New Multiplicative Arithmetic-Geometric Indices

V.R. KULLI

Department of Mathematics, Gulbarga University, Gulbarga 585106, India
Corresponding Author Email: vrkulli@gmail.com
http://dx.doi.org/10.22147/jusps-A/290601

Acceptance Date 10th May, 2017, Online Publication Date 2nd June, 2017

Abstract

In this Paper, we introduce the second, third, fourth and fifth multiplicative arithmetic-geometric indices of a molecular graph. We compute the fifth multiplicative arithmetic-geometric index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of \(TUC_4 \), \(C_8 \)[p, q].

Key words: molecular graph, fifth multiplicative arithmetic-geometric index, nanostructures.

Mathematics Subject Classification: 05C05, 05C12, 05C35.

1. Introduction

Let \(G \) be a finite, simple connected graph with a vertex set \(V(G) \) and an edge set \(E(G) \). The degree \(d_G(v) \) of a vertex \(v \) is the number of vertices adjacent to \(v \). The line graph \(L(G) \) of a graph \(G \) is the graph whose vertex set corresponds to the edges of \(G \) such that two vertices of \(L(G) \) are adjacent if the corresponding edges of \(G \) are adjacent. The subdivision graph \(S(G) \) of \(G \) is the graph obtained from \(G \) by replacing each of its edges by a path of length two. We refer to [1, 2] for undefined term and notation.

A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numeric quantity from structural graph of a molecule. These indices are useful for establishing correlation between the structures of a molecular compound and its physico-chemical properties.

Very recently Kulli\(^3\) introduced the first multiplicative arithmetic-geometric index of a graph \(G \) and it is defined as

\[
AG_{I\!I}(G) = \prod_{u,v \in E(G)} \frac{d_G(u) + d_G(v)}{2\sqrt{d_G(u)d_G(v)}}
\]

Many other multiplicative indices were studied, for example, in\(^4,5,6,7,8,9,10,11\).

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
Motivated by the definition of the first multiplicative arithmetic-geometric index and by previous research on topological indices, we propose the second, third, fourth and fifth multiplicative arithmetic-geometric indices of a graph as follows:

The second multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_{II}^2(G) = \prod_{uv \in E(G)} \frac{n_u + n_v}{2\sqrt{n_u n_v}}$$

where the number n_u of vertices of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.

The third multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_{II}^3(G) = \prod_{uv \in E(G)} \frac{m_u + m_v}{2\sqrt{m_u m_v}}$$

where the number m_u of edges of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.

The fourth multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_{II}^4(G) = \prod_{uv \in E(G)} \frac{\varepsilon(u) + \varepsilon(v)}{2\sqrt{\varepsilon(u) \varepsilon(v)}}$$

where the number $\varepsilon(u)$ is the eccentricity of vertex u.

The fifth multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_{II}^5(G) = \prod_{uv \in E(G)} \frac{S_G(u) + S_G(v)}{2\sqrt{S_G(u) S_G(v)}}, \text{ where } S_G(u) = \sum_{uv \in E(G)} d_G(v).$$

We need the following results.

Lemma 1 1. Let G be a (p, q) graph. Then $L(G)$ has q vertices and $\frac{1}{2} \sum_{i=1}^{p} d_G(u_i)^2 - q$ edges.

Lemma 2 1. Let G be a (p, q) graph. Then $S(G)$ has $p+q$ vertices and $2q$ edges.

In this paper, we compute the fifth multiplicative arithmetic-geometric index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of $TUC_4C_8[p, q]$.

2. 2D-lattice, nanotube and nanotorus of $TUC_4C_8[p, q]$

We consider the graph of 2D-lattice, manotube and nanotorus of $TUC_4C_8[p, q]$ where p and q denote the number of squares in a row and the number of rows of squares respectively. These graphs are shown in Figure 1.
By algebraic method, we get $|V(G_i)| = 4pq$, $|E(G_i)| = 6pq – p – q$; $|V(H_i)| = 4pq$, $|E(H_i)| = 6pq – p$; $|V(K_i)| = 4pq$, $|E(K_i)| = 6pq$.

3. Results for 2D-lattice of $TUC_4C_8[p, q]$

The line graph of the subdivision graph of 2D-lattice of $TUC_4C_8[p, q]$ is shown in Figure 2(b).

Theorem 1. Let G be the line graph of the subdivision graph of 2D-lattice of $TUC_4C_8[p, q]$. Then

$$AG_5II(G) = \begin{cases}
\left(\frac{9}{4\sqrt{5}}\right)^4 \times \left(\frac{13}{4\sqrt{10}}\right)^{4(p+q-2)} \times \left(\frac{17}{12\sqrt{2}}\right)^{4(p+q-2)}, & \text{if } p > 1, q > 1, \\
\left(\frac{9}{4\sqrt{5}}\right)^4 \times \left(\frac{13}{4\sqrt{10}}\right)^{4(p-1)} \times \left(\frac{17}{12\sqrt{2}}\right)^{4(p-1)}, & \text{if } p > 1, q = 1.
\end{cases}$$

Proof: The 2D-lattice of $TUC_4C_8[p, q]$ is a graph with $4pq$ vertices and $6pq – p – q$ edges. By Lemma 2, the subdivision graph of 2D-lattice of $TUC_4C_8[p, q]$ is a graph with $10pq – p – q$ vertices and $2(6pq – p – q)$ edges. Thus by Lemma 1, G has $2(6pq – p – q)$ vertices and $18pq – 5p – 5q$ edges. It is easy to see that the vertices of G are either of degree 2 or 3, see Figure 2(b). Therefore we have partition of the edge set of G as follows.

$S_G(u), S_G(v)uv \in E(G)$	(4, 4)	(4, 5)	(5, 5)	(5, 8)	(8, 9)	(9, 9)
Number of edges	4	8	2($p+q–4$)	4($p+q–2$)	8($p+q–2$)	2($9pq+10$) – $19(p+q)$

$S_G(u), S_G(v)uv \in E(G)$	(4, 4)	(4, 5)	(5, 5)	(5, 8)	(8, 8)	(8, 9)	(9, 9)
Number of edges	6	4	2($p–2$)	4($p–1$)	2($p–1$)	4($p–1$)	$p–1$
Case 1. Suppose \(p > 1 \) and \(q > 1 \).

By algebraic method, we obtain \(|V_4|=8, |V_5|=4(p+q-2), |V_8|=4(p+q-2)\) and \(|V_9|=2(6pq-5p-5q+4)\). Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given in Table 1.

To compute \(AG_2(G) \), we see that

\[
\begin{align*}
AG_2(G) &= \prod_{uv \in E(G)} \frac{S_G(u) + S_G(v)}{2\sqrt{S_G(u)S_G(v)}} \\
&= \left(\frac{4+4}{2\sqrt{4 \times 4}}\right)^4 \left(\frac{4+5}{2\sqrt{4 \times 5}}\right)^8 \left(\frac{5+5}{2\sqrt{5 \times 5}}\right)^{2(p+q-4)} \left(\frac{5+8}{2\sqrt{5 \times 8}}\right)^{4(p+q-2)} \\
&\quad \times \left(\frac{8+9}{2\sqrt{8 \times 9}}\right)^{8(p+q-2)} \left(\frac{9+9}{2\sqrt{9 \times 9}}\right)^{(2pq+10)-19(p+q)} \\
&= (1)^4 \left(\frac{9}{4\sqrt{5}}\right)^8 \left(\frac{13}{4\sqrt{10}}\right)^{4(p+q-2)} \left(\frac{17}{12\sqrt{2}}\right)^{8(p+q-2)}.
\end{align*}
\]

Case 2. Suppose \(p>1 \) and \(q=1 \).

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given in Table 2.

\[
\begin{align*}
AG_2(G) &= \prod_{uv \in E(G)} \frac{S_G(u) + S_G(v)}{2\sqrt{S_G(u)S_G(v)}} \\
&= \left(\frac{4+4}{2\sqrt{4 \times 4}}\right)^6 \left(\frac{4+5}{2\sqrt{4 \times 5}}\right)^4 \left(\frac{5+5}{2\sqrt{5 \times 5}}\right)^{2(p-2)} \left(\frac{5+8}{2\sqrt{5 \times 8}}\right)^{4(p-1)} \\
&\quad \times \left(\frac{8+8}{2\sqrt{8 \times 8}}\right)^{2(p-1)} \left(\frac{8+9}{2\sqrt{8 \times 9}}\right)^{4(p-1)} \left(\frac{9+9}{2\sqrt{9 \times 9}}\right)^{(p-1)} \\
&= (1)^6 \left(\frac{9}{4\sqrt{5}}\right)^4 \left(\frac{13}{4\sqrt{10}}\right)^{4(p-1)} \left(\frac{17}{12\sqrt{2}}\right)^{4(p-1)} \times (1)^{(p-1)} \\
&= \left(\frac{9}{4\sqrt{5}}\right)^4 \left(\frac{13}{4\sqrt{10}}\right)^{4(p-1)} \left(\frac{17}{12\sqrt{2}}\right)^{4(p-1)}.
\end{align*}
\]

4. Results for \(TUC_5C_4[p, q] \) nanotube
The line graph of the subdivision graph of $TUC_4C_8[p, q]$ nanotube is shown in Figure 3(b).

(a) Subdivision graph of $TUC_4C_8[4, 2]$ nanotube
(b) line graph of subdivision graph of $TUC_4C_8[4, 2]$ nanotube

Theorem 2. Let H be the line graph of the subdivision graph of $TUC_4C_8[p, q]$ nanotube. Then

$$AG_{SI}(H) = \left(\frac{13}{4\sqrt{10}}\right)^{4p} \times \left(\frac{17}{12\sqrt{2}}\right)^{8p}, \quad \text{if } p > 1 \text{ and } q > 1,$$

$$= \left(\frac{13}{4\sqrt{10}}\right)^{4p} \times \left(\frac{17}{12\sqrt{2}}\right)^{4p}, \quad \text{if } p > 1 \text{ and } q = 1.$$

Proof: The $TUC_4C_8[p, q]$ nanotube is a graph with $4pq$ vertices and $6pq - p$ edges. By Lemma 2, the subdivision graph of $TUC_4C_8[p, q]$ nanotube is a graph with $10pq - p$ vertices and $12pq - 2p$ edges. Thus by Lemma 1, H has $12pq - 2p$ vertices and $18pq - 5p$ edges. We see that in H, there are $4p$ vertices, are of degree 2 and remaining all vertices are of degree 3. Therefore we have partition of the edge set of H as follows:

$S_H(u), S_H(v)uv \in E(H)$	(5, 5)	(5, 8)	(8, 9)	(9, 9)
Number of edges	2p	4p	8p	18pq – 19p

| $S_H(u), S_H(v)uv \in E(H)$ | (5, 5) | (5, 8) | (8, 8) | (8, 9) | (9, 9) |
|-----------------------------|-------|-------|-------|-------|
| Number of edges | 2p | 4p | 2p | 4p | p |

Case 1. Suppose $p > 1$ and $q > 1$.

By algebraic method, we obtain $|V_5| = 4$p$, $|V_8| = 4$p$ and $|V_9| = 2(6pq - 5p)$ in H. Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given in Table 3.

$$AG_{SI}(H) = \prod_{uv \in E(H)} \frac{S_H(u) + S_H(v)}{2S_H(u)S_H(v)}$$

$$= \left(\frac{5 + 5}{2\sqrt{5 \times 5}}\right)^{2p} \times \left(\frac{5 + 8}{2\sqrt{5 \times 8}}\right)^{4p} \times \left(\frac{8 + 9}{2\sqrt{8 \times 9}}\right)^{8p} \times \left(\frac{9 + 9}{2\sqrt{9 \times 9}}\right)^{18pq - 19p}$$
\[
\text{Case 2. Suppose } p > 1 \text{ and } q = 1.
\]

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given in Table 4.

\[
AG_{SII}(H) = \prod_{uv \in E(H)} \frac{S_H(u) + S_H(v)}{2S_H(u)S_H(v)}
\]

\[
= \left(\frac{5 + 5}{2/5 \times 5}\right)^{2p} \times \left(\frac{5 + 8}{2/5 \times 8}\right)^{4p} \times \left(\frac{8 + 8}{2/8 \times 8}\right)^{2p} \times \left(\frac{8 + 9}{2/8 \times 9}\right)^{4p} \times \left(\frac{9 + 9}{2/9 \times 9}\right)^{p}
\]

\[
= (1)^{2p} \times \left(\frac{13}{4\sqrt{10}}\right)^{4p} \times (1)^{2p} \times \left(\frac{17}{12\sqrt{2}}\right)^{4p} \times (1)^{p} = \left(\frac{13}{4\sqrt{10}}\right)^{4p} \times \left(\frac{17}{12\sqrt{2}}\right)^{4p}.
\]

5 Results for \(TUC_4C_8[p, q]\) nanotorus

The line graph of the subdivision graph of \(TUC_4C_8[p, q]\) nanotorus is shown in Figure 4(b).

![Figure 4](image)

(a) subdivision graph of \(TUC_4C_8[4,2]\) nanotorus

(b) line graph of subdivision graph of \(TUC_4C_8[4,2]\) nanotorus.

Theorem 3. Let \(K\) be the line graph of the subdivision graph of \(TUC_4C_8[p, q]\) nanotorus. Then

\[\text{AG}_{SII}(K) = 1.\]

Proof: The graph of \(TUC_4C_8[p, q]\) nanotorus has \(4pq\) vertices and \(6pq\) edges. Then by Lemma 2, the subdivision graph of \(TUC_4C_8[p, q]\) nanotorus is a graph with \(10pq\) vertices and \(12pq\) edges. Thus by Lemma 1, \(K\) has \(12pq\) vertices and \(18pq\) edges. We see easily that in \(K\), \(|V_K| = 12pq\) and we have edge partition based on the degree sum of neighbor vertices of each vertex, as given in Table 5.

Table 5. Edge partition of \(K\).
\(S_K(u), S_K(v) \)uv \in E(K)
Number of edges

\[
AG_{SII}(K) = \prod_{uv \in E(K)} \frac{S_K(u) + S_K(v)}{2S_K(u)S_K(v)} = \left(\frac{9 + 9}{2/9 \times 9}\right)^{18pq} = 1.
\]
References

1. F. Harary, *Graph Theory*, Addison Wesley, Reading, MA (1969).
2. V.R. Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
3. V.R. Kulli, A new multiplicative arithmetic-geometric index, *International Journal of Fuzzy Mathematical Archive*, 12(2) (2017) 49-53. DOI:http://dx.doi.org/10.22457/ijfma.v12n2a1.
4. M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, *MATCH Commun. Math. Comput. Chem.*, 68, 217-230 (2012).
5. I. Gutman, Multiplicative Zagreb indices of trees, *Bull. Soc. Math. Banja Luka*, 18, 17-23 (2011).
6. V.R. Kulli, First multiplicative K Banhatti index and coindex of graphs, *Annals of Pure and Applied Mathematics*, 11(1), 79-82 (2016).
7. V.R. Kulli, Second multiplicative K Banhatti index and coindex of graphs, *Journal of Computer and Mathematical Sciences*, 7(5), 254-258 (2016).
8. V.R. Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs, *International Journal of Mathematical Archive*, 7(6), 60-65 (2016).
9. V.R. Kulli, On multiplicative K-Banhatti and multiplicative K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, *Annals of Pure and Applied Mathematics*, 11(2), 145-150 (2016).
10. V.R. Kulli, Multiplicative connectivity indices of $TUC_4C_8[m,n]$ and $TUC_4[m,n]$ nanotubes, *Journal of Computer and Mathematical Sciences*, 7(11), 599-605 (2016).
11. V.R. Kulli, Multiplicative connectivity indices of certain nanotubes, *Annals of Pure and Applied Mathematics*, 12(2) 169-176 (2016).
12. V.R. Kulli, Multiplicative connectivity indices of nanostructures, *Journal of Ultra Scientist of Physical Sciences, A* 29(1) 1-10 (2017). DOI: http://dx.doi.org/10.22147/jusps.A/290101.
13. V.R. Kulli, Some new multiplicative geometric-arithmetic indices, *Journal of Ultra Scientist of Physical Sciences, A*, 29(2), (2017), 52-57. DOI: http://dx.doi.org/10.22147/jusps.A/290201.