Effects of Herbiotic FS supplementation on growth performance, nutrient digestibility, blood profiles, and faecal scores in weanling pigs

Xin Jian Lei, Hyeok Min Yun, Jung Sun Kang and In Ho Kim

ABSTRACT
This study was conducted to investigate the effects of Herbiotic FS supplementation on growth performance, nutrient digestibility, blood characteristics, and faecal scores in weanling pigs. A total of 150 weanling pigs [(Landrace×Yorkshire)×Duroc] with an average initial body weight of 8.02 ± 0.92 kg were randomly assigned to 5 dietary treatments (5 replicate pens per treatment with 6 pigs per pen). The dietary treatments were as follows: (1) negative control: basal diet, (2) positive control: basal diet + 150 mg/kg apramycin, (3) Herbiotic1: basal diet + 250 mg/kg Herbiotic FS, (4) Herbiotic2 (basal diet + 500 mg/kg Herbiotic FS), and (5) Herbiotic3: (basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin). During days 1–7, pigs fed positive control, Herbiotic2 and Herbiotic3 diets had improved average daily gain and gain:feed ratio compared with those fed negative control or Herbiotic1 diets (P < 0.05). On day 21, pigs fed positive control and Herbiotic3 diets had increased nitrogen digestibility compared with those fed negative control or Herbiotic1 diets (P < 0.05). In conclusion, Herbiotic FS supplementation decreased the pathogenic count in the gut owing to its antimicrobial activity and this in turn caused the nutrients more available to the animal contributing to the growth.

1. Introduction
During the last decades, phytotherapeutic feed additives have been widely used as an alternative to antibiotics because of their plant-derived property and growth-promoting effects (Hong et al. 2004; Wang et al. 2007; Wang et al. 2008; Windisch et al. 2008; Jang et al. 2010; Ao et al. 2011). Valchev et al. (2009) demonstrated that herbal extracts (150 mg/kg) in pig diet could increase growth performance, feed efficiency, and immune-related blood characteristics. It is suggested that the beneficial effects of herbs or herbal extracts may arise from increased feed intake and secretion of digestive enzymes, immune stimulation, anti-bacterial, anti-viral, and antioxidant properties (Wenk 2003; Kim et al. 2010). Krotkiewski and Janiak (2008) and Yang et al. (2009) also demonstrated a synergistic interaction between the components of herbal mixture in vivo and in vitro.

Herbiotic FS is a mixture of thyme, buckwheat, turmeric, black pepper, and ginger, and is developed for a better and safer alternative to antibiotics and chemical growth promoters. It has lower minimum inhibitory concentration as compared to zinc bacitracin and other synthetic antibiotics and has better growth-promoting effects (Dinodiya et al. 2015). Herbiotic FS augmented the population of beneficial microbiota in the gut through its prebiotic oligosaccharides, prevented the irritation of the intestine and increased the number and height of the intestinal villi in broilers (Dinodiya 2012). However, the information about Herbiotic FS supplementation in weanling pigs is still scarce. This study was conducted to investigate the effects of Herbiotic FS supplementation on growth performance, nutrient digestibility, blood characteristics, and diarrhoea score in weanling pigs.

2. Materials and methods
The experiment was conducted at the Experimental Unit of the Dankook University (Cheonan, Republic of Korea). The protocol for the current experiment was approved by the Animal Care and Use Committee of Dankook University.

2.1. Experimental design and animals
A total of 150 pigs [(Landrace × Yorkshire) × Duroc] with an average initial body weight of 8.02 ± 0.92 kg were assigned to 5 treatments (5 replicate pens per treatment and 6 pigs per pen) in a randomized complete block. The experiment lasted for 6 weeks. The dietary treatments were as follows: (1) negative control: basal diet (NC), (2) positive control: basal diet + 150 mg/kg apramycin (PC), (3) basal diet + 250 mg/kg Herbiotic FS (H1), (4) basal diet + 500 mg/kg Herbiotic FS (H2), and (5) basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin (H3). The Herbiotic FS used in this study included buckwheat (15.00%), thyme (7.50%), turmeric (3.75%), black pepper (1.25%), and ginger (1.25%). A 3-period feeding programme was employed in the current experiment, which consisted of phase 1 (days 1–7), phase 2 (days 8–21), and phase 3 (days 22–42). All diets (Table 1) were formulated to meet or exceed the nutrient requirements of pigs.
The DM and N in feed and faecal samples were determined by oven-drying at 70°C for 72 h, after which feed and faecal samples were stored immediately at −20°C until analysis. Faecal samples were collected via jugular venipuncture into both a nonheparinized and a K3EDTA vacuum tube (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ) to enable evaluation of the serum and whole blood, respectively. The white blood cell (WBC), red blood cell (RBC) and lymphocyte counts were analysed using an automatic blood analyser (ADVIA 120, Bayer, USA). The serum samples were then centrifuged (2000 × g) for 30 minutes at 4°C, after which the immunoglobulin G (IgG) was determined using a nephelometer analyser (Behring, Marburg, Germany).

Subjective diarrhoea score was recorded daily from days 1 to 7 by the same person and was based on the following: 1 = well-formed faeces, 2 = sloppy faeces, and 3 = diarrhoea. Score was recorded on a pen basis following observations of individual pig and signs of stool consistency in the pen. The score is reported as average daily diarrhoea of individual pig score.

2.3. Statistical analysis

In this experiment, all data were analysed using a randomized complete block design following general linear model procedures of SAS (1996), with each pen being used as the experimental unit. Differences between treatments were detected by Tukey’s multiple range test. The data were expressed as means and pooled standard error of the mean. Significance was defined as *P* < 0.05.

3. Results

3.1. Growth performance

During phase 1, pigs fed PC, H2 and H3 diets had improved (*P* < 0.05) ADG and G:F compared with those fed NC and H1 diets, but ADFI was not affected (*P* > 0.10) by treatments (Table 2). During phase 2, ADFI in pigs fed PC and H3 was increased (*P* < 0.05) compared with those fed NC diet, whereas ADG and G:F were unaffected (*P* > 0.10). During phase 3, pigs fed PC and H3 diets showed higher (*P* < 0.05) ADG than that of pigs fed NC diet, whereas ADG and G:F were not affected (*P* > 0.10). Overall, pigs fed PC, H2, and H3 diets had improved (*P* < 0.05) ADG when compared with those fed NC diet, although ADG and G:F were not affected (*P* > 0.10).

3.2. Nutrient digestibility

Pigs fed PC and H3 diets had increased (*P* < 0.05) ATTD of N compared with those fed NC and H1 diets (Table 3) at day 21.

Table 1. Compositions of basal weanling pig diets for experiment 1 (as-fed basis).

Items	Phase 1 (days 1–7)	Phase 2 (days 8–21)	Phase 3 (days 22–42)
Ingredient, g/kg			
Extruded corn	111.5	349.2	451.0
Extruded oat	100.0	—	—
Biscuit meal	—	50.0	90.0
Soybean meal	80.0	200.0	296.5
Fermented soybean meal	78.0	82.0	—
Fish meal	50.0	40.0	25.0
Soy oil	41.5	48.0	30.0
Lactose	100.0	60.0	—
Whey	170.0	107.0	68.5
Milk product*	13.00	20.0	20.0
Monocalcium phosphate	12.5	10.0	6.0
Sugar	40.0	20.0	—
Plasma powder	65.0	—	—
L-Lys·HCl, 78%	1.2	2.5	1.6
DL-Met, 50%	2.6	1.5	1.4
L-Thr, 89%	7.7	0.8	—
Choline chloride, 25%	2.0	1.0	1.0
Vitamin premixa	1.0	1.0	1.0
Trace mineral premixa	2.0	2.0	2.0
Limestone	2.0	2.0	3.0
Salt	3.0	3.0	3.0
Calculated composition, g/kg			
Metabolizable energy, MJ/kg	14.8	14.8	14.6
Crude protein	220.0	210.0	205.0
Lys	15.7	14.1	13.3
Met	6.0	4.9	4.7
Calcium	8.0	7.8	7.5
Total phosphorus	7.6	7.6	6.4
Lys	226.3	215.4	207.9
Calcium	8.1	7.9	7.4
Phosphorus	7.8	7.4	6.7

Provided per kg of complete diet: vitamin A, 11,025 IU; vitamin D₃, 1,103 IU; vitamin E, 44 IU; vitamin K, 4.4 mg; d-pantothenic, 29 mg; choline, 166 mg; and vitamin B₁₂, 3 μg.

Provided per kg of complete diet: Fe (as FeSO₄·7H₂O), 80 mg; Cu (as CuSO₄·5H₂O), 4 mg; d-pantothenic, 29 mg; choline, 166 mg; and vitamin B₁₂, 3 μg.
Table 2. Effect of Herbiotic FS on growth performance in weanling pigs.

Dietary treatments	NC	PC	H1	H2	H3	SEM	P-value
Phase 1, days 1–7							
ADG, g	180b	210a	184b	212a	219b	5.8	0.010
ADFI, g	254	265	257	264	260	7.5	0.521
G:F	0.709b	0.793a	0.716b	0.803b	0.842a	0.04	0.021
Phase 2, days 8–21							
ADG, g	487	521	497	516	509	15.7	0.010
ADFI, g	707b	775a	768ab	764ab	772a	12.1	0.025
G:F	0.689	0.672	0.647	0.675	0.659	0.03	0.113
Phase 3, days 22–42							
ADG, g	605b	632a	624ab	629ab	638a	10.5	0.021
ADFI, g	992	1,005	995	999	1,000	21.3	1.020
G:F	0.610	0.629	0.627	0.630	0.638	0.06	0.995
Overall, days 1–42							
ADG, g	495b	525a	508ab	526a	525a	7.2	0.023
ADFI, g	774	805	796	798	801	10.2	0.556
G:F	0.640	0.652	0.638	0.659	0.655	0.05	0.441

Notes: The dietary treatments were as follows: (1) NC, basal diet; (2) PC, basal diet + 150 mg/kg apramycin; (3) H1, basal diet + 250 mg/kg Herbiotic FS; (4) H2, basal diet + 500 mg/kg Herbiotic FS; (5) H3, basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin. Abbreviation: ADFI: average daily feed intake; ADG: average daily gain; G:F: gain:feed ratio; SEM: standard error of the mean.

a,bMeans in the same row with different superscripts differ (P < 0.05).

However, other determined ATTD were not affected by dietary treatments (P > 0.10).

3.3. Blood profiles

On day 7, RBC concentration in PC, H2 and H3 treatments was higher (P < 0.05) than that in NC treatment (Table 4). Pigs fed H1, H2, and H3 diets had increased (P < 0.05) lymphocyte (day 21) and IgG (day 21) concentrations compared with those fed NC and PC diets. No other effects were observed among treatments (P > 0.10).

3.4. Diarrhoea score

No significant difference (P > 0.10) was observed on diarrhoea score among dietary treatments during the experiment (Table 5).

Table 3. Effect of Herbiotic FS on apparent total tract digestibility in weanling pigs.

Dietary treatments	NC	PC	H1	H2	H3	SEM	P-value
Day 7							
Dry matter	79.25	79.52	80.16	80.46	81.02	1.11	0.887
Nitrogen	79.47	79.83	80.15	79.52	80.53	1.26	1.112
Gross energy	81.25	80.15	80.14	80.94	80.57	0.88	0.994
Day 21							
Dry matter	80.25	80.17	80.56	80.53	81.46	0.95	0.884
Nitrogen	79.24b	82.19b	79.24b	80.60ab	82.92a	0.61	0.001
Gross energy	79.56	81.99	79.85	81.94	80.65	1.10	0.992
Day 42							
Dry matter	78.41	80.11	79.40	80.26	80.37	1.28	0.555
Nitrogen	79.01	80.26	80.19	80.04	81.66	1.43	0.233
Gross energy	79.51	81.94	81.46	81.20	80.29	1.80	0.611

Notes: The dietary treatments were as follows: (1) NC, basal diet; (2) PC, basal diet + 150 mg/kg apramycin; (3) H1, basal diet + 250 mg/kg Herbiotic FS; (4) H2, basal diet + 500 mg/kg Herbiotic FS; (5) H3, basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin. Abbreviation: SEM: standard error of the mean.

a,bMeans in the same row with different superscripts differ (P < 0.05).
apramycin or a combination of 250 mg/kg Herbiotic FS and 75 mg/kg apramycin increased the ATTD of N, whereas no effects on ATTD of DM and GE were observed with any of the dietary treatments. Herbs may increase activity of digestive enzymes of gastric mucosa and balance the intestinal microbiota, thereby improving nutrient digestibility (Jamroz et al. 2003; Huang et al. 2012). The improved ATTD of N may help to, at least partially, explain the improved growth performance.

The gastrointestinal tract is the largest immunological competent organ in the body, and studies have indicated that the maturation of gastrointestinal tract and the development of the immune system depend on the composition of the indigenous microbiota (Insoft et al. 1996; de Vrese and Marteau 2007). Inclusion of herbs or herbal extracts could influence the gut microbiota, thereby improving nutrient digestibility (Jamroz et al. 2003; Huang et al. 2012). The increased ATTD of N may help to, at least partially, explain the improved growth performance.

In the present study, pigs fed with Herbiotic FS diets showed increased RBC (day 7), IgG (day 21), and lymphocyte (day 42) concentrations compared to pigs fed with NC and PC diets, suggesting that Herbiotic FS had beneficial effects on immune function. Herbs may stimulate immune function in livestock by influencing the growth of pathogenic microorganisms in gastrointestinal ecosystems (Wenk 2003; Ali et al. 2008; Windisch et al. 2008). The improved immunity function may consequently contribute to the improved growth performance.

Post-weaning diarrhoea is one of the serious problems faced in swine production, especially within the first week after weaning. Herbs may reduce diarrhoea occurrence via improving intestinal microbial balance. Huang et al. (2012) reported that inclusion of medical herbs reduced diarrhoea score during the first 10 days of the experiment period. However, in the present study, diarrhoea score was not affected by dietary treatments. Similarly, Zhang et al. (2012) demonstrated that phytoncide supplementation (flavonoid, phenolic compounds, alkaloid, tannin, terpene, and saponin) had no effect on diarrhoea score. The lack of effect on diarrhoea score in the present can be explained by the generally good health status of the pigs and good hygienic conditions of the research facilities.

In conclusion, Herbiotic FS supplementation decreased the pathogenic count in the gut owing to its antimicrobial activity and this in turn causes the nutrients more available to the animal contributing to the growth.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the grant from the BioGreen 21 Program [grant no. PJ01115902], Rural Development Administration, Republic of Korea.

References
Ali BH, Blunden G, Tanira MO, Nemmar A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 46: 409–420.
Ao X, Yan L, Meng, QW, Zhou TX, Wang JP, Kim HJ, Cho JH, Kim IH. 2011. Effects of Saururus chinesis extract supplementation on growth performance, meat quality and slurry noxious gas emission in finishing pigs. Livest Sci. 138:187–192.
AOAC. 2000. Official methods of analysis. 17th ed. Arlington (VA): Association of Official Analytical Chemists.
Chakravarty AK, Yasmin H. 2005. Alcoholic turmeric extract simultaneously activates murine lymphocytes and inducing apoptosis of Ehrlich ascitic carcinoma cells. Int. Immunopharmacol. 5:1574–1581.

Table 4. Effect of Herbiotic FS on blood profiles in weanling pigs.

Items	NC	PC	H1	H2	H3	SEM	P-value
White blood cell, × 10^3/μL							
Day 7	19.6	21.4	19.2	21.9	20.3	3.25	0.884
Day 21	19.4	20.2	22.9	21.1	21.3	3.04	0.511
Day 42	19.6	22.7	21.8	22.5	21.1	2.68	0.774
Red blood cell, × 10^6/μL							
Day 7	5.2^b	6.1^a	5.7^ab	6.3^a	6.2^a	0.53	0.002
Day 21	6.8	7.5	7.5	7.2	7.1	0.47	0.888
Day 42	7.3	7.2	7.4	7.3	7.4	0.23	0.771
Lymphocyte, %							
Day 7	44.8	46.5	50.4	49.2	48.7	5.05	0.665
Day 21	47.9	47.0	54.9	50.7	49.5	3.95	0.112
Day 42	49.8^b	47.4^a	56.9^a	54.3^a	55.9^a	3.08	0.020
Ig G, mg/dL							
Day 7	410	426	445	462	458	83.2	0.102
Day 21	567^b	651^b	815^a	785^a	724^a	79.0	0.020
Day 42	653	592	575	624	642	52.9	0.996

Notes: The dietary treatments were as follows: (1) NC, basal diet; (2) PC, basal diet + 150 mg/kg apramycin; (3) H1, basal diet + 250 mg/kg Herbiotic FS; (4) H2, basal diet + 500 mg/kg Herbiotic FS; (5) H3, basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin. Abbreviation: IgG: immunoglobulin G; SEM: standard error of the mean. abMeans in the same row with different superscripts differ (P < 0.05).

Table 5. Effect of Herbiotic FS on diarrhoea score in weanling pigs.

Dietary treatments	NC	PC	H1	H2	H3
Diarrhoea score	2.0	1.5	1.8	1.6	1.5

Notes: The dietary treatments were as follows: (1) NC, basal diet; (2) PC, basal diet + 150 mg/kg apramycin; (3) H1, basal diet + 250 mg/kg Herbiotic FS; (4) H2, basal diet + 500 mg/kg Herbiotic FS; (5) H3, basal diet + 250 mg/kg Herbiotic FS + 75 mg/kg apramycin. Abbreviation: IgG: immunoglobulin G; SEM: standard error of the mean.

Subjective diarrhoea score was recorded daily from days 1 to 7 by the same person and were based on the following: 1 = well-formed faeces, 2 = sloppy faeces, 3 = diarrhoea.

Diarrhoea score was not affected by dietary treatments during the first 10 days of the experiment period. However, in the present study, diarrhoea score was not affected by dietary treatments. Similarly, Zhang et al. (2012) demonstrated that phytoncide supplementation (flavonoid, phenolic compounds, alkaloid, tannin, terpene, and saponin) had no effect on diarrhoea score.

The lack of effect on diarrhoea score in the present can be explained by the generally good health status of the pigs and good hygienic conditions of the research facilities.

In conclusion, Herbiotic FS supplementation decreased the pathogenic count in the gut owing to its antimicrobial activity and this in turn causes the nutrients more available to the animal contributing to the growth.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the grant from the BioGreen 21 Program [grant no. PJ01115902], Rural Development Administration, Republic of Korea.

References
Ali BH, Blunden G, Tanira MO, Nemmar A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 46: 409–420.
Ao X, Yan L, Meng, QW, Zhou TX, Wang JP, Kim HJ, Cho JH, Kim IH. 2011. Effects of Saururus chinesis extract supplementation on growth performance, meat quality and slurry noxious gas emission in finishing pigs. Livest Sci. 138:187–192.
AOAC. 2000. Official methods of analysis. 17th ed. Arlington (VA): Association of Official Analytical Chemists.
Chakravarty AK, Yasmin H. 2005. Alcoholic turmeric extract simultaneously activates murine lymphocytes and inducing apoptosis of Ehrlich ascitic carcinoma cells. Int. Immunopharmacol. 5:1574–1581.
Czech A, Kowalczuk E, Greła ER. 2009. The effect of an herbal extract used in pig fattening on the animals performance and blood components. Ann Univ Mariae Curie-Skłodowska Sect EE Zootech. 27:25–33.

de Vrese M, Mateau PR. 2007. Probiotics and prebiotics: effects on diarrhoea. J Nutr. 137:803–811.

Dinodiya JK. 2012. Effect of Neftin and Herbiotic FS on performance of broiler chicks [master’s thesis]. Bikaner (Rajasthan): Rajasthan University of Veterinary and Animal Sciences.

Dinodiya J, Jhirwal AK, Choudhary RS, Goswami SC, Choudhary VK, Mahla V, Saharan JS, Charan R. 2015. Broiler performance of cobb-400 chicks with herbal versus synthetic antimicrobial feed supplements in diet. Anim Sci Rep. 9:16–21.

Frankic T, Voljc M, Salobir J, Rezar V. 2009. Use of herbs and spices and their extracts in animal nutrition. Acta Agric Slov. 9:95–102.

Hong JW, Kim IH, Kwon OS, Min BJ, Lee WB, Shon KS. 2004. Influences of plant extract supplementation on performance and blood characteristics in weaned pigs. Asian-Aust J Anim Sci. 17:374–378.

Huang CW, Lee TT, Shih YC, Yu B. 2012. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J Anim Physiol Anim Nutr. 96:285–294.

Insoft RM, Sanderson IR, Walker WA. 1996. Development of immune function in the intestine and its role in neonatal diseases. Pediatr Clin. 43:551–571.

Jamroz D, Orda I, Kamel C, Wilczkiewicz A, Wertelecki T, Skorupinska I. 2003. The influence of phytoextracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens. J Anim Feed Sci. 12:583–596.

Jang HD, Hong SM, Jung JH, Kim IH. 2010. Effects of feeding blended essential oils on meat quality improvement for branded pork. J Anim Sci Tech. 52:125–130.

Kim JD, Sherwin JA, Shim KS. 2010. Effects of feed additive as an alternative for antibiotics on growth performance and feed cost in growing-finishing pigs. Kor J Organ Agric. 18:233–244.

Krotkiewski M, Janiak R. 2008. Comparison of the weight-decreasing effects of different herbs with a mixture of herbal extracts exerting a probable synergistic effect. Praca Oryginalna. 4:137–142.

Kwon OS, Yoo JS, Min BJ, Son KS, Cho JH, Kim HJ, Chen, YJ, Kim IH. 2005. Effect of supplemental medicinal plants Artemisia, Acanthopanax and garlic on growth performance and serum characteristics in lactating sows, suckling and weanling pigs. J Anim Sci Technol. 47:501–512.

NRC, National Research Council. 2012. Nutrient requirements of swine. 11th ed. Washington, DC: National Academy Press.

SAS. 1996. SAS user’s guide. Release 6.12 ed. Cary (NC): SAS.

Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, Johnson R, Du Z. 2006. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J Appl Microbiol. 100:296–305.

Srinivasan K, Sambaiah K, Chandrasekhar N. 2004. Spices as beneficial hypolipidemic food adjuncts: a review. Food Rev Int. 2:187–220.

Trevisi P, Merialdi G, Mazzoni M, Casini L, Tittarelli C, de Filippi S, Minieri L, Lalatta-Costerbosa G, Bosi P. 2007. Effect of dietary addition of thymol on growth, salivary and gastric function, immune response, and excretion of Salmonella enterica serovar Typhimurium, in weaning pigs challenged with microbe strain. Ita J Anim Sci. 6:374–376.

Valchev G, Popova-Ralcheva S, Bonovska M, Zaprianova I, Gudev D. 2009. Effect of dietary supplements of herb extracts on performance in growing pigs. Biotechnol Anim Husbandry. 25:859–870.

Wang Y, Chen YJ, Cho JH, Yoo JS, Wang Q, Huang Y, Kim HJ, Kim IH. 2007. The effects of dietary herbs and coral mineral complex on growth performance, nutrient digestibility, blood characteristics and meat quality in finishing pigs. J Anim Feed Sci. 16:397–407.

Wang Q, Kim HJ, Cho JH, Chen YJ, Yoo JS, Min BJ, Wang Y, Kim IH. 2008. Effects of phytogetic substances on growth performance, digestibility of nutrients, faecal noxious gas content, blood and milkcharacteristics and reproduction in sows and litter performance. J Anim Feed Sci. 17:50–60.

Wenk C. 2003. Herbs and botanicals as feed additives in monogastric animals. Asian–Aust J Anim Sci. 16:282–289.

Williams CH, David DJ, Iismaa O. 1962. The determination of chonic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci. 59:381–385.

Windisch W, Schedle K, Plitzner C, Kroismayr A. 2008. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci. 86:E140–E148.

Yang J, Cui Y, Kolb M. 2009. How useful is traditional herbal medicine for pulmonary fibrosis? Respirology 14:1082–1091.

Yuan SL, Piao XS, Li DF, Kim SW, Lee HS, Guo PF. 2006. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Anim Sci. 82:501–507.

Zhang S, Jung JH, Kim KS, Kim BY, Kim IH. 2012. Influences of phytoncide supplementation on growth performance, nutrient digestibility, blood profiles, diarrhea scores and fecal microflora shedding in weaning pigs. Asian–Aust J Anim Sci. 25:1309–1315.