A Tutorial about Random Neural Networks in Supervised Learning

Sebastián Basterrech
Department of Computer Science
VŠB-Technical University of Ostrava
Ostrava-Poruba, Czech Republic

Sebastian.Basterrech.Tiscordio@vsb.cz

Gerardo Rubino
INRIA - Rennes
Rennes, France

Gerardo.Rubino@inria.fr

Abstract

Random Neural Networks (RNNs) are a class of Neural Networks (NNs) that can also be seen as a specific type of queuing network. They have been successfully used in several domains during the last 25 years, as queuing networks to analyze the performance of resource sharing in many engineering areas, as learning tools and in combinatorial optimization, where they are seen as neural systems, and also as models of neurological aspects of living beings. In this article we focus on their learning capabilities, and more specifically, we present a practical guide for using the RNN to solve supervised learning problems. We give a general description of these models using almost indistinctly the terminology of Queuing Theory and the neural one. We present the standard learning procedures used by RNNs, adapted from similar well-established improvements in the standard NN field. We describe in particular a set of learning algorithms covering techniques based on the use of first order and, then, of second order derivatives. We also discuss some issues related to these objects and present new perspectives about their use in supervised learning problems. The tutorial describes their most relevant applications, and also provides a large bibliography.

Keywords: Neural Networks, Random Neural Networks, Supervised Learning, Pattern Recognition, G-networks

1. Introduction

Supervised Learning is an area of the Machine Learning field that refers to a set of problems wherein the information is presented according to an outcome measurement associated with a set of input features. The information is presented as a dataset of labeled samples. The aim is “to learn” the relationship between input and output features. This learning process is done based on a set of examples in order to generate a learning model with the power of “generalising”, this is to make “good” predictions for new unseen inputs. The research on Neural Networks (NNs) is considered to have started with the work of Warren McCulloch and Walter Pitts in 1943 [McCulloch and Pitts 1943], and it has produced a rich literature with a strong concentration of papers in the 80s and 90s. In the 80s Rumelhart et al. explored the relationship between Parallel Distributed Processing (PDP) systems and various aspects
of human cognition. The authors defined a general framework of a PDP system reactivating the research on connectionist models (Rumelhart et al., 1986b). The most popular PDP systems are NNs. In the last decades several books and journals have been dedicated to the research on NNs. The interest in the NN area arises from both its theoretic aspects and its computational power for solving real problems. NNs have been successfully applied in many different fields such as engineering, biology, pattern recognition, theoretical physics, applied mathematics, statistics, etc.

There are many types of NNs, and the related literature is huge. This article focuses on a particular class of NNs called Random Neural Networks. The RNN model was introduced by E. Gelenbe in 1989 (Gelenbe, 1989a,b). RNNs are mathematical objects that combine features of both NNs and queueing models. They have been successfully employed in many types of applications: in learning problems, in optimization, in image processing, in associative memories, etc. Here, we are specifically interested in the situations where the model is applied for solving supervised learning tasks. A RNN is a PDP composed of a pool of interconnected nodes, which process and transmit information (signals) between them. Each node is a simple processor and it is characterized by its state, a whole number. The nodes receive two kinds of signals (negative and positive) from their neighbors or from outside. When a negative signal arrives to a node, it produces an effect that can be related to neural inhibition, its state is decreased by one. The arrivals of positive signals provoke the opposite effect, the state is increased by one. The firing of signals by the nodes is modeled by Poisson processes, and the pattern of connectivity among the neurons follows stochastic rules.

The design of the model was inspired from the biological behavior of neuron circuits in the neo-cortex. The model considers the following biological aspects: the action potentials in the form of spikes, the exchange of excitatory and inhibitory signals among the neurons, the synapses (weighted connections between two neurons), random delays between spikes, reduction of neuronal potential after firing, arbitrarily topology (Gelenbe, 1989a). The model has been also proven very powerful, from the computational viewpoint. In (Gelenbe et al., 2004b) the authors shown that under certain algebraic hypothesis the RNN is an universal approximator. Besides, it can be easily implemented in both software and hardware. In order to apply the model for solving learning tasks, several learning algorithms have been adapted from the classic NN to RNNs, such as the Gradient Descent (Gelenbe, 1993a) and Quasi-Newton methods (Basterrech et al., 2011; Likas and Stafylopatis, 2000). The number of applications of the model in the learning area is very large, but the model has been also applied to solve combinatorial optimization problems, such that the Traveling Salesman Problem or the Minimum Vertex Covering Problem (Gelenbe and Batty, 1992; Gelenbe et al., 1993).

Main contributions

The first overview about RNN was presented in 2000 (Bakircioğlu and Koçak, 2000). A survey about RNN focused on networking application and self-aware networks was introduced in (Sakellaris, 2006). Another general and helpful survey about RNN was presented in (Timotheou, 2010), where the authors describe the main applications of RNNs, covering several topics including biology, reinforcement learning, and optimization problems. In (Georgioupolos et al., 2011) the authors focused on RNN for solving learning problems,
they identified some drawbacks of the RNN learning applications. In addition, an extensive literature about RNN was presented in (Do, 2011). In the 25th anniversary of the RNN model, we present this tutorial that contains the following contributions with respect to the previous published material.

- We introduce the model as a simple computational processor in a PDP framework, instead of using concepts coming from queueing systems. Besides, we present a parallelism between this particular PDP and the model as belonging to the queueing area.

- We provide a structured overview about the numerical optimization algorithms used for training RNNs. We introduce algorithms that use the first derivative information of a quadratic cost function, such that the gradient descent type algorithms. We then present Quasi-Newton methods that use the information of the second derivative of the cost function. In this practical guide, all the algorithms used for training are shown in detail following a homogeneous format.

- We present a critical review and new perspectives on RNN in supervised learning. We discuss technical issues concerning stability problems in the model itself, as well as problems related to the parameters’ optimization in the learning process. We discuss some points related to the computational advantages of the model, as well as about its weaknesses and limitations. The overview concludes with remarks concerning some new trends and future research lines.

In addition, this article presents an overview of some selected applications of the RNN in the supervised learning area. In particular, we comment on two applications where the experimental results show a better performance of the model with respect to other techniques of the literature.

Organization of the article

This article is structured as follows. Section 2 formally describes the RNN model as a learning tool and in the framework of queueing theory. Section 3 presents algorithms for training the RNN model. It starts with a formal specification of the computational problems in supervised learning. In Sec. 3.2 we give a general description of RNN in the learning context. We present the Gradient Descent algorithm in Sec. 3.3 and we introduce second order optimization methods in 3.4. We describe the following algorithms: the Broyden-Fletcher-Goldfarb-Shanno in Sec. 3.4.1, the Davidon-Fletcher-Powell in Sec. 3.4.2, the Levenberg-Marquardt in Sec. 3.4.3, and one variation of it in Sec. 3.4.4. We present a critical review about the RNN model for solving learning problems in Sec. 4. Section 5 presents an overview of applications. We conclude and present new research trends in Sec. 6.

2. The Random Neural Network model

This Section formally introduces the RNN model. It has four parts. First, we describe a single neuron (Random Neuron) as an elementary processor. Second, we present the RNN as a system composed by interconnected neurons. Third, we review the model in the framework
of queuing networks. The section ends introducing the different topologies and structural concepts of the RNN.

2.1 Random Neuron (RN)

A Random Neuron (RN) is a real parametric function of two real variables, with a real parameter called the neuron’s rate. The input variables are assumed to be non-negative. The rate is positive. If \(x \geq 0 \) is the first input variable, \(y \geq 0 \) is the second one, and if \(r > 0 \) is the rate of the neuron, then the output is the real \(z \) given by the expression

\[
z = \frac{x}{r + y}.
\]

(1)

See that a RN is characterized by its rate \(r \). We can see the neuron as an input-output system with two “input ports”, one for \(x \) and the other one for \(y \), and one output port for \(z \). The ports associated with the output and with the first input value are called positive; the input port corresponding to the second input variable \(y \) is called negative (the reason for this is explained later), but all the variables involved are non-negative real numbers.

Figure 1 shows a neuron as an input-output device. When \(x \geq r + y \) we say that the neuron is saturated.

Figure 1: A zoom on a random neuron (RN) seen as a “black-box” system; the inputs are the reals \(x, y \geq 0 \); the parameter is the rate \(r > 0 \), and the output is the real \(z \); we say that the first input variable \(x \) is connected to the positive input port of the RN (depicted ‘+’) and the second input variable \(y \) to the negative input port (depicted ‘−’); the output port is also said to be positive (and it is depicted ‘+’ in the figure).

The output value \(z \) is seen as a measure of the activity of the neuron (as in most input-output systems). As such, see that \(z \) is increasing in \(x \) and decreasing in \(y \). In real neurons, which also are input-output systems, the input signals belong to two types, excitatory signals, which are those contributing to the neuron’s activity measured by its output (the higher the excitatory signal, the higher the neuron’s activity) and inhibiting inputs playing the opposite role. This is why we call positive the signals arriving at the ‘+’ input port, and negative those arriving at the ‘−’ one.

We will say that a RN is controlled if its output \(z \) is modified according to the rule

\[
z = \min \left\{ \frac{x}{r + y}, 1 \right\} r.
\]

(2)

So, in this case the RN’s output is always less than or equal to its rate, and it is equal to its rate when the neuron is saturated. In the case of the initial definition (1), the neuron is said to be uncontrolled.
2.2 Random Neural Network (RNN)

A Random Neural Network (RNN) is a network composed of N interconnected RNs, that implements a function from \mathbb{R}^{2N} into \mathbb{R}^O, for some $1 \leq O \leq N$, in the following way. We are given N RNs denoted $1, 2, \ldots, N$ (that is, we are given N strictly positive reals r_1, r_2, \ldots, r_N), and two $N \times N$ matrices denoted by $P^+ = (p^+_{ij})$ and $P^- = (p^-_{ij})$, whose components are probabilities. Both matrices and their sum are substochastic, that is, for any of their rows, say the ith one, we have

$$\sum_{j=1}^{N} (p^+_{ij} + p^-_{ij}) \leq 1.$$

Also, for at least one of the neurons, we have $\sum_{j=1}^{N} (p^+_{ij} + p^-_{ij}) < 1$. The neurons i for which $\sum_{j=1}^{N} (p^+_{ij} + p^-_{ij}) < 1$ are called output neurons. We denote by O their number (so, $1 \leq O \leq N$). The network outside is often referred to as the neuron’s environment with which the system operates (Rumelhart et al., 1986b).

Let us denote the $2N$ input variables of the network as $x_1, \ldots, x_N, y_1, \ldots, y_N$. Then, the output of the network is the set of outputs of each of its output neurons. We need only to specify how are determined the inputs to the N RNs (the outputs are given by the previously described rules, in the uncontrolled or controlled cases). Let us call u_i (respectively v_i) the positive (respectively negative) input to neuron i. Then, the following equations must be satisfied:

$$u_i = x_i + \sum_{j=1}^{N} z_j p^+_{ji} \quad \text{and} \quad v_i = y_i + \sum_{j=1}^{N} z_j p^-_{ji}.$$

In words, the fraction p^+_{ji} of the output z_j of neuron j adds to the positive input u_i to neuron i, and the fraction p^-_{ji} of the output z_j of neuron j adds to the negative input v_i to i. Of course, this means that the reals z_1, \ldots, z_N must satisfy the non-linear system of equations

$$z_i = \frac{x_i + \sum_{j=1}^{N} p^+_{ji} z_j}{r_i + y_i + \sum_{j=1}^{N} p^-_{ji}}, \quad i = 1, 2, \ldots, N.$$

This needs some technical discussions about the existence and unicity of solutions to this system, as we will see below.

Observe that if we define

$$d_i = 1 - \sum_{j=1}^{N} (p^+_{ij} + p^-_{ij}), \quad (3)$$

we have $0 \leq d_i \leq 1$, and that neuron i is an output neuron when $d_i > 0$. We can also say that the network of neurons sends the part $d_i z_i$ of z_i through the output port of i.

Observation: in general in the learning applications, we use a RNN with N neurons as a function from \mathbb{R}^I to \mathbb{R}^O where $I < 2N$ or even $I < N$, by setting $2N - I$ of the standard
2N input variables to a fixed value (typically to 0). We will see soon this frequent situation. An important particular case covering all the applications done so far for these objects as learning tools is as follows. The network with \(N \) neurons implements a function with \(I \leq N \) input variables and \(O \leq N \) output variables. The input variables are denoted by \(x_1, \ldots, x_I \), which are all connected to the positive port of \(I \) neurons called input neurons. In other words, no input variable is connected to a negative port. The function output is the set of outputs generated by the \(O \) output neurons. A group of neurons can have no interactions with the environment (when \(I + O < N \)). We call those units hidden neurons. Note that a neuron can be both an input and an output one.

2.3 A queueing view of the Random Neural Networks

The RNN method has been used with two different interpretations both referring to exactly the same mathematical model. One is the already described type of interconnected RNs. Another one is a type of queueing systems called G-queues and G-networks. The first interpretation is often employed in the Machine Learning contexts and the second one is applied in Performance Evaluation, for example.

We begin by describing a single queue where customers arrive according to a Poisson process, say with rate \(\lambda > 0 \), and service times are exponentially distributed with parameter \(r > 0 \). It is assumed that service times are mutually independent and that they are also independent of the inter-arrival times. This server queue is named \(M/M/1 \) queueing model [Kendall 1953]. At any time \(t \) the state of the system \(S(t) \) is the number of customers present in the queue. The queue storage capacity is infinite. The stochastic process \(\{S(t), \ t \geq 0\} \) is a continuous time homogeneous Markov process on the non-negative integers. We define the utilization factor of the queue as the ratio \(\varrho = \lambda/r \). When the process is ergodic (\(\varrho < 1 \)), the steady-state is given by

\[
p(k) = \lim_{t \to \infty} P(S(t) = k) = \varrho^k (1 - \varrho).
\]

A Jackson queueing network consists of \(N \) interconnected queues with the following characteristics. For each queue \(i \) the service time is exponentially distributed with rate \(r_i \). When a customer completes the service at queue \(i \), it will either move to queue \(j \) with routing probability \(p_{ij} \) or leave the network with probability \(d_i \) \((d_i = 1 - \sum_{j=1}^{N} p_{ij}) \). Customers arrive from the environment to queue \(i \) according to a Poisson process with rate \(\lambda^+_i \). At any time \(t \), the system state is the vector \(S(t) = (S_1(t), \ldots, S_N(t)) \), where \(S_i(t) \) denotes the number of customers in queue \(i \) at time \(t \). The assumptions about the independence among the processes can be summarized as follows:

- arrival processes, service processes and switching (routing) processes are independent of each other;
- at each server, the service times are independent of each other;
- at each switching point, the successive switching results are independent of each other.

We define \(T_i \) as the mean throughput at queue \(i \). In order to avoid a trivial case, we assume that at least one of the \(\lambda^+_i \)'s is non-zero (strictly positive). In addition, assuming
that the system is irreducible (for any two nodes \(i \) and \(j \) in the Markovian graph there exists a path from \(i \) to \(j \)), and in equilibrium, \(T_i \) for all \(i \) can be determined by solving the flow balance equations:

\[
T_i = \lambda_i^+ + \sum_{j=1}^{N} T_j p_{ji}.
\]

The strongly connected property of the Markovian graph implies that exists an unique (and strictly positive) solution. The utilization factor of queue \(i \) is given by \(\varrho_i = T_i / r_i \).

A G-network (or equivalently, an RNN) is an extension of a Jackson’s network where there is a new entity in the system: negative customers. As in the previous network, in a G-network there are Poisson arrivals, probabilistic routing among the queues, exponential service rates and usual independence among the corresponding stochastic processes. There are two types of customers in the system, positive ones that operate as we defined for the Jackson network, and the negative ones that operate as follows. When a negative customer arrives at a non-empty queue, it destroys a positive customer in this queue, if any, and disappears. If there are no customers in the queue, a negative customer does not operate, it just disappears from the system. In several works negative customers are referenced as signals, thus there are two entities, customers (positive customers) and signals (negative customers).

In (Gelenbe, 1989a, 1991a), Gelenbe shows that, in an equilibrium situation, the \(\varrho_i \)s satisfy the following flow balance equations:

\[
\text{for each node } i, \quad \varrho_i = \frac{T_i^+}{r_i + T_i^-},
\]

\[
\text{for each node } i, \quad T_i^+ = \lambda_i^+ + \sum_{j=1}^{N} \varrho_j r_j p_{ji}^+,
\]

and

\[
\text{for each node } i, \quad T_i^- = \lambda_i^- + \sum_{j=1}^{N} \varrho_j r_j p_{ji}^-,
\]

with the supplementary condition that, for all neuron \(i \), we have \(\varrho_i < 1 \). An important result associated with open Jackson networks and with G-networks is called the product form theorem. Gelenbe proved that under Markovian assumptions G-networks have a product form equilibrium distribution. This means that the joint equilibrium distribution of the queue states is the product of the marginal distributions. For more details see (Gelenbe, 1989a).

Observation: Let us unify the notation that will be used through this article. So far we introduced the RNN as a function, next we presented the concept using a queueing point of view. In the rest of the article, we follow the most often used notation presented in (Gelenbe, 1989a). Let \(N \) be the number of interconnected neurons. For each neuron \(i \) its service rate is denoted by \(r_i \), the value at its positive port is denoted by \(T_i^+ \) and to the negative port is \(T_i^- \). The positive input value \(\lambda_i^+ \) (the Poisson rate of the customers coming from outside), the negative input value \(\lambda_i^- \) (the Poisson rate of the negative customers coming from outside), and the probability to send information to the environment denoted by \(d_i \) characterize the
interaction of i with outside. The output of neuron i is its activation rate ϱ_i. The connections between two neurons i and j are given by the probabilities $p_{i,j}^+$ and $p_{i,j}^-$. Figure 2 shows the main parameters involved in a RNN. We will introduce in our notation the concept of weights. For any two neurons i and j, they are defined as: $w_{i,j}^+ = r_i p_{i,j}^+$ and $w_{i,j}^- = r_i p_{i,j}^-$. The first one is called positive weight and the second one is called negative weight. Note that the weights are, by definition, positive reals. In the context of NNs, the traditional notation used for the weight connection (direct edge) between the nodes i to j is often denoted as (j,i). In the RNN context, the reverse order is traditionally used. This originates in the first paper about supervised learning with RNNs (Gelenbe 1993a).

![Figure 2: A representation of a RN. The figure shows the main parameters involved in a RN embedded in a network.](image)

2.4 The network topology

So far, we defined the RNN as a parallel distributed system composed of simple processors (RNs). Therefore, the network is a graph where the RNs are their nodes; the existence of an arc between two nodes is given by certain probability. The two most common topologies of networks are multi-layer feedforward and recurrent networks.
2.5 Feedforward topology

We start describing the feedforward case. The identifying property is that there are no cyclic connections among the neurons, no circuits in the (directed) graph. The architecture of the graphs consists of multiple layers of neurons in a directed graph. There are three types of layers popularly known as input, hidden and output layers. The neurons can have only connections in a forward direction, from the input neurons to the output neurons, traveling through the hidden ones. Only neurons belonging to the input and to the output layers can exchange information with the environment. The activity rate for each output neuron is computed using a forward propagation procedure. A representation of a feedforward network with one hidden layer is illustrated in Figure 3.

![Figure 3: A representation of a Feedforward Neural Network. The figure shows a network with a single hidden layer. The flow of information is from the input neurons through the output ones. In this example there are 5 input neurons full connected to 9 hidden neurons, and the hidden neurons are full connected with 4 output neurons. A network with this topology is used for mapping a relationship from a 5-dimensional space into a 4-dimensional space.](image)

The feedforward case has been widely used in supervised learning due to the fact that training process is much faster than in the recurrent case. Besides, the feedforward networks are easier to analyze than networks with recurrent topologies. One advantage is that the non-linear system of equations (6), (7) and (8) can be formally solved. Then, we can express the activity rate of the output units as functions of the inputs variables of the system. Let I be the number of input neurons, H is the number of hidden neurons and let O be the number of output neurons. We arbitrary index the input neurons from 1 to I, the hidden neurons from $I + 1$ to $I + H$ and the output neurons from $I + H + 1$ to $I + H + O = N$. We can compute the activity rate of the neurons using a forward procedure as follows. At the first step, we compute the activity rate of the input neurons, next the activities of the hidden neurons and finally those of the output neurons. Input neurons are the only ones
that receive signals from the environment; so we set $\lambda^+_i = \lambda^-_i = 0$ for all $i \in [I + 1, N]$. The activity rates are given by the following explicit expressions:

$$
\varrho_i = \frac{\lambda^+_i}{r_i + \lambda^-_i}, \quad \forall i \in [1, I],
$$

$$
\varrho_h = \frac{\sum_{i=1}^{I} \varrho_i w^+_i,h}{r_h + \sum_{i=1}^{I} \varrho_i w^-_i,h}, \quad \forall h \in [I + H + 1, N],
$$

and

$$
\varrho_o = \frac{\sum_{i=I+1}^{I+H} \varrho_h w^+_h,o}{r_o + \sum_{i=I+1}^{I+H} \varrho_h w^-_h,o}, \quad \forall o \in [I + H + 1, N].
$$

More general feedforward networks consist of successive layers where the signals can circulate only in one direction.

2.6 Recurrent topology

In the case of recurrent networks circuits are allowed. The existence of directed cycles has an important impact in the model: we can not compute the rate activities of the output neurons as functions of the network inputs (except, of course, when $N \leq 4$). A RNN with circuits connects to the concept of dynamical systems, rather than to functions, there is an idea of time implicit in the model. For simplicity we assume discrete time and we avoid to use temporal notation in ϱ. At each time instant, the network is characterized by an internal state ϱ formed by the activity rates $\varrho = (\varrho_1, \ldots, \varrho_N)$. When an input pattern is presented to the network, the network updates its internal state. For computing the network state we must solve the system of equations (6), (7) and (8), where the unknown parameters are ϱ_i, T^+_i and T^-_i, for all i. For solving this system is necessary to perform a fixed point procedure (a summary about this computation is given in (Timotheou, 2010)). The output of the network is given by the state of the output neurons. Unlike the feedforward case, a recurrent network can use its internal states to process sequences of inputs. As a consequence, the recurrent case is often used for solving problems where the dataset presents temporal dependencies.

3. Random Neural Networks in supervised learning problems

In this Section we present the algorithms used for learning. The Section starts with a formal definition of the supervised learning problem. Next, we present the algorithms of Gradient Descent type for training the RNN. Then, we introduce the algorithms that use the Hessian or an approximation of the Hessian matrix for training the RNN. We close the Section with a general discussion that covers topics such as: limitations of the algorithms in the numerical optimisation, analysis of the algorithmic time complexity, applications of the RNN concepts in the Reservoir Computing area, a discussion about the computational power of the RNN for approximating any regular function, and an analogy of the model with other NNs.
3.1 Specification of a supervised learning problem

We begin by specifying a supervised learning problem. Given a dataset \(\mathcal{L} = \{(a^{(k)}, b^{(k)}), k = 1, \ldots, K\} \), where \(a^{(k)} \in \mathcal{A} \) and \(b^{(k)} \in \mathcal{B} \), with \(\mathcal{A} \) and \(\mathcal{B} \) some given finite dimensional spaces (typically, sets of real vectors, or of vectors of elements in some alphabet, or a mix of both types of objects). The learning procedure consists in inferring a mapping \(\nu(a, \mathcal{L}) \) in order to predict the \(b \) values, such that some distance \(d(\nu(a^{(k)}, \mathcal{L}), b^{(k)}) \) is minimized for all \(k \in \{1, 2, \ldots, K\} \). We denote by \(I \) the dimension of the input vector \(a \) and \(O \) the dimension of the output vector \(b \). For each instance \(a^{(k)} \), let us denote \(\varrho^{(k)} \) the output produced by the network, that is \(\varrho^{(k)} = \nu(a^{(k)}, \mathcal{L}) \). The distance above referred is a function \(L(\cdot) \) named loss function or cost function that measures the deviations of the model predictions \(\varrho \)s and the targets \(b \)s. Several types of loss functions have been used, the main examples are the criteria of Sum-of-Squared Errors (\(L_{\text{RSS}} \)) and the Kullback-Leibler distance (\(L_{\text{KL}} \)), also called cross-entropy \(\text{Hastie et al., 2001} \) \(\text{Schumacher et al., 1996} \). The RSS is defined as

\[
L_{\text{RSS}} = \sum_{i=1}^{N} \sum_{k=1}^{K} c_i (b_i^{(k)} - \varrho_i^{(k)})^2, \tag{9}
\]

where \(c_i = 1 \) when \(i \) is an output neuron, otherwise \(c_i = 0 \). There are several slight modifications of the previous distances, one of those is the Mean Square Error (MSE) given by:

\[
\text{MSE} = \frac{1}{K} L_{\text{RSS}}. \tag{10}
\]

In supervised learning when the targets are categorical or discrete variables the problem is called classification problem; when the target is a real vector, the problem is called regression problem.

3.2 Random Neural Network as a learning tool

A first approach for applying the RNN model in supervised learning tasks was introduced at the beginning of the 90s by Erol Gelenbe (\cite{Gelenbe, 1993a}). This procedure is based on the classical backpropagation algorithm (\cite{Rumelhart et al., 1986a}). As in practice, the input and output variables in learning problems are bounded with known bounds, the algorithm described in (\cite{Gelenbe, 1993a}) assumes that \(a^{(k)} \in [0..1]^I \) and \(b^{(k)} \in [0..1]^O \), for all sample \(k \). The RNN model as a predictor is a parametric mapping \(\nu(a, w^+, w^-, \mathcal{L}) \), where the parameters \(w^+ \) and \(w^- \) are adjusted minimizing the loss function. In (\cite{Gelenbe, 1993a}) was considered the quadratic error presented in the expression (10). The network architecture is defined with \(I \) input nodes and \(O \) output nodes. There are not additional constraints regarding the network topology, that means the network can be feedforward with one or several layers, or it can be recurrent network. We set the port of the input neurons each time that an input pattern \(a^{(k)} \) is offered to the network. The inputs to the positive ports are set with the input pattern: \(\lambda_i^+ = a_i^{(k)} \); the negative ports of input neurons are conventionally set to zero (\(\lambda_i^- = 0 \)). The output of the model is a vector of the activity rates produced by the output neurons. The adjustable parameters of the mapping are the weights connections among the neurons. We follow this Section describing the optimization algorithms that have been introduced over the last decades.
3.3 The gradient descent optimization algorithm

We can now describe the gradient-based algorithm that was used so far for training the RNN model (Gelenbe, 1993a). We define two set of neurons \(I \) and \(O \) that correspond to the set of input neurons and the output neurons, respectively. The weights are initialized at some arbitrary values \(w_{u,v}^{(0)} \) and \(w_{u,v}^{-(0)} \), for all \(u \) and \(v \). At the \(\tau \)th-iteration, we select a data pattern \((a^{(k)}, b^{(k)}) \), \(k = 1, \ldots, K \), where \(k = \tau - 1 \mod K + 1 \). The weight correction is computed following the *delta learning rule* (Rumelhart et al., 1986a), meaning that the weight correction is proportional to the partial derivative of the loss function with respect to each weight. From (3), the service rate of neuron \(i \) verifies

\[
 r_i = \frac{1}{1 - d_i} \sum_{j=1}^{N} \left(w_{i,j}^+ + w_{i,j}^- \right),
\]

for all \(i \in I \cup H \). Also note that \(r_i \) is a free-parameter when \(i \) is an output neuron.

At each step \(\tau \), the current weight value descends in the direction of the negative gradient of \(L(\cdot) \); the update rule for positive and negative weights (denoted with superscript *) of any connection \((u,v)\) is:

\[
 w^*(\tau) = w^*(\tau-1) + \delta^*(\tau),
\]

where

\[
 \delta^*(\tau) = -\eta \sum_{i=1}^{N} c_i (\varrho_i - b_i^{(k)}) \frac{\partial \varrho_i^{(k)}}{\partial w^*_{u,v}} \bigg|_{w=w^{(\tau-1)}}
 = -\eta \left(\frac{\partial}{\partial w^*_{u,v}} \frac{1}{2} \sum_{i=1}^{N} c_i (\varrho_i^{(k)} - b_i^{(k)})^2 \right)_{w=w^{(\tau-1)}}
 = -\eta \sum_{i=1}^{N} c_i (\varrho_i^{(k)} - b_i^{(k)}) \frac{\partial \varrho_i^{(k)}}{\partial w^*_{u,v}} \bigg|_{w=w^{(\tau-1)}}.
\]

The parameter \(\eta \in [0,1] \) is called *learning factor*. It is used for tuning the convergence speed of the algorithm. Here, we set \(c_i = 1 \) for all output neuron \(i \), otherwise \(c_i = 0 \). Equation (13) leads to the following simplified expressions. For each connection \((u,v)\), define the vectors \(\gamma^+_{u,v} \) and \(\gamma^-_{u,v} \) by

\[
 \gamma^+_{u,v;i} = \begin{cases}
 -\frac{1}{r_i + T_i^-}, & \text{if } u = i, \ v \neq i, \\
 \frac{1}{r_i + T_i^-}, & \text{if } u \neq i, \ v = i, \\
 0, & \text{otherwise},
 \end{cases}
\]

and

\[
 \gamma^-_{u,v;i} = \begin{cases}
 -\varrho_i, & \text{if } u = i, \ v = i, \\
 \frac{1}{r_i + T_i^-}, & \text{if } u = i, \ v \neq i, \\
 -\frac{1}{r_i + T_i^-}, & \text{if } u \neq i, \ v = i, \\
 0, & \text{otherwise}.
 \end{cases}
\]
Then, denoting by ϱ the vector of activity rates $\varrho = (\varrho_1, \ldots, \varrho_N)$:

$$\frac{\partial \varrho}{\partial w_{u,v}} + \mu, v = \gamma + \mu, v \varrho \left[I - \Omega \right]^{-1}$$

and

$$\frac{\partial \varrho}{\partial w_{u,v}} - \mu, v = \gamma - \mu, v \varrho \left[I - \Omega \right]^{-1}$$

where I and Ω are N-dimensional matrices, I is the identity, and the element (i, j) of Ω is given by

$$\Omega_{i,j} = \frac{w_{i,j}^+ - w_{i,j}^- \varrho_j}{r_j + T_j^-}.$$ (15)

The partial derivatives were explicitly computed for a feedforward RNN with a single layer in (Georgiopoulos et al., 2011).

An online version of the Gradient Descent (GD) algorithm is an iterative method that processes the input patterns one-by-one realizing the following two main operations: to compute the direction of the gradient of the loss function and to update the weights using the expression (12). The method can either be stopped using an arbitrary number of iterations or when the performance measure is smaller than some threshold value. The online version of the GD algorithm is specified in Algorithm 1. In contrast, an offline training scheme (also called batch algorithm) uses the whole pattern data before modifying the model parameters. An input is offered to the network, the direction of the gradient is computed. When all data have been presented, the gradient directions are averaged. Finally, each weight is updated using the average of the gradient directions. In the Machine Learning literature coexists two opposite views concerning these two training schemes. As far as we know there has been no consensus on which scheme (on-line or offline) is more efficient for training a learning model (Nakama, 2009; Wilson and Martinez, 2003).

3.3.1 Slight modification of the gradient descent algorithm

A slight variation of the GD algorithm for RNN was proposed in (Basterrech and Rubino, 2013b). The authors increase the amount of adjustable parameters during the training of the gradient descent algorithm without modifying the network topology and the time complexity of the algorithm. They consider as adjustable parameters in the training objective the following ones: the connection weights $\{w_{i,j}^+, w_{i,j}^- : i, j \in [1, N]\}$, the positive and negative input signals from the environment λ_i^+, λ_i^- for all hidden and output neuron i, and the service rate r_i for all output neuron i.

Considering the training error given by the expression (10), the update learning rule is given as follows. Let Δ, P, Λ^+ and Λ^- be matrices of dimensions $N \times N$, where the matrix Δ has elements

$$\Delta_{i,j} = 0 \quad \text{if} \quad i \neq j \quad \text{and} \quad \Delta_{i,i} = r_i + T_i^-,$$

the matrix P is defined as

$$P_{i,j} = 0 \quad \text{if} \quad i \neq j, \quad \text{and} \quad P_{i,i} = g_i,$$

and the matrices Λ^+ and Λ^- have at the position (i, u) the value $\frac{\partial q_i}{\partial \lambda_u^+}$ and $\frac{\partial q_i}{\partial \lambda_u^-}$, respectively. By computing the elements of Λ^+ and Λ^- we have:

$$\Lambda^+ = \Delta^-(I - \Omega)^T \quad \text{and} \quad \Lambda^- = \Delta^+P(I - \Omega)^T,$$
Algorithm 1: Specification of the GD learning algorithm for the RNN model (online version).

Inputs : \{ (a^{(k)}, b^{(k)}) : k = 1, \ldots, K \} (training dataset), \eta \ (\text{learning rate}), \text{maxIters} \ (\text{max. number of iterations}), \text{the topology of the RNN} \ (\text{that is, the routing probabilities})

Outputs: \(w = \{w_{i,j}^+, w_{i,j}^- : i, j = 1, \ldots, N \} \) (network’s weights)

1 \(\tau = 0 \);
2 Initialize all weights (for instance, randomly); // we get \(w^{\ast(0)}_{u,v} \) for all \(u, v \) with \(u \) either input or hidden neuron
3 Choose the value of \(r_i \) for all \(i \in O \);
4 while \((\tau < \text{maxIters}) \text{ or (until convergence)}\) do
5 \(\tau = \tau + 1 \); // iteration step \(\tau \)
6 \(k = \tau - 1 \mod K + 1 \);
7 \(\lambda^+ = a^{(k)} \); // read input
8 For all \(i \in O \) compute \(r_i \) using (11); // weights are those at \(\tau - 1 \)
9 For all \(i \), compute \(g_i \) using (6), (7) and (8);
10 Compute \([I - \Omega]^{-1} \) (see (15));
11 For all connections \((u, v)\), update \(w_{u,v}^+ \) and \(w_{u,v}^- \) using (12); // see also 3.3.2 for many relevant technicalities
12 Evaluate convergence.

where \(\Omega \) was defined in the expression (15). Then, for each input pattern \((a^{(k)}, b^{(k)})\) at the \(\tau \)th iteration, we have the following update rule:

\[
w^{\ast(\tau)}_{u,v} = w^{\ast(\tau-1)}_{u,v} - \eta \phi^{(\tau)}_{u,v} (I - \Omega)^{-1} (g^{(\tau)} - b^{(\tau)}), \quad \forall u, v,
\]

\[
\lambda^{\ast(\tau)}_u = \lambda^{\ast(\tau-1)}_u - \eta_1 (g^{(\tau)} - b^{(\tau)})^T \Lambda^{\ast}_u, \quad \forall u \in H \cup O,
\]

\[
r^{(\tau)}_u = r^{(\tau-1)}_u - \eta_2 (\phi^{(\tau)}_u - b^{(\tau)}_u) \frac{-T^+_u}{(r_u + T^-_u)^2}, \quad \forall u \in O,
\]

where \([I - \Omega]^{-1}, \Lambda^{\ast} \) and \(T^{\ast} \) are computed using the current input \((a, b)\) and \(\Lambda^{\ast}_u \) denotes the column \(u \) of the matrix \(\Lambda^{\ast} \).

3.3.2 Technical issues

We discuss here some technical issues related to the learning process, well illustrated by the GD procedure. Recall that the model can be seen as a network of queues (it is actually born in this way). This has some consequences, that have an impact on the design algorithmic decisions. A first point concerns the use of (12) for updating the weights. Indeed, it may happen that (12) leads to a new value for some weight that is negative or null. This does
not fit the analogy with a network of queues, or even a network of spiking neurons where the weights model mean throughputs of spikes: weights should be positive numbers. We can accept a null value for some \(w_{u,v}^* \) interpreted as the fact that there is actually no such connection between \(u \) and \(v \), but a negative one has no interpretation. The usage is to respect this analogy, modifying the updating rule such that the weights are never negative. Three possible approaches are proposed in (Gelenbe, 1993a):

- To use the following updating rule

 \[
 w_{u,v}^{*}(\tau) = \max \left\{ w_{u,v}^{*}(\tau-1) + \delta_{u,v}^*(\tau), 0 \right\},
 \]

 (19)

 and in the case that some weight is assigned value zero, then to apply one of the following rules:

 - fix a null value to this weight, and do not change it anymore in future iterations;
 - assign a zero value to this weight, but allow positive updates in subsequent iterations, keeping using (19).

- Another option is to decrease the value of \(\eta \) and update again the weight using (12). If the new weight is still negative, repeat until obtaining a positive number or stop the loop using some control parameter. Formally, this means that the learning factor becomes a variable parameter in the method. In a nutshell, the global idea in descent methods is to decrease little by little the learning factor, as we get closer and closer to a local minimum. Global accuracy can also be improved (but also cost) if \(\eta(\tau) \), say, is built by a supplementary optimization process (this is called line searching in the area) (Press et al., 2002). We do not enter these details here.

- An alternative option was presented in (Likas and Stafylopatis, 2000). The authors propose a change of variable: instead of using \(w_{u,v}^* \) they use new variables \(\beta_{u,v}^+ \) and \(\beta_{u,v}^- \), such that

 \[
 w_{u,v}^+ = (\beta_{u,v}^+)^2 \quad \text{and} \quad w_{u,v}^- = (\beta_{u,v}^-)^2.
 \]

Then, instead of using the expression (14), we proceed as follows

\[
\frac{\partial \varrho}{\beta_{u,v}^+} = 2\beta_{u,v}^+ \frac{\partial \varrho}{\partial w_{u,v}^+}, \quad \frac{\partial \varrho}{\beta_{u,v}^-} = 2\beta_{u,v}^- \frac{\partial \varrho}{\partial w_{u,v}^-}.
\]

(20)

3.3.3 Computational cost of the gradient descent algorithm

When one data pattern is presented to update each weight in the network the main computational effort consists of computing \([I - \Omega]^{-1} \) using (14) (Gelenbe, 1993a). This effort has \(O(N^3) \) time complexity. A remark made in (Gelenbe, 1993a) consists in that when a m-step relaxation method is applied the time complexity decreases to \(O(mN) \).

Additionally, the general scheme of the algorithm can be adapted when we use a feedforward RNN. In this case the matrix \(I - \Omega \) becomes triangular, so the computational cost of computing its inverse decreases to \(O(N^2) \). Also, the computational effort to compute each activity rate in feedforward networks is reduced, due to the the activity rate of any neuron depends only on the neurons in the preceding layers.
3.4 Second order optimization methods

In this Section, we present the optimisation methods for RNN that use the information given by the second derivative of the loss function. We start introducing the Gauss-Newton (GN) methods, next we explore the Quasi-Newton (QN) techniques. We present four particular algorithms developed for training RNNs: the Broyden-Fletcher-Goldfarb-Shanno (BFGS), the Davidon, Fletcher and Powell (DFP), the Levenberg-Marquardt (LM) and the LM with Adaptive Momentum (LM-AM).

The Gauss-Newton (GN) algorithm is a technique for solving non-linear least squares problems that incorporates the second derivatives of the loss function or an approximation of those. Unlike the algorithms of first derivatives that can solve a large non-sparse optimization problems, a GN method can only be used when the loss function is given by a quadratic objective function, for instance the expression (10). The methods of the GN type are generally considered more powerful in terms of accuracy and time than the algorithms that only use the first derivative information.

The GN method is based on an expansion of the loss function in the Taylor series. Let M be the number of adjustable parameters (the number of weights $w_{i,j}^+$ and $w_{i,j}^-$). We define the M-dimensional vector w that collects in some arbitrary order the weights $w_{i,j}^+$ and $w_{i,j}^-$. Let a be an input vector on the network. The GN algorithm employs a linear approximation with the first three terms of the Taylor series

$$L(a, w + \delta) \approx L(a, w) + \sum_{m=1}^{M} \frac{\partial L(a, w)}{\partial w_m} \delta_m + \sum_{i,j} \frac{\partial L(a, w)}{\partial w_i \partial w_j} \delta_i \delta_j,$$

where δ is a M-dimensional vector that represents a small correction of the weights. The solution is found by solving the $M \times M$ set of equations (called normal equations)

$$J^T J \delta = -G,$$

where G and J are the gradient vector and the Jacobian matrix, respectively. For computing G and J we proceed as follows. Let $e^{(k)}$ be the residual row vector of dimension O for the kth input-output training pair,

$$e^{(k)} = b^{(k)} - g^{(k)}.$$

Collecting those residuals, we have a vector E of $S \times 1$ dimensions, with $S = KO$. Then, the gradient vector of $L(\cdot)$ has $M \times 1$ dimensions and its mth element is

$$G_m = \sum_{s=1}^{S} \frac{\partial e_s}{\partial w_m} e_s.$$

The Jacobian matrix has dimensions $S \times M$ and its (s, m) element is

$$J_{s,m} = \frac{\partial E_s}{\partial w_m}.$$

For computing the partial derivatives of (24) and (25) we use the expressions presented in [14].
The GN method is a batch type algorithm. We call an epoch of the GN algorithm when all the patterns in the training set are used. At each epoch τ, the weight correction δ is computed, next the weights are updated as follows:

$$w^{(\tau)} = w^{(\tau-1)} + \alpha^{(\tau)} \delta^{(\tau)},$$

where $\alpha \in (0, 1]$ is computed using a line search technique. In the canonical GN method this parameter is set to 1. A better strategy is tuning α with less values until some suitable point. For details about how to tune α see Chapter 9 of (Press et al., 1992).

The GN method for solving the problem of minimization using NNs presents several drawbacks. The method requires a good initial solution, that is often not available (Drucker and Le Cun, 1992). Another drawback is that the GN method requires computing the Hessian matrix \mathbf{H} ($\mathbf{H} = \mathbf{J}^T \mathbf{J}$) and its inverse, both computations can be expensive. Therefore, the method is expensive in time and in storage.

A Quasi-Newton (QN) method type is a variant of the GN algorithms that uses an approximation of the Hessian matrix ($\tilde{\mathbf{H}}$) for solving the normal equations. The general approach behind a QN method is an iterative procedure that consists of starting with a positive and symmetric matrix and updating it in successive steps in such a way that the matrix remains positive definite and symmetric. The update rule always moves in a downhill direction for solving the normal equations and guarantees that $\tilde{\mathbf{H}}$ approximates \mathbf{H}. As we already commented so far, the implementation of the second order methods is offline, thus at each epoch the network outputs are computed for the whole of input patterns. We present in Schema 2 a procedure that shows how to compute those model outputs. In the following of this Section we will use this schema as a black box being a part of the GN and Quasi-Newton algorithms. In the remainder of this Section, we present four algorithms based on approximations of the Hessian matrix.

Algorithm 2: Auxiliary schema. Given a RNN the procedure shows how to compute the network outputs for the whole input dataset. The procedure returns a $K \times N$ matrix, that has the vector $\varrho^{(k)}$ computed with the input pattern $a^{(k)}$ in its k-row.

Inputs: $\{(a^{(k)}, b^{(k)}) : k = 1, \ldots, K\}$ (training dataset), the topology of the RNN

Outputs: The neuron activity rate produced by the whole of input patterns: C a $K \times N$ matrix

1. Choose the value of r_i for all output neuron i;
2. For all $i \notin O$ compute r_i using (11);
3. for ($k \leftarrow 1$ to K) do
4. $\lambda^+ = a^{(k)}$; // read input
5. For all i, compute $\varrho^{(k)}$ using (6), (7) and (8);
 // see also 3.3.2 for many relevant technicalities
6. Set the row k of C with the vector $\varrho^{(k)}$;

17
3.4.1 The Broyden-Fletcher-Goldfarb-Shanno algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for the RNN model was introduced in [Likas and Stafylopatis, 2000]. The BFGS is an offline algorithm, which at each epoch τ an approximation of the Hessian matrix $\tilde{H}(\tau)$ is computed. The method starts using the identity matrix as the initial Hessian approximation $\tilde{H}(0) = I$. The Choleski factorization is used for decomposing a symmetric and positive definite matrix into two triangular matrices. Choleski factorization is more efficient than alternative methods for solving linear equations, it is about two times faster than the alternative ones. For details about the implementation of this factorization see [Press et al., 1992]. The matrix $\tilde{H}(\tau)$ is decomposed using Choleski factorization as

$$\tilde{H}(\tau) = L(\tau)L^T(\tau).$$

Let c be an auxiliary scalar defined at each epoch as

$$c(\tau)^2 = \frac{(w(\tau) - w(\tau-1))^T(G(\tau) - G(\tau-1))}{(w(\tau) - w(\tau-1))^T\tilde{H}(\tau)(w(\tau) - w(\tau-1))}.$$

We define an auxiliary vector v as

$$v(\tau) = c(\tau)L(\tau)(w(\tau) - w(\tau-1)).$$

Next, we compute

$$A(\tau) = L(\tau) + \frac{((G(\tau) - G(\tau-1)) - L(\tau)v(\tau)v^T(\tau))}{v^T(\tau)v(\tau)}.$$

The update of the Hessian matrix approximation is given by

$$\tilde{H}(\tau+1) = A(\tau)A^T(\tau).$$

Finally, the weight update is given by δ solving

$$\tilde{H}(\tau+1)\delta(\tau+1) = -G(\tau).$$

In summary, the BFGS method for RNN presented in [Likas and Stafylopatis, 2000] is defined in Algorithm 3.

3.4.2 The Davidon-Fletcher-Powell algorithm

The Davidon-Fletcher-Powell (DFP) algorithm is another widely used QN method sometimes referred as Fletcher-Powell [Press et al., 1992]. The algorithm is a slight variation of BFGS algorithm, the difference between them is given in the following terms. The scalar c is defined as

$$c(\tau)^2 = \frac{(w(\tau) - w(\tau-1))^T(G(\tau) - G(\tau-1))}{(G(\tau) - G(\tau-1))^T\tilde{H}(\tau)(G(\tau) - G(\tau-1))},$$

and the vector v is such that solves the linear system,

$$L(\tau)v(\tau) = c(\tau)(G(\tau) - G(\tau-1)).$$
Algorithm 3: Specification of the BFGS algorithm for the RNN model.

Inputs: \{(a^{(k)}, b^{(k)}) : k = 1 \ldots, K\} (training dataset), maxIters (max. number of iterations), the topology of the RNN

Outputs: The weights: \(w = \{w_{i,j}^+, w_{i,j}^- : i, j = 1 \ldots, N\}\) (network’s weights)

1 \(\tau = 0\);
2 Initialize all weights (for instance, randomly); // we get \(w_u^v(0)\) for all \(u, v\) with \(u\) either input or hidden neuron
3 Choose the value of \(r_i\) for all output neuron \(i\);
4 \(\tilde{H} = I\);
5 Compute \(G\) using (24) and (14);
6 Compute \(\delta\) solving (32);
7 For all connections \((u, v)\), update \(w_{u,v}^+\) and \(w_{u,v}^-\) using (26);
8 while \((\tau < \text{maxIters})\) or (until convergence) do
9 \(\tau = \tau + 1\);
10 Apply Schema 2;
11 Compute \(G\) using (24) and (14);
12 Compute \(L\) using Choleski factorization see (27);
13 Compute \(c, v\) and \(A\) using (28), (29) and (30), respectively;
14 Update \(\tilde{H}\) using (31);
15 Compute \(\delta\) solving (32);
16 For all connections \((u, v)\), update \(w_{u,v}^+\) and \(w_{u,v}^-\) using (26); // see also 3.3.2
17 Evaluate convergence;

The matrix \(A\) is determined by computing

\[
A^{(\tau)} = L^{(\tau)} - \frac{(G^{(\tau)} - G^{(\tau-1)})(w^{(\tau)} - w^{(\tau-1)})^T L^{(\tau)} - v^{(\tau)})(w^{(\tau)} - w^{(\tau-1)})^T (G^{(\tau)} - G^{(\tau-1)})}{(w^{(\tau)} - w^{(\tau-1)})^T (G^{(\tau)} - G^{(\tau-1)})}.
\]

Finally, yielding the Hessian approximation

\[
\tilde{H}^{(\tau)} = A^{(\tau)} A^{T(\tau)},
\]

and we compute the search direction \(\delta\) for update the weights solving the expression (32).

According empirical results the BFGS performs better than the DFP method [Press et al., 1992]. Although, for some specific benchmark problems the DFP reached better accuracy than DFGS [Likas and Stafylopatis, 2000]. The algorithm is summarized in 4.

3.4.3 The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is one of the most standard optimization methods used in the NN area [Press et al., 1992; Ampazis and Perantonis, 2000; Hagan and Menhaj, 1994]. The LM is a sort of compromise between an offline version of the GD algorithm and a GN method [Marquardt, 1963; Press et al., 1992]. The algorithm was introduced for training RNN in [Basterrech et al., 2011].
Algorithm 4: Specification of the DFS algorithm for the RNN model. The DFS and the BFGS algorithms differ only in details. As a consequence, we introduce the DFS referencing the schema already presented in Algorithm 3.

Inputs: \(\{(a^{(k)}, b^{(k)}): k = 1, \ldots, K\} \) (training dataset), maxIters (max. number of iterations), the topology of the RNN

Outputs: The weights: \(w = \{w_{i,j}^+, w_{i,j}^- : i, j = 1, \ldots, N\} \) (network’s weights)

\[//\] Perform the lines 1 until 7 of Algorithm 3.

while \((\tau < \text{maxIters})\) or \((\text{until convergence})\) do

\[\tau = \tau + 1;\]
Apply Schema 2;
Compute \(G \) using (24) and (14);
Compute \(c \) using (33);
Compute \(L \) solving (34);
Compute \(A \) using (35);

\[//\] Perform the lines 14 until 17 of Algorithm 3.

At each epoch \(\tau \), the approximation of the Hessian matrix is given by,

\[\tilde{H}^{(\tau)} = J^{T(\tau)}J^{(\tau)} + \mu^{(\tau)}I, \] (37)

where \(\mu^{(\tau)} > 0 \) is called dumping term, \(I \) is the identity matrix of dimension \(M \times M \), and \(J \) is the Jacobian matrix that is computed using (25). The dumping term \(\mu \) is modified at each epoch. In the case that the prediction error decreases, then the dumping term is reduced by some constant value \(\beta \)

\[\mu \leftarrow \mu / \beta. \] (38)

Otherwise, the dumping value is increased by a factor of \(\beta \),

\[\mu \leftarrow \mu \beta. \] (39)

So far, the factor for modifying the dumping term was set as \(\beta = 10 \)\footnote{Press et al., 1992; Basterrech et al., 2011}.

The LM algorithm computes the weight correction \(\delta \) solving the system (32). Then, the update rule for the weights is given by the expression (26). In (Basterrech et al., 2011), this weight update considers only the search direction \(\delta \). In other words, the authors set \(\alpha = 1 \) in the expression (26). The algorithm can evolve through either of extreme possible situations are\footnote{Hagan and Menhaj, 1994; Press et al., 1992}:

- If the dumping term approaches to zero, the LM basically performs as the Gauss-Newton method.
- Otherwise, when the dumping term is very large, the matrix \(\tilde{H} \) becomes diagonal dominant, so the update rule is similar to the updating expression of gradient descent method using a learning factor of \(1/\mu \).
Concerning the stopping conditions, the method can fail if the Jacobian matrix becomes singular or nearly to singular. Even if this situation is rare in practice, a control of the condition number of \mathbf{J} can be useful (Press et al., 1992). Besides, it is necessary to control that the dumping factor satisfies some boundary conditions. It is not recommended to stop after an epoch wherein the training objective error increases. For more technical discussion about the stopping criteria of the LM see (Press et al., 1992). We present the LM procedure in Algorithm 5.

Algorithm 5: Specification of the LM algorithm for RNN.

Inputs: \{$(\mathbf{a}^{(k)}, \mathbf{b}^{(k)}) : k = 1 \ldots, K$\} (training dataset), maxIters (max. number of iterations), the topology of the RNN, μ (dumping term), β (constant to modify μ)

Outputs: The weights: $\mathbf{w} = \{w_{ij}^+, w_{ij}^- : i, j = 1, \ldots, N\}$ (network's weights)

1. $\tau = 0$;
2. Initialize all weights (for instance, randomly); // we get $\mathbf{w}_{u,v}^{(0)}$ for all u, v with u either input or hidden neuron
3. Choose the value of r_i for all output neuron i;
4. while ($\tau < \text{maxIters}$) or (until stopping conditions) do
5. \hspace{1em} $\tau = \tau + 1$;
6. \hspace{1em} Apply Schema 2;
7. \hspace{1em} Compute $L(\mathbf{w})$ using (10);
8. \hspace{1em} Compute \mathbf{G} using (24) and (14);
9. \hspace{1em} Compute \mathbf{J} using (25);
10. \hspace{1em} Compute $\tilde{\mathbf{H}}$ using (37);
11. \hspace{1em} Compute δ solving (32);
12. \hspace{1em} Compute temporal weights $\mathbf{w}_{\text{tmp}}^* = \mathbf{w}^* + \delta$;
13. \hspace{1em} // weights \mathbf{w}^* are those at $\tau - 1$, see also 3.3.2 for technicalities
14. \hspace{1em} Apply Schema 2 using the weights $\mathbf{w}_{\text{tmp}}^*$;
15. \hspace{1em} Compute $L(\mathbf{w}_{\text{tmp}}^*)$ using (10);
16. \hspace{1em} if ($L(\mathbf{w}_{\text{tmp}}^*) < L(\mathbf{w})$) then
17. \hspace{1em} \hspace{1em} Update μ using (38);
18. \hspace{1em} \hspace{1em} Set the weights \mathbf{w}^* with $\mathbf{w}_{\text{tmp}}^*$;
19. \hspace{1em} \hspace{1em} Set $L(\mathbf{w}^*)$ with $L(\mathbf{w}_{\text{tmp}}^*)$;
20. \hspace{1em} else
21. \hspace{1em} \hspace{1em} Update μ using (39);
22. \hspace{1em} \hspace{1em} Evaluate stopping conditions;

3.4.4 Levenberg-Marquardt with adaptive momentum training

A variation of the LM method applied to NNs was developed in (Ampazis and Perantonis, 2000; Ampazis et al., 1999). This approach was adapted for the case of RNN on learning problems in (Basterrech et al., 2011). The idea consists in inserting a momentum term
that controls the directions followed in the searching space. The algorithm was introduced under the name of Levenberg-Marquardt with Adaptive Momentum (LM-AM) (Ampazis and Perantonis, 2000; Basterrech et al., 2011). The approach consists in maintaining the conjugacy of successive searching vectors (Barnard, 1992). This means that at an epoch \(\tau \) the new direction \(\delta^{(\tau)} \) depends on the selected direction at the previous epoch \(\delta^{(\tau-1)} \). It is desirable that the motion along a direction at the current step positively interferes with the minimization along the previous step. Formally, this property occurs when both vectors \(\delta^{(\tau-1)} \) and \(\delta^{(\tau)} \) are mutually conjugate, the same principle is used in the Conjugate Gradient algorithm (Press et al., 1992).

In the LM-AM the update rule for the weights at the epoch \(\tau \) is given by:

\[
\delta^{(\tau)} = -\frac{\lambda_1}{2\lambda_2} \left[\tilde{H}^{(\tau)} \right]^{-1} G^{(\tau)} + \frac{1}{2\lambda_2} \delta^{(\tau-1)},
\]

(40)

where

\[
\lambda_1 = -\frac{2\lambda_2 \Delta Q^{(\tau)} + c_2}{c_1}
\]

(41)

and

\[
\lambda_2 = \frac{1}{2} \sqrt{\frac{c_1 c_3 - c_2^2}{c_1 (\Delta P)^2 - (\Delta Q^{(\tau)})^2}},
\]

(42)

with

\[
\Delta Q^{(\tau)} = \frac{1}{2\lambda_2} (c_2 - \lambda_1 c_1),
\]

and the constants \(c_1, c_2 \) and \(c_3 \) are three real numbers defined as follows:

\[
c_1 = G^{T(\tau)} \left[\tilde{H}^{(\tau)} \right]^{-1} G^{(\tau)},
\]

(43)

\[
c_2 = G^{T(\tau)} \delta^{(\tau-1)}
\]

(44)

and

\[
c_3 = \delta^{T(\tau-1)} \tilde{H}^{(\tau)} \delta^{(\tau-1)}.
\]

(45)

In practice, it is suggested to set \(\Delta Q \) as

\[
\Delta Q^{(\tau)} = -\zeta \Delta P \sqrt{c_1},
\]

(46)

where \(\zeta \) is some constant between 0 and 1 (Ampazis and Perantonis, 2000; Basterrech et al., 2011). Then, the parameters for the LM-AM procedure are \(\zeta \) and \(\Delta P \). When the LM-AM is applied for optimizing classic NNs is suggested to experiment with \(0.85 \leq \zeta \leq 0.95 \) (Ampazis and Perantonis, 2000). In (Basterrech et al., 2011), the authors applied LM-AM for optimizing the RNN model achieving the best results when \(0.1 \leq \Delta P \leq 0.6 \). The Algorithm 6 presents the pseudo-code of the LM-AM.
Algorithm 6: Specification of the LM-AM algorithm for RNN. This algorithm is a variation of Algorithm 5, as a consequence we introduce it referencing the schema already presented there.

Inputs: \(\{ (a^{(k)}, b^{(k)}) : k = 1 \ldots, K \} \) (training dataset), maxIters (max. number of iterations), the topology of the RNN, \(\mu \) (dumping term), \(\beta \) (constant to modify \(\mu \)), \(\zeta \) and \(\Delta P \) (specific parameters of the LM-AM)

Outputs: The weights: \(w = \{ w^+_{i,j}, w^-_{i,j} : i, j = 1, \ldots, N \} \) (network’s weights)

```plaintext
1 while ((\( \tau < \) maxIters) or (until stopping conditions)) do
    // Performs the lines 1 until 3 of Algorithm 5
2    Compute \( c_1, c_2 \) and \( c_3 \) using (43), (44), and (45);
3    Compute \( \Delta Q \) using (46);
4    Compute \( \lambda_1 \) and \( \lambda_2 \) using (41), (42);
5    Compute \( \delta \) using (40);
6    // Performs the lines 12 until 21 of Algorithm 5
```

4. Critical review

In this section we discuss some stability issues of the model when applied to supervised learning tasks. Next, we analyze the time complexity and memory stockage of Gauss-Newton methods. We discuss the difficulties of training recurrent topologies and we present an alternative for using recurrent networks without the drawback of learning the network parameters. Next, we present some properties of the RNN model and its analogy with a specific type of NN. The section ends with a presentation of RNN variations.

4.1 Stability issues

Originally, the model was introduced as a network of queues. Some of the consequences of that were already discussed in Sec. 3.3.2. Actually, the model has been applied respecting the analogy with queueing networks. As a consequence, the weights are controlled in order to keep them in positive intervals. If we see neuron \(i \) as a queue, the interpretation of \(\varrho_i \) makes basically sense in the stable case only, when the queue is in equilibrium (that is, when the underlying stochastic process is ergodic). The same holds for the whole network. This is a tricky point. Seeing \(i \) as a queue, we have stability only when \(T_{i}^+ < r_i + T_{i}^- \). If we want to keep this true, we need supplementary constraints in the optimization processes, since, at each step, a new neuron rate \(r_i \) is computed, as a function of the previously computed weights, and intuitively, it must be high enough such that the neuron remains stable. The point is also relevant regarding the use of the model in supervised learning, because roughly speaking, stability implies that the non-linear system of equations (6), (7) and (8) has an unique solution. The usage is, however, to ignore this point and only check stability for the output neurons. In this case, if for some neuron \(i \) we obtain \(\varrho_i > 1 \), we replace this number by 1.

These remarks mean that there is an open research line here, where other learning schemes could be designed weakening the connexion with the queuing world.
4.2 Time complexity

The LM algorithm has been proved to be efficient in terms of computational time and accuracy rate. In spite of that, the method presents some drawbacks. One of the weak points is that it may require a large amount of memory, due to the need of storing large matrices (Barnard, 1992). The procedure is offline, at each iteration the algorithm uses the whole data pattern for computing the Jacobian matrix and the inverse of the pseudo-Hessian matrix. These two operations can be expensive when the dimensions of both matrices are large. An exact and efficient method for computing the Hessian for the feedforward case was introduced in (Bishop, 1992). However, this approach is not practical in the case of large networks (Martins et al., 2012). Another operation that has a high computational cost is the computation of the inverse of $\tilde{\mathbf{H}}$. For a $M \times M$ matrix, we have the following well known techniques for inverting a matrix and their corresponding computational costs: Gauss-Jordan elimination method (time complexity $O(M^3)$) (Press et al., 1992), Strassen method (time complexity $O(M^{\log_27})$) (Press et al., 2002), Coppersmith-Winograd method (time complexity $O(M^{2.376})$) (Coppersmith and Winograd, 1990). A slight variation of the LM algorithm was proposed in (Ukil, 2007), wherein the authors reduce the memory space used for storing the Jacobian and pseudo-Hessian matrix. However, the proposal is much slower in terms of convergence speed.

4.3 Difficulties for optimizing recurrent topologies

In the machine learning community there have been numerous efforts to develop algorithms for training a NN with a recurrent topology. In spite of that, in practice is hard to train recurrent networks. An algorithm based on the gradient information has often stability problems, due to the volatile relationship between the weights and the states of the neurons (Martens and Sutskever, 2011). These phenomena were studied by several researchers. In the literature, they are identified as vanishing and the exploding gradient problems (Bengio et al., 1994). The first one occurs when the gradient norm tends fast towards zero. The exploding gradient phenomenon refers to the opposite situation, that is, when the gradient norm tends to get very large (Pascanu et al., 2013). As far as we know, the vanishing and exploding gradient phenomena have not been yet studied for RNNs. The research effort continues to address these issues. For instance, a new attempt to train NN with recurrences was recently introduced under the name of Hessian-Free Optimization (Martens and Sutskever, 2011). This could also be explored for training recurrent RNNs.

4.4 Reservoir computing and Random Neural Networks

During the last fifteen years, Echo State Network (ESN) has received much attention in the NN community, due to its good performance for solving time-series learning problems. The ESN introduces a new approach to design and train NN with recurrences. In these models, learning only occurs in the weights that are not involved in recurrences. Those involved in circuits are deemed fixed during the training process.

In the canonical ESN the neurons have associated a sigmoid transfer function. A variation of the ESN model named Echo State Queueing Network (ESQN) that uses the dynamics of the RNN (based on Eqns. (6), (7) and (8)) was introduced in (Basterrech and Rubino, 2007).
The ESQN has been successfully applied for solving temporal learning tasks, for instance, in predicting future Internet traffic based on past observations (Basterrech and Rubino, 2013a).

4.5 Universal approximator

George Cybenko investigated in 1989 the conditions under which feedforward NNs are dense functions in the space of continuous functions defined, say, in the hypercube \([0, 1] \times [0, 1] \times \ldots \times [0, 1]\) (Cybenko, 1989). Cybenko proved that any continuous function can be uniformly approximated by a continuous classic NN having a finite number of neurons and only one hidden layer. The considered activation function of the neurons was a sigmoid function. In (Gelenbe et al., 1999), the authors studied this property for the RNN model. They proved that RNNs constitute a family of functions that can approximate any real continuous function \(f : [0, 1] \rightarrow [0, 1]\) with an arbitrary precision (Gelenbe et al., 1999, 2004b). In order to prove that RNNs satisfy this approximator universal property, the authors consider a specific topology and two extensions of the model called Bipolar Random Neural Network (BRNN) and Clamped Random Neural Network (CRNN). For details about the proof see (Gelenbe et al., 1991; Gelenbe, 1998; Gelenbe et al., 1999, 2004b).

4.6 Analogy between RNNs and other NNs

In (Gelenbe, 1989a) was studied an analogy between a specific class of Artificial NN and the RNN model. Consider a classical NN and let \(w_{uv}\) be the weight from neuron \(u\) to neuron \(v\) (note that the notation is in reverse order to that used in the standard NN literature (Bishop, 1995; Rumelhart et al., 1986b)). Given a sequence of inputs \(y_1, y_2, \ldots, y_N\) to neuron \(u\), its output is

\[
y_u = f\left(\sum_{v=1}^{N} w_{vu}y_v - \theta_u\right),
\]

where \(f(\cdot)\) is a sigmoid function (Gelenbe, 1989a). Assume that the input-output pattern in the training data is binary. The input space is \(\{0, 1\} \times \{0, 1\}\), and the output space is \(\{0, 1\} \times \{0, 1\}\), where \(|I|\) and \(|O|\) are positive integers. The network topology is of the feedforward type with multiple layers. The adjustable parameters of the model are the weight connections \((w_{uv})\) and the bias parameter \((\theta_u)\) for \(u, v = 1, \ldots, N\). Let us consider the indexes \(u\) and \(v\) to denote the neurons in the ANN and the indexes \(i\) and \(j\) to denote the neurons in the RNN model. The analogy between both networks is built using the same number of input, hidden and output neurons in the two networks, as follows. The threshold of neuron \(u\) is associated with the flow of negative signals to neuron \(i\): \(T_i^+ = \theta_u\). The relation among the weight connections is given by the following rules: if \(w_{uv} > 0\), then \(r_ip_{ij}^+ = w_{uv}\); if \(w_{uv} < 0\), then \(r_ip_{ij}^- = |w_{uv}|\). If \(i\) is an output neuron, then \(d_i = 1\), and \(r_i\) is a free parameter. The authors propose to set \(d_i = 0\) and \(r_i = \sum_{j=1}^{N} (p_{ij}^+ + p_{ij}^-) = \sum_{v=1}^{N} |w_{uv}|\), when \(i\) and \(u\) are an input and a hidden neuron respectively. Then, the input signals of an input node of the RNN are set as follows:

- If the element \(i\) of the input pattern is equal to 1, then \(\lambda_i^+\) is a non null constant in \((0, 1]\) while \(\lambda_i^- = 0\). The authors propose an ad-hoc setting for the input rate \(\lambda_i^+\), chosen according to the training data in order to obtain the desired outputs.
• If the input pattern is equal to 0, then $\lambda^-_i \neq 0$ and $\lambda^+_i = 0$.

The vector of output activation values (y_1, \ldots, y_N) corresponding to each neuron in the ANN is associated with the vector $(\varrho_1, \ldots, \varrho_N)$ in the RNN. In the paper, the authors proposed to use some “cut–points” $(\alpha_1, \ldots, \alpha_N)$ such that

$$y_i = 0 \iff \varrho_i < 1 - \alpha_i \quad \text{and} \quad y_i = 1 \iff \varrho_i > 1 - \alpha_i.$$

The values of the flow of input signals λ^+_i and the cut-points α_i must be chosen in order to obtain the expected effect at the output values. It can be observed that the task of tuning these parameters can be a non trivial problem.

4.7 Model variations

There are several extensions of the canonical RNN model. We present a brief summary of a few of them.

• In (Gelenbe, 1993b), negative arriving customers (signals) make that the potential of the neurons goes to zero.

• In (Gelenbe and Fourneau, 1999; Gelenbe and Hussain, 2002; Gelenbe, 2002; Fourneau et al., 2000) multiple classes of neurons are allowed, leading to an increased flexibility in the design of the model.

• In (Gelenbe, 1993c; Gelenbe and Shachnai, 2000; Chao, 1994) negative signal arrivals can trigger customers’ movements in other parts of the network.

• In (Henderson, 1993; Henderson et al., 1994a; Fourneau and Verchère, 1995; Henderson et al., 1994b) the rates of the neurons can be state-dependent, and batch movements are also allowed.

5. Applications in the supervised learning area

Since its apparition in 1989, the RNN model has been applied in a large variety of supervised learning problems. This article is not a survey about the RNN applications. We focus on the numerical optimization algorithms applied for solving the supervised tasks, as well as in the usage of these algorithms. Both points were already discussed in the previous sections. However, in the following we briefly describe several applications of the model. The main references used in this overview are (Timotheou 2010; Georgiopoulos et al. 2011; Bakircioğlu and Koçak 2000; Sakellari 2010; Do, 2011).

5.1 Application for multimedia quality assessment

Neural Networks have been applied for developing mechanisms of controlling the quality of multimedia applications. Two main classes of methods can be considered for assessing the perceived quality of multimedia streams:

• Objective methods: they are usually based on a comparison between the original and distorted sequences. The main example is the Peak Signal to Noise Ratio (PSNR).
Subjective methods: the most commonly used measure is the Mean Opinion Score (MOS), where a group of people evaluate media samples according to a predefined quality scale, under carefully controlled experimental conditions.

Thus, the quality is measured as a distance function between the original and the distorted sequences in the case of objective methods, and it is some statistical function based on human evaluations in the case of subjective methods. These approaches have the following drawbacks. Objective methods require the original streams which often are not available in practical applications. In particular, this restriction makes that these techniques can not be used for controlling applications, which need real-time reactions. Subjective methods are expensive and, by definition, they can not be used in real-time problems. Another remark is that these methods do not take into account the effects of the packet network’s parameters in the perceived quality the streams.

A new approach was presented in (Rubino and Mohamed, 2002), based on subjective techniques and QoS metrics, in order to estimate in real time the quality of the media. We can describe the main idea as follows. A set of original signals of video or audio (depending of our problem) is considered as the data set. The training data is generated using a codec and network simulation distortion considering loss rate, delay and other network parameters which affect quality. Several models to characterize the loss processes in the Internet are used to simulate distorted data, such as independent losses (Bolot, 1993) or fixed–size loss bursts (Hands and Wilkins, 1999), the Gilbert Model (Gilbert, 1960) and k^{th} order Markov chains (Yajnik et al., 1993). Next, a group of subjects evaluates the training set using a MOS protocol, thus a collection of images or sound distorted is subjectively evaluated.

The RNN has been used for learning the relationship between the network parameters (loss rate, delay, jitter, . . .) and quality as evaluated by panels of human users. This approach of estimating the multimedia quality the has been studied in the following articles (Rubino, 2005) (Rubino et al., 2006) (Mohamed et al., 2004a) (Mohamed et al., 2004b), among many others. In (Rubino et al., 2006) the model was compared with Naive Bayesian Classifiers and with classic Neural Networks, for this specific supervised learning application the RNN model shows a better performance.

In (Rubino and Mohamed, 2002), other learning techniques were explored, including those included in commercial packages. Fig. [I] shows one of the situations where RNN behaved better than a competitor, on the same data and keeping the sizes of the vectors of weights identical. We can see the classical overtraining phenomenon appearing in the other technique.

5.2 Solving temporal supervised learning

Recently a computational model that uses the dynamics of the RNN has been analyzed for studying sequential dataset (Basterrech and Rubino, 2013a) (Basterrech and Snášel, 2013). The model name is Echo State Queueing Network (ESQN) because it is an hybrid produced from two different types of Neural Networks: RNNs and Echo State Networks (ESN) (Lukoševičius and Jaeger, 2009). The ESN are recurrent NNs with sigmoid activation functions. They have been successful used for solving time-series problems. The RNN variation named ESQN uses the circuits of the network for memorizing the sequential data. Besides, the recurrent part of the network acts as a projection method (as in ESNs and in
Kernel Methods) in order to enhance the linear separability of the input data. The network
has fixed the weights that are involved in the circuits and only the weights that generate
the output of the model are updated in the training phase. The state of the nodes in this
variation of the RNN model is vector ϱ. When an input pattern $a^{(k)}$ is presented to the
network, the vector of states evolves according to the dynamics given by the following equa-
tions, where I denotes the set of input neurons and H denotes the set of hidden ones (the
“reservoir”):

$$
\varrho^{(k)}_i = a^{(k)}_i, \quad i \in I, \quad (48)
$$

and for $i \in H$,

$$
\varrho^{(k)}_i = \frac{\sum_{j \in I} w_{ij} a^{(k)}_j r_j + \sum_{j \in I \cup H} w_{ij} \varrho^{(k-1)}_j}{r_i + \sum_{j \in I} w_{ij} a^{(k)}_j r_j + \sum_{j \in I \cup H} w_{ij} \varrho^{(k-1)}_j}, \quad (49)
$$

for all $i \in H$. The expression (49) is a dynamical system that has at the left the state values
at time k, and on the right hand side the state values at time $k - 1$. In the same way as
in the ESN model, the parameters are computed generated using a linear ridge regression
from ϱ to b.

According to the experimental results presented in (Basterrech and Rubino, 2013a) the
model presents a competitive accuracy if one refers to the classic Neural Networks with
sigmoid activation functions (as, for instance, the ESN model). In particular, the model
has been applied for predicting the Internet traffic on real dataset from an Internet Service

Figure 4: Comparison between the RNN model in (a) and a classical commercial ANN tool
in (b); the picture shows the learned function plotted when varying two of its input variables.
Physical considerations say that the function was corrected learned in (a), and that (b) is
unrealistic.
Table 1: Comparison between the ESN (RNN with sigmoid activation function and fixed recurrent structure) and the variation of RNN for time series problems (named ESQN). The table presents the Normalized MSE reached on 20 independent trials, and the corresponding Confidence Interval (CI).

Traffic time series	Model	NMSE	CI
ISP	NN variation (ESN)	0.0062	±9.8885 × 10^{-4}
ISP	RNN variation (ESQN)	0.0100	±1.2436 × 10^{-4}
UKERNA	NN variation (ESN)	0.3781	±0.0066
UKERNA	RNN variation (ESQN)	0.2030	±0.0335

Provider (ISP) working in 11 European cities [Cortez et al., 2012] [Hyndman]. The data was collected from a private ISP from 7 June to 29 July, 2005. It covers traffic information of 11 European cities. In addition, the model has been applied for traffic prediction using another benchmark data from the Traffic data from United Kingdom Education and Research Networking Association (UKERNA) [Cortez et al., 2012] [Hyndman]. The data was collected from 19 November and 27 January, 2005. It was studied in [Cortez et al., 2012]. In order to analyze the sequential behavior, the problem was studied collecting the data and using three-time scales: day, hour and intervals of five minutes. Different scales of time capture the strength of trend and seasonality. Figure 5 shows an example of the Internet traffic prediction using the ESQN model on the European ISP dataset. Table 1 illustrates the accuracies of the ESQN and ESN models for predicting the Internet traffic. For more details about the implementation of ESQNs to solve time-series problems see [Basterrech and Rubino, 2013a] [Basterrech and Snášel, 2013] [Basterrech et al., 2014b].

5.3 Approximation of nonlinear functions

A supervised task consists in generating a parametric mapping between inputs and outputs. One of the most referenced and studied nonlinear benchmark has been the xor problem. In 1969, Marvin Minsky and Seymour Papert proved the inability of perceptrons to solve it [Minsky and Papert, 1969]. Since then, xor is considered as a classical reference to study the ability of a model to solve nonlinear classification problems. A RNN that tries to match the xor function was studied in [Gelenbe, 1989a, 1990]. The same problem solved using learning algorithms was studied in [Basterrech et al., 2011]. In [Basterrech et al., 2011] a generalization of the xor problem named the parity problem was analyzed. The RNNs have been used also for approximating real functions. For instance, in [Basterrech et al., 2011] it was studied for approximating a sinusoidal function. In [Martinelli et al., 2002] an extension of the canonical RNN has been used for solving real function approximation problems.

5.4 Image processing

The RNN model has been widely used in image processing problems. In this section we give a brief description about this type of applications.
(a) Internet traffic prediction using the RNN model called ESQN on the European ISP traffic validation data (5 minutes scale)

(b) Internet traffic prediction using the RNN variation called ESQN on the European ISP traffic validation data (5 minutes scale). Example of ESQN prediction for 1000 time steps

Example of ESQN estimation of 100 validation instances of data of the European ISP

(b) Internet traffic prediction using the RNN variation called ESQN on the European ISP traffic validation data (5 minutes scale). Example of ESQN prediction for 1000 time steps
Feedforward NNs have been successful used for compressing images (Egmont-Petersen et al., 2002). The network has at least one hidden layer, and the same number of input and output neurons. The number of hidden neurons is smaller that the number of units in the other layers. The compression ratio is the rate between the number of input and of hidden neurons. This specific topology is often referred to as a bottleneck network. We illustrate it in Figure 6 (Manevitz and Yousef, 2007). The input data is a collection that represents the original image. For this purpose, some relevant features of the image is used (Bakircioğlu and Koçak, 2000). In the learning procedure the feedforward network is used as an auto-associator tool, which means that the model is trained in order to recreate the input data (Egmont-Petersen et al., 2002).

The same approach was used with the RNNs on image data compression tasks (Cramer et al., 1996; Gelenbe et al., 1996a; Cramer et al., 1998). In (Bakircioğlu and Koçak, 2000), RNNs were compared to other more traditional compression tools from the performance point of view. The measure of quality considered was the Peak Signal to Noise Ratio (PSNR). The authors remarked that traditional methods, such as JPG and Wavelet Compression, reached higher performance level (with respect to PSNR) than compression with RNNs. However, RNN presents the advantage to be faster that the other techniques. Besides, RNNs for image compression can be adapted for an implementation using parallel computing. For instance, the image can be fragmented in several parts, and for each part an RNN can be used for compressed/decompressed the image fragments. This procedure can be implemented in parallel. Thus, the computational time of this compression/decompression technique considerably decreases with respect to the other more classical techniques.

The Image Enlargement is a technique for resizing a digital image in order to increase its resolution. A procedure to solve this problem using RNNs was developed in (Bakircioğlu et al., 1998; Bakircioğlu and Koçak, 2000). The model was applied for enlarging two well know images called Lena and Peppers. The procedure requires a training data composed

Figure 6: Bottleneck network used for compressing images. The network has the same number of input and of output neurons. The compression ratio is given by ratio between the number of input and of hidden neurons.
by pairs of images. Each pair is composed of the original (the smaller one) and the target (the larger one). The authors propose to use a feedforward RNN and the gradient descent training algorithm. The training function is defined using the zero order interpolation, a technique for signal reconstruction. For details about the technicalities of this procedure see (Egmont-Petersen et al., 2002; Bakircioğlu and Koçak, 2000).

IMAGE FUSION

In the fusion of images the goal is to obtain a new image with high-resolution from a set of images with low-resolution. The problem using RNNs was examined in (Bakircioğlu and Koçak, 2000). The training inputs are composed of several images, for instance produced by sensors. As usual in supervised learning, each input pattern has associated with a target. In this task, the target is an image with better resolution that the one, present at the input. The network is used for learning the mapping between the set of sensor images and the target image. The authors in (Bakircioğlu and Koçak, 2000) use Gradient Descent with RNN for solving this problem.

MEDICAL IMAGE COMPUTING

RNNs have been applied in image segmentation for Magnetic Resonance Imaging (MRI) of the brain (Gelenbe et al., 1996b,c). The application on MRI is based on the following procedure. Given a reference image that contains a finite set of regions, the goal is to use RNNs for classifying those regions. The approach consists of training several RNNs, each of them using a specific region of the reference image. Then, after this training phase, an image is decomposed into many blocks of small sizes, and each block is classified using the corresponding RNN. Thus, we can assign a label to each small block (eventually individual pixels can be considered) of the image. The model has been applied to the segmentation of ultrasound images (Lu and Shen, 2005).

TEXTURAL FEATURES FOR IMAGE CLASSIFICATION

Textural features classification is an area of image processing and computer vision where the goal is to categorize or to classify pictorial information. This is done using a set of meaningful features of the image. Texture is one of the main characteristics for identifying or classifying individual pixels or pixel blocks in an image. Several works analyze what kind of textural features are useful for classifying images (Haralick et al., 1973; Rosenfeld and Troy, 1970). Once the features are defined, the blocks of images can be categorized using some pattern recognition methods. In (Teke and Atalay, 2006) the authors analyze the performance of using RNNs to classify pixels into texture classes. According to this article, the classification performance of RNNs is comparable with that of the other methods presented in the pattern recognition literature.

An extension of RNNs called Multiple Classes Random Networks (Gelenbe and Fourneau, 1999) was applied to the Color Pattern Recognition problem in (Aguilar, 2001). The model was also applied to another classification problem called Laser Intensity Vehicle Classification System (LIVCS) (Hussain and Moussa, 2005). Basically, laser intensity images are collected in an information system. This kind of images produce information that is less sensitive to environmental conditions that information produced by sensors and video sys-

32
tems. Once the information is collected, specific features are used for training the RNN model. Another area of application was image reconstruction, see for instance (Gelenbe et al., 2004a).

OTHER AREAS OF IMAGE PROCESSING

In a similar way as for image compression, the RNN model has also been applied to video compression (Gelenbe et al., 1996a). The authors develop the technique on video sequences over Broadband ISDN networks. According to (Cramer et al., 1996; 1998; Cramer and Gelenbe, 2000; Gelenbe et al., 1996a), RNNs exhibit a good performance in these tasks.

Image synthesis consists of creating digital images from some texture and form of image description. The approach using RNNs considers an architecture where each neuron is associated with each pixel of the image. To train the networks the method uses a training set composed of images where the aim is to learn certain textural features such as granularity, inclination, contrast, homogeneity and others. Once the network is trained, it can be used to generate images with similar textural characteristics as the images used in the learning process. Models to create image synthesis in gray level using RNNs have been examined in (Atalay et al., 1992; Gelenbe et al., 2000; Teke and Atalay, 2006). There is also some research for color images (Atalay and Gelenbe, 1992; Gelenbe and Hussain, 2002).

5.5 Other applications of the RNN model

In addition to supervised learning, the model has been used in the field of combinatorial optimization problems. Some of the main applications are the following ones (the list is not exhaustive):

- The *Traveling Salesman Problem (TSP)* is a classical case within hard combinatorial optimization problems. The goal is to design a set of minimum-cost vehicle routes delivering goods to a set of customers where the vehicles start and finish at a central point. This problem was studied using RNNs in (Gelenbe et al., 1993).

- Another combinatorial optimization problem is the *Minimum Vertex Covering (MVC)* problem which was studied in (Aguilar, 1983; Gelenbe and Batty, 1992).

- The *satisfiability (SAT)* problem consists of determining if the variables of a given Boolean formula can be assigned in such a way that the formula evaluates to TRUE. The SAT problem has a great importance in computer science and it was the first known NP–complete problem. It was studied using RNNs in (Gelenbe, 1992).

- The well known *Minimum Steiner Tree (MST)* problem in graphs is a sort of benchmark in combinatorial optimization. A RNN-based approach has been developed to find a solution in (Gelenbe et al., 1997; Ghanwani, 1998).

- RNNs have also been used to solve two problems close to MSTs: the *dynamic multicast* problem (Gelenbe et al., 1997; Aiello et al., 2005) and the *access network design* problem (Cancela et al., 2004).

- The *Independent Set problem* was studied with a variation of the RNN model in (Peker-gin, 1992).
• The Optimal Resource Allocation on a distributed system was analyzed using RNNs in \cite{Zhong et al. 2005}.

• Associative memory: works about associative networks for storage and retrieval symbolic information that use the RNN model can be found in \cite{Stafylopatis and Likas 1992, Gelenbe 1991b, Gelenbe et al. 1991, Likas and Stafylopatis 1997}. In addition, an analogy between the Hopfield Network and the RNN was studied in \cite{Likas and Stafylopatis 1991}.

• Applications in networking using a routing protocol called the Cognitive Packet Networks are found in \cite{Liu and Gelenbe 2007, Gelenbe and Loukas 2007, Sakellari 2010}.

6. Conclusions and perspectives

Since the early 1990s, the Random Neural Network (RNN) model has gained importance in the Neural Networks (NNs) area as well as in the field of the Queueing Theory. The model can be seen as an extension of open Jackson’s networks (it can actually be seen in several different ways). It has characteristics that are present in biological NNs, such that the action potential, firing spikes among neurons, inhibitory and excitatory spikes, random delays between spikes, and so on.

This article intends to be a practical guide for applying RNNs in supervised learning tasks. Several learning algorithms that have been used for training RNNs are presented in some detail. In 1993, a learning algorithm of the Gradient Descent (GD) type was adapted for the RNN case. At the beginning of the 2000s, Quasi-Newton (QN) methods were applied for training these models. More recently, other second-order algorithms, namely the Levenberg-Marquardt (LM) method and some variations were also developed for training RNNs. The LM procedure is a more robust technique than Gauss-Newton algorithms and it is very popular in NNs. In general, the available experimental results have shown that QN methods are much faster than GD algorithms. However, QN methods (for instance LM) can present robustness problems. First order optimization models are usually more robust but slower. In the case of a recurrent topology, a first order method can present also problems of stability. Those drawbacks are identified in the NN literature as the “exploding” and “vanishing” phenomena. To the best of our knowledge, those phenomena have not been analyzed yet in the RNN case.

RNNs have been successfully used as learning tools in many applications of different types. In this overview, we only scratched the surface of some of those applications. We described some solutions in the area of pattern recognition, image processing, compression, as well as in some combinatorial optimization problems.

Due to the good results previously mentioned, we are encourage researchers to continue the ongoing effort around, in particular, the following lines:

• All the learning algorithms presented in the RNN literature use the same type of cost function: a sum of squared “individual” errors. It can be interesting to develop algorithms that use other measures of errors, as for instance the Kullback-Leiber one. It is known that this metric is specially useful for evaluate the learning performance on classification tools \cite{Hastie et al. 2001}.
A point that deserves specific attention is the study of the difficulties of training a RNN with a recurrent topology, in particular with GD-type algorithms. See for instance (Bengio et al., 1994; Pascanu et al., 2013) in the case of classical NNs. As far as we know, these studies have not been extended yet to the case of RNNs.

There are several optimization algorithms developed in the NN area that are not still studied for the RNN case. For instance, we can mention the Hessian-free optimization and back-propagation curvature (Martins et al., 2012).

In (Basterrech et al., 2016, 2014a) RNNs have been implemented in parallel multiple GPUs. In this implementation, the authors used only the gradient descent method. Therefore, similar works using second-order methods in parallel implementations should be explored as-well.

References

Jose Aguilar. Definition of an energy function for the random neural to solve optimization problems. *Neural Networks*, 11:731–737, 1983. doi: 10.1016/s0893-6080(98)00020-3.

Jose Aguilar. Learning Algorithm and Retrieval Process for the Multiple Class Random Neural Network Model. *Neural Processing Letters*, pages 81–91, 2001. doi: 10.1023/A:1009611918681.

G. Aiello, S. Gaglio, G. Re, P. Storniolo, and A. Urso. The Random Neural Network Model for the On-Line Multicast Problem. *Biological and Artificial Intelligence Environments*, pages 157–164, 2005. doi: $10.1007/1-4020-3432-6_198$.

N. Ampazis and S. J. Perantonis. Levenberg-Marquardt algorithm with adaptive momentum for the efficient training of feedforward networks. *Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN’00)*, pages 126–131, July 2000. doi: 10.1109/ijcnn.2000.857825.

N. Ampazis, S. J. Perantonis, and J. G. Taylor. Dynamics of multiplayer network in the vicinity of temporary minima. *Neural Networks*, 12(1):45–58, 1999. doi: 10.1016/S0893-6080(98)00103-8.

V. Atalay, E. Gelenbe, and N. Yalabik. The random neural network model for texture generation. *International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)*, 6:131–141, 1992. doi: 10.1142/S0218001492000072.

Volkan Atalay and Erol Gelenbe. Parallel algorithm for colour texture generation using the random neural network model. In *Parallel image processing*, chapter Parallel algorithm for colour texture generation using the random neural network model, pages 227–236. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1992. ISBN 981-02-1120-1. URL http://dl.acm.org/citation.cfm?id=183390.183574.

H. Bakircioğlu, E. Gelenbe, and T. Koçak. Image processing with the random neural network model. *ELEKTRIK*, 5(1):65–77, 1998.
Hakan Bakircioğlu and Taşkin Koçak. Survey of Random Neural Network applications. *European Journal of Operational Research*, 126(2):319–330, 2000. doi: 10.1016/S0377-2217(99)00481-6.

E. Barnard. Optimization for Training Neural Nets. *Neural Networks, IEEE Transactions on*, 3(2):232–240, Mar 1992. ISSN 1045-9227. doi: 10.1109/72.125864.

Sebastián Basterrech and Gerardo Rubino. Echo State Queueing Network: A new Reservoir Computing Learning Tool. In *10th IEEE Consumer Communications and Networking Conference, CCNC 2013, Las Vegas, NV, USA, January 11-14, 2013*, pages 118–123, 2013a. doi: 10.1109/CCNC.2013.6488435.

Sebastián Basterrech and Gerardo Rubino. A More Powerful Random Neural Network Model in Supervised Learning Applications. In *Soft Computing and Pattern Recognition (SoCPaR), 2013 International Conference of*, pages 201–206, Dec 2013b. doi: 10.1109/SOCPAR.2013.7054127.

Sebastián Basterrech and Václav Snášel. Initializing Reservoirs With Exhibitory And Inhibitory Signals Using Unsupervised Learning Techniques. In *International Symposium on Information and Communication Technology (SoICT), Danang, Viet Nam, December 2013*. ACM Digital Library. doi: 10.1145/2542050.2542087.

Sebastián Basterrech, Samir Mohamed, Gerardo Rubino, and Mostafa Soliman. Levenberg-Marquardt Training Algorithms for Random Neural Networks. *Computer Journal*, 54(1):125–135, January 2011. ISSN 0010-4620. doi: 10.1093/comjnl/bxp101.

Sebastián Basterrech, Jan Janoušek, and Václav Snášel. A study of random neural network performance for supervised learning tasks in cuda. In Jeng-Shyang Pan, Václav Snášel, Emilio S. Corchado, Ajith Abraham, and Shyue-Liang Wang, editors, *Intelligent Data analysis and its Applications, Volume II*, volume 298 of *Advances in Intelligent Systems and Computing*, pages 459–468. Springer International Publishing, 2014a. ISBN 978-3-319-07772-7. doi: $10.1007/978-3-319-07773-4_45$.

Sebastián Basterrech, Václav Snášel, and Gerardo Rubino. An experimental analysis of reservoir parameters of the echo state queueing network model. In Ajith Abraham, Pavel Krömer, and Václav Snášel, editors, *Innovations in Bio-inspired Computing and Applications*, volume 237 of *Advances in Intelligent Systems and Computing*, pages 13–22. Springer International Publishing, 2014b. ISBN 978-3-319-01780-8. doi: $10.1007/978-3-319-01781-5_2$.

Sebastián Basterrech, Jan Janoušek, and Václav Snášel. A Performance Study of Random Neural Network as Supervised Learning Tool Using CUDA. *Journal of Internet Technology*, 17(4):771–778, 2016. doi: 10.6138/JIT.2016.17.4.20141014d.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. *Neural Networks, IEEE Transactions on*, 5(2):157–166, 1994. ISSN 1045-9227. doi: 10.1109/72.279181.
C. Bishop. Exact Calculation of the Hessian Matrix for the Multilayer Perceptron. *Neural Computation*, 4(4):494–501, 1992. doi: 10.1162/neco.1992.4.4.494.

C. M. Bishop. *Neural Networks for Pattern Recognition*. Oxford University Press Inc., New York, 1995.

J-C. Bolot. Characterizing end-to-end packet delay and loss in the internet. *Journal of High-Speed Networks*, 2(3):305–323, December 1993.

Héctor Cancela, Franco Robledo, and Gerardo Rubino. A GRASP algorithm with RNN based local search for designing a WAN access network. *Electronic Notes in Discrete Mathematics*, 18:59–65, 2004. doi: 10.1016/j.endm.2004.06.010.

Xiuli Chao. A note on queueing networks with signals and random triggering times. *Probability in the Engineering and Informational Sciences*, 8:213–219, 1994. doi: 10.1017/s0269964800003351.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. *Journal of Symbolic Computation*, 9:251–280, 1990. doi: 10.1016/S0747-7171(08)80013-2.

P. Cortez, M. Rio, M. Rocha, and P. Sousa. Multiscale Internet traffic forecasting using Neural Networks and time series methods. *Expert Systems*, 2012. ISSN 0266-4720. doi: 10.1111/j.1468-0394.2010.00568.x.

C. Cramer, E. Gelenbe, and H. Bakircioglu. Low Bit Rate Video Compression with Neural Networks and Temporal Sub-Sampling. *Proceedings of the IEEE*, 84(10):1529–1543, October 1996. doi: 10.1109/5.537116.

C. Cramer, E. Gelenbe, and P. Gelenbe. Image and video compression. *Potentials, IEEE*, 17(1):29–33, February/March 1998. ISSN 0278-6648. doi: 10.1109/45.652854.

C.E. Cramer and E. Gelenbe. Video Quality and Traffic QoS in Learning-based Subsampled and Receiver-interpolated Video Sequences. *Selected Areas in Communications, IEEE Journal on*, 18(2):150–167, 2000. ISSN 0733-8716. doi: 10.1109/49.824788.

G. Cybenko. Approximations by superpositions of sigmoidal functions. *Mathematics of Control, Signals, and Systems*, 2(4):303–314, 1989. doi: 10.1007/BF02551274.

Tien Van Do. An initiative for a classified bibliography on G-networks. *Performance Evaluation*, 68:385–394, 2011. doi: 10.1016/j.peva.2010.10.001.

H. Drucker and Y Le Cun. Improving Generalization Performance Using Double Backpropagation. *IEEE Transaction on Neural Networks*, 3(6):991–997, 1992. doi: 10.1109/72.165600.

M. Egmont-Petersen, D. de Ridder, and H. Handels. Image processing with neural networks - a review. *Pattern Recognition*, 35:2279–2301, 2002. ISSN 00313203. doi: 10.1016/S0031-3203(01)00178-9.
J. M. Fournier, L. Kloul, and D. Verchère. Multiple class G-networks with list-oriented deletions. *European Journal of Operational Research*, 126(2):250 – 272, 2000. ISSN 0377-2217. doi: 10.1016/S0377-2217(99)00477-4.

Jean-Michel Fournier and Dominique Verchère. G-networks with triggered batch state-dependent movement. In *MASCOTS ’95: Proceedings of the 3rd International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems*, pages 33–37, Washington, DC, USA, 1995. IEEE Computer Society. doi: 10.1109/mascot.1995.378713.

E. Gelenbe. Random Neural Networks with Negative and Positive Signals and Product Form Solution. *Neural Computation*, 1(4):502–510, 1989a. ISSN 0899-7667. doi: 10.1162/neco.1989.1.4.502.

E. Gelenbe. Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. *Comptes Rendus de l’Académie des Sciences* 309, Série II, 309:979–982, 1989b.

E. Gelenbe. Stability of the random neural network model. In *Proc. of Neural Computation Workshop*, pages 56–68, Berlin, West Germany, February 1990. ISBN 3540522557. doi: $10.1007/3-540-52255-7_27$.

E. Gelenbe. Product-Form Queueing Networks with Negative and Positive Customers. *Journal of Applied Probability*, 28(3):656–663, September 1991a. doi: 10.2307/321499.

E. Gelenbe. Une généralisation probabiliste du probleme SAT. *Comptes Rendus de l’Académie des Sciences* 309, Série II, 313:339–342, 1992.

E. Gelenbe. Learning in the Recurrent Random Neural Network. *Neural Computation*, 5 (1):154–164, 1993a. ISSN 0899-7667. doi: 10.1162/neco.1993.5.1.154.

E. Gelenbe. G-networks with signals and batch removal. *Probability in the Engineering and Informational Sciences*, 7:335–342, 1993b. doi: 10.1017/S0269964800002953.

E. Gelenbe. The Spiked Random Neural Network: Nonlinearity, Learning and Approximation. In *Proc. Fifth IEEE International Workshop on Cellular Neural Networks and Their Applications*, pages 14–19, London, England, April 1998. doi: 10.1109/CNNA.1998.685674.

E. Gelenbe and F. Batty. *Minimum cost graph covering with the random neural network*, pages 139–147. Pergamon, New York, 1992.

E. Gelenbe and J.M. Fournier. Random neural networks with multiple classes of signals. *Neural Computation*, 11(4):721–731, 1999. doi: 10.1162/089976699300016520.

E. Gelenbe and K.F. Hussain. Learning in the multiple class random neural network. *Neural Networks, IEEE Transactions on*, 13(6):1257–1267, Nov 2002. ISSN 1045-9227. doi: 10.1109/TNN.2002.804228.

E. Gelenbe, A. Stafylopatis, and A. Likas. *Associative Memory Operation of the Random Network Model*, volume 1, pages 307–312. Espoo, Finland, June 1991.
E. Gelenbe, V. Koubi, and F. Pekergin. Dynamical random neural network approach to the traveling salesman problem. In *Proc. IEEE Symp. Syst., Man, Cybern.*, pages 630–635, 1993. doi: 10.1109/icsmc.1993.384945.

E. Gelenbe, C. Cramer, M. Sungur, and P. Gelenbe. Traffic and Video Quality in Adaptive Neural Compression. *Multimedia Systems*, 4(6):357–369, 1996a. ISSN 0942-4962. doi: 10.1007/s005300050037.

E. Gelenbe, Y. Feng, K. Ranga, and R. Krishnan. Neural networks for volumetric magnetic resonance imaging of the brain. In *International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing (NICROSP’96)*, volume 0, pages 194–202, Venice, Italy, August 1996b. IEEE Computer Society. ISBN 0-8186-7456-3. doi: 10.1109/NICRSP.1996.542760.

E. Gelenbe, Yutao Feng, and K.R.R. Krishnan. Neural Network Methods for Volumetric Magnetic Resonance Imaging of the Human Brain. *Proceedings of the IEEE*, 84(10):1488–1496, 1996c. ISSN 0018-9219. doi: 10.1109/5.537113.

E. Gelenbe, Z. Mao, and Y. Li. Function Approximation with Spiked Random Networks. *IEEE Trans. on Neural Networks*, 10:3–9, 1999. doi: 10.1109/72.737488.

E. Gelenbe, K. Hussain, and H. M. Abdelbaki. Random neural network texture model. In *Conference on Applications of Artificial Neural Networks in Image Processing V*, volume 3962, pages 104–111, San Jose, CA, USA, January 2000. ISBN 0-8194-3580-5. doi: 10.1117/12.382903.

Erol Gelenbe. Distributed associative memory and the computation of membership functions. *Information Sciences*, 57-58(0):171–180, 1991b. ISSN 0020-0255. doi: 10.1016/0020-0255(91)90076-7. Information Sciences- Past, Present, and Future.

Erol Gelenbe. G-networks with triggered customer movement. *Journal of Applied Probability*, 30(3):742–748, 1993c. doi: 10.2307/3214781.

Erol Gelenbe. G-Networks: Multiple Classes of Positive Customers, Signals, and Product form Results. In *Lecture Notes in Computer Science. Performance Evaluation of Complex Systems: Techniques and Tools*, volume 2459, pages 129–141. Springer, 2002. doi: $\$10.1007/3-540-45798-4_18$.

Erol Gelenbe and George Loukas. A self-aware approach to denial of service defence. *Computer Networks*, 51(5):1299–1314, 2007. ISSN 1389-1286. doi: 10.1016/j.comnet.2006.09.009. From Intrusion Detection to Self-Protection.

Erol Gelenbe and Hadas Shachnai. On G-networks and resource allocation in multimedia systems. *European Journal of Operational Research*, 126(2):308–318, 2000. ISSN 0377-2217. doi: 10.1016/S0377-2217(99)00480-4.

Erol Gelenbe, Anoop Ghanwani, and Vijay Srinivasan. Improved Neural Heuristics for Multicast Routing. *IEEE Journal on Selected Areas in Communications*, 15(2):147–155, 1997. doi: 10.1109/49.552065.
Erol Gelenbe, Taskin Koçak, and Rong Wang. Wafer surface reconstruction from top-down scanning electron microscope images. *Microelectronic Engineering*, 75(2):216 – 233, 2004a. ISSN 0167-9317. doi: 10.1016/j.mee.2004.05.006.

Erol Gelenbe, Zhi-Hong Mao, and Yan-Da Li. Function Approximation by Random Neural Networks with a Bounded Number of Layers. *Journal of Differential Equations and Dynamical Systems*, 12(1-2):143–170, 2004b. doi: $10.1142/9781860948923_0005$.

Michael Georgiopoulos, Cong Li, and Taskin Koçak. Learning in the feed-forward random neural network: A critical review. *Performance Evaluation*, 68(4):361–384, 2011. ISSN 0166-5316. doi: 10.1016/j.peva.2010.07.006.

A. Ghanwani. Neural and delay based heuristics for the Steiner problem in networks. *European Journal of Operational Research*, 108:231 – 232, 1998. doi: 10.1016/s0377-2217(97)00369-x.

E. Gilbert. Capacity of a burst-loss channel. *Bell Systems Technical Journal*, 5(39), September 1960. doi: 10.1002/j.1538-7305.1960.tb03959.x.

M. T. Hagan and M. B Menhaj. Training feedforward networks with the Marquardt algorithm. *IEEE Transactions on Neural Networks*, 5(6):989–993, 1994. doi: 10.1109/72.329697.

D. Hands and M. Wilkins. A study of the impact of the network loss and burst size on video streaming quality and acceptability. *Interactive Distributed Multimedia Systems and Telecommunication Services Workshop*, October 1999.

Robert M. Haralick, K. Shanmugam, and H. Dinstein. Textural features for image classification. *Systems, Man and Cybernetics, IEEE Transactions on*, 3(6):610–621, November 1973. ISSN 0018-9472. doi: 10.1109/TSMC.1973.4309314.

T. Hastie, R. Tibshirani, and J. Friedman. *The elements of Statistical Learning*. Spring series in statistics. Springer-Verlag, New York, USA, 2001. ISBN 0387952845. doi: 10.1007/978-0-387-21666-5.

W. Henderson. Queueing networks with negative customers and negative queue lengths. *Journal of Applied Probability*, 30:931–942, 1993. doi: 10.2307/2314523.

W. Henderson, B.S. Northcote, and P. G. Taylor. State-dependent signalling in queueing networks. *Advances in Applied Probability*, 26:436–455, 1994a. doi: 10.2307/1427445.

W. Henderson, B.S. Northcote, and P. G. Taylor. Geometric equilibrium distributions for queues with interactive batch departures. *Annals of Operations Research*, 48:493–511, 1994b. doi: 10.1007/BF02033316.

Khaled F. Hussain and Ghada S. Moussa. Laser Intensity Vehicle Classification System Based on Random Neural Network. In *Proceedings of the 43rd Annual Southeast Regional Conference - Volume 1*, ACM-SE 43, pages 31–35, New York, NY, USA, 2005. ACM. ISBN 1-59593-059-0. doi: 10.1145/1167350.1167372.
R.J. Hyndman. Time Series Data Library. URL https://datamarket.com/data/list/?q=cat:ecd%20provider:tsdl.

David G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain. *The Annals of Mathematical Statistics*, 24(3):338–354, 1953. ISSN 00034851. doi: 10.1214/aoms/1177728975.

A. Likas and A. Stafylopatis. High capacity associative memory based on the random neural network model. *International Journal of Pattern Recognition and Artificial Intelligence*, 10(8):919–937, 1997. doi: 10.1142/S021801496000529.

A. Likas and A. Stafylopatis. Training the Random Neural Network using Quasi-Newton Methods. *Eur.J.Oper.Res.*, 126:331–339, 2000. doi: 10.1016/S0377-2217(99)00482-8.

Aristidis Likas and Andreas Stafylopatis. *An Investigation of the Analogy between the Random Network and the Hopfield Network*, pages 849–857. Antalya, Turkey, November 1991. URL http://www.cs.uoi.gr/~arly/papers/antalya.ps.gz.

P. Liu and E. Gelenbe. Recursive routing in the cognitive packet network. In *Proceedings of 3rd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom’07)*, pages 1–6, 2007. doi: 10.1109/tridentcom.2007.4444727.

Rong Lu and Yi Shen. Image Segmentation Based on Random Neural Network Model and Gabor Filters. In *27th Annual International Conference of the Engineering in Medicine and Biology Society*, 2005. IEEE-EMBS 2005., pages 6464 –6467, January 2005. doi: 10.1109/IEMBS.2005.1615979.

Mantas Lukoševičius and Hebert Jaeger. Reservoir computing approaches to recurrent neural network training. *Computer Science Review*, pages 127–149, 2009. doi: 10.1016/j.cosrev.2009.03.005.

Larry Manevitz and Malik Yousef. One-class document classification via neural networks. *Neurocomputing*, 70(7-9):1466–1481, March 2007. ISSN 0925-2312. doi: 10.1016/j.neucom.2006.05.013.

D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. *SIAM Journal on Applied Math*, pages 431–441, 1963. doi: 10.1137/0111030.

James Martens and Ilya Sutskever. Learning Recurrent Neural Networks with Hessian-Free Optimization, pages 1033–1040. ICML’11. ACM, New York, NY, USA, June 2011. ISBN 978-1-4503-0619-5.

G. Martinelli, F.M. Frattale Mascioli, M. Panella, and A. Rizzi. Extended random neural networks. In *Neural Nets*, Lectures Notes in Computer Science, pages 75–82, Berlin, Germany, 2002. Springer Berlin / Heidelberg. doi: $10.1007/3-540-45808-5_7$.

James Martens, Ilya Sutskever, and Kevin Swersky. *Estimating the Hessian by Backpropagation Curvature*, pages 1783–1790. ICML ’12. Omnipress, New York, NY, USA, July 2012. ISBN 978-1-4503-1285-1. URL http://icml.cc/2012/papers/866.pdf
W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics*, 5(4):115–133, 1943. doi: 10.1007/BF02478259.

M. L. Minsky and S. A. Papert. *Perceptrons*. MIT Press, Cambridge, MA, 1969.

S. Mohamed, G. Rubino, and M. Varela. *A method for quantitative evaluation of audio quality over packet networks and its comparison with existing techniques*. 2004a. URL http://goo.gl/SC2c0C.

Samir Mohamed, Gerardo Rubino, and M. Varela. Performance evaluation of real-time speech through a packet network: a random neural networks-based approach. *Performance Evaluation*, 57(2):141–161, 2004b. ISSN 0166-5316. doi: 10.1016/j.peva.2003.10.007.

T. Nakama. Theoretical Analysis of Batch and On-Line Training for Gradient Descent Learning in Neural Networks. *Neurocomputing*, 73:151–159, 2009. doi: 10.1016/j.neucom.2009.05.017.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. *On the difficulty of training recurrent neural networks*, volume 28, pages 37–48. Atlanta, Georgia, USA, 2013. URL http://jmlr.org/proceedings/papers/v28/pascanu13.pdf.

F. Pekergin. *Combinatorial optimization by random neural network model - application to the independent set problem*, volume 1, pages 437–440. North-Holland, Amsterdam, Brighton, United Kingdom, September 1992. URL http://www.gbv.de/dms/tib-ub-hannover/128443588.pdf.

William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. *Numerical Recipes in C*. Cambridge University Press, Cambridge, UK, 2 edition, 1992.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. *Numerical Recipes in C++: The Art of Scientific Computing*. Cambridge University Press, February 2002. ISBN 0521750334.

A. Rosenfeld and E.B. Troy. Visual texture analysis. Technical Report TR-70-116, Maryland Univ., College Park (USA). Computer Science Center, USA, June 1970. OSTI Identifier: OSTI ID: 6918260. Legacy ID: DE87008108. ORO-3662-10.

G. Rubino. Quantifying the Quality of Audio and Video Transmissions over the Internet: the PSQA Approach. In *Design and Operations of Communication Networks: A Review of Wired and Wireless Modelling and Management Challenges*, Edited by J. Barria. Imperial College Press, 2005.

G. Rubino and S. Mohamed. A study of real-time packet video quality using random neural networks. *IEEE Transactions On Circuits and Systems for Video Technology*, 12(12): 1071–1083, December 2002. ISSN 1051-8215. doi: 10.1109/TCSVT.2002.806808.

G. Rubino, P. Tirilly, and M. Varela. Evaluating users’ satisfaction in packet networks using Random Neural Networks. In *16th International Conference on Artificial Neural Networks (ICANN’06)*, Athens, Greece, September 2006. doi: $10.1007/11840817_32$.

42
D. Rumelhart, G. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition*, volume 1 of *Computational Models of Cognition and Perception*, chapter 8, pages 318–362. MIT Press, Cambridge, MA, 1986a.

D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for parallel distributed processing. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition*, volume 1 of *Computational Models of Cognition and Perception*, chapter 2, pages 45–76. MIT Press, Cambridge, MA, 1986b.

Georgia Sakellari. The Cognitive Packet Network. *Computer Journal*, 53(3):268–279, March 2010. ISSN 0010-4620. doi: 10.1093/comjnl/bxp053.

M. Schumacher, Reinhard Roßner, and Werner Vach. Neural Networks and Logistic Regression: Part i. *Computational Statistics & Data Analysis*, 21:661–682, June 1996. ISSN 0167-9473. doi: 10.1016/0167-9473(95)00032-1.

Holger Schwenk and Yoshua Bengio. Boosting Neural Networks. *Neural Comput.*, 12(8):1869–1887, August 2000. ISSN 0899-7667. doi: 10.1162/089976600300015178.

A. Stafylopatis and A. Likas. Pictorial Information Retrieval Using the Random Neural Network. *IEEE Transactions on Software Engineering*, 18(7):590–600, July 1992. doi: 10.1109/32.148477.

A. Teke and V. Atalay. Texture Classification and Retrieval Using the Random Neural Network Model. *Computational Management Science*, 3(3):193–205, July 2006. ISSN 1619-6988. doi: 10.1007/s10287-006-0012-1.

Stelios Timotheou. The Random Neural Network: A Survey. *The Computer Journal*, 53(3):251–267, 2010. doi: 10.1093/comjnl/bxp032.

A. Ukil. *Intelligent Systems & Signal Processing in Power Engineering*. Power systems. Springer, Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-73170-2.

D. R. Wilson and T. R. Martinez. The General Inefficiency of Batch Training for Gradient Descent Learning. *Neural Networks*, 16(10):1429–1451, 2003. ISSN 0893-6080. doi: 10.1016/S0893-6080(03)00138-2.

M. Yajnik, S. Moon, J. F. Kurose, and D. F. Towsley. Measurement and Modeling of the Temporal Dependence in Packet Loss. *Proceedings of IEEE INFOCOM’99*, pages 345–352, December 1993. doi: 10.1109/infcom.1999.749301.

Yong Jun Zhong, Don Chuan Sun, and Jian Jun Wu. Dynamical Random Neural Network Approach to a Problem of Optimal Resource Allocation. In Joan Cabestany, Alberto Prieto, and Francisco Sandoval, editors, *Computational Intelligence and Bioinspired Systems*, volume 3512 of *Lecture Notes in Computer Science*, pages 387–415. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-26208-4. doi: $10.1007/11494669_142$.

43