Advanced low-temperature solid oxide fuel cells based on a built-in electric field

Yuzheng Lu¹, Bin Zhu²,³, Jing Shi⁴, Sining Yun⁵,⁶

¹School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China.
²Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China.
³State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China.
⁴Department of Physics, Xi’an Jiaotong University City College, Xi’an 710018, Shannxi, China.
⁵Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shannxi, China.
⁶Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.

Correspondence to: Prof. Bin Zhu, School of Energy and Environment, Southeast University, No. 2 Si Pai Lou, Nanjing 210096, Jiangsu, China. E-mail: zhu-bin@seu.edu.cn; Prof. Sining Yun, School of Materials Science and Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, Shannxi, China. E-mail: yunsining@xauat.edu.cn

How to cite this article: Lu Y, Zhu B, Shi J, Yun S. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Mater 2021;1:100007. https://dx.doi.org/10.20517/energymater.2021.06

Received: 1 Sep 2021 First Decision: 27 Sep 2021 Revised: 15 Oct 2021 Accepted: 20 Oct 2021 Published: 30 Oct 2021

Academic Editors: Yuping Wu, Wei Tang Copy Editor: Yue-Yue Zhang Production Editor: Yue-Yue Zhang

Solid oxide fuel cells (SOFCs) show considerable promise for meeting the current ever-increasing energy demand and environmental sustainability requirements as a result of their high efficiency and low environmental impact. To enable high ionic conductivity, SOFCs are often required to operate at high temperature, which in turn results in high costs[1]. Therefore, lowering the operational temperatures has become a major priority in SOFC research and development[2]. According to the traditional concepts of SOFCs, single semiconductor materials are usually considered as electrolyte membrane due to their higher ionic conductivity, with heterostructures constructed from different semiconductor materials having never been considered. Recently, Meng et al.[3] made an important breakthrough in low-temperature SOFCs by introducing semiconductor heterojunction membranes to function alternatively as electrolytes with better performance. This novel fuel cell design is known as a semiconductor-ionic membrane fuel cell (SIMFC)[3-5]. Zhang et al.[4], Nie et al.[7], Deng et al.[4], Mushtaq et al.[9], and Afzal[10] used semiconductor materials, including Ni₉Co₈.₃Al₀.₅LiO₂₋δ[5], La₀.₄Sr₀.₆Fe₀.₄Co₀.₆O₃₋δ[7], Sr₂Fe₁.₅Mo₀.₅O₆₋δ[5], SrFe₀.₇Ti₀.₂₅O₃₋δ[4],
Recently, Wang et al. reported a 3C-SiC, which was tuned for protonic conducting properties via the construction of an n-p heterostructure composite with Na₈Co₉₂O₃₂, exhibiting an ionic conductivity of 0.12 S cm⁻¹ at 550 °C. Lu et al. reviewed recent progress in lowering the temperature of SOFCs by using semiconductor-ionic conductor nanomaterials. The development in the application of nanostructured pure ionic conductors, semiconductors and their nanocomposites as membranes is highlighted in this review. Xu et al. reported a SIMFC using a composite of Ba-Co-Ce-Y-O and CeO₃, reaching a remarkable peak power density of 1140 mW·cm⁻² at 550 °C. Zhu et al. produced a nanoscale perspective of solid oxide and semiconductor membrane fuel cells from materials to technology. They discussed the nanoscale electrochemical phenomena of SIMFCs. Different from the traditional concept where semiconductor materials are widely used in photovoltaic conversion and photocatalysis, they also applied them to replace the electrolytes in fuel cells.

It is well known that semiconductor materials have already been successful in photovoltaic cells based on a built-in electric field (BIEF). Generally, when p- and n-type semiconductors are contacted, the redistribution of charges at the interface constitutes a space-charge region with the BIEF pointing from the n- to p-type region. The BIEF is also applied in lithium-ion batteries. Qiao et al. demonstrated a BIEF to reduce the space charge layer formation and boost lithium-ion transport in all-solid-state lithium-ion batteries by an in-situ differential phase contrast scanning transmission electron microscopy technique and finite element method simulations.

Most importantly, Zhang et al., Nie et al., Deng et al., Mushtaq et al., and Afzal successfully applied semiconductor materials in SOFCs by compositing semiconductor and ionic conductor materials to construct SIMFCs with BIEF effects. To understand the principle of SIMFCs, a physical mode based on a BIEF and alignment of the energy band, similar to a perovskite solar cell (PSC), was proposed by Zhu et al. Generally, the perovskite absorbers of a PSC undergo photoexcitation and charge separation under light illumination. The holes move to the metal contact through the hole-transporter materials while electrons are collected by the electron transport layer and move to the fluorine-doped tin dioxide conductive substrate to generate the electricity. The BIEF in a PSC can effectively prohibit the electrons passing through the device itself. Taking advantage of this concept, Zhu et al. designed a novel fuel cell with a nanocomposite functional layer, where the short circuit issue can be eliminated by a heterojunction structure instead of using the ionic electrolyte layer in SOFCs. The mechanisms of SIMFCs can be explained using the principle of a PSC, as shown in Figure 1A. The charge separation is caused by the well-aligned band positions between the perovskite and electron/hole conducting layers. Inspired by this idea, Zhu et al. constructed an n-type La₀.₈Sr₀.₂₅Ca₀.₄₅TiO₃ and p-type La₀.₈Sr₀.₆Co₀.₄Fe₀.₆O₁.₄ (LSCF) junction, where the electrons cannot pass through the junction. Furthermore, the BIEF in the SIMFC membrane can drive H⁺ or O₂⁻ across the junction, as illustrated in Figure 1B.

Interestingly, a Schottky junction (SJ) was also found in this all new device, where Ni₀.₆Co₀.₄Al₀.₄LiO₂₋δ (NCAL) is reduced into a Ni-Co alloy at the anode with H₂ as indicated in Figure 1B. After the SJ is formed between the anode and electrolyte, it can also inhibit electrons passing through the electrode and SM while...
simultaneously enhancing the transportation of H⁺ or O²⁻ due to the BIEF formation at the interface. The used materials for PSC and SIMFC devices are listed in Table 1. It is true that the junction plays a vital role in blocking electrons crossing over the internal device to avoid short circuiting and also in promoting the ionic transport process.

According to our previous research, the BIEF can be formed by a Schottky heterojunction,[24], intrinsic-negative (i-n) heterojunction,[12] and p-n heterojunction.[25]. In a Schottky heterojunction, the BIEF can be built up simply at the interface of the metal (electrode) and semiconductor (electrolyte) regions. Yun et al.[28] constructed SJ fuel cells using a p-type semiconductor material, namely, a LiNi₀.₈₅Co₀.₁₅O₂⁻δ (LCN) composite with Ce₀.₈Sm₀.₂O₁.₉-Na₂CO₃, which exhibited a high power output of 1000 mW cm⁻² at 550 °C. A thin Ni-metal layer originating from reduction of the semiconducting oxide LCN is formed at the H₂ side. Therefore, a Ni-metal/p-type LCN-semiconductor SJ is formed that can accelerate ion transport capacity while inhibiting electrons from passing through the junction formed at the anode/semiconductor membrane interface, as shown in Figure 2A.

In order to prove the as-reported SJ, Zhu et al.[29] tested the response current as a function of bias voltage for a half cell with the structure of NCAL-Ni/7LCP-3ZnO at 550 °C with air and a H₂ flow to the NCAL electrode side. The results indicated that an apparent rectification response emerged in the I-V characteristic analogous to the reported I-V response of a Ni/ZnO-polar contact, illustrating a Schottky contact between the reduced anode and membrane layer. Furthermore, the characterization of semiconductor properties and band structures is very important for SIMFCs based on semiconductor-ionic membranes with BIEF effects, which are very different from conventional SOFCs based on ionic conducting electrolytes. Therefore, various new characterization techniques from semiconductor aspects, like ultraviolet-visible spectroscopy,[30], ultraviolet photoelectron spectroscopy,[30], Hall coefficient measurements,[30], density functional theory calculations,[30] and so on, have been introduced to determine the band structures and prove the BIEF effects on SIMFCs. The different characteristics of SIMFCs compared to SOFCs are obvious because of the use semiconductor-based membranes vs. conventional electrolytes.
Table 1. Comparison of materials used for PSCs and SIMFCs

	Back contact	Electron transport layer	Functional layer	Hole transport layer	Metal electrode
PSC	Fluorine-doped tin dioxide (FTO)	TiO$_2$	Perovskite absorber		Au
SIMFC	Ni foam	La$_{0.2}$Sr$_{0.25}$Ca$_{0.45}$TiO$_3$	La$_{0.3}$Sr$_{0.2}$Co$_{0.7}$O$_{2.4}$-Sm and Ca co-doped CeO$_2$	Ni$_{0.8}$Co$_{0.15}$Al$_{0.05}$LiO$_{2.4}$	Ag

PSC: Perovskite solar cell; SIMFC: semiconductor-ionic membrane fuel cell.

Figure 2. (A) Schottky junction device and energy band diagram for a metal/p-semiconducting oxide interface$^{[28]}$. (B) Charge separation at the interface of a CeO$_{2-x}$/CeO$_2$ particle and proton transport to the near-surface layers of the particle$^{[30]}$.

In an i-n heterojunction, an i-n type interface contact is constructed, e.g., a CeO$_2$/CeO$_{2-x}$ core-shell heterostructure, where CeO$_2$ is an intrinsic i-type semiconductor and CeO$_{2-x}$ is an n-type semiconductor. A charge separation occurs at the CeO$_{2-x}$/CeO$_2$ interface. The electrons can transfer from the shell to the core while it is forbidden to pass through from the core to the shell. After the CeO$_2$/CeO$_{2-x}$ core-shell heterostructure forms, an electron depletion region is built on the CeO$_{2-x}$ side at the interface and an electron accumulation region is simultaneously formed on the CeO$_2$ side of the interface. On this basis, the local charge distribution and the electric field or the BIEF are formed among particle surfaces, which stop protons from migrating deep inside the shell to pass through the interface and suppress the bulk infiltration of the surface protons, as shown in Figure 2B. Benefiting from the BIEF, a “proton shuttle” is constructed in the continuous highly conducting regions formed in the ceria-semiconductor membrane of the SOFC.

To further understand the new mechanism in SIMFCs, Xia et al.$^{[30]}$ constructed a BaCo$_{0.4}$Fe$_{0.4}$Zr$_{0.1}$Y$_{0.1}$O$_{3-δ}$ (BCFZY)-ZnO p-n heterostructure for low-temperature SOFCs. They found that the as-prepared heterostructure exhibits a hybrid H$^+$/O$^{2-}$ conducting capability during fuel cell operation. When two semiconductors with different energy band levels are combined, conduction band offset (ΔE_c) and valence band offset (ΔE_v) will be induced, thus forming potential barriers to form the BIEF. To explain its mechanism, a BIEF in the as-prepared BCFZY-ZnO p-n heterostructure was introduced, where the junction prevented the electron passing through and the ionic conductivity can be enhanced by the BIEF, as illustrated by Figure 3.
Figure 3. Schematic diagram of a typical p-n heterojunction formed at the heterophasic interface of a p-type (BCFZY)-n-type (ZnO) semiconductor membrane and the corresponding energy band alignment mechanism proposed for interpreting the charge separation and ionic transportation process.[30] BCFZY: BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-δ}; NCAL: Ni_{0.8}Co_{0.15}Al_{0.05}LiO_{2-δ}; CB: conduction band; VB: valence band.

Figure 4. From conventional three layered fuel cells to a “three in one” membrane with a BIEF. BIEF: Built-in electric field.

Cai et al.[32] explained the SIMFC device from the conventional three layers of anode/electrolyte/cathode to a “three in one” membrane, as shown in Figure 4. A semiconductor-ionic membrane based on NiO-yttrium-
stabilized zirconia (YSZ)-LSCF composites was used to construct a SIMFC device. Under H₂/air conditions, the SJ BIEF is formed that can avoid the electronic short-circuit problem. As a result, a high power density of 680 mW·cm⁻² at 600 °C was achieved with an open circuit voltage of 1.11 V.

Encouraged by this new concept, Cai et al.⁴³ further constructed a bulk heterostructure nanocomposite electrolyte of CeₓSn₁₋ₓOₓ₋₃·SrTiO₃ for low-temperature SOFCs, exhibiting a peak power density of 892 mW·cm⁻² with an open circuit voltage of 1.1 V at 550 °C. Generally, SIMFCs are often composed by a semiconductor and ionic conductor, where the heterostructure plays a key role in achieving the high performance. To obtain a deep scientific understanding of SIMFCs, Zhang et al.⁴⁻⁴ reviewed superionic conductivity in ceria-based heterostructure composites for low-temperature SOFCs. Hu et al.⁴⁵ discussed recent research and development in junctions and energy bands on novel semiconductor-based fuel cells.

Overall, significant progress has been achieved in the field of SIMFCs due to the innovation of semiconductor materials as membranes and advances in forming the BIEF. A high power density of ~1000 mW·cm⁻² at 550 °C has been achieved from reported SIMFCs with BIEF effects for low-temperature SOFCs. Previous studies on SIMFCs are highlighted in Figure 5.

As shown in Table 1, a Vₚ of > 1.0 V was individually realized in different heterostructures, suggesting that the performance of devices can be fully improved by the BIEF produced from semiconductor heterostructures. To achieve this goal, the development of high-performance SIMFCs is of significant importance. It is encouraging that the long-term stability of SIMFCs can reach over 100 h, according to recent reports [Table 2]. We believe that the as-reported SIMFCs will provide a new route for SOFC research and development towards commercialization. Compared with traditional SOFCs, SIMFCs exhibit various advantages, e.g., high ionic conductivity resulting in higher performances, including current and power outputs at low temperature, simple structures (three in one) and so on. However, in future research and development, some critical perspectives are suggested:

1. Long-term stability is currently absent from engineering efforts with regards to commercialization. More effort should be contributed to the engineering and scaling-up of SIMFCs;

2. In order to develop long-term SIMFC durability, the development of compatible electrode materials has made good progress;

3. Relevant theoretical models and calculations should be employed to guide further research and development. In particular, the physical properties and effect of the BEIF formed from various heterojunctions, e.g., bulk and planar p-n, Schottky, n-i (intrinsic or insulating) junctions;

4. Some new technologies and technical processes combined with SOFCs and protonic ceramic fuel cells should be introduced to develop durable SIMFCs.

The first demonstration of SOFC technology was made in the 1930s by Baur and Preis⁴⁶ and used zirconia stabilized with 15 wt.% of yttria (the so-called Nernst Mas) as the electrolyte, iron or carbon as the anode and magnetite (Fe₃O₄) as the cathode. Long durability could not be achieved until the compatible electrodes, NiO-YSZ cermet and especially perovskite oxide cathode materials, were discovered and technically developed to incorporate with the YSZ electrolyte. This took several decades. Compatible electrodes for semiconductor-ionic material membranes have yet to be employed into SIMFCs. Nevertheless, significant progress has been made in this area.
Table 2. Long-term stability data for SIMFCs from recent reports

Semiconductor membrane	V_{oc} (V)	Stability (h)	Temp. (°C)	Year	Ref.
La/Pr co-doped CeO$_2$-ZnO	1.04	-	550	2018	[11]
Sm$_3$O$_3$-NiO	1.04	2	550	2018	[38]
La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$-Sm and Ca co-doped CeO$_2$	1.05	-	550	2019	[7]
Mg-doped LiCoO$_2$-Sm doped CeO$_2$	1.02	10	600	2019	[42]
CeO$_2$/CeO$_2$ core-shell structure	1.04	-	520	2019	[39]
BaCo$_{0.4}$Fe$_{0.6}$Zr$_{0.1}$Y$_{0.1}$O$_{3-δ}$-ZnO	1.01	10	550	2020	[11]
LnNiO$_2$-Sm doped CeO$_2$	1.02	52	530	2020	[50]
Nb-doped SrTiO$_{3-δ}$	1.03	-	520	2021	[41]
Co$_{0.2}$Zn$_{0.8}$O-Sm doped CeO$_2$	1.06	35	550	2021	[42]
BaCo$_{0.4}$Fe$_{0.6}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-δ}$	1.07	100	530	2021	[31]
BaSrFeSbO$_3$-Sm doped CeO$_2$	1.09	100	550	2021	[43]

It is also noteworthy that SIMFCs are built not only on electrochemistry but also semiconductor physics.[37] We expect that this report can arouse significant attention from related research fields and disciplines to overcome the bottleneck of SOFC commercialization.

DECLARATIONS

Acknowledgments

This work was supported by Southeast University (SEU) Solar Energy and Joint Energy Storage Center,
Functional Materials Laboratory (FML), Xi’an University of Architecture and Technology (XAUAT), and Laboratory of Functional Materials and device, Nanjing Xiaozhuang University.

Authors’ contributions
Made substantial contributions to conception and design of this Research Highlight: Yun S, Zhu B
Investigation, formal analysis, writing - original draft: Lu Y
Data curation: Shi J
Supervision, methodology, resources, visualization, funding acquisition, project administration, writing - review & editing: Yun S, Zhu B

Availability of data and materials
Not applicable.

Financial support and sponsorship
This work was supported by NSFC (No. 51672208, 51772080), Key Program for International S&T Cooperation Projects of Shaanxi Province (No. 2019KWZ-03, No. 2019Z-20), and Open foundation Project of key Laboratory of Plateau Green Building and Ecological Community of Qinghai Province (No. KLKF-2019-002) is greatly acknowledged. This research was also funded by the Foundation of Nanjing Xiaozhuang University (Grant No. 2020NXY12).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2021.

REFERENCES
1. Fan L, Zhu B, Su P, He C. Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 2018;45:148-76. DOI
2. Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv Mater 2017;29:1700132. DOI PubMed
3. Meng Y, Mi Y, Xu F, et al. Low-temperature fuel cells using a composite of redox-stable perovskite oxide La$_{0.7}$Sr$_{0.3}$Cr$_{0.5}$Fe$_{0.5}$O$_{3-δ}$ and ionic conductor. J Power Sources 2017;366:259-64. DOI
4. Li J, Lu Y, Li D, Qi F, Yu L, Xia C. Effects of P-N and N-N heterostructures and band alignment on the performance of low-temperature solid oxide fuel cells. Int J Hydrogen Energy 2021;46:9790-8. DOI
5. Wang B, Wang Y, Fan L, et al. Preparation and characterization of Sm and Ca co-doped ceria-La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$ semiconductor-ionic composites for electrolyte-layer-free fuel cells. J Mater Chem A 2016;4:15426-36. DOI
6. Zhang W, Cai Y, Wang B, et al. The fuel cells studies from ionic electrolyte Ce$_{0.9}$Sm$_{0.05}$Ca$_{0.15}$O$_{2-δ}$ to the mixture layers with semiconductor Ni$_{0.8}$Co$_{0.2}$Al$_{0.05}$LiO$_{2-δ}$ and Schottky barrier. Int J Hydrogen Energy 2016;41:18761-8. DOI PubMed PMC
7. Nie X, Chen Y, Mushtaq N, et al. The sintering temperature effect on electrochemical properties of Ce$_{0.9}$Sm$_{0.05}$Ca$_{0.15}$O$_{2-δ}$ (SCDC)-La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-δ}$ (LSCF) heterostructure pellet. Nanoscale Res Lett 2019;14:162. DOI PubMed PMC
8. Deng H, Feng C, Zhang W, et al. The electrolyte-layer free fuel cell using a semiconductor-ionic SrFe$_{1.5}$Mo$_{0.5}$O$_{6-δ}$-Ce$_{0.3}$Sm$_{0.7}$O$_{2-δ}$ composite functional membrane. Int J Hydrogen Energy 2017;42:25001-7. DOI
9. Mushtaq N, Xia C, Dong W, et al. Tuning the energy band structure at interfaces of the SrFe$_{1.5}$Ti$_{0.25}$O$_{6-δ}$-Sm$_{0.73}$O$_{2-δ}$ heterostructure for fast ionic transport. ACS Appl Mater Interfaces 2019;11:38737-45. DOI PubMed
10. Afzal M, Saleemi M, Wang B, et al. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$ O$_{3-δ}$Sm$_{0.2}$Ce$_{0.8}$O$_{1.3}$) and Schottky barrier. J Power Sources 2016;328:136-42. DOI
11. Shah M, Mushtaq N, Rauf S, Xia C, Zhu B. The semiconductor SrFe$_{1.5}$Ti$_{0.25}$O$_{6-δ}$-ZnO hetero-structure electrolyte fuel cells. Int J
Lu et al. Energy Mater 2021;1:100007 | https://dx.doi.org/10.20517/energymater.2021.06 Page 9 of 10

Hydrog Energy 2019;4:30319-27. DOI
12. Xing Y, Wu Y, Li L, et al. Proton shuttles in CeO$_2$/CeO$_2$$_{2.3}$ core-shell structure. *ACS Energy Lett* 2019;4:2601-7. DOI
13. Chen G, Liu H, He Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO$_3$ electrolyte. *J Mater Chem A* 2019;7:9638-45. DOI
14. Islam QA, Paydar S, Akbar N, Zhu B, Wu Y. Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems. *J Power Sources* 2021;492:229626. DOI
15. Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes. *Nano Energy* 2013;2:1179-85. DOI
16. Zhu B, Huang Y, Fan L, et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. *Nano Energy* 2016;19:156-64. DOI
17. Zhu B, Raza R, Liu Q, et al. A new energy conversion technology joining electrochemical and physical principles. *RSC Adv* 2012;2:5066. DOI
18. Wang F, Xing Y, Hu E, et al. PN heterostructure interface-facilitated proton conduction in 3C-SiC/Na$_{0.8}$O$_{2.3}$ electrolyte for fuel cell application. *ACS Appl Energy Mater* 2021;4:7519-25. DOI
19. Lu Y, Mi Y, Li J, Qi F, Yan S, Dong W. Recent progress in semiconductor-ionic conductor nanomaterial as a membrane for low-temperature solid oxide fuel cells. *Nanomaterials (Basel)* 2021;11:2290. DOI PubMed PMC
20. Xu D, Yan A, Xu S, et al. Self-Assembled Triple (H$^+$/O$^-$) conducting nanocomposite of Ba-Co-Ce-Y-O into an electrolyte for semiconductor ionic fuel cells. *Nanomaterials (Basel)* 2021;11:2365. DOI PubMed PMC
21. Zhu B, Mi Y, Xia C, et al. Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell: material and technology. *Energy Mater* 2021;1:12. DOI
22. Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. *Nature Photon* 2015;9:679-86. DOI
23. Assadi M, Bakhoda S, Saidur R, Hanaei H. Recent progress in perovskite solar cells. *Renew Sustain Energy Rev* 2018;81:2812-22. DOI
24. Choi S, Kucharczyk CJ, Liang Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. *Nat Energy* 2018;3:202-10. DOI
25. Qiao Z, Xia C, Cai Y, et al. Electrochemical and electrical properties of doped CeO$_2$/ZnO composite for low-temperature solid oxide fuel cell applications. *J Power Sources* 2018;392:33-40. DOI
26. Wang L, Xie R, Chen B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. *Nat Commun* 2020;11:5889. DOI PubMed PMC
27. Yun S, Qin Y, Uhl AR, et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. *Energy Environ Sci* 2018;11:476-526. DOI
28. Yun S, Zhou X, Even J, Hagfeldt A. Theoretical treatment of CH$_3$NH$_2$Pbl$_2$ perovskite solar cells. *Angew Chem Int Ed Engl* 2017;56:15806-17. DOI
29. Zhu B, Lund PD, Raza R, et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials. *Adv Energy Mater* 2015;5:1401895. DOI
30. Xia C, Mi Y, Wang B, Lin B, Chen G, Zhu B. Shaping triple-conducting semiconductor BaCo$_{0.5}$Fe$_{0.5}$Zr$_{0.1}$Y$_{1.1}$O$_{3.9}$ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 2019;10:1707. DOI PubMed PMC
31. Mushraq N, Lu YZ, Xia C, et al. Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba$_{0.5}$Sr$_{0.5}$Fe$_{0.8}$Nb$_{0.2}$O$_{3.2}$Sm$_{0.3}$Ga$_{0.7}$O$_{2.5}$ heterostructure. *Applied Catalysis B: Environmental* 2021;298:120503. DOI
32. Cai Y, Wang B, Wang Y, et al. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature oxide fuel cells. *J Power Sources* 2018;384:318-27. DOI
33. Cai Y, Chen Y, Akbar M, et al. A bulk-heterostructure nanocomposite electrolyte of Ce$_{0.8}$Sm$_{0.2}$O$_{2.4}$-SrTiO$_3$ for low-temperature solid oxide fuel cells. *Nanomicro Lett* 2021;13:46. DOI PubMed PMC
34. Zhang Y, Liu J, Singh M, et al. Supersonic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells. *Nanomicro Lett* 2020;12:178. DOI PubMed PMC
35. Hu E, Jiang Z, Fan L, et al. Junction and energy band on novel semiconductor-based fuel cells. *iScience* 2021;24:102191. DOI PubMed PMC
36. Baur E, Preis H. Über brennstoff-ketten mit festleitern. *Elektrochem 1937;43:727-32. DOI
37. Zhu B, Fan L, Mushraq N, et al. Semiconductor electrochemistry for clean energy conversion and storage. *Electrochemical Energy Reviews* 2021. DOI
38. Liu L, Liu Y, Li L, Wu Y, Singh M, Zhu B. The composite electrolyte with an insulation Sm$_2$O$_3$ and semiconductor NiO for advanced fuel cells. *Int J Hydrogen Energy* 2018;43:12739-47. DOI
39. Ganesan KS, Wang B, Kim J, Zhu B. Ionic conducting properties and fuel cell performance developed by band structures. *J Phys Chem C* 2019;123:8569-77. DOI
40. Lu Y, Akbar M, Xia C, et al. Catalytic membrane with high ion-electron conduction made of strongly correlated perovskite LaNiO$_3$ and Ce$_{0.8}$Sm$_{0.2}$O$_{2.5}$ for fuel cells. *Journal of Catalysis* 2020;386:117-25. DOI
41. Shah MAKY, Rauf S, Zhu B, et al. Semiconductor Nb-doped SrTiO$_3$$_{0.95}$ perovskite electrolyte for a ceramic fuel cell. *ACS Appl Energy Mater* 2021;4:365-75. DOI
42. Rauf S, Shah MAKY, Zhu B, et al. Electrochemical properties of a dual-ion semiconductor-ionic Co$_{0.5}$Zn$_{0.5}$O$_{2.3}$Ce$_{0.8}$O$_{2.4}$ composite for a high-performance low-temperature solid oxide fuel cell. *ACS Appl Energy Mater* 2021;4:194-207. DOI
43. Rauf S, Zhu B, Shah MY, et al. Tailoring triple charge conduction in BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.1}$Y$_{0.1}$O$_{3-\delta}$ semiconductor electrolyte for boosting solid oxide fuel cell performance. *Renewable Energy* 2021;172:336-49. DOI