ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS

LIANG-YU HSIEH AND DAH-ChIN LUOR

Abstract. In this paper we obtain an upper bound and a lower bound for each vertical scaling factor s_k of an iterated function system so that the obtained affine fractal interpolation function f_Δ has the property that $R(x) - d \leq f_\Delta(x) \leq R(x) + D$ for all $x \in I$, where D and d are given positive constants and $R(x) = mx + c$ is a given linear function on I. As an example, we consider the case that the graph of R is the regression line that fits the given data points by least square method.

Mathematics subject classification (2020): Primary 28A80; Secondary 65D05.

Keywords and phrases: Parameter identification, fractals, interpolation, fractal interpolation functions.

REFERENCES

[1] M. F. BARNSLEY, Fractal functions and interpolation, Constr. Approx. 2 (1986), 303–329.
[2] M. F. BARNSLEY, Fractals Everywhere, Academic Press, New York, 1988.
[3] M. A. NAVASCUÉS, A. K. B. CHAND, V. P. VEEDU, AND M. V. SEBastiÁN, Fractal interpolation functions: a short survey, Applied Mathematics 5 (2014), 1834–1841.
[4] L. DALLA AND V. DRAKOPOULOS, On the parameter identification problem in the plane and the polar fractal interpolation functions, J. Approx. Theory 101 (1999), 289–302.
[5] P. MANOUSOPOULOS, V. DRAKOPOULOS, AND T. THEOHARIS, Parameter identification of 1D fractal interpolation functions using bounding volumes, J. Comput. Appl. Math. 233 (2009), 1063–1082.
[6] P. MANOUSOPOULOS, V. DRAKOPOULOS, AND T. THEOHARIS, Parameter identification of 1D recurrent fractal interpolation functions with applications to imaging and signal processing, J. Math. Imaging Vision 40 (2011), 162–170.
[7] A. K. B. CHAND, N. VIJENDER, AND M. A. NAVASCUÉS, Shape preservation of scientific data through rational fractal splines, Calcolo 51 (2014), 329–362.
[8] P. VISWANATHAN AND A. K. B. CHAND, A fractal procedure for monotonicity preserving interpolation, Appl. Math. Comput. 247 (2014), 3190–3204.
[9] P. VISWANATHAN, A. K. B. CHAND, AND R. P. AGARWAL, Preserving convexity through rational cubic spline fractal interpolation function, J. Comput. Appl. Math. 263 (2014), 262–276.
[10] P. VISWANATHAN, A. K. B. CHAND, AND M. A. NAVASCUÉS, Fractal perturbation preserving fundamental shapes: bounds on the scale factors, J. Math. Anal. Appl. 419 (2014), 804–817.