Determination of the mean aerosol residence times in the atmosphere and additional 210Po input on the base of simultaneous determination of 7Be, 22Na, 210Pb, 210Bi and 210Po in urban air

Magdalena Długosz-Lisiecka • Henryk Bem

Received: 2 January 2012 / Published online: 29 February 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The significant differences in the activities of 210Pb, 210Bi, 210Po and cosmogenic 7Be and 22Na radionuclides in the urban aerosol samples collected in the summers 2010 and 2011 in the Lodz city of Poland were observed. Simultaneous measurement of these radionuclides, after a simple modification of the one compartment model, allows us to calculate both: the corrected aerosol residence times in the troposphere ($1 \div 25$ days) and in the lower stratosphere ($103 \div 205$ days). The relative input of the additional sources (beside of the 222Rn decay in the air) to the total activity concentrations of 210Pb, 210Bi and 210Po radionuclides in the urban air, plays a substantial role (up to 97% of the total activity) only in the case of 210Po.

Keywords Radionuclides • Aerosols • Residence time

Introduction

Gaseous 222Rn escaping from the soil produces in the lower atmosphere a series of longer lived products: 210Pb (22.3 years), 210Bi (5 days) and 210Po (138 days). Since atmospheric aerosols can be transported over long distances, 210Pb and its progeny concentrations in a particular site may not be connected strictly with the radium activity in adjacent soils but also on meteorological conditions such as: temperature, wet deposition (rainfall) and wind intensity. These radionuclides are readily absorbed on the surface of aerosol particles, and whereas the activity of 210Pb does not change too much, the activities of 210Bi and 210Po grow during the residence time of aerosol particles in the air. Therefore, the activity ratios of 210Bi/210Pb and 210Po/210Pb can be useful for tracing the fate of an aerosol and the estimation of its solid particles' lifetimes (residence time) [1].

The simple solution of the 210Pb, 210Bi and 210Po activities relationships assume that the only source of the 210Bi and 210Po in the lower atmosphere (troposphere) is decay 210Pb from the 222Rn escaping from soil [2]. Commonly used formulas for the aerosol residence time calculation are based on measurement of the isotope ratios of 210Po/210Pb and 210Bi/210Pb and application of the steady state equilibrium in one compartment model [3–5]. In this model, the decay of 222Rn nuclide in the air is recognized as an only source of airborne 210Pb and consequently its daughters: 210Bi and 210Po (the air is considered as well-mixed reservoir). This assumption does not take into account the possibility of additional emission of these radionuclides from other sources such as re-suspension of soil in summer, the combustion of coal in the winter, incursions of stratospheric air or emission from anthropogenic sources [6].

However, in general, the residence times determined from the 210Po/210Pb ratios (2–240 days) are usually much longer of those determined from 210Bi/210Pb ratios (2–25 days) [7]. It indicates that some additional inputs of 210Po into troposphere must exist. The evidence of the complementary 210Po source from the lower stratosphere input (after volcanic eruption) [8] or soil dust [9] as well as from anthropogenic activities (coal combustion) was also recently documented [10–13]. If these additional 210Po sources are taken into account, from comparison of two activities ratio: 210Bi/210Pb and 210Po/210Pb the so called corrected residence time T_{RC} can be calculated [9].

M. Długosz-Lisiecka (✉) • H. Bem
Institute of Applied Radiation Chemistry, Technical University of Lodz, Żeromskiego Street 116, 90-924 Lodz, Poland
e-mail: mdlugosz@mitr.p.lodz.pl

J Radioanal Nucl Chem (2012) 293:135–140
DOI 10.1007/s10967-012-1690-5
Very recently [14] published the mathematical solutions for true dependence of $^{210}\text{Po}/^{210}\text{Pb}$ and $^{210}\text{Bi}/^{210}\text{Pb}$ aerosol particles with the additional non-equilibrated ^{210}Bi and ^{210}Po radionuclide inputs. The problem ^{210}Po sources and its ratio to the parent nuclide in the atmosphere is more complex, since after volcanic eruption significant amounts of ^{210}Po activities also ejected to the stratosphere [8]. The residence time of the solid particles in the stratosphere is usually remarkably longer than those in the lower layers of troposphere where they are finally transported [15]. Moreover, after interactions of the cosmic radiation with nitrogen and oxygen molecules (in the upper troposphere border) two cosmogenic radionuclides: ^{7}Be and ^{22}Na, are produced. These radionuclides together with ^{210}Pb, ^{210}Bi and ^{210}Po can be also attached to solid particles moving from stratosphere to troposphere. Therefore, ^{7}Be and ^{22}Na can also serve as the additional markers to assess the flow of dust into the lower atmosphere [5].

The instrumental γ ray-spectrometry of the collected dust allows beside of ^{210}Pb on simultaneous determination of ^{7}Be and ^{22}Na in the aerosol samples. After radiochemical separation and measurement of ^{210}Bi and ^{210}Po in these samples, it would be possible to calculate not only the corrected residence time T_{RC} of aerosol from ^{210}Bi, ^{210}Bi and ^{210}Po ratios in the surface air, but also on the basis of ^{7}Be to ^{22}Na ratio, one can calculate the resident times of the aerosol in the lower stratosphere T_{S} [16, 17].

Therefore, it seems to be interesting to use modern radionuclide methods (α and γ spectrometry as well as liquid scintillation) for simultaneous determination of ^{7}Be, ^{22}Na, ^{210}Pb, ^{210}Bi, ^{210}Po in the same aerosol samples in order to trace their fate from the stratosphere to the surface layer of urban air.

Materials and methods

The air particulate matter samples were collected in the centre of the Polish city of Lodz, by the ASS-500 station operating as part of the national network for monitoring radiation in the air [18]. Approximately 50,000 m3 of air was filtered and 2.5–6 g of dust was captured by the quadractic (40 cm \times 40 cm) Petrianov type filters during a typical one-week collection period. For further radioactivity measurements, the filters were divided into two equal parts. From the first part, used for fast radiochemical separation of ^{210}Bi and ^{210}Po, three small discs with a diameter of 5 cm were cut off (5.7% of the total dust) for ^{210}Po determination by α spectrometry after its spontaneous deposition on silver plates by a procedure described by us elsewhere [12].

The ^{210}Bi was immediately eluted by 100 mL of 2 M HCl solution from the remaining first part of the filter. The elution solution was diluted with water to volume of 200 mL and ^{210}Bi radionuclide was concentrated by column chromatography with DOWEX 1 \times 8 resin. ^{210}Pb and ^{210}Po radionuclides were eluted from the column by washing with 50 mL of water followed by passing of 50 mL of 0.1 M HNO$_3$. ^{210}Bi radionuclide was eluted by 100 mL of 1.8 M H$_2$SO$_4$, and was extracted directly to the liquid scintillation vials, form this solution with two 5 mL portions of 5% (w/v) trioctylphospine oxide in toluene. Finally before the liquid scintillation counting of ^{210}Bi 10 mL of Ultima Gold F cocktail was added. No additional activities of ^{210}Pb or ^{210}Po were observed in the liquid scintillation spectrum.

The average recovery of ^{210}Bi from the filters by this method was determined by comparison of the ^{210}Pb and ^{210}Bi activities for the old filters, with ^{210}Pb–^{210}Bi in a radioactive equilibrium state. The average recovery of ^{210}Bi was equal to 0.8 ± 0.1.

The homogeneity of the ^{210}Po distribution in the filter sheet was checking by comparison of its activity in the 9 small discs taken from the different parts of the sheet. The ^{210}Po activity dispersion not exceeded ±3% from the average value. Therefore, one can assume that activity of ^{210}Po is uniformly distributed over the whole filter.

The second part of the filter, after overnight drying, was pressed into the standard disc geometry: 0.4 cm thick, with a diameter of 5.2 cm, for instrumental γ-spectrometry determinations of ^{7}Be, ^{22}Na and ^{210}Pb. The determination limits (with 10% accuracy) according Curie’s formula [19] were for these radionuclides: 3, 0.3 and 1.1 μBq/m3, respectively.

Quality assurance

The accuracy of the used analytical procedures and instrumental γ-spectrometry measurements was checked using the following standard reference materials: IAEA Soil 327, IAEA Sediment 300, Soil Cu-2006-3. A good compliance of the determined values with those certified has been achieved, as previously reported [12, 20].

Result and discussion

In order to evaluate the possible additional input of ^{210}Pb, ^{210}Bi and ^{210}Po activities—ΔA_{i} from both anthropogenic (coal combustion) as well as from natural sources (stratospheric inflow and soil resuspension), we assumed the existence of radioactive equilibrium between these radionuclides introduced additionally to surface air:

$$\Delta A_{\text{Pb}} = \Delta A_{\text{Bi}} = \Delta A_{\text{Po}}$$

The total observed (measured) activities—A_{i} of these three radionuclides in the air will be the sum of the
activities coming from the escaping 222Rn decay—A_{Rn} and the additional input:

\[A_{mPb} = A_{RnPb} + \Delta A_{Pb} \]
\[A_{mBi} = A_{RnBi} + \Delta A_{Bi} \]
\[A_{mPo} = A_{RnPo} + \Delta A_{Po} \]

However, because of the relatively long half-life of 210Pb (22.3 years) in comparison to average aerosol residence times (several days), these parts of the total activities—ΔA_i of 210Pb, 210Bi and 210Po, should be constant when solid particles exist in the air. Therefore, the activity relations between these radionuclides, according to the one box model in the steady state, concern A_{Rn} parts only. Because of the above mentioned conditions, the activity of 210Pb—A_{RnPb} will also be constant, and for the remaining A_{RnBi} and A_{RnPo} activities, according to this model, one can write:

\[A_{RnPb} = A_{RnBi} \left(\frac{1}{\tau_{RC} \lambda_{Bi}} + 1 \right) \]
\[A_{RnBi} = A_{RnPb} \left(\frac{1}{\tau_{RC} \lambda_{Po}} + 1 \right) \]

where λ_{Bi} and λ_{Po} denote decay constants of 210Bi and 210Po, respectively, and τ_{RC}—residence time of aerosols, corrected for addition input of these radionuclides.

After introducing relations 2–4 to Eqs. 5 and 6 we obtain a pair of equations:

\[A_{mPb} - X = (A_{mBi} - X) \left(\frac{1}{\tau_{RC} \lambda_{Bi}} + 1 \right) \]
\[A_{mBi} - X = (A_{mPo} - X) \left(\frac{1}{\tau_{RC} \lambda_{Po}} + 1 \right) \]
\[T_{RC} = \frac{A_{Bi} - A_{Po}}{A_{Pb} - A_{Bi} - (A_{Bi} - A_{Po}) \lambda_{Po}} \]

where A_{mPb}, A_{mBi} and A_{mPo} denote the measured activities of these three radionuclides in the air.

The solution of these equations gives following expression for so called “corrected residence time”—T_{RC}, which is identical to those proposed by Turekian [4] as well as by Poet et al. [3].

The results of T_{RC} calculations for the dust samples collected in the summer 2010 and 2011 from the Eq. 9 as well as the calculations of the residence times from the “classical” model on the basis of the separate 210Bi/210Pb—T_{RBi} and 210Po/210Pb ratios—T_{RPo} are presented in Table 1.

It is evident that both 210Bi/210Pb and 210Po/210Pb methods give overestimated aerosol residence times when they are applied separately. However, the corrected resident times —T_{RC} are close to those calculated on the basis of 210Bi/210Pb ratios. The 210Bi concentrations in the surface air during the summer period (\sim 0.3 mBq/m3) are approximately 5- times higher than those for 210Po (\sim 0.06 mBq/m3). Therefore, the same additional activity input ΔA does not influence the A_{Bi}/A_{Pb} ratio as much as it does for A_{Po}/A_{Pb}. The discrepancy of residence times between 210Bi/210Pb and 210Po/210Pb methods was attributed mainly to the additional sources of 210Po input to the atmosphere. It is worth mentioning that the 210Bi/210Pb method can be applied for aerosols with a residence time

Sample code	210Bi/210Pb activity ratio	T_{RBi}-calculated from (210Bi/210Pb) (days)	210Po/210Pb activity ratio	T_{RPo}-calculated from (210Po/210Pb) (days)	T_{RC} (days)
1016	0.48	6.68	0.096	20.5	25.4
1017	0.14	1.18	0.020	7.9	1.0
1018	0.60	10.85	0.029	10.3	9.5
1019	0.62	11.80	0.002	1.9	11.7
1020	0.59	10.41	0.122	34.5	8.6
1120	0.55	8.84	0.081	23.6	7.85
1121	0.46	6.20	0.057	17.4	5.60
1122	0.66	14.23	0.036	12.2	13.9
1123	0.49	7.18	0.024	9.1	7.1
1124	0.40	4.83	0.029	10.4	4.6
1125	0.64	12.85	0.064	19.2	12.3
1126	0.68	14.99	0.060	18.1	14.7
1127	0.36	4.12	0.062	18.6	3.5
1128	0.35	3.84	0.058	17.7	3.25
Calculation of the additional inflow of ^{210}Pb, ^{210}Bi and ^{210}Po activities

After calculating T_{RC} values the additional activities $X = \Delta A_{Pb} = \Delta A_{Bi} = \Delta A_{Po}$ coming from other than ^{222}Rn sources, can be evaluated from the Eqs. 8 or 9, by the following formula:

$$X = A_{Po} - T_{RC}\lambda_{Po}[A_{Bi} - A_{Po}]$$ \hspace{1cm} (10)

where A_{mPb}, A_{bi} is the measured activity of ^{210}Pb and ^{210}Bi, λ_{Po} is decay constant of ^{210}Po.

The relative contribution [%] of this additional activity $\Delta A_{m}/A_{m}$ to the measured activities of ^{210}Pb, ^{210}Bi, and ^{210}Po can be calculated from the following formulas:

$$\Delta_{Po} = \lfloor 1 - \lambda_{Po}T_{RC}(A_{mPb}/A_{mBi} - 1) \rfloor \times 100$$ \hspace{1cm} (12)

and for ^{210}Po

$$\Delta_{Po} = \lfloor 1 - \lambda_{Po}T_{RC}(A_{mBi}/A_{mPo} - 1) \rfloor \times 100$$ \hspace{1cm} (13)

Such calculated values of X as well as its relative contribution to the total activities of these three radionuclides in the surface air are presented in Table 2.

As was expected, because of the low concentrations of ^{210}Po in the lower troposphere, only in the case of this radionuclide does its additional inflow both from natural and anthropogenic sources play a substantial role (up to 97% of the total activity).

Table 2 Additional ^{210}Pb, ^{210}Bi and ^{210}Po activities and their relative contributions

No samples	X (μBq/m³)	Δ_{Po} (%)	Δ_{Bi} (%)	Δ_{Po} (%)
1016	41.98	0.90	1.15	9.35
1017	1.57	1.94	13.85	97.0
1018	14.94	7.74	12.90	76.6
1019	18.51	0.85	1.36	20.1
1020	13.58	10.18	17.25	83.4
1120	23.7	6.26	11.38	77.3
1121	12.1	4.54	9.82	80.0
1122	7.7	1.83	2.76	30.5
1123	2.9	0.75	1.51	30.9
1124	7.2	2.08	5.20	71.0
1125	7.5	2.82	4.41	44.3
1126	3.5	1.42	2.11	23.9
1127	22.8	5.63	15.51	91.5
1128	19.0	5.34	15.42	91.9

For continental surface air Moore et al. [9] estimated that the suspended soil particles could account for about the half of the additional sources of ^{210}Po, whereas stratospheric injection and anthropogenic sources give together only $\sim 10\%$ contribution.

However, the relative importance of each of these sources (including plant decomposition) may be different for urban air. Apart from soil resuspension, the sources of the additional ^{210}Po and ^{210}Bi activities—X, in the case of Lodz can be emissions from the three coal fired power stations located within the city, as well as stratospheric injections. The stratospheric contribution can be appraised by checking the possible correlations between $X = \Delta A_{Po}$ and the surface air activity of the cosmogenic radionuclides ^7Be or ^{22}Na produced in the stratosphere–troposphere border. As is evident from Fig. 1, such a correlation does not exist.

On the other hand, the simultaneous comparative determinations of ^7Be and ^{22}Na in the surface aerosol samples can be used to trace the transport of the suspended solid particles from the stratosphere to the surface air. The number of the generated isotopes ^7Be and ^{22}Na depends on the intensity of cosmic radiation and also on the latitude, but their activity concentrations in the troposphere are strongly influenced by the intensity of precipitation. The seasonal changes in the activity ratio of $^7\text{Be}/^{22}\text{Na}$ in samples of aerosols allow us to calculate the retention time of these isotopes in the stratosphere—T_S, if the residence times in the troposphere—T_{RC} are known. The ratio of their activity R_a in the surface air is given by the following formula [16, 17].

$$R_a = \frac{P_{Be}(1 - \exp(-\lambda_{Be}T_S)) \exp(-\lambda_{Be}T_{RC})}{P_{Na}(1 - \exp(-\lambda_{Na}T_S)) \exp(-\lambda_{Na}T_{RC})}$$ \hspace{1cm} (14)

where P theoretical nuclide production rate in the stratosphere, ^7Be and ^{22}Na respectively. The theoretical value of the P_{Be}/P_{Na} is equal to 1.1×10^3, λ is decay constants of

![Fig. 1 Values of the additional ΔA_{Po} activities are plotted against ^7Be activities in Lodz aerosol samples](image)
Table 3 The stratospheric—T_S and total T_A atmospheric residence times of the aerosols transported from the stratosphere to the surface air

Sample code	Surface activity A (μBq/m3)	$\frac{^{7}\text{Be}}{^{22}\text{Na}}$ activity ratio	Residence time (days)
	^{7}Be	^{22}Na	
1016	6.093	0.544	^{122}Rn
1017	7.429	0.543	11,204
1018	2.291	0.184	12,444
1019	2.496	0.269	9.286
1020	2.497	0.198	12,617
1120	2.139	0.476	4.493
1121	3.790	0.435	8.709
1122	2.541	0.248	10,234
1123	3.426	0.234	14,641
1124	4.768	0.928	5,136
1125	3.355	0.535	6,275
1126	3.515	0.270	13,019
1127	3.229	0.281	11,475
1128	2.999	0.240	12,496

7Be and 22Na, respectively. T_{RC} is residence time in the atmosphere, T_S is residence time in the stratosphere.

The measured air activities of 7Be and 22Na as well as calculated values of T_S and total atmospheric residence times $T_A = T_S + T_{RC}$ are summarized in the Table 3. The determined stratospheric residence times—T_S in the range 102–205 days are quite comparable with the scarce data for aerosol residence time in the stratosphere [15, 22].

The possible volcanic emissions of 210Po can be considered as point sources with irregular eruptive activity and supply to the stratosphere. The relatively long residence time of stratospheric aerosols enables its transport to non-seismic regions. However, during this time the activity of unsupported 210Po should decrease remarkably, and such influence on the total 210Po activity was observed only temporarily in regions adjacent to an active volcano [23, 24] and input of stratospheric 210Po to the lower tropospheric air in Central Poland is likely negligible. Therefore, the observed additional activities of 210Po in the urban air are likely caused by resuspension of surface soil and anthropogenic emissions mainly from coal-fired power plants. However, in order to quantify the relative contributions of these sources, additional measurements of so called “index trace elements” (specific for soil dust and coal combustion emissions) in aerosol samples should be done.

Conclusions

The significant differences in the aerosol residence times calculated by 210Bi/210Pb and 210Po/210Pb methods can be explained by additional sources of 210Po in urban air to the 222Rn flux from soil. A simple modification of the one compartment model allows both the corrected troposphere aerosol residence times as well as the relative input of these sources to the total activity concentrations of 210Pb, 210Bi and 210Po radionuclides in the urban air to be calculated. Simultaneous measurement of two cosmogenic radionuclides, 7Be and 22Na, in aerosol samples also allows the stratospheric aerosol residence time to be also determined. The latter values can serve as a measure of the rate of exchange of air masses at the border of stratosphere-troposphere areas, which is important in the observation of long-term effects of particulate impurities on climate change.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Baskaran M, Shaw GE (2001) Residence times of arctic haze aerosols using short-lived radionuclides. J Aerosol Sci 32(4): 443–452
2. Gaggeler HW (1995) Radioactivity in the atmosphere. Radiochim Acta 70–71:345–353
3. Poet SE, Moore HE, Martell EA (1972) Lead-210 Bismuth-210 and Polonium-210 in the atmosphere: accurate ratio measurement and application to aerosol residence time determination. J Geophys Res 77:33
4. Turekian KK, Nozaki Y, Benninger LK (1977) Geochemistry of atmospheric radon and radon products. Annu Rev Earth Planet Sci 5:227–255
5. Turekian KK, Benninger LK, Dion EP (1983) 7Be and 210Pb total depositional fluxes at New Haven, Connecticut, and Bermuda. J Geophys Res 88:5411–5415
6. Chamberlain AC (1991) Radioactive aerosols. Cambridge University Press, Cambridge, pp 48–51
7. Papastefanou C (2006) Residence time of tropospheric aerosols. In association with radioactive nuclides. Appl Radiat Isot 64:93–100
8. Lambert G, Buisson A, Sanak J, Ardouin B (1979) Modification of the atmospheric polonium 210 to lead 210 ratio by volcanic emissions. J Geophys Res 84(C11):6980–6986
9. Moore HE, Martell EA, Poet SF (1976) Sources of polonium–210 in atmosphere. Environ Sci Technol 10:586–591
10. Kim G, Hussain N, Church TM (2000) Excess 210Po in the coastal atmosphere. Tellus 52B:74–80
11. Kim G, Hong Y-L, Jang J, Lee I, Wang D-W, Yang H-S (2005) Evidence for anthropogenic 210Po in the urban atmosphere of Seoul, Korea. Environ Sci Technol 39:1519–1522
12. Długosz M, Grabowski P, Bem H (2010) 210Pb and 210Po radionuclides in the urban air of Lodz, Poland. J Radioanal Nucl Chem 283:719–725
13. Carvalho FP (1995) Origins and concentrations of 222Rn, 210Pb, 210Bi and 210Po in the surface air at Lisbon, Portugal, at the Atlantic edge of the European continental landmass. Atmos Environ 29(15):1809–1819
14. Lozano RL, San Miguel EG, Bolivar JP (2011) Assessment of the influence of in situ 210Bi in the calculation of in situ 210Po in air aerosols: Implications on residence time calculations using 210Po/210Pb activity ratios. J Geophys Res 116:12
15. Moore HE, Martell EA, Poet SF (1977) Vertical profiles of radon-222 and its long-lived daughters over the eastern Pacific. Environ Sci Technol 11(13):1207–1210
16. Tokuyama H, Igarashi S (1998) Seasonal variation in the environmental background level of cosmic-ray-produced 22Na at Fukui City, Japan. J Environ Radioact 38(2):147–161
17. Tokieda T, Harada KY, Tsunogai S (1996) Seasonal variations of residence time and upper atmospheric contribution of aerosols studied with Pb-210, Bi-210, Po-210 and Be-7. Tellus 48B(5):690–702
18. Lipiński P, Isajenko K, Biernacka M, Żak A (2001) Integration of Polish monitoring networks (ASS-500 and PMS systems). Nukleonika 46(4):143–146
19. Currie LA (1999) International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal Chim Acta 391:103–134
20. Grabowski P, Długosz M, Szajerski P, Bem H (2010) A comparison of selected natural radionuclide concentrations in the thermal groundwater of Mszczonow and Cieplice, Poland. Nukleonika 55(2):181–185
21. Papastefanou C (2008) Radioactive aerosols, radioactivity in the environment, Elsevier, Hungary, 12:4, 71–82
22. Reiter R, Jager H (1986) Results of 8-year continuous measurements of aerosol profiles in the stratosphere with discussion of the importance of stratospheric aerosols to an estimate of effects on the global climate. Meteorol Atmos Phys 35:19–48
23. Nho E, Le Cloarec M-F, Ardouin B, Ramonet M (1997) 210Po, an atmospheric tracer of long-range transport of volcanic plumes. Tellus 49B:429–438
24. Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout. J Environ Radioact 102:500–513