Mass formula for $T = 0$ and $T = 1$ ground states of $N = Z$ nuclei.

E. Baldini-Neto and C.L. Lima
Nuclear Theory and Elementary Particle Phenomenology Group,
Instituto de Física, Universidade de São Paulo,
C.P. 66318, 05315-970 São Paulo, São Paulo, Brazil

P. Van Isacker
Grand Accélérateur National d’Ions Lourds,
BP 55027, F-14076 Caen Cedex 5, France
(March 30, 2022)

An algebraic model is developed to calculate the $T = 0$ and $T = 1$ ground-state binding energies for $N = Z$ nuclei. The method is tested in the sd shell and is then extended to the 28–50 shell which is currently the object of many experimental studies.

PACS number(s): 21.60.Fw, 21.10.Dr
I. INTRODUCTION

The investigation of the behavior of nuclei under extreme conditions has become an important tool to reveal new facets of nuclear matter. In particular, nuclei at the frontiers of the valley of stability constitute nowadays the most active research area of nuclear structure physics. With the advent of new radioactive beam facilities it is now possible to produce exotic nuclei that may have occurred naturally in the interior of exploding supernovas. In short, extremely neutron- and proton-rich nuclei are now within experimental reach. Of specific interest to the present paper are the nuclei at the frontiers of the valley of stability constitute nowadays the most active research area of nuclear structure physics. With the advent of new radioactive beam facilities it is now possible to produce exotic nuclei that may have occurred naturally in the interior of exploding supernovas. In short, extremely neutron- and proton-rich nuclei are now within experimental reach. Of specific interest to the present paper are the nuclei at the frontiers of the valley of stability constitute nowadays the most active research area of nuclear structure physics. With the advent of new radioactive beam facilities it is now possible to produce exotic nuclei that may have occurred naturally in the interior of exploding supernovas. In short, extremely neutron- and proton-rich nuclei are now within experimental reach. Of specific interest to the present paper are the

On the theoretical side, the challenge is to investigate whether models, developed for—and using the phenomenology of—stable nuclei, can still be applied in these new, as yet uncharted regions and, if not, to propose new approaches to do so based on the data available up to now. One of the main open questions is the validity of the nuclear shell model with its traditional magic numbers and of the usual treatment of the residual interaction among the valence nucleons. The nuclear mass is a property of quintessential importance as it directly determines the stability of a nucleus. There are several theoretical approaches that reproduce the systematics of masses of nuclei and it is worthwhile to mention here two of them. The Extended Thomas-Fermi plus Strutinsky Integral (ETFSI) is a high-speed approximation to the Hartree-Fock (HF) method with pairing correlations taken into account through BCS theory. In earlier versions a Wigner term was not included and this has been claimed to be the reason for the systematic calculated underbinding by about 2 MeV for even-even $N = Z$ nuclei. This effect persists for $N = Z$ odd-odd systems and for $N = Z \pm 1$ odd-mass nuclei but with less prominence. The mass formula based on the Finite Range Droplet Model (FRDM) starts from a sophisticated liquid drop mass formula to which microscopic corrections due to shell effects are added. Both approaches have comparable numbers of parameters (about 15) and make reliable predictions with impressive success. In the FRDM and also in a recent ETFSI calculation a Wigner (correction) term is included that specifically deals with the peculiar behavior of binding energies of $N \approx Z$ nuclei and has a cusp-like behavior for $N = Z$. This treatment is effective for known masses but, as the correction is entirely ad hoc, it has the drawback that an extrapolation to unknown nuclei can be dangerous. It is therefore of interest to develop models based on simple physical principles that can account for the behavior of nuclear masses at the $N \approx Z$ line. Many models have been used over the past years to investigate the structure of heavier $N \approx Z$. We mention in particular recent applications of the Hartee-Fock-Bogolyubov (HFB) method that includes proton-neutron pairing correlations. This approach is tailor-made for the treatment of $N \approx Z$ nuclei but has the drawback of the lack of particle-number projection. Shell-model calculations are generally extremely successful in reproducing spectroscopic nuclear data but require large configuration space diagonalizations. In addition, no reliable theoretical procedure exists for deriving the monopole part of the residual interaction which hinders a comparison with measured nuclear binding energies. An algebraic approach, which has affinities with the one presented here, utilizes the concept of dynamical supersymmetry for the calculation of the binding energies in the sd shell but does not go beyond it.

In this paper, the Interacting Boson Model (IBM) in its isospin variant version is applied to proton-rich $N \approx Z$ nuclei. The goal is to obtain reliable estimates of binding energies of $T = 0$ and $T = 1$ ground states in self-conjugate ($N = Z$) nuclei based on the concept of dynamical symmetry. The mass formula proposed is relatively simple and contains terms with an intuitively understandable significance. A particular ingredient is its treatment of the competition between isoscalar and isovector pairing.

II. AN IBM-4 MASS FORMULA

The Interacting Boson Model in its original version (IBM-1) successfully describes collective aspects of nuclei through the use of s and d bosons which are thought to approximate pairs of valence nucleons coupled to angular momentum 0 and 2. No distinction is made between neutron and proton bosons. Whenever the difference between the neutron and proton fluids is thought to play a role, one is forced to use more elaborate versions of the IBM. The neutron-proton interacting boson model, or IBM-2, was introduced mainly to provide a microscopic foundation to the model. It uses as building blocks s and d bosons constructed from neutron-neutron (nn) and proton-proton (pp) pairs solely. In the third and fourth versions of IBM, IBM-3 and IBM-4, the isospin quantum number is introduced in a natural way. In IBM-3 the entire isospin triplet $T = 1$ is included, leading to nn, np, and pp pairs with $T_x = +1, 0, -1$. The IBM-4 considers both $T = 0$ and $T = 1$ pairs; the $T = 1$ bosons are assigned an intrinsic spin $S = 0$ while $T = 0$ bosons carry an intrinsic spin $S = 1$. A justification of this choice is that the two-particle isospin-spin combinations $(TS) = (10)$ and $(TS) = (01)$ are lowest in energy and that they give rise to an SU(4) algebra which is the boson equivalent of Wigner’s supermultiplet algebra.
The mass region $28 \leq N \approx Z \leq 50$ has a very rich structural behavior, presenting many aspects of nuclear motion. It is an ideal testing ground for various models since a proper description of the data relies on the interplay between $T = 0$ as well as $T = 1$ pairing and deformation-driving interactions. In addition, it is a region of intense experimental studies but with few experimental data available up to now.

Very recently, the IBM-4 was applied to the spectroscopy of exotic $N \approx Z$ nuclei in the $pf_{5/2}g_{9/2}$ shell [7]. In this approach the IBM-4 Hamiltonian is derived from a realistic shell-model Hamiltonian through a mapping carried out for $A = 58$ and 60 nuclei. The boson energies and the boson-boson interactions are thus derived microscopically and no parameter enters the calculation (since the shell-model interaction is considered as an input). This microscopically derived Hamiltonian gives good results in 64Ga (when compared to the shell model) and predicts the energy spectra of heavier $N = Z$ nuclei (such as 66As and 70Br). The approach is reasonably successful in obtaining a spectroscopy of low-spin states in $N \approx Z$ nuclei. It makes use, however, of a complicated Hamiltonian and, moreover, calculations beyond 70Br seem difficult.

Prompted by these considerations, in particular the need for reliable binding energy predictions at the $N = Z$ line and the existence of a microscopically derived IBM-4 Hamiltonian, we propose here a simple mass formula in the context of IBM-4. In previous work [18] one of us introduced an algebraic Hamiltonian (which can be regarded as the s-boson channel of the general IBM-4 Hamiltonian of Ref. [7]) with the specific aim to study the competition between the isovector and isoscalar pairing modes in self-conjugate nuclei. The s bosons do give rise only to the symmetric representation of $U_L(6)$ but this approximation can be justified in even-even and odd-odd $N = Z$ nuclei (the only ones considered here) where this is indeed the favored $U(6)$ representation [6].

These previous studies [17,18] suggest that the relevant terms in a simple IBM-4 mass formula must be taken from two different symmetry classifications:

\[
U(36) \supset (U_L(6) \supset \cdots \supset SO_L(3)) \supset \left(U_{TS} \supset \left\{ \begin{array}{c} SU_{TS}(4) \\ U_T(3) \otimes U_S(3) \end{array} \right\} \supset SO_T(3) \otimes SO_S(3) \right). \tag{1}
\]

Due to the overall symmetry of the boson state under $U(36)$, the $U_L(6)$ and $U_{TS}(6)$ representations have identical labels $[N_1, \ldots, N_6]$. The terms chosen from (1) for the calculation of binding energies of $N = Z$ nuclei are the following. First, the linear and quadratic Casimir operators of $U_L(6)$ are included. The total number of bosons, N, labels the symmetric representations of $U_L(6)$ and, as a result, these Casimir operators take account of the bulk properties of the nucleus and lead to a smooth variation of the mass with particle number. The next two terms to be included are the quadratic Casimir operator of $SU_{TS}(4)$ and the linear Casimir operator of $U_S(3)$. In the $L = 0$ channel considered here, these include the effects of $T = 0$ and $T = 1$ pairing interaction; $SU_{TS}(4)$ implies equal $T = 0$ and $T = 1$ strengths while $U_S(3)$ breaks this degeneracy by removing all non-scalar $U_S(3)$ states from the low-energy spectrum. In Ref. [15] the quadratic Casimir operator of $SU_S(3)$ was considered; here the linear Casimir operator of $U_S(3)$ is preferred because it is shown since to be connected with the spin-orbit term in the mean field which breaks the isoscalar-isovector degeneracy in favor of isovector states [15]. The final term considered is the quadratic Casimir operator of $SO_T(3), T(T+1)$, which is known to represent the nuclear symmetry and Wigner energies. In summary, the following Hamiltonian is taken:

\[
\hat{H} = E_0 + \alpha \hat{C}_1[U_L(6)] + \beta \hat{C}_2[U_L(6)] + \gamma \hat{C}_2[SU_{TS}(4)] + \xi \hat{C}_1[U_S(3)] + \eta \hat{C}_2[SO_T(3)], \tag{2}
\]

where E_0 is the energy of the doubly magic core, specific for a given mass region. Note the omission from (2) of operators associated with $U_T(6)$, $U_T(3)$, and $SO_T(3)$; these are not needed because their effect is equivalent to the corresponding operators of $U_L(6), U_S(3)$, and $SO_T(3)$.

All operators in (2) mutually commute, except for $\hat{C}_2[SU_{TS}(4)]$ and $\hat{C}_1[U_S(3)]$ and hence the solution of \hat{H} involves a numerical diagonalisation which is most conveniently done in the second basis in (1), labeled as $[[N](\lambda_T)T \otimes (\lambda_S)S]$. The matrix elements of $\hat{C}_2[SU_{TS}(4)]$ can be calculated analytically [8],

\[
\begin{align*}
V^{NTS}_{\lambda_T \lambda_S \lambda_T', \lambda_S'} & = \langle [N](\lambda_T)T \otimes (\lambda_S)S | \hat{C}_2[SU_{ST}(4)] | [N](\lambda_T')T \otimes (\lambda_S')S \rangle, \\
V^{NTS}_{\lambda_T \lambda_S \lambda_T', \lambda_S'} & = 2 \lambda_T \lambda_S + 3N + T(T + 1) + S(S + 1), \\
V^{NTS}_{\lambda_T \lambda_S \lambda_T' - 2\lambda_S + 2} & = [(\lambda_T - T)(\lambda_T + T + 1)(\lambda_S - S + 2)(\lambda_S + S)]^{1/2}, \\
V^{NTS}_{\lambda_T \lambda_S \lambda_T' + 2\lambda_S - 2} & = [(\lambda_T - T + 2)(\lambda_T + T + 3)(\lambda_S - S)(\lambda_S + S + 1)]^{1/2},
\end{align*}
\tag{3}
\]

while the other operators are diagonal with eigenvalues given by
\[\langle |N| (\lambda_T) T \otimes (\lambda_S) S | \hat{C}_1 [U_L(6)] \rangle |N| (\lambda_T) T \otimes (\lambda_S) S \rangle = N, \\
\langle |N| (\lambda_T) T \otimes (\lambda_S) S | \hat{C}_2 [U_L(6)] \rangle |N| (\lambda_T) T \otimes (\lambda_S) S \rangle = N(N+5), \\
\langle |N| (\lambda_T) T \otimes (\lambda_S) S | \hat{C}_1 [U_S(3)] \rangle |N| (\lambda_T) T \otimes (\lambda_S) S \rangle = \lambda_s, \\
\langle |N| (\lambda_T) T \otimes (\lambda_S) S | \hat{C}_2 [\text{SO}_T(3)] \rangle |N| (\lambda_T) T \otimes (\lambda_S) S \rangle = T(T+1). \tag{4} \]

\section*{III. RESULTS}

We first apply the mass formula to \(N = Z \) nuclei in the \(sd \) shell, from \(^{16}\text{O} \) to \(^{40}\text{Ca} \), where the experimental masses are well known \(^2\). The five parameters of the Hamiltonian \((2)\) are adjusted to the binding energies of the lowest states with \(T = 0 \) and those with \(T = 1 \) of all even-even and odd-odd self-conjugate \(sd \)-shell nuclei. There are thus two data points per nucleus, which is crucial for a reliable determination of the parameters \(\gamma, \xi, \) and \(\eta \). Binding energies are corrected for Coulomb effects according to the prescription given in \(^3\). A drawback of the present formula is the occurrence of a discontinuity at mid-shell which is related to a change of core (from \(^{16}\text{O} \) to \(^{40}\text{Ca} \)). To avoid these mid-shells effects, two different fits are performed for each half of the shell, a first one for nuclei from \(^{18}\text{F} \) up to \(^{28}\text{Si} \) (\(N = 6 \) bosons) and a second one (with \(^{40}\text{Ca} \) as a core) for nuclei from \(^{38}\text{K} \) down to \(^{30}\text{P} \). In Table 4 the two parameter sets are given in the lines labeled \(^{16}\text{O} \) to \(^{28}\text{Si} \) and \(^{30}\text{P} \) to \(^{40}\text{Ca} \). The major difference between the two sets is the sign change in \(\alpha \) which is required since in the first half \(N \) counts the pairs of nucleons \(\text{added to } ^{16}\text{O} \) while in the second half it counts the pairs \(\text{subtracted from } ^{40}\text{Ca} \). One also notes that \(\alpha \) has a larger absolute value in first half than in the second: this must be so since, in the \(sd \) shell, the binding energy per nucleon increases as the size of the nucleus grows. Furthermore, the parameters \(\gamma, \xi, \) and \(\eta \) decrease (in absolute value), as a result of the average interaction strength which decreases with mass. Nevertheless, one notes that this decrease is stronger for \(\gamma \) than it is for \(\xi, \) that is, the ratio \(\xi/\gamma \) is larger in the second half of the \(sd \) shell than it is in the first. Again, this is understandable intuitively because one expects the Wigner SU(4) symmetry to be increasingly broken by the spin-orbit term \([U_S(3)]\).

The resulting binding energies for each half of the shell are shown in Tables 1 and 11, respectively. Also the isospin of each state is indicated as well as the difference \(\Delta E \) between the calculated and measured binding energies. In Fig. 3 the differences in energy between the \(T = 1 \) and \(T = 0 \) states are compared with the observed ones and also with the semi-empirical formula for this quantity given in Ref. \(^22\). The root-mean-squared (rms) deviation is 0.876 MeV in the first half of the \(sd \) shell and 0.245 MeV in the second half. Since reasonable results are obtained with parameters that can be qualitatively understood from simple arguments, an extension towards the 28–50 shell can be considered.

We begin with a discussion of the first half of the 28–50 shell, for nuclei ranging from \(^{58}\text{Cu} \) to \(^{78}\text{Y} \). The ground state of all these self-conjugate nuclei is a \(0^+ \), with either \(T = 0 \) in even-even or \(T = 1 \) in odd-odd nuclei, with the exception of \(^{58}\text{Cu} \) which has a \((J^\pi, T) = (1^+, 0)\) ground state. Up to \(^{64}\text{Ge} \) the masses are well known and can be taken from the compilation of Audi and Wapstra \(^3\). Of the heavier \(N = Z \) nuclei, also the masses of \(^{72}\text{Kr} \) and \(^{74}\text{Rb} \) are listed by Audi and Wapstra. The masses of \(^{66}\text{As} \) and \(^{68}\text{Se} \) are available from a recent measurement \(^23\) and that of \(^{76}\text{Sr} \) from Ref. \(^24\). The latter experiment also gives a mass for \(^{68}\text{Se} \) but since it is far off the systematics of Audi and Wapstra, the result from \(^23\) is used. The mass of \(^{70}\text{Br} \) is not known experimentally but as it is in the middle of a region of nuclei with measured masses close to the extrapolations of Audi and Wapstra, we have adopted their extrapolated value for \(^{70}\text{Br} \). The mass of \(^{78}\text{Y} \) is not known and not included in the fit. The binding energies of the lowest \(T = 1 \) states in even-even \(N = Z \) nuclei are derived from those of the isobaric analogues (also taken from Ref. \(^23\)) after an appropriate Coulomb correction. The evolution of the splitting between \((J^\pi, T) = (0^+, 1)\) and \((J^\pi, T) = (1^+, 0)\) states in odd-odd nuclei is of particular interest as regards the question of \(T = 0 \) and \(T = 1 \) pairing and is currently the object of several experimental studies. The \((0^+, 1) \) state in \(^{58}\text{Cu} \) lies 0.202 MeV above the \((1^+, 0) \) ground state \(^25\). This order is reversed in \(^{62}\text{Ga} \) where the \((1^+, 0) \) state is 0.571 MeV above the \((0^+, 1) \) ground state \(^25\). The \(E(0^+, 1) - E(1^+, 0) \) splitting then continues to rise to 0.837 MeV in \(^{60}\text{As} \) \(^27\). A very recent experiment on \(^{70}\text{Br} \) \(^25\) has not observed a \((1^+, 0) \) level; the lowest observed \(T = 0 \) level (with \(J^\pi = 3^+ \)) is at an excitation energy of 1.337 MeV. Similarly, the lowest \(T = 0 \) state in \(^{74}\text{Rb} \) measured by Rudolph et al. \(^29\) at an excitation energy of 1.066 MeV has \(J = 3 \) and the energy of the \(1^+ \) state is unknown. With these data as input, the parameters in \((4) \) can be adjusted through a fit procedure that minimizes the rms deviation in the binding energies of two states per nucleus (if known). The resulting parameters are shown in the line labeled \(^{56}\text{Ni} \) to \(^{78}\text{Y} \) of Table 3 and lead to an rms deviation of 0.396 MeV. In Fig. 3 the differences in energy between the \(T = 1 \) and \(T = 0 \) states are compared to the observed ones. One notes the good agreement that is obtained which gives confidence in the energy splittings of 0.847, 1.037, and 1.214 MeV predicted in \(^{40}\text{Br} \), \(^{74}\text{Rb} \), and \(^{78}\text{Y} \), respectively. As already mentioned, the energy difference \(E(0^+, 1) - E(1^+, 0) \) is not known experimentally in these isotopes. In the former two, \(^{70}\text{Br} \) and \(^{74}\text{Rb} \), the energy difference with the lowest (known) \(T = 0 \) state is shown in Fig. 3. To emphasize the point that these energy splittings result from a calculation of total binding energies, the odd-odd results are represented in a different form.
way in Fig. 3. Note that this plot implies a comparison of absolute binding energies: for representation purposes the measured binding energy of the ground state of a particular nucleus is drawn at zero and the other levels of that nucleus are given relative to that ground-state energy.

For the second-half of the 28–50 shell the situation is more complicated since there are no data available. The core is 100Sn with a ground-state mass measured in Ref. [30]. Since so little is known experimentally, we use the extrapolations from Audi and Wapstra [21] for the masses of even-even and odd-odd nuclei, complemented with the results for 78Y from the fit to the first half of the 28–50 shell. The resulting parameters are shown in the line labeled 78Y to 100Sn’ of Table I. The predictions for the splitting between $^T=1$ and $^T=0$ states for the entire 28–50 shell are shown in Fig. 4. One notes a satisfactory agreement with the data, when available. The use of extrapolated data, however, should weaken the confidence in the predictions for the $E(0^+,1) − E(1^+,0)$ splitting in odd-odd nuclei.

IV. CONCLUSIONS

A simple mass formula based on IBM-4 has been proposed to estimate the binding energies of the lowest $^T=0$ and $^T=1$ states of self-conjugate nuclei. It has linear and quadratic terms in the boson number that account for the smooth variation of mass with particle number, supplemented with three contributions that have a clear physical meaning: an SU(4), a spin-orbit and a T^2 term. It can be considered as a local mass formula that gives predictions of a specific interest to current experiments at the $N=Z$ line. As an application we considered nuclei from 56Ni to 78Y where predictions could be made for some of the heavier isotopes currently under study. Also the second half of the 28–50 shell was considered although these predictions are more questionable due to the lack of reliable data.

The advantage with respect to previous IBM-4 work [17] is that the Hamiltonian used is much simpler and that only the $L = 0$ channel is considered. The numerical diagonalization then becomes trivial and the calculations can be performed, without much effort, for arbitrary numbers of bosons. This is much harder to achieve with the full version of IBM-4. On the down side it should be noted that this approach is restricted to $N=Z$ odd-odd nuclei since other odd-odd nuclei have a dominant U(6) representation which is non-symmetric and which cannot be constructed from s bosons only. Also, deformation effects which are present with s and d bosons and which can be included through orbital operators [associated with algebras represented by dots in (1)], are outside the scope of the simple approach presented here.

ACKNOWLEDGMENTS

One of us (EBN) would like to thank FAPESP for financial support and also the people from GANIL for the hospitality shown during his stay where part of this work was carried out.

[1] W. Mittig, A. Lépine-Szily, and N.A. Orr, Ann. Rev. Nucl. Sci. 47, 27 (1997).
[2] M. Kyotoku, N. Teruya, and C.L. Lima, Phys. Lett. B 377, 1 (1996).
[3] A.O. Macchiavelli et al., Phys. Rev. C 61, 041303 (2000).
[4] F. Tondeur, M. Brack, M. Farine, and J.M. Pearson, Nucl. Phys. A 420, 297 (1984).
[5] Y. Aboussir et al., Nucl. Phys. A 549, 155 (1992).
[6] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, Atomic Data and Nuclear Data Tables 59 185, (1995).
[7] S. Goriely, F. Tondeur, and J.M. Pearson, preprint.
[8] A.L. Goodman, Phys. Rev. C 60, 014311 (1999).
[9] A. Poves and G. Martinez-Pinedo, Phys. Lett. B 430, 203 (1998).
[10] L. Próchniak, S. Szpikowski, and W. Berej, J. Phys. G 23, 705 (1997).
[11] F. Iachello and A. Arima, The Interacting Boson Model, (Cambridge University Press, Cambridge 1987).
[12] A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).
[13] T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Phys. Lett. B 76, 139 (1978).
[14] J.P. Elliott and A.P. White, Phys. Lett. B 97, 169 (1980).
[15] J.P. Elliott and J.A. Evans, Phys. Lett. B 101, 216 (1981).
[16] E.P. Wigner, Phys. Rev. 51, 106 (1937).
[17] O. Juillet, P. Van Isacker, and D.D. Warner, Phys. Rev. C 63, 054312 (2001).
[18] P. Van Isacker and D.D. Warner, Phys. Rev. Lett. 78, 3266 (1997).
[19] O. Juillet and S. Josse, Eur. Phys. J. A 8, 291 (2000).
[20] P. Van Isacker, Rep. Progr. Phys. 62, 1661 (1999).
[21] G. Audi and A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).
[22] A.O. Macchiavelli et al., PINGST 2000, Selected topics on $N = Z$ nuclei, 156 (2000).
[23] A. Lépine-Szily and G.F. Lima, private communication.
[24] A.S. Lalleman et al., Hyperfine Interactions 132, 315 (2001).
[25] B. Singh, Nuclear Data Sheets 87, 177 (1999).
[26] S.M. Vincent et al., Phys. Lett. B 437, 264 (1998).
[27] R. Grzywacz et al., Phys. Lett. B 429, 247 (1998).
[28] D. Jenkins et al., to be published.
[29] D. Rudolph et al., Phys. Rev. Lett. 76, 376 (1996).
[30] M. Chartier et al., Phys. Rev. Lett. 77, 2400 (1996).
TABLE I. Parameters (in MeV) for the 8–20 and 28–50 shells.

Shell	α	β	γ	ξ	η
16O to 28Si	16.060	0.477	0.190	-6.146	-3.009
30P to 40Ca	-24.538	0.110	0.065	-3.735	-1.846
56Ni to 78Y	22.815	0.118	-0.068	-1.953	-0.450
78Y to 100Sn	-28.464	0.118	-0.188	-1.045	-0.512

TABLE II. Binding energies (in MeV) of $N = Z$ nuclei in the first half of the sd shell. Calculated values are obtained with the parameters given in Table I.

Nucleus	T	E_{Expt}	E_{IBM4}	ΔE
18F	0	151.662	152.573	-0.912
18F	1	150.620	152.701	-2.081
20Ne	0	178.307	178.887	-0.580
20Ne	1	168.033	167.755	0.278
22Na	0	195.476	195.332	0.143
22Na	1	194.819	194.722	0.097
24Mg	0	223.545	222.918	0.628
24Mg	1	214.029	212.543	1.486
26Al	0	241.423	242.181	-0.758
26Al	1	241.195	240.774	0.421
28Si	0	270.581	271.029	-0.448
28Si	1	261.265	261.465	-0.200

TABLE III. Binding energies (in MeV) of $N = Z$ nuclei in the second half of the sd shell. Calculated values are obtained with the parameters given in Table I.

Nucleus	T	E_{Expt}	E_{IBM4}	ΔE
30P	0	289.433	289.456	-0.024
30P	1	288.756	288.968	-0.213
32S	0	315.655	315.300	0.350
32S	1	308.653	308.507	0.146
34Cl	0	334.744	334.723	0.021
34Cl	1	334.598	334.938	-0.340
36Ar	0	361.450	361.513	-0.063
36Ar	1	354.839	354.456	0.383
38K	0	381.186	381.351	-0.165
38K	1	381.056	381.393	-0.337
FIG. 1. Calculated energy differences $E(T=1) - E(T=0)$ in $N = Z$ sd-shell nuclei for the parameters given in Table I, compared with the experimental differences and those of Macchiavelli et al. [22].

FIG. 2. Calculated energy differences $E(T=1) - E(T=0)$ in $N = Z$ nuclei between ^{58}Cu to ^{78}Y for the parameters given in Table I, compared with the experimental differences and those of Macchiavelli et al. [22].
FIG. 3. Experimental and calculated energies of \((1^+, T = 0)\) and \((0^+, T = 1)\) levels in odd-odd \(N = Z\) from \(^{58}\text{Cu}\) to \(^{78}\text{Y}\). In \(^{70}\text{Br}\), \(^{74}\text{Rb}\), and \(^{78}\text{Y}\) the \((1^+, T = 0)\) levels are not known experimentally and in the former two nuclei the angular momentum of the lowest (known) \(T = 0\) state is indicated.

FIG. 4. Energy differences \(E(0^+, 1) - E(1^+, 0)\) for the entire 28–50 shell with parameters fitted separately for each half (see text for details). In the first half (up to \(^{78}\text{Y}\)) ‘Expt’ refers to measured masses while in the second half it refers to the extrapolations of \(^{[21]}\). Also the results of Ref. \(^{[22]}\) are shown.