Chinese expert consensus on echelons treatment of thoracic injury in modern warfare

ZONG Zhao-wen1*, WANG Zhi-nong2, CHEN Si-xu1, QIN Hao1, ZHANG Lian-yang3, SHEN Yue3, YANG Lei1, DU Wen-qiong1, CHEN Can1, ZHONG Xin1, ZHANG Lin4, SHU Li-xin6, DU Guo-fu5, ZHAO Yu-feng3; Traumatology Branch of the China Medical Rescue Association; Youth Committee on Traumatology Branch of the Chinese Medical Association; PLA Professional Committee and the Youth Committee on Disaster Medicine; Disaster Medicine Branch of the Chongqing Association of Integrative Medicine

1State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing 400038, China
2Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
3Department of Trauma Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
4Special Clinic Department of Bethune Medical Profession Sergeant School, Shijiazhuang 050000, China
5Institute of Health Service and Medical Information, Academy of Military Medical Sciences of Chinese PLA, Beijing 100850, China
6Department of Pharmacy, Navy Medical University, Shanghai 200433, China

This work was supported by the "Thirteenth Five-Year" Special Project in Military Logistics Scientific Program (AWS16J032), and the Innovation Project of Military Medicine (16CXZ017)

*Corresponding author. E-mail: zongzhaowen@163.com

现代胸部战伤分级救治的专家共识

宗兆文, 王志农, 陈思旭, 秦昊, 张连阳, 沈雁, 杨磊, 杜文琼, 陈灿, 钟鑫, 张琳, 霍江涛, 席丽萍, 舒丽芯, 蒋国福, 赵玉峰; 中国医学救援协会创伤分会, 中华医学会创伤分会青年委员会, 全军灾难医学专业委员会及青年委员会, 重庆市中西医结合学会灾难医学分会

【关键词】 胸部伤; 分级救治; 专家共识
【中图分类号】 R826.63
【文献标志码】 A
【文章编号】 0577-7402(2018)11-0901-09
【DOI】 10.11855/j.issn.0577-7402.2018.11.01

历次战争中, 胸部战伤发生率占伤员总数的4.4%~33.0%, 是战伤致死和伤残的重要原因, 占所有可预
防战伤伤亡的1%~3%[1-7]。在近年来美军主导的自由伊拉克行动(Operation Iraqi Freedom, OIF)和持久自由行动(Operation Enduring Freedom, OEF)中, 胸部战伤呈现与既往战伤不同的流行病学特点和救治需求[3-6]。

我军目前尚未制定现代战争条件下胸部战伤救治规范, 因而我们组织全军胸心外科专业委员会、陆
军军医大学、海军军医大学、军事医学科学院等单位的相关专家编写了《现代胸部战伤分级救治的专家共
识》, 以期为我军胸部战伤的救治提供借鉴的标准。

因胸部战伤的专科治疗基本与平时无差别, 本共识只介绍我军现行救治阶梯下战现场急救、紧急救治
和早期救治3个救治阶梯中胸部战伤的救治。需要指出的是, 在即将颁布的《战伤救治规则》中, 对现有
的救治阶梯进行了调整, 将现有紧急救治阶段的救治范围分解到战现场和早期救治两个阶段, 在其颁布
后, 本共识将依据新版战伤救治规则进行调整。同时, 本专家共识编写过程中证据和意见推荐级别依照牛
津循证医学中心推荐的标准[8-10], 但由于战伤救治的特殊性(如无法开展随机双盲试验等), 因而在意见推
荐级别上，我们结合使用GRADE标准的评价体系[11]。

1 现代战争中胸部战伤的流行病学变化特点

从可获得的数据看，历次战争中胸部战伤的发生率为4.4%~33.0%，而最近的OEF/OIF中，胸部战伤的发生率为8.6%~10.5%，低于第二次世界大战中的发生率，这主要得益于防弹衣的广泛使用[1-7]。

死亡率呈现与发生率不同的变化趋势，从美国内战至越南战争，胸部战伤的死亡率持续下降：美国内战、第一次世界大战、第二次世界大战、朝鲜战争和越南战争中美军胸部战伤的死亡率依次为62.6%、27.0%、11.0%、1.5%和2.9%左右[1-7]。但在OEF/OIF中，胸部战伤的伤死率“意外地”呈现增加趋势，达到10.5%左右，其主要原因为防护装具的广泛使用、战现场急救水平的提升、快速的伤员后送使更多的重症胸部损伤伤员可以转运到救治机构中得以纳入统计，加之伤员登记制度的完善，使胸部伤员中死亡伤员占比反而较以前的战争增加[1-6]。同时，与越南战争等早期战争不同，OEF/OIF中爆炸冲击伤超过枪弹伤成为胸部损伤的主要致伤机制，导致钝性胸腔内脏器损伤概率增加，诊治难度增大[12-15]。这些变化特点对胸部战伤提出了不同的救治需求，如需要加强对重症胸部损伤的监护和治疗，以降低这类患者的死亡率。

共识意见1：由于致伤机制的变化，防护装具的广泛使用、战现场急救水平提升等因素，导致现代战争中胸部战伤呈现出重型损伤和钝性脏器损伤发生率升高以及伤死率增加等不同于既往战争的特点，进而提出不同的救治需求（B级/Ⅰ类）。

2 防护可降低胸部外伤的发生率

如上所述，美军在历次战争中胸部外伤的发生率总体呈现下降趋势，其主要原因是美军广泛使用防弹衣，增加了对躯干的保护作用[1]。而来自OIF/OEF战争中的数据显示，有效的防护显著降低了美军及其联军胸部外伤的发生率和总体死亡率[2-3]。

共识意见2：防弹衣等防护装具可有效降低胸部战伤的发生率、损伤严重程度和总体伤亡率（B级/Ⅰ类）。

3 现代胸部战伤的战现场急救

越南战争中张力性气胸占所有可预防战伤伤亡的3%~5%[16]。在OIF和OEF中，张力性气胸和开放性气胸是可预防战伤伤亡的第三位原因，而及时有效的处理可挽救其中90%以上伤员的生命[17]。因而，需要在战现场阶段没有各种辅助检查设备的情况下迅速对其进行判断，并进行紧急处理。

战时可根据以下征象识别张力性气胸：①有胸部损伤史；②呼吸困难进行性加重，表现为呼吸次数增加和呼吸费力；③伤侧呼吸音减弱或消失；④伤侧胸部出现胸廓隆起，皮下气肿、颈静脉怒张；⑤随着胸腔内压力的不断增加，心动过速和呼吸急促加剧，最终导致低血压和休克。Chen等[16]分析了2007年至2012年以色列国防军创伤数据库中111例张力性气胸的症状和体征，发现最常出现的临床表现为呼吸困难和呼吸急促，意识丧失和桡动脉搏动消失也是常见的症状，出现这两种症状者死亡率高。这一病例中，无一例张力性气胸伤员出现气管偏移。同时，由于战现场环境可能非常嘈杂，检测呼吸音减弱等查体非常困难。在OIF和OEF中，美军等发现使用便携式超声可协助诊断张力性气胸，卫生员经过短时的培训就可掌握这一技术。研究表明，超声协助诊断张力性气胸的敏感性为92.0%，特异性为99.4%，高于X线平片检查，与CT检查的准确程度基本相同[18-20]。

经过评估判断为张力性气胸者，需要行穿刺减压。现有的高级创伤生命支持流程推荐使用5cm长的穿刺针在锁骨中线第2肋间穿刺处理张力性气胸。经过测量和临床观察，美军发现其士兵第2肋间胸壁的厚度通常会超过5cm，因而战术战伤救治委员会推荐采用长度为3.25in(8.25cm)的14号穿刺针[21-22]，穿刺位置为锁骨中线第2肋间[16,23-24]。

穿刺后是否在战现场制作活瓣尚存在一定争议。反对者认为，穿刺减压导管的直径远小于气道直径，通过导管的空气流通不可能显著影响呼吸运动，即不使用活瓣，只需将一个张力性气胸转变为可以忽略不计的开放性气胸。我们支持在战现场条件允许的情况下，特别是预估后送时间较长或有可能被延误时，可使用手套制作一个单向活瓣，以提高减压效果。该导管可根据需要置于原位，且每2h用生理盐水冲洗以确保通畅。如果条件允许，则应外科闭式引流。Chen等[16]发现，实施穿刺减压的伤员中有32%在战地医院接受了置管术。
开放性气胸的诊断要点：①外伤史，胸壁有创口；②胸壁有吮吸声或咝咝声，伤部的血液中含有较多气泡；③吸气时胸部不能正常升起。2013年，美军战术战伤救治委员会更新了开放性气胸的治疗策略：发现开放性气胸者立刻使用可排气的胸腔贴封闭伤口。如果没有可排气的胸腔贴，使用普通胸腔贴封闭伤口，然后密切观察是否发生张力性气胸。如果伤员出现持续加重的低氧、呼吸窘迫或低血压，应怀疑有张力性气胸，此时应去除胸腔贴或行针刺减压。

共识意见3：有胸部外伤史的伤员出现进行性呼吸困难、伤侧呼吸音减弱等症状和体征时，可诊断为张力性气胸。战现场环境嘈杂无法进行有效物理检查时，便携式B超有助于明确诊断。

共识意见4：确认有张力性气胸后，推荐使用8.25cm长的14号穿刺针于锁骨中线第2肋间穿刺，进针3~4cm后固定。条件允许时，可在穿刺针尾端制作活瓣。穿刺后要密切监测伤员症状和体征，症状和体征反复时需再次穿刺或行胸腔置管闭式引流。

共识意见5：有胸部外伤史的伤员出现进行性呼吸困难、胸壁有吮吸声或咝咝声、伤部的血液中含有较多气泡等症状和体征时，可诊断为开放性气胸。

共识意见6：确认有开放性气胸后，推荐用可排气的胸腔贴封闭伤口，如果没有可排气的胸腔贴，也可使用普通的胸腔贴封闭伤口，然后密切观察是否发生张力性气胸。如果伤员出现持续加重的低氧、呼吸窘迫或低血压，应怀疑有张力性气胸，此时应去除胸腔贴，并行穿刺减压。

4 现代胸部战伤的紧急救治

紧急救治阶段需要进一步观察和处理张力性气胸和开放性气胸、大量血胸、连枷胸和心包填塞等，同时需完善止痛、注射破伤风抗毒素等措施。

4.1 大量血胸的识别和处理 胸部疼痛和呼吸急促是大量血胸两个突出的症状，部分伤员可伴有休克症状。受伤一侧的呼吸音减弱或者消失，叩诊可听到浊音。在紧急救治机构中，B超可协助诊断血胸。对于有胸部外伤史伴呼吸急促等症状时，紧急穿刺减压后症状没有缓解时应怀疑有大量血胸的可能。对此类伤员应行胸腔置管闭式引流。

4.2 连枷胸的识别和紧急救治 我军紧急救治机构没有装备X线片和CT等检查设备，连枷胸的诊断主要依赖于临床表现和体征。对胸外伤多根肋骨骨折、呼吸急促合并休克者，首先考虑存在连枷胸合并以肺挫伤为主的发生性损伤。出现反常运动对连枷胸的诊断具有重要意义。

在紧急救治机构中，应尽快消除反常呼吸运动、保持呼吸道通畅和充分供氧、纠正呼吸与循环功能紊乱并防治休克。当胸壁软化范围小或位于背部时，可采用局部夹垫加压包扎；当反常呼吸浮动幅度达3~5cm以上时，可引起严重的呼吸与循环功能紊乱，并可迅速导致死亡，必须紧急处理，此时首先应暂时予以夹垫加压包扎，然后用多头胸带固定胸部。对于连枷胸合并肺挫伤的伤员不应过分限制液体输入量，须保证充足的组织灌注。一旦充分复苏，则应避免不必要的液体输注。选用合适的方式控制疼痛，从而减少呼吸衰竭可能。

4.3 心包填塞的识别和紧急救治 在评估胸部穿透伤时，应牢记有心包填塞的可能。发生于平锁骨水平线、两侧乳头经肋下缘的垂直线，以及连接两侧垂直线和肋缘线的交叉线组成区域内的钝性伤也有发生心包填塞的可能。出现贝克三联征(遥远低沉的心音、颈静脉怒张和低血压)提示可能发生心包填塞。但在紧急救治时，发现上述现象是极其困难的，尤其是低沉的心音。因此，现场救援人员应当基于致伤部位和伤员出现的低血压引起足够的警惕，并做出相应的处置。此时，使用B超可有效地提高心包填塞的诊断成功率，而心电图检查只显示QRS波电压降低。

行心包穿刺术引流心包液体是解决心包填塞常用的有效手段。具体方法有两种：①剑突下穿刺，在剑突与左肋弓夹角处进针，穿刺针与腹壁成30°~45°，向上、向后并向左侧进入心包腔下部。②心尖部穿刺，在剑突第5肋间或第6肋间浊音界内2cm左右的部位进针，沿肋骨上缘向背部并稍向正中线进入心包腔。设备和技术条件许可时，可使用超声定位穿刺，以减少穿刺失误导致的并发症。对需要穿刺的伤员应优先送到早期救治机构，以进一步评估伤情和辅助检查，明确心脏损伤情况，并进行有效处理。

4.4 气胸进一步的观察和处理 战现场急行胸腔穿刺减压的张力性气胸，如果症状缓解不明显或进行性加重，需要行胸腔闭式引流术。如果没有合并血胸，可选择第2肋间置管减压。需要注意的是，置管减压的伤员在后送过程中发展为张力性气胸的风险很大，特别是正在使用正压通气设备者。如果出现张力性气胸的征兆，首先要确保在胸管或连接管中没有扭曲导致的引流不畅，其次要确保连接管正确地连接着液
封和引流设备。即使没有明确的问题，有渐渐出现张力性气胸者可能也需要穿刺减压。

共识意见7: 有胸部外伤史的伤员出现胸部疼痛、呼吸急促和休克症状以及伤侧呼吸音减弱、叩诊浊音时，应考虑有大量血胸的可能，此时推荐在伤侧腋中线第4肋间行胸腔置管闭式引流(B级/Ⅱa类)。

共识意见8: 有胸部外伤史的伤员出现胸部疼痛、呼吸急促和休克症状以及伤侧呼吸音减弱、叩诊浊音时，应考虑有大量血胸的可能，此时推荐在伤侧腋中线第4肋间行胸腔置管闭式引流(B级/Ⅱa类)。

共识意见9: 有胸部外伤史的伤员出现胸部疼痛、呼吸急促和休克症状以及伤侧呼吸音减弱、叩诊浊音时，应考虑有大量血胸的可能，此时推荐在伤侧腋中线第4肋间行胸腔置管闭式引流(B级/Ⅱa类)。

5. 现代胸部战伤的早期救治

目前，我军主张在早期救治机构内进行急诊剖胸术和开放性气胸的清创缝合术等相对较为简单的手术操作。如前述，现代战争中，后送到Ⅲ级救治机构中的胸部伤员病情通常较重，如果不及时救治，死亡率极高。美军在OIF和OEF战争中的救治经验显示，在Ⅲ级机构中对心脏病、肺动脉高压等进行心肺复苏、维持心肺复苏的原始血液、检查止血和心肺复苏等损伤性处理的可在挽救更多伤员的生命(31-33)。

5.1 紧急开胸和胸腔内复苏术 复苏性紧急开胸术(resuscitative emergency thoracotomy)的适应证包括穿透性和钝性创伤而导致的短时心脏停搏(一般不超过15min)或即将发生心脏停搏者。复苏性紧急开胸术的成功率为7%~21%，一般对于转运伤员失去生命指征小于45min者，或转送到Ⅲ级机构时存活，后来心跳停止且胸外心肺复苏时间小于15min者存活概率更大。

复苏性紧急开胸术应在积极输血、输液等抗休克处理的基础上进行，一般采用左侧入路或Clamshell入路开胸，然后打开胸膜和心包、钳夹损伤的主动脉并实施胸腔内心肺复苏。如果心脏成功复跳，应立即准备急诊手术，将伤员转运至手术室进一步手术处理(34-37)。

5.2 损伤控制性开胸术 战地损伤控制性开胸术(damage control thoracotomy，DCT)的适应证包括:①胸腔内进行性大出血，包括经抗休克处理不见好转或暂时好转又很快恶化者;放置胸腔闭式引流初始引流量超过1000ml，或每小时引流血量超过200ml，持续3h以上。严重的肺部裂伤和胸腔内大血管损伤是战时胸腔内大出血的主要原因。②严重心脏挫伤。③严重气管和支气管损伤(37-41)。

决定实施DCT后，一般采用左侧前外侧胸骨切开入路作为起始切口，可以暴露心包、降主动脉、左锁骨下动脉近端，以及左肺门，必要时扩大为Clamshell入路，然后打开胸膜和心包、钳夹损伤的主动脉并实施胸腔内心肺复苏。如果心脏成功复跳，应立即准备急诊手术，将伤员转运至手术室进一步手术处理(34-37)。

5.3 严重肺裂伤的诊断和早期救治 穿透伤和钝性伤均可引起肺裂伤(44)。大范围的肺裂伤可有呼吸困难、发绀、脉搏加快，如失血量较大可出现血压下降甚至休克。多数肺裂伤伤员经过胸腔置管引流可治愈。对于经胸腔闭式引流后呼吸困难改善不明显和进行性血胸者需要剖胸探查，查找大出血或漏气的裂伤部位并给予缝合。如果裂伤严重无法修补，可行肺叶切除术或肺段切除术。对于有肺部整体或肺门组织损伤者，肺切除是最后可选择的方法。单肺切除的创伤伤员死亡率大于50%。气管和支气管的破裂或较多的肺出血可以通过切断下肺韧带或夹闭肺门暂时控制，也可以将肺绕肺门扭转180°。肺切除进行夹闭肺门操作时，动作应缓慢，以防发生急性右心衰。

肺门血管和支气管的结扎应独立分层进行，或缝合结扎并用胸膜或其他易活动的软组织，如胸肌支持。如需进入肺门，应先将肺段或肺叶切除。

5.4 严重气管和支气管损伤的诊断及早期救治 穿透性或钝性损伤均可导致胸部气管和支气管破裂，破裂后致气胸、出血堵塞气道及并发的肺挫伤等可引起呼吸困难。气管破裂后会很快出现纵隔及肺部上窝以及下气肿，并迅速向颈、面及胸前部蔓延等典型的气管损伤表现。X线检查可发现前突移位及气管轴变，随
之出现严重的纵隔积气，若纵隔胸膜破裂，可出现气胸或液气胸征。

胸内气管和支气管小的破裂可行保守治疗。对裂口较大、经气管切开和胸腔闭式引流呼吸困难无缓解者，应在早期救治机构中进行手术修补，其优势是不仅有助于肺尽早复张，防止损伤部位狭窄，而且裂口及断端显露容易，操作简单。在战地医院修补气管和支气管的前期应配有熟悉胸外科手术的医师；如果没有，可在气管插管和通气支持情况下于伤后送。

5.5 心脏损伤的早期救治 超过80%的穿透性心脏损伤伤员在损伤后即死亡，对于活着到达战地医院的这类伤员，早期诊断及手术是存活的关键。穿透性心脏损伤的诊断通常可通过对临床症状和心包创伤超声检查得到证实。胸部X线片对诊断穿透性心脏损伤有一定帮助，有价值的征象包括心影扩大、上纵隔增宽和心包积气等。心电图在约30%的病例中有诊断作用，可出现低血压QRS波、ST段上抬、倒置T波等。

心脏钝性损伤的诊断具有挑战性。部分伤员可出现心动过速、心律失常或心源性休克等，实验室检查可发现肌钙蛋白升高，心电图则可出现异常。足够的警觉性是提高诊断成功率的关键。对可疑伤员无条件进行创伤超声、心电图、肌钙蛋白水平检查。如果这些检查正常，无需要进一步检查；如果心电图异常或肌钙蛋白水平升高，应密切监测超声心动图。

对于穿透性心脏损伤和钝性心脏破裂伤员需要尽早做出诊断，并手术修复损伤的心脏，有一定的存活率。

5.6 胸部大血管损伤的早期处理 胸部大血管穿透性损伤多在战现场伤亡，不能送到早期救治机构，而其钝性损伤者可出现胸痛后或肩胛区疼痛。若仅全层主动脉壁撕裂、纵隔胸膜包裹则形成血肿，沿周围疏松组织间隙向胸腔、颈部延伸，造成胸腔积血，脉搏增快、搏动性肿块，或对脉搏、降主动脉产生压迫症状。若血肿压力过大，纵隔胸膜突然破裂，则易出现延迟性大出血而死亡。查体可在心前区和肩胛间区闻及粗糙收缩期吹风样杂音。X线片可显示纵隔增宽、胸主动脉轮廓模糊或变不规则等征象，CT血管造影可提高诊断胸部大血管损伤的成功率，但我军Ⅲ级救治机构内尚没有配备CT检查相关设备。

对于没有造成大出血和休克的胸部大血管损伤伤员，应在严密监护下快速后送，接受专科治疗。如果出现进行性胸腔大出血，应紧急剖胸，修复损伤的血管或行血管分流术。在OIF和OEF中，美军在战地医院成功实施了胸部大血管钝性损伤的支架手术，但我军现有的技术和设备条件下，不推荐在战地医院实施这一手术。

5.7 食管损伤的早期处理 食管战伤发生率低，多为枪弹穿透性损伤，因而食管附近的穿透性损伤均应考虑食管损伤的可能性。胸骨后和上腹部剧烈疼痛、呼吸困难、发绀、纵隔及皮下气肿是常见的症状和体征，严重感染者甚至可出现休克。胸部X线片显示纵隔或颈部皮下气肿对诊断食管损伤具有重要意义。美军在战地医院配备了食管镜，可对食管损伤的范围和程度做出较为精确的诊断。

对于确诊食管破裂的伤员应禁食。预估在伤后12h可转运到专科医疗救治机构时优先安排后送及及时修补。如果早期救治机构配备有相关医师，特别是预估后送时间较长时可进行修补术，因延误修补将导致较高的病死率和死亡率。常用的经胸食管修补术操作步骤为：中段以上食管穿孔多破入右侧胸腔，应行右侧开胸，下段食管穿孔多破入左侧，则以左侧开胸为宜。清除坏死及炎性组织，勿误伤周围重要组织和脏器。修剪食管裂口边缘，小穿孔分两层间断缝合修补，并用周围胸膜或组织覆盖，或用胸膜缝合管封闭裂口。可预用胸腔镜或腔镜内切除部分食管，如损伤无法修补，导致到达早期救治机构中已经发生感染，应实施纵隔或胸腔引流。如感染仅局限于上纵隔，可经颈部切口引流，位于中、下纵隔者，可于背部作后纵隔引流，切除1或2段肋骨后段，将胸膜推开暴露后纵隔，注意勿损伤胸膜，否则易引发胸腔感染。

5.8 穿透性胸腹联合伤的诊断和早期救治措施 胸腹联合伤(combined thoraco-abdominal wound)指同一致伤因素造成胸部、腹部器脏和膈肌同时损伤，致死率极高。平时胸腹联合伤发生率不高，战时发生率高于平时。第二次世界大战中胸腹部损伤合并腹部脏器损伤的发生率为10%~28%，在越南战争和朝鲜战争为27%~35%，美军在OIF/OEF中胸腹部损伤者胸腹联合伤的发生率为4.4%~5.8%。

穿透性胸腹联合伤伤员临床表现复杂，具有胸部伤和腹部伤的双重临床表现，脉搏加快、血压下降等休克症状甚为常见。胸部伤的表现主要是气胸，伤员有胸痛、呼吸困难、发绀等；腹部伤主要表现为腹痛、腹膜刺激、腹膜刺激或斜板痛等腹膜炎症症状。腹部X线检查可确定气胸、胸腔积液和腹腔内器官损伤情况，对严重病例X线检查应在床旁进行。腹腔穿刺抽出不凝血液或气体，说明腹膜或脏器损伤，腹部穿刺或腔镜灌洗对腹腔内脏器损伤的诊断有很大帮助。

胸腹联合伤的处理原则为充分的呼吸循环支持、维持水电解质平衡、控制感染和早期手术治疗，必
要时采用损伤控制复苏策略。穿透性胸腹联合伤几乎均需剖腹手术，但是否开胸则应根据病情而定。一般
胸部伤应先行胸腔闭式引流，若有进行性血胸或持续性大量漏气时，必须开胸探查。在决定手术顺序时，
应根据病情决定是先剖腹还是先开胸，必要时可组救治人员同时进行。此时，迅速止血是手术治疗的重
点，应尽量避免胸腹联合切口[55,57]。

5.9 之后救治 早期救治阶段主要处理措施是继续控制和缓解疼痛。在紧急救治的基础上，我
军既往推荐采用巾钳重力牵引，但随着救治水平的提高，现在一般推荐在早期救治机构内没有呼吸衰竭的
情况下，应避免通过使用机械性机械通气给胸壁提供稳定性，当伤员有呼吸衰竭的征兆时，可采用机械通
气，并尽早脱机。一般推荐使用呼气末正压通气或持续正压通气模式[28,59]。对于严重的连枷胸伤员，推荐使
用手术固定部分肋骨，有利于早日脱机，特别是当由于其他原因需要开胸手术时，可同时固定肋骨。没有
临床证据支持哪种固定方式更有优势，离体实验显示钢板固定的力学效果优于髓内固定和钢丝捆绑[28,60]
。

5.10 穿防弹衣后钝性损伤 现在战争武器杀伤效应高于既往战争，即使防弹衣性能良好，仍会有部分动
能被转移到体内，如子弹未能穿透防弹衣或头盔，损伤机制将转化为“防弹衣后钝性创伤”(behind armor
blunt trauma, BABT)[14,61]。

共识意见 10：推荐对短时心脏停搏或即将发生心脏停搏的伤员实施复苏性紧急开胸术。采用左侧入路
或Clamshell入路开胸，打开胸膜和心脏，切除主动脉，并实施胸腔内心肺复苏。如心脏复跳成功，应立
即准备急诊手术，以进一步处理胸腔内损伤(2级/Ⅱa类)。

共识意见 11：对于胸腔内进行性大出血、严重心脏挫裂伤、严重气管和支气管损伤者应实施损伤控制
性开胸术。一般建议以左侧前外侧胸廓切开入路作为起始切口，必要时扩大为Clamshell入路，并根据具体
情况处理胸部损伤(2级/Ⅱa类)。

共识意见 12：对于胸腔内进行性大出血、严重心脏挫裂伤、严重气管和支气管损伤者应实施损伤控制
性开胸术。根据损伤情况，可采用的手术方式包括修补术、肺叶切除术、肺段切除术、单肺切除术、肺
门转位等(2级/Ⅱb类)。

共识意见 13：对于胸腔闭式引流不能缓解呼吸困难或导致胸腔持续大出血的严重肺部损伤应行损伤控
制性开胸术，根据损伤情况，可采用的手术方式包括修补术、肺叶切除术、肺段切除术、单肺切除术、肺
门转位等(2级/Ⅱb类)。

共识意见 14：尽早对穿透性和钝性心脏损伤做出诊断，可提高这类伤员的存活率。具有心前区外伤史、
有伤口或气管导管插入等指征，如胸片显示心影扩大、心电图出现异常ST段抬高或下降，应考虑心脏挫伤
的可能。心电图检查可确诊穿透性心脏挫伤，而肌钙蛋白水平和超声监测有助于提高钝性心脏挫伤的诊断
成功率(2级/Ⅱb类)。

共识意见 15：对于进行性胸腔大出血，如胸部大血管损伤，应紧急剖胸，修复损伤的血管或行血管分
流术，否则，应在严密监护下后送，以接受专科治疗(2级/Ⅱb类)。

共识意见 16：食管附近穿透性损伤者，如出现胸痛、胸骨后疼痛或出现胸骨后疼痛时，应行胸腔镜术
和胸腔镜下检查，必要时可行食管修补术(2级/Ⅱb类)。

共识意见 17：胸膜损伤或损伤性胸腔积液时，应行胸腔镜检查，必要时可行胸腔镜下检查，必要时可行
剖胸镜下检查(2级/Ⅱa类)。

共识意见 18：在早期救治机构中，对于有呼吸衰竭的征象的连枷胸伤员可应用气管插管，必要时可行
剖胸镜下检查。对于严重的连枷胸伤员，推荐使用手术固定部分肋骨，有利于早期脱机，特别是当由于其
他原因需要开胸手术时(2级/Ⅱa类)。

共识意见 19：随着武器杀伤效应的提高，防弹衣后钝性创伤的发生率升高，可能导致严重腹部挫伤，
此时应根据损伤情况在早期救治机构采取相应的措施(2级/Ⅱa类)。
专家委员会成员姓名及单位（按姓名首字母汉语拼音排序，排名不分先后）
鲍全伟（陆军军医大学西南医院胸心外科）、陈大庆（海军军医大学第一附属医院胸心外科）、戴睿武（解放军第175医院胸心外科）、邓进（陆军军医大学陆军卫勤训练基地胸心外科）、丁在亮（天津武警后勤学院胸外科）、易云峰（解放军第175医院胸心外科）、贾伟东（解放军军医大学第一附属医院胸外科）、宗兆文（陆军军医大学陆军卫勤训练基地胸心外科）、胡平（陆军军医大学西南医院胸心外科）、王成（中国人民解放军66069部队卫生科）、尹昌林（中国人民解放军95388部队）、朱长举（陆军军医大学陆勤训练基地）

转载声明：此共识的英文版本首次发表于Military Medical Research, 2018, 5:34。此版本为中文翻译版。
deployed military hospitals, 2003-2009[J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1562): 291-294.

14. Cannon L. Behind armour blunt trauma—an emerging problem[J]. J R Army Med Corps, 2001, 147(1): 87-96.

15. Trupka A, Waydhas C, Hallfeldt KK, et al. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study[J]. J Trauma, 1997, 43(3): 405-411.

16. Chen J, Nadler R, Schwartz D, et al. Needle thoracostomy for tension pneumothorax: the Israeli Defense Forces experience[J]. Can J Surg, 2015, 58(3 Suppl 3): S118-S124.

17. Eastridge BJ, Hardin M, Cantrell J, et al. Died of wounds on the battlefield: causation and implications for improving combat casualty care[J]. J Trauma, 2011, 71(1 Suppl): S4-S8.

18. Zhang M, Liu ZH, Yang JX, et al. Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma[J]. Crit Care, 2006, 10(4):R112.

19. Blaivas M, Lyon M, Duggal S. A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax[J]. Acad Emerg Med, 2005, 12(9): 844-849.

20. Madill JJ. In-flight thoracic ultrasound detection of pneumothorax in combat[J]. J Emerg Med, 2010, 39(2): 194-197.

21. Powers WF, Clancy TV, Adams A, et al. Proper catheter selection for needle thoracostomy: a height and weight-based criteria[J]. Injury, 2014, 45(1): 107-111.

22. Laan DV, Vu TD, Thieles CA, et al. Chest wall thickness and decompression failure: A systematic review and meta-analysis comparing anatomic locations in needle thoracostomy[J]. Injury, 2016, 47(4): 797-804.

23. Beckett A, Savage E, Pannell D, et al. Needle decompression for tension pneumothorax in Tactical Combat Casualty Care: do catheters placed in the midaxillary line kink more often than those in the midclavicular line?[J]. J Trauma, 2011, 71(5 Suppl 1): S408-S412.

24. Rottenstreich M, Fay S, Gendler S, et al. Needle thoracotomy in trauma[J]. Mil Med, 2015, 180(12): 1211-1213.

25. Margolis AM, Tang N, Levy MJ, et al. Management of open chest wounds in tactical emergency casualty care: application of vented versus nonvented chest seals[J]. J Spec Oper Med, 2014, 14(4): 136-138.

26. Butler FK, Dubose JJ, Otten EJ, et al. Management of open pneumothorax in tactical combat casualty care: TCCC guidelines change 13-02[J]. J Spec Oper Med, 2013, 13(3):81-86.

27. Mahmood K, Wahidi MM. Strengthening out chest tubes: what size, what type, and when[J]. Clin Chest Med, 2013, 34(1): 63-71.

28. Simon B, Ebert J, Bokhari F, et al. Management of pulmonary contusion and flail chest: an Eastern Association for the Surgery of Trauma practice management guideline[J]. J Trauma Acute Care Surg, 2012, 73(Suppl 4): S351-S361.

29. Adler Y, Charron P, Imazio M, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS)[J]. Eur Heart J, 2015, 36(42): 2921-2964.

30. Ristic AD, Imazio M, Adler Y, et al. Triage strategy for urgent management of cardiac tamponade: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2014, 35(34): 2279-2284.

31. Beckett A, Pelletier P, Maczczak C, et al. Multidisciplinary trauma team care in Kandahar, Afghanistan: current injury patterns and care practices[J]. Injury, 2012, 43(12): 2072-2077.

32. Malgras B, Barbier O, Petit L, et al. Surgical challenges in a new theater of modern warfare: The French role 2 in Gao, Mali[J]. Injury, 2016, 47(1): 99-103.

33. Bonnet S, Gonzalez F, Poichotte A, et al. Lessons learned from the experience of visceral military surgeons in the French role 3 Medical Treatment Facility of Kabul (Afghanistan): an extended skill mix required[J]. Injury, 2012, 43(8): 1301-1306.

34. Sheppard FR, Cothren CC, Moore EE, et al. Emergency department resuscitative thoracotomy for nontorso injuries[J]. Surgery, 2006, 139(4): 574-576.

35. Moore EE, Knudson MM, Burlow CC, et al. Defining the limits of resuscitative emergency department thoracotomy: a contemporary Western Trauma Association perspective[J]. J Trauma, 2011, 70(2): 334-339.

36. Edens JW, Beeckley AC, Chung KK, et al. Longterm outcomes after combat casualty emergency department thoracotomy[J]. J Am Coll Surg, 2009, 209(2): 188-197.

37. de Lesquen H, Beranger F, Berbis J, et al. Challenges in war-related thoracic injury faced by French military surgeons in Afghanistan (2009-2013)[J]. Injury, 2016, 47(9): 1939-1944.

38. O’Connor JV, Dubose JJ, Scalea TM. Damage-control thoracic surgery: Management and outcomes[J]. J Trauma Acute Care Surg, 2014, 77(5): 660-665.

39. Garcia A, Martinez J, Rodriguez J, et al. Damage-control techniques in the management of severe lung trauma[J]. J Trauma Acute Care Surg, 2015, 78(1): 45-50.

40. Liu H, Wang Z, Zhang J, et al. Temporarily pulmonary hilum clamping as a thoracic damage-control procedure for lung trauma in swine[J]. J Trauma, 2010, 68(4): 810-817.

41. Zhang LY, Li Y. Damage control resuscitation of massive hemorrhage: The key to saving the combat casualties[J]. Med J Chin PLA, 2017, 42(12): 1025-1028. [张连阳，李阳. 大出血的损害控制性复苏——挽救战伤伤员的关键]. 解放军医学杂志, 2017, 42(12): 1025-1028.

42. Nessen SC, Lounsbury DE, Hetz SP. War surgery in Afghanistan and Iraq: a series of cases, 2003-2007[M]. Flacso-Sede Ecuador, 2008.

43. Moriwaki Y, Toyoda H, Harunari N, et al. Gauze packing as damage control for uncontrollable haemorrhage in severe thoracic trauma[J]. Ann R Coll Surg Engl, 2013, 95(1): 20-25.
[44] Li WQ, Li JS. Developing the PLA critical care medicine is critical for advancing the level of battle wound treatment in the new era[J]. Med J Chin PLA, 2017, 42(2): 91-94. [李维勤, 黎介寿. 发展我军重症医学, 提高新时期战伤救治水平[J]. 解放军医学杂志, 2017, 42(2): 91-94.]

[45] Glazer ES, Meyerson SL. Delayed presentation and treatment of tracheobronchial injuries due to blunt trauma[J]. J Surg Educ, 2008, 65(4): 302-308.

[46] Zhao Z, Zhang T, Yin X, et al. Update on the diagnosis and treatment of tracheal and bronchial injury[J]. J Thorac Dis, 2017, 9(1): E50-E56.

[47] Dominguez F, Beekley AC, Huffer LL, et al. High-velocity penetrating thoracic trauma with suspected cardiac involvement in a combat support hospital[J]. Gen Thorac Cardiovasc Surg, 2011, 59(4): 547-552.

[48] Eckart RE, Falta EM, Stewart RW. Complete heart block following penetrating chest trauma in operation Iraqi freedom[J]. Pacing Clin Electrophysiol, 2008, 31(5): 635-638.

[49] Clancy K, Velopulos C, Bilaniuk JW, et al. Screening for blunt cardiac injury: an Eastern Association for the Surgery of Trauma practice management guideline[J]. J Trauma Acute Care Surg, 2012, 73(Suppl 4): S301-S306.

[50] Fox N, Schwartz D, Salazar JH, et al. Evaluation and management of blunt traumatic aortic injury: a practice management guideline from the Eastern Association for the Surgery of Trauma[J]. J Trauma Nurs, 2015, 22(2): 99-110.

[51] Gutierrez A, Inaba K, Siboni S, et al. The utility of chest X-ray as a screening tool for blunt thoracic aortic injury[J]. Injury, 2016, 47(1): 32-36.

[52] Propper BW, Alley JB, Gifford SM, et al. Endovascular treatment of a blunt aortic injury in Iraq: extension of innovative endovascular capabilities to the modern battlefield[J]. Ann Vasc Surg, 2009, 23(5): 687.

[53] Leong Tan GW, Pek CH, Wong D, et al. Management of blunt traumatic thoracic aorta injuries with endovascular stent-grafts in a tertiary hospital in an urban Asian city[J]. Ann Vasc Surg, 2011, 25(5): 605-611.

[54] Biffi WL, Moore EE, Feliciano DV, et al. Western Trauma Association Critical Decisions in Trauma: Diagnosis and management of esophageal injuries[J]. J Trauma Acute Care Surg, 2015, 79(6): 1089-1095.

[55] Morrison JJ, Midwinter MJ, Jansen JO. Ballistic thoracoabdominal injury: an analysis of recent military experience in Afghanistan[J]. World J Surg, 2011, 35(6): 1396-1401.

[56] Boulanger BR, Kearney PA, Tsuei B, et al. The routine use of sonography in penetrating torso injury is beneficial[J]. J Trauma, 2001, 51(2): 320-325.

[57] Asensio JA, Arroyo HJ, Veloz W, et al. Penetrating thoracoabdominal injuries: ongoing dilemma—what cavity and when?[J]. World J Surg, 2002, 26(5): 539-543.

[58] Kones O, Akarsu C, Dogan H, et al. Is non-operative approach applicable for penetrating injuries of the left thoraco-abdominal region?[J]. Turk J Emerg Med, 2016, 16(1): 22-25.

[59] Gunduz M, Unlugenc H, Ozalevli M, et al. A comparative study of continuous positive airway pressure (CPAP) and intermittent positive pressure ventilation (IPPV) in patients with flail chest[J]. Emerg Med J, 2005, 22(5): 325-329.

[60] Kasotakis G, Hasenboehler EA, Streib EW, et al. Operative fixation of rib fractures after blunt trauma: A practice management guideline from the Eastern Association for the Surgery of Trauma[J]. J Trauma Acute Care Surg, 2017, 82(3): 618-626.

[61] Martin MJ, Beekley AC, Eckert MJ. Front line surgery: a practical approach[M]. Berlin: Springer. 2017.

(收稿日期: 2018-01-04; 修回日期: 2018-07-16)
(责任编辑: 沈宁)