The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

Violeta Díaz-Sánchez, a Alejandro F. Estrada, a, b M. Carmen Limón, a Salim Al-Babili, b * Javier Avalos a

Departamento de Genética, Universidad de Sevilla, Seville, Spain; Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany

The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C_{40} carotene torulene, a key step in the synthesis of the C_{35} apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl C=C double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

Carotenoid cleavage oxygenases (CCOs) are a family of non-heme iron enzymes found in all taxa, usually involved in the oxidative cleavage of double bonds in the conjugated carbon chain of carotenoids (1–4). Carotenoids are a large group of terpenoid pigments produced by all photosynthetic species and also by many fungi and nonphotosynthetic bacteria (5, 6). Investigation of CCO sequences in noncarotenogenic microorganisms led to the finding of a subgroup of CCOs that are inactive on carotenoids but are able to cleave similar double bonds in biphenolic compounds from the stilbene family that may derive from lignin degradation (7). Indeed, lignostilbene-degrading enzymes are the longest known members of this enzyme family (8). The stilbene resveratrol is a phytoalexin found in the fruits of different plants, such as grapes, peanuts, or cotton (9). Resveratrol is accumulated in considerable amounts in grape skin, and it is well known because of its presence in red wine. Increasing data are revealing numerous beneficial effects of resveratrol on human health, including anticarcinogenic properties (reviewed in reference 10).

The cleavage of carotenoids by CCOs leads to apocarotenoids, a group of compounds that fulfill important functions in many organisms. Among them, the precursors of the plant hormones abscisic acid (11) and strigolactones (12) and the rhodopsin-chromophore retinal (13) stand out. Rhodopsins are a widespread group of photoreactive proteins with diverse light-absorbing functions (reviewed in reference 14, 15). Rhodopsins are classified in two groups. Type I rhodopsins include the archaean bacterio-rhodopsin and halorhodopsin ion pumps that use light as the sole energy source (16) and similar proteins with diverse light-dependent functions in other microbial groups (14). Type II rhodopsins are found in animals, where they play a central role in vision (17). Rhodopsins exhibit a conserved tertiary organization consisting of seven transmembrane domains and an internal pocket, which contains a highly conserved lysine residue to which retinal is covalently bound (15). Retinal is produced in animals by a CCO enzyme that catalyzes the symmetrical cleavage of dietary β-carotene (13), while cyanobacteria utilize longer apocarotenoids, already cleaved carotenoids, to produce retinal and retinal-like compounds (18, 19).

CCOs are also present in filamentous fungi. For instance, the zygomycete Phycomyces blakesleeanus employs two CCOs, CarS and AcaA, to sequentially convert β-carotene into the C_{19} ketone β-apo-13-carotene via the C_{25} intermediate β-apo-12′-carotenal (20, 21) in the pathway leading to the trisporic acid pheromones. The ascomycetes Neurospora crassa (referred to hereinafter as Neurospora) and Fusarium fujikuroi produce neurosporaxanthin, a C_{35} apocarotenoid acid. The genes needed for the synthesis of this xanthophyll have been identified in both fungi (reviewed in reference 22, 23), including those encoding the CCO enzyme CAO-2 in Neurospora (24) and its ortholog CarT in F. fujikuroi (25), which catalyze the formation of a C_{35} apocarotenal that is further oxidized to neurosporaxanthin by the aldehyde dehydrogenase YLO-1 (26) or CarD (27). cao-2 and other genes involved in the neurosporaxanthin biosynthesis are regulated by light, as can be expected from the assumed photoprotective function of this pigment.

Neurospora is a leading model organism for investigating many biological processes, particularly those related to the molecular
Neurospora has a gene for a putative photocative rhodopsin, *nop-1* (29), and it is therefore expected to contain a retinal-forming enzyme. This is the case for *F. fujikuroi*, where the gene *carX* (30) encodes a CCO that cleaves β-carotene symmetrically to produce retinal (31), the presumed chromophore of the *nop-1* ortholog OSAp3 (32) and of CarO1, a further rhodopsin encoded in the genome of this fungus (33). Underscoring the functional interrelation of the encoded enzymes, CarO is linked and transcriptionally coregulated with *carX* and with the genes *carRA* and *carB*, needed for the synthesis of the CarX substrate β-carotene as a side product of the neurosporan xanthin biosynthetic pathway. Therefore, the gene cluster formed by *carX, carRA, carB*, and *carO* is self-sufficient to produce functional CarO rhodopsin. Targeted mutations of either of *nop-1* in *Neurospora* or oaraO in *F. fujikuroi* did not cause detectable phenotypic alterations under laboratory conditions, hindering the understanding of their biological functions.

Putative rhodopsin-encoding genes are also found in other fungal genomes (34), including *Ustilago maydis*. Formerly, we described the CCO enzymes Cco1 and Rco1 of this fungus. Cco1 is a CarX ortholog that cleaves β-carotene to produce retinal (35). Accordingly, the overexpression or deletion of *cocl* resulted in decreased or enhanced accumulation of β-carotene, respectively. Retinal formation may be particularly relevant in *U. maydis*, which contains three presumptive rhodopsin-encoding genes. Unexpectedly, the second CCO enzyme, Rco1, showed no activity on carotenoid substrates but cleaved resveratrol (36). Similar resveratrol-cleaving enzymes were identified in the fungi *Aspergillus fumigatus, Chaetomium globosum*, and Botryotinia fuckeliana (36). The biological relevance for resveratrol-cleaving enzymes in these species remains to be elucidated.

The *NOP-1* rhodopsin of *Neurospora* binds retinal in vitro (37) and also shows a photosensory reaction cycle (38). Therefore, it is expected that *Neurospora*, as shown for *F. fujikuroi* and *U. maydis*, contains a retinal-forming enzyme. Besides the tolurel-cleaving enzyme CAO-2, the genome of *Neurospora* encodes a further CCO, called CAO-1 (NCU07008), for which a retinal biois expected that *Neurospora* but increased dramatically in the presence of resveratrol. It efficiently cleaved resveratrol and its derivative piceatannol.

To test whether resveratrol can be used as a carbon source, 60-mm-diameter petri dishes with 7 ml of Vogel’s medium containing 1 g liter⁻¹ sucrose, 1 g liter⁻¹ resveratrol, or no carbon source were used. The plates were incubated at 30°C for 48 h.

To test the effect of resveratrol on sexual capability, crosses between the wild-type strain and the Δ*cao-1* mutant or between the wild-type strain and the *mns-52* mutant were achieved on synthetic crossing medium (40) supplemented with 1 g liter⁻¹ resveratrol. Parallel crosses were carried out in control plates without resveratrol. Strains of the opposite mating type were inoculated in the diametrical edges of the plates and incubated at 25°C for 3 weeks.

To test the ability of Δ*cao-1* to grow on wood, 1-cm-thick slices from a ca. 4-cm-diameter dry branch of *Platanus hispanica* were submerged in sterile distilled water for 3 min and placed in an empty petri dish. A drop with 10⁶ conidia either from the wild type or one of the two Δ*cao-1* mutants was added to the center of each premoistened slice, and the plates were incubated at 30°C for 1 week on water-embedded filter paper in a closed container to avoid desiccation. Growth tests without ensuring high-humidity conditions resulted in no apparent mycelial growth.

For testing the ability of Δ*cao-1* to grow on grapes, 1 μl with 10⁵ conidia was inoculated directly on the grapes (commercial Red globe variety) or after prickling their skin. The grapes were incubated under illumination at 30°C for 7 days.

Molecular techniques. Genomic DNA was isolated from frozen mycelium samples with the GeneElute plant genomic miniprep kit (Sigma). Total RNA was extracted from mycelia lyzed with a FastPrep homogenizer prior to the RNAeasy plant minikit (Qiagen, Chatsworth, CA). For Southern blot analysis, genomic DNA was isolated from mycelia as previously described (46). PCR analyses were performed with ca. 50 ng genomic DNA, 0.2 mM deoxynucleoside triphosphates (dNTPs), 1 μM forward and reverse primers, and 0.2 μM Expand high-fidelity polymerase (Roche, Mannheim, Germany). The reaction mixtures were heated at 94°C for 2 min, followed by 35 cycles of denaturation (94°C for 20 s), annealing (50 to 65°C for 20 s, according to the melting temperature of the primers), and polymerization (72°C for 1 to 4 min, depending on the length of the expected product) and by a final polymerization step at 72°C for 5 min. Southern blot hybridization was performed using standard protocols (47). The 5′ flank of *cao-1* sequence obtained with primers *cao1*-5F and *cao1*-5R was radioactively labeled and used as a probe.

Strains and growth conditions. *Neurospora crassa* wild-type strain 74-OR23-1 (mating type A) (FGSC 2489), the Δ*ms52-bar* (mating type a) mutant (FGSC 9719), and the Δ*nop-1* (mating type A) mutant (FGSC 15897) were obtained from the Fungal Genetics Stock Center (39). Genomic DNA and total RNA were extracted from mycelial samples grown for 3 days in petri dishes at 30°C in 25 ml Vogel’s broth (40) in the dark or after illumination at 5 W m⁻² white light. To obtain retarded colonial growth, the stringency of the sorbose agar (40) was reduced using 5 g liter⁻¹ sorbose, 2 g liter⁻¹ glucose, and 2 g liter⁻¹ fructose.

At the times indicated in the figures, resveratrol (Sigma, St. Louis, MO) was added to the medium from a 100 mg ml⁻¹ ethanol solution. As a control for the different experiments, the same volume of ethanol was added to the medium without resveratrol. To check the effect of resveratrol on gene expression, the compound was added to reach final concentrations of either 50 or 200 mg liter⁻¹ (0.22 or 0.88 mM, respectively). For resveratrol toxicity assays, the compound was added to reach a final concentration of 1 g liter⁻¹ (4.38 mM). The toxicity of resveratrol was checked by growing the strains in Vogel’s agar with sorbose (as indicated above). Three replicates per plate of every strain were incubated at 30°C, and the diameters of the colonies were measured after 24 h.

To test the ability of Δ*cao-1* to grow on wood, 1-cm-thick slices from a ca. 4-cm-diameter dry branch of *Platanus hispanica* were submerged in sterile distilled water for 3 min and placed in an empty petri dish. A drop with 10⁶ conidia either from the wild type or one of the two Δ*cao-1* mutants was added to the center of each premoistened slice, and the plates were incubated at 30°C for 1 week on water-embedded filter paper in a closed container to avoid desiccation. Growth tests without ensuring high-humidity conditions resulted in no apparent mycelial growth.

For testing the ability of Δ*cao-1* to grow on grapes, 1 μl with 10⁵ conidia was inoculated directly on the grapes (commercial Red globe variety) or after prickling their skin. The grapes were incubated under illumination at 30°C for 7 days.

Molecular techniques. Genomic DNA was isolated from frozen mycelium samples with the GeneElute plant genomic miniprep kit (Sigma). Total RNA was extracted from mycelia lyzed with a FastPrep homogenizer prior to the RNAeasy plant minikit (Qiagen, Chatsworth, CA). For Southern blot analysis, genomic DNA was isolated from mycelia as previously described (46). PCR analyses were performed with ca. 50 ng genomic DNA, 0.2 mM deoxynucleoside triphosphates (dNTPs), 1 μM forward and reverse primers, and 0.2 μM Expand high-fidelity polymerase (Roche, Mannheim, Germany). The reaction mixtures were heated at 94°C for 2 min, followed by 35 cycles of denaturation (94°C for 20 s), annealing (50 to 65°C for 20 s, according to the melting temperature of the primers), and polymerization (72°C for 1 to 4 min, depending on the length of the expected product) and by a final polymerization step at 72°C for 5 min. Southern blot hybridization was performed using standard protocols (47). The 5′ flank of *cao-1* segment obtained with primers *cao1*-5F and *cao1*-5R was radioactively labeled and used as a probe.
Neurospora transformation. Amounts of 10 μg DNA of the deletion cassette and 5 × 10^6 conidia were mixed into 50 μl of 1 M sorbitol and incubated on ice for 5 min. Conidia were electroporated in an ECM 630 Electro Cell Manipulator precision pulse system (BTX Harvard Apparatus) using a charging voltage of 1.5 kV and a resistance of 600 Ω. After the electroporation, 1 ml of Vogel’s minimal medium supplemented with 2% yeast extract was added, and the conidia were incubated at 30°C for 3 h. Two hundred microliters of this suspension was spread on solid medium containing 300 μg ml^-1_ hygromycin. Hygromycin-resistant colonies were isolated and crossed with the wild-type strain on synthetic complete medium following standard *Neurospora* protocols (40). Ascospores were activated at 60°C for 45 min and grown in hygromycin-supplemented Vogel’s medium. The resulting colonies were isolated and tested for cao-1 integrity by PCR and Southern blotting. For PCR analyses, internal fragments of cao-1 and al-1, respectively, were amplified with the primer sets 5'-ATGGCTGAATAGCTCTTCTCCG-3' and 5'-AACATGCAACCTCAT CGCGTC-3', resulting in a 1,706-bp product, and 5'-AATTACAGAA AATTCGCTG-3' and 5'-AACCTTACTCCTCAAAATAGC-3', resulting in a 1,990-bp product. The occurrence of the targeted cao-1 replacement was checked with the primer set cao-1 5'-ca01-3R, mentioned above. This primer set gives rise to a 4,835-bp product for the wild-type cao-1 gene and a 3,726-bp product for the hygR Δcao-1 allele.

Expression analyses. Real-time reverse transcription RT-PCR (RT-PCR) expression analyses were performed using DNase-pretreated total RNA samples as the template. The reactions were carried out in 25-μl volumes in an ABI 7500 (Applied Biosystems, Branchburg, NJ) and started with a 30-min reverse transcription step at 48°C, followed by 10 min at 95°C, 40 cycles of 95°C denaturation for 15 s and 60°C polymerization for 1 min. Dissociation steps were performed after the primers for the reactions were 5'-TTCGTCGAGGAGGAGAAG-3' and 5'-GACTAGCTGCTTATCGT-3' for cao-1, 5'-TCAAGGGACGAGAGGCG-3' and 5'-CGTTCAGCTTGTGGCCAC-3' for cao-2, and 5'-CCGAATGTCCCTACCCT-3' and 5'-CGAGGAAAGCGATTGTG TG-3' for al-2. The primers were designed with Primer Express version 2.0.0 (Applied Biosystems) from intronless sequences from each gene and synthesized (high-performance liquid chromatography [HPLC] grade) by StabVida (Oeiras, Portugal). Optimization of MgCl₂ and primer concentrations and annealing temperatures for RT-PCR experiments was done as recommended by the manufacturer, using 50 ng of RNA and 5 mM each primer. The β-tubulin gene of *Neurospora crassa* (NCU04054, primers 5'-CGTCCTACGTGTCCAGA-3' and 5'-GCGCTGCTTGCTGTA CAATGCA-3') was used as a control for constitutive expression. Relative gene expression was calculated with the cycle threshold (2^ΔΔCt) method with Sequence Detection Software version 1.2.2 (Applied Biosystems). Each RT-PCR analysis was performed four times (duplicate samples from two independent experiments), and standard deviations calculated to ensure statistical accuracy.

Protein expression and in vitro assays. For in vitro analysis, the cao-1 coding sequence was amplified from cDNA obtained from *Neurospora* total RNA using the SuperScript III first-strand synthesis system for RT-PCR (Invitrogen, Paisley, United Kingdom) and primers 5'-ATGGCTGTAATACGTCTCTCCCG-3' (ca01-1F) and 5'-AACACGTCACCTCATCGCGTC-3' (ca01-1R). The amplified product was cloned into pSC II from Stratagene (La Jolla, CA) and used as the expression vector. The expression plasmid, yielding pThio-cao1, was transformed into E. coli BL21 (DE3), leading to plasmid pSC-cao1, and the cDNA was sequenced to confirm its integrity. The cDNA was then excised using EcoRI and introduced into accordingly digested and alkali-labile phosphate-pretreated pGEX-5X-1 (Amersham Biosciences, NJ) to yield plasmid pGEX-cao1. E. coli BL21 was transformed with pGEX-cao1, and induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) to purify CAO-1 protein as previously described (18, 48). For enzyme assays, β-apo-8'-carotenal, 3-hydroxy-β-apo-8'-carotenal, and β-apo-8'-lycopenal were kindly provided by BASF (Ludwigshafen, Germany). These substrates were purified on thin-layer chromatography (TLC) silica gel plates (Merck, Darmstadt, Germany) run in petroleum benzene-diethyl ether-acetone (40:10:7, vol/vol/vol). The substrates were then scraped off under dim light and eluted with acetone. Highly pure stilbene, resveratrol, piceatannol, rhapontin, 3,4-dihydroxybenzaldehyde, and 4-hydroxybenzaldehyde were purchased from Sigma. 3-Hydroxystilbene and pinosylvin were obtained from Sequoia Research Products Ltd. (Pangbourne, United Kingdom), and trismethoxy-resveratrol from BIZZOL Diagnostica Vertrieb GmbH (Eching, Germany). For enzyme assays, substrates were mixed with an ethyl alcohol solution of octyl-β-glucoside (1%, wt/vol), dried in a vacuum centrifuge, and resuspended in water. The final concentration of the substrates was 100 μM for stilbenoids and 40 μM for apocarotenoids. The incubation buffer contained 1 mM TCEP [Tris(2-carboxyethyl)phosphine hydrochloride], 0.3 mM FeSO₄, and 1 mg ml^-1_ catalase (Sigma) in 200 μl of 100 mM HEPES-NaOH, pH 8.0. After a 30-min incubation at 27°C, assays were stopped by adding 1 volume of acetone, extracted with petroleum benzene-diethyl ether (1/4, vol/vol), and subjected to HPLC analysis. Assay mixtures with apocarotenoids were incubated for at least 2 h.

In vitro assays. For in vitro assays, the cao-1 coding sequence was cloned into pBAD/TOPo using the ThioFusion expression kit (Invitrogen) according to the manufacturer’s recommendations. For this purpose, the cDNA was amplified from pSC-cao1 using the proofreading PfuUltra II fusion HS DNA polymerase (Stratagene) in the buffer provided and the primers cao1-1F and cao1-1R. The PCR product was purified using the GFX PCR DNA and gel band purification kit (Amersham Biosciences) and ligated into the expression plasmid, yielding pThio-cao1. Lycopene-, β-carotene-, and zeaxanthin-accumulating *E. coli* X1L-Blue cells, harboring the required biosynthetic genes from *Erwinia herbicola*, were transformed with pThio-cao1 and the empty plasmid pBAD-Thio. Cultures were grown at 37°C to reach an optical density at 600 nm (OD₆₀₀) of 0.5 and induced overnight at 28°C with 0.2% (wt/vol) arabinose. The bacteria were harvested and extracted with acetone, and the extracts were subjected to HPLC analysis.

Analytical methods. Substrates were quantified spectrophotometrically at their individual λ_max (wavelength of maximum absorption) using extinction coefficients calculated from E1% extinction coefficient calculated for a 1% (wt/vol) solution as described previously (49) or as determined with the synthetic compounds (BASF). The protein concentration was determined with the Bio-Rad protein assay kit (Bio-Rad, CA). For HPLC, a Waters system (Eschborn, Germany) equipped with a photo-diode array detector (model 996) was used. A C₁₈ (YMC Europe, Schermbeck, Germany) phase column was used for carotenoid separation as described previously (19). For analyses of in vitro assays with piceatannol, the column was developed using a solvent system as follows. Solvent B was methanol–water–tert-butylmethy ether (50:50:10, vol/vol/vol), with the water containing 2.5 g liter^-1_ ammonium acetate, and solvent A was methanol–tert-butylmethy ether–water (50:50:10, vol/vol/vol); solvents were used at a flow-rate of 1 ml min^-1_ with a linear gradient from 100% B to 40% B within 15 min and then to 0% B within 10 min. The flow rate was then increased within 1 min to 2 ml min^-1_ 100% A, maintaining these final conditions for 12 min. The analyses of in vitro assays with other stilbenes and the detection of resveratrol were performed with the following solvent system. Solvent B was MeOH-water (35:65, vol/vol), and solvent A was MeOH-tert-butylmethy ether–water (500:500:100, vol/vol/vol). The column was developed with B from a flow rate of 1 to 1.4 ml min^-1_ within 10 min, followed by a linear gradient from 100% B to 50% B within 10 min at a flow rate of 1.4 ml min^-1_, and then to 100% A at a flow rate of 2 ml min^-1_ within 4 min, maintaining these final conditions for another 4 to 24 min at a flow rate of 2 ml min^-1_.

Germination assay. Eppendorf tubes containing 1 ml Vogel’s broth supplemented with 0.2 g liter^-1_ (0.88 mM) resveratrol or only with the same volume of ethanol were inoculated with 10° wild-type or Δcao-1 mutant conidia. The tubes were incubated at 30°C and 40 rpm for 8 h. After this time, the germinated spores were observed and photographed under a microscope (model DM 1000; Leica Microsystems, Germany).

Sequence analyses. Sequence alignments were achieved with the Clustal X 1.83 program (50). Corrections for multiple substitutions were
CAO-1 is not associated with carotenoid metabolism. Besides CAO-2, CAO-1 is the only clear member of the CCO-1 family encoded in the Neurospora genome, and therefore, it is the likely candidate for retinal biosynthesis. Comparison with CarX of *F. fujikuroi* shows that CAO-1 is smaller in size (526 residues versus 696), and a CLUSTAL alignment revealed 130 coincident positions between both proteins. Hence, we have investigated a possible relation of CAO-1 with carotenoid metabolism. The gene *carX* is strongly induced by light in *F. fujikuroi* (30). Since carotenoid biosynthesis in *Neurospora* mycelia is induced by light, we first investigated the effect of light on *cao-1* regulation. Mycelia grown in the dark were exposed to white light for different times, and their mRNA contents were determined by RT-PCR. The results showed no significant variation of *cao-1* mRNA levels under illumination (Fig. 1). In contrast, rapid induction was found for the genes *cao-2* and *al-2*, coding for enzymes of the carotenoid pathway, formerly reported to be stimulated by light (24).

To check a possible activity of CAO-1 as a retinal-forming enzyme, its cDNA was cloned and expressed as a thio-fusion protein in *E. coli* strains engineered to produce different carotenoids. This *in vivo* assay proved to be effective for the β-carotene-cleaving activity of CarX from *F. fujikuroi* (31). The expression of *cao-1* in a β-carotene-producing *E. coli* strain produced no bleaching of the cultures, indicating a lack of β-carotene degradation. Moreover, no change was observed in β-carotene levels in HPLC analyses (see Fig. S1 in the supplemental material) and no retinal was detected under appropriate detection wavelengths. Similar results were obtained upon the expression of *cao-1* in *E. coli* cells producing lycopene and zeaxanthin as representative examples of linear or hydroxylated carotenoids, providing further support for the lack of activity of CAO-1 on carotenoid substrates.

As a further approach to test a possible activity of CAO-1 on carotenoids, crude lysates of thioredoxin-CAO-1-overexpressing cells (described below) were incubated *in vitro* with different carotenoid substrates that are cleaved by other CCO enzymes (20, 31). No traces of enzymatic activity could be detected after HPLC separation of the carotenoids extracted from the reaction mixtures (see Fig. S1 and S2 in the supplemental material), reinforcing the lack of activity of CAO-1 on carotenoid substrates.

CAO-1 belongs to the Rco1 CCO subfamily. The lack of activity of CAO-1 on carotenoids and its low similarity to CarX prompted us to carry out a deeper analysis of its sequence features. Sequence alignments between functionally characterized fungal CCOs revealed three different groups (Fig. 2). The enzymes CAO-2 of *Neurospora* and CarT of *F. fujikuroi* are clustered in the phylogenetic tree with CarS and AcaA, two CCOs recently discovered in the zygomycete *P. blakesleeanus* (20, 21). CAO-2 and CarT cleave the monocyclic carotene torulene, and CarS cleaves β-carotene to produce the substrate for AcaA, β-apo-12’-carotenal. The activities of the four enzymes have in common the asymmetrical cleavage of different carotenoid substrates. Despite the taxonomic distance between the ascomycete *F. fujikuroi* and the basidiomycete *U. maydis* and the apparent differences in gene organization between CarX and Cco1, these β-carotene-cleaving enzymes form a separate group in the phylogenetic tree. CarX and Cco1 recognize the same substrate as CarS, namely, β-carotene, but they cleave it symmetrically. Finally, the four resveratrol-cleaving CCO enzymes recently described in *U. maydis*, *A. fumigatus*, *C. globosum*, and *B. fuckeliana* form a consistent separate group. CAO-1 is unambiguously located in this group, suggesting a putative resveratrol-cleaving activity. The gene organizations revealed by the protein alignments are consistent with the independent evolution of these enzymatic CCO subgroups (Fig. 2).

The CAO-1 enzyme cleaves resveratrol. Because of the sequence similarity to fungal CCOs cleaving biphenolic substrates, we tested whether CAO-1 cleaves resveratrol. For this purpose, glutathione S-transferase (GST)-CAO-1 fusion protein was expressed in *E. coli* cells, purified with glutathione-Sepharose, and released by the protease factor Xa, resulting in a protein of the expected size (Fig. 3A). Incubation of the recombinant CAO-1 protein *in vitro* with resveratrol resulted in the formation of two products (Fig. 3B, insets a and b) with elution times and UV spectrum maximal absorptions identical to those of 3,4-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde, the compounds resulting from the resveratrol cleavage activity by *U. maydis* Rco1 (36). Liquid chromatography-mass spectrometry (LC-MS) analyses (data not shown) confirmed the identity of both products and proved the oxidative cleavage at the interphenyl double bond of resveratrol (Fig. 3C).

To further elucidate the substrate specificity of CAO-1, purified enzyme was incubated with other stilbenes. Cleaving activity was detected with piceatannol (Fig. 3D), a compound that differs from resveratrol only in the occurrence of an additional hydroxyl group, while the other substrates tested, i.e., *trans*-stilbene, 4-mono-hydroxy-*trans*-stilbene, 3,5-dihydroxy-*trans*-stilbene (pinosylvin), trimethoxy-resveratrol, and 3’,5’,3-trihydroxy-4’-methoxystilbene-3-O-β-D-glucoside, were not converted (see Fig. S2 in the supplemental material). This result indicates that stilbenes converted by CAO–1 substrates must have at least three modified hydroxyl groups (see Fig. S2).

FIG 1 Effect of light on *cao-1*, *cao-2*, and *al-2* transcript levels. Real-time RT-PCR analyses of *cao-1*, *cao-2*, and *al-2* mRNA in total-RNA samples of the wild type grown in the dark or exposed to light for 15 min, 30 min, 1 h, or 2 h. Levels are relative to the value for each gene in the dark. All data show averages and standard deviations for four measurements from two independent experiments.
The *cao-1* gene is regulated by resveratrol. Given that resveratrol is the natural substrate of CAO-1, it might be expected that the presence of this compound does impact the transcript levels of the *cao-1* gene. Indeed, adding resveratrol at two different concentrations resulted in a rapid increase of *cao-1* mRNA, reaching up to 200-fold after 1 h of incubation with 200 mg liter$^{-1}$ resveratrol (Fig. 4). After reaching its maximum under the two concentrations tested, the mRNA level decreased in the following hours. Because of its low solubility in water, resveratrol was added dissolved in ethanol. The addition of the same amount of ethanol to control cultures did not cause any significant change of *cao-1* mRNA content, excluding the induction being caused by the organic solvent. In contrast to *cao-1*, adding resveratrol did not alter the mRNA levels of the carotenogenic genes *cao-2* and *al-2*, indicating their unrelated function.

The *cao-1* deletion does not cause apparent phenotypic alteration. To investigate the biological role of *cao-1* in *Neurospora*, targeted deletion of this gene was performed with the standard

FIG 2 Sequence analysis of CAO-1 (NCU07008) and other already characterized fungal CCOs. (Left) Neighbor-joining phylogram of 11 proteins, as follows: AcaA and CarS from *Phycomyces blakesleeanus* (genes 77734 and 79747, respectively, in its genome database), CarT (accession number CAI90971) and CarX (CAH70723) from *Fusarium fujikuroi*, CAO-2 from *Neurospora* (NCU11424), Cco1 (UM00965) and Rco1 (UM05084) from *Ustilago maydis*, and Rco1 from *Botryotinia fuckeliana* (XP_001548426), *Chaetomium globosum* (XP_001219451), and *Aspergillus fumigatus* (XP_746307). The shaded areas distinguish three major groups according to the enzymatic reaction. Top, four enzymes that cleave asymmetrically diverse carotenoid substrates; middle, two enzymes that cleave β-carotene symmetrically; bottom, resveratrol-cleaving enzymes with no known activity on carotenoid substrates. (Right) Simplified representation of the Clustal comparison between the proteins indicated on the left. Interruptions indicate gaps introduced by the Clustal program to facilitate alignment. The diagram below plots the proportion for the presence of the consensus amino acid (aa) at each position.

FIG 3 Purification and *in vitro* activity of CAO-1 on resveratrol and piceatannol. (A) Coomassie-stained SDS acrylamide gel showing CAO-1 purification. Lanes: 1, total lysate of control cells expressing GST (control); 2, total lysate of cells expressing GST-CAO-1; 3, sample 2 after removal of inclusion bodies; 4, nonbinding supernatant of sample 3; 5, eluted CAO-1 protein. The size of the only visible protein in lane 5 is indicated. (B) HPLC analyses of the *in vitro* assay products obtained after incubation of CAO-1 with resveratrol; UV spectra of the indicated peaks are shown in insets. (C) Resveratrol cleavage reaction and the products identified. (D) HPLC analyses of the *in vitro* assay products obtained after incubation of CAO-1 with piceatannol; UV spectra of the indicated peaks are shown in insets. mAU, milli-absorbance unit.
Transformant strains are hereinafter referred to as the wild type, their mycelia grew at similar rates in race tubes (data not shown), and they formed mature perithecia when crossed with the wild type, and one colony of the progeny obtained upon transformation with the disruption cassette in the five strains (see Fig. S6). No degradation halo was observed around the wild-type colonies (see Fig. S7B), suggesting that the CAO-1 enzyme is not secreted into the medium, as found for a resveratrol-degradation products (Sigma product sheet), of the added resveratrol precipitates, an effect observed even at low magnification with a stereoscopic microscope (see Fig. S7A and S8). No degradation halo was observed around the wild-type colonies (see Fig. S7B), suggesting that the CAO-1 enzyme is not secreted into the medium, as found for a resveratrol-degradation laccase produced by Botrytis cinerea (53).
the structural genes of the *F. fujikuroi* fungus could be found. In contrast of the carotenoid pathway (24), but not for CAO-1, for which no neurosporaxanthin biosynthesis and coregulated with other genes confirmed for CAO-2, it being responsible for the cleavage step in the fungus, they were called CAO-1 and CAO-2. The prediction was assisting a hypothetical role in carotenoid metabolism of this occurrence of two genes encoding presumptive CCO proteins (24). An-

DISCUSSION

A previous analysis of the *Neurospora* genome revealed the occurrence of two genes encoding presumptive CCO proteins (24). Anticipating a hypothetical role in carotenoid metabolism of this fungus, they were called CAO-1 and CAO-2. The prediction was confirmed for CAO-2, it being responsible for the cleavage step in neurosporaxanthin biosynthesis and coregulated with other genes of the carotenoid pathway (24), but not for CAO-1, for which no relation with carotenoid metabolism could be found. In contrast to the *carX* gene, mediating retinal formation in *F. fujikuroi*, or to the structural genes of the *F. fujikuroi* and *Neurospora* carotenoid pathways, *cao-1* mRNA levels were not affected by light. Moreover, heterologously expressed CAO-1 showed no activity with the different carotenoids or apocarotenoids tested, including the usual retinal precursor, β-carotene, or other substrates cleaved by the CarX enzyme, such as β-apo-8’-carotenal (31). The ability of the NOP-1 rhodopsin to bind retinal *in vitro* (37) suggests the occurrence of a retinal-forming enzyme in *Neurospora*. However, our results demonstrate that this enzyme is not CAO-1.

Thus far, retinal biosynthetic activity has only been found in certain members of the CCO family, either in fungi or in higher organisms. The lack of clear orthologs for CCO enzymes in the *Neurospora* genome, apart from CAO-1 and CAO-2, led us to consider two alternative hypotheses for retinal biosynthesis in this fungus, as follows.

(i) Retinal may be produced by a non-CCO biosynthetic activity. At least, there is a second enzyme group able to cleave β-carotene, although retinal formation has not been demonstrated: the fungus *Lepista irina* excretes a peroxidase enzyme (Q8J1S4) that degrades β-carotene to generate apocarotenoid-related compounds. One of them was identified as β-apo-10′-carotenal (54). We could not find a clear ortholog for Q8J1S4 in the *Neurospora* genome. The best match was the cytochrome c peroxidase NCU03297, with a size similar to that of Q8J1S4 (368 and 358 aa, respectively) but only 19% coincident residues. Similar β-carotene-degrading activities were found in other fungi (55) but have not been described in *Neurospora*. A different possibility is the occurrence of a nonorthodox CCO protein. *Neurospora* genes encoding proteins with alternative CCO-related sequences are under investigation.

(ii) Despite its ability to bind retinal (20 carbon atoms, abbreviated C_{20}), the physiological NOP-1 chromophore may be a nonretinal molecule. Albeit they are larger in size, we cannot discard for this role β-apo-4′-carotenal (C_{35}) or apo-4′-lycopenal (C_{35}), i.e., the aldehyde products resulting from the oxidative cleavage of either torulene or 3,4-didehydrolycopene by CAO-2 (Fig. 6). Their availability depends on the growth conditions: β-apo-4′-carotenal (C_{35}) is preferentially used by *Neurospora* as an intermediate of the pathway under illumination at 30°C, and apo-4′-lycopenal is preferentially used under illumination at cold temperature (56). Because of its similarity to retinal and its formation at a physiological temperature, β-apo-4′-carotenal is a more-plausible candidate. In support of this hypothesis, retinoid analogues may functionally replace retinal in visual opsins (57). Moreover, β-apo-12′-carotenal (C_{25}) and n-hexenal (C_{6}) can replace retinal as the chromophore in the rhodopsin responsible for phototaxis in the chytridiomycete *Allomyces reticulatus* (58). n-Hexenal is particularly efficient, although it produces a shift in the response toward the near-UV region of the spectrum. Interestingly, n-hexenal is similar in size to the small side product of CAO-2 activity, 3-methyl-2-butenal (Fig. 6, 2-isopentenal). The function of NOP-1 in *Neurospora* has not yet been established, and therefore, no information is available on the wavelength for its putative response. An investigation of the effect of near-UV exposure on the wild type and *nop-1* mutants of *Neurospora* could provide unexpected clues to the function of this protein.

The sequence similarities of CAO-1 with fungal resveratrol-cleaving enzymes led us to suspect the same enzymatic function for this protein. The resveratrol-cleaving activity of CAO-1 was fully confirmed *in vitro* and correlated with a marked induction of

FIG 5 Effect of resveratrol on growth of Δcao-1 mutants and their respective wild type and mus-52 controls. The strains were incubated on low-stringency sorbose-containing agar for 24 h. Data show averages and standard deviations for at least three independent colonies. (Bottom) Representative examples of mus-52 colonies.

FIG 6 Oxidative cleavage reactions catalyzed by CAO-2 in *Neurospora*. Each reaction is predominant at the indicated temperature (56).
cao-1 expression in vivo by the addition of resveratrol to the medium. Plants produce phytoalexins as a defense mechanism. Resveratrol displays antibiotic activity against numerous bacteria and fungi (reviewed in reference 59), including potential human pathogens, such as Candida albicans (60). In this fungus, resveratrol blocks the yeast-mycelial transition induced by serum, required for its pathogenic activity, and produces an arrest of cell cycle progression at the S phase. Resveratrol is also active against S. cerevisiae and against some filamentous fungi, such as Aspergillus flavus, Aspergillus oryzae, Penicillium expansum, and B. cinerea (61, 62). The sensitivity to resveratrol has received special attention in B. cinerea, a facultative phytopathogen able to infect green organs or fruits from a large diversity of plants, including Vitis vinifera grapes. The mechanism of action of resveratrol against B. cinerea is not well understood, but it has been suggested to interfere with respiration or to cause membrane peroxidation. The toxicity is due to the formation of the resveratrol dimer ε-viniferin, resulting from the activity of a specific secreted laccase, rather than to resveratrol itself (53). The effects are particularly visible on the morphology and germination of B. cinerea spores (63), the starting stage of the pathogenesis process. Deep morphological alterations were also observed in resveratrol-exposed cells of U. maydis (36).

Here, we show that resveratrol is poorly effective on Neurospora, where it hardly affects conidia germination and only produces very slight effects on mycelial growth and development. After different assays, we could only observe a minor reduction of wild-type growth by resveratrol under growth-restricted conditions, obtained by using sorbose as the carbon source. The slight reduction in colony growth was not apparent in the Δcao-1 mutants, suggesting that the effect was due to resveratrol degradation to 3,4-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde rather than to direct resveratrol toxicity. This effect is unrelated to the laccase-dependent resveratrol toxicity in B. cinerea, interpreted as a result of ε-viniferin formation (53). Resveratrol resistance in other fungi has been attributed to the multidrug efflux pump activity of ABC transporter systems (64, 65). Several such systems also operate in Neurospora (66), providing an explanation for the low toxicity of this compound on this fungus.

In our experiments, resveratrol was added to the medium at high concentrations, actually exceeding the solubility limit in water of ca. 30 mg liter⁻¹. Since it is only partly dissolved, precipitation particles can be observed under the microscope. In B. cinerea, a degradation halo surrounding the colony borders reveals degradation of external resveratrol (53). Such an effect was not observed in the borders of wild-type Neurospora colonies, suggesting that CAO-1 is only active in the cytoplasm. The low concentration of dissolved resveratrol available to enter the cell, probably reduced through the activity of an ABC transporter system, is sufficient for the effective induction of the cao-1 gene, presumably an additional mechanism to keep resveratrol concentrations under control.

The poor knowledge of Neurospora life conditions in nature hinders the postulation of plausible hypotheses to explain the occurrence of resveratrol-claving activity in this fungus. Neurospora is well known as a primary colonizer of burned trees and shrubs (see, e.g., references 67 and 68). The complex chemistry of burned vegetation might include the occurrence of toxic biphenolic compounds that could be degraded by CAO-1. Some endophytic fungi, including species from widespread genera such as Aspergillus, Penicillium, or Mucor, are able to produce resveratrol (69). This biosynthetic capacity might possibly enhance its survival by counteracting other competing microorganisms. The ability of Neurospora to cleave resveratrol might imply an evolutionary advantage for competition with such microorganisms, either by removing this defensive compound or by the generation of toxic cleavage products.

ACKNOWLEDGMENTS

This work was supported by grants from the Spanish Government (Ministerio de Ciencia y Tecnología, projects BIO2006-01323 and BIO2009-11131) and the Andalusian Government (project P07-CV-02813), Deutsche Forschungsgemeinschaft (DFG) grant AL 892/1-4, and the DFG Graduiertenkolleg 1305 Signaltransme in pflanzlichen Modelorganismen. Spanish grants included support from the European Union (European Regional Development Fund [ERDF]).

REFERENCES

1. Auldridge ME, McCarty DR, Klee HJ. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoids products. Curr. Opin. Plant Biol. 9:315–321.
2. Bouvier F, Isner JC, Dogbo O, Camara B. 2005. Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci. 10:187–194.
3. Moise AR, vonLintig J, Palczewski K. 2005. Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends Plant Sci. 10:178–186.
4. Wyss, A. 2004. Carotene oxygenases: a new family of double bond cleavage enzymes. J. Nutr. 134:2465–2508.
5. Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4:210–218.
6. Britton G, Lianaen-Sensen S, Pfander HP. 2004. Carotenoids: Handbook. Birkhäuser, Boston, MA.
7. Marasco EK, Schmidt-Dannert C. 2008. Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the innerfem α,β double bond of stilbene derivatives via a monooxygenase reaction. ChemBioChem 9:1450–1461.
8. Kamoda S, Saburi Y. 1993. Structural and enzymatical comparison of latoxinbife-α,β-dioxygenase isozymes, I, II, and III, from Pseudomonas paucimobilis TMY1009. Biosci. Biotechnol. Biochem. 57:931–934.
9. Kiselev KV. 2011. Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 904:417–425.
10. Yu W, Fu YC, Wang W. 2012. Cellular and molecular effects of resveratrol in health and disease. J. Cell. Biochem. 113:752–759.
11. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. 1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874.
12. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 333:1348–1351.
13. vonLintig J, Vogt K. 2004. Vitamin A formation in animals: molecular identification and functional characterization of carotene cleaving enzymes. J. Nutr. 134:2515–2565.
14. Sharma AK, Spudich JL, Doolittle WF. 2006. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 14:463–469.
15. Spudich JL. 2006. The multitalented microbial sensory rhodopsins. Trends Microbiol. 14:480–487.
16. Spudich JL. 1998. Variations on a molecular switch: transport and sensory signalling by archaenal rhodopsins. Mol. Microbiol. 28:1051–1058.
17. Menon ST, Han M, Sakmar TP. 2001. Rhodopsin: structural basis of molecular physiology. Physiol. Rev. 81:1659–1688.
18. Ruch S, Beyer P, Ernst H, Al-Babili S. 2005. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol. Microbiol. 55:1015–1024.
19. Scherzinger D, Ruch S, Kloor DP, Wilde A, Al-Babili S. 2006. Retinal is formed from apo-carotenoids in Novoscot sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase. Biochem. J. 398:361–369.
20. Medina HR, Cerda-Olmedo E, Al-Babili S. 2011. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol. Microbiol. 82:199–208.
21. Tagua VG, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, Idris M. 2012. A gene for caroten cleavage required for phororhyme biosynthesis and caroten regulation in the gungus Phomophsa blakesleeanus. Fungal Genet. Biol. 49:398–404.

22. Avalos J, Corrochano LM. 2013. Carotenoid biosynthesis in Neurospora, p.274–281. In: Kieken DP, McCluskey K (ed), Neurospora: genetics and molecular biology. Caister Academic Press, Norfolk, United Kingdom.

23. Avalos J, Estrada AF. 2010. Regulation by light in Fusarium. Fungal Genet. Biol. 47:939–948.

24. Saécles L, Youssar L, Holdermann I, Al-Babili S, Avalos J. 2007. Identification of the gene responsible for toluene cleavage in the Neurospora carotenoid pathway. Mol. Genet. Genomics 278:527–537.

25. Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J. 2007. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol. Microbiol. 64:448–460.

26. Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J. 2008. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69:1207–1220.

27. Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J. 2011. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J. 278:3164–3176.

28. Chen CH, Dunlap JC, Loros JJ. 2010. Neurospora illuminates fungal photoreception. Fungal Genet. Biol. 47:922–929.

29. Biesuz IA, Brau FL, Bean LE, Kang S, Natvig DO, Borkovich KA. 1999. The top-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to arachidophins. Proc. Natl. Acad. Sci. U. S. A. 96:8034–8039.

30. Thewes S, Prado-Cabrero A, Prado MM, Tuynszyn B, Avalos J. 2005. Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol. Genom. 274:217–228.

31. Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S. 2007. Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot. Cell 6:650–657.

32. Estrada AF, Avalos J. 2009. Regulation and targeted mutation of opa1, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J. Mol. Biol. 387:59–73.

33. Prado MM, Prado-Cabrero A, Fernández-Martin R, Avalos J. 2004. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr. Genet. 46:47–58.

34. Brown LS. 2004. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3:555–565.

35. Estrada AF, Brefort T, Mengel C, Díaz-Sánchez V, Alder A, Al-Babili S, Avalos J. 2009. Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet. Biol. 46:803–813.

36. Brefort T, Scherzinger D, Limón MC, Estrada AF, Trautmann D, Mengel C, Avalos J, Al-Babili S. 2011. Cleavage of resveratrol in fungi: characterization of the enzyme Rco1 from Ustilago maydis. Fungal Genet. Biol. 48:132–143.

37. Biesuz JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL. 1999. A eukaryotic protein, NOP-1, binds retinal to form an arachael rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145.

38. Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL. 2001. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J. Biol. Chem. 276:32495–32505.

39. McCluskey K. 2003. The Fungal Genetics Stock Center. From: molder to molecules. Adv. Appl. Microbiol. 52:245–262.

40. Davis RH, de Serres FJ. 1970. Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 71A:79–143.

41. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. U. S. A. 103:10352–10357.

42. Gritz L, Davies J. 1983. Plasmid-encoded hygromycin B resistance gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188.

43. Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E. 1989. Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet. News. 36:79–81.

44. Winston F,2007. The Fungal Genetics Stock Center: from molds to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

45. Kasbekar DP, McCluskey K (ed), Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown function. Caister Academic Press, Norfolk, United Kingdom.

46. Liu K, Pan Y, Zhang X, Zhang H, Sun X, Hu C, Li S. 2012. CD4 is the main contributor to azole resistance among four Pdr5p-like ABC transporters in Neurospora crassa. Fungal Genet. Biol. 116:848–854.
67. Jacobson DJ, Powell AJ, Dettman JR, Saenz GS, Barton MM, Hiltz MD, Dvorachek WH, Jr, Glass NL, Taylor JW, Natvig DO. 2004. Neurospora in temperate forests of western North America. Mycologia 96:66–74.
68. Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM. 2012. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 7:e33658. doi:10.1371/journal.pone.0033658.
69. Shi J, Zeng Q, Liu Y, Pan Z. 2012. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl. Microbiol. Biotechnol. 95:369–379.