Some Metrics for the Crystal Cubic Carbon $CCC(n)$ and the Layer Cycle Graph $LCG(n, k)$

Jia-Bao Liua, Ali Zafari$^b,^*$

aSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, P.R. China
bDepartment of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

Abstract

In a chemical compound, it is very important for chemists to find the size of the smallest set of atoms so that they can identify other atoms relative to that the smallest set of atoms, so chemists require mathematical forms for a set of chemical compound to give distinct representations to distinct compound structures and its corresponding in graph theory is to find the minimal resolving set. The study of the resolving set and its related parameters such as doubly resolving set and strong resolving set are significant, and it is well known that these problems are NP hard. In this article, we define the structure of the crystal cubic carbon $CCC(n)$ by a new method, and we provide a much simpler formula for obtaining its vertices than the formula for calculating its vertices in (Baig et al., 2017). Moreover, we focus on some resolving parameters of two graphs the crystal cubic carbon $CCC(n)$ and the layer cycle graph will be denoted by $LCG(n, k)$.

Keywords: resolving set; doubly resolving; strong resolving.

2010 MSC: 05C12; 05C90.

1. Introduction

Throughout this article we will considering connected simple graphs. The structure of a graph in graph theory is often considered as a set of vertices and edges. From a chemical graph theory perspective, the molecular graph is a graph consists of atoms called vertices and the chemical bond between atoms called edges. Especially, if we consider a graph as a chemical compound, then by changing the set of atoms and permuting their positions, a collection of compounds is essentially defined that are characterized by the substructure common to them (Chartrand et al., 2000). In a chemical compound, it is very important for chemists to find the size of the smallest set of atoms so that they can identify other atoms relative to that the smallest set of atoms, so chemists require mathematical forms for a set of chemical compound to give distinct representations to distinct compound structures (Baig et al., 2017), and its corresponding in graph theory is to find the minimal resolving set as follows:

Suppose $R = \{r_1, r_2, ..., r_m\}$ is an order subset of vertices belonging to a graph G. For each vertex u of G, we shall use the notation $r(u|R)$ to denote the representation of u corresponding to R in graph G, that is the m-tuple $(d(u, r_1), ..., d(u, r_m))$, where $d(u, r_i)$ is the length of geodesic between u and r_i, $1 \leq i \leq m$. If the representation of distinct vertices in $V(G) - R$ is distinct, then the order subset R is called a resolving set of graph G [1]. Therefore, it is important to find the smallest resolving set of graph G. The cardinality of the smallest resolving set in graph G is called the metric dimension of G, and is denoted by $\beta(G)$. The metric dimension and its related parameters has been studied by many researchers over the years, because their remarkable applications in graph theory and other sciences is important. For more specialized topics see [2, 3, 4, 5, 6]. Indeed, the concept and notation of the metric dimension problem, was first introduced by Slater [7] under the term locating set, and the idea of metric dimension of a graph was individually introduced by Harary and Melter in [8].

*Corresponding author

Email addresses: liujiabaoad0163.com; liujiabaohjzu.edu.cn (Jia-Bao Liu), zafari.math.pu@gmail.com; zafari.math@pnu.ac.ir (Ali Zafari)

Preprint submitted to – January 21, 2022
One of the more specialized topics related to the metric dimension is a doubly resolving set of graph. Cáceres et al. [9] define the notion of a doubly resolving set. Also, we can verify that an ordered subset $Z = \{z_1, z_2, \ldots, z_6\}$ of vertices of a graph G is called a doubly resolving set for G, if every two distinct vertices u and v of G are doubly resolved by some two vertices in the set Z, that is, for any two vertices $u, v \in V(G)$ we have $r(u|Z) - r(v|Z) \neq \mu$, where μ is an integer, and I denotes the unit n- vector $(1, \ldots, 1)$. The cardinality of minimum doubly resolving set in graph G is denoted by $\psi(G)$. For more information on the doubly resolving set of graphs see [10, 11, 12, 13].

A vertex u of a graph G is called maximally distant from a vertex v of G, if for every $w \in N_G(u)$, we have $d(v, w) \leq d(v, u)$, where $N_G(u)$ denotes the set of neighbors that u has in G. If u is maximally distant from v and v is maximally distant from u, then u and v are said to be mutually maximally distant [14]. For vertices u and v of a graph G, we use the interval $I_{G}[u, v]$ to denote as the collection of all vertices that belong to a shortest path between u and v. A vertex w strongly resolves two vertices u and v if v belongs to $I_{G}[u, w]$ or u belongs to $I_{G}[v, w]$. A set $R = \{r_1, r_2, \ldots, r_k\}$ of vertices of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of R. The strong metric dimension of a graph G is the cardinality of smallest strong resolving set of G and denoted by $sdim(G)$ see [15, 16, 17].

In this article, we focus on some resolving parameters of two graphs the crystal cubic carbon $CCC(n)$ and the layer cycle graph will be denoted by $LCG(n, k)$. The crystal cubic carbon $CCC(n)$, is defined by (Baig et al., 2017), see [18]. Also, some of the chemical parameters of the crystal cubic carbon $CCC(n)$ have been calculated by other researchers, further details can be given in [19, 20]. In particular the cardinality of minimum resolving set of $CCC(n)$ is computed by (Zhang and Naeem, 2021), see [21]. So, if we label the atoms of a chemical graph, then some of its parameters, including resolving sets, are easier to calculate, because in this case we have a more accurate knowledge of the chemical graph. Hence, we first define the structure of the crystal cubic carbon $CCC(n)$ by a new method, and we provide a much simpler formula for obtaining its vertices than the formula for calculating its vertices in (Baig et al., 2017). For more details of our definition of the crystal cubic carbon $CCC(n)$, see section 3.1. In particular, in section 3.1, we will find the minimal doubly resolving set and the strong metric dimension for the crystal cubic carbon $CCC(n)$. Moreover in section 3.2, we will construct a new class of graphs will be denoted by $LCG(n, k)$ and recall the layer cycle graph with parameters n and k. For more details on the definition and structure of the layer cycle graph $LCG(n, k)$ see section 3.2. Also, we will compute some resolving parameters for the layer cycle graph $LCG(n, k)$.

2. Preliminaries

Definition 2.1. Consider two graphs G and H. If there is a bijection, φ, say, from $V(G)$ to $V(H)$ so that u is adjacent to v in G if and only if $\varphi(u)$ is adjacent to $\varphi(v)$ in H, then we say that G is isomorphic to H.

Theorem 2.1. [21] Consider the crystal cubic carbon $CCC(n)$. If $n \geq 2$ is an integer, then the cardinality of minimum resolving set of $CCC(n)$ is $16 \times 7^{n-2}$.

Remark 2.1. For every pair of mutually maximally distant vertices u and v of a graph G and for every strong resolving set R of G, it follows that $u \in R$ or $v \in R$.

Remark 2.2. Consider the cycle graph C_n. If n is an even integer so that $n \geq 6$, $\psi(G) = 3$ and $sdim(G) = \lceil \frac{n}{2} \rceil$.

Remark 2.3. Consider the cycle graph C_n. If n is an odd integer so that $n \geq 3$, then $\psi(G) = 2$ and $sdim(G) = \lceil \frac{n}{2} \rceil$.

3. Main results

3.1. Minimal doubly resolving, and strong metric dimension for the Crystal Cubic Carbon $CCC(n)$

Let n be fixed positive integer and k an integer so that $2 \leq k \leq n$. In this section, first we will construct the crystal cubic carbon $CCC(n)$ by a new method. For this purpose, we introduce some notation which is used throughout this section and is related to the crystal cubic carbon $CCC(n)$ as follows. Consider the cartesian product $C_4 \Box P_2$ with vertex set $[1, 2, \ldots, 8]$ on the layers $W_1 = [1, \ldots, 4]$ and $W_2 = [5, \ldots, 8]$ and suppose the edge set $C_4 \Box P_2$ is $E(C_4 \Box P_2) = \{ij | i, j \in W_1, i < j, j-i = 1 \text{or } j-i = 3\} \cup \{ij | i, j \in W_2, i < j, j-i = 1 \text{or } j-i = 3\} \cup \{ij | i \in W_1, j \in W_2, j-i = 4\}$.

2
where C_4 and P_2 denote the cycle on 4 and the path on 2 vertices, respectively. Also, we shall use the notation $Q_{r}^{(k)}$ to denote a cubic graph of order 8, with vertex set

$$V(Q_{r}^{(k)}) = \{(x_r, 1)^{(k)}, \ldots, (x_r, 8)^{(k)}\},$$

and edge set

$$E(Q_{r}^{(k)}) = \{(x_r, i)^{(k)}(x_r, j)^{(k)} | i, j \in W_1, i < j, j - i = 1 \text{ or } j - i = 3 \} \cup \{(x_r, i)^{(k)}(x_r, j)^{(k)} | i, j \in W_2, i < j, j - i = 1 \text{ or } j - i = 4 \} \cup \{(x_r, i)^{(k)}(x_r, j)^{(k)} | i \in W_1, j \in W_2, j - i = 4 \},$$

for $1 \leq r \leq 8$, and $1 \leq s \leq 7^{k-2}$. We can see that this graph is isomorphic to the cartesian product $C_4 \square P_2$.

Now, suppose H is a graph of order $8 + 642\Sigma_{k=2}^{n}7^{k-2}$ with vertex set

$$V(H) = L_1 \cup L_2 \cup \ldots \cup L_n,$$

where L_1, L_2, \ldots, L_n are called the layers of H such that $L_1 = V(C_4 \square P_2) = \{1, 2, \ldots, 8\}$, and for $k \geq 2$ we have

$$L_k = \{Q_1^{(k)}, Q_2^{(k)}, \ldots, Q_{1 \text{ to } 2}^{(k)} \ldots \ldots Q_{6 \text{ to } 2}^{(k)} \ldots Q_{8 \text{ to } 2}^{(k)}\}.$$

Also, we shall use $Q_{r}^{(k)}$ to denote a cubic of the layer L_k, and every $(x_r, 1)^{(k)} \in Q_{r}^{(k)}$ is called head vertex of $Q_{r}^{(k)}$ in the layer L_k. Now, let the adjacency relation of graph H given as follows. Suppose that r is an arbitrary vertex in the layer L_1, $1 \leq r \leq 8$, and r is adjacent to the head vertex of cubic $Q_{r}^{(k)}$ in the layer L_2 by an edge. Also every vertex in cubic $Q_{r}^{(k)} \in L_k (k \geq 2)$, except head vertex $(x_r, 1)^{(k)}$, is adjacent to exactly the head vertex of one cubic in the layer L_{k-1} say $Q_{r}^{(k-1)}$ by an edge, then we can see that the resulting graph is isomorphic to the crystal cubic carbon $CCC(n)$. In particular, we say that two cubes are congruous, if both of them lie in the same layer. It is natural to consider its vertex set of crystal cubic carbon $CCC(n)$ which is defined already. If $n \geq 2$ is an integer, then the cardinality of minimum doubly resolving set of $CCC(n)$ is $24 \times 7^{(n-2)}$.

Theorem 3.1. Consider the crystal cubic carbon $CCC(n)$ which is defined already. If $n \geq 2$ is an integer, then the cardinality of minimum doubly resolving set of $CCC(n)$ is $24 \times 7^{(n-2)}$.

Proof. Let $V(CCC(n)) = L_1 \cup L_2 \cup \ldots \cup L_n$, be the vertex set of graph $CCC(n)$, where L_1, L_2, \ldots, L_n are the layers of $CCC(n)$, which is defined already. By Theorem 2.1, we know that the cardinality of minimum resolving set of $CCC(n)$ is $16 \times 7^{(n-2)}$. Now, let

$$Z_1 = \{(x_{11}, 2)^{(n)}, \ldots, (x_{11}, 2)^{(n)}; \ldots; (x_{81}, 2)^{(n)}, \ldots, (x_{81}, 2)^{(n)}\}.$$
Thus, the cardinality of minimum doubly resolving set of Z consisting of exactly one adjacent vertex in each cubic of the layer L_n with respect to head vertex of each cubic of the layer L_n, then the arranged set $Z_3 = Z_1 \cup Z_2$ consisting of exactly two adjacent vertices in each cubic of the layer L_n with respect to head vertex of each cubic of the layer L_n is one of minimal resolving sets in $CCC(n)$. Also it is not hard to see that, for every two vertices u and v so that lie in the layers $L_1 \cup L_2 \cup \ldots \cup L_{n-1}$, we have $r(u|Z_1) - r(v|Z_1) \neq \mu I$, where μ is an integer and I denotes the unit $16 \times 7^{(n-2)}$-vector. In particular, we can show that the set Z_3, cannot be doubly resolved all the vertices of each cubic of the layer L_n. For this purpose, we consider the cubic $Q_{11}^{(n)}$ in the layer L_n and suppose x is an arbitrarily element of the set Z_3 so that $(x_1, 2)^{(n)} \neq x$, $(x_1, 4)^{(n)} \neq x$ and the distance between the head vertex $(x_1, 1)^{(n)}$ and x is a positive integer c, that is $r((x_1, 1)^{n}|x) = c$. Now, let $Z = \{(x_1, 2)^{(n)}, (x_1, 4)^{(n)}, x\}$ be a subset of the set Z_3, we can view that all the vertices in the cubic $Q_{11}^{(n)}$ cannot be doubly resolved with respect to Z. Because, for every $1 \leq i \leq 8$, we have
\[
\begin{align*}
&\ r((x_1, 1)^{n}|Z) = (1, 1, c) \\
&\ r((x_1, 3)^{n}|Z) = (1, 1, c + 2) \\
&\ r((x_1, 5)^{n}|Z) = (2, 2, c + 1) \\
&\ r((x_1, 6)^{n}|Z) = (1, 3, c + 2) \\
&\ r((x_1, 7)^{n}|Z) = (2, 2, c + 3) \\
&\ r((x_1, 8)^{n}|Z) = (3, 1, c + 2),
\end{align*}
\]
and hence Z_3, cannot be doubly resolved all the vertices of each cubic of the layer L_n, because x is an arbitrarily element of the set Z_3. Besides, we can view that every minimal resolving set of $CCC(n)$, consisting of exactly two adjacent vertices in each cubic of the layer L_n with respect to head vertex of each cubic of the layer L_n, and hence $\psi(CCC(n))$ must be greater than $16 \times 7^{(n-2)}$. By the discussion above, we deduce that if
\[
Z_4 = \{(x_1, 5)^{(n)}, \ldots, (x_{16-2}, 5)^{(n)}, \ldots, (x_8, 5)^{(n)}, \ldots, (x_{8-2}, 5)^{(n)}\},
\]
consisting of exactly one adjacent vertex in each cubic of the layer L_n with respect to the head vertex of each cubic of the layer L_n, then the arranged set $Z_4 = Z_1 \cup Z_4$, consisting of exactly three adjacent vertices in each cubic of the layer L_n with respect to the head vertex of each cubic of the layer L_n is one of minimal doubly resolving sets in $CCC(n)$. Thus, the cardinality of minimum doubly resolving set of $CCC(n)$ is $3 \times 8 \times 7^{(n-2)}$.

Theorem 3.2. Consider the crystal cubic carbon $CCC(n)$ which is defined already. If $n \geq 2$ is an integer, then the cardinality of minimum strong resolving set of $CCC(n)$ is $32 \times 7^{(n-2)} - 1$.

Proof. Let $V(\text{CCC}(n)) = L_1 \cup L_2 \cup \ldots \cup L_n$, be the vertex set of graph $CCC(n)$, where L_1, L_2, \ldots, L_n are the layers of $CCC(n)$, which is defined already. By Theorem 2.1, we know that the cardinality of minimum resolving set of $CCC(n)$ is $16 \times 7^{(n-2)}$. Besides, the arranged set $Z_3 = Z_1 \cup Z_2$, which is defined in previous Theorem, consisting of exactly two adjacent vertices in each cubic of the layer L_n with respect to the head vertex of each cubic of the layer L_n is one of minimal resolving sets in $CCC(n)$. Also, every two vertices u and v so that lie in the layers $L_1 \cup L_2 \cup \ldots \cup L_{n-1}$, are strongly resolved by an element of Z_3. With out loss of generality, if we consider the cubic $Q_{11}^{(n)}$ in the layer L_n, then every two vertices of the cubic $Q_{11}^{(n)}$ except two vertices $(x_1, 3)^{(n)}$ and $(x_1, 5)^{(n)}$ are strongly resolved by an element of Z_3, and hence if we consider the arranged set $Z_4 = Z_1 \cup Z_4$, which is defined in previous Theorem, consisting of exactly three adjacent vertices in each cubic of the layer L_n with respect to the head vertex of each cubic of the layer L_n, then every two vertices so that lie in the one cubic of the layer L_n are strongly resolved by an element of the set Z_4, and the number of such vertices is $24 \times 7^{(n-2)}$. Note that, both vertices of $CCC(n)$ so that lie in distinct cubes in the layer L_n and mutually maximally distant, cannot be strongly resolved by an element of Z_3 and hence, from both vertices of distinct cubes so that mutually maximally distant, at least one of them must be belongs to the every minimum resolving set of $CCC(n)$. Therefore, in each cube of the layer L_n, except one of them, there must be a vertex of that cube that has a maximum distance from the head vertex of that cube in every set of minimum strong resolving set of $CCC(n)$, and hence, the number of such vertices is $8 \times 7^{(n-2)} - 1$. Thus, the cardinality of minimum strong resolving set of $CCC(n)$ must be $32 \times 7^{(n-2)} - 1$.

\[\square\]
3.2. Minimal resolving, doubly resolving, and strong metric dimension for the layer cycle graph $LCG(n, k)$

Let n and k be fixed positive integers so that $n \geq 3$, $k \geq 2$ and $[n] = \{1, 2, \ldots, n\}$, also, let p be an integer so that $2 \leq p \leq k$. In this section, first we construct a class of graphs of order $n + \sum_{i=2}^{k} n^2(n - 1)^{p-2}$, denoted by $LCG(n, k)$ and recall the layer cycle graph with parameters n and k. Moreover, we will compute some metrics for this class of graphs. For this purpose, we introduce some notation which is used throughout this section and is related to the layer cycle graph $LCG(n, k)$ as follows. We shall use the notation $C^{(p)}_{i_r}$ to denote a cycle of order n, with vertex set

$$V(C^{(p)}_{i_r}) = \{(x_r, 1)^{(p)}, (x_r, 2)^{(p)}, \ldots, (x_r, n)^{(p)}\},$$

and edge set

$$E(C^{(p)}_{i_r}) = \{(x_r, i)^{(p)}(x_r, j)^{(p)} | i, j \in [n], i < j, j - i = 1 \text{ or } j - i = n - 1\},$$

for $1 \leq r \leq n$, and $1 \leq s \leq (n - 1)^{p-2}$. We can verify that $C^{(p)}_{i_r}$ is isomorphic to the cycle C_n, where vertex set of the cycle C_n is $V(C_n) = \{1, 2, \ldots, n\}$ and edge set $E(C_n) = \{ij | i, j \in [n], i < j, j - i = 1 \text{ or } j - i = n - 1\}$. Now, suppose G is a graph with vertex set $V(G) = U_1 \cup U_2 \cup \ldots \cup U_k$, where U_1, U_2, \ldots, U_k are called the layers of G such that $U_1 = V(C_n)$, and for $p \geq 2$ we have

$$U_p = \{C^{(p)}_{1,1}, C^{(p)}_{1,2}, \ldots, C^{(p)}_{1,(n-1)^{p-2}}, C^{(p)}_{2,1}, C^{(p)}_{2,2}, \ldots, C^{(p)}_{2,(n-1)^{p-2}}, \ldots, C^{(p)}_{n_1,1}, C^{(p)}_{n_1,2}, \ldots, C^{(p)}_{n_1,(n-1)^{p-2}}\}.$$

Also, we shall use $C^{(p)}_{i_r}$ to denote a cycle of the layer U_p, and every $(x_r, 1)^{(p)} \in C^{(p)}_{i_r}$ is called head vertex of $C^{(p)}_{i_r}$ in the layer U_p. Now, let the adjacency relation of graph G given as follows. Suppose that r is an arbitrary vertex in the layer U_1, $1 \leq r \leq n$, and r is adjacent to the head vertex of $C^{(p)}_{i_r}$ in the layer U_2 by an edge. Also every vertex in cycle $C^{(p)}_{i_r} \in U_p$ ($p \geq 2$), except head vertex $(x_r, 1)^{(p)}$, is adjacent to exactly the head vertex of one cycle in the layer U_{p+1} say $C^{(p+1)}_{i_r}$ by an edge, then the resulting graph is called the layer cycle graph $LCG(n, k)$ with parameters n, k. In particular, we say that two cycles are congruous, if both of them lie in the same layer. It is natural to consider its vertex set of layer cycle graph $LCG(n, k)$ as partitioned into k layers. The layers U_1 and U_2 consisting of the vertices $\{1, 2, \ldots, n\}$ and $\{C^{(2)}_{1,1}, C^{(2)}_{1,2}, \ldots, C^{(2)}_{n_1,1}\}$, respectively. In particular, each layer U_p ($p \geq 2$), consisting of the $n^2(n - 1)^{p-2}$ vertices. The layer cycle graph $LCG(5, 3)$ is depicted in Figure 2.
Theorem 3.3. Consider the layer cycle graph $LCG(n, k)$ which is defined already. If n, k are integers so that $n \geq 3$ and $k \geq 2$, then the metric dimension of $LCG(n, k)$ is $n(n-1)^{k-2}$.

Proof. Let $V(LCG(n, k)) = U_1 \cup U_2 \cup \ldots \cup U_k$ be the vertex set of graph $LCG(n, k)$, where U_1, U_2, \ldots, U_k are the layers of $LCG(n, k)$, which is defined already. If we consider an arranged subset R_1 of vertices in the layers $U_1 \cup U_2 \cup \ldots \cup U_{k-1}$, then R_1 is not a resolving set for $LCG(n, k)$. In particular, we can express that if R_2 is an arranged set, consisting of all the head vertices in the layer U_k, then the set R_2 is not a resolving set for $LCG(n, k)$, because the degree of each head vertex in the layer U_k is 3, and hence there are two vertices in the cycle $C_{1_{1_k}}^{(k)}$ of $LCG(n, k)$ so that they are adjacent to the head vertex $(x_1, 1)^{(k)}$ in the cycle $C_{1_{1_k}}^{(k)}$ with the same representations. Now, let $R_3 = \{r_1, r_2, \ldots, r_z\}$ be a minimal resolving set of $LCG(n, k)$. We claim that there is exactly one vertex of each cycle in the layer U_k belongs to R_3. Suppose for a contradiction that none of vertices of each cycle in the layer U_k belong to R_3, and hence with out loss of generality if we consider the head vertex $(x_1, 1)^{(k)}$ in the cycle $C_{1_{1_k}}^{(k)}$, then we can view that the metric representation of two vertices in the cycle $C_{1_{1_k}}^{(k)}$ of $LCG(n, k)$ so that they are adjacent to the head vertex $(x_1, 1)^{(k)}$ is identical with respect R_3. Therefore, we deduce that at least one vertex of each cycle in the layer U_k must be belongs in every minimal resolving set of $LCG(n, k)$. Besides, the layer U_k of graph $LCG(n, k)$ consisting of exactly $n(n-1)^{k-2}$ cycles, and hence we deduce that the cardinality of minimum resolving set of $LCG(n, k)$ must be equal or greater than
Consider the layer cycle graph $LCG(n, k)$ which is defined already. If $n \geq 4$ is an even integer and k is an integer so that $k \geq 2$, then the cardinality of minimum doubly resolving set of $LCG(n, k)$ is $2n(n-1)^{k-2}$.

Proof. Let $V(LCG(n, k)) = U_1 \cup U_2 \cup \ldots \cup U_k$, be the vertex set of graph $LCG(n, k)$, where U_1, U_2, \ldots, U_k are the layers of $LCG(n, k)$, which is defined already. From the previous Theorem, the arranged set

$$R_4 = \{(x_1, n)^{(k)}, \ldots, (x_{\frac{n}{2}}, \frac{n}{2})^{(k)}, \ldots, (x_n, n)^{(k)}, \ldots, (x_{\frac{n}{2}+1}, \frac{n}{2})^{(k)}\},$$

is an arranged set, consisting of exactly one adjacent vertex in each cycle of the layer U_k with respect to head vertex of each cycle of the layer U_k. We claim that the set R_4 is a minimal resolving set for $LCG(n, k)$. Since, each vertex in the layer U_p, $1 \leq p < k$ is adjacent to exactly one vertex of the layer U_{p+1} say head vertex, it follows that all the vertices in the layer U_p, have different representations with respect to R_4. Therefore, it is necessary to show that all the vertices in layer U_k have different representations with respect to R_4. Since the layer U_k consisting of all the cycles so that these cycles are congruous, and the set R_4 consisting of exactly one adjacent vertex in each cycle of the layer U_k with respect to head vertex of each cycle of the layer U_k, it then is sufficient to show that all the vertices in an arbitrarily cycle of the layer U_k have different representations with respect to R_4. For this purpose, we consider the cycle $C_{1k}^{(k)}$ in the layer U_k and suppose x is an arbitrarily element of the set R_4 so that $(x_1, n)^{(k)} \neq x$, and the distance between the head vertex $(x_1, 1)^{(k)} \in C_{1k}^{(k)}$ and x is a positive integer c, that is $r((x_1, 1)^{(k)}|x) = c$. Now, let $R = \{(x_1, n)^{(k)}, x\}$ be a subset of the set R_4, we can view that all the vertices in the cycle $C_{1k}^{(k)}$ have different representations with respect to R. Because, if n is an even integer then for every $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$, we have $r((x_1, i)^{(k)}|R) = (i, c + i - 1)$, also, if $\lfloor \frac{n}{2} \rfloor < i \leq n$, then we have $r((x_1, i)^{(k)}|R) = (n - i, n + c + 1 - i)$. Note that, if n is an odd integer then there are two vertices in the cycle $C_{1k}^{(k)}$ with maximum distance from the head vertex $(x_1, 1)^{(k)}$ and hence for every $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$, we have $r((x_1, i)^{(k)}|R) = (i, c + i - 1)$, also, if $\lfloor \frac{n}{2} \rfloor < i \leq n$, then we have $r((x_1, i)^{(k)}|R) = (n - i, n + c + 1 - i)$. Therefore, by the discussion above we deduce that the metric dimension of $LCG(n, k)$ is $n(n-1)^{k-2}$.

Theorem 3.4. Consider the layer cycle graph $LCG(n, k)$ which is defined already. If $n \geq 4$ is an even integer and k is an integer so that $k \geq 2$, then the cardinality of minimum doubly resolving set of $LCG(n, k)$ is $2n(n-1)^{k-2}$.

Proof. Let $V(LCG(n, k)) = U_1 \cup U_2 \cup \ldots \cup U_k$, be the vertex set of graph $LCG(n, k)$, where U_1, U_2, \ldots, U_k are the layers of $LCG(n, k)$, which is defined already. From the previous Theorem, the arranged set

$$R_5 = \{(x_1, \frac{n}{2} + 1)^{(k)}, \ldots, (x_{\frac{n}{2} - \frac{1}{2} + 1}, \frac{n}{2} + 1)^{(k)}, \ldots, (x_n, n)^{(k)}, \ldots, (x_{\frac{n}{2} + \frac{1}{2}}, \frac{n}{2} + 1)^{(k)}\},$$

be an arranged set of vertices in $LCG(n, k)$ and $R_6 = R_4 \cup R_5$. We show that the set R_6 is one minimal doubly resolving sets for $LCG(n, k)$. For this purpose we consider the cycle $C_{1k}^{(k)}$ in the layer U_k and suppose x is an arbitrarily element of the set R_6 so that $(x_1, n)^{(k)} \neq x$, $(x_1, \lfloor \frac{n}{2} \rfloor + 1)^{(k)} \neq x$ and the distance between the head vertex $(x_1, 1)^{(k)} \in C_{1k}^{(k)}$ and x is a positive integer c, that is $r((x_1, 1)^{(k)}|x) = c$. Also, let $R = \{(x_1, n)^{(k)}, x, (x_1, \lfloor \frac{n}{2} \rfloor + 1)^{(k)}\}$ be a subset of the set R_6, we can view that all the vertices in the cycle $C_{1k}^{(k)}$ can be doubly resolved by the set R. Because, for every $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$, we have $r((x_1, i)^{(k)}|R) = (i, c + i - 1, \lfloor \frac{n}{2} \rfloor + 1 - i)$, also if $\lfloor \frac{n}{2} \rfloor < i \leq n$, then we have $r((x_1, i)^{(k)}|R) = (n - i, n + c + 1 - i, i - \lfloor \frac{n}{2} \rfloor - 1)$, in particular we can see that every two vertices in distinct cycles of $LCG(n, k)$ can be doubly resolved by the set R_6, and hence the set R_6 is one of minimal doubly resolving sets for $LCG(n, k)$. By the discussion above, the cardinality of minimum doubly resolving set of $LCG(n, k)$ is $2n(n-1)^{k-2}$.

Theorem 3.5. Consider the layer cycle graph $LCG(n, k)$ which is defined already. If $n \geq 5$ is an odd integer and k is an integer so that $k \geq 2$, then the cardinality of minimum doubly resolving set of $LCG(n, k)$ is $2n(n-1)^{k-2}$.
Proof. In a similar way to the previous theorem and a few changes in the proof, we can show that the cardinality of minimum doubly resolving set of $LCG(n,k)$ is $2n(n-1)^{k-2}$. \square

Theorem 3.6. Consider the layer cycle graph $LCG(n,k)$ which is defined already. If $n \geq 3$ is an even or odd integer and k is an integer so that $k \geq 2$, then the cardinality of minimum strong resolving set of $LCG(n,k)$ is $\lceil \frac{n}{2} \rceil n(n-1)^{k-2} - 1$.

Proof. Let $V(LCG(n,k)) = U_1 \cup U_2 \cup \ldots \cup U_k$, be the vertex set of graph $LCG(n,k)$, where U_1, U_2, \ldots, U_k are the layers of $LCG(n,k)$, which is defined already. We can view that, the arranged set

$$R_7 = \{(x_1, 2), \ldots, (x_{n\bmod{k}-2}, 2), \ldots, (x_n, 2), \ldots, (x_{n\bmod{k}-2}, 2), \ldots, (x_1, 2)\},$$

consisting of exactly one adjacent vertex in each cycle of the layer U_k with respect to head vertex of each cycle of the layer U_k is one of minimal resolving sets in $LCG(n,k)$. Also every two vertices u and v in the layers $U_1 \cup U_2 \cup \ldots \cup U_{k-1}$, are strongly resolved by an element of R_7. In particular, if we consider a cycle and its head vertex in the layer U_k, then each vertex in that cycle has the maximum distance from the head vertex is strongly resolved by an element of R_7. Note that, the set R_7, cannot be strongly resolved other vertices of each cycle of the layer U_k, and hence if we consider the arranged set

$$R_8 = \{(x_1, 2), \ldots, (x_{n\bmod{k}-2}, n), \ldots, (x_n, 2), \ldots, (x_{n\bmod{k}-2}, n), \ldots, (x_1, 2)\},$$

consisting of exactly $\lceil \frac{n}{2} \rceil - 1$ elements in each cycle of the layer U_k, then we can see that all the vertices in each cycle of the layer U_k are strongly resolved by an element of R_8, and the number of such vertices is $n(n-1)^{k-2}((\frac{n}{2}) - 1)$. Note that, both vertices of $LCG(n,k)$ so that lie in distinct cycles in the layer U_k and mutually maximally distant, cannot be strongly resolved by an element of R_8, and hence, from both vertices of distinct cycles in the layer U_k so that mutually maximally distant, at least one of them must be belongs to the every minimum resolving set of $LCG(n,k)$. Therefore, in each cycle of the layer U_k, except one of them, there must be a vertex of that cycle that has a maximum distance from the head vertex of that cycle in every set of minimum strong resolving set of $LCG(n,k)$, and hence, the number of such vertices is $n(n-1)^{k-2} - 1$. Thus, the cardinality of minimum strong resolving set of $LCG(n,k)$ must be $\lceil \frac{n}{2} \rceil n(n-1)^{k-2} - 1$. \square

Acknowledgements
This work was supported in part by Anhui Provincial Natural Science Foundation under Grant 2008085J01 and Natural Science Fund of Education Department of Anhui Province under Grant KJ2020A0478.

Authors’ informations
Jia-Bao Liua (jiajiabo@ahjzu.edu.cn; liujiaobao@ahjzu.edu.cn)
Ali Zafarib(Corresponding Author) (zafari.math.pu@gmail.com; zafari.math@pnu.ac.ir)
a School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, P.R. China.
b Department of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran.

References
[1] P. S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs and their bases, Periodica Math Hung, vol.46(1), pp.9-15, 2003.
[2] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, Journal of Biopharmaceutical Statistics, vol.3, pp.203-236, 1993.
[3] S. Khuller, B. Raghavachari and A. Rosenfeld, Localization in graphs, Technical Report CS-TR-3326, University of Maryland at College Park, 1994.
[4] J.-B. Liu, M. F. Nadeem, H. M. A. Siddiqui, and W. Nazir, Computing Metric Dimension of Certain Families of Toeplitz Graphs, IEEE Access, vol.7, pp.126734-126741, 2019.
[5] S. Khuller, B. Raghavachari and A. Rosenfeld, Localization in graphs, Technical Report CS-TR-3326, University of Maryland at College Park, 1994.
[6] J.-B. Liu and A. Zafari, Metric dimension, minimal doubly resolving sets and strong metric dimension for Jellyfish graph and Cocktail party graph, Complexity, vol.2020, pp.1-7, 2020.
[7] P. J. Slater, Leaves of trees, in Proceedings of the 6th Southeastern Conference on Combinatorics, Graph theory and Computing, Boca Raton, FL, USA, pp.549-559, 1975.
[8] F. Harary and R. A. Melter, On the metric dimension of a graph, Combinatorica, vol.2, pp.191-195, 1976.
[9] J. Cáceres, C. Hernando, M. Mora, J. M. Pelayo, M. L. Puertas, C. Serrano, and D. R. Wood, On the metric dimension of Cartesian products of graphs, SIAM Journal on Discrete Mathematics, vol.21, pp.423-441, 2007.
10. A. Ahmad, M. Bača, and S. Sultan, *Minimal doubly resolving sets of necklace graph*, Math. Reports, vol.20(70) 2, pp.123-129, 2018.
11. G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, *Resolvability in graphs and the metric dimension of a graph* Discrete Applied Mathematics, vol.105, pp.99-113, 2000.
12. J. Kratica, M. Čangalović and V. Kovačević-Vujčić, *Computing minimal doubly resolving sets of graphs*, Comput. Oper. Res., vol. 36(7), pp.2149-2159, 2009.
13. J.-B. Liu and A. Zafari, *Computing minimal doubly resolving sets and the strong metric dimension of the layer Sun graph and the Line Graph of the Layer Sun Graph*, Complexity, vol.2020, pp.1-8, 2020.
14. D. Kuziak, Ismail G. Yero, and J. A. Rodríguez-Velázquez, *On the strong metric dimension of corona product graphs and join graphs*, Discrete Applied Mathematics, vol.161, pp.1022-1027, 2013.
15. O. R. Oellermann and J. Peters-Fransen, *The strong metric dimension of graphs and digraphs*, Discrete Applied Mathematics, vol. 155, pp.356-364, 2007.
16. J. A. Rodríguez-Velázquez, I. G. Yero, D. Kuziak, and O. R. Oellermann, *On the strong metric dimension of Cartesian and direct products of graphs*, Discrete Mathematics, vol. 335, pp. 8-19, 2014.
17. A. Sebő and E. Tannier, *On metric generators of graphs*, Math. Oper. Res., vol.29, pp.383-393, 2004.
18. A. Q. Baig, M. Imran, W. Khalid, and M. Naem, *Molecular description of carbon graphite and crystal cubic carbon structures*, Canadian Journal of Chemistry, vol. 95(6), pp. 674-686, 2017.
19. W. Gao, M. K. Siddiqui, M. Naem, and N. A. Rehman, *Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures*, Molecules, vol.22(9):1496, pp.1-12, 2017.
20. H. Yang, M. Naem, and M. K. Siddiqui, *Molecular properties of carbon crystal cubic structures*, Open Chemistry, vol.18(1), pp.339-346, 2020.
21. X. Zhang and M. Naem, *Metric Dimension of Crystal Cubic Carbon Structure*, Journal of Mathematics, vol.2021, pp.1-8, 2021.