Allelopathic effect of stressing sorghum on weed growth

Handsen Tibugari, Ngonidzaishe Manyeruke, Gerald Mafere, Murawu Chakavarika, Lovemore Nyamuzuwe, Pelagia Marumahoko and Ronald Mandumbu

Cogent Biology (2019), 5: 1684865
Allelopathic effect of stressing sorghum on weed growth

Handsen Tibugari1*, Ngonidzai She Manyeruke2, Gerald Mafere3, Murawu Chakavarika4, Lovemore Nyamuzuwe5, Pelagia Marumahoko6 and Ronald Mandumbu7

Abstract: The effect of stressing sorghum by leaf stripping on the emergence and growth of *Amaranthus hybridus* was investigated in 2018 at Henderson Research Station in Mazowe, Zimbabwe. The experiment was set up as a randomised complete block design with three treatments replicated 6 times. A control with *A. hybridus* only, and another with *A. hybridus* sprayed with atrazine were maintained for comparison. Stripping 2 leaves significantly (P < 0.001) inhibited *A. hybridus* height, leaf area, and dry weight compared to no stripping. Increasing leaf stripping intensity from 2 to 4 leaves caused an increase in *A. hybridus* height, leaf area, and dry weight, possibly because intense leaf stripping reduced the number of sorghum leaves available to capture photosynthetically active radiation required for photosynthesis, subsequently reducing the volume of photoassimilates channelled to sorghum roots for allelochemical production. Leaf excision may have created an additional sink that modified assimilate allocation at the expense of roots.

Keywords: Allelopathy; mechanical injury; weed establishment

1. Introduction

Sorghum (*Sorghum bicolor* (L.) Moench) is an important staple food crop in the semi-arid tropics (ICRISAT, 2004). It is most widely grown in areas where water availability is limited and frequently

ABOUT THE AUTHOR

The corresponding author is an agricultural researcher with keen interest on the use of natural products for weed and insect pest management. The work reported here was part of a series of experiments on the potential utilisation of sorghum allelopathy for weed management. An earlier article published by the sister journal, *South African Journal of Plant and Soil* (36(1): 41-50), and presented at the 8th World Congress on Allelopathy, focused on quantifying the major compound responsible for sorghum allelopathy, sorgoleone, in 353 sorghum accesses from eight African countries. Funds permitting, more studies focussing on different aspects of sorghum allelopathy could be conducted.

PUBLIC INTEREST STATEMENT

Sorghum cultivars can produce natural compounds that suppress certain weed species. Production of the natural weed-suppressing compounds can be influenced by various forms of stress, including those caused by living and non-living organisms. This gives farmers an opportunity to reduce production costs through less weeding and less herbicide application. Reduced weeding and reduced herbicide application also ensure that agricultural soils are not constantly disturbed, and that less herbicides with the potential to harm the environment are applied.

© 2019 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
subjected to drought (Deb, Bantilan, Roy, & Rao, 2004). Much of the crop is grown by small-scale farmers at the subsistence level (0.20–4.0 ha per household) (Akintayo & Sedgo, 2001). Apart from being an important food and industrial crop, sorghum produces a number of bioherbicidal phyto-toxins, or allelochemicals that can inhibit the growth of small-seeded weed species.

Allelochemicals are produced as tools for survival when neighbouring plants compete for resources (Maqbool, Wahid, Farooq, Cheema, & Siddique, 2013), and therefore act as a first line of defence against abiotic stresses (Asao et al., 2004; Jimanez et al., 2003). Various stress conditions substantially modulate the levels and types of allelochemicals biosynthesis (Maqbool et al., 2013). Temperature, UV radiation, water, and nutrient availability and competition stress have been identified as some of the key environmental factors that influence allelopathy (Croteau, Kutchan, & Lewis, 2000; Meiners, Kong, Ladwig, Pisula, & Lang, 2012). Ozone, heavy metals, and herbicides are also known to enhance allelochemical levels in plants (Rice, 1984). Changes in temperature modulate the allelochemicals production and their effectiveness. Dayan (2006) found that optimum root growth and sorgoleone production were at 30°C and decreased rapidly at temperatures below 25°C and above 35°C. Sorghum seeds treated with half strength Hoagland solution and 5 μg ml⁻¹ of IBA significantly increase root growth and sorgoleone content in grain sorghum roots (Uddin, Park, Kim, Park, & Pyon, 2010). In grain sorghum, cyanogenic glycoside level was significantly increased under drought (Maqbool et al., 2013). Applying mechanical pressure over developing seedlings stimulated root formation and not the biosynthesis of sorgoleone (Dayan, 2006). Competition stress can be a key factor in triggering the production of phytotoxins. The presence of other plants surrounding sorghum can exacerbate the impact of the environmental stress on the production of sorgoleone (Dayan, 2006). Rice seedlings cultivated with Echinochloa crus-galli L. Beauv. (barnyard grass) showed a concentration of momilactone B almost seven times higher than that in rice seedlings grown alone (Kato-Noguchi, 2011).

Weeds that emerge with or before the crop are the most competitive and result in the greatest yield loss (Swanton, Nkoa, & Blackshaw, 2015). Threshold levels of redroot pigweed (Amaranthus retroflexus L.), barnyard grass (Echinochloa crus-galli L.), common ragweed (Ambrosia artemisiifolia L.), and velvetleaf (Abutilon theophrasti Medic.) in corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and dry bean (Phaseolus vulgaris L.) may be 2–10 times higher for weeds emerging 3–4 weeks after the crop compared with those that emerge with the crop (Cardina, Regnier, & Sparrow, 1995; Dieleman, Hamill, Fox, & Swanton, 1996; Knezevic, Weise, & Swanton, 1994). Weeds that emerge later than the crop are much less competitive in terms of crop yield loss but still may be considered problematic if they influence crop harvestability or reduce crop quality (Swanton et al., 2015). Pre-emergence herbicides are usually applied against weeds that emerge with or before the crop. They remove much of the early season weed competition pressure on a crop and can protect yield better than post-emergent herbicides (Grains Research and Development Corporation [GRDC], 2015). However, concerns over environmental problems caused by herbicides and the growing number of herbicide-resistant weed biotypes suggest that alternative methods of weed management be explored.

Amaranthus hybridus (L.) has been reported to substantially reduce yields of maize, soybeans, cotton, sugarbeet, peas and sorghum (Holm, Plucknett, Pancho, & Herberger, 1977; Weaver & McWilliams, 1980). Additionally, herbicide resistance of Amaranthus hybridus has been reported for decades in different herbicide groups such as photosystem II inhibitors (Bhowmik, 2010; Hirschberg & McIntosh, 1983) and ALS inhibitors (Maertens, Sprague, Tranel, & Hines, 2004; Riar, Tehranchian, Norsworthy, & Nandula, 2015; Whaley, Wilson, & Westwood, 2006). In a manner similar to the application of pre-emergence herbicides against weeds, weeds that have a propensity to emerge with or before the crop may also be managed by the use of allelopathic crops that produce and exude highly phytotoxic compounds in their seedling stages of growth. Sorghum produces a high concentration of sorgoleone (2-hydroxy-5-methoxy-3-[8Z,11Z]-8,11,14-pentadecatriene]-p-benzoquinone), a highly potent bioherbicide, during the seedling stage through root exudation. Uddin et al. (2010) found that a high concentration of sorgoleone...
was produced in 5- to 10-day old sorghum seedlings. Sorgoleone interferes with several molecular target sites, including inhibition of photosynthesis in germinating seedlings (Dayan et al., 2010), and therefore has the potential to inhibit the growth of weeds that germinate with the crop.

The open-pollinated sorghum variety Shirikure produced high content of sorgoleone (185.6 μg mg⁻¹ of root fresh weight) when sorghum varieties that were reported by farmers to be allelopathic against weeds were assayed for sorgoleone content (Tibugari et al., unpublished data). The objective of the study was to examine the effects of leaf stripping IS9456 on emergence and early growth of *Amaranthus hybridus*.

2. Materials and methods

2.1. Study site

A pot experiment was conducted in a glasshouse at the Weed Research Unit at Henderson Research Station (17°34′0″S and 30°58′0″E) in Mazowe, Zimbabwe, 25 km from Harare. The average temperature in the glasshouse was 28°C. No artificial lighting was provided.

2.2. Experimental procedure

The treatments comprised *A. hybridus* + sorghum that received no stripping, *A. hybridus* + sorghum whose two bottom leaves were stripped and *A. hybridus* + sorghum whose four bottom leaves were stripped. Controls included *A. hybridus* that had no sorghum, and *A. hybridus* that was sprayed with atrazine. Leaf stripping was conducted 12 days after sorghum emergence. Leaf stripping was accomplished by cutting the required number of leaves at the junction between the leaf sheath and the stem (Mashingaidze et al., 2012) using a scalpel blade. Treatments were replicated 6 times.

Certified sorghum seed was purchased from K2 Seeds. The *A. hybridus* seed was obtained from the Weed Research Unit of Henderson Research Station. Pots measuring 10 cm top diameter and 15 cm height were used. Each pot was filled with 0.5 kg of sandy loam soil which was sterilized by autoclaving for 24 h at 100°C before the experiment. After filling the pots with soil, 2–3 seeds of sorghum were dibbled at the centre of the pot. Then, 20 seeds of *A. hybridus* were sown in a circular pattern around the sorghum seeds. This was meant to allow radial and even spread of lateral roots of sorghum. Prior to the commencement of the experiment, a germination test was conducted to assess the germinability of both the sorghum and *A. hybridus* seeds. Percent germination of both Shirikure and *A. hybridus* was 99%.

2.3. Data collection and analysis

Data on percent emergence, plant height, leaf area, and dry weight were measured. Percentage emergence was calculated by dividing the number of seeds that emerged by the total number of seeds that were planted and then multiplying by 100. Height was measured using a string and a ruler. Leaf area was estimated destructively by tracing detached leaves on graph paper and subsequently counting the number of squares covered by the outline. At the end of the experiment, the shoot of *A. hybridus* shoot was cut at the soil surface and dried in an oven for 72 h before weighing with a digital scale. The collected data were subject to analysis of variance (ANOVA) using GenStat (version 14). Treatment means were separated at 95% level of significance.

3. Results

All *A. hybridus* seeds that were sown and exposed to an atrazine spray failed to emerge (Figure 1).

Inhibition of emergence by intact sorghum, sorghum with two leaves stripped and sorghum with four leaves stripped was significantly similar (Figure 2). Intact sorghum and sorghum with two leaves stripped significantly reduced the height of *A. hybridus* (Figure 2).
In contrast, *A. hybridus* growing together with sorghum that had four leaves stripped grew significantly taller than *A. hybridus* growing together with sorghum that had two leaves stripped (Figures 3 and 4).

Stripping two leaves significantly (P < 0.001) reduced leaf area of *A. hybridus* by 84.3% compared to stripping four leaves. Leaf area of *A. hybridus* increased in sorghum that had four leaves stripped (Figure 4). Stripping sorghum of two leaves significantly (P < 0.001) reduced *A. hybridus* dry weight by 56.4% compared to no stripping (Figure 5).

Increasing stripping intensity of sorghum to four leaves increased the dry weight of *A. hybridus* by 58.6%.
4. Discussion

Percent emergence was not affected by leaf stripping intensity. This result suggests that it is the mere presence of sorghum, and the production of allelochemicals, that caused poor emergence across treatments. An unpublished study by Tibugari et al. in which sorghum varieties that were reported by farmers to be allelopathic were assayed for sorgoleone content, showed that Shirikure
produces high sorgoleone (185.6 μg mg⁻¹ of root fresh weight) levels. The result that there was poor *A. hybridus* emergence in pots that had sorghum and the weed is not surprising. Dayan and Duke (2009) report that certain species of *Sorghum* (e.g. Sudan grass, *S. sudanese*) can easily be grown as weed-free monocultures without additional herbicide application (Dayan & Duke, 2009). It is therefore likely that inhibition of emergence and growth that was observed in the current study might have been caused by sorgoleone. Additionally, Dayan (2006) found that sorgoleone biosynthesis appears to be stimulated by the presence of root exudates of other plants, suggesting that the allelopathic potential of sorghum may be enhanced in the presence of competitors (Dayan, 2006). Panasiuk, Bills, and Leather (1986) investigated the allelopathic interaction between sorghum and 10 grass and broadleaf weed species under laboratory and greenhouse conditions. They found that germination of weeds incubated in closed petri dishes with germinating sorghum was slightly inhibited or stimulated. In the current study, poor emergence of *A. hybridus* in pots that had intact sorghum and sorghum with 2 and 4 leaves stripped was comparable to *A. hybridus* response to atrazine. The sparse emergence of *A. hybridus* that was observed suggests that allelochemicals produced by seedlings of Shirikure, possibly sorgoleone, work in a manner more or less similar to pre-emergence herbicides.

In the current study, stripping two leaves caused a significant reduction in height, leaf area and dry weight of *A. hybridus* compared to intact sorghum and sorghum with four leaves stripped. Leaf stripping might have induced allelochemical production in sorghum. Research has shown that plants exposed to biotic stress respond with similar defensive mechanisms by the allocation of carbon skeletons from plant productivity to producing in higher concentrations and continuous synthesis of molecules of the defensive mode of action (Gawronska & Golisz, 2006). Tissue injury, pathogen attack, herbivory, and infection by microsymbionts such as rhizobium can cause synthesis and release of phenolics (Dakora, 1994; Lawson, Rolfe, & Djordjevic, 1996). When Hovary (2011) induced benzoxazinone allelochemical production in 21-day old rye (*Secale cereale*) plants by wounding or applying methyl jasmonate, benzoxazinone levels significantly increased in both mechanically and chemically induced tissue. In another study, Kruidhof et al. (2014) investigated whether mechanical damaging in spring could induce the production of allelochemicals in late summer sown lucerne, winter rye, and winter oilseed rape. Their work showed that although mechanical wounding enhanced the allelopathic activity per unit biomass of all the three cover crop species, the effect was only minor and often just sufficient to compensate for the loss in biomass resulting from wounding.

The reduced growth in terms of height, leaf area and dry weight in intact sorghum and sorghum with two leaves stripped that was observed in the current study may have been caused by sorgoleone. Sorgoleone has multiple potential modes of action (Dayan & Duke, 2009). Sorgoleone inhibits photosynthesis in germinating seedlings and plants (Dayan et al., 2010). It inhibits plant growth by strongly inhibiting PSII in vitro (Einhellig, Rasmussen, Hejl, & Souza, 1993; Gonzalez, Kazimir, Nimbal, Weston, & Cheniae, 1997; Rimando, Dayan, Czarnota, Weston, & Duke, 1998), inhibiting mitochondrial functions (Rasmussen, Hejl, Einhellig, & Thomas, 1992), inhibiting P—hydroxyphenylpyruvate dioxygenase (HPPD) (Meazza et al., 2002) and by impairing essential plant processes such as solute and water uptake (Hejl & Koster, 2004).

Production of sorgoleone is dependent on the presence of root hairs (Yang, Owens, Scheffler, & Weston, 2004) and is mostly constitutive and proportional to the root biomass (Dayan, 2006). In the current study, increasing leaf stripping intensity in sorghum from 2 to 4 leaves caused an increase in plant height, leaf area, and dry weight. Leaf excision wounds may have created an additional sink that modified assimilate allocation at the expense of roots. Immune response through callose deposition to wound areas may have redirected resources meant for allelochemical production. Intense leaf stripping reduced the number of leaves available to capture photosynthetically active radiation required for photosynthesis, subsequently reducing the volume of photoassimilates channelled to growing sorghum roots. This might have reduced the amount of
sorgoleone available to inhibit A. hybridus growth. It has been reported that low concentrations of allelochemicals can stimulate plant growth (Belz, 2007).

Seeds of A. hybridus are small and lenticellate in shape; with each seed averaging 1–1.5 mm in diameter (Akubugwo, Obasi, Chinyere, & Ugboju, 2007). Response of A. hybridus to the presence of sorghum and to leaf stripping confirms reports by other scientists that the herbicidal activity of sorgoleone is strongest on small-seeded weeds (Einhellig & Souza, 1992; Netzly & Butler, 1986; Nimbal, Yerkes, Weston, & Weller, 1996; Rimando et al., 1998) just like many soil-applied commercial herbicides (Dayan et al., 2010).

5. Conclusion

Stressing sorghum by removing two bottom leaves during early growth possibly triggers an increase in the production and exudation of allelochemicals that can inhibit the emergence and growth of A. hybridus. Increasing leaf-stripping intensity of sorghum seedlings to four leaves reduces the total leaf surface area that can intercept light for maximum photosynthesis to occur, and this possibly reduces the volume of roots produced by the sorghum plant, subsequently leading to a reduction in sorgoleone production by the roots. Further studies that confirm levels of sorgoleone and other allelopathic compounds prior to and after leaf stripping are necessary.

Funding
The authors received no direct funding for this research.

Competing Interests
The authors declare no competing interests.

Author details
Handsien Tibugari
E-mail: htibugari@yahoo.com.au
Ngonidzaihe Manyeruke
E-mail: mmanyeruke@itimb.co.zw
Gerald Mafere
E-mail: gerry.mafere@gmail.com
Murawu Chakavarika
E-mail: mchakavarika@gmail.com
Lovemore Nyamuzwe
E-mail: lovemorenyamuzwe@gmail.com
Pelagia Marumahoko
E-mail: pmarumahoko@itimb.co.zw
Ronald Mandumbu
E-mail: rmandumbu@Gmail.Com

1 Department of Crop Science, Faculty of Life Sciences, Gwanda State University, P.O. Box 30, Filabusi, Zimbabwe.
2 Tobacco Industry and Marketing Board, Paradise Food Court, 5400 Off Chinhoyi University Campus, Chinhoyi, Zimbabwe.
3 Department of Agronomy and Marketing, Agriseeds Zimbabwe Limited, Eastlea, Harare, Zimbabwe.
4 Department of Agronomy and Marketing, Harare Institute of Technology, Belvedere, Harare, 15015, Zimbabwe.
5 Swiftbird Investments, Harare International Airport, Harare, Zimbabwe.
6 Tobacco Industry and Marketing Board, 429 Glenelges Road, Southerton, Harare, Zimbabwe.
7 Department of Crop Science, Bindura University of Science Education, Bindura, Zimbabwe.

References
Akintayo, I., & Sedgo, J. (Ed.). (2001). Towards sustainable sorghum production, utilization and commercialization in West and Central Africa. Proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, 19–22 April 1999, Patancheru, Andhra Pradesh, India: West and Central Africa Sorghum Research Network; International Crops Research Institute for the Semi-Arid Tropics.
Akubugwo, I. E., Obasi, N. A., Chinyere, G. C., & Ugboju, A. E. (2007). Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. African Journal of Biotechnology, 6(24), 2833–2839.
Asao, T., Kitawaza, H., Tomita, K., Suyama, K., Yamamoto, H., Hosoki, T., & Pramanik, M. H. R. (2004). Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Scientia Horticulturae, 99, 207–214. doi:10.1016/j.scienta.2003.11.039
Belz, R. G. (2007). Allelopathy in crop/weed interactions - An update. Pest Management Science, 63, 308–326. doi:10.1002/ps.1526-4998
Bhownik, P. C. (2010). Current status of herbicide resistant weeds around the Globe. Journal of Crop and Weed, 6(1), 33–43.
Cardina, J., Regnier, E., & Sparrow, D. (1995). velvetleaf (Abutilon theophrasti) competition and economic thresholds in conventional-and no-tillage corn (Zea mays). Weed Science, 43, 81–87. doi:10.1614/0043174750080863
Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). In B. Buchanan, W. Gruissem, & R. Joneas (Eds.), Biochemistry and molecular biology of plants (pp. 1250–1268). Rockville: American Society of Plant Biologists.
Dakora, F. D. (1994). Nodulation gene induction and genetic control in the legume-Rhizobium symbiosis. South African Journal of Science, 90, 596–599.
Dayan, F. E. (2006). Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta, 224, 339–346.
Dayan, F. E., & Duke, S. O. (2009). Biological activity of allelochemicals. In A. E. Osbourn & V. Lanzotti (Eds.),
Plant derived natural products—Synthesis, function and application (pp. 361–384). Dordrecht, The Netherlands: Springer.

Dayan, F. E., Rimando, A. M., Pan, Z., Boersen, S. R., Ginsing, A. L., & Duke, S. O. (2010). Sorgoleone. Phytochemistry, 71, 1032–1039. doi:10.1016/j.

Deb, U. K., Bantilan, M. C. S., Roy, A. D., & Rao, P. P. (2004). Global sorghum production scenario. In M. C. S. Bantilan, U. K. Deb, C. L. L. Gawda, B. V. S. Reddy, A. B. Obilana, & R. E. Eversen Eds., Sorghum genetic enhancement: Research process, dissemination and impacts (pp. 21–38). Patancheru: International Crops Research Institute for the Semi-Arid Tropics.

Dieleman, A., Hamill, A. S., Fox, G. C., & Swanton, C. J. (1999). Decision rules for postemergence control of pigweed (Amaranthus spp.) in soybean (Glycine max). Weed Science, 44, 126–132. doi:10.1017/50043174500093656

Einhellig, F. A., & Souza, I. F. (2002). Allelopathy and biotic stress interaction in crop plants. In Z. A. Cheema, M. Farooq., & A. Wahid (Eds.), Allelopathy, current trends and future applications (pp. 1–18). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-30595-5_19

Einhellig, F. A., Rasmussen, J. A., Hejl, A. M., & Souza, I. F. (1993). Effects of root exudate sorgoleone on photosynthesis. Journal of Chemical Ecology, 19, 369–375. doi:10.1007/BF00993702

Einhellig, F. A., & Souza, I. F. (1992). Phytotoxicity of sorgoleone found in grain sorghum root exudates. Journal of Chemical Ecology, 18, 1–11. doi:10.1007/BF00997160

Gawronska, H., & Golisz, A. (2006). Allelopathy and biotic stresses. In M. J. Reigosa, N. Pedrol, & L. Gonzalez (Eds.), Allelopathy: A physiological process with ecological implications (pp. 211–227). Dordrecht, The Netherlands: Springer.

Gonzalez, V. M., Kazimir, J., Nimbal, C., Weston, L. A., & Thomas, J. A. (1993). Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. Journal of Agricultural and Food Chemistry, 45, 1415–1421. doi:10.1021/jf960733w

GRDC (Grains Research and Development Corporation) 2015. Pre-emergent herbicides Factsheet. Online. Internet. Accessed 31 December 2018. Available https://grdc.com.au/_data/assets/pdf_file/0025/126475/grdc_fs_pre-emergent-herbicides-pdf

Hejl, A. M., & Koster, K. L. (2004). The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. Journal of Chemical Ecology, 30, 2181–2191. doi:10.1023/B:JOEC.0000048782.87862.7f

Hirschberg, J., & McIntosh, J. (1983). Molecular basis of herbicide resistance. Amaranthus Hybridus. Science, 222, 1346–1349.

Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). The world’s worst weeds. Honolulu, Hawaii, USA: Distribution and Biology.

Hovary, C. L. (2011). Allelochemicals in secale cereale: Biosynthesis and molecular biology of benzoazainones (PhD thesis). ICRISAT.

ICRISAT. (2004). Sorgum, a crop of substance. Patancheru: International Crops Research Institute for the Semi-Arid Tropics. pp. 97. ISBN92-9066-473-8. Order code GAE 049

Jimenez, M. B., Flores, S. A., Zapata, E. V., Campos, E. P., Bouquetel, S., & Zenteno, E. (2003). Chemical character-ization of root exudates from rice (Oryza sativa) and their effect on the chemotactic 465 response of endophytic bacteria. Plant Soil, 249, 271–277. doi:10.1023/A:1022888904465

Kato-Noguchi, H. (2011). Barnyard grass-induced rice allelopathy and mornliactone B. Journal of Plant Physiology, 168(10), 1016–1020. doi:10.1016/j.

Knezevic, S. V., Weise, S. F., & Swanton, C. J. (1994). Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Science, 42, 568–573. doi:10.1017/S0043174500076967

Kruithof, H. M., van Dam, N. M., Ritz, C., Lotz, L. A. P., Kropf, M. J., & Bastiaans, L. (2014). Mechanical wounding under field conditions: A potential tool to increase the allopathic inhibitory effect of cover crops on weeds? European Journal of Agronomy, 52 (B), 229–236. doi:10.1016/j.eja.2013.09.003

Lawson, C. G. R., Rolfe, B. G., & Djordjevic, M. A. (1996). Rhizobium inoculationinduces condition dependent changes in the flavonoid composition of root exu-
dates from Trifolium subterraneum. Australian Journal of Plant Physiology, 23, 93–101.

Maertens, K. D., Sprague, C. L., Tanel, P. J., & Hines, R. A. (2004). Amaranthus hybridus populations resistant to triazine and acetolactate synthase-inhibiting herbicides. Weed Research, 44, 21–26. doi:10.1046/j.1365-3180.2003.00386.x

Maqbool, N., Wahid, A., Farooq, M., Cheema, Z. A., & Siddique, K. H. M. (2013). Allelopathy and abiotic stress interaction in crop plants. In Z. A. Cheema, M. Farooq., & A. Wahid (Eds.), Allelopathy, current trends and future applications (pp. 1–18). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-30595-5_19

Mashingaidze, A. B., Werf, W., Lotz, L. A. P., Mudita, I., Nyskanda, C., & Kropf, M. J. (2012). Leaf stripping and detasselling increase ear growth rate and maize grain yield. Scientific conference proceedings (pp. 820–834). http://journals.jkuat.oke/index.php/jscp/index

Meazza, G., Scheffler, B. E., Tellez, M. R., Rimando, A. M., Nanayakkara, N. D., Khan, I. A., ... Dayan, F. E. (2002). The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry, 59, 281–288. doi:10.1016/S0031-1893(01)00121-8

Meiners, S. J., Kong, C. H., Lodwig, L. M., Pisula, N. L., & Lang, K. A. (2012). Developing an ecological context for allelopathy. Plant Ecology, 213, 1221–1227.

Netzly, D. H., & Butler, L. G. (1986). Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Science, 26, 775–778.

Nimbal, C. I., Yerkes, C. N., Weston, L. A., & Weller, S. C. (1996). Herbicidal activity and site of action of the natural product sorgoleone. Pesticide Biochemistry and Physiology, 54, 73–83. doi:10.1006/pest.1996.0011

Panasius, O., Bills, D. D., & Leather, G. R. (1986). Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. Journal of Chemical Ecology, 12(6), 1533–1543. doi:10.1007/BF01012370

Rasmussen, A. A., Hejl, A. M., Einhellig, F. A., & Thomas, J. A. (1992). Sorgoleone from root exudate inhibits mitochondrial functions. Journal of Chemical Ecology, 18, 197–207. doi:10.1007/BF00993753

Riar, D. S., Tehranchian, P., Norsworthy, J., & Nandula, V. (2015). Acetolactate synthase–Inhibiting, herbicide–resistant rice flatsedge (Cyperus iria): Cross-resistance and molecular mechanism of resistance. Weed Science, 63, 748–757. doi:10.1614/WS-D-15-00014.1

Rice, E. L. (1984). Allelopathy. Orlando, FL: Academic Press.

Rimando, A. M., Dayan, F. E., Czarnota, M. A., Weston, L. A., & Duke, S. O. (1998). A new photosystem II electron transfer inhibitor from Sorghum bicolor. Journal of Natural Products, 61, 927–930. doi:10.1021/np9800708
Swanton, C. J., Nkoa, R., & Blackshaw, R. E. (2015). Experimental methods for crop–weed competition studies. Weed Science, 63(5), 2–11. doi:10.1614/WS-D-13-00062.1

Uddin, M. R., Park, K. W., Kim, Y. K., Park, S. U., & Pyon, J. Y. (2010). Enhancing sorgoleone levels in grain sorghum root exudates. Journal of Chemical Ecology, 36, 914–922. doi:10.1007/s10886-010-9829-8

Weaver, S. E., & McWilliams, E. L. (1980). The biology of Canadian weeds. 44. Amaranthus retroflexus L., A. powellii S. Wats. And A. hybridus L. Canadian Journal of Plant Science, 60(4), 1215–1234. doi:10.4141/cjps80-175

Whaley, C. M., Wilson, H. P., & Westwood, J. H. (2006). ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Science, 54(5), 828–832. doi:10.1614/WS-05-040R.1

Yang, X., Owens, T. G., Scheffler, B. E., & Weston, L. A. (2006). Manipulation of root hair development and sorgoleone production in sorghum seedlings. Journal of Chemical Ecology, 30, 199–213. doi:10.1023/B:JOEC.0000013191.35181.03