Objective: To investigate the efficacy and safety of febuxostat on renal function in CKD stage 3 diabetic nephropathy patients. Methods: Patients in our hospital with chronic kidney disease (CKD) stage 3 diabetic nephropathy (DN) complicated by high serum uric acid (360 μmol/L) were recruited. Patients were then divided into treatment group and control group according to the random number table method. All the patients received low purine diet, renin-angiotensin-aldosterone system (RAAS) inhibitors, and adequate routine hypoglycemic treatment. Febuxostat was employed only in the treatment group. The levels of blood uric acid (sUA), serum creatinine (Scr), cystatin C (cys-c), eGFR, 24-hour urine protein quantification, albuminuria, and creatinine ratio (ACR) were evaluated in all patients before and after treatment at 4, 8, 12, and 24 week.

Results: No difference was found before treatment between the two groups. After treatment at 4, 8, 12, and 24 week, the levels of sUA, SCr, cys-c, and eGFR between the two groups were significant different (P<0.05). There was no difference in 24-hour urine protein quantification, albuminuria, and creatinine ratio between two groups before treatment, and significant differences were observed after treatment. Fifty percent of patients from the treatment group achieved the treatment goal with 20 mg febuxostat at 4 weeks. Tubular markers were also decreased with the treatment.

Conclusions: Febuxostat can reduce uric acid and improve renal function effectively in patients with CKD stage 3 diabetic nephropathy, while being well tolerated. However, the conclusion is still uncertain due to the short term of the study.

Keywords: Febuxostat; Renal Insufficiency, Chronic; Diabetic Nephropathies; Hyperuricemia.
Febuxostat em pacientes com nefropatia diabética com DRC3

INTRODUÇÃO

A nefropatia diabética (ND) é a principal causa de insuficiência renal, cuja morbidade ainda é muito alta. De acordo com pesquisas recentes, a nefropatia diabética agora é a causa mais comum de hospitalização na insuficiência renal crônica. Dados de quase 20 anos de pesquisa nos Estados Unidos mostram que a prevalência de doença renal terminal causada por nefropatia diabética não diminui mesmo após o controle das complicações do diabetes, como eventos cardiovasculares e cerebrovasculares. O tratamento da nefropatia diabética ainda é o dilema que o nefrologista enfrenta.

O tratamento do ácido úrico em pacientes com nefropatia diabética é um foco da nefrologia há muito tempo. Inicialmente, há um efeito recíproco entre a elevação do ácido úrico e a nefropatia diabética; em seguida, ocorre um ciclo vicioso, como evidenciado por algumas pesquisas. Investigações epidemiológicas e pesquisas com animais mostram que a hiperuricemia (HUA) representa um risco independente para doença renal crônica em pacientes diabéticos.

O Febuxostat, aprovado pelo FDA dos EUA (Food and Drug Administration) em 2009 e listado como um inibidor seletivo da xantina oxidase, agora é amplamente utilizado em pacientes com gota, como um medicamento redutor de ácido úrico. Comparado com outros medicamentos para baixar o ácido úrico, o febuxostat é menos tóxico para os rins quando usado em pacientes com insuficiência renal. Existem alguns relatos sobre a eficácia e segurança do febuxostat em pacientes com DRC. No entanto, existem muito poucos relatos sobre a eficácia clínica e segurança do febuxostat em pacientes com DM tipo 2 complicados com hiperuricemia. Neste estudo, o febuxostat foi utilizado no tratamento de pacientes com nefropatia diabética por CKD3, a fim de explorar sua eficácia e segurança.

MATERIAIS E MÉTODOS

CRITÉRIOS DE INCLUSÃO, EXCLUSÃO E ALTA

Os critérios de inclusão foram idade de 18 a 70 anos, em consonância com os critérios diagnósticos de ND, de acordo com as diretrizes de prevenção e controle do diabetes mellitus tipo 2 da China (edição 2013), a TFGe varia de 59 a 30 mL/min/1,73m², de acordo com a equação de CKD-EPI de 2012 (equação de Epidemiologia da Doença Renal Crônica (CKD-EPI)): TFGe = 130 × (SCR/0,7) − 0,601 × (Cys C/0,8) − 0,711 × 0,995 age (feminino, SCR > 0,7, Cys C > 0,8), TFGe = 135 × (SCR/0,9) − 0,601 × (Cys C/0,8) − 0,711 × 0,995 age (masculino, SCR > 0,9, Cys C > 0,8), unidades de TFGe, SCR, Cys C são mL/min/1,73m², mg/dL, mg/L, respectivamente), ácido úrico sérico superior a 6 mg/mL (360 μmol/L).

Os critérios de exclusão foram: índice de massa corporal maior que 28 kg/m², histórico de ataques de gota, hbA1c maior que 7%, pressão sistólica maior que 140 mmHg, pressão diastólica maior que 90 mmHg, função hepática anormal, glicemia menor que 3 × 109/L ou/e hemoglobina menor que 80g/L ou/e contagem de plaquetas menor que 100 × 109/L ou/ou elevação de ALT, AST ou bilirrubina para 2 vezes o limite superior normal para 2 semanas durante o uso de febuxostat, aumento da creatinina no sangue superior a 50% nos 3 meses anteriores à inscrição, abuso de álcool e drogas, gravidez, pacientes intolerantes ao desconforto gastrointestinal, complicações graves inexplicáveis e pessoa que não retornou.

AMOSTRA

Foram recrutados 42 pacientes com diabetes tipo 2, com nefropatia diabética e hiperuricemia, hospitalizados no Segundo Hospital Afiliado da Universidade Médica de Wenzhou de janeiro de 2017 a maio de 2018. Os pacientes foram divididos em grupo de tratamento (20 casos) e grupo sem tratamento (22 casos), aleatorizados pelo método da...
tabela de números aleatórios. Não houve diferença significativa na distribuição dos pacientes de acordo com gênero e idade (p> 0,05) (ver Tabela 1). Este estudo foi aprovado pelo Comitê de Ética Médica do hospital, todos os pacientes assinaram o termo de consentimento informado.

TRATAMENTO

Todos os pacientes receberam dieta pobre em purinas, inibidores do RAAS e tratamento hipoglicêmico de rotina. O Febuxostat foi usado em pacientes do grupo de tratamento (Hangzhou Zhu Yangxin Pharmaceutical Co., Ltd., número de permissão: Sinopharm Z19993147, 40 mg por comprimido). A dose inicial foi de 20 mg/d, 1 vez ao dia, aumentando a dose para 40 mg/d 4 semanas depois se o ácido úrico sérico não reduzisse para menos de 6 mg/mL (360 μmol/L). A dose foi aumentada para 60 mg/d em 8 semanas se o ácido úrico sérico ainda estivesse superior a 6 mg/mL (360 μmol/L). A duração do tratamento foi de seis meses e a dose de 60 mg/d foi continuada se o ácido úrico sérico não estivesse dentro da faixa de normalidade. Para pacientes cujo ácido úrico sérico estivesse inferior a 2 mg/dL por 4 semanas, a dose seria reduzida para o nível anterior. Os participantes foram retirados do estudo se o ácido úrico sérico estivesse inferior a 2 mg/dL ao tomar febuxostat na dose de 20 mg/d. O tratamento com redução de ácido úrico não foi utilizado no grupo controle.

MARCADORES E MÉTODOS DE ENSAIO

Os níveis de sUA, SCr, estatina sérica C, excreção de proteína urinária de 24 horas, ACR e TFGe foram avaliados antes e após o tratamento nas 0, 4, 8, 12 e 24 semanas em todos os pacientes. O sangue intravenoso foi coletado e o instrumento bioquímico automático ADVIA2400 (Chemistry System) e o método de quimioluminescência foram utilizados para determinar o sUA e a SCr. O método de turbidez imune aprimorada com látex foi usado para determinar o nível sérico de cistatina C, a proteína na urina foi medida quantitativamente com o método de turbidez por espalhamento imune e a creatinina urinária foi testada pelo método enzimático. A TFGe foi calculada de acordo com a fórmula CKD-EPI 2012 (recomendada pela KDIGO - Doença Renal: Melhorando os Resultados Globais, KDIGO - diretrizes em 2012 e ADA (American Diabetes Association) diretrizes em 2014). Exames de função hepática, lipídios, glicemia e via sanguínea foram realizados às 0, 4, 8, 12 e 24 semanas em todos os pacientes de ambos os grupos. A ocorrência de sintomas foi registrada em todos os pacientes, incluindo coceira na pele, desconforto gastrointestinal, dor nas articulações, dor muscular, anormalidades mentais, erupção cutânea, acidentes cardíacos e cerebrais e outras reações raras de desconforto (consulte o Diagrama S1).

ANÁLISE ESTATÍSTICA

O software SPSS 18.0 foi utilizado para análise estatística; os dados das medidas foram relatados como média ± DP. A diferença entre os dois grupos foi comparada pelo teste-t de duas amostras independentes para variáveis contínuas. Os dados de contagem foram relatados como número ou taxa, e o teste do χ² foi usado para comparação. Usamos o teste de ANOVA de duas vias para medições repetidas para testar as diferenças de TFGe e ácido
úrico entre os dois grupos ao longo de 24 semanas. P <0,05 foi considerado uma diferença estatisticamente significativa.

RESULTADOS

RETORNOS PERDIDOS

Dois pacientes do grupo de tratamento abandonaram o estudo, um com infecção do trato respiratório no primeiro mês após o tratamento e outro com desconforto gastrointestinal (os pesquisadores julgaram que esse sintoma pode estar relacionado a medicamentos terapêuticos); no total, 18 casos completaram o estudo. No grupo sem tratamento, dois pacientes perderam um retorno e, finalmente, vinte casos completaram o estudo.

CONDIÇÕES GERAIS

Não houve diferença estatística em termos de gênero, idade, índice de massa corporal, pressão arterial basal, diabetes mellitus e nefropatia diabética, complicações diabéticas entre os grupos de tratamento e não tratamento (p> 0,05); veja a Tabela 1.

TESTES LABORATORIAIS

Após o tratamento com 20 mg de febuxostat diariamente por 4 semanas, os níveis séricos de ácido úrico de nove pacientes no grupo de tratamento (50%) ficaram abaixo de 360 μmol/L; os níveis séricos de ácido úrico de cinco casos no grupo de tratamento estavam abaixo de 360 μmol/L, com dose adicional de 40 mg de febuxostat diário às 8 semanas. Todos os pacientes atingiram a meta (níveis séricos de ácido úrico abaixo de 360 μmol/L). A dose média de febuxostat foi de 33,4 mg. Não houve diferença significativa nos níveis de sUA, Scr, cys-c, TFGe, proteína urinária de 24 horas e ACR entre os dois grupos antes do tratamento (P> 0,05). No entanto, houve diferenças significativas nesses marcadores entre os grupos nas 4, 8, 12 e 24 semanas após o tratamento (P <0,05). Além disso, esses marcadores foram significativamente diferentes em diferentes momentos no grupo de tratamento (P <0,05), conforme mostrado na Tabela 2, Tabela 3, Figura 1 e Figura 2.

REAÇÕES ADVERSAS

Nenhuma reação adversa ocorreu nos dois grupos, como eventos cardiovasculares, reações alérgicas graves, etc. Os resultados estão mostrados na Tabela 4.

DISCUSSÃO

O AU sérico elevado é um risco importante no desenvolvimento de ND, o que foi confirmado por uma pesquisa que mostra que o risco de diminuição anual da TFGe de 3 ml/min/1/ (1,73m²)-1 aumentou

| Tabela 2. NÍVEIS DE sUA, SCR, CYS-C, TFGE ANTES E APÓS O TRATAMENTO (MÉDIA ± DP). |
|--|--------|--------|--------|--------|
Grupo	n	Período	sUA (μmol/L)	SCR (μmol/L)	cys-c (μmol/L)	TFGe (mL/min)
Grupo tratamento	18	Antes do tratamento	447,5±83,6	172,9±20,1	1,98±0,21	45,3±10,6
		Tratamento por quatro semanas	370,5±72,1* ▲	141,1±24,9* ▲	1,35±0,16* ▲	52,8±11,5* ▲
		Oito semanas	334,1±49,8* ▲	139,8±35,1* ▲	1,28±0,13* ▲	50,9±13,7* ▲
		Doze semanas	297,4±51,1* ▲	132,9±27,8* ▲	1,30±0,22* ▲	53,1±10,2* ▲
		Vinte e quatro semanas	301,2±46,9* ▲	148,1±30,2* ▲	1,33±0,33* ▲	53,8±9,6* ▲
Grupo Controle	20	Antes do tratamento	423,4±51,2	157,7±38,3	1,55±0,291	46,8±9,0
		Tratamento por quatro semanas	419,1±60,1	163,2±35,9	1,48±0,40	48,2±10,4
		Oito semanas	427,8±46,8	153,3±29,8	1,53±0,33	45,6±11,7
		Doze semanas	397,4±74,2	169,9±40,3	1,61±0,29	47,2±9,8
		Vinte e quatro semanas	421,1±55,7	170,6±51,9	1,70±0,52	42,7±13,4

*Diferença significativa entre o Grupo Tratamento e o Grupo Controle (P<0,05)।
▲diferenças significativas antes e após o tratamento no Grupo Tratamento (P<0,05).

Braz. J. Nephrol. (J. Bras. Nefrol.) 2020. Ahead of print

Tabela 3. Comparação de proteína na urina de 24 horas, ACR, N-acetil-β-D-(NAG)/creatinina (Cr), β2 globulina urinária (B2-MG)/creatinina, α1 globulina urinária (A1-MG)/creatinina entre os grupos tratamento e controle antes e após o tratamento (média ± DP).

Período	Grupo	Proteína na urina de 24h (g/L)	ACR (mg/mmol)	NAG/Cr urinária (U/mmol)	β2-MG/Cr urinária (mg/mmol)	α1-MG/Cr urinária (mg/mmol)
Antes do	Tratamento	4,15±2,58	439,62±79,10	3,75±0,92	159,32±61,25	4,26±0,54
	Controle	4,02±2,67	441,06±78,52	3,54±0,83	161,19±62,01	4,31±0,52
Tratamento	Tratamento	3,17±2,65*Δ	331,56±76,45*Δ	2,71±0,89*Δ	131,12±60,93*Δ	3,18±0,49*Δ
	Controle	4,10±2,58	441,45±78,68	3,59±0,82	161,42±62,19	4,37±0,50
Oito semanas	Tratamento	2,85±0,89*Δ	201,06±78,82*Δ	1,65±0,90*Δ	98,22±60,41*Δ	1,97±0,51*Δ
	Controle	4,21±2,66	442,96±79,04	3,63±1,01	162,05±61,97	4,45±0,53
Doze semanas	Tratamento	2,80±1,59*Δ	191,06±92,12*Δ	1,71±0,46*Δ	106,01±80,01*Δ	1,83±0,61*Δ
	Controle	4,81±2,09	501,32±79,65	3,90±1,81	222,05±49,31	5,12±1,09
Vinte e	Tratamento	3,07±1,21*Δ	191,06±92,12*Δ	2,32±1,06*Δ	126,01±60,98*Δ	2,08±0,30*Δ
	Controle	4,26±2,45	491,65±70,99	4,58±1,11	282,71±99,43	4,92±2,41

* Diferença significativa entre os grupos Tratamento e Controle (P < 0,05); Δ Diferenças significativas antes e após o tratamento no grupo Tratamento (P < 0,05).

Figura 1. Mudanças do ácido úrico em ambos os grupos ao longo do tempo.

Figura 2. Mudanças na TFGe em ambos os grupos ao longo do tempo.

14% para cada elevação de ácido úrico sérico em 88,4 μmol/L. Pacientes com gota com DRC devem ser tratados com medicamentos para redução de ácido úrico 4 a 8 semanas após o controle do ataque agudo de gota, até que o ácido úrico seja inferior a 6 mg/dL (360 μmol/L), a menos que ocorram reações intolerantes ou adversas. O Febuxostat, outro tipo de medicamento que pode inibir a produção de ácido úrico, foi recomendado como medicamento de primeira linha pelas diretrizes da ACR (American College of Rheumatology) em 2012. Vários estudos demonstraram que a insuficiência renal é um fator de risco para reações alérgicas cutâneas graves induzidas por allopurinol, especialmente na população chinesa Han. Portanto, pacientes com nefropatia diabética com nível sérico de ácido úrico superior a 360 μmol/L foram selecionados neste experimento.

Nos últimos anos, estudos (incluindo estudos clínicos) mostraram que o ácido úrico alto pode causar danos renais, hipertensão e doenças cardiovasculares, o que nos leva a tratar pacientes com alto teor de ácido úrico com DRC para retardar o progresso da função renal. No entanto, ainda esperamos melhores pesquisas com amostras maiores, maior qualidade e maior duração para obter evidências mais conclusivas. Em nossa pesquisa, confirmamos que o febuxostat pode reduzir o nível de ácido úrico sérico em todos os pacientes com nefropatia diabética por CKD3, e o valor alvo do ácido úrico sérico pode ser facilmente alcançado, sem eventos adversos graves. A pesquisa confirmou a eficácia e segurança do febuxostat em pacientes com nefropatia diabética por CKD3.
A terapia de redução de ácido úrico pode retardar a progressão da função renal em pacientes com DRC. O ácido úrico em pacientes e animais experimentais pode levar diretamente a lesões microvasculares nas arteríolas aferentes, causando danos às células endoteliais vasculares, acelerando a progressão da ND. O ácido úrico pode aumentar a expressão da renina e alterar a hemodinâmica da filtração glomerular através da angiotensina II, induzindo hipertensão sistêmica e hipertensão glomerular, bem como lesão tubular intersticial renal, resultando finalmente em esclerose glomerular e fibrose intersticial. Uma pesquisa recente de Hong mostrou que a hiperuricemia pode induzir sobrecarga mitocondrial de cálcio mediada pelo trocador Na+/Ca2+, que pode causar disfunção endotelial. A hiperuricemia também pode promover a secreção de citocinas como fator de necrose tumoral alfa, fator de crescimento de transformação β1 e quimiocinas de células mononucleares-1 etc., resultando em uma reação em cascata inflamatória, que por sua vez causa danos renais. Nas situações de diabetes mellitus, vários distúrbios transferenciais do substrato metabólico levam à síntese anormal de ATP, que afetam a função normal das células epiteliais tubulares renais e, em seguida, ocorrem lesões tubulares renais e fibrose. Nossos resultados mostram que os níveis de SCR, Cys-C e TFGe foram significativamente diferentes no grupo de tratamento após 4, 8, 12 e 24 semanas de tratamento, e comparados aos de antes do tratamento, que mostraram que a redução do ácido úrico poderia melhorar função renal e retardar o progresso da insuficiência renal em pacientes com nefropatia diabética na DRC estágio 3.

Através do tratamento de redução de ácido úrico, os níveis de α1-MG, NAG urinário e β2-MG na urina, que podem refletir a lesão tubular renal, foram todos reduzidos. Sugere-se que, reduzindo a liberação de citocinas e bloqueando o efeito da reação inflamatória em cascata, a redução do ácido úrico possa mitigar a disfunção mitocondrial dos túbulos renais, causada por hiperglycemia e alto nível de ácido úrico. Mais experimentos clínicos e animais são necessários para confirmar esta hipótese. Em nosso experimento, observou-se que, com a redução do ácido úrico, os níveis de α1-MG, NAG, β2-MG e β2-MG foram revertidos com o febuxostat, sugerindo que o dano tubular renal pode ser aliviado com a diminuição do ácido úrico.

A albuminúria pode prever o grau de disfunção renal na ND, que é de grande importância para monitorar o efeito curativo da nefropatia diabética. Annayya R mostrou que a quantidade de proteína urinária em pacientes com DM2 estava positivamente correlacionada com o ácido úrico sérico em seu estudo. Todos os pacientes apresentaram proteinúria neste experimento, e não houve diferença significativa nas proteínas urinárias entre os dois grupos antes do tratamento. Após o tratamento com redução de ácido úrico, a quantidade de proteinúria diminuiu significativamente. Esses resultados indicaram que a redução do ácido úrico pode diminuir a proteinúria em pacientes com nefropatia diabética estágio 3 da DRC, protegendo a função renal, o que é consistente com estudos anteriores.

Atualmente, as diretrizes da ACR, EULAR (Liga Europeia Contra Reumatismo) e APLAR (Liga Ásia-Pacífico de Associações de Reumatologia) não recomendam a redução de ácido úrico em pacientes com hiperuricemia assintomática devido à falta de estudos clínicos randomizados prospectivos. É controverso se é necessário reduzir o ácido úrico em pacientes com hiperuricemia assintomática; o tempo exato para tratá-lo ou o medicamento exato a ser usado são desconhecidos. Nossos resultados corroboram o tratamento agressivo se o ácido úrico sérico estiver superior a 360 μmol/L. No entanto, devido ao tamanho limitado da amostra, tempo curto de observação, único centro de pesquisa e não ter um grupo placebo, nossos conluios não são tão confiáveis.

Tabela 4. Comparação da reação adversa nos grupos tratamento e controle. Os dados são relatados como n de casos (%).

Grup	N	Leucopenia	Lesão hepática	Náusea	Infecção	Eritema	Coceira	Ataque agudo de gota
Tratamento	18	1(5)	2(10)	2(10)	2(10)	1(5)	3(15)	0
Controle	20	2(10)	3(15)	1(5)	2(10)	1(5)	1(5)	0

P> 0.05 entre os grupos.
CONCLUSÃO
O Febuxostat pode reduzir com segurança o ácido úrico e melhorar a função renal efetivamente em pacientes com nefropatia diabética em estágio 3 da DRC. É necessária uma pesquisa clínica multicêntrica com um grande tamanho de amostra para confirmar ainda mais os resultados.

AGRADECIMENTOS
Os autores agradecem a todos os pacientes por sua participação nesta pesquisa. O estudo foi patrocinado pelo Segundo Hospital Afiliado da Universidade Médica de Wenzhou.

CONTRIBUIÇÃO DOS AUTORES
Huang Wen coletou amostras, realizou processamento de dados e estatísticas. Zhu Yongling realizou o acompanhamento e a coleta de dados dos pacientes. Zheng Shuying acompanhou os pacientes. Wang Jiali contribuiu para o manuscrito. Zhao Yanling projetou a pesquisa e enviou o artigo. Todos os autores concordaram com a interpretação dos dados e os resultados. Todos os autores revisaram e aprovaram o manuscrito.

CONFLITO DE INTERESSE
Os autores informam que não há conflitos de interesse.

MATERIAL SUPLEMENTAR
O seguinte material on-line está disponível para este artigo:

Diagrama S1: Efeito do febuxostat na função renal em pacientes com nefropatia diabética por DRC 3.

REFERÊNCIAS
1. Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016 Sep;375(9):905-6.
2. Gregg EW, Li Y, Wang J, Burrows NR, Rolka D, Williams DE, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014 Jul;371(16):1514-23.
3. Roncal CA, Mu W, Croker B, Reungjui S, Ouyang X, Tabah-Fisch I, et al. Effect of elevated serum uric acid on cispimidine-induced acute renal failure. Am J Physiol Renal Physiol. 2007 Jan;292(1):F116-22.
4. Tao M, Li X, Ma X, Shi Y, Zhang Y, Gu H, et al. Relationship between serum uric acid and clustering of cardiovascular disease risk factors and renal disorders among Shanghai population: a multicentre and cross-sectional study. BMJ Open. 2019 Mar;9(3):e025433.
5. Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. Febuxostat versus placebo randomized controlled trial regarding reduced renal function in patients with hyperuricemia complicated by chronic kidney disease stage 3. 2018 Dec;72(6):798-810.
6. Zeng XX, Tang Y, Hu K, Zhou X, Wang J, Zhu L, et al. Efficacy of febuxostat in hyperuricemic patients with mild-to-moderate chronic kidney disease: a meta-analysis of randomized clinical trials: a PRISMA-compliant article. Medicine (Baltimore). 2018 Mar;97(13):e0161.
7. Smolen LJ, Gahnjc, Mitri G, Shiozawa A. Febuxostat in the management of gout: a cost effectiveness analysis. J Med Econ. 2016;19(3):265-76.
8. Saag KG, Whelton A, Becker MA, MacDonald P, Hunt B, Gunawardhana L. Impact of febuxostat on renal function in gout patients with moderate-to-severe renal impairment. Arthritis Rheumatol. 2016 Aug;68(8):2035-43.
9. Macias N, Goicoechea M, Vinuesa MS, Verdalles U, Liu J. Urate reduction and renal preservation: what is the evidence?. Curr Rheumatol Rep. 2013 Dec;15(12):386.
10. Abdellatif AA, Elkhalili N. Management of gouty arthritis in patients with chronic kidney disease. Am J Ther. 2014 Nov/Dec;21(6):523-34.
11. Sun L, Xie P, Wada J, Kashihara N, Liu FY, Zhao Y, et al. Raplh GTPase ameliorates glucose-induced mitochondrial dysfunction. J Am Soc Nephrol. 2008 Dec;19(12):2293-301.
12. Ran J, Ma J, Liu Y, Tan R, Liu H, Lao G. Low protein diet inhibits uric acid synthesis and attenuates renal damage in streptozotocin-induced diabetic rats. J Diabetes Res. 2014;2014:287536. DOI: https://doi.org/10.1155/2014/287536.
13. Feig DI, Madere M, Jalal DI, Sánchez-Lozada G, Johnson RJ. Uric acid and the origins of hypertension. J Pediatr. 2013;162(5):896-902. DOI: https://doi.org/10.1016/j. jpeds.2012.12.078.
14. Johnson RJ, Lanaspa MA, Sánchez-Lozada G, Rodriguez-Iiturbe B. The discovery of hypertension: evolving views on the mh of the kidneys, and current hot topics. Am J Physiol Renal Physiol. 2015 Feb;308(3):F167-78. DOI: https://doi. org/10.1152/ajprenal.00503.2014.
15. Hong Q, Qi K, Feng Z, Huang Z, Cui S, Wang L, et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium. 2012 May;51(5):402-10. DOI: https://doi.org/10.1016/j.ceca.2012.01.003.
16. Kushiyama A, Okubo H, Sakoda H, Kikuchi T, Fujisiro M, Sato H, et al. Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arterioscler Thromb Vasc Biol. 2012;32(2):291-8. DOI: https://doi.org/10.1161/ATVBAHA.111.234559.
17. Nomura J, Busso N, Mitri G, Shiozawa A. Febuxostat in the management of gout: a cost effectiveness analysis. J Med Econ. 2016;19(3):265-76.
18. Aroor AR, Jia G, Habibi J, Sun Z, Ramirez-Perez FL, Bady B, et al. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metabolism. 2017 Sep;74:32-40.