A transcriptome atlas and interactive analysis platform for autoimmune disease

Zhuoqiao Shen1,2,3,4,*, Minghao Fang2,*, Wujianan Sun2,3,4,*, Meifang Tang2, Nianping Liu2, Lin Zhu2, Qian Liu2, Bin Li2, Ruoming Sun2, Yu Shi2, Chuang Guo2,*, Jun Lin2,3,4,* and Kun Qu2,3,4,*

1School of Data Sciences, University of Science and Technology of China, No. 443, Huangshan Road, Shushan District, Hefei, Anhui 230027, China
2Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Wangjiang West Road, Shushan District, Hefei, Anhui 230088, China
4CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, No. 373 Huangshan Road, Shushan District, Hefei, Anhui 230027, China
5School of Medicine, China Pharmaceutical University, No. 639, Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211198, China
*Corresponding author: Tel: +86-551-63606257; Email: qukun@ustc.edu.cn
Correspondence may also be addressed to Jun Lin. Tel: +86-551-63802270; Email: linjun7@ustc.edu.cn and Chuang Guo. Tel: +86-551-63602270; Email: gchuang@ustc.edu.cn
#These authors contributed equally to this work.

Citation details: Shen, Z., Fang, M., Sun, W. \textit{et al.} A transcriptome atlas and interactive analysis platform for autoimmune disease. \textit{Database} (2022) Vol. 2022: article ID baac050; DOI: https://doi.org/10.1093/database/baac050

Abstract

With the rapid development of next-generation sequencing technology, many laboratories have produced a large amount of single-cell transcriptome data of blood and tissue samples from patients with autoimmune diseases, which enables in-depth studies of the relationship between gene transcription and autoimmune diseases. However, there is still a lack of a database that integrates the large amount of autoimmune disease transcriptome sequencing data and conducts effective analysis. In this study, we developed a user-friendly web database tool, Interactive Analysis and Atlas for Autoimmune disease (IAAA), which integrates bulk RNA-seq data of 929 samples of 10 autoimmune diseases and single-cell RNA-seq data of 783,203 cells in 96 samples of 6 autoimmune diseases. IAAA also provides customizable analysis modules, including gene expression, difference, correlation, similar gene detection and cell–cell interaction, and can display results in three formats (plot, table and pdf) through custom parameters. IAAA provides valuable data resources for researchers studying autoimmune diseases and helps users deeply explore the potential value of the current transcriptome data. IAAA is available.

Database URL: http://galaxy.ustc.edu.cn/IAAA

Introduction

Epidemiological studies have shown that autoimmune diseases occur in up to 3–5% of the general population (1). The pathogenesis of autoimmune diseases is diverse, and there is strong heterogeneity between patients and different affected parts, making it a great challenge to develop effective drugs to cure these diseases without side effects (2). High-throughput transcriptome sequencing (RNA-seq) technology, especially single-cell RNA sequencing (scRNA-seq), has been widely used to systematically delineate autoimmune disease–relevant genes and their functions at disease stages (3). scRNA-seq analysis enables a deeper understanding of the microenvironment and the intercellular heterogeneity of peripheral blood or lesions in autoimmune diseases (4). Comparison of the scRNA-seq data between healthy people and patients with autoimmune diseases helps to discover specific cell subtypes associated with the disease and can then be further used to identify candidate genes for drug targets (5), whose expression signals are often submerged in bulk RNA-seq data. In general, these transcriptome-wide scale studies have accumulated many valuable data resources for the research of autoimmune diseases and greatly facilitate the identification of potential biomarkers for disease classification and diagnosis and candidate drug targets (6).

In recent years, researchers have developed multiple autoimmune disease-related databases, such as dAUTObase (7), The Autoimmune Disease Database (AIDB) (8) and A Gene and Autoimmune Disease Association Database (GAAD) (9), to facilitate studies on autoimmune diseases. Among them, dAUTObase provides the incidence
of autoimmune diseases in different countries and regions around the world, and AIDB and GAAD provide information on the relationship of critical genes with relevant diseases. However, compared to the large amount of transcriptome data of autoimmune diseases that have been accumulated, key information, such as cell subtype-specific gene expression and cell–cell interactions, which were hidden in these data resources, is far from being fully exploited.

In view of the great application potential of transcriptome data in clinical disease diagnosis and treatment, especially single-cell transcriptome data, and there is currently a lack of database dedicated to integrating and mining autoimmune disease transcriptome data, we developed IAAA, an autoimmune disease transcriptome database website with an online interactive data analysis module. IAAA collected published bulk RNA-seq data of 929 peripheral blood samples from 10 diseases, including ankylosing spondylitis (AS), Crohn’s disease (CD), juvenile idiopathic arthritis, polymyositis, psoriasis (Ps), dermatomyositis, multiple sclerosis (Ms), rheumatoid arthritis (Ra), systemic lupus erythematosus (SLE) and ulcerative colitis (UC), and scRNA-seq data of 783 203 cells from 96 samples of 6 diseases, including CD, MS, RA, Sjögren’s syndrome (SjS), SLE, systemic sclerosis (SSc) and UC. In the bulk RNA-seq analysis section, users can view the expression of genes of interest between different diseases, perform differential analysis and identify genes with similar expression patterns via correlation analysis. In the scRNA-seq analysis section, users can easily view the expression of genes of interest in different cell subtypes, obtain genes that are differentially expressed in specific cell subtypes under different disease conditions and construct the cell–cell interaction networks.

Materials and methods
Data collection and processing
We collected autoimmune disease data sets from the Sequence Read Archive database (10) and Gene Expression Omnibus (GEO) database (11). We collected RNA-seq data for 10 diseases from 12 data sets and scRNA-seq data for 6 diseases from 8 data sets. The RNA-seq data included 986 peripheral blood samples, while the scRNA-seq data included 783 203 cells from 96 samples and 6 tissues. For each data set, we carefully read the original paper and extracted corresponding data annotations regarding tissue, sample and disease.

For bulk RNA-seq data, we used Trimmomatic (12) software (LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:15 MINLEN: 40) to trim the sequencing adapters and filter out low-quality reads and used STAR (13) (—outSAMtype BAM SortedByCoordinate—quantMode TranscriptomeSAM GeneCounts) to align the reads to the reference genome hg38. We filtered the samples (‘UniquemappedPercent’ ≥50%, ‘MultimappedPercent’ ≤40%, ‘UnmappedPercent’ ≤10%, and ‘number of total reads’ ≥10e6.5) and used our custom Python script to perform gene expression quantification to obtain the raw read count matrix. After quantification, we used the R package DESeq2 (14) to normalize the data and remove batch effect of data sets (with the parameter ‘design = ~ dataset’). We then filtered out the samples with fewer than 16 000 expressed genes. In total, we obtained 929 bulk RNA-seq data sets.

For scRNA-seq data, we downloaded the processed cell–gene expression matrix. Due to the low quality of the processed expression matrix of two data sets (GSE125527 and GSE157278), we used 10x Genomics Cell Ranger 6.0.1 to reprocess their raw data to obtain the cell–gene expression matrix. We used the R package Seurat (15) to take the union of genes in all data sets and filtered out genes that were not found in the reference genome Encyclopædia of genes and gene variants (GENCODE) comprehensive gene annotation (version GRCh38.p13). We then integrated the data sets and removed the cells with fewer than 500 detected genes. Ultimately, we obtained a single-cell transcriptome of 783 203 cells from 96 samples.

We used the R package Harmony (16) to integrate different data sets from different tissues and samples (‘kmeans_init_nstart’ = 20 and ‘kmeans_init_iter_max’ = 100) and used Uniform Manifold Approximation and Projection (UMAP) to perform further dimension reduction illustration of the Harmony space (‘dims’ = 20). We used the Louvain algorithm to cluster the cells (‘resolution’ = 0.8) and used the R package SingleR (17) to annotate the cell clusters based on the expression of known marker genes. The cells of the same tissue from different data sets were closely clustered together in the UMAP after Harmony integration. To identify potential cellular communication between cell subtypes, we applied the CellPhoneDB (18) algorithm to the scRNA-seq profiles. We removed the ligand–receptor pairs in which ‘Receptor1’ and ‘Receptor2’ were both ‘ligands’ in the CellPhoneDB results.

Framework
The IAAA is a website freely available to all users and automatically adjusts to the users’ devices and browsers. Users can visit this website on desktop, tablet and mobile phone without logging in. The website is built by Python’s Django framework combined with jQuery to achieve data interaction through AJAX. The backend program uses scapy (19) for data storage and calculation.

The user obtains the analysis result by submitting the input form to the backend. First, the program will obtain the form information from the front end, and then, the program will check whether the parameters are correct. If an error occurs, an error warning is returned. If the input parameters are all correct, the program will obtain data from the backend and perform calculations. Finally, the program returns the analysis results from the backend to the frontend (Figure 1).

The analysis function framework of IAAA consists of a ‘form’ and three types of results (‘plot’, ‘table’ and ‘pdf’) (Figure 2A). Each analysis function with ‘form’ can return one or more types of results (Figure 2B).

Each analysis function of IAAA provides a form with basic parameters, advanced parameters and submit buttons. The basic parameters are used to describe the basic characteristics of the input data (such as disease type and gene set). The basic parameters also include a ‘downsample’ function to support the selection of downsampled data from the original scRNA-seq data set for analysis in case the original scRNA-seq data set is too large to be displayed on the frontend. Advanced parameters include optional parameters that affect the visualization effect (such as font size and dot size). Users can customize these parameters and click the submit button (‘plot’, ‘table’ and ‘pdf’) to return the corresponding analysis results.

The result returned by the ‘plot’ function is a data visualization interactive page based on ECharts, which can return charts such as histograms, scatter plots and heatmaps. Users can interact with charts to explore data and obtain more
information. If the user wants to view and download the data of the drawing chart, it can be obtained through the ‘table’ function. The ‘pdf’ function returns figures in PDF format. Parameters with ‘only pdf’ mean that this parameter only supports the image results in ‘pdf’ format.

Results

Analysis modules

General (bulkRNA & scRNA)

This page provides a search function. The user can enter the gene name (e.g. IL6) or disease (e.g. SLE) to check whether they exist in the bulk RNA-seq/scRNA-seq data and view relevant annotation information (Supplementary Figure S1A–B). Gene-related information was collected from the GeneCards website; disease-related information was collected from the literature (20–37). In the ‘scRNA analysis’ section, users can view the distribution of cells from different diseases or cell subtypes in a UMAP scatter plot (Figure 3A, Supplementary Figure S1C–F).

Expression profiling (bulkRNA & scRNA)

IAAA allows users to visualize the expression of genes of interest (gene symbol as input) or gene set (upload txt file) in different autoimmune diseases from both bulk RNA-seq and scRNA-seq data. These results can be presented in the form of boxplots, dotplots or UMAP plots (only available in the ‘scRNA analysis’ section) or in the form of a standardized expression table. In the ‘scRNA analysis’ section, in addition to visualizing the expression of specific diseases, one can also view the gene expression in specific cell subtypes. For example, users can view the expression of genes related to the type II interferon response (genes: STAT1, IRF1, HLA-drβ5, HLA-DPA1, HLA-β, HLA-E, HLA-C, HLA-DQB1, HLA-DQA1, HLA-DRB1, HLA-B, HLA-DRA, HLA-DPB1 and HLA-A) (38) in all samples of the bulk RNA-seq data and all cells of the scRNA-seq data from healthy people and patients with SLE, UC and MS (Supplementary Figure S2A–D), where no significant differential expression was observed between the sample groups. One can also view the expression of type II interferon response genes in specific cell subtypes in scRNA-seq data by selecting the cell subtype of interest (e.g. macrophage) (Supplementary Figure S2E–F). We can see that the expression of this gene set in macrophages in MS patients is significantly different from that in healthy people (Figure 3B).

Differential analysis (bulkRNA & scRNA)

Compared with healthy control individuals, patients with autoimmune diseases usually express abnormally upregulated
or downregulated genes. The genes differentially expressed in autoimmune diseases (e.g. cytokines and chemokines) are often potential targets for drugs. A recent study has shown that DESeq2 may cause high false positive rate on RNA-seq data from human samples; therefore, IAAA used DESeq2 for bulk RNA-seq normalization but not for differential analysis. IAAA allows users to choose a customized method for differential analysis (‘wilcoxon’ for Wilcoxon rank-sum test, ‘t-test’ for Student’s t-test and ‘t-test overstestim_var’ for Student’s t-test while overestimating the variance of each group). IAAA allows users to select different ‘P value’ and ‘log2foldchange’ as thresholds to screen for genes that are differentially expressed in a certain autoimmune disease of interest and display their expressions as volcano plot or statistical tables (Supplementary Figure S3). Users can thus compare the gene expression differences between different diseases. In the ‘scRNA analysis’ section, users can also compare the gene expression of different cell subtypes in the same diseases and that of the different diseases in the same cell subtype. For example, users can compare the gene expression differences between MS and healthy people in all cells (Supplementary Figure S3A–D), compare gene expression differences between MS and healthy B cells (Supplementary Figure S3F–G) and compare the gene expression differences between B cells and macrophages in MS (Supplementary Figure S3H, Figure 3C).

Correlation analysis (bulkRNA & scRNA)
This module performs pairwise gene correlation analysis for any two given gene sets of interest using correlation methods such as the Pearson, Spearman and Kendall methods. Before using this function, users can first use the ‘Similar Gene Detection (bulkRNA)’ function to obtain a gene set that is similar to a given gene of interest in a specific disease. For example, for gene sets related to the type II interferon response, users can first obtain the top genes (HLA-DQB1-AS1, HLA-DQA2, PSMC4, RNFS, HSPA1B, CNDP2, PSMB9, CTNNBL1 and PSME1) whose expressions are highly correlated with genes in the type II interferon response through the ‘similar gene detection (bulkRNA)’ function (Figure 3D, Supplementary Figure S4A) and then visualize the correlation between the expressions of the two gene sets in all cells in SLE patients.
Figure 3. Examples of IAAA outputs. (A) UMAP plot showing the distribution of cells from healthy controls and several autoimmune diseases (i.e. CD, MS, SLE, SSc, SJ, SjS and UC) in scRNA-seq data. The UMAP plot is generated by the ‘general’ functions in IAAA. (B) Boxplot showing the expression of the type II interferon gene set (STAT1, IRF1, HLA-DRB5, HLA-DPA1, HLA-F, HLA-E, HLA-C, HLA-DBB1, HLA-DQ1, HLA-DR1, HLA-B, HLA-DRA, HLA-DPB1 and HLA-A) in macrophages for scRNA-seq data from SLE, UC and MS patients. The boxplot is generated by ‘expression profiling’ functions in IAAA. (C) Volcano plot showing the differentially expressed genes between B cells and macrophages in MS patients for the scRNA-seq data. The volcano plot is generated by ‘differential analysis’ functions in IAAA. (D) The Pearson correlation of genes with the type II interferon gene set in bulk RNA-seq data generated by ‘similar gene detection’ functions in IAAA. (E) The Pearson correlation between two gene sets (type II interferon gene set and the high correlation gene set by similar gene detection functions) in bulk RNA-seq data by correlation analysis functions (scatter plot). (F) Circos plot showing the receptor–ligand pairs among B cells, CD14+ monocytes (CD14_Mono), CD16+ monocytes (CD16_Mono) and macrophages from PBMCs in SLE patients. The volcano plot is generated by ‘cell–cell interaction’ functions in IAAA. Mono, monocytes.

(Figure 3E, Supplementary Figure S4B) and their correlation in CD14 monocyte and CD16 monocyte in SLE patients (Supplementary Figure S4C–D).

Similar gene detection (bulkRNA)
With this function, users can quickly identify genes that are similar in expression to a given set of genes of interest
Cell–cell interaction (scRNA)
Identifying cell–cell interactions is essential to delineate
the functions of cells in the immune system. We used
CellPhoneDB, a repository of ligands, receptors and their
interactions, to predict the cellular interactions between
the cell subtypes based on scRNA-seq data from each disease
tissue. Users can visualize the interactions between
different cell subtypes and select different ‘P value’ and
‘mean’ (receptor–ligand average expression) thresholds to
screen receptor–ligand pairs with different significance lev-
eels. For example, users can view the cell–cell interactions
and their associated ligand–receptor pairs between B cells,
mono cells and macrophages in SLE-PBMC data (Figure 3F,
Supplementary Figure S5).

Results availability
IAAA provides the analysis results in PDF format. Users can
download the PDF and modify the image with Adobe Illus-
trator. If the current analysis function of the database is not
enough to meet the needs of users, the website also pro-
vides data tables for download for further analysis. For each
table, a ‘download’ button is provided. Note that if one wants
to download the entire data table, he/she needs to change
the parameter of the ‘show’ option to ‘ALL’. In addition,
‘BulkRNA Meta’ and ‘scRNA Meta’ under ‘DataSets’ in the
navigation bar provide metadata of the bulk RNA-seq data
and scRNA-seq data, respectively, and ‘Article Meta’ provides
research-related information about the data we collected.

Documentation
Documentations are provided under the ‘Docs’ section, which
includes ‘Q&A’, ‘Help’ and ‘About’. For beginners of IAAA,
one can see the list of frequently asked questions and answers
on the website under ‘Q&A’. In addition, one can also view
the meaning of the parameters of each analysis function in
‘Help’. If one wants to know more about us, he/she can view
the ‘About’ page. ‘Examples’ provides a tutorial video and
comment area for each analysis function. Users can follow
the video step by step to learn how to use the analysis tools.
If one has any questions or suggestions about IAAA, he/she
can also leave comments in the comment area. We will make
improvements according to users’ constructive suggestions.

Discussion
The development of next-generation sequencing technology
has greatly promoted the research of autoimmune diseases
and has also generated a large amount of data. How to
effectively analyze these data is a great challenge for biomed-
ical researchers. The IAAA database we developed integrates
a large amount of bulk transcriptome and single-cell tran-
scriptome data of autoimmune diseases and provides cor-
responding transcriptomic data analysis modules, including
gene expression, differential analysis, correlation, similar gene
detection, cell–cell interaction and other analysis modules.
Users can realize complex bulk and single-cell transcriptome
data analysis with simple webpage operations and obtain intu-
itive analysis results. Overall, IAAA can help users quickly
explore and mine transcriptomic data of autoimmune dis-

eases.

The IAAA database consists of two parts, ‘scRNA analy-
sis’ and ‘bulkRNA analysis’, which, respectively, include
the most complete transcriptome and single-cell transcript-
tome data of autoimmune diseases thus far. We will continu-
ously collect newly generated single-cell transcriptome data
and update our database in real time. In addition, the cur-
rently rapidly developing single-cell multi-omics technology
allows us to obtain multiple omics information in a single
cell at the same time, allowing us to analyze the cell state
in disease states from more dimensions to gain a deeper
understanding of the complex molecular mechanism of the
occurrence and development of autoimmune diseases. For
example, by integrating single-cell chromatin accessibility and
single-cell transcriptome data and identifying peak-to-gene
linkages, it is helpful to analyze the regulatory mechanism
of disease (40). In the future, we will integrate multi-omics
data in IAAA and provide corresponding analysis function
modules.

In general, the use of bioinformatics methods to ana-
lyze omics data has become a growing need. The main
purpose of IAAA is to integrate a large amount of autoim-
mune omics data and provide a convenient and fast analy-
sis tool to autoimmune disease researchers. In the future,
we will supplement more autoimmune disease omics data,
especially single-cell multi-omics data, and improve and add
more analysis functions according to the users’ construc-
tive feedback to help users study autoimmune diseases more
deeply.

Supplementary data
Supplementary data are available at Database Online.

Acknowledgements
We thank the USTC Supercomputing Center and the School
of Life Science Bioinformatics Center for providing computing
resources for this project.

Funding
This work was supported by the National Key R&D Pro-
gram of China (2020YFA0112200 to K.Q.), the National
Natural Science Foundation of China grants (T2125012,
91940306, 31970858 and 31771428 to K.Q.; 81871479
to J.L.), CAS Project for Young Scientists in Basic Research
(YSBR-005 to K.Q.), Anhui Province Science and Tech-
nology Key Program (202003A07020021 to K.Q.) and the
Fundamental Research Funds for the Central Universities
(YD207002019, WK9110000141 and WK207000158 to
K.Q.; WK910000001 to J.L.).

Author contributions
K.Q. conceived the project. K.Q., J.L. and C.G. supervised the
project. Z.S., M.F. and W.S. designed the framework and per-
formed data analysis with help from M.T., N.L., L.Z. and Q.L.
Z.S., M.F., W.S. and K.Q. wrote the manuscript with input
from C.G., J.L. and all the other authors. All authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no competing interests.

References

1. Wang,L., Wang,F.S. and Gershwin,M.E. (2015) Human autoimmune diseases: a comprehensive update. *J. Intern. Med.*, 278, 369–395.

2. Wahren-Herlenius,M. and Dorner,T. (2013) Immunopathogenic mechanisms of systemic autoimmune disease. *Lancet*, 382, 819–831.

3. Papalexi,E. and Satija,R. (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. *Nat. Rev. Immunol.*, 18, 35–45.

4. Zhao,M., Jiang,J., Zhao,M. et al. (2021) The application of single-cell RNA sequencing in studies of autoimmune diseases: a comprehensive review. *Clin Rev Allergy Immunol.*, 60, 68–86.

5. Lindeman,I. and Solid,L.M. (2022) Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. *Mucosal Immunol.*, 15, 51–63.

6. Sirota,M. and Butte,A.J. (2011) The role of bioinformatics in studying rheumatic and autoimmune disorders. *Nat. Rev. Rheumatol.*, 7, 489–494.

7. Gkantouna,V.A., Kambouris,M.E., Viennas,E.S. et al. (2015) Introducing dAUTObase: a first step towards the global scale geoepidemiology of autoimmune syndromes and diseases. *Bioinformatics*, 31, 581–586.

8. Karopka,T., Fluck,J., Mevissen,H.T. et al. (2006) The autoimmune disease database: a dynamically compiled literature-derived database. *BMC Bioinform.*, 7, 325.

9. Lu,G., Hao,X., Chen,W.H. et al. (2018) GAAD: a gene and autoimmune disease association database. *Genomics Proteomics Bioinform.*, 16, 252–261.

10. Barrett,T., Wilhite,S.E., Ledoux,P. et al. (2013) NCBI GEO: archive for functional genomics data sets-update. *Nucleic Acids Res.*, 41, D991–D995.

11. Leinonen,R., Sugawara,H., Shumway,M. et al. (2011) The sequence read archive. *Nucleic Acids Res.*, 39, D19–D21.

12. Bolger,A.M., Lohse,M. and Usadel,B. (2014) Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics*, 30, 2114–2120.

13. Dobin,A., Davis,C.A., Schlesinger,F. et al. (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29, 15–21.

14. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.*, 15, 1–21.

15. Butler,A., Hoffman,P., Smibert,P. et al. (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat. Biotechnol.*, 36, 411–418.

16. Korsunskyl,L., Millard,N., Fan,J. et al. (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. *Nat. Methods*, 16, 1289–1294.

17. Aran,D., Looney,A.P., Liu,L.Q. et al. (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophase. *Nat. Immunol.*, 20, 163–170.

18. Effremova,M., Vento-Torres,M., Teichmann,S.A. et al. (2020) CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. *Nat Protoc.*, 15, 1484–1506.

19. Wolf,F.A., Angere,P. and Theis,F.J. (2018) SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol.*, 19, 1–5.

20. Mo,A., Marigorta,U.M., Arafat,D. et al. (2018) Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease. *Genome Med.*, 10, 1–16.

21. Tokuyama,M., Kong,Y., Song,E. et al. (2018) ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. *P. Natl. Acad. Sci. USA*, 115, 12565–12572.

22. Catapano,M., Vergnani,M., Romano,M. et al. (2020) IL-36 promotes systemic IFN-I responses in severe forms of psoriasis. *J. Invest. Dermatol.*, 140, 816–82.

23. Parkes,J.E., Thoma,A., Lightfoot,A.P. et al. (2020) MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. *BMC Rheumatol.*, 4, 25.

24. Spurlock,C.F., 3rd, Tossberg,J.T., Guo,Y. et al. (2015) Defective structural RNA processing in relapsing-remitting multiple sclerosis. *Genome Biol.*, 16, 58.

25. Cao,Y., Goods,B.A., Raddassi,K. et al. (2015) Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. *Sci. Transl. Med.*, 7, 287ra274.

26. Schuchtenyky,K., Diaz-Gallo,L.M., Folkers,K. et al. (2017) Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis. *Arthritis Res. Ther.*, 19, 1–9.

27. Linsley,P.S., Speake,C., Whalen,E. et al. (2014) Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. *Plos One*, 9, e109760.

28. Davenport,E.E., Amariuta,T., Gutierrez-Arcelus,M. et al. (2018) Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial. *Genome Biol.*, 19, 1–15.

29. Wang,X.B., Ellis,J.J., Pennisi,D.J. et al. (2017) Transcriptome analysis of ankylosing spondylitis patients before and after TNF-α inhibitor therapy reveals the pathways affected. *Genes Immun.*, 18, 184–190.

30. Kinchen,J., Chen,H.H., Parikh,K. et al. (2018) Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. *Cell*, 175, 372–383.

31. Boland,B.S., He,Z.R., Tsi, M.S. et al. (2020) Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. *Sci. Immunol.*, 5, eabb4432.

32. Valenzi,E., Bulik,M., Tabib,T. et al. (2019) Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. *Ann. Rheum. Dis.*, 78, 1379–1387.

33. Hong,X.P., Meng,S.H., Tang,D.G. et al. (2021) Single-cell RNA sequencing reveals the expansion of cytotoxic CD8(+) T lymphocytes and a landscape of immune cells in primary Sjögren’s Syndrome. *Front Immunol.*, 11, 3688.

34. Mandic,L., Schwarz,T., Majumdar,A. et al. (2020) Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. *Nat. Commun.*, 11, 1–9.

35. Kaufmann,M., Evans,H., Schaupp,A. et al. (2021) Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. *Med.*, 2, 296–312.e298.

36. Brubaker,D.K., Kumar,M.P., Chiswick,E.L. et al. (2020) An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease. *Sci. Signal.*, 13, eaay3258.

37. Smillie,C.S., Biton,M., Ordovas-Montanes,J. et al. (2019) Intracellular reprogramming of integrin signaling with the use of inhibitors. *Cell*, 178, 714–730.e722.

38. Azziz,E., Carr,A.J., Pittas,G. et al. (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. *Cell*, 174, 1293–1308.e1236.

39. Li,Y.M., Ge,X.Z., Peng,F. et al. (2022) Exaggerated false positives by popular differential expression methods when analyzing human population samples. *Genome Biol.*, 23, 1–13.

40. Granja,J.M., Corces,M.R., Pierce,S.E. et al. (2021) ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis (vol 53, pg 403, 2021). *Nat. Genet.*, 53, 935–935.