EGFR Inhibition in Non-Small Cell Lung Cancer: Resistance, Once Again, Rears Its Ugly Head

Jennifer Clark, Jan Cools, D. Gary Gilliland*

Kinase Inhibition for Treatment of Cancer

Uncontrolled proliferation of tumor cells is a hallmark of cancer. In many types of cancer, mutations in genes that activate cellular signal transduction pathways contribute to enhanced proliferation and survival of cancer cells. One well-characterized example is mutation in tyrosine kinases, enzymes that regulate the growth and survival of cells. Tyrosine kinase activity is tightly regulated in normal cells, but is dysregulated due to mutation in some cancers, including lung cancer, resulting in enhanced proliferation and survival of cancer cells. The tyrosine kinases are attractive candidates for molecularly targeted therapy in cancer, because cancers become dependent on growth signals from the mutant tyrosine kinases. Tyrosine kinases require ATP for their enzymic activity, and thus small molecules that mimic ATP can bind to mutant kinases and inactivate them.

The paradigm for tyrosine kinase inhibition as treatment for cancer using small-molecule inhibitors was first established in the context of chronic myelogenous leukemia (CML) associated with the BCR-ABL gene rearrangement [1]. Imatinib (Gleevec), a 2-phenylaminopyrimidine, is a competitive inhibitor of ATP binding to the ABL kinase, thereby inhibiting the constitutively activated BCR-ABL tyrosine kinase. Imatinib induces complete remission in most patients with CML in stable phase [1], and also has activity in CML that has progressed to blast crisis [2].

Imatinib is also a potent inhibitor of the ARG, KIT, PDGFRA, and PDGFRB tyrosine kinases. As a consequence, there have been additional dividends from the United States Federal Drug Administration approval of imatinib for treatment of BCR-ABL-positive CML. For example, imatinib is effective in treatment of chronic myelomonocytic leukemia with gene rearrangements. Imatinib is also a potent inhibitor of the ARG, KIT, PDGFRA, and PDGFRB tyrosine kinases. As a consequence, there have been additional dividends from the United States Federal Drug Administration approval of imatinib for treatment of BCR-ABL-positive CML. For example, imatinib is effective in treatment of chronic myelomonocytic leukemia with gene rearrangements.

More recently, this paradigm has been extended to treatment of non-small cell lung cancer (NSCLC). Several mutations have been identified in the context of epidermal growth factor receptor (EGFR) in patients with NSCLC that are associated with clinical response to the small-molecule EGFR inhibitors gefitinib (Iressa) or erlotinib (Tarceva) [7,8,9], including in-frame deletions such as del L747–E749;A750P in exon 19, or L858R in exon 21. Although responses are often dramatic, most responding patients ultimately develop clinical resistance and relapse of disease [7,8,9]. The basis for resistance had not been known, in part owing to the difficulty in obtaining tissue from re-biopsy at time of relapse.

Resistance to Small-Molecule Tyrosine Kinase Inhibitors

As might have been anticipated in treatment of cancer with any single agent, resistance to small-molecule tyrosine kinase inhibitors has emerged as a significant clinical problem.
A ribbon structure of erlotinib to inhibition of the L858R allele. Predicted if T790M confers resistance present on the same allele, as would be the L858R and T790M mutations are quantities of RNA to confirm if T790M confers resistance to the L858R allele alone. In the H1975 cell line, inhibition by gefitinib or erlotinib can be attributed to acquisition of a T790M mutation in the context of EGFR. However, three additional patients with clinical resistance to gefitinib or erlotinib did not have the T790M mutation, nor did they have mutant KRAS alleles that have previously been shown by these same authors to confer resistance to these inhibitors [9]. Thus, mechanisms of resistance are heterogeneous.

Next Steps, and Lessons Learned

It will be important to identify alternative small-molecule inhibitors for the T790M resistance mutation. Structural data suggest that one compound, lapatinib, may subserve this purpose [16], but it has not been tested for biological activity in this context. New chemical screens and/or rational drug design to identify alternative inhibitors is warranted. In addition, only half of this small cohort of patients with NSCLC with clinical resistance to gefitinib or erlotinib had the T790M substitution. Efforts to identify alternative mechanisms for resistance may be guided by experience with imatinib resistance in the context of BCR-ABL, and should include full-length sequencing of EGFR to identify other resistance mutations, and analysis for evidence of gene amplification, as well as investigation of other well-characterized mechanisms of drug resistance such as drug efflux or increased drug metabolism.

Pao and colleagues’ superb study also highlights several important points that may guide development of kinase-targeted therapies in the future. It is clear that, to the extent that small-molecule kinase inhibitors are effective as single agents in treatment of cancer, resistance will develop. Furthermore, based on previous experience, some of these patients are likely to harbor acquired point mutations in the target kinase that confer resistance. Resistance mutations identified via in vitro screens have shown a high degree of correlation with those that develop in vivo, as shown in screens for imatinib-resistant BCR-ABL mutants [11] and PKC412-resistant FLT3 mutants [17], as well as the T790M resistance mutation to gefitinib in the context of EGFR [18]. Thus, in vitro screens for mutations that confer resistance to kinase inhibitors are warranted, followed by efforts to identify drugs that overcome resistance. This proactive approach should shorten the time frame for new drug development.
These findings also emphasize the critical need for re-biopsy of patients with cancer treated with molecularly targeted therapies at time of relapse. Tissue acquisition is more challenging in solid tumors than for hematopoietic malignancies, and may entail risk. Nonetheless, it is clear that data derived from such analyses will be essential to inform approaches to improving therapy for NSCLC and other solid tumors.

References
1. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, et al. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042.
2. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, et al. (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: Results of a phase II study. Blood 99: 3530–3539.
3. Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, et al. (2002) Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347: 481–487.
4. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, et al. (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214.
5. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Anderson LG, Tervahartiala P, et al. (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344: 1052–1056.
6. Sawyers C (2004) Targeted cancer therapy. Nature 432: 294–297.
7. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.
8. Pao W, Janne PA, Lee JC, Tracy S, Greulich H, et al. (2004) EGFR mutations in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and cetuximab. Cancer Cell 6: 457–463.
9. Pao W, Miller VA, Zakowski M, Doherty J, Politi K, et al. (2004) EGFR receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and cetuximab. N Engl J Med 350: 2129–2139.
10. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, et al. (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880.
11. Azam M, Laneck RR, Daley GQ (2003) A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 124: 294–299.
12. Shah NP, Tran C, Lee FY, Chen P, Norris D, et al. (2004) Overcoming imatinib resistance with a novel ABL kinase inhibitor. Science 305: 399–401.
13. Heinig B, Manley PW, Breitenstein W, Brugger J, Cowan-Jacob SW, et al. (2005) Characterization of AMN107, a selective inhibitor of wildtype and mutant BCR-ABL. Cancer Cell. In press.
14. Pao W, Miller VA, Politi K, Riely GJ, Somwar R, et al. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2: e73.
15. Wood ER, Truesdale AT, McDonald OB, Yuan H, Hassell A, et al. (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.
16. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, et al. (2004) Prediction of resistance to small molecule FLT3 inhibitors: Implications for molecularly targeted therapy of acute leukemia. Cancer Res 64: 6385–6389.
17. Blencowe S, Zech B, Engkvist O, Greff Z, Orf L, et al. (2004) Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem Biol 11: 691–701.