Genetic association between inflammatory genes (IL-1α, CD14, LGALS2, PSMA6) and risk of ischemic stroke: A meta-analysis

Shubham Misra, Pradeep Kumar, Amit Kumar, Ram Sagar, Kamalesh Chakravarty, Kameshwar Prasad *

Department of Neurology, All India Institute of Medical Sciences, New Delhi, India

ABSTRACT

Background: Sequence variations in genes involved in inflammatory system are known to contribute to the risk of cerebrovascular diseases (CVD) including stroke. Very few number of studies have been published in the context of the association between Interleukin-1α (IL-1α), CD14 cell surface glycoprotein (CD14), Galectin-2-encoding gene (LGALS2) and proteasome subunit type 6 (PSMA6) gene polymorphisms with susceptibility to ischemic stroke (IS).

Objective: The present meta-analysis aimed to provide a comprehensive account of the association between IL-1α (-C889T and -C511T), CD14 (-C159T), LGALS2 (-C3279T) and PSMA6 (-C8G) gene polymorphisms and susceptibility to IS.

Methods: A literature search for eligible genetic studies published before August 31, 2015 was conducted in the PubMed, Medline, EMBASE, OVID, and Google Scholar databases. Fixed or random effects models were used to estimate the Pooled Odds ratio (OR) and 95% confidence interval (CI) using RevMan 5.3 software.

Results: Total 21 studies were included in our meta-analysis. No significant association was observed between IL-1α (-C889T) [OR = 1.18, 95% CI: 0.67–2.08, P = 0.58], IL-1α (-C511T) [OR = 0.95, 95% CI: 0.66–1.37, P = 0.77], LGALS2 (-C3279T) [OR = 0.29, 95% CI: 0.02–4.26, P = 0.37] and CD14 (-C260T) [OR = 0.93, 95% CI: 0.77–1.11, P = 0.42] gene polymorphisms and risk of IS. However, protective level of association was observed between PSMA6 (-C8G) gene polymorphism and susceptibility to IS under the recessive model [OR = 0.25, 95% CI: 0.08–0.72, P = 0.01].

Conclusion: Our meta-analysis shows that IL-1α (-C889T and -C511T), CD14 (-C159T), LGALS2 (-C3279T) and gene polymorphisms are not significantly associated with the risk of IS while PSMA6 (-C8G) gene polymorphism may play a protective role with the susceptibility of IS. Further prospective large epidemiological studies are needed to confirm these findings in different populations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Inflammatory gene Polymorphisms Cytokines Ischemic stroke Cerebral infarction Meta-analysis
1. Introduction

Stroke is among the leading causes of death in the world and a common cause of disability (Feigin et al., 2009; Bevan and Markus, 2011). Its incidence is rising with increasing life expectancy, although about 20% of strokes occur before the age of 65. Ischemic stroke (IS) is a heterogeneous multi-factorial, polygenic, complex disease resulting from the combination of vascular, environmental and genetic factors (Kim et al., 2012). Inflammation and genetics are both prominent mechanisms in the pathogenesis of ischemic stroke (Jin et al., 2010). Candidate genes, stroke susceptible alleles and their association with stroke pathogenesis have been intensively studied in the last few years (Carr et al., 2002; Hansson, 2005; Takashima et al., 2007).

Numerous epidemiological studies in twins and families have revealed that the genetic factors in addition to other risk factors are involved in the predisposition of stroke. Recent findings have suggested that variations in the pro and anti-inflammatory cytokine genes may be associated with the risk of stroke. The genes encoding interleukin-1α (IL-1α), CD14 cell surface glycoprotein (CD14), galectin-2-encoding gene (LGALS2) and proteasome subunit type 6 (PSMA6), all of which are involved in the inflammatory mechanisms, were reported to be involved in the pathogenesis of cerebrovascular diseases (Takashima et al., 2007; Ozaki et al., 2006; Um et al., 2003; Wright et al., 1990; DeGraba, 2004).

CD14 is a receptor for bacterial lipopolysaccharide (LPS, endotoxin), and it mediates cell activation by LPS, while IL-1α acts as a pro-inflammatory cytokine which contributes to atherogenesis. Increased activity of PSMA6 activates the nuclear factor KB (NF-KB). (NF-KB) is a central transcription factor that regulates the expression of the genes of adhesion molecules and cytokines which are involved in atherogenesis. LGALS2 gene C3279T is encoded by galectin-2 which is thought to reduce the transcriptional level of galectin-2, and also play a role in protection against myocardial infarction. The single nucleotide polymorphisms (SNPs) present in the genes CD14 (-C260T), IL-1α (-C511T, -C889T), LGALS2 (-C3279T) and PSMA6 (-C8G) respectively, were found to be associated with increased risk of cardiovascular diseases in different populations, but limited studies have been published so far examining these SNPs and their association with susceptibility for IS.

Since a single study may not prove to be sufficient in providing reliable conclusions because of the presence of small amounts of subjects and weight age of statistical and clinical heterogeneities, therefore, we carried out this meta-analysis, which combines the eligible published literatures based on quantitative synthesis to obtain a more convincing assessment of the association between these inflammatory gene polymorphisms and risk of IS.

2. Materials and methods

2.1. Identification of relevant studies

A literature search for eligible candidate gene studies published before August 31, 2015 was conducted in the PubMed, Medline, EMBASE, OVID and Google Scholar databases. The following combinations of main keywords were used: ‘Interleukin-1 alpha’ or ‘IL-1α’ or ‘IL1F1’ and ‘CD14 cell surface glycoprotein’ or ‘CD14’ and ‘Galectin-2-encoding gene’ or ‘LGALS2’ or ‘HL14’ and ‘Proteasome subunit type 6’ or ‘PSMA6’ and ‘Ischemic stroke’ or ‘cerebral infarction’ or ‘IS’ and ‘Genetic polymorphism’ or ‘single nucleotide polymorphisms’ or ‘SNP’). Fixed or random effects models were used to estimate the Pooled Odds ratio (OR) and 95% confidence interval (CI). Begg’s funnel plot was used to assess the publication bias in the studies. Meta-analysis was carried out by using RevMan 5.3 software.

3. Inclusion and exclusion criteria

To be included in the analysis, eligible studies have to meet the following criteria: (1) case-control studies on the association between the IL-1α (-C889T or -C511T); CD14 (-C260T); LGALS2 (-C3279T); PSMA6 (-C8G) genetic polymorphisms and susceptibility to IS; (2) all patients in the candidate studies meet the diagnostic criteria for IS; (3) studies with sufficient available data to calculate ORs with corresponding 95% CIs. The major reasons for excluding studies were: (1) not a case-control study; (2) duplicate publications with overlapping subjects from the same study; and (3) no available data reported. This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline (Moher et al., 2009). No author was contacted regarding the missing information that was required for the meta-analysis to avoid the risk of retrieval bias.

4. Data extraction

According to the PRISMA guidelines, two investigators independently SM and PK checked each full-text report for eligibility and extracted the following data from eligible studies: surname of first author, year of publication, country of origin, ethnicity, definition and number of case and control, age, sex ratio, genotyping method and genotype frequency, etc. Disagreements were solved by discussion between all authors until consensus was reached.

5. Quality assessment

We also evaluated the methodological quality of every study which is included in our analysis using a quality assessment scale developed for genetic association studies (Attia et al., 2003) which was modified by us to increase the relevance of our study. This scale took into account both traditional epidemiological considerations and genetic issues. The scores ranged from 0 (worst) to 16 (best). Details of the scale are presented in Table 1. Two authors independently assessed the quality of included studies. Discrepancies over quality scores were resolved by discussion among all the authors and subsequent consensus was reached.

6. Statistical analysis

Genotype distributions in the controls were tested for confirmation to Hardy–Weinberg equilibrium (HWE) using the chi-square test. The association between the inflammatory genetic polymorphisms and susceptibility to IS was assessed by the pooled OR with their corresponding 95% CI under two genetic models, including dominant and recessive models. Taking into consideration possible heterogeneity between-study, a statistical test for heterogeneity was first conducted using Cochran’s Q statistic and I² metric (Higgins et al., 2003). We considered the presence of significant heterogeneity at the 10% level of significance and values of I² exceeding 50% as an indicator of significant heterogeneity. When no heterogeneity was
found with $P < 0.10$ or $I^2 > 50\%$, a fixed-effect model was used to estimate the pooled ORs and 95% CIs. Otherwise, a random-effect model was applied. Begg’s funnel plot was used to assess the potential for publication bias.

7. Results

A total of 99 published articles were identified by using the prespecified search strategy. Fig. 1 depicts a flow chart of both the retrieved and excluded studies with their reasons for exclusion. Out of 99 retrieved articles, 42 studies were excluded due to its irrelevancy to our interest and 9 studies were excluded as they were in duplicate records. Keeping the inclusion criteria in mind, 21 case–control studies were included in our meta-analysis. Studies were carried out in two major ethnic populations; 9 studies were in Asian and the other 11 studies were in Caucasian population. The publication years of the included studies ranged from 2000 to 2013. 17 studies in this meta-analysis had controls in HWE. The quality scores of all included studies were moderately high. Out of 21 studies, 8 studies had hospital based and 13 studies had population based source of controls. Begg’s funnel plot suggested significant publication bias in the studies (Fig. 3). Table 2 gives a summary of the characteristics and methodological quality of all the included studies.

7.1. IL-1α gene polymorphism with the susceptibility of IS

For C889T, six case–control studies with a total of 2809 IS patients and 2854 controls showed a non-significant association with susceptibility to IS under dominant [TT + TC vs. CC: OR = 1.18, 95% CI: 0.67–2.08, $P = 0.58$], and recessive models [TT vs. CC + TC: OR = 1.15, 95% CI: 0.82–1.62, $P = 0.43$] (Fig. 2).

For C511T, 10 case–control studies with a total of 2718 IS patients and 2748 controls showed a non-significant association with susceptibility to IS under dominant [TT + TC vs. CC: OR = 0.95, 95% CI: 0.66–1.37, $P = 0.77$] and recessive models [TT vs. CC + TC: OR = 1.17, 95% CI: 0.88–1.54, $P = 0.28$] (Fig. 2).

![Fig. 1. Flow diagram of the selection of studies and specific reasons for exclusion from the present meta-analysis.](image-url)
Table 2
Characteristic of studies included in the meta-analysis of the association of TNF-α gene polymorphism with the risk of ischemic stroke.

S. no	Author, year	Origin	Ethnicity	Sample size	Gene polymorphism	Variant	PCR-method	Matching criteria	M/F Case	M/F Control	M/F Case	M/F Control	Age (years)	Source of control	HWE	Quality score
1	Banerjee I, 2008 (Banerjee et al., 2008)	India	Asian	112/212	IL-1α PSMA6	C889T	8C/G PCR-RFLP	Age–sex and geography	72/40	58.6 ± 14.2	143/69	57.4 ± 8.8	59 (51–64)	Yes	10	
2	Olsson S, 2012 (Olsson et al., 2012)	Sweden	Caucasian	844/668	IL-1α C511T	C889T	NA PCR-RFLP	Age–sex	554/290	59 (50–64)	392/276	63.88 ± 7.36	Yes	PB 12		
3	Li N, 2010 (Li et al., 2010)	China	Asian	371/371	IL-1α C511T	C889T	PCR-RFLP NA	NA	230/141	62.87 ± 7.37	247/124	62.90 ± 9.43	Yes	HB 13		
4	Zhao J, 2012 (Zao et al., 2012)	China	Asian	682/598	IL-1α C889T	C889T	PCR-RFLP Age–sex	336/262	61.84 ± 10.12	291/149	66.6 ± 8.4	Yes	HB 13			
5	Zhang Z, 2013 (Zhang et al., 2013)	China	Asian	440/486	IL-1α C889T	C889T	PCR-RFLP Age–sex	247/124	63.88 ± 7.36	314/172	60.1 ± 5.2	Yes	HB 13			
6	Zee RYL, 2008 (Zee et al., 2008)	USA	Caucasian	258/258	IL-1α C511T	C511T	PCR-RFLP Geography	62.1 ± 14.5	61.0 ± 14.5	56.9 ± 13.1	57.4 ± 10.0	63.2 ± 12.4	Yes	PB 11		
7	Um JY, 2003 (Um et al., 2003)	Korea	Asian	360/519	IL-1α C889T	C889T	PCR-RFLP Age–sex	177/183	62.2 ± 9.8	250/269	66.6 ± 8.4	60.1 ± 14.5	Yes	HB 10		
8	Lai J, 2006	China	Asian	112/95	IL-1α C511T	C511T	PCR-RFLP Age–sex	111/80	57.4 ± 10.0	66/56	66.6 ± 8.4	60.1 ± 14.5	Yes	PB 11		
9	Dziedzic T, 2005 (a)	Poland	Caucasian	122/227	IL-1α C511T	C511T	PCR-RFLP Age–sex	61/61	62.6 ± 8.4	91/130	60.2 ± 13.0	35.95 ± 8.12	Yes	PB 12		
10	Dziedzic T, 2005 (b)	Poland	Caucasian	221/219	IL-1α C511T	C511T	PCR-RFLP Age–sex	51/64	60.2 ± 13.0	94/125	34.7 ± 6.9	35 ± 7	Yes	PB 12		
11	Rubattu S, 2005	Italy	Caucasian	115/180	IL-1α C511T	C511T	PCR-RFLP Age–sex	98/82	65.6 ± 8.4	65/65	65.6 ± 8.4	35 ± 7	Yes	PB 15		
12	Lacoviello L, 2005	Italy	Caucasian	134/134	IL-1α C511T	C511T	DNA sequencing Age–sex	65/65	65.6 ± 8.4	65/65	65.6 ± 8.4	35 ± 7	Yes	PB 12		
13	Seripa D, 2003	Italy	Caucasian	101/110	IL-1α C511T	C511T	PCR-RFLP Age–sex	51/50	65.8 ± 10.4	60/50	63.7 ± 14.0	63.7 ± 14.0	Yes	PB 12		
14	Freilinger T, 2009 (Freilinger et al., 2009)	Germany	Caucasian	601/736	PSMA6 LGALS2	8C/G C3279T MALDI-TOF mass spectrometry	Age–sex	377/447	64/64	67.4 ± 13.65	64 ± 13.65	Yes	HB 10			
15	Szolnoki Z, 2009 (Szolnoki et al., 2009)	Hungary	Caucasian	385/303	LGALS2 C1279T	PCR-RFLP	NA	222/163	57.4 ± 14.3	201/102	64.2 ± 12.7	No	PB 10			
16	Lin TM, 2008 (Lin et al., 2008)	Taiwan	Asian	450/450	CD14 C260T	C260T	PCR-RFLP Age–sex	248/202	63.2 ± 12.3	252/198	59.7 ± 10.8	59.7 ± 10.8	No	PB 10		
17	Lichy C, 2002 (Lichy et al., 2002)	Germany	Caucasian	151/149	CD14 C260T	C260T	PCR-RFLP Age–sex	107/44	58.1 ± 10.1	109/40	61.0 ± 8.3	60.5 ± 8.2	Yes	HB 11		
18	Zee RYL, 2002 (Zee et al., 2002)	USA	Caucasian	338/338	CD14 C260T	C260T	PCR-RFLP Age–sex	NA	58.3 ± 7.8	65.5 ± 8.2	58.3 ± 64.4	52.8	No	HB 8		
19	Ito D, 2000 (Ito et al., 2000)	Japan	Asian	235/309	CD14 C260T	C260T	PCR-RFLP Age–sex	183/52	50.4	238/71	66.74 ± 7.69	Yes	HB 13			
20	Kis Z, 2007 (Kis et al., 2007)	Hungary	Caucasian	59/52	CD14 C260T	C260T	Nested PCR Age–sex	38/21	66.64 ± 7.69	26/26	66.64 ± 7.69	No	HB 9			
21	Park MH, 2006	Korea	Asian	125/125	CD14 C260T	C260T	PCR-RFLP Age–sex	63/62	63/62	66.74 ± 7.69	66.64 ± 7.69	Yes	HB 13			

Abbreviations: PCR — polymerase chain reaction; RFLP — restriction fragment length polymorphism; M — male; F — female; NA — not available; PB — population based; HB — hospital based; MALDI-TOF — matrix assisted laser desorption ionization-time of flight; and HWE — Hardy Weinberg equilibrium.
1. **IL1α-C889T**

 (a) **Dominant Model**

Study or Subgroup	Case Events	Control Events	Total Events	Total Weight	Odds Ratio M.H., Random, 95% CI
Banerjee 2008	74	112	186	157	1.16 (0.67, 2.08)
Lin 2010	230	371	601	16.8%	1.47 (0.89, 2.45)
Olsson S 2012	362	844	1206	17.2%	0.63 (0.20, 2.04)
Uno 2003	70	360	430	16.4%	1.55 (0.88, 2.69)
Zhang 2013	295	440	735	17.0%	1.42 (0.91, 2.23)
Zhao J 2012	148	602	750	16.9%	1.38 (0.95, 1.98)

 Total (95% CI): 2059 / 2564 = 100.0%,
 Heterogeneity: $\tau^2 = 0.46$, $I^2 = 11.6$, $df = 5$ ($p < 0.00001$), $p = 99%$
 Test for overall effect: $Z = 0.56$ ($p = 0.50$)

 (b) **Recessive Model**

Study or Subgroup	Case Events	Control Events	Total Events	Total Weight	Odds Ratio M.H., Random, 95% CI
Banerjee 2008	12	112	124	12.2%	1.22 (0.57, 2.61)
Lin 2010	43	371	414	19.3%	1.30 (0.61, 2.79)
Olsson S 2012	74	844	918	23.6%	0.67 (0.38, 1.20)
Uno 2003	3	390	423	4.5%	1.08 (0.24, 4.88)
Zhang 2013	63	440	503	21.6%	1.49 (0.96, 2.22)
Zhao J 2012	44	892	936	18.7%	1.46 (0.89, 2.39)

 Total (95% CI): 239 / 217 = 100.0%,
 Heterogeneity: $\tau^2 = 0.10$, $I^2 = 12.74$, $df = 5$ ($p = 0.03$), $p = 61%$
 Test for overall effect: $Z = 0.79$ ($p = 0.42$)

2. **IL1α-C511T**

 (a) **Dominant Model**

Study or Subgroup	Case Events	Control Events	Total Events	Total Weight	Odds Ratio M.H., Random, 95% CI
Doedic T 2005 (a)	70	122	192	9.9%	1.29 (0.62, 2.30)
Doedic T 2005 (b)	122	231	353	10.3%	1.09 (0.75, 1.59)
Lai J 2006	68	134	202	9.6%	0.65 (0.46, 1.00)
Lin 2010	276	371	647	10.6%	1.12 (0.81, 1.55)
Olsson S 2012	374	844	1218	11.1%	0.35 (0.26, 0.44)
Rubattu S 2005	66	115	181	9.7%	1.13 (0.76, 1.68)
Seripa D 2003	60	101	161	9.1%	0.30 (0.14, 0.68)
Zee RYL 2008	144	258	402	10.4%	0.95 (0.67, 1.35)
Zhang 2013	343	440	783	10.7%	1.29 (0.95, 1.75)

 Total (95% CI): 2718 / 2748 = 100.0%,
 Heterogeneity: $\tau^2 = 0.31$, $I^2 = 60.1$, $df = 9$ ($p < 0.00001$), $p = 99%$
 Test for overall effect: $Z = 0.26$ ($p = 0.77$)

 (b) **Recessive Model**

Study or Subgroup	Case Events	Control Events	Total Events	Total Weight	Odds Ratio M.H., Random, 95% CI
Doedic T 2005 (a)	22	122	144	9.0%	2.05 (0.81, 5.18)
Doedic T 2005 (b)	28	221	249	8.9%	1.49 (0.97, 2.25)
Lai J 2006	9	134	143	6.9%	0.39 (0.17, 0.88)
Lin 2010	32	112	144	9.5%	1.60 (0.94, 2.70)
Olsson S 2012	77	844	921	13.8%	0.73 (0.52, 1.01)
Rubattu S 2005	17	115	132	8.1%	1.56 (0.77, 3.12)
Seripa D 2003	13	101	114	6.9%	1.10 (0.48, 2.51)
Zee RYL 2008	21	258	279	9.6%	0.70 (0.42, 1.39)
Zhang 2013	117	440	557	14.1%	1.49 (0.96, 2.29)

 Total (95% CI): 2718 / 2748 = 100.0%,
 Heterogeneity: $\tau^2 = 0.12$, $I^2 = 25.87$, $df = 9$ ($p = 0.03$), $p = 65%$
 Test for overall effect: $Z = 1.90$ ($p = 0.26$)

Fig. 2. Forest plot for the association between (1) IL1α-C889T, (2) IL1α-C511T, (3) PSMA6-C8G, (4) LGALS2-C3279T and (5) CD14-C260T gene polymorphisms and IS risk under (A) dominant model, (B) recessive model.
3. PSMA6-C8G

(a) Dominant Model

(b) Recessive Model

4. LGALS2-C3279T

(a) Dominant Model

(b) Recessive Model

7.2. PSMA6 gene polymorphism with the susceptibility of IS

For PSMA6-C8G genetic polymorphism, two case-control studies with a total of 713 IS patients and 948 controls showed a non-significant association with susceptibility to IS under dominant model [GG + GC vs. CC: OR = 0.35, 95% CI: 0.08–1.54, P = 0.16] and a protective level of association with the recessive model [GG vs. CC + GC: OR = 0.25, 95% CI: 0.08–0.72, P = 0.01] (Fig. 2).

7.3. LGALS2 gene polymorphism with the susceptibility of IS

For LGALS2-C3279T genetic polymorphism, two case-control studies with a total of 986 IS patients and 1039 controls showed a non-significant association with susceptibility to IS under dominant [TT + CT vs. CC: OR = 0.29, 95% CI: 0.02–4.26, P = 0.37] and recessive models [TT vs. CC + TC: OR = 0.44, 95% CI: 0.09–2.09, P = 0.30] (Fig. 2).
7.4. CD14 gene polymorphism with the susceptibility of IS

For CD14-C260T genetic polymorphism, six case-control studies with a total of 1358 IS patients and 1423 controls showed a non-significant association with susceptibility to IS under dominant [TT + TC vs. CC: OR = 0.93, 95% CI: 0.77–1.11, P = 0.42] and recessive models [TT vs. CC + TC: OR = 1.02, 95% CI: 0.86–1.21, P = 0.81] (Fig. 2).

8. Discussion

In our comprehensive meta-analysis, five SNPs of four genes involving 21 studies with 6216 IS cases and 6539 controls were analyzed. Our findings suggest that the variants in the inflammatory genes did not show any significant association with the risk of IS. No significant association was observed under both dominant and recessive models of IL-1α (-C889T and -C511T), CD14 (-C159T), LGALS2 (-C3279T) and dominant model of PSMA6 (-C8G) gene polymorphisms with the risk of IS. However, the recessive model of PSMA6 (-C8G) gene polymorphism showed a protective level of association with susceptibility to IS. Our findings are consistent with the recently published meta-analysis of IL-1α showing no significant association with the risk of IS for C511T, however Zou et al. (2015) concluded that IL-1α (-C889T) was found to be associated with the risk of IS (Zou et al., 2015). Previous meta-analysis by Ye et al. (2012) also showed no association for IL-1α (C889T and C511T) with the risk of IS in overall population. But, T allele of IL-1α C511T showed a 1.97 fold risk of IS in Polish population compared with the control group. It may be possible that the effect of IL-1α C511T polymorphism on IS risk might be modified by age or other unknown factors (Ye et al., 2012). Meta-analysis published by Pu et al. (2013) suggested that CD14 (-C-260T) polymorphism is a risk factor of coronary heart disease (CHD), especially in East Asians (Pu et al., 2013).

Our meta-analysis is the first meta-analysis to report the association of inflammatory gene polymorphisms with the risk of IS to the best of our knowledge. Overall findings did not observe any significant association between IL-1α (-C889T and -C511T), CD14 (-C159T), LGALS2 (-C3279T) and PSMA6 (-C8G) gene polymorphisms and risk of IS. The present meta-analysis must be interpreted with caution because of certain limitations. First, the studies included in meta-analysis were varied in ethnicity, age and environmental factors. Second, the use of different methodologies for genotyping method, selection of controls and matching criteria may have lead to heterogeneity. Therefore, more credible evidences are required to illustrate solid conclusions on the association between inflammatory gene polymorphisms and risk of IS.

In summary, our meta-analysis shows that IL-1α (-C889T and -C511T), CD14 (-C159T), LGALS2 (-C3279T) and gene polymorphisms are not significantly associated with the risk of IS while PSMA6 (-C8G) gene polymorphism may play a protective role with the susceptibility of IS. Further prospective large epidemiological studies are needed to confirm these findings.
Funding source

None.

Conflict of interest

No potential conflict of interest.

Fig. 3. Begg’s funnel plot for assessing publication bias for (1) IL1α-C889T, (2) IL1α-C511T, (3) PSMA6-C8G, (4) LGALS2-C3279T and (5) CD14-C260T gene polymorphisms.
Acknowledgement

None.

References

Attia, J., Thakkinstian, A., D’Este, C., 2003. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56, 297–303.

Banerjee, I., Gupta, V., Ahmed, T., Faizaan, M., Agarwal, P., Ganesh, S., 2008. Immunologic system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res. Bull. 75, 158–165. http://dx.doi.org/10.1016/j.brainresbull.2007.08.007.

Bevan, S., Markus, H.S., 2011. Genetics of common polygenic ischaemic stroke: current understanding and future challenges. Stroke Res. Treat. 2011, 179061. http://dx.doi.org/10.4061/2011/179061.

Carr, F.J., McBride, M.W., Carswell, H.V.O., Graham, D., Strahorn, P., Clark, J.S., Charchar, F.J., Dominiczak, A.F., 2002. The interleukin-1 gene cluster and cardiac and cerebral ischaemia. Heart 87, 107–111. http://dx.doi.org/10.1136/hrt.87.9.107.

Delaney, C., Yeghiazarian, L., Zee, R.Y.L., Bates, D., Ridker, P.M., 2002. The interleukin-1 alpha gene and risk of myocardial infarction. Heart 87, 107–111. http://dx.doi.org/10.1136/hrt.87.9.107.

DeCraene, B., Vernali, D., Knol, J., Loo, V., Luyten, P., Vermeulen, A., 2004. Immunologic system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res. Bull. 75, 158–165. http://dx.doi.org/10.1016/j.brainresbull.2007.08.007.

Wu, Y., J., Y., Wu, Z., Wang, Z., Y., Zhou, R., Jiang, L., Liu, Y., 2013. The association between CD4 gene C-260T polymorphism and coronary heart disease risk: a meta-analysis. Mol. Biol. Rep. 40, 4001–4008. http://dx.doi.org/10.1007/s11033-012-2478-y.

Zhou, N., Liu, X., Liu, X., Wu, X., Liu, X., Li, J., Yu, L., Ma, L., Wang, S., Zhang, H., Liu, L., Zhao, J., Zhang, Z., Liu, L.-J., Zhang, C., Yu, Y.-P., 2013. Association between interleukin-1 alpha gene polymorphism with ischemic stroke. Stroke J. Cereb. Circ. 43, 2278–2282. http://dx.doi.org/10.1161/STROKEAHA.111.647446.

Zotova, E., Kuznetsova, O., Zlateva, V., 2009. Association of interleukin-1 gene polymorphism with ischemic stroke. Curr. Genet. 45, 462–468. http://dx.doi.org/10.1007/s00294-008-0335-3.

Zhang, Z., Liu, Y., J., Zhao, J., Wang, Z., Li, F., Zhang, Z., Y., Yu, Y., 2014. Association of interleukin-1 gene polymorphism with ischemic stroke. J. Neuroimmunol. 266, 19–23. http://dx.doi.org/10.1016/j.jneuroim.2013.12.004.

Zhu, J., Li, X., Li, J., Liu, Y., Xu, F., 2013. Association of interleukin-1 gene polymorphism with ischemic stroke. J. Neuroimmunol. 266, 24–28. http://dx.doi.org/10.1016/j.jneuroim.2013.12.004.

Zhou, N., Liu, X., Liu, X., Wu, X., Liu, X., Li, J., Yu, L., Ma, L., Wang, S., Zhang, H., Liu, L., Zhao, J., Wang, X., 2012. Association of inflammatory gene polymorphisms with ischemic stroke in a Chinese Han population. J. Neuroinflammation 9, 62. http://dx.doi.org/10.1186/1742-2092-9-62.

Zhou, L., Zhao, H., Gong, X., Jiang, A., Guan, S., Wang, L., Zheng, S., 2015. The association between three promoter polymorphisms of IL-1 and stroke: a meta-analysis. Gene 567, 94–102. http://dx.doi.org/10.1016/j.gene.2015.04.054.