Soliton solutions to a (2+1)-dimensional nonlocal NLS equation

Qiaofeng Huang · Chenzhi Ruan · Jiaxing Huang

Received: date / Accepted: date

Abstract In this paper, applying the Hirota’s bilinear method and the KP hierarchy reduction method, we obtain the general soliton solutions in the forms of $N \times N$ Gram-type determinants to a (2+1)-dimensional nonlocal nonlinear Schrödinger equation with time reversal under zero and nonzero boundary conditions. The general bright soliton solutions with zero boundary condition are derived via the tau functions of two-component KP hierarchy. Under nonzero boundary condition, we first construct general soliton solutions on periodic background, when N is odd. Furthermore, we discuss typical dynamics of solutions analytically, and graphically.

Keywords Kadomtsev-Petviashvili hierarchy · Hirota’s bilinear method · the nonlocal nonlinear Schrödinger equation · soliton solutions · periodic background

1 Introduction

In 2013, Ablowitz and Mussilimani [1] considered a nonlocal nonlinear Schrödinger (NLS) equation

$$iu_t(x,t)+u_{xx}(x,t)+2\sigma u^2(x,t)u^*(-x,t)=0,$$ \hspace{1cm} (1)

where $\sigma = \pm 1$, and first derived its soliton solutions making use of the inverse scattering method (IST). Actually, Eq. (1) comes from a symmetry reduction of the AKNS hierarchy, and it is a parity-time (PT) symmetry introduced by Bender and Boettcher [2, 3] in 1998, as the equation (1) is invariant under the parity-time (PT) operator, that is, the variable transformation $x \rightarrow -x$, $t \rightarrow -t$ and the complex conjugate.

After that, soliton solutions of the nonlocal NLS equations and various new nonlocal equations appearing from different symmetry reductions of the AKNS hierarchy were paid attention by many authors [4–11]. In addition, people also considered some other nonlocal equations with self-induced PT symmetric potential [12–14]. For example, in 2016, Fokas [5] provided soliton solutions of the nonlocal Davey-Stewartson (DS) equation

$$\begin{cases}
i A_t = A_{xx} + \gamma^2 A_{yy} + (\epsilon V - 2Q)A, \\
Q_{xx} - \gamma^2 Q_{yy} = (\epsilon AA^*(-x,-y,t))_{xx},
\end{cases}$$ \hspace{1cm} (2)

where $\epsilon = \pm 1$, by using the same method (IST) in the work of Ablowitz and Mussilimani [1]. Later, the general breather and rogue wave solutions were obtained by Rao et al. [15] applying the Hirota bilinear method. An extension of the usual DS II equation involving a PT symmetric potential was considered by Liu et al [16], and the families of n-order rational solutions were obtained. In [5], Fokas also considered soliton solutions of a (2+1)-dimensional NLS equation

$$\begin{cases}
i u_t + u_{xx} + uv = 0, \\
v_y = [u(x,y,t)u^*(-x,-y,t)]_x.
\end{cases}$$ \hspace{1cm} (3)

Cao et al. [17] kept on investigating this multidimensional equation (3) and gave families of rational and semi-rational solutions. Its general soliton solutions with zero and nonzero boundary conditions were studied by Liu and Li [18], they derived the soliton solutions expressing by $N \times N$ Gram-type determinants with even N, however, the odd case is not involved.

It is known that there are a variety of useful and powerful tools to deal with the nonlocal equations, namely,
the inverse scattering transformation method, the Hirota’s bilinear method, the KP hierarchy reduction method, and so on. Combining the Hirota’s bilinear method and the KP reduction hierarchy method, very recently, Li et al. [19] discussed the nonlocal Mel’nikov equation and obtained its general soliton solution and (semi-)rational solutions. Combining the Hirota’s bilinear method and the inverse scattering transformation method, the Hirota’s bilinear method and the KP hierarchy reduction method, Ma and Zhu [6] constructed the N-solition solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation, and gave the asymptotic analysis of two-soliton solution. By using the KP hierarchy reduction method, Rao et al. [20] found new families of semi-rational solutions termed as lump-soliton solutions to the nonlocal DS I equation.

In this paper, inspired by Liu and Li [18] and Li et al. [19], we study the (2+1)-dimensional nonlocal nonlinear Schrödinger equation with time reversal instead of space reversal,

\[
\begin{align*}
& i u_t + u_{xx} + nu = 0, \\
& v_t = [u(x,y,t)u(x,y,-t)]_x.
\end{align*}
\]

We also present the general soliton solutions of (4) in terms of $N \times N$ Gram-type determinants with zero and nonzero boundary conditions. Under the nonzero boundary condition, when N is odd, the general soliton solutions on the periodic background are constructed.

The rest of this article is organized as follows. In Sec.2 and 3, we present our main theorem for soliton solutions of the multi-dimensional nonlocal nonlinear NLS equation with zero and nonzero boundary conditions, respectively. The construction of explicit soliton solutions appears in Sec.3.1. In Sec.4, we illustrate the dynamics of the two-, four- and multi-soliton solutions on different backgrounds. The conclusion is given in Sec.5.

2 Solution of the (2+1)-dimensional nonlocal nonlinear Schrödinger equation with zero boundary condition

In this section, we consider general bright soliton solutions to the (2+1)-dimensional nonlocal nonlinear Schrödinger equation (4) with zero boundary condition.

Theorem 1 The (2+1)-dimensional nonlocal nonlinear Schrödinger equation (4) has soliton solutions with the zero boundary condition,

\[
\begin{align*}
& u(x,y,t) = \sqrt{2} \frac{g(x,y,t)}{f(x,y,t)}, \\
& v(x,y,t) = 2(\ln f(x,y,t))_{xx},
\end{align*}
\]

where

\[
\begin{align*}
& f(x,y,t) = |A_{0,ij} + A_{1,ij}|_{N \times N}, \\
& g(x,y,t) = \begin{cases} A_{0,ij} + A_{1,ij} e^{p_{ij}x - q_{ij}y} & \text{if } x < 0, \\
& 0 & \text{if } x = 0,
\end{cases}
\end{align*}
\]

with the parameters $p_i = \bar{p}_i, q_i = \bar{q}_i, i = 1, 2, \ldots, N$. (6)

2.1 Derivation of Solution with zero boundary condition

Under the transformation

\[
u = 2(\ln f(x,y,t))_{xx},
\]

(4) can be converted into the following bilinear forms

\[
\begin{align*}
& \left(D^2_x + iD_t \right) (g \cdot f)(x,y,t) = 0, \\
& D_x D_y (f \cdot g)(x,y,t) = 2g(x,y,t)g(x,y,-t).
\end{align*}
\]

where D is the Hirota’s bilinear differential operator defined by

\[
D^m D^n (f \cdot g)(x,t) = \left(\frac{\partial}{\partial x} \frac{\partial}{\partial x} \right)^m \left(\frac{\partial}{\partial t} \frac{\partial}{\partial t} \right)^n [f(x,t)g(x',t')]_{x'=x,t'=t}.
\]

We start with the Gram-type determinant expression of the tau functions,

\[
\tau_0 = |A|, \quad \tau_1 = \begin{bmatrix} A & \Phi^T \\ -\Phi & 0 \end{bmatrix}, \quad \tau_{-1} = \begin{bmatrix} A & \Psi^T \\ -\Psi & 0 \end{bmatrix}.
\]

where $A = (a_{ij})_{N \times N}$ with

\[
\begin{align*}
& a_{ij} = \frac{1}{p_i + \bar{p}_j} e^{\xi_i + \bar{\xi}_j} + \frac{1}{q_i + \bar{q}_j} e^{\eta_i + \bar{\eta}_j}, \\
& \xi_i = p_i x_1 + p_i^* x_2, \quad \bar{\xi}_j = \bar{p}_j x_1 - \bar{p}_j^* x_2, \\
& \eta_i = q_i y_1 + \eta_{0i}, \quad \bar{\eta}_j = \bar{q}_j y_1 + \bar{\eta}_{0j}.
\end{align*}
\]

and the $\Phi, \Phi^T, \Psi, \Psi^T$ are row vectors defined by

\[
\Phi = (e^{\xi_1}, \ldots, e^{\xi_N}), \quad \Psi = (e^{\eta_1}, \ldots, e^{\eta_N}).
\]

According to the Sato theory, it is clear that the tau functions given above satisfy the following two bilinear equations

\[
\begin{align*}
& \left(D^2_{x_1} - D_{x_2} \right) \tau_1 \cdot \tau_0 = 0, \\
& D_{x_1} D_{x_2} \tau_1 \cdot \tau_0 = -2 \tau_{-1} \tau_{-1}.
\end{align*}
\]

Indeed, assume that $x_1 = x, x_2 = -it, x_1 = -t, x_2 = -y$, making $p_i = \bar{p}_i, q_i = \bar{q}_i$, we have

\[
\xi_i + \bar{\xi}_j = (\xi_i + \bar{\xi}_j)(x,y,-t),
\]
Then the one-soliton solution can be plotted with parameter values

\[\eta_{10} = 0, \eta_{20} = 0, p_1 = 1, p_2 = 2, q_1 = 1, q_1 = 2 \] in Fig. 2.

Fig. 2: Two-soliton solution on zero boundary with parameter values

\[\eta_{10} = 0, \eta_{20} = 0, p_1 = 1, p_2 = 2, q_1 = 1, q_1 = 2 \]

3 Solution of the (2+1)-dimensional nonlocal nonlinear Schrödinger equation with nonzero boundary condition

In this section, we would like to present the general soliton solutions of the (2+1)-dimensional nonlocal nonlinear Schrödinger equation with nonzero boundary conditions.

Theorem 2 Let \(N \) be a positive integer and \(\delta_{ij} \) be the Kronecker delta. The (2+1)-dimensional nonlocal nonlinear Schrödinger equation (4) has soliton solutions

\[u = \sqrt{2} e^{i\theta} \frac{g}{f}, \quad v = k + 2(\ln f)_{xx}, \]

where \(f = \det (M_{ij}^{(0)}) \) and \(g = \det (M_{ij}^{(1)}) \), with

\[
\begin{align*}
M_{ij}^{(n)} &= c_i \delta_{ij} e^{-\xi_{0j} + \eta_{ij}} + \frac{1}{p_i + q_j} \left(-p_i q_j \right) \left(\frac{p_i q_j}{q_j} - \frac{q_j p_i}{p_i} \right) \\
\xi_{ij} &= \frac{1}{q_j} (v + p_i x + i p_j y + \xi_{0}) \\
\eta_{ij} &= -\frac{1}{q_j} (v + q_i x + i q_j y + \eta_{0}).
\end{align*}
\]

The complex parameters \(c_i, p_i, q_i, \xi_{0}, \eta_{0} \) satisfy following constraints:

I) when \(N \) is even, i.e. \(N=2M \),

\[
\begin{align*}
c_j &= c_{M+j}, \quad p_j = q_{M+j}, \\
q_j &= p_{M+j}, \quad j = 1, 2, \cdots, M,
\end{align*}
\]

II) when \(N \) is odd, i.e. \(N=2M+1 \),

\[
\begin{align*}
c_i &= c_{M+i}, \quad p_j = q_{M+j}, \quad q_j = p_{M+j}, \\
p_{2M+1} &= q_{2M+1}, \quad j = 1, 2, \cdots, M.
\end{align*}
\]
3.1 Derivation of Solutions

3.1.1 Bilinearization

In order to construct soliton solutions, we first introduce the dependent variable transformations

$$
\begin{align*}
 u &= \sqrt{2}e^{i\theta} \frac{g}{f}, \\
 v &= k + 2(\ln f)_{xx},
\end{align*}
$$

(26)

where \(f \) and \(g \) are functions with respect to three variables \(x, y \) and \(t \). Similar to the case in zero boundary condition, plugging Eq. (26) into Eq. (4), we have

$$
\begin{align*}
 \left\{ \begin{array}{l}
 (D_x^2 + iD_t) \left(g \cdot f \right)(x,y,t) = 0, \\
 (D_yD_x + 2) \left(f \cdot f \right)(x,y,t) = 2g(x,y,t)g(x,y,-t),
 \end{array} \right.
\end{align*}
$$

(27)

3.1.2 Construction of solutions

In this section, we start with tau functions of single component KP hierarchy

$$
\tau_n = \det (m_{ij}^{(n)}),
$$

(28)

with

$$
\begin{align*}
 m_{ij}^{(n)} &= c_i \delta_{ij} + \frac{1}{p_i + q_j} \left(-\frac{p_i}{q_j} \right)^n e^{i\xi_j + \eta_j}, \\
 \xi_j &= p_i^{-1}x_i + p_i^2x_2 + \xi_0, \\
 \eta_j &= q_j^{-1}x_j - q_j^2x_2 + \eta_{j0},
\end{align*}
$$

where \(p_i, q_j, c_i, \xi_0 \) and \(\eta_{j0} \) are arbitrary complex constants, \(\delta_{ij} = 1 \) when \(i = j \) and \(\delta_{ij} = 0 \) elsewhere. Due to the Sato theory, we know that the tau functions \(\tau_n \) satisfy the bilinear equations,

$$
\begin{align*}
 \left\{ \begin{array}{l}
 (D_x^2 - D_t^2) \tau_{n+1} \cdot \tau_0 = 0, \\
 (D_yD_x - 2) \tau_n \cdot \tau_0 = -2\tau_{n+1} \tau_{n-1}.
 \end{array} \right.
\end{align*}
$$

(29)

By taking the variables transformation, \(x_1 = x, x_2 = it \) and \(x_1 = -y, x_2 = -it \), we can rewrite \(\tau_n \) as

$$
\tau_n = \prod_{j=1}^{N} e^{\xi_j + \eta_j} \left| c_i \delta_{ij} + \frac{1}{p_i + q_j} \left(-\frac{p_i}{q_j} \right)^n \right|,
$$

(30)

with

$$
\begin{align*}
 \xi_i &= -\frac{1}{p_i} y + p_ix + i p_i^2 t + \xi_0, \\
 \eta_j &= -\frac{1}{q_j} y + q_j x - i q_j^2 t + \eta_{j0}.
\end{align*}
$$

Furthermore, if we set

$$
\begin{align*}
 f(x,y,t) &= \frac{\tau_0}{C}, \\
 g(x,y,t) &= \frac{\tau_1}{C}, \\
 h(x,y,t) &= \frac{\tau_{-1}}{C},
\end{align*}
$$

(31)

where \(C = \prod_{j=1}^{N} e^{\xi_j + \eta_j} \), then the bilinear equations (29) can be as the following.

$$
\begin{align*}
 \left\{ \begin{array}{l}
 (D_x^2 + iD_t) g(x,y,t) \cdot f(x,y,t) = 0, \\
 (D_yD_x + 2) f(x,y,t) \cdot f(x,y,t) = 2g(x,y,t)h(x,y,t),
 \end{array} \right.
\end{align*}
$$

(32)

After simple algebra calculation, it follows that

$$
\begin{align*}
 f &= \left| M^{(0)}_{1j} \right|_{N \times N}, \\
 g &= \left| M^{(1)}_{1j} \right|_{N \times N}, \\
 h &= \left| M^{(-1)}_{1j} \right|_{N \times N}.
\end{align*}
$$

(33)

By substituting the parameters constrains (24) and (25), we can obtain

$$
\begin{align*}
 M^{(n)}_{1j}(x,y,t) &= M^{(-n)}_{M+1,M+j}(x,y,-t), \\
 M^{(n)}_{i,M+j}(x,y,t) &= M^{(-n)}_{j,M+i}(x,y,-t), \\
 M^{(n)}_{M+i,j}(x,y,t) &= M^{(-n)}_{j,M+i}(x,y,-t), \\
 M^{(n)}_{2M+1,M+i,j}(x,y,t) &= M^{(-n)}_{2M+1,j,M+i}(x,y,-t), \\
 M^{(n)}_{i,2M+1,2M+1,j}(x,y,t) &= M^{(-n)}_{j,2M+1,2M+1}(x,y,-t).
\end{align*}
$$

(34) \quad (35) \quad (36) \quad (37) \quad (38) \quad (39)

Thus, we have

$$
\begin{align*}
 f(x,y,t) &= f(x,y,-t), \\
 g(x,y,-t) &= h(x,y,t)
\end{align*}
$$

and then Eq. (32) reduces into Eq. (27). Therefore, the proof of Theorem 2 is completed.

4 Dynamics of the soliton solutions

In this section, we would like to present the concrete form of the one-soliton solution with the periodic background and the explicit form of the two-soliton solutions on constant and periodic backgrounds. Furthermore, we also give the asymptotic behaviour of the two-soliton solution.

4.1 The periodic background

When \(N = 1 \), Theorem 2 yields the following solution

$$
\begin{align*}
 u(x,y,t) &= \sqrt{2}e^{i\theta} \frac{M^{(1)}_{11}}{M^{(0)}_{11}} \\
 &= \sqrt{2}e^{i\theta} \frac{c_1 e^{-i(\xi_1 + \eta_1)}}{c_1 e^{-i(\xi_1 + \eta_1)} + \frac{1}{p_1 + q_1} \left(-\frac{p_1}{q_1} \right)}. \\
\end{align*}
$$

(41)

If we set \(p_1 = m + ni, c_1 = r + di \), where \(m, n, r, d \) are real numbers, then (41) is expressed as

$$
\begin{align*}
 u(x,y,t) &= \sqrt{2}e^{i\theta} \frac{e^{-i(\alpha + \beta)}}{e^{-i(\alpha + \beta)} + \frac{1}{m+n+i(r+d)}} \\
 &= \frac{1}{m+n+i(r+d)}.
\end{align*}
$$

(42)
and \(\alpha = \frac{2m}{m^2 + 2} + 2n \), \(\beta = -2m + \frac{2m}{m^2 + 2}y + \xi_{01} + \eta_{01} \). Clearly, the solutions are periodic in both \(x \) and \(y \) with period \(2n \) and \(\frac{2m}{m^2 + 2} \) respectively when \(p_1 \) is purely imaginary. In this paper, regular solutions (4.1) provide the periodic background for higher-order soliton solution (see Fig. 3).

Fig. 3: Periodic solution with parameter values \(\xi = 0, \eta = 0, k = 1 \), \(p_1 = i, q_1 = i, c_1 = 2 + i \).

4.2 Two-soliton solutions on both constant and periodic backgrounds

By taking \(N = 2 \), we can express two-soliton solutions on the constant background as

\[
\begin{align*}
\Delta u = \sqrt{2}e^{i\xi} \frac{g}{f}, \tag{42}
\end{align*}
\]

where

\[
\begin{align*}
f &= \begin{vmatrix}
M_{1,1}^{0} & M_{1,2}^{0} \\
M_{2,1}^{0} & M_{2,2}^{0}
\end{vmatrix},
g &= \begin{vmatrix}
M_{1,1}^{1} & M_{1,2}^{1} \\
M_{2,1}^{1} & M_{2,2}^{1}
\end{vmatrix}.
\end{align*}
\]

Let \(p_1 = \rho e^{i\theta}, \rho \neq 0 \), then

\[
\begin{align*}
f &= c_1^2 e^{-(\xi_1 + \xi_2) + n_1 + n_2)} + \frac{c_1}{p_1 + p_2} e^{-(\xi_1 + n_1)} \\
&\quad + \frac{c_1}{p_1 + p_2} e^{-(\xi_2 + n_2)} - \frac{1}{(p_1 + p_2)^2} - \frac{1}{4p_1p_2},
\end{align*}
\]

\[
\begin{align*}
g &= c_1^2 e^{-(\xi_1 + \xi_2 + \xi_1 + n_2)} + \frac{c_1}{p_1 + p_2} \left(\frac{p_2}{p_1} e^{-(\xi_1 + n_1)} + \frac{1}{(p_1 + p_2)^2} \right),
\end{align*}
\]

where

\[
\begin{align*}
-\left(\xi_1 + n_1\right) &= -2\rho \cos \theta x + \frac{2\cos \theta}{\rho} y + 2\rho^2 \sin 2\theta t - \xi_{10} - \eta_{10}, \\
-\left(\xi_2 + n_2\right) &= -2\rho \cos \theta x + \frac{2\cos \theta}{\rho} y - 2\rho^2 \sin 2\theta t - \xi_{10} - \eta_{10}.
\end{align*}
\]

We define the soliton moving along the line

\[
-2\rho \cos \theta x + \frac{2\cos \theta}{\rho} y + 2\rho^2 \sin 2\theta t - \xi_{01} - \eta_{01}
\]

as Soliton 1, and the soliton moving along the line

\[
-2\rho \cos \theta x + \frac{2\cos \theta}{\rho} y - 2\rho^2 \sin 2\theta t - \xi_{02} - \eta_{02}
\]

as Soliton 2. Without loss of generality, we assume that \(0 < \theta < \frac{\pi}{2} \) and \(2\rho \cos \theta > 0 \). Then these two solitons possess the following asymptotic forms:

I) Before collision \((t \to -\infty) \)

Soliton 1 \((-\xi_1 + \eta_1) \to 0, -\xi_2 + \eta_2) \to -\infty\)

\[
\frac{c_1}{}d_1 e^{-(\xi_1 + \eta_1)} + \frac{sin^2 \theta}{2p \cos \theta}.
\]

Soliton 2 \((-\xi_2 + \eta_2) \to 0, -\xi_1 + \eta_1) \to -\infty\)

\[
\frac{c_2}{-\xi_2 + \eta_2)} + \frac{sin^2 \theta}{2p \cos \theta}.
\]

II) After collision \((t \to +\infty) \)

Soliton 1 \((-\xi_1 + \eta_1) \to 0, -\xi_2 + \eta_2) \to +\infty\)

\[
\frac{c_1}{}d_1 e^{-(\xi_1 + \eta_1)} + \frac{sin^2 \theta}{2p \cos \theta}.
\]

Soliton 2 \((-\xi_2 + \eta_2) \to 0, -\xi_1 + \eta_1) \to +\infty\)

\[
\frac{c_2}{-\xi_2 + \eta_2)} + \frac{sin^2 \theta}{2p \cos \theta}.
\]

where \(d_1 = 2\sin^2 \theta + \sin 2\theta - 1, d_2 = 2\sin^2 \theta - \cos 2\theta - 1 \) and \(R = -\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} \).

Based on the above asymptotic analysis, we conclude that these two solitons undertake the elastic collisions. As their amplitudes satisfy |\(u^{-\xi_1 + \eta_1} | = |u^{\xi_1 + \eta_1 + \Delta} |, i = 1, 2 \), and two solitons undertake a phase shift \(-\Delta \), under some parameter choices, three types of two-soliton, that is, anti-dark-anti-dark soliton, anti-dark-dark soliton and dark-dark soliton on the constant background can be obtained (see Figs. 4 (a)-(c)).

Next, two-soliton solutions on the periodic background can be derived when \(N = 3 \) in Theorem 2. By selecting the different parameters, the same three types of two-soliton appear on the periodic background (see Figs. 4 (d)-(f)).

4.4 Four-soliton solutions on both constant and periodic backgrounds

Likewise, we construct the four-soliton solutions on the constant and periodic background when \(N = 4 \) and \(N = 5 \) respectively. Four-soliton solutions describe the superposition of two-soliton. As illustrated in Fig. 4, twosoliton solutions are presented as three patterns, so four-soliton solutions have more different types. By adjusting different parameter values, five types of solutions can be obtained, that is, 4-dark soliton, 3-dark-1-anti-dark soliton, 2-dark-2-anti-dark soliton, 1-dark-3-anti-dark soliton, and 4-anti-dark soliton (see Fig. 5). Similarly, when \(N = 5 \), we also have five types of solutions

[Note: The image and diagram referenced in the text are not translated.]
describe the concrete solutions in terms of the dynamical behaviors of two-soliton solutions and the elasticity of the collisions of two-solitons. Typical two- and four-soliton solutions on different backgrounds can be referred to as Figs. 4 - 6. Finally, we conclude two dynamical behaviours of multi-soliton solutions. One is $N + 1$ types of N-soliton solutions on the constant background with even N; another is the N-soliton solutions on the periodic background with odd one.

Acknowledgments

We would like to thank Chengfa Wu for the helpful discussions on this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11701382).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.
Fig. 6: Four-soliton solutions on the periodic backgrounds with parameter values $\xi = 0, \eta = 0, k = 1$ and (a) $p_1 = 3 + i, p_2 = 2 + i, p_3 = 3 - i, p_4 = 2 - i, p_5 = 3i, q_1 = 3 - i, q_2 = 2 - i, q_3 = 2 + i, q_4 = 3i, c_1 = 1 + i, c_2 = 2 + i, c_3 = 1 + i, c_4 = 2 + i, c_5 = 3i$.

References

1. Ablowitz, M.J., Musslimani Z.H.: Integrable nonlocal non-linear Schrödinger equation. Phys. Rev. Lett. 110, 064105(2013).
2. Bender, C.M., Boettcher, M.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246(1998).
3. Bender, C.M., Boettcher, S., Melisinger, P.N.: PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229(1999).
4. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. Phys. Rev. E. 91, 033202(2015).
5. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity. 29(2), 319–324(2016).
6. Ma, L.Y., Zhu, Z.N.: n-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation. Appl. Math. Lett. 59, 115–121(2016).
7. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity. 31(12), 5385–5409(2018).
8. Chen, K., Zhang, D.J.: Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction. Appl. Math. Lett. 75, 82–88(2018).
9. Gürses, M., Pekcan, A.: Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 59, 051501(2018).