Diversity and susceptibility pattern of medically important bacteria isolated from intestinal tract of *Hemidactylus frenatus* in Ilishan-Remo, Ogun State

Oghenechuko Favour Ogbodogbo, Cajethan Onyebuchi Ezeamagu*, Joy Ndidiamaka Barns

Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.

ARTICLE INFO

Article history:
Received on: September 24, 2020
Accepted on: January 06, 2021
Available online: March 10, 2021

Key words:
Antibiotics resistance, Bacterial diversity, Geckos, Fecal droppings.

ABSTRACT

Hemidactylus frenatus (Wall gecko) is reptile of the family Geckkonidae commonly found around human and animal settings. There is a growing concern that this reptile could transmit pathogenic bacteria to humans and animals because of its proximity to the host environment. This study was designed to evaluate the diversity and susceptibility pattern of medically important bacteria obtained from house geckos in Ilishan-Remo. Wall geckos were caught from different households. Bacteria were isolated from intestinal contents and identified based on partial 16S rRNA gene amplicon sequencing. Bacterial sensitivity to selected antibiotic classes was determined by agar diffusion. A total of 163 bacteria were obtained from 51 wall geckos, consisting of five genera; *Hafnia* (46), *Klebsiella* (18), *Salmonella* (43), *Enterobacter* (49), and *Cedecea* (7). *Hafnia, Cedecea* and *Klebsiella* species (100%) isolated were resistant to ceftazidime, cefuroxime, ofloxacin, and amoxicillin/clavulanate, *Enterobacter* species (100%) were resistant to ceftazidime, cefuroxime, ofloxacin, amoxicillin/clavulanate, nitrofurantoin, and cefoxime while all *Salmonella* species were resistant to cefuroxime and amoxicillin/clavulanate. The results revealed the presence of medically important bacteria in household geckos with high spectrum of resistance to different antibiotic classes. Consequently, contamination of foods and house hold utensils with fecal droppings of wall geckos could be a possible source of bacterial infection to humans.

1. INTRODUCTION

Microbial drug resistance is among the most important public health issues in recent time [1], but its implication in public health is not well emphasized in many countries [2]. Several pathogens of public health importance have developed ability to resist many drugs they were originally susceptible to [3]. This is as a result of the frequent use and in addition, abuse of antibiotics in community, hospitals, and related settings [4]. Bacteria capable of resisting different antibiotics have been found in both hospital and community settings; thus, there is now no localozation of reservoirs of drug resistance gene to a particular setting [5,6]. The natural driving forces responsible for the dissemination of bacteria with multi-resistance property worldwide include migrant birds, household animals, travellers, as well as movement of commercial food across the globe [7,8].

Geckos (*Geckonidae*) are reported as reservoirs of zoonotic bacteria and are considered an avenue for infection to humans through fecal contamination [8]. The zoonotic pathogens in geckos are mostly intestinal commensals such as non-typhoidal *salmonellae*, *Citrobacter freundii*, *Shigella sonnei*, *Serratia marcescens*, *Klebsiella pneumonia*, and *Escherichia coli* to mention a few. There are over 100 million cases of enteropathogenic illnesses reported globally each year with significant hospitalizations and mortalities [9]. Geckos constitute a great threat by the indiscriminate littering of human habitat with their droppings. Hence, the contamination of the environment and spread of medically important pathogens could be inevitable sources of infection to humans and animals. Besides, severe clinical problems associated with enteropathogenic bacteria may increase mortality rate especially in developing countries where there are limited therapeutic options for infected patients. In Nigeria only pocket of studies investigated isolation of bacteria in wall geckos [10-12] with no reference to their resistance patterns. Thus, there is a dearth in information on susceptibility pattern of gecko-associated pathogens in this region. This study was, therefore, design to investigate the diversity and antibiotic resistance pattern of medically important bacteria isolated from household gecko in Ilishan-Remo Ogun State.

2. MATERIALS AND METHODS

2.1. Study Areas

The sample collection points for this study were households in Ilishan-Remo. Ilishan-Remo is a small town located within Irepodun district.
in Ikenne Local Government Area, Ogun State. It is situated in South Western Nigeria within Latitude 6.8932 E and Longitude 3.7105 N.

2.2. Sample Collection and Bacterial Isolation

Wall geckos were caught from different households with nets and were sacrificed within glass jars by the help of chloroform as described elsewhere [13]. The samples were transported to the Department of Microbiology Laboratory, Babcock University, in clean polythene bags for further processing. The body surfaces of the geckos were sterilized with 70% alcohol and dissected to get the intestines. With the help of sterilized laboratory gadgets such as forceps and scissors, the intestines were aseptically obtained and transferred into test tubes containing nutrient broth (Oxoid, UK). The samples were homogenized and then incubated at 37°C for 24 h. Isolation was carried out as described elsewhere [13].

2.3. Antibiotic Susceptibility Test

The antibiotic was performed by agar diffusion and interpreted following criteria recommended by recognized body [14]. Antibiotics used were manufactured by Abtek, Biologicals Ltd which include ceftazidime (30 µg); cefuroxime (30 µg); gentamicin (10 µg); ofloxacin (5 µg); amoxicillin/clavulanate (30 µg); nitrofurantoin (30 µg); cefixime (5 µg); ciprofloxacin (5 µg); ceftriaxone (30 µg); erythromycin (5 µg); and cloxacinil (5 µg).

2.4. Molecular Characterization of Bacterial Isolates

Based on the preliminary tests (selective agar media, Gram staining, and biochemical tests), 12 bacteria were picked for sequencing. Bacterial DNA was extracted using Qick-DNA™ miniprep plus kit (Zymo research, Biobab, USA. Agarose electrophoresis was used to check the quality of the DNA before polymerase chain reaction. The bacterial 16S rRNA was amplified by PCR with forward primer 341: 5’-CCTACGGGAGGCAGCAG-3’ and reverse primer 580R 5’-GGACTACHVGGGTWTCTAAT-3’. Amplification reaction used to check the quality of the DNA before polymerase chain reaction. The antibiogram was performed by agar diffusion and interpreted following criteria recommended by recognized body [14]. Antibiotics used were manufactured by Abtek, Biologicals Ltd which include ceftazidime (30 µg); cefuroxime (30 µg); gentamicin (10 µg); ofloxacin (5 µg); amoxicillin/clavulanate (30 µg); nitrofurantoin (30 µg); cefixime (5 µg); ciprofloxacin (5 µg); ceftriaxone (30 µg); erythromycin (5 µg); and cloxacinil (5 µg).

2.5. Data Analysis

Data (susceptibility) were analyzed descriptively using SPSS Statistics for Windows, Version 23.0 (IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp).

3. RESULTS AND DISCUSSION

3.1. Occurrence of Bacterial Isolates and Susceptibility Pattern

A total of 163 bacteria were obtained from 51 samples of Hemidactylus frenatus. Molecular characterization, indicated that the bacteria isolated were made up of 5 genera; Hafnia, Klebsiella, Salmonella, Enterobacter, and Cedecea [Table 1]. All the sequenced data have been deposited in GenBank under the accession numbers: MT271752-MT271763. Enterobacter species had the highest occurrence and closely, followed by Hafnia species. Cedecea species had the least occurrence. The phylogenetic relationship between the species identified and those in database is shown [Figure 1]. All the species identified fell within the same cluster with 99% identity except Enterobacter hormaechei subsp. hormaechei (73%).

The species isolated showed varying susceptibility patterns to the selected antibiotics. Hafnia species were resistant to ceftazidime, cefuroxime, ofloxacin, amoxicillin/clavulanate, nitrofurantoin, and cefixime with 65.2% (30) and 54.3% (25) of the organisms resistant to gentamicin and ciprofloxacin, respectively [Table 1]. Klebsiella species were not different in resistance pattern as they were resistant to ceftazidime, cefuroxime, ceftriaxone, erythromycin, ofloxacin, and amoxicillin/clavulanate with half of the species resistant to gentamicin and ciprofloxacin, respectively [Table 1]. Enterobacter species were resistant to ceftazidime, cefuroxime, ceftriaxone, erythromycin, ofloxacin, and amoxicillin/clavulanate with half of the species resistant to gentamicin and ciprofloxacin, respectively [Table 1]. Enterobacter species were resistant to ceftazidime, cefuroxime, ofloxacin, amoxicillin/clavulanate, nitrofurantoin, and cefixime. Likewise, Cedecea species were resistant to ceftazidime, cefuroxime, ceftriaxone, erythromycin, cloxacinil, ofloxacin, and amoxicillin/

Table 1: Species distribution and susceptibility pattern of bacteria obtained from intestinal track of wall geckos.

Antibiotics	Name of bacteria and % resistance to different antibiotics
	Hafnia spp n=46
CAZ (30 µg)	46 (100)
CRX (30 µg)	46 (100)
GEN (10 µg)	30 (65.2)
OFL (5 µg)	46 (100)
AUG (30 µg)	46 (100)
NIT (30 µg)	46 (100)
CXM (5 µg)	46 (100)
CPR (5 µg)	25 (54.3)
CTR (30 µg)	0 18 (100)
ERY (5 µg)	0 18 (100)
CXC (5 µg)	0 14 (77.8)
	Klebsiella spp n=18
CAZ (30 µg)	18 (100)
CRX (30 µg)	18 (100)
GEN (10 µg)	9 (50)
OFL (5 µg)	18 (100)
AUG (30 µg)	18 (100)
NIT (30 µg)	0 88.4
CXM (5 µg)	0 81.4
CPR (5 µg)	0 30.2
CTR (30 µg)	0 18 (100)
ERY (5 µg)	0 18 (100)
CXC (5 µg)	0 77.8
	Salmonella spp n=43
CAZ (30 µg)	31 (72.1)
CRX (30 µg)	43 (100)
GEN (10 µg)	28 (65.1)
OFL (5 µg)	41 (95.3)
AUG (30 µg)	43 (100)
NIT (30 µg)	38 (88.4)
CXM (5 µg)	35 (81.4)
CPR (5 µg)	13 (30.2)
CTR (30 µg)	0 18 (100)
ERY (5 µg)	0 18 (100)
CXC (5 µg)	0 77.8
	Enterobacter spp n=49
CAZ (30 µg)	49 (100)
CRX (30 µg)	49 (100)
GEN (10 µg)	49 (100)
OFL (5 µg)	49 (100)
AUG (30 µg)	49 (100)
NIT (30 µg)	49 (100)
CXM (5 µg)	49 (100)
CPR (5 µg)	49 (100)
CTR (30 µg)	7 (100)
ERY (5 µg)	7 (100)
CXC (5 µg)	7 (100)

n: Sample size, CAZ: Cefazidime, CRX: Cefuroxime, GEN: Gentamicin, OFL: Ofloxacin, AUG: Amoxicillin/clavulanate, NIT: Nitrofurantoin, CXM: Cefixime, CPR: Ciprofloxacin, CTR: Ceftriaxone, ERY: Erythromycin, CXC: Cloxacillin, 0: Not tested
clavulanate. More than 50% of *Salmonella* species were resistant to seven antibiotics tested [Appendix 1-5].

The family Enterobacteriaceae is predominantly diverse within the intestinal tract of geckos. The phylogenetic tree revealed that all the species obtained were within this family with close species having 99% identity, thus explaining the reason for one cluster group obtained. A review by Janda and Abbott [19] suggested that 16S rRNA gene sequencing provides genus identification in most cases (>90%) but less so with regard to species (65 to 83%). A more stringent boundary for species delineation was proposed to increase the accuracy of identification [20]. Pairwise nucleotide similarity values for the species in this study were within the acceptable range for species identification, thus, stressing the importance of sequencing method in microbial taxonomy.

Studies on geckos in indicated that they are reservoirs for bacteria such as *Salmonella*, *Citrobacter*, *Erwinia*, *Shigella*, *Edwardsiella*, *Enterobacter*, *Serratia*, *Proteus*, *Klebsiella*, and *Escherichia coli* [11, 21]. This study has indeed strengthened the fact that geckos pose serious risk to human population especially the rural dwellers. The isolation of pathogenic bacteria in this study (*Hafnia* species, *Klebsiella* species, *Cedecea* species, *Salmonella* species, and *Enterobacter* species) was consistent with previous studies on geckos and closely related species [21, 22]. Food contamination due to non-typhoidal *Salmonella* is a significant reason for both irregular gastroenteritis and epidemic universally. In sub-Saharan Africa, community-acquired infection due to *Salmonella enterica*, *Salmonella Typhi*, and non-typhoidal *Salmonella* has been reported [23]. *Salmonella* causes intestinal-associated sicknesses such as diarrhea and vomiting with graded fever as well as life-threatening septicemia [24]. The infection is severe especially in elderly, children, and immunocompromised patients. The species of *Salmonella* relevant to human infections are the *S. enterica*, (*S. ser. Typhimurium* and *S. ser. Enteritidis*).

Antimicrobial drug resistance in *Salmonella* infections has been a growing concern in the treatment and management of patients. In this study, *Salmonella* species were multidrug-resistant (>50%) and this was comparable to 76% report by Elkenany et al. [25]. According to EU summary report on antimicrobial resistance, *Salmonella* species were among the multidrug-resistant zoonotic pathogens [26]. The importance of *Salmonella* infections cannot be overemphasized.
Salmonella infection was estimated to be 185 diseases per 100,000 populace for each year in Australia [27]. Specifically, S. enterica infection results in 450 death with an estimate of 24,000 hospitalization annually within United States [28]. The isolation of medically important bacteria from geckos such a Hafnia species is of great concern. For instance, Hafnia alvei has been implicated as cause of various diseases such as bacteremia, pneumonia, gastroenteritis, meningitis, nosocomial wound infections, endophthalmitis, and a buttock abscess [29]. Diarrhea-associated H. alvei has been reported to cause acute gastroenteritis in children [30,31]. Acute gastroenteritis and diarrhea were reported in 16% of Finnish tourists who visited Morocco [32].

The multi-drug resistance observed among the H. alvei in this study may complicate patients' recovery leading to high mortality in the event of infection. However, previous report showed that this species were highly susceptible to most antibiotics [29]. The cause of the disparity in susceptibility pattern of this species in this study compared to the former is unknown. However, it might not be unconnected with increasing antibiotic pressure that is prevalent in the environment in recent times. It is can also be postulated that gene exchange might have been occurring among the intestinal microbiota in the host. Besides, geographical location, differential power of techniques, batches of antibiotics used and strains encountered might have contributed significantly to this variation.

Wall geckos are “innocent” in appearance, but “guilty” as they are reservoirs of zoonotic pathogens such as Enterobacter, Klebsiella, and Cedecea species. Enterobacter species causes serious infection in patients, particularly to individuals on mechanical ventilation [32]. Two species: E. hormaechei and Enterobacter cloacae are most encountered in human infections. E. cloacae was reported as the most widely recognized Enterobacter species causing nosocomial diseases and scores of data regarding their resistance to antibiotics have been highlighted [33]. The pathogenic instruments contributing the sickness related to E. cloacae are unclear. However, its capacity to form biofilms and to produce different cytotoxins is significant for its virulence potentials. While this species remain as commensal microflora in the intestinal tracts of living creatures and pathogenic in plants and creepy crawlies, notable nosocomial infections (bacteremia, endocarditis, septic joint pain, osteomyelitis, and skin/delicate tissue diseases), as well as lower respiratory tract-urinary tract and intra-abdominal infections have been reported [34]. E. cloacae in general taints different medical gadgets [35,36] and there has been its recurrent in neonatal units with a few episodes of disease reported [37,38]. The two species of Enterobacter reported in this study have been associated with infections. E. hormaechei, for example, is commonly considered a causative pathogen for human infection and it does not usually cause diseases in animals. However, it was first found to be associated with respiratory disease in unweaned calves in China as well as respiratory and blood stream infections among premature infants in intensive care nursery at the Hospital of the University of Pennsylvania [39,40]. Among the species reported in this study, Cedecea has less prevalence. However, it is an opportunistic pathogen commonly isolated from immunocompromised patients and has been linked to infections such as bacteremia, scrotal abscess, chronic renal, and heart diseases, pneumonia [41-45]. The first case fatality due to Cedecea lapagei infection was reported in a 52-year-old Mexican who developed septic shock and multiple organ failure [46].

Klebsiella species are universally widespread in nature and presumably have two regular natural surroundings (surface water, sewage, soil, and plants) and the mucosal surfaces of animals (horses, humans, and swine), for habitation [47]. Nosocomial infections associated with Klebsiella species include chronic pulmonary obstruction, neonatal sepsis, urinary tract infections, septicemia, and wound infections [47,48]. In this study, nearly all the Klebsiella species were resistant to antibiotics used. The previous cases of Klebsiella aerogenes in different hospitals were reported to be multidrug-resistant strains [49,50] and studies indicated that its resistance against carbapenem involves over-expression of AmpC or ESBLs enzymes together with mutations that disrupt membrane permeability [33].

4. CONCLUSION

This study revealed that household geckos harbor pathogenic bacteria with spectrum of resistance to different antibiotic. Hence, exposure to fecal droppings of wall geckos could be a possible source of bacterial infection that may be difficult to treat. This study recommends that general public should maintain high level of domestic hygiene to avoid contamination of food and food stuffs with fecal droppings of wall geckos.

5. AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.

6. FUNDING

There is no funding to report.

7. CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

8. ETHICAL APPROVALS

Not applicable.

9. PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

1. World Health Organization. 2014. Antimicrobial Resistance, Global Report on Surveillance. Geneva: World Health Organization; 2014. Available from: http://www.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1. [Last accessed on 2020 Apr 13].
2. Mouiche MM, Moffo F, Akoachere JT, Okah-Nnane NH, Mapie fou NP, Ndze VN, et al. Antimicrobial resistance from a one health perspective in Cameroon: A systematic review and meta-analysis. BMC Public Health 2019;19:1135.
3. Davies J, Davies D. Origins and evolution of antibiotic resistance.
Microbiol Mo Biol Rev 2010;74:417-33.
4. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2013;109:309-18.
5. Levy SB, Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat Med 2004;10:S122-9.
6. Munita JM, Arias CA. Mechanism of antibiotic resistance. Microbiol Spectr 2016;4:1-37.
7. Vila J. Multidrug-resistant bacteria without borders: Role of international trips in the spread of multidrug-resistant bacteria. J Travel Med 2015;22:289-91.
8. Damborg P, Broens EM, Chomel BB, Guenther S, Pasmans F, Wagenaar JA, et al. Bacterial zoonoses transmitted by household pets: State-of-the-art and future perspectives for targeted research and policy actions. J Comp Pathol 2016;155:S27-40.
9. Mead PS, Slutsker L, Dietz V, Bresee JS, Shapiro C, et al. Food-related illness and death in the United States. Emerg Infect Dis 1999;5:607-25.
10. Oboegbulem SI, Iseghimhen AU. Wall gekos Gekonidae as reservoirs of Salmonella in Nigeria: Problem for epidemiology and public health. Int J Zoonoses 1985;12:228-32.
11. Gugnani HC, Oguke JU, Sakazaki R. Salmonellae and other enteropathogenic bacteria in the intestines of wall geckos in Nigeria. Antonie Leeuwen J Microbiol 1986;52:117-20.
12. Orji MU, Omugbo HC, Mbata TI. Isolation of Salmonella from poultry droppings and other environmental sources in Awka, Nigeria. Int J Infect Dis 2005;9:86-9.
13. Singh BR, Singh V, Ebibeni N, Singh RK. Maternal transfer of bacteria to eggs of common house gecko (Hemidactylus frenatus). J Microbiol Res 2014;4:78-85.
14. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. 12th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018. p. M02-A13.
15. Hall RM, Collis CM, Kim MJ, Partridge SR, Recchia GD, Stokes HW. Mobile gene cassettes and integrons in evolution. Ann N Y Acad Sci 1999;870:68-80.
16. Saitou N, Nei M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. J Mol Biol Evol 1987;4:406-25.
17. Jukes TH, Cantor CR. Evolution of protein molecules, In: Mammalian Protein Metabolism. Vol. 3. New York: H.N. Munro, Academic Press; 1969. p. 21-32.
18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Molecular evolutionary genetics analysis version 6.0. J Mol Biol Evol 1987;4:406-25.
19. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J Clin Microbiol 2007;45:2761-4.
20. Stackebrandt E, Ebers J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006;33:152-5.
21. Singh BR, Singh V, Ebibeni N, Singh RK. Antimicrobial and herbal drug resistance in enteric bacteria isolated from faecal Droppings of common house lizard/gecko (Hemidactylus frenatus). Int J Microbiol 2013;2013:340848.
22. Ajayi JO, Ogunleye AO, Happi AN, Okunlade AO. Bacteria isolated from the oral and cloaca swabs of lizards co-habiting with poultry in some poultry farms in Ibadan, Oyo State, Nigeria. Afr J Biomed Res 2015;18:211-5.
23. Msembo OA, Mbwana J, Mahende C, Malabea J, Gesase S, Crump JA, et al. Epidemiology and antimicrobial susceptibility of Salmonella enterica bloodstream isolates among febrile children in a rural district in Northeastern Tanzania: A cross-sectional study. Clin Infect Dis 2019;68:S177-82.
24. Bjelland AM, Sandvik LM, Skarstein MM, Svendal L, Debenham JJ. Prevalence of Salmonella serovars isolated from reptiles in Norwegian zoos. Acta Vet Scand 2020;62:3.
25. Elkenany R, Elsayed MM, Zakaria AI, El-sayed SA, Rizk MA. Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Vet Res 2019;15:124.
26. European Food Safety Authority. EU summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA J 2015;13:4036.
27. Kirk M, Ford L, Glass K, Hall G. Foodborne illness, Australia, circa 2000 and circa 2010. Emerg Infect Dis 2014;20:1857-64.
28. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 2011;17:7-15.
29. Giintherard F, Pennekamp A. Clinical significance of extraintestinal Hafnia alvei isolates from 61 patients and review of the literature. Clin Infect Dis 1996;22:1040-5.
catheter colonization by multidrug-resistant _Cedecea neteri_ in patient with benign prostatic hyperplasia. Case Rep Infect Dis 2018;2018:7520527.

46. Herrera VR, De Silva MF, Alcaraz HO, Espiritu GC, Peña KC, Melnikov V. Death related to _Cedecea lapagei_ in a soft tissue bullae infection: A case report. J Med Case Rep 2018;12:328.

47. Podschen R, Ullmann U. _Klebsiella_ spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.

48. Bergogne-Berezin E. Nosocomial pathogens: New pathogens, incidence, prevention. Presse Med 1995;24:89-97.

49. Salso S, Culebras E, Andrade R, Picazo JJ. Outbreak of TEM-24-producing _Enterobacter aerogenes_ in a Spanish hospital. J Clin Microbiol 2003;9:299-305.

50. Malek A, McGlynn K, Taffner S, Fine L, Tesini B, Wang J, et al. Next-generation-sequencing-based hospital outbreak investigation yields insight into _Klebsiella aerogenes_ population structure and determinants of carbapenem resistance and pathogenicity. Antimicrob Agents Chemother 2019;63:e02577-18.
APPENDIX I

ORGANISM	CAZ (30 µg)	CRX (30 µg)	GEN (10 µg)	CXM (5 µg)	OFL (5 µg)	AUG (30 µg)	NIT (30 µg)	CXM (5 µg)	CPR (5 µg)	CTR (30 µg)	ERY (5 µg)	CXC (5 µg)
H1	8	16	8	-	7	2	17	0	0	0	0	0
H2	11	-	-	-	-	7	-	0	0	0	0	0
H3	13	-	-	-	-	5	-	5	0	0	0	0
H4	13	-	-	-	-	7	-	7	0	0	0	0
H5	14	-	-	-	-	2	-	0	0	0	0	0
H6	-	-	-	-	-	4	6	0	0	0	0	0
H7	14	5	-	-	-	7	-	0	0	0	0	0
H8	-	2	10	19	0	0	0	0	0	0	0	0
H9	12	18	5	-	8	17	0	0	0	0	0	0
H10	10	3	17	12	10	11	10	19	0	0	0	0
H11	14	-	9	7	0	0	0	0	0	0	0	0
H12	10	-	2	3	16	0	0	0	0	0	0	0
H13	9	-	10	-	-	4	16	0	0	0	0	0
H14	10	-	-	-	-	5	0	0	0	0	0	0
H15	-	-	-	2	-	-	17	0	0	0	0	0
H16	12	17	10	12	5	16	0	0	0	0	0	0
H17	11	8	-	5	-	9	3	17	0	0	0	0
H18	13	-	9	-	-	6	17	0	0	0	0	0
H19	13	17	-	7	10	5	13	0	0	0	0	0
H20	12	16	-	4	-	8	16	0	0	0	0	0
H21	-	-	-	-	-	5	-	18	0	0	0	0
H22	11	17	-	8	-	3	19	0	0	0	0	0
H23	12	-	-	-	-	7	-	0	0	0	0	0
H24	13	16	-	7	-	9	6	13	0	0	0	0
H25	-	-	-	3	-	-	-	0	0	0	0	0
H26	-	-	-	-	-	-	-	17	0	0	0	0
H27	10	-	-	2	-	-	4	19	0	0	0	0
H28	-	-	-	-	-	-	-	0	0	0	0	0
H29	9	17	12	3	16	0	0	0	0	0	0	0
H30	-	18	10	6	2	19	0	0	0	0	0	0
H31	12	12	7	-	6	17	0	0	0	0	0	0
H32	13	17	6	12	4	19	0	0	0	0	0	0
H33	9	4	-	2	13	0	0	0	0	0	0	0
H34	13	-	5	7	12	0	0	0	0	0	0	0
H35	10	-	7	2	17	0	0	0	0	0	0	0
H36	-	-	16	0	0	0	0	0	0	0	0	0
H37	-	-	-	-	-	0	0	0	0	0	0	0
H38	-	-	-	-	-	-	0	0	0	0	0	0
H39	-	18	10	-	-	18	0	0	0	0	0	0
H40	-	-	-	-	-	-	0	0	0	0	0	0
H41	-	19	5	8	-	17	0	0	0	0	0	0
H42	12	-	16	-	4	9	0	0	0	0	0	0
H43	-	-	-	-	-	-	0	0	0	0	0	0
H44	-	-	2	-	-	-	0	0	0	0	0	0
H45	12	-	16	7	10	0	0	0	0	0	0	0
H46	9	17	14	9	-	3	19	0	0	0	0	0
APPENDIX II

ORGANISM	CAZ (30 µg)	CRX (30 µg)	GEN (10 µg)	OFL (5 µg)	AUG (30 µg)	NIT (30 µg)	CXM (5 µg)	CPR (5 µg)	CTR (30 µg)	ERY (5 µg)	CXC (5 µg)
K1	5	9	17	-	11	0	0	0	12	7	16
K2	-	-	-	-	0	0	0	-	-	-	-
K3	2	-	17	-	10	0	0	0	12	-	-
K4	-	-	-	-	0	0	0	-	-	-	-
K5	-	-	18	-	13	0	0	0	10	5	15
K6	-	-	-	-	0	0	0	-	-	-	-
K7	7	10	18	-	12	0	0	0	7	9	15
K8	-	-	10	-	0	0	0	-	-	-	-
K9	4	-	19	-	13	0	0	0	9	-	10
K10	-	-	17	-	9	0	0	0	-	-	8
K11	-	-	-	-	8	0	0	0	-	-	-
K12	-	-	-	-	0	0	0	0	-	-	-
K13	-	-	18	-	12	0	0	0	7	6	15
K14	-	-	-	-	0	0	0	0	-	-	-
K15	-	-	-	-	0	0	0	0	-	-	-
K16	-	-	17	-	12	0	0	0	6	10	11
K17	-	-	-	-	0	0	0	0	-	-	-
K18	7	6	17	-	13	0	0	0	7	9	13
APPENDIX III

Inhibition zone produced by *Salmonella* spp against selected antibiotics

ORGANISM	CAZ (30 µg)	CRX (30 µg)	GEN (10 µg)	OFL (5 µg)	AUG (30 µg)	NIT (30 µg)	CXM (5 µg)	CPR (5 µg)	CTR (30 µg)	ERY (5 µg)	CXC (5 µg)
S1	20	13	13	-	17	18	17	0	0	0	0
S2	-	-	-	-	-	-	-	8	0	0	0
S3	11	-	18	13	11	-	19	18	0	0	0
S4	21	-	19	24	-	17	19	0	0	0	0
S5	20	13	18	12	-	19	17	0	0	0	0
S6	21	-	18	17	-	14	18	18	0	0	0
S7	12	-	-	-	-	-	10	17	0	0	0
S8	10	-	-	12	-	7	19	0	0	0	0
S9	22	12	19	-	-	19	17	0	0	0	0
S10	-	-	-	-	-	-	-	5	0	0	0
S11	-	-	-	-	-	-	-	7	0	0	0
S12	11	-	-	13	-	-	-	16	0	0	0
S13	-	-	-	-	-	-	-	0	0	0	0
S14	19	14	22	11	-	18	17	17	0	0	0
S15	22	-	20	12	-	-	19	18	0	0	0
S16	24	13	13	8	-	13	7	19	0	0	0
S17	11	-	-	-	-	-	-	16	0	0	0
S18	23	-	19	11	-	17	7	17	0	0	0
S19	13	-	-	13	-	-	10	19	0	0	0
S20	31	-	18	13	-	11	17	0	0	0	0
S21	-	-	-	-	-	-	-	-	0	0	0
S22	-	-	-	-	-	-	-	-	0	0	0
S23	11	-	-	-	-	-	-	16	0	0	0
S24	-	-	14	10	-	13	10	18	0	0	0
S25	22	-	-	11	-	11	11	17	0	0	0
S26	20	-	18	14	-	7	-	0	0	0	0
S27	-	-	18	9	-	11	17	0	0	0	0
S28	8	-	19	-	-	-	19	0	0	0	0
S29	-	-	18	-	-	-	16	0	0	0	0
S30	-	-	17	13	-	19	7	16	0	0	0
S31	-	-	-	-	-	-	-	0	0	0	0
S32	-	-	-	-	-	-	-	0	0	0	0
S33	10	-	-	-	-	-	11	19	0	0	0
S34	9	-	-	-	-	-	6	17	0	0	0
S35	-	-	-	-	-	-	-	0	0	0	0
S36	12	-	-	-	-	-	3	16	0	0	0
S37	-	-	-	-	-	-	-	0	0	0	0
S38	-	-	19	-	-	-	7	18	0	0	0
S39	-	-	-	-	-	-	-	0	0	0	0
S40	-	-	-	-	-	-	-	0	0	0	0
S41	-	-	13	-	-	-	17	0	0	0	0
S42	13	-	-	-	-	-	17	0	0	0	0
S43	-	-	12	10	-	18	8	19	0	0	0
APPENDIX IV

ORGANISM	CAZ (30 µg)	CRX (30 µg)	GEN (10 µg)	OFL (5 µg)	AUG (30 µg)	NIT (30 µg)	CXM (5 µg)	CPR (5 µg)	CTR (30 µg)	ERY (5 µg)	CXC (5 µg)
E1	-	-	-	-	-	7	0	0	0	0	0
E2	-	-	-	-	-	2	0	0	0	0	0
E3	-	-	-	-	-	16	0	0	0	0	0
E4	11	2	18	11	-	2	19	0	0	0	0
E5	-	-	-	2	-	-	17	0	0	0	0
E6	-	-	-	-	-	-	15	0	0	0	0
E7	-	-	7	-	-	18	0	0	0	0	0
E8	-	-	-	-	-	17	0	0	0	0	0
E9	-	-	3	-	-	16	0	0	0	0	0
E10	-	-	-	-	-	10	0	0	0	0	0
E11	-	-	-	-	-	16	0	0	0	0	0
E12	-	-	7	-	-	16	0	0	0	0	0
E13	-	-	11	-	-	17	0	0	0	0	0
E14	-	-	8	-	-	19	0	0	0	0	0
E15	-	-	-	-	-	11	0	0	0	0	0
E16	11	5	17	12	-	5	19	0	0	0	0
E17	-	-	-	-	-	10	0	0	0	0	0
E18	-	-	10	12	-	17	0	0	0	0	0
E19	-	-	7	-	-	19	0	0	0	0	0
E20	-	-	-	-	-	-	-	0	0	0	0
E21	-	-	11	-	-	17	0	0	0	0	0
E22	-	-	2	-	-	-	-	0	0	0	0
E23	-	-	10	-	4	18	0	0	0	0	0
E24	-	-	3	-	-	17	0	0	0	0	0
E25	-	-	-	-	-	16	0	0	0	0	0
E26	12	7	10	7	-	19	0	0	0	0	0
E27	-	-	-	-	-	16	0	0	0	0	0
E28	-	-	10	-	-	17	0	0	0	0	0
E29	-	-	-	-	-	16	0	0	0	0	0
E30	-	-	11	11	-	19	0	0	0	0	0
E31	-	-	10	-	-	17	0	0	0	0	0
E32	-	-	11	-	-	17	0	0	0	0	0
E33	-	-	-	-	-	18	0	0	0	0	0
E34	-	-	-	-	-	16	0	0	0	0	0
E35	-	-	10	10	-	19	0	0	0	0	0
E36	-	-	-	-	-	17	0	0	0	0	0
E37	-	-	8	-	-	17	0	0	0	0	0
E38	-	-	6	-	-	20	0	0	0	0	0
E39	-	-	-	-	-	18	0	0	0	0	0
E40	-	-	-	-	-	17	0	0	0	0	0
E41	-	-	-	-	-	16	0	0	0	0	0
E42	-	-	13	-	-	17	0	0	0	0	0
E43	-	-	10	-	-	18	0	0	0	0	0
E44	12	2	11	-	-	17	0	0	0	0	0
E45	-	-	-	-	-	19	0	0	0	0	0
E46	-	-	9	-	-	17	0	0	0	0	0
E47	-	17	10	-	-	17	0	0	0	0	0
E48	-	-	-	-	-	17	0	0	0	0	0
E49	-	-	11	9	-	7	19	0	0	0	0
APPENDIX V

ORGANISM	CAZ (30 µg)	CRX (30 µg)	GEN (10 µg)	OFL (5 µg)	AUG (30 µg)	NIT (30 µg)	CXM (5 µg)	CPR (5 µg)	CTR (30 µg)	ERY (5 µg)	CXC (5 µg)
C1	-	-	17	7	-	0	0	0	-	2	-
C2	-	-	19	-	-	0	0	0	13	8	-
C3	-	-	-	9	-	0	0	0	9	10	-
C4	-	-	-	-	-	0	0	0	5	-	-
C5	-	-	12	-	-	0	0	0	11	6	-
C6	-	-	17	10	-	0	0	0	7	-	-
C7	-	-	19	7	-	0	0	0	9	-	-