Optimization of Multidimensional Clinical Information System for Schizophrenia

Yu Jiang,1 Hang Yu2,3 and Jun Jiang

1Department of Nursing, Sichuan Nursing Vocational College, Deyang 610100, China
2Department of Pharmacy, Chongzhou People’s Hospital, Chongzhou 611200, China
3Department of Information Technology and Management, Tianfu New Area Aviation & Tourism College, Chengdu 610000, China

Correspondence should be addressed to Hang Yu; 20110615@stu.nmu.edu.cn

Received 8 April 2021; Revised 27 April 2021; Accepted 8 May 2021; Published 15 May 2021

1. Introduction

Schizophrenia is a common severe neuropsychiatric disease, which is characterized by changes in behavior, thinking, emotion, and cognition [1]. Its symptoms mainly include positive symptoms, negative symptoms, and cognitive dysfunction, which mostly occur in young adults. The specific etiology and pathogenesis of the disease are not clear. According to the Chinese mental health survey in 2018, the 12-month prevalence rate of schizophrenia in China is 0.6%, and the lifetime prevalence rate is 0.7% [2]. In addition, according to the survey of the World Health Organization, globally, the annual rate of new cases of schizophrenia is 0.22 [3]. The lifetime prevalence rate is about 3.8%–8.4%. Among the 1544-year-old patients, the burden of schizophrenia is about 2.6%, which is the fourth major cause of disability in the world. Schizophrenia has the characteristics of high hospitalization rate, high disability rate, high suicide rate, high recurrence rate, and low cure rate. Expensive hospitalization cost, long cure cycle, and low
ure rate will often cause the economic collapse of patients and their families. Some schizophrenic patients will also have behaviors harmful to life and property, affecting social security and stability [4]. Therefore, it is necessary to study the pathogenesis of schizophrenia and analyze the predisposing factors of schizophrenia. Proposing a suitable diagnostic model for schizophrenia can not only solve medical problems but also solve social problems.

At present, the clinical diagnosis of schizophrenia mainly relies on experienced doctors to review the past history and family history of patients, as well as the diagnosis and evaluation of patients using the scale [5]. But the diagnosis results are mainly based on the subjective judgment of doctors, which is an empirical diagnosis method, and patients may hide their symptoms, which will aggravate the inaccuracy of the results. Therefore, many researchers are committed to finding an objective and reliable method for the diagnosis of schizophrenia, using a variety of research tools to do a lot of research on schizophrenia. According to the current trend of scientific research in the field of medicine, with the continuous progress and deepening of medical research, there are higher requirements for the experimental design, data management, statistical methods, and research tool software of research projects, so as to ensure that the research projects can be carried out more accurately, efficiently, and conveniently. For the related research of schizophrenia, on the one hand, many researchers in our country are still using EpiData and other types of software for data management [6]. Data transmission relies on hard disk copy, e-mail sending, and chat tool transmission, which easily leads to the serious shortcomings of data format confusion, extreme redundancy, and low reliability; on the other hand, for the statistical methods of related research, because doctors or relevant personnel do not understand statistics as well as professionals, if they carry out statistical analysis, the learning cost is often very high, which will lead to slow research and even get wrong statistical results. When looking for professionals to help with statistical analysis, because the other side does not understand medical knowledge, it is often difficult to communicate [7]. Nowadays, medical information data management software and statistical analysis software have more or less some defects. Mature commercial software such as SPSS and Stata are often expensive. Although open-source free software such as EpiData is very popular, it lacks the functions of data format storage and statistical analysis [8]. And the above tools are basically stand-alone software, which is not conducive to data sharing and difficult to carry out large-scale scientific research. For the research of schizophrenia, due to the great difference of data types and formats in different research directions, and the diversity of research methods, there is no good data management system and tools for schizophrenia clinical big data research.

Based on the four research problems of schizophrenia, this paper analyzes the data types that need to be stored in clinical trials and scientific research, including basic information, case report data, neuropsychological and cognitive function evaluation, magnetic resonance data, EEG data, and intestinal flora data. Through the demand analysis of the system, including the data management part, data analysis part, the functional demand of the system management part, and the overall nonfunctional demand of the system, the overall architecture design, functional module division, database table structure design of the system are completed. The system in this paper adopts the B/S architecture and develops the system’s computing service program based on the Python language and designs and implements the various functional modules of the system in detail. The system constructed and tested the machine learning automatic classification model on the multidimensional data of schizophrenia collected in the experiment and performed a detailed evaluation of the system functions.

2. Related Work

With the development of modern information technology, the data in scientific research are also growing rapidly. After the paradigm of experimental science, theoretical science, and computational science, scientific research has entered a new field the fourth paradigm of data-intensive science. Today’s scientific research innovation is often based on the reuse of a large number of previous, systematic, and reliable data, such that if, according to the previous independent research model, the data are scattered in the hands of individuals or individual research groups, the progress of scientific research will be very slow. Therefore, data management is a very important part of scientific research. NSF project management guidelines issued by NSF in January 2010 stipulated that, from January 18, 2011, all project applications submitted to NSF must include "data management plan" [9]. Today’s society has already entered the digital era, and scientific research has also entered the era of digital scientific research. The trend of digital scientific research is to establish a professional scientific research data management system or platform, provide good scientific research data management services, hand over data collection and analysis methods to researchers, and hand over data management and sharing and specific calculation process to the platform. The collaboration for networked information (CNI) defines scientific research data management as an issue affecting future academic development in its annual agenda in 2017 [10].

At present, the providers of scientific research data management services are often the libraries of major universities, and the representatives of foreign countries are data stage of Cornell University, data stage of Johns Hopkins University Conservation, and so on. The domestic representatives include the scientific data sharing platform of Wuhan University, China Survey and data center of Renmin University of China, open data research platform of Peking University, scientific research data management and service platform of Tongji University, and social science data platform of Fudan University [11].

However, the above platform for providing scientific research data management services cannot be well targeted at specific scientific research activities, especially medical research. In February 2012, the data working group of Cornell University Library released a research report.
3.1. Spring Framework. Spring [16] is the sum of a series of frameworks launched by pivot company, including spring project and spring subproject, which is used to simplify the complexity of web development and help developers easily create Java enterprise applications. The core project name of spring framework group is also spring, which is the cornerstone of all spring subprojects. It provides the core functions of inverse of control (IOC) and aspect oriented programming (AOP). IOC is used to leave the process of creating objects to the spring container, which can reduce the coupling of code and can create objects dynamically when using, which simplifies the development steps. AOP uses reflection and dynamic proxy to open a section in the method without changing the class. It can add new logic functions in the section, especially suitable for log, security, and other use scenarios. It can also reduce the code coupling and simplify the development steps. Spring MVC is an MVC framework based on the core of spring. The full name of MVC is model-view-controller, which means model, view, and controller. In MVC development mode, the codes of page, data, and business logic are organized separately, which reduces the coupling among the three parts. When encountering modification problems, they can be modified separately, which reduces the difficulty of development and maintenance. A brief request processing workflow in spring MVC is shown in Figure 1. Spring series is the mainstream framework in Java Web, with an active ecosystem and numerous solutions. Therefore, this system uses spring as the core development framework and the default spring MVC as the control layer framework.

3.2. System Design. The research of schizophrenia is an urgent problem, and there are some difficulties in the research of schizophrenia, such as data management confusion, data analysis is not easy, and so on. For data storage, using Excel, REC file, or paper data for storage has the disadvantages of unreliability, insecurity, and high redundancy. For data analysis, the use of SPSS analysis tools or statisticians to help analysis makes the research more loose, and it is difficult to form a large-scale and effective data analysis process. Therefore, the design of multidimensional information management system for schizophrenia aims to help doctors or relevant researchers manage the clinical big data of schizophrenia more conveniently and carry out data analysis more conveniently through machine learning classification, machine learning regression, and statistics.

3.2.1. System Function Module. The system includes four parts: data analysis module, data management module, system management module, and security control module. Its functional structure is shown in Figure 2.

The data analysis module is divided into three submodules: task management, task calculation, and result visualization. The task management module is responsible for submitting tasks and viewing task records, the task calculation module performs specific calculation tasks, and the result visualization module is responsible for displaying the results of tasks in a visual way. Due to the different functions of various data types, the data management module is divided into six submodules, which are basic information of subjects, case report form (CRF) data, MRI feature data, electroencephalogram (EEG) data, cognitive
evaluation data, and intestinal flora data management module [16]. The system management module includes three submodules: user management, role management, and authority management. In order to ensure that each function is executed according to the authority, a separate security control module is needed to process all requests, so the security control module includes two submodules: login authorization and authority authentication.

3.2.2. Multimodal MRI Data. In the study of schizophrenia, multimodal magnetic resonance imaging is an important research method. Multimodal magnetic resonance imaging includes structural MRI (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI).

SMRI can achieve high spatial resolution imaging of the brain in vivo and can comprehensively and clearly locate the brain morphological damage in patients with mental illness. Voxel-based morphometry (VBM) and region of interest (ROI) [17] are common methods for processing sMRI images. SMRI technology has played a very important role in exploring the structural basis of cognitive ability and brain mechanism and diagnosis of diseases.

DTI can observe the nerve fiber tracts in the white matter of the living brain and analyze the white matter connections through the characterization of nerve fibers. DTI uses
diffusion-weighted pulse sequence to judge the diffusion
tensor of water molecules to show the direction of nerve
conduction tracts in white matter, so as to judge the degree
and scope of white matter fiber bundle damage. DTI
commonly used indicators include fractional anisotropy
(FA), mean dispersion (MD), and axial dispersion (AD),
which reflect the diffusion rate of water molecules along
the long axis of the ellipsoid. DTI technology has been widely
used to study the anatomical basis of brain white matter in
various cognitive abilities and neuropsychiatric diseases
[18].

By analyzing the time-series signals, fMRI can quickly
scan the whole brain image and characterize the dynamic
brain function. FMRI measures cerebral nerve activity by
detecting the dynamic changes of cerebral blood flow, which
is mainly divided into task state and resting state.

ReHo is defined as the Kendall concordance coefficient
of a voxel time series and its adjacent voxels time series,
which is used to measure the degree of local synchronization
of fMRI time series. The higher the value, the higher the
synchronization of the sequence [19]. The number of
neighboring voxels is 26, ReHo is calculated using the
preprocessed image, and then ReHo is standardized. Then
the ReHo image of each person is segmented into 90 ROI by
atomic automatic labeling (AAL) template, and the ReHo
value of 90 ROI is obtained. ALFF of a voxel is the square
root of the power spectrum with a frequency between
0.01 Hz and 0.08 Hz of the voxel time series after fast Fourier
transform. It has physiological significance for measuring
the local spontaneous neural activity of the brain. DC de-
scribes the average degree of correlation between a given
ROI and other brain regions. The correlation of an ROI is
defined as the sum of its functional connections with 89
other ROIs, and the functional connection between two
ROIs is the Pearson correlation coefficient of their time
series. The filtered image of a single subject is segmented into
90 ROI by AAL template, and the time series of each ROI is
the average of all voxel time series in the ROI. The expression
of correlation is as follows:

$$\text{Correlation}_\text{degree} = \frac{1}{(N + 1)} \sum_{j \neq i} |\text{RoI}_{ij}|,$$

where \(\text{RoI}_{ij}\) is the Pearson correlation coefficient of the time
series of region \(I\) and region \(J\) and \(N\) is the total number of
\(\text{RoI}_{ij}\).

In multimodal MRI research, we usually use the pre-
processing software to preprocess the new image and cal-
culate the relevant features of the corresponding brain
region according to the corresponding brain region tem-
plate. The system uses DPABI, FreeSurfer, and panda to
calculate fMRI, sMRI, and DTI related feature data by de-
fault. The calculated number of brain region features is
related to the brain region template. The system sets the
template as AAL template and BNA (brainnetome atlas)
template [19–22].

We use the left one cross-validation method to judge the
classification effect of the classifier; that is, one sample is
used as the test set, and other samples are used as the training
set. The training set is used for SVM-RFE classifier to train a
model, and the test set is used to verify the accuracy of the
model. The effect of the classifier is evaluated by sensitivity,
specificity, and accuracy. The calculation formula is as follows:

$$\text{Sensitivity} = \frac{\text{TruePos}}{\text{TruePos} + \text{FalseNeg}},$$

$$\text{Specificity} = \frac{\text{TrueNeg}}{\text{TrueNeg} + \text{FalsePos}},$$

$$\text{Accuracy} = \frac{\text{TruePos} + \text{FalsePos}}{\text{TruePos} + \text{FalsePos} + \text{TrueNeg} + \text{FalseNeg}}.$$

(2)

TP is the number of patients correctly classified; FN is
the number of patients wrongly classified; TN is the number
of samples correctly classified; FP is the number of samples
wrongly classified.

We further used the area under the curve (AUC) of
receiver operating characteristic (ROC) to evaluate the
classification effect. The vertical axis of ROC curve is the true
positive rate, which is sensitivity, and the horizontal axis is
the false positive rate, which is specificity. The range of AUC
is 0-1. The closer the value is to 1, the better the classification
effect is.

$$\text{AUC} = \sum \frac{1(P_+, P_-)}{MN},$$

$$I(P_+, P_-) = \begin{cases} 1 & P_+ > P_- \\ 0.5 & P_+ = P_- \\ 0 & P_+ < P_- \end{cases}$$

(3)

There are \(M\) positive samples and \(N\) negative samples in the
data set. There are \(MN\) pairs of samples.

3.2.3 Overall System Architecture Design. According to the
design of functional modules, the system can be divided into
the presentation layer based on Layui, the service layer based
on Spring Boot, the computing layer based on Python, and
the MySQL database layer [23–26]. Among them, the pre-
sentation layer is the front-end page opened by the browser,
and its function is to interact with users, including login
page, system management page, data tabular view page, data
visualization view page, task submission page, task record
page, and task result page. The service layer can be divided
into security control module, system management module,
data management module, and data analysis module. The
security control module is used for single sign-on, authority
control, and routing forwarding. The system management
module is the basic function, including role management, authority management, and user management. The data management module includes data upload, file analysis, data query, and data modification. Data analysis module is a task management module, including task submission, result query, and record query. The computing layer is the place to run computing tasks, that is, the task computing part of the data analysis module. Its main function is to use the scikit learn package in Python for machine learning calculation, including five machine learning classification algorithms and five machine learning regression algorithms. The database layer is used to store all structured and unstructured data. The overall architecture of the system is shown in Figure 3.

It adopts browser/server (B/S) architecture and front-end and back-end separation mode. Its presentation layer is a group of static pages. The functions of front-end pages based on Layui are implemented by jQuery in JavaScript. Static pages are implemented by Ajax through Hypertext Transfer Protocol (HTTP) and JSON format and background service layer Row data interaction. The security control filter in the service layer receives requests from all front-end pages and judges the permissions of the requests. If there are relevant permissions, it will release them. If there are no permissions, it will return directly to ensure the security of the system. After the other modules receive the verified request, they process the request. Redis is used to store the SSO token and cache some query data. If there are corresponding data in the cache, the query result will be returned directly from the cache. If there are no data in the cache, the service layer will perform database operation. The interaction between service layer and database layer needs data access object (DAO). The DAO of this system uses MyBatis framework to provide all interfaces related to database layer. Because the response time of the computing task is far from that of other functions, the system adopts producer consumer mode. After receiving the request submitted by the task, the service layer data analysis module encapsulates the parameters submitted by the task into the message queue, while the Python program of the computing layer always fetches the message from the message queue by polling. According to the parameters submitted by the task, the data set required for calculation is found from the database, and then the corresponding algorithm and parameters are selected for calculation. After the calculation, the task results and task records are stored in the database. If the front page queries the task record at this time, the completed calculation tasks can be viewed from the database, and the corresponding task results can be queried.

4. System Performance Test

4.1. Testing Tools. The performance test of the system is usually to simulate a large number of users to make requests to the system and check the various performance responses of the system to meet the requirements. This paper will use JMeter, an open-source stress-testing tool of Apache, as a performance testing tool. Its principle is to create multiple threads using Java thread pool and simulate multiple concurrent users sending requests to the interface at the same time.

The three most representative functions of the system: login, request home page, and request data overview page are tested with the number of concurrent users of 50, 100, and 200, respectively, to check the performance of the system in the case of high concurrency.

4.2. Testing Results. From the test results, as shown in Figures 4–6, we can see that because the system adopts the separation of front and back end, the home page is a static resource, so the request efficiency of the home page is very high, and the response time is very short. The maximum response time is only 29 s in the case of 200 concurrent, and the response time is not obvious with the increase of concurrency. When the request for data overview is 200 concurrent, the maximum request time is only 30 s, which meets the performance requirements. Login: because login needs to retrieve the user’s role and permissions and generate JWT through encryption, the response time is larger than the other two. However, it can be seen that the maximum response time of login is only 2.8 s even in the case of maximum concurrency, and the user will not initiate repeated login operation for a period of time, so the user experience will not be affected. It can be seen from the test results that the system can meet the performance requirements mentioned in the requirements analysis.

5. System Application Examples

We will use this system to carry out the classification research of disease auxiliary diagnosis on the real collected multidimensional data of schizophrenia, so as to illustrate that this system is suitable for the data management and data analysis of multidimensional information of schizophrenia and compare with the traditional research methods of schizophrenia, to confirm the innovation of the system.

5.1. Data Sources. In this application example, there are always 60 subjects, including 30 in the normal control group and 30 in the schizophrenia group. The data that entered into the system can be divided into two categories: one is CRF table data and the other is other types of data. Other types of data are Excel type data, such as multimodal MRI feature data using DPABI, FreeSurfer, and Panda for feature extraction; the extracted Excel file is uploaded to the system, and finally, all the data are saved to the database to achieve stable, reliable, and concise data storage. With the functions of the data management module improved above, the saved data can be viewed and modified.

5.2. Construction and Comparison of Multidimensional Data Classification Models for Schizophrenia. This section will use the data entered in the previous section to construct and compare the multidimensional data classification model of schizophrenia. For convenience, the data features used include the magnetic resonance characteristics of the three
modes of the subjects and the species composition of the intestinal flora. The process of the experimental scheme is to use classification algorithms integrated into the system to construct the classification model and compare the results of each classification model.

The submitted classification model task form is shown in Figure 7. After submitting the classification task, the background will automatically optimize the parameters and evaluate the model.

It can be seen from Figure 8 that when the species composition level of intestinal flora and magnetic resonance characteristics are used to construct the auxiliary diagnosis classification model, the effect of random forest RF is better than the other four classification algorithms, and the accuracy, sensitivity, and AUC have obvious advantages.

The above is a real example process of data analysis using the system. From the operation process, it can be seen that the system encapsulates data analysis in a relatively closed
Figure 5: Request home page response time.

Figure 6: Request data overview response time.

Figure 7: ROC curve construction results of each classification model.
way, and the relevant researchers can easily carry out data analysis. Compared with SPSS and other types of software commonly used in clinical research, it is more convenient to use and does not require the user to have relevant statistics and machine learning knowledge, and it is more convenient to use. With the combination of data management functions, the system can easily carry out large-scale data analysis.

In this paper, the implementation results of each part of the system are demonstrated, and each module of the system is tested, which verifies that the function of the system is consistent with the expected, meets the needs analysis, and can be used in the multidimensional information management of schizophrenia, which proves the effectiveness of the system. Finally, the actual collection of multidimensional information data of schizophrenia is used as an example of system application. The system is used to manage and analyze the real data, and the classification model of schizophrenia is constructed and compared. Finally, the system is evaluated. From the use process, it can be seen that, compared with the current common data management and analysis tools, the system has the advantages of easy to use, safe, and efficient and has strong scalability in data management, data analysis, and scalability, which reflect the innovation of the system.

6. Conclusion

Schizophrenia is a serious mental disease whose pathogenesis has not been fully elucidated. Its clinical evaluation and diagnosis still highly depend on the clinical experience of doctors. It is of great scientific value and clinical significance to study the inducing factors and neuropathological mechanism of schizophrenia. In this paper, we design and implement a multidimensional information management system for schizophrenia clinical big data to help schizophrenia researchers with data management and data analysis. In the design and implementation of multidimensional information management system for schizophrenia, the following contents are mainly studied: firstly, according to the current hot research direction of schizophrenia, the requirements of the system are analyzed. Firstly, the role of the system and the functional requirements of the system are determined through business process analysis, which mainly includes three parts: data management, data analysis, and system management; Then, the source and characteristics of various data of data management are analyzed, and the detailed functional requirements of various data are obtained. According to the demand analysis, the system is designed. Firstly, the overall design of the system includes functional module division, overall system architecture, and page structure design. According to the demand analysis, the system is divided into data management module, data analysis module, system management module, and security control module; the structure design designs the structure of each module of the system and specifies the implementation mode of each module and the data flow between modules; the page structure design describes the page Jump Process of the system. Finally, according to the system design, after displaying and explaining the page and operation process, the programming of all the functions of the system will be realized. The function of the system is tested, the function of each module is verified, and the test report is given to ensure that the system meets the requirements of the demand analysis, which proves the effectiveness of the system. This paper uses the system to manage and analyze the real multidimensional information data of schizophrenia. Through the application examples of the system, we can see the advantages of the system relative to the existing tools, evaluate the system, and explain the characteristics and innovation of the system relative to the existing tools.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] C. Cabral, L. Kambeitz-Illankovic, J. Kambeitz et al., "Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance," Schizophrenia Bulletin, vol. 42, no. 1, pp. 110–117, 2016.

[2] B. A. Clementz, J. A. Sweeney, J. P. Hamm et al., "Identification of distinct psychosis biotypes using brain-based biomarkers," American Journal of Psychiatry, vol. 173, no. 4, pp. 373–384, 2016.

[3] X. Tan, X. Jiang, Y. He et al., "Automated design and optimization of multitarget schizophrenia drug candidates by deep learning," European Journal of Medicinal Chemistry, vol. 204, no. 4, Article ID 112572, 2020.

[4] A. Kim and E. Cherapkin, "Typological characteristics of affective disorders in cases of paranoid schizophrenia," European Psychiatry, vol. 3, no. 3, p. 715, 2016.

[5] C. C. Conway, M. Mansolf, and S. P. Reise, "Ecological validity of a quantitative classification system for mental illness in treatment-seeking adults," Psychological Assessment, vol. 31, no. 6, pp. 730–740, 2019.

[6] D. Ben-Zeev, R. Wang, S. Abdullah et al., "Mobile behavioral sensing for outpatients and inpatients with schizophrenia," Psychiatric Services, vol. 67, no. 5, pp. 558–561, 2016.

[7] V. D. Calhoun and J. Sui, "Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness," Biological Psychiatry: Cognitive Neuroimaging, vol. 1, no. 3, pp. 230–244, 2016.

[8] R. C. K. Chan, W. Xie, F.-L. Geng et al., "Clinical utility and lifespan profiling of neurological soft signs in schizophrenia spectrum disorders," Schizophrenia Bulletin, vol. 42, no. 3, pp. 560–570, 2016.

[9] Y. Chung, J. Addington, C. E. Bearden et al., "Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk," JAMA Psychiatry, vol. 75, no. 9, pp. 960–968, 2018.

[10] L. Bonei, T. Torous, D. Arce, I. Blanquer, and J. Sanjuán, "ReMindCare, an app for daily clinical practice in patients with first episode psychosis: a pragmatic real-world study protocol," Early Intervention in Psychiatry, vol. 15, no. 1, pp. 183–192, 2021.

[11] R. N. Pläschke, E. C. Cieslik, V. I. Müller et al., "On the integrity of functional brain networks in schizophrenia, parkinson’s disease, and advanced age: evidence from connectivity-based single-subject classification," Human Brain Mapping, vol. 38, no. 12, pp. 5845–5858, 2017.

[12] W. H. Pinaya, A. Gadelha, O. M. Doyle et al., "Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia," Scientific Reports, vol. 6, no. 1, pp. 1–9, 2016.

[13] E. Schwarz, N. T. Doan, G. Pergola et al., "Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder," Translational Psychiatry, vol. 9, no. 1, pp. 1–3, 2019.

[14] E. A. Reavis, J. Lee, J. K. Wynn et al., "Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data," NeuroImage: Clinical, vol. 16, no. 16, pp. 491–497, 2017.

[15] A. G. Murley, I. Coyle-Gilchrist, M. A. Rouse et al., "Redefining the multidimensional clinical phenotypes of fronto-temporal lobar degeneration syndromes," Brain, vol. 143, no. 5, pp. 1555–1571, 2020.

[16] D. A. Drossman, "Improving the treatment of irritable bowel syndrome with the rome IV multidimensional clinical profile," Gastroenterology & Hepatology, vol. 13, no. 11, pp. 694–696, 2017.

[17] B. Dingemans, L. Blundford, M. Comerford, F. Staes, and S. Mottram, "The assessment of movement health in clinical practice: a multidimensional perspective," Physical Therapy in Sport, vol. 32, no. 2, pp. 282–292, 2018.

[18] K. Kreimeyer, M. Foster, A. Pandey et al., "Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review," Journal of Biomedical Informatics, vol. 73, no. 3, pp. 14–29, 2017.

[19] K. Adnan and R. Akbar, "An analytical study of information extraction from unstructured and multidimensional big data," Journal of Big Data, vol. 6, no. 1, pp. 1–38, 2019.

[20] H. C. Cheng, R. von Coelinn, A. L. Gruber-Baldini, L. M. Shulman, and A. Varshney, "Winnow: interactive visualization of temporal changes in multidimensional clinical data," in Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, vol. 8, no. 2, pp. 124–133, Boston, MA, USA, August 2017.

[21] L. Chen and X. Xu, "Effect evaluation of the long-term care insurance (LTCI) system on the health care of the elderly: a review," Journal of Multidisciplinary Healthcare, vol. 13, pp. 863–875, 2020.

[22] S. Yang, J. Wang, X. Hao et al., "BiCoSS: toward large-scale cognition brain with multigranular neuromorphic architecture," IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2021.

[23] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wung, "Big data driven marine environment information forecasting: a time series prediction network," IEEE Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 4–18, 2020.

[24] W. Wei, B. Zhou, D. Polap, and M. Woźniak, "A regional adaptive variational PDE model for computed tomography image reconstruction," Pattern Recognition, vol. 92, pp. 64–81, 2019.

[25] M. S. Hossain, G. Muhammad, and N. Guizani, "Explainable AI and mass surveillance system-based healthcare framework to combat COVID-19 like pandemics," IEEE Network, vol. 34, no. 4, pp. 126–132, 2020.

[26] J. S. Almeida, P. P. Reboças Filho, T. Carneiro et al., "Detecting parkinson’s disease with sustained phonation and speech signals using machine learning techniques," Pattern Recognition Letters, vol. 125, pp. 55–62, 2019.