Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress

Balasubramaniyan Vairappan

Balasubramaniyan Vairappan, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India

Author contributions: Vairappan B solely contributed this work.

Supported by: The Department of Biotechnology-Ramalingaswami Fellowship 5 years grant from the Government of India.

Conflict-of-interest: Vairappan B declares that he has no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Balasubramaniyan Vairappan, Assistant Professor, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Gorimedu, Pondicherry 605006, India. balamaniyan@gmail.com

Telephone: +91-413-2298531
Fax: +91-960-0461977
Received: August 29, 2014
Peer-review started: August 30, 2014
First decision: November 1, 2014
Revised: November 8, 2014
Accepted: November 27, 2014
Article in press: November 27, 2014
Published online: March 27, 2015

Abstract

This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.

Key words: Asymmetric dimethylarginine; Endothelial function; Nitric oxide; Portal hypertension; Hepatic cirrhosis, Reactive oxygen species; Inflammation

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Endothelial dysfunction (ED) is a key and early relentless event in patients suffering from gastrointestinal bleeding in cirrhosis and involves in response to both vasoactive and vasoconstrictor substances. The one such vasoactive molecule, nitric oxide (NO) plays a prime role in maintaining normal hepatic vascular function and if there any defect in NO availability leads to ED and portal hypertension (PHT) could be of great utility in preventing and curing complications of PHT.

Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015;
INTRODUCTION

The endothelium is the largest organ and encompasses > 10^{13} endothelial cells in the body can able to generate both vasodilator [nitric oxide (NO), endothelium derived hyperpolarising factor (EDHF) and prostacyclin] and vasoconstrictor (endothelin-1, norepinephrine, leukotriene, thromboxane A_{2} and angiotensin II) substances and is essential for hepatic vascular homeostasis. Endothelium serves as a barrier to separate blood from the underlined tissue and thus maintains homeostasis at the vascular wall during physiological condition. The salient features of normal healthy endothelium which including, regulation of vascular permeability, decrease in vascular tone, reduce in platelets adhesion and aggregation, prevention of thrombosis, inhibition of smooth muscle cell proliferation, inflammation and restricting leukocyte adhesion. Indeed, many of these functions are mediated by endothelium driven NO. The term endothelial dysfunction (ED) implicate a loss of function of numerous activities of the endothelium, mainly characterised by impairment of the production and release of endothelium driven vasodilatory factors including NO. The hepatic vascular bed of cirrhotic liver exhibits ED and is now considered to play a key role in the initiation and advancement of liver cirrhosis. The intrahepatic vasculature also displays increased sensitivity to vasoconstrictor agents in cirrhosis. Furthermore, ED is also a common index for a wide variety of pathological conditions such as chronic renal failure, atherosclerosis, hypercholesterolemia, hypertension, diabetes and coronary artery disease.

HEPATIC CIRRHOSIS

Cirrhosis is a complication of many forms of chronic liver diseases and is a late stage of fibrosis, in which regenerative nodular formation surrounded by fibrous bands of the liver. The development of portal hypertension (PHT) (elevated pressure within the hepatic circulation) heralds the onset of most fatal complications of cirrhosis, which carry a poor prognosis and represent the first cause of death and need for liver transplantation in patients with cirrhosis. The pathogenesis of PHT is predominantly related to a combination of structural and dynamic components that cause an increase in hepatic vascular resistance to portal blood flow. The structural components such as fibrosis, regenerative nodule formation and vascular remodelling.

INTRAHEPATIC ENDOTHELIAL DYSFUNCTION IN CIRRHOSIS

Impaired endothelial dependent relaxation in the hepatic microcirculation due to reduced bioavailability of vasodilator, NO in cirrhotic liver contributes to increasing intra-hepatic vascular resistance, which culminating portal hypertension. By contrast, in the splanchnic vascular bed, overproduction of NO contributes to increased endothelium dependent relaxation, leading to hyperdynamic circulatory disturbances, which observed in cirrhosis with portal hypertension. Furthermore, increased vasoconstrictor agents such as thromboxane A_{2} (TX A_{2}), a COX-1 derived prostanooids, and endothelin-1 are thought to associated with the pathogenesis of the dynamic component of the augmented intra-hepatic resistance and play a major role in the intrahepatic endothelial dysfunction of the cirrhotic liver. Such imbalance between endogenous vasoconstrictor and vasodilator factors observed in the cirrhotic liver is thought to be similar to that found in other cardiovascular diseases. The assessment of NO concentration in cirrhotic liver and systemic circulation is considered to be the prime indicative of endothelial dysfunction (ED).

NO AND ENDOTHELIAL DYSFUNCTION IN CIRRHOSIS

Endothelial dysfunction is thought to be a key event in the development of distinct human vascular diseases, including liver cirrhosis, hypertension, diabetes and atherosclerosis. Classically, ED has been considered to be the result of a decrease in bioavailability of NO in cirrhosis. The amino acid, L-arginine, is the substrate of eNOS, the enzyme responsible for NO synthesis (Figure 1). Endothelial nitric oxide synthase (eNOS) driven nitric oxide (NO) is a potent vasodilator that plays a substantial role in maintaining vascular homeostasis in the normal intact liver, however when the liver fails, reduced intrahepatic eNOS activity triggers endothelial dysfunction contributes to the pathogenesis of PHT (Figure 1). It is an early and relentless event occurring after all forms of liver injury that leads to substantial morbidity and mortality in individuals with cirrhosis. Reduced NO bioavailability makes a major contribution to endothelial dysfunction and is mainly due to reduced NO production or increased NO breakdown due to the chemical reaction with oxidant radicals. Inflammation and oxidative stress are other important pathophysiological consequences that causes endothelial dysfunction and reduced NO bioavailability, which make an important contribution to the vascular structural changes in cirrhosis. Furthermore, treatment with exogenous L-arginine...
ADMA, a deleterious endogenous inhibitor of NO synthases and thus presumed to be a marker of hepatic dysfunction in cirrhosis with PHT. One mechanism thought to be partially responsible for the reduction in NO and resultant ED in liver disease is an increase in the levels of the endogenous inhibitor of NOS, ADMA\(^{[15,32]}\). In this regard, our previous studies have shown evidence that increased ADMA contributes to reduced hepatic NO biosynthesis as a consequence of altered hepatic vascular function in cirrhosis\(^{[26,27,33]}\).

In critically ill patients to whom admitted in ICU, hepatic dysfunction was associated with elevated ADMA levels and was identified as an independent predictor of mortality\(^{[44]}\). Furthermore, increased plasma ADMA was reported recently in biopsy proven non-alcoholic fatty liver disease (NAFLD) patients\(^{[38]}\), hepatic vein of patients with compensated cirrhosis\(^{[36]}\) and decreased following liver transplantation; thus the significant improvement of liver function\(^{[39]}\) propose an important role for ADMA in clinical medicine. Elevated plasma ADMA has also recognised as an important risk factor for cardiovascular disease\(^{[38]}\), coronary heart disease\(^{[39]}\) and chronic renal failure\(^{[40]}\). Consequently, increased ADMA may be related to elevated activity of protein methyltransferase (PRMT), which is responsible for the methylation of arginine residues in cellular proteins\(^{[41]}\). Moreover, increased ADMA level was correlated with the severity of inflammation and levels of increased proinflammatory cytokine such as tumor necrosis factor (TNF-\(\alpha\))\(^{[42,43]}\). Laleman et al\(^{[44]}\) showed in cirrhotic animals infusion of ADMA and NG-nitro-L-arginine methyl ester (L-NAME), other known inhibitors of NOS synergistically aggravated and resulted in paradoxical vasoconstriction, which associated with a further decrease in NOx levels. The pathophysiological increase in hepatic ADMA concentration observed in cirrhotic rats manifest decrease of hepatic eNOS activity.

Dimethylarginine diminohydrolase

Furthermore, the intracellular levels of these methylated arginines are regulated through their metabolism to citrulline and dimethylamine by its hepatic specific enzyme called, dimethylarginine diminohydrolase (DDAH)\(^{[41,45]}\) (Figure 1). Two isoforms of DDAH have been identified and are widely expressed in human and rodent liver. DDAH 1 is an important isoform for the regulation of hepatic and systemic ADMA concentration and is present higher levels in tissue that expressing neuronal NOS (nNOS)\(^{[41,45]}\). The other DDAH isoform (DDAH 2) has an important effect in regulating NO activity, and is mainly found in tissue expressing eNOS and inducible NOS (iNOS)\(^{[41,45,46]}\). It is well known that increased intracellular DDAH plays a critical role in regulating tissue ADMA concentration\(^{[26,27,33,47]}\), therefore alterations of DDAH activity and expression lead to change in intracellular ADMA concentrations and concomitant NO synthesis. In vitro, human umbilical vein endothelial cells (HUVECS) exposed to prolonged (48 h) TNF-\(\alpha\) show eight fold increase of
ADMA, compared to control medium and associated DDHAH activity was decreased to almost 60% of baseline values. DDHAH is a redox sensitive enzyme and is thus subject to inhibition by oxidants derived from endothelial superoxide, and antioxidant treatment corrects DDHAH inhibition in in vivo. Cirrhotic rat livers showed an increased O₂⁻ content compared to control rat livers and was ameliorated by adenoviral gene delivery of superoxide dismutase, increases NO bioavailability, improves intrahepatic endothelial function and reduces portal pressure. In contrast to ADMA, SDMA, its vasoactive stereoisomer, has no effect on inhibition of NO synthases but competes with arginine for cellular transport across the y+ transporter. Recently, Siroen and co-workers have shown that the human liver takes up substantial amounts of SDMA from the portal and systemic circulation and suggested that high plasma levels of SDMA may have hemodynamic consequences similar to those reported for ADMA. However, in patients with alcoholic cirrhosis, noted plasma SDMA level was within the normal limit.

OXIDATIVE STRESS AND ENDOTHELIAL DYSFUNCTION IN CIRRHOSIS

In cirrhosis, oxidative stress induced mainly by an overproduction of reactive oxygen species (ROS), which is a critical determinant of endothelial dysfunction and is due to disturbed balance between oxidant and antioxidant enzymes. Increased superoxide formation in the presence of equimolar concentrations of NO will lead to the formation of the potent ROS and oxidant and antioxidant enzymes. Increased superoxide production within the normal limit, with alcoholic cirrhosis, noted plasma SDMA level was within the normal limit. However, in patients with alcoholic cirrhosis, noted plasma SDMA level was within the normal limit.

In cirrhosis, oxidative stress induced mainly by an overproduction of reactive oxygen species (ROS), which is a critical determinant of endothelial dysfunction and is due to disturbed balance between oxidant and antioxidant enzymes. Increased superoxide formation in the presence of equimolar concentrations of NO will lead to the formation of the potent ROS and oxidant and antioxidant enzymes. Increased superoxide production within the normal limit, with alcoholic cirrhosis, noted plasma SDMA level was within the normal limit. However, in patients with alcoholic cirrhosis, noted plasma SDMA level was within the normal limit.

Hepatic inflammation is a common trigger of liver diseases, associated with ED and causes increased hepatic vascular risk in cirrhosis. There are several inflammatory mediators involved in downregulation of eNOS activity and NO bioavailability within the hepatic circulation resulting increased intrahepatic resistance and ED thus, PHT in patients with cirrhosis (Table 1).

TNF-α
TNF-α, a proinflammatory cytokine with the broad spectrum of deleterious effects is believed to exert vascular effects by increasing vascular permeability and causing vasodilatation, which mediated through NO dependent pathways. In cirrhosis, increased systemic and hepatic TNF-α concentration has shown to associate with overwhelming NO production. Interestingly, in cultured endothelial cells, TNF-α reduces NO bioavailability, and in vivo TNF-α may also directly alter endothelial vasomotor function. Moreover, Plasma TNF-α concentration was shown to be significantly higher in alcoholic hepatitis (AH) patients who subsequently died than those who survived. Patients with AH had significantly higher plasma TNF-α concentration than did patients with inactive cirrhosis or alcohols having no liver disease. TNF-α reduces NO bioavailability, and in vivo TNF-α may also directly alter endothelial vasomotor function. Moreover, Plasma TNF-α concentration was shown to be significantly higher in alcoholic hepatitis (AH) patients who subsequently died than those who survived. Patients with AH had significantly higher plasma TNF-α concentration than did patients with inactive cirrhosis or alcohols having no liver disease. It has also shown that lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, induces a marked TNF-α production in vivo in cirrhotic rats and ex vivo in monocytes from cirrhotic patients. Infliximab (anti-TNF antibody) treatment has been shown to reduce systemic TNF-α and a concomitant drop in portal pressure in alcoholic hepatitis patients with severe ED. Our previous study also supported the above notion that treatment with anti-TNF improved hepatic DDHAH enzyme function by decreasing ADMA level and a concomitant increase of hepatic eNOS activity and NO bioavailability in a bile duct-ligated cirrhotic rat. Infliximab treatment also shown to beneficial in CCl₄, and high fat diet induced liver disease models. Furthermore, anti-TNF treatment to the portal vein ligated rats significantly blunts the development of the hyperdynamic circulation and reduces portal pressure.

Nuclear factor-κB
Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor. It is a ubiquitous transcription factor.
Reduction of eNOS activity
Increase of Caveolin-1
Increase of ADMA
Reduction of intrahepatic nitrate/
Increase of inflammation
Decrease of NO bioavailability
Stimulation of ROS generation
Reduction of DDAH enzyme

Table 1 Factors affecting endothelial dysfunction in cirrhosis

Marker	Endothelial dysfunction	Ref.
Inflammatory marker		
TNFα	Inhibition of NO synthesis	[47,75,78,84,99,104]
NFκB	Increase of ADMA	
TLR	Increase of Cavelin-1	
Ang II	Reduction of eNOS activity	
TLR	Upregulation of iNOS	
Ang II	Increase of superoxide production	
TLR	Reduction of antioxidant capacity	
Oxidative marker		
4-HNE	Reduction of DDAH enzyme activity	[42,78,104]
NADPH	Decrease of NO bioavailability	
Cyclooxygenase-derived prostanoids		
TXA2	Reduction of intrahepatic nitrate/nitrite	[110-112]
PG1	Upregulation of iNOS expression	
Other marker	Increase of inflammation	[122,130,138,139,145]
ET-1	Increase of inflammation	
LOX-1	Stimulation of ROS generation	
PARs	-Stimulation of ROS generation	
Palmitic acid		

Toll-like receptors

Toll-like receptors (TLRs) belong to the family of transmembrane pattern-recognition receptors that recognize pathogen-associated molecular patterns, which including LPS [87]. TLR4 expressed on both parenchymal and non-parenchymal cell types in the liver and its activation trigger hepatic innate immune signaling, and may contribute to endothelial dysfunction and intrahepatic vascular tone in patients with cirrhosis [8,87,88]. In addition, the potential role of TLR4 in mediating renal injury in patients with cirrhosis was described recently [89]. The seminal observations made in this study were that the renal expression of TLR4 and the excretion of TLR4 protein was significantly higher in patients with cirrhosis who presented with acute deterioration and had renal dysfunction compared with those that did not [89]. Furthermore, urinary TLR4 was associated with significantly greater risk of death in patients with renal dysfunction and in those with superimposed inflammation [89]. TLR4 expressed on the surface of several cell types, including endothelial cells and its activation shown to reduce NO concentration, resulting ED [90]. Accordingly, anti-TLR4 treatment improved endothelium-dependent relaxation, and improved NO [91]. TLR4 also contributes to the increased ROS production and ED in hypertension, diabetes and obesity [92]. Recently, Benhamou et al [93] revealed that both TLR2 and TLR4 in mediating endothelial dysfunction and vascular remodeling in primary arterial antiphospholipid syndrome. TLR4 signalling leads to activation of NF-κB [86], a pathway associated with endothelial injury [86], and increased TLR4 expression has also shown in advanced liver disease [86,96]. LPS induced TLR4 mediated proinflammatory signalling has also showed in human hepatic stellate cells (HSC) [97], and functional expression of TLR9 has detected in sinusoidal hepatic endothelial cells and hepatocytes [98]. Furthermore, several animal studies support the importance of TLR4 in hepatic fibrosis, and TLR4 knockout mice showing less fibrosis induced by BDL or carbon tetrachloride (CCL4) compared to wild type [99].

factor that activated by a variety of cytokines which including TNF α and is thought to be a key regulator of genes involved in inflammation [47,78]. In BDL cirrhotic rats, elevated plasma F2-isoprostanes correlated with an increase of TNF-α and constitutive activation of NFκB [79]. Osanai et al [80] showed in HUVECs that synthesised ADMA by PRMT-1 was further stimulated by shear stress via activation of the NFκB pathway. Recently ADMA induces TNFα production via ROS/NFκB dependent pathway also reported in human monocytes [81]. Activation of NFκB also increased in the liver of chronically HCV-infected patients compared with controls [82], which is in line with our previous observation that increased NFκB protein expression in BDL cirrhotic rats was downregulated following Infliximab treatment [47,78]. TNF-α facilitates the translocation of free NFκB from cytosol to the nucleus and the induction of iNOS gene expression. The overproduction of NO by iNOS is important in inflammation and causes ED and may associate with hyperdynamic circulation in cirrhosis [27,83,84]. In this context, recently Jalan et al [84] observed that an incubation of cirrhotic patient plasma or LPS with HUVECS showing increased iNOS activity. Thus, transjugular intrahepatic stent-shunt insertion (TIPSS) induced endotoxemia results in upregulation of the iNOS pathway in the endothelium of critically ill cirrhotic patients [84]. Hence, increased iNOS driven NO is marker for the treatment of inflammatory disorders, and its prevention is a target for the design of new drugs acting on iNOS [85,86]. In fact, inhibition of NFκB activation was initially considered important for designing NOS inhibitors, since NFκB mainly involved in iNOS expression during inflammatory conditions [47,85,86]. Therefore, the regulation of iNOS via the NFκB pathway is an important mechanism in inflammatory processes and potential site for intervention in inflammatory diseases.
These results suggested an important function of TLRs on the development of inflammatory pathology in hepatic cirrhosis. Stadlbauer et al. observed that in AH patients, the increased TLR 2, 4 and 9 expressions correlated with neutrophil dysfunction and endotoxemia, albumin an endotoxin scavenger attenuated these complaints by decreasing TLRs expression. Several lines of evidence exist implicating gut derived endotoxemia in the pathogenesis of portal hypertension. Administration of norfloxacin, a selective gut decontaminant prophylactically reduced endotoxin levels, TLR4 expression and decreased NO-mediated forebrain vasodilatation and improved survival in cirrhosis.

Angiotensin II

The renin-angiotensin system (RAS) plays a key physiological role in regulating vascular function. In the pathophysiology, RAS has also shown to promote vascular injury by triggering ED, vascular remodelling and vascular inflammation. Angiotensin (Ang) II is the core composition of the RAS involved in many chronic diseases, which including hepatic cirrhosis. Increased Ang II causes endothelial dysfunction, vasoconstriction, sodium water retention, elevated blood pressure, ROS generation, inflammatory mediators and pro-fibrotic cytokines. The adverse effects of Ang II induced ED is mediated by interaction with the plasma membrane AT 1 receptors (Ang II type 1 receptors) and causes NO reduction by inducing eNOS enzyme dysfunction and promoting NOS uncoupling. Thus, pharmacological inhibition of the production or actions of Ang II receptor blockers now represents an effective strategy to delay the progression of endothelial dysfunction in experimental models and humans. In this context, previous clinical studies have shown evidence that RAS play an important role in the elevation of the ADMA concentration in hypertensive patients, and blockade of Ang II by ACEI or Ang II receptor blocker (ARB) significantly attenuates the elevated level of ADMA, resulting in endothelial protection.

Pharmacological blockade of angiotensin II receptors using the drug Candesartan cilexetil (CC) may attenuate the progression of liver cirrhosis and endothelial dysfunction. In HUVECs, CC increased the eNOS protein level, inhibited the expression of nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits and Ang II induced intracellular ROS and nitric oxide, and promoted the extracellular release of nitric oxide suggesting that it augmented the bioavailability of nitric oxide. Thus, CC administration may attenuate ED and for the future therapeutic approach in portal hypertensive patients with cirrhosis. Ang II can also activate NADPH oxidase (Nox), leading to increased ROS generation and commencing ED in cirrhosis.

VASCULAR DYSFUNCTION

Thromboxane

TXA₂, a vasoactive prostanoid and COX metabolite, increased intrahepatic vascular tone in cirrhosis, more specifically in the phenomenon of hyperresponsiveness to vasoconstrictors and caused intrahepatic ED. Administration of COX inhibitors such as flurbiprofen and nitrofuribiprofen (NO releasing COX inhibitor) to cirrhotic rats result in decreased hepatic TXA₂ production and an increased intrahepatic nitrate/nitrite (an index of NO synthesis) concentration thereby attenuating intrahepatic vascular resistance, endothelial dysfunction, and hepatic hyper reactivity to vasoconstrictors. TXA₂ and PGI₂: the other COX 2 derivatives may act simultaneously, producing a compensatory effect that reduces NO release and may limit the hyperdynamic circulation in cirrhosis. The use of indomethacin, a COX inhibitor has shown to prevent liver fibrosis, and rise in portal hypertension in liver cirrhosis. Indeed, study also shows that COX inhibitors could worsen the hyperdynamic circulation associated with liver cirrhosis. TXA₂ induces vasoconstriction by activating the TXA₂/prostaglandin-endoperoxide (TP) receptor. TP receptor ligands include TXA₂, PGI₂, and isoprostanes. TXA₂ acts through its G-protein-coupled receptor leading to vasoconstriction by activating the RhoA/Rho-kinase pathway, and by increasing calcium levels in HSC. Oral administration of terutroban, a specific antagonist of the TP-receptor has shown to attenuates inflammation and oxidative stress and reduce RhoA/Rho-kinase-dependent signaling and restore NO bioavailability in endothelial cells may represent a useful agent in the treatment of endothelial dysfunction in cirrhosis with portal hypertension.

Endothelin-1

A most potent vasoconstrictor endothelin (ET) -1 regarded as a key player in ED, primarily binding to G-protein coupled receptors such as ETA and ETB and acts in a paracrine fashion. Previous study has shown that ETB receptors present in endothelial cell can elicit endothelium-dependent relaxation by improving NO release by contrast, ETA and ETB receptors present on the fibroblasts and smooth muscle cells trigger vasoconstriction and inflammation. Cirrhotic rats with diabetes showed higher intrahepatic ET-1 vasoresponsiveness than normoglycemic cirrhotic rats. ED also found in patients with insulin resistance (IR). In this context, IR can be triggered by ET-1 infusion in rats by activating phosphatidylinositol (PI) 3-kinase activity in smooth muscle cells in an ETA dependent manner and treatment with ETA receptor antagonists results in improvement of insulin sensitivity and associated
endothelial function via an inhibition of PI 3-kinase activity[129]. In this context, a very recent study pointed out that LPS stimulation to portal hypertensive rats showed enhanced renal vascular response to ET-1 through ETA overexpression[126].

OTHER MARKERS OF ENDOTHELIAL DYSFUNCTION

Lectin-like oxidised LDL receptor-1
Lectin-like oxidised LDL receptor-1 (LOX1) is a key receptor for oxidised low-density lipoprotein (Ox-LDL) and identified in endothelial cells, and considered as a marker of ED in various pathological settings[127,128]. LOX-1 promotes ROS generation augments endothelial adhesiveness to monocytes and inhibits NO synthesis[129]. The recent review by Lubrano et al[130] described in detail about the relationship between LOX1 and ROS. Furthermore, increased expression of LOX1 was found in the placenta of women with intrahepatic cholestasis during pregnancy[131]. LOX-1 polymorphism also associated with liver disease severity in non-alcoholic steatohepatitis[132] and could be a biomarker for patients with endothelial dysfunction in liver cirrhosis.

Protease activated receptors
Protease activated receptors (PARs) are G protein-coupled receptors which, mediating cellular effects of some proteases of the activated coagulation system such as thrombin, trypsin or metalloproteinase[133]. ECs express PAR1, PAR2 and PAR4[134]. Endothelial PARs play important roles in the crosstalk between coagulation and inflammation in sepsis[135]. Acute PAR1 activation causes an increase in vascular permeability, presumably due to direct endothelial contractile responses[136]. PAR1 deficiency and blockade has shown to reduce inflammation in a mouse model of colitis[137]. Moreover, activation of protease through its receptor following thrombus formation, hemorrhage and inflammation led to the conversion of ECs to a proinflammatory phenotype and may result in vascular lesion development[133]. Garcia et al[138] have shown in cultured ECs, PAR1 activation stimulates the production of prostacyclin and NO, consisting with other reports shown in in vivo that PAR1 activators cause hypotension when injected intravenously and cause NO mediated vasodilation[137]. In this context, Knight et al[139] and Sakata et al[139] reported that PAR2 promotes experimental liver fibrosis by increase of TGF β production in mice and to induce a profibrogenic phenotype in human HSCs. Thus, targeting PARs and using its antagonists in endothelial dysfunction with cirrhosis may represent a novel therapeutic approach in preventing portal hypertension in cirrhosis.

Adiponectin
Adiponectin is a protein hormone synthesized by adipose tissue. Plasma physiological concentration of adiponectin represents 0.05% of all plasma proteins and is a key component in the relationship between adiposity, inflammation and insulin resistance[140]. Previous studies have shown evidence that the association between hypoadiponectinemia and ED[141,142]. Wang et al[142] showed in ECs that adiponectin stimulating NO synthesis by activating AMPK mediated pathway. Furthermore, adiponectin knockout mice exhibited impaired endothelium dependent vasodilation and NO production[143]. Earlier published studies have pointed out that adiponectin administration significantly increases NO production by regulating eNOS enzyme activity and its phosphorylation and maintain endothelial function[141]. However, despite the hepatoprotective effect of adiponectin have shown in NAFLD and other chronic liver ailments, the plasma concentration of which increased in patients with cirrhosis of different aetiologies. Indeed, the factors related to elevated levels of adiponectin in cirrhosis are not yet completely understood. In this context, Tietge et al[144] showed an evidence that increased adiponectin levels in cirrhotic patients correlate exclusively with reduced liver function and altered hepatic haemodynamics. Furthermore, Salman et al[145] and Tacke et al[146] reported that an elevated adiponectin correlated with inflammation and liver damage and high levels were found in human cholestasis as well as in an animal model of cirrhosis[145,146]. Thus, adiponectin may serve as a novel biomarker for cholestasis in liver cirrhosis and agents that modifying adiponectin concentration in liver cirrhosis may use as a potential diagnostic tool but also as therapeutic target for ED in cirrhosis.

Free fatty acid
Liver plays a significant role in lipid homeostasis including several stages of lipid synthesis and transportation. Thus, it is reasonable to anticipate an abnormal lipid profile associated with the progression of hepatic dysfunction. Furthermore, hyperlipidaemia is main risk factor for ED, which is a common indicator in patients with hepatic cirrhosis[147]. Accumulated evidence indicates that increased hepatic and plasma free fatty acid (FFA) concentration led to hyperlipidemia and may cause ED in cirrhosis. Previously it has been shown that FFA trigger HUVECs apoptosis and inhibit cell cycle progression[148]. In this regard, palmitic acid a key FFA in the bloodstream, exposure to ECs causes cell necrosis and the release of proinflammatory cytokines[149,150], consistent with other report showing in cultured bovine retinal pericytes, in which palmitate can induce apoptosis by promoting oxidative stress[151]. Recently Ristic-Medic et al[152] observed in cirrhotic patients, increased levels of palmitic acid and total saturated fatty acids when compared to healthy controls. Thus, FFA play an important role in cirrhosis with ED and agents that reduce palmitic acid concentration would be used as a possible future target for therapy. One such agent,

Table 2 Classic and novel therapeutic strategies directing to improvement of endothelial dysfunction in cirrhosis

Therapeutic agent	Endothelial function	Ref.
Anti-inflammatory agents	Increase of NO bioavailability, Reduction of ADMA	[25,42,75,111]
	Upregulation of eNOS activity, Decrease of inflammation	
Vitamins	Improvement of eNOS activity, Increase of NO bioavailability, Scavenging of ROS generation	[159,160,162]
	Antioxidant function	
Flavonoids	Increase of NO bioavailability, Prevention of oxidative stress, Improvement of antioxidant enzymes	[15,166,168]
Nuclear receptors	Increase of NO bioavailability, Improvement of DDAH	[33,30,187]
Ammonia lowering agents	Detoxification of ammonia levels, Reduction of ADMA	[27,189,190,192,201]
Statins	Increase of NO bioavailability, Improvement of total cholesterol, eNOS phosphorylation	[147,170,172,202,203]
	Promoting NO biosynthesis, Reduction of Ox-LDL, Attenuation of inflammatory indices	
Beta blockers	Amelioration of oxidative stress, Attenuation of Inflammation, Restoration of antioxidant enzymes	[194,196]
Angiotensin-receptor antagonists	Increase of NO, Decrease of Ang-II mediated inflammation, Decrease of TIMP-1, MPP-2 mediated fibrosis	[200,204]

NO: Nitric oxide; **ADMA:** Asymmetric dimethylarginine; **eNOS:** Endothelial nitric oxide synthase; **DDAH:** Dimethyl arginine diaminohydrolase; **Ox-LDL:** Oxidized low-density lipoprotein; **Ang II:** Angiotensin II; **TIMP-1:** Tissue inhibitor of metalloproteinase 1; **MPP-2:** Matrix metalloproteinase-2.

Eicosapentaenoic acid (EPA), ω-3 polyunsaturated fatty acid (PUFA) is abundant in fish oil has shown to enhance the production of NO via activating eNOS and improve normal vascular endothelium. Very recently Lee et al. have demonstrated that treatment with EPA protects against palmitic acid induced ED through activation of the AMPK-eNOS mediated pathway. Highly purified EPA also shown to prevent the development of inflammation and hepatic fibrosis in rats. In addition, peroxisome proliferator-activated receptor (PPAR)-α, a member of the nuclear receptor superfamily and a key regulator of fatty acid homeostasis, has been shown to improve endothelial dysfunction and portal pressure in cirrhotic rats. The above indices, therefore, provide a rationale for novel insights into the pathophysiology of ED and the potential for the development of novel biomarkers and therapeutic approaches in patients with endothelial dysfunction and advanced liver disease.

EMERGING THERAPY FOR REVERSAL OF HEPATIC ED IN CIRRHOSIS

ED is an early event in the pathogenesis of cirrhosis with PHT and can be reversible with certain therapies (Table 2). Restoration of ED appears to be a crucial therapeutic target, since ED predicts most of the liver related problems in alcoholic liver disease (ALD), hepatoportal syndrome (HRS), hepatic encephalopathy (HE) and sepsis.

Antioxidant strategy (Vitamins and flavonoids)

Ascorbic acid (vitamin C) has been shown to improve the NO-dependent vasodilatation in vascular beds of patients with conditions characterized by marked ED in cirrhosis. The other antioxidant α-tocopherol (vitamin E) has also shown to improvement of hepatic ED by suppressed hepatic ADMA and oxidative stress and improved hepatic NO in cirrhotic rats. In addition, folic acid, a superoxide scavenging vitamin B9 and its active metabolite 5-methyltetrahydrofolate (5-MTHF) has been shown to restore ED in patients with many cardiovascular diseases. Folic acid mainly involved in downregulating eNOS derived superoxide and eNOS uncoupling thereby improving regeneration of BH₄ from BH₂, by preventing BH₄ oxidation, which results in increased NO. The beneficial effects of 5-MTHF have shown in compensated cirrhotic patients recently. Superoxide dismutase (SOD) gene transfer also has shown to reduce portal pressure in CCl₄ cirrhotic rats with portal hypertension through reducing oxidative stress and increased NO bioavailability. Tempol, a SOD mimetic reduces superoxide and its protective effects are chiefly ascribed to their antioxidant and vasodilatory actions. Very recently, Hsu et al. found that green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Furthermore, flavonoids, an integral part of the human diet have been shown to confer protective effects on vascular endothelial function in humans, and its protective effects are chiefly ascribed to their antioxidant and vasodilatory actions. Very recently, Lin et al. showed quercetin supplementation has associated with multifactorial potential as well as down-regulation of NF-κB and TGF-β/Smad signalling, probably via interference with TLR signalling. Resveratrol, a natural polyphenolic flavonoid present higher amount in grapes has shown...
to reduce portal pressure by attenuating ED. Moreover, resveratrol supplementation also results in reducing oxidative stress and upregulating eNOS expression without affecting systemic hemodynamics in cirrhotic rats[168].

Statins

Statins (HMG-CoA reductase inhibitors) lower serum cholesterol concentrations and exhibits beneficial therapeutic effects in cirrhotic patients, as evidenced by various clinical trials[169-171]. Abraldes et al[169] demonstrated that simvastatin improve hepatic NO generation and endothelial function and lowers portal pressure in patients with cirrhosis. Moreover, atorvastatin has been shown to prevent liver inflammation and HSC activation induced by Ang-II infusion[172]. Schwabl et al[172] found that pioglitazone, an insulin sensitiser decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. Additionally, Sorafenib, a tyrosine kinase inhibitor approved in the treatment of hepatocellular carcinoma, has shown to have beneficial effects in reducing portal pressure in cirrhosis[173]. The other multitarget receptor tyrosine kinase inhibitors such as Sunitinib and Imatinib were also shown to use for the treatment of portal hypertension[174] and may have a potential role in regulating ED in cirrhosis through NO mediated mechanisms. However, further encouraging clinical studies of statins strategy to ED in cirrhosis needs to be explored.

Anti-inflammatory agents

Human serum albumin (HSA) is one of the most frequent treatments in patients with decompensated cirrhosis[175]. It also reduced the severity of other chronic liver diseases such as HE and HRS and improved survival of patients with spontaneous bacterial peritonitis (SBP)[175-177]. In addition, albumin has been demonstrated to have a clinically significant beneficial effect on ED and survival during experimental endotoxemia[178]. It also reduced sequential organ failure assessment (SOFA) score in critically ill patients with hypoalbuminemia[179]. Furthermore, pentoxifylline and N-acetylcysteine, the other known anti-inflammatory agents have shown to associated with reduced the risk of inflammation and ED in cirrhosis[180-182]. Antibiotics such as quinolones and rifaximin and high-density lipoprotein (HDL) treatment have shown to associate with the reduction of inflammation and portal pressure by neutralising portal bacterial endotoxin load[20,101,183]. Thus, anti-inflammatory agents would improve NO bioavailability and reduce ED, considered a potential therapeutic approach for the management of portal hypertension in cirrhosis.

Nuclear receptors

Obeticholic acid, a synthetic farnesoid X receptor (FXR) ligand belongs to a nuclear receptor superfamily of transcription factor, which plays an important role in bile acid and lipid metabolism[184,185] has also been the subject of considerable attention over recent years[186]. FXR agonists have numerous target genes including DDAH1 ([158]). Our previous study has shown evidence that obeticholic acid significantly increases hepatic DDAH-1 and eNOS activity and improved NO bioavailability in cirrhotic rats, leading to improvement in endothelial function and associated drop in portal pressure[33]. Similarly, a multi-centre phase 2a trial of obeticholic acid in decompensated cirrhotic patients show a trend towards a drop in portal pressure[187]. Another promising approach of transfection of cirrhotic liver with DDAH-1 decreased ED and portal hypertension in BD rats[188]. Furthermore, other member of the nuclear receptor superfamily, PPAR-\textalpha also has shown to improve endothelial dysfunction and portal pressure in cirrhosis[159].

Ammonia lowering agents

AST-120, an oral adsorbent carbon microspheres and ammonia-lowering agent[189] has shown to reduce ED in adenine-induced uremic rats[190]. AST-120 treatment was also shown to prevent the progression of HE in cirrhotic rats[189] and chronic kidney disease (CKD) in a clinical setting[191], which may be used for the treatment of ED in cirrhosis. Indeed, further studies would be needed for describing the potential role of AST-120 on NO mediated ED in cirrhosis. Furthermore, we established a new promising therapy such as OCR-002 (ornithine-phenylacetate) for the treatment of HE[27,192]. OCR-002 is currently being advanced in the clinic and also effective in reducing PHT by lowering ammonia mediated inflammation and improving NO bioavailability[193] and may consider for the future therapeutic approach for the management of ED and associated PHT in patient with cirrhosis.

Non-selective \beta blockers

Carvedilol is a non-selective \beta blocker with alpha-1 adrenergic blocker activity has been shown to amelioration of oxidative stress and restoration of antioxidant enzyme activities, and attenuation of NF-\textkappaB mediated inflammation in chronic liver disease[194]. Interestingly, Reiberger et al[195] observed in BDL cirrhotic rat that nebivolol, a third generation \beta blocker increased splanchnic blood flow and portal pressure via NO mediated signalling. In this context, Ma et al[196] demonstrated in myocardial infarction that targeting NO with a nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5’-AMP-activated protein kinase and Akt activation of NO biosynthesis. Moreover, long-term nebivolol administration reduces renal fibrosis and prevents endothelial dysfunction in a rat hypertensive model[197]. In this context, Mookerjee et al[11] have pointed out that specific controlled studies are addressing the use of \beta-blockers in patients with severe decompensation of cirrhosis with high risk of
sepsis and renal dysfunction are inadequate. Hence, further clinical studies on the effect of β-blockers through NO mediated pathway are challenging in liver cirrhosis.

Angiotensin-receptor antagonists

Additionally, Candesartan cilextil (CC), a selective angiotensin II type 1 (AT1) receptor antagonist widely used as an antihypertensive in clinical practice has shown to improve ED 198,199. In addition, recent clinical study has shown evidence that CC administration was safe and well tolerated to compensated cirrhotic patients, without an underlying cause of renal failure or hepatic decompensation 200. Given the substantial experimental evidence that CC has the potential beneficial effect in distinct human diseases by blocking Ang-II mediated AT1 receptor and may improve ED and NO bioavailability and associated mechanism in cirrhosis.

CONCLUSION

In conclusion, this review has been discussed the involvement of various inflammatory and oxidative stress markers on the regulation of NO biosynthesis and associated ED. The therapeutic interventions, which including antioxidants, anti-inflammatory and ammonia lowering agents, bile acid receptors, statins, insulin sensitisers, beta blockers and ARBs have been shown to increasingly recognised to attenuate liver cirrhosis by decreasing inflammation, oxidative stress and promoting NO biosynthesis. Subsequently, the development of an ideal therapy based on the increase of hepatic NO synthesis through ADMA-DDAH pathway may improve endothelial function and reduce inflammation, subsequent portal pressure reduction and without compromising systemic arterial pressure in patients with advanced liver disease. Remarkably, DDAH-1 gene strategy to cirrhotic liver would advance future therapeutic attention in the context of improvement of NO synthesis and reduce inflammation and associated ED and portal pressure reduction in-patient with cirrhosis.

REFERENCES

1. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. *Physiol Rev* 2004; 84: 869-901 [PMID: 15269339 DOI: 10.1152/physrev.00035.2003]
2. Inagami T, Naruse M, Hoover R. Endothelin as an endocrine organ. *Ann Rev Physiol 1995; 57: 171-189* [PMID: 7778863 DOI: 10.1146/annurev.ph.57.030195.001131]
3. Lerman A, Zeiher AM. Endothelial function: cardiac events. *Circulation 2005; 111: 363-368* [PMID: 15668353 DOI: 10.1161/01.CIR.0000153359.27064.14]
4. Ganz P, vita JA. Testing endothelial vasoconstriction function: nitric oxide, a multipotent molecule. *Circulation 2003; 108: 2049-2053* [PMID: 14581383 DOI: 10.1161.01.CIR.0000089507.19675.F9]
5. Galle J, Quaschning T, Seibold S, Wanner C. Endothelial dysfunction and inflammation: what is the link? *Kidney Int Suppl 2003; (84): S45-S49* [PMID: 12694307]
6. Gupta TK, Torurer M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. *Hepatology 1998; 28: 926-931* [PMID: 9755227 DOI: 10.1002/hep.510280405]
7. Bosch J, Alabrades JG, Fernández M, Garcia-Pagan JC. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. *J Hepatol 2010; 53: 558-567* [PMID: 20561700 DOI: 10.1016/j.jhep.2010.03.021]
8. Mehta G, Gustot T, Mookerjee RP, Garcia-Pagan JC, Fallon MB, Shah VH, Moreau R, Jalan R. Inflammation and portal hypertension - the undiscovered country. *J Hepatol 2014; 61: 155-163* [PMID: 24657394 DOI: 10.1016/j.jhep.2014.03.014]
9. Gouveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. *EMBO Mol Med 2014; 6: 1105-1120* [PMID: 25063693 DOI: 10.15222/emmm.201404156]
10. Strisciuglio T, De Luca S, Capuano E, Luciano R, Niglio T, Trimarco B, Galasso G. Endothelial dysfunction: its clinical value and methods of assessment. *Curr Atheroscler Rep 2014; 16: 417* [PMID: 24764181 DOI: 10.1007/s11883-014-0417-1]
11. Mookerjee RP. Acute-on-chronic liver failure: the liver and portal haemodynamics. *Curr Opin Crit Care 2011; 17: 170-176* [PMID: 21346568 DOI: 10.1097/MCC.0b013e328344af07]
12. Mookerjee RP, Lackner C, Stauber R, Stadbauer V, Deheragoda M, Aigelsreiter A, Jalan R. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. *J Hepatol 2011; 55: 1103-1111* [PMID: 21376902 DOI: 10.1016/j.jhep.2011.02.021]
13. Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. *Clin Sci (Lond) 2007; 112: 265-280* [PMID: 17261089 DOI: 10.1042/CS20060242]
14. Mookerjee RP, Vairappan B, Jalan R. The puzzle of endothelial nitric oxide synthase dysfunction in portal hypertension: The missing piece? *Hepatology 2007; 46: 943-946* [PMID: 17879360 DOI: 10.1002/hep.21905]
15. Hus SJ, Wang SS, Hsin IF, Lee FY, Huang HC, Hoo TI, Lee WS, Lin HC, Lee SD. Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. *Clin Sci (Lond) 2014; 126: 633-644* [PMID: 24063570 DOI: 10.1042/CS20130215]
16. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilatation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. *Hepatology 1988; 8: 1151-1157* [PMID: 2971015]
17. Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. *Hepatology 1997; 25: 2-5* [PMID: 8985256 DOI: 10.1001/hep.1997.0155002]
18. Pechanová O, Simko F. The role of nitric oxide in the maintenance of vasoactive balance. *Physiol Rev 2007; 56 Suppl 2: S7-S16* [PMID: 17824812]
19. Mookerjee RP, Balasubramaniamy V, Mehta G. ADMA and hepatic endothelial dysfunction in cirrhosis—the DDAH isoform is the key. *Liver Int 2012; 32: 1186; author reply 1187* [PMID: 22574915 DOI: 10.1111/j.1478-3231.2012.02814.x]
20. Thabut D, Massard J, Gangloff A, Carbonell N, Francoz C, Nguyen-Khac E, Duhamel C, Lebrec D, Poynard T, Moreau R. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. *Hepatology 2007; 46: 1872-1882* [PMID: 17972337 DOI: 10.1002/hep.21920]
21. Laleman W, Landeghem L, Wilmer A, Fevry J, Nevens F. Portal hypertension: from pathophysiology to clinical practice. *Liver Int 2005; 25: 1079-1090* [PMID: 16343056 DOI: 10.1111/j.1478-3231.2005.01163.x]
22. Clapp BR, Hingorani AD, Khabaranda RK, Mohamed-Ali V, Stephens JW, Vallance P, MacAllister RJ. Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. *Cardiovasc Res 2004; 64: 172-178* [PMID: 15364625 DOI: 10.1016/j.cardiores.2004.06.020]
23. Gracia-Sancho J, Maeso-Díaz R, Fernández-Iglesias A, Navarro-
dimethylarginine (ADMA) in acute liver failure. Williams R, Jalan R. Inflammation is an important determinant of ICU mortality. Nijveldt RJ, Mookerjee RP, Jalan R, Mookerjee RP. The role of DDAH-ADMA in the regulation of hepatic eNOS activity in acute and chronic liver failure. Hepatology 2008; 48: 1045A

Balasubramanivyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, Mookerjee RP, Jalan R. Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2012; 302: G145-G152 [PMID: 21903766 DOI: 10.1152/ajpgi.00997.2011]

Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K, Sessa WC, Grossmann JZ. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 1999; 117: 1222-1228 [PMID: 10535886]

Zimmermann K, Opitz N, Dedio J, Renne C, Muller-Esterl W, Oes S. NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2002; 99: 17167-17172 [PMID: 12446846 DOI: 10.1073/pnas.252345399]

Icking K, Matt S, Opitz N, Wiesenthal A, Muller-Esterl W, Schilling K. NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 2005; 118: 5059-5069 [PMID: 16234328 DOI: 10.1242/jcs.02620]

Icking K, Schilling K, Wiesenthal A, Opitz N, Muller-Esterl W. FCH/Cdc45 domain determines distinct subcellular localization of NOSTRIN. FEBS Lett 2006; 580: 223-228 [PMID: 16376344 DOI: 10.1016/j.febslet.2005.11.078]

Mookerjee RP, Malaki M, Davies NA, Hodges SJ, Dalton RN, Turner C, Sen S, Williams R, Leiper J, Jalan R, Mookerjee RP. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology 2007; 45: 62-71 [PMID: 17184433 DOI: 10.1002/hep.21401]

Vairappan B, Sharma V, Winstanley A, Davies N, Shah N, Jalan R, Mookerjee RP. Modulation of the DDAH-ADMA pathway with the Farnesoid X receptor (FXR) agonist INT-747 restores hepatic eNOS activity and lowers portal pressure in cirrhotic rats. Hepatology 2009; 50: 336A-337A

Nijveldt RJ, Teerlink T, Van Der Hoven B, Siroen MP, Kuik DJ, Rauwerda JA, van Leeuwen PA. Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr 2003; 22: 23-30 [PMID: 12553946]

Kasumov T, Edmison JM, Dasarathy S, Bennett C, Lopez R, Kalhan SC. Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease. Metabolism 2011; 60: 776-781 [PMID: 20869086 DOI: 10.1016/j.metabol.2010.07.027]

Vizzutti F, Romanelli RG, Arena U, Rega L, Brogi M, Calabresi E, Masini E, Tarquini R, Zippoli M, Boddi V, Mena F, Laffi G, Pinzani M. ADMA correlates with portal pressure in patients with compensated cirrhosis. Eur J Clin Invest 2007; 37: 509-515 [PMID: 17537159 DOI: 10.1111/j.1365-2362.2007.01814.x]

Mookerjee RP, Dalton RN, Davies NA, Hodges SJ, Turner C, Williams R, Jalan R. Inflammation is an important determinant of levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) in acute liver failure. Liver Transpl 2007; 13: 400-405 [PMID: 17318866 DOI: 10.1002/lt.21053]

Leiper J, Vallance P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 1999; 43: 542-548 [PMID: 10690326]

Antoniades C, Shrodadia C, Lesson P, Antonopoulos A, Warrick N, Van-Asseche T, Cunnington C, Tousoulis D, Pillai R, Ratnatunga C, Stefanidis C, Channon KM. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 2009; 30: 1142-1150 [PMID: 19297385 DOI: 10.1093/eurheartj/epp061]

Abdeln S, Meintzer A, Holme I, Mäz W, Weibruch G, Fellstrom B, Jardine A, Holdaas H. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortality in renal transplant recipients. Kidney Int 2010; 77: 44-50 [PMID: 19847152 DOI: 10.1038/ki.2009.382]

Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O’Hara B, Rossiter S, Anthony S, Madhani M, Selwood D, Smith C, Wojciak-Stothard B, Rudiger A, Stidwill R, McDonald NQ, Vallance P. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med 2007; 13: 198-203 [PMID: 17273169 DOI: 10.1038/nm1543]

Balasubramanivyan V, Sharma V, Metha G, Habtesion A, Turner C, Dalton RN, Davies N, Jalan R, Mookerjee RP. Acute lowering of portal pressure in cirrhotic rats by Anti-TNF therapy is associated with reduced NFκB-driven inflammation and improved eNOS function through the asymmetric dimethylarginine-dimethylarginine-diaminohydrolase axis. Gut 2010; 59 Suppl: A35 [DOI: 10.1136/gut.2010.223362.86]

Chen MF, Xie XM, Yang TL, Wang YJ, Zhang XH, Luo BL, Li YJ. Role of asymmetric dimethylarginine in inflammatory reactions by angiotensin II. J Vasc Res 2007; 44: 391-402 [PMID: 17551258 DOI: 10.1159/000103284]

Laleman W, Omasta A, Van de Casteele M, Zeegers M, Vander Est I, Van Landeghem L, Severi T, Van Peelt J, Roskams T, Fevery J, Nevens F. A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis. Hepatology 2005; 42: 1382-1390 [PMID: 16317694 DOI: 10.1002/hep.20968]

Leiper JM, Santa Maria J, Chubb A, MacAllister RJ, Charles IG, Whitley GS, Vallance P. Identification of two human methylarginines dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem.J 1999; 343 Pt 1: 209-214 [PMID: 10493931]

Leiper JM. The DDAH-ADMA-NOS pathway. Ther Drug Monit 2005; 27: 744-746 [PMID: 16404814]

Balasubramanivyan V, Davies NA, Wright G, Dalton RN, Turner C, Williams R, Jalan R, Mookerjee RP. Treatment with Infliximab treatment of portal hypertension. J Hepatol 2009; 50: S270

Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999; 99: 3092-3095 [PMID: 10377069]

Forbes SP, Druhan LJ, Guzman JE, Fariniandi N, Zhang L, Green- Church KB, Cardouel AJ. Mechanism of 4-HNE mediated inhibition of hDDAH-1: implications in no regulation. Biochemistry 2008; 47: 1819-1826 [PMID: 18171027 DOI: 10.1021/bi701659n]

Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Estl IV, Windmolders P, Vanuytsel T, Nevens F, Laleman W. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two different pathways in cirrhotic rats. Hepatology 2014; 59: 2286-2298 [PMID: 24259407 DOI: 10.1002/hep.26393]

Laviña B, Gracia-Sancho J, Rodríguez-Vilarrulpa A, Chu Y, Heisatt DD, Bosch J, García-Pagán JC. Superoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension. Gut 2009; 58: 118-125 [PMID: 18829979 DOI: 10.1136/gut.2008.149880]

Liuch P, Mauricio MD, Vila JM, Segarra G, Medina P, Del
liver inflammation and tumorgenesis by enhancing IL-6 and TNF expression. Cell 2010; 140: 197-208 [PMID: 20141834 DOI: 10.1016/j.cell.2009.12.052]

68 Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-2012 [PMID: 7504210 DOI: 10.1056/NEJM199312303292706]

69 Chia S, Qadan M, Newton R, Ludlam CA, Fox KA, Newby DE. Intra-arterial tumor necrosis factor-alpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arterioscler Thromb Vasc Biol 2003; 23: 695-701 [PMID: 12692009 DOI: 10.1161/01.ATV.0000065195.22904.FA]

70 McClain CJ, Barve S, Deacine I, Kugelmas M, Hill D. Cytokines in alcoholic liver disease. Semin Liver Dis 1999; 19: 205-219 [PMID: 10422201 DOI: 10.1056/2007-1001170]

71 Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 1990; 112: 917-920 [PMID: 2339855]

72 Schwab P, Payer BA, Grafhove J, Klein S, Horvatits T, Mitterhauser M, Stifl J, Boucher Y, Treibach J, Trauner M, Angermayr B, Furrnham V, Reiberger T, Peck-Radosavljevic M. Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. J Hepatol 2014; 60: 1135-1142 [PMID: 2453056 DOI: 10.1016/j.jhep.2014.01.025]

73 Heller J, Sogini P, Barriere E, Tazi KA, Chaoula-Moachen L, Guimont MC, Borisie PN, Poiriel O, Moreau R, Lebrec D. Effects of lipopolysaccharide on TNF-alpha production, hepatic NOS2 activity, and hepatic toxicity in rats with cirrhosis. J Hepatol 2000; 33: 376-381 [PMID: 11019992]

74 Riordan SM, Skinner N, Nazeran A, McCullem H, Melcier CV, Kartovic J, Hamilton JA, Bengmark S, Williams R, Visvanathan K. Peripheral blood monocytic cell expression of toll-like receptors and relation to cytokine levels in cirrhosis. Hepatology 2003; 37: 1154-1164 [PMID: 12717397 DOI: 10.1001/jhep.2003.50180]

75 Mookerjee RP, Sen S, Davies NA, Hodges SJ, Williams R, Jalan R. Tumour necrosis factor alpha is an important mediator of portal and systemic haemodynamic derangements in alcoholic hepatitis. Gut 2003; 52: 1182-1187 [PMID: 12865279]

76 Bahcecillohu IH, Koca SS, Poyrazoglu OK, Yalniz M, Ozerean HC, Ustundag V, Sahin B, Sahin K, Dagli AF, Isik A. Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation 2008; 31: 215-221 [PMID: 18427963 DOI: 10.1007/s10575-008-9067-1]

77 Barbuio R, Milanski M, Bertolo MB, Saad MJ, Velloso LA. Inflimixim reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J Endocrinol 2007; 194: 539-550 [PMID: 1761689 DOI: 10.1677/JOE-07-0234]

78 Balusabramianyi V, Dhar DK, Warner AE, Vivien Li WY, Ambi AI, Bright B, Mookerjee RP, Davies NA, Becker DL, Jalan R. Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol 2013; 58: 1194-1200 [PMID: 23376361 DOI: 10.1016/j.jhep.2013.01.023]

79 Harry D, Anand R, Holt S, Davies S, Marley R, Fernando B, Goodier D, Moore K. Increased sensitivity to endotoxin in the bile duct-ligated cirrhotic Rat. Hepatology 1999; 30: 1190-1205 [PMID: 10533043 DOI: 100.1002/hep.10030051]

80 Osanai T, Saitoh M, Sasaki S, Tomita H, Matsunaga T, Okumura K. Effect of shear stress on asymmetric dimethylarginine release from vascular endothelial cells. Hypertension 2003; 42: 985-990 [PMID: 14557285 DOI: 10.1161/01.ATV.0000097805.05186.16]

81 Zhang GG, Bai YP, Chen MF, Shi RZ, Jiang DJ, Fu QM, Tan GS, Li YJ. Asymmetric dimethylarginine induces TNF-alpha production via ROS/NF-kappaB dependent pathway in human monocytic cells and the inhibitory effect of reinoiside C. Vasc Pharmacol 2008; 48: 115-121 [PMID: 18295546 DOI: 10.1016/j.vph.2008.01.004]

82 Boya P, Larrea E, Solal I, Majano PL, Jimenez C, Civeira MP, Prieto J. Nuclear factor-kappa B in the liver of patients with chronic hepatitis C: decreased RelA expression is associated with enhanced fibrosis progression. Hepatology 2001; 34: 1041-1048 [PMID: 11679977 DOI: 10.1053/jhep.2001.29002]
DE. Inducible nitric oxide synthase activity contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites. Gut 2006; 55: 542-546 [PMID: 16299035 DOI: 10.1136/gut.2005.076562.

84 Jalan R, Olde Damink SW, Ter Stooge JC, Redhead DN, Lee A, Hayes PC, Deutz NE. Acute endotoxemia following transjugular intrahepatic stent-shunt insertion is associated with systemic and cerebral vasodilatation with increased whole body nitric oxide production in critically ill cirrhotic patients. J Hepatol 2011; 54: 265-271 [PMID: 21067839 DOI: 10.1016/j.jhep.2010.06.042].

85 Balasubramaniyan V, Davies N, Mookerjee R, Becker DL, Warner A, Jalan R. Inflammation upregulates hepatic connexin-43 expression in cirrhosis which defines susceptibility to development of acute-on chronic liver failure. J Hepatol 2012; 56: 5236 [DOI: 10.1016/S0168-8278(12)60608-4].

86 Wright G, Vairappan B, Stadlbauer V, Mookerjee RP, Davies NA, Jalan R. Reduction in hyperammonaemia by oranthine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int 2012; 32: 410-419 [PMID: 22151131 DOI: 10.1111/j.1478-3279.2011.02698.x].

87 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50: 1258-1266 [PMID: 19398236 DOI: 10.1016/j.jhep.2009.03.007].

88 Hayashi T, Suzuki K. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver. Gastroenterol Res Pract 2010; pii: 189561 [PMID: 20827308 DOI: 10.1155/2010/189561].

89 Shah N, Mohamed FE, Jover-Cobos M, Macnaughtan J, Davies N, Moreau R, Paradis V, Moore K, Mookerjee R, Jalan R. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int 2013; 33: 398-409 [PMID: 23402610 DOI: 10.1111/liv.12047].

90 Otsui K, Inoue N, Kobayashi S, Shiraishi R, Honjo T, Takahashi M, Hirata K, Kawashima S, Yokoyama M. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22: 416-422 [PMID: 18044001 DOI: 10.1007/s00137-006-0101-1].

91 Freitas MR, Schott C, Corriu C, Sassard J, Stoclet JC, Andriantsitohaina R. Heterogeneity of endothelin-dependent vasorelaxation in conductance and resistance arteries from Lyon normotensive and hypertensive rats. J Hypertens 2003; 21: 1505-1512 [PMID: 12872044 DOI: 10.1097/01.hjh.0000084713.53355.98].

92 Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 2013; 33: 777-784 [PMID: 23413427 DOI: 10.1161/ATVBAHA.112.301087].

93 Benhamou Y, Bellien J, Armengol G, Brakenhielm E, Adriaouc I, Sacob M, Remy-Jouet I, Le Cam-Duchez V, Monteil C, Renet S, Jouen F, Drouot L, Manfred JR, Borg JY, Thuillez C, Boyer O, Simon-Santamaria J, Pettersen I, Moens U, Kurz S, Münzel T, Tarpey M, Freeman BA, Stadlbauer V, Vairappan B, Mookerjee RP, Davies NA, Stadlbauer V, Mookerjee RP, Becker DL, Warner A, Jalan R. Inflammation upregulates hepatic connexin-43 expression in cirrhosis which defines susceptibility to development of acute-on chronic liver failure. J Hepatol 2012; 56: 5236 [DOI: 10.1016/S0168-8278(12)60608-4].

94 Wright G, Vairappan B, Stadlbauer V, Mookerjee RP, Davies NA, Jalan R. Reduction in hyperammonaemia by oranthine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int 2012; 32: 410-419 [PMID: 22151131 DOI: 10.1111/j.1478-3279.2011.02698.x].

95 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50: 1258-1266 [PMID: 19398236 DOI: 10.1016/j.jhep.2009.03.007].

96 Hayashi T, Suzuki K. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver. Gastroenterol Res Pract 2010; pii: 189561 [PMID: 20827308 DOI: 10.1155/2010/189561].

97 Shah N, Mohamed FE, Jover-Cobos M, Macnaughtan J, Davies N, Moreau R, Paradis V, Moore K, Mookerjee R, Jalan R. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int 2013; 33: 398-409 [PMID: 23402610 DOI: 10.1111/liv.12047].

98 Otsui K, Inoue N, Kobayashi S, Shiraishi R, Honjo T, Takahashi M, Hirata K, Kawashima S, Yokoyama M. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22: 416-422 [PMID: 18044001 DOI: 10.1007/s00137-006-0101-1].

99 Freitas MR, Schott C, Corriu C, Sassard J, Stoclet JC, Andriantsitohaina R. Heterogeneity of endothelin-dependent vasorelaxation in conductance and resistance arteries from Lyon normotensive and hypertensive rats. J Hypertens 2003; 21: 1505-1512 [PMID: 12872044 DOI: 10.1097/01.hjh.0000084713.53355.98].

100 Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 2013; 33: 777-784 [PMID: 23413427 DOI: 10.1161/ATVBAHA.112.301087].

101 Benhamou Y, Bellien J, Armengol G, Brakenhielm E, Adriaouc I, Sacob M, Remy-Jouet I, Le Cam-Duchez V, Monteil C, Renet S, Jouen F, Drouot L, Manfred JR, Borg JY, Thuillez C, Boyer O, Simon-Santamaria J, Pettersen I, Moens U, Kurz S, Münzel T, Tarpey M, Freeman BA, Stadlbauer V, Vairappan B, Mookerjee RP, Davies NA, Stadlbauer V, Mookerjee RP, Becker DL, Warner A, Jalan R. Inflammation upregulates hepatic connexin-43 expression in cirrhosis which defines susceptibility to development of acute-on chronic liver failure. J Hepatol 2012; 56: 5236 [DOI: 10.1016/S0168-8278(12)60608-4].
Effect of lectin-like oxidized LDL receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis. Am J Clin Nutr 2011; 94: 1033-1042 [PMID: 21865331 DOI: 10.3945/ajcn.111.151600]

Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vasc Pharmacol 2014; 62: 72-81 [PMID: 24924409 DOI: 10.1016/j.vph.2014.06.001]

Kataoka H, Hamilton JR, McKemy DD, Camerer E, Zheng YW, Cheng A, Griffin C, Coughlin SR. Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood 2003; 102: 3224-3231 [PMID: 12869051 DOI: 10.1182/blood-2003-04-1130]

Vergnolle N, Cellars L, Mencarelli A, Rizzo G, Swaminathan S, Beck P, Steinhoff M, Andrade-Gordon P, Bunnent NW, Hollenberg MD, Wallace JL, Cirino G, Fiorucci S. A role for proteinase-activated receptor-1 in inflammatory bowel diseases. J Clin Invest 2004; 114: 1444-1456 [PMID: 15545995 DOI: 10.1172/JCI21689]

Garcia JG, Patterson C, Bahlé R, Aschner J, Hart CM, English D. Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth factor mRNA expression in cultured endothelium. J Cell Physiol 1993; 156: 541-549 [PMID: 8360259 DOI: 10.1002/jcp.1041560313]

Cheung WM, D’Andrea MR, Andrade-Gordon P, Damiano BP. Altered vascular injury responses in mice deficient in protease-activated receptor-1. Arterioscler Thromb Vasc Biol 1999; 19: 3014-3024 [PMID: 10591683]

Knight V, Tchongue J, Lourenz D, Tippin P, Sievert W. Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology 2012; 55: 879-887 [PMID: 22905555 DOI: 10.1002/hep.24784]

Sakata K, Eda S, Lee ES, Han M, Imoto M, Kojima S. Neovessel formation promotes liver fibrosis via providing latent transforming growth factor-β. Biochem Biophys Res Commun 2014; 443: 945-956 [PMID: 24361885 DOI: 10.1016/j.bbrc.2013.12.074]

Silva TE, Colombo G, Schiavon LL. Adiponectin: A multitasking player in the field of liver diseases. Diabetes Metab 2014; 40: 95-107 [PMID: 24486145 DOI: 10.1159/000367111]

Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003; 278: 45021-45026 [PMID: 12944390 DOI: 10.1074/jbc.M307878200]

Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension 2008; 51: 8-14 [PMID: 17998473 DOI: 10.1161/HYPERTENSIONAHA.107.099442]

Cao Y, Tao L, Yuan Y, Jiao X, Yuan Y, Wang Y, Christopher T, Lopez B, Chan L, Goldstein B, Ma XL. Endothelial dysfunction in adiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol 2009; 46: 413-419 [PMID: 19027750 DOI: 10.1016/j.jmcc.2008.10.014]

Tietge UJ, Böker KH, Manns MP, Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am J Physiol Endocrinol Metab 2004; 287: E82-E89 [PMID: 15010338 DOI: 10.1152/ajpendo.00494.2003]

Salman TA, Allam N, Azab GI, Shararawy AA, Hassouna MM,
El-Haddad OM. Study of adiponectin in chronic liver disease and portal hypertension. *Hepatol Int* 2010; 4: 767-774 [PMID: 21268349 DOI: 10.1007/s12072-010-9216-0]

Tack F, Wüstefeld T, Horn P, Ludcza T, Spinivas Rao A, Manns MP, Trautwein C, Brabant G. High adiponectin in chronic liver disease and cirrhosis suggests biliary route of adiponectin excretion in vivo. *J Hepatol* 2005; 42: 666-673 [PMID: 15826715 DOI: 10.1016/j.jhep.2004.12.024]

Cash WJ, O’Neill S, D’Oonnell ME, McCance DR, Young IS, McEneny J, McDougall PJ, Callender ME. Randomized controlled trial assessing the effect of simvastatin in primary biliary cirrhosis. *Liver Int* 2013; 33: 1166-1174 [PMID: 23672463 DOI: 10.1111/ li.12191]

Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. *EASEB J* 2004; 18: 146-148 [PMID: 14597560 DOI: 10.1096/fj.03-03013]

Khan MJ, Rizwan Alam M, Waldeek-Weimerar M, Karsten F, Groschner L, Riederer M, Hallström S, Rockenfeller P, Konya V, Heinemann A, Madoe F, Graier WF, Malli R. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. *J Biol Chem* 2012; 287: 21110-21120 [PMID: 22556413 DOI: 10.1074/jbc.M111.319129]

Staiger H, Staiger K, Stefan N, Wahl HG, Machicco F, Kellermar H, Häring HU. Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. *Diabetes* 2004; 53: 3209-3216 [PMID: 15561992]

Cacedo JM, Benjachareowong S, Chou E, Ruderman NB, Idzo Y. Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and cancer. *Diabetes* 2005; 54: 1838-1845 [PMID: 15919807]

Risté-Medí D, Takić M, Vučić V, Kandić D, Kostić N, Glibetić M. Abnormalities in the serum phospholipids fatty acid profile in patients with alcoholic liver cirrhosis - a pilot study. *J Clin Biochem Nutr* 2013; 53: 49-54 [PMID: 23874070 DOI: 10.3164/jcbn.12-79]

Okuda Y, Kawashima K, Sawada T, Tsurumaru K, Asano M, Suzuki S, Soma M, Nakajima T, Yamashita K. Eicosapentaenoic acid enhances nitric oxide production by cultured human endothelial cells. *Biochem Biophys Res Commun* 1999; 272: 487-491 [PMID: 9125207 DOI: 10.1016/bbr.1997.6328]

Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. *Int J Mol Sci* 2014; 15: 10334-10349 [PMID: 24918290 DOI: 10.3390/ijms150610334]

Kajiwara S, Harada T, Kawaiwa A, Imada K, Mizuguchi K. Highly purified eicosapentaenoic acid ethyl ester prevents development of steatosis and hepatic fibrosis in rats. *Dig Dis Sci* 2010; 55: 631-641 [PMID: 19856102 DOI: 10.1007/s10620-009-1020-0]

Kajiwara S, Imada K, Takeuchi T, Shimizu Y, Kawashima A, Harada T, Mizuguchi K. Eicosapentaenoic acid attenuates progression of hepatic fibrosis with inhibition of reactive oxygen species production in rats fed methionine- and choline-deficient diet. *Dig Dis Sci* 2011; 56: 1065-1074 [PMID: 20848203 DOI: 10.1007/s10620-1014-005]

Mandard S, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. *Cell Mol Life Sci* 2004; 61: 393-416 [PMID: 14999402 DOI: 10.1007/s00018-003-2316-3]

Rodríguez-Villarriba A, Laviña B, García-Calderón H, Ruiz-Orozco I. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. *Hepatol Int* 2012; 6: 1033-1039 [PMID: 22245887 DOI: 10.1007/jhep.2011.12008]

Hernández-Guerra M, García-Pagán JC, Turnes J, Bellott P, Deulofeu R, Abraldes JG, Bosch J. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. *Hepatology* 2006; 43: 485-491 [PMID: 16496307 DOI: 10.1002/hep.21080]

Yang YY, Lee TY, Huang YT, Chan CC, Yeh YC, Lee FY, Lee SD, Lin HC. Asymmetric dimethylarginine (ADMA) determines the improvement of hepatic endothelial dysfunction by vitamin E in cirrhotic rats. *Liver Int* 2013; 32: 592-597 [PMID: 23683317 DOI: 10.1111/j.1478-3275.2013.02811.x]

Kierdorf BR, Juni RP, Mosim AL. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. *Am J Physiol Endocrinol Metab* 2012; 302: E481-E495 [PMID: 22167522 DOI: 10.1152/ajpendo.00540.2011]

Patanawa I, King MJ, Barrett DA, Rose J, Jackson R, Hudson M, Philo M, Dainty JR, Wright AJ, Finglas PM, Jones DE. Folic acid handling by the human gut: implications for food fortification and supplementation. *Am J Clin Nutr* 2014; 100: 593-599 [PMID: 24944062 DOI: 10.3945/ajcn.113.110850]
Antiangiogenic treatment with sunitinib ameliorates inflammatory portal infiltration, fibrosis, and portal pressure in cirrhotic rats. *Hepatology* 2007; 46: 1919-1926 [PMID: 17935226 DOI: 10.1002/hep.21921]

175 Arroyo V, García-Martínez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. *Liver Transplantation* 2004; 10: 396-407 [PMID: 15491830 DOI: 10.1002/lt.20044.01012]

176 Jalal R, Kapoor D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. *Clin Sci (Lond)* 2004; 106: 467-474 [PMID: 14677808 DOI: 10.1042/CS20030057]

177 Ortega R, Ginés P, Uriz J, Cardenas A, Calahorra B, De Las Heras D, Guevara M, Bataller R, Jiménez W, Arroyo V, Rodés J. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. *Hepatology* 2002; 36: 941-948 [PMID: 12297842 DOI: 10.1053/jhep.2002.35819]

178 Kremer H, Baron-Menyguy C, Tresse A, Gallois Y, Mercat A, Henrion D, Andriantsitohaina R, Asfar P, Mezioun F. Human serum albumin improves endothelial dysfunction and survival during experimental endotoxemia: concentration-dependent properties. *Crit Care Med* 2011; 39: 1414-1422 [PMID: 21366119 DOI: 10.1097/CCM.0b013e3182110f6c]

179 Dubois MJ, Orellana-Jimenez C, Melot C, De Backer D, Berre J, Leeman M, Brimioiuille S, Appoloni O, Creteur J, Vincent JL. Albumin administration improves organ function in critically ill hypoalbuminemic patients: A prospective, randomized, controlled, pilot study. *Crit Care Med* 2006; 34: 2536-2540 [PMID: 16951507 DOI: 10.1097/01.CCM.0000239119.57544.0C]

180 Corradi F, Brusasco C, Fernández J, Vila J, Ramírez MJ, Sevà-Peireira T, Fernández-Varo G, Inami Y, Lee P, Pelosi P, Gines P, Navasa M, Raptis S, Karamanolis DG. Intestinal decontamination improves liver haemodynamics in rats with biliary cirrhosis. *Hepatology* 2012; 56: 175-187 [PMID: 22543095 DOI: 10.1002/hep.24273]

181 Inami Y, Hamada C, Soto T, Hotta Y, Aruga S, Inama J, Azuma K, Io H, Kaneko K, Watada H, Tomino Y. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats. *Int J Nephrol* 2014; 2014: 164125 [PMID: 24829798 DOI: 10.1155/2014/164125]

182 Lee CT, Hsu CY, Tain YL, Ng HY, Cheng BC, Wu CH, Chioi TT, Lee YT, Liao SC. Effects of AST-120 on blood concentrations of protein-bound uremic toxins and biomarkers of cardiovascular risk in chronic dialysis patients. *Blood Purif* 2014; 37: 76-83 [PMID: 24576840 DOI: 10.1159/000357641]

183 Davies NA, Wright G, Ytrebo LM, Stadlbauer V, Fusseväg OM, Zwingmann C, Davies DC, Habtesion A, Hodges SJ, Jalal R. L-ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. *Hepatology* 2009; 50: 155-164 [PMID: 19437490 DOI: 10.1002/hep.22897]

184 Balasubramaniyan V, Davies N, Gavin W, Vikram S, Raj M, Rajiv J, L-ornithine phenylacetate (OCR-002) reduces portal pressure by modulating hepatic NFKB and hepatic eNOS activity in cirrhotic rats. *Hepatology* 2005; 38: 339A-340A

185 Handry N. El-Demerdash E. New therapeutic aspect for cardiovital: antifibrotic effects of cardiovital in chronic carbon tetrachloride-induced liver damage. *Toxicol Appl Pharmacol* 2012; 261: 292-299 [PMID: 22543095 DOI: 10.1016/j.taap.2012.04.012]

186 Reiberger T, Payer BA, Schwabl P, Hayden H, Horvatis T, Jäger B, Hurnell T, Mitterhauser M, Trauner M, Fuhrmann V, Angermayr B, Peck-Radosavljevic M. Neobilox treatment increases splanchic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. *Liver Int* 2013; 37: 561-568 [PMID: 23331709 DOI: 10.1111/liv.12101]

187 Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR. Neobilox improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. *Am J Physiol Heart Circ Physiol* 2012; 302: H2341-2351 [PMID: 22447938 DOI: 10.1152/ajpheart.0126.2011]

188 Pires MJ, Rodríguez-Peña AB, Arêvalo M, Cenador B, Evangelista S, Esteller A, Sánchez-Rodríguez A, Coelho A, López-Novo JA. Long-term neobilox administration reduces renal fibrosis and prevents endothelial dysfunction in rats with hypertension induced by renal mass reduction. *J Hypertens* 2007; 25: 2486-2496 [PMID: 17984671 DOI: 10.1097/HJH.0b013e3282feefeb]

189 Rakugi H, Enya K, Sugjira K, Ikeda Y. Comparison of the efficacy and safety of azilsartan with that of candesartan cilexetil in Japanese patients with grade I-II essential hypertension: a randomized, double-blind clinical study. *Hypertens Res* 2012; 35: 552-558 [PMID: 22278628 DOI: 10.1038/hypertens.2012.8]

190 Yasuno S, Fujimoto A, Nakagawa Y, Kuwahara K, Ueshima K. Fixed-dose combination therapy of candesartan cilexetil and amiodipine besilate for the treatment of hypertension in Japan. *Expert Rev Cardiovasc Ther* 2012; 10: 577-583 [PMID: 22651833 DOI: 10.1586/erc.j12.34]

191 Debernardi-Venon W, Martini S, Biasi F, Vizio B, Termine A, Poli G, Brunello F, Alessandria C, Bonardi R, Saracco G, Rizzetto M, Marzano A. AT1 receptor antagonist Candesartan in selected cirrhotic patients: effect on portal pressure and liver fibrosis markers. *J Hepatol* 2007; 46: 1026-1033 [PMID: 17336417 DOI: 10.1016/j.jhep.2007.01.017]

192 Vairappan B, Davies N, Sharma V, Shaheb N, Mookerjee RP, Jalal Vairappan B, Ed and end-stage liver diseases
R. Reduction in hyperammonemia with L-ornithine phenylacetate (OCR-002) in bile-duct-ligated (BDL) cirrhotic rats restores brain eNOS activity by modulating the DDAH-ADMA pathway. *Hepatology* 2009; 476A

202 **Abrailes JG**, Rodríguez-Vilarrupla A, Graupera M, Zafra C, García-Calderó H, García-Pagán JC, Bosch J. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. *J Hepatol* 2007; 46: 1040-1046 [PMID: 17335931 DOI: 10.1016/j.jhep.2007.01.020]

203 **La Mura V**, Pasarín M, Meireles CZ, Miquel R, Rodríguez-Vilarrupla A, Hide D, Gracia-Sancho J, García-Pagán JC, Bosch J. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. *Hepatology* 2013; 57: 1172-1181 [PMID: 23184571 DOI: 10.1002/hep.26127]

204 **Kim MY**, Cho MY, Baik SK, Jeong PH, Suk KT, Jang YO, Yea CJ, Kim JW, Kim HS, Kwon SO, Yoo BS, Kim JY, Eom MS, Cha SH, Chang SJ. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis - a randomized open-label controlled study. *Liver Int* 2012; 32: 977-987 [PMID: 22364262 DOI: 10.1111/j.1478-3231.2012.02774.x]

P-Reviewer: Pan WS, Rajeshwari K **S-Editor**: Tian YL **L-Editor**: A **E-Editor**: Wu HL
