Inflammation and Endothelial Function Relevant Genetic Polymorphisms and Carotid Plaque in Chinese Population

Xingyang Yi1,2, Ling Zhu2, Guo Sui3, Jie Li1, Hua Luo4, Ming Yu5, Chun Wang1, Xiaorong Chen5, Wei Wei4 and Shaozhi Bao6

Shaozhi Bao and Guo Sui contributed equally to this work.

1 Department of Neurology, the People's Hospital of Deyang City, Sichuan, China
2 Department of Psychosomatic, the Affiliated Hospital of Southwest Medical University, Sichuan, China
3 Nursing department, People's Hospital of Deyang City, Sichuan, China
4 Department of Neurology, the Affiliated Hospital of Southwest Medical University, Sichuan, China
5 Department of Neurology, the Suining Central Hospital, Sichuan, China
6 Department of Neurology, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China

Aim: To examine the association between carotid plaque and variants in genes involved in inflammation and endothelial function.

Methods: This was a multicenter, cross-sectional survey in southwestern China. The residents aged ≥ 40 years volunteered to participate in the face-to-face survey in eight communities. A total of 2,377 subjects with high stroke risk were enrolled. Carotid plaque and plaque phenotype were assessed by carotid ultrasound. Genotypes of 19 variants in 10 genes related to inflammation and endothelial function were examined. Gene–gene interaction was analyzed by generalized multifactor dimensionality reduction (GMDR).

Results: Carotid plaques were found in 852 (35.8%) subjects, and 454 (53.3%) had stable plaques, whereas 398 (46.7%) had vulnerable plaques. PPARA rs4253655, HABP2 rs7923349, and IL1A rs1609682 were associated with the presence of carotid plaque, and NOS2A rs2297518 and PPARA rs4253655 were associated with vulnerable plaque in univariate analysis. The GMDR analysis revealed that there was a significant gene–gene interaction among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682, and NOS2A rs8081248, and the high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque after adjusting the covariates (OR, 2.86, 95% CI: 1.32–7.13, \(P=0.003 \)).

Conclusion: The prevalence of carotid plaque was very high in the high-risk stroke population in southwestern China. Variants in genes involved in the endothelial function and inflammation were associated with the carotid plaque. The high-risk interactive genotype among rs7923349, rs1991013, rs1609682, and rs8081248 was independently associated with a higher risk of vulnerable plaque.

Key words: High-risk stroke population, Inflammation, Carotid plaque, Plaque vulnerability, Genetic polymorphism

Introduction

Stroke is the leading cause of mortality and adult disability in the world, especially in China1). Carotid atherosclerosis is associated with an increased risk of stroke, coronary events, and cardiovascular mortality as a result of both plaque rupture and luminal stenosis2-4). Carotid atherosclerotic plaque is an important subclinical precursor of stroke and other vascular diseases5). Therefore, the identification of etiology for carotid plaque, including genetic etiology, is very important for the prevention of atherosclerosis and
stroke has been reported. However, until now, such a genetic influence on carotid atherosclerotic plaque is not fully understood.

Atherosclerosis is a chronic inflammatory disease. Several different mechanisms play key roles in the pathogenesis of atherosclerosis, including endothelial injury, recruitment and activation of immune-inflammatory cells, influx of lipoproteins through the vessel injury space, and smooth muscle cell proliferation. In addition, substantial heritability of subclinical carotid atherosclerosis has been reported. A different risk of atherosclerosis in the population may reflect variants in genes that modulate the inflammatory response to oxidized lipids in the arterial walls. Therefore, genetic variants in inflammation and endothelial function relevant genes may influence metabolism of lipids and affect atherogenesis. Several studies have investigated the association between carotid atherosclerosis and inflammation- and endothelial function-related genetic variants. However, information about specific genetic determinants of carotid plaque is lacking, particularly among Chinese populations.

It is known that atherosclerosis as a common complex trait does not follow the Mendelian pattern of inheritance. Gene–gene and gene–environment interactions may be responsible for the complex trait. It has been emphasized that assessment of multiple genes is necessary to identify the genetic mechanisms for carotid plaque using the generalized multifactor dimensionality reduction (GMDR) approach. However, few studies used the GMDR method to investigate complex genetic risk factors for carotid plaque. Therefore, the aim of this study was to investigate (1) the prevalence of carotid plaque in high-risk stroke population in southwestern China and (2) the association of 19 single nucleotide polymorphisms (SNPs) in genes involved in inflammation and endothelial function with carotid plaque among individuals in southwestern China.

Materials and Methods

Study Design and Participants

This population-based cross-sectional survey was part of the China National Stroke Screening Survey (CNSSS) program of the National Health and Family Planning Commission of China (grant No. 2011BAI08B01), which was supervised by the Chinese National Centre for Stroke Care Quality Control and Management. The survey protocol was reviewed and approved by the ethics committee of the participating hospitals (People’s Hospital of Deyang City, Suining Central Hospital, the Third Affiliated Hospital of Wenzhou Medical University, and the Affiliated Hospital of Southwest Medical University), and informed consent was obtained from all participants during recruitment.

This study was conducted in eight communities of Sichuan Province in southwestern China and Wenzhou City from May 2015 to September 2015. The eight communities were randomly selected, and a cluster survey method was used. Details on the organization and implementation of the CNSSS can be found at the official website. Briefly, we screened permanent residents aged 40 years or older who had lived in the area for more than 6 months in each community. All participants were initially screened using a structured face-to-face questionnaire by investigators. The questionnaire included demographic characteristics, behavioral factors, personal and family medical history of stroke and chronic diseases, and physical examination. More detailed information of laboratory examinations (such as fasting blood glucose [FBG], lipid, electrocardiogram [ECG], and carotid ultrasonography) was obtained from the individuals who were identified to be at a high risk for stroke. The investigators were physicians or neurologists from community hospitals who had at least 5 years of education in medicine.

Definitions of Stroke and Evaluation of Risk Factors

In this survey, stroke history and stroke types were established by a combination of self-reporting and the judgment of a physician or neurologist according to neuroimaging (brain computed tomography scan and magnetic resonance imaging). By definition, patients with a history of transient ischemic attack only were excluded.

The eight stroke-related risk factors were assessed, including overweight/obesity (body mass index ≥ 26 kg/m²), smoking, physical inactivity (physical exercise less than three times a week for less than 30 min each time), family history of stroke, and hypertension, diabetes mellitus, dyslipidemia, and atrial fibrillation. Hypertension was defined as using antihypertensive drugs or the average of two resting systolic blood pressure readings of ≥ 140 mm Hg and/or diastolic blood pressure ≥ 90 mm Hg in the field survey. Diabetes mellitus was defined as using insulin and/or oral hypoglycemic medications or fasting blood glucose ≥ 7.0 mmol/L in the field survey. Dyslipidemia was defined as using a lipid-lowering medication or having one or more of the following in the field survey: triglycerides ≥ 1.70 mmol/L, cholesterol ≥ 5.18 mmol/L, and low-density lipoprotein cholesterol ≥ 3.37 mmol/L. Atrial fibrillation was defined as reported by the respondent or diagnosed by electro-
Cardiovascular disease risk factors were categorized according to the American Heart Association/Canadian Cardiovascular Society Guidelines.

Data Cleaning Procedures and Quality Control

The detailed data cleaning procedure and quality control according to the CNSSS is presented in Fig. 1. Briefly, 18,595 participants volunteered to participate in the face-to-face survey, and questionnaires were obtained in 17,213 participants. The response rate was 93.6% (17,413/18,595). Five hundred twenty-one participants with incomplete questionnaires on stroke history or risk factor records were excluded. Finally, 16,892 valid individual records were completed, including 2,893 high-risk stroke population. Among 2,893 high-risk stroke population, carotid ultrasonography was examined, and DNA from peripheral blood was obtained in 2,377 participants (516 were unwilling to accept examination for carotid ultrasonography and offer DNA sample). The response rate of examination for carotid ultrasonography and DNA sample was 82.2% (2,377/2,893).

Carotid Ultrasoundography

Bilateral common and internal carotid arteries, as well as bifurcations, were assessed using a diagnostic ultrasound (type 512, ACUSON Sequoia Apparatus, 7.5-MHz probe, Berlin, Germany) in 2,377 high-risk stroke population according to standard scanning and reading protocols. Carotid characteristics, including intima–media thickness (IMT), plaque morphology, and degree of carotid stenosis, were evaluated. The detailed procedures for evaluating plaques, types of plaques, degree of carotid stenosis, intraobserver, and interobserver coefficients were described in our previous study. Briefly, bilateral internal and common carotid arteries, as well as bifurcations, were examined for the presence of atherosclerotic plaque. Atherosclerotic plaque was defined as an endoluminal protrusion of at least 1.5 mm or a focal thickening >50% of the IMT relative to the adjacent wall segment. Thereafter, the participants were divided into two groups: carotid plaque and non-carotid plaque groups. Furthermore, according to plaque echogenicity and surface structure, carotid plaque was further graded from class I to class IV as echolucent, predominantly echolucent, predominantly echogenic, and echogenic, respectively. Plaque of class I or class II was defined as vulnerable plaque, and plaque of class III or class IV was defined as stable plaque.

Carotid characteristics were graded independently by one ultrasound imaging doctor blinded to clinical status. The main aim of this study was to investigate the prevalence of carotid plaque in high-risk stroke population and the association of 19 single nucleotide polymorphisms (SNPs) in genes involved in inflammation and endothelial function with carotid plaque. Thus, carotid stenosis and IMT in common carotid artery were not involved in this analysis.
Polymorphism Selection and Genotyping

SNPs in 10 genes involved in inflammation and endothelial function were selected from the NCBI database (http://www.ncbi.nlm.nih.gov/SNP), which met the following criteria: (1) these SNPs have been evaluated in previous studies \cite{10, 20}; (2) SNPs with minor allele frequency >0.05; (3) tagging SNPs across different human populations (http://pga.gs.washington.edu); and (4) the SNPs may lead to amino acid changes. According to the criteria, 19 SNPs from 10 genes implicated in inflammation and endothelial function were evaluated, including PPARG (rs4253655, rs4253778), NOS2A (rs2297518, rs8012148), TNF rs3093662, IL6R (rs1386821, rs4845625), TNFSF4 (rs1234313, rs11811788), TLR4 (rs752998, rs1927911), IL1A (rs1800587, rs1609682), VCAM1 (rs3783615, rs2392221), ITGA2 (rs1991013, rs4865756), and HABP2 (rs932650, rs7923349).

DNA from peripheral blood was extracted using a modified phenol/chloroform method and purified using the UNIQ-10 kit (Sangon Biotech Co., Ltd. Shanghai, China). The genotyping of the 19 SNPs was performed by investigators blinded to the clinical data of participants, using the matrix-assisted laser desorption/ionization time of flight mass spectrometry method, as previously described \cite{12, 13, 19}.

Statistical Analysis

The data were analyzed using SPSS 17.0 (SPSS Inc. New York, New York, USA). The results are expressed as percentages for categorical variables, and continuous variables are expressed as mean \pm standard deviation. Baseline clinical characteristics and genotype distributions of the 19 variants were compared using χ^2 test (categorical variables) and Student’s t-test (continuous variables) between subjects with and without carotid plaque.

The allele frequencies for Hardy–Weinberg equilibrium were assessed using χ^2 test. The GMDR software (beta version 0.7, www.healthsystem.virginia.edu/internet/addiction-genomics/Software) was used to assess gene–gene interaction among the 19 variants under various scenarios as previously reported \cite{15, 19}. The prevalence of carotid plaque between subjects with and without high-risk interactive genotypes was compared by χ^2 test. Furthermore, we evaluated the risk of carotid vulnerable plaque conferred by the high-risk interactive genotype using multivariate logistic regression analysis, and reported as the hazard ratio (HR) with the 95% confidence interval (CI). The other variables that were statistically significant at P value <0.05 in the univariate analysis were entered into the multivariate logistic regression analyses to adjust. All tests were two-sided, and P value <0.05 was considered statistically significant.

Results

The Baseline Characteristics of Subjects and Prevalence of Carotid Plaque

Among 2377 participants in the high-risk stroke population, carotid plaque was present in 852 (35.8%) participants, and 454 (53.3%) participants had stable plaque, whereas 398 (46.7%) had vulnerable plaque. As presented in Table 1, compared with individuals with no plaque, older age, male, hypertension and intake of antihypertensive drugs, and current smoker were significantly more frequent, and the levels of total cholesterol, fasting blood glucose, and homocysteine were higher in subjects with plaque.

Genotype Distributions in Subjects with and without Carotid Plaque

The genotype distributions of the 19 SNPs assessed in this study were consistent with the Hardy–Weinberg equilibrium (all P value >0.05). Three genes involved in endothelial function and inflammation had SNPs significantly associated with the presence of carotid plaque (PPARG rs4253655, HABP2 rs7923349, and IL1A rs1609682, Table 2), and NOS2A rs2297518 and PPARG rs4253655 were significantly associated with vulnerable plaque in the single SNP analysis (Table 3). However, there were no significant differences in the genotype distributions in the 19 SNPs between individuals with stable plaque and vulnerable plaque (Supplemental Table 1), or in individuals with stable plaque and individuals without plaque (Supplemental Table 2).

Gene–Gene Interactions of the 19 Variants and Risk of Vulnerable Plaque

We evaluated the relationship between the higher-order interaction for the 19 variants and carotid vulnerable plaque using the GMDR analysis and found that there was a significant gene–gene interaction among genes involved in inflammation and endothelial function. After adjusting for confounding variables, the best interactive model for carotid plaque was interaction among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682, and NOS2A rs8012148, in which the cross-validation consistency was 10/10 and sign test was 9 ($P=0.017$, Table 4). Then, the one-locus model was computed for each variant of the four SNPs, and the P value for prediction error was 0.019 using permutation testing, indicating that the interaction among the four variants strongly synergistically contributed to a higher risk of...
carotid vulnerable plaque compared with did each single variant alone.

Subsequently, we assessed the association between different genotype combinations of the four variants and risk of carotid vulnerable plaque. Compared with the individuals carrying wild-type genotypes rs7923349 GG, rs1991013 GG, rs1609682 GG, and rs8081248 GG, the relative risk of different genotype combinations among the four variants for vulnerable plaque was investigated. The results revealed that four genotype combinations making larger contributions to carotid vulnerable plaque were those individuals carrying rs7923349 TT, rs1991013 AA, rs1609682 TT, and rs8081248 AA (OR=2.83, 95% CI: 1.26–5.38, \(P=0.005 \)); rs7923349 TT, rs1991013 GA, rs1609682 TT, and rs8081248 GA (OR=2.02, 95% CI: 1.12–3.33, \(P=0.008 \)); rs7923349 GT, rs1991013 AA, rs1609682 GT, and rs8081248AA (OR=1.93, 95% CI: 1.07–3.84, \(P=0.028 \)); and rs7923349 GT, rs1991013 GA, rs1609682 GT, and rs8081248GA (OR=1.85, 95% CI: 1.03–2.98, \(P=0.038 \)). The aforementioned four genotype combinations were defined as the high-risk interactive genotype. The other genotype combinations did not reach statistical significance (\(P>0.05 \)) and were defined as the low-risk interactive genotype.

Association between High-Risk Interactive Genotype and Carotid Vulnerable Plaque

There were 401 carriers of the high-risk interactive genotype among 2377 participants. The incidence of carotid vulnerable plaque was significantly higher in carriers of the high-risk interactive genotypes than in noncarriers (32.7% [131/401] vs. 13.5% [267/1976], \(P<0.001 \)).

Furthermore, we evaluated the risk of the pres-
Genotype Distribution	Carotid plaque	Non-carotid plaque	Wald χ^2 value	P value
IL6R (rs4845625)				
TT	250 (29.4)	405 (26.6)	3.427	0.180
CC	182 (21.2)	368 (24.1)		
CT	420 (49.4)	752 (49.3)		
HABP2 (rs932650)				
CT	372 (43.7)	658 (43.1)	2.477	0.289
CC	72 (8.5)	159 (10.4)		
TT	408 (47.9)	708 (46.4)		
TLR4 (rs1927911)				
AG	424 (49.8)	740 (48.5)	1.252	0.535
AA	135 (15.8)	226 (14.8)		
GG	293 (34.4)	559 (36.7)		
VCAM1 (rs3783615)				
AA	852 (100.0)	1525 (100.0)	-	-
PPARA (rs4253778)				
CG	2 (0.2)	4 (0.3)	0.016	0.898
GG	850 (99.8)	1521 (99.7)		
PPARA (rs4253655)				
AG	4 (0.5)	0 (0.0)	7.172	0.007
GG	848 (99.5)	1525 (100)		
VCAM1 (rs2392221)				
CT	205 (24.1)	340 (22.3)	2.560	0.278
CC	632 (74.2)	1145 (75.1)		
TT	15 (1.8)	40 (2.6)		
IL1A (rs1800587)				
AG	121 (14.2)	193 (12.7)	1.645	0.439
GG	727 (85.3)	1321 (86.6)		
AA	4 (0.5)	11 (0.7)		
TNFSF4 (rs1234313)				
AG	399 (46.8)	667 (43.7)	2.229	0.328
GG	94 (11.0)	185 (12.1)		
AA	359 (42.1)	673 (44.1)		
HABP2 (rs7923349)				
TT	64 (7.5)	53 (3.5)	6.745	0.034
GT	325 (38.1)	563 (36.9)		
GG	463 (54.3)	909 (59.6)		
TNFSF4 (rs11811788)				
CG	136 (16.0)	237 (15.5)	0.446	0.800
GG	10 (1.2)	14 (0.9)		
CC	706 (82.9)	1274 (83.5)		
TLR4 (rs752998)				
TT	16 (0.019)	39 (2.6)	1.875	0.392
GG	605 (71.0)	1059 (69.4)		
GT	231 (27.1)	427 (28.0)		
IL1A (rs1609682)				
GG	392 (46.0)	641 (42.0)	7.068	0.029
GT	378 (44.4)	791 (51.9)		
TT	82 (9.6)	93 (6.1)		
NOS2A (rs8081248)				
AG	384 (45.1)	666 (43.7)	1.265	0.531
AA	84 (9.9)	172 (11.3)		
GG	384 (45.1)	687 (45.0)		
Numerous studies have investigated the association of inflammatory genes and endothelial function relevant genes with ischemic stroke, but few studies have focused on subclinical atherosclerosis. Carotid plaque is an important subclinical precursor of stroke and other vascular diseases. Certain plaque phenotypes, such as irregular plaques and maximal carotid plaque thickness, may be important markers of vulnerable plaques susceptible to rupture leading to stroke. To our knowledge, our study is the first to investigate the association between variants in genes related to endothelial function and inflammatory processes and possible markers of vulnerable plaque in the Chinese population.

Inflammation plays a key role in increased migration of inflammatory cells and development of atherosclerosis. The “response to injury” model in atherosclerosis highlights the role of cytokines such as IL-1 and tumor necrosis factor-α in the response of endothelial cells. Polymorphisms in inflammatory genes may directly or indirectly interact with vascular risk factors to influence the progression and development of atherosclerosis. Previous studies have demonstrated overrepresentation of IL1A gene in patients with coronary artery disease. Furthermore, other data and our current results support an association between IL1A and carotid plaque. The IL1A gene represents a susceptibility factor for the development of carotid atherosclerosis. The IL1A alleles may affect the inflammatory environment in the vascular endothelium. NOS2A was associated with the presence of carotid vulnerable plaque conferred by the high-risk interactive genotype using multivariate logistic regression analysis. The high-risk interactive genotype was assigned as one, and the low-risk interactive genotype was assigned as zero. The other variables that were statistically significant at P value < 0.05 in the univariate analysis were entered into the multivariate logistic regression analyses to adjust. After adjusting the covariates, the high-risk interactive genotype among rs7923349, rs1991013, rs1609682, and rs8081248 was independently associated with a higher risk of carotid vulnerable plaque (OR, 2.86, 95% CI: 1.32–7.13, $P=0.003$, Table 5).

Discussion

In this study, we have identified a high prevalence of carotid plaque (35.8%) in the high-risk stroke population in southwestern China and found significant associations of three genetic variants (PPARA rs4253655, IL1A rs1609682, and NOS2A rs2297518) in three genes related to inflammation and one variant (NOS2A rs2297518) in one gene related to endothelial function with carotid plaque phenotypes in the single SNP analysis. In addition, the GMDR analysis revealed that there was a significant gene–gene interaction among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682, and NOS2A rs8081248, and the high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque.

Inflammation plays a key role in increased migration of inflammatory cells and development of atherosclerosis. The “response to injury” model in atherosclerosis highlights the role of cytokines such as IL-1β and tumor necrosis factor-α in the response of endothelial cells. Polymorphisms in inflammatory genes may directly or indirectly interact with vascular risk factors to influence the progression and development of atherosclerosis. Previous studies have demonstrated overrepresentation of IL1A gene in patients with coronary artery disease. Furthermore, other data and our current results support an association between IL1A and carotid plaque. The IL1A gene represents a susceptibility factor for the development of carotid atherosclerosis. The IL1A alleles may affect the inflammatory environment in the vascular endothelium. NOS2A was associated with the presence of carotid vulnerable plaque conferred by the high-risk interactive genotype using multivariate logistic regression analysis. The high-risk interactive genotype was assigned as one, and the low-risk interactive genotype was assigned as zero. The other variables that were statistically significant at P value < 0.05 in the univariate analysis were entered into the multivariate logistic regression analyses to adjust. After adjusting the covariates, the high-risk interactive genotype among rs7923349, rs1991013, rs1609682, and rs8081248 was independently associated with a higher risk of carotid vulnerable plaque (OR, 2.86, 95% CI: 1.32–7.13, $P=0.003$, Table 5).

Discussion

In this study, we have identified a high prevalence of carotid plaque (35.8%) in the high-risk stroke population in southwestern China and found significant associations of three genetic variants (PPARA rs4253655, IL1A rs1609682, and NOS2A rs2297518) in three genes related to inflammation and one variant (NOS2A rs2297518) in one gene related to endothelial function with carotid plaque phenotypes in the single SNP analysis. In addition, the GMDR analysis revealed that there was a significant gene–gene interaction among HABP2 rs7923349, ITGA2 rs1991013, IL1A rs1609682, and NOS2A rs8081248, and the high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque.

Inflammation plays a key role in increased migration of inflammatory cells and development of atherosclerosis. The “response to injury” model in atherosclerosis highlights the role of cytokines such as IL-1β and tumor necrosis factor-α in the response of endothelial cells. Polymorphisms in inflammatory genes may directly or indirectly interact with vascular risk factors to influence the progression and development of atherosclerosis. Previous studies have demonstrated overrepresentation of IL1A gene in patients with coronary artery disease. Furthermore, other data and our current results support an association between IL1A and carotid plaque. The IL1A gene represents a susceptibility factor for the development of carotid atherosclerosis. The IL1A alleles may affect the inflammatory environment in the vascular endothelium. NOS2A was associated with the presence of carotid vulnerable plaque conferred by the high-risk interactive genotype using multivariate logistic regression analysis. The high-risk interactive genotype was assigned as one, and the low-risk interactive genotype was assigned as zero. The other variables that were statistically significant at P value < 0.05 in the univariate analysis were entered into the multivariate logistic regression analyses to adjust. After adjusting the covariates, the high-risk interactive genotype among rs7923349, rs1991013, rs1609682, and rs8081248 was independently associated with a higher risk of carotid vulnerable plaque (OR, 2.86, 95% CI: 1.32–7.13, $P=0.003$, Table 5).

Table 5

Gene	Allele	Carotid Plaque (n=852)	Non-carotid Plaque (n=1,525)	Wald χ^2 Value	P Value
TNF (rs3093662)	AG	44 (5.2)	68 (4.5)	0.536	0.464
	AA	808 (94.8)	1457 (95.5)		
ITGA2 (rs1991013)	GG	71 (8.3)	160 (10.5)	4.407	0.110
	AA	391 (45.9)	716 (47.0)		
	AG	390 (45.8)	648 (42.5)		
ITGA2 (rs4865756)	AG	333 (39.1)	556 (36.5)	1.620	0.445
	GG	464 (54.5)	868 (56.9)		
	AA	55 (6.5)	101 (6.6)		
IL6R (rs1386821)	GT	58 (6.8)	123 (8.1)	1.739	0.419
	GG	3 (0.4)	4 (0.3)		
	TT	791 (92.8)	1398 (91.7)		
NOS2A (rs2297518)	AG	241 (28.3)	409 (26.8)	1.070	0.586
	AA	20 (2.3)	30 (2.0)		
	GG	591 (69.4)	1086 (71.2)		
Table 3. Genotype distribution between vulnerable plaque group and non-plaque group (%)

Allele	Vulnerable plaque (n = 398)	Non-plaque (n = 1,525)	Wald χ^2 value	P value
IL6R (rs4845625)				
TT	113 (28.4)	405 (26.6)	1.7719	0.4123
CC	85 (21.4)	368 (24.1)		
CT	200 (50.3)	752 (49.3)		
HABP2 (rs932650)				
CT	170 (42.5)	658 (43.1)	0.1649	0.9209
CC	40 (10.0)	159 (10.4)		
TT	188 (47.5)	708 (46.4)		
TLR4 (rs1927911)				
AG	202 (50.7)	740 (48.5)	1.3796	0.5017
AA	63 (15.8)	226 (14.8)		
GG	133 (33.5)	559 (36.7)		
VCAM1 (rs3783615)				
AA	398 (100.0)	1525 (100.0)	0.0018	0.9657
PPARA (rs4253778)				
CG	1 (0.2)	4 (0.3)		
GG	397 (99.8)	1521 (99.7)		
PPARA (rs4253655)				
AG	3 (0.8)	0 (0.0)	11.4554	0.007
GG	395 (99.2)	1525 (100)		
VCAM1 (rs2392221)				
CT	98 (24.6)	340 (22.3)	1.1946	0.5503
CC	291 (73.1)	1145 (75.1)		
TT	9 (2.3)	40 (2.6)		
IL1A (rs1800587)				
AG	62 (15.6)	193 (12.7)	2.6445	0.2665
GG	333 (83.7)	1321 (86.6)		
AA	3 (0.8)	11 (0.7)		
TNFSF4 (rs1234313)				
AG	188 (47.2)	667 (43.7)	1.526	0.4663
GG	43 (10.8)	185 (12.1)		
AA	167 (42.0)	673 (44.1)		
HABP2 (rs7923349)				
TT	33 (8.3)	53 (3.5)	4.0035	0.1351
GT	154 (38.7)	563 (36.9)		
GG	211 (53.0)	909 (59.6)		
TNFSF4 (rs11811788)				
CG	65 (16.3)	237 (15.5)	2.2025	0.3325
GG	7 (1.8)	7 (1.8)		
CC	326 (81.9)	326 (81.9)		
TLR4 (rs752998)				
TT	6 (1.5)	6 (1.5)	2.5483	0.2797
GG	276 (69.3)	276 (69.3)		
GT	116 (29.1)	116 (29.1)		
IL1A (rs1609682)				
GG	183 (46.0)	183 (46.0)	0.4909	0.7824
GT	174 (43.7)	174 (43.7)		
TT	41 (10.3)	41 (10.3)		
NOS2A (rs8081248)				
AG	170 (42.7)	170 (42.7)	1.6235	0.4441
AA	38 (9.5)	38 (9.5)		
GG	190 (48.7)	190 (48.7)		
neurotransmission. In humans, inducible nitric oxide synthase has been observed in the core of carotid plaques, and its inhibitor can slow the development and progression of atherosclerosis in experimental rabbits10), and this was in accordance with our current results.

NOS2A gene regulates inducible nitric oxide synthase to produce nitric oxide and is involved in vascular tone regulation, immune response, and Table 3)

	Vulnerable plaque (n = 398)	Non- plaque (n = 1,525)	Wald χ^2 value	P value
TNF (rs3093662)				
AG	19 (4.8)	19 (4.8)	0.0068	0.9345
AA	379 (95.2)	379 (95.2)		
ITGA2 (rs1991013)				
GG	36 (9.0)	36 (9.0)	1.1302	0.5683
AA	183 (46.0)	183 (46.0)		
AG	179 (45.0)	179 (45.0)		
ITGA2 (rs4865756)				
AG	153 (38.4)	153 (38.4)	0.9263	0.6293
GG	223 (56.0)	223 (56.0)		
AA	22 (5.5)	22 (5.5)		
IL6R (rs1386821)				
GT	26 (6.5)	26 (6.5)	2.1854	0.3353
GG	2 (0.5)	2 (0.5)		
TT	370 (93.0)	370 (93.0)		
NOS2A (rs2297518)				
AG	119 (29.9)	119 (29.9)	7.3901	0.0375
AA	8 (2.0)	8 (2.0)		
GG	271 (68.1)	271 (68.1)		

Table 4. GMDR analysis of the best models, prediction accuracies, cross-validation consistencies, and P values for carotid vulnerable plaque

Best model	Training balanced accuracy	Testing balanced accuracy	Cross-validation consistency	Sign test (P value)
1	0.453	0.386	6/10	5 (0.635)
1, 2	0.531	0.494	7/10	7 (0.347)
1, 2, 3	0.608	0.597	9/10	9 (0.082)
1, 2, 3, 4	0.642	0.626	10/10	9 (0.017)
1, 2, 3, 4, 5	0.359	0.572	7/10	7 (0.685)
1, 2, 3, 4, 5, 6, 7	0.467	0.546	8/10	6 (0.721)
1, 2, 3, 4, 5, 6, 7, 8	0.398	0.435	7/10	6 (0.796)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10	0.612	0.625	9/10	8 (0.267)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	0.513	0.524	8/10	7 (0.535)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	0.596	0.537	5/10	6 (0.689)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	0.572	0.499	8/10	8 (0.267)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14	0.515	0.488	6/10	7 (0.496)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	0.433	0.397	5/10	6 (0.734)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16	0.582	0.605	8/10	6 (0.317)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17	0.631	0.538	7/10	7 (0.296)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18	0.382	0.418	4/10	6 (0.698)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19	0.507	0.553	5/10	5 (0.723)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	0.468	0.486	7/10	7 (0.467)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21	0.523	0.545	8/10	8 (0.485)

GMDR, generalized multifactor dimensionality reduction
Numbers 1-19 represent rs7923349, rs1991013, rs1609682, rs8081248, rs4253655, rs4253778, rs2297518, rs3093662, rs1386821, rs4845625, rs1234313, rs11811788, rs752998, rs1927911, rs1800587, rs3783615, rs2392221, rs4865756, and rs932650, respectively.
bits28. One study from carotid endarterectomy specimens revealed that the non-ruptured plaques had inducible nitric oxide synthase mRNA and protein, whereas the ruptured plaques did not, indicating that inducible nitric oxide synthase might contribute to the carotid plaque instability29. \textit{PPARA} has been shown to affect lipid metabolism and oxidative stress, and association between \textit{PPARA} SNPs and myocardial infarction has been reported30. However, few studies have investigated the potential relationship between \textit{PPARA} and plaque. In a cohort of Finnish men, \textit{PPARA} polymorphisms were associated with the progression of coronary atherosclerosis31. In this study, \textit{PPARA} gene was associated with the presence of carotid plaque, implying its important role in different stages of atherosclerotic plaque.

\textit{HABP2} gene encodes a protein involved in cell adhesion and regulates vascular integrity. \textit{HABP2} is observed to affect vascular smooth muscle cell proliferation and atherosclerotic plaque vulnerability32. A \textit{HABP2} SNP was associated with carotid stenosis progression33. A significant association between \textit{HABP2} variants and venous thromboembolic disease has also been reported34. ITGA2 regulates cell adhesion and cell surface-mediated signaling. Its polymorphisms have been associated with the risk of ischemic stroke and carotid IMT and plaque in patients with type 2 diabetes35, 36. An \textit{ITGA2} SNP (rs1991013) was related with carotid calcified plaque, a surrogate measure of an increased risk of carotid atherosclerosis10.

Besides these inspiring findings, we evaluated the relationship of gene–gene interaction among the 19 variants with carotid vulnerable plaque using the GMDR analysis. The most noteworthy finding in this study was that there was a significant gene–gene interaction among \textit{HABP2} rs7923349, \textit{ITGA2} rs1991013, \textit{IL1A} rs1609682, and \textit{NOS2A} rs8081248, and the high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque, indicating that interaction among the four variants synergistically contributes to vulnerable plaque. The GMDR analysis underscores the complex nature of the genetic effects and the potentially synergistic role of variants in conferring an increased risk of carotid vulnerability. Furthermore, previous studies have also examined the role of various genes in plaque etiology12, 19.

It has become more evident that many common phenotypes are polygenic in nature. It is necessary to evaluate gene–gene interaction when studying the genetic etiology of plaque phenotypes37. However, the nature of the gene–gene interactions among the four variants assessed in this study is not clear. As is known to all, atherosclerosis is a complex inflammatory disease. Endothelial injury, recruitment and activation of immune-inflammatory cells, influx of lipoproteins through the vessel injury space, and smooth muscle cell proliferation play important roles in the pathogenesis mechanisms of atherosclerosis6, 7. A number of studies have explored variants in \textit{HABP2}, \textit{ITGA2}, \textit{IL1A}, and \textit{NOS2A} are associated with inflammation and endothelial function10, 29, 31, 33, 36. Thus, one possible explanation for the interaction among four variants is that the four genes encode and regulate for enzymes that participate in the principal pathogenic mechanisms of atherosclerosis. However, further studies are necessary in future. In the next study, we will plan to use the primary cultured neurons or animal models to explain the molecular mechanisms of interaction among the four variants.

Despite our inspiring findings, this study has sev-

Table 5. Multivariate analysis of the major risk factors for vulnerable plaque

Risk factor	OR*	95% CI	P value
Age	1.75	1.07-4.58	0.042
Male	0.89	0.76-1.66	0.368
Hypertension	2.01	1.08-6.68	0.019
Current smoking	1.87	1.16-5.76	0.028
Total cholesterol	1.76	1.13-5.14	0.033
Triglycerides	0.89	0.83-1.99	0.432
Fasting blood glucose	1.21	0.92-2.57	0.235
Homocysteine	1.32	0.95-2.89	0.132
\textit{PPARA} rs4253655AG	0.86	0.73-1.64	0.553
\textit{HABP2} rs7923349TT	1.13	0.99-4.02	0.186
\textit{IL1A} rs1609682TT	1.08	0.95-3.48	0.232
High-risk interactive genotype	2.86	1.32-7.13	0.003

OR, odds ratios; CI, confidence interval.

*OR for continuous variables means per 1-Standard Deviation increase.
eral limitations. First, this study only sampled residents aged ≥ 40 years; therefore, our results cannot be generalized to all population groups in southwestern China. Second, this study was a cross-sectional study, and recall bias may exist due to the self-reported questionnaire. Third, carotid plaque and plaque vulnerability were evaluated by ultrasound. Although ultrasound can identify carotid plaques and determine the extent of stenosis, high-resolution magnetic resonance imaging (HR-MRI) may provide more information regarding plaque composition and morphology. Thus, it is necessary to assess carotid plaque using HR-MRI and confirm our current findings in future. In addition, the main aim of this study was to evaluate the association of 19 SNPs in genes involved in inflammation and endothelial function with carotid plaque. Thus, carotid stenosis and IMT in the common carotid artery were not involved in this analysis. Fourth, although we examined the role of several known important genes involved in endothelial function and inflammation, other known and unknown genes were not captured in this study. Future studies involving a larger set of genetic variants should be conducted to elucidate further the gene–gene interaction effects on plaque phenotypes. Finally, anti-inflammatory drugs (i.e., statins) and antiplatelet drugs may affect carotid plaque characteristics. In this study, we did not investigate the effect of statins or antiplatelet drugs on carotid plaque stability. Furthermore, a lack of an independent sample for replication was also a limitation in this study.

In conclusion, the prevalence of carotid plaque was very high in the high-risk stroke population in southwestern China. Variants in genes involved in endothelial function and inflammation were associated with carotid plaque and plaque vulnerability in the single SNP analysis. The GMDR analysis revealed that there was a significant gene–gene interaction among HABP2 rs7923349, ITGA2 rs1991013, ILIA rs1609682, and NOS2A rs8081248. The high-risk interactive genotype among the four variants was independently associated with a higher risk of carotid vulnerable plaque and might be potential markers for plaque vulnerability. The GMDR analysis may provide further insight into the complex genetic etiology of carotid plaque vulnerability. However, further studies are needed to validate our findings.

Sources of Funding

This study was supported in part by grants from the Scientific Research Foundation of Sichuan Provincial Health Department (Grant No. 16ZD046), the Sichuan Science and Technology Agency Research Foundation (Grant No.2018JY0164), and Universal Application Program, Health and Family Planning Commission of Sichuan Province in China (Grant No.17PJ084).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1) Guan T, Ma J, Li M, Xue T, Lan Z, Guo J, Shen Y, Chao B, Tian G, Zhang Q, Wang L, Liu Y: Rapid transitions in the epidemiology of stroke and its risk factors in China from 2002 to 2013. Neurology, 2017; 89: 53-61
2) Donnan GA, Fisher M, Macleod M, Davis SM: Stroke. Lancet, 2008; 371: 1612-1623
3) O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med, 1999; 340: 14-22
4) Hollander M, Bots ML, Del Sol AI, Koudstaal PJ, Wittman JC, Grobbbee DE, Hofman A, Breiter MM: Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: the Rotterdam study. Circulation, 2002; 105: 2872-2877
5) Rundek T, Arif H, Boden-Albala B, Elkind MS, Paik MC, Sacco RL: Carotid plaque, a subclinical precursor of vascular events: the Northern Manhattan Study. Neurology, 2008; 70: 1200-1207
6) Hansson GK: Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol, 2001; 21: 1876-1890
7) Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Luís AJ: Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation, 1995; 91: 2488-2496
8) Zhao J, Cheema FA, Brenner JD, Goldberg J, Su S, Sneider H, Maisano C, Jones L, Javed F, Murrah N, De NA, Vaccarino V: Heritability of carotid intima-media thickness: a twin study. Atherosclerosis, 2008; 197: 814-820
9) Sacco RL, Blanton SH, Slifer S, Beecham A, Glover K, Gardener H, Wang L, Sabala E, Juo SH, Rundek T: Heritability and linkage analysis of carotid intimamedia thickness: the Family Study of STroke Risk and Carotid Atherosclerosis. Stroke, 2009; 18: 814-820
10) Gardener H, Beecham A, Cabral D, Yanuck D, Slifer S, Wang L, Blanton SH, Sacco RL, Juo SH, Rundek T: Carotid plaque and candidate genes related to inflammation and endothelial function in Hispanics from northern Manhattan. Stroke, 2011; 42: 889-896
11) Wang L, Yanuck D, Beecham A, Gardener H, Slifer S, Blanton SH, Sacco RL, Rundek T: A candidate gene study revealed sex-specific association between the OLR1 gene and carotid plaque. Stroke, 2011; 42: 588-592
12) Yi X, Lin J, Luo H, Wang C, Liu Y: Genetic variants of PTGS2, TXA2R and TXAS1 are associated with carotid plaque vulnerability, platelet activation and TXA2 levels...
in ischemic stroke patients. PLoS One, 2017; 12: e0180704

13) Yi XY, Liao DX, Wang C, Cheng W, Fu XQ, Zhang B: Cytochrome P450 Genetic Variants and Their Metabolite Levels Associated with Plaque Stability in Patients with Ischemic Stroke. J Atheroscler Thromb, 2016; 23: 330-338

14) Bevan S, Traylor M, Adib-Samii P, Malik R, Paul NL, Jackson C, Farrall M, Rothwell PM, Sudlow C, Dichgans M, Markus HS: Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke, 2012; 43: 3161-3167

15) Lou X-Y, Chen G-B, Yan L, Ma JZ, Zhu J, Elston RC, Li MD: A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet, 2007; 80: 1125-1137

16) Sun H, Zou X, Liu L: Epidemiological factors of stroke: a survey of the current status in china. J Stroke, 2013; 15: 109-114

17) Stroke Prevention Project Committee. Programme of Stroke Screening and Intervention for High-risk Population. http: //cnstroke.com/WebManage/InterveneProject/ Index (accessed Nov 30, 2018)

18) Wang W, Jiang B, Sun H, Xu Y, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, Chen Z, Wu S, Zhang Y, Wang D, Wang Y, Feigin VL: Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480687 adults. Circulation, 2017; 135: 759-771

19) Yi X, Liao D, Wu L, Chen H, Li J, Wang C: CYP Genetic Variants, CYP Metabolite Levels, and Symptomatic Carotid Stenosis in Ischemic Stroke Patients. J Atheroscler Thromb, 2016; 23: 621-631

20) Mathiesen EB, Bønaa KH, Joakimsen O: Low levels of high-density lipoprotein cholesterol are associated with eholuent carotid artery plaques: the tromso study. Stroke, 2001; 32: 1960-1965

21) Worrall BB, Azhar S, Nyquist PA, Ackerman RH, Li MD: A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet, 2007; 80: 1125-1137

22) Muño E, Krupinski J, Carrera C, Gallego-Fabrega C, Montaner J, Fernández-Cadenas I: An Inflammatory Polymorphisms Risk Scoring System for the Differentiation of Ischemic Stroke Subtypes. Mediators Inflamm, 2015; 2015: 569714. doi: 10.1155/2015/569714

23) Cheng YC, Stanne TM, Giese AK, Ho WK, Traylor M, Amouyel P, Holliday EG, Malik R, Xu H, Kittner SJ, Cole JW, O’Connell JR, Danesh J, Rasheed A, Zhao W, Engelst R, Grond-Ginsbach C, Kamatani Y, Lathrop M, Leys D, Thijs V, Kirby TM, Tzivain M, Pezzini A, Parati EA, Norrving B, Bevan S, Rothwell PM, Sudlow C, Slowik A, Lindgren A, Walters MR; WTCCC-2 Consortium, Jannes J, Shen J, Crosslin D, Doheny K, Laurie CA, Riegger G, Henegborn C: Association between PPARalpha gene polymorphisms and myocardial infarction. Clin Sci (Lond), 2008; 115: 301-308

24) Flavell DM, Jamshidi Y, Hawe E, Pineda Torra I, Taskinen MR, Frick MH, Nieminen MS, Kesäniemi YA, Pasner A, Stael B, Miller G, Humphries SE, Talmud PJ, Svanne A: Peroxisome proliferator-activated receptor alpha gene variants influence progression of coronary atherosclerosis. Circulation, 2002; 105: 1440-1445

25) Kanse SM, Parahuleva M, Muhl L, Kemkes-Matthes B, Sedding D, Preisser KT: Factor VII-activating protease (FSAP): vascular functions and role in atherosclerosis. Thromb Haemost, 2008; 99: 286-289

26) Willeit J, Kiechl S, Weimer T, Mair A, Santer P, Markus HS, Debette S, Rolf S, Saleheen D, Mitchell BD: Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2. Stroke, 2016; 47: 307-316

27) Prabhakaran S, Rundek T, Ramas R, Elkind MS, Paik MC, Boden-Albala B, Sacco RL: Carotid plaque surface irregularity predicts ischemic stroke: the northern Manhattan study. Stroke, 2006; 37: 2696-2701

28) Libby P: Coronary artery injury and the biology of atherosclerosis: inflammation, thrombosis, and stabilization. Am J Cardiol, 2000; 86: 3J-8J

29) Francis SE, Camp NJ, Dewberry RM, Gunn J, Syrris P, Carter ND, Jeffery S, Kaski JC, Cumberland DC, Duff GW, Crossman DC: Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation, 1999; 99: 861-866

30) Santtila S, Savinainen K, Hurme M: Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol, 1998; 47: 195-198

31) Hayashi T, Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani PJA, Iuchi A: Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis, 2006; 187: 316-324

32) Behr-Roussel D, Rupin A, Sansivelitr-Morel P, Fabiani JN, Veureten TJ: Histochemical evidence for inducible nitric oxide synthase in advanced but non-ruptured human atherosclerotic carotid arteries. Histochem J, 2000; 32: 41-51

33) Reiner AP, Lange LA, Smith NL, Zakai NA, Cushman M, Folsom AR: Common hemostasis and inflammation gene polymorphism and coronary artery disease. Circulation, 2007; 116: 109-114

34) Prabhakaran S, Rundek T, Ramas R, Elkind MS, Paik MC, Boden-Albala B, Sacco RL: Carotid plaque surface irregularity predicts ischemic stroke: the northern Manhattan study. Stroke, 2006; 37: 2696-2701

35) Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani PJA, Iuchi A: Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis, 2006; 187: 316-324

36) Maeno T, Koyama H, Tahara H, Komatsu M, Emoto M, Markus HS, Debette S, Rolf S, Saleheen D, Mitchell BD: Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2. Stroke, 2016; 47: 307-316
ple genetic risk factors is synergistically associated with carotid atherosclerosis in Japanese subjects with type 2 diabetes. Diabetes Care, 2006; 29: 2445-2451
38) Fitzpatrick LA, Berkovitz N, Dos Santos MP, Majeed N, Glikstein R, Chakraborty S, Veinot JP, Stotts G, Berthiaume A, Chatelain R: Vulnerable carotid plaque imaging and histopathology without a dedicated MRI receiver coil. Neuroradiol J, 2017; 30: 120-128

Shoji T, Inaba M, Miki T, Okuno Y, Nishizawa Y: The 807T allele in alpha2 integrin is protective against atherosclerotic arterial wall thickening and the occurrence of plaque in patients with type 2 diabetes. Diabetes, 2002; 51: 1523-1528
37) Yamasaki Y, Katakami N, Sakamoto K, Kaneto H, Matsuhashi M, Sato H, Hori M, Haneda M, Kashiwagi A, Tanaka Y, Kawamori R, Kuno S: Combination of multi-
Supplemental Table 1. Genotype distribution comparison between stable plaque and vulnerable plaque (%)

SNP	Stable plaque (454)	Vulnerable plaque (398)	Wald χ^2 value	P value
rs4845625				
TT	137 (30.2)	113 (28.4)	0.424	0.809
CT	220 (48.5)	200 (50.3)		
CC	97 (21.4)	85 (21.4)		
rs932650				
TT	220 (48.2)	188 (47.5)	2.1474	0.3418
CC	32 (7.3)	40 (10.0)		
CT	202 (44.5)	170 (42.5)		
rs1927911				
AA	72 (15.9)	63 (15.8)	0.3481	0.8403
GG	160 (35.2)	133 (33.5)		
AG	222 (48.9)	202 (50.7)		
rs3783615				
AA	454 (100.0)	398 (100.0)		
rs4253778				
CG	1 (0.2)	1 (0.2)	0.0089	0.9248
GG	453 (99.8)	397 (99.8)		
rs4253655				
AG	1 (0.2)	3 (0.8)	1.2955	0.255
GG	453 (99.8)	395 (99.2)		
rs2392221				
CC	341 (75.1)	291 (73.1)	1.302	0.5215
CT	107 (23.6)	98 (24.6)		
TT	6 (1.3)	9 (2.3)		
rs1800587				
AG	59 (13.0)	62 (15.6)	2.5591	0.2782
GG	394 (86.8)	333 (83.7)		
AA	1 (0.2)	3 (0.8)		
rs1234313				
AG	211 (46.5)	188 (47.2)	0.0931	0.9545
AA	192 (42.3)	167 (42.0)		
GG	51 (11.2)	43 (10.8)		
rs7923349				
GT	171 (37.7)	154 (38.7)	0.9447	0.6235
TT	31 (6.8)	33 (8.3)		
GG	252 (55.5)	211 (53.0)		
rs11811788				
GG	3 (0.7)	7 (1.8)	2.2837	0.3192
CG	71 (15.6)	65 (16.3)		
CC	380 (83.7)	326 (81.9)		
rs752998				
TT	10 (0.022)	6 (1.5)	2.5488	0.2796
GG	329 (0.724)	276 (69.3)		
GT	115 (0.254)	116 (29.1)		
rs1609682				
GT	204 (44.9)	174 (43.7)	0.6008	0.7405
TT	41 (9.0)	41 (10.3)		
GG	209 (46.0)	183 (46.0)		
(Cont. Supplemental Table 1)

SNP	Stable plaque (454)	vulnerable plaque (398)	Wald χ^2 value	P value
rs8081248			2.4557	0.2929
AG	214 (47.1)	170 (42.7)		
AA	46 (10.1)	38 (9.5)		
GG	194 (42.7)	190 (48.7)		
rs3093662			0.4506	0.502
AG	25 (5.5)	19 (4.8)		
AA	429 (94.5)	379 (95.2)		
rs1991013			0.5878	0.7454
AG	211 (46.5)	179 (45.0)		
GG	35 (7.7)	36 (9.0)		
AA	208 (45.8)	183 (46.0)		
rs4865756			1.4549	0.4831
AA	33 (0.072)	22 (5.5)		
GG	241 (0.532)	223 (56.0)		
AG	180 (0.396)	153 (38.4)		
rs1386821			0.5624	0.7549
GT	32 (7.0)	26 (6.5)		
TT	421 (92.7)	370 (93.0)		
GG	1 (0.2)	2 (0.5)		
rs2297518			1.2464	0.5362
GG	320 (70.5)	271 (68.1)		
AA	12 (2.6)	8 (2.0)		
AG	122 (26.9)	119 (29.9)		
Supplemental Table 2. Genotype distribution between stable plaque group and non-plaque group (%)

Gene	SNP	Type 1	Type 2	Type 3	Type 1	Type 2	Type 3	Wald χ^2 value	P value
IL6R (rs4845625)								3.1825	0.2037
	TT	137 (30.2)	405 (26.6)						
	CC	97 (21.4)	368 (24.1)						
	CT	220 (48.5)	752 (49.3)						
HABP2 (rs932650)								4.1404	0.1262
	CT	202 (44.5)	658 (43.1)						
	CC	32 (7.3)	159 (10.4)						
	TT	220 (48.2)	708 (46.4)						
TLR4 (rs1927911)								0.4055	0.8165
	AG	222 (48.9)	740 (48.5)						
	AA	72 (15.9)	226 (14.8)						
	GG	160 (35.2)	559 (36.7)						
VCAM1 (rs3783615)								0.0264	0.8709
	AA	454 (100.0)	1525 (100.0)						
PPARA (rs4253778)								3.3387	0.0677
	CG	1 (0.2)	4 (0.3)						
	GG	453 (99.8)	1521 (99.7)						
PPARA (rs4253655)								0.4055	0.8165
	AG	1 (0.2)	0 (0.0)						
	GG	453 (99.8)	1525 (100)						
VCAM1 (rs2392221)								2.8784	0.2371
	CT	107 (23.6)	340 (22.3)						
	CC	341 (75.1)	1145 (75.1)						
	TT	6 (1.3)	40 (2.6)						
IL1A (rs1800587)								1.5282	0.4658
	AG	59 (13.0)	193 (12.7)						
	GG	394 (86.8)	1321 (86.6)						
	AA	1 (0.2)	11 (0.7)						
TNFSF4 (rs1234313)								0.6553	0.7206
	AG	211 (46.5)	667 (43.7)						
	GG	51 (11.2)	185 (12.1)						
	AA	192 (42.3)	673 (44.1)						
HABP2 (rs7923349)								1.0144	0.6022
	TT	31 (6.8)	53 (3.5)						
	GG	171 (37.7)	563 (36.9)						
	GG	252 (55.5)	909 (59.6)						
TNFSF4 (rs11811788)								0.2909	0.8646
	CG	71 (15.6)	237 (15.5)						
	GG	3 (0.7)	14 (0.9)						
	CC	380 (83.7)	1274 (83.5)						
TLR4 (rs5752998)								1.52	0.4677
	TT	10 (0.022)	39 (2.6)						
	GG	329 (0.724)	1059 (69.4)						
	GT	115 (0.254)	427 (28.0)						
IL1A (rs1609682)								1.108	0.5746
	GG	209 (46.0)	641 (42.0)						
	GT	204 (44.9)	791 (51.9)						
	TT	41 (9.0)	93 (6.1)						
(Cont. Supplemental Table 2)

Gene/SNP	Stable plaque (n = 454)	Non-plaque (n = 1,525)	Wald χ^2 value	P value
NOS2A (rs8081248)				
AG	214 (47.1)	666 (43.7)	1.6624	0.4355
AA	46 (10.1)	172 (11.3)		
GG	194 (42.7)	687 (45.0)		
TNF (rs3093662)				
AG	25 (5.5)	68 (4.5)	0.9554	0.3284
AA	429 (94.5)	1457 (95.5)		
ITGA2 (rs1991013)				
GG	35 (7.7)	160 (10.5)	4.1734	0.1241
AA	208 (45.8)	716 (47.0)		
AG	211 (46.5)	648 (42.5)		
ITGA2 (rs4865756)				
AG	180 (0.396)	556 (36.5)	2.0025	0.3674
GG	241 (0.532)	868 (56.9)		
AA	33 (0.072)	101 (6.6)		
IL6R (rs1386821)				
GT	32 (7.0)	123 (8.1)	0.5635	0.7545
GG	1 (0.2)	4 (0.3)		
TT	421 (92.7)	1398 (91.7)		
NOS2A (rs2297518)				
AG	122 (26.9)	409 (26.8)	0.7359	0.6921
AA	12 (2.6)	30 (2.0)		
GG	320 (70.5)	1086 (71.2)		