Direct and heterologous approaches to identify the LET-756/FGF interactome.

Cornel Popovici, Yael Berda, Fabien Conchonaud, Aurélie Harbis, Daniel Birnbaum, Régine Roubin

To cite this version:

Cornel Popovici, Yael Berda, Fabien Conchonaud, Aurélie Harbis, Daniel Birnbaum, et al.. Direct and heterologous approaches to identify the LET-756/FGF interactome.. BMC Genomics, BioMed Central, 2006, 7, pp.105. .

HAL Id: inserm-00090008
http://www.hal.inserm.fr/inserm-00090008
Submitted on 25 Aug 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Direct and heterologous approaches to identify the LET-756/FGF interactome
Cornel Popovici, Yael Berda, Fabien Conchonaud, Aurélie Harbis, Daniel Birnbaum and Régine Roubin*

Abstract

Background: Fibroblast growth factors (FGFs) are multifunctional proteins that play important roles in cell communication, proliferation and differentiation. However, many aspects of their activities are not well defined. LET-756, one of the two *C. elegans* FGFs, is expressed throughout development and is essential for worm development. It is both expressed in the nucleus and secreted.

Results: To identify nuclear factors associated with LET-756, we used three approaches. First, we screened a two-hybrid cDNA library derived from mixed stages worms and from a normalized library, using LET-756 as bait. This direct approach allowed the identification of several binding partners that play various roles in the nucleus/nucleolus, such as PAL-1, a transcription regulator, or RPS-16, a component of the small ribosomal subunit. The interactions were validated by co-immunoprecipitation and determination of their site of occurrence in mammalian cells. Second, because patterns of protein interactions may be conserved throughout species, we searched for orthologs of known mammalian interactors and measured binary interaction with these predicted candidates. We found KIN-3 and KIN-10, the orthologs of CK2α and CK2β, as new partners of LET-756. Third, following the assumption that recognition motifs mediating protein interaction may be conserved between species, we screened a two-hybrid cDNA human library using LET-756 as bait. Among the few FGF partners detected was 14-3-3β. In support of this interaction we showed that the two 14-3-3β orthologous proteins, FTT-1 and FTT-2/PAR-5, interacted with LET-756.

Conclusion: We have conducted the first extensive search for LET-756 interactors using a multi-directional approach and established the first interaction map of LET-756/FGF with other FGF binding proteins from other species. The interactors identified play various roles in developmental process or basic biochemical events such as ribosome biogenesis.

Background

FGFs constitute a superfamily of pleiotropic growth factors involved in multiple cellular processes such as mitogenesis, angiogenesis and mesoderm induction [1].
There are 22 FGFs in humans. Except FGF11-14, they exert their biological activities by acting as extracellular growth factors binding to receptors (FGFR1-4) of the tyrosine kinase receptor superfamily [2]. In addition, FGF1-3 and FGF11-14 are localized in the nucleus and function intracellularly [3]. Intracellular FGFs bind to several proteins that play a role in FGF trafficking: FIBP, which allows FGF1 to shuttle between the cytosol and the nucleus [4], synaptotagmin-1, which allows FGF1 exocytosis [5], Cystein Rich FGF receptor (CFR), which forms complexes with various FGFs and allows their secretion [6,7], and LRP-1 and 2 (lipoprotein receptor-related proteins), which in conjunction with DAB-1 (Disabled) regulate EGL-17/FGF export in C. elegans [8]. FGF interactors may also regulate FGF nuclear activity; this is the case of Casein Kinase II regulatory subunits [9] and splicing factor SF3a66 [10], which both interact with FGF2. Finally, proteins of the extracellular matrix such as fibrastatin and fibrinogen interact with FGF2 [11,12].

LET-756 is one of the two FGFs of C. elegans [13, 14 for reviews]. It is essential for worm development [15]. Like some mammalian FGFs, it acts both intra and extracellularly. The molecular motif allowing secretion [16] and some of LET-756 extracellular functions have been described [17,18] but the intracellular functions remain poorly defined, although nuclear localization is probably of importance [19]. To further characterize the functions of LET-756, we used yeast two-hybrid screens to identify proteins that interact with this FGF. We identified several interacting proteins involved in various developmental processes or in basic biochemical events such as ribosome biogenesis, and validated some of the interactions by co-immunoprecipitation and/or colocalization.

Results

Identification of nematode LET-756 binding proteins by yeast two-hybrid library screens

To identify worm proteins that interact with LET-756, we used the two-hybrid system in the MAV103 yeast with LET-756 fused to the Gal-4 DNA binding domain (pDB) as bait and two C. elegans libraries. The latter were either normalized [20] to contain one representative of each expressed gene of the whole genome (ORFeome) or derived from a mixed stage worm population. Library clones were coupled to the Gal-4 activating domain (pAD). The bait did not show any intrinsic transcriptional activation of the three yeast reporter genes. In a screen of approximately 4 × 10^6 transformants, 41 clones were positive for the two reporters tested, or for only one reporter but with great intensity. The gap repair technique confirmed 9 clones (Table 1). Sequencing of these clones and blastn or tblastx interrogation of databases revealed unidentified sequences (UIS) and sequences coding for proteins with known functions: UMP synthase, an enzyme involved in de novo nucleic acid synthesis, cathepsin (aspartic peptidase A1, pepsinogen family member), RPS-16 (small ribosomal subunit), transcription factor PAL-1 involved in the anterior-posterior development of the male [21], DAF-21, a chaperone of the HSP-90 family, involved in chemosensory transduction and insulin signalization [22,23], COL-129, an isoform of collagen, and SKR-2 (homolog of skp1 of S. cerevisiae), a component of the skp1p/cullin/f-box SCF complex with ubiquitin ligase activity [24,25]. The latter also shows similarities with P19, which is associated with cyclinA/CDK2 complex in humans.

To confirm the results on some on the interactors we judged potentially relevant, pAD interactor clones were picked individually from the ORFeome library and tested directly in yeast two-hybrid system against pDB LET-756. PAL-1 interacted strongly with LET-756 (two positive tests). For the other interactors, only one test was clearly positive (Table 2A).

Identification of LET-756-binding proteins among orthologs of known mammalian FGF interactors

The conservation of signaling pathways between worms and mammals, as well as the conserved FGF structures in different species [26,27], suggested that orthologs of human FGF-binding proteins could interact with LET-756. We used blast interrogation to determine the most conserved orthologs supposed to retain the ancestral function of the known human FGF-interactors. These orthologs were recovered from the ORFeome library and tested in binary interactions (Table 2B). We found kin-10 (CK2β) and rpl-6 positive for two reporter genes, and kin-3 (CK2α), hsp-6 (mortalin), F14E5.2 (cystein rich FGF receptor, CFR) and C18A3.3 (NoBP) positive for one reporter gene.

Identification of human LET-756-binding proteins

We based our third approach on the assumption that protein interaction motifs may be conserved between species. We made a heterologous screen using a cDNA human library as prey and LET-756 as bait. The yeast two-hybrid system was used with LET-756 fused to LexA DNA binding domain as bait (pDB) for the screening of a human placenta cDNA library containing the Gal-4 activating domain (pAD). Table 3 indicates the number of times the interactors were isolated and the strength of the interaction. Identified partners were different from those unveiled by the C. elegans screens but showed similar biological activities (Table 4). MBD1 and ZN420 are transcription factors, 14-3-3β (YWHAB, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, β polypeptide) has chaperone activity, and FBL11 (Filamin-binding LIM protein 1) is a protein of the Zyxin family.
Finally, the orthologs of human 14-3-3β, ftt-1/par-5 and ftt-2, and the orthologs of FBL1, zyx-1a and zyx-1b, were obtained from the nematode ORFeome library and tested for direct interaction in yeast two-hybrid system. Table 2C indicates that FTT-1 and FTT-2, but not ZYX-1a or ZYX-1b, reacted with the LET-756 bait.

Table 1: LET-756-interacting proteins identified by screening Y2H C. elegans libraries. Bait used was DB-LET-756. Sequences of AD-interactor clones are in (58). Clones were assigned scores for LacZ expression, growth on plates lacking histidine but containing 20 or 40 mM 3-amino triazol (3-AT) and in addition, growth on plates lacking uracil (URA) for the C. elegans libraries.

Interactor (sequence name)	Gene name	Human ortholog(s)	LacZ	3-AT 20 mM	3-AT 40 mM	URA	Library
AD-C38D4.6 pal-1	CDX4 (Caudal-type homeobox protein 4)	++	+	-	-	cDNA	
AD-C47E8.5 daf-21	HSP90 family	-	++	+	-	cDNA	
AD-T01C3.6 rps-16	RPS16 (40S ribosomal protein S16)	+/-	++	-	-	cDNA	
AD-T07C4.1	UMPs (UMP-synthase)	-	+/-	-	++	cDNA	
AD-C15C8.3	CTSE (Cathepsin E precursor)	+/-	+	-	-	cDNA	
AD-C15C6.2b col-129	COL4A5 (Collagen alpha 5(IV) chain precursor)	+/-	+	+/-	-	cDNA	
AD-M18.1	KRTAP10-4 (Keratin-associated protein 10-4)	+	-	-	-	AD-ORFeome	
AD-F35A5.4	SKP1A (5-phase kinase-associated protein 1A)	+/-	++	-	-	AD-ORFeome	

Table 2: Direct interactions between LET-756 (DB) and clones derived from the ORFeome library. A) clones detected in the screening of the C. elegans libraries; B) orthologs of clones detected in the screening of the human placenta library; C) orthologs of known mammalian FGF interactors.

Interactors (AD)	LET-756 (DB)		
	LacZ	3-AT	URA
A			
RPS-16	+/-	++	-
PAL-1	++	+	-
DAF-21	-	+*	-
COL-129	+/-	+	-
SKR-2	+/-	+/-	-
C15C6.2	+/-	+	-
B			
KIN-10 (CSNK2B, CK2β)	+/-	+	-
KIN-3 (CSNK2A, CK2α)	-	+	-
HSP-6 (HSPA9B, mortalin)	-	+	-
F14E5.2 (GLG1, CFR)	-	+/-	-
C18A3.3 (EBNA1BP2, NoBP)	-	+/-	-
RPL-6 (RPL6)	+/-	+	-
C			
FTT-1/Par-5 (YWHAB, 14-3-3β)	+/-	+	-
FTT-2 (YWHAB, 14-3-3β)	+/-	+	-
ZYX-1a, ZYX-1b (ZN420)	-	-	-

*: 3-AT concentration allowing yeast growth was 20mM except for DAF-21 where it was 40 mM

Confirmation of interactions by co-immunoprecipitation experiments
A number of interactors we identified have been described as false positives in various studies. It is the case for HSP family members and ribosomal proteins, and to some extent for collagen-related proteins, Zn finger proteins and proteasome subunits [28]. To validate the interaction of LET-756 with the candidate partners, co-immunoprecipitation experiments were done in Cos-1 cells. Cos-1
cells were transiently cotransfected with HA-tagged partner constructs and LET-756::GFP, and the lysates were immunoprecipitated with anti-GFP. Fig. 1 shows the result of a western blot probed first with anti-HA to reveal the co-immunoprecipitated proteins, and second with anti-GFP to normalize the transfection with LET-756. All tested partners immunoprecipitated with LET-756, although with different strength, unrelated to their level of expression (not shown). The 14-3-3β and KIN-10 proteins were reproducibly the less efficient. To make sure that overexpression of the two tagged proteins was not responsible for the immunoprecipitation, we used TACC1 as an unrelated HA-tagged control. In similar condition, TACC1 was unable to immunoprecipitate LET-756.

Confirmation of interactions by subcellular colocalization experiments

To further confirm FGF/partner interaction in mammalian cells, HA-tagged partners were co-expressed with LET-756::GFP in Cos-1 cells and their respective subcellular localization was examined. As already described [16,19], LET-756::GFP localized in specific regions of the nucleus where splicing factors are concentrated. Immunofluorescence microscopy using anti-HA antibodies revealed PAL-1 in foci in the nucleus that colocalized with LET-756 (Fig. 2). We have previously established [19] that treatment of LET-756 expressing cells with actinomycin D (a drug inhibiting Pol I and Pol II activities) displaces LET-756 to the perinucleolar and nucleolar compartments. Addition of actinomycin D did not move the PAL-1 protein to the nucleolus as it did for LET-756 but kept both partners in close association in nucleoplasmic foci. Other partners, such as RPL-6, were delocalized by transfection of LET-756. RPL-6 was localized in large foci mainly in the nucleoplasm when transfected alone (column I, Fig. 2) but was most often dispersed through the nucleoplasm and associated with LET-756 when cotransfected with the FGF (Fig. 2, column II to IV). FIT-1/PAR-5 and FIT-2 localized preferentially in the cytoplasm when transfected alone, but observed also in the nucleus when transfected together with LET-756. In addition, vesicles containing both LET-756 and FIT-1 or FIT-2 were visible. KIN-3 colocalized with LET-756 in nuclei and exhibited a strong expression in cytoplasm whether LET-756 was present or not whereas KIN-10 present in nucleoplasm of untransfected LET-756 cells moved with LET-756 in the speckles when co-transfected. Upon actinomycin D treatment both LET-756 and KIN-10 formed enlarged speckles and moved to the nucleolus (Fig. 2). This striking delocalization observed upon actinomycin D treated KIN-10 co-transfected cells did not occurred with KIN-3. In other instances, the partner modified LET-756 localization: RPS-16 concentrated LET-756 in large foci when both proteins were present in the nucleus (Fig. 2). The protein encoded by C15C6.2 did not show any gross colocalization (Fig. 2). Finally, COL-129 was localized only at the Golgi apparatus, whether LET-756 was present or not, and CFR was localized only in the cytoplasm.

Table 3B: LET-756-interacting proteins identified by screening Y2H human placenta libraries. B: Description of the proteins and identification of the *C. elegans* orthologs.

Protein	Description	*C. elegans* orthologs
YWHAB (14-3-3β)	protein with chaperone activity implicated in subcellular compartmentalization of binding partners	PAR-5 or FTT1, FTT-2
MBD1	negative regulator of transcription, the methyl CpG-Binding Domain	none
EIF352	initiator of translation (subunit 9)	EIF3-B
FBL1	protein belonging to the Zyxin family, having 3 LIM domains, involved in protein-protein interaction (filamin-binding LIM protein-1)	ZYX-1
ZN420	zinc finger protein with a Krab domain	none

*: 3-AT concentration allowing yeast growth was 20mM except for DAF-21 where it was 40 mM
Discussion

Several growth factors are found in the nucleus in addition to their other localizations. This is the case for LET-756 but not for EGL-17, the other *C. elegans* FGF [29]. The role of LET-756 in the nucleus is not known. To help characterize this role we searched to identify intracellular binding partners of LET-756. By using different two-hybrid screens in yeast, we identified several proteins

Table 5: C. elegans orthologous genes of known human FGF interactors.

FGF	Interactor	C. elegans or human ortholog
FGF1	HSPA9B (Stress-70 protein, mortalin) [39]	hsp-6 (C37H5.8)
FGF1	NP_060979.2 (PRO1855, LOC55379, ribosome-binding protein p34, RBP34*) [39]	
FGF1	LDL (Low density lipoproteins) [40]	
FGF1	S100A13 (Calcium binding protein S100A13) [41]	
FGF1	SYT1 (Synaptotagmin-I) [5]	snt-1 (F31E8.2)
FGF1	FIBP (FGF-1 intracellular binding protein) [4]	
FGF1 and FGF2	FGFBP1 (Fibroblast growth factor binding protein 1) [42]	
FGF1 and FGF2	CSNK2A (Casein Kinase II, catalytic subunit α) [43]	kin-3 (B0205.7)
FGF2	CSNK2B (Casein Kinase II, regulatory subunit β) [9]	kin-10 (T01G9.6b)
FGF2	RPL6 (Large ribosomal subunit L6) [36]	rpl-6 (R151.3)
FGF2	S100A13 (Calcium binding protein S100A13) [41]	rps-19 (T05F1.3)
FGF2	CEP57 (Translokin, Centrosomal protein of 57 kDa, Proliferation-inducing protein 8, PGH) [44]	
FGF2	SMN1 (Survival motor neuron protein) [45, 46]	smn-1 (C41G7.1)
FGF2	FGA/FGB/FGG (Fibrinogen, alpha/beta/gamma polypeptides) [12, 47]	
FGF2	FN1 (Fibbastatin, fragment of fibronectin) [11]	C56C10.4
FGF2	API5 (Apoptosis inhibitor 5, Fibroblast growth factor 2-interacting factor, FIF) [48]	
FGF2	SF3A2 (Splicing factor 3A subunit 2) [10]	F11A10.2
FGF2	PTX3 (Long pentraxin 3) [49]	
FGF2	PF4 (CXCL chemokine platelet factor 4) [50]	
FGF1, FGF2, FGF3, FGF4	GLG1 (Golgi apparatus protein 1 precursor, Cysteine-rich fibroblast growth factor receptor, CFR-1) [6,7]	F14E5.2
FGF3	EBNA1BP2 (rRNA processing protein EB2, Nuclear RNA Binding Protein, NoBP) [51]	C18A3.3
FGF11-14	MAPK8BP2 (Islet-brain-2, JNK MAP kinase scaffold protein 2) [52]	jip-1 (F56D12.4)
EGL-17	LRP-1 (Low-density lipoprotein Receptor Related, F29D11.1) [8]	lrp-1
EGL-17	LRP-2 (Low-density lipoprotein Receptor Related, T21E3.3) [8]	lrp-2
EGL-17	DAB-1 (Drosophila disabled homolog, M110.5) [8]	dab-1/dab-2

Scores obtained in the different assays used: (i) two-hybrid assays, (ii) co-immunoprecipitation (co-IP), (iii) colocalization by immunofluorescence in single transfected cells (Coloc) and (iv) delocalization (Deloc) of one or the two partners induced by the cotransfection. Interactions were classified as I (the strongest) to III (the weakest).
involved in various aspects of protein synthesis or degradation. Further analysis by co-immunoprecipitation and colocalization confirmed the interactions identified. We demonstrated that not only LET-756 could interact with mammalian partners as well as their orthologs (e.g. 14-3-3β vs FTT-1/PAR-5 and FTT-2) but also that orthologs of mammalian FGF partners could interact with LET-756 (CK2β vs KIN-10). Analyses of these partners could be of interest in the study of mammalian FGFs.

The majority of the proteins we identified are nuclear, which was expected since the two-hybrid system needs the fusion to be targeted to the nucleus. However, some interactions have been identified as false positive in other screens [28]. By performing co-immunoprecipitations and studying subcellular localization, we validated the interaction of LET-756 with RPS-16, FTT-1/PAR-5, FTT-2, KIN-10 and RPL-6 with high score, and with PAL-1, DAF-21, SKR-2, KIN-3 and C18A3.3 with lower strength (see Table 6). The function of some interacting partners is relevant to FGF biology. The 14-3-3/FTT-1/FTT-2 proteins, which belong to the highly conserved family of chaperone molecules transit to the nucleus and participate in nucleocytoplasmic transport, regulating intracellular transduction [30]. We did not find a 14-3-3 conventional phosphorylated binding site on LET-756 [16]. It will be interesting to analyze whether interaction of these proteins with the EFVSA motif of secretion described in LET-756 [16] causes its secretion. The interaction of LET-756 with PAL-1 is of interest because PAL-1 is also highly conserved during evolution. It is the ortholog of caudal (Drosophila), CDX1, 2 and 4 (mammals) and Xcad3 (Xenopus) parahox proteins. Caudal proteins are involved in the transcriptional regulation of multiple genes that are involved in posterior patterning [32]. The interaction of LET-756 with PAL-1 could activate the expression of various genes involved in nematode anterior-posterior development as it is the case for the interaction of Xenopus e-FGF with Xcad3 and the resulting activation of HOX genes [33,34]. In addition, pal-1 mutant exhibits aberrant cell position in posterior muscle cells [35], a site of LET-756 expression [13,19] as well as in posterior hypodermis, a site of LET-756 action [17]. Both muscle and epidermis evolve from the C lineage. In the absence of PAL-1, the C blastomeres fail to develop. Protein phosphorylation by the coordinated activities of protein kinases and phosphatases is central to many signal transduction pathways. The combined action of LET-756/FGF, EGL-15 receptor, CLR-1 phosphatase (for a review see [14]) and KIN-3 and KIN-10, the respective catalytic and regulatory subunits of CK2, might regulate various processes involved in proliferation -as it is described for FGF1 and 2 [43,9] – or in other functions. KIN-3 and KIN-10 have been recently implicated in primary cilia biology [55]. Finally, some ribosomal proteins
interact with mammalian FGF [36-38] to regulate their signaling and trafficking to the nucleus; reciprocally, FGFs may regulate ribosome biogenesis and protein synthesis during the G1 phase of the cell cycle. In contrast to these relevant interactors, others appear irrelevant, such as MBD1 since no methylation occurs in *C. elegans*.

The interactions revealed by the two-hybrid screens are rather weak. This could be due to 1) the high stringency associated with the system using the MAV 103/203 yeast strains; it is worth noting that in large-scale screenings of interactions no partner for LET-756 was found [20]; 2) a bad exposure of the binding site in the fusion proteins; 3) the existence of ternary interactions as seen in the ligand – tyrosine kinase receptor – heparan sulphate complex and 4) the need for post-translational modifications of the proteins that occur in mammalian cells and not in yeast, explaining why better interactions between glycosylated LET-756 [16] and various partners were obtained in immunoprecipitation and immunofluorescence experiments than in yeast two-hybrid screens.

Finally, it will be interesting to know whether the expression pattern of LET-756, which is mainly muscular and neuronal in the worm, overlap with that of the various partners. Search in the literature (56, 57) was not conclusive since the majority of the partners were found in eggs (FTT-1/PAR-5, FTT-2, DAF-21, PAL-1), intestine (HSP-6, SKR-2) or cuticle (COL-129).

Conclusion

We have conducted the first extensive search for LET-756 interactors and established the first interaction map of LET-756/FGF with FGF binding proteins (Fig. 3 and Table 6). This could help understand FGF functions. Proteins of interest were involved in developmental processes or in basic biochemical events such as ribosome biogenesis and protein synthesis. In addition, to get insight in the evolution of the FGF interactome network, which we have illustrated in Fig. 3, we tested 6 of 20 orthologs of human FGF interactors (Table 6), and found KIN-10 and RPL-6 as new potential interactors. Looking for physical interactions in
a physiological system will determine which of these interactions are essential.

In conclusion, 1) combining the yeast two-hybrid screen with bioinformatics and computational biology, we have delineated potential interactors of LET-756, and possibly of the entire FGF family; 2) comparative genomics analysis yielded valuable insights into conserved and divergent aspects of function, regulation, and evolution since not all pathways are conserved as demonstrated by the ortholog analysis; 3) the information given herein, although not complete, might be useful for people working in the field.

Methods

Yeast two-hybrid assays

A full-length let-756 transcript was fused in-frame with the coding sequence of the DNA binding domain (DB) of Gal4, and was used in a Y2H screen system as described in [20] for the *C elegans* libraries. Two worm libraries fused to the activation domain (AD) of Gal4, a cDNA and the AD-ORFeome libraries [53] were screened. The MAV103 yeast strain based Y2H assay contains three reporter genes (*HIS3, lacZ* and *URA3*) [54]. A cDNA human placenta library fused to the activation domain of LexA was also screened. The L40 yeast strain based Y2H assay contains only two reporters (*HIS3* and *lacZ*). In this case, the full length let-756 transcript was cloned into the LexA DNA binding domain bait expression vector pBTM116B Kana. Yeast assays were done using conventional lithium acetate-based method. Clones were assigned scores for LacZ expression, growth on plates lacking histidine but containing 20 or 40 mM 3-amino triazol and in addition, growth on plates lacking uracil for the *C. elegans* libraries. To ascertain interactions, the gap repair technique was performed as in [54].

Plasmid construction

To generate prey-tagged expression vectors used in co-immunoprecipitation assay or immunofluorescence, the coding regions of various genes were amplified by PCR using as template the corresponding EST clones obtained from RZPD (Berlin, Germany) and then inserted in the expression vectors using Gateway technology (Invitrogen, Carlsbad, CA).
LET-756::GFP was obtained as previously described [16].

Cell culture and in vivo interaction assay
Cos-1 cells grown in DMEM supplemented with 10% fetal calf serum were plated in 60-mm dishes at a concentration of 2 × 10⁶ cells/dish and immediately transfected with 1µg DNA in Fugene, according to the manufacturer instructions. Twenty four hours after transfection, cells were lysed in 1 ml triton buffer (10 mM Tris, pH7.4, 100 mM NaCl, 2.5 mM MgCl₂, 1% triton, 1 mM EDTA, 10 mM DTT). Detergent insoluble materials were removed by 30 min centrifugation at 13000 rpm at 4°C. Whole cell lysates were first incubated with protein G-sepharose beads and then with the relevant antibody for at least 2 hr. Protein G-sepharose beads were then added for another additional 2 hr and washed 3 times with lysis buffer. Bound proteins were eluted by boiling in SDS sample buffer and resolved on a 10% SDS-PAGE gel and analyzed by Western blots. For immunofluorescence analysis, cells grown on glass coverslips were fixed and permeabilized in 3.7% PAF and 0.1% Triton or in methanol for 6 min at -20°C. Similar results were obtained using these different modes of fixation. Cells were incubated with primary antibody for 1 hr and then incubated with Texas Red-conjugated secondary antibody for another 2 hr. Plasmid LET-756::GFP was visualized by autofluorescence. Coverslips were examined using a Leica TCS NT confocal microscope.

The following antibodies were used: rat monoclonal anti-HA (12CA5) antibody was from Roche (Indianapolis, IN, USA), rabbit polyclonal anti-GFP from Abcam (Cambridge, UK), Texas Red anti-rat antibody from Molecular Probes (Eugene, OR, USA), peroxidase anti-mouse from Santa Cruz (Santa Cruz, CA, USA).

Abbreviations
DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; DTT, dithiotreitol; Y2H, yeast two hybrid; GFP, green fluorescent protein

Authors' contributions
CP, YB and AH performed the two-hybrid screenings and the analyses of the data, CP and FC the gap-repair confirmation of clones, FC and RR the co-immunoprecipitation and immunofluorescence experiments, CP, the art work. CP played the major role in the bioinformatics analysis. DB initiated the C. elegans project and helped draft the manuscript. RR conceived and coordinated the study and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank F. Birg and D. Maraninchi for encouragements, P. Pontarotti for helpful discussions, P. Lecine for advices during this study and J. Reboul for the gift of the ORFeome library and advices. The work has been supported by Inserm, Institut Paoli-Calmettes and grants from the Ligue Nationale Contre le Cancer (Label).

References
1. Goldfarb M: Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 1996, 7:311-325.
2. Dickson C, Spencer-Dene B, Dillon C, Fanti V: Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2000, 2:191-196.
3. Goldfarb M: Signaling by fibroblast growth factors: the inside story. Sci STKE 2001, 106:PE37.
4. Kolpakova E, Wiedlocha A, Stemmark H, Klingenberg Q, Falnes PO, Olsnes S: Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochem J 1998, 332:213-222.
5. LaVallee TM, Tarrantini M, Mouta Carreira C, Jackson A, Maciag T: Synaptotagmin I is required for fibroblast growth factor-1 release. J Biol Chem 1999, 273:22217-22223.
6. Burrsu LW, Zuber ME, Luedecke BA, Olwin BB: Identification of a cysteine-rich receptor for fibroblast growth factors. Mol Cell Biol 1992, 12:5600-5609.
7. Kuhl R, Antoine M, Oin BB, Dickson C, Kiefer F: Cysteine-rich fibroblast growth factor receptor alters secretion and intracellular routing of fibroblast growth factor 3. J Biol Chem 2000, 275:15741-15748.
8. Kamikura DM, Cooper JA: Lipoprotein receptors and a disabled family cytoplasmic adaptor protein regulate EGL-17/FGF export in C. elegans. Genes Dev 2003, 17:2798-2811.
9. Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G: Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996, 271:24781-24787.
10. Gringen S, van Bergeijk J, Haastert K, Grothe C, Claus C: P. Nuclear fibroblast growth factor-2 interacts specifically with splicing factor SF3b66. Biol Chem 2004, 385:1203-1208.
11. Bossard C, Van den Bergh L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H: Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 2004, 64:7507-7512.
12. Peng H, Sahni A, Fay P, Bellum S, Prudovskiy I, Maciag T, Francis CW: Identification of a binding site on human FGF-2 for fibronectin. Blood 2004, 103:2114-2120.
13. Birnbaum D, Popovic C, Roubin R: A pair as a minimum: The two fibroblast growth factors of the nematode Caenorhabditis elegans. Dev Dyn 2005, 232:247-255.
14. Huang P, Stern MJ: FGF signaling in flies and worms: more and more relevant to vertebrate biology. Cytokine Growth Factor Rev 2005, 16:151-158.
15. Roubin R, Naer K, Popovic C, Vatcher G, Coulier F, Thierry-Mieg J, Pontarotti P, Birnbaum D, Baillie D, Thierry-Mieg D: let-756, a C. elegans fgg essential for worm development. Oncogene 1999, 18:6741-6747.
16. Popovic C, Conchonaud F, Birnbaum D, Roubin R: Functional phylogenetic relates LET-756 to FGFG. J Biol Chem 2004, 279:40146-40152.
17. Huang P, Stern MJ: FGF signaling functions in the hypodermis to regulate fluid balance in C. elegans. Development 2004, 131:2595-2604.
18. Bulow HE, Boulin T, Hobert O: Differential functions of the C. elegans FGF receptor in axon outgrowth and maintenance of axon position. Neuron 2006, 42:367-374.
19. Popovic C, Fallet M, Marguet D, Birnbaum D, Roubin R: Intracellular trafficking of LET-756, a fibroblast growth factor of C. elegans, is controlled by a balance of export and nuclear signals. Exp Cell Res 2006, 312:1484-1495.
20. Reboul J, Yaglio P, Rual JF, Lanzetti L, Martinez M, Armstrong CM, Li S, Jacoutot L, Bertin N, Janky R, Moore T, Hudson JR Jr, Hartley JL, Brasch MA, Vandenhauwe J, Boulton S, Endress GA, Jenna S, Chevet E, Papasotiropoulos V, Tolas PP, Pacek J, Snyder M, Huang R, Chance MA, Lee H, Oussoue-Stamm L, Hill DE, Vital M: C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 2003, 34:35-41.
21. Baugh LR, Hill AA, Claggart M, Hill-Harfe K, Wen JC, Slonim DK, Brown EL, Hunter CP: The homeodomain protein PAL-1 spec-
ifies a lineage-specific regulatory network in the C. elegans embryo. Development 2005, 132:1843-1854.

22. Broydy DA, Link EM, Yowhee J, Tian H, Colacurcio PL, Thomas JHA: Transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 2000, 155:85-104.

23. Inoue T, Takamura K, Yamae H, Ise N, Kawakami M, Tabuse Y, Miwa J, Yamaguchi Y: Caenorhabditis elegans DAF-21 (HSP90) is characteristically and predominantly expressed in germline cells: spatial and temporal analysis. Dev Growth Diff 2003, 45:369-376.

24. Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET: The Caenorhabditis elegans Ski1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol 2002, 12:272-277.

25. Yamanaka A, Yada M, Imaki H, Koga M, Ohshima Y, Nakayama K: Multiple Ski1-related proteins in Caenorhabditis elegans: diverse functions in interaction with Cullins and F-box proteins. Curr Biol 2002, 12:267-275.

26. Popovicci N, Roubin R, Coulier F, Birnbaum D: An evolutionary history of the Fgf superfamily. Bioessays 2005, 27:849-857.

27. Itoh N, Ornitz DM: FGFs and Fgf genes function in a coordinated manner to regulate development. Trends Genet 2002, 18:65-69.

28. Van Criekinge W, Beyaert R: The FGF-17, FGF-22, and FGF-24 receptors: new members of a diverse signaling family. Trends Biochem Sci 2003, 28:47-52.

29. Van Criekinge W, Beyaert R: Yeast Two-Hybrid: State of the Art. Biol Proced Online 1999, 2:1-38.

30. Burdine RD, Chen EB, Kwok SF, Stern MJ: egl-17 encodes an inhibitor of nuclear factor Y that regulates the expression of genes required for sex myoblast migration in Caenorhabditis elegans. Proc Natl Acad Sci USA 1997, 94:2433-2437.

31. Antken A: 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol 1996, 6:341-347.

32. Bridges D, Moorhead GB: Fibroblast growth factor-1 (FGF-1) inducible transcripts in Caenorhabditis elegans. Dev Biol 1998, 200:143-151.

33. Pellettieri J, Seydoux G: Anterior-posterior polarity in C. elegans and Drosophila – PARallels and differences. Science 2002, 298:1946-1950.

34. Pownall ME, Tucker AS, Slack JM, Isaacs HV: eFGF, Xcad2 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 1996, 122:3881-3892.

35. Isaacs HV, Pownall ME, Slack JM: Regulation of Hox gene expression and posterior development by the Xenopus caudal homologues Xchd1 and Xchd4. EMBO J 1998, 17:3413-3427.

36. Edgar LC, Carr S, Wang H, Wood WB: Zygotic expression of the cauligo homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryoogenesis. Dev Biol 2001, 229:71-88.

37. Shen B, Arrese M, Gualandris A, Rifkin DB: Intracellular association of FGF-2 with the ribosomal protein L6/TAXREB107. Biochim Biophys Acta Res Commun 1998, 252:524-528.

38. Soulet F, Ali Sastri T, Roga S, Amliric F, Bouchet G: Fibroblast growth factor-2 interacts with free ribosomal protein S19. Biochem Biophys Res Commun 2001, 289:591-596.

39. Skjerpen CS, Wesche J, Olsnes S: Identification of ribosome-binding protein p34 as an intracellular protein that binds to a diverse fibroblast growth factor. J Biol Chem 2002, 277:23864-23871.

40. Maizukushi E, Suzuki M, Loupavot A, Urutu T, Hayashi H, Misono T, Kaul SC, Wadhwa R, Imanura T: Fibroblast growth factor-1 interacts with glucose-regulated protein GRP78/mortalin. Biochem J 1999, 343:461-466.

41. Ananyeva N, Tjurmin A, Saenko E, Haudenschild C: Low density lipoproteins interact with acidic fibroblast growth factor and modify its function. Arterioscler Thromb Vasc Biol 2003, 23:601-607.

42. Carreira CM, LaVallee TM, Tarantini F, Jackson A, Lathrop JT, Hampton B, Burgess WH, Maciag T: S100A13 Is Involved in the Regulation of Fibroblast Growth Factor-1 and p40 Synaptotagmin-1 Release in Vitro. J Biol Chem 1998, 273:22224-22231.

43. Tassi E, Ali-Aattar A, Aigner A, Swift MR, McDonnell K, Karavanov A, Wellstein A: Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem 2001, 276:40247-40253.

44. Wiedlocha A, Falnes PO, Madshus IH, Sandvig K, Olsnes S: Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell 1994, 76:1039-1051.

45. Bossard C, Laurell H, Van den Berge L, Meunier S, Zanibellato C, Prats H: Translokin is an intracellular mediator of FGF-2 trafficking. Int J Cell Biol 2003, 3:433-439.

46. Claus P, Bross AF, Grothe C: Fibroblast growth factor-2(23) binds directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem J 2004, 384:559-565.

47. Sahni A, Khorana AA, Bags RB, Peng H, Francis CW: FGF-2 binding to fibrinogen is required for augmented angiogenesis. Blood 2006, 107:126-131.

48. Van den Berge L, Laurell H, Heue I, Zanibellato C, Prats H, Bugler B: FIF (fibroblast growth factor-2 (FGF-2)-interacting-factor), a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2. Mol Endocrinol 2000, 14:1709-1724.

49. Camozzi M, Zachigna S, Rusnati M, Coltrini D, Ramirez-Correa G, Bottazzi B, Mantovani A, Giacca M, Presta M: Pentraxin 3 inhibits fibroblast growth factor 2-dependent activation of smooth muscle cells in vitro and neointima formation in vivo. Arterioscler Thromb Vasc Biol 2005, 25:1837-1842.

50. Chadderton NS, Stringer SE: Interaction of platelet factor 4 with fibroblast growth factor 2 is stabilised by heparan sulphate. Int J Biochem Cell Biol 2003, 35:1052-1055.

51. Reimers K, Antoine M, Zapata K, Blecken V, Dickson C, Kiefer P: Nues P, a nuclear fibroblast growth factor 3 binding protein, is cell cycle regulated and promotes cell growth. Mol Cell Biol 2001, 21:4996-5007.

52. Schoorlemmer J, Goldfarb M: Fibroblast growth factor homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. J Biol Chem 2002, 277:4911-49119.

53. Vaglio P, Lamesch P, Rebold J, Rual JF, Martinez M, Hill D, Vidal M: The Caenorhabditis elegans ORFeome Database. Nucleic Acids Res 2003, 31:1237-1240.

54. Wallhout AJ, Vidal M: High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 2001, 24:297-306.

55. Hu J, Bae YK, Knobel KM, Barr MM: Casein Kinase II and Calcineurin Modulate TRPP Function and Ciliary Localization. Mol Biol Cell 2006, 17:2200-2211.

56. [http://nematode.lab.nig.ac.jp/db2/]

57. [http://elegans.bcgsc.ca/perl/eprofile/index].

58. [http://www.wormbase.org].