The Primary Results of the Treating Adult Smokers at Risk for Weight Gain with Interactive Technology (TARGIT) Study

Karen C. Johnson1, Fridtjof Thomas1, Phyllis Richey1, Quynh T. Tran1, Fran Tylavsky1, Danielle Miro2, and Mace Coday1

Objective: To evaluate whether a behavioral weight management program combined with a smoking cessation program delivered via interactive technology could prevent postcessation weight gain.

Methods: Three hundred and thirty young adult smokers, age 18 to 35 years, were randomized to a smoking cessation program alone (comparison group), which included behavioral counseling and nicotine replacement, or to a behavioral weight management program adapted from the Look AHEAD trial plus the same smoking cessation program (intervention group).

Results: The Treating Adult Smokers at Risk for Weight Gain with Interactive Technology study randomized 164 participants to the comparison group and 166 participants to the intervention group. On average, the participants gained 0.91 kg after 24 months in the trial (comparison group 1.45 kg and intervention group 0.32; P = 0.157). The only variable systematically affecting weight change over time was smoking abstinence, in which those who were abstinent, on average, gained 0.14 kg more per month compared with those who continued to smoke (P < 0.001). In exploratory analyses, the intervention participants who were abstinent at 6 months had numerically smaller weight gains compared with abstinent participants in the comparison group, but these differences were not statistically significant.

Conclusions: Providing an intensive weight gain prevention program combined with a smoking cessation program via interactive technology was not associated with greater long-term weight gain prevention.

Introduction

In the United States, the rates of overweight and obesity continue at epidemic levels despite the well-known adverse health consequences and public health awareness efforts to reverse these trends (1-3). Continued weight gain commonly occurs throughout adulthood, and the age group with the fastest rate of weight gain has been shown to be young adults (4,5). Many research studies have shown that behavioral weight loss interventions combining both dietary modification and increased physical activity are most effective in achieving weight loss (6-8). Moreover, studies of new modes of delivery of behavioral weight loss or weight maintenance interventions using interactive technology have shown promise (9-13). Unfortunately, many previous studies in young adults have not identified interventions that have long-term effects on weight gain (14).

Cigarette smoking is the leading preventable cause of morbidity and mortality in the United States today (15). The prevalence of current smoking is higher for young adults aged 18 to 34 years old than for all adults (16). While quitting smoking is associated with numerous health benefits, one side effect of quitting smoking is unwanted weight gain, which occurs in about 80% of quitters (17). In a study of young adults, weight gain attributable to smoking cessation was found to be 4.2 kg to 6.6 kg over a 7-year follow-up (18). In addition to actual weight gain following smoking cessation, concerns about postcessation weight gain...
Weight Gain Prevention After Smoking Cessation

Johnson et al.

Methods

The Treating Adult Smokers at Risk for Weight Gain with Interactive Technology (TARGIT) study was designed to test the hypothesis that a smoking cessation program plus a behavioral weight loss or weight gain prevention intervention delivered through interactive technology (intervention group) would significantly attenuate or prevent weight gain associated with smoking cessation at 24 months after enrollment, compared with the smoking cessation program alone (comparison group), in young adult smokers. The University of Tennessee Health Science Center, Department of Preventive Medicine, clinical trials research center in Memphis, Tennessee, was the study site. TARGIT is also part of a UO1 cooperative group called Early Adult Reduction of Weight through Lifestyle Intervention (EARLY) that is funded by the National Heart, Lung, and Blood Institute to study weight loss and weight gain prevention in young adults by using interactive technology over a 24-month period (23). The project was approved by the Institutional Review Board (IRB) at the University of Tennessee Health Science Center, and all participants provided informed consent and received a small IRB-approved stipend for time and travel to attend clinic visits.

All randomized participants in the TARGIT study were required to be young adult smokers (18-35 years old) who reported smoking at least 10 cigarettes per day, had BMI < 40 kg/m², and were willing to stop smoking and wanted to not gain weight. The lower boundary eligibility criteria for BMI was initially ≥ 22 but was decreased to ≥ 20 during the recruitment phase in an effort to increase enrollment (IRB-approved change became effective August 8, 2011; this change did not affect the baseline balance in the two study arms). Additionally, TARGIT participants were required to have access to a telephone and the Internet, demonstrate the ability to access a specific website, and demonstrate the ability to receive and respond to email. Furthermore, interested persons had to be willing to accept random assignment and be able to participate in a 24-month behavioral lifestyle change intervention. A full list of inclusion and exclusion criteria has been previously published (24).

Recruitment for the TARGIT study took place over a 2-year period from December 2010 to August 2012 and included both traditional and technology-based methods. During a phone screen, the TARGIT study was explained and eligibility criteria were assessed. Persons who were eligible and interested were scheduled for an on-site screening visit, during which written informed consent was obtained, and participants were evaluated for additional study eligibility requirements. Eligible and willing participants were asked to record dietary intake online at the study website and were scheduled for a randomization visit. Only those eligible who demonstrated successful dietary recording were randomized, as self-monitoring of dietary intake was part of the intervention group activities. Participants were individually randomized in blocks of four (allocation ratio 1:1) (25). Neither the participants nor the study staff who provided the intervention were blinded to group assignment. However, study personnel who were collecting and assessing outcome data, such as weight, and the investigators, including the principal investigator, were blinded to treatment assignment (did not know a participant’s group assignment status). All participants were asked not to reveal their group assignment to blinded clinic personnel.

At study visits, participants completed questionnaires regarding smoking status, dietary intake (the National Cancer Institute’s Diet History Questionnaire), physical activity (Global Physical Activity Questionnaire), and mood (Center for Epidemiologic Studies Depression Scale) (26-28). Weight was measured in the study clinic by using a standardized protocol created by the EARLY consortium on a calibrated scale.

Participants randomized to the smoking cessation alone program (comparison group) received a smoking cessation handbook, 6 weeks of nicotine patches dosed according to the reported level of smoking, access to the interactive study website for smoking cessation, and one in-person session and five intervention calls via a proactive quit line over a 6-month period. Text and email messages were also used for the delivery of the smoking cessation program for 24 months. All participants also received a smoking cessation app on their iPod designed by TARGIT for use.

Participants randomized to the smoking cessation plus weight management program (intervention group) received the same smoking cessation program plus a behavioral weight loss or weight gain prevention intervention (depending on baseline weight category) program, delivered via interactive technology. The dietary, physical activity, and behavioral components of the weight management program for the intervention group were adapted from the Look AHEAD behavioral weight loss program and tailored to young adult smokers (29). The frequency of scheduled contacts varied from weekly during the most intensive phase, to monthly, and then to quarterly to transition to maintenance and occurred throughout the 24-month study period. The primary goal of the intervention was to provide participants with the core knowledge and behavioral skills necessary to help achieve and maintain their desired reduction in body weight or prevention of weight gain during smoking cessation. Participants were provided with fundamental information about modifying energy intake and increasing energy output, and they learned how to monitor dietary intake and physical activity. In addition, weight management sessions presented specific content and
application of behavior modification, stimulus control, problem solving, and cognitive restructuring techniques to promote weight loss or weight gain prevention.

The interactive technology for both groups consisted of the use of an iPod Touch plus content delivered via podcasts, email, and text messages. Live online webinars for the weight loss or weight gain prevention sessions were available to the intervention group only. All participants received instruction on how to use the iPod and their personalized interactive study website, including accessing additional information and resources on smoking cessation (both groups) and weight loss or weight gain prevention (intervention only). Reminders to use the study interactive technology were delivered by text message, email message, and reminder phone calls. The engagement data shown represents only active engagement with the interactive technology or the interventionists and does not include passive reminders by text, email, or phone message without a verified response from the participant.

The study had a targeted sample size of 330 participants and was powered for a mean difference in absolute weight change (in

Figure 1 TARGIT CONSORT diagram.
kilograms) between baseline and 24-months follow-up of 3.5 kg (80% power, type I error rate of $\alpha = 5\%$, assuming a 20% loss to follow-up). The primary outcome was body weight change as measured by blinded trained staff on a calibrated weight scale by using a standardized protocol at baseline and at 6-months, 12-months, and 24-months follow-up study clinic visits.

The secondary outcome, smoking cessation, was assessed as biochemically verified 7-day point prevalence abstinence. Abstinence was only concluded if a participant self-reported not smoking and exhaled carbon monoxide was ≤ 10 ppm. Salivary cotinine was collected only at the 24-month visit, and values ≥ 100 ng/mL were considered to be consistent with smoking.

Participants who reported being pregnant at any study visit had their weight measured, but that weight data was not used during the analysis of the primary outcome at that visit. One participant in each group was pregnant at 12 months, and three and four participants were pregnant in the comparison and intervention groups, respectively, at 24 months. The primary analysis of weight change is an intent-to-treat analysis (with every enrolled participant included in the group of random assignment) based on a linear mixed-effects model for longitudinal data using SAS PROC MIXED version 9.4 with SAS/STAT 13.2 (SAS Institute Inc., Cary, North Carolina) as well as R (version 3.2.3; The R Foundation for Statistical Computing, Vienna, Austria) with package lme4, focusing on significant fixed effects that can “explain” the different slopes (weights as

| TABLE 1 Baseline characteristics by treatment assignment |
|----------------|----------------|----------------|--------------|
| | All ($n = 330$) | Comparison ($n = 164$) | Intervention ($n = 166$) | P value |
| Age, mean (SD) | 29.70 (4.18) | 30.01 (3.94) | 29.39 (4.40) | 0.309 |
| Gender, n (%)| | | | |
| Female | 161 (48.79) | 78 (47.56) | 83 (50.00) | 0.658 |
| Male | 169 (51.21) | 86 (52.44) | 83 (50.00) | |
| Hispanic or Latino, n (%) | 11 (3.33) | 6 (3.66) | 5 (3.01) | 0.770 |
| Race, n (%) | | | | |
| Black or African American (only selection) | 123 (37.27) | 67 (40.85) | 56 (33.73) | 0.422 |
| White (only selection) | 189 (57.27) | 89 (54.27) | 100 (60.24) | |
| Other (incl. multiple) | 18 (5.45) | 8 (4.88) | 10 (6.02) | |
| Education, n (%) | | | | |
| High school graduate or GED | 108 (32.73) | 55 (33.54) | 53 (31.93) | 0.756 |
| At least some vocational or training school after high school | 222 (67.27) | 109 (66.46) | 113 (68.07) | |
| Personal income (past 12 mo), n (%) | | | | |
| $< 16,000$ | 144 (43.64) | 70 (42.68) | 74 (44.58) | 0.960 |
| $16,000 to $49,999$ | 142 (43.03) | 73 (44.51) | 69 (41.57) | |
| $\geq 50,000$ | 31 (9.39) | 15 (9.15) | 16 (9.64) | |
| Don’t know | 13 (3.94) | 6 (3.66) | 7 (4.22) | |
| Cigarettes per day, mean (SD) | 17.89 (7.73) | 18.42 (8.87) | 17.36 (6.41) | 0.416 |
| Years smoked, mean (SD) | 11.86 (4.92) | 12.32 (4.79) | 11.41 (5.02) | 0.070 |
| Quit attempts in past 12 mo, n (%) ($n = 11$ missing) | 184 (57.68) | 87 (55.06) | 97 (60.25) | 0.349 |
| Weight change during last quit attempt, n (%) | | | | |
| Gained weight | 149 (47.15) | 76 (48.10) | 73 (46.20) | 0.704 |
| Lost weight | 8 (2.53) | 5 (3.16) | 3 (1.90) | |
| Stayed the same weight | 159 (50.32) | 77 (48.73) | 82 (51.90) | |
| Weight (kg), mean (SD) | 85.65 (17.30) | 85.52 (17.40) | 85.78 (17.24) | 0.894 |
| BMI, mean (SD) | 29.19 (4.97) | 29.23 (5.17) | 29.16 (4.78) | 0.904 |
| BMI group, n (%) | | | | |
| Normal (18.5-24.9) | 76 (23.03) | 42 (25.61) | 34 (20.48) | 0.138 |
| Overweight (25.0-29.9) | 124 (37.58) | 53 (32.32) | 71 (42.77) | |
| Obesity (> 30) | 130 (39.39) | 69 (42.07) | 61 (36.75) | |
| CES-D, mean (SD) | 8.47 (6.28) | 9.05 (6.92) | 7.89 (5.53) | 0.182 |
| Total calories, mean (SD) | 2,534 (1,989) | 2,761 (2,424) | 2,310 (1,411) | 0.298 |
| Total moderate or vigorous physical activity, (MET-min/wk), mean (SD) | 5,417 (8,369) | 5,239 (7,642) | 5,591 (9,046) | 0.564 |

CES-D, Center for Epidemiologic Studies Depression Scale; MET, metabolic equivalent; GED, general equivalency diploma.
participants progress) once (independent) random effects on intercept and slope are in the model (30). In addition, a sensitivity analysis was conducted in which missing 24-month weight outcomes for all participants were imputed based on the observed outcomes in the control group as well as a hot-deck multiple imputation. Informative missingness was investigated by determining whether known covariates were related to loss-to-follow-up status based on the (marginal) statistical significance (on 5% level) of the covariates in a multivariable logistic regression model, with the binary outcome being “24-month visit attended yes/no.” Exploratory analyses elaborating on smoking status and weight change used subgroup analyses that utilized the primary outcome model and graphical exposition with pairwise comparisons at various time points. Additional detail about the statistical analyses can be found in the Supporting Information.

Smoking cessation was a secondary outcome and used biochemically verified 7-day point prevalence.

Results

TARGET enrolled and randomized all planned 330 participants (see CONSORT diagram, Figure 1) (24). Table 1 shows the demographics

![Figure 2 Weight change by treatment assignment.](image)

![Figure 3 Smoking cessation rates by treatment assignment.](image)
Participants were, on average, 30 years old; 51% were males, the majority were either Caucasian (57%) or African American (37%), and the majority had some educational training after high school (67%). The mean BMI of TARGIT participants at baseline was 29, with more than 76% falling in the overweight or obesity category. Systematic differences in baseline weight were present by gender, race, and signs of depressed mood. These differences were included as fixed-effects variables (intercept) in the primary analysis model. Males were, on average, 13 kg heavier (P < 0.001), and African Americans were, on average, 4.9 kg heavier compared with Caucasians (P = 0.025) (Center for Epidemiologic Studies Depression Scale score ≥ 16; P < 0.001). All TARGIT participants were cigarette smokers and, on average, smoked 18 cigarettes per day and had smoked for an average of 12 years. The majority of TARGIT participants (57%) had attempted to quit in the past 12 months, and 47% had gained weight during their previous quit attempt. As expected, the randomization procedure successfully balanced those features between the study arms (all P > 0.05).

Despite intensive retention activities and incentives throughout the trial, attendance at study clinic visits declined over time. Figure 2 lists all available weight measurements at the follow-up study clinic visits. The only baseline characteristic identified as predictive of subsequent loss to follow-up at 24 months was the baseline BMI group (P = 0.035), in which the group in the overweight category (BMI 25.0-29.9) was less likely to be lost to follow-up compared with the group in the normal weight category (BMI 18.5-24.9; odds ratio = 0.442; 95% CI: 0.229-0.852). Importantly, however, the randomization group assignment was not associated with loss to follow-up (P = 0.129).

The average weight gain for all TARGIT participants was 0.007 kg/mo (average slope of weight for all participants). The intervention group gained, on average, 0.48, 0.78, and 0.32 kg at 6-, 12-, and 24-months follow-up, whereas the comparison group gained 1.33, 0.85, and 1.45 kg, respectively (6 mo, P = 0.060; 12 mo, P = 0.442; and 24 mo, P = 0.157; Figure 2 and Supporting Information Table S1).

In an exploratory analysis, we imputed weights for the 105 persons without a measured weight at 24 months (multiple imputation), and our finding of no difference between the randomized groups did not change (see Supporting Information).

The only variable systematically affecting weight change over time was smoking abstinence during the past 7 days, in which those who were abstinent gained, on average, 0.14 kg more per month compared with those who did smoke (P < 0.001; 95% CI: 0.04-0.26 kg/mo). Note, baseline BMI was not significantly associated with subsequent weight change during follow-up (P = 0.185).

Because of the clear dependence of weight change on smoking status (Figure 4 and Supporting Information Table S3), we performed two exploratory subgroup analyses. First, we fitted the identified mixed-effects model for the subgroup of 64 participants who reported abstinence at 6 months as well as for the subgroup of 266 participants who were smoking at 6 months. The treatment assignment was not statistically significant for weight change over time in either subgroup (P = 0.975 and P = 0.925, respectively). Second, our graphical analysis (Figure 4) shows that persons who were abstinent at 6 months in both groups (solid lines) gained more weight than persons who were smoking (dotted lines). However, the intervention group participants who were abstinent at 6 months (black solid line) had numerically less weight gain at 6, 12, and 24 months compared with the comparison group participants who were abstinent (gray solid lines), but the difference was not statistically significant at any single time point (P = 0.216, 0.333, and 0.687 at 6, 12, and 24 months, respectively).
The 7-day point prevalence abstinence rates were the greatest at the 6-month visit in both the comparison and intervention groups and gradually declined through 24 months. There was no statistical difference in 7-day point prevalence abstinence rates between the two randomized groups at any follow-up time point (P = 0.90, 0.22, and 0.42 for the 6-, 12-, and 24-months follow-up, respectively; Figure 3 and Supporting Information S2). When point prevalence abstinence rates for individuals were followed over time, it was apparent that during the 24-month period, persons changed smoking category frequently (Supporting Information Figure S1). For example, of the 64 persons who were not smoking at 6 months, 26% had resumed smoking by 12 months, whereas 5% of the persons who were smoking at 6 months had quit smoking at the 12-month time point.

Active use of the interactive technology intervention components (including the individualized participant study website, iPod usage, webinar attendance, and phone calls) by the intervention participants varied over time (Supporting Information Figure S2). During the first month of the trial, all the intervention participants used some component of the interactive technology. However, over time, usage declined to the lowest usage by month 11 of the trial. Encouragement and reminders sent via email, text message, and phone calls for the intervention participants to engage in usage at 6, 12, 18, and 23 months resulted in significant improvements in usage. For example, usage more than doubled between months 11 and 12 after the reminders.

Discussion
Overall, the intent-to-treat results of the current investigation do not clearly demonstrate that a behavioral weight loss or weight gain prevention program using interactive technology after smoking cessation results in the prevention of weight gain compared with a smoking cessation program alone after 24-months follow-up. These results are similar to other trials (Cell Phone Intervention for You [CITY] and Innovative Approaches to Diet, Exercise, and Activity [IDEA]) in young adults that were part of the EARLY consortium, which have demonstrated that mobile-based technology may not improve weight loss (31,32). In contrast, recent findings from the Study of Novel Approaches to Weight Gain Prevention (SNAP), another EARLY trial in young adults that used self-regulation approaches that were initially delivered face-to-face and then followed by Internet-delivered maintenance approaches and frequent self-weighing, showed a reduction in weight gain (33). Unfortunately, these other EARLY trials in young adults were not primarily conducted with persons attempting to quit smoking and may not be generalizable to the smoking population of young adults.

Previous research has demonstrated that it is common for adults to gain weight, and that young adults are most at risk (5). On average, young adults gain 0.6 kg to 0.8 kg per year (4,5). Smoking cessation accelerates weight gain normally associated with aging (18). As seen in the comparison group in TARGIT, persons who were not smoking at 6 months had gained, on average, 3.22 kg by 24 months. In contrast, intervention group participants, who were not smoking had gained amounts similar to the aging general population and weighed, on average, 1.06 kg less than the comparison group. The attenuated weight gain by the intervention group suggested that the behavioral change program delivered by interactive technology in TARGIT may be of assistance to prevent weight gain when smoking cessation is contemplated. Additional research may be warranted to determine whether a face-to-face program (similar to SNAP) combined with an interactive technology delivery approach can be effective in preventing weight gain in young adult smokers trying to quit.

TARGIT also clearly demonstrates the profound effect of smoking on the suppression of weight gain over time in young adults. At all time points, participants in both groups who were smoking had gained less weight or maintained their weight compared with those who were absten. These findings are similar to previous literature that has demonstrated short- and long-term weight gain after smoking cessation (34-36).

TARGIT’s smoking cessation rates (24% at 6 months) are similar to published studies using interactive technology as an aid to quitting. For example, in a study using mobile text messaging, 25% of the actively treated group had quit at 26 weeks (37). In a meta-analysis in Treating Tobacco Use and Dependence: 2008 Update, a tobacco quit line combined with nicotine replacement therapy (NRT) resulted in a smoking cessation rate of 28.1% (15). Thus, it appears that the weight gain prevention intervention did not adversely affect smoking cessation rates in TARGIT participants. TARGIT also clearly demonstrates the high recidivism rates seen in young adult smokers. These high recidivism rates in both groups may have affected the ability to detect weight differences between randomized groups, as persons who started smoking again did not gain weight.

The TARGIT study had strengths and limitations. The strengths of the study included using the best available evidence to inform the weight gain prevention behavioral intervention and the randomized trial design. A limitation was that the study sample was restricted to only young adults, and therefore the findings may not generalize to other age groups. The study was also limited by the lost to follow-up rate for measured weights by 24 months, despite intensive retention activities and incentives to participate. The loss of outcome data, while not differential by treatment assignment, most likely resulted in the reduced precision of our estimated effects and the power to see a difference between the intervention and comparison groups, and it may in part have been responsible for our null findings. Another limitation of TARGIT was the choice to provide NRT to both groups, as NRT use has been associated with attenuation of postcessation weight gain (38,39). TARGIT recognized this issue but chose to provide NRT to improve smoking cessation rates in both groups in order to test our primary hypothesis regarding weight gain prevention during smoking cessation. Our approach was consistent with Clinical Practice Guidelines (15), which advocate behavioral and pharmaceutical treatment for all smokers wishing to quit. The finding that a behavioral change program delivered via interactive technology may not assist with weight loss or weight gain prevention long term may have been related to an additional limitation of the TARGIT study: the observed waning use of the interactive technology over time. Thus, lower engagement in the intervention over time could have also contributed to our null results. Additional investigation is needed to examine for whom these interactive technologies appear to be the most effective in assisting with weight loss or weight gain prevention and how to maintain motivation of use over time.
Conclusion

Providing a weight gain prevention program via interactive technology was not associated with less weight gain long term in smokers attempting to quit. The weight gain prevention program did not appear to adversely affect smoking cessation rates. However, recidivism to smoking was high in this long-term study, which may have affected the ability to detect weight differences among the randomized groups.

References

1. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int J Obes Relat Metab Disord 1998;22:3–47.
2. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001;286:1195-1200.
3. Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289:76-79.
4. Williamson DF, Kahn HS, Remington PL, Anda RF. The 10-year incidence of overweight and major weight gain in US adults. Arch Intern Med 1990;150:665-672.
5. Ball K, Crawford D, Ireland P, Hodge A. Patterns and demographic predictors of 5-year weight change in a multi-ethnic cohort of men and women in Australia. Public Health Nutr 2003;6:269-281.
6. Wadden TA, Foster GD. Behavioral treatment of obesity. Med Clin North Am 2000;84:441-461.
7. Wing RR. Behavioral approaches to the treatment of obesity. In: Bray GA, Bouchard C, James WPT, eds. Handbook of Obesity. New York: Marcel Dekker Inc; 1998: 855-873.
8. Wadden TA, Butryn ML, Wilson C. Lifestyle modification for the management of obesity. Gastroenterology 2007;132:2226-2238.
9. Tate DF, Wing RR, Winett RA. Using internet technology to deliver a behavioral weight loss program. JAMA 2001;285:1172-1177.
10. Tate DF, Jackvony EH, Wing RR. Effects of internet behavioral counseling on long-term maintenance of weight loss. Obes Res 2004;12:320-329.
11. Harvey-Berino J, Pintauro S, Buzzell P, Gold EC. Effect of internet support on the long-term maintenance of weight loss. Int J Obes Relat Metab Disord 2002;26:133-136.
12. Harvey-Berino J, Pintauro S, Buzzell P, et al. Does using the internet facilitate the long-term maintenance of weight loss? Int J Obes Relat Metab Disord 2002;26:1254-1260.
13. Wing RR, Tate DF, Gorin AA, Raynor HA, Fava JL. A self-regulation program for maintenance of weight loss. New Eng J Med 2006;355:1563-1571.
14. Hebein L, Chey T, Allman-Farinelli M. Lifestyle intervention for preventing weight gain in young adults: a systematic review and meta-analysis of RCTs. Obes Rev 2012;13:692-710.
15. Tobacco Use and Dependence Guideline Panel. Treating Tobacco Use and Dependence: 2008 Update. Rockville, MD: US Department of Health and Human Services; 2008.
16. U.S. Department of Health and Human Services. Preventing Tobacco Use Among Youth and Young Adults: A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. 2012. https://www.cdc.gov/tobacco/data_statistics/sgr/2012/index.htm. Accessed August 7, 2017.
17. Froom P, Melamed S, Benbassat J. Smoking cessation and weight gain. J Fam Pract 1998;46:460-464.
18. Klesges RC, Ward KD, Ray JW, Catter G, Jacobs DR Jr, Wagenknecht LE. The prospective relationships between smoking and weight in a young, biracial cohort: the Coronary Artery Risk Development in Young Adults Study. J Consult Clin Psychol 1998;66:987-993.
19. Klesges RC, Meyers AW, Klesges LM, La Vasque ME. Smoking, body weight, and their effects on smoking behavior: a comprehensive review of the literature. Psychol Bull 1989;106:204-230.
20. Hall SM, Tunstall CD, Vila KL, Duffy J. Weight gain prevention and smoking cessation: cautionary findings. Am J Public Health 1992;82:799-803.
21. Priez PL, McBride CM, Hellerstedt W, et al. Smoking cessation in women concerned about weight. Am J Public Health 1992;82:1238-1243.
22. Danielsson T, Rossner S, Westin A. Open randomised trial of intermittent very low energy diet together with nicotine gum for stopping smoking in women who gained weight in previous attempts to quit. BMJ 1999;319:490-493, discussion 494.
23. Lytle LA, Svetkey LP, Patrick K, et al. The EARLY trials: a consortium of studies targeting weight control in young adults. Transl Behav Med 2014;4:304-313.
24. Coday M, Richey P, Thomas F, et al. The recruitment experience of a randomized clinical trial to aid young adult smokers to stop smoking without weight gain with interactive technology. Contemp Clin Trials Commun 2016;2:61-68.
25. Meinert CL, Tonascia S. Clinical Trials: Design, Conduct, and Analysis. New York: Oxford University Press; 1986.
26. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health 2009;6:790-804.
27. Radloff L. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1977;1:385-401.
28. Applied Research, Cancer Control and Population Sciences, National Cancer Institute. Diet History Questionnaire II & Canadian Diet History Questionnaire II (C-DEQII). http://appliedresearch.cancer.gov/dbaq2/. Accessed May 5, 2017.
29. Look AHEAD Research Group, Wadden TA, West DS, et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring) 2006;14:737-752.
30. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw 2015;67:1-48.
31. Svetkey LP, Batch BC, Lin PH, et al. Cell phone intervention for your (CITY): a randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology. Obesity (Silver Spring) 2015;23:2133-2141.
32. Iskicic JM, Davis KK, Rogers RJ, et al. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA 2016;316:1161-1171.
33. Wing RR, Tate DF, Espeland MA, et al. Innovative self-regulation strategies to reduce weight gain in young adults: the Study of Novel Approaches to Weight Gain Prevention (SNAP) randomized clinical trial. JAMA Intern Med. 2016;176:755-762.
34. Pomerleau CS, Pomerleau OF, Namencj RJ, Mehringer AM. Short-term weight gain in abstaining women smokers. J Subst Abuse Treat 2000;18:339-342.
35. Williamson DF, Madans J, Anda RF, Kleinman JC, Giovino GA, Byers T. Smoking cessation and severity of weight gain in a national cohort. New Eng J Med 1991;324:739-745.
36. Bush T, Lovejoy JC, Deprey M, Carpenter KM. The effect of tobacco cessation on weight gain, obesity, and diabetes risk. Obesity (Silver Spring) 2016;24:1834-1841.
37. Rodgers A, Corbett T, Bramley D, et al. Do u smoke after txt? Results of a randomized trial of smoking cessation using mobile phone text messaging. Tob Control 2005;14:255-261.
38. Dale LC, Schroder DR, Wolter TD, Croghan IT, Hurt RD, Offord KP. Weight change after smoking cessation using variable doses of transdermal nicotine replacement. J Gen Intern Med 1998;13:9-15.
39. Emont SL, Cummings KM. Weight gain following smoking cessation: a possible role for nicotine replacement in weight management. Addict Behav 1987;12:151-155.