Prenatal Exposure to Organophosphate Pesticides and Neurobehavioral Development of Neonates: A Birth Cohort Study in Shenyang, China

Ying Zhang1, Song Han1*, Duohong Liang1, Xinzhu Shi1, Fengzhi Wang1, Wei Liu2, Li Zhang2, Lixin Chen2, Yingzi Gu2, Ying Tian3

1 Department of Epidemiology, Public Health School, Shenyang Medical College, Shenyang, China, 2 Department of Obstetrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China, 3 School of Medicine, Shanghai JiaoTong University, Shanghai, China

Abstract

Background: A large amount of organophosphate pesticides (OPs) are used in agriculture in China every year, contributing to exposure of OPs through dietary consumption among the general population. However, the level of exposure to OPs in China is still uncertain.

Objective: To investigate the effect of the exposure to OPs on the neonatal neurodevelopment during pregnancy in Shenyang, China.

Methods: 249 pregnant women enrolled in the Central Hospital Affiliated to Shenyang Medical College from February 2011 to August 2012. A cohort of the mothers and their neonates participated in the study and information on each subject was obtained by questionnaire. Dialkyl phosphate (DAP) metabolites were detected in the urine of mothers during pregnancy to evaluate the exposure level to OPs. Neonate neurobehavioral developmental levels were assessed according to the standards of the Neonatal Behavioral Neurological Assessment (NBNA). Multiple linear regressions were utilized to analyze the association between pregnancy exposure to OPs and neonatal neurobehavioral development.

Results: The geometric means (GM) of urinary metabolites for dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP), diethyl phosphate (DEP), and diethyl thiophosphate (DETP) in pregnant women were 18.03, 8.53, 7.14, and 5.64 mg/L, respectively. Results from multiple linear regressions showed that prenatal OP exposure was one of the most important factors affecting NBNA scores. Prenatal total DAP concentrations were inversely associated with scores on the NBNA scales. Additionally, a 10-fold increase in DAP concentrations was associated with a decrease of 1.78 regarding the Summary NBNA (95% CI, −2.12 to −1.45). And there was an estimated 2.11-point difference in summary NBNA scores between neonates in the highest quintile of prenatal OP exposure and the lowest quintile group.

Conclusion: The high exposure of pregnant women to OPs in Shenyang, China was the predominant risk factor for neonatal neurobehavioral development.

Introduction

As one of the largest developing agriculture countries, China must manage to maintain and increase crop yields from year to year. Because of this, pesticides are widely used in agriculture. The annual application of synthetic pesticides on food crops in China exceeds 300,000 tons and the average amount of the pesticides used in one field unit in China is more than 2.5-5 fold higher than the global average [1]. Even though the Chinese government emphasizes and promotes the reduction of pesticide use in agriculture, data from Chinese Agricultural Ministry for 2006–2010 showed that the annual pesticide consumption has not decreased. Along with the wide-spread use of highly toxic organophosphate pesticides (OPs) (with potent toxicity to insects, relatively low costs and the decreased likelihood for pest resistance [2]), OPs account for more than 1/3 of all insecticide use in China.

As a result of the heavy use of OPs in agriculture, more than 10 percent of fruits, vegetables, and cereal grains grown in China contain pesticide residues exceeding the national safety standard [3,4]. For several middle toxicity Ops, such as chlorpyrifos and malathion, their residues mostly are detectable in vegetables [5–7]. Moreover, some highly toxic OPs such as paraathion and methamidophos, which have been banned in China since 2007, have still been detected in vegetable samples through routine monitoring by the Ministry of Agriculture [8]. Besides raw foods...
treated by OPs, contaminated drinking water, dust, and spray drift commonly contribute to OPs exposure among the general population [9]. However, to our knowledge, it is uncertain to know the exposure level to OPs and the effect on the health of the general population in China.

OPs are also likely to be neurotoxic to humans, possibly by utilizing similar mechanisms that target the nervous system of insect pests. This concern is of particular relevance to the developing human brain, which is inherently much more vulnerable to injury caused by toxic agents than adult brains [10]. Because OPs can potentially cross the placenta, fetuses face the risk of in utero exposure to OPs. Together with lower levels of detoxifying enzymes deactivating OPs in fetuses than those in adults, fetus development could be severely affected by OPs [11,12].

In animals, prenatal exposure to OPs may lead to embryo toxicity and developmental toxicity, including neurotoxicity [13–15]. The neurotoxic effects of high level acute poisoning caused by the enzyme acetylcholinesterase (AChE), for example, are well established. Thus, AChE is prohibited for use because it can impair the peripheral, autonomic, and central nervous system (the cholinergic crisis) [16,17] [18]. The effects of long-term exposure to OPs resulting in acute toxicity are currently controversial. Several epidemiologic studies amongst agricultural workers found adverse neurobehavioral and neuropsychological effects, as well as other chronic occupational hazards, associated with long-term exposure to OPs [19–22]. An inner-city multiethnic cohort study, the Mount Sinai Children’s Environmental Health Center (New York City) Survey, showed that prenatal exposure to OPs (through indoor pesticides use) was associated with anomalies in primary reflexes of neonates, and even had long-term adverse effects on neurodevelopment in young children [23,24]. While the studies from the cohort of mothers and children in an agricultural area of California, the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort, showed that the prenatal exposure to OPs was adversely associated with attention span, intelligence, cognitive and other neurodevelopment problems in young children, but no associations were discovered in neonates [25,26]. We speculate that the association of exposure to OPs during neurodevelopment is dependent on the level of exposure to OPs in different regions. Moreover, the effects of OP exposure among the general population are currently unknown.

In this study, we enrolled a cohort of pregnant mothers and their neonates in Shenyang, where OPs are often detected in vegetables and fruits [8], and investigated the maternal exposure to OPs during pregnancy by measuring urinary concentrations of dialkyl phosphate (DAP), which are the metabolites of OPs. The association between the prenatal exposure to OPs and neonatal neurobehavioral development was analyzed. We provide evidence for the effects of OPs on the general population and also provide valuable information in planning policies in the management of pesticides use and public health, especially in pregnant women and children.

Methods

Participants

Healthy pregnant women were recruited to participate in this study from the obstetric wards of the Central Hospital Affiliated with Shenyang Medical College in Shenyang from February 2011 to August 2012. The pregnant women who met the inclusion criteria were enrolled in this study: living in the city for over three years; must not present with hypertension, diabetes, thyroid hypofunction, heart diseases, and other chronic diseases prior to pregnancy; participants must be without heavy complications during gestation such as diabetes, anemia, and hypertension; no family or medical history of mental retardation, phenylketonuria, and Pompe’s syndrome for pregnant women or their spouses. Women were screened for eligibility, and enrolled if they consented to participate in the study. Infants with disorders associated with adverse neurodevelopment such as traumatic brain injury, meningitis, and severe neonatal illnesses were excluded. Of 307 eligible women, 249 pregnant women and their neonates were finally enrolled as participants in the study (response rate: 81.1%).

The study was approved by the Medical Ethics Committee of Shenyang Medical College. All the participants signed written informed consents before the study.

Questionnaire

Face-to-face interviews were conducted with the women after delivery by a specially trained nurse. Information about each subject was obtained by questionnaire, which included data on demographic information, home characteristics, residential history, reproductive history, active and passive smoking, dietary habits, and alcohol and drug use. The use of pesticides during pregnancy was also questioned, including whether or not pesticides were used by pregnant mother or her family member, the types of pesticides, and frequency of use.

Urine OP Metabolites Measurements

Urine samples were collected from each mother for the analysis of dialkyl phosphate (DAP) and other pesticide-specific metabolites. Specimens were aliquoted into pre-cleaned glass containers with Teflon-lined caps, bar coded and stored at –70°C. Samples were then shipped on dry ice to Shanghai Center for Disease Control (CDC) for analysis. Gas chromatography with flame photometric detection (GC-FPD) was used to analyze the DAP metabolites of OPs following the method of Wu et al [37].

Briefly, one milliliter of urine was pipetted into a 10 mL screw-top glass test tube, and 250 μL of a Dibutyl phosphate (DBP, 97% purity, obtained from Fluka and used as an internal standard (IS)) solution (4.0 mg/L) were added. Subsequently, 4 mL acetonitrile was added and the sample was mixed. After vigorous mechanical shaking for 5 min, the test tube was centrifuged (1200 g, 5 min, 25°C). The supernatant fluid containing DAP and DBP was transferred into a clean screw-top glass test tube. Sample volume was then reduced to 70°C to a volume of 0.5 mL with a gentle nitrogen stream. Residues were re-extracted with 3 mL of acetonitrile that contained 1 g of Na2SO4, were shaken for 10 min and then centrifuged. The resulting extract was repeatedly evaporated at 70°C to 0.1–0.2 mL under a gentle stream of nitrogen. To the final extracts, 20 mg of K2CO3, and 25 μL of pentfluorobenzyl bromide (PFBBr) were added and heated at 50°C for 16 h to covert the phosphate acids to their pentfluorobenzyl (PFB) esters. The PFB-DAP derivatives were dissolved in 100 μL of toluene for injection into the GC-FPD.

Capillary gas chromatography with P-specific flame photometric detection (GC-FPD) after derivatization with PFBBr was used to determine the DAP metabolites of OPs in urine. PFB derivatives were identified by GC–MS using a GC-FPD (Shimadzu GC-14A) in the electron ionization (EI) mode. The GC operating conditions were as follows: GC column, BP-10, 25 m×0.33 mm i.d., 0.25 μm film thickness (SGE, Australia). Column temperatures, 110°C (1 min) –8°C/min –210°C (1 min) –20°C/min –280°C (10 min). Injection port temperature, 280°C; detector temperature, 300°C. Nitrogen gas (99.99% purity) was used as carrier gas at a head pressure of 150 kPa. The detector gases used were air at 60 kPa and hydrogen at 80 kPa. The injection volume
was 1.0 μL in the splitless mode (splitless time, 1min). A GC-MS (HP59890–973) was used for structural elucidation of PFB derivatives of DAP. Injector conditions and chromatographic conditions used were the same as for the GC-FPD. Operating conditions were as follows: carrier gas, helium gas (high purity grade) at a flow rate of 1.0 mL/min; ion-source temperature, 250°C; electron ionization, 70 eV; interface temperature, 290°C.

Five nonspecific OPs metabolites were measured in each sample, including two dimethyl (DM) phosphate metabolites (DMP, DMTP) and three diethyl (DE) phosphate metabolites (DEP, DETP and DEDTP). To provide an overall assessment of precision, accuracy and overall reliability of the method, quality control (QC) samples were used as blank samples and isolated blindly among the study samples. The limits of detection (LOD) for the five metabolites were 2.0 μg/L for DMP and 1.0 μg/L for DMTP, DEP, DETP, and DEDTP, respectively. Individual metabolite levels below the LOD was assigned a value equal to the LOD divided by the square root of two, and this value was included in each sum.

Summed concentrations of DM and DE (the two dimethyl metabolites; DMP, DMTP) and three diethyl metabolites (DEP, DETP, DEDTP) were calculated to provide summary measure for exposure. To compare with other studies, we converted the LOD divided by the square root of two, and this value was included in each sum.

Statistical Analysis
Data were inputted with Epidata 3.02 and analyzed with SPSS17.0 for Windows (IBM, New York, USA). The levels of urinary OP metabolites (DAPs) were calculated with and without adjustment for creatinine. DAP levels were normalized by logarithmic transformation. All analyses were conducted on non-creatinine adjusted values and models were rerun with creatinine adjusted values (ng/g creatinine) in sensitivity analyses.

Ethical Statement
The study protocol was approved by the Medical Ethics Committee of Shenyang Medical College. Written informed consents were obtained from all the mothers for present study.

Results
General Characteristics of the Participants
The characteristics of the participants are listed in Table 1. The average age of the pregnant women and their average prenatal BMI was 28.9±3.2 years old and 22.5±4.5 kg/m², respectively. About 51% of the subjects had university or higher education background and about 36% was primiparous. Over 68% of the pregnant women consumed vegetables or fruit every day. The average gestation of the women at delivery was 38.9±1.0 weeks. The average birth weight and height of the neonates were 3500.0±462.2 g and 50.9±1.9 cm, respectively. Mean Summary Score of NBNA of the newborns was 37.6±1.6 and the individuals over 37 scores occupy 96% of the whole new babies.

Organophosphate Pesticide Metabolites Level in Urine
OP urinary metabolite levels of the study sample both adjusted and not adjusted for creatinine are shown in Table 2. The OP metabolite concentrations higher than the LOD ranged from a low of 6.8% for DEDTP, to a high of 95.58% for DEP. The maximum value without creatinine adjustment was 334.02 μg/L for DMP and 167.06 μg/L for DEP, respectively. The maximum value with creatinine adjustment was 453.04 μg/g for DMP and 305.92 μg/g for DMTP, respectively. The geometric mean (GM) values without creatinine adjustment for DMP, DMTP, DEP and DEDTP levels.
Table 1. Demographic and Exposure Characteristics for 249 pairs of the pregnant women and neonates in Shenyang, China.

	N	Percentage
Age (year)		
18–24	23	9.2
25–29	127	51.0
30–34	91	36.6
≥35	8	3.2
Parity		
0	207	83.1
>1	42	16.9
Education		
Junior and Secondary school	35	14.1
High school	64	25.7
College and postgraduates	150	60.2
Resident		
urban	217	87.1
rural	32	12.9
Occupational exposure to pesticides before pregnancy		
yes	2	0.8
no	247	99.2
Occupational exposure to pesticides during pregnancy		
yes	1	99.6
no	248	0.4
Using insecticides in household during pregnancy		
no	124	49.8
rarely	76	30.5
often	49	19.7
Passive smoking during pregnancy		
rarely	190	76.3
often	32	12.9
Always	17	6.8
Vegetables consumed weekly during pregnancy		
1–3 times	23	9.2
4–6 times	68	27.3
daily	158	63.5
Fruit consumed weekly during pregnancy		
1–3 times	22	8.8
4–6 times	70	28.1
daily	157	63.1
Monthly household income (RMB)		
<1000	76	30.5
1000–3000	94	37.8
3001–5000	61	24.5
>5000	18	7.2
Newborns sex		
Male	138	55.4
Female	111	44.6
Birth weight (g), mean (sd)	3500.44 (462.24)	
Body length (cm), mean (sd)	50.94 (1.92)	
Length of gestation (week), mean (sd)	38.7 (0.9)	
NBNA total score		
<37	10	4.0
≥37	239	96.0

doi:10.1371/journal.pone.0088491.t001
were 18.03 μg/L, 0.53 μg/L, 7.14 μg/L and 5.64 μg/L, respectively. The GM for DEDTP levels was not calculated because of the low detection frequency. The creatinine-adjusted GMs for DMP, DMTP, DEP, DETP and DEDTP levels were 24.02 μg/g, 11.29 μg/g, 9.49 μg/g, 7.50 μg/g and 0.46 μg/g, respectively.

The median of urinary metabolites of OPs among different characteristics of the pregnant women were compared (Table 3). The median concentrations of DMs, DEs and DAPs of the pregnant women aged more than 30 years were significantly higher than those under 30 years (P < 0.05); the median concentrations of DMs, DEs and DAPs of the pregnant women living in rural areas were slightly higher than those living in urban regions, but this did not reach statistical significance (P > 0.05). Pregnant women with a prenatal BMI higher than 28 had higher concentrations of DMs, DEs and DAPs than those with prenatal BMIs less than 28 (P > 0.05); the median of DMs, DEs, and DAPs in the group of high level of passive smoking were higher than others, while there were no significant differences (P > 0.05).

Neurodevelopment of Newborns
In the study, 96% of neonates were considered well-developed from a neurodevelopmental level (NBNA Summary Scores ≥ 37) and less than 1% abnormal (NBNA Summary Scores < 34). The median NBNA Summary scores for male and female neonates did not differ and equaled 38 (interquartile range: 37–39). NBNA total scores, behavior scores, passive tone scores, and primary reflexes scores between male and female newborns were not significantly different (Z = -0.377, Z = -0.406, Z = -0.705, Z = -0.543, Z = -0.324, respectively; P > 0.05). Almost all neonates (> 99%) scored full marks in the scale of General Assessment, therefore this scale was not further analyzed in the study.

Relationship between Prenatal OP Exposure and Neurodevelopment of Newborns
First, Pearson correlation analyses were used to explore the relationship between maternal urinary OP metabolites (logarithmic transformation) during pregnancy and neonatal neurobehavioral assessments scores (NBNA scores). There were significantly negative correlations between summary NBNA scores and the concentration of maternal DMs, DEs, DAPs during pregnancy (r = -0.510, P < 0.01). Multiple stepwise linear regression analyses were then used to examine the association between neurobehavioral development and maternal OP exposure (total DAP as the index) during pregnancy. Maternal urinary DAP concentrations measured during pregnancy revealed significant associations with poorer NBNA scores (without other prenatal confounding influences). The adjusted coefficients (β) (95% CIs) for NBNA scores compared to OP metabolite levels (DAP, DM, DE) are represented in Table 4. From the results, higher prenatal DAP concentrations were associated with lower scores in all NBNA scales, especially the Behavior Scale (β for a 10-fold increase in concentration = −0.65, 95% CI, −0.85 to −0.45, P < 0.01). Moreover, a 10-fold increase in total DAP concentration was associated with a decrease of 1.78 in NBNA Summary scores (95% CI, −2.12 to −1.45). Urinary DM concentrations during pregnancy was also associated with poorer NBNA scores in Passive Tone, Active Tone, Primary Reflex scales and the Summary (P < 0.05), although point estimates were slightly lower than for total DAP concentrations. While urinary DE concentrations were associated with poorer NBNA scores in Behavior scale and the Summary (P < 0.05), they were not as highly correlated compared to total DAP and DM concentrations.

The NBNA scores in different maternal DAP concentration groups are shown in Figure 1. No evidence of departure from linearity in the relation between maternal DAP concentrations and NBNA scores was observed. There was a 2.11-point (in Summary) to 0.27-point (in Passive tone Scale) difference of estimate NBNA scores between neonates in the highest quintile of maternal prenatal DAP levels and those in the lowest quintile. Moreover, there is no difference between male and female neonates in that NBNA scores were negatively associated with the concentrations

Table 2. Detection Frequency, Creatinine Unadjusted and Adjusted Geometric Mean, Range and Percentile of organophosphate pesticides urinary metabolites in 249 pregnant women in Shenyang, China.
DM
Detection rate (%)
DM
DMP
94.78
Unadjusted
GM
25th
50th
75th
90th
Range
Creatine-adjusted
GM
25th
50th
75th
90th
Range

doi:10.1371/journal.pone.0088491.t002
Table 3. Comparisons of urinary metabolites of OPs medians by population characteristic of pregnant women in Shenyang, China.

characteristic	n	Metabolites			
		DMs DEs DAP			
Age (year)					
<30	150	29.61 214.34 45.80			
≥30	99	38.88 18.23 58.19			
P value	0.004	0.04 0.013			
Education					
Junior and secondary school	35	31.31 14.85 46.58			
High School	64	34.97 18.73 60.56			
College and postgraduates	150	35.11 14.85 50.49			
P value	0.503	0.564 0.823			
Residues					
Urban	217	32.75 14.85 47.19			
Rural	32	38.89 27.13 74.09			
P value	0.199	0.038 0.055			
Prenatal BMI					
BMI<28	69	36.99 15.78 53.35			
BMI≥28	180	55.87 24.98 78.91			
P value	0.19	0.66 0.46			
Passive smoking					
rarely	190	34.62 15.78 50.99			
often	32	31.21 13.07 46.91			
Always	17	67.71 21.95 108.50			
P value	0.199	0.038 0.055			
Household income (Yuan/Month)					
≤3000	154	34.33 15.78 51.99			
>3000	95	34.85 14.85 48.85			
P value	0.09	0.79 0.24			
Gestational Age (week)					
<37	8	25.76 14.85 40.61			
≥37	241	34.27 14.99 50.99			
P value	0.97	0.82 0.95			

*compared by Kruskal-Wallis test. doi:10.1371/journal.pone.0088491.t003

Table 4. Adjusted Coefficients (β) (95% CIs) on the Behavior, Passive tone, Active tone, Primary reflexes And Summary scores of NBNA for a Log10 Unit Increase in OPs Urinary Metabolites among the neonates in Shenyang, China.

	Summary	Behavior	Passive Tone	Active Tone	Primary Reflexes
Total neonates					
DAP	–1.78 (-2.12, –1.45)	–0.65 (-0.85, –0.45)	–0.22 (-0.34, –0.10)	–0.48 (-0.66, –0.30)	–0.36 (-0.51, –0.21)
DM	–0.96 (-1.35, –0.57)	–0.22 (-0.33, –0.11)	–0.41 (-0.57, –0.29)	–0.30 (-0.44, –0.17)	
DE	–0.88 (-1.30, –0.47)	–0.59 (-0.79, –0.40)			
Boy neonates					
DAP	–1.47 (-1.93, –1.01)	–0.50 (-0.76, –0.23)	–0.21 (-0.36, –0.02)	–0.46 (-0.72, –0.21)	–0.34 (-0.55, –0.13)
DM	–0.93 (-1.45, –0.40)	–0.19 (-0.35, –0.07)	–0.34 (-0.58, –0.11)		
DE	–0.61 (-1.15, –0.07)	–0.42 (-0.67, –0.17)	–0.19 (-0.36, –0.02)	–0.30 (-0.44, –0.17)	
Girl neonates					
DAP	–2.03 (-2.55, –1.52)	–0.84 (-1.15, –0.52)	–0.21 (-0.40, –0.02)	–0.51 (-0.76, –0.25)	–0.39 (-0.61, –0.17)
DM	–1.22 (-1.89, –0.53)	–0.18 (-0.35, –0.01)	–0.41 (-0.65, –0.18)	–0.34 (-0.54, –0.14)	
DE	–0.98 (-1.58, –0.39)	–0.83 (-1.15, –0.53)	–0.21 (-0.40, –0.02)	–0.51 (-0.76, –0.25)	–0.39 (-0.61, –0.17)

Estimates were adjusted for maternal age, education, gestational age, prenatal BMI and the lead concentration in umbilical cord blood.

Variable coding: Gestational age (<37week = 1, ≥37week = 2); Maternal Age (<30 = 1, ≥30 = 2); Passive smoking (rarely = 1, often = 2, always = 3); Neonatal bodyweight (<3000 = 1,3000–3500 = 2; >3500 = 3).

doi:10.1371/journal.pone.0088491.t004

of maternal urinary OP metabolites (total DAPs) during pregnancy. For male neonates, a 10-fold increase in maternal pregnant urinary DAP concentrations was associated with a decrease of 1.47 points of summary NBNA scores. For female neonates, maternal pregnant urinary DAP concentrations were associated with poorer summary NBNA scores ($\beta = -2.03$, $P = 0.01$). There were similar associations between urinary DM, DE concentrations and poor NBNA scores among male and female neonates, with slightly stronger estimates in girl neonates (Table 4).

The standard coefficients of the multiple stepwise linear analyses for NBNA scores and prenatal OPs metabolites (DAP) and other potential prenatal risk factors among the neonates are shown in Table 5. Prenatal OP exposure was evidently the strongest risk factor for lower NBNA scores, with the largest standardized regression coefficients (in absolute value) in all of the NBNA scales both in boys and girls ($P<0.05$). High levels of lead concentration in the umbilical cord blood and prenatal BMI were associated with poor NBNA scores ($P<0.05$). Maternal age, education, and neonatal bodyweight had no associations with NBNA scores in the present study as determined by multiple linear regression analysis ($P>0.05$).

Point estimates for creatinine-adjusted DAP concentrations were similar to those for non-creatinine adjusted concentrations (data not shown).

Discussion

Fetal exposure to OPs occurs because OPs can cross the placenta [33,34]. Thus, fetuses are more vulnerable to OPs [35]. Exposure to low level of OPs can influence emotional behaviors [36] and neuronal cell development [37] through a variety of noncholinergic mechanisms such as disruption of various cellular processes [38], up regulation of serotonin neurotransmitters [39] and oxidative stress [40]. Since many OPs are lipophilic and rapidly metabolized in the human body by hydrolysis or oxidative desulfuration, dialkyphosphate (DAP) metabolites in urine are often used as biomarkers to reflect the cumulative exposure to OPs in humans [41,42]. In this study, we measured five non-specific
metabolites of OPs in the urine, DMP, DEP, DMTP, DETP and DEDTP (referred to as DAPs) to assess the exposure to OPs.

In our study, the GM levels (nmol/L) of DAPs in pregnant women were 167.14 for DMP, 56.62 for DMTP, 44.68 for DEP, and 40.76 for DETP. The concentrations (GM) of DM and DE were 283.66 and 107.39 nmol/L, respectively. In a previous study from the Netherlands, the DAPs concentrations from 100 pregnant women were 79.9 for DMP, 60.9 for DMTP, 13.0 for DEP and 4.7 for DETP [43]. Data from the National Health and Nutrition Examination Survey (NHANES, 1999–2000) in the U.S showed that the median level of urinary DAP metabolites in pregnant women [44] was 72 nmol/L. The results from the Center for Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort study indicated that the average GM for prenatal maternal urinary DAPs, DM and DE are 109.0, 76.8 and 17.7 nmol/L [25]. One investigation in Shanghai also revealed high levels of urinary DAPs in pregnant women, similar to those in the Western Counties, suggesting that people are exposed to higher levels of OPs in developing counties like China compared to those in developed countries. The reason for the high level of OP exposure in China is mainly due to the heavy use of OPs in agriculture, leading to high residues in food, especially in vegetables and fruits [27]. The pesticide (most of them are OPs) residues of vegetables and fruits in Chinese markets are easily

Figure 1. NBNA scores per quintile of prenatal urinary DAP concentration (Mean ± SD): Behavior, Passive Tone, Active Tone, Primary Reflex, and Summary. The medians (ranges) for DAP quintiles (µg/L) are as follows: first quintile, 13 (3–21); second, 33 (>21–42); third, 51 (>42–65); fourth, 100 (>65–140); fifth, 189 (>140).

doi:10.1371/journal.pone.0088491.g001
detectable. Some of these fruits and vegetables show high levels of residues exceeding the national safe standard [6], even though the Chinese government announced in 2005 that the high toxic OPs such as dichlorvos, dimethoate, Parathion, methamidophos, monocrotophos and phosphamidon, are forbidden in use in agriculture. The mid-toxic pesticides such as chlorpyrifos and diazinon are always detected because they are commonly used for the control of pests in vegetables and fruits.

More than 68% of the pregnant subjects in this study consumed fresh vegetables and fruits every day during the pregnancy, suggesting that diet might be the primary source of OP exposure. One exception is that of one woman who was occupationally exposed to OPs (she is a pesticide production worker) before pregnancy. Investigations in the general American population [9] and in children [46] also concluded that diet exposure provided a vehicle for OPs to affect children as well as the general population.

Compared to average individuals, pregnant women tend eat more food (especially more fresh vegetables and fruits) and drink more water than usual to obtain much more nutrition [47], therefore they face a higher risk of OP exposure.

Interestingly, we found a significant inverse association between maternal urinary metabolites of OPs (DM, DE and DAPs) during pregnancy and the NBNA scores of neonates. Among several potential prenatal risk factors for neonatal neurobehavioural development, including OPs exposure, maternal age, education, passive smoking, gestational age, prenatal BMI, blood lead concentration, maternal OP exposure (DAP concentrations) during pregnancy was the predominant factors to these scores. The estimate NBNA scores of neonates in the high-exposure group for the four scales and the sum of the scores were 0.27–0.77 points and 2.11 points higher than those in the low-exposure group, respectively. These results suggest that maternal exposure to OPs during pregnancy could influence neonatal neurobehavioural development. Our results are consistent with those from a pregnancy cohort study in New York City (the Mount Sinai Children’s Environmental Health Center), which concluded that prenatal OP metabolites in urine (primary DEs) are associated with an increasing number of abnormal primitive reflexes in neonates as evaluated by the Brazelton Neonatal Behavioral Assessment Scale [23]. Another longitudinal cohort in California, USA, from a cohort of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) suggested that maternal pesticide exposure during pregnancy and not postnatal exposure is associated with poorer neonatal reflexes and long-term

Table 5. Standardized regression coefficients from the Stepwise Linear Regressions for the NBNA scores and prenatal risk factors among the neonates in Shenyang, China (n = 249).

Variable	Summary	Behavior	Passive Tone	Active Tone	Primary Reflexes
Total neonates					
DAP a	-0.615**	-0.403**	-0.253**	-0.364**	-0.329**
Gestational Age	0.127†	0.170†			
Maternal Age					
Prenatal BMI			-0.122		
Passive smoking					
Blood Lead	-0.192**		-0.217**		
Neonatal bodyweight					
Boy neonates					
DAPs a	-0.555**	-0.342**	-0.250†	-0.338**	-0.303**
Gestational Age	0.165	0.266**			
Maternal Age					
Prenatal BMI			-0.122		
Passive smoking					
Blood Lead	-0.178*		-0.177	-0.198†	
Neonatal bodyweight					
Girl					
DAPs a	-0.672**	-0.503**	-0.236†	-0.394**	-0.361**
Gestational Age					
Maternal Age			-0.231†		
Prenatal BMI					
Passive smoking					
Blood Lead	-0.158		-0.240†		
Neonatal bodyweight					

Note: **P < 0.01, *P < 0.05.

a the concentration of maternal OPs urinary metabolites during pregnancy.

b the concentration of lead in umbilical cord blood of neonates.

the value in regression was changed by the log10 transition.

Variable coding: Gestational age (<37week = 1, ≥37week = 2); Maternal Age (<30 = 1, ≥30 = 2); Prenatal BMI (BMI < 28 = 1, BMI ≥ 28 = 2); Passive smoking (rarely = 1, often = 2, always = 3); Neonatal bodyweight (<3000 = 1, 3000–3500 = 2; >3500 = 3).

doi:10.1371/journal.pone.0088491.t005
effects on children’s mental development at 2 years at age, poor attention skills at 5-years-old, as well as poor intellectual development in 7-year-olds are present [25,26,48,49]. Although there are some differences between our study and the studies mentioned above, such as different measurements of neonatal neurodevelopment, similar conclusions were found: that the concentrations of maternal OP metabolites during pregnancy are inversely associated with the neonatal neurodevelopment.

The primary target of organophosphate insecticides is the enzyme acetylcholinesterase (AChE), which hydrolyses the neurotransmitter acetylcholine in both the peripheral and the central nervous system. In this study, we applied NBNA as the measurement of neonatal neurodevelopment. Based on the method of Brazleton and Amiel-Tison for behavioral neurological measurement in newborns, NBNA was utilized according to the condition of Chinese newborns [29]. NBNA was tested with distinct stability and reliability by several large cohorts in China, and was observed not to be influenced by the geographic location and suitable for large surveys [30–32]. In our study, NBNA was administered to the neonates when they were 3 days old to ensure the uniformity of the tests.

This study was not without limitations. For example, we measured the OP urinary metabolites at a single time point only prior to delivery. Urinary DAPs have a half-life of <24 h in humans, so the urinary concentrations reflect only recent exposure [50,51]. The combination of the short elimination half-life and the episodic nature of exposures to OP pesticides results in a high degree of variability in urinary DAP concentrations. Secondly, urinary DAP concentrations cannot quantify exposure to a particular pesticide. Even though the serum OPs can evaluate actual exposure to a particular pesticide, they are often undetectable. At present, urinary organophosphate metabolites and DAPs are still used as biomarkers of organophosphate pesticide exposure in many studies [25,26,49,52,53]. Nevertheless, our study provides important information on the adverse health effects of OPs on pregnant women and neonates. Further longitudinal studies with larger sample size and more representative samples will confirm the association of prenatal OPs and the neurodevelopment of neonates and young children.

Conclusion

In summary, our study reveals that there exist high levels of exposure to OPs among pregnant women in Shenyang, China. This maternal exposure to OPs during pregnancy strongly associated with adverse neonatal neurodevelopmental. This study helps the local government to legislate against the abuse of OPs to improve the human health, especially the health of pregnant women and children.

Acknowledgments

We are extremely grateful to all the mothers who took part and to the midwives in the Central Hospital Affiliated to Shenyang Medical College, for their cooperation and help. The whole study team comprised interviewers, laboratory technicians, and volunteers whose efforts made the study possible.

Author Contributions

Conceived and designed the experiments: YZ SH. Performed the experiments: DL XS FW YT WL LZ LC YG. Analyzed the data: YZ HS DL. Wrote the paper: YZ SH.

References

1. Agriculture Information Network. (2006) Analysis of pesticides demand in China. (Chinese) Plant Doctor 19: 16–16.
2. Karazilede et al. (2001) Organophosphates and Health. London: Imperial College Press.
3. Chen G, Qian Y, Chen Q, Tao C, Li C, et al. (2011) Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control 22: 1114–1120.
4. Wang L, Liang Y, Jiang X (2008) Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China. Bull Environ Contam Toxicol 81: 377–382.
5. Chen C, Qian Y, Liu X, Tao C, Liang Y, et al. (2012) Risk assessment of chlorpyrifos on rice and cabbage in China. Regul Toxicol Pharmacol 62: 125–130.
6. Wang S, Wang Z, Zhang Y, Wang J, Guo R (2013) Pesticide residues in market foods in Shaanxi Province of China in 2010. Food Chem 138: 2016–2025.
7. Yu Y, Tao S, Liu W, Lu X, Wang X, et al. (2009) Dietary intake and human milk residues of hexachlorocyclohexane isomers in two Chinese cities. Chinese Environ Sci Technol 43: 4830–4835.
8. Jiang L, Zhang Y, He R, Pan W, Jiang B, et al. (2011) Analysis of Pesticide Residues in Vegetables from Shenyang, China. International Conference on Intelligent Computation Technology and Automation DOI: 10.1109/ICICTA.2011.409.
9. Barr DB, Bravo R, Weaveraker G, Caltabiano LM, Whitehead RD, Jr., et al. (2004) Concentrations of diazil phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ Health Perspect 112: 186–200.
10. Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103 Suppl 6: 73–76.
11. Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, et al. (2004) Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 112: 1125–1132.
12. Eskenazi B, Harley K, Bradman A, Welszien E, Jewell NP, et al. (2004) Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 112: 1116–1124.
13. Venesrosi A, Riccieri L, Scattoni ML, Calamandrei G (2009) Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD1-mouse pups. Environ Health Perspect 117: 1220–1224.
14. Lazarini CA, Lima RY, Guedes AP, Bernardi MM (2004) Prenatal exposure to dichlorvos: physical and behavioral effects on rat offspring. Neurotoxicol Teratol 26: 607–614.
15. Qiao D, Seidler EJ, Tate CA, Cousins MM, Slotkin TA (2003) Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect 111: 536–544.
16. Slotkin TA, Seidler EJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72: 232–274.
17. Kamel F, Engel LS, Gladen BC, Hoppin JA, Alavanja MC, et al. (2007) Neurologic symptoms in licensed pesticide applicators in the Agricultural Health Study. Hum Exp Toxicol 26: 241–250.
18. Sultatos IG (1994) Mammalian toxicology of organophosphorus pesticides. J Toxicol Environ Health 43: 271–289.
19. Rohlan DB, Anger WK, Lein DJ (2011) Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 32: 268–276.
20. Rohlan DB, Lasarev M, Anger WK, Scherer J, Stupfel J, et al. (2007) Neurobehavioral performance of adult and adolescent agricultural workers. Neurotoxicology 28: 374–380.
21. Rothlein J, Rohlan D, Lasarev M, Phillips J, Muniz J, et al. (2006) Organophosphate pesticide exposure and neurobehavioral performance in agricultural and non-agricultural Hispanic workers. Environ Health Perspect 114: 691–696.
22. Roald-Tapia L, Parron T, Sanchez-Santed F (2005) Neuropsychological effects of long-term exposure to organophosphate pesticides. Neurotoxicol Teratol 27: 259–266.
23. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Sukid J, et al. (2007) Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multicentric pregnancy cohort. Am J Epidemiol 165: 1397–1404.
24. Engel SM, Wenzur J, Chen J, Zhu C, Barr DB, et al. (2011) Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 119: 1182–1188.
25. Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, et al. (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115: 792–796.
26. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, et al. (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 119: 1109–1115.
40. Slotkin TA, Seidler FJ (2009) Oxidative and excitatory mechanisms of

38. Howard AS, Bucelli R, Jett DA, Bruun D, Yang D, et al. (2005) Chlorpyrifos

37. Slotkin TA, Bodwell BE, Levin ED, Seidler FJ (2008) Neonatal exposure to low

36. Roegge CS, Timofeeva OA, Seidler FJ, Slotkin TA, Levin ED (2008)

35. Tau GZ, Peterson BS (2010) Normal development of brain circuits.

34. Whyatt RM, Garfinkel R, Perera FP, Andrews HF, Hoepner L, et al. (2006)

33. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, et al. (2006)

32. Gao Y, Yan CH, Tian Y, Wang Y, Xie HF, et al. (2007) Prenatal exposure to

31. Yu XD, Yan CH, Shen XM, Tian Y, Cao LL, et al. (2011) Prenatal exposure to

30. Bao XL, Yu RJ, Li ZS (1993) 20-item neonatal behavioral neurological

29. Bao XL, Yu RJ, Li ZS, Zhang BL (1991) Twenty-item behavioral neurological

28. Arcury TA, Grzywacz JG, Davis SW, Barr DB, Quandt SA (2006)

27. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

26. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

25. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

24. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

23. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

22. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of

21. Wu C, Liu P, Zheng L, Chen J, Zhou Z (2010) GC-FPD measurement of