Biotechnology in Nutrition and Food Engineering

Abstract

Biotechnology encompasses the basic and applied sciences of living systems and their engineering aspects required to exploit their bioprocesses to bring products to the market place.

While understanding of bioprocess technology has rapidly advanced in recent years, man has been practicing biotechnology since prehistoric times. Today biotechnology has moved beyond local production of alcohol or fermented foods to the production of bio-ingredients and refined products and it has a tremendous potential for further increasing food production, improving food raw materials and producing ingredients that will improve human health.

It should be understood that biotechnology is a collection of techniques some of which may involve genetic engineering for the production of genetically modified foods (GMO).

Since "biotechnology" can include numerous processes and applications, the term "genetically modified" is applied only to products that have been genetically engineered.

Genetically modified foods (GMO) have been hailed by some people as an indispensable tool for solving the world's food problems, and denounced by others as potentially catastrophic dangers on several grounds, including safety issues, and environmental concerns.

Keywords

Food biotechnology; Food bio ingredients; Functional foods; Agriculture biotechnology; Food enzymes; Bioconversion; Genetic engineering; Genetically modified foods

Abbreviations

GMO: Genetically Modified Foods; GRAS: Generally Recognized As Safe; FDA: Food and Drug Administration; USDA: United States Department of Agriculture; EPA: Environmental Protection Agency; APHIS: Animal and Plant Health Inspection Service

Introduction: Historical Perspective (Table 1)

Biotechnology refers to the use of living organisms to make useful products, and overlaps with bioengineering and industrial microbiology [1].

Biotechnology has been unwittingly used for several thousand years, initially in the area of food production and preservation as exemplified by the early production of alcoholic beverages and bread using microbial "contaminants. Our early ancestors used fermentation without knowing the existence of microbial life. Egyptians were brewing beer and producing baked products by the 4th millennium BC. Distillation of ethanol was developed and applied in China in the 2nd millennium.

The modern biotechnology developed from the 19th century after the discovery of microbiology and microbial life. Today, modern fermentation is still based on the principle of combining living matter (microorganisms) with nutrients under controlled conditions to produce high yield of the desired end products.

In the first half of the 20th century World War 1 drove the development of the first large scale fermentation processes outside of alcohol production, the acetone and butanol process for the production of explosives and the citric acid fermentation in response to the disruption of Italian citrus exports. The pressures of World War 2 brought us antibiotic fermentations in the form of penicillin and then streptomycin.

In the 1980s, recombinant gene technology led to the production of insulin for diabetes, rennet enzyme for cheese production [2,3] and genetically engineered yeast for baking [4,5]. These genetically engineered bio ingredients were the first products manufactured using recombinant technology.

Today genetically engineered microorganisms for the production of vitamins, organic acids, amino acids, sweeteners, edible oils and nutritional supplements can be developed from the insertion of a functional gene [6] (DNA) into a host such as Lactic acid bacteria [7] are a Gram positive bacteria present in fermented foods and are identified as Generally Recognized As Safe (GRAS).

These lactic acid bacteria and probiotic microorganisms in fermented foods have been used for many years for health reasons and are now an attractive alternative for treating of intestinal disorders and seem to influence the immune system via stimulating protective immune cells. Through genetic engineering, it is possible to strengthen the effect of existing probiotic[8] strains and create completely new probiotics [9] with multiple health benefits. These natural or genetically engineered beneficial bacteria might alter the ratio of "good to bad bacteria that inhabit the intestine, and might specifically block activity of food borne pathogens to prevent of gastrointestinal diseases.
Year	Discovery
10,000 BC	Wine making developed in Eastern Mediterranean
7,000 BC	Beer developed in Egypt and Babylon
5,000 BC	Cheese making and some medicinal plants were developed
4,000 BC	Vinegar was referenced in old testament
500 AD	Algae was cultivated for food consumption by Aztecs
500 AD	Yogurt, sauces and fermented foods were developed
1600	The name fermentation was used
1600	Van Leeuwenhoek observed yeast cells in alcohol fermentation
1781	Jenner demonstrated ability to confirm the resistance to smallpox infection by vaccination
1837	Cagniard-Latour, Schwann and Kützing independently hypothesized that yeast is a living thing (this is the first knowledge on cell theory)
1847	Blondeau studied fermentation of lactic acid, butyric acid, acetic acid and urea. He hypothesized that different fermentations carried out by different fungi
1870	The first experimental corn hybrid is produced in a laboratory
1875	Pasteur demonstrated that living yeast cells ferment sugar into ethanol and carbon dioxide. Pasteur, noted cylindrical organisms produced butyric acid only in the absence of oxygen (this is the first knowledge on anaerobic fermentation)
1859	Darwin published the Origin of Species
1877	Pasteur noted relationship between microorganisms and infection diseases (this is the first knowledge on pathogenic organisms)
1881	Koch developed techniques for the handling and maintenance of cultures (this is first modern industrial microbiology techniques)
1881	First commercial production of lactic acid by anaerobic fermentation
1894	Takamine patented process to isolate diastase enzyme from mold that break starch (this is the first knowledge on enzymes and its application)
1916	Germany produces baker's yeast grown on molasses as protein supplement. Also, produced glycerol by yeast fermentation
1911	American pathologist Peyton Rous discovers the first cancer-causing virus
1918	Great Britain produces acetone and butanol by anaerobic fermentation process
1923	Commercial production of citric acid by surface culture
1929	Fleming demonstrated that mold contaminant in a Petri-dish causes bacterial death. This is the first discovery of antibiotics
1933	Hybrid corn is commercialized
1934	Gautheret successfully cultured plant cells
1940	Florey and Chain isolated penicillin, elucidated its structure and demonstrated its ant-bacterial properties
1940	Waxman discovered streptomycin's. This is the first microbial screening method's
1950s	Waxman also, discovered vitamin B12.
1950s	The production of Cortisone at the cost of $200/g (now it’s cost is $16/g)
1960s	The production of Xanthus gum
1970s	The production of alginprotease for detergents industry
1970s	The discovery of glucose isomerase and the production of high fructose corn syrup (HFCS) as a sweetener
1980s	Human growth hormone is synthesized for the first time
1980s	Recombinant human insulin is produced for the first time
1980s	Kohler and Mülstein developed monoclonal antibodies
1980s	The production of polylacticacid (2-hydroxybutyrate)
	The U.S. Supreme Court approves the principle of patenting organisms
	Smallpox is globally eradicated following 20 years mass vaccination effort
	The first recombinant DNA vaccine for livestock is developed
	The first transgenic animals by transferring genes from other animals into mice
	The first biotechnology drug, human insulin approved by FDA
	Interferon the first anticancer drug produced through biotechnology
	The first pest resistant corn (Bt corn) is produced and approved by FDA

Table 1: History of biotechnology.
Biotechnology, including genetic engineering technology, is going to play an important role in the production for functional foods. Functional foods also known as Nutraceuticals [10] are going to be come preventive medicines and might help tackle health related issues. For example, it is widely believed that omega-3 fatty acids are beneficial against cardiovascular diseases.

In addition, genetically engineered technology has resulted in worldwide significant changes in plant [11,12] and livestock [13] production that will affect all steps of the production chain from agrochemical inputs and breeding to final food processing.

Because biotechnology process (fermentation) uses living materials, they offer several advantages over conventional chemical process (synthetic chemistry). Biotechnology can use renewable resources as raw materials and can operate at lower temperature, pressure and pH to produce high yield of end products with less energy consumption and cost.

In the most of biotechnology processes enzymes in whole microorganisms or extracted from cellular components are used to catalyze the biochemical reactions for the production of desired bio-products that have applications in food processing, functional foods, food supplements, pharmaceuticals, chemical industry, diagnostics, environmental cleanup, etc.

Enzymes are catalysts that can convert raw materials (substrates) to form desired end products [14]. These enzymes carry out the bioconversions. Early in the discovery of bioconversion process, three major challenges were present that are resolved by newly developed advanced technologies.

First challenge
Maintaining the desired optimum conditions (temperature, pressure, pH, oxygen levels, etc.) for the bioconversion process.

Solution: The development of automated and computerized equipments to assist in maintaining the desired optimum conditions for bioconversion process and monitoring the reactions. These instruments improved the bioconversion efficiency and increased the end-product yield.

Second challenge
The formation of unwanted impurities during the bioconversion process resulted in difficulties to produce the end-products in pure forms.

Solution: The development of separation and purification techniques for downstream process resulted in methods to economically produce highly pure end-products with higher recoveries.

Third challenge
The cost of catalytic enzymes used in the bioconversion process resulting in higher production cost.

Solution: The developments of Immobilized enzymes and cells systems for both continuous and semi-continuous bioconversion process have dramatically reduced the production cost of end products.

Food Biotechnology Regulation [15-18]
Food biotechnology is regulated under the same United States

1990s	The production of amino acids (lysine, threonine and isoleucine)
	The production of antibodies
	The production of 1,2-propanediol
	The first successful gene therapy is performed on a 4 years girl suffering from immune disorder
	The first breast cancer gene is discovered
	FDA approves bovine somatotropin (BST) for milk production increase in dairy cows
	Gene associated with Parkinson’s disease is discovered
	A sheep named Dolly in Scotland becomes the first animal cloned from an adult cell
	Diagnostic test for quick identification of BSE and CJD is developed
	The first genetically engineered crop is commercialized

2000s	The production 1,2-propanediol
	The production of xylitol
	The production of hydroxypropanoic acid
	Kenya field test for the first biotechnology crop (virus resistant sweet potato)
	FDA approves the first gene target drug for patient with chronic myeloid leukemia
	FDA approves the first transgenic rootswarm resistant corn
	Completes sequencing human genome
	UN Food and Agriculture organization endorse biotechnology crops
	FDA approves the first antiangiogenic drug for cancer
	FDA approves the first recombinant vaccine against human papillomavirus (HPV)
	USDA grants the first regulatory approval for a plant made vaccine
	FDA approves the first H5N1 vaccine for avian flu
	Global biotechnology crops acreage reaches 330 million acres
	FDA approves the first genetically engineered animal for the production of rh antithrombine

2010s	The creation of the first synthetic cell
	Advances in 3-D printing technology leading to skin printing
	Advances in stem cell technology

Citation: Ibrahim OO, Day DF (2014) Biotechnology in Nutrition and Food Engineering. J Nutr Health Food Eng 1(5): 00026. http://dx.doi.org/10.15406/jnhfe.2014.01.00026
laws that govern the health, safety, efficacy and environmental impacts.

Regulatory control on food biotechnology is the responsibility of three federal agencies:

The Food and Drug Administration (FDA)

Regulates novel substances in foods and feeds on the basis of dietary risk evaluating food safety allergy, and toxicity. The FDA has the right to ban any biotechnology food product that it determines is unsafe.

The United States Department of Agriculture (USDA)

Regulates genetically engineered plants under Animal and Plant Health Inspection Service (APHIS), it is assessing the impact of developed genetically engineered plant on the agriculture industry or the meat processing industry [19].

The Environmental Protection Agency (EPA)

Evaluates genetically engineered plants for environmental safety and evaluate risk assessments for potential harm to human and animal health. EPA is also, responsible in establishing tolerance and residue levels for pesticides in fruits and vegetables.

Future Perspectives of Bioprocess Industry

Today, the biotechnology industry has reached a rapid growth phase based on a broad understanding of genomics, proteomic [13], bioinformatics, genetic transformation and molecular breeding. These technologies are now being transferred to large scale biotechnology operations.

It is expected that genetically engineered hosts, such as insects, stem and plant cells, and transgenic plants or animals sooner or later will reach broader applications in the production of new bio-ingredients, with applications in both food and pharmaceutical industries.

The use of extreme-thermophilic microbes in recombinant technology will yield unique enzymes active at high temperature as biocatalysts in non-aqueous solutions and broaden the technology platform to produce reservoir of new bio-products with wide applications in medicine, food, agriculture, environment, energy and chemical industries.

Today food biotechnology has a tremendous potential for increasing food production and improving food nutritional value, flavor and texture of food products. In addition, it has the potential for the production of newly food bio ingredients that will improve food processing and producing functional foods as a preventive medicine.

In the future innovations in biotechnology will continue bringing exciting new advances to improve the life of human beings on earth.

References

1. http://www.bio.org/
2. Harris TJ, Lowe PA, Lyons A, Thomas PG, Eatom MA, et al. (1982) Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin. Nucleic Acids Res 10(7): 2177-2187.
3. Emtage S, Angli S, Doel MT, Harris TJ, Jenkins B, et al. (1983) Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc Natl Acad Sci U S A 80(12): 3671-3675.
4. Aldous P (1990) Genetic engineering. Modified yeast fine for food. Nature 344(6263): 186.
5. Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT et al. (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333(6174): 679-682.
6. Kabra EK (2003) Nutraceutical-definition and introduction. AAPS Pharm Sci 5(3): 27-28.
7. Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37(2): 115-120.
8. Fuller R (1991) Probiotics in human medicine. Gut 32(4): 439-442.
9. Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, et al. (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr 140(3): 6715-676S.
10. Robert ECW (2001) Handbook of Nutraceuticals and Functional Foods (1st edn), CRC Press Taylor & Francis Group.
11. Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188(1): 11-20.
12. Key S, Ma JK, Drake PM (2008) Genetically modified plants and human health. J R Soc Med 101(6): 290-299.
13. Gaso-Sokac D, Kovac S, Josic D (2011) Use of proteomic methodology in optimizing of processing control of food of animal origin. Food Technol Biotechnol 49(4): 397-412.
14. punkvijay.blogspot.in/2010/10/bioprocess-introduction_1893.html
15. Davison J (2010) GM plants: Science, politics and EC regulations. Plant Science 178(2): 94-96.
16. http://www.eufic.org/article/en/rid/modern-biotechnology-food-biotechnology-quality/
17. Chassy B, Jason JH, Gips AK, Esther JK, Harry AK, et al. (2004) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology. Comprehensive Reviews in Food Science and Food Safety 3: 38-104.
18. Food Biotechnology in the United States: “Science, Regulation and Issues” U.S. Department of State. Retrieved 2006-08-14.
19. http://agribiotech.info/issues/science-and-agricultural-biotechnology