ENVIROMENTAL RESEARCH LETTERS

TOPICAL REVIEW

Critical minerals for electric vehicles: a telecoupling review

Datu Buyung Agusdinata*, Hallie Eakin and Wenjuan Liu

School of Sustainability, Arizona State University, Tempe, AZ, United States of America

* Author to whom any correspondence should be addressed.

E-mail: bagusdin@asu.edu

Keywords: critical minerals, electric vehicles, resource governance, mineral supply chain, corporate social responsibility, public discourse, telecoupling

Abstract

The rapid growth of electric vehicles adoption, which plays a crucial role to reduce transportation carbon emissions, is leading to a surge in demand for critical minerals such as cobalt, nickel, lithium, and rare earths. Efforts to systematically address the emerging sustainability issues associated with critical minerals have been challenged by complex mineral supply chains, and the distal and geographically dispersed nature of social-ecological impacts from mineral extraction and processing and eventual use. In this review, we apply a bibliometric analysis of the literature in the 2010–2020 period to analyze the state of research on the issues of critical mineral extraction impacts and the global governance responses. We use the concept of telecoupling to structure our literature search and analysis across four themes: (a) critical minerals global trade and supply chain, (b) sustainability and resource policy and governance, (c) mining corporate social responsibility, and (d) information feedback and public discourse. We find a growing attention to the social-ecological implications of critical mineral extraction, but also fragmentation among thematic domains that could impede progress towards more coordinated system governance. Based on the analyses, the paper concludes with a definition of some research and engagement opportunities around the telecoupling themes.

1. Introduction

The world faces a growing demand for critical minerals to meet expanding demand for clean energy and low-carbon technologies and to fuel the transition to cleaner energy futures (Bazilian 2018, Lèbre et al 2020, Sovacool et al 2020a). Electric vehicles (EVs) in particular will play a key role in decarbonizing the transportation systems. In the 2014–19 period, EVs sales have expanded by an annual average of 60%. The EVs minerals include graphite, cobalt, nickel, manganese, copper, lithium, aluminum, and rare earths. Given the current low recovery and recycling rate, most of the mineral supply will need to come from virgin materials, leading to an expansion of mining. Today, most critical mineral extractive activities take place in the Global South, while the majority of these minerals are embedded in products consumed in the industrial and urbanized Global North (e.g. US, Canada, Europe, Japan).

Nevertheless, there are growing concerns over the socio-environmental impacts of mineral extraction, and a new recognition that these issues need to be addressed if EVs are to be promoted as sustainable technology. For example, Amnesty International has identified the use of child labor in cobalt production in the Democratic Republic of Congo, which produces over 60% of today’s supply, presenting an ethical issue for the industry (Amnesty International 2016). Nickel mining is causing environmental degradation to freshwater and marine ecosystems in Indonesia. Some of these areas are already weakened ecologically by demand for timber, and mining is putting additional habitat pressure on critically endangered species (Dominish et al 2019). Lithium mining activities in Chile are resulting in degraded environmental quality too, threatening the habitat and livelihood of endangered flamingo birds (Agusdinata et al 2018, Liu et al 2019). Practitioners and policymakers are now raising questions about how to systematically address the emerging issues associated with critical minerals, and what role science can play in providing a clear and consistent framework for governing their use (Ali et al 2017).
The distal impacts and externalities, however, are not always visible to the consumer. The demand for and supply of critical minerals is geographically bifurcated, with demand concentrated in the more affluent populations of the Global North and, to date, the supply concentrated in geographies of the Global South. Furthermore, the complex supply chains that characterize critical mineral use, and the fact that consumers are typically unaware of the use of critical minerals in their consumer products (Ali et al 2017), pose a challenge to altering the governance of critical mineral extraction. Consumer and shareholder awareness can play instrumental roles by elevating issues associated with the environmental and social negative externalities of supply chains, motivating institutional change (IRP 2020). Effective governance will require the involvement of knowledge, actors, and activities within and beyond the complex global mineral supply chain. The research community thus has a role to play in the documentation of the full range of environmental and social concerns associated with critical mineral extraction to enhance the availability of such information for industry, regulators, and consumers.

We review the literature on critical mineral extraction to explore the extent to which the externalities are being documented, how the corporate mining sector is receiving and responding to mineral extraction and what is being discussed in terms of governance of resource extraction and trade of these critical minerals. To encompass a broader range of potential impacts and outcomes associated with mineral extraction, we frame our analysis through the lens of telecoupling. Telecoupling is an analytical approach to explore the coupling of distal social-ecological-technical systems through flows of, for example, material, information, technology, people, and the governance of such flows and connectivity (Liu et al 2013, Eakin et al 2014). Telecoupling is a useful framework for critical mineral extraction given the geographic concentration of regions of demand and supply, the potential for social and ecological primary (e.g. direct effects of the mining process), and secondary (e.g. implications for livelihood displacement, ecosystem disruptions) impacts, and the complexity of governance, given the diversity of geographically dispersed actors involved (civil society organizations, corporate entities, consumer groups, government regulators).

Our review builds on several recent publications that have highlighted the need for further work on the externalities of critical mineral extraction. Lee et al (2020b) argue that existing methodologies are currently insufficient in capturing the full suite of environmental, social, and governance concerns associated with copper mining; while they do not suggest a framework for addressing methodology gaps, this work illustrates the complexity of the challenge. As demand for EVs and other technologies has grown, concerns have also been raised in relation to the security of the global supply (Wang et al 2020) and the geo-politics of the critical mineral supply chains (Kalantzakos 2020). Others have begun to highlight issues regarding social justice concerns in critical mineral extractions (Heffron 2020). Here we expand this work by pursuing a more systematic and integrated approach, with the aim of providing a framework through which the future contributions of knowledge can be assessed.

The remainder of the review is structured as follows. Section 2 introduces the telecoupling context of the research area and describes the bibliometric data used in the study. Section 3 presents key findings and discusses their significance. The paper concludes with a definition of research and engagement agenda.

2. Methodology and data

2.1. Telecoupling framework

Telecoupling framework is used to structure the bibliometric analysis as well as implications of the study (figure 1). A telecoupling lens aids the analysis by identifying the multiple domains of knowledge that are potentially needed for effective governance. The telecoupling heuristic goes beyond the consideration of primary, secondary, or even tertiary supply chain externalities of resource use; it also highlights the channels through which institutional, economic, or social changes trigger transformations in distal ‘receiving’ locations, as well as how knowledge of such transformations is fed back to such ‘sending systems’ to potentially stimulate shifts in governance (Eakin et al 2014).

A telecoupling framework thus demands integration of knowledge on social and environmental impacts in disparate geographies, with analysis on material and information flows, and knowledge on the nature of institutional change in industry actors, among consumers, and governing bodies. This paper thus employs a telecoupling lens to a priori create four categories of literature analysis:

(a) Critical minerals global trade and supply chain—Relevant aspects in this theme include the global mineral market and material flows for use in EVs and supply chain practices that support production of EVs.

(b) Sustainability and resource policy and governance—Relevant aspects include sustainability policies in the sending systems and the governance of resources in the receiving systems.

(c) Mining corporate social responsibility (CSR)—This theme covers CSR as a resource governance mechanism within supply chain actors linking sending and receiving systems.

(d) Information feedback and public discourse—This theme concerns the flow of information, and how the general public and consumers react
to information about social and environmental impacts in relation to mineral extraction.

2.2. Bibliometric data

We used different search strings to compile the recent literature in each of the above four domains as applied to critical mineral extraction and use (table 1). We apply a bibliometric analysis to help better understand (a) interactions between concerns of socio-environmental impacts at sites of mineral extraction and end-product consumption and the global responses both by corporate, consumers, and policymakers, (b) research tendencies in terms of possible themes being focused on in the future and (c) thematic evolution of scientific papers published in this research field. Based on the milestones timeline analysis, we investigate research themes in the past 10 years: 2010–2020. We provide a summary of scientific papers published over time in this field (number, authors’ origin, journals, etc).

The research design for bibliometric analysis involved (a) an expansive search of peer-reviewed literature in the Web of Science database and (b) a manual analysis and multi-stage screening process of all articles to ascertain that selected articles would be those that:

- Addressed only critical minerals, excluding mining and extraction activities on gold, coal, and oil; and that only low-carbon technologies are covered by excluding technologies such as lead batteries.
- Addressed only the interconnections between sending and receiving systems by including multinational mining operations and excluding those that are limited to local concerns.
- Focused on the role of cross-boundary (international) factors in affecting policies and practices and not on internal dynamics such as managing tensions and trade-offs between business and social performance.

We use the software Bibliometrix (https://bibliometrix.org) to analyze the title, abstract, keywords, and authors of the selected literature. Based on the defined four telecoupling themes, we used the following Boolean search terms for 2010–2020 period (table 1).

For each aspect of the telecoupling framework, we report on the trends in scientific production (number of publications and geographical distribution), evolution of relationships among top research themes and research teams, and the authors of the most impactful publications. We uncover the knowledge structures in this literature by revealing the main themes and trends. The analyses include (a) a co-word network to define the most important and the most recent issues, (b) a factorial analysis to identify subfields of research themes, and (c) a thematic evolution analysis based on centrality and density measures.

3. Results and analysis of telecoupling themes

In this section, we perform a detailed analysis of the intellectual structure for each EV’s critical minerals telecoupling theme. Subgroups of topics within each telecoupling theme are derived using hierarchical cluster analysis (Zupic and Cater 2015), which reduces the dimensionality of data and represents it in a low dimensionality space. We use a dendrogram to
Table 1. Bibliometric data.

Telecoupling theme	Search terms	No. of articles
Critical minerals trade and supply chain	(mining OR mineral∗ OR metal∗) AND ('low carbon' OR 'electric vehicle∗' OR batter∗ OR 'electric car') AND ('supply chain' OR trade)	58
Sustainability and resource policy and governance	(mining OR mineral∗ OR metal∗) AND ('low carbon' OR 'electric vehicle∗' OR batter∗ OR 'electric car') AND ('policy' OR 'governance')	17
Mining corporate social responsibility (CSR)	(mining OR mineral∗ OR metal∗) AND ('low carbon' OR 'electric vehicle∗' OR batter∗ OR 'electric car') AND ('corporate social responsibility' AND 'multi-national')	64
Information feedback and public discourse	(mining AND (mineral∗ OR metal∗)) AND ('low carbon' OR 'electric vehicle∗' OR batter∗ OR 'electric car') AND ('public opinion' OR 'discourse' OR information OR 'news media' OR 'social media' OR feedback OR consumer)	9

Figure 2. Topic clustering for critical minerals international trade and supply chain theme.

graphically visualize topic clusters based on the similarity of keywords. The clusters represent the keywords that often appear together and are shared in some fashion across a group of articles. Distant clusters imply that only a small fraction of articles use these words together and the keywords are not shared with other articles in the sample. The height in the dendrogram measures the distance among words or cluster of words.

3.1. Theme 1: critical minerals international trade and supply chain

The topic clusters in this theme are summarized in figure 2. This suite of literature tends to focus on the motivation for adoption of EV (e.g. the drive for a low-carbon economic future) (e.g. Bazilian 2018, Nansai et al 2019, Lee et al 2020a) and the risks posed in achieving that vision by relying on rare earth minerals from geographically concentrated and potentially politically unstable regions (Sun et al 2019, Nassar et al 2020, van den Brink et al 2020). The concept of criticality features prominently, as the availability of critical minerals is seen to be threatened by potential disruptions in regions of supply (Schmidt et al 2016, Olivetti et al 2017, Ballinger et al 2019, Cimprich et al 2019, Mateus and Martins 2020, Nassar et al 2020, Sun et al 2020, van den Brink et al 2020). Several articles discuss the potential need to shift mineral extraction to the regions of consumption (e.g. Europe) to improve the control...
and security of the supply chain (Sun et al 2019, Mateus and Martins 2020, Schmid 2020). A few articles address broader issues (beyond the threat to achieving low carbon objectives) of sustainability (environmental, social, and economic) related, for example to efforts to achieve the Sustainable Development Goals in regions of supply (Agusdinata et al 2018, Bazilian 2018, Hancock et al 2018, Stoycheva et al 2018, Zeuner et al 2018, Nansai et al 2019) but these are the minority in this group. The need for incorporating more comprehensive life cycle assessments (LCAs) to capture the full costs of mineral extraction and use is also highlighted (Stoycheva et al 2018, Weimer et al 2019, Lee et al 2020b).

3.2. Theme 2: sustainability, resource policy and governance
The topic clusters in this theme are summarized in figure 3. This literature raises questions concerning the need for improved governance of critical mineral extraction for sustainable transitions to a low-carbon economy (e.g. Bazilian 2018, Sovacool et al 2019, 2020b, Henry et al 2020). Several authors explore the actors that should be involved in such governance (e.g. Weiser et al 2015, Hancock et al 2018), and others focus on the role of problem-framing in how governance arrangements are organized (Nerlich 2011, Barandiarni 2019, Henry et al 2020). Issues of social justice and just energy transitions surface in this literature (Sovacool et al 2019, Henry et al 2020) in relation to how the benefits and burdens of mineral extraction are framed and narrated to motivate the focus of international governance. Given the prominent role of transnationals in mineral extraction, the potential and limitations of state action in governance efforts are also explored (Gavin 2015, Zhang et al 2019a, 2019b), with illustrations of institutional innovations in public–private partnerships (Weiser et al 2015, Hancock et al 2018). Several articles document the range of direct and indirect supply chain impacts across sites of production and consumption (Kotsadam and Tolonen 2015, Sverdrup 2016, Agusdinata et al 2018, Ardron 2018, Bazilian 2018) and call for improved recognition of such impacts and action. Importantly, the literature highlights the need for and limitations of national-level policy action (in supply- or demand origin countries) with implications for the intervention of international agencies such as World Trade Organization (WTO) (e.g. Prior et al 2013, Weiser et al 2015).

3.3. Theme 3: mining and corporate social responsibility
This body of literature explores what issues pertaining to critical minerals are rising to the attention of corporate actors, what actors are involved in motivating corporate action, and how corporate actors are responding to such pressures (figure 4). Conflict with communities in sites of mineral extraction is one prominent theme (Kemp et al 2011, Dam-de Jong

Figure 3. Topic clusters for sustainability, resource policy and governance theme.
2015, Mayes 2015, Rolston 2015, St-Laurent and Billon 2015, Banerjee 2018, Haslam 2018, Haslam et al 2018), indicating that mineral exploitation is often being met with resistance, motivating mining interests to alter their strategies in the field to address opposition directly (Lodhia and Hess 2014, Adler et al 2017, Arikan et al 2017, Buchanan and Marques 2018). Banerjee (2018), for example, explores the limitations of Corporate Social Responsibility protocols in managing conflicts, while St-Laurent and Billon (2015) explores innovations in institutional arrangements between corporations and communities to address emergent conflicts. Human rights violations are specifically raised in several articles, indicating an emergent focus on the relation of localized social impacts to internationally recognized justice norms, and implications for CSR (Hanna and Vanclay 2013, Pesmatzoglou et al 2014, Idemudia and Kwakyewah 2018). Mares (2018), for example, emphasizes the role of transparency laws in elevating human rights concerns, and Conde (2017) explores the strategies communities are employing to bring attention to their grievances. Environmental issues are less featured in this sample of the literature, with only a few articles identifying biodiversity impacts and carbon offsets (Virah-Sawmy et al 2014, Adler et al 2017) and water issues (Schoderer et al 2020) as concerns in CSR mining policy.

A significant segment of this literature focuses on the differential roles of specific stakeholders and institutional mechanisms in motivating and enforcing CSR policy, exploring the role of states and regulatory agencies (Radulescu 2013, Bodruzic 2015, Haslam 2018, Idemudia and Kwakyewah 2018, Boone Barrera 2019), non-governmental organizations (Lodhia and Hess 2014, Tsai and Wu 2018), and national, bilateral and international instruments (Dam-de Jong 2015, Paterno 2016, Grégoire 2019). Dong et al (2014) finds, for example, that increasingly international consumers have an impact over CSR, while ‘mining industry associations, local communities and employees are not considered as salient…’. The keyword analysis illustrates that issues of legitimacy, responsibility, accountability, ethics and responsibility, the mechanisms of interaction (licenses, performance metrics, self-regulation, reputation management) are emerging to pressure corporate action (particularly human rights, justice, and conflict). This literature also covers the motivations and conditions for firms to adopt CSR policies and alter their actions in the supply chain (Buchanan and Marques 2018, Dalla Via and Perego 2018, Parker and Cox 2018, Mateus and Martins 2020). Given the importance of information flow to corporations to signal salient impacts, a number of articles also focus on the state of CSR accounting in mining (Vintró and Comajuncosa 2010, Lodhia and Hess 2014, Pesmatzoglou et al 2014, Suscun Pozas et al 2015, Sauer and Seuring 2017, Larsen et al 2018, Böhling et al 2019, Vivoda and Kemp 2019).

3.4. Theme 4: information feedback and public discourse

The literature specifically focusing on information and communication channels overlaps thematically with the literature on resource governance described...
above, and represents the smallest body of literature reviewed (figure 5). Here the keyword clusters suggest that the literature has not yet coalesced into a cohesive discourse or direction. Some of this nascent literature focuses on how corporations interact and communicate CSR related material to their clients and the public (Autesserre 2012, Lodhia 2014, Badera and Kocóń 2015, González-Rodríguez et al 2019, Song and Wen 2020); and to a lesser extent, how the flow of information works the other way, from the public to corporations (Badera and Kocóń 2015, Guyol-Meinrath 2015). For example, Schwartz and Nelson (2016), discusses the potential for perverse consequences of international efforts to address human rights violations in ways that resonate with foreign audiences, resulting in an exacerbation of local impacts. Gong et al (2020) highlight the potential for big data analysis approaches in enhancing the communication of consumer interests to corporate actors. The keyword cluster analysis is less informative given the small sample size, but highlights the role of communication, media and problem framing, and public opinion; corporate strategies for stakeholder engagement; methods for assessing corporate–public interactions and legal mechanism for holding corporations accountable.

3.5. Additional results of the bibliometric analysis
3.5.1. Evolution of research production

We found a trend of increasing numbers of articles on the telecoupling themes over the past 10 years (figure 6). The trend is unsurprising given the growing demand for EVs and the resulting coverage of various issues associated with EVs adoption. The distributions among themes, however, are uneven. CSR topics dominated the scientific discourse and exhibited a spike in 2018. This jump of interest was likely a response to the greater scrutiny in the so-called conflict minerals (Kim and Davis 2016) and human rights abuses and corruption involved in the extractions, especially of cobalt and coltan in Congo (Amnesty International 2016). These issues received a lot of coverage in the Western news media and targeted political leaders and US Tech companies to put pressure on them to improve mineral extraction governance (Pilkington 2016). Attention to trade and supply chain themes has been growing with the recognition of the criticality of supply, i.e. concerns over the geographically concentrated sources of supply and what this implies for supply chain stability. To a lesser extent, the growth trend is also reflected in scientific outputs in the policy and governance arena. The theme on information feedback and public
Figure 6. Annual science production across critical minerals telecoupling themes.

discourse is uneven and appears not to have gained much traction in the literature as of yet.

3.5.2. Authors’ collaboration network
To establish the level of collaboration among researchers globally—a potential indicator of flows of information from diverse regions affected by mineral extracted—we tabulated the country of origin of articles’ corresponding author and the involvement of cross-country collaboration (figure 7(a)). The North American and European countries as well as China and Japan produced the most publications. The US has the highest proportion of international collaborations (i.e. multi-country publications, or MCP) followed by Australia and China. Just two mineral-producing countries from the Global South, namely Chile and Peru, have produced articles with the corresponding author coming from these countries. Those publications also involved no international collaboration (i.e. only single-country publication, or SCP).

We further explored how authors collaborate across the globe by mapping authors’ collaboration networks based on the authors’ countries of origin (figure 7(b)). Three countries: US, Australia, and Japan, form the major international scientific collaboration network. It is notable that, unlike the other two countries, Japan is predominantly a mineral-consuming country. In contrast, most minerals-producing countries in the Global South are poorly represented. Indonesia, a major mining country, for example, has no leading role in publication contributions. An increased presence of researchers from producing regions in academic networks would likely contribute to a deeper knowledge about local conditions and contexts and hence close the gap of knowledge production between the Global South and Global North.

3.5.3. Evolution of research themes
We analyze the evolution of research themes represented in the period 2010–2020 by characterizing how important (centrality; based on no. of citations) and how-well developed (density; based on no. of publications) each theme was in the literature (figure 8). Given the measurements of centrality and density, the identified research themes can be classified into four thematic groups (Cobo et al 2011): (a) motor (high centrality and density), (b) basic and transversal (high centrality-low density), (c) emerging or declining (low centrality-low density), and (d) highly developed and isolated theme (low centrality-high density).

First, the motor themes center around two clusters: one defined by supply-chain sustainability, EV adoption and climate change, the other by trade, cobalt low-carbon technologies and LCA. These clusters suggest continued interest and exploration of the supply chain impacts of energy transitions. Issues of social justice, CSR and human rights, and the issue of mineral supply constraints and China as a global player are themes that are now relatively well developed in and of themselves, but as yet not substantially integrated with other thematic domains. Issues of corporate accountability and legitimacy, and the role of consumers and political
institutions in monitoring the sector appear to be persistent themes of focus over the time period. Finally, issues of metal criticality and the relationship of mining to sustainable development are emergent areas of research, as yet lacking full development in the literature.

3.5.4. Interconnections of major research themes

A keyword co-occurrence analysis across all four thematic literatures provides an overview of the literature in all four subgroups. Figure 9 demonstrates four clusters of keywords. The red cluster illustrates a discourse over the management of extractive industries and the role of metal extraction in sustainable development. The green cluster illustrates the attention specifically to cobalt and rare earth (i.e. neodymium) and the importance of China and international trade to meet the demands of low-carbon technologies. The blue cluster illustrates the concern over the stability of the supply chain (criticality) and the availability of critical minerals to meet future demand as countries transition to
EV. Finally, the orange cluster addresses the concern over governance of these issues, with a strong focus on mechanisms of corporate social responsibility, communication, and management of social conflict.

3.5.5. Connections between literature sources, keywords, and intellectual roots

Based on the keywords, we trace where such research is being published and which articles appear seminal in specific discussions (figure 10). This way we are
able to identify the proliferation of research content and its intellectual roots. In particular, the keywords that get at the core of telecoupling concept are highlighted.

This analysis highlights the dominance of literature on CSR in the mining sector, with among others Jenkins and Yakovleva (2006), Scherer and Palazzo (2011), and Owen and Kemp (2013) as some of seminal contributions. Some works are recognized for setting the stage of research on international minerals trade and material flows. Olivetti et al (2017), Sun et al (2017), and Hao et al (2017) focus on lithium trade. Others are more comprehensive in its coverage. Graedel et al (2015) (62 critical metals), Nansai et al (2014) (rare earth, platinum, and cobalt), and Deetman et al (2018) (copper, tantalum, neodymium, cobalt, and lithium). Common keywords across the sample tend to be explicitly supply chain focused: supply-chain, mining, material flows, and CSR.

While themes of social impacts, sustainability, and sustainable development in the mining sector are less featured in the articles’ keywords, Kapelus (2002) and Hilson (2002) could be considered a seminal work, with intellectual roots also in the work of Jenkins and Yakovleva (2006). The social dimensions of mining is featured in work published in Business and Society and Extractive Industries and Society journals. Human rights, while less featured in the literature keywords, has been promoted by Scherer and Palazzo (2011), and covered in publications in Sustainability and Environment journals. Additional coverage of the environmental and sustainable development implications of mining are featured in J. of Cleaner Production, J. of Business Ethics, and Resource Conservation and Recycling publications.

Explicit attention to governance concerns appears to be more recent and governance is not a frequent keyword in our sample. Ali et al (2017) bring attention to this issue in emphasizing governance importance in sustainable supply management, with ties to prior work of Prno and Slocombe (2012) and Owen and Kemp (2013), which both take a critical look at the concept of the social license for mining operations. Resource Policy and Corporate Social Responsibility and Environmental Management are journals that have featured work on such issues of governance.

4. Discussion: key highlights and future research agenda

4.1. Key highlights on telecoupling themes

Framing our analysis through the analytical lens of telecoupling provides some constructive insight into the knowledge domains pertaining to critical mineral sustainability that are relatively well developed as well as those that are still nascent in development. Our analysis illustrates how the sustainability challenges of critical mineral extraction and use is, to date, largely framed from the perspective of the ‘sending’
regions of telecoupled signals. In other words, the sustainability challenges of critical minerals are defined in relation to the concerns of the countries of the Global North that are both promoting policies in support of EV adoption and low-carbon energy transitions, as well as the sites of significant consumer demand for products made with these minerals. For example, material life cycle analysis and improving the efficiency and reducing the carbon intensity of the supply chain appears to be a consolidated research theme. In addition, there is an emerging growth of research on the fragility or ‘criticality’ of the supply chain, given the increasing dependence of consumer countries on supplies from a few geographic regions, and the real risk of political or economic disruption to those supplies. We would expect more attention to this literature given that conflict associated with sites of mineral extraction would potentially derail low-carbon energy transitions in Europe, the United States, and elsewhere where such policies are progressing. The problem-framing employed in this literature may already be leading to new policy initiatives in the United States (White House 2021) and Europe (e.g. European Raw Materials Alliance (ERMA), https://erma.eu/) to secure mineral supplies through, for example, developing mineral extraction, processing and battery manufacturing capabilities domestically in order to secure more of the supply chain (National Research Council 2008).

A separate thematic domain, evident in the literature on organizations, institutions and corporate governance, is exploring how corporations respond to stakeholder demands and what institutional arrangements and innovations are emerging among civil society, corporations and state organizations to address emergent challenges. As evident in figure 5, this literature is perhaps not well integrated into the broader research on critical minerals. Nevertheless, it does address some of the emerging governance challenges that telecoupled systems pose in a globalized context. It is evident that increasing attention is being paid in this thematic domain to concerns of community development and the potential for conflict in mining regions. There is also increased documentation of the local impacts of mining activities, the implications for human rights and some attention to the role of mineral extraction in the pursuit of sustainable development goals. While nascent, the documented research on corporate–community institutional development and governance may be particularly productive in supporting the development of governance arrangements in critical mineral mining.

The literature covering methods of social and environmental accounting, metrics of impacts and modes and mechanisms of communication of information and social pressure are far less developed, but also beginning to give some insight into how knowledge on impacts translates into corporate and public sector response. While it is to be expected that the formal rules and norms governing supply chain activities and corporate investments will influence supply chain actors, the extent to which such actors are sensitive to pressures emerging from impacts beyond their immediate domain of formal responsibility is a subject of evolving research. Some have posited that social movements—many associated with deep-rooted conflict in areas of resource extraction—may perform critical roles as feedbacks between recipient and sending regions in telecoupled systems (Boillat et al 2020). The growing interest in corporate–community relations and conflict may be one indication of the importance of this feedback mechanism. Work in sustainable and responsible supply chain management and corporate social responsibility has posited a diversity of factors and conditions determining the sensitivity of supply chain actors to information and pressures on social and environmental outcomes associated with their activities (Aguilera et al 2007, Fernando and Lawrence 2014).

4.2. Definition of research and engagement agenda from a telecoupling perspective

The research community can play an important role in improving the global and local governance of critical mineral extraction by filling knowledge gaps on distal impacts and supply chain externalities, evaluating how knowledge of such impacts is transmitted to actors of authority and responsibility, and making visible the innovative governance responses that may hold clues to how sustainable development goals and mineral extraction can be made more compatible. Here we outline four areas where more research activity is needed to support governance innovation.

4.2.1. Assessing proximate and more distal impacts

Addressing the socio-environmental impacts of minerals extractions within the SDG and CSR framework entails developing and implementing solutions to real problems at a local community level. An impactful implementation of SDG initiatives and efforts depends on meaningful engagements with a diverse group of societal stakeholders that include universities, governments, private companies, non-governmental organizations (NGOs), and communities (Lavery 2018). To facilitate such efforts, a more meaningful engagement among stakeholders between the Global South and North is needed. The engagement paradigm needs to shift from the ‘order, deliver, and pick up’ model, in which stakeholders ‘order’ a service and ‘pick up’ the solution provided by scientists (Brundiers and Wiek 2011) to an environment where knowledge and solution ideas are co-produced through shared learning and projects and initiatives are implemented through shared action, responsibility, and ownership. Higher education institutions can play a crucial role in bringing together a diverse group of societal stakeholders to
take actions and make an impact (Leal Filho et al 2019).

Another means of capturing the full extent of supply chain externalities may be through social LCA (SLCA). SLCA has obtained increasing popularity in the past several years as a method for evaluating the positive and negative social implications of a product’s life cycle from raw material extraction to final disposal—also known as cradle to grave (Benoit-Norris et al 2011). Applications of the SLCA will increase awareness and encourage the improvement of social conditions of local communities by mining companies by making firm’s operational choices more explicit. Multi-criteria decision analysis (MCDA) methods such as analytical hierarchy process seeks to elicit broad stakeholders inputs that require judgmental assessment on company’s performance along several indicators categories (workers, local community, societies, supply chain, and consumers), providing a more balanced and inclusive approach.

4.2.2. Information flows on distal impacts
The literature we reviewed illustrates that there is a growing interest in and documentation of the range of impacts and concerns associated with both producing (receiving) and consuming (sending) systems. This body of literature, however, remains less widely cited and connected to the broader literature on supply chain governance and criticality. More attention could be given in the research community to the ways in which distal impacts are assessed, documented and communicated to public sector agencies, corporate actors and consumers. In previous work, we identified the need to address knowledge asymmetries among the stakeholders, especially the gaps between local communities and mining companies (Agusdinata et al 2018). Mining companies have stepped up their efforts for accountability by complying with national and international regulations and codes of conduct. Such mechanisms, however, rely heavily on external sources of formal data and information provided by experts and authorities, thereby neglecting local and traditional (indigenous) sources of knowledge and practices (Bavinck and Gupta 2014). In this setting, local communities have few avenues and options to voice their concerns and share their knowledge (Sosa and Zwarteveen 2014). Local knowledge may be particularly critical to capture in relation to the social-cultural and more intangible values and interests affected by mineral activities.

There is relatively little analysis to date of the role of the news and social media, non-governmental organizations and other private actors in communicating and disseminating knowledge on distal impacts to those actors in the supply chain that have the capacity to alter mining activities. Our analysis illustrated that the literature addressing information flows and feedback was perhaps the least well-developed of the four thematic areas, and, as yet, poorly articulated with the other thematic domains. There is only a nascent understanding about the extent to which the media can play a role in channeling and amplifying sustainability concerns (e.g. Gómez-Carrasco et al 2021), and even less focus specifically on the role of media communicating local impacts of mineral mining back to sites of technology use. Media analyses can establish evidence of the effectiveness and limitations of news and social media reporting as a feedback mechanism in enhancing telecoupling governance.

4.2.3. Mobilization and governance innovation as response to distal impacts
Consumer awareness and mobilization through non-governmental organizations can play a significant role in mobilizing corporate action to enhance sustainability (Lyon and Maxwell 2008). There is some evidence that consumers of low-carbon technologies are starting to have an awareness that such technologies use a multitude of minerals that could cause environmental degradation and harm in regions and communities of mineral extraction (IRP 2020, Kramarz et al 2021). Nevertheless, it is still unclear the extent to which awareness translates into consumer preferences and choices, regulatory reform or corporate innovation. More research is needed on what motivates consumers of EVs and where they access information about supply chain impacts (Ali et al 2017). Consumer surveys, preference assessments and research into the relationship of consumers’ knowledge over distal impacts and EV demand would help support the design of more effective points of leverage to encourage shifts in unsustainable supply chain practices. There is also a need for more work on the politics of collective action in relation to EV use and adoption, and the relationships among networks of consumer advocates, environmental groups and human rights organizations in actions to influence supply chain actors and policy-makers (Burns and LeMoyne 2001). Given the political mobilization of many environmental constituencies in support of EV adoption, how emergent evidence of distal impacts is addressed by such actors is of interest in understanding the complex process of sustainable energy transitions.

Our review also points to a growing focus on novel modes of mine-community interactions and governance arrangements. In this work, we see an opportunity to explicitly evaluate the implementation of sustainability initiatives in relation to the targets of the Sustainable Development Goals. In their attempts to implement CSR, emergent evidence suggests that most large mining multinational companies have failed to translate promises to communities into action plans (Responsible mining foundation 2020). Given companies’ high awareness of SDGs (Izzo et al 2020), there is an opportunity to adapt existing
corporate measurement and evaluation systems and improve CSR engagement in a way that contributes to sustainable development.

We see unique opportunities for transdisciplinary approaches to research (Schneider and Buser 2018). There are several ongoing multi-stakeholder initiatives with coalitions of industry, non-governmental and public actors that could serve as models for such work in critical mineral extraction, such as the Sustainable Coffee Challenge (Millard 2017), or the SeaBOS initiative for sustainable global fisheries (Österblom et al 2017), the Alliance for Responsible Mining (www.responsiblemines.org/en/), which works to advance artisanal and small scale mining and sustainable development, or the Extractive Industries Transparency Initiative (https://eiti.org/), a coalition of government, companies, and civil society to promote accountable management of extractive industry.

4.2.4. Global critical mineral governance

In our review, we found relatively little focus on inter-governmental or supra-national governance initiatives. Much of the research of the last decade positions mining within a global neoliberal regulatory regime, in which industry organizes to adopt voluntary standards and reporting requirements in lieu of more direct government regulation (e.g. Bodruzić 2015, Dalla Via and Perego 2018, Idemudia and Kwakye-wah 2018, Tsai and Wu 2018). While the literature does raise issues related to the mining sector’s voluntary contributions to international sustainability initiatives such as a human rights standards (e.g. Coumans 2011, 2017); the Sustainable Development Goals (e.g. Yakovleva et al 2017), biodiversity protection (e.g. Adler et al 2017), as yet, international cooperation specifically aimed at improving the sustainability of critical mineral mining has not consolidated. Given nascent efforts in this area (see IRP 2020), we would expect that in the future more literature will explore the implications and effectiveness of these governance efforts. Given the emphasis on industry-initiated standard setting and reporting, evolving international governance regimes will require collaboration among supranational bodies such as the United Nations or European Union, non-governmental organizations with international as well as local focus, and national and international industry associations.

The need for a global critical mineral governance through cooperation between government and non-government has just recently been recognized. The European Union, for example, issued the following statement in an event of the ERMA, a network of organizations from the public and private sectors covering the entire raw materials value chain: ‘… the reasons to explore sustainable mining in the EU are not only of economic and geopolitical nature. We also have a moral obligation. If we do not have an open debate about sustainable mining in Europe, without taboos, we will continue in a situation where we import raw materials from mines far away from our homes and conveniently close our eyes on how they were sourced. It is high time that we are honest and take more responsibility ourselves. We need to work together and develop a European approach with high environmental and social standards which is backed by stakeholders (European Commission 2021).’

4.3. The role of the interdisciplinary research community

Our review unsurprisingly demonstrates the dominant role of researchers from the Global North in multiple knowledge domains, and a coincident emphasis on issues of supply and criticality that are of significant concern in such regions. A telecoupling framework provides an opportunity to bring together researchers and other stakeholders from across the telecoupling spectrum and associated geographies to synergize intellectual resources to address the emerging issues around the world. Such a coalition of academics, NGOs, policymakers and private sector representatives could serve as a hub for research, education, and stakeholders/community engagement on the socio-environmental impacts of critical mineral extractions, use, and end-of-life. Innovations in research approaches, knowledge integration, and co-production will not only enhance the potential for governance of critical minerals, but also provide insights applicable to the management of other complex, globalized supply chains that play important roles in sustainability transitions.

5. Concluding remarks

Our review of the sustainability of critical minerals underlines a dilemma faced by modern society. On the one hand, the adoption of low-carbon technologies such as EVs is considered crucial to reduce GHG emissions and mitigate climate change. On the other, as more of these green technologies are adopted, a rapidly growing demand for critical minerals may result in collateral damages particularly in local communities and ecosystems affected by extraction activities. For the consumers, the fact that some of the minerals such as lithium and cobalt are hidden in EV components and the damages take place in distant locations may obscure such a dilemma. The use of these minerals is being touted as essential for low carbon transitions, yet social harms and environmental degradation from mineral extraction are now being recognized, initiating debates about the overall sustainability of low-carbon technologies. The urgency and importance of this issue provide an opportunity for a more meaningful and inclusive collaboration among all stakeholders. It is especially important to involve those who have been historically marginalized in extractive practices and industries, particularly indigenous communities. The
academic research community will also greatly benefit from the substantive empirical and theoretical contributions of researchers from mineral-producing countries.

Addressing the sustainability of EVs minerals requires not only improvements in supply chain practices and governance of resources but also a better way of thinking and conceptualizing the issue; a tele-coupling framework, linking both systems of extraction and consumption as well as the multiple flows between them, may help to serve research fills the knowledge gaps to improve opportunities for sustainable governance. By considering impacts, actors, policies, and their relationships in the sending and receiving systems, we argue that the framework can better capture the complexities and impacts associated with mineral extractions.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

The study was partly funded by the Institute for Social Science Research at ASU. We would like to thank two anonymous reviewers for their valuable comments.

ORCID iD

Datu Buyung Agusdinata https://orcid.org/0000-0003-4537-0446

References

Achzet B and Helbig C 2013 How to evaluate raw material supply risks—an overview Resour. Policy 38 435–47
Adler R, Mansi M, Pandey R and Stringer C 2017 United Nations decade on biodiversity Account. Audit. Account. J. 30 1711–45
Aguiera R V, Rupp D E, Williams C A and Ganapathi J 2007 Putting the S back in corporate social responsibility: a multilevel theory of social change in organizations Acad. Manage. Rev. 32 836–63
Agusdinata D B, Liu W, Eakin H and Romero H 2018 Socio-environmental impacts of lithium mineral extraction: towards a research agenda Environ. Res. Lett. 13 123001
Ali S et al 2017 Mineral supply for sustainable development requires resource governance Nat. 543 367–72
Alonso E, Sherman A M, Wallington T J, Everson M P, Field F R, Roth R and Kirchain R E 2012 Evaluating rare earth element availability: a case with revolutionary demand from clean technologies Environ. Sci. Technol. 46 5006–14
Amnesty International 2016 ‘This is what we die for’: human rights abuses in the democratic republic of the Congo power the global trade in cobalt (available at: www.amnesty.org/download/Documents/AFR6231832016ENGLISH.PDF (Accessed 22 August 2020))
Ardron J A 2018 Transparency in the operations of the International Seabed Authority: an initial assessment Mar. Policy 95 324–51
Arikan O, Reinecke J, Spence C and Morrell K 2017 Signposts or weatherhavens? The curious case of corporate social responsibility and conflict minerals J. Bus. Ethics 146 469–84
Autesserre S 2012 Dangerous tales: dominant narratives on the Congo and their unintended consequences Afr. Aff. 111 202–22
Badera J and Kocôr P 2015 Moral panic related to mineral development projects—examples from Poland Resour. Policy 45 29–36
Ballinger B, Stringer M, Schmeda-Lopez D R, Kefferd B, Parkinson B, Greig C and Smart S 2019 The vulnerability of electric vehicle deployment to critical mineral supply Appl. Energy 255 113844
Banerjee S B 2018 Transnational power and translocal governance: the politics of corporate responsibility Hum. Relat. 71 796–821
Barrandiaran J 2019 Lithium and development imaginaries in Chile, Argentina and Bolivia World Dev. 113 381–91
Bavinck M and Gupta J 2014 Legal pluralism in aquatic regimes: a challenge for governance Curr. Opin. Environ. Sustain. 11 78–85
Bazilian M D 2018 The mineral foundation of the energy transition Extr. Ind. Soc. 5 93–97
Benoit-Norris C, Vickery-Niederman G, Valdivia S, Franze J, Traverso M, Ciroth A and Mauzin B 2011 Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA Int. J. Life Cycle Assess. 16 682–90
Bodruvic D 2015 Promoting international development through corporate social responsibility: the Canadian government’s partnership with Canadian mining companies Can. Foreign Policy J. 21 129–45
Böhring K, Murguita D I and Godfrid J 2019 Sustainability reporting in the mining sector: exploring its symbolic nature Bus. Soc. 58 191–223
Boillat S et al 2020 Why telecoupling research needs to account for environmental justice J. Land Use Sci. 15 1–10
Boone Barrera E 2019 Extractive industries and investor–state arbitration: enforcing home standards abroad Sustainability 11 6963
Boulos P and Dowding K 2014 The press and issue framing in the Australian mining tax debate Aust. J. Political Sci. 49 694–710
Brundiers K and Wiek A 2011 Educating students in real-world sustainability research: vision and implementation Innov. High. Educ. 36 107–24
Buchanan S and Marques J C 2018 How home country industry associations influence MNE international CSR practices: evidence from the Canadian mining industry J. World Bus. 53 63–74
Burns T J and LeMoyne T 2001 How environmental movements risk—an overview J. Land Use Sci. 16 836–63
Busse T and LeMoyne T 2001 How environmental movements can be more effective: prioritizing environmental themes in political discourse Hum. Ecol. Rev. 8 26–38 (http://www.jstor.org/stable/24707235)
Cimprich A, Bach V, Helbig C, Thorens A, Schrijvers D, Sonnemann G, Young S B, Sonderegger T and Berger M 2019 Raw material criticality assessment as a complement to environmental life cycle assessment: examining methods for product-level supply risk assessment J. Ind. Ecol. 23 1226–36
Cobo M J, López-Herrera A G, Herrera-Viedma E and Herrera F 2011 An approach for detecting, quantifying, and visualizing political discourse Hum. Ecol. Rev. 8 80–90
Conde M 2017 Resistance to mining: a review Ecol. Econ. 132 80–90
Courmans C 2011 Occupying Spaces Created by Conflict Current Anthropology 52 S29–43
Courmans C 2017 Do no harm? Mining industry responses to the responsibility to respect human rights Can. J. Dev. Stud / Revue canadienne d’études du développement 38 272–90
Dalla Via N and Perego P 2018 Determinants of conflict minerals disclosure under the Dodd–Frank Act Bus. Strategy Environ. 27 773–88
Dam-de Jong D A 2015 The role of informal normative processes in improving governance over natural resources in conflict-torn states Hague J. Rule Law 7 219–41
Deetman S, Pauliuk S, van Vuuren D P, van der Voet E and Tukker A 2018 Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances Environ. Sci. Technol. 52 4950–9
Dominisch E, Florin N and Teske S 2019 Responsible minerals sourcing for renewable energy Report Prepared for Earthworks by the Institute for Sustainable Futures (Sydney: University of Technology Sydney) 1–54
Dong S, Burritt R and Qian W 2014 Salient stakeholders in corporate social responsibility reporting by Chinese mining and minerals companies J. Clean. Prod. 84 59–69
Eakin H et al 2014 Significance of telecoupling for exploration of land use change Rethinking Global Land Use in an Urban Era ed K. C Seto and A Reenberg (Cambridge, MA: MIT Press) pp 141–62
Erdmann L and Graedel T E 2011 Criticality of non-fuel minerals: a review of major approaches and analyses Environ. Sci. Technol. 45 7620–30
European Commission 2021 EIT Raw Materials Summit European Commission (available at: https://ec.europa.eu/commission/ commissioners/2019-2024/breton/announcements/eit-raw-materials-summit_en) (Accessed 3 May 2021)
Fernando S and Lawrence S 2014 A theoretical framework for CSR practices: integrating legitimacy theory, stakeholder theory and institutional theory J. Theor. Account. Res. 10 149–78
Gavin B 2015 Sustainable development of China’s rare earth industry within and without the WTO J. World Trade 3 495–515
Gómez-Carrasco P, Guzmán-Saorín E and García Osma B 2021 Market acceptability assessment of electric vehicles based on an improved stochastic multicriteria acceptability analysis-evidential reasoning approach J. Clean. Prod. 269 121990
González-Rodríguez M R, Díaz-Fernández M C and Biagio S 2019 The perception of socially and environmentally responsible practices based on values and cultural environment from a customer perspective J. Clean. Prod. 216 88–98
Graedel T E et al 2012 Methodology of metal criticality determination Environ. Sci. Technol. 46 1063–70
Graedel T E, Harper E M, Nassar N T, Nuss P and Reck B K 2015 Criticality of metals and metalloids Proc. Natl Acad. Sci. USA 112 4257–62
Grégoire E R 2019 Dialogue as racism? The promotion of ‘Canadian dialogue’ in Guatemala’s extractive sector Extr. Ind. Soc. 6 688–701
Gruber P W, Medina P A, Keoleian G A, Kesler S E, Everson M P and Wollington T J 2011 Global lithium availability J. Ind. Ecol. 15 760–75
Guyot-Meirath E 2015 Contested landscapes: collaborations between displaced communities and international advocacy groups in Guatemala States and Citizens: Accommodation, Facilitation and Resistance to Globalization (Current Perspectives in Social Theory vol 34) ed J. Shefner (Bingley: Emerald Group Publishing) pp 191–213
Hancock L, Ralph N and Ali S H 2018 Bolivia’s lithium frontier: can public private partnerships deliver a minerals boom for sustainable development? J. Clean. Prod. 178 551–60
Hanna P and Vanclay F 2013 Human rights, indigenous people and the concept of free, prior and informed consent Impact Assess. Proj. Apprais. 31 146–67
Hao H, Liu Z, Zhao F, Geng Y and Sarkis J 2017 Material flow analysis of lithium in China Resour. Policy 51 100–6
Haslam P A 2018 Beyond voluntary: state–firm bargaining over corporate social responsibilities in mining Rev. Int. Polit. Econ. 25 418–40
Haslam P A, Ary Timoune N and Razaq Z M 2018 Do Canadian mining firms behave worse than other companies?

Quantitative evidence from Latin America Can. J. Political Sci. 51 521–51
Heffron R J 2020 The role of justice in developing critical minerals Extr. Ind. Soc. 7 855–63
Hellek B, Bradshaw A M, Wietschel L, Thorenz A and Tuma A 2018 Supply risks associated with lithium-ion battery materials J. Clean. Prod. 172 274–86
Henry M S, Bazilian M D and Markussen C 2020 Just transitions: history and futures in a post-COVID world Energy Res. Soc. Sci. 68 101668
Hilson G 2002 An overview of land use conflicts in mining communities Land Use Policy 19 65–73
Idemudia U and Kwakwiyeh C 2018 Analysis of the Canadian national corporate social responsibility strategy: insights and implications Corp. Soc. Responsib. Environ. Manage. 25 928–38
IRP (International Resource Panel) 2020 Mineral Resource Governance in the 21st century: gearing extractive industries towards sustainable development (available at: www.resourcepanel.org/reports/mineral-resource-governance-21st-century) (Accessed 10 January 2021)
Izzo M F, Ciaburri M and Tiscini R 2020 The challenge of sustainable development goal reporting: the first evidence from Italian listed companies Sustainability 12 3494
Jenkins H 2004 Corporate social responsibility and the mining industry: conflicts and constructs Corp. Soc. Responsib. Environ. Manage. 11 23–34
Jenkins H and Yakovleva N 2006 Corporate social responsibility in the mining industry: exploring trends in social and environmental disclosure J. Clean. Prod. 14 271–84
Kalantzakos S 2020 The race for critical minerals in an era of geopolitical realignments Int. Spect. 55 1–16
Kapelus P 2002 Mining, corporate social responsibility and the ‘community’ the case of Rio Tinto, Richards Bay Minerals and the Mbonambi J. Bus. Ethics 39 275–96
Kemp D, Owen J R, Gottmann N and Bond C J 2011 Just relations and company–community conflict in mining J. Bus. Ethics 101 93–109
Kim Y H and Davis G F 2016 Challenges for global supply chain sustainability: evidence from conflict minerals reports Acad. Manage. J. 59 1806–916
Klein R, van der Voet E, Kramer G J, van Oers L and van der Giesen C 2011 Metal requirements of low-carbon power generation Energy 36 5640–8
Kotsadam A and Tolonen A 2013 African Mining, Gender, and Local Employment (Policy Research Working Paper No 7251) (Washington, DC: World Bank)
Kramarz T, Park S and Johnson C 2021 Governing the dark side of renewable energy: a typology of global displacements Energy Res. Soc. Sci. 74 1019102
Kushnir D and Sandén B A 2012 The time dimension and lithium resource constraints for electric vehicles Resour. Policy 37 93–103
Larsen R K, Österlin C and Guia L 2018 Do voluntary corporate actions improve cumulative effects assessment? Mining companies’ performance on Sami lands Extr. Ind. Soc. 5 375–83
Laver J 2018 Building an evidence base for stakeholder engagement Science 361 554–6
Leal Filho W et al 2019 Sustainable development goals and sustainability teaching at universities: falling behind or getting ahead of the pack? J. Clean. Prod. 232 285–94
Lèbre C, Stringer M, Svobodova K, Owen J R, Kemp D, Côte C, Arratia-Solar A and Valenta R K 2020 The social and environmental complexities of extracting energy transition metals Nat. Commun. 11 4823
Lee J et al 2020a Reviewing the material and metal security of low-carbon energy transitions Renew. Sustain. Energy Rev. 124 109789
Lee J, Bazilian M, Sovalco B and Greene S 2020b Responsible or reckless? A critical review of the environmental and climate assessments of mineral supply chains Environ. Res. Lett. 15 103009
Liu J et al 2013 Framing sustainability in a telecoupled world Ecol. Soc. 18 26
Liu W, Agusdinata D B and Myint S W 2019 Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile Int. J. Appl. Earth Obs. Geoinf. 80 145–56
Lodhia S 2014 Factors influencing the use of the World Wide Web for sustainability communication: an Australian mining perspective J. Clean. Prod. 84 141–53
Lodhia S and Hess N 2014 Sustainability accounting and reporting in the mining industry: current literature and directions for future research J. Clean. Prod. 84 43–50
Lyon T P and Maxwell J W 2008 Corporate social responsibility and the environment: a theoretical perspective Rev. Environ. Econ. Policy 2 240–60
Mares R 2018 corporate transparency laws: a hollow victory? Netw. Q. Hum. Rights 36 189–213
Mateus A and Martins I 2020 Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply Miner. Econ. 34 239–61
Mayes R 2015 A social licence to operate: corporate social responsibility, local communities and the constitution of global production networks Glob. Netw. 15 S109–28
Millard E 2017 Still brewing: sustaining coffee production World Dev. Perspect. 7 32–42
Nansai K, Kondo Y, Giurco D, Sussman D, Nakajima K, Kagawa S, Takayanagi W, Shigetomi Y and Tohso 2019 Nexus between economy-wide metal inputs and the deterioration of sustainable development goals Resour. Conserv. Recycl. 149 12–19
Nansai K, Nakajima K, Kagawa S, Kondo Y, Suh S, Shigetomi Y and Oshita Y 2014 Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum Environ. Sci. Technol. 48 1391–400
Nasar N T et al 2020 Evaluating the mineral commodity supply risk of the US manufacturing sector Sci. Adv. 6 aay8647
National Research Council 2008 Minerals, Critical Minerals, and the US Economy (Washington, DC: National Academies Press)
Nerlich B 2011 ‘Low carbon’ metals, markets and metaphors: the creation of economic expectations about climate change mitigation Clim. Change 110 31–51
Netter D A, Gauch M, Widmer R, Wäger P, Stamp A, Zah R and Notter D A 2010 Contribution of Li-ion batteries to the mitigation of climate change Clim. Change 110 31–51
Notter D A, Gauch M, Widmer R, Wäger P, Stamp A, Zah R and Althaus H-J 2010 Contribution of Li-ion batteries to the environmental impact of electric vehicles Environ. Sci. Technol. 44 6550–6
Olivetti E A, Ceder G, Gaustad G G and Fu X 2017 Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals Joule 1 229–43
Osterblom H, Jouffray J-B, Folke C and Rockström J 2017 Emergence of a global science–business initiative for ocean stewardship Proc. Natl Acad. Sci. USA 114 9038–43
Owen J R and Kemp D 2013 Social licence and mining: a critical perspective Resour. Policy 38 29–35
Parker R and Cox S 2018 How the globalisation and financialisation of mining Majors affects linkages development with local engineering and technology suppliers in the Queensland resources industry Resour. Policy 58 125–30
Paterno L E 2016 Irresponsible corporate-responsibility rules Univ. Pittsburgh Law Rev. 77 499–578
Pesmatzoglou D, Nikolau J E, Evangelinos K I and Allan S 2014 Extractive multinationals and corporate social responsibility: a commitment towards achieving the goals of sustainable development or only a management strategy? J. Int. Dev. 26 187–208
Pilkington E 2016 Robin Wright targets Congo’s ‘conflict minerals’ violence with new campaign The Guardian (available at: www.theguardian.com/world/2016/may/17/robin-wright-stand-with-congo-campaign-mining-house-of-cards) (Accessed 20 May 2021)
Prior T, Wäger P A, Stamp A, Widmer R and Giurco D 2013 Sustainable governance of scarce metals: the case of lithium Sci. Total Environ. 461–2 785–91
Primo J and Slocombe D S 2012 Exploring the origins of ‘social license to operate’ in the mining sector: perspectives from governance and sustainability theories Resour. Policy 37 346–57
Radulescu D L 2013 European policies regarding the companies operating in metallurgy Metal. Int. 18 112–5
Reck B K and Graedel T E 2012 Challenges in metal recycling Science 337 690–5
Responsible mining foundation 2020 RMI Report 2020 (available at: https://2020.responsibleminingindex.org/en) (Accessed 14 May 2021)
Rolston J S 2015 Turning protesters into monitors: appraising critical collaboration in the mining industry Soc. Nat. Resour. 28 165–79
Sauer P C and Seuring S 2017 Sustainable supply chain management for minerals J. Clean. Prod. 151 235–49
Scherer A G and Palazzo G 2011 The new political role of business in a globalized world: a review of a new perspective on CSR and its implications for the firm, governance, and democracy J. Manage. Stud. 48 899–931
Schmid M 2020 Challenges to the European automotive industry in securing critical raw materials for electric mobility: the case of rare earths Mineral. Mag. 84 5–17
Schmidt T, Buchert M and Schekel I 2016 Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries Resour. Conserv. Recycl. 112 107–22
Schneider F and Buser T 2018 Promising degrees of stakeholder interaction in research for sustainable development Sustain. Sci. 13 129–42
Schoderer M, Dell’Angelo J and Huitema D 2020 Water policy and mining: streamlining in international guidelines and certification schemes Environ. Sci. Policy 111 42–54
Schwartz J and Nelson A 2016 Cost/benefit analysis and the conflict minerals rule Adm. Law Rev. 68 287–357
Song B and Wen J 2020 Online corporate social responsibility communication strategies and stakeholder engagements: a comparison of controversial versus noncontroversial industries Corp. Soc. Responsibl. Environ. Manage. 27 881–96
Sosa M and Zwarteveen M 2014 The institutional regulation of the sustainability of water resources within mining contexts: accountability and plurality Curr. Opin. Environ. Sustain. 8 119–25
Sovacool B K, Ali S H, Bazilian M, Radley B, Okatz J and Mulvaney D 2020a Sustainable minerals and metals for a low-carbon future Science 367 30–33
Sovacool B K, Hook A, Martiskainen M and Baker L 2019 The whole systems energy injustice of four European low-carbon transitions Glob. Environ. Change 58 1019585
Sovacool B K, Hook A, Martiskainen M, Brock A and Turnheim B 2020b The decarbonisation divide: contextualizing landscapes of low-carbon exploitation and toxicity in Africa Glob. Environ. Change 60 102028
St-Laurent G P and Billon P L 2015 Staking claims and shaking hands: impact and benefit agreements as a technology of government in the mining sector Extr. Ind. Soc. 2 590–602
Stoycheva S, Marchese D, Paul C, Padoan S, Juhmami A and Linkov I 2018 Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry J. Clean. Prod. 187 257–72
Suescun Pozas M D C, Lindsay N M and Du Monceau M I 2015 Corporate social responsibility and extractives industries in Latin America and the Caribbean: perspectives from the ground Extr. Ind. Soc. 2 93–103
Sun X, Hao H, Liu Z and Zhao F 2020 Insights into the global flow pattern of manganese Resour. Policy 65 101578
Sun X, Hao H, Liu Z, Zhao F and Song J 2019 Tracking global cobalt flow: 1995–2015 Resour. Conserv. Recycl. 149 45–55
Sun X, Hao H, Zhao F and Liu Z 2017 Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124 50–61
Sverdrup H U 2016 Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model. Resour. Conserv. Recycl. 114 112–29
Tsai C H and Wu Y N 2018 What conflict minerals rules tell us about the legal transplantation of corporate social responsibility standards without the state: from the United Nations to the United States to Taiwan. Nw. J. Int’l L. & Bus. 38 233–84
Tsai C-H and Wu Y-N 2018 What conflict minerals rules tell us about the legal transplantation of corporate social responsibility standards without the state: from the United Nations to the United States to Taiwan. Northwest. J. Int. Law Bus. 38 233–84
van den Brink S, Kleijn R, Sprecher B and Tukker A 2020 Identifying supply risks by mapping the cobalt supply chain. Resour. Conserv. Recycl. 156 104743
Vikström H, Davidsson S and Höök M 2013 Lithium availability and future production outlooks. Appl. Energy 110 252–66
Vintró C and Comajuncosa J 2010 Corporate social responsibility in the mining industry: criteria and indicators. Dyna 161 31–41
Virah-Sawmy M, Ebeling J and Taplin R 2014 Mining and biodiversity offsets: a transparent and science-based approach to measure ‘no-net-loss’. J. Environ. Manage. 143 61–70
Vivoda V and Kemp D 2019 How do national mining industry associations compare on sustainable development? Extr. Ind. Soc. 6 22–28
Wang H, Hu Y, Zheng H, Shan Y, Qing S, Liang X, Feng K and Guan D 2020 Low-carbon development via greening global value chains: a case study of Belarus. Proc. R. Soc. A 476 20200024
Weimer L, Braun T and Hemdt A V 2019 Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resour. Policy 64 101473
Weiser A, Lang D J, Schomerus T and Stamp A 2015 Understanding the modes of use and availability of critical metals—an expert-based scenario analysis for the case of indium. J. Clean. Prod. 94 376–93
White House 2021 Executive order on America’s supply chains (available at: www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/). (Accessed 14 May 2021)
Yakovleva N, Kotilainen J and Toivakka M 2017 Reflections on the opportunities for mining companies to contribute to the United Nations Sustainable Development Goals in sub-Saharan Africa. The Extractive Industries and Society 4 426–33
Zeuner B 2018 An obsolescing bargain in a rentier state: multinationals, artisanal miners, and cobalt in the Democratic Republic of Congo. Front. Energy Res. 6 1–6
Zhang S, Li H, Zhang Q, Tian X and Shi F 2019a Uncovering the impacts of industrial transformation on low-carbon development in the Yangtze River Delta. Resour. Conserv. Recycl. 150 104442
Zhang Y-J, Shi W and Jiang L 2019b Does China’s carbon emissions trading policy improve the technology innovation of relevant enterprises? Bus. Strategy Environ. 29 872–85
Zupic I and Cater T 2015 Bibliometric methods in management and organization. Organ. Res. Methods 18 429–72