Geometric Memory Management

Wouter Kuijper

February 18, 2016

DRAFT VERSION

Abstract

In this report we discuss the concepts of geometric memory alignment, geometric memory allocation and geometric memory mapping. We introduce block trees as an efficient data structure for representing geometrically aligned block allocation states. We introduce niche maps as an efficient means to find the right place to allocate a chunk of a given size whilst maintaining good packing and avoiding fragmentation. We introduce ledging as a process to deal with chunk sizes that are not a power of two. We discuss using block trees for memory mapping in the context of virtual memory management. We show how ledging can also be applied at the level of virtual memory in order to create fixed size virtual memory spaces. Finally we discuss implementation of both geometric memory allocation as well as geometric memory mapping in hardware.

1 Geometric Memory Allocation

Traditional memory allocation schemes, with the exception of some clean implementations of the buddy block allocation scheme [1], typically align slots up to eight, sometimes sixteen bytes.

This pervasive design choice leads to what we will refer to as the misaligned slots problem, which in turn leads to a myriad of fragmentation problems down the road.

The misaligned slot problem occurs when two consecutive slots of size 2^n are being coalesced into a bigger slot of size 2^{n+1} on an address that is not a multiple of 2^{n+1}.

A simple way to avoid these problems altogether is to: *align slots to their own size*. If we follow the latter alignment principle we end up with a geometric allocation scheme.

To see why the misaligned slot problem leads to fragmentation, and to see how a geometric allocation scheme remedies this, consider the following example.

Say for sake of simplicity we have a memory of 16 bytes, and we are aligning to words of 2 bytes each. We initially consider the case of just two *size classes*. We have large slots of 2 words (4 bytes) in size, and small slots of 1 word (2 bytes) in size. Now say we have two allocated large slots at the start and at the end of the memory, and four allocated small slots in between:
Next we consider what happens when two of the smaller slots in the center
get freed:

Most non-geometric allocators would coalesce these two freed, small slots
into one large slot:

Next we consider what happens when we subsequently receive a request
for a large slot and we allocate it in the center:

We end up with a misaligned large slot adorned by two smaller slots. The
center slot is misaligned because it does not occur at an address that is a
multiple of its own size, i.e.: 6 is not a multiple of 4.

Next we consider the resulting state after the two remaining smaller
slots get freed:

We have reached a fragmented state. Both of the small, free slots have
become *squashed* between large, allocated slots. Because the free slots are
separated from each other we have no chance to coalesce them.

One might say this is just a temporary situation; after all we need
merely wait for the center large slot to become freed and thereby
the small slots to become *unsquashed*. However profiling most memory loads
shows that the residence time of a slot is proportional to its size. Hence
it is not hard to see this problem of fragmentation becomes systemic.

Let us revisit Step 2, now using a geometric scheme. In order not to
confuse terminology, in the geometric case we speak of *blocks* instead of
slots. In this paper, blocks are *almost* the same concept as slots yet they
are subtly different in the sense that they satisfy the geometric alignment
criterion, that is, they start at an address that is a multiple of their size.

Because address 6 is not a multiple of 4 we will *not* coalesce into a large
block. This is the central trade-off that a geometric memory allocator
makes: *it occasionally foregoes capacity in larger size classes for the sake
of preventing fragmentation*.

If next the rightmost of the small blocks frees up we end up in the
following situation:

We see that address 8 is a multiple of 4 and therefore we may coalesce the
rightmost two smaller blocks into one large block:

If next also the leftmost of the small blocks frees up, we see that we
can coalesce again:
This scheme scales in the obvious way. In particular if the left large block frees up we may introduce a big block:

|------------------|------------------|------------------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |

And if now the right large block frees up we may introduce a huge block spanning the entire memory:

|--|------------------|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |

With this example we have already seen the essence of geometric memory allocation, which is really quite simple. The rest of this report section addresses the following implementation challenges:

1. Dealing with chunk sizes that are not a power of two.
2. Efficiently representing allocated blocks in memory.
3. Finding the right block for a requested allocation.

For solving the first problem we introduce a process called ledging in Section 1.1. For solving the second problem we introduce a data structure called a block tree in Section 1.2. For solving the third problem we extend block trees with niche maps in Section 1.3.

1.1 Ledging

If a geometric allocator would be limited to blocks of size 2^n it would be severely limited in utility. There are only a small number of cases where applications request buffers that are guaranteed to be of exponential size. Most of them involve dynamic arrays, hash tables and the like. This is assuming we do not use a mapping layer as explained in the next section in which case it is indeed sufficient for the underlying allocation layer to only provide blocks sized to powers of two.

For other use cases, however, the allocator must be able to accommodate arbitrarily sized chunks. Of course we could stuff any given chunk in its smallest enclosing power of two. However, in the worst case, a chunk size of $2^n + 1$, this would give an asymptotic overhead of 100% as n grows larger. Clearly that would not be acceptable.

Therefore, rather than taking the smallest enclosing power of two, we start by allocating the largest power of two that is smaller than the chunk size and we work from there, making up for the excess using a partial geometric series. The important property of the geometric series is that this can be done exponentially quickly. In particular this will incur only constant, worst-case, overhead for a given fixed pointer-width.

Since we are able to represent blocks to arbitrary precision (byte-level) we are, in principle, able to allocate chunks of arbitrary size to byte precision and allocate the rest of the space to other chunks. In practice we will always work with a minimal chunk size, since byte sized chunks simply do not constitute a useful size class. For the purpose of exposition, however, we will continue to show how blocks can be represented to the level of individual bytes.

1.2 Block Trees

As an example of a block tree consider:
As an example of a **sparse** block tree consider:

![Sparse Block Tree Diagram](image)

In the sparse block tree, the dashed lines indicate missing siblings, these correspond exactly to the free blocks called *niches*.

1.3 Niche Maps

As an example of a sparse block tree with niche maps consider:

![Niche Map Diagram](image)

A niche map is a vector of bounded precision, truncating counters that denote lower bounds on the number of niches present in the levels under the level of the current node.

For example, the single node on level 1 is annotated with a single bit indicating the presence or absence of level 0 niche(s), in this case the value is [0] because the entire level 1 block is allocated (and hence there are no free level 0 niches below it). As another example the second node on level 2 is annotated with two counters indicating the presence of level 1 and level 0 niches respectively, in this case the value is [1, 0] since there are level 1 niches but no level 0 niches. Finally, the root is annotated with four counters indicating the presence of a level 3, 2, 1 and 0 niche respectively, in this case the value is [0, 1, 1, 0] because, in the entire tree, there are only niches in level 2 and level 1.

Niche maps combine through simple truncating addition operations. To get the niche map for a parent simply take the point wise truncated sum of the niche maps of its children, and prepend a 1 iff there is a missing child which implies the presence of a niche (as indicated by the dashed lines).
As a special case: if we lower the precision of all counters to a single bit, niche maps become bitmaps, and combining them reduces to a simple bitwise OR operation.

1.4 Best Fit Placement Strategy

Using niche maps to guide us, we now have a very simple algorithm to find a niche for a given chunk-size.

First, we look at the niche map for the root node, this gives us a best fit niche (smallest niche that is larger than the requested chunk-size). Or, in case there is no niche that is large enough, we know that we cannot allocate the chunk and we give an out-of-memory error back.

Next, we traverse the tree looking for the niche using the niche maps to guide us going left or right at each binary junction. We are guaranteed to eventually land on some niche of the desired size. We can then proceed to allocate the chunk using the ledging process.

Finally we traverse back over the tree retracing our steps all the way back up to the root, updating the niche maps as we go.

Note that the above algorithm is non-deterministic: we can have ties where it is both possible to go left or right. This provides a lot of engineering freedom for coming up with particular placement strategies which is useful for obtaining certain wear leveling or wear focusing characteristics.

2 Geometric Virtual Memory

In the previous section we addressed geometric memory allocation in the direct sense. In this section we describe how to virtualize memory using a geometric approach.

Virtual memory management decouples application programs from the physical memory. There is a host of reasons why this is important, we will not treat those in this report.

Virtual memory management, in most current implementations, is done through some form of paging. That is: whenever a read or a write occurs somewhere in the virtual memory space a physical memory page is allocated just in time to “back” this location.

The problem with constant page sizes is that this scheme does not scale very elastically. If we want to have multiple, very lightweight, virtualized address spaces, and if we want to be able to “tolerate holes” in the real memory efficiently, it is desirable to have a more lightweight, flexible scheme. Using the geometric alignment principle it is not very hard to come up with an alternative, geometric virtual memory management solution that provides just these characteristics.

The main idea is that, instead of constant page sizes, we allow blocks to be remapped at exponentially differing scales using, again, block trees.

We can then have various population strategies for backing accesses that the application makes to the virtual address space. In particular it is possible to emulate a fixed size paging scheme, it is also possible to provide a geometric sequence of blocks that grows exponentially, doubling in size whenever an “adjacent” (also the notion of adjacency here should be understood in an exponentially widening sense, for details confer to the example below) memory location is written to or read from.

The latter scheme has the advantage that it starts out very small and scales up rapidly avoiding quadratic scaling overhead typically seen in
linear scaling approaches.

Another approach would be to have dedicated virtual spaces even for
allocations of fixed size buffers. This has the potential to improve security
by memory isolation. The extreme case would be to have an object system
where each and every object in memory receives its own virtual space.
This is possible with block trees by virtue of them being significantly
more lightweight than table based approaches.

2.1 Using Block Trees for Memory Mapping

The resulting data structure is again a sparse annotated block tree, this
time representing the virtual address space. The nodes in this virtual
block tree are then annotated with offsets into the real memory that backs
these blocks (we will not show these blocks below just indicate with a
'b' that a block is backed by some chunk of allocated real memory). It is
possible, although not necessary, to use also a geometric allocation scheme
for managing the real memory that backs the virtual memory.

As an example of this consider the following. Say we have again for
purposes of exposition, a virtual memory space consisting of just 16 ad-
dresses. Initially this space is pristine in the sense that no single address
has been touched and therefore no real memory has been allocated to back
it. The block tree consist of a single niche:

```
Level 4: ----------------------------------------------------------------------
  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
```

Next assume, again for purpose of exposition, that rather than accessing
the lowest or highest addresses in the virtual space first, we have an
application that accesses the virtual memory space dead center first. So
let us assume the application accesses memory location 8. Because we do
not know yet whether this memory access will expand into a large buffer
or remain limited to only a handful of bytes it would be heavy handed to
immediately allocate a large portion of real memory to this first access.
Typically some minimal block size will apply. However for the purpose of
this example we will use a minimal block size of just a single byte. This
results in the following virtual block tree:

```
Level 4: -------0-----
       :  0 1 2 3 4 5 6 7 8 9 A B C D E F |
```

Note that the size of this sparse block tree is still linear in the pointer
width. Because we need not determine our own allocations (that is entirely
up to the application that is using the virtualized memory space, not to
the virtual memory manager), rather than keeping a full niche map we
have to keep only a single bit of information per tree node and that is
the full bit. The full bit is set iff the block is fully backed by physical
memory. Note that instead of 'x' for allocated memory we write 'b' for
backed virtual memory locations. Now let us consider what happens if
the following access occurs in location 9:
As expected we have now backed also location 9. As a result the level 1 block from 8 to 9 is also fully backed. Now let us consider what happens if the following access occurs in location B:

Because of the full bit at level 1 rather than traversing deeper into the sub block A-B we consider the access to location B to be adjacent (enough) to merit another doubling of the backed block.

2.2 Fixed Size Allocations using Ledging

Doubling is a useful technique to deal with grow able spaces that cannot be a-priori bounded. For fixed size buffers another population strategy is called for. In particular we may apply ledging also in the virtual memory case.

As an example of this consider an application requesting a virtual space of exactly 11 bytes. Since it is a fixed size buffer we can pre-populate this space as follows:

Note that, in this way, we can populate an arbitrary fixed size space with only logarithmic overhead.

For a fixed size space, writing beyond the last address should trigger a trap instead of allocating more blocks to back such an out-of-bounds access. This prevents all sorts of problems with buffer overflow.
3 Implementation in Hardware

It is possible to implement both real memory allocation as well as virtual memory mapping in hardware. One way to do this would be to take a dedicated processor and have it run all the code necessary to do all the tree operations and bookkeeping on both the real memory allocation tree (rtree) as well as the virtual memory mapping tree (vtree). This would work although it would incur rather high latency and achieve only low throughput in terms of the number of allocations/deallocations that it can process per time unit.

A more efficient design would be to pipeline the operations on both the rtree as well as the vtree. Note that the pipeline of the vtree then depends on the pipeline of the rtree as the vtree sometimes needs to allocate real memory blocks for backing virtual address blocks.

The resulting high level architectural diagram for the rtree would then look as follows:

```
  +-------------+ +--------------+ +-------+
  | lvl 0 rtree |<-->| lvl 0 rnodes |<-->| |
  +-------------+ +--------------+ | main- |
  \ / \ \ / \ | mem. |
  +-------------+ +--------------+ | L2 |
  \ / \ / \ / \ | cache |
  +-------------+ +--------------+ | node |
  \ / \ / \ / \ | for |
  +-------------+ +--------------+ | store |
  \ / \ / \ / \ | req. resp. |
```

All operations on the rtree can be formulated inductively with respect to the height of the tree. In addition the decision logic for level \(m + 1 \) refers only to nodes on level \(m + 1 \) or on level \(m \). When care is taken to separate the node storage per level it therefore becomes possible to pipeline mutations on the tree state.

Care should be taken to maintain the invariant that the niche maps always represent a valid under approximation of the free number of niches. We propose a reservation system where requests reserve niches as they descend into the pipeline, and update the niche maps and lift their reservations as they come out of the pipeline. This way, requests are never denied because the niche maps led them to a niche that is, in fact, already taken by a request that just pre-empted it.

The types of request that we can push into the pipeline are:

1. request: allocate a block of level \(l \), response: the base pointer of the allocated block \(p \)
2. request: de-allocate the block with base address \(p \), response: none

In order to improve the independence and optimize the storage for each level of the pipeline we may give each level its own independent node store, or node cache. Note that the operations of level \(m + 1 \leq n \) may involve also nodes from level \(m \) (to reduce clutter these links are not shown in the diagram). The important thing to note is that the decision logic on level \(m + 1 \) does not require access to levels below \(m \) or above \(m + 1 \).
For the vtree a very similar design is possible, although each level of the vtree pipeline would depend on the rtree pipeline for the allocation of backing blocks. The resulting high level architectural diagram for the vtree would look as follows:

```
+-------+ +-------------+ +-------------+ +--------------+ +-------+
| |<-->| lvl 0 queue |<-->| lvl 0 vtree |<-->| lvl 0 vnodes |<-->||
| real- | ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ ←→ <-
```

Note that by interposing queues between the real memory pipeline and the vtree pipeline we can prevent (reduce) stalling of the vtree pipeline waiting on a response of the rtree pipeline by pre-allocating buffers for the relevant levels. (At some point the highest levels closest and equal to \(n \) should not be pre-allocated as this would cost too much real memory.)

Amongst the types of requests that we can push into the pipeline are:

1. request: create a new virtual space with a certain population strategy \(s \) and a certain size \(x \), response: a logical handle \(h \) to the newly created virtual space
2. request: destroy virtual space \(h \), response: none
3. request: translate a virtual address \((h, y)\) with handle \(h \) and offset \(y \), response: a base pointer \(p \) and the level \(l \) of the enclosing block or a failure code when \(y \) is out of bounds.

For the last operation we also obtain the level of the leaf in the vtree that contained the base pointer \(p \). This is useful information for prefetching neighboring cache lines in order to speed up future accesses.

4 Conclusion

In this report we have discussed the concepts of geometric memory alignment, geometric memory allocation and geometric memory mapping. We have introduced block trees as an efficient data structure for representing geometrically aligned block allocation states. We have introduced niche maps as an efficient means to find the right place to allocate a chunk of a given size whilst maintaining good packing and avoiding fragmentation. We have introduced ledging as a process to deal with chunk sizes that are not a power of two. We have discussed the use of block trees for memory mapping in the context of virtual memory management. We have shown how ledging can also be applied at the level of virtual memory in order to create fixed size virtual memory spaces. Finally we have discussed implementation of both geometric memory allocation as well as geometric memory mapping in hardware.

In future versions of this report we plan to validate this design further and add more references to related work and the state of the art.
References

[1] D. E. Knuth. *Art of Computer Programming Volume 1: Fundamental Algorithms*. Addison-Wesley Publishing Company, 1972.