A performance study of some approximation algorithms for minimum dominating set in a graph

Jonathan S. Li, Rohan Potru, Farhad Shahrokhi

1The University of Texas at Austin
2University of North Texas
jonathansli@utexas.edu
rohanpotru@utexas.edu
farhad.shahrokhi@unt.edu

1Work done at UNT and supported by the Texas Academy of Math and Science.

Abstract

We implement and test the performances of several approximation algorithms for computing the minimum dominating set of a graph. These algorithms are the standard greedy algorithm, the recent LP rounding algorithms and a hybrid algorithm that we design by combining the greedy and LP rounding algorithms. All algorithms perform better than anticipated in their theoretical analysis, and have small performance ratios, measured as the size of output divided by the LP objective lower-bound. However, each may have advantages over the others. For instance, LP rounding algorithm normally outperforms the other algorithms on sparse real-world graphs. On a graph with 400,000+ vertices, LP rounding took less than 15 seconds of CPU time to generate a solution with performance ratio 1.011, while the greedy and hybrid algorithms generated solutions of performance ratio 1.12 in similar time. For synthetic graphs, the hybrid algorithm normally outperforms the others, whereas for hypercubes and k-Queens graphs, greedy outperforms the rest. Another advantage of the hybrid algorithm is to solve very large problems where LP solvers crash, as we observed on a real-world graph with 7.7 million+ vertices.

1 Introduction and Summary

Domination theory has its roots in the k-Queens problem in 18th century. Later in 1957, Berge [4] formally introduced the domination number of a graph. The problem of computing the domination number of a graph has extensive applications including the design of telecommunication networks, facility location, and social networks. We refer the reader to the book by Haynes, Hedetniemi, and Slater [22] as a general reference in domination theory.

We assume that the reader is familiar with general concepts of graph theory as in [12], the theory of algorithms as in [11], and linear and integer programming concepts as in [14], respectively. Throughout this paper $G = (V, E)$ denotes an undirected graph on vertex set V and edge set E with $n = |V|$ and $m = |E|$. Two vertices $x, y \in V$ where $x \neq y$ are adjacent (or they are neighbors) if $x, y \in E$. For any $x \in V$, degree of x, denoted by $deg(x)$ is the number of vertices adjacent to x in G. For any $x \in V$, let $N(x)$ denote the set of all vertices in G that are adjacent to x. Let $N[x]$ denote $N(x) \cup \{x\}$. Arboricity of G, denoted by $a(G)$ is the minimum number of spanning acyclic subgraphs of G that E can be partitioned into. By a theorem of Nash Williams, $a(G) = \max_S \left[\frac{m_S}{n_S-1} \right]$, where n_S and m_S are the number of vertices and edges, respectively, of
the induced subgraph on the vertex set S. Consequently $m \leq a(G)(n - 1)$, and thus $a(G)$ measures how dense G is. It is known that $a(G)$ can be computed in polynomial time.

Let $D \subseteq V$. D is a dominating set if for every $x \in V \setminus D$ there exists $y \in D$ such that $(x, y) \in E$. The domination number of G, denoted by $\gamma(G)$, is the cardinality of a minimum (smallest) dominating set of G. Computing $\gamma(G)$ is known to be an NP-Hard problem even for unit disc graphs and grids.

1.1 Greedy approximation algorithm

A simple greedy algorithm attributed to Chvatal [9] and Lovas [25] (for approximating the set cover problem) is known to approximate $\gamma(G)$ within a multiplicative factor of $H(\Delta(G))$ from its optimal value, where $\Delta(G)$ is maximum degree of G and $H(k) = \sum_{i=1}^{k} (1/i)$ is the k-th harmonic number. The algorithm initially labels all vertices uncovered. At iteration one, the algorithm selects a vertex v_1 of maximum degree in G, places v_1 in a set D, and labels all vertices adjacent to it as covered. In general, at iteration $i \geq 2$, the algorithm selects a vertex $v_i \in V \setminus \{v_1, v_2, ..., v_{i-1}\}$ with the largest number of uncovered vertices adjacent to it, adds v_i to D, and labels all of its uncovered adjacent vertices as covered. The algorithm stops when D becomes a dominating set. It is easy to implement the algorithm in $O(n + m)$ time. It is known that approximating $\gamma(G)$ within a factor $(1 - \varepsilon)ln(\Delta)$ from the optimal is NP-hard [17]. Hence, no algorithm for approximation $\gamma(G)$ can improve the asymptotic worst case performance ratio achieved by the greedy algorithm. Different variations of the greedy algorithm to approximate $\gamma(G)$ are developed and some are tested in practice; See work of Chalupa [9], Campan et. al. [8], Eubank et. al. [18], Parekh [20], Sanchis [27], and Siebertz [28].

Below are two examples of worst-case graphs (one sparse and one dense) for greedy algorithm which are derived from an instance of set cover problem provided in [6]. For both instances, the solutions provided by the greedy algorithm are actually $O(ln(\Delta))$ times the optimal.

Example 1.1.

Let $p \geq 2$ be an integer and for $i = 1, 2, ..., p$, let S_i be a star on 2^i vertices. Consider a graph G on $n = 2^{p+1}$ vertices whose vertices are the disjoint union of the vertices of the S_i’s ($i = 1, 2, ..., p$) plus two additional vertices t_1 and t_2. Now, place edges from t_1 and t_2 to the first half of the vertices in each S_i (including the root), and the second half of the vertices in each S_i, respectively. Note that the root of each S_i has degree 2^i and the degree of both t_1 and t_2 is $2^p - 1$. Initially, greedy chooses the root of S_p which can cover $2^p + 1$ vertices (including itself). Generally, at iteration $i \geq 2$, there is a tie between the root of S_{p+1-i} and t_2 since each can cover 2^{p-2} uncovered vertices. If tie breaking does not result in selecting t_2, there will be a tie in every iteration until the algorithm returns the set of S_i’s ($i = 1, 2, ..., p$). This dominating set has cardinality $p = \log(\Delta) - 1$, but $\gamma(G) = 2$, since $\{t_1, t_2\}$ is a minimum dominating set. Note that G is a planar graph.

\footnote{Note that $ln(k + 1) \leq H(k) \leq ln(x) + 1$.}
Example 1.2.

Let $p \geq 2$ be an integer, and let G be a graph with vertices $V_1 \cup V_2$, where $V_1 = \{s_1, s_2, ..., s_p, t_1, t_2\}$ and $V_2 = \{v_1, v_2, ..., v_{2p+1-2}\}$. Now make V_1 a clique and V_2 an independent set of vertices, respectively. Next, consider a linear ordering L on V_2: for $i = 1, 2, ..., p$, the set of neighbors of s_i in V_2, denoted by W_i, has cardinality 2^i and is disjoint from W_k, for any $k \leq i$. Finally, for $i = 1, 2, ..., p$ place edges between t_1 and the first half of the vertices in each W_i, and place edges between t_2 and the second half of the vertices in each W_i. Now note that the greedy algorithm will be forced to pick the vertices $s_p, s_{p-1}, ..., s_1$, in that order but the minimum dominating set in G is $\{t_1, t_2\}$ and $\Delta = 2^p + p + 1$.

1.2 Linear programming rounding approximation algorithms

One can formulate the computation of $\gamma(G)$ as an integer programming problem stated below. However, since integer programming problems are known to be NP-hard [23], the direct applications of the integer programming method would not be computationally fruitful.

IP1:
Minimize $I = \sum_{v \in V} x_v$
Subject to $\sum_{u \in N[v]} x_u \geq 1$, $\forall v \in V$
$x_v \in \{0, 1\}$, $\forall v \in V$

Now observe that by relaxing the integer program IP1 one obtains the following linear program.

LP1:
Minimize $L = \sum_{v \in V} x_v$
Subject to $\sum_{u \in N[v]} x_u \geq 1$, $\forall v \in V$
$0 \leq x_v \leq 1$, $\forall v \in V$

Note that $L^* \leq \gamma(G) = I^*$, where L^* and I^* are the values of L and I at optimality. Since the class of linear programming problems are solvable in polynomial time [24], LP1 can be solved in polynomial time. Very recently, Bansal and Umboh [3] and Dvok [16] have shown that an appropriate rounding of fractional solutions of LP1 gives integer solutions to IP1 whose values are at most $3 \cdot a(G) \cdot L^*$ and $(2 \cdot a(G) + 1) \cdot L^*$, respectively, in polynomial time. Hence, for sparse graphs (graphs with bounded arboricity), one can get a better approximation ratio than $O(ln(\Delta))$ which is achieved by the greedy algorithm. To our knowledge, and in contrast to the greedy algorithm, the performances of the LP rounding approaches have not been tested in practice.
1.3 Other approximation algorithms

There are other approximation algorithms for very specific classes of graphs including planar graphs which have better than constant performance ratio in the worst case but are more complex than algorithms described here. See [28] for a brief reference to some related papers.

1.4 Our work

Greedy is simple and fast, since it can be implemented in linear time. Its performance ratio in the worst case scenario is logarithmic. Linear programming works in polynomial time but is more time consuming than greedy. For sparse graphs, recent linear programming rounding methods in [3, 16] have a constant performance ratio, but there have not been any experimental study of their performances.

In this paper, we implement three types of algorithms and compare and contrast their performances in practice. These algorithms are the greedy algorithm, the LP rounding algorithms, and a hybrid algorithm that combines the greedy and LP approach. The hybrid algorithm first solves the problem using the greedy algorithm and finds a dominating set $D, |D| = d$. It then takes a portion of vertices in D, forces their weights to be 1 in linear program LP1, solves the resulting (partial) linear program, and then properly rounds the solution to the partial LP. Finally, it returns the rounded solution plus the portion of the greedy solution that was forced to LP1.

1.5 Environment, implementation and datasets

We used a laptop with modest computational power - 8th generation Intel i5 (1.6GHz) and 8GB RAM - to perform the experiments. We implemented the $O(n + m)$ time version of the greedy algorithm in C++. We used IBM Decision Optimization CPLEX Modeling (DOCPLEX) for Python to solve the LP relaxation of the problem. Python and DOCPLEX were used to implement the LP rounding and hybrid algorithms.

The graph generator at [1] was used to create the planar graphs, trees, k-planar graphs (graphs embedded in the plane with at most k crossings per edge), and k-trees (graphs with tree width k with largest number of edges) up to 20,000 vertices. The k-Queens graphs, hypercubes (up to 12 dimensions) and graph implementations of the cases described in 1.1 and 1.2 were created ourselves. We also used publicly available Google+ and Pokec social-network graphs, as well as real-world DIMACS Graphs with up to more than 7,700,000 vertices.

https://snap.stanford.edu/data/com-Youtube.html [8]
https://github.com/joklawitter/GraphGenerators [1]
http://davidchalupa.github.io/research/data/social.html [9]
https://www.cc.gatech.edu/dimacs10/downloads.shtml [2]

1.6 Our results

Through experimentation, all algorithms perform better than anticipated in their theoretical analysis, particularly with respect to the performance ratios (measured with respect to the LP objective lower-bound). However, each may have advantages over the others for specific data sets. For instance, LP rounding normally outperforms the other algorithms on real-world graphs. On a graph with 400,000+ vertices, LP rounding took less than 15 seconds of CPU time to generate a solution with performance ratio 1.011, while the greedy and hybrid algorithms...
generated solutions of performance ratio 1.12 in similar time. For synthetic graphs (generated k-trees, k-planar) the hybrid algorithm normally outperforms the others, whereas for hypercubes and k-Queens graphs, the greedy outperforms the rest. Particularly, on the 12-dimensional hypercube, greedy finds a solution with performance ratio 1.7 in 0.01 seconds. On the other hand, the LP rounding and hybrid algorithms produce solutions with performance ratio 13 and 3.3 using 7.5 and 0.08 seconds of CPU time, respectively. It is notable that greedy gives optimal results in some cases where the domination number is known. Specifically, the greedy algorithm produces an optimal solution on hypercubes with dimensions $d = 2^k - 1$ where $k=1, 2, 3, \text{ and } 4$. The hybrid algorithm can solve very large problems when the size of LP1 becomes formidable in practice. For instance, the hybrid algorithm solved a real-world graph with 7.7 million+ vertices in 106 seconds of CPU time with a performance ratio of 2.0075. The LP solver crashed on this problem.

This paper is organized as follows. In section two, we formally describe LP rounding and hybrid algorithms. When the size of problem is so large that LP1 cannot be solved in practice, then L^* cannot be computed, and hence the performance ratio of the hybrid algorithm cannot be determined. We resolved this problem by decomposing LP1 in to two smaller linear programs so each of them has an objective value not exceeding L^* and used the maximum objective value of the two smaller LP’s, instead of L^*, to measure the performance ratio of the hybrid algorithm. Section 3, 4, and 5 contains results for Planar, k-Planar, and k-Tree graphs, hypercubes and k-Queen graphs, and real-world graphs respectively.

2 Linear Programming and hybrid approach

The following algorithm is due to Bansal and Umboh [3].

Algorithm A_1 ([3])
Solve LP1, and let H be the set of all vertices that have weight at least 1/(3\(a(G)\)), where $a(G)$ is the arboricity of graph G. Let U be the set of all vertices not adjacent to any vertex in H and returns $H \cup U$.

Dvok[15, 16] studied d-domination problem, that is, when a vertex dominates all vertices at distance at most d from it and its combinatorial dual, or a 2d-independent set [1]. In [16] he employed the LP rounding approach of Bansal and Umboh, as a part of his frame work and consequently, for $d = 1$, he improved the approximation ratio of Algorithm A_1 by showing that the algorithm A_2 given below provides a $2a(G) + 1$ approximation.

Algorithm A_2 ([16])
Solve LP1, and let H be the set of all vertices that have weight at least 1/(2\(a(G) + 1\)), where $a(G)$ is the arboricity of graph G. Let U be the set of all vertices that are not adjacent to any vertex of H and return $H \cup U$.

Remark 2.1. Graph G in example 1.1 is planar, so $a(G) \leq 3$. Thus, algorithms A_1 and A_2 have a worst-case performance ratio of nine and seven respectively, whereas greedy exhibits a worst-case $O(\log(n))$ performance ratio. Throughout our experiments, rounding algorithms returned an optimal solution of size two for both examples, whereas greedy returned a set of size three for Example 1.1. Furthermore, in Example 1.2, it can be verified that $a(G) \geq (p + 2)/2$ for graph G and hence in theory the worse case performance ratios of the rounding algorithms are not constant either. Interestingly enough, in our experiments, L^* was always two for graphs of
Example 1.2, and LP rounding algorithms also always found a solution of size two which is the optimal value. Thus the performance ratio was always one and much smaller than the predicted worst case.

Next, we provide a description of the decomposition approach for approximating LP1 and our hybrid algorithm. Recall that a separation in $G = (V, E)$ is a partition $A \cup B \cup C$ of V so that no vertex of A is adjacent to any vertex of C. In this case B is called a vertex separator in G. Let $X = \{x_v | v \in V\}$ be a feasible solution to LP1, and let $V' \subseteq V$. Then $X(V')$ denotes $\sum_{v \in V'} x_v$.

Lemma 2.1. Let $A \cup B \cup C$ be a separation in $G = (V, E)$ and consider the following linear programs:

LP2:

\[
\begin{align*}
\text{Minimize} & \quad M = \sum_{v \in A \cup B} x_v \\
\text{Subject to} & \quad \sum_{u \in N[v]} x_u \geq 1, \forall v \in A \\
& \quad 0 \leq x_v \leq 1, \forall v \in A \cup B
\end{align*}
\]

LP3:

\[
\begin{align*}
\text{Minimize} & \quad N = \sum_{v \in C \cup B} x_v \\
\text{Subject to} & \quad \sum_{u \in N[v]} x_u \geq 1, \forall v \in C \\
& \quad 0 \leq x_v \leq 1, \forall v \in B \cup C
\end{align*}
\]

Then $\max\{M^*, N^*\} \leq L^*$.

Proof. Let $X = \{x_v | v \in V\}$ be an optimal solution to LP1. Note that the restrictions of X to $A \cup B$ and $C \cup B$ give feasible solutions for LP3 and LP2 of values $X(B \cup C)$ and $X(B \cup A)$, and hence the claim for the lower bound on L^* follows.

Note that in LP2, LP3 the constraints are not written for all variables, and rounding method in [3] may not directly be applied.

Theorem 2.1. Let $G = (V, E)$, let $A \subset V$, let $B = E(A)$ and let $C = V - (A \cup B)$. Let X be an optimal solution for LP3, and let $X(C)$ denote the sum of the weights assigned to all vertices in C. Then there is a dominating set in G of size at most $|A| + 3a(G)X(C) \leq |A| + 3a(G)N^*$.

Proof. Let H be the set of all vertices v in C with $x(v) \geq \frac{1}{3a}$, and let $U = C - (H \cup E(H))$. Now apply the method in [3] to C to obtain a rounded solution, or a dominating set D, of at most $|U| + |H| \leq 3a(G)X(C)$ vertices in C. Finally, note that $A \cup D$ is a dominating set in G with cardinality at most $|A| + 3a(G)X(C) \leq |A| + 3a(G)N^*$.
Algorithm H (Hybrid Algorithm)
Apply the greedy algorithm to G to obtain a dominating set $D = \{x_1, x_2, ..., x_d\}$, and let $S = \{x_1, x_2, ..., x_{\alpha.d}\}$ be the first $\alpha.d$ vertices in D. Now solve the following linear program on the induced subgraph of G with the vertex set $V - \{S\}$.

\[
\begin{align*}
\text{Minimize } J &= \sum_{v \in V - \{S\}} x_v \\
\text{Subject to } &\sum_{u \in N[v]} x_u \geq 1, \forall v \in V - \{S \cup N[S]\} \\
&0 \leq x_v \leq 1, \forall v \in V - S
\end{align*}
\]

Next, let $A = S, B = E(S)$ and $C = V - (A \cup B)$, and apply the rounding scheme in algorithms A_1 or A_2 to C, and let H and U be corresponding sets, and output the set $S \cup H \cup U$.

Remark 2.2. Note that by Theorem 2.1 Algorithm H can be implemented in polynomial time. Furthermore, $|S \cup H \cup U| \leq \alpha.d + 3a(G)N^* \leq \alpha.(ln(\Delta) + 1) + 3a(G).\gamma(G)$, and thus Algorithm H has a bounded performance ratio.

3 Performance on Planar Graphs, k-Planar Graphs, and k-Trees

In this section, we compare the performance ratios of Greedy, A_1, A_2, A_1 Hybrid, and A_2 Hybrid on planar graphs, k-planar graphs k-trees. In Tables 2 and 3, we present the performance of the algorithms on k-trees where $k = \lfloor V^{0.25}\rfloor$ and k-planar graphs where $k = \lfloor ln(|V|)\rfloor$, respectively. These graphs are dense. We also present the algorithms’ performance on sparse k-trees and sparse k-planar graphs in tables 4 and 5. The planar graphs k-trees, and k-planar graphs were all made using † described in section 1.5.

In most cases, the A_1 and A_2 variants of the hybrid algorithm outperformed the others, producing the lowest performance ratio to the LP lower bound L^*. Greedy performs close to hybrid and outperforms it for the larger dense k-trees and a few of the k-planar graphs. The LP-rounding algorithms performed the worst across the board. All algorithms were able to compute dominating sets in less than 2 seconds across the different types of graphs and their range of sizes.

The arboricity of each of the planar graphs is at most 3. For k-trees, we use $\lceil k - (k/2)(k-1) \rceil$ for arboricity. For k-planar graphs, we use the upper bound of $\lceil 8\sqrt{k} \rceil$ on arboricity.

Table 1: Results for Planar Graphs

n, m	L^*	Greedy/L^*	A_1/L^*	A_1 Hybrid/L^*	A_2/L^*	A_2 Hybrid/L^*
2000, 5980	316.93	1.12	1.40	1.11	1.39	1.11
4000, 11972	620.72	1.16	1.35	1.14	1.34	1.14
6000, 17978	942.59	1.13	1.29	1.13	1.29	1.13
8000, 23974	1239.16	1.14	1.41	1.13	1.40	1.13
10000, 29972	1579.06	1.13	1.27	1.13	1.27	1.13
12000, 35973	1874.66	1.13	1.36	1.12	1.35	1.12
14000, 41974	2185.35	1.14	1.33	1.14	1.32	1.14
16000, 47975	2514.62	1.14	1.33	1.13	1.33	1.13
18000, 53971	2811.98	1.15	1.35	1.14	1.35	1.14
20000, 59971	3127.20	1.14	1.32	1.13	1.31	1.13
Table 2: Results for k-Trees where $k = \sqrt[0.25]{|V|}$

n, m	L^*	Greedy $/L^*$	A_1/L^*	A_1 Hybrid $/L^*$	A_2/L^*	A_2 Hybrid $/L^*$
2000, 13972	15.00	1.07	1.20	1.00	1.20	1.00
4000, 31964	10.00	1.00	1.00	1.00	1.00	1.00
6000, 53955	11.00	1.00	1.00	1.00	1.00	1.00
8000, 71955	13.00	1.00	1.00	1.00	1.00	1.00
10000, 99945	11.19	1.07	2.23	1.07	2.23	1.07
12000, 119945	12.00	1.00	1.00	1.00	1.00	1.00
14000, 139945	18.50	1.08	1.89	1.14	1.89	1.14
16000, 175934	11.25	1.16	1.60	1.33	1.60	1.33
18000, 197934	11.00	1.18	2.00	1.18	2.00	1.18
20000, 219934	10.50	1.14	1.43	1.43	1.43	1.43

Table 3: Results for k-Planar Graphs where $k = \ln (|V|)$

n, m	L^*	Greedy $/L^*$	A_1/L^*	A_1 Hybrid $/L^*$	A_2/L^*	A_2 Hybrid $/L^*$
2000, 12986	151.97	1.26	2.16	1.24	2.11	1.24
4000, 27254	289.69	1.27	2.65	1.29	2.64	1.29
6000, 40885	431.77	1.26	2.50	1.26	2.50	1.26
8000, 54568	568.01	1.24	2.57	1.25	2.57	1.25
10000, 71414	684.20	1.27	2.57	1.28	2.56	1.28
12000, 85580	821.65	1.26	2.62	1.27	2.62	1.27
14000, 100241	957.77	1.25	2.47	1.26	2.46	1.26
16000, 114270	1098.18	1.27	2.21	1.27	2.21	1.27
18000, 128725	1238.09	1.27	2.23	1.27	2.22	1.27
20000, 142891	1368.44	1.26	2.24	1.25	2.23	1.25

Table 4: Results for k-Trees where $k = 5$

n, m	L^*	Greedy $/L^*$	A_1/L^*	A_1 Hybrid $/L^*$	A_2/L^*	A_2 Hybrid $/L^*$
2000, 9985	39.00	1.05	1.08	1.05	1.08	1.05
4000, 19985	70.50	1.04	1.06	1.04	1.06	1.04
6000, 29985	90.83	1.03	1.17	1.03	1.17	1.03
8000, 39985	132.25	1.03	1.07	1.03	1.07	1.03
10000, 49985	158.00	1.03	1.03	1.03	1.03	1.03
12000, 59985	209.67	1.02	1.08	1.02	1.08	1.02
14000, 69985	225.58	1.04	1.09	1.04	1.09	1.04
16000, 79985	270.25	1.02	1.09	1.02	1.09	1.02
18000, 89985	291.83	1.02	1.06	1.02	1.06	1.02
20000, 99985	339.58	1.04	1.08	1.04	1.08	1.04

Table 5: Results for k-Planar Graphs where $k = 5$

n, m	L^*	Greedy $/L^*$	A_1/L^*	A_1 Hybrid $/L^*$	A_2/L^*	A_2 Hybrid $/L^*$
2000, 11465	171.42	1.19	1.65	1.20	1.65	1.20
4000, 23033	336.57	1.21	1.63	1.22	1.63	1.22
6000, 34577	510.02	1.24	2.20	1.25	2.19	1.25
8000, 46130	680.88	1.25	1.91	1.25	1.91	1.25
10000, 57786	840.92	1.23	2.12	1.24	2.10	1.24
12000, 69220	1019.54	1.23	2.02	1.22	2.02	1.22
14000, 80680	1181.05	1.22	1.90	1.22	1.90	1.22
16000, 92300	1355.13	1.23	2.03	1.23	2.03	1.23
18000, 103862	1516.14	1.24	1.99	1.24	1.99	1.24
20000, 115354	1689.35	1.22	2.08	1.21	2.08	1.21

4 Performance on Hypercubes and k-Queen Graphs

In this section, we present the performance of Greedy, A_1, A_2, A_1 Hybrid, and A_2 Hybrid on hypercubes from 5-12 dimensions and k-Queens graphs.
Table 6 compares the performance ratios of the algorithms on hypercubes. We use the arboricity for hypercubes \(a = \lceil d/2 + 1 \rceil \) for LP rounding and hybrid [21]. For k-Queens graphs, arboricity is unknown, so we use the upper bound \(3(k - 1) \), where \(k \) is the length of the chessboard.

For both hypercubes and k-Queens graphs, Greedy performs the best, followed by \(A_1 \) Hybrid and \(A_2 \) Hybrid. \(A_1 \) and \(A_2 \) LP rounding perform the worst by far. This is not surprising as LP Rounding approaches are known to in general perform worse on dense graphs than sparse graphs. Solutions were computed in under 8 seconds for all graphs and algorithms.

\(n, m \)	\(L^* \)	\(\text{Greedy/}L^* \)	\(A_1/L^* \)	\(A_1 \text{ Hybrid/}L^* \)	\(A_2/L^* \)	\(A_2 \text{ Hybrid/}L^* \)
5, 80	5.33	1.50	3.00	1.50	3.00	1.50
6, 192	9.14	1.75	7.00	1.75	7.00	1.75
7, 448	16.00	1.00	1.00	1.00	1.00	1.00
8, 1024	28.44	1.13	9.00	1.13	9.00	1.13
9, 2304	51.20	1.25	7.07	2.99	7.07	2.99
10, 5120	93.09	1.38	11.00	2.70	11.00	2.70
11, 11264	170.67	1.50	6.59	2.85	6.59	2.85
12, 24576	315.08	1.63	13.00	3.14	13.00	3.14

Table 7: Results for k-Queens Graphs

\(n, m \)	\(L^* \)	\(\text{Greedy/}L^* \)	\(A_1/L^* \)	\(A_1 \text{ Hybrid/}L^* \)	\(A_2/L^* \)	\(A_2 \text{ Hybrid/}L^* \)
225, 5180	4.89	2.05	38.45	6.75	36.40	6.75
256, 6320	5.19	1.93	46.98	7.70	43.90	7.12
289, 7616	5.50	1.82	45.84	8.91	44.03	8.91
324, 9078	5.80	1.90	50.34	9.83	48.27	9.83
361, 10716	6.10	1.97	52.42	9.67	50.78	9.67
400, 12540	6.41	2.03	56.81	10.14	53.06	9.68
441, 14560	6.71	1.94	59.89	11.32	56.91	11.17
484, 16786	7.02	2.00	63.86	9.55	59.29	9.12
529, 19228	7.32	1.91	65.83	10.38	62.83	10.11
576, 21896	7.62	1.97	70.82	11.93	64.00	11.67
625, 24800	7.93	2.02	74.15	10.47	69.61	10.34
676, 27950	8.23	1.94	76.27	11.78	68.50	11.30
729, 31356	8.54	1.87	80.80	11.83	74.48	11.13
784, 35028	8.84	1.92	80.07	14.82	74.64	14.25
841, 38976	9.15	1.97	85.81	12.02	78.81	11.70
900, 43210	9.45	2.01	87.18	12.91	81.26	12.38

5 Performance on Real-World Graphs

In this section, we present the performance of LP rounding, greedy, and hybrid on the real-world social network graphs from Google+ [9], Pokec [9], and DIMACS [2]. Each of these graphs are sparse, but their arboricity is unknown. Since arboricity is unknown, we experiment with the threshold applied during LP rounding and hybrid, starting with \(1/3a' \), where \(a' = \lceil |E|/(|V| - 1) \rceil \) is a lower bound on arboricity. We call LP Rounding with this threshold Algorithm \(A_1' \). Similarly, Algorithm \(A_2' \) has threshold \(1/2a' + 1 \). Through experimentation, the best threshold which we found was \(2/a' \); the resulting Algorithm is called \(A_3 \).

In Table 8, we compare the solution size of \(A_1' \), \(A_2' \), and \(A_3 \), along with their hybrid analogs and greedy, to the LP lower bound \(L^* \) on the Google+ graphs. Table 9 compares the same algorithms on the Pokec graphs. In Table 10, we compare the performance ratio to the LP lower bound for these algorithms on 3 social network graphs from DIMACS. In Tables 8, 9 and 10, LP Rounding performs better than the greedy and hybrid approaches, with greedy being the worst out of the algorithms tested. Out of the LP rounding approaches, \(A_3 \) performs the best.
Table 8: Results for Google+ Graphs

n, m	L*	Greedy	A₁'	A₂'	A₃	A₁' Hybrid	A₂' Hybrid	A₃ Hybrid
500, 1000	42	42	42	42	42	42	42	42
2000, 5343	170	176	170	170	170	176	176	176
10000, 33954	860	864	864	864	893	893	893	893
20000, 81352	1715	1730	1716	1800	1800	1800	1800	1800
50000, 231583	4565	4651	4607	4585	4790	4790	4790	4790

Table 9: Results for Pokec Graphs

n, m	L*	Greedy	A₁'	A₂'	A₃	A₁' Hybrid	A₂' Hybrid	A₃ Hybrid
500, 993	16	16	16	16	16	16	16	16
2000, 5893	75	75	75	75	75	75	75	75
10000, 44745	413	413	413	413	413	413	413	413
20000, 102826	921	921	921	921	923	923	923	923
50000, 281726	2706	2773	2712	2712	2757	2757	2757	2743

Compared to the best results from [9], which used a randomized local search algorithm that is run for up to one hour, LP Rounding approaches generally produced a smaller or as good solution using significantly less run-time at less than 0.5 seconds for each graph.

Table 10: Results for DIMACS Graphs

Graph	n, m	L*	Greedy/L*	A₁′/L*	A₁′ Hybrid/L*	A₂′/L*	A₂′ Hybrid/L*	A₃/L*	A₃ Hybrid/L*
coAuthorsDBLP	299067, 977676	43969.00	1.02	1.02	1.02	1.02	1.02	1.02	1.02
coPapersCiteseer	434102, 16036720	26040.92	1.12	1.01	1.12	1.01	1.12	1.01	1.12
citationCiteseer	268495, 1156647	43318.85	1.04	1.03	1.04	1.03	1.04	1.04	1.04

Table 11 shows an example of a 7 million+ vertices graph where A₁ and A₂ cannot be run as a result of the large size. For hybrid approaches, using the first d/2 vertices from the greedy solution, where d is the size of the greedy solution, resulted in the use of too much memory. We instead used the first 3d/4 vertices from the greedy solution. Both A₁ Hybrid and A₂ Hybrid performed better than greedy. Greedy took 14 seconds to produce a solution while hybrid took 107 seconds. max{M*, N*} is provided as a lower bound on L*, and therefore, γ(G).

Table 11: Results for the DIMACS Great Britain Street Network

n, m	M*	N*	max{M*, N*}	Greedy	A₁ Hybrid	A₂ Hybrid
7733822, 8156517	1314133	1357189	1357189	2732935	2724608	2724608
References

[1] T. Bohme and B. Mohar, Domination, packing and excluded minors, Electronic Journal of Combinatorics, 10 (2003), p. N9.

[2] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian Schulz and Dorothea Wagner. Benchmarking for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining, pages 73-82. Springer, 2014.

[3] Bansal and S. W. Umbloh. Tight approximation bounds for dominating set on graphs of bounded arboricity. Information Processing Letters. (2017), 21-24.

[4] Claude Berge, Two Theorems in Graph Theory. Proc National Acad Sci U S A. 1957 Sep 15; 43(9): 842844.

[5] R. Bertolo & P. R. J. stergrd & W. D. Weakley. An Updated Table of Binary/Ternary Mixed Covering Codes. Journal of Combinatorial Designs. 12. 157 - 176. 2004.

[6] H. Brnnimann, M. T. Goodrich, Almost Optimal Set Covers in Finite VC-Dimension Discrete and Computational Geometry 14(1):463-479, 1995.

[7] A.p. Burger and C.m. Mynhardt. An Upper Bound for the Minimum Number of Queens Covering the nxn Chessboard. Discrete Applied Mathematics, vol. 121, no. 1-3, pp. 5160., 2002

[8] A Campan, T. M. Truta, and M. Beckerich. Fast Dominating Set Algorithms for Social Networks, MAICS. (2015).

[9] D. Chalupa, An Order-based Algorithm for Minimum Dominating Set with Application in Graph Mining, Information Sciences (2018), 101-116.

[10] V. Chvatal. A greedy heuristic for the set-covering problem, Mathematics of Operations Research, 4(3):233235, 1979.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 1990.

[12] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, CRC Press, 2010.

[13] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1-3):165177, 1990.

[14] Alexander Schrijver, Theory of Linear and Integer Programming

[15] Z. Dvok , Constant-factor approximation of domination number in sparse graphs, European Journal of Combinatorics, 34 (2013), 833840

[16] Z. Dvok, On distance r-dominating and 2r-independent sets in sparse graphs, Journal of Graph Theory, (2017).

[17] I. Dinur, D. Steurer, Analytical approach to parallel repetition, in: Symposium on Theory of Computing, STOC, 2014, 624633.

[18] S. Eubank. V.S., Anil Kumar, M. V. Marathe, A. Srinivasan, and N. Wang. Structural and Algorithmic Aspects of Massive Social Networks SODA (2004), 718-727.
[19] H. N Gabow, H. H. Westermann, Forests, frames, and games: Algorithms for matroid sums and applications. Algorithmica. 7 (1): 465497, 1992.

[20] H. Jung, M. K. Hasan, and K. Chwa, Improved Primal-Dual Approximation Algorithm for the Connected Facility Location Problem. (2008), 265-277.

[21] N. Karisani, E.S. Mahmoodian, On the Construction of Tree Decompositions of Hypercubes. 2013.

[22] T. W. Haynes, S. Hedetniemi, P. Slater. Fundamentals of Domination in Graphs, CRC press, 1988.

[23] R. M. Karp, Reducibility Among Combinatorial Problems, . In R. E. Miller; J. W. Thatcher; J.D. Bohlinger (eds.). Complexity of Computer Computations. New York: Plenum, (1972), pp. 85103.

[24] L. g. Khachiyan Polynomial Algorithms in Linear Programming. USSR Computational Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 5372., 1980.

[25] L. Lovasz, On the Ratio of Optimal Integral and Fractional Covers. Discrete Mathematics, Vol. 13, 1975, 383390.

[26] A. K. Parekh. Analysis of a Greedy Heuristic For Finding Small Dominating Sets in Graphs, Information Processing Letters. (1991), 237-240.

[27] L. A. Sanchis, Experimental Analysis of Heuristic Algorithms for the Dominating Set Problem. Algorithmica, (2002), 3-18.

[28] S. Siebertz, Greedy domination on biclique-free graphs. Information Processing Letters. (2019), 64-67.

[29] J. Yang and J. Leskovec. Defining and Evaluating Network Communities based on Ground-truth. International Conference on Data Mining. (2012), 745-754.

[30] C. St. J. A. Nash-Williams Decomposition of finite graphs into forests, Journal of the London Mathematical Society. 39 (1): 12, 1964.