Research Article

Research on Chest Disease Recognition Based on Deep Hierarchical Learning Algorithm

Lingling Li,1 Yangyang Long,2 Bangtong Huang,3 Zihong Chen,4 Zheng Liu,3 and Zekun Yang5

1Department of Central Laboratory, Children’s Hospital of Shanghai Jiao Tong University, Shanghai, China
2School of Computing and Information System, University of Melbourne, Melbourne, Australia
3School of Management, Shanghai University of Engineering Science, Shanghai, China
4College of Engineering, Shantou University, Shantou, China
5Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China

Correspondence should be addressed to Yangyang Long; hqzhang@link.cuhk.edu.hk

Received 25 September 2021; Revised 24 October 2021; Accepted 22 November 2021; Published 7 January 2022

Academic Editor: Le Sun

Copyright © 2022 Lingling Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chest X-ray has become one of the most common ways in diagnostic radiology exams, and this technology assists expert radiologists with finding the patients at potential risk of cardiopathy and lung diseases. However, it is still a challenge for expert radiologists to assess thousands of cases in a short period so that deep learning methods are introduced to tackle this problem. Since the diseases have correlations with each other and have hierarchical features, the traditional classification scheme could not achieve a good performance. In order to extract the correlation features among the diseases, some GCN-based models are introduced to combine the features extracted from the images to make prediction. This scheme can work well with the high quality of image features, so backbone with high computation cost plays a vital role in this scheme. However, a fast prediction in diagnostic radiology is also needed especially in case of emergency or region with low computation facilities, so we proposed an efficient convolutional neural network with GCN, which is named SGGCN, to meet the need of efficient computation and considerable accuracy. SGGCN used SGGNet-101 as backbone, which is built by ShuffleGhost Block (Huang et al., 2021) to extract features with a low computation cost. In order to make sufficient usage of the information in GCN, a new GCN architecture is designed to combine information from different layers together in GCNM module so that we can utilize various hierarchical features and meanwhile make the GCN scheme faster. The experiment on CheXPert datasets illustrated that SGGCN achieves a considerable performance. Compared with GCN and ResNet-101 (He et al., 2015) backbone (test AUC 0.8080, parameters 4.7M and FLOPs 16.0B), the SGGCN achieves 0.7831 (−3.08%) test AUC with parameters 1.2M (−73.73%) and FLOPs 3.1B (−80.82%), where GCN with MobileNet (Sandler and Howard, 2018) backbone achieves 0.7531 (−6.79%) test AUC with parameters 0.5M (−88.46%) and FLOPs 0.66B (−95.88%).

1. Introduction

A potential risk of cardiopathy and lung disease threatens millions of lives, and most of these diseases are preventable due to the chest X-ray (CXR) technology. Now, CXR technology becomes a regular examination of heart and lung disease, which assists in clinical diagnosis and treatment. Some algorithms like convolutional neural network (CNN) and Bayesian models are introduced to process and make diseases prediction by CXR images, and they really make a difference. On the one hand, they reduce the workload of expert radiologists with the high speed of computation and make it possible for expert radiologists to process a huge number of radiology samples. On the other hand, these algorithms can filter out some low-risk radiology samples with a considerably low-false-negative rate so that expert radiologists can more easily find out the samples with potential risk.

CNN-based models can extract the features from images and use a fully connected layers to make prediction. Comparing to multi-class image classification [1], the
The multilabel task is more challenging due to the combinatorial nature of the output space. With the advent of deep learning, a more recent focus has been on adapting deep networks, typically convolutional neural networks (CNNs), for hierarchical classification [2, 3]. ResNet [4] was proposed to extract features with a deep convolutional network and improved the accuracy of ImageNet classification task. And now, ResNet is wildly used as a backbone to extract features, as well as pretrained model is adopted to accelerate the training procedure. But chest disease recognition task is a multilabel classification task, and the label (diseases) has hierarchical features, so the trick in classical image classification task might not work, if the hierarchical features are not properly extracted. Given the outstanding performance, deep learning has been applied in some safety and security critical tasks, such as self-driving, malware detection, identification [5], and anomaly detection [6].

In some previous work, Graph Convolution Network (GCN) [7] is introduced to learn the hierarchical features among the labels, and this kind of structure might be suitable for this chest disease recognition task. And works like MLGCN [8] designed a proper structure, utilized the hierarchical features of labels, and achieved a better performance, but most of them adopt a deep neural network like ResNet-101 as backbone to extract image features, which would suffer high cost of computation. In this work, we focus on the efficient computation in GCN. In order to decrease the parameters and FLOPs, firstly we designed a new backbone named SGNet-101, which is built by ShuffLeGhost [9] block. The SGNet-101 utilized the redundancy of feature map in convolution and used ghost convolution to simulate the convolution scheme. Compared with light models which have wide usage of depthwise and element-wise convolution, SGNet-101 could reduce the FLOPs and parameters and maintain the image features more easily. In order to make sufficient usage of the information in GCN, we designed a new GCN architecture to combine information from different layers together so that we can utilize various hierarchical features and meanwhile make the GCN scheme faster. With the SGNet-101 as backbone and new GCN architecture, a new model named SGGCN is proposed by us.

2. Related Work

With the development of deep learning, researchers have achieved great performance in image classification tasks and made good efforts in medical image classification and segmentation. In the chest disease recognition task, the diseases share co-occurrence features and have hierarchical structures, so special techniques should be adopted to tackle this hierarchical multilabel learning classification task. ChestX-ray14 dataset [10] and CheXpert [11] dataset with hierarchical multilabel features have been widely used, as well as some methods with probability modelling, attention learning, and graph neural network are also introduced to learn the hierarchical features. Chen et al. [12] mainly focused on probability modelling and tried to predict the conditional probability for each label and fined-tuning this model with unconditional probability. Guan and Huang [13] used ResNet-50 or DenseNet-121 as the backbone, designed an attention module to obtain normalized attention scores, and integrated the features from backbone and the attention scores into a residual attention block to make classifications. In order to utilize the co-occurrence features in the datasets MS-COCO [14] and VOC2007, Chen and Wei et al. [8] used graph convolution network to capture the correlations of the labels and applied these features on the features extracted from input images by ResNet-101. Chen and Li et al. [15] further applied this graph convolution network method on multilabel chest X-ray image classification and proposed CheXGCN, which achieved considerable results on Chest X-ray14 and CheXpert.

3. Methods

3.1. Word Embedding

GloVe [16] word embedding is adopted to convert label words into vectors so that this vector can take the place of the one-hot encoding. Our method used 300-dim word vectors from GloVe text model which trained on the Wikipedia dataset to convert the labels in the CheXpert dataset into vectors so that it produced a 14×300 matrix, and this matrix would further be fed into graph convolution network, which is regarded as Graph Convolution Network Module (GCNM) in SGGCN that we proposed.

3.2. Unbalanced Learning

As will be mentioned in Section 5.1, CheXpert datasets have unbalanced the data. The Fracture class have the least samples of 7270 with 484 uncertain, while the Lung Opacity has the largest samples of 92669 with 4341 uncertain. In order to tackle the imbalance of dataset, we adopted Weighted Cross Entropy Loss, which is proposed in CheXGCN:

$$L(p, l) = -\omega_p \sum_{j=1}^{P} \log \left(\sigma(p_j) - \omega_n \sum_{i=0}^{N} \log(1 - \sigma(p_i)) \right),$$

$$\omega_p = \frac{|P| + |N| + 1}{|P| + 1},$$

$$\omega_n = \frac{|P| + |N| + 1}{|N| + 1},$$

where σ is the sigmoid function and $|P|$ and $|N|$ are the number of positive samples and negative samples. In SGGCN, we computed $|P|$ and $|N|$ as the positive samples and negative samples in the whole training set to improve the stability.

3.3. Graph Neural Network

3.3.1. Fourier Transform

When given a periodic function $f(x)$, we can break it apart by Fourier series:
\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \sin(n\omega x) + \sum_{n=1}^{\infty} b_n \cos(n\omega x), \]

\[a_n = \frac{1}{T} \int_{0}^{T} f(x) \sin(n\omega x) dx, \]

\[b_n = \frac{1}{T} \int_{0}^{T} f(x) \cos(n\omega x) dx, \]

where \(f(x) \) is the function value of node \(i \), \(j \) are the nodes connected with \(i \), \(\omega_{ij} \) is the weight of \(i - j \) connection, \(d_i \) is the degree of \(i \), and \(\omega \cdot f \) is the sum of multiplication of all \(j \) and its weight. It can be rewritten in matrix form as follows:

\[
\Delta f = \begin{pmatrix}
 d_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & d_N
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_N
\end{pmatrix}
- \begin{pmatrix}
 -\omega_{11} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & -\omega_{NN}
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_N
\end{pmatrix}
\]

\[= (D-W)F = LF. \]

And, we get the Laplacian matrix \(L \), and we further get the normalized Laplacian matrix \(\tilde{L} \):

\[\tilde{L} = D^{-1/2} (D - W) D^{-1/2}. \]

The decomposition of Laplacian matrix \(L \) is

\[Lu_k = \lambda u_k. \]

3.3.3. Graph Fourier Transform. It can be proved by Helmholtz equation that \(u_k \) can be used as orthonormal set to decompose \(f_i \):

\[F_k(\lambda_k) = \tilde{f}_k = \sum_{i=1}^{N} f_{ij} u_k(i), \]

where \(\lambda_k \) and \(u_k \) are the eigenvalues and eigenvectors of Laplacian matrix \(L \), and \(k = 1, \ldots, N \) because \(L \) is an \(N \times N \) symmetric matrix. It can be rewritten in matrix form:

\[\tilde{f} = \begin{pmatrix}
 \tilde{f}_1 \\
 \vdots \\
 \tilde{f}_N
\end{pmatrix} = \begin{pmatrix}
 u_1(1) & \cdots & u_1(N) \\
 \vdots & \ddots & \vdots \\
 u_N(1) & \cdots & u_N(N)
\end{pmatrix}
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_N
\end{pmatrix} \]

\[= U^T \tilde{f}. \]

3.3.4. Graph Convolution Network. According to convolution theorem, the Fourier transform of a convolution of two signals is the pointwise product of their Fourier Transforms under suitable conditions:

\[F[f \ast g] = F[f] \cdot F[g], \]

where \(F \) is the Fourier transform, \(f \) and \(g \) are two signals, \(\ast \) is the convolution operation, and \(\cdot \) is the pointwise product.
When applied in graph G, with input f and kernel h, convolution operation in graph can convert to pointwise product under Fourier domain:

$$(f \ast g)_G = \mathcal{F}^{-1}[\mathcal{F}[f] \cdot \mathcal{F}[h]]$$

$$= \mathcal{F}^{-1}[U^T f \cdot \tilde{h}] = U \left(\begin{array}{c} \tilde{h}_1 \ldots 0 \\ \vdots \\ 0 \ldots \tilde{h}_N \end{array} \right) U^T f$$

$$= \left(\begin{array}{c} \tilde{h}_1 \ldots 0 \\ \vdots \\ 0 \ldots \tilde{h}_N \end{array} \right) U^T f = U \left(\begin{array}{c} \theta_1 \ldots 0 \\ \vdots \\ 0 \ldots \theta_N \end{array} \right) U^T f.$$

(15)

The trainable variables g convert into θ in Fourier domain. And in graph neural network, we can directly learn θ instead of g. We also get the following formula, where σ is the activation function:

$$y = \sigma(U_{g \theta} U^T x)$$

$$= \sigma \left(U \left(\begin{array}{c} \theta_1 \\ \vdots \\ \theta_N \end{array} \right) U^T x \right).$$

(16)

Here, we have defined the propagation rule of graph network. But this rule has some drawbacks: (1) N might be a large number, which would be due to large trainable parameters; (2) it is hard to share weight θ_i in θ; (3) U is computed from the decomposition of L, whose computation cost is $O(N^3)$. In order to tackle these problems, g_{θ} could be rewritten as a function $g_{\theta}(\cdot)$ in the following formula:

$$\left(\begin{array}{c} \theta_1 \\ \vdots \\ \theta_N \end{array} \right) = g_{\theta} = g_{\theta}(\Lambda),$$

$$\Lambda = \left(\begin{array}{ccc} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_N \end{array} \right).$$

(17)

And Taylor series expansion is adopted to approximate g_{θ}.

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k.$$

(18)

This approximation takes the place of $g_{\theta}(\Lambda)$, and we rewrite equation (16):

$$y = \sigma(U_{g \theta} U^T x) = \sigma(U_{g \theta}(\Lambda) U^T x)$$

$$\approx \sigma \left(U \left(\sum_{k=0}^{K-1} \theta_k \Lambda^k \right) U^T x \right) = \sigma \left(\sum_{k=0}^{K-1} \theta_k U \Lambda^k U^T x \right)$$

$$= \sigma \left(\sum_{k=0}^{K-1} \theta_k (U \Lambda U^T)^k x \right).$$

(19)

If k is set as 2, we get the following formula:

$$g_{\theta} \ast x = \sum_{k=0}^{2} \theta_k T_k(\bar{L}) x = \theta_0 x + \theta_1 \bar{L} x.$$

(22)

Since θ_0 and θ_1 influence the scale, it would be less effective after operation of normalization, so they can be set equal: $\theta = \theta_0 = \theta_1$, and equation (22) can be rewritten as follows:

$$g_{\theta} \ast x \approx \theta_0 x + \theta_1 \bar{L} x = \theta (I_N + \bar{L}) x.$$

(23)

And normalizing the matrix $A = I_N + \bar{L}$, we get

$$A = I_N + \bar{L},$$

$$A = \bar{D}^{-1/2} A \bar{D}^{-1/2}.$$

(24)
In order to learn the relations, weight W is introduced, and a new propagation rule can be obtained:

$$H^{(l+1)} = \sigma(D^{-1/2} A D^{-1/2} H^{(l)} W^{(l)})$$ \hspace{1cm} (25)

$$\bar{D}_H = \sum_j A_{ij}$$ \hspace{1cm} (26)

$$A = I_N + \bar{L}$$ \hspace{1cm} (27)

$$\bar{L} = \frac{2}{\lambda} \max - L - I_N$$ \hspace{1cm} (28)

where $H^{(l)}$ is the output from layer l and $W^{(l)}$ is the trainable variables in layer l. And the propagation rule in the graph convolution layer is

$$H^{(l+1)} = \sigma(\bar{A} H^{(l)} W^{(l)})$$

$$= \sigma(\bar{D}^{-1/2} A \bar{D}^{-1/2} H^{(l)} W^{(l)})$$ \hspace{1cm} (29)

3.4. Graph Presentation. In order to follow the propagation rule of equation (29), we should compute correlation matrix A. The way to compute A mentioned in equation (27) cannot work, because in this task, the graph is a weighted, directed graph.

We adopt the method introduced in CheXGCN, which used a nonlinear method to preprocess the correlation matrix p by equation (34) to reduce the noise and protect the correlations of labels:

$$A_{ij} = \begin{cases} \lambda \frac{P_{ij}}{\sum_i P_{ij} + \theta} & \text{if } P_{ij} \geq \phi, \\ 0 & \text{if } P_{ij} < \phi, \end{cases}$$ \hspace{1cm} (30)

where λ is a hyperparameter to control the correlation state between the node and its neighborhood, ϕ is the threshold to filter the noise, and θ is an innately small quantity to ensure the denominator is not equal to zero.

4. Network Architecture

In this paper, we designed an efficient network architecture named SGGCN as illustrated in Figure 1, containing Feature Representation Module (FRM) and Graph Convolution Network Module (GCNM). The FRM used an SGNet-101 efficient neural network architecture to extract image features. GCNM used a small network architecture to extract correlations features from the labels. Finally, the features from FRM and GCNM are combined together and make multilabel prediction by matrix multiplication.

4.1. Feature Representation Module. In this module, we would use light models to extract image features with low computational consumption. Since some diseases like lung opacity have small scale and low resolution of feature maps might loss information of small target, especially pooling operation and convolution operation with large kernel scale would loss information. So, deep convolution neural network architectures like residual network can help to keep the information, but they suffer high computation cost. In order to design an efficient deep convolution neural network, ShuffleGhost Module is adopted to form ShuffleGhost Block and used this block to build a deep convolution neural network architecture SGNet-101. In ShuffleGhost Module, primary convolution conducts group convolution and generates primary feature with partial channels, and ghost convolution utilizes the redundant information of feature map to recover the ghost feature with rest channels by efficient operation like depthwise convolution; finally, the primary feature is concatenated with and ghost feature and disrupted the channel order with shuffle layer. So, ShuffleGhost can maintain the feature information with high computation efficiency, and SGNet-101 can extract features from multiple resolution with deep neural network. Figure 2 shows the structure of ShuffleGhost Module and Block. One ShuffleGhost Block contains two ShuffleGhost Module; each one contains primary convolution part and ghost convolution part. In primary convolution part, group convolution is enrolled. In ghost convolution, cheap convolution is adopted to produce ghost feature map. The outputs from primary convolution part and ghost convolution part are concatenated together to generate output feature.

At the end of this module, the backbone SGNet-101 is followed by Global Average Pooling (GAP) layer to compress the features into 1024-d, where we denoted as F_{FRM}.

4.2. Graph Convolutional Network Module. This module takes the embedding word of the labels and the graph presentation as input and uses graph convolution network to extract the correlation of the labels. The embedding words X_{emb} can be computed in Section 3.1, and the graph presentation \bar{A} is shown in equation (30). And X_{emb} and \bar{A} are fed to the first layer of IFE model:

$$H^{(1)} = \sigma(\bar{A} X_{emb} W^{(0)})$$

$$= \sigma(\bar{A} H^{(0)} W^{(0)})$$ \hspace{1cm} (31)
5. **Experiment**

5.1. **Datasets.** This paper mainly focused on CheXpert datasets, which is widely used in deep hierarchical learning for chest disease recognition. The datasets have 14 classes (diseases); the label of each class is one of the four possible labels: NULL, −1, 0, and 1, and they represent empty, uncertain, negative, and positive, respectively. And the distribution of this dataset is illustrated as Table 1. We used CheXpert-v1.0-small (https://stanfordmlgroup.github.io/competitions/chexpert/) dataset, and the images in this dataset are not as high resolution as the origin CheXpert dataset, so this would influence the accuracy we can get in CheXGCN. The training set of this dataset has 223414 samples, and the label of each class might be one of four values as mentioned above. And the validation set has 234 samples, and the label of each class might be one of the two labels: positive and negative. After this procedure, the other NULL labels are replaced with negative labels.

At present, the testing dataset is not yet available, and some classes like Lung Lesion, Pleural Other, and Fracture in the validation set are not enough. We divided the dataset into 70% for training, 10% for validation, and 20% for testing.

Figure 1: The architecture of SGGCN.

Figure 2: The structure of ShuffleGhost Block and Module.
Table 1 is the summary of 14 classes in CheXpert dataset (https://stanfordmlgroup.github.io/competitions/chexpert/).

Pathology	Positive	Negative	Uncertain	Empty
No finding	22381	0	0	201033
Enlarged cardiom.	10798	21638	12403	178575
Cardiomegaly	27000	11116	8087	177211
Lung opacity	105581	6599	5598	105636
Lung lesion	9186	1270	1488	211470
Edema	52246	20726	12984	137458
Consolidation	14783	28097	27742	152792
Pneumonia	6039	2799	18777	195806
Atelectasis	33376	1328	33739	154971
Pneumothorax	19448	56341	3145	144480
Pleural effusion	86187	35396	11628	90203
Pleural other	3523	316	2653	216922
Fracture	9040	2512	642	211220
Support devices	116001	6137	1079	100197

It is noteworthy to mention that the probability p at row j and column i means $P(i | j)$. We can find the following relations:

- $P(\text{Enca} = 1 | \text{Card} = 1) = 1$, \hspace{1cm} (35)
- $P(\text{Opca} = 1 | \text{Atel} = 1) = 1$, \hspace{1cm} (36)
- $P(\text{Opca} = 1 | \text{Pnuel} = 1) = 1$, \hspace{1cm} (37)
- $P(\text{Opac} = 1 | \text{Cons} = 1) = 1$, \hspace{1cm} (38)
- $P(\text{Opac} = 1 | \text{Edema} = 1) = 1$, \hspace{1cm} (39)

where Enca, Card, Opca, Atel, Pnuel, Cons, and Edema mean enlarged cardiomegaly, atelectasis, pneumonia, consolidation, and edema. And, we do not take the positive labels in Lesi (lung lesion), Other (pleural other), and Frac (fracture) into consideration because of the lack of data. And, this paper mainly used the relations equations (35)–(38) because these relations can be proved medically. In this way, we can fill some NULL, Negative, and Uncertain labels in training set to positive labels if it meets the relations above. Table 3 illustrates the result of the extended training data.

5.3. Model Training. In order to discuss the computation and accuracy performance of SGGCN we proposed, we would make comparison with models with backbones of ResNet-101 and MobileNetV2 [17] in Feature Representation Module, respectively. We set θ, ϕ, and λ to 10^{-6}, 0.30, and 0.10 respectively, according to equation (30). In the exploratory experiment, we set initial learning rate lr to 10^{-3} and decay to $0.1 \times lr$ every 5 epoch, as well as set the max epochs to 20, and trained SGGCN with scratch, GCN with ResNet-101 and MobileNetV2 with pretrained models. In order to discuss the performance of GCN, we also trained SGNet-101 without GCNM module.

5.4. Results. We trained SGGCN, GCN with ResNet-101 (denoted as ResNet-101-GCN), and MobileNetV2 (denoted as MobileNetV2-GCN), respectively, and get the
performance on validation AUC trend as in Figure 3, and Table 4 illustrates the result of AUC on training, validation, and testing set, respectively. We could find that SGGCN-101 did not suffer from overfitting, and the performance on validation AUC and test AUC has about 3% lower than ResNet-101-GCN, where MobileNetV2-GCN has about 7% lower than ResNet-101-GCN.

Since the SGGCN-101, we focus on the efficient computing, and we compared the trainable parameters and FLOPs, as shown in Table 5. We could find SGGCN-101 and MobileNetV2-GCN meet a significant decrease in trainable parameters and FLOPs. When the trainable parameters and FLOPs meet about 80% decrease in SGGCN-101, it only has 3% decrease in validation AUC and test AUC.

5.5. Discussion. In graph convolution layers in GCNM in SGGCN, the weights are 300×512, 512×512, respectively. And as the structure of SGGCN in Figure 1, when the 14×300 embedding words are fed into GCNM, the features $H^{(1)}$ and $H^{(2)}$ from graph convolution layers are concatenated and form the output W_{GCNM} whose dimension is 14×1024. Then, W_{GCNM} is used to do matrix multiplication with the features extracted from FRM (Feature Representation Module). And we can find in this place that W_{GCNM} has similar action as a weight and carries attention information from GCNM module and weight the features in FRM. In order to discuss the influence of GCN, we trained SGNet-101 without GCNM module, which means that the model only has FRM module with backbone of SGNet-101 to extract features, but used a 14×1024 random initialized weight in the fully connected layer W_{FC} to do matrix multiplication with the features.

We used Principal Component Analysis [12] to do dimensionality reduction on both W_{GCNM} and W_{FC} and showed the result in Figure 4, where the first figure shows the PCA dimensionality reduction of W_{GCNM}, as well as the second one shows that of W_{FC}. We can find in the 2-dimensional subspace, the distances of these two classes...
Enlarged Cardiomegaly and Cardiomegaly in both W_{GCNM} and W_{FC} are small, with 0.0862 of W_{GCNM} and 0.0410, and they all meet the rule of equation (35). But if we focus on the distances among these four diseases: Lung Opacity, Consolidation, Pneumonia, and Atelectasis, we can find W_{GCNM} works much better, because the mean distances among the four diseases is 0.2343, while the mean distances of W_{FC} is 0.3153. The first figure also shows that these four diseases are separated in the subspace of W_{FC}, while the diseases in the subspace of W_{GCNM} still accumulated and retained relationships, and meet the rules of equations (36)–(38).

So far, we have found that W_{GCNM} can retain the information of equations (35)–(38), and we would mine more potential relationships information to explore its performance. Firstly, we extracted potential relationships information from training data by equation (34), and we got the conditional probability $P(i|j)$. But in the result of dimensionality reduction, the way we judge the relationship of a pair classes is to compare their distance, which is an

Structure	Trainable parameters	FLOPs
ResNet-101-GCN	47,308,864	16,017,450,516
SGGCN-101	12,427,684 (−73.73%)	3,072,345,732 (−80.82%)
MobileNetV2-GCN	5,459,712 (−88.46%)	661,395,120 (−95.88%)

Table 5: The trainable parameters and FLOPs of ResNet-101-GCN, SGGCN-101, and MobileNetV2-GCN.

![Figure 4: PCA is adopted to reduce the data into two dimensions on both W_{GCNM} and W_{FC}. The left figure is the PCA result of W_{GCNM}; the other is that of W_{FC}.](image)

Table 6: The undirected information matrix I.

	NoFi	EnCa	Card	Opac	Lesi	Edem	Cons	Pneu1	Atel	Pneu2	Effu	Other	Frac	Devi
NoFi	1	0	0	0	0	0	0	0	0	0	0	0	0	0.233
EnCa	0	1	0.875	0.379	0.072	0.315	0.090	0.060	0.149	0.058	0.297	0.074	0.098	0.369
Card	0.875	1	0.361	0.045	0.329	0.073	0.050	0.127	0.034	0.287	0.049	0.061	0.358	
Opac	0.379	0.361	1	0.354	0.466	0.555	0.522	0.624	0.333	0.627	0.325	0.272	0.621	
Lesi	0.072	0.045	0.354	1	0.057	0.066	0.065	0.070	0.195	0.056	0.038	0.185		
Edem	0.315	0.329	0.466	0.057	1	0.137	0.113	0.217	0.052	0.407	0.048	0.064	0.465	
Conso	0.090	0.073	0.555	0.066	0.137	1	0.118	0.100	0.045	0.291	0.052	0.036	0.298	
Pneu1	0.060	0.050	0.522	0.065	0.113	0.118	1	0.059	0.153	0.028	0.019	0.155		
Atel	0.149	0.127	0.624	0.070	0.217	0.100	0.059	1	0.126	0.339	0.061	0.088	0.388	
Pneu2	0.058	0.034	0.333	0.068	0.052	0.045	0.015	0.126	1	0.209	0.041	0.084	0.350	
Effu	0.297	0.287	0.627	0.195	0.407	0.291	0.153	0.339	0.209	1	0.133	0.150	0.534	
Other	0.074	0.049	0.325	0.056	0.048	0.052	0.028	0.061	0.041	0.133	1	0.063	0.193	
Frac	0.098	0.061	0.272	0.038	0.064	0.036	0.019	0.088	0.084	0.150	0.063	1	0.215	
Devi	0.233	0.369	0.358	0.621	0.185	0.465	0.298	0.155	0.388	0.350	0.534	0.193	0.215	
undirected information, while $P(i \mid j)$ may be different from $P(j \mid i)$ since it contains directed information. In order to tackle this problem, we compress the information of conditional probability into an undirected information:

$$I(i, j) = \frac{P(i \mid j) + P(j \mid i)}{2}. \quad (40)$$

Table 6 shows the information matrix I. We consider using a threshold $\varepsilon = 0.37$ to find out the potential relationships of (i, j) pair if $I(i, j) > \varepsilon$ and visualize them by adding edges onto Figure 4, and we get the result of Figure 5.

We can find that except class Support Devices, W_{GCNM} also learn some potential relationships, which are not mentioned in equations (36)–(38), the distances of pairs (Edema, Lung
Opacity), (Pleural Effusion, Lung Opacity), and (Pleural Effusion, Edema) are much smaller than those of W_{fc}. Meanwhile, Lung Opacity has considerable relations with classes Pneumonia, Consolidation, Atelectasis, Edema, and Pleural Effusion, and it is placed in the center of them in the dimensionality reduction of W_{GCNM}, while the dimensionality reduction of W_{fc} does not have those appearances.

We later applied dimensionality reduction on the outputs of 8000 samples in validation set from SGGCN and SGNet-101, respectively. In detail, we applied PCA on 14 classes, respectively, reduced the data to two dimensions, and applied Gaussian Mixture Model with one class to fit an analogous Gaussian distribution. Figure 6 shows the dimensionality reduction of the output. The three figures in the first row show the 2D-PCA from the output of 14 classes, pair (Enlarged Cardiomegaly, Cardiomegaly) and [Pleural Opacity, Consolidation, Pneumonia, Atelectasis] from SGGCN. And the second row shows the result from SGNet-101. We can find that although W_{GCNM} can take the correlation information, when conducting matrix multiplication with features from FRM, the appearance seems not considerable.

6. Conclusion

In this paper, an efficient X-ray classification method SGGCN is proposed, which adopts SGNet-101 backbone built with ShuffleGhost Module and applies this method on CheXpert datasets to do chest disease classification. We also compare the AUC, trainable parameters, and FLOPs with ResNet-101 with GCN and MobileNetV2 with GCN. It is found that although the trainable parameters and FLOPs meet a significant decrease, SGGCN still keeps a high AUC on validation and testing set.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was sponsored by the Key Lab of Information Network Security of Ministry of Public Security (Grant no. C20609).

References

[1] L. Liu, P. Wang, C. Shen et al., “Compositional model based Fisher vector coding for image classification,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 39, no. 12, pp. 2335–2348, 2017.

[2] D. Roy, P. Panda, and K. Roy, “Tree-CNN: a hierarchical deep convolutional neural network for incremental learning,” *Neural Networks*, vol. 121, pp. 148–160, 2018.

[3] Y. Guo, Y. Liu, E. M. Bakker, and Lew, “CNN-RNN: a large-scale hierarchical image classification framework,” *Multimedia Tools and Applications*, vol. 77, no. 8, pp. 10251–10271, 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” *CoRR*, abs, vol. 1512, Article ID 03385, 2015.

[5] L. Sun, Y. Wang, B. Cao, P. S. Yu, W. Srisa-An, and A. D. Leow, *Machine Learning and Knowledge Discovery in Databases*, Springer, Berlin, Germany, 2017.

[6] S. M. Erfani, S. Bajaj, B. E. Kahng, C. Karunanithi, and C. Leckie, “High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning,” *Pattern Recognition*, vol. 58, pp. 121–134, 2016.

[7] J. Zhou, G. Cui, Z. Zhang, Y. Cheng, Z. Liu, and M. Sun, “Graph neural networks: a review of methods and applications,” *CoRR*, abs, vol. 1, pp. 57–81, 2018.

[8] Z.-M. Chen, X.-S. Wei, P. Wang, and Y.-W. Guo, “Multi-label image recognition with graph convolutional networks,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, CVPR 2019, pp. 5177–5186, Long Beach, CA, USA, June 2019.

[9] B. Huang, H. Zhang, Z. Chen, L. Li, and L. Shi, “Research on efficient deep learning algorithm based on ShuffleGhost in the field of virtual reality,” *Wireless Communications and Mobile Computing*, vol. 2021, Article ID 1382781, 11 pages, 2021.

[10] X. Wang, Y. Peng, L. Lu et al., “Chest-xray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017*, pp. 3462–3471, Honolulu, HI, USA, July 2017.

[11] J. Irvin, P. Rajpurkar, M. Ko et al., “CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison,” in *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence*, pp. 590–597, Honolulu Hawaii, USA, February 2019.

[12] H. Chen, S. Miao, D. Xu, G. D. Hager, and A. P. Harrison, “Deep hierarchical multi-label classification applied to chest X-ray abnormality taxonomies,” *Medical Image Analysis*, vol. 66, Article ID 101811, 2020.

[13] Q. Guan and Y. Huang, “Multi-label chest x-ray image classification via category-wise residual attention learning,” *Pattern Recognition Letters*, vol. 130, pp. 259–266, 2020.

[14] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO: common objects in context,” in *Proceedings of the European Conference on Computer Vision*, pp. 740–755, Switzerland, September 2014.

[15] B. Chen, J. Li, G. Lu, H. Yu, and D. Zhang, “Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification,” *IEEE Journal of Biomedical and Health Informatics*, vol. 24, no. 8, pp. 2292–2302, 2020.

[16] J. Pennington, R. Socher, D. Christopher, and M. Glove, “Global vectors for word representation,” in *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*, A. Moschitti, B. Pang, and D. Walter, Eds., pp. 1532–1543, Doha, Qatar, October 2014.

[17] M. Sandler and A. Howard, “Mobilenetv2: inverted residuals and linear bottlenecks,” in *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4510–4520, Salt Lake City, UT, USA, June 2018.