An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

Cristina España-Bonet1,2, Ádám Csaba Varga1, Alberto Barrón-Cedeño3 and Josef van Genabith1,2

1University of Saarland, Saarbrücken, Germany
2DFKI, German Research Center for Artificial Intelligence, Saarbrücken, Germany
3Qatar Computing Research Institute, HBKU, Qatar

cristinae@dfki.de, adamesc.varga@gmail.com, albarron@hbku.edu.qa, Josef.Van_Genabith@dfki.de

Abstract

End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with a large amount of parallel data available. Beside this palpable improvement, neural networks embrace several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words—or sentences—which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the context vectors, i.e. output of the encoder, and their prowess as an interlingual representation of a sentence. Their quality and effectiveness are assessed by similarity measures across translations, semantically related, and semantically unrelated sentence pairs. Second, and as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an $F_1 = 98.2\%$ on data from a shared task when using only context vectors. F_1 reaches 98.9\% when complementary similarity measures are used.

1 Introduction

End-to-end neural machine translation systems (NMT) emerged in 2013 \cite{Kalchbrenner2013} as a promising alternative to statistical and rule-based systems. Nowadays, they are more than a promise. NMT systems are the state-of-the-art for language pairs with a large amount of parallel data \cite{Bojar2016} and have nice properties that other paradigms lack. Just to point out three of them, being a deep learning architecture NMT does not require manually predefined features, it allows for the simultaneous training of systems across multiple languages, and it can provide zero-shot translations, i.e. translations for language pairs not directly seen in the training data \cite{Ha2016,Johnson2016}.

Multilingual neural machine translation systems (ML-NMT) have particularly interesting features. For performing multilingual translation, the network must project all the languages into the same common embedding space. In principle this space is multilingual, but the network is doing more than simply locating words according to their language and meaning independently. Previous analyses suggest that the network locates words according to their semantics, irrespective of their language \cite{Sutskever2014, Ha2016, Johnson2016}. That is somehow reinforced by the fact that zero-shot translation is possible (even if with low quality). If that is confirmed, ML-NMT systems are learning a representation akin to an interlingua for a source text and such interlingual embeddings could be used to assess cross-language similarity, among other applications.

In the past, the analysis of internal embeddings in NMT systems has been limited to visual studies; e.g., showing the proximity between semantically-similar representations. In the first part of this paper, we go beyond such graphical analyses and search for empiri-
The purpose of the encoder is to project source
sentences into an embedding space. The purpose of the decoder is to generate target sentences from the encoder embeddings.

Let \(s = (x_1, \ldots, x_n) \) be a source sentence of length \(n \). The encoder encodes \(s \) as a set of context vectors\(^1\) one per word:

\[
c = \{ h_1, h_2, \ldots, h_n \},
\]

Each component of this vector is obtained by concatenating the forward (\(\vec{h}_i \)) and backward (\(\overrightarrow{h}_i \)) encoder RNN hidden states:

\[
h_i = \begin{bmatrix} \vec{h}_i, \overrightarrow{h}_i \end{bmatrix}
\]

where \(f \) is a recurrent unit (Gated Recurrent Units (GRU) \cite{cho2014} in our experiments) and \(r \) is a representation of the source sentence given by the product of the word embeddings matrix and the one-hot vector representation of \(x_i \):

\[
r = W_x \cdot x_i.
\]

The decoder generates the output sentence \((y_1, \ldots, y_m) \) of length \(m \) on a word-by-word basis. The recurrent hidden state of the decoder \(z_j \) is computed using its previous hidden state \(z_{j-1} \), as well as the previous continuous representation of the target word \(t_{j-1} \) and the weighted context vector \(q_j \) at time step \(j \):

\[
z_j = g(z_{j-1}, t_{j-1}, q_j)
\]

\[
t_{j-1} = W_y \cdot y_{j-1},
\]

where \(g \) is the recurrent unit of the decoder and \(W_y \) is the matrix of the target embeddings. The weighted context vector \(q_j \) is calculated by the attention mechanism as described in \cite{bahdanau2014}. Its function is to assign weights to the context vectors in order to selectively focus on different source words at different time steps of the translation. To this end, a single-hidden-layer feedforward neural network is utilised that assigns relevance scores \(a_i \) as they can be interpreted as alignment scores to the context vectors, which are then normalised into probabilities by the softmax

\(^1\)Called "annotation vectors" by \cite{bahdanau2014}, who use "context vectors" to designate the vectors after the attention mechanism.
function:
\[
a(z_{j-1}, h_i) = v_a \cdot \tanh(W_a \cdot z_{j-1} + U_a \cdot h_i)
\]
\[
\alpha_{ij} = \frac{\exp(a(z_{j-1}, h_i))}{\sum_k \exp(a(z_{j-1}, h_k))}, \quad q_j = \sum_i \alpha_{ij} h_i
\]

The attention mechanism takes the decoder’s previous hidden state \(z_{j-1}\) and the context vector \(h_i\) as inputs and weighs them up with the trainable weight matrices \(W_a\) and \(U_a\), respectively.

A number of papers extend this architecture to deal with multilingual translation by using multiple encoders and/or decoders either with multiple or shared attention mechanisms (Luong et al., 2015; Dong et al., 2015; Firat et al., 2016; Zoph and Knight, 2016; Lee et al., 2016). A simpler approximation (Ha et al., 2016; Johnson et al., 2016) considers exactly the same architecture as the one-to-one NMT for many-to-many NMT using multilingual data with some additional labelling. Johnson et al. (2016) append the tag of the target language to the source-side sentences, forcing the decoder to translate to the appropriate language. Ha et al. (2016) also include tags specifying the language of every source word. Both papers show how these ML-NMT architectures can improve translation quality between under-resourced language pairs and how they can even be used for zero-shot translation. Notice that in the latter case (Johnson et al., 2016) the authors study the representation generated by the attention vectors, that is, the vectors showing the activations in the layer between encoder and decoder. The activations indicate which part of the source sentence is important during decoding to produce a particular chunk of the translation. Although the attention mechanism is shared across all the languages, the relevant chunks in the source sentence can vary depending on the target language.

There is some relevant previous research on qualitative studies of NMT embedding space. Sutskever et al. (2014) show how a monolingual NMT encoder represents sentences with similar meaning close in embedding space. They show graphically—with two instance sentences—that clustering by meaning goes beyond a bag-of-words understanding, and that differences caused by the order of words are reflected in the representation. Ha et al. (2016) go a step further and visualise the internal space in a many-to-one language NMT system. A 2D-representation of some multilingual word embeddings from the encoder after training displays translations and related words close together. Finally, Johnson et al. (2016) provide a visual evidence for a shared space for the attention vectors in an ML-NMT setup. Sentences with the same meaning but in different languages group together, except in the case of zero-shot translations. When a language pair has not been seen during training, the embeddings lie in a different region of the space.

In contrast to previous relevant research, in our work here we focus on the context vectors: the concatenation of the hidden states from the forward and the backward network in the encoding module—right before applying the attention mechanism. Our goal goes beyond understanding the internal representations that the network learns. We aim at finding an appropriate representation to assess multilingual similarity. With this objective in mind, we are looking for a representation that is as target-independent as possible. Similarity assessment is at the core of many natural language processing and information retrieval tasks. Paraphrase identification, which has been also applied to machine translation (Shimohata, 2004), is essentially similarity assessment, and so is the task of plagiarism detection (Potthast et al., 2010). In multi-document summarisation (Goldstein et al., 2000) finding two highly-similar pieces of information from two texts may imply it is worth adding it into a good summary. In information retrieval, and in particular in question answering (Hirschman and Gaizauskas, 2001), a high similarity between a document and an
information request is a key factor of relevance. As expected, similarity estimation also plays an important role in machine translation. It is essential in MT evaluation and, in the current cross-language setting, to identify parallel corpora to feed a (neural) machine translation model with \cite{Munteanu:2005}. Efforts have been carried out to approach cross-language versions of these tasks without translating all the texts into one common language \cite{Bouma:2008, Muñoz:2008, Potthast:2011}, but using interlingua or multilingual representations instead. Still, such representations are usually hard to design and this is precisely when our neural context vector NMT embedding representation comes into play. A multilingual encoder offers an environment where interlingua representations are learnt in a multilingual context. To some extent, it can be thought as a generalisation of methods that project monolingual embeddings in two different languages into a common space to obtain bilingual word embeddings \cite{Mikolov:2013, Faruqui:2014, Madhyastha:2016}.

Large amounts of parallel corpora are needed for training high-performance NMT systems and these are not always readily available. Since the NMT embeddings are learnt in a translation task, it seems natural to use them not only to generate translations but also to detect them in the first place, and in particular in comparable (rather than parallel) corpora. For low-resourced language pairs parallel data are scarce and, even for well-resourced language pairs, data on specific domains are often hard to obtain. Automatically extracting parallel corpora is then an important issue and a necessary step in many data settings.

Languages	Factor	HiddenUnits	Vocab.	Training Corpora (# parallel sentences)
S1-w	{ar, en, es}	word	1024	60K \{ar–en, en–ar, ar–es, es–ar\}
S1-l	{ar, en, es}	lemma	1024	60K \{(\sim 10M) en–es, es–en (\sim 13M)\}
S2-w-d512	{de, en, es, fr}	word	512	80K \{de–en, en–de (\sim 15M*), en–es, es–en\}
S2-w-d1024	{de, en, es, fr}	word	1024	80K \{es–en (\sim 14M), es–fr, fr–es (\sim 15M)\}
S2-w-d2048	{de, en, es, fr}	word	2048	80K \{en–fr, fr–en (\sim 16M)\}

* This value is obtained by oversampling

3 NMT Systems Description

We carry out our experiments with two multilingual many-to-many NMT systems trained with Nematus \cite{Sennrich:2017}. As done in Johnson et al. \cite{Johnson:2016} and similarly to Ha et al. \cite{Ha:2016}, our systems are trained on parallel corpora for several language pairs simultaneously, with the only addition of a tag in the source sentence to account for the target language “<2L2>” (e.g., <2ar> when the target language is Arabic). Table 1 summarises the key parameters of the engines.

Since our aim is to study the capability of NMT representations to characterise similar sentences within and across languages, we selected languages for which text similarity test sets and/or translation test sets are available. First we build a ML-NMT engine for ar, en, and es. We trained the multilingual system for the 6 language pair directions on 56M parallel sentences in total with less than 50 tokens (\sim 10M parallel sentences per language pair). We used 1024 hidden units, which correspond to 2048-dimensional context vectors. The parallel corpus includes data from United Nations \cite{Rafalovich:2009}, Common Crawl\footnote{http://commoncrawl.org}, News Commentary\footnote{http://www.casmacat.eu/corpus/news-commentary.html} and IWSLT\footnote{https://sites.google.com/site/iwltevaluation2016/mt-track}. We train system S1-w after cleaning and tokenising the texts. We used MADAMIRA \cite{Pasha:2014} for Arabic and the Moses tokeniser for the other languages. A second system called S1-l is trained on lemmatised sentences using the MADAMIRA lemmatiser for Arabic, and the IXA pipeline \cite{Agerri:2014} for...
English and Spanish. In both cases we employ a vocabulary of $60K$ tokens plus $2K$ for subword units, segmented using Byte Pair Encoding (BPE) \citep{Sennrich2016}. For validation, we use sentences shorter than 50 tokens from different corpora (1500 sentences in \textit{es-en} from newstest2012\footnote{LDC2004E72 available from the Linguistic Data Consortium}, 1000 sentences in \textit{ar-en} from eTIRR Arabic English News Text\footnote{http://www.statmt.org/wmt08/shared-evaluation-task.html}, and a 1000 sentences partition in \textit{ar-es} from News Commentary).

We build a second ML-NMT engine for \textit{de}, \textit{fr}, \textit{en}, and \textit{es}. We train the system with data on 4 language pairs: \textit{de-en}, \textit{fr-en}, \textit{es-en} and \textit{es-fr}. Although some corpora exist for the remaining two (\textit{es-de} and \textit{fr-de}), we exclude them to study these pairs as instances of zero-shot translation. The parallel corpus includes data from United Nations (\cite{Chen2012}), Common Crawl, Europarl \citep{Koehn2005}, EMEA \citep{Tiedemann2009} and Scielo\footnote{http://www.scielo.org}. We obtain about $15M$ parallel sentences per language pair —notice that for \textit{de-en}, we needed oversampling in order to reach the same amount of data and we triple the original sentences. The $22K$ sentences shorter than 50 tokens in the newstest2012 for the 4 main language pairs are used for validation purposes. For this engine, we use a larger vocabulary size, $80K$ type tokens plus $2K$ for BPE, given that, compared to our first set of experiments, one language more is involved. Regarding the number of hidden units, we experiment with three configurations: S2-w-d512, S2-w-d1024, and S2-w-d2048.

3.1 Test Sets and Evaluation

In order to assess the degree of similarity between sentences, we consider three types of test sets. The source side is always the same and it is aligned to a target set that contains either: (i) exact translations of the source, (ii) highly-similar sentences (both mono- and cross-language), and (iii) unrelated sentences (both mono- and cross-language). For Arabic, English and Spanish, we build the three kinds of pairs out of the recently-held “Semantic Textual Similarity Task at SemEval 2017” \citep{Agirre2017}. The task asks to assess the similarity between two texts within the range $[0, 5]$, where 5 stands for semantic equivalence. We extract the subset of sentences with the highest similarity, 4 and 5, and use 140 sentences originally derived from the Microsoft Research Paraphrase Corpus \citep{Dolan2005} (MSR), and 203 sentences from WMT2008\footnote{http://alt.qcri.org/semeval2017/task1} to build our final test set with 343 sentences (subSTS2017). These data were available for \textit{ar} and \textit{en} but not for \textit{es}, so we manually translated the MSR part of the corpus into \textit{es}, and gathered the Spanish counterparts of the WMT2008 from the official set. With this process, we generated the test with translations (trad) and high-similarity sentence pairs (semrel). We shuffled one of the sides of the test set to generate the unrelated pairs (unrel).

In order to simultaneously evaluate the German, French, English and Spanish experiments, we used the test set from WMT2013 (newstest2013); the last edition that includes these four languages. The test set contains 3000 sentences translated into the four languages. As before, we shuffle one of the sides to obtain the test set with unrelated sentence pairs, but we could not generate the equivalent set with high-similarity pairs.

4 Context Vectors in Multilingual NMT Systems

The NMT architecture used for the experiments is the encoder–decoder model with recurrent neural networks and attention mechanism described in Section 2 as implemented in Nematus.

We use the sum of the context vector associated to every word (Eq. 1) at a specific point of the training as the representation of a source sentence s:

$$C = \sum_{i=1}^{n} c_i.$$ \hspace{1cm} (6)

This representation depends on the length of the sentence. However, we stick to this definition rather than using a mean over words because the length of the sentences is an indic
tor of their similarity. That is, sentences with similar meaning tend to have similar lengths.

Given a sentence s_1 represented by C_{s_1} and a sentence s_2 represented by C_{s_2}, we can estimate their similarity by means of the cosine measure:

$$\text{sim}(C_{s_1}, C_{s_2}) = \frac{C_{s_1} \cdot C_{s_2}}{\|C_{s_1}\| \|C_{s_2}\|}. \quad (7)$$

4.1 Graphical Analysis

Context vectors are high-dimensional structures: for the standard 1024-dimensional hidden layers one has 2048-dimensional context vectors. In order to get a first impression on the behaviour of the embeddings, we project the vectors for a set of sentences into a 2D space using t-Distributed Stochastic Neighbour Embedding (t-SNE) [Van Der Maaten 2014].

We consider 21 sentences extracted from the trial set of the Semantic Textual Similarity Task at SemEval 2017 for this purpose. Figure 1 shows the set of sentences and the relations between triplets. Sentences are divided into 7 triplets with 3 sentences each. Each sentence is an exact translation in ar, en and es. Some triplets are related semantically. For instance, a triplet with the element “Mandela’s condition has improved” is semantically related to the triplet with the element “Mandela’s condition has worsened over past 48 hours”. In a real multilingual space, one would expect sentences within a triplet to lie together and sentences within related triplets to be close but, as Figure 2 shows, the range of behaviours may be diverse. The plot shows the evolution of the context vectors for these 21 sentences throughout the training (central panel), paying special attention to an early (left panel) and a late stage (right panel).

At the beginning of the training, English and Spanish sentences in a same triplet (same colour) lie close together and, for some triplets, they even overlap; see $t4$ and $t7$. This is an effect of having a representation that depends on the length of the sentence: the elements in $t4$ and $t7$ not only share some vocabulary but also have very similar lengths. Arabic sentences remain together, almost irrespective of their meaning. One has to take into account that en and es are closer between them than to ar — they share a subject-verb-object structure and have many cognates. Meanwhile, ar is closer to es than to en —Arabic influenced the Spanish language during 800 years. At this early stage in training, the closer languages have already been unified (en and es) and sentences can be grouped according to their semantics, but the most distant language (ar) is not in the same stage yet. For Arabic sentences, the language is more important than the semantics: sentence $s9$ is closer to $s14$ (another sentence in Arabic with similar length) than to $s7$ (a strict and longer translation of $s9$ into Spanish).

As training continues, Arabic sentences spread through the space and slowly tend to join their counterparts in the other languages. English and Spanish sentences also move apart towards a more general interlingua position. That is, there is a flow from near to overlapping locations for translations of the same sentence towards locations grouped by topic, irrespective of the language (look at the evolution of the related triplets $t6$ and $t7$ for example). This evolution must be considered if one wants to use context vectors as a semantic representation of a sentence: representations at different points of the training process might be useful for different tasks.

The expected behaviour, however, is not observed for all the triplets. It is the case for $t1$ or $t5$, where representations of the individual sentences get closer at every iteration. Still, it is not the case for other triplets, such as $t6$, in which sentences are far from each other at each iteration (notice that this triplet has the longest sentences and the highest length variation).

A more systematic study is necessary in order to be able to draw strong conclusions. In the following sections we conduct such a study and draw conclusions quantitatively, rather than only qualitatively. We also determine at which point in the training process the internal representation of a sentence is optimal for our aim: parallel sentence selection from comparable data.
Spain princess testifies in historic fraud probe

Princesa de España testifica en juicio histórico de fraude

You do not need to worry.

No necesitas preocuparte.

You don't have to worry.

No te tienes por que preocupar.

Mandela's condition has 'improved'

La salud de Mandela ha 'mejorado'

Mandela's condition has 'worsened over past 48 hours'

La salud de Mandela 'ha empeorado en las últimas 48 horas

If a term occurs in the document, the value will be non-zero in the vector.

La representación en el espacio de vectores implica la pérdida del orden en el que los términos ocurren en el documento.

No necesitas preocuparte.

La salud de Mandela ha 'mejorado'

You don't have to worry.

Mandela's condition has 'improved'

Ameba iberiábana testifica en petición de fraude.

You do not need to worry.

La salud de Mandela ha 'mejorado'

If a term occurs in the document, the value will be non-zero in the vector.
4.2 Source vs. Source–Target Semantic Representations

The training of the ML-NMT systems involves one-to-many instances, that is, for the same source language L1 one has different examples of translations into L2, L3 or L4. A first question one can address given this set up is whether the interpretation of a source sentence learnt by the network depends on the language it is going to be translated into or not. In a truly interlingual space, such a representation should be the same, or at least very close.

In order to test this, we computed the cosine similarity between the representation of a source sentence s when it is translated with the same engine into two different languages Li and Lj:

\[<2Li - 2Lj> \equiv sim(s_{<2Li>}, s_{<2Lj>}) \] \hspace{1cm} (8)

Sentence representations are extracted with engine S1-w for \{ar, en, es\} on subSTS2017 data and with engine S2-w-d1024 for \{de, en, es, fr\} on newstest2013. Afterwards, we compute the mean over all the sentences in a test set. Table 2 shows the results for this analysis.

Similarities are close to one in all cases; a number that would indicate that representations are fully equivalent, and are compatible with one within a 2σ interval. Although differences among languages and test sets are not statistically significant at that level, some general trends can be observed. Despite the fact that the similarity between instances of the same sentence is not one, it is larger than the similarity between closely related sentences when translated into the same language (see Section 4.3). That is, we can identify a sentence by a unique representation. Also notice that there is no difference either when we translate into a language without any direct parallel data (zero-shot translation): for es–de and fr–de, system S2-w-d1024 had no data, but the similarities involving these pairs (marked with an asterisk in Table 2) are not statistically-different to those involving es–fr and es–en, for example.

Finally, we can strengthen the correlation between the relatedness between languages and the closeness of the internal representations observed also via the first graphical analysis. The representation of an Arabic sentence when translated into en or es is almost the same \(sim = 0.97 \pm 0.05 \), but the difference in the representation of a Spanish sentence when translated into ar or en is the largest one \(sim = 0.91 \pm 0.05 \) due to the disparity between ar and en. The same effect, but at a lower degree, is observed in the \{de, fr, en, es\} case when making the distinction between \{fr, es\} and \{de, en\} as two groups of “close” languages.

4.3 Representations throughout Training

During training, the network learns the most appropriate representation of words/sentences in order to be translated, so the embeddings themselves evolve over time. As we have seen with the graphical analysis (Section 4.1), it is interesting to follow this evolution and examine how sentences are grouped together depending on their language and semantics. For this, we analyse in parallel an engine trained on lemmatised sentences (S1-l) and one trained on tokenised sentences (S1-w). The rationale behind this is that the vocabulary in the lemmatised system is smaller and therefore can be better covered during training. Still, the ambiguity becomes higher, which could damage the quality of the representations.

Table 3 shows the results. At the beginning of the training process, after having seen 4 \(\cdot 10^6 \) sentences only, the results are still very much dependent on the language. Exact trans-
Table 3: Cosine similarities between the obtained representations of the sentences in the sub-STS2017 test set with the two configurations of the \{ar, en, es\} system, S1-w and S1-l. Results are shown for the available language pairs, both monolingual and cross-language, and for the three versions of the set with translations (trad), semantically similar sentences (semrel) and unrelated sentences (unrel). Notice that a trad set cannot be built in the monolingual case. $\Delta_{\text{tr-un}}$ is the difference between the mean similarity seen in translations and in unrelated sentences. 1σ uncertainties are shown in parentheses and affect the last significant digits.

	S1-words	S1-lemmas								
	ar	en	ar-en	ar-es	en-es	ar	en	ar-en	ar-es	en-es
trad	0.92(03)	0.93(01)	0.24(10)	0.75(06)	0.38(09)	0.93(01)	0.94(01)	0.42(07)	0.80(05)	0.51(06)
semrel	0.65(13)	0.66(13)	0.06(09)	0.53(11)	0.14(10)	0.70(09)	0.73(09)	0.27(09)	0.63(10)	0.33(08)
unrel	–	–	0.20(13)	0.23(12)	0.26(13)	–	–	0.16(11)	0.18(11)	0.20(10)
$\Delta_{\text{tr-un}}$	–	–	0.32(12)	0.30(12)	0.39(12)	–	–	0.28(11)	0.29(11)	0.33(11)

	S1-words	S1-lemmas								
	ar	en	ar-en	ar-es	en-es	ar	en	ar-en	ar-es	en-es
trad	0.86(07)	0.87(06)	0.58(08)	0.65(07)	0.73(07)	0.84(08)	0.86(06)	0.47(07)	0.66(07)	0.57(07)
semrel	0.48(12)	0.43(12)	0.30(10)	0.37(11)	0.37(11)	0.45(12)	0.46(11)	0.23(08)	0.39(10)	0.27(09)
unrel	–	–	0.34(12)	0.33(13)	0.43(12)	–	–	0.28(11)	0.29(11)	0.33(11)
$\Delta_{\text{tr-un}}$	–	–	0.33(12)	0.32(12)	0.42(12)	–	–	0.29(10)	0.31(10)	0.37(11)

lations in ar-es have a similarity of 0.81±0.04, whereas exact translations in ar-en have a similarity of 0.44±0.07 (see the first row for system S1-lemmas). Perhaps for this reason monolingual pairs show higher similarity values than cross-language pairs, even for unrelated sentences ($\text{sim} = 0.70 \pm 0.09$ for ar and $\text{sim} = 0.73 \pm 0.09$ for en). Nevertheless, within a language pair the system has already learned the meaning of the sentences: cosine similarities are the highest for exact translations (trad), slightly lower for semantically related sentences (semrel) and significantly lower for unrelated sentences (unrel). The difference between the mean similarities obtained for translations and unrelated sentences,

$$\Delta_{\text{tr-un}} \equiv \Delta(\text{sim(trad)} - \text{sim(unrel)})$$

shows how, already at this point, parallel sentences can be identified and located in the multilingual space, even though the similarity for translations is in general far from one and the similarity for unrelated sentences is far from zero.

At this starting point, sentences lie closer together irrespective of their meaning in the lemmatised system than in the tokenised one. Similarities are always higher for S1-l than for
Table 4: Similar to Table 3 for the \{de, fr, en, es\} engine on the newstest2013 test sets after half an epoch. In this case, three system configurations are shown that vary the size of the last hidden layer of the encoder: S2-w-d512, S2-w-d1024 and S2-w-d2048.

	de-en	de-es	de-fr	en-es	en-fr	es-fr
S2-w-d512						
trad	0.61(10)	0.62(10)	0.62(10)	0.66(10)	0.66(10)	0.73(10)
unrel	0.25(10)	0.27(10)	0.27(10)	0.26(10)	0.26(10)	0.30(11)
δtr−ur	0.36(14)	0.35(14)	0.35(14)	0.40(14)	0.41(14)	0.43(15)
S2-w-d1024						
trad	0.62(10)	0.62(10)	0.62(10)	0.66(10)	0.66(10)	0.73(10)
unrel	0.26(10)	0.27(10)	0.27(10)	0.26(10)	0.27(10)	0.31(11)
δtr−ur	0.36(14)	0.35(14)	0.34(14)	0.39(14)	0.40(14)	0.42(15)
S2-w-d2048						
trad	0.59(10)	0.58(10)	0.58(10)	0.61(10)	0.62(10)	0.69(11)
unrel	0.24(09)	0.25(09)	0.25(09)	0.23(09)	0.23(09)	0.27(10)
δtr−ur	0.35(13)	0.33(14)	0.33(14)	0.38(13)	0.39(14)	0.42(15)

its counterpart in S1-w. The separation between translations and unrelated sentences is always more important in the S1-w (δtr−ur is higher). This is true all along the training process, confirming that the ambiguity introduced by the lemmatisation damages the representativity of the embeddings.

When the training process has covered 28 · 10^6 sentences, half an epoch for this system, the difference among languages has diminished. Now sentences lie closer together in the tokenised system than in the lemmatised one, irrespective of their meaning. From this point onwards, this trait is maintained. Although all similarities keep going down throughout the training, even for translations, δtr−ur remains almost constant. The maximum value for this difference is found after one epoch (∼ 56 · 10^6 sentences) for all the cross-language pairs in the tokenised system. In this case, δtr−ur is 0.34 ± 0.12 for ar–en, 0.33 ± 0.13 for ar–es and 0.43 ± 0.12 for en–es. Again, the distinction is the clearest for the closest language pair and diminishes when Arabic is involved, mainly because translations involving Arabic are more difficult to detect (the mean similarity between en–es translations is 0.74 ± 0.06; 0.61 ± 0.08 for ar–en).

Analogous conclusions can be drawn from the \{de, fr, en, es\} engine. Table 3 includes the results. The maximum distinction between related and unrelated sentences, δtr−ur, is found after ∼ 56 · 10^6 sentences, half an epoch in this case, even though the difference was well established at a third of an epoch. δtr−ur is 0.3 ± 0.1 when German is involved (de–en, de–es, de–fr) and 0.4 ± 0.1 when it is not (en–es, en–fr, es–fr). The difference is mostly given by the similarity between translations, which is higher when German is not concerned.

Notice that this optimal point does not correspond to the optimal point regarding translation quality. Figure 3 displays the progression of the BLEU score along training for the English-to-Spanish translation. The dashed vertical line indicates the iteration where δtr−ur is maximum. At this time, the engine is still learning, as seen by the fact that the translation quality is clearly increasing.

Another interesting observation is that the expressivity of the embeddings does not depend on their dimensionality. Context vectors with 1024 dimensions (S2-w-d512), 2048 dimensions (S2-w-d1024) and 4096 dimensions (S2-w-d2048), lead to similar figures for similarity values between pairs of sentences. At the beginning of the training, S2-w-d1024 gives slightly better representations than the other two systems, but this difference is narrowed when the training advances. The training time almost doubles when doubling the dimensionality of the hidden layer, but this higher capacity does not result in a better description of the data. Actually, 4096-dimensional vectors perform worse than the 1024-dimensional ones at
all the training stages. However, translation quality does depend on the size of the hidden layer and, in our experiments, S2-w-d2048 performs better than the lower-dimensional systems (see Figure 3 to observe the variation for the English-to-Spanish translation).

5 Use Case: Parallel Sentence Extraction

The previous section shows how ML-NMT context vectors can be used as a representation that allows to calculate sensitive similarities between sentences with the potential to distinguish translations from non-translations and even translations from pairs with similar meaning. As a first application, we can use these representations learned when mapping parallel sentences —the NMT system training— in order to detect new parallel pairs. In particular, we use a semantic similarity measure based on the context vectors obtained with the NMT system of Section 4 to extract parallel sentences and study its performance as compared to other measures.

Our translation engine is the ML-NMT system for de, fr, en, and es, described in Section 3. According to the conclusions gathered in Section 4, we use system S2-w-d512 after half an epoch of training for extracting the context vectors. This system gives us the best trade-off between speed (low-dimensional vectors are extracted faster) and dissociation between translations and unrelated sentences, as this is the training point where the difference Δ_{tr-ur} is maximum.

5.1 Parallel Sentence Identification

In order to perform a complete analysis, we consider five additional/complementary measures to context vectors and test different scenarios. We borrow two well known representations from cross-language information retrieval to account for syntactic features by means of cosine similarities: (i) character n-grams [McNamee and Mayfield, 2004], considering $n = \{2, 5\}$ and (ii) pseudo-cognates. From a natural language point of view, cognates are “words that are similar across languages” [Manning and Schütze, 1999]. We relax the concept of cognate and consider as pseudo-cognates any words in two languages that share prefixes. To do so, tokens shorter than four characters are discarded, unless they contain non-alphabetical characters. The resulting tokens are cut off to four characters (Simard et al., 1993). The necessary preprocessing consists of casefolding, punctuation marks removal, and diacritics removal only. For the character n-gram measure, we also remove spaces to better account for compounds in German. Besides, we include general features at sentence level such as (iii) token and (iv) character counts, and (v) the length factor measure [Pouliquen et al., 2003].

We test three different scenarios to observe the effect of context vectors when extracting sentence pairs and compare them against the other standard characterisations:

- ctx: only context vectors are used,
- $comp$: the set of five complementary measures is used,
- all: a combination of ctx and $comp$ is used.

For each of these scenarios, we learn a binary classifier on annotated data. We use the de–en and fr–en training corpora provided for the shared task on identifying parallel sentences in comparable corpora at the “10th Workshop on Building and Using Comparable Corpora” (BUCC 2017). This set contains 1,454,890 sentences from Wikipedia.

11 https://comparable.limsi.fr/bucc2017/bucc2017-task.html
Table 5: Precision (P), Recall (R) and F1 scores (%) obtained on the binary classification of pseudo-alignments on the held-out test set.

	de–en	fr–en	joint						
	P	R	F1	P	R	F1	P	R	F1
Thrs.	95.5	97.1	96.3	95.4	100.0	97.7	98.3	98.1	98.2
SVM	96.2	96.2	96.2	95.6	99.1	97.3	97.1	98.0	97.6
GB	97.0	95.7	96.4	95.6	99.6	97.6	97.0	97.3	97.2
Ens.	98.2	95.7	97.0	95.6	99.1	97.3	96.9	97.8	97.3
SVM	72.3	85.5	78.4	76.7	85.1	80.7	73.4	80.9	77.0
GB	93.5	85.1	89.1	97.2	93.2	95.1	96.9	90.7	93.7
Ens.	84.0	89.4	86.6	95.5	95.5	95.5	93.4	91.6	92.5
SVM	74.6	86.4	80.1	81.8	87.3	84.5	86.1	85.6	85.8
GB	98.7	96.6	97.6	99.1	99.6	99.3	98.9	98.9	98.9
Ens.	99.1	96.6	97.8	99.1	99.6	99.3	98.7	99.1	98.9

Table 5 shows Precision (P), Recall (R) and F1 scores for the three scenarios. Notice that a simple greedy threshold search is better than any of the machine learning counterparts when only context vectors are used, but differences are not significant. The greedy search on the context vector similarities gives a better F1 score on the held-out test set than an ensemble of SVM and GB operating only the set of additional features with almost no knowledge of semantics. As we have argued in the previous section, translations and non-translations are clearly differentiated by a cosine similarity of the context vectors for these pairs of languages, as the difference between the mean similarities of translations and unrelated texts is much higher than its uncertainty ($\Delta_{tr-ur} = 0.36 \pm 0.14$ for de–en, and 0.41 ± 0.14 for fr–en). This clear distinction in the similarities is translated into a F1 = 98.2% in the task of parallel sentence identification.

Due to its interlingual nature, our feature behaves equally well in both language pairs and improves in the multilingual setting (joint columns in Table 5). On the contrary, the set...
of complementary features depends on the language pair and has a drop in performance for de–en. For this reason, the results in the multilingual setting are always worse than in the bilingual one. This fact is inherited in the all scenario, where the classification for the joint corpus has $F_1 = 98.9\%$, which is lower than the one obtained for fr–en alone ($F_1 = 99.3\%$). Nevertheless, semantic and syntactic similarity features are complementary and the combination of all similarity measures slightly improves precision, recall and F_1 in the multilingual setting. Finally, it is worth noting the high recall derived from the context vectors, which reaches 100% for fr–en and falls to 98.1% for the joint data, being still 6.5 points higher than for the comp features.

6 Conclusions

In this article we provide evidence of the interlingual nature of the context vectors generated by an end-to-end multilingual neural machine translation system and study their power in the assessment of monolingual and cross-language similarity.

We investigate how the representation of a sentence varies in order to be accommodated to a particular target language and observe that the difference is negligible, even though it grows when we consider distant target languages such Arabic and English. Even in these cases, the representation of a sentence is unique enough as closely related sentences have a smaller similarity than different instances of a same sentence.

Results also show that the contextual interlanguage vectors are able to differentiate among sentences with identical, similar, and different meaning across different languages — including Arabic, English, French, German, and Spanish. Our training-evolution experiments reveal that vectors at early training are the best ones for similarity assessment, whereas the optimal ones for translation require further training. Besides, whereas for reaching a good translation quality the dimensionality of the vectors is important, we show that the expressivity of the embeddings as regards semantic similarity within and across languages does not depend on their dimension.

As a direct application of our similarity feature, we identify parallel sentences in comparable corpora achieving a performance of $F_1 = 98.2\%$ on data of the shared task on identifying parallel sentences in comparable corpora at BUCC 2017. The fact that this is an interlingual feature allows to use data on different languages simultaneously for setting a threshold or a classification model that can be later used on other languages without a loss of performance.

Acknowledgments

Part of the research in this work has been funded by the Leibniz Gemeinschaft via the SAW-2016-ZPID-2 project. The research work of A. Barrón-Cedeño is carried out in the framework of the Interactive Systems for Answer Search project (IYAS), at the Qatar Computing Research Institute, HBKU.

References

Rodrigo Agerri, Josu Bermudez, and German Rigau. 2014. IXA pipeline: Efficient and Ready to Use Multilingual NLP Tools. In [Calzolari et al.] (2014).

Eneko Agirre, Daniel Cer, Mona Diab, Inigo Lopez-Gazpioa, and Lucia Specia. 2017 (to appear). SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation. Vancouver, Canada.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aurelie Nevel, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. 2016. Findings of the 2016 Conference on Machine Translation. In Proceedings of the First Conference on Machine Translation. Association for Computational Linguistics, Berlin, Germany, pages 131–198.

Gosse Bouma, Jori Mur, and Gertjan van Noord. 2008. Question Answering with Joost at CLEF 2008. In [Peters et al.] (2008).

Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors. 2014. European Language Resources Association (ELRA), Reykjavik, Iceland.

Yu Chen and Andreas Eisele. 2012. MultiUN v2: UN Documents with Multilingual Alignments. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA), Istanbul, Turkey.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar, pages 1724–1734.

Bill Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In Third International Workshop on Paraphrasing (IWP2005). Asia Federation of Natural Language Processing.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015. Multi-Task Learning for Multiple Language Translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Beijing, China, pages 1723–1732.

Manaal Faruqui and Chris Dyer. 2014. Improving Vector Space Word Representations Using Multilingual Correlation. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Gothenburg, Sweden, pages 462–471.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism. In (Knight et al.) [2016], pages 866–875.

Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. 2000. Multi-Document Summarization By Sentence Extraction. In NAACL-ANLP 2000 Workshop on Automatic Summarization. Association for Computational Linguistics, Seattle, WA, pages 40–48.

Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel. 2016. Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder. CoRR abs/1611.04798.

L. Hirschman and R. Gaizauskas. 2001. Natural language question answering: the view from here. Natural Language Engineering 7(4):275–300. https://doi.org/10.1017/S1351324901002807.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. CoRR abs/1611.04558.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation Models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, pages 1700–1709.

Kevin Knight, Ani Nenkova, and Owen Rambow, editors. 2016. Association for Computational Linguistics, San Diego, CA.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference Proceedings: the Tenth Machine Translation Summit. AAMT, AAMT, Phuket, Thailand, pages 79–86.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2016. Fully Character-Level Neural Machine Translation without Explicit Segmentation. CoRR abs/1610.03017.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. 2015. Multi-task Sequence to Sequence Learning. CoRR abs/1511.06114.

Pranava Swaroop Madhyastha and Cristina España-Bonet. 2016. Resolving Out-of-Vocabulary Words with Bilingual Embeddings in Machine Translation. CoRR abs/1608.01910.

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT Press.

Paul McNamee and James Mayfield. 2004. Character n-gram tokenization for European language text retrieval. Information retrieval 7(1-2):73–97.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploring Similarities among Languages for Machine Translation. CoRR abs/1309.4168.

R. Muñoz Terol, M. Puchol-Blasco, M. Pardiño, J.M. Gómez, S. Roger, K. Vila, A. Ferrádez, J. Peral, and P. Martínez-Barco. 2008. AliQAn, Spanish QA System at multilingual QA@CLEF-2008. In (Peters et al.) [2008].
Dragos Stefan Munteanu and Daniel Marcu. 2005. Improving Machine Translation Performance by Exploiting Non-Parallel Corpora. Computational Linguistics 31(4):477–504. https://doi.org/10.1162/089120105775299168

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab, Ahmed El Kholy, Ramsy Eskander, Nizar Habash, Manoj Pooleery, Owen Rambow, and Ryan Roth. 2014. MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic. In Calzolari et al. (2014).

Carol Peters, Thomas Deselaers, Nicola Ferro, Julio Gonzalez, Gareth J. F. Jones, Mikko Kurimo, Thomas Mandl, Anselmo Peñas, and Vivien Petras, editors. 2008. Evaluating Systems for Multilingual and Multimodal Information Access, 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Revised Selected Papers. Aarhus, Denmark.

Martin Potthast, Alberto Barrón-Cedeño, Benno Stein, and Paolo Rosso. 2011. Cross-language plagiarism detection. Language Resources and Evaluation (LRE), Special Issue on Plagiarism and Authorship Analysis 45(1):1–18. https://doi.org/10.1007/s10579-009-9114-z

Martin Potthast, Benno Stein, Alberto Barrón-Cedeño, and Paolo Rosso. 2010. An Evaluation Framework for Plagiarism Detection. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010). Beijing, China, pages 997–1005.

Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat. 2003. Automatic Identification of Document Translations in Large Multilingual Document Collections. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-2003). Borovets, Bulgaria, pages 401–408.

Alexandre Rafalovitch and Robert Dale. 2009. United Nations General Assembly Resolutions: A Six-Language Parallel Corpus. In Proceedings of the Machine Translation Summit XII. International Association of Machine Translation, pages 292–299.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Lääbli, Antonio Valerio Miceli Barone, Jozef Mokry, and Maria Nadejde. 2017. Nematus: a Toolkit for Neural Machine Translation. In Proceedings of the Demonstrations at the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, Spain.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.

Mitsuo Shimohata. 2004. Acquiring Paraphrases from Corpora and Its Application to Machine Translation. Ph.D. thesis, Nara Institute of Science and Technology, Nara, Japan.

Michel Simard, George F Foster, and Pierre Isabelle. 1993. Using Cognates to Align Sentences in Bilingual Corpora. In Proceedings of the 1993 conference of the Centre for Advanced Studies on Collaborative research: distributed computing-Volume 2. IBM Press, pages 1071–1082.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence Learning with Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, Curran Associates, Inc., pages 3104–3112.

Jörg Tiedemann. 2009. News from OPUS - A Collection of Multilingual Parallel Corpora with Tools and Interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov, editors, Recent Advances in Natural Language Processing, John Benjamins, Amsterdam/Philadelphia, Borovets, Bulgaria, volume V, pages 237–248.

Laurens Van Der Maaten. 2014. Accelerating t-SNE Using Tree-based Algorithms. Journal of Machine Learning Research 15(1):3221–3245.

Barret Zoph and Kevin Knight. 2016. Multi-Source Neural Translation. In Knight et al. (2016), pages 30–34.