Two-dimensional dysprosium(III) coordination polymer: Structure, single-molecule magnetic behavior, proton conduction, and luminescence

Jin-Fen Chen, Yi-Liang Ge, Dong-Hui Wu, Hao-Tian Cui, Zhi-Lin Mu, Hong-Ping Xiao*, Xinhua Li* and Jing-Yuan Ge*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China

A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H$_2$O)$_2$] · H$_2$O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H$_4$m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO$_8$] geometry, which can be described as a twisted square antiprism (D_{4d} symmetry). Neighboring Dy(III) ions are interconnected by deprotonated H$_4$m-dobdc$^{3-}$ ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H$_2$O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier U_{eff}/k_B and relaxation time τ_0 are 35.3 K and 1.31×10^{-6} s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77×10^{-8} Sc m$^{-1}$ at 353 K and 30%RH. Moreover, luminescence spectra reveal that H$_4$m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.

KEYWORDS
coordination polymer, dysprosium, slow magnetic relaxation, proton conduction, multifunctional

Introduction

Coordination polymers (CPs) have potential applications in gas storage/separation, catalysis, magnetism, and proton conduction due to their customizable compositions and variable structures (Yaghi et al., 2003; Kitagawa et al., 2004; Ferey, 2008; Zhu et al., 2018; Yuan et al., 2020; Cai et al., 2021; Chakraborty et al., 2021). In particular, CPs can integrate these multiple properties into the same molecular composite, which is an excellent platform for designing advanced multifunctional
In the field of molecular magnetism, Ln-CPs are of particular interest, enabling the production of magnetic materials with diverse properties, such as single-molecule magnets (SMMs) (Baldovici et al., 2014; Liu et al., 2016; Zhong et al., 2022). As we know, the magnetic anisotropy of metal ions plays a very important role in the construction of SMMs (Woodruff et al., 2013; Zhu et al., 2021). In this regard, lanthanide Dy(III) ion, may carry significant anisotropy because of its intrinsically large and unquenched orbital contribution to the magnetic moment (Ding et al., 2018; Parmar et al., 2021; Li et al., 2022). Goodwin and co-workers made a breakthrough in Dy(III)-based SMMs, reporting compound that exhibits a high effective energy barrier of 1,760 K (Goodwin et al., 2017).

Therefore, we consider Dy(III) coordination compounds to be promising candidates for designing high-performance SMMs. Moreover, the high coordination number and flexible coordination geometry of Dy(III) ions can produce various interesting frameworks. Up to now, multifarious Dy-CPs with slow magnetic relaxation behaviors have been developed (Wu et al., 2020; Song et al., 2021; Su et al., 2021). Nevertheless, the inherent magnetisms of Dy(III) ions are very sensitive to various factors such as coordination geometry, magnetic interactions, etc., making the performance of Dy(III)-based SMMs difficult to predict (Pinkowicz et al., 2015; Zhang et al., 2015; Ge et al., 2020). More new topologies need to be established to study the magneto-structural correlations in depth.

Developing multifunctional magnetic CPs is currently a very attractive research topic, where magnetism can be integrated with other properties (such as proton conduction, sensing, or luminescence) to achieve multi-task expression and expand the application range of materials (Chen et al., 2017; Bera et al., 2018; Minguez Espallargas and Coronado, 2018). Among them, proton-conducting materials are potential replacements for Na-ion ionomers in the catalyst layer of fuel cells, which can produce environmentally friendly energy (Yamada et al., 2013; Ramaswamy et al., 2014; Meng et al., 2017; Li et al., 2020). The easily tunable crystal structures and modifiable pore environment of CPs are ideal crystal models for designing proton conductors and gaining insight into proton transfer mechanisms (Su et al., 2020). Studies have shown that designing and developing complex hydrogen bond networks is one of the efficient strategies to improve proton conductivity in CPs, such as introducing functional Bronsted acid groups (-COOH and -OH) (Biswas et al., 2017; Bera et al., 2018).

Based on the above considerations, we envisioned that combining Dy(III) ion with carboxyl- and hydroxyl-rich organic ligand would be a sensible strategy to engineer SMM behavior with proton conduction into functional CPs. We chose the aromatic ligand 4,6-dioxido-1,3-benzenedicarboxylate (H$_m$-dobdc), and to our knowledge, Dy(III) complexes based on this ligand have been not been reported (Kapelewski et al., 2018; Barnett et al., 2019). Carboxyl and phenolic hydroxy groups have high affinity with Dy(III) ion and diverse coordination modes, and more importantly, they can also act as efficient hydrogen bond acceptors/donors, forming infinite hydrogen bond networks to facilitate proton transport (Li et al., 2017; Wang et al., 2021; Bhadra et al., 2022). Herein, a two-dimensional (2D) CP [Dy(Hm-dobdc) (H$_2$O)$_2$]·H$_2$O (Dy-CP), was hydrothermal synthesized through the interaction of Dy(III) ion and judiciously selected organic ligands, and its field-induced slow relaxation behavior and proton conduction properties were demonstrated.

Experimental sections

Synthesis of [Dy(Hm-dobdc) (H$_2$O)$_2$]·H$_2$O (Dy-CP)

The reactants H$_m$-dobdc (0.0297 g, 0.15 mmol), Dy(NO$_3$)$_3$·6H$_2$O (0.0918 g, 0.2 mmol), and 10 ml H$_2$O were placed in a 15 ml Teflon cup. The mixture was heated to 140°C for 3 days. After cooling, the light brown block crystals of Dy-CP were obtained with a yield of 24% (based on H$_m$-dobdc). Anal. Calcd (%): C, 23.34; H, 2.20%. Found: C, 23.18; H, 2.14%. IR (cm$^{-1}$, KBr): 3,859.56(s), 3,468.01(w), 3,217.27(w), 2,657.91(w), 1,853.59(w), 1,811.16(w), 1,780.3(w), 1,720.5(s), 1,705.07(s), 1,643.35(s), 1,566.2(m), 1,519.91(w), 1,465.9(m), 1,400.32(s), 1,346.31(m), 1,301.95(m), 1,226.73(w), 1,195.87(s), 1,083.99(w), 956.19(w), 893.04(m), 844.82(m), 819.75(w), 783.11(w), 754.17(w), 723.31(m), 700.16(m), 677.01(w), 653.87(m), 619.15(m), 578.64(w), 526.57(w), 472.56(m), 430.13(w).

Result and discussion

Description of crystal structure

The brown-orange block crystals of [Dy(Hm-dobdc) (H$_2$O)$_2$]·H$_2$O (Dy-CP) were obtained by the reaction of H$_m$-dobdc and Dy(NO$_3$)$_3$·6H$_2$O at 140°C. Single-crystal analysis shows that Dy-CP crystallizes in the monoclinic space group $P2_1/n$, and the crystallographic data are summarized in Supplementary Table S1. Its asymmetric unit involves one Dy(III) ion, one Hm-dobdc$^{2-}$ ligand, two coordinated H$_2$O molecules, and one uncoordinated H$_2$O molecule (Figure 1A). The Dy1 center adopts an octa-coordinated [DyO$_8$] geometry with four O$_{carboxylate}$ atoms (O1, O2, O5, and O6) from three Hm-dobdc$^{2-}$ ligands, the another O$_{carboxylate}$ atom (O1) and one O$_{phenoxide}$ atom (O3).
from one Hm-dobdc$^{3-}$ ligand, and two O$_{\text{water}}$ atom (O7 and O8) from two coordinated H$_2$O (Figure 1B and Supplementary Figure S1). Dy–O bond lengths are in the range of 2.287 (3) Å to 2.495 (3) Å, similar to those reported for Dy(III) compounds with oxygen donors (Supplementary Table S2) (Song et al., 2021). Shape analysis revealed that the exact geometry of Dy1 ion can be assigned to a twisted square antiprism (D_{4d} symmetry) with a SAPR-8 factor of 1.244 (Supplementary Table S3) (Ge et al., 2017). As shown in Figure 1B, the Dy1 ion is unevenly distributed between two square planes. The distance of Dy1 ion from the center of the top plane (O1, O3, O6 and O8) is 1.225 Å, which is closer than the distance (1.415 Å) to the center of the bottom plane (O1, O2, O5 and O7). The dihedral angle between these two planes is 5.157°, and the bending angle α defined as center-Dy1-center is 171.45°.

One Hm-dobdc$^{3-}$ ligand is coordinated to four Dy1 ions via one deprotonated phenolic hydroxyl group and two deprotonated carboxyl groups. Of the two carboxyl groups, one is ligated in a μ_2-η^1-η^1 chelating mode and the other in a μ_2-η^1-η^1 mode (Figure 1D). After coordination, the Hm-dobdc$^{3-}$ is not planar viewed from the side. The multiple coordination sites and variable coordination configuration of Hm-dobdc$^{3-}$ play a key role in constructing Dy-CP. The adjacent Dy1 ions are linked together by one μ_2-η^1-η^1 carboxylate group and one μ_2-O1 atom from Hm-dobdc$^{3-}$ to generate the one-dimensional metal chain along the crystallographic b-axis (Figures 1C–E). The nearest Dy–Dy separation is 4.423 Å and Dy1-O1-Dy1 angle is 132.85°. Each chain is linked by the polytopic Hm-dobdc$^{3-}$ ligand (Dy–Dy = 8.175 Å) generating the 2D infinite layer (Figures 1E,F).

In the stacking motif, these 2D layers are stacked along the crystallographic a-axis in an–AAA–fashion, generating small-sized pores (Figure 2A). Furthermore, uncoordinated phenolic hydroxyl group is oriented towards the interior of the pore to create a targeted hydrophilic environment in
which the uncoordinated H2O molecules reside. Abundant O−H−O hydrogen bonds are formed between the lattice H2O molecule, coordinated H2O molecule and the Hm-dobdc3− ligand (Supplementary Table S4) (Wang et al., 2009). One coordinated H2O molecule (O8) and one lattice H2O molecule (O9) and their symmetry-related counterparts yield a centrosymmetric cyclic H2O tetramer (Supplementary Figure S2). In the tetramer, the O8 water monomer is the hydrogen bond donor and the O9 atom acts as the acceptor. The average distance of O···Oi is only 2.727 Å. This hydrogen-bonding network is beneficial for stabilizing H2O molecules (Sasaki et al., 2018). The tetramers link the adjacent layers to generate a 3D framework (Figures 2B,C). The hydrophilicity and multiple hydrogen bonds facilitate the exploration of proton conduction (Meng et al., 2017).

FT-IR spectra, purity and structural stability

The FTIR spectra of H4m-dobdc and Dy-CP are shown in Supplementary Figure S3. Both samples contain a broad -OH stretching vibration absorption band around 3,200 cm−1. Compared with the free ligand, the shift of the characteristic peaks for the symmetric and asymmetric stretching of the carboxyl groups in Dy-CP suggests that H4m-dobdc reacts with Dy(III) site. The enhanced absorption band in the 3,300–3,700 cm−1 region in Dy-CP indicates the presence of H2O molecules directly coordinating to the Dy(III) sites and/or generating hydrogen bonds (Vitillo and Ricchiardi, 2017). Thermogravimetric analysis (TGA) curve reveals that the lattice H2O molecule can be stored in the pore of Dy-CP at room temperature and higher, with release occurring around 90–192°C (weight loss of 4.40%, calculated 4.37%, Supplementary Figure S4). Moreover, maintaining better stability in aqueous solution is a prerequisite for CPs to be used as proton-conducting materials (Yuan et al., 2018; Su et al., 2020; Yang et al., 2021). Powder X-ray diffraction (PXRD) measurement confirms the absence of any other phases in Dy-CP, with the experimental diffraction peak positions consistent with that simulated using crystal data (Figure 3). The synthesized samples were immersed in water and boiling water for several days. PXRD profiles of all water-soaked samples are in good agreement with the pristine one, indicating the retained crystallinity of Dy-CP in water (Figure 3). The good stability in water will provide new opportunity for proton conduction.

Magnetic properties

The direct-current (DC) magnetic susceptibilities experiments were carried out on polycrystalline samples of Dy-CP in an applied field of 1 kOe between 2 and 300 K (Figure 4). The χM T value at 300 K is 14.56 cm3 K mol−1, which is a little higher than the theoretical value for a free Dy(III) ion (14.17 cm3 K mol−1; g = 4/3, J = 15/2) (Cui et al., 2021). With a lowering of the temperature from 300 to 10 K, the
χM value decreases gradually, and then drops rapidly to the minima of 7.84 cm3 K mol$^{-1}$ at 2 K, which may be caused by the antiferromagnetic interaction between adjacent Dy(III) ions and/or the progressive depopulation of the excited Stark sublevels of Dy(III) ions (Wu et al., 2020). Considering the slightly longer Dy···Dy distance compared to the literature reports, antiferromagnetic interaction maybe not dominate in Dy-CP.

The field-dependent magnetization (M) of Dy-CP was also collected in the field (H) range of 0–70 kOe at 2.0, 3.0 and 5.0 K, respectively (Figure 4 inset). The M value of Dy-CP increases slowly as H increases, and a maximum of 5.84 Nβ is reached at 70 kOe and 2.0 K. The nonsaturation of M and the non-superimposed isothermal magnetization curves (M vs. T) suggest the presence of low-lying excited states and/or significant magnetic anisotropy in Dy-CP (Ge et al., 2019a; Cui et al., 2021).

Considering the magnetic anisotropy of Dy(III) ion, the alternating-current (ac) magnetic susceptibilities of Dy-CP were measured to explore the dynamic magnetic behavior. Under zero dc field, the out-of-phase (χ'') signals keep silent at high frequency of 707 Hz (Supplementary Figure S5). When an additional 1.5 kOe dc field is applied, the good-shaped peaks can be easily observed in the χ'' vs. T graph (Figure 5). The peak position of the $\chi''(T)$ signal shifts gradually to the high temperature component as the frequency increases, showing the obvious slow magnetic relaxation expected for SMMs (Chen et al., 2016). At 999 Hz, the maximum value of $\chi''(T)$ appears around 5.5 K. The relaxation time τ was extracted from the peaks of χ'' signals in Figure 5A. At the high temperature, τ is linearly dependent on T^{-1}, which can be fitted using Arrhenius law to afford the thermal energy barrier (U_{eff}/k_B) and the pre-exponential factor (τ_0) are 30.3 K and 6.82×10^{-7} s, respectively (Figure 6), confirming a field-induced SMM performance (10^{-6}–10^{-11} s) (Bera et al., 2018; Bera et al., 2019). At the lower temperature, the relationship between ln τ and T^{-1} deviates from the linearity of Arrhenius law, suggesting the intervention of other possible relaxation processes.

For further investigation of the magnetic dynamics, the frequency-dependent ac susceptibilities were also collected. $\chi''(F)$ peaks can be observed clearly in the high frequency region, as shown in Supplementary Figure S6. Slightly higher χ'' values in the low frequency region, especially at lower temperatures, suggest that other relaxation processes may exist (Gonzalez et al., 2021). Its Cole–Cole diagrams exhibit semicircular shape in the high frequency and irregular shape in the low frequency regions. Fitting the data between 2.3 and 5.5 K by the extended Debye functions (Gao et al., 2018) gives a value ranging from 0.05 to 0.16 for the relaxation in high frequency region (Supplementary Figure S7). Unfortunately, the fit for the low frequency region is unsuccessful due to limited frequency and/or temperature. The fit of τ takes into account the multiple relaxation processes reveals that the relaxation occurs via the temperature-dependent Orbach ($\tau_0^{-1}\exp (-U_{eff}/k_BT)$), Raman ($CT^m$), and direct ($AH^2T$) mechanisms (Figure 6 short dashed line). Parameters $A = T$...
The solid-state luminescence property of Dy-CP was measured at room temperature. When excited at 329 nm, Dy-CP exhibits two emission peaks at 481 and 475 nm, corresponding to hypersensitive \(\Psi_{6_{1/2}}-\Delta_5_{1/2} \) and \(\Psi_{6_{1/2}}-\Delta_3_{1/2} \) transitions of Dy(III) ion (Supplementary Figure S10). Notably, the disappearance of the broadband emission of the ligand implies an effective energy transfer from the ligand to the metal, and \(H_4m-dobdc \) ligand brings an efficient antenna effect (Zhong et al., 2020).

Conclusion

In summary, a two-dimensional coordination polymer \([\text{Dy(Hm-dobdc) (H}_2\text{O)}_2] \cdot H_2\text{O (Dy-CP)}\) containing abundant hydrogen bonds has been successfully prepared and structurally characterized. Magnetic investigation demonstrates that Dy-CP exhibits the field-induced SMM property with the energy barrier equal to 35.3 K. The impedance analysis of Dy-CP displays proton conductivity (7.77 × 10^-8 S cm^-1 at 353 K) at 30% RH. Furthermore, luminescence spectra reveal that \(H_4m-dobdc \) can sensitize characteristic luminescence of Dy(III) ion at 481 and 475 nm. This phenomenon suggests that introducing Dy(III) ion and functional carboxyl and phenolic hydroxyl groups is beneficial for the development of multifunctional coordination polymers possessing luminescence, proton conduction, and magnetism.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

Original idea was conceived by J-FC, H-PX, XL, and J-YG; experiments and data analysis were performed by J-FC, Y-LG, D-HW, H-TC, and Z-LM.; structure characterization was performed by J-FC, H-TC, H-PX, and J-YG; manuscript was drafted J-FC, H-PX, and J-YG. All authors have given approval to the manuscript.

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (No. LY20B010003), and the National Natural Science Foundation of China (No. 21801054).
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.974914/full#supplementary-material
Minguez Espallargas, G., and Coronado, E. (2018). Magnetic functionalities in MOFs: From the framework to the pore. Chem. Soc. Rev. 47 (2), 533–557. doi:10.1039/C7CS00653e

Parmar, V. S., Mills, D. P., and Winpenny, R. E. P. (2021). Mononuclear dysprosium alkoxide and aryloxide single-molecule magnets. Chem. Eur. J. 27 (28), 7625–7645. doi:10.1002/chem.2021000885

Pinkowicz, D., Southerton, H. I., Avendano, C., Prosvirin, A., Sanders, C., Wernsdorfer, W., et al. (2015). Cyanide single-molecule magnets exhibiting solvent dependent reversible “on” and “off” exchange bias behavior. J. Am. Chem. Soc. 137 (45), 14406–14422. doi:10.1021/jacs.5b09378

Ramaswamy, P., Wong, N. E., and Shimizu, G. K. (2014). MOFs as proton conductors—challenges and opportunities. Chem. Soc. Rev. 43 (16), 5913–5932. doi:10.1039/c4cs00093e

Sasaki, T., Miyata, M., and Sato, H. (2018). Helicity and topological chirality in hydrogen-bonded supermolecules characterized by advanced graph set analysis and solid-state vibrational circular dichroism spectroscopy. Cryst. Growth Des. 18 (8), 4621–4627. doi:10.1021/acs.cgd.8b00599

Song, X. J., Hu, Z. B., Li, M. M., Feng, X., Kong, M., Xue, X. M., et al. (2021). Reversible switching of single-molecule magnetic behaviour by desorption/adsorption of solvent ligand in a new Dy(III)-Based metal organic framework. Front. Chem. 9, 714851. doi:10.3389/fchem.2021.714851

Su, J., He, W., Li, X.-M., Sun, L., Wang, H.-Y., Lan, Y.-Q., et al. (2020). High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter 2 (3), 711–722. doi:10.1016/j.matt.2019.12.018

Su, J., Yuan, S., Li, J., Wang, H. Y., Ge, J. Y., Drake, H. F., et al. (2021). Rare-earth metal tetra-thiafulvalene carboxylate frameworks as redox-switchable single-molecule magnets. Chem. Eur. J. 27 (2), 622–627. doi:10.1002/chem.202004883

Tang, Q., Liu, Y., Liu, S., He, D., Miao, J., Wang, X., et al. (2014). High proton conduction at above 100 °C mediated by hydrogen bonding in a lanthanide metal-organic framework. J. Am. Chem. Soc. 136 (53), 12444–12449. doi:10.1021/ja5068855

Vitillo, G. L., and Racchiardi, G. (2017). Effect of pore size, solvation, and defectivity on the perturbation of adsorbates in MOFs: The paradigmatic Mg(dolnycd) case study. J. Phys. Chem. C 121 (41), 22762–22772. doi:10.1021/acs.jpcc.7b06252

Wang, F. M., Hu, B. X., Lustig, W. P., Zhou, L., Xiang, J., Chen, L. Z., et al. (2021). Three robust blue-emitting anionic metal-organic frameworks with high stability and good proton conductivities. Inorg. Chem. 60 (23), 17926–17932. doi:10.1021/acs.inorgchem.1c02499

Wang, H.-Y., Cui, L., Xie, J.-Z., Leong, C. F., D’Alessandro, D. M., and Zuo, J.-L. (2017). Functional coordination polymers based on redox-active tetra-thiafulvalene and its derivatives. Coord. Chem. Rev. 345, 342–361. doi:10.1016/j.ccr.2016.10.011

Wang, L., Zhu, L., Yin, P., Fu, W., Chen, J., Hao, J., et al. (2009). From 0D dimer to 2D network-supramolecular assembly of organic derivatized polyoxometalates with remote hydroxyl via hydrogen bonding. Inorg. Chem. 48 (19), 9222–9235. doi:10.1021/ic900985w

Woodruff, D. N., Winpenny, R. E., and Layfield, R. A. (2013). Lanthanide single-molecule magnets. Chem. Rev. 113 (7), 5110–5148. doi:10.1021/cr400018q

Wu, Y., Zhou, Y., Cao, S., Cen, P., Zhang, Y. Q., Yang, J., et al. (2020). Lanthanide metal-organic frameworks assembled from unexplored imidazole-carboxylic acid structure and field-induced two-step magnetic relaxation. Inorg. Chem. 59 (17), 11930–11934. doi:10.1021/acs.inorgchem.0c01185

Yaghi, O. M., O’Keefe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., and Kim, J. (2003). Reticular synthesis and the design of new materials. Nature 423 (6941), 705–714. doi:10.1038/nature01630

Yamada, T., Otsuji, K., Makriu, R., and Kitagawa, H. (2013). Designer coordination polymers: Dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42 (16), 6655–6669. doi:10.1039/c2cs06028a

Yang, S. L., Li, G., Guo, M. Y., Liu, W. S., Bu, R., and Gao, E. Q. (2021). Positive cooperative protonation of a metal-organic framework: pH–fluorescence responsiveness and proton conduction. J. Am. Chem. Soc. 143 (23), 8838–8848. doi:10.1021/jacs.1c05342

Ye, Y., Gong, L., Xiang, S., Zhang, Z., and Chen, B. (2020). Metal-organic frameworks as a versatile platform for proton conductors. Adv. Mat. 32 (21), e1907909. doi:10.1002/adma.201907909

Yuan, N., Zhang, X., and Wang, L. (2020). The marriage of metal-organic frameworks and silica materials for advanced applications. Coord. Chem. Rev. 421, 213442. doi:10.1016/j.ccr.2020.213442

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., et al. (2018). Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mat. 30 (37), e1704303. doi:10.1002/adma.201704303

Zhang, X., Vieru, V., Feng, X., Liu, J. L., Zhang, Z., Na, R., et al. (2015). Influence of guest exchange on the magnetization dynamics of dilanthanide single-molecule-magnet nodes within a metal-organic framework. Angew. Chem. Int. Ed. 54 (34), 9861–9865. doi:10.1002/anie.201503636

Zhong, L., Chen, W. B., Li, X. H., OuYang, Z. J., Yang, M., Zhang, Y. Q., et al. (2020). Four disnuclear and one-dimensional-chain dysprosium and terbium complexes based on 2-Hydroxy-3-methoxybenzoic acid. Structures, fluorescence, single-molecule-magnet, and ab initio investigation. Inorg. Chem. 59 (7), 4414–4423. doi:10.1021/acs.inorgchem.9b03555

Zhong, X., Hu, J.-J., Yao, S.-L., Zhang, R.-J., Wang, J.-J., Cai, D.-G., et al. (2022). Gd(III)-Based inorganic polymers, metal-organic frameworks and coordination polymers for magnetic refrigeration. CrystEngComm 24 (13), 2370–2382. doi:10.1039/dic01633d

Zhou, Y., Yu, F., Su, J., Kurmoo, M., and Zuo, J. L. (2020). Tuning electrical- and photo-conductivity by cation exchange within a redox-active tetra-thiafulvalene-based metal-organic framework. Angew. Chem. Int. Ed. 59 (42), 18763–18767. doi:10.1002/anie.202008941

Zhu, M.-C., Huang, Y.-Y., Ma, J.-P., Hu, S.-M., Wang, Y., Guo, J., et al. (2018). Coordination polymers based on organic–inorganic hybrid rigid rod comprising a backbone of anderson-evans POMs. Cryst. Growth Des. 19 (2), 925–931. doi:10.1021/acs.cgd.8b01467

Zhu, Z., Zhao, C., Feng, T., Liu, X., Ying, X., Li, X. L., et al. (2021). Air-stable chiral single-molecule magnets with record anisotropy barrier exceeding 1800 K. J. Am. Chem. Soc. 143 (27), 10077–10082. doi:10.1021/jacs.1c05279