Convex polygons and separation of convex sets

Eduardo Rivera-Campo1 and Jorge Urrutia2

1Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa, erc@xanum.uam.mx
2Instituto de Matemáticas, Universidad Nacional Autónoma de México, urrutia@matem.uam.mx

Abstract

We prove that for any collection F of $n \geq 2$ pairwise disjoint compact convex sets in the plane there is a pair of sets A and B in F such that any line that separates A from B separates either A or B from a subcollection of F with at least $n/18$ sets.

Keywords.- Convex polygon. Plane Compact Convex Set. Separating line.

1 Introduction

H. Tverberg5 proved that for each positive integer k, there is a minimum integer $f(k)$ such that for every collection F of $f(k)$ or more plane compact convex sets with pairwise disjoint interiors, there is a line that separates one set in F from a subcollection of F with at least k sets. R. Hope and M. Katchalski3 showed that $3k + 1 \leq f(k) \leq 12k - 1$.

Later E. Rivera-Campo and J. Töröcsik4 proved that in any collection F of $n \geq 5$ pairwise disjoint compact convex sets in the plane, there is a pair of sets A and B such that any line that separates A from B separates either A or B from at least $\frac{n+28}{30}$ sets in F. In this paper we give a higher lower bound of $\frac{n}{18}$ sets in F for any collection F of $n \geq 2$ sets.

*Partially supported by Conacyt, México.
2 Preliminary results

H. Edelsbrunner et al [1] proved the following theorem, see L. Fejes-Toth [2] for a related result.

Theorem 1. Any collection of \(n \geq 3 \) compact, convex and pairwise disjoint sets in the plane may be covered with non-overlapping convex polygons with a total of not more than \(6n - 9 \) sides. Furthermore no more than \(3n - 6 \) distinct slopes are required.

We adapt part of the proof given in [1] to obtain the following result.

Lemma 1. Let \(\mathcal{P} = \{P_1, P_2, \ldots, P_n\} \) be a collection of \(n \geq 3 \) pairwise disjoint convex polygons in the plane. There exists a collection \(\mathcal{R} = \{R_1, R_2, \ldots, R_n\} \) of pairwise non-overlapping convex polygons such that:

1. For \(i = 1, 2, \ldots, n \), \(P_i \) is contained in \(R_i \).
2. For \(i = 1, 2, \ldots, n \), each side of \(R_i \) supports a side of \(P_i \).
3. The total number of sides among polygons \(R_1, R_2, \ldots, R_n \) is at most \(9n - 9 \).

Proof. A side \(s \) of a polygon \(P_i \in \mathcal{P} \) is reducible with respect to \(\mathcal{P} \) if the triangle \(t_s \) (not containing \(P_i \)), bounded by \(s \) and the lines supporting the sides of \(P_i \) incident to \(s \), does not intersect the interior of any another polygon \(P_j \). Equivalently, a side \(s \) of a polygon \(P_i \in \mathcal{P} \) is reducible with respect to \(\mathcal{P} \) if it vanishes before reaching the interior of a polygon \(P_j \) when it is translated in the direction orthogonal to \(s \) and away from \(P_i \) (see Fig. 1).

![Figure 1: Polygon \(P \) with a reducible side \(s \).](image-url)
We modify P by growing, one at a time, polygons in P as follows: if some polygon $P_i \in P$ has a reducible side s with respect to P substitute P_i in P with polygon $P_i \cup t_s$. Repeat this until no polygon in P has a reducible side. Denote by $\mathcal{R} = \{R_1, R_2, \ldots, R_n\}$ the family of polygons thus obtained.

It is clear that \mathcal{R} satisfies conditions 1) and 2), we claim it also satisfies condition 3. To prove this consider a third family $Q = \{Q_1, Q_2, \ldots, Q_n\}$ of convex polygons obtained from \mathcal{R} by further growing polygons R_1, R_2, \ldots, R_n in the following way.

A side s of a polygon R_i in \mathcal{R} is free with respect to \mathcal{R} if the open polygonal region, not containing R_i, which is determined by s and the lines supporting the two sides of R_i adjacent to s contains no points of polygons in \mathcal{R}.

Let C be a circle containing all polygons in \mathcal{R}. Starting with the non-free sides of polygons $R_i \in \mathcal{R}$, translate one at a time a side s of a polygon $R_i \in \mathcal{R}$ (also in the direction orthogonal to s and away from R_i) as far as possible without intersecting the interior of another (possibly already grown) polygon R_j or the exterior of C (see Fig. 2).

![Figure 2: Side s of R_i reaches a polygon R_j or reaches circle C.]

Stop when no side can be translated as indicated and let $Q = \{Q_1, Q_2, \ldots, Q_n\}$ where, for $i = 1, 2, \ldots, n$, Q_i is the polygon obtained from R_i in this manner. We claim that if C is chosen large enough, then each polygon in Q
contains at most 3 free sides and all non free sides of a polygon \(Q_i \) in \(Q \) are in contact with a polygon \(Q_j \) with \(i \neq j \).

By the choice of \(R \) no side of a polygon \(R_j \) vanishes, therefore for \(i = 1, 2, \ldots, n \) the number of sides of \(R_i \) is equal to the number of sides of \(Q_i \).

We define a plane graph \(G \) with one vertex \(v_i \) placed in the interior of each polygon \(Q_i \in Q \) and a vertex \(v_{n+1} \) placed outside circle \(C \). The edge set of \(G \) consists of 6 types of edges as follows:

a) If a side of a polygon \(Q_i \) and a side of a polygon \(Q_j \) have a segment \(l \) in common choose an arbitrary point \(p \) in \(l \) and draw an edge \(v_i v_j \) through \(p \) as in Fig. 3 (left).

b) If a vertex \(p \) of a polygon \(Q_i \) lies in the interior of a side of a polygon \(Q_j \) and \(p \) is not a vertex of a polygon in \(Q \) other than \(Q_i \), then draw an edge \(v_i v_j \) through \(p \) as in Fig. 3 (center).

c) If two or more polygons \(Q_{i_1}, Q_{i_2}, \ldots, Q_{i_r} \) share a vertex \(p \) which lies in the interior of a side of a polygon \(Q_j \) and \(p \) is not a point of any polygon \(Q_k \) other than \(Q_{i_1}, Q_{i_2}, \ldots, Q_{i_r} \), then there is a neighbourhood \(N \) of \(p \) containing no points of polygons \(Q_k \) with \(k \neq j, i_1, i_2, \ldots, i_r \). In this case draw a cycle with edges \(v_j v_{i_1}, v_{i_1} v_{i_2}, v_{i_2} v_{i_3}, \ldots, v_{i_{r-1}} v_i, v_i v_j \) as in Fig. 3 (right).

d) If three or more polygons \(Q_{i_1}, Q_{i_2}, \ldots, Q_{i_r} \) share a vertex \(p \) and \(p \) is not a point of any polygon \(Q_k \) other than \(Q_{i_1}, Q_{i_2}, \ldots, Q_{i_r} \), then there is a neighbourhood \(N \) of \(p \) containing no points of any polygon \(Q_k \) with \(k \neq i_1, i_2, \ldots, i_r \). In this case draw a cycle with edges \(v_{i_1} v_{i_2}, v_{i_2} v_{i_3}, \ldots, v_{i_{r-1}} v_i, v_i v_1 \) as in Fig. 3 (left).

e) If two polygons \(Q_i \) and \(Q_j \) share a vertex \(p \) and \(p \) is not a point of any polygon in \(R \) other than \(Q_i \) and \(Q_j \), then draw an edge \(v_i v_j \) through \(p \) as in Fig. 4 (right).

f) For each free side \(s \) of a polygon \(Q_i \) add an edge \(v_i v_{n+1} \) drawn through an interior of point \(p \) in \(s \).
Notice that edges of type f) are the only possible multiple edges of G. Therefore G is a plane multigraph with $n + 1$ vertices and $m \leq (3(n + 1) - 6) + (x_2 + 2x_3) = (3n - 3) + (x_2 + 2x_3)$ edges, where for $i = 2, 3$, x_i denotes the number of polygons in Q with i free sides.

We say that an edge $e = v_i v_j$ of G intersects a side s of a polygon in Q.

Figure 4: Edges type d) (left) and edge type e) (right).

Figure 5: Graph G with $n = 18$, $x_1 = 6$, $x_2 = 2$, $m_e = 1$ and $m_f = 10$.

We say that an edge $e = v_i v_j$ of G intersects a side s of a polygon in Q.

5
if e is drawn through either an interior point of s or through a vertex of s. Each non free side among polygons in Q is intersected by at least one edge of G of type a), b), c), d) or e) and each free side is intersected by an edge of type f). We claim that if an edge $v_i v_j$ of G is of type e) then two of the 4 sides intersected by $v_i v_j$ are intersected by at least another edge of G.

Proof of Claim. Let $v_i v_j$ be an edge of G of type e). Then either two sides s, t of Q_i (of Q_j) or one side s of Q_i and one side t of Q_j are such that the lines supporting s and t separate Q_i and Q_j (see Fig. 6).

![Figure 6: Lines supporting s and t separate Q_i and $Q_j.$](image)

Without loss of generality we assume the line supporting a side s of Q_i separates Q_i and Q_j. Let b be the other side of Q_i incident in the common vertex p of Q_i and Q_j. Then side b must contain a point of a polygon Q_k other than Q_i and Q_j, otherwise b could be translated away from Q_i in the direction orthogonal to b which is not possible by the properties of Q (see Fig. 7). This means that side b is intersected by an edge of G other than edge $v_i v_j$.

![Figure 7: Side b could be translated away from $Q_i.$](image)

Analogously a side $c \neq b$, incident with t, is intersected by an edge of G other than $v_i v_j$. □

Let T denote the total number of sides among polygons in Q. Also let m, m_e and m_f denote the number of edges of G, the number of edges of G of
type e) and the number of edges of G of type f), respectively. Since polygons in Q contain at most 3 free edges, $m_f = x_1 + 2x_2 + 3x_3$, where for $i = 1, 2, 3$ x_i is the number of polygons in Q containing i free edges.

In order to bound the number of sides among polygons in Q we add the number of sides intersected by edges of G and subtract the number of sides intersected by at least two edges of G (2 sides for each edge of type e)). Considering that edges of types a), b), c), and d), intersect at most 3 sides; edges of type e) intersect 4 sides and edges of type f) intersect one side, we have:

$$T \leq (3(m - (m_e + m_f)) + 4m_e + m_f) - 2m_e$$
$$= 3m - m_e - 2m_f$$
$$\leq 3m - 2m_f$$
$$\leq 3((3n - 3) + (x_2 + 2x_3)) - 2(x_1 + 2x_2 + 3x_3)$$
$$= 9n - 9 - 2x_1 - x_2$$
$$\leq 9n - 9.$$

Consider the following family of plane geometric graphs G_t, $t = 1, 2, \ldots$ given by Edelsbrunner et al. [1] where it is used to show that the bounds in the number of sides and slopes on Theorem 1 are tight.

G_1 is the graph with 7 vertices shown on Fig. 8 (left); for $t \geq 1$, G_{t+1} is the graph obtained from G_t as in Fig. 8 (right). For $k \geq 1$ the graph G_k is a plane geometric graph with $n = 3k$ internal faces. The three inner-most faces are quadrilaterals while all other faces are hexagons.

Figure 8: Left: Graph G_1. Right: Graph G_{t+1} obtained from graph G_t (placed upside down inside the dotted triangle).
Place an hexagon inside each of the three inner-most faces of G_k as in Fig. 9 (left), an octagon inside each outer-most internal face of G_k as in Fig. 9 (right) and a nonagon inside each other internal face of G_k as in Fig. 10.

Figure 9: Hexagon inside inner-most face of G_k. Octagon inside outer-most internal face of G_k.

Figure 10: Nonagon inside internal face of G_k.

Since each face of G_k has an even number of sides, the placement of the polygons described above may be done in such a way that for each internal edge e of G_k a side s_e of the polygon R_i lying on one side of e is parallel (and closed enough) to e while a vertex v_e of the polygon R_j lying on the other side of e lies on e as in Fig. 11.

Let $\mathcal{R} = \{R_1, R_2, \ldots, R_n\}$ be the set of polygons described above. The total number of sides among polygons in \mathcal{R} is

$$m = 3(6) + 3(8) + (n - 6)(9) = 9n - 12$$

Each side among polygons in \mathcal{R} is relevant with respect to \mathcal{R}, therefore our bound on the number of sides in Lemma 1 is almost tight.
3 Main Results

In this section we present our main results.

Lemma 2. Let $\mathcal{P} = \{P_1, P_2, \ldots, P_n\}$ be a collection of $n \geq 3$ pairwise disjoint convex polygons in the plane. There is a side s of a polygon P_i such that the line supporting s separates P_i from a subcollection \mathcal{F} of \mathcal{P} with at least $\frac{n}{18}$ polygons.

Proof. Let $\mathcal{R} = \{R_1, R_2, \ldots, R_n\}$ be a collection of pairwise disjoint convex polygons satisfying conditions 1), 2) and 3) in Lemma 1 and let $\mathcal{L} = \{l_1, l_2, \ldots, l_m\}$ be the (multi)set of lines supporting the sides of each polygon in \mathcal{R}. We include c copies of a line l if l supports sides of c polygons in \mathcal{R}. Therefore we can associate a unique polygon $R_i(k)$ to each line $l_k \in \mathcal{L}$ such that a side of $R_i(k)$ is supported by l_k. For $k = 1, 2, \ldots, m$ let H_k^- be the closed halfplane determined by l_k that does not contain $R_i(k)$.

Define a bipartite graph F with a vertex v_j for each polygon $R_j \in \mathcal{R}$ and a vertex w_k for each line $l_k \in \mathcal{L}$. Graph F has an edge $v_j w_k$ if polygon R_j is contained in H_k^-. For each pair of polygons R_i, R_j there is at least one side s of one of them such that the line supporting s separates R_i from R_j. Therefore graph F has at least one edge for each pair $\{i, j\}$ with $1 \leq i < j \leq n$. This implies that there is a vertex w_k whose degree in F is at least $\left(\begin{array}{c} n \end{array}\right)/m \geq \left(\begin{array}{c} n \end{array}\right)/(9n - 9) = n/18$.

Figure 11: Polygons on both sides of an internal edge of G_k.

This means that the line \(l_k \) separates polygon \(R_{i(k)} \) from at least \(n/18 \) polygons in \(\mathcal{R} \). By Property 2) in Lemma 1, line \(l_k \) supports a side of polygon \(P_{i(k)} \).

\[\square \]

Theorem 2. In any collection \(\mathcal{C} \) of \(n \geq 2 \) pairwise disjoint compact convex sets in the plane, there is a pair of sets \(A \) and \(B \) such that any line that separates \(A \) from \(B \) separates either \(A \) or \(B \) from a subcollection \(\mathcal{F} \) of \(\mathcal{C} \) with at least \(n/18 \) sets.

Proof. Let \(n \geq 2 \) be an integer and \(\mathcal{C} = \{C_1, C_2, \ldots, C_n\} \) be a collection of pairwise disjoint compact convex sets in the plane and let \(T \) be a triangle containing all sets in \(\mathcal{C} \) in its interior.

For any line \(l \) let \(t_l^- \) and \(t_l^+ \) be the number of sets in \(\mathcal{C} \) lying to the left and to the right of \(l \), respectively; for a horizontal line \(l \), \(t_l^- \) and \(t_l^+ \) are the number of sets in \(\mathcal{C} \) lying above and below \(l \), respectively. For \(1 \leq i < j \leq n \) let \(l_{ij} \) be a line separating \(C_i \) from \(C_j \) for which \(\max\{t_{ij}^-, t_{ij}^+\} \) is as small as possible.

Each line \(l_{ij} \) determines two closed halfplanes \(H_{ij} \) and \(H_{ji} \) containing \(C_i \) and \(C_j \), respectively. For \(i = 1, 2, \ldots, n \), let \(P_i = T \cap (\bigcap_{j \neq i} H_{ij}) \). Then for \(i = 1, 2, \ldots, n \), \(P_i \) is a convex polygon that contains set \(C_i \) such that each side is supported by a line \(l_{ij} \) or by a side of \(T \).

Let \(\mathcal{P} = \{P_1, P_2, \ldots, P_n\} \). By Lemma 2 there is a side \(s \) of a polygon \(P_i \) such that the line \(l(s) \) supporting \(s \) separates \(P_i \) from a subcollection of \(\mathcal{P} \) with at least \(n/18 \) polygons.

Since no side of \(T \) separates polygons in \(\mathcal{P} \), \(l(s) \) is of the form \(l_{ij} \). By the choice of \(l_{ij} \) each line that separates sets \(C_i \) from \(C_j \) separates either \(C_i \) or \(C_j \) from at least \(n/18 \) sets in \(\mathcal{C} \).

\[\square \]

References

[1] Herbert Edelsbrunner, Arch D. Robison and Xiao Jun Shen. Covering convex sets with non-overlapping polygons, *Discrete Mathematics* 81: 153 – 164, 1990.

[2] László Fejes Tóth. Illumination of convex discs, *Acta Mathematica Academiae Scientiarum Hungaricae* 29(3-4): 355 – 360, 1997.
[3] Rafael Hope and Meir Katchalski. Separating plane convex sets, *Mathematica Scandinavica* 66 (1): 44–46, 1990.

[4] Eduardo Rivera-Campo and Jeno Töröcsik. On separation of plane convex sets, *European Journal of Combinatorics* 14: 113 – 116, 1993.

[5] Helge Tverberg. A separation property of plane convex sets, *Mathematica Scandinavica* 45: 255–260, 1979.