Cut-off values of serum IgG4 among three reagents, including a novel IgG4 reagent: a multicenter study

Yoko Usami1, Mitsutoshi Sugano1, Takeshi Uehara1,2, Masayoshi Koinuma3,4, Nau Ishimine1, Kenji Kawasaki5, Kazuyoshi Yamauchi6, Hideaki Hamano7 & Takayuki Honda1,2

Elevated serum IgG4 is a useful marker of IgG4-related disease (IgG4-RD) activity. However, there is no uniformity in the cut-off values of IgG4 among the various reagents. The aim of this study was to compare the measured and cut-off values of IgG4 assessed using three different reagents. This study enrolled 466 IgG4-RD and non-IgG4-RD patients who required measurement of serum IgG4 levels to diagnose or treat IgG4-RD. Serum IgG4 was measured using three reagents: N-assay LA IgG4 Nittobo (Nittobo), BS-NIA IgG4 (TBS), and N Latex IgG4 (Siemens). The values obtained using the three reagents were compared, and cut-off values were calculated for each. Although there was good correlation among the results with the three reagents, the measured and cut-off values were all different. The Nittobo values were 1.4 times the TBS values and the TBS values were almost half those of the Siemens values. ROC curve analysis showed cut-off values for the Nittobo, TBS, and Siemens reagents of 1.42, 1.31, and 2.38 g/L, respectively. The measured and cut-off values of serum IgG4 vary depending on the reagents used for the assay, although there is good correlation among the values measured by the three reagents.

IgG4-related disease (IgG4-RD) is a new disease recognized in this century and is characterized by the formation of masses or nodules/hypertrophic lesions in various organs. Prominent lymphocyte and IgG4-positive plasma cell infiltration and characteristic fibrosis, called storiform fibrosis, are observed at the site of the lesion. The disease is particularly frequent in middle-aged and elderly men and is characterized by significant response to steroid treatment. Although fibro-inflammation with elevated serum IgG4 was first recognized in autoimmune pancreatitis (AIP), it has since been found to affect almost all organs and is conceptualized as a group of diseases.

Although the mechanisms of the onset of IgG4-RD have not been identified, involvement of certain autoantibodies has been implicated. Patients with AIP are known to have various autoantibodies, such as antinuclear antibodies, anti-carbonic anhydrase-II (CA-II) antibodies, anti-lactoferrin antibodies, rheumatoid factor and anti-smooth muscle antibodies. Although these autoantibodies have low disease specificity, certain new disease-specific autoantibodies have been found. Shiokawa et al. reported that IgG4 and IgG1 in the serum of IgG4-RD patients cause pancreatic injury, and that the antigen for the antibody in AIP patients was laminin 515. At the same time, Hubers et al. reported that the antigen for autoantibodies in AIP patients was annexin A117. Other reports have shown that the expression level of galectin-3 is high in IgG4-RD patients, and that anti-galectin-3 antibody titers increase in proportion to plasma galectin-3 levels. However, while these autoantibodies have been found in some cases, their further verification as disease-specific antigens is desired in the future.

Elevated serum IgG4 is one of the hallmarks of IgG4-RD, and is a useful marker for diagnosis, follow-up and monitoring for recurrence. The reported cut-off value of 1.35 g/L was calculated using a comparison between pancreatic cancer and AIP patients. Serum IgG4 measurement reagents are supplied by two companies, The Binding Site (TBS, Birmingham, UK) and Siemens Healthcare Diagnostics (Siemens, Eschborn, Germany).
addition, a new reagent has recently been released by Nittobo Medical Co., Ltd. (Nittobo, Tokyo, Japan) and has begun to be used in Japan. However, all three reagents result in different measured values. This is reflected in the differences in their reference ranges: the upper limit of the reference range for the Siemens reagent is about twice that of the TBS reagent. A report on the cut-off value for IgG4-RD from China stated a value of 2.48 g/L, which is about twice the diagnostic standard of 1.35 g/L in Japan. This is not due to differences in research subjects, but to differences in the reagents used.

Although there are many reports on calculation of the cut-off value for a single reagent, no reports have shown how the cut-off values differ between reagents. In this study, we report the results of simultaneous measurement of IgG4-RD in patient samples using reagents from the three companies, and calculation of the cut-off values for each reagent.

Results

Characteristics of patients and serum IgG4 levels. We grouped the 466 enrolled patients according to their diagnosis and treatment. All patients who had received some kind of treatment, including medications such as steroids and surgical treatment at the time of blood collection, were grouped as “during or post-treatment”. The median serum IgG4 levels in each group are shown in Table 1. Three hundred forty-two patients (73%) were diagnosed with IgG4-RD (definite IgG4-RD group), 56 of whom were untreated at the time of blood collection and the remaining 286 of whom were evaluated during or after treatment. Thirty-six patients (8%) were suspected to have IgG4-RD but were not confirmed (suspicious IgG4-RD group), and the remaining 88 patients (19%) were diagnosed or suspected to have non-IgG4-RD. In the definite and suspicious IgG4-RD groups, 70% of patients were male, while 40% of patients in the non-IgG4-RD group were male. Median IgG4 levels in pre-treatment patients were significantly higher than those in during or post-treatment patients in the definite and suspicious IgG4-RD group, although there was no significant difference between the pretreatment and treatment subgroups in the non-IgG4-RD group. Comparing the median and interquartile range (IQR) of IgG4 levels measured with the three reagents, the values were in ascending order with TBS, Nittobo and Siemens reagents, except that values were similar with Nittobo and TBS reagents in the non-IgG4-RD group.

Correlations between the three reagents. Correlations between the three reagents (Nittobo, TBS and Siemens) for all 466 patients are shown in Fig. 1A, B, C. For all combinations of comparisons, the major-axis regression lines deviated from the diagonal line of equality (broken line). This indicated that the values measured by the three reagents were all different. However, when the analysis was limited to patients with IgG4 levels less than 1.5 g/L (Nittobo value) (Fig. 1D, E, F), the range included almost all healthy individuals, and the values obtained with Nittobo and TBS matched perfectly (Fig. 1D). In comparisons between Nittobo and Siemens, the slope of the regression line did not change in comparisons between all patients and for patients with IgG4 values below 1.5 g/L (Fig. 1B, E), with the values measured by Nittobo being almost 0.6 times lower than the value obtained with the Siemens reagent. In the comparison of IgG4 values measured by TBS and Siemens reagents, although the slope of the regression line was slightly different when comparing all patients versus patients with values below 1.5 g/L, the value with TBS was almost half that of the value with Siemens.
Cut-off values for each reagent. ROC analysis was performed between untreated patients in the definite IgG4-RD group (n = 56) and untreated and diagnosed with non-IgG4-RD patients in the non-IgG4-RD group (n = 41). Pre-treatment patients in the non-IgG4-RD group (n = 54) included both patients with confirmed non-IgG4-RD disease and those with suspected non-IgG4-RD disease. ROC analysis used data from only patients with confirmed non-IgG4-RD (n = 41). The involved organs in IgG4-RD patients and the diseases in non-IgG4-RD patients are shown in Table 2. Thirty-four patients in the IgG4-RD group had lesions in only a single organ, while 22 patients had lesions in more than one organ. Fifty-two patients (93%) had lesions in the lacrimal gland, salivary gland and/or pancreas. The most common disease in the non-IgG4-RD group was pancreatic cancer, followed by Sjögren syndrome and pancreatitis. The ROC curve, cut-off value and area under the curve (AUC), sensitivity and specificity for each reagent are shown in Fig. 2 and Table 3. The cut-off value of Nittobo was 1.42 g/L, which was close to the cut-off value of 1.31 g/L of TBS, although the cut-off value of Siemens was nearly double. Although the cut-off values differed among the three reagents, no significant differences in AUC, sensitivity, and specificity were observed.

Discussion
In this study, we evaluated correlations between three IgG4 reagents using 466 patients' samples, and calculated the cut-off value for each reagent. The correlation between the three reagents was compared over a wide range of values and patients, including not only IgG4-RD patients, but also patients with other diseases that need to be distinguished from IgG4-RD. The results showed that although there was good correlation between the results with the three reagents, the measured values were all different. As a result, the cut-off values also varied depending on the reagent used. This is the first study to simultaneously calculate the IgG4-RD cut-off value for the three IgG4 reagents.

The cut-off value of 1.31 g/L of the TBS reagent in this study was almost the same as the value of 1.35 g/L determined using the TBS reagent in 2001. The calculated cut-off value of 1.41 g/L for Nittobo was very close to that of TBS, and the slope of the regression equation of the correlation for values less than 1.5 g/L was 1.0. Therefore, a cut-off value of 1.35 g/L can be applied for the Nittobo reagent. On the other hand, a different cut-off value needs to be set for the Siemens reagent. This study calculated a cut-off value of 2.38 g/L for the Siemens...
reagent, which is consistent with the cut-off value of 2.48 g/L calculated by Yu et al. using nearly 3,000 samples tested with the Siemens reagent. Diagnosis of IgG4-RD might sometimes be difficult. This is because patients’ characteristics differ depending on the affected organ, and because elevated serum IgG4 levels are not always observed in IgG4-RD patients. Therefore, it is necessary to make a final diagnosis by a combination of evaluations, such as computed tomography, magnetic resonance imaging, and biopsy. However, as evidenced by the high AUC values in the ROC

Involved organ	n	%
Lacrimal gland, salivary gland	34	60.7
Pancreas	27	48.2
Retroperitoneum	5	8.9
Lung	4	7.1
Bile duct	4	7.1
Kidney	3	5.4
Hypophysis	1	1.8
Lymph node	1	1.8
Other	1	1.8

Disease	n	%
Pancreatic cancer	9	22.0
Sjögren syndrome	8	19.5
Pancreatitis	7	17.1
Tumor-forming pancreatitis	2	4.9
Intraductal papillary mucinous tumor	2	4.9
Pancreatic neuroendocrine tumor	2	4.9
Abdominal aortic aneurysm	2	4.9
Cholangiocarcinoma	1	2.4
Carcinoma of the papilla of Vater	1	2.4
Stomach cancer	1	2.4
Ovarian cancer	1	2.4
Lymphoma	1	2.4
Primary sclerosing cholangitis	1	2.4
Hepatitis	1	2.4
Basedow disease	1	2.4
Stenosis of the bile duct	1	2.4

Table 2. Organs involved in the IgG4-RD group and diseases in the non-IgG4-RD group. ROC analysis was performed between 56 pre-treatment patients in the definite IgG4-RD group and 41 patients with confirmed non-IgG4-RD disease in pre-treatment patient of the non-IgG4-RD group.

Figure 2. Receiver operating characteristic (ROC) curve analysis of IgG4 levels measured using the three reagents. The area under the ROC curve and cut-off value for each reagent were calculated using the data of the definite IgG4-RD group (n = 56) and untreated and diagnosed non-IgG4-RD patients from the non-IgG4-RD group (n = 41).
In conclusion, serum IgG4 is a useful marker for IgG4-RD diagnosis and treatment, but the values vary greatly depending on the reagents used for the assay. Therefore, it is necessary to change the cut-off value according to the reagent used. In previous studies, the cut-off value was calculated for only a single reagent, but in this study, cut-off values for three reagents were calculated simultaneously. Any reagents described here are available to diagnose IgG4-RD if the suitable cut-off value for each reagent is used. However, it is disclosed that the proportional conversion for all of the data is not always possible. Therefore, when using serum IgG4 values for the diagnosis and treatment of IgG4-RD, it is essential to confirm which reagent is used. It is hoped that harmonization of IgG4 measurements will be achieved in the near future.

Methods

This prospective study included not only patients with IgG4-related disease, but also those with differential diseases. Furthermore, we targeted patients who required serum IgG4 measurement for diagnosis or treatment regardless of the presence or absence of a definitive diagnosis and the stage of treatment. We enrolled 466 patients from Sep 2016 to Jan 2017 at 23 hospitals in Japan. The diagnosis of IgG4-RD was made according to the comprehensive diagnostic criteria for IgG4-RD, 2011 (21). The study was conducted according to the guidelines of the Declaration of Helsinki and was approved by the institutional review board of Shinsyu University School of Medicine (Matsumoto, Japan) (approval no. 3325). Written informed consent was obtained from all subjects.

Cut-off (g/L)	AUC	Sensitivity	Specificity
Nittobo	1.42	0.968	0.897
TBS	1.31	0.977	0.949
Siemens	2.38	0.976	0.949

Table 3. Cut-off value and AUC for each reagent. AUC area under ROC curve.
Laboratory analysis. At each hospital, blood that was collected from the subjects was partitioned, and the separated serum was immediately frozen. All serum samples were sent to the clinical laboratory of Shinshu University Hospital and stored at -30 °C until measurement. Serum IgG4 levels in all samples were measured using three reagents, N-assay LA IgG4 Nittobo (Nittobo reagent; Nittobo Medical Co., Ltd., Tokyo, Japan), BS-NIA IgG4 (TBS reagent; The Binding Site, Birmingham, UK) and N Latex IgG4 (Siemens reagent; Siemens Healthcare Diagnostics Products GmbH, Eschborn, Germany). The Nittobo reagent was used with the JCA-BM6070 automatic biochemical analyzer (Japan Electron Optics Laboratory, Tokyo, Japan), and the TBS and Siemens reagents were used with the BN-II nephelometer (Siemens Healthcare Diagnostics Products GmbH, Eschborn, Germany). All assays were performed at our laboratory according to the respective manufacturer’s instructions.

Statistical analysis. Groups were compared by the Mann–Whitney U test using StatFlex version 6 and those with a P value of less than 0.05 were considered statistically significant. The ROC analysis was performed using JMP version 10, and cut-off values were identified by the Youden index.

Received: 16 August 2020; Accepted: 4 March 2021
Published online: 31 March 2021

References
1. Hamano, H. et al. Hydronephrosis with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet 359(9315), 1403–1404 (2002).
2. Kawaguchi, K. et al. Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum. Pathol. 22(4), 387–395 (1991).
3. Stone, J. H., Zen, Y. & Deshpande, V. IgG4-related disease. N. Engl. J. Med. 366(6), 539–551 (2012).
4. Deshpande, V. et al. IgG4RD consensus ModPatho2012. Mod. Pathol. 25, 1181–1192 (2012).
5. Shikokawa, M. et al. Pathogenicity of IgG in patients with IgG4-related disease. Gut 65(8), 1322–1332 (2016).
6. Shikokawa, M. et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci. Transl. Med. 10(433), 18666 (2018).
7. Hubers, L. M. et al. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Gut 67(4), 728–735 (2018).
8. Salah, A. et al. High expression of galectin-3 in patients with IgG4-related disease: a proteomic approach. Pathol. Res. Int. 2017, 9312142 (2017).
9. Perugini, C. A. et al. Identification of galectin-3 as an autoantigen in patients with IgG 4-related disease. J. Allergy Clin. Immunol. 143(2), 736–745 (2019).
10. Hamano, H. et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Engl. J. Med. 344(10), 732–738 (2001).
11. Usami, Y. et al. Evaluation of a novel serum IgG4 assay and determination of reference interval for the Japanese population. Clin. Chim. Acta. 501, 136–141 (2020).
12. Yu, K.-H. et al. Diagnostic performance of serum IgG4 levels in patients with IgG4-related disease. Medicine (Baltimore). 94(41), e1707 (2015).
13. Kamisawa, T. et al. Clinical profile of autoimmune pancreatitis and its histological subtypes: an international multicenter survey. Pancreas 40(6), 809–814 (2011).
14. Yoo, B.-W. et al. American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease by Wallace et al. Ann. Rheum. Dis. 21, 7088 (2019).
15. Bossuyt, X. et al. Determination of IgG subclasses: a need for standardization. J. Allergy Clin. Immunol. 115(4), 872–874 (2005).
16. Schauer, U. et al. IgG subclass concentrations in certified reference material 470 and reference values for children and adults determined with the binding site reagents. Clin. Chem. 49(11), 1924–1929 (2003).
17. Klein, P. et al. The quantification of human IgG subclasses in reference preparations. Clin. Chim. Acta. 150(2), 119–127 (1985).
18. Ladwig, P. M. et al. Quantification of serum IgG subclasses by use of subclass-specific tryptic peptides and liquid chromatography-tandem mass spectrometry. Clin. Chem. 60(8), 1080–1088 (2014).
19. Bernasconi, L. et al. Variable and inaccurate serum IgG4 levels resulting from lack of standardization in IgG subclass assay calibration. Clin. Chim. Lab. Med. 57(11), 1777–1783 (2019).
20. Imoto, M. et al. Divergence between measured values of total IgG and subclass IgGs (sum of IgG1-IgG4) in IgG4-related disease. Rinsho Byori 60(11), 1053–1057 (2012).

Acknowledgements
This work was supported by The Research Committee of IgG4-related Diseases of the Ministry of Health, Labour and Welfare of Japan (President, Kazuichi Okazaki, Third Department of Internal Medicine, Kansai Medical University), The Japan Pancreas Society (President, Kazuichi Okazaki, Third Department of Internal Medicine, Kansai Medical University), and The Japanese Society of Gastroenterology (President, Toru Shimosegawa, Division of Gastroenterology, Tohoku University Graduate School of Medicine). The main collaborators were Kazushige Uchida (Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan), Kazuo Inui (Department of Gastroenterology, Second Teaching Hospital, Fujita Health University, Nagaoy, Japan), Hirotaka Ohara (Department of Community-Based Medical Education, Nagoaya City University Graduate School of Medical Sciences, Nagaoy, Japan), Takayoshi Nishino (Department of Internal Medicine, Tokyo Women’s Medical University Yachiyo Medical Center, Yachiyo, Japan), Yoshiki Hirooka (Department of Endoscopy, Nagoaya University Graduate School of Medicine, Nagaoy, Japan), Takahiro Nakazawa (Department of Gastroenterology, Japanese Red Cross Nagoaya Daini Hospital, Nagoaya Japan), Kenji Notohara (Department of Anatomic Pathology, Kurashiki Central Hospital, Kurashiki, Japan), Hideyuki Shiomi (Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan), Yuzo Kodama (Department of Gastroenterology and Hepatology, Graduate School of Medicine Kyoto University, Kyoto, Japan), Motohisa Yamamoto (Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan), Takako Saeki (Department of Internal Medicine, Japanese Red Cross Nagoaya Hospital, Nagaoka, Japan), Kenji Hirano (Department of Gastroenterology, Tokyo Takehana Hospital, Tokyo, Japan), Kyoko Shimizu (Department of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan), Sachiko Furukawa (Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic Surgery, Kyushu University Hospital, Fukuoka, Japan), Kenji Usami (Division of Endocrinology, Department of Medicine, Kyoto University School of Medicine, Kyoto, Japan), Motoki Kuroda (Department of Gastroenterology, Osaka University Hospital, Osaka, Japan), and The Japanese Society of Gastroenterology (President, Toru Shimosegawa, Division of Gastroenterology, Tohoku University Graduate School of Medicine).
and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan), Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan), Satomi Kasashima (Medical Laboratory, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan), Takayoshi Tsuchiya (Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan), Toru Maruo (Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan), Shigeru B.H. Ko (Department of Systems Medicine, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan), Yasufumi Masaki (Department of Hematology and Immunology, Kanazawa Medical University, Kanazawa, Japan), Syoko Matsui (Health Administration Center, University of Toyama, Toyama, Japan), Ken-suke Kubota (Department of Endoscopy, Yokohama City University Hospital, Yokohama, Japan), and Hiroaki Yasuda (Department of Medicine, Division of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan).

Author contributions
U.Y., S.M., and U.T. designed the study. U.Y. performed the experiments and wrote the initial draft of the manuscript. K.M. analyzed the data. U.T. assisted in preparation of the manuscript. All other authors have contributed to data collection and interpretation, and critically reviewed the manuscript. All authors approved the final draft of the manuscript.

Funding
The funding source had no role in the design and conduct of the study, collection and analysis of data, writing the draft and approval of the manuscript.

Competing interests
This study received financial support from Nittobo Medical Co. Ltd.

Additional information
Correspondence and requests for materials should be addressed to T.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021