Spotting hidden sectors with Higgs binoculars

Monika Blanke

Virtual seminar
March 26, 2020
Lots of evidence for dark matter

Standard Model (SM) can only account for < 5% of the energy in the universe
How to discover dark matter

Dark matter (DM) interacts with SM particles

- **direct detection experiments**
 detect DM particles scattering off nuclei in e.g. liquid Xenon detectors

- **indirect detection experiments**
 observe radiation emitted from DM annihilation in the cosmos

- **DM production at colliders**
 produce DM particles in high-energy collisions
Dark particles at the LHC

Dark particles
- electrically neutral
- no QCD colour charge
- stable (at detector scales)
 - leave no trace in particle detector

How to see the invisible?
Missing transverse energy and mono-\(X+\not{E}_T\)

- observation of dark particles at the LHC by their recoil against visible SM matter
 - apparent non-conservation of momentum

- hadron collider: initial state parton momenta are unknown, only conservation of transverse momentum can be tested
 - dark particles \(\triangleq \) “missing transverse energy” \(\not{E}_T\)

- traditional signature from initial state radiation: mono-jet+\(\not{E}_T\)

- more recently: mono-\(X+\not{E}_T\) with \(X=t, W, Z, h, \gamma \ldots\)
Complementary channel: $\text{di-}X + \not{E}_T$

- complementary signature

$\text{di-}X + \not{E}_T$

is sometimes more constraining

- relevant e.g. in models with t-channel mediators

Papucci, Vichi, Zurek (2014)

- widely studied (c.f. SUSY searches):
 \[
 \text{di-jet} + \not{E}_T, \ t\bar{t} + \not{E}_T, \ \text{di-lepton} + \not{E}_T, \ldots
 \]

What about $\text{di-Higgs} + \not{E}_T$?
The di-Higgs+ \not{E}_T signature

di-Higgs+ \not{E}_T predicted in a variety of BSM scenarios

- Goldstino pair production in models with gauge mediated SUSY breaking
 Giudice, Rattazzi (1999); Matchev, Thomas (1999)

- decay of electroweakinos into Higgs bosons and neutralinos
 Kang, Ko, Li (2015); Bernreuther, Horak, Plehn, Butter (2018); Titterton et al (2018)

- pseudoscalar portal to dark sector
 No (2015): Arganda et al (2017)

- axion-like particles
 Brivio, Gavela, Merlo, Mimasu, No, del rRey, Sanz (2017)

- massive right-handed neutrinos
 Kang, Ko, Li (2015)

- Z' decay in Little Higgs scenarios
 Kang, Ko, Li (2015); Chen, Lin, Wu, Yue (2018)

▶ systematic study of di-Higgs+ \not{E}_T signature required!
The di-Higgs$+\vec{E}_T$ hunting team

MB, S. Kast, J. M. Thompson, S. Westhoff, J. Zurita
JHEP 04 (2019) 160 [arXiv:1901.07558]
Goals of our di-Higgs+ E_T analysis

1. construct **simplified models** that cover relevant final state topologies
2. develop **search strategy** to be used at the (HL-)LHC
3. analyse reach and demonstrate **discovery potential**
Simplified models of a hidden scalar sector

Final state topologies for $hh\chi\chi$

Symmetric (S)

Pair production of heavy scalar A with subsequent symmetric decay $A \rightarrow h\chi$

$$pp \rightarrow AA \rightarrow (h\chi)(h\chi)$$

Resonant (R)

Pair production of A with asymmetric decays $A \rightarrow hh$, $A \rightarrow \chi\chi$ \(\Rightarrow\) di-Higgs resonance

$$pp \rightarrow AA \rightarrow (hh)(\chi\chi)$$
Ingredients of the simplified models: commonalities

- three new real scalar fields B, A, χ — all singlets under the SM gauge group
- dark particle χ is stable and leaves detector without trace $\Rightarrow \not{\mathcal{E}}_T = p_T(\chi \chi)$
- resonant s-channel production of B by gluon fusion
 $$\frac{C_{Bgg}}{\Lambda} B G^a_{\mu\nu} G^{\mu\nu} a$$
 effective dimension-5 operator with scale Λ
- on-shell decay into AA pair by triple scalar coupling
 $$\frac{m_{BAA}}{2} BAA$$
Ingredients of the simplified models: model-specifics

symmetric topology

- both A and χ belong to dark sector
- coupling that induces $A \to h\chi$ decay

\[
\lambda_{A\chi HH} A\chi H^\dagger H
\]

H: SM Higgs doublet

- mixing between A and χ dialed by independent parameter, can hence be neglected
 - $\text{BR}(A \to h\chi) = 100\%$
Ingredients of the simplified models: model-specifics

symmetric topology

- both A and χ belong to dark sector
- coupling that induces $A \to h\chi$ decay
 $$\lambda_{A\chi HH} A\chi H^\dagger H$$
- H: SM Higgs doublet
- mixing between A and χ dialed by independent parameter, can hence be neglected
 - $\text{BR}(A \to h\chi) = 100\%$

resonant topology

- only χ belongs to dark sector
- couplings that induce $A \to hh$ and $A \to \chi\chi$ decays
 $$m_{AHH} A H^\dagger H + \frac{m_{A\chi\chi}}{2} A\chi\chi$$
- m_{AHH} induces $A - h$ mixing
 - $\text{BR}(A \to \chi\chi) = x$
 - $\text{BR}(A \to hh) \approx \text{BR}(A \to ZZ)$
 - $\approx \frac{1}{2} \text{BR}(A \to WW) = \frac{1}{4}(1 - x)$

- $\sigma_S(pp \to hh + E_T) \gtrsim 8 \sigma_R(pp \to hh + E_T)$
Signal & background

Signal

- Higgs boson h decays further into $b\bar{b}$ ($\sim 60\%$), WW^* ($\sim 20\%$), gg ($\sim 8\%$), $\tau\bar{\tau}$ ($\sim 6\%$), $c\bar{c}$ ($\sim 3\%$), ZZ^* ($\sim 3\%$), $\gamma\gamma$ ($\sim 0.2\%$)...

 ➡️ to maximise event rate, consider $h \rightarrow b\bar{b}$ decay channel

 final state signature: $b\bar{b} b\bar{b} + \mathbb{E}_T$

- at parton level, each $b\bar{b}$ pair reconstructs a Higgs boson: $m_{b\bar{b}} = \sqrt{(p_b + p_{\bar{b}})^2} = m_h$

Background

- dominant background processes

 \[Z(\rightarrow \nu\bar{\nu})/W(\rightarrow \ell\nu) + jjjj/jjbb/bbbb \quad \text{t}(\rightarrow bjj)\bar{t}(\rightarrow b\ell\nu) \quad \text{multi-jet} \]

 ➡️ suppress background by imposing cuts
Understanding the di-Higgs+ \not{E}_T signature

Understanding the signal kinematics: \not{E}_T distribution

- significantly harder \not{E}_T distribution for resonant topology
 - collimated $\chi\chi$ pair from A decay
- position of \not{E}_T peak depends on mass spectrum (B-A hierarchy)
 - boost of A contributes to \not{E}_T
- hard cut $\not{E}_T > 200$ GeV largely reduces background
Understanding the signal kinematics: Collinearity of b-jets

$\Delta R_{bb}^{\text{min}}$: minimum distance between any pair of b-jets

- $\Delta R_{bb}^{\text{min}}$ significantly smaller for resonant topology
 - HH pair collimated

- $\Delta R_{bb}^{\text{min}} < 0.4$ for significant number of events in the latter case
 - less than 4 (b-)jets in a large number of events

![Histograms showing the distribution of $\Delta R_{bb}^{\text{min}}$ for parton and shower simulations.](image)
Basic cuts

- **trigger level** (basic event selection): $\mathcal{E}_T > 200$ GeV, isolated lepton veto

- $b\bar{b}$ from boosted Higgs: collimated
 - “fat-jet” with two b-subjets
 - require two fat-jets with at least one b-tagged subjet each

- **Higgs mass window (HMW)**: 100 GeV $< M_J < 150$ GeV

Strategy:

test various combinations of required number of b-tags and HMW on Monte Carlo event sample to optimise cut-and-count analysis
with realistic assumption for systematic uncertainty ($\beta \gtrsim 5\%$):
no discovery reach even at the HL-LHC ($L = 3 \text{ ab}^{-1}$)
Cutflow: resonant topology

- Situation even worse than for symmetric topology due to lower event rates
Lessons from simple cut-and-count analysis

useful tools to discriminate signal from background

- E_T cut and lepton veto
- jet substructure analysis for fat-jets
- b-tagging subjets
- Higgs mass window requirement for fat-jet
- ...?

yet, naive cut-and-count approach turned out unsuccessful
Lessons from simple cut-and-count analysis

useful tools to discriminate signal from background

- E_T cut and lepton veto
- jet substructure analysis for fat-jets
- b-tagging subjets
- Higgs mass window requirement for fat-jet
- ...?

yet, naive cut-and-count approach turned out unsuccessful

We need to do something smarter to optimise our search

> multivariate analysis (MVA)
MVA basics

Cut-and-count analysis
- based on a number of one-dimensional cuts
- not fully optimised
- cannot capture correlations between different variables

Overcome these issues by **multivariate analysis (MVA)**
- optimises multi-dimensional cuts with machine-learning methods
- correlations become visible
- higher signal-background separating power in particular for many variables
Step 1: Basic event selection

Trigger level
- $\not{E}_T > 200$ GeV
- isolated lepton veto

Kinematic selection cuts
- at least two Cambridge-Aachen fat jets $J_{1,2}$ with radius $R = 1.2$ ($R = 0.6$) for symmetric (resonant) topology
- $p_T(J_i) > 20$ GeV
- each $J_{1,2}$ contains at least two subjets $j_{1,2}^k$
- at least one subjet is b-tagged for each fat jet
Step 2: Training boosted decision tree (BDT)

Variables used to discriminate signal from background
- **global variables** – E_T, H_T, N_J, N_{Jb}, N_{jb}
- **single fat-jet variables** – $p_T(J_i)$, $\eta(J_i)$, m_{J_i}, $\Delta \phi(J_i, E_T)$
- **two fat-jet variables** – $\Delta R(J_1, J_2)$, $m_{J_1J_2}$, $\max(m_{J_i}/m_J)$
- **subjet variables** – $p_T(j_{1k}^{i})$, $\eta(j_{1k}^{i})$, $\Delta R(j_{1k}^{i}, j_{1l}^{i})$

Strategy
- divide Monte Carlo events into two sets
- **train BDT** on one set (80%) to correctly **classify** signal and background events
- **test** on other set to avoid overfitting
BDT performance: symmetric topology

- BDT works equally well on test set – no overfitting of training set
- large significances possible
HL-LHC discovery reach: symmetric topology

Cross-sections down to the few fb level can be discovered at the HL-LHC ($\mathcal{L} = 3 \text{ ab}^{-1}$)
Discovery luminosity: symmetric topology

assuming simple TeV-scale UV-completion for Bgg coupling, this can be translated into the integrated luminosity required for discovery

\[\sqrt{s} = 14 \text{ TeV} \]
\[m_B = 500 \text{ GeV}, \text{ Symmetric} \]
\[5\% \text{ systematics} \]

\[\text{discovery luminosity \, [fb^{-1}]} \]

\[\text{m}_X \, [\text{GeV}] \]
\[m_A \, [\text{GeV}] \]

\[\text{discovery luminosity \, [fb^{-1}]} \]

\[\text{m}_X \, [\text{GeV}] \]
\[m_A \, [\text{GeV}] \]
BDT performance: resonant topology

- good BDT performance also for resonant topology
- smaller significances reached
HL-LHC discovery reach: resonant topology

- lower cross-sections can be probed than for symmetric topology
- however discovery challenged by lower event rates

[recall factor $1/8$ for equal $\sigma(pp \rightarrow AA)$]

$\sqrt{s} = 14$ TeV, $L = 3$ ab$^{-1}$
Resonant 5% systematics

M. Blanke
Spotting hidden sectors with Higgs binoculars
Conclusions

Systematic study of the di-Higgs+ \not{E}_T signature

- construction of simplified models covering possible final state topologies
- understanding of di-Higgs+ \not{E}_T phenomenology
- implementation of multi-variate analysis
- investigation of HL-LHC discovery reach

 dbHelper icon

Higgs binoculars are a sensitive probe of hidden sectors!
UV-completing the Bgg vertex

- introduce heavy vectorlike quark Q with mass $m_Q \sim \text{TeV}$ and Yukawa coupling to B

 $$-y_Q B \bar{Q} Q$$

- integrate out Q to generate effective coupling Bgg

 $$\frac{C_{Bgg}}{\Lambda} = \frac{g_s^2 y_Q}{48\pi^2 m_Q}$$

- with $m_Q = \Lambda = 1 \text{ TeV}$ and $y_Q = 1$, this yields

 $$C_{Bgg} \simeq 2.1 \cdot 10^{-3}$$
Dark matter interpretation for χ

χ stable due to discrete \mathbb{Z}_2 symmetry ➔ dark matter candidate?

- null results from direct detection experiments can be accommodated in both topologies without affecting the di-Higgs+E_T pheno, but choosing appropriate coupling values
- sufficient DM annihilation cross sections to avoid overclosing universe can be obtained in several scenarios:
 - $m_\chi > m_h$: $\chi\chi \rightarrow hh$ via t-channel A exchange (symm. top.)
 - $2m_\chi \approx m_h$: $\chi\chi \rightarrow h \rightarrow b\bar{b}$ (Higgs resonance region)
- additional freedom if we add couplings and/or states beyond the simplified model
Event generation and analysis details

Signal event generation

- MG5_aMC@NLO 2.6.1 ➢ Pythia 8.2 ➢ Delphes 3.3.3 (ATLAS default)
- CheckMATE2 to verify validity of benchmarks in presence of current and future complementary (HL-)LHC searches

Background simulation

- Sherpa 2.2.1

Analysis tools

- ROOT
- jet substructure with SoftDrop, augmented by modules to access b-tags of subjets
- MVA: scikit-learn implementation of AdaBoost, employing SAMME.R algorithm