The MAP1B-LC1/UBE2L3 complex catalyzes degradation of cell surface CaV2.2 channels

María A Gandini1, Alejandro Sandoval2, Gerald W Zamponi3, and Ricardo Felix1,*

1Department of Cell Biology; Center for Research and Advanced Studies of the National Polytechnic Institute; Mexico City, Mexico; 2School of Medicine FES Iztacala; National Autonomous University of Mexico (UNAM); Tlalnepantla, Mexico; 3Department of Physiology and Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary, Canada

We reported recently a new mechanism by which the neuronal N-type Ca2+ (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.

Introduction

The voltage-gated Ca2+ channel family (CaV1-CaV3) plays important roles in the physiology of excitable cells. The CaV1 (L-type) and CaV2 (N-, P/Q- and R-type) channel subfamilies are heteromultimers formed by an ion-conducting α1 subunit plus auxiliary α2δ-, β- and γ-subunits. The N-type (CaV2.2) channels are present in both the central and peripheral nervous systems, and though they act as major Ca2+ entry pathways to support neurotransmitter release at synapses,1 the cellular and molecular mechanisms that control the functional expression of these channels are not well understood.

It is well-known that CaV2 channels interact with multiple binding partners that regulate gating properties and membrane localization. Likewise, recent studies have recognized ubiquitination/degradation as an important long-term mechanism by which channel expression can be regulated.4 In this context, we have recently published evidence that the light chain 1 (LC1) of the microtubule associated protein B (MAP1B) may be involved in CaV2.2 channel functional expression.5 This newly identified interaction involves a binding sequence in the N-terminal half of MAP1B-LC1 and binding domains within the C terminus of the CaV2.2α1 subunit. Furthermore, the CaV2.2α1/MAP1B-LC1 complex may interact with the E2 conjugase of the ubiquitin proteasome system UBE2L3, suggesting that MAP1B-LC1 may act as a scaffold protein to foster UBE2L3-mediated channel ubiquitination.

Here, we extend those results to show that the MAP1B-LC1-mediated regulation may involve an internalization of the CaV2.2 channels via a dynamin and clathrin-dependent pathway, and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 might be conserved among N-type and P/Q-type channels. Therefore, these data add further support to the idea that ubiquitination may play an important role in the regulation of CaV2 channel surface expression.

Keywords: Brefeldin A, Dynasore, LC1, MAP1B, N-type channels, trafficking, UBE2L3

Abbreviations: MAP1B-LC1, Microtubule-associated protein 1B light chain; UBE2L3, Ubiquitin-conjugating enzyme E2 L3; UPS, Ubiquitin proteasome system; HVA, high-voltage-activated; BFA, brefeldin A; DRG, dorsal root ganglion.

*Correspondence to: Ricardo Felix; Email: rfelix@cell.cinvestav.mx

Submitted: 05/30/2014
Revised: 07/16/2014
Accepted: 07/17/2014
http://dx.doi.org/10.4161/19336950.2014.949162

Addendum to: Gandini MA, Henríquez DR, Grimaldo L, Sandoval A, Alter C, Zamponi GW, Félix R, González-Billault C. CaV2.2 channel cell surface expression is regulated by the light chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pfugers Arch 2014; PMID24566975; http://link.springer.com/article/10.1007%2Fs00424-014-1476-4.
Results and Discussion

As mentioned earlier, we recently revealed that the surface density of neuronal CaV2.2 channels is regulated through their interaction with the MAP1B-LC1 protein, and that the ubiquitin-proteasome pathway plays a key role in this process. Likewise, previous studies have shown that alternative pre-mRNA splicing of a pair of 30 amino acid encoding exons in the C-terminus of the CaV2.2 α1 subunit, e37a and e37b, underlie the expression of 2 mutually exclusive N-type channel isoforms. These channels show different expression patterns and distinct sensitivity to G-protein-mediated inhibition. Therefore, we sought to determine whether selective association with MAP1B-LC1 might underlie functional differences between e37 splice isoforms of CaV2.2 channels. We thus performed co-immunoprecipitation assays using lysates from HEK-293 cells transiently expressing the CaV2.2e37a and CaV2.2e37b isoforms along with CaVβ3 and CaVα2δ-1 auxiliary subunits as well as the full-length MAP1B-LC1 protein. In these experiments both recombinant channel complexes co-immunoprecipitated with MAP1B-LC1 and also with the E2 enzyme of the UPS UBE2L3 (Fig. 1). It should be noted, however, that in these IP assays 2 bands can be observed close to the molecular weight of MAP1B-LC1. The upper band may correspond to the MAP1B-LC1 protein, while the lower band may be the result of an unspecific interaction, since it can be also seen in the lane corresponding to the irrelevant antibody (Fig. 1B, left panel).

In order to investigate how this interaction influences the final surface density of CaV2.2 channels, we next determined the relative contribution of membrane insertion or recycling on the MAP1B-LC1-mediated regulation of the channels. This was done by using the cell-permeant inhibitors of vesicle trafficking brefeldin A (BFA), and the dynamin inhibitor dynasore. HEK-293 cells transiently transfected with CaV2.2e37a/CaVβ3/CaVα2δ-1 channels in presence or absence of MAP1B-LC1 were pretreated for 6 h (48 h post-transfection) with the inhibitors and subjected to patch-clamp recording. Whole-cell Ba2+ currents through recombinant CaV2.2 channels showed that BFA had no apparent effect on the MAP1B-LC1-mediated inhibition of CaV2.2 channel functional expression, suggesting that the forward trafficking of the channels was not altered. In contrast, dynasore, a clathrin-mediated endocytosis blocker significantly prevented the effect of MAP1B-LC1 on CaV2.2 channel surface expression (Fig. 2B). Therefore, these results point to a dynamin-dependent endocytosis mechanism that underlies the MAP1B-LC1-mediated CaV2.2 channel regulation.

To determine whether this mechanism is also valid for recombinant P/Q-type (CaV2.1) channels, a series of experiments using specific antibodies were then performed to study whether MAP1B-LC1 and the ubiquitin E2 conjugase UBE2L3 could be immunoprecipitated in samples from transfected HEK-293 cells. As shown in Fig. 3A, immunoprecipitation with CaV2.1α1 antibodies resulted in a band between the size markers of 15 and 20 kDa for UBE2L3 (expected size 17 kDa) and of 36 kDa in the case of MAP1B-LC1. These data indicate that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 might be conserved among N-type and P/Q-type channels. Next, we sought to determine whether MAP1B-LC1 and UBE2L3 may also interact with, and possible modulate the expression of native P/Q-type CaV channels. Polyclonal anti-CaV2.1α1 antibodies were used to immunoprecipitate either UBE2L3 or MAP1B-LC1 proteins in extracts from rat brain. Probing the immunoprecipitates for the presence of both proteins revealed immunoreactive bands (Fig. 3B). In contrast, UBE2L3 immunoreactivity was not detected in the irrelevant control (IgG0) was a rabbit anti-Pet antibody.
immunoprecipitates using anti-CaV3α1 LVA channel subunit or GFP antibodies, both in native and heterologously expressed channels (Figs. 3C and D), indicating the HVA channel selective nature of the observed MAP1B-LC1/UBE2L3 co-association.

Finally, to further support the model of the important role of MAP1B-LC1 and UBE2L3 in CaV2 channel ubiquitination, we next tested whether knockdown of these proteins were capable of modifying Ca²⁺ currents in neonatal mouse dorsal root ganglion (DRG) sensory neurons, where N-type (CaV2.2) channels are prominently expressed. We measured whole-cell currents 48 h after transfection of specific siRNAs targeting MAP1B-LC1 or UBE2L3. For these experiments fluorescently labeled siRNAs were used to identify the transfected cells. The results showed that current amplitude from DRG neurons with expression of the scramble siRNA was not different from non-transfected cells, indicating that the transfection procedure did not affect channel activity (not shown). In contrast, current density after MAP1B-LC1- or UBE2L3-targeted knockdown in neurons was significantly different from that in control neurons transfected with scrambled siRNA (Figs. 4A and B). These findings suggest that UBE2L3 interacts with HVA channels to regulate their density at the plasma membrane. Moreover, they reinforce the idea that the effect of UBE2L3 requires the presence of the MAP1B-LC1 protein.

In summary, our findings suggest that CaV2.2 and possibly other CaV2 channels are potential targets of the ubiquitin-proteasome system (UPS), and suggest a model according to which these channels form a molecular complex with the MAP1B-LC1 protein (Fig. 5). Through this complex, CaV2 channels bind to the ubiquitin conjugase UBE2L3 favoring channel degradation in the proteasome. In this context, it is conceivable that MAP1B-LC1 may function as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. It is interesting to note that the density of CaV2 channels was not affected by MAP1B-LC1 upon blocking the endocytic machinery. This may suggest that the MAP1B-LC1/UBE2L3 complex mediates decrease in plasma membrane density of the channels occurs via a dynamin-mediated pathway. Finally, given that CaV2 channels are expressed throughout the nervous system, our results suggest that they might be under tonic control by the UPS in most neurons. This is of particular physiological relevance since it has been shown that the inhibition of the UPS may lead to increases in synaptic efficacy and neurotransmission.

Materials and Methods

Cell culture and cDNA clone transfection

HEK-293 cells (ATCC) were grown in DMEM-high glucose medium supplemented with 10% horse serum, 2 mM L-glutamine, 110 mg/L sodium pyruvate, 100 U/L penicillin, and 100 μg/L streptomycin. Cell culture was maintained at 37°C in 5% CO₂, 95% air humidified atmosphere. Cells were transfected using Lipofectamine Plus reagent (Invitrogen) as previously described. HEK-293 cells were seeded onto 35 or 60 mm dishes and transfected using 2 or 4 μg respectively, of each plasmid cDNA encoding N-type channel pore-forming subunit CaV2.2α₁ (37a or 37b splicing isoforms), CaV2.1α₁, CaVβ₃b, CaVα₂δ₁, CaV3.1α₁-YFP, CaV3.2α₁-GFP or MAP1B-LC1. Transfected cells were identified by adding a plasmid cDNA encoding the green fluorescent protein to the transfection mixture.
Protein extraction

Cells were detached from culture dishes, washed with phosphate-buffered saline (PBS; pH 7.4), and lysed in single-detergent lysis buffer (50 mM Tris-Cl, 150 mM NaCl, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), and Complete 1×; Roche Applied Science). Rat brain proteins were lysed in RIPA buffer (25 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.5 mM PMSF and Complete 1×). Protein concentration was determined using the bicinchoninic acid assay.

Co-immunoprecipitation and Western blot

Co-immunoprecipitation assays were performed using rat brain proteins or lysates from transfected HEK-293 cells. One mg of proteins was incubated with 3 μg of specific antibodies CaV2.1α1 and CaV2.2α1 (KP Campbell, U of Iowa, USA), GFP (Aves lab, GFP-1020), CaV3.1α1 (Alomone, ACC-021), CaV3.2α1 (Millipore, AB9826), HA (Aveslab, ET-HA100), HA (Millipore, 32–6700), Pet (F. Navarro, Cinvestav, Mexico) and with 20 μl of recombinant Protein G (rProtein G) Agarose (Invitrogen) at 4°C overnight. The immunoprecipitated proteins were recovered by centrifugation (5 min at 13,000 rpm) and washed 3 times with wash buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS 0.5 mM PMSF) and 2 times with PBS. Samples were eluted into 30 μl of protein loading buffer. Fifty μg of protein samples were used as inputs. Proteins were resolved in 16% SDS-polyacrylamide gels and transferred to nitrocellulose membranes. After blocking with 5% nonfat dry milk in Tris-buffered saline Tween 20 (TBST; 100 mM Tris-Cl, 0.9% w/v NaCl, 0.2% Tween 20, pH 7.5), membranes were

Figure 3. The protein complex UBE2L3-MAP1B-LC1-CaV2.1α1 is conserved between HVA channels, but not with LVA calcium channels. Proteins from HEK-293 cells co-transfected with LC1-myc and P/Q-type channels (CaV2.1α1/CaV3.1α1/CaV3.2α1) were immunoprecipitated with the anti-CaV2.1α1 or control antibodies and the bound protein was analyzed by Western blot using an antibody against UBE2L3 and LC1 (A). Positive interactions are observed in both cases (n = 3). The irrelevant control (IgG0) was a rabbit anti-Pet antibody. Likewise, proteins from adult rat brain lysates were immunoprecipitated with the anti-CaV2.1α1 (B), or anti-CaV3.1α1 and anti-CaV3.2α1 (C and D) or control antibodies and the bound protein was analyzed by Western blot using antibodies against UBE2L3 or LC1 (n = 2–4). Note that CaV3 channels do not interact with UBE2L3. The irrelevant controls (IgG0) were rabbit anti-Pet, chicken anti-HA, and mouse anti-HA antibodies, respectively.
Figure 4. Knockdown of endogenous MAP1B-LC1 or UBE2L3 alters CaV2.2 channel functional expression. The graphs compare the average current densities (pA/pF) as a function of voltage in DRG neurons transfected with a siRNA scramble or specific siRNAs targeting MAP1B-LC1 (A) or UBE2L3 (B); n = 13 and 15 recorded cells, respectively.

Figure 5. Model for MAP1B-LC1/UBE2L3-mediated CaV2 channel regulation. MAP1B-LC1 is known to bind to the C-terminal of the CaV2.2 and possibly the CaV2.1 α1 pore-forming subunits and can interact directly with UBE2L3, which leads to channel poly-ubiquitination. After ubiquitination the CaV2 channel complexes are internalized and degraded in the proteasome consequently leading to a reduction of functional channels at the cell membrane. Alternatively, previous studies have shown that the ubiquitin ligase RFP2 may promote the L-type CaV channel poly-ubiquitination leading to association with derlin and protein p97 important elements of the endoplasmic reticulum-associated protein degradation (ERAD) complex. Poly-ubiquitinated channels are then subjected to proteasomal degradation. In this model, the CaVβ auxiliary subunit prevents RPF2 association and channels are consequently trafficked to the plasma membrane.15
incubated overnight with primary antibodies MAP1B (Santa Cruz, ET-HA100) or UBE2L3 (Abcam, ab37913) in TBST. Membranes were then washed and incubated with horseradish peroxidase-conjugated secondary antibodies diluted in TBST with 5% nonfat dry milk and developed with Millipore Immobilon Western Chemiluminescent HRP Substrate (ECL).

Electrophysiology

DRG cells were isolated from 5- to 7-day-old BALB/c mice. Dissociated neurons were maintained in neurobasal medium supplemented with B27 (1X), N2 (1X), Glutamax (1X), antibiotic-antimycotic (1X) and sodium pyruvate (110 mg/L). Cells were plated on poly-L-lysine (0.05%)-precoated glass coverslips (110 mg/L). Cells were plated on poly-L-lysine (0.05%)-precoated glass coverslips and kept in neurobasal medium supplemented with B27 (1X), Glutamax (1X), antibiotic-antimycotic (1X), and 10% FCS. Neurons were transfected using Lipofectamine 2000 (Invitrogen) with 0.5 μg of each labeled siRNA. Neurons transfected with universal negative control #1 siRNA (Sigma) were used as control.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors want to thank to A.S. Gandini for art work; Dr. D. Limpscombe for the generous gift of the CaV2.2a, CaV2.2b, CaV2.2c, CaV2.2d, CaV3.2a, and CaV3.2b cDNA clones, and Drs. M. De Waard, J.H. Lee and C. Gonzalez-Billault for providing the CaV2.1 channel. This work was supported by grants of high-voltage-activated Ca2+ channel cell surface expression is regulated by the lipid chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pfugler Arch 2014; in press; PMID:21826607; http://dx.doi.org/10.1016/j.pflugersarch.2013.06.008

5. Gandini MA, Henriquez DR, Grimaldo I, Sandoval A, Altier C, Zamponi GW, Felix R, González-Billault C. CaV2.2 channel cell surface expression is regulated by the lipid chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pfugler Arch 2014; in press; PMID:21826607; http://dx.doi.org/10.1016/j.pflugersarch.2013.06.008

6. Lin Z, Haus S, Edgeton J, Lipscombe D. Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 1997; 18:153-66; PMID:9010223; http://dx.doi.org/10.1016/S0896-6273(00)80054-4

7. Castiglioni AJ, Raingo J, Lipscombe D. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 2006, 576:119-34; PMID:16857708; http://dx.doi.org/10.1113/jphysiol.2006.115030

8. Marangoudakis S, Andrade A, Helton TD, Denome S, Castiglioni AJ, Lipscombe D. Differential ubiquitination and proteasome regulation of CaV2.2 N-type channel splice isoforms. J Neurosci 2012, 32:10865-9; PMID:22836269; http://dx.doi.org/10.1523/JNEUROSCI.0851-11.2012

9. Nebenführ A, Rintzchnerhaler C, Robinson DG, Brefeldin a: decapering an enigmatic inhibitor of secretion. Plant Physiol 2002; 130:1102-8; PMID:12427977; http://dx.doi.org/10.1104/pp.011569

10. Macia E, Ehrlich M, Masol R, Boucroft E, Brunner C, Kirchhausen T, Dynaroie, a cell-permeable inhibitor of dynamin. Dev Cell 2006; 10:839-50; PMID:16764685; http://dx.doi.org/10.1016/j.devcel.2006.04.002

11. Rola R, Szalickyz PJ, Wıtkowski G. Voltage-dependent Ca2+ currents in rat cardiac dorsal root ganglion neurons. Brain Res 2003; 961:171-8; PMID:12535791; http://dx.doi.org/10.1016/S0006-8993(01)80350-4

12. Gandini MA, Sandoval A, Felix R. Whole-cell patch-clamp recordings of Ca2+ currents from isolated neonatal mouse dorsal root ganglion (DRG) neurons. Cold Spring Harb Protoc 2014, 2014:389-95; PMID:24609248; http://dx.doi.org/10.1101/pdb.prot073205

13. Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 2008; 9:826-38; PMID:18931656; http://dx.doi.org/10.1038/nrn2499

14. Gandini MA, Sandoval A, Felix R. Patch-clamp recording of voltage-sensitive Ca2+ channels. Cold Spring Harb Protoc 2014; 2014:329-S; PMID:24609248; http://dx.doi.org/10.1101/pdb.top066092

15. Alnér C, García-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW. The Cav β subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 2011; 14:173-80; PMID:21186355; http://dx.doi.org/10.1038/nn. 2712

References

1. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011; 3:a003947; PMID:21746798; http://dx.doi.org/10.1101/cshperspect.a003947

2. Felix R, Calderón-Rivera A, Andrade A. Regulation of high-voltage-activated Ca2+ channel function, trafficking, and membrane stability by auxiliary subunits. WIREs Membr Transp Signal 2013; 2:207-20; PMID:2499251; http://dx.doi.org/10.1002/wmt2.93

3. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45; PMID:24698266; http://dx.doi.org/10.1016/j.neuron.2014.03.016

4. Lipscombe D, Allen SE, Toro CP. Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends Neurosci 2013; 36:598-609; PMID:23907011; http://dx.doi.org/10.1016/j.tins.2013.06.008

5. Gandini MA, Henriquez DR, Grimaldo I, Sandoval A, Altier C, Zamponi GW, Felix R, González-Billault C. CaV2.2 channel cell surface expression is regulated by the lipid chain 1 (LC1) of the microtubule-associated protein B (MAP1B) via UBE2L3-mediated ubiquitination and degradation. Pfugler Arch 2014; in press; PMID:21826607; http://dx.doi.org/10.1016/j.pflugersarch.2013.06.008