A review on geopolymerisation in soil stabilization

Bryan Yien Fu Wong¹, Kwong Soon Wong¹*, Ignatius Ren Kai Phang¹

¹Department of Civil & Construction Engineering, Curtin University Malaysia, CDT 250, Miri, Malaysia

*Email: wongkwongsoon@curtin.edu.my

Abstract. Shear strength of ground is a vital part of foundation design for construction and many researches have been done throughout the years for soil strength improvement. Previously, research has employed various admixtures and chemicals in hope to stabilize soil improving its geotechnical properties. Common binders like cement yield high stabilization potential but it may not be economical viable and contributed to environmental issue. For the past few years, there is much interest in developing a new cementing agent that does not have high carbon dioxide emissions. Efforts have been made to utilize environmentally friendly binding agents with low carbon footprints by employing industrial waste such as fly ash. These eventually leads to the use of such waste by-products in the production of geopolymer binders that can be used to increase the strength of soft soil may be proven to be both environmentally friendly and efficacious. This review highlights previous effort regarding the use of fly ash for geopolymers production as a stabilizer for inorganic soils and discuss on potential and possible limitation on alkaline activation of alumina-silicate materials (geopolymerisation) as a cement replacement.

1. Introduction

As both industrialization and population have grown rapidly, the construction of building and infrastructure on soft soil has become imperative. Several processes for stabilising soil have been employed to increase the extent to which soft soil can bear loads. Such processes include vacuum consolidation, prefabricated and granular vertical drains, reinforcing rib granular columns (vibrated stone columns, sand compaction piles), and stabilization techniques (deep mixing, pre-mixing, lightweight treated soil) [1]. One of the most widespread techniques for stabilizing soil, which was first developed three decades ago, involves using treated soil columns with deep soil mixing [2, 3].

Broadly speaking, the deep stabilization process modifies soil on site by employing stabilizing agents to treat underperforming soil to mitigate against shear deformation, increase the load-bearing capacity, and reduce settlement [1, 4, 5]. Published research has highlighted how this technique can yield several benefits: accelerated construction times, reliability, flexible application, and effective use of resources [1, 6, 7]. Binders with a calcium basis (lime/cement), which are highly robust and easy-to-use, were traditionally used to stabilize the soil and will produce a firmer and stronger ground improvement; i.e., soil-cement or soil-lime columns [8, 9]. Recently, the use of such binding techniques has been scrutinized, as manufacturing the binders is detrimental to the environment and they are also costly [9]. The processed by which cement is manufactured currently contribute approximately 7% of man-made CO2 emissions globally due to carbonate decomposition [10, 11]. Researchers have calculated that a tonne of CO2, the greenhouse gas held chiefly responsible for global warming, is produced for every tonne of manufactured cement [12]. As well as emitting CO2,
manufacturing cement creates NOx. Cement kilns produce much of this nitric oxide, which is a major contributor to acid rain and the greenhouse effect [13]. Also, there is global overconsumption of the raw materials for cement production. Thus, the civil engineering industry is continually searching for a cement replacement in terms of soil stabilization that is viable and sustainable. In recent times, geopolymers have become the centre of attention as they appear to use solid waste and by-products, thereby offering cost-effective solutions to issues involving hazardous residue that needs to be treated and stored [14].

2. Geopolymer
Geopolymer is the product of a blend of materials that are high in alumina (Al₂O₃) and silica (SiO₂); it is inorganic [15]. Polymerization uses an exceptionally quick chemical reaction in alkaline conditions with Si-Al minerals, resulting in 3-D polymeric chains and a ring structure comprised of Si-O-Al-O bonds [16]. Geo-polymerization requires Al and Si to be dissolved in the alkaline solution before the dissolved species is transported. Polycondensation subsequently forms a three-dimensional network of aluminosilicate structures [17]. Three examples of standard geopolymer structures are shown in Table 1. below:

Geopolymer Structure
Poly(sialate)Si : Al = 1
(−Si −O− Al −O−)
Poly(sialate - siloxo)Si : Al = 2
(−Si −O− Al −O− Si −O−)
Poly(sialate - disiloxo)Si : Al = 3
(−Si −O− Al −O− Si −O− Si −O−)

Table 1. Examples of geopolymer structures.

The geopolymer matrix exhibits ion exchange properties that replicate those of zeolites as a result of the inclusion of rings of various sizes that are formed of cross-linked tetrahedral silica and alumina units within the network [18, 19]. Geopolymers exhibit a semi-crystalline structure, while zeolites are typically crystalline. When the geopolymers of the fly ash are combined with an alkaline dissolution, the vitreous constituents rapidly dissolve. As such, there is insufficient space and time for the gel to develop into a crystallized structure that evolves into an amorphous, semi-amorphous, or microcrystalline structure [20-22].

It is widely recognized that the major binding component of Portland cement is calcium silicate hydrate (CSH) [23-25]. However, the binding constituents of geopolymers result from the development of a 3D-amorphous aluminosilicate network [19, 26-28]. There is no requirement for calcium-silicate-hydrate gel with geopolymers, as they use silica and alumina precursor polycondensation to increase their strength [29]. These materials are generally synthesized by employing a raw material of aluminosilicate and activated with a solution chiefly comprising the alkalis sodium or potassium, along with water glass [30, 31]. The innovative element of geopolymers is that they will harden at room temperature; there is no need for additional temperature application, which thus reduces CO2 emissions, offering a more ecologically responsible cement alternative [32]. Geopolymerisation allows the use of significant quantities of both hazardous and non-hazardous waste to make new products and reduce the environmental footprint [33]. Geopolymer technologies can take solid industrial waste containing aluminosilicates and turn them into usable products, as the waste can be immobilized and stabilized within the geopolymer network [34]. In theory, any industrial waste that has enough silica and alumina contained within it may be used for geopolymerisation [27].

3. Fly ash act as Alkali-activated material
Amongst industrial by-products, fly ash and slag have shown potential for turning into geopolymers. Fly ash is highly regarded as it has a fine particle size compared to slag, and so has a high level of reactivity [21]. Furthermore, fly ash is produced in enormous quantities globally and is very workable; this makes it the most popular material for geopolymerisation in the world [35, 36]. Fly ash derives from burning coal powder and is collected with mechanical and electrostatic separators from the gas outputs of power plants [37].
In fly ash, SiO\textsubscript{2} and Al\textsubscript{2}O\textsubscript{3} are in amorphous phase, which can react effectively with NaOH and Na\textsubscript{2}SiO\textsubscript{3} [38]. Fly ash is divided into two classes based on which of these oxides it contains, Class C and Class F. In Class C fly ash, there will be a combined content of ferric oxide, silica, and alumina of between 50% and 70% of the total, with a CaO percentage of over 20%. Fly ash in Class F will contain the first three oxides in a percentage over 70%, with the last named below 10% [39]. Low calcium fly ash (ASTM Class F) is generally preferred as a raw element compared to Class C. High amounts of calcium can alter the microstructure and interfere with the process of polymerization. It should be noted that an extensive study undertaken by the US Department of Energy concluded that fly ash, properly employed, can be used for soil stabilization without damaging the environment [40].

4. Alkali-activated Solution
The alkaline liquid most commonly used in geopolymerisation is a combination of sodium hydroxide (NaOH) or potassium hydroxide (KOH) with sodium silicate or potassium silicate [41]. It has been shown to be possible to use a single alkaline activator. It has also been noted that an important part of the polymerization process relates to the type of alkaline liquid employed [42]. If an alkaline liquid holds soluble silicate (sodium/potassium), reactions occur at a faster rate than when only alkaline hydroxides is used. It has been confirmed that an enhanced reaction between source material and solution can be achieved if a solution of sodium silicate is added to the solution of sodium hydroxide being used for alkaline liquid [30, 43].

5. Using geopolymer to stabilize soil
Many studies have focused on geopolymers, and they are employed in the manufacture of ceramics, earth bricks, mortar and concrete [44-48]. Using geopolymer binders to stabilize soil is a relatively new concept. Palm oil fuel ash (POFA) and fly ash (FA) based geopolymers have been employed, respectively, for the stabilization of clay and sandy soil, and long-term high-strength results have been reported [9, 31, 38, 41, 49-53]. Experiments have been undertaken using fly ash based geopolymers to stabilize soft soils, though it has been found that to achieve the target strength for fly ash compared to Portland cement requires a longer curing time [49, 50, 53].

Phetchuay, et al. [38] performed study regarding the carbon footprint and strength of soft Coode Island Silt (CIS) stabilized using a class F fly ash (FA) – calcium carbide residue (CCR) geopolymer. Their findings demonstrated that FA-CCR geopolymer enhanced the strength of CIS and its carbon emissions were comparatively low as compared with CIS stabilized using cement. The strength of FA-CCR geopolymer-stabilized CIS exceeds that of FA geopolymer-stabilized CIS at 25°C and 40°C.

Yaghoubi, et al. [15] proposed that a liquid alkaline activator (L) comprising 30% NaOH and 70% Na\textsubscript{2}SiO\textsubscript{3}, with 15% S and 5% FA would be an appropriate geopolymer combination for the stabilization of Coode Island Silt (CIS) in DSM. NaOH used in their study was prepared to 8 Molarity while Na\textsubscript{2}SiO\textsubscript{3} had SiO\textsubscript{2}/ Na\textsubscript{2}O ratio of 2.00.

Cristelo, et al. [50] made a study of the use of fly ash as a silica and alumina amorphous source for the improvement of soft soil (sandy clay). This study found that increasing fly ash led to a gain in strength. Increasing activator concentration up to 15 Molar did not confer benefits, as similar results could be obtained at 12.5 Molar, with 12.5 Molar being more economical and more chemically stable. This concurred with the studies of [49]. Compared to curing with ambient temperatures and humidity, buried curing did not offer the same strength, but the patterns of strength evolution were similar, and the final values were significant.

When materials are formed by employing silica/alumina reactions with alkali agents such as sodium or potassium, they have a very similar molecular structure to natural rock, and are as stiff, durable and strong. The alkaline activation of alumina-silicate materials (geopolymerisation) is already being seen as a viable replacement for OPC, as these new materials are able to overcome most of the familiar drawbacks of using OPC [21]. The use of DSM technology has already been closely examined [54, 55]. However, in those studies, the chief binder was OPC, or OPC admixed with S or FA. FA and S have been employed as a replacement for OPC for ground improvement. However, it
has been noticed that when it is utilised alone, it is not as strong as OPC. By employing alkaline activation (geopolymisation) with such waste, then these issues might be resolved, making geopolymer binders that were even stronger [49, 51].

Researchers have examined the extent to which alkali-activated low-calcium and high-calcium FA are effective as alumina and silica amorphous sources [49, 50, 56, 57]. Primarily investigations involving analysis of the microstructure have found that binding gels (either N-A-S-H and/or C-A-S-H) develop within the soil voids, assisting the formation of more compact microstructures which, in turn, lead to greater compressive strength. Furthermore, researchers have found that short-term strength gains in stabilized soil occur more quickly if high-calcium FA is employed as a precursor.

Phummiphan, et al. [17] were the first to employ high calcium FA-based geopolymer with stabilized marginal lateritic soil for the creation of an eco-friendly base for pavement in Thailand. They demonstrated that the early strengths of geopolymer stabilized marginal lateritic soil could be increased by the addition of waste calcium carbide residue (CCR) [17, 58]. Small-sized CCR was shown to work as a binder, reacting with the alumina and silica in the soil and FA, creating Calcium Silicate Hydrate (CSH) [59].

Phummiphan, et al. [60] investigated the possibilities of employing two different waste types (Class C FA and GBFS) with liquid alkaline activators for the stabilization of marginal lateritic soil to create "green" base material for pavements. GBFS replacement enhanced the early seven-day UCS of FA geopolymer stabilized LS in the high sodium silicate (Na$_2$SiO$_3$, NS) solution sodium hydroxide (NaOH, NH) ratios tested (particularly NS:NH \geq 80:20). The ideal level of GBFS concentration offered the best seven-day UCS decreases in line with the NS:NH ratio. GBFS had no significant influence on the early/long-term UCS of FA geopolymer stabilised LS at low NS:NH of 50:50 the greatest UCS at 28 and 60 days was discovered to be for ratios of 60:30:10 LS:FA:GBFS and 90:10 NS:NH, and these are the recommended practical ratios. Analysis of the microstructure showed that calcium silicate hydrate (CSH) and sodium alumina silicate hydrate products coexist within FA geopolymer-stabilized LS/GBFS blends. These findings show that GBFS, previously generally seen as a waste product, can be employed as a replacement, partially reactive, material for FA geopolymer pavement applications.

Research work was undertaken by Sargent, et al. [61] regarding the possibility of employing certain alkali-activated by-products; for example, fly ash (FA), blast furnace slag (GGBS), and red gypsum (RG) to modify the geotechnical properties of soft soil (alluvial soil). Tests showed that untreated soil could be significantly strengthened by employing alkali-activated GGBS, GGBS-FA, and GGBS-RG.

Phetchuay, et al. [62] examined whether a pavement material with a compressive strength meeting the specifications of the local national road authority of Thailand could be produced by employing silty clay with fly ash as a precursor and calcium carbide residue (CCR) as an alkali activator. This research has shown that CCR may be employed as a sustainable alkaline activator with geopolymer stabilized subgrade materials, and this will enable notable amounts of what used to be regarded as a waste product to be usefully employed rather than dumped in landfill [62]. It has been shown to be feasible in experiments to employ geopolymers effectively as a soil stabilizer for clay soil [63]. The use of a geopolymer based on slag with marine clay has been investigated [64].

6. Potential Research opportunities

While there is a wealth of literature available on using fly-ash based geopolymers, they nearly always refer to their use in building material. There are some researches reporting the usage of geopolymer for soil stabilization. In the investigation of strength development of geopolymer stabilized soil, unconfined compressive strength is employed as a practical indicator. Shear behaviour as well as consolidation behaviour of geopolymer stabilized soil has not been investigated. Triaxial tests could be used to study the shearing behaviour of geopolymer stabilized soil. Oedometer tests can be used to investigate the consolidation behaviour of soil when it has been treated with fly ash based geopolymer. These tests should investigate both short-term and long-term curing periods.
7. Conclusion

The current paper reviewed on geopolymerisation to stabilize soil. Geopolymers have become the centre of attention as they appear to use solid waste and by-products, thereby offering cost-effective solutions to issues involving hazardous residue that needs to be treated and stored. The alkaline activation of alumina-silicate materials (geopolymerisation) is already being seen as a viable replacement for OPC, as these new materials are able to overcome most of the familiar drawbacks of using OPC. It has been confirmed that an enhanced reaction between source material and solution can be achieved if a solution of sodium silicate is added to the solution of sodium hydroxide being used for alkaline liquid. The FA-CCR geopolymer-stabilized soil demonstrates efficiency than FA geopolymer-stabilized soil due to two geopolymerisation products coexist: Sodium Aluminosilicate Hydrate (N-AS-H) and Calcium Silicate Hydrate (C-S-H).

Acknowledgment

The authors acknowledged Curtin University Malaysia, Sarawak for providing the required facility for the study. Authors wish to declare that there is no conflict of interest with respect to this work.

References

[1] Kitazume M and Terashi M 2013 The deep mixing method (EH, Leiden,The Netherlands: CRC press)
[2] Saitoh S, Suzuki Y and Shirai K 1985 Hardening of soil improved by deep mixing method. In: Eleventh international conference on soil mechanics and foundation engineering. (San Francisco, USA: Balkema (AA))
[3] Fang Y, Chung Y, Yu F and Chen T 2001 Properties of soil-cement stabilised with deep mixing method Proceedings of the Institution of Civil Engineers-Ground Improvement 5 69-74
[4] Porbaha A 1998 State of the art in deep mixing technology: part I. Basic concepts and overview Proceedings of the Institution of Civil Engineers-Ground Improvement 2 81-92
[5] Fasihnikoutalab M H, Asadi A, Huat B K, Ball R J, Pourakbar S and Singh P 2017 Utilisation of carbonating olivine for sustainable soil stabilisation Environmental Geotechnics 4 184-98
[6] Kitazume M and Terashi M 2002 The deep mixing method principle, design and construction (Lisse: A.A. Balkema Publishers)
[7] Bruce D and Bruce M 2001 Practitioner's guide to the deep mixing method Ground improvement 5 95-100
[8] Prusinski J and Bhattacharja S 1999 Effectiveness of Portland cement and lime in stabilizing clay soils Transportation Research Record: Journal of the Transportation Research Board 215-27
[9] Pourakbar S and Huat B K 2017 A review of alternatives traditional cementitious binders for engineering improvement of soils International Journal of Geotechnical Engineering 11 206-16
[10] Gartner E 2004 Industrially interesting approaches to “low-CO2” cements Cement and Concrete research 34 1489-98
[11] Matthews H D, Gillett N P, Stott P A and Zickfeld K 2009 The proportionality of global warming to cumulative carbon emissions Nature 459 829
[12] Lothenbach B, Scrivener K and Hooton R D 2011 Supplementary cementitious materials Cement and Concrete Research 41 1244-56
[13] Hendriks C A, Worrall E, De Jager D, Blok K and Riemer P 1998 Emission reduction of greenhouse gases from the cement industry. In: Proceedings of the fourth international conference on greenhouse gas control technologies: Interlaken, Austria, IEA GHG R&D Programme) pp 939-44
[14] Hamzah H N, Al Bakri Abdullah M M, Yong H C, Zainol M R R A and Hussin K 2015 Review of Soil Stabilization Techniques: Geopolymerization Method One of the New Technique Key Engineering Materials 660
[15] Yaghoubi M, Arulrajah A, Disfani M M, Horpibulsuk S, Bo M W and Darmawan S 2018 Effects of industrial by-product based geopolymers on the strength development of a soft soil Soils and Foundations

[16] Davidovits J 1999 Chemistry of geopolymeric systems, terminology. In: Geopolymer, pp 9-39

[17] Phummiphan I, Horpibulsuk S, Phoo-ngernkham T, Arulrajah A and Shen S-L 2016 Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material Journal of Materials in Civil Engineering 29 04016195

[18] Minelli M, Papa E, Medri V, Miccio F, Benito P, Doghieri F and Landi E 2018 Characterization of novel geopolymer–Zeolite composites as solid adsorbents for CO2 capture Chemical Engineering Journal 341 505-15

[19] Rao F and Liu Q 2015 Geopolymerization and its potential application in mine tailings consolidation: a review Mineral Processing and Extractive Metallurgy Review 36 399-409

[20] Khale D and Chaudhary R 2007 Mechanism of geopolymerization and factors influencing its development: a review Journal of materials science 42 729-46

[21] Hardjito D and Rangan B V 2005 Development and properties of low-calcium fly ash-based geopolymer concrete

[22] Criado M, Fernández-Jiménez A and Palomo A 2007 Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study Microporous and mesoporous materials 106 180-91

[23] Dharmawardhana C, Misra A and Ching W-Y 2014 Quantum mechanical metric for internal cohesion in cement crystals Scientific reports 4 7332

[24] Goracci G, Monasterio M, Jansson H and Cerveny S 2017 Dynamics of nano-confined water in Portland cement-comparison with synthetic CSH gel and other silicate materials Scientific reports 7 8258

[25] Zhang X, Chang W, Zhang T and Ong C K 2000 Nanostructure of calcium silicate hydrate gels in cement paste Journal of the American Ceramic Society 83 2600-4

[26] Steins P, Poulesquen A, Diat O and Frizon F 2012 Structural evolution during geopolymerization from an early age to consolidated material Langmuir 28 8502-10

[27] Ye N, Yang J, Ke X, Zhu J, Li Y, Xiang C, Wang H, Li L and Xiao B 2014 Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment Journal of the American Ceramic Society 97 1652-60

[28] Phair J and Van Deventer J 2002 Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate Industrial & engineering chemistry research 41 4242-51

[29] Memon F A, Nuruddin M F and Shafiq N 2013 Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete International Journal of Minerals, Metallurgy, and Materials 20 205-13

[30] Van Deventer J, Provis J, Duxson P and Lukey G 2007 Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products Journal of Hazardous Materials 139 506-13

[31] Pourakbar S, Huat B B, Asadi A and Fasihnikoutalab M H 2016 Model study of alkali-activated waste binder for soil stabilization International Journal of Geosynthetics and Ground Engineering 2 35

[32] Škvára F, Kopecký L, Nemecek J and Bittnar Z 2006 Microstructure of geopolymer materials based on fly ash Ceramics-Silikaty 50 208-15

[33] Komnitsas K and Zaharaki D 2007 Geopolymerisation: A review and prospects for the minerals industry Minerals engineering 20 1261-77

[34] Toniolo N and Boccaccini A R 2017 Fly ash-based geopolymers containing added silicate waste. A review Ceramics International 43 14545-51

[35] Al Bakri A M, Abdulkareem O A, Rafiza A, Zarina Y, Norazian M and Kamarudin H 2013 Review on Processing of low calcium fly ash geopolymer concrete Australian Journal of Basic and Applied Sciences 7 342-9

[36] Duan P, Yan C and Zhou W 2016 Influence of partial replacement of fly ash by metakaolin on
mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack. *Ceramics International* **42** 3504-17

[37] Kupaei R H, Alengaram U J and Jumaat M Z 2014 The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. *The Scientific World Journal* **2014**

[38] Phetchuay C, Horpibulsuk S, Arulrajah A, Suksiripattanapong C and Udomchai A 2016 Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. *Applied Clay Science* **127** 134-42

[39] ASTM 2013 *Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete*: ASTM International

[40] Hassett D J and Heebink L V 2001 Environmental Evaluation for Utilization of Ash in Soil Stabilization. University of North Dakota (US)

[41] Singh B, Laskar A I and Ahmed M A 2016 Investigation on soil-geopolymer with slag, fly ash and their blending. *Arabian Journal for Science and Engineering* **41** 393-400

[42] Palomo A, Gratuczke M and Blanco M 1999 Alkali-activated fly ashes: a cement for the future. *Cement and concrete research* **29** 1323-9

[43] Xu H and Van Deventer J 2000 The geopolymerisation of alumino-silicate minerals. *International journal of mineral processing* **59** 247-66

[44] Kumar S, Kumar R and Mehrotra S 2010 Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. *Journal of materials science* **45** 607-15

[45] Yang T, Yao X, Zhang Z and Wang H 2012 Mechanical property and structure of alkali-activated fly ash and slag blends. *Journal of Sustainable Cement-Based Materials* **1** 167-78

[46] Nematollahi B and Sanjayan J 2014 Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. *Materials & Design* **57** 667-72

[47] Phoo-ngernkham T, Hanjitsuwan S, Damrongwiriyanupap N and Chindaprasirt P 2017 Effect of sodium hydroxide and sodium silicate solutions on strengths of alkali activated high calcium fly ash containing Portland cement. *KSCE Journal of Civil Engineering* **21** 2202-10

[48] Phoo-ngernkham T, Maegawa A, Mishima N, Hatanaka S and Chindaprasirt P 2015 Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. *Construction and Building Materials* **91** 1-8

[49] Cristelo N, Glendinning S, Fernandes L and Pinto A T 2013 Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. *Acta Geotechnica* **8** 395-405

[50] Cristelo N, Glendinning S and Teixeira Pinto A 2011 Deep soft soil improvement by alkaline activation. *Proceedings of the Institution of Civil Engineers-Ground Improvement* **164** 73-82

[51] Rios S, Ramos C, Viana da Fonseca A, Cruz N and Rodrigues C 2017 Mechanical and durability properties of a soil stabilised with an alkali-activated cement. *European Journal of Environmental and Civil Engineering* 1-23

[52] Sukmak P, Sukmak G, Horpibulsuk S, Setkit M, Kassawat S and Arulrajah A 2017 Palm oil fuel ash-soft soil geopolymer for subgrade applications: strength and microstructural evaluation. *Road Materials and Pavement Design* 1-22

[53] Corrêa-Silva M, Araújo N, Cristelo N, Miranda T, Gomes A T and Coelho J 2018 Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications. *Road Materials and Pavement Design* 1-15

[54] Horpibulsuk S, Phetchuay C and Chinkulkijiniwat A 2011 Soil stabilization by calcium carbide residue and fly ash. *Journal of materials in civil engineering* **24** 184-93

[55] Cong M, Longzhu C and Bing C 2014 Analysis of strength development in soft clay stabilized with cement-based stabilizer. *Construction and Building Materials* **71** 354-62

[56] Cristelo N, Glendinning S, Miranda T, Oliveira D and Silva R 2012 Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. *Construction...*
and building materials 36 727-35

[57] Cristelo N, Miranda T, Oliveira D V, Rosa I, Soares E, Coelho P and Fernandes L 2015 Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions Journal of Cleaner Production 102 447-60

[58] Phummiphan I, Horpibulsuk S, Sukmak P, Chinkulkijniwat A, Arulrajah A and Shen S-L 2016 Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer Road Materials and Pavement Design 17 877-91

[59] Kampala A, Horpibulsuk S, Prongmanee N and Chinkulkijniwat A 2013 Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay Journal of Materials in Civil Engineering 26 633-43

[60] Phummiphan I, Horpibulsuk S, Rachan R, Arulrajah A, Shen S-L and Chindaprasirt P 2018 High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material Journal of hazardous materials 341 257-67

[61] Sargent P, Hughes P N, Rouainia M and White M L 2013 The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils Engineering geology 152 96-108

[62] Phetchuay C, Horpibulsuk S, Suksiripattanapong C, Chinkulkijniwat A, Arulrajah A and Disfani M M 2014 Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer Construction and Building Materials 69 285-94

[63] Zhang M, Guo H, El-Korchi T, Zhang G and Tao M 2013 Experimental feasibility study of geopolymer as the next-generation soil stabilizer Construction and Building Materials 47 1468-78

[64] Yi Y, Li C and Liu S 2014 Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay Journal of materials in civil engineering 27 04014146