hymenogaster** [29,30]. Quite a few authors have noted the strong morphological variability of **Hymenogaster** basidiomes [16,25,26,31,32,33,34], leading others to proposing doubtful infrageneric ranks [23,35,36]. As the most recent addition, **Catteningaster** was suggested to constitute a novel genus closely related to **Cortinarius** but as yet remained unpublished and is currently termed “**Hymenogaster subilacinus**” [8] in Genbank, which is not an authoritative source for taxonomy. Conversely, the merging of **Hymenogaster** and **Gauteria** [29] has not been confirmed by molecular studies [37], in which **Gauteria** appeared as more closely related to the gomphoid-phaeoloid fungi. Even though organisms such as **Hymenogaster** display well-examined phenotypic characteristics, analysis of molecular data is apparently necessary to validate established species concepts and to identify those that require a taxonomic revision. Moreover, molecular data are essential to detect so-called cryptic species (or pseudocryptic species) [38], i.e. species for which no morphological differences exist (or have not been determined so far). Finally, molecular taxonomy is needed to analyse sequences directly sampled from the environment as, e.g., in the context of metagenomics projects [39,40]. For molecular species delimitation, researchers mostly used a predefined threshold \(T\) for pairwise genetic distances in clustering algorithms to assign sequences to molecular operational taxonomic units [41,42,43,44,45,46]. However, values of \(T\) used for clustering differ in the literature, even if applied to the same groups of organisms and molecular markers [47,48,49,46], and are often based on subjective criteria or on a recently emerged tradition for the sake of comparability between studies [50,51,52]. In addition to \(T\), the clustering algorithm also affects the circumscrition and the shape of the clusters formed [53: p. 192]. In the context of linkage clustering, a link is defined as a pairwise distance shorter than or equal to the chosen threshold \(T\). To add a new object to a given cluster, one can either request that at least one distance to a cluster member is a link (single linkage) or that all distances are links (complete linkage), or any proportion \(F\) of the distances between the new object and cluster members are links (see overview in [53]). However, \(F\) has hardly been addressed in the recent literature on molecular taxonomy [54]. For a given \(T\), mean and maximum within-cluster distances may, but need not be much larger for small values of \(F\) [53: p. 192], thus potentially allowing a better adaptation to cases where genetic divergence differs between morphologically defined lineages [55]. Methods more advanced than linkage clustering have been suggested [56,57], but these focus on identification, i.e. the assignment of query sequences to predefined groups, and thus require a correct reference taxonomy. However, misidentifications even of organisms with well-established microscopical characteristics are possible, and sequences in public databases are frequently mislabelled [58]. Thus, it is obvious that methods are needed that can adapt molecular taxonomy to reference data based on traditional taxonomy, without requiring that the latter is 100% correct.

A recently introduced method, clustering optimization [54,59], allows one to obtain taxonomic units from non-hierarchical clustering that are in optimal agreement with a given reference dataset as, e.g., derived from traditional taxonomy. The parameters \(T\) and \(F\) are determined that result in the highest agreement between the clustering partition and the reference data, which are also represented as a partition (i.e., a non-overlapping, non-hierarchical division of objects such as a classification comprising a single taxonomic rank only). Moreover, optimizing clustering independently for distinct reference partitions created by applying distinct taxonomic concepts (as, e.g., represented in identification keys) allows one to select the taxonomic concept that results in the overall highest agreement with the molecular data. (In an analogous way, \(T\) independently optimizing distinct distance matrices, one could select the best distance function for clustering sequences that are difficult to align [59].) The best concept as well as the best clusters obtained can then serve as the starting point for a taxonomic revision.

We here apply clustering optimization to a **Hymenogaster** internal transcribed spacer nuclear ribosomal DNA (ITS nrDNA) data matrix using distinct reference partitions representing distinct species concepts. The outcome is used to reconsider the species concepts for the Central European **Hymenogaster** spp. and to uncover several cryptic, novel, neglected and conspecific taxa. Our study is based on more than 140 specimens and represents the first comprehensive analysis on the genus **Hymenogaster** based on both morphological and molecular data. The File S1 includes an illustrated dichotomous key to the taxa of one of the most taxonomically difficult genera of **Basidiomycetes**.

Materials and Methods

Collecting and morphological study

Fruiting bodies were collected at various seasons during a period of approximately twenty years. Most of the Hungarian and Eastern European specimens were collected by ZB with the help of trained truffle dogs, mainly specialised on detecting commercially relevant black **Tuber** species. The material originating from Germany collected by GH and BS was dug out at suitable locations of different types of forest or park-like habitats. Collection details for the 142 dried and fresh basidiomata collected by the authors are provided in File S2.

Microscopical characteristics were observed for each collection (not necessarily for each fruiting body) on dried specimens mounted in 5% KOH (w/v). Tissue measurements were made with a 40× lens (Zeiss Axioshot) and repeated 10 times. Spores were measured using the software package Image Pro. For selected specimens (see below), mean measured length and width data were visualized as a dendrogram by calculating euclidean distances and applying average-linkage clustering [53] using the statistical software R (http://www.r-project.org/). Only the following excisicates could not be measured: zb1485 (unripe), zb321, zb225 (the entire fruiting body was used for DNA extraction), zb20070605 and zb20070814 (the lent material had to be sent back to the herbarium). The morphological data were also used for species identification (see below) and the (informal) establishment of larger subgroups within **Hymenogaster** for comparison with the phylogenetic tree.

DNA isolation, PCR and sequencing

Total genomic DNA from German specimens was extracted from approximately 50 mg basidioma material using the MasterPure Fungal Genomic DNA Kit following the manufacturer’s protocol. DNA from fruiting body tissue of Hungarian excisicates was extracted with the Qiagen DNeasy Plant Mini Kit following the manufactures protocol. The ITS 1 rDNA region was amplified with the PCR primers ITS1F/ITS4 and ITS1/ITS4 under...
semi-nested conditions [60,61] using Takara Hot Ex Taq and alternatively Fermentas Dream Taq. The PCR reactions were run with the following settings: initial denaturation for 3 min at 95°C followed by 35 cycles of 30 s denaturation at 95°C, annealing at 60°C (alternatively 51°C) for 30 s, extension for 1 min (alternatively 45 s) at 72°C and final extension at 72°C for 10 min (alternatively 7 min). The cycle sequencing reaction was conducted using the Beckman Coulter GenomeLab DTCS Quick Start Kit according to the manufacturer’s protocol, followed by sequencing with the corresponding lab capillary electrophoresis system. Alternatively, PCR products were purified using Bioline Sure Clean following the manufacturer’s instructions and sent to commercial sequencing labs. The sequences were assembled using Invitrogen Vector NTI 11.

Phylogenetic analysis

Sequences obtained as described above were complemented using a classification-based search for Hymenogaster ITS sequences in GenBank [http://ncbi.nlm.nih.gov/]. Sequences and taxonomic information to define the reference partitions (see below) were extracted from the complete GenBank flat files using the program gbk2fas [54] (freely available at http://www.goeker.org/mg/clustering/). Eighteen GenBank entries, termed as H. brunneus, H. daubou, H. subcarinatus, H. sublacanus or H. subochraceus, apparently assigned to an unpublished genus “Cortinogaster” were not taken into account because their affinity is closer to Cortinarius than to Hymenogaster [8]. The combined dataset comprising a total of 165 sequences was aligned with POA (version 2) in progressive alignment mode [62].

Phylogenetic analysis under the maximum-likelihood (ML) criterion [63] was conducted with RAxML version 7.2.5, using its fast bootstrap option with subsequent search for the best tree, employing the GTR+GAMMA model [64]. (See the RAxML manual for the rationale behind model choice.) Bootstrapping under the maximum-parsimony (MP) criterion [65] was done with PAUP* version 4.0b10 [66], treating gaps as missing data, collapsing branches of zero minimum length, and using 10 rounds of random sequence addition (in which only a single best tree was held, respectively) followed by TBR branch swapping per bootstrap replicate. In both ML and MP bootstrapping, 1000 replicates were conducted. Because, to the best of our knowledge, the sister group of Hymenogaster is uncertain and because the phylogenetic relationships between Hymenogaster and other genera are not of interest in the current study, the tree was rooted using midpoint rooting [67] as implemented in PAUP* to avoid the need for including outgroup taxa. Sequence alignments and phylogenetic trees are included in the supporting file S3.

Identification of Hymenogaster and clustering optimization

For comparing the different species concepts for Hymenogaster from the literature, the specimens collected by GH and BS were determined using two distinct identification keys, one of which was modified according to a suggestion of its authors, yielding a total of three reference partitions for use in optimization (see below). First, the key from Montecchi and Sarasini [16] was used literally; only for few species which were not considered therein we resorted to Soehner [26]. Second, species were identified in the same manner but the following sets of species were merged as suggested by Montecchi and Sarasini [16] themselves: (i) H. citrusus and H. olocaceus (p. 491) and (ii) H. hessei, H. lycoperdineus, H. populetorum and H. vulgaris (p. 476, 483, 501). Third, the key of Soehner [26] was used. The key that performed best in clustering optimization (thus representing the most appropriate taxonomic concept) was then applied to identify the specimens collected by ZB (for pragmatic reasons, these were not re-identified using the suboptimal keys).

GenBank sequences and species affiliations were not used in clustering optimization because the underlying taxonomic concepts were unknown to us. Pairwise uncorrected ("p") distances for clustering were calculated with PAUP*. Clustering optimization as implemented in OPTSIL [54] (freely available at http://www.goeker.org/mg/clustering/) was run independently for each of the three reference partitions, which corresponded to the three distinct species concepts listed above; four short sequences (it15_2, it15_3, it10_5_1 and it9_5_1) were not considered in distance calculation, yielding a set of 58 sequences for optimization (51 in the case of the third key because seven specimens could not be assigned to a species). F values were varied between 0.0 and 1.0, using a step width of 0.05. For each F, T was varied between 0.0 and 1.0, applying a step width of 0.0001. For each of the three reference partitions, we recorded the highest observed agreement with a clustering partition and the corresponding clustering parameters. The agreement is measured using the modified Rand index (MRI), which varies between −1.0 and 1.0; 1.0 represents full agreement, whereas random partitions achieve a MRI of about 0.0 (for details, see [54] and references therein). The clustering parameters yielding the globally highest MRI were applied to cluster the complete sequence set, including all collected specimens and all GenBank sequences.

As the optimal clustering does not necessarily include only clusters that appear as monophyletic in the optimal phylogeny, we used the SH-test as implemented in RAxML [64] to assess whether the best tree obtained if all clusters are constrained to be monophyletic was significantly worse than the globally best ML tree. The same was done in PAUP* [66] under the MP criterion, using the built-in KH-test and nonparametric test. MP settings were as described above, but saving up to ten best trees per replicate. We conducted 100 random sequence addition replicates under both clustering-constrained and unconstrained conditions and both ML and MP.

Results

Identification

Identification of the 62 specimens collected by GH and BS using the 1st key resulted in twelve distinct species; using the 2nd key, only eight species were observed. In contrast, applying the 3rd key resulted in 24 distinct species and four specimens that could not be identified (see File S2). Morphological data also allowed us to classify the specimens into five sections based on principal spore characters, similar to Soehner’s opinion [26]:

1. Spore surface smooth, no ornamentation; no perispores.
2. Spore surface smooth, verrucose or partially smooth and partially verrucose; perispore present in verrucose spores, absent in smooth spores.
3. Spore surface verrucose; perispore present.
4. Spore surface thorny-verrucose; perispore present.
5. Spore surface thorny-spiny; perispore present.

Some of these groups also appeared as monophyletic in the phylogenetic tree (see below).

Sequence alignment, phylogenetic analysis and clustering optimization

The ITS rDNA alignment comprising 165 sequences had a total length of 983 positions, 221 of which were excluded because they mainly contained leading or trailing gaps. The resulting best ML
tree had a log likelihood of −5311.323 and is shown in Fig. 1 together with ML and MP bootstrap values.

Results from clustering optimization using the ITS rDNA distance matrix and reference partitions inferred using three distinct identification keys are shown in Table 1. The 2nd key, based on [16] but with some species merged, performed best, yielding a highest MRI of 0.814, which was obtained for F values between 0.65 and 1.0. The 1st key, based directly on [16], performed moderately, yielding a maximal MRI of 0.642 with comparatively low settings for F. The 3rd key, based on [26], performed even worse, yielding a maximum MRI of only 0.525. Consequently, we applied key 2 to identify the remaining specimens, and used the results for the annotation of the specimens in the tree (Fig. 1) and the clustering optimization with the entire dataset collected by ZB, BS and GH. An optimal MRI of 0.862 was obtained (Table 1) for values of F between 0.65 and 0.90. We chose F=0.75 and the corresponding median optimal T of 0.0263 to cluster the complete dataset, including also the GenBank sequences, which yielded 23 clusters.

Heuristic search under the ML criterion resulted in a best unconstrained tree with a log likelihood of −5311.487 and a best tree constrained for monophyly of all clusters from the optimal clustering with a log likelihood of −5318.039. According to the SH-test as implemented in RAxML, the latter tree was not significantly worse than the former (p=0.05). Under MP, the globally best trees had a score of 710 steps in unconstrained and of 705 steps in constrained search; both the KH-test and the nonparametric test as implemented in PAUP* indicated a significant difference (p=0.05). That is, while two clusters (18 and 19) do not appear as monophyletic in the tree, their monophyly is not significantly rejected by the data.

The cluster numbers are indicated in Fig. 1. Note that these numbers only indicate cluster membership; for instance, cluster 0 is not more closely related to cluster 1 than to cluster 22 or any other cluster. In the following, we will describe the composition of the clusters and their relationships to clades in the phylogenetic tree.

Clusters 0, 1, 3, 7, 11, 15, 20, 21 and 22. The clade composed of these clusters contains 24 sequences, all of which belong to specimens with thorny-sapiny spores; after midpoint rooting, this clade appears as the sister group of all other examined Hymenogaster spp. (Fig. 1). Specimens in these clusters are uniformly identified as H. niveus except for some sequences from GenBank. All clusters correspond to clades (i.e., they are monophyletic in the tree), and most are highly supported. The clusters 0, 3, 7, 11, 15, 20, 21 and 22 together form a clade; bootstrap support within this clade is low. The dendrogram inferred from the spore measurements did not indicate apparent differences between the H. niveus ITS clusters (data not shown; spore measurements are included in the electronic File S4).

Clusters 2, 5 and 13. The specimens identified as H. praunatus occur in two distinct, not closely related clusters, which either comprise only a single specimen (cluster 5) or are highly supported as a clade (cluster 13). A single sequence from GenBank annotated as “H. arenarius” is also present in cluster 13. The sister-group relationship of the highly supported clades corresponding to cluster 5 and cluster 2 is also highly supported. Cluster 2 only contains specimens identified as H. ballardi.

Cluster 17. This cluster corresponds to a moderately supported clade (82%/83% bootstrap support under ML/MP). It is a taxonomically rather consistent cluster, containing 27 sequences identified as H. olivaceus except for the GenBank sequences AF325641 (“H. ballardi”) and EU784360 (“H. citrinus”).

Cluster 12. Except for one specimen, H. grisis it11_2, the clade equivalent to cluster 12 is taxonomically uniform, comprising only specimens assigned to H. latus; it is also highly supported (100%).

Clusters 4, 16 and 18. Together these clusters form a highly supported clade that comprises the Hymenogaster specimens with verrucose spores (Fig. 1). Clusters 4 and 16 correspond to highly supported monophyletic assemblages inserted within the paraphyletic cluster 18. However, the non-monophyly of cluster 18 does not receive high bootstrap support, as the backbone within the entire clade is hardly supported. This is in accordance with the results of the SH- and KH-tests (see above). Using the modified key of Montecchi and Sarasini [16], clusters 4 and 18 are taxonomically uniform, including only specimens identified as H. grisis. Comprising 57 sequences, the clade corresponding to cluster 18 is the largest in the dataset. The subgroups within this clade did not appear to correlate with the origin of the specimens from certain geographical areas (Fig. 1, File S2). The specimens within cluster 16 are mostly identified as H. thwaitesii (six specimens), but the remaining ones as either H. bullardi (it20_4_1), H. olivaceus (zb2804) or “H. bonzen” (AY918956).

Clusters 6, 8, 10 and 14. The clades corresponding to the clusters 6, 8, 10, 14 are, except for cluster 6, well-supported and together form a moderately well supported larger clade comprising the Hymenogaster collections with thorny-verrucose spores (Fig. 1). The four clades only contain specimens identified as H. rehsteineri except for two GenBank sequences assigned to either “H. vulgaris” (EU784365) or “H. australis” (DQ328132). The dendrogram inferred from the spore measurements (Fig. 2) indicates that cluster 6 may well be differentiated from the other two clusters, whereas clusters 8 and 14 are intermixed. Spores of cluster 6 are shorter and, hence, characterized by a lower length/width ratio (see electronic File S4 and below).

Clusters 9 and 19. All sequences within the clades corresponding to clusters 9 and 19 originate from GenBank and, according to their annotation, originate from North American exsiccates. Cluster 9 appears as nested within cluster 19, and moderate bootstrap support is present for the paraphyly of the latter clade (but see the results of the SH- and KH-tests mentioned above). Taxonomically, clade 19 is maximally diverse.

Discussion

Since Vittadini established Hymenogaster in 1831 [25], a variety of prevalent taxonomical concepts introduced large numbers of hardly identifiable taxa, often lacking information on diagnostic characters [26,32,68,69,16]. Accordingly, not only the generic limits of Hymenogaster have been questioned [14,29,35] but also the species limits within this difficult group of fungi were frequently challenged in the past. In 1962, Soehner [26] accepted no less than 94 species in his monograph, including the eight species of Vittadini [25], the 15 ones of the Tulasne brothers [31] and numerous ones of Hesse [32]. The results obtained with ITS sequences and OPTSIL analysis favour a much broader species concept for the genus, as the key yielding the lowest number of species also resulted in the highest agreement between molecular data and classification. Nevertheless, the optimal clustering also indicates that some species of Montecchi & Sarasini [16] need to be split. In the following, we briefly discuss to what extent the resulting taxa were morphologically interpretable. As the five sections based on spore characters (see above) were largely congruent with the phylogenetic tree (Fig. 1), our arrangement of the discussed taxa follows that classification.
Species Delimitation in Hymenogaster
The *Hymenogaster* collections with smooth spores (Fig. 1; clusters 2 and 12) form a paraphyletic group comprising two species, *H. luteus* and *H. bulliardii*, which are comparatively easy to identify and are not in conflict with the clustering (the difficult varieties of *H. luteus* [25,26] do not concern us here). *H. "grisius"* it 11.2 in cluster 12 appears to be a misidentification (compare cluster 18, which contains the vast majority of specimens identified as *H. grisius*).

The section with partially smooth, partially verrucose spores is represented by the species *H. citrinus* and *H. olivaceus*. *H. citrinus* is one of Vittadini’s [25] eight species, described nearly 180 years ago. The very similar species *H. olivaceus* was also described by Vittadini and is known to occur in the same forests and soil types, but in early spring, not during summer like *Vittadini* and is known to occur in the same forests and soil types, but in early spring, not during summer like *H. citrinus*. It has frequently been suggested to merge the two species [16,69], which is corroborated by our results. Gross et al. [69] interpreted *H. citrinus* as an abnormal form of *H. olivaceus*. That typical basidiomata of *H. citrinus* (sensu stricto) have been described only from calcareous, clayey soils might indicate that the soil type, in addition to the season, has an effect on the colour of the peridia. Moreover, the fact that *H. citrinus* develops a strong unpleasant gleba odour whereas *H. olivaceus* is characterized by a rather pleasant smell, might indicate seasonal differences in the bacterial fruiting body flora.

Verrucose spores occur in the majority of *Hymenogaster* species. Aside from the variability of basidiomata, the rich number of different shapes, gradations and nuances present in verrucose-spored taxa is the major reason why most verrucose-spored taxa are almost indistinguishable. Several very early species concepts [25,31] have persisted in all present classifications without having been questioned more intensively, including the following taxa with verrucose spores: *H. decorus*, *H. grisius*, *H. hessei*, *H. biacuus*, *H. lycoperdinus*, *H. muticus*, *H. populetorum*, *H. rehsteinii*, *H. thiostrepsi*, *H. verrucosus* and *H. vulgaris*. In particular, taxa morphologically similar to the current description of *H. vulgaris* agree in almost any character (e.g. fusoid, papillate, warty and verrucose spores) with those of *H. grisius*, *H. decorus*, *H. lycoperdinus*, *H. populetorum*, *H. muticus*, and partially agree with *H. hessei*. Montecchi & Sarasini [16] regard these taxa as conspecific, a view which is supported by our findings, as all of them are placed in a single cluster, cluster 18 (Fig. 1). While some morphologically constant and distinct characters are present in these supposed species, such as the lilac-purple-brown coloured gleba of *H. populetorum* and the

Table 1. Results from clustering-optimization when applying the three distinct identification keys to the BS/GH subset of the data (58 specimens) and applying the best performing key to the entire dataset (136 specimens).

F	Highest MRI	Median best T						
0.00	0.64208	0.01200	0.77842	0.01500	0.51403	0.00075	0.81647	0.03490
0.05	0.64208	0.01200	0.77842	0.01505	0.51403	0.00075	0.82361	0.01695
0.10	0.64208	0.01210	0.77842	0.01650	0.51403	0.00075	0.81927	0.04165
0.15	0.64208	0.01270	0.77842	0.01655	0.51403	0.00075	0.82669	0.04495
0.20	0.64208	0.01350	0.77842	0.01660	0.52253	0.00235	0.82669	0.04550
0.25	0.64208	0.01275	0.77842	0.01655	0.52253	0.00235	0.82669	0.04560
0.30	0.64208	0.01275	0.77842	0.01675	0.52253	0.00235	0.85110	0.02010
0.35	0.61465	0.01270	0.77842	0.01745	0.52253	0.00235	0.86136	0.02195
0.40	0.61465	0.01270	0.77842	0.01755	0.52253	0.00235	0.86136	0.02195
0.45	0.63754	0.01275	0.77842	0.01820	0.52253	0.00235	0.85351	0.02210
0.50	0.63754	0.01275	0.77842	0.01965	0.52253	0.00235	0.85351	0.02260
0.55	0.62755	0.01275	0.77842	0.01965	0.52253	0.00235	0.85351	0.02300
0.60	0.63718	0.01440	0.77842	0.01965	0.52253	0.00235	0.86136	0.02235
0.65	0.61453	0.01980	0.81441	0.02220	0.45900	0.00235	0.86170	0.02550
0.70	0.61453	0.01980	0.81441	0.02225	0.45911	0.00395	0.86170	0.02570
0.75	0.61453	0.02055	0.81441	0.02285	0.45911	0.00395	0.86170	0.02630
0.80	0.61453	0.02065	0.81441	0.02300	0.45984	0.00710	0.86170	0.02670
0.85	0.61453	0.01735	0.81441	0.02320	0.45984	0.00710	0.86170	0.02775
0.90	0.61453	0.01735	0.81441	0.02370	0.45984	0.00710	0.86170	0.02915
0.95	0.62184	0.01835	0.81441	0.02620	0.45984	0.00710	0.82643	0.03045
1.00	0.62184	0.01835	0.81441	0.02805	0.46399	0.00630	0.81952	0.06640

Highest MRI values and corresponding median optimal T values are given for each examined F value.

doi:10.1371/journal.pone.0015614.t001
clusters (6, 8 and 14). Greenish nuances of thorny-spiny \textit{H. niveus} basidiospores, sometimes found in \textit{H. rehsteineri} excisates, but not in other \textit{Hymenogaster} spp., occur in both species complexes; however, they do not appear as particularly closely related in the tree (Fig. 1). Soehner [26] noted that \textit{H. rehsteineri} is common around all seasons and habitats and particularly emphasized the great morphological variability of this taxon. Soehner was unable to delineate varieties of this fungus, even though his collection comprised more that 150 \textit{H. rehsteineri} excisates.

Clustering optimization indicates that (pseudo-)cryptic diversity exists within this species. Closer examination showed that cluster 6 differs markedly in the length-width ratio of their spores and peridial colour from other specimens of \textit{H. rehsteineri}. Moreover, in the phylogenetic tree (Fig. 1), cluster 6 appears as the sister group of the remaining \textit{H. rehsteineri} clusters. Accordingly, we propose the novel species \textit{Hymenogaster intermedius}. Its small, warty-verrucose spores are similar to those of \textit{H. tener} and \textit{H. arenarius} (see below), whereas its pale brown-greyish peridium is similar to the one found in typical \textit{H. rehsteineri} specimens; further details are given below. As we did not detect morphological differences between the remaining \textit{H. rehsteineri} clusters, we regard them as indicative of cryptic diversity. It is suggested to consider this revised \textit{H. rehsteineri} as a species complex with higher genetic diversity than in typical \textit{Hymenogaster} species.

Within the \textit{Hymenogaster} section with thorny-spiny spores, Soehner [26] included the species \textit{H. albus} (= \textit{Descomyces albus}), \textit{H. arenarius}, \textit{H. mutabilis}, \textit{H. niveus}, \textit{H. pusillus} and \textit{H. tener}. Montecchi & Sarasini [16] regarded them as conspecific. Results from clustering optimization do not support their view (Fig. 1). Specimens assigned to \textit{H. arenarius sensu} [26,69] are located in a cluster of their own (cluster 1), whereas \textit{H. niveus} sensu Soehner [26] is distributed among seven clusters (0, 3, 7, 15, 20, 21, 22). \textit{H. arenarius} and \textit{H. niveus} sensu Soehner [26] are easily distinguishable by their seasonal appearance in spring (\textit{H. arenarius}) vs. in early summer to early autumn (\textit{H. niveus}), by the rancid, garlic-like odour of \textit{H. arenarius} vs the mild flowery one of \textit{H. niveus} and, most importantly, by the greyish-brown wrinkled peridium of \textit{H. arenarius} in contrast to the snow-white, smooth surface found in \textit{H. niveus}. Likewise, \textit{H. tener} sensu Soehner appears in a cluster of its own (cluster 11). It is distinguishable by its seasonal preference to early spring, its plain white peridium and its strong odour from \textit{H. niveus}.

The large number of remaining clusters which have to be assigned to \textit{H. niveus} sensu stricto indicate cryptic diversity. We were unable to detect morphological differences between these clusters. The observed specimens usually possess the “snow-white” basidiomata typical of \textit{H. niveus} specimens sensu Soehner. We thus do not attempt to taxonomically split \textit{H. niveus} but suggest to consider it as a species complex with significantly higher genetic diversity than the typical \textit{Hymenogaster} species. A set of specimens located in a cluster of their own (cluster 13) have apparently been misidentified as \textit{H. huthii}. Like \textit{H. huthii}, these share a plain white, partially greyish-brown peridium with \textit{H. niveus} sensu stricto but verrucose, strongly wrinkled basidiospores with \textit{H. niveus}. However, other characters deviate from \textit{H. huthii}. Thus, a novel species, \textit{H. huthii}, is proposed for these specimens; details are given below.

A revised classification of \textit{Hymenogaster}

\textbf{Hymenogaster arenarius}. Tul. & C. Tul. 1844 emend. Stödlov et al. 2010

Including: \textit{Hymenogaster minusculus} Soehner 1924, \textit{Hymenogaster pusillus} Berk. & Broome 1846.
Cluster: 1

Hymenogaster arenarius, a species originally erected by the Tulasne brothers in 1844, but recently proposed to not constitute a species of its own [16], is easily distinguishable by several constant macro/morphological characters [34]. The greyish-brownish peridium of *H. arenarius* is never found in specimens of *H. niveus*, which display a typical “snow-white” smooth and silky surface of the fruiting body. The nearly identical spore characteristics were most likely responsible for the merging of *H. arenarius* and *H. niveus*. Our results suggest to separate the two taxa but to include *Hymenogaster pasillus* Berk. & Broome 1846 in *H. arenarius* (see File S2).

Hymenogaster bulliardii. Vittad. 1831

Cluster: 2

Our analysis supports the isolated position of this type species of *Hymenogaster*. In particular, the absence of a perisporium and hence a smooth spore surface combined with dark reddish-brown, roundish, compressed gleba cells, a dendroid columella and an unpleasant smell are stable indicators to easily separate *H. bulliardii* from other species with smooth spores. Its closest relatives (Fig. 1), *H. citrinus* and *H. luteus*, are also known to lack a perisporium and to display completely or almost smooth basidiospores.

Hymenogaster citrinus. Vittad. 1831 emend. Stielow et al. 2010

Including: *Hymenogaster bucholzii* Soechner (1924), *Hymenogaster citrinus* Vittad. 1831 = *Gauteria citrina* (Vittad.) Bougher & Castellano 1993 = *Splachnoneces citrinus* (Vittad.) Corda 1854, *Hymenogaster olivaceus* Vittad. 1831, *Hymenogaster tomentellus* R. Hesse 1891. Probably also including: *Hymenogaster salutus* R. Hesse 1891.

Cluster: 17

Merging *H. olivaceus* and *H. citrinus* is in disagreement with the traditional understanding of these two very old species [25,26]. However, in addition to the evidence presented here, dozens of specimens collected by Bratek et al. (data not shown) show an intermediate morphology, as also noted by [69]. We prefer the name “*H. citrinus*” over “*H. olivaceus*”, which was introduced in the same study [25], only for reasons of alphabetical sorting. *H. salutus* is not present in our collection but it is presumably conspecific to *H. citrinus* because [26] classified *H. salutus* into the same morphological group as *H. citrinus* and *H. luteus* due to their similar basidiospore development and their yellow-ochraceous gleba.

Hymenogaster griseus. Vittad. 1831 emend. Stielow et al. 2010

Including: *Hymenogaster hessi* Soechner 1923, *Hymenogaster lyco-perdinus* Vittad. 1831, *Hymenogaster populetorum* Tul. & C. Tul. 1843, *Hymenogaster vulgaris* Tul. & C. Tul. 1846. Probably also including: *Hymenogaster lilacinus* Tul. & C. Tul. 1843, *Hymenogaster muticus* Berk. & Broome 1848.

Cluster: 18

One of the taxonomically most remarkable results of our study is the evidence for the conspecificity of the above-mentioned taxa, even though Montecchi and Sarasini [16] already preferred a wider species concept for *H. lycomperdinus*, *H. muticus* and *H. griseus*. The acceptance of an emended species *H. griseus* implies an enormous morphological variability among the merged taxa. As either “*H. griseus*” or “*H. lycomperdinus*” has priority [26], we prefer the former only for reasons of alphabetical sorting, *H. lilacinus*, which was not present in our dataset, was classified by [26] into the morphological group of *H. lycomperdinus* and *H. populetorum* which are conspecific to *H. muticus* (also missing in our dataset), *H. vulgaris* and *H. hessi* according to [16].

Hymenogaster huthii. Stielow et al. 2010, sp. nov. [urn:lsid: indexfungorum.org;names:518624]

Cluster: 13

H. huthii is apparently an ultra-rare species, collected at only three sites during 20 years, once in Hungary and twice in Germany. Surprisingly, this species appears as a highly supported clade of its own, corresponding to cluster 13 (Fig. 1), not forming a monophyletic group with other species with verrucose spores. A set of evidently stable characters such as the gently corrugated, pale-whish basidiomata, a dark brown, thick gleba at full maturity, and verrucose spores surrounded by two parallel walls, a unique combination within the *Hymenogaster* spp. with verrucose spores, distinguishes this taxon from the otherwise similar *H. pruinatus* (see description in [26]). In *H. pruinatus* when ripening the peridia turns from pale whitish (similar to *H. huthii*) to dark-yellow-brown. The peridium of mature *H. huthii* fruiting bodies remains pale whitish (image 74 in the electronic File S1), similar to *H. niveus* sensu stricto (images 34 and 35). Basidiospores of *H. pruinatus* are citriform, light-brown and transparent [26], much like in its sister group *H. bulliardii* (Fig. 1) whereas those of *H. huthii* are broad-elongated, strongly verrucose, dark-brown and non-transparent. *H. huthii* and *H. pruinatus* are, however, similar regarding the colouration of their gleba, which turns dark black-brown (image 34), and their pleasant, aromatic smell.

Etymology. Named in honour of the German mycologist Manfred Huth, who dedicated more than 50 years of his life to exploring fungi, particularly the genus *Hymenogaster*.

Latin description. Basidiomata 15–25 mm diam., rougosa, globosa usque ad subglobosam, cavernis ad internum in basidiomatibus maturis, sulcis praeentibus. Peridia unius coloris albis in novellis subfuscis labidibus irregulariter diffusis in novillis ete maturis, 150–300 μm crass. Gleba alba, canescens, fuscescens, fiat pulla plena maturitate. Columella absens. Basidia cylindrca, brevissima, 14-15×7-7.5 μm, cum duo sterigmatia. Sporae oblongae-ellipsoides, fusoides, papillatae, convexae, rotundae in apice, 16-29×9-21 μm, longitudinal media 22 μm, latitudine media 13 μm (ornamentationem inclusive, sed sine sterigmatibus reliquis et papilla), ornamentatio verrucosa, roguissima, inversa, rigibine fusca in KOH et in aqua. Odor farinosus. Holotypus hic designatus Stolberg, Saxonia-Anhaltinum, montes continui Harz, Biosphere Reserve Southern Harz, leg. G. Hensel & U. Taglich 13 Iulii MMVIII (Herb. Nr. 130708GH), det. G. Hensel & B. Stielow.

English description. Basidiomata 15–25 mm in diameter, wrinkled, globose to subglobose, with cavities leading to the inner side in mature basidiomes, gourges present. Peridia plain white when young, with irregularly dispersed brownish spots in young and mature basidiomes, 150–300 μm thick. Gleba white, turning grey or brown, becoming brown-black at full maturity. Columella absent. Basidia cylindrical, very short, 14-15×7-7.5 μm, with two sterigmatata. Spores broad elongated-ellipsoid, fusoid, papillate, convex, rounded at the apex, 16-29×9-21 μm, 22×13 μm on average (including ornamentation, but without remnants of sterigmatata and papilla), their ornamentation verrucose, strongly wrinkled, folded, dark rusty brown in KOH and water. Odour pleasant. Assigned holotype from Stolberg, Sachsen-Anhalt, Germany (Harz mountain range, Biosphere Reserve Southern Harz), leg. G. Hensel & U. Taglich on 13th July 2008 (Herb. Nr. 130708GH), det. G. Hensel & B. Stielow.

Further details. Immature basidiomata hypogeous, ovoid, roundish, plain white, with brownish-greyish spots, no mycelia cord or rhizomorphs visible, 10–20 mm broad. Basidiome consistency is compact. Immature gleba plain white, with grey tones, sponge-like consistency, not compressed, apparently no direct colour changes when exposed to air. Trama: immature, white; mature, grey-brown-black. Glebal trama 35–40 μm thick,
composed of 1–4 μm broad hyphae (at the septa), with large inflated globose to subglobose cells, between 6–8 μm thick. Subhymenium weakly developed, interwoven hyphae. Cystidia not present. Clamp connections not present. Basidia: Sterigminata ca. 1×0.5 μm in length, basidium walls less than 0.5 μm thick, basidia generally hyaline in KOH. No distinctive reaction to Melzer’s reagent. Spores’ length/width quotient: minimum 1.45, average 1.79, maximum 2.13. Ornamentation strongly verrucose, surrounded by two parallel walls. Papilla and sterigminata remnants about the same length, 1.2×1 μm.

Distribution, habitat and seasonal appearance. Hymenogaster hubhii is only known from the three collection sites, mainly from mixed woodlands at different elevations. In close proximity, three ectomycorrhizal hosts were identified: collection 211008GH, Tilia platyphyllos; collection 130708GH, Corylus avellana; and collection zh95, Alnus glutinosa.

Collections examined. See File S2.

Holotype deposit. Botanische Staatssammlung Munich; corresponding curator: Dr. D. Triebel; accession number of the holotype: M-0156262.

Mycobank Number. MB 518624.

Hymenogaster intermedius. Stielow et al. 2010, sp. nov. [urn:lsid:indexfungorum.orgnames:518623] Cluster: 6

The micromorphological characters of this species are almost identical to those of H. tener and H. arenarius, but its macro-morphological similarities to H. reksteineri have led us to wrongly assign these specimens to H. reksteineri. The species H. intermedius apparently shares morphological characters of two distinct species complexes. None of the described Hymenogaster species displays this combination of features, which is indicative of a novel species, a conclusion that is supported by the ITS-rDNA data. Spores of H. intermedius are significantly shorter than those of H. reksteineri, yielding a lower length/width ratio (Fig. 2; images 61–64 in electronic File S1). The basidiomata are, however, extremely similar (images 96–100). Only three collections of H. intermedius are known so far, one from Hungary and two from Germany.

Etymology. Named in accordance to its intermediate morphological characters between Hymenogaster reksteineri on the one hand and Hymenogaster niveus, H. arenarius and H. tener on the other hand.

Latin description. Basidiomata 10–15 mm in diameter, tuberosa, globose usque ad subglobosam. Peridium unius coloris alba in novellis, mutans per colores violaceos, mutans in parenchymata ad internum, insolvabiles a parenchymati glebae. Hymenogaster niveus claraeque colorum typicalis H. niveus specimens. Columella praens, cum corda mycelia in fundamento. Basidia amplulacea, cylindrica, 17.5–20×3–7 μm, cum duo sterigmata. Sporae globosae usque ad subglobosae, ovoides; ornamentatione spinea-verrucosa; 10–14×6–9 μm, longitudine media 12 μm, latitudine media 8 μm (ornamentatione inclusive, sed sine sterilisutibus reliquis et papilla), sporae gigas-fuscae in KOH et in aqua. Odor farinosus, similis cucum. Holotypus hic designatus Stolberg, Saxonia-Anhaltinum, montes contumui Harz, Biosphere Reserve Southern Harz, in calli ad Fagus sylvatica, leg. G. Hensel, 13 Iulii MMVIII., (Herb. Nr. 060708GH), det. G. Hensel & B. Stielow.

English description. Basidiomata 10–15 mm in diameter, tuberosa, globose subglobosa. Peridium plain white when young, very slowly turning to pale-ochraceous in mature basidiomes, very similar to the typical colouration of H. reksteineri, 200 μm thick, turning pseudoparenchymatically inwards, not detachable from the gleba tissue. Gleba white when young; passing through gentle lilac tones, turning to brilliant warm-brown at full maturity, but remaining more light-coloured than in typical H. niveus specimens. Columella present, with mycelial cord at the base. Basidia flask-shaped, cylindrical, 17.5–20×3–7 μm, with two sterigmata. Spores globose to subglobose, ovoid; ornamentation gently thorny-spiny; spores 10–14×6–9 μm, 12×8 μm on average; including ornamentation, but without sterigminata remnants and papilla; spores yellow-brown in KOH and water. Odour floury, cucumber-like. Assigned holotype from Stolberg, Sachsen-Anhalt, Germany (Harz mountain range, Biosphere Reserve Southern Harz), at forest trail at Fagus sylvatica, leg. G. Hensel G., 13th July 2008 (Herb. Nr. 060708GH).

Further details. Immature basidiomata hypogeous, globose, tuberos, plain white, mycelial cord visible, 10–15 mm broad. Basidioforme consistency is compact. Immature gleba not compressed, apparently no direct colour changes when exposed to air; very slow colour changes when basidiome is exposed to air. Mature gleba: Spore ripening process might be irregular, causing discoloration with brownish spots dispersed on the mature gleba. Gleba colouration stays brighter brown than in H. niveus with its darker reddish-brownish tones. Trama: Immature, white; mature, (light)-brown. Trama walls elongated and convoluted. Glebal trama 40–45 μm thick, composed of 2.5–6.25 μm broad hyphae (at the septum), with large inflated globose to subglobose, 4.5–7.5 μm thick cells. Subhymenium weakly developed, interwoven hyphae. Cystidia not present. Clamp connections not present. Basidia: Sterigminata ca. 2 μm long, basidial walls less than 0.8 μm thick, basidia hyaline in KOH. No distinctive reaction to Melzer’s reagent. Spores’ length/width quotient of spores: minimum 1.34, average 1.49, maximum 1.73. Ornamentation thorny-spiny-warted; yellow-brown, in KOH and water. Papilla and sterigminata remnants about the same length, 1×1 μm.

Distribution, habitat and seasonal appearance. Hymenogaster intermedius is known only from the three collection sites, mainly from mixed woodlands at different elevations. In close proximity to the collection sites Fagus sylvatica was identified as putative ectomycorrhizal host for both German specimens, while Tilia platyphyllos, Carpinus betulus, Quercus petraea, Corylus avellana were identified as putative hosts for the specimen from Hungary.

Collections examined. See File S2. Holotype deposit: Botanische Staatssammlung Munich; corresponding curator: Dr. D. Triebel; accession number of the holotype: N-0156227.

Mycobank Number. MB 518623.

Hymenogaster luteus. Vittad. 1831

Cluster: 12

Our analysis is in accordance with the species status of H. luteus. The varieties described for this species (Hymenogaster luteus var. luteus Vittad. 1831, Hymenogaster luteus f. trigonosporus Vacek 1948, Hymenogaster luteus var. subfuscus Soehner 1924 and Hymenogaster luteus var. borbekianus Corda 1854) all appear in the same cluster; moreover, they do not form monophyletic groups within the H. luteus clade.

Hymenogaster megalosporus. Soehner 1952

Cluster: 4

H. megalosporus is certainly a very rare taxon, but might be widely distributed across Central Europe, as it is known from exsiccates collected both in Hungary and Germany. Soehner noted that his specimens (931, 1666, 693) were always restricted to beech; in contrast, our collections were associated with Tilia, Quercus and Carpinus. H. megalosporus basidiospores are not always larger than those of H. griseus, but at least some spores within a probe exceed 35 μm, which is not typical of H. griseus.
Hymenogaster niveus. Vittad. 1831 emend. Stielow et al. 2010

Including: *Hymenogaster niveus* Vittad. 1831 sensu lato = *Cortinomyces niveus* Bougher & Castellano 1993 = *Protolignum niveum* (Vittad.) T.W. May 1995, *Hymenogaster matubilis* (Soehner) Zeller & C.W. Dodge 1934.

Clusters: 0, 3, 7, 15, 20, 21, 22

The taxa mentioned above are to be considered as synonyms until better concepts to cope with the cryptic diversity within this species complex are available. Our analysis is in disagreement with the reclassification of *Hymenogaster niveus* as *Cortinomyces niveus* [29]. The latter study placed several taxa of *Hymenogaster* into the gomphoid-phallloid fungi (*Phallomycetidae*), for instance to *Gauteria*. This rearrangement was not supported by molecular data [37].

Hymenogaster pruinatus. Hesse 1891

Cluster: 5

The most important characters of *H. pruinatus* are the gentle, pleasant odour, the whitish, later yellowish-brownish basidiomata and cirriform, light-brown, transparent basidiospores [26]. In accordance to our results, the specimen within cluster 5 identified as *H. pruinatus* is distinguishable by the macromorphological characters outlined by [26] from *H. huthii*, originally identified by us as *H. pruinatus*. ITS sequences indicated that the collection zbi1485 is unique and well differentiated from its sister taxon *H. bulliardii*. This ultra-rare taxon requires further attention and documentation in future studies.

Hymenogaster rehsteineri. Bucholtz 1901 emend. Stielow et al. 2010

Including: *Hymenogaster decorus* Tul. & C. Tul 1843.

Clusters: 8, 10, 14

According to Soehner [26], *H. rehsteineri* was one of the most abundant species in southern Germany during the early 20th century. Soehner described this taxon literally as a “jack of all trades”. However, its distribution among three distinct clusters indicates cryptic species, whose ecological preferences might be more specific. Interestingly, *Hymenogaster rehsteineri* and *H. niveus* share verrucose-thorny, papillate and partially cirriform, greenish basidiospores.

Hymenogaster tener. Berk. & Broome 1844

Cluster: 11

As described above, in the case of *H. tener* Soehner’s concept is in higher agreement with our results than the one of Montecchi & Sarasini [16]. Its unique spicy, rancid, floury odour and plain snow-white peridium, as well the largest spores of all species with thorny-spiny spores, differentiates *H. tener* from all other species occurring in early spring such as *H. arenarius* or *H. lutus.

Hymenogaster thwaitesii. Berk. & Broome 1846

Cluster: 16

H. thwaitesii’s globose-subglobose, verrucose and dark brown spores rounded at the apex and its compact compressed gleba cells are very similar to the morphological characters of *H. griesi*. However, the globose basidiospores, the most striking and constant character of this taxon besides the yellow-brown gleba, evinces that this ultra-rare group is a distinct species and not a synonym of *H. nauticus* as supposed by [16].

North American taxa

Hymenogaster gardneri. Zeller & C.W. Dodge 1934

Probably including: *Hymenogaster subalpinus* A.H Smith 1966, *Hymenogaster parksi* Zeller & C.W. Dodge 1934, *Hymenogaster raphanodorus* M.E. Sm. & Trappe 2005

Clusters: 9, 19

Our knowledge of North American taxa is very limited. Their sequences included in our sample are originating from a large study on the evolution of sequestrate, ectomycorrhizal and epigeous cortinarioid fungi [9] or were not yet used in any published datasets [AY945302, EF796604, DQJ228212]. Unfortunately, a morphological comparison is impossible because descriptions and specimens have been unavailable. The synonymy of the above-mentioned species has to be treated with caution. North American species are so far only reported from the western United States (Oregon, California and Idaho). Smith [70] noted that *H. raphanodorus* and *H. rubens*, both restricted to dry habitats, display the same basidiospore shape, but are phylogenetically unrelated, in agreement with our findings (cluster 19 vs. cluster 20).

Nomenclature

The electronic version of this document in itself does not represent a published work according to the International Code of Botanical Nomenclature [71], and hence the new names contained in the electronic version are not effectively published under that Code from the electronic edition alone. Therefore, a separate edition of this document was produced by a method that assures numerous identical printed copies, and those copies were simultaneously distributed (on the publication date noted on the first page of this article) for the purpose of providing a public and permanent scientific record, in accordance with Article 29 of the Code. Copies of the print-only edition of this article were distributed on the publication date to botanical or generally accessible libraries of the following institutions: Botanische Staatsammlung München, Munich, Germany; Botanical Garden Berlin-Dahlem, Berlin, Germany; Herbarium of the Martin-Luther University Halle, Halle, Germany; CABI Bioservices, Surrey, United Kingdom; CBS-KNAW, Utrecht, The Netherlands; Mycological Herbarium of the ETH Zurich, IBZ, Zurich, Switzerland. The separate print-only edition is available on request from PLoS (Public Library of Science) by sending a request to PLoS ONE, Public Library of Science, 1160 Battery Street, Suite 100, San Francisco, CA 94111, USA along with a check for $10 (to cover printing and postage) payable to “Public Library of Science”.

In addition, new names contained in this work have been submitted to Mycobank [24], from where they will be made available to the Global Names Index. The Mycobank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser. The online version of this work is archived and available from the following digital repositories: PubMedCentral and LOCKSS.

Conclusion

The lack of a detailed study on the genus *Hymenogaster*, in the light of the contradictory opinions of early mycologists, has caused considerable taxonomic confusion in the past. Here, we have analysed the largest morphological and molecular dataset assembled so far from taxa within family *Hymenogasteraceae*. Using the clustering optimization software OPTSIL, we were able to follow a strategy involving four steps: (i) morphologically determining the material using distinct identification keys with distinct underlying species concepts; (ii) selecting the species concept from the literature which results in the highest agreement with the molecular data; (iii) localizing the remaining discrepancies between clusters and taxa; (iv) returning to morphology for interpreting and resolving these discrepancies. Based on these results, we here present a revised classification and a novel species concept for most European taxa of *Hymenogaster*. Most discrepancies between morphological and molecular data could be resolved by adopting a classification modified from Montecchi & Sarasini [16] by incorporating some of Soehner’s [26] views. Only two
species complexes apparently characterized by cryptic diversity [30,72] remained, i.e. *Hymenogaster niveus* and *H. rehsteineri*. Conversely, the large clade comprising *H. griseus* sensu lato, *H. thwaitesii* and *H. megasporus* indicates that macro- and micromorphological variability does not directly coincide with a large number of cryptic species. Apparently morphology-based *Hymenogaster* taxonomy has been hindered by the presence of too constant as well as of too homoplastic characters.

It is fair to say that the genus *Hymenogaster* encompasses a number of rarely recorded taxa; some of them most likely remained as yet undescribed. Collecting and determining ultra-rare species of cortinaroid fungi remains a difficult task. Cortinaroid-hebelomatoid fungi are probably the taxonomically most difficult group of Basidiomycetes, and only a large and diverse number of well documented exsiccates collected over a long period of time is sufficient to revise systematic opinions from the past and to reclassify ultra-rare false truffles. Molecular data, especially DNA sequences, provide robust markers for mycological novelties even when the material for study is limited, such as in the case of the tiny basidiomata of *Hymenogaster*.

Clustering optimization is a valuable method for classification as it bridges the gap between traditional and modern taxonomic disciplines by directly addressing the question of how to optimally account for both genetic divergence and given taxonomic concepts [54]. While proposed as a technique of general applicability, clustering optimization might not always be able to significantly optimize the parameters. For instance, if the reference data are biologically largely meaningless (as in the case of a very poor classification) or if the gene used is unresolved at the taxonomic level of interest, the agreement between reference and clustering partitions might be hardly be modifiable by changing the clustering parameters. However, such cases can easily be recognized by globally optimal MRI values significantly below 1.0 [54]. Another potential problem regarding the interpretability of the outcome of clustering optimization is that the obtained clusters might be non-monophyletic with significant support.

Nevertheless, the results presented here and elsewhere [54,59] indicate that such problems might be negligible in practice.

There are important differences in perspective between clustering optimization and algorithms such as the general mixed Yule-coalescent model (GMYK) [73,74], ecotype simulation [75] and the biological species concept for Bacteria [76]. The latter are based on population theory, allowing one to not only delineate species but also to test hypotheses about the modes of speciation. Depending on the underlying assumptions, the speciation models might or might not be applicable to the organisms under study; for instance, the limitations of GMYK have been highlighted in [77]. Moreover, the models might contradict each other as in the case of the conflict between the ecotype model [75] and the biological species concept for Bacteria [76]. For this reason, it has been called into question whether a robust species concept can be obtained using theory-based algorithms [78]. In contrast, clustering optimization only aims at maximizing conservatism (in the sense of minimal changes of the previous classification) and consistency (in the sense of minimal deviations in character divergence between the resulting clusters) [54]. This flexibility also allows its use in optimizing distance functions for molecular taxonomy [39]. Whether species are ‘real’ or not is not of interest for clustering optimization, much like in [78], but we maintain that biologists can hardly do without the species category in practice because of its importance as a means for managing the depiction of and the access to biological material [79]. It is likely that such a pragmatic view on the species category will remain dominant in the future; for instance, current Prokaryote taxonomy appears to be largely unaffected by the proposed ‘paradigm shift’ [75] in species delineation. In contrast, species delimitation in Archaea and Bacteria is likely to remain to be ultimately based on the 70% similarity threshold in DNA-DNA reassociation, which was established to mimic phenotype-based species concepts in Enterobacteria [80] and has recently be successfully emulated itself by the comparison of genome sequences [81,82]. Adapting a more suitable method for classification to a previous taxonomy is precisely the logic behind clustering optimization [54].

Supporting Information

File S1 Taxonomic descriptions based on the 142 dried and fresh basidiomata collected by the authors (Table 1) and illustrated identification key for the Central European *Hymenogaster* species based on the revised classification (PDF format).

(PDF)

File S2 CSV file with list of specimens used for sequence and comparative morphological analysis, identification results obtained with the three distinct keys and corresponding literature reference for each specimen, taxonomic affiliation according to the revised classification, and Genbank accession numbers.

(CSV)

File S3 Compressed archive including the inferred alignment in FASTA format and the trees in Newick format.

(TAR)

File S4 Measurements of basidiospore length and width in CSV format.

(CSV)

Acknowledgments

BS gratefully acknowledges the technical assistance of Nicole Mrotzek, DSMZ, in DNA sequencing. The help of David Fellenberg, University of Bonn, is kindly acknowledged for translating the holotype descriptions of *H. bainetti* and *H. intermedius* into Latin. ZB is thankful to Daniel Thoen for his kind taxonomic help. MG gratefully acknowledges notes on species concepts by Johannes Sikorski, DSMZ.

Author Contributions

Conceived and designed the experiments: MG BS AKIO ZB GH. Performed the experiments: BS AKIO SR ZB GH. Collected the specimens: GH ZB BS. Analyzed the data: BS MG. Conceived and designed the experiments: MG BS AKIO ZB GH. Performed the experiments: BS AKIO SR ZB GH. Collected the specimens: GH ZB BS.

References

1. Tamh H, Pöltmaa K, Kullman B (2010) Phylogenetic relationships in genus *Geporea* (*Phlyctenaea*, *Pezicula*). Mycological Progress, in press;doi 10.1007/s11557-010-0659-4.

2. Stidow B, Bubner B, Henkel G, Mussenberger B, Hoffmann P, et al. (2009) The neglected hygrophilous fungus *Hydnomyces maculatus* (Soehnier 1959) is a widespread sister taxon of *Hydnum tenuifolium* (Berol. & Breson). (1846). Mycological Progress 9: 195–203.

3. Frolov TG, Stjernegaard Jeppsen T, Laesoe T, Kjeller R (2007) Molecular phylogenetics and delimitation of species in *Cortinarius* section Calochroi (*Basiomyces*, *Agaricaceae* in Europe). Molecular Phylogenetics and Evolution 44: 217–227.

4. Garnica S, Weiß M, Oertel B, Oberwinkler F (2003) Phylogenetic relationships of European *Phlegmacium* species (*Cortinariaceae, Agaricales*). Mycologia 95: 1153–1170.
41. Blaxter M, Moncalvo JM, Vilgalys R (2004) Toward a better understanding of the infrageneric relationship in Cortinarius (Agaricales, Basidiomycota). Mycologia 96: 1042–1058.
42. Fischer E (1933) Gastromyceteae. In: Engler A, Prantl K, eds. Die natürlichen Pflanzenfamilien. Part 2nd ed. Vol. 7a. Leipzig, Wilhelm Engelmann1-72.
43. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, et al. (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Hymenogastraceae. Mycologia 98: 902–905.
44. Blaxter U, Bougher NL, Castellano MA, Moncalvo JM, Moser MM, et al. (2001) Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Am J Bot 88: 2168–2179.
45. Castellano MA, Bougher NL (1994) Consideration of the taxonomy and biodiversity of Australian ectomycorrhizal fungi. Plant and Soil 159: 37–46.
46. Boyle H, Zimdars B, Renker C, Buscot F (2006) A molecular phylogeny of Hellebores species from Europe. Mycological Research 110: 369–380.
47. Bougher NL, Lebel T (2001) Sequestrate (truffle-like) fungi of Australia and New Zealand. Australian Systematic Botany 14: 439–484.
48. Castellano MA, Trappe JM (1998) Australasian truffle-like fungi. I. Nomenclatural bibliography of type descriptions of Basidiomycota. Australian Systematic Botany 3: 653–670.
49. Smith AH (1986) Notes on Dendrogaster, Gymnoglossum, Polystictus and species of Hymenogaster. Mycologia 58: 100–124.
50. Fogel R, Trappe JM (1985) Duntzia, a New Genus in the Hymenogastreae (Basidiomycota). Mycologia 77: 732–742.
51. Fogel R (1985) Studies on Hymenogaster (Basidiomycota): A re-evaluation of the subgenus Dendrogaster. Mycologia 77: 72–92.
52. Montecchi A, Sarasini M (2000) Fungi ipogei d’Europa. AMB, Trento.
53. Francis AA, Bougher NL (2003) Historical and current perspectives in the systematics of Australian cortinarian sequestrate (truffle-like) fungi. Australasian Mycologist 21: 81–93.
54. Masse GE (1891) New or imperfectly known Gasteromycetes. Grevillea 19: 94–98.
55. Masse GE (1896) Fungi exoti I. Kew Bull Misc Inform 138: 124–128.
56. Masse GE (1899) Fungi exoti II. Kew Bull Misc Inform 153-154: 180–181.
57. Cunningham GH (1954) The Gasteromycetes of Australasia XVI. Hymenogastraceae Part I: the genera Rhizopogon, Melanogaster and Hymenogaster. Proc Lin Soc New South Wales 59: 156–172.
58. Beaton G, Pegler DN, Young TWK (1985) Gasteroid Fungi of Australia and New Zealand. Australian State, Australia. 3. Cortinariales. Kew Bulletin 40: 167–204.
59. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an international species database and its implications for molecular species identification. Environmental Microbiology 6: 193–201.
60. Aboy Z, Golding B (2007) A step toward barcoding life: A model-based, decision-theoretic method to assign genes to preexisting species groups. Systematic Biology 56: 44–56.
61. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols: a guide to methods and applications. New York: Academic Press pp 315–322.
62. Lee C, Grasso C, Sharlow MF (2002) Multiple sequence alignment using parallel order graphs. Bioinformatics 18: 452–464.
63. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 360–376.
64. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2681–2688.
65. Groth VG, Hunge A, Winterfeldt W, Kriegstein GE (1980) Bauchpilze in der Bauchpilz-Familie. VPE, Prag, Erlich.
66. Tulasne LR, Tulasne C (1843) Fungi hypogaei. Histoire et Monographie des Champignons Hypogees. APUD Friedrich Klincksieck, Paris.
67. Bidartondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AF, et al. (2008) Preserving accuracy in Genbank. Science 319: 1616-1616.
68. Goker M, Grimm GW, Auch AF, Aurahs R, Käfer M (2008) A clustering optimization strategy for molecular taxonomy applied to plant pathogenic fungi. Environ Microbiol 7: 96–112.
75. Koeppe L, Perry EB, Sikorski J, Krizanc D, Warner A, et al. (2008) Identifying the fundamental units of bacterial diversity: A paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci 105: 2504–2509.
76. Fraser C, Ahn EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: Making sense of generic and ecological diversity. Science 323: 741–746.
77. Leliaert F, Verbruggen H, Wysor B, De Clerck O (2009) DNA taxonomy in morphologically plastic taxa: Algorithmic species delimitation in the boodlea complex (chlorophyta: Cladophorales). Molecular Phylogenetics and Evolution 53: 122–133.
78. Doolittle WF (2009) Eradicating Typological Thinking in Prokaryotic Systematics and Evolution. Cold Spring Harbor Symposia on Quantitative Biology 74: 1–6.
79. Tindall BJ, Garrity GM (2008) Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research, Int J Syst Evol Microbiol 58: 1987–1990.
80. Brenner DJ (1973) Deoxyribonucleic acid reassociation in the taxonomy of enteric Bacteria. Int J Syst Bacteriol 23: 298–307.
81. Auch AF, Von Jan M, Kleuk H-P, Goeker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in Genomic Sciences 2: 117–134.
82. Auch AF, Kleuk H-P, Goeker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences 2: 142–148.