A two-base change in a POU factor-binding site switches pituitary-specific to lymphoid-specific gene expression

Harry P. Elsholtz, 1–3 Vivian R. Albert, 1,2 Maurice N. Treacy, 2 and Michael G. Rosenfeld 1,2

1Howard Hughes Medical Institute, 2Eukaryotic Regulatory Biology Program, School of Medicine, University of California, San Diego, La Jolla, California 92093 USA

The structurally related POU homeo domain proteins Pit-1 and Oct-2 activate pituitary- and lymphoid-specific transcription, respectively, by binding to similar AT-rich motifs in their target genes. In this study we identify bases critical for recognition and activation by Pit-1 and examine how small differences in Pit-1- and Oct-2-binding sites can impart differential transcriptional responses in pituitary and B-lymphoid cells. Scanning mutagenesis of Pit-1 response elements in both the rat prolactin and growth hormone genes reveals a critical binding motif recognized in an identical manner by the native Pit-1 protein and cloned Pit-1 gene product. This motif, ATTATTcCAT, differs by only two bases from the octamer element, ATTTGCAT, required for Oct-2-dependent activation of immunoglobulin genes. Cross recognition of Pit-1 and Oct-2 sites by both factors can be demonstrated in competitive binding assays, in which an oligomeric Pit-1 site from the prolactin gene is converted to an Oct-2 site by a double point mutation. In contrast to the binding data, no cross activation of transcription is detectable in cultured cell lines. When inserted immediately 5’ to a prolactin TATA box, the wild-type prolactin element enhances transcription strongly in pituitary cells but is inactive in B cells, whereas the octamer variant of the prolactin site activates expression in B cells but is silent in pituitary lines. Both elements are nonfunctional in heterologous cell lines that lack Pit-1 and Oct-2. The selective trans-activation by two POU factors that recognize related response elements may thus be comparable to the differential activation by steroid and thyroid hormone receptors of closely related response elements.

[Key Words: Pit-1; Oct-2; POU homeo domain; pituitary]

Received September 12, 1989; revised version accepted November 6, 1989.

Regulation of the network of genes that controls the development and physiology of eukaryotes involves the selective interactions of trans-acting proteins with specific genomic response elements. In mammals, the polypeptide hormone genes of the anterior pituitary have provided a developmental system in which to examine mechanisms of transcriptional control. Sequence- and cell-specific protein–DNA interactions have been observed in both proximal [Elsholtz et al. 1986; Cao et al. 1987; Gutierrez-Hartmann et al. 1987; Nelson et al. 1988; Schuster et al. 1988] and distal [Nelson et al. 1986, 1988] regulatory elements of the rat prolactin gene, which is expressed exclusively in this tissue. Correct targeting to the pituitary in transgenic mice [Crenshaw et al. 1989] and restricted expression of the prolactin gene in cultured lactotrophs [Nelson et al. 1986] appears to be dependent on these regulatory elements. The growth hormone gene is expressed in pituitary somatotrophs, which embryonically share a cell lineage with prolactin-producing lactotrophs [Behringer et al. 1988; Borelli et al. 1989]. Appropriate expression of this gene is determined by specific promoter elements [Nelson et al. 1986; Lira et al. 1988] that exhibit structural similarity to those of the prolactin gene [Nelson et al. 1988]. We have previously used competitive DNA binding analysis and in vitro transcription to demonstrate that a common transcription factor, Pit-1, activates expression of both pituitary genes [Nelson et al. 1988].

Cloning of the Pit-1 cDNA [Bodner et al. 1988; Ingram et al. 1988] has facilitated the investigation of the role of Pit-1 in regulation of pituitary-specific genes. A member of the recently described POU homeo domain family of transcriptional activators (for review, see Herr et al. 1988; Levine and Hoey 1988; Robertson 1988), Pit-1, is structurally related to the factor Oct-2 [Clerc et al. 1988; Muller et al. 1988; Scheidereit et al. 1988; Staudt et al. 1988], which regulates lymphoid-specific expression of immunoglobulin genes. This regulation is affected by the interaction of Oct-2 with AT-rich genomic elements containing the octamer motif ATTTGCAT [Landolfi et al. 1986; Staudt et al. 1986]. A third member of the POU family, Oct-1 [Sturm et al.
Elsholtz et al. (1988), recognizes the identical ATTTGCAT motif but differs from Oct-2 in its ubiquitous tissue distribution and its ability to activate certain eukaryotic promoters that lack a TATA box, for example, small nuclear RNA genes. The similarity of some Pit-1-binding sites [Nelson et al. 1988] to the octamer motif raises the possibility of cross recognition of sites by these factors. Although the extent of binding site degeneracy has not been determined for Pit-1, both octamer-binding proteins have been shown to bind with high affinity to several AT-rich elements, in addition to those that include the ATTTGCAT consensus [for review, see Garcia-Blanco et al. 1989]. The POU proteins may thus exhibit functional similarity to the Drosophila family of homeo domain-containing transcription factors, which recognize and probably compete for related binding elements [Desplan et al. 1988; Hoey and Levine 1988; Jaynes and O’Farrell 1988], providing a system for the coordinate activation and repression of sets of developmental genes. Although expressed in discrete cell types in mature animals, a number of POU proteins, including Pit-1 and Oct-2, appear to be coexpressed embryologically in the rat neural tube [He et al. 1989], suggesting potential regulation of common genes during a crucial phase of mammalian development.

As a first step toward understanding the regulatory interplay of the POU transcription factors, we have investigated the relatedness of Pit-1- and Oct-2-binding elements. In this study mutational analysis of Pit-1 response elements in the rat prolactin genes reveals a critical binding motif, TAT^T_-CAT, in these sites. The motif differs by only 2 nucleotides from the Oct-I/Oct-2 consensus sequence. We find that Pit-1 and Oct-2 bind to both Pit-1 and Oct-2 response elements but that the 2-bp difference between elements is sufficient to impart differential transcriptional responsivity in pituitary and B cells, respectively.

Results

Requirement of the octamer-like motif in Pit-1 response elements for binding and transcriptional activation

To define the potential interrelationships of response elements for POU domain factors, it was first necessary to delineate the critical nucleotides in the Pit-1 response element. Based on the alignment of several Pit-1-binding sites in the rat prolactin and growth hormone genes, Nelson et al. (1988) proposed that a sequence, A^A-TAT^T_-CAT, was required for high-affinity binding of Pit-1. Of these sites, the most proximal (1P) Pit-l-binding site, TATTCAT, formed a critical recognition motif with a 2-bp difference between elements is sufficient to impart differential transcriptional responsivity in pituitary and B cells, respectively.

By the cloned factor both

Although expressed in discrete cell types in mature animals, a number of POU proteins, including Pit-1 and Oct-2, appear to be coexpressed embryologically in the rat neural tube [He et al. 1989], suggesting potential regulation of common genes during a crucial phase of mammalian development.

As a first step toward understanding the regulatory interplay of the POU transcription factors, we have investigated the relatedness of Pit-1- and Oct-2-binding elements. In this study mutational analysis of Pit-1 response elements in the rat prolactin genes reveals a critical binding motif, TAT^T_-CAT, in these sites. The motif differs by only 2 nucleotides from the Oct-I/Oct-2 consensus sequence. We find that Pit-1 and Oct-2 bind to both Pit-1 and Oct-2 response elements but that the 2-bp difference between elements is sufficient to impart differential transcriptional responsivity in pituitary and B cells, respectively.

Results

Requirement of the octamer-like motif in Pit-1 response elements for binding and transcriptional activation

To define the potential interrelationships of response elements for POU domain factors, it was first necessary to delineate the critical nucleotides in the Pit-1 response element. Based on the alignment of several Pit-1-binding sites in the rat prolactin and growth hormone genes, Nelson et al. (1988) proposed that a sequence, A^A-TAT^T_-CAT, was required for high-affinity binding of Pit-1. Of these sites, the most proximal (1P) Pit-l-binding site, TATTCAT, formed a critical recognition motif with a 2-bp difference between elements is sufficient to impart differential transcriptional responsivity in pituitary and B cells, respectively.

Although expressed in discrete cell types in mature animals, a number of POU proteins, including Pit-1 and Oct-2, appear to be coexpressed embryologically in the rat neural tube [He et al. 1989], suggesting potential regulation of common genes during a crucial phase of mammalian development.

As a first step toward understanding the regulatory interplay of the POU transcription factors, we have investigated the relatedness of Pit-1- and Oct-2-binding elements. In this study mutational analysis of Pit-1 response elements in the rat prolactin genes reveals a critical binding motif, TAT^T_-CAT, in these sites. The motif differs by only 2 nucleotides from the Oct-I/Oct-2 consensus sequence. We find that Pit-1 and Oct-2 bind to both Pit-1 and Oct-2 response elements but that the 2-bp difference between elements is sufficient to impart differential transcriptional responsivity in pituitary and B cells, respectively.
Two-base change switches POU factor specificity

Figure 1. Binding and transcriptional analysis of clustered point mutations in the prolactin 1P region. (A) Map of the proximal rat prolactin promoter and illustration of mutations scanning the 1P element. The core sequence for binding of Pit-1, TATTCAT (1P), is shown in boldface type. (B) Gel shift assay of Pit-1 binding to 1P mutants using GC nuclear extracts. The molar excess of mutant oligonucleotide used to compete binding of Pit-1 to the WT-1P probe is indicated (fold). (C) Quantitative binding analysis of 1P mutant sites using GC extracts. In the absence of competition (8, lane 2), the fraction of bound/free represents 100% total binding. The amount of probe in this bound fraction was 2000 dpm. (D) Cis-activity of 1P mutants in an in vitro transcription system derived from GC nuclear extracts. The upper band represents transcripts correctly initiated from the prolactin promoter. An RSV promoter construct is included as an internal reference (lower transcript).

conserved C [see Nelson et al. 1988] in TATTCAT (PM-5) also caused only a small reduction in binding efficiency. In the context of the wild-type site, however, our data suggest that Pit-1 may closely contact DNA within the major groove at the C position of the TATTCAT core; methylation of the core G (ATGAATA, antisense strand) prevented binding of the factor completely, whereas similar modification of Gs elsewhere in the binding site [including the G immediately 3' of TATTCAT] had no effect (Fig. 3C). Identical patterns of interference were observed using pituitary cell (GC) nuclear extracts or purified Pit-1 [data not shown].

Shared DNA recognition motifs among POU proteins Pit-1, Oct-1, and Oct-2

The similarity of the core sequences in Pit-1 (ATATTCAT)- and Oct-1/Oct-2 (ATTTGCAT)-binding sites predicts potential cross recognition of sites by these POU domain proteins. A related motif, AT-TATCAT, is reportedly bound as efficiently as the canonical octamer sequence by the lymphoid factor Oct-2 (Scheidereit et al. 1988). To examine reciprocal binding, we first converted the Pit-1 site WT-1P to an octamer element (OCT-1P), in which all flanking bases from the rat prolactin gene were conserved [see Fig. 1A]. As shown in Figure 4A (gels 1 and 4), both Oct-1 and Oct-2 bound specifically to this modified Pit-1 site; the relative mobility of these Oct/OCT-1P complexes is consistent with earlier work in which a sequence from the immunoglobulin heavy-chain gene served as the binding site for Oct-1 and Oct-2 [Landolfi et al. 1987]. In competition assays, Oct-1 bound the prolactin Pit-1 element WT-1P with apparent affinity three to five times lower [at 50% competition] than the OCT-1P element [Fig. 4A, gel 4]. Identical results were obtained for Oct-2 [data not shown]. Unrelated sequences such as a cAMP response element competed for the octamer-binding factors only at very high concentrations. Native Pit-1 [Figs. 1C and 4A (gels 2 and 3)] and cloned Pit-1 [Fig. 4A,
Analysis of the interaction of Pit-1 and OCT-1P by methylation interference (Fig. 4C) revealed that contact points in the octamer core were identical to those of Oct-1 (Staudt et al. 1986, Fig. 4C) and Oct-2 (Staudt et al. 1986, Scheidereit et al. 1987), with methylation of either the sense [ATTTGCAT] or antisense [ATGCAAT] G preventing binding. Conversely, it appears that the sequence TATTCAT constitutes the primary core for interaction of octamer-binding factors with the wild-type prolactin element 1P, as judged by the ability of only mutations present in CM-4 and CM-5 to completely disrupt binding (data not shown). These data demonstrate that although differences exist in binding site preference, the points of DNA–protein interaction are similar for Pit-1, Oct-1, and Oct-2, consistent with the closely related DNA recognition domains of these proteins [Herr et al. 1988].

Functional restriction of POU factor-binding elements

Although mutant sites devoid of Pit-1-binding activity...
Two-base change switches POU factor specificity

Figure 4. Cross recognition of binding sites by POU proteins Pit-1, Oct-1, and Oct-2. [A] [Gel 1] Binding of Oct-1 and cloned Pit-1 expressed in HeLa cells to WT-1P and OCT-1P probes; [gels 2 and 3] binding of native and bacterially expressed Pit-1 to WT-1P and OCT-1P probes; [gel 4] competition of WT-1P and OCT-1P for binding of lymphoid-specific Oct-2 from BJA-B nuclear extracts. [B] Quantitative comparison of Oct-1 [HeLa cell extract] binding to the 32P-labeled OCT-1P site in the presence of competing oligomeric sites OCT-1P, WT-1P, and CRE. [C] Methylation interference of Pit-1 [GC extract] and Oct-1 [B82 cell extract] binding to the 28-bp OCT-1P sequence. [D] In vitro transcription analysis of WT-1P and OCT-1P elements fused to the prolactin TATA box using GC nuclear extracts.

[CM-4, CM-5] did not stimulate transcription in pituitary nuclear extracts, several variants [CM-2, CM-3, CM-6] that bound Pit-1 at much reduced affinity relative to WT-1P [Fig. 1C] activated the prolactin promoter in vitro [Fig. 1D]. On this basis, it was expected that OCT-1P would exhibit at least partial activity in enhancing promoter function. To test cis-activation by OCT-1P, it was important to use conditions in which Oct-1, expressed ubiquitously and with a high affinity for OCT-1P, did not exclude Pit-1 from binding to the octamer site. Binding studies suggested that HeLa-Pit-1 ÷ nuclear extracts, which contain about one-tenth the level of Pit-1 present in GC extracts [Mangalam et al. 1989], would be unsuitable for this transcriptional analysis because many of the OCT-1P sites would be occupied by Oct-1 and not Pit-1 [see Fig. 4A, gel 1]. In GC extracts, however, the higher levels of Pit-1, lower levels of Oct-1, or both, permitted effective competition of binding of Oct-1 to OCT-1P such that by gel shift analysis, >90% of the bound fraction represented Pit-1/OCT-1P complexes [see Fig. 4A, gel 3]. Therefore, GC extracts were used to study Pit-1 responsiveness of the OCT-1P element in vitro. Unexpectedly, transcription units containing the OCT-1P site upstream of the prolactin TATA box were completely inactive in GC nuclear extracts [Fig. 4D]. Insertion of up to three tandem copies of the site adjacent to the prolactin promoter had no stimulatory effect. However, when used in vitro as a competitor of the WT-1P/prolactin promoter transcription unit, the OCT-1P element specifically decreased the response to Pit-1, as expected from its ability to bind the factor.

Transcriptional specificity of the OCT-1P and WT-1P elements was examined in intact cells by DNA-mediated gene transfer. Pituitary [GC] and lymphoid [S-194, BJA-B] cells were transiently transfected with plasmids that contained one or more copies of the WT-1P-binding site [Fig. 5A]. In the in vitro assay, transcription units containing the octamer variant were inactive in pituitary cells, regardless of the number of inserts [Fig. 5B, left], whereas the wild-type prolactin element enhanced transcription up to 100-fold, depending on copy number [Fig. 5B, right]. In contrast, the OCT-1P cis-acting element enhanced activity of the prolactin promoter in a dose-dependent manner when transfected into the S-194 myeloma cell line, which expresses the factor Oct-2, stimulation by OCT-1P was even more pronounced in a second myeloma cell line, BJA-B [Fig. 5B, left]. In view of its ability to compete binding of the octamer-binding factors at 20–30% the efficiency of OCT-1P, the WT-1P element was predicted to be cis-active in Oct-2-positive myeloma cells, in addition to pitu-
Elsholtz et al.

Figure 5. Cell-specific function of the WT-1P and OCT-1P elements in vivo. (A) Illustration of WT-1P- and OCT-1P-containing constructions used for transfection of pituitary (GC) and myeloma cell lines (S-194 and BJAB). (B) Cell-specific, binding site-dependent activation of the luciferase reporter gene in transfected cells. Results are the mean (± SEM) of three independent experiments.

Discussion

In Drosophila, the program for embryogenesis is controlled by a family of genes that contain homeo boxes (for review, see Akam 1987; Gehring 1987; Scott and Carroll 1987; Ingham 1988). Cotransfection analyses have demonstrated that interaction of the homeo domain-containing proteins with specific genomic elements can synergistically enhance or inhibit gene expression (Jaynes and O'Farrell 1988; Han et al. 1989; Krasnow et al. 1989). However, the mechanism by which these DNA-binding proteins selectively activate or repress genes is complicated by the promiscuity of binding site recognition; for example, at least six Drosophila homeo domain proteins are known to bind the 10-bp consensus sequence TCAATTAAAT (Desplan et al. 1988; Hoey and Levine 1988), which appears to suggest diminished stringency in transcriptional control. Because of the overlapping specificity at the level of DNA binding, developmental regulation may be determined by competition among homeo domain proteins for related sites, with the net result reflecting the interaction of promoter- or enhancer-bound factors (Desplan et al. 1988; Hoey and Levine 1988; Jaynes and O'Farrell 1988). Competition would be affected by the abundance of the homeo domain proteins and their binding affinities for multiple related cis-acting elements. Among the mammalian POU homeo domain proteins Pit-1, Oct-1, and Oct-2, DNA binding activity appears to require both the 60-amino-acid homeo domain, found in Drosophila, and the upstream POU-specific region (Ko et al. 1988; Sturm and Herr 1988; H. Ingraham and M.G. Rosenfeld, unpubl.). The highly conserved primary structure of these domains may explain, in part, the similarities in DNA-binding sites recognized by these factors and predicts that novel members of the family could possess similar binding specificities. Recent cloning of four new mammalian POU cDNAs confirms remarkable conservation of the POU region among these factors (He et al. 1989). Examination of the expression of seven POU domain genes in the developing fetal rat brain demonstrated marked spatial and temporal restrictions in the appearance or disappearance of each POU mRNA. Although the role of the gene products in developmental regulation is undefined, it is tempting to propose that specific patterns of gene transcription, regulated by a combinatorial interaction
of POU proteins, contribute to the phenotypic maturation of cell groups in the developing organism.

As in the Drosophila system, regulation of tissue differentiation by multiple POU factors having nearly identical DNA-binding domains will require mechanisms to ensure the appropriate interactions of transcriptional regulators with the correct target genes. Because of structural divergence outside the POU homeo region, it is likely that members of the POU family will exhibit protein–protein interactions, thereby evoking different transcriptional responses. In the case of Oct-1 and Oct-2, which bind to identical DNA sequences, such interactions permit activation of different promoter types. Promoters containing the octamer motif and a TATA element are generally responsive to Oct-2, but not Oct-1, whereas those having an octamer and a PE (proximal element) are activated by Oct-1; TATA box promoters can become Oct-1-responsive in the presence of VP16, a viral trans-activator that interacts with the homeo domain protein [Gerster and Roeder 1988; Stern et al. 1989]. Other unique protein–protein interactions are suggested by the primary structures of POU factors revealing a heptameric leucine repeat [Landschulz et al. 1988] only in Oct-2 and by binding analyses demonstrating that Oct-2 contacts DNA as a monomer [Clerc et al. 1988], whereas Pit-1 forms dimers on DNA [V.R. Albert, unpubl.; H. Ingraham, in prep.].

In this study we investigated the contribution of the DNA-binding site toward selective trans-activation by pituitary- and lymphoid-specific POU homeo proteins. Two possible modes of differential gene activation by related POU factors are suggested by our data. The first is consistent with a general dependence of trans-activation on the affinity of POU factor-binding sites. High affinity Pit-1 sites, WT-1P and CM-1, display marked Pit-1-responsiveness, whereas 1P mutants devoid of binding are completely inactive in transcription assays. Those variants that merely decrease the affinity of Pit-1 binding partially reduce the transcriptional efficacy of the site. In a similar manner, the OCT-1P element is a strong binding site for Oct-2 and serves as a response element for the lymphoid factor but fails to confer activation by Pit-1, which it binds less strongly.

A second site-dependent mode of transcriptional control is suggested by several cases in which the in vitro affinity of the site (as measured by competitive binding assays) is a poor predictor of its transcriptional function. The mutant sites CM-3 and CM-6, e.g., bind Pit-1 with apparent affinities at least 10-fold lower than WT-1P but demonstrate significant cis-activation in response to the factor [see Fig. 1C,D]. This may be similar to the case of Oct-2, where degenerate binding sites from Drosophila and yeast homeo box genes are bound by the factor at ~10-fold lower affinity than elements containing the octamer sequence ATTTGCAT [Ko et al. 1988; Scheidereit et al. 1988]; however, in transfected cells, cloned Oct-2 activates two Drosophila gene promoters that contain degenerate octamer motifs [Ultrabithorax and Abdominal-B] with about the same efficiency as ATTTGCAT-containing constructs [Thali et al. 1988]. The ability of weaker binding sites to confer regulation may reflect stabilization of POU protein–DNA interaction by other proteins in transcription complex. Given the transcriptional activity of these lower affinity Pit-1 sites, it is surprising that the OCT-1P site is completely inactive, either in Pit-1-containing nuclear extracts or in transfected GC cells. The explanation may be that in vitro binding assays with short elements do not accurately reflect the affinity of POU protein–DNA interactions during assembly of transcription complexes; however, in this case [unlike that of CM-2, CM-3, and CM-6], binding of Pit-1 to an OCT-1P/promoter unit would require destabilization to account for the absence of transcription. A second explanation, that Pit-1 is excluded from binding to OCT-1P by high-affinity Oct-1/OCT-1P interactions, appears unlikely [discussed in Results], given the predominance of Pit-1/OCT-1P, rather than Oct-1/OCT-1P complexes in GC nuclear extracts. A third explanation is that Pit-1 binds stably to OCT-1P-containing promoters but in a transcriptionally inactive conformation. Although recent studies with transcriptionally active GAL4- or LexA-homeo proteins fusions have suggested that trans-activation by homeo domain-containing proteins is a simple consequence of their binding to DNA and might not require the homeo domain [Fitzpatrick and Ingles 1989; Samson et al. 1989], the potential regulatory role of homeo domain–DNA interactions is still unclear. There is evidence that the transcriptional activity of some factors is dictated, in part, by the primary structure of the DNA-binding site. In the case of the steroid/thyroid hormone receptor family, receptors for thyroid hormone bind to thyroid hormone response elements or to estrogen response elements with equally high affinity, but estrogen response elements, which resemble gapped mutants of the thyroid hormone response element, cannot confer thyroid hormone-dependent gene activation [Glass et al. 1988]. More recently, the lymphoid factor NF-kB was shown to bind with equally high affinity to sites in the interleukin-2 receptor α-chain gene and immunoglobulin κ-chain gene but to activate transcription only in the latter case [Cross et al. 1989]. A 2-base mutation yielding the high affinity site of the interleukin receptor gene within the context of the κ-chain gene was able to block the transcriptional response to NF-kB. These studies demonstrate that neither binding site affinity nor flanking DNA sequences in the promoter can completely account for trans-activation by some factors and suggest that the primary structure of the site may impact on the ability of the factor to be configured in a transcriptionally active mode.

In conclusion, we have determined, by mutagenesis, sequences in the rat prolactin and growth hormone genes necessary for high-affinity binding of native and cloned Pit-1 and have defined bases in the prolactin site critical for trans-activation. A double point mutation in this binding site created a strong response element for the B-cell factor, Oct-2. Cross recognition of Pit-1 and Oct-2 sites was observed, whereas cross activation of sites by these factors was not. Our data demonstrate that high-affinity binding sites for the POU factors Pit-1 and Oct-2 function as response elements but suggest that
not all binding sites are transcriptionally active. The domains of the Pit-1 protein required for binding to DNA in a transcriptionally competent form are currently under investigation to further define the contribution of the recognition element at a molecular level.

Materials and methods

Mutant Pit-1 sites

Mutagenesis of the prolactin 1P region [−64 to −38] was performed using 28-bp binding sites. Gel-purified templates [sense strand] containing clustered point mutations in the 5’ half of the sequence [−62 to −52, CM-1, CM-2, CM-3, PAL-1P] were annealed to a primer, 5’-CACCTTCATGAAAT (antisense strand), and filled with Klenow to generate the binding site. Antisense templates containing mutations in the 3’ half of the 1P element (−51 to −40, CM-4, CM-5, CM-6, CM-7) were annealed to a second primer, 5’-GCTGATATTATA, and filled. The sequence of the CAMP response element [CRE] from the α-subunit of the human chorionic gonadotropin gene is 5’-TGACCTCAATCGTACATGCTACATCGTACAC.

Binding analysis

Gel shift analysis [Fried and Crothers 1981], using 32P-labeled WT-1P [−64 to −38] or OCT-1P sites, was performed as described [Elsholtz et al. 1986], except that [1] the reaction buffer contained 4% Ficoll, 25 mM HEPES [pH 7.8], 60 mM NaCl, 1 mM DTT, and 67 μg/ml poly[dI-C)], and [2] electrophoresis of samples was carried out for 20 min. Nuclear extracts and phosphocellulose-fractionated bacterial lysates were prepared as outlined previously [Mangalam et al. 1989]. Reticulocyte lysates [Promega] were primed with 0.02 μg Pit-1 mRNA [synthesized using a T3 polymerase/Bluescript system], and 3 μl of the 50-μl reaction mixture used in the DNA-binding reaction. Probe used was 5–10 fmol per reaction. Concentration of competitor oligomers was determined by fluorimetry [SLM, Model II]. For quantitation of competition data, labeled protein–DNA complexes and unbound probe were excised from the gel following autoradiography, and the fraction of total radioactivity in each species was measured by scintillation counting.

Methylation interference

WT-1P or OCT-1P sites, 32P-labeled on one 5’ terminus, were partially methylated with dimethylsulfate, incubated with nuclear extracts, and separated into bound and free forms on native 5% polyacrylamide gels. After brief autoradiography, both forms were purified from excised gel sections using DE-81 paper, cleaved with 0.5 M piperidine, and analyzed on denaturing gels [Siebenlist and Gilbert 1980; Glass et al. 1988].

In vitro transcription and transfection analyses

For in vitro transcription assays, blunt-ended 1P variants were inserted in direct orientation 5’ to a truncated prolactin promoter [−36 to +34] fused to the luciferase gene [De Wet et al. 1987]. Promoter activity was assayed in the presence of 15 μl GC nuclear extract [−5 mg/ml] and 0.5 μg plasmid, using primer extension [Nelson et al. 1988]. GC cells were transiently transfected as described [Nelson et al. 1986]. HeLa and B82 cells were transfected using the calcium–phosphate procedure [Chen and Okayama 1987]. Lymphoid cell lines S-194 and BJA-B were transfected at a density of 4 × 106 to 5 × 106 cells per plate using 10 μg plasmid and a final DEAE–dextran concentration of 200 μg/ml. After a 30-min incubation, cells were chloroquine-shocked [100 μM] and incubated for an additional 2 hr before washing and resuspension in fresh serum-containing medium. All cells were harvested 48 hr post-transfection, and luciferase activity was measured by luminometry [Nelson et al. 1988].

Acknowledgments

We thank Holly Ingraham for helpful discussion and for providing Pit-1 capped transcripts, Harry Mangalam and Michael Kapiloff for providing purified and bacterially expressed Pit-1 protein, respectively, and Charles Nelson for making the cell analyses possible. We thank Ian Trowbridge for gifts of B-JAB cells. We also thank the members of our laboratory for advice and discussion in preparation of the manuscript. These studies were supported by grants from the NIH. Maurice N. Treacy is a recipient of an EMBO long-term post-doctoral fellowship. Michael G. Rosenfeld is an investigator at the Howard Hughes Medical Institute.

References

Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.
Behringer, R.R., L.S. Mathews, R.D. Palmer, and R.L. Brinster. 1988. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev. 2: 452–461.
Bodner, M., J.-L. Castrillo, L.E. Theill, T. Deerinck, M. El-lisman, and M. Karin. 1988. The pituitary-specific transcription factor GHB-1 is a homeobox-containing protein. Cell 55: 505–518.
Borrelli, E., R.A. Heyman, C. Arias, P.E. Sawchenko, and R.M. Evans. 1989. Transgenic mice with inducible dwarfism. Nature 339: 538–541.
Cao, Z., E.A. Barron, A.J. Carrillo, and Z.D. Sharp. 1987. Reconstitution of cell-type-specific transcription of the rat prolactin gene in vitro. Mol. Cell. Biol. 7: 3402–3408.
Chen, C. and H. Okayama. 1987. High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7: 2745–2752.
Clerc, R.G., L.M. Corcoran, J.H. LeBowitz, D. Baltimore, and P. Sharp. 1988. The B-cell specific Oct-2 protein contains POU box and homeo box-type domains. Genes Dev. 2: 1570–1581.
Crenshaw, Ill, E.B., K. Kalla, D.M. Simmons, L.W. Swanson, and M.G. Rosenfeld. 1989. Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements. Genes Dev. 3: 959–972.
Cross, S.L., N.F. Halden, M.J. Lenardo, and W.J. Leonard. 1989. Functionally distinct NF-κB binding sites in the immunoglobulin κ and IL-2 receptor α chain genes. Science 244: 466–469.
Desplan, C., J. Theis, and P.H. O’Farrell. 1988. The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081–1090.
DeWet, J.R., K.V. Wood, M. Deluca, D.R. Helinski, and S. Braman. 1987. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725–737.
Elsholtz, H.P., H.J. Mangalam, E. Potter, V.R. Albert, S. Supowit, R.M. Evans, and M.G. Rosenfeld. 1986. Two different cis-active elements transfer the transcriptional effects of both EGF and phorbol esters. Science 234: 1552–1557.
Fitzpatrick, V.D. and C.J. Ingles. 1989. The Drosophila fushi tarazu polypeptide is a DNA-binding transcriptional activator in yeast cells. Nature 337: 666–668.
Fried, M. and D.M. Crothers. 1981. Equilibrium and kinetics of Lac repressor operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9: 6505–6525.
Two-base change switches POU factor specificity

Mangalam, H.J., V.R. Albert, H.A. Ingraham, M. Kapiloff, L. Wilson, C. Nelson, H. Elsholz, and M.G. Rosenfeld. 1989. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 3: 946–958.

Muller, M.M., S. Ruppert, W. Schaffner, and P. Matthias. 1988. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336: 544–551.

Nature 332: 577–562.

Robertson, M. 1988. Homeo boxes, POU proteins and the limits to promiscuity. Nature 336: 522–524.

Samson, M.-L., L. Jackson-Grubay, and R. Brent. 1989. Gene activation and DNA binding by Drosophila Ubx and abd-A proteins. Cell 57: 1045–1053.

E.M. 7: 1721–1733.

Scott, M.P. and S.B. Carroll. 1987. The segmentation and homeotic gene network in early Drosophila development. Cell 51: 689–698.

Siebenlist, U. and W. Gilbert. 1980. Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. 77: 122–126.

Staudt, L.M., H. Singh, R. Sen, T. Wirth, P.A. Sharp, and D. Baltimore. 1986. A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 323: 640–643.

Staudt, L.M., H. Singh, R. Sen, J.H. LeBowitz, P.A. Sharp, and D. Baltimore. 1988. Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science 241: 577–580.

Stern, S., M. Tanaka, and W. Herr. 1989. The Oct-1 homeomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 341: 624–630.

Sturm, R.A. and W. Herr. 1988. The POU domain is a bipartite DNA binding structure. Nature 366: 601–604.

Sturm, R.A., D. Gokul, and W. Herr. 1988. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeobox DNA binding structure. Genes Dev. 2: 1764–1778.

Tanaka, M., U. Grossniklaus, W. Herr, and N. Hernandez. 1988. Activation of the U2 snRNA promoter by the octamer motif defines a new class of RNA polymerase II enhancer elements. Genes Dev. 2: 1764–1778.

Thali, M., M.M. Müller, M. Delorenzi, P. Matthias, and M. Benz. 1988. Drosophila homeotic genes encode transcriptional activators similar to mammalian OTF-2. Nature 332: 858–861.

Wirth, T., L.M. Staudt, and D. Baltimore. 1987. An octamer oligonucleotide upstream of the TATA motif is sufficient for lymphoid-specific promoter activity. Nature 329: 174–178.
A two-base change in a POU factor-binding site switches pituitary-specific to lymphoid-specific gene expression.

H P Elsholtz, V R Albert, M N Treacy, et al.

Genes Dev. 1990, 4:
Access the most recent version at doi:10.1101/gad.4.1.43