Lucky 13-th Exercises on Stirling-like numbers and Dobinski-like formulas

Andrzej Krzysztof Kwaśniewski

Member of the Institute of Combinatorics and its Applications
High School of Mathematics and Applied Informatics
Kamienna 17, PL-15-021 Bialystok, Poland
e-mail: kwandr@gmail.com

Summary

Extensions of the Stirling numbers of the second kind and Dobinski-like formulas are proposed in a series of exercises for graduates. Some of these new formulas recently discovered by me are to be found in A.K.Kwaśniewski’s source paper [1]. These extensions naturally encompass the well known q-extensions. The indicatory references are to point at a part of the vast domain of the foundations of computer science in ArXiv affiliation noted as CO.cs.DM.

MCS numbers: 05A40, 11B73, 81S99

Keywords: umbral calculus, extended Stirling numbers, Dobinski type identities

affiliated to The Internet Gian-Carlo Polish Seminar:
http://ii.uwb.edu.pl/akk/sem/sem_rota.htm

Published in: Proc. Jangjeon Math. Soc. Vol. 11 No 2, (2008), 137-144

1. In the q-extensions realm

Ex.1 Recall and prove it again occasionally noting that The Number 44 is a magic number in Polish Poetry and this had had an implementation in quite recent Polish history in 1968 students revolutionary riots for independence and freedom of thinking under communist regime. Well, then forty four years ago Gian-Carlo Rota [4] proved that the exponential generating function for Bell numbers B_n is of the form

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} B_n = \exp(e^x - 1)$$

using the linear functional L such that

$$L(X^n) = 1, \quad n \geq 0$$

Then Bell numbers (see: formula (4) in [4]) are defined by

$$L(X^n) = B_n, \quad n \geq 0$$

The above formula is exactly the Dobinski formula [5] if L is interpreted as the average value functional for the random variable X with the Poisson distribution with $L(X) = 1$. Recall it and prove it again.

Ex.2 Recall and prove:

The two standard [12], see also [13-17] q-extensions Stirling numbers of the second kind are defined by

$$\sum_{k=0}^{n} \binom{n}{k} x_k^q = \sum_{k=0}^{n} \left\{ \binom{n}{k} \right\} x_k^q,$$
where \(x_q = \frac{1}{1-q} \) and \(x_q^k = x_q(x-1)_q\ldots(x-k+1)_q \), which corresponds to the \(\psi \) sequence choice in the \(q \)-Gauss form \(\langle \frac{1}{n!} \rangle_{n \geq 0} \) and \(q \)-Stirling numbers

\[
(5) \quad x^n = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\}_q \chi_k(x)
\]

where \(\chi_k(x) = x(x-1)_q\ldots(x-k+1)_q \)

Note that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(q \) is removed.

Ex.3 Recall and prove it again:

For these two classical by now \(q \)-extensions of Stirling numbers of the second kind - the "\(q \)-standard" recurrences hold respectively:

\[
\left\{ \begin{array}{c} n+1 \\ k \end{array} \right\}_q = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right)_q q^l \left\{ \begin{array}{c} l \\ k-1 \end{array} \right\}_q ; n \geq 0, k \geq 1,
\]

\[
\left\{ \begin{array}{c} n+1 \\ k \end{array} \right\}^\sim_q = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right)_q q^{l-k+1} \left\{ \begin{array}{c} l \\ k-1 \end{array} \right\}_q^\sim ; n \geq 0, k \geq 1.
\]

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(q \) is removed and the number \(q \) is put equal to one.

Ex.4 Recall and prove it again:

From the above it follows immediately that corresponding \(q \)-extensions of \(B_n \) Bell numbers satisfy respective recurrences:

\[
B_q(n+1) = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right)_q q^l B_q(l); n \geq 0,
\]

\[
B_q^\sim(n+1) = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right)_q q^{l-k+1} \mathcal{B}_q(l); n \geq 0
\]

where

\[
\mathcal{B}_q(l) = \sum_{k=0}^{l} q^k \left\{ \begin{array}{c} l \\ k \end{array} \right\}^\sim_q .
\]

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(q \) is removed and the number \(q \) is put equal to one.

Ex.5 Recall and prove it again:

Recursions for both inversion \(q \)-Bell numbers and inversion \(q \)-Stirling numbers of the second kind are not difficult to be derived. Also in a natural way the inversion \(q \)-Stirling numbers of the second kind from [16] satisfy a \(q \)-analogue of the standard recursion for Stirling numbers of the second kind to be written via mnemonic adding "\(q \)" subscript to the binomial and second kind Stirling symbols in the the standard recursion formula i.e.

\[
\left\{ \begin{array}{c} n+1 \\ k \end{array} \right\}^{inv}_q = \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right)_q \left\{ \begin{array}{c} n-l \\ k-1 \end{array} \right\}^{inv}_q ; n \geq 0, k \geq 1.
\]

Another \(q \)-extended Stirling numbers much different from Carlitz "\(q \)-ones" were introduced in the reference [19], see [1,20,28].

The cigl-\(q \)-Stirling numbers of the second kind are expressed in terms of \(q \)-binomial coefficients and \(q = 1 \) Stirling numbers of the second kind [16,17], (see [1] for more references) as follows
\[
\left\{ \begin{array}{c}
\frac{n+1}{k} \\
\end{array} \right\}^{cigl}_{q} = \sum_{l=0}^{n} \left(\begin{array}{c}
\frac{n}{l} \\
\end{array} \right) q^{(n-l+1)} \left\{ \begin{array}{c}
\frac{n-l}{k-1} \\
(2k-2) \\
\end{array} \right\}^{cigl}_{q}; n \geq 0, k \geq 1.
\]

The corresponding \(cigl-q\)-Bell numbers recently have been equivalently defined via \(cigl-q\)-Dobinski formula [20,28] - which now in more adequate notation reads :

\[
L(X^q) = \overline{\mathbb{N}}_n(q), \quad n \geq 0, X^q \equiv X(X + q - 1) \ldots (X - 1 + q^{n-1}).
\]

The above \(cigl-q\)-Dobinski formula is interpreted as the average of this specific \(n\)-th \(cigl-q\)-power random variable \(X^q\) with the \(q = 1\) Poisson distribution such that \(L(X) = 1\).

For that to see use the identity by Cigler [19]

\[
x(x-1+q) \ldots (x-1+q^{n-1}) = \sum_{k=0}^{n} \left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}^{cigl}_{q} x^k.
\]

Note that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(q\) is removed and the number \(q\) is put equal to one.

2. Beyond the \(q\)-extensions realm

The further consecutive umbral extension of Carlitz-Gould \(q\)-Stirling numbers \(\left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}_{q}\) and \(\left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}_{q}\) is realized two-fold way - one of which leads to a surprise (?) in contrary perhaps to the other way.

The first "easy way" consists in almost mnemonic sometimes replacement of \(q\) subscript by \(\psi\) after having realized that via equation (5) we are dealing with the specific case of Comtet numbers [1] i.e. now we have

\[
x^n = \sum_{k=0}^{n} \left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}^{\sim}_{\psi} \psi_k(x)
\]

where \(\psi_k(x) = x(x-1) \psi(x-2) \ldots (x-[k-1] \psi).\) Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(\psi\) is removed.

As a consequence we have "for granted" the following:

Ex.6 Recall standard and prove its extension:

\[
\left\{ \begin{array}{c}
\frac{n+1}{k} \\
\end{array} \right\}^{\sim}_{\psi} = \left\{ \begin{array}{c}
\frac{n}{k-1} \\
\end{array} \right\}^{\sim}_{\psi} + \psi_k \left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}^{\sim}_{\psi}; n \geq 0, k \geq 1;
\]

where \(\left\{ \begin{array}{c}
\frac{n}{0} \\
\end{array} \right\}^{\sim}_{\psi} = \delta_{n,0}, \quad \left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}^{\sim}_{\psi} = 0; \quad k > n; \quad \text{and the recurrence for ordinary generating function reads}
\]

\[
G_{k,\psi}^\sim(x) = \frac{x}{1-k\psi} G_{k-1,\psi}^\sim(x), \quad k \geq 1
\]

where naturally

\[
G_{k,\psi}^\sim(x) = \sum_{n \geq 0} \left\{ \begin{array}{c}
\frac{n}{k} \\
\end{array} \right\}^{\sim}_{\psi} x^n, \quad k \geq 1
\]

from where one infers
(9) \[G_{k\psi}^n(x) = \frac{x^k}{(1 - 1\psi x)(1 - 2\psi x)\ldots(1 - k\psi x)} \quad , \quad k \geq 0 \]

hence we arrive in the standard extended text-book way [21] at the following explicit formula

(10) \[\left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi = \frac{r^n}{k!} \sum_{r=1}^{k} (-1)^{k-r} \binom{k}{r} \psi^r; \quad n, k \geq 0. \]

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(\psi\) is removed.

Expanding the right hand side of the corresponding equation above results in another explicit formula for these \(\psi\)-case Comtet numbers [1] i.e. we have

\[\text{Ex.7 Recall standard and prove its extension:} \]

(11) \[\left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi = \sum_{1 \leq i_1 \leq i_2 \leq \ldots \leq i_{n-k} \leq k} (i_1)_\psi (i_2)_\psi \ldots (i_{n-k})_\psi; \quad n, k \geq 0. \]

or equivalently (compare with [13], see [12,14,15])

(12) \[\left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi = \sum_{d_1 + d_2 + \ldots + d_k = n-k, \quad d_i \geq 0} 1^{d_1} 2^{d_2} \ldots k^{d_k}; \quad n, k \geq 0. \]

\(\psi\)-Stirling numbers of the second kind being defined equivalently by (10) , (14), (15) or (16) yield \(\psi\)-Bell numbers

\[B_n\psi(\psi) = \sum_{k=0}^{n} \left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi, \quad n \geq 0. \]

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(\psi\) is removed.

\[\text{Ex.8 Recall standard and prove its extension:} \]

Adapting the standard text-book method [21] we have for two variable ordinary generating function for \(\left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi\) Stirling numbers of the second kind and the \(\psi\)-exponential generating function for \(B_n\psi(\psi)\) Bell numbers the following formulæ

(13) \[C_{n\psi}(x, y) = \sum_{n \geq 0} A_n\psi(\psi, y)x^n, \]

where the \(\psi\)-exponential-like polynomials \(A_n\psi(\psi, y)\)

\[A_n\psi(\psi, y) = \sum_{k=0}^{n} \left\{ \begin{array}{l} n \\ k \end{array} \right\}_\psi y^k \]

do satisfy the recurrence

\[A_n\psi(\psi, y) = [y(1 + \psi)A_{n-1}\psi(\psi, y) \quad n \geq 1, \]

hence \[A_n\psi(\psi, y) = [y(1 + \psi)^n 1, \quad n \geq 0, \]

where the linear operator \(\psi\) acting on the algebra of formal power series is being called (see: [1,2,3,24,25,31]) the "\(\psi\)-derivative" and \(\psi y^n = n\psi y^{n-1}. \)

Show that these formulæ become the usual unextended Stirling numbers of the second kind formulæ when the subscript \(\psi\) is removed.

4
Ex.9 Recall standard and prove its extension:
The ψ-exponential generating function $B_\sim^n(x) = \sum_{n \geq 0} B_\sim^n(\psi) \frac{x^n}{n!}$ for $B_\sim^n(\psi)$ Bell numbers - after cautious adaptation of the method from the Wilf’s generatingfunctionology book [21] can be seen to be given by the following formula

\begin{equation}
B_\sim^n(\psi) = \sum_{r \geq 0} \frac{1}{\epsilon(\psi, r)} \frac{e_\psi[r_\psi x]}{r_\psi!}
\end{equation}

where (see: [1,2,3,24,25,31])

\begin{equation}
e_\psi(x) = \sum_{n \geq 0} x^n \frac{\psi^n}{n!}
\end{equation}

while

\begin{equation}
\epsilon(\psi, r) = \sum_{k=r}^{\infty} \frac{(k-r)!}{(k_\psi - r)!}
\end{equation}

and for the ψ-extensions the Dobinski like formula here now reads

\begin{equation}
B_\sim^n(\psi) = \sum_{r \geq 0} \frac{1}{\epsilon(\psi, r)} \frac{r_\psi^n}{r_\psi!}.
\end{equation}

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript ψ is removed.

Ex.10 Recall standard and prove its extension:
In the case of Gauss q-extended choice of $\langle n_q^{k}\rangle_{n \geq 0}$ admissible sequence of extended umbral operator calculus equations (19) and (20) take the form

\begin{equation}
\epsilon(q, r) = \sum_{k=r}^{\infty} \frac{(-1)^{k-r}}{(k-r)_q!} q^{-\binom{k}{2}}
\end{equation}

and the q-Dobinski formula is given by

\begin{equation}
B_\sim^n(q) = \sum_{r \geq 0} \frac{1}{\epsilon(q, r)} \frac{r_q^n}{r_q!},
\end{equation}

which for $q = 1$ becomes the Dobinski formula from 1887 [5].

Ex.11 Recall standard and prove its extension:
In a dual inverse way we define the ψ- Stirling numbers of the first kind as coefficients in the following expansion

\begin{equation}
\psi_\sim^k(x) = \sum_{r=0}^{k} \left[\begin{array}{c} k \\ r \end{array} \right]_\sim x^r
\end{equation}

where - recall $\psi_\sim^k(x) = x(x-1_\psi)(x-2_\psi)...(x-[k-1]_\psi)$; (attention: see equations (10)-(16) in [7,8] and note the difference with the present definition).

Therefore from the above we infer that

\begin{equation}
\sum_{r=0}^{k} \left[\begin{array}{c} k \\ r \end{array} \right]_\sim \left[\begin{array}{c} r \\ l \end{array} \right]_\sim = \delta_{k,l}.
\end{equation}

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript ψ is removed.

Ex.12 Recall standard and prove its extension:
Consider now another Stirling-like numbers (as expected Whitney numbers [31,1,32]) which are natural counterpart to ψ- Stirling numbers of the second kind. These are ψ- Stirling numbers of the first kind defined here down as coefficients in the following expansion (upperscript "e" is used because of cycles in non-extended case).
\(\psi(x) = \sum_{r=0}^{k} \binom{k}{r} x^r \)

where - now \(\psi(x) = x(x+1)\psi(x+2)\psi(x+3)\psi(...(x+[k-1]\psi);

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(\psi \) is removed.

Ex.13 Recall standard and prove its extension:

Show that the definition here upstairs above of the \(q \)-Stirling numbers of the second kind \(\binom{n}{k}_q \) is equivalent with the definition by recursion

\[
\binom{n+1}{k}_q = q^{k-1} \binom{n}{k-1}_q + k q^{n-1}_k q_k \quad ; \quad n \geq 0, k \geq 1;
\]

where \(\binom{a}{0}_q = \delta_{a,0}, \binom{a}{k}_q = 0, \quad k > n \)

Show that these in turn (just use the \(Q \)-Leibnitz rule \([2,3,24,25,31]\) for Jackson derivative \(\partial_q \)) are equivalent to

\[
(\hat{x} \partial_q)^n = \sum_{k=0}^{n} \binom{n}{k}_q \hat{x}^k \partial_q^k
\]

where \(\binom{a}{0}_q = \delta_{a,0}, \binom{a}{k}_q = 0, \quad k > n \).

Here \(\hat{x} \) denotes the multiplication by the argument of a function.

Show that these formulae become the usual unextended Stirling numbers of the second kind formulae when the subscript \(q \) is removed.

Consult \([33-35]\) for some new open problems arising in related the domain of the so called cobweb posets and their acyclic digraphs representatives which had served the present author to discover a joint combinatorial interpretation for all \(F \)-nomial coefficients. These family encompasses binomial and \(q \)-Gaussian coefficient, Fibonomial coefficient, Stirling numbers of both kinds and all classical \(F \)-nomial coefficients hence specifically incidence coefficients of reduced incidence algebras of full binomial type and Whitney numbers are given the joint cobweb combinatorial interpretation also \([36,37]\).

Acknowledgements The author appraises much Maciej Dziemiańczuk Gdańsk University Student’s assistance including TeX – nology aid.

The author expresses his gratitude also Dr Ewa Krot-Sieniawska for her several years’ cooperation and vivid application of the alike material deserving Students’ admiration for her being such a comprehensible and reliable Teacher before she was fired by Białystok University authorities exactly on the day she had defended Rota and cobweb posets related dissertation with distinction.

References

[1] A. Krzysztof Kwaśniewski On umbral extensions of Stirling numbers and Dobinski-like formulas Adv.Stud.Contemp. Math. , Vol 12, no. 1, (2006) 73-100 cs.DM ArXiv: math.CO/0411002
[2] A. Krzysztof Kwaśniewski Main theorems of extended finite operator calculus Integral Transforms and Special Functions, 14 No 6 (2003): 499-516
[3] A. Krzysztof Kwaśniewski On Simple Characterizations of Sheffer psi-polynomials and Related Propositions of the Calculus of Sequences ,Bulletin de
la Soc. des Sciences et de Lettres de Lodz, 52 Ser. Rech. Deform. 36 (2002):45-65, cs.MD ArXiv: math.CO/0312397

[4] Rota G. C. The number of partitions of a set Amer. Math. Monthly 71(1964) : 498-504

[5] G. Dobinski Summierung der Reihe S für m = 1, 2, 3, 4, 5, Grunert Archiv (Arch. Math. Phys) 61, 333-336, (1877)

[6] J. Katriel Bell numbers and coherent states Physics Letters A, 273 (3) (2000): 159-161

[7] M. Schork On the combinatorics of normal ordering bosonic operators and deformations of it J. Phys. A: Math. Gen. 36 (2003) 4651-4665

[8] J.Katriel, M. Kibler Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers J. Phys. A: Math. Gen.25 (1992): 2683-26-91

[9] P. Blasiak, K.A. Penson, A. I. Solomon Dobinski-type Relations and Log-normal distribution J. Phys. A Gen.36 L273 (2003)

[10] J.-M Sixdeniers K.A. Penson, A. I. Solomon The Boson Normal Ordering problem and Generalized Bell Numbers Annals of Combinatorics 7 127 (2003)

[11] P. Blasiak, K.A. Penson, A. I. Solomon Extended Bell and Stirling numbers from hypergeometric exponentiation J.Integ. Seq. 4 article 01.1.4 (2001)

[12] S.C. Milne A q-analog of restricted growth functions, Dobinski’s equality, and Charler polynomials Trans. Amer. Math. Soc. 245 (1978) 89-118

[13] Carl G. Wagner Partition Statistics and q-Bell Numbers (q = -1), Journal of Integer Sequences 7(2004) Article 04.1.1

[14] Wachs, D. White p,q Stirling numbers and set partitions Statistics , J. Combin. Theory (A) 56(1991):27

[15] R.Ehrenborg Determinants involving q-Stirling numbers, Advances in Applied Mathematics 31(2003): 630-642

[16] Bennett Curtis, Dempsey Kathy J., Sagan Bruce E. Partition Lattice q-Analogs Related to q-Stirling Numbers Journal of Algebraic Combinatorics 03(3) p.261-283 July 1994

[17] Bruce E. Sagan A maj static for set partitions European J. Combin. 12 (1991): 69-79

[18] Warren P. Johnson Some applications of the q-exponential formula Discrete Mathematics 157 (1996):207-225

[19] J. Cigler A new q-Analogue of Stirling Numbers Sitzunber. Abt. II 201(1992) : 97-109

[20] A. K. Kwaśniewski: q-Poisson,q-Dobinski, q-Rota and q-coherent states Proc. Jangjeon Math. Soc. Vol. 7 (2), (2004) 95-98. cs.DM ArXiv: math.CO/0402254, Feb 2004

[21] H.S.Wilf Generatingfunctionology Boston: Academic Press, 1990

[22] H. W. Gould q-Stirling numbers of the first and second kind Duke Math. J. 28 (1961): 281-289

[23] J. Konvalina: A Unified Interpretation of the Binomial Coefficients, the Stirling Numbers and the Gaussian Coefficients, The Am. Math. Month. 107 (2000), 901.

[24] A. Krzysztof Kwaśniewski Towards ψ-extension of Finite Operator Calculus of Rota Rep. Math. Phys. 48 No3 (2001):305-342, cs.DM cs.NA ArXiv: math/0402078

[25] A. Krzysztof Kwaśniewski On extended finite operator calculus of Rota and quantum groups Integral Transforms and Special Functions 2 No4 (2001):333-340
[26] A. K. Kwaśniewski: Cauchy q-identity and q-Fermat matrix via q-muting variables of q-Extended Finite Operator Calculus, Proc. Jangjeon Math. Soc. Vol 8 (2005) no. 2. pp.191-196 cs.DM, arXiv:math.CO/0403107 v1 5 March 2004.

[27] A. K. Kwaśniewski: Pascal like matrices - an accessible factory of one source identities and resulting applications, Adv. Stud. Contemp. Math. 10 No. 2, (2005) 111-120, cs.DM, [ArXiv:math.CO/0403123] v1 7 March 2004.

[28] A. K. Kwaśniewski: q-Poisson, q-Dobinski, Rota and coherent states-a fortieth anniversary memoir, Proc. Jangjeon Math. Soc. Vol.7 (2), (2004) 95-98 cs.DM ArXiv: math.CO/0402254.

[29] J. Cigler Operatormethoden für q– Identitäten Monatsh. Math. 88, (1979): 87-105.

[30] A. K. Kwaśniewski: New type Stirling like numbers - an email style letter, Bulletin of the ICA Vol. 49 (2007) 99-102, cs.DM ArXiv: math.CO/:0802.1382

[31] A. K. Kwaśniewski: Extended finite operator calculus - an example of algebraization of analysis, Bulletin of the Allahabad Mathematical Society Vol 20 (2005) 1-24, arXiv: math.CO/0412233 cs.DM

[32] A. K. Kwaśniewski: First Observations onPrefab Posets’ Whitney Numbers Advances in Applied Clifford Algebras Vol.18, Number 1/ February, 2008 57-73. arXiv: math.CO /0802.1696 cs.DM

[33] A. Krzysztof Kwaśniewski, M. Dziemiańczuk, Cobweb posets - Recent Results, Adv. Stud. Contemp. Math. vol. 16 (2) April 2008, pp. 197-218 ; arXiv: math. /0801.3985 Fri, 25 Jan 2008 17:01:28 GMT

[34] A. Krzysztof Kwaśniewski, Cobweb Posets and KoDAG Digraphs are Representing Natural Join of Relations, their diBigraphs and the Corresponding Adjacency Matrices, arXiv:math/0812.4066v1 .[v1] Sun, 21 Dec 2008 23:04:48 GMT

[35] A. Krzysztof Kwaśniewski, Some Cobweb Posets Digraphs’ Elementary Properties and Questions, arXiv:0812.4319v1 .[v1] Tue, 23 Dec 2008 00:40:41 GMT

[36] A.K.Kwaśniewski, Fibonomial cumulative connection constants, Bulletin of the ICA vol. 44 (2005), 81-92, ArXiv: math/0406006v1 [v1] Tue, 1 Jun 2004 00:59:23 GMT

[37] A. Krzysztof Kwaśniewski, Cobweb posets as noncommutative prefabs, Adv. Stud. Contemp. Math. vol. 14 (1) (2007) 37-47. arXiv:math/0503286v4 .[v1] Tue, 15 Mar 2005 04:26:45 GMT