IDN2 has a role downstream of siRNA formation in RNA-directed DNA methylation

Andreas Finke, Markus Kuhlmann and Michael Florian Mette*

Leibniz Institute of Plant Genetics and Crop Plant Research; Gatersleben, Germany

Keywords: RNA-directed DNA methylation, transcriptional gene silencing, short interfering RNA, mutagenesis, Arabidopsis thaliana, IDN2, At3g48670, NRPD2a/NRPE2a, At3g23780

Abbreviations: AGO, ARGONAUTE; AtCOPIA4, A. thaliana COPIA 4; AtMU1, A. thaliana MUTATOR 1; AtSN1, A. thaliana SINE 1; CMT3, CHROMOMETHYLASE 3; Col-0, Columbia-0; DCL3, DICER-LIKE 3; DRM2, DOMAINS-REARRANGED METHYLTRANSFERASE 2; dsRNA, double-stranded RNA; EMS, ethyl methanesulfonate; HEN1, HUA ENHANCER1; IDN2, INVOLVED IN DE NOVO 2; IR, inverted repeat; Ler, Landsberg erecta; MEA-ISR, MEDEA-INTERGENIC SUBTELOMERIC REPEATS; MET1, methyltransferase 1; NPTII, NEOMYCIN PHOSPHOTRANSFERASE II; nrd, no RNA-directed transcriptional silencing; NRPD2a/NRPE2a, NUCLEAR RNA POLYMERASE D 2a/NUCLEAR RNA POLYMERASE E 2a; p4-RNAs, RNA POLYMERASE IV-dependent RNAs; p5-RNAs, RNA POLYMERASE V-dependent RNAs; RNA POLYMERASE II, RNA POLYMERASE IV; RNAP V, RNA polymerase V; ProNOS, NOPALINE SYNTHASE promoter; PTGS, post-transcriptional gene silencing; RdDM, RNA-directed DNA methylation; RDM12, RNA-DIRECTED DNA METHYLATION 12; RdTGS, RNA-directed transcriptional gene silencing; RDR2, RNA-DEPENDENT RNA POLYMERASE 2; siRNA, short interfering RNA; SGS3, SUPPRESSOR OF GENE SILENCING 3; TGS, transcriptional gene silencing

In plants, a particular class of short interfering (si)RNAs can serve as a signal to induce cytosine methylation at homologous genomic regions. If the targeted DNA has promoter function, this RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing (TGS). RNA-directed transcriptional gene silencing (RdTGS) of transgenes provides a versatile system for the study of epigenetic gene regulation. We used transcription of a nopalin synthase promoter (ProNOS)-inverted repeat (IR) to provide a RNA signal that triggers de novo cytosine methylation and TGS of a homologous ProNOS copy in trans. Utilizing a ProNOS-NPTII reporter gene showing high sensitivity to silencing in this two component system, a forward genetic screen for EMS-induced no RNA-directed transcriptional silencing (nrd) mutations was performed in Arabidopsis thaliana. Three nrd mutant lines were found to contain one novel loss-of-function allele of idn2/rdm12 and two of nrdp2a/nrpe2a. IDN2/RDM12 encodes a XH/XX domain protein that is able to bind double-stranded RNA with S’ overhangs, while NRPD2a/NRPE2a encodes the common second-largest subunit of the plant specific DNA-dependent RNA polimerases IV and V involved in silencing processes. Both idn2/rdm12 and nrpd2a/nrpe2a release target transgene expression and reduce CHH context methylation at transgenic as well as endogenous RdDM target regions to similar extents. Nevertheless, accumulation of IR-derived siRNA is not affected, allowing us to present a refined model for the pathway of RdDM and RdTGS that positions function of IDN2 downstream of siRNA formation and points to an important role for its XH domain.

Introduction

Methylation of cytosines at position 5 is a common modification of plant genomic DNA that is associated with epigenetic phenomena such as transgene silencing, transposon suppression, maternal/paternal imprinting and paramutation.1,2 In the genome of the model plant Arabidopsis thaliana, approximately 7% of cytosines are methylated.3 As in other plants, and in contrast to mammalian somatic cells, where 5-methyl-cytosine occurs in CG context only, DNA methylation in A. thaliana occurs in CG as well as CHG and CHH context (with H standing for C, A or T). Shotgun bisulfitie sequencing studies revealed that around 24% of cytosines in CG context, but only 6.7% in CHG and 1.7% in CHH context are methylated.4 Only unmethylated cytosines are incorporated during DNA replication. Thus, DNA methylated on both strands before semi-conservative replication will bear methylated cytosines just on one strand, the template strand, afterwards. This leads to the necessity to methylate cytosines on the newly synthesized strand in order to re-establish the initial DNA methylation pattern. The maintenance of methylation in CG context in A. thaliana is performed by the Dnmt1-class enzyme methyltransferase 1 (MET1) using the hemimethylated DNA as substrate,5 whereas maintenance of CHG methylation is achieved by the activity of the plant specific
Forward-genetic screen for mutations abrogating RNA-directed transcriptional gene silencing. To extend the knowledge of factors involved in RdDM and related RdTGS, we performed a screen for ethyl methanesulfonate (EMS)-induced nrd mutants that reactivate expression of a silenced reporter gene, according to the strategy outlined by Page and Grossniklaus. We screened M_2 plants that reactivated expression of a silenced reporter gene, according to the strategy outlined by Page and Grossniklaus. The A. thaliana line (K/K;H/H) submitted to mutagenesis comprised a SILENCER (H) transgene residing on chromosome 4 containing an inverted repeat (IR) of the NOPALIN SYNTHASE promoter (ProNOS) sequence under control of the cauliflower mosaic virus 35S promoter (Pro35S) and a TARGET (K_in-H) transgene on chromosome 1 containing a NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) reporter gene controlled by a ProNOS conferring resistance to kanamycin (Fig. 1A), which was previously found to show efficient DNA methylation and silencing in the presence of the SILENCER. Transcription of the ProNOS-IR in the SILENCER leads to formation of double-stranded RNA, which is processed to short interfering (si) RNAs with ProNOS-homology. These siRNAs can induce DNA methylation of homologous DNA sequences in trans and thus transcriptionally silence ProNOS-controlled genes. As TARGET K_in-H is highly sensitive to RdTGS, plants homozygous for TARGET and SILENCER (K/K;H/H) are sensitive to kanamycin (Fig. 1B). Seeds were incubated with EMS, sown and grown to M_3 plants, which were allowed to self-pollinate. The resulting M_3 seeds, the first generation in which a mutation can be homozygous and thus, if recessive, show its impact on the phenotype, were germinated on medium containing 200 mg/l kanamycin to screen for individuals that had reverted to kanamycin resistance. Presence and integrety of TARGET and SILENCER in resulting M_3 nrd candidates were verified via PCR using primer combinations specific for different parts of the transgenes. Accordingly, the symbol "nrd" is used to refer to mutant plants homozygous for TARGET and SILENCER transgene unless specified otherwise. M_3 plants were allowed to self-pollinate and kanamycin resistance was verified for the resulting M_4 generation (Fig. 1B). M_4 seedlings of independent mutant lines nrd1 as well as nrd2-1 and nrd2-2 (for which intercrosses had revealed that they affect the same gene, see Fig. S1A) showed consistent resistance when grown on medium containing kanamycin, but did not have the same vigor as wild-type seedlings homozygous for the TARGET in the absence of the SILENCER (K/K).

As kanamycin resistance can arise in A. thaliana mutants by loss of chloroplast-localized transporter proteins required for kanamycin uptake, rather than by reactivated NPTII expression, the amounts of NPTII protein in mutant plants were tested by ELISA (Fig. 1C). M_3 nrd1, nrd2-1 and nrd2-2 plants showed clearly more NPTII than (K/K;H/H) plants, indicating that their kanamycin resistance was due to a reactivation of NPTII expression. However, in particular in nrd1, NPTII levels stayed below that of (K/K;H/H) control plants containing the native TARGET.
transgene. Consistent with the allelic status of \textit{nr2d-1} and \textit{nr2d-2}, high NPTII levels were found in their intercrosses (Fig. S1B). To address whether \textit{nr1d}, \textit{nr2d-1} and \textit{nr2d-2} mutations release RdDM of the \textit{TARGET} transgene, we analyzed \textit{ProNOS} DNA methylation in the \textit{ProNOS-NPTII} reporter gene by methylation sensitive restriction enzyme cleavage-qPCR (Fig. 1D). The results showed a reduction of cytosine methylation in non-CG context (NheI, Alw26I), but not CG context (Psp1406I), which results showed a reduction of cytosine methylation in non-CG context.

Figure 1. Mutations \textit{nr1d}, \textit{nr2d-1} and \textit{nr2d-2} release RdTGS and RdDM of a \textit{ProNOS-NPTII} reporter gene. (A) Transgene system: the SILENCER (H) transgene contains an inverted repeat (IR) of the NOPALINE SYNTHASE promoter (ProNOS) sequence under control of the strong constitutive cauliflower mosaic virus 35S promoter (Pro35S). Transcripts of the ProNOS-spacer-SONorP structure can fold to form double-stranded RNA with ProNOS-homology, which is then processed to short interfering (si)RNAs. These siRNAs serve as a signal for in trans DNA methylation and transcriptional silencing of a ProNOS copy that controls transcription of a NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) (conferring kanamycin resistance if expressed) in the unlinked \textit{TARGET} (K) transgene. In addition, the SILENCER contains a HYGROMYCIN PHOSPHOTRANSFERASE (HPT) gene conferring hygromycin resistance and the \textit{TARGET} a GUS reporter gene (not shown). (B) Test for kanamycin resistance on medium containing 200 mg/l kanamycin. (C) Target \textit{ProNOS} cytosine methylation was determined by quantitative PCR after cleavage of genomic DNA from 8-week-old plants with methylation-sensitive restriction enzymes (C in recognition sequence underlined: methylation of cytosine blocks cleavage according to REBASE http://rebase.neb.com/rebase/rebase.html) Psp1406I (olive, symmetric CG context: AAAGTT), NheI (blue, CHG and CHH context: GCTAGC), Alw26I (orange, asymmetric CHH context: GTCTC, GAGAG) and Ncol (yellow, asymmetric CHH context, control outside of the methylated region: CAGTGG). Per genotype, five individual plants were tested. Results are displayed relative to the mean value for un-silenced expression in (K/K-/-) plants (set to 1). Per genotype, five individual plants were tested. Column heights represent mean values; error bars represent standard deviations. (D) Target \textit{ProNOS} cytosine methylation was determined by quantitative PCR after cleavage of genomic DNA from 8-week-old plants with methylation-sensitive restriction enzymes (C in recognition sequence underlined: methylation of cytosine blocks cleavage according to REBASE http://rebase.neb.com/rebase/rebase.html) Psp1406I (olive, symmetric CG context: AAAGTT), NheI (blue, CHG and CHH context: GCTAGC), Alw26I (orange, asymmetric CHH context: GTCTC, GAGAG) and Ncol (yellow, asymmetric CHH context, control outside of the methylated region: CAGTGG). Per genotype, five individual plants were tested. Results are displayed relative to the mean value for input DNA (set to 1). Column heights represent mean values; error bars represent standard deviations.
Approximately 75% of T₃ progeny showed sensitivity to kanamycin, a proof of successful complementation of \textit{nrdr} by a single \textit{IDN2} transgene locus. T₃ plants of two of these lines that were further analyzed showed decreased NPTII levels (Fig. S4B) as well as re-established DNA methylation at the endogenous RdDM target \textit{AtSN1} (Fig. S4C). Thus, \textit{nrdr} is a new \textit{idn2} allele and was renamed \textit{idn2-8} according to \textit{idn2} mutant alleles described previously.³⁶⁻⁴⁰ The G→A transition in \textit{idn2-8} leads to the exchange of a glycine (G) residue for an arginine (R) at protein level (Fig. 2B). Mutant \textit{idn2-8} transcripts accumulate to similar levels as \textit{IDN2} transcripts (Fig. S5A), pointing to an effect of the \textit{idn2-8} mutation at the protein rather than the mRNA level. Sequence alignment of XH-domain containing proteins of \textit{A. thaliana} and \textit{Oryza sativa} revealed that the affected G residue is highly conserved (Fig. S5B). Hence, the replacement of the glycine might compromise XH domain function.

Mutations \textit{nrdr2-1} and \textit{nrdr2-2} were mapped to a region at the upper arm of chromosome 3 (Fig. S3B and C, respectively) spanning ~829 kb physical distance as defined by recombination events between markers C3AB015474 and C3P0484614 as well as MN38693286 and CER456071, respectively (Fig. 3A). Sequencing of gene loci known to be involved in RdDM within this region revealed G→A mutations in exon 2 at position 1590 (\textit{nrdr2-2}) and exon 7 at position 5977 (\textit{nrdr2-1}) of \textit{NRPD2a/NRPD2a'} (At3g23780, Fig. 3B) encoding the common, second-largest subunit of DNA-dependent RNA polymerase IV and V.⁴⁸⁻⁵⁰ As \textit{nrdr2-1} and \textit{nrdr2-2} were shown to be allelic (Fig. S1) and \textit{NRPD2a/NRPD2a'} is well established to be required for transgene RdTGS,⁵⁰ it is very likely that these nucleotide changes are causative for the release of RdTGS in \textit{nrdr2-1} and \textit{nrdr2-2}, respectively. Thus, \textit{nrdr2-1} was renamed \textit{nrdp2a-54} and \textit{nrdr2-2} was renamed \textit{nrdp2a-55} following the \textit{nrdp2a} allele counting by Lopez et al.⁴⁷ The G→A transition in \textit{nrdp2a-54} leads to an exchange of a glutamate for a lysine at position 1079 of the protein, while the G→A transition in \textit{nrdp2a-55} leads to a substitution of a glycine for an aspartate at position 174. Both affected amino acids are highly conserved among the second largest subunits of DNA-dependent RNA polymerases.⁴⁸⁻⁵⁰

CHH and CHG-context DNA methylation at RdDM targets is similarly reduced in \textit{idn2} and \textit{nrdp2a} mutants. As methylation sensitive restriction cleavage-qPCR (Fig. 1D) can test methylation only at the few restriction sites available, the overall methylation of the \textit{ProNOS} in the \textit{TARGET ProNOS-NPTII} reporter gene in wild-type and in \textit{M₃} generation of \textit{idn2-8}, \textit{nrdp2a-54} and \textit{nrdp2a-55} plants was determined by bisulfite sequencing (Fig. 4; Fig. S6). The results showed that cumulative cytosine methylation in the \textit{ProNOS} region undergoing RdDM that is close to 70% in wild-type (K/K;H/H) plants is reduced to 25% and below in all three mutants (Fig. 4A). This reduction is primarily due to an extensive loss of methylation in CHH context, with a somewhat less pronounced effect in \textit{idn2-8} than in \textit{nrdp2a-54} and \textit{nrdp2a-55}. Methylation in CG context is hardly altered in \textit{idn2-8} and only slightly reduced in \textit{nrdp2a-54} and \textit{nrdp2a-55} plants compared with wild-type. The analysis of the spatial distribution of the cytosine methylation along the \textit{ProNOS} shows an almost uniform reduction at CHH context sites, while

![Figure 2](https://www.landesbioscience.com/epigenetics/953/figure2.png)

Figure 2. Map-based cloning of \textit{nrdr}. (A) Physical map indicating markers and recombination events (numbers in parentheses, of 234 chromosomes in total) used to delineate the position of \textit{nrdr} on the lower arm of chromosome 3. (B) Positions of the nucleotide (top) and related amino acid change (bottom) in \textit{nrdr} in the \textit{IDN2} gene model (according to TAIR 10). (C) Complementation of \textit{nrdr} by transgenic \textit{IDN2}. Seeds were germinated on medium containing 200 mg/l kanamycin. Approx. 75% of T₃ progeny obtained by self-pollination of single locus \textit{nrdr} + \textit{IDN2} T₃ transformants inherit a transgenic functional \textit{IDN2} and thus are sensitive to kanamycin due to re-establishment of RdTGS of the ProNOS-NPTII gene.

involved in RdDM within this region revealed a G→A mutation at position 1883 in exon 5 of \textit{IDN2} (At3g48670, Fig. 2B). To verify that the mutation in \textit{IDN2} is causative for the release of RdDM and RdTGS in \textit{nrdr1}, we complemented \textit{nrdr1} by introducing the wild-type \textit{IDN2} gene via Agrobacterium-mediated transformation (Fig. S4A). Batches of T₂ generation seedlings obtained from five independent T₁ transformants by self-pollination were tested on kanamycin-containing medium (Fig. 2C and data not shown).
the partial loss of methylation in CG and CHG context seems more prominent toward the transcription start site (TSS) at the 3’ end of the promoter (Fig. 4B).

To ensure that methylation loss was not limited to the ProNOS of the TARGET, DNA methylation at the endogenous RdDM targets \(AtSN1 \), \(MEA-ISR \) and \(AtMU1 \) as a RdDM independent control, was examined by bisulfite sequencing (Fig. 5: Figs. S7–10). In \(M_3 \) \(idn2-8 \), \(nrpd2a-54 \) and \(nrpd2a-55 \) plants, DNA methylation is obviously reduced at \(AtSN1 \) and \(MEA-ISR \) in CHH and CHG context and at \(AtMU1 \) in CHH context only. Methylation in CG context resembles wild-type levels in all three mutants. Methylation at \(AtCOPIA4 \) is unaltered in all contexts in \(idn2-8 \), \(nrpd2a-54 \) and \(nrpd2a-55 \). Thus these mutations affect methylation patterns by inhibition of de novo methylation in a similar way at transgenic and endogenous RdDM targets.

ProNOS-IR derived siRNAs are not affected in \(idn2 \) and \(nrpd2a \) mutants. As there was extensive loss of CHH context ProNOS methylation, we analyzed the amount of ProNOS-IR derived 24nt siRNAs in wild-type, \(idn2-8 \) and \(nrpd2a-55 \) plants (Fig. 6). Northern blots showed no differences in SILENCER transgene-derived 24 nt, 22 nt and 21 nt siRNAs between wild-type and mutant plants. This indicates the requirement of IDN2/RDM12 and NRDP2a/NRPE2a for ProNOS-NPTII silencing in the used transgene system in steps downstream of siRNA formation.

Discussion

The nearly complete loss of CHH context methylation at \(AtSN1 \) and CHH and CHG context methylation at \(MEA-ISR \) in \(idn2-8 \) is similar to results presented by Ausin et al. for deletion allele \(idn2-1 \) and by Zhang et al. for T-DNA insertion allele \(idn2-5 \) / \(rdr3-2 \), respectively. This suggests that \(idn2-8 \) is a loss-of-function allele. The observation that a single amino acid exchange in the XH domain severely compromises IDN2/RDM12 function points to an important role of this domain. And as the extent of reduction of CHH context methylation at ProNOS, \(AtSN1 \), \(MEA-ISR \) and \(AtMU1 \) in \(nrpd2a-54 \) and \(nrpd2a-55 \) is similar to that in \(idn2-8 \), \(nrpd2a-54 \) and \(nrpd2a-55 \) can be considered loss-of-function alleles as well.

A core pathway for RdDM in \(A. thaliana \) has emerged from genetic analysis (Fig. 7). Both, \(NRDP2a/NRPE2a \) and \(IDN2/RDM12 \) have been previously reported to be required for RdDM at endogenous \(AtSN1 \), \(MEA-ISR \) and \(AtMU1 \). For \(NRDP2a/NRPE2a \) as common second-largest component of RNAP IV and RNAP V, the placement in the circular RdDM pathway is well established. For \(IDN2/RDM12 \) the potential to bind dsRNA with blunt ends and 5’ overhangs via its Xs domain in vitro. However, as dsRNA occurs more than once in the RdDM pathway, alternative positions of IDN2/RDM12 action have been suggested. In analogy to the cooperation of SGS3 and RDR6 in generating dsRNA in PTGS, \(IDN2/RDM12 \) has been proposed to team up with RDR2 in the production of dsRNA from p4-transcripts. Alternatively, IDN2/RDM12 could act in stabilizing siRNAs-p5-transcript complexes in the process of guiding DRM2-mediated DNA methylation. In our transgene system ProNOS dsRNA is generated by RNAP II-dependent transcription of the promoter-IR in the SILENCER transgene. Thus, RdDM in this experimental system works according to a linear pathway in which dsRNA and subsequent primary siRNA formation are independent from RNAP IV and V and are not affected by \(nrpd2a-55 \). Similar observations have been made for \(nrpd2a-29 \) and \(rdr2 \) mutants, in a comparable transgene setup. ProNOS siRNAs in \(idn2-8 \) plants were also not reduced. As ProNOS CHH context DNA methylation was markedly reduced at the same time, IDN2/RDM12 needs to have a role downstream of siRNA formation in RdDM. Consistently, siRNAs derived from endogenous RdDM-target \(AtSN1 \) are only partially reduced in \(idn2-1/rdm12 \) mutants, while a strong impact of \(idn2-1/rdm12 \) on CHH and CHG context methylation as seen by us and others for \(AtSN1 \), \(MEA-ISR \) and \(AtMU1 \).

\(IDN2/RDM12 \) is a member of a large gene family in plants characterized by the presence of zinc finger, XS, coiled-coil and XH domains. Somewhat contradicting results have been reported on the possible involvement of further members of this gene family in RdDM. Two independent studies by Zhang et al. and Ausin et al. combining genetic and biochemical approaches
that up to five gene family members, \textit{FDM1/IDP1/IDNL1}, \textit{FDM2/IDP2/IDNL2}, \textit{FDM3}, \textit{FDM4} and \textit{FDM5} act partially redundant to \textit{IDN2/RDM12} in RdDM. However, their observation that double mutants showed stronger loss of DNA methylation than the respective single mutants might be due to the used alleles that carried T-DNA insertions in the 5' UTR or in

Figure 4. Detailed TARGET ProNOS DNA methylation analysis in \textit{idn2-8}, \textit{nrpd2a-54} and \textit{nrpd2a-55}. DNA methylation patterns in the ProNOS of the ProNOS-NPTII reporter gene were analyzed in detail by bisulfite sequencing. (A) Cumulative methylation levels at all cytosines in the analyzed region (gray columns), cytosines in CG context (black columns), CHG context (blue columns; H stands for A, C or T) and CHH context (red columns). (B) Methylation levels at individual cytosines in CG context (black columns), CHG context (blue columns) and CHH context (red columns). A black arrowhead marks the ProNOS transcription start site. Numbers of clones sequenced per target and genotype were: 15 (K/K-/-), 19 (K/K/H/H), 20 (\textit{idn2-8}), 15 (\textit{nrpd2a-54}), 21 (\textit{nrpd2a-55})

A

B

did not find functional redundancy between \textit{IDN2/RDM12} and gene family members \textit{FDM1/IDP1/IDNL1} and \textit{FDM2/IDP2/IDNL2}. Rather, FDM1/IDP1/IDNL1 and FDM2/IDP2/IDNL2 were reported to be functionally redundant and to form a complex with IDN2/RDM12 dimers via the XH domains. In contrast, Xie et al.39 claimed based on analysis of double mutants
intron and thus could still have conferred some gene function. Our data showing extensive loss of CHH context DNA methylation in idn2-8 similar to nrpd2a-54 and nrpd2a-55 at the ProNOS and endogenous RdDM targets. This rather argues against the interpretation that IDN2/RDM12 function in RdDM can be replaced by other gene family members.

Thus, albeit a core pathway of RdDM in A. thaliana as a model plant is known, genetic analysis in a transgene-based experimental system short-cutting part of the pathway has provided important information. We expect that ongoing characterizing and mapping of mutations releasing transgene RdTGS will continue to produce valuable insight into gene silencing pathways.

Materials and Methods

Plant material and cultivation. The transgenic A. thaliana line double homozygous for TARGET and SILENCER transgenes (Kchr1–10/Kchr1–10;H/H) has been described in Fischer et al.25 A. thaliana was cultivated on soil at 21°C under a 16 h light/8 h dark (long day) regime for propagation and seed production; and at 21°C under a 8 h light/16 h dark (short day) regime for generation of rosette leaf material for molecular analysis. For kanamycin resistance test, seeds were surface-sterilized (10 min, 8% NaClO) and germinated under long day regime on agar-plates with germination medium (½ strength MS salts, 10 g/l sucrose); containing 200 mg/l kanamycin. Resistance was evaluated according to root growth and primary leaf development after 3 weeks.

EMS mutant screen. EMS (ethyl-methanesulfonate) mutagenesis of seeds homozygous for TARGET and SILENCER transgenes (Kchr1–10/Kchr1–10;H/H) in the accession Col-0 was performed by Lehle Seeds. From the obtained 32 batches of M1 seeds, each batch representing the progeny from approximately 1500 M1 plants, 20,000 seeds per batch were germinated on medium containing kanamycin (200 mg/l). Resistant M1 plants were transferred to soil and allowed to set seeds by selfing. The suppression of TGS was confirmed by germinating resulting M2 seeds on medium (½ strength MS salts, 10 g/l sucrose) containing 200 mg/l kanamycin. Resistance was evaluated according to root growth and primary leaf development after 3 weeks.

Total protein in the same extracts was determined using a Pierce BCA Protein Kit (Pierce, cat. no. 23225). Twenty-five microliters of the NPTII ELISA raw extract were added to 500 μl of BCA working solution and incubated for 30 min at 37°C in a water bath. After incubation, 500 μl of bi-distilled water were added to every sample and absorbance at 592 nm was determined using an Ultrospec 3100pro UV/Vis spectrophotometer (Amersham Bioscience, cat. no. 80–2112–38) and converted to protein concentration using a Pierce BCA Protein Assay kit (Pierce, cat. no. 23225). Five individual plants were assayed in technical duplicates. Total protein analysis. Amount of NPTII protein was determined using Agdia PathoScreen Kit for NPTII (Agdia cat. no. PSP73000/0288). Rosette leaves of 8-week-old short-day-grown plants were flash frozen in liquid nitrogen, grinded using a swingmill (Retsch, MM301) and resuspended in protein extraction buffer. All further procedures were performed according to manufacturers’ recommendations. Per genotype, leaves from five individual plants were assayed in technical duplicates. Total protein analysis. Amount of NPTII protein was determined using Agdia PathoScreen Kit for NPTII (Agdia cat. no. PSP73000/0288). Rosette leaves of 8-week-old short-day-grown plants were flash frozen in liquid nitrogen, grinded using a swingmill (Retsch, MM301) and resuspended in protein extraction buffer. All further procedures were performed according to manufacturers’ recommendations. Per genotype, leaves from
were cloned into vector pSC-A using a Strataclone PCR cloning kit (Agilent Technologies cat. no. 240207). Plasmids were isolated using QuiaPrep Spin Miniprep Kit (Qiagen, cat. no. 27104) and checked for insert size via restriction cleavage using EcoRI. Positive clones were sequenced using M13 forward and M13 reverse primer. Sequences from at least 12 individual clones per locus and genotype were obtained and DNA methylation patterns were analyzed using CyMATE software.56

DNA methylation analysis using methylation sensitive restriction enzymes. Approximately 50 ng of DNA extracted from adult leaves of 8-week-old plants grown under short day regime dissolved in 400 μl of distilled water were added to 50 μl of 10-times Tango buffer (Fermentas) and 50 μl distilled water to reach a final volume of 500 μl. Aliquots of 100 μl were taken and combined with 10 U of restriction enzymes Psp1406I, NheI, Alw26I and NcoI (Fermentas), respectively. One control was kept without restriction enzyme. Aliquots were incubated at 37°C for 16 h and subsequently for 5 min at 85°C. After activation, 399 μl of bi-distilled water were added (final volume: 500 μl). Quantitative PCR was performed in 25 μl volume in an iCycler IQ™ PCR device (Biorad cat. no. 170-8740). 12.5 μL SYBR green Supermix (Biorad cat. no. 170-8882) and 1.25 μL of ProNOS-top-F and ProNOS-top-rev primers (final concentration 0.25 μM each) were added to 10 μl of cleaved and control templates, respectively. The following temperature regime was used for the PCR: 5 min 95°C, 40× (15 sec 95°C, 30 sec 62°C and 30 sec 72°C). PCR was calibrated using a logarithmic dilution series from 10⁻² to 10⁻⁵ of genomic DNA. Data analysis was performed using ΔΔCt method according to Pfaffl.57 Results are presented relative to the mean signal obtained for the control samples without restriction enzyme.

Mapping of mutations. M, nrd1, nrd2-1 and nrd2-2 (all K/K;H/H, respectively) mutant plants derived from accession Col-0 were crossed with wild-type mapping partner Landsberg erecta (Ler) by manual pollination of emasculated Ler flowers. Success of crosses was confirmed by GUS staining of leaf discs of the resulting F1 progeny. GUS positive plants were allowed to self-pollinate. The resulting F2 progeny was germinated on 1/2 strength MS medium supplied with 10 g/l sucrose containing hygromycin (20 mg/l) and kanamycin (200 mg/l). The resistance phenotype was evaluated after 3 weeks and should only appear if the plant is homozygous for the respective mutation.

Plants resistant to hygromycin and kanamycin (Hyp⁸ Kan⁸) were transferred to soil and allowed to reproduce by self-pollination. Individual DNA preparations were derived from leaf material. Potential “false positive” F2 plants erroneously scored Hyp⁸ Kan⁸ were ruled out by checking segregation of resistance in their F3 progeny. A control population was established by crossing non-mutagenized wild-type (K/K;H/H) with Ler. The resulting F1 generation was checked by GUS assay and allowed to self-pollinate. Resulting F2 seeds were germinated on germination medium containing hygromycin (20 mg/l). Hyp⁸ plants were transferred to soil and presence of the TARGET was confirmed by GUS assay. Hyp⁸ GUS⁺ plants were checked for presence of the SILENCER transgene via specific PCR.

Figure 6. ProNOS-derived and endogenous siRNAs in idn2-8 and nrd2a-55. Northern blot for siRNA derived from transcription of ProNOS IR in the SILENCER. (A) Blots were hybridized with a RNA probe specific for sense ProNOS siRNAs. (B) Equal loading was confirmed by re-hybridization with miR167-specific probe after stripping.

Figure 7. Genetic model of RdDM. The core pathway leading to RdDM is initiated by the production of single stranded RNA from target sequences by multi-subunit RNAP IV. The resulting p4-RNA then serves as substrate of RDR2, which synthesizes a complementary strand to generate dsRNA. This dsRNA is then processed by DCL3 into 24 nt dsRNA fragments and single strands of 24 nt short interfering (si)RNA are incorporated mainly into AGO4. Multi-subunit RNAP-V is thought to transcribe RdDM target loci, with the resulting p5-RNA serving as scaffold to attract the siRNA-AGO4 complexes, which in turn guide DRM2 to the genomic loci to be methylated de novo. Transcription of an inverted repeat (IR) by multi-subunit RNAP II provides a shortcut in the pathway, as dsRNA as a substrate for DCL3 action is produced independently of RNAP IV and RDR2 (solid arrows). NRPD2a/NRP2a (golden) is a subunit common to RNAP IV and RNAP V, but is not required for RNAP II function. IDN2 (red) has a role downstream of siRNA formation, possibly by stabilizing a siRNA-p5-RNA complex.
Construction of complementation vector and transformation procedure. To generate a minimal pCAMBIA without functional genes between left (LB) and right (RB) border, pCAMBIA1300 was cut with PdmI/XmnI (GAANN NNTTCT; blunt end; three sites) and PvuII (CAG CTG; blunt end; two sites) and self-ligated. The resulting minimal pCAMBIA contained a single EcoRI restriction site between LB and RB. A ProMAS-BAR-35Ster resistance cassette flanked by EcoRI-sites was amplified from genomic DNA of a Sail line containing a T-DNA derived from pDAP101 into the EcoRI site of the minimal pCAMBIA to generate pCAMBIA-proMAS-BAR-35St (pcMBAR). LacZ and MCS of plasmid pGEM7(+) were amplified using primers pGEM7Z-MCS-for (5'-AAC CTG CAG GGC TGC TCC ATT CGC CAT TC-3') and pGEM7Z-MCS-rev (5'-ATT CTG CAG CGG AAG AGC GCC CAA TAC GC-3') and introduced into pCMBar at a unique PstI restriction site. The resulting vector named pCMBL contains unique AattI, ZraI, PspXI, Scil, XhoI, Xmal, Smal, BstBI, HindIII, BspEI and BstXI restriction sites for the insertion of DNA fragments. The wild-type IDN2 ORF (including 3'UTR) and a fragment of around 1300 bp upstream from the transcriptional start site was amplified from A. thaliana accession Col-0 genomic DNA using primers IDN2-clone-for (5'-CTT GAC TCG AGA CTT GCC TTG TAT CAG CG-3') and IDN2-clone-rev (5'-AGC CTC GAG GGG TCA ATA TCA AAT TGG AC-3') to introduce a XhoI digestion and cloned into the XhoI restriction site of pCMBL yielding the binary vector pCMBL2+IDN2. pCMBL2+IDN2 was propagated in E. coli HB-6 was performed. The upper phase was transferred into a 50 ml disposable vessel, 1 volume of 80% ethanol was added and the mixture was incubated at 95°C for 5 min, separated using a 15% polyacrylamid, 7 M urea gel, blotted and probed for detection of ProNOS-sense siRNAs according to established protocols. For re-hybridization with a miR167 probe, the membrane was stripped at 95°C in 0.1× SSC containing 0.5% SDS. The miR167 probe (Table S1) was labeled with 32P using T4 POLYNUCLEOTIDE KINASE (Fermentas, cat.no. EK0031) according to manufacturer’s protocol. The stripped membrane was pre-hybridized with hybridization buffer according to Church and Gilbert for 16 h at 42°C. Subsequently the labeled probe was added and allowed to hybridize for 24 h at 42°C. The blot was washed in 2xSSC containing 0.2% SDS and exposed to an X-ray film with intensifier screen for 3 d at -80°C.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Christa Fricke, Inge Glaser and Beate Kamm for excellent technical assistance and Renate Schmidt and Ingo Schubert for critical comments on the manuscript. This work received support from IPK Gatersleben (A.F.) and the German Research Foundation (DFG) collaborative research center (SFB) 648 “Molecular Mechanisms of Information Processing in Plants” (M.K.).

Supplemental Material

www.landebioscience.com/journals/epigenetics/article/21237
8. 16. 7. 20. 14. 15. 92; PMID:21779025; http://dx.doi.org/10.1038/nature.

9. 12. 1138-44; PMID:16839879; http://dx.doi.org/10.1016/j.cell.2008.09.035.

10. Cao X, Jang Z, Ebright YW, Yu B, Chen X. HEN1 recognizes a second-largest subunits of a plant-specific RNA polymerase that is required for RNA-directed DNA methylation. Nat Genet 2009; 52:331-43; PMID:19381459; http://dx.doi.org/10.1038/ng1580.

11. Proc Natl Acad Sci U S A 2002; 99(Suppl 1):2443-48; PMID:12440824; http://dx.doi.org/10.1073/pnas.022443499.

12. Heverhe ER, Wulbridge LM, Hardtke CJ, Bush MS, Kelly KA, Dunn RM, et al. The Arabidopsis RNA-directed DNA methyltransferase DNAARGONAUT6 contains a conserved active site and an additional plant-specific subunit. Proc Natl Acad Sci U S A 2009; 106:941-6; PMID:19114635; http://dx.doi.org/10.1073/pnas.0810130106.

13. Xie Z, Johansen IK, Gustavson AM, Kasschau KD, Lelli AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. Plant Cell 2004; 16:2561-72; PMID:15367719; http://dx.doi.org/10.1016/j.cell.2008.09.035.

14. Lahmy S, Pertier D, Cavel E, Vega D, El-Shami M, Henderson CF, Zhang I, Mockler TC, Chory J, Jacobsen SE. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol 2009; 16:1328-30; PMID:19935683; http://dx.doi.org/10.1038/nsmb.1690.

15. Yang Z, Xing H, Yeh K, Cui X, Wu Y, Zhang C, et al. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis. Plant J 2010; 62:92-9; PMID:20059743; http://dx.doi.org/10.1111/j.1365-311X.2010.04130.x.

16. Dongren I, Dorweiler JE, Cigan AM, Arteaga-Vanegas M, Vyas M, Kermicle J, et al. A dominant mutation in mediator of RNA-directed DNA methylation reduces seed fertility by lowering transcriptional cooperativity within the C-terminus. Genes Cells 1999; 4:501-15; PMID:10526237; http://dx.doi.org/10.1046/j.1365-2443.1999.00248.x.

17. Malik T, Ahmad K, Buyukkutlu N, Cromie K, Glass RE. Intragenic suppression of trans-dominant lethal substitutions in the conserved genome motif of the subunits of sRNA-directed DNA methylation. Proc Natl Acad Sci U S A 2002; 99:20092-9; PMID:12371959; http://dx.doi.org/10.1073/pnas.022443499.

18. Luckow VJ, Naumann U, Matek AJ, Matek M. Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana. Curr Biol 2012; 22:933-8; PMID:22560611; http://dx.doi.org/10.1016/j.cub.2012.03.061.

19. 10.1046/j.1365-2443.1999.00248.x.

20. Siddorenko L, Dorweiler JE, Cigan AM, Arteaga-Vanegas M, Vyas M, Kermicle J, et al. A dominant mutation in mediator of RNA-directed DNA methylation reduces seed fertility by lowering transcriptional cooperativity within the C-terminus. Genes Cells 1999; 4:501-15; PMID:10526237; http://dx.doi.org/10.1046/j.1365-2443.1999.00248.x.

21. Malik T, Ahmad K, Buyukkutlu N, Cromie K, Glass RE. Intragenic suppression of trans-dominant lethal substitutions in the conserved genome motif of the subunits of sRNA-directed DNA methylation. Proc Natl Acad Sci U S A 2002; 99:20092-9; PMID:12371959; http://dx.doi.org/10.1073/pnas.022443499.

22. Luckow VJ, Naumann U, Matek AJ, Matek M. Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana. Curr Biol 2012; 22:933-8; PMID:22560611; http://dx.doi.org/10.1016/j.cub.2012.03.061.

23. Asinu L, Mockler TC, Bahadur S, Schmidt R. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism. Plant Cell 2004; 16:2561-72; PMID:15367719; http://dx.doi.org/10.1016/j.cell.2008.09.035.

24. Conne S, Stevenson D, Burner I, Lloyd A. Multiple antifungal resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiology 2009; 151:559-73; PMID:19675150; http://dx.doi.org/10.1104/pp.108.144547.

25. Kanno T, Mette MF, Kretel DP, Aufsatz W, Matek M, Matek AJ. Involvement of putative SNE2 chromatin remodeling protein DDR1 in RNA-directed DNA methylation. Curr Biol 2004; 14:801-5; PMID:15120173; http://dx.doi.org/10.1016/j.cub.2004.04.037.

26. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 2010; 11:204-20; PMID:20142834; http://dx.doi.org/10.1038/nrg.2719.

27. Lahmy S, Pertier D, Cavel E, Vega D, El-Shami M, Henderson CF, Zhang I, Mockler TC, Chory J, Jacobsen SE. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol 2009; 16:1328-30; PMID:19935683; http://dx.doi.org/10.1038/nsmb.1690.

28. Schuber K, Balzereit D, Bille-Andrade J, Flors V, Vera P. The RNA silencing enzyme RNA polymerase is required for plant immunity. PLoS Genet 2011; 7:e1002434; PMID:22242006; http://dx.doi.org/10.1371/journal.pgen.1002434.

29. Cromei KD, Ahmad K, Malik T, Buyukkutlu N, Glass RE. Trans-dominant mutations in the T-terminus region of the pol IIa gene define highly conserved, essential residues in the beta subunit of RNA polymerase II. Genes Cells 1999; 4:145-59; PMID:10320480; http://dx.doi.org/10.1046/j.1365-2443.1999.00248.x.

30. Naumann U, Daxinger L, Kanno T, Eun C, Long Q, Luckow VJ, et al. Genetic evidence that DNA methylation in Arabidopsis thaliana. Nature 2011; 477:187-9; PMID:21212233; http://dx.doi.org/10.1038/nature10454.

31. Cromei KD, Ahmad K, Malik T, Buyukkutlu N, Glass RE. Trans-dominant mutations in the T-terminus region of the pol IIa gene define highly conserved, essential residues in the beta subunit of RNA polymerase II. Genes Cells 1999; 4:145-59; PMID:10320480; http://dx.doi.org/10.1046/j.1365-2443.1999.00248.x.
51. Baurle I, Smith L, Baulcombe DC, Dean C. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 2007; 318:109-12; PMID:17916737; http://dx.doi.org/10.1126/science.1146565.

52. Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 2007; 17:379-84; PMID:17239600; http://dx.doi.org/10.1016/j.cub.2007.01.009.

53. Austin I, Greenberg MW, Simanuha DK, Hale CJ, Vahisht A, Simon S, et al. INOVA 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:8574-81; http://dx.doi.org/10.1073/pnas.1206638109; PMID:22592791.

54. Pontier D, Vahisht A, Vega D, Bulski A, Saez-Vasquez J, Hakimi M, et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 2005; 19:2030-40; PMID:16140984; http://dx.doi.org/10.1101/gad.348405.

55. Fukunaga R, Doudna JA. dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 2009; 28:545-55; PMID:19165150; http://dx.doi.org/10.1038/emboj.2009.2.

56. Herzl J, Foerster AM, Raidl G, Mittelsten Scheid O. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J 2007; 51:526-36; PMID:17559516; http://dx.doi.org/10.1111/j.1365-313X.2007.03152.x.

57. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45; PMID:11328886; http://dx.doi.org/10.1093/nar/29.9.e45.

58. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 2000; 19:5194-201; PMID:11013221; http://dx.doi.org/10.1093/emboj/19.19.5194.

59. Mette MF, Aufsatz W, Kanno T, Daxinger L, Rovina P, Matzke M, et al. Analysis of double-stranded RNA and small RNAs involved in RNA-mediated transcriptional gene silencing. Methods Mol Biol 2005; 309:61-82; PMID:15990398.

60. Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A 1984; 81:1991-5; PMID:6326095; http://dx.doi.org/10.1073/pnas.81.7.1991.

61. Bateman A. The SG53 protein involved in PTGS finds a family. BMC Bioinformatics 2002; 3:21; PMID:12162795; http://www.biomedcentral.com/1471-2105/3/21.