Spectral Energy Distributions of Type 1 AGN in XMM-COSMOS Survey II - Shape Evolution

Heng Hao1,2,*, Martin Elvis2, Francesca Civano2,3, Gianni Zamorani4, Luis C. Ho5, Andrea Comastri4, Marcella Brusa6,7, Angela Bongiorno6,8, Andrea Merloni6, Jonathan R. Trump9, Mara Salvato10,11, Chris D. Impey12, Anton M. Koekemoer13, Giorgio Lanzuisi6, Annalisa Celotti1,14,15, Knud Jahnke16, Cristian Vignali4,7, John D. Silverman17, C. Megan Urry18, Kevin Schawinski19, Peter Capak20

1SISSA, Via Bonomea 265, I-34136 Trieste, Italy
2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3Dartmouth College, Department of Physics and Astronomy, 6127 Wilder Lab, Hanover, NH 03755
4INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy
5The Observatories of the Carnegie Institute for Science, Santa Barbara Street, Pasadena, CA 91101, USA
6Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, 85741, Garching bei München, Germany
7Dipartimento di Fisica e Astronomia, Università degli studi di Bologna, viale Berti Pichat 6/2 40127 Bologna Italy
8INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monteporzio Catone, Rome, Italy
9UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA
10IPPI - Max-Planck-Institute for Plasma Physics, Boltzmann Strasse 2, D-85748, Garching bei München, Germany
11Eccellenza Cluster, Boltzmann Strasse 2, D-85748, Garching bei München, Germany
12Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
13Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
14INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate, Italy
15INFN - Sezione di Trieste, via Valerio 2, 34127, Trieste, Italy
16Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, D-69117, Germany
17Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI)
18Physics Department and Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511, USA
19Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
20California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125, USA

Key words: galaxies: evolution; quasars: general; surveys

1 INTRODUCTION

The mid-infrared to ultraviolet (0.1 – 10 µm) spectral energy distribution (SED) shapes of 407 X-ray-selected radio-quiet type 1 AGN in the wide-field “Cosmic Evolution Survey” (COSMOS) have been studied for signs of evolution. For a sub-sample of 200 radio-quiet quasars with black hole mass estimates and host galaxy corrections, we studied their mean SEDs as a function of a broad range of redshift, bolometric luminosity, black hole mass and Eddington ratio, and compared them with the Elvis et al. (1994, E94) type 1 AGN mean SED. We found that the mean SEDs in each bin are closely similar to each other, showing no statistical significant evidence of dependence on any of the analyzed parameters. We also measured the SED dispersion as a function of these four parameters, and found no significant dependencies. The dispersion of the XMM-COSMOS SEDs is generally larger than E94 SED dispersion in the ultraviolet, which might be due to the broader “window function” for COSMOS quasars, and their X-ray based selection.

Key words: galaxies: evolution; quasars: general; surveys

© 2012 RAS
decades of study. Yet, understanding the continuous emission of AGN, from X-rays to radio, is essential to unlocking the physics of accretion onto super massive black holes (SMBHs). The continuum in each spectral region can be ascribed to distinct energy generation mechanisms: jets in the radio (see e.g. the review by Harris & Krawczynski 2006), dust in the infrared (IR, McLay & Rieke 1988; Sanders et al. 1989), accretion disks in the optical-ultraviolet (UV) and soft X-rays (Shakura & Sunyaev 1973; Rees 1984; Czerny & Elvis 1987), and Compton up-scattering by hot coronae in the hard X-rays (e.g., Zamorani et al. 1981; Laor et al. 1990; Haardt & Maraschi 1991; Williams et al. 1992; Zdziarski et al. 2000; Kawaguchi et al. 2001; Mateos et al. 2005; Mainieri et al. 2007).

Continuum changes with redshift, luminosity or Ed- dington ratio might be expected. Most SMBH growth occurs during the active ‘AGN’ phases (the ‘Soltan argument’, Soltan 1982), implying that most galaxy bulges went through an AGN phase (e.g. Magorrian et al. 1998). Rapid growth of central SMBHs happens in high-redshift and high-luminosity quasars emitting near the Eddington limit (Barth et al. 2003; Vestergaard 2004; Jiang et al. 2006; Kurk et al. 2007; but see also Steinhardt & Elvis 2010). The space density of X-ray-selected, highly luminous AGN peaks at around $z = 2.5$, and declines at $z > 3$ (Silverman et al. 2005, Brusa et al. 2009, Civano et al. 2011). Low-luminosity AGN are more prevalent at $z < 1$ than higher luminosity ones (Cowie et al. 2003; Fiore et al. 2003; Ueda et al. 2003; Silverman et al. 2005). As the central SMBH is the driver of the emission, one might expect the quasar SED to evolve as the black hole grows due to accretion.

Many parameters – the black hole mass, the AGN luminosity relative to the host galaxy, the accretion rate, the physical properties of the accretion disk and the properties of the absorbing dust – might affect the shape of the AGN SED (Wilkes 2003). For instance, the optical to X-ray spectral index $\alpha_{0.5} = 0.384\log(F_{2500\AA}/F_{24})$, correlates with luminosity but not with redshift (e.g. Vignali et al. 2003a; Steffen et al. 2006; Just et al. 2007; Young et al. 2010; Lusso et al. 2010). It is possible that similar dependency of luminosity in the SED shape exists at other wavelengths.

Observations indicate a tight link between SMBH growth and galaxy evolution (e.g. Magorrian et al. 1998; Marconi & Hunt 2003; Tremaine et al. 2002; Menci et al. 2008). Locally, SMBHs appear to reside at the center of most galaxies and the SMBH masses are tightly correlated with their masses (e.g. Kormendy & Richstone 1995; Marconi & Hunt 2003) and velocity dispersions (i.e. MBH - σ relations; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002). Some evidence for evolution of this relationship has been reported using several methods (e.g. Peng et al. 2006; Shields et al. 2006; Ho 2007; Merloni et al. 2010). This evolution would imply that the feedback of the SMBH to the host galaxy evolves. Similar evolution in the innermost regions (within the torus) is possible too. All of these processes could lead to different SED shapes.

However, no evolution of the AGN SED has yet been demonstrated. There is no convincing evidence for any change of SED with redshift (Silverman et al. 2002; Mathur et al. 2002; Brandt et al. 2002; Vignali et al. 2003b). High redshift quasars (up to redshift 7) show optical spectra similar to low redshift quasars from the SDSS (Jiang et al. 2007, Mortlock et al. 2011). There is evidence, though, that the SEDs of extremely low-luminosity ($L_{bol} \lesssim 10^{42}$ erg/s) nuclei are remarkably different from those of luminous ($L_{bol} \gtrsim 10^{44}$ erg/s) AGN (Ho 1999, 2008).

So far, the systematic study of the dependency of the SED shape with physical parameters has been limited by difficulty in obtaining a large sample size with good multi-wavelength coverage. The Cosmological Evolution Survey (COSMOS, Scoville et al. 2007) has the appropriate combination of depth, area and extensive multi-wavelength data that allows for a sensitive survey of AGN to address this question.

The COSMOS field has been imaged with XMM-Newton for a total of ~ 1.5 Ms (Hasinger et al. 2007; Capelluti et al. 2007, 2009). Optical identifications were made by Brusa et al. (2010) for the entire XMM-COSMOS sample. Photometric properties and redshifts were produced for each point source. This extensive data set allows us to make a systematic study of the evolution of the SED shape, which is the main purpose of this paper.

From this complete sample, we extracted a sample of 413 type 1 AGN (broad emission line FWHM > 2000 km s$^{-1}$). The type 1 AGN SED sample catalog is described in detail in Elvis et al. (2012, hereafter Paper I). It includes quasars with redshifts $0.1 < z < 4.3$ and magnitudes $16.9 < I_{AB} < 24.8$, with 98% of the sources being radio-quiet (Hao et al. 2013b). This sample is twenty times larger than the Elvis et al. (1994, hereafter E94) radio-quiet type 1 AGN SED sample, and has full wavelength coverage from radio to X-rays (for a total of 43 photometric bands, Paper I) and high confidence level spectroscopic redshifts (Trump et al. 2009a; Schneider et al. 2007; Lilly et al. 2007, 2009). The mean SED of the XMM-COSMOS type 1 AGN was calculated and compared to previous studies: E94, Richards et al. (2006, hereafter R06), Hopkins et al. (2007) and Shang et al. (2011) in paper I Figure 21. In this figure we can see, in the near-IR to optical-UV range, all recent studies have very similar shapes to E94, while the XMM-COSMOS mean host-corrected quasar SED has a less prominent ‘big-blue bump’, possibly due to remnant host contributions, not corrected because of the dispersion in the black hole mass and host luminosity scaling relationship itself. In this paper, we compare the Paper I sample with E94 as a representative.

Paper I presented the selection and properties of the XMM-COSMOS type 1 AGN sample of 413 quasars (XC413 hereinafter). We used various radio-loud criteria ($R_L = \log(f_{5GHz}/f_B) > 1$, Wilkes & Elvis 1987; $q_{24} = \log(f_{24\mu m}/f_{1.4GHz}) < 0$, Appleton et al. 2004; $R_{i4} = \log(f_{1.4GHz}/f_i)$, in the observed frame; $q_{24,obs}$, the q_{24} in the observed frame; $R_{uv} = \log(f_{5GHz}/f_{2500\AA}) > 1$, Stocke et al. 1992; $P_{5GHz} = \log(P_{5GHz}/W/Hz/\mu Jy) > 24$, Goldschmidt et al. 1999; and $R_X = \log(p_{Lx}(5GHz)/L_X) < -3$, Terashima & Wilson 2003) to define a radio-loud quasar. We find that the radio-loud fraction is 1.5%-4.5% using any criterion, except R_{uv}, which we use to define the sample. Using two criteria at the same time, the radio-loud fraction is $\lesssim 8/413 = 2\%$. Only 6 XC413 quasars satisfy all the seven criteria. We define these 6 quasars in this catalog as radio-loud (Paper I; Hao et al. 2013). We refer to the radio-quiet sub-sample of XC413 as XCQR407 hereinafter.

Estimates of black hole mass (M_{BH}) for 206 of XC413...
Table 1. Source Properties in Parameter Space

XID	z	log M_{BH,M}	log L_{bol}	λ_E	log L_{bol,IR}	L_{IR}/L_{bol}	L_{opt}/L_{bol}	L_{X}/L_{bol}	L_{bol}/L_{opt}	log L_{bol,IR}/L_{opt}	L_{bol,IR}/L_{opt}
1	0.373	8.58	45.36	0.048	45.46	19.2	37.1	5.6	2.11
2	1.024	8.96	45.82	0.056	46.09	32.5	17.8	27.6	2.98	45.79	3.35
3	0.345	8.66	45.18	0.026	45.39	33.8	24.1	17.2	2.56	45.11	3.44
4	0.132	7.31	44.25	0.068	44.55	40.8	35.5	3.0	1.41	44.19	1.50
5	1.157	...	45.95	...	46.21	34.2	25.2	12.8	...	2.18	...
6	0.360	8.64	44.89	0.014	45.20	31.1	34.7	4.7	1.42	44.74	1.71
7	0.519	8.38	45.21	0.053	45.44	37.6	27.5	17.9	2.13	45.16	2.46
8	0.699	7.96	45.78	0.518	45.97	33.2	32.2	7.3	2.00	45.78	1.98
9	1.459	8.86	45.90	0.088	46.28	40.1	18.4	11.7	2.30	45.89	2.43

1 A portion of the table is shown here for guidance. The complete table will be available online.

a The spectroscopic redshifts are from Trump et al. (2009a), Schneider et al. (2007), Lilly et al. (2007, 2009)
b The black hole mass estimates are from Trump et al. (2009b) and Merloni et al. (2010)
c Calculated by integrating the rest frame SED from 1 \(\mu \)m to 40 keV.
d \(\lambda_E = L_{bol}/E_{Edd} \), details in § 4

e Calculated by integrating the rest frame SED from 1.4 GHz to 40 keV.
f \(L_{IR} \) is calculated by integrating the rest frame SED from 24 \(\mu \)m to 1 \(\mu \)m.
g \(L_{opt} \) is calculated by integrating the rest frame SED from 1 \(\mu \)m to 912 Å.
h \(L_{X} \) is calculated by integrating the rest frame SED from 0.5 keV to 40 keV.
i Calculated by integrating the rest frame host-corrected SED from 1 \(\mu \)m to 912 Å for 203 quasars in the XMM-COSMOS sample.

have been made by Merloni et al. (2010) and Trump et al. (2009b). Both papers used single-epoch spectra and applied the scaling relations from reverberation mapping found by Vestergaard & Peterson (2006). This method requires high S/N spectra with the broad emission line not near the ends of the spectra. For the quasars with only zCOSMOS spectra, the black hole mass was estimated only for those with MgII lines in the spectra (Merloni et al. 2010), using the calibration of McLure & Jarvis (2002). 206 quasars out of XC413, and 203 quasars out of XCRQ407 have black hole mass estimates. Paper I estimated the host galaxy contribution for 203 of these 206 quasars using the scaling relation between black hole mass and host luminosity (Marconi & Hunt 2003) adding an evolutionary term (Bennert et al. 2010, 2011), excluding the 3 which had over-subtraction problems (the estimated host galaxy luminosity is larger than the observed luminosity). We define this sub-sample (SS) as SS203. In SS203, 200 quasars are radio-quiet. We refer to this sub-sample as SSRQ200.

In Paper I, the rest frame SEDs of XC413 were constructed on a uniform frequency grid (\(\Delta \log \nu = 0.02 \)) from radio to X-rays. As there is limited data in the far-IR (> 10 \(\mu \)m in rest frame) and longer wavelengths, and because the UV flux is strongly affected by both variability and strong broad emission lines, we defer the analysis of these regions to a later paper. In this paper, we focus on the SED shape in the optical to mid-IR range (0.1 – 10 \(\mu \)m), while all the plots are shown in the rest frame 0.1 – 10 \(\mu \)m range. Note that all the sources discussed in this paper are broad line AGN with typical luminosity (\(\sim 10^{44} – 10^{47} \) erg/s), typical black hole mass (\(\sim 10^7 – 10^9 M_\odot \)) and typical accretion rates (Eddington ratio larger than 0.01, see § 4).

All the wavelengths discussed in this paper are in the rest frame. We adopt the WMAP 5-year cosmology (Komatsu et al. 2009), with \(H_0 = 71 \) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.26 \) and \(\Omega_\Lambda = 0.74 \).

2 PARAMETER SPACE

2.1 Bolometric Luminosity

The bolometric luminosity is the total energy per second radiated by the quasar at all wavelengths in all directions. This luminosity is, in principle, simply calculated by directly integrating the rest-frame SED over the whole wavelength range. In practice, this is difficult and observationally expensive. For the sample discussed in this paper, it is possible to approximate the bolometric luminosity with the SEDs available (Paper I).

As described in Paper I, the SEDs are produced by linearly interpolating between the data points in \(\log \nu L_{\nu} \) vs. \(\log \nu \) space (i.e. connecting the individual points with power laws in linear space). The COSMOS photometry for the XC413 sample is >90% complete from u (CFHT) to MIPS 24\(\mu \)m, that is over the 1.8 dex wide 0.35\(\mu \)m – 24\(\mu \)m (~0.14\(\mu \)m – 10\(\mu \)m for the typical z = 1.5 of XC413) observed frame interpolation is unproblematic (Paper I). In the mid-infrared range, for quasars with 70\(\mu \)m or 160\(\mu \)m detections, we joined the 24\(\mu \)m data to the longer wavelength points with a power-law in \(\log \nu L_{\nu} \) vs. \(\log \nu \) space; for the others we extrapolated from the rest frame 24\(\mu \)m to 8\(\mu \)m slope and checked that the extrapolation generally works. As the far-IR to radio photometry data are sparse, for each source with a > 3\(\sigma \) VLA detection, we assumed a power law \(f_\nu \propto \nu^{-0.5} \) (e.g., Ivezić 2004) in the rest frame 1.4 GHz (21 cm) to 100 GHz (3 mm) range. In the 100 GHz (3 mm) to 160\(\mu \)m part, the SED can be approximated by the red end of the grey body \(f_\nu \propto \nu^{3+\beta} / (e^{h\nu/kT} - 1) \), when \(h\nu \ll kT \), \(f_\nu \propto \nu^{3+\beta} \).
(e.g. Lapi et al. 2011). \(\beta \) is generally chosen in the range 1–2 (Dunne & Eales 2001). We thus choose \(\beta = 1 \), i.e. we assume a power-law \(f_\nu \propto \nu^\beta \) in this wavelength range. We directly linearly interpolate from Lyman break (1216Å) and 0.5 keV SED in \(\log \nu L_\nu \) versus \(\log \nu \) space (Laor et al. 1997). In the X-rays, we use the measured photon spectral index (\(\Gamma \), \(f_\nu \propto \nu^{(1-\Gamma)} \), Mainieri et al. 2007) and the observed 2 keV luminosity to get the SED in the 0.5 keV–40 keV (rest-frame), which is the range of the XMM data for XC413.

We used the SEDs from Paper I to calculate two approximations to the bolometric luminosities by integrating the rest frame SED over different wavelength ranges: (1) from 1 \(\mu \)m to 40 keV as \(L_{\text{bol}} \); (2) from 21 cm/1.4 GHz to 40 keV as \(L_{\text{all}} \). \(L_{\text{all}} \) was integrated over all the wavelengths for which we have data.

As the great majority of the XC413 quasars are radio-quiet and the photometric coverage from 24 \(\mu \)m to 1.4 GHz is currently sparse (Paper I), using \(L_{\text{all}} \) requires unwarranted extrapolation. The contribution of the radio emission to the bolometric luminosity is less than 3% even for the radio-loud sources. Most of the far-IR (at \(\gtrsim 100 \mu \)m) luminosity is probably due to star-forming activity not the AGN (Netzer et al. 2007, Mullaney et al. 2012; but see Ho 2005). From the optical shortward the primary emission is from the innermost region of the quasar (SMBH and accretion disk). The near and mid-IR continuum is the result of reprocessing shorter wavelength radiation of the quasar by dust (Sanders et al. 1989; Suganuma et al. 2006). The reprocessed dust emission thereby includes reprocessed primary radiation emitted in directions different from our line-of-sight. In a non-spherical geometry, as is likely present in quasars, this makes us count more radiation that we would in a 4\(\pi \) averaged calculation. In this sense, we are double-counting the primary emission (e.g. Lusso et al. 2010). Hence, \(L_{\text{bol}} \) which integrates from 1 \(\mu \)m to 40 keV is a good approximation of the true bolometric quasar luminosity defined over the entire wavelength range.

We note that directly integrating the SED in the rest frame from 1 \(\mu \)m to 40 keV overestimates the quasar emission as the contribution from the host galaxy is not excluded. In practice, we do not have good estimates of the host contribution. For SSRQ200, we calculated the bolometric luminosity by integrating the host corrected SED from 1\(\mu \)m to 912Å as \(L_{\text{bol},hc} \) (last column in Table 1). As discussed in Paper I, we applied the scaling relationship between black hole mass and host luminosity reported in Marconi & Hunt (2003), and added an evolutionary term (Bennert et al. 2010, 2011), to estimate the contribution of host galaxy.

We note that \(L_{\text{bol}} \) will underestimate the total emission for three reasons: (1) excluding the IR to radio emission; (2) excluding the hard X-ray emission, where we do not have data; (3) ignoring the reddening of the primary emission in the optical/UV. Note that most, if not all, of these factors are not significant underestimate. For example, as we stated above, the contribution of the radio emission to the bolometric luminosity s less than 3% even for the radio-loud quasars.

To investigate the contribution to bolometric luminosity in different wavelength ranges, we calculated \(L_{\nu} \), by integrating from 24 \(\mu \)m to 1 \(\mu \)m, \(L_{\text{opt}} \) from 1 \(\mu \)m to 912 Å and \(L_X \) from 0.5 keV to 40 keV. The fractions of the luminosity in different wavelength ranges are reported in Table 1 (The full table is available on line). Table 2 shows the median values and the ranges for \(L_{\text{bol}} \), the fractions in three wavelength ranges, and the median values and the ranges for \(M_{\text{BH}} \) and Eddington ratio (which will be discussed in §2.4). In general, the IR component (1–24 \(\mu \)m) provides an equal or greater contribution compared to the optical/UV ‘big blue bump’ component (0.1–1 \(\mu \)m). We also calculate the ratio of \(L_{\text{bol}} \) over \(L_{\text{opt}} \) as listed in Table 1 & 2. The mean \(L_{\text{bol}}/L_{\text{opt}} \) is 2.04 \(\pm \) 0.75 (for XCRQ407) and 2.00 \(\pm \) 0.71 (for SSRQ200) respectively. The mean \(L_{\text{bol},hc}/L_{\text{opt},hc} \) is 2.11 \(\pm \) 0.91. These values are larger than the ratio for E94 template (1.86) and for R06 template (1.61). This is probably caused by the selection effect, that E94 and R06 are optical selected samples that select more quasars with large optical contribution.

2.2 Bolometric Correction

We then calculated the bolometric correction at various frequencies. The bolometric correction (\(BC_\nu = L_{\text{bol}}/\nu L_\nu \)) is the factor which transforms the luminosity in one band to the bolometric luminosity. As the host galaxy contribution is prominent for X-ray-selected quasars, we calculated the frequency-dependent \(BC \) in the rest frame 0.1–10\(\mu \)m only for SSRQ200 after performing the host correction. The bolometric correction was calculated for a \(\Delta \log \nu = 0.02 \) grid. The bolometric luminosity used in the calculation is \(L_{\text{bol},hc} \), which is the integration of host-corrected SEDs, listed as the last column in Table 1.

The mean and dispersion of the \(BC_\nu \) are listed in Table 2 and shown in Figure 1 where we also show the mean and dispersion of the \(BC_\nu \) for quasars at different redshift bins. The mean \(BC_\nu \) curves for different redshift bins are consistent with each other given the large dispersion at each wavelength (Figure 1). The dispersion is largest at around 1 \(\mu \)m, where the host contribution is the highest, and in the extreme UV, where quasar variability is likely to contribute significantly to the observed dispersion.

For comparison, we plot the E94 mean SED bolometric correction as the cyan solid line in Figure 1 Hopkins et al. (2007) used a double power law to approximate the B band bolometric correction.

\[
\frac{L_{\text{bol}}}{L_{B}} = 6.25 \left(\frac{L_{\text{bol}}}{10^{10} L_{\odot}} \right)^{-0.37} + 9.00 \left(\frac{L_{\text{bol}}}{10^{10} L_{\odot}} \right)^{-0.012}
\]

To compare with the bolometric correction we got, we use

Parameter	XCRQ407	SSRQ200				
\(z \)	0.10	0.13	0.10	0.13		
\(\log(M_{\text{BH}}/M_{\odot}) \)	\(\text{min} \)	4.26	\(\text{med} \)	4.26	\(\text{max} \)	4.26
\(\text{log}\nu L_{\nu} \) (erg/s)	44.01	45.49	46.91	44.25		
\(\text{log}\nu L_{\nu} \) (erg/s)	44.29	45.71	47.40	44.55		
\(L_{\text{ir}}/L_{\text{all}} \)	12.7%	32.3%	76.7%	12.7%		
\(L_{\text{ir}}/L_{\text{all}} \)	12.7%	32.3%	76.7%	12.7%		
\(L_{\text{opt}}/L_{\text{all}} \)	2.1%	32.0%	60.5%	9.0%		
\(L_{\text{opt}}/L_{\text{all}} \)	2.1%	32.0%	60.5%	9.0%		
\(L_X/L_{\text{all}} \)	0.33%	8.3%	43.9%	0.47%		
\(L_X/L_{\text{all}} \)	0.33%	8.3%	43.9%	0.47%		
\(\lambda_{E} \)	\(\text{min} \)	1.00	1.84	1.10		
\(\lambda_{E} \)	\(\text{med} \)	8.30	4.30	8.30		
\(\lambda_{E} \)	\(\text{max} \)	1.01	1.84	1.10		
\(\lambda_{E} \)	\(\text{max} \)	1.01	1.84	1.10		
\(\log L_{\text{bol},hc}/L_{\text{opt},hc} \) (erg/s)	\(\text{min} \)	44.19	45.53	46.86		
\(\log L_{\text{bol},hc}/L_{\text{opt},hc} \) (erg/s)	\(\text{med} \)	44.19	45.53	46.86		
\(\log L_{\text{bol},hc}/L_{\text{opt},hc} \) (erg/s)	\(\text{max} \)	44.19	45.53	46.86		
2.3 Eddington Ratio

For SS200, the accretion rate relative to the Eddington rate (the Eddington ratio, \(\lambda_E \)) can be calculated given the bolometric luminosities derived in \(\S \) 2.1 i.e.

\[
\lambda_E = \frac{L_{bol}}{L_{Edd}} = \frac{L_{bol}}{4\pi G c m_p \sigma T} \frac{M_{BH}}{M_{BH}} = \frac{L_{bol}}{1.26 \times 10^{38} (M_{BH}/M_{\odot})}
\]

The black hole mass (\(M_{BH} \)) and the corresponding Eddington ratio (\(\lambda_E \)) of the XC413 are listed in Table 1 (Full table available on-line). The median and ranges of these parameters are reported in Table 2.

2.4 Parameter Space Classification

The XCRQ407 sample spans a wide range of \(z, L_{bol}, M_{BH} \) and \(\lambda_E \) (Table 1, Figure 2). The redshift range is comparable to that of Spitzer-SDSS sample (R06), and the luminosities, black hole mass and Eddington ratio ranges are comparable to that of PG quasars (Sikora et al. 2007). The size of the XCRQ407 sample is more than double that of previous samples, and it is an order of magnitude larger than the E94 sample. This large sample size spanning a wide range of the parameter spaces is useful to understand whether and how the properties of the SMBH affect the SED shape.

XCRQ407 is an X-ray-selected sample and so includes sources with large host galaxy contribution (Paper I). For this reason, we focus on the host-corrected SEDs of the SSRQ200. For comparison we also study the SEDs of the XCRQ407 before the host correction. The median values and ranges in \(z, L_{bol}, M_{BH} \) and \(\lambda_E \) are similar for the two sub-samples (Table 2).

We can now check the SED shape dependence on each physical parameter by dividing the samples into quartiles of quasar \(z, L_{bol}, M_{BH} \) and \(\lambda_E \), as shown by the dashed red lines in Figure 2. The bin boundaries and number of sources in different bins are given in Table 1. With these divisions, different bins have a similar number of quasars to calculate the mean SED, and therefore the possible statistical differences between different bins are minimized.

3 MEAN QUASAR SED DEPENDENCY ON PHYSICAL PARAMETERS

We can look for trends in the SEDs by checking the mean SED shape diversity in different bins. For each of the \(z, L_{bol}, M_{BH} \) and \(\lambda_E \) bins the mean SED are calculated as in Paper I. Briefly we: (1) converted the flux densities at each frequency for each object to luminosity, using a ΛCDM Concordance Cosmology (Komatsu et al. 2009); (2) shifted them to the rest frame for each source; (3) corrected for the small Galactic extinction (E(B-V)≃0.017); (4) limited the variability by restricting the photometry data in use to 2004-2007; (5) corrected for broad emission line contributions, which can be significant in the intermediate width Subaru bands; (6) linearly interpolated the SED to a uniform frequency grid (Δ log ν = 0.02); (7) calculated the mean SED at each log ν grid point. To avoid the SED shape being dominated by the few luminous quasars in each bin, we also calculated the mean of the SED after normalizing the SED at 1\(\mu m \).

As the COSMOS optical and infrared data used here were taken over a 4 year interval, from 2004 to 2007, and the SDSS data for the field were taken as early as 2001, variability is common in the XC413 sample (Paper I). Salvato et al. (2009) defined a convenient variability parameter \(\Upsilon \) (the rms of the magnitude offsets at the sampled epochs) to quantify the variability of the sources. Salvato et al. (2009) found that \(\Upsilon > 0.25 \) sufficiently separates out variable XXM-COSMOS sources (including both point-like and extended sources). We plot the \(\Upsilon \) histogram in the left panel of Figure 3 for both the XC413 (blue dashed line) and SSRQ200 (black solid line) sample. Half of the XC413 AGN (199/413) and SSRQ200 AGN (94/200) have \(\Upsilon > 0.25 \). As in Paper I,
Table 3. Bolometric Corrections for the SSRQ200 sample

λ (µm)	$\log \nu$ (Hz)	All z	$0.1 < z < 1.2$	$1.2 < z < 1.5$	$1.5 < z < 1.8$	$1.8 < z < 4.3$					
9.48	13.5	6.69	4.80	6.60	4.11	5.76	3.45	7.59	6.23		
7.53	13.6	6.25	4.02	6.74	3.97	6.71	4.18	5.45	2.99	6.13	4.76
5.98	13.7	6.26	3.73	6.98	3.96	6.67	3.81	5.57	2.83	5.82	4.11
4.75	13.8	6.33	3.60	7.01	3.80	6.72	3.64	5.74	2.82	5.85	3.98
3.77	13.9	6.41	3.50	6.73	3.34	6.89	3.69	6.00	3.03	6.04	3.90
3.00	14.0	6.25	3.38	6.12	3.20	6.41	3.32	6.19	3.29	6.27	3.88
2.38	14.1	5.80	3.04	5.82	2.31	5.86	2.86	5.32	2.19	6.22	3.74
1.89	14.2	6.02	3.62	6.34	5.05	6.35	3.25	5.37	2.23	6.03	3.41
1.50	14.3	6.80	4.61	7.13	7.16	7.27	3.84	5.98	2.57	6.83	3.55
1.19	14.4	7.49	4.73	7.97	7.16	8.43	4.55	6.60	2.75	6.98	3.01
0.95	14.5	8.62	8.80	9.81	14.01	10.48	9.58	7.25	2.94	6.92	2.89
0.75	14.6	8.32	14.40	11.30	28.08	8.25	4.90	6.83	2.44	6.90	3.30
0.60	14.7	7.54	12.40	10.96	24.12	7.29	3.54	5.70	2.10	6.23	2.86
0.48	14.8	6.40	4.29	7.77	7.07	6.93	3.12	5.41	1.96	5.49	2.71
0.38	14.9	5.43	2.11	5.98	1.89	6.26	2.63	4.90	1.60	4.58	1.73
0.30	15.0	5.02	2.43	5.71	1.89	5.87	3.56	4.54	1.76	3.93	1.38
0.24	15.1	5.31	3.41	6.14	3.24	6.44	5.08	4.55	1.89	4.10	1.79
0.19	15.2	5.58	5.19	6.87	4.79	6.90	8.47	4.64	2.12	3.91	1.74
0.15	15.3	5.33	6.22	7.01	6.54	6.58	9.69	4.03	2.63	3.71	2.13
0.12	15.4	5.72	6.36	7.20	7.75	6.81	9.18	4.74	2.62	4.14	2.49
0.09	15.5	7.28	6.97	8.00	7.57	7.35	8.77	5.83	3.00	7.99	7.20

1 After host galaxy subtraction.

Table 4. Parameter Space Bins

bin redshift	XCRQ407	SSRQ200	L_{bol} XCRQ407	SSRQ200	M_{BH}	SSRQ200	logλ_E	SSRQ200	
1 0.103–1.166	107	50	44.00–45.23	126	50	7.18–8.10	50	0.008–0.057	50
2 1.166–1.483	72	50	45.23–45.56	99	50	8.10–8.39	50	0.057–0.114	50
3 1.483–1.848	84	50	45.56–45.87	93	50	8.39–8.66	50	0.114–0.252	50
4 1.848–4.256	144	49	45.87–46.91	89	50	8.66–9.34	50	0.252–2.506	50

Figure 2. The classification of z, L_{bol}, M_{BH} and $\log \lambda_E$ bins of the XMM-COSMOS type 1 AGN sample. The dashed lines show the borders of quartile bins: the z bins (0.1 ∼ 1.2 ∼ 1.5 ∼ 1.8 ∼ 4.3), L_{bol} bins (44.0 ∼ 45.2 ∼ 45.6 ∼ 45.9 ∼ 46.9), M_{BH} bins (7.2 ∼ 8.1 ∼ 8.4 ∼ 8.7 ∼ 9.4) and λ_E bins (0.008 ∼ 0.057 ∼ 0.114 ∼ 0.252 ∼ 2.506). The black crosses show all the radio-quiet XMM-COSMOS type 1 AGN. The red triangles show the 6 radio-loud quasars. The green squares show the sub-sample SS203.
SEDs of Type 1 AGN in XMM-COSMOS II

Figure 3. Left: Distribution of the variability parameter Υ (Salvato et al. 2009) of the SSRQ200 AGN (black solid line) and XC413 AGN (blue dashed line). The vertical red line divides the sources into variable (>0.25) and not-variable (<0.25). Right: The reduced χ^2 of the SED-fitting (see $\S3$ for details) both before (black solid line for SSRQ200 and blue dashed line for XC413) and after (red solid line for SSRQ200 and magenta dashed line for XC413) the restriction of the data to the 2004-2007 interval.

Table 5. Number of SSRQ200 quasars in Sub-bins for Partial Evolution

bin	sub-bin	z	L_{bol}	M_{BH}	λ_E
$z(2)$	1	9	11	11	
	2	19	15	17	
	3	14	13	14	
	4	8	11	8	
$z(3)$	1	10	11	11	
	2	16	15	15	
	3	10	15	11	
	4	15	10	14	
log $L_{bol}(2)$	1	9	6	9	
	2	19	17	19	
	3	16	17	13	
	4	6	10	9	
log $L_{bol}(3)$	1	10	15	10	
	2	14	14	14	
	3	10	10	12	
	4	16	11	14	
log $M_{BH}(2)$	1	11	9	12	
	2	15	17	23	
	3	15	14	11	
	4	9	10	4	
log $M_{BH}(3)$	1	11	15	10	
	2	13	17	10	
	3	15	10	19	
	4	11	8	11	
log $\lambda_E(2)$	1	11	9	13	
	2	17	19	23	
	3	15	14	10	
	4	7	8	4	
log $\lambda_E(3)$	1	8	11	8	
	2	14	13	11	
	3	11	12	19	
	4	17	14	12	

We do not use the Salvato et al. (2009) method to correct the SED, to avoid the modification to the SED shape. Alternatively, we restrict the data set to a shorter time period. Using χ^2 fits to the continuum (using quadratic functions to fit the observed data from rest frame 9000 Å to 912Å), we find that using only the data in the interval from 2004 to 2007 reduces the variability issue (right panel of Figure 3). The right panel of Figure 3 shows how the reduced time span improves χ^2 after applying these restrictions.

The resulting mean SEDs in different z and L_{bol} bins for XCRQ407 are shown in Figure 4. For ease of comparison, we also plot the E94 mean SED and a galaxy template from SWIRE (Polletta et al. 2007) normalized to the value of L_n from the UKIDSS Ultra Deep Survey (Cirasuolo et al. 2007, $M_K^* = -23$). The galaxy SED shown is an Elliptical galaxy with an age of 5 Gyr (hereafter E5). Different galaxy templates have similar shapes at around 1 μm, so here we just choose E5 as a representative case.

The SEDs in our sample have much less pronounced 1 μm inflection point than in E94. In Paper I we concluded that this shape is probably due to the host galaxy contribution. It is clear from Figure 4 that for low z and low L_{bol} sources the galaxy component around 1 μm strongly affects the shape of the SEDs. Indeed, at higher z and L_{bol}, the 1μm inflection becomes more obvious, as the quasar component becomes relatively stronger. However, even for high z and L_{bol} sources, the optical big blue bump is not as strong as in E94. This is probably because E94 considered a UV selected sample which picks out the bluest quasars (Schmidt & Green 1983). The mean SED shapes in the central z and L_{bol} bins are quite similar to the mean SEDs of all the quasars in XCRQ407.

For the SSRQ200 sample, we calculate the mean host-corrected SED for each bin, as shown in Figure 5&6. Even with the host-correction, the mean SEDs for the low z and L_{bol} sources are still relatively flat and different from E94. This may be due to insufficient host galaxy correction in some cases because of the scatter in the scaling relationship. The mean SEDs show that the top three bins of z and L_{bol}
have similar shapes, showing no sign of dependency on any of these parameters.

The 1 \(\mu m\)-normalized mean SED shapes of three \(M_{BH}\) bins are also similar to each other except for the second bin (8.1 < \(\log(M_{BH}/M_\odot)\) < 8.4). The optical slopes of the mean SEDs of different \(\lambda_E\) bins increase as \(\lambda_E\) increases, that is the mean SED is redder when the Eddington ratio is smaller. This trend is in agreement with the difference seen in typical quasar with \(\lambda_E > 0.01\) and extremely low Eddington ratio AGN with \(\lambda_E < 10^{-4}\) (Ho et al. 2008, Trump et al. 2011).

The \(z\) bins have the tightest distribution compared to other parameters (e.g., at 3\(\mu m\) and 3000\(\AA\) the difference of the mean SEDs in different bins is 0.1 dex and 0.15 dex respectively, smaller than corresponding values of the other parameters). The difference of the mean SEDs in all the bins (except for the lowest bin) of each parameter are less than a factor of 2 even at the infrared/UV end.

To check for partial dependencies of the SED shape on the physical parameters, we checked the SED shape difference with one parameter when fixing another. In order to have a large enough number of quasars in the mean SED calculation in each sub-bin, we consider the central two bins (Figure 7 & 8). The number of quasars in each sub-bin is listed in Table 5. As the number of quasars in each sub-bin is relatively small, these mean SEDs are more affected by particular SED shapes. In all these plots, the bottom / first bins are sometimes still affected by the host contribution,
SEDs of Type 1 AGN in XMM-COSMOS II

Figure 5. The host-corrected mean SED for SSRQ200 in bins of z and L_{bol} compared to E94 mean radio-quiet SED (cyan solid line): left: before normalization; right: normalized at 1µm. The black solid lines show the host-corrected mean SED of all quasars in SSRQ200. A host galaxy template (an Elliptical (5 Gyr), blue solid line) is normalized to L_* from UKIDSS Ultra Deep Survey (Cirasuolo et al. 2007).

Note that, to show the difference of the mean SEDs in different bins clearly, we expanded the y axis in all the plots of the right panel.

As shown in the following section (§4), the dispersion of the SED in different bins ranges from 0.3 to 0.6, larger than the difference between the mean SED of adjacent bins; and the normalized SED dispersion can be as high as ~ 0.5 much larger than the difference between the mean normalized SED of adjacent bins (for details see §4). The lack of SED shape dependency on z, L_{bol}, M_{BH} and λ_E we observed in the XCRQ407 and SSRQ200 suggests that neither the emission mechanism nor the accretion disk and torus structure alters systematically or dramatically with these parameters. In other words, a single intrinsic quasar SED in the optical/UV to near-infrared range is a meaningful concept. There is clearly still difference between individual SEDs, for example in the normalization due to L_{bol}. However, most of the differences in shapes are caused by different host contributions or reddening in quasars. The SED shape does not show a statistically significant dependence on the parameters we investigated.

© 2012 RAS, MNRAS 000, 1–17
Figure 6. The host-corrected mean SED for SSRQ200 in bins of M_{BH} and λ_E compared to E94 mean radio-quiet SED (cyan solid line): left: before normalization; right: normalized at 1μm. The black solid lines show the host-corrected mean SED of all quasars in SSRQ200. A host galaxy template (an Elliptical (5 Gyr), blue solid line) is normalized to L_* from UKIDSS Ultra Deep Survey (Cirasuolo et al. 2007). Note that, to show the difference of the mean SEDs in different bins clearly, we expanded the y axis in all the plots of the right panel.

Table 6. Bolometric Luminosity Dispersion in Each bin

Sample	XCRQ407	SSRQ200
1	0.46	0.50
2	0.38	0.38
3	0.42	0.43
4	0.42	0.49

4 SED DISPERSION DEPENDENCY ON PHYSICAL PARAMETERS

Even if the mean SEDs show little or no dependency on physical parameters, the SED dispersion may change with them. We checked the SED dispersion in different bins for both the XCRQ407 and SSRQ200 by calculating the dispersion of νL_ν at each frequency in each bin. The dispersion of the SEDs could purely / mostly caused by the luminosity difference among quasars in each bin. In order to distinguish the dispersion caused by different brightness of quasars and the SED shape dispersion, we consider the dispersion of the SEDs before and after normalizing all the SEDs at 1μm (Figure 9-11). The bolometric luminosity dispersion in each
Figure 7. The mean host-subtracted SED normalized at $1\mu m$ compared to E94 mean radio-quiet SED (cyan solid line). Different rows are for quasars in specific bins: (1) z bin 2 ($1.2 < z < 1.5$); (2) $\log L_{\text{bol}}$ bin 2 ($45.2 < \log L_{\text{bol}} < 45.6$); (3) $\log (M_{\text{BH}}/M_\odot)$ bin 2 ($8.1 < \log (M_{\text{BH}}/M_\odot) < 8.4$); (4) $\log \lambda_E$ bin 2 ($0.057 < \lambda_E < 0.114$). The symbol on the upper right corner of each plot shows which sub-bin is considered. The lines are color coded as in Figure 5 & 6.

© 2012 RAS, MNRAS 000, 1–17
Figure 8. The mean host-subtracted SED normalized at 1μm compared to E94 mean radio-quiet SED (red solid line). Different rows are for quasars in specific bins: (1) z bin 3 ($1.5 < z < 1.8$); (2) $\log L_{\text{bol}}$ bin 3 ($45.6 < \log L_{\text{bol}} < 45.9$); (3) $\log(MBH/M_{\odot})$ bin 3 ($8.4 < \log(MBH/M_{\odot}) < 8.7$); (4) $\log \lambda_E$ bin 3 (right half, $0.114 < \lambda_E < 0.252$). The symbol on the upper right corner of the each plot shows which sub-bin is considered. The lines are color coded as in Figure 5 & 6.
Figure 9. The dispersion of the SEDs for XCRQ407 in bins of z and L_{bol} before (left) and after (right) normalization at 1μm compared to corresponding E94 radio-quiet SED dispersion (cyan solid curve).

bin is listed in Table 6. From the left panels of Figure 9 and Table 6 we can see majority of the SED dispersion is caused by the luminosity dispersion within bins. For the λ_E bins, the quasar brightness effect is the least. So we will concentrate on the dispersion of the normalized SEDs (right panel of Figure 9) to see if there is any SED dispersion dependency on physical parameters. The normalized SED dispersion in different bins at certain specific wavelengths are listed as examples in Table 7.

The resulting dispersion of normalized SEDs in z and L_{bol} bins for XCRQ407 compared to E94 radio-quiet SED dispersion are shown in right panel Figure 9. The XMM-COSMOS SEDs generally have a larger dispersion in the optical to UV range compared to E94 radio-quiet sample. This is probably because E94 is biased toward blue quasars, unlike the XMM selected XCRQ407, thus it does not include quasars with various optical shapes/colors. The 1–10 μm dispersion of XCRQ407 is closely similar to E94, except at $\sim 2\mu$m, where it is somewhat lower. The XMM-COSMOS SED dispersion is quite similar in the 3 μm to 3000 Å range for different z or L_{bol} bins. The SED dispersions in this range are all below a factor of 2.

For the host-corrected SSRQ200 sample, the dispersion of the SED for each bin is shown in Figure 10 & 11. The SED dispersion in the 3 μm to 3000 Å range is not as tight as the un-corrected sample, implying extra dispersion induced by the host-correction process depends on z, L_{bol}, M_{BH} or λ_E. The lowest bin for each parameter always has the largest dispersion in most frequency range in all the dispersion plots.

In all these SED dispersion plots, the UV (at $\sim 0.1\mu$m) dispersion is generally larger than the near-IR (at $\sim 10\mu$m) dispersion. This could mean that the reprocessing of the
hot dust component has slightly smoothed the discrepancy of the accretion disk emission. Alternatively, this could be completely caused by the variability of the quasar which affects the UV SED most, or by reddening.

We can compare the difference between mean SEDs in §3 and the SED dispersion discussed above. Before normalization, the SED dispersion is comparable and slightly larger than the mean SED difference between adjacent bins. As majority of the difference and dispersion is caused by the bolometric luminosity distribution, we will focus our comparison for the normalized SEDs. The normalized SED dispersion can reach up to \(\sim 0.5 \). At each frequency, the dispersion is much larger than the normalized mean SED difference. We could thus state that the mean SEDs are invariant within \(1\sigma \) (at most frequencies \(> 2\sigma \)).

5 DISCUSSION AND CONCLUSION

We analyzed the dependence of both the mean and dispersion of the SED shapes in the optical-UV to IR range on the parameters \(z \), \(L_{\text{bol}} \), \(M_{\text{BH}} \) and \(\lambda_E \) for the 407 XMM-COSMOS radio-quiet type 1 AGN sample. We also calculated the bolometric correction at UV-optical to near-IR for the host-corrected SSRQ200, and in four different redshift bins. The bolometric correction for different redshift bins are quite similar to each other.

As the XMM-COSMOS quasar sample is an X-ray-selected sample, it includes also sources with low nucleus to host contrast. The mean SED of the whole sample is greatly affected by the host galaxy emission for low redshifts and luminosities. Therefore, we mainly studied the mean and dispersion SEDs of a host-corrected sub-sample.
Figure 11. The dispersion of host-subtracted SEDs for SSRQ200 in bins of M_{BH} and λ_E before (left) and after (right) normalized at 1μm compared to corresponding E94 radio-quiet SED dispersion (cyan solid curve).

of 200 radio-quiet quasars, SSRQ200, in four quartile bins of z, L_{bol}, M_{BH} and λ_E. The mean SED shapes in the different bins are quite similar to each other. These SEDs are also generally similar to the E94-like mean SED shape, but they tend to have less pronounced optical to UV bump emission than in E94, as E94 is biased towards blue quasars. Even if we fix one parameter (e.g. redshift), the mean SEDs show no statistical significant evolution with the others.

We checked the dispersion of SEDs in different parameter bins. The near-IR SED dispersion is generally smaller compared to the UV SED dispersion, which might be due to the variability of the quasar that mainly affects UV SED. The SEDs before and after host correction have very similar dispersion in the 3 μm to 3000 Å range for different bins, which implies an invariant intrinsic dispersion of SED shapes in this wavelength range. However, in this wavelength range, the host-corrected SED dispersion is not as tight as the uncorrected sample, probably due to the extra dispersion induced by the scaling relationship depends on the physical parameters. When we compare the SED dispersion with the difference of the mean SEDs, we could conclude that the mean SED is invariant within 1σ (at most frequencies more than 2σ).

There is no statistical significant dependency of the mean SED with z, L_{bol}, M_{BH} or $\log \lambda_E$. This result implies that the global quasar structures (the accretion disk and the torus) are invariant with respect to these parameters. Despite the strong expectation that feeding of the AGN and host galaxy is likely to change (e.g. Merloni et al 2010), as well as the X-ray corona is likely to change (α_{OX} varies with λ_E, e.g. Lusso et al. 2010), the accretion disk and the torus
seem to not depend on this mechanism. Thus an intrinsic SED in UV-optical to near-IR exists.

The differences among the SEDs show there might be diversity only at the second order. Host contamination, reddening and quasar variability should lead to a dispersion in the UV and near-IR SEDs. The lack of SED dispersion evolution indicates that these effects themselves do not show much systematic dependence on physical parameters.

All the above conclusions depend on the reliability of the host correction process. This assumes the scaling relationship between black hole mass and bulge mass (e.g. Marconi & Hunt 2003) with an evolutionary term (Bennert et al. 2003) with an evolutionar...
Jiang, L., Fan, X., Vestergaard, M., Kurk, J. D., Walter, F., Kelly, B. C., & Strauss, M. A., 2007, AJ, 134, 1150

Just, D. W., Brandt, W. N. et al., 2007, ApJ, 665, 1004

Kawaguchi, T., Shimura, T., & Mineshige, S. 2001, ApJ, 546, 966

Komatsu, E., et al., 2009, ApJS, 180, 330

Kormendy, J. & Richstone, D. 1995, ARA&A, 33, 581

Kurk, J. D. et al. 2007, ApJ, 669, 32

Laor, A., Netzer, H., & Piran, T. 1990, MNRAS, 242, 560

Laor, A., Fiore, F., Elvis, M., Wilkes, B. J., Mcdowell, J. C. 1997, ApJ, 477, 93

Lapi, A. et al. 2011, ApJ, 742, 24

Lilly, S. J., et al., 2007, ApJS 172, 70

Lilly, S. J., et al., 2009, ApJS 184, 218

Lusso, E., et al., 2010, A&A 512, 34

Magorrian, J., et al., 1998, AJ, 115, 2285

Mainieri, V., et al., 2007, ApJS, 172, 368

Marconi, A. & Hunt, L. K. 2003, ApJ 589, L21

Mateos, et al. 2005, A&A, 433, 855

Mathur, S., Wilkes, B. J. & Ghosh, H. 2002, ApJL, 570, 5

McAlary, C. W. & Rieke, G. H. 1988, ApJ, 333, 1

McLure, R. J. & Jarvis, M. J., 2002, MNRAS, 337, 109

Menci, N., et al. 2008, ApJ, 686, 219

Merloni, A., et al. 2010, ApJ 708, 137

Mortlock, D. J., et al., 2011, Nature, 474, 616

Mullaney, J. R., et al. 2012, MNRAS, 419, 95

Netzer, H. et al. 2007 ApJ, 666, 806

Peng, C. Y., Impey, C. D., Rix, H.-W., Kochanek, C. S., Keeton, C. R., Falco, E. E., Lehár, J., McLeod, B. A. 2006, ApJ, 649, 616

Polletta, M. et al. 2007, ApJ, 663, 81

Rees, M.J., 1984, ARA&A, 22, 471

Richards, G. T. et al. 2006, ApJS, 166, 470

Richstone, D., et al. 1998, Nature, 395, 14

Runnoe, J. C., Brotherton, M. S., Shang, Z., et al., 2012, MNRAS, 422, 478

Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K. 1989, ApJ, 347, 29

Schmidt, M. & Green, R. F., 1983, ApJ, 269, 352

Schneider, D. P. et al. 2007, AJ, 134, 102

Schramm, M. & Silverman, J. D., 2013, ApJ, 767, 13

Scoville, N. Z., et al., 2007, ApJS, 172, 1

Shakura, N. I., & Sunyaev, R. A., 1973, A&A, 24, 337

Shang, Z., et al., 2011, ApJS, 196, 2

Sikora, M., Stawarz, L. & Lasota, J. P., 2007, ApJ, 658, 815

Silverman, J. D. et al., 2002, ApJL, 569, 1

Silverman, J. D. et al. 2005, ApJ, 624, 630

Shields, G. A., Menezes, K. L., Massart, C. A., Vanden Bout, P. 2006, ApJ, 641, 683

Soltan, A. 1982, MNRAS, 200, 115

Steffen, A. T., Strateva, I., et al., 2006, AJ, 131, 2826

Steinhardt, C. L. & Elvis, M. 2010, MNRAS, 402, 2637

Stocker, J. T., Morris, S. L., Weymann, R. J. & Foltz, C. B., 1992, ApJ, 396, 487

Suganuma, M. et al. 2006, ApJ, 639, 46

Terashima, Y. & Wilson, A. S. 2003, ApJ, 583, 145

Tremaine, S., et al. 2002, ApJ, 574, 740

Trump, J.R. et al. 2009a ApJ, 696, 1195

Trump, J.R. et al. 2009b ApJ, 700, 49

Trump, J. R. et al. 2011 ApJ, 733, 60

Ueda, Y. et al. 2003 ApJ 598, 886

© 2012 RAS, MNRAS 000, 1–17