Cut ideals of K_4-minor free graphs
are generated by quadrics.

Alexander Engström
Department of Mathematics
UC Berkeley
alex@math.berkeley.edu

February 25, 2010

Abstract

Cut ideals are used in algebraic statistics to study statistical models defined by graphs. Intuitively, topological restrictions on the graphs should imply structural statements about the corresponding cut ideals. Several theorems and many computer calculations support that.

Sturmfels and Sullivant conjectured that the cut ideal is generated by quadrics if and only if the graph is free of K_4-minors. Parts of the conjecture has been resolved by Brennan and Chen, and later by Nagel and Petrović.

We prove the full conjecture by introducing a new type of toric fiber product theorem.

1 Introduction

The theory of cut ideals was initiated by Sturmfels and Sullivant [7]. To every graph G they associated a toric ideal I_G called the cut ideal of G. From theorems about similar constructions, and computer calculations, it is reasonable to believe that topological properties of G should be reflected in algebraic properties of I_G.

Theorem (Conjectured by Sturmfels and Sullivant [7]) The cut ideal is generated by quadrics if and only if G is free of K_4 minors.
Partial results on the conjecture was proved by Brennan and Chen [1], and then by Nagel and Petrović [6].

The conjecture follows as a corollary of Theorem 3.6, which is a fiber product type theorem. In the same way as the fiber product theorems in [2] and [7] could be generalized in [8], we will present a more general form of Theorem 3.6 in [4]. Methods from this paper were used on ideals of graph homomorphisms in Engström and Norén’s paper [5].

2 Cut ideals

A cut of a graph G is a partition of its vertex set into two sets. An edge is in the cut if its vertices belongs to different parts. As defined in [7]:

$$\phi_G : \mathbb{K}[q] \to \mathbb{K}[s,t], \quad q_{A|B} \mapsto \prod_{ij \in A|B} s_{ij} \cdot \prod_{ij \notin A|B} t_{ij},$$

where $A \subseteq V(G)$, and $A \mid B$ and $B \mid A$ is the same cut. The cut ideal I_G is the kernel of ϕ_G. The largest degree of a minimal generator of I_G is $\mu(G)$. By Corollary 3.3 of [7] the contraction of an edge or deletion of a vertex cannot increase μ. In Theorem 2.1 of [7] it is proved that if G is glued together from two graphs G_1 and G_2 over a complete graph with zero, one, or two vertices, then the cut ideal I_G is generated by lifts of generators of I_{G_1} and I_{G_2}; and quadratic binomials for sorting cuts. The main theorem of this note is a variation on Theorem 2.1 of [7] when gluing over an edge.

3 Decompositions of graphs and ideals

The induced subgraph of G on S is denoted $G[S]$.

Definition 3.1 Let u, v be two vertices of G and $A_1 \mid B_1, A_2 \mid B_2, \ldots, A_n \mid B_n$ a list of cuts. The height, $h_{u,v}(q)$, of

$$q = q_{A_1|B_1} q_{A_2|B_2} \cdots q_{A_n|B_n}$$

with respect to u and v is the number of cuts in the list with u and v in different parts.

If there is an edge between u and v in G then $h_{u,v}(q)$ is the degree of s_{uv} in $\phi_G(q)$. Another way to define the height of q with respect to u and v is as the degree of s_{uv} in $\phi_{G+uv}(q)$, and that is a good way to think of it.

Definition 3.2 A set of generators

$$q_{A_1|B_1} q_{A_2|B_2} \cdots q_{A_n|B_n}$$

of I_G is slow-varying with respect to the vertices u and v of G if

$$\left| h_{u,v}(q_{A_1|B_1} \cdots q_{A_n|B_n}) - h_{u,v}(q'_{A_1|B_1} \cdots q'_{A_n|B_n}) \right| \leq 2$$

for all i.

2
Lemma 3.3 If $w_1 - w_2 - \cdots - w_k$ is a path in G then

$$h_{w_1, w_k}(q_{A|B}) \equiv \sum_{i=1}^{k-1} (s_{w_i, w_{i+1}} - \text{degree of } \phi_G(q_{A|B}))$$

modulo 2.

PROOF: A walk on the path from w_1 to w_k crosses the cut an odd number of times if and only if w_1 and w_k are in different parts. \qed

Lemma 3.4 If there is a path in G from u to v and $\phi_G(q) = \phi_G(q')$ then $h_{u,v}(q) \equiv h_{u,v}(q')$ modulo 2.

PROOF: Use Lemma 3.3. \qed

Proposition 3.5 Any set of generators of I_G validating $\mu(G) \leq 2$, is slow-varying with respect to any vertex pair.

PROOF: Clear. \qed

Theorem 3.6 Let G be a graph with two special non-adjacent vertices u and v. Assume that G almost can be decomposed into a left and right part: There are $L, R \subseteq V(G)$ such that $L \cup R = V(G)$, $L \cap R = \{u, v\}$, and $E(G) = E(G[L]) \cup E(G[R])$.

If there is a path from u to v both in $G[L]$ and in $G[R]$, and there are slow-varying generators of both $I_{G[L]}$ and $I_{G[R]}$ with respect to u and v, then

$$\mu(G) = \max\{\mu(G[L]), \mu(G[R]), \mu(G[L] + uv), \mu(G[R] + uv)\}.$$

The cut ideal of G is generated by a union of

(i) lifts of generators of $I_{G[L]+uv}$,

(ii) lifts of generators of $I_{G[R]+uv}$,

(iii) joins of generators $q_1 - q_2$ of $I_{G[L]}$ and $q_3 - q_4$ of $I_{G[R]}$ such that $|h_{u,v}(q_1) - h_{u,v}(q_2)| = |h_{u,v}(q_3) - h_{u,v}(q_4)| = 2$,

(iv) quadratic binomials to reorder with.

PROOF: The reader who is not familiar with the proof of Theorem 2.1 in \cite{7} should study that first, since this proof builds on a modification of its basic structure.

First we prove the \leq case.

We will prove the theorem by an explicit construction of generators for I_G. Let

$$q = \prod_{i=1}^{n} q_{A_i|B_i} \quad \text{and} \quad q' = \prod_{i=1}^{n} q_{A_i'|B_i'}$$
be two elements of $\mathbb{K}[A|B \mid A \sqcup B = V(G)]$ with $\phi_G(q) = \phi_G(q')$. If we for any such q and q' can construct a sequence of moves from q to q', then we can generate I_G. A move from q_1 to q_2 is a composition of a q_3 with a binomial generator $q_4 - q_5$ such that

$$q_1 - q_2 = q_3(q_4 - q_5).$$

We can assume that $h_{u,v}(q) \geq h_{u,v}(q')$

Main idea: To construct the sequence from q to q' we use sequences from q_L to q'_L and from q_R to q'_R. (q_L is q induced on L and similar for q_R.) If we simply took a sequence from q_L to q'_L given by $I_{G[L]}$ and a corresponding one on R and tried to glue them together it would sometimes not work on the vertex pair u and v. The thing that goes wrong is that the number of cuts with u and v in different parts does not need to be the same. That is, the height $h_{u,v}$ could be different on the left and the right side. But we know that the height is the same for q_L and q_R in the begining of the sequence, and for q'_L and q'_R in the end of the sequence.

In the sequence q_L,\ldots,q'_L the number of cuts with u and v in different parts can look like the fat gray line in Figure 1. If it changes, it changes by an even number by Lemma 3.3. It never changes by more than 2 since $I_{G[L]}$ is slow-varying. Since the height of the sequence q_R,\ldots,q'_R does not have to have the same shape as the grey line, we need to normalize the sequences.

How to normalize the sequence q_L,\ldots,q'_L: We do this as described in Figure 1. Let $q''_{L,h}$ be the last element in the sequence with height h for $h = h_{u,v}(q_L), h_{u,v}(q_L) - 2,\ldots,h_{u,v}(q'_L) + 2, h_{u,v}(q'_L)$. Let $q_{L,h}$ be the element after $q''_{L,h+2}$ in the sequence for $h = h_{u,v}(q_L) - 2,\ldots,h_{u,v}(q'_L) + 2, h_{u,v}(q'_L)$. And let $q_{L,h}(q_L) = q_L$. In our normalized sequence we still go from $q''_{L,h}$ to $q_{L,h-2}$ by using a generator of $I_{G[L]}$. But from $q_{L,h}$ to $q''_{L,h}$ we build up the sequence by using generators of $I_{G[L]+uv}$, this is possible since the heights of $q_{L,h}$ and $q''_{L,h}$ are the same. For our normalized sequence the height is never increasing.
Let F be assumed to have an order such that the extension is needed to allow binomial generators of different degree from F to F'.

Thus we need four kinds of moves:

- **(F₁)** all from $I_{G[L]+uv}$,
- **(F₂)** all from $I_{G[R]+uv}$,
- **(F₃)** those from $I_{G[L]}$ and $I_{G[R]}$ that change height by 2,
- **(F₄)** reorderings to match cuts.

Let F_L, F_{L+uv}, F_R, and F_{R+uv} be the binomial generating sets of $I_{G[L]}$, $I_{G[L]+uv}$, $I_{G[R]}$, and $I_{G[R]+uv}$. If the maximal degree of a binomial in F_L or F_R is M then extend F_L to

$$
\tilde{F}_L = \{ q_1(q_2 - q_3) \mid \text{degree of } q_1q_2 \leq M \text{ and } q_2 - q_3 \in F_L \}
$$

and F_R to

$$
\tilde{F}_R = \{ q_1(q_2 - q_3) \mid \text{degree of } q_1q_2 \leq M \text{ and } q_2 - q_3 \in F_R \}.
$$

The extension is needed to allow binomial generators of different degree from the left and right side to be joined when the height decreases by two. In the definitions of $F_1, F_2,$ and F_3, any product of the type

$$
\prod_{i=1}^{m} q_{C_i | D_i}
$$

is assumed to have an order such that

$$
h_{u,v}(q_{C_1 | D_1}) \geq \cdots \geq h_{u,v}(q_{C_m | D_m}).
$$

Let

- **(F₁)**

\[
F_1 = \left\{ \prod_{i=1}^{m} q_{C_i | D_i} - \prod_{i=1}^{m} q_{C'_i | D'_i} \in \mathbb{K}[q] \mid \prod_{i=1}^{m} q_{C_i \cap L | D_i \cap L} - \prod_{i=1}^{m} q_{C_i \cap L | D'_i \cap L} \in F_{L+uv} \right. \\
\left. C_i \cap R = C'_i \cap R \text{ for } i = 1, \ldots, m \right\}
\]

- **(F₂)**

\[
F_2 = \left\{ \prod_{i=1}^{m} q_{C_i | D_i} - \prod_{i=1}^{m} q_{C'_i | D'_i} \in \mathbb{K}[q] \mid \prod_{i=1}^{m} q_{C_i \cap R | D_i \cap R} - \prod_{i=1}^{m} q_{C_i \cap R | D'_i \cap R} \in F_{R+uv} \right. \\
\left. C_i \cap L = C'_i \cap L \text{ for } i = 1, \ldots, m \right\}
\]

- **(F₃)**

\[
F_3 = \left\{ \prod_{i=1}^{m} q_{C_i | D_i} - \prod_{i=1}^{m} q_{C'_i | D'_i} \in \mathbb{K}[q] \mid \prod_{i=1}^{m} q_{C_i \cap L | D_i \cap L} - \prod_{i=1}^{m} q_{C_i \cap L | D'_i \cap L} \in \tilde{F}_L \\
\prod_{i=1}^{m} q_{C_i \cap R | D_i \cap R} - \prod_{i=1}^{m} q_{C_i \cap R | D'_i \cap R} \in \tilde{F}_R \\
h_{u,v}(\prod_{i=1}^{m} q_{C_i | D_i}) \neq h_{u,v}(\prod_{i=1}^{m} q_{C_i | D_i}) \right. \\
\left. C_1 \cap L = C'_1 \cap L, \quad C_2 \cap L = C'_2 \cap L \\
C_1 \cap R = C'_1 \cap R, \quad C_2 \cap R = C'_2 \cap R \right\}
\]

- **(F₄)**

\[
F_4 = \left\{ \prod_{i=1}^{2} q_{C_i | D_i} - \prod_{i=1}^{2} q_{C'_i | D'_i} \in \mathbb{K}[q] \mid C_1 \cap L = C'_1 \cap L, \quad C_2 \cap L = C'_2 \cap L \\
C_1 \cap R = C'_1 \cap R, \quad C_2 \cap R = C'_2 \cap R \right\}.
\]
We have that $F = F_1 \cup F_2 \cup F_3 \cup F_4$ is a generating set of I_G. From that we get:

$$
\mu(G) \leq \max\{2, \mu(G[L]), \mu(G[R]), \mu(G[L] + uv), \mu(G[R] + uv)\}
$$

In $G[L]$ there is an induced path from u to v with more than one edge. For the path with two edges we have $\mu = 2$ and thus by contraction $\mu \geq 2$ for any path, which shows that $\mu(G[L]) \geq 2$. The 2 can be removed to get:

$$
\mu(G) \leq \max\{\mu(G[L]), \mu(G[R]), \mu(G[L] + uv), \mu(G[R] + uv)\}
$$

We are left with proving the \geq inequality. Removing vertices do not increase μ, so $\mu(G) \geq \mu(G[L]), \mu(G[R])$. Contracting edges also do not increase μ. Start with G and repeatedly contract any edge uv if $w \notin L$. Contractions will be possible until a graph $G[L \cup R'] + uv$ is reached where R' are the vertices of $G[R]$ not in the same component as u and v. We get the edge uv from the path between u and v in $G[R]$. Removing R' we get $\mu(G) \geq \mu(G[L \cup R'] + uv) \geq \mu(G[L] + uv)$. In the same way we get that $\mu(G) \geq \mu(G[R] + uv)$ and can conclude that

$$
\mu(G) = \max\{\mu(G[L]), \mu(G[R]), \mu(G[L] + uv), \mu(G[R] + uv)\}
$$

since $\mu(G) \geq \mu(G[L]), \mu(G[R]), \mu(G[L] + uv), \mu(G[R] + uv)$.

\[\square\]

Corollary 3.7 Let H_1 and H_2 be two graphs on different vertex sets satisfying:

- u_1, v_1 are two distinct non-adjacent vertices of H_1,
- u_2, v_2 are two distinct non-adjacent vertices of H_2,
- H_1 and H_2 are connected,
- $\mu(H_1), \mu(H_2), \mu(H_1 + u_1v_1), \mu(H_2 + u_2v_2) \leq 2$.

Then $\mu \leq 2$ for the graph we get by gluing $u_1 = u_2$ and $v_1 = v_2$ in $H_1 \cup H_2$.

PROOF: Insert Proposition 3.5 into Theorem 3.6 \[\square\]

For a definition and basic material on series-parallel graphs, in particular on the gluing constructions, we refer to [3].

Corollary 3.8 (Conjecture 3.5 of [7]) The cut ideal is generated by quadrics if and only if G is free of K_4 minors.

PROOF: We prove that if G is series-parallel then $\mu(G) \leq 2$. The other direction was proved in [7]. We only need to prove it for connected series-parallel graphs.

The proof is by induction on the number of vertices of G. If there are less than four vertices then $\mu(G) \leq 2$ by explicit calculations in [7].

Now assume that G has at least four vertices. If G is constructed by two graphs H_1 and H_2 put in series and glued at one point, then $\mu(G) = \max\{\mu(H_1), \mu(H_2)\} \leq 2$ by the fiber construction in [7].
If G is constructed by two graphs H_1 and H_2 glued parallel together in two points we have two cases.

The first case: However subgraphs H_1 and H_2 are chosen to be glued together in parallel to create G, one of them will only be an edge.

Assume that H_2 is only the edge uv, and that uv is not in H_1. If H_1 came from a parallel gluing of H'_1 and H''_1 at u and v, then G could be parallel constructed from H'_1 and $H''_1 + uv$ and none of them is only an edge, which is a contradiction. So H_1 is from a series gluing at some vertex $w \notin \{u, v\}$. Both graphs glued together to get H_1 cannot be only edges, since then G is a triangle, and we assumed G to have more than 3 vertices. Thus we can assume that the part of H_1 between v and w have more than two vertices. But then G can be formed as a parallel construction glued at v and w where none of the parts is only an edge, and that situation is the second case.

The second case: The graph G can be created by a parallel construction at u, v of two graphs H_1 and H_2 and both of them have more than two vertices. If uv is an edge of G then $\mu(G) = \max\{\mu(H_1 + uv), \mu(H_2 + uv)\} \leq 2$ since H_1 and H_2 are series-parallel. If there is no edge between u and v in G we use that $H_1, H_2, H_1 + uv, H_2 + uv$ are series-parallel and Corollary 3.7 to get that $\mu(G) \leq 2$. □

References

[1] J. Brennan; G. Chen. Toric geometry of series-parallel graphs. *SIAM J. Discrete Math.* 23 (2009), no. 2, 754–764.

[2] M. Develin; S. Sullivant. Markov bases of binary graph models. *Ann. Comb.* 7 (2003), no. 4, 441–466.

[3] R. Diestel, *Graph theory.* Second edition. Graduate Texts in Mathematics, 173. *Springer-Verlag, New York*, 2000. 313 pp.

[4] A. Engström; T. Kahle; S. Sullivant. Manuscript, 2010.

[5] A. Engström; P. Norén. Ideals of Graph Homomorphisms. [arXiv:1002.4679](http://arxiv.org/abs/1002.4679) 2010. 36 pp.

[6] U. Nagel; S. Petrović Properties of cut ideals associated to ring graphs. *J. Commut. Algebra* 1 (2009), no. 3, 547–565.

[7] B. Sturmfels, S. Sullivant, Toric Geometry of Cuts and Splits, *Michigan Math. J.* 57 (2008) 689–709.

[8] S. Sullivant, Toric fiber products. *J. Algebra* 316 (2007), no. 2, 560–577.