The impact of the rhizobia–legume symbiosis on host root system architecture

Citation for published version:
Concha Vidal, C & Doerner, P 2020, 'The impact of the rhizobia–legume symbiosis on host root system architecture', Journal of Experimental Botany, pp. 1-20. https://doi.org/10.1093/jxb/eraa198

Digital Object Identifier (DOI):
10.1093/jxb/eraa198

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Experimental Botany

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
REVIEW PAPER

The impact of the rhizobia–legume symbiosis on host root system architecture

Cristobal Concha and Peter Doerner*
Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
* Correspondence: peter.doerner@ed.ac.uk

Received 20 August 2019; Editorial decision 17 April 2020; Accepted 22 April 2020

Editor: Rodrigo Gutiérrez, Pontificia Universidad Catolica de Chile, Chile

Abstract

Legumes form symbioses with rhizobia to fix N2 in root nodules to supplement their nitrogen (N) requirements. Many studies have shown how symbioses affect the shoot, but far less is understood about how they modify root development and root system architecture (RSA). RSA is the distribution of roots in space and over time. RSA reflects host resource allocation into below-ground organs and patterns of host resource foraging underpinning its resource acquisition capacity. Recent studies have revealed a more comprehensive relationship between hosts and symbionts: the latter can affect host resource acquisition for phosphate and iron, and the symbiont’s production of plant growth regulators can enhance host resource flux and abundance. We review the current understanding of the effects of rhizobia–legume symbioses on legume root systems. We focus on resource acquisition and allocation within the host to conceptualize the effect of symbioses on RSA, and highlight opportunities for new directions of research.

Keywords: Legumes, nutrition, rhizobia, roots, root system architecture, symbiosis.

Introduction

Importance of root system architecture for soil resource acquisition

The term ‘root system’ typically refers to the entire root network of a plant, and hence its root system architecture (RSA) is the distribution of this network in space which determines the plant’s capacity to absorb soil resources (de Dorlodot et al., 2007; Tian and Doerner, 2013). Hence, root distribution in the pedosphere is a critical determinant of a plant’s capacity to efficiently, and in competition with other plants, capture below-ground resources. Most resources in soils are heterogeneously distributed and some, such as phosphorus (P) or iron (Fe), are also immobile and therefore roots must be in close proximity to deposits for acquisition (Vance, 2001). Other, more mobile resources, such as nitrate and water, are soluble and percolate into deeper layers. It follows that distinct RSAs are optimal for acquisition of different resources (e.g. deep rooted for water uptake and shallow rooted for uptake of phosphate) (Ho et al., 2005; Uga et al., 2013). Under combined stresses (e.g. low P and drought), a dimorphic root system performs best (Ho et al., 2005). Plants must therefore make architectural trade-offs...
when roots need to acquire multiple resources with distinct distribution patterns in the soil. This architectural plasticity is underpinned by changes to the growth behaviour of distinct roots and is essential to optimize plant resource acquisition. RSA is therefore not only a reflection of an individual plant’s (external) resource acquisition strategy in its specific environment, but also a history of the (internal) resource allocation (investment) to optimally capture below-ground resources.

The characterization of root systems based on their architecture, using parameters which describe and quantify its shape, extent, and density as well as changes over time, which can only be measured in situ in the pedosphere, can inform on the plant’s resource capture and use strategies (Fig. 1) (Burridge et al., 2016, 2017; de Dorlodot et al., 2007; Tian and Doerner, 2013). However, such RSA-centric approaches are still not widely employed, probably because many methods used to acquire data, such as X-ray tomography, are costly and inaccessible to many (Kumi, 2015; Metzner et al., 2015). Other methods, which do not consider the positional information of roots in the soil, are more common, since these data are easier to obtain (Fig. 1). For example, most studies analyse the root system in terms of parameters such as length or mass, or as different root classes [e.g. number and length of primary roots (PRs) and lateral roots (LRs)] (Lynch, 2007; Lynch and Wojciechowski, 2015).

Importance of biotic interactions for root system architecture

Since RSA is directly tied to the capacity of the plant to acquire soil resources, biotic interactions where microorganisms improve plant resource acquisition might have an impact on it. For example, the application of P-solubilizing microorganisms under P-limited conditions might alter RSA due to the reduced need of the plant to exploit heterogeneously distributed P-rich patches. Symbioses between plant roots and bacteria and/or fungi, which entail a direct exchange of nutrients and host-derived resources, for example carbon (C)-rich compounds such as sugars and amino acids, are likely to have a bigger impact on RSA. Therefore, studying how these interactions modify RSA, as well as nutrient acquisition, shoot and root development, plant biomass, and C fluxes will result in a more comprehensive understanding of the different mechanisms and regulatory pathways through which RSA is regulated. In this review, we will focus on the legume–rhizobia symbiosis as a model for how microorganisms modify RSA.

The legume–rhizobia symbiosis improves N nutrition under limiting conditions

Legume–rhizobia symbiosis

Legumes are the second most important group of crops after cereals, accounting for 26% of global crop production, making them an important source of food and income for many (Medeot et al., 2010). Legumes are also a key part of the nitrogen cycle in both agricultural and natural environments since they form symbioses with rhizobia, soil endosymbiotic α- and β-proteobacteria able to fix N₂ inside modified roots called root nodules (Fig. 2) (Allito et al., 2015; Poole et al., 2018). We use the term rhizobia generically here to include the following genera: *Bradyrhizobium*, *Mesorhizobium*, *Rhizobium*, and *Sinorhizobium.*

When soil N levels, and hence plant N resources, are low, legume roots exude flavonoids that attract compatible rhizobia to roots, where these produce diffusible lipo-chitooligosacharides (LCOs) (Fig. 2). When the plant perceives a compatible LCO, a signalling cascade is triggered that results in the expression of symbiotic genes such as NODULE INCEPTION PROTEIN (NIN). NIN is a transcription factor that increases the expression of both nuclear factor-Y (NF-Y) subunit genes NF-YA1 and NF-YB1, and asymmetric LEAVES LIKE 18/LATERAL ORGAN BOUNDARIES DOMAIN 16 (ASL18/LBD16). NF-Y and ASL18 proteins interact with each other to relay the rhizobia-mediated signal...
which ultimately initiates development of the nodule primordia through activation of cell division in the cortex layer (reviewed in Liu et al., 2018; Soyano et al., 2019).

Most rhizobia enter the root through an infection thread, a host-produced structure that guides it from the root hair to the nodule primordium, while others enter by intercellular penetration (crack entry), for example in peanut (Arachis hypogaea L.). Endodermis and pericycle cells also form part of the developing nodule; however, these are not infected by rhizobia (Xiao et al., 2014). In the nodule, rhizobia differentiate into a bacteroid and fix atmospheric N₂ into ammonia, which is protonated into ammonium and captured in organic forms such as glutamine to be used by the plant for growth and development (reviewed in Poole et al., 2018; Ferguson et al., 2019). Nodules can be indeterminate, having a persistent meristem like those of Medicago species and pea, or determinate, which do not have an active meristem, such as in Lotus japonicus and soybean (Kohlen et al., 2018).

Similarities between nodule and lateral root development

In model legumes, LRs are predominantly derived from pericycle cells in both indeterminate (Herrbach et al., 2014) and determinate nodule-forming species (Held et al., 2014); however, endodermal and cortical divisions can also be observed (Xiao et al., 2014). In contrast, nodule primordia in Medicago truncatula are predominantly founded by the inner cortical cell layers (Xiao et al., 2014). Both organs initiate from their founder cells in response to localized auxin accumulation, and auxin-responsive genes such as the meristem identity genes WUSCHEL RELATED HOMEOBOX 5 (WOX5) and PLETHORA are up-regulated at the initiation site of both LRs and nodules. Furthermore, higher expression of auxin response factors and auxin biosynthesis genes such as YUCCA are also common to both processes (reviewed in Bishopp and Bennett, 2019). However, while LRs emerge from pre-defined founder cells, nodules are formed in response to LCO perception, which initiates cytokinin (CK)-induced gene expression (reviewed in Schiessl et al., 2019). In M. truncatula, CKs, via CYTOKININ RESPONSE 1, promote auxin accumulation in the cortex by increasing the expression of NIN, and are also antagonistic to LR development (Schiessl et al., 2019).

Root nodules are modified LRs, and several of the regulatory steps for LR development and nodule organogenesis are shared (Herrbach et al., 2014; Xiao et al., 2014), with 75% overlap in the gene expression changes induced in LRs and nodules (Schiessl et al., 2019). That explains why ectopic expression of NIN or mutations in its targets affect both nodule and LR development (Soyano et al., 2013, 2019).
ASL18/LBD16 has recently been found to be a key link of nodule evolution from LRIs (Fig. 2). It is involved in LR development, and in *L. japonicus* it has intronic NIN-binding sequences which are conserved in most leguminous ASL18/LBD16 genes but not in non-leguminous orthologues. These sequences are sufficient for NIN-induced ASL18/LBD16 expression in the nodule primordia (Soyano et al., 2019). Like many LR regulatory genes, ASL18/LBD16 is induced by auxin, whereas neither NIN nor NF-YA1/2 is. Thus, LRs and nodules share many mechanistic similarities during their early development, indicating that a major part of the LR regulatory programme has been recruited for nodule development during legume evolution. A major unanswered question is how this developmental machinery is harnessed by and responsive to the hosts’ resource acquisition and allocation strategies, and if and how this coupling has changed in the context of nodulation.

Rhizobia–legume symbioses stimulate growth and enhance plant development

In the presence of compatible rhizobia and in N-limited conditions, entering into symbiosis is usually the most efficient way for legumes to acquire more N. Compared with non-nodulated plants, symbiosis provides a competitive advantage by increasing N levels by up to 5-fold (Solaiman et al., 2011; Wang et al., 2011; Regus et al., 2015; Goh et al., 2016). Rhizobia-dependent N fixation itself is essential for increased plant N levels in N deficit conditions: when two *Lotus* species were inoculated with rhizobial strains with a reduced N2 fixation capacity, this resulted in a lower increase in plant biomass; rhizobia null mutants unable to fix N2 failed to increase plant biomass (Regus et al., 2015; Quides et al., 2017).

Symbiosis requires the host to allocate C to the symbiont, which in some legumes can comprise up to 14% of their total photosynthates (Kaschuk et al., 2009, 2010a), but in low N conditions this allocation is an investment and not a cost: first, under conditions of nutrient, including N, limitation, growth is rapidly uncoupled from photosynthetic C fixation. Declining growth leads to a reduction in sink strength which in turn diminishes the amount of C that growing organs are able to utilize (Fig. 3). Such C sink limitation is caused by the sink organ’s inability to utilize C in adverse environmental conditions (e.g. high temperature or drought) or mineral nutrient deficiencies (e.g. N or P) (Körner, 2015). Secondly, C sink limitation also leads to an accumulation of (unutilized) soluble carbohydrates and starch in source tissues which also negatively impacts photosynthetic C fixation (Paul and Foyer, 2001).

Symbiosis and N2 fixation therefore stimulate growth by improving N nutrition and simultaneously reducing or removing the host’s C sink limitation. As a consequence, active symbioses result in higher photosynthesis and C fixation by feed-forward stimulation as reported for soybean (Fig. 3) (Harris et al., 1985; Zhou et al., 2006; Kaschuk et al., 2010a), *Lotus* (Regus et al., 2015), and *Vicia faba* (Kucey and Paul, 1982). This probably explains the somewhat paradoxical observation that even in cases where leaf N levels are lower than those of control N-fertilized plants, rhizobia-nodulated plants have higher C fixation. For example, Kaschuk et al. (2012) report that symbiosis in soybean increased photosynthesis by up to 31% due to increased sink stimulation and decreased starch and soluble sugar accumulation, which removes carbohydrate inhibition of photosynthesis in source tissues (Azcón-Bieto, 1983; Kaschuk et al., 2009, 2010a). Higher yields in nodulated compared with N-fertilized control plants have also been reported in other legumes (Kaschuk et al., 2010b). Increased C consumption in nodules for N2 fixation in alfalfa and *M. truncatula* (Larrainzar et al., 2014; Gebril et al., 2015; Kaur et al., 2019), and export of fixed-N metabolites to the host in soybean (Collier and Tegeder, 2012; Carter and Tegeder, 2016) enhanced plant biomass, which stimulated N fixation in turn.

Increased C consumption by nodules should only have a positive effect on photosynthesis when adequate N2 levels are fixed to support the higher metabolic demands of the host. Indeed, nodulated common bean, pea, and soybean have higher photosynthetic rates compared with uninoculated plants only at high N2 fixation rates (Bethlenfalvay et al., 1978; Zhou et al., 2006; Bambara and Ndakidemi, 2009). Similar findings are reported in pea plants treated with LCOs compared with untreated controls when grown in soil with native rhizobia, which showed a higher photosynthetic rate and N content due to more abundant nodulation and N2 fixation activity (Podléšny et al., 2014; Siczek et al., 2014).

Interestingly, nodules that fix higher amounts of N2 are also allocated more resources compared with those that fix low quantities, which are penalized by the host in terms of C allocation (Simms et al., 2006; Regus et al., 2015; Westhoek et al., 2017). The most productive symbioses have high sink strength nodules which also allocate high amounts of organic N to the host, thereby creating a strong, positive feedback on plant growth under N-limiting conditions (Kaschuk et al., 2010a; Quides et al., 2017). This explains why in many symbioses, nodule biomass is proportional to the N2-fixing capacity of the rhizobia (Pampana et al., 2016; Quides et al., 2017).

N availability per se impacts resource allocation to roots

Due to the interdependency of N and photosynthesis, plant N levels are a major factor regulating resource partitioning between shoots and roots in many species (Schortemeyer et al., 1999; Goh et al., 2019). When shoot N availability is limiting, a higher proportion of the plant’s total C will be invested in the root system to underpin foraging and N acquisition to satisfy the shoot’s requirements (Fig. 3). Conversely, when shoot N levels are high, C flux to the roots is proportionally, but not absolutely, decreased. Such modifications to root N allocation are reported in many legumes in response to nodulation such as in several *Medicago* species (Goh et al., 2016), *Acacia melanoxylon* (Schortemeyer et al., 1999), and soybean (Wang et al., 2011), but also in non-legumes such as tobacco (Scheible et al., 1997) and *Arabidopsis* (Yan et al., 2019) due to higher available N.

Taken together, this is strong evidence that active symbioses can stimulate growth and photosynthesis by multiple mechanisms (Fig. 3); symbioses not only directly enhance host N availability, but also stimulate C fixation via relief from feed-back restrictions on photosynthesis. In rhizobia–legume symbiosis, relief from N and C limitation is co-dependent.
We posit that actively N-fixing symbioses are likely to modify host root systems by modulation of sink strength and resource fluxes, which affects shoot–root resource allocation. Such changes are likely also to affect host plant growth regulator (e.g. auxin) signalling, because enhanced sucrose transport to sink organs via phloem augments the amount of auxin transported by this route (Petrášek and Friml, 2009). A major and largely unanswered question is whether this modification of host root systems is global or, alternatively, leads to changes in its distribution in the pedosphere; that is, changes to RSA.

Effects of rhizobia symbiosis on legume root system architecture

Active symbioses provide a continuous N supply, decreasing host requirements for N foraging. Consequently, if N is no longer the most limiting resource, host resource partitioning and acquisition are predicted to be correspondingly altered to prioritize the assimilation of other, now more limiting, soil resources such as P. To maximize the host's return on its overall below-ground investment, it would need to modify its foraging strategy, and hence root development, to efficiently use root-allocated resources to absorb these more limiting resources (reviewed in Kaschuk et al., 2010a; Goh et al., 2016; Ferguson et al., 2019). Consistent with this, rhizobial symbiosis increases root depth in common bean (Sofi et al., 2017), which reflects a higher demand for water, and increases growth angle on field-grown soybean, indicating a higher exploitation of the topsoil (Yang et al., 2017), a common RSA response to increase immobile P absorption (Williamson et al., 2001; Péret et al., 2011).

Unfortunately, our current state of understanding of how rhizobia modify legume RSA lacks breadth and detail due to several historical, technical, and conceptual limitations. First, in many experiments, the root system is not studied in detail or not at all (Mishra et al., 2011; Ndakidemi et al., 2011; Quides et al., 2017). Secondly, many experimental growth systems are not explicitly designed to study RSA: for example, root systems in soil-grown plants cultivated in pots or long tubes lose their in situ RSA once they are removed for imaging or analysis (Wang et al., 2011; Ravikumar, 2012; Yang et al., 2017). Thirdly, there is a lack of awareness or use of RSA-specific parameters, which describe and quantify the root system within the soil for analyses (Burridge et al., 2016, 2017). Since few data of possible RSA changes in active rhizobia–legume symbioses are available, we will review the effect of symbioses on host nutrition, growth, and nutrient signalling, C acquisition and flux, and root development to then consider their possible impact on root architecture.

Impacts of rhizobia–legume symbioses on host root development

Modification of legume root traits by rhizobia

Multiple studies have shown that many rhizobia–legume symbioses modify root traits, irrespective of host or symbiont
Table 1. Effect of different rhizobia on shoot and root system modifications, and N content in different legumes

Host Species	Varieties	Symbiont Species	Strains	Growth medium	Shoot trait	Root trait	N changes	Comment	Reference
Phaseolus vulgaris	4	R. leguminosarum	2	Inert	Weight	Weight	Yes	Higher root weight in 1–2 varieties with 1–2 strains. In one variety both strains increased shoot and root mass	Franzini et al. (2010)
1	Rhizobium spp. and R. tropici	7	Soil mix	Weight	Weight, length	Yes	Karaca and Uyanöz (2012)		
6	R. phaseoli	1	Soil mix	Weight	Weight, depth	NR	Higher weight/depth in 5–6 varieties. Higher shoot and root biomass in 4 varieties	Sofi et al. (2017)	
1	R. phaseoli	1	Soil	Weight	Weight, length	Yes	No changes in root length	Stajković et al. (2011)	
Glycine max	2	Bradyrhizobium spp.	1	Soil	Weight	Weight, length	Yes	Small increases in root traits. Higher shoot and root mass in one variety, lower shoot/root ratio with nodulation	Wang et al. (2011)
>10	Rhizobium spp. and R. tropici	1	Soil	Weight	Weight, length, area	NR	Field experiment	Yang et al. (2017)	
1	B. japonicum	1	Hydroponic	No	Length, area	No	Egamberdieva et al. (2017)		
1	Bradyrhizobium spp.	1	Hydroponic	NR	Length	NR	Inferred higher root length	Li et al. (2015)	
Vigna unguiculata	1	Rhizobium spp. and R. tropici	1	Soil mix	Weight	Weight, length	NR	Arumugam et al. (2010)	
Vigna mungo	1	Rhizobium spp. and R. tropici	1	Soil	Height	Length	Yes	Ravikumar (2012)	
1	R. japonicum	1	Soil	Height, leaf and branch number	Number	NR	Ravikumar (2012)		
Vigna radiata	1	R. japonicum	1	Soil	Height, leaf and branch number	Number	NR	Ravikumar (2012)	
Cicer aritinum	1	Rhizobium spp. and R. tropici	10	Soil	Weight	Weight, length	NR	Higher root development with 3 strains in greenhouse, no changes in field with those 3	Khaitov et al. (2016)
1	M. ciceri	1	Soil	Weight	Weight, length	Yes	Moradi et al. (2013)		
1	Rhizobium spp. and R. tropici	4	Soil	Weight	Weight, length	Yes	Higher length with 3 strains, weight with 2 strains. Higher shoot weight and root length in 2 strains	Solaiman et al. (2011)	
Lens culinaris	1	R. leguminosarum	1	Soil	Weight	Weight, length	Yes	Mishra et al. (2011)	
Arachis hypogaea	1	Rhizobium spp. and R. tropici	6	Soil	Height	Length	NR	Shrama et al. (2011)	
Vicia faba	1	Rhizobium spp. and R. tropici	9	Two soils	Weight	Length	NR	Argaw (2012)	
Medicago truncatula	3	S. melloti and S. medicae	2	Hydroponic	Weight	Weight, length	Yes	Kallala et al. (2018)	
Pisum sativum	>10	R. leguminosarum bv. viciae	1	Hydroponic / inert	NR	NR	NR	Positive relationship between nodule establishment and root system growth	Bourion et al. (2010)
species (Table 1). The general conclusion from these studies is that rhizobia–legume symbioses positively regulate various aspects of root development. The key question becomes: are these changes to root development more likely to be isometric (i.e. a linear, proportional increase of RSA trait values) or allometric (i.e. changes to scale and relative proportions of RSA parameters)? Although measurements of RSA parameters are generally missing, it is likely that these vary specifically in the course of symbioses. Due to the changing identity of the most limiting nutrient resulting from the provision of fixed N, and the resultant changes to C and N resource allocation, changes to RSA parameters will reflect altered priorities in resource acquisition and therefore are likely to be allometric rather than isometric.

Rhizobia-modified legume root development is conditional on the host and environment

It is important to note that not every study of rhizobia–legume symbioses revealed modified root traits compared with uninoculated plants. In peanut (*Arachis hypogaea* L.), treatment with several rhizobial strains failed to increase root length (Singh et al., 2010; Argaw, 2012; Kallala et al., 2018). In an experiment with shallow- and deep-rooted soybean genotypes, rhizobia inoculation increased root dry mass only for the deep-rooted variety under two contrasting P scenarios, but not in the shallow-rooting variety under both P conditions (Wang et al., 2011). Khaitov et al. (2016) analysed several rhizobia–chickpea symbioses grown in saline soil in greenhouse conditions: three strains resulted in higher root mass and length but, when tested in the field, no differences in root length were found. These reports exemplify that rhizobia–legume symbioses, while generally positively impacting, for example, root mass, length, and/or area, also depend on the specific symbiosis (plant variety and rhizobial strain) and soil environment.

Rhizobia-mediated higher plant N levels impact resource partitioning

In most nodulated legumes with active symbioses, shoot biomass is higher resulting from the co-dependent stimulation of photosynthesis and N fixation (Harris et al., 1985; Kaschuk et al., 2012). Numerous examples suggest that the larger shoot stimulates root development to allow for exploitation of more soil resources to satisfy its higher requirements. Changes in root mass, length, and area would thus reflect a more intensive exploration/exploitation of the soil to provide said resources for increased shoot growth enabled by relief from sink limitation and higher C fixation (Table 1).

The impact of symbioses on source–sink relationships and on shoot and root growth is contingent on the symbiosis delivering substantially improved N nutrition to the host (Table 1). Goh et al. (2016) report for *Medicago sativa*, *M. truncatula*, and *Trifolium subterraneum* that higher N levels are significantly and positively correlated with higher total root length and total first-order LR length. For nodulated chickpea, only strains that resulted in the largest increase of shoot N levels led to increases in root length and mass (Solaiman et al., 2011). As a corollary, in adequate soil N levels or with rhizobial strains that fix low amounts of N₂, symbiosis would contribute little or nothing to host nutrition, hence not leading to increases of shoot biomass or to changes to root traits (Franzini et al., 2010; Singh et al., 2011; Argaw, 2012; Kallala et al., 2018).

Interestingly, Goh et al. (2016) also report that reductions to C flux to the roots were observed independent of

Table 1. Continued

Host Species	Varieties	Symbiont Species	Growth medium	Shoot trait N changes	Comment	Reference		
Lotus japonicus	1	*M. loti*	Inert	Weight	NR	NR	Rhizobia increases shoot mass by 6- and 17-fold in growth chambers and greenhouse, respectively. Changes in root traits inferred.	Goh et al. (2016)
Lotus strigosus	1	*Bradyhizobium spp.*	Inert	Weight	NR	Yes	3 strains increased shoot mass by 2- to 6-fold, and N by up to 5-fold. Changes in root traits inferred.	Regus et al. (2015)
Medicago truncatula,	1	*S. meliloti*	Inert	Weight, length	Yes		Stimulated root growth is both observed and inferred.	Goh et al. (2016)
Medicago sativa	1	*S. meliloti*	Inert	Weight	Weight	Yes	Stimulated root growth is both observed and inferred.	Goh et al. (2016)
Trifolium subterraneum	1	*R. leguminosarum* bv. *trifoli*	Inert	Weight, length	Yes		Stimulated root growth is both observed and inferred.	Goh et al. (2016)
Vicia faba	1	*R. leguminosarum*	Field	Height, branch number	Yes		Higher branch number, but decreased height. No changes in root length	Desta et al. (2015)

NR, not reported.
the rhizobium strain’s ability to fix N₂; possibly explained by changes to host plant growth regulator homeostasis. For the *T. subterranee–Rhizobium leguminosarum* bv. *trifoli* interaction, altered plant growth regulator distribution or levels may explain how symbiosis modified the proportion of root-allocated resources targeted to PR or LR development, respectively (Goh et al., 2016). However, more evidence is needed to be confident that this is a widespread mechanism, but this report suggests that rhizobia can potentially also sculpt source–sink relationships by altering host growth regulator distribution.

Rhizobia-dependent N activates plant N utilization and signalling pathways

In non-legume species such as rice (*Oryza sativa*) and Arabidopsis, nitrate and ammonium activate N utilization and signalling pathways, for example by expression of nitrate-responsive genes (reviewed in Fukushima and Kusano, 2014; Krapp et al., 2014; Medici and Krook, 2014). A key observation from molecular studies of nitrate-responsive gene expression is the co-regulation of N-, C-, and hormone-responsive pathways, leading to an overall higher steady-state level of metabolism, which also affects root development (reviewed in Hu et al., 2019; Medici et al., 2019; Hu and Chu, 2020). In rice, glutamine is the signal required for nitrate- and ammonium-dependent activation of cytokinin-dependent shoot growth (Kamada-Nobusada et al., 2013). These observations suggest that N fixation products in legumes, possibly glutamine, probably modify N, C, and growth regulator signalling pathways, leading to changes in root development.

Taken together, active symbioses lead to enhanced levels of plant metabolism and growth by a combination of several mechanisms: N₂ fixation relieves sink and source tissue-level limits on photosynthesis and growth, resulting in co-stimulation of N and C metabolism. Augmented steady-state metabolism increases shoot and root growth capacity. However, growth stimulation of roots and shoots is unlikely to be uniform and proportional: in most circumstances, other resources (e.g. water, P, or Fe) will rapidly limit growth. Consequently, root foraging for limiting resources is predicted to alter root growth patterns and timing (RSA) by modifying resource partitioning, including by changing plant growth regulator homeostasis (Fig. 3). While much evidence has reported that shoot and root mass and/or length are affected by active symbioses, it remains an open question how active symbioses change RSA.

Rhizobia broadly benefit host non-N resource acquisition and metabolism

Rhizobial symbiosis impacts multiple aspects of legume nutrition and development

Successful symbioses stimulate both host and symbiont metabolism and signalling, resulting in elevated demands on metabolic capacity to underpin enhanced growth. Therefore, when focusing on their metabolism and resource allocation, it is useful to consider both organisms together, as an assemblage of organisms or holobiont; for example, N fixation biochemistry requires elevated levels of Fe and P, and the enhanced metabolism enabled by provision of reduced N to the holobiont increases Fe and P requirements. Therefore, it would be selectively advantageous for rhizobia if they did not fix only N, but would also directly contribute to non-N nutrient acquisition. It is not surprising then that there are many examples where rhizobia are involved in non-N nutrient acquisition for the host (Table 2); and that many also produce plant growth regulators, which can contribute to modifying resource allocation (Abril et al., 2007; Vargas et al., 2009; Qin et al., 2011). Taken together, this multitude of mechanisms involved in the legume–rhizobia symbiosis indicate a much greater contribution by rhizobia to host resource acquisition and partitioning than often recognized (Kaschuk et al., 2010a; Ndakidemi et al., 2011; Goh et al., 2016). The multiple benefits to the plant by the rhizobia has led to the suggestion that the temporary rhizobia–host symbiosis is evolving towards a novel N-fixing organelle (Coba de la Pena et al., 2017).

However, while little is understood about how the legume–rhizobia symbiosis affects host roots, even less is understood about how the various distinct contributions of rhizobia to host metabolism, signalling, and nutrient acquisition sculpt host RSA, which remains an important open question.

Rhizobia can benefit their host by enhancing assimilation of P and Fe

Many rhizobia can acidify the rhizosphere to stimulate P and Fe solubilization, and/or produce high-affinity siderophores for Fe³⁺ (Table 2) (Duhan et al., 1998; reviewed in Qin et al., 2011; Jin et al., 2014). As these nutrients become more accessible to roots, they contribute to improved host growth (Orozco-Mosqueda et al., 2013; Geetha and Joshi, 2013; Imen et al., 2015). Thus, rhizobia with these traits have a greater impact on legume growth than those lacking them (Table 2) (Abril et al., 2007; Franzini et al., 2010). The advantages to the host in such symbioses were multiplied if amendments were provided to the crop (Table 2) (Peix et al., 2001; Qin et al., 2011). The beneficial effects of rhizobia on P and Fe acquisition and assimilation may be particularly pronounced in calcareous soils with high pH (Table 2) (Abbaszadeh-dahaj et al., 2012; Soumaya et al., 2016). In an interesting report, rhizobia increased P content in a soybean variety with a root system inefficient for P uptake (deep rooted) under low P conditions, but no changes were observed in a P-efficient system (shallow rooted) (Wang et al., 2011), showing that effects on RSA can be conditional on host genotype. Hence, specific rhizobial strains can significantly contribute to P nutrition in many species or varieties in different environmental conditions, especially when their root systems are not optimal for P acquisition.

Furthermore, several rhizobial strains, including some that increase P content, can also increase the uptake of Fe in hosts such as common bean, chickpea, and cowpea under different environmental conditions (Table 2) (Peix et al., 2001; Ndakidemi et al., 2011; Nyoki and Ndakidemi, 2014). The capacity to enhance Fe uptake is tightly correlated with the level and type of siderophore produced by the rhizobia (Table 2) (Duhan et al., 1998; Duhan, 2013). The beneficial effect of enhanced
Fe uptake mediated by microbes associated with the host is not restricted to legumes: in non-legume species such as *Zea mays* L., *Pseudomonas* strains able to produce siderophores can also increase Fe content and remove signs of chlorosis (Sharma and Johri, 2003; Singh et al., 2017).

N\textsubscript{2} fixation itself benefits from rhizobia-mediated stimulation of P and Fe uptake; for example, Fe is required in high quantities for the N\textsubscript{2}-fixing enzyme nitrogenase and other symbiotic proteins (reviewed in Burton et al., 1998; O’Hara, 2001). Therefore, under Fe or P deficit, rhizobia that increase Fe and/or P levels fix more N\textsubscript{2} than strains that do not, as reported for pigeon pea (Duhan et al., 1998; Duhan, 2013) and chickpea (Singh et al., 2014). Nodulation per se also increases Fe absorption: both N\textsubscript{2}-fixing and non-fixing rhizobia, as well as their siderophores, stimulate the uptake and transport of Fe to the shoot, with nodulation also enhancing root Fe-reductase activity (Derylo and Skorupska, 1992; reviewed in Jin et al., 2014). Thus, nodulation by some rhizobia strains contributes to plant P and Fe acquisition in a host-dependent manner, and is likely to have a major impact on host growth and metabolic capacity in conditions where these nutrients are limiting.

Table 2. Effect of rhizobia on P and Fe content in different legumes

Host Species	Varieties	Symbiont Species	Strains	Growth medium	Higher P	Higher Fe	Comment	Reference
Phaseolus vulgaris	1	*R. leguminosarum*	1	Inert	Yes	NR	Higher P content compared with reference strain	Abril et al. (2007)
Phaseolus vulgaris	4	*R. leguminosarum*	2	Inert	Yes	NR	One rhizobia strain increased P content in one bean variety	Franzini et al. (2010)
Glycine max	1	*B. elkanii*	1	Inert	Yes	NR	Higher P content under two N scenarios when fed different insoluble forms of P	Qin et al. (2011)
Cicer aritenium	1	*Rhizobium* spp.	29	Soil	Yes	NR	23 rhizobial strains increased P content. Additional experiments achieved similar results.	Imen et al. (2015)
Cicer aritenium	1	*M. mediterraneum,* *M. tianshanense,* and *M. ciceri*	4	Inert	Yes	NR	Higher P content with one *Mesorhizobium* strain	Rivas et al. (2006)
Cicer aritenium	1	*M. mediterraneum*	1	Soil	Yes	NR	Higher P content at two different levels of P	Peix et al. (2001)
Phaseolus vulgaris	6	*Rhizobium* spp.	47	Inert	Yes	Yes	Many rhizobial strains that increase shoot mass in several bean varieties can solubilize P and produce siderophores	Abbaszadeh-dahaji et al. (2012)
Hedydarium coronarium	1	*Rhizobium* spp.	1	Soil	Yes	Yes	Increase in P content in a P-inefficient variety under several nutritional scenarios	Soumaya et al. (2016)
Glycine max	2	*Bradyrhizobium* spp.	1	Soil	Yes	NR		
Vigna mungo	1	*Rhizobium* spp. and *R. tropici*	1	Soil	Yes	NR		
Phaseolus vulgaris L.	1	*R. leguminosarum*	1	Soil/field	NR	Yes	Higher Fe levels under both field and glasshouse conditions	Ndakidemi et al. (2011)
Vigna unguiculata	1	*B. japonicum*	1	Soil/field	NR	Yes	Higher Fe levels under both field and glasshouse conditions	Nyoki and Ndakidemi (2014)
Cajanus cajan	1	*Rhizobium* spp. and *Bradyrhizobium* spp.	20	Inert	NR	Yes	Rhizobia capacity to produce siderophore shows a high correlation with plant Fe content	Duhan et al. (1998)
Cajanus cajan	1	*Rhizobium* spp.	25	Hydroponic	NR	Yes	High correlation between shoot Fe content and rhizobia siderophore production	Duhan (2013)
Lens culinaris	1	*R. leguminosarum*	1	Soil	NR	Yes	High correlation between shoot Fe content and rhizobia siderophore production	Mishra et al. (2011)
Phaseolus vulgaris	1	*R. leguminosarum*	1	Soil/field	Yes	NR	Higher shoot P content under field and glasshouse growth conditions, higher root P under greenhouse growth conditions	Makoi et al. (2013)

NR, not reported.
Rhizobia-enhanced N metabolism can modify host nutrient signalling pathways

Higher N availability due to a successful symbiosis is likely also to alter host signalling pathways (Fig. 3): in several non-legumes, NO₃⁻ induces the degradation of the host phosphate- and nitrate-responsive signalling repressor SPX4 (reviewed in Hu et al., 2019; Medici et al., 2019). SPX4 co-ordinates utilization of both macronutrients and plant growth, and hence any imbalance in the host will lead to enhanced acquisition of the limiting nutrient. In legumes, high NO₃⁻ availability may directly stimulate P acquisition through a similar mechanism to that seen in rice (Kamada-Nobusada et al., 2013). This function of SPX4 could plausibly explain the higher P levels observed in many nodulated legumes (e.g. resulting from increased P solubilization activity by the roots in N-sufficient plants) (Qin et al., 2011). Stimulation of metabolism and growth based on enhanced resource availability provides the basis for modified root system development (Kan et al., 2015), for example to promote root growth in the relatively P-rich topsoil layer, in addition to the effect of rhizobia on soil P solubilization.

Enhanced availability of limiting P and Fe (Table 2) enables elevated host metabolism, photosynthetic activity, and plant growth, as has been reported for alfalfa and Lotus for active symbioses (Li et al., 2013; Regus et al., 2015; Quides et al., 2017). However, these contributions by rhizobia that overcome limiting non-N-nutrient levels in the host are likely to be limited to symbioses that fix high amounts of N₂ (Belane et al., 2014).

Enhanced assimilation of non-N nutrients mediated by rhizobia affects root traits

Higher non-N nutrient absorption during interactions with rhizobia has been related to changes in root traits: in chickpea inoculated with a strain that solubilizes phosphate and produces siderophores, a higher root length was observed, and this effect was more pronounced when supplied with either insoluble or soluble phosphate (Singh et al., 2014). In Phacelus vulgaris grown in low P soils, treatment with several P-solubilizing rhizobia increased root dry weight (Korir et al., 2017). In two alfalfa varieties grown with insoluble Ca₃PO₄, rhizobia enhance root length compared with plants treated with a nutrient solution, with or without N and P (Li et al., 2013). In pigeon pea, rhizobia that synthesize high levels of siderophores have increased root weight compared with strains that produce low levels and with non-inoculated plants (Duhan et al., 1998; Duhan, 2013). Finally, inoculation of peanut and pigeon pea with rhizobia expressing siderophore receptor genes in autoclaved and non-autoclaved soil resulted in increased root mass compared with their non-transformed parental lines in both soils (Arif et al., 2012). These findings suggest that higher non-N nutrient absorption due to rhizobia could have a much more important impact on overall host resource acquisition and partitioning than previously considered, particularly since most studies do not report root traits in detail.

In conclusion, many rhizobia increase P and Fe levels in legume species. A positive impact on plant nutrition and growth, and, in some instances, modification of root traits associated with high P and Fe content, have been observed. We propose that these modifications to the root systems will result from either a reduced need to forage for these nutrients or from more intensive exploration/exploitation if they result from higher host resource demands due to increased metabolism, which may lead to a different RSA. For example, if P is limiting, a rhizobium strain with low capacity to solubilize it will result in a increased exploitation of the topsoil, as seen in the non-legume Arabidopsis (Williamson et al., 2001; Péret et al., 2011), while a strain that solubilizes P will not lead to this change in RSA, since it already makes far more P available to the roots.

Rhizobia effects on plant growth regulator homeostasis modulate root development and resource acquisition

Rhizobia modulate plant growth regulator homeostasis

The symbiont and the host wrestle over their share of the resources available to the holobiont. As part of their arsenal, rhizobia have also evolved mechanisms to modulate host growth regulator homeostasis and signalling, thereby affecting its growth, development, and resource allocation. The best studied of these mechanisms are auxin and LCO biosynthesis, and ethylene signalling. Auxin is implicated in many aspects of plants, and specifically root development, nodulation and nodule development, N-mediated control of RSA, and nutrient acquisition (Pacios-Bras et al., 2003; Liu et al., 2018; Lagunas et al., 2019; reviewed in Sun et al., 2017). Ethylene negatively affects root development and nodulation (reviewed in Okazaki et al., 2004; Saleem et al., 2007). LCOs modulate auxin levels which can stimulate LR formation in legumes (Pacios-Bras et al., 2003), and in the non-legume Brachypodium distachyon (Buendia et al., 2019) (Fig. 1).

Importance of auxin-synthesizing rhizobia for root development

Many rhizobia produce the common auxin indole-3-acetic acid (IAA); in some cases, >90% of the strains that nodulate single host species produce it (Antoun et al., 1998; Vargas et al., 2009; Abbaszadeh-dahaji et al., 2012). In Vigna mungo and Melilotus alba, mature nodules have much higher IAA levels and decreased amounts of its catabolic enzymes than bulk roots; it has been suggested that this IAA might be transported to other tissues to modulate their functions and therefore impact C partitioning within the plant (Datta and Basu, 1998; Ghosh and Basu, 2006) (Fig. 1).

Inoculation of several mung bean (Vigna radiata) varieties with symbionts that produce high IAA levels in vitro increases root length and mass (Anjum et al., 2011). In M. truncatula and alfalfa, a high IAA-producing strain increased the length of the PR and resulted in higher LR development compared
with the control, which itself positively correlated with increased nodule number (Pii et al., 2007). Inoculation with an IAA-overproducing strain leads to a higher production of LRs and a more developed M. truncatula and chickpea root system (Bianco and Defez, 2010; Bianco et al., 2014; Singh et al., 2014). The highest increase in shoot dry mass in nodulated P. vulgaris varieties is observed after inoculation with IAA-producing rhizobia; they might also stimulate bulk root development (Abbaszadeh-dahaji et al., 2012). Finally, in soybean, both auxin and nodule increase the expression of miR167c, which positively regulates both nodule and LR number and length (Wang et al., 2015).

However, rhizobia may also directly affect host auxin homeostasis: in non-legume species, root colonization (not nodulation) by rhizobia modifies root auxin signalling which also results in changes to RSA. In Arabidopsis, colonization by rhizobia leads to inhibition of PR growth and a 2-fold enhancement in the number of LRs, primarily through altering auxin signalling (Zhao et al., 2017). The same rhizobial strain has also been shown to increase IAA levels in rice roots, but their root system was not further analysed (Biswas et al., 2000).

Auxin effects on nutrient acquisition

Auxin is strongly associated with control of host metabolism and growth; therefore, it is not surprising that rhizobia-derived IAA is correlated with higher nutrient acquisition in symbioses. A high IAA-producing rhizobial strain, and roots of M. truncatula plants nodulated with it, secrete higher amounts of organic acids compared with its low IAA-producing progenitor strain, resulting in higher P solubilization and therefore absorption (Bianco and Defez, 2010). This strain, and other IAA-overproducing strains, also have increased nitrogenase expression (Imperlini et al., 2009; Bianco et al., 2014), which was highly correlated with increased shoot weight (Bianco et al., 2014). In Vicia hirsuta, inoculation with a strain that produces high IAA levels in nodules results in a 2-fold increase in N2 fixation, probably also due to higher nodule mass (Camerini et al., 2008). Similar findings were reported by Kaneshiro and Kwok (1985) where inoculation of soybean plants with a high IAA-producing mutant resulted in enhanced N2 fixation compared with its parent strain. Finally, auxin also regulates plant responses to Fe deficiency, and microbial auxins enhance its absorption in legumes under low Fe conditions (reviewed in Jin et al., 2014).

Rhizobia can interfere with host ethylene synthesis and signalling to modulate nodule development

In many legume species, ethylene levels quickly increase in response to compatible LCO detection and repress nodule development; mutations in ethylene signalling pathways result in hyperinfected and hypernodulating plants (reviewed in Buhian and Bensmihen, 2018; Reid et al., 2018).

Rhizobia can decrease ethylene levels through two mechanisms: first, the production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase which metabolizes the ethylene precursor ACC (reviewed in Ahemad and Kibret, 2014), and, secondly, the synthesis of rhizobitoxine, which inhibits two enzymes required for ethylene biosynthesis upstream of ACC (Duodu et al., 1999; Yasuta et al., 1999; Yuhashi et al., 2000). Loss–of–function mutations of symbiotic ACC deaminase or its decreased expression reduce nodule, nodule development, and shoot biomass (Ma et al., 2003; Uchiumi et al., 2004). Furthermore, loss–of–function mutants in rhizobitoxine synthesis also have more aborted and fewer mature nodules (Duodu et al., 1999; Yasuta et al., 1999; Yuhashi et al., 2000). The addition of an ACC deaminase gene to rhizobial species that do not have it or have low activity of this enzyme greatly enhances their ACC deaminase activity (Ma et al., 2004; Tittabutr et al., 2008). These strains result in higher nodule number and shoot dry mass in alfalfa, and have improved competitiveness compared with their wild-type progenitors (Ma et al., 2004), as well as nodule number and size and root mass in Leucaena leucocephala (Tittabutr et al., 2008).

Thus, the competition between host and symbiont in controlling ethylene homeostasis at an early stage of the interaction is essential for an optimal symbiosis, and therefore for adequate resource allocation (Ma et al., 2003).

The observation of ACC deaminase activity only in differentiated rhizobia and not in free-living ones further supports this notion (Uchiumi et al., 2004). Furthermore, rhizobia that can modulate ethylene production can decrease its levels in roots of older plants when compared with controls (Yuhashi et al., 2000), raising the possibility that this is another mechanism by which rhizobia could modulate the root system. However, there are also reports where the loss of ACC deaminase does not affect nodulation or nodule development (Murset et al., 2012), suggesting that the sensitivity of the symbiosis to ethylene depends on the plant species.

Although regulation of host ethylene synthesis or signalling by rhizobia is essential for an optimal symbiosis, there is only limited evidence of how this can impact root development: only Tittabutr et al. (2008) report increased root mass in L. leucocephala when inoculated with rhizobia with high ACC deaminase activity. In contrast, most studies that report legume root traits use co-inoculation of rhizobia with other bacteria that can decrease ethylene production. In lentils, co-inoculation with R. leguminosarum and any of two ACC deaminase-producing Pseudomonas strains increased both root length and biomass in two different nutritional conditions (Iqbal et al., 2012). Also in this species, inoculation with either a putative Bacillus or Pseudomonas strain with high ACC deaminase activity increased root weight in seedlings (Saini and Khanna, 2013). Co-inoculating common bean with R. tropici and with a transformed endophyte, Serratia grimesii, expressing high levels of ACC deaminase, increases both root and shoot weight as well as nodule number, when compared with co-inoculation with a wild-type S. grimesii, which does not encode an endogenous ACC deaminase (Tavares et al., 2018).

Thus, rhizobia that possess such mechanisms to decrease ethylene synthesis can enhance the strength of the symbiosis, which is likely to stimulate its impact on legume root development and RSA (reviewed in Okazaki et al., 2004; Tittabutr et al., 2008).
Regulation of auxin and root development by LCOs

Through production of LCOs, rhizobia can enhance localized IAA content that stimulates LR formation in legumes (Olah et al., 2005; Herrbach et al., 2017) and non-legumes (Buendia et al., 2019). In soybean, LCO application also results in an increase in total root length and LR formation (Souleimanov et al., 2002). A higher allocation of shoot resources to the roots has been linked in *M. truncatula* to nodule initiation, which depends mostly on LCO detection (Goh et al., 2016). This may also be due to the high sink strength of the nodules, which in *M. truncatula* is higher than that of both leaves and roots (Jeudy et al., 2010). Finally, higher root biomass is reported at several developmental stages in pea after seeds were treated with LCOs, though this may also be due to increased shoot N and photosynthesis from more intense nodulation (Podlešný et al., 2014).

Rhizobia modulate holobiont metabolism, growth, and resource acquisition

The capacity of rhizobia to modulate host growth signalling pathways and nutrient acquisition by interfering with, for example, ethylene biosynthesis, changing IAA levels, and producing LCO, raises the possibility that a significant fraction of the effects of active symbioses on the host root system may be caused by these mechanisms rather than by N2 fixation itself. Such mechanisms would also result in strong reinforcement of the resource-based effects of symbioses due to the stimulation of host metabolism, which itself enhances nutrient acquisition. Thus, rhizobia probably influence plant C partitioning by increasing C allocation to roots through modifications in auxin and ethylene signalling, resulting in a modified RSA.

Molecular regulators of rhizobia-mediated modified legume RSA

There is significant conservation of resource-cued signalling mechanisms in LRs and nodule formation (Goh et al., 2016; Lagunas et al., 2019; Schiessl et al., 2019): plant growth regulators, metabolites that function both in signalling and metabolism, and mobile peptide signals and their cognate receptors are involved in both processes (Bensmihen, 2015). In this section, we discuss the role of these signalling mechanisms in nodulation and host root development, with a view to highlighting potential targets of host resource partitioning mechanisms.

Autoregulation of nodulation

In legumes, two shoot-expressed receptors independently and antagonistically regulate nodulation systemically by perceiving mobile signalling peptides produced in the root contingent on soil N availability and infection status (reviewed in Ferguson et al., 2010; Laffont et al., 2019; Nowak et al., 2019). In the autoregulation of nodulation (AON) pathway, SUPER NUMERIC NODULES (SUNN) in *M. truncatula* or its *L. japonicus* orthologue HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) inhibit nodulation by detecting CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides, while the likely receptor of C-TERMINALLY ENCODED PEPTIDE (CEP) peptides, the leucine-rich repeat receptor-like kinase (LRR-RLK) COMPACT ROOT ARCHITECTURE2 (CRA2), stimulates nodulation. Furthermore, in *L. japonicus*, HAR1 modulates nodulation by inhibiting shoot–root mobilization of

\[\text{miR2111} \]

that represses the nodulation suppressor TOO MUCH LOVE (TML), and by enhancing CK synthesis through activation of ISOPENTENYL TRANSFERASE 3 (IPT3) and translocation to roots to suppress further nodulation events through their receptor LOTUS HISTIDINE KINASE1 (LHK1) (Tsikou et al., 2018). LHK1 also mediates TML responses in the root cortex (Miri et al., 2019). These pathways allow the plant to regulate resource investment into nodule production, and hence are also likely targets of resource partitioning mechanisms (Ito et al., 2007; Murray et al., 2017; Goh et al., 2019). A conceptual model that combines the known regulatory pathways of two legume models (*M. truncatula* and *L. japonicus*) is shown in Fig. 2.

AON components participate in N response and root development

CLE and CEP peptides have additional roles in regulating LR development, with different local and systemic effects depending on local soil N conditions (Fig. 2) (Araya et al., 2016; Sun et al., 2017; Taleski et al., 2018). A functional AON pathway is also required for roots to perceive, take up, and mobilize N as well as for normal root development (Schnabel et al., 2005; Lagunas et al., 2019). Goh et al. (2019) show that *M. truncatula* mutants with loss-of-function alleles of genes involved in regulation of nodulation, such as *sunn*, ROOT DETERMINED NODULATION 1 (*rdn1*), and LIKE SUNN SUPERNODULATOR (*ls*), also have altered biomass allocation, LR length, and density, similar to what Schnabel et al. (2005) have shown for *sunn* mutants. This is observed independently of nodulation, which exacerbates these differences due to increased resource competition between roots and nodules. Finally, in *L. japonicus*, the ROOT DETERMINED NODULATION 1 (RD1) orthologue PLENTY and HAR1 regulate PR length, LR number, and development under both nodulated and uninoculated conditions (Yoro et al., 2019). This reveals a role for the CLE- and CEP-dependent pathway and the AON pathways in the control of C allocation in underground organs (roots and nodules) to acquire nutrients, primarily N (Fig. 2).

Some of these genes evolved in legumes from those required for N status-cued growth regulation, which would explain why they were co-opted into processes related to N acquisition (root development and nodulation). A further example is NIN, whose paralogues are NIN-like proteins that mediate nitrate responses in many plant species (Konishi and Yanagisawa, 2013; Suzuki et al., 2013). Another example is the CEP Receptor 1, which directly binds the AtCEP1 peptide to regulate N demand signalling, and is the LRR–RLK most closely related to CRA2 in Arabidopsis (Laffont et al., 2019).
Finally, in Arabidopsis, CLE/CEP peptides and their receptors and downstream components have been characterized as important for LR development in response to N (reviewed in Sun et al., 2017; Liu et al., 2020), which suggests that in legumes some of these genes might regulate root development in response to nodulation. Thus, these genes participate in both root system development and nodulation, making it likely that rhizobia will impact root development, to some degree, through these mechanisms.

Rhizobia-mediated higher shoot nitrogen affects hormone translocation to roots

The effects of rhizobia on root development can also be attributed to higher shoot N levels in nodulated plants, leading to increased shoot–root auxin transport which intensifies LR development (van Noorden et al., 2006; Jin et al., 2012). In M. truncatula, this transport is essential to balance C allocation between shoot and roots in response to variable N availability: balancing C allocation for shoot and roots maintains growth homeostasis and depends on the AON gene SUNN (Jin et al., 2012; Goh et al., 2016). Higher leaf sucrose levels, both from increased photosynthesis and from elevated C sink strength from the nodules, also have the potential to alter RSA by stimulating auxin synthesis and transport to the roots (Sairanen et al., 2012; Liu et al., 2015).

Nitrate-starved shoots transport CKs to the root where they positively regulate LR development to acquire N (Ruffel et al., 2011). Since in many nodulated plants the shoot has higher levels of N than in non-nodulated plants (Regus et al., 2015; Goh et al., 2016), this may result in reduced levels of CK transported to the roots, leading to decreased LR development. Moreover, glutamine relays the nitrate–dependent induction of several genes that increase CK biosynthesis in shoots (Kamada-Nobusada et al., 2013), and also modulates both root growth and nodulation (reviewed in Mohd-Radzman et al., 2013). Thus, high glutamine levels from N fixation can have an impact on root growth and nodulation.

Finally, nodulation and LR development share an extensive overlap in their organogenesis and regulatory genes, and both processes share an auxin maximum in the developing organ (Schiesl et al., 2019). This further suggests how nodules evolved as modified roots specialized to acquire N, and how nodulation could alter the expression of genes and hormone levels that impact LR development via changes to resource homeostasis.

Measuring legume RSA in nodulated plants

A need to better understand changes in RSA and its dynamics due to rhizobia

As has been shown in this review, many studies report that rhizobia affect several aspects of legume root development in a species- and environment-dependent way (Franzini et al., 2010; Solaiman et al., 2011; Wang et al., 2011), but it is not fully understood how the symbiosis affects RSA due to technical and conceptual limitations. For example, symbioses with different rhizobial strains but similar root mass, length, or area may actually have very different RSA since each strain has a different impact on plant nutrition and C availability and partitioning. Furthermore, the lack of information regarding root growth dynamics may result in changes being masked because roots were not analysed over time (Khaitov et al., 2016; Kallala et al., 2018). Alternatively, it could also mean that some symbioses have a small impact on root development, or they do not result in a modified RSA (Wang et al., 2011; Argaw, 2012; Kallala et al., 2018).

The studies discussed in this review point to the involvement of a combination of altered fluxes of metabolites and signalling molecules that are responsible for changes in legume root development, and therefore possibly changes in RSA. To understand these processes with a view to make the host more resource-capture and utilization efficient, it is evident that detailed studies using systems that allow the study of legume RSA over a long period of time are required.

Systems to study RSA

Several systems are available to study root development without removing the roots from the soil, allowing study of their in situ RSA and growth dynamics. Agar plates are useful to study small root systems in controlled conditions (Laffont et al., 2019; Schiesl et al., 2019), while semi-hydroponic systems, where roots grow attached to a material such as cloth oriented vertically, exist of variable dimensions (15–120 cm) and have been used in many species (Chen et al., 2011, 2017; Lagunas et al., 2019). However, they lack the interaction of roots in soil that more faithfully reflects the natural abiotic and biotic environment in which they evolved (Morris et al., 2018).

The two most common systems used to image roots in soil and overcome its opacity are: (i) X-ray tomography or MRI; and (ii) rhizoboxes. The former systems can pots up to 80×15 cm and reconstruct a 3D image of the roots, both thick and fine, but are very costly (Kumi, 2015; Metzner et al., 2015). In the latter, roots grow in thin layers of soil (2–40 mm) bordered by a transparent surface so that root development is easily captured with visible wavelength camera(s), and the system is usually inclined up to 45° to maximize visible roots (Nagel et al., 2012) (Fig. 4). However, it can also be placed at 0° if both sides are to be imaged (Rellan-Alvarez et al., 2015). They can be of considerable dimensions (up to 145×45 cm) (Bontpart et al., 2019, Preprint), allowing the study of legumes with large root systems and for long periods of time such as after flowering.

The use of these systems to study RSA in a variety of conditions in many symbioses will provide a better understanding of the role of rhizobia in altering legume RSA. For example, systems of larger dimensions allow for longer periods of unrestricted root growth where more evident changes in RSA could be observed. This would also include those that appear only late in the life cycle, specifically after flowering, when nodulation decreases leaf senescence and enhances C assimilation and allocation to roots (Kaschuk et al., 2010a; Li et al., 2016; da Costa Neto et al., 2017). It is not known whether free-living rhizobia in the rhizosphere also contribute to P
photosynthesis, and shoot biomass (Harris et al., 1985; Quides et al., 2011). Changes in lateral extension of the root system, and more intense exploitation of the explored soil (root area in the volume/area explored) may be observed due to the higher requirements for immobile resources such as P and reduced need to extensively explore the soil for diffusible N. Depending on water availability, changes in root depth may also be observed, along with higher exploitation of the top layers, a clear indication of a higher P demand. A modified RSA would reveal changes in C partitioning within the root system, indicating where shoot C is being invested underground for forage resources. A model summarizing how rhizobia modify resource allocation and crosstalk between shoot and roots, and how these changes could affect root development and RSA is shown in Fig. 5.

These modifications will depend on the specific symbiosis, and different strains could result in distinct RSA responses in the same legume variety due to differences in many of their traits (e.g. N₂ fixation dynamics, P solubilization, IAA production, or C consumption). For example, high auxin-producing strains could increase root C allocation, as well as length and area of the root system compared with strains that produce low IAA levels (Anjum et al., 2011). High IAA-producing strains will also enhance N and P nutrition which would further increase demand for soil resources and therefore root development (Bianco and Defez, 2010; Bianco et al., 2014). Furthermore, such strains could have an impact even when N levels are not low since this mechanism is independent of providing N to the plant. Similarly, strains that strongly acidify the soil would increase P and Fe nutrition (Abril et al., 2007), specifically useful in soil with high pH such as those reported by Soumaya et al. (2016). These symbioses should have a lower percentage of roots in top layers than those with strains with limited capacity to acidify the soil since they have less need to intensively exploit the soil for these immobile resources. Thus, they could have a higher lateral extension and depth due to the greater need for resources such as water to support growth of the increased shoot resulting from improved C and N fixation. On the other hand, strains that have high C consumption but fix low N levels, or do not fix at all, may possibly result in root modifications that are more evident in terms of RSA. A model summarizing how rhizobia modify resource allocation and crosstalk between shoot and roots, and how these changes could affect root development and RSA is shown in Fig. 5.

These modifications will depend on the specific symbiosis, and different strains could result in distinct RSA responses in the same legume variety due to differences in many of their traits (e.g. N₂ fixation dynamics, P solubilization, IAA production, or C consumption). For example, high auxin-producing strains could increase root C allocation, as well as length and area of the root system compared with strains that produce low IAA levels (Anjum et al., 2011). High IAA-producing strains will also enhance N and P nutrition which would further increase demand for soil resources and therefore root development (Bianco and Defez, 2010; Bianco et al., 2014). Furthermore, such strains could have an impact even when N levels are not low since this mechanism is independent of providing N to the plant. Similarly, strains that strongly acidify the soil would increase P and Fe nutrition (Abril et al., 2007), specifically useful in soil with high pH such as those reported by Soumaya et al. (2016). These symbioses should have a lower percentage of roots in top layers than those with strains with limited capacity to acidify the soil since they have less need to intensively exploit the soil for these immobile resources. Thus, they could have a higher lateral extension and depth due to the greater need for resources such as water to support growth of the increased shoot resulting from improved C and N fixation. On the other hand, strains that have high C consumption but fix low N levels, or do not fix at all, may possibly result in root systems with few and long PR and LRs since the plant needs to intensively forage the soil for N, and thus its RSA should be similar to that of non-nodulated plants.

Summary and conclusions

Legumes are important crops due to their ability to establish symbioses with rhizobia that allow them to fix N₂. However, little is known about how they modify plant resource partitioning and root foraging strategies, and hence RSA. By positive feedback, highly active symbioses stimulate photo-assimilation due to globally enhanced host metabolic capacity. Modification of root traits (such as weight, length, and area) upon symbiosis depends on both partners as well as environmental conditions. Rhizobial symbioses can enhance not only host N but also macro- and micronutrient availability, specifically P and Fe, and some have the ability to additionally sculpt host growth

![Fig. 4. Pot and rhizobox growing systems. (A) Pots and long tubes have been extensively used to analyse roots of rhizobia-treated legumes since they are cheap and easy to use. Depending on size, roots develop as they would in a field, with some horizontal constraints. Roots need to be removed from the soil and washed for imaging, which leads to losses, alters their in situ distribution, and precludes repeated measurements on a single plant. (B) Rhizoboxes overcome these limitations and gather high-quality data to continuously analyse root system development and RSA, thereby allowing the study of its dynamics. They have varied dimensions, with at least one transparent side (usually of glass or plastic) that allows capture of root system distribution, either manually or with a camera, without removing them from the growth system. To increase root visibility, rhizoboxes are usually grown at an angle (up to 45°) and their thickness is limited so roots grow in a 2D-like manner. They are also more expensive and have different handling requirements compared with pots and tubes.](https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/eraa198/5825489)
and resource flux and partitioning by producing plant growth regulators such as auxins. Therefore, effective symbioses result in extensive and complex changes that permit the host to modify resource allocation patterns to roots such that its RSA optimizes acquisition of limiting soil resources. Hence, interactions with other microorganisms, such as mycorrhiza and free-living soil bacteria, might also impact RSA depending on which mechanisms and regulatory pathways are stimulated and to what degree. Therefore, RSA embodies host resource partitioning decision making, as well as rhizobia-modified legume nutrition, C flux, and hormonal signalling. This highlights the great utility of time-series experimental studies of RSA in nodulated and non-nodulated hosts to inform on resource partitioning mechanisms, required to develop more resilient and resource-efficient legume and non-legume crops.

Fig. 5. Modification of RSA in legumes due to rhizobia. In low N soil conditions and with no compatible rhizobia (left), legumes need to forage for N themselves; consequently, roots only send relatively low quantities of root-derived resources (specifically N) to the shoot. This leads to low rates of photosynthesis and therefore low levels of C fixation, resulting in slow shoot growth. The shoot will in turn only send low amounts of shoot-derived resources and signals to the roots (e.g. C and auxin along with high levels of CKs). Here, these resources will preferentially be allocated to forage for more N since it limits photosynthesis. When compatible rhizobia are present (right), legumes will enter into symbiosis and produce nodules. These consume C to fix N₂, leading to higher amounts of root-derived resources transported to the shoot (e.g. N, along with increased levels of P and Fe in some cases). As a result, photosynthesis, and therefore C fixation, will be considerably higher, leading to a larger shoot area. This will result in increased amounts of C and auxin but lower levels of CKs transported to below-ground organs (shoot-derived resources). Hence, the root system will invest proportionally fewer resources to forage for N and more to obtain water and non-N nutrients to satisfy the demand of the larger shoot. As a consequence, changes to root length/area, vertical distribution, and/or exploration/exploitation of different soil layers can be observed in nodulated legumes. Changes in shoot size, and hypothesized changes in RSA, are shown for the nodulated plant. Note how the nodulated plant exploits P deposits more intensively since its N demands (more critical than P demand) are satisfied to a greater extent. Lines and text in bold indicate greater intensity of a specific process. Nodules are indicated in pink, and P deposits are shown as blue circles.
References

Abbasszadeh-dahaji P, Savagehi GR, Asadi-rahmani H, Rejali F, Farahbakhsh M, Moteshareh-zadeh B, Omidvari M, Lindstrom K. 2012. Symbiotic effectiveness and plant growth promoting traits in some Rhizobium strains isolated from Phaseolus vulgaris L. Plant Growth Regulation 68, 361–370.

Abri A, Zurdo-Piñeiro JL, Peix A, Rivas R, Velázquez E. 2007. Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. trifolii isolated from Phaseolus vulgaris in El Chaco Ardio soil (Argentina). In: Velázquez E, Rodríguez-Barrueco C, eds. First International Meeting on Microbial Phosphate Solubilization. Dordrecht: Springer Netherlands, 135–138.

Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University - Science 26, 1–20.

Allito BB, Ewusi-Mensah N, Alemneh AA. 2015. Rhizobia strain and host–legume interaction effects on nitrogen fixation and yield of grain legumes: a review. Molecular Soil Biology 6, 1–12.

Anjum MA, Zahir Z, Arshad M, Ashraf M. 2011. Isolation and screening of rhizobia for auxin biosynthesis and growth promotion of mung bean (Vigna radiata L.) seedlings under axenic conditions. Soil and Environment 30, 15–26.

Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R. 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant and Soil 204, 57–67.

Araya T, von Wirén N, Takahashi H. 2016. CLE peptid signaling and nitrogen interactions in plant root development. Plant Molecular Biology 91, 607–615.

Argaw A. 2012. Characterization of symbiotic effectiveness of rhizobia nodulating Faba bean (Vicia faba L.) isolated from central Ethiopia. Research Journal of Microbiology 7, 280–296.

Arif K, Archana G, Anjana JD. 2012. Engineering heterologous iron siderophore complex utilization in rhizobia: effect on growth of peanut and pigeon pea plants. Applied Soil Ecology 53, 65–73.

Arumugam R, Rajasekaran S, Nagarajan S. 2010. Response of arbucular mycorrhizal fungi and Rhizobium inoculation on growth and chlorophyll content of Vigna unguiculata (L) Wilk. Var. Pusa 151. Journal of Applied Science and Environmental Management 14, 113–115.

Azcón-Bióto J. 1983. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiology 73, 681–686.

Badar R, Qureshi S. 2012. Comparative effect of Trichoderma hamatum and host-specific Rhizobium species on growth of Vigna mungo. Journal of Applied Pharmaceutical Science 2, 128–132.

Bambara S, Ndakidemi P. 2009. Effects of Rhizobium inoculation, lime and molybdenum on photosynthesis and chlorophyll content of Phaseolus vulgaris L. African Journal of Microbiology Research 3, 791–798.

Belane AK, Pule-Meulenberg F, Makhubedu TI, Dakora FD. 2014. Nitrogen fixation and symbiosis-induced accumulation of mineral nutrients by cowpea (Vigna unguiculata L. Wilk.). Crop and Pasture Science 65, 250–257.

Bensmihen S. 2015. Hormonal control of lateral root and nodule development in legumes. Plants 4, 523–547.

Bethlenfalvy GJ, Abu-Shakra SS, Phillips DA. 1978. Interdependence of nitrogen nutrition and photosynthesis in Pisum sativum L. I. Effect of combined nitrogen on symbiotic nitrogen fixation and photosynthesis. Plant Physiology 62, 127–130.

Bianco C, Defez R. 2010. Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology 76, 4626–4632.

Bianco C, Senatore B, Arbucci S, Pieraccini G, Defez R. 2014. Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Applied and Environmental Microbiology 80, 4286–4293.

Bishop A, Bennett MJ. 2019. Tuning lateral roots into nodules. Science 366, 953–954.

Biswas J, Ladha J, Dazzo F. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal 64, 1644–1650.

Bontpart T, Concha C, Guffrida V, et al. 2019. Affordable and robust phenotyping framework to analyze root system architecture of soil-grown plants. bioRxiv, 573139. [Preprint].

Bouron V, Rizvi SM, Fortier S, de Larambaque H, Galmiche F, Marget P, Duc G, Burstin J. 2010. Genetic dissociation of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theoretical and Applied Genetics 121, 71–86.

Buendia L, Maillet F, O’Connor D, van de Kerkhove Q, Danoun S, Gough C, Lefebvre B, Bensmihen S. 2019. Lipo-chitoioicosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. New Phytologist 221, 2190–2202.

Buhan WP, Bensmihen S. 2018. Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Frontiers in Plant Science 9, 1247.

Burridge J, Jochua CN, Buxsch a, Lynch JP. 2016. Legume shovellomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp. unguiculata) root architecture in the field. Field Crops Research 192, 21–32.

Burridge JD, Schneider HM, Huyhn BL, Roberts PA, Buxsch a, Lynch JP. 2017. Genome-wide association mapping and agronomic impact of cowpea root architecture. Theoretical and Applied Genetics 130, 419–431.

Burton JW, Harlow C, Theil EC. 1998. Evidence for reutilization of nodule iron in soybean seed development. Journal of Plant Nutrition 21, 913–927.

Camerini S, Senatore B, Lonardo E, Imperini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R. 2008. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Archives of Microbiology 190, 67–77.

Carter AM, Tegeder M. 2016. Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Current Biology 26, 2044–2051.

Chen Y, Ghanem ME, Siddique KH. 2017. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany 68, 1987–1999.

Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z. 2011. Development of a novel semi-hydroponic phenotyping system for studying root architecture. Functional Plant Biology 38, 355–363.

Coba de la Pena T, Fedorova E, Puyo J, Lucas MM. 2017. The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Frontiers in Plant Science 8, 2229.

Collier R, Tegeder M. 2012. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. The Plant Journal 72, 355–367.

da Costa Neto VP, Mendes JBS, de Araújo ASF, de Alcântara Neto F, Bonifacio A, Rodrigues AC. 2017. Symbiotic performance, nitrogen flux and growth of lima bean (Phaseolus lunatus L.) varieties inoculated with different indigenous strains of rhizobia. Symbiosis 73, 117–124.

Datta C, Basu PS. 1998. Content of indoleacetic acid and its metabolism in root nodules of Melleolus alba. Folia Microbiologica 43, 427–430.

de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science 12, 474–481.

Derylo M, Skorupska A. 1992. Rhizobial siderophore as an iron source for clover. Physiologia Plantarum 85, 549–553.

Destá Y, Kiros H, Yirga W. 2015. Inoculation, phosphorous and zinc fertilization effects on nodulation, yield and nutrient uptake of Faba bean (Vicia faba L.) grown on calcaric cambisol of semiarid Ethiopia. Journal of Soil Science and Food Security 6, 9–15.

Duhan JS. 2013. Tn5 siderophore producing mutants of Rhizobium and its role in nitrogen fixation and iron uptake in pigeonpea. African Journal of Microbiology Research 7, 1459–1464.

Duhan J, Duda jea SS, Khurana AL. 1998. Siderophore production in relation to N2 fixation and iron uptake in pigeon pea–rhizobium symbiosis. Folia Microbiologica 43, 421–426.

Duodu S, Bhuvaneswari TV, Stokkermans T JW, Peters NK. 1999. A positive role for rhizobitoxine in Rhizobium–legume symbiosis. Molecular Plant-Microbe Interactions 12, 1082–1089.

Egamberdieva D, Wirth S, Jabborova D, Rasenan LA, Liao H. 2017. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in alfalfa. Plant and Soil 419, 1–19.
stress in soybean through altering root system architecture. Journal of Plant Interactions 12, 100–107.

Ferguson BJ, Indrasumun A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM. 2010. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology 52, 61–76.

Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. 2019. Legume nodulation: the host controls the party. Plant, Cell & Environment 42, 41–51.

Franzini VI, Azzón R, Mendes FL, Arroca R. 2010. Interactions between Glomus species and Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytologist 185, 817–828.

Jin CW, Ye YQ, Zheng SJ. 2014. An underground tale: contribution of microbially active plant to iron acquisition via ecological processes. Annals of Botany 113, 7–18.

Jin J, Watt IM, Mathiesius U. 2012. The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiology 159, 489–600.

Kallala N, M’sehli W, Jelali K, Kais Z, Mhaddbi H. 2018. Inoculation with efficient nitrogen fixing and indoleacetic acid producing bacterial microsymbiont enhance tolerance of the model legume Medicago truncatula to iron deficiency. BioMed Research International 2018, 9134716.

Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. 2013. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant & Cell Physiology 54, 1891–1893.

Kan CC, Chung TY, Joo YA, Hsieh MH. 2015. Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics 16, 731.

Kaneshiro T, Kwolek WF. 1985. Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catalyzes the conversion of tryptophan to indol-3-yacetlic acid. Plant Science 42, 141–146.

Karaca U, Uyanöz R. 2012. Effectiveness of native Rhizobium on nodulation and growth properties of dry bean (Phaseolus vulgaris L.). African Journal of Biotechnology 11, 8986–8991.

Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW. 2010a. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N fixation or nitrate supply. Plant Biology 12, 60–69.

Kaschuk G, Kuyper T, Leffelaar P, Hungria M, Giller K. 2009. Are rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology and Biochemistry 41, 1233–1244.

Kaschuk G, Leffelaar PA, Giller KE, Albertson O, Hungria M, Kuyper TW. 2010b. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthetic limitation of symbioses. Soil Biology & Biochemistry 42, 125–127.

Kaschuk G, Yin X, Hungria M, Leffelaar PA, Giller KE, Kuyper TW. 2012. Photosynthetic adaptation of soybean due to varying effectiveness of N$_2$ fixation by two distinct Bradyrhizobium japonicum strains. Environmental and Experimental Botany 78, 1–6.

Kaur H, Peel A, Acosta K, Gebri S, Ortega JL, Sengupta-Gopalan C. 2019. Comparison of alfalfa plants overexpressing glutamine synthetase with those overexpressing sucrose phosphate synthase demonstrates a signaling mechanism integrating carbon and nitrogen metabolism between the leaves and nodules. Plant Direct 3, 600115.

Khaitov B, Kurbonov A, Abdiev A, Adilov M. 2016. Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian Journal of Soil Science 5, 105.

Kohlen W, Ng JLP, Deinum EW, Mathiesius U. 2018. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. Journal of Experimental Botany 69, 229–244.

Korir H, Mungai NW, Thuita M, Hamba Y, Masso C. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science 8, 141.

Körner C. 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology 25, 107–114.

Kropp A, David LC, Chardrin C, Girin T, Marnange A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 65, 789–798.

Kucey RMN, Paul EA. 1982. Carbon flow, photosynthesis, and N$_2$ fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biology and Biochemistry 14, 407–412.

Kumi F. 2015. Review of applying X-ray computed tomography for imaging soil-root physical and biological processes. International Journal of Agricultural and Biological Engineering 8, 1–14.

Laffont C, Huault E, Gauthret P, Endre G, Kalo P, Bourion V, Duc G, Frugier F. 2019. Independent regulation of symbiotic nodulation by the
SUNN negative and CRA2 positive systemic pathways. Plant Physiology 180, 559–570.

Lagunas B, Achom M, Bonyadi-Pour R, et al. 2019. Regulation of resource partitioning coordinates nitrogen and rhizobia responses and autoregulation of nodulation in Medicago truncatula. Molecular Plant 12, 833–846.

Larrainzar E, Gil-Quintana E, Seminario A, Arrese-Igor C, González EM. 2014. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17–Sinorhizobium medicae WSM419 symbiosis. Frontiers in Microbiology 5, 447.

Li JF, Zhang SQ, Huo P, Shi SL, Miao YY. 2013. Effect of phosphate solubilizing rhizobium and nitrogen fixing bacteria on growth of alfalfa seedlings under P and N deficient conditions. Pakistan Journal of Botany 45, 1557–1562.

Li X, Zhao J, Tan Z, Zeng R, Liao H. 2015. GmEXPB2, a cell wall beta-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiology 169, 2640–2653.

Li YS, Liu XB, Wang GH, Yu ZH, Mathesius U, Liu JD, Herbert SJ, Jin J. 2016. Shift in origin of plant nitrogen alters carbon and nitrogen assimilation during reproductive stages of soybean grown in a Mollisol. Crop & Pasture Science 67, 872–880.

Liu B, Wu J, Yang S, Schiefelbein J, Gan Y. 2020. Nitrate regulation of lateral root and root hair development in plants. Experimental Botany 71 (in press).

Liu H, Zhang C, Yang J, Yu N, Wang E. 2018. Hormone modulation of legume–rhizobial symbiosis. Journal of Integrative Plant Biology 60, 632–648.

Liu W, Han X, Zhan G, Zhao Z, Feng Y, Wu C. 2015. A novel sucrose-regulatory MADS-box transcription factor GnMHCS promotes root development and nodulation in soybean [Glycine max (L.) Merr.]. International Journal of Molecular Sciences 16, 20657–20673.

Lynch JP. 2007. Roots of the second green revolution. Australian Journal of Botany 55, 493–512.

Lynch JP, Wojciechowski T. 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany 66, 2199–2210.

Ma W, Charles TC, Glick BR. 2004. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium melloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology 70, 5891–5897.

Ma W, Guinel FC, Glick BR. 2003. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology 69, 4396–4402.

Makoi J, Barbbara S, Ndakidemi PA. 2013. Rhizobium inoculation and the supply of molybdenum and lime affect the uptake of macroelements in common bean (‘Phasaeolus vulgaris’ L.) plants. Australian Journal of Crop Science 7, 784–793.

Medeot DB, Paulucci LS, Albornoz AI, Fumero MV, Bueno MA, García MB, Woelke MR, Okon Y, Dardenelli MS. 2010. Plant growth promoting rhizobacteria improving the legume–rhizobia symbiosis. In: Khan MS, Musarrat J, Zaidi A, eds. Microbes for legume improvement. Vienna: Springer Vienna, 473–494.

Medici A, Krouk G. 2014. The primary nitrate response: a multifaceted signalling pathway. Journal of Experimental Botany 65, 5567–5576.

Medici A, Szponarski W, Dangeville P, et al. 2019. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. The Plant Cell 31, 1171–1184.

Metzner R, Eggert A, van Dusschoten D, Pfugfelder G, Gerth S, Schurr U, Uhlimann N, Jahnke S. 2015. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11, 17.

Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orozko K, Markmann K, Szczygłowski K. 2019. Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. The New phytologist 222, 1523–1537.

Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC. 2011. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum–PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). European Journal of Soil Biology 47, 35–43.

Mohd-Razdan NA, Jordjevic MA, Imin N. 2013. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Frontiers in Plant Science 4, 385.

Moradi S, Sheikhj Z, Zarei M. 2013. Effects of arbuscular mycorrhizal fungi and Rhizobium on shoot and root growth of chickpea in a calcareous soil. International Journal of Agriculture: Research and Review 3, 381–385.

Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. 2018. The timescale of early land plant evolution. Proceedings of the National Academy of Sciences USA 115, E2274–E2283.

Murray JD, Liu CW, Chen Y, Miller AJ. 2017. Nitrogen sensing in legumes. Journal of Experimental Botany 68, 1919–1926.

Mutset V, Hennecke H, Pessi G. 2012. Disparate role of rhizobial ACC deaminase in root-nodule symbioses. Symbiosis 57, 43–50.

Nagel KA, Putz A, Gilmer F, et al. 2012. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Functional Plant Biology 39, 591–904.

Ndakidemi P, Barbbara S, Makoi J. 2011. Micronutrient uptake in common bean (‘Phaseolus vulgaris’ L.) as affected by rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics Journal 4, 40–52.

Nowak S, Schnable E, Frugoli J. 2019. The Medicago truncatula CLAVATA3-LIKE CLE12/13 signaling peptides regulate nodule number depending on the CORYNE but not the COMPACT ROOT ARCHITECTURE2 receptor. Plant Signaling & Behavior 14, 1598730.

Nyoki D, Ndakidemi PA. 2014. Influence of Bradyrhizobium japonicum and phosphorus on micronutrient uptake in cowpea. A case study of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn). African Journal of Plant Sciences 8, 427–435.

O’Hara G. 2001. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Animal Production Science 41, 417–433.

Okazaki S, Nakui N, Sugawara M, Minamisawa K. 2004. Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes and Environments 19, 99–111.

Olah B, Brière C, Bécard G, Déharié J, Gough C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DM1/DM2 signalling pathway. The Plant Journal 44, 195–207.

Orozco-Mosqueda Mdel C, Macias-Rodriguez LI, Santoyo G, Farias-Rodriguez R, Valencia-Cantero E. 2013. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium melloti. Folia Microbiologica 58, 579–585.

Pacios-Bras C, Schlaman HR, Boot K, Miranda P, Langerak JM, Stooggaard J, Spaink HP. 2003. Auxin distribution in Lotus japonicus during root nodule development. Plant Molecular Biology 52, 1169–1180.

Pampena S, Masoni A, Mariotti M, Ercoli L, Arduini L, Ardini U. 2016. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Experimental Agriculture 54, 66–82.

Paul MJ, Foyer CH. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany 52, 1383–1400.

Peix A, Rivas-Boyoer AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E. 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology & Biochemistry 33, 103–110.

Péret B, Clément M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16, 442–450.

Petrásek J, Fríml J. 2009. Auxin transport routes in plant development. Development 136, 2675–2688.

Piñ Y, Crimi M, Cremonese G, Spena A, Pandolfini T. 2007. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biology 7, 21.

Podlešaj V, Wieljo J, Podlešaj A, Kidaj D. 2014. The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Central European Journal of Biology 9, 396–409.

Poole P, Ramachandran V, Terpolilli J. 2018. Rhizobia: from saprophytes to endosymbionts. Nature reviews. Microbiology 16, 291–303.

Qin L, Jiang H, Tian J, Zhao J, Liao H. 2011. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant and Soil 349, 25–36.
Quides KW, Stomackin GM, Lee HH, Chang JH, Sachs JL. 2017. *Lotus japonicus* alters in planta fitness of *Mesorhizobium loti* dependent on symbiotic nitrogen fixation. PLoS One 12, e0185568.

Ravikumar R. 2012. Growth effects of *Rhizobium* inoculation in some legume plants. International Journal of Current Science, 1-6.

Regus JU, Gano KA, Hollowell AC, Sofish V, Sachs JL. 2015. Lotus hosts delimit the mutualism–parasitism continuum of *Bradyrhizobium*. Journal of Evolutionary Biology 28, 447-456.

Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J. 2018. Dynamics of ethylene production in response to compatible nod factor. Plant Physiology 176, 1764–1772.

Rellan-Alvarez L, Lobet G, Lindner H, et al. 2015. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife 4, e07957.

Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazquez E. 2006. Biodiversity of populations of phosphate solubilizing rhizobia that nodulate chickpea in different Spanish soils. Plant and Soil 287, 23–33.

Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM. 2011. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences, USA 108, 18524–18529.

Saini P, Khanna V. 2013. Preliminary screening for ACC-deaminase production by plant growth promoting rhizobacteria. Journal of Pure and Applied Microbiology 7, 573–576.

Sairinen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K. 2012. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. The Plant Cell 24, 4907–4916.

Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology 34, 635–648.

Scheible W-R, Lauerer M, Schulze E-D, Caboche M, Stitt M. 1997. The lateral root developmental program for symbiotic nodule organogenesis in *Arabidopsis thaliana*. Plant Physiology 113, 3517–3528.

Taleski M, Imin N, Jordjevic MA. 2018. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. Journal of Experimental Botany 69, 1829–1836.

Tavares MJ, Nascimento FX, Glick BR, Rossi MJ. 2018. The expression of an exogenous ACC deaminase by the endophyte *Serratia grimesii* BFX1 promotes the early nodulation and growth of common bean. Letters in Applied Microbiology 66, 252–259.

Tian X, Doerner P. 2013. Root resource foraging: does it matter? Frontiers in Plant Science 4, 303.

Tittabutr P, Awaya JD, Li QX, Borthakur D. 2008. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from *Sinorhizobium meliloti* subsp. strain *BR10* in *Pisum sativum* sp. strain *TAL1145* promotes nodulation and growth of *Leucaena leucocephala*. Systematic and Applied Microbiology 31, 141–150.

Uchiumi T, Ohwada T, Itakura M, et al. 2004. Expression islands clustered on the symbiosis island of the *Mesorhizobium loti* genome. Journal of Bacteriology 186, 2439–2448.

Uga Y, Sugimoto K, Ogawa S, et al. 2013. Coordination and control of root growth and development. Journal of Industrial Microbiology & Biotechnology 40, 390–397.

van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathiesius U. 2006. Defective long-distance auxin transport regulation in the *Medicago truncatula* super numeric nodules mutant. Plant Physiology 140, 390–397.

Wang X, Pan Q, Chen F, Yan X, Liao H. 2011. Effects of co-inoculation with *arbuscular mycorrhizal fungi and rhizobia* on *soybean* growth as related to root architecture and availability of *P* and *N*. Mycorrhiza 21, 173–181.

Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS. 2019. Lotus at the margins: Nitrogen fixation and phosphorus acquisition in a world of declining renewable resources. Plant Physiology 173, 233–236.

Williamson LC, Ribrioux SP, Fitter AH, Leyser HM. 2001. Soluble carbohydrates regulate auxin biosynthesis via PIF auxin response factors GmARF8a and GmARF8b is required for soybean nodule development. Journal of Evolutionary Biology 14, 1021–1023.

Xiao TT, Schilderink S, Molen S, Deimun EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T. 2014. Fate map of *Medicago truncatula* root nodules. Development 141, 3517–3528.
Yan Z, Eziz A, Tian D, Li X, Hou X, Peng H, Han W, Guo Y, Fang J. 2019. Biomass allocation in response to nitrogen and phosphorus availability: insight from experimental manipulations of Arabidopsis thaliana. Frontiers in Plant Science 10, 598.

Yang Y, Zhao Q, Li X, Ai W, Liu D, Qi W, Zhang M, Yang C, Liao H. 2017. Characterization of genetic basis on synergistic interactions between root architecture and biological nitrogen fixation in soybean. Frontiers in Plant Science 8, 1466.

Yasuta T, Satoh S, Minamisawa K. 1999. New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Applied and Environmental Microbiology 65, 849–852.

Yoro E, Nishida H, Ogawa-Ohnishi M, Yoshida C, Suzaki T, Matsubayashi Y, Kawaguchi M. 2019. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. Journal of Experimental Botany 70, 507–517.

Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K. 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Applied and Environmental Microbiology 66, 2658–2663.

Zhao CZ, Huang J, Gyaneshwar P, Zhao D. 2017. Rhizobium sp. IRBG74 alters Arabidopsis root development by affecting auxin signaling. Frontiers in Microbiology 8, 2556.

Zhou X-J, Liang Y, Chen H, Shen S-H, Jing Y-X. 2006. Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetic 44, 530–535.