Clonal diversity of \textit{Acinetobacter baumannii} clinical isolates in Myanmar: identification of novel ST1407 harbouring bla\textit{NDM-1}

M. S. Aung1, M. S. Hlaing2, N. San3, M. T. Aung1, T. T. Mar4 and N. Kobayashi1

1 Sapporo Medical University School of Medicine, Sapporo, Japan, 2 University of Medicine 1, 3 University of Medicine 2, 4 North Okkalapa General and Teaching Hospital and 4 University of Medicine 1, Yangon, Myanmar

Abstract

Recent \textit{Acinetobacter baumannii} clinical isolates in a teaching hospital in Myanmar comprised three major sequence types (ST2, ST16 and ST23) and two sporadic STs, showing a high resistance rate to carbapenem associated with \textit{blaOXA-23}. The NDM-1 encoding gene was identified in only one isolate exhibiting novel ST1407 (a triple-locus variant of ST16). © 2021 The Author(s). Published by Elsevier Ltd.

Keywords: \textit{Acinetobacter baumannii}, Myanmar, NDM-1, OXA-23, ST

Original Submission: 17 January 2021; Revised Submission: 22 January 2021; Accepted: 2 February 2021

Article published online: 12 February 2021

Corresponding author: M. S. Aung, Department of Hygiene, Sapporo Medical University School of Medicine, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan. E-mail: mejisoeaung@sapmed.ac.jp

\textit{Acinetobacter baumannii} is opportunistic pathogen with a remarkable capacity to acquire antimicrobial resistance. Global spread of carbapenem-resistant \textit{A. baumannii} has been noted as a public health concern since 2000 as a result of intra- and inter-hospital dissemination and international transfer of resistant strains [1]. According to the Institute Pasteur scheme of multilocus sequence typing (MLST) [2], sequence type (ST) 2 is considered to be the predominant clone with carbapenem resistance globally [1,2], while other STs such as ST10, clonal complex (CC) 32 and ST589 (CC1) were also described as major lineages, depending on the country [3–5]. In Myanmar, only limited information is available regarding the clonal lineage of \textit{A. baumannii} responsible for carbapenem resistance in medical settings.

From January to November 2018, a total of 1270 bacterial isolates were recovered from clinical specimens as putative causes of infectious diseases in North Okkalapa General and Teaching Hospital, Yangon, Myanmar. Gram-negative bacteria accounted for 80.6% (1023 isolates), with \textit{Klebsiella pneumoniae} being dominant, followed by \textit{Escherichia coli}. Forty isolates (3.1%) were identified as \textit{Acinetobacter} species by biochemical test kit (API 20NE strip; bioMérieux), among which 25 isolates were genetically confirmed to be \textit{A. baumannii} by PCR detection of \textit{blaOXA-51}\textsubscript{L}-like gene [6] and sequencing of \textit{cpn60} (one MLST locus) [2]. The most common specimen associated with \textit{Acinetobacter} spp. was sputum, followed by wound swab and urine (Supplementary Table S1). Most \textit{Acinetobacter} spp. isolates were derived from male patients of older age (>40 years) (Supplementary Table S2).

Antimicrobial susceptibility of \textit{A. baumannii} was measured by broth microdilution test, and ST was determined as per the Institute Pasteur scheme [2]. Carbapenemase genes were detected and typed as described previously [7–9]. Nucleotide sequences of the \textit{blaOXA-51}\textsubscript{L} family were determined by PCR direct sequencing using primers designed in this study (Supplementary Table S3).

Among 25 \textit{A. baumannii} isolates, five STs were identified (Table 1), including three common STs (ST2, ST16 and ST23) and two novel STs (ST1406 and ST1407). We identified five different genotypes of the \textit{blaOXA-51}\textsubscript{L} family, which were correlated with each of the five STs. \textit{blaOXA-23} was detected in all the isolates except ST23 (detection rate, 72%), and \textit{blaNDM-1} was identified in a single isolate of ST1407. Resistance rate to carbapenem was 76%, although a lower rate was found for ST23 isolates than other STs.

A recent study of \textit{A. baumannii} clinical isolates in Myanmar described the dominance of ST2 (50%), high prevalence of \textit{blaOXA-23} (87%) and detection of \textit{blaNDM-1} in four STs (ST1, ST16, ST23 and ST109) [10]. However, in spite of the low number of isolates obtained in our study, ST2 was not dominant but rather showed isolation frequency similar to ST16 and ST23. A novel ST1407, which was assigned to one isolate harbouring \textit{blaNDM-1}, was sporadic type but a triple-locus variant of ST16 as well as ST1480. While being a minor lineage of \textit{A. baumannii}, ST16 was found in the Netherlands, the United States, Malaysia and Thailand [2,11]. ST1480 was registered as an isolate in Thailand (strain ID 4657; PubMLST, at https://pubmlst.org/). Accordingly, ST16-related clones were suggested to be potentially prevalent in South-East Asian
countries and responsible for carbapenem resistance carrying blaNDM-1. Further epidemiologic surveillance of A. baumannii and its carbapenem resistance may be necessary, particularly on ST16-related lineage in Myanmar and neighbouring countries.

Conflict of interest

None declared.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nmni.2021.100847.

References

[1] Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom 2019;5:e000306.

[2] Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010;5:e10034.

[3] Da Silva GJ, Van Der Reijden T, Domingues S, Mendonça N, Petersen K, Dijkshoorn L. Characterization of a novel international clonal complex (CC32) of Acinetobacter baumannii with epidemic potential. Epidemiol Infect 2014;142:1554–8.

[4] Meumann EM, Anstey NM, Currie BJ, Piera KA, Kenyon JJ, Hall RM, et al. Genomic epidemiology of severe community-onset Acinetobacter baumannii infection. Microb Genom 2019;5:e000258.

[5] Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M, Xu Q, et al. Dissemination of blaOXA-23-harbouring carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J Glob Antimicrob Resist 2020;21:357–62.

[6] Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 2006;44:2974–6.

[7] Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791–8.

[8] Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440–58.

[9] Aung MS, San N, Maw WW, San T, Urushibara N, Kawaguchiya M, et al. Prevalence of extended-spectrum beta-lactamase and carbapenemase genes in clinical isolates of Escherichia coli in Myanmar: dominance of blaOXA-51 and emergence of blaOXA-181. Microb Drug Resist 2018;24:1333–44.

[10] Tada T, Uchida H, Hishinuma T, Watanabe S, Tohya M, Kuwahara-Arai K, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates from hospitals in Myanmar. J Glob Antimicrob Resist 2020;22:122–5.

[11] Chopitij P, Wongsurawat T, Jenjaroenpun P, Boueroy P, Hatrongjit R, Kerdsin A. Complete genome sequences of four extensively drug-resistant Acinetobacter baumannii isolates from Thailand. Microbiol Resour Announc 2020;9:e00949–01020.