Supporting Information

Functionalisation of Vitamin B_{12} Derivatives with a Cobalt β-Phenyl Ligand Boosters Antimetabolite Activity in Bacteria

Dr. Christopher Brenig, Paula Daniela Mestizo and Prof. Dr. Felix Zelder*

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. Fax: +41 44 635 6803; E-mail: felix.zelder@chem.uzh.ch, www.felix-zelder.net.
Contents

Reaction Schemes.
- Scheme S1
 - Synthesis of Coβ-cyanocobalamin-c,8-lactam (2)
- Scheme S2
 - Synthesis of Coβ-aqua-cobalamin-c,8-lactam acetate (3)
- Scheme S3
 - Synthesis of Coβ-phenylcobalamin-c,8-lactam (4)
- Scheme S4
 - Synthesis of 10-bromo-Coβ-cyanocobalamin (5)
- Scheme S5
 - Synthesis of 10-bromo-Coβ-aquacobalamin tetrafluoroborate (6)
- Scheme S6
 - Synthesis of 10-bromo-Coβ-phenylcobalamin (7)

Atom Numbering.
- Figure S1
 - Atom numbering of vitamin B₁₂ (1) and its analogues

NMR and optical Spectra.
- Figure S2
 - 1H-NMR spectrum of 2 (500 MHz, D₂O (presat), 298 K, 4.1 x 10⁻³ M).
- Figure S3
 - UV-Vis spectrum of 2 (H₂O, 4.1 x 10⁻⁵ M).
- Figure S4
 - 1H-NMR spectrum of 3 (500 MHz, CD₂OD, 298 K, 7.3 x 10⁻³ M).
- Figure S5
 - UV/Vis spectrum of 3 (H₂O, c = 2.2 x 10⁻⁵ M).
- Figure S6
 - 1H-NMR spectrum of 4 (500 MHz, D₂O (presat), 298 K, 1.2 x 10⁻² M).
- Figure S7
 - 1C-NMR spectrum of 4 (126 MHz, D₂O (presat), 298 K, 1.2 x 10⁻² M).
- Figure S8
 - DEPT 135-NMR spectrum of 4 (126 MHz, D₂O, 298 K, 1.2 x 10⁻² M).
- Figure S9
 - 1H-1H DFQ-COSY spectrum of 4 (500 MHz, D₂O, 298 K, 1024 x 2560 p, 12 scans, 1.2 x 10⁻² M).
- Figure S10
 - 1H-1H NOESY spectrum of 4 (500 MHz, D₂O, 298 K, 1024 x 1884 p, 16 scans, 1.2 x 10⁻² M).
- Figure S11
 - 1H-1C HSQC spectrum of 4 (500 MHz, 126 MHz, D₂O (presat), 298 K, 1024 x 5120 p, 18 scans, 1.2 x 10⁻² M).
- Figure S12
 - 1H-1C HMBC spectrum of 4 (500 MHz, 126 MHz, D₂O, 298 K, 1024 x 3000 p, 12 scans, 1.2 x 10⁻² M).
- Figure S13
 - UV/Vis spectrum of 4 (H₂O, 3.9 x 10⁻³ M).
- Figure S14
 - 1H-NMR spectrum of 5 (500 MHz, D₂O (presat), 298 K, 4.9 x 10⁻³ M).
- Figure S15
 - UV-Vis spectrum of 5 (H₂O, 4.9 x 10⁻⁵ M).
- Figure S16
 - 1H-NMR spectrum of 7 (500 MHz, CD₂OD (presat), 298 K, 8.7 x 10⁻³ M).
- Figure S17
 - 1C-NMR spectrum of 7 (126 MHz, CD₂OD (presat), 298 K, 8.7 x 10⁻³ M).
- Figure S18
 - 1H-1C HSQC spectrum of 7 (500 MHz, 126 MHz, CD₂OD, 298 K, 1024 x 1024 p, 32 scans, 8.7 x 10⁻³ M).
- Figure S19
 - 1H-1C HMBC spectrum of 7 (500 MHz, 126 MHz, CD₂OD, 298 K, 1024 x 2341 p, 12 scans, 8.7 x 10⁻³ M).
- Figure S20
 - UV/Vis spectrum of 7 (H₂O, 3.5 x 10⁻⁵ M).
- Figure S21
 - 1H-NMR spectrum of 8, β-PhCbl (500 MHz, D₂O (presat), 298 K, 3.2 x 10⁻³ M).
- **Figure S22**

1H-NMR spectrum of 8, β-PhCbl (500 MHz, D$_2$O (presat), 298 K, 3.2 x 10$^{-3}$ M).
Reaction Schemes.

Scheme S1. Synthesis of Co$_p$-cyanocobalamin-c,8-lactam (2).

Scheme S2. Synthesis of Co$_p$-aquacobalamin-c,8-lactam acetate (3).

Scheme S3. Synthesis of Co$_p$-phenylcobalamin-c,8-lactam (4) and its side product Co$_a$-phenylcobalamin-c,8-lactam (4a, not characterized).
Scheme S4. Synthesis of 10-bromo-Coβ-cyanocobalamin (5).

Scheme S5. Synthesis of 10-bromo-Coβ-aquacobalamin tetrafluoroborate (6) from intermediate 10-Bromo-Coβ-phenylethynylcobalamin (reported in ref S4).

Scheme S6. Synthesis of 10-bromo-Coβ-phenylcobalamin (7) from Coβ-phenylcobalamin (reported in ref S3).
Figure S1. Atom numbering of vitamin B$_{12}$ (1) and its analogues. Bottom: Atom numbering of the c,8-lactam ring in derivatives 2 and 4, as well as nomenclature of the phenyl ligand of β-PhCbl, 4 and 7.
NMR and optical Spectra.

Figure S2. 1H-NMR spectrum of 2 (500 MHz, D$_2$O (presat), 298 K, 4.1 x 10$^{-3}$ M).

Figure S3. UV/Vis spectrum of 2 (H$_2$O, 4.1 x 10$^{-5}$ M).
Figure S4. 1H-NMR spectrum of 3 (500 MHz, CD$_3$OD, 298 K, $7.3 \cdot 10^{-3}$ M).

Figure S5. UV/Vis spectrum of 3 (H$_2$O, $c = 2.2 \cdot 10^{-5}$ M).
Figure S6. 1H-NMR spectrum of 4 (500 MHz, D$_2$O (presat), 298 K, 1.2×10^{-2} M).

Figure S7. 13C-NMR spectrum of 4 (126 MHz, D$_2$O, 298 K, 1.2×10^{-2} M).
Figure S8. DEPT 135-NMR spectrum of 4 (126 MHz, D$_2$O, 298 K, 1.2 x 10^{-2} M).

Figure S9. 1H-1H DFQ-COSY spectrum of 4 (500 MHz, D$_2$O, 298 K, 1024 x 2560 p, 12 scans, 1.2 x 10^{-2} M).
Figure S10. 1H1H NOESY spectrum of 4 (500 MHz, D$_2$O, 298 K, 1024 x 1884 p, 16 scans, 1.2×10^{-2} M).

Figure S11. 1H1C HSQC spectrum of 4 (500 MHz, 126 MHz, D$_2$O (presat), 298 K, 1024 x 5120 p, 18 scans, 1.2×10^{-2} M).
Figure S12. 1H-13C HMBC spectrum of 4 (500 MHz, 126 MHz, D$_2$O, 298 K, 1024 x 3000 p, 12 scans, 1.2 x 10$^{-2}$ M).

Figure S13. UV/Vis spectrum of 4 (H$_2$O, 3.9 x 10$^{-5}$ M).
Figure S14. 1H-NMR spectrum of 5 (500 MHz, D$_2$O (presat), 298 K, 4.9 x 10^{-3} M).

Figure S15. UV/Vis spectrum of 5 (H$_2$O, 4.9 x 10^{-5} M).
Figure S16. 1H-NMR spectrum of 7 (500 MHz, CD$_3$OD (presat), 298 K, 8.7 x 10^{-3} M).

Figure S17. 13C-NMR spectrum of 7 (126 MHz, CD$_3$OD (presat), 298 K, 8.7 x 10^{-3} M).
Figure S18. 1H-13C HSQC spectrum of 7 (500 MHz, 126 MHz, CD$_3$OD, 298 K, 1024 x 1024 p, 32 scans, 8.7 x 10^{-3} M).

Figure S19. 1H-13C HMBC spectrum of 7 (500 MHz, 126 MHz, CD$_3$OD, 298 K, 1024 x 2341 p, 12 scans, 8.7 x 10^{-3} M).
Figure S20. UV/Vis spectrum of 7 (H₂O, 3.5 x 10⁻⁵ M).

Figure S21. ¹H-NMR spectrum of 8, β-PhCbl (500 MHz, D₂O (presat), 298 K, 3.2 x 10⁻³ M).
Figure S22. UV/Vis spectrum of 8, β-PhCbl (H₂O, 6.3 x 10⁻⁵ M).