Treatment With Icosapent Ethyl to Reduce Ischemic Events in Patients With Prior Percutaneous Coronary Intervention: Insights From REDUCE-IT PCI

Benjamin E. Peterson MD, MPH; Deepak L. Bhatt MD, MPH; Ph. Gabriel Steg MD, MD; Michael Miller MD; Elliot A. Brinton MD; Terry A. Jacobson MD; Steven B. Ketchum PhD; Rebecca A. Julian MD, PhD; Lixia Jiao PhD; Ralph T. Doyle, Jr., BA; Craig Granowitz, MD, PhD; C. Michael Gibson, MD; Duane Pinto MD, MD; Robert P. Giugliano MD, MD, SM; Matthew J. Budoff MD; Jean-Claude Tardif MD; Subodh Verma MD, PhD; Christie M. Ballantyne MD; on behalf of the REDUCE-IT Investigators*

BACKGROUND: Patients who undergo percutaneous coronary intervention (PCI) are at increased risk for recurrent cardiovascular events despite aggressive medical therapy.

METHODS AND RESULTS: This post hoc analysis focused on the subset of patients with prior PCI enrolled in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl–Intervention Trial), a multicenter, randomized, double-blind, placebo-controlled trial of icosapent ethyl versus placebo. Icosapent ethyl was added to statins in patients with low-density lipoprotein cholesterol <100 mg/dL and fasting triglycerides 135–499 mg/dL. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina requiring hospitalization. There were 8179 patients randomized in REDUCE-IT followed for a median of 4.9 years, and 3408 (41.7%) of them had a prior PCI with a median follow-up of 4.8 years. These patients were randomized a median of 2.9 years (11 days to 30.7 years) after PCI. Among patients treated with icosapent ethyl versus placebo, there was a 34% reduction in the primary composite end point (hazard ratio [HR], 0.66; 95% CI, 0.58–0.76; P<0.001; number needed to treat 4.8 years =12) and a 34% reduction in the key secondary composite end point of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke (HR, 0.66; 95% CI, 0.56–0.79; P<0.001; NNT 4.8 years =19) versus placebo. Similarly, large reductions occurred in total coronary revascularizations and revascularization subtypes. There was also a 39% reduction in total events (rate ratio, 0.61; 95% CI, 0.52–0.72; P<0.001).

CONCLUSIONS: Among patients treated with statins with elevated triglycerides and a history of prior PCI, icosapent ethyl substantially reduced the risk of recurrent events during an average of ~5 years of follow-up with a number needed to treat of only 12.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01492361.

Key Words: eicosapentaenoic acid ■ icosapent ethyl ■ prevention ■ revascularization

Correspondence to: Deepak L. Bhatt, MD, MPH, FAHA, Brigham and Women’s Hospital Heart & Vascular Center, Harvard Medical School, 75 Francis Street, Boston, MA 02115. E-mail: DlbhattMD@post.Harvard.edu

* A complete list of the REDUCE-IT investigators can be found in the Appendix S1.

Supplemental Material for this article is available at https://www.ahajournals.org/doi/supp/10.1161/JAHA.121.022937

For Sources of Funding and Disclosures, see page 9.

© 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

JAHA is available at: www.ahajournals.org/journal/jaha
Patients who undergo percutaneous coronary intervention (PCI) are at increased risk for subsequent cardiovascular events when compared with patients with other cardiovascular risk factors. In recent years, efforts to improve stent design, lower low-density lipoprotein cholesterol, and modify inflammation and platelet activity have resulted in some reductions in repeat events among patients who undergo coronary stenting. Yet, many patients still experience recurrent events, especially those with diabetes and elevated triglycerides.

The REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl–Intervention Trial) trial was designed to test the effectiveness of icosapent ethyl 4 g/day (a highly purified form of eicosapentaenoic acid [EPA]) versus placebo among patients with established cardiovascular disease or diabetes and additional risk factors. The significant reduction in first and total major adverse cardiovascular events (MACE) among patients who were treated with icosapent ethyl was out of proportion to the degree of reduction in triglycerides. These large reductions occurred in patients with diabetes, patients with only modestly elevated triglycerides, patients in the United States, and patients across numerous other prespecified subgroups. Treatment with icosapent ethyl also substantially reduced instances of first and subsequent revascularization events.

The aim of the present post hoc analysis of the REDUCE-IT trial was to study the effects of icosapent ethyl versus placebo among patients who have been treated previously with PCI.

METHODS

The data that support the findings of this study may be made available from the corresponding author on reasonable request.

Patient Population and Treatment

The design of the REDUCE-IT trial has been published previously. REDUCE-IT was a double-blind, multicenter, placebo-controlled, randomized trial comparing the effects of icosapent ethyl in high-risk patients treated with statins with persistently elevated triglycerides. After a screening period of up to 60 days, patients were randomized to receive icosapent ethyl 4 g daily (2 g twice daily) versus a matching placebo. Patients were enrolled in REDUCE-IT if they were at least 45 years of age and had established cardiovascular disease or at least 50 years of age and had diabetes and additional risk factors. In this present post hoc analysis, patients were analyzed only if they had a prior PCI, such as balloon angioplasty or stenting (drug-eluting or bare-metal stents). Patients were included regardless of the amount of time elapsed between PCI and enrollment, though planned coronary intervention (such as PCI or coronary bypass surgery) was an exclusion criterion. Patients could be (re)evaluated for participation in the trial (starting with Visit 1.1) after their recovery from the intervention/surgery. Of note, randomization to icosapent ethyl versus placebo was stratified according to cardiovascular risk (established cardiovascular disease versus diabetes plus risk), geographic region, and ezetimibe use. In addition to prior PCI, all patients had been treated with a stable dose of statin for at least 4 weeks and had low-density lipoprotein cholesterol under 100 mg/dL as well as...
serum triglycerides from 135–499 mg/dL. Other key inclusion and exclusion criteria for REDUCE-IT have been published previously. All sites received ethics approval from relevant institutional review boards, and informed consent was obtained.

Statistical Analysis
In this post hoc analysis, we analyzed patients enrolled in REDUCE-IT who had a prior PCI. The primary and key secondary end points for this analysis were the same as the main REDUCE-IT trial. The primary composite end point was the first occurrence of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina requiring hospitalization. The key secondary composite end point (or hard MACE end point) was the first occurrence of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke.

The intention-to-treat principle guided all analyses. Baseline characteristics were compared among groups using the Wilcoxon rank sum test for continuous variables and Chi-square test for categorical variables. Hazard ratios (HRs) and 95% CIs were generated using Cox proportional-hazard models that included risk stratum (established cardiovascular disease versus diabetes plus cardiovascular risk factors), geographic region, and ezetimibe use as covariates. It has been shown in other analyses that patients benefited from icosapent ethyl versus placebo regardless of baseline triglyceride levels, so this was not included as a covariate in this analysis. With Kaplan-Meier analysis, we compared the time to events among patients randomized to icosapent ethyl versus placebo, with log-rank P values also stratified by risk stratum, geographic region, and ezetimibe use.

As with other REDUCE-IT analyses, we employed various statistical methods in comparing the risk for total (first and subsequent) events among patients treated with icosapent ethyl versus placebo.17 We used the negative binomial regression model to calculate rates and rate ratios (RRs) for total cardiovascular events. In supportive analyses, the modified Wei-Lin-Weissfeld method (Li and Lagakos modification taking into account death as a terminating event) was applied to calculate HRs for the time to the first and second, and a negative binomial model for rate ratios of third and greater events.22 As a sensitivity analysis, the Gray’s test was applied to the primary composite end point considering noncardiovascular death as a competing event. In addition to the primary and key secondary end points, results for additionally prespecified secondary end points in the original testing hierarchy are presented. Further post hoc explorations included time to total coronary revascularization and various revascularization subtypes (eg, elective, emergent, and urgent) as well as a coronary-specific composite end point of myocardial infarction, coronary revascularization, or unstable angina. All statistical analyses were conducted using SAS 9.4 (SAS Institute, Cary, NC).

RESULTS
Baseline Characteristics
Of the 8179 patients enrolled in REDUCE-IT, 3408 (41.7%) had a prior PCI. In the 2559 patients with reported dates of PCI, the median time from PCI was 2.9 years, ranging from 11 days to 30.7 years. There were 675 (26.4%) patients with a PCI ≤1 year before randomization and 1884 (73.6%) with a PCI more than 1 year before randomization. Among patients in this study, the median age was 63 years, 20.7% were female, 96.3% were on moderate- or high-intensity statin therapy, and the median triglyceride level was 218 mg/dL (Q1, Q3; 178.5 mg/dL, 274.5 mg/dL). There were no significant differences in baseline characteristics among patients randomized to icosapent ethyl versus placebo (Table 1).

Clinical End Points
During a median follow-up of 4.8 years, the rates of the primary composite end point (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina requiring hospitalization) were 20.8% among patients treated with icosapent ethyl and 29.4% among patients treated with placebo (HR, 0.66; 95% CI, 0.58–0.76; P < 0.001). This represents a 34% relative risk reduction, an 8.5% absolute risk reduction, and a number needed to treat (NNT) of 12 patients to prevent 1 MACE event over a median of 4.8 years. The reduction in the primary end point with icosapent ethyl was similar in patients whose most recent PCI occurred ≤1 year before randomization (20.0% versus 29.7%, HR, 0.65; 95% CI, 0.48–0.89; P=0.007) and >1 year before randomization (20.3% versus 27.9%; HR, 0.68; 95% CI, 0.57–0.83; P<0.001). There was also a 34% reduction in the rate of the key secondary end point (cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) in patients treated with icosapent ethyl versus placebo (12.0% versus 17.4%, HR, 0.66; 95% CI, 0.56–0.79; P<0.001). The absolute risk reduction was 5.4%, NNT4.8 years=19 (Figure 1).

Patients treated with icosapent ethyl experienced a significant 40% reduction in the risk of repeat coronary revascularization versus those treated with placebo (17.1% versus 27.6%; HR, 0.60; 95% CI, 0.51–0.70; P<0.001), with similar reductions in elective and urgent revascularization. There was also a significant reduction in the combined coronary end point of myocardial infarction, coronary revascularization, or unstable angina.
requiring hospitalization (HR, 0.65; 95% CI, 0.56–0.75; P < 0.001) (Figure 2). There was no significant difference in the safety or efficacy of icosapent ethyl versus placebo among patients taking single- or dual-antiplatelet therapy or a combined antithrombotic regimen (Figure S1). In addition, there were similar reductions in cardiovascular end points among women and men randomized to icosapent ethyl versus placebo (Figure S2).

Testing in patients with prior PCI across the original prespecified hierarchical end points showed significant reductions in the primary and key secondary end points as well as in the following end points: cardiovascular death or nonfatal myocardial infarction; fatal or nonfatal myocardial infarction; urgent or emergent coronary revascularization; cardiovascular death; hospitalization for unstable angina; fatal or nonfatal stroke; and all-cause mortality, myocardial infarction, or stroke (Figure 3). There were similar reductions in the primary and key secondary end points when accounting for noncardiovascular death as a competing risk factor (Figure S3). It should be noted that although the patients enrolled in REDUCE-IT with cardiovascular risk factors and no history of PCI were a somewhat heterogeneous group, they had fewer cardiovascular events and derived a smaller in magnitude but still significant benefit from treatment with icosapent ethyl versus placebo (Figure S4).

Total Events

Of the 1708 events that occurred during follow-up, 853 (49.9%) were first events, 470 (27.5%) were second events, and 385 (22.5%) were third or greater events. During follow-up, 1031 events occurred among patients treated with placebo and 677 events occurred among patients treated with icosapent ethyl. Using the negative binomial regression model, there was a significant 39% reduction in total (first and subsequent) events (RR, 0.61; 95% CI, 0.52–0.72; P < 0.001) among patients treated with icosapent ethyl versus placebo (Figure S4).

Table 1. Baseline Characteristics

	Icosapent ethyl (N=1737)	Placebo (N=1671)	Overall (N=3408)	P value*
Age, y, median (Q1–Q3)	63.0 (57.0–69.0)	63.0 (56.0–69.0)	63.0 (57.0–69.0)	0.73
Female sex, n (%)	350 (20.1)	354 (21.2)	704 (20.7)	0.46
White race, n (%)	1606 (92.5)	1539 (92.1)	3145 (92.3)	0.70
Westernized region, n (%)	1385 (79.7)	1313 (78.6)	2698 (79.2)	0.40
Cardiovascular risk category, n (%)				0.91
Established cardiovascular disease	1644 (94.6)	1583 (94.7)	3227 (94.7)	
Diabetes+risk factors	93 (5.4)	88 (5.3)	181 (5.3)	
Ezetimibe use, n (%)	136 (7.9)	150 (9.0)	286 (8.5)	0.28
Statin intensity, n (%)	3 (0.2)	9 (0.5)	12 (0.4)	
Low	59 (3.4)	57 (3.4)	116 (3.4)	
Moderate	962 (55.4)	970 (58.0)	1932 (56.7)	
High	713 (41.0)	635 (38.0)	1348 (39.6)	
Body mass index (kg/m²), median (Q1-Q3)	30.5 (27.7–33.8)	30.3 (27.5–33.6)	30.4 (27.7–33.7)	0.32
Triglycerides (mg/dL), median (Q1-Q3)	218.0 (180.5–271.5)	217.5 (177.5–277.0)	218.0 (178.5–274.5)	0.82
High-density lipoprotein cholesterol (mg/dL), median (Q1-Q3)	39.0 (34.0–45.0)	39.0 (34.0–45.5)	39.0 (34.0–45.5)	0.90
Low-density lipoprotein cholesterol (mg/dL), median (Q1-Q3)	73.0 (61.0–87.0)	74.0 (62.0–87.0)	74.0 (61.0–87.0)	0.37
Triglycerides category, n (%)				0.37
<150 mg/dL	154 (8.9)	167 (10.0)	321 (9.4)	
150 to <200 mg/dL	511 (29.4)	464 (27.8)	975 (28.6)	
≥200 mg/dL	1071 (61.7)	1040 (62.2)	2111 (61.9)	

*To assess balance between treatment groups, P values are reported from a Chi-square test for categorical variables and Wilcoxon rank sum test for continuous variables. Missing categories are excluded from any comparisons.

*Age (y) is at randomization.
0.50–0.71; \(P<0.001 \)), and a significant 50% reduction in third or greater events (HR, 0.50; 95% CI, 0.35–0.74; \(P<0.001 \)) (Figure 4).

Safety and Adverse Events

As in the primary REDUCE-IT trial, among patients with a prior PCI treated with icosapent ethyl, there was a small increase in the number of patients who had adverse events of documented atrial fibrillation or flutter requiring emergency treatment (115 [6.6%] versus 75 [4.5%], \(P=0.007 \)) or who had positively adjudicated end points of atrial fibrillation or flutter requiring hospitalization (59 [3.4%] versus 36 [2.2%]; \(P=0.04 \)). There was no increase in total bleeding, any of the bleeding subtypes, or trial-related adverse events (Table 2).

DISCUSSION

Among the 3408 patients in REDUCE-IT with a prior PCI, icosapent ethyl taken 4 g daily (2 g twice daily) versus placebo resulted in a significant 34% reduction in the primary end point and a significant 34%
Peterson et al REDUCE-IT PCI

reduction in the key secondary (hard MACE) end point. Even larger reductions occurred in second events, third or greater events, and total events. There were also significant reductions in total ischemic events, cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina, and coronary revascularization. The NNT 4.8 years to prevent 1 MACE event among patients treated with PCI over ~5 years was 12. In comparison, the NNT to prevent 1 MACE event was 22 over 5 years in the FRISC-II (Framingham and Fast Revascularization During Instability in Coronary Artery Disease) trial, 23 50 at 7 years in IMPROVE-IT (The Improved Reduction of Outcomes: Vytorin Efficacy International Trial), 24 67 at 2.2 years in FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk), 63 at 2.8 years in ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab), 25-27

The patient population in this subgroup analysis of REDUCE-IT reflects a large proportion of patients who undergo PCI in US, Canadian, and European registries. 28-31 Representative qualities include moderately elevated baseline triglycerides, with 50% of patients being <218 mg/dL and 96.3% on a moderate- or high-intensity statin. The distribution of age, sex, and typical comorbidities also highly reflects contemporary populations undergoing PCI. 1 Furthermore, this trial enrolled patients from November 2011 to August 2016 as the latest generation of drug-eluting stents were employed, ameliorating the usual difficulty of interpreting clinical events in trials that had events during periods that used prior PCI technologies. 2 Contemporary guidelines and consensus statements consistently recommend the use of icosapent ethyl in this patient population. 32,33

Figure 2. Kaplan-Meier curves showing (A) time to first coronary revascularization, (B) time to first elective coronary revascularization, (C) time to first urgent revascularization, (D) time to first coronary specific end point: myocardial infarction, coronary revascularization, or unstable angina requiring hospitalization, among patients with prior percutaneous coronary intervention treated with icosapent ethyl vs placebo. ARR indicates absolute risk reduction; NNT, number needed to treat; and RRR, relative risk reduction.
These findings of the overall REDUCE-IT trial and this present analysis contrast sharply with neutral results from other contemporary clinical trials of moderate-to high-dose omega-3 fatty acid supplementation, such as the recent STRENGTH (Long-Term Outcomes Study to Assess Statin Residual Risk With Epanova in High Cardiovascular Risk Patients With Hypertriglyceridemia) and OMEMI (The Omega-3 Fatty Acids in Elderly with Myocardial Infarction) trials.34–36 As well, older clinical trials have shown mixed results with respect to prevention of MACE events.37–41 In contrast, EPA in a highly purified form has shown a 19% benefit with respect to MACE in the open-label JELIS (Japan EPA Lipid Intervention Study) at 1.8 g per day and a 25%...

Figure 3. Hierarchical testing of end points: patients with prior percutaneous coronary intervention treated with icosapent ethyl vs placebo.

HR indicates hazard ratio.

Figure 4. First, second, third or greater, and total events among patients with prior percutaneous coronary intervention treated with icosapent ethyl vs placebo.

HR indicates hazard ratio; and RR, rate ratio.
The exploratory nature as well as the lack of adjustment for multiple comparisons limited this post hoc analysis; REDUCE-IT was not powered for this or other subgroup analyses. With the post hoc nature of these analyses, all P values should be considered hypothesis-generating. As noted previously, patients with prior PCI had higher event rates and derived greater benefit from icosapent ethyl versus placebo. Although the time period from PCI to randomization was known in most patients, there was a subset of patients in which this was not known. Among the 24.9% of this subset and the remainder of patients, the distribution of randomization to icosapent ethyl versus placebo was equivalent. Double blinding also eliminated bias arising from this issue. The prerandomization extent of coronary artery disease and revascularization strategy (complete versus incomplete) among patients with a prior PCI was not known. Randomization was not stratified by history of PCI, and because there is potential for confounding, this subgroup finding needs corroboration in future studies. Future investigation will be required to gain a better understanding of whether icosapent ethyl reduced the rates of in-stent restenosis versus de novo plaque events as vessel- and lesion-specific data are not available in REDUCE-IT. Also, had patients been enrolled soon after PCI when risk

This table summarizes the adverse events observed in the REDUCE-IT trial:

Adverse event, n (%)	Icosapent ethyl (N=1737)	Placebo (N=1671)	P value
Atrial fibrillation/flutter requiring emergency treatment*	115 (6.6)	75 (4.5)	0.007
Atrial fibrillation/flutter requiring hospitalization ≥24 hours†	59 (3.4)	36 (2.2)	0.04
Bleeding events+hemorrhagic stroke‡	226 (13.0)	205 (12.3)	0.54
Total bleeding events	221 (12.7)	202 (12.1)	0.60
Gastrointestinal bleeding	60 (3.5)	56 (3.4)	0.92
Central nervous system bleeding	13 (0.8)	7 (0.4)	0.26
Other bleeding	171 (9.8)	155 (9.3)	0.60
Hemorrhagic stroke	5 (0.3)	5 (0.3)	1.00
Severe TEAE	378 (21.8)	365 (21.8)	0.97
Serious TEAE	593 (34.1)	584 (34.9)	0.64

TEAE indicates treatment emergent adverse event.

*Includes atrial fibrillation/flutter TEAEs and excludes positively adjudicated events. P value is based on Fisher’s Exact test.

†Includes positively adjudicated atrial fibrillation/flutter requiring ≥24 hours of hospitalization clinical events by the Clinical Endpoint Committee. P value is based on stratified log-rank test.

‡Multiple bleeding TEAEs of the same preferred term are counted only once within each preferred term. Events that were positively adjudicated as clinical end points are not included in bleeding TEAEs. P values are based on Fisher’s Exact test.

Although the precise molecular mechanism of benefit from icosapent ethyl/EPA still requires some elucidation, the EVAPORATE (Effect of Vascepa on Improving Coronary Atherosclerosis in the People With High Triglycerides Taking Statin Therapy) trial has recently shed some important light on the gross vascular mechanism of benefit. A total of 80 patients who had atherosclerotic coronary plaques with at least 20% stenosis on multidetector coronary computed tomography and a median baseline fasting triglyceride level of 259 mg/dL were randomized to icosapent ethyl 4 g daily versus placebo. Final follow-up imaging at 18 months showed a significant 17% reduction in low-attenuation plaque volume in patients treated with icosapent ethyl (whereas patients taking placebo nearly doubled their low-attenuation plaque volume). Significant reductions also occurred in fibrofatty, fatty, total noncalcified, and total plaque volumes. Thus, high-dose EPA therapy seems to result in significantly increased plaque stability and even plaque reduction, which could at least partially contribute to this marked reduction in cardiovascular events among high-risk patients.

Limitations

The exploratory nature as well as the lack of adjustment for multiple comparisons limited this post hoc analysis; REDUCE-IT was not powered for this or other subgroup analyses. With the post hoc nature of these analyses, all P values should be considered hypothesis-generating. As noted previously, patients with prior PCI had higher event rates and derived greater benefit from icosapent ethyl versus placebo. Although the time period from PCI to randomization was known in most patients, there was a subset of patients in which this was not known. Among the 24.9% of this subset and the remainder of patients, the distribution of randomization to icosapent ethyl versus placebo was equivalent. Double blinding also eliminated bias arising from this issue. The prerandomization extent of coronary artery disease and revascularization strategy (complete versus incomplete) among patients with a prior PCI was not known. Randomization was not stratified by history of PCI, and because there is potential for confounding, this subgroup finding needs corroboration in future studies. Future investigation will be required to gain a better understanding of whether icosapent ethyl reduced the rates of in-stent restenosis versus de novo plaque events as vessel- and lesion-specific data are not available in REDUCE-IT. Also, had patients been enrolled soon after PCI when risk

Table 2. Adverse Events

Adverse event, n (%)	Icosapent ethyl (N=1737)	Placebo (N=1671)	P value
Atrial fibrillation/flutter requiring emergency treatment*	115 (6.6)	75 (4.5)	0.007
Atrial fibrillation/flutter requiring hospitalization ≥24 hours†	59 (3.4)	36 (2.2)	0.04
Bleeding events+hemorrhagic stroke‡	226 (13.0)	205 (12.3)	0.54
Total bleeding events	221 (12.7)	202 (12.1)	0.60
Gastrointestinal bleeding	60 (3.5)	56 (3.4)	0.92
Central nervous system bleeding	13 (0.8)	7 (0.4)	0.26
Other bleeding	171 (9.8)	155 (9.3)	0.60
Hemorrhagic stroke	5 (0.3)	5 (0.3)	1.00
Severe TEAE	378 (21.8)	365 (21.8)	0.97
Serious TEAE	593 (34.1)	584 (34.9)	0.64

TEAE indicates treatment emergent adverse event.

*Includes atrial fibrillation/flutter TEAEs and excludes positively adjudicated events. P value is based on Fisher’s Exact test.

†Includes positively adjudicated atrial fibrillation/flutter requiring ≥24 hours of hospitalization clinical events by the Clinical Endpoint Committee. P value is based on stratified log-rank test.

‡Multiple bleeding TEAEs of the same preferred term are counted only once within each preferred term. Events that were positively adjudicated as clinical end points are not included in bleeding TEAEs. P values are based on Fisher’s Exact test.

Although the precise molecular mechanism of benefit from icosapent ethyl/EPA still requires some elucidation, the EVAPORATE (Effect of Vascepa on Improving Coronary Atherosclerosis in the People With High Triglycerides Taking Statin Therapy) trial has recently shed some important light on the gross vascular mechanism of benefit. A total of 80 patients who had atherosclerotic coronary plaques with at least 20% stenosis on multidetector coronary computed tomography and a median baseline fasting triglyceride level of 259 mg/dL were randomized to icosapent ethyl 4 g daily versus placebo. Final follow-up imaging at 18 months showed a significant 17% reduction in low-attenuation plaque volume in patients treated with icosapent ethyl (whereas patients taking placebo nearly doubled their low-attenuation plaque volume). Significant reductions also occurred in fibrofatty, fatty, total noncalcified, and total plaque volumes. Thus, high-dose EPA therapy seems to result in significantly increased plaque stability and even plaque reduction, which could at least partially contribute to this marked reduction in cardiovascular events among high-risk patients.

Limitations

The exploratory nature as well as the lack of adjustment for multiple comparisons limited this post hoc analysis; REDUCE-IT was not powered for this or other subgroup analyses. With the post hoc nature of these analyses, all P values should be considered hypothesis-generating. As noted previously, patients with prior PCI had higher event rates and derived greater benefit from icosapent ethyl versus placebo. Although the time period from PCI to randomization was known in most patients, there was a subset of patients in which this was not known. Among the 24.9% of this subset and the remainder of patients, the distribution of randomization to icosapent ethyl versus placebo was equivalent. Double blinding also eliminated bias arising from this issue. The prerandomization extent of coronary artery disease and revascularization strategy (complete versus incomplete) among patients with a prior PCI was not known. Randomization was not stratified by history of PCI, and because there is potential for confounding, this subgroup finding needs corroboration in future studies. Future investigation will be required to gain a better understanding of whether icosapent ethyl reduced the rates of in-stent restenosis versus de novo plaque events as vessel- and lesion-specific data are not available in REDUCE-IT. Also, had patients been enrolled soon after PCI when risk

J Am Heart Assoc. 2022;11:e022937. DOI: 10.1161/JAHA.121.022937

is highest, the degree of benefit seen here may have been even greater, especially if future studies validate the use of a loading dose.43

CONCLUSIONS

Icosapent ethyl versus placebo resulted in significant and clinically meaningful reductions in cardiovascular events in this post hoc analysis. In patients with a prior PCI, the reductions in first and total primary end point events were 34% and 39%, respectively. There were large reductions in the primary and key secondary (hard MACE) end points, with NNTs4.8 years of 12 and 19, respectively, and consistent benefit across the hierarchical end points. These data highlight the substantial positive impact of icosapent ethyl on patients in the REDUCE-IT population, including patients with a history of prior PCI.

ARTICLE INFORMATION

Received October 29, 2021; accepted January 27, 2022.

Affiliations

Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (D.P., D.L.B., R.P.G.); Université de Paris, AP-HF (Assistance Publique-Hôpitaux de Paris), Hôpital Bichat, FACT French Alliance for Cardiovascular Trials), INSERM U-1148, Paris, France (P.G.S.); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (M.M.M.); Utah Lipid Center, Salt Lake City, UT (E.A.B.); Department of Medicine, Office of Health Promotion and Disease Prevention, Emory University School of Medicine, Atlanta, GA (T.A.J.; Amarin Pharma, Inc. (Amarin), Bridgewater, NJ (S.B.K., R.A.; J.L., R.T.D., C.G.G.); Baim Clinical Research Institute, Boston, MA (C.M.G., D.P.); David Geffen School of Medicine, Lownquist Institute, Torrance, CA (M.J.B.); Montreal Heart Institute, Université de Montréal, Quebec, Canada (J.T.); Division of Cardiac Surgery, St Michael’s Hospital, University of Toronto, Ontario, Canada (S.V.); and Department of Medicine, Baylor College of Medicine, Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX (C.M.B.).

Acknowledgments

The authors thank K. Keating from Amarin and S. Mercuro from BWH for editorial assistance (limited to formatting and collation of coauthor comments); and the investigators, the study coordinators, and especially the patients who participated in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl–Intervention Trial). The academic steering committee along with the sponsor designed REDUCE-IT.

Author contributions: This specific post hoc analysis was proposed and designed by the study chair (the second author of this paper). The first draft was written by the first author and extensively revised by the second author and then circulated to the remainder of the authors, all of whom provided critical revisions to the paper. The statistical analyses were performed by Lixa Jiao, an employee of Amarin, and were validated independently by Qi Gao, MS, from Baim Clinical Research Institute with funding from Amarin.

Sources of Funding

The main REDUCE-IT trial and this analysis have been funded by Amarin.
Supplemental Material
Appendix S1. REDUCE-IT Investigators
Figures S1–S4

REFERENCES
1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIR.0000000000000757

2. Bangalore S, Toklu B, Patel N, Felt F, Stone GW. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138:2216–2226. doi: 10.1161/CIRCULATIONAHA.118.034345

3. Neumann F-J, Sousa-Uva M, Alhissin A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet J-P, Falk V, Head SJ, et al. ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:1657–1735. doi: 10.1093/eurheartj/ehz508

4. Annett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelhaft CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e565–e655. doi: 10.1161/CIR.0000000000000677

5. Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hyperglycemia. J Am Coll Cardiol. 2019;73:2791–2802. doi: 10.1016/j.jacc.2019.02.032

6. Raymond BB, Libby P, Verma S, Mason RP, Bhatt DL. The role of eicosapentaenoic acid in reducing important cardiovascular events, including coronary revascularization. Prog Cardiovasc Dis. 2021;64:122–129. doi: 10.1016/j.pcad.2021.08.003

7. Taylor KH, Hing W, Sood A, D'Abreu J, Bush DN, Desai SS, et al. Generalizability of REDUCE-IT trial to the clinical setting: a systematic review and meta-analysis. J Am Heart Assoc. 2022;11.e022937. DOI: 10.1161/JAHA.121.e023437
31. Picard F, Bhatt DL, Ducrocq G, Ohman EM, Goto S, Eagle KA, Wilson PW, Smith SC Jr, Elbeiz Y, Steg PG. Generalizability of the REDUCE-IT trial and cardiovascular outcomes associated with hypertriglyceridemia among patients potentially eligible for icosapent ethyl therapy: an analysis of the REDuction of Atherothrombosis for Continued Health (REACH-H) registry. Int J Cardiol. 2021;340:96–104. doi: 10.1016/j.ijcard.2021.08.031

32. Arnold SV, Bhatt DL, Barsness GW, Beatty AL, Deedwania PC, Iczuczi SE, Kosiborod M, Leiter LA, Lipska KJ, Newman JD, et al. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2020;141:e779–e806. doi: 10.1161/CIR.0000000000000766

33. Virani SS, Morris PB, Agarwala A, Ballantyne CM, Birtcher KK, Kris-Etherton PM, Ladden-Stirling AB, Miller M, Orminger CE, Stone NJ. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78:960–993. doi: 10.1016/j.jacc.2021.06.011

34. Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, Davidson MH, Kastelein JIP, Koenig W, McGuire DK, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients with high cardiovascular risk: the STRENGTH Randomized clinical trial. JAMA. 2020;324:2268–2280. doi: 10.1001/jama.2020.22258

35. Kalstad AA, Myhre PL, Laake K, Tveit SH, Schmidt EB, Smith P, Nilsen DWT, Tveit A, Fagerland MW, Solheim S, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized controlled trial. Circulation. 2020;143:528–539. doi: 10.1161/CIRCULATIONAHA.120.032209

36. Olshansky B, Bhatt DL, Chung MK. Omega-3 fatty acids effect on major cardiovascular events in patients at high cardiovascular risk. JAMA. 2021;325:1332–1333. doi: 10.1001/jama.2021.0824

37. Mansson JE, Cook NR, Lee I-M, Christen W, Bassuk SS, Mora S, Gibson H, Albert CM, Gordon D, Copeland T, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380:23–32. doi: 10.1056/NEJMoa1811403

38. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, Davidson MH, Kastelein JJP, Koenig W, McGuire DK, et al. Omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2020;5:2268–2280. doi: 10.1001/jamacardio.2020.22258

39. Sherratt SCR, Dawoud H, Bhatt DL, Malinski T, Mason RP. Omega-3 omega-6 fatty acids have distinct effects on endothelial fatty acid oxidation and nitric oxide bioavailability. Prostaglandins Leukot Essent Fatty Acids. 2021;173: doi: 10.1016/j.proag.2021.102337

40. Bhatt DL. Mechanisms of action, efficacy, and safety of icosapent ethyl: from bench to bedside. Eur Heart J Suppl J Eur Soc Cardiol. 2020;22:J1–J2. doi: 10.1093/eurheartj/suaa114

41. Bhatt DL, Budoff MJ, Mason RP. A revolution in omega-3 fatty acid research. J Am Coll Cardiol. 2020;76:2098–2101. doi: 10.1016/j.jacc.2020.09.005

42. Yoshikawa M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Okawa S, Sasaki J, Hishida H, Itakura H, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded end-point analysis. Lancet. 2007;369:1090–1098. doi: 10.1016/S0140-6736(07)60527-3

43. Cosmopoulos A, Bhatt DL, Mегlis G, Verma R, Pan Y, Quan A, Teoh H, Verma M, Jiao L, Wang R, et al. A randomized trial of icosapent ethyl in ambulatory patients with COVID-19. iScience. 2021;24:103040. doi:10.1016/j.isci.2021.103040

44. Pareek M, Mason RP, Bhatt DL. Icosapent ethyl: safely reducing cardiovascular risk in adults with elevated triglycerides. Expert Opin Drug Saf. 2022;21:31–42. doi: 10.1080/14740338.2021.1954158

45. Granger CB, Nelson AJ, Pagidipati NJ. Risk of total events with icosapent ethyl can we reduce it? J Am Coll Cardiol. 2019;73:2803–2805. doi: 10.1016/j.jacc.2019.03.492

46. REDUCE-IT EPA Trial Shows Association Between Higher EPA Levels, Reduced CV Events – American College of Cardiology. Accessed November 23, 2020. https://www.acc.org/latest-in-cardiology/articles/2020/03/24/16/41/mon-1045-eicosapentaenoic-acid-levels-in-reduce-it-acc-2020.

47. Mason RP, Libby P, Bhatt DL. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2020;40:1135–1147. doi: 10.1161/ATVBAHA.119.313286

48. Sherratt SCR, Juliano RA, Copland C, Bhatt DL, Libby P, Mason RP. EPA and DHA containing phospholipids have contrasting effects on membrane structure. J Lipid Res. 2021;62. doi: 10.1194/jlr.R010106

49. Mason RP, Libby P, Bhatt DL, Malinski T, Mason RP. Omega-3 and omega-6 fatty acids have distinct effects on endothelial fatty acid content and nitric oxide bioavailability. Prostaglandins Leukot Essent Fatty Acids. 2021;173: doi: 10.1016/j.proag.2021.102337

50. Bhatt DL. Icosapent ethyl: can we reduce it? J Am Coll Cardiol. 2020;75:2098–2101. doi: 10.1016/j.jacc.2020.09.005

51. Bhatt DL, Budoff MJ, Mason RP. A revolution in omega-3 fatty acid research. J Am Coll Cardiol. 2020;76:2098–2101. doi: 10.1016/j.jacc.2020.09.005

52. Budoff MJ, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, May HT, Shaikh K, Shekar C, Roy SK, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020;41:3925–3932. doi: 10.1093/eurheartj/ehaa652

53. Budoff MJ, Muhlestein JB, Bhatt DL, Le Pa VT, May HT, Shaikh K, Shekar C, Kinninger A, Lakshmanan S, Roy SK, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: a prospective, placebo-controlled randomized trial (EVAPORATE): interim results. Cardiovasc Res. 2021;117:1070–1077. doi: 10.1093/cvr/cvaia184
Supplemental Material
Appendix S1. REDUCE-IT Trial Investigators

Steering Committee
Deepak L. Bhatt MD, MPH (Chair and Principal Investigator), Christie M. Ballantyne MD, Eliot A. Brinton MD, Terry A. Jacobson MD, Michael Miller MD, Ph. Gabriel Steg MD, Jean-Claude Tardif MD

Global Principal Investigator
Deepak L. Bhatt, MD, MPH, Professor of Medicine at Harvard Medical School, Executive Director of Interventional Cardiovascular Programs in the Heart and Vascular Center at Brigham and Women's Hospital, and the Principal Investigator and Steering Committee Chair for REDUCE-IT

The Netherlands National Coordinating Investigator
Fabrice MAC Martens, MD PhD, Board, Werkgroep Cardiologische centra Nederland (WCN; Dutch Network for Cardiovascular Research)

The Netherlands National Leader Office
Astrid Schut, MSc, Managing Director, Werkgroep Cardiologische centra Nederland (WCN; Dutch Network for Cardiovascular Research)

Data Monitoring Committee
Brian Olshansky MD (Chair), Mina Chung MD, Al Hallstrom PhD, Lesly Pearce MS (non-voting independent statistician)

Independent Statistical Center Support for Data Monitoring Committee
Cyrus Mehta PhD, Rajat Mukherjee PhD

Clinical Endpoint Committee
C Michael Gibson MD MS (Chair), Anjan K. Chakrabarti MD MPH, Eli V. Gelfand MD, Robert P. Giugliano MD SM, Megan Carroll Leary MD, Duane S. Pinto MD MPH, Yuri B. Pride MD
Amarin Operational and Statistical Team

Substantial Support Across the Study

Steven Ketchum PhD (President of R&D, Chief Scientific Officer, SVP) and team: Ramakrishna Bhavanthula MS, Gertrude Chester, Christina Copland PhD MPH, Katelyn Diffin MBA, Ralph Doyle Jr, Kurt Erz, Alex Giaquinto PhD, Paula Glanton MS, Angela Granger BA, Craig Granowitz MD PhD, Richard H Iroudayassamy BS, Lixia Jiao PhD, Rebecca Juliano PhD, James Jin PhD, Dimitry Klevak MS, Hardik Panchal MS, Robert Wang PhD, Shin-Ru Wang MS

Study Design and Initiation

Gerard Abate MD, Peggy J Berry MBA, Rene Braeckman PhD, Declan Doogan MD, Anne Elson, Amy HauptmannBaker, Isabel Lamela, Catherine Lubeck, Mehar Manku PhD, Sabina Murphy MPH, Monica Sanford, William Stirtan PhD, Paresh Soni MD PhD

Additional Operational and Statistical Support

Arnaud Bastien MD, Demetria Foster, Evangelito Gascon, Judith Johnson, Lasbert Latona MS, Gang Liu, PhD, Sandra Palleja MD, Nelly Sanjuan, Jimmy Shi MS, William Stager PhD, Mukund Venkatakrishnan MS, Ahmed Youssef-Agha PhD, Julie Zhu MD

Independent Statistical Support Center: Cytel, Inc.

Leela Aertker MS, Suresh Ankolekar PhD, Lisa Goldberg MS, Natasa Rajicic ScD, Jianfen Shu PhD, Heng Zou MS

Trial Operations

Bioclinica (data management)

Covance (central research laboratory)

Syneos Health™ (formerly inVentiv Health; principal contract research organization)
United States Investigators and Institutions:
United States Principal Investigators and Previous Principal Investigators
N=number of participants randomized; (site number)

N=3146 (100) Magdy Mikhail, (101) Gamil Dawood, (102) N. Mathew Koshy, (103) Sandip K. Mukherjee, (104) Rafik Abadier, (105) Andrea L. Lawless, (106) William P. McGuinn, (107) Howard Weintraub, (108) Kathryn Rohr, Edmund Claxton, Robert J. Weiss, (110) Terry D. Klein, (111) Mani Nallasivian, (114) Stephen Crowley, (115) Marilyn King, (116) Anthony D. Alfieri, (117) David Fitz-Patrick, (118) Irving Loh, (119) Nolan J. Mayer, (120) Rakesh Prashad, (121) Samuel Lederman, Debra Weinstein, (122) Harold E. Bays, (124) Keith Chu, Alireza Maghsoudi, (125) Paul D. Thompson, (129) Jeff Carstens, (130) Anna Chang, (131) Kenneth R. Cohen, (132) Julian Dean, (135) Howard S. Ellison, (136) Bernard Erickson, (137) Enrique A. Flores, (138) Daniel W. Gottlieb, (139) Paul Grena, (140) John R. Guyton, (141) Peter H. Jones, (142) John M. Joseph, (143) Norman E. Lepor, (144) Sam Lerman, (146) Robert D. Matheney, (147) Theodore R. Pacheco, (149) Michael B. Russo, (150) John Rubino, (152) Edward S. Pereira, Albert A. Seals, (154) Eduardo Viera, (155) Alan D. Steljes, (156) Jason Thompson, (158) Shaival Kapadia, (161) Michael McIvor, (162) Jorge E. Salazar, Jose O. Santiago, Ralph Vicari, (164) Martin R. Berk, (165) William A. Kaye, (166) Marcus McKenzie, (167) David Podlecki, (169) Brian D. Snyder, (171) Stephen Nash, (185) David M. Herrington, (186) Wallace Johnson, (189) Joseph R. Lee, Ronald Blonder, (190) Alpa M. Patel, Ramon Castello, Susan Greco, (191) Dean J. Kereiakes, (192) Venkatesh K. Nadar, (193) Mark Nathan, (194) Ranganatha P. Potu, (196) Robert Sangrigoli, (197) Richard Smalling, (199) Mitchell Davis, (203) Robert Braastad, James McCriskin, Kunal Bodiwala, (204) Joe L. Hargrove, (205) Mark W. Graves, (206) George Emlein, (207) Raegan W. Durant, (208) James W. Clower, (209) Rohit Arora, (211) Narendra Singh, (212) Lisa Warsinger Martin, (213) W Herbert Haught, (214) Marc P. Litt, (215) Michael D. Klein, (216) Peter Hoagland, (217) Michael Goldstein, (220) Marco S. Mazzella, Daniel H. Dunker, (221) Brian H. Kahn, Carlos S. Ince Jr., (222) Frank A. McGrew, (223) Jay Lee, David Pan, (224) Salman A. Khan, Uri Elkayam, (225) Wasim Deeb, (226) Anne C. Goldberg, (227) Christopher S. Brown, (228) Wayne N. Leimbach, (229) Thomas S. Backer, (230) David R. Sutton, (231) Matthew J. Budoff, (233) Joel Gellman, (234) Anu R. George, (235) Alan S. Hoffman, (237) Mark Kates, Kishlay Anand, Robert Bear, (239) Brendan J. Cavanaugh, (240) Ramon G. Reyes, (241) Rodolfo Sotolongo, (243) Kenneth Sabatino, (244) Kevin Gallagher, (246) Ehab Sorial, (248) Chris Geohas, (249) Kathleen E. Magness, (250) Bernard P. Grunstra, Frederik A. Martin, (251) William S. Knapp, Mel E. Lucas, (252) John J. Champlin, (253) Jason Demattia, (255) Patrick H. Peters Jr., (256) Judith Kirstein, (257) William J. Randall, (258) Cezar S. Staniloae, (259) Jennifer G. Robinson, (260) Alexander Adler, (261) Christopher Case, (263) Andrew J. Kaplan, (264) Gregory F. Lakin, Krishan K. Goyle, (265) Michael J. DiGiovanna, (267) Chester L. Fisher, (268) Michael Lillestol, (269) Michael Robinson, (270) Robert G. Perry, (272) Lawrence S. Levinson, (273) Brian G. Everhart, Robert D. Madder, (274) Earl F. Martin, Earl E. Martin, (275) Imtiaz Alam, (277) Jose Mari L. Elacion, (278) Robina Poonaivala, (279) Taddese T. Desta, Jerome A. Robinson, (280) Gilbert J. Martinez, (281) Jakkidi S. Reddy, (283) Jeffrey D. Wayne, (284) Samuel Mujica Trenche, Westbrook I. Kaplan, Rubin H. Saavedra, Michael D. DiGregorio, (285) Barry D. Bertolet, (287)
Neil J. Fraser, (289) Terence T. Hart, (290) Ronald J. Graf, (291) David A. Jasper, Michael Dunn, (292) Dan A. Streja, (293) David J. Strobl, (295) Nan Jiang, (296) Vicki Kalen, (297) Richard Mascolo, (298) Mercedes B. Samson, (299) Michael Stephens, (300) Bret M. Bellard, (353) Mario Juarez, (356) Patrick J. McCarthy, (357) John B. Checton, (358) Michael Stillabower, Edward Goldenberg, (359) Amin H. Karim, (360) Naseem Jaffrani, (362) Robert C. Touchon, (363) Erich R. Freuhling, Clayton J. Friesen, Pradipta Chaudhuri, (364) Frank H. Morris, (365) Robert E. Broker, (367) Rajesh J. Patel, (368) Susan Hole, (370) Randall P. Miller, (371) Francisco G. Miranda, (373) Sadia Dar, (374) Shawn N. Gentry, (375) Paul Hermeny, (376) Charles B. Treasure, (377) Miguel E. Trevino, (379) Raimundo Acosta, Anthony Japour, (380) Samuel J. Durr, (381) Thomas Wang, (383) Om P. Ganda, (384) Perry Krichmar, (386) James L. Arter, (387) Douglas Jacoby, (388) Michael A. Schwartz, (389) Amer Al-Karadsheh, (393) Nelson E. Gencheff, (394) John A. Pasquini, (396) Richard Dunbar, Sarah Kohntamm, (398) Hector F. Lozano, (399) Francine K. Welty, (653) Thomas L. Pitts, (654) Brian Zehnder, (655) Salah El Hafi, (656) Mark A. King, (657) Arnold Ghitis, (661) Marwan M. Bahu, (662) Hooman Ranjbaran Jahromi, Ronald P. Caputo, (663) Robert S. Busch, (664) Michael D. Shapiro, (665) Suhail Zavaro, (668) Munib Daudjee, (669) Shahram Jacobs, (670) Vipul B. Shah, (671) Frank Rubalcava, (672) Mohsin T. Alhaddad, Henry Lui, (678) Raj T. Rajan, (679) Fadi E. Saba, (680) Mahendra Pai N Gunapooti, Tshiswaka B. Kayembe, (681) Timothy Jennings, (683) Robert A. Strzinek, (685) Michael H. Shanik, (686) Pradeep K. Singh, (687) Alastair C. Kennedy, (688) Howard Rubenstein, (690) Ramin Manshadi, (691) David M. Herrington

United States Sub Investigators / Study Coordinators and Site Staff

N=number of participants; (site number)

N=3146 (100) / Joanne Ladner, (101) / Lily Kakish, Ashley Kakish, (102) / Amy L. Little, (103) Jaime Gerber / Nancy J. Hinchion, Janet Guarino, (104) Denise Raychok / Susan Budzinski, (105) Kathleen Kelley-Garvin / April Beckord, Jessica Schlinder, (107) Arthur Schwartzbard / Stanley Cobos, (108) Deborah Freeman, David Abisailih, Dervilla McCann / Kylie Guy, Jennifer Chase, Stacey Samuelson, Madeline Cassidy, Marissa Tardif, Jaime Smith, (110) / Brenna Sprout, (111) Nanette Riedeman / Julie Goza, Lori Johnson, (114) Chad Kraske, Sheila Hastings / Chris Dutka, Stephanie Smith, Toni McCabe, (115) / Kathleen Maloney, (116) Paul Alfieri, Vinay Hosemane, Chanhsamone Syravanh, (117) Cindy Pau, April Limcoiloc, Tabitha Carreira, Taryn S. Kurosawa / Taryn S. Kurosawa, (118) Razmig Krumian, Krista Preston, Ashraf Nashed, Daria Schneidman-Fernandez, Jack Patterson, John Tsakonas / Jennifer Esaki, Lynn Sprafka, Porous Patel, (119) / Brian Mitchell, Erin M. Ross, (120) / Donna Miller, Akash Prashad, (121) / Kristina M. Feyler, Natasha Juarbe, Sandra Herrera, (122) / Sarah M. Keiran, Becky Whitehead, Whitney Asher, Coury Hobbs, (124) / Abbey Elie, Jean Brooks, (125) / Amanda L. Zaleski, Brenda Foxen, (129) / Barb Lapke, (130) / Philippa Wright, (131) Bristol Pavol / Gwen Carangi, (132) / Marla Turner, (135) Howard S. Ellison, Katharine W. Sanders / Rikita S. Delamar, Virginia L. Wilson, Sarah M. Harvel, Alison M. Cartledge, Kaitlyn R. Bailey, (136) Kathleen Mahon, Timothy Schuchard / Jen Humbert, (137) Mark C. Hanson, Michael P. Cecil, James S. Abraham / Lorie Benedict, Claudia Slayton, (138) Curtis S. Burnett / Rachel W. Ono-Lim, (139) / Sharon Budzinski, (140) / Shubi A. Khan, (141) / Sharon Goss, Terry
Eizensmits, (685) / Lisa Iannuzzi, (686) / Pourus R. Patel, (687) / Clellia Bergamino, Elizabeth McFeaters, (688) Botros Rizk, Emiljia Pflaum / Danny Kalish, (690) / Rex Ambatali, Mona Ameli, Delaina Sanguinetti / Mona Ameli, (691) Rakesh Vaidya / Karen Blinson, Lynda Doomy, Vickie Wayne

United States Institutions

N=number of participants randomized; (site number)

N=3146 (100) The Center for Clinical Trials, Inc., Biloxi, MS, (101) The Center for Clinical Trials, Mobile, AL, (102) Velella Research, Sarasota, FL, (103) Yale New Haven Health, North Haven, CT, (104) Nature Coast Clinical Research, Inverness, FL, (105) Biofortis, Inc, Addison, IL, (106) North Ohio Heart Center, Sandusky, OH, (107) New York University School of Medicine, New York, NY, (108) Maine Research Associates, Lewiston, ME, (109) Heartland Research Associates, LLC, Wichita, KS, (110) Merced Heart Associates, Merced, CA, (111) Aurora Denver Cardiology, Aurora, CO, (112) Ventura Cardiology Consultants Medical Group, Inc., Ventura, CA, (113) Ocala Research Institute, Inc, Ocala, FL, (114) Altus Research, Inc, Lake Worth, FL, (115) L-Marc Research Center, Louisville, KY, (116) Carient Heart & Vascular, Manassas, VA, (117) Hartford Hospital, Hartford, CT, (118) Chi Health Research Center, Omaha, NE, (119) John Muir Physician Network Clinical Research Center, Concord, CA, (120) Baylor College of Medicine, Houston, TX, (121) Trinity Clinical Research Associates, Inc., Carrollton, TX, (122) Westside Medical Associates of Los Angeles, Beverly Hills, CA, (123) Jellinger and Lerman, MD PA Dba The Center for Diabetes and Endocrine Care, Fort Lauderdale, FL, (124) West Jefferson Heart Clinic of Louisiana, Marrero, LA, (125) North Ohio Heart Center, Lorain, OH, (126) Penn State Health Medical Group - Berks Cardiology, Wyomissing, PA, (127) PMG Research of Raleigh, Raleigh, NC, (128) East Coast Institute for Research, LLC, Jacksonville, FL, (129) Gables Research, Miami, FL, (130) Steljes Cardiology, Henderson, NV, (131) Birmingham Heart Clinic, Birmingham, AL, (132) Cardiovascular Associates of Virginia, Bon Secours St. Mary's Hospital, Midlothian, VA, (133) Foundation Research, Key West, FL, (134) Melbourne Internal Medicine Associates, Melbourne, FL, (135) Cardiovascular Research Institute of Dallas, Dallas, TX, (136) Metabolic Research Institute, Inc., West Palm Beach, FL, (137) Legacy Heart Center, Plano, TX, (138) Longmont Medical Research Network, Longmont, CO, (139) Southgate Medical Group, LLP, West Seneca, NY, (140) Syracuse Preventive Cardiology, Syracuse, NY, (141) Wake Forest University Health Sciences, Winston-Salem, NC, (142) University of Maryland School of Medicine, Baltimore, MD, (143) Memorial Hospital, University of Colorado Health, Colorado Springs, CO, (144) Jacksonville Center for Clinical Research Ltd, Jacksonville, FL, (145) The Lindner Research
Center, Cincinnati, OH, (192) Capital Area Research, Newport, PA, (193) University Healthcare Alliances/Cardiology Consultants Medical Group, Walnut Creek, CA, (194) Nature Coast Clinical Research, Crystal River, FL, (196) Doylestown Health Cardiology, Doylestown, PA, (197) University of Texas Health Science Center of Houston, Houston, TX, (199) Northeast Georgia Heart Center, Gainesville, GA, (203) Advocate Medical Group Cardiology/Pulmonology, Normal, IL, (204) Cardiology and Medicine Clinic, P.A., Little Rock, AR, (205) Research Institute of Deaconess Clinic, Evansville, IN, (206) Sacramento Heart and Vascular Research, Sacramento, CA, (207) University of Alabama at Birmingham, Birmingham, AL, (208) Westside Center for Clinical Research, Jacksonville, FL, (209) Captain James A. Lovell Federal Health Care Center, North Chicago, IL, (211) Atlanta Heart Specialists, LLC, Cumming, GA, (212) George Washington University School of Medicine and Health Sciences - Medical Faculty Associates, Washington, DC, (213) Heart Center Research, LLC, Huntsville, AL, (214) Baptist Heart Specialists, Jacksonville, FL, (215) Boston Medical Center, Boston, MA, (216) San Diego Cardiac Center, San Diego, CA, (217) Long Island Gastrointestinal Research Group LLP, Great Neck, NY, (220) Kansas City Cardiology, Lee's Summit, MA, (221) Spectrum Clinical Research at Overlea Personal Physicians, Baltimore, MD, (222) Stern Cardiovascular Foundation, Germantown, TN, (223) Orange County Heart Institute & Research Center, Orange, CA, (224) Metabolic Clinic and Research Center, Los Angeles, CA, (225) Baptist Endocrinology, Jacksonville, FL, (226) Washington University School of Medicine, St. Louis, MO, (227) Mobile Heart Specialists, Mobile, AL, (228) Oklahoma Heart Institute, Tulsa, OK, (229) Atlanta Cardiology Consultants, Roswell, GA, (230) East Coast Institute for Research, LLC, Jacksonville, FL, (231) Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, (233) Broward Health, Fort Lauderdale, FL, (234) Seven Corners Medical Research Center, Falls Church, VA, (235) Office of Dr. Alan S. Hoffman, Houston, TX, (237) Clinical Research Advantage Inc., Glendale, AZ, (239) New Mexico Heart Institute, PA, Albuquerque, NM, (240) BFHC Research, San Antonio, TX, (241) Southeast Texas Clinical Research Center, Beaumont, TX, (243) Clearwater Cardiovascular Consultants, Safety Harbor, FL, (244) United Medical Associates, Vestal, NY, (246) N & N Research and Management Corp., Fall River, MA, (248) Clinical Research Advantage, Phoenix, AZ, (249) PMA Medical Specialists, LLC, Phoenixville, PA, (250) PMG Research of Bristol, Bristol, TN, (251) Prime Care Research, LLC, Florissant, MS, (252) Med Center Medical Clinic, Carmichael, CA, (253) DM Clinical Research, Houston, TX, (255) Texas Medical Research Associates, LLC, San Antonio, TX, (256) Advanced Clinical Research, West Jordan, UT, (257) Primed Clinical Research, Dayton, OH, (258) NYU Langone Medical Associates Chelsea, New York, NY, (259) University of Iowa, College of Public Health, Preventive Intervention Center, Iowa City, IA, (260) Methodist Medical Center of Illinois, Peoria, IL, (261) Jefferson City Medical Group, P.C., Jefferson City, MS, (263) Cardiovascular Associates of Mesa, Mesa, AZ, (264) Professional Research Network of Kansas, LLC, Wichita, KS, (265) DiGiovanna Institute for Medical Education & Research, North Massapequa, NY, (267) Health Research of Hamilton Roads, Newport News, VA, (268) Liljestol Research LLC, Fargo, ND, (269) Clinica Medica San Miguel, Los Angeles, CA, (270) Pembroke Clinical Trials, Miami Lakes, FL, (272) Clinical Research Associates of Central PA, LLC, Altoona, PA, (273) Heritage Valley Medical Group, Inc., Beaver, PA, (274) Martin Diagnostic Clinic/DM Clinical Research, Tomball, TX, (275)
Austin Center for Clinical Research, Austin, TX, (277) Center for Clinical Trials, LLC, Paramount, CA, (278) Family Practice Center South, Austin, TX, (279) Precision Research Institute, San Diego, CA, (280) Catalina Research Institute, LLC, Montclair, CA, (281) Sierra Clinical Research, Roseville, CA, (283) Clinical Trials Research, Lincoln, CA, (284) Viable Research Management; Alas Science Clinical Research, Las Vegas, NV, (285) Cardiology Associates Research, LLC, Tupelo, MS, (287) Arcturus Healthcare, Plc, Troy Internal Medicine Research Division, Troy, MI, (289) Terence Hart MD, Tuscumbia, AL, (290) Multicare Research Institute, Tacoma, WA, (291) Quality Clinical Research, Omaha, NE, (292) Infosphere Clinical Research, INC., Omaha, NE, (293) Sparrow Clinical Research Institute, Lansing, MI, (295) Dairy Ashford Family Practice, Houston, TX, (296) Eclipse Clinical Research, Tucson, AZ, (297) Doylestown Health Cardiology, Doylestown, PA, (298) American Clinical Trials, Hawaiian Gardens, CA, (299) Fleming Island Center for Clinical Research, Fleming Island, FL, (305) Reno Clinical Trials, Sparks, NV, (353) Panacea Clinical Research, San Antonio, TX, (356) Endocrinology Services Northwest, Bend, OR, (357) Monmouth Cardiology Associates, Eatontown, NJ, (358) Christiana Care Health System, Newark, DE, (359) Angiocardiak Care of Texas, Houston, TX, (360) Alexandria Cardiology Clinic/Cambridge Medical Trials, Alexandria, LA, (362) Marshall Cardiology, Huntington, WV, (363) Nebraska Heart Institute, Hastings, NE, (364) Lutherville Personal Physicians, Lutherville, MD, (365) Hillcrest Clinical Research, LLC, Simpsonville, SC, (367) Lycoming Internal Medicine, Inc., Jersey Shore, PA, (368) Riverside Clinical Research, Edgewater, FL, (370) Horizon Research Group of Opelousas, LLC, Eunice, LA, (371) New Horizon Research Center, Miami, FL, (373) HCCA Clinical Research Solutions, Smyrna, TN, (374) HCCA Clinical Research Solutions, Columbia, TN, (375) Grandview Lehigh Valley Health Services, Buxmont Cardiology Division, Sellersville, PA, (376) Cardiovascular Research of Knoxville, Knoxville, TN, (377) Innovative Research of West Florida, Clearwater, FL, (379) Research Physicians Network Alliance, Miami Beach, FL, (380) Black Hills Cardiovascular Research, Rapid City, SD, (381) Adventist Health Care Inc., Takoma Park, MD, (383) Joslin Diabetes Center, Boston, MA, (384) Research Physicians Network Alliance, Pembroke, FL, (386) CaroMont Heart & Vascular, Gastonia, NC, (387) Penn Presbyterian Medical Center, Philadelphia, PA, (388) Dupage Medical Group Cardiology, Winfield, IL, (389) Endocrine IPS, PLLC, Houston, TX, (393) UP Health System Marquette, Marquette, MI, (394) Novant Health Clinical Research, Charlotte, NC, (396) VA Medical Center, Philadelphia, Philadelphia, PA, (398) Florida Hospital, Orlando, FL, (399) Beth Israel Deaconess Medical Center, Boston, MA, (653) Diverse Clinical Research Center of Chicago, LLC, Chicago, IL, (654) Exodus Healthcare Network, Magna, UT, (655) Med-Tech LP, Houston, TX, (656) Trinity Medical Research, Inc, Roseville, CA, (657) Heart & Health Institute Westside, Plantation, FL, (661) Biltmore Cardiology, Phoenix, AZ, (662) SJH Cardiology, Liverpool, NY, (663) Albany Medical Center, Division of Community Endocrine, Albany, NY, (664) Oregon Health and Science University, Portland, OR, (665) Triwest Research Associates, El Cajon, CA, (668) Mercury Clinical Research, Inc, Houston, TX, (669) Shahram Jacobs, MD Inc, Sherman Oaks, CA, (670) Carolina Heart Specialists, LLC, Lancaster, SC, (671) Mission Research Institute, New Braunfels, TX, (672) Apex Cardiology, P.C., Jackson, TN, (678) Nova Clinical Research, Bradenton, FL, (679) Professional Health Care of Pinellas, St. Peters, FL, (680) Center for Advanced Medicine and Research, St. Peters, MO, (681) Clinical Research Professionals,
Non-United States Investigators and Institutions:

Non-United States Principal Investigators and Previous Principal Investigators

Country listing by enrollment; N=number of participants randomized per country; (site number)

The Netherlands N=1678 Werkgroep Cardiologische centra Nederland (WCN) (701)
Martinus AW Broeders, Dorman Henrikus, (702) Fabrice MAC Martens, (703) Adrianus FM Kuijper, (704) Nadea Al-Windy, (705) Michael Magro, Karim Hamraoui, (706) Ismail Aksoy, Guy L.J. Vermeiren, HWO Roeters van Lennep, (707) Gerard Hoedemaker, (708) Johannes Jacobus Remmen, (709) Kjell Bogaard, Dirk van der Heijden, (719) Nicole MJ Knufman, Joost Frederiks, (720) Johannes Willem Louwerenburg, (721) Piet van Rossum, Johannes Milhous, (722) Peter van der Meer, (723) Arno van der Weerd, Rob Breedveld, (724) Mitran Keijzers, (725) Walter Hermans, (726) Ruud van de Wal, Peter AG Zwart, (727) Marc MJM van der Linden, Gerardus Zwiers, (728) Dirk J. Boswijk, Jan Geert Tans, (729) Jacob van Eck, (731) Maarten V. Hessen, (732) Barnabas JB Hamer, (733) Stieneke Zoet-Nugteren, (734) Lucien Theunissen, (735) EA van Eijk, (736) Remco Nijmeejer, (737) Pieter R. Nierop, (738) Gerard Linssen, (739) H.P. Swart, (740) Timo Lenderink, (741) Gerard L. Bartels, (742) Frank den Hartog, (743) Brian J. Berg van den; non-WCN (710) Wouter van Kempen, (711) Susanne Kentgens, Gloria M. Rojas Lingan, Martinus M. Peeters, (712) Gloria M. Rojas Lingan, Hilligje Keterberg, Melchior Nierman, Annemieke K. den Hollander, (713) Jacqueline Hoogendijk, (714) Gloria M. Rojas Lingan, (715) Christine Voors-Pette, (716) Vici Dad Kose, (718) Peter Viergever

Ukraine N=836 (885) Larysa Yena, (886) Viktor Syvolap, (887) Mykola P. Kopytysya, (888) Olga Barna, (889) Svitlana S. Panina, (890) Mykhailo I. Lutai, (891) Oxana V. Shershnyova, (892) Iryna Luzkiv, (893) Larysa S. Bula, (894) Sergii Zotov, Ivan Vyjhovaliuk, (895) Olena Lysunets, (897) Volodymyr I. Koshlija, (898) Nataliya Sydor, (899) Myroslava F. Vayda, (900) Olexiy Ushakov, (937) Mykola Rishko, (938) Viktor P. Shcherbak, (939) Yevgeniya Syvyshchenko, (940) Vira Tseluyko, (941) Andriy Yagensky, (942) Viktoriia I. Zolotaikina, (943) Olga Godlevska, (944) Larysa Ivanova, (945) Olena Koval, (946) Olena I. Mitrunenko, (947) Galyna Y. Kardash, (948) Yuri S. Rudyk, (949) Mykola Stanislavchuk, (951) Volodymyr Ivanovych Volkov, (952) Olena G. Karilinskaya, (953) Susanna A. Tykhonova, (954) Nikolay Vatutin, Ganna Smirnova, (955) Volodymyr M. Kovalenko, (956) Viktor Lizioh, (957) Denys Sebov, (958) Oleksandr Dyadyk, (959) Svitlana Andrievskaya, (960) Mykola P. Krasko, (961) Alexander N. Parkhomenko, (962) Lidiya Horbach, (963) Iryna G. Kunovohtska, (964) Tetyana Pertseva, (965) Oleksandr Karpenko, (985) Dmytro Reshotko, (992) Svitlana V. Zhurba, (994) Leonid Rudenko, (996) Viktoriia Yu Zharinova, (997) Valerii B. Shatyo, (998) Yurii I. Karpenko, (999) Mariya A. Orynchak

Russian Federation N=709 (850) Tatiana R. Kameneva, (851) Elena Zherlitsina, (901) Diana N. Alpenidze, (902) Grigoriy P. Arutyunov, (903) Elena Baranova, (904) Boris Bart, (905)
Dmitriy I. Belenkiy, (906) Svetlana A. Boldueva, (908) Elena A. Demchenko, (909) Vera V. Eiltishcheva, (910) Alexander M. Gofman, (911) Boris M. Goloshchekin, (912) Ivan Gennadyevich Gordeev, (913) Nikolay Gratsianskiy, (914) Gadel Kamalov, (915) Niyaz R. Khasanov, (916) Irina M. Kholina, (917) Zhanna D. Kobilava, (918) Elena V. Kobeleva, (919) Alexandra O. Konradi, (920) Victor A. Kostenko, (922) Andrey Dmitrievich Kuimov, (923) Polina Y. Ermakova, (924) Soňa K. Maloyutina, (925) Alexey V. Panov, (926) Natalia V. Polezhaeva, (927) Olga Reshetko, (928) Nataliya P. Shilkina, (929) Sergey B. Shustov, (930) Elena A. Smolyarchuk, (931) Raisa I. Stryuk, (932) Elena Yurievna Solovieva, Andrey V. Susekov, (933) Natalia Vezikova, (934) Svetlana N. Ivanova, (935) Alexander A. Petrov, (936) Vladimir O. Konstantinov, (937) Alina S. Agafina, (938) Victor Gurevich, (939) Konstantin N. Zrazhevskiy, (940) Tatiana V. Supryadkina, (941) Nikita B. Perepech, (942) Vladim L. Arkhipovskiy, (943) Dmitry Yu Butko, (947) Irina A. Zobenko, (948) Olga V. Orlikova, (949) Viktor Mordovin, (950) Olga L. Barbarash, (951) Anastasiya Lebedeva, (952) Vladimir Nosov, (953) Oleg V. Averkov, Elena P. Pavlikova, (954) Yuri B. Karpov, (955) Marina Lvovna Giorgadze, (956) Oleg A. Khrustalev, (957) Mikhail Arkhipov, (958) Tatiana A. Raskina, (959) Julia V. Shilko, (960) Yulia Samoilova, (961) Elena D. Kosmacheva, (962) Sergey V. Nedogoda

South Africa N=414 (416) Kathleen Coetzee, (417) Lesley J. Burgess, (418) FC R. Theron, (419) Iftikhar O. Ebrahim, (420) Gerbrand A. Haasbroek, (421) Maria Pretorius, (422) Julien S. Trokis, (423) Dorothea V. Urbach, (424) Mark J. Abelson, (425) Adrian R. Horak, (426) Aysha E. Badat, (427) Ellen M. Makotoko, Hendrik Du Toit Theron, (430) Padaruth Ramlachan, (431) Clive H. Corbett, (432) Ismail H. Mitha, (433) Hendrik FM Nortje, (435) Dirkie J. Jansen van Rensburg, (437) Peter J. Sebastian, (439) FC J. Bester, (440) Louis J. van Zyl, (441) Brian L. Rayner

Poland N=359 (602) Elżbieta Błach, (603) Magda Dąbrowska, (604) Grzegorz Kania, (605) Agata E. Kelm-Warchol, (606) Leszek P. Kinasz, (607) Janusz Korecki, (608) Mariusz Kruk, (609) Ewa Łaskowska-Derlaga, (610) Andrzej Madej, (612) Krzysztof Saminski, (613) Katarzyna Wasilewska, (614) Katarzyna Szymkowiak, (616) Małgorzata Wojciechowska, (617) Natalia Piorowska, Andrzej Dyczek

India N=262 (501) Rajpal K. Abhaichand, (502) Ramesh B. Byrapaneni, (503) Basavanagowdappa Hattur, (504) Malipeddi Bhaskara Rao, (505) Nitin Ghaisas, Sujit Shankar Kadam, (506) Jugal B. Gupta, (507) Santhosh M. Jayadev, (509) V A. Kothiwale, (510) Atul Mathur, (511) Vijay Bhaskar, Ravi K. Aluri, Udaya P. Ponangi, (513) Mukesh K. Sarna, (514) Sunil Sathe, (515) Manish K. Sharma, Jilendra Pal Singh Sawhney, (516) Chakrabhavi B. Keshavamurthy, Arun Srinivas, (517) Hemant P. Thacker, (518) A Sharda, (524) Johny Joseph, (525) Sunil Dwivedi, (526) Viswanathan Mohan, (527) Rajendra K. Premchand

Canada N=250 (172) Jacques Bedard, (173) Jean Bergeron, (175) Ronald Collette, (176) David Crowley, (177) Richard Dumas, (178) Sam Henein, (181) Geoff Moran, (182) William F. O'Mahony, (188) Michael O'Mahony, (200) Sammy Chan, (201) Mark H. Sherman, (202) Graham C. Wong, (219) Brian D. Carlson, (271) Milan K. Gupta, David Borts, (361) Sean R. Peterson, Martyn Chilvers, (395) Allan J. Kelly, (397) Jean C. Gregoire, (659) Simon Kouz, (660) Josep Rodés Cabau
Romania N=202 (801) Minodora Andor, (803) Mircea Cintzea, (804) Radu Ciudin, (805) Radu I. Cojan, (806) Roxana O. Darabont, (808) Dan-Lucian Dumitrascu, (809) Carmen Fierbinteanu-Braticievic, (810) Ana Gabriela Fruntelata, (811) Constantin Militaru, (812) Bogdon E. Minescu, Doina Luminita Serban, (813) Florin Mitu, (814) Dorel Nastase Melicovici, (815) Ovidiu Petrascu, (816) Octavian M. Pirvu, (817) Cristian Podoleanu, (818) Calin Pop, (819) Rodica-Valentina V. Stanescu-Cioranu, (820) Adrian Tase, (821) Cristina Voiculet

Australia N=189 (301) Constantine N. Aroney, (302) Anthony M. Dart, (303) Timothy Davis, (304) Karam Kostner, (305) David N. O'Neal, (306) Peter W. Purnell, (310) Gerald F. Watts, (311) Adam F. Blenkhorn, (312) John V. Amerena, (313) Rafeeq Samie, Randall Hendriks, (314) Joseph Proietto, (316) Nikolai Petrovsky, (317) Alan Whelan, (319) David Colquhoun

New Zealand N=134 (402) Russell S. Scott, (405) Simon C. Young, (406) Tammy Pegg, Samuel JS Wilson, Andrew W. Hamer, (408) Richard A. Luke, (411) Hamish H. Hart, (414) Gerard P. Devlin, (415) Gerard T. Wilkins, (444) Ian F. Ternouth, (445) Samraj Nandra, Bruno S. Loeprich, Nicole McGrath, (445) Stuart L. Tie

Non-United States Sub Investigators / Study Coordinators and Site Staff
Country listing by enrollment; N=number of participants randomized per country; (site number)

The Netherlands N=1678 **WCN** (701) Rob J. Bos, Alexandra Wils / Tamara Jacobs, (702) Erik A. Badings / Lillian A. Ebels-Tuinbeek, Mayke L. Scholten, (703) / Esther Bayraktar-Verver, Debby Zweers, Manoek Schiks, Carolien Kalkman, (704) / Tineke Tiemes, Jeanette Mulderij, (705) Walter Hermans / Katarzyna Dabrowska, Wilma Wijnakker, Riny Van de Loo, Jeanne de Grauw, (706) / Giny Reijnierse, (707) / Mirjam van der Zeijst, (708) / Mariska Scholten, (709) / Henk R. Hofmeijer, Antoinette van Dijk-van der Zanden, (719) / Dineke J. van Belle, (720) Jan Van Es / Gera Van Buechem, Wendy Zijda, Harald Verheij, Linnea Oldenhof-Janssen, Martina Bader, Marije Löwik, (721) / Sandra Stuij, (722) Pascal Vantrimpont / Krista van Aken, Karen Hamilton, (723) Arno van der Weerd / Han Blömer, Gabriela van Laerhoven, (724) Raymond Tukkie, Maarten Janssen, Gerard Verdel, Jon Funke Küpper, Rob van Vlies / Caroline Kalkman, Joke Vooges, Marinella Vermaas, (725) / Jeanne de Grauw, Riny Van de Loo, Rachel Langenberg, (726) / Mirjam van der Zeijst, (727) / Miriam Wittekoek, (728) / Petra Mol, Antionette Stapel, (729) Margaretha Sierevogel / Nancy van der Ven, Annemiek Berkelmans, (731) Eric Viergever / Hanneke Kramer, Wilma Engelen, Karen V. Houwelingen, (732) Thierry X. Wildergh, Arend Mosterd / Coriet Hobé-Rap, Marjan van Doorn, Petra Bunschoten, (733) Michel Freericks, Mireille Emans / Petra Den Boer-Penning, Els Verlek, Christine Freericks, (734) Cornelis de Nooijer / Christina Welten, Ingrid Groenenberg, (735) / Claudia van der Horst, Esther Vonk, (736) Geert Tjeerdmsa, Gerard M. Jochemsen / Corinne van Daalen, (737) / Ingrid Y. Danse, (738) / Lucy Kuipers, Anke Peterse, (739) Antonius Oomen, Daan de Waard, Willem Jan Flu, Zusun Kromhout / Petra Van der Bij, (740) Rob Feld / Brigitta Hessels-Linnemeijer, Rob Lardinois, (741) Jan L. Posma / Zwanette R. Aukema-Wouda, Marjolijn Hendriks-van Woerden, (742) / Desiree van Wijk, (743) Driek P. Beelen / Ingrid H. Hendriks; **non-WCN** (710) Jan J. Jonker, Stefanie Schipperen, Viedan Köse, Gloria Rojas /
Linda Goedhart, Hanneke van Meurs, Rachel Langenberg, Jacqueline Rijsewem, (711) Jacqueline Hoogendijk, Lindy Swinkels-Diepenmaat, Wouter van Kempen / Marloes de Louw-Jansen, Dominique Bierens-Peters, (712) Willem W. van Kempen, Marianne E. Wittekoek, Irmaina Agous / Geert Schenk, (713) Willem W. van Kempen, Janneke Wittekoek, Kevin Cox, Deborah F. Julia, Jan JC Jonker / Roel Janssen, (714) Willem W. van Kempen, Marianne E. Wittekoek, Melchor Nierman, Hilligje Katerberg, Jan JC Jonker / Irene van der Haar, (715) Willem W. Van Kempen, Taco van Mesdag, Janneke Wittekoek, Jan JC Jonker, Leyda M. Alvarez Costa / Manon Schensema, (716) Salomé Zweeckhorst, Lindy Swinkels-Diepenmaat, Stefanie Schipperen, Willem W. van Kempen, Deborah Font Julia, Jan JC Jonker, Lauri Hanewinckel / Joyce Olsthoorn, (718) Johan C. Berends, Arie C. van der Spek, Roy van der Berg, Rob J. Timmermann / Ingrid Boerema

Ukraine N=836 (885) Iryna Mudruk, Anna Khrystoforova, / (886) Serhii Kyselov, / (887) Yaroslava V. Hilova, / (888) Pavlo Logoida / Pavlo Logoida, (889) Nataliia A. Sanina, / (890) Ilona P. Golikova, Olena O. Nemchyna / Ilona P. Golikova, Ilona P. Golikova, (891) Ivan I. Isaichikov, Olga B. Potapova / Iurii V. Gura, (892) Larysa Berestetska, / (893) Olena O. Kulianda, / (895) Oleksandr Tantsura, / (897) Oleksandr S. Kulbachuk, / (898) Volodymyr Petsentyi, Ihor Biskub / Ihor Biskub, (899) Tetyana Handych, (900) Oleg Lagkuti, Alyna Gagarina, / (937) Taras Chendey, / (938) Oksana F. Bilonko, / (939) Olena Matova, Larysa Bezrodna, Olena Yarynkina, Tetiana Ovdienko, Volodymyr Randchenko, Maryna Mospan / Tetiana Ovdienko, (940) Olena Butko, Olga Romanenko, / (941) Mykhailo Pavelko, Iryna Sichkaruk, / (942) Svitlana O. Lazareva, Olena A. Kudyryk / Inessa M. Koltsun, Inessa M. Koltsun, (943) Tetiana Magdalits, / (944) Sergei Zadorozhniy, Kira Kompaniiets, / (945) Andrii Ivanov, Sergiy Romanenko, Pavlo Kaplan, / (946) Vadym Y. Romanov, / (947) Oksana P. Mykytyuk / Nataliia S. Zaitseva, (948) Sergiy N. Pyvovar, / (949) Lyudmyla Burdeuna, / (951) Emerita Serdobinska, / (952) Tatiana I. Shevchenko, Igor I. Ivanytskyi / Igor I. Ivanytskyi, Igor I. Ivanytskyi, / (953) Olena V. Khyzhnyak, (954) Ganna Smirnova, Nataliia Kalinkina, Olena Keting, Olena Skyllana, Olga Kashanska, Anna Shevelok, Marina Khristichenko, / (955) Ievgenii Y. Titov, Danilenko O. Oleksander / Nataliia S. Polenova, (956) Nataliia Altunina, / (957) Viktoriia Kororaieva, / (958) Stanislav Zborovskiy, Leonid Kholopov, Iurii Suliman, Lanna Lukashenko, / (959) Stanislav Shvaykin, (960) Olexandr M. Glavatskiy, Roman O. Sychov, Roman L. Kulynych, / (961) Oleksandr A. Skarzhhevskiy, Nataliia V. Dovgan, / (962) Marta Horbach, / (964) Olya Cherkasova, Iryna Tyshchenko, (965) Liudmyla Todoriuk, Svitlana Kizimenko, Nataliia Brodi, Oleksandr Ivanko / Olga Garbarchuk, (985) Liudmyla Alieksieieva, / (992) Tetiana L. Shandra, / (994) Olena Beregova, / (996) Larisa An Bodretska, / (997) Svitlana S. Naskalova / Ivanna A. Antoniuk-Shcheglova, Olena V. Bondarenko, (998) / Natalia G. Andreieva, (999) Iryna I. Vakalyuk, Olha S. Chovganyuk, Nataliia R. Artemenko /

Russian Federation N=709 (850) Kiril A. Maltsev, / (851) Natalia Kalishevich, / (901) Natalia G. Kondratyeva, Svetlana A. Nikitina, Maria V. Martjanova, / (902) Anna V. Sokolova, Dmitrii O. Dragunov, / (903) Olga Kolesnik, / (904) Vera Larina, (905) Oxana V. Tsygankova, (906) Maria Ivanova, Illia A Karpov, Elena M Aronova, Ekaterina S. Vedernikova, / (908) Ekaterina I. Lubinskaya, (909) Taras Y. Burak, / (910) Sergey I. Skichko, Farhad Rasulev / Ekaterina B. Soldatova, (911) Alexander L. Fenin / Ilya I. Laptev, (912) Elena E. Luchkina, (913) Alexandr
Akatov, Natalia V, Polenova, Natalia N, Slavina, Irina N, Korovnika, Marina Yu, Prochorova, (914) Regina Shakirova, (915) Elena N, Andreicheva, (916) Olga A, Krasnova, (917) Tinatin V, Lobzhanidze, Tatiana B, Dmitrova, (918) Viktoria V, Stakhiv, Maria I, Pechatnikova, Alexandra V, Panova, Maria Y, Tipikina, (919) Oxana P, Rotar, (921) Nikolay A, Bokovin, Saule K, Karabalieva, Farid Y, Tumarov / Elena V, Vasileva, (922) Natalya Gennadevna Lozhkina, (923) Ekaterina V, Filippova, Alisa I, Shaskaeva / Ekanerina V, Filippova (Deilik), (924) Natalia Yu, Tolkacheva, Elena N, Domracheva, Andrey N, Ryabikov, (925) Inga T, Abesadze / Marianna Z, Alugishvili, (926) Elena P, Nikolaeva / Nadezda V, Smirnova, Valentina I, Rodionova, (927) Polina V, Dolovstaya, (928) Igor E, Yunonin, (929) Sergey V, Kadin, Tatyana S, Sveklina, / (930) Anna V, Bushmanova / Anna V, Bushmanova, (931) Elena L, Barkov, Irina S, Gomova, Yana V, Brytkova / Tatiana B, Ivanova, (932) Marina Y, Zubareva, / (933) Inga Skopets, / (934) Lybov A, Galashevskaya, / (935) Emilia D, Butinskaya / Olga G, Gusarova, (936) Natalia B, Kalishevich, Yana R, Pavlova, Marianna P, Serebrenitskaya, Vitalina F, Grygorieva, Gulnara R, Kuchaeva, / (966) Inna A, Vasileva, / (968) Gulnara I, Ospanova, (969) / Yulia V, Vahrusheva, Irina A, Semenova, (970) Irina E, E, Mikhailova, Olga O, Kvasova, Valeria D, Shurygina, Alexey E, Rivin, Alexey O, Saveliev / Alexey A, Saveliev, (972) Olesya O, Milyaeva, Nadezhda N, Lapshina, Ninel A, Lantsova, / (973) Pavel V, Alexandrov, / (974) / Evgeniy A, Orlikov, (975) Alla Falkovskaya, Tatiana Ripp, Sergei Triss, Stanislav Pekarskiy / Sitkova Ekaterina, (976) / Evgeniya N, Zhuravleva, (977) Olga Perova, / (978) Galina Kovaleva, Liubov Koroleva / Liubov Koroleva, (979) Lydia Mishchenko, (980) Boris P, Garshin, / (982) Svetlana A, Kutuzova, Lyudmila I, Provotorova / Igor P, Zadvorny, (983) Olga V, Okhapkina / Anatoly O, Khrustalev, (987) Tatiana Suworova, / (988) / Elena S, Shaf, (989) Varvara A, Vershinina, Andrey A, Kozulin, / (990) Oxana A, Oleynik / Irina Y, Martynova, (991) Natalia V, Kizhvatoa, / (993) Alla S, Salasyuk, Vera V, Tsoma, Alla A, Ledyaeva, Elena V, Chumachek / South Africa N=414 (416) SC Blignaut / Tersia Y, Alexander, Chano Du Plessis, (417) Thirumani Govender, Samatha M, Du Toit, Leya Motola / Areesh Gassiep, Christina Naude (Smit), Marli Terblanche, Marlien Snoer (Kruger), Berenice Pillay, (418) De Vries Basson, Clive H, Corbett / Marisa E, Theron, (419) / Bianca Fouche, Mareli E, Coetzee, (420) Pieter Odendall / Frederik H, Van Wijk, Anna-Mari Conradie, Trudie Van der Westhuizen, (421) / Carine Tredoux, (422) Mohamed S, Mookdham, Andie J, Van der Merwe / Karin Snyman, Gerda Smal, (423) / Yvonne De Jager, (424) Thomas A, Mabin / Annuus King, (425) / Lindy L, Henley, (426) / Brenda M, Zwane, Jane Robinson, (427) / Marinda Karsten, Andonia M, Page, Valerie Nsabiyumva, Charmaine Krahenbuhl, (430) Jaiprakash D, Patel, Yunus E, Motola / Ayesha Dawood, Nondumiso B, Koza, Lenore MS Peters, Shavashni Ramlachan, (431) Wilhelm J, Bodenstein, Pierre Roux / Lizelle Fouche, Cecilia M, Boshoff, (432) Haroon M, Mitha / Fathima Khan, (433) Henry P, Cyster / Helen Cyster, (435) E, C, Wessels / Florence J, Jacobs, (437) Melanie A, Sebastian / Deborah A, Sebastian, Nadia Mahomed, (439) Ignatius P, Immink / Celia Cotzee, (440) Tanja Cronje / Madele Roscher, Maria Le Roux, (441) Yvonne A, Trinder / Poland N=359 (602) Renata Wnętrzak-Michalska / Magdalena Piszczek, (603) Andrzej Piela, Ewa Czernecka, Dorota Knychas, Alina Walczak, Izabella Gładysz / Katarzyna Filas, Ewelina Kiluk, Krzysztof Świgło, Iwona Jędrzejczyk, Kamila Łuczyńska, (604) / Katarzyna Tymendorf,
India N=262 (501) Bivin Wilson / Krithika Velusamy, Swaidha S. Sadhiq, (502) / Bhavani Siddeshi, (503) M Bhanukumar / Abhishek Srivatsav, Madhan Ramesh, Sri Harsha Chalasani, Mini Johnson, Prashanth Gopu, Jeesa George, Sowmya Reddy, Swetha Tessy Thara Eleena (504) Damodara Rao Kodem / Haritha N. Nakkella, Padma Kumari Mandula, Anjan Kumar Vuriya, Syamala Rajana, (505) / Aruna Kale, (506) Tiwari Rajeev / Raina Jain, Vinip Jain, (507) Srilakshmi Mandayam Adhyapak / Lumin Sheeba, Uma C R, Ramya R, (509) Aditya V. Kulkarni / M S. Ganachari, Ruma Samberek, (510) / Mohammad Bilal, Nungshijungla Kalyan Chakravarthy / Ravi Badhavath, Sranan Kumar, Meenakshi Simhadri, Farooque Salamuddin, Venkat Prasad, (513) Vivek Dwivedi, Sudha Sarna / Tilak Arora, Deepak Chawla, (514) Archantha Sathe / Chaware Gayatree, (515) / Ajeet Nanda, Ram Avtar, Jyoti Sharma, (516) Vaibhavi P S Sasirekha D, Deepthi Kobbajji / Ramya Ningappa, Shwetha Shree, Chandrashekhar K Nandini M R Sowjanyaswani N Sonika G Rathna L Priyanka R (517) / Rupal J. Shriramaker, (518) Lakshmi Vinutha Reddy, K Sumathi, Babitha Devi / Bina N. Naik, Rohini Manjunath, Rajeshwari Ashok, (524) / Tony V. Kunjumon, Jesline Thomas, (525) / Shaik Samdhani, (526) Kasthuri Selvam / Poongothai Subramani, Nandakumar Parthasarathy, (527) Nirmal K. Bohra / Anvesh K. Gatla

Canada N=250 (172) / Cheryl Horbatuk, (173) / Julie Sills, (175) E B. Davey / Liz Paramonczyk, Olga Raczanelli, (176) David Crowley / Sandy Strybosch, (177) Andre Belanger, Jean Palardy, Alicia Schifferlin / Sylvie Gauthier, (178) Norman Kalyniuk, Shawn D. Whatley / Heather Lappala, Grishma Patel, Matthew Reeve, (181) Catherine Moran / Jody Everitt, (182) / Teresa Ferrari, (188) / Christine Bouffard, (200) Jirir Frohlich, Gordon Francis, John Mancini, Gregory Bondy, Debbie DeAngelis, Patricia Fulton / Debbie DeAngelis, Patricia Fulton, (201) David W. Blank / Angela Lombardo, Mylene Roy, (202) / Jackie Chow, (219) Hyman Fox, William J. Grootendorst, Angela Hutchinson, Hyman Fox / Sharon M. Chan, (271) / Christie Fitzgerald, (361) / Teresa Ferrari, (395) / Lynn Wilkins, Rebecca L. Raymond, Arlene Reyes (397) Lavoie Marc Andre / Denis Fortin, (659) Helene Ouimet, Thanh-Thao Ton-Nu, Martine Dussureault, Marie-Helene Blain / Madeleine Roy, Nathalie Kopajko, Chantal Fleury, (660) / Karine Maheux

Romania N=202 (801) Gabriela Valentina Ciobotaru, (803) Maria C. Constantinescu / Carmen-Lucia Gherghinescu, (804) Ana-Maria Avram, (805) Ioan Mantineanu / Radu I. Cojjan, (806) Octavian M. Pirvu, (808) Aura Simpetrean, Lucian Pop, Delia Lupu, (809) Radu Usvat, Ana Petrisor, (810) Nicoleta Dumitru, (811) Camelia Morju, (812) / Adelina Gheorgita, (813) Magda V. Mitu, (814) Cosmin Macarie, (815) Ana Maria Pop, (816) Maria-Catalina Diaconu, (817) Iulia Grancea, (818) Mihaela Cosma / Mihaela Cosma, (819) Mihaela Crisan /
Australia N=189 (301) / Elizabeth Herron, (302) Anthony M. Dart, Paul Nestel / Sally B. Kay, Kaye S. Carter, (303) Imran Badshah, Ashley Makepeace / Jocelyn Drinkwater, Michelle England, (304) / Azette Rafei, Kylie Patterson, (305) Alicia Jenkins, Sybil McAuley / Sue M. Kent, (306) / Joy E. Vibert, Leonie Perrett, (307) Thomas David / Samantha L. Kaye, Monika O'Connor, (308) Nimalie J. Perera / Nicole T. Lai, Kerry A. Kearins, (309) Christina Dicamillo, Heather Anderson / Louise Ferguson, (310) / Sharon D. Radtke, (311) Charles T. Thamarappillil / Janice M. Boys, (312) / Anita K. Long, Toni Shanahan, (313) Michael Nyguyen / Nicole Forrest, Gill Tulloch, Della Greenwell, (314) Sarah L. Price, Aye N. Tint, Priya K. Sumithran / Tamara L. Debreceni, Lisa Walker, Mary Caruana, Kira Edwards, Maria Statopoulos, Cilla Haywood, (315) Dimitar Sajkov / Sharen Pringle, Anne Tabner, Kathrina Bartolay, Chamindi Abeyratne, Kylie Bragg, (317) Patrick Mulhern, Peter Purnell, Randall Hendriks / Gill Tulloch, (319) Lyn Williams, Jane Hamlyn / Aurelia Connelly, Jan Hoffman

New Zealand N=134 (402) Samantha Bailey, Jane Kerr / Zarnia Morrison, Sarah Maeder, Roberta McEwan, Prasanna Kunasekera, Patrice McGregor, Jo Young, Sharon Berry, (405) Rick Cutfield, Michelle Choe, Catherine McNamara / Narrinder K. Shergill, (406) / Petra Crone, (408) Miles G. Williams, Keith Dyson / Diana H. Schmid, Audrey C. Doak, Melissa Spooner, (411) Colin Edwards / Anne Turner, Grainne M. McAnnally, (414) Raewyn A. Fisher, Fraser B. Hamilton, Denis H. Friedlander / Melissa R. Kirk, Jayne E. Scales, (415) / Marguerite A. McLelland, (442) Neelam A. Dalman / Cathy E. Vickers, Carolyn Jackson, (444) / Wendy Coleman, (445) Phillip I. Garden / Wendy F. Arnold

Non-United States Institutions

Country listing by enrollment; N=number of participants randomized per country; (site number)

The Netherlands N=1678 WCN (701) Bravis Hospital, Roosendaal, (702) Deventer Hospital, Cardiology Department, Deventer, (703) Spaarnegasthuis, Hoofddorp, (704) Gelre Ziekenhuis, Zutphen, (705) Tweesteden Ziekenhuis, Tilburg, (706) Admiraal D'Ruyter Ziekenhuis, Goes, (707) Tergooi, Blaricum, (708) Canisius Wilhelmina Ziekenhuis, Nijmegen, (709) Alrijne Hospital, Leiderdorp, (719) HMC Bronovo, Den Haag, (720) Stichting CRE Enschede, Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, (721) Beatrix Hospital, Gorinchem, (722) Langeland Ziekenhuis, Cardiology Department, Zoetermeer, (723) Medisch Centrum Leeuwarden, Leeuwarden, (724) Spaarne Gasthuis, Haarlem, (725) St Elisabeth Hospital, Tilburg, (726) Bernhoven Hospital, Uden, (727) Franciscus Gasthuis & Vlietland, Schiedam, (728) Noordwest Ziekenhuis, Den Helder, (729) Jeroen Bosch Hospital, Hertogenbosch, (731) Groene Hart Ziekenhuis, Gouda, (732) Meander Medical Center, Amersfoort, (733) Ikazia Hospital Rotterdam, Rotterdam, (734) Máxima Medisch Centrum, Veldhoven, (735) Ziekenhuis Stjansdal, Harderwijk, (736) Tjongerschans Ziekenhuis, Cardiology Department, Heerenvoorde, (737) Franciscus Gasthuis, Rotterdam, (738) ZGT, Almelo and Hengelo, (739) D & A Research, Sneek, (740) Zuyderland Mc, Heerlen, (741) Martini Ziekenhuis, Groningen, (742) Gelderse Vallei Ziekenhuis, EDE, (743) IJsselland Ziekenhuis, Capelle aan den IJssel; non-WCN (710) Andromed Rotterdam, Rotterdam, (711) Andromed Eindhoven, Eindhoven, (712) Andromed Leiden, Leiderdorp, (713) Andromed Oost BV, Velp,
(714) Andromed Zoetermeer BV, Zoetermeer, (715) Andromed Noord, Groningen, (716) Andromed Breda, Breda, (718) Gemini Ziekenhuis, Den Helder

Ukraine N=836 (885) State Instituicio, D.F.Chebotarev Institute of Gerontology of NAMS, Kiev, (886) Department of Internal Diseases-1 of Zaporizhzya State Medical University, Zaporizhzya City Clinical Hospital of Emergency Care, Zaporizhzya, (887) The State Institute of Therapy, L.T. Malaya of Ukrainian National Academy of Medical Science, Kharkov, (888) Policlinic of Administration of Medical Services and Rehabilitation of Artem State Holding, Kiev, (889) State Institution, Ukrainian State Scientific and Research Institute of Medical and Social Problems of Disability of Ministry of Health of Ukraine, Dnipro, (890) National Scientific Center M.D. Strazhesko Institute of Cardiology, Kiev, (891) Communal Institution, Central Clinical Hospital #4 of Zavodsky District, Zaporizhzya, (892) Kiev City Clinical Hospital #7, Therapeutic dpt #2, Kiev, (893) Medical Center, Desna, Ltd, Ternopil, (894) LTD Cardiology Clinic, Heart and Vessels, Kiev, (895) Clinic of State Institution, Ukrainian State Institute of Medical and Social Problems of Disability Ministry of Public Health, Dnipro, (897) State Institute, Zaporizhzya Medical Academy of Postgraduate Education of Ministry of Health of Ukraine, Department of Family Medicine With Course of Dermatovenereology and Psychiatry Based On Municipal Institution: Zaporyzhyzya 9th City Multidisciplinary Clinical Hospital, Cardiology Department, Zaporizhzya, (898) Volyn Regional Clinical Hospital, Department of Cardiosurgery, Lutsk, (899) Zakarpatskiy Oblasny Klinichny Kardiologichnyi Dyspanser, m. Uzhhorod, (900) Infarction Dprt of City Clinic Hosp. #6, Simferopol, AR Crimea, (937) Zakarpattya Regional Clinical Cardiology Dispensary, Dept. of General Cardiology, Uzhhorod National University, Chair of Hospital Therapy, Uzhhorod, (938) City Clinical Hospital #1, Vinnitsa, (939) State Institution, National Scientific Center, NAMS Institute of Cardiology M.D. Strazhesko, Department of Essential Hypertension, Kiev, (940) Kharkiv Medical Academy of Postgraduate Education, City Clinical Hospital #8, Kharkiv, (941) Lutsk City Clinical Hospital, Lutsk, (942) Kharkiv City Clinical Hospital #27, Kharkiv, (943) Kharkiv Medical Academy of Postgraduate Education, Kharkiv, (944) Lugansk Regional Cardiological Dispensary, Luhansk, (945) Dnipropetrovsk Medical Academy, Dnipropetrovsk Joint Emergency Hospital, Dnipro, (946) State Institution, National Scientific Center, The M.D. Strazhesko Institute of Cardiology, National Academy of Medical Sciences of Ukraine, Kiev, (947) City Clinical Hospital №3, Chernivtsi, (948) National Institute of Therapy N.A. L. Malaya NAMS, Kharkiv, (949) National Pirogov Memorial Medical University, Vinnytsya, (951) Clinic of State Institution, Institute of Therapy NAMS Ukraine L.T. Maloy, Kharkiv, (952) HSEE of Ukraine, Ukrainian Medical Stomatological Academy, Poltava, (953) Odessa National Medical University, Center of Reconstructive and Recovery Medicine (University Clinic), Odessa, (954) Institute of Urgent and Recovery Surgery, Donetsk, (955) State Institution National Scientific Centre, Acad. M.D. Strazhesko Institute of Cardiology of Naciona Ams of Ukraine, Kiev, (956) Kiev Municipal Clinical Hospital #12, Department of Cardiology; O. O. Bogomolets National Medical University, Kiev, (957) Saint Catherine Odessa, Treatmnt and Diagnostic Center LLC, Odesa, (958) Central City Clinical Hospital #1, Donetsk, (959) Communal Institution, Odesa Regional Cardiological Dispensary, Odesa, (960) Zaporizhzya Regional Clinical Hospital, Zaporizhzya, (961) National Scientific Center, NAMS Strazhesko Institute of Cardiology, Kiev, (962) Communal City Clinical Hospital #8, Lviv, (963) Ivano-Frankivsk Regional Clinical
Cardiological Center, Ivano-Frankivsk, (964) City Clinical Hospital #9, Department of Cardiology; State Institution, Dnipropetrovsk Medical Academy of Moh, Dnipro, (965) Kyiv City Clinical Hospital #1, Department of Emergency Cardiology, Kiev, (985) Kyiv City Oleksandriivska Clinical Hospital, Kiev, (992) Cherkasy Regional Cardiological Center, Cherkasy, (994) Kyiv Emergency Care Hospital, Infarction Department, Kiev, (996) The Institute of Gerontology NAMS D.F.Chebotarev, Kiev, (997) D.F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences, Kiev, (998) Odesa Regional Clinical Hospital, Department of Cardiosurgery, Odesa, (999) Ivano-Frankivsk National Medical University, Ivano-Frankivsk

Russian Federation N=709
(850) State Budget Healthcare Institution of City Moscow, City Clinical Hospital N.A. M.P. Konchalovskogo of Healthcare Department, Zelenograd, (851) Saint Petersburg State Budget Healthcare Institution, City Consultative and Diagnostic Center #1, Saint Petersburg, (901) State Health Care Institution City Hospital #117, Saint Petersburg, (902) State Budget Healthcare Institution of Moscow, City Clinical Hospital #4 of The Healthcare Department, Moscow, (903) First Saint Petersburg State Medical University N.A.Acad.I.P.Pavlov of The Ministry of Healthcare of Russian Federation, Saint Petersburg, (904) Pirogov Russian National Research Medical University, Moscow, (905) City Clinical Emergency Hospital#2, Novosibirsk, (906) State Inst City Multidiscipline Hospital# 2, Saint Petersburg, (908) Almazov National Medical Research Centre, Saint Petersburg, (909) Autonomous Non-Profit Organization: Medical Center Alliance, Kirovsk, (910) Central Clinical Hospital of The Russian Academy of Sciences, Moscow, (911) Saint Petersburg State Budget Institution of Healthcare, City Hospital #15, Saint Petersburg, (912) City Clinical Hospital #15 O.M.Filatov, Moscow, (913) FSBHI Clinical Hospital #123 of FMBA, Moscow, (914) Kazan State Medical University, Kazan, (915) Scientific Research Medical Complex, State Budget Institution of Healthcare Clinical Hospital #2, LLC, Kazan, (916) Saint Petersburg State Budget Institution of Healthcare, City Hospital #9, Saint Petersburg, (917) State Budget Healthcare Institution of City Moscow, City Clinical Hospital N.A. V.V.Vinogradova of Healthcare Department, Moscow, (918) International Clinic MEDEM, LLC, Saint Petersburg, (919) Almazov National Medical Research Centre, Saint Petersburg, (921) Saint Petersburg State Budget Institution of Healthcare, City Outpatient Clinic #109, Saint Petersburg, (922) Novosibirsk State Medical University, Novosibirsk, (923) Medinet, LLC, Saint Petersburg, (924) Research Institute of Internal and Preventive Medicine, Branch of The Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, (925) Almazov National Medical Research Centre, Saint Petersburg, (926) Saint Petersburg State Budgetary Healthcare Institution, City Pokrovskaya Hospital, Saint Petersburg, (927) Saratov Regional Veterans Hospital, Saratov, (928) State Healthcare Institution of Yaroslavl Region, Clinical Hospital #8, Yaroslavl, (929) Federal State Budget Military Educational Institution of Higher Professional Education, Military Medical Academy, S.M. Kirov of Ministry of Defence of Russian Federation, Saint Petersburg, (930) The Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of Ministry of Healthcare of The Russian Federation (Sechenovskiy University), Moscow, (931) Moscow State Medical and Dental University N.A A.I. Evdokimov of The Ministry of Health, Moscow, (932) FGBU, National Medical Research Center of Cardiology, Ministry of Health
Of Care of Russia, Moscow, (933) State Budget Institution of Healthcare, Republican Hospital V.A. Baranov, of The Ministry of Healthcare of Karelia Republic, Petrozavodsk, (934) State Budget Healthcare Institution of Arkhangelsk Region, Arkhangelsk Regional Clinical Hospital, Arkhangelsk, (935) Leningrad Regional Clinical Hospital, Saint Petersburg, (936) Science and Research Institute of Experimental Medicine, Saint Petersburg, (966) Saint Petersburg State Budget Healthcare Institution, City Hospital #40 of Kurortnyi District, Saint Petersburg, (967) Federal State Budget Institution of Healthcare, Clinical Hospital #122 N.A. L.G. Sokolov Under Federal Medical and Biological Agency of Russia, Saint Petersburg, (968) City Hospital # 38 N A Semashko, Saint Petersburg, (969) State Budget Institution of Healthcare of Arkhangelsk Region, The First City Clinical Hospital E.E. Volosevich, Arkhangelsk, (970) Cardio-Centre, Chernaja Rechka, Saint Petersburg, (971) Central Outpatient Department at Federal State Budget Institution of Healthcare, Northern Medical Clinical Center N.A. Semashko of Federal Medical-Biological Agency, Arkhangelsk, (972) Saint Petersburg State Official Institution of Healthcare, Mariinskaya Ambulatory, Saint Petersburg, (973) Sanatorium Chernaya Rechka, Saint Petersburg, (974) State Healthcare Institution, Regional Clinical Cardiology Dispensary, Saratov, (975) Cardiology Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, (976) Research Institute of Complex Issues of Cardiovascular Diseases (NII KPSSZ), Kemerovo, (977) Panaceya Clinic, LLC, Moscow, (978) Nizhny Novgorod Regional Clinical Hospital N.A.Semashko, Nizhny Novgorod, (979) Moscow Hospital #15 O.M.Filatov, Moscow, (980) Budgetary Healthcare Institution of Voronezh Region, Voronezh City Clinical Hospital of Emergency Medical Care #1, Voronezh, (982) Autonomous Healthcare Institution, Voronezh Regional Clinical Consultative and Diagnostic Center, Voronezh, (983) Yaroslavl Regional Clinical Hospital, Yaroslavl, (987) Medical Union New Hospital, LLC, Ekaterinburg, (988) Hospital of Veterans Wars, Kemerovo, (989) State Budget Healthcare Institution of Sverdlovsk Region, Sverdlovsk Regional Clinical Hospital #1, Ekaterinburg, (990) Siberian State Medical University, Tomsk, (991) State Budget Healthcare Institution, Scientific and Research Institute, Regional Clinical Hospital #1 N.A., Krasnodar, (993) Volgograd State Medical University, Department of Therapy and Endocrinology, Volgograd

South Africa N=414
(416) Paarl Research Centre, Paarl, (417) TREAD Research cc, Cape Town, (418) Durbanville Medi-Clinic, Durbanville, (419) Unitas Hospital, Pretoria, (420) Somerset West Clinical Trial Unit, Somerset West, (421) Tiervlei Trial Centre, Bellville, (422) Langeberg Clinical Trials, Cape Town, (423) Synexus Helderberg, Somerset West, (424) Helderberg Research Institute, Somerset West, (425) Vincent Pallotti Hospital, Cape Town, (426) Wits Clinical Research Bara, Soweto, (427) Cardiology Research, Bloemfontein, (430) Newkwa Medical Centre, Durban, (431) Corbod Research Pty Ltd, Panorma, (432) Worthwhile Clinical Trials, Johannesburg, (433) Dr HFM Nortje Clinical Trials, Cape Town, (435) Drs' Joynt Venter and Associates, Witbank, (437) Dr P J Sebastian, Durban, (439) Boanerges Clinical Research, Bloemenstein, Free State, (440) Clinical Projects Research Centre, Worcester, (441) University of Cape Town, Cape Town

Poland N=359
(602) Synexus Polska Sp. Z O.o., Katowice, (603) Synexus Sp. Z O.o., Warsaw, (604) Centrum Medyczne Ogrodowa, Skierniewice, (605) Centrum Medyczne Nzoz As-Medica
India N=262 (501) G.Kuppuswamy Naidu Memorial Hospital, Coimbatore, Tamilnadu, (502) Medwin Hospitals, Hyderabad, Telangana, (503) JSS Medical College Hospital, Mysuru, Karnataka, (504) Mycure Hospital, Visakhapatnam, Andhra Pradesh, (505) Shatabdi Super Specialty Hospital, Suyojit City Center, Opp. Mahamarg Bus Stand, Nashik, Maharashtra, (506) SR Kalla Memorial Gastro and General Hospital, Jaipur, (507) St. John's Medical College Hospital, Koramangla, Karnataka, (509) KLE Dr. Prabhakar Kore Hospital, Nehru Nagar, (510) Fortis Escorts Heart Institute, New Delhi, (511) Gleneagle Global Hospitals, Hyderabad, Telangana, (513) Monilek Hospital and Research Center, Jaipur, (514) Cardiac Care & Counselling Center, Pune, Maharashtra, (515) Dharma Vira Heart Centre, Sir Ganga Ram Hospital, New Delhi, (516) Vikram Hospital Pvt. Ltd, Mysore, Karnataka, (517) Bhatia Hospital, Mumbai, Maharashtra, (518) Endocrinology Diabetes Centre, Bangalore, Karnataka, (524) Caritas Hospital, Kottayam, Kerala, (525) Vikram Hospital, Bangalore, Karnataka, (526) Madras Diabetes Research Foundation, Chennai, Tamilnadu, (527) Krishna Institute of Medical Sciences, Secunderabad, Telangana

Canada N=250 (172) Recherche Clinique London, Sherbrooke, Québec, (173) Clinique Des Maladies Lipidiques De Québec, Québec, (175) Ronald Collette, MD, Burnaby, (176) DCTM Clinical Trials Group, Strathroy, Ontario, (177) Centre de recherche clinique de Laval, Laval, Québec, (178) SKDS Research Inc., Newmarket, Ontario, (181) Moran Medical Centre, Collingwood, Ontario, (182) Corunna Clinical Research Centre, Corunna, Ontario, (188) London Road Diagnostic Clinic, Sarnia, Ontario, (200) Healthy Heart Program, Vancouver, (201) McGill University Health Centre, Royal Victoria Hospital, Montreal, Québec, (202) Vancouver General Hospital, Vancouver, British Columbia, (219) North Road Clinical Research, Coquitlam, British Columbia, (271) Brampton Research Associates, Brampton, Ontario, (361) Sarnia Institute of Clinical Research, Sarnia, Ontario, (395) Alta Clinical Research Inc, Edmonton, Alberta, (397) Montreal Heart Institute, Montreal, Québec, (659) Centre de Sante et de Services Sociaux de Lanaudière, St-Charles-Borromée, Québec, (660) Institut Universitaire De Cardiologie Et De Pneumologie Du Québec, Université Laval, Québec

Romania N=202 (801) Medical Center Medcalis SRL, Timisoara, (803) University Emergency Hospital, Cardiology Ward I, Bucharest, (804) Centrul Medical International Bucuresti Dacia, Bucuresti, (805) Emergency County Hospital, Sibiu, (806) Mediclass Sananova SRL, Bucharest, (808) Clinic County Emergency Hospital Cluj-Napoca, Cluj-Napoca, (809) Universitary Emergency Hospital Bucharest, Bucharest, (810) Ilro Medical Clinic, Bucharest, (811) CardioMed SRL, Craiova, (812) Spitalul Judetean De Urgenta Braila, Braila, (813)
University of Medicine and Pharmacy Grigore T. Popa, Rehabilitation Hospital, Department of Cardiovascular Rehabilitation, Lasi, (814) Spitalul Clinic Judetean De Urgenta, Tirgu Mures, (815) Spitalul Clinic Judetean De Urgenta, Sibiu, (816) Centrul Med Plus SRL Bucuresti, Bucuresti, (817) Centrul Medical Galenus, Tirgu Mures, (818) CMI Cardiologie, Baia Mare, (819) SC Clinica Angiomed, Bucharest, (820) Spitalul De Urgenta Arges, Pitesti, (821) CMI Cardiologie, Constanta

Australia N=189 (301) Holy Spirit Northside Hospital, Brisbane, QLD, (302) The Alfred Hospital Heart Centre, Melbourne, VIC, (303) Fremantle Hospital, Fremantle, WA, (304) Dr Heart Pty Ltd, Woolloongabba, QLD, (305) St. Vincents Hospital (Melb) Dept. of Medicine, Fitzroy, VIC, (306) Joondalup Cardiovascular Trials Foundation, Joondalup, WA, (307) Launceston General Hospital, Launceston, TAS, (308) Royal Prince Alfred Hospital, Sydney, NSW, (309) Sir Charles Gairdner Hospital, Nedlands, (310) Royal Perth Hospital, School of Medicine and Pharmacology, Medical Research Foundation, Perth, WA, (311) Lismore Base Hospital Cardiac Catheter Lab, Northern Rivers Cardiovascular Clinic, Lismore, NSW, (312) Barwon Health University Hospital Geelong, Geelong, VIC, (313) Fiona Stanley Hospital, Murdoch, WA, (314) Austin Health, Heidelberg Heights, VIC, (316) Flinders Medical Centre and Flinders University, Bedford Park, SA, (317) Cardiovascular Trials WA (South), Bateman, WA, (319) Core Research Group Pty Ltd, Brisbane, QLD

New Zealand N=134 (402) Lipid and Diabetes Research, Christchurch, (405) Waitemata District Health Board, Diabetes Service, Auckland, (406) Cardiology Department, Nelson Hospital, Nelson, (408) Hawke's Bay District Health Board, Hastings, (411) Waitemata District Health Board, Auckland, (414) Cardiology Clinical Trials Unit, Waikato District Health Board, Hamilton, (415) Southern District Health Board, Dunedin Hospital, Dunedin, (442) Taranaki Base Hospital, New Plymouth, (444) Northland District Health Board, Whangarei, (445) Bay of Plenty Clinical Trials Unit, Tauranga
Figure S1. Efficacy and Safety of Icosapent Ethyl Among Patients with Prior PCI, Stratified by Baseline Antithrombotic Regimen.

Endpoint/Subgroup	Icosapent Ethyl	Placebo	Icosapent Ethyl vs. Placebo	P-value	Int. P-value
	n/N (%)	n/N (%)	HR (95% CI)		
Primary Composite Endpoint	362/1737 (20.8)	491/1671 (29.4)	0.66 (0.58, 0.76)	<0.0001	
Baseline Medications				0.33	
Aspirin Only	150/873 (17.2)	217/796 (27.3)	0.59 (0.48, 0.73)	<0.0001	
Aspirin AND (Clopidogrel OR Prasugrel OR Ticagrelor)	146/818 (23.6)	185/812 (30.2)	0.74 (0.60, 0.92)	0.007	
Warfarin OR Rivaroxaban OR Apixaban	13/31 (41.9)	9/26 (32.1)	1.02 (0.43, 2.42)	0.97	
Both Anticoagulants + Any Anti-Platelet Above	16/49 (32.7)	23/62 (44.2)	0.72 (0.38, 1.38)	0.32	
Key Secondary Composite Endpoint	208/1737 (12.0)	290/1671 (17.4)	0.66 (0.56, 0.79)	<0.0001	
Baseline Medications				0.52	
Aspirin Only	91/873 (10.4)	135/796 (17.0)	0.60 (0.46, 0.78)	0.0001	
Aspirin AND (Clopidogrel OR Prasugrel OR Ticagrelor)	74/618 (12.0)	100/612 (16.3)	0.71 (0.53, 0.96)	0.03	
Warfarin OR Rivaroxaban OR Apixaban	11/31 (35.5)	7/28 (25.0)	1.07 (0.41, 2.84)	0.69	
Both Anticoagulants + Any Anti-Platelet Above	10/49 (20.4)	15/52 (28.8)	0.78 (0.35, 1.74)	0.54	
Any Bleeding	221/1737 (12.7)	202/1671 (12.1)	1.03 (0.85, 1.25)	0.73	
Baseline Medications				0.008	
Aspirin Only	81/873 (9.3)	93/796 (11.7)	0.77 (0.57, 1.04)	0.08	
Aspirin AND (Clopidogrel OR Prasugrel OR Ticagrelor)	90/618 (14.6)	70/612 (11.4)	1.30 (0.95, 1.78)	0.09	
Warfarin OR Rivaroxaban OR Apixaban	5/31 (16.1)	7/28 (25.0)	0.33 (0.10, 1.09)	0.06	
Both Anticoagulants + Any Anti-Platelet Above	10/49 (30.6)	7/62 (13.5)	2.35 (0.95, 5.78)	0.06	
Serious Bleeding	55/1737 (3.2)	46/1671 (2.8)	1.15 (0.78, 1.69)	0.49	
Baseline Medications				0.38	
Aspirin Only	17/873 (1.9)	16/796 (2.0)	0.94 (0.47, 1.85)	0.85	
Aspirin AND (Clopidogrel OR Prasugrel OR Ticagrelor)	20/818 (3.2)	15/812 (2.5)	1.38 (0.70, 2.70)	0.35	
Warfarin OR Rivaroxaban OR Apixaban	2/31 (6.5)	3/28 (10.7)	0.51 (0.08, 3.21)	0.47	
Both Anticoagulants + Any Anti-Platelet Above	7/49 (14.3)	3/52 (5.8)	2.52 (0.65, 8.76)	0.17	
Figure S2. Forest Plot of Efficacy End Points in Hierarchical Testing Order by Sex Among Patients with Prior PCI.

Endpoint/Subgroup	Icosapent Ethyl	Placebo	Icosapent Ethyl vs. Placebo	P-value	Int. P-value
	n/N (%)	n/N (%)	HR (95% CI)		
Primary Composite Endpoint	362/1737 (20.8)	491/1671 (29.4)	0.66 (0.58, 0.76)	<0.0001	
Gender					
Male	298/1387 (21.5)	398/1317 (30.2)	0.66 (0.57, 0.77)	<0.0001	
Female	64/350 (18.3)	93/354 (26.3)	0.70 (0.51, 0.97)	0.03	
Key Secondary Composite Endpoint	208/1737 (12.0)	290/1671 (17.4)	0.66 (0.56, 0.79)	<0.0001	
Gender					
Male	172/1387 (12.4)	233/1317 (17.7)	0.67 (0.55, 0.82)	<0.0001	
Female	36/350 (10.3)	57/354 (16.1)	0.66 (0.43, 1.01)	0.05	
Cardiovascular Death or Nonfatal Myocardial Infarction	181/1737 (10.4)	248/1671 (14.8)	0.68 (0.56, 0.82)	<0.0001	
Gender					
Male	151/1387 (10.9)	200/1317 (15.2)	0.69 (0.56, 0.86)	0.0006	
Female	30/350 (8.6)	48/354 (13.6)	0.66 (0.41, 1.04)	0.07	
Fatal or Nonfatal Myocardial Infarction	141/1737 (8.1)	198/1671 (11.8)	0.66 (0.53, 0.82)	0.0002	
Gender					
Male	120/1387 (8.7)	168/1317 (12.8)	0.65 (0.52, 0.83)	0.0003	
Female	21/350 (6.0)	30/354 (8.5)	0.72 (0.41, 1.26)	0.25	
Urgent or Emergent Rervascularization	144/1737 (8.3)	205/1671 (12.3)	0.65 (0.52, 0.80)	<0.0001	
Gender					
Male	123/1387 (8.9)	172/1317 (13.1)	0.64 (0.51, 0.81)	0.0002	
Female	21/350 (6.0)	33/354 (9.3)	0.64 (0.37, 1.12)	0.11	
Cardiovascular Death	55/1737 (3.2)	81/1671 (4.8)	0.64 (0.46, 0.90)	0.01	
Gender					
Male	41/1387 (3.0)	59/1317 (4.5)	0.66 (0.44, 0.98)	0.04	
Female	14/350 (4.0)	22/354 (6.2)	0.68 (0.34, 1.34)	0.26	
Hospitalization for Unstable Angina	75/1737 (4.3)	118/1671 (7.1)	0.59 (0.44, 0.79)	0.0003	
Gender					
Male	62/1387 (4.5)	92/1317 (7.0)	0.60 (0.44, 0.83)	0.002	
Female	13/350 (3.7)	26/354 (7.3)	0.51 (0.26, 1.01)	0.05	
Fatal or Nonfatal Stroke	39/1737 (2.2)	59/1671 (3.5)	0.62 (0.41, 0.92)	0.02	
Gender					
Male	28/1387 (2.0)	45/1317 (3.4)	0.57 (0.35, 0.91)	0.02	
Female	11/350 (3.1)	14/354 (4.0)	0.83 (0.38, 1.84)	0.65	
Total Mortality/Nonfatal Myocardial Infarction/Nonfatal Stroke	259/1737 (14.7)	325/1671 (19.4)	0.72 (0.61, 0.85)	0.0001	
Gender					
Male	204/1387 (14.7)	258/1317 (19.6)	0.72 (0.60, 0.86)	0.0004	
Female	51/350 (14.6)	67/354 (18.9)	0.78 (0.54, 1.12)	0.17	
Total Mortality	108/1737 (6.2)	124/1671 (7.4)	0.82 (0.63, 1.06)	0.13	
Gender					
Male	78/1387 (6.6)	91/1317 (6.9)	0.80 (0.59, 1.08)	0.15	
Female	30/350 (8.6)	33/354 (9.3)	0.92 (0.56, 1.52)	0.74	
Figure S3. Cumulative Incidence Plots of A. Primary Composite End Point and B. Key Secondary Composite End Point with Non-CV Death as Competing Risk Among Patients with Prior PCI.

A.

Gray's Test for Equality of Cumulative Incidence Functions: <0.0001
Cause Specific HR (95% CI): 0.66 (0.58, 0.76)

B.

Gray's Test for Equality of Cumulative Incidence Functions: <0.0001
Cause Specific HR (95% CI): 0.66 (0.56, 0.79)
Figure S4. Forest Plot of Primary and Key Secondary Composite End Points for Patients With or Without Prior PCI

Endpoint/Subgroup	Icosapent Ethyl	Placebo	Icosapent Ethyl vs. Placebo	P-value	Interaction P-value
	n/N (%)	n/N (%)	HR (95% CI)		
Primary Composite Endpoint				0.11	
Prior PCI	362/1737 (20.8)	491/1671 (29.4)	0.66 (0.58, 0.76)	<0.0001	
ASCVD w/o PCI	215/1248 (17.2)	281/1310 (21.5)	0.79 (0.66, 0.95)	0.01	
Key Secondary Composite Endpoint				0.39	
Prior PCI	208/1737 (12.0)	290/1671 (17.4)	0.66 (0.56, 0.79)	<0.0001	
ASCVD w/o PCI	159/1248 (12.7)	220/1310 (16.8)	0.75 (0.61, 0.91)	0.005	

0.2 1.0 2.0
Icosapent Ethyl Better Placebo Better