Transcatheter arterial embolization followed by surgical laparotomy for hemorrhagic shock due to intestinal bleeding: a case report

Sayumi Kurita1*, Kazuo Kitagawa1, Naoki Toya1, Mutsumi Kaji1, Satoshi Yoshioka1, Yuki Hiramoto1, Shuichi Fujioka1, Naoto Takahashi1 and Ken Eto2

Abstract

Background: Acquired jejunal diverticula are relatively rare conditions. While mostly asymptomatic, they can occasionally cause life-threatening complications requiring surgical treatment. We herein report a case of hemorrhagic shock due to jejunal diverticulum with intestinal amyloidosis that was successfully managed via transcatheter arterial embolization (TAE) and surgery.

Case presentation: An 80-year-old female presenting with hematochezia and hemorrhagic shock was transferred to our institution. Contrast-enhanced computed tomography revealed extravasation in the small bowel around the upper jejunum. Massive transfusion was performed with subsequently planning for TAE to control bleeding followed by surgical laparotomy to evaluate the ischemic intestine. First, the second jejunal artery was selectively embolized with a 1:3 mixture of N-butyl cyanoacrylate (NBCA) and iodize oil, after which laparotomy was performed. Multiple jejunal diverticula were detected near Treitz’ ligament, and an induration of NBCA was palpable in the nearby mesentery. The intraoperative diagnosis was massive bleeding from acquired jejunal diverticula for which jejunectomy including the nearby diverticulum was performed to prevent future bleeding. Her postoperative course was stable. Histological examination of the specimen revealed several false diverticula with intestinal amyloidosis.

Conclusion: Hemorrhagic shock due to jejunal diverticulum with intestinal amyloidosis is extremely rare. Combined treatment of TAE and surgical laparotomy appears to be effective, because the bleeding point can be identified by palpation of the embolic material.

Keywords: Intestinal bleeding, Jejunal diverticula, Hemorrhagic shock, Intestinal amyloidosis, Transcatheter arterial embolization

Background

While acquired jejunal diverticula are relatively rare conditions that are mostly asymptomatic, they can occasionally cause life-threatening complications requiring surgical treatment, such as diverticular hemorrhage [1, 2].

Several reports have shown that transcatheter arterial embolization (TAE) has become an established therapeutic approach for the treatment of gastrointestinal hemorrhage [3–6]. In cases with endoscopy-inaccessible bleeding point, TAE may be an effective alternative. Nonetheless, high rebleeding rates and serious complications, such as bowel ischemia, infarction, and perforation, have been reported, which are important factor associated with in-hospital mortality in some cases requiring surgical treatment or repeat embolization [5, 7–9].

We herein report a case of hemorrhagic shock due to bleeding from acquired jejunal diverticula with intestinal...
Case presentation
An 80-year-old female presenting with hematochezia and hemorrhagic shock was transferred from another hospital to our institution because of a 6-day history of melena. She had previously undergone gastrointestinal endoscopy, colonoscopy, and capsule endoscopy, none of which could identify the bleeding source. She had several medical comorbidities, including rheumatoid arthritis that required oral steroids for 10 years, steroid-induced diabetes, and colon diverticulitis, as well as surgical history of hip replacement, knee replacement, cholecystectomy, and appendectomy. No relevant family and social history had been noted. No palpable mass was found on clinical examination. Her blood pressure, body temperature, heart rate, and respiratory rate were 90/63 mmHg, 36.4 °C, 117 beats per min, and 24 breaths per min, respectively.

Clinical laboratory examination showed the following data: white blood cell count of 11,300/μL, red blood cell count of 190 × 10^12/μL, hemoglobin level of 5.6 g/dL, hematocrit of 15.6%, platelets count of 5.1 × 10^9/μL, total protein level of 2.7 g/dL, albumin level of 1.9 g/dL, prothrombin international normalized ratio of 1.78, and activated partial thromboplastin time of 95.9 s.

Contrast-enhanced computed tomography (CT) of the abdomen revealed extravasation in the small bowel around the upper jejunum (Fig. 1). Massive transfusion was then performed to maintain tissue perfusion, while several treatments, including TAE or surgical repair, were performed to stop the bleeding. We planned to perform TAE to control bleeding followed by surgical laparotomy to evaluate the ischemic intestine immediately.

First, the second jejunal artery was selectively embolized with a 1:3 mixture of N-butyl cyanoacrylate (NBCA) and iodized oil. Hemostasis was confirmed via angiography, after which the patient’s vital signs stabilized (Fig. 2).

Subsequent laparotomy revealed multiple jejunal diverticulum near Treitz’ ligament, and an induration of NBCA was palpable in the nearby mesentery. A mobile fluoroscopic X-ray system was also used to identify the NBCA location. An intraoperative diagnosis of massive bleeding from acquired jejunal diverticula was established, for which jejunectomy including the nearby diverticulum was performed to prevent future bleeding. The operative time was 164 min and the estimated intraoperative blood loss was 10 ml. Her postoperative course was stable.

Histological examination of the specimen revealed several diverticula devoid of muscularis propria (false diverticula). The organized vein opened into the diverticula, which seemed responsible for the bleeding. Glass-like acidophilic unstructured deposits were found around the vein wall, which suggested intestinal amyloidosis (Fig. 3).

Discussion
Acquired diverticula of the jejunum and ileum have a reported incidence of 0.06–2.3% [10–13]. Although jejunoileal diverticulosis is usually asymptomatic, they can occasionally cause serious complications, such as perforation or hemorrhage.

Diverticular hemorrhage remains the second most common complication of jejunoileal diverticulosis (5–33%) after diverticulitis and can cause life-threatening complications [10].

Given the extensive length and curvatures of the small intestine, examining hemorrhage is quite difficult. Gastroscopy and colonoscopy can only be used to exclude bleeding from other sites. While small bowel endoscopy
Fig. 2 Angiography findings.

a Second jejunal artery (black arrow) was visualized using a contrast medium. Contrast medium leakage from the peripheral artery of the second jejunal branch (white arrow).

b Second jejunal artery (black arrow) was embolized with N-butyl cyanoacrylate.

c Leakage disappeared

Fig. 3 Histological examination of the specimen.

a With macroscopic findings showed several many false diverticula.

b Organized vein opened into the diverticula.

c Microscopic findings revealed glass-like acidophilic unstructured deposits around the vein wall.

d Glass-like structure was stained orange with DFS staining, which suggested intestinal amyloidosis
has been considered a breakthrough for diagnosing intes-
tinal disease, it remains unsuitable for hemodynamically
unstable patients considering its long examination time
and complexity.

Emergency surgery remains the gold standard treat-
ment in cases with massive acute bleeding given the
high incidence rates of recurrence and mortality. Yen
et al. reported an overall mortality of 7.1%, while 25% of
the patients whose bleeding was nonsurgically managed developed recurrence during the follow-up period. Cases
without surgical resection of the bleeding lesion have
shown higher mortality and recurrence rates [1].

Recently, TAE has been proven effective for the treat-
ment of acute gastrointestinal bleeding, with high tech-
nical success and acceptable clinical success rates.
Published studies have reported varying technical suc-
cess rates ranging from 97 to 100% [4–8, 14–17]. The
major advantage of TAE is its ability to control severe
bleeding without bowel preparation. Moreover, it can be
performed even in patients with unstable hemodynamics
who cannot receive general anesthesia.

However, clinical success rates (percentage of patients
needing no further treatment, such as a second TAE,
surgery, and endoscopic treatment) have been relatively
lower compared to technical success rates. Kim et al.
showed that among 175 patients with lower gastrointes-
tinal bleeding who achieved technical success, 86.1% and
6.1% achieved clinical success and developed major com-
lications, respectively [15]. Bowel ischemia or infarction
has been the most severe complication of TAE, although
their published incidence rates have remained quite low
[4–8, 14–17]. One study showed that cases developing
bowel infarction exhibit a 90% increase in their mortality
rate during hospital stay [5].

Surgical treatment should be considered in patients
with brisk, ongoing bleeding. However, resection of small
bowel segments must be limited give the potential risk
for short bowel syndrome [18]. The complication and
mortality rates following surgery for acute lower gastro-
intestinal bleeding have been reported to be as high as
60% and 16%, respectively [19]. Thus, careful localization
of the bleeding source whenever possible prior to surgi-
cal resection is imperative to avoid rebleeding from the
unresected culprit lesion [3, 19]. Andrei et al. suggested
performing intraoperative endoscopy in cases, wherein
the bleeding site remains unlocated, although identifying
the bleeding point is generally challenging considering
that intestine might be filled with blood [9].

Given that the current case was hemodynamically
unstable, open surgery was initially too risky to per-
form. Contrast-enhanced CT showed that the bleed-
ing site might be in the upper jejunum. As such, TAE
was planned to control bleeding, after which surgical
laparotomy was immediately scheduled to evaluate
ischemic changes in the small intestine. Although our
findings showed no sign of bowel ischemia, multiple
jejunal diverticula had been detected. Considering the
patient's long-term administration of steroids, her risk
of rebleeding and bowel perforation was considered to
be higher than normal, which indicated jejunectomy.
Intraoperative confirmation of NBCA made it easy to
determine the extent of resection, and the patient was
successfully managed without any fatal complications.

Moreover, histological examination of the specimen
revealed intestinal amyloidosis. Although gastrointes-
tinal bleeding is well known in patients with intestinal
amyloidosis, seldom have gastrointestinal surgeries
been performed in such cases [20]. Although intestinal
amyloidosis could not be overlooked as the cause of the
massive bleeding, our treatment strategy appeared to
be appropriate and promising.

Patients whose bleeding site can be detected using
contrast-enhanced CT and in whom the bleeding site
is located at an endoscopically inaccessible point, such
as the small intestine, are deemed suitable for undergo-
ing this surgery. This is because achieving hemostasis
by TAE will be difficult if the bleeding point cannot be
identified via contrast-enhanced CT. In addition, if the
bleeding point is easily accessible via endoscopy, one
should consider endoscopic hemostasis first, because
it is easier and less invasive than TAE or surgical
approach.

Furthermore, we believe that our treatment strategy
is useful regardless of the number of bleeding points.
When attempting to achieve hemostasis by TAE alone
in case of multiple intestinal bleeding, it may be neces-
ary to embolize multiple or extensive arteries, increas-
ing the risk of intestinal ischemia. However, using our
strategy, surgery can be performed immediately after
TAE to assess the presence of gastrointestinal ischemia
and, therefore, avoid the serious complications associ-
ated with.

Nonetheless, when patients’ vital signs cannot be sta-
bilized after TAE, our strategy might not be applicable.
It is dangerous to administer general anesthesia under
unstable hemodynamic conditions and may lead to the
development of other underlying life-threatening con-
ditions besides bleeding. However, when the bleeding
point is detectable via angiography, but bleeding can-
not be stopped due to some reason, surgery should be
performed immediately to achieve hemostasis. The
surgery is not also applicable in case the patient has
serious comorbidity that would preclude general anes-
thesia, such as respiratory disorder, cardiac dysfunc-
tion, and multiple organ failure.
Conclusion

TAE followed by surgical laparotomy seems to be an effective treatment and might be a new treatment strategy for intestinal bleeding. Prior TAE is helpful in the acute setting because of palpation of the embolic material.

Abbreviations

TAE: Transcatheter arterial embolization; CT: Computed tomography; NBCA: N-butyl cyanoacrylate.

Acknowledgements

Not applicable.

Authors’ contributions

SK, KK, and NT made substantial contributions to the study conception and design and the acquisition and interpretation of the data. SK, MK, SY, YH, and KK determined the therapeutic strategy. SK and YH performed the surgery. SK wrote the draft manuscript. NT, SF, NT, KE revised the article. All authors read and approved the final manuscript.

Funding

The authors declare that no funding was received for this case report.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Surgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa, Chiba 277-8567, Japan.
2. Department of Surgery, The Jikei University School of Medicine, 3-19-18 Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan.

Received: 9 October 2021 Accepted: 9 January 2022
Published online: 17 January 2022

References

1. Yen HH, Chen YY, Yang CW, Soon MS. Diagnosis and management of jejunoileal diverticular hemorrhage: a decade of experience. J Dig Dis. 2012;13:316–20.
2. Transue DL, Hanna TN, Shelkhani H, Rohatgi S, Khosa F, Johnson JO. Small bowel diverticulitis: an imaging review of an uncommon entity. Emerg Radiol. 2012;19:195–205.
3. Strate LL, Granek IM. ACG Clinical Guideline: management of patients with acute lower gastrointestinal bleeding. Am J Gastroenterol. 2016;111:755.
4. Huang YS, Chang CC, Liao JY, Jaw FS, Liu KL. Transcatheter arterial embolization with N-butyl cyanoacrylate for nonvariceal upper gastrointestinal bleeding in hemodynamically unstable patients: results and predictors of clinical outcomes. J Vasc Interv Radiol. 2014;25:1850–7.
5. Hongsaikul K, Pakdeejit S, Tanutit P. Outcome and predictive factors of successful transarterial embolization for the treatment of acute gastrointestinal hemorrhage. Acta Radiol. 2014;55:186–94.
6. Yata S, Iwaya T, Kaminou T, Hashimoto M, Ohuchi Y, Umekita Y, et al. Transcatheter arterial embolization of acute arterial bleeding in the upper and lower gastrointestinal tract with N-butyl-2-cyanoacrylate. J Vasc Interv Radiol. 2013;24:422–31.
7. Jae HJ, Chung JW, Jung AY, Lee W, Park JH. Transcatheter arterial embolization of nonvariceal upper gastrointestinal bleeding with N-butyl cyanoacrylate. Korean J Radiol. 2007;8:48–56.
8. Huang CC, Lee CW, Hisao JK, Leung PC, Liu KL, Tsang YM, et al. N-butyl cyanoacrylate embolization as the primary treatment of acute hemodynamically unstable lower gastrointestinal hemorrhage. J Vasc Interv Radiol. 2011;22:1594–9.
9. Andrei GN, Popa B, Gulie L, Diaconescu BI, Martian BV, Bejenaru M, et al. Highlighted steps of the management algorithm in acute lower gastrointestinal bleeding-case reports and literature review. Chirurgia (Bucur). 2016;111:74–9.
10. Lebert P, Ernst O, Zins M. Acquired diverticular disease of the jejunum and ileum: imaging features and pitfalls. Abdom Radiol (NY). 2019;44:1734–43.
11. Hardon SF, den Boer FC, Aalalati T, Fransen GA, Muller S. Perforated jejunal diverticula in a young woman: a case report. Int J Surg Case Rep. 2021;81:105838.
12. Woods K, Williams E, Melvin W, Sharp K. Acquired jejunoileal diverticulitis and its complications: a review of the literature. Am Surg. 2008;74:849–54.
13. Gualtieri F, Perrone G, Di Saverio S, Piana V, Bonati E, et al. Jejunal diverticulitis: things to know to prevent diagnostic mistake. Acta Biomed. 2021. https://doi.org/10.23750/abm.v92i5.9679.
14. Kwon JH, Han YH. Efficacy and safety of superselective trans-catheter arterial embolization of upper and lower gastrointestinal bleeding using N-butyl-2-cyanoacrylate. Emerg Radiol. 2018;25:111–20.
15. Kim PH, Tsauo J, Shin JH, Yun SC. Transcatheter arterial embolization of gastrointestinal bleeding with N-butyl cyanoacrylate: a systematic review and meta-analysis of safety and efficacy. J Vasc Interv Radiol. 2017;28:522–531.e5.
16. Kodani M, Yata S, Ohuchi Y, Iwaya T, Kaminou T, Ogawa T. Safety and risk of superselective transcatheter arterial embolization for acute lower gastrointestinal hemorrhage with N-butyl cyanoacrylate: angiographic and colonoscopic evaluation. J Vasc Interv Radiol. 2016;27:824–30.
17. Lv LS, Gu J.T. Super-selective arterial embolization in the control of acute lower gastrointestinal hemorrhage. World J Clin Cases. 2019;7:37–33.
18. Ceuppens AS, Dhont S, Sneyers B, Schepers C, Ramboer K, Van Hootegem P. Jejuno-ileal diverticulitis: a review of literature. Acta Gastroenterol Belg. 2019;81:517–9.
19. Aoki T, Hirata Y, Yamada A, Koike K. Initial management for acute lower intestinal bleeding-case reports and literature review. Kurita et al. Surgical Case Reports. 2022;8:11.