ON A CONJECTURE CONCERNING SOME AUTOMATIC CONTINUITY THEOREMS

M. El Azhari

ABSTRACT. Let A and B be commutative locally convex algebras with unit. A is assumed to be a uniform topological algebra. Let Φ be an injective homomorphism from A to B. Under additional assumptions, we characterize the continuity of the homomorphism $\Phi^{-1}/\text{Im}\Phi$ by the fact that the radical (or strong radical) of the closure of $\text{Im}\Phi$ has only zero as a common point with $\text{Im}\Phi$. This gives an answer to a conjecture concerning some automatic continuity theorems on uniform topological algebras.

1. INTRODUCTION. Let A and B be commutative locally convex algebras with unit. A is assumed to be a uniform topological algebra. Let Φ be an injective homomorphism from A to B. Under which conditions is $\Phi^{-1}/\text{Im}\Phi$ continuous?

Under additional assumptions such as:

(1) A is weakly regular and functionally continuous, B an lmc algebra, and $(\text{Im}\Phi)^\sim$ (the closure of $\text{Im}\Phi$) is a semisimple Q-algebra; or

(2) A is weakly σ^*-compact-regular, and $(\text{Im}\Phi)^\sim$ is a strongly semisimple Q-algebra;

it is shown in [5] that $\Phi^{-1}/\text{Im}\Phi$ is continuous, which improves earlier results by Bedaa, Bhatt and Oudadess ([2]).

The following examples show that the hypothesis $(\text{Im}\Phi)^\sim$ is a Q-algebra in (1) and (2) cannot be omitted.

Example 1. Let $A = C[0,1]$ be the algebra of all complex continuous functions on the closed unit interval $[0,1]$. A is a uniform Banach algebra under the supnorm. Since $M(A)$ is homeomorphic to $[0,1]$, it follows that A is weakly regular. Consider $B = C[0,1]$. For any countable compact subset K of $[0,1]$, and $f \in B$, we put $p_K(f) = \sup \{ |f(x)|, x \in K \}$. B is a complete uT-algebra under the system $(p_K)_{K \text{ compact}}$. Consider $\Phi: A \rightarrow B$, $\Phi(f) = f$. Then $(\text{Im}\Phi)^\sim = B$ is semisimple but not a Q-algebra. Clearly $\Phi^{-1}/\text{Im}\Phi$ is not continuous.

Example 2. Let $A = C_b(R)$ be the algebra of all complex continuous bounded functions on the real line. A is a uniform Banach algebra under the supnorm. A is weakly σ^*-compact-regular [2, Remark (4)]. Let $B = C(R)$ be the algebra of all complex continuous functions on R, with the compact-open topology. Consider $\Phi: A \rightarrow B$, $\Phi(f) = f$. Then $(\text{Im}\Phi)^\sim = C(R)$ is strongly semisimple but not a Q-algebra. Clearly $\Phi^{-1}/\text{Im}\Phi$ is not continuous.

In [2], the authors conjectured that the semisimplicity of $(\text{Im}\Phi)^\sim$ in (1) (and strong semisimplicity of $(\text{Im}\Phi)^\sim$ in (2)) can be omitted. According to the proofs in [2] and [5], the
semisimplicity of \((\text{Im}\Phi)^\sim\) in (1) can be replaced by \(\text{Im}\Phi \cap R((\text{Im}\Phi)^\sim) = \{0\}\), and the strong semisimplicity of \((\text{Im}\Phi)^\sim\) in (2) can be replaced by \(\text{Im}\Phi \cap \text{SR}((\text{Im}\Phi)^\sim) = \{0\}\).

In this paper, we show that if A is weakly regular and functionally continuous, B an lmc algebra, and \((\text{Im}\Phi)^\sim\) is a Q-algebra, then the continuity of \(\Phi^{-1}/\text{Im}\Phi\) is equivalent to \(\text{Im}\Phi \cap R((\text{Im}\Phi)^\sim) = \{0\}\). We also show that if A is weakly \(\sigma^*\)-compact-regular, B has continuous product, and \((\text{Im}\Phi)^\sim\) is a Q-algebra, then the continuity of \(\Phi^{-1}/\text{Im}\Phi\) is equivalent to \(\text{Im}\Phi \cap \text{SR}((\text{Im}\Phi)^\sim) = \{0\}\).

2. PRELIMINARIES. All algebras considered are over the field \(\mathbb{C}\), commutative, and having a unit element. A topological algebra is an algebra which is also a Hausdorff topological vector space such that the multiplication is separately continuous. A locally convex algebra (lc algebra) is a topological algebra whose topology is locally convex. A locally multiplicatively convex algebra (lmc algebra) is a topological algebra whose topology is determined by a family of submultiplicative seminorms. A uniform seminorm on an algebra A is a seminorm p such that \(p(x^2) = p(x)^2\) for all \(x \in A\). Such a seminorm is submultiplicative [4]. A uniform topological algebra (uT-algebra) is a topological algebra whose topology is determined by a family of uniform seminorms. A uniform normed algebra is a normed algebra \((A, \|\|)\) such that \(\|x^2\| = \|x\|^2\) for all \(x \in A\). Let A be an algebra and \(x \in A\), we denote by \(sp_a(x)\) the spectrum of \(x\) and \(r_a(x)\) the spectral radius of \(x\). For an algebra A, \(M^*(A)\) denotes the set of all nonzero multiplicative linear functionals on A. For a topological algebra A, \(M(A)\) denotes the set of all nonzero continuous multiplicative linear functionals on A. A topological algebra A is functionally continuous if \(M^*(A) = M(A)\). A topological algebra is a Q-algebra [7] if the set of invertible elements is open. A topological algebra is weakly regular [2] if given a closed subset F of \(M(A)\), \(F \neq M(A)\), there exists a nonzero \(x \in A\) such that \(f(x) = 0\) for all \(f \in F\). A topological algebra A is weakly \(\sigma^*\)-compact-regular [2] if given a compact subset K of \(M^*(A)\), \(K \neq M^*(A)\), there exists a nonzero \(x \in A\) such that \(f(x) = 0\) for all \(f \in K\). We use R(A) to denote the radical of an algebra A. If \(R(A) = \{0\}\), we say that A is semisimple. Let A be a topological algebra with \(M(A) \neq \emptyset\), the set \(\{x \in A, f(x) = 0\text{ for all }f \in M(A)\}\) is called the strong radical of A and denoted by \(\text{SR}(A)\). If \(\text{SR}(A) = \{0\}\), we say that A is strongly semisimple. Let A be an lmc algebra, if A is complete or a Q-algebra, then \(R(A) = \text{SR}(A)\).

3. RESULTS

Theorem 3.1. Let A be a weakly regular, functionally continuous, uT-algebra. Let B be an lmc algebra, and let \(\Phi\): \(A \rightarrow B\) be a one-to-one homomorphism such that \((\text{Im}\Phi)^\sim\) is a Q-algebra. Then the following are equivalent:

1. \(\Phi^{-1}/\text{Im}\Phi\) is continuous.
2. \(\text{Im}\Phi\) is functionally continuous.
3. \(\Phi^*: M((\text{Im}\Phi)^\sim) \rightarrow M(A), \Phi^*(f) = f \circ \Phi\), is surjective.
4. \(\text{Im}\Phi \cap R((\text{Im}\Phi)^\sim) = \{0\}\).

Proof: (1) \(\Rightarrow\) (2): Let \(F \in M^*(\text{Im}\Phi)\), \(F = F \circ \Phi \circ (\Phi^{-1}/\text{Im}\Phi)\) is continuous since \(F \circ \Phi\) and \(\Phi^{-1}/\text{Im}\Phi\) are continuous.
(2) => (3): Let \(f \in M(A) \) and \(F = f \circ (\Phi^{-1}/\text{Im} \Phi) \). If \(\Phi^* \) is surjective, then \(F \in M(\text{Im} \Phi) \) and \(f = F \circ \Phi \). By (i), there exists \(F \) such that \(F \in M(\text{Im} \Phi) \). Since \(\text{Im} \Phi \) is compact, \(F \) is continuous at 0 [7, Proposition 13.5]. Then \(\Phi^{-1}/\text{Im} \Phi \) is continuous.

(3) => (1): By [5, Theorem 2.1], the topology of \(A \) is determined by a family \(\{p_s, s \in S\} \) of submultiplicative seminorms such that (i) for all \(x \in A \) and \(s \in S \) with \(p_s(x) = 1 \), there exists \(f \in M(A) \) such that \(|f(x)| = 1 \). Let \(s \in S \) and \(y \in \text{Im} \Phi \) with \(p_s(\Phi^{-1}(y)) \neq 0 \). By (i), there exists \(f \in M(A) \) such that \(|f(\Phi^{-1}(y))| = p_s(\Phi^{-1}(y)) \). Since \(\Phi^{-1} \) is surjective, there exists \(F \in M((\text{Im} \Phi)\bar{\mathbb{Q}}) \) such that \(f = F \circ \Phi \). We have \(p_s(\Phi^{-1}(y)) = |f(\Phi^{-1}(y))| = |F(y)| \leq r_C(y) \), where \(C = (\text{Im} \Phi)\bar{\mathbb{Q}} \). Since \(C \) is a \(\mathbb{Q} \)-algebra, \(r_C \) is continuous at 0 [7, Proposition 7.5]. Then \(\Phi^{-1}/\text{Im} \Phi \) is continuous.

(3) => (4): Let \(y \in \text{Im} \Phi \cap R((\text{Im} \Phi)\bar{\mathbb{Q}}) \), there exists \(x \in A \) such that \(y = \Phi(x) \) and \(F(\Phi(x)) = 0 \) for all \(F \in M((\text{Im} \Phi)\bar{\mathbb{Q}}) \). Then \(f(x) = 0 \) for all \(f \in M(A) \) since \(\Phi^* \) is surjective. Hence \(x = 0 \) and so \(y = \Phi(x) = 0 \).

Theorem 3.2. Let \(A \) be a weakly \(\sigma^* \)-compact-regular, \(uT \)-algebra. Let \(B \) be an \(lc \) algebra with continuous product, and \(\Phi: A \to B \) be a one-to-one homomorphism such that \((\text{Im} \Phi)^{-1} \) is a \(\mathbb{Q} \)-algebra. The following are equivalent:

(1) \(\Phi^{-1}/\text{Im} \Phi \) is continuous.

(2) \(\text{Im} \Phi \cap \text{SR}(\text{Im} \Phi^{-1}) = \{0\} \).

(3) \(\Phi^*: M((\text{Im} \Phi)^{-1}) \to M^*(A), \Phi^*(f) = f \circ \Phi, \) is surjective.

Proof: (1) => (2): The topology of \(A \) is determined by a family \(\{p_u, u \in U\} \) of uniform seminorms. For each \(u \in U \), let \(N_u = \{x \in A, p_u(x) = 0\} \) and \(A_u \) be the Banach algebra obtained by completing \(A/N_u \) in the norm \(\|x\|_u = p_u(x), x_u = x + N_u \). It is clear that \(A_u \) is a uniform Banach algebra. For each \(u \in U \), let \(M_u(A) = \{f \in M(A), \|f(x)\| \leq p_u(x) \text{ for all } x \in A\} \). Let \(u \in U \) and \(x \in A \), \(p_u(x) = \|x\|_u = r_u(x_u) = \sup \{\|g(x_u)\|, g \in M(A_u)\} = \sup \{|f(x)|, f \in M_u(A)\} \text{ by [7, Proposition 7.5]} \). Let \(f \in M_u(A) \), \(f \circ \Phi \in M((\text{Im} \Phi)^{-1}) \) since \(\Phi^{-1}/\text{Im} \Phi \) is continuous and \(B \) has continuous product. Then \(p_u(\Phi^{-1}(y)) \leq \sup \{|F(y)|, F \in M((\text{Im} \Phi)^{-1})\} \text{ for all } u \in U \) and \(y \in \text{Im} \Phi \). Let \(y \in \text{Im} \Phi \cap \text{SR}(\text{Im} \Phi^{-1}) \), we have \(p_u(\Phi^{-1}(y)) = 0 \) for all \(u \in U \), then \(\Phi^{-1}(y) = 0 \) and so \(y = 0 \).

(2) => (3): \(\Phi^* \) is continuous. Since \((\text{Im} \Phi)^{-1} \) is a \(\mathbb{Q} \)-algebra, \(M((\text{Im} \Phi)^{-1}) \) is compact [6, p.187], thus \(\Phi^*(M((\text{Im} \Phi)^{-1})) \) is compact. Suppose that \(\Phi^* \) is not surjective. Since \(A \) is \(\sigma^* \)-compact-regular, there exists a nonzero \(x \in A \) such that \(f(\Phi(x)) = 0 \) for all \(f \in M((\text{Im} \Phi)^{-1}) \). Then \(f(x) = 0 \) for all \(f \in M(A) \) since \(\Phi^* \) is surjective. Hence \(x = 0 \) and so \(y = \Phi(x) = 0 \).

(3) => (1): Similar to the proof of (3) => (1) in Theorem 3.1.
Example. Let $A = C[0,1]$ be the algebra of all complex continuous functions on the closed unit interval $[0,1]$. A is a uniform Banach algebra under the supnorm $\|\cdot\|$, A is also weakly regular. By [3], there exists a norm $\|\cdot\|$ on $C[0,1]$ such that $C[0,1]$ is an incomplete normed algebra. It is well known that $\|\cdot\| \leq \|\cdot\|$.

Let B be the completion of $C[0,1]$ under the norm $\|\cdot\|$. Consider $\Phi: A \to B$, $\Phi(f) = f$, we have $(\text{Im} \Phi)^\perp = B$. If B is semisimple, then Φ is continuous, and consequently the norms $\|\cdot\|$ and $\|\cdot\|$ are equivalent, a contradiction. Since $\|\cdot\| \leq \|\cdot\|$, $\Phi^{-1}/ \text{Im} \Phi$ is continuous and so $\text{Im} \Phi \cap \text{R}((\text{Im} \Phi)^\perp) = \{0\}$ by Theorem 3.1.

Remark. The algebra A considered in the above example is also $\sigma\ast$-compact-regular and $\text{Im} \Phi \cap \text{SR}((\text{Im} \Phi)^\perp) = \{0\}$ but $\text{SR}((\text{Im} \Phi)^\perp) \neq \{0\}$.

The following result is an application of Theorem 3.1.

Theorem 3.3. Let A be a functionally continuous normed algebra. Then the following assertions are equivalent:

1. A is a uniform normed algebra.
2. A has a largest closed, idempotent, absolutely convex, bounded subset.

Proof. (1) \Rightarrow (2): Let $\|\cdot\|$ be a uniform norm defining the topology of A. Let $B = \{x \in A, \|x\| \leq 1\}$, B is a closed, idempotent, absolutely convex, bounded subset of A. Let C be an idempotent bounded subset of A. There exists $M > 0$ such that $\|x\| \leq M$ for all $x \in C$. Let $x \in C$, $\|x\| = \|x^n\|^n \leq M^n$ for all $n \geq 1$, then $\|x\| \leq 1$ i.e. $x \in B$.

(2) \Rightarrow (1): Let B be a largest closed, idempotent, absolutely convex, bounded subset of A. By [1, Proposition 2.15], we have $A = A(B) = \{tx, t \in \mathbb{C} \text{ and } x \in B\}$. Let $\|\cdot\|_B$ be the Minkowski functional of B, $(A, \|\cdot\|_B)$ is a normed algebra. By [1, Proposition 2.15], $\beta = \|\cdot\|_B$ where β is the radius of boundedness, then $(A, \|\cdot\|_B)$ is a uniform algebra since $\beta(x^n) = \beta(x)^n$ for all $x \in A$. Let A_1 be the completion of A under the original norm. It is clear that $\Phi: (A, \|\cdot\|_B) \to A_1$, $\Phi(x) = x$, is continuous, and consequently $(A, \|\cdot\|_B)$ is functionally continuous. We now remark that we have proved the equivalence of (1), (2) and (3) in Theorem 3.1 without the condition that A is weakly regular. Using this remark, $\Phi^{-1}/ \text{Im} \Phi$ is continuous, then Φ is a homeomorphism (into), so A is a uniform normed algebra.

REFERENCES

[1] G.R.Allan, A spectral theory for locally convex algebras, Proc.London.Math.Soc. 3 (15) (1965), 399-421.
[2] A.Bedaa, S.J.Bhatt and M.Oudadess, On automatic continuity of homomorphisms, Proc.Amer.Math.Soc.Vol.128, No.4 (1999), 1039-1045.
[3] H.G.Dales, A discontinuous homomorphism from C(X), Amer.J.Math.101 (1979), 647-734.
[4] H.V. Dedania, A seminorm with square property is automatically submultiplicative, Proc. Indian.Acad.Sci (Math.Sci), 108 (1998), 51-53.
[5] M. El Azhari, On some automatic continuity theorems, Bull.Belg.Math.Soc. 10 (2003), 627-634.
[6] A. Mallios, Topological algebras, Selected topics, North-Holland, 1986.
[7] E.A. Michael, Locally multiplicatively convex topological algebras, Mem.Amer.Math.Soc., No.11 (1952).

Ecole Normale Supérieure
Avenue Oued Akreuch
Takaddoum, BP 5118, Rabat
Morocco

E-mail: mohammed.elazhari@yahoo.fr