Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

Yeow Meng Chee, Senior Member, IEEE, Zouha Cherif, Jean-Luc Danger, Sylvain Guilley, Han Mao Kiah, Jon-Lark Kim, Patrick Solé, Xiande Zhang

Abstract

We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function (PUF) response. We extend classical coding methods to construct multiply constant-weight codes from known \(q\)-ary and constant-weight codes. Analogues of Johnson bounds are derived and are shown to be asymptotically tight to a constant factor under certain conditions. We also examine the rates of the multiply constant-weight codes and interestingly, demonstrate that these rates are the same as those of constant-weight codes of suitable parameters. Asymptotic analysis of our code constructions is provided.

Keywords: constant-weight codes, doubly constant-weight codes, multiply constant-weight codes, physically unclonable functions.

Research of Y. M. Chee, H. M. Kiah and X. Zhang is supported in part by Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03. Research of Z. Cherif, S. Guilley and J.-L. Danger is supported by Orange Labs and the ENIAC European project 2010-1 “TOISE” (Trusted Computing for European Embedded Systems). Research of J.-L. Kim is supported by Basic Research Programme through the National Research Foundation of Korea (NRF) funded by Ministry of Education (NRF-2013R1A1A2005172) and by the Sogang University Research Grant of 201210058.01. This paper was presented in part at the IEEE International Symposium on Information Theory, 2013.

Y. M. Chee, H. M. Kiah and X. Zhang are with the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore (emails: \{YMChee, HMKiah, XiandeZhang\}@ntu.edu.sg).

Z. Cherif, J.-L. Danger, S. Guilley and P. Solé are with Institut MINES-TELECOM, TELECOM ParisTech, CNRS LTCI, 46 rue Barrault, 75 634 Paris, France (email: \{zouha.cherif,jean-luc.danger,sylvain.guilley,patrick.sole\}@telecom-paristech.fr).

J.-L. Kim is with Department of Mathematics, Sogang University, Seoul 121-742, South Korea (email: jlkim@sogang.ac.kr).

Z. Cherif is also with Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien 42 000, Saint-Étienne, France.

J.-L. Danger and S. Guilley are also with Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35 700 Rennes, France.

P. Solé is also with King Abdulaziz University, Department of Mathematics, Jeddah, Saudi Arabia.
I. INTRODUCTION

Physically unclonable functions (PUFs) introduced by Pappu et al. [1] provide innovative low-cost authentication methods that are derived from complex physical characteristics of electronic devices. Recently, PUFs have become an attractive option to provide security in low cost devices such as RFIDs and smart cards [1]–[4]. Reliability and implementation considerations on programmable circuits for the design of Loop PUFs [4] lead to the investigation of a new class of codes called multiply constant-weight codes (MCWC).

In an MCWC, each codeword is a binary word of length mn which is partitioned into m equal parts and has weight exactly w in each part [5]. This definition therefore generalizes the class of constant-weight codes (where $m = 1$) and a subclass of doubly constant-weight codes, introduced by Johnson [6] and Levenshteın [7] (where $m = 2$).

In this paper, we consider upper and lower bounds for the possible sizes of MCWCs. Our constructions make use of both classical concatenation techniques [8], [9] and a method due to Zinoviev (for constant-weight codes) [10], that was later independently given by Etzion (for doubly constant-weight codes) [11]. A construction technique using resolvable designs is also examined. For upper bounds, we extend the techniques of Johnson [6] and exhibit that these bounds are asymptotically tight to a constant factor, provided m, w and d are fixed. We also examine the rates of the MCWCs and interestingly, demonstrate that these rates are the same as those of constant-weight codes of length mn and weight mw.

We remark that if the codewords in an MCWC are regarded as m by n arrays, then an MCWC can be regarded as a code over binary matrices, where each matrix has constant row weight w. These codes were studied by Chee et al. [12] in an application for power line communications. The relevance of MCWCs for the latter context is an area for future research.

The rest of this article is structured as follows. Section II collects the necessary definitions and notation, and Section III examines an application of MCWCs in the field of PUFs. Section IV deals with constructions and attached lower bounds, while Section V contains the upper bounds. Section VI studies asymptotic versions of the bounds of Section IV and Section V. Some of our results were initially reported in [5] and the present paper contains many new results and generalizations.

II. DEFINITIONS AND NOTATION

Let \mathcal{X} be a set of q symbols. A q-ary code C of length n over the alphabet \mathcal{X} is a subset of \mathcal{X}^n. Elements of C are called codewords. Endow the space \mathcal{X}^n with the Hamming distance metric. A code C is said to have distance d if the (Hamming) distance between any two distinct codewords of C is at least d. A q-ary code of length n and distance d is called an $(n, d)_q$ code.

When $q = 2$, we assume $\mathcal{X} = \mathbb{F}_2$. An $(n, d)_2$ code is simply called an (n, d) code. The (Hamming) weight of a codeword $u \in \mathcal{X}^n$ is given by the number of nonzero coordinates in u.
Fix m, n_1, n_2, \ldots, n_m to be positive integers and let $N = n_1 + n_2 + \cdots + n_m$. An $(N, d)_2$ code is said to be of multiply constant-weight and denoted by MCWC$(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d)$, if each codeword has weight w_1 in the first n_1 coordinates, weight w_2 in the next n_2 coordinates, and so on and so forth. When $m = 1$, an MCWC$(n, w; d)$ is a constant-weight code, denoted by CWC$(n, d; w)$; when $m = 2$, an MCWC$(w_1, n_1; w_2, n_2; d)$ is a doubly constant-weight code.

When $w_1 = w_2 = \cdots = w_m = w$ and $n_1 = n_2 = \cdots = n_m = n$, we simply denote this multiply constant-weight code of length $N = mn$ by MCWC(m, n, d, w). Unless specified otherwise, a multiply constant code refers to an MCWC(m, n, d, w) in this paper.

The largest size of an $(n, d)_q$ code is denoted by $A_q(n, d)$. When $q = 2$, this size is simply denoted by $A(n, d)$. The largest of size of an MCWC$(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d)$ is given by $T(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d)$; the largest size of an MCWC(m, n, d, w) is given by $M(m, n, d, w)$; and the largest of size of a CWC(n, d, w) is given by $A(n, d, w)$.

In this paper, we are mainly interested in determining $M(m, n, d, w)$. Observe that by definition,

\begin{align*}
M(1, n, d, w) &= A(n, d, w), \\
M(2, n, d, w) &= T(w, n; w, n; d).
\end{align*}

Moreover, the functions $A(n, d, w)$ and $T(w, n; w, n; d)$ have been well studied (see for example, [6], [11], [13–15]). Online tables of the lower bounds for $A(n, d, w)$ can be found at [16] while upper bounds for $A(n, d, w)$ and $T(w, n; w, n; d)$ can be found at [17].

In this paper, we are mainly interested in building multiply constant-weight codes from known q-ary codes and constant-weight codes. One such class of codes is the class of binary linear codes. A binary linear code of length n, dimension k and distance d is called a linear $[n, k, d]$ code and we denote the largest quantity 2^k of a binary linear $[n, k, d]$ code by $B(n, d)$.

Unfortunately, an MCWC cannot be linear and hence, we look at possible generalization of linearity. A possible generalization given by the notion of systematic codes. A code of size 2^k is said to be systematic if there is a set I of k coordinates such that the code when restricted to the coordinate set I is exactly F_2^k. The largest sizes of a systematic (n, d) code and CWC(n, d, w) are denoted by $S(n, d) = 2^{s(n, d)}$ and $S(n, d, w) = 2^{s(n, d, w)}$ respectively. We remark that systematic constant-weight codes have been studied in [18], [19].

Finally, as mentioned in the introduction, a codeword in an MCWC(m, n, d, w) can be regarded as a binary m by n matrix with constant row weight w. Throughout the rest of this paper, we shall regard a codeword in an MCWC as either a word of length mn or an m by n matrix.
III. APPLICATION TO LOOP PUFs

The need of an MCWC arises from the generation of some type of PUFs in trusted electronic circuits. In this section, we demonstrate the relevance of MCWC in the implementation of Loop PUF on Field Programmable Gate Array (FPGA) and in enhancing the reliability of PUF response. First, we present the principle behind Loop PUF.

A. Loop PUF Principle

In general, the PUF provides a unique signature to a device without the need for the user to program an internal memory [1]. This signature allows the user to build lightweight authentication protocols or even protect a master key in cryptographic implementations. Such a key can be used for standard cryptographic protocols, or for internal cryptography (e.g., memory encryption). Essentially, the PUF takes advantage of technological process variations to differentiate between two devices. For instance, consider two delay lines with the same structure. In theory, the propagation time is the same for both two delay lines. However, actual measurements of the propagation time differ between the delay lines due to imbalances between the physical elements. Furthermore, as these measurements cannot be predicted accurately, they are well suited for cryptographic purposes.

Here, we consider the Loop PUF [4] that is a set of \(n\) identical delay lines laid out on a programmable circuit. The delay lines form a loop that oscillates as a single ring oscillator when closed by an inverter (see Figure 1) and this setup enhances the accuracy of delay measurements. Furthermore, each delay line is a series of \(m\) delay elements and the delay of the \(i\)th element of the \(j\)th line is controlled by the \((i, j)\)-th bit of some control word \(u\) of length \(mn\). Hence, corresponding to a control word \(u\), we have a delay measurement, denoted by \(D(u)\).

For expository purposes, we illustrate how a general binary code can be used in conjunction with the Loop PUF [4] to generate a set of Challenge-Response pairs for authentication purposes. For other cryptographic applications, we refer the interested reader to [1]–[4].

Given a binary code \(C\) of length \(mn\), the set of Challenge-Response pairs is given by

\[
\left\{ \left((u, v), \text{sign}(D(u) - D(v)) \right) : u \neq v, u, v \in C \right\}.
\]

In other words, each challenge is an ordered pair of distinct codewords \((u, v)\) from the binary code and the corresponding response is the sign of the delay difference between the pair of codewords [1].

For the set of Challenge-Response pairs to be used for authentication, it is important that we are unable to infer the sign of the delay difference with only knowledge of \(u\) and \(v\). To achieve

\[1\] Here, we consider a response that consists of one bit. A different control strategy can be used to extract a response with more bits and this is described in [4].
this *unpredictability* of response, we show that C needs to be an MCWC in Section III-B. On the other hand, it is also important that the measured response (or the sign of delay difference) remains the same despite environmental noise. The *reliability* of response is then shown to be associated with the minimum distance of the code C in Section III-C. Therefore, MCWCs are needed to satisfy both requirements of unpredictability and reliability.

B. MCWC to Achieve Unpredictability on FGPAs

Programmable circuits, like FPGAs, have a hierarchical layout. It is thus convenient to organize the PUF with two levels, namely with a structure of n clusters of m cells each. For this technology, it is rather easy to copy / paste exactly the logic of one cluster to generate all of them, in an indistinguishable manner (logically, not physically). Thus the Loop PUF can be easily constructed from a set of n clusters of m cells just by replicating the base cluster of m cells. As the routing inside a cluster between the m elements is not constrained, the PUF designer can easily port this structure to any FPGA family.

Now, let us consider an MCWC $(n, w_1; n, w_2; \ldots ; n, w_m; d)$ and choose a control word $u = (u_{11}, u_{12}, \ldots , u_{1n}, u_{21}, u_{22}, \ldots , u_{2n}, \ldots , u_{m1}, u_{m2}, \ldots , u_{mn})$. Let $d_{ij}(u_{ij})$ be the resulting delay of the ith delay element in the jth line and hence, the total measured delay $D(u)$ due to u is given by $\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij}(u_{ij})$.

Ideally, $d_{ij}(u_{ij}) = \mu + \epsilon_{ij}(u_{ij})$, where ϵ_{ij} is a small timing variation on the jth delay element on the ith line caused by technological dispersion and μ is the average delay that is independent of the position on the circuit. However, the latter is not true due to manufacturing constraints. In particular, a designer has no control about the routing within an FPGA cluster and hence, it is hardly possible to get balanced delay elements within a cluster. But fortunately due to copy / paste operation, the internal routing of a cluster can be faithfully reproduced from one cluster to another (see Figure 2).

2 Logic Array Block (LABs) for ALTERA and Configurable Logic Blocks (CLBs) for XILINX
In other words, we have

\[d_{ij}(u_{ij}) = \mu_i(u_{ij}) + \epsilon_{ij}(u_{ij}), \]

where \(\epsilon_{ij} \) is a small timing variation and \(\mu_i \) is the average delay dependent on the controlled bit and the position of the delay element. We compute the total delay due to \(u \), and we have

\[
D(u) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij}(u_{ij})
\]

\[
= \sum_{i=1}^{m} \sum_{j=1}^{n} \mu_i(u_{ij}) + \epsilon_{ij}(u_{ij})
\]

\[
= \left(\sum_{i=1}^{m} (n - w_i)\mu_i(0) + w_i\mu_i(1) \right) + \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \epsilon_{ij}(u_{ij}) \right). \quad (1)
\]

The last equality follows from the fact that \(u \) belongs to an MCWC\((n, w_1; n, w_2; \cdots; n, w_m; d)\). Furthermore, we observe that all codewords from the MCWC have the same expected response. Therefore, the delay difference between any pair of control words from the MCWC has expectation zero and the sign of the difference is dependent only on \(\epsilon_{ij} \)'s. In other words, the response depends entirely on the unpredictable physical characteristics of the individual delay elements.

C. Hamming Distance to Improve the PUF Reliability

The PUF response is very sensitive to environmental noise as the \(\epsilon_{ij} \) can be very low in comparison to the delays. Hence it is necessary to choose pairs of control words which offer the largest possible difference between their delays.
From (1), we see that
\[D(u) - D(v) = \sum_{i=1}^{m} \sum_{j=1}^{n} \epsilon_{ij}(u_{ij}) - \epsilon_{ij}(v_{ij}) = \sum_{u_{ij} \neq v_{ij}} \epsilon_{ij}(u_{ij}) - \epsilon_{ij}(v_{ij}). \]

Therefore, the greater the Hamming distance between \(u \) and \(v \), the greater the delay difference \(D(u) - D(v) \). Hence, by choosing a code of high distance, we improve the reliability of the PUF response.

The arguments in this section demonstrate the relevance of MCWC in the design of reliable Loop PUF. In the remaining of the paper, we examine the possible lower and upper bounds for optimal MCWCs, focusing our attention to the case where \(w_1 = w_2 = \cdots = w_m = w \).

IV. LOWER BOUNDS

A. Coding Constructions

In this section, we study constructions of MCWCs using known unrestricted codes. Our first construction is based on concatenation.

Proposition IV.1. Let \(q \leq A(n, d_1, w) \). We have
\[M(m, n, d_1 d_2, w) \geq A_q(m, d_2). \]

Proof: Consider a concatenation scheme [8], [9] where the outer code \(C \) is an \((m, d_2)_q\) code of size \(A_q(m, d_2) \) over \(\mathcal{X} \) and the inner code \(D \) is a CWC\((n, d_1, w)\) of size \(q \). Let \(\phi : \mathcal{X} \rightarrow D \) be an injective map. For each codeword \(u = (u_1, u_2, \ldots, u_m) \) in \(C \), we construct the binary codeword \((\phi(u_1), \phi(u_2), \ldots, \phi(u_m)) \). Then the resulting code is an MCWC\((m, n, d_1 d_2, w)\) of size \(A_q(m, d_2) \).

A special case of concatenation is the **product code construction**. Recall that if \(C \) and \(D \) are two binary linear codes then their product \(C \otimes D \) is the code of length \(mn \) consisting of \(m \) by \(n \) arrays whose rows belong to \(C \) and columns belong to \(D \). If \(C \) and \(D \) are linear \([m, k, d]\) and \([n, l, e]\) codes, then the code \(C \otimes D \) has parameters \([nm, kl, de]\) [9, Lemma 2.8].

We generalize this construction by relaxing certain requirements. In particular, we require only the rows of our arrays to be in \(C \), while not all the columns need to be in \(D \). Formally, consider a systematic CWC\((n, d_1, w)\) \(C \) of size \(2^{k_1} \) and a systematic \((m, d_2)\) code \(D \) of size \(2^{k_2} \).

Given a binary \(k_2 \) by \(k_1 \) matrix \(M \), we replace each column of length \(k_2 \) of \(M \) with its corresponding codeword in \(D \) and we obtain a binary \(m \) by \(k_1 \) matrix \(M' \). Next replace each row of length \(k_1 \) of \(M' \) with its corresponding codeword in \(C \). This results in a binary \(m \) by \(n \) matrix with constant row weight \(w \). In particular, each row of the matrix belongs to the constant-weight code \(C \) while the first \(k_1 \) columns belong to the code \(D \). Hence, the collection
of all $2^{k_1 k_2}$ matrices from this construction results in an MCWC$(m, n, d_1 d_2, w)$. We call this construction a **pseudo-product code construction**.

We remark that as with product construction, the pseudo-product code construction is a special case of concatenation. In addition, the pseudo-product construction coincides with the construction given by Amrani [20, Definition 1] in another context. The following proposition follows immediately from the pseudo-product code construction.

Proposition IV.2. We have

$$M(m, n, d_1 d_2, w) \geq 2^{s(n, d_1, w) s(m, d_2)} \geq B(m, d_2) s(n, d_1, w).$$

Example IV.1. Consider the following systematic constant-weight code \{0011, 0101, 1010, 1111\} of distance two. Taking its pseudo-product with a binary linear $[6, 2, 4]$ code yields a lower bound of $2^{2^2} = 16$ on $M(6, 4, 8, 2)$.

We give a simple but robust construction technique for systematic constant-weight codes due to Böinck and van Tilborg.

Proposition IV.3 (Böinck and van Tilborg [18, Construction 4.1]). We have

$$S(2n, 2d, n) \geq S(n, d) \geq B(n, d).$$

Proof: Let C be a systematic code of size $S(n, d)$. Construct a constant-weight code by the rule

$$D = \{(x, \overline{x}) | x \in C\},$$

where the bar denotes complementation. The code D hence has twice the distance of C and is systematic because C is.

Example IV.2. Observe that $B(2^{m-1}, 2^{m-2}) = 2^m$ follows from the Plotkin bound and the Reed Muller code $RM(1, m-1)$ [21, Chapter 13]. Proposition IV.3 therefore yields $S(2^m, 2^{m-1}, 2^{m-1}) \geq 2^m$.

We extend the code construction in Proposition IV.3 by appending each codeword with a codeword from a suitable constant-weight code.

Proposition IV.4. If $2^k \leq A(n, d, w)$ we have

$$s(n + 2k, d + 2, w + k) \geq k.$$

Proof: Let C be a constant-weight code of size $A(n, d, w)$. Let $\phi : \mathbb{F}_2^k \to C$ be an injective map. Let

$$D = \{(x, \overline{x}, \phi(x)) | x \in \mathbb{F}_2^k\},$$
where the bar denotes complementation. The code D is systematic with information set the first k coordinates and has the required parameters.

The next construction generalizes a construction by Zinoviev [10] (see also [22]) and by Etzion [11, Theorem 16] to construct multiply constant-weight codes from q-ary codes.

Proposition IV.5. We have

$$M(m, qw, 2d, w) \geq A_q(mw, d).$$

Proof: Consider an $(mw, d)_q$ code of size $A_q(mw, d)$ over the alphabet X. We extend each word of length mw to a word of length qmw by replacing each symbol with a binary word of length q. Specifically, replace each symbol in the codeword with the following characteristic function $\phi : X \rightarrow \{0, 1\}$,

$$\phi(x)_y = \begin{cases}
1, & \text{if } x = y, \\
0, & \text{otherwise}.
\end{cases}$$

We check that the new binary word of length qmw comprises m parts each of weight w.

It remains to check that the distance. Observe that for any pair of distinct symbols $x, y \in X$, the distance between $\phi(x)$ and $\phi(y)$ is two. Hence, since the distance between two q-ary codewords is at least d, the distance between the corresponding binary codewords is at least $2d$.

When q is a prime power and $q \geq mw - 1$, there exists a q-ary Reed Solomon code of length mw and distance d. Hence, $A_q(mw, d) = q^{mw-d+1}$ and the following corollary is immediate.

Corollary IV.1. If q is a prime power and $q \geq mw - 1$, then

$$M(m, qw, 2d, w) \geq q^{mw-d+1}.$$

On the other hand, when $w = 1$, we observe that we are able to reverse the construction so as to construct an n-ary codeword of length m from an m by n matrix with constant row weight one. Hence, the following corollary is immediate.

Corollary IV.2. We have

$$M(m, n, 2d, 1) = A_n(m, d).$$

B. Designs Constructions

Here, we consider a construction from designs, in particular, resolvable t-designs.

A t-$(v, k, 1)$ design, or t-design, is a pair (X, B) such that $|X| = v$ and B is a collection of k-subsets of X, called blocks, with the property that every t-subset of X is contained in exactly one block. A t-design (X, B) is resolvable if the blocks in B can be partitioned into parallel classes, each of which is a partition of X.
Suppose \((X, B)\) is a resolvable \(t-(v, k, 1)\) design with \(M = k(v^t)/v(k^t)\) parallel classes. Let \(m = v/k\) and \(n = v\). For each parallel class, we construct a binary \(m\) by \(n\) matrix, where the support of each row is given by a corresponding block. Hence, we form a binary \(m\) by \(n\) matrix with constant row weight \(k\). Since every pair of blocks intersect at most in \(t – 1\) places, the distance between every pair of binary matrices is at least \(2m(k - t + 1)\). Hence, we obtain an \(MCWC(m, n, 2m(k - t + 1), k)\) of size \(M\). We summarize the construction in the following proposition.

Proposition IV.6. Suppose there exists a resolvable \(t-(v, k, 1)\) design. Then

\[
M \left(\frac{v}{k}, n, 2(k-t+1) \frac{v}{k}, k \right) \geq \frac{k(v^t)}{v(k^t)}.
\]

Existence results for resolvable \(2-(v, k, 1)\) design are surveyed by Abel et al. \[23, Table 7.35\]. When \(t \geq 3\), existence results are given by Laue \[24\] (see also \[25–27\]).

V. UPPER BOUNDS

Trivially, an \(MCWC(m, n, d, w)\) is a \(CWC(mn, d, mw)\). Hence, we have our first upper bound.

Proposition V.1. We have

\[
M(m, n, d, w) \leq A(nm, d, mw).
\]

Next, we extend the techniques of Johnson \[6\] to obtain the following recursive bounds on \(T(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d)\). Let \(1 \leq i \leq m\).

\[
T(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d) \leq \frac{n_i}{w_i} T(w_1, n_1; \ldots; w_i - 1, n_i - 1; \ldots; w_m, n_m; d), \quad (2)
\]

\[
T(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d) \leq \frac{n_i}{n_i - w_i} T(w_1, n_1; \ldots; w_i, n_i - 1; \ldots; w_m, n_m; d), \quad (3)
\]

\[
T(w_1, n_1; w_2, n_2; \ldots; w_m, n_m; d) \leq \frac{u}{w_1^2/n_1 + w_2^2/n_2 + \cdots + w_m^2/n_m - \lambda}, \quad (4)
\]

where \(d = 2u\) and \(\lambda = w_1 + w_2 + \cdots + w_m - u\). Since \(M(m, n, d, w) = T(w, n; w, n; \ldots; w, n; d)\) and applying the recursive bounds \(m\) times, we obtain the following recursive upper bounds.

Proposition V.2. We have

\[
M(m, n, d, w) \leq \frac{n^m}{w^m} M(m, n - 1, d, w - 1) \quad (5)
\]

\[
M(m, n, d, w) \leq \frac{n^m}{(n - w)^m} M(m, n - 1, d, w) \quad (6)
\]

\[
M(m, n, d, w) \leq \frac{d/2}{mw^2/n - (mw - d/2)} \quad (7)
\]
Suppose \(s = mw - d/2 + 1 \leq m \). Applying (2) for \(s \) iterations, we have \(M(m, n, d, w) \leq \frac{n^s}{w^s} T(w - 1, n - 1; \ldots; w - 1, n - 1; w, n; \ldots; w, n; d) \) and \(T(w - 1, n - 1; \ldots; w - 1, n - 1; w, n; \ldots; w, n; d) \) is trivially one. Hence, we obtain the next upper bound.

Proposition V.3. If \(mw - d/2 + 1 \leq m \), then
\[
M(m, n, d, w) \leq \left(\frac{n}{w} \right)^{mw-d/2+1}. \tag{8}
\]

We remark that when \(w = 1 \), Proposition [V.3] reduces to the classical Singleton bound.

Given \(m, d, w \), let \(i \) be the smallest integer such that \(m(w - i) - d/2 + 1 \leq m \). Then \(i \) iterative applications of (5), followed by an application of (8), yields the following corollary.

Corollary V.1. Given \(m, d, w \), let \(i \) be the smallest integer such that \(m(w - i) - d/2 + 1 \leq m \) and \(t = m(w - i) - d/2 + 1 \). Then we have
\[
M(m, n, d, w) \leq \frac{n^m}{w^m} \left[\frac{(n - 1)^m}{(w - 1)^m} \cdots \frac{(n - i + 1)^m}{(w - i + 1)^m} \right] \cdots \leq \frac{n^{mw-d/2+1}}{(w - i)^{mw-d/2+1}}.
\]

When the \(m, d \) and \(w \) are fixed, we establish tightness of the bound given by Corollary [V.1].

Corollary V.2. Fix \(m, d \) and \(w \). Let \(s = mw - d/2 + 1 \) and \(i \) be the smallest integer such that \(m(w - i) - d/2 + 1 \leq m \).

Consider \(M(m, n, d, w) \) as a function of \(n \). We have
\[
1 \leq \limsup_{n \to \infty} \frac{M(m, n, d, w)}{n^s/w^s} \leq \frac{w^s}{(w - i)^s}. \tag{9}
\]

In addition, when \(s \leq m \), \(n/w \geq mw - 1 \) and \(n/w \) is a prime power, we have
\[
M(m, n, d, w) = \frac{n^s}{w^s}.
\]

Proof: When \(n/w \geq mw - 1 \) and \(n/w \) is a prime power, Corollary [V.2] establishes that
\[
\limsup_{n \to \infty} \frac{M(m, n, d, w)}{n^s/w^s} \geq 1.
\]

Then Corollary [V.1] establishes (9).

If in addition, when \(s \leq m \), Proposition [V.3] with Corollary [V.2] establishes that \(M(m, n, d, w) = (n/w)^s \).

VI. ASYMPTOTICS

In this section, we consider the asymptotic rate of \(M(m, n, d, w) \) when \(m \) is large, \(n \) is a function of \(m, d = \lfloor \delta mn \rfloor \) and \(w = \lfloor \omega n \rfloor \) for \(0 < \delta, \omega < 1 \). Specifically, we determine the value
\[\mu(\delta, \omega), \text{ where} \]
\[\mu(\delta, \omega) := \limsup_{m \to \infty} \frac{\log_2 M(m, n, \lfloor \delta mn \rfloor, \lfloor \omega n \rfloor)}{mn}. \]

In the following discussion, we make use of the following better known exponents.

\[\alpha_q(\delta) := \limsup_{n \to \infty} \frac{\log_q A(n, \lfloor \delta n \rfloor)}{n}, \]
\[\alpha(\delta) := \limsup_{n \to \infty} \frac{\log_2 A(n, \lfloor \delta n \rfloor)}{n}, \]
\[\alpha(\delta, \omega) := \limsup_{n \to \infty} \frac{\log_2 A(n, \lfloor \delta n \rfloor, \lfloor \omega n \rfloor)}{n}, \]
\[\sigma(\delta) := \limsup_{n \to \infty} \frac{\log_2 S(n, \lfloor \delta n \rfloor)}{n}, \]
\[\sigma(\delta, \omega) := \limsup_{n \to \infty} \frac{\log_2 S(n, \lfloor \delta n \rfloor, \lfloor \omega n \rfloor)}{n} \]

First, we reduce the problem of determining \(\mu(\delta, \omega) \) to problem of determining \(\alpha(\delta, \omega) \).

Lemma VI.1. We have
\[A(nm, d, mw) \leq \left(\frac{mn}{(n \omega)^m} \right) M(m, n, d, w). \]

Lemma [VI.1] is analogous to Elias-Bassalygo [21, Theorem 33, Chapter 17] by regarding the set of \(m \) by \(n \) matrices with constant row weight \(w \) as a subset of the set of words of length \(mn \) with constant-weight \(mw \). As the proof requires some graph theoretical techniques, its proof is deferred to Section [VI-B].

Proposition VI.1. We have
\[\alpha(\delta, \omega) \leq \mu(\delta, \omega). \]

Proof: Observe that
\[\lim_{n \to \infty} \log \left(\frac{mn}{(n \omega)^m} \right) = mnH(\omega) - mnH(\omega) = 0. \]

Then applying limits on \(n, m \) and taking logarithms for Lemma [VI.1] we have our result.

The asymptotic version of Proposition [VI.1] is then

Proposition VI.2. We have
\[\mu(\delta, \omega) \leq \alpha(\delta, \omega). \]

The proof is immediate and omitted. Combining both Propositions [VI.1] and [VI.2] we have that the asymptotic exponent of \(M(m, n, d, w) \) is equal to the asymptotic exponent of \(A(mn, d, mw) \).
Proposition VI.3. We have
\[\mu(\delta, \omega) = \alpha(\delta, \omega). \]

Unfortunately, the value of \(\alpha(\delta, \omega) \) is in general not known. Estimates of \(\alpha(\delta, \omega) \) are provided by McEliece et al. [28] and Ericson and Zinoviev [29]. In the following subsection, we focus on the case where \(\omega = \frac{1}{2} \) and evaluate the asymptotic behavior of the constructions given in Section IV-A.

A. Asymptotics for \(\omega = \frac{1}{2} \)

The next result follows from the best known upper bound on \(\alpha(\delta, \omega) \) due to McEliece et al.

Proposition VI.4 (McEliece et al. [28, eq. (2.16)]). We have \(\mu(\delta, \omega) \leq g(u^2) \), with \(g(x) = H((1 - \sqrt{1 - x})/2) \), and
\[u = -\delta + \sqrt{\delta^2 - 2\delta + 4\omega(1 - \omega)}. \]

In particular,
\[\mu(\delta, 1/2) \leq H(1/2 - \sqrt{\delta(1 - \delta)}). \] (10)

Our first construction is based on Proposition IV.1 using geometric Goppa codes as outer codes. In particular, fix \(q \) to be a prime power and a square, and fix \(0 \leq \delta \leq 1 - \frac{1}{\sqrt{q} - 1} \). Tsfasman et al. [30] exhibited the existence of a family of geometric codes with relative distance \(\delta \) and rate
\[\alpha_q(\delta) \geq 1 - \delta - \frac{1}{\sqrt{q} - 1}. \]

Suppose we pick a CWC(\(n, d, n/2 \)) of size \(q \) as the inner code. For the outer code, we pick a Goppa \((m, \lfloor \delta mn/d \rfloor) _q \) code of rate at least \(1 - n\delta/d - 1/(\sqrt{q} - 1) \). Applying Proposition IV.1 we obtain an MCWC(\(m, n, \lfloor \delta mn \rfloor, n/2 \)) of size at least
\[q^{m(1-n\delta/d-1/\sqrt{q} - 1))} \]

Taking logarithm, we have our first lower bound for \(\mu(\delta, 1/2) \).

Theorem VI.1. If there exists a CWC(\(n, d, n/2 \)) of size \(q \), then for \(\delta \leq d/n(1 - 1/(\sqrt{q} - 1)) \),
\[\mu(\delta, 1/2) \geq \frac{\log q}{d} \left(\frac{d}{n} \left(1 - \frac{1}{\sqrt{q} - 1} \right) - \delta \right). \]

Searching through the online table of lower bounds for \(A(n, d, w) \) [16], we pick the following constant-weight codes as inner codes:

(i) a CWC(12, 4, 6) of size \(11^2 \),
(ii) a CWC(28, 14, 14) of size \(7^2 \),
Applying Theorem [VI.1] we have

\begin{align}
\mu(\delta, 1/2) &\geq \log \frac{11}{6} \left(\frac{3}{10} - \delta \right), \\
\mu(\delta, 1/2) &\geq \log \frac{7}{14} \left(\frac{5}{12} - \delta \right), \\
\mu(\delta, 1/2) &\geq \log \frac{1237}{14} \left(\frac{1235}{8652} - \delta \right).
\end{align}

Our next construction makes use of the pseudo-product code construction given by Proposition [IV.2]. The asymptotic version of this proposition is as follows.

Proposition VI.5. We have

\[\mu(\delta, \omega) \geq \sigma(\delta_1, \omega) \sigma(\delta_2), \]

where \(0 < \delta_1, \delta_2 < 1 \) with \(\delta = \delta_1 \delta_2. \)

Theorem VI.2. We have for \(\delta \leq 1/4, \)

\[\mu(\delta, 1/2) \geq (1 - H(\sqrt{\delta}))^2/2. \] (14)

Proof: By applying Varshamov-Gilbert (VG) bound [21, Theorem 30, Chapter 17] to systematic codes, we get

\[\sigma(\delta_2) \geq 1 - H(\delta_2). \]

Combining VG bound for linear codes with Proposition IV.3 we get

\[\sigma(\delta_1, 1/2) \geq (1 - H(\delta_1))/2. \]

Using Proposition VI.5 with \(\delta_1 = \delta_2 = \sqrt{\delta}, \) the result follows.

Our final construction follows from setting \(q = 2 \) in Proposition [IV.5]

Theorem VI.3. We have for \(\delta \leq 1/2, \)

\[\mu(\delta, 1/2) \geq 1 - H(\delta). \] (15)

Proof: Setting \(q = 2 \) in Proposition [IV.5] and applying VG bound, we have

\[M(m, 2w, 2d, w) \geq A(mw, d) \geq 2^{mw(1 - H(d/mw))}. \]

Taking logarithms, we obtain (15).

Coincidentally, (15) can be obtained directly by observing that \(\mu(\delta, 1/2) = \alpha(\delta, 1/2) = \alpha(\delta). \)

We summarize all the constructions given in this subsection in Figure 3. The top graph
Fig. 3. Upper and lower bounds for \(\omega = 1/2 \).
compares the lower bounds resulting from Theorem VI.1 with various constant-weight codes as inner codes, while the bottom graph compares the lower bounds resulting from Theorem VI.1, Theorem VI.2 and Theorem VI.3. We observe that the construction given by Proposition IV.5 (or Theorem VI.3) provides the best lower bound.

B. Proof of Lemma VI.1

El Rouayheb and Georghiades [31] generalized the methods of Elias-Bassalygo using graph theoretical methods. Below we introduce certain concepts necessary for the proof of Lemma VI.1.

Given two graphs \(G = (V_G, E_G) \) and \(H = (V_H, E_H) \), a mapping \(\phi : V_G \to V_H \) is called a graph homomorphism if \(u, v \) are adjacent in \(G \) implies that \(\phi(u), \phi(v) \) are adjacent in \(H \). When \(G = H \) and \(\phi \) is a bijection, then \(\phi \) is called an automorphism of \(G \). Observe that the set of all automorphisms of \(G \) is a group under composition; it is called the automorphism group of \(G \). A graph is then vertex transitive if the action of its automorphism group on its vertex set is transitive.

Given a graph \(G \), a subset \(X \) of the vertices is said to be independent if every pair of vertices in \(X \) is not adjacent in \(G \). The independence number of \(G \), denoted by \(\alpha(G) \), the maximum size of an independent set in \(G \). The following theorem gives the relation between the independence numbers of two graphs that are related by a graph homomorphism (see also [32, Chapter 7]).

Theorem VI.4 (El Rouayheb and Georghiades [31, Theorem 4]). If \(H \) is vertex transitive and there is a graph homomorphism from \(G \) to \(H \), then

\[
\alpha(H) \leq \frac{V(H)}{V(G)} \alpha(G).
\]

Therefore, Lemma VI.1 is a straightforward application of Theorem VI.4. Let \(G \) be the graph whose vertices are the \(m \) by \(n \) arrays with constant row weight \(w \) and two vertices are adjacent if the distance between the corresponding arrays are less than \(d \). It is then not difficult to observe that an independent set in \(G \) corresponds to a multiply constant-weight code of distance \(d \) and hence, \(\alpha(G) = M(m, n, d, w) \).

Similarly, let \(H \) be the graph whose vertices are codewords of length \(mn \) with constant row weight \(mw \) and two vertices are adjacent if the distance between the corresponding arrays are less than \(d \). We also have \(\alpha(H) = A(mn, d, mw) \).

Finally, observe that \(G \) is a subgraph of \(H \) and hence, we have a graph homomorphism from \(G \) to \(H \). Since \(H \) is vertex transitive, we apply Theorem VI.4 to obtain Lemma VI.1.

VII. Conclusion

Motivated by PUFs, we introduced a new class of codes, called multiply constant-weight codes, that generalizes constant-weight codes and doubly constant-weight codes. Using known
q-ary codes and constant-weight codes as ingredients, we construct families of multiply constant-weight codes. We also provide analogues of the Johnson bound and show that the bound is asymptotically tight up to a constant factor, assuming certain conditions. We then demonstrate that the asymptotic rates of multiply constant-weight codes and constant-weight codes are the same. An analysis of the asymptotic rates of our code constructions are also given.

Finally, we remark that the tabulating the estimates of $M(m, n, d, w)$ for modest values of the four parameters is a worthwhile project. In addition, the function $S(n, d, w)$ is also worth tabulating and has other applications [18], [19].

ACKNOWLEDGEMENTS

The authors thank Dr. Son Hoang Dau for pointing out the relevant literature and Dr. Punarbasu Purkayastha for the helpful discussions.

REFERENCES

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, September 2002.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical random functions,” in Proc. 9th ACM Conf. Comput. and Commun. Security. ACM, 2002, pp. 148–160.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key generation,” in Proc. 44th Ann. Design Automat. Conf. ACM, 2007, pp. 9–14.

[4] Z. Cherif, J.-L. Danger, S. Guilley, and L. Bossuet, “An Easy-to-Design PUF based on a single oscillator: the Loop PUF,” in Digital System Design, 15th Euromicro Conf. on, Çeşme, Izmir, Turkey, 2012, pp. 156–162.

[5] Z. Cherif, J.-L. Danger, S. Guilley, J.-L. Kim, and P. Solé, “Multiply constant weight codes,” in Proc. IEEE Intl. Symp. Inform. Theory, Istanbul, Turkey, 2013, pp. 306–310.

[6] S. M. Johnson, “Upper bounds for constant weight error-correcting codes,” Discrete Math., vol. 3, pp. 109–124, 1972.

[7] V. I. Levenshteин, “Upper-bound estimates for fixed-weight codes,” Problems of Inform. Transmission, vol. 7, no. 4, pp. 281–287, 1971.

[8] G. Forney Jr, “Concatenated codes. research monograph no. 37,” 1966.

[9] I. Dumer, “Concatenated codes and their multilevel generalizations,” Handbook of coding theory, vol. 2, pp. 1911–1988, 1998.

[10] V. A. Zinoviev, “Cascade equal-weight codes and maximal packings,” Probl. Contr. Inform. Theory, vol. 12, pp. 3–10, 1983.

[11] T. Eitzion, “Optimal doubly constant weight codes,” J. Combin. Des., vol. 16, pp. 137–151, 2007.

[12] Y. M. Chee, H. M. Kiah, and P. Purkayasta, “Matrix codes and multitone frequency shift keying for power line communications,” in Proc. IEEE Intl. Symp. Inform. Theory, 2013.

[13] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new table of constant weight codes,” IEEE Trans. Inform. Theory, vol. 36, no. 6, pp. 1334–1380, 1990.

[14] E. Agrell, A. Vardy, and K. Zeger, “Upper bounds for constant-weight codes,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2373–2395, 2000.

[15] D. H. Smith, L. A. Hughes, and S. Perkins, “A new table of constant weight codes of length greater than 28,” Electron. J. Combin., vol. 13, no. 1, Article #A2, p. 18 (electronic), 2006.

[16] A. E. Brouwer, “Bounds for binary constant weight codes,” http://www.tue.nl/~aeb/codes/Andw.html

[17] E. Agrell, “Erik Agrell’s tables of binary block codes,” http://webfiles.portal.chalmers.se/s2/research/kit/bounds/
[18] F. J. H. Böinck and H. C. A. van Tilborg, “Constructions and bounds for systematic tEC/AUED codes,” *IEEE Trans. Inform. Theory*, vol. 36, no. 6, pp. 1381–1390, 1990.

[19] M.-C. Lin, “Constant weight codes for correcting symmetric errors and detecting unidirectional errors,” *IEEE Trans. Comput.*, vol. 42, no. 11, pp. 1294–1302, 1993.

[20] O. Amrani, “Nonlinear codes: The product construction,” *IEEE Trans. Commun.*, vol. 55, no. 10, pp. 1845–1851, October 2007.

[21] F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*. Amsterdam: North-Holland Publishing Co., 1977.

[22] W. H. Kautz and R. C. Singleton, “Nonrandom binary superimposed codes,” *IEEE Trans. Inform. Theory*, vol. 10, pp. 363–377, 1964.

[23] R. J. R. Abel, G. Ge, and J. Yin, “Resolvable and near-resolvable designs,” in *The CRC Handbook of Combinatorial Designs*, C. J. Colbourn and J. H. Dinitz, Eds. CRC Press, 2007, pp. 124–132.

[24] R. Laue, “Resolvable t-designs,” *Des. Codes Cryptogr.*, vol. 32, no. 1-3, pp. 277–301, 2004.

[25] E. S. Kramer, S. S. Magliveras, and D. M. Mesner, “Some resolutions of $S(5, 8, 24)$,” *J. Comb. Theory Ser. A*, vol. 29, no. 2, pp. 166–173, 1980.

[26] T. van Trung, “Construction of 3-designs using parallelism,” *J. Geom.*, vol. 67, no. 1-2, pp. 223–235, 2000.

[27] ———, “Recursive constructions for 3-designs and resolvable 3-designs,” *J. Statist. Plann. Inference*, vol. 95, no. 1, pp. 341–358, 2001.

[28] M. McEliece, E. Rodemich, H. Rumsey, and L. Welch, “New upper bounds on the rate of a code via Delsarte-MacWilliams inequalities,” *IEEE Trans. Inform. Theory*, vol. 23, no. 2, pp. 157–166, March 1977.

[29] T. Ericson and V. A. Zinoviev, “An improvement of Gilbert for constant weight codes,” *IEEE Trans. Inform. Theory*, vol. 33, no. 5, pp. 721–723, September 1987.

[30] M. A. Tsfasman, S. G. Vlădut, and T. Zink, “Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound,” *Math. Nachr.*, vol. 109, no. 1, pp. 21–28, 1982.

[31] S. El Rouayheb and C. N. Georghiades, “Graph-theoretic methods in coding theory,” in *Classical, Semi-classical and Quantum Noise*, 1st ed., L. Cohen, H. V. Poor, and M. O. Scully, Eds. Springer, US 2012, pp. 53–62.

[32] C. Godsil and G. F. Royle, *Algebraic Graph Theory*. US: Springer, 2001.