Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo

Petra Björk, Jan-Olov Persson, and Lars Wieslander

Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediators UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed.

Introduction

Expression of protein coding genes in eukaryotes requires that several multicomponent machineries and processes are coordinated in time and space, e.g., transcription, premRNA processing, and export are coupled (Maniatis and Reed, 2002; Perales and Bentley, 2009; Bentley, 2014). The nuclear events also influence the fate of the mRNAs in the cytoplasm, for example localization (Percipalle, 2014), translation efficiency (Nott et al., 2009), and quality control (Popp and Maquat, 2014). It is therefore essential to learn about the composition of the molecular machines associated with premRNA/mRNA, where and when they assemble, and how they interact with each other.

Splicing promotes gene expression by enhancing mRNP export (Valencia et al., 2008) and translation (Nott et al., 2003). Splicing changes the protein composition of the precursor messenger RNA protein complexes (premRNPs)/messenger RNA protein complexes (mRNPs), and as a consequence, the exon junction complex (EJC), assembles 20–24 nucleotides upstream the exon junction, in a sequence-independent manner (Le Hir et al., 2000; Kataoka et al., 2001; Bono and Gehring, 2011). Most exon junctions are marked by an EJC, but EJCs may assemble at noncanonical sites on mRNAs (Saulière et al., 2012; Singh et al., 2012). EJCs can be deposited on specific junctions, depending on cis-acting RNA sequences (Saulière et al., 2010). Together with SR proteins, a family of splicing factors (Long and Cáceres, 2009; Zhou and Fu, 2013), EJCs influence the overall folding of the mRNA (Singh et al., 2012). Based on in vitro studies, the spliceosomal component CWC22 recruits EJC (Alexandrov et al., 2012; Barbosa et al., 2012; Steckelberg et al., 2012) during the second step of splicing (Gehring et al., 2009), and the intron binding protein IBP160 is involved in recruiting the EJC (Ideue et al., 2007). Splicing is largely cotranscriptional (Brugiolo et al., 2013; Bentley, 2014), and in accordance, EJC components are recruited to sites of transcription (Custódio et al., 2004). The relationship between splicing and EJC formation is however not yet analyzed for defined endogenous premRNAs in vivo.

Four proteins form the core of the EJC, eIF4AIII, Y14, Mago, and MLN51/Barentsz (Btz). The structure of the EJC core has been described (Ballut et al., 2005; Andersen et al., 2006; Bono et al., 2006). The EJC core remains associated with the mRNP during export and cytoplasmic events, being removed from the mRNP by the translating ribosome and the ribosome-associated protein PYM (Gehring et al., 2009; Ghosh et al., 2014). The EJC core has specific functions, e.g., influencing splicing (Hayashi et al., 2014; Malone et al., 2014). In addition, eIF4AIII is essential for nonsense-mediated decay (NMD; Palacios et al., 2004; Shibuya et al., 2004). Y14 and Mago promote translation (Nott et al., 2004), are important for development in plants and animals (Gong et al., 2014), and influence cytoplasmic mRNP localization (Palacios, 2002). Btz interacts...
with eIF3, a translational initiation factor, and enhances translation (Chazal et al., 2013). It also influences P-body disassembly (Cougot et al., 2014).

The EJC core serves as a versatile platform that interacts with several proteins, thereby being important for feeding the mRNP into posttranscriptional pathways. The EJC-interacting proteins influence translational efficiency (Le Hir and Séraphin, 2008) and NMD (Chamieh et al., 2008). The UPF1, UPF2, and UPF3 proteins are conserved effectors of NMD (Mühlemann et al., 2008). UPF3 is the link between the EJC and the NMD machinery and is recruited to the EJC in the nucleus. UPF2 is believed to associate with UPF3 at the cytoplasmic side of the nuclear membrane (Lykke-Andersen et al., 2000; Serin et al., 2001), whereas UPF1 is added to form an UPF3-UPF2-UPF1 complex on triggering of NMD. As yet, binding of UPF proteins to specific endogenous mRNPs in vivo has not been analyzed.

An important aspect of mRNP maturation is the recruitment of export factors. NXF1 and its cofactor p15 is the main export factor for mRNPs (Natalizio and Wente, 2013). NXF1 binds to mRNPs via different adapters, and association of these adapters with mRNPs is likely to be influenced by different processes. Aly/REF, together with the THO component Toc5 is an adapter for NXF1 (Katahira et al., 2009; Viphakone et al., 2012). Aly/REF, the THO complex, UAP56, and Tex1 constitute the conserved TREX complex that couples transcription and mRNA export. In yeast, TREX is recruited to the RNA polymerase II CTD through its THO complex and increases along the active gene from 5′ to 3′ (Meinel et al., 2013). In humans, the THO complex is associated with spliced mRNAs (Masuda et al., 2005; Chi et al., 2013). In yeast, Yra1p (the Aly/REF equivalent) is recruited to the TREX complex during 3′ end processing by binding to Pcf11, and this interaction is conserved between their human homologues (Johnson et al., 2009). It has also been reported that the human TREX complex is recruited in a splicing- and CBP80-dependent way to a position close to the 5′ end of the mRNA (Cheng et al., 2006). In addition, the EJC has been reported to serve as a binding platform for Aly/REF and NXF1/p15 (Le Hir et al., 2001; Tange et al., 2004), and certain SR proteins can serve as NXF1 adapters (Huang and Steitz, 2001; Huang et al., 2003). To understand how an mRNP gets export competent, it is important to study when and where in the nucleus NXF1 binds to premRNPs/mRNPs in vivo.

Here we use unique experimental advantages of the Balbiani ring (BR) genes in the dipteran Chironomus tentans to analyze the spatial and temporal aspects of the association of the EJC core, the NMD effectors UPF2 and UPF3, and the export factor NXF1 with gene-specific premRNPs/mRNPs in vivo.

The BR1 and BR2 genes allow identification of gene-specific premRNPs and mRNPs in intact cell nuclei. The BR premRNAs assemble into premRNA-protein complexes rapidly (Daneholt, 2001). The BR1 and BR2 premRNAs contain four introns each, and these introns are excised essentially cotranscriptionally (Baurén and Wieslander, 1994). When the BR mRNPs are released from the genes, they move by diffusion until they dock at the nuclear pore complexes (NPCs; Singh et al., 1999) and are subsequently translocated into the cytoplasm (Siebrasse et al., 2008). In the EM, individual BR mRNPs are identified in the interchromatin as uniform 50-nm spherical structures, and they can be morphologically seen during NPC docking and translocation (Daneholt, 2001). Using immunoeM, we show that the C. tentans EJC core binds to BR premRNPs cotranscriptionally in relation to splicing, whereas UPF2, UPF1, and NXF1 bind to BR mRNPs in the interchromatin. Therefore, BR mRNPs become export competent first after entering the interchromatin space.

Results

Localization of the EJC core

Specific antibodies (Fig. S1, A and C) located the EJC core in diploid cells (Fig. 1). eIF4AIII, Y14, and Mago had a widespread distribution in the nucleus and cytoplasm. Btz was predominantly cytoplasmic, although significant labeling was also detected in the nucleus.

Immunostaining of sections of polytene cells provided a more detailed localization (Fig. S2). In these nuclei, the interchromatin forms large volumes surrounding the well-defined polytene chromosomes. eIF4AIII, Y14, and Mago were present throughout the interchromatin space, but no enrichment in distinct sites could be detected. Specific chromosome bands were stained, showing that these components were present in specific gene loci. No staining could be seen in the nucleoli.

In agreement with the localization in diploid cells, Btz was weakly detected in the polytene nuclei. The localization of Btz was similar to that of the other EJC core components; however, the signal intensity suggested that in comparison with the cytoplasm, less Btz was present in the nucleus.

To simplify interpretation, isolated polytene chromosomes were separately stained with each of the four anti-EJC

Figure 1. Localization of EJC core proteins in C. tentans diploid cells. Cells stained with anti-eIF4AIII, anti-Y14, anti-Mago, or anti-Btz antibodies (left). DAPI staining (right). Bars, 2 µm.
core component antibodies. Chromosome IV has four active BR genes, \(BR_1 \) in the \(BR_1 \) locus, \(BR_2.1 \) and \(BR_2.2 \) in the \(BR_2 \) locus, and \(BR_3 \) in the \(BR_3 \) locus. The \(BR_1 \), \(BR_2.1 \), and \(BR_2.2 \) genes are closely related, including exon-intron organization (Wieslander, 1994). The morphology of their premRNPs/mRNPs is also very similar (Daneholt, 2001). Fig. 2 shows that the EJC core was present throughout the active BR gene loci. Immuno-EM (see Fig. 5) showed that the premRNPs in the \(BR_1 \) and \(BR_2 \) gene loci were labeled for each of the four EJC core components. In agreement, RNase treatment of chromosome IV before staining with anti-eIF4AIII antibodies drastically diminished the signal in the transcribing gene loops (Fig. S3). We conclude that the EJC core associates with the BR premRNPs cotranscriptionally.

eIF4AIII is distributed unevenly along nascent transcripts in relation to exon junctions

We analyzed the presence of eIF4AIII, as a representative of the core EJC, within premRNPs in relation to BrUTP incorporation that provided a measure of premRNA amounts. Polytenic chromosomes were stained with anti-eIF4AIII and anti-BrUTP antibodies. BrUTP incorporation performed in this way does not affect splicing of BR premRNAs (Singh et al., 1999). Chromosome I provided an overview of a large number of active gene loci (Fig. 3 A). Although we cannot identify the genes, the staining pattern revealed that the relationship between BrUTP incorporation and the amount of eIF4AIII varied for different gene loci. Some loci contained relatively more eIF4AIII (Fig. 3 A, peaks 2 and 3) and others contained relatively more BrUTP (Fig. 3 A, peaks 1 and 4). Therefore, the amount of premRNA and the amount of eIF4AIII were not strictly correlated, suggesting that at many gene loci, eIF4AIII is not distributed equally along the transcripts. If eIF4AIII had been evenly distributed along the transcripts, we should have seen a closer correlation between the eIF4AIII and premRNA amounts. eIF4AIII binds preferentially at canonical sites upstream of most exon junctions, but also at other sites along an mRNA (Saulière et al., 2012; Singh et al., 2012). Because the exon-intron organization varies for different gene loci, a plausible interpretation of the staining patterns is that eIF4AIII preferentially associates with the premRNA in relation to exon junctions.

We analyzed the relationship between eIF4AIII, the amount of nascent transcripts, the exon-intron structure, and splicing more closely by analyzing the \(BR_1 \), \(BR_2 \), and \(BR_3 \) loci, for which these parameters are known. For the \(BR_1 \) and \(BR_2 \) loci (Fig. 3 B), the ratio between eIF4AIII and BrUTP staining intensities was the same (Table 1), suggesting that the \(BR_1 \) and \(BR_2 \) premRNPs had a similar relationship between eIF4AIII binding and the amount of RNA. The \(BR_3 \) locus contained considerably more eIF4AIII in relation to the amount of premRNA (Table 1). To extend our analyses to the relationship of eIF4AIII to spliceosome assembly and splicing, we analyzed the relationship between eIF4AIII and the spliceosomal U2 snRNP component U2B" as a representative of the spliceosome. In chromosome I, we observed considerable overlap between staining for eIF4AIII and U2B" (Fig. 4 A). There was also a variation in the staining of the gene loci, with relatively more eIF4AIII (Fig. 4 A, peaks 1 and 4) or relatively more U2B" (Fig. 4 A, peaks 2 and 3). Therefore, in the nascent transcripts, there was not a simple relationship between the U2B"
Table 1. Colocalization of eIF4AIII and nascent transcripts

BR gene	Ratio eIF4AIII/BrUTP
BR1	1.06 (0.93–1.19)
BR2	0.97 (0.77–1.22)
BR3	1.51 (1.17–1.94)

The ratio of eIF4AIII to BrUTP staining intensities was calculated for each of the BR genes, respectively. The geometric means (BR1, BR2, and BR3) on five independently analyzed chromosomes and the 95% confidence intervals are shown. The individual measurements are presented in Table S1. Analysis of variance on log-transformed ratios and subsequent pairwise Tukey test showed significant differences between BR1 and BR3 (P_{Tukey} = 0.001) and between BR2 and BR3 (P_{Tukey} = 0.006), but not between BR1 and BR2 (P_{Tukey} = 0.699).

BR gene	Ratio eIF4AIII/BrUTP
BR1	1.53 (0.54–4.28)
BR2	1.21 (0.69–2.11)
BR3	0.51 (0.41–0.64)

The ratio of eIF4AIII to U2B′′ stimulation intensities was calculated for each of the BR genes, respectively. The geometric means (three/four independent experiments) and the 95% confidence intervals are shown. The individual measurements are presented in Table S2. Analysis of variance on log-transformed ratios and subsequent pairwise Tukey test showed significant differences between BR1 and BR3 (P_{Tukey} = 0.001) and between BR2 and BR3 (P_{Tukey} = 0.006), but not between BR1 and BR2 (P_{Tukey} = 0.699).

Table 2. Colocalization of eIF4AIII and U2B′

BR gene	Ratio eIF4AIII/U2B′
BR1	1.53 (0.54–4.28)
BR2	1.21 (0.69–2.11)
BR3	0.51 (0.41–0.64)

The ratio of eIF4AIII to U2B′′ stimulation intensities was calculated for each of the BR genes, respectively. The geometric means (three/four independent experiments) and the 95% confidence intervals are shown. The individual measurements are presented in Table S2. Analysis of variance on log-transformed ratios and subsequent pairwise Tukey test showed significant differences between BR1 and BR3 (P_{Tukey} = 0.001) and between BR2 and BR3 (P_{Tukey} = 0.006), but not between BR1 and BR2 (P_{Tukey} = 0.699).

Because mRNPs are formed and released from the gene loci, the presence and locations of exon junctions will determine the extent and location of eIF4AIII binding to the mRNP.

Figure 4. eIF4AIII and U2B′′ staining intensities are not correlated. Chromosomes I and IV (A and B, respectively) were stained with anti-eIF4AIII and anti-U2B′′ antibodies. [A] Line scan analyses (right bottom panel) were performed on the merged image (along the white line, right top panel). Numbers 1–4 show selected peaks corresponding to the chromosomal loci indicated by the vertical white lines from left to right. [B] The BR1, BR2, and BR3 gene loci are indicated. Immunostaining intensities were measured in these loci and analyzed in Table 2. Bars, 10 μm. The data shown are from single representative experiments out of three/four repeats.

Cotranscriptional assembly of the EJC core on BR premRNPs in vivo

Immuno-EM revealed the distribution of the EJC core within BR1 and BR2 premRNPs along the active genes. The morphology of the BR1 and BR2 premRNPs is characteristic and changes reproducibly along the transcribing genes, largely as a result of the addition of more RNA, recruitment of proteins, and assembly into premRNPs. It is therefore possible to determine the position along the gene for each individual premRNP, including the ones labeled with gold conjugated antibody. According to the morphology of the premRNPs, the transcribing gene is divided into three segments, proximal, middle, and distal segments, representing ~20%, 60%, and 20% of the gene, respectively (see Materials and methods; Fig. 5). Each of the four anti-EJC core component antibodies stained the premRNPs along the genes, and the distributions are analyzed in Table 3 and Table S3 (A and B). The data have been normalized to represent gold particle/premRNP (see Materials and methods).
Most labeling was detected in the proximal segment. The labeling intensity then decreased in the middle segment and increased again in the distal segment. Provided that the detectability of the epitopes was not different in the premRNPs present in the different segments, this shows that there is a higher concentration of core components in the premRNPs located in the proximal segment. Here, three introns are incorporated into the premRNA and subsequently removed before transcription has reached very far into the middle segment. In the middle segment, we recorded a significantly lower signal, showing that core components are not added continuously during synthesis of the premRNA. The distribution also suggests that less EJC core components are present in the premRNPs after splicing is completed, compared with ongoing splicing. Therefore, we hypothesize that a high concentration of EJC core components is present in the proximal segment when splicing is going on, but not all of these components associate stably with the premRNPs. In the distal segment, a fourth intron is present, and this is excised to a considerable extent at the gene locus (Baurén and Wieslander, 1994; Baurén et al., 1998). Increased labeling was recorded here, indicating that additional EJC core components become associated with the premRNP at this stage.

It is not previously clear when Btz associates with the EJC core on endogenous transcripts. Our data show that Btz associates cotranscriptionally and in relation to splicing. We observed a slightly different distribution with relatively less labeling in the proximal segment compared with elf4AIII, Y14, and Mago. This may reflect a difference in association characteristics for Btz compared with the other core components.

Association of UPF2, UPF3, and NXF1 with BR mRNPs

With the aim to reach a more comprehensive view on how export competent BR mRNPs form, we analyzed when and where three additional proteins become associated with the BR mRNPs. UPF2 and UPF3 associate with mRNPs via the EJC.
and promote translation and mediate NMD. UPF3 binds directly to the EJC and bridges the UPF2-EJC association. When and where UPF2 and UPF3 are recruited to EJCs on endogenous transcripts are still unclear.

NXF1 is the main mRNA export factor. It is unclear when and where NXF1 associates with mRNPs; however, it does so via one of several adapters.

Specific antibodies (Fig. S1, B and C) were used to localize UPF2, UPF3, and NXF1. We located UPF2 and UPF3 both in the cytoplasm and nucleus (Fig. S4), in agreement with previous studies (Lykke-Andersen et al., 2000; Serin et al., 2001). Staining of chromosome IV did not show significant amounts of either UPF2 or UPF3 in the BR gene loci (Fig. S5), showing that these proteins do not associate with the BR premRNPs. Immunoelectron microscopy confirmed that UPF2 and UPF3 did not bind to BR premRNPs cotranscriptionally (Fig. 6, E and F). Both proteins were however present in the interchromatin. This was supported by biochemical analyses of nuclear extracts (Fig. S4 B). We found that throughout the interchromatin, UPF2 and UPF3 are bound to ~10% of the BR mRNPs. UPF2 and UPF3 association with BR mRNPs was enriched at the nuclear membrane, when the BR mRNPs were located in close proximity to the NPCs (Fig. 6 and Table 4).

We conclude that UPF2 and UPF3 bind to BR mRNPs in the nucleus, most likely in the interchromatin.

Immuno-electron microscopy of diploid C. tentans cells (Fig. S4 A) and Western blots of nuclear and cytoplasmic extracts (Fig. S4 B) showed that NXF1 was mainly present in the nucleus, with a substantial amount also in the cytoplasm. Frequently, a higher concentration of NXF1 was detected at the nuclear periphery. Staining of chromosome IV revealed no or very little NXF1 and Western blots of nuclear and cytoplasmic extracts (Fig. S4 B). We showed that NXF1 was mainly present in the nucleus, with 95% confidence intervals. The individual measurements are presented in Table S3. The difference in gold particles/length unit ratios between proteins (eIF4AIII, Y14, and Mago compared with Btz) is highly significant (likelihood ratio test, P < 0.00005) and is caused by the lower gold particles/length unit ratio for Btz in the proximal/middle segment.

Table 3. Distribution of EJC core proteins in the proximal, middle, and distal segments of the BR1 and BR2 genes

Protein	Ratio proximal/middle	Ratio distal/middle
eIF4AIII	9.37 (8.39–10.50)	2.85 (2.48–3.27)
Y14	8.53 (7.63–9.54)	2.87 (2.49–3.30)
Mago	7.90 (7.09–8.79)	2.63 (2.30–3.01)
Dsz	4.04 (3.48–4.69)	2.65 (2.25–3.13)

Gold particle counts, pooled over four experiments, were analyzed using a generalized linear model with binomial distribution and a log link. Offsets were used and correspond to the estimated segment proportion in the experiment (~20% proximal, 60% middle, and 20% distal). The table shows gold particles/length unit ratios for the proximal and distal segments against the middle segment, together with 95% confidence intervals. The individual measurements are presented in Table S4. There is no significant difference in relative proportion over proteins (likelihood ratio test, P > 0.00). In addition, we performed Fischer exact test for NXF1, UPF2, and UPF3 separately with pooled data for the three experiments to test the hypothesis that the percentage labeled BR mRNPs was the same in the interchromatin and docked at the NPCs. The hypothesis was rejected: NXF1, P < 0.0001; UPF2, P = 0.008; UPF3, P < 0.0001.

Table 4. Immunogold labeling of EJC-associated proteins in the BR mRNPs in the interchromatin and docked at the NPC

Protein	Labeled BR mRNPs: docked at NPC/interchromatin
NXF1	4.15 (2.52–6.81)
UPF2	2.56 (1.36–4.82)
UPF3	3.60 (2.25–5.76)

Data, pooled over three experiments, were analyzed using a generalized linear model with binomial distribution and a logit link. The relative proportions, together with 95% confidence intervals, are shown. The individual measurements are presented in Table S4. There is no significant difference in relative proportion over proteins (likelihood ratio test, P > 0.38). In addition, we performed Fischer exact test for NXF1, UPF2, and UPF3 separately with pooled data for the three experiments to test the hypothesis that the percentage labeled BR mRNPs was the same in the interchromatin and docked at the NPCs. The hypothesis was rejected: NXF1, P < 0.0001; UPF2, P = 0.008; UPF3, P < 0.0001.

Figure 6. Immuno-EM analyses of NXF1, UPF2, and UPF3 in BR mRNPs in the interchromatin. (A) Section through a polytene cell. Part of the cytoplasm (Cyt) and the nuclear membrane (NE) are visible. The interchromatin (Interchrom) accounts for large volumes devoid of chromatin. Part of chromosome IV (Chrom IV) with its BR genes (BR) is seen. In the BR loci, the volumes occupied by transcriptionally active gene loops are delimited by broken lines. No., nucleolus. (B) BR mRNPs in the interchromatin. A BR mRNP containing NXF1 (gold particle) is marked (arrowhead). A BR mRNP, not labeled by the anti-NXF1 antibodies, is also observed (arrow). Parts of the cytoplasm (Cyt) and nuclear membrane (NE) are visible. Two docked BR mRNPs contain NXF1 (gold particles, arrowheads). (C) Three BR mRNPs in the interchromatin are detected. (top) Anti-UPF3 antibodies label one out of two BR mRNPs (gold particle, arrowhead). (bottom) Anti-UPF2 antibodies label a BR mRNP (gold particle, arrowhead). (D) Anti-NXF1 antibodies do not stain BR premRNPs. (E) Anti-UPF2 antibodies do not stain BR mRNPs. Bars: (A) 2.5 µm; (B–F) 50 nm.
According to quantification of the immunogold labeling, NXF1 is spread relatively even throughout the interchromatin space. We could not determine if the labeling detected free NXF1 or NXF1 bound to various mRNPs (only BR mRNPs were identifiable in our experiment). We assume that we detected both. However, the concentration of NXF1 was approximately four times higher in a 50-nm zone close to the nuclear membrane (unpublished data). This is in agreement with staining of diploid C. tentans cells (Fig. S4 A). Examination of the nuclear membrane and 50-nm wide zones at the nuclear and cytoplasmic sides, respectively, showed that NXF1 was present at higher concentrations at both sides of the membrane compared with inside the nuclear NPC channels (Table 5). The same distribution was observed for UPF2 and UPF3 (Table 5). This situation may reflect a rapid translocation of NXF1, UPF2, and UPF3 through the NPCs, free or bound to mRNPs, and relative delayed residence times at both sides of the NPCs.

Immuno-EM demonstrated that BR mRNPs in the interchromatin contained NXF1 (Fig. 6 B). We analyzed different sites within the interchromatin, including sites far from the BR genes and sites at different distances from the nuclear membrane. In all sites, ~10% of the BR mRNPs contained NXF1. Only one location differed. In a 50-nm zone close to the nuclear membrane, ~40% of the BR mRNPs contained NXF1 (Fig. 6 B and Table 4). Most of these BR mRNPs appeared to be docked at the basket of the NPCs.

Discussion

BR premRNPs are equipped with core EJCs

In C. tentans, elf4AIII binds to premRNAs at a large number of endogenous genes, in agreement with the presence of elf4AIII at transcription sites in mammalian cells (Custódio et al., 2004). All four EJC core components bind to the nascent BR1 and BR2 gene transcripts in vivo. The amount of elf4AIII associated with BR premRNAs was correlated to the number of introns and exon junctions and not to the amount of premRNA (Figs. 3 and 4). Therefore, elf4AIII is not evenly positioned along the premRNAs. Instead, the finding suggests that elf4AIII is mainly bound to the nascent RNA close to exon junctions, as observed in large-scale studies of elf4AIII binding sites on mRNAs (Saulière et al., 2012; Singh et al., 2012). We show that binding of the EJC core to the BR premRNAs occurs in relation to spliceosome formation and intron excision (Baurén and Wieslander, 1994; Wetterberg et al., 1996), in agreement with in vitro data showing that EJC formation is coupled to splicing.

The EJC core is enriched in the BR premRNPs where and when splicing takes place, suggesting that an excess of EJC core components is present during splicing before a stable EJC is formed at the exon junction. This finding may reflect that several splicing-related factors attract EJC components, possibly to ensure efficient, splicing-dependent delivery. It has also been reported that Y14 and Mago associate with nascent transcripts with a high on and off rate (Schmidt et al., 2009), which could contribute to such a situation.

It was so far unclear when Btz is recruited to the EJC core. We demonstrate that Btz binds to BR premRNPs, but possibly slightly later than the other EJC core components. In any case, our data show that all four EJC core components are associated with the BR premRNAs, a prerequisite for cotranscriptional interaction with each other as an EJC core complex.

Table 5. Distribution of immunogold labeling of EJC-associated proteins at the nuclear membrane: nuclear side, middle, and cytoplasmic side

Protein	Ratio nuclear/middle	Ratio cytoplasmic/middle
NXF1	3.89 (1.87–8.09)	3.89 (1.87–8.09)
UPF2	3.71 (1.61–8.56)	3.43 (1.48–7.69)
UPF3	3.08 (1.65–5.75)	2.08 (1.07–4.03)

Gold particle counts, pooled over three experiments, were analyzed using a generalized linear model with Poisson distribution and a log link. The gold particle distribution ratios for the nuclear and cytoplasmic sides against the middle, together with 95% confidence intervals, are shown. The individual measurements are presented in Table S5. There is no significant difference in the gold particles/area unit ratios between proteins (likelihood ratio test, P < 0.68).

EJC formation may be important for compaction of the BR premRNPs

The BR1 and BR2 premRNPs distinctly change morphology ~8 kb from the transcription start site, corresponding to the beginning of the middle gene segment. The 5′ proximal part of the premRNA then folds into a globular structure (Daneholt, 2001), most likely as a result of a new type of packaging of the premRNP fiber. This morphological change occurs approximately when the 5′ located introns have been excised (Baurén and Wieslander, 1994), and according to our present results, when EJCs have assembled at the formed exon junctions. EJCs interact with SR proteins resulting in mRNP compaction (Singh et al., 2012). The BR premRNPs contain several different SR proteins (Björk et al., 2009), and if EJCs form at a relatively specific time after transcription initiation, such an EJC–SR interaction can be involved in the restructuring and compaction of the BR premRNPs.

UPF2 and UPF3 bind to BR mRNPs in the interchromatin

The EJC is important for translation and for binding the effectors of NMD: UPF1, UPF2, and UPF3 (Mühlemann et al., 2008). UPF3 binds to a surface formed by elf4AIII, Mago, and Y14 (Buchwald et al., 2010). Previous data suggest binding of UPF3 to the EJC core in the nucleus (Lykke-Andersen et al., 2000; Serin et al., 2001). We show that UPF3 is associated with a fraction of the BR mRNPs in the interchromatin, but not with BR premRNPs. As for NXF1 (see Fig. 6), BR mRNPs containing UPF3 are enriched at the NPCs, presumably because the BR mRNPs that will be exported are retained at the basket of the NPC.

UPF2 is believed to associate with UPF3 at the cytoplasmic side of the nuclear membrane (Lykke-Andersen et al., 2000; Serin et al., 2001). In the interchromatin, as many BR mRNPs contain UPF2 as UPF3, arguing that UPF2 can bind to the EJC in the nucleus and that this takes place rapidly after binding of UPF3.

BR mRNPs emerge into the cytoplasm with their 5′ end leading the way (Mehlin et al., 1995). Preliminary immuno-EM analyses suggest that both UPF2 and UPF3 are associated with the 5′ end of the BR mRNPs during translocation through the NPCs (unpublished data). This would be compatible with EJCs binding just upstream the exon junctions at the 5′ end of the BR mRNAs (Fig. 5 and Table 3). The BR mRNPs rapidly bind elf4AII in the cytoplasmic perinuclear region (Björk et al., 2003), and according to morphological observations, ribosomes can rapidly initiate translation there (Mehlin et al., 1992). Because UPF3 and UPF2 are likely to be part of the BR mRNPs during translocation, NMD involving BR mRNPs could take place in the cytoplasmic perinuclear region.
NXF1 and BR mRNP export competence

It is unclear when and where the export factor NXF1 binds to mRNPs. In mammalian cells, NXF1 was not detected at transcription sites (Custódio et al., 2004). In HeLa cells, NXF1 is present diffusely throughout the nucleus, and interaction with Aly/REF, an NXF1 adapter, was detected in the interchromatin outside speckles (Teng and Wilson, 2013). In our study, we can directly visualize the presence of NXF1 in specific endogenous premRNP/mRNPs. NXF1 does not bind to BR premRNP (at least below our detection level). NXF1 is bound to a fraction of BR mRNPs throughout the interchromatin and to a four times larger fraction of BR mRNPs docking at the NPCs. Preliminary immuno-EM observations suggest that NXF1 is associated with the 5′ end of the BR mRNPs during translocation through the NPCs (unpublished data). This is compatible with the hypothesis that NXF1 binds to the 5′ end of mRNPs in a CBP80-dependent way (Cheng et al., 2006). A detailed analysis of NXF1 binding during BR mRNP translocation through NPCs remains to be performed.

Several of the identified NXF1 adapters associate with BR premRNP already at the gene. The BR mRNPs have a cap binding complex (Visa et al., 1996), they are spliced (Baurén and Wieslander, 1994), they are polyadenylated (Baurén et al., 1998) and equipped with Aly/REF (Yra1; Kiesler et al., 2002), they have SR proteins (Björk et al., 2009), and they have the EJC core (this study) at the gene. In spite of this, no NXF1 could be detected in BR premRNP. The BR mRNPs are therefore not fully export competent as they leave the gene. Because only a fraction of the BR mRNPs in the interchromatin contained NXF1, it is unlikely that the presence of NXF1 is required for release of the BR mRNPs from their genes.

After synthesis, the BR mRNPs move away from the BR genes in all directions, forming a nuclear pool of BR mRNPs (Singh et al., 1999; Fig. 7). The mobility of BR mRNPs is complex, and a single diffusion coefficient does not exist. Instead, the BR mRNPs repeatedly and transiently interact with nonchromatin structures (Miralles et al., 2000; Veith et al., 2010). As the BR mRNPs move around, they can contact the NPCs, but only ∼25% of these NPC interactions result in export (Siebrasse et al., 2012). BR mRNPs therefore often return into the interchromatin. Nonproductive interactions between mRNPs and NPCs have also been observed in diploid nuclei (Ma et al., 2013). When export of BR mRNPs occurred, a rate-limiting step was observed at the basket of the NPC.

We found two BR mRNP populations in the interchromatin, one containing NXF1 (10%) and the other without NXF1. Both are likely to encounter NPCs. Because interactions between BR mRNPs and NPCs can lead both to export and non-export (Siebrasse et al., 2012), it is possible that BR mRNPs that cannot be exported do not yet contain NXF1.

We do not know the efficiency of detection in the immuno-EM experiments, but the measured 10% is likely a minimum value. Of the BR mRNPs, 40% were docked at the NPCs contained NXF1. These BR mRNPs initially have the same morphology as in the interchromatin. This detection of 40% indicates that the 10% value for BR mRNPs in the interchromatin does not represent the maximum methodological detection level. We therefore propose that the fraction of BR mRNPs that contain NXF1 in the interchromatin is considerably smaller than the fraction lacking NXF1.

Our results do not conclusively demonstrate where NXF1 binds to BR mRNPs. One possibility is that NXF1 binds to BR mRNPs at the NPCs. If so, a considerable number of BR mRNPs with NXF1 must be released from the NPCs and diffused into the interchromatin to explain the pool of NXF1 containing BR mRNP there. In view of the finding that many BR mRNPs interact with the NPCs transiently (Siebrasse et al., 2012), this possibility cannot be ruled out.

An alternative, and more plausible possibility, is that NXF1 binds to the BR mRNA at many locations throughout the interchromatin. This model is consistent with our finding that throughout the interchromatin space, approximately the same fraction of BR mRNPs contains NXF1. The recorded
higher fraction of NXF1 containing BR mRNPs at the NPCs then reflects enrichment there. Because a rate-limiting step takes place at the NPC basket (Siebrasse et al., 2012), an enrichment of export competent BR mRNPs there is expected. In both models, export competence in terms of acquisition of NXF1 is not obtained until the BR mRNPs have moved around in the interchromatin.

Why is NXF1 binding to BR mRNPs a late step in acquiring export competence? One possibility is that some so far unknown factor is required for NXF1 binding and that this factor may be located in the interchromatin. A second possibility is that structural reorganizations in the mRNPs, involving the adapters, have to take place. This may only occur in fully processed mRNPs equipped with all the processing associated factors and therefore only after exit from the gene.

The events for BR premRNPs/mRNPs are identified in the polytene nuclei because of their large volumes of interchromatin devoid of chromatin and the presence of morphologically identifiable BR mRNPs. The lack of defined and identifiable mRNPs in diploid nuclei and their more complex chromatin/interchromatin organization make it more difficult to quantitatively analyze the events in these cells. We propose that a similar scenario exist in diploid nuclei. However, the different chromatin/interchromatin organization in these cells may very well influence the characteristics of the events.

Materials and methods

Animals and cells

C. tentans was cultured as described previously (Meyer et al., 1983). A C. tentans embryonic epithelial cell line was cultured as described previously (Wyss, 1982).

Identification of C. tentans proteins

The C. tentans and Drosophila melanogaster proteins represent orthologues according to extensive analyses (Kutsenko et al., 2014). The EMBOSS Needle software was used (European Bioinformatics Institute).

eIF4AIII, 92.4% identity, 94.9% similarity; Y14, 76.5% identity, 89.2% similarity; Mago, 85.9% identity, 91.9% similarity; Btz (PA), 30.0% identity, 38.8% similarity; NXF1 (small bristles), 41.7% identity, 58.2% similarity; UPF2, 49.1% identity, 65.6% similarity; and UPF3, 30.0% identity, 38.8% similarity; NXF1 (small bristles), 41.7% identity, 58.2% similarity; UPF2, 49.1%, identity, 65.6% similarity; and UPF3, 43.2% similarity (see Table S6).

For some of the proteins, antibodies were raised against specific peptides present in the C. tentans proteins. In these cases, the peptide sequences are underlined.

Cloning and expression of C. tentans proteins

C. tentans Y14 cDNA was isolated by RT-PCR using degenerate primers corresponding to sequences in the homologous gene in D. melanogaster. Poly(A) + RNA was isolated from C. tentans epithelial tissue culture cells and reverse transcribed using oligo dT priming. The de-generate primers were used for PCR. The obtained fragment was sequenced. The full-length cDNA sequence was isolated from a C. tentans lambda Zap cDNA library. This library was made using the Zap-cDNA Synthesis kit (Agilent Technologies) and the Uni-Zap XR Cloning kit (Agilent Technologies). Programs in the Genetics Computer Group package (Devereux et al., 1984) and the Biology Workbench package (San Diego Supercomputer Center) were used to analyze DNA and protein sequences. Y14 was expressed as a His-tagged fusion protein from the vector pET15B (Novagen) in BL21 bacteria (Agilent Technologies) and purified on Ni-NTA Agarose (QIAGEN).

The protein coding sequences of C. tentans eIF4AIII, Btz, NXF1, and UPF3 were obtained by PCR using cDNA synthesized from mRNA as template and cloned into the expression vector pET-46Ek/LIC (Novagen). Proteins were expressed in BL21 bacteria and purified on Ni-NTA Agarose (QIAGEN).

Antibodies

Polyclonal antibodies against Y14, Mago, NXF1, UPF2, and UPF3 were raised in rabbits (Agrisera). The cDNA encoding Y14 was cloned and expressed in Escherichia coli. The purified Y14 was immunized into rabbits. Synthetic peptides spanning amino acids (in all cases referring to the C. tentans proteins) 73–88 (CMAEDDLSWPPADRVGR) of Mago, amino acids 43–56 (CGRFRNRKGSPIPKN) of NXF1, amino acids 1092–1105 (CKVQKFHKQRGVPEI) of UPF2, and amino acids 177–190 (CNKDRPTIQYRPKR) of UPF3 were conjugated to keyhole limpet hemocyanin and immunized into rabbits. All antibodies were purified by affinity chromatography. The D. melanogaster anti-Dm-eIF4AIII polyclonal rabbit antibodies (Palacios et al., 2004) and the anti-Dm-Barentsz polyclonal rabbit antibodies (van Eeden et al., 2001) were a gift from I. Palacios (University of Cambridge, Cambridge, UK). The antibodies specifically detected single proteins of the expected relative molecular mass in Western blots of C. tentans cell extracts (Fig. S1).

Monoclonal mouse antibodies against hrp45 and hrp36 were a gift from B. Daneholm (Karolinska Institutet, Stockholm, Sweden). The PKC rabbit polyclonal antibodies, the anti-BrUTP mouse monoclonal antibody, the anti-His (H1029) mouse monoclonal antibody, and the anti-U2B’ protein mouse monoclonal antibody were purchased (Santa Cruz Biotechnology Inc., Roche, Sigma-Aldrich, and ICN/Cappel, respectively). The secondary antibodies used for Western blots were swine antirabbit Ig HRP and goat antimouse Ig HRP (Dako) diluted 1:3,000. The secondary antibodies used in immunofluorescence were swine anti-rabbit Ig FITC (Dako) diluted 1:100 and goat antimouse IgG Texas red (Jackson ImmunoResearch Laboratories Inc.) diluted 1:100. The secondary antibodies used in immuno-EM were goat antirabbit IgG conjugated with 6-nm colloidal gold (Jackson ImmunoResearch Laboratories Inc.).

Protein preparation and Western blotting

C. tentans epithelial tissue culture cells were boiled in SDS-PAGE sample buffer. Nuclear and cytoplasmic extracts were prepared essentially as previously described (Wurtz et al., 1996). The protein samples were separated on 12% SDS–polyacrylamide gels and transferred to Immobilon-P polyvinylidene filters (EMD Millipore) by semidry electrophoresis. HRP-labeled secondary antibodies were detected by the enhanced chemiluminescence method (GE Healthcare).

Immunofluorescence analyses

Cultured C. tentans diploid cells were prepared and immunostained essentially as previously described (Baur et al., 1996), with the modification of using 0.2% Triton X-100 instead of SDS. Polytene chromosomes were isolated from C. tentans salivary gland cells and processed for immunofluorescence, and sections of polytene nuclei were prepared and immunostained, as described previously (Björk and Wieslander, 2009). For BrUTP incorporation, C. tentans salivary glands were incubated in hemolymph containing 4 mM BrUTP for 45 min at room temperature before isolation of chromosomes.

Immunofluorescence on isolated chromosomes and cryosections

Polytene chromosomes were isolated from C. tentans salivary gland cells and processed for EM as described previously (Sjölander et al., 2005; Björk and Wieslander, 2009). In brief, the glands were fixed in...
2% paraformaldehyde in 10 mM triethanolamine-HCl, pH 7.0, 100 mM KCl, and 1 mM MgCl2 (TKM), and polytene chromosomes were isolated by pipetting. Individual polytene chromosomes were fixed in 4% paraformaldehyde in TKM. The chromosomes were treated with 2% BSA and incubated with antibodies diluted in TKM containing 0.5% BSA. After washing, the chromosomes were fixed in TKM containing 2% glutaraldehyde, dehydrated in ethanol, and finally embedded in R1031 Agar 100 resin (Agar Scientific). The chromosomes were sectioned and placed on EM grids. For increased contrast, the sections labeling was checked after staining with only secondary antibody and Antibodies against E. coli expressed proteins were probed with the indicated antibodies. Staining with only the secondary antibody was a negative control. Table S5 shows distribution of immunogold particles at the NPC. Table S3 shows distribution of BR mRNPs (100) simultaneously present on an active BR1 or BR2 gene (Lamb and Daneholt, 1979), and the number of BR1 or BR2 genes (8,000) in a polytene chromosome IV. **Microscopy** Preparations for immunofluorescence analyses were mounted in Vectashield mounting medium (Vector Laboratories). The specimens were viewed in either an Axioscan 2 microscope equipped with a Hamamatsu ORCA-ER camera or an LSM 510 META confocal microscope system equipped with an Axiovert 200M microscope (Carl Zeiss). Images were collected using either a 40x oil immersion 1.3 NA Plan-Neofluor lens, at room temperature, and the AxioVision 4.6 software or a 40x oil immersion 1.0 NA Plan-Apochromat lens, at room temperature, and the LSM 510 software (Carl Zeiss). Staining intensities were analyzed using ImageJ software (National Institutes of Health). EJCrecombinants were grown at 25 °C and 100 g L-1 glucose in YM1 medium, containing 100 mg L-1 kanamycin. After the early exponential growth phase, the cells were harvested by centrifugation and broken on ice. The nuclear, cytoplasmic, and soluble protein fractions were isolated from collected cell pellets. The nuclear fraction was washed thrice with buffer A and twice with buffer B (see legend to Table 3). The distribution of the EJC-associated proteins in BR mRNPs, in the interchromatin, and at the nuclear membrane, was analyzed by immunostaining of cryosections of polytene nuclei. A BR mRNP was considered labeled when an immunogold particle was on top of or within 20 nm from a BR mRNP (estimated length of primary plus secondary antibody). The ratio of immunogold-labeled BR mRNPs to unlabeled BR mRNPs, was calculated in the interchromatin and at the nuclear membrane. The total number of counted gold particles labeling BR mRNPs in the interchromatin was 44 for NXF1, 35 for UPF2, and 65 for UPF3. Three independent experiments were performed for each antibody. At the nuclear membrane, the ratio of immunogold-labeled BR mRNPs docked at the NPCs (within 50 nm from the nuclear membrane and morphologically at the position of an NPC) to docked unlabeled BR mRNPs was calculated. The total number of labeled/unlabeled docked BR mRNPs was 14/36 for NXF1, 10/46 for UPF2, and 14/36 for UPF3. Three independent experiments were performed for each antibody. Statistical analyses were performed in all cases (see legend to Table 4). Background labeling was checked after staining with only secondary antibody and was found to be essentially zero.

The number of BR mRNPs synthesized per time unit was calculated based on the measured transcription time of 20 min for a BR1 or BR2 gene (Egyházi, 1975; Edström et al., 1978a), the number of premRNPs (100) simultaneously present on an active BR1 or BR2 gene (Lamb and Daneholt, 1979), and the number of BR1 or BR2 genes (8,000) in a polytene chromosome IV. **Online supplemental material** Fig. S1 shows Western blot analyses of C. tentans cell extracts and E. coli expressed proteins probed with the indicated antibodies. Fig. S2 shows localization of the four EJC core components in sections of polytene C. tentans cells. Fig. S3 shows immunostaining of chromosome IV for eIF4AIII after RNase treatment. Fig. S4 A shows the location of NXF1, UPF2, and UPF3 in diploid C. tentans cells. Fig. S4 B shows Western blot analyses of NXF1, UPF2, and UPF3 in nuclear and cytoplasmic extracts. PKK and hrp45 are markers for the cytoplasm and nucleus, respectively. It also shows presence of indicated proteins in interchromatin and proteins associated with chromatin. Fig. S5 shows immunostaining of isolated chromosome IV with antibodies against NXF1, UPF2, and UPF3. Staining for hrp36 was a positive control, and staining with only the secondary antibody was a negative control. Table S1 shows colocalization of eIF4AIII and nascent transcripts. Table S2 shows colocalization of eIF4AIII and U2B+ . Table S3 shows distributions of EJC core proteins in the proximal, middle, and distal segments of the BR1 and BR2 genes. Table S4 shows immunogold labeling of proteins associated with BR mRNPs in the interchromatin and docked at the NPC. Table S5 shows distribution of immunogold particles at the nuclear membrane: nuclear side, middle, and cytoplasmic side. Table S6 shows alignments of C. tentans and D. melanogaster proteins. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201412017/DC1. **Acknowledgments** We thank I. Palacios and B. Daneholt for gifts of antibodies. We are grateful to N. Visa for valuable comments. The Swedish Research Council supported this study. The Imaging Facility at Stockholm University is acknowledged.

The authors declare no competing financial interests.

Submitted: 3 December 2014
Accepted: 26 August 2015
Wetterberg, I., J. Zhao, S. Masich, L. Wieslander, and U. Skoglund. 2001. In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J. 20:2564–2574. http://dx.doi.org/10.1093/emboj/20.10.2564

Wieslander, L. 1994. The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function. Prog. Nucleic Acid Res. Mol. Biol. 48:275–313. http://dx.doi.org/10.1016/S0079-6603(08)60858-2

Wurtz, T., E. Kiseleva, G. Nacheva, A. Alzhanova-Ericsson, A. Rosén, and B. Daneholt. 1996. Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol. 16:1425–1435.

Wyss, C. 1982. Chironomus tentans epithelial cell lines sensitive to ecdysteroids, juvenile hormone, insulin and heat shock. Exp. Cell Res. 139:309–319. http://dx.doi.org/10.1016/0014-4827(82)90255-5

Zhou, Z., and X.D. Fu. 2013. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 122:191–207. http://dx.doi.org/10.1007/s00412-013-0407-z