Estimates for Coefficients of Certain Analytic Functions

V. Ravichandrana, Shelly Vermaa

aDepartment of Mathematics, University of Delhi, Delhi–110 007, India

Abstract. For $-1 \leq B \leq 1$ and $A > B$, let $S^*[A,B]$ denote the class of generalized Janowski starlike functions consisting of all normalized analytic functions f defined by the subordination $zf'(z)/f(z) < (1 + A\beta)/(1 + B\beta)$ ($|z| < 1$). For $-1 \leq B \leq 1 < A$, we investigate the inverse coefficient problem for functions in the class $S^*[A,B]$ and its meromorphic counterpart. Also, for $-1 \leq B \leq 1 < A$, the sharp bounds for first five coefficients for inverse functions of generalized Janowski convex functions are determined. A simple and precise proof for inverse coefficient estimations for generalized Janowski convex functions is provided for the case $A = 2\beta - 1$ ($\beta > 1$) and $B = 1$. As an application, for $F := f^{-1}$, $A = 2\beta - 1$ ($\beta > 1$) and $B = 1$, the sharp coefficient bounds of F/F' are obtained when f is a generalized Janowski starlike or generalized Janowski convex function. Further, we provide the sharp coefficient estimates for inverse functions of normalized analytic functions f satisfying $f'(z) < (1 + z)/(1 + Bz)$ ($|z| < 1, -1 \leq B < 1$).

1. Introduction and Preliminaries

Let D denote the unit disc. Let A be the class of all normalized analytic functions $f: D \rightarrow \mathbb{C}$ of the form $f(z) = z + a_2z^2 + a_3z^3 + \cdots$. The subclass of A consisting of univalent functions is denoted by S. An analytic function f is said to be subordinate to an analytic function g, written $f \prec g$, if $f = g \circ w$ for some analytic function $w: D \rightarrow D$ with $w(0) = 0$. If g is univalent, then $f \prec g$ is equivalent to $f(0) = g(0)$ and $f(D) \subset g(D)$. Let φ be an analytic univalent function with positive real part mapping D onto domains symmetric with respect to real axis and starlike with respect to $\varphi(0) = 1$ and $\varphi'(0) > 0$. Let $P(\varphi)$ denote the class of all analytic functions $p: D \rightarrow \mathbb{C}$ such that $p \prec \varphi$. For such φ, Ma and Minda \cite{22} introduced the subclasses $S^*(\varphi)$ ($K(\varphi)$) of S consisting of functions $f \in S$ such that $zf'(z)/f(z) (1 + zf''(z)/f'(z)) \in P(\varphi)$. For different choices of φ, several well-known classes can be easily obtained from these classes which were earlier considered and studied one by one for their geometric and analytic properties. For instance, $S^*((1 + z)/(1 - z)) =: S^*$ and $K(((1 + z)/(1 - z))) =: K$, the usual classes of starlike and convex functions respectively; for $0 \leq \alpha < 1$, $S^*((1 + (1 - 2\alpha)z)/(1 - z)) =: S^*(\alpha)$ and $K(((1 + (1 - 2\alpha)z)/(1 - z))) =: K(\alpha)$, the well-known classes of starlike and convex functions of order α, respectively introduced in \cite{30}; for $0 < \alpha \leq 1$, $S^*((1 + z)/(1 - z))^{\alpha} =: SS^*(\alpha)$ is the well-known class of strongly starlike functions of order α introduced

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50, 30C80

Keywords. Univalent functions, starlike functions, convex functions, meromorphic functions, coefficient bounds, inverse coefficient bounds

Accepted: Communicated by

The second author is supported by a Senior Research Fellowship from National Board for Higher Mathematics, Mumbai. Dedicated to Prof. Ciric.

Email addresses: vravi66@gmail.com; vravi@maths.du.ac.in (V. Ravichandran), jmdsv.maths@gmail.com (Shelly Verma)
the sharp coefficient bounds of \(\Sigma \) estimation for functions in the class \(\Sigma \) coefficient bounds for the inverse functions of functions in the class \(\Sigma \) coefficient problem is completely settled in \cite{1} for functions in the classes known for these classes, for details see \cite{12–14}. This leads to several works related to the inverse coefficient problem for functions in certain subclasses of \(\Sigma \).

We observe that the distortion theorem, upper bound of \(|f| \), rotation theorem, upper bound of Feketo-Szego coefficient functional \(|a_3 - \mu a_2^3| \) for \(f \in \mathcal{K}(\varphi) \) given in \cite{21} still hold for a normalized locally univalent function \(f \) satisfying \(1 + z f''(z)/f'(z) \prec \varphi(z) \) if we drop the condition that \(\varphi \) has positive real part. Consequently, the upper bound and the lower bound of Feketo-Szego coefficient functional \(|a_3 - \mu a_2^3| \) follow for a normalized analytic function \(f \) satisfying \(z f'(z)/f(z) \prec \varphi(z) \) even if \(\varphi \) does not have positive real part. This motivates one to consider the following subclasses of \(A \), for \(-1 \leq B \leq 1, A > B\),

\[
\mathcal{K}[A, B] = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}[A, B] \right\} \quad \text{and} \quad S^*[A, B] = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \in \mathcal{P}[A, B] \right\}
\]

where \(\mathcal{P}[A, B] := \mathcal{P}((1 + A z)/(1 + B z)) \). For \(-1 \leq B < A \leq 1\), \(S^*[A, B] \) is a subclass of \(S^* \) introduced by Janowski \cite{11} and for particular values of \(A \) and \(B \), it reduces to several known subclasses of \(S^* \). Precisely, \(S^*[1 - 2\alpha, -1] := S^*(\alpha) \) (\(0 \leq \alpha < 1 \)) \cite{20}; \(S^*[1, 1/M - 1] := S^*(M) \) (\(M > 1/2 \)) \cite{10}; \(S^*[\beta, -\beta] := S^*(\beta) \) (\(0 < \beta \leq 1 \)) \cite{22}; \(S^*[1 - \beta, 0] := S^*_1[1 - \beta, 0] \) \cite{13}. Note that, for \(-1 < B < 1 \), the functions in the classes \(\mathcal{K}[A, B] \) and \(S^*[A, B] \) may not be univalent but must be locally univalent in \(\mathbb{D} \) and non-vanishing in \(\mathbb{D} \backslash \{0\} \), respectively.

Recently, the classes \(S^*[2\beta - 1, 1] \) and \(\mathcal{K}[2\beta - 1, 1] \) \((\beta > 1) \) have been studied by several authors, see \cite{23, 24, 36}. Moreover, the upper bound of the Feketo-Szego coefficient functional \(|a_3 - \mu a_2^3| \) for \(f \in \mathcal{K}[2\beta - 1, 1] \) or \(f \in S^*[2\beta - 1, 1] \); the distortion theorem, upper bound of \(|f| \), rotation theorem for \(f \in \mathcal{K}[2\beta - 1, 1] \); and the growth theorem for \(f \in S^*[2\beta - 1, 1] \) are given in \cite{1} which can actually be deduced, even for the functions in the generalized classes \(S^*[A, B] \) and \(\mathcal{K}[A, B] \) \((-1 \leq B \leq 1 < A)\), from the results in \cite{21}. Also, for \(-1 \leq B \leq 1 \) and \(A > B \), one can consider the meromorphic counterpart part of \(S^*[A, B] \), namely, the class \(\Sigma^*[A, B] \) consisting of analytic functions of the form

\[
g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots
\]

defined on \(\mathbb{C} \backslash \mathbb{D} \) such that \(zg'(z)/g(z) = p_0(\mathbb{D}) \) where \(p_0 : \mathbb{D} \to \mathbb{C} \) is defined by \(p_0(z) = (1 + A z)/(1 + B z) \). For \(-1 \leq B < A \leq 1\), the class \(\Sigma^*[A, B] \) has been considered in \cite{3} and the particular choices of \(A \) and \(B \) give the meromorphic counterpart parts of the classes corresponding to those of \(S^*[A, B] \) such as \(\Sigma^*[1 - 2\alpha, -1] := \Sigma^*(\alpha) \) (\(0 \leq \alpha < 1 \)) \cite{20}; \(\Sigma^*[1, 1/M - 1] := \Sigma^*(M) \) (\(M > 1/2 \)) \cite{33}; \(\Sigma^*[\beta, -\beta] := \Sigma^*(\beta) \) (\(0 < \beta \leq 1 \)) \cite{22}; \(\Sigma^*[1 - \beta, 0] := \Sigma^*_1[1 - \beta, 0] \) \cite{13}. Haltenbeck \cite{3} introduced the class \(\Sigma \) consisting of functions \(f \in \mathcal{S} \) such that \(f' \in \mathcal{P} \), where \(\mathcal{P} := \mathcal{P}((1+z)/(1-z)) \). Further, Libera and Złotkiewicz \cite{15, 17} investigated the inverse coefficient problem of functions in the class \(\Sigma \). For \(-1 \leq B < A \leq 1\), let \(\mathcal{S}[A, B] \) denote the subclass of \(\mathcal{S} \) consisting of functions \(f \in \mathcal{S} \) such that \(f' \in \mathcal{P}[A, B] \).

The problem of estimating the coefficients of inverse functions lay its origin in 1923 when Löwner \cite{20} gave the sharp coefficient estimates for inverse function of \(f \in \mathcal{S} \) along with the sharp coefficient estimation for the third coefficient of \(f \in \mathcal{S} \). Later, several authors \cite{5, 6, 7, 27, 32} gave alternate proofs for the inverse coefficient problem for functions in the class \(\mathcal{S} \) but the inverse coefficient problem is still an open problem even for the well-known classes \(\mathcal{K} \) and \(\Sigma^*(\alpha) \) \((0 \leq \alpha < 1) \), although the sharp estimates for initial inverse coefficients are known for these classes, for details see \cite{12, 14}. This leads to several works related to the inverse coefficient problem for functions in certain subclasses of \(\mathcal{S} \), see \cite{2, 16, 18, 13, 22, 28, 34, 35}. Recently, the inverse coefficient problem is completely settled in \cite{1} for functions in the classes \(S^*[2\beta - 1, 1] \) or \(\Sigma^*[2\beta - 1, 1] \) or \(\mathcal{K}[2\beta - 1, 1] \); \(\beta > 1 \).

In this paper, we are mainly concerned about the determination of the sharp inverse coefficient bounds for functions in the classes \(\Sigma^*[A, B] \) or \(\Sigma^*[A, B] \) \((-1 \leq B \leq 1 < A)\). Also, we are giving the sharp coefficient bounds for the inverse functions of functions in the class \(\mathcal{S}[1, B] \) \((-1 \leq B < 1) \) and the sharp first five coefficient bounds for the inverse functions of functions in the class \(\mathcal{K}[A, B] \) for \(-1 \leq B \leq 1 < A \). Apart from this, we present a slightly simpler proof than the proof given in \cite{1} for the sharp inverse coefficient estimation for functions in the class \(\mathcal{K}[2\beta - 1, 1] \); \(\beta > 1 \). As an application, for \(F := f^{-1} \) and \(\beta > 1 \), the sharp coefficient bounds of \(F/F' \) are obtained when \(f \in S^*[2\beta - 1, 1] \) or \(f \in \mathcal{K}[2\beta - 1, 1] \). Further,
under some conditions, the sharp coefficient estimates are determined for functions in the class $\Sigma^*[A, B]$ ($-1 \leq B < A$).

We need the following lemmas to prove our results.

Lemma 1.1. [3] Theorem II, p. 547] Let Ω be the family of functions f such that for $|z| < \rho$ with $\rho > 0$, $f(z) = \sum_{n=1}^{\infty} a_n z^n$ ($a_1 \neq 0$). If $f \in \Omega$ and ϕ is the inverse function of f, then $\phi \in \Omega$. For any integer t, let $f(z)^t = \sum_{n=-\infty}^{\infty} a_n^{(t)} z^n$ and $\phi(w)^t = \sum_{n=-\infty}^{\infty} b_n^{(t)} w^n$ in some neighbourhoods of the origin, where $a_n^{(t)}$ and $b_n^{(t)}$ are zero for $n < t$. Then

$$b_n^{(t)} = \frac{t}{n} a_n^{(-n)}, \quad n \neq 0.$$

For $n = 0$, $b_0^{(t)}$ is defined by

$$\sum_{t=-\infty}^{\infty} b_0^{(t)} z^{-t-1} = \frac{f'(z)}{f(z)}.$$

Lemma 1.2. [32] Theorem X, p. 70] Let $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ ($z \in \mathbb{D}$) be such that $f \prec g$. If g is univalent in \mathbb{D} and $g(\mathbb{D})$ is convex, then $|a_n| \leq |b_n|$.

By using the above lemma, the following result is proved. This has been proved in [4] for the case $-1 \leq B < A \leq 1$.

Lemma 1.3. If $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$ is in $P[A, B]$ $(-1 \leq B \leq 1, A > B)$ then $|c_n| \leq A - B$. The bounds are sharp.

Proof. Since $p \in P[A, B]$, $p(z) < (1 + Az)/(1 + Bz)$. Let $g(z) := (1 + Az)/(1 + Bz)$. Clearly, g is univalent in \mathbb{D}. For $-1 < B < 1$, $g(\mathbb{D})$ is the disc $|w - (1 - AB)/(1 - B^2)| < |(A - B)/(1 - B^2)|$. For $B = 1$ and $B = -1$, $g(\mathbb{D})$ is the left half plane $\text{Re}(w) < (1 + A)/2$ and the right half plane $\text{Re}(w) > (1 - A)/2$ respectively. Therefore, $g(\mathbb{D})$ is convex and hence by Lemma 1.2 $|c_n| \leq A - B$ for each n. Define a function $p_n : \mathbb{D} \to \mathbb{C}$ as

$$p_n(z) = \frac{1 + Az^n}{1 + Bz^n} = 1 + (A - B)z^n - B(A - B)z^{2n} + \cdots.$$

Clearly, the result is sharp for the function p_n. \qed

The following lemma follows easily by induction on m and for $-1 \leq B < A \leq 1$, it is given in [4, Lemma 2, p. 737].

Lemma 1.4. Let $A > B$, $-1 \leq B \leq 1$. Then for any integer t and $m \in \mathbb{N}$, we have

$$m^2 \prod_{j=0}^{m-1} \left(\frac{(A - B)(t + Bj)}{j + 1} \right)^2 = (A - B)^2 t^2 + \sum_{k=1}^{m-1} \left(((A - B)t + Bk)^2 - k^2 \right) \prod_{j=0}^{k-1} \left(\frac{(A - B)(t + Bj)}{j + 1} \right)^2.$$

2. Main Results

The following theorem gives estimates for inverse coefficient of functions in the class $S^*[A, B]$ ($-1 \leq B \leq 1 < A$).

Theorem 2.1. Let $f \in S^*[A, B]$ $(-1 \leq B \leq 1 < A)$ and $f^{-1}(w) = F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. Then for each $n \geq 2$,

$$|\gamma_n| \leq \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{n(A - B) + mB}{m + 1} \right).$$

(2)

The result is sharp.
Proof. For any integer \(t > 0 \), let
\[
g(z) := \left(\frac{f(z)}{z} \right)^{-t} = 1 + \sum_{j=1}^{\infty} a_j^{(-t)} z^j \quad (|z| < 1).
\]
Then
\[
-\frac{z g'(z)}{g(z)} = \frac{zf'(z)}{f(z)} - 1.
\]
Since \(f \in \mathcal{S}^*[A, B] \), we have
\[
\frac{zf'(z)}{f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}
\]
for some analytic function \(w : \mathbb{D} \to \mathbb{D} \) with \(w(0) = 0 \). The equations (3) and (4) give
\[
\sum_{j=1}^{\infty} j a_j^{(-t)} z^j = -w(z) \left((A - B)t + \sum_{j=1}^{\infty} (B(j - t) + A t) a_j^{(-t)} z^j \right)
\]
which can be rewritten as
\[
\sum_{j=1}^{s} j a_j^{(-t)} z^j + \sum_{j=s+1}^{\infty} b_j^{(-t)} z^j = -w(z) \left((A - B)t + \sum_{j=1}^{s-1} (B(j - t) + A t) a_j^{(-t)} z^j \right)
\]
where
\[
\sum_{j=s+1}^{\infty} b_j^{(-t)} z^j := \sum_{j=s+1}^{\infty} j a_j^{(-t)} z^j + w(z) \left(\sum_{j=s}^{\infty} (B(j - t) + A t) a_j^{(-t)} z^j \right).
\]
Since \(|w(z)| < 1 \ (|z| < 1) \), squaring the moduli of both sides, we have
\[
\left| \sum_{j=1}^{s} j a_j^{(-t)} z^j + \sum_{j=s+1}^{\infty} b_j^{(-t)} z^j \right|^2 < \left| (A - B)t + \sum_{j=1}^{s-1} (B(j - t) + A t) a_j^{(-t)} z^j \right|^2.
\]
Integrating along \(|z| = r, 0 < r < 1 \) with respect to \(\theta \) \((0 \leq \theta \leq 2\pi)\) and applying Parseval’s identity that for an analytic function \(g : \mathbb{D} \to \mathbb{C} \) of the form \(g(z) = \sum_{n=0}^{\infty} A_n z^n \),
\[
\frac{1}{2\pi} \int_{0}^{2\pi} |g(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |A_n|^2 r^{2n} \quad (0 < r < 1)
\]
we have
\[
\sum_{j=1}^{s} |j a_j^{(-t)}|^2 r^{2j} + \sum_{j=s+1}^{\infty} |b_j^{(-t)}|^2 r^{2j} \leq (A - B)^2 t^2 + \sum_{j=1}^{s-1} |B(j - t) + A t|^2 |a_j^{(-t)}|^2 r^{2j}.
\]
Letting \(r \to 1 \) yields
\[
\sum_{j=1}^{s} |j a_j^{(-t)}|^2 \leq (A - B)^2 t^2 + \sum_{j=1}^{s-1} |B(j - t) + A t|^2 |a_j^{(-t)}|^2
\]
and therefore,
\[
|sa_s^{(-t)}|^2 \leq (A - B)^2 t^2 + \sum_{j=1}^{s-1} ((A - B)t + B(j - t) - j^2)|a_j^{(-t)}|^2.
\]
We shall show that, for $-1 \leq B \leq 1$, $A > B$, $t \geq (s - 1)(1 - B)/(A - B)$ and $s \geq 1$,

$$|a^{(-t)}_s| \leq \prod_{m=0}^{s-1} \left(\frac{(A - B)t + mB}{m + 1} \right).$$ \hfill (6)

We proceed by induction on s. For $s = 1$, equation (5) gives

$$|a^{(-t)}_1| \leq (A - B)t.$$

Since $-1 \leq B \leq 1$ and $A > B$, for fixed $j \geq 1$, $((A - B)t + Bj)^2 - j^2 = ((A - B)t - j(1 - B))(\frac{(A - B)t + t(1 - B)}{A - B} \geq 0$ if $t \geq j(1 - B)/(A - B)$. Assume that (6) holds for $s \leq q - 1$ and $t \geq (q - 1)(1 - B)/(A - B)$.

Then by using induction hypothesis and the equation (5) for F, it can be easily seen that

$$|q a^{(-t)}_q|^2 \leq (A - B)^2 t^2 + \sum_{j=1}^{q-1} \left(((A - B)t + Bj)^2 - j^2 \right) \prod_{m=0}^{j-1} \left(\frac{(A - B)t + mB}{m + 1} \right)^2$$

which by using Lemma [3] gives

$$|a^{(-t)}_q| \leq \prod_{m=0}^{q-1} \left(\frac{(A - B)t + mB}{m + 1} \right).$$

Thus, (6) holds for $s = q$ and hence by induction (6) holds for all $s \geq 1$. By applying Cauchy’s integral formula for F, it can be easily seen that

$$\gamma_n = \frac{1}{n} a^{(-n)}_{n-1} \quad (n \geq 2).$$ \hfill (7)

Since $A > 1$, therefore $(n - 2)(1 - B)/(A - B) \leq n - 2$ $(n \geq 2)$. So, for $t = n$ and $s = n - 1$, the equation (6) gives

$$|\gamma_n| = \frac{1}{n} |a^{(-n)}_{n-1}| \leq \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{(A - B)n + mB}{m + 1} \right).$$

Define a function $f_1 : \mathbb{D} \to \mathbb{C}$ by

$$f_1(z) = \begin{cases} z(1 + Bz)^{(A - B)/B}, & B \neq 0 \\ ze^{Az}, & B = 0. \end{cases}$$ \hfill (8)

The result is sharp for the function f_1.

For $A = 2\beta - 1$, $B = 1$ $(\beta > 1)$, the above theorem reduces to [1, Theorem 4.3, p. 14].

Corollary 2.2. Let $f \in S^*[2\beta - 1, 1]$ $(\beta > 1)$ and $f^{-1}(w) = F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. If $F(w)/F^*(w) = w + \sum_{n=2}^{\infty} \delta_n w^n$, then $|\delta_2| \leq 2(\beta - 1)$ and for $n > 2$,

$$|\delta_n| \leq 2(\beta - 1) \prod_{j=2}^{n-1} \frac{2(n - 1)(\beta - 1) + j}{j}.$$

The result is sharp.

Proof. Since $f \in S^*[2\beta - 1, 1]$ $(\beta > 1)$, $zf'(z)/f(z) \in P[2\beta - 1, 1]$. This gives

$$\frac{zf'(z)}{f(z)} = p(z)$$
where \(p(z) = 1 + c_1 z + c_2 z^2 + \cdots \in \mathcal{P}[2\beta - 1, 1] \). In terms of \(F := f^{-1} \), the above equation becomes

\[
\frac{F(w)}{F'(w)} = wp(F(w)).
\]

Using power series expansions of \(F/F' \), \(p \) and \(F \), we obtain

\[
\sum_{n=2}^{\infty} \delta_n w^n = \sum_{n=2}^{\infty} \left(\sum_{j=1}^{n-1} c_j \gamma_{n-1,j} \right) w^n
\]

where \(\gamma_{n-1,j} \) denotes the coefficient of \(w^{n-1} \) in the expansion of \(F(w)^2 \). In fact, \(\gamma_{n-1,j} = S_j(\gamma_2, \gamma_3, \ldots, \gamma_{n-2}) \) is a polynomial in \(\gamma_2, \gamma_3, \ldots, \gamma_{n-2} \) with non-negative coefficients and \(\gamma_{n-1,n-1} = 1 \). On comparing the coefficients of \(w^n \), we have

\[
\delta_n = \sum_{j=1}^{n-1} c_j \gamma_{n-1,j}.
\]

An application of Lemma 1.3 gives

\[
|\delta_n| \leq 2(\beta - 1) \sum_{j=1}^{n-1} S_j(|\gamma_2|, |\gamma_3|, \ldots, |\gamma_{n-2}|).
\]

Define \(g_1(z) := e^{-iz} f_1(e^{iz} z) \) where \(f_1 \) is given by (8) for \(A = 2\beta - 1 \) and \(B = 1 \). Clearly, \(g_1 \in \mathcal{S}^*[2\beta - 1, 1] \). Then \(G_1(w) := g_1^{-1}(w) = w + \sum_{n=2}^{\infty} A_n w^n \) and \(G_1(w)/G_1'(w) = w - \sum_{n=2}^{\infty} B_n w^n \) where \(w \) lies in some neighbourhood of the origin,

\[
B_2 := 2(\beta - 1), \quad B_n := 2(\beta - 1) \prod_{j=2}^{n-1} \left(\frac{2(n-1)(\beta - 1) + j}{j} \right) \quad (n > 2)
\]

and

\[
A_n := \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2n(\beta - 1) + m}{m + 1} \right) \quad (n \geq 2).
\]

Proceeding as in (9) for \(g_1 \) and then comparing the coefficients of \(w^n \) give

\[
B_n = 2(\beta - 1) \sum_{j=1}^{n-1} S_j(A_2, A_3, \ldots, A_{n-2}) \quad (n \geq 2).
\]

Since \(f \in \mathcal{S}^*[2\beta - 1, 1] \), applying Theorem 2.1 in (10) and using (11) give \(|\delta_n| \leq B_n \). Clearly, the sharpness follows for the function \(g_1 \).

Corollary 2.3. Let \(g \), given by (1), be in \(\Sigma^*[A, B] \) \((-1 \leq B \leq 1 < A) \) and \(n(1-B) - (A-B) \leq 0 \). Then for each \(n \geq 0 \),

\[
|b_n| \leq \prod_{m=0}^{n} \left(\frac{(A-B)+mB}{m+1} \right).
\]

The result is sharp.

Proof. It is easy to observe that for any \(g \in \Sigma^*[A, B] \), there exists \(f \in \mathcal{S}^*[A, B] \) such that for \(z \in \mathbb{C} \setminus \mathbb{D} \), \(g(z) = 1/f(1/z) \). Also, we note that the expansions of \(f(z)^{-1} \) about the origin and \(f(1/z)^{-1} \) about the infinity have same coefficients. Thus, if \(z/f(z) = 1 + \sum_{n=1}^{\infty} a_n^{(-1)} z^n \) \((z \in \mathbb{D})\), then for \(z \in \mathbb{C} \setminus \mathbb{D} \), we have

\[
g(z) \frac{z}{z} = \frac{1}{z f(1/z)} = 1 + \sum_{n=1}^{\infty} a_n^{(-1)} z^{-n}.
\]
On comparing the coefficients, we obtain
\[b_n = a_{n+1}^* \quad (n \geq 0). \] (12)

An application of (8) for \(t = 1 \) and \(s = n + 1 \) in the equation (12) gives the desired estimate. Define a function \(g_1 : \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \) by
\[g_1(z) = \frac{1}{f_1(1/z)} \] (13)
where \(f_1 \) is given by (8). The result is sharp for the function \(g_1 \) given by (13). \(\Box \)

For \(A = 2\beta - 1, B = 1 (\beta > 1) \), the above result is mentioned in [1, Theorem 4.5, p. 17]. Next, we prove the meromorphic counterpart of the Theorem 2.3.

Theorem 2.4. Let the function \(g \in \Sigma^*[A, B] \) \((-1 \leq B \leq 1 < A)\) and \(g^{-1}(w) = w + \sum_{n=0}^{\infty} \gamma_n w^{-n} \) in some neighbourhood of the infinity. Then \(|\gamma_0| \leq A - B \) and
\[|\gamma_n| \leq \frac{1}{n} \prod_{m=0}^{n} \left(\frac{(A - B)n + mB}{m + 1} \right) \quad (n \geq 1). \]
The result is sharp.

Proof. Since \(g \in \Sigma^*[A, B] \), there exists \(f \in S^*[A, B] \) such that for \(z \in \mathbb{C} \setminus \overline{\mathbb{D}}, g(z) = 1/f(1/z) \) and \(g^{-1}(w) = 1/f^{-1}(1/w) \), see [27, Theorem 2.4, p. 459]. Therefore, for each \(n \geq 0 \),
\[|\gamma_n| = |\gamma_n^{(-1)}| \] (14)
where \(\gamma_n^{(-1)} \) is the coefficient of \(w^{-(n+1)} \) in \(1/(wf^{-1}(1/w)) = 1 + \sum_{n=1}^{\infty} \gamma_n^{(-1)} w^{-n} \).

Since \(f \in S^*[A, B] \), we have \(zf'(z)/f(z) = q(z) \in \mathcal{P}[A, B] \). If \(q(z) = 1 + \sum_{n=1}^{\infty} q_n z^n \), then by applying Lemma 1.1 we have
\[\sum_{p=-\infty}^{\infty} \gamma_1^{(p)} z^{-p+1} = \frac{f'(z)}{f(z)} = q(z) = \frac{1}{z} \left(1 + \sum_{n=1}^{\infty} q_n z^n \right). \]

Therefore, in view of (14) and Lemma 1.3 \(|\gamma_0| = |\gamma_1^{(-1)}| = |q_1| \leq A - B \). For \(n \geq 1 \), an application of Lemma 1.1 and the inequality (10) for \(t = n, s = n + 1 \) in (14) gives
\[|\gamma_n| = |\gamma_n^{(-1)}| = \frac{1}{n} |a_n^{(-1)}| \leq \frac{1}{n} \prod_{m=0}^{n} \left(\frac{(A - B)n + mB}{m + 1} \right). \]
The sharpness follows for the function \(g_1 \) given by (13). \(\Box \)

For \(A = 2\beta - 1, B = 1 (\beta > 1) \), the above theorem reduces to [1, Theorem 4.8, p. 18]. Recall that for \(-1 \leq B < A \leq 1\),
\[\mathcal{I}[A, B] := \left\{ f \in \mathcal{S} : f'(z) \sim \frac{1 + Az}{1 + Bz} \right\}. \]
The following theorem gives the sharp inverse coefficient estimates for functions in the class \(\mathcal{I}[1, B] \) and its proof is based on the fact that if \(p \in \mathcal{P}[A, B] \) \((-1 \leq B < A \leq 1)\), then \(1/p \in \mathcal{P}[-B, -A] \) \((-1 \leq -A < -B \leq 1)\).

Theorem 2.5. For \(-1 \leq B < 1, let f \in \mathcal{I}[1, B] \) and \(g(z) = \int_0^1 (1-t)/(1-Bt) dt \) \(|z| < 1\). If \(f^{-1}(w) = F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n \) and \(g^{-1}(w) = G(w) = w + \sum_{n=2}^{\infty} A_n w^n \) where \(w \) lies in some neighbourhood of the origin, then for each \(n \geq 2 \), \(|\gamma_n| \leq A_n \). The result is sharp.
\textbf{Proof.} Since \(f' \in \mathcal{P}[1, B] \), \(f'(z) = p(z) \) for some \(p \in \mathcal{P}[1, B] \). Let \(w = f(z) \) then \(f'(z)f'(w) = 1 \) and so we have
\[F'(w) = P(F(w)) \]
where \(P(z) := 1/p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \in \mathcal{P}[-B, -1] \). This gives
\[1 + \sum_{n=1}^{\infty} (n+1)\gamma_{n+1} w^n = 1 + \sum_{n=1}^{\infty} c_n F(w)^n. \]

On comparing the coefficients of \(w^n \), we have
\[(n+1)\gamma_{n+1} = \sum_{i=1}^{n} c_i \gamma_{n,i} \quad (n \geq 1) \quad (15) \]
where \(\gamma_{n,i} \) denotes the coefficient of \(w^n \) in the expansion of \(F(w)^i \) and \(\gamma_{n,n} = 1 \). Since \(g'(z) = (1-z)/(1-Bz) \in \mathcal{P}[1, B] \), proceeding as above, we have
\[G'(w) = \frac{1-BG(w)}{1-G(w)} \quad (16) \]
which gives
\[\sum_{n=1}^{\infty} (n+1)A_{n+1} w^n = \sum_{n=1}^{\infty} (1-B)G(w)^n. \]

Comparing the coefficients of \(w^{n-1} \), we get
\[nA_n = (1-B) \sum_{i=1}^{n-1} A_{n-1,i} \quad (n \geq 2) \quad (17) \]
where \(A_{n-1,i} \) denotes the coefficient of \(w^{n-1} \) in the expansion of \(G(w)^i \) and \(A_{n-1,n-1} = 1 \). We first show that \(A_n > 0 \) for all \(n \geq 2 \). By using the power series expansion of \(G \) in \((16) \) and on comparing the coefficients of both sides, we obtain
\[2A_2 = 1 - B, \quad 3A_3 = (1 - B + 2)A_2, \quad \text{and} \]
\[(n+1)A_{n+1} = (1-B+n)A_n + \sum_{k=1}^{n-2} (k+1)A_{k+1}A_{n-k} \quad (n > 2). \]

Since \(-1 \leq B < 1 \), \(A_2 = (1-B)/2 > 0 \). By using induction on \(n \), it can be easily seen from the above relations that \(A_n > 0 \) for all \(n \geq 2 \).

Next, we shall show that for all \(n \geq 2 \), \(|\gamma_n| \leq A_n \). We proceed by induction on \(n \). Since \(P \in \mathcal{P}[-B, -1] \), by using Lemma \[(13) \] \(|c_i| \leq 1 - B \) for each \(i \geq 1 \). Clearly, the result holds for \(n = 2 \). Assume that \(|\gamma_i| \leq A_i \) for \(i \leq n - 1 \). It is easy to observe that \(\gamma_{n,i} = S_i(\gamma_2, \gamma_3, \ldots, \gamma_{n-1}) \) is a polynomial in \(\gamma_2, \gamma_3, \ldots, \gamma_{n-1} \) with non-negative coefficients and thus \(|\gamma_{n,i}| \leq S_i(|\gamma_2|, |\gamma_3|, \ldots, |\gamma_{n-1}|) \leq S_i(A_2, A_3, \ldots, A_{n-1}) \). Therefore, in view of \((15) \) and \((17) \), we have
\[n|\gamma_n| \leq \sum_{i=1}^{n-1} |c_i||\gamma_{n-1,i}| \leq (1-B) \sum_{i=1}^{n-1} S_i(A_2, A_3, \ldots, A_{n-2}) = (1-B) \sum_{i=1}^{n-1} A_{n-1,i} = nA_n \]
where \(A_{n-1,i} = S_i(A_2, A_3, \ldots, A_{n-2}) \) is the coefficient of \(w^{n-1} \) in the expansion of \(G(w)^i \).

For \(B = -1 \), the above theorem reduces to the theorem given in \[(17) \].

The following theorem has been proved in \[(1) \, \text{Theorem 4.4, p. 14} \] by using the coefficient bounds of the functions in the class \(\mathcal{P} \) but we are providing a slightly different proof by making use of the coefficient bounds of the functions in the class \(\mathcal{P}[2\beta - 1, 1] \) \((\beta > 1) \) which shortens the computations involved in the proof to some extent.
Let \(f(z) = z + a_2z^2 + a_3z^3 + \cdots \in K[2\beta - 1, 1] (\beta > 1) \) and \(f^{-1}(w) = F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n \) in some neighbourhood of the origin. Then for \(n \geq 2 \),

\[
|\gamma_n| \leq \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2(\beta - 1) + m(2\beta - 1)}{m + 1} \right).
\]

The result is sharp.

Proof. Since \(f \in K[2\beta - 1, 1] \), we have \(1 + zf''(z)/f'(z) = p(z) \) where \(p(z) = 1 + \sum_{i=1}^{\infty} c_i z^i \in P[2\beta - 1, 1] \) and \(\beta > 1 \). This gives

\[
\frac{d}{dw} \left(\frac{F(w)}{F'(w)} \right) = 1 - \frac{F(w)F''(w)}{(F'(w))^2} = p(F(w))
\]

where \(w = f(z) \) lies in some disk around the origin. Integrate the equation along the line segment \([0, w]\) and using the power series expansions of \(F \) and \(p \), we have

\[
\sum_{n=1}^{\infty} \gamma_n w^n = \sum_{n=1}^{\infty} n\gamma_n w^n + \sum_{n=2}^{\infty} \left(\sum_{k=1}^{n-1} k\gamma_k \sum_{j=1}^{n-k} c_j \frac{\gamma_{n-k,j}}{n - k + 1} \right) w^n
\]

where \(\gamma_1 = 1 \) and \(\gamma_{n-k,j} \) denotes the coefficient of \(w^{n-k} \) in the expansion of \(F(w)^2 \) with \(\gamma_{n-k,2} = 1 \).

On comparing the coefficients of \(w^n \), we have

\[
-(n-1)\gamma_n = \sum_{k=1}^{n-1} k\gamma_k \sum_{j=1}^{n-k} c_j \gamma_{n-k,j} \quad (n \geq 2).
\]

Define a function \(f_1 : \mathbb{D} \to \mathbb{C} \) such that

\[
f_1'(z) = (1 - z)^{2(\beta - 1)}.
\]

Then \(F_1(w) := f_1^{-1}(w) = w + A_2 z^2 + A_3 z^3 + \cdots \) where for \(n \geq 2 \),

\[
A_n := \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2(\beta - 1) + m(2\beta - 1)}{m + 1} \right).
\]

We shall show that for all \(n \geq 2 \), \(|\gamma_n| \leq A_n \). We proceed by induction on \(n \). Since \(p \in P[2\beta - 1, 1] (\beta > 1) \), an application of Lemma 1.3 gives \(|c_j| \leq 2(\beta - 1) \) for each \(j \geq 1 \). Therefore, the desired estimate holds for \(n = 2 \). Assume that the theorem is true for \(j \leq n - 1 \) and thus we have \(|\gamma_j| \leq A_j \) for \(j \leq n - 1 \). Since \(\gamma_{n,j} = S_j(\gamma_2, \gamma_3, \ldots, \gamma_{n-1}) \) is a polynomial in \(\gamma_2, \gamma_3, \ldots, \gamma_{n-1} \) with non-negative coefficients, we have \(|\gamma_{n,j}| \leq S_j(\gamma_2, |\gamma_3|, \ldots, |\gamma_{n-1}|) \leq S_j(A_2, A_3, \ldots, A_{n-1}) \). An application of induction hypothesis and bounds of \(c_j \) in 20 gives

\[
(n-1)|\gamma_n| \leq 2(\beta - 1) \sum_{k=1}^{n-1} k |\gamma_k| \sum_{j=1}^{n-k} |\gamma_{n-k,j}|
\leq 2(\beta - 1) \sum_{k=1}^{n-1} k A_k \sum_{j=1}^{n-k} S_j(A_2, A_3, \ldots, A_{n-k-1})
= 2(\beta - 1) \sum_{k=1}^{n-1} k A_k \sum_{j=1}^{n-k} A_{n-k,j}
\]

(23)
where $A_1 = 1$ and $A_{n-k,j}$ denotes the coefficient of w^{n-k} in the expansion of $F_1(w)^j$ with $A_{n-k,n-k} = 1$.

We now show that for each $n \geq 2$,

$$2(\beta - 1) \sum_{k=1}^{n-1} \frac{kA_k}{n-k+1} \sum_{j=1}^{n-k} A_{n-k,j} = (n-1)A_n. $$

(24)

For f_1, given by (21), we have

$$1 + \frac{zf_1''(z)}{f_1'(z)} = \frac{1 - (2\beta - 1)z}{1 - z}. $$

This proves (24) and hence, in view of (23), we have

$$|\gamma_n| = A_n. $$

The sharpness follows for the function f_1, given in (21).

Corollary 2.7. Let $f \in \mathcal{K}_1 \geq 2\beta - 1, 1 \text{ } (\beta > 1)$ and $f^{-1}(w) = F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. If $F(w)/F'(w) = w + \sum_{n=2}^{\infty} \delta_n w^n$, then $|\delta_2| \leq \beta - 1$ and for $n > 2$,

$$|\delta_n| \leq \frac{2\beta - 1}{n(n-1)} \prod_{m=0}^{n-3} \left(\frac{2\beta + m(2\beta - 1)}{m + 1} \right). $$

The result is sharp.

Proof. On integrating the equation (18) along the line segment $[0, w]$ and using the power series expansions of F/F', F and p, we have

$$w + \sum_{n=2}^{\infty} \delta_n w^n = w + \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} c_j \gamma_{n-1,j} \frac{w^n}{n} w^n $$

(25)

where $\gamma_{n-1,j}$ denotes the coefficient of w^{n-1} in the expansion of $F(w)^j$ with $\gamma_{n-1,n-1} = 1$. Note that $\gamma_{n-1,j} = S_j(\gamma_2, \gamma_3, \ldots, \gamma_{n-2})$ is a polynomial in $\gamma_2, \gamma_3, \ldots, \gamma_{n-2}$ with non-negative coefficients. On comparing the coefficients of w^n in (25) and using Lemma 1.3 and Theorem 2.6 we have

$$|\delta_n| \leq \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} S_j(A_2, A_3, \ldots, A_{n-2}) $$

$$= \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} A_{n-1,j} $$

(26)
where $A_{n-1,j} = S_j(A_2, A_3, \ldots, A_n - 2)$ denotes the coefficient of w^{n-1} in the expansion of $F_1(w)^j$ with $A_{n-1,n-1} = 1$ and F_1 is given by (22). Corresponding to F_1, $F_1(w)/F_1'(w) = w - \sum_{n=2}^{\infty} B_n w^n$ where

$$B_2 := (\beta - 1) \quad \text{and} \quad B_n := \frac{2(\beta - 1)}{n(n - 1)} \prod_{m=0}^{n-3} \left(\frac{2\beta + m(2\beta - 1)}{m + 1} \right) \quad (n > 2).$$

For f_1, given by (21), by proceeding as in (20), we have

$$w - \sum_{n=2}^{\infty} B_n w^n = w - \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} 2(\beta - 1) A_{n-1,j} w^n.$$

On comparing the coefficients of w^n, we obtain

$$B_n = \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} A_{n-1,j}. \quad (27)$$

In view of (26) and (27), the desired estimates follow. \qed

In the generalized class $K[A, B] (-1 \leq B \leq 1 < A)$, the technique used in the Theorem 2.4 does not hold true. However, we are able to give the sharp estimation for the initial inverse coefficients for functions in $K[A, B]$.

Theorem 2.8. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in K[A, B] (-1 \leq B \leq 1 < A)$ and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. Then for $n = 2, \ldots, 6$,

$$|\gamma_n| \leq \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{(A - B) + mA}{m + 1} \right).$$

The result is sharp.

Proof. Since $f \in K[A, B], 1 + z f''(z)/f'(z) \prec (1 + Az)/(1 + Bz)$ which is equivalent to $1 + z f''(z)/f'(z) \prec (1 - Az)/(1 - Bz)$. Let $g(z) := z f'(z) = z + \sum_{n=2}^{\infty} n a_n z^n$ and $p(z) := z g'(z)/g(z) = 1 + b_1 z + b_2 z^2 + \cdots$.

Then $p(z) \prec (1 - Az)/(1 - Bz)$ and for $n > 1$, we have

$$(n - 1) n a_n = \sum_{k=1}^{n-1} (n - k) b_k a_{n-k}. \quad (28)$$

It is easy to observe that if $p \prec \varphi$, then

$$p(z) = \varphi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right), \quad p_1(z) = 1 + c_1 z + c_2 z^2 + \cdots \in \mathcal{P}. \quad (29)$$

Using (28) and (29) for $\varphi = (1 - Az)/(1 - Bz)$, the coefficients a_i can be expressed in terms of c_i, A and B, see (24). In particular, we have

$$a_2 = \frac{1}{4} (A - B) c_1,$$

$$a_3 = \frac{1}{24} (A - B) \left((A - 2B + 1)c_1^2 - 2c_2 \right),$$

$$a_4 = \frac{1}{192} (A - B) \left((A - 2B + 1)(A - 3B + 2)c_1^3 - 2(3A - 7B + 4)c_1c_2 + 8c_3 \right),$$

$$a_5 = \frac{1}{1920} (A - B) \left(-4(3A^2 - 17AB + 11A + 23B^2 - 29B + 9)c_1^4 + (A - 2B + 1)(A - 3B + 2)(A - 4B + 3)c_1^4 + 16(2A - 5B + 3)c_1c_3 + 12(A - 3B + 2)c_2^2 - 48c_4 \right).$$
Substituting the expressions of a_i in terms of c_i in the above expressions of γ_i, we have

$$a_6 = \frac{1}{23040}(A - B)(- (A - 5B + 4)(A - 4B + 3)(A - 3B + 2)(A - 2B + 1)c_1^5 + 4(5A^2 - 50A^2B + 35A^2 + 160AB^2 - 220AB + 75A - 163B^3 + 329B^2 - 219B + 48)c_1^5c_2 - 16(5A^2 - 30AB + 20A + 43B^2 - 56B + 18)c_1^5c_3 + 32(5A - 17B + 12)c_2c_3 - 4(15A^2 - 100AB + 70A + 157B^2 - 214B + 72)c_1c_2^2 + 48(5A - 13B + 8)c_1c_4 - 384c_5).$$

Using power series expansions of f and f^{-1} in the relation $f(f^{-1}(w)) = w$, or

$$w = f^{-1}(w) + a_2(f^{-1}(w))^2 + \cdots,$$

we obtain

$$\gamma_2 = -a_2,$$
$$\gamma_3 = 2a_2^2 - a_3,$$
$$\gamma_4 = -5a_2^3 + 5a_2a_3 - a_4,$$
$$\gamma_5 = 14a_2^4 - 21a_2^3a_3 + 6a_2a_4 + 3a_3^2 - a_5$$

and

$$\gamma_6 = 7(- 6a_2^5 + 12a_2^3a_3 - 4a_2^2a_4 + a_2(a_5 - 4a_2^3) + a_3a_4) - a_6.$$

Substituting the expressions of a_i in terms of c_i in the above expressions of γ_i, we have

$$\gamma_2 = \frac{1}{4}(A - B)c_1,$$
$$\gamma_3 = \frac{1}{24}(A - B)((2A - B - 1)c_1^2 + 2c_2),$$
$$\gamma_4 = \frac{1}{192}(A - B)((2A - B - 1)(3A - B - 2)c_1^3 + 2(7A - 3B - 4)c_1c_2 + 8c_3),$$
$$\gamma_5 = \frac{1}{1920}(A - B)(p(A, B) c_1^5c_2 + (2A - B - 1)(3A - B - 2)(4A - B - 3)c_1^4 + 8(11A - 5B - 6)c_1c_3 + 4(7A - B - 6)c_2^2 + 48c_4)$$

and

$$\gamma_6 = \frac{1}{23040}(A - B)(q(A, B) c_1^5c_3 + r(A, B) c_1c_2^2 + 384(2A - B - 1)c_1c_4 + s(A, B) c_1^2c_3 + (2A - B - 1)(3A - B - 2)(4A - B - 3)(5A - B - 4)c_1^2 + 16(25A - B - 24)c_2c_3 + 384c_5)$$

where

$$p(A, B) := 4(23A^2 - 17AB - 29A + 3B^2 + 11B + 9),$$
$$q(A, B) := 8(101A^2 - 81AB - 121A + 16B^2 + 49B + 36),$$
$$r(A, B) := 4(127A^2 - 58AB - 196A + 3B^2 + 52B + 72)$$

and

$$s(A, B) := 4(163A^3 - 160A^2B - 329A^2 + 50AB^2 + 220AB + 219A - 5B^3 - 35B^2 - 75B - 48).$$
Since $-1 \leq B \leq 1 < A$, we can easily see that

$$\frac{\partial p(A,B)}{\partial A} = 4(29(A-1) + 17(A-B)) > 0,$$

$$\frac{\partial q(A,B)}{\partial A} = 8(121(A-1) + 81(A-B)) > 0$$

and

$$\frac{\partial r(A,B)}{\partial A} = 4(196(A-1) + 58(A-B)) > 0.$$

Therefore, $p(A,B) > p(1,B) = 12(1-B)^2 \geq 0$; $q(A,B) > q(1,B) = 128(1-B)^2 \geq 0$ and $r(A,B) > r(1,B) = 12(1-B)^2 \geq 0$. Clearly,

$$\frac{\partial s(A,B)}{\partial A} = 4(489A^2 - 658A - 320AB + 219 + 220B + 50B^2)$$

and

$$\frac{\partial^2 s(A,B)}{\partial A^2} = 4(658(A-1) + 320(A-B)) > 0.$$

Therefore, $\partial s(A,B)/\partial A$ is a strictly increasing function of A and hence $\partial s(A,B)/\partial A > 200(1-B)^2 \geq 0$. Consequently, $s(A,B) > s(1,B) = 20(1-B)^3 \geq 0$. Thus, for $n = 2, \ldots, 6$, γ_n are polynomials in c_i ($i = 1, 2, \ldots, 5$) with non-negative coefficients. Since $p_1 \in P$, $|c_i| \leq 2$ ($i = 1, 2, \ldots$) and therefore, the maximum of $|\gamma_n|$ would correspond to $|c_i| = 2$. On simplification, we get the desired estimates. Define a function $f_0 : \mathbb{D} \to \mathbb{C}$ such that

$$f'_0(z) = \begin{cases} (1-Bz)(A-B)/B, & B \neq 0 \\ e^{-A^2}, & B = 0. \end{cases}$$

The result is sharp for the function f_0. \qed

References

[1] M. F. Ali and A. Vasudevarao, Coefficient inequalities and Yamashita’s conjecture for some classes of analytic functions, J. Aust. Math. Soc. 100 (2016), no. 1, 1–20.
[2] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), no. 1, 63–71.
[3] V. V. Anh and P. D. Tuan, Meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 30 (1984), no. 3, 395–410.
[4] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 10 (1987), no. 4, 733–744.
[5] A. Baernstein, II and G. Schober, Estimates for inverse coefficients of univalent functions from integral means, Israel J. Math. 36 (1980), no. 1, 75–82.
[6] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431–443.
[7] C. H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356–368.
[8] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192 (1974), 285–292.
[9] E. Jabotinsky, Representation of functions by matrices. Application to Faber polynomials, Proc. Amer. Math. Soc. 4 (1953), 546–553.
[10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971), 159–177.
[11] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297–326.
[12] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), no. 2, 922–934.
[13] J. G. Krečič, R. J. Libera, and E. J. Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Marie-Curie-Skłodowska Sect. A 33 (1979), 103–110 (1981).
[14] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230.
[15] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251–257.
[16] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for inverses of odd univalent functions, Complex Variables Theory Appl. 3 (1984), no. 1-3, 185–189.
[17] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P. II, Proc. Amer. Math. Soc. 92 (1984), no. 1, 58–60.
[18] R. J. Libera and E. J. Złotkiewicz, The coefficients of the inverse of an odd convex function, Rocky Mountain J. Math. 15 (1985), no. 3, 677–683.
[19] R. J. Libera and E. J. Złotkiewicz, Löwner’s inverse coefficients theorem for starlike functions, Amer. Math. Monthly 99 (1992), no. 1, 49–50.
[20] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121.
[21] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, pp. 157–169.
[22] H. K. Mishra and P. Gochhayat, Coefficients of inverse functions in a nested class of starlike functions of positive order, J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 94, 15 pp.
[23] J. Nishiwaki and S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29 (2002), no. 5, 285–290.
[24] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 42, 13 pp.
[25] K. S. Padmanabhan, On certain classes of starlike functions in the unit disk, J. Indian Math. Soc. (N.S.) 32 (1968), 89–103.
[26] C. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221–235.
[27] J. T. Poole, Coefficient extremal problems for schlicht functions, Trans. Amer. Math. Soc. 121 (1966), 455–475.
[28] D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.
[29] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505–510.
[30] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408.
[31] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1944), 48–82.
[32] A. C. Schaeffer and D. C. Spencer, The coefficients of schlicht functions. II, Duke Math. J. 12 (1945), 107–125.
[33] H. Silverman, Subclasses of starlike functions, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 7, 1093–1099.
[34] H. Silverman, Coefficient bounds for inverses of classes of starlike functions, Complex Variables Theory Appl. 12 (1989), no. 1-4, 23–31.
[35] H. M. Srivastava, A. K. Mishra, and S. N. Kund, Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamer. Math. J. 21 (2011), no. 4, 105–123.
[36] B. A. Uma, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.
[37] P. Wiatrowski, On the radius of convexity of some family of functions regular in the ring 0 < |z| < 1, Ann. Polon. Math. 25 (1971), 85–98.