Mathematical modeling of the West Africa Ebola epidemic

Jean-Paul Chretien1*, Steven Riley2, Dylan B George3

1Department of Defense, Division of Integrated Biosurveillance, Armed Forces Health Surveillance Center, Silver Spring, United States; 2MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom; 3Department of Health and Human Services, Biomedical Advanced Research and Development Authority, Washington, United States

Abstract

As of November 2015, the Ebola virus disease (EVD) epidemic that began in West Africa in late 2013 is waning. The human toll includes more than 28,000 EVD cases and 11,000 deaths in Guinea, Liberia, and Sierra Leone, the most heavily-affected countries. We reviewed 66 mathematical modeling studies of the EVD epidemic published in the peer-reviewed literature to assess the key uncertainties models addressed, data used for modeling, public sharing of data and results, and model performance. Based on the review, we suggest steps to improve the use of modeling in future public health emergencies.

DOI: 10.7554/eLife.09186.001

Introduction

On March 23, 2014, the Ministry of Health Guinea notified the World Health Organization (WHO) of a rapidly evolving outbreak of Ebola virus disease (EVD), now believed to have begun in December 2013. The epidemic spread through West Africa and reached Europe and the United States. As of November 4, 2015, WHO reported more than 28,000 cumulative cases and 11,000 deaths in Guinea, Liberia, and Sierra Leone, where transmission had been most intense (World Health Organization, 2016).

As the emergency progressed, researchers developed mathematical models of the epidemiological dynamics. Modelers have assessed ongoing epidemics previously, but the prominence of recent EVD work, enabled by existing research programs for infectious disease modeling (National Institutes of Health, 2016a; National Institutes of Health, 2016b) and online availability of EVD data via WHO (World Health Organization, 2016), Ministries of Health of affected countries, or modelers who transcribed and organized public WHO or Ministry of Health data (Rivers C) may be unprecedented. The efforts for this outbreak have been numerous and diverse, with major media incorporating modeling results in many pieces throughout the outbreak. U.S. Government decision making has benefited from modeling results at key moments during the response (Robinson R).

We draw on this vigorous response of the epidemiological modeling community to the EVD epidemic to review (Moher et al., 2009) the application of modeling to public health emergencies, and identify lessons to guide the modeling response to future emergencies.

Results

Overview of modeling applications

We identified 66 publications meeting inclusion criteria (Figure 1).
Models addressed 6 key uncertainties about the EVD epidemic: transmissibility, typically represented by the reproduction number (R, the average number of people each infected person infects; assessed in 41 publications); effectiveness of various interventions that had been or might be implemented (in 29 publications); epidemic forecast (in 29 publications); regional or international spreading patterns or risk (in 15 publications); phylogenetics of EVD viruses (in 9 publications); and feasibility of conducting vaccine trials in West Africa (in 2 publications) (Table 1, Supplementary file 1).

The number of publications with models to estimate R increased rapidly early in the epidemic, along with those including intervention, forecasting, and regional and international spread models; the growth rate of publications with phylogenetic modeling applications and clinical trial models increased later in the epidemic (Figure 2).

Of the 125 models reported across the studies, 74% included mechanistic assumptions about disease transmission (e.g., compartmental, agent-based, or phylogenetic models), while 26% were purely phenomenological (Supplementary file 2).

Data sources
For 54 (82%) of the 66 publications, the only EVD data used was pre-existing and publicly-available (Table 1). Typically, these were aggregate case data posted online by the WHO or affected countries, or Ebola virus genetic data released previously during the epidemic. Twelve studies used original EVD epidemiological data (Baize et al., 2014; WHO Ebola Response Team, 2014; Faye et al., 2015; Yamin et al., 2014) or genomic data (Baize et al., 2014; Gire et al., 2014; Simon-Loriere et al., 2015; Tong et al., 2015; Hoenen et al., 2015; Park et al., 2015; Carroll et al., 2015; Kugelman et al., 2015).
Examples of additional data used for some modeling applications include official reports of social mobilization efforts (Fast et al., 2015), media reports of case clusters (Cleaton et al., 2015), media reports of events that may curtail or aggravate transmission (Majumder et al., 2014), and international air travel data (Gomes et al., 2014; Poletto et al., 2014; Read et al., 2015; Bogoch et al., 2015; Rainisch et al., 2015; Cope et al., 2014). Several studies incorporated spatial data on EVD cases into models of regional EVD spread (Gire et al., 2014; Merler et al., 2015; Rainisch et al., 2015; Tong et al., 2015; Carroll et al., 2015; Zinszer et al., 2015).

Data and results sharing

Of the 12 studies that collected original EVD data, 9 released those data before or at the time of publication (8 with Ebola virus genetic data deposited in GenBank (Baize et al., 2014; Gire et al., 2014; Simon-Loriere et al., 2015; Tong et al., 2015; Hoenen et al., 2015; Park et al., 2015; Carroll et al., 2015; Kugelman et al., 2015) and 1 with detailed epidemiological data in the online publication (Yamin et al., 2014). Many publications used results from the WHO Ebola Response Team investigations (WHO Ebola Response Team, 2014; 2015) (for example, estimates of the generation time, case fatality rate, or other epidemiological parameters as model inputs), but the detailed epidemiological data from these studies, to date, are not publicly available.

Accumulation of shared EVD data over successive studies was evident especially in the phylogenetic analyses. For example, all phylogenetic studies published after release of the initial Ebola virus sequences by (Baize et al., 2014) (Guinea) and (Gire et al., 2014) (Sierra Leone) incorporated those sequence data.

Across all studies, the publication lag (defined as date of most recent EVD data used to date of online publication) was almost 3 months (median [interquartile range] = 85 [30–157] days). The lag varied across modeling applications, and was considerably shorter in studies that included models to estimate R (median = 58 days for publications with R estimation versus 118 days for others) or to forecast (median = 50 versus 125 days) (Figure 3).

Lags were longest for studies with phylogenetic and clinical trials applications (median = 125 and 108 days, respectively), although there were fewer publications with these models.
Ref.	Date of latest EVD data	Date published	EVD data was pre-existing and public	Uncertainties addressed
R, Interventions, Forecast, Spread, Phylogenetics, Clinical trials				
Baize et al., 2014	3/20/14	4/16/14	No	*
Dudas and Rambaut, 2014	3/20/14	5/2/14	Yes	*
Alizon et al., 2014	6/18/14	12/13/14	Yes	*
Gire et al., 2014	6/18/14	8/28/14	No	*
Stadler et al., 2014	6/18/14	10/6/14	Yes	*
Volz and Pond, 2014	6/18/14	10/24/14	Yes	*
Pandey et al., 2014	8/7/14	10/30/14	Yes	*
Gomes et al., 2014	8/9/14	9/2/14	Yes	*
Valdez et al., 2015	8/15/14	7/20/15	Yes	*
Merler et al., 2015	8/16/14	1/7/15	Yes	*
Rainisch et al., 2015	8/16/14	2/18/15	Yes	*
Althaus, 2014	8/20/14	9/2/14	Yes	*
Fisman et al., 2014	8/22/14	9/8/14	Yes	*
Nishiura and Chowell, 2014	8/26/14	9/11/14	Yes	*
Poletto et al., 2014	8/27/14	10/23/14	Yes	*
Meltzer et al., 2014	8/28/14	9/26/14	Yes	*
Augusto et al., 2015	8/29/14	4/23/15	Yes	*
Althaus, 2015	8/31/14	4/19/15	Yes	*
Scarpino et al., 2014	8/31/14	12/15/14	Yes	*
Weitz and Dushoff, 2015	8/31/14	3/4/15	Yes	*
Drake et al., 2015	9/2/14	10/30/14	Yes	*
Towers et al., 2014	9/8/14	9/18/14	Yes	*
Bellan et al., 2014	9/14/14	10/14/14	Yes	*
Chowell et al., 2015	9/14/14	1/19/15	Yes	*
Cooper et al., 2015	9/14/14	4/14/15	Yes	*
Read et al., 2015	9/14/14	11/12/14	Yes	*
WHO Ebola Response Team, 2014	9/14/14	9/23/14	No	*
Faye et al., 2015	9/16/14	1/23/15	No	*
Bogoch et al., 2015	9/21/14	10/21/14	Yes	*
Yamin et al., 2014	9/22/14	10/28/14	No	*
Lewnard et al., 2014	9/23/14	10/24/14	Yes	*
Webb et al., 2015	9/23/14	1/30/15	Yes	*
Shaman et al., 2014	9/28/14	10/27/14	Yes	*
Chowell et al., 2014	10/1/14	11/20/14	Yes	*
Fasina et al., 2014	10/1/14	10/9/14	Yes	*
Khan et al., 2015	10/1/14	2/24/15	Yes	*
Rivers et al., 2014	10/5/14	10/16/14	Yes	*
Xia et al., 2015	10/7/14	9/8/15	Yes	*
Majumder et al., 2014	10/11/14	4/28/15	Yes	*
Modeling results: R and forecasts

Forty-one publications characterized epidemic dynamics using epidemiological (N=36), genomic (N=4), or news report data (N=1). Twenty-four of these provided estimates of the basic reproduction number (R_0) for Guinea, Liberia, Sierra Leone, or West Africa, using epidemiological or genomic data (Figure 4, Supplementary file 3).

There were 16 country-specific estimates of R_0 for Guinea, Liberia, or Sierra Leone that used EVD epidemiological data (aggregate or line-level) and provided 95% confidence or credible intervals.
(CIs). Median CI width was about 85% smaller for models that used cumulative EVD counts (N=11 models in 5 publications) than for models that used disaggregated EVD case data, such as weekly counts (N=5 models in 3 publications) (Figure 5).

Although CIs were also narrower for models when deterministic rather than stochastic methods were used to estimate parameter uncertainty, all of the deterministic results came from a single study (Figure 6).

Fifteen publications provided numerical forecasts of cumulative EVD incidence for West African countries. Of 22 models that assumed no additional response measures beyond those implemented at the time (i.e., ‘status quo’ assumptions), 18 overestimated the future number of cases (Figure 7, Supplementary file 4).

In multivariate analysis, forecast error was lower for forecasts made later in the outbreak (14% reduction in mean absolute percentage error [MAPE] per week, P<0.001), higher for forecasts with longer time horizons (29% increase in MAPE per week, P<0.01), and lower for forecasts that used decay terms, spatially heterogeneous contact patterns, or other methods that served to constrain projected incidence growth (90% reduction in MAPE, P<0.01). Country and number of parameters in the model were not statistically significant predictors of forecast accuracy.

Discussion
We identified 66 modeling publications during approximately 18 months of the EVD response that assessed trends in the intensity of transmission, effectiveness of control measures, future case counts, regional and international spreading risk, Ebola virus phylogenetic relationships and recent evolutionary dynamics, and feasibility of clinical trials in West Africa. We found a heavy dependence
on public data for EVD modeling, and identified factors that might have influenced model performance. To our knowledge, this review is one of the most comprehensive assessments of mathematical modeling applied to a single real-world public health emergency.

An important caveat of our review is that it only captures published results. We are aware of additional EVD epidemiological investigations and modeling not yet published. Some modelers providing direct support to operational response efforts have not published results, possibly because of operational demands.

Also, we could not account comprehensively for the sources of variation across studies. For example, studies that estimated R_0 using the same data sources at about the same time reported varied results. Such variation may, in part, reflect the problem of identifiability, with different R_0 estimates possible for models that perform equally well depending on other parameter values (Weitz and Dushoff, 2015). Ideally, an investigation into this heterogeneity would include implementation of models in a common testing environment.

Our review suggests several possible steps for improving the application of epidemiological modeling during public health emergencies. First, agreement on community best practices could improve the quality of modeling support to decision-makers. For example, our analysis is consistent with simulation studies showing underestimation of uncertainty in estimating R_0 with cumulative (as opposed to disaggregated) incidence data, and supports the recommendation to use disaggregated

Figure 3. Publication lag by type of modeling application. The vertical red and turquoise lines indicate the median lag for publications including and not including, respectively, the type of modeling application.

DOI: 10.7554/eLife.09186.006
data and stochastic models (King et al., 2015). Additionally, incidence forecasts provided reasonable prospective estimates several weeks forward in time during the initial phase; however, given available data and methodologies these forecasts became progressively more inaccurate as they projected dynamics beyond several weeks. Validation of incidence forecasts against other relevant data, such as hospital admissions and contacts identified, also could provide evidence that the assumptions are sound.

The 2014 onwards ebola outbreak in West Africa clearly highlights the need for a better understanding of how increasing awareness of severe infections within a community decreases their transmissibility even in the absence of specific interventions. Advancing methodological approaches to capture this effect, such as dampening approaches, might help account for behavioral changes, interventions, contact heterogeneity, or other factors that can be expected in a public health emergency which likely will improve forecasting accuracy. Establishing best practices within the community will allow decision-makers the ability to more quickly accept methodologies and results that have been generated via these best practices. Hence, decisions based on these results can happen more quickly.

Second, modeling coordination could facilitate direct comparison of modeling results, identifying issues on which diverse approaches agree and areas of greater uncertainty. Epidemiological modelers might learn from comparison initiatives in modeling of influenza (Centers for Disease Control and Prevention, 2013), dengue (US Department of Commerce), and HIV (HIV modeling consortium); and in other fields such as climate forecasting Intergovernmental Panel on Climate Change, 2010). For epidemiological application, an ensemble approach should preserve methodological diversity to exploit the full range of state-
of-the-art modeling methods, but include enough standardization to enable cross-model comparison. Establishing an initial architecture for a coordinated, ensemble effort now could assist the response to EVD, and future public health emergencies.

Perhaps most importantly, outbreak modeling efforts would be much more fruitful if data and analytical results could be made available more quickly to all interested parties (Yozwiak et al., 2015). The publication timelines for academic journals typically will not be consistent with decision-making needs during public health emergencies like the EVD epidemic, where the epidemiological situation was highly dynamic and the usefulness of data and forecasts time-constrained. Establishing mechanisms for modelers without special access to the official epidemiological teams to share interim results would expand the evidence base for response decision-making. Ideally, data should be made available online in machine-readable form to facilitate use in analyses. Modelers and other analysts expended enormous effort during the EVD epidemic transcribing data posted online in pdf documents.

New norms for data-sharing during public health emergencies (World Health Organization, 2015) would remove the most obvious hurdle for model comparison. The current situation where groups either negotiate bilaterally with individual countries or work exclusively with global health and development agencies is understandable, but highly ineffective. The EVD outbreak highlights again – after the 2003 Severe Acute Respiratory Syndrome epidemic and 2009 influenza A (H1N1) pandemic – that an independent, well-resourced global data observatory could greatly facilitate the public health response in many ways, not least of which would be the enablement of rapid, high quality, and easily comparable disease-dynamic studies.
Materials and methods
For this review, we adapted the PRISMA methodology (Moher et al., 2009) to identify quantitative modeling studies of the 2013-present West Africa EVD epidemic. We searched PubMed on September 24, 2015, for publications in English since December 1, 2013, using the term ‘Ebola’ in any field. We reviewed all returned abstracts and selected ones for confirmatory, full-text review that mentioned use of quantitative models to characterize or predict epidemic dynamics or evaluate interventions. We included studies that met this criterion in full-text review.

We excluded studies of clinical prediction models, viral or physiological function models, ecological niche models, animal reservoir models, and publications that did not use data from the 2013-present West Africa EVD epidemic.

For included publications, we recorded the geographic settings, date of most recent EVD data used and date of publication, type of EVD data used, questions the models addressed, modeling approaches, and key results, including estimates of the basic reproduction number (R_0) and forecasts of future EVD incidence provided in the main text of the publications. To assess forecast accuracy, we compared predictions of models made under ‘status quo’ assumptions (i.e., without explicit inclusion of additional interventions or behavioral changes) to EVD incidence data subsequently released by the WHO (World Health Organization, 2016), using the WHO figures dated soonest after the forecast target date.

Figure 6. R_0 estimates and CIs by model fitting method. Top row: Vertical lines indicate 95% CIs. Bottom row: Horizontal bars indicate median CI width. DOI: 10.7554/eLife.09186.009
We thank the reviewers for excellent comments that improved the manuscript. The views expressed are those of the authors and do not necessarily reflect the views of any part of the US Government.

Additional information

Funding
No external funding was received for this work.

Author contributions
J-PC, SR, DBG, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article

Figure 7. Accuracy of cumulative incidence forecasts. Accuracy is shown as the ratio of predicted incidence to incidence subsequently reported by the WHO. ‘Dampening’ refers to various approaches to restrict the growth of forecasted incidence over time. Top row: Accuracy by date of forecast. Bottom row: Accuracy by forecast lead time (‘Horizon’). The Figure excludes one forecast with horizon > 1 year (Fisman and Tuite, 2014). DOI: 10.7554/eLife.09186.010
Additional files

Supplementary files
- Supplementary file 1. Overview of publications. DOI: 10.7554/eLife.09186.011
- Supplementary file 2. Overview of models. DOI: 10.7554/eLife.09186.012
- Supplementary file 3. Models estimating R. DOI: 10.7554/eLife.09186.013
- Supplementary file 4. Forecast models. DOI: 10.7554/eLife.09186.014

References

Agusto FB, Teboh-Ewungkem MI, Gurmel AB. 2015. Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 ebola outbreaks. BMC Medicine 13:96. doi: 10.1186/s12916-015-0318-3

Alizon S, Lion S, Murall CL, Abbate JL. 2014. Quantifying the epidemic spread of ebola virus (eBOV) in sierra leone using phylodynamics. Virulence 5:825–827. doi: 10.4161/21555944.2014.976514

Althaus CL, Low N, Musa EO, Shuaib F, Gsteiger S. 2015. Ebola virus disease outbreak in nigeria: transmission dynamics and rapid control. Epidemics 11:80–84. doi: 10.1016/j.epidem.2015.03.001

Althaus CL. 2014. Estimating the reproduction number of ebola virus (eBOV) during the 2014 outbreak in West Africa. PLoS Currents. doi: 10.1371/currents.outbreaks.91af5e0f279e7f29e7056095255b288

Althaus CL. 2015. Ebola superspreading. The Lancet. Infectious Diseases 15:507–508. doi: 10.1016/S1473-3099(15)01315-6

Baize S, Pannetier D, Oestreicher L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keita S, De Clerck H, Tiffany A, Dominguez G, Loua M, Traoré A, Kolié M, Malano ER, Heleze E, Bocquin A, Mély S, Raoul H, Caro V, Cadr D, Gabriel M, Pahlmann M, Tape D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, Van Herp M, Günther S. 2014. Emergence of zaire ebola virus disease in guinea. The New England Journal of Medicine 371:1418–1425. doi: 10.1056/NEJMoa1404505

Barbarossa MV, Dènes A, Kiss G, Nakata Y, Röst G, Vizi Z. 2015. Transmission dynamics and final epidemic size of ebola virus disease outbreaks with varying interventions. PloS One 10:e0131398. doi: 10.1371/journal.pone.0131398

Bellan SE, Pulliam JR, Pearson CA, Champredon D, Fox SJ, Skrip L, Galvani AP, Gambhir M, Lopman BA, Porco TC, Meyers LA, Dushoff J. 2015. Statistical power and validity of ebola vaccine trials in sierra leone: a simulation study of trial design and analysis. The Lancet. Infectious Diseases 15:703–710. doi: 10.1016/S1473-3099(15)01318-9

Bellan SE, Pulliam JRC, Dushoff J, Meyers LA. 2014. Ebola control: effect of asymptomatic infection and acquired immunity. The Lancet 384:1499–1500. doi: 10.1016/S0140-6736(14)61839-0

Bogoch II, Creatore MI, Cetron MS, Brownstein JS, Pesik N, Miniota J, Tam T, Hu W, Nicollucci A, Ahmed S, Yoon JW, Berry I, Hay SI, A, Funk S. 2015. Temporal changes in ebola transmission in sierra leone using phylodynamics. PLoS Currents. doi: 10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2

Browne C, Guiboudehak H. Webb G. 2015. Modeling contact tracing in outbreaks with application to ebola. Journal of Theoretical Biology 384:33–49. doi: 10.1016/j.jtbi.2015.08.004

Camacho A, Kucharski A, Aki-Sawyerr Y, White MA, Flasche S, Baguelin M, Pollington T, Carney JR, Glover R, Smout E, Tiffany A, Edmunds WJ, Funk S. 2015. Temporal changes in ebola transmission in sierra leone and implications for control requirements: a real-time modelling study. PLoS Currents 7. doi: 10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2

Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, Rambaut A, Hewson R, García-Dorival I, Borre JA, Koundounou R, Abbati S, Afrombrough B, Aiyepada J, Akhilem J, Dusabuk, D, Atkinson B, Badusche M, Nahum N, Bates J, Baumann J, Becker D, Becker-Ziaja B, Bocquin A, Borremans L, Bosworth A, Boettcher JP, Cannas A, Castilletti C, Clark S, Colavita F, Diederich S, Donatus A, Duraffour S, Echiyoji H, Elberbrok H, Fernandez-Garcia MD, Fiset A, Flieschmann E, Gheysels S, Hermelink A, Hinzmann J, Hofp-Guevara U, Ighodalo Y, Jameson L, Kelterbaum A, Kis Z, Kloth S, Kuijla R, Kueh A, Kraus A, Kuiaia A, Kurth M, Liebigk B, Logue CH, Lukte A, Luette A, Maes P, McCowen J, Mertens M, Meča S, Meyer B, Michel J, Molkenthin P, Muñoz-Fontela C, Muth D, Newman EN, Ngabo D, Oestereich L, Omiunu R, Olokor T, Pallasch E, Palma B, Portmann J, Pottage T, Pratt C, Priesnitz S, Quinn S, Rappe J, Reitsch J, Richter M, Rambaut A, Sachs A, Schmidt KM, Schudt G, Strecker T, Thom R, Thomas S, Tobin E, Toller A, Trautner J, Vittoria I, Wagner M, Wilf S, Yuen K, Capobianchi MR, Kretschmer B, Hall Y, Kenny J, Rickett NY, Dugas C, Collard CE, Kerber R, Steer D, Wright C, Senyah F, Keita S, Drury P, Dallia A, de Clerck H, Van Herp M, Sprecher A, Traore A, Diakite M, Konde MK, Koivogui L, Magassouba N, Avsić-Županc T, Nitsche A, Strasser M, Ippolito G, Becker.
S, Stoecker K, Gabriel M, Raoul H, Di Caro A, Wölfel R, Formenty P, Günther S. 2015. Temporal and spatial analysis of the 2014–2015 ebola virus outbreak in west africa. Nature 524:97–101. doi: 10.1038/nature14594

Centers for Disease Control and Prevention. 2013. Announcement of requirements and registration for the predict the influenza season challenge. In Federal Register https://www.federalregister.gov/articles/2013/11/25/2013-28198/announcement-of-requirements-and-registration-for-the-predict-the-influenza-season-challenge, 25 Nov 2013.

Chowell D, Castillo-Chavez C, Krishna S, Qiu X, Anderson KS. 2015. Modelling the effect of early detection of ebola. The Lancet. Infectious Diseases 15:148–149. doi: 10.1016/S1473-3099(14)71084-9

Chowell G, Simonsen L, Viboud C, Kuang Y. 2014. Is west africa approaching a catastrophic phase or is the 2014 ebola epidemic slowing down? different models yield different answers for libera. PLoS Currents 6. doi: 10.1371/currents.outbreaks.b4e00985df91684da963dc4e0e0f3da81

Chowell G, Viboud C, Hyman JM, Simonsen L. 2014. The western africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Currents 7. doi: 10.1371/currents.outbreaks.8b55f4bad99ac5c5dcb3663e916803261

Cleaton JM, Viboud C, Simonsen L, Hurtado AM, Chowell G. 2015. Characterizing ebola transmission patterns based on internet news reports. Clinical Infectious Diseases:civ748. doi: 10.1093/cid/civ748

Cooper BS, Boni MF, Pan-ngum W, Day NP, Horby PW, Olliaro P, Lang T, White NJ, White LJ, Whitehead J. 2015. Evaluating clinical trial designs for investigational treatments of ebola virus disease. PLoS Medicine 12: e1001815. doi: 10.1371/journal.pmed.1001815

Cope RC, Cassey P, Hugo GJ, Ross JV. 2014. Assessment of the risk of ebola importation to australia. PLoS Currents 6. doi: 10.1371/currents.outbreaks.aa0375fd48a92c7c9422aa543a88711f

Dong F, Xu D, Wang Z, Dong M. 2015. Evaluation of ebola spreading in west africa and decision of optimal medicine delivery strategies based on mathematical models. Infection, Genetics and Evolution 36:35–40. doi: 10.1016/j.meegIED.2015.09.003

Drake JM, Kaul RB, Alexander LW, O'Regan SM, Kramer AM, Pulliam JT, Ferrari MJ, Park AW. 2015. Ebola cases and health system demand in libera. PLoS Biology 13:e1002056. doi: 10.1371/journal.pbio.1002056

Dudas G, Rambaut A. 2014. Phylogenetic analysis of guinea 2014 EBOV ebolavirus outbreak. PLoS Currents 6. doi: 10.1371/currents.outbreaks.84ee6fe5e4e3ec9dcbf0670f788b417d

Fasina FO, Shittu A, Lazarus D, Tomori O, Simonsen L, Viboud C, Chowell G. 2014. Transmission dynamics and control of ebola virus disease outbreak in nigeria, july to september 2014. Euro Surveill 19:20920. doi: 10.2807/1560-7917.ES2014.19.40.20920

Fast SM, Mekaru S, Brownstein JS, Postl ethwaite TA, Markuzon N. 2015. The role of social mobilization in controlling ebola virus in lofa county, libera. PLoS Currents 7. doi: 10.1371/currents.outbreaks.c3576278c66b22ab54a25e122fcdbec1

Faye O, Boëlle PY, HEleze E, Faye O, Loucoubar C, Magassouba N, Soropogui B, Keita S, Gakou T, Bah el HI, Koivogui L, Sall AA, Cauchemez S. 2015. Chains of transmission and control of ebola virus disease in conakry, guinea, in 2014: an observational study. The Lancet. Infectious Diseases 15:320–326. doi: 10.1016/S1473-3099(14)71075-8

Fisman D, Khoo E, Tuite A. 2014. Early epidemic dynamics of the west african 2014 ebola outbreak: estimates derived with a simple two-parameter model. PLoS Currents 6. doi: 10.1371/currents.outbreaks.89cd3783f6958d96ebbae97348d571

Fisman D, Tuite A. 2014. Projected impact of vaccination timing and dose availability on the course of the 2014 west african ebola epidemic. PLoS Currents 6. doi: 10.1371/currents.outbreaks.06e00d546ad426fed83ff24a1d4c4cc

Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, Dudas G, Wohl S, Moses LM, Yozwiak NL, Winnicki S, Matranga CB, Malboeuf CM, Qi J, Gladden AD, Schaffner SF, Yang X, Jiang PP, Kiani S, Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie M, Kamara FK, Tucker V, Konuwa E, Safa S, Sellu J, Jalloh AA, Kovorna A, Koninga J, Mustapha I, Kargbo K, Foday M, Yillah M, Kanneh F, Robert W, Massally JL, Chapman SB, Bochicchio J, Murphy C, Nusbaum C, Young S, Birren BW, Grant DS, Scheffelin JS, Lander ES, Happi C, Gevoa SM, Gnirke A, Rambaut A, Garry RF, Khan SH, Sabeti PC. 2014. Genomic surveillance elucidates ebola virus origin and transmission during the 2014 outbreak. Nature 524:369–372. doi: 10.1038/nature14597

Gomes MF, Pastore Y Pi ontiti A, Rossi L, Chao D, Longini I, Halloran ME, Vespi gnani A. 2014. Assessing the international spreading risk associated with the 2014 west african ebola outbreak. PLoS Currents 6. doi: 10.1371/currents.outbreaks.cd8188f63d40e24aeffe769dda7df9e0da5

HIV modeling consortium. Available: http://www.hivmodelling.org/.

Hoenen T, Saffronetz D, Groseth A, Wollenberg KR, Koita OA, Diarra B, Fall IS, Haidara FC, Diallo F, Sanogo M, Sarro YS, Kone A, Togo AC, Traore A, Kudjo M, Dosseh A, Rosenke K, de Wet E, Feldmann F, Elbireh H, Munster VJ, Zoon KC, Feldmann H, Sow S. 2015. Virology, mutation rate and genotype variation of ebola virus from mali case sequences. Science 348:117–119. doi: 10.1126/science.aaa5646

Intergovernmental Panel on Climate Change. IPCC expert meeting on assessing and combining multi model climate projections. Good practice guidance paper on assessing and combining multi model climate projections. 2010. Available: https://www.ipcc-wg1.unibe.ch/guidancepaper/ IPCC.EM_MME_GoodPracticeGuidancePaper.pdf

Khan A, Naveed M, Dur-E-Ahmad M, Imran M. 2015. Estimating the basic reproductive ratio for the ebola outbreak in libera and sierra leone. Infectious Diseases of Poverty 4:13. doi: 10.1186/s40249-015-0043-3
King AA, Domenech de Celles M, Magpayat FMG, Rohani P. 2015. Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to ebola. Proceedings of the Royal Society B: Biological Sciences 282.20150347. doi: 10.1098/rspb.2015.0347

Kisowski MA. 2014. A three-scale network model for the early growth dynamics of 2014 west africa ebola epidemic. PLoS Currents 6. doi: 10.1371/currents.outbreaks.c6efe8274e3527d05c6cb62bbee070

Kucharski AJ, Camacho A, Cecheci F, Waldman R, Grais RF, Cabrol JC, Briand S, Baguelin M, Flasche S, Funk S, Edmunds WJ. 2015. Evaluation of the benefits and risks of introducing ebola community care centers, sierra leone. Emerging Infectious Diseases 21.393–399. doi: 10.3201/eid2103.141892

Kugelman JR, Wiley MR, Mate S, Ladner JT, Beitzel B, Fakoli L. 2015. Monitoring of ebola virus makona evolution through establishment of advanced genomic capability in libera. Emerging Infectious Diseases 21: 1135–1143. doi: 10.3201/eid2105.150522

Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, Galvani AP. 2014. Dynamics and control of ebola virus transmission in montserrado, libera: a mathematical modelling analysis. The Lancet. Infectious Diseases 14:1189–1195. doi: 10.1016/S1473-3099(14)70995-8

Majumder MS, Rivers C, Lofgren E, Fisman D. 2014. Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 saudi arabia outbreak: insights from publicly available data. PLoS Currents 6. doi: 10.1371/currents.outbreaks.98d2f83382d84f390736cd5f5fe133c

Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED, Nichol ST, Damon IK, Washington ML. 2014. Estimating the future number of cases in the ebola epidemic-liberia and sierra leone, 2014-2015. Morbidity and Mortality Weekly Report. Surveillance Summaries (Washington, D.C. : 2002) 63 Suppl 1:14–16.

Meltzer MI, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, Chao DL, Longini IM, Halloran ME, Vespignani A. 2015. Spatiotemporal spread of the 2014 outbreak of ebola virus disease in libera and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. The Lancet. Infectious Diseases 15:204–211. doi: 10.1016/S1473-3099(14)71074-6

Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6:e1000097. doi: 10.1371/journal.pmed.1000097

Nadhem S, Neib HD. 2015. The ebola contagion and forecasting virus: evidence from four african countries. Health Economics Review 5:47. doi: 10.1186/s13561-015-0047-5

National Institutes of Health. 2016a. Fogarty international center. Research and policy for infectious disease dynamics. Available http://www.fic.nih.gov/about/staff/pages/epidemiology-population.aspx

National Institutes of Health. 2016b. National Institute of General Medical Sciences. Models of Infectious Disease Agent Study (MIDAS). Available: http://www.nigms.nih.gov/Research/SpecificAreas/MIDAS/Pages/default.aspx.

Nishiura H, Chowell G. 2014. Early transmission dynamics of ebola virus disease (eVD), west africa, march to august 2014. Euro Surveillance : Bulletin European Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 20:10894. doi: 10.2807/1560-7917.ES2014.19.36.20894

Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, Nyenswah TG, Ndeffo-Mbah ML, Galvani AP. 2014. Strategies for containing ebola in west africa. Science 346:991–995. doi: 10.1126/science.1260612

Park DJ, Dudas G, Wohl S, Goba A, Whitmer SL, Andersgen KG, Seallfon RS, Ladner JT, Kugelman JR, Matranga CB, Winiicki SM, Qu J, Gire SK, Gladden-Young A, Jalilh S, Nosamiefan D, Yozwiak NL, Moses LM, Jiang PP, Lin AE, Schaffner SF, Bird B, Towner J, Mamoh M, Gbakie M, Kanneh L, Kargbo D, Massally JK, Karama FK, Konuwa E, Sellu J, Jalilh AA, Mustapha I, Foday M, Yillah M, Erickson BR, Sealy T, Blau D, Padock C, Brault A, Amman B, Basile J, Beward S, Belser J, Bergeron E, Campbell S, Charakbari A, Doud D, Flint M, Gibbons A, Goodman C, Klain J, McMullan L, Morgan L, Russell B, Salzer J, Sanchez A, Wang D, Jungreis I, Tomkins-Tinch 2016. National Institute of General Medical Sciences. Models of Infectious Disease Agent Study (MIDAS). Available: http://www.nigms.nih.gov/Research/SpecificAreas/MIDAS/Pages/default.aspx.

Nishiura H, Chowell G. 2014. Early transmission dynamics of ebola virus disease (eVD), west africa, march to august 2014. Euro Surveillance : Bulletin European Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 20:10894. doi: 10.2807/1560-7917.ES2014.19.36.20894

Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, Nyenswah TG, Ndeffo-Mbah ML, Galvani AP. 2014. Strategies for containing ebola in west africa. Science 346:991–995. doi: 10.1126/science.1260612

Park DJ, Dudas G, Wohl S, Goba A, Whitmer SL, Andersgen KG, Seallfon RS, Ladner JT, Kugelman JR, Matranga CB, Winiicki SM, Qu J, Gire SK, Gladden-Young A, Jalilh S, Nosamiefan D, Yozwiak NL, Moses LM, Jiang PP, Lin AE, Schaffner SF, Bird B, Towner J, Mamoh M, Gbakie M, Kanneh L, Kargbo D, Massally JK, Karama FK, Konuwa E, Sellu J, Jalilh AA, Mustapha I, Foday M, Yillah M, Erickson BR, Sealy T, Blau D, Padock C, Brault A, Amman B, Basile J, Beward S, Belser J, Bergeron E, Campbell S, Charakbari A, Doud D, Flint M, Gibbons A, Goodman C, Klain J, McMullan L, Morgan L, Russell B, Salzer J, Sanchez A, Wang D, Jungreis I, Tomkins-Tinch 2016. National Institute of General Medical Sciences. Models of Infectious Disease Agent Study (MIDAS). Available: http://www.nigms.nih.gov/Research/SpecificAreas/MIDAS/Pages/default.aspx.

Poletto C, Gomes MF, Pastore y Piontti A, Rossi L, Bioglio L, Chao DL, Longini IM, Halloran ME, Colizza V, Vespignani A. 2014. Assessing the impact of travel restrictions on international spread of the 2014 west africa ebola epidemic. Euro Surveillance : Bulletin European Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 20:19093. doi: 10.2807/1560-7917.ES2014.19.42.20936

Rainisch G, Asher J, George D, Clay M, Smith TL, Kosmos C, Shankar M, Washington ML, Gambhir M, Atkins C, Hatchett R, Lant T, Meltzer MI. 2015. Estimating ebola treatment needs, united states. Emerging Infectious Diseases 21:1273–1275. doi: 10.3201/eid2107.150286

Rainisch G, Shankar M, Wellman M, Merlin T, Meltzer MI. 2015. Regional spread of ebola virus, west africa, 2014. Emerging Infectious Diseases 21:444–447. doi: 10.3201/eid2103.141845

Read JM, Diggle PJ, Chirombo J, Solomon T, Baylis M. 2015. Effectiveness of screening for ebola at airports. The Lancet 385:23–24. doi: 10.1016/S0140-6736(14)61894-8

Rivers C. GitHub. Available: https://github.com/cmavrivers/ebola

Rivers CM, Lotgren ET, Marathe M, Eubank S, Lewis BL. 2014. Modeling the impact of interventions on an epidemic of ebola in sierra leone and libera. PLoS Currents 6:10.1371/currents.outbreaks.4441554d6c05e9df30d0ca33c66d084c

Robinson R. Statement before the US senate committee on health, education, labor, and pensions, joint full committee hearing - ebola in West Africa: a global challenge and public health threat. Available: http://www.help.senate.gov/hearings/hearing/?id=9522d319-5056-a032-5290-5a537121c053.
Scarpino SV, Iamarino A, Wells C, Yamin D, Ndeffo-Mbah M, Wenzel NS, Fox SJ, Nyenswah T, Altice FL, Galvan AP, Meyers LA, Townsend JP. 2015. Epidemiological and viral genomic sequence analysis of the 2014 ebola outbreak reveals clustered transmission. *Clinical Infectious Diseases* **60**: doi: 10.1093/cid/ciu1131

Shaman J, Yang W, Kandula S. 2014. Inference and forecast of the current west african ebola outbreak in guinea, sierra leone and liberia. *PLoS Currents* **6**: doi: 10.1371/currents.outbreaks.3c3477556808e44cf41d2511b21dc29f

Siettos C, Anastassopoulou C, Russo L, Grigoras C, Mylonakis E. 2015. Modeling the 2014 ebola virus epidemic – agent-based simulations, temporal analysis and future predictions for liberia and sierra leone. *PLoS Currents* **7**: doi: 10.1371/currents.outbreaks.8d5984114855fc425e699e1a18cdc6c9

Simon-Loriere E, Faye O, Faye O, Koivogui I, Magassouba N, Keita S, Thiberge JM, Diouf L, Boucher C, Vandenbogaert M, Caro V, Fall G, Buchmann JP, Matranga CB, Sabeti PC, Manuguerra JC, Holmes EC, Sell AA. 2015. Distinct lineages of ebola virus in guinea during the 2014 West African epidemic. *Nature* **524**:102–104. doi: 10.1038/nature14612

Stadler T, Kühnert D, Rasmussen DA, du Plessis L. 2014. Insights into the early epidemic spread of ebola in sierra leone provided by viral sequence data. *PLoS Currents* **6**: doi: 10.1371/currents.outbreaks.02bc6d972cece7bd353d38c8e9b6a25f

Tong Y-G, Shi W-F, Liu D, Qian J, Liang L, Bo X-C, Liu J, Ren H-G, Fan H, Ni M, Sun Y, Jin Y, Teng Y, Li Z, Kargbo D, Dafae F, Kanu A, Chen C-C, Lan Z-H, Jiang H, Luo Y, Lu H-J, Zhang X-G, Yang F, Hu Y, Cao Y-Q, Su H-X, Liu W-S, Wang Z, Wang C-Y, Bu Z-Y, Guo Z-D, Zhang L-B, Nie W-M, Bai C-Q, Sun C-H, An X-P, Xu P-S, Zhang X-L-L, Huang Y, Mi Z-Q, Yu D, Yao H-W, Feng Y, Xia Z-P, Zheng X-Y, Yang S-T, Lu B, Jiang J-F, Kargbo B, He F-C, Gao GF, Cao W-C, China Mobile Laboratory Testing Team in Sierra Leone. 2015. Genetic diversity and evolutionary dynamics of ebola virus in sierra leone. *Nature* **524**:93–96. doi: 10.1038/nature14490

Toth DJ, Gundlapalli AV, Khader K, Petsey WB, Rubin MA, Adler FR, Samore MH. 2015. Estimates of outbreak risk from new introductions of ebola with immediate and delayed transmission control. *Emerging Infectious Diseases* **21**:1402–1408. doi: 10.3201/eid2108.150170

Towers S, Patterson-Lomba O, Castillo-Chavez C. 2014. Temporal variations in the effective reproduction number of the 2014 west africa ebola outbreak. *PLoS Currents* **6**: doi: 10.1371/currents.outbreaks.9ed4c4294ec8e1dad283172b16bc908

US Department of Commerce. Dengue forecasting. Available: http://dengueforecasting.noaa.gov/.

Valdez LD, Aragão Rêgo HH, Stanley HE, Braunstein LA. 2015. Predicting the extinction of ebola spreading in liberia due to mitigation strategies. *Scientific Reports* **5**: doi: 10.1038/srep02172

Volz E, Pond S. 2014. Phylodynamic analysis of ebola virus in the 2014 sierra leone epidemic. *PLoS Currents* **6**: doi: 10.1371/currents.outbreaks.6f5984114855fc425e699e1a18cdc6c9

Wang XS, Zhong L. 2015. Ebola outbreak in west africa: real-time estimation and multiple-wave prediction. *Mathematical Biosciences and Engineering* **12**:1055–1063. doi: 10.3934/mbe.2015.12.1055

Webba G, Browne C, Huo X, Seydi O, Seydi M, Magal P. 2015. A model of the 2014 ebola epidemic in west africa with contact tracing. *PLoS Currents* **7**: doi: 10.1371/currents.outbreaks.846bd2a31ef37018b7d1126a9c8adf22a

Weitz JS, Dushoff J. 2015. Modeling post-death transmission of ebola: challenges for inference and opportunities for control. *Scientific Reports* **5**: doi: 10.1038/srep08751

White RA, MacDonald E, de Blasio BF, Nygård K, Vold L, Rettingen J-A. 2014. Projected treatment capacity needs in sierra leone. *PLoS Currents*. doi: 10.1371/currents.outbreaks.3c3477556808e44cf41d2511b21dc29f

WHO Ebola Response Team. 2014. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. *The New England Journal of Medicine* **371**:1481–1495. doi: 10.1056/NEJMoa1411100

WHO Ebola Response Team. 2015. West african ebola epidemic after one year—slowing but not yet under control. *The New England Journal of Medicine* **372**:584–587. doi: 10.1056/NEJMoa1419492

World Health Organization 2015. Developing global norms for sharing data and results during public health emergencies. Available: http://www.who.int/medicines/ebola-treatment/data-sharing_phe/en/.

World Health Organization 2016. Situation reports: ebola response roadmap. Available: http://www.who.int/csr/disease/ebola/situation-reports/en/.

Xia ZQ, Wang SF, Li SL, Huang LX, Zhang WY, Sun GQ, Gai ZT, Jin Z. 2015. Modeling the transmission dynamics of ebola virus disease in liberia. *Scientific Reports* **5**: doi: 10.1038/srep13857

Yamin D, Gertler S, Ndeffo-Mbah ML, Skrip LA, Fallah M, Nyenswah TG, Altice FL, Galvan AP. 2015. Effect of ebola progression on transmission and control in liberia. *Annals of Internal Medicine* **162**:11–17. doi: 10.7326/M14-2255

Yozwiak NL, Schaffner SF, Sabeti PC. 2015. Data sharing: make outbreak research open access. *Nature* **518**:477–479. doi: 10.1038/518477a

Zinszer K, Morrison K, Anema A, Majumder MS, Brownstein JS. 2015. The velocity of ebola spread in parts of west africa. *The Lancet. Infectious Diseases* **15**:1005–1007. doi: 10.1016/S1473-3099(15)00234-0