METRIC FOLIATIONS ON THE EUCLIDEAN SPACE

LLOHANN D. SPERANÇA AND STEFFEN WEIL

Abstract. We complete a minor gap in Gromoll and Walschap classification of metric fibrations from the Euclidean space, thus completing the classification of Riemannian foliations on Euclidean spaces.

1. Introduction

A (non-singular) Riemannian foliation is a foliation whose leaves are locally equidistant. A Riemannian submersion is a submersion whose fibers are locally equidistant. Metric foliations and submersions on specific Riemannian manifolds have been studied and classified. For instance, Lytchak–Wilking [LW16] complete the classification of Riemannian foliations of the Euclidean sphere; Gromoll–Walshap [GW01] propose a classification of Riemannian submersions of the Euclidean space and Florit–Goertsches–Lytchak–Töben [FGLT15] prove that any Riemannian foliation \mathcal{F} of the Euclidean space \mathbb{R}^{n+k} is defined by a submersion $\pi : \mathbb{R}^{n+k} \to M^n$ whose fibers coincide with the leaves of \mathcal{F}.

However, two gaps in [GW01] were pointed out in [Wei], thus reopening the question of the classification of Riemannian submersions/foliations on the Euclidean space. More specifically, [FGLT15] questions:

Question 1.10. Is any Riemannian foliation on the Euclidean space homogeneous?

The purpose of this note is to complete the gaps in [GW01], answering the question above affirmatively:

Theorem. Every Riemannian foliation with connected fibers on the Euclidean space is homogeneous.

In the next sections, we briefly discuss Gromoll–Walschap’s proof and present a workaround for the gaps pointed out in [Wei]. The new argument happens to be quite elementary and starts just before the first gap, making it easy to be put together for a complete proof.

Acknowledgments. The authors thank A. Lytchak for his support. The first named author is supported by FAPESP grant number 2017/19657-0 and

1991 Mathematics Subject Classification. Primary 53C20.

Keywords and phrases. Riemannian foliations, Euclidean space.
CNPq grant number 404266/2016-9. He also would like to thank the University of Cologne for the hospitality. Part of this work is part of the Masters Thesis of the second named author.

2. Original proof and gap

Gromoll–Walschap [GW01] stated the following theorem:

Theorem 2.1 ([GW01], page 234). Let \(\pi : \mathbb{R}^{n+k} \to M^n \) be a Riemannian submersion of the Euclidean space with connected fibers. Then

1. there is a fiber \(F \) (over a soul of \(M \)) which is an affine subspace of the Euclidean space, that, up to congruence, may be taken to be \(F = \mathbb{R}^k \times \{0\} \).
2. there is a representation \(\phi : \mathbb{R}^k \to \text{SO}(n) \) such that \(\pi \) is the orbit fibration of the free isometric group action \(\psi \) of \(\mathbb{R}^k \) on \(\mathbb{R}^{n+k} = \mathbb{R}^k \times \mathbb{R}^n \) given by

\[
\psi(v)(u,x) = (u + v, \phi(v)x), \quad u, v \in \mathbb{R}^k, \ x \in \mathbb{R}^n.
\]

As a first step, [GW97] proves that the fiber \(\pi^{-1}(b) = F \) over the soul \(\{b\} \) of \(M \) is totally geodesic, concluding item (1) in Theorem 2.1.

Recall that the integrability tensor \(A \) is the vertical restriction \(A_XY = \nabla^v_XY \) of the Levi-Civita connection \(\nabla \), where \(X, Y \) are horizontal vector fields on \(\mathbb{R}^{n+k} \). Moreover, a field is called basic if it is both horizontal and projectable.

The aim of [GW01] is to prove Proposition 2.2 below, thus concluding Theorem 2.1 directly from Theorem 2.6 in [GW97] (see also the paragraph preceding Theorem 2.6 in [GW97]). After presenting two gaps in [GW01], our goal is to establish:

Proposition 2.2. For every basic fields \(X, Y, A_XY \) is parallel along \(F \)

In the last paragraph, [GW01] show that \(A_XY \) is parallel along \(F \) for all basic \(X, Y \) if \(A_x y \) is parallel along \(F \) for all parallel horizontal \(x, y \). The overall argument in [GW01] is then to prove that \(A_x y \) is parallel.

Remark 2.3. We remark that an argument similar to the one presented in section 3 indeed shows that \(A_x y \) is parallel, achieving Gromoll–Walschap’s aim with a different approach.

Let \(x, y \) be parallel horizontal fields along \(F \). In [GW01, section 3], a very interesting argument using the fiber volume form shows that \(\nabla_v(A_x y) = 0 \) for all \(v \in \text{im}(A_x) + \text{im}(A_y) \). It follows that \(\text{im}(A_x) \) defines an integrable distribution with totally geodesic leaves on \(F \) (at least in the open and dense subset where the rank of \(\text{im}(A_x) \) is constant). The remainder of the proof deals with \(\nabla_u(A_x y) \) for \(u \in (\text{im}(A_x) + \text{im}(A_y))^\perp \) and can be divided in three steps:

Step 1: \(\text{im}(A_x) \) defines a foliation by affine subspaces on \(F \)
Step 2: \(\pi \) is the composition of a linear projection \(pr : \mathbb{R}^{n+k} \to \mathbb{R}^{n+k-l} \) followed by a Riemannian submersion \(\pi : \mathbb{R}^{n+k-l} \to \mathbb{R}^n \), such that \(\pi' \) is ‘fully twisted’. Specifically, \(TF' = pr(\bigoplus_{x \in \mathcal{H}} im(A_x)) \), for \(F' = pr(F) \), where \(\mathcal{H} \) denotes the horizontal distribution along \(F \).

Step 3: The integrability tensor of \(\pi' \) is parallel along \(F' \).

The gaps appear in Steps 1 and 3. In Step 1, a gap appears in arguing that \(im(A_x) \) defines a Riemannian foliation on \(F \). In Step 3, it seems to be implicitly assumed that \(\bigoplus_{x \in \mathcal{H}} im(A_x) = im(A_x) + im(A_y) \) for a dense subset \((x,y) \in \mathcal{H} \times \mathcal{H} \) along \(F \). Although this statement is true for the homogeneous submersions in Theorem \[GW01\], one may believe that it generically does not hold if \(\dim(TF) > 2 \dim(\mathcal{H}) \).

2.1. First gap. For \(p \in F \) let \(T_p \mathbb{R}^{n+k} = \mathcal{H}_p + T_p F \) denote the orthogonal decomposition into the horizontal and the vertical space at \(p \). For \(x \in \mathcal{H}_p \), denote the adjoint of \(A_x : \mathcal{H}_p \to T_p F \) by \(A_x^* : T_p F \to \mathcal{H}_p \), noting that \(im(A_x)^\perp = ker(A_x^*) \).

The next step in \[GW01\] was to prove that \(im(A_x) \) defines a foliation by parallel affine subspaces. This could be achieved by proving that, if \(\gamma \) is a geodesic on \(F \) satisfying \(\gamma'(0) \in (im A_x)^\perp = ker(A_x^*) \), then \(\gamma'(t) \in ker(A_x^*) \) for all \(t \). The first gap lies in the following claim (see \[GW01\], section 3).

Claim 2.4. For \(a \in F \), let \(x \in \mathcal{H}_a \) and \(u \in ker(A_x^*) \). Then \(A_x^* \gamma_u(t) = 0 \) for all \(t \), where \(\gamma_u(t) := a + tu \) is a line in \(F \).

Discussion of the proof of Claim 2.4. For \(u \in ker(A_x^*) \) we consider the variation \(V \) on \([0,1] \times (-1,1)\), \(V(t,s) := \exp_{\gamma_u(s)}(tx) \) by horizontal geodesics which projects to the variation \(W = \pi \circ V \) by geodesics on \(M \). Likewise, since \(V \) is by horizontal geodesics, its variational field \(V_x D_s(t,0) \) is a Jacobi field that projects to the Jacobi field \(Y(t) := (\pi \circ V)D_s(t,0) = W_s D_s(t,0) \) on \(M \) induced by \(W \). \(Y \) satisfies \(Y(0) = 0 \) and

\[
Y'(0) = \nabla_{D_t(0,0)}((\pi \circ V)_x D_s) = \pi_* \nabla_{D_t(0,0)}(V_x D_s)^h = -\pi_* \nabla^h_{D_t(0,0)}(V_x D_s)^u = \pi_* A_x^* u = 0,
\]

since \(V_x D_s(0,0) = u \). The second equality follows since the fields \(V_x D_t(t,0) \) and \((V_x D_s(t,0))^h \) are horizontal fields along \(t \mapsto \exp_{\pi}(tx) \).

The third equality is due to the identity

\[
\pi_* \nabla^h_{D_t(0,0)}(V_x D_s)^h + \pi_* \nabla^h_{D_t(0,0)}(V_x D_s)^u = \pi_* \nabla_{D_t(0,0)}(V_x D_s) = \pi_* \nabla_{\pi u} x = 0.
\]

We follow \(Y \equiv 0 \) along \(t \mapsto W(t,0) \).

At this point, \(x \) is stated to be basic along \(\gamma_u \). However, even though \(W \) is a variation by geodesics emanating from a single point and the variational field \(Y \) is trivial along the geodesic \(t \mapsto W(t,0) \), this is not sufficient to imply that \(x \) is a basic field along \(\gamma_u \). Indeed, one needs to show that \(W_x D_s(t, s) = 0 \) for all \((t, s) \in [0,1] \times (-1,1)\). Then, \(x \) is mapped to a single
vector in M since $t \mapsto W(t, s)$ corresponds to the geodesic $t \mapsto W(t, 0)$ for all s. Hence, further arguments are required. The underlying issues can be seen in:

Example 2.5. Let $M = \mathbb{R}^2$ and e_1 and e_2 be the standard basis. Consider the variation $W : [0, 1] \times (-1, 1) \to \mathbb{R}^2$ given by $W(t, s) = te_1 + s^2 e_2$ of the geodesic $t \mapsto te_1$. Then its variational field Y is trivial. But for $s \neq 0$, $t \mapsto W(t, s)$ does not coincide with the geodesic $t \mapsto te_1$.

On the other hand, if we assume that the field x is indeed basic along γ_u, then

$$A_x^{\ast} \gamma_u = -\nabla_{\gamma_u}^h x = -\nabla_u^h (x \circ \gamma_u) = 0,$$

and Claim 2.4 follows. \hfill \Box

2.2. Second gap.

Define the sets

$$A_p = \text{span}\{A_{xy} \mid x, y \in \mathcal{H}_p\}, \quad \text{im}(A) := \bigcup_{p \in F} A_p.$$

According to Claim 2.4, the distributions $\text{im}(A)$ and $\text{im}(A)^\perp$ define an isometric splitting $F \cong \mathbb{R}^l \times \mathbb{R}^{k-l}$, which extends to the whole ambient space, \mathbb{R}^{n+k}, via holonomy transport. These properties result into a factorization of the projection π:

Proposition 2.6. Assume that Claim 2.4 is true. Then π factors as an orthogonal projection $\mathbb{R}^{n+k-l} \times \mathbb{R}^l \to \mathbb{R}^{n+k-l} \times \{0\}$ followed by a Riemannian submersion $\pi' : \mathbb{R}^{n+k-l} \to M$. In particular, the fiber $F' := \text{pr}(F)$ is an affine subspace satisfying $TF' = \text{im}(A)$.

$$\begin{array}{ccc}
F & \xrightarrow{\text{pr}} & \mathbb{R}^{n+k} \\
\downarrow \text{pr} & & \downarrow \pi \\
F' = \text{im}(A) \times \{0\} & \xrightarrow{\pi'} & \mathbb{R}^{n+k-l} \times \{0\} & \xrightarrow{\text{pr}} & M
\end{array}$$

What we therefore obtain is a Riemannian submersion π' which only contains the 'twisting part' of the former submersion π. Although F' is spanned by integrability fields, the induced metric foliation \mathcal{F}' of π' is not necessarily substantial along F'. That is, one can not guarantee that there is a single horizontal $x \in (T_p F')$ such that $\text{im}(A_x) = T_p F'$.

This observation is relevant since the concluding argument in [GW01], in the proof that A_{xy} is parallel, seems to be based on the substantiality of \mathcal{F}'; recall that $\nabla_v (A_{xy}) = 0$ for all $v \in \text{im}(A_x) + \text{im}(A_y)$. If \mathcal{F}' is substantial, there is an open and dense set of horizontal vectors $z \in \mathcal{H}_p$, $p \in F'$, such that $\text{im}(A_z) = T_p F'$. In particular, it would follow that $\nabla_v (A_{xy}) = 0$ for all $x, y \in \mathcal{H}$ and $v \in TF' = \text{im}(A_x) = \text{im}(A)$. Otherwise, A_{xy} could be only parallel on $\text{im}(A_x) + \text{im}(A_y)$, but not on the whole $\text{im}(A)$. More specifically, the following statement in [GW01] lacks a proof:
Lemma 3.1. just before the first gap by recalling from [GW01] that:

\[\nabla_v(A_x y) = 0 \text{ for } v \in \text{im}(A_x) + \text{im}(A_y) \]

(it is restated in the next section).

3. \(A_X Y \) is parallel

From now on, we fix basic fields \(X, Y \) along \(F \). We directly prove that \(A_X Y \) is parallel along \(F \), avoiding Claim 2.4 and Proposition 2.6. We start just before the first gap by recalling from [GW01] that:

Lemma 3.1 ([GW01], Lemma 2.4). Let \(p \in F \). Then, \((\nabla_v A)_X Y = 0 \) for all \(X, Y \in \mathcal{H}_p \) and \(v \in \text{im}(A_X) + \text{im}(A_Y) \).

In order to prove that \(A_X Y \) is parallel, we follow the proof of Theorem 2.6 in [GW97] and show that \(A_X Y \) is the gradient of a function \(f : F \to \mathbb{R} \). As in [GW97], we recall that constant length gradients in affine spaces are parallel and that \(||A_X Y|| \) is constant (as it follows from O'Neill’s equation 3\(||A_X Y||^2 = R_M(\pi_s X, \pi_t Y, \pi_v Y, \pi_s X) \)).

Denote \(\mathcal{I} = \text{im}(A_X) + \text{im}(A_Y) \), thus \(\mathcal{I}^\perp = \ker(A_X) \cap \ker(A_Y) \).

Lemma 3.2. For every \(u, u' \in \mathcal{I}^\perp \) and \(v \in \mathcal{I} \):

(i) \(\nabla_v(A_X Y) = (\nabla^v S)_X v - (\nabla^v S)_Y v \)
(ii) \(\langle \nabla_u(A_X Y), v \rangle = 0 \)
(iii) \(\langle \nabla_v(A_X Y), u \rangle = 0 \)
(iv) \(\langle \nabla_u(A_X Y), u' \rangle = -\langle (\nabla^v S)_Y u, u' \rangle \)

Proof. O’Neill’s equation (see, e.g., [GW99] page 43) gives

(1) \((\nabla^v w)_X Y = -A_Y A^*_X w - (\nabla^v X)_Y w \)

for all \(w \in TF \). Therefore, Lemma 3.1 gives

(2) \(A_Y A^*_X v = - (\nabla^v X)_Y v \)

for all \(v \in \mathcal{I} \). Item (i) now follows from a straightforward computation:

(3) \[
\nabla_v(A_X Y) = (\nabla^v A)_X Y + A_Y A^*_X v - A_X A^*_Y v = (\nabla^v S)_Y v - A_X A^*_Y v = (\nabla^v S)_Y v + (\nabla^v X)_Y v,
\]

where equation (3) is valid for all \(w \in TF \) and the last equality follows from (2).

For item (ii), we get

\[
\langle \nabla_u(A_X Y), v \rangle = -\langle A_X A^*_Y u + (\nabla^v X)_Y u, v \rangle = -\langle (\nabla^v S)_Y u, v \rangle = -\langle u, (\nabla^v X)_Y v \rangle = \langle u, A_Y A^*_X v \rangle = 0.
\]
The first and fourth equalities follow from equations (3) and (2), respectively, and the last since $u \perp \text{im}(AX)$. Item (iii) follows from item (i) and equation (2), since $u \in \mathcal{T}$. Item (iv) follows from equation (3) and since $u \in \mathcal{T}$. □

Proposition 3.3. There is a function $f : F \to \mathbb{R}$ whose gradient is AXY.

Proof. Consider the 1-form $\alpha : TF \to \mathbb{R}, \alpha(u) = \langle AXY, u \rangle$. Then $\alpha = df$ for some f if and only if

$$d\alpha(u, v) = \langle \nabla_u(AXY), v \rangle - \langle \nabla_v(AXY), u \rangle = 0$$

for all $u, v \in TF$. But the latter holds by a straightforward computation by distinction of cases for $u, v \in TF = \mathcal{T} + \mathcal{T}^\perp$, using Lemma 3.2 and by observing that $(\nabla_X S)_Y : TF \to TF$ is a symmetric operator since S_Y is symmetric. □

References

[Bol07] Christian Boltner. On the structure of equidistant foliations of euclidean space. *arXiv preprint arXiv:0712.0245*, 2007.

[FGLT15] Luis Florit, Oliver Goertsches, Alexander Lytchak, and Dirk Toeben. Riemannian foliations on contractible manifolds. *Münster J. Math.*, 8:1–16, 2015.

[GW97] Detlef Gromoll and Gerard Walschap. Metric fibrations in euclidean space. *Asian Journal of Mathematics*, 1(4):716–728, 1997.

[GW01] Detlef Gromoll and Gerard Walschap. The metric fibrations of euclidean space. *J. Differential Geom.*, 57(2):233–238, 02 2001.

[GW09] Detlef Gromoll and Gerard Walschap. *Metric Foliations and Curvature*. Birkhäuser Verlag, Basel, 2009.

[Jim] William Jimenez. Riemannian submersions and lie groups.

[LW16] Alexander Lytchak and Burkhard Wilking. Riemannian foliations of spheres. *Geometry & Topology*, 20(3):1257–1274, 2016.

[Wei] Steffen Weil. Metric foliations of space forms of nonnegative sectional curvature.