The Effect of Covid-19 Infection in Early Pregnancy on Hematological Parameters and Miscarriage Rate

Zeliha Atak (mailto:zelihatak@hotmail.com)
Department of Obstetrics and Gynecology, Bursa City Hospital
https://orcid.org/0000-0002-4876-0573

Sakine Rahimli Ocakoglu
Department of Obstetrics and Gynecology, Bursa City Hospital

Ozlem Ozgun Uyaniklar
Department of Obstetrics and Gynecology, Bursa City Hospital

Emin Ustunyurt
Department of Obstetrics and Gynecology, Bursa City Hospital

Research Article

Keywords: Miscarriage rate, Neutrophil/lymphocyte ratio, Platelet/lymphocyte ratio, SARS-CoV-2 infection

Posted Date: January 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1193370/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose

Based on the fact that Coronavirus Disease 2019 (Covid-19) is associated with many hemocytometric changes, in this clinical trial we aimed to investigate the effect of this underlying inflammatory process on the frequency of miscarriage.

Methods

This is a retrospective cohort study. Patients with laboratory-confirmed Covid-19 infection before the 20th gestational week were determined as the study group. Healthy pregnant women in their early pregnancy were determined as the control group. Hematological parameters of all patients included in the analysis were evaluated.

Results

A total of 176 pregnant women with confirmed Covid-19 infections were evaluated, of which 117 were included in the analysis. 117 healthy pregnant women were determined as the control group. There was no difference between the groups according to demographic characteristics. The median white blood cell (WBC) and lymphocyte levels were lower in patients with Covid-19 infection ($p<0.001$, $p<0.001$). The value of platelet/lymphocyte ratio (PLR) was higher in the group with Covid-19 infection (160.95 vs 132.42, $p<0.001$). It was also determined that the median plateletcrit level was lower in the group with Covid-19 infection ($p<0.001$). The miscarriage rate in the Covid-19 infection group and control group was 14.2% and 9.4%, respectively. ($p=0.220$).

Conclusion

Covid-19 infection presents with low lymphocyte count and plateletcrit values in pregnant women, and an increase in PLR rates in relation to the severity of the disease is observed. Although not statistically significant, Covid-19 infection was associated with increased miscarriage rates in our study.

Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection, which mainly presents with respiratory system symptoms, has the potential to turn into a multisystem disease and affects pregnant women as well as the entire population. Although it was stated that the effect of the infection on pregnant women at the beginning of the pandemic was similar to the general population, it has been observed that it may progress more severely in pregnant women in the following periods [1, 2].

Studies have shown that there is an increase in the frequency of preterm birth and cesarean section in cases with Coronavirus disease 2019 (Covid-19) infection during pregnancy [3]. The effect of Covid-19
infection on the frequency of abortion is not yet clear. Studies in the literature evaluating the relationship between SARS-CoV-2 infection and abortion risk are mostly in the form of case reports.

Complete blood count is the first laboratory test used in the evaluation of infectious diseases. During the Covid-19 pandemic, the relationship of many hematological parameters with the severity of the disease has been studied [4, 5]. Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), mean platelet volume (MPV), which can be easily reached through routine hematological parameters, are indicators of inflammatory status that have also been studied in obstetric practice [6]. NLR which is studied in the first trimester can give an idea about possible complications in pregnancy [7]. For example, increased NLR was found to be associated with severe preeclampsia, gestational diabetes, gestational cholestasis, hyperemesis gravidarum, early pregnancy loss and preterm labor [8, 9].

There are also studies in the literature investigating the relationship between the platelet indices and the risk of miscarriage [10–12]. Studies have shown that low MPV, lymphopenia, and high PLR are associated with early pregnancy losses [9, 11].

Although there are many studies in the literature on the course of Covid-19 infection in pregnant women, there is a need for good quality studies to illuminate its relationship with early pregnancy complications. Based on the fact that Covid-19 infection is a process that occurs with changes in hematological parameters that support inflammation, we planned to investigate the effect of this underlying inflammatory process on the frequency of miscarriage.

To the best of our knowledge, this is the first study to evaluate the risk of miscarriage in pregnant women with Covid-19 infection under 20 weeks of gestation, along with associated hematological parameters.

Materials And Methods

This is a retrospective cohort study. Pregnant women under 20 weeks of gestation who were evaluated for Covid-19 infection in Bursa City Hospital Gynecology and Obstetrics Department between December 2020 and June 2021 were included in the study. The study was approved by Bursa City Hospital Clinical Research Ethics Committee (Approval number: 2021-11/1). Patients with laboratory confirmed Covid-19 infection before the 20th gestational week were determined as the study group. Laboratory diagnosis of infection was made by real time polymerase chain reaction (RT-PCR) test. Body mass index, obstetric history, and hematological parameters of the patients were examined. In the study, blood samples taken from all study participants at the time of admission were evaluated. Only patients whose hematological parameters could be reached were included in the study. Neutrophil/lymphocyte and platelet/lymphocyte ratios were calculated for all patients included in the analysis. Pregnant women who had a Covid-19 infection before the 20th gestational week were determined as study group (Covid +), pregnant women who did not have a history of Covid-19 infection at <20 weeks as control group (Covid -). Data from 117 patients in both groups were included in the analysis. The patients in both groups were followed up through the hospital database until the 20th gestational week and beyond. Both groups were comparable with respect to demographic parameters. In the subgroup analysis, comparisons were made as the
control group, the inpatient group and the outpatient group. After RT-PCR positivity patients who had miscarriage at the time of admission to the hospital or during hospitalization were considered as miscarriage associated with Covid-19 infection.

Statistical analysis

The Shapiro–Wilk test was used to assess whether the variables followed a normal distribution. Variables were reported as mean±standard deviation and median (minimum:maximum) values. According to the normality test results, Independent samples t-test, Mann–Whitney’s U-test and Kruskal Wallis test were used to compare the groups. Comparison of abortion rates between covid infected and non-infected groups was made using the chi-square test. The relationships between age and hematological measurements were examined by correlation analysis and Spearman correlation coefficient was calculated. Statistical analyses were performed by using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). A p-value of 5% was considered statistically significant for all statistical comparisons.

Results

A total of 176 pregnant women who were confirmed to have Covid-19 infection by Polymerase Chain Reaction (PCR) test for SARS-CoV-2 on combined oropharyngeal and nasopharyngeal swabs were included in the study. 59 patients who did not have blood tests or whose blood tests could not be reached were excluded. 117 healthy pregnant women were determined as the control group (Figure 1). Demographic characteristics of the patients in the study and control groups are shown in Table 1. There was no difference between the groups according to demographic characteristics (Table 1).
Table 1
Demographic characteristics of the patients

	Covid(+) (n=117)	Covid(-) (n=117)	p-value
Age (years)	28(16:40)	27(18:42)	0.786
BMI (kg/m²)	26.03(17.36:44.77)	26.30(18.08:39.51)	0.782
Gestational age at admission	11(5:19)	9(5:18)	0.097
Gravida	2(1:6) (2.36±1.18)	2(1:6) (2.08±1.02)	0.075
Parity	1(0:4)	1(0:3)	0.172
Abortion history	0(0:3)	0(0:2)	0.124

Data were reported as mean ±st. deviation and median(minimum:maximum)

a: Mann Whitney U Test

Abbreviations: BMI: Body mass index

The median white blood cell (WBC) level was found to be lower in the group with Covid-19 infection (6570 vs 8920, p<0.001). It was also determined that the lymphocyte level was lower in patients with Covid-19 infection (1360 vs. 2010, p<0.001). According to the NLR ratio, there was no difference between the groups (p=0.554). The value of PLR differed between the groups, and it was determined that it was higher in the group with Covid-19 infection (160.95 vs 132.42, p<0.001). While there was no difference between the groups according to MPV and PDW measurements (p=0.826 and p=0.914, respectively), it was determined that the median PCT level was lower in the group with Covid-19 infection (0.23 & 0.27, p<0.001) (Table 2).
Table 2
The effect of Covid-19 infection on hematological parameters

	Covid (+) (n=117)	Covid(-) (n=117)	p-value
WBC	6570(2470:13710)	8920(5040:14650)	<0.001^a
Lymphocyte	1360(220:4170)	2010(640:4080)	<0.001^a
NLR	3.17(0.44:28.73)	3.10(0.98:11.61)	0.554^a
PLR	160.95(73.62:1068.18)	132.42(69.77:339.06)	<0.001^a
MPV	10.20(7.5:13.6)	10.20(8.1:13.3)	0.826^a
PDW	11.40(8.4:22.4)	11.50(8.2:17.3)	0.914^a
PCT	0.23(0.03:0.38)	0.27(0.16:0.49)	<0.001^a

Data were reported as median(minimum:maximum)

^a: Mann Whitney U Test

Abbreviations: WBC: White blood cell, NLR: Neutrophil-to-lymphocyte ratio, PLR: Platelet-lymphocyte ratio MPV: Mean platelet volume, PDW: Platelet distribution width, PCT: Plateletcrit

As a result of the comparisons made between patients who had a miscarriage and had a Covid-19 infection, and those whose pregnancy ended with a miscarriage but had no Covid-19 infection, the mean WBC level was lower in patients with Covid-19 group (6912.80 vs. 8603.63, ^{p=0.046}), median lymphocyte level was lower in patients with Covid-19 (1350) vs. 2150, ^{p<0.001}), median PLR was higher in Covid-19 infected patients (160.95 vs. 134.36, ^{p=0.038}) and median PCT level was lower in Covid-19 patients (0.23 vs. 0.29, ^{p=0.004}). There was no difference between the groups in terms of NLR, MPV and PDW levels (^{p>0.05}) (Table 3).
Table 3
The effect of Covid-19 infection on hematological parameters in patients whose pregnancy ended with miscarriage

	Covid (+)	Covid (-)	p-value
	(n=25)	(n=11)	
WBC	6912.80±2202.33	8603.64±2373.38	0.046 b
Lymphocyte	1350(300:4170)	2150(1470:2830)	<0.001 a
NLR	4.07(1.32:28.73)	2.17(1.74:4.35)	0.054 a
PLR	160.95(73.62:670)	134.36(87.5:214.97)	0.038 a
MPV	10.2(9.2:13.6)	11(9.5:11.4)	0.068 a
PDW	11.3(9.2:22.4)	12.9(10.1:16.4)	0.068 a
PCT	0.23(0.03:0.38)	0.29(0.22:0.43)	0.004 a

Data were reported as mean ±st. deviation and median (minimum:maximum)

a: Mann Whitney U Test, b: Independent sample t-Test

Abbreviations: **WBC**: White blood cell, **NLR**: Neutrophil-to-lymphocyte ratio, **PLR**: Platelet-lymphocyte ratio **MPV**: Mean platelet volume, **PDW**: Platelet distribution width, **PCT**: Plateletcrit

In the subgroup analysis, it was determined that the median WBC levels of the outpatient and inpatient groups were lower than the patients who did not have Covid-19 infection (p<0.001 and p<0.001, respectively). Lymphocyte values also differed between groups (p<0.001). In the subgroup analysis, it was determined that the median lymphocyte levels of the outpatient and inpatient groups were lower than the patients who did not have Covid-19 infection (p<0.001 and p<0.001, respectively). It was determined that the median PLR values of the outpatient and inpatient groups were higher than the patients who did not have Covid-19 infection (p=0.008 and p<0.001, respectively). Again, in the subgroup analysis, it was determined that the median PCT levels of the outpatient and inpatient groups were lower than the patients who did not have Covid-19 infection (p=0.001 and p<0.001, respectively). On the other hand there was no difference in terms of NLR ratio, MPV and PDW levels between the groups (p>0.05) (Table 4).
Table 4
Relationship between disease severity and hematological parameters

	Covid (+)	Covid (-) (n=117)	Outpatient (n=62)	Inpatient (n=55)	p-value \(c\)
WBC	8920(5040:14650)	6640(2470:11950)	6140(2950:13710)	<0.001	
Lymphocyte	2010(640:4080)	1520(220:3210)	1260(300:4170)	<0.001	
NLR	3.10(0.98:11.61)	2.98(0.69:26.84)	3.42(0.44:28.73)	0.392	
PLR	132.42(69.77:339.06)	153.77(79.66:1068.18)	176.55(73.62:709.09)	<0.001	
MPV	10.20(8.1:13.3)	10.3(8.8:13.6)	10.1(7.5:12.5)	0.570	
PDW	11.50(8.2:17.3)	11.35(8.9:22.4)	11.6(8.4:17.1)	0.991	
PCT	0.27(0.16:0.49)	0.24(0.03:0.37)	0.23(0.1:0.38)	<0.001	

Data were reported as median(minimum:maximum)

\(c\): Kruskal Wallis Test

Abbreviations: WBC: White blood cell, NLR: Neutrophil-to-lymphocyte ratio, PLR: Platelet-lymphocyte ratio MPV: Mean platelet volume, PDW: Platelet distribution width, PCT: Plateletcrit

It was determined that there was no relationship between age and hematological measurements in patient groups with and without Covid-19 infection.

While miscarriage was observed in 14.20% (n=25) of 176 patients who had Covid-19 infection, this rate was determined as 9.40% (n=11) in 117 patients who did not have Covid-19 infection, and no statistically significant difference was observed between the groups in terms of miscarriage rates (p=0.220).

Discussion

With the identification of the first cases in December 2019, the Covid-19 pandemic has affected the whole world as the first case in Turkey was described on March 11, 2020 [13]. The effect of this infection on pregnant women contains many uncertainties [14]. There are case reports in the literature reporting pregnancy loss before the 20th week during Covid-19 infection [3, 15–17]. However, studies on a large patient population in early gestational weeks are not available. The studies conducted mostly cover the 3rd trimester pregnant women. Unlike other studies in the literature, our study only included patients at early gestational weeks.
Hassanipour et al. reported a significant increase in neutrophils in patients and mortality accompanied by decreased lymphocyte count in one case [18]. It has been reported in many studies that increased NLR during SARS - Cov - 2 infection is associated with poor prognosis [19–22]. In our study, although there was a slight increase in the inpatient group compared to the control group, no significant increase was observed in NLR rates. This increase was more pronounced in the group of patients with Covid -19 infection whose pregnancy ended with miscarriage even if the difference did not reach a statistically significant level.

Erol Koç et al. evaluated hematological parameters and pregnancy outcomes in pregnant women with Covid-19 infection. While there was no difference between obstetric and neonatal outcomes, NLR was found to be high, and plateletcrit was found to be low in Covid-19 infection group [23].

It has been shown that the lymphocyte count and NLR ratio at the time of admission are related to the severity of the disease [24, 25]. While no difference was observed in NLR rates in our study group, it was observed that lymphopenia became more pronounced with disease severity.

As in a very recently published study, there was no significant difference in NLR rates in the Covid-19 group as in our study, but PLR was found to be significantly higher in the Covid-19 infection group [26].

In a multicenter study, the frequency of abortion in the patient group diagnosed with Covid-19 was reported as 2.3% [27]. Whereas in a prospective study, the frequency of spontaneous abortion was reported as 6.1% [28]. In our study, miscarriage rate in the Covid-19 infection group was 14.2%. Based on the limited studies in the literature, it can be stated that Covid -19 infection does not increase the risk of miscarriage [29].

Mostly late 2nd trimester and 3rd trimester pregnant women were included in the studies evaluating the effect of Covid-19 infection on maternal and neonatal outcome. The current study differs from previous studies in the literature by evaluating the effect of Covid-19 infection directly on the risk of miscarriage.

There are many limitations of our study. Regarding the severity of the disease, there was no hospital record of the symptoms and vital signs of the patients who were admitted to the hospital due to Covid-19 infection. Also, the number of patients in our study is not such that a general conclusion can be drawn about the impact on the miscarriage rate of Covid-19 infection.

Conclusion

Increased PLR, lymphopenia and low PCT values were observed in pregnant women who had Covid-19 infection under 20 weeks of gestation. It has also been demonstrated in this study that Covid-19 infection observed in early pregnancy causes a slight increase in miscarriage rates. However, there is a need for more comprehensive studies evaluating the relationship between Covid-19 infection in early pregnancy and the risk of miscarriage.
Declarations

Author contributions

Z Atak: Project development, data collection, data analysis, manuscript writing.

SR Ocakoglu: Data collection and statistical analysis, critical revision of the manuscript.

OO Uyaniklar: Manuscript editing and data collection, supervision.

E Ustunyurt: Manuscript editing, supervision.

All authors contributed to the final revision of the manuscript.

Disclosure of interests

No conflict of interest for any of the authors.

Funding

No funding or other financial support was received for this study.

Statement of Ethics

This study was approved by the Bursa City Hospital Clinical Research Ethics Committee (Approval number: 2021-11/1).

Consent for publication

All authors agree to contribute to this journal.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Maleki Dana P, Kolahdooz F, Sadoughi F, Moazzami B, Chaichian S, Asemi Z (2020) COVID-19 and pregnancy: a review of current knowledge. Infez Med 1;28(suppl 1):46-51.

2. Chi J, Gong W, Gao Q (2021) Clinical characteristics and outcomes of pregnant women with COVID-19 and the risk of vertical transmission: a systematic review. Arch Gynecol Obstet 303(2):337-345. doi: 10.1007/s00404-020-05889-5.

3. Wong TC, Lee ZY, Sia TLL, Chang AKW, Chua HH (2020) Miscarriage Risk in COVID-19 Infection. SN Compr Clin Med 15:1-4. doi: 10.1007/s42399-020-00443.

4. Khartabil TA, Russcher H, van der Ven A, de Rijke YB (2020) A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients. Crit Rev Clin Lab Sci 57(6):415-431. doi: 10.1080/10408363.2020.1774736.

5. Yang AP, Liu JP, Tao WQ, Li HM (2020) The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 84:106504. doi: 10.1016/j.intimp.2020.106504.

6. Liu Y, Du X, Chen J, et al (2020) Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 81(1):e6-e12. doi: 10.1016/j.jinf.2020.04.002.

7. Christoforaki V, Zafeiriou Z, Daskalakis G, Katasos T, Siristatidis C (2019) First trimester neutrophil to lymphocyte ratio (NLR) and pregnancy outcome. Journal of Obstetrics and Gynaecology 1–6. doi:10.1080/01443615.2019.1606171.

8. Biyik I, Albayrak M, Keskin F (2020) Platelet to Lymphocyte Ratio and Neutrophil to Lymphocyte Ratio in Missed Abortion. Revista Brasileira de Ginecologia e Obstetricia / RBGO Gynecology and Obstetrics, 42(05), 235–239. doi:10.1055/s-0040-170969.

9. Oğlak SC, Aydın MF (2020) Are neutrophil to lymphocyte ratio and platelet to lymphocyte ratio clinically useful for the prediction of early pregnancy loss? Ginekol Pol 91(9):524-527. doi: 10.5603/GP.a2020.0082.

10. Akin MN, Kasap B, Yuvaci HU, Turhan N (2016) Association between platelet indices and first trimester miscarriage. Blood Coagul Fibrinolysis 27(5):526-30. doi: 10.1097/MBC.0000000000000445.

11. Ata N, Kulhan M, Kulhan NG, Turkler C (2020) Can neutrophil-lymphocyte and platelet-lymphocyte ratios predict threatened abortion and early pregnancy loss? Ginekol Pol 91(4):210-215. doi: 10.5603/GP.2020.0042.

12. Aynioglu O, Isik H, Sahbaz A, Harma MI, Isik M, Korkuturk F. Can Plateletcrit be a Marker for Recurrent Pregnancy Loss? (2016) Clin Appl Thromb Hemost 22(5):447-52. doi: 10.1177/1076029614565882.

13. Ministry of Health, Republic of Turkey (MoH-TR). COVID-19 web page of the Republic of Turkey. Available at: https://covid19.saglik.gov.tr [Internet].

14. Wastnedge EAN, Reynolds RM, van Boeckel SR, et al (2021) Pregnancy and COVID-19. Physiol Rev 1;101(1):303-318. doi: 10.1152/physrev.00024.2020.

15. Hachem R, Markou GA, Veluppillai C, Poncelet C (2020) Late miscarriage as a presenting manifestation of COVID-19. Eur J Obstet Gynecol Reprod Biol 252:614. doi: 10.1016/j.ejogr.2020.07.024.

16. Rana MS, Usman M, Alam MM, et al (2021) First trimester miscarriage in a pregnant woman infected with COVID-19 in Pakistan. J Infect 82(1):e27-e28. doi: 10.1016/j.jinf.2020.09.002.

17. Baud D, Greub G, Favre G, et al (2020) Second-Trimester Miscarriage in a Pregnant Woman With SARS-CoV-2 Infection. JAMA 2;323(21):2198-2200. doi: 10.1001/jama.2020.7233.

18. Hassanipour S, Faradonbeh SB, Momeni K, et al (2020) A systematic review and meta-analysis of pregnancy and COVID-19: Signs and symptoms, laboratory tests, and perinatal outcomes. Int J
Reprod Biomed 21;18(12):1005-1018. doi: 10.18502/ijrm.v18i12.8022.

19. Liu J, Liu Y, Xiang P, et al (2020) Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med 20;18(1):206. doi: 10.1186/s12967-020-02374-0.

20. Şan İ, Gemcioğlu E, Davutoğlu M, et al (2021) Which hematological markers have predictive value as early indicators of severe COVID-19 cases in the emergency department? Turk J Med Sci 17. doi: 10.3906/sag-2008-6.

21. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T (2020) Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 57(6):389-399. doi: 10.1080/10408363.2020.1770685.

22. Lin S, Mao W, Zou Q, Lu S, Zheng S (2021) Associations between hematological parameters and disease severity in patients with SARS-CoV-2 infection. J Clin Lab Anal 35(1):e23604. doi: 10.1002/jcla.23604.

23. Erol Koç EM, Fındık RB, Akkaya H, Karadağ I, Tokaloğlu EÖ, Tekin ÖM (2020) Comparison of hematological parameters and perinatal outcomes between COVID-19 pregnancies and healthy pregnancy cohort. J Perinat Med 1;49(2):141-147. doi: 10.1515/jpm-2020-0403.

24. Lasser DM, Chervenak J, Moore RM, et al (2021) New York City Health + Hospitals Perinatal COVID-19 Research Subcommittee. Severity of COVID-19 Respiratory Complications during Pregnancy are Associated with Degree of Lymphopenia and Neutrophil to Lymphocyte Ratio on Presentation: A Multicenter Cohort Study. Am J Perinatol 38(12):1236-1243. doi: 10.1055/s-0041-1732421.

25. Elhossamy H, Korrapati S, Cole F, Srinivasan M (2020) Neutrophil /lymphocyte ratio and Lymphopenia as a severity marker rather than diagnostic marker of Covid-19 in pregnant population, A retrospective case series. Authorea Preprints 1–5.

26. Carranza Lira S, García Espinosa M (2021) Differences in the neutrophil/lymphocyte ratio and the platelet/lymphocyte ratio in pregnant women with and without COVID-19. Int J Gynaecol Obstet 29. doi: 10.1002/ijgo.13840.

27. Di Mascio D, Sen C, Saccone G, Galindo A, et al (2020) Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19. J Perinat Med 48(9):950-958. doi: 10.1515/jpm-2020-0355.

28. Shmakov RG, Prikhodko A, Polushkina E, et al (2020) Clinical course of novel COVID-19 infection in pregnant women. J Matern Fetal Neonatal Med 29:1-7. doi: 10.1080/14767058.2020.1850683.

29. Cosma S, Caroasso AR, Cusato J, et al (2021) Coronavirus disease 2019 and first-trimester spontaneous abortion: a case-control study of 225 pregnant patients. Am J Obstet Gynecol 224(4):391.e1-391.e7. doi: 10.1016/j.ajog.2020.10.005.

Figures
Figure 1

Flowchart of patient selection