microRNAs: The Short Link between Cancer and RT-Induced DNA Damage Response.

Christopher M Wright
Thomas Jefferson University

Tu Dan
Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College of Thomas Jefferson University

Adam Dicker MD, PhD
Thomas Jefferson University

Nicole L Simone
Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/radoncfp

Part of the [Oncology Commons](https://jdc.jefferson.edu/radoncfp)

Let us know how access to this document benefits you

Recommended Citation

Wright, Christopher M; Dan, Tu; Dicker, Adam MD, PhD; and Simone, Nicole L, "microRNAs: The Short Link between Cancer and RT-Induced DNA Damage Response." (2014). *Department of Radiation Oncology Faculty Papers*. Paper 46.
https://jdc.jefferson.edu/radoncfp/46
microRNAs: the short link between cancer and RT-induced DNA damage response

Christopher M. Wright, Tu Dan, Adam P. Dicker and Nicole L. Simone*

Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
*Correspondence: nicole.simone@jeffersonhospital.org

Edited by: Daphne Haas-Kogan, University of California San Francisco, USA
Reviewed by: Chandid Guha, Albert Einstein College of Medicine, USA

DNA damage response (DDR) networks have long been noted to be implicated in cell death induced via ionizing radiation (1). These DNA damage sensing and signaling pathways establish control through cell cycle checkpoints, cellular senescence, and apoptosis (2). When functioning properly, DDR networks act as a barrier against tumor growth while maintaining genome integrity. New discoveries have unveiled specific roles of proteins in DDR networks, which may serve as potential therapeutic targets and sensitizers to ionizing radiation (3).

Unfortunately, although a clear connection has been established between dysfunctional DDR networks and malignancy, clinical trials targeting these pathways in the oncology realm have shown limited efficacy to date (4, 5). Lapsed regulation of DDR pathways in malignancy allows cells to bypass cellular checkpoints and progress through the cell cycle with stalled replication forks, incomplete DNA replication, and other forms of DNA damage (6). This genomic instability is propagated through cellular generations resulting in a neoplastic phenotype. A number of specific pathognomonic DDR defects have been identified in a number of cancers, including the mismatch repair protein MSH2 in colorectal cancer and the homologous recombination proteins BRCA1 and BRCA2 in breast and ovarian cancers (7, 8). Recent evidence suggests DDR mishaps may occur at an early stage in some precancerous lesions, double-strand break (DSB) markers such as nuclear gamma-H2AX are significantly elevated (9).

To further understand the role of DDR in malignancy, attention can be turned to the investigation of microRNAs (miRs), as another component of the DDR machinery in post-transcriptional gene regulation (10). miRs are small, non-coding RNA molecules that are complementary to one or more messenger RNA molecules (mRNA) (11). This specific pairing leads to the translational inhibition and degradation of the target mRNA. Global dysregulation of miRNAs is frequently observed in malignancy and patterns of dysregulation seem to be dependent on cancer type (12). More recently, it has been demonstrated that miR expression is regulated by DNA lesions and DDR proteins (13). It is suggested that miRs may play a regulatory role in an intermediary timeframe, in between rapid post-translational protein modifications and delayed transcriptional activation of target genes (14).

Our laboratory has previously shown that normal human fibroblasts exhibit unique miRNA signatures when exposed to exogenous agents that induce oxidative or genotoxic stress (15). A time course after exposure showed changes in 17 miR species following exposure to radiation, 23 after H$_2$O$_2$ treatment, and 45 after etoposide treatment. The miR signatures varied with direct (etoposide) and indirect (H$_2$O$_2$) effects (Figure 1). Eight miRs were altered specifically by radiation and etoposide, suggesting these might be used to discern direct DNA damage due to radiation. Alternatively, two miRs were altered with radiation and H$_2$O$_2$, suggesting these could comprise a signature of indirect DNA damage. These arrays did not demonstrate any significantly altered miRs that were unique to radiation alone. Interestingly, production of reactive oxygen species (ROS) increased with increasing doses of radiation. Additionally, pre-treatment with the thiol antioxidant cysteine decreased both ROS production and reversed the changes in the miRNA signature in response to irradiation.

The miRs affected in our study are reflective of more recent literature investigating individual miRs that are altered in response to DDR (16). In fact, they are implicated in more mechanistic studies dealing with homologous recombination, non-homologous end joining, and base excision repair (17, 18). Post-transcriptional regulation of miRNAs mediated by miRs plays a fundamental role in adjusting DDR machinery. miR-421 in neuroblastoma and HeLa cells down-regulates ATM kinase, which is a crucial integrator of DNA DSBs repair machinery (19). Ectopic expression of miR-421 leads to S-phase cell cycle checkpoint changes and an increase in radiosensitivity. Although it has not been clearly demonstrated that miRs directly mediate the choice between homologous recombination and NHEJ-mediated repair of a DSB, evidence suggests that miRs are at least intimately involved by targeting factors that belong to a specific pathway. Expression of miR-182 directly downregulates BRCA1 and deliberates from homologous recombination (20). Alternatively, the expression of miR-101 and miR-34a would downregulate DNA-PKcs and p53 binding protein 1, respectively, impeding the NHEJ repair pathway (21, 22). Other miRNAs, such as miR-34, miR-521, miR-21, have been shown to regulate the expression of important DDR network proteins BCL2, manganese superoxide dismutase (MnSOD), and MSH2, respectively (23–25).

Due to the miRNA regulation of DDR machinery and to the clear connection...
between DDR dysregulation and a neoplastic phenotype, we believe miRs could define the relationship between cancer and DDR. Our laboratory’s studies suggest that miRs serve as integrators of the cellular response to ROS and DNA strand breaks, both of which are results of ionizing radiation. It is our opinion that further investigation of miR impact on cellular sensitivity to DNA-damaging agents could elucidate therapeutic targets to combat cancer, as miRs may provide the link between DDR and malignancy.

ACKNOWLEDGMENTS

The work was supported in part by the Kimmel Cancer Center’s NCI Cancer Center Support Grant P30 CA56036.

REFERENCES

1. Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia, PA: Lippincott Williams & Wilkins (2012).
2. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Limn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. *Ann Rev Biochem*. (2004) 73:39–85. doi:10.1146/annurev.biochem.73.011303.073723
3. Matsuoka S, Ballif BA, Smogorzewska A, McDon-ald ER, Hurvitz KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein net-works responsive to DNA damage. *Science*. (2007) 316:1160–6. doi:10.1126/science.1140321
4. O’Shaughnessy J, Schwartzberg LS, Danso MA, Rugo HS, Miller K, Yardley DA, et al. A randomized phase III study of irinipar (BSI-201) in combination with gemcitabine/ carboplatin (GC) in metastatic triple-negative breast cancer (TNBC). *J Clin Oncol*. (2011) 29:2011.
5. Ma CX, Ellis MJC, Petroni GR, Guo Z, Cai S-R, Ryan CE, et al. A phase II study of UCN-01 in combina-tion with irinotecan in patients with metastas-tic triple negative breast cancer. *Breast Cancer Res Treat*. (2013) 137:483–92. doi:10.1007/s10549- 012-2378-9
6. Bariskova J, Horejší Z, Koed K, Krámer A, Tort F, Züger K, et al. DNA damage response as a candi-date anti-cancer barrier in early human tumori-genesis. *Nature*. (2005) 434:864–70. doi:10.1038/ nature03482
7. Fisheš R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, et al. The human muta-tor gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. *Cell*. (1993) 75:1027–38. doi:10.1016/0092-8674(93) 90546-3
8. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. *Cell*. (2002) 108:171–82. doi:10.1016/S0092-8674(02) 00615-3
9. Gorgoulis VG, Vassiliou IYF, Karakaidos P, Zacharatos P, Kotsinas A, Leligdou T, et al. Activa-tion of the DNA damage checkpoint and genomic instability in human precancerous lesions. *Nature*. (2005) 434:907–13. doi:10.1038/nature03485
10. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expres-sion and promotes apoptosis. *Mol Cell*. (2007) 26:745–52. doi:10.1016/j.molcel.2007.05.010
11. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. *Science*. (2001) 294:853–8. doi:10. 1126/science.1064921
12. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene tar-gets. *Proc Natl Acad Sci U S A*. (2006) 103:2257–61. doi:10.1073/pnas.0510565103
13. Chowdhury D, Chou YE, Beal ME. Charity begins at home: non-coding RNAs functions in the DNA damage response. *Nat Rev Mol Cell Biol*. (2013) 14(3):181–9. doi:10.1038/nrm3523
14. Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. *Nat Genet*. (2002) 30:363–4. doi:10.1038/ng6865
15. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, DeGraff W, et al. Ionizing radiation-induced oxidative stress alters miRNA expression. *Plas One*. (2009) 4:e6377. doi:10.1371/journal.pone.0006377
16. Pothol J, Verkaik NS, van IJcken W, Wiemer EAC, van der Horst GTJ, et al. MicroRNA-directed gene silencing mediates the UV-induced DNA-damage response. *EMBO J*. (2009) 28:2909–9. doi:10.1038/embob.2009.156
17. Crosby ME, Kahleshrbha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. *Cancer Res*. (2009) 69:1221–9. doi:10.1158/0008-5472.CAN- 08-2518
18. Canello IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC, et al. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replica-tion. *Proc Natl Acad Sci U S A*. (2010) 107:5375–80. doi:10.1073/pnas.0910151010
19. Hu H, Du L, Nagabayashif G, Seeger KG, Gatti RA, ATM is down-regulated by N-Myc-regulated microRNA-421. *Proc Natl Acad Sci U S A*. (2010) 107:1506–11. doi:10.1073/pnas.0907763107
20. Moskwa P, Bußa FM, Pan Y, Panchakshar R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. *Mol Cell*. (2011) 41(2):210–20. doi:10.1016/j.molcel.2010.12.005
21. Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo Y-H, et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. *Plas One*. (2012) 7:92804.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 April 2014; paper pending published: 07 May 2014; accepted: 20 May 2014; published online: 04 June 2014.

Citation: Wright CM, Dan T, Dicker AP and Simone NL (2014) microRNAs: the short link between cancer and RT-induced DNA damage response. Front. Oncol. 4:133. doi: 10.3389/fonc.2014.00133

This article was submitted to Radiation Oncology, a section of the journal Frontiers in Oncology. Copyright © 2014 Wright, Dan, Dicker and Simone. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.