On p-adic quaternionic Eisenstein series

Toshiyuki Kikuta and Shoyu Nagaoka

January 14, 2013

Mathematics subject classification: Primary 11F33 · Secondary 11F55
Key words: p-adic Eisenstein series, quaternionic modular forms

Abstract

We show that certain p-adic Eisenstein series for quaternionic modular groups of degree 2 become “real” modular forms of level p in almost all cases. To prove this, we introduce a $U(p)$ type operator. We also show that there exists a p-adic Eisenstein series of the above type that has transcendental coefficients. Former examples of p-adic Eisenstein series for Siegel and Hermitian modular groups are both rational (i.e., algebraic).

1 Introduction

Serre [12] first developed the theory of p-adic Eisenstein series and there have subsequently been many results in the field of p-adic modular forms. Several researchers have attempted to generalize the theory to modular forms with several variables. For example, we showed that a p-adic limit of a Siegel Eisenstein series becomes a “real” Siegel modular form (cf. [4]). The same result has also been proved for Hermitian modular forms (e.g., [11]).

In the present paper, we study p-adic limits of quaternionic Eisenstein series. This study has two principal aims. The first is to show that these p-adic limits become “real” modular forms of level p for higher p-adical weights (Theorem 3.1). To prove this, we introduce a $U(p)$ type Hecke operator and study its properties; this is a similar method to that used by Böcherer for Siegel modular forms [2]. The second aim is to show that a strange phenomenon occurs for low p-adical weights; namely, there exists a transcendental p-adic Eisenstein series in the quaternionic case (Theorem 3.5).

2 Preliminaries

2.1 Notation and definitions

Let \mathbb{H} be Hamiltonian quaternions and \mathcal{O} the Hurwitz order (cf. [6]). The half-space of quaternions of degree n is defined as

$$H(n; \mathbb{H}) := \{ Z = X + iY \mid X, Y \in Her_n(\mathbb{H}), Y > 0 \}.$$

Let $J_n := \begin{pmatrix} O_n & 1_n \\ -1_n & O_n \end{pmatrix}$. Then, the group of symplectic similitudes

$$\{ M \in M(2n, \mathbb{H}) \mid ^tMJ_nM = qJ_n \text{ for some positive } q \in \mathbb{R} \}$$

acts on $H(n; \mathbb{H})$ by

$$Z \mapsto M(Z) = (AZ + B)(CZ + D)^{-1}, \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$
Let Γ_n denote the modular group of quaternions of degree n defined by
\[
G_n := \{ M \in M(2n, \mathbb{H}) \mid {}^t\overline{M}J_nM = J_n \},
\]
\[
\Gamma_n := \Gamma_n(\mathcal{O}) = M(2n, \mathcal{O}) \cap G_n.
\]

For a given $q \in \mathbb{N}$, the congruence subgroup $\Gamma_0^{(n)}(q)$ of Γ_n is defined by
\[
\Gamma_0^{(n)}(q) := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_n \mid C \equiv O_n \mod qM(n, \mathcal{O}) \right\}.
\]

In this subsection, Γ always denotes either Γ_n or $\Gamma_0^{(n)}(q)$.

Let $1 = e_1, e_2, e_3, e_4$ denote the canonical basis of \mathbb{H}, which is characterized by the identities
\[
e_4 = e_2e_3 = -e_3e_2, \quad e_2^2 = e_3^2 = -1.
\]

We consider the canonical isomorphism
\[
M(n, \mathbb{H}) \longrightarrow M(2n, \mathbb{C})
\]
given by $A = (\tilde{a}_{ij})$, where $\tilde{a} = (a_1 + a_2i, a_3 + a_4i, -a_3 + a_4i, a_1 - a_2i)$, if $a = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4$ (cf. [6]).

We use the above isomorphism to define $\det(A)$ for $A \in M(n, \mathbb{H})$. For a similitude $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and a function $f : H(n; \mathbb{H}) \longrightarrow \mathbb{C}$, we define the slash operator $|_k$ by
\[
(f|_k M)(Z) = \det(M)^{\frac{k}{2}} \det(CZ + D)^{-k} f((AZ + B)(CZ + D)^{-1}).
\]

A holomorphic function $f : H(n; \mathbb{H}) \longrightarrow \mathbb{C}$ is called a quaternionic modular form of degree n and weight k for Γ if f satisfies
\[
(f|_k M)(Z) = f(Z),
\]
for all $M \in \Gamma$. (The cusp condition is required if $n = 1$.)

We denote by $M_k(\Gamma)$ the \mathbb{C}-vector space of all quaternionic modular forms of degree n and weight k for Γ. A modular form $f \in M_k(\Gamma)$ possesses a Fourier expansion of the form
\[
f(Z) = \sum_{0 \leq H \in Her_n(\mathcal{O})} a_f(H)e^{2\pi i \tau(H, Z)}, \quad Z \in H(n; \mathbb{H}),
\]
where $Her_n^*(\mathcal{O})$ denotes the dual lattice of $Her_n(\mathcal{O}) := \{ S \in M(n, \mathcal{O}) \mid \tau^*S = S \}$ with respect to the reduced trace form τ (cf. [6]). For simplicity, we put $q^H := e^{2\pi i \tau(H, Z)}$ for $H \in Her_n^*(\mathcal{O})$. Using this notation, we write the above Fourier expansion simply as $f = \sum_H a_f(H)q^H$.

For an even integer k, we consider the Eisenstein series
\[
E_k^{(n)}(Z) := \sum_{(AB) \in \Gamma_0 \setminus \Gamma_n} \det(CZ + D)^{-k}, \quad Z \in H(n; \mathbb{H}),
\]
where $\Gamma_0 := \left\{ \begin{pmatrix} A & B \\ O_n & D \end{pmatrix} \in \Gamma_n \right\}$. It is well known that this series belongs to $M_k(\Gamma_n)$ if $k > 4n - 2$. We call this series the quaternionic Eisenstein series of degree n and weight k.

2.2 Fourier coefficients of Eisenstein series

In this section, we introduce an explicit formula for the Fourier coefficients of the degree 2 quaternionic Eisenstein series obtained by Krieg (cf. [7]).
Let $k > 6$ be an even integer and let

$$E_k^{(2)}(Z) = \sum_{0 \leq H \in \text{Her}_2^*(\mathcal{O})} a_k(H) e^{2\pi i\tau(H,Z)}$$

be the Fourier expansion of the degree 2 quaternionic Eisenstein series $E_k^{(2)}$. According to [7], we introduce an explicit formula for $a_k(H)$. Given $O_2 \neq H \in \text{Her}_2^*(\mathcal{O})$, the “greatest common divisor” of H is given by

$$\varepsilon(H) := \max\{d \in \mathbb{N} \mid d^{-1}H \in \text{Her}_2^*(\mathcal{O})\}.$$

Theorem 2.1 (Krieg [7]). Let $k > 6$ be even and $H \neq O_2$. Then, the Fourier coefficient $a_k(H)$ is given by:

$$a_k(H) = \sum_{0 < d \mid \varepsilon(H)} d^{k-1} \alpha^*(2\det(H)/d^2)$$

and

$$\alpha^*(\ell) = \begin{cases}
-\frac{2k}{B_k} & \text{if } \ell = 0, \\
-\frac{4k(k-2)}{(2^{k-2}-1)B_k B_{k-2}}[\sigma_{k-3}(\ell) - 2^{k-2}k_{k-3}(\ell/4)] & \text{if } \ell \in \mathbb{N},
\end{cases}$$

where B_m is the m-th Bernoulli number and

$$\sigma_k(m) := \begin{cases}
0 & \text{if } m \notin \mathbb{N}, \\
\sum_{0 < d \mid m} d^k & \text{if } m \in \mathbb{N}.
\end{cases}$$

2.3 $U(p)$-operator

In the remainder of this paper, we assume that p is an odd prime. For a formal power series of the form $F = \sum_H a_F(H)q^H$, we define a $U(p)$ type operator as

$$U(p) : F = \sum_H a_F(H)q^H \mapsto F|U(p) := \sum_H a_F(pH)q^H.$$

In particular, for a modular form $F \in M_k(\Gamma_0^{(n)}(p))$, we may regard $U(p)$ as a Hecke operator (cf. [2], [7]). We prove this in this section. More precisely, we prove that

Proposition 2.2. If $F \in M_k(\Gamma_0^{(n)}(p))$ then $F|U(p) \in M_k(\Gamma_0^{(n)}(p))$.

To prove this proposition, we introduce the following lemma.

Lemma 2.3. A complete set of representatives for the left cosets of

$$\Gamma_0^{(n)}(p) \left(\begin{array}{cc} O_n & -1_n \\ 1_n & O_n \end{array} \right) \Gamma_0^{(n)}(p)$$

is given by

$$\left\{ \left(\begin{array}{cc} O_n & -1_n \\ 1_n & T \end{array} \right) \mid T \in \text{Her}_n(\mathcal{O})/p\text{Her}_n(\mathcal{O}) \right\}.$$

Proof of Lemma 2.3. We set $\gamma_T := \left(\begin{array}{cc} O_n & -1_n \\ 1_n & T \end{array} \right)$ and prove

$$\Gamma_0^{(n)}(p) \left(\begin{array}{cc} O_n & -1_n \\ 1_n & O_n \end{array} \right) \Gamma_0^{(n)}(p) = \bigcup_{T \in \text{Her}_n(\mathcal{O})/p\text{Her}_n(\mathcal{O})} \Gamma_0^{(n)}(p) \gamma_T.$$
By decomposition
\[
\begin{pmatrix} O_n & -1_n \\ 1_n & T \end{pmatrix} = \begin{pmatrix} O_n & -1_n \\ 1_n & O_n \end{pmatrix} \begin{pmatrix} 1_n & T \\ O_n & 1_n \end{pmatrix},
\]
we easily see the inclusion
\[
\Gamma_0^{(n)}(p) \begin{pmatrix} O_n & -1_n \\ 1_n & O_n \end{pmatrix} \Gamma_0^{(n)}(p) \supset \bigcup_{T \in \text{Her}_n(O)/p\text{Her}_n(O)} \Gamma_0^{(n)}(p)\gamma_T.
\]

We shall prove the converse inclusion. Note that \(T \equiv T' \mod p\text{Her}_n(O) \) if and only if \(\Gamma_0^{(n)}(p)\gamma_T = \Gamma_0^{(n)}(p)\gamma_{T'} \). Hence, we have
\[
\bigcup_{T \in \text{Her}_n(O)/p\text{Her}_n(O)} \Gamma_0^{(n)}(p)\gamma_T = \bigcup_{T \in \text{Her}_n(O)} \Gamma_0^{(n)}(p)\gamma_T
\]
as a set. Again, by the decomposition (2.2), it suffices to show that, for any \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(n)}(p) \), there exists \(S \in \text{Her}_n(O) \) such that
\[
\begin{pmatrix} O_n & -1_n \\ 1_n & T \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} O_n & -1_n \\ 1_n & S \end{pmatrix}^{-1} \in \Gamma_0^{(n)}(p).
\]
A direct calculation shows that
\[
\begin{pmatrix} O_n & -1_n \\ 1_n & T \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} O_n & -1_n \\ 1_n & S \end{pmatrix}^{-1} = \begin{pmatrix} -CS + D \\ A + TC \end{pmatrix} \begin{pmatrix} -C \\ A + TC \end{pmatrix}.
\]
Hence, the proof is reduced to finding \(S \in \text{Her}_n(O) \) such that \(AS \equiv B + TD \mod pM(n, O) \) Recall that \(A^T \overline{T} - B^T \overline{C} = 1_n \) and hence \(A^T \overline{T} \equiv 1_n \mod pM(n, O) \). If we choose \(S \) as \(S := \overline{T}(B + TD) \), then \(AS \equiv B + TD \mod pM(n, O) \). To complete the proof, we need to show that \(S = \overline{T}(B + TD) \in \text{Her}_n(O) \). This assertion comes from the fact that \(\overline{T}B, \overline{T}TD \in \text{Her}_n(O) \).

We now return to the proof of Proposition 2.2.

Proof of Proposition 2.2 Let \(F \in M_k(\Gamma_0^{(n)}(p)) \). From Lemma 2.3, we have
\[
F|\Gamma_0^{(n)}(p) \begin{pmatrix} O_n & -1_n \\ 1_n & O_n \end{pmatrix} \Gamma_0^{(n)}(p) = \sum_T F|_{k} \begin{pmatrix} O_n & -1_n \\ 1_n & T \end{pmatrix} = \sum_T F|_{W_p} \begin{pmatrix} 1_n & T \\ O_n & p1_n \end{pmatrix},
\]
where \(W_p \) is the Fricke involution
\[
F \mapsto F|W_p := F|_{k} \begin{pmatrix} O_n & -1_n \\ p1_n & O_n \end{pmatrix}.
\]
We see by the usual way that \(F|W_p \in M_k(\Gamma_0^{(n)}(p)) \). If we write \(G = F|W_p = \sum_H a_G(H)q^H \), then
\[
\sum_T F|W_p|_{k} \begin{pmatrix} 1_n & T \\ O_n & p1_n \end{pmatrix} = \sum_T G|_{k} \begin{pmatrix} 1_n & T \\ O_n & p1_n \end{pmatrix} = \sum_H \left(\sum_T e^{\frac{i}{p}\tau(H,T)} \right) a_G(H)e^{\frac{i}{p}\tau(H,Z)} = c \cdot G|U(p),
\]
where \(c := \sharp\text{Her}_n(O)/p\text{Her}_n(O) \) and the last equality follows from the following lemma.
Lemma 2.4. For fixed $H \in \text{Her}_{n}^{r}(\mathcal{O})$, we have
\[
\sum_{T} e^{2\pi i \tau(H,T)} = \begin{cases}
0 & \text{if } H \not\in p\text{Her}_{n}^{r}(\mathcal{O}), \\
c & \text{if } H \in p\text{Her}_{n}^{r}(\mathcal{O}).
\end{cases}
\] (2.4)

Proof of Lemma 2.4. For $H \in \text{Her}_{n}^{r}(\mathcal{O})$, we define
\[
G(H) := \sum_{T \in \text{Her}_{n}(\mathcal{O})/p\text{Her}_{n}(\mathcal{O})} e^{2\pi i \tau(H,T)}.
\]
This definition is independent of the choice of the representation T. Replacing T by $T + S$, we obtain
\[
G(H) = G(H) e^{2\pi i \tau(H,S)}.
\]
Hence, $G(H) = 0$ unless $e^{2\pi i \tau(H,S)} = 1$; i.e., $\tau(H,S) \in p\mathbb{Z}$. This implies $\tau(\frac{1}{p}H,S) \in \mathbb{Z}$ for all $S \in \text{Her}_{n}(\mathcal{O})$. The definition of a dual lattice yields
\[
\frac{1}{p}H \in \text{Her}_{n}^{r}(\mathcal{O}).
\]
\[\square\]

From this lemma, we have
\[
F|\Gamma_{0}^{(n)}(p) \begin{pmatrix} O_{n} & -1_{n} \\ 1_{n} & O_{n} \end{pmatrix} \Gamma_{0}^{(n)}(p) = c \cdot F|W_{p}|U(p).
\]
Hence, the action of $U(p)$ is described by the action of the double coset
\[
\Gamma_{0}^{(n)}(p) \begin{pmatrix} 1_{n} & O_{n} \\ O_{n} & p1_{n} \end{pmatrix} \Gamma_{0}^{(n)}(p).
\]
Therefore, we have $F|U(p) \in M_{k}(\Gamma_{0}^{(n)}(p))$, which completes the proof of Proposition 2.2. \[\square\]

Remark 2.5. The proof of Lemma 2.4 is due to Krieg.

3 Main results

3.1 Modularity of p-adic Eisenstein series

In this subsection, we deal with a suitable constant multiple of the normalized quaternionic Eisenstein series
\[
G_{k} = G_{k}^{(2)} := (2^{k-2} - 1) \frac{B_{k}B_{k-2}}{4k(k-1)} E_{k}^{(2)}
\]
and show that certain p-adic limits of this Eisenstein series are “real” modular forms for $\Gamma_{0}^{(2)}(p)$.

We write the Fourier expansion of G_{k} as $G_{k} = \sum_{H} b_{k}(H) q^{H}$. We remark that
\[
b_{k}(O_{2}) = (2^{k-2} - 1) \frac{-B_{k}B_{k-2}}{4k(k-2)}.
\]

For an odd prime p we put
\[
G_{k}^{*} := \frac{-1}{1 + p^{k-3}} \left\{ p^{2(k-3)}(G_{k}|U(p) - p^{k-1}G_{k}) - (G_{k}|U(p) - p^{k-1}G_{k})|U(p) \right\}
\]
\[\in M_{k}(\Gamma_{0}^{(n)}(p)), \]
where this modularity follows from Proposition 2.2. The first main theorem is
Theorem 3.1. Let p be an odd prime and k an even integer with $k \geq 4$. Define a sequence $\{k_m\}$ by
\[
k_m := k + (p - 1)p^{m-1}.
\]
Then, the corresponding sequence of Eisenstein series $\{G_{k_m}\}$ has a p-adic limit G^*_k and we have
\[
\lim_{m \to \infty} G_{k_m} = G^*_k \in M_k(\Gamma_0^2(p)). \tag{3.1}
\]

Proof. The proof of (3.1) is reduced to show that G^*_k is obtained by removing all p-factors of the Fourier coefficients of the quaternionic Eisenstein series.

To calculate the Fourier coefficients of G^*_k, we set
\[
F_k = G_k|U(p) - p^{k-1}G_k.
\]

We can then rewrite G^*_k as
\[
G^*_k = -\frac{1}{1 + p^{k-3}}(p^{2(k-3)}F_k - F_k|U(p)).
\]

We write the Fourier expansions as
\[
G^*_k = \sum_H A_k(H)q^H, \quad F_k = \sum_H B_k(H)q^H.
\]

First, we calculate the constant term of G^*_k. Since
\[
b_k(O_2) = (2^{k-2} - 1)\frac{B_kB_{k-2}}{4k(k-2)},
\]
the constant term of G^*_k becomes
\[
A_k(O_2) = -\frac{1}{1 + p^{k-3}}\left(p^{2(k-3)}(b_k(O_2) - p^{k-1}b_k(O_2)) - (b_k(O_2) - p^{k-1}b_k(O_2))\right)
\]
\[
= (1 - p^{k-1})(1 - p^{k-3})(2^{k-2} - 1)\frac{B_kB_{k-2}}{4k(k-2)}.
\]

Second, we calculate the coefficient $A_k(H)$ for H with rank(H) = 1.
\[
B_k(H) = b_k(pH) - p^{k-1}b_k(H)
\]
\[
= (2^{k-2} - 1)\frac{B_{k-2}}{2(k-2)} \left(\sum_{0<d|p} d^{k-1} - p^{k-1} \sum_{0<d|\varepsilon} d^{k-1} \right)
\]
\[
= (2^{k-2} - 1)\frac{B_{k-2}}{2(k-2)} \sigma^*_{k-1}(\varepsilon(H)),
\]
where $\sigma^*_m(N)$ is defined as
\[
\sigma^*_m(N) := \sum_{0<d|N} d^m.
\]

Note that $B_k(pH) = B_k(H)$ when rank(H) = 1. Hence, we have
\[
A_k(H) = (1 - p^{k-3})(2^{k-2} - 1)\frac{B_{k-2}}{2(k-2)} \sigma^*_{k-1}(\varepsilon(H)).
\]
Finally, we consider the case $\text{rank}(H) = 2$.

$$B_k(H) = b_k(pH) - p^{k-1}b_k(H)$$

$$= \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3} \left(2p^2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3} \left(2p^2 \frac{\det H}{4d^2} \right) \right]$$

$$- p^{k-1} \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3} \left(2p^2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3} \left(2p^2 \frac{\det H}{4d^2} \right) \right]$$

$$= \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3} \left(2p^2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3} \left(2p^2 \frac{\det H}{4d^2} \right) \right].$$

Here, the last equality was obtained from the elemental property:

Lemma 3.2. Let p be a prime and N a positive integer. For a function $f : \mathbb{N} \to \mathbb{N}$, the following holds:

$$\sum_{0 < d \mid N} f(d) = \sum_{0 < d \mid N} f(d) + \sum_{0 < d \mid N} f(pd).$$

Therefore,

$$A_k(H) = \frac{-1}{1 + p^{k-3}} \left(p^{2(k-3)} B_k(pH) - B_k(H) \right)$$

$$= \frac{-1}{1 + p^{k-3}} \left(p^{2(k-3)} \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3} \left(2p^2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3} \left(2p^2 \frac{\det H}{4d^2} \right) \right] \right)$$

$$- \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3} \left(2p^2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3} \left(2p^2 \frac{\det H}{4d^2} \right) \right].$$

By repeatedly applying Lemma 3.2 we obtain

$$p^{2m} \sigma_m(N) - \sigma_m(p^2 N) = - (1 + p^m) \sum_{0 < d \mid N} d^m.$$

From this, we have

$$A_k(H) = \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3}^* \left(2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3}^* \left(2 \frac{\det H}{4d^2} \right) \right].$$

Summarizing these calculations, we obtain the following formula:

Proposition 3.3. The following holds:

$$A_k(H) = \begin{cases} (1 - p^{k-1})(1 - p^{k-3})(2^{k-2} - 1) \frac{B_k B_{k-2}}{4k(k-2)}, & \text{if } H = O_2, \\ (1 - p^{k-3})(2^{k-2} - 1) \frac{B_{k-2}}{2(k-2)} \sigma_{k-1}(\epsilon(H)), & \text{if } \text{rank}(H) = 1, \\ \sum_{0 < d \mid \epsilon(H)} d^{k-1} \left[\sigma_{k-3}^* \left(2 \frac{\det H}{d^2} \right) - 2^{k-2} \sigma_{k-3}^* \left(2 \frac{\det H}{4d^2} \right) \right], & \text{if } \text{rank}(H) = 2. \end{cases}$$
On the other hand,
\[
b_{km}(H) = \begin{cases}
(2^{km-2} - 1) \frac{-B_{km}B_{km-2}}{4km(km-2)}, & \text{if } H = O_2, \\
(2^{km-2} - 1) \frac{B_{km-2}}{2(km-2)} \sigma_{km-1}(\varepsilon(H)), & \text{if } \operatorname{rank}(H) = 1, \\
\sum_{0 < d < \varepsilon(H)} d^{km-1} \left[\sigma_{km-3} \left(\frac{2 \det H}{d^2} \right) - 2^{km-2} \sigma_{km-3} \left(\frac{2 \det H}{d^2} \right) \right], & \text{if } \operatorname{rank}(H) = 2.
\end{cases}
\]

Combining these formulas and the Kummer congruence, we can prove that
\[
\lim_{m \to \infty} b_{km}(H) = A_k(H)
\]
for all \(H \in \text{Her}_2^\ast(O) \). This completes the proof of Theorem 3.1.

Remark 3.4. Following Hida [3], our \(G^\ast_k \) can be \(p \)-adic analytically interpolated with respect to the weight.

3.2 Transcendental \(p \)-adic Eisenstein series

As we have seen in the previous section, under certain conditions, a \(p \)-adic limit of a quaternionic Eisenstein series becomes a “real” modular form with rational Fourier coefficients. This also holds for Siegel Eisenstein and Hermitian Eisenstein series. More precisely, they coincide with the genus theta series (cf. [4], [11]). In these cases (Siegel, Hermitian cases), the \(p \)-adic Eisenstein series is algebraic. We shall show that there exists an example of a transcendental \(p \)-adic Eisenstein series for quaternionic modular forms.

The second main theorem is

Theorem 3.5. Let \(p \) be an odd prime and \(\{k_m\} \) the sequence defined by
\[
k_m := 2 + (p - 1)p^{m-1}.
\]

Then, the \(p \)-adic Eisenstein series \(\widetilde{E} = \lim_{m \to \infty} E^{(2)}_{k_m} \) is transcendental; namely, \(\widetilde{E} \) has transcendental coefficients where \(E^{(2)}_k \) is the normalized quaternionic Eisenstein series of degree 2 defined in (2.1).

Proof. We calculate \(\tilde{a}(H) := \lim_{m \to \infty} a_{km}(H) \) at \(H = \left(\frac{1}{2}, \frac{\varepsilon(H)}{2} \right) \in \text{Her}_2^\ast(O) \). The convergence for general \(H \) is proved similarly.

It follows from Theorem 2.1 that
\[
a_{km}(H) = -\frac{4km(km-2)}{(2^{km-2} - 1)B_{km}B_{km-2}}.
\]

(We note that \(\varepsilon(H) = 1 \) and \(\det(H) = \frac{p}{2} \).) We rewrite the right-hand side as
\[
-4 \cdot \frac{2 + (p - 1)p^{m-1}}{B_{2 + (p - 1)p^{m-1}}} \cdot \frac{1}{B_{(p-1)p^{m-1}}} \cdot \frac{p^m}{2^{(p-1)p^{m-1}} - 1} \cdot \frac{p - 1}{p}
\]
and calculate the \(p \)-adic limit separately:

(i) \(\lim_{m \to \infty} \frac{2 + (p - 1)p^{m-1}}{B_{2 + (p - 1)p^{m-1}}} = \frac{B_2}{2} = \frac{1}{12} \).

This is a consequence of the Kummer congruence.

(ii) \(\lim_{m \to \infty} B_{(p-1)p^{m-1}} = \frac{p - 1}{p} \).
This identity comes from the fact that the residue of the \(p \)-adic \(L \)-function \(L_p(s, \chi^0) \) at \(s = 0 \) is just \(1 - \frac{1}{p} \).

\[
(iii) \quad \lim_{m \to \infty} \frac{2(p-1)p^{m-1} - 1}{p^m} = \frac{\log_p(2^{p-1})}{p},
\]

where \(\log_p \) is the \(p \)-adic logarithmic function defined by

\[
\log_p(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots , \quad (|x|_p < 1).
\]

Leopoldt’s formula [9] states that

\[
\lim_{m \to \infty} \frac{x^{p^m} - 1}{p^m} = \log_p(x).
\]

if \(|x - 1|_p < 1 \). This implies that

\[
\lim_{m \to \infty} \frac{2(p-1)p^{m-1} - 1}{p^m} = \frac{1}{p} \cdot \log_p(2^{p-1}).
\]

Combining these formulas, we obtain

\[
\tilde{a}(H) = \lim_{m \to \infty} a_{k_m}(H) = \frac{-48p}{\log_p(2^{p-1})}.
\]

We shall show that \(\log_p(2^{p-1}) \) is transcendental. Let \(\exp_p \) be the \(p \)-adic exponential function defined by

\[
\exp_p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots , \quad (|x|_p < p^{\frac{1}{p-1}}).
\]

It is known that if \(|x|_p < p^{\frac{1}{p-1}} \), then

\[
\exp_p(\log_p(1 + x)) = 1 + x, \quad (e.g., [3]).
\]

To prove the transcendency of \(\log_p(2^{p-1}) \), we use the following theorem by Mahler:

Theorem 3.6 (Mahler [10]). Let \(\mathbb{C}_p \) be the completion of the algebraic closure of \(\mathbb{Q}_p \). For any algebraic over \(\mathbb{Q} \) \(p \)-adic number \(\alpha \in \mathbb{C}_p \) with \(0 < |\alpha|_p < p^{\frac{1}{p-1}} \), the quantity \(\exp_p(\alpha) \) is transcendental.

We note that \(|x|_p < p^{\frac{1}{p-1}} \) is equivalent to \(|x|_p < 1 \) for odd prime \(p \) (e.g., [3], p.114). We put \(\alpha = 2^{p-1} - 1 \). Since \(|\alpha|_p < 1 \), we have

\[
\exp_p(\log_p(1 + \alpha)) = 1 + \alpha = 2^{p-1}.
\]

The right-hand side is obviously algebraic. Hence, by Mahler’s theorem, \(\log_p(1 + \alpha) = \log_p(2^{p-1}) \) must be transcendental. Thus, we can prove the transcendency of \(\tilde{a}(H) \) at \(H = \left(\frac{1}{2}, \frac{2}{1} \right) \).

This completes the proof of Theorem 3.5.

Remark 3.7. By the above proof, we see that all coefficients \(\tilde{a}(H) \) corresponding to \(H \) with rank 2 are transcendental. However, \(\tilde{a}(H) \) for \(H \) with rank(\(H \)) \(\leq 1 \) are rational.

Acknowledgments: We would like to thank Professor A. Krieg for helpful comments on the proof of the modularity of \(f(U(p)) \). We also thank Professor M. Amou for pointing out the transcendency of \(\log_p(2^{p-1}) \).
References

[1] W.W. Adams, *Transcendental numbers in the p-adic domain*, Amer. J. Math. 88, (1966), 279–308.

[2] S. Böcherer, *On the Hecke operator U(p)*, J. Math. Kyoto Univ. (JMKYAZ) 45–4, (2005), 807–829.

[3] H. Hida, *Elementary theory of L-functions and Eisenstein series*, Cambridge University Press, 1993.

[4] T. Kikuta and S. Nagaoka, *On a correspondence between p-adic Siegel–Eisenstein series and genus theta series*, Acta Arithmetica, 134, (2008), 111–126.

[5] A. Krieg, *Hecke-operatoren und Dirichlet-Reihen für Modulformen auf dem quaternionen-Halbraum*, Habilitationsschrift, Westfälischen Wilhelms-Universität Münster, 1989.

[6] A. Krieg, *Modular forms on half-space on quaternions* Lecture Notes in Math. 1143, Springer, 1985.

[7] A. Krieg, *The Maass space and Hecke operators*, Math. Z. 204, (1990), 527–550.

[8] F.Q. Gouvêa, *p-adic Numbers*, Springer, 1997.

[9] H.-W. Leopoldt, *Zur Approximation des p-adischen Logarithmus*, Abh. Math. Sem. Univ. Hamburg, 25, (1961), 77–81.

[10] K. Mahler, *Über Transzendenten P-adische Zahlen*, Compositio Mathematica, 2 (1935), 259–275.

[11] S. Nagaoka, *On p-adic Hermitian Eisenstein series*, Proc. Amer. Math. Soc., 134, (2006), 2533–2540.

[12] J.-P. Serre, *Formes modulaires et fonctions zêta p-adiques*, Modular functions of one variable III, Lecture Notes in Math., 350 (1973), 191–268, Springer

Toshiyuki KIKUTA
Department of Mathematics
Interdisciplinary Graduate School of
Science and Engineering Kinki University
Higashi-Osaka 577-8502, Japan
E-mail: kikuta84@gmail.com

Shoyu NAGAOKA
Department of Mathematics
School of Science and Engineering
Kinki University
Higashi-Osaka 577-8502, Japan
E-mail: nagaoka@math.kindai.ac.jp