Energy redistribution between layers in multi-layered target heated by x-ray pulse

To cite this article: N A Inogamov et al 2018 J. Phys.: Conf. Ser. 946 012009

View the article online for updates and enhancements.

Related content

- Impact on the magnetic compressor due to CSR
 Liu Chu-Yu, Wang Fang, Wang Er-Dong et al.

- Physics Opportunity with an Electron-Ion Collider
 Patrizia Rossi

- Heavy Quark Production at an Electron-Ion Collider
 E Chudakov, D Higinbotham, Ch Hyde et al.
Energy redistribution between layers in multi-layered target heated by x-ray pulse

N A Inogamov1,2, V A Khokhlov1, V V Zhakhovsky2 and
Yu V Petrov1

1 Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Akademika Semenova 1a, Chernogolovka, Moscow Region 142432, Russia
2 Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya 22, Moscow 127055, Russia

E-mail: nailinogamov@gmail.com

Abstract. Multi-layered systems with alternated layers of different materials (laminates) with thickness of the order of tens nanometers are widely used in modern technologies, e.g., as x-ray mirrors. It is important to study effect of the x-ray free electron lasers on such targets. High-energy photons penetrate deeply into material with an attenuation depth much larger than the thickness of a single layer of a laminate. Modern hard x-rays lasers may be focused to tiny focal spots in the direction approaching diffraction limit: record today is ≈ 50 nm; ~ 1 μm diameters are now rather easily achieved. These lasers may be used for machining of laminates. We show that thermal evolution of illuminated laminates depends on not only photon absorption in the individual materials, but also on fast redistribution of absorbed energy within a nonequilibrium stage connected with electron–ion relaxation (two-temperature stage) between hot electrons heated by absorption and much colder ions. Because of the high heat conductivity of metal layers, especially at the two-temperature stage, energy redistribution must be considered with taking into account the energy transfer from electrons to ions with different electron–ion coupling parameters α for different metals. Thus, a higher energy can be localized in a material with higher α rather than in a material with higher photon absorption coefficient.

1. Introduction

The layered structures are used in different applications, in particular as the x-ray mirrors for extreme ultraviolet and soft x-rays. Their wavelengths are from few to tens nanometers. These mirrors are layered systems with thickness of a layer of the order of the wavelength of radiation that should be reflected. Damage or lithographic processing of the layered mirrors by a pulse of hard x-rays is considered in this paper.

We study action of very short pulse with duration ~ 10 fs produced at XFELs (x-ray free electron lasers) such as RIKEN SACLA [1] or DESY [2]. In the case of an ultrashort pulse the two-temperature (2T) stage becomes important; there is large temperature difference between electrons and ions at this stage. There is significant redistribution of absorbed energy between layers of two different metals at the 2T stage.

At the 2T stage the high metallic thermal conductivity κ becomes even more high [3–6]; for gold κ_{2T} may achieve values of few 10^3 WK$^{-1}$m$^{-1}$ [4] while $\kappa_{1T} \approx 300$ WK$^{-1}$m$^{-1}$ for solid Au. Thermal diffusivity χ is from a few times to order of magnitude times larger than its one-temperature (1T) value χ_{1T} equal $\chi_{1T} \approx 1$ cm2/s for typical metals. Therefore, thermal
energy is quickly transported outside from a hot layer with high absorption coefficient (= shorter attenuation depth). The hot layers at the end of the 10 fs absorption stage are the gold layers in figure 1. Gold has more electrons per atom and deeper electron shells than Cr therefore Au better absorbs hard photons.

High values of κ_{2T} and χ_{2T} are responsible for supersonic propagation of an electron thermal wave during a time interval approximately corresponding to the 2T stage [3,7,8]; see also figure 1 in [9] where (i) the short stage of supersonic propagation of heat, (ii) its transfer to subsonic regime, and (iii) irradiation of acoustic wave at the transonic transition between supersonic and subsonic expansion of heat are emphasized. Thus the compression wave starts not from a vacuum boundary but from the rather deep penetrated edge of the thermal wave.

The situation is similar to the early mainly radiative expansion of light ball caused by atomic explosion; shock only later separates and overruns the hot ball. In both cases the leading position of supersonic thermal wave (photonic or electronic) is caused by high velocities of the heat carriers (photons-speed of light or electrons-Fermi velocity) moving much faster than ions. In this regime Knudsen number $Kn \ll 1$ is small (collisional case), thus this is diffusive propagation and truly thermal wave (not a ballistic expansion of hot photons or electrons when $Kn \sim 1$ before the first collisions).

Electron thermal energy transported from Au layers into surrounding Cr layers in figure 1 is mostly transferred to ionic subsystem of the metal with higher electron-ion coupling parameter α; this is Cr. Thus conduction and coupling strongly redistribute absorbed energy between the Au and Cr layers. The effect of preferable heating of ions in a contacting metal with higher value of coupling parameter α was studied in paper [10]. The case of two layers one of Au and other of Cu has been analyzed [10]. There was an Au layer 30 nm thick deposited onto bulk Cu. Light comes to vacuum boundary of Au. Optical radiation is absorbed in a skin-layer of gold. The skin is thinner than thickness of Au film. Thus almost all laser energy is initially deposited into electron subsystem of Au. But high conduction in gold and fast electron-ion coupling in Cu lead to melting beginning in Cu, not in the heated Au, although melting temperature of Cu is slightly higher: 20 K difference, i.e. 1357 versus 1337 K.

Hard x-ray is weakly reflected from substance, with exception of grazing incidence. Astrophysics telescopes mounted on satellites (for example XMM-Newton, Spektr-RG) are based on low-angle reflection. Refractive index of gold is very close to unit: $N = n + i k = (1 - \delta) + i k$, $\delta = 5.15 \times 10^{-5}$, $k = 5.67 \times 10^{-6}$ (Henke tables), at photon energy 7.71 keV. Therefore the reflection coefficient from a bulk target of gold is negligible for normal incidence:

$$R = \frac{(n - 1)^2 + k^2}{(n + 1)^2 + k^2} = \frac{1}{4} (\delta^2 + k^2) \approx \frac{1}{4} \delta^2 = 6.7 \times 10^{-10}.$$

The reflection coefficient increases on many orders with the help of multi-layered systems, also called as laminates. Laminate with layer thickness a of the order of wavelength λ_{eff}, which is required to reflect, works like a 1D photon crystal. Let A and B a pair of materials in neighbor layers. Reflection coefficients R for both A and B are very small and they are smooth functions of wavelengths beyond the top energies of electron shells. Contrary, the resonances appear in photon crystal, and a band structure on the length λ appears with them. The structure consists of permitted bands and band-gaps. By adjusting the thickness a corresponding to the particular refraction indices N_A, N_B, one can achieve the situation when the wavelength λ_{eff} falls into a band gap.
Figure 2. Spectrum of absorptance (Henke tables) [11]. The values of $D_{att}(E)$ for the energy $E = 7.71$ keV (this energy is marked by the vertical dashed line) are shown. Three curves relate to three substances used in figure 1, see the legend in the upper left corner of the picture.

Then the wave with λ_{refl} cannot penetrate into the multi-layered system. Its reflection coefficient $R(\lambda_{refl})$ becomes of the order of 1: $R(\lambda_{refl}) \leq 1$, i.e. it exceeds R_A, R_B for reflection from the bulk targets of substance A or B.

The layered x-ray mirrors with thickness of $a \sim 10$ nm are intended for soft x-ray with photon energy of tens hundreds eV. The reflection coefficient from the bulk gold target is $R = 0.004 (0.4\%)$, $\delta = 0.1$, $k = 0.06$ (Henke tables) for the wavelength of 13.9 nm with photon energy of about 90 eV. The disadvantage of multi-layered mirror is in a specific λ_{refl} for which it was designed. For other wavelengths this mirror is not applicable.

Light with wavelength 13.5 nm from tin plasma is used for high spatial density EUV lithography production of the most advanced integrated circuits [12, 13]. The focusing system of lithographic machines consists of several mirrors. The problem of damage of multi-layered mirrors by a hard irradiation arises. As was said above, there are possibilities to thermo-mechanically treat these mirrors by hard x-ray lasers.

In our work the effect of hard x-ray with photon energy ~ 10 keV on a multi-layered system with thickness of layer $a = 50$ nm is studied. Attenuation length D_{att} of such radiation is much longer than the layer thickness a (D_{att} is of the order of microns). But the absorption coefficients of the substances Au and Cr differ, figure 2. This is why the heating of electron subsystems by absorption of external irradiation differs too. And the heating pulse is ultrashort for free electron lasers such as SACLA (RIKEN x-ray Free Electron Laser “SACL A”) [1] and DESY [2] having pulse duration τ_L of few or few tens of fs (femtoseconds). In such conditions the redistribution of absorbed energy takes place between the layers. The redistribution proceeds after finishing of the heating laser pulse. In particular the hottest layer after 2T relaxation may have a lower coefficient of x-ray absorption.

Why is the 2T stage in a focus of our research? It is because the electron heat conductivity $\kappa_{2T} \approx \kappa_{rr} T_e / T_i$ and temperature diffusivity χ_e are higher within this stage where $T_e \gg T_i$. Here κ_{rr} is the electron heat conductivity at room temperature. The formula $\kappa_{2T} \propto T_e / T_i$ is applicable if electron–electron collision frequency is lower than the electron–ion collision frequency [4, 6].
The value $\chi_{e|2T} = \kappa_{2T}/c_e$ is higher by 5–15 times than $\kappa_{2T}/(c_i + c_e) \approx \kappa_{2T}/c_i \sim 1 \text{ cm}^2/\text{s}$, where $c_i \approx 3k_Bn$, $c_e = (\pi^2/2)Zn k_B(2E_F/E_F)$ are heat capacities of ions and electrons, respectively

$c_e/c_i = (\pi^2/6)Z(k_B T_e/E_F)$.

Here n is ion concentration, Z is number of conduction electrons per atom, E_F is Fermi energy.

Heat propagates on distance $\sqrt{\chi_e t_{eq}} \sim 140 \text{ nm}$ ($\chi = 10 \text{ cm}^2/\text{s}$, $t_{eq} \sim 2 \text{ ps}$) for a time of the order of duration of 2T stage. In simulations presented below we perform calculations of heat propagation on 2T and 1T stages until beginning of a stage of hydrodynamic decay and fragmentation of the multi-layered target.

2. Problem setup

Let’s consider a five-layered system on a substrate from silicon. It consists of two layers of gold alternating with three layers of chrome. Wherein two of the three chrome layers are external to the five-layered coating of the substrate, and one chrome layer is in the middle plane of the structure, see figure 1. The boundary chrome layer at the interface with silicon significantly increases the adhesion of the structure to the substrate. This eliminates the delamination from the substrate structure in contrast to a structure where a gold film is on a substrate (then detachment from substrate is possible [14, 15]).

2T system of heat equations has the following form:

$$\rho \frac{\partial (E_e/\rho)}{\partial t} = \frac{\partial q}{\partial x} - \alpha(T_e - T_i) + P; \quad q = -\kappa \frac{\partial T_e}{\partial x}; \quad (1)$$

$$\rho \frac{\partial (E_i/\rho)}{\partial t} = \alpha(T_e - T_i). \quad (2)$$

The system of two separated energy balances for the electron (1) and the ion subsystems (2) is obtained by splitting of the one-temperature (1T) heat equation [16]; see also 2T hydrodynamics equations [17–20]. Here E_e, E_i are internal energy of electrons and ions per unit volume, respectively, q is heat flux carried by electrons, the coefficient α determines the rate of energy exchange between the electron and ion subsystems. Source term P associated with absorption of the x-ray pulse provides the heating power of electron subsystem per unit of volume. The function $P(x, t)$ is homogeneous within the layers of one type in the calculations. It is given as a Gaussian function $\propto \exp\left(-t^2/\tau_L^2\right)$ with a width $\tau_L = 10 \text{ fs}$; this is e-folding time measured from the maximum, FWHM width is $t_{FWHM} = 2\sqrt{\log 2} \tau_L$. As we see the time origin is measured from the top point of the Gaussian.

3. Characteristics of materials

3.1. Absorption of hard radiation

Attenuation depth $D_{\text{att}}(E)$ of the radiation intensity as functions of the photon energy E are shown in figure 2. The thermal calculations discussed below are based on assumption that the ratio of bulk density of absorbed power in gold, chromium and silicon correlates as $100 : 43 : 3.5$ respectively, which is inversely proportional to the D_{att} taken from figure 2. Two variants are considered: one with a bulk power $P = 1.37 \times 10^{24} \text{ W/m}^3$ of absorption in gold and the other with a bulk power $P = 2.42 \times 10^{24} \text{ W/m}^3$. Power P is included as a heat source in the equation (1). Bulk energy densities deposited in gold within 10 fs of x-ray action are 13.7 GPa and 24.2 GPa in these two cases.

The pulse duration of 10 fs is small compared to the time of electron–ion relaxation (of the order of picoseconds for chrome, for gold this time is longer) and time of heat transfer from layer to layer. Therefore, almost all absorbed energy is concentrated in the electron subsystems of
Figure 3. Band structure of gold $4f^{14}5d^{10}6s^1$ and chrome $3d^54s^1$ at their normal density of 19.3 and 7.19 g/cm3, respectively; $4f$ band of Au is not shown because it is located far away to the left side relative to the frame of energies shown here. Electron densities of states (DoS) as functions of the energy $g(E)$ are shown; $E_F = \mu(0)$ is the Fermi energy, $\mu(T_e)$ is the chemical potential. Calculations of the DoS $g(E; T_e, \rho)$ for the fcc and bcc Au and Cr crystal lattices are performed for a low electron temperature and the room temperature densities using the VASP package [4,5,21,22]. The arrows above mark the left and right edges of the d-band for Cr. They are below and above E_F for Cr.

Electron energies came out rather great, the temperature T_e is 10–20 kK after electron-electron relaxation. Under these conditions, the rate of electron-electron collisions is high, the time between collisions is of the order of a few femtoseconds. Hence, the thermalization of the electron subsystem in gold and chrome finishes long before the end of the e-i relaxation. This justifies the use of $2T$ model (1), (2) from the very beginning.

Electron-hole pairs still can remain in silicon. But the influence of the silicon substrate on the overall energy balance is insignificant because of the small energy absorbed there and the relatively small (compared to the κ_{2T} in metals) thermal conductivity.
Figure 4. Electron heat capacities as functions T_e for gold, molybdenum and tungsten according to [21, 24]. DoS $g(E, T_e = 0, \rho_{nl})$ are used for calculations, displacement of bands at variation of T_e is neglected. Approximating formula is given in the text. The value of 25×10^5 J/K/m3 corresponds to the Dulong–Petit law $3k_B$ at Pippard concentration $n = 6 \times 10^{22}$ cm3. In the range 10–20 kK of T_e the heat capacity c_e becomes an order of an ion heat capacity.

3.2. Electron Spectra and Thermodynamics

Bands of conductivity in gold and chrome are presented in figure 3. Their Fermi energies counted from a bottom of s-band, are equal 9.2 eV and 7.6 eV, respectively. The upper edge of the d-band is located below the Fermi surface in gold. Density functional theory calculation (DFT) using the VASP package [4, 5, 21, 22] underestimates the distance E_2 to the top of the d-band: the package gives 1.7 eV instead of experimentally established values of 2.3–2.5 eV [23]. The chrome d-band is complex. It is split into parts above and below the Fermi energy E_F, see figure 3, thus forming the pseudo-gap (the well in DoS) around Fermi level.

The simplest method is an approximate calculation of the electron energy from the one-particle formula

$$\varepsilon(T_e, \rho) = \int_{-\infty}^{\infty} g(\varepsilon) f(\varepsilon, T_e, \mu(T_e)) \varepsilon \, d\varepsilon,$$

here g, f, μ are density of states, the Fermi distribution, and the chemical potential, respectively [4, 5, 21, 22]. The chemical potential is determined from the normalization condition on the number of electrons in the conduction band.

Double counting of the Coulomb energy of the electron-electron interaction is neglected in such calculation [28]. Differentiation of energy gives the heat capacity c_e. Electron heat capacity as functions of temperature at the fixed normal density are shown in figure 4. Data are taken from a site [21, 24]. Molybdenum and tungsten have a complicated d-band, similar to the spectrum of chrome. We believe that the specific heat of chrome approximately corresponds to ones in Mo and W. We can see that the heat capacity of the three metals in figure 4 is not much
Figure 5. Energy ε (the left axis) and pressure p (the right axis) in gold as functions of the temperature T according to [25–27] and the corresponding linear approximations of those functions, see discussion in the text.

different. On this basis, we build the general approximating curve $c_e(T_e)$:

$$c_e(T_{\text{eK}}) = C \left(\frac{T_1}{T_{\text{eK}}} + \frac{T_2}{\sqrt{T_{\text{eK}}}} \right)^{-1},$$

(3)

where $C = 10^5$ J/(K m3), $T_1 = 0.034$ kK, $T_2 = 0.14$ kK$^{0.5}$. Electron temperature T_e should be taken in kK units in the approximation (3), see the curve approx in figure 4.

Let us integrate the approximating curve (3), shown in figure 4. As a result, we obtain the required energy dependence of electron energy on electron temperature $\varepsilon_e(T_e)$:

$$\varepsilon_e = A \left[A_1 \sqrt{T_{\text{eK}}} - A_2 T_{\text{eK}} + A_3 T_{\text{eK}}^{3/2} - B \ln(B_1 + \sqrt{T_{\text{eK}}}) \right],$$

(4)

T_{eK} is T_e in kK units, $A = 0.1$ GPa, $A_1 = 0.84$, $A_2 = 1.73$, $A_3 = 4.76$, $B = 0.2$, $B_1 = 0.24$. As it is possible to check up, the logarithm in the formula (4) at our temperatures T_e is small. Therefore it is rejected thereafter.

Equating the expression (4) to energies 13.7 GPa and 24.2 GPa, transmitted to the electron subsystem by x-ray pulse in the first and second variants, we find the maximum electron temperature of 10 and 14.5 kK in gold in these cases. Taking into account that 43% of the energy gets chrome, see section 3.1, we define the maximum electron temperature in the chrome 6 and 8.4 kK in these cases.

3.3. One-temperature thermodynamics and the ion contribution

The total energy is a sum of the electron and ion energies $\varepsilon = \varepsilon_e + \varepsilon_i$, where ε_e is from equation (4). The ion energy of gold at isochore density in normal conditions ρ_{at} is taken from a wide-range equation of state [25–27]. 1T functions of internal energy and pressure on this isochore are presented in figure 5. We see that out of a narrow melting region m, the above functions are well described by the linear functions: $\varepsilon_{\text{sol}} = 2.41 T_{\text{kK}}$, $\varepsilon_{\text{liq}} = 1.31 T_{\text{kK}} + 3.21$, $p_{\text{sol}} = 7.65 T_{\text{kK}} - 2.1$, $p_{\text{liq}} = 2.934 T_{\text{kK}} + 11.1$ all in GPa.
Figure 6. Thermal conductivity of gold in 2T conditions. Let us consider the function $\kappa(T_e, T_i = 0.3 \text{kK})$. At a relatively small T_e this coefficient increases with T_e due to the partial removal of degeneracy and the growth of electron heat capacity (figure 4), since the frequency of s-i scattering does not change (temperature T_i is fixed), and the frequency of s-s and s-d scattering is small. With the growth of T_e frequencies ν_{ss}, ν_{sd} increase. The maximum of κ appears at the temperature T_e, on which the sum of $\nu_{ss} + \nu_{sd}$ reaches ν_{si}.

Melting on isochorus occurs under pressure, because the density is fixed. Temperature is higher than the $T_{m|p=0} = 1.337 \text{kK}$ at the triple point while crossing the region between the solidus and liquidus. Isochore $\rho_{rt} = 19.3 \text{ g/cm}^3$ enters the melting region at 1.89 kK and pressure $p = 12.4 \text{ GPa}$ and leaves into a pure melt at $T = 2.057 \text{kK}$ and $p = 9.16 \text{ GPa}$. Width of intersection of the segment is 164 K on temperature and 4.5 GPa on pressure. The energy per unit volume is changed from 4.489 to 5.927 GPa, i.e. by 1.44 GPa. We assume that all of this energy is utilized in melting; i.e. the heating of solid-melt phase mixture is neglected. Then the heat of melting along isochors ρ_{rt} is 1.44 GPa or 0.15 eV/atom or 14 kJ/mol as shown in figure 5. The heat of melting for $p = 0$ is 12.6 kJ/mol from the reference book. If we straighten dependence $\varepsilon(T)$ in figure 5 in the melting region, the effective heat capacity per atom will be $10.5 k_B$. Heat capacity increase is due to the heat of melting.

The heat capacities of the solid and liquid phases equal 2.9 k_B and 1.6 k_B respectively, in accordance with figure 5, and the Grüneisen parameters of these phases of gold are 3.17 and 2.24. A dependence of $\varepsilon(T)$ is necessary for thermal calculation with chrome. Both gold and chrome are melted at considered here values of absorbed energies. Therefore, the dependence $\varepsilon_{\text{liq}}(T)$ is required for chrome. The concentration of atoms of chrome under normal conditions $8.3 \times 10^{22} \text{ cm}^{-3}$ is significantly higher than $5.9 \times 10^{22} \text{ cm}^{-3}$ in gold. Assume that heat capacity in the liquid chromium is approximately equal to 1.6 k_B. Then, up to a constant, we have $\varepsilon_{\text{liq}}(T)|_{Cr} = 1.84 T_{\text{kk}} + 3 \text{ GPa}$. In the 2T thermal calculations we assume that the formulas given in this section describe ion contribution to the energy $\varepsilon_i(T_i)$, which depends on the ion temperature.
3.4. Heat conductivity

We will calculate the thermal conductivity of gold by the following formulas. The Fermi energy is $E_{FkK} = 107$ in kK units (9.2 eV, see figure 3). Then we introduce the dimensionless electron temperature normalized to the Fermi energy:

$$t = \frac{6T_{ekK}}{E_{FkK}}$$

where T_{ekK}—electron temperature in kK. Approximation of the electron contribution to the thermal resistance has the form

$$S_{se} = S_0 t \left(1 - S_q \sqrt{t} + S_1 t + S_2 t^2\right),$$

in units of [K m/W], $S_0 = 3.8 \times 10^{-4}$, $S_q = 2$, $S_1 = 1.4$, $S_2 = 0.04$.

The thermal conductivity associated with the scattering of the s-electron on ions (i—ion, “s-i” or “si”), equal to

$$\kappa_{si} = 140 \frac{C(T_{ekK}) w(T_{mkK})}{C(T_{mkK}) w(T_{ikK})}, \quad T_{mkK} = 1.337 \text{ kK}$$

in WK$^{-1}$m$^{-1}$.

There auxiliary functions are equal

$$C(T_{ekK}) = t \frac{1 + C_1 t^2}{1 + C_2 t^{2.05}}, \quad C_1 = 11.2, \quad C_2 = 3.35,$$

$$w(T_{ikK}) = w_0 \frac{1 + w_1 T_{ikK}/T_{ekK}}{1 + w_2 T_{ikK}/T_{ekK}},$$

where T_{ikK} is ion temperature in kK, $T_{ekK} = 7.8$ is critical temperature of gold in kK, $T_{mkK} = 1.337$ is melting point, $w_0 = 0.0043$, $w_1 = 126$, $w_2 = 0.86$.

Figure 7. The thermal diffusivity $\chi(T_e, T_i) = \kappa(T_e, T_i)/C_e(T_e)$.

![Figure 7](image-url)
The final expression, which takes into account the scattering of s-electrons on the s- and d-electrons and on ions, is

$$\kappa(T_{ekK}, T_{ikK}) = \left(S_{se} + 1/\kappa_{si}|_{\text{lin}} \right)^{-1}. \quad (5)$$

Here the thermal conductivity coefficient is obtained in units of $\text{WK}^{-1}\text{m}^{-1}$. The corresponding plots are shown in figure 6.

We find also the electron coefficient of temperature conductivity as

$$\chi(T_{ekK}, T_{ikK}) = \frac{\kappa(T_{ekK}, T_{ikK})}{c_e(T_{ekK})},$$

where c_e is defined by the expression (3), and the χ is in m^2/s, figure 7 where χ is given in cm^2/s.

Heat conductivity of chrome κ_{Cr} is lower than the heat conductivity of gold κ_{Au} (5). It is assumed that $\kappa_{Cr} = 0.6 \kappa_{Au}$.

Cooling time of gold layer by thermal conduction is equal $t \sim d_f^2/\chi \sim 7 \text{ ps}$ at $\chi = 3.5 \text{ cm}^2/\text{s}$. The acoustic time scale of expansion of the gold layer, clamped between layers of chrome, is $d_f/c_a \approx 16 \text{ ps}$. For chrome the similar time scale is about 11 ps.

The speed of expansion of the system of 5 layers, if we neglect the resistance of silicon with a small acoustic impedance, is of the order of $u = p t_s/(\rho_{Au} d_f + \rho_{Cr} 1.5 d_f) = 800 \text{ m/s}$ for $p = 40 \text{ GPa}$, $t_s = 30 \text{ ps}$. To expand matter twice with such speed the time $2.5 d_f/u \sim 150 \text{ ps}$ is required.

3.5. Electron–ion energy exchange coefficient

We represent the coefficient of the electron–ion energy exchange in gold in the form of

$$\alpha_{Au}(T_e) = 10^{17} \left(0.2 + \frac{4.3}{K_a} \frac{T_e^{3.6}}{1 + T_e^{3.5} + 0.9 T_e^{4.1}} \right). \quad (6)$$

Here the value of α_{Au} is in units of $\text{WK}^{-1}\text{m}^{-3}$, and T_e—electron temperature in eV. Till now discussions concerning value of α_{Au} (6) continue.
Figure 9. The gradual completion of energy transfer stage by the thermal conductivity between Au and Cr layers for the heating by a “weak” pulse. The general decrease in temperature T_e due to transmission the energy of the electrons to the ions. The arrow notes gradient jump ∇T_e.

Figure 10. The final stage of the thermal relaxation for the heating by a “weak” pulse. Further evolution of heat begins to be distorted due to the hydrodynamic expansion.

The variation of coefficient K_a within the range 1.15–4 covers uncertainty of α_{Au}. The value of $K_a = 1.15$ corresponds to a situation with a large growth of α_{Au} at heating above ≈ 5 kk, and at $K_a = 4$ growth of α_{Au} with a temperature T_e is considerably more moderate.
Figure 11. “Healing” of two hillocks on T_e together with decrease T_e for the heating by a “strong” pulse.

The coefficient α_{Cr} is great in chrome. We assume that $\alpha_{Cr} = 3 \times 10^{17} \text{WK}^{-1} \text{m}^{-3}$. Silicon is described by 1T approach in our model.

In particular, the difference in coefficients α between gold and chrome is responsible for a fast relaxation $T_e \rightarrow T_i$ in chrome and slow one in gold. Due to this at the stage of e–i relaxation the ion temperature of chrome rises faster than the ion temperature of gold. Although immediately after 10 fs of x-ray pulse heating the electron temperature is above in gold.

4. The results for the evolution of the thermal field

The thermal evolution calculations were performed for two heating powers, weak and strong: $P = 1.37 \times 10^{24}$ and $2.42 \times 10^{24} \text{W/m}^3$. Figure 8 shows the initial stage of the process in a layered target; $K_a = 4$. Calculations show that the heat transfer in the silicon substrate is small at our time scale up to ~ 100 ps. The silicon substrate absorbs a little heat and results in a little effect on evolution. If we ignore the small cooling of Au–Cr 5 layer structure due to abutment to the silicon, the temperature field is symmetrical about a median plane passing through the center of the chrome layer in the middle of 5 layers.

Times 5 and 10 fs in figure 8 are attributed to the middle and end of the heating x-ray pulse. Due to the non-linearity of the electron heat capacity (3), the electron temperature grows not proportionally to the absorbed energy to a given time. The arrow in figure 8 marks a kink (gradient jump) of continuous profile of temperature T_e connected with a difference in coefficients of heat conductivity of gold and chrome, see section 3.4. In the early stages (up to about a picosecond) the gradient of T_e is great, and time is short, and the electron heat conduction plays a main role in redistribution of energy. Under the influence of the heat conduction a gap in the temperature T_e in chrome layers is “healed”, compare the profiles at 10 and 300 fs in figure 8.

On subpicosecond stage the energy transfer from the electron subsystem to the ion subsystem only begins to affect the ion temperature of gold and chrome, see the $T_i(x, t = 300 \text{fs})$ profile in figure 8. Paradoxically, although the electron temperature is lower in chrome, the ion temperature is higher in chrome! Alternating ion temperatures in gold and chrome are inverse
Figure 12. The weakening of gradient ∇T_e and temperature relaxation for the heating by a “strong” pulse. Two upper curves give T_e, while the bottom deep blue and orange curves correspond to T_i.

to the alternating electron temperatures.

The profiles shown in figure 9, through several picoseconds are transformed to profiles in figure 10. The gradient of electron temperature is small, nevertheless the heat conductivity is still acting. Acting, but in the opposite direction. The heat is carried by electron subsystem from gold to chrome after primary heating of electrons of gold by 10 fs pulse, but now the heat flux flowing from chrome to gold. The matter is that the ion temperature of chrome above, see figure 10. The electron temperature T_e has intermediate values between the ion temperatures T_i in chrome and in gold. And T_e is closer to T_i in chrome, as in chrome the exchange coefficient α is larger, see subsection 3.5.

At the final stage the electrons take heat from the hotter ion subsystem of chrome, and by conduction, transfer this heat to the cold ion subsystem of gold, see. figure 10. Of course, in a static system, it eventually leads to equalization of ion temperatures of gold and chrome. But the gradient is small, the coefficient κ is also rather small at small T_e and equalization goes slowly. Therefore in a dynamic situation the equalization process of T_i between Au and Cr has no time to come to the end. It is caused by the expansion of the layers at times 30–50 ps. In connection with this expansion we call the pattern shown in figure 10 as final one in relation to the thermal evolution.

Let’s consider a situation with the increased input of x-ray energy in 5 layer system: power heating $P = 2.42 \times 10^{24}$ W/m3, still $K_a = 4$, during 10 fs, see subsection 3.5. Initial and average stages of the evolution of electron temperature (from 10 fs to 3 fs) are shown in figure 11. The time 10 fs refers to the end of the heating x-ray pulse, so the temperature T_e in gold has a maximum. It significantly exceeds the value T_e at time 10 fs in the case of “weak” pulse, compare figure 8: 14.6 kK against 10.1 kK.

Figure 11 shows how the electron temperature evolves under the effect of heat conduction and energy transfer into the ions. As mentioned above, the thermal conductivity dominates at
Figure 13. Instant pressure distribution on times smaller than acoustic time scale for the heating by a “strong” pulse. The symmetrical half of picture is shown. Pressure in gold is higher, therefore it expands faster and compresses chrome. Furthermore, there is an expansion associated with all layers.

the initial part, and in the final—the heating of ions by the term $\alpha (T_e - T_i)$ in the system of equations (1) and (2). Heat conductivity mainly smoothes the originally angular profile of T_e. While the α term mainly reduces T_e.

Figure 12 shows the final stage of evolution at which it is still possible to use a static model (1) and (2) without taking into account hydrodynamics. There is a convergence of temperatures T_e and T_i. As mentioned above, there are two final stages in the static model. On the end of first stage the gradient ∇T_e falls and temperatures T_e and T_i in chrome become equal. This is due to the fact that at such values of T_e the coefficient α (6) in chrome is several times greater than in gold. On the end of second stage there is an equalization of temperatures of gold and chrome. The first stage end is achieved at times several smaller the acoustic time scale on layer thickness $d_f = 50$ nm. To wait for a second stage end a time is required, which is significantly higher than the acoustic time.

Note that in the films, where there is no cooling of the surface layer due to heat transfer to the target volume, then the initial temperature T_e exceeds not strongly the final temperatures. This is due to the fact that at our temperatures T_e the electron heat capacity and the Dulong–Petit heat capacity $3k_B$ are of the same order according to figure 4.

Figure 13 shows the distribution of pressure at the two times. The gold ion and electron pressures are found at temperatures T_i and T_e and equations $p_{\text{liq}}|_{i} = 2.934 T_{\text{K}}|_{i} + 11.1$ are from the section 3.3 and (4).

In conversion of energy ε_e (4) to electron pressure p_e we put the electron Grüneisen parameter Γ_e equal to one [29]. Pressure in chrome is calculated as follows. First, we determine the energy of the ion subsystem $\varepsilon_{\text{liq}}(T)|_{\text{Cr}}| = 1.84 T_{\text{K}}|_{i} + 3$, see 3.3. Ion contribution to chrome pressure is calculated by this energy and with the unusually small chrome Grüneisen parameter of $\Gamma_i = 0.9$, see [30]. Electron pressure is found from the electron energy in chrome and electron Grüneisen parameter of chrome $\Gamma_e \approx 1$. Resulting pressure distributions are shown in figure 13.
5. Conclusion
The thermal history of a multi-layered system heated by hard x-ray pulse is studied. We demonstrated that the nontrivial distribution of temperature and pressure in the layers is formed due to the difference in absorption coefficients of the materials of layers and their characteristics at a two-temperature stage. As a result the expansion occurs non-uniformly, where the layer with a high pressure expands stronger squeezing the neighbor layers with less pressure.

Acknowledgments
We thank K P Migdal for the calculation of the electron spectrum of chrome.

This work was partially supported by the Russian Foundation for Basic Research, project No. 16-08-01181.

References
[1] URL http://xfel.riken.jp
[2] URL http://www.desy.de
[3] Inogamov N A et al 2011 Contrib. Plasma Phys. 51 367–74
[4] Petrov Yu V, Inogamov N A and Migdal K P 2013 JETP Lett. 97 20–7
[5] Migdal K P, Petrov Y V and Inogamov N A 2013 Proc. SPIE 9065 906503
[6] Petrov Yu V, Migdal K P, Inogamov N A and Anisimov S I 2016 JETP Lett. 104 431–9
[7] Eidmann K, Meyer-ter-Vehn J, Schlegel T and H¨uller S 2000 Phys. Rev. E 62 1202–14
[8] Inogamov N A, Zhakhovsky V V, Khokhlov V A, Demaske B J, Khishchenko K V and Oleynik I I 2014 J. Phys.: Conf. Ser. 500 192023
[9] Inogamov N A et al 2014 J. Phys.: Conf. Ser. 510 012041
[10] Thomas D A, Lin Z, Zhigilei L V, Gurevich E L, Kittel S and Hergenroeder R 2009 Appl. Surf. Sci. 255 9605–12
[11] URL http://henke.lbl.gov
[12] Wagner C and Harnef N 2010 Nat. Photon. 4 24–6
[13] Basko M M, Krivokorytov M S, Vinokhodov A Yu, Sidelnikov Yu V, Krivtsun V M, Medvedev V V, Kim D A, Kompanets V O, Lash A A and Koshelev K N 2017 Laser Phys. Lett. 14 036001
[14] Inogamov N A, Zhakhovskii V V and Khokhlov V A 2015 J. Exp. Theor. Phys. 120 15–48
[15] Wang X W et al 2017 Phys. Rev. Appl. (arXiv:1703.06758 [cond-mat.mtrl-sci])
[16] Anisimov S I, Kapeliovich D L and Perel’man T L 1974 Sov. Phys. JETP 39 375–7
[17] Povarnitsyn M E, Itina T E, Sentis M, Khishchenko K V and Levashov P R 2007 Phys. Rev. B 75 235414
[18] Povarnitsyn M E and Itina T E 2014 Appl. Phys. A 117 175–8
[19] Khokhlov V A, Inogamov N A, Zhakhovsky V V, Shepelev V V and Il’nitsky D K 2015 J. Phys.: Conf. Ser. 655 012003
[20] Khokhlov V A, Inogamov N A, Zhakhovsky V V, Il’nitsky D K, Migdal K P and Shepelev V V 2017 AIP Conf. Proc. 1793 100038
[21] Lin Z, Zhigilei L V and Celli V 2008 Phys. Rev. B 77 075133
[22] Petrov Yu V and Inogamov N A 2013 JETP Lett. 98 278–84
[23] Babar S and Weaver J H 2015 Appl. Optics 54 477–81
[24] URL http://www.faculty.virginia.edu/CompMat/
[25] Khishchenko K V, Tkachenko S I, Levashov P R, Lomonosov I V and Vorobei V S 2002 Int. J. Thermophys. 23 1359–67
[26] Levashov P R, Khishchenko K V, Lomonosov I V and Fortov V E 2004 AIP Conf. Proc. 706 87–90
[27] Khishchenko K V 2008 J. Phys.: Conf. Ser. 98 032023
[28] Khaksheir S, Alfe D and Duffy D M 2008 Phys. Rev. B 78 224304
[29] Petrov Yu V, Migdal K P, Inogamov N A and Zhakhovsky V V 2015 Appl. Phys. B 119 401–11
[30] Girifalco L A 2000 Statistical Mechanics of Solids (Monographs on the Physics and Chemistry of Materials vol 58) (Oxford: Univ. Press)