A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with Ru^{II} complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode–electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within ~ 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode–electrolyte interface upon sensitization of the PPV with the Ru^{II} complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.

Artificial photosynthesis is a promising pathway for solar-fuel production^{1–5}. One way of realizing an artificial photosynthetic system is to graft redox-active photosensitizers and catalysts to semiconductor electrodes to give dye-sensitized photoelectrochemical cells^{3–6}. Ru^{II} poly-pyridyl complexes are widely used as chromophores for dye-sensitized electrodes. They exhibit high absorptivity in the visible region and redox properties that are easily tuned by ligand modification^{1–16}. In the case of Ru^{II} polypyridyl complex-sensitized photocathodes for hydrogen generation, the semiconductor electrodes play the role of electron donor while the chromophores act as light harvesting and charge-separating units^{7–12}. While metal oxide-based semiconducting electrodes such as NiO have attracted widespread interest¹³, the tuning of their physicochemical properties by chemical modification is difficult. Recently, hole conducting organic polymers have been put forward as viable alternatives for metal oxide semiconductors. This materials class has already received enormous interest as semiconducting organic components in organic photovoltaics (OPVs)^{14–16}. A few pioneering studies have introduced such polymer-chromophore

1Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) Jena e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany. 2Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany. 3Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Jl. Arief Rahman Hakim, Surabaya 60111, Indonesia. 4Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany. 5Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France. 6Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany. 7Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany. *email: benjamin.dietzek@leibniz-ipht.de
systems as light harvesters in artificial photosynthesis and have investigated their energy transfer properties in proof-of-principle studies17,18.

For photoinduced proton reduction Suzuki et al.17–20 developed water-insoluble polymer-photosensitizer films, in which the RuII polypyridyl complexes were coordinated to imidazolyl residues on a partially quarternized poly(1-vinylimidazole) backbone. Schanze and co-workers21–23 reported on polystyrenes containing [Ru(bpy)\textsubscript{3}]2+ (bpy = 2,2′-bipyridine) as covalently attached pendant chromophores and [Ru(tpy)(phenq)]2+ (tpy = 2,2′;6,2″-terpyridine, phenq = 2-(quinol-8′-yl)-1,10-phenanthroline) as catalytic centers for photocatalytic water oxidation24,25. However, these studies did not exploit the electronic properties of the polymer as it acted merely as a support; charge transfer from the chromophores to a sacrificial donor and a metal oxide semiconductor anode material was required for photocatalytic proton reduction17–20 and water oxidation23, respectively. Furthermore, covalent integration of metal complexes in poly(p-phenylenevinylene) (PPV) derivatives has been established and the applicability of the resulting materials, e.g., in solar fuel conversion has been indicated26–28: Yu and co-workers developed PPV functionalized with polypyridyl-based RuII complexes by direct integration of the Ru-bound bipyridyl units into the π-conjugated main chain of the PPV26–28.

Inspired by Schanze's report on transition metal complexes integrated into polystyrene21–23, we propose the π-conjugated PPV as an appealing alternative hole-transport matrix for metal-oxide free photocathodes for light-driven water splitting. Using polymers such as PPV as both a structural support and charge transport matrix utilizes the full capability of these materials. Functionalized PPV derivatives, particularly poly[2-methoxy-5-(2′-ethyl-hexoxy)-1,4-phenylenevinylene] (MEH-PPV), are frequently used in polymer solar cells14–16,29,30. Importantly, their HOMO level (ca. 4.8–4.9 eV)31,32 is comparable to the valence band of p-type NiO (ca. 5.0–5.1 eV)33,34. Therefore, “molecularly sensitized PPV” could replace semiconductor electrodes in photoelectrochemical cells if the charge-transfer dynamics of the system are suitable for coupling with catalytic hydrogen evolution processes.

Herein, we report first steps towards all-polymer photocathodes for artificial photosynthesis by facile covalent attachment of Ru complexes as side-chains in PPV polymers via CLICK chemistry. The analysis of the charge transfer dynamics of these complexes reveals their suitability for visible light harvesting, charge separation and hole injection into the PPV.

Results and discussion

Synthesis of PPV-Ru. We have developed a synthetic route towards two prototype systems, PPV-Ru\textsubscript{1} and PPV-Ru\textsubscript{2}, where RuII-polypyridyl complexes were linked covalently to the PPV backbone by CLICK chemistry (the details of the synthesis and preparation of PPV-Ru\textsubscript{1} and PPV-Ru\textsubscript{2} can be found in the Supplementary Information). As shown in Fig. 1, the RuII-polypyridyl complexes contain either ethyl ester (Ru\textsubscript{1}) or tertiary butyl (Ru\textsubscript{2}) substituents on their bipyridine ligands35. The photosensitizers were chosen to explore the effect of ligand substitution on the charge injection and recombination dynamics. In order to avoid the mutual interaction of two photoexcited Ru-complexes, the PPV-Ru systems investigated contained low loadings of RuII complexes. The PPV-Ru systems contained 7.6% of either Ru\textsubscript{1} or Ru\textsubscript{2} related to the overall polymer backbone.
phenyl units. This loading corresponds to approximately one Ru-chromophore per chromophoric unit as the effective conjugation length of PPV is approximately 10 monomer units.

Absorption and emission properties. UV/vis absorption and emission spectra yield first insights into the electronic structure of PPV-Ru (see Fig. 2a–c, and for summary see Table 1). The emission decay was measured using time-correlated single photon counting. The initial fast decay (<1 ns) arises from the instrumental response function. (f) Cyclic voltammogram of 0.25 mM Ru1 and Ru2 in acetonitrile using 0.1 M TBABF4 as supporting electrolyte.

Table 1. Photophysical and electrochemical properties of PPV, Ru1 and Ru2. In nm. UV/vis absorption and emission measurements were measured in CHCl3. In V vs. Fc+/Fc. Cyclic voltammetry was carried out at a scan rate of 100 mV·s−1 and of 0.5 mM complex solutions in acetonitrile containing TBABF4 as supporting electrolyte. Quantum yield (ΦPL) of PPV was determined using Fluorescein (0.1 M NaOH, ΦPL = 0.95) as reference, while the quantum yields of Ru1 and Ru2 were determined using [Ru(bpy)3]2+ (in acetonitrile, ΦPL = 0.03) as reference. E0–0 (in V) is calculated from the crossing point of normalized absorption and emission spectra. E0–0 (in eV). If only respective RuII complex is excited: ΔGinj,e = e[E(RuII/−) − E(PPVII/−)]; if only PPV is excited: ΔGinj,e = e[E(RuII+/0) − E(PPVII/−)]; and if both PPV and Ru are excited: ΔGinj,e = e[E(RuII/−) − E(PPVII/−)]. E0–0 (in eV). If only Ru is excited: ΔGinj,h = e[E(PPVII/−) − E(RuII+/0)]; and if both PPV and Ru are excited: ΔGinj,h = e[E(PPVII/−) − E(RuII+/0)].

Structure	λabs (nm)	λem (nm)	ΦPL(a)	τem(b)	E0–0(c)	Eox	Ered1	Ered2	Ered3	ΔGinj,e(d)	ΔGinj,h(e)
PPV	485	553, 587	0.43	< 1	2.30	+ 0.73	− 1.67	−	−	−	−
Ru1	438, 476	646	0.06	150	2.17	+ 1.10	− 1.33	− 1.50	− 1.79	0.60, 0.47, − 1.70	− 0.11, − 0.24, − 2.41
Ru2	430, 458	627	0.02	139	2.24	+ 0.82	− 1.65	− 1.96	− 2.2	0.25, 0.19, 2.26	0.14, 0.08, − 2.16
PPV shows an intense $\pi-\pi^*$ band at 485 nm. The $S_1 \rightarrow S_0$ emission reveals a Stokes shift of 311 meV31-34 and exhibits vibronic peaks at 552 and 586 nm39-42. The emission quantum yield and lifetime were determined to be 0.43 ns and less than 1 ns, respectively. These values are in good agreement with previous literature reports43. The quantum yield is in good agreement with literature values for emission quantum yields in PPV and related systems, which fall in the range between 0.40 and 0.8039-42. The short emission lifetime is consistent with observations on, e.g., MEH-PPV and dialkoxysubstituted oligo(phenylenevinylene)43.

The UV/vis absorption spectra of Ru1 and Ru2 exhibit the characteristic features of RuII \textsubscript{3} chromophores9,14,15,44. The intense absorption around 290 nm stems from ligand centered $\pi-\pi^*$ transitions localized on the bipyridine (bpy) fragments. In the visible range, Ru1 shows absorption peaks at 430 and 475 nm due to the absorption of metal-to-ligand charge transfer (MLCT) states. Replacing the electron-withdrawing ethyl ester (–COOEt) by electron donating tert-butyl groups blue-shifts the MLCT absorption by 100 meV (18 nm). This electronic effect of the substituent is also reflected in the more negative reduction potential of Ru2 compared with Ru1 (see electrochemical data below). Both photosensitizers show a weak emission with quantum yields of 0.06 (Ru1) and 0.02 (Ru2), which is in good agreement with the quantum yield of 0.04 observed for Ru(bpy)\textsubscript{3}(5-CC-phen)\textsubscript{2}(PF\textsubscript{6})\textsubscript{44}.

The lifetime emission of both complexes exceeds 100 ns and is much longer than the emission lifetime of pristine PPV (see Table 1). Upon “sensitization” of PPV with the complexes, the UV/vis absorption and emission spectra remain similar to those of the PPV backbone, as the comparably weak MLCT absorption band of Ru1 and Ru2 overlaps with the intense $\pi-\pi^*$ transition of PPV. The long-lived emission component of the photosensitizer (see Fig. 2d,e) is neither observed for PPV-Ru1 nor PPV-Ru2, which might indicate quenching of the photosensitizers’ long-lived emission. Literature on semiconductor-based dye-sensitized photocathodes generally associates such quenching of photosensitizer luminescence with hole transfer45. Thus, the apparent absence of any long-lived emission in the sensitized PPV polymers is an indication for charge separation within the polymer.

Electrochemical characterization. Electrochemical reduction/oxidation of the components allows for an estimation of the driving force for different charge-transfer pathways in PPV-Ru (Fig. 2f). Due to the overlapping absorption spectra of PPV and the complexes, it is necessary to consider three possible scenarios: (i) excitation of only the Ru complexes, (ii) excitation of only the PPV backbone, and (iii) simultaneous excitation of a chromophoric unit of the PPV and a close-by photosensitizer. The estimation of the resultant driving forces for charge injection from the Ru sensitizer into the PPV based on the Gibb’s free energies (ΔG) are summarized in Table 1. The Gibbs free energy for electron injection in scenarios (i) and (ii) is positive for both polymers, $\Delta G_{\text{inj,e}}>0$. For PPV-Ru1 the Gibbs free energy for hole injection $\Delta G_{\text{inj,h}}$ is negative (albeit small in magnitude), indicating that hole injection is thermodynamically possible. However, $\Delta G_{\text{inj,h}}>0$ in PPV-Ru2. Nonetheless, considering the broad oxidation peak of PPV (Supplementary Fig. S5a), a slight negative driving force is within the expected error of the calculation, and hence, the estimated $\Delta G_{\text{inj,h}}$ for PPV-Ru2, which is close to zero, does not rule out the possibility that hole injection occurs with very little driving force. Furthermore, cathodic photocurrents for both PPV-Ru1 and PPV-Ru2 were observed in the photoelectrochemical experiments which indicates that hole injection does occur in both materials (vide infra). For scenario (iii), simultaneous excitation of RuII complexes and PPV, both hole and electron injection are exergonic with high injection driving forces compared to the aforementioned scenarios. Nonetheless, scenario (iii) is rather unlikely as the photon fluxes used in the presented experiments, i.e. 3.0×10^{15} photons cm$^{-2}$ pulse$^{-1}$, are only moderate. Therefore, analysis of the experimental data will consider only scenarios (i) and (ii).

Transient absorption studies of PPV-Ru in solution. The light-induced charge transfer dynamics of PPV-Ru\textsubscript{1} dissolved in CHCl\textsubscript{3} were investigated by transient absorption spectroscopy upon excitation at 480 nm. First, transient absorption data were recorded for each individual component, PPV and each of the photosensitizers, (and this is further discussed in the Supplementary Information, see Supplementary Figs. S11–S15). Briefly, the transient absorption spectra of PPV measured in CHCl\textsubscript{3} show an initial ground-state bleach (GSB), stimulated emission (SE) at 530 nm (peak) as well as 565 nm (shoulder), and an excited-state absorption (ESA) band beyond 600 nm (Fig. 3a). Quantitative analysis of the data was performed by globally fitting the data to a three-exponential decay (Table 2). This approach yields the characteristic time constants $\tau_1 = 3.8$ ps, $\tau_2 = 72$ ps, and $\tau_3 = 673$ ps. The corresponding decay-associated spectra are shown in Supplementary Fig. S11c. The pump-probe data of PPV is consistent with literature reports26-28,36,37. The early relaxation originates from a strong coupling between electronic and vibrational states. Hence, the fast kinetic processes are attributed to delocalized exciton states (self-trapping, ~100 fs) and vibrational cooling (few ps)39. Subsequently, the excited state dynamics is dominated by either interchain or intrachain energy transfer on a characteristic timescale of tens of ps50,51. This electronic energy transfer occurs prior to emission which generally stems from localized low-energy sites52,53.

The transient absorption spectra of both Ru1 (Fig. 3b) and Ru2 (Supplementary Fig. S13) exhibit a broad and rather unstructured ESA beyond 515 nm due to ligand- to-metal charge transfer transitions and a GSB centered at around 450 nm. The ESA band at 370 nm is assigned to the $\pi^* \rightarrow \pi^*$ transition at the bpy$^-$ fragment44,46,47. The minor transient absorption signal decay within the experimentally accessible time window of 1.8 ns reveals the presence of a long-lived MLCT state typical for Ru tris-diimine complexes8,44. Quantitative analysis by global fitting with two-exponential decay functions and an infinite component (reflecting the presence of the long-lived state, see Table 2) results in characteristic time constants ($\tau_1 = 0.2$ ps, $\tau_2 = 8$ ps for Ru1, and $\tau_1 = 0.2$ ps, $\tau_2 = 78$ ps for Ru2). The corresponding decay-associated spectra are shown in Supplementary Figs. S12 and S13. The pump-probe data of the photosensitizers is consistent with literature reports on similar Ru$^\text{III}$ complexes55,56,57. The fast process (τ_1) reflects contributions from intersystem crossing (ISC, MLCT\rightarrow3MLCT) and intramolecular...
vibrational redistribution. The second process (τ_2) corresponds to thermal relaxation within the 'MLCT manifold and leads to the population of the thermally equilibrated 'MLCT state.

Having summarized the photoinduced kinetics recorded for the individual molecular fragments, we turn our discussion to the combined system PPV-Ru. The transient absorption spectra of PPV-Ru1 (Fig. 3c) and PPV-Ru2 (Supplementary Fig. S15) are dominated by the spectral signature of PPV since the loading of the polymer with either of the photosensitizers is comparably low. Nonetheless, slight differences in the transient absorption spectra of PPV-Ru are observed compared to the reference PPV data; In particular the spectral shape at the red flank of the negative differential absorption band differs slightly due to spectral overlap of GSB contribution from PPV and contributions from photosensitizer-associated excited-state absorption. The zero-crossing ($\Delta OD = 0$) of PPV-Ru thus shifts to a shorter wavelength at early delay time ($\Delta t = 0.5$ ps) compared with PPV, i.e., from 631 to 623 nm for PPV-Ru1.

![Figure 3](image-url)

Figure 3. Fs-transient absorption spectra of (a) PPV, (b) Ru1 and (c) PPV-Ru1 at different delay times measured in CHCl3 solution with an excitation wavelength of 480 nm. The shaded areas at 360, 500 and 670 nm indicate the different spectral signatures among PPV, Ru1, and PPV-Ru1. The insets in figures (a) and (c) show the zero-crossing ($\Delta OD = 0$) at 0.5 ps for PPV and PPV-Ru1, respectively. TBABF4 as supporting electrolyte.

Structure	τ_1/ps	τ_2/ps	τ_3/ps
PPV	3.8	72	673
Ru1	0.2	8	Infinite
Ru2	0.2	78	Infinite

Table 2. Characteristic time constants (τ) of PPV, Ru1 and Ru2 extracted from global fit with a sum of exponential functions of TA spectra measured in solution.
The background contribution from PPV in the transient absorption spectra of the PPV-Ru systems makes the light-induced charge transfer processes difficult to analyze. To overcome this, the data obtained for PPV was subtracted from the transient absorption signal of PPV-Ru. Prior to subtraction the data is normalized to its early time (Δt = 0.5 ps) signal amplitude at 515 nm. At this probe wavelength there is no contribution of the transient absorption signal from the respective RuII complex (see Fig. 3b). The subtracted, i.e. differential transient absorption spectra (ΔΔOD = ΔOD[PPV-Ru] − ΔOD[PPV]), are determined as follows:

\[\Delta \Delta OD(\Delta t, \lambda) = \frac{\Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV-Ru]} - \Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV]}}{\Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV]}}. \]

From the ΔΔOD signal the excited state interactions between the photosensitizer and the PPV in the photoexcited PPV-Ru system can be deduced (see Fig. 4) irrespective of whether the initial excitation occurs on the PPV backbone, or in the pendant photosensitizer. The ΔOD spectra recorded as a function of Δt were globally analysed using a tri-exponential fit. The decay-associated spectra (DAS) generated from the fit are shown in Fig. 4e,f. In contrast to the dynamics of Ru1 and Ru2 in solution, the ΔOD exhibits a rapid quenching of the negative signal contribution associated with GSB at 450 nm, which occurs jointly with a decay of the positive ΔΔOD at 560 and 700 nm. However, from 10 ps up to 100 ps, the ΔΔOD signal at 550 nm increases again, while it continues to decrease in other spectral regions. This increase of ΔΔOD(550 nm) on a sub-100 ps timescale is followed by a slow decay of the overall signal.

The background contribution from PPV in the transient absorption spectra of the PPV-Ru systems makes the light-induced charge transfer processes difficult to analyze. To overcome this, the data obtained for PPV was subtracted from the transient absorption signal of PPV-Ru. Prior to subtraction the data is normalized to its early time (Δt = 0.5 ps) signal amplitude at 515 nm. At this probe wavelength there is no contribution of the transient absorption signal from the respective RuII complex (see Fig. 3b). The subtracted, i.e. differential transient absorption spectra (ΔΔOD = ΔOD[PPV-Ru] − ΔOD[PPV]), are determined as follows:

\[\Delta \Delta OD(\Delta t, \lambda) = \frac{\Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV-Ru]} - \Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV]}}{\Delta OD(\Delta t = 0.5 \text{ ps}, \lambda = 515 \text{ nm})_{[PPV]}}. \]

From the ΔΔOD signal the excited state interactions between the photosensitizer and the PPV in the photoexcited PPV-Ru system can be deduced (see Fig. 4) irrespective of whether the initial excitation occurs on the PPV backbone, or in the pendant photosensitizer. The ΔOD spectra recorded as a function of Δt were globally analysed using a tri-exponential fit. The decay-associated spectra (DAS) generated from the fit are shown in Fig. 4e,f. In contrast to the dynamics of Ru1 and Ru2 in solution, the ΔOD exhibits a rapid quenching of the negative signal contribution associated with GSB at 450 nm, which occurs jointly with a decay of the positive ΔΔOD at 560 and 700 nm. However, from 10 ps up to 100 ps, the ΔΔOD signal at 550 nm increases again, while it continues to decrease in other spectral regions. This increase of ΔΔOD(550 nm) on a sub-100 ps timescale is followed by a slow decay of the overall signal.
The first kinetic process characterized by τ_1, 3.3 ± 1.2 ps, for PPV-Ru1 and 4.0 ± 1.3 ps for PPV-Ru2, is assigned to energy dissipation following photoexcitation. The second process is characterized by a decay of the negative $\Delta\Delta\text{OD}$ at around 450 nm and the built-up of positive $\Delta\Delta\text{OD}$ observed at 550 nm, which is reflected in the kinetic traces in Fig. 4c,d. This signal rise at 550 nm appears more prominent for Ru1, but is also observed for Ru2, and is accompanied by a decay of the positive $\Delta\Delta\text{OD}$ at wavelengths longer than 610 nm. The positive $\Delta\Delta\text{OD}$ signal, which builds up with τ_2, correlates well with the spectral change upon electrochemical reduction of either Ru1 or Ru2 (grey spectra in Fig. 4e,f). Thus, we conclude that τ_2 is the characteristic time constant for formation of the bpy radical anion (bpy$^-$), i.e. τ_2 reflects hole injection to the PPV backbone in the photoexcited PPV-Ru polymers. Hole injection generates a CSS with the hole residing in the PPV and a reduced Ru-complex. The slowest process (τ_3) is mainly characterized by a decay of positive $\Delta\Delta\text{OD}$ centered at 525 nm indicating the decay of the signal produced by the reduced ligand and hence the decay of the CSS. τ_3 reflects the lifetime of the CSS and amounts to 994 ± 203 ps for PPV-Ru2 and 1584 ± 201 ps for PPV-Ru1. This lifetime is comparable to the reported CSS lifetime in conventional Ru polypyridyl complex-sensitized p-type semiconductors for photocatalytic hydrogen evolution$^{46,47,54–56}$. For example, in NiO photocathodes sensitized with [Ru(bpy)$_3$]$^{2+}$-based complexes, the CSS h$^+$(NiO)/bpy$^-$ is characterized by lifetimes spanning from hundreds of ps to a few ns depending on the bpy ligand substitution pattern (vide infra)$^{60–62}$.

The respective spectral changes reflecting the decay of the CSS do not involve the positive band below 425 nm, which is observed upon electrochemical reduction of the Ru chromophores in solution (compare the blue and grey spectra plotted in Fig. 4e,f). The absence of this feature might be partially rationalized considering the strong bleach induced by the oxidation of PPV between 405 and 540 nm (Supplementary Fig. 5). Supersposition of the this bleach with the absorption of the reduced Ru chromophores is also responsible for the slight shift between the spectral maxima of the τ_2-component (blue line) and the spectrum of the reduced chromophore (grey line in Fig. 4e,f).

In principle, energy transfer from a photoexcited Ru complex to the PPV backbone to form a PPV triplet state could be a deactivation pathway working in parallel with hole injection. Similar processes have been observed in π-conjugated polymers functionalized with photosensitizers, e.g., for applications in photovoltaic and electroluminescent devices$^{58–62}$. Thus, triplet energy transfer (after ultrafast intersystem crossing) from the photoexcited Ru sensitizers to the conjugated polymer must be considered here as well. A key observation towards increased PPV-triplet yields in PPV-Ru vs. PPV should arise from ns transient absorption63,64. However, transient absorption data recorded in the ns to μs time range revealed no difference between PPV and PPV-Ru1 that would point to formation of PPV triplet states (Supplementary Fig. S17). Hence, we conclude that the observed spectral changes reflected in the $\Delta\Delta\text{OD}$ spectra do not stem from long-lived triplet species, which are sensitized by the Ru chromophores, but rather from hole injection to the polymer.

Hole injection in PPV-Ru1 (τ_2 = 48 ± 4 ps) is slightly faster than in PPV-Ru2 (τ_2 = 86 ± 9 ps), while the CSS recovers somewhat faster in PPV-Ru2 (994 ± 203 ps) than in PPV-Ru1 (1587 ± 201 ps). The faster hole injection rate in PPV-Ru1 can be associated with the higher driving force for hole injection indicated by the more negative Gibbs free energy (see Table 1) as compared to PPV-Ru2. In addition, variations of the ligand substitution are known to alter hole injection rates in NiO-based photocathodes sensitized with [Ru(bpy)$_3$]$^{2+}$-derived chromophores$^{45,55–57}$: e.g., [Ru(bpy)$_2$(dcb)]$^{2+}$ (dcb = 4,4'-dicarboxy-2,2'-bipyridine)-sensitized NiO does not show hole injection when anchored via the dcb ligand to the NiO surface. However, hole injection is observed for [Ru(dcb)]$_{12}$ as a sensitizer41. A related report by Dapsens and colleagues showed hole injection to NiO using [Ru(bpy)$_2$(dcb)]$_{12}$ (dcb = 4,4'-bis(trifluoromethyl)-2,2'-bipyridine, dcb = 4,4'-dicarboxy-2,2'-bipyridine) as sensitizer, but not for [Ru(bpy)$_2$(dcb)]$_{12}$. The authors associated their result with the stronger electron withdrawing character of the utilized –CF$_3$ on bpy-ancillary ligands46. Considering sensitized metal-oxide photocathodes such effects of ligand-substitution and related findings associated with the lifetime of the CSS can be rationalized by taking into account a fixed orientation of the photosensitizer (and hence the ligand-centered radical anion) with respect to the semiconductor. Such arguments are not straightforward in PPV-Ru, as hole injection will occur through space and it is not a priori evident if the closest distance between the photosensitizer and a chromophoric unit of the (generally) coiled PPV is via the clicked phenanthroline or the bipyridine ligands. Nonetheless, the experimental data provides evidence for sensitive structural control of the charge injection dynamics via ligand-design when considering hole injection, not only to NiO but also into potential soft-matter electrodes.

Transient absorption studies of PPV-Ru in films. To evaluate the potential of PPV-Ru as materials for all-polymer photoelectrodes, we studied the photoinduced charge-transfer processes in drop-cast films of PPV-Ru (see Fig. 5). Films were prepared by drop-casting a solution of PPV-Ru1 in CH$_2$Cl$_2$ (10% w/v) onto PET/ITO substrates. This gave relatively smooth films with a thickness of 300 ± 16 nm, which is in the lower range of typical thicknesses for NiO-based photocathodes$^{51,60–62}$. Following the same data analysis as laid out above, $\Delta\Delta\text{OD}$ spectra are obtained for PPV-Ru1 (Fig. 5b). The $\Delta\Delta\text{OD}$ shows negative features between 400 and 580 nm, which are broader than for PPV-Ru1 in solution. Furthermore, the $\Delta\Delta\text{OD}$ kinetics reveal differences between PPV-Ru1 in film and in solution (Fig. 5c). For PPV-Ru1 films, the $\Delta\Delta\text{OD}$ features a rapid initial decay of the ground state bleach at 530 nm and a positive $\Delta\Delta\text{OD}$ band at 740 nm. The $\Delta\Delta\text{OD}$ signal at 600 nm increases on a timescale of up to 20 ps and is followed by an overall decay of the signal.

The $\Delta\Delta\text{OD}$ data of PPV-Ru1 is analysed using a tri-exponential fit (see Fig. 5d). The first decay component characterized by τ_1 = 8.3 ± 2.6 ps reflects a build-up of positive $\Delta\Delta\text{OD}$ at around 600 nm accompanied by a loss in ground-state bleach. The signal build-up at 600 nm can be correlated with the spectral changes upon electrochemical reduction of Ru1 in PPV-Ru1 (grey spectrum in Fig. 5d). However, the positive DAS(τ_1)-feature observed above 600 nm extends further to the blue than the signal reflecting the reduction of the Ru-chromophore in PPV-Ru1. This red shift could be due to the contribution of a broader GSB feature of Ru1.
measured in film which 410 and 575 nm (see Supplementary Fig. S19). Therefore, τ_1 is assigned to hole injection. The subsequent processes associated with τ_2 and τ_3 are characterized by a decay of the reduced Ru^{II}, i.e. the positive $\Delta\Delta\text{OD}$ band > 550 nm. Charge recombination, i.e. full decay of the CSSs due to recombination occurs bi-exponentially with $\tau_2 = 107 \pm 19$ ps and the significantly longer $\tau_3 = 4.8 \pm 1.1$ ns. Hence, it is apparent that the rate of hole injection from the photosensitizer to the polymer backbone and (partial) charge recombination in PPV-Ru^1 are faster in the film than in solution.

We propose that the difference in the hole-injection rates for the solution phase and drop-caste polymer can be rationalized by considering “frozen geometries” in the polymer film; In these ‘geometries’ a sensitizer and a chromophoric unit of the PPV are arranged favourably for electronic coupling. As a result, hole injection and charge recombination occur more rapidly in the drop-caste polymer than for the polymer in solution. In solution the polymer can fluctuate in and out of such “optimal” geometries. These slow structural fluctuations available to the polymer in solution allow the system to sample a large conformational space, which ultimately leads to charge recombination with a characteristic time-constant of roughly 1 ns. In the PPV-Ru^1 films sample, the hole injected into the PPV backbone upon creation of the CSS initially resides close to the Ru^{II} complex. It can then be transferred to other chromophoric units of the polymer which were not involved in the initial hole injection process. Upon such hole migration, the hole residing in the PPV becomes spatially separated from the reduced Ru chromophore and hence charge recombination becomes hindered. Depending on the actual substitution pattern of PPV hole migration occurs as fast as within 100 ps. For BEH-PPV, i.e. poly[2,5-bis(2′-ethyl-hexyl)-1,4-phenylenevinylene], a substitution pattern similar to the one used here, hole characteristic migration times of 180 ps have been determined in a pristine thin film. The presence of two distinct charge recombination channels in PPV-Ru^1 films is thus attributed to the presence of two different ensembles of CSS in the polymer: one with optimal electronic coupling between the hole and the reduced chromophore (responsible for the comparably fast decay characterized by τ_2), and another set of geometries in which the hole has been further separated from the reduced Ru^{II} photosensitizer by hole transfer in the polymer (responsible for the slow charge recombination characterized by τ_3).

Photoelectrochemical measurements. The charge-transfer behavior of the photoexcited polymers was investigated using linear scan voltammetry (LSV) and chronoamperometry under chopped irradiation (white light, 1000 W m$^{-2}$). The experiments were carried out on drop-caste films of the polymers using a three-electrode spectroelectrochemical cell and a $\text{Co}^{III}/\text{Co}^{II}$ redox couple as a sacrificial electron acceptor (Fig. 6).
In the LSV experiments, all polymers show a cathodic photocurrent that is independent of the applied potential, while the dark current increases steeply below ca. 0 V vs. Ag/AgCl. Of the three polymers, PPV-Ru1 shows the highest photocurrent with 42 µA cm⁻² (6.5 µA cm⁻² current density before normalization to the absorbance, see Supplementary Fig. S22), which is in line with the faster hole injection and slower charge recombination observed in the TA experiments. Compared to the conventional [Ru(bpy)₃]²⁺-sensitized NiO photocathode, the resulting current density in PPV-Ru1 is at this stage of the proof-of-concept study notably lower (6.5 vs 120 µA cm⁻²). Nonetheless, this current density is found on par to the organic push–pull dye-sensitized NiO photocathodes which yield photocurrent density in the range of 2.2–6 µA cm⁻² [69,70].

In the chronoamperometric experiments, PPV-Ru1 also initially shows the highest photocurrent density. However, this decreases by 90% during the duration of the experiment (10 min). While PPV-Ru2 shows a similar behavior, the non-functionalized PPV film shows a much slower decrease in photocurrent density (35% loss after 10 min). The decrease in photo–current density during the chopped-light measurements indicates that the investigated polymers are rather unstable under irradiation, which is supported by the strong decrease in absorbance of the PPV absorption band in post-operando UV–Vis spectra of the films (see Supplementary Fig. S23). Therefore, this instability is likely due to the poor photostability of the PPV backbone itself [67,68]. We ascribe the acceleration of the decay in PPV-Ru1 to the prolonged charge-separated state lifetime in comparison with pristine PPV, which could lead to faster degradation of the PPV backbone in its oxidized state. The extension of the charge-separated state lifetime is therefore a double-edged sword, leading to both an increase in activity and a decrease in stability. However, because of the modular nature of these soft matter materials, in future work both the polymer backbone and sensitizer components can be synthetically optimized to produce more stable soft-matter photocathodes.

Conclusions
We have demonstrated the photosensitization of PPV with different polypyridyl RuII complexes through CLICK chemistry. The charge transfer dynamics in the polymer were unravelled using time-resolved optical spectroscopy. In both polymers a CSS was formed by light-driven hole injection from the photosensitizer into the PPV backbone. While photoinduced hole transfer in drop-cast films of PPV-Ru1 took place in less than 10 ps, it was found to take place on a sub-100 ps timescale for samples in solution. The CSS lifetimes in solution and in drop-cast films were comparable to that observed in very recent studies [45–57] for conventional NiO-based photocathodes. Altering the ligands of the RuII complexes modified hole injection and recombination rates within the sensitized polymers. An electron-withdrawing group on the bipyridyl ligand gave rise to faster hole injection into the polymer backbone and slower charge recombination. As a proof-of-concept, we showed that the PPV-Ru system works as a functional photocathode indicated by the generation of a cathodic current in a photoelectrochemical experiment. Thus, we have shown that light induced charge transfer occurs between PPV and ruthenium complexes attached to the polymer via side chains. This leads to sufficiently long-lived charge separated states to allow electron transfer to acceptor species in solution. Furthermore, we have demonstrated a modular design approach implementing CLICK chemistry at innocent phenanthroline ligands to attach two different ruthenium complexes (Ru1 and Ru2 with chemically very different ligand substitution patterns). This indicates that sophisticated supramolecular photocatalyst architectures can be introduced [69], permitting the implementation of well-established synthetic chemistry for tris-heteroleptic ruthenium building blocks [32].
We intend to further exploit the concept introduced here to develop “molecularly functionalized” hole-conducting polymer photocathodes as an alternative to conventional NiO photoelectrodes. Ultimately, this research should lead to the realization of soft-matter photoelectrochemical cells for solar fuel generation.

Experimental section

Synthesis and preparation of PPV, Ru’s, and PPV-Ru’s. Detail of synthetic procedure of PPV, Ru’s, and PPV-Ru’s including materials and instrumentation is described in the Supplementary Information.

Spectroscopy and (Spectro)electrochemical measurements. **UV/vis absorption and emission measurement.** UV/vis absorption and emission spectra of PPV, Ru1, Ru2, PPV-Ru1 and PPV-Ru2 were measured in CHCl3 using a Varian-Cary UV–Vis-NIR spectrometer and FLS980 photoluminescence spectrometer (Edinburgh Instrument), respectively.

Spectroelectrochemical measurements. Each solution contained 0.1 M tetraethylammonium tetraborate (Sigma-Aldrich, for electrochemical analysis, ≥ 99.0%) in CH3Cl as supporting electrolyte. The setup for both electrochemical and spectroelectrochemical measurements was described before. A thin-layer 1 mm path length quartz glass spectroelectrochemical cell (Bioanalytical Systems, Inc.), equipped with a Pt counter electrode, a Ag|AgCl-pseudoreference electrode and a glassy carbon working electrode with a slit of 2 mm × 5 mm, was used. The redox potentials were determined by cyclic voltammetry using a VersaSTAT 3 potentiostat (Princeton Applied Research). UV/Vis spectra were collected during reduction of the complexes, i.e. during chronoamperometry at various potentials. The UV/Vis spectra were obtained using a single channel fiber optic spectrometer (Avantes Inc., AvaSpec-ULS2048XL) with a deuterium-halogen light source (Avantes Inc., Avalight DH-S-BAL). For UV/vis spectroelectrochemistry of PPV-Ru1 films, 20 μL of PPV-Ru1 solution (either 10% or 20% w/v) in CH3Cl was drop-cast on transparent PET/ITO (Indium-doped Tin Oxide) substrate. The PPV-Ru1 film thickness was determined from the cross-section images obtained by using JEOL JSM6300F scanning electron microscope operating at 5.0 kV accelerating voltage. The UV/vis spectra were obtained in transmission mode through the PET/ITO/PPV-Ru1 working electrode using the same spectrometer and light source as mentioned above.

Time-resolved emission measurement. Time-resolved emission measurements were carried out by using time-correlated single-photon counting (TCSPC)45. A Ti:Sapphire laser (Tsunami, Newport Spectra-Physics GmbH) was used as the light source. The repetition rate is reduced to 400 kHz by a pulse selector (model 3980, Newport Spectra-Physics GmbH). Afterwards, the fundamental beam of the Ti–Sapphire oscillator is frequency doubled in a second harmonic generator (Newport Spectra-Physics GmbH) to create the 390-nm pump beam. The emission was detected by a Becker and Hickel PMC-100-4 photon-counting module. The emission lifetimes were determined by fitting a monoexponential decay to the data.

Transient absorption measurements. The setup for femtosecond (fs)—transient absorption measurements of PPV, Ru1, Ru2, PPV-Ru1, and PPV-Ru2 both in solutions and on films was previously described. The 800 nm output of an amplified Ti:Sapphire laser (Legend, Coherent Inc.) was split into two beams, one of which was used to pump an optical-parametric amplifier (TOPAS-C). The TOPAS output pulses were spectrally centered at 480 nm with a pump-pulse energy of typically 1.2 μJ and used as pump pulses in the fs pump–probe experiments. This pump beam was directed over a 600 mm delay line in order to realize the temporal delay of up to ~2 ns between the pump and the probe pulses. The residual fraction of the fundamental was employed for supercontinuum generation in a CaF2 window used as a broadband probe in the transient absorption experiments, in which the typical probe intensities fall into the range of hundred nJ. The probe light was then split into two beams, one of which was focused into the sample by means of a 500 mm focal length spherical mirror, while the second beam was used as reference. The mutual polarizations of pump and probe were set to magic angle. Probe and reference intensities were detected on a double-stripe diode array and converted into differential absorption (DA) signals using a commercially available detection system (Pascher Instruments AB, Sweden). Chirp correction and subsequently a global fit routine using a sum of exponentials was carried out for data analysis. To avoid prominent contributions from coherent artifacts, the pulse overlap region (± 250 fs around time zero) was excluded from the data fitting procedure. For solution measurement, samples were dissolved in CHCl3 in a quartz cell with 1 mm optical path length, while the residual fraction of the fundamental was employed for solution measurement. Samples were dis-
Photoelectrochemical measurements. Photoelectrochemical measurements were conducted in a three-electrode cell. The working electrode was a polymer-masked (Surlyn) PET/ITO substrate which was coated with the PPV(+Ru) polymer films by drop-casting: 100 µL of polymer solution (1 mg/mL) in CHCl₃ was drop-casted on a masked PET/ITO substrate of ca. 1 x 3 cm size. After evaporation of the solvent the mask was removed to yield substrates of ca. 1 x 1 cm size. The reference electrode was a leakless Ag/AgCl electrode (EDAQ) and the counter electrode was a Pt wire. A Co³⁺/Co²⁺ redox couple (0.25 M tris-(1H-pyrazol-1-yl) pyridine) cobalt(II) di[(tris(trifluoromethane)sulfonimide), was added to the supporting electrolyte solution (0.1 M LiTFSI, and 0.5 M 4-tert-butyl pyridine in dry acetonitrile). Linear scan voltammograms were recorded at 20 mV/s scan speed with chopped light illumination (1000 nm > λ > 300 nm, 1000 W m⁻², 5 s cycle time) provided by a light source connected to a Zahner potentiostat (Zennium Pro). The chronoamperometric measurements were performed with an applied potential of 0.5 V vs Ag/AgCl and using the same light source with a cycle time of 30 s.

Received: 3 September 2020; Accepted: 19 January 2021
Published online: 02 February 2021

References

1. Thapper, A. et al. Artificial photosynthesis for solar fuels—An evolving research fields within AMPEA, a joint programme of the European energy research alliance. *Green.* 3, 43 (2013).
2. Berardi, S. et al. Molecular artificial photosynthesis. *Chem. Soc. Rev.* 43, 7501 (2014).
3. Black, F. A. et al. Charge-transfer dynamics at the dye-semiconductor interface of photoactive films for solar energy applications. *Faraday Discuss.* 198, 449 (2017).
4. Brennan, M. K. et al. Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells. *J. Am. Chem. Soc.* 138, 13085 (2016).
5. Andreiadis, E. S., Chavarot-Kerlidou, M., Fontecave, M. & Artero, V. Artificial photosynthesis: From molecular catalysts for light-driven water splitting to photoelectrochemical cells. *Photochem. Photobiol.* 87, 946 (2011).
6. Gibson, E. A. Dye-sensitized photoactive catalysts for H₂ evolution. *Chem. Soc. Rev.* 46, 6194 (2017).
7. Freys, J. C., Gardner, J. M., D’Amario, L., Brown, A. M. & Hammarström, L. Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell. *Dalton Trans.* 41, 13105 (2012).
8. Lefebvre, J.-F. et al. An artificial photosynthetic system for photoaccumulation of two electrons on a doped pyridophenazine (dppz)-pyridoxalnine ligand. *Chem. Sci.* 9, 4152 (2018).
9. Queyriaux, N. et al. Aqueous photocurrent measurements correlated to ultrafast electron transfer dynamics at ruthenium tris diimine sensitised NiO photoanodes. *J. Phys. Chem. C.* 121, 5891 (2017).
10. Massin, J. et al. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications. *Interface Focus.* 5, 20140083 (2015).
11. Karlsson, S. et al. Multilayer electron transfer: Multiple charge separation in artificial photosynthesis. *Faraday Discuss.* 155, 233 (2012).
12. Hammarström, L. Accumulative charge separation for solar fuels production: Coupling light-induced single electron transfer to multielectron catalysis. *Acc. Chem. Res.* 48, 840 (2015).
13. Wood, C. J. et al. A comprehensive comparison of dye-sensitized NiO photoanodes for solar energy conversion. *Phys. Chem. Chem. Phys.* 18, 10727–10738 (2016).
14. Zhang, F., Johansson, M., Andersson, M. R., Hummelen, J. C. & Inganäs, O. Polymer photovoltaic cells with conducting polymer anodes. *Adv. Mater.* 14, 662 (2002).
15. Chang, E. C., Chao, C.-I. & Lee, R.-H. Enhancing the efficiency of MEH-PPV and PCBM based polymer solar cells via optimization of device configuration and processing conditions. *J. Appl. Polym. Sci.* 101, 1919 (2006).
16. Facchetti, A. Polymer donor–polymer acceptor (all-polymer) solar cells. *Mater. Today.* 16, 123–132 (2013).
17. Suzuki, M. et al. Hydrogen generation using water-insoluble polymer-bound ruthenium(II) complexes. *Chem. Commun.* 2, 227–228 (1997).
18. Suzuki, M., Kimura, M., Hanabusa, K. & Shirai, H. Photoinduced hydrogen generation using polymer photosensitizers. *Macromol. Chem. Phys.* 199, 945 (1998).
19. Suzuki, M. et al. Photoinduced hydrogen generation from water-insoluble polymer photosensitizer films. *Polymer.* 39, 1539 (1998).
20. Suzuki, M., Kimura, M., Hanabusa, K. & Shirai, H. Intra-polymer photoinduced hydrogen generation using a series of ruthenium(II) complex and violagen-containing polymers. *Acta Polym.* 50, 45 (1999).
21. Jiang, J. et al. Polymer chromophore-catalyst assembly for solar fuel generation. *ACS Appl. Mater. Interfaces.* 9, 19529 (2017).
22. Leem, G. et al. Ru(bpy)₃²⁺ derived polystyrenes constructed by nitroxide-mediated radical polymerization. *Polymer.* 56, 227–228 (2015).
23. Leem, G., Sherman, B. D. & Scharf, K. S. Polymer-based chromophore-catalyst assemblies for solar energy conversion. *Nano Converg.* 4, 37 (2017).
24. Dupray, L. M. & Meyer, T. J. Synthesis and characterization of amide-derived, poly(pyrrolidyl)-metallopolymer. *Inorg. Chem.* 35, 6299 (1996).
25. Yang, Z. et al. Atom transfer radical polymerization preparation and photophysical properties of poly(pyrrolidylruthenium) derivatized polystyrenes. *Inorg. Chem.* 52, 8511 (2013).
26. Peng, Z. & Yu, L. Synthesis of conjugated polymers containing ionic transition metal complexes. *J. Am. Chem. Soc.* 1187, 3777 (1996).
27. Wang, Q., Wang, L. & Yu, L. Synthesis and unusual physical behavior of a photorefractive polymer containing tris(bipyridyl)ruthenium(II) complexes as a photosensitizer and exhibiting a low glass-transition temperature. *J. Am. Chem. Soc.* 120, 12860 (1998).
28. Wang, Q. & Yu, L. Conjugated polymer containing mixed-ligand ruthenium(II) complexes. *Synthesis, characterization, and investigation of photoconductive properties. J. Am. Chem. Soc.* 122, 11806 (2000).
29. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. *Science.* 258, 1474 (1992).
30. Shaheen, S. E., Brabec, C. J. & Sariciftci, N. S. 2.5% efficient organic plastic solar cells. *Appl. Phys. Lett.* 78, 841 (2001).
31. Greenwald, Y. et al. Polymer–polymer rectifying heterojunction based on poly(3,4-dicyanothiophene) and MEH-PPV. *J. Pol. Sci.* 36, 3115 (1998).
32. Xia, Y., Yu, W.-L., Chua, S.-J. & Huang, W.A novel series of copolymer containing 2,5-Dicyano-1,4-phenylene-vinylene—Synthetic tuning of the HOMO and LUMO energy levels of conjugated polymers. Chem. Eur. J. 6, 1318 (2000).

33. Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J. p-Type semiconductor nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105, 2783 (2008).

34. Stevanovic, V., Lany, S., Ginley, D. S., Tumas, W. & Zunger, A. Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Phys. Chem. Chem. Phys. 15, 5706 (2014).

35. Wintergerst, F., Manzoni, D., Tischlerlei, S. & Rau, A. K. Impact of alkyne functionalization on photophysical and electrochemical properties of 1,10-phenanthroline and their Ru3 complexes. Eur. J. Inorg. Chem. 2019, 1988–1992 (2019).

36. Sumpter, B. G. et al. Computational study of the structure, dynamics, and photophysical properties of conjugated polymers and oligomers under nanoscale confinement. J. Phys. Chem. B. 109, 7671 (2005).

37. Correia, H. M. G. & Ramos, M. M. D. Modelling the effect of nonplanarity on charge transport along conjugated polymer chains. Mater. Sci. Eng. C. 27, 1133 (2007).

38. Milad, R. et al. Effective conjugation in conjugated polymers with strongly twisted backbones: A case study on fluorinated MEHPPV. J. Mater. Chem. C. 4, 6900 (2016).

39. Liu, L. T., Yaron, D. & Berg, M. A. Electron-phonon coupling in phenyleneethynylene oligomers: A nonlinear one-dimensional configuration-coordinate model. J. Phys. Chem. C. 111, 5770 (2007).

40. Bazan, G. C., Xiao, Y.-J., Renak, M. L. & Sun, B. J. Fluorescence quantum yield of poly(p-phenylenevinylene) prepared via the paracyclophane route: Effect of chain length and interchain contacts. J. Am. Chem. Soc. 118, 2618 (1996).

41. Brown, A. R. et al. Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. Appl. Phys. Lett. 61, 2793 (1992).

42. Hwang, I. & Scholes, G. D. Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23, 610 (2011).

43. Dykstra, T. E. et al. Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers. J. Phys. Chem. B. 113, 656 (2009).

44. Sun, Y. et al. Light harvesting arrays of poly(p-phenylenevinylene) chromophores prepared by Reversible Addition-Fragmentation Chain Transfer polymerization. Macromolecules 45, 2632 (2012).

45. Bratagam, M., Kübel, J., Schults, M., Vos, J. G. & Dietzek, B. Hole injection dynamics from two structurally related Ru-bipyridine complexes into NiOx is determined by the substitution pattern of the ligands. Phys. Chem. Chem. Phys. 17, 7823–7830 (2015).

46. Damrauer, N. H. et al. Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275, 54–57 (1997).

47. Damrauer, N. H. & McCusker, J. K. Ultrafast dynamics in the metal-to-ligand charge transfer excited state evolution of [Ru(4,4′-diphosph-2,2′-bipyridine)]2+. J. Phys. Chem. A. 103, 8440 (1999).

48. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical report). Pure Appl. Chem. 83, 2213 (2011).

49. Vandelau, K., Bengdahun, J. & Niklos, V. C. How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustain. Energy Fuels. 2, 538 (2018).

50. Meskers, S. C. J., Janssen, R. A. J., Haverkort, J. E. M. & Wolter, J. H. Relaxation of photo-excitation in films of oligo- and poly- (para-phenylene vinylene) derivatives. Chem. Phys. 260, 415 (2000).

51. Herz, I. M., Silva, C., Grimsdale, A. C., Müller, K. & Phillips, R. T. Time-dependent energy transfer rates in a conjugated polymer host-guest system. Phys. Rev. B. 70, 165207 (2004).

52. Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J. & Tolbert, S. H. Control of energy transfer in oriented conjugated polymer mesoscopic silica composites. Science 288, 652 (2000).

53. Grage, M. et al. Conformational disorder and energy migration in MEH-PPV with partially broken conjugation. J. Chem. Phys. 118, 7644 (2003).

54. Gaab, K. M. & Bardeen, C. J. Anomalous excition diffusion in the conjugated polymer MEH-PPV measured using a three-pulse pump-probe anisotropy experiment: J. Phys. Chem. A. 108, 10801 (2004).

55. D’Amario, L., Antila, L. J., Rimgard, B. P., Boschloo, G. & Hammarström, L. Kinetic evidence of two pathways for charge recombination in NiO-based dye-sensitized solar cells. J. Phys. Chem. Lett. 6, 779 (2015).

56. Han, Y. et al. Interfacial electron transfer yields in dye-sensitized NiO photocathodes correlated to excited-state dipole orientation of ruthenium chromophores. Can. J. Chem. 96, 865 (2017).

57. Dillon, R. J., Albabaei, L., Meyer, T. J. & Papanikolas, J. M. Enabling efficient creation of long-lived charge-separation on dye-sensitized NiO photocathodes. ACS Appl. Mater. Interfaces. 9, 26786 (2017).

58. Wang, L. et al. Competition between ultrafast energy flow and electron transfer in a Ru(II)-Loaded polyfluorene light-harvesting polymer: J. Phys. Chem. Lett. 3, 2433–2437 (2012).

59. Leem, G. et al. Light harvesting and charge separation in a π-conjugated antenna polymer bound to TiO2. J. Phys. Chem. C. 118, 28535–28541 (2014).

60. Ley, K. D., Whittle, C. E., Barberger, M. D. & Schanze, K. S. Photophysics of π-conjugated polymers that incorporate metal to electron acceptor blocks in novel copolymer architectures featuring a sensitizer core. Chem. Eur. J. 23, 16484 (2017).

61. Atreya, M. et al. Stability studies of poly(2-methoxy-5-(2’-ethylhexyloxy)-p-(phenylene vinylene) [MEH-PPV]. Polym. Degrad. Stab. 65, 287 (1999).

62. Lim, Y. T., Lee, T.-W., Lee, H.-C. & Park, O. O. Enhanced photo-stability of conjugated polymer nanocomposites doped with functionalized nanoparticles. Opt. Mater. 21, 585 (2002).

63. Lyu, S. et al. H2-evolving dye-sensitized photocathode based on a ruthenium-diacylcylo/oxalobime supramolecular assembly. ACS Appl. Energy Mater. 2, 4971–4980 (2019).

64. Massin, J. et al. Investigating light-driven hole injection and hydrogen evolution catalysis at dye-sensitized NiO photocathodes: A combined experimental-theoretical study. J. Phys. Chem. C. 123, 17176–17184 (2019).

65. Schrott, R., Schlottauer, T., Dietze, B., Jager, M. & Schubert, U. S. Extending long-lived charge separation between donor and acceptor blocks in novel copolymer architectures featuring a sensitizer core. Chem. Eur. J. 23, 16484 (2017).

66. Schindler, J. et al. A ππ* states enables photocaccumulation of charges on a π-extended diprydiphenoxane ligand in a Ru(II) polyamide complex. J. Phys. Chem. C. 122, 83–98 (2018).
73. Zhang, Y. et al. In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2 thin film electrodes. Phys. Chem. Phys. Chem. 17, 29637 (2015).
74. Zedler, L. et al. Unraveling the light-activated reaction mechanism in a catalytically competent key intermediate of multifunctional molecular catalyst for artificial photosynthesis. Angew. Chem. Int. Ed. 58, 13140–13148 (2019).
75. Monczak, K. et al. Synthesis and characterization of a tris(heteroleptic) RuII-based molecular switch. Chem. Eur. J. 20, 15426–15433 (2014).
76. Wächter, M. et al. Structural control of photoinduced dynamics in 4H-imidazole-ruthenium dyes. J. Phys. Chem. C. 116, 25664–25676 (2012).
77. Bräutigam, M., Wächter, M., Rau, S., Popp, J. & Dietzek, B. Photophysical dynamics of a ruthenium polypyridine dye controlled by solvent pH. J. Phys. Chem. C. 116, 1274–1281 (2012).
78. Dietzek, B., Pascher, T., Sundström, V. & Yartsev, A. Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design. Laser Phys. Lett. 4, 38 (2007).
79. Luo, Y. et al. Energy versus electron transfer: Controlling the excitation transfer in molecular triads. J. Phys. Chem. C. 116, 25664–25676 (2012).
80. Barthelmes, K. et al. New ruthenium Bis(terpyridine) methanofullerene and pyrrolidinofullerene complexes: Synthesis and electrochemical and photochemical properties. Inorg. Chem. 54, 3159 (2015).

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 364549901—TRR 234 [CataLight Project C1, B2 and B4]. Financial support by the Deutscher Akademischer Austauschdienst (DAAD) for PhD Scholarship for RAW is gratefully acknowledged. SB acknowledges support by the French National Research Agency in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02 and CBH-EUR-GS, ANR-17-EURE-0003).

Author contributions
B.D., S.R., U.S.S., M.D.H., C.S. M.W. conceived the project, J.H. and P.W. synthesized and characterized PPV, Ru, and PPV-Ru, R.A.W. carried out fs-transient absorption measurements, R.A.W. and S.B. carried out ns-transient absorption measurements, R.A.W., B.S., and G.L. performed electrochemistry and spectroelectrochemistry measurements, A.D. and J.D. carried out SEM measurement and analysis, B.S. and I.D. carried out photoelectrochemical measurements, R.A.W, B.D., and M.W. analysed the data, R.A.W. and B.D. wrote the initial manuscript. All authors discussed the results and contribute to the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82395-x.

Correspondence and requests for materials should be addressed to B.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021