Any non-affine one-to-one binary gate suffices for computation

Seth Lloyd

T-13, Center for Nonlinear Systems
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract: Any non-affine one-to-one binary gate can be wired together with suitable inputs to give AND, OR, NOT and fan-out gates, and so suffices to construct a general-purpose computer.
Introduction

Since the discovery [1] that the process of computation can in principle be carried out reversibly, without dissipation, a number of designs for reversible computers have been proposed [2-5]. At the heart of many such designs lies a reversible logic gate, that is capable of performing basic logical operations in a manner that discards no information: the output of such a gate is a one-to-one function of its input. A number of physical systems have been proposed to realize such logic gates using, for example, a classical hard sphere gas in a periodic potential [4], or nonlinear optics [6-7].

For the moment, such proposals are far from realizing a working, non-dissipative gate that exhibits sufficient stability and noise resistance to be wired together in a general-purpose computer [8-9]. Even if such computers could be made to work, they would have a hard time initially, competing with the present day’s remarkably speedy and efficient semiconductor based machines. But semiconductors have limits on maximum speed and minimum dissipation. If these limits are to be surpassed, some day, new technologies must be made available.

The present paper shows that any physical process that can give a non-affine one-to-one binary logic gate can serve as a basis for constructing a computer. In a companion paper [10], it is shown that if linear operations are supplemented by any nonlinear gate at all, the resulting set of operations suffices for computation. Whether these results can facilitate actually building working computers is an open question. However, no nonlinear effect can be ruled out a priori as a basis for computation.

One-to-one logic gates

The original one-to-one logic gate to be proved to suffice for computation is the Fredkin gate [4]. This gate has three binary inputs, x, y, z and three binary outputs x', y', z'. The first input passes through unchanged: $x' = x$. If the first input is zero, then the second and third inputs are passed through unchanged: $x = 0 \rightarrow y' = y, z' = z$. If the first input is one, the second and third inputs are interchanged: $x = 1 \rightarrow y' = z, z' = y$. The Fredkin gate is clearly one-to-one. To suffice for computation, several copies of the gate must be able to be wired together, with some inputs fixed to certain values, to function as AND,
OR, NOT, and fan-out gates (a fan-out gate is one that outputs two copies of its input). AND, OR, NOT and fan-out gates form a basis for computation, in the sense that copies of these gates can be wired together to give any desired logic circuit.

(1) Fan-out: If the second and third inputs are fixed to zero and one respectively, then the first and second outputs are copies of the first input. That is, \(y = 0, z = 1 \rightarrow x' = x, y' = x \). So the Fredkin gate can be used to make copies of bits.

(2) NOT: With the same inputs as for constructing the fan-out gate, the third output is equal to the negation of the first input: \(z' = \text{NOT} \ x \).

(3) AND: If the third input is fixed to zero, then the third output is one if and only if the first and second inputs are one, and zero otherwise: \(z = 0 \rightarrow z' = x \ \text{AND} \ y \).

(4) OR: If the third input is fixed to one, then the second output is zero only if the first and second inputs are zero, and one otherwise: \(z = 1 \rightarrow y' = x \ \text{OR} \ y \).

A set of gates is a basis for computation if gates form the set can be wired together to realize any logic circuit. Since AND, OR, NOT and fan-out gates can be wired together to realize any logic circuit, the Fredkin gate alone can be wired together with some inputs fixed to create an arbitrary circuit, and so forms a basis for computation.

Any non-affine one-to-one binary gate suffices for computation

The result is proved in three steps. First, it is shown that any non-affine binary gate, together with NOT and fan-out, gives a basis for computation. Second, any injective non-affine binary gate (an injective gate is one for which no two sets of values for the inputs gives the same set of values for the outputs) is shown to give a basis for computation when combined with NOT alone. Third and finally, any one-to-one non-affine binary gate is proved to provide a basis for computation on its own.

Consider an arbitrary \(n \)-input, \(m \)-output, non-affine binary gate, with inputs \(x_1, \ldots, x_n \) and outputs \(x'_1, \ldots, x'_m \). An affine function of \(x_1, \ldots, x_n \) can be written \(f(x_1, \ldots, x_n) = a_0 + a_1 x_1 + \ldots + a_n x_n \), where addition and multiplication are defined modulo 2. An \(n \)-input \(m \)-output gate is non-affine if at least one of its outputs is not an affine function of its inputs.
(1) Any n-input, m-output non-affine binary gate can be combined with NOT and fan-out to give a basis for computation.

Proof: By induction on the number of inputs. Inductive hypothesis: Assume that any $k - 1$ input non-affine binary gate can be combined with NOT to give AND and OR. This hypothesis is true by inspection for 2-input gates: such gates must have at least one output that is a non-affine function of its inputs, and any 2-input, 1-output gate can be combined with NOT to give AND and OR. Now consider a k-input non-affine gate: one of the gate’s outputs x' is a non-affine function of the inputs. There are two cases to consider:

i. The output, x', is a non-affine function of $k - 1$ inputs for some value of the kth input. In this case, the gate suffices to construct AND and OR gates by the inductive hypothesis.

ii. The output, x' is an affine function of $k - 1$ inputs for any value of the kth input:

$$x' = a_0 + a_1 x_1 + \ldots + a_{k-1} x_{k-1} \text{ for } x_k = 0$$

$$x' = b_0 + b_1 x_1 + \ldots + b_{k-1} x_{k-1} \text{ for } x_k = 1.$$

The only way that x' can be a non-affine function of the inputs is for at least one of the $a_i \neq b_i$ for $1 \leq i \leq k - 1$. But in this case, x' is a nonlinear function of x_i and x_k alone, for any values of the other inputs. The gate can then be used as a 2-input, non-affine binary gate with inputs x_i, x_k and output x', which can be combined with NOT to give AND and OR.

So by induction, any n-input non-affine binary gate can be combined with NOT to give AND and OR. Since NOT, AND, OR and fan-out give a basis for computation, any non-affine gate together with NOT and fan-out gives a basis for computation.

(2) Any non-affine injective binary gate together with NOT gives a basis for computation.

The idea of this proof is simple: it is shown that any non-affine injective gate can be combined with NOT to give a fan-out gate. Since any non-affine gate combined with NOT and fan-out suffices for computation, as in (1) above, any non-affine injective gate together with NOT gives a basis for computation.
Fan-out: By the proof of (1), any injective non-affine binary gate can be combined with \(NOT \) to create a logic circuit in which all inputs but two are fixed, and one of the outputs is the \(AND \) of the two inputs that are varied. Since the gate is injective, the resulting circuit is also injective, and one must be able to recreate the values of the two variable inputs from looking at the values of the outputs when those inputs are varied. A 2-input injective gate that includes \(AND \) as one of its outputs must have at least three outputs that vary when the two inputs vary. One can prove by inspection that for some value of one of the inputs of a 2-input, \(m \)-output injective gate that has \(AND \) as one of its outputs, varying the other input must induce a correlated variation in at least two of the outputs.

But any gate that has at least two outputs vary with one of its inputs can be combined with \(NOT \) to make a fan-out. So an injective non-affine binary gate can be combined with \(NOT \) to give a fan-out, and hence a basis for computation.

(3) Any one-to-one non-affine binary gate gives a basis for computation.

To prove this, one need only show that any one-to-one non-affine binary gate can be used to realize a \(NOT \) gate. (2) above then implies that such a gate provides a basis for computation.

To be one-to-one, an \(n \)-input non-affine binary gate must have \(n \) outputs, as well. To realize a \(NOT \) gate, one need simply exhibit \(a_1, \ldots, a_{n-1} \) such that fixing \(n-1 \) of the inputs to these values, and varying the remaining input as \(x \), causes some one of the outputs to vary as \(NOT \ x \). In fact, the only one-to-one binary gates, affine or non-affine, that do not suffice to realize a \(NOT \) gate are those for which each input is passed through to some output unchanged.

Consider the input-output table for the gate, in which the inputs are listed as binary numbers in ascending order. If any column in the output table has a 1 at position \(r \) and a 0 at position \(2r \), then the gate can be used to realize a \(NOT \) gate. But if the gate is one-to-one, each column in the output part of the table must have an equal number of zeros and ones. The only columns that have equal numbers of ones and zeros, and in no place a 1 at position \(r \) and a 0 at position \(2r \) are of the form, 010101\ldots, 001100110011\ldots,
0000111100001111..., etc. That is, the only one-to-one binary gates that cannot be used to give NOT gates are gates, each of whose outputs is equal to some one of its inputs. Since such gates are trivially affine, any non-affine one-to-one binary gate realizes NOT. By (1) and (2) above, any \(n \)-input, \(n \)-output non-affine one-to-one binary gate suffices to construct NOT, AND, OR and fan-out gates, and so gives a basis for computation.

Conclusion

The results here are restricted to binary inputs and outputs. Devices with discrete inputs that can take on more than two values, and devices with continuous inputs behave somewhat differently. It is no longer the case, for example, that any non-binary non-affine device gives a basis for computation on its own. The reason is simple: with inputs and outputs taking on more than two values, devices with only one input and one output can be non-affine. Such devices have the wrong number of inputs and outputs to give AND, OR, or fan-out gates. One can show, however, that any non-affine device, discrete or continuous, can be combined with fan-out and suitable linear devices to give a basis for computation [10].

A further obstacle in applying the results derived here to physical systems is that the real, microscopic systems that might be used to construct fast, efficient computers are invariably subject to fluctuations and noise. Although von Neumann’s multiplexing technique can be employed to make the sort of gates discussed here reliable in the face of small amounts of noise [11], the conditions under which arbitrary noisy non-affine gates can be combined to construct arbitrary logic circuits are not known.
References:

[1] C.H. Bennett, *IBM J. Res. Develop.* **17**, 525-532 (1973).

[2] P. Benioff, *Phys. Rev. Lett.* **48**, 1581-1585 (1982).

[3] R.P. Feynman, *Opt. News.* **11**, 11-20 (1985).

[4] E. Fredkin and T. Toffoli, *Int. J. Theor. Phys.* **21**, 219-253 (1982).

[5] D. Deutsch, *Proc. Roy. Soc. Lond. A* **400**, 97-117 (1985).

[6] G.J. Milburn *Phys. Rev. Lett.* **62**, 2124-2127 (1989).

[7] Y. Yamamoto, M. Kitagawa, and K. Igeta, in *Third Asia/Pacific Physics Conference*, C.N. Ying, Y.W. Chan, K. Young, A.F. Leung, eds., World Scientific, Singapore (1988).

[8] R. Landauer, in *Nanostructure Physics and Fabrication*, M.A. Reed, W.P. Kirk, eds., Academic Press, San Diego (1989).

[9] R.W. Keyes, *Science* **230**, 138-144 (1985).

[10] S. Lloyd, *Phys. Lett. A* **167**, 255-260 (1992).

[11] J. von Neumann, *Probabilistic logics and the synthesis of reliable organisms from unreliable components*, lectures delivered at the California Institute of Technology (1952).