Tests of Non-Equivalence among Absolutely Nonsingular Tensors through Geometric Invariants

Sakata, T.¹, Maehra, K.², Sasaki, T.³, Sumi, T.¹, Miyazaki, M.⁴ and Watanabe Y.⁵

Department of Design Human Science, Kyushu University¹
School of Design, Kyushu University².
Department of Mathematics, Kobe University³.
Department of Mathematics, Kyoto University of Education⁴.
Research Institute of Information Technology, Kyushu University⁵.

1 Introduction

Tensor data analysis has successfully developed in various application fields, which is useful to seize multi-factor dependence. An $n \times n \times p$ tensor is a multi-array datum $T = (T_{ijk})$, where $1 \leq i,j \leq n$ and $1 \leq k \leq p$. A type $n \times n \times p$ tensor T is denoted by $T = (A_1; A_2; \ldots; A_p)$ where A_i denote $n \times n$ matrices. An $n \times n \times p$ tensor T is said to be of rank 1 if there is a vectors $\mathbf{a} = (a_1, a_2, \ldots, a_n)$, $\mathbf{b} = (b_1, b_2, \ldots, b_n)$, and $\mathbf{c} = (c_1, c_2, \ldots, c_p)$ such that $T_{ijk} = a_ib_jc_k$ for all i,j,k, and the rank of a tensor T is defined as the minimum of the integer r such that T can be expressed as the sum of r rank-one tensors. The maximal rank of all tensors of type $n \times n \times p$ are also defined in obvious fashion and denoted by $\text{maxrank}(n,n,p)$. The rank of a tensor describes the complexity of a tensorial datum and the maximal rank describes the model complexity of a class of tensors of a given type, and so they are very important concepts in both applied and theoretical fields. Therefore, the rank and maximal rank determination problems have attracted the interest of many researchers, for example, Kruskal [12], ten-Berge [24], and Common et al., [6], etc. and now have being investigated intensively (for a comprehensive survey, see Kolda et al.[11]). Atkinson et al.([11] and [12]) claimed that $\text{maxrank}(n,n,3) \leq 2n-1$. Here we introduce an important class of tensors.

Definition 1.1 A real tensor $T = (A_1; A_2; \ldots; A_p)$ is said to be absolutely nonsingular if $x_1A_1 + x_2A_2 + \cdots + x_pA_p$ is nonsingular for all $(x_1, x_2, \ldots, x_p) \neq (0, 0, \ldots, 0)$.

Remark 1.2 We called absolutely nonsingular tensors as exceptional tensors in Sakata et al. [21], [22].

Sumi et al. [23] proved the claim of Atkinson et al. over the complex number filed \mathbb{C} without any assumption and proved it over the real number filed \mathbb{R} except the class of absolutely nonsingular tensors. Thus, for the proof of the claim of Atkinson et al. over the real number filed \mathbb{R}, it is the first thing to determine all absolutely nonsingular tensors. Absolutely nonsingular tensors are characterized by the determinant polynomial defined below. Searching of absolutely nonsingular tensors was pursued in Sakata et al. [21], [22] in this direction. As well as searching absolutely nonsingular tensors, the equivalence among them under the rank-preserving transformation which is defined below is also important. Note that such equivalence relation has also a relation to the SLOCC equivalence of entangled states in the quantum communication (for example, see Chen et al. [5]).
Definition 1.3 For a $n \times n \times p$ tensor $T = (A_1; A_2; \ldots; A_p)$, the homogeneous polynomial in x_1, \ldots, x_p of degree n

$$f_T(x_1, x_2, \ldots, x_p) = \det(x_1A_1 + x_2A_2 + \cdots + x_pA_p) \tag{1.4}$$

is called the determinant polynomial of a tensor T.

Then we have the following important characterization.

Theorem 1.5 If $T = (A_1; A_2; \ldots; A_p)$ is absolutely nonsingular, its determinant polynomial $f_T(x_1, x_2, \ldots, x_p)$ is a positive definite homogeneous polynomial or negative definite homogeneous polynomial.

Proof Let $T = (A_1; A_2; \ldots; A_p)$ be absolutely nonsingular, and assume that there are two points x_0 and x_1 such that $f_T(x_0) > 0$ and $f_T(x_1) < 0$. The line ℓ combining the two points x_0 and x_1 must pass through the origin 0, since in the segment $[x_0, x_1]$ there must be x' such that $f_T(x') = 0$ and it must be 0 because T is absolutely nonsingular. Let take another point x_2 which is not on the line ℓ. Then, the line passing x_0 and x_2 does not pass the origin and so $f(x_0)f(x_2) < 0$ is impossible just by the same reason given in the previous sentence. So, $f(x_0)f(x_2) > 0$. Next, consider the line passing x_1 and x_2, which also does not pass the origin and $f(x_1)f(x_2) < 0$. This is also a contradiction. After all, there don’t exist points x_0 and x_1 such that $f(x_0) > 0$ and $f(x_1) < 0$. This proves Theorem 1.5.

It is well known that tensor rank is invariant by typical matrix transformations, say, $p-$, $q-$, and $r-$transformations defined below. So, equivalence relation of two tensors means that they have a same rank. Thus, to study equivalence among tensors is of some importance for rank determination.

Definition 1.6 For a $n \times n \times p$ tensor $T = (A_1; A_2; \cdots; A_p)$, the following transformations

1. $T = (A_1; A_2; \cdots; A_p) \rightarrow T' = (PA_1; PA_2; \cdots; PA_p)$ by an $n \times n$ matrix $P \in GL(n)$,

2. $T = (A_1; A_2; \cdots; A_p) \rightarrow T' = (A_1Q; PA_2Q; \cdots; A_pQ)$ by an $n \times n$ matrix $P \in GL(n)$,

3. $T = (A_1; A_2; \cdots; A_p) \rightarrow T' = (R_{11}A_1 + R_{12}A_2 + R_{13}A_3; R_{21}A_1 + R_{22}A_2 + R_{23}A_3; R_{31}A_1 + R_{32}A_2 + R_{33}A_3)$ by a $p \times p$ matrix $P \in GL(n)$

are called as $p-$, $q-$, and $r-$transformations and denoted by $T \rightarrow_p T', T \rightarrow_q T'$ and $T \rightarrow_r T'$ respectively. Further, if $T_1 \rightarrow_p T_2$, the T_1 and T_2 are said to be in the $p-$equivalence. $q-$ and $r-$equivalence are defined analogously.

Definition 1.7 Let $T_1 = (A_1; A_2; \cdots; A_p)$ and $T_2 = (B_1; B_2; \cdots; B_p)$ be two $n \times n \times p$ tensors. If there is a sequence of $\{T_i\}$ starting from T_1 and ending at T_2, in which T_i and T_{i+1} are in the relation of $p-$, $q-$, or $r-$equivalence, then T_0 and T_1 are said to be equivalent.
Now we can reduce the equivalence relation into a more simple one by the following lemma.

Lemma 1.8 p, q– and r–transformations are mutually commutative.

Proof For simplicity, we prove for $p = 3$, however, the proof is similar for a general p. First we prove the commutativity of p–transformation and r–transformation. Let

$$T_1 \rightarrow_p T_2 \rightarrow_r T_3 \text{ and } T_1 \rightarrow_r T_2 \rightarrow_p T_3'$$

We will show that $T_3 = T_3'$. Let $T_1 = (A_1; A_2; A_3)$ and $P = (p_{ij})$ and $R = (r_{ij})$. Then,

$$T_2 = (PA_1; PA_2; PA_3)$$

and

$$T_3 = (r_{11}PA_1+r_{12}PA_2+r_{13}PA_3; r_{21}PA_1+r_{22}PA_2+r_{23}PA_3; r_{31}PA_1+r_{32}PA_2+r_{33}PA_3)$$

On the other hand

$$T_2' = (r_{11}A_1 + r_{12}A_2 + r_{13}A_3; r_{21}A_1 + r_{22}A_2 + r_{23}A_3; r_{31}A_1 + r_{32}A_2 + r_{33}A_3)$$

and

$$T_3' = (r_{11}PA_1+r_{12}PA_2+r_{13}PA_3; r_{21}PA_1+r_{22}PA_2+r_{23}PA_3; r_{31}PA_1+r_{32}PA_2+r_{33}PA_3)$$

Thus, $T_3 = T_3'$, and this means the commutativity of p– and r-transformations. The commutativity of q– and r-transformations are proved similarly. p– and q-transformations are obviously commutative. This proves Lemma 1.8.

Note that in this paper we consider three cases of (1) $P, Q \in GL(n)$ and $R \in GL(p)$ and (2) $P, Q \in GL(n)$ and $R \in SL(p)$, and (3) $P, Q \in SL(n)$ and $R \in SL(p)$. The first is called $GL(p)$-equivalence or simply equivalence, and the second is called $SL(p)$-equivalence in short. The third case is called, in a full term, $SL(n) \times SL(n) \times SL(p)$-equivalence. Lemma 1.8 implies the following theorem.

Theorem 1.9 T_1 and T_2 are $GL(p)$-equivalent if and only if there is a set of p-transformation, q-transformation and r-transformation such that

$$T_1 \rightarrow_p T' \rightarrow_q T'' \rightarrow_r T_2$$

Thus, the equivalence problem of tensors $T_1 = (A_1^{(1)}; \ldots; A_p^{(1)})$ and $T_2 = (A_1^{(2)}; \ldots; A_p^{(2)})$ is reduced to the problem whether the following system of algebraic equations for P, Q and R can have a solution or not.

$$A_i^{(2)} = P(\sum_{j=1}^{p} r_{ij}A_j^{(1)})Q, \; i = 1, 2, \ldots, p \quad (1.10)$$

These algebraic equations have too many variables to solve even when the size of matrices A_i is moderate. So, in this paper, we propose to see the problem through the determinant polynomial. Then, though we necessarily have to discard the sufficiency part of the problem, however, the problem becomes concise and tractable one by the following proposition.
Proposition 1.11 If T_1 and T_2 are $GL(p)$-equivalent, it holds that there is a constant $c \in \mathbb{R}$ and a $p \times p$ nonsingular matrix $R \in GL(p)$ such that

$$f_{T_2}(x) = cf_{T_1}(xR)$$

(1.12)

So, we can say that

Proposition 1.13 For two tensors, if the equation (1.12) does not hold for any constant $c \in \mathbb{R}$ and any matrix $R \in GL(p)$, they are not $GL(p)$-equivalent.

Though the reduced equation (1.12) happens to be solved algebraically in some cases. However, it is still hard to solve, in general, a system of algebraic equation with too many variables. In fact, we need to decide whether a system of $\frac{(n+1)(n+2)}{2}$ homogeneous equations with $(p^2 + 1)$ variables of degree n have a solution or not. So, in this paper, we avoid to solve the problem algebraically and propose to attack the problem from a geometric view point, that is, we propose to test non equivalence by checking whether the two surfaces of the determinant polynomials of T_1 and T_2 have a same geometric invariants, or not. Here, multi-linear algebra and differential geometry intersect through the widow of determinant polynomials.

The first aim of this paper is to show theoretically that differential geometric invariants are useful as testers of non-equivalence among absolutely nonsingular tensors. The second aim is to show that we can calculate the values of the invariants with enough accuracy. Third, we compare the values of invariants calculated by the lattice method and by the t-design method. And it is shown that the lattice point method gives more stable values than the t-design method. As $SL(p)$-invariant, we consider first the volume enclosed by the constant surface and then we consider the affine surface area, and thirdly we consider the L^p affine surface area of convex body. Affine surface area was studied by Blaschke [4] and extended to L_p affine surface area by Lutwak [20], (also see Leichtwess [13]). As for a valuation theory of L_p affine surface area, see the recent papers by Ludwig [15] and Ludwig and Reitzer [17]. Finally, as a general reference of affine differential geometry, see K. Nomizu and T. Sasaki [19].

This paper is organized as follows. In Section 2, we show how to parametrize the constant surface of a determinant polynomial and in Section 3, we review briefly some definitions from differential geometry. In Section 4, we argue rough $SL(p)$-invariants. In Section 5, we deal with $SL(p)$-invariant. In the first subsection, we introduce the valuation theory for the set of convex bodies and in the second subsection, we argue a volume of the region enclosed by a constant surface as an $SL(p)$-invariant. In the third subsection, we argue the affine surface as a $SL(p)$-invariant. In Section 6, we consider the generalized affine surface, that is, L_p affine surface area, especially centro-affine surface as a $GL(p)$-invariant. In Section 7, we review the theory of spherical t-design briefly and give a theorem important for approximate calculation of our proposed invariants. In Section 8, we give numerical values of the invariants calculated by the lattice method and t-design method. It is shown numerically that the proposed invariants is usefull to discriminate non equivalence. In Section 9, the conclusion is given. Finally note that in the following we consider mainly the case of $n = 4$ and $p = 3$, though some statements are given for general n and p. One reason is that absolutely nonsingular tensors are not so easy
to obtain for general cases and the second reason is because it is easy to see that our method is also available for general cases. The study of much higher values of n and p will be given in the future work.

2 Parametrization of constant surface

The determinant polynomial of a $4 \times 4 \times 3$ tensor $T = (A_1; A_2; A_3)$, i.e., $f_T(x, y, z) = \det(xA_1 + yA_2 + zA_3)$, is a homogeneous polynomial of three variables with degree 4. We are concerned with the integral invariants of the constant surface $\partial \Omega_T = \{(x, y, z)|f_T(x, y, z) = 1\}$ for the special linear group $SL(3)$ and the general linear group $GL(3)$. To get such invariants, we need to parametrize this surface by the usual spherical coordinate,

\begin{align*}
x &= r \sin s \cos t = r \Phi_x(s, t) \quad (2.1) \\
y &= r \sin s \sin t = r \Phi_y(s, t) \quad (2.2) \\
z &= r \cos s = r \Phi_z(s, t), \quad (2.3)
\end{align*}

where $0 < s < \pi, 0 < t < 2\pi$. Let x denote the point (x, y, z) on the surface. Putting these into the equation $f_T(x, y, z) = 1$, we have

\begin{equation}
r^4 = \frac{1}{p(s, t)}, \quad (2.4)
\end{equation}

where

\begin{equation}
p(s, t) = f_T(\Phi_x(s, t), \Phi_y(s, t), \Phi_z(s, t)). \quad (2.5)
\end{equation}

And so,

\begin{equation}
x = \frac{1}{p(s, t)^{1/4}} (\Phi_x(s, t), \Phi_y(s, t), \Phi_z(s, t)). \quad (2.6)
\end{equation}

This equation (2.6) gives a parametric representation of the constant surface $\partial \Omega_T$. Then, the following is a starting point of this research of the constant surface.

Theorem 2.7 The constant surface of the determinant polynomial of an absolutely nonsingular tensor is a compact set in \mathbb{R}^3 without self-intersection.

Proof Without loss of generality, we assume that $f_T(x)$ is positive definite. If $x \in \partial \Omega_T$, for any $0 < r < 1$ and $r > 1$, rx is not in $\partial \Omega_T$. That is, the constant surface is of a star-shaped. This proves that the surface has not any self intersection. Since $p(s, t)$ is continuous on the unit sphere it takes a positive minimum and a positive maximum. So, x in the equation (2.6) is bounded, which implies the compactness of the constant surface. This completes the proof of Theorem 2.7.

The following 8 figures are examples of the constant surfaces of $4 \times 4 \times 3$ absolutely nonsingular tensors.

Note that the numbering of tensors is based on the list of nonsingular tensors with elements consisting only of $-1, 0, 1$ found by us. Each figure corresponds to
Figure 1: Constant surfaces of the determinant polynomials of tensors $F_{No1, 3, 10, 20, 99, 119, 207, 237}$.

The following tensor and its determinant function respectively.

\[
T_1 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \quad f_{T_1}(x, y, z) = x^4 + 6y^4 + 2z^4 - 3x^3y - 8xy^3 - 3xz^3 + 5z^3y + 7x^2y^2 + 3x^2z^2 + 8z^2y^2 - 2xy^2z - 8xyz^2.
\]

\[
T_3 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \quad f_{T_3}(x, y, z) = x^4 + 3y^4 + 6z^4 - 3x^3z + 2xy^3 + 4y^3z - 7xz^3 - 6z^2y + x^2y^2 + 5x^2z^2 - 5z^2y^2 + 4xy^2z - x^2yz + 2xyz^2.
\]

\[
T_{10} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \quad f_{T_{10}}(x, y, z) = x^4 + y^4 + 2z^4 - x^3y + 2x^3z + xy^3 + 2xz^3 - z^3y - x^2y^2 + 4x^2z^2 - 2xy^2z - 2x^2yz - xyz^2.
\]

\[
T_{20} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \quad f_{T_{20}}(x, y, z) = x^4 + y^4 + 2z^4 - x^3y + 2x^3z + xy^3 + 2xz^3 - z^3y - x^2y^2 + 4x^2z^2 - 2xy^2z - 2x^2yz - xyz^2.
\]
derivatives by we denote the parametrized point on the surface by x
geometry. For more details, for example, see the Nomizu and Sasaki [19]. When
For the use in the following sections, we review some basic notations of differential
3 Notations from differential geometry

For the use in the following sections, we review some basic notations of differential
geometry. For more details, for example, see the Nomizu and Sasaki [19]. When
we denote the parametrized point on the surface by $x(s, t)$, we denote its partial
derivatives by

$$x_s(s, t) = \frac{\partial x(s, t)}{\partial s}, \quad (3.1)$$

$$x_t(s, t) = \frac{\partial x(s, t)}{\partial t}. \quad (3.2)$$
Definition 3.3

\[E = \langle x_s, x_s \rangle, \quad F = \langle x_s, x_t \rangle, \quad G = \langle x_t, x_t \rangle, \]

are called the first fundamental coefficients. Putting \(dx = x_s(s, t)ds + x_t(s, t)dt \), the form

\[I = \langle dx, dx \rangle = Es^2 + 2Msdt + Ndt^2 \]

is called the first fundamental form of the surface.

Definition 3.6

\[n = \frac{x_s \times x_t}{||x_s \times x_t||} \]

is called the unit normal vector at the point \(x(s, t) \).

Definition 3.8

Putting

\[x_{ss} = \frac{\partial^2 x(s, t)}{\partial s^2}, \quad x_{ss} = \frac{\partial^2 x(s, t)}{\partial st}, \quad x_{ss} = \frac{\partial^2 x(s, t)}{\partial t^2}, \]

the scalar functions

\[L = \langle x_{ss}, n \rangle, \quad M = \langle x_{st}, n \rangle, \quad N = \langle x_{tt}, n \rangle \]

are called the second fundamental coefficients. The form

\[II = -\langle dX, d\mathbf{n} \rangle = Lds^2 + 2Mdsdt + Ndt^2 \]

is called the second fundamental form of the surface.

Definition 3.12

At the point \(P \) on the surface, let \(k_1 \) and \(k_2 \) be the maximum and minimum of curvatures of curves generated by the intersection of the surface with the plane spanned by the normal vector and a tangent vector, \(H = (k_1 + k_2)/2 \) is called the mean curvature and \(K = k_1k_2 \) is called the Gaussian curvature. These are calculated by

\[H = \frac{EN - 2FM + GL}{2(EG - F^2)} \quad \text{and} \quad K = \frac{LN - M^2}{EG - F^2}. \]

4 Rough \(SL(3) \) invariants

For checking \(GL(3) \)-equivalence between two tensors \(T_1 \) and \(T_2 \), we need to test the equation

\[f_{T_2}(x) = cf_{T_1}(xR), \quad c \in \mathbb{R} \quad \text{and} \quad R \in GL(3). \]

Further, \(S = R/||R||^{1/3} \in SL(3), \)

\[cf_{T_1}(xR) = c||R||^{4/3}f_{T_1}(xR/||R||^{1/3}) = c'f_{T_1}(xS) \quad \text{with} \quad c' \in \mathbb{R} \quad \text{and} \quad S \in SL(3). \]

Thus, \(GL(3) \)-equivalence reduces to \(SL(3) \)-equivalence. Then, the following theorem holds.
Theorem 4.2 For two tensors T_1 and T_2, assume that $f_{T_2}(x) = cf_{T_1}(xS)$ does not hold for any choice of $c \in \mathbb{R}$ and any $S \in SL(3)$. Then, T_1 and T_2 are not $GL(3)$ equivalent.

This justifies to study $SL(3)$-equivalence among absolutely nonsingular tensors for investigating $GL(3)$ equivalence.

Remark 4.3 If c is negative, then by consider $T_3 = PT_2$ with $|P| < 0$, we have

$$f_{T_3}(x) = cf_{T_1}(xR), c \in \mathbb{R}^+ \text{ and } R \in GL(3).$$

where T_3 is equivalent to T_2. Thus, we can assume by writing T_3 as T_2 again

$$f_{T_2}(x) = cf_{T_1}(xR), c \in \mathbb{R}^+ \text{ and } R \in GL(3).$$

The following rough $SL(3)$ invariants are useful.

Theorem 4.4 A convex surface is transformed into a convex surface by a $SL(3)$ linear transformation and so, a tensor with a determinant polynomial whose constant surface is convex is not equivalent to a tensor with a determinant polynomial whose constant surface is not convex.

Only the tensor of No.1 has the convex surface among 8 figures in the Figure 1.1 and so the tensor of No. 1 is not $SL(3)$ equivalent to all other tensors in the Figure 1.

Definition 4.5 A point on the surface is called a singular point if the normal vector at the point can not be defined.

Theorem 4.6 If the constant surface of a tensor T_1 has a singular point and the constant surface of a tensor T_2 has no singular point, they are not $SL(3)(GL(3))$ equivalent.

Example 4.7 Let

$$T_1 = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right); \quad \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right); \quad \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right)$$

and

$$T_2 = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right); \quad \left(\begin{array}{cccc} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right); \quad \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right),$$

and the determinant polynomials of T_1 and T_2 are given below respectively. Then, we have

$$f_{T_1}(x,y,z) = (x^2 + y^2 + z^2)^2,$$

and

$$f_{T_2}(x,y,z) = (x^2 + y^2)^2 + z^4.$$
Note that both of them are positive definite, that is, both of T_1 and T_2 are absolutely nonsingular. It is clear that the constant surface of $f_{T_1}(x)$ is a sphere and it has no singular point, and on the other hand, that the constant surface of $f_{T_2}(x)$ is a conic and it has a singular point. Hence, T_1 and T_2 are not equivalent.

Definition 4.8 When we consider a mesh of the parameter space, it produces a lattice of points on the constant surface. Let K_+ be the number of lattice points at which the Gaussian curvature is positive, and K_- and K_0 be defined in the same way.

Then we have

Theorem 4.9 The triplet (K_+, K_-, K_0) is an $SL(3)$-invariant.

5 $SL(3)$ integral invariants

The following Figure 2 and 3 shows the figures of convex bodies that are enclosed by constant surfaces. The number of figures corresponds to that in our list of absolutely nonsingular tensors (Maehara [18]). In this section, we want to find some $SL(3)$-invariant for such convex bodies. For this purpose, the following valuation theory is a quite useful. Here, we make a brief summary of the valuation theory from Ludwig [15] and [17]. The definition is stated for a general p.

Definition 5.1 Let \mathcal{K} denote the set of all convex bodies in \mathbb{R}^p. A functional $t(\cdot)$ from \mathcal{K} to \mathbb{R} is called a valuation if it satisfies

$$t(K) + t(L) = t(K \cup L) + t(K \cap L), \quad K, L \in \mathcal{K}.$$

(5.2)

Next theorem is a starting point of characterization of invariant valuation.

![Figure 2: The constant surfaces for No1, 19, 22, 23, 42, 60, 61, 65 absolutely nonsingular tensors](image)
Theorem 5.3 (Hadwiger [9]). A continuous valuation $t(\cdot)$ from \mathcal{K} to \mathbb{R} is invariant with respect to rigid motion if and only if there are constants c_0, c_1, \ldots, c_p such that

$$t(K) = c_0V_0(K) + c_1V_1(K) + \cdots + c_pV_p(K), \quad (5.4)$$

where $V_0(K), V_1(K), \cdots, V_p(K)$ are the intrinsic volumes of K. We remark that the volumes V_k are called quermassintegrals of K in [13] and that V_0 is the Euler index, V_{p-1} the affine volume of ∂K, and V_p is the volume of the convex body K. In the following, we simply denote by $a(K)$ as the affine volume and call it affine surface area following [17], and denote by $V(K)$ the volume $V_p(K)$.

Definition 5.5 A functional $t(\cdot)$ on \mathcal{K} is said to be equi-affine invariant if it is $SL(p)$-invariant and location invariant.

The following is essential for us.

Theorem 5.6 (Ludwig [14], [16], and [15]). An upper semi-continuous valuation $t(K)$ from \mathcal{K} to \mathbb{R} is equi-affine invariant if and only if there are constants $c_0, c_1, \in R$ and $c_2 \geq 0$ such that

$$t(K) = c_0V_0(K) + c_1V_p(K) + c_2a(K), \quad (5.7)$$

where $a(K)$ denotes the affine surface area.

In short, $SL(p)$ invariant valuation is only the weighted sum of the Euler index and the volume $V_p(K)$ and the affine surface area $a(K)$. This means that

Proposition 5.8 $V(K)$ and $a(K)$ are SL-invariants.

So, we adopt the volume $V(K)$ and the affine surface area $a(K)$ as indexes of $SL(p)$-equivalence. Further, the next proposition by Lutwak [20] is very useful for us.

Proposition 5.9 When $p = 3, a(K)$ is homogeneous of degree $3/2$, that is,

$$a(dK) = d^{3/2}a(K), K \in K_0. \quad (5.10)$$
5.1 Volume as an $SL(3)$-invariant

We are considering the equivalence relation among absolutely nonsingular tensors. As is shown in Theorem 2.7, for such kind of tensors, the constant surfaces of them are compact. Note that from Proposition 5.8 the volume of the region enclosed by the constant surface is $SL(3)$-invariant. Then, by the following Gauss’s theorem, we can calculate the volume by the parametric representation given by the equation (2.6).

Theorem 5.11 (Gaussian formula)
For the region Ω enclosed by the space surface $\partial \Omega$, letting $fdy \wedge dz + gdz \wedge dx + hdx \wedge dy$ be the differential form of 2nd degree, it holds

\[
\int_{\partial \Omega} fdy \wedge dz + gdz \wedge dx + hdx \wedge dy = \int_{\Omega} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z} \right) dx \wedge dy \wedge dz \tag{5.12}
\]

We denote by $V(\Omega)$ the volume of the region Ω. By this formula, we have

\[
V(\Omega) = LHS \; of \; the \; equation(5.12). \tag{5.13}
\]

For the present case, by use of the spherical coordinates (s,t), the point of the boundary $\partial \Omega$ is parametrized as $x = r(s,t)(\Phi_x(s,t), \Phi_y(s,t), \Phi_z(s,t))$. Hence, we have

\[
dy = \frac{\partial y}{\partial s} ds + \frac{\partial y}{\partial t} dt \tag{5.14}
\]

\[
dz = \frac{\partial z}{\partial s} ds + \frac{\partial z}{\partial t} dt, \tag{5.15}
\]

Therefore,

\[
dy \wedge dz = \left(-\frac{1}{4} \frac{dp}{p^{5/4}} \Phi_y + \frac{d\Phi_y}{ds} \frac{p^{1/4}}{p^{1/4}} \right) ds \wedge dt + \left(-\frac{1}{4} \frac{dp}{p^{5/4}} \Phi_z + \frac{d\Phi_z}{ds} \frac{p^{1/4}}{p^{1/4}} \right) ds \wedge dt \tag{5.16}
\]

Similarly,

\[
dz \wedge dx = \left(-\frac{1}{4} \frac{dp}{p^{5/4}} \Phi_z + \frac{d\Phi_z}{ds} \frac{p^{1/4}}{p^{1/4}} \right) ds \wedge dt + \left(-\frac{1}{4} \frac{dp}{p^{5/4}} \Phi_x + \frac{d\Phi_x}{ds} \frac{p^{1/4}}{p^{1/4}} \right) ds \wedge dt, \tag{5.17}
\]
By using these, we can calculate the volume of the region enclosed by the constant surface of the determinant polynomial. Let T_1 and T_2 be two $n \times n \times 3$ tensors and let Ω_i denote the regions \{ $bmx|f_{T_i}(x) \leq 1$ \}, which are enclosed by the surfaces of \{ $x|f_{T_1}(x) = 1$ \}. Then, by $SL(3)$ invariance of volumes, we have

Theorem 5.16 If $V_1 \neq V_2$, $f_{T_2}(x) \neq f_{T_1}(xR)$ for any $R \in SL(3)$, namely, T_1 and T_2 are not $SL(n) \times SL(n) \times SL(3)$ equivalent.

For GL invariance, the next lemma is helpful.

Lemma 5.17 For a determinant polynomial $f(x)$, let $V(c)$ be the volume of $\Omega_c = \{ x|cf(x) \leq 1 \}$. Then $V(c) = c^{-3/4}V(1)$ for $4 \times 4 \times 3$ case.

Proof By changing a polynomial $f(x)$ into its constant multiple $cf(x)$, the coordinates $x(s,t)$ on the constant surface are subject to changes to $(\frac{1}{c})^{1/4}x(s,t)$. Hence, the integral

$$\frac{1}{3}\int_{\partial \Omega} xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$$

(5.18)

is multiplied by $c^{-3/4}$. This proves the assertion of Lemma 5.17.

Theorem 5.19 Assume that T_1 and T_2 be $SL(3)$ equivalent and therefore that there is a relation between their determinant polynomials,

$$f_{T_2}(x) = cf_{T_1}(xR),$$

(5.20)

where $c \in \mathbb{R}$ and $R \in SL(3)$. Let $V_1(c)$ and $V_2(c)$ denote the volumes of $\Omega^{(1)}_c = \{ x|cf_{T_1}(x) \leq 1 \}$ and $\Omega^{(2)}_c = \{ x|cf_{T_2}(x) \leq 1 \}$ respectively. Then, it holds that

$$c = (V_1/V_2)^{4/3}.$$

(5.21)

Proof The proof is trivial from Lemma 5.17 and omitted.

From Theorem 5.19, we can know the constant c in the equation (5.20). In the next section, it will be made clear that this expresson is helpful for establishing $GL(3)$-equivalence.
5.2 Affine surface area as an $SL(3)$-invariant

In this section, for testing $SL(3)$-equivalence, we propose to use the affine surface area, which is an $SL(3)$-invariant by Theorem 5.8. When $p = 3$, the affine surface area has the following integral expression.

Definition 5.22 For a smooth convex body $K \subset \mathbb{R}^3$, the affine surface area is given by

$$a(K) = \int_{\partial K} \kappa(K, x) \frac{1}{4} \sqrt{EG - F^2} ds dt,$$ \hspace{1cm} (5.23)

where $\kappa(\partial K, x)$ is the Gaussian curvature and E, F and G denote the first fundamental coefficients.

Next, we show that the affine surface area is useful even as a tester of $GL(3)$-equivalence. Assume that we know the constant c in the relation $f_{T_2}(x) = cf_{T_1}(xR)$ with $c \in \mathbb{R}^+$ and $R \in SL(3)$ by Theorem 5.19. Then,

$$\Omega_2 = \{ x | f_{T_2}(x) \leq 1 \} = \{ x | cf_{T_1}(x) \leq 1 \} = \{ x | f_{T_1}(c^{1/4}x) \leq 1 \} = c^{-1/4} \{ x | f_{T_1}(x) \leq 1 \} = c^{-1/4} \Omega_1.$$ \hspace{1cm} (5.25)

From Proposition 5.9, we have

$$a(\Omega_2) = c^{-3/8} a(\Omega_1).$$ \hspace{1cm} (5.26)

Thus, we have the following.

Theorem 5.27 Let T_1 and T_2 be absolutely nonsingular tensors. Noting Remark 4.3 by Theorem 5.19, we can obtain the estimate of $c \in \mathbb{R}^+$ under the assumption that their determinant polynomials have the relation $f_{T_2}(x) = cf_{T_1}(xR)$ for some unknown constant $c \in \mathbb{R}^+$ and an unknown matrix $R \in SL(3)$. Then, if $a(\Omega_2) \neq c^{-3/8} a(\Omega_1)$, T_1 and T_2 are not $GL(3)$-equivalent.

By using Theorem 5.17, this is rephrased as

Theorem 5.28 Let T_1 and T_2 be absolutely nonsingular tensors. Then, if

$$a(\Omega_2) \neq \left(\frac{V(\Omega_2)}{V(\Omega_1)} \right)^{1/2} a(\Omega_1),$$ \hspace{1cm} (5.29)

T_1 and T_2 are not $GL(3)$-equivalent, where $V(\Omega_1)$ and $V(\Omega_2)$ denote the volume of Ω_1 and Ω_2 respectively.
6 Integral $GL(3)$-invariant

In the latter half of the previous section, we presented a procedure to test a non-$GL(3)$-equivalence, however, it is somewhat indirect because we need to estimate the constant c before starting the procedure. In this section, we consider a direct method handling non-equivalence by using a generalized affine surface area. That is, we consider the L_q affine surface area, which is an extension of the affine surface area and developed by Letwak [20]. Hug [10] gave an equivalent definition. The following is the Hug’s definition.

Definition 6.1

\[
L_q a(K) = \int_{\partial K} \kappa_0(K, x)^{\frac{q}{p+1}} d\sigma_K(x)
\]

(6.2)

where

\[
\kappa_0(K, x) = \frac{\kappa(K, x)}{\langle x, n(K, x) \rangle^{p+1}}.
\]

(6.3)

and $d\sigma_K(x)$ is called a cone measure defined by

\[
d\sigma_K(x) = \langle x, n(K, x) \rangle dx,
\]

(6.4)

and $n(K, x)$ denotes the outer normal at x on ∂K.

When $q = 1$, $L_q a(K)$ becomes the affine surface area $a(K)$, and when $q = p$, it becomes a classical centro-affine surface area $a_c(K)$ that is defined as

\[
a_c(K) = \int_{\partial K} \kappa_0(K, x)^{1/2} d\sigma_K(x),
\]

(6.5)

which is known to be $GL(p)$-invariant. The characterization of a general $GL(p)$-invariant functional is given below.

Theorem 6.6 (Ludwig and Reitzsner [17]) Let K_0 be the space of convex bodies that contain the origin in their interiors. An upper semi-continuous functional $t(\cdot)$ from K_0 to \mathbb{R}^1 is $GL(p)$-invariant if and only if there are nonnegative constants c_0 and c_1 such that

\[
t(K) = c_0 V_0(K) + c_1 a_c(K).
\]

(6.7)

7 Spherical design

According to our experiments, the numerical integrations of the invariants must be accurate at least 2 decimals. So, the calculations of the invariants are a little bit heavy. In this section, we consider the t-design method as an substitute of the numerical integrations. The spherical design was initiated by Delsarte et al. [7] and has been studied by several researchers, for example, see Bannai and Bannai [3]. It is defined as follows.
7.1 An overview of spherical design

Definition 7.1 A finite set X on the sphere is called t-spherical design if the following equality holds that for any polynomial $f(x, y, z)$ with a degree less than or equal to t,

$$\frac{1}{|S^2|} \int_{S^2} f(x, y, z) d\sigma = \frac{1}{|X|} \sum_{(x, y, z) \in X} f(x, y, z),$$

(7.2)

where S^2 denotes the unit sphere of \mathbb{R}^3 and $d\sigma$ denotes the surface element of the sphere and $|S^2|$ denotes the surface area of the sphere.

A parametrized integral formula of the equation 7.2 is given by

$$\int f(s, t) \sin(s) ds dt = \frac{4\pi}{N} \sum_{i=1}^{N} f(s_i, t_i),$$

(7.3)

where $(s_i, t_i), i = 1, 2, ..., N$ are the corresponding parameters to the design points in X. One point to overcome for our purpose is that we need to integrate some nonlinear functions that are not polynomials and hence we can not use any t-design directly. However, we can rely on the next theorem to solve this point.

Theorem 7.4 Let $f(x, y, z)$ be an continuous function over the unit sphere and let ϵ_t be a positive number such that

$$|f(x, y, z) - p(x, y, z)| < \epsilon_t$$

uniformly for some polynomial $p(x, y, z)$ with degree less than or equal to t. Then, it holds that

$$|\int_{\partial S} f(x, y, z) dS - 4\pi \frac{1}{N} \sum_{i=1}^{N} f(x_i)| < 8\pi \epsilon_t$$

(7.5)

Proof

$$\left| \int_{\partial S} f(x, y, z) dS - 4\pi \frac{1}{N} \sum_{i=1}^{N} f(x_i) \right|$$

(7.6)

$$\leq \left| \int_{\partial S} f(x, y, z) dS - 4\pi \frac{1}{N} \sum_{i=1}^{N} p(x_i) \right| + \left| 4\pi \frac{1}{N} \sum_{i=1}^{N} p(x_i) - 4\pi \frac{1}{N} \sum_{i=1}^{N} f(x_i) \right|$$

$$= \left| \int_{\partial S} f(x, y, z) dS - \int_{\partial S} p(x_i) dS \right| + \frac{4\pi}{N} \left| \sum_{i=1}^{N} |p(x_i) - f(x_i)| \right|$$

$$\leq \int \epsilon_t dS + 4\pi \epsilon_t$$

$$= 8\pi \epsilon_t$$
Remark 7.7 By the above theorem, we need not to know the best approximate polynomial concretely in order to obtain an approximate value of the integration, and it is enough to use \(f(x, y, z) \) itself. Moreover the error of the approximation is bounded from above by the multiple of \(\epsilon_t \) by \(8\pi \). For a substantial evaluation of the approximation, we need to know \(\epsilon_t \). The problem is interesting, however, it is a little bit heavy task at present, and so it is postponed to the future work.

7.2 Calculation of integral invariants by a 20-design

Using the result of the previous subsection, we consider the integration

\[
a(K) = \int \kappa(s, t)^{1/4} \sqrt{E G - F^2} ds dt.
\]

(7.8)

where \(s, t \) moves \(0 < s < \pi, 0 < t < 2\pi \). This integration can be thought to be an integration over the unit sphere by

\[
a(K) = \int_{(s, t) \in [0, \pi] \times [0, 2\pi]} \kappa(s, t)^{1/4} \sqrt{E G - F^2} ds dt
\]

(7.9)

\[
= \int_{(s, t) \in [0, \pi] \times [0, 2\pi]} \kappa(s, t)^{1/4} \frac{\sqrt{E G - F^2}}{\sin s} \sin s ds dt
\]

(7.10)

\[
= \int_{\partial S} \kappa(s, t)^{1/4} \frac{\sqrt{E G - F^2}}{\sin s} dS,
\]

where \(dS = \sin(s) \). Hence,

\[
p(x, y, z) = \kappa(s, t)^{1/4} \frac{\sqrt{E G - F^2}}{\sin s}
\]

(7.11)

is taken to be a function over the unit sphere and so the integral invariant can be approximated by the right hand side of the equation below.

\[
\int_{\partial S} \kappa(s, t)^{1/4} \frac{\sqrt{E G - F^2}}{\sin s} dS \sim \frac{4\pi}{N} \sum_{i=1}^{N} p(x_i, y_i, z_i)
\]

(7.12)

The values of invariants calculated by the lattice method and the 20-design method will be give in the next section. The 20-design method show very nice approximations in some cases, however, do not show good approximations for other cases. That is, for our integration of invariants, the spherical design method does not give stable values, unfortunately. This might suggest that we need to use design with more higher degree than 20.

8 Effectiveness of the invariants as testers of non-equivalence

In this section, we will show the effectiveness of the numerical values of the invariants as testers of non-equivalence. We numerically calculated the volume \(V(\Omega) \), the affine
surface area $a(\Omega)$ and centro-affine surface area $a_c(\Omega)$ of the region $\Omega = \{ x \mid f(x) \leq 1 \}$ defined by the determinant polynomials $f_T(x)$. As examples, we calculate them for the 16 tensors which are in \mathcal{K}_0, whose constant surfaces are figured in Figures 2 and 3 in the section 5. The numerical calculations are performed in two way, that is, by the lattice method and by the t-design method, and they are compared. As for the t-design method, we use the 20-design named des.3.216.20 in [8] which has 216 points. In the tables below, M1-P2-G5, M6-P2-G, M1-P2-G7 and 20-design denote the globally adaptive integration with accuracy of 5 digits, pseudo-Monte Carlo integration, the globally adaptive integration with accuracy of 7 digits by 64 decimal calculation and 20-design method by IEEE754 decimal calculation, respectively. For all calculation were done by Mathematica. Table 1 shows that the SL invariance of volumes of the redions enclosed by the constant surface is clearly seen numerically for every absolutely nonsingular chosen tensors. Tables 2 and 3 of the affine surface area show that the affine surface area is SL invariant and that all relevant tensors are not $SL(4) \times SL(4) \times SL(3)$ equivalent mutually. From Theorem 5.28, combining the volume data, we also conclude that they are not GL equivalent. This last fact is also derived by a direct usage of the centro-affine surface data which is seen in Table 4 and Table 5.

Indeed, Tables 4 and 5 show that the centro-affine surface area is really GL invariant, and that three point decimal accuracy will be sufficient to detect non $GL(3)$-equivalence between $4 \times 4 \times 3$ absolutely nonsingular tensors, whose elements consists of only -1,0,1. The M1-P2-G7 method seems clearly the best for discriminating the tensors relating to GL nonequivalence.

Tensor	V0	V1	V2	V3
T001	2.91977940995194	2.91977940999529	2.9197794089308	2.9197794061274
T019	4.0314824331814	4.0314824340674	4.0314824332515	4.0314824319603
T022	3.6306602017309	3.6306602004447	3.6306602054741	3.6306602016552
T023	3.4355628950802	3.4355628819358	3.4355628878576	3.4355628897838
T042	3.7515624235646	3.7515624142272	3.7515624197586	3.7515624152774
T060	2.144048553226	2.1440485507771	2.144048551454	2.144048550215
T061	2.8594583429857	2.8594583441125	2.8594583445567	2.8594583445567
T065	3.1084258968340	3.1084258946417	3.1084258957994	3.1084258984271
T072	4.6861403575076	4.6861403597489	4.6861403524206	4.686140350079
T074	3.6302252513670	3.6302253269919	3.6302253280632	3.6302253350968

Table 1: Volumes by M1-P2-G7 : T_n, where $n = 001, 0019, 022, 023, 042, 060, 061, 065, 072$ and 074 Each line denoted as T_n-0 lists the value of the original tensor and the lines $T_n-i, i = 1, 2, \ldots, 5$ list the values for the transformed tensors of T_n by a randomly chosen matrix of $SL(3)$.
Tensor	M1-P2-G5	M6-P2-G5	M1-P2-G7	20-design
T001-0	9.961493457	9.962796404	9.961471493	9.90317
T001-1	9.961470358	9.961249135	9.961471489	8.73023
T001-2	9.961471133	9.971266750	9.961471486	9.96328
T001-3	9.961470327	9.959509709	9.961471474	9.79057
T001-4	9.961471186	9.979456186	9.961471478	10.88367
T001-5	9.961474220	9.997180989	9.961471490	10.99278
T019-0	11.560007113	11.560035546	11.56007991	11.87277
T019-1	11.560007742	11.552017302	11.56007993	11.69239
T019-2	11.56008558	11.559866424	11.56007993	11.51344
T019-3	11.56007692	11.501609971	11.56007989	13.36769
T019-4	11.560008494	11.545260017	11.56007991	10.40203
T019-5	11.560001924	11.558176522	11.56007996	11.49393
T022-0	11.020675684	11.024551464	11.020674135	11.05202
T022-1	11.020673831	11.016947424	11.020674138	11.45345
T022-2	11.02067195	11.027525350	11.020674147	11.54386
T022-3	11.020673214	11.016006939	11.020674140	11.07524
T022-4	11.020675399	11.031596952	11.020674133	11.37096
T022-5	11.020674431	11.022431931	11.020674135	10.74089
T023-0	10.771760482	10.773095422	10.771760351	10.73293
T023-1	10.771758801	10.774759865	10.771760349	9.26881
T023-2	10.771759301	10.725843291	10.771760352	10.94587
T023-3	10.771759730	10.766135806	10.771760352	13.23848
T023-4	10.771757516	10.773059224	10.771760350	10.78732
T023-5	10.771759533	10.773494961	10.771760351	10.88149
T042-0	11.136697741	11.136755128	11.136697332	10.99424
T042-1	11.136695637	11.140856725	11.136697314	11.28015
T042-2	11.136699257	11.140835239	11.136697323	11.89052
T042-3	11.136721676	11.203272583	11.136697308	12.13058
T042-4	11.136696147	11.106329119	11.136697270	9.81007
T042-5	11.136697731	11.107102150	11.136697313	13.99432

Table 2: Affine surface area:T_n, where $n = 001, 019, 022, 023$ and 042 Each line denoted as T_n-0 lists the value of the original tensor and the lines $T_n-i, i = 1, 2, ..., 5$ list the values for the transformed tensors of T_n by a randomly chosen matrix of $SL(3)$.
Tensor	M1-P2-G5	M6-P2-G5	M1-P2-G7	20-design
T060-0	8.704587985	8.705126156	8.704588101	8.74300
T060-1	8.70459255	8.781085267	8.704588109	8.50058
T060-2	8.704596276	8.705498658	8.704588101	8.73210
T060-3	8.704588380	8.711001740	8.704588104	8.80910
T060-4	8.704586669	8.703029024	8.704587984	8.85973
T060-5	8.704588143	8.705901809	8.704588100	8.56701
T061-0	9.75904314	9.759635865	9.759045706	9.741275
T061-1	9.759036154	9.759076500	9.759045704	9.72403
T061-2	9.75905068	9.748685352	9.759045707	9.56041
T061-3	9.759044653	9.734392909	9.759045710	9.76040
T061-4	9.759058206	9.745677922	9.759045694	10.37056
T061-5	9.759046974	9.755984062	9.759045716	8.75201
T065-0	10.273389075	10.274251947	10.273389369	10.33927
T065-1	10.273387633	10.260497042	10.273389360	10.76367
T065-2	10.273389342	10.277789370	10.273389368	10.26620
T065-3	10.273388029	10.249526640	10.273389366	10.42661
T065-4	10.273389939	10.276245030	10.273389370	10.06295
T065-5	10.273397527	10.279052599	10.273389365	10.33636
T072-0	12.483701912	12.483843205	12.483691274	12.67586
T072-1	12.483689616	12.483881611	12.483691282	12.39665
T072-2	12.483692344	12.481034408	12.483691282	10.30731
T072-3	12.483690116	12.498107747	12.483691264	11.96585
T072-4	12.483698348	12.435166726	12.483691276	11.219584
T072-5	12.483686195	12.508162438	12.483691276	10.183837
T074-0	10.732327625	10.732623087	10.73232110	10.80078
T074-1	10.732332889	10.724533133	10.73232112	10.87848
T074-2	10.732332889	10.724533133	10.73232112	10.87848
T074-3	10.732332889	10.724533133	10.73232112	10.87848
T074-4	10.732332889	10.724533133	10.73232112	10.87848
T074-5	10.732332889	10.724533133	10.73232112	10.87848

Table 3: Affine surface area: T_n, where $n = 060, 061, 065, 072$ and 074. Each line denoted as T_n-0 lists the value of the original tensor and the lines $T_n-i, i = 1, 2, ..., 5$ list the values for the transformed tensors of T_n by a randomly chosen matrix of $SL(3)$.
Table 4: Centro-affine surface area: T_n, where $n = 001, 019, 022, 023$ and 042 Each line denoted as T_n-0 lists the value of the original tensor and the lines $T_n-i, i = 1, 2, \ldots, 5$ list the values for the transformed tensors of T_n by a randomly chosen matrix of $GL(3)$.

Tensor	M1-P2-G7	M6-P2-G5	M1-P2-G5	20-design
T001-0	11.690150892617500	11.687899476332365	11.687893363789288	11.59968
T001-1	11.751922920525157	11.687898955213611	11.68789343722015	8.421025
T001-2	11.68964963901319	11.687898370365255	11.68789355562357	11.68469
T001-3	11.72135593709315	11.687894829195568	11.68789343376765	11.29880
T001-4	11.692877418652227	11.687897242831659	11.68789785631138	10.59083
T001-5	11.67997753276740	11.68789176430656	11.68789359334835	11.46900
T019-0	11.509733354093680	11.50933804897551	11.50933380489755	11.81248
T019-1	11.472821548199051	11.5093380795230	11.50933380489755	12.65290
T019-2	11.509963231209824	11.5093379914381	11.50933380489755	13.32764
T019-3	11.552527050941017	11.50933415919397	11.50933380489755	11.38444
T019-4	11.495864684062547	11.50933528739123	11.50933380489755	11.37034
T019-5	11.522546264759133	11.50933798526679	11.50933380489755	22.50564
T022-0	11.574282949497377	11.56879073097308	11.56879083489755	11.57877
T022-1	11.570887655990263	11.56879014452251	11.56879083489755	11.63356
T022-2	11.5678729271756	11.56879034767476	11.56879083489755	11.90185
T022-3	11.5679268756596718	11.56879013435834	11.56879083489755	11.57677
T022-4	11.5678938183882211	11.56879013299215	11.56879083489755	13.39389
T022-5	11.56789029046356	11.56879045197567	11.56879083489755	11.44911
T023-0	11.63107897689606	11.626439742081966	11.62643915378515	11.57877
T023-1	11.619997976153462	11.626439146934238	11.62643915378515	11.39835
T023-2	11.61126608293132	11.626439146934238	11.62643915378515	11.43501
T023-3	11.647477652583963	11.62643915321914	11.62643915378515	13.20628
T023-4	11.60756599309579	11.62643915462155	11.62643915378515	10.72795
T023-5	11.62042152261536	11.62643915263352	11.62643915378515	11.74869
T042-0	11.502624357421948	11.50475263366923	11.50475207909265	11.30545
T042-1	11.507105268508006	11.50475331150279	11.504752086650519	11.07124
T042-2	11.519442921951189	11.50475389901661	11.504752079220612	9.41924
T042-3	11.501095106227783	11.504754044950799	11.504752085646500	12.16150
T042-4	11.530791206130419	11.504752412140897	11.50475207367618	10.11515
T042-5	11.499503647742464	11.50475295632382	11.50475207692938	10.64605
Tensor	M6-P2-G5	M1-P2-G5	M1-P2-G7	20-design
--------	----------	----------	----------	-----------
T060-0	11.98997164400403	11.989476119401702	11.989477685702977	12.05017
T060-1	11.990418566344240	11.989479611584825	11.98947723348062	12.01483
T060-2	11.976582295964006	11.989478648296963	11.98947738864300	11.80414
T060-3	11.9478478025750	11.9894793940143	11.98947740049253	11.64148
T060-4	11.989039776987073	11.989478217916079	11.98947724638414	12.09719
T060-5	12.04673809570048	11.989477160425962	11.98947721024015	11.20783
T061-0	11.519673775399891	11.51835424201142	11.51835117247486	11.48023
T061-1	11.518661618867961	11.51834427948641	11.5183513069415	11.45852
T061-2	11.519323023325257	11.51835433182912	11.51835109619174	11.45517
T061-3	11.51787870824445	11.51830456996306	11.51835109891727	11.66299
T061-4	11.517606307852915	11.51829721219993	11.51835107795112	11.47192
T061-5	11.531441863084249	11.51843741001642	11.5183510921667	10.31802
T065-0	11.660951650838694	11.66007713978377	11.6601466015409	11.77330
T065-1	11.657097464096733	11.660154683563129	11.66016583185155	11.64542
T065-2	11.662671583310311	11.660135616613492	11.66016602669996	11.69570
T065-3	11.65704111599187	11.66014534680922	11.66016593520388	11.58150
T065-4	11.661605706427124	11.66014880978219	11.66016601870989	12.45337
T065-5	11.668831112589293	11.66014725460873	11.66016596730511	11.76209
T072-0	11.54558951894757	11.545142097769179	11.54514226929544	11.76647
T072-1	11.545716622630585	11.545139592262001	11.54514221483210	11.52675
T072-2	11.562200209044268	11.545142319259361	11.54514224116661	8.50885
T072-3	11.575704218963165	11.54514468175810	11.54514226744587	10.30769
T072-4	11.53057590703719	11.545140326506765	11.54514235723655	12.22675
T072-5	11.545910129113601	11.54514536682674	11.54514208615009	11.9618
T074-0	11.116314213623787	11.11608852600165	11.11609055663937	11.20632
T074-1	11.109183432626360	11.11608665050504	11.11609055382580	11.09112
T074-2	11.121063605466493	11.11609413571593	11.11609055420284	9.58706
T074-3	11.090134159234779	11.116089713933696	11.11609055055130	10.19594
T074-4	11.135697898280837	11.116091869446610	11.116090554811293	11.15140
T074-5	11.117481923683803	11.116094503240262	11.116090554606608	11.08749

Table 5: Centro-affine surface area: T_n, where $n = 060, 061, 065, 072$ and 074. Each line denoted as T_n-0 lists the value of the original tensor and the lines $T_n-i, i = 1, 2, ..., 5$ list the values for the transformed tensors of T_n by a randomly chosen matrix of $GL(3)$.
9 Conclusion

We treated the $SL(4) \times SL(4) \times SL(3)$, $GL(4) \times GL(4) \times SL(3)$ or $GL(4) \times GL(4) \times GL(3)$ non-equivalence problem of $4 \times 4 \times 3$ absolutely nonsingular tensors. We proposed a method to address the problem through the determinant polynomials. Furthermore we proposed to solve the problem by differential geometric $SL(3)$ or $GL(3)$ invariant of the constant surface of the determinant polynomials. From the numerical analysis by Mathematica, it was shown that the stable values of invariants are obtainable numerically and also it was shown that the affine surface area and the centro-affine surface area are useful to detect the non-equivalence. This means that the algebraic problem: whether a system of algebraic equations with many variables can have real solutions or not, can be resolved by differential geometric methods. It is a nice link between algebra and differential geometry. Second, we investigated the spherical design method for calculating invariants. At present, we think that the values given by the adaptive lattice methods are more reliable than those given by the spherical design method. In some future work, we expect to extend the result to more higher dimensional tensors and to know why the spherical design method does not give stable values of invariants.

References

[1] M.D. Atkinson and S. Lloyd, *Bounds on the ranks of some 3-tensors*, Linear Algebra and its applications 31 (1980), 19–31.

[2] M. D. Atkinson and M. Stephens, On the maximal multiplicative complexity of a family of bilinear forms, Linear Algebra and its applications 27 (1979), 1–8.

[3] E. Bannai and E. Bannai, *A survey of spherical designs and algebraic combinatorics on spheres*. Europian J. of Combinatorics, 30 (2009), 1392–1425.

[4] W. Blaschke, Vorlesungen über Differential geometrie II, Springer Verlag, Berlin 1923.

[5] L. Chen, Yi. Chen and Y. Mei, Classification of multipartite entanglement containing infinitely many kinds of states, Phys. Revs. A 74 (2006), no. 5, 052331, 1–12.

[6] P. Comon, J.M.F. ten Berge, L.D. Lathauwer and J. Castaing, Generic and typical ranks of multi-way arrays, Linear Algebra Applications 430 (2009), no. 11-12, 2997–3007.

[7] P. Delsarte, J.M. Goethals and J.J Seidel, *Spherical codes and designs*, Geom. Dedicata 6 (1977), 363–388.

[8] R. H. Hardin and Sloane, N.J.A., Spherical Designs http://www2.research.att.com/~njas/sphdesigns/dim3/.

[9] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.

23
[10] D. Hug, Contributions to affine surface area, manuscripta mathematics 91 (1996), 283–301.

[11] T.G. Kolda and B.W, Bader, Tensor decompositions and applications, SIAM Review 51 (2009), no. 3, pp. 455–500.

[12] J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and Appl. 18 (1977), no. 2, 95–138.

[13] K. Leichtwess, Affine Geometry of Convex bodies, Johann Ambrosius. Barth Verlag, Heidelberg (1998).

[14] M. Ludwig, A characterization of affine length and asymptotic approximation of convex discs, Abh. Math. semin. Univ. Hamb. 69 (1999), 75–78.

[15] M. Ludwig, Valuations in the affine geometry of convex bodies, Proceedings of the conference ”Integral geometry and convexity”, Wuhan 2004, World Scientific, Singapore (2006), 49–65.

[16] M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999), 138–172.

[17] M. Ludwig and M. Reitzner, A Classification of SL(n) invariant Valuations, Annals of Mathematics (2010), in press. preprint, http://sites.google.com/site/monikaludwig/.

[18] K. Maehara, A list of absolutely nonsingular tensors with $-1,0,1$ elements for $4 \times 4 \times 3$ case. Preprint(2010).

[19] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, Cambridge (1994).

[20] E. Lutwak, The Brunn-Minkovski-Firey theory II: Affine and geominimal surface areas, Adv.Math. 118 (1996), 244–294.

[21] T. Sakata, T. Sumi and M. Miyazaki, Exceptional tensors with three slices and the positivity of its determinant polynomial, Abstract book of ISI, CPM37, Theoretical Statistics, 349.

[22] T. Sakata, T. Sumi, M. Miyazaki and K. Maehara, Exceptional tensors of 3 x 4 x 4 tensors and Hilbert 17 th problem, Abstract book of Statistics, Probability, Operation Research, Computer Science and allied Areas, (2010), Complex Data Analysis and Modelling, 75–76.

[23] T. Sumi, M. Miyazaki, M. and T. Sakata, About the maximal rank of 3-tensors over the real and the complex number field, Ann. Inst. Stat. Math. 62 (2010), 807–822.

[24] J.M.F. ten- Berge, The typical rank of tall three-way arrays, Psychometrika 65 (2000), no. 4, 525–532.

24