Long-term Oncological Outcomes of Totally Laparoscopic Colectomy With Intracorporeal Anastomosis for Colon Cancer: Propensity Score Matching Analysis

Hiroki Hamamoto (hirokihamamoto@msn.com)  
Osaka Medical and Pharmaceutical University  https://orcid.org/0000-0002-2294-4673

Junji Okuda  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Yusuke Suzuki  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Keisuke Izuhara  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Masatsugu Ishii  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Wataru Osumi  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Shinsuke Masubuchi  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Masashi Yamamoto  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Keitaro Tanaka  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Kazuhisa Uchiyama  
Osaka Medical and Pharmaceutical University: Osaka Ika Yakka Daigaku

Research Article

Keywords: Totally laparoscopic colectomy, Intracorporeal anastomosis, Propensity score matching analysis

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1057854/v1
Abstract

Background: This retrospective study aimed to compare long-term oncological outcomes between laparoscopic-assisted colectomy (LAC) with extracorporeal anastomosis (EA) and totally laparoscopic colectomy (TLC) with intracorporeal anastomosis (IA) for colon cancers, including right- and left-sided colon cancers.

Methods: Patients with stage I–III colon cancers who underwent elective laparoscopic colectomy between January 2013 and December 2017 were analyzed retrospectively. Patients converted from laparoscopic to open surgery and R1/R2 resection were excluded. Propensity score matching (PSM) analysis (1:1) was performed to overcome patient selection bias.

Results: A total of 388 patients were reviewed. After PSM, 83 patients in the EA group and 83 patients in the IA group were compared. Median follow-up was 56.5 months in the EA group and 55.5 months in the IA group. Estimated 3-year overall survival (OS) did not differ significantly between the EA group (86.6%; 95% confidence interval (CI), 77.4–92.4%) and IA group (84.8%; 95%CI, 75.0–91.1%; $P = 0.68$). Estimated 3-year disease-free survival (DFS) likewise did not differ significantly between the EA group (76.4%; 95%CI, 65.9–84.4%) and IA group (81.0%; 95%CI, 70.1–88.2%; $P = 0.12$).

Conclusion: TLC with IA was comparable to LAC with EA in terms of 3-year OS and DFS. TLC with IA thus appears to offer an oncologically feasible procedure.

Introduction

The advantages of totally laparoscopic colectomy (TLC) with intracorporeal anastomosis (IA) for right-sided colon cancer (RC) have been reported in many studies [1–7]. TLC with IA can avoid the risk of twisting the mesentery and bowel during anastomotic construction and allows the surgeon to select the optimal site of bowel extraction. A systematic review [6] confirmed better short-term outcomes of TLC with IA for RC compared with laparoscopic-assisted colectomy (LAC) with extracorporeal anastomosis (EA) in terms of results such as bowel function, length of hospital stay, and cosmetic results. In addition, Hanna et al. [8] showed no significant difference between LAC with EA and TLC with IA for RC in terms of oncological outcomes.

IA for sigmoid colon and rectal cancer using a double-stapling technique (DST) with a circular stapler is a common procedure. If the tumor is located in the descending colon or proximal sigmoid colon where DST anastomosis is difficult, EA such as functional end-to-end or side-to-side colo-colo-stomy is usually performed. LAC with EA for left-sided colon cancer (LC) needs mobilization of the splenic flexure, whereas TLC with IA might omit that procedure. We have reported that TLC with IA is technically feasible for LC where DST anastomosis is difficult and can be performed with good cosmetic outcomes and decreased time to first flatus [9]. Swaid et al. [10] reported similar results, but few studies have compared TLC with IA to LAC with EA for LC. Moreover, no reports have been published on the long-term outcomes of TLC with IA as compared to LAC with EA for colon cancers including both RC and LC.
The present study aimed to compare long-term outcomes between LAC with EA and TLC with IA for colon cancers including LC, using propensity score matching (PSM) analysis to reduce sample selection bias.

**Materials And Methods**

We started TLC with IA from June 2013 for patients with early-stage colon cancer, and the indications were gradually and carefully expanded to include advanced cancer. Patients who underwent elective laparoscopic surgery for colon cancer in our hospital between January 2013 and December 2017 were retrospectively evaluated. This study was reviewed and approved by the institutional review board at Osaka Medical College (acceptance number: 2853) and was performed in accordance with the Declaration of Helsinki. The choice of operation, as either LAC with EA or TLC with IA, was determined by the operating surgeon. The standard procedures were similar for all patients and performed by the same surgical team. Exclusion criteria were: DST anastomosis; patients with distant metastasis or simultaneous double cancer; conversion from laparoscopic to open surgery; or R1/R2 resection.

**Operative procedure**

Patients were placed in the lithotomy position with a 0–15° head-up or head-down tilt during surgery. Intraabdominal pressure was maintained at 10 mmHg, and pneumoperitoneum was established with heated, humidified carbon dioxide gas. Five trocars were used in all procedures, with mobilization of the colon and lymphadenectomy performed laparoscopically by the medial-to-lateral approach. No drainage tube was placed after surgery.

**LAC with EA**

A small incision was extended for the trocar incision at the umbilicus or the left lower quadrant port site. After providing protection with Wound Protector, the bowel was externalized. The ileum or colon was resected with 60-mm linear staples (Fig. 1a) and ileo-colostomy/colo-colostomy was performed using a 60-mm linear stapler (Fig. 1b). The enterotomy was then closed using the 60-mm linear stapler (Fig. 1c, d).

**TLC with IA**

The procedure for TLC with IA for RC or LC has been described in our previous reports [9, 11]. In summary, the ileum or colon was divided intracorporeally with 60-mm linear staplers (Fig. 1e), and the enterotomy was closed using the Albert-Lembert method after fashioning side-to-side ileo-colostomy/colo-colostomy with a 60-mm linear stapler (Fig. 1f–h). The specimen was then extracted through a mini-laparotomy over the trans-umbilical port site, the lower quadrant port site, or via Pfannenstiel laparotomy.

**Statistical analysis**

Statistical analysis was performed using JMP 14.2 software (SAS Institute Inc., Cary, NC, USA). To minimize the influence of potential confounders on selection bias, propensity scores of patient characteristics and pathological results were generated using binary logistic regression. One-to-one
matching between two groups was accomplished using the nearest-neighbor matching method, performed without replacement and using a caliper width of 0.2 standard deviations of the logit of the estimated propensity score. After propensity score matching, the two matched groups were handled as unpaired independent groups. Data are expressed as median with interquartile range or mean ± standard error. The statistical significance of other data was determined using one-way analysis of variance, Fisher's test, the chi-squared test, or Student's t test. Univariate analyses of overall survival (OS) and disease-free survival (DFS) rates were performed using the Kaplan-Meyer method. Differences when comparing survival curves were analyzed using the log-rank test. Cox regression analysis was performed to identify possible prognostic factors. Results are reported as hazard ratios and 95% confidence intervals (CIs). Values of \( P < 0.05 \) were considered statistically significant.

## Results

## Patients

Of the 691 eligible patients, 303 patients were excluded, and 388 patients were analyzed in this study (Fig. 2). We identified significant differences in age, body mass index, American Society of Anesthesiologists score, and tumor location, and PSM was performed. Patient background characteristics and pathological results in both groups were closely balanced by the PSM, resulting in 83 matched pairs (Table 1). Finally, 83 patients in the EA group and 83 patients in the IA group were compared.
|                          | Before PSM                  |          |          | After PSM                 |          |          |
|--------------------------|-----------------------------|----------|----------|---------------------------|----------|----------|
|                          | EA (n = 294)                | IA (n = 94) | P value  | EA (n = 83)               | IA (n = 83) | P value  |
| Sex (M/F)                | 135/159                     | 54/40    | 0.051    | 39/44                     | 48/35    | 0.16     |
| Age (years)              | 73 (29-90)                  | 70 (29-87) | 0.036*   | 70 (34-88)                | 71 (29-87) | 0.92     |
| BMI (kg/m$^2$)           | 22 (13-33)                  | 23 (15-41) | <0.01*   | 23 (17-33)                | 23 (15-41) | 0.48     |
| ASA classification (I/II/III) | 70/187/37                  | 52/39/3  | <0.01*   | 42/39/2                   | 41/39/3  | 0.90     |
| History of diabetes      | 37 (13%)                    | 10 (11%) | 0.61     | 10 (12%)                  | 10 (12%) | 1.00     |
| Tumor location           |                            | <0.01*   |          |                           |          | 0.74     |
| Right-side colon         | 234 (80%)                   | 52 (55%) |          | 53 (64%)                  | 51 (61%) |          |
| Left-side colon          | 60 (20%)                    | 42 (45%) |          | 30 (36%)                  | 32 (39%) |          |
| Tumor size               |                            | 0.41     |          |                            | 0.32     |          |
| >5 cm                    | 93 (32%)                    | 34 (36%) |          | 24 (29%)                  | 30 (36%) |          |
| ≤5 cm                    | 201 (68%)                   | 60 (64%) |          | 59 (71%)                  | 53 (64%) |          |
| T stage                  | 0.081                       |          |          | 0.07                       |          |          |
| T1–2                     | 120 (41%)                   | 29 (31%) |          | 35 (42%)                  | 24 (29%) |          |
| T3–4                     | 174 (59%)                   | 65 (69%) |          | 48 (58%)                  | 59 (71%) |          |
| LN metastasis            |                            | 0.21     |          |                            | 0.29     |          |
| Yes                      | 71 (24%)                    | 29 (31%) |          | 19 (23%)                  | 25 (30%) |          |
| No                       | 223 (76%)                   | 65 (69%) |          | 64 (77%)                  | 58 (70%) |          |
| TNM staging              | 0.067                       |          |          | 0.23                       |          |          |
| I                        | 111 (38%)                   | 26 (28%) |          | 32 (39%)                  | 22 (27%) |          |
| II                       | 112 (38%)                   | 39 (42%) |          | 32 (39%)                  | 36 (43%) |          |

PSM: propensity score matching; EA: extracorporeal anastomosis; IA: intracorporeal anastomosis; M: male; F: female; BMI: body mass index; ASA: American Society of Anesthesiologists; LN: lymph-node. TNM stage is classified by UICC-7 staging. Values are expressed as median (range).

* Significant difference between groups; $P < 0.05$. 
Operative, pathological, and oncological results after PSM

Operative, pathological, and oncological results before and after PSM are shown in Table 2. We identified significant differences in distal resection margin, operation time, length of skin incision, and surgical site infection (SSI) rate. Time to first flatus, length of hospital stay, and leakage rate did not differ significantly. Two patients (2.4%) in the EA group and three patients (3.6%) in the IA group experienced disseminated recurrence, but no patients experienced anastomosis site recurrence after PSM.
### Table 2
Operative, pathological, and oncological results

|                          | Before PSM | After PSM |
|--------------------------|------------|-----------|
|                          | EA (n = 294) | IA (n = 94) | EA (n = 83) | IA (n = 83) | P value |
| Operation time (min)     | 190 (79-528) | 227 (115-530) | <0.01* | 200 (110-372) | 227 (85-530) | <0.01* |
| Blood loss (ml)          | 10 (10-50) | 10 (10-220) | 0.27 | 10 (10-440) | 10 (10-100) | 0.44 |
| Number of harvested       | 18 (0-74) | 18 (0-54) | 0.53 | 18 (1-48) | 19 (0-54) | 0.93 |
| lymph nodes              |            |            |      |            |            |      |
| Resection margin         |            |            |      |            |            |      |
| Proximal (cm)            | 10 (3-40) | 10 (2-35) | 0.49 | 10 (4-30) | 10 (2-35) | 0.69 |
| Distal (cm)              | 10 (0.5-35) | 10 (0.5-30) | 0.021* | 9 (0.5-20) | 10 (0.5-30) | 0.015* |
| Skin incision (cm)       | 4.5 ± 1.7 | 4.0 ± 1.1 | <0.01* | 4.6 ± 0.2 | 4.1 ± 0.2 | <0.01* |
| Time to first flatus (days) | 2 (0-8) | 1 (0-4) | 0.079 | 2 (0-4) | 1 (0-4) | 0.38 |
| Length of hospital stay (days) | 11 (7-154) | 12 (7-87) | 0.35 | 11 (7-56) | 12 (7-87) | 0.025* |
| Complications            |            |            |      |            |            |      |
| Superficial SSI          | 19 (10%) | 13 (19%) | 0.030* | 3 (3.6%) | 11 (13%) | 0.047* |
| Organ space/deep SSI     | 11 (3.7%) | 5 (5.3%) | 0.50 | 4 (4.8%) | 5 (6.0%) | 0.73 |
| Leakage                  | 7 (2.4%) | 6 (6.4%) | 0.092 | 2 (2.4%) | 5 (6.0%) | 0.23 |
| Clavien-Dindo III        | 12 (4.1%) | 9 (9.6%) | 0.063 | 4 (4.8%) | 9 (11%) | 0.14 |
| Recurrence               | 2 (0.7%) | 1 (1.1%) | 0.71 | 0 | 0 |      |
| Liver/lung               | 19 (6.5%) | 7 (7.5%) | 0.74 | 2 (2.4%) | 7 (8.4%) | 0.087 |
| Dissemination            | 9 (3.1%) | 3 (3.2%) | 0.95 | 2 (2.4%) | 3 (3.6%) | 0.65 |
| Anastomosis site         | 2 (0.7%) | 1 (1.1%) | 0.71 | 0 | 0 |      |

PSM: propensity score matching; EA: extracorporeal anastomosis; IA: intracorporeal anastomosis; SSI: surgical site infection.

Values are expressed as median (range) or average ± SD.

* Significant difference between groups; P < 0.05.
Long-term oncological outcomes after PSM

Median follow-up was 56.5 months for the EA group and 55.5 months for the IA group. At the time of last follow-up on December 31, 2020, 10 patients had died, comprising 4 patients (4.8%) from the EA group and 6 patients (7.2%) from the IA group. Estimated 3-year OS did not differ significantly between the EA group (86.6%; 95%CI, 77.4–92.4%) and the IA group (84.8%; 95%CI, 75.0–91.1%; $P = 0.68$) (Fig. 3a).

Estimated 3-year DFS likewise did not differ significantly between the EA group (76.4%; 95%CI, 65.9–84.4%) and the IA group (81.0%; 95%CI, 70.1–88.2%; $P = 0.12$) (Fig. 3b).

**Cox regression analysis after PSM**

Neither EA nor IA was associated with poor DFS (Table 3). Tumor location, lymph-node metastasis, and Stage III were likewise not associated with poorer DFS.
|                          | Hazard ratio | 95%CI        | P value |
|--------------------------|--------------|--------------|---------|
| Sex                      |              |              |         |
| Male                     | 1            |              |         |
| Female                   | 0.86         | 0.64-1.18    | 0.35    |
| Age (years)              |              |              |         |
| ≤ 65                     | 1            |              |         |
| > 65                     | 1.04         | 0.75-1.50    | 0.82    |
| BMI (kg/m^2)             |              |              |         |
| ≤ 25                     | 1            |              |         |
| > 25                     | 1.32         | 0.92-1.90    | 0.13    |
| Tumor location           |              |              |         |
| Right-side colon         | 1            |              |         |
| Left-side colon          | 1.22         | 0.89-1.68    | 0.21    |
| Anastomosis              |              |              |         |
| Extracorporeal           | 1            |              |         |
| Intracorporeal           | 0.80         | 0.59-1.10    | 0.80    |
| T stage                  |              |              |         |
| T1–2                     | 1            |              |         |
| T3–4                     | 1.14         | 0.82-1.58    | 0.42    |
| LN metastasis            |              |              |         |
| No                       | 1            |              |         |
| Yes                      | 1.23         | 0.87-1.74    | 0.24    |
| TNM stage                |              |              |         |
| I–II                     | 1            |              |         |
| III                      | 1.23         | 0.87-1.74    | 0.24    |
| Adjuvant chemotherapy    |              |              |         |

PSM: propensity score matching; CI: confidence interval; BMI: body mass index; LN: lymph-node. TNM stage is classified by UICC-7 staging.
|                | Hazard ratio | 95%CI        | P value |
|----------------|--------------|--------------|---------|
| No             | 1            |              |         |
| Yes            | 1.13         | 0.76-1.68    | 0.55    |

PSM: propensity score matching; CI: confidence interval; BMI: body mass index; LN: lymph-node. TNM stage is classified by UICC-7 staging.

**Discussion**

Our results showed that laparoscopic colectomy with TLC with IA was similar to LAC with EA in terms of 3-year OS and DFS. IA involved exposing the ileum and colon under pneumoperitoneum in the abdominal cavity, raising concerns of increased peritoneal dissemination with IA. In the 1990s, when laparoscopic surgery for colon cancer was started, concern about port-site recurrences was widespread, but was allayed by large prospective series [12–15]. In the present study including TLC with IA for LC, only 2 patients in the EA group and 3 patients in the IA group experienced disseminated recurrence after PSM. No patients in either group experienced recurrence at the anastomosis site after PSM. Moreover, neither EA nor IA was associated with poor DFS in Cox regression analysis. No significant differences in the number of lymph nodes harvested were identified between groups. These results suggested that TLC with IA is an oncologically reasonable procedure.

In this study, the incidence of superficial SSI was significantly higher in the IA group (13%) than in the EA group (3.6%; P = 0.047). Exposing the intestinal tract in the abdominal cavity during IA procedures may result in exposure to bacteria, but the frequency of organ-space/deep SSI did not differ significantly between groups in our results (4.8% in the EA group vs. 6.0% in the IA group, P = 0.73). We showed that IA procedures did not increase the risk of dissemination, but also did not increase organ-space/deep SSI. Superficial SSI was frequently encountered at the port site through which 60-mm linear staplers were passed for side-to-side ileo-colostomy/colo-colostomy. The port through which the linear stapler was passed for anastomosis may become contaminated with stool, increasing the risk of superficial SSI. Length of postoperative hospital stay is known to be prolonged by the occurrence of SSI [16], and the IA group showed a longer hospital stay than the EA group in our study. Several reports showing that TLC with IA was favorable in terms of SSI have represented the rate of SSI as 1–4.4% [17–19], lower than our results. To prevent SSI, we have started applying additional steps, such as cleaning inside the contaminated port and administering chemical preparation with oral antibiotics the day before surgery. Since introducing such steps, we have encountered no SSIs in 13 consecutive TLCs with IA for RC in 2020 [11].

Good short-term outcomes of TLC with IA for RC have been shown in many retrospective reports [1–7]. In this study including LC, TLC with IA required a longer operation time and needed a shorter skin incision than LAC with EA. Because of the procedure dissecting the mesentery and anastomosis intracorporeally, TLC with IA took longer, but the smaller skin incision was advantageous in terms of cosmetology and
postoperative pain. As another advantage, TLC with IA enables extraction site flexibility [17]. This advantage is particularly useful in natural orifice specimen extraction surgery [20] and holds promise for scarless surgery if natural orifice transluminal endoscopic surgery can be achieved.

The main potential advantages of IA lie in surgeries for obese patients and patients who have undergone polysurgery. Obese patients may have thick layers of subcutaneous fat and a shortened colonic mesentery, which could present an obstacle to EA and result in a need for longer skin incisions compared to non-obese patients. Although the length of skin incision required for EA and IA are considered similar in non-obese patients, the significantly shorter skin incision for IA in our cohort may indicate a difference in obese patients. Patients who have undergone polysurgery might also encounter difficulties with EA due to intra-abdominal adhesions, in which cases IA would prove useful. In our institution, IA was performed for patients with advanced cancers such as T4a or subtotal circumferential tumor, but if a skin incision of 8 cm or more was required for specimen removal due to bulky tumor or other-organ invasion, we ruled out the IA procedure, as the advantages of IA were considered to be neutralized. IA was also not indicated for patients with preoperative ileus symptoms because of the high risk of abdominal contamination, but we did perform IA if intestinal decompression proved effective.

Adequate proximal and distal margins are important to guarantee sufficient oncological radicality. The IA group obtained a significantly longer distal margin in this study. TLC with IA, which determined the dissection line in the abdominal cavity, can secure a wider disease-free margin compared to EA. Scatizzi et al. [4] reported similar results, with resection of a longer specimen potentially reducing the risk of residual colon ischemia.

The present study showed that none of tumor location, lymph-node metastasis, or stage III were associated with poor DFS. Two large population-based studies have reported that RCs show worse prognosis than left-sided colon cancers [21, 22], but tumor location was not a prognostic factor in our study. Similarly, lymph-node metastasis and stage III are considered to be associated with poor DFS, but again, not in our study. The benefit of adjuvant chemotherapy (AC) for stage III colon cancer has been clearly established [23, 24], and AC is recommended for patients with lymph-node metastasis; in other words, patients classified as stage III according to National Comprehensive Cancer Network guidelines [25]. The 3-year OS rate in this study including stage III cases (166 patients after PSM) was 85.7%. Our overall prognosis in this study might have been too good and the sample size too small to allow identification of significant prognostic factors.

To the best of our knowledge, two prospective study have compared TLC with IA to LAC with EA. Marco et al. [26] conducted a prospective, randomized study of 140 patients with RC, reporting earlier recovery of postoperative bowel function for TLC with IA compared to LAC with EA, but they did not meet their primary endpoint of shorter hospital stay. Similarly, Bollo et al. [27] conducted a prospective, randomized study of 140 patients with RC, and did not meet the primary endpoint of shorter hospital stay in the IA group compared to the EA group. Serra-Aracil et al. [28] are carrying out a prospective, controlled, nonrandomized study, the HEMI-D-TREND Study, in which the primary endpoint is overall morbidity and
mortality for LAC with EA and TLC with IA, and open colectomy for RC. The study is ongoing and expected to finish in June 2021, and the results are eagerly awaited. No prospective studies including both RC and LC have been reported yet.

This study had some limitations, including the retrospective, single-center design. However, strengths of the study include the fact that this is the largest retrospective comparison of long-term, oncological outcomes between LAC with EA and TLC with IA, the reduction of selection bias by PSM, and the inclusion of not only RC, but also LC.

In conclusion, the present study showed that TLC with IA was an oncologically feasible procedure with long-term outcomes comparable to those of LAC with EA. A prospective, randomized trial comparing LAC with EA to TLC with IC could validate these findings.

Declarations

Ethics approval and consent to participate

The study protocol was approved by the institutional review board of Osaka Medical College (acceptance number: 2853) and was performed in accordance with the Declaration of Helsinki. Due to the retrospective design of the study, the local ethic committee confirmed that informed consent was not necessary from participants.

Consent for publication

Not applicable.

Availability of data and materials

The datasets generated and analyzed during the current study available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was not funded by any outside source.

Authors’ contributions

HH and JO conceived the study design. HH, YS, KI, MI, WO, SM and MY acquired the data for the study. HH and KT analyzed and interpreted the data. HH drafted the manuscript. JO and KU revised the manuscript critically. The authors read and approved the final manuscript.
Acknowledgements

None.

Disclosure

The authors have no conflicts of interest to declare.

References

1. Raftopoulos I, Courcoulas AP, Blumberg D. Should completely intracorporeal anastomosis be considered in obese patients who undergo laparoscopic colectomy for benign or malignant disease of the colon? Surgery. 2006;140(4):675-682; discussion 682-673.
2. Bergamaschi R, Schochet E, Haughn C, et al. Standardized laparoscopic intracorporeal right colectomy for cancer: short-term outcome in 111 unselected patients. Dis Colon Rectum. 2008; 51:1350-1355.
3. Grams J, Tong W, Greenstein AJ, Salky B. Comparison of intracorporeal versus extracorporeal anastomosis in laparoscopic-assisted hemicolecction. Surg Endosc. 2010; 24:1886-1891.
4. Scatizzi M, Kröning KC, Borrelli A, et al. Extracorporeal versus intracorporeal anastomosis after laparoscopic right colectomy for cancer: a case-control study. World J Surg. 2010; 34:2902-2908.
5. Anania G, Santini M, Scagliarini L, et al. A totally mini-invasive approach for colorectal laparoscopic surgery. World J Gastroenterol. 2012; 18:3869-3874.
6. Cirocchi R, Trastulli S, Farinella E, et al. Intracorporeal versus extracorporeal anastomosis during laparoscopic right hemicolecction - systematic review and meta-analysis. Surg Oncol. 2013; 22:1-13.
7. Milone M, Elmore U, Di Salvo E, et al. Intracorporeal versus extracorporeal anastomosis. Results from a multicentre comparative study on 512 right-sided colorectal cancers. Surg Endosc. 2015; 29:2314-2320.
8. Hanna MH, Hwang GS, Phelan MJ, et al. Laparoscopic right hemicolecction: short- and long-term outcomes of intracorporeal versus extracorporeal anastomosis. Surg Endosc. 2016; 30:3933-3942.
9. Masubuchi S, Okuda J, Hamamoto H, et al. Intracorporeal versus extracorporeal anastomosis in laparoscopic left colectomy for left-side colon cancer: a retrospective study. Clinics in Surgery. 2019 | Volume 4 | Article 2506.
10. Swaid F, Sroka G, Madi H, et al. Totally laparoscopic versus laparoscopic-assisted left colectomy for cancer: a retrospective review. Surg Endosc. 2016; 30:2481-2488.
11. Hamamoto H, Okuda J, Izuhara K, et al. Closure of enterotomy after side-to-side ileocolic anastomosis with two barbed sutures in totally laparoscopic colectomy for right-sided colon cancer. Surg Today. 2021; 51:457-461.
12. Fleshman J, Sargent DJ, Green E, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg. 2007; 246:655-662;
discussion 662-654.

13. Jayne DG, Guillou PJ, Thorpe H, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol. 2007; 25:3061-3068.

14. Lacy AM, Delgado S, Castells A, et al. The long-term results of a randomized clinical trial of laparoscopy-assisted versus open surgery for colon cancer. Ann Surg. 2008; 248:1-7.

15. Jayne DG, Thorpe HC, Copeland J, et al. Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg. 2010; 97:1638-1645.

16. Mujagic E, Marti WR, Coslovsky M, et al. Associations of hospital length of stay with surgical site infections. World J Surg. 2018; 42:3888-3896.

17. Shapiro R, Keler U, Segev L, et al. Laparoscopic right hemicolectomy with intracorporeal anastomosis: short- and long-term benefits in comparison with extracorporeal anastomosis. Surg Endosc. 2016; 30:3823-3829.

18. Biondi A, Santocchi P, Pennestrì F, et al. Totally laparoscopic right colectomy versus laparoscopically assisted right colectomy: a propensity score analysis. Surg Endosc. 2017; 31:5275-5282.

19. Martinek L, You K, Giuratrabocchetta S, et al. Does laparoscopic intracorporeal ileocolic anastomosis decreases surgical site infection rate? A propensity score-matched cohort study. Int J Colorectal Dis. 2018; 33:291-298.

20. Masubuchi S, Okuda J, Yamamoto M, et al. Natural orifice specimen extraction in laparoscopic colorectal cancer surgery: A case series study. Int J Surg Case Rep. 2021; 78:204-209.

21. Weiss JM, Pfau PR, O'Connor ES, et al. Mortality by stage for right- versus left-sided colon cancer: analysis of surveillance, epidemiology, and end results–Medicare data. J Clin Oncol. 2011; 29:4401-4409.

22. Gervaz P, Usel M, Rapiti E, et al. Right colon cancer: Left behind. Eur J Surg Oncol. 2016; 42:1343-1349.

23. Gray R, Barnwell J, McConkey C, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007; 370:2020-2029.

24. André T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009; 27:3109-3116.

25. National Comprehensive Cancer Network guidelines.
   https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed 20 January 2021.

26. Allaix ME, Degiuli M, Bonino MA, et al. Intracorporeal or extracorporeal ileocolic anastomosis after laparoscopic right colectomy: a double-blinded randomized controlled trial. Ann Surg. 2019; 270:762-767.
27. Bollo J, Turrado V, Rabal A, et al. Randomized clinical trial of intracorporeal versus extracorporeal anastomosis in laparoscopic right colectomy (IEA trial). Br J Surg. 2020; 107:364-372.

28. Serra-Aracil X, Pascua-Solé M, Mora-López L, et al. Multicenter controlled study of intracorporeal mechanical side-to-side isoperistaltic anastomosis versus extracorporeal anastomosis in laparoscopic right hemicolecctomy: HEMI-D-TREN-D-Study. Dig Surg. 2020; 37:271-274.

Figures

Figure 1

a–d) Extracorporeal anastomosis. e–h) Intracorporeal anastomosis.
Figure 2

Flow diagram of this study. DST: double stapling technique; LAC: laparoscopic-assisted colectomy; EA: extracorporeal anastomosis; TLC: totally laparoscopic colectomy; IA: intracorporeal anastomosis.

**a**

Overall survival (%) vs. time (months) for EA and IA anastomosis. (P = 0.68)

**b**

Disease-free survival (%) vs. time (months) for EA and IA anastomosis. (P = 0.12)

| Number at risk | EA   | IA   |
|----------------|------|------|
| 60 months     | 83   | 83   |
| 48 months     | 81   | 77   |
| 36 months     | 79   | 76   |
| 24 months     | 71   | 71   |
| 12 months     | 55   | 54   |

| Number at risk | EA   | IA   |
|----------------|------|------|
| 60 months     | 83   | 83   |
| 48 months     | 80   | 77   |
| 36 months     | 79   | 76   |
| 24 months     | 71   | 71   |
| 12 months     | 55   | 54   |
Figure 3

Kaplan-Meier curves comparing overall survival (a) and disease-free survival (b) in totally laparoscopic colectomy between intracorporeal anastomosis (IA) and extracorporeal anastomosis (EA).