We prove that a continuous image of a Radon-Nikodým compact of weight less than \(b\) is Radon-Nikodým compact. As a Banach space counterpart, subspaces of Asplund generated Banach spaces of density character less than \(b\) are Asplund generated. In this case, in addition, there exists a subspace of an Asplund generated space which is not Asplund generated which has density character exactly \(b\).

The concept of Radon-Nikodým compact, due to Reynov [12], has its origin in Banach space theory, and it is defined as a topological space which is homeomorphic to a weak* compact subset of the dual of an Asplund space, that is, a dual Banach space with the Radon-Nikodým property (topological spaces will be here assumed to be Hausdorff). In [9], the following characterization of this class is given:

Theorem 1. A compact space \(K\) is Radon-Nikodým compact if and only if there is a lower semicontinuous metric \(d\) on \(K\) which fragments \(K\).

Recall that a map \(f : X \times X \rightarrow \mathbb{R}\) on a topological space \(X\) is said to fragment \(X\) if for each (closed) subset \(L\) of \(X\) and each \(\varepsilon > 0\) there is a nonempty relative open subset \(U\) of \(L\) of \(f\)-diameter less than \(\varepsilon\), i.e. \(\sup \{f(x, y) : x, y \in U\} < \varepsilon\). Also, a map \(g : Y \rightarrow \mathbb{R}\) from a topological space to the real line is lower semicontinuous if \(\{y : g(y) \leq r\}\) is closed in \(Y\) for every real number \(r\).

It is an open problem whether a continuous image of a Radon-Nikodým compact is Radon-Nikodým. Arvanitakis [2] has made the following approach to this problem: if \(K\) is a Radon-Nikodým compact and \(\pi : K \rightarrow L\) is a continuous surjection, then we have a lower semicontinuous fragmenting metric \(d\) on \(K\), and if we want to prove that \(L\) is Radon-Nikodým compact, we should find such a metric on \(L\). A natural candidate is:

\[
d_1(x, y) = d(\pi^{-1}(x), \pi^{-1}(y)) = \inf \{d(t, s) : \pi(t) = x, \pi(s) = y\}.\]

The map \(d_1\) is lower semicontinuous and fragments \(L\) and it is a quasi metric, that is, it is symmetric and vanishes only if \(x = y\). But it is not a metric because, in general, it lacks triangle inequality. Consequently, Arvanitakis [2] introduced the

\[2000\ Mathematics\ Subject\ Classification.\ Primary:\ 46B26.\ Secondary:\ 46B22, 46B50, 54G99.\]

Key words and phrases. Radon-Nikodým compact, quasi Radon-Nikodým compact, countably lower fragmentable compact, Asplund generated space, weakly K-analytic space, weakly compactly generated space, cardinal \(b\), Martin’s axiom.

Author supported by FPU grant of SEEU-MEC of Spain.
following concept:

Definition 2. A compact space L is said to be *quasi Radon-Nikodým* if there exists a lower semicontinuous quasi metric which fragments L.

The class of quasi Radon-Nikodým compacta is closed under continuous images but it is unknown whether it is the same class as that of Radon-Nikodým compacta or even the class of their continuous images. At least other two superclasses of continuous images of Radon-Nikodým compacta appear in the literature. Reznichenko [1, p. 104] defined a compact space L to be *strongly fragmentable* if there is a metric d which fragments L such that each pair of different points of L possess disjoint neighbourhoods at a positive d-distance. It has been noted by Namioka [10] that the classes of quasi Radon-Nikodým and strongly fragmentable compacta are equal. The other superclass of continuous images of Radon-Nikodým compacta, called *countably lower fragmentable* compacta, was introduced by Fabian, Heisler and Matoušková [5]. In section 3, we recall its definition and we prove that this class is equal to the other two.

The main result in section 1 is the following:

Theorem 3. If K is a quasi Radon-Nikodým compact space of weight less than b, then K is Radon-Nikodým compact.

The weight of a topological space is the least cardinality of a base for its topology. We also recall the definition of cardinal b. In the set $\mathbb{N}^\mathbb{N}$ we consider the order relation given by $\sigma \leq \tau$ if $\sigma_n \leq \tau_n$ for all $n \in \mathbb{N}$. Cardinal b is the least cardinality of a subset of $\mathbb{N}^\mathbb{N}$ which is not σ-bounded for this order (a set is σ-bounded if it is a countable union of bounded subsets). It is consistent that $b > \omega_1$. In fact, Martin’s axiom and the negation of the continuum hypothesis imply that $c = b > \omega_1$, cf. [6, 11D and 14B]. It is also possible that $c > b > \omega_1$, cf. [17, section 5]. On the other hand, cardinal d is the least cardinality of a cofinal subset of $(\mathbb{N}^\mathbb{N}, \leq)$, that is, a set A such that for each $\sigma \in \mathbb{N}^\mathbb{N}$ there is some $\tau \in A$ such that $\sigma \leq \tau$. In a sense, the following proposition puts a rough bound on the size of the class of quasi Radon-Nikodým compacta with respect to Radon-Nikodým compacta.

Proposition 4. Every quasi Radon-Nikodým compact space embeds into a product of Radon-Nikodým compact spaces with at most d factors.

In section 2 we discuss the Banach space counterpart to Theorem 3. A Banach space V is Asplund generated, or GSG, if there is some Asplund space V' and a bounded linear operator $T : V' \to V$ such that $T(V')$ is dense in V. Our main result for this class is the following:
Theorem 5. Let V be a Banach space of density character less than b and such that the dual unit ball (B_{V^*}, ω^*) is quasi Radon-Nikodým compact, then V is Asplund generated.

The density character of a Banach space is the least cardinal of a norm-dense subset, and it equals the weight of its dual unit ball in the weak* topology.

Examples constructed by Rosenthal [13] and Argyros [4, section 1.6] show that there exist Banach spaces which are subspaces of Asplund generated spaces but which are not Asplund generated. However, since the dual unit ball of a subspace of an Asplund generated space is a continuous image of a Radon-Nikodým compact [4, Theorem 1.5.6], we have the following corollary to Theorem 5:

Corollary 6. If a Banach space V is a subspace of an Asplund generated space and the density character of V is less than b, then V is Asplund generated.

Also, a Banach space is weakly compactly generated (WCG) if it is the closed linear span of a weakly compact subset. The same examples mentioned above show that neither is this property inherited by subspaces. A Banach space V is weakly compactly generated if and only if it is Asplund generated and its dual unit ball (B_{V^*}, ω^*) is Corson compact [11], [14]. Having Corson dual unit ball is a hereditary property since a continuous image of a Corson compact is Corson compact [7], hence:

Corollary 7. If a Banach space V is a subspace of a weakly compactly generated space and the density character of V is less than b, then V is weakly compactly generated.

Corollary 7 can also be obtained from the following theorem, essentially due to Mercourakis [8]:

Theorem 8. If a Banach space V is weakly K-analytic and the density character of V is less than b, then V is weakly compactly generated.

The class of weakly K-analytic spaces is larger than the class of subspaces of weakly compactly generated spaces. We recall its definition in section 2. The result of Mercourakis [8, Theorem 3.13] is that, under Martin’s axiom, weakly K-analytic Banach spaces of density character less than c are weakly compactly generated, but his arguments prove in fact the more general Theorem 8. We give a more elementary proof of this theorem, obtaining it as a consequence of a purely topological result: Any K-analytic topological space of density character less than b contains a dense σ-compact subset. We also remark that it is not possible to generalize Theorem 8 for the class of weakly countably determined Banach spaces.

Cardinal b is best possible for Theorem 5, Theorem 8 and their corollaries, as it is shown by slight modifications of the mentioned example of Argyros [4, section 1.6]
and of the example of Talagrand [15] of a weakly K-analytic Banach space which is not weakly compactly generated, so that we get examples of density character exactly b.

For information about cardinals b and d we refer to [17]. Concerning Banach spaces, our main reference is [4].

I want to express my gratitude to José Orihuela for valuable discussions and suggestions and to Witold Marciszewski, from whom I learnt about cardinals b and d. I also thank Isaac Namioka and the referee for suggestions which have improved the final version of this article.

1. **Quasi Radon-Nikodým compacta of low weight**

In this section, we characterize quasi Radon-Nikodým compacta in terms of embeddings into cubes $[0,1]^\Gamma$ and from this, we will derive proofs of Theorem 3 and Proposition 4. Techniques of Arvanitakis [2] will play an important role in this section, as well as the following theorem of Namioka [9]:

Theorem 9. Let K be a compact space. The following are equivalent.

1. K is Radon-Nikodým compact.
2. There is an embedding $K \subset [0,1]^\Gamma$ such that K is fragmented by the uniform metric $d(x,y) = \sup_{\gamma \in \Gamma} |x_\gamma - y_\gamma|$.

Let $P \subset \mathbb{N}^\mathbb{N}$ be the set of all strictly increasing sequences of positive integers. Note that this is a cofinal subset of $\mathbb{N}^\mathbb{N}$. For each $\sigma \in P$ we consider the lower semicontinuous non decreasing function $h^\sigma : [0, +\infty] \rightarrow \mathbb{R}$ given by:

- $h^\sigma(0) = 0$,
- $h^\sigma(t) = \frac{1}{\sigma_n}$ whenever $\frac{1}{n+1} < t \leq \frac{1}{n}$,
- $h^\sigma(t) = \frac{1}{\sigma_1}$ whenever $t > 1$.

Also, if $f : X \times X \rightarrow \mathbb{R}$ is a map and $A, B \subset X$, we will use the notation $f(A,B) = \inf \{ f(x,y) : x \in A, y \in B \}$.

Theorem 10. Let K be a compact subset of the cube $[0,1]^\Gamma$. The following are equivalent:

1. K is quasi Radon-Nikodým compact.
2. There is a map $\sigma : \Gamma \rightarrow P$ such that K is fragmented by

$$f(x,y) = \sup_{\gamma \in \Gamma} h^{\sigma(\gamma)}(|x_\gamma - y_\gamma|)$$

which is a lower semicontinuous quasi metric.
PROOF: Observe that f in (2) is expressed as a supremum of lower semicontinuous functions, and therefore, it is lower semicontinuous. Also, $f(x, y) = 0$ if and only if $h^*(\gamma, t) = 0$ for all $\gamma \in \Gamma$ if and only if $|x_\gamma - y_\gamma| = 0$ for all $\gamma \in \Gamma$. Hence, f is indeed a lower semicontinuous quasi metric and it is clear that (2) implies (1). Assume now that K is quasi Radon-Nikodym compact and let $g : K \times K \to [0, 1]$ be a lower semicontinuous quasi metric which fragments K.

PROOF: Let $g_0 : [0, 1] \times [0, 1] \to [0, 1]$ be a lower semicontinuous quasi metric on $[0, 1]$. Then, there exists $\tau \in P$ such that $h^*(|t - s|) \leq g_0(t, s)$ for all $t, s \in [0, 1]$.

PROOF: We define τ recursively. Suppose that we have defined τ_1, \ldots, τ_m in such a way that if $|t - s| > \frac{1}{m+1}$, then $h^*(|t - s|) \leq g_0(t, s)$. Let

\[K_m = \left\{ (t, s) \in [0, 1] \times [0, 1] : |t - s| \geq \frac{1}{m+2} \text{ and } g_0(t, s) \leq \frac{1}{m} \right\} \]

Then, $\{K_m\}_{m=1}^\infty$ is a decreasing sequence of compact subsets of $[0, 1]^2$ with empty intersection. Hence, there is m_1 such that K_m is empty for $m \geq m_1$. We define $\tau_{n+1} = \max\{m_1, \tau_n + 1\}$.

Now, we state a lemma which is just a piece of the proof of [2, Proposition 3.2]. We include its proof for the sake of completeness.

Lemma 11. Let $g_0 : [0, 1] \times [0, 1] \to [0, 1]$ be a lower semicontinuous quasi metric on $[0, 1]$. Then, there exists $\tau \in P$ such that $h^*(|t - s|) \leq g_0(t, s)$ for all $t, s \in [0, 1]$.

Lemma 12. Let K, L be compact spaces, let $f : K \times K \to \mathbb{R}$ be a symmetric map which fragments K and $p : K \to L$ a continuous surjection. Then L is fragmented by $g(x, y) = f(p^{-1}(x), p^{-1}(y))$ and in particular, L is fragmented by any g' with $g' \leq g$.

PROOF: Let M be a closed subset of L and $\varepsilon > 0$. By Zorn’s lemma a set $N \subseteq K$ can be found such that $p : N \to M$ is onto and irreducible (that is, for every $N' \subseteq N$ closed, $p : N' \to M$ is not onto). We find $U \subseteq N$ a relative open subset of N of f-diameter less than ε. By irreducibility, $p(U)$ has nonempty relative interior in M. This interior is a nonempty relative open subset of M of g-diameter less than ε.

\[\square \]
In the sequel, we use the following notation: If $A \subset \Gamma$ are sets, d_A states for the pseudometric in $[0,1]^\Gamma$ given by $d_A(x,y) = \sup_{\gamma \in A} |x_\gamma - y_\gamma|$.

Lemma 13. Let K be a compact subset of the cube $[0,1]^\Gamma$ and let $\sigma : \Gamma \rightarrow P$ be a map such that the quasi metric

$$f(x,y) = \sup_{\gamma \in \Gamma} h^{\sigma(\gamma)}(|x_\gamma - y_\gamma|)$$

fragments K and such that $\sigma(\Gamma)$ is a σ-bounded subset of $\mathbb{N}^\mathbb{N}$. Then, K is Radon-Nikod´ ym compact. In addition, there exist sets $\Gamma_n \subset \Gamma$ such that $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ and each d_{Γ_n} fragments K.

PROOF: There is a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ such that each $\sigma(\Gamma_n)$ has a bound τ_n in $(\mathbb{N}^\mathbb{N}, \leq)$. We choose $\tau_n \in P$. First, we prove that each d_{Γ_n} fragments K. For every $n \in \mathbb{N}$, K is fragmented by the map

$$f_n(x,y) = \sup_{\gamma \in \Gamma_n} h^{\tau_n}(|x_\gamma - y_\gamma|) \leq f(x,y)$$

and

$$f_n(x,y) = \sup_{\gamma \in \Gamma_n} h^{\sigma(\gamma)}(|x_\gamma - y_\gamma|) \geq \sup_{\gamma \in \Gamma_n} h^{\tau_n}(|x_\gamma - y_\gamma|) = h^{\tau_n} \left(\sup_{\gamma \in \Gamma_n} |x_\gamma - y_\gamma| \right) = h^{\tau_n}(d_{\Gamma_n}(x,y)).$$

Hence, a set of f_n-diameter less than $\frac{1}{n}$ in K is a set of d_{Γ_n}-diameter less than $\frac{1}{n}$ and therefore, since f_n fragments K, also d_{Γ_n} fragments K.

Consider now $p_n : [0,1]^\Gamma \rightarrow [0,1]^\Gamma$ the natural projection and $K_n = p_n(K)$. By Lemma 12, since K is fragmented by f_n, K_n is fragmented by

$$g_n(x,y) = \sup_{\gamma \in \Gamma_n} h^{\sigma(\gamma)}(|x_\gamma - y_\gamma|).$$

and hence, K_n is Radon-Nikodým compact. Moreover, since $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$, K embeds into the product $\prod_{n \in \mathbb{N}} K_n$ and the class of Radon-Nikodým compacta is closed under taking countable products and under taking closed subspaces [9], so K is Radon-Nikodým compact.

PROOF OF THEOREM 3: If the weight of K is less than b, then K can be embedded into a cube $[0,1]^\Gamma$ with $|\Gamma| < b$. Any subset of $\mathbb{N}^\mathbb{N}$ of cardinality less than b is σ-bounded, so Theorem 3 follows directly from Theorem 10 and Lemma 13.

PROOF OF PROPOSITION 4: Let K be quasi Radon-Nikodým compact, suppose K is embedded into some cube $[0,1]^\Gamma$ and let $\sigma : \Gamma \rightarrow P$ be as in Theorem 10. Let $A \subset P$ be a cofinal subset of P of cardinality d. For $\alpha \in A$, let

$$\Gamma_\alpha = \{ \gamma \in \Gamma : \sigma(\gamma) \leq \alpha \},$$

let $p_\alpha : [0,1]^\Gamma \rightarrow [0,1]^{\Gamma_\alpha}$ be the natural projection, and let $K_\alpha = p_\alpha(K)$. Again, since $\Gamma = \bigcup_{\alpha \in A} \Gamma_\alpha$, K embeds into the product $\prod_{\alpha \in A} K_\alpha$. By Lemma 12, K_α is
fragmented by
\[g_\alpha(x, y) = \sup_{\gamma \in I_\alpha} h^{\sigma(\gamma)}(|x_\gamma - y_\gamma|) \]
The set \(\{\sigma(\gamma) : \gamma \in I_\alpha\} \) is a bounded, and hence \(\sigma \)-bounded, set. Hence, by Lemma 13, \(K_\alpha \) is Radon-Nikodým compact. \(\square \)

We note that from Lemma 13, we obtain something stronger than Theorem 3:

Theorem 14. For every quasi Radon-Nikodým compact subset of a cube \([0, 1]^\Gamma\) with \(|\Gamma| < b\) there is a countable decomposition \(\Gamma = \bigcup_{n \in \mathbb{N}} I_n \) such that \(d_{I_n} \) fragments \(K \) for all \(n \in \mathbb{N} \).

A similar result holds also for generalized Cantor cubes (cf. [5, Theorem 3], [2, Theorem 3.6]): If \(K \) is a quasi Radon-Nikodým compact subset of \([0, 1]^\Gamma\), then there is a decomposition \(\Gamma = \bigcup_{n \in \mathbb{N}} I_n \) such that \(d_{I_n} \) fragments \(K \) for all \(n \in \mathbb{N} \). We give now an example which shows that this phenomenon does not happen for general cubes, even if the compact \(K \) has weight less than \(b \) or it is dimensionless:

Proposition 15. There exist a set \(\Gamma \) of cardinality \(b \) and a compact subset \(K \) of \([0, 1]^\Gamma\) homeomorphic to the metrizable Cantor cube \([0, 1]^N\) such that for any decomposition \(\Gamma = \bigcup_{n \in \mathbb{N}} I_n \) there exists \(n \in \mathbb{N} \) such that \(d_{I_n} \) does not fragment \(K \).

Proof: First, we take \(\Gamma \) a subset of \(\mathbb{N}^3 \) of cardinality \(b \) which is not \(\sigma \)-bounded. We call \(A = \{\gamma_n : \gamma \in I, n \in \mathbb{N}\} \) the set of all terms of elements of \(I \). We define \(K' = \{x \in [0, 1]^\Gamma \times \mathbb{N} : x_{\gamma,n} = x_{\gamma',n'} \ \text{whenever} \ \gamma_n = \gamma'_n\} \).

Observe that \(K' \) is homeomorphic to \([0, 1]^N\): namely, for each \(a \in A \) choose some \(\gamma^a, n^a \in \Gamma \times \mathbb{N} \) such that \(\gamma^a_n = a \); in this case we have a homeomorphism \(K' \rightarrow [0, 1]^A \) given by \(x \mapsto (x_{\gamma^a,n^a})_{a \in A} \).

Now, we consider the embedding \(\phi : [0, 1]^\Gamma \times \mathbb{N} \rightarrow [0, 1]^\Gamma \) given by
\[\phi(x) = \left(\sum_{n \in \mathbb{N}} \left(\frac{2}{3} \right)^n x_{\gamma,n} \right)_{\gamma \in \Gamma} \]
We claim that the space \(K = \phi(K') \subset \mathbb{N} \) verifies the statement. Let \(\Gamma = \bigcup_{n \in \mathbb{N}} I_n \) any countable decomposition of \(I \). Since \(\Gamma \) is not \(\sigma \)-bounded, there is some \(n \in \mathbb{N} \) such that \(I_n \) is not bounded. For this fixed \(n \), since \(I_n \) is not bounded, there is some \(m \in \mathbb{N} \) such that the set \(S = \{\gamma_m : \gamma \in I_n\} \subset A \) is infinite. We consider \(K_0 = \{x \in K' : x_{\gamma,k} = 0 \ \text{whenever} \ \gamma_k \notin S\} \subset K \).

By the same arguments as for \(K' \), \(K_0 \) is homeomorphic to the Cantor cube \([0, 1]^N\) by a map \(K_0 \rightarrow [0, 1]^S \) given by \(x \mapsto (x_{\gamma,n})_{a \in S} \). Now, we take two different elements \(x, y \in K_0 \). Then, there must exist some \(\gamma \in I_n \) such that \(x_{\gamma,m} \neq y_{\gamma,m} \), and this implies that \(|\phi(x)_\gamma - \phi(y)_\gamma| \geq 3^{-m} \) and therefore \(d_{I_n}(\phi(x), \phi(y)) \geq 3^{-m} \).
This means that any nonempty subset of \(\phi(K_0) \) of \(d_{I_n} \)-diameter less than \(3^{-m} \) must be a singleton. If \(d_{I_n} \) fragmented \(K \), this would imply that \(\phi(K_0) \) has an isolated point, which contradicts the fact that it is homeomorphic to \([0, 1]^N\). \(\square \)
2. Banach spaces of low density character

In this section we find that cardinal b is the least possible density character of Banach spaces which are counterexamples to several questions. First, we introduce some notation: If A is a subset of a Banach space V, we call d_A to the pseudometric $d_A(x^*, y^*) = \sup_{x \in A} |x^*(x) - y^*(x)|$ on B_{V^*}. Also, we recall the following definition [4, Definition 1.4.1]:

Definition 16. A nonempty bounded subset M of a Banach space V is called an Asplund set if for each countable set $A \subset M$ the pseudometric space (B_{V^*}, d_A) is separable.

By [3, Theorem 2.1], M is an Asplund subset of V if and only if d_M fragments (B_{V^*}, w^*). Also, by [4, Theorem 1.4.4], a Banach space V is Asplund generated if and only if it is the closed linear span of an Asplund subset.

PROOF OF THEOREM 5: Let Γ be a dense subset of the unit ball B_V of V of cardinality less than b. Then, we have a natural embedding $(B_{V^*}, w^*) \subset [-1, 1]^\Gamma$. Since (B_{V^*}, w^*) is quasi Radon-Nikodym compact, we apply Theorem 14 and we have $\Gamma = \bigcup \Gamma_n$ and each d_{Γ_n} fragments (B_{V^*}, w^*). This means that for each n, Γ_n is an Asplund set, and by [4, Lemma 1.4.3], $M = \bigcup_{n \in \mathbb{N}} \Gamma_n$ is an Asplund set too.

Finally, since the closed linear span of M is V, by [4, Theorem 1.4.4], V is Asplund generated. □

We recall now the concepts that we need for the proof of Theorem 8. We follow the terminology and notation of [4, sections 3.1, 4.1]. Let X and Y be topological spaces. A map $\phi: X \to 2^Y$ from X to the subsets of Y is said to be an usco if the following conditions hold:

1. $\phi(x)$ is a compact subset of Y for all $x \in X$.
2. $\{x : \phi(x) \subset U\}$ is open in X, for every open set U of Y.

In this situation, for $A \subset X$ we denote $\phi(A) = \bigcup_{x \in A} \phi(x)$.

A completely regular topological space X is said to be K-analytic if there exists an usco $\phi: \mathbb{N}^\mathbb{N} \to 2^X$ such that $\phi(\mathbb{N}^\mathbb{N}) = X$. A Banach space is weakly K-analytic if it is a K-analytic space in its weak topology.

We note that if a Banach space V contains a weakly σ-compact subset M which is dense in the weak topology, then V is WCG. This is because if $M = \bigcup_{n=1}^\infty K_n$ being K_n a weakly compact set bounded by $c_n > 0$, then $\{0\} \cup \bigcup_{n=1}^\infty K_n$ is a weakly compact subset of V whose linear span is (weakly) dense in V. Hence, Theorem 8 is deduced from the following:

Proposition 17. If X is a K-analytic topological space which contains a dense subset of cardinality less than b, then X contains a dense σ-compact subset.

PROOF: We have an usco $\phi: \mathbb{N}^\mathbb{N} \to 2^X$ with $\phi(\mathbb{N}^\mathbb{N}) = X$ and also a set $\Sigma \subset \mathbb{N}^\mathbb{N}$ such that $|\Sigma| < b$ and $\phi(\Sigma)$ is dense in X. Any subset of $\mathbb{N}^\mathbb{N}$ of cardinal less than...
\(b \) is contained in a \(\sigma \)-compact subset of \(\mathbb{N}^\mathbb{N} \) [17, Theorem 9.1]. Uscos send compact sets onto compact sets, so if \(\Sigma' \supset \Sigma \) is \(\sigma \)-compact, then \(\phi(\Sigma') \) is a dense \(\sigma \)-compact subset of \(X \). \(\square \)

We recall that a completely regular topological space \(X \) is \(K \)-countably determined if there exists a subset \(\Sigma \) of \(\mathbb{N}^\mathbb{N} \) and an usco \(\phi : \Sigma \rightarrow 2^X \) such that \(\phi(\Sigma) = X \) and that a Banach space is weakly countably determined if it is \(K \)-countably determined in its weak topology. Talagrand [16] has constructed a Banach space which is weakly countably determined but which is not weakly \(K \)-analytic. A slight modification of this example gives a similar one with density character \(\omega_1 \). This shows that no analogue of Theorem 8 is possible for weakly countably determined Banach spaces. The change in the example consists in substituting the set \(T \) considered in [16, p. 78] by any subset \(T' \subseteq T \) of cardinal \(\omega_1 \) such that \(\{ o(X) : X \in T' \} \) is uncountable and \(A \) by \(A' = \{ A \subseteq T' : A \in A_1 \} \) (the notations are explained in [16]).

Now, we turn to the fact that cardinal \(b \) is best possible in Theorem 5, Theorem 8 and their corollaries. We fix a subset \(S \) of \(\mathbb{N}^\mathbb{N} \) of cardinality \(b \) which is not \(\sigma \)-bounded.

Following the exposition of the example of Argyros in [4, section 1.6] we just substitute the space \(Y = \overline{\prod}_{\sigma} \{ \pi_\sigma : \sigma \in \mathbb{N}^\mathbb{N} \} \) in [4, Theorem 1.6.3] by \(Y' = \overline{\prod}_{\sigma} \{ \pi_\sigma : \sigma \in S \} \) and we obtain a Banach space of density character \(b \) which is a subspace of a WCG space \(C(K) \) but which is not Asplund generated. The same arguments in [4, section 1.6] hold just changing \(\mathbb{N}^\mathbb{N} \) by \(S \) where necessary. Only the proof of [4, Lemma 1.6.1] is not good for this case. It must be substituted by the following:

Lemma 18. Let \(\Gamma_n, n \in \mathbb{N} \), be any subsets of \(S \) such that \(\bigcup_{n \in \mathbb{N}} \Gamma_n = S \). Then there exist \(n, m \in \mathbb{N} \) and an infinite set \(A \in \mathcal{A}_m \) such that \(A \subseteq \Gamma_n \).

Here, as in [4, section 1.6], \(\mathcal{A}_m \) is the family of all subsets \(A \subseteq \mathbb{N}^\mathbb{N} \) such that if \(\sigma, \tau \in A \) and \(\sigma \neq \tau \), then \(\sigma_i = \tau_i \) if \(i \leq m \) and \(\sigma_{m+1} \neq \tau_{m+1} \). Also, \(\mathcal{A} = \bigcup_{m=1}^{\infty} \mathcal{A}_m \).

PROOF OF LEMMA 18: We consider \(\Gamma_{i,j} = \{ \sigma \in \Gamma_i : \sigma_1 = j \} \), \(i, j \in \mathbb{N} \). Note that \(S = \bigcup_{j} \Gamma_{i,j} \). Since \(S \) is not \(\sigma \)-bounded, there exist \(n, l \) with \(\Gamma_{n,l} \) unbounded. This implies that for some \(m \), the set \(\{ \sigma_m : \sigma \in \Gamma_{n,l} \} \) is infinite. We take \(m \) the least integer with this property \((m > 1) \). Let \(B \subseteq \Gamma_{n,l} \) be an infinite set such that \(\sigma_m \neq \sigma_m' \) for \(\sigma, \sigma' \in B \), \(\sigma \neq \sigma' \). Since all \(\sigma_k \) with \(\sigma \in B \), \(k < m \), lie in a finite set, an infinite set \(A \subseteq B \) can be chose such that \(A \in \mathcal{A}_{m-1} \). \(\square \)

On the other hand, if we follow the proof in [4, section 4.3] that the Banach space \(C(K) \) of Talagrand is weakly \(K \)-analytic but not WCG, and we change \(K \) in [4, p. 76] by \(K' = \{ X, A : A \in A, A \subseteq S \} \subseteq \{ 0, 1 \}^S \) then \(C(K') \) still verifies this conditions and has density character \(b \). Observe that \(C(K') \) is weakly \(K \)-analytic because \(K' \) is a retract of the original \(K \). The fact that \(C(K') \) is not WCG (not even a subspace of a WCG space) follows from [4, Theorem 4.3.2] and Lemma 18 above by the same arguments as in [4, p. 78].
3. COUNTABLY LOWER FRAGMENTABLE COMPACTA

In this section we prove that the concept of quasi Radon Nikodým compact [2] is equivalent to that of countably lower fragmentable compact [5]. The main result for this class in [5] is that if K is countably lower fragmentable, then so is $(B_{C(K)^*}, w^*)$. We note that, with these two facts at hand, together with the fact that if $C(K)$ is Asplund generated, then K is Radon-Nikodým [4, Theorem 1.5.4], Theorem 3 is deduced from Theorem 5.

We need some notation: if K is a compact space and $A \subset C(K)$ is a bounded set of continuous functions over K, we define the pseudometric d_A on K as $d_A(x, y) = \sup_{f \in A} |f(x) - f(y)|$. If X is a topological space, $d : X \times X \rightarrow \mathbb{R}$ is a map, and Δ is a positive real number, it is said that d Δ-fragments X if for each subset L of X there is a relative open subset U of L of d-diameter less than or equal to Δ.

Definition 19. A compact space K is said to be countably lower fragmentable if there are bounded subsets $\{A_{n,p} : n, p \in \mathbb{N}\}$ of $C(K)$ such that $C(K) = \bigcup_{n \in \mathbb{N}} A_{n,p}$ for every $p \in \mathbb{N}$, and the pseudometric $d_{A_{n,p}} \frac{1}{p}$-fragments K.

This is the definition as it appears in [5]. However, variable p is superfluous in it. If the sets $A_{n,1}$ exist, it is sufficient to define $A_{n,p} = \{\frac{1}{p} f : f \in A_{n,1}\}$.

On the other hand, we recall a concept introduced by Namioka [9]: For a topological space K, a set $L \subset K \times K$ is said to be an almost neighborhood of the diagonal if it contains the diagonal $\Delta_K = \{(x, x) : x \in K\}$ and satisfies that for every nonempty subset X of K there is a nonempty relative open subset U of X such that $U \times U \subset L$. The use of this was suggested to us by I. Namioka and simplifies our original proof.

Theorem 20. For a compact subset K of $[0, 1]^\Gamma$ the following are equivalent:

1. K is quasi Radon-Nikodým compact
2. K is countably lower fragmentable.
3. There are subsets $\Gamma_{n,p}, n, p \in \mathbb{N}$, of Γ such that $d_{\Gamma_{n,p}} \frac{1}{p}$-fragments K for every $n, p \in \mathbb{N}$.

Proof: Suppose K is quasi Radon-Nikodým compact and let ϕ be a lower semicontinuous quasi metric which fragments K. Then, we just define $A_{n,p} = \{f \in C(K) : |f(x) - f(y)| < \frac{1}{p}$ whenever $\phi(x, y) \leq \frac{1}{n}\} \cap \{f : \|f\|_{\infty} \leq n\}$

Clearly, $d_{A_{n,p}} \frac{1}{p}$-fragments K because any subset of K of ϕ-diameter less than $\frac{1}{n}$ has $d_{A_{n,p}}$-diameter less than $\frac{1}{p}$, and we know that ϕ fragments K. On the other hand, for a fixed $p \in \mathbb{N}$, in order to prove that $C(K) = \bigcup_{n \in \mathbb{N}} A_{n,p}$, observe that, if $f \in C(K)$, then

$$C_n = \{(x, y) \in K \times K : |f(x) - f(y)| \geq \frac{1}{p} \text{ and } \phi(x, y) \leq \frac{1}{n}\}$$
is a decreasing sequence of compact subsets of $K \times K$ with empty intersection so there is some $n > \|f\|_\infty$ such that C_n is empty, and then, $f \in A_{n,p}$.

That (2) implies (3) is evident, just to take $\Gamma_{n,p} = A_{n,p} \cap \Gamma$ whenever $A_{n,p}$, $n, p \in \mathbb{N}$ are the sets in the definition of countably lower fragmentability.

Now, suppose (3). For every $n, p \in \mathbb{N}$, since $d_{A_{n,p}} \frac{1}{p}$-fragments K, this means that the set $C_{n,p} = \{(x, y) \in K \times K : d_{\Gamma_{n,p}}(x, y) \leq \frac{1}{p}\}$ is an almost neighborhood of the diagonal which, in addition, is closed. On the other hand, observe that, for each $n, p \in \mathbb{N}$, $(x, y) \in C_{n,p}$ if and only if $|x_\gamma - y_\gamma| \leq \frac{1}{p}$ for all $\gamma \in \Gamma_{n,p}$ so that

$$\bigcap_{n, p \in \mathbb{N}} C_{n,p} = \bigcap_{p \in \mathbb{N}} \left\{ (x, y) : |x_\gamma - y_\gamma| \leq \frac{1}{p} \forall \gamma \in \bigcup_{n \in \mathbb{N}} \Gamma_{n,p} = \Gamma \right\} = \Delta_K$$

Now, K is quasi Radon-Nikodým by virtue of [10, Theorem 1], which states that K is quasi Radon-Nikodým compact if and only if there is a countable family of closed almost neighborhoods of the diagonal whose intersection is the diagonal Δ_K. □

References

[1] A. V. Arkhangel’ski˘ı, General topology. II, Encyclopaedia of Mathematical Sciences, vol. 50, Springer-Verlag, Berlin, 1996.
[2] A. D. Arvanitakis, Some remarks on Radon-Nikodým compact spaces, Fund. Math. 172 (2002), no. 1, 41–60.
[3] B. Cascales, I. Namioka, and J. Orihuela, The Lindelof property in Banach spaces, Studia Math. 154 (2003), no. 2, 165–192.
[4] M. Fabian, Gâteaux differentiability of convex functions and topology, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1997, Weak Asplund spaces, A Wiley-Interscience Publication.
[5] M. Fabian, M. Heisler, and E. Matoušková, Remarks on continuous images of Radon-Nikodým compacta, Comment. Math. Univ. Carolin. 39 (1998), no. 1, 59–69.
[6] D. H. Fremlin, Consequences of Martin’s axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press, Cambridge, 1984.
[7] S.P. Gul’ko, On properties of subsets of Σ-products, Sov. Math. Dokl. 18 (1977), no. 1, 1438–1442.
[8] S. Mercourakis and E. Stamati, A new class of weakly \mathcal{K}-analytic Banach spaces, Mathematica (to appear).
[9] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematica 34 (1987), no. 2, 258–281.
[10], On generalizations of Radon-Nikodým compact spaces, Topology Proceedings 26 (2002), 741–750.
[11] J. Orihuela, W. Schachermayer, and M. Valdivia, Every Radon-Nikodým Corson compact space is Eberlein compact, Studia Math. 98 (1991), no. 2, 157–174.
[12] O. I. Reynov, On a class of Hausdorff compacts and GSG Banach spaces, Studia Math. 71 (1981/82), 294–300.
[13] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83–111.
[14] C. Stegall, Spaces of Lipschitz functions on Banach spaces, Functional analysis (Essen, 1991), Lecture Notes in Pure and Appl. Math., vol. 150, Dekker, New York, 1994, pp. 265–278.
[15] M. Talagrand, Espaces de Banach faiblement \mathcal{K}-analytiques, Ann. of Math. (2) 110 (1979), no. 3, 407–438.
[16], A new countably determined Banach space, Israel J. Math. 47 (1984), no. 1, 75–80.
[17] E. K. van Douwen, *The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167.

Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo (Murcia), Spain

E-mail address: avileslo@um.es