A NOTE ON FINITE LATTICES WITH MANY CONGRUENCES

GÁBOR CZÉDLI

Abstract. By a twenty year old result of Ralph Freese, an \(n \)-element lattice \(L \) has at most \(2^{n-1} \) congruences. We prove that if \(L \) has less than \(2^{n-1} \) congruences, then it has at most \(2^{n-2} \) congruences. Also, we describe the \(n \)-element lattices with exactly \(2^{n-2} \) congruences.

1. Introduction and motivation

It follows from Lagrange’s Theorem that the size \(|S|\) of an arbitrary subgroup \(S \) of a finite group \(G \) is either \(|G|\), or it is at most the half of the maximum possible value, \(|G|/2\). Furthermore, if the size of \(S \) is the half of its maximum possible value, then \(S \) has some special property since it is normal. Our goal is to prove something similar on the size of the congruence lattice \(\text{Con}(L) \) of an \(n \)-element lattice \(L \).

For a finite lattice \(L \), the relation between \(|L|\) and \(|\text{Con}(L)|\) has been studied in some earlier papers, including Freese [3], Grätzer and Knapp [8], Grätzer, Lakser, and Schmidt [9], Grätzer, Rival, and Zaguia [10]. In particular, part (i) of Theorem 2.1 below is due to Freese [3]; note that we are going present a new proof of part (i). Although Czédli and Mureşan [2] and Mureşan [12] deal only with infinite lattices, they are also among the papers motivating the present one.

2. Our result and its proof

Mostly, we follow the terminology and notation of Grätzer [5]. In particular, the glued sum \(L_0 \dot{+} L_1 \) of finite lattices \(L_0 \) and \(L_1 \) is their Hall–Dilworth gluing along \(L_0 \cap L_1 = \{1_{L_0}\} = \{0_{L_1}\} \); see, for example, Grätzer [5, Section IV.2]. Note that \(\dot{+} \) is an associative operation. Our result is the following.

Theorem 2.1. If \(L \) is a finite lattice of size \(n = |L| \), then the following hold.

(i) \(L \) has at most \(2^{n-1} \) many congruences. Furthermore, \(|\text{Con}(L)| = 2^{n-1}\) if and only if \(L \) is a chain.

(ii) If \(L \) has less than \(2^{n-1} \) congruences, then it has at most \(2^{n-1}/2 = 2^{n-2} \) congruences.

(iii) \(|\text{Con}(L)| = 2^{n-2}\) if and only if \(L \) is of the form \(C_1 \dot{+} B_2 \dot{+} C_2 \) such that \(C_1 \) and \(C_2 \) are chains and \(B_2 \) is the four-element Boolean lattice.

For \(n = 8 \), part (iii) of this theorem is illustrated in Figure 1. Note that part (i) of the theorem is due to Freese [3, page 3458]; however, our approach to Theorem 2.1 includes a new proof of part (i).
Proof of Theorem 2.1. We prove the theorem by induction on \(n = |L| \). Since the case \(n = 1 \) is clear, assume as an induction hypothesis that \(n > 1 \) is a natural number and all the three parts of the theorem hold for every lattice with size less than \(n \). Let \(L \) be a lattice with \(|L| = n \). For \((a,b) \in L^2 \), the least congruence collapsing \(a \) and \(b \) will be denoted by \(\text{con}(a,b) \). A prime interval or an edge of \(L \) is an interval \([a,b]\) with \(a \prec b \). For later reference, note that
\[
(2.1) \quad \text{Con}(L) \text{ has an atom, and every of its atoms is of the form } \text{con}(a, b) \text{ for some prime interval } [a, b];
\]
this follows from the finiteness of \(\text{Con}(L) \) and from the fact that every congruence on \(L \) is the join of congruences generated by covering pairs of elements; see also Grätzer [7, page 39] for this folkloric fact.

Based on (2.1), pick a prime interval \([a, b]\) of \(L \) such that \(\Theta = \text{con}(a, b) \) is an atom in \(\text{Con}(L) \). Consider the map \(f: \text{Con}(L) \to \text{Con}(L) \) defined by \(\Psi \mapsto \Theta \lor \Psi \).

We claim that, with respect to \(f \),
\[
(2.2) \quad \text{every element of } f(\text{Con}(L)) \text{ has at most two preimages.}
\]
Suppose to the contrary that there are pairwise distinct \(\Psi_1, \Psi_2, \Psi_3 \in \text{Con}(L) \) with the same \(f \)-image. Since the \(\Theta \land \Psi_i \) belong to the two-element principal ideal \(\downarrow \Theta := \{ \Gamma \in \text{Con}(L) : \Gamma \leq \Theta \} \) of \(\text{Con}(L) \), at least two of these meets coincide. So we can assume that \(\Theta \land \Psi_1 = \Theta \land \Psi_2 \) and, of course, we have that \(\Theta \lor \Psi_1 = f(\Psi_1) = f(\Psi_2) = \Theta \lor \Psi_2 \). This means that both \(\Psi_1 \) and \(\Psi_2 \) are relative complements of \(\Theta \) in the interval \([\Theta \land \Psi_1, \Theta \lor \Psi_1]\). According to a classical result of Funayama and Nakayama [4], \(\text{Con}(L) \) is distributive. Since relative complements in distributive lattices are well-known to be unique, see, for example, Grätzer [5, Corollary 103], it follows that \(\Psi_1 = \Psi_2 \). This is a contradiction proving (2.2).

Clearly, \(f \) is a retraction map onto the filter \(\uparrow \Theta \). It follows from (2.2) that \(|\uparrow \Theta| \geq |\text{Con}(L)|/2 \). Also, by the well-known Correspondence Theorem, see Burris and Sankappanawar [1, Theorem 6.20], or see Theorem 5.4 (under the name Second Isomorphism Theorem) in Nation [11], \(|\uparrow \Theta| = |\text{Con}(L/\Theta)| \) holds. Hence, it follows that
\[
(2.3) \quad |\text{Con}(L/\Theta)| \geq \frac{1}{2} \cdot |\text{Con}(L)|.
\]
Since \(\Theta \) collapses at least one pair of distinct elements, \((a,b) \), we have that \(|L/\Theta| \leq n-1 \). Thus, it follows from part (i) of the induction hypothesis that \(|\text{Con}(L/\Theta)| \leq 2^{(n-1)-1} = 2^{n-2} \). Combining this inequality with (2.3), we obtain that \(|\text{Con}(L)| \leq 2 \cdot |\text{Con}(L/\Theta)| \leq 2^{n-1} \). This shows the first half of part (i).

If \(L \) is a chain, then \(\text{Con}(L) \) is known to be the \(2^{n-1} \)-element boolean lattice; see, for example, Grätzer [7, Corollaries 3.11 and 3.12]. Hence, we have that \(|\text{Con}(L)| = \)
2^{n-1}$ if L is a chain. Conversely, assume the validity of $|\text{Con}(L)| = 2^{n-1}$, and let $k = |L/\Theta|$. By the induction hypothesis, $|\text{Con}(L/\Theta)| \leq 2^{k-1}$. On the other hand, $|\text{Con}(L/\Theta)| \geq |\text{Con}(L)|/2 = 2^{n-2}$ holds by (2.3). These two inequalities and $k < n$ yield that $k = n-1$ and also that $|\text{Con}(L/\Theta)| = 2^{n-2} = 2^{k-1}$. Hence, the induction hypothesis implies that L/Θ is a chain. For the sake of contradiction, suppose that L is not a chain, and pick a pair (u, v) of incomparable elements of L. The Θ-blocks u/Θ and v/Θ are comparable elements of the chain L/Θ, whence we can assume that $u/\Theta \leq v/\Theta$. It follows that $u/\Theta = u/\Theta \wedge v/\Theta = (u \wedge v)/\Theta$ and, by duality, $v/\Theta = (u \lor v)/\Theta$. Thus, since $u, v, u \wedge v$ and $u \lor v$ are pairwise distinct elements of L and Θ collapses both of the pairs $(u \wedge v, u)$ and $(v, u \lor v)$, we have that $k = |L/\Theta| < n - 2$, which is a contradiction. This proves part (i) of the theorem.

As usual, for a lattice K, let $J(K)$ and $M(K)$ denote the set of nonzero join-irreducible elements and the set of meet-irreducible elements distinct from 1, respectively. By a narrows we will mean a prime interval $[a, b]$ such that $a \in M(L)$ and $b \in J(L)$. Using Grätzer [6], it follows in a straightforward way that

$$\text{(2.4)}$$

- if $[a, b]$ is a narrows, then $\{a, b\}$ is the
- only non-singleton block of $\text{con}(a, b)$.

Now, in order to prove part (ii) of the theorem, assume that $|\text{Con}(L)| < 2^{n-1}$. By (2.1), we can pick a prime interval $[a, b]$ such that $\Theta := \text{con}(a, b)$ is an atom in $\text{Con}(L)$. There are two cases to consider depending on whether $[a, b]$ is a narrows or not; for later reference, some parts of the arguments for these two cases will be summarized in (2.5) and (2.6) redundantly. First, we deal with the case where $[a, b]$ is a narrows. We claim that

$$\text{(2.5)}$$

- if $|\text{Con}(L)| < 2^{n-1}$, $[a, b]$ is a narrows, and $\Theta = \text{con}(a, b)$
- is an atom in $\text{Con}(L)$, then L/Θ is not a chain.

By (2.4), $|L/\Theta| = n - 1$. By the already proved part (i), L is not a chain, whence there are $u, v \in L$ such that $u \parallel v$. We claim that u/Θ and v/Θ are incomparable elements of L/Θ. Suppose the contrary. Since u and v play a symmetric role, we can assume that $u/\Theta \lor v/\Theta = v/\Theta$, i.e., $(u \lor v)/\Theta = v/\Theta$. But $u \lor v \neq v$ since $u \parallel v$, whereby (2.4) gives that $\{v, u \lor v\} = \{a, b\}$. Since $a < b$, this means that $v = a$ and $u \lor v = b$. Thus, $u \lor v \in J(L)$ since $[a, b]$ is a narrows. The membership $u \lor v \in J(L)$ gives that $u \lor v \in \{u, v\}$, contradicting $u \parallel v$. This shows that $u/\Theta \parallel v/\Theta$, whence L/Θ is not a chain. We have shown the validity of (2.5). Using part (i) and $|L/\Theta| = n - 1$, it follows that $|\text{Con}(L/\Theta)| < 2^{(n-1)-1}$. By the induction hypothesis, we can apply (ii) to L/Θ to conclude that $|\text{Con}(L/\Theta)| \leq 2^{(n-1)-2}$. This inequality and (2.3) yield that $|\text{Con}(L)| \leq 2 \cdot |\text{Con}(L/\Theta)| \leq 2^{n-2}$, as required.

Second, assume that $[a, b]$ is not a narrows. Our immediate plan is to show that

$$\text{(2.6)}$$

- if a prime interval $[a, b]$ of L is not a narrows
- and $\Theta = \text{con}(a, b)$, then $|L/\Theta| \leq n - 2$.

By duality, we can assume that a is meet-reducible. Hence, we can pick an element $c \in L$ such that $a < c$ and $c \neq b$. Clearly, $c \neq b \lor c$ and $\Theta = \text{con}(a, b)$ collapses both (a, b) and $(c, b \lor c)$, which are distinct pairs. Thus, we obtain that $|L/\Theta| \leq n - 2$, proving (2.6). Hence, $\text{Con}(L/\Theta) \leq 2^{n-3}$ by part (i) of the induction hypothesis. Combining this inequality with (2.3), we obtain the required inequality $\text{Con}(L) \leq 2^{n-2}$. This completes the induction step for part (ii).

Next, in order to perform the induction step for part (iii), we assume that $|\text{Con}(L)| = 2^{n-2}$. Again, there are two cases to consider. First, we assume
that there exists a narrows \([a, b]\) in \(L\) such that \(\Theta := \text{con}(a, b)\) is an atom in \(\text{Con}(L)\). Then \(|L/\Theta| = n - 1\) by (2.4) and \(L/\Theta\) is not a chain by (2.5). By the induction hypothesis, parts (i) and (ii) hold for \(L/\Theta\), whereby we have that \(|\text{Con}(L/\Theta)| \leq 2^{(n-1)-2} = 2^{n-3}\). On the other hand, it follows from (2.3) that \(|\text{Con}(L/\Theta)| \geq |\text{Con}(L)|/2 = 2^{n-3}\). Hence, \(|\text{Con}(L/\Theta)| = 2^{n-3} = 2^{(L/\Theta)-2}\). By the induction hypothesis, \(L/\Theta\) is of the form \(C_1 + B_2 + C_2\). We know from (2.4) that \(\{a, b\} = [a, b]\) is the unique non-singleton \(\Theta\)-block. If this \(\Theta\)-block is outside \(B_2\), then \(L\) is obviously of the required form. If the \(\Theta\)-block \(\{a, b\}\) is in \(C_2 \cap B_2\), then \(L\) is of the required form simply because the situation on the left of Figure 2 would contradict the fact that \([a, b]\) is a narrows. A dual treatment applies for the case \(\{a, b\} \in C_1 \cap B_2\). If the \(\Theta\)-block \(\{a, b\}\) is in \(B_2 \setminus (C_1 \cup C_2)\), then \(L\) is of the form \(C_1 + N_5 + C_2\), where \(N_5\) is the “pentagon”; see the middle part of Figure 2. For an arbitrary bounded lattice \(K\) and the two-element chain \(2\), it is straightforward to see that

\[
\text{Con}(K + 2) \cong \text{Con}(2 + K) \cong \text{Con}(K) \times 2.
\]

A trivial induction based on (2.7) yields that \(|\text{Con}(C_1 + N_5 + C_2)|\) is divisible by \(5 = |\text{Con}(N_5)|\). But 5 does not divide \(|\text{Con}(L)| = 2^{n-2}\), ruling out the case that the \(\Theta\)-block \(\{a, b\}\) is in \(B_2 \setminus (C_1 \cup C_2)\). Hence, \(L\) is of the required form.

Second, we assume that no narrows in \(L\) generates an atom of \(\text{Con}(L)\). By (2.1), we can pick a prime interval \([a, b]\) such that \(\Theta := \text{con}(a, b)\) is an atom of \(\text{Con}(L)\). Since \([a, b]\) is not a narrows, (2.6) gives that \(|L/\Theta| \leq n - 2\). We claim that we have equality here, that is, \(|L/\Theta| = n - 2\). Suppose to the contrary that \(|L/\Theta| \leq n - 3\). Then part (i) and (2.3) yield that

\[2^{n-2} = |\text{Con}(L)| \leq 2 \cdot |\text{Con}(L/\Theta)| \leq 2 \cdot 2^{(n-3)-1} = 2^{n-3},\]

which is a contradiction. Hence, \(|L/\Theta| = n - 2\). Thus, we obtain from by part (i) that \(|\text{Con}(L/\Theta)| \leq 2^{n-3}\). On the other hand, (2.3) yields that \(|\text{Con}(L/\Theta)| \geq |\text{Con}(L)|/2 = 2^{n-3}\), whence \(|\text{Con}(L/\Theta)| = 2^{n-3} = 2^{(L/\Theta)-1}\), and it follows by part (i) that \(L/\Theta\) is a chain. Now, we have to look at the prime interval \([a, b]\) closely. It is not a narrows, whereby duality allows us to assume that \(b\) is not the only cover of \(a\). So we can pick an element \(c \in L \setminus \{b\}\) such that \(a \prec c\), and let \(d := b \lor c\); see on the right of Figure 2. Since \((c, d) = \{c \lor a, c \lor b\} \in \text{con}(a, b) = \Theta\), any two elements of \([c, d]\) is collapsed by \(\Theta\). Using \((a, b) \in \Theta\), \((c, d) \in \Theta\), and \(|L/\Theta| = n - 2 = |L| - 2\), it follows that there is no “internal element” in the interval \([c, d]\), that is, \(c \prec d\).

Furthermore, \([a, b] = \{a, b\}\) and \([c, d] = \{c, d\}\) are the only non-singleton blocks of

![Figure 2. Illustrations for the proof](image-url)
Θ. In order to show that \(b < d \), suppose to the contrary that \(b < e < d \) holds for some \(e \in L \). Since \(d = b \lor c \leq e \lor c \leq d \), we have that \(e \lor c = d \), implying \(c \not\preceq e \).

Hence, \(c \land e < e \). Since \((c \land e, e) \subseteq (c \land e, d \land e) \subseteq \Theta \), the \(\Theta \)-block of \(e \) is not a singleton. This contradicts the fact that \(\{a, b\} \) and \(\{c, d\} \) are the only non-singleton \(\Theta \)-blocks, whereby we conclude that \(b < d \). The covering relations established so far show that \(S := \{a = b \lor c, b, c, d = b \lor c\} \) is a covering square in \(L \). We know that both non-singleton \(\Theta \)-blocks are subsets of \(S \) and \(L/\Theta \) is a chain. Consequently, \(L \setminus S \) is also a chain.

Hence, to complete the analysis of the second case when \(\{a, b\} \) is not a narrows, it suffices to show that for every \(x \in L \setminus S \), we have that either \(x \leq a \) or \(x \geq d \).

So, assume that \(x \in L \setminus S \). Since \(L/\Theta \) is a chain, \(\{a, b\} \) and \(\{x\} \) are comparable in \(L/\Theta \). If \(\{x\} < \{a, b\} \), then \(\{x\} \lor \{a, b\} = \{a, b\} \) gives that \(x \lor a \in \{a, b\} \). If \(x \lor a \) happens to equal \(b \), then \(x \not\preceq a \) leads to \(x \land a < x \) and \(\langle x \land a, x \land b \rangle \in \Theta \), contradicting the fact the \(\{a, b\} \) and \(\{c, d\} \) are the only non-singleton \(\Theta \)-blocks. So if \(\{x\} < \{a, b\} \), then \(x \lor a = a \) and \(x < a \), as required. Thus, we can assume that \(\{x\} > \{a, b\} \). If \(\{x\} > \{c, d\} \), then the dual of the easy argument just completed shows that \(x \geq d \). So, we are left with the case \(\{a, b\} < \{x\} < \{c, d\} \). Then the equalities \(\{a, b\} \lor \{x\} = \{x\} \) and \(\{x\} = \{x\} \land \{c, d\} \) give that \(b \lor x = x = d \lor x \), that is, \(b \leq x \leq d \). But \(x \notin S \), so \(b < x < d \), contradicting \(b < d \). This completes the second case of the induction step for part (iii) and the proof of Theorem 2.1. □

References

[1] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer–Verlag, New YorkBerlin (1981)
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

[2] Czédli, G.1, Mureşan, C.: On principal congruences and the number of congruences of a lattice with more ideals than filters. Algebra Universalis (submitted),
http://arxiv.org/abs/1711.06394

[3] Freese, R.: Computing congruence lattices of finite lattices. Proc. Amer. Math. Soc. 125, 3457–3463, 1997

[4] Funayama, N., T. Nakayama, T.: On the congruence relations on lattices, Proc. Imp. Acad. Tokyo 18, 530–531 (1942)

[5] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

[6] Grätzer, G.: A technical lemma for congruences of finite lattices. Algebra Universalis 72, 53–55 (2014)

[7] Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach, second edition. Birkhäuser, 2016

[8] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76, 3–26 (2010)

[9] Grätzer, G., Lakser, H, Schmidt. E.T.: Congruence lattices of small planar lattices. Proc. Amer. Math. Soc. 123, 2619–2623 (1995)

[10] Grätzer, G., Rival, I., Zaguia, N.: Small representations of finite distributive lattices as congruence lattices. Proc. Amer. Math. Soc. 123, 1959–196 (1995)

[11] Nation, J. B.: Notes on Lattice Theory. http://math.hawaii.edu/~jb/math5618/LTNotes.pdf

[12] Mureşan, C.: Cancelling congruences of lattices while keeping their filters and ideals. https://arxiv.org/abs/1710.10183

E-mail address: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/

Bolyai Institute, University of Szeged, Hungary 6720

1See http://www.math.u-szeged.hu/~czedli/ for the latest version (temporary note)