Three-dimensional track reconstruction for directional Dark Matter detection

J. Billard, F. Mayet and D. Santos
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Nationale Polytechnique de Grenoble, 53 rue des Martyrs, Grenoble, France
E-mail: billard@lpsc.in2p3.fr

Abstract. Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks: direction, sense and position in the detector volume. In order to optimize the track reconstruction and to fully exploit the data of forthcoming directional detectors, we present a likelihood method dedicated to 3D track reconstruction. This new analysis method is applied to the MIMAC detector. It requires a full simulation of track measurements in order to compare real tracks to simulated ones. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution is shown to range between 20° to 80°, depending on the recoil energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values (50%-70%). We suggest not to consider this information either for exclusion or discovery of Dark Matter for recoils below 100 keV and then to focus on axial directional data.

PACS numbers: 95.35.+d, 29.40.Cs, 29.85.Fj
Directional detection of galactic Dark Matter offers a unique opportunity to identify Weakly Interacting Massive Particle (WIMP) events as such [1]. Recent studies have shown that a low exposure directional detector could lead either to a high significance discovery of galactic Dark Matter [2, 3, 4, 5, 6] or to a conclusive exclusion [7], depending on the value of the unknown WIMP-nucleon cross section.

Directional detection requires the simultaneous measurement of the recoil energy \(E_R\) and the direction of the 3D track \(\Omega_R\) of low energy recoils, thus allowing to evaluate the double-differential spectrum \(d^2R/dE_Rd\Omega_R\) down to the energy threshold. This can be achieved with low pressure Time Projection Chamber (TPC) detectors and there is a worldwide effort toward the development of a large TPC devoted to directional detection [8]. All current projects [9, 10, 11, 12, 13] face common challenges amongst which the 3D reconstruction of low energy tracks \((\mathcal{O}(10) \text{ keV})\) is the major one as it includes various experimental issues such as sense recognition, angular and energy resolutions and energy threshold. Their effect on the discovery potential of forthcoming directional detectors has been fully studied in [3]. The aim of this paper is twofold.

First a dedicated 3D reconstruction data analysis is proposed. The goal is to retrieve, for each track, the initial recoil direction \((\theta, \phi)\) and the vertex \((X, Y, Z)\) of the elastic scattering interaction. Difficulties come from the fact that the recoil energy is low \((E_r \lesssim 100 \text{ keV})\) and the track length is small \((\lesssim 10 \text{ mm})\). For instance, in the case of a Fluorine target at 50 mbar, the mean track length of a 10 keV recoil is of the order of 300 \(\mu\text{m}\) and about 3 mm at 100 keV. Moreover, low energy recoil in low pressure TPC will encounter a rather large angular dispersion which implies an intrinsic angular resolution. Then, the electron drift within the TPC is characterized by a transverse and longitudinal diffusion, which results in an embedding of the initial track within a rather large envelope. Finally, even a high performance readout induces a pixelization of the track. These effects highlight the need to go beyond a straightforward track reconstruction algorithm, i.e. a three dimensional linear fit. The method proposed in this paper is of general interest for directional projects, although a few details should be modified to follow particular readout strategies.

Second goal of this paper is to evaluate the expected performance of the MIMAC project [12], in terms of angular resolution, fiducialization and sense recognition capability. This study is based on simulations and is closely related to the discovery potential, as outlined in [3].

The paper is organised as follows, we first introduce the MIMAC track measurement strategy and the different observables given by the MIMAC readouts (sec. 1). In section 2 we give a comprehensive overview of various systematics of track measurement before presenting the simulation used to generate mock data. Then, we introduce a new analysis method in section 3 based on a full likelihood approach combined with a multivariate analysis. Section 4 presents the expected MIMAC performance (spatial and angular resolutions, fiducialisation, senses recognition capability) as a function of the energy and of the \(Z\) coordinate (perpendicular to the anode plane).
Three-dimensional track reconstruction for directional Dark Matter detection

1. Directional detection framework and MIMAC characteristics

Several Dark Matter directional detectors are being developed and/or operated [8, 9, 10, 11, 12, 13]. They all face common challenges amongst which the 3D reconstruction of low energy tracks (O(10) keV) is the major one. Indeed, a directional detector should allow to evaluate the double-differential spectrum $d^2R/dE_RdΩ_R$ down to the recoil energy threshold. We emphasize that it is the lowest energy at which one can retrieve both the initial direction and the energy of the recoiling nucleus, taking into account the ionization quenching factor. This makes it even more challenging for directional detection. In the following, we present the MIMAC track reconstruction strategy (sec. 1.1), discuss the observables and outline the need to go beyond a simple linear fit strategy (sec. 1.2).

1.1. MIMAC track measurement strategy

The MIMAC prototype is the elementary chamber of the future large matrix. It enables the possibility to show the ionization and track measurement performance needed to achieve the directional detection strategy. The primary electron-ion pairs produced by a nuclear recoil in one chamber of the matrix are detected by drifting the primary electrons to the grid of a bulk Micromegas [14, 15, 16] and producing the avalanche in a very thin gap (128 or 256 µm). The electrons move towards the grid in the drift space and are projected on the pixedized anode thus allowing to get information on the X and Y coordinates. A bulk Micromegas [16] with a 10 by 10 cm² active area, segmented in pixels with an effective pitch of 424 µm is used as 2D readout. In order to reconstruct the third dimension of the recoil, the Z coordinate i.e. along the drift axis, a self-triggered electronics has been developed. It allows to perform the anode sampling.
Three-dimensional track reconstruction for directional Dark Matter detection

at a frequency of 50 MHz. This includes a dedicated 64 channels ASIC [17] associated to a DAQ [18, 19]. Each pixel is then connected either to a X or a Y channel implying that a spatial coincidence between one or several X and Y channels is required to get a localisation of the track on the (X,Y) plane. The ionization energy measurement is done by using a charge integrator connected to the grid which is sampled at a frequency of 50 MHz. Then, to recover the kinetic energy of the recoiling nucleus, one has to know accurately the value of the Ionization Quenching Factor (IQF) [20].

With such a measurement, the X and Y coordinates are measured on the anode, while the Z coordinate is retrieved from the 50 MHz sampling of the anode. Hence, the track is 3D reconstructed, providing the electron drift velocity is known.

As an illustration, we present on figure 1 a measured track of a Fluorine recoil candidate at 50 keVee in a gas mixture composed of 70% CF$_4$ + 30% CHF$_3$ at 50 mbar. The left and the center panel of figure 1 represents the projection of the 3D track on the (X,Z) and (Y,Z) planes respectively, while the right panel represents the derivative of the charge preamplifier, which is related to the projection of the energy loss along the Z axis. This way, the MIMAC readout system is able to provide a large number of observables which are:

- the number of time slices, i.e. the number of spatial coincidences, N_c.
- the time of charge collection Δt_e defined as the time between the minimum and the maximum of the charge integrator response.
- the projected length L_p of the track on the anode plane.
- the positions X_i and Y_i of the center of gravity of each time slice in the (X,Y) plane, where i refers to the time slice numerotation, with $i \leq N_c$. The latters are represented as the black boxes on the left and center panel of figure 1.
- the width of each time slice ΔX_i and ΔY_i along the X and Y axis.
- If the charge integrator response is perfectly known and the rising time of the charge integration sufficiently short, one can extract the time profile of the collected charges Q_j, where j refers to the timing of the charge integrator profile, with $j \leq \Delta t_e$.

Hence, the MIMAC readout provides us with a number of observables N_{obs} which grows with the number of spatial coincidence N_c and the time of the charge collection Δt_e as:

$$N_{\text{obs}} = 3 + 4 \times N_c + \Delta t_e,$$

(1)

As an illustration, in the case of the measured Fluorine track candidate shown on figure 1 we have $N_{\text{obs}} = 3 + 4 \times 8 + 26 = 61$ observables. However, it should be noticed that the track measurement shown on figure 1 has been done with a charge integrator characterized by a rising time of ~ 200 ns, hence overestimating Δt_e.

It is noteworthy that the choice of relevant observables is experiment-dependent. The observables above listed correspond to the MIMAC detection strategy. The likelihood approach proposed in this paper could be used within any set of directional observables from different experiments [8].
1.2. The need to go beyond a simple linear fit

A straightforward track reconstruction method consists in approximating the measured track as a straight line and to perform a linear regression of the N_c centers of gravity (X_i, Y_i) in three dimensions. We present on figure 2 the evolution of the angular bias with respect to the original track direction as a function of the input value of the θ angle. For this study the ϕ angle has been fixed to 0. As seen on figure 2 at $\theta = 50^\circ$, the bias is about 20°, while it increases to 90° at $\theta = 90^\circ$. It means, a track parallel to the anode is thus reconstructed, on average, as perpendicular track. This effect is due to electron diffusion as well as time sampling strategy. Hence, the estimation of the track direction obtained with the simple linear regression is strongly biased. This method fails to estimate properly the direction of the recoiling nucleus in the detector. Interestingly, the main explanation of this effect comes from the longitudinal diffusion. Indeed, the angular bias increases with increasing drift distance and hence for larger diffusion of the primary electrons, see fig. 2. We found no bias in the estimation of ϕ meaning that only the estimation of the θ angle suffers from bad reconstruction. Moreover, it should be noticed that using this straightforward track reconstruction method, it is not possible to estimate the distance between the track location in the detector volume and the anode which is necessary to perform detector fiducialisation. This study highlights the fact that is compulsory to go beyond this simple linear regression to retrieve the track properties. Thus, in section 3, we propose an advanced data analysis strategy based on a full likelihood approach combined with a Boosted Decision Tree analysis.

![Figure 2](image-url)

Figure 2. Angular bias with respect to the original track direction as a function of the input value of the θ angle. This results has been obtained considering Fluorine recoils of 100 keV at $\{X = 0 \text{ cm}, Y = 0 \text{ cm}, \phi = 0^\circ\}$ in a gas mixture composed of 70% $CF_4 + 30% CHF_3$ at 50 mbar.
Three-dimensional track reconstruction for directional Dark Matter detection

Figure 3. Left: Representation in the (X,Z) plane of 100 simulated tracks of a Fluorine recoil with a kinetic energy of 100 keV in a gas mixture of 70%CF₄ + 30%CHF₃ at 50 mbar. Right: Angular deviation as a function of the recoil energy, for Fluorine recoils and with two direction reconstruction definitions.

2. Low energy tracks in low pressure TPC

Measuring low energy tracks, O(10) keV, in low pressure (50 mbar) TPC is a difficult task requiring a high performance readout [16] as well as dedicated electronics and DAQ [17, 18, 19]. Advanced data analysis strategy is then needed. Indeed, not only should the track be 3D measured, as described above, but a given set of parameters must be retrieved. As far as directional detection is concerned, one must retrieve, for each track:

- the WIMP interaction point (X, Y, Z), hereafter referred to as vertex. It is indeed referring to the beginning of the track. The latter is an important issue as it is related to spatial resolution and hence to the detector fiducialization used to limit contamination from surface events.
- the initial recoil direction (θ, φ), allowing to build recoil maps needed for Dark Matter search [2, 3, 4, 7].
- the sense of the track.

In the following, we give a comprehensive overview of various systematics of track measurement before presenting the simulation used in the following.

2.1. Systematics of track measurement

The performance of a directional detector, in terms of resolution, is obviously strongly correlated to the track of the target nucleus within a given gas mixture and to the tracking performance of the detector itself. In this section, we give a small review of some physical processes which contribute to the systematics associated to a track measurement in a TPC and more precisely in the context of the MIMAC detector. Unless otherwise stated, we consider a gas mixture composed of 70% of CF₄ and 30% of
Three-dimensional track reconstruction for directional Dark Matter detection

CHF$_3$ at 50 mbar, but the discussion is of general interest and applies to all directional TPC projects [3].

The angular dispersion (straggling) of low energy track in low pressure TPC is the first source of systematics that we will discuss. Indeed, the information on the initial direction is getting lost after scattering of the recoiling nucleus with the other atoms of the gas. Left panel of figure 3 presents 100 simulated tracks, using the SRIM software [21], corresponding to a Fluorine recoil at 100 keV in the above mentioned gas mixture. A large angular dispersion is observed which implies an intrinsic limitation to the angular resolution. We define the angular deviation as:

$$\gamma = \cos^{-1}(\hat{U}_{init}, \hat{U}),$$

where \hat{U}_{init} and \hat{U} are unitary vectors of the initial and reconstructed direction. The angular deviation σ_{int} is then defined by:

$$\int_0^{\sigma_{int}} f(\gamma) \, d\gamma = 0.68$$

Figure 3 (Right panel) presents the angular deviation as a function of the recoil energy, for Fluorine recoils. The direction is reconstructed with two definitions: either the direction between the first and the last point or a linear regression. In both cases, the intrinsic angular dispersion is large and increasing at low energy as the straggling is getting larger. Typical values are: 18° at 100 keV and 25° at 10 keV. This strongly constrains the minimal angular resolution that a directional detector can reach.

Another source of systematics is the number of primary electrons generated along the track of the recoiling nucleus in the drift space of the TPC. For a given recoil energy E_r, the expected number of primary electrons (N_{elec}) reads as

$$N_{elec} = Q \frac{E_r}{w}$$

with w the mean energy needed to produce an electron-ion pair and Q the ionization quenching factor. The variance associated to the distribution of the number of primary electrons is given by: $\sigma^2_{N_{elec}} = F N_{elec}$, where F is the Fano’s factor [22] describing the spread of the distribution. Hence, the dispersion in the number of primary electrons will impact both the energy resolution and the spatial resolution. It is noteworthy that the ionization quenching factor is defined in such way that it is strictly equal to one for electrons while for nuclear recoils it ranges between 0 and 1 depending on the nucleus, its kinetic energy (E_r) and the gas considered. This key parameter can either be estimated by simulation [21] or measured with dedicated experiments [20]. For instance, it is about 30% for a Fluorine recoil at 20 keV, according to SRIM simulations where the ionization from secondary recoils have been neglected (see discussion below).

Once the primary electrons enter the amplification space realized with the use of the Micromegas, the number of primary electrons will be increased following an avalanche process. In a model proposed by Byrne [34], the gain A associated to a single primary electron follows a Polya distribution as,

$$f(A) = \frac{(1 + \Theta)^{1+\Theta}}{\Gamma(1 + \Theta)} \left(\frac{A}{\bar{A}}\right)^\Theta \exp \left[-\frac{A}{\bar{A}}(1 + \Theta)\right]$$
where Θ is the Polya parameter. One can find that in the case where \bar{A}, the mean gain, is sufficiently important, the spread of the distribution follows: $\sigma_A^2 = \bar{A}^2/(1 + \Theta)$. Then, the Polya parameter describes the width of the distribution which will also impact the energy resolution of the detector.

The amount of energy deposited in the detector in form of ionization is measured by the charge sensitive preamplifier connected to the grid. The ionization energy is then given by the amplitude V of the electronic signal. Hence, the energy resolution of the detector is given by the dispersion σ_V which, in the case where the electronic noise contribution to the resolution is neglected [35], reads:

$$\left(\frac{\sigma_V}{V}\right)^2 = \left(\frac{\sigma_Q}{Q}\right)^2 + \frac{w}{E_r} \left[F + (1 + \Theta)^{-1}\right]$$

where σ_Q/Q corresponds to the fluctuations on the fraction of E_r released in the ionization channel. As one can see from equation 4, the contribution to the energy resolution from the fluctuations on the number of primary electrons and on the gain of the Micromegas are negligible $O(10^{-3}-10^{-4})$ for recoils with $E_r \sim O(10)$ keV as $w \sim O(10)$ eV.

The electron drift within the TPC is characterized by a transverse and longitudinal diffusion. This enlarges the initial track which is described by the primary electron cloud. During the ionization process due to the nuclear recoil in the gas, the kinetic energy transferred to primary electrons is of the order of 1 eV. We can then consider that primary electrons are created at rest in the detector frame. According to kinetic theory of gas, the spatial distribution of the number density of electrons in co-mobile coordinates as a function of time $n(x, y, z; t)$ follows a Gaussian distribution as,

$$n(x, y, z; t) = \frac{n_0}{\sqrt{8\pi^3}} e^{-\frac{(x^2+y^2)}{4D_t t}} e^{-\frac{z^2}{4D_l t}} \sqrt{\frac{4D_l t L}{4D_t t^2}} \sqrt{\frac{4D_l t L}{4D_t t^2}}$$

where n_0 is the initial number density of electrons and D_l and D_t are the longitudinal and transverse diffusion coefficient expressed in cm2/s. The spread of the electrons along the X and Y direction, i.e. transverse to the drift direction of electrons, is defined as $\sigma_t = \sqrt{2D_t t}$. The longitudinal spread, along the Z axis, reads as $\sigma_l = \sqrt{2D_l t}$. Considering the drift velocity of electrons v_d, we can rewrite $\sigma_i = \hat{D}_i \sqrt{L}$ with $i = \{l, t\}$, L the drift distance and \hat{D}_i the new expression of the diffusion coefficient expressed in $\sqrt{\text{cm}}$. It is worth emphasizing that the value of diffusion coefficients depends upon the unknown value of one of the parameters to be measured, namely the Z coordinate of the vertex.

We have performed Magboltz [23] simulations of the diffusion coefficients as a function of the electric field for a $70\%CF_4 + 30\%CHF_3$ at 50 mbar. In the following, we use : $\hat{D}_t = 246.0 \mu m/\sqrt{\text{cm}}$, $\hat{D}_l = 278.4 \mu m/\sqrt{\text{cm}}$ and $v_d = 21.4 \mu m/\text{ns}$ for an electric field of 100 V/cm. The electron diffusion within the TPC volume implies a spread of the electrons of about 1 mm after a drift distance of 16 cm, which is equal to the track length of a 30 keV Fluorine recoil in the gas considered.
As an illustration of the effect of electron diffusion, we show on figure 4 the representation of a single Fluorine recoil track and its diffused primary electron cloud. The Fluorine recoil has been generated considering a kinetic energy of 100 keV, at \((X = 0, Y = 0)\) cm, at 1.4 cm from the anode and perpendicular to it, going downward. The track is represented by the red solid line on the \((X, Z)\) plane where we have superposed the distribution of electrons generated by the nuclear recoil after their drift toward the anode. It can be noticed that the electron diffusion will smooth the recoil track and make the detector less sensitive to the small deflections of the track.

Finally, even a high performance readout induces a pixelization of the track. In our case, typical size along X and Y is given by the pitch size whereas the Z size of the pixel is given by the the drift velocity times the sampling time. Systematics associated with the readout is of course detector-dependent. In the following we list the effect associated with the MIMAC readout.

Considering a grid transparency of a 100%, we found that at least 10 primary electrons are required per time-slice to reach a 99.9% probability of having a spatial coincidence. This result tells us that there should be a quite large difference between \(N_e\) and \(\Delta t_e\) as \(\Delta t_e > N_e\), and that a measured track can exhibit some holes, i.e. time-slices without coincidence while electrons are still collected at the same time. Indeed, from Monte Carlo simulations of the detector readouts we found that a recoil track of a 20 keV Fluorine should be characterized by 30% to 60% of empty time slices when varying the Z coordinate of the track from 5 cm to 25 cm. This comes from the diffusion of electrons during their drift toward the anode which will decrease the charge density per time slice and hence decrease the probability of having a spatial concidence. This effect must be treated with caution, which is the case when using a likelihood approach dedicated to track reconstruction (see sec. 3).

We also found that, taking into account the strip size and the MIMAC trigger with the spatial concidence, the mean distance between the real center of gravity on the \((X,Y)\) plane and the reconstructed one is less than 1 mm even for drift distances up to 25 cm and decreases rapidly when increasing the number of electrons in the same time slice. This result suggests that the pixel size of 424 \(\mu m\) is small enough as the main contribution of this spatial dispersion is due to the electron transverse diffusion. Also, we found that the values of the observables \(\Delta X_i\) and \(\Delta Y_i\) increase with the drift distance meaning that they should lead to valuable information to recover the localization of the track in the detector along the z axis.

2.2. Track simulation

Track simulation is a key point of the analysis strategy proposed in this paper. Indeed, the method proposed (sec. 3) consists in comparing real track to simulated ones in order to retrieve the parameters (vertex, direction and sense) after a likelihood minimization. Hence, the track simulation must be as close as possible to real tracks in order not
to induce bias. Moreover, at the stage of validation of the method, we reconstruct simulated tracks, in order to evaluate resolutions and bias. Track simulation must include all processes and systematics above described:

- Nuclear recoils are propagated within the gas mixture with the SRIM software [21], known to accurately reproduce the propagation of low energy ions in low pressure gases.

- Primary electron generation is accounted following eq. 2. To remain conservative, the Fano factor F and the Polya parameter Θ are taken equal to one and zero respectively, leading to Poissonian fluctuations of the number of primary electrons created N_{elec} and an exponential distribution of the amplification gain. As said above, the IQF is taken from SRIM neglecting the ionization from secondary recoils for computational reasons. We found that the main contribution to the energy resolution comes from the spread of the ionization quenching. It is important to notice that neglecting the ionization produced by secondary recoils barely modify the mean value of Q at a given recoil energy but overestimates σ_Q. For example, for a 20 keV Fluorine recoil in the considered gas mixture, we found $\sigma_Q/Q = 30\%$.

- Electron drift properties are estimated with the Magboltz software [23], allowing an accurate estimation of the drift velocity and dispersion tensor. In particular, both transversal and longitudinal diffusion are accounted for. As outlined above this may lead to strong limitation in track reconstruction performance but it may also help in the estimation of the Z-coordinate.

- Readout and trigger strategy are also accounted for. This is a key point as the simulated tracks must contain all systematics associated to data tracks. This allows us to include time sampling, pitch size, thresholds and missing coincidences. The charge preamplifier readout is simulated by taking into account the time projection of the collected charges on the grid.
Three-dimensional track reconstruction for directional Dark Matter detection

This simulation software provides us with track simulations, for various energies, drift sizes or gas properties. They are used in the following as fitting model of the likelihood minimization stage of the 3D reconstruction method.

3. A 2-step track reconstruction method for directional detection

In order to perform directional detection of Dark Matter, one must retrieve the following track parameters: vertex, initial direction and sense. As shown above, a straightforward track reconstruction method (a linear fit) fails at estimating accurately the direction of the recoiling nucleus in the detector. In particular, the estimation of the θ angle is shown to be strongly biased. The method proposed in this section is based on the comparison of a real track to simulated ones in order to extract the set of parameters through a likelihood minimization. The fitting parameters associated to each tracks are: the recoiling energy E_r, the vertex X, Y, Z, and the direction of the track given by the angles (θ, ϕ), which leads us to 6 free parameters.

To recover accurately this set of parameters, we introduce a 2-step track reconstruction algorithm. The first one will give a rough estimate of all the parameters (sec. 3.1) that will be refined during the second step which consists in the minimization of a likelihood function (sec. 3.2).

3.1. First step

A straightforward estimation of the recoil energy E_r is given by the ionization energy measurement done by the preamplifier directly connected to the grid of the MIMAC detector. Indeed, the measurement of the ionization energy combined with the knowledge of the mean Ionization Quenching Factor (IQF) allows to recover the most probable

![Figure 5. Left: evolution of the mean value of Δt_e as a function of Z for different values of $\theta = \{0^\circ, 22.5^\circ, 45^\circ, 67.5^\circ, 90^\circ\}$. Right: deduced probability density distribution $f(Z|\theta_i)$ for each hypothized value of θ. The two figures have been generated considering the benchmark case presented in the text.](image)
recoil energy corresponding to the track. Using the track measured by the MIMAC detector, it is also possible to recover an accurate estimation of the localization of the track on the \((X,Y)\) plane and a main direction in this plane given by the angle \(\phi\). This is the linear fit described in sec. 1.2. However, as shown before, this method is not able to recover an accurate estimation of the \(\theta\) angle and is not sensitive to the \(Z\) coordinate of the recoil track in the detector volume.

To allow us to have a rough estimate of \(\theta\) and \(Z\), we developed the following iterative procedure. For the sake of concreteness, we consider hereafter the case of a measured track having the following characteristics: \(\{E_r = 100 \text{ keV}, X = 0 \text{ cm}, Y = 0 \text{ cm}, Z = 10 \text{ cm}, \theta = 45^\circ, \phi = 0^\circ\}\) and going downward,

- We compute the distribution of \(\Delta t_e\) as a function of \(Z\) for \(N_\theta\) values of \(\theta\) by simulating a large number of tracks (~1000) considering the estimation of \(E_r, X, Y\) and \(\phi\) from the simple linear fit. On left panel of figure 6 is presented the evolution of the mean value of \(\Delta t_e\) as a function of \(Z\) considering \(\theta = \{0^\circ, 22.5^\circ, 45^\circ, 67.5^\circ, 90^\circ\}\). As one can see, \(\Delta t_e\) increases with \(Z\) as expected from the primary electron diffusion and obviously decreases with \(\theta\).
- From the observed value of \(\Delta t_e\) we can then deduce the \(N_\theta\) probability density functions \(f(Z|\theta_i)\) of \(Z\) for the different hypothesis on the value of \(\theta\). The distributions are presented on right panel of figure 6. We can appreciate that there is indeed a strong correlation between \(\theta\) and \(Z\) and that the maximum of probability for \(Z\) is between \(Z = 8 \text{ cm}\) and \(Z = 14 \text{ cm}\) depending on the considered value of \(\theta\). Hence, one can see that the measurement of both \(\Delta t_e\) and \(E_r\) is able to constrain, although weakly, the \(Z\)-coordinate of the track in the detector volume.
- We then simulate a large number of tracks following the \(N_\theta\) different distributions.
f(Z|θ_i) to discriminate which value of θ is the most likely to correspond to the measured track.

- From the above simulations, we use the mean projected length (L_p) on the (X, Y) plane as a discriminant observable. Indeed, as it is shown on the left panel of figure 6, we can appreciate the evolution of L_p as a function of θ. The solid line corresponds to the mean value of L_p while the dotted lines refer to the 68% C.L. interval.

- Considering the observed value of L_p, one can deduce the probability density function f(θ) of the θ parameter marginalised over the Z parameter. Right panel of figure 6 presents the deduced f(θ) distribution from which we can find the estimator of θ as being the maximum of the distribution and found to be θ = 47° in this case.

- Finally, we simulate one last time a large number of tracks considering the distribution f(θ) and for different values of Z. From the observed value of Δt_e we can deduce the probability density function f(Z) marginalised over θ and obtain an estimator of Z defined as the maximum of f(Z).

The interest of using the L_p and Δt_e as discriminants comes from the fact that they monotonically evolves with the parameters of interest Z and θ. Following this procedure, we found unbiased estimators of the Z and θ parameters. This way, we are able to start the minimization of the likelihood function with a consistent starting point
{\hat{E}_r, \hat{X}, \hat{Y}, \hat{Z}, \hat{\theta}, \hat{\phi}}
estimated with the help of the first step reconstruction algorithm.

3.2. Second step : a likelihood track reconstruction

To go further and to improve the track reconstruction, we developed a likelihood analysis. The idea is to compare real track to simulated ones, which thus stand as the fitting model, in order to extract an accurate estimate of the set of observables through a likelihood minimization. The likelihood function is defined as follows:

\[L(P|D) = \prod_{i=1}^{N_c} L(P|X_i) \times L(P|Y_i) \times L(P|\Delta X_i) \times L(P|\Delta Y_i) \]

\[\times \prod_{j=1}^{\Delta t_e} L(P|Q_j) \]

\[\times L(P|\Delta t_e) \times L(P|N_c) \times L(P|L_p) \] \tag{6}

where the N\text{obs} likelihood functions \(L_k(P|O^k) \) are defined as,

\[L_k(P|O^k) = \exp \left\{ -\frac{1}{2} \left(\frac{O_{\text{obs}}^k - \bar{O}^k}{\sigma_{\bar{O}^k}} \right)^2 \right\} \]

\tag{7}

and \(O^k \) refers to the different observables:

\[O^k = \{ X_i, Y_i, \Delta X_i, \Delta Y_i, Q_j, \Delta t_e, N_c, L_p \} \]
with \(1 \leq k \leq N_{\text{obs}}\).

For the k-th observable, \(O_{\text{obs}}^k\) corresponds to the observed value, \(\bar{O}^k\) to the expected value and \(\sigma_{\bar{O}^k}\) to its standard deviation. Note that both the standard deviation and the expected value are estimated from Monte Carlo simulations of 1000 tracks generated at the location \(\vec{P} = \{E_r, X, Y, Z, \theta, \phi\}\) in the parameter space. Then, the likelihood function assumes a gaussian distribution of the different observables, which is an approximation that we have checked to be valid. Also, it assumes that the different observables are independent to each other which means that they necessarily are uncorrelated to each other. To check this statement, we have computed the correlation matrix defined as follows:

\[
\rho^{ij} = \rho[O_i, O_j] = \frac{\text{cov}[O_i, O_j]}{\sqrt{\text{var}[O_i] \text{var}[O_j]}}
\]

(8)

Figure 7 presents the absolute value of the correlation matrix \(\rho^{ij}\). It can be first noticed that the correlation amongst different observables is low for most parameters. However, we can clearly see that the collected charges per time slice \(Q_j\) are strongly correlated to the width of each time slice along the \((Ox)\) axis \(\Delta X_i\) and along the \((Oy)\) axis \(\Delta Y_i\). Indeed, for a large number of charge per time slice, there is an increase in sensitivity to the tail of the transverse electron dispersion. However, in the following we have neglected these correlations for the following reasons:

- The mean of the absolute value of the correlations is \(\sim 0.15\) and 97% are below 0.5. We found that taking into account the full covariance matrix induces only small deviations with respect to the case without correlations. Moreover, these corrections are lower than the statistical fluctuations of the likelihood function caused by the fact that \(\bar{O}^k\) and \(\sigma_{\bar{O}^k}\) are estimated via Monte Carlo simulations. Hence, neglecting the correlations between the different observables appears to be a fair approximation.
- the size of the covariance matrix being really large (73 \(\times\) 73 in the case presented on fig. 7), we found some numerical instabilities when computing the inverse of the covariance matrix.

As an illustration of the method, we show on figure 8 the likelihood function, sampled using a Markov Chain Monte Carlo (MCMC) algorithm, associated to a fluorine recoil of 100 keV. The latter was simulated at \(\{X = 0, Y = 0, Z = 5 \text{ cm}\}\) in the direction \((\theta = 45^\circ, \phi = 0^\circ)\) and going upward. This way, the result shown in figure 8 corresponds to the same conditions used to estimate the sense recognition efficiency, except the sense (see sec. 3.3). As one can see on figure 8, the five parameters are strongly constrained. Even the \(\theta\) angle and the \(Z\) position which are the most challenging parameters are fully recovered with a small shift for the \(\theta\) angle due to initial angular deviation of the reconstructed track. It is important to highlight the fact that the analysis is unbiased as shown in figure 10. From figure 8 we can appreciate the fact that, due to the values of the input parameters, the \(\theta\) angle is negatively correlated with the \(X\) coordinate while it is positively correlated with the \(Z\) coordinate, as already explained in the previous
Figure 7. Correlation matrix between the different observables O^k corresponding to the case of a 50 keV Fluorine recoil located at the center of the detector going upward in the direction $(\theta = 45^\circ, \phi = 45^\circ)$ at 15 cm from the anode. The various observables are indicated on the plot: $O^k = \{X_i, Y_i, \Delta X_i, \Delta Y_i, \Delta t_e, N_c, L_p\}$. The correlation amongst different observables is low for most parameters, except the correlation between the collected charges per time slice Q_j and the width of each time slice (ΔX_i and ΔY_i).

This study, highlights the fact that a likelihood approach to track reconstruction of a few tens of keV allows to recover consistently the track properties. Another interest of using such a likelihood analysis is that for each reconstructed track, one can get both the best fit value and the error bars on each parameters, taking into account all the systematics associated to the track detection: both from the track properties and the tracking performance of the MIMAC detector. This likelihood definition could be adapted to other directional experiments with a proper choice of observables.

3.3. Sense recognition: a multivariate analysis

Sense recognition is often considered as the most challenging experimental issue for directional detection. The question to answer can be simply put as: is the track going downward or upward ($S = \text{Down or Up}$)? To reach such ability, a given detector has to be sensitive to tiny sources of asymmetry between the two hypotheses (Up and
Three-dimensional track reconstruction for directional Dark Matter detection

Figure 8. Marginalized distributions (diagonal) and 2D correlations (off-diagonal) plots of the likelihood function associated to a fluorine recoil of 100 keV generated at the position \(\{X=0,Y=0,Z=5\text{cm}\} \), and in the direction \((\theta = 45^\circ, \phi = 0^\circ) \).

Down). The reason why experimentalists believe that it may be possible to achieve sense recognition relies on the fact that there is, indeed, two sources of asymmetry between the beginning and the end of the track:

- **Shape asymmetry**: more deflections are expected at the end of the track with respect to its beginning. Hence, the beginning of the track should be more rectilinear than its end. Of course, due to electron diffusion and finite pitch size of the detector readout, this effect might be strongly smeared out. However, even if a realistic detector will not be able to measure all the track deflections, it should be at least sensitive to an asymmetry in the spread of the track between the beginning and the end of the track.

- **Charge asymmetry**: at low energy, \(\lesssim O(100) \text{ keV} \), the ionization stopping power is expected to be larger at the beginning of the track with respect to the end. This should lead to an asymmetry in the charge integration readout that is a function of the projection of the collected charges along the Z axis. Obviously, if the track is parallel to the anode, the MIMAC detector will not be sensitive to this asymmetry. Note that this is not the case for other directional detectors such as DM-TPC [9] and Newage [13] for instance. Indeed, the latters are sensitive to the asymmetry in the charge distribution projected on the anode plane, implying an enhancement of the sensitivity to the sense of the track.
To optimize the sense recognition efficiency, we have used a high dimensional multivariate analysis, namely a Boosted Decision Tree [24]. It can be seen as a data classifier, often used for signal/background discrimination. In our case, it is used to discriminate the Up and Down hypotheses. The principle is based on the optimisation of linear cuts on the different observables taken into account in the analysis. For this study, the observables \tilde{O}^t are:

- the position (X_i, Y_i, Z_i) of the center of gravity of the first and last time slice of the track,
- the width along the X and Y axes of the first and last time slice of the track,
- the skewness factor of the charge collection profile.

Hence, we use 11 observables in this analysis.

The output of a Boosted Decision Tree analysis is given by the output variable BDT following,

$$ BDT = \sum_{k=1}^{N_{\text{tree}}} \alpha_k T_k(\tilde{O}^t) $$ \hspace{1cm} (9)

where α_k refers to the normalized weight of each tree T_k and N_{tree} is the number of trees considered for the boosting. The main interest of boosting is that the misclassification rate can be considerably reduced and can even tends to zero in the case of large value of N_{tree}. However, in such case, there is a non negligible risk of overtraining (see discussion below).

By definition, we have $-1 \leq BDT \leq 1$, BDT being negative in the case of downgoing tracks and positive for upgoing one. Left panel of figure 9 represents the final results

Figure 9. Left: representation of $f(BDT|\text{Up})$ (red histogram), $f(BDT|\text{Down})$ (black histogram) and $f(BDT|\text{Up} + \text{Down})$ (black dashed histogram) from a Boosted Decision Tree analysis. Right: representation of $P(\text{Up}|BDT)$ (red line) and $P(\text{Down}|BDT)$ (black line) as a function of BDT deduced from the result of Boosted Decision Tree analysis presented in the left panel.
of a Boosted Decision Tree analysis, associated to a Fluorine recoil of 100 keV going downward and with \((X = 0 \text{ cm}, Y = 0 \text{ cm}, Z = 5 \text{ cm}, \theta = 45^\circ, \phi = 0^\circ)\), given by the three distributions: \(f(BDT|\text{Up})\) (red histogram), \(f(BDT|\text{Down})\) (black histogram) and \(f(BDT|\text{Up} + \text{Down})\) (black dashed histogram). The Boosted Decision Tree analysis is based on two samples of 10,000 simulated tracks corresponding to the two hypothesis (Up and Down) deduced from the maximization of \(\mathcal{L}(\vec{P}|\vec{D})\). From left panel of figure 9, one can see that there is indeed a discrimination between the Down and Up hypothesis suggesting that it might be possible to achieve an efficient sense recognition of observed tracks. Once the Boosted Decision Tree algorithm associated to a given track is built, we compute \(BDT_{\text{obs}} = f(\tilde{O}_{\text{obs}})\) and we can then compute the probability of the track of going Upward or Downward \(p(U/D|BDT_{\text{obs}})\) using the Bayes theorem:

\[
P(U/D|BDT) = \frac{f(BDT|U/D)}{f(BDT|U) + f(BDT|D)}
\]

(10)

Right panel of figure 9 represents \(P(U|BDT)\) (red line) and \(P(D|BDT)\) (black line) as a function of BDT deduced from the result of Boosted Decision Tree analysis presented in the left panel of figure 9. Hence, one can see that for \(|BDT| > 0.2\) the probability of going either upward or downward is \(\sim 1\). The main interest of Boosted Decision Tree analysis is that we can either apply a sharp cut as if BDT positive (negative) we consider the track as going Upward (Downward) or just consider the relative probability and propagate it into the following Dark Matter analysis.

A key advantage of Boosted Decision Tree analysis, in comparison with a neural network for example, is the fact that adding a new observable, even if its discrimination power is very weak, will never degrade its efficiency and will not change the calculation time. Then, Boosted Decision Tree can easily handle a large number of observables and still requires a very little calculation time. However, like any multivariate analysis algorithm, one has to check for overtraining. This check can be done using a Kolmogorov test statistic by comparing the distributions of the BDT value obtained on the “training” and the “test” samples which corresponds to half of the total number of simulated tracks of both hypothesis (Up and Down). If the two distributions are close to each other, according to the Kolmogorov test statistic, there is no overtraining and the Boosted Decision Tree is then consistent. In the following of the study the Boosted Decision Tree analysis are constructed with 2000 trees and a minimum number of tracks per leaves of 50. The latter condition is a good protection against overtraining. Indeed, overtraining appears when the algorithm starts to learn the statistical fluctuations of the training sample. Hence, by requiring at least 50 events in a leaf of any trees from the boosting prevents the algorithm to be sensitive to statistical fluctuations and hence to be overtrained. With the parametrization presented above, we found no evidence in favor of overtraining in the following of our study.
Figure 10. Distribution of the maximum likelihood from the track analysis of simulated data in the case of a 100 keV 19F input recoil: $X = 0$ cm, $Y = 0$ cm, $Z = 5$ cm, $\theta = 45^\circ$, $\phi = 0^\circ$ and going downward. The result is presented under the two hypothesis: Up (red histograms and red points) and Down (black histograms and black points).

4. Benchmark case

To illustrate the reconstruction algorithm, we first discuss the results corresponding to a benchmark case. In the following, we consider the reconstruction of 800 simulated tracks corresponding to a 100 keV 19F recoil generated at 5 cm from the anode, at the center of the anode plane ($X = 0$ cm, $Y = 0$ cm), in the direction ($\theta = 45^\circ$, $\phi = 0^\circ$) and going downward. The distribution of the maximum likelihood under the two hypothesis (Up and Down) is presented on figure 10 in the five dimensional parameter space. For the sake of clarity, we have made a change of variable: $\theta \rightarrow \theta = \cos^{-1}(\hat{t}.\hat{Z})$ where \hat{t} corresponds to the hypothesized direction of the track and \hat{Z} to the direction of the unit vector of the Z axis.

We first focus on the spatial (X, Y, Z) reconstruction. As the tracks are simulated under the downward hypothesis, one can easily see from the marginalised 1D distribution of the five parameters that there is no bias in the estimation of the different parameters. We can also extract the spatial resolution along the three axis. In this case, it is about ~ 350 \mu m along the X and Y axes ($\sigma_{x,y}$) and ~ 8 mm along the Z axis (σ_z). Interestingly, we can see that the 1D distribution of X, Y and Z are different under the Downward hypothesis (black histograms) with respect to the Upward one (red histograms). In this
Three-dimensional track reconstruction for directional Dark Matter detection

In this case, the track is considered back to front and the performance is degraded. In this case, as the simulated data track is generated with $\phi = 0^\circ$, there is no shift in the mean value of the Y distribution under the two hypothesis, while a large shift is observed in the X distribution under the Upward hypothesis. One can see on fig. 10 that this shift is about 2 mm. This is what one expects, knowing that the mean range of a 100 keV recoil, in this gas mixture and for this pressure, is expected to be 3 mm. The distributions are also wider under the Upward hypothesis with respect to the Downward one, which is consistent with the spatial straggling of nuclear recoils presented in Sec. 2.2.

Concerning the reconstruction of the direction of the track, one can see from figure 10 that the θ and ϕ distribution under the Downward hypothesis are consistent with the input values. It is worth emphasizing that no bias is observed as it was the major drawback of a linear fit method. By computing the angular dispersion distribution, we found that the associated angular resolution is $\sigma_\gamma = 27^\circ$ at 68% CL. We can observe a 180° shift in the reconstruction of the ϕ angle under the Upward hypothesis, which is expected as we are considering the opposite direction of the track. No difference between the Up and Down distributions is observed for θ, as it is defined as $\theta = \cos^{-1}(|\vec{t}.\vec{Z}|)$.

Interestingly, we can notice that the correlations between the directional parameters and the spatial parameters are of opposite sign under the Upward or Downward hypothesis. For this given benchmark case, we have recovered a sense recognition probability of $70 \pm 1.5\%$ where the uncertainty is given by the standard deviation of a binomial distribution. The latter is given by $\sqrt{\hat{p}(1-\hat{p})/N}$ where \hat{p} corresponds to the observed sense recognition probability and N the number of reconstructed tracks.

5. Detector performance

We present the expected MIMAC performance (resolutions, fiducialization, sense recognition capability) as a function of the energy and the Z-coordinate of the track within the detector. In order to estimate the angular and spatial resolutions of the MIMAC detector as well as the sense recognition efficiency, we used pseudo data tracks (simulated) in various configurations. This way, we have simulated 1000 tracks isotropically at fixed values of distance to the anode (Z) and for different values of the recoil energy (E_r). Each track is then reconstructed under the two hypothesis and a Boosted Decision Tree analysis (see sec 3.3) is used to recover the input sense.

5.1. Spatial resolution and fiducialization

To begin with, we focus on the spatial resolution which is related to the detector fiducialization.

Left panel of figure 11 presents $\sigma_{x,y}$ as a function of E_r and for 4 different values of the distance between the track and the anode: $Z = 5$ (red), 10 (pink), 15 (green) and 20 cm (blue). We conclude that the spatial resolution along the X and Y axes is ranging between 200 μm and 600 μm depending on the recoil energy and the distance.
to the anode. It is worth comparing this spatial resolution with the intrinsic resolution induced by the transversal diffusion ($\tilde{D}_t = 246.0 \mu m/\sqrt{cm}$). For instance, for a 100 keV Fluorine recoil, at 5 cm from the anode, the MIMAC resolution is $\sim 300 \mu m$, whereas a straightforward estimation of the intrinsic resolution gives $\sim 55 \mu m$, with an average number of electrons per time slice of ~ 100. The fact that $\sigma_{x,y}$ increases with Z is simply due to the fact that the electron diffusion coefficients evolve as the square root of the drift distance (Z). Interestingly, the evolution of $\sigma_{x,y}$ as a function of the recoil energy is the result of the competition between two effects. Indeed, for high recoil energy, more primary electrons are generated leading to a better localization of the starting point of the track. But, the track length is also increasing with energy, leading to more uncertainties on the vertex. This way, increasing the recoil energy will generate more primary electrons but will also enlarge the possibility of the exact location of the starting point. This effect is even stronger when the electron diffusion is high, i.e. for long drift distance.

As a conclusion, a sub-mm resolution in X and Y leads to a very small effective volume loss when considering fiducialization (see below).

The resolution along the Z axis is shown on the right panel of figure 11. One can see that σ_z/z decreases with the recoil energy and that σ_z increases with the drift distance (Z). As an illustration, for a 20 keV 19F recoil, $\sigma_z = 4 \text{ cm}$ for Z = 20 cm and $\sigma_z = 1 \text{ cm}$ for Z = 5 cm. σ_z is larger for long drift distance due to the fact that the electron diffusion evolves as the square root of the drift distance. Indeed, the constraint on the Z parameter evolves as $1/\sqrt{Z}$ implying a weaker constraint for long drift distances. Hence, the spread of the primary electron cloud, measured through the track width given by ΔX_i, ΔY_i and Δt_e, allows us to constrain the Z-coordinate of the track. This constraint is even stronger for short drift distance.

As a conclusion, one can see that the MIMAC experiment should reach sub-mm spatial
resolutions along the X and Y axis and a \sim cm resolution along the Z axis. Note that this spatial resolution could be enhanced by reducing the diffusion values, by drifting ions for instance \[10\].

As above mentioned, the reconstruction of the localization of the vertex of event in the detector volume is a key issue in order to discriminate surface events, mostly coming from the radioactivity from the surrounding detector material. Then, discriminating background events will considerably reduce the background event contamination of the data and thus improve the exclusion or discovery potential \[3, 7\]. As an illustration of surface event contamination, we present on figure 12 (left panel) the distribution of the reconstructed value of the Z coordinate (\hat{Z}) for two simulated datasets. We consider the worst case respectively for the contamination from the anode (100 keV 19F recoils, in black) and from the cathode (20 keV 19F recoils, in blue), choosing in this case a drift distance $Z = 25$ cm. Contrarily to what could be assumed from right panel of figure 11, the 100 keV Fluorine recoil from the anode is indeed the worst case scenario as it induces larger uncertainties on the Z coordinate with respect to a 20 keV recoil. Indeed, the latter case is dominated by the track length at such short distance from the anode. Contamination from the anode remains negligible, \textit{i.e.} most anode events will be identified as such. On the contrary, a bad estimation of the vertex of a cathode event implies that it can be counted as bulk event while it was originating from this surface. To reject surface events, a fiducialization of the detector is proposed. The fiducialization is computed for a given Confidence Limit (hereafter σ_{cut}). For a 25 cm drift chamber, the lower (Z_l) and upper (Z_u) limit on the Z-coordinate are given by:

$$
\int_0^{Z_l} f(\hat{z}|z=0)\,d\hat{z} = \sigma_{\text{cut}} \quad \text{and} \quad \int_{Z_u}^{25} f(\hat{z}|z=25)\,d\hat{z} = \sigma_{\text{cut}} \quad (11)
$$

\[\text{Figure 12.} \quad \text{Left : distribution of the reconstructed value of the Z coordinate (}\hat{Z}\text{). We consider the worst case respectively for the contamination from the anode (100 keV 19F recoils, in black) and from the cathode (20 keV 19F recoils, in blue), choosing in this case a drift distance $Z = 25$ cm. Right : fraction of the active volume as a function of σ_{cut} the confidence level on surface event rejection.}\]
Obviously, the fiducialization should not depend on the energy of the track. We then consider the pessimistic spatial resolution on the (X,Y) plane $\sigma_{x,y} = 600\mu m$, and along the Z axis, we have considered the $f(\hat{Z})$ distributions from the left panel of figure 12. Right panel of figure 12 presents the fraction of active volume, i.e. keeping a fiducial volume only, as a function of σ_{cut} the confidence level on surface event rejection. It is then a matter of choice, balancing between purity of the events (large σ_{cut}) and size of the fiducial volume of the detector. This issue is closely related to radiopurity of the chosen material and Dark matter search strategy. Indeed, as outlined in [3, 7], directional detection could accommodate to a sizeable background contamination, thanks to the evaluation of the double-differential spectrum $d^2R/dE_Rd\Omega_R$. This holds true even in the case of a high significance discovery of Dark Matter. The reach of a given directional detector is thus related to the fiducial cut presented here.

We emphasize that fiducialization of directional detector is possible, thanks to a good spatial resolution. The proportion of the detector volume to be removed by such analysis can be chosen with figure 12 (right panel), taking into account the radioactivity of surroundings material.

5.2. Angular resolution

The main goal of directional detection is to measure the initial direction of the nuclear recoils and the estimation of the angular resolution is then a key issue. It is defined as:

$$\int_0^{\sigma_{\gamma}} f(\gamma)d\gamma = 68\%$$

where γ is the angular deviation between the true direction of the pseudo data track and the reconstructed one.

Figure 13 presents σ_{γ} as a function of the recoil energy and for 4 different values of drift distance: $Z = 5$ (red), 10 (pink), 15 (green) and 20 cm (blue). It is worth emphasizing that it is the angular resolution achieved by the track reconstruction analysis when the sense of the recoil (Up or Down) is assumed to be known. This way, we found that the angular resolution of the detector should be ranging between 30° and 80°, strongly depending on the recoil energy and weakly on the drift distance. Indeed, we can see that σ_{γ} decreases when increasing the recoil energy. This effect can be easily understood. Indeed, higher is the energy, longer the track and then stronger will be the constraint on its direction. It should be noticed that the angular resolution is not only due to the detector limitations, but also to the intrinsic properties of low energy nuclear recoils, related to the properties of the gaz mixture. Indeed, an intrinsic angular dispersion is expected, due to collisions with other nuclei in the gas (see sec. 2). We have seen that a 100 keV 19F recoil has an intrinsic angular dispersion of about 18° at 68% CL. It is about 25° for a 20 keV 19F recoil. Then, the value of σ_{γ} observed on figure 13 is a combination of the MIMAC detector performance and of the intrinsic low energy recoil properties. Interestingly, at low energy, the angular resolution σ_{γ} tends to a maximum value $\sim 90°$ which corresponds to no directional information. Indeed, due to the fact that the like-
likelihood reconstruction is based on a separation of the parameter space under two hypotheses (Up and Down), one can easily find that in that particular case, $\sigma_\gamma = 90^\circ$ is equivalent to an isotropical guess of the track direction. Hence, the directional threshold (no directional information) lies below 20 keV (recoil) in our case. Note that in the case where there is a 100% sense recognition efficiency, the no directional information regime is characterized by $\sigma_\gamma = 111^\circ$.

As outlined in [3], angular resolution only mildly affects the sensitivity of forthcoming directional detectors. In terms of discovery potential (with a 90% probability to reach a significance greater or equal to 3σ), choosing a constant angular resolution of 60° on the whole energy range, which is a fair approximation of results presented on fig [13] results in no effect at low WIMP mass with respect to the perfect angular resolution case. This is due to the fact that at low WIMP mass the expected angular distribution is much more anisotropic than for heavy WIMPs. However, at high WIMP mass, the effect of angular resolution remains small as we found a reduction in the sensitivity of about a factor of 3.3 at 1 TeV/c^2, with respect to the perfect angular resolution case. The combination of this estimation of the expected angular resolution (fig. [13]) together with previous results (fig. 10 in [3]) allows us to conclude that directional detectors, as MIMAC, should reach the angular performance needed to achieve a high significance discovery of Dark Matter.

5.3. Sense recognition

Sense recognition has been early presented as a major issue for directional detection [25, 26, 27, 28, 29, 30]. Indeed, without sense recognition, the expected WIMP-induced
distribution becomes less anisotropic and thus gets closer to the expected background event distribution. This induces \textit{a priori} a loss of discrimination power. Even though several experimental progresses have been done \cite{31, 32, 33}, sense recognition remains a challenging experimental issue for directional detection of Dark Matter. In particular, it should still be demonstrated that sense recognition may be achieved at low recoil energy, where most WIMP events reside. Moreover, the sense recognition efficiency must be studied.

Advanced data analysis is needed to recover the true sense of the recoiling nucleus and we have developed in sec. 3.3 a multivariate analysis (Boosted Decision Trees) considering a large number of observables. The evolution of the sense recognition efficiency as a function of the recoil energy and for different drift distances is shown on figure 14. Even with an advanced data analysis, applied on simulated data only, one can see that the sense recognition efficiency turns out to be rather low. In the case of 19F recoils between 20 and 100 keV, it ranges between 65% and 50% (\textit{i.e.} almost no sense recognition capability).

This result suggests that there is no evidence of a sense recognition capability of the detector for a drift distance of about 20 cm while for a 5 cm drift distance, high energy nuclear recoil (60-100) keV may be partially sense recognized. It is striking that sense recognition may be achieved, albeit with poor efficiency, only for events close to the anode (and at high energy). This may suggest either to reduce the drift size of the TPC chambers, with a huge cost when building a multi-cell detector, or to give up sense recognition.

The conclusion is twofold. First, the sense recognition efficiency is shown to exhibit a strong dependence on both the recoil energy and the drift distance. Hence, Dark matter analysis of forthcoming directional detectors should include explicitly this dependence in the likelihood function. This is not an easy task and this implies that the result would be strongly Monte Carlo-dependent. Second, the values of efficiency found in this study are rather low, suggesting that the gain may be low when compared to the high risk of misidentification. Most studies so far \cite{2, 25, 26, 27, 28, 29} have used a full sense recognition on the whole energy range and on the whole detector volume, except \cite{30} that have used an energy-dependent sense recognition capability. Using an advanced data analysis strategy applied on realistic simulated data, we have shown that directional detectors should not be able to reach a high sense recognition efficiency below 100 keV. We suggest not to consider this information either to set exclusion limits or to claim a high significance discovery.

The effect of no sense recognition on exclusion or discovery of Dark Matter has been studied \cite{3, 7}. As far as exclusion is concerned, the difference between 100% sense recognition, on the whole recoil energy range and in the whole detector volume, and no sense recognition is only minor (less than a factor of three at high background contamination). Considering a detector with no sense-recognition capability results in a loss in the discovery power of a factor of 4 at high WIMP mass, with respect to 100% sense recognition, and almost no effect at low WIMP mass, as outlined in \cite{3}. A
directional detector without sense recognition capability would still be able to achieve a 3σ discovery in the $10^{-5} - 10^{-3}$ pb region.

As a conclusion, we have shown that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values. Axial directional data (without sense recognition) seem to be a realistic goal for the future of the field.

6. Conclusion

We have proposed a new data analysis for forthcoming directional detectors. It is a 3D track reconstruction based on a full likelihood approach, combined with a multivariate analysis (Boosted Decision Tree). A real track is compared to simulated ones in order to retrieve for each track: the WIMP interaction point (X, Y, Z), the initial recoil direction (θ, ϕ) and the sense of the track. This likelihood approach is applied to the MIMAC detector. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution should range between 20° to 80° depending on the energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values. We suggest not to consider this information either for exclusion or discovery of Dark Matter, and then to focus on axial directional detectors, i.e. without sense recognition capability.

In a forthcoming paper we will apply this method to real tracks from measurements with a neutron field.
Three-dimensional track reconstruction for directional Dark Matter detection

Acknowledgments

The authors would like to thank Cyril Grignon for fruitful helps and discussions at the early stage of this project.

References

[1] D. N. Spergel, Phys. Rev. D 37 (1988) 1353
[2] J. Billard, F. Mayet, J. F. Macias-Perez and D. Santos, Phys. Lett. B 691 (2010) 156-162
[3] J. Billard, F. Mayet and D. Santos, Phys. Rev. D 85 (2012) 035006
[4] J. Billard, F. Mayet, D. Santos, Phys. Rev. D 83 (2011) 075002
[5] A. M. Green and B. Morgan, Phys. Rev. D 81 (2010) 061301
[6] D. Albornoz Vásquez, G. Bélanger, J. Billard and F. Mayet, arXiv:1201.6150
[7] J. Billard, F. Mayet and D. Santos, Phys. Rev. D 82 (2010) 055011
[8] S. Ahlen et al., Int. J. Mod. Phys. A 25 (2010) 1
[9] S. Ahlen et al., Phys. Lett. B695 (2011) 124-129
[10] E. Daw et al., Astropart. Phys. 35 (2012) 397-401
[11] S. E. Valsen et al., EAS Publications Series 53 (2012) 43-50
[12] D. Santos et al., EAS Publications Series 53 (2012) 25-31
[13] K. Miuchi et al., Phys. Lett. B 686 (2010) 11
[14] Y. Giomataris et al., Nucl. Instrum. Meth. A 560 (2006) 405
[15] Y. Giomataris et al., Nucl. Instrum. Meth. A 376 (1996) 29
[16] F. J. Iguaz et al., JINST 6 (2011) P07002
[17] J. P. Richer et al., Nucl. Instrum. Meth. A 620 (2010) 470
[18] O. Bourrion et al., Nucl. Instrum. Meth. A 662 (2010) 207
[19] O. Bourrion et al., EAS Publications Series 53 (2012) 129-136
[20] O. Guillaudin et al., EAS Publications Series 53 (2012) 119-127
[21] J. F. Ziegler, J. P. Biersack and U. Littmark U., Pergamon Press New York, (1985), www.srim.org.
[22] U. Fano, Phys. Rev. 72 (1947) 26-29
[23] S. F. Biagi, 1999, Nucl. Instrum. and Meth. A, 421, 234-240.
[24] A. Hoecker et al., PoS ACAT 040 (2007)
[25] B. Morgan, A. M. Green and N. J. C. Spooner, Phys. Rev. D 71 (2005) 103507
[26] B. Morgan and A. M. Green, Phys. Rev. D 72 (2005) 123501
[27] C. J. Copi, L. M. Krauss, D. Simmons-Duffin and S. R. Stroiney, Phys. Rev. D 75 (2007) 023614
[28] A. M. Green and B. Morgan, JCAP 08 (2007)022
[29] J. D. Vergados and A. Faessler, Phys. Rev. D 75 (2007) 055007
[30] A. M. Green and B. Morgan, Phys. Rev. D 77 (2008) 027303
[31] S. Burgos et al., Astropart. Phys. 31 (2010) 261
[32] D. Dujmic et al., Nucl. Instrum. Meth. A 584 (2008) 327
[33] P. Majewski, D. Muna, D. P. Snowden-Ifft and N. J. C. Spooner, Astropart. Phys. 34 (2010) 284
[34] J. Byrne, Proc. R. Soc. Edinburg Sect. A66, 33 (1962)
[35] G. F. Knoll, Radiation Detection and Measurement