Differentiability of the Diffusion Coefficient for a Family of Intermittent Maps

Fanni M. Sélley

Received: 8 February 2022 / Revised: 8 July 2022 / Accepted: 12 September 2022 / Published online: 3 October 2022 © The Author(s) 2022

Abstract
It is well known that the Liverani–Saussol–Vaienti map satisfies a central limit theorem for Hölder observables in the parameter regime where the correlations are summable. We show that when C^2 observables are considered, the variance of the limiting normal distribution is a C^1 function of the parameter. We first show this for the first return map to the base of the second branch by studying the Green-Kubo formula, then conclude the result for the original map using Kac’s lemma and relying on linear response.

Keywords Intermittent maps · Central limit theorem · Diffusion coefficient · Linear response

1 Introduction

We consider a one-parameter family $\{f_\alpha\}_{\alpha \in A}$ of Pomeau–Manneville type maps introduced by Liverani, Saussol and Vaienti [18]. Provided that $\alpha \in [0,1)$, each map preserves a unique probability measure ν_α and exhibits polynomial decay of correlations for Hölder observables [18, 20]. Restricting α further to $[0,1/2)$, the central limit theorem also holds: ergodic sums of centered observables, normalized by \sqrt{n}, converge in distribution to a Gaussian random variable with mean zero and variance $\sigma^2(\alpha)$ [9, 20]. In this paper we study the smoothness of the mapping $\alpha \mapsto \sigma^2(\alpha)$.

The question is motivated by the deterministic diffusion on the real line defined by [16]. Diffusion can be characterized by the linear growth rate of the mean square displacement of an ensemble of moving particles, called the diffusion coefficient. A short calculation shows that the said system on the real line is conjugated to a Pomeau–Manneville type map of the interval, and the corresponding quantity of the diffusion coefficient is $\sigma^2(\alpha)$ associated to a particular observable. So knowing the regularity of $\sigma^2(\alpha)$ gives information about the parameter dependence of the diffusion itself.

Notational remark. Throughout these notes, we will denote the Lebesgue measure on $[0, 1]$ by m. Furthermore $C > 0$ will denote a generic constant whose value might change from one line to the next.

© The Author(s) 2022

Fanni M. Sélley
f.m.selley@math.leidenuniv.nl

1 Leiden University Mathematical Institute, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
Continuity properties of the diffusion coefficient associated to different types of dynamics were studied extensively, for an overview see the book [13] and references therein. In [7] a diffusion on the real line was defined where trajectories for most time are localized to boxes $B_N = [N,N + 1) \times [N,N + 1)$, but at certain instances they can move to either B_{N-1} or B_{N+1}. The analytic expression of the map is such that the system on the real line is conjugated to an interval map, which aides calculations a great deal. Focusing on this simple setting, the piecewise linear case was studied in [11, 14, 15] and low regularity was reported both from the analytic and geometric measure theory perspective. In [11] the setting was generalized to a family of maps exhibiting exponential decay of correlations with uniform parameters, and log-Lipschitz continuity of the diffusion coefficient was proved with methods relying mainly on the transfer operator approach. The paper [16], providing our motivation, proposed to consider a family of intermittent maps and study the so-called generalized diffusion coefficient in the parameter regime of anomalous diffusion. In the regime of normal diffusion [3] proved the continuity of the diffusion coefficient for a wide variety of (f_α-independent) potentials. In fact, for the zero potential (measure of maximal entropy) they proved that the diffusion coefficient as a function of f_α varies in a continuously differentiable way.

In this paper we consider the regime of normal diffusion, i.e., $\alpha \in [0,1/2)$ (and the SRB measure ν_α). Then the variance $\sigma^2(\alpha)$ can be given as the sum of correlations by the Green–Kubo formula, so the smoothness of correlations gives a good guess for the smoothness of $\sigma^2(\alpha)$. The first (self-correlation) term in the formula is $\int \psi^2 d\nu_\alpha$. The smooth differentiability of the mapping $\alpha \mapsto \int \psi^2 d\nu_\alpha$ is the question of linear response, which is well understood for the family of maps in question [4, 17]. The higher order terms $\int \psi \cdot \psi \circ T^k_a d\nu_\alpha$ have an additional α-dependence in the integrand $\psi \cdot \psi \circ T^k_a$, however since $\alpha \mapsto T^k_a$ is smooth, the smoothness of $\alpha \mapsto \int \psi \cdot \psi \circ T^k_a d\nu_\alpha$ follows. Continuity of $\sigma^2(\alpha)$ follows from the summability of correlations, but in order to show continuous differentiability, one also has to show that the α-derivatives of the correlations are summable. Making these steps precise we show that smooth differentiability also holds for the higher order terms of the Green–Kubo formula, furthermore, $\alpha \mapsto \sigma^2(\alpha) \in C^1[\alpha_-, \alpha_+]$ for any $0 < \alpha_- < \alpha_+ < 1/2$.

The idea of the proof is to define the usual first return map, prove smooth differentiability for the corresponding variance $\tilde{\sigma}^2(\alpha)$ and conclude the same regularity for $\sigma^2(\alpha)$ by using Kac’s formula. The calculations make use of the linear response result and technical estimates of [17], but the issues sketched above require work that goes beyond being a mere corollary of linear response.

We note that another important quantity characterizing diffusion is the drift coefficient (the expectation of the normal random variable given by the central limit theorem in case of a non-centered observable ϕ). This translates to the integral $\int \phi d\nu_\alpha$, hence the smooth differentiability as a function of α is covered by the linear response result of [4, 17].

The structure of this paper is as follows: in Section 2 we introduce our setting, main results and give a sketch of the proof. Section 3 contains the proof of our main theorem. Section 4 is devoted to concluding remarks on possible further directions of research.

2 Setting and Main Result

We consider the Liverani–Saussol–Vaienti map $f_\alpha : [0,1] \to [0,1]$ defined as
\[f_a(x) = \begin{cases}
 x(1 + 2^\alpha x^\alpha) & \text{for } 0 \leq x \leq 1/2 \\
 2x - 1 & \text{for } 1/2 < x \leq 1.
\] (1)

It is well known that this map preserves a unique (Lebesgue) absolutely continuous measure \(\nu_\alpha \) with density function \(\rho_\alpha \) [18].

The following theorem is also well known, see for example [20, Theorem 6] or [9, Theorem 4.1].

Theorem 2.1 Let \(0 \leq \alpha < 1/2 \) and \(\psi : [0, 1] \to \mathbb{R} \) a \(C^2 \) function. Denote \(S_n\psi = \sum_{i=0}^{n-1} \psi \sigma_i^\alpha \) and \(\hat{\psi}_\alpha = \psi - \int \psi \rho_\alpha \, dm \). Then there exists \(\sigma \geq 0 \) such that \(S_n\hat{\psi}_\alpha \sqrt{n} \) converges in distribution to a random variable \(\mathcal{N}(0, \sigma^2) \).

Actually, [20, Theorem 6] considers \(\psi \) that is Hölder continuous, while [9, Theorem 4.1] is stated for \(C^1 \) observables. We state this weaker version of both theorems for \(C^2 \) observables, as this is the setting that we will use.

Obviously \(\sigma^2 = \sigma^2(\alpha) \). The goal of these notes is to study the smoothness of the mapping \(\alpha \mapsto \sigma^2(\alpha) \). Our main statement is the following:

Theorem 2.2 Let \(0 < \alpha_- < \alpha_+ < 1/2 \). In the setting of Theorem 2.1,

\[\alpha \mapsto \sigma^2(\alpha) \in C^1([\alpha_-, \alpha_+]). \]

In the rest of this section we give the outline of the proof.

Let \(\tau_\alpha(x) = \min\{n \geq 1 : T_n^\alpha(x) \in (1/2, 1]\} \) be the return time to the interval \((1/2, 1]\). Define the induced map \(F_\alpha : (1/2, 1] \to (1/2, 1] \) as

\[F_\alpha(x) = f_a^{\tau_\alpha(x)}(x), \]

and the induced observable

\[\hat{\Psi}_\alpha(x) = \sum_{k=0}^{\tau_\alpha(x)-1} \hat{\psi}_\alpha(f_a^k(x)). \]

As a slight abuse of notation, we denote the ergodic sums of \(\hat{\Psi}_\alpha \) under \(F_\alpha \) also by \(S_n\hat{\Psi}_\alpha \), that is,

\[S_n\hat{\Psi}_\alpha = \sum_{i=0}^{n-1} \hat{\psi}_\alpha \circ F_a^i. \]

Since \(F_\alpha \) is a mixing Gibbs–Markov map (see [1, Lemma 3.60]) with a unique invariant measure \(\mu_\alpha \) (see [2, Lemma 4.4.1]), and \(\hat{\Psi}_\alpha \in L^2([1/2, 1]) \), we can conclude that the induced map also satisfies a Central Limit Theorem in the sense that \(\frac{S_n\hat{\Psi}_\alpha}{\sqrt{n}} \) converges in distribution to a random variable \(\mathcal{N}(0, \tilde{\sigma}^2(\alpha)) \).

Using [9, Theorem 4.8] and Kac’s lemma, we show that

\[\sigma^2(\alpha) = \frac{\tilde{\sigma}^2(\alpha)}{\int \tau_\alpha \, dm_\alpha}, \]

(3)
By [17] (see in particular the proof of [17, Theorem 1.1]), the map $\alpha \mapsto \int \tau_a d\mu_a$ is continuously differentiable (and trivially bounded from below), hence it is sufficient to study the smoothness of $\alpha \mapsto \tilde{\sigma}^2(\alpha)$.

Remark 2.3 By Kac’s lemma we also obtain that

$$\int \hat{\psi}_a \, d\mu_a = \frac{\int \hat{\psi}_a \, d\nu_a}{\int \tau_a \, d\mu_a} = 0.$$

We express $\tilde{\sigma}^2(\alpha)$ with the Green–Kubo formula:

$$\tilde{\sigma}^2(\alpha) = \int \hat{\Psi}_a^2 \, d\mu_a + 2 \sum_{k \geq 1} \int \hat{\psi}_a \cdot \hat{\psi}_a \circ F_a^k \, d\mu_a.$$ \hspace{1cm} (4)

We first prove (in Proposition 3.5) that all correlations are individually continuously differentiable functions of α in the sense that

$$\alpha \mapsto \int \hat{\psi}_a \, d\mu_a \in C^1([\alpha_-, \alpha_+])$$

$$\alpha \mapsto \int \hat{\psi}_a \cdot \hat{\psi}_a \circ F_a^k \, d\mu_a \in C^1([\alpha_-, \alpha_+]), k \geq 1.$$ \hspace{1cm} (5)

We then show (in Proposition 3.6) that the series

$$\sum_{k \geq 1} \int \hat{\psi}_a \cdot \hat{\psi}_a \circ F_a^k \, d\mu_a \quad \text{and} \quad \sum_{k \geq 1} \frac{\partial}{\partial \alpha} \left(\int \hat{\psi}_a \cdot \hat{\psi}_a \circ F_a^k \, d\mu_a \right)$$

converge uniformly, from which we can conclude that

$$\alpha \mapsto \tilde{\sigma}^2(\alpha) \in C^1([\alpha_-, \alpha_+]).$$

finishing the proof of Theorem 2.2.

In the next section we will make these steps precise.

3 Proof

In the first part of this section we argue the central limit theorem for the induced map and (3) giving the connection between the variances σ^2 and $\tilde{\sigma}^2$. These results are part of the general folklore, but we give an argument for the sake of completeness as exact references are hard to track down in the literature.

In the second part we study the Green–Kubo formula (4) in depth, proving (5) and (6). The calculation makes use of the linear response result of [17], and takes things a few steps further to obtain continuous differentiability of $\tilde{\sigma}(\alpha)$.

3.1 Central Limit Theorem for the Induced Map

Let $x_0 = 1$, set $x_{n+1} = f_a^{-1}(x_n) \cap [0, 1/2]$ and $y_{n+1} = f_a^{-1}(x_n) \cap (1/2, 1]$. Let $I_n = (y_{n+1}, y_n)$ and $J_n = (x_{n+1}, x_n)$. Define the partition π_i as the collection of intervals $\{I_n\}_{n \in \mathbb{N}}$, and similarly π_j as $\{J_n\}_{n \in \mathbb{N}}$. Note that for $z \in I_n$, $\tau_a(z) = n$ — meaning that π_i partitions $(1/2, 1]$ according to their return time.

Let $s(x, y)$ be the separation time of $x, y \in (1/2, 1]$ under F_a.
\[s(x, y) = \inf \{ n \in \mathbb{N} : F_a^n(x) \text{ and } F_a^n(y) \text{ are in separate elements of } \pi_I \} \]

We extend this definition to \([0,1/2]\) as follows: let \(x, y \in [0,1/2]\) and denote by \(x', y'\) their first returns to \((1/2,1]\). If \(f_a(x)\) and \(f_a(y)\) stay in the same partition elements of \(\pi_I\) until their first return to \((1/2,1]\), set \(s(x, y) = s(x', y') + 1\), otherwise \(s(x, y) = 0\).

Define \(d_g(x,y) = \theta^{-s(x,y)}\) for some \(\theta \in (1,2]\). Then \((1/2,1/2,1,\mu_a,F_a)\) is also Gibbs–Markov for the metric \(d_g\).

We now study the induced observable. Let \(g\) be a function from \(I_n \in \pi_I\) to \(\mathbb{R}\). Define the Lipschitz semi-norm of \(g\) as

\[|g|_{Lip(I_n)} = \inf \{ C > 0 : \forall x, y \in I_n \quad |g(x) - g(y)| \leq C \theta^{-s(x,y)} \}. \]

Proposition 3.1 \(\hat{\Psi}_a \in L^2\) and \(\sum_{r=1}^{\infty} \mu_a(I_r)|\hat{\Psi}_a|_{Lip(I_r)} < \infty\).

Proof We first show the induced observable is in \(L^2\). Recall that

\[\hat{\Psi}_a(x) = \sum_{k=0}^{\tau_a(x)-1} \hat{\Psi}_a(f_a^k(x)), \]

and \(\hat{\Psi}_a \in C^2\). Write

\[\hat{\Psi}_a(x) = \hat{\Psi}_a(x) - \tau_a(x)\hat{\Psi}_a(0) + \tau_a(x)\hat{\Psi}_a(0) = \tau_a(x)\hat{\Psi}_a(0) + \sum_{k=0}^{\tau_a(x)-1} \hat{\Psi}_a(f_a^k(x)) - \hat{\Psi}_a(0). \]

We have \(x_{n+1} - x_n \sim 1/n^{1+1/\alpha}\) (for instance by [1, Equation (3. 149)]), thus

\[\int \tau_a^2 = \sum_{k \geq 1} k^2 \cdot (x_{k+1} - x_k) \approx \sum_{k \geq 1} k^2 \cdot 1/k^{1+1/\alpha} < \infty \]

for all \(\alpha \in (0,1/2)\). For the other term, we first exploit that \(\psi\) is Lipschitz continuous with constant \(C\). This implies that \(\hat{\psi}_a\) is Lipschitz with constant \(C\), hence

\[\sum_{k=0}^{\tau_a(x)-1} |\hat{\Psi}_a(f_a^k(x)) - \hat{\Psi}_a(0)| \leq C \sum_{k=0}^{\tau_a(x)-1} |f_a^k(x)|. \]

For \(x \in (y_{n+1},y_n)\), we have \(f_a^j(x) \in (x_{n+1-i},x_{n-i})\), thus \(|f_a^j(x)| \leq c(n-i)^{-1/\alpha}\). Then

\[|\hat{\Psi}_a(x) - \tau_a(x) \cdot \hat{\psi}_a(0)| \leq c + c \sum_{j=1}^{n-1} (1/j)^{1/\alpha} \leq c n^{1-1/\alpha} \]

and

\[\int (\hat{\Psi}_a - \tau_a \cdot \hat{\psi}_a(0))^2 \leq \sum_{k \geq 1} k^{2-2/\alpha} \cdot 1/k^{1+1/\alpha} = \sum_{k \geq 1} k^{1-3/\alpha}. \]

1 Indeed, expansion is evident since \(\theta^{-s(F_a(x),F_a(y))} = \theta^{-s(x,y)+1} = \theta \cdot \theta^{-s(x,y)}\) and we get the distortion estimate by using \(|F_a(x) - F_a(y)| \leq C \theta^{-s(x,y)}\).
which is summable for all $\alpha \in (0, 1)$. Thus $\hat{\Psi}_\alpha \in L^2$.

We now prove the second statement. Since the induced map on $(1/2, 1]$ is uniformly expanding with expansion factor $\lambda = 2$, it is clear that $|x - y| < C\theta^{-s(x, y)}$. Using that $\hat{\psi}_\alpha$ is Lipschitz continuous, we get

$$|\hat{\psi}_\alpha(x) - \hat{\psi}_\alpha(y)| \leq C|x - y| \leq C\theta^{-s(x, y)}.$$

By the definition of the separation time, we can see that for $x, y \in I_r$,

$$\sum_{k=0}^{r-1} |\hat{\psi}_\alpha(f_k^\alpha(x)) - \hat{\psi}_\alpha(f_k^\alpha(y))| \leq \sum_{k=0}^{r-1} C\theta^{-(f_k^\alpha(x), f_k^\alpha(y))} \leq Cr \theta^{-s(x, y)}$$

and thus $|\hat{\Psi}_\alpha|_{Lip(I_r)} \leq C$. Furthermore, since $d\mu_\alpha = h_\alpha dm$, where $h_\alpha \in L^\infty$, we have $|h_\alpha| \leq C_\alpha$ and

$$|\mu_\alpha(I_r)| \leq C|m(I_r)| \leq C(1/r)^{1+1/\alpha},$$

similarly to previous computations. This gives

$$\sum_{r \geq 1} \mu_\alpha(I_r)|\hat{\Psi}_\alpha|_{Lip(I_r)} \leq C \sum_{r \geq 1} r^{-1/\alpha} < \infty.$$

The central limit theorem for the induced map (as stated below) follows by [5, Theorem 1.4].

Theorem 3.2

$$\frac{S_n \hat{\Psi}_\alpha}{\sqrt{n}} \rightarrow \mathcal{N}(0, \tilde{\sigma}^2) \quad \text{in distribution},$$

and

$$\tilde{\sigma}^2 = \int \hat{\psi}_\alpha^2 d\mu_\alpha + 2 \sum_{k \geq 1} \int \hat{\psi}_\alpha \cdot \hat{\psi}_\alpha \circ F_k^\alpha d\mu_\alpha.$$

Next we prove the relation between the variances corresponding to the original and the induced map.

Proposition 3.3

$$\sigma^2(\alpha) = \frac{\tilde{\sigma}^2(\alpha)}{\int \tau_\alpha d\mu_\alpha}$$

Proof Let $Y = (1/2, 1]$. Recall that

$$\frac{S_n \hat{\psi}_\alpha}{\sqrt{n}} \rightarrow \mathcal{N}(0, \tilde{\sigma}^2(\alpha)).$$

We first show that

$$\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$$

is tight and

$$\sup_{0 \leq k \leq \sqrt{n}} \frac{|S_k \hat{\psi}_\alpha|}{\sqrt{n}} \text{ tends to 0 in probability.}$$

(7)
Indeed, consider the observable g equal to $1 - 1/\nu_\alpha(Y)$ on Y and 1 elsewhere (this observable is not C^2, but C^3 on $[0,1/2]$ and $[1/2,1]$ which is sufficient). Then the corresponding induced observable is $\tau_\alpha = 1 - 1/\nu_\alpha(Y)$, and by Theorem 3.2, $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ converges to a Gaussian random variable, hence the sequence $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ is tight. To show that $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ tends to 0 in probability, it suffices to show that $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ tends almost surely to 0. This follows from the Birkhoff ergodic theorem, since $\tilde{\Psi}_n$ is integrable.

Thus by [9, Theorem 4.8], we have

$$
\frac{S_n \tilde{\Psi}_n}{\sqrt{[nv_n(Y)]^2}} \to \mathcal{N}(0, \hat{\sigma}^2(\alpha))
$$

By recalling that $\frac{S_n \tilde{\Psi}_n}{\sqrt{n}} \to \mathcal{N}(0, \sigma^2(\alpha))$, we obtain that $\tilde{\sigma}^2(\alpha) \nu_\alpha(Y) = \sigma^2(\alpha)$. By Kac’s formula, $\nu_\alpha(Y) = \frac{1}{\int_{\tau_\alpha \mu_{\alpha}}}$, giving the result.

3.2 Analysis of the Green–Kubo Formula

In this section we will prove that $\tau_\alpha = 1 - 1/\nu_\alpha(Y)$ on Y and 1 elsewhere (this observable is not C^2, but C^3 on $[0,1/2]$ and $[1/2,1]$ which is sufficient). Then the corresponding induced observable is $\tau_\alpha = 1 - 1/\nu_\alpha(Y)$, and by Theorem 3.2, $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ converges to a Gaussian random variable, hence the sequence $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ is tight. To show that $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ tends to 0 in probability, it suffices to show that $\frac{S_n \tau_\alpha - n/\nu_\alpha(Y)}{\sqrt{n}}$ tends almost surely to 0. This follows from the Birkhoff ergodic theorem, since $\tilde{\Psi}_n$ is integrable.

Thus by [9, Theorem 4.8], we have

$$
\frac{S_n \tilde{\Psi}_n}{\sqrt{[nv_n(Y)]^2}} \to \mathcal{N}(0, \hat{\sigma}^2(\alpha))
$$

By recalling that $\frac{S_n \tilde{\Psi}_n}{\sqrt{n}} \to \mathcal{N}(0, \sigma^2(\alpha))$, we obtain that $\tilde{\sigma}^2(\alpha) \nu_\alpha(Y) = \sigma^2(\alpha)$. By Kac’s formula, $\nu_\alpha(Y) = \frac{1}{\int_{\tau_\alpha \mu_{\alpha}}}$, giving the result.

Lemma 3.4 For $n \in \mathbb{N}$,

(K0) $|z_n'| \leq 1$ [17, Equation 5.5]

(K1) $|z_n'| \leq C n^{-(a+1)/a}$ [17, Lemma 5.3]

(K2) $|z_n''/z_n'| \leq C \Rightarrow \|G_{a,n} G_{a,n}\|_\infty \leq C$ [17, Lemma 5.4]

(K3) $|z_n''/z_n'| \leq C \Rightarrow \|G_{a,n} G_{a,n}\|_\infty \leq C$ [17, Lemma 5.5]

(K4) $|\partial_a z_n| \leq C n^{-1/2} (\log n)^2$ [17, Lemma 5.6]

(K5) $|\partial_a z_n'/z_n'| \leq C (\log n)^3 \Rightarrow \|\partial_a G_{a,n} G_{a,n}\|_\infty \leq C (\log n)^3$ [17, Lemma 5.7]

(K6) $\|\partial_a G_{a,n}\|_\infty \leq C n^{-1/2} (\log n)^2 \leq C (\log n)^2$ [17, Lemma 5.6 and Equation 5.1]

Recall that the transfer operator P of a nonsingular map $T : I \to I$ is defined as the left adjoint of the composition (Koopman operator), that is,
\[
\int_\mathbb{I} \varphi \cdot P\psi \, dm = \int_\mathbb{I} \varphi \circ T \cdot \psi \, dm, \quad \varphi \in L^\infty, \psi \in L^1.
\]

We will denote the transfer operator of \(T_\alpha \) by \(P_\alpha \).

Proposition 3.5

\[\alpha \mapsto \int \hat{\Psi}_\alpha \cdot \hat{\Psi}_\alpha \circ F^k_\alpha \cdot h_\alpha \, dm \in C^1([\alpha_-, \alpha_+])\]

for all \(k \geq 0 \).

Proof Write

\[
\int \hat{\Psi}_\alpha \cdot \hat{\Psi}_\alpha \circ F^k_\alpha \cdot h_\alpha \, dm = \int P^k_\alpha(\hat{\Psi}_\alpha h_\alpha) \cdot \hat{\Psi}_\alpha \, dm
\]

\[= \int P_\alpha(P^k_\alpha(\hat{\Psi}_\alpha h_\alpha)) \cdot \hat{\Psi}_\alpha \, dm \tag{8}\]

For \(n = (n_1, \ldots, n_k) \) let \(F_{\alpha,n} = F_{\alpha,n_1} \circ \cdots \circ F_{\alpha,n_k} \) and \(G_{\alpha,n} = (F^{-1})^n \). With this notation we can write

\[
\int P_\alpha(P^k_\alpha(\hat{\Psi}_\alpha h_\alpha)) \cdot \hat{\Psi}_\alpha \, dm
\]

\[= \int \sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} (h_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) (\hat{\Psi}_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) G_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k} \cdot G_{\alpha,n_k} \, dm \tag{8}\]

and

\[
\partial_\alpha \int P_\alpha(P^k_\alpha(\hat{\Psi}_\alpha h_\alpha)) \cdot \hat{\Psi}_\alpha \, dm
\]

\[= \int \sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \partial_\alpha^k (h_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) (\hat{\Psi}_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) G_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k} \cdot G_{\alpha,n_k} \, dm \tag{9}\]

It is clear that the summands in (8) are jointly continuous functions of \(\alpha \) and the spatial variable \(x \), and this also holds for their partial derivatives with respect to \(\alpha \) appearing in (9). Indeed, continuity of terms involving \(h_\alpha \) follows by [17, Theorem 2.1], and for the terms involving \(\hat{\Psi}_\alpha \) we rely on [17, Theorem 1.1]).

In the rest of the proof we show that the series

\[
\sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} (h_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) (\hat{\Psi}_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) G_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k} \cdot G_{\alpha,n_k} \tag{10}\]

\[
\sum_{n_1=1}^{\infty} \cdots \sum_{n_k=1}^{\infty} \partial_\alpha^k (h_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) (\hat{\Psi}_\alpha \circ F^{-1}_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k}) G_{\alpha,n_1} \circ F^{-1}_{\alpha,n_2} \cdots \circ F^{-1}_{\alpha,n_k} \cdot G_{\alpha,n_k} \tag{11}\]

converge uniformly.

We first show that (10) converges uniformly. This will imply the continuity of \(\alpha \mapsto \int \hat{\Psi}_\alpha \cdot \hat{\Psi}_\alpha \circ F^k_\alpha \cdot h_\alpha \, dm \). According to [17, Theorem 2.1], \(h_\alpha \in C^2([1/2,1]) \), hence \(\|h_\alpha\|_\infty \leq K \) where \(K \) does not depend on \(\alpha \).

\[\text{ Springer}\]
First compute that
\[
(\hat{\Psi}_\alpha \circ F^{-1}_{a,\xi_{\alpha}}(z) = \hat{\Psi}_\alpha \left(\frac{z_{\alpha} + 1}{2} \right) + \sum_{j=0}^{n_0 - 1} \hat{\Psi}_\alpha (f_j'(z_{\alpha}))
\]
\[
= \hat{\Psi}_\alpha \left(\frac{z_{\alpha} + 1}{2} \right) + \sum_{j=1}^{n_0} \hat{\Psi}_\alpha (z_j)
\]
giving \(\|\hat{\Psi}_\alpha \circ F^{-1}_{a,\xi_{\alpha}}\|_\infty \leq C\|\hat{\Psi}_\alpha\|_\infty (n_0 + 1) \leq 2C\|\psi\|_\infty (n_0 + 1)\). The same argument gives also \(\|\hat{\Psi}_\alpha \circ F^{-1}_{a,\xi_{\alpha}} \circ F^{-1}_{a,\xi_{\alpha}}\|_\infty \leq C(n_0 + 1)\).

We have \(\|G_{a,\xi_{\alpha}}\|_\infty = \frac{1}{2} \sup_{z} |z_{\alpha}| \leq Cn_0^{-\left(\frac{1 + \frac{1}{2}}{2}\right)}\) by (K1) from Lemma 3.4. Furthermore,
\[
G_{a,\xi_{\alpha}} = (F^{-1}_{a,\xi_{\alpha}} \circ \ldots \circ F^{-1}_{a,\xi_{\alpha}})' = \prod_{j=1}^{k} (F^{-1}_{a,\xi_{\alpha_j}})'(F^{-1}_{a,\xi_{\alpha_{j-1}}} \circ \ldots \circ F^{-1}_{a,\xi_{\alpha_{1}}})
\]

hence \(\|G_{a,\xi_{\alpha}}\|_\infty \leq \|G_{a,\xi_{\alpha_1}}\|_\infty \ldots \|G_{a,\xi_{\alpha_k}}\|_\infty \leq C(n_1 \ldots n_k)^{-\left(\frac{1 + \frac{1}{2}}{2}\right)}\) (note that \(C = C(k)\), but this causes no issue for the present argument as we view \(k\) fixed.)

Putting all this together, we can bound the \(k\)-fold sum in (8) by
\[
C \sum_{n_1}^{\infty} \ldots \sum_{n_0}^{\infty} (n_0 + 1)^2(n_0n_1 \ldots n_k)^{-\left(\frac{1 + \frac{1}{2}}{2}\right)},
\]
which is finite if \(\alpha \in (0, 1/2)\).

To show that (11) converges uniformly, we first study the \(\partial_\alpha\) partial derivatives of the summands in (8), starting with
\[
\partial_\alpha (h_\alpha \circ F^{-1}_{a,\xi_{\alpha}}(z) = (\partial_\alpha h_\alpha) \circ F^{-1}_{a,\xi_{\alpha}} + h_\alpha' \circ F^{-1}_{a,\xi_{\alpha}} \partial_\alpha F^{-1}_{a,\xi_{\alpha}}
\]

By [17, Theorem 2.1] \(\partial_\alpha h_\alpha \in C^1([1/2, 1])\) and \(\|\partial_\alpha h_\alpha\|_\infty \leq K\), for a constant \(K > 0\) independent of \(\alpha\). Since
\[
\partial_\alpha (F^{-1}_{a,\xi_{\alpha_j}} \circ \ldots \circ F^{-1}_{a,\xi_{\alpha_{1}}}) = \partial_\alpha (F^{-1}_{a,\xi_{\alpha_j}}) \circ \ldots \circ (F^{-1}_{a,\xi_{\alpha_{1}}}) \circ \partial_\alpha (F^{-1}_{a,\xi_{\alpha_{j-1}}} \circ \ldots \circ F^{-1}_{a,\xi_{\alpha_{1}}})
\]
we obtain by induction that
\[
\|\partial_\alpha (F^{-1}_{a,\xi_{\alpha_j}} \circ \ldots \circ F^{-1}_{a,\xi_{\alpha_{1}}})\|_\infty \leq C \sum_{j=0}^{k} \|\partial_\alpha (F^{-1}_{a,\xi_{\alpha}})\|_\infty
\]
(12)

(where we repeatedly used the fact that \(\|G_{a,\xi_{\alpha}}\|_\infty \leq C(k + 1)\) when \(|n| \leq k + 1\).)

By (K6) from Lemma 3.4 we have \(\|\partial_\alpha F^{-1}_{a,\xi_{\alpha}}\|_\infty \leq C(\log n_j)^2\) and hence
\[
\|\partial_\alpha (h_\alpha \circ F^{-1}_{a,\xi_{\alpha}}(z)\|_\infty \leq C \sum_{j=0}^{k} (\log n_j)^2
\]
(13)

Next we compute that
\[
\partial_a (\hat{\Psi}_a \circ F_{a,x_0}^{-1})(z) = \psi'\left(\frac{z_0 + 1}{2}\right) \partial_a z_0 + \sum_{j=1}^{n_0} \psi'(z_j) \partial_a z_j - (n_0 + 1) \partial_a \hat{\psi}_a
\]

Since \(|\partial_a z_j| \leq C \) by (K4) from Lemma 3.4 and \(|\partial_a \hat{\psi}_a| \leq C \) by [17, Theorem 1.1] we obtain the bound \(\|\partial_a (\hat{\Psi}_a \circ F_{a,x_0}^{-1})\|_{\infty} \leq C (\|\psi\|_C + 1) (n_0 + 1) \) and by a similar argument

\[
\|\partial_a (\hat{\Psi}_a \circ F_{a,(x_0)}^{-1})\|_{\infty} \leq C \|\psi\|_C (n_0 + 1) \tag{14}
\]

Next,

\[
G_{a,n} \circ F_{a,x_0}^{-1} = \prod_{i=1}^{k} G_{a,n_i} \circ F_{a,n_i-1} \circ \ldots \circ F_{a,x_0}^{-1}
\]

and

\[
\partial_a (G_{a,n} \circ F_{a,x_0}^{-1}) = \sum_{j=1}^{k} \partial_a [G_{a,n_j} \circ F_{a,n_j-1} \circ \ldots \circ F_{a,x_0}^{-1}] \Pi_{i \neq j} G_{a,n_i} \circ F_{a,n_i-1} \circ \ldots \circ F_{a,x_0}^{-1}
\]

We have

\[
\partial_a (G_{a,n} \circ F_{a,x_0}^{-1}) = \partial_a (G_{a,n}) \circ F_{a,n-1} + (G_{a,n} \circ F_{a,n-1} \circ \ldots \circ F_{a,x_0}^{-1})' \cdot \partial_a (F_{a,x_0}^{-1}) \circ F_{a,n-1} \circ \ldots \circ F_{a,x_0}^{-1}
\]

By (K2) from Lemma 3.4 we have \(\|G_{a,n_j}/G_{a,n_j}\|_{\infty} \leq C \) and by (K5) we see that \(\|\partial_a G_{a,n_j}/G_{a,n_j}\|_{\infty} \leq C \). Using furthermore (12) we obtain

\[
\|\partial_a (G_{a,n} \circ F_{a,x_0}^{-1})\|_{\infty} \leq C_n^j \left(\sum_{j=1}^{k} \left(\log n_j \right)^3 + \sum_{m=0}^{j-1} \left(\log n_m \right)^2 \right) \tag{14}
\]

and hence

\[
\|\partial_a (G_{a,n} \circ F_{a,x_0}^{-1})\|_{\infty} \leq C \prod_{j=1}^{k} n_j^{-\left(1 + \frac{1}{a} \right)} \left(\sum_{j=1}^{k} \left(\log n_j \right)^3 + \sum_{m=0}^{j-1} \left(\log n_m \right)^2 \right) \tag{15}
\]

Using the previously computed bounds on the supremums and the bounds (13), (14) and (15) on the partial derivative, we obtain for (11)

\[
\sum_{n_1=1}^{\infty} \ldots \sum_{n_k=1}^{\infty} \partial_a \{ (h_a \circ F_{a,x_0}^{-1}) (\hat{\Psi}_a \circ F_{a,x_0}^{-1}) G_{a,n} \circ F_{a,x_0}^{-1} \} \leq C \sum_{n_1=1}^{\infty} \ldots \sum_{n_k=1}^{\infty} (n_0 + 1)^2 (n_0 \ldots n_k)^{-\left(1 + \frac{1}{a} \right)} \prod_{i=0}^{k} \left(\log n_i \right)^2 + 2(n_0 + 1)^2 (n_0 \ldots n_k)^{-\left(1 + \frac{1}{a} \right)} \prod_{i=1}^{k} \left(\log n_i \right)^3 \prod_{i=0}^{k-1} \left(\log n_i \right)^2 < \infty
\]

\[\square\]
for $\alpha \in (0,1/2)$ and thus $\alpha \mapsto \partial_x \int P_\alpha \left(\hat{\Psi}_\alpha \cdot \Psi_a \right) dm$ is continuous.

The next proposition claims that both the correlations and their partial derivatives with respect to α are summable. Then it follows from Propositions 3.5 and 3.6 that $\alpha \mapsto \hat{\sigma}(\alpha) \in C^1([\alpha_-, \alpha_+])$ which concludes the proof of Theorem 2.2.

Proposition 3.6 The series

$$\sum_{k \geq 1} \int \hat{\Psi}_\alpha \cdot \Psi_a \circ F^k \cdot h_a dm \quad \text{and} \quad \sum_{k \geq 1} \partial_x \left(\int \hat{\Psi}_\alpha \cdot \Psi_a \circ F^k \cdot h_a dm \right)$$

converge uniformly.

Proof We first show that

$$\sum_{k \geq 1} \int \hat{\Psi}_\alpha \cdot \Psi_a \circ F^k \cdot h_a dm = \sum_{k \geq 1} P^k_\alpha (\hat{\Psi}_\alpha \cdot h_a) \cdot \Psi_a dm$$

converges uniformly. Our first observation is the following:

Lemma 3.7

$$x \mapsto P^k_\alpha (\hat{\Psi}_\alpha \cdot h_a)(x) \in C^2$$

Proof Since $P_\alpha : C^2 \rightarrow C^2$, it is enough to prove the lemma for $k = 1$.

$$P_\alpha (\hat{\Psi}_\alpha \cdot h_a) = \sum_{n=1}^{\infty} (h_\alpha \circ F^{-1}_{a,n})(\hat{\Psi}_\alpha \circ F^{-1}_{a,n}) \cdot G_{a,n}$$

where $h_\alpha \circ F^{-1}_{a,n}$, $\hat{\Psi}_\alpha \circ F^{-1}_{a,n}$ and $G_{a,n}$ are continuously differentiable in x, and we have seen previously that $\|h_a\|_\infty \leq K$, $\|\hat{\Psi}_\alpha \circ F^{-1}_{a,n}\|_\infty \leq C(n+1)$ and $\|G_{a,n}\|_\infty \leq Cn^{-\left(1+\frac{1}{2}\right)}$. Thus

$$\sum_{n=1}^{\infty} |(h_\alpha \circ F^{-1}_{a,n})(\hat{\Psi}_\alpha \circ F^{-1}_{a,n}) \cdot G_{a,n}| \leq C \sum_{n=1}^{\infty} (n+1)n^{-\left(1+\frac{1}{2}\right)} < \infty$$

implying that the sum converges uniformly and $x \mapsto P_\alpha (\hat{\Psi}_\alpha \cdot h_a)(x)$ is continuous.

We now study

$$\sum_{n=1}^{\infty} \partial_x [(h_\alpha \circ F^{-1}_{a,n})(\hat{\Psi}_\alpha \circ F^{-1}_{a,n}) \cdot G_{a,n}]$$

According to [17, Theorem 2.1] we in fact have $\|h_a\|_{C^2} \leq K$ and

$$(\hat{\Psi}_\alpha \circ F^{-1}_{a,n})'(z) = \left(\hat{\Psi}_\alpha \left(\frac{z+1}{2} \right) + \sum_{j=0}^{n-1} \hat{\Psi}_\alpha (f_a(z_j)) \right)'$$

$$= \psi' \left(\frac{z+1}{2} \right) \psi' + \sum_{j=1}^{n} \psi'(z_j) \psi'_j$$
thus \(\| (\hat{\Psi}_a \circ F^{-1})' \|_\infty \leq C \| \psi \|_{C^i}(n + 1) \) (using that \(\varepsilon_j'' \leq 1 \) by (K0) of Lemma 3.4).

Finally, \(G_{a,n}' / G_{a,n} \|_\infty \leq C \) by (K2) from Lemma 3.4. Thus
\[
\sum_{n=1}^{\infty} |\partial_x [(h_a \circ F^{-1})'(\hat{\Psi}_a \circ F^{-1})G_{a,n}]] | \leq C \sum_{n=1}^{\infty} n^{-(1 + \frac{1}{a})} (n + 1) < \infty
\]

implying that \(x \mapsto (P_a(\hat{\Psi}_a h_a))' (x) \) is continuous. We do similar calculations to prove that \(x \mapsto (P_a(\hat{\Psi}_a h_a))'' (x) \) is continuous. We compute
\[
\sum_{n=1}^{\infty} |\partial_x^n [(h_a \circ F^{-1})'(\hat{\Psi}_a \circ F^{-1})G_{a,n}]] |
\]
and for fixed \(n \) we get nine terms that are continuous individually. We can easily compute that \(\| (h_a \circ F^{-1})'' \|_\infty \leq C \), \(\| (\hat{\Psi}_a \circ F^{-1})'' \|_\infty \leq C \| \psi \|_{C^i}(n + 1) \) (using that \(|\varepsilon''_j| \leq C \) by (K2) from Lemma 3.4), and \(G''_{a,n} / G_{a,n} \|_\infty \leq C \) by (K3) from Lemma 3.4. By using bounds computed previously, we obtain that
\[
\sum_{n=1}^{\infty} |\partial_x^n [(h_a \circ F^{-1})'(\hat{\Psi}_a \circ F^{-1})G_{a,n}]] | \leq C \sum_{n=1}^{\infty} (n + 1)n^{-(1 + \frac{1}{a})} < \infty,
\]

implying that the sum converges uniformly.

By [17, Corollary 4.8]
\[
\| P_a^k(\hat{\Psi}_a h_a) \|_{C^i} \leq C(1 - \theta)^k \| P_a(\hat{\Psi}_a h_a) \|_{C^i}, \quad i = 1, 2 \tag{17}
\]
for some \(\theta \in (0,1) \) and \(C > 0 \). We obtain \(\| P_a(\hat{\Psi}_a h_a) \|_{C^1} \leq C \) by the computation of Lemma 3.7 and \(\| \hat{\Psi}_a \|_1 \leq C \) by a computation very similar to that in Proposition 3.1. Hence
\[
\sum_{k \geq 2} \left| \int P_a^k(\hat{\Psi}_a h_a) \cdot \hat{\Psi}_a dm \right| \leq C \| P_a(\hat{\Psi}_a h_a) \|_{C^i} \| \hat{\Psi}_a \|_{L^1} \sum_{k \geq 2} (1 - \theta)^k
\]
\[
\leq C \sum_{k \geq 2} (1 - \theta)^k,
\]

which proves the first statement of the proposition.

We now study
\[
\sum_{k \geq 1} \partial_a \left(\int \hat{\Psi}_a \cdot \hat{\Psi}_a \circ F^{-1} \cdot h_a dm \right) = \sum_{k \geq 1} \int \partial_a \left(P_a^k(\hat{\Psi}_a h_a) \hat{\Psi}_a dm \right).
\]

Write
\[
\int \partial_a \left(P_a^k(\hat{\Psi}_a h_a) \hat{\Psi}_a dm \right) = \int P_a^k(\hat{\Psi}_a h_a) \partial_a \hat{\Psi}_a dm + \int \partial_a \left[P_a^k(\hat{\Psi}_a h_a) \right] \hat{\Psi}_a dm
\]
\[
= (I) + (II)
\]

First,
\[
(I) = \int P_a(\hat{\Psi}_a h_a) \partial_a \hat{\Psi}_a dm = \int P_a(p_a \partial_a \hat{\Psi}_a) dm,
\]

Springer
where by (17) we have \(\| p_a \|_{C^1} \leq C(1-\theta)^k \). Write

\[
\int P_a(p_a \partial_a \hat{\Psi}) \, dm = \int \sum_{n \geq 1} p_a \circ F^{-1}_{a,n} \cdot \partial_a \hat{\Psi} \circ F^{-1}_{a,n} \cdot G_{a,n} \, dm
\]

Now

\[
\partial_a \hat{\Psi} \circ F^{-1}_{a,n} = \partial_a (\hat{\Psi} \circ F^{-1}_{a,n}) - \hat{\Psi}' \circ F^{-1}_{a,n} \cdot \partial_a F^{-1}_{a,n}
\]

\[
= \partial_a (\hat{\Psi} \circ F^{-1}_{a,n}) - (\hat{\Psi} \circ F^{-1}_{a,n})' (G_{a,n}^{-1}) \cdot \partial_a F^{-1}_{a,n}
\]

thus

\[
\| (\partial_a \hat{\Psi} \circ F^{-1}_{a,n}) G_{a,n} \|_{\infty} \leq C(n+1)n^{-\frac{1}{2}} (\log n)^2
\]

by (14) and (K6) from Lemma 3.4, thus

\[
\sum_{n \geq 1} |p_a \circ F^{-1}_{a,n} \cdot \partial_a \hat{\Psi} \circ F^{-1}_{a,n} \cdot G_{a,n}| \leq C(1-\theta)^k \sum_{n \geq 1} C(n+1)(\log n)^2 n^{-\frac{1}{2}} < \infty
\]

for \(\alpha < 1/2 \), and

\[
(I) \leq C_1 (1-\theta)^k.
\]

Next,

\[
(II) = \int P^k_a(\partial_a \hat{\Psi} h_a) \hat{\Psi} \, dm + \int \partial_a [P^k_a(\hat{\Psi} h_a)] \hat{\Psi} \, dm
\]

\[
= (IIa) + (IIb)
\]

With (IIa) we can do the same argument as with \(\int P^k_a(\hat{\Psi} h_a) \hat{\Psi} \, dm \), provided that \(x \mapsto P^k_a(\partial_a \hat{\Psi} h_a + \hat{\Psi} \partial_a h_a)(x) \in C^1 \).

Lemma 3.8

\[
x \mapsto P^k_a(\partial_a \hat{\Psi} h_a + \hat{\Psi} \partial_a h_a)(x) \in C^1
\]

Proof It is enough again to prove the statement for \(k = 1 \). We write

\[
P_a(\partial_a \hat{\Psi} h_a) = \sum_{n=1}^{\infty} (\partial_a h_a \circ F^{-1}_{a,n})(\hat{\Psi} \circ F^{-1}_{a,n}) G_{a,n} + (h_a \circ F^{-1}_{a,n})(\partial_a \hat{\Psi} \circ F^{-1}_{a,n}) G_{a,n}
\]

All terms are continuous in \(x \), and the sum uniformly converges since

\[
\sum_{n=1}^{\infty} \| (\partial_a h_a \circ F^{-1}_{a,n})(\hat{\Psi} \circ F^{-1}_{a,n}) G_{a,n} + (h_a \circ F^{-1}_{a,n})(\partial_a \hat{\Psi} \circ F^{-1}_{a,n}) G_{a,n} \|
\]

\[
\leq \sum_{n=1}^{\infty} (n+1)(\log n)^2 n^{-\frac{1}{2}} < \infty,
\]

As for the continuity of \(x \mapsto (P^k_a(\partial_a \hat{\Psi} h_a + \hat{\Psi} \partial_a h_a))'(x) \), we write
Finally, we study (IIb). Write

\[\partial_a [P_a^k] = \lim_{a \to a'} \frac{1}{a - a'} \sum_{i=1}^{k} P_a^{k-i} (P_a - P_{a'}) P_{a'}^{i-1} = \sum_{i=1}^{k} P_a^{k-i} Q_a P_{a'}^{i-1}, \]

using similar notation to [17]. Hence

\[\int \partial_a [P_a^k] (\dot{\Psi}_a h_a) \dot{\Psi}_a dm = \int \sum_{i=1}^{k} P_a^{k-i} Q_a (\dot{\Psi}_a h_a) \dot{\Psi}_a dm \]
We first look at the $i \geq 2$ terms of the sum. Then
\[
\sum_{i=2}^{k} |P_{\alpha}^{k-i}Q_{\alpha}P_{\alpha}^{i-1}(\hat{\Psi}_a h_a)\hat{\Psi}_a| \leq Ck(1 - \theta)^{k-i}\|Q_{\alpha}P_{\alpha}^{i-1}(\hat{\Psi}_a h_a)\|_{C^1} |\hat{\Psi}_a|
\leq Ck(1 - \theta)^{k-i}\|P_{\alpha}^{i-1}(\hat{\Psi}_a h_a)\|_{C^1} |\hat{\Psi}_a|
\leq Ck(1 - \theta)^{k-2}\|P_{\alpha}(\hat{\Psi}_a h_a)\|_{C^2} |\hat{\Psi}_a|
\]

using [17, Lemma 4.1] in the second step, and (17) in the first and third step. We obtain $\|P_{\alpha}(\hat{\Psi}_a h_a)\|_{C^2} \leq C$ by the computation of Lemma 3.7 and $\|\hat{\Psi}_a\|_{C^1}$ by a computation very similar to that in Proposition 3.1. Thus
\[
\left| \int \sum_{i=2}^{k} P_{\alpha}^{k-i}Q_{\alpha}P_{\alpha}^{i-1}(\hat{\Psi}_a h_a)\hat{\Psi}_a dm \right| \leq Ck(1 - \theta)^{k-2}.
\]

As for the $i = 1$ term, we show that $Q_{\alpha}(\hat{\Psi}_a h_a) \in C^1$. Indeed,
\[
Q_{\alpha}(\hat{\Psi}_a h_a) = \sum_{n \geq 1} \partial_\alpha [\hat{\Psi}_a o F^{-1}_{\alpha,n} \cdot h_a o F^{-1}_{\alpha,n} \cdot G_{\alpha,n}]
= \sum_{n \geq 1} \partial_\alpha [\hat{\Psi}_a o F^{-1}_{\alpha,n} \cdot h_a o F^{-1}_{\alpha,n} \cdot G_{\alpha,n}]
+ \hat{\Psi}_a o F^{-1}_{\alpha,n} \cdot \partial_\alpha [h_a o F^{-1}_{\alpha,n} \cdot G_{\alpha,n}]
+ \hat{\Psi}_a o F^{-1}_{\alpha,n} \cdot h_a o F^{-1}_{\alpha,n} \cdot \partial_\alpha G_{\alpha,n}
\]

Each term is continuous in x, and by previously computed bounds we can upper bound the sum by
\[
C \sum_{n \geq 1} (n + 1)(1 + (\log n)^2 + (\log n)^3)n^{-\left(1 + \frac{1}{2}\right)} < \infty,
\]
hence it converges uniformly. By similar argument we also get that $(Q_{\alpha}(\hat{\Psi}_a h_a))'$ is continuous: we compute
\[
Q_{\alpha}(\hat{\Psi}_a h_a) = \sum_{n \geq 1} \partial_\alpha \partial_\alpha [\hat{\Psi}_a o F^{-1}_{\alpha,n} \cdot h_a o F^{-1}_{\alpha,n} \cdot G_{\alpha,n}],
\]
and we see that for fixed n each of the nine terms are continuous in x. By using previously computed bounds, we again upper bound the sum by
\[
C \sum_{n \geq 1} (n + 1)(\log n)^3n^{-\left(1 + \frac{1}{2}\right)} < \infty,
\]
proving that it converges uniformly.

Then by (17) we have
\[
\|P_{\alpha}^{k-1}Q_{\alpha}(\hat{\Psi}_a h_a)\|_{C^1} \leq C(1 - \theta)^{k-1},
\]
thus
\[
(I1b) \leq \begin{cases}
C_3 & \text{if } k = 1 \\
C_3k(1 - \theta)^{k-2} & \text{if } k \geq 2
\end{cases}
\]
(21)
We can conclude the proof of the proposition by combining (18), (20) and (21) to obtain
\[\sum_{k \geq 1} \int \partial_a \left(P^k_a (\hat{\Psi}_a h_a) \hat{\Psi}_a d\mu \right) \leq C + C \sum_{k \geq 2} k(1 - \theta)^{k-2} < \infty. \]

4 Concluding Remarks

A number of further questions would be interesting to study in the future. The most straightforward one would be considering an observable for which \(\psi(0) = 0 \) and \(\alpha \in (1/2,1) \). In this case the central limit theorem holds \cite{8} and according to a 2002 announcement by Hu, correlations are summable — making the Green–Kubo formula well-defined. However, a proof of this statement is not possible to track down in the literature. Provided that this in fact holds, we can expect that \(\alpha \mapsto \sigma^2(\alpha) \in C_1[\alpha_-,\alpha_+] \) for any \(1/2 < \alpha_- < \alpha_+ < 1 \). However, the calculations in these notes made use of \(\alpha < 1/2 \) in several places so the generalization is not completely straightforward.

For a general observable \(\psi \), we have \((S_n \psi)/n^\alpha \) converging in distribution to a random variable with a stable law of index \(1/\alpha \) \cite{8}. In this case the first task would be to give a proper definition for the diffusion coefficient. Venturing to the regime of \(\alpha \geq 1 \), \(f_\alpha \) preserves a \(\sigma \)-finite measure, and the corresponding anomalous diffusion calls for the definition of a generalized diffusion coefficient, possibly along the lines of \cite{16}. It would be an intriguing task to check rigorously the discontinuities and fractal properties of the diffusion coefficient uncovered by numerics in \cite{16}.

Returning to the setting of the current paper, another interesting question would be to study further regularity of the drift and diffusion coefficient as a function of \(\alpha \). \(C^2 \)-smoothness of the drift coefficient is sometimes called quadratic response in the
Differentiability of the Diffusion Coefficient for a Family…

literature and has essentially only been studied in the uniformly expanding setting [10].
The first task would be to clear quadratic response for the LSV map, then one could move on to study higher order regularity of the diffusion coefficient.

Another possible direction of generalization would be to consider LSV-type maps with a non-full branch, such as the one displayed in Fig. 1. In this setting one could study the regularity of the induced map’s diffusion coefficient by the methods developed in [11] to obtain a log-Lipschitz modulus of continuity, namely

$$|\tilde{\sigma}^2(\alpha) - \tilde{\sigma}^2(\alpha')| \leq C|\alpha - \alpha'|(1 + |\log |\alpha - \alpha'||))^2, \quad \alpha, \alpha' \in [\alpha_-, \alpha_+]$$

which would be inherited by $\sigma^2(\alpha)$, provided that $\alpha \mapsto \int \tau_{\alpha} d\mu_{\alpha}$ has the same type of (or better) regularity. For this, the regularity of $\alpha \mapsto \tau_{\alpha}$ and $\alpha \mapsto h_{\alpha}$ has to be studied. According to [12], $|h_{\alpha} - h_{\alpha'}|_{L^1} \leq C|\alpha - \alpha'|| \log |\alpha - \alpha'|$ (the infinite number of branches does not cause a difficulty in the proof), but the regularity of $\alpha \mapsto \tau_{\alpha}$ remains to be studied.

It should be possible to study the diffusion coefficient as a function of both the parameter α and the height H of the second branch, and obtain

$$|\tilde{\sigma}^2(\alpha, H) - \tilde{\sigma}^2(\alpha', H')| \leq C(|\alpha - \alpha'| + |H - H'|)(1 + |\log(|\alpha - \alpha'| + |H - H'|)|)^2$$

for all $(\alpha, H), (\alpha', H') \in [\alpha_-, \alpha_+] \times [H_-, H_+]$ where $0 < \alpha_- < \alpha_+ < 1/2$ and $1/2 < H_- < H_+ < 1$ (so that the second branch is expanding.)

Acknowledgements I would like to express my gratitude to Wael Bahsoun for providing me perspective and guidance for this work. I would also like to thank Alexey Korepanov, Julien Sedro and Dalia Terhesiu for helpful discussions.

Data Availability Not applicable.

Declarations

Competing Interests The author declares no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alves JF. Nonuniformly hyperbolic attractors. Springer International Publishing: 2020.
2. Aaronson J. An introduction to infinite ergodic theory (No. 50). American Mathematical Soc; 1997.
3. Bomfim T, Castro A, Varandas P. Differentiability of thermodynamical quantities in non-uniformly expanding dynamics. Adv Math. 2016;292:478–528.
4. Baladi V, Todd M. Linear response for intermittent maps. Commun Math Phys. 2016;347(3):857–74.
5. Thomine D. A generalized central limit theorem in infinite ergodic theory. Probab Theory Relat Fields. 2014;158(3–4):597–636.
6. Eslami P, Melbourne I, Vaienti S. Sharp statistical properties for a family of multidimensional non-Markovian nonconformal intermittent maps. Adv Math. 2021;388:107853.
7. Fujisaka H, Grossmann S. Chaos-induced diffusion in nonlinear discrete dynamics. Z Phys B Con Mat. 1982;48(3):261–75.
8. Gouëzel S. Central limit theorem and stable laws for intermittent maps. Probab Theory Relat Fields. 2004;128(1):82–122.
9. Gouëzel S. Limit theorems in dynamical systems using the spectral method. In: Hyperbolic Dynamics, Fluctuations and Large Deviations. Volume 89 of Proceedings Symposium in Pure Mathematics, pp. 161–193. Amer Math Soc, Providence; 2015.
10. Galatolo S, Sedro J. Quadratic response of random and deterministic dynamical systems. In: An Interdisciplinary Journal of Nonlinear Science. Chaos. 2020;30(2):023113.
11. Keller G, Howard PJ, Klages R. Continuity properties of transport coefficients in simple maps. Nonlinearity. 2008;21(8):1719.
12. Keller G. Stochastic stability in some chaotic dynamical systems. Monatsh Math. 1982;94(4):313–33.
13. Klages R. Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics (Vol. 24). World Scientific; 2007.
14. Klages R. Simple maps with fractal diffusion coefficients. Phys Rev Lett. 1995;74(3):387.
15. Klages R, Klauß T. Fractal fractal dimensions of deterministic transport coefficients. J Phys A - Math Gen. 2003;36(21):5747.
16. Korabel N, Klages R, Chechkin AV, Sokolov IM, Gonchar VY. Fractal properties of anomalous diffusion in intermittent maps. Phys Rev E. 2007;75(3):036213.
17. Korepanov A. Linear response for intermittent maps with summable and nonsummable decay of correlations. Nonlinearity. 2016;29(6):1735.
18. Liverani C, Saussol B, Vaienti S. A probabilistic approach to intermittency. Ergodic Theory Dynam Systems. 1999;19(3):671–85.
19. Pianigiani G. First return map and invariant measures. Israel J Math. 1980;35(1):32–48.
20. Young LS. Recurrence times and rates of mixing. Israel J Math. 1999;110(1):153–88.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.