Properties of a Tightly Focused Circularly Polarized Anomalous Vortex Beam and Its Optical Forces on Trapped Nanoparticles

Yihua Bai†, Miao Dong†, Mingyan Zhang and Yuanjie Yang*

Abstract
The characteristics of a circularly polarized anomalous vortex beam (CPAVB), focused by an objective lens with a high numerical aperture (NA), are studied analytically and theoretically. It shows that the topological charge can affect the beam profile significantly and a flat-topped (FT) beam can be obtained by modulating the NA and topological charge. It is interesting to find that spin-to-orbital angular momentum conversion can occur in the longitudinal component after tight focusing. Furthermore, optical forces of the tightly focused CPAVB on nanoparticles are analyzed in detail. It can be expected to trap two kinds of nanoparticles using such beam near the focus.

Keywords: Nanoparticles, Optical trapping, Circularly polarized anomalous vortex beam

Introduction
Vortex beams with a spiral phase factor \(\exp(i m \theta) \) have attracted extensive attention over the past two decades, where \(m \) is a topological charge and can be any integer value and \(\theta \) is the azimuthal angle on a plane transverse to optical axis [1, 2]. Vortex beams have been widely used in numerous applications owing to their “doughnut” intensity profile and orbital angular momentum (OAM), such as optical tweezers [3–7], free-space optical communication [8], and quantum information [9]. Recently, researchers have paid more attention to the study of circularly polarized vortex beam because of its unique characteristics [10–15], for instance, it carries both spin angular momentum (SAM) and OAM at the same time. These unique characteristics can significantly expand and enhance the applications of vortex beams.

The tightly focusing characteristics of various beams under a lens system with high NA is another hot topic [16–20] for their important applications in particles trapping [21], microscopy [22], optical data storage [23], etc. Thus far, different beams have been studied, ranging from scalar vortex beams to vector vortex beams [10, 24–31]. For instance, Hao et al. [26] and Pu et al. [27] studied the properties of spirally polarized vortex beam under a high NA lens. It was shown that a flat-topped (FT) profile can be achieved and the OAM can be adjusted by choosing a proper polarized state in the focal plane. Zhan et al. studied the properties of tightly focused vortex beams with circularly polarization [10], showing that a strong longitudinal component can be produced.

Anomalous vortex beam (AVB), a novel beam which can evolve into elegant Laguerre-Gaussian beam in the far field, was proposed recently [32]. Such beam has attracted much attention and been widely investigated [33–38], owing to its extraordinary propagation properties. To the best of our knowledge, there is no report on the CPAVBS focused by a high NA lens. In this paper, the mathematical expressions of the CPAVBS after tight focusing are derived. Then we analyze the effect of beam order, topological charge, and NA value on the beam profile and phase distribution. At the last part, optical forces of tightly focused CPAVBS are studied.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Methods
A circularly polarized beam can be written as follow, which indicates the linear superposition of radially and azimuthally polarized beams [10]:

\[E_{LHC(RHC)} = P(r) e^{i \phi} (e_\rho \pm j e_\phi) / \sqrt{2} \]

(1)

where \(P(r) \) is the amplitude distribution. The sign “+” and “−” are left-hand and right-hand circular polarization, respectively, \(e_\rho \) and \(e_\phi \) are the radial and azimuthal vectors in the cylindrical coordinates, respectively. And expressions of the radially and azimuthally polarized beam can be obtained in [39–41].

The scheme of the focusing system is the same as Ref. [42]. The pupil apodization function of AVB under a sine condition (i.e., \(r = f \sin \theta \)) can be written as [32, 38]:

\[E_{n,m}(\theta, \phi) = E_0 \left(\frac{f \sin \theta}{w_0} \right)^{2n+|m|} \exp \left(-\frac{f^2 \sin^2 \theta}{w_0^2} \right) \exp(-im\phi) \]

(2)

where \(f \) is the focal length, \(\theta \) varies from 0 to \(\alpha \), \(\alpha \) is the maximal angle of NA, and \(E_0 \) and \(w_0 \) are a constant and waist radius, respectively. \(n \), \(\phi \), and \(m \) are the beam order, azimuthal coordinates, and the topological charge, respectively.

According to the vector Debye theory, the expressions of the electrical field, of the tightly focused CPAVB in cylindrical coordinates, can be derived as Eq. (3):

\[E_{\pm,\rho}(\rho, \phi, z) = -i k f \int_0^\rho \frac{d\rho}{\rho} E_0 \left(\frac{f \sin \theta}{w_0} \right)^{2n+|m|} \exp \left(-\frac{f^2 \sin^2 \theta}{w_0^2} \right) \rho^{m+1} \sin \theta \cos \theta \exp(iz \cos \theta) \exp[i(m \pm 1)\phi] \times \left((\cos +1)J_n(kp \sin \theta) - (\cos -1)f_{m+1}(kp \sin \theta) \right) d\theta \]

\[\times \exp(-i k \rho \sin \theta \cos \theta \exp(iz \cos \theta) \exp[i(m \pm 1)\phi] \times \left((\cos +1)J_n(kp \sin \theta) - (\cos -1)f_{m+1}(kp \sin \theta) \right) d\theta \]

(3a)

\[E_{\pm,\phi}(\rho, \phi, z) = -i k f \int_0^\rho \frac{d\rho}{\rho} E_0 \left(\frac{f \sin \theta}{w_0} \right)^{2n+|m|} \exp \left(-\frac{f^2 \sin^2 \theta}{w_0^2} \right) \rho^{m+1} \sin \theta \cos \theta \exp(iz \cos \theta) \exp[i(m \pm 1)\phi] \times \left((\cos +1)J_n(kp \sin \theta) - (\cos -1)f_{m+1}(kp \sin \theta) \right) d\theta \]

(3b)

\[E_{\pm,z}(\rho, \phi, z) = -i k f \int_0^\rho \frac{d\rho}{\rho} E_0 \left(\frac{f \sin \theta}{w_0} \right)^{2n+|m|} \exp \left(-\frac{f^2 \sin^2 \theta}{w_0^2} \right) \rho^{m+1} \sin \theta \cos \theta \exp(iz \cos \theta) \exp[i(m \pm 1)\phi] \times \left((\cos +1)J_n(kp \sin \theta) - (\cos -1)f_{m+1}(kp \sin \theta) \right) d\theta \]

(3c)

where \(f_m(\alpha) \) is a \(n \)-order Bessel function of the first kind and \(k = 2n \lambda / \lambda \). We define \(E_\alpha \) and \(E_\phi \) as the expression of the electrical field of right-hand and left-hand CPAVB, respectively.

In the above equations, the following formulas are used [43]:

\[\begin{cases}
\int_0^{2\pi} \cos(n\phi) \exp[ia \cos(\phi - \phi)] d\phi = 2 \pi \alpha f_n(a) \cos(n\phi) \\
\int_0^{2\pi} \sin(n\phi) \exp[ia \cos(\phi - \phi)] d\phi = 2 \pi \alpha f_n(a) \sin(n\phi)
\end{cases} \]

(4)

Then, we can calculate the total intensity of the tightly focused CPAVB as follow:

\[I = |E_\rho(\rho, \phi, z)|^2 + |E_\phi(\rho, \phi, z)|^2 + |E_z(\rho, \phi, z)|^2 \]

(5)

where \(E_\rho, E_\phi, \) and \(E_z \) are the amplitudes of corresponding components.

Results and Discussion
Tight-Focusing Characteristics of the CPAVB
In this section, using the above equations, we study the properties of the tightly focused CPAVB. In the simulation, we set NA = 0.85, \(\lambda = 632.8 \) nm, \(w_0 = 2 \) mm, and \(f = 2 \) mm. In Fig. 1, the total intensity profile and corresponding longitudinal and radial components of the left-hand CPAVBs with \(n = 1 \) for different topological charges in the focal plane are depicted, respectively. We can find that the total intensity is nonzero at the center when \(m \leq 2 \), while there exists a dark spot in the center when \(m > 2 \). In addition, the radial component of focused fields is not zero on the axis when \(m = 0, 2 \), and the same as the longitudinal component when \(m = 1 \). These results can be explained from Eq. (3) and Eq. (5), owing to the fact that \(f_m \) always equals to zero at the origin except for \(m = 0 \). The Bessel function of the first kind in all three components is zero at the center when \(m > 2 \), and thus the total intensity is zero. Otherwise, there exists at least one component containing \(f_0 \), which means the central intensity can be nonzero and maximum. What is more, for total and radial components, focal spot size increases as the topological charge increases. Therefore, we can conclude that the total intensity and focal spot size in the focal field are affected by topological charge.

In Fig. 2, the total intensity profile and corresponding longitudinal and radial components of the left-hand CPAVBs with \(m = 1 \) for different beam orders in the focal plane are depicted, respectively. One can see that as \(n \) increases, the outer rings of each component and total intensity are gradually becoming brighter, while the pattern of the intensity does not change. Thus the beam order \(n \) does not affect the shape of the intensity patterns greatly.

Then we study how the NA value influences the focusing properties of CPAVBs with \(n = 2 \) for \(m = 1 \) and \(m = 4 \), respectively. As shown in Fig. 3, it is noticeable that the central intensity remains nonzero for the case of topological charge \(m = 1 \), while central intensity is dark in the focal plane for \(m = 4 \). Comparing Fig. 3 d-1 with
d-2, we can find that the intensity increases and gathers to the center with increasing NA. Especially, for the case of \(m = 1 \), a FT beam can be obtained when NA increases to 0.8.

Based on Eq. (3c), we calculated the phase distributions of longitudinal component CPAVBs in the vicinity of focus, as shown in Fig. 4. The first and second rows of Fig. 4 are the left-hand and right-hand CPAVBs, respectively. The location for Fig. 4 a–c are \(z = -0.005z_r, 0, 0.005z_r \), respectively, where \(z_r = kw_0^2/2 \) is the Rayleigh range. Other parameters are set as \(n = 1 \) and NA = 0.85. As shown in Fig. 4, the contour of phase patterns changes from clockwise to anticlockwise after passing through the focal plane. Comparing Fig. 4 a-1 to c-1 with Fig. 4 a-2 to c-2, it is interesting to find that the topological charge near the focus changes from 3 to 5 when the left-hand CPAVB is replaced by a right-hand one. This phenomenon may be explained as a left-hand CPAVB with \(m = 4 \) carries SAM \(I_s = -\hbar \) and OAM \(m = 4\hbar \). Owing to the compensation of the opposite OAM converted from SAM, the topological charges decrease to three after tight focusing. By analogy, we can expect the similar behavior of the right-hand CPAVB with \(m = 4 \), which carries SAM \(I_s = \hbar \) and OAM \(m = 4\hbar \). Owing to OAM converted from SAM, the topological charges increase to five. Therefore, we can conclude that there is a conversion from SAM into OAM in the longitudinal component after tight focusing.

Trapping Nanoparticles Using the Tightly Focused CPAVB

Based on the Rayleigh scattering theory [44], the scattering force and gradient force should be considered when discussing the optical trapping. The scattering force, written as \(F_{\text{scat}} = e_z n_m a I_{\text{out}}/c \), tends to destabilize the optical trap, where \(c \) is light velocity, \(e_z \) is a unit vector along the \(z \) direction, \(I_{\text{out}} \) is the intensity of focused beam, \(a = (8/3)\pi (ka)^4 a^2 [(\eta^2 - 1)^2 / (\eta^2 + 2)^2] \), \(a \) is the nanoparticle’s radius, \(\eta = n_p/n_m \) and \(n_m \) and \(n_p \) are refractive index of surrounding media and nanoparticle, respectively. And the gradient force \(F_{\text{grad}} \) trends to
Fig. 2 Intensity profile for the tightly focused left-hand CPAVBs with $m = 1$ for different beam orders. a-1 to a-3, b-1 to b-3, and c-1 to c-3 are the total intensity $|E|^2$ and longitudinal $|E_z|^2$ and radial $|E_\rho|^2$ components, respectively.

Fig. 3 Variation of the intensity with the different NA of the left-hand CPAVBs with $m = 1$ and $m = 4$, respectively. a-1 and a-2, b-1 and b-2, and c-1 and c-2 are NA = 0.7, 0.75, 0.8, respectively. d-1 and d-2 Cross-section of the intensity.
Fig. 4 Phase profile of the longitudinal component of CPAVBs with $m = 4$ near the focus. The first and second rows are the left-hand and right-hand CPAVBs, respectively.

a-1 to a-2 $z = -0.005z_r$, b-1 to b-2 $z = 0$, c-1 to c-2 $z = 0.005z_r$

Fig. 5 a–f The radial, longitudinal gradient forces and scattering forces of a left-hand CPAVB after tight focusing on a low refraction index particle $n_p = 1$
pull a nanoparticle back to the focus, which can be expressed as

$$F_{\text{grad}} = 2 \pi n \beta \nabla I_{\text{out}} / c,$$

where

$$\beta = \alpha ^3 (\eta ^2 - 1) / (\eta ^2 + 2).$$

In the simulation experiment, we set $n_p = 1.59$ and $n_p = 1$ for glass and air bubble, respectively, $n_{\text{na}} = 1.332$, NA = 0.85, and $a = 50 \text{ nm}$. Figure 5 represents the radial, longitudinal gradient forces and scattering forces of a left-hand CPAVB on a nanoparticle with $n_p = 1$ for different m and n. The previous work shows that the total intensity is dark at the center when $m \geq 3$. Therefore, as expected, for low refraction index nanoparticle, the radial and longitudinal gradient force will always pull the nanoparticle back to the focus, as shown in Fig. 5 a–d. Comparing with the gradient force, the scattering force is very small. Therefore, the low refraction index nanoparticle can be trapped stably.

Figure 6 represents the radial, longitudinal gradient forces, and scattering forces of a left-hand CPAVB on a nanoparticle with $n_p = 1.59$ for different topological charges m and the beam orders n. From Fig. 6, we can see that there are several equilibrium points near the focus and the scattering force can be neglected compared with the gradient force. Therefore, the high refraction index nanoparticle can be captured near the focus.

Conclusions

In this paper, the characteristics of tightly focused CPAVBs and their optical forces on nanoparticle have been discussed. We find that SAM of CPAVB can convert into OAM when such beam is tightly focused. Furthermore, tightly focused CPAVB can be used to trap two different kinds of nanoparticles, with low and high refraction index, near the focal plane. Our research will be of help for finding potential applications of CPAVB.

Abbreviations

AVB: Anomalous vortex beam; CPAVB: Circularly polarized anomalous vortex beam; FT: Flat-topped; NA: Numerical aperture; OAM: Orbital angular momentum; SAM: Spin angular momentum

Acknowledgements

Not applicable

Authors’ Contributions

YHB and MD carried out the simulation and analysis and drafted the manuscript. MYZ developed the code, derived expressions, and calculated the optical forces. YJY supervised the project and revised the manuscript. All authors have read and approved the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (11874102, 11474048).
Availability of Data and Materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Received: 18 May 2019 Accepted: 16 July 2019
Published online: 26 July 2019

References

1. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185–8189
2. Alison MY, Miles JP (2011) Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3:161–204
3. He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H (1995) Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75:826–829
4. Chen MZ, Mazilu M, Arita Y, Wright EM, Dholakia K (2013) Dynamics of microparticles trapped in a perfect vortex beam. Opt Lett 38:4919–4922
5. Li XZ, Ma HX, Zhang H, Tang MM, Li HH, Tang J, Wang YS (2019) Is it possible to enlarge the trapping range of optical tweezers via a single beam? Appl Phys Lett 114:081903
6. Tkachenko G, Chen MZ, Dholakia K, Mazilu M (2017) Is it possible to create a perfect fractional vortex beam? Optica 4:330–333
7. Arita Y, Chen MZ, Wright EM, Dholakia K (2017) Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J Opt Soc Am B 34:C14–C19
8. Wang J, Yang JF, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YY, Yue Y et al (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6:488–496
9. Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett MJ, Konrad T, Petruccione F et al (2013) Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88:032305
10. Zhan QW (2007) Properties of circularly polarized vortex beams. Opt Lett 31(7):867–869
11. Rao LZ, Wang ZC, Zheng XX (2008) Tightly focusing of circularly polarized vortex beams through a uniaxial birefringent crystal. Chin Phys Lett 25(9):3223–3226
12. Chen BS, Zhang ZM, Pu JX (2009) Tight focusing of partially coherent and circularly polarized vortex beams. J Opt Soc Am A 26(4):862–869
13. Pang XY (2015) Gouy phase and phase singularities of tightly focused, circularly polarized vortex beams. J Opt Soc Am A 29(7):1689–1696
14. Wang J, Yang JF, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YY, Yue Y et al (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6:488–496
15. Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett MJ, Konrad T, Petruccione F et al (2013) Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88:032305
16. Zhan QW (2007) Properties of circularly polarized vortex beams. Opt Lett 31(7):867–869
17. Rao LZ, Wang ZC, Zheng XX (2008) Tightly focusing of circularly polarized vortex beams through a uniaxial birefringent crystal. Chin Phys Lett 25(9):3223–3226
18. Chen BS, Zhang ZM, Pu JX (2009) Tight focusing of partially coherent and circularly polarized vortex beams. J Opt Soc Am A 26(4):862–869
19. Pang XY (2015) Gouy phase and phase singularities of tightly focused, circularly polarized vortex beams. J Opt Soc Am A 29(7):1689–1696
20. Wang J, Yang JF, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YY, Yue Y et al (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6:488–496
21. Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett MJ, Konrad T, Petruccione F et al (2013) Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88:032305
22. Zhan QW (2007) Properties of circularly polarized vortex beams. Opt Lett 31(7):867–869
23. Kim W-C, Park N-C, Yoon Y-J, Choi Y, Park Y-P (2007) Investigation of near-field imaging characteristics of radial polarization for application to optical data storage. Opt Rev 14(4):236–242
24. Zhang ZM, Pu JX, Wang XQ (2008) Tightly focusing of linearly polarized vortex beams through a dielectric interface. Opt Commun 281:3421–3426
25. Pang XY, Visser TD, Wolf E (2011) Phase anomaly and phase singularities of the field in the focal region of high-numerical aperture systems. Opt Commun 284:5517–5522
26. Hao B, Leger J (2008) Numerical aperture invariant focus shaping using spirally polarized beams. Opt Commun 281:1924–1928
27. Pu JX, Zhang ZM (2010) Tight focusing of spirally polarized vortex beams. Opt Laser Technol 42:186–191
28. Singh RK, Senthilkumaran P, Singh K (2009) Tight focusing of vortex beams in presence of primary astigmatism. J Opt Soc Am A 26(3):576–588
29. Singh RK, Senthilkumaran P, Singh K (2008) Effect of primary spherical aberration on high numerical-aperture focusing of a Laguerre-Gaussian beam. J Opt Soc Am A 25(6):1307–1317
30. Chen BS, Pu JX (2009) Tight focusing of elliptically polarized vortex beams. Appl Opt 48(7):1288–1294
31. Rao LZ, Pu JX, Chen ZY, Yei P (2009) Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt Laser Technol 41:241–246
32. Yang JF, Dong Y, Zhao CL, Cai YJ (2013) Generation and propagation of an anomalous vortex beam. Opt Lett 38(24):5418–5421
33. Xu YG, Wang SJ (2014) Characteristic study of anomalous vortex beam through a paraxial optical system. Opt Commun 331:32–38
34. Zhang DJ, Yang YJ (2015) Radiation forces on Rayleigh particles using a focused anomalous vortex beam under paraxial approximation. Opt Commun 336:202–206
35. Zhang X, Wang HY, Tang L (2018) Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere. Proc SPIE 10617
36. Dai ZP, Yang JZ, Zhang SM, Pang ZG (2015) Propagation of anomalous vortex beams in strongly nonlocal nonlinear media. Opt Commun 350:19–27
37. Yuan YP, Yang YJ (2015) Propagation of anomalous vortex beams through an annular apertured paraxial ABCD optical system. Opt Quantum Electron 47:2289–2297
38. Zhang MY, Yang YJ (2018) Tight focusing properties of anomalous vortex beams. OPTIK 154:133–138
39. Wolf E (1959) Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc R Soc London Ser A 253:349–357
40. Gu M Advanced optical imaging theory. Springer, Berlin, p 2000
41. Youngworth KS, Brown TG (2000) Focusing of high numerical aperture cylindrical vector beams. Opt Express 7(2):77–87
42. Richards B, Wolf E (1959) Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc London Ser A 253:358–379
43. Erdelyi A (1954) Tables of integral transforms. Mc Graw-Hill Book Company, New York
44. Hanada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124:520–541

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.