Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass

Thomas C. Pekin¹,², Jun Ding³, Christoph Gammer⁴, Burak Ozdol², Colin Ophus², Mark Asta¹,³, Robert O. Ritchie¹,³ & Andrew M. Minor¹,²

To date, there has not yet been a direct observation of the initiation and propagation of individual defects in metallic glasses during deformation at the nanoscale. Here, we show through a combination of in situ nanobeam electron diffraction and large-scale molecular dynamics simulations that we can directly observe changes to the local short to medium range atomic ordering during the formation of a shear band. We observe experimentally a spatially resolved reduction of order prior to shear banding due to increased strain. We compare this to molecular dynamics simulations, in which a similar reduction in local order is seen, and caused by shear transformation zone activation, providing direct experimental evidence for this proposed nucleation mechanism for shear bands in amorphous solids. Our observation serves as a link between the atomistic molecular dynamics simulation and the bulk mechanical properties, providing insight into how one could increase ductility in glassy materials.
Bulk metallic glasses (BMGs) are an interesting class of materials noted for their wide variety of mechanical properties, associated most notably with their lack of long-range crystallographic order. BMGs include alloys that exhibit extremely high strength in excess of most engineering materials, as well as low stiffness and high elastic strain limits. Because of these wide-ranging properties, BMGs are attractive alloys for future applications as they offer a potential for the development of stronger and tougher structural materials.

One of the main impediments to the adoption of high-strength BMGs is their limited ductility, which can be restricted by single shear band formation and rapid propagation at low strains, which often results in catastrophic failure. Accordingly, of key importance to further alloy development is understanding how such shear bands originate at the nanoscale because, although single shear-band formation can cause BMGs to fail at near-zero tensile ductilities, multiple shear-band formation represents the fundamental essence of plasticity in these alloys. As BMGs invariably display high strength, the creation of tensile ductility—via multiple shear banding—is thus essential to their fracture toughness, and hence damage tolerance, in terms of their potential role as future structural materials.

Several mechanisms have been proposed for the initiation and propagation for shear bands, the predominant hypotheses being free volume softening, adiabatic heating softening, and shear transformation zones (STZs). Recently, with advancements in both modeling and experimentation, STZ formation has emerged as the prevailing mechanism by which shear bands form and propagate. In this theory, a STZ is a cluster of atoms which plastically rearranges under mechanical stress. As the stress to transform many STZs homogeneously is very high, in a real material this is hypothesized to preferentially occur at stress concentrations. Once a high enough density of activated STZs have formed, a shear band develops and can propagate.

To date, observing the mechanisms of BMG shear band formation, while possible in molecular dynamics (MD) simulations, has been experimentally challenging due to the high rate of the catastrophic shear band propagation and the current experimental limits of electron microscopy. However, observing shear band nucleation and dynamics at the scales possible in transmission electron microscopy (TEM) is crucial to linking our understanding of deformation mechanisms provided by MD simulations to the macroscale mechanical behavior. Previous TEM experiments in bulk metallic glasses have largely been limited to ex situ qualitative imaging studies with high enough resolution to resolve shear bands, but have difficulties in quantitative interpretation, or more quantitative fluctuation electron microscopy (FEM) studies on the structure of BMGs that fall below the local spatial resolution needed for individual shear band characterization. In situ experiments to date have been qualitative, too slow during acquisition, hard to interpret due to a lack of understanding of the contrast mechanisms in shear bands, or at too low of a spatial resolution to be comparable to MD models. Recent advancements in techniques and hardware have, however, allowed for the observation of strain and as we will show here, the evolution of locally resolved atomic short and medium range order, with nanometer resolution during in situ deformation, providing much more comparable information to the significant modeling efforts which have been performed.

In this study, we design an in situ sample to study the coupling of local atomic order and strain during tensile deformation. The BMG used in this study is a member of the model glass family Cu_{50}Zr_{46}Al_{4}, which has been extensively studied for its high glass-forming ability and relative ease of computational modeling. These glasses have local clusters of atoms that pack intoicosahedral structures, which due to their two-, three- and five-fold symmetry axes in projection, have characteristic symmetric diffraction patterns. We directly observe a change in structural order correlated with strain as measured from the NBED patterns acquired during in situ deformation.

Results

In situ nanobeam electron diffraction. Specifically, the sample used was Cu_{50}Zr_{46}Al_{4}, which was thinned to electron transparency (~80–90 nm) and then milled using a focused ion beam (FIB) into an in situ tensile bar specimen. The annular dark field images (ADF) of the resulting sample and subsequent deformation can be seen in Fig. 1a. Unique to this in situ experiment, after each 10 nm increase in deformation, deformation was paused and a nanobeam electron diffraction (NBED) dataset was acquired, in which a full diffraction pattern was acquired for each ADF image pixel at 400 frames per second, for a total of 167,440 diffraction patterns. The full experimental procedures can be found in the attached methods section. The diffraction patterns were then used to measure the spatially resolved evolution of both strain and short and medium range order at every probe position over a large area as the sample was mechanically deformed, with a spatial resolution (probe position step size) of 2.5 nm. It should be noted that these diffraction patterns arise through an interaction of the electron beam with a finite sized (1.47 nm FWHM) volume projected through the sample thickness, and therefore symmetry elements in the patterns can arise from interactions with multiple oriented clusters, making it impossible in this experiment to distinguish between singular oriented clusters (short range order) and cluster networks (medium range order). In addition, it has been shown that as the sample thickness increases, higher order symmetries are extinguished in the diffraction patterns.

Fig. 1 A schematic overview of the experiment. **a** Annular dark field (ADF) scans taken before, during, and after in situ deformation of a bulk metallic glass sample. The change in the size and shape of the hole is indicative of plastic deformation. The lack of contrast change across the specimen suggests constant sample thickness. The green dashed box shows where NBED was performed. The scale bar is 150 nm. **b** Schematic showing the NBED process in the metallic glass. As the beam rasters over the area, a full map consisting of over 33,000 nanobeam electron diffraction patterns is recorded. The three patterns shown are examples containing two-fold (orange), four-fold (blue), and zero (yellow) symmetries, respectively.
Figure 2 shows the results obtained after processing the NBED data acquired during the in situ experiment. The top three rows of images (Fig. 2a–e) show relative strain as the experiment progresses in the orthogonal, and shear directions, while the bottom two rows of images (Fig. 2g–k) show the degree of two and four-fold order. As the experimental conditions were optimized for strain mapping, we were unable to resolve significant amounts of other rotational symmetries in the diffraction patterns. This was likely due to thickness effects. A clear evolution of strain is observed during deformation. The strain concentrates itself as expected around the hole in the center of the sample, as well as along the shear directions 45° to loading directions. Examining the maps more closely, during the first three steps of deformation corresponding to 0, 10, and 20 nm of displacement, very little changes with regards to strain. These steps correspond to elastic loading of the sample, which can be observed in the load-displacement curve shown in Fig. 2f. As the sample is deformed to 30 nm, nonlinearity of the load-displacement curve begins to occur, indicative of plastic strain. In the strain maps at this deformation (Fig. 2a–e), clear strain concentrations occur on both sides of the FIB milled hole. These thin areas experience strain up to 2% above the median strain of the sample, leading to local regions of plastic deformation and failure. After fracture, the strain returns to a uniform value across the field of view.

In conjunction with the evolution of local strain, we also measured a spatially resolved reduction in diffraction pattern symmetry (indicative of a change in the local atomic clustering) with deformation. The results can be seen in Fig. 2g–k. As previously shown in the literature, by measuring the symmetry elements found in each diffraction pattern, we can spatially map order. As expected, initially the sample had a uniform distribution of order across the region of interest. This is expected for a rapidly quenched bulk metallic glass. This does not measurably change during the elastic deformation of the sample (10 and 20 nm of deformation). However, once plasticity begins, we observe the destruction of atomic short and medium range order spatially confined to the regions of high plastic strain. In the two-fold order map Fig. 2j, this destruction is confined to the highest strain region on the sample, on the right side of the hole. In the four-fold order map (Fig. 2j, bottom), this destruction is more prevalent and can be seen on both sides of the hole, but again, is confined to the high strain regions of the sample. Figure 2l shows the mean of the Fourier symmetry coefficients in the color-coded rectangles shown in Fig. 2g for the first four steps before fracture. These sub-regions comprise of 3450 patterns. Within these
plastically deforming regions, there is a \(\sim 2\% - 3\%\) reduction in order from the maximum for both two- and four-fold symmetries. A rigorous statistical analysis confirming the reduction in local order is given in the Supplementary Note 1, as well as a second choice of measurement area in Supplementary Fig. 1. Furthermore, Supplementary Fig. 2 plots the NFCs versus strain over the whole field of view (>22,000 probe positions) before and during deformation. While there is no correlation between strain state and amount of order in the unstrained state, there exists a small but measurable negative correlation between strain and order under deformation.

The difference in size between the two- and four-fold symmetry areas of reduced order is most likely due to the mechanics of order destruction and diffraction, namely that the clusters of projected four-fold symmetry have more avenues to move out of Friedel destruction and diffraction than those in two-fold symmetry. Additionally, it should be noted that since this measurement is projected through the sample thickness, if four-fold symmetry arises from the overlap of two two-fold symmetry elements, this arrangement of atoms is more easily displaced as to reduce diffraction during deformation than a single cluster, further contributing to an increased likelihood of reduction of four-fold order when compared to two-fold order. It must be emphasized that, due to plural scattering and projection effects inherent to this experiment, decrease in any symmetry order coefficient (while indicative of structural change) is difficult to directly map to equivalent reductions of symmetry in individual singular clusters of atoms.

Molecular dynamics simulations. To help interpret these results, large-scale molecular dynamics (MD) simulations\(^5\) were performed on a 5-million-atom sample with a similar geometry, although with reduced dimensions and higher strain rates for practical considerations. The alloy composition was the same as tested experimentally. The parity between experimental and simulated sample geometry and composition allows for their correlation. Details of sample preparation can be found in the supplied Methods. The MD results can be seen in Fig. 3 that shows five frames of increasing deformation. The process of strain localization around the region of plastic deformation is shown in Fig. 3a–e; the images are colored according to the local von Mises shear strain (see Methods). Under the uniaxial tension in the y-direction, the strain localization begins to aggregate near both sides of the hole (Fig. 3a); with increase in applied strain, progressively more strain localization evolves out along the two 45° directions of maximum shear stress. Finally, the continuously induced strain localizations percolate across the sample from the hole to the free surfaces, thus forming the shear bands seen in Fig. 3e. This deformation process revealed by the MD simulation is generally consistent with our experimental TEM characterization shown in Fig. 2. Similarly, Fig. 3f–j show the spatial distribution of local icosahedral order (see Methods) for the studied five frames, where a corresponding reduction in the fraction of full icosahedral order (as a proxy for local rotational symmetry) is seen as deformation progresses. Interestingly, the regions with reduced local icosahedral order (blue regions in Fig. 3f–j) nearly overlap with the strain localization in Fig. 3a–e. Comparing our large-scale MD simulation results and our direct observations by NBED, a clear correlation between strain localization and local structural transition in BMGs under deformation can be seen in both datasets.

Despite experimental differences in sample size and deformation rate, previous and current MD simulations observe a mechanism of metallic glass deformation which relies on STZs collective activation and plastic rearrangement as the basis for shear band formation. In simulations, the result of the STZs deformation was locally reduced icosahedral order, i.e., a destruction in the icosahedral clusters followed by subsequent shear band initiation. Similarly, while in this particular experiment it is not possible to directly link the structural transition mechanism under deformation to icosahedral order, we do see for the first time structural transition under deformation in the in situ NBED experiment. At high strains, multiple local atomic clusters containing symmetry are destroyed before shear band propagation, and their destruction generates increasing local plasticity and shear band formation under further strain. The experimental determination of the exact structural transition mechanism will require further experiments with a higher time resolution and thinner specimens, most likely utilizing the same NBED technique.

Discussion

Our results support the important hypothesis of shear transformation zone activation leading to shear banding and fracture as described by prior computational models but never experimentally observed before. In order to improve the limited tensile ductility currently preventing BMGs from widespread use,
resulting primarily from deformation localization in single shear bands, our experiments suggest that future alloy design should follow a pathway which allows for more STZ activation to homogeneously occur before critical failure. We also believe that the combination of in situ microscopy and NBED as a characterization technique is well suited to image structural deformation characteristics on the nanometer scale in nominally disordered materials. The direct correlation between quantitative in situ deformation experiments and large-scale MD simulations on the same length scale can serve as a crucial link between simulations and bulk mechanical properties.

Methods

Materials. The samples were bulk metallic glass with a composition of Cu$_{46}$Zr$_{46}$Al$_{8}$ prepared via suction casting from the melt.

Sample preparation and experimental methods. The initial sample was received as a cylindrical bar with an outer diameter of ~4 mm. The bar was mechanically machined down to an outer diameter of 3 mm, and electrical discharge machined into 600-μm-thick slices. The samples were further mechanically thinned to ~150–200 μm, and then jet polished to electron transparency. The jet polishing solution used was 33% nitric acid in methanol, cooled to ~25 °C, and a polishing voltage of 18 V.

In situ samples were then cut and lifted out using a FEI Strata 235 dual beam focused ion beam (FIB) equipped with an Omniprobe. The samples were welded on to a Hysitron push-to-pull chip using deposition platinum. A hole was cut in the center of the tensile bar to concentrate stress and strain, allowing for higher resolution scans in the critical area. The sample after liftout can be seen in Supplementary Fig. 3.

The in situ nanobeam electron diffraction (NBED), pre- and post-experiment transforms of the electron coordinates for each pattern to (k, q) space, as explained in refs. 48,60,61. Similar to the cited references, to compute the symmetries in the pattern, we used the four-point angular cross correlation function (CCF), as a function of scattering vector. This takes the form

$$CCF(r, k, \Delta) = \langle |I(k, q)|^2(k, q + \Delta) \rangle - \langle |I(k, q)|^2 \rangle,$$

where $I(k, q)$ is the intensity diffracted into the (k, q) bin, $\langle \cdot \rangle$ is the average with respect to q at a fixed k, and r is the STEM probe position, (x, y). Then, by taking the absolute value of the Fourier transform of these CCFs, the symmetries in the diffraction pattern can be accessed directly from the appropriate (already normalized) Fourier coefficient. This method removes the effects of changing diffraction pattern intensity (for example from sample thickness, bending, etc.). A histogram of the two and four-fold symmetry coefficients is provided in Supplementary Fig. 5.

Computational molecular dynamics methods. Large-scale molecular dynamics simulations were implemented to study the Cu$_{46}$Zr$_{46}$Al$_{8}$ model metallic glasses, using the optimized embedded atom method (EAM) potential, adopted from ref. 38. The sample contained about 5 million atoms, and the liquids of the sample were equilibrated for 1 ns at high temperature (2500 K) to assure equilibrium and then quenched to room temperature at the cooling rates of 1012 Ks$^{-1}$ employing a Nose-Hoover thermostat (the external pressure was barostated at zero)53. Periodic boundary conditions were applied in all three directions during the quenching39. The prepared Cu$_{46}$Zr$_{46}$Al$_{8}$ metallic glass sample had dimensions of 78.3 nm × 11.5 nm × 1.3 nm at 300 K. A hole with the radius of 16 nm was created in the middle of x–y plane. Then the boundary condition in x-direction was set as a free surface. The as-processed sample was then gradually heated to 680 K (below its glass transition temperature T_g) and annealed for 0.5 ns to reach a steady potential energy. The final step of sample preparation was to quench it from 680 to 300 K with a cooling rate of 1012 Ks$^{-1}$. For the simulation of the deformation process, the Cu$_{46}$Zr$_{46}$Al$_{8}$ model metallic glass was under uniaxial tension in the y-direction with a strain rate of 10$^{-4}$ ps$^{-1}$ at 300 K under NVT ensemble. The local von Mises shear strain was analyzed using pixel localization in ref. 56 by comparing the deformed configuration with the original one. We monitored the local structural order in Cu$_{46}$Zr$_{46}$Al$_{8}$ metallic glasses by conducting Voronoi tessellation62. Faces of Voronoi cell with area smaller than 0.25% of the total area were discounted. Specifically, Fig. 3f–j are the coarse-graining plots of the fraction of full isochedral order (with the Voronoi index (0.0, 12.0)) in the x–y plane, which is divided into pixels with dimensions of 2 × 2 nm and averaged over the whole z-direction of the sample. The stress–strain curve and corresponding reduction in local order are shown in Supplementary Fig. 6.

Data availability

Data is available via request to the corresponding authors.

Code availability

All code is available via request to the corresponding authors.
4. Schroers, J. & Johnson, W. L. Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).
5. Das, J. et al. “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
6. Telford, M. The case for bulk metallic glass. Mater. Today 7, 36–43 (2004).
7. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).
8. Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 3, 82 (2011).
9. Demetriou, M. D., et al. A damage-tolerant glass. Nat. Mater. 10, 123 (2011).
10. Hufnagel, T. C., Schuh, C. A. & Falk, M. L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater. 109, 375–393 (2016).
11. Greer, A., Cheng, Y. Ma, & E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74, 71–132 (2013).
12. Yavari, A. R., Lewandowski, J. & Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 32, 655–658 (2007).
13. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999).
14. Sun, B. & Wang, W. The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211–307 (2015).
15. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).
16. Anderson, A. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).
17. Steif, P., Spaepen, F. & Hutchinson, J. Strain localization in amorphous metals. Acta Metall. 30, 447–455 (1982).
18. Johnson, W. L., Lu, J. & Demetriou, M. D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids—a self-consistent dynamic free volume model. Intermetallics 10, 1039–1046 (2002).
19. Huang, R., Suo, Z., Prevost, J. & Nix, W. Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50, 1011–1027 (2002).
20. Wang, W., Yang, K., Nieh, T. & Liu, C. On the source of plastic flow in metallic glasses: concepts and models. Intermetallics 67, 81–86 (2015).
21. Dai, L., Yan, M., Liu, L. & Bai, Y. Adiabatic shear banding instability in bulk metallic glasses. Appl. Phys. Lett. 87, 141916 (2005).
22. Leamy, H., Wang, T. & Chen, H. Plastic flow and fracture of metallic glass. Metall. Mater. Trans. B 3, 699 (1972).
23. Liu, C., et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811–1820 (1998).
24. Pan, D., Inoue, A., Sakurai, T. & Chen, M. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. USA 105, 14769–14772 (2008).
25. Johnson, W. & Sanwker, K. A universal criterion for plastic yielding of metallic glasses (with a Ti(Tp) 2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).
26. Bouchbinder, E. & Langer, J. Nonequilibrium thermodynamics of driven amorphous materials. II. Effective-temperature theory. Phys. Rev. E 80, 031123 (2009).
27. Bouchbinder, E. & Langer, J. Nonequilibrium thermodynamics of driven amorphous materials. III. Shear transformation-zone plasticity. Phys. Rev. E 80, 031133 (2009).
28. Shi, Y., Katz, M. B., Li, H. & Falk, M. L. Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. Phys. Rev. Lett. 98, 185505 (2007).
29. Lewandowski, J. & Greer, A. Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).
30. Zhao, P., Li, J., Hwang, J. & Wang, Y. Influence of nanoscale structural heterogeneity on shear banding in metallic glasses. Acta Mater. 134, 104–115 (2017).
31. Li, J., Spaepen, F. & Hufnagel, T. Nanometre-scale defects in shear bands in a metallic glass. Philos. Mag. A 82, 2623–2630 (2002).
32. Jiang, W. & Atzmon, M. The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al64Fe36Gd: a high-resolution transmission electron microscopy study. Acta Mater. 51, 4095–4105 (2003).
33. Chen, H., He, Y., Shiflet, G. & Poon, S. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 (1994).
34. Rösner, H., Peterlechner, M., Kübel, C., Schmidt, V. & Wilde, G. Density changes in shear bands of a metallic glass determined by corellear analytical transmission electron microscopy. Ultramicroscopy 142, 1–9 (2014).
35. Voyles, P. & Hwang, J. in Characterization of Materials, pp. 1–7 (John Wiley & Sons, Inc, Hoboken, NJ, 2012).
Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10416-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Lingti Kong and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019