Combinatorics of Place Cell Coactivity and Hippocampal Maps

Andrey Babichev1,2, Daoyun Ji3, Facundo Mémoli4 and Yuri Dabaghian1,2\ast

1Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030,
2Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005
3Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030,
4Department of Mathematics, Ohio State University, Columbus, OH 43210
E-mail: dabaghia@bcm.edu
(Dated: September 8, 2015)

It is widely accepted that the hippocampal place cells’ spiking activity produces a cognitive map of space. However, many details of this representation’s physiological mechanism remain unknown. For example, it is believed that the place cells exhibiting frequent coactivity form functionally interconnected groups—place cell assemblies—that drive readout neurons in the downstream networks. However, the sheer number of coactive combinations is extremely large, which implies that only a small fraction of them actually gives rise to cell assemblies. The physiological processes responsible for selecting the winning combinations are highly complex and are usually modeled via detailed synaptic and structural plasticity mechanisms. Here we propose an alternative approach that allows modeling the cell assembly network directly, based on a small number of phenomenological selection rules. We then demonstrate that the selected population of place cell assemblies correctly encodes the topology of the environment in biologically plausible time, and may serve as a schematic model of the hippocampal network.
I. INTRODUCTION

The mammalian hippocampus plays a major role in spatial learning by encoding a cognitive map of space—a key component of animals’ spatial memory and spatial awareness [1, 2]. A remarkable property of the hippocampal neurons—the place cells—is that they become active only in discrete spatial regions—their respective place fields [3] (Fig. 1A). A number of studies have demonstrated that place cell activity can represent the animal’s current location [4, 5], its past navigational experience [6, 7], and even its future planned routes [8, 9]. Numerical simulations suggest that a population of place cells can also encode a global spatial connectivity map of the entire environment [10–12]. Hence, it is believed that the large-scale hippocampal representation of space emerges from integrating the information provided by the individual place cells, although the details of this process remain poorly understood.

Experimental studies point out that the hippocampal map is topological in nature, i.e., it is more similar to a subway map than to a topographical city map [13–16]. In [10] we proposed a computational approach for modeling its structure based on several remarkable parallels between the notions of hippocampal physiology and algebraic topology. For example, Čech’s theorem asserts that the topological structure of a space X can be deduced from the pattern of overlaps between regions that cover it (for details see [17] and Methods in [10]). The argument is based on building a special simplicial complex N, each n-dimensional simplex of which corresponds to a nonempty overlap of $n + 1$ covering regions, and demonstrating that the topological signatures of N and X are same [17]. Since the place cells’ spiking activity induces a covering of the environment by the place fields, called a place field map (Fig. 1B), Čech’s theorem suggests that the place cells’ coactivity (Fig. 1C), which marks the overlaps of the place fields, may be used by the brain to represent the topology of the environment. In [10–12] it was demonstrated that place cell coactivity can in fact be used to construct a “temporal” analogue of the nerve complex, T, the simplexes of which, $\sigma = [c_1, c_2, ..., c_k]$, correspond to the combinations of coactive place cells, $c_1, c_2, ..., c_k$ (Fig. 1D). Using the methods of persistent homology [18, 19] it was shown that the topological structure of T captures the topological properties of the environment, if the range of place cell spiking rates and place field sizes happen to parallel biological values derived from animal experiments [10, 11].

However, it remained unclear whether it is possible to physically implement this information in the (para)hippocampal network. On the one hand, electrophysiological studies suggest that place cells showing repetitive coactivity tend to form so-called cell assemblies—functionally interconnected neuronal groups that synaptically drive a readout neuron in the downstream networks [20–23]—which may be viewed as “physiological simplexes” implementing T. On the other hand, the place cell combinations of T are much too numerous to be implemented physiologically. In a small environment, c.a. 1×1 m, thousands of place cells are active and the activity of 50–300 of them is near maximal level at every given location [21]. The number of combinations of hundreds of coactive cells in an ensemble of thousands is unrealistically large, comparable to $C_{100}^{3000} \sim 10^{200}$. The number of cells in most parahippocampal regions, which may potentially serve as readout neurons, is similar to the number of place cells [24]. This implies that only a small fraction of coactive place cell groups may be equipped with readout neurons, i.e., that the cell assemblies may encode only a small part of the place cell coactivities—those which represent a certain “critical mass” of spatial connections.

Physiologically, the place cell assemblies emerge from dynamically changing constellations of synaptic connections and are commonly studied in terms of the synaptic and structural plasticity mechanisms [25–29]. For a better qualitative understanding of the qualitative properties of the cell assembly network and practical modeling of the hippocampus’ functions, we propose a biologically plausible empirical approach that allows selecting the most prominent combinations of coactive place cells directly and demonstrate that the resulting population of cell assemblies is sufficient for representing the topology of the environment.
FIG. 1: Place fields and place cells. (A) The blue, green and brown dots, corresponding to the spikes produced by three different place cells, form well-defined spatial clusters, which represent their respective place fields. Spikes are positioned in space according to the animal’s coordinates at the time of spiking. (B) A place field map produced by an ensemble of 300 place cells with mean peak firing rate $f = 20$ Hz and mean place field size $s = 14$ cm located in a 1×1 m environment. (C) A short time segment of the spike trains produced by three place cells. The periods of the cells’ coactivity, marked by dashed lines, indicate overlap of their respective place fields (panel A): cells c_1 and c_2 are coactive in the region 12, cells c_1, c_2 and c_3 are co-active in the region 123. (D) A simplex σ_{123} represents schematically the spatial connectivity encoded by the coactivity of cells c_1, c_2 and c_3. Its 1D edges correspond to pairwise coactivity, e.g. σ_{12} represents the coactivity of cells c_1 and c_2.

II. THE METHODS

Mathematically, the task of identifying a subpopulation of coactive place cell combinations corresponds to selecting according to biologically motivated criteria a subcomplex T_0 of the full coactivity complex T. The cell assemblies correspond to the maximal simplexes of T_0, (i.e., the ones that are not subsimplexes of any other simplex), in contrast with the maximal simplexes of the coactivity complex, T, which can represent any largest combinations of coactive cells. The “cell assembly complex,” T_0, should satisfy several general requirements:

I. Effectiveness. In the reader-centric approach [21], each cell assembly drives a coincidence detector readout neuron in the downstream brain regions. Since the number of the readout neurons is comparable to the number of place cells, the total number of the maximal simplexes in T_0, $N_{\text{max}}(T_0)$, should be comparable to the number of its vertexes, $N_c(T_0)$,

$$N_{\text{max}}(T_0) \approx N_c(T_0).$$

However, the algorithm for selecting T_0 should reduce only the number of coactive place cell combinations and not the place cells themselves, meaning that the number of vertexes in T and in T_0 should not differ significantly. In mathematical literature, the number of k-dimensional simplexes of a simplicial complex is usually denoted as f_k, and the list $f = (f_0, f_1, \ldots, f_d)$ is referred to as the complex’s f-vector [30]. However, since in neuroscience literature the letter f is often used to denote firing rates, we denote the number of k-dimensional simplexes by N_k. As a shorthand notation, we use N_{max} to denote the number of the maximal simplexes and N_c the number of 0-dimensional simplexes in a given complex.

II. Parsimony. To avoid redundancy, only a few cell assemblies should be active at a given location. Conversely, the rat’s movements should not go unnoticed by the hippocampal network, i.e., the periods during which all place cell assemblies are inactive should be short.

III. Contiguity. A transition of the spiking activity from one cell assembly σ_i to another σ_{i+1} occurs when some cells in σ_i shut off and a new group of cells activates in σ_{i+1} (see Suppl. Movies). The larger is the subassembly $\sigma_{i,i+1} = \sigma_i \cap \sigma_{i+1}$ that remains active during this transition (i.e., the more cells are shared by σ_i and σ_{i+1}) the more contiguous is the representation of the rat’s moves and hence of the space in which it moves. The overlap between a pair of consecutively active simplexes can be characterized by a contiguity...
FIG. 2: **Topological loops**: each horizontal bar represents the timeline of a topological cycle in $T(T)$: 0D loops (connectivity components) and the 1D loops. Most cycles last over a short time before disappearing. A few remaining, persistent loops express stable topological information that may correspond to physical obstacles in the rat’s environment. The time required for the correct number of cycles to appear is interpreted as the minimal time T_{min} required for the rat to learn the environment. The environment used in these simulations (Figure 1B) is topologically connected ($b_0 = 1$), and has one central hole ($b_1 = 1$). Thus, the topological barcode of this environment—the list of Betti numbers ($b_0, b_1, b_2, ...$) —is $(1, 1, 0, 0, ...)$. The last spurious loop (blue 1D loop) disappears at about $T_{\text{min}} = 4.6$ minutes, which is the learning time in this case.

$$\xi = \frac{\dim(\sigma_i \cap \sigma_{i+1})}{\sqrt{\dim(\sigma_i) \dim(\sigma_{i+1})}},$$

which assumes the maximal value $\xi = 1$ for coinciding cell assemblies and $\xi = 0$ for disjoint ones. In constructing a cell assembly complex, we expect that the mean contiguity over the simplexes in T_0 should not be lower than in T.

IV. Completeness. The cell assembly complex T_0 should capture the correct topological signatures of the environment, such as obstacles, holes, and boundaries. For example, the lowest dimensional 0D and 1D loops in T_0 represent, respectively, the piecewise and the path connectivity of the environment, as they are captured by the place cell coactivity. This information should emerge from the “topological noise” in a biologically plausible time period, comparable to the time required to obtain this information via the full complex, T (see [10, 11] and Fig. 2).

Place cell spiking is modeled as a time-dependent Poisson process with spatially localized rate

$$\lambda_c(r) = f_c e^{-\frac{(r-r_c)^2}{s_c^2}},$$

where r is a point in the environment, f_c is the maximal firing rate of a place cell c, and s_c defines the size of the corresponding place field centered at r_c [31]. In a familiar environment, the place fields are stable, that is, the parameters f_c, s_c and r_c remain constant [32, 33]. In our simulations, all computations were performed for ten place cell ensembles, each containing 300 neurons with an ensemble mean maximal firing rate of 20 Hz and a mean place field size of 30 cm. The place field centers in each ensemble were randomly scattered across the environment and most quantities reported in the Results were averaged over ten place field configurations.

Spatial map. We simulated the rat’s movements through a small (1 x 1 m) planar environment (Fig. 1B), similar to the arenas used in typical electrophysiological experiments (see Methods in [10]) over $T = 25$ minutes—the duration of a typical “running session.” The spatial occupancy rate of the rat’s trajectory (i.e., the histogram of times spent at a particular location) and the frequency of the place cells’ activity are shown on Fig. 3A,B. The mean speed of the rat is 20 cm/sec, so that turning around the central obstacle takes about 7 seconds.

By analogy with the place fields, we designate the spatial domain where a combination of place cells comprising a simplex σ is active as its simplex field, s_σ (Fig. 3C). If the simplex corresponds to a cell assembly, then s_σ may also be referred to as the cell assembly field. Similarly to the place fields and the place field map (Fig. 1B), the collection of all simplex fields forms a simplex field map and the cell assembly fields form a cell assembly map (Fig. 3C). These maps provide a better “geometric proxy” for the rat’s cognitive map because they illustrate both the activity and the coactivity of the individual place cells.
The component-wise or Hadamard product of two activity vectors $m_{c_1} \odot m_{c_2}$ defines the coactivity vector of cells c_1 and c_2, which can also be viewed as the activity vector of the corresponding 1D simplex $\sigma_{12} = [c_1, c_2]$, $m_{\sigma_{12}} = m_{c_1} \odot m_{c_2}$. Similarly, the Hadamard product of k vectors,

$$m_{\sigma_{12,\ldots,k}} = m_{c_1} \odot m_{c_2} \odot \cdots \odot m_{c_k},$$

defines the activity vector of the simplex $\sigma_{12,\ldots,k} = [c_1, c_2, \ldots, c_k]$.

For each activity vector, m_{c}, we also define its bit array mapping into a binary appearance vector, a_σ, which indicates during which time-bins the corresponding simplex σ has made its appearance, i.e., $a_{\sigma,i} = 1$ iff $m_{\sigma,i} > 0$. The appearance rate, $f_{\sigma}(T)$, of a simplex σ over a time interval T, is defined as the L_1 norm of its appearance vector, averaged over that time interval,

$$f_{\sigma}(T) = (1/T)\Sigma_i a_{\sigma,i}.$$

These appearance vectors and appearance rates allow distinguishing the intrinsic physiological characteristics of place cells’ spiking, e.g., their maximal firing rate, from the frequency with which these cells activate due to the rat’s movements through their respective place fields. While the maximal firing rate of a typical place cell is about 15 Hz [1], the frequency of their activation is much lower.
III. RESULTS

The simulated ensembles of 300 place cells in the environment shown on Fig. 1B produced a coactivity complex \mathcal{T} with about $N_{\text{max}} = 1000$ maximal simplexes. Despite the high dimensionality of these simplexes (up to $D = 35$, mean $D = 17$), the characteristic dimensionality of a facet shared by two consecutively active simplexes, σ_i and σ_{i+1}, is relatively low, so that the mean contiguity of \mathcal{T} is $\xi = 0.6$. This implies that, geometrically, if the simplexes of \mathcal{T} are viewed as multidimensional tetrahedrons, the selected complex, $\mathcal{T}_0(\theta)$, assumes a highly irregular shape (Fig. S1A).

More importantly, nearly 100% of the maximal simplexes appeared only once during the entire 25 minute period of navigation, i.e., a typical maximal simplex’s appearance rate is low, $f_{\sigma} \sim 10^{-3}$ Hz. However, a typical vertex activated about 200 times or every seven seconds, suggesting that some of the lower dimensional subsimplexes may be better candidates for forming cell assemblies. Is it then possible to build a cell assembly complex \mathcal{T}_0 by discarding the high-dimensional maximal simplexes with low appearance rates and retaining their subsimplexes that appear more frequently? We tested this hypothesis by identifying the combinations σ whose coactivity exceeds a certain threshold $f_{\sigma} > \theta$, and studied the properties of the resulting simplicial complex as a function of θ (Fig. 5A).

First we observed that, as soon as the appearance threshold is introduced ($\theta \gtrsim 10^{-3}$ Hz), the high dimensional simplexes start braking up, releasing large numbers of lower dimensional subsimplexes: the number of k-dimensional subsimplexes in a n-dimensional simplex grows as combinatorial coefficient $\binom{k+1}{n+1}$, e.g., for $n = 17$ and $k = 7$, $C_{18}^7 \approx 44,000$. As a result, the complex $\mathcal{T}_0(\theta)$ rapidly inflates. As θ increases further ($\theta > 0.04$), the number of “passing” simplexes decreases, and $\mathcal{T}_0(\theta)$ begins to shrink in all dimensions (i.e., $N_D(\theta_1) > N_D(\theta_2)$ for $\theta_1 < \theta_2$, for all D, (Fig. 5B)). Despite this, the number of maximal simplexes remains high: $N_{\text{max}} = 30 \times N_c$ at $\theta = 0.04$ Hz, $N_{\text{max}} = 7 \times N_c$ at $\theta = 0.07$ Hz and $N_{\text{max}} = 3 \times N_c$ for the highest tested threshold, $\theta = 0.1$ Hz (Fig. 5B), while their characteristic dimensionality drops from $D = 17$ to $D = 7$ at $\theta = 0.04$ Hz and to $D = 3$ at $\theta = 0.1$ Hz. The mean contiguity index for this range of thresholds remains close to $\xi \approx 0.7$, indicating that the degree of overlap between the selected combinations of place cells is higher than in the original coactivity complex.

However, raising the passing threshold θ quickly destroys the geometric integrity of the resulting complex’s spatial map. As shown on Fig. S2 for $\theta = 0.05$ Hz, only $\sim 50\%$ of the environment is covered by the remaining simplex fields, and for $\theta = 0.07$ Hz the simplex map barely retains its one-piece connectedness: in some cases the complex \mathcal{T}_0 splits in two (the corresponding Betti numbers, b_0, are listed in Table S1 for an illustration see Fig. S3). For $\theta = 0.1$ Hz, the complex fragments into multiple components (mean $b_0 \sim 7$) that are riddled with holes: the Betti numbers $b_{k=0}$ indicate the presence of hundreds of stable loops in higher dimensions. Thus, even if the coactive place cell combinations selected at $\theta \geq 0.05$ Hz could be supplied with readout neurons and would form cell assemblies, the resulting cell assembly network would not encode the correct spatial connectivity.

An additional problem is that reducing the order of the assemblies violates the “assembly code” for spatial locations: every time several subsimplexes σ_{ℓ} are selected from a high-order maximal simplex σ,
FIG. 5: A direct selection of the simplexes by appearance rates. (A) In the original coactivity complex $T(\theta = 0)$, the maximal simplexes σ_{max} appear on average but once during the entire observation period, resulting in low appearance rates ($f_{\sigma} < 10^{-3}$ Hz, blue line). Imposing four different thresholds θ (color coded) raises the appearance rates of the selected maximal simplexes almost uniformly in all dimensionalities. (B) Cumulative distribution of the number of maximal simplexes N_{max} over the selected simplexes’ dimension. In the $T(\theta = 0)$ case N_{max} exceeds the number of vertexes ($N_c = 300$, black horizontal line) by almost an order of magnitude. Small threshold values result in an explosive increase of N_{max} which then begins to decrease for $\theta > 0.04$ Hz, remaining significantly higher than N_c for all four tested values of θ. (C) The histograms of the maximal simplexes’ dimensionalities fit with normal distribution. The high mean dimensionality (\bar{D}) observed in the $T(\theta = 0)$ case reduces to $\bar{D} = 2.2$ for $\theta = 0.1$ Hz. The width of the distributions is about 50% of \bar{D}. (D) The histograms of the number of coactive maximal simplexes, fit to an exponential distribution demonstrate that the typical number of coactive simplexes is large, $\beta > 10$. All values are averaged over ten place field maps generated by ten place cell ensembles with the same mean peak firing rate and mean place field size.

several overlapping simplex fields s_{σ_i} are produced in place of a single s_{σ}. As a result, the parsimony of the representation is compromised: a location that was previously represented by a single simplex becomes represented by a few of its subsimplexes (Fig. S4A-B). Fig. 5D shows a histogram of the numbers of simultaneously active maximal simplexes in T_0: although most of the time only a few maximal simplexes are active, a coactivity of many of them ($n > 25$) is not uncommon. Conversely, while most of the time—on average 84% for the selected place cell ensembles—at least one simplex is active, longer inactivity periods are observed as described by double exponential distributed with the rate $\beta = 3.5$ sec (Fig. S2).

Overall, since most of the T_0-requirements listed in the Methods fail, we are led to conclude that the most straightforward selection rule, based on selecting high appearance rates, does not produce the desired tradeoff between the order of the assemblies, the frequency of their appearances, and the quality of topological representation of the environment. This failure motivates the search for alternative methods.

Method I. To produce a more detailed approach to selecting coactive cell combinations, we observe that place fields are typically convex planar regions, and hence the existence of higher order overlaps between them actually follows from the lower order overlaps. According to Helly’s theorem, a collection of $n > D + 1$ convex D-dimensional regions in Euclidean space R^D will necessarily have a nonempty common intersection, if the intersection of every set of $D + 1$ regions is nonempty (see [37, 38] and Fig. S4D). From the perspective of Čech theory, this implies that if n convex regions which cover a D-dimensional space contribute all the combinatorially possible D-dimensional simplexes to the nerve complex, then they also provide all the higher (up to $n - 1$) dimensional simplexes to it. In a planar ($D = 2$) environment, this implies that a set of four or more place fields has a common intersection, if any three of them overlap. Moreover, although mathematically it is possible that three place fields exhibit pairwise, but not triple overlap, the probability of such an occurrence is low (Fig. S4C). A direct computational verification shows that if a triple of place cells demonstrates pairwise coactivity, then, in over 90% of cases, it also correctly encodes a triple spatial overlap. In other words, a “clique” of pairwise coactivities indicates the overlaps of all higher orders, which implies that the spatial connectivity graph G_N whose vertexes correspond to the place fields
FIG. 6: Selecting maximal simplexes via the pairwise coactivity threshold (Method I). (A) The appearance rates of the maximal simplexes computed for four different pairwise appearance rate thresholds θ decrease as a function of their dimensionality. The values at $D = 1$ correspond to the value of the threshold imposed on the links’ appearance rate. (B) Cumulative distribution of the numbers of maximal simplexes, N_{max}, over the selected simplexes’ dimension. The numbers of cells N_c for each threshold value are shown by horizontal lines. The tendency of the maximal simplexes to outnumber the vertexes $N_{\text{max}} > N_c$, characteristic for small values of θ, is reversed around $\theta = 0.07$ Hz, where N_{max} and N_c level out. (C) The histograms of the maximal simplexes’ dimensionalities fit with normal distribution. The mean dimensionalities are similar to the ones produced by the previous selection method. The width of the distributions is about 50% of \bar{D}. (D) The histogram of the number of coactive maximal simplexes, fit to an exponential distribution, shows that the expected number of coactive simplexes ($\beta \sim 4$) is significantly lower than in the previous selection method. The procedure of averaging over the place field maps is the same.

and links represent pairwise overlaps, encodes most simplexes in the nerve complex \mathcal{N}.

As a reminder, a clique of an undirected graph is a set of pairwise connected vertices. From the combinatorial perspective, a clique and a simplex have the same defining property: any subset of a simplex is its subsimplex and any subset of a clique is its subclique; a maximal clique is the one that is contained in no other clique. Hence, each graph defines its own “clique complex,” the k-dimensional simplexes of which corresponds to the graph’s cliques with $k + 1$ vertices [39].

The observation that the nerve complex induced from the place field map can be approximated by the clique complex of the place field pairwise connectivity graph, suggests that the corresponding coactivity complex \mathcal{T} can also be built based only on pairwise, rather than higher-order, coactivities. This approach is well justified physiologically, since pairwise coactivity detector pairs of synapses are commonly observed [40, 41]. The rule for defining the temporal analogue of G_N—the relational graph G_T—is straightforward: a pair of vertexes is connected in G_T if the corresponding cells c_i and c_j are coactive. Thresholding pairwise coactivity rates according to the rule

$$C_{ij} = \begin{cases} 1 & \text{if } f_{c_i,c_j} \geq \theta \\ 0 & \text{if } f_{c_i,c_j} < \theta. \end{cases}$$

(1)

allows constructing a family of relational graphs $G_T(\theta)$ over the pairs of place cells with high coactivity. The higher the threshold is, the sparser its connectivity matrix C_{ij} and the smaller the number of maximal cliques and hence of maximal simplexes in the corresponding clique complex. Since in the following the graph G_N will not be used we will suppress the subscript “T” in the notation for G_T.

We studied the relational graphs $G(\theta)$ and their respective clique complexes $\mathcal{T}_0(G(\theta)) \equiv \mathcal{T}_0(\theta)$ as a function of θ. First, we observed that the appearance rates of the maximal simplexes in $\mathcal{T}_0(\theta)$ become sensitive to the simplexes’ dimensionality (Fig. 6A), implying that this selection procedure in effect attributes different thresholds to simplexes of different dimensions by using only one free parameter θ. Second, the size of $\mathcal{T}_0(\theta)$ is not as large as before. As shown on Fig. 6B, even for a relatively low threshold $\theta = 0.05$ Hz, the number of maximal simplexes exceeds the number of cells only marginally. For higher thresholds, this number steadily decreases: $N_D(\theta_1) < N_D(\theta_2)$ for $\theta_1 > \theta_2 > 0.04$ and $D > 3$, though in lower dimensions

Figure 7. Correction algorithms. (A) A spatial projection of the 2D skeleton of $T(\theta)$ shows gaps and holes that compromise, respectively, the piecewise and path connectivity of $T(\theta)$. If the links across the gaps and holes of $T(\theta)$ are restored, then its correct connectivity structure may be regained. (B) A ‘hole’ produced by five connected vertexes is closed by restoring some of the previously discarded crosslinks. (C) A projection of the relational graph G into the environment, shown in grey. The edges added across the gaps are shown in red and the edges added to fill the holes are shown in green. The vertexes that are left disconnected due to low appearance rates of the edges connecting them to other vertexes are shown by blue dots. (D) A spatial map of the resulting “patched” 2D skeleton of $T(\theta)$. The parameter values are $n_g = 15$, $m_h = 10$, and the lowered threshold for reintroducing the missing links is $\theta = 50$.

$(1 \leq D \leq 3)$ this number may increase. The characteristic contiguity ranges between $\xi = 0.65$ at $\theta = 0.05$ Hz to $\xi = 0.72$ at $\theta = 0.14$ Hz, which is higher than the value produced by the direct simplex selection method. Geometrically, this implies that the collection of maximal simplexes selected by pairwise threshold selection is more aggregated than the collection produced via direct simplex selection, i.e., the resulting complex $T_0(\theta)$ is geometrically more similar to a “simplicial quasimanifold” (see Fig. S1B). However, the number of place cells N_c drops as a result of discarding too many links with low appearance rate: $N_c = 290$ at $\theta = 0.05$ Hz and $N_c = 100$ at $\theta = 0.14$ Hz. At $\theta = 0.1$ Hz number of cells levels out with the number of maximal simplexes, $N_{\text{max}} \sim N_c = 260$.

As before, raising the coactivity threshold degrades the spatial map. At $\theta > 0.07$ Hz the simplex fields no longer cover the environment and at $\theta > 0.1$ Hz the map fragments into pieces (Fig. S5). However the resulting complex exhibits a much more regular topological behavior: the correct signature $(b_0 = 1, b_1 = 1, b_2 = 0, b_3 = 0, ...)$ in $T_0(\theta)$ appears at $\theta = 0.05$ Hz. The higher order Betti numbers $(b_{n\geq2})$ remain trivial at still higher θs (Table S2A), even though the connectedness and path connectivity of the environment $(b_1$ and $b_0)$ become misrepresented.

This improvement of the behavior of $T_0(\theta)$ suggests that, despite all the shortcomings, the link-selection strategy may lead to a successful model of the place cell assembly network. After all, it is not surprising that a single selection rule does not resolve all the aspects of the cell assembly formation. Yet if it captures the essence of the process, it should be possible to correct or to adjust its outcome. For example, one of the difficulties faced by the coactivity selection algorithm is that, for high θ, $T_0(\theta)$ may break into several pieces. However, the gaps between them are small. Thus, if a few discarded edges of the relational graph that originally bridged these gaps are retained, then the connectedness of $T_0(\theta)$ may be spared (Fig. 7A). Similarly, a “hole” in the relational graph is a linear chain of edges, connected tail to tail, with no shortcuts. However, if the links with the lower appearance rate $(f \geq \theta_h, \theta_b < \theta)$ that span across the hole exist at $\theta = 0$, then they also can be restored (Fig. 7B). This may remove the non-contractible chains of 1D simplexes in $T_0(\theta)$ that compromised its path connectivity (Fig. 7C,D). Thus, we implemented the following two rectification algorithms:

1. **Filling gaps**: find pairs of vertexes v_a and v_b separated in $G(\theta)$ by more than n_g edges and then test whether these vertexes are connected directly by links (from $G(\theta = 0)$) whose appearance rate exceeds a lower threshold $\theta_g < \theta$. If such links exist, add them to $G(\theta)$ (red lines on Fig. 7C).

2. **Closing holes**: A closed chain containing $m_h \geq 4$ edges in $G(\theta)$, with no shortcuts, is likely to
FIG. 8: **Statistics of the vertex degrees in relational graphs.** (A) The histogram of the vertex degrees k in the neighbor-controlled relational graph $G(n_0)$, computed for four different n_0 (Method II) and fitted to a power law distribution $P(k) \sim k^{-\gamma}$. The graph demonstrates that $G(n_0)$ is a scale-free network. (B) The same distribution on the log-log scale and an independent linear fit of the powers γ. The confidence intervals of the two fits, ranging between ± 0.15 and ± 0.3, overlap for each case. (C) In the pairwise coactivity threshold (Method I), the histogram of the relational graph’s vertex degrees is fit by negative binomial distribution, suggesting that $G(\theta)$ is similar to a random network.

produce a hole in $T_0(\theta)$. We identified such chains and restored the discarded cross-links whose appearance rate exceeds a lower threshold $\theta_h < \theta$.

Thus, both rectification algorithms depend on two parameters: the length of the involved chains (n_g for gaps and m_h for holes) and the value of the reduced threshold θ_g and θ_h. In our numerical experiments, we found that the optimal value for the thresholds is $\theta_h = \theta_g = 50$, and the parameters range between 5 and 10 (m_h) and 10 and 15 (n_g). Typically, each rectification procedure is applied once or twice before the right signature of $T_0(\theta)$ is achieved, and this without producing significant changes of the complex’s structure, such as altering the appearance of its simplexes or increasing its size N_{max}. As illustrated in the Table S2B, the correct signature in the “repaired” complex is achieved for all cases at $\theta = 0.07$ Hz. In particular, at $\theta = 0.07$ Hz we obtain a simplicial complex T_0 with the correct signature, having $N_c = 260$ vertexes and about the same number of maximal simplexes, $N_{\text{max}} \approx N_c$. These maximal simplexes appear on average at a rate of $f_{\sigma} \geq 0.07$ Hz, at least during every other run of the rat around the environment, and have dimensionality $D = 6$. As a result, the requirements to T_0 are met and the maximal simplexes of T_0 may represent hippocampal place cell assemblies that together encode a map of the environment, and hence T_0 itself can be viewed as the “cell assembly complex.”

Method II. A common feature of the appearance-rate-based selection rules is that the resulting simplicial complex reflects biases of its spatial occupancy: higher dimensional maximal simplexes concentrate over the parts of the environment where the rat appears more frequently. In particular, the relational graph shows a higher concentration of edges over the eastern segment of the environment (Fig. 7C) where the occupancy rate is highest (Fig. 3A). On the one hand, this is natural since the frequency of the place cells’ spiking activity certainly does depend on the frequency of the rat’s visits to their respective place fields, which therefore affects the hippocampal network’s architecture [28, 29]. In fact, this argument is at the core of the classical “hippocampus as a cognitive graph” model [42, 43], which proposes that the architecture of the hippocampal network is an epiphenomenon of the place cell coactivity. On the other hand, the physiological processes that produce synaptic connections may be more autonomous. For example, the CA3 region of the hippocampus is anatomically a recurrent network of place cells whose spiking activity and synaptic architecture are dominated by the network’s attractor dynamics [44–46].

These considerations lead us to test an alternative method of constructing the relational graph based on selecting, for every cell, its n_0 closest neighbors as defined by the pairwise coactivity rate $f_{c1,c2}$. Note that the resulting number of connections may be different for different cells: a cell c_1 may be among the n_0 closest neighbors of a cell c_2, and hence c_1 and c_2 become connected, but the set of n_0 closest neighbors of...
FIG. 9: Selecting maximal simplexes via best neighbor selection (Method II). (A) The appearance rates of the maximal simplexes in the simplicial complex $T_{(n_0)}$, computed for four different values of n_0 (color coded), decrease as a function of their dimensionality. (B) Cumulative distribution of the number of maximal simplexes N_{max} over the selected simplexes’ dimension. For the tested values of n_0, the fixed number of vertexes $N_c = 300$, indicated by the horizontal black line, is close to the number of maximal simplexes. For $n_0 = 7$, the values N_{max} and N_c come closest. (C) The histograms of the maximal simplexes’ dimensionality, fit to the normal distribution, indicate that for the relational graph with a similar number of links, the mean dimensionality of the maximal simplexes are smaller than in in the complex built via the threshold-selection method. The width of the distributions is about 40% of \bar{D}. (D) The histogram of the number of coactive maximal simplexes, fit to an exponential distribution. An expected number of coactive simplexes ranges between $\beta = 2$ and $\beta = 6$. The procedure of averaging over the place field maps is the same.

A cell c_1 may not include c_2, which bears a certain resemblance to the preferential attachment models [47]. As a result, the vertex degrees k of the (undirected) relational graph may differ from one another and from n_0. A direct computational verification shows that k is distributed according to a power law, $P(k) \sim k^{-\gamma}$, where γ ranges, for different n_0, between $\gamma \sim 2$ and $\gamma \sim 4$ (Fig. 8), which implies that $G(n_0)$ demonstrates scale-free properties [47, 48] characteristic of the hippocampal network [49, 50]. In contrast, the histogram of the vertex degrees in the threshold-controlled relational graph $G(\theta)$ may be fit with the negative binomial distribution (Fig. 8B), which indicates that $G(\theta)$ is similar to a random graph.

This neighbor-selection method for building the relational graph $G(n_0)$ has a number of other immediate advantages over the threshold-controlled construction of $G(\theta)$. For example, no cells are excluded from T_0 due to the low appearance of the edges connecting to them. As a result, the simplex fields are distributed more uniformly (Fig. S6), which helps capture the correct piecewise connectedness of the environment.

By studying the properties of the clique complexes produced by the relational graphs $G(n_0)$ for $n_0 = 2, 4, 7$ and 12—parameters chosen to produce similar numbers of edges as in the previous method—we found that the number of maximal cliques in $T_0(G(n_0))$ is typically lower than in $T_0(G(\theta))$. The appearance rates of maximal cliques in $G(n_0)$ are more scattered and less sensitive to dimensionality than in $G(\theta)$ (Fig. 8A and Fig. S6). The number of maximal simplexes in $T_0(n_0)$ remains close to the number of cells (Fig. 8B) and their dimensionality is lower than in the threshold-based selection approach (Fig. 8C). The contiguity index in all complexes ranges between to $\xi = 0.67$ and $\xi = 0.71$. The coverage of the space with the simplex fields improves with growing n_0 (see Fig. S6)—for $n_0 > 2$ the complex $T_0(n_0)$ is connected, while the behavior of b_0 is more regular (see Table S3). However, the path connectivity of the complex $T_0(n_0)$ remains deficient for all n_0 because the number of stable spurious 1D loops remains high (Table S3). After filling the gaps and closing the holes, most complexes constructed for $n_0 \geq 7$ acquire correct topological signatures (Table S3), and the requirements to T_0 are satisfied. Thus, the simplicial complex obtained by the neighbor selection method for $n_0 \geq 7$ can also be viewed as a “cell assembly complex,” meaning it can serve as a formal model of the place cell assembly network with mean contiguity $\xi = 0.7$.
IV. DISCUSSION

The proposed approach allows creating schematic models of the place cell assembly network—the cell assembly complex T_0—by controlling the basic phenomenological parameters of place cell coactivity and then relating the network’s architecture to the net topological information it encodes. The coactivity complex T was previously used for representing the pool of place cell coactivities [10–12]. Specifically, the low order (pair and triple) coactivity events were used to construct the 2D skeleton of T, and then its 0D and 1D topological loops were matched with the corresponding topological signatures of the environment. In the current study, the entire pool of place cell coactivities is used to model the full place cell assembly network, including the higher order assemblies representing both the low-dimensional spatial environment as well as high-dimensional memory space [21, 51]. The learning times T_{min} estimated from the dynamics of the 0D and 1D loops in T_0 remain close to the learning times computed for the full coactivity complex T (see Table S4). This implies that the selected, “core” pool of coactive place cell combinations captures the topological structure of the environment as fast and as reliably as the entire set of the place cell coactivities.

We view the proposed algorithms as basic models of a more general “phenomenological” approach, one which can be further developed along several broad lines. First, the structure of the relational graph is currently deduced from the activity vectors defined over the entire navigation period $T = 25$ minutes. A biologically more plausible selection algorithm should be adaptive: the structure of the relational graph at a given moment of time $t < T$ should be based only on the spiking information produced before t. Hence, in a more advanced model, the structure of the relational graph should develop in time, and in general the cell assemblies comprising T_0 should be derived using synaptic and structural plasticity mechanisms. Second, the selection criteria in Methods I and II above may be individualized: the appearance threshold used to construct the relational graph can be assembly-specific, i.e. $\theta = \theta(c_i)$, so that the properties of the resulting network would be described in terms of the probability distribution of the threshold values across the cell assembly population. Similarly, the number of closest neighbors can be made cell-specific, $n_0 = n_0(c_i)$, which should permit better control over the topological properties both of the network and of the cell assembly complex. Third, threshold control can be implemented using different coactivity metrics, for instance via the pairwise correlation coefficient

$$\rho(c_1, c_2) = \frac{m_1 \cdot m_2}{||m_1|| ||m_2||},$$

which would connect cells with correlated spiking (irrespective of their firing rates), in contrast with the metric (2), which does the opposite. In general, two metrics ρ and ρ', produce relational graphs with different topologies. Nevertheless, they may produce similar or identical large-scale effects, such as generating topologically identical cell assembly complexes T_0, or exhibit similar learning times, T_{min}. Identifying classes of metrics that produce topologically similar results will be examined in future research.

V. ACKNOWLEDGMENTS

The work was supported in part by Houston Bioinformatics Endowment Fund, the W. M. Keck Foundation grant for pioneering research and by the NSF 1422438 grant.
VI. REFERENCES

[1] Best PJ, White AM, Minai A (2001) Spatial processing in the brain: the activity of hippocampal place cells. Ann. Rev Neurosci 24: 459-486.
[2] O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. New York: Clarendon Press; Oxford University Press. xiv, 570 pp.
[3] Best PJ, White AM (1998) Hippocampal cellular activity: a brief history of space. Proc. Natl Acad. Sci. USA 95: 2717-2719.
[4] Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol. 79: 1017-1044.
[5] Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18: 7411-7425.
[6] Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14: 147-153.
[7] Derdikman D, Moser MB (2010) A dual role for hippocampal replay. Neuron 65: 582-584.
[8] Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature advance online publication.
[9] Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469: 397-401.
[10] Dabaghian Y, Mmoli F, Frank L, Carlsson G (2012) A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology. PLoS Comput. Biol. 8: e1002581.
[11] Araujo M, Brandt V, Dabaghian Y (2014) The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map. PLoS Comput. Biol. 10: e1003651.
[12] Curto C, Itskov V (2008) Cell groups reveal structure of stimulus space. PLoS Comput. Biol. 4: e1000205.
[13] Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J Neurosci 16: 8027-8040.
[14] Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA, et al. (2005) Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron 48: 345-358.
[15] Alvergne A, Sargentini F, Poucet B (2012) Rats build and update topological representations through exploration. Anim Cogn 15: 359-368.
[16] Dabaghian Y, Brandt VL, Frank LM (2014) Reconceiving the hippocampal map as a topological template; eLife 10.7554/eLife.03476.
[17] Hatcher A (2002) Algebraic topology. Cambridge; New York: Cambridge University Press.
[18] Ghrist R (2008) Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society 45: 61-75.
[19] Zomorodian AJ (2005) Topology for computing. Cambridge, UK ; New York: Cambridge University Press. xiii, 243 p.
[20] Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G (2003) Organization of cell assemblies in the hippocampus. Nature 424: 552-556.
[21] Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68: 362-385.
[22] Huyck C, Passmore P (2013) A review of cell assemblies. Biol. Cybern. 107: 263-288.
[23] Harris KD (2005) Neural signatures of cell assembly organization. Nat Rev Neurosci 6: 399-407.
[24] Shepherd GM (2004) The synaptic organization of the brain. Oxford ; New York: Oxford University Press. xiv, 719 p.
[25] Wennekers T, Palm G (2009) Syntactic sequencing in Hebbian cell assemblies. Cognitive Neurodynamics 3: 429-441.
[26] Ghalib H, Huyck C. A Cell Assembly Model of Sequential Memory; 2007 2007. pp. 625-630.
[27] Itskov V, Curto C, Pastalkova E, Buzsaki G (2011) Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J Neurosci 31: 2828-2834.
[28] Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev
Neurosci 13: 478-490.

[29] Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431: 782-788.

[30] Gromov ML (1968) On the number of simplexes of subdivisions of finite complexes. Mathematical notes of the Academy of Sciences of the USSR 3: 326-332.

[31] Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, et al. (2004) Dynamic analyses of information encoding in neural ensembles. Neural Comput. 16: 277-307.

[32] Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261: 1055-1058.

[33] Brown EN, Nguyen DP, Frank LM, Wilson MA, Solo V (2001) An analysis of neural receptive field plasticity by point process adaptive filtering. Proc. Natl Acad. Sci. USA 98: 12261-12266.

[34] Pouget A, Dayan P, Zemel R (2000) Information processing with population codes. Nat Rev Neurosci 1: 125-132.

[35] Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64: 267-280.

[36] Perkel DH, Gerstein GL, Moore GP (1967) Neuronal Spike Trains and Stochastic Point Processes: I. The Single Spike Train. Biophys. J 7: 391-418.

[37] Avis D, Houle ME (1995) Computational aspects of Helly’s theorem and its relatives. International Journal of Computational Geometry and Applications 05: 357-367.

[38] Eckhoff J (1993) CHAPTER 2.1, Helly, Radon, and Carathodory Type Theorems. In: Wills PMGM, editor. Handbook of Convex Geometry. Amsterdam: North-Holland. pp. 389-448.

[39] Bandelt HJ, Chepoi V (2008) Metric graph theory and geometry: a survey. Contemporary Mathematics 453: 49-86.

[40] Katz Y, Kath WL, Spruston N, Hasselmo ME (2007) Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Comput. Biol. 3: e234.

[41] Brette R (2012) Computing with Neural Synchrony. PLoS Comput. Biol. 8: e1002561.

[42] Muller RU, Stead M, Pach J (1996) The hippocampus as a cognitive graph. J Gen Physiol. 107: 663-694.

[43] Burgess N, O’Keefe J (1996) Cognitive graphs, resistive grids, and the hippocampal representation of space. J Gen Physiol. 107: 659-662.

[44] Colgin LL, Leutgeb S, Jezek K, Leutgeb JK, Moser EI, et al. (2010) Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J Neurophys. 104: 35-50.

[45] Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308: 873-876.

[46] Tsodyks M (2005) Attractor neural networks and spatial maps in hippocampus. Neuron 48: 168-169.

[47] Barabási A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286: 509-512.

[48] Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Reviews of Modern Physics 74: 47-97.

[49] Li X, Ouyang G, Usami A, Ikegaya Y, Sik A (2010) Scale-Free Topology of the CA3 Hippocampal Network: A Novel Method to Analyze Functional Neuronal Assemblies. Biophys. J 98: 1733-1741.

[50] Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, et al. (2009) GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science 326: 1419-1424.

[51] Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H (1999) The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23: 209-226.

[52] Singh G, Memoli F, Ishkhanov T, Sapiro G, Carlsson G, et al. (2008) Topological analysis of population activity in visual cortex. J Vis 8: 11 11-18.
VII. SUPPLEMENTARY FIGURES

FIG. S1: **Simplicial complexes.** (A) A schematic representation of an irregular simplicial complex \mathcal{K}, in which the number of maximal simplexes is larger than the number of vertexes (black dots). The maximal 1D simplexes are shown as blue segments, the 2D simplexes as gray triangles and the 3D simplexes as pink tetrahedrons. (B) A simplicial “quasi-manifold,” Q, which has a similar number of vertexes and maximal simplexes of different dimensionalities. If each maximal simplex, e.g. (1, 2, 3) or (10, 7, 8, 9), corresponds to an assembly of place cells driving a readout neuron (red dots), then Q is a cell assembly complex. Dotted lines represent synaptic connections from the place cells to the readout neuron.
FIG. S2: The simplicial complexes $\mathcal{T}_0(\theta)$ constructed by direct selection of coactive combinations, for four different values of θ. (A) The appearance rates of simplexes, arranged from left to right according to their dimension. Each dot corresponds to a maximal simplex whose dimension is color-coded according to the colorbar on the right. (B) Spatial distribution of the dimensionalities of the selected simplexes. (C) Spatial distribution of the appearance rates of the selected simplexes. (D) The histograms of the lapse times, fit to double exponential distribution (blue line), and the value of the fitted distribution’s rate β. (E) Spatial projections of the 2D skeletons of the $\mathcal{T}_0(\theta)$. Data for all panels is computed for a specific place field map for illustrative purposes.
FIG. S3: Low-dimensional topological features of the cell assembly complexes captured by place field map. (A) A place field map corresponding to a singly-connected ($b_0 = 1$, marked by the dot) complex with no non-contractible loops ($b_1 = 0$). (B) A place field map corresponding to a complex with correct list of Betti numbers (correct topological barcode [18]): the physical hole (see Figures 1 and 3) produces one non-contractible loop (red circle, $b_1 = 1$). (C) A map containing a spurious hole in the upper-right corner produces an extra persistent loop (the additional small circle, net $b_1 = 2$). (D) A map containing two disconnected pieces marked by the black dots (net $b_0 = 2$) and having no non-contractible loops ($b_1 = 0$). (E) A map containing two pieces and one persistent spurious 1D loop. (F) The green and the brown place fields at the top connect, yielding another persistent spurious 1D loop. Compare these illustrations and the topological barcodes to the illustrations and Suppl. Movies provided in [52].
FIG. S4: Schematic illustrations of spatial maps. (A) Schematic representations of 3D order simplex fields, \(a, b, c\) and \(d\), encoded by third order maximal simplexes, \(\sigma_a = (v_1, v_2, v_6)\), \(\sigma_c = (v_2, v_3, v_5)\), etc. (B) If the 2D simplexes are discarded and their 1D faces are retained, then the second-order simplex fields are produced, shown here as overlapping shaded regions. The original simplex fields \(a, b, c\) and \(d\) are now represented by the coactivity of three pairs, e.g., \(a\) is represented by \(\sigma_{a,1} = (v_1, v_2)\), \(\sigma_{a,2} = (v_2, v_6)\) and \(\sigma_{a,3} = (v_1, v_6)\). (C) The three place fields on the left exhibit pairwise, but not triple overlap. In the generic spatial configuration shown on the right, pairwise overlapping place fields also produce a triple overlap. (D) Four pairwise overlapping convex regions in 2D produce all the higher order (triple and quadruple) overlaps.
FIG. S5: Simplicial complexes $T_0(\theta)$ constructed via pairwise coactivity selection (Method I) for four different threshold values. (A) The appearance rates of the maximal simplexes, arranged according to their dimension, demonstrate remarkably tight, graph-like distribution. The color of the dots corresponds to the dimension of the simplexes, as indicated by the colorbar on the right. (B) Spatial distribution of the dimensionalities of the selected simplexes. (C) Spatial distribution of the appearance rates of the selected simplexes. (D) The histograms of the lapse times, fit to double exponential distribution, and the value of the fitted distribution’s parameter β. (E) Spatial projections of the 2D skeletons of $T_0(\theta)$. Data for all panels is computed for a specific place field map for illustrative purposes.
FIG. S6: The selected simplicial complexes $T_0(n_0)$ constructed via the closed-neighbor selection algorithm (Method II) for four different values of n_0. (A) The appearance rates of simplexes, arranged according to their dimensions, color-coded as indicated by the colorbar on the right. (B) Spatial distribution of the dimensionalities of the selected simplexes. (C) Spatial distribution of the appearance rates of the selected simplexes. (D) The histograms of the lapse times, fit to double exponential distribution, and the value of the fitted distribution’s parameter β. (E) Spatial projections of the 2D skeletons of $T_0(n_0)$.
VIII. SUPPLEMENTARY TABLES

\(\theta = 0.04 \) Hz	\(\theta = 0.05 \) Hz	\(\theta = 0.07 \) Hz	\(\theta = 0.1 \) Hz
1 139 509 569	1 171 393 410	2 198 324 214	5 131 108 15
1 126 409 480	1 175 353 286	1 203 247 144	7 147 71 17
1 156 580 853	2 211 518 571	2 233 330 419	6 139 152 41
1 135 407 551	1 176 369 333	1 201 296 152	7 139 50 7
1 149 422 585	2 172 342 453	2 185 312 320	13 122 107 73
1 130 485 775	1 186 447 392	1 190 335 250	4 164 84 27
1 106 459 655	1 202 352 603	1 177 395 353	8 179 117 25
1 120 519 787	1 194 397 449	1 215 333 237	8 160 109 63
1 131 441 757	1 165 459 499	1 203 339 197	8 149 65 15
1 160 364 575	1 226 313 368	1 175 270 222	8 117 92 14

TABLE S1: Topological signature of the complex selected by simplex rate thresholding. Each cell contains a list of four Betti numbers, \((b_0, b_1, b_2, b_3)\). For the low rate, \(f_\sigma = 0.04 \) Hz, \(T_0(\theta)\) encodes the correct spatial connectedness of the environment \((b_0 = 1)\). For intermediate rates, \(0.05 \leq f_\sigma \leq 0.07 \) Hz, \(T_0(\theta)\) may occasionally break into two pieces \((b_0 = 2)\) and for \(f_\sigma \geq 0.1 \) Hz and higher, \(T_0(\theta)\) fragments into multiple components. In higher dimensions \(D \geq 1\), \(T_0(\theta)\) contains over a hundred noncontractible topological loops.

\(\theta = 0.05 \)	\(\theta = 0.07 \)	\(\theta = 0.1 \)	\(\theta = 0.14 \)
1100	2100	5100	3000
1200	1500	7200	7100
1200	2100	6200	7200
1100	1200	7700	7100
1100	2300	13100	8100
1300	1000	4600	11000
2100	1500	8100	7500
1200	1200	8200	9100
1300	1400	8200	9200
1300	1500	8200	7600

A. Original
B. Corrected

TABLE S2: Topological signature of the complex selected by link-rate thresholding. (A) For the low rate \(f_\sigma = 0.05 \) Hz, \(T_0(\theta)\) occasionally produces the correct topological signature \((b_0 = b_1 = 1, b_{n>1} = 0)\), shown in bold. For intermediate rates \(f_\sigma \sim 0.07 \) Hz, \(T_0(\theta)\) may occasionally break into two pieces \((b_0 = 2)\) and produce extra noncontractible loops in 1D. For high thresholds, \(f_\sigma \geq 0.10 \) Hz, \(T_0(\theta)\) fragments into multiple components. However, the connectivity of \(T_0(\theta)\) in higher dimensions, \(D \geq 2\), is correct for all cases, which implies that \(T_0(\theta)\) contracts into 2D. (B) After applying the correction algorithms, the selected complexes acquire correct topological signature for \(f_\sigma \leq 0.07\) for all maps. The corresponding learning times \(T_{\text{min}}\) are listed in Suppl. Table 4.
TABLE S3: **Topological signatures of the complexes selected by the neighbor-selection algorithm.** (A) If but one pair of closest vertexes is selected $n_0 = 2$, $T_0(n_0)$ breaks into multiple components. For $n_0 \geq 5$, $T_0(n_0)$ has only one component, but path connectivity is compromised ($b_0 = 1, b_1 \gg 1$). In higher dimensions, $T_0(n_0)$ is contractible, $b_{n+1} = 0$. (B) After applying the correction algorithms, the selected complexes for almost all maps acquire correct topological signature in 1D and 2D (shown in boldface) for $n_0 \geq 7$. The corresponding learning times, T_{min}, are listed in Suppl. Table 4.

n_0	1D: T_0	2D: $T_0(\theta = .05)$	2D: $T_0(\theta = .07)$	2D: $T_0(n_0 = 7)$	2D: $T_0(n_0 = 12)$
2	4.4	3.8	2.1	1.9	3.8
5	2.7	2.7	3.8	4.6	2.7
7	2.8	2.8	3.8	2.7	2.7
12	2.7	2.7	3.8	3.8	3.8

TABLE S4: The learning times. T_{min} (in minutes) computed for the selected simplicial complexes $T_0(\theta)$ and $T_0(n_0)$ are similar to the learning times computed via the full temporal nerve complex T. Thus, the information about the topological structure of the environment emerges from the cell assembly activity as fast as from the entire pool of place cell coactivities. However, note that the complex $T_0(n_0)$ sometimes fails to produce a finite leaning time; non-convergent cases are marked by ∞.

n_0	1D: T_0	2D: $T_0(\theta = .05)$	2D: $T_0(\theta = .07)$	2D: $T_0(n_0 = 7)$	2D: $T_0(n_0 = 12)$
2	4.4	3.8	2.1	1.9	3.8
5	2.7	2.7	3.8	4.6	2.7
7	2.8	2.8	3.8	2.7	2.7
12	2.7	2.7	3.8	3.8	3.8

IX. SUPPLEMENTARY MOVIES ILLUSTRATING THE FIRST OF THE TEN TESTED MAPS

Suppl. Movie 1. The grey dots represent centers of the place fields, viewed from above, similar to Figure 3B. The centers of the place fields that correspond to the coactive place cells are shown in red. The resulting activity packet moves in the environment following the simulated rat’s trajectory.

Suppl. Movie 2. Selection of the cell assemblies by Method I ($\theta = 100$) and assigning readout neurons to the cell assemblies.

Suppl. Movie 3. A side projection view of the activity packet propagating in the cell assembly network, selected via Method I. To emphasize that the coactive place cell combinations comprise a cell assembly complex $T_0(\theta)$, the corresponding place field centers are schematically connected to the readout neurons.

Suppl. Movie 4. The same system shown in the same projection as the Figure 3B and Suppl. Movie 1.