Some Patophysiological Aspect and Diagnostic Value of Renal Urinary Markers of Yeast Overgrowth Citozomal Enzymes, Understanding Exfoliative, Metabolitic Turnover in Patients with Seronegative Arthropatia Psoriatica Sine Psoriasis Vulgaris. Testing Lizosomal or Brush Border Enzymuria?

Spasovski Dejan*

Ss Cyril and Methodius University of Skopje, Republic of Macedonia

Submission: December 13, 2016; Published: January 26, 2017

*Corresponding author: Spasovski Dejan, University Clinic of Rheumatology, "Ss Cyril and Methodius" University, Skopje, Republic of Macedonia, Europe, Tel: +389 2 3147-668 Email: drspasovski@yahoo.co.uk

Abstract

Aim: To compare diagnostic values and laboratory variables of alanine - aminopeptidase (microsomal AAP), γ-glutamyl transferase (γ-GT), β2-microglobuline (β2-M), C Reactive Protein (CRP) and index for disease activity (PASI) in early diagnosis in previously untreated Psoriatic arthritis (Psa). To determine the effect of untreated Psoriatic arthritis on tubular function, sensitivity of the Brush Border region as well as the diagnostic value of the enzymes originating from proximal renal tubules.

Methods: From the standard methods of the International Federation for Clinical Chemistry (IFCC) we used the kinetic method for determination of alanine - aminopeptidase (microsomal AAP), γ-glutamyl transferase (γ-GT) and MEIA (Microparticles Enzyme Immunoassay (Abbot Ax sym system) for determination of β2-microglobuline in urine. We examined samples (serum and urine) from 70 participants (35 Psa untreated, 35 healthy control group). RF and CRP are determined by Latex agglutination test in the same participants.

Results: From 35 examined patients with Psa, 12 pts showed presence of AAP enzymuria (test sensitivity was 34.28%), 8 pts showed presence of γ-GT (test sensitivity was 22.85%), while the presence of β2-microglobuline in urine was low (test sensitivity 0%).

Conclusion: AAP has better sensitivity than γ-GT and β2-microglobuline in the detection of asymptomatic renal endothelial changes in untreated Psa.

Keywords: Alanine-aminopeptidase (AAP); γ-glutamyl transferase (γ-GT) β2-microglobuline (β2-M); Psoriatic arthritis (Psa)

Abbreviations: AAP: Alanine Aminopeptidase; CRP: C Reactive Protein; Psa: Psoriatic Arthritis; IFCC: International Federation for Clinical Chemistry; MEIA: Microparticles Enzyme Immunoassay; CBC: Complete Blood Count; RF: Rheumatoid Factor; ESR: Erythroid Sedimentation Rate; CK: Creatinine Kinase; LDH: Lactate-Dehydrogenase;

Introduction

Brush border region (brush, layer, striated) is composed of microvilli covered with simple cubic and cylindrical epithelium, found in different location of the body. Diameter of the microvilli is 100nm, while their lengths vary from 100nm to 200nm. Because microvilli are so small and dense in the brush border epithelium, they could be seen only with electronic microscope. With light microscope they could be usually seen collectively as ‘fuzzy fringe’ (feathered, fibrillar, edgy borderline), aspart of the surface of the epithelium. The appearance of the ‘fuzzy fringe’ determines the name Brush border, because this structure resembles the painter brush. Brush epithelial cells are found in two main locations in the human body.
In the kidneys

Where the brush epithelium is useful to make the difference between proximal tubules (that posses brush epithelium) and distal tubules (that do not posses). Brush border morphology with the brush epithelium, increases the cell surface, especially useful for absorption. The cells that absorb substances have a great necessity of contact surface with substances in order to be efficacious. The luminal surface of the epithelial cells of this segment of the nephron is covered with densely packed microvilli that form the border; which can be seen under light microscope. The microvilli in great measure increase the luminal surface of the cells which in great measure facilitate their respective function. Membranes inverted inside that form microvilli are the places for numerous sodium pumps. The cell cytoplasm is densely filled with mitochondria, found mostly in the basal region, inside the curves of the basal plasmatic membrane. The high quantity of the mitochondria gives the cells acidophilic appearance. The mitochondria are necessary for energy supply for the active transportation of the sodium ions outside the proximal tubules.

The water passively follows sodium outside the cells according to the concentration gradient. The cubic epithelial cells that cover proximal tubules have extensive lateral interdigitations between adjacent cells, that seems as there are no cell borders seen under the light microscope. The end resorption of the content of the proximal tubules after drug intake or stop in circulation (in capillars) around tubules leads to disturbance of the cell morphology of the proximal tubule cells, including ejection of the nucleus in the tubular lumen, giving it dirty look in contrast to the clear appearance of the distal tubules, that have completely different characteristics. Microvilli have the characteristics of P° parturition. It is the tendency of the acid matters to accumulate in the alkaline fluid compartments, while alkaline matters in acid compartments. So, acid drugs are secreted in great quantities when the urine is alkaline, and vice versa, alkaline drugs are secreted in great quantities when the urine is acid. The aim of this study is to determine the effect of untreated Psoriatic arthritis on tubular function and sensitivity of the Brush Border of the proximal tubules. AAP, g-GT, b2-M are used as indicators for proximal tubular damage.

Renal markers for evaluation of the renal function

Several classes of measurable proteins in urine are used for evaluation of the renal dysfunction.

- a) Enzymes with high molecular weight, that usually are not filtered in the glomerulus, originating mainly from the proximal tubules (microsomal AAP, NAG).
- b) Intermediate proteins that normally are filtered in the glomerulus and are reabsorbed in the tubules (b2-microglobuline [1-6]. Alanine-amino peptidase (AAP), (aryl amide amino acid, amino peptidase, a-amino acyl-peptide-hydrolyses (microsomal) AAP, ES 3.4.11.2, previously 3.4.1.2) is a hydrolytic derivative of peptides, amides and p-nitroanilide. AAP is found in numerous tissues, mostly in kidney, intestine, lungs and liver. AAP in different tissues has different electrophoretic conductivity. This enzyme has at least five different isoenzymes that could be separated from each other with electrophoresis, ion-changing chromatography or immunologically. In normal serum is found only one isoenzyme, while in hepatobiliar or pancreatic diseases are found additional fractions. The enzyme is also found in urine. g-glutamyl transferase (g-GT), (g-glutamyl-peptide amino acid g-glutamyl transferase, ES 2.3.2.2. g-GT catalyzes the transfer of (g-glutamyl groups with peptides (as glutathione) to other peptides or amino-acids. g-GT plays an important role in the glutathione metabolism. High enzyme concentrations are found in kidneys (proximal tubule), pancreas (acinarcels), prostate and liver. g-GT is mostly located on the external part of the plasma membrane [7]. g-GT isoenzymes in serum are result of the different post-translational modifications as for example complex formations with lipoproteins or modifications of the carbohydrate part of the g-GT molecule [8]. The possibility of the presence of isoenzymes in different tissues (liver, pancreas, kidney, and duodenum) is due to the differences in carbohydrate part of the g-GT molecule. Although the peptide part of the enzyme molecule is the same no matter the tissue of origin, these isoenzymes differ in kinetic, electrophoretic and immunological features.

The tubular function could be evaluated with measurements of the excreted low molecular proteins in urine. b2-microglobuline (b2-M) is used as an indicator of the tubular disfunctions in glomerulonephritis [9] and is often used as sensitive marker for evaluation of the renal function [10-12].b2-M is a small polypeptide with low molecular weight (11.815 daltons). b2-M contains light chains of the main histocompatibility antigen (HLA). It influences production of the RF (IgM class). In normal individuals, b2-microglobuline is found both in serum and urine. 95% of the free b2-M is ultrafiltrated through renal glomerules and almost completely is reabsorbed in 99.9% with proximal tubular endocitosis and finally is catabolized in amino acids in healthy individuals. Due to this mechanism, normally in urine are detected in traces. Impairment in the glomerular filtration leads to increase in serum b2-M, while tubular damage leads to rise in urine b2-M. Serum concentration of b2-M depends on the...
glomerular filtration rate (GFR) and shows significant negative correlation with inulin clearance. These findings show that with determination of the serum level of b2-M one could get an index for dysfunction of the renal gromerulus.

In some pathological conditions, increased quantities of b2-M are excreted in urine. It happens when b2-M serum concentration exceeds the renal threshold. The serum level of b2-M depends on the ratio of synthesis and release in serum pool and its relation with clearance. Such conditions are notified in patients with inflammatory diseases (Rheumatoid arthritis, SLE, Sy. Sjögren, Crohn disease, cancer, liver damage). b2-M concentration in urine could be increased also when reabsorption is decreased due to renal proximal tubular damage. Proximal tubular disfunction results with elevated concentrations of urine b2-M, allowing to make distinction between proximal tubular from glomerular renal impairment. b2-M is used for evaluation of the GFR and renal tubular function, especially for tubulotoxic effect of different substances, such as heavy metals (cadmium and lead) and as a screening test for early detection of Balcan nephritis in regions where it is endemic. In urine b2-M is unstable if pH<6 and it is recommended to alkalize the urine with bicarbonates before it is tested. b2-M is considered the earliest protein of tubular proteinuria.

Material and Methods

Diagnosis of the patients included in the study is based upon revised diagnostic criteria for Classification of Psoriatic arthritis from 2005, proposed by the American Association for Rheumatic arthritis (ARA) [13]. Clinical evaluation for disease activity and disease diagnosis is based upon diagnostic criteria of Moll-Wright for Classification of Psoriatic arthritis [14]. Patients are dermatologically tested, including examination of the psoriatic changes of nails, psoriatic areas and disease activity index (PASI) as well as evaluation of the peripheral and axial joints [15,16]. Oligoarthritis is taken in consideration when < 5 joints are involved and polyarthritis when ≥ 5 joints are involved. Symmetric arthritis is considered when bilateral joints are involved > 50%.

In the study are included 35 patients (8 women, 27 men) suffering from PsA and 35 patients (23 women, 13 men) as healthy control group. Median age was 50.18 years (SD±8.09) (35-65 years) in PsA group, while 48.2 years (SD±10.19) (29-65 years) in healthy control group. Median age was 50.18 years (SD±8.09) (35-65 years) in PsA group, while 48.2 years (SD±10.19) (29-65 years) in healthy control group. Median disease duration was 30.17 (SD±40.13) in the interval of 1-60 months. None of the patients included in the study has previous or current history of infections, SLE, Sjogren disease, mixed connective tissue disese, vasculitis.

In the study are included patients suffering from Psoriatic arthritis, aged 18-65 years old, newly diagnosed and previously untreated.

Excluding criteria

From the study are excluded all the patients with diseases or conditiones that can directly or indirectly influence the results, such as

A. Patients < 18 and > 65 years old.
B. Patients with previous history of diseases of the spleen, thyroid gland, liver damages, renal, hematological, cardiovascular; neurological, lung, auto-immune impairments.
C. Patients with diabetes mellitus, acute infections, AIDS, febrile conditions, malignant diseases.
D. Patients previously treated with antibiotics and salicylates < 6 months before entering the study.
E. Patients with hypertension, uric arthritis, urinary infections, SLE, Sjögren disease, mixed connective tissue disese, vasculitis.
F. Patients treated with antihypertensive, anti diabetic and cardiological drugs.
G. Patients with previous history for blood transfusion and patients with increased body mass index.
H. Patients with hypersensitivity on drugs or some of their components.
I. Patients with history for drugs from the base line.
J. Patients with acute or chronic renal failure.
K. Patients who in 0-point had glycemia, elevated serum urea and creatinine. Hypertension and impaired hematological and enzyme status. All the patients took place in the study voluntarily, so the ethic criteria for inclusion in the study are fulfilled.

Laboratory evaluation

For clinical evaluation of the disease one have to examine the following parameters: complete blood count (CBC) and differential, reactants of the acute phase such as C-Reactive Protein (CRP), Rheumatoid factor (RF), Erythroid Sedimentation Rate (ESR), aspartate-aminotransferase (AST), alanine-aminotransferase (ALT), creatinine kinase (CK), lactate-dehydrogenase (LDH), serum urea and serum creatinine. The urine samples were taken not only for routine analyses, but also to determine the levels of AAP, g-GT, b-2M. Due to the urine instability of b-2M < 6pH it is recommended the urine to be alkalized before testing. Serum creatinine is determined according to “jaffe” method. Referent values are: serum creatinine 45-109 mmol/L, urine creatinine 7-17mmol/L. CRP is determined with the agglutination test (Latex CRP test) (BioSystems S.A. Reagents & Instruments Costa Brava 30, Barselona, Spain). Referent values are: serum CRP < 6mg/L. RF is determined with the agglutination test (Latex CRP test) (BioSystems S.A. Reagents & Instruments Costa Brava 30, Barselona, Spain). Referent values are: serum RF < 8 IU/ml. ESR
Determination of the activity of alanine amino - peptidase (AAP): kinetic method

Alanine amino-peptidase (aryl amid amino acid, amino peptidase, a-aminoacyl peptide hydrodase (microsomal), ANA, ES 3.4.11.2, former 3.4.1.2) is hydrolyzed by peptides, amid and p-nitroanilide. During the process of hydrolyzation of peptides N-terminal amino acid is seceded (firstly anilide). The activity of AAP is determined by the methods similar to those for determination of l-fucine aminopeptidase. In this method is used L-alanine-4-nitroanilide as a supstrat. The catalytic concentration of AAP is directly proportional to the absorption of p-nitroanilide is measured on 405nm. Refernt values: urine AAP 0.25-0.75 U/mmol creatinine.

Determination of the activity of γ-glutamyltransferase (γ-GT): IFCC method

γ-glutamyltransferase (γ-glutamyl) - peptide amino acid γ-glutamyltransferase ES 2.3.2.2.(γ-GT) catalyzes transfer of γ-glutamyl groups with peptides (such as glutathione) on other peptides or aminoaicids. γ-GT influences the release of glutamyl rest as glutamyn acid. With transpeptidation glytamyl rest could be transfered again on a supstrat (for example from γ-glutamyl-naphthylamide results γ-glutamyl- γ-glutamyl-L-a-naphthylamide) or other suitable acceptor (aminoacid, di- or tri-peptide). The most suitable acceptor is glyclyglycine. Methods for measurements of the activity of this enzyme in serum use aromatic amids as supstrats (γ-glutamyl-anilide and γ-glutamyl-naphthylamide). The superficial supstrate peptide analogue γ-glutamyl-p-nitroanilide is most frequently used. It is suitable for determination of the enzyme activity kinetically and colorimetrically. γ-glutamyl-p-nitroanilide latter is supstituted by L-γ-glatamyl-3-carboxy-4-nitroanilide (glucan) due to its high solubility. Glycylglycine was used as a supstrate acceptor and buffer, due to its high catalytic activity. This method is standardized by the International Federation of Clinical Chemistry - IFCC) and is considered as referent method.

Remarks

The IFCC method for measurement of concentration of the catalytic activity of serum and urine γ-GT is based on the principles developed by Orlowski, Meiser and Sasz, and their modification by Persiijn and Van der Slik. As a supstrate donor is used L-γ-glutamyl-3-carboxy-4-nitroanilide. In the IFCC method Tris (hydroxymethyl aminoaethan is substituted with glycylglycine, which acts as buffer and supstrate acceptor. Magnesium which earlier was used for maintenance of L-γ-glutamyl-3-carboxy-4-nitroanilide in the solution in IFCC method is omitted. This method is specific for determination of the activity of γ-GT [17-20] Referent values: γ-GT (urine) 0.84-1.80U/mmol creatinine.

Determination of the concentration b2-microglobuline (b2-M) in urine according to “MEIA” (Micro particles Enzyme Immunoassay) method (Abbot a sym system)

Principles:

Determination of a sym b2-microglobuline is based on MEIA technology (Micro particles Enzyme Immunoassay) and enables quantitative determination of b2-microglobuline in serum, plasma and urine in patients with Rheumatoid arthritis and renal impairment. The reaction is based on the interaction of b2-M with anti-b2-Mantibody, forming a mutual complex. This complex reacts with the Matrix cell and is bound to them. A conjugate of alkaline phosphates is added, it is bounded to the complex, forming sandwich complex. To this complex is added 4-Methylumbelliferyl Phosphate (4-MUP), reacting with alkaline phosphates from the complex and a fluorescent product - Methylumbelliferon with light blue colour is made. From the degree of the optic fluorescence depends proportionaly the concentration of b2-M. It is determined automatically (Abbot a sym system). Taking in consideration that b2-M is very sensitive to changes in urine pH i.e. very quickly is degraded in low pH levels. If pH < 6.0 it is monitored, and if it is acid it should be alkalized.

Referent values: b2-microglobuline (urine) - 0.02-0.19 mg/L.

Statistical Analysis

For testing the significance of differences between two arithmetical means, i.e. proportions the Student-t-test is used to compare the mean parameters of certain numerical parameters between groups, as well as Wilcoxon-matched test for independent samples. Sensitivity and predictivity for positive and negative test of the examined markers is determined with the test for sensitivity and specificity. P-value between 0.05 and 0.1 is considered statistically significant. Analysis of the data is performed with the statistical package Statistical 7.0.

Results

Table 1: AAP, γ-GT|||2-microglobuline and other laboratory variables in Psa and healthy control group.

	Psa Untreated Group NO 35 value (M ± SD)	Healthy Control Group NO 35 Value (M ± SD)
Positive/negative		
AAP + > 0,75 (U/ mmol/creatinine)	12/23	Jan-34
γ-GT + >1,80 (U/ mmol/creatinine)	8/27	0/35
b2-M > 0,19 (mg/L)	0/35	0/35
RF >30 > IU/ml	0/35	0/35
CRP >12 > mg/L	13/22	1/34
From the 35 examined patients with PsA, 12 pts (34.28%) showed presence of APP enzymuria, 8 pts (22.86%) presence of γ-GT, while low percentage (0%) presence of b2-microglobuline in urine. RF was present in 0 pts, (0%). In the 35 pts with Psa, APP sensitivity was 34.28%, γ-GT sensitivity was 42.85%, b2-microglobuline was 0% and RF sensitivity was 0% (Table 1 & Figure1).

Table 2: Diagnostic performances of AAP, γ-GT, β2M and other laboratory variables in Psa.

Test	AAP Psa No 35	g-GTPsa No 35	b2M Psa No 35	RFPsa No 35	CRPPsa No 35
Sensitivity	34.28	22.86	0	0	37.14
Specificity	75.56	100	100	100	97.14
Predictive value for positive test%	52.17	100	0	0	92.86
Predictive value for negative test%	59.65	56.45	50	50	60.71
Accuracy %	65.71	61.42	50	50	67.14

a) There is statistical relation using Wilcoxon-matched test between AAP in Psa and healthy control group for p<0.05 (p=0.00); AAP and β2M (p=0.00).

b) There is statistical relation using Wilcoxon-matched test between γ-GT in Psa and healthy control group for p<0.05 (p=0.40); β2M in the Psa and healthy control group for p<0.05 (p=0.06).

c) There is statistical relation using Wilcoxon-matched test between AAP in Psa and age, disease duration (in months); PASI index, RF and CRP, serum creatinin, serum urea in the same group for p<0.05: AAP vs age p=0.00; AAP vs disease duration (in months) p=0.00; AAP vs Psa p=0.00; AAP vs RF p=0.02; AAP vs CRP p=0.041; AAP vs ESR p=0.00; AAP vs serum creatinin p=0.00; AAP vs serum urea p=0.00.

d) There is statistical relation using Wilcoxon-matched test between γ-GT in Psa and age, disease duration (in months); PASI index, RF, CRP, ESR, serum creatinin and serum urea in the same group for p<0.05: γ-GT vs age p=0.00; γ-GT vs disease duration (in months) p=0.00; γ-GT vs Psa index p=0.00; γ-GT vs RF p=0.02; γ-GT vs CRP p=0.042; γ-GT vs ESR p=0.00; γ-GT vs serum creatinin p=0.00; γ-GT serum urea p=0.00.

e) There is statistical relation using Wilcoxon-matched test between β2M in Psa and age, disease duration (in months); PASI index, RF and CRP, ESR, serum creatinin and serum urea in the same group for p<0.05: β2M vs age p=0.00; β2M vs disease duration (in months) p=0.00; β2M vs Psa index p=0.00; β2M vs RF p=0.02; β2M vs CRP p=0.044; β2M vs ESR p=0.00; β2M vs serum creatinin p=0.00; β2M vs serum urea p=0.00.

Discussion

In the standard medical rheumatology the biggest emphasize is put on Rheumatoid arthritus as the most exposed disease, neglecting somehow the other diseases especially seronegative arthropathies, probably due to their lesser extent. The explanation for the renal tubular enzymes is increased exfoliative turnover of the epithelial cells in Psa, which is adequately present also in proximal tubular epithelial cells of all enzymes greatest emphasize is put on NAG as dominant lysosomal tubular enzyme. Traditional treatment of Psa and RA, includes non-steroid anti-inflammatory drugs (NSAIDs), disease modification drugs (DMARDs), steroids and immunosuppressive cytotoxic drugs. Methotrexate in low dose regime is the most frequently prescribed drug from DMARDs, while Ketoprofen (Niflam', Ketona') and Paracetamol from NSAIDs. Enzymes in urine could originate from plasma, glands from the urogenital tract, epithelial cells of the urinary tract, white blood cells, erythrocytes and kidneys.

There are 40 different enzymes in the urine belonging to different groups: oxido-reductases, transferases, hydrolases, lyases, while isomerases and ligases are not found in urine. Presence of so many enzymes in urine indicates the dominant role of the kidney's in their excretion. The urine enzyme activity in urine normally is low and increases in renal tubular cell damage. Urinary enzymes especially NAG, AAP and AF are very
sensitive indicators of renal parenchymal damage in comparison with functional measurements such as glomerular filtration rate and creatinine clearance. Relatively low sensitivity to GFR could be explained with great functional reserves of the kidneys and their great compensatory ability. AAP sensitivity is greater in comparison with g-GT and b2M (34.28% vs 22.85% vs 0%), with approximately equal specificity (75.6% vs 100% vs 100%). Statistical relation of disease duration (in months) and AAP and g-GT and b2M enzymuria p=0.00 points out that untreated PsA damages the renal tissue as one of the visceral manifestations of the disease. Untreated PsA primarily damages tubular Brush Border region and enzymes originating from it has greater sensitivity [21-29].

Conclusion

AAP has greater sensitivity than g-GT and b2M in asymptomatic renal lesions in untreated PsA. AAP and g-GT could be used in everyday clinical practice in diagnosis of early, asymptomatic renal lesions.

References

1. Mueller PW (1993) Detecting the renal effects of cadmium toxicity. Clin Chem 39(5): 743-745.
2. Maruhn D, Paar D, Bock KD (1979) Lysosomal and brush border membrane enzymes in urine of patients with renal artery stenosis and with essential hypertension. Clin Biochem 12(6): 228-230.
3. Vanderlinde RE (1981) Urinary enzyme measurements in the diagnosis of renal disorders. Ann Clin Lab Sci 11(3): 189-201.
4. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23(2-3): 99-134.
5. Johnston IDA, Jones NF, Scoble JR, Yuen CT, Price RG (1983) The diagnostic value of urinary enzyme measurements in hyperension. Clin Chim Acta 133(3): 317-325.
6. Sanberg T, Bergmark J, Hultberg B, Jagenburg R, Trollfors B (1986) Diagnostic potential of urinary enzymes and beta-2-microglobulin in acute urinary tract infection. Clin Med Scand 219(5): 469-495.
7. Ormstad M, Tanaka S, Orrenius S (1982) Function of Glutamyl-transpeptidase in the Kidney. In: Siest G, Heusquehim G (eds), Gamma-Glutamyltransferase. Masson, Paris, 7-14.
8. Goldberg MD (1980) Structural, Functional and Clinical Aspects of Glutamyl transpeptidase. CRC Crit Rev Clin Lab Sci, CRC Press, Florida, 12(1): 1-58.
9. Portman RJ, Kissane JM, Robson AM (1986) Use of beta-2-microglobulin to diagnose tubular injury in pediatric renal disease. Kidney Int 30(1): 91-98.
10. Berggård I, Bearn AG (1968) Isolation and properties of a low molecular weight beta-2 microglobulin occurring in human biological fluids. J Biol Chem 243(15): 4095-4103.
11. Schardijn GH, Status van Eps LW (1987) Beta 2-microglobulin: its significance in the evaluation of renal function. Kidney Int 32(5): 635-641.
12. Suzuki S, Sato H, Inomata A, Maruyama H, Ueno M, et al. (1992) Immunohistological localization of beta-2-microglobulin in renal tissue as an indicator of renal dysfunction. Nephron 60(2): 181-186.
13. Hellwell PS, Taylor WJ (2005) Classification and diagnostic criteria for psoriatic arthritis. Ann Rheum Dis 64(Suppl 2): ii8-ii8.
14. Mol MJH, Wright V (1973) Psoriatic arthritis. Semin Arthritis Rheum 3(1): 55-78.
15. Schmitt J, Wosel G (2005) The psoriasis area and severity index is the adequate criteria to define severity in chronic plaque-type psoriasis. Dermatology 210(3): 194-199.
16. Szasz G (1969) A kinetic photometric method for serum gamma-glutamyl-transpeptidase. Clin Chim Acta 15 (2): 124-136.
17. Orlowski M, Meister A (1963) Gamma-glutamyl-p-nitroanilide: a new convenient substrate for determination and study of l- and d-gamma-glutamyltranspeptidase activities. Biochim Biophys Acta 73: 679-681.
18. Persijn PJ, Van der Slik WJ (1976) A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem 14(9): 421-427.
19. Tietz NW, Rinaldi AD, Shaw LM (1983) International Federation of Clinical Chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC Document Stage 2, Draft 1, 1983-05 with a view to an IFCC Recommendation. Clin Chim Acta 135(3): 315P-338P.
20. Meister A, Tate SS, Ross LL (1976) Membrane-Bound Glutamyl Transpeptidase. In: A N Martonosi (Eds), Enzyme in Biological Membranes, Plenum, New York, USA, 3: 315-347.
21. Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK (1987) Psoriatic arthritis (PSA)-an analysis of 220 patients. J Clin Med Clin Biochem 12(1): 127-141.
22. Pipitone N, Kingsley GH, Manzo A, Scott DL, Pitzalis C (2003) Current concepts and new developments in the treatment of psoriatic arthritis. Rheumatology 42(10): 1138-1148.
23. McHugh NJ, Balachrishnan C, Jones SM (2003) Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology Oxford 42(6): 779-783.
24. Palazzi C, Olivieri I, Petricca A, Salvannini C (2002) Rheumatoid arthritis or psoriatic symmetric polyarthritis? A difficult differential diagnosis. Clin Exp Rheumatol 20(10): 3-4.
25. Hellwell PS (2004) Relationship of psoriatic arthritis with the other spondyloarthropathies. Curr Opin Rheumatol 16(4): 344-349.
26. Alenius GM, Berglin E, Dahlqvist SR (2006) Antibodies against cyclic citrullinated peptide (CCP) in psoriatic patients with or without joint inflammation. Ann Rheum Dis 65(3): 398-400.
27. Korendowycz E, Owen P, Ravindran J, Carmichael C, McHugh N (2005) The clinical and genetic associations of anti-cyclic citrullinated peptide antibodies in psoriatic arthrit. Rheumatology 44(8): 1056-1060.
28. Iancu N, Dalkilek I, Kamali S, Kasapoglou-Gunal E, Elbir Y, et al. (2007) Anti-CCP antibodies in rheumatoid arthritis and psoriatic arthritis. Clin Rheumatol 26(1): 17-23.
29. Abdel Fahmar NS, Hassan HE, Galal ZA, El Okda ESE (2008) Antibodies to cyclic citrullinated peptides in patients with psoriatic arthritis. 28: 13-23.
