Association between post-traumatic stress disorder symptoms and bone fractures after the Great East Japan Earthquake in older adults: a prospective cohort study from the Fukushima Health Management Survey

Fumikazu Hayashi (fhayashi@fmu.ac.jp)
Fukushima medical university https://orcid.org/0000-0002-6888-6640
Tetsuya Ohira
department of epidemiology, school of medicine, fukushima medical university
Hironori Nakano
department of epidemiology, school of medicine, fukushima medical university
Masanori Nagao
department of epidemiology, school of medicine, fukushima medical university
Kanako Okazaki
radiation medical science for the fukushima health management survey, fukushima medical university
Mayumi Harigane
radiation medical science for the fukushima health management survey, fukushima medical university
Seiji Yasumura
department of public health, school of medicine, fukushima medical university
Masaharu Maeda
department of disaster psychiatry, school of medicine, fukushima medical university
Atsushi Takahashi
department of gastroenterology, school of medicine, fukushima medical university
Hirooki Yabe
department of neuropsychiatry, school of medicine, fukushima medical university
Yuriko Suzuki
department of mental health policy, national institute of mental health, national center of neurology and psychiatry
Kenji Kamiya
radiation medical science center for the fukushima health management survey, fukushima medical university

Research article
Keywords: fractures, mental health, aged, disaster victims, Fukushima nuclear accident

DOI: https://doi.org/10.21203/rs.3.rs-34747/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Psychological stress has been known to affect bone metabolism and increase fracture risk. However, the association between post-traumatic stress disorder (PTSD) and bone fractures remains unclear. The current study aimed to clarify the effects of disaster-induced PTSD symptoms on fracture risk in older adults.

Methods

This study analyzed responses from 17,459 individuals aged ≥65 without a history of fractures at the time of the Great East Japan Earthquake who answered the Mental Health and Lifestyle Survey component of the Fukushima Health Management Survey conducted in 2011. Obtained data were able to determine the presence or absence of fractures until 2016. Age, sex, physical factors, social factors, psychological factors, and lifestyle factors were subsequently analyzed. Survival analysis was then performed to determine the relationship between each factor and fractures. Thereafter, univariate and multivariate Cox proportional hazard models were constructed to identify fracture risk factors.

Results

A total of 2,097 (12.0%) fractures occurred during the follow-up period. Accordingly, univariate and multivariate Cox proportional hazard models showed that PTSD symptoms (total PTSD checklists scoring ≥ 44) [hazard ratio (HR): 1.26; 95% confidence interval (CI): 1.10–1.44; P = 0.001], history of cancer (HR: 1.48; 95% CI: 1.23–1.79; P < 0.001), history of stroke (HR: 1.26; 95% CI: 1.04–1.52; P = 0.021), history of heart disease (HR: 1.30; 95% CI: 1.13–1.49; P < 0.001), history of diabetes (HR: 1.23; 95% CI: 1.09–1.39; P = 0.001), current smoking (HR: 1.27; 95% CI: 1.01–1.61; P = 0.045), and high dissatisfaction with sleep or no sleep at all (HR: 1.36; 95% CI: 1.04–1.77; P = 0.024) promoted a significant increase in fracture risk independent of age and sex.

Conclusions

The present study indicate that disaster-induced PTSD symptoms and insomnia could contribute to increased fracture risk among older adults residing in evacuation areas within Fukushima prefecture.

Background

On March 11, 2011, the magnitude 9.0 Great East Japan Earthquake occurred with its epicenter at the sea floor 130 km off the southeast Oshika Peninsula, Miyagi Prefecture,1 subsequently triggering the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Fukushima Prefecture. Accordingly, surveys of evacuation zone inhabitants have indicated that the proportion of adults with PTSD checklist (PCL) scores above the cutoff value, reflecting the presence of traumatic symptoms (2011: 21.6%; 2012: 18.3%), was comparable to that of workers affected by the 9/11 World Trade Center attack.2-3 A survey of
240 evacuees in Hirono Town, Fukushima prefecture, one of the evacuation areas, found that 66.8% and 53.5% had reported symptoms of depression and clinically relevant symptoms of PTSD, respectively. Thus, residents of evacuation areas, such as those in Fukushima prefecture, could have presented with PTSD symptoms caused by disaster-related events.

One study had recently reported a possible association between increased fracture risk and PTSD. Therefore, residents in Fukushima evacuation areas who presented with PTSD symptoms could have also been at high risk for fractures. The results of the 2016 Basic Survey on National Life published by the Japanese Ministry of Health, Labor, and Welfare revealed that 12.1% of the 100,000 individuals needing care had been certified as requiring support or nursing care owing to falls or broken bones—major factors equivalent to arthritis or infirmity due to aging. Moreover, Tanji et al. reported that those with higher psychological distress after an earthquake have a higher risk for requiring nursing care than those with lower psychological distress. As such, the associated higher risk for increased fractures among residents in evacuation areas within Fukushima prefecture presenting with PTSD symptoms could affect their healthy life expectancy and quality of life (QOL). In particular, the increased fracture risk among older adults could contribute to an increase in the number of those requiring support or nursing care. However, no study has examined the relationship between earthquake-induced PTSD symptoms and fractures in older adult residents of evacuation areas within Fukushima prefecture. Therefore, investigating the association between PTSD symptoms and fractures among such residents is imperative for maintaining and improving their healthy life expectancy and QOL.

This study used data from the Fukushima Health Management Survey to investigate associations between PTSD symptoms and bone fractures after the Great East Japan Earthquake in older adults.

Methods

Study group

The Fukushima Health Management Survey had been conducted on January 18, 2012 to evaluate the impact of radiation and determine the health status of Fukushima residents, considering the diffusion of radioactive substances and evacuation due to the FDNPS accident, subsequently helping with illnesses prevention, early illnesses detection, and early treatment provision aimed at maintaining and improving the future health of the residents. Individuals who completed the Fukushima Health Management Survey, including the Mental Health and Lifestyle Survey component, comprised those residing in any of the 13 municipalities (all areas within Hirono-machi, Naraha-machi, Tomioka-machi, Kawauchi-mura, Okuma-machi, Futaba-machi, Namie-machi, Katsurao-mura, and Iitate-mura, as well as parts of Tamura city, Minamisoma city, Kawamata town, and Date city) who had to be evacuated because of the Great East Japan Earthquake (registered residents).

A total of 180,604 individuals aged ≥15 years (individuals born before April 1, 1995) had been eligible for the 2011 edition of the registered questionnaire. Valid responses were obtained from 73,431 individuals
(mean age, 56.4 years), with a response rate of 40.7%. After excluding 46,365 individuals under 65 years of age, 1,220 with an unknown fracture history, and 3,933 who already had a history of fractures in 2011, a total of 21,913 individuals aged ≥65 years (10,271 men; 11,642 women; mean age: 75.0 ± 6.9 years) comprised the sample for the present study.

Incidences of fractures were determined using the questionnaire on fractures from 2012 to 2016. Accordingly, 4,454 individuals were further excluded due to missing fracture data from 2012 to 2016 given that they had never responded to a questionnaire after 2011. Ultimately, 17,459 patients (8,331 men; 9,128 women; mean age, 74.3 ± 6.5 years; mean follow-up duration, 3.7 ± 1.5 person-years) were targeted (Figure 1).

Data regarding age, sex, physical factors (history of fractures, cancer, stroke, heart disease, diabetes, dyslipidemia, hepatic disorder, high blood pressure, and thyroid disease), social factors [experience of the earthquake, tsunami, and nuclear power plant accident (heard the explosion); need for assistance; change in employment status; and change in residence], psychological factors (history of mental illness and PCL), and lifestyle factors (history of smoking and drinking, sleep satisfaction levels, and exercise habits) obtained from the self-administered questionnaire items used in the 2011 Mental Health and Lifestyle Survey were herein analyzed.

Fracture determination

In the Mental Health and Lifestyle Survey, questions regarding the presence or absence of fractures differ depending on the year. Thus, incidences of fractures were determined by combining the questions.

The presence or absence of fractures in 2011 and 2012 was confirmed by responding to a question on “A history of fractures after age 50.” In 2013, apart from the above question, a combination of answers regarding whether “a fracture was diagnosed by a physician within the past year” had been used to determine the presence or absence of fractures. In 2014 and 2015, the presence or absence of fractures had been determined based on only the answer to “fractures within 1 year.” In 2016, the incidence of fractures had been determined by a question on “History of fractures after the age of 50.”

Definition of estimated fracture occurrence date and calculation of follow-up period

The questionnaire used herein could not determine the date on which the fracture occurred. As such, this study estimated fracture occurrence dates by identifying the midpoint between the date the questionnaire for the year no fracture occurred was filled out and the date the questionnaire for the year a fracture occurred was filled out or 6 months before the date the questionnaire for the year a fracture occurred was filled out.

On the other hand, individuals who had at least one response to the questionnaire between 2012 and 2016 and had never had a bone fracture until the last questionnaire were censored. In such cases, the follow-up period was calculated from the date the 2011 questionnaire was filled out to the date the last questionnaire was filled out.
A number of participants also had trouble completing the questionnaire, particularly with regard to information on the month and date of completion, making it impossible to calculate the follow-up period. The questionnaire was distributed by mail in February of the survey year (e.g., for 2011, the questionnaire would have been distributed by February 2012). A breakdown of the months in which the questionnaire had been filled out showed that approximately 77% to 87% were filled out in February for each year. Therefore, when information regarding the month in which they responded was missing, we assumed that they responded in February of that year. Moreover, when information regarding the date the questionnaire was answered was missing, we assumed that they responded to the questionnaire on the 15th of that month.

Evaluation of post-traumatic stress disorder symptoms

The presence or absence of PTDS symptoms was evaluated using PCL, a self-administered questionnaire that obtained information regarding symptoms of PTSD according to the Diagnostic and Statistical Manual of Mental Disorders-IV diagnostic criteria. The reliability, validity, and diagnostic efficiency of the Japanese version of the PCL reported for the determining PTSD symptoms among residents who experienced the Fukushima nuclear accident had been previously established. The respondents were asked to answer a total of 17 questions using a five-point Likert scale. Accordingly, individuals with higher total scores were strongly suspected to have PTSD. Moreover, a previous study had determined that a total PCL score ≥ 44 was the cutoff point for suspecting the presence of PTSD symptoms. In the present study, the total PCL score could be calculated only for those who answered 16 or more questions. When only 16 questions were answered, the average score for the 16 questions was assigned to the missing items to calculate the total score. Participants with total PCL scores ≥ 44 were defined as "with PTSD symptoms" and examined.

History of disease

Residents were asked whether they had a history of cancer, stroke, heart disease, hypertension, diabetes, dyslipidemia, hepatic disorder, thyroid disease, or mental illness.

Lifestyle

The questionnaire section on smoking habits comprised three choices: never smoked, former smoker, or current smoker. The section on drinking habits also comprised three choices: never drinks or rarely drinks (less than once a month), former drinker, or current drinker (more than once a month). The question regarding sleep satisfaction comprised four choices: satisfied with sleep, slightly unsatisfied with sleep, quite unsatisfied with sleep, and very dissatisfied with sleep or does not sleep at all. Furthermore, the question regarding exercise habits comprised four choices: almost daily, two to four times a week, approximately once a week, or almost never.

Experience of the Great East Japan Earthquake
The question regarding experience of the Great East Japan Earthquake involved individuals responding to whether they had experienced the earthquake, tsunami, and nuclear power plant accident (heard the explosion).

Need for assistance

The question regarding need for assistance involved individuals responding to whether they could eat, change clothes, use restrooms, and shop independently. Those who answered that assistance was required for any of the four items were defined as requiring assistance.

Changes in employment status

Regarding change in employment status (job change or unemployment) following the earthquake and accident, residents could respond with either “changed” or “unchanged.”

Changes in housing and evacuation

Residents could respond to the question regarding change in residence after the earthquake with one of the following answers: residing in a shelter, residing in temporary housing, renting a house or apartment, residing in a relative’s house, residing in their own house, or other (free to comment). Respondents who had lived in temporary or evacuation shelters immediately after the earthquake were defined as having changed their residence.

In addition, residents of Tamura city, Minamisoma city, Date city, and Kawamata towns did not reside in a temporary or evacuation center in 2011 were defined as not having evacuated. Others were defined as having evacuated.

Statistical analysis methods

All statistical analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The Kaplan–Meier method and log-rank test were used to compare difference in the incidence of fractures based on questionnaire answers. Moreover, univariate and multivariate Cox proportional hazards models were used to obtain crude and adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between each factor and fractures. Furthermore, multivariate Cox proportional hazards models for men and women were established to determine differences according to sex.

Considering the potential for selection bias due to loss of untraceable outcomes, this study conducted sensitivity analysis using Poisson regression to confirm the robustness of the results. Subjects were divided into four groups according to PCL score quartiles while adjusting for age, sex, and follow-up period, with the low PCL score group being used as control.

All data are presented as number of individuals (n), mean, standard deviation, median, 25th percentile, 75th percentile, or percentages. P < 0.05 indicated statistical significant.
Results

Participant characteristics

Table 1 summarizes the participants’ characteristics. A total of 2,097 (12.0%) participants experienced a fracture during the follow-up period, with an incidence rate of 0.032 (/year).

Survival analysis results

The relationship between each factor and the incidence of fractures was examined among participants divided into the fracture and nonfracture groups (Table 1). Accordingly, survival analysis results found significant differences in fracture incidence among older adults according to sex (P < 0.001), PTSD symptoms (P < 0.001), experience of earthquake (P = 0.016), history of mental illness (P < 0.001), need for assistance (P < 0.001), history of cancer (P < 0.001), history of stroke (P < 0.001), history of heart disease (P < 0.001), history of diabetes (P = 0.005), smoking habits (P < 0.001), drinking habits (P < 0.001), sleep satisfaction (P < 0.001), and exercise habits (P = 0.003).

Univariate and multivariate Cox proportional hazards models

Univariate and multivariate Cox proportional hazards models were established using factors determined to be significant during survival analysis to identify the association between psychological indicators and fracture frequency among older adults (Table 2). Accordingly, multivariate Cox proportional hazards model using factors determined to be significant during survival analysis and univariate Cox proportional hazards analysis showed that PTSD symptoms (HR: 1.26; 95% CI: 1.10–1.44; P = 0.001), history of cancer (HR: 1.48; 95% CI: 1.23–1.79; P < 0.001), history of stroke (HR: 1.26; 95% CI: 1.04–1.52; P = 0.021), history of heart disease (HR: 1.30; 95% CI: 1.13–1.49; P < 0.001), history of diabetes (HR: 1.23; 95% CI: 1.09–1.39; P = 0.001), current smoking (HR: 1.27; 95% CI: 1.01–1.61; P = 0.045) and high dissatisfaction with sleep or no sleep at all (HR: 1.36; 95% CI: 1.04–1.77; P = 0.024) significantly increased fracture risk, independent of age and sex.

Table 3 presents the results of multivariate Cox proportional hazards analysis according to sex to determine the sex-related differences. Accordingly, PTSD symptoms (HR: 1.39; 95% CI: 1.11–1.74; P = 0.004), history of cancer (HR: 1.50; 95% CI: 1.16–1.94; P = 0.002), history of diabetes (HR: 1.35; 95% CI: 1.12–1.63; P = 0.001), and high dissatisfaction with sleep or no sleep at all (HR: 1.80; 95% CI: 1.19–2.72; P = 0.006) had significantly increased fracture risk among older men, independent of age. By contrast, a history of cancer (HR: 1.45; 95% CI: 1.11–1.90; P = 0.007) and history of heart disease (HR: 1.36; 95% CI: 1.13–1.64; P = 0.001) significantly increased fracture risk among older adult women, independent of age. The main conclusions obtained herein remained largely the same regardless of whether or not entry date supplementation was performed.

Poisson regression models
The robustness of the multivariate Cox proportional hazards models was confirmed using Poisson regression analysis (Table 4). Accordingly, after adjusting for age and sex, those with high middle PCL scores ($31.0 \leq \text{total PCL score} \leq 43.6$) (odds ratio: 1.17; 95% CI: 1.02–1.34; $P = 0.025$) and high PCL scores (total PCL score ≥ 44) (odds ratio: 1.44; 95% CI: 1.26–1.63; $P < 0.001$) had significantly higher odds ratios than those with low PCL scores ($17.0 \leq \text{total PCL score} \leq 21.3$). After adjusting for age, sex, and follow-up period, those with high PCL scores (odds ratio: 1.28; 95% CI: 1.12–1.46; $P < 0.001$) had significantly higher odds ratios than those with low PCL scores. The aforementioned results confirm the robustness of multivariate Cox regression analysis.

Discussion

Our study suggested that PTSD symptoms were significantly associated with the occurrence of fractures among older adults, particularly men, who resided in evacuation areas within Fukushima prefecture. Previous studies have reported an increase in the prevalence of diseases, such as obesity and lifestyle-related diseases, in residents of evacuation areas within Fukushima prefecture. This increase in disease prevalence could be partly attributed to the increase in stress due to environmental changes caused by moving into temporary housing, living in an evacuation site outside the local area, or disturbance in eating habits. Thus, psychological stress has been considered to be associated with adverse health effects among residents of evacuation areas throughout Fukushima prefecture. One study found that those who reported to have experienced high psychological stress were at increased risk for fractures due to osteoporosis. One possible mechanism for the association between stress and fracture risk is that psychological stress increases cortisol secretion through the hypothalamus–pituitary–adrenal system. Glucocorticoids have been known to induce bone loss and increase the risk of osteoporotic fractures. Individuals with PTSD symptoms can be considered to have had high psychological stress immediately after a disaster. Furthermore, studies have reported that older adults and those with severe living conditions were more likely to experience worse symptoms. The psychological effects caused by the Fukushima nuclear accident have been widespread, causing not only trauma symptoms but also chronic and more complex social problems, such as stigma and community and family fragmentation. Therefore, persistent high levels of stress caused by disasters could contribute to increased fracture risk in older adults. To prevent fractures following a disaster, older adults with PTSD symptoms need to be assessed for bone mineral density and receive aggressive interventions to reduce psychosocial stress.

Furthermore, those with PTSD are presumed to have an increase likelihood of having other mental disorders, such as depression. In previous studies, the percentage of residents with PCL scores above the cut-off in residents with Kessler Psychological Distress Scale (K6) scores above the cut-off was significantly higher than among those with K6 score below the cut-off. In addition, prefectural health surveys have reported that the coexistence of PTSD and previous mental illness or mental disorders was a poor predictor of mid-term mental health. Thus, the mental health deterioration caused by a disaster can promote even more confined and sedentary lifestyles among older adults who already tend to have low physical function in a depressed state, leading to a decrease in physical function and
thus increased risk of fractures. Therefore, social participation should be encouraged in older adults with PTSD symptoms and low physical function in order to maintain and improve their physical function and mental health.

Depression itself has also been reported to be associated with an increased risk of fractures,\(^3\) which may be mediated by the use of antidepressants.\(^3\) For instance, taking one class of antidepressants, selective serotonin reuptake inhibitors (SSRIs), has been shown to increase the risk of fractures regardless of depression or bone density.\(^4\) Moreover, SSRIs have been reported to contribute to fracture-induced falls and increased fracture risk.\(^5\) Considering that SSRIs have occasionally been considered for the treatment of PTSD, older adults receiving medication for PTSD symptoms need to be aware of the risk for fractures brought by antidepressants.

The present study found that those who were very dissatisfied with their sleep, particularly older men, were at increased risk of fractures. The prevalence of insomnia and use of sleeping pills among Japanese individuals have been reported to increase with age.\(^6\) Benzodiazepines or benzodiazepine receptor agonists, a nonbenzodiazepine alternative, have been among the commonly prescribed sleeping pills in Japan. Accordingly, studies have shown that prolonged and high-dose usage of benzodiazepines was associated with increased risk for falls and fractures,\(^7\) suggesting that insomnia pharmacotherapy could have also contributed toward increasing fracture risk among older adult residents, such as those residing in evacuation areas within Fukushima prefecture. Understanding the sleep environment and providing sleep hygiene guidance should be the initial management for insomnia. Our study suggests that securing sleep time and improving sleep quality are imperative for preventing fractures among older adults, particularly men, residing in evacuation areas within Fukushima prefecture.

Our study found that women have a higher risk for fractures than men. Conversely, although PTSD symptoms tended to be associated with the occurrence of fractures in women, such an association was not statistically significant. Moreover, sleep satisfaction was not significantly associated with the occurrence of fractures in women. Primary osteoporosis among women is often caused by heredity, aging, and postmenopausal decline in female hormones.\(^8\) Patients with osteoporosis have also been found to be more likely to experience fractures after a fall.\(^9\) Osteoporosis-related fractures can also have a significant impact on health-related quality of life (HRQOL).\(^10\) Thus, the aforementioned results suggest that health problems specific to women, which could not be investigated herein, could have had a greater effect on fracture risk than increased psychological stress. However, exercise can be effective in reducing falls and risk factors associated with fractures from falls among patients with low bone mineral density.\(^11\) Therefore, regular bone density measurements and exercise habit formation for individuals with PTSD symptoms are recommended, especially for women, to prevent fractures from falling and a decline in HRQOL.

The current study found that current smokers and those with a history of diabetes, heart disease, and cancer were at an increased risk for fractures. Indeed, previous studies have reported that the presence of
smoking habits, type 2 diabetes, cardiovascular disease, stroke, and cancer increased the risk for fractures, suggesting that a comprehensive strategy, including smoking cessation to prevent lifestyle-related diseases, cardiovascular events, and cancer, is necessary for preventing fractures among older adult residents of evacuation areas.

The present study has some limitations worth noting. First, the age-adjusted prevalence of post-traumatic stress has been known to decrease yearly, while studies have shown that the mental health of residents in evacuation areas within Fukushima prefecture has improved compared to that at the time of the earthquake. However, whether such an improvement is present among residents of the 13 municipalities remains unclear given that our participants comprised only a small percentage of those who participated in the Fukushima Health Management Survey. Horikoshi et al. had also reported that those who did not respond to the mental survey had significantly higher rate of psychological distress than respondents. Therefore, the results of this study could have underestimated the impact of increased PTSD symptoms caused by the Great East Japan Earthquake and the FDNPS accident on fractures. As such, expanding the scope of psychological research to include a survey on the mental health of non-respondents might be necessary.

Second, this survey did not include details regarding medication conditions, bone density tests, fracture sites, circumstances at which fractures were sustained, presence of osteoporosis, or use of antidepressants. Hence, factors that could contribute to fracture risk, such as osteoporosis and the use of antidepressants and steroids, could not be investigated. Moreover, the effects of sex differences on fractures could not be completely clarified given that information regarding menopause or hormone levels among women were not surveyed. Therefore, future studies should include examinations and questions addressing these factors.

Third, studies on postmenopausal women have reported that obesity and underweight were both risk factors for fractures. However, given that the present survey contained no items on height and weight in FY2011, body mass index could not be calculated. Therefore, we plan to examine the relationship between weight and fractures by evaluating health checkup data in our next study.

Fourth, the results of a systematic review and meta-analysis showed that frailty and pre-frailty were significant predictors of fractures among community-dwelling older adults. Frailty can be assessed using the frailty index, which combines several variables (functioning, cognition, comorbidities, health attitudes and habits, and physical performance). However, the Mental Health and Lifestyle Survey does not include many questions on physical functioning, while the present survey items did not allow us to examine the association between frailty and fractures. Future investigations may need to include a questionnaire on health examination results in order to screen for frailty.

Fifth, certain nutrients and foods have been reported to be associated with fracture risk. Previous studies on the Fukushima Health Management Survey also reported an association between psychological distress and food intake. However, the Fukushima Health Management Survey contained
very limited questionnaires on food intake. Moreover, a clear bias was noted when evaluating each food group. As such, we determined that data obtained from this study did not allow for a comprehensive examination of the association between fractures and food intake and were unfortunately excluded from consideration.

Conclusions

The present study indicated that disaster-induced PTSD symptoms and insomnia could contribute to increased fracture risk among older adults residing in evacuation areas within Fukushima prefecture. The offering active psychological care to reduce psychosocial stress, and providing guidance on sleep are important for preventing fractures in older adult residents, such as those in evacuation areas.

Declarations

Ethics approval and consent to participate

The mental health survey participants were told in writing that the survey results would be totaled and reported after analysis, and only those who returned the self-recorded questionnaire were considered to have provided consent to participate in the study. Furthermore, the study was approved by the ethical review board of Fukushima Medical University (approval numbers 1316 and 2148).

Consent for publication

Not applicable.

Availability of data and materials

The datasets analyzed during the present study are not publicly available because the data of the Fukushima Health Management Survey belongs to the government of Fukushima prefecture and can only be used within that organization.

Competing interests

The authors declare that there are no competing interests.

Funding

This survey was supported by the National Health Fund for Children and Adults Affected by the Nuclear Incident for design and conduct of the study.

Authors’ contributions

Conception and design: FH, TO, SY, MM, HY, YS and KK.
Acquisition of data: MH, MM, HY and SY.

Analysis and interpretation of data: FH.

Drafting the article: FH.

Revising it for intellectual content: TO, HN, MN, KO, MH, SY, MM, AT, HY, YS, and KK.

Final approval of the completed article: All authors.

Acknowledgements

The present study was conducted by the Fukushima Medical University on consignment by the Fukushima Prefecture using the Fukushima prefectural health survey funds. Furthermore, the opinions presented in the report are those of the authors and not of the Fukushima Prefecture residents.

Abbreviations

PTSD: Post-traumatic stress disorder; PCL: Post-traumatic stress disorder checklist; HR: Hazard ratio; 95% CI: 95% confidence interval; FDNPS: Fukushima Daiichi Nuclear Power Station; QOL: Quality of life; K6: Kessler Psychological Distress Scale; SSRIs: Selective serotonin reuptake inhibitors; HRQOL: Health-related quality of life; FY: Fiscal Year; SD: Standard Deviation; Ref: Reference.

References

1. Kunii Y, Suzuki Y, Shiga T, Yabe H, Yasumura S, Maeda M, Niwa S, Otsuru A, Mashiko H, Abe M; Mental Health Group of the Fukushima Health Management Survey. Severe Psychological Distress of Evacuees in Evacuation Zone Caused by the Fukushima Daiichi Nuclear Power Plant Accident: The Fukushima Health Management Survey. PLoS One. 2016 Jul 8;11(7):e0158821.
2. Yabe H, Suzuki Y, Mashiko H, Nakayama Y, Hisata M, Niwa S, Yasumura S, Yamashita S, Kamiya K, Abe M; Mental Health Group of the Fukushima Health Management Survey. Psychological distress after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident: results of a mental health and lifestyle survey through the Fukushima Health Management Survey in FY2011 and FY2012. Fukushima J Med Sci. 2014;60(1):57-67.
3. Maeda M, Oe M. Mental Health Consequences and Social Issues After the Fukushima Disaster. Asia Pac J Public Health. 2017 Mar;29(2_suppl):36S-46S.
4. Kukihara H, Yamawaki N, Uchiyama K, Arai S, Horikawa E. Trauma, depression, and resilience of earthquake/tsunami/nuclear disaster survivors of Hirono, Fukushima, Japan. Psychiatry Clin Neurosci. 2014 Jul;68(7):524-33.
5. Jiang T, Veres K, Körmendiné Farkas D, Lash TL, Toft Sørensen H, Gradus JL. Post-traumatic stress disorder and incident fractures in the Danish population. Osteopors Int. 2018 Nov;29(11):2487-2493.
6. Ministry of Health, Labour and Welfare of Japan. Summary Report of Comprehensive Survey of Living Conditions 2016. https://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2016.pdf. Accessed 2020/7/14.

7. Tanji F, Sugawara Y, Tomata Y, Watanabe T, Sugiyama K, Kaino Y, Tomita H, Tsuji I. Psychological distress and the incident risk of functional disability in elderly survivors after the Great East Japan Earthquake. J Affect Disord. 2017 Oct 15;221:145-150.

8. Yasumura S, Hosoya M, Yamashita S Kamiya K, Abe M, Akashi M, Kodama K, Ozasa K, Fukushima Health Management Survey Group. Study Protocol for the Fukushima Health Management Survey. J Epidemiol. 2012;22(5):375-83.

9. Blanchrd EB, Jones-Alexander J, Buckley TC, Forneris CA. Psychometric Properties of the PTSD Checklist (PCL). Behav Res Ther. 1996 Aug;34(8):669-73.

10. Iwasa H, Suzuki Y, Shiga T et al. Psychometric Evaluation of the Japanese Version of the Posttraumatic Stress Disorder Checklist in Community Dwellers Following the Fukushima Daiichi Nuclear Power Plant Incident: The Fukushima Health Management Survey. SAGE Open. 2016 Jun;6(2): 1-11.

11. Suzuki Y, Yabe H, Horikoshi N, Yasumura S, Kawakami N, Ohtsuru A, Mashiko H, Maeda M; Mental Health Group of the Fukushima Health Management Survey. Diagnostic accuracy of Japanese posttraumatic stress measures after a complex disaster: The Fukushima Health Management Survey. Asia Pac Psychiatry. 2017 Mar;9(1).

12. Tsubokura M, Takita M, Matsumura T, Hara K, Tanimoto T, Kobayashi K, Hamaki T, Oiso G, Kami M, Okawada T, Tachiya H. Changes in Metabolic Profiles After the Great East Japan Earthquake: A Retrospective Observational Study. BMC Public Health. 2013 Mar 23;13:267.

13. Satoh H, Ohira T, Hosoya M, Sakai A, Watanabe T, Ohtsuru A, Kawasaki Y, Suzuki H, Takahashi A, Kobashi G, Ozasa K, Yasumura S, Yamashita S, Kamiya K, Abe M. Evacuation After the Fukushima Daiichi Nuclear Power Plant Accident Is a Cause of Diabetes: Results From the Fukushima Health Management Survey. J Diabetes Res. 2015;2015:627390.

14. Ohira T, Hosoya M, Yasumura S, Satoh H, Suzuki H, Sakai A, Ohtsuru A, Kawasaki Y, Takahashi A, Ozasa K, Kobashi G, Kamiya K, Yamashita S, Abe M, Fukushima Health Management Survey Group. Effect of Evacuation on Body Weight After the Great East Japan Earthquake. Am J Prev Med. 2016 May;50(5):553-560.

15. Hashimoto S, Nagai M, Fukuma S, Ohira T, Hosoya M, Yasumura S, Satoh H, Suzuki H, Sakai A, Ohtsuru A, Kawasaki Y, Takahashi A, Ozasa K, Kobashi G, Kamiya K, Yamashita S, Fukuhara S, Ohto H, Abe M, Fukushima Health Management Survey Group. Influence of Post-disaster Evacuation on Incidence of Metabolic Syndrome. J Atheroscler Thromb. 2017 Mar 1;24(3):327-337.

16. Sakai A, Ohira T, Hosoya M, Ohtsuru A, Satoh H, Kawasaki Y, Suzuki H, Takahashi A, Kobashi G, Ozasa K, Yasumura S, Yamashita S, Kamiya K, Abe M, Fukushima Health Management Survey Group. Life as an Evacuee After the Fukushima Daiichi Nuclear Power Plant Accident Is a Cause of
17. Suzuki H, Ohira T, Takeishi Y, Hosoya M, Yasumura S, Satoh H, Kawasaki Y, Takahashi A, Sakai A, Ohtsuru A, Kobashi G, Ozasa K, Yamashita S, Kamiya K, Abe M, Fukushima Health Management Survey Group. Increased Prevalence of Atrial Fibrillation After the Great East Japan Earthquake: Results From the Fukushima Health Management Survey. Int J Cardiol. 2015 Nov 1;198:102-5.

18. Uemura M, Ohira T, Yasumura S, Otsuru A, Maeda M, Harigane M, Horikoshi N, Suzuki Y, Yabe H, Takahashi H, Nagai M, Nakano H, Zhang W, Hirosaki M, Abe M, Fukushima Health Management Survey Group. Association Between Psychological Distress and Dietary Intake Among Evacuees After the Great East Japan Earthquake in a Cross-Sectional Study: The Fukushima Health Management Survey. BMJ Open. 2016 Jul 5;6(7):e011534.

19. Zhang W, Ohira T, Abe M, Kamiya K, Yamashita S, Yasumura S, Ohtsuru A, Maeda M, Harigane M, Horikoshi N, Suzuki Y, Yabe H, Yuuki M, Nagai M, Takahashi H, Nakano H, Fukushima Health Management Survey Group. Evacuation After the Great East Japan Earthquake Was Associated With Poor Dietary Intake: The Fukushima Health Management Survey. J Epidemiol. 2017 Jan;27(1):14-23.

20. Pedersen AB, Baggesen LM, Ehrenstein V, Pedersen L, Lasgaard M, Mikkelsen EM. Perceived stress and risk of any osteoporotic fracture. Osteoporos Int. 2016 Jun;27(6):2035-45.

21. Aardal-Eriksson E, Eriksson TE, Thorell LH. Salivary cortisol, posttraumatic stress symptoms, and general health in the acute phase and during 9-month follow-up. Biol Psychiatry. 2001 Dec 15;50(12):986-93.

22. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002 Oct;13(10):777-87.

23. Oe M, Takahashi H, Maeda M, Harigane M, Fujii S, Miura I, Nagai M, Yabe H, Ohira T, Suzuki Y, Yasumura S, Abe M. Changes of Posttraumatic Stress Responses in Evacuated Residents and Their Related Factors. Asia Pac J Public Health. 2017 Mar;29(2_suppl):182S-192S.

24. Maeda M, Oe M. The Great East Japan Earthquake: Tsunami and Nuclear Disaster Traumatic Stress and Long-Term Recovery. Traumatic Stress and Long-Term Recovery: Coping with Disasters and Other Negative Life Events, 2015. p. 71-90.

25. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995 Dec;52(12):1048-60.

26. Perkonigg A, Kessler RC, Storz S, Wittchen H-U. Traumatic events and post-traumatic stress disorder in the community: prevalence, risk factors and comorbidity. Acta Psychiatr Scand. 2000 Jan;101(1):46-59.

27. Kessler RC, Andrews G, Colpe LJ, Hiripi E, Mroczek DK, Normand SL, Walters EE, Zaslavsky AM. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002 Aug;32(6):959-76.

28. Furukawa TA, Kawakami N, Saitoh M, Ono Y, Nakane Y, Nakamura Y, Tachimori H, Iwata N, Uda H, Nakane H, Watanabe M, Naganuma Y, Hata Y, Kobayashi M, Miyake Y, Takeshima T, Kikkawa T. The
performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17(3):152-8.

29. Sakurai K, Nishi A, Kondo K, Yanagida K, Kawakami N. Screening performance of K6/K10 and other screening instruments for mood and anxiety disorders in Japan. Psychiatry. Psychiatry Clin Neurosci. 2011 Aug;65(5):434-41.

30. Yoshida K, Shinkawa T, Urata H, Nakashima K, Orita M, Yasui K, Kumagai A, Ohtsuru A, Yabe H, Maeda M, Hayashida N, Kudo T, Yamashita S, Takamura N. Psychological distress of residents in Kawauchi village, Fukushima Prefecture after the accident at Fukushima Daiichi Nuclear Power Station: the Fukushima Health Management Survey. PeerJ. 2016 Aug 31;4:e2353.

31. Miura I, Nagai M, Maeda M, Harigane M, Fujii S, Oe M, Yabe H, Suzuki Y, Takahashi H, Ohira T, Yasumura S, Abe M. Perception of Radiation Risk as a Predictor of Mid-Term Mental Health After a Nuclear Disaster: The Fukushima Health Management Survey. Int J Environ Res Public Health. 2017 Sep 15;14(9):1067.

32. Wu Q, Liu B, Tonmoy S. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies. Osteoporos Int. 2018 Jun;29(6):1303-1312.

33. Wu Q, Liu J, Gallegos-Orozco JF, Hentz JG. Depression, fracture risk, and bone loss: a meta-analysis of cohort studies. Osteoporos Int. 2010 Oct;21(10):1627-35.

34. Wu Q, Bencaz AF, Hentz JG, Crowell MD. Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case-control studies. Osteoporos Int. 2012 Jan;23(1):365-75.

35. Warden SJ, Fuchs RK. Do Selective Serotonin Reuptake Inhibitors (SSRIs) Cause Fractures? Curr Osteoporos Rep. 2016 Oct;14(5):211-8.

36. Doi Y, Minowa M, Okawa M, Uchiyama M. Prevalence of sleep disturbance and hypnotic medication use in relation to sociodemographic factors in the general Japanese adult population. J Epidemiol. 2000 Mar;10(2):79-86.

37. Wang PS, Bohn RL, Glynn RJ, Mogun H, Avorn J. Hazardous benzodiazepine regimens in the elderly: effects of half-life, dosage, and duration on risk of hip fracture. Am J Psychiatry. 2001 Jun;158(6):892-8.

38. Fonad E, Wahlin TB, Winblad B, Emami A, Sandmark H. Falls and fall risk among nursing home residents. J Clin Nurs. 2008 Jan;17(1):126-34.

39. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M. Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res. 2003 Aug;18(8):1547-53.

40. Riggs BL, Khosla S, Melton L3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002 Jun;23(3):279-302.

41. van der Hooft CS, Schoofs MW, Ziere G, Hofman A, Pols HA, Sturkenboom MC, Stricker BH. Inappropriate benzodiazepine use in older adults and the risk of fracture. Br J Clin Pharmacol. 2008 Aug;66(2):276-82.
42. Brenneman SK, Barrett-Connor E, Sajjan S, Markson LE, Siris ES. Impact of recent fracture on health-related quality of life in postmenopausal women. J Bone Miner Res. 2006 Jun;21(6):809-16.
43. de Kam D, Smulders E, Weerdesteyn V, Smits-Engelsman BC. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos Int. 2009 Dec;20(12):2111-25.
44. P Vestergaard, L Mosekilde. Fracture risk associated with smoking: a meta-analysis. J Intern Med. 2003 Dec;254(6):572-83.
45. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM; Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011 Jun 1;305(21):2184-92.
46. Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL, Michaëllson K. Cardiovascular diseases and risk of hip fracture. JAMA. 2009 Oct 21;302(15):1666-73.
47. Kanis J, Oden A, Johnell O. Acute and long-term increase in fracture risk after hospitalization for stroke. Stroke. 2001 Mar;32(3):702-6.
48. Hadji P, Aapro MS, Body JJ, Bundred NJ, Brufsky A, Coleman RE, Gnant M, Guise T, Lipton A. Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: practical guidance for prevention and treatment. Ann Oncol. 2011 Dec;22(12):2546-55.
49. Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005 Nov 1;23(31):7897-903.
50. Manabe J, Kawaguchi N, Matsumoto S, Tanizawa T. Surgical treatment of bone metastasis: indications and outcomes. Int J Clin Oncol. 2005 Apr;10(2):103-11.
51. Oe M, Fujii S, Maeda M, Nagai M Harigane M, Miura I, Yabe H, Ohira T, Takahashi H, Suzuki Y, Yasumura S, Abe M. Three-year trend survey of psychological distress, post-traumatic stress, and problem drinking among residents in the evacuation zone after the Fukushima Daiichi Nuclear Power Plant accident [The Fukushima Health Management Survey]. Psychiatry Clin Neurosci. 2016 Jun;70(6):245-52.
52. Horikoshi N, Iwasa H, Yasumura S, Maeda M. The characteristics of non-respondents and respondents of a mental health survey among evacuees in a disaster: The Fukushima Health Management Survey. Fukushima J Med Sci. 2017 Dec 19;63(3):152-159.
53. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002 Jun 1;359(9321):1929-36.
54. Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int. 2013 Jan;24(1):69-76.
55. Kojima G. Frailty as a predictor of fractures among community-dwelling older people: a systematic review and meta-analysis. Bone. 2016 Sep 1;90:116-22.

56. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC geriatrics. 2008 Dec;8(1):24.

57. Yaegashi Y, Onoda T, Tanno K, et al. Association of hip fracture incidence and intake of calcium, magnesium, vitamin D, and vitamin K. Eur J Epidemiol. 2008;23(3):219-25.

58. Kojima A, Ikehara S, Kamiya K, et al. Natto Intake is Inversely Associated with Osteoporotic Fracture Risk in Postmenopausal Japanese Women J Nutr. 2020 Mar 1;150(3):599-605.

Tables

Table 1. The association between fracture and Mental Health and Lifestyle Survey items
Factor	Classification	All participants (n = 17,459)	Nonfracture group (n = 15,362)	Fracture group (n = 2,097)	P value			
		Mean	SD	Mean	SD	Mean	SD	
Age		74.3	6.5	74.2	6.5	75.5	6.7	<0.001
Follow-up period		3.7	1.5	3.9	1.4	2.0	1.4	
Sex	Men	8,331	74.7	7,545	49.1	786	37.5	<0.001
	Women	9,128	52.3	7,817	50.9	1,311	62.5	
PTSD symptoms	No	11,677	74.5	10,440	75.3	1,237	67.9	<0.001
	Yes	4,006	25.5	3,420	24.7	586	32.1	
Experience of evacuation	No	13,441	77.0	11,810	76.9	1,631	77.8	0.310
	Yes	4,018	23.0	3,552	23.1	466	22.2	
Experience of earthquake	No	6,933	39.7	6,080	39.6	853	40.7	0.163
	Yes	10,526	60.3	9,282	60.4	1,441	59.3	
Experience of tsunami	No	16,051	94.8	14,155	95.0	1,896	93.4	<0.001
	Yes	875	5.2	741	5.0	134	6.6	
Need for assistance	No	15,751	91.4	13,923	91.8	1,828	88.4	<0.001
	Yes	1,488	8.6	1,248	8.2	240	11.6	
History of cancer	No	15,232	91.8	14,349	92.1	1,793	90.0	<0.001
	Yes	1,355	8.2	1,155	7.9	200	10.0	
History of stroke	No	15,044	89.9	13,276	90.3	1,768	87.4	<0.001
	Yes	1,686	10.1	1,432	9.7	254	12.6	
History of heart disease	No	13,603	81.0	12,658	81.7	1,545	76.6	<0.001
	Yes	3,181	19.0	2,708	18.3	473	23.4	
History of diabetes mellitus	No	10,959	65.9	9,685	66.2	1,274	63.4	0.005
	Yes	5,674	34.1	4,940	33.8	734	36.6	
History of dyslipidemia	No	8,309	49.6	7,329	49.7	980	48.6	0.729
	Yes	8,454	50.4	7,416	50.3	1,038	51.4	
History of hepatic disorder	No	16,116	96.7	14,186	96.8	1,930	96.2	0.070
	Yes	545	3.3	469	3.2	76	3.8	
History of hypertension	No	4,984	29.2	4,403	29.3	581	28.2	0.177
	Yes	12,111	70.8	10,632	70.7	1,479	71.8	
History of thyroid disease	No	16,597	97.1	14,618	97.1	1,979	96.8	0.327
	Yes	496	2.9	430	2.9	66	3.2	
Smoking habit	never smoked	10,174	61.3	8,853	60.5	1,321	67.3	<0.001
	former smoker	4,781	28.8	4,316	29.5	465	23.7	
	current smoker	1,644	9.9	1,468	10.0	176	9.0	
Drinking habit	never drinks or rarely drinks (less than once a month)	9,296	55.2	8,110	54.6	1,186	59.3	<0.001
	former drinker	958	5.7	847	5.7	111	5.6	
	current drinker (more than once a month)	6,592	39.1	5,889	39.7	703	35.2	
Level of sleep satisfaction	satisfied with sleep	5,304	41.9	4,733	42.6	571	36.9	<0.001
	slightly unsatisfied with sleep	5,119	40.5	4,485	40.4	634	41.0	
	quite unsatisfied with sleep	1,648	13.0	1,406	12.7	242	15.6	
	very dissatisfied with	582	4.6	482	4.3	100	6.5	
Table 2. The results of univariate and multivariate Cox proportional hazard models.

Exercise habit	sleep or does not sleep at all							
	almost daily	4,301	25.9	3,827	26.2	474	23.9	0.003
	2 to 4 times a week	5,222	31.4	4,611	31.5	611	30.8	
	approximately once a week	2,503	15.1	2,191	15.0	312	15.7	
	almost never	4,584	27.6	3,998	27.3	586	29.6	

| Job change | No | 8,233 | 54.5 | 7,288 | 54.6 | 945 | 53.7 | 0.888 |
| | Yes | 6,869 | 45.5 | 6,053 | 45.4 | 816 | 46.3 |

| Loss of job | No | 15,119 | 86.6 | 13,294 | 86.5 | 1,825 | 87.0 | 0.145 |
| | Yes | 2,340 | 13.4 | 2,068 | 13.5 | 272 | 13.0 |

| Residential changes | No | 10,345 | 62.1 | 9,125 | 62.2 | 1,220 | 61.4 | 0.742 |
| | Yes | 6,320 | 37.9 | 5,553 | 37.8 | 767 | 38.6 |

Data are presented as a number with a percentage or a mean with standard deviation. The interval scale between the bone fracture and no bone fracture group groups was tested using the log–rank test. SD: standard deviation, PTSD: post-traumatic stress disorder. p < 0.05 was considered statistically significant.
Table 3. The results of multivariate Cox proportional hazard models by sex.

Factors	Classification	Crude HR (95% CI)	P value	Adjusted HR (95% CI)	P value
Age	Continuous	1.04 (1.04 - 1.05)	<0.001	1.04 (1.03 - 1.05)	<0.001
Sex	Men	Ref.			
	Women	1.59 (1.45 - 1.73)	<0.001	1.85 (1.55 - 2.20)	<0.001
PTSD symptoms	No	Ref.			
	Yes	1.43 (1.30 - 1.58)	<0.001	1.26 (1.10 - 1.44)	0.001
Experience of earthquake	No	Ref.			
	Yes	0.82 (0.70 - 0.97)	0.017	0.91 (0.69 - 1.20)	0.507
History of mental illness	No	Ref.			
	Yes	1.44 (1.21 - 1.72)	<0.001	0.96 (0.75 - 1.25)	0.783
Need for assistance	No	Ref.			
	Yes	1.84 (1.61 - 2.11)	<0.001	1.15 (0.93 - 1.42)	0.209
History of cancer	No	Ref.			
	Yes	1.31 (1.13 - 1.51)	<0.001	1.48 (1.23 - 1.79)	<0.001
History of stroke	No	Ref.			
	Yes	1.41 (1.24 - 1.61)	<0.001	1.26 (1.04 - 1.52)	0.021
History of heart disease	No	Ref.			
	Yes	1.37 (1.23 - 1.51)	<0.001	1.30 (1.13 - 1.49)	<0.001
History of diabetes mellitus	No	Ref.			
	Yes	1.14 (1.04 - 1.25)	0.005	1.23 (1.09 - 1.39)	0.001
Smoking habit	never smoked	Ref.			
	former smoker	0.73 (0.66 - 0.81)	<0.001	1.03 (0.86 - 1.24)	0.737
	current smoker	0.83 (0.71 - 0.97)	0.021	1.27 (1.01 - 1.61)	0.045
Drinking habit	never drinks or rarely drinks (less than once a month)	Ref.			
	former drinker	0.95 (0.78 - 1.15)	0.584	1.22 (0.92 - 1.62)	0.173
	current drinker	0.79 (0.72 - 0.87)	<0.001	1.15 (0.99 - 1.33)	0.067
Level of sleep satisfaction	satisfied with sleep	Ref.			
	slightly unsatisfied with sleep	1.15 (1.02 - 1.28)	0.018	1.04 (0.92 - 1.19)	0.523
	quite unsatisfied with sleep	1.40 (1.20 - 1.62)	<0.001	1.03 (0.85 - 1.24)	0.773
	very dissatisfied with sleep or does not sleep at all	1.69 (1.37 - 2.10)	<0.001	1.36 (1.04 - 1.77)	0.024
Exercise habit	almost daily	Ref.			
	2 to 4 times a week	1.06 (0.94 - 1.20)	0.328	1.01 (0.86 - 1.18)	0.911
	approximately once a week	1.16 (1.00 - 1.33)	0.046	1.08 (0.89 - 1.31)	0.423
	almost never	1.24 (1.10 - 1.40)	<0.001	1.07 (0.91 - 1.26)	0.434

a Adjusted for age, sex, PCL score, experience of earthquake, history of mental illness, need for assistance, history of cancer, history of stroke, history of heart disease, history of diabetes mellitus, smoking habit, drinking habit, level of sleep satisfaction, and exercise habit.

95% CI: 95% confidence interval, HR: hazard ratio, Ref: reference, PTSD: post–traumatic stress disorder.

Cox proportional hazard model; p < 0.05 was considered statistically significant.
Factors	Classification	Men	Women			
		Adjusted HR (95% CI)a	P value	Adjusted HR (95% CI) b	P value	
Age	Continuous	1.03 (1.02 - 1.05)	<0.001	1.04 (1.03 - 1.06)	<0.001	
PTSD symptoms	No	Ref.	Ref.	Ref.		
	Yes	1.39 (1.11 - 1.74)	0.004	1.18 (0.99 - 1.41)	0.065	
Experience of earthquake	No	Ref.	Ref.	Ref.		
	Yes	0.88 (0.60 - 1.28)	0.508	0.93 (0.62 - 1.38)	0.703	
History of mental illness	No	Ref.	Ref.	Ref.		
	Yes	0.88 (0.57 - 1.38)	0.587	1.02 (0.74 - 1.40)	0.915	
Need for assistance	No	Ref.	Ref.	Ref.		
	Yes	0.94 (0.61 - 1.43)	0.762	1.21 (0.94 - 1.57)	0.136	
History of cancer	No	Ref.	Ref.	Ref.		
	Yes	1.50 (1.16 - 1.94)	0.002	1.45 (1.11 - 1.90)	0.007	
History of stroke	No	Ref.	Ref.	Ref.		
	Yes	1.30 (1.00 - 1.70)	0.050	1.19 (0.89 - 1.58)	0.241	
History of heart disease	No	Ref.	Ref.	Ref.		
	Yes	1.21 (0.97 - 1.50)	0.087	1.36 (1.13 - 1.64)	0.001	
History of diabetes mellitus	No	Ref.	Ref.	Ref.		
	Yes	1.35 (1.12 - 1.63)	0.001	1.13 (0.96 - 1.34)	0.134	
Smoking habit	never smoked	Ref.	Ref.	Ref.		
	former smoker	1.02 (0.82 - 1.26)	0.862	1.10 (0.75 - 1.61)	0.636	
	current smoker	1.21 (0.91 - 1.60)	0.195	1.46 (0.94 - 2.27)	0.091	
Drinking habit	never drinks or rarely drinks (less than once a month)	Ref.	Ref.	Ref.		
	former drinker	1.27 (0.92 - 1.76)	0.153	0.88 (0.39 - 1.99)	0.763	
	current drinker	1.14 (0.91 - 1.42)	0.252	1.17 (0.96 - 1.44)	0.129	
Level of sleep satisfaction	satisfied with sleep	Ref.	Ref.			
	slightly unsatisfied with sleep	0.99 (0.81 - 1.22)	0.931	1.06 (0.90 - 1.26)	0.486	
	quite unsatisfied with sleep	1.26 (0.94 - 1.69)	0.124	0.90 (0.70 - 1.16)	0.423	
	very dissatisfied with sleep or does not sleep at all	1.80 (1.19 - 2.72)	0.006	1.14 (0.80 - 1.61)	0.469	
Exercise habit	almost daily	Ref.	Ref.	Ref.		
	2 to 4 times a week	0.93 (0.74 - 1.18)	0.557	1.09 (0.87 - 1.35)	0.457	
	about once a week	1.01 (0.76 - 1.35)	0.945	1.16 (0.90 - 1.50)	0.258	
	almost never	1.01 (0.79 - 1.30)	0.913	1.12 (0.90 - 1.40)	0.301	

a, b Adjusted for age, PCL score, experience of earthquake, history of mental illness, need for assistance, history of cancer, history of stroke, history of heart disease, history of diabetes mellitus, smoking habit, drinking habit, level of sleep satisfaction, and exercise habit.

95% CI: 95% confidence interval, HR: hazard ratio, Ref: reference, PTSD: post-traumatic stress disorder.

Cox proportional hazard model; p < 0.05 was considered statistically significant.
Table 4. The results of Poisson regression models.

Range of PCL score [median (minimum–maximum)]	Low	Middle	High (Middle)	High	Total
The number of participants	3,923	3,923	3,831	4,006	15,683
Women (%)	41.2	50.7	53.2	58.4	50.9
Age (years) (mean [SD])	74.3 (6.8)	73.8 (6.5)	73.9 (6.4)	74.2 (6.1)	74.0 (6.5)
Follow–up period (person–years) (mean [SD])	3.8 (1.5)	3.8 (1.5)	3.7 (1.5)	3.6 (1.6)	3.7 (1.5)
The number of fracture	389	401	447	586	1,823
Age and sex adjusted odds ratios	Ref.	1.00	1.17*	1.44**	
(95% CI)	(0.87–1.15)	(1.02–1.34)	(1.26–1.63)		
Age, sex, and follow–up period adjusted odds ratios	Ref.	1.02	1.08	1.28**	(trend p < 0.001)
(95% CI)	(0.89–1.17)	(0.94–1.23)	(1.12–1.46)		

95% CI, 95% confidence interval; HR, hazard ratio; Ref, reference; PCL, post-traumatic stress disorder checklist.

Poisson regression model: p < 0.05 was considered statistically significant. * p = 0.025, ** p < 0.001.

Figures
2011 Mental Health and Lifestyle Survey respondents: 73,431

Exclusion of 46,365 individuals aged <65 years at 2011 and 1,220 individuals with unknown history of fracture and 3,933 individuals existing history of fracture.

21,913 individuals aged >= 65 at 2011 with no history of fracture.
(1,0271 men, 11,642 women; mean age 75.0 ± 6.9 years)

Exclusion of 4,454 individuals who could not track fractures from 2012 to 2016.

A total of 1,7459 individuals (8,331 men and 9,128 women) were targeted.
(mean age 74.3 ± 6.5, mean follow-up period 3.7 ± 1.5 person-years)

Figure 1
Selection of study participants.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- renamed89cb4.docx
- renamed0e167.docx