Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer

Proliferating cells, especially tumour cells, express a special isoenzyme of pyruvate kinase, termed M2-PK, which can occur in a tetrameric form with a high affinity to its substrate, phosphoenolpyruvate (PEP), and in a dimeric form with a low PEP affinity. In tumour cells, the dimeric form is usually predominant and is therefore termed Tumour M2-PK. The levels of Tumour M2-PK within tumours and in EDTA-plasma correlate with staging and the ability of the tumour cells to metastasise. Since most colorectal tumours grow intraluminally, it appeared interesting to determine whether Tumour M2-PK is detectable in the faeces of tumour patients. Stool samples were tested by ELISA from controls without colorectal cancer and colorectal cancer patients. Whereas Tumour M2-PK levels were low in the control group (mean value ± s.e.m.: 3.3 ± 0.4, n = 144), they were high in the case of colorectal cancer (56.1 ± 15.3, n = 60). At a cutoff value of 4 U ml⁻¹, the sensitivity was 73%. TNM and Dukes’ classification of the tumours revealed a strong correlation between faecal Tumour M2-PK levels and staging. The determination of Tumour M2-PK in faeces provides a new promising screening tool for colorectal tumours.

One alteration consistently found during tumour formation, including gastrointestinal tumours, is the upregulation of glycolytic enzymes. This upregulation takes place at the RNA and protein level, as well as at the level of enzymatic activities (Durany et al., 1997; Eigenbrodt et al., 1997; Mazurek et al., 2000; Hegde et al., 2001; Atsumi et al., 2002; Birkenkamp-Demtroder et al., 2002; Williams et al., 2003). In addition, in the case of the glycolytic enzyme pyruvate kinase, a loss of the tissue-specific isoenzymes (L-PK in the liver, M1-PK in muscle and brain and R-PK in erythrocytes) and expression of the pyruvate kinase isoenzyme type M2 (M2-PK) is described in all tumours investigated thus far (Figure 1A) (Staal and Rijksen, 1991; Mazurek et al., 1997; Steinberg et al., 1999). The increase in M2-PK levels has been recorded by the determination of enzymatic activities, cellulose acetate electrophoresis, Western blotting and immunohistochemistry (Reinacher and Eigenbrodt, 1981; Staal and Rijksen, 1991; Eigenbrodt et al., 1992; Mazurek et al., 2000). In healthy tissues, all isoenzymes of pyruvate kinase consist of four subunits whereby hybrids of the different forms can also occur (Sahekli et al., 1978, 1979). Whereas in the epithelium of the upper gastrointestinal tract (oesophagus and stomach) hybrids between M1 and M2 have been found, the lower gastrointestinal tract (jejunum, colon and rectum) is characterised by hybrids of L and M2-PK (Sahekli et al., 1978, 1979). In gastrointestinal tumours, only subunits of the type M2 are detectable and pyruvate kinase is mainly in the dimeric form (Mazurek et al., 2000). Therefore, the dimeric form of M2-PK has been termed Tumour M2-PK. The tetramer : dimer ratio of M2-PK can be quantified by gel permeation, isoelectric focusing or by ELISA (Cerwenka et al., 1999; Schulze, 2000; Mazurek et al., 1997, 2001; Mazurek and Eigenbrodt, 2003). The upregulation of the M2-PK protein is under the control of HIF-1 and ras, which are both consistently altered in gastrointestinal tumours (Kress et al., 1998; Mazurek et al., 2001; Nishikawa et al., 2002; Mazurek and Eigenbrodt, 2003). The tetramer : dimer ratio of M2-PK is under the control of several oncoproteins, such as pp60⁺⁺⁺src kinase, HPV-16 E7 and A-Raf (Figure 1B) (Eigenbrodt et al., 1999b; Zwirschke et al., 1999; Le Mellay et al., 2002). Interestingly, pp60⁺⁺⁺src kinase and A-Raf are consistently altered in gastrointestinal tumours (Bolen et al., 1987; Iravani et al., 1998; Irby et al., 1999; Luckett et al., 2000; Dehm et al., 2001; Dhillon et al., 2003).

Determinations of Tumour M2-PK in EDTA-plasma samples of patients with gastrointestinal tumours revealed an upregulation of Tumour M2-PK in oesophageal, gastric, colonic and rectal carcinomas (Hardt et al., 2000; Schulze, 2000; Schneider and Schulze, 2003). Recently, we noticed that Tumour M2-PK can be detected and quantified in the faeces of patients with gastrointestinal cancer (Hardt et al., 2003). The present study describes the clinical utility of the determination of Tumour M2-PK in the stool of patients with colorectal cancer and control subjects without endoscopic evidence of colorectal neoplasms.
MATERIALS AND METHODS

Study protocol

After obtaining informed consent, patients given appointments for colonoscopy for various reasons were asked to provide one stool sample for measuring faecal Tumour M2-PK. A short standard questionnaire about the patient’s history was used to record clinical data. Stool samples of patients with colorectal cancer and patients without pathological findings were tested.

Endoscopies were carried out as standard investigations. Histology was obtained from the routine biopsies and/or from surgery. All data were collected prospectively and recorded on standardised forms. The study protocol was approved by the ethics committee of Giessen University Hospital.

Measurement of faecal tumour M2-PK concentrations

Tumour M2-PK was measured with a commercially available sandwich ELISA (ScheBo Biotech AG, Giessen, Germany). For sample preparation, 100 mg of the single, random stool specimen was extracted in 10 ml extraction buffer and diluted 1:10 in the sample washing buffer provided. The ELISA plate is coated with a monoclonal antibody against Tumour M2-PK. Tumour M2-PK from stool samples or standards binds to the antibody. A second monoclonal antibody, which is biotinylated, binds to Tumour M2-PK during the next incubation. Both monoclonal antibodies specifically react with Tumour M2-PK (dimeric form of M2-PK) and do not crossreact with the other isoforms of pyruvate kinase (type L, R, M1 and tetrameric M2-PK). In the next incubation step, a conjugate of peroxidase (POD) and streptavidin binds to the biotin moiety. POD oxidises the substrate 3,3',5,5'-tetra-methyl benzidine (TMB) and the oxidised form of TMB is determined photometrically at 450 nm.

Statistical analysis

For the statistical comparison of the nonparametrically distributed data, the Kruskall–Wallis ANOVA test was used (Statistica Version 5.0, StatSoft Inc., Tulsa, USA).

Sensitivity was calculated as the number of patients with colorectal cancer who tested positive for Tumour M2-PK (true positives) divided by the total number of histologically confirmed tumour patients (true positives plus false negatives), expressed as a percentage (i.e. sensitivity = (number of true positives/number of tumour patients) x 100).

Specificity was calculated as the number of controls who tested negative for Tumour M2-PK (true negatives) divided by the total number of control subjects (true negatives plus false positives), expressed as a percentage (i.e. specificity = (number of true negatives/number of patients without pathological findings at colonoscopy) x 100).

RESULTS

In all, 60 patients with colorectal cancer have been evaluated to date. A total of 144 patients underwent total colonoscopy without any pathological findings and served as controls. The range of faecal Tumour M2-PK levels is shown in Figure 2. There is a highly significant difference between tumour patients and controls. At a cutoff level of 4 U ml⁻¹, the sensitivity was calculated to be 73% and the specificity as 78%. TNM classification of the colorectal tumours according to the criteria of the American Joint Committee on Cancer (AJCC, 2002), as well as the Dukes’ classification, revealed a strong correlation between the amount of faecal Tumour M2-PK and staging (Table 1; Figure 3). The sensitivities

Figure 1 (A) Pyruvate kinase isoenzyme equipment of different tissues. (B) Metabolic consequences of the dimerisation of M2-PK.

Figure 2 Tumour M2-PK levels in stool samples of patients with colorectal cancer and healthy control individuals. Sensitivity: 73%; specificity: 78%.
Faecal tumour M2-PK for colorectal cancer screening

PD Hardt et al

Table 1 Correlation between faecal tumour M2-PK levels and staging

Classification	n	Median (U ml⁻¹)	Mean (U ml⁻¹)	s.e.m. (U ml⁻¹)	Range (U ml⁻¹)
Controls	144	1.6	3.3	0.4	0.1–31
T1	7	5.5	11.1	5.9	1.3–45
T2	11	10.0	23.8	9.9	1.1–100
T3	33	34.2	55.5	13.7	1.0–380
T4	9	47.8	132.7	86.2	0.2–800
Dukes’ A	17	6.4	19.4	6.9	1.1–100
Dukes’ B	16	14.5	31.5	8.5	1.0–100
Dukes’ C	17	46.8	57.1	15.9	0.2–215
Dukes’ D	10	36.4	156.2	81.1	0.7–800

TNM classification according to AJCC, 2000: T1: tumour invades submucosa; T2: tumour invades muscularis propria; T3: tumour invades through muscularis propria into subserosa or into nonperitonealised pericolic or perirectal tissues; T4: tumour directly invades other organs or structures and/or perforates visceral peritoneum. Dukes’ staging according to Cuthbert Dukes, 1932: Dukes’ A: the cancer confines to most superficial cell layers of colon and rectum; Dukes’ B: the cancer penetrates the colon wall; Dukes’ C: the cancer spreads to the lymph nodes; Dukes’ D: the cancer spreads to distant organs. n = number of individuals; s.e.m. = standard error of the mean.

Increased from 57 and 59% in the case of T1 and Dukes’ A, respectively, to 78% in the case of T4 and 90% in the case of Dukes’ D.

The intra-assay variance was evaluated by 18-fold determination of five samples (5–66 U ml⁻¹), giving an average coefficient of variance (CV) of 7.9% (3.5–13.6%). The interassay variance was calculated with five samples between 4 and 73 U ml⁻¹, tested on 10 different days. The average CV was 7.3% (3.8–12.6%).

DISCUSSION

In the present study, Tumour M2-PK was measured in the faeces of patients with colonoscopy-proven cancer of the colon and rectum. The data presented here are the results of the first extensive study in this field, which was conducted in secondary-care gastrointestinal clinics and reflects the current presentation of colorectal cancer in this setting.

The faecal levels of Tumour M2-PK are significantly higher in patients with colorectal cancer than in the control group without colorectal cancer (Figure 2). Overall sensitivity is 73% and specificity is 78%. All patients in our study underwent complete colonoscopy to confirm (together with histology) colorectal cancer or exclude it. When similarly compared against colonoscopy, screening with a guaiac-based faecal occult blood test (FOBT) had a sensitivity of 24% in a recent study (Lieberman et al., 2001). Nevertheless, large randomised studies of screening with FOBT have demonstrated a reduction in mortality or risk of 15–33% (Hardcastle et al., 1996; Mandel et al., 1999; Jorgensen et al., 2002).

Owing to the high sensitivity, the determination of Tumour M2-PK in stool samples might be a valuable new screening tool for colorectal cancer. Furthermore, a close correlation was found between Tumour M2-PK levels and tumour staging for both TNM and Dukes’ classification (Table 1; Figure 3).

An increase of Tumour M2-PK levels has also been measured in EDTA-plasma samples of patients with colorectal cancer (Hardt et al., 2000; Schulze, 2000; Schneider and Schulze, 2003). The sensitivity of the Tumour M2-PK EDTA-plasma test was lower (nonmetastasising cancer: 48%; metastasising cancer: 54%) than the Tumour M2-PK stool test (Dukes’ A: 59%; Dukes’ D: 90%). Furthermore, Tumour M2-PK levels are also increased in EDTA-plasma samples from patients with solid tumours at various sites, including renal, lung and breast cancers (Oremek et al., 1999; Wechsel et al., 1999; Lüftner et al., 2000; Schneider et al., 2000; Mazurek et al., 2002). Therefore, for the screening of colorectal cancer the determination of faecal Tumour M2-PK is superior to the EDTA-plasma test.

However, analogous to studies in breast, lung and kidney cancer patients (Wechsel et al., 1999; Lüftner et al., 2000; Hoopmann et al., 2002; Schneider et al., 2002), a possible field of application for the Tumour M2-PK EDTA-plasma test may be the monitoring and follow-up of patients with colorectal cancer.

Immunohistochemical staining of Tumour M2-PK in various rat and human tumours (breast, renal, lung, colon, rectal and skin tumours) revealed that increased Tumour M2-PK in tumour cells is a general metabolic alteration during tumorigenesis and correlated with malignancies of the tumours (Reinacher and Eigenbrodt, 1981; Bahmann et al., 1990; Eigenbrodt et al., 1992; Schneider et al., 2000).

The upregulation of the M2-PK isoform can be caused by mutations in the ras gene and upregulation of HIF-1 (Kress et al., 1998; Mazurek et al., 2001). HIF-1 is stabilised by p53 mutations (Kress et al., 1998; Ravi et al., 2000). Indeed, mutations in the ras oncogene and p53 antioncogene can be detectable in 40–60% of colorectal cancers (Bos, 1989; Kizilier and Vogelstein, 1996; Dong et al., 2001; Rengucci et al., 2001; Nishikawa et al., 2002; Smith et al., 2002).

The determination of mutated onco genes and antigenic sequences in stool samples has the advantage of high specificity. For example, mutations of K-ras, p53 or within the adenomatous polyposis coli (APC) gene were not detected in any stool samples of healthy controls (Rengucci et al., 2001; Nishikawa et al., 2002; Traverso et al., 2002). However, due to the genetic heterogeneity within colorectal cancer, a multitarget assay panel (e.g. mutations of K-ras, p53 and APC genes) can be detectable in 40–60% of colorectal cancers (Bos, 1989; Kizilier and Vogelstein, 1996; Dong et al., 2001; Rengucci et al., 2001; Nishikawa et al., 2002; Smith et al., 2002).

Since M2-PK is a direct target of several oncoproteins, the determination of faecal Tumour M2-PK might be more sensitive than the detection of mutations in the oncoproteins and antioncoproteins themselves.

In contrast to many other genes, no mutations have yet been found in the M2-PK gene (http://www.pubmed.gov: nucleotide, 2003). Furthermore, the overexpression of a mutated M2-PK protein suppresses A-Raf transformation in NIH 3T3 cells, which underlines the central role of M2-PK in colorectal cancer (Hardt et al., 2001; Nishikawa et al., 2001). The correlation between faecal tumour M2-PK levels and TNM staging was statistically significant (Figure 3).
conditions. M2-PK can switch between a highly active tetrameric form with a high affinity to its substrate, phosphoenolpyruvate (PEP), and a nearly inactive dimeric form with a low PEP affinity (Figure 1B). The tetramer:dimer ratio of M2-PK is regulated by oncogenes and metabolic intermediates, such as fructose 1,6-P2 and serine, and determines whether glucose carbons are converted to pyruvate and lactate under the production of energy (tetrameric form) or are channelled into synthetic processes, such as DNA, phospholipid and amino-acid synthesis (dimeric form) (Mazurek et al, 1997; Griffiths et al, 2002; Boren et al, 2003). When M2-PK is mainly in the nearly inactive dimeric form (Tumour M2-PK) energy is provided by the degradation of the amino-acid glutamine to lactate, which has been termed glutaminolysis (Figure 1B) (http://www.metabolic-database.com).

The oscillation between the highly active tetrameric form and the nearly inactive dimeric form allows optimal adaptation of the tumour metabolome to the varying nutrient and oxygen supply constantly found in solid tumours (Eigenbrodt et al, 1998a; Vaupel et al, 2003). Tumour M2-PK is detected with an ELISA that can be easily performed in every routine laboratory. Samples are stable and the sensitivity of the Tumour M2-PK test is higher than the detection of mutations in p53, ras or APC (Rengucci et al, 2001; Nishikawa et al, 2002; Traverso et al, 2002). Therefore, the detection of Tumour M2-PK levels in the stool might provide an interesting screening tool for colorectal cancer. To further validate this new test in a larger cohort, a larger cross-sectional study will be performed in the future.

REFERENCES

Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW, Pierceall WE, Thibodeau SN, Shuber AP (2000) Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119: 1219 – 1227

American Joint Committee on Cancer (2002) Colon and Rectum. In AJCC Cancer Staging Manual, Greene FL, Page DL, Fleming ID, Fritz A, Balch CM, Haller DG, Morrow M (eds). 6th edn. pp 113 – 124, New York, NY: Springer

Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Donnelly S, Makita Z, Mitchell R, Leng L, D'Allessio M, Paty P, Hamilton SR, Sidransky D, Barany F, Goodman SN, Boren T, Grivennikov SV, Fennerty MB, Triadafilopoulos G, Ramírez FC, Lee JG, Collins JR, Floyett U, Fahey TJ (2002) Gene expression in colorectal cancer. Cancer Res 62: 4352 – 4363

Birkenkamp-Demtroder K, Christensen LL, Harder Olesen S, Frederiksen CM, Lahibe P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, rnttof TF (2002) Gene expression in colorectal cancer. Cancer Res 62: 4352 – 4363

Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N (1987) Activation of pp60src-rc kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 84: 2251 – 2255

Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros L, Cascante M (2003) The stable isotope-based dynamic metabolic profile of butyrate induced HT29 cell differentiation. J Biol Chem 278: 28395 – 28402

Boo JI (1989) Ras oncogenes in human cancer: a review. Cancer Res 49: 4682 – 4689

Cerwenka H, Aigner R, Bacher H, Werkgartner G, El-Shabrawi A, Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Donnelly S, Makita Z, Mitchell R, Leng L, D'Allessio M, Paty P, Hamilton SR, Sidransky D, Barany F, Goodman SN, Boren T, Grivennikov SV, Fennerty MB, Triadafilopoulos G, Ramírez FC, Lee JG, Collins JR, Floyett U, Fahey TJ (2002) Gene expression in colorectal cancer. Cancer Res 62: 4352 – 4363

Eigenbrodt E, Mazurek S, Friis R (1998b) Double role of pyruvate kinase type M2 in the regulation of phosphometabolite pools. In Cell Growth and Oncogenesis, Bannasch P, Kanduc D, Papa S, Tager JM (eds) pp 15 – 30, Basel: Birkhäuser Verlag

Eigenbrodt E, Reinaecher M, Scheefers-Borchel U, Scheefers H, Friis R (1992) Double role for pyruvate kinase type M2 in expansion of phosphometabolite pools in tumor cells. Crit Rev Oncogen 3: 91 – 115

Griffiths JR, McSheehy PM, Robinson SP, Troy H, Chung YL, Leek RD, Williams KJ, Stratford IJ, Harris AL, Stubs M (2002) Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): evidence of an anabolic role for the HIF-1 pathway. Cancer Res 62: 688 – 695

Hardcastle JD, Chamberlain JO, Robinson ME, Moss SM, Ammar SS, Ballfour TW, James PD, Mangham CM (1996) Randomized, controlled trial of faecal occult blood screening for colorectal cancer. Lancet 348: 1472 – 1477

Hardt PD, Ngouomou BK, Rupp J, Schnell-Kretschmer H, Kloor Hu (2000) Tumor M2 pyruvate kinase: a promising tumor marker in the diagnosis of gastro-intestinal cancer. Anticancer Res 20: 4965 – 4968

Hardt PD, Toepeler M, Ngouomou B, Rupp J, Kloor Hu (2003) Measurement of fecal pyruvate kinase type M2 (Tumor M2-PK) concentrations in patients with gastric cancer, colorectal cancer, colorectal adenomas and controls. Anticancer Res 23: 851 – 854

Hege P, Qi R, Gaspard R, Abernathy K, Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, Sharov V, Lee NH, Yeatman JT, Quackenbush J (2001) Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray. Cancer Res 61: 7792 – 7797

Hoogmann M, Warm M, Mallmann P, Thomas A, Gehring UJ, Schöndorf T (2002) Tumor M2 pyruvate kinase – determination in breast cancer patients receiving trastuzumab therapy. Cancer Lett 187: 223 – 228

Iravani S, Mao W, Fu L, Karl R, Yeatman T, Jove R, Coppola D (1998) Elevated c-Src protein expression is an early event in colon neoplasia. J Biol Chem 273: 367 – 371

Irby RR, Mao W, Coppola D, Kang J, Loubueau JM, Trudeau W, Kar R, Fujita TJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187 – 190

Jürgensdö T, Klonborg O, Fenger C (2002) A randomized study of screening for colorectal cancer using faecal occult blood testing: results after 13 years and seven biennial screening rounds. Gut 50: 29 – 32

Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A, Huppert P, Schwarz M (1998) Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124(6): 315 – 320

Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A, Huppert P, Schwarz M (1998) Expression of hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol 124(6): 315 – 320

Le Mevay J, Houben R, Toppmair J, Hagemann R, rnttof TF, Grivennikov SV, Fennerty MB, Triadafilopoulos G, Ramírez FC, Lee JG, Collins JR, Floyett U, Fahey TJ (2002) Gene expression in colorectal cancer. Cancer Res 62: 4352 – 4363

Lieberman DA, Harford WY, Ahnen DJ, Provenzale D, Santag SJ, Schnell TG, Chejfec G, Campbell DR, Durbin TB, Bond JH, Nelson DB, Ewing SL, Triadafilopoulos G, Ramírez FC, Lee JG, Collins JR, Floyett U, Fahey TJ (2002) Gene expression in colorectal cancer. Cancer Res 62: 4352 – 4363

Molecular and Cellular Pathology

PD Hardt et al

Faecal tumour M2-PK for colorectal cancer screening

The oscillation between the highly active tetrameric form and the nearly inactive dimeric form allows optimal adaptation of the tumour metabolome to the varying nutrient and oxygen supply constantly found in solid tumours (Eigenbrodt et al, 1998a; Vaupel et al, 2003). Tumour M2-PK is detected with an ELISA that can be easily performed in every routine laboratory. Samples are stable and the sensitivity of the Tumour M2-PK test is higher than the detection of mutations in p53, ras or APC (Rengucci et al, 2001; Nishikawa et al, 2002; Traverso et al, 2002). Therefore, the detection of Tumour M2-PK levels in the stool might provide an interesting screening tool for colorectal cancer. To further validate this new test in a larger cohort, a larger cross-sectional study will be performed in the future.
Johnston TK, Corless CL, McQuaid KR, Garewal H, Sampliner RE, Morales TG, Fass R, Smith RE, Maheshwari Y, Weiss DG, for the Veterans Affairs Cooperative Study Group 380 (2001) One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N Engl J Med 345: 555–560

Luccket JC, Huser MB, Giagtzoglou N, Brown JE, Pritchard CA (2000) Expression of the A-rat proto-oncogene in the normal adult and embryonic mouse. Cell Growth Differ 11: 163–171

Lüftner D, Mesterharm J, Akrivakis C, Geppert R, Petrides PE, Wernecke KD, Possinger K (2000) Tumor type M2 pyruvate kinase expression in advanced breast cancer. Anticancer Res 20: 5077–5082

Mandel J, Church TR, Ederer F, Bond JH (1999) Effectiveness of biennial screening for fecal occult blood. J Natl Cancer Inst 91: 434–437

Mazurek S, Boschek CB, Eigenbrodt E (1997) The role of phosphometabolites in cell proliferation, energy metabolism, and tumor formation. J Bioenerg Biomembr 29: 315–330

Mazurek S, Eigenbrodt E (2003) The tumor metabolome. Anticancer Res 23: 1149–1154

Mazurek S, Grimm H, Oehmke M, Weisse G, Schmidt J, Wechsel HW, Petri E, Bichler KH, Feil G (1999) Marker for renal cell carcinoma. Anticancer Res 19: 5077–5082

Mazurek S, Grimm H, Oehmke M, Weisse G, Eigenbrodt E (2000) Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Res 20: 5151–5154

Mazurek S, Lüftner D, Wechsel HW, Schneider J, Eigenbrodt E (2002) Tumor M2-PK: a marker of the tumor metabolome. In Tumor Markers – Physiological, Pathobiological, Technology, and Clinical Application, Diamandis EP, Fritsche HA, Lilja H, Chan DW, Schwartz MK (eds) pp 471–475, Washington, DC: AACC Press

Mazurek S, Zwierschke W, Jansen-Dürr P, Eigenbrodt E (2001) Metabolic cooperation between different oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene 20: 6891–6898

Nishikawa T, Maemura K, Hirata I, Matsuura R, Morikawa H, Toshin K, Hirata I, Matsuse R, Morikawa H, Toshin K, Hattori K, Nishiyama H, Kato J, Kikuchi T, Kikuno F, Kondo H, Kameyama T (1999) Immunohistochemical demonstration of the interaction between activated ras and HPV-16 E7. Proc Natl Acad Sci USA 96: 9343–9348

Staal GE, Rijken G (1991) Pyruvate kinase in selected human tumors. In Biochemical and Molecular Aspects of Selected Cancers, Pretlow TG, Pretlow TP (eds) pp 313–337, San Diego: Academic Press

Steinberg P, Klingelhöffer A, Schäfer A, Wüst G, Weisse G, Oesch F, Eigenbrodt E (1999) Expression of pyruvate kinase M2 in preeclampia. J Obstet Gynaecol Res 25: 555–560

Tagore KS, Lawson MJ, Yucaitas JA, Gage R, Orr T, Shuber AP, Ross ME (2003) Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin Colorectal Cancer 3: 47–53

Traverso G, Shuber A, Levin B, Johnson C, Olsson L, Schoetz Jr DJ, Hamilton SR, Boynton K, Kinzler KW, Vogelstein B (2002) Detection of APC mutations in faecal DNA from patients with colorectal tumors. N Engl J Med 346: 311–320

Vaupel P, Thews O, Kelleher DK, Konerding MA (2003) O2 extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues. Int J Oncol 22: 795–798

Wechsel HW, Petri E, Bichler KH, Feil G (1999) Marker for renal cell carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu-M2-PK). Anticancer Res 19: 2583–2590

Williams NS, Gaynor RB, Scoggins S, Verma U, Gokaslan T, Simmang C, Fleming J, Tavana D, Frenkel E, Becerra C (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res 9: 931–946

Zwierschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P (1999) Modulation of pyruvate kinase type M2 by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA 96: 1291–1296