Investigation of cross sections of deuteron induced nuclear reactions on selenium up to 50 MeV

Ferenc Tárkányi 1, Sándor Takács 1, Ferenc Ditrói 1,a, Zoltán Szűcs 1, Károly Brezovcsik 1, Alex Hermanne 2, Anatolij V. Ignatyuk 3

1 Institute for Nuclear Research (ATOMKI), Debrecen, Hungary
2 Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
3 Institute of Physics and Power Engineering (IPPE), Obninsk, Russia

Received: 11 January 2021 / Accepted: 10 March 2021 / Published online: 6 April 2021
© The Author(s) 2021
Communicated by Carlos Munoz Camacho

Abstract In the frame of a systematic study of deuteron induced nuclear reactions on all elements, activation cross sections on natSe were investigated. Excitation functions were measured up to 50 MeV particle energy for production of 82Br(m+), 80mBr, 77Br(m+), 76Br(m+), 75Br, 75Se(cum), 73Se(cum), 76As, 74As, 73As(cum), 72As and 71As(cum) by using the activation method through stacked foil irradiation followed by off-line gamma-ray spectrometry. The experimental results were compared to the earlier experimental data and to excitation functions calculated with the ALICE-D and EMPIRE-D theoretical model codes and data given in the TENDL-2019 on-line library based on TALYS calculations.

1 Introduction

The main motivation for the present measurement was to produce a more complete and reliable database for activation cross sections of deuteron induced nuclear reactions useful for practical applications and can also serve as a base for improvement of the description by theoretical codes.

In the literature only a few works containing data on deuteron induced activation cross sections on selenium were found. Some of the earlier measurements were done on enriched monoisotopic targets (Miskel [1], Debuyst [2], Paans [3], Qaim [4], Dmitriev [5] and Vakilova [6] are limited to low energy and all are related to study of medical radioisotope production and nuclear reaction mechanisms or nuclear structure studies.

We present here for the first time experimental activation cross section data on natural selenium up to 50 MeV together with a comparison with the earlier experimental results and with predictions of the latest model codes.

2 Experimental technique and data evaluation

The activation cross sections on natural selenium (for isotopic composition see Table 1) were measured by using the activation method and the standard stacked foil irradiation technique combined with off-line high-resolution gamma-ray spectrometry. The irradiation, the activity measurement and the data evaluation were similar as described in more detail in our earlier works on systematic study of deuteron induced nuclear reactions on numerous targets (around 650 reactions induced on 62 target elements). Thin Se targets (2.5–3.8 µm) were evaporated onto high purity aluminum (99.9%) backings (50.5 µm thickness), and covered with 50.5 µm Al for protection against contamination and surface loss. The backings and the cover foils served also as recoil catchers and were used for monitoring the beam parameters (beam current and energy).

The Se target foils were interleaved with Al (102.6 µm), Ti (10.9 µm) additional energy degrader and/or monitor foils. The Ti foils also served to follow the recoiled radionuclei from the Al monitors. The stack composition is presented in Table 2. Irradiation was performed at the Cyclone 110 cyclotron of the Université Catholique in Louvain la Neuve (LLN) at 50 MeV deuteron energy with a beam current of 20 nA for 40 min. The large number of monitor foils allowed us to follow the beam intensity and the energy degradation along the stack in detail via the simultaneous measurement of the excitation functions of the 27Al(d,x) 24,22Na. The good reproduction of the standard monitor data is illustrated in Fig. 1. The 24Na excitation function was measured inde-
Nuclide spin isomeric level (keV)	Half-life	Decay mode	E_γ (keV)	I_γ (%)	Contributing process	Q-value (keV)
83Br 3/2-	2.374 h	β^-: 100%	529.589	1.3	82Se(d,n)83Br	6484.0
82Br 5-	35.282 h	β^-: 100%	554.352	71.7	82Se(d,2n)82Br	-3102.1
			619.105	43.7		
			698.361	28.4		
			776.511	83.6		
			827.826	24.2		
			1044.005	27.6		
			1317.485	26.9		
			1474.895	16.39		
80mBr 5- 85.902	4.4205 h	IT	37.052	39.1		-4877.4
			311.605	43.7		-20854.4
77Br 3/2-	57.04 h	ϵ: 100%	238.98	23.1	76Se(d,n)77Br	3047.0
		β^+: 0.73%	281.65	2.29	77Se(d,2n)77Br	-4372.0
			297.23	4.16	78Se(d,3n)77Br	-4869.0
			520.69	22.4	80Se(d,5n)77Br	-31746.0
			578.91	2.96	82Se(d,7n)77Br	-47723.0
76Br 1-	16.2 h	ϵ: 100%	559.09	74.0	76Se(d,2n)76Br	-7970.0
		β^+: 55%	657.02	15.9	77Se(d,3n)76Br	-15389.0
			1129.85	4.6	78Se(d,4n)76Br	-25886.0
			1216.10	8.8	80Se(d,6n)76Br	-42763.0
75Br 3/2-	96.7 m	ϵ: 100%	141.19	6.6	74Se(d,n)75Br	-1958.0
		β^+: 75%	286.50	88	76Se(d,3n)75Br	-17223.0
			377.39	3.93	77Se(d,4n)75Br	-24642.0
			427.79	4.4	78Se(d,5n)75Br	-35140.0
			431.15	3.9		
81mSe 7/2+ 103.00	57.28 min	β^-: 0.051%	103.01	12.8	80Se(d,p)81mSe	4476.3
		IT: 99.949%	311.605	43.7	82Se(d,p2n)81mSe	-11500.8
75Se 5/2+	119.78 d	ϵ: 100%	121.1155	17.20	74Se(d,p)75Se	5803.03
			136.0001	58.5	76Se(d,p2n)75Se	-13378.35
			264.6576	58.9	77Se(d,p3n)75Se	-20797.21
			279.5422	25.02	78Se(d,p4n)75Se	-31294.98
			400.6572	11.41	80Se(d,p6n)75Se	-48171.1
			75Br decay	1958.0		
73Se 9/2+	7.15 h	ϵ: 100%	67.07	70	74Se(d,p2n)73Se	-14282.0
		β^+: 64.6%	361.2	97.0	76Se(d,p4n)73Se	-33463.0
			361.2	97.0	77Se(d,p5n)73Se	-40882.0
			361.2	97.0	73Br decay	-19644.0
72Se 0+	8.40 d	ϵ: 100%	45.89	57.2	74Se(d,p3n)72Se	-22712.2
			45.89	57.2	76Se(d,p5n)72Se	-41893.6
			45.89	57.2	77Se(d,p6n)72Se	-49312.5
			72Br decay	32301.0		
78As 2-	90.7 min	β^-: 100%	613.8	54	78Se(d,2p)78As	-5651.0
			694.9	16.7	80Se(d,2p2n)78As	-22527.0
			1308.7	13.0	82Se(d,2p4n)78As	-38504.0
Table 1 continued

Nuclide spin isomeric level (keV)	Half-life	Decay mode	Eγ (keV)	Iγ (%)	Contributing process	Q-value (keV)
77As 3/2-	38.79 h	β⁻ : 100%	161.93	0.146	77Se(d,2p)77As	− 2125.4
			239.01	1.59	75Se(d,2pn)77As	− 12632.3
			249.80	0.39	80Se(d,2p3n)77As	− 29499.9
			520.65	0.56	82Se(d,2p5n)77As	− 45476.4
76As 2-	26.24 h	β⁻ : 100%	595.10	45.0	75Se(d,2p)76As	− 4402.8
			559.10	6.2	77Se(d,2pn)76As	− 11821.6
			657.05	0.39	79Se(d,2p3n)76As	− 22319.4
			520.65	0.56	80Se(d,2p5n)76As	− 39195.6
74As 2-	17.77 d	ε : 66%	595.83	59	−	2795.4
		β⁻ : 34%	634.78	15.4	76Se(d,2p2n)74As	− 21976.7
			76Se(d,2p3n)74As	29395.6		
			78Se(d,2p4n)74As	39893.4		
73As 3/2-	80.30 d	ε : 100%	53.437	10.6	74Se(d,2p)73As	− 10774.0
			75Se(d,2p2n)73As	29955.0		
			77Se(d,2p3n)73As	37374.0		
			79Se(d,2p4n)73As	47872.0		
			73Se decay	− 14282.0		
72As 2-	26.0 h	ε : 100%	833.99	81.0	74Se(d,2p2n)72As	− 21568.0
			76Se(d,2p4n)72As	40750.0		
			78Se(d,2p5n)72As	48168.0		
71As 5/2-	65.30 h	ε : 100%	174.954	82.4	74Se(d,2p3n)71As	− 29976.0
			499.878	3.64	76Se(d,2p5n)71As	− 49158.0
			71Se decay	− 35505.0		

77As 3/2-	38.79 h	β⁻ : 100%	161.93	0.146	77Se(d,2p)77As	− 2125.4
			239.01	1.59	75Se(d,2pn)77As	− 12632.3
			249.80	0.39	80Se(d,2p3n)77As	− 29499.9
			520.65	0.56	82Se(d,2p5n)77As	− 45476.4
76As 2-	26.24 h	β⁻ : 100%	595.10	45.0	75Se(d,2p)76As	− 4402.8
			559.10	6.2	77Se(d,2pn)76As	− 11821.6
			657.05	0.39	79Se(d,2p3n)76As	− 22319.4
			520.65	0.56	80Se(d,2p5n)76As	− 39195.6
74As 2-	17.77 d	ε : 66%	595.83	59	−	2795.4
		β⁻ : 34%	634.78	15.4	76Se(d,2p2n)74As	− 21976.7
			76Se(d,2p3n)74As	29395.6		
			78Se(d,2p4n)74As	39893.4		
73As 3/2-	80.30 d	ε : 100%	53.437	10.6	74Se(d,2p)73As	− 10774.0
			75Se(d,2p2n)73As	29955.0		
			77Se(d,2p3n)73As	37374.0		
			79Se(d,2p4n)73As	47872.0		
			73Se decay	− 14282.0		
72As 2-	26.0 h	ε : 100%	833.99	81.0	74Se(d,2p2n)72As	− 21568.0
			76Se(d,2p4n)72As	40750.0		
			78Se(d,2p5n)72As	48168.0		
71As 5/2-	65.30 h	ε : 100%	174.954	82.4	74Se(d,2p3n)71As	− 29976.0
			499.878	3.64	76Se(d,2p5n)71As	− 49158.0
			71Se decay	− 35505.0		

pendently for the target backing/cover Al foils and for the thick Al degraders and show acceptable agreement.

The activity of the irradiated samples was measured without chemical separation by using the well-calibrated gamma-spectrometry set-ups at VUB Brussels. The decay of activity of the samples was followed by series of measurements to identify and to separate complex gamma-lines and to follow the cumulative effects after decay of short-lived isomeric states and/or parent nuclei. The energy degradation along the stack was initially determined by a stopping calculation and was confirmed on the basis re-measured excitation function of monitor reactions. For initial calculation home made codes STOPPING and STACK have been used, which are based on the Ziegler’s tables. For the associated error estimation also the Ziegler’s SRIM code was used. The uncertainties on the cross-sections were estimated by using the error propagation of the formula used for calculation (except non-linearly contributing time depending factors). The uncertainties of the contributing factors were: number of bombarding particles (7%), gamma intensity data (3%), detector efficiency (5%), peak area (0.1–10%), number of the target nuclei (5%). The uncertainty of the energy scale was calculated by taking into account the energy uncertainty of the primary beam, the possible variation in the target thickness and the effect of beam straggling. The used nuclear data were taken from NUDAT 2.6. More details on the experiment and the data evaluation are collected in Table 2.

Abundance of isotopes in natural Se: 74Se – 0.89%, 76Se – 9.37%, 77Se – 7.63%, 78Se – 23.77%, 80Se – 49.61%, 82Se – 8.73% (Chart of Nuclides, e.g.: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html).

Increase the Q-values if compound particles are emitted by: np-d, + 2.2 MeV; 2np-t, + 8.48 MeV; n2p-3He, + 7.72 MeV; 2n2p-α, + 28.30 MeV. Decrease the Q-values for isomeric states with the level energy of the isomer.

3 Theoretical calculations

The cross sections of the investigated reactions were calculated using the modified pre-compound model codes ALICE-IPPE (Dityuk et al. [17]) and EMPIRE-II (Herman [18]). During the recent analyses of several (d,p) reactions we were confronted with a large underestimation of the measured cross sections by the code results. We came to the conclusion that the experimentally observed cross sections of the (d,p)
Experimental parameters	Data evaluation
Incident particle	Deuteron
Method	Stacked foil
Number of Se target samples	21
Target composition and thickness (μm)	Al (50.5 μm); Se (3.7–2.5 μm); Al (50.5 μm); Al (102.6 + 102.6 μm); Ti (10.9 + 10.9 μm) repeated 21 times
Accelerator	Cyclone 110 cyclotron of the Université Catholique in Louvain la Neuve (LLN)
Primary energy (MeV)	50
Energy range (MeV)	49.8–8.9
Irradiation time (min)	40
Beam current (nA)	20
Monitor reaction, [recommended values]	27Al(d,x)24,22Na reaction [16]
Monitor target and thickness (μm)	Al (50.5 + 50.5), Al (102.6 + 102.6), Ti (10.9 + 10.9)
Detector	HPGe
γ–spectra measurements	3 series
Cooling times (h)	8.1–11.5, 44.5–53.9, 7710–86316

reaction cannot be reproduced below 20–30 MeV with the available statistical model codes. It is well known that for the (d,p) reactions at low energies the direct stripping process play a very important role. To achieve better description of available data for (d,p) reactions a phenomenological enhancement factor K has been introduced, as energy dependent and estimated to describe the whole set of the observed (d,p) cross sections for medium and heavy nuclei.

By this improvement, in the ALICE IPPE-D and EMPIRE-D code versions [19] for deuteron induced reactions, the direct (d,p) channel is increased strongly and this is reflected in changes for all other reaction channels in both codes.

The EMPIRE-D and TALYS model codes predict acceptable well the near-threshold section of the neutron emitting reactions. The ALICE-D predictions are less satisfactory for this energy because of the much simple model of the low-energy discrete levels of the nuclei in question. For determination of the cross sections in the vicinity of the local maxima, a ratio of the level densities of competing channels is important. The seen differences in calculations are the consequences of differences of the default level-density parameters of the particular codes. Discrepancies between calculations with experiment can be improved by the proper adjustments of input parameters. The comments on the (d,pxn) reactions are similar to those discussed above. However, a special attention is paid to the (d, p) reaction. This reaction is dominated by the direct breakup mechanism without the formation of intermediate pre-equilibrium states of the nucleus.
4 Results-cross sections

The measured experimental cross-section data are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 together with the results of the earlier measurements and the theoretical calculations. The numerical values are presented in Tables 3, 4 and 5. The isotopic cross sections presented in some earlier published studies were normalized to natural Se abundance.

4.1 Cross sections of residual radionuclides of bromine

The radioisotopes of bromine are produced only by direct (d,xn) reactions. The contributing reactions and the reaction Q-values were presented in Table 1. Due to the long cooling time needed for transfer of the irradiated targets form LLN to VUB, the formation of short-lived 83,84m,84gBr could not be confirmed.

4.1.1 The natSe(d,xn)82Br process

As the higher energy metastable state of 82Br has a short half-life ($T_{1/2} = 6.13$ min, IT: 97.6%) we present cumulative cross-sections for the ground state ($T_{1/2} = 35.282$ h), measured after 82mBr total decay (Fig. 2). The formation on 82Br occurs only through the (d,2n) reaction on 82Se. Our data point near the threshold seems to be shifted, when compared to the earlier experimental data and to the theory. This discrepancy is partly explained by the large energy uncertainty
Fig. 3 Experimental and theoretical excitation functions for the $^{\text{nat}}\text{Se(d,xn)}^{80m}\text{Br}$ reaction

^{80m}Br has two long-lived isomeric states. The cross section data for production of the metastable state ^{80m}Br (4.4205 h, IT 100%) are shown in Fig. 3. Due to the isomeric decay of the longer-lived isomeric state and to the long cooling time it was impossible to obtain cross sections for independent formation of the short half-life ground state (17.68 min, β^-: 91.7%, ε: 8.3%). The data of Debuyst et al. [2] were normalized to the abundance in $^{\text{nat}}\text{Se}$. The agreement with the theoretical data is acceptable, as far as the TENDL-2019 regarded.

4.1.2 The $^{\text{nat}}\text{Se(d,xn)}^{80m}\text{Br}$ process

The radioisotope ^{80}Br has two long-lived isomeric states. The cross section data for production of the metastable state ^{80m}Br (4.4205 h, IT 100%) are shown in Fig. 3. Due to the isomeric decay of the longer-lived isomeric state and to the long cooling time it was impossible to obtain cross sections for independent formation of the short half-life ground state (17.68 min, β^-: 91.7%, ε: 8.3%). The data of Debuyst et al. [2] were normalized to the abundance in $^{\text{nat}}\text{Se}$. The agreement with the theoretical data is acceptable, as far as the TENDL-2019 regarded.

4.1.3 The $^{\text{nat}}\text{Se(d,xn)}^{77}\text{Br}$ process

The measured total cross section of the ^{77}Br ground state (57.04 h) include the complete decay of the ^{77m}Br short half-life (4.28 min, IT: 100%) isomeric state (Fig. 4). The ^{77}Br and ^{77}As are both decaying to the ^{77}Se and have similar half-lives and common gamma-lines: ^{77}Br (ε: 100% 57.04 h, 239 521 keV (23.1%), 520.654 keV (22.4%)) with ^{77}As (38.8 h, β^-: 100%, 239 521keV (1.59%), 520.654 keV (0.56%)). Taking
into account the significantly lower gamma-line intensities and the lower production cross section the contribution of the decay of 77As was neglected. The theoretical predictions slightly overestimate the experimental data.

4.1.4 The $^{\text{nat}}$Se(d,xn)76Br process

Most of the gamma-lines of 76Br (16.2 h, ε: 100%) and 76As (26.24 h, β^{-}: 100%) are common as both decay to 76Se. A few independent lines with low intensity exist but we couldn’t identify them in our spectra. Due to the difference in half-life we estimate that in our last series of spectra the contribution of the shorter-lived 76Br to common gamma-lines can be neglected, taking also into account the ratio of cross sections finally derived. In our last series of spectra, the strongest line of 76As (559 keV) was identified in the high energy samples, and cross sections for production of 76As could be deduced (see Sect. 4.3.1). For correction of the 76As contribution in the 559 keV gamma-line in the first series of gamma-spectra (used to derive 76Br cross sections) we fitted our experimental cross section data to the prediction of ALICE-D, and we calculated the 76As contribution to the 559 keV line (because the ALICE-D prediction is the closest to the experimental values in Fig. 9). The correction was around 5% in average and we deduced cross section for production of 76Br (Fig. 5). No earlier experimental data were found.

Our data show less pronounced differences than the calculated values in contributions of reactions on the different stable Se isotopes and especially the 76Se(d,2n) reaction seems...
to be overestimated by the ALICE-D and EMPIRE-D codes below 30 MeV, but both codes give acceptable estimations above this energy. TENDL-2019 follows the trends of the experiment but shows overestimation in the whole energy range.

4.1.5 The natSe(d,xn)75Br process

The excitation functions of the natSe(d,xn)75Br (96.7 min) reaction are shown in Fig. 6. The earlier experimental cross sections of the 74Se(d,n) reaction measured by Qaim et al. [4] for energies below 18 MeV were normalized to natural Se isotopic composition. From the theoretical descriptions the EMPIRE-D estimation is acceptable.

4.2 Cross sections of residual radionuclides of selenium

The radioisotopes of selenium are produced by direct (d,pxn) reactions and decay of parent isobaric bromine radionuclides. The contributing reactions and the reaction Q-values are presented in Table 1.

4.2.1 The natSe(d,x)75Se process

We can deduce cumulative cross sections for production of 75Se (119.78 d). It includes the complete decay of parent 75Br (96.7 min, ε: 100%) (Fig. 7). No earlier experimental data were found. The theoretical data, especially the EMPIRE are in good agreement with the experimental results.
4.2.2 The $^{\text{nat}}$Se(d,x)73Se process

The measured cross sections for production of 73Se (7.15 h) are cumulative as they were measured after complete decay of short-lived 73Br (3.4 min, ϵ: 100%) and 73mSe (39.8 min, ϵ: 27.4 %, IT: 72.6 %) (Fig. 8). No earlier experimental data were found. All theoretical codes give acceptable trend, TENDL and EMPIRE give good prediction up to 40 MeV, over this energy the ALICE prediction is better.

4.3 Cross sections of residual radionuclides of arsenic

The radioisotopes of arsenic are produced by direct ($d,2p\alpha n$) reactions and by decay of parent selenium isotopes. The contributing reactions and the reaction Q-values are presented in Table 1.

4.3.1 The $^{\text{nat}}$Se(d,x)76As process

To get production cross sections for 76As (26.24 h, β^-: 100%) we have used the activity derived from the 559 keV gamma-line signals assessed in the last series of measurements. The contributions of the contaminating, common gamma-line of 76Br (16.2 h, ϵ: 100%) were small as estimated on the basis of cross sections and the elapsed time after EOB. Statistically reliable signals for the 559 keV line were identified only in the high energy samples (Fig. 9). Significant disagreement can be observed in the predictions of the different theoretical codes. Some of our data points (i.e.
4.3.2 The \textit{nat} \textit{Se(d,x)}74As process

The 74As (17.77 d) is produced only directly. The experimental and theoretical data are shown in Fig. 10. No earlier experimental data were found. ALICE-D gives the best and acceptable prediction.

4.3.3 The \textit{nat} \textit{Se(d,x)}72As process

The 73As (80.30 d) is produced directly and through the decay of the 73m\textit{Se} (39.8 min, ε: 27.4%, IT: 72.6%) and 73g\textit{Se} (7.15 h, ε: 100%) parent isomeric states. The cumulative cross sections are shown in Fig. 11. The ALICE-D and TENDL-2019 give the best description.

4.3.4 The \textit{nat} \textit{Se(d,x)}71As process

We could obtain cumulative cross sections for production of 71As (65.30 h) (Fig. 12), including direct production and complete decay of short-lived parent 71Se (4.74 min, ε: 123%)}
Table 3 Cross sections of deuteron induced reactions on Selenium for production of 82Br(m+), 80mBr, 77Br(m+), 76Br(m+) radionuclides

E MeV	ΔE	82Br(m+)	80mBr	77Br(m+)	76Br(m+)				
	$\Delta \sigma$	σ (mb)	$\Delta \sigma$						
49.75	0.30	5.80	0.84	50.29	12.29	157.70	18.93	69.22	8.32
48.13	0.32	5.75	0.86	72.54	15.12	141.35	17.01	74.45	9.94
46.47	0.34	6.26	0.92	59.48	13.02	128.57	15.49	79.55	9.55
44.75	0.36	7.14	1.01	65.67	14.19	119.20	14.38	82.38	9.89
42.98	0.38	6.84	0.99	72.71	16.06	103.35	12.50	86.90	10.43
41.16	0.40	7.12	1.25	80.77	15.74	100.12	12.54	82.97	9.96
39.27	0.43	7.55	1.05	70.47	15.28	98.84	11.94	75.80	9.11
37.31	0.45	6.78	1.04	114.05	23.12	100.12	12.54	82.97	9.96
35.27	0.48	9.06	1.25	102.92	20.76	131.22	15.80	67.15	8.09
33.14	0.51	11.04	1.49	83.58	18.30	150.67	18.15	54.06	6.47
30.90	0.54	9.89	1.38	109.17	22.12	165.11	19.85	50.63	6.07
28.55	0.57	12.97	1.72	80.70	21.28	168.74	20.28	55.65	6.74
26.80	0.61	15.58	2.26	82.25	26.96	172.97	21.24	56.17	6.81
24.97	0.65	16.32	2.19	79.88	29.53	136.46	16.53	53.84	6.57
23.03	0.69	19.53	2.54	153.42	33.17	133.31	16.15	57.54	7.00
20.98	0.73	26.94	3.39	132.37	26.30	105.71	12.88	58.19	7.06
18.87	0.77	36.77	4.55	217.94	37.50	74.51	9.21	57.30	6.95
16.36	0.82	54.46	7.08	343.71	47.56	73.72	9.67	52.74	6.40
13.68	0.87	78.70	9.46	337.89	44.19	74.37	9.05	40.39	4.91
10.58	1.01	93.37	11.27	327.33	54.30	105.87	13.12	56.17	6.81
7.49	1.07	40.16	4.91	59.86	9.07	60.04	7.58	0.23	0.05

Table 4 Cross sections of deuteron induced reactions on Selenium for production of 75Br, 75Se(cum), 73Se(cum), 76As, 74As radionuclides

E MeV	ΔE	75Br	75Se(cum)	73Se	76As				
	$\Delta \sigma$	σ (mb)	$\Delta \sigma$						
49.75	0.30	39.63	4.84	141.28	17.19	7.796	0.968	31.38	4.61
48.13	0.32	35.75	4.42	136.31	16.50	6.789	0.859	20.03	5.91
46.47	0.34	35.50	4.39	125.57	15.23	5.613	0.719	19.43	4.05
44.75	0.36	36.43	4.31	113.69	13.88	4.736	0.623	32.93	5.49
42.98	0.38	36.08	4.35	121.22	14.75	4.572	0.606	30.35	4.07
41.16	0.40	34.20	4.32	119.91	14.56	3.694	0.513	21.17	8.29
39.27	0.43	34.48	4.37	103.07	12.62	5.129	0.675	29.44	4.49
37.31	0.45	38.41	4.90	117.48	14.28	5.176	0.683	28.35	5.12
35.27	0.48	38.62	4.95	106.96	12.80	5.192	0.694	25.19	4.35
33.14	0.51	35.97	4.74	97.00	11.87	5.450	0.734	23.65	7.32
30.90	0.54	35.60	4.76	88.99	10.79	5.228	0.707	18.39	6.92
28.55	0.57	37.12	5.08	78.31	9.52	3.498	0.535	15.12	6.62
Table 4 continued

E MeV	ΔE	75Br	75Se(cum)	75Se	76As				
		σ	Δσ	σ	Δσ	σ	Δσ	σ	Δσ
26.80	0.61	30.27	4.46	67.62	8.11	3.067	0.511		
24.97	0.65	17.98	3.69	46.66	5.63	1.524	0.615		
23.03	0.69	7.23	3.58	32.32	3.93	0.736	0.704		
20.98	0.73	15.88	2.85	0.832	0.280				
18.77	0.77	5.42	0.89						
16.36	0.82	8.68	1.60						
13.68	0.87	3.80	0.79						
10.58	1.01	14.83	2.27						
7.49	1.07	6.46	1.24						

Table 5 Cross sections of deuteron induced reactions on Selenium for production of 74As, 73As(cum), 72As, 71As(cum) radionuclides

E MeV	ΔE	74As	72As	71As(cum)			
		σ	Δσ	σ	Δσ	σ	Δσ
49.75	0.30	24.59	3.06	16.52	2.25	8.28	1.03
48.13	0.32	20.50	2.54	13.78	2.05	6.68	0.83
46.47	0.34	19.20	2.39	12.75	1.82	5.46	0.69
44.75	0.36	18.11	2.28	13.28	1.94	4.40	0.55
42.98	0.38	19.13	2.38	13.66	1.96	3.06	0.43
41.16	0.40	18.21	2.28	9.58	1.60	1.29	0.21
39.27	0.43	17.67	2.23	10.34	1.63	0.96	0.19
37.31	0.45	21.08	2.62	8.96	1.63	1.01	0.18
35.27	0.48	19.89	2.39	11.04	1.73	0.67	0.28
33.14	0.51	19.12	2.40	11.09	2.01	0.70	0.27
30.90	0.54	16.53	2.04	5.33	1.44	0.87	0.33
28.55	0.57	13.03	1.64	3.74	1.34	0.92	0.18
26.80	0.61	9.53	1.16	1.06	0.24		
24.97	0.65	6.53	0.82	1.12	0.27		
23.03	0.69	4.84	0.62	0.53	0.15		
20.98	0.73	5.86	0.92				
18.77	0.77	4.49	0.61				
16.36	0.82	4.30	0.63				
13.68	0.87	3.31	0.46				
10.58	1.01	2.32	0.42				
7.49	1.07	0.44	0.34				

100%). In this case TENDL-2019 shows the best agreement with the experimental data.

5 Integral yields

From excitation functions obtained by a spline fit to our experimental cross sections, integral thick target yields were calculated and are shown in Figs. 13 and 14 as a function of the energy. The so-called physical integral yield Bonardi 1988 [14], Otuka 2015 [15] was calculated (yield at EOB for an instantaneous irradiation, i.e. no decay corrections). For the bromine radio-isotope yields two series of yield measurements have been found for particular bromine isotopes [5,20], both measured by the same group (Dmitriev et al.). The series of data from 1982 for 76,77,82Br and the single
point at 22 MeV for $^{76,77}\text{Br}$ are in acceptable agreement with our new results.

For the arsenic and selenium radio-isotopes only the single 22 MeV measurements are available from the literature [20] for ^{75}Se and ^{74}As production. The former is lower and the latter is higher than our new data.

6 Applications

6.1 Activation file

Selenium is used with bismuth in brasses to replace more toxic lead. Like lead and sulfur, selenium improves the machinability of steel at concentrations around 0.15% [21]. Selenium produces the same machinability improvement in copper alloys. The recently measured data can be useful for nuclear activation related applications (activation analysis, accelerator technology).

6.2 Nuclear reaction theory

As was shown in several of our recent investigations the description of activation cross sections of the deuteron induced reactions by model codes is not very successful, due to e.g. the fact that the (d,p) reactions are not handled correctly. The D-versions of the EMPIRE and ALICE codes try to improve on it. New experimental data are vitally impor-
Nuclide	Half life	Decay mode (%)	$E_{b\text{max}}$ (E_{baver}) (MeV)	Main γ-rays keV (% abundance)	Application	Production route		
^{75}Br	1.61 h	β^+ (75) EC (25)	2.04 0.73	286.0 (88) 511.0 (149)	PET	$^{74}\text{Se}(d,n)$ $^{76}\text{Se}(p,2n)$ $^{76}\text{Se}(d,3n)$ $^{78}\text{Kr}(p,x)$ $^{75}\text{As}(^{3}\text{He},3n)$ $^{75}\text{As}(\alpha,4n)$ $^{76}\text{Se}(p,n)$ $^{77}\text{Se}(p,2n)$ $^{76}\text{Se}(d,2n)$ $^{78}\text{Kr}(p,x)$ $^{78}\text{Kr}(d,x)$ $^{75}\text{As}(^{3}\text{He},2n)$ $^{75}\text{As}(\alpha,3n)$ $^{78}\text{Kr}(d,\alpha)$		
^{76}Br	16.2 h	β^+ 3.941	511.0 (109)	559.0 (74.0) 657.02 (15.9) 1129.85 (4.6) 1216.10 (8.8) 1853.67 (14.7)	PET	$^{76}\text{Se}(p,n)$ $^{77}\text{Se}(p,2n)$ $^{76}\text{Se}(d,2n)$ $^{78}\text{Kr}(p,x)$ $^{78}\text{Kr}(d,x)$ $^{75}\text{As}(^{3}\text{He},2n)$ $^{75}\text{As}(\alpha,3n)$ $^{78}\text{Kr}(d,\alpha)$		
^{77}Br	57.04 h	β^+ (0.73) EC (99.27)	0.342 0.151	238.98 (23.1) 520.69 (22.4)	SPECT	Auger	$^{77}\text{Se}(p,n)$ $^{78}\text{Se}(p,2n)$ $^{78}\text{Se}(d,n)$ $^{77}\text{Se}(d,2n)$ $^{78}\text{Kr}(p,x)$ $^{75}\text{As}(\alpha,2n)$ $^{78}\text{Br}(p,3n)$ $^{77}\text{Kr}^{77}\text{Br}$ $^{80}\text{Kr}(p,\alpha)$ $^{80}\text{Kr}(d,\alpha)$	
^{80m}Br	4.4205 h	IT (100)	37.052 (39.1)		Auger	$^{80}\text{Se}(p,n)$ $^{80}\text{Se}(d,2n)$ $^{82}\text{Kr}(d,\alpha)$		
^{80}Br	17.68 min	β^- 1.99 ϵ 0.85 β^+	511.0 (4.4)		Therapy	$^{80}\text{Se}(p,n)$ $^{80}\text{Se}(d,2n)$ $^{82}\text{Kr}(d,\alpha)$		
^{82}Br	35.282 h	β^- (100)	0.444 0.143	554.352 (71.7) 619.105 (43.7) 698.361 (28.4) 776.511 (83.6) 827.826 (24.2) 1044.005 (27.6) 1317.485 (26.9) 1474.895 (16.3)	Therapy	$^{82}\text{Se}(p,n)$ $^{82}\text{Se}(d,2n)$ $^{84}\text{Kr}(d,\alpha)$		
^{73}Se	7.15 h	β^+	1.636 EC (35.4) 0.557	67.07 (70) 361.2 (97.0) 511.0 (129.2)	PET	$^{75}\text{As}(p,3n)$ $^{75}\text{As}(d,4n)$ $^{76}\text{Ge}(\alpha,n)$ $^{72}\text{Ge}(\alpha,3n)$ $^{74}\text{Ge}(^{3}\text{He},3n)$		
Table 6 continued

Nuclide	Half life	Decay mode (%)	E_{max} (MeV)	E_{aver} (MeV)	Main γ-rays keV (% abundance)	Application	Production route	
^{75}Se	119.78 d	EC (100)			121.1155 (17.20)		SPECT	$^{75}\text{As(p,n)}$
			136.0001 (58.5)				$^{75}\text{As(d,2n)}$	
			264.6576 (58.9)				$^{72}\text{Ge(\alpha,n)}$	
			279.5422 (25.02)				$^{73}\text{Ge(\alpha,2n)}$	
			400.6572 (11.41)				$^{75}\text{Ge(\alpha,3n)}$	
			264.6576 (58.9)				$^{72}\text{Ge(\alpha,n)}$	
			279.5422 (25.02)				$^{73}\text{Ge(\alpha,2n)}$	
			400.6572 (11.41)				$^{75}\text{Ge(\alpha,3n)}$	
^{72}As	26.0 h	β^+	3.334	833.99 (0.81)	PET		$^{72}\text{Ge(p,n)}$	
			1.17				$^{72}\text{Ge(d,2n)}$	
^{74}As	17.77 d	β^+	1.54	15.4 (58)	PET		$^{74}\text{Ge(p,n)}$	
			0.44	595.83 (59)			$^{72}\text{Ge(d,2n)}$	
			1.3528	634.78 (15.4)			$^{71}\text{Ga(\alpha,2n)}$	
			0.4				$^{71}\text{Ga(\alpha,3n)}$	
	β^-						$^{76}\text{Se(d,\alpha)}$	

6.3 Production of medical isotopes

Several of the investigated activation products have applications in nuclear medicine [22–24]. The main important production routes of these isotopes are summarized in Table 6. The production mostly requires monoisotopic targets to assure the radionuclide purity. The present cross section data combined with theoretical results that describe properly the experiments on $^{\text{nat}}\text{Se}$ can be useful to estimate production routes yields. The data can also serve as a basis to derive monoisotopic cross sections in the energy range where only one reaction contributes.

7 Summary and conclusion

The excitation functions for $^{\text{nat}}\text{Se(d,x)}$ reactions resulting in formation of $^{82}\text{Br(m+)}$, ^{80}Br, $^{77}\text{Br(m+)}$, $^{76}\text{Br(m+)}$, ^{75}Br, $^{75}\text{Se(cum)}$, $^{73}\text{Se(cum)}$, ^{76}As, ^{74}As, $^{73}\text{As(cum)}$, ^{72}As, ^{71}As (cum) were measured up to 50 MeV in the frame of a systematic study of deuteron induced threshold reactions. The experimental cross section and deduced yield data were compared with some earlier measured low energy values and are showing good agreement. Model calculations were done with the ALICE-IPPE-D and EMPIRE-D code. The ALICE-D and EMPIRE-D theoretical calculations, completed with the TALYS results from TENDL-2019 on-line library, describing with varying success the shape and the absolute values of the experimental data, especially for (d,2pxn) reactions leading to As radioisotopes. The obtained experimental data provide a basis for improved model calculations and for applications in radioisotope production, in dose calculations, in waste handling, in charged particle activation analysis for thin layer application and for nuclear data validation.

Acknowledgements This work was done in the frame of MTA-FWO (Vlaanderen) research projects. The authors acknowledge the support of research projects and of their respective institutions in providing the materials and the facilities for this work. This work was also partly supported (F. Ditrói) by IAEA RER Project 1020 and by IAEA CRP F22069.

Funding Open access funding provided by ELKH Institute for Nuclear Research.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors' comment: The datasets generated during and/or analysed during the current study are not publicly available yet but are available from the corresponding author on reasonable request].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
References

1. J.A. Miskel, A.C. Wahl, Nuclear excitation functions, Se82(d,2n)Br 82 and Br81(d, p)Br82. Phys. Rev. 84, 700–702 (1951)

2. R. Debuyst, A. Vander-Stricht, Excitation functions and yield ratios for the isomeric pair 80Br 80mBr formed in (d, 2n), (α, np), (α, p) and (p, n) reactions on selenium. J. Inorganic Nucl. Chem. 30, 691–698 (1968)

3. A.M.J. Paans, J. Welleweerd, S. Reiffers, M.G. Woldring, Excitation functions for the production of bromine-75: a potential nuclide for the labelling of radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 31, 267–273 (1980)

4. S.M. Qaim, G. Stöcklin, Excitation functions of 74Se(d, xn)75,74mBr reactions: comparative evaluation of possible routes for the production of 75Br at a small cyclotron. Appl. Radiat. Isot. 44, 1443–1447 (1993)

5. P.P. Dmitriev, M.V. Panarin, Z.P. Dmitrieva, 76Br, 77Br, and 82Br yield in nuclear reactions with protons, deuterons, and alpha particles. Sov. At. Energy 52, 99 (1982)

6. G. Vakilova, A. Vasidov, S. Mukhammedov, E. Pardaev, A. Rakhmanov, Z. Saidmuradov, Sensitivity of the determination of some elements with Z less-than-or-equal-to 42 by a Deuteron activation method in a cyclotron. At. Energy (NY, US) 55, 598–602 (1983)

7. Canberra, http://www.canberra.com/products/radiochemistry_lab/genie-2000-software.asp (2000)

8. G. Székely, Fgm—a flexible gamma-spectrum analysis program for a small computer. Comput. Phys. Commun. 34, 313–324 (1985)

9. F. Tárkányi, F. Szecsenyi, S. Takács, Determination of effective bombarding energies and fluxes using improved stacked-foil technique. Acta Radiol. Suppl. 376, 72 (1991)

10. R.R. Kinsey, C.L. Dunford, J.K. Tuli, T.W. Burrows, in Capture Gamma– Ray Spectroscopy and Related Topics, Vol. 2. (NUDAT 2.6 http://www.nndc.bnl.gov/nudat2/). (Springer Hungarica Ltd, Budapest, 1997)

11. B. Pritychenko, A. Sonzogni, Q-value calculator. (NNDC, Brookhaven National Laboratory, 2003)

12. H.H. Andersen, J.F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements. The Stopping and Ranges of Ions in Matter, vol. 3 (Pergamon Press, New York, 1977)

13. International-Bureau-of-Weights-and-Measures, Guide to the expression of uncertainty in measurement, 1st ed. International Organization for Standardization, Genève, Switzerland. ISBN 9267101889 (1993)

14. M. Bonardi, The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility, in Consultants Meeting on Data Requirements for Medical Radioisotope Production, IAEA, INDC(NDS)-195 (1988), ed. by K. Okamoto (Tokyo, Japan, 1987), pp. 98–112

15. N. Otuka, S. Takacs, Definitions of radioisotope thick target yields. Radiocom. Acta 103, 1–6 (2015)

16. A. Hermanne, A.V. Ignatyuk, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibedi, G. Kim, F.G. Kondev, M. Hussain, O. Lebeda, A. Luca, Y. Nagai, H. Naik, A.L. Nichols, F.M. Nortier, S.V. Suryanarayana, S. Takacs, F.T. Tarkanyi, M. Verpelli, Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 148, 338–382 (2018)

17. A.I. Dityuk, A.Y. Konobeyev, V.P. Lunev, Y.N. Shubin, New version of the advanced computer code ALICE-IPPE, INDC (CCP)-410 (IAEA, Vienna, 1998)

18. M. Herman, R. Capote, B.V. Carlson, P. Ohlozinsky, M. Sin, A. Trkov, H. Wience, V. Zerkin, EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655–2715 (2007)

19. A.V. Ignatyuk, 2nd RCM on FENDL-3 http://www-nds.iaea.org/fendl3/RCM2_slides.html, IAEA, Vienna, Austria (2010)

20. P.P. Dmitriev, N.N. Krasnov, G.A. Molin, Yields of radioactive nuclides formed by bombardment of a thick target with 22-MeV Deuterons, INDC(CCP)-210/L (1983)

21. X. Zhang, S.N. Lekakh, R.J. Omalley, E. Scheid, Effect of selenium on the machinability of As-hot rolled and heat treated 4140 steel. ISIJ Int. 60, 782–791 (2020)

22. M.J. Welch, K.D. McElvany, Radionuclides of bromine for use in biomedical studies. Radiomch. Acta 34, 41–46 (1983)

23. A.R. Jalilian, P. Rowshanfarzad, H. Afarideh, M. Sabet, G.H. Aslani, Production of Se-75 radioisotopes for nuclear medicine and labeling of odd cycle of [75 Se] 1,2,3-selena diazole Atom. Sci. Bull. At. Energy Org. Iran 2004, 9–16 (2004)

24. A.M. Emran, D.R. Phillips, Biomedical Use of Arsenic Radioisotopes (American Chemical Society, USA, 1990)