Abstract

Benchmark datasets have a significant impact on accelerating research in programming language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster machine learning research for program understanding and generation. CodeXGLUE includes a collection of 10 tasks across 14 datasets and a platform for model evaluation and comparison. CodeXGLUE also features three baseline systems, including the BERT-style, GPT-style, and Encoder-Decoder models, to make it easy for researchers to use the platform. The availability of such data and baselines can help the development and validation of new methods that can be applied to various program understanding and generation problems.

1 Introduction

Evans Data Corporation estimated that there were 23.9 million professional developers in 2019 and that the number was expected to reach 28.7 million in 2024. With the population of developers growing at such a rate, code intelligence that leverages artificial intelligence (AI) to help software developers improve the productivity of the development process is becoming increasingly important. It is commonly accepted that benchmarks have a significant impact on the growth of applied AI research. In this paper, we focus on establishing a benchmark dataset for code intelligence.

* indicates equal contribution and internship at Microsoft. Authors are listed in alphabetical order. Corresponding author is Nan Duan.

CodeXGLUE is publicly available at https://github.com/microsoft/CodeXGLUE. Participants can submit their results by emailing to codexglue@microsoft.com https://evansdata.com/press/viewRelease.php?pressID=278.
Table 1: A brief summary of CodeXGLUE, which includes tasks, datasets, languages, sizes in various states, and baseline systems. † indicates newly introduced datasets and ‡ means we introduce a new part for the existing dataset.

Category	Task	Dataset Name	Language	Train/Dev/Test Size	Baselines
Code-Code	Clone Detection	BigCloneBench [65]	Java	900K/416K/112K	CodeBERT
		POJ-104 [46]	C/C++	32K/5K/12K	
		Devign [91]	C	21K/7K/7K	
	Defect Detection	Devign [91]	C	21K/7K/7K	
	Cloze Test	CT-all†	Python,Java,PHP,JavaScript,Ruby,Go	-/-/176K	
		CT-max/min†	Python,Java,PHP,JavaScript,Ruby,Go	-/-/2.6K	
	Code Completion	PY150 [57]†	Python	95K/5K/50K	CodeGPT
	Code Repair	Github java corpus [1]†	Java	98K/12K/12K	
	Code Translation	CodeTrans†	Java-C#	10K/3K/1K	
Text-Code	Code Search	CodeSearchNet [12], AdvTest†	Python	251K/9.6K/19K	CodeBERT
		CodeSearchNet [12], WebQueryTest†	Python	251K/9.6K/1K	
	Text-to-Code Generation	CONCODE [74]	Java	100K/2K/2K	CodeGPT
Code-Text	Code summarization	CodeSearchNet [32]	Python,Java,PHP,JavaScript,Ruby,Go	908K/45K/53K	
Text-Text	Documentation Translation	Microsoft Docs†	English-Latvian/Danish/ Norwegian/Chinese	156K/4K/4K	

Automated program understanding and generation could increase the productivity of software developers. In fact, developers who want to find code written by others with the same intent can leverage code search systems [32, 20, 81, 52] to automatically retrieve semantically relevant codes through natural language queries. Similarly, developers who are confused about what to write next can use code completion systems [57, 1, 56, 66, 67, 8, 27, 7] to automatically complete the following tokens based on the edits made to the code.

In recent years, researchers have increasingly applied statistical models, including neural networks, to code intelligence tasks. Very recently, the application of pretrained models that learn from big programming language corpus has been inspired by the great success of pretrained models like BERT [14] and GPT [63] in natural language processing (NLP). These models, including CodeBERT [15] and IntelliCode Compose [67], have led to further improvements in code understanding and generation problems. However, the area of code intelligence lacks a benchmark suite that covers a wide range of tasks. The use of ImageNet [13] for computer vision and the use of GLUE [76] for NLP have shown that a diversified benchmark dataset has a significant impact on the growth of applied AI research.

To address this problem, we introduce CodeXGLUE, a machine learning benchmark dataset for program understanding and generation research that includes 14 datasets, a collection of 10 diversified programming language understanding and generation tasks and a platform for model evaluation and comparison. CodeXGLUE supports the following tasks:

- **code-code** (clone detection [65, 84, 46, 80, 9, 89, 86], defect detection [91, 55, 51, 42, 78], cloze test [15], code completion [57, 1, 56, 66, 67, 8, 27, 7], code repair [69, 4, 23, 26, 71, 73], and code-to-code translation [48, 37, 10, 41])
- **text-code** (natural language code search [32, 20, 81], text-to-code generation [34, 11, 87, 83, 85, 88, 35, 22])
- **code-text** (code summarization [33, 11, 16, 75, 81, 83, 3, 30, 82])
- **text-text** (documentation translation [36])

CodeXGLUE includes eight previously proposed datasets — BigCloneBench [65], POJ-104 [46], Devign [91], PY150 [57], Github Java Corpus [1], Bugs2Fix [69], CONCODE [34], and CodeSearchNet [32] — but also newly introduced datasets that are marked in Table 1. The datasets are chosen or created based on the consideration that the task has clear definition, the popularity and reputation

We plan to evolve the benchmark over time by extending to more tasks.
of the dataset in the community, and the volume of the dataset could support the development and
evaluation of data-driven machine learning methods. The datasets created by us include (1) two test
sets for cloze test that cover 6 programming languages, (2) two line-level code completion test sets in
Java and Python, respectively, (3) a code-to-code translation dataset between Java and C#, (4) two
natural language code search test sets with web queries and normalized function and variable names,
respectively, and (5) a documentation translation dataset that covers five natural languages.

To make it easy for participants, we provide three baseline models to help perform the tasks, in-
cluding a BERT-style pretrained model (in this case, CodeBERT) to supports code understanding
problems, a GPT-style pretrained model, which we call CodeGPT, to help solve completion and gen-
eration problems, and an Encoder-Decoder framework that tackles sequence-to-sequence generation
problems.

2 Tasks and Datasets

CodeXGLUE consists of 14 different datasets falling into 10 diversified tasks. In this section, we
provide a definition for each task and describe the dataset details. All the datasets are available under
a permissive license that allows computational use purposes, such as artificial intelligence, machine
learning, and text and data mining.

Tasks Choice CodeXGLUE aims to covering the most common scenarios for software development.
Assuming there is a developer who wants to build a software system. Since it is difficult to build
from scratch, he would like to start with an open-source project to get familiar with how to build a
software system. But the developer still finds it difficult to understand the intention of some methods
written by others because no documentation is provided. So he needs code summarization systems to
generate comments for source codes. In another case, if the documentation is written in a language he
can’t understand, he can use documentation translation systems to translate the comments. When the
developer starts writing codes, he might be confused about what to write next. Code recommendation
systems can give him suggestions on the next token, the unfinished line or even a whole method
and improve the efficiency of the development process, which is the code completion task and code
generation task’s purpose. From time to time, he would be stuck by implementing a specific function,
e.g., the quick sort algorithm. What he is most likely to do next is to search “how to implement
quick sort algorithm” in a search engine and expect to find a solution. This is what the natural
language code search task aims to doing. When the developer finds a code snippet which could be
helpful to him but he wants to implement the same function in another programming language, he
can leverage code translation systems to translate one function from one programming language to
another. When he finally finishes building a software system, there might be some bugs or defects
in his codes. The defect detection task and the code repair task are to find the bugs and defects and
auto-fix them. During the process described above, the developer reuses code fragments from other
projects, which leads the software system containing clone codes. Studies \cite{6, 60} have shown that
a software system usually contain 7-23% clone codes. Detecting and refactoring cloned codes are
beneficial for maintaining the software quality. That’s why we add the clone detection task. And
the cloze test task is served as a probing task, which has been widely used in NLP \cite{50, 68}. It can
intuitively evaluate models’ ability to understand code semantics.

2.1 Clone detection

Clone detection is to measure the semantic similarity between source codes. It includes two subtasks.
The first subtask is to predict whether two given codes have the same semantics. We use the
BigCloneBench \cite{65} dataset for the subtask. The second subtask aims to retrieve semantically similar
codes given a code as the query and we use the dataset POJ-104 \cite{46} to perform it.

BigCloneBench \cite{65} is a widely used large code clone benchmark that contains over 6,000,000 true
clone pairs and 260,000 false clone pairs from 10 different functionalities in 25,000 projects. Each
code fragment is a Java method and all possible pairwise combinations of code fragments are clone
pairs. We follow Wang et al. \cite{80}, filtering the dataset by discarding code fragments that are not in
any tagged true or false clone pairs, leaving it with 9,134 Java code fragments. Finally, the dataset
includes 901,028/415,416/415,416 clone pairs for training, validation and testing, respectively. Since
the number of false clone pairs is much more than that of true clone pairs, we use F1 score as the
metric.
POJ-104 [46] comes from a pedagogical programming open judge (OJ) system that automatically judges the validity of submitted source code for specific problems by running the code. POJ-104 consists of 104 problems and each problem includes 500 student-written C/C++ programs. Different from that of the BigCloneBench dataset, the task of POJ-104 aims to retrieve other 499 programs that solve the same problem given a program. We group the dataset in three subsets based on the number of problems (64/16/24) for training, validation, and testing. Mean Average Precision (MAP) is used as the metric.

2.2 Defect detection

The task is formulated as a binary classification to predict whether a code snippet contains defects. We use Devign which is provided by Zhou et al. [91] and includes 27,318 manually-labeled functions collected from two large C programming language open-source projects popular among developers and diversified in functionality, i.e., QEMU and FFmpeg. The dataset is created by collecting security-related commits and extracting vulnerable or non-vulnerable functions from the labeled commits. Since Zhou et al. [91] do not provide official training/validation/testing split, we randomly shuffle the dataset and split it by 8:1:1 for training/validation/testing. Accuracy is used as the metric.

2.3 Cloze test

The cloze test (CT) task in code domain aims to assess models’ ability to understand a code by asking those models to predict the masked code from several candidates. We focus on two subtasks: CT-all with candidates from a filtered vocabulary and CT-maxmin with the candidates “max” and “min”. Accuracy is used as the metric for both datasets.

We use the validation and testing sets of CodeSearchNet [32] to create CT-all and CT-maxmin datasets for six programming languages, i.e., Go, Java, JavaScript (JS), PHP, Python and Ruby. The data statistics are listed in Table 2.

CT-all is created by masking the cloze words in source codes. To less introduce lengthy variable names and avoid the issue caused by the use of different tokenizers, we select target cloze words by retaining unique words after Byte Pair Encoding [61], and we remove meaningless tokens like punctuations with handcrafted rules. At last, 930 tokens are selected among six languages in total. We select codes containing the 930 tokens and manually set threshold values of token occurrence to balance the frequency of the 930 tokens in CT-all.

To further evaluate models’ ability to understand code semantics, we introduce CT-maxmin to test how well model can distinguish the difference between max and min. It comes from the dataset used for the PL-Probing task in CodeBERT[15].

Table 2: Data statistics about the cloze test datasets.

Task	Go	Java	JavaScript	PHP	Python	Ruby	All
CT-all	25,282	40,492	13,837	51,930	40,137	4,437	176,115
CT-maxmin	152	482	272	407	1,264	38	2,615

2.4 Code completion

Code completion task aims to predict the following tokens based on the code context. Its subtasks are token-level completion and line-level completion. The former is to predict the next one token, while the latter requires models to complete an unfinished line. We use two influential datasets, PY150 [57] in python and Github Java Corpus [1] in Java. Accuracy is used as the metric for token-level completion. Exact match and Levenshtein edit similarity are served as metrics in the line-level completion subtask.

PY150 [57] is a Python dataset containing 150,000 Python source files collected from Github. We use the same 50,000 files for testing as the original split and 95,000/5,000 files for training and validation. We preprocess the corpora by tokenizing source codes, normalizing uncommon literals as introduced by Svyatkovskiy et al. [67], and adding a special token ⟨EOL⟩ (end-of-line) to mark the ending of a line explicitly. For line-level code completion, we create 10,000 examples from different files in
the test set of PY150 for testing. Since we intend to test model’s ability to autocomplete an arbitrary line, we select the line to be predicted at random. We generate a test case by ensuring that there is sufficient context, i.e., at least 15% of the whole file.

Github Java Corpus is a Java dataset mined by Allamanis and Sutton [1], and it collects over 14 thousand Java projects from Github. We follow the settings established by Hellendoorn and Devanbu [25], using 1% of the subset in the corpus. We have 12,934/7,189/8,268 files for training/validation/testing. We do the same preprocessing conducted on PY150, except adding the special token \(\langle EOL \rangle \) since in Java, semicolons and closing braces could indicate the ending of a code statement. For line-level code completion, we create 3,000 examples from different files in the test set of the corpus.

2.5 Code repair

Code repair aims to fix bugs in the code automatically. We use the Bugs2Fix dataset released by Tufano et al. [69]. The source is buggy Java functions, whereas the target is the corresponding fixed functions. To build this dataset, they collect every public GitHub event between March 2011 and October 2017 and identify all Java-file commits having a message containing the patterns [18]: (“fix” or “solve”) and (“bug” or “issue” or “problem” or “error”). For each bug-fixing commit, they extract the source code before and after the fixing process. Subsequently, they normalize all the names of the variables and custom methods, which enables the model to focus on learning bug-fixing patterns. They filter out the pairs that contain lexical or syntactic errors in either the buggy or fixed code, as well as the pairs with more than 100 atomic AST modification actions between the buggy and the fixed versions. Finally, they divide the whole dataset into two subsets based on the code length (small with tokens ≤ 50 and medium with tokens > 50 and ≤ 100). For the small subset, the numbers of training, validation, and testing samples are 46,680, 5,835, and 5,835, respectively. For the medium subset, the numbers are 52,364, 6,545, and 6,545, respectively. Exact match accuracy, BLEU and CodeBLEU are used as the metrics.

2.6 Code translation

This task involves translating a code snippet from one programming language to a different one. In this paper, we provide CodeTrans which consists of parallel code snippets between Java and C#. Following Nguyen et al. [48] and Chen et al. [10], we collect source codes from several open-source projects, i.e., Lucene[5] POI[6] JGit[7] and Antlr[8]. Those projects are originally developed in Java and then ported to C#. They are well-established systems with long developing histories and with both Java and C# versions in use.

Following Nguyen et al. [48], we conservatively search for the functions having the same signatures in the classes with the same/similar names and included in the same/similar directory structures of both Java and C# versions. We discard duplicate code pairs and the codes having multiple targets searched with the above method. We also remove the pairs whose number of overlapping tokens was less than 1/3 of the sentence length. To make our data more scalable for further syntactic and semantic analysis, we remove the functions with null function body according to their abstract syntax tree (AST). Finally, a function with no data-flow extracted from the AST of a specific function is also discarded.

At last, the total number of paired functions or methods is 11,800. We randomly select 500/1,000 pairs for validation/testing, leaving 10,300 pairs for training. Exact match accuracy, BLEU and CodeBLEU[59] are used as the metrics.

2.7 Code search

Code search measures the semantic relatedness between texts and codes. It includes two subtasks. The first one is to find the most relevant code from a collection of candidates given a natural language query. We create a challenging testing set, called CodeSearchNet AdvTest, from CodeSearchNet

\[^{5}http://lucene.apache.org/\]
\[^{6}http://poi.apache.org/\]
\[^{7}https://github.com/eclipse/jgit/\]
\[^{8}https://github.com/antlr/\]
corpus \[32\] for performing this task. The second subtask is a binary classification to predict whether a code answers a given query. We provide \textbf{WebQueryTest} of real user queries.

\textbf{CodeSearchNet AdvTest} is the abbreviation of CodeSearchNet Adversarial Test Dataset. It is a Python dataset from the CodeSearchNet \[32\] corpus. Each example includes a function paired with a document. Following Husain et al. \[32\] to take the first paragraph of the documentation as the query for the corresponding function, we obtain a dataset with 251,820/9,604/19,210 examples for training/validation/testing after filtering some low-quality examples (See Appendix). Different from CodeSearchNet\[32\], to better test models’ understanding and generalization abilities, we normalize function and variable names in validation and testing sets like func for the function name and arg_i for the i-th variable name, which makes \textbf{CodeSearchNet AdvTest} dataset more difficult. In contrast to the testing phase of previous works \[32, 15\] that only involved 1,000 candidates, we use the entire testing set as candidates for each query. Mean Reciprocal Rank (MRR) is used as the metric for this dataset.

\textbf{WebQueryTest}. Most code search datasets use code documentations or questions from online communities for software developers as queries, but these are different from real user search queries. To fix this discrepancy, we provide WebQueryTest, a testing set of real code search for Python. The problem is formulated as a binary classification task and as a complementary setting to the retrieval scenario. Given a pair of query and code function, a model needs to classify whether the code function can answer the query or not. We invite 13 developers proficient in Python to annotate the examples and finally collect 1,046 labels of query and code pairs. The details of data collection and annotation are available in the Appendix. Since there lacks a direct training and validation set, we use the CoSQA \[31\] as the training resources with 20,604 pairs of query and code. Accuracy is used as the metric.

2.8 Text-to-code generation

Text-to-code generation aims to generate source code via a natural language description. To carry out this task, we use CONCODE \[34\], a widely used code generation dataset, which is collected from about 33,000 Java projects on GitHub. It contains 100,000 examples for training and 2,000 examples each for validation and testing. Each example is a tuple consisting of NL descriptions, code environments and code snippets. The dataset is tasked with generating class member functions from natural language descriptions (Javadoc-style method comments) and class environments. Class environment is the programmatic context provided by the rest of the class, including other member variables and member functions in the class. Exact match accuracy, BLEU and CodeBLEU are used as the metrics.

2.9 Code summarization

The objective is to generate the natural language comment for a code. We use the \textbf{CodeSearchNet} dataset \[32\] for this task. We take the first paragraph as the documentation and filter low-quality examples as we do in Section 2.7. The statistics about the filtered CodeSearchNet dataset are listed in Table 3. Exact match accuracy, BLEU and CodeBLEU are used as the metrics.

Table 3: Data statistics about the filtered CodeSearchNet dataset for the code summarization task.

Data Split	Go	Java	JavaScript	PHP	Python	Ruby
Training	167,288	164,923	59,025	241,241	251,820	24,927
Validation	7,325	5,183	3,885	12,982	13,914	1,400
Testing	8,122	10,955	3,291	14,014	14,918	1,261

2.10 Documentation translation

Documentation translation aims to translate code documentations automatically from one natural language (e.g., English) to another natural language (e.g., Chinese). The dataset we use in CodeXGLUE is crawled from Microsoft Documentation\[9\] including software and code description documentations in different languages. We introduce multilingual machine translation tasks, e.g., English ⇔ Latvian,

\[9\]https://docs.microsoft.com, whose document is located at https://github.com/MicrosoftDocs/.
Danish, Norwegian, and Chinese. We filter the corpus (See Appendix) to improve the data quality. The final training data includes 43K, 19K, 44K, and 50K sentence pairs for English ⇔ Latvian, English ⇔ Danish, English ⇔ Norwegian, and English ⇔ Chinese, respectively. In addition, each language pair has 1K sentence pairs for validation and testing, respectively. BLEU is used as the metric.

3 Baseline Systems

We provide three types of baseline models to perform the previously mentioned tasks, including a BERT-style pretrained model (in this case, CodeBERT[15]), which supports program understanding problems, a GPT-style pretrained model called CodeGPT that helps us solve completion and generation problems, and an Encoder-Decoder framework that tackles sequence-to-sequence generation problems.

3.1 CodeBERT

To carry out code understanding tasks like clone detection, defect detection, cloze test, and code search, we use CodeBERT [15] as our encoder. This is a bimodal pretrained model based on Transformer with 12 layers for programming language (PL) and natural language (NL). Feng et al. [15] introduce CodeBERT, which is initialized with RoBERTa and further trained by masked language modeling and replaced token detection objectives on the CodeSearchNet dataset [32], which includes 2.4M functions with document pairs for six programming languages. The model is publicly available at https://huggingface.co/microsoft/codebert-base.

3.2 CodeGPT

We provide CodeGPT, which is a Transformer-based language model pretrained on programming language (PL), to support the code completion and the text-to-code generation tasks. CodeGPT has the same model architecture and training objectives of GPT-2 [53], which consists of 12 layers of Transformer decoders. We train CodeGPT and CodeGPT-adapted. CodeGPT is pre-trained from scratch on Python and Java corpora from the CodeSearchNet dataset [32], which includes 1.1M Python functions and 1.6M Java methods. CodeGPT-adapted is further trained on CodeSearchNet from GPT-2 checkpoint. Both models are publicly available at https://huggingface.co/microsoft/CodeGPT-small-java and https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2.

3.3 Encoder-Decoder

For sequence-to-sequence generation problems like code repair, code translation, code summarization, and documentation translation, we provide an Encoder-Decoder framework. We initialize the encoder using CodeBERT [15] and use a randomly initialized Transformer with 6 layers, 768 dimensional hidden states and 12 attention heads as the decoder in all settings. We refer to this model as CodeBERT-EncDec.

4 Experiment

In this section, we report accuracy numbers of the baseline systems on 10 tasks.

Clone Detection Results achieved by different models are shown in Table 4. ASTNN [89] uses RNNs to encode AST subtrees for statements. FA-AST-GMN [80] uses GNNs over a flow-augmented AST to leverage explicit control and data flow information. Aroma [45] is a code recommendation engine that takes a partial code snippet and recommends a small set of succinct code snippets that contain the query snippet. MISIM-GNN [86] learns a structural representation of code from context-aware semantic structure designed specifically to lift semantic meaning from the code syntax. RoBERTa [44] and CodeBERT [15] are pretrained models which encode source code and take the

10Replace “java” with “py” for models pre-trained on python dataset.
representation to calculate semantic relevance of two code snippets through a feed forward network or inner product.

Table 4: Results on the clone detection task.

Model	BigCloneBench F1	POJ-104 F1	Overall
ASTNN	93.0	-	-
FA-AST-GMN	95.0	-	-
Aroma	-	55.12	-
MISIM-GNN	-	82.45	-
RoBERTa	94.9	76.67	85.8
CodeBERT	96.5	82.67	89.6

Defect Detection Table 5 shows the results of the models we implemented. We use Bidirectional LSTM (BiLSTM) [28], TextCNN [38], RoBERTa [44], and CodeBERT [15] to encode the representation of a source code, respectively. Then, a two-layer feed forward network followed by a softmax layer is used to calculate the probability of encountering vulnerabilities.

Table 5: Results on the defect detection task.

Model	Accuracy
BiLSTM	59.37
TextCNN	60.69
RoBERTa	61.05
CodeBERT	62.08

Cloze test Table 6 shows the results on the CT-all and CT-maxmin datasets. We report the performance of RoBERTa [44] and CodeBERT (MLM) [15], which is pretrained with the masked language modeling objective only.

Table 6: Results on the cloze test task.

Model	CT-all	CT-maxmin	Overall
Ruby / JS / Go / Python / Java / PHP	47.44 / 59.96 / 40.77 / 54.35 / 50.73 / 60.16	73.68 / 64.71 / 71.71 / 59.18 / 59.75 / 69.78	62.45
CodeBERT(MLM)	80.17 / 81.77 / 83.31 / 87.21 / 80.63 / 85.05	86.84 / 86.40 / 90.79 / 82.20 / 90.46 / 88.21	85.66

Code completion Table 7 shows the results of all models on both datasets. We train LSTM [28], Transformer [72] and fine-tune GPT-2 [53], CodeGPT and CodeGPT-adapted to generate the following tokens. The overall score on each dataset is the average value of the accuracy on token-level completion and the edit similarity on line-level completion.

Code repair Results are shown in Table 8. The Naïve method directly copies the buggy code as the repair result. With regard to the CodeBERT-EncDec method, we use the training data to fine-tune the whole model.

Code translation Table 9 shows the results of models on both translation directions. The Naïve method directly copies the source code as the translation result. PBSMT is short for phrase-based statistical machine translation [39]. RoBERTa (code) is initialized by RoBERTa and pre-trained on source code from CodeSearchNet[32]. The overall score is the average value of CodeBLEU on both directions.

Table 9: Results on the code translation task.

Model	Java→C# BLEU	C#→Java BLEU	C#→Java Acc	CodeBLEU C#→Java Acc	CodeBLEU Java→C# Acc	Overall
Naïve	18.54	-	18.69	0.0	-	
PBSMT	43.53	12.5	42.71	40.06	16.1	43.48
RoBERTa (code)	77.46	0.561	83.07	71.99	0.579	80.18
CodeBERT-EncDec	79.92	59.0	85.10	72.14	58.0	79.41

8
Table 7: Results on the code completion task.

Model	PY150	Github Java Corpus	Overall					
	token-level	line-level	token-level	line-level				
	Accuracy	EM	Edit Sim	Accuracy	EM	Edit Sim		
LSTM	61.94	23.77	56.26	58.92	12.97	42.10	54.81	
Transformer	74.48	38.51	69.01	65.18	17.00	50.23	64.73	
GPT-2	75.90	41.73	70.60	75.40	27.50	60.36	70.57	
CodeGPT	76.58	42.18	71.23	76.79	28.23	61.81	71.60	
CodeGPT-adapted	76.60	42.37	71.59	77.73	30.60	63.45	72.34	

Table 8: Results on the code repair task.

Model	small BLEU	Acc	CodeBLEU	medium BLEU	Acc	CodeBLEU
Naïve	78.06	0.0	-	90.91	0.0	-
LSTM	76.76	10.0	-	72.08	2.5	-
Transformer	77.21	14.7	73.31	89.25	3.7	81.72
CodeBERT-EncDec	77.42	16.4	75.58	91.07	5.2	87.52

Table 10: Results on the code search task.

Model	AdvTest	WebQueryTest	Overall
	MRR	Accuracy	
RoBERTa	18.33	50.38	34.34
CodeBERT	27.19	53.44	40.32

Table 11: Results on the text-to-code generation task.

Model	EM	BLEU	CodeBLEU
Seq2Seq	3.05	21.31	26.39
Seq2Action+MAML	10.05	24.40	29.46
Iyer-Simp+200 idoms	12.20	26.60	-
GPT-2	17.35	25.37	29.69
CodeGPT	18.25	28.69	32.71
CodeGPT-adapted	20.10	32.79	35.98

Table 12: Results on the code summarization task.

Model	Ruby	Javascript	Go	Python	Java	PHP	Overall
Seq2Seq	9.64	10.21	13.98	15.93	15.09	21.08	14.32
Transformer	11.18	11.59	16.38	15.81	16.26	22.12	15.56
RoBERTa	11.17	11.90	17.72	18.14	16.47	24.02	16.57
CodeBERT-EncDec	12.16	14.90	18.07	19.06	17.65	25.16	17.83

Table 13: Results on the documentation translation task.
Table 13: Results on the documentation translation task.

Model	EN → DA	EN → LA	EN → NO	EN → ZH	DA → EN	LA → EN	NO → EN	ZH → EN	Overall
Transformer	53.31	37.85	53.84	59.90	56.73	50.37	57.73	50.00	52.67
XLM-R	67.09	51.92	68.00	70.60	67.02	68.30	71.84	64.47	66.16

Overall Results: We find pretrained models outperform other models in all tasks. And models pretrained on code corpus (i.e., CodeBERT, CodeGPT, and CodeBERT-EncDec) achieve better results than RoBERTa that only learns from natural language. These experimental results demonstrate that pretraining is useful for code intelligence tasks. However, the improvement is quite limited in some tasks like clone detection, defect detection, code repair, etc. A potential direction for further improvement is to incorporate information from code structures such as Abstract Syntax Tree, data flow, control flow, etc.

5 Related Work

Benchmark datasets have been playing a central role in the growth of applied AI research. For example, the LibriSpeech [49] and the SQuAD [54] datasets drive the development of data-driven models for automatic speech recognition and reading comprehension of text, respectively. With the growing demand for testing models’ generalization ability on a wide range of applications, researchers have created or assembled datasets that cover many tasks. Representative samples of these datasets include ImageNet [13] for computer vision, GLUE [76] and SuperGLUE [77] for natural language understanding, XTREME [29] and XGLUE [43] for cross-lingual natural language processing. To the best of our knowledge, CodeXGLUE is the first diversified benchmark dataset that can be applied to various code intelligence problems.

Many tasks related to machine learning for software engineering [5] have sufficient amount of data to support the development of data-driven methods, but are not covered by CodeXGLUE. We plan to extend to these tasks in the future. For example, the idioms mining task [2][35] is to extract code idioms, which are syntactic fragments that recur across software projects and serve a single semantic purpose [2]. Bug localization [55][24][71] is to point the error location when a program fails tests. The test case generation task [19][70] is to generate unit test cases automatically. The program synthesis [47][58][62][74][17][40][90][87] extends the text-to-code generation task aims to generate programs from a specification [21], such as pseudocode, natural language description, and input/output examples.

6 Conclusion

With CodeXGLUE, we seek to support the development of models that can be applied to various program understanding and generation problems, with the goal of increasing the productivity of software developers. We encourage researchers to participate in the open challenge to make progress in code intelligence. Moving forward, we are planning to extend CodeXGLUE to more programming languages and downstream tasks while continuing to develop advanced pretrained models by exploring new model structures, introducing new pretraining tasks, using different types of data, and more.

References

[1] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using language modeling. In 2013 10th Working Conference on Mining Software Repositories (MSR), pages 207–216. IEEE, 2013.

[2] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 472–483, 2014.

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme summarization of source code. In International conference on machine learning, pages 2091–2100, 2016.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with graphs. arXiv preprint arXiv:1711.00740, 2017.
[20] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, page 933–944, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356381. doi:10.1145/3180155.3180167. URL https://doi.org/10.1145/3180155.3180167

[21] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[22] Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian Yin. Coupling retrieval and meta-learning for context-dependent semantic parsing. arXiv preprint arXiv:1906.07108, 2019.

[23] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, page 1345–1351. AAAI Press, 2017.

[24] Rahul Gupta, Aditya Kanade, and Shirish Shevade. Neural attribution for semantic bug-localization in student programs. In Advances in Neural Information Processing Systems, pages 11884–11894, 2019.

[25] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pages 763–773, 2017.

[26] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational models of source code. In International Conference on Learning Representations, 2019.

[27] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness of software. In 2012 34th International Conference on Software Engineering (ICSE), pages 837–847. IEEE, 2012.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[29] Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization. arXiv preprint arXiv:2003.11080, 2020.

[30] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with transferred api knowledge. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, page 2269–2275. AAAI Press, 2018. ISBN 97809999241127.

[31] Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan. Cosqa: 20,000+ web queries for code search and question answering. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, 2021.

[32] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436, 2019.

[33] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a neural attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2073–2083, 2016.

[34] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code in programmatic context. arXiv preprint arXiv:1808.09588, 2018.

[35] Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer. Learning programmatic idioms for scalable semantic parsing. arXiv preprint arXiv:1904.09086, 2019.

[36] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5:339–351, 2017.
[37] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical translation of programming languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming Software, Onward! 2014, page 173–184, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450332101. doi: 10.1145/2661136.2661148. URL https://doi.org/10.1145/2661136.2661148.

[38] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.

[39] Philipp Koehn, Franz J Och, and Daniel Marcu. Statistical phrase-based translation. Technical report, UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION SCIENCES INST, 2003.

[40] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. Spoc: Search-based pseudocode to code. In Advances in Neural Information Processing Systems, pages 11906–11917, 2019.

[41] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Unsupervised translation of programming languages. arXiv preprint arXiv:2006.03511, 2020.

[42] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. Improving bug detection via context-based code representation learning and attention-based neural networks. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–30, 2019.

[43] Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, et al. Xglue: A new benchmark dataset for cross-lingual pre-training, understanding and generation. arXiv preprint arXiv:2004.01401, 2020.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[45] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. Aroma: Code recommendation via structural code search. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–28, 2019.

[46] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree structures for programming language processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages 1287–1293, 2016.

[47] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

[48] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-conquer approach for multi-phase statistical migration for source code (t). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 585–596. IEEE, 2015.

[49] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE, 2015.

[50] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H. Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 2463–2473. Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1250. URL https://doi.org/10.18653/v1/D19-1250.

[51] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276517. URL https://doi.org/10.1145/3276517.
[52] Varot Premtoon, James Koppel, and Armando Solar-Lezama. Semantic code search via equa-
tional reasoning. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2020, page 1066–1082, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450376136. doi: 10.1145/3385412.3386001.
URL https://doi.org/10.1145/3385412.3386001.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[54] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[55] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and
Premkumar Devanbu. On the “naturalness” of buggy code. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pages 428–439. IEEE, 2016.

[56] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language
models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, page 419–428, New York, NY, USA, 2014. Association
for Computing Machinery. ISBN 9781450327848. doi: 10.1145/2594291.2594321. URL
https://doi.org/10.1145/2594291.2594321.

[57] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision
trees. ACM SIGPLAN Notices, pages 731–747, 2016.

[58] Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

[59] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297, 2020.

[60] Chanchal Kumar Roy and James R. Cordy. An empirical study of function clones in open
source software. In Ahmed E. Hassan, Andy Zaidman, and Massimiliano Di Penta, editors,
WCRE 2008, Proceedings of the 15th Working Conference on Reverse Engineering, Antwerp,
Belgium, October 15-18, 2008, pages 81–90. IEEE Computer Society, 2008. doi: 10.1109/
WCRE.2008.54. URL https://doi.org/10.1109/WCRE.2008.54.

[61] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[62] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example.
In International Conference on Computer Aided Verification, pages 398–414. Springer, 2015.

[63] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu,
Alec Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and
the social impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[65] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun
Mia. Towards a big data curated benchmark of inter-project code clones. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 476–480. IEEE, 2014.

[66] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: ai-assisted code
completion system. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2727–2735, 2019.

[67] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. arXiv preprint arXiv:2005.08025, 2020.
Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olympics - on what language model pre-training captures. CoRR, abs/1912.13283, 2019. URL http://arxiv.org/abs/1912.13283.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on Software Engineering and Methodology (TOSEM), 28(4):1–29, 2019.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test case generation with transformers. arXiv preprint arXiv:2009.05617, 2020.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural program repair by jointly learning to localize and repair. arXiv preprint arXiv:1904.01720, 2019.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test case generation with transformers. arXiv preprint arXiv:2009.05617, 2020.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test case generation with transformers. arXiv preprint arXiv:2009.05617, 2020.
Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang. Cocogum: Contextual code summarization with multi-relational gnn on umls. 2020.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code summarization. In Advances in Neural Information Processing Systems, pages 6563–6573, 2019.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code fragments for code clone detection. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 87–98. IEEE, 2016.

Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig. Incorporating external knowledge through pre-training for natural language to code generation. arXiv preprint arXiv:2004.09015, 2020.

Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marucs, Nesime Tatbul, Jesmin Jahan Tithi, Paul Petersen, Timothy Mattson, Tim Kraska, Pradeep Dubey, et al. Misim: An end-to-end neural code similarity system. arXiv preprint arXiv:2006.05265, 2020.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation. arXiv preprint arXiv:1704.01696, 2017.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to mine aligned code and natural language pairs from stack overflow. In International Conference on Mining Software Repositories, MSR, pages 476–486. ACM, 2018. doi: https://doi.org/10.1145/3196398.3196408.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural source code representation based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 783–794. IEEE, 2019.

Ruiqi Zhong, Mitchell Stern, and Dan Klein. Semantic scaffolds for pseudocode-to-code generation. arXiv preprint arXiv:2005.05927, 2020.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks. In Advances in Neural Information Processing Systems, pages 10197–10207, 2019.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. For each question, change the default [TODO] to [Yes], [No], or [N/A]. You are strongly encouraged to include a justification to your answer, either by referencing the appropriate section of your paper or providing a brief inline description. For example:

- Did you include the license to the code and datasets? [Yes] See Section ??.
- Did you include the license to the code and datasets? [No] The code and the data are proprietary.
- Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist section does not count towards the page limit. In your paper, please delete this instructions block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [No] But we will keep refining and extending the benchmark. See section [6]
 (c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] Please refer to https://github.com/microsoft/CodeXGLUE.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] We specify the data split in the main paper and hyperparameters on https://github.com/microsoft/CodeXGLUE.
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] In the supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes] See Section 2
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] Please refer to https://github.com/microsoft/CodeXGLUE.
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [Yes] We make sure every used dataset is open-sourced and with the right license by checking their Github pages or websites.
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [Yes] We use an internal tool to check our provided data to prevent offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]