Natural information measures for contextual probabilistic models

F. Holik*
Center Leo Apostel for Interdisciplinary Studies and, Department of Mathematics,
Brussels Free University Krijgskundestraat 33, 1160 Brussels, Belgium
National University La Plata & CONICET IFLP-CCT, C.C. 727 - 1900 La Plata, Argentina

A. Plastino†
National University La Plata & CONICET IFLP-CCT,
C.C. 727 - 1900 La Plata, Argentina
Universitat de les Illes Balears
07122 Palma de Mallorca, Spain

M. Sáenz‡
Departamento de Matemática - Ciclo Básico Común
Universidad de Buenos Aires - Pabellón III,
Ciudad Universitaria
Buenos Aires, Argentina
(Dated: today)

In this article we provide, from a novel perspective, arguments that support the idea that, in the wake of Cox’ approach to probability theory, von Neumann’s entropy should be the natural one in Quantum Mechanics. We also generalize the pertinent reasoning to more general orthomodular lattices, which reveals the structure of a general non-Boolean information theory.

Keywords: von Neumann entropy, Information Theory, Lattice Theory, Non-Boolean Algebras

I. INTRODUCTION

The problem of characterizing information measures has puzzled people since the very beginning of information theory. As an example, this intriguing character is expressed in the very origin of the term ‘entropy’ for Shannon’s measure. In Shannon’s words:

My greatest concern was what to call it. I thought of calling it an ‘information’ A’, but the word was overly used, so I decided to call it an A—uncertainty’. When I discussed it with John von Neumann, he had a better idea. Von Neumann told me, “You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have an advantage”1 (see also 2, page 35).

This entropic mystery did nothing but grow since the advent of quantum information theory (QIT)3, in which von Neumann’s entropy (VNE) plays a significant role (as for example, in the quantum coding theorem presented in 4, 5). Of course, von Neumann’s measure is not ‘alone’: there are many other entropic measures which also play a significant role in QM and QIT, such as the Tsallis’6, 7 and Renyi’s8 entropies, and even more general ones9–11. This fact led to an important debate about which is the correct information measure for the quantal realm (see for example 12 and 13). Many studies attempted to characterize Shannon’s entropy first14–17, but also von Neumann’s18. In this article, we offer a novel perspective which considers VNE as the natural information measure for a non-Boolean probability calculus.

Classical information theory (CIT) relies on the notion of probability: as stressed by Shannon, the probabilistic aspect of the source is at the basis of his seminal work19. It is widely accepted that classical probability theory can be axiomatized using Kolmogorov’s postulates20. But it turns out that there exists another approach to classical probability, namely, that of R. T. Cox21, 22. In Cox’ approach, probabilities are considered as an inference calculus on a Boolean algebra of propositions: a rational agent, intending to make inferences using classical logic (wherefrom the Boolean structure emerges), must compute the plausibility of certain events to occur. It turns out that the only measure of plausibility compatible with the algebraic symmetries of the Boolean algebra of propositions is —up to rescaling— equivalent to Kolmogorov’s probability theory23–25. In this way, the plausibility calculus is considered as a direct extension of classical deduction theory to an inference theory: the extension of rationality applied to the calculus of plausibility.

In his preliminary works, Cox also conjectured that Shannon’s entropy21 was the natural information measure for classical probability distributions. This approach was considerably developed and improved in23–28. In this way, Shannon’s and Hartley’s entropies have been characterized as the only entropies that can be used for the purposes of inquiry, in the sense that other entropies

* holik@fisica.unlp.edu.ar
† angeloplastino@gmail.com
‡ saenz.manuel@gmail.com
will lead to inconsistencies with the Boolean character of the lattice of assertions [29].

In [30], we presented a derivation of the axioms of non-commutative probabilities in Quantum Mechanics (QM) by appealing to the non-distributive (non-Boolean) character of the lattice of projections of the Hilbert space (Cr. Appendix A of this work for elementary notions of lattice theory). This was done by extending Cox’ approach for the orthomodular lattice of projection operators to i) the quantal case and ii) more general non-Boolean algebras. In this work we complement the approach by deriving the VNE as the most natural information measure in the quantum context. As in [30], we extend our results to more general (atomic) orthomodular lattices. This is done by exploiting the fact that Cox’ derivation of Shannon’s entropy can be applied to all possible maximal Boolean subalgebras of an arbitrary atomistic orthomodular lattice. Thus, according to our extension of Cox’ approach to the non-commutative realm, the VNE and Measurement Entropy (ME) [31] arise as the most natural information measures.

The results presented in this work pave the way for a new way of conceiving information theory. While classical probabilities give rise to Shannon’s theory, and thus, lead to CIT, non-Boolean probabilities give rise to VNE and QIT. Thus, QIT could be conceived as a non-Boolean generalization of CIT. This opens the door to a new way of exploring physical theories from the informational point of view, due to the fact that probabilistic theories more general than the ones appearing in classical and (standard) quantum mechanics can be conceived.

Indeed, during the 30’s von Neumann developed a theory of rings of operators [32] (today known as von Neumann algebras [33, 34]), and subsequently, in a joint work with Murray, they provided a classification of factors [35–38] (cfr. Appendix A of this work). While quantum systems of finite degrees of freedom (as is the case for example, in standard non-relativistic QM), can be described using Type I factors, more general Factors are needed for more general theories: it can be shown that Type III Factors must be used in relativistic quantum field theory, and Type II factors may appear in quantum statistical mechanics of infinite systems [33, 39]. Thus, it is expected that theories to be yet developed, such as a quantum theory of gravity, may very likely imply the use of more general probabilistic models (perhaps not contained in the above examples).

The more general [40] framework for studying probabilistic models up to now is provided by the Convex Operational Models (COM) approach [41, 42]. In a general probabilistic model, the probabilities will not be necessarily Kolmogorovian (as is the case for the probabilities appearing in Type I, II and III factors). Thus, we envisage the development of a non-Kolmogorovian (or generalized) information theory. A clear example of the fact that such an entity does exist can be found in studies focusing on the validity of informational notions such as [43–45] (cfr. [42] for more references on the subject). In this work, we show that CIT and QIT are just particular cases of this approach; the first would be the Boolean case, and the second, the one represented by the Type I factors of the Murray-von Neumann classification theory, i.e., as the algebras of bounded operators acting on separable Hilbert spaces. In this context, it is pertinent to mention that quantum algorithms where shown to exploit the non-Boolean character of the lattice of projection operators in quantum mechanics [46]. The generalization of the Bayesian Cox’ approach presented here (and in [30]), provides an unifying formal framework for dealing with possible physical theories. It also provides a possible interpretation of VNE and ME as natural measures of information for non-commutative event structures. In other words, as a natural information measure for theories exhibiting a highly contextual character, like standard quantum mechanics [47, 48].

The paper is organized as follows. In Section II we start by reviewing classical probability theory (in the approaches of Kolmogorov and Cox) and probabilities appearing in QM, emphasizing the differences with the classical case. In Section III we present a digression on Cox’ [22] and more recent [25] derivations of Shannon’s entropy as natural information measures for Boolean algebras. Next, in Section IV, we show how VNE arises as a natural measure of information for the Hilbertian projection lattice. In Section V, we discuss generalized probabilistic models and ME. Finally, in Section VI we draw some conclusions. Elementary notions of lattice theory can be found in Appendix A.

II. AXIOMS FOR PROBABILITY THEORY

A. Kolmogorov’s axiomatization of classical probability

Let \(\Sigma \) represent a sigma-algebra of subsets of a given outcome set. To fix ideas, consider the example of a dice. For this case, the outcome set \(\Omega = \{1, 2, 3, 4, 5, 6\} \) is the set of all possible results, and \(\Sigma = \mathcal{P}(\Omega) \) is the set of all possible subsets of \(\Omega \); each element of \(\Sigma \) represents a possible event (for example, the event “the result is even” is represented by the set \(\{2, 4, 6\} \) and so on). Kolmogorov’s axioms can be presented in the form of conditions on a measure \(\mu \) over \(\Sigma \) as follows [20]:

\[
\mu : \Sigma \rightarrow [0, 1] \quad (1a)
\]

which satisfies

\[
\mu(\emptyset) = 0 \quad (1b)
\]

\[
\mu(A^c) = 1 - \mu(A), \quad (1c)
\]

where \((\ldots)^c\) stands for the set-theoretical complement. For any pairwise disjoint denumerable family \(\{A_i\}_{i \in I} \),

\[
\mu(\bigcup_{i \in I} A_i) = \sum_{i} \mu(A_i). \quad (1d)
\]
With this minimal axiomatic basis the whole building of classical probability theory can be erected.

A random variable is defined as a function \(X : \Sigma \rightarrow \mathbb{R} \) that assigns real values to the elements of \(\Sigma \). Random variables are intended to describe properties of the system under study that depend on the different possible outcomes that may result from a given experiment. A random variable may be discrete if its set of possible values is countable, or continuous if there exists a continuous function which determines its probability distribution according to

\[
P(X \subseteq B) = \int_B f(x) \, dx \quad (2)
\]

Although not necessarily, the formalization of probability given by Kolmogorov’s axioms is usually associated with an objectivist (of frequentist) interpretation of probability theory, in which probabilities represent a property of the system under study, and are therefore capable of being subject to experimental test.

B. Cox’ Approach To Classical Probability

Alternatively, in Cox’ approach probabilities are interpreted in a subjective manner: they do not represent properties of physical systems, but rather they are related to the information one possesses about them. The aim of Cox was to establish probability theory as a form of induction arising as an extension of classical logic to situations of incomplete knowledge. As it will be shown, by doing so, Cox arrives at the same results as the ones obtained from Kolmogorov’s axioms. However, these two approaches significantly differ at the conceptual level. In this section, although we will follow Cox’ original deductions (presented in [21, 22]), for the sake of clarity, we will somewhat change Cox’ notation. In [49] and [50], a more detailed discussion on Cox’ work, together with implications and criticisms, can be found.

Let us call \(P \) the set of propositions that a rational agent uses to describe a system under study and \((\neg, \lor, \land)\) the logical negation, disjunction, and conjunction, respectively. Cox starts by postulating the existence of a function \(\varphi_h : P \rightarrow \mathbb{R} \) that represents the plausibility of the propositions in \(P \) on the basis of a special knowledge possessed by the agent. Such knowledge is that of a proposition, called \(h \) (usually called hypothesis), that i) happens to be true and ii) satisfies:

- \(\forall a \in P, \varphi_h(\neg a) = f(\varphi_h(a)), \) for some function \(f : P \rightarrow \mathbb{R}. \)
- \(\forall a, b \in P, \varphi_h(a \lor b) = g[\varphi_h(a), \varphi_h(b)], \) for some function \(g : P \times P \rightarrow \mathbb{R}. \)

It is now possible to deduce the calculus of probabilities by imposing on this structure the symmetries of Boolean algebra [51]. On such a basis one arrives at results analogous to the ones obtained from Kolmogorov’s axioms. By imposing coherence of the function \(\varphi_h(\cdot) \) with the associativity of conjunction \((a \land (b \land c) = (a \land b) \land c)\), Cox showed that the function \(g(x, y) \) must satisfy the functional equation

\[
g[x, g(y, z)] = g[g(x, y), z] \quad (3)
\]

Using the theory developed in [15], it can be shown that after a re-scaling and a proper definition of the probability \(P(a|h) \) in terms of \(\varphi_h(a) \), this equation’s solutions lead to the product rule of probability theory

\[
P(a \land b|h) = CP(a|h \land b)P(b|h) \quad (4)
\]

The definition of \(P(a|h) \) in terms of \(\varphi(a|h) \) is omitted, as in actual computations one ends up using only the function \(P(a|h) \) and never \(\varphi(a|h) \). On the other hand, imposing coherence with i) the law of double negation \((\neg\neg a = a)\) and ii) Morgan’s law for disjunction \((\neg(a \lor b) = \neg a \land \neg b)\), Cox arrives to a functional equation for \(f(\cdot) \) which has solutions in terms of \(P(a|h) \) given (up to re-scaling) by

\[
P(a|h)^r + P(\neg a|h)^r = 1 \quad (5)
\]

This seemingly arbitrary choice of value for the constant \(r \) can be avoided via re-scaling probability to absorb the \(r \) exponent. That is to say, it can be avoided by defining probability as \(P^r(a|h) = P(a|h)^r \) instead of \(P(a|h) \). Cox decides to take \(r = 1 \) and thus he obtains the usual rule for computing the probabilities of complementary outcomes. Finally, using results (4) and (5), and imposing coherence with i) the law of double negation and ii) Morgan’s law for conjunction \((\neg(a \land b) = \neg a \lor \neg b)\), Cox deduces the sum rule of probability theory:

\[
P(a \lor b|h) = P(a|h) + P(b|h) - P(a \land b|h) \quad (6)
\]

It can be easily shown from equations (4) and (6) that, if normalized to 1, \(P(a|h) \) satisfies all the properties of a Kolmogorovian probability (equations (1)).

C. Axioms For Probabilities In Quantum Mechanics

In [52] R. P. Feynman defines probabilities as follows:

I should say, that in spite of the implication of the title of this talk the concept of probability is not altered in quantum mechanics. When I say the probability of a certain outcome of an experiment is \(p \), I mean the conventional thing, that is, if the experiment one expects that the fraction of those which give the outcome in question is roughly \(p \). I will not be at all concerned with analyzing or defining this concept in more detail, for no departure of the concept used in classical statistics is required.
What is changed, and changed radically, is the method of calculating probabilities.

Feynman asserts that while the concept of probability is not altered in QM, the method of calculating probabilities changes radically. What does this mean? In order to clarify, let us write down things in a more technical way. To begin with, a general state in QM can be represented by a density operator, i.e., a trace class positive hermitian operator of trace one [53, 54]. Let $\mathcal{P}(\mathcal{H})$ be the orthomodular lattice of projection operators of a Hilbert space \mathcal{H} (cfr. A). Due to the spectral theorem, every physical event (i.e., the outcome of any conceivable experiment), can be represented as a projection operator in $\mathcal{P}(\mathcal{H})$. If P is a projection representing an event and the state of the system is represented by the density operator ρ, then, the probability $p_{\rho}(P)$ that the event P occurs is given by the formula

$$p_{\rho}(P) = \text{tr}(\rho P)$$

(7)

which is known as Born’s rule [54]. Given an event P and state ρ, if the experiment is repeated many times, Born’s rule assigns a number which coincides with the fraction mentioned in Feynman’s quotation. Gleason’s theorem [55] ensures that density operators are in bijective correspondence with measures s of the form

$$s : \mathcal{P}(\mathcal{H}) \rightarrow [0; 1]$$

(8a)

such that

$$s(0) = 0 \ (0 \text{ is the null subspace}).$$

(8b)

$$s(P^\perp) = 1 - s(P),$$

(8c)

and, for a denumerable and pairwise orthogonal family of projections P_j

$$s(\sum_{j} P_j) = \sum_{j} s(P_j).$$

(8d)

Thus, given a state ρ, a measure s_{ρ} satisfying Eqns. (8) is uniquely determined in such a way that, for each outcome of each experiment, represented by projection operator P, it coincides with the probability defined in Feynman’s quotation. In this way, probabilities appearing in QM (which are governed by the density matrix and the Born’s rule), can be axiomatized using Eqs. (8). How is all of this related with the above Feynman’s quotation? What is the technical meaning of the radical difference mentioned by Feynman? While Eqs. (8) may look unfamiliar, it is instructive to consider a quantum probability distribution, such as s, as a collection of classical probability distributions. Let us make some important definitions in order to see how this works. Let $E := \{P_i\}_{i \in \mathbb{N}}$ be a collection of projections such that $\bigvee_i P_i = 1_\mathcal{H}$ and $P_i \perp P_j = 0$ whenever $i \neq j$. We call E an experiment. The intuitive idea of an experiment refers to the set of events defined by a concrete experimental setup. Each one of these events is in a bijective correspondence with a possible measurement outcome. Thus, the E’s can be regarded as part of an outcome set Ω_E. As an example, measuring the spin of a particle in a definite direction defines an experiment. To measure it in another direction, defines a new experiment incompatible with the first one. Notice that any experiment defines a maximal Boolean subalgebra of $\mathcal{P}(\mathcal{H})$, which is isomorphic to $\mathcal{P}(\Omega_E)$. The state of the system defines a classical probability distribution on this Boolean subalgebra, satisfying Eqns. (1).

We call an orthonormal complete set of projectors of the form $\{|\phi_i\rangle\rangle_i \in \mathcal{H}$ (where the $|\phi_i\rangle$ are unit vectors) a frame. Notice that any frame is also an experiment. In a sense, a frame represents a maximal experiment on the system, in the sense that it cannot be refined by any finer measurement (cfr. [56], Chapter 2). We call $\mathcal{F}_\mathcal{H}$ to the set of all possible frames in \mathcal{H}. Frames are irreducible experiments, in the sense that no outcome is degenerate.

Each experiment E defines a maximal Boolean subalgebra $\mathcal{B}_E \subset \mathcal{P}(\mathcal{H})$ [57]. If we restrict the state ρ to \mathcal{B}_E, we obtain a measure $\rho_{\mathcal{B}_E}$ on \mathcal{B}_E satisfying Kolmogorov’s probability theory (defined by Eqns. (1)).

Indeed, if we restrict to frames, for each orthonormal basis $\{|\phi_i\rangle\rangle_i \in \mathcal{H}$ representing a particular irreducible experiment, the state ρ assigns to it a classical probability distribution represented by the vector $(p_{|\phi_1\rangle}, p_{|\phi_2\rangle}, \ldots)$, where $p_{|\phi_i\rangle} = \text{tr}(\rho|\phi_i\rangle\langle\phi_i|)$. Indeed, the set $\{|\phi_i\rangle\rangle_i \in \mathcal{H}$ generates a maximal Boolean algebra, and measure s_{ρ} defines a classical probability measure on it just as in (1). Thus, the quantum probabilities originated in a given state can be considered as a (non-denumerable) family

$$\{(p_{|\phi_1\rangle}, p_{|\phi_2\rangle}, p_{|\phi_3\rangle}, \ldots)\}$$

$$\{(p_{|\phi_1\rangle}, p_{|\phi_2\rangle}, p_{|\phi_3\rangle}, \ldots)\}$$

$$\{(p_{|\phi_1\rangle}, p_{|\phi_2\rangle}, p_{|\phi_3\rangle}, \ldots)\}$$

$$\vdots$$

$$\vdots$$

(9)

where $|\phi_i\rangle$, $|\phi'_i\rangle$, etc., ranges over all possible orthonormal basis of \mathcal{H}.

Thus, a quantum state can be seen as a collection of classical probability distributions ranging over each possible experiment. Since in QM different experiments can be incompatible (i.e., cannot be simultaneously performed), a quantum state does not determine a single classical probability distribution: due to Gleason’s theorem, this fact is correctly axiomatized by Eqns. (8). We thus see how the meaning of the expression “radically changed” in Feynman’s quote can be expressed in a clear technical (and conceptual) sense. In classical probability theory the rational agent is confronted with an event structure represented by a single Boolean algebra (only one context). This is the content of Cox’ approach to probability theory [58]: the Boolean structure of propositions representing classical events determine the possible
measures of degrees of belief. In other words, if the agent wants to avoid inconsistencies, he must compute probabilities according to rules compatible with the Boolean structure of classical logic.

In the quantum realm, due to the existence of complementary contexts, a single Boolean algebra is no longer sufficient to cogently (and fully) describe physical phenomena, and thus, the orthomodular structure of \(\mathcal{P}(\mathcal{H}) \) emerges. This is the case for more general theories as well, such as algebraic relativistic quantum field theory or quantum mechanics with infinitely many degrees of freedom, and this involves the use of more general algebraic structures (more on this in the next Section). Notice that these considerations do not imply that classical logic should be abandoned; quite on the contrary, the experimenter is always confronted with concrete experiments for which a Boolean algebra is perfectly defined. But no a priori principle grants that the complete description of all possible phenomena will be exhausted within a single Boolean context. Here we encounter the radical difference in computing probabilities that quantum mechanics forces on us: non-Boolean event structures do appear in nature, and in this case, new rules for computing probabilities must be invoked. In [30] Cox’ construction is generalized by showing that when the experimenter is confronted with events represented by a non-Boolean algebra such as \(\mathcal{P}(\mathcal{H}) \), the plausibility measures must obey Eqns. (8) in order to avoid inconsistencies.

D. General Case

Measures in lattices more general than the sigma-algebra of the classical case and \(\mathcal{P}(\mathcal{H}) \) can be constructed [33, 34]. They can be axiomatized as conditions on a measure \(s \) as follows:

\[
s : \mathcal{L} \rightarrow [0;1], \tag{10a}
\]

(\(\mathcal{L} \) standing for the lattice of all events) such that

\[
s(0) = 0. \tag{10b}
\]

\[
s(E^\perp) = 1 - s(E), \tag{10c}
\]

and, for a denumerable and pairwise orthogonal family of events \(E_j \)

\[
s(\sum_j E_j) = \sum_j s(E_j). \tag{10d}
\]

See [59] regarding the conditions for the existence of such measures. Eqns. (1) and (8) are just particular cases of this general approach. There do exist concrete examples of measures on lattices, coming from Type II and Type III factors, which do not reduce to (1) and (8) [33, 39].

Define an experiment as a set of propositions \(A := \{a_i\}_{i \in \mathbb{N}} \), such that \(a_i \perp a_j \) for \(i \neq j \) and \(\bigvee_i a_i = 1 \). Call \(\mathcal{E} \) to the set of all possible experiments. A frame in \(\mathcal{L} \) will be an orthogonal set \(\{a_i\}_{i \in \mathbb{N}} \) of atoms such that \(\bigvee_i a_i = 1 \). Notice that frames are also experiments here.

III. COX’ APPROACH AND INFORMATION MEASURES

Given an event structure (i.e, a set of propositions referring to events) represented by an atomic Boolean lattice \(\mathcal{B} \), Cox defines a question as the set of assertions that answer it. If a proposition \(x \in \mathcal{B} \) answers question \(Q \) (notice that according to Cox’ definition this means \(x \in Q \)), and if \(y \) implies \(x \) (or in lattice theoretical notation: \(y \leq x \)), then, \(y \) should also answer \(Q \) (and thus, \(y \in Q \)). Any set of propositions in \(\mathcal{B} \) with this property will be called a down-set (see [25]). Thus, any question \(Q \) in the set of questions \(Q(\mathcal{B}) \) defined by \(\mathcal{B} \) is a down-set. \(Q(\mathcal{B}) \) forms a lattice with set theoretical inclusion as partial order, intersection as conjunction and set union as disjunction. Notwithstanding, \(Q(\mathcal{B}) \) will fail to be Boolean, due to the failure of orthocomplementation.

Following [60], define an ideal \(I \) of a lattice \(\mathcal{L} \) as a non-empty subset satisfying the following conditions

- If \(x \leq y \) and \(y \in I \), then \(x \in I \).
- If \(x, y \in I \), then \(x \lor y \in I \).

Thus, any ideal is also a down-set. Given an element \(a \in \mathcal{L} \), a set of the form \(I(a) = \{x \in \mathcal{L} \mid x \leq a\} \) is an ideal, and it is called a principal ideal of \(\mathcal{L} \). An important theorem due to Birkhoff [60] asserts that the set \(\mathcal{L} \) of all ideals forms a lattice and the set \(\hat{\mathcal{L}}_p \) of all principal ideals forms a sublattice, which is isomorphic to \(\mathcal{L} [60] \) (and we denote this fact by \(\hat{\mathcal{L}}_p \sim \mathcal{L} \)).

For an arbitrary atomic Boolean algebra \(\mathcal{B} \), any \(a \in \mathcal{B} \) can be written in the form \(a = \bigvee_i a_i \), for some atoms \(a_i[61] \). We can also form the lattices of ideals \(\hat{\mathcal{B}} \) and \(\hat{\mathcal{B}}_p \), with \(\hat{\mathcal{B}}_p \subseteq \hat{\mathcal{B}} \) and \(\hat{\mathcal{B}}_p \sim \mathcal{B} \) (as lattices).

We can also form the lattice of questions \(Q(\mathcal{B}) \) (which will not necessarily be suitably orthocomplemented). Notice that while each ideal in \(\mathcal{B} \) belongs to \(Q(\mathcal{B}) \), not every element in \(Q(\mathcal{B}) \) is an ideal (because a system of assertions does not necessarily satisfy the join condition of the definition of ideal [28]). Thus, in order to stress the difference, let us call \(\hat{Q}(\mathcal{B}) \) to the set of ideal-questions (i.e., questions such that are represented by ideals of \(\mathcal{B} \)).

It should be clear that \(\hat{Q}(\mathcal{B}) \subseteq Q(\mathcal{B}) \). For any question \(Q \in Q(\mathcal{B}) \), if \(a \in Q \), then, the ideal \(I(a) \) of \(a \) in \(\mathcal{B} \) satisfies \(I(a) \subseteq Q \) (because \(Q \) must contain all the \(x \) such that \(x \leq a \)). From this, it follows that \(Q = \bigcup_{a \in Q} I(a) \).

One more step is needed in order to guarantee that our questions be real. A real question must satisfy the condition of being answerable by a true statement [25].

This is elegantly done by requiring that all atoms must belong to a question in order to be considered real. Thus, let \(\mathcal{R}(\mathcal{B}) \) be the set if real questions. It can be shown that in the general case, \(\mathcal{R}(\mathcal{B}) \) will not be Boolean because of the failure of orthocomplementation. We will not use this lattice here, but only consider \(Q(\mathcal{B}) \) and \(\hat{Q}(\mathcal{B}) \).
There exists a quantity analogous to probability, called relevance [25], which quantifies the degree to which one question answers another (the technical details of the construction of the relevance function are similar to those presented in Section II B). Relevance is not only a natural generalization of information theory, but also forms its foundation [25]. Let us repeat that the vocable relevance refers to the computation of to what an extent a question answers another one. From the mathematical point of view, this task is completely analogous to that of assigning plausibility to \(B \), but applied now to \(Q(B) \).

As explained in [25], in order to assign relevances, i) the algebraic properties of the question lattice \(Q(B) \) and ii) the probability assigned to \(B \) using Cox’ method must be taken into account. The objective is thus to assign relevances to the ideal-questions (the rest can be computed using the inquiry calculus derived using Cox’ method, see Knuth [25]). With the question algebra well-defined, Knuth extends the ordering relation to a quantity that describes the degree to which one question answers another. This is done by defining a bi-valuation on the lattice that takes two questions and returns a real number \(d \in [0, c] \), where \(c \) is the maximal relevance. Precisely, Knuth calls this bi-valuation the relevance [25]. This procedure can be applied to \(Q(B) \) and \(Q(B) \), and thus we have a function \(d(\cdot | \cdot) \) with properties analogous to that of a plausibility function, but now defined on the lattices of questions.

Following [25], we assume that the extent to which the top question \(\hat{I} \) answers a join-irreducible question \(I(a_i) \) depends only on the probability of the assertion \(a_i \) from which the question \(I(a_i) \) was generated. More abstractly,

\[
d(I(a_i) | \hat{I}) = H(p(a_i))|1),
\]

where \(H \) being a function to be determined in such a way that it satisfies compatibility with the algebraic properties of the lattice and the probabilities assigned in \(B \) (by using Cox’ method). Now, let us review the properties of \(d(\cdot | \cdot) \) according to Knuth’ inquiry calculus. First, we will have subadditivity

\[
d(a \lor b | c) \leq d(a | c) + d(b | c)
\]

which is a straightforward consequence of the sigma-additivity condition

\[
d(\bigvee_i x_i | c) = \sum_i d(x_i | c)
\]

for pairwise disjoint questions \(\{x_i\}_{i \in \mathbb{N}} \). Commutativity implies that

\[
d(x_1 \lor x_2 \lor \ldots \lor x_n | c) = d(x_{\pi(1)} \lor x_{\pi(2)} \lor \cdots \lor x_{\pi(n)} | c)
\]

for any permutation \(\pi \). Now suppose that to a certain collection of questions \(\{x_1, x_2, \ldots, x_n\} \) we add a new question \(y = I(x) \) and that we know in advance that the assertion \(x \) is false. Then, \(y \) collapses to \(\hat{0} \in Q(B) \). Thus, we should have the expansibility condition

\[
d(x_1 \lor x_2 \lor \ldots \lor x_n \lor y | c) = d(x_1 \lor x_2 \lor \ldots \lor x_n | c)
\]

Suppose now that a question \(X \in Q(B) \) can be written as \(X = \bigvee I(a_i) \), where \(\{I(a_i)\} \) are ideal questions with \(I(a_i) \land I(a_j) = \hat{0} \). Then, we will have

\[
d(\bigvee I(a_i) | \hat{I}) = \sum_i d(\bigvee I(a_i) | \hat{I}) = \sum_i H(p(a_i))|1).
\]

Let us cast the above equation as

\[
d(\bigvee I(a_i) | \hat{I}) = K(p(a_i)),
\]

where we have introduced the function \(K(p(a_i)) \) which depends on the \(p(a_i) \) only. If the \(\{I(a_i)\} \) form a finite set \((n \) elements), we can write

\[
K_n(p(a_1), \ldots, p(a_n)) = AH_n(p(a_1, \ldots, p(a_n)) + BH_n^0(p(a_1, \ldots, p(a_n)),
\]

where \(A \) and \(B \) are arbitrary constants, \(H_n(p_1, \ldots, p_n) = -\sum_{i=1}^n p_i \ln p_i \), and \(H_n^0 = \ln(n) \) are the Shannon and Hartley entropies respectively. For information theoretical purposes related to the continuity of the measure of information [14, 25], it is very natural to set \(A = 1 \) and \(B = 0 \), and thus \(K_n(p(a_1), \ldots, p(a_n)) = -\sum_{i=1}^n p(a_i) \ln p(a_i) \). When the terms \(\{I(a_i)\} \) in the decomposition are an infinite denumerable set, by continuity, we will have that \(K(p(a_i)) = -\sum_{i=1}^\infty p(a_i) \ln p(a_i) \).

The discussion in this Section allows us to discard the restriction to finite Boolean algebras and turn to more general ones.

IV. VON NEUMANN’S ENTROPY AS A NATURAL MEASURE FOR \(\mathcal{P}(\mathcal{H}) \)

As in the Boolean case, we look for a natural information measure for \(\mathcal{P}(\mathcal{H}) \), i.e., a function depending on the non-commutative measure defined by Eqns. (8). Thus, by appealing to Gleason’s theorem, we look for a function \(S(\rho) \) (depending only on the state \(\rho \)), at the same time compatible with the algebraic structure of \(\mathcal{P}(\mathcal{H}) \).

Let us call \(\mathcal{B}_{\mathcal{P}(\mathcal{H})} \) to the set of all maximal Boolean lattices of \(\mathcal{P}(\mathcal{H}) \). For each \(B \in \mathcal{B}_{\mathcal{P}(\mathcal{H})} \), we can consider its dual lattice of ideals \(\hat{B} \).
Notice that when \mathcal{H} is finite dimensional, its maximal Boolean subalgebras will be finite. As an example, consider $\mathcal{P}(\mathbb{C}^2)$, i.e., the set of all possible linear subspaces of a two-dimensional complex Hilbert space. Then, each maximal Boolean subalgebra will be of the form $\{0, \mathbf{P} - \mathbf{P}^\perp, \mathbf{1}_{C^2}\}$, with $\mathbf{P} = |\varphi \rangle \langle \varphi |$ for some unit norm vector $|\varphi \rangle$ and $\mathbf{P}^\perp = |\varphi^\perp \rangle \langle \varphi^\perp |$ (with $\langle \varphi | \varphi^\perp \rangle = 0$). In a similar way, for $\mathcal{P}(\mathbb{C}^3)$, a maximal Boolean subalgebra will be isomorphic to $\mathcal{P}(\langle a, b, c \rangle) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. More specifically, for this last example, given three orthogonal rays in \mathbb{C}^3 represented by unitary vectors $|\varphi_1 \rangle$, $|\varphi_2 \rangle$ and $|\varphi_3 \rangle$, the set $\{0, \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_{12}, \mathbf{P}_{13}, \mathbf{P}_{23}, \mathbf{1}_{C^3}\}$, where $P_i = |\varphi_i \rangle \langle \varphi_i |$ (i = 1, 2, 3) and $P_{ij} = |\varphi_i \rangle \langle \varphi_i | + |\varphi_j \rangle \langle \varphi_j |$ (i, j = 1, 2, 3), forms a maximal Boolean subalgebra (and all maximal Boolean subalgebras are of this form). Notice that in these examples, the sets of atoms $\{|\varphi_1 \rangle \langle \varphi_2 |; |\varphi_2 \rangle \langle \varphi_3 |; |\varphi_3 \rangle \langle \varphi_1 |\}$ (with orthonormal $|\varphi_i \rangle$ for all i) and $\{|\varphi_i \rangle \langle \varphi_i |; |\varphi_{i+1} \rangle \langle \varphi_{i+1} |\}$ i) form frames, and ii) generate the above mentioned Boolean subalgebras of $\mathcal{P}(\mathcal{H})$.

Now, it is important to notice that if we restrict a state ρ to B, we will have a classical probability measure such as the one defined by Eqs. (1), and a concomitant inquiry set $\mathcal{Q}(B)$ can be defined as in [22, 23] (see Section III of this work). In what follows, our strategy will be to construct a suitable information measure, just as we did in Section III, for each maximal Boolean subalgebra of $\mathcal{P}(\mathcal{H})$. For each frame $F = \{|\varphi_i \rangle \langle \varphi_j |\}_{i \in I \subseteq B}$ representing a complete experiment, state ρ assigns probabilities $p_i = \text{tr}(\rho |\varphi_i \rangle \langle \varphi_i |)$ to each possible outcome of F. By following Cox’ spirit [22, 23, 26] and the procedure sketched in Section III, we can guarantee (by choosing suitable coefficients A and B in Eqn. (III)) that for each maximal Boolean subalgebra B there exists a canonical information measure $H_F(\rho)$ such that for each frame $F \subseteq B$:

$$H_F(\rho) = -\sum_i p_i \ln p_i = -\sum_i \text{tr}(\rho |\varphi_i \rangle \langle \varphi_i |) \ln(\text{tr}(\rho |\varphi_i \rangle \langle \varphi_i |)).$$

(18)

The above construction can be carried out for any $B \in \mathcal{B}_{\mathcal{P}(\mathcal{H})}$. Thus, for any ρ, each $B \in \mathcal{B}_{\mathcal{P}(\mathcal{H})}$ and each frame $F \subseteq B$, we have a measure $H_F(\rho)$. It is important to note that this family of measures, although only defined on the maximal Boolean sublattices, do cover the whole $\mathcal{P}(\mathcal{H})$ lattice. This is so because, as shown in [62], every orthomodular lattice is the union of its maximal Boolean sublattices.

Our point is that we need a measure such that it depends only on ρ and not on the particular choice of complete experiment (represented by a particular frame). Among the family of measures $H_F(\rho)$, it is natural to take the one which attains the minimum value: the one with the least Shannon’s information. This means that it is natural to define

$$H(\rho) := \inf_{F \in \mathcal{F}_\mu} H_F(\rho).$$

(19)

Given that ρ is self adjoint, let us consider its set of eigenprojectors $F_\rho = \{\rho_i |\rho_i \rangle \langle \rho_i | \}_{i \in \mathbb{R}}$, with $p_i \in \mathbb{R}$ satisfying $\rho |\rho_i \rangle = |\rho_i \rangle$ and $\rho = \sum p_i |\rho_i \rangle \langle \rho_i |$. It should be clear that if ρ is non-degenerate, F_ρ is a frame. If ρ is degenerate, it is equally easy to find a frame out of its eigenprojections. Accordingly, without loss of generality we can suppose that ρ defines a frame. Now consider the maximal Boolean algebra \mathcal{B}_{F_ρ} generated by F_ρ. Using Eq. (18), it follows that the canonical measure H_μ, when restricted to F_ρ, satisfies

$$H_{F_\rho}(\rho) = -\sum_i \text{tr}(\rho |\rho_i \rangle \langle \rho_i |) \ln(\text{tr}(\rho |\rho_i \rangle \langle \rho_i |)) = -\sum_i p_i \ln p_i = -\text{tr}(\rho \ln(\rho))$$

(20)

which is nothing but the VNE. But the VNE has the well known property of attaining its minimum value at F_ρ:

$$-\text{tr}(\rho \ln(\rho)) \leq H_F(\rho), \quad \forall \, F \in \mathcal{F}_\mu$$

(21)

Thus, we have shown that $H(\rho) = -\text{tr}(\rho \ln(\rho))$. In other words, von Neumann’s entropy is the only function which emerges canonically as the minimum of all measures compatible with the algebraic structure of $\mathcal{P}(\mathcal{H})$. Notice that we are deriving VNE out of the algebraic symmetries of the lattice. The above considerations show the VNE as a natural measure of information of $\mathcal{P}(\mathcal{H})$, as a consequence of Shannon’s entropy being the natural information measure of a Boolean algebra following Cox’ method. Notice that our derivation covers both the finite and infinite dimensional cases.

V. GENERALIZED PROBABILISTIC MODELS

Let us now briefly discuss what happens if \mathcal{L} is an arbitrary atomic orthomodular lattice and μ is a measure obeying Eqs. (10). The procedure of the previous Section can be extended to this case. Let $\mathcal{B}_\mathcal{L}$ be the set of all possible maximal Boolean subalgebras of \mathcal{L}. For each $B \in \mathcal{B}_\mathcal{L}$, the Cox’ construction applies as in Section III, and we have a Shannon’s function $H_F(\mu)$ defined for each frame $F = \{a_i \}_{i \in I} \in \mathcal{E}$ (see Section II D):

$$H_F(\mu) = -\sum_{a_i \in A} \mu(a_i) \ln(\mu(a_i)).$$

(22)

As in the previous Section, we define:

$$H(\mu) := \inf_{F \in \mathcal{E}} H_F(\mu).$$

(23)

Notice that when restricted to frames, $H_A(\mu)$ coincides with the Shannon’s measures derived using Cox’ method. Thus, by construction, $H(\mu)$ does the job of representing the canonical measure of information, as Shannon’s and VNE did in the classical and quantum cases, respectively.

The results of this Section show that it is indeed possible to generalize Cox’ method to probabilistic theories
more general than a Boolean algebra. Notice that, when \(\mathcal{L} \) is a Boolean algebra, we recover Cox’ construction, and when \(\mathcal{L} = \mathcal{P}(\mathcal{H}) \), we recover our construction for the VNE. Indeed, by looking at Eq. (23), the reader will soon recognize that our derivation coincides with the measurement entropy (ME) introduced in [63] and [44] (see also [31]).

VI. CONCLUSIONS

If a rational agent deals with a Boolean algebra of assertions, representing physical events, a plausibility calculus can be derived in such a way that the plausibility function yields a theory which is formally equivalent to that of Kolmogorov for classical probabilities [21, 22, 25, 27].

A similar result holds if the rational agent deals with an atomic orthomodular lattice [30], as is the case with the contextual character of the lattice of projections representing events of a quantum system. For the later case, non-Kolmogorovian probabilities (Eqs. (8)) arise as the only ones compatible with the non-commutative (non-Boolean) character of quantum complementarity.

In Cox’ approach, Shannon’s information measure relies on the axiomatic structure of Kolmogorovian probability theory. We have shown in Section IV that, according to our extension of Cox’ method, the VNE emerges as its non-commutative version. The VNE thus arises as a natural measure of information derived from the non-Boolean character of the underlying lattice \(\mathcal{P}(\mathcal{H}) \). The different entropies discussed in this work are summarized in Table I.

The fact that this kind of construction can be extended to more general probabilistic models (as we have shown in Section V, where we have deduced the ME as a natural measure of information), implies that CIT and QIT can be considered as particular cases of a more general non-commutative information theory.

These results allow for an interpretation of the VNE and measurement entropy as the natural measures of information for an experimenter who deals with a non-Boolean (contextual) event structure. This is the case for standard quantum mechanics, in which quantum complementarity expresses itself in the existence of non-compatible measurement set-ups and, consequently, in the different contexts of \(\mathcal{P}(\mathcal{H}) \) (maximal Boolean subalgebras) and non-commutative observables.

Appendix A: Lattices

- A lattice \(\mathcal{L} \) is a partially ordered set (i.e., a set endowed with a partial order relationship “\(\leq \)”) such that for very \(a, b \in \mathcal{L} \) there exists a unique supremum, the least upper bound “\(a \lor b \)” called their join, and an infimum, the greatest lower bound “\(a \land b \)” called their meet.

- A bounded lattice has a greatest and least element, denoted \(\mathbf{1} \) and \(\mathbf{0} \) (also called top and bottom, respectively).

- For any lattice, an orthocomplementation is a unary operation “\(\neg (\ldots) \)” satisfying:

\[
\neg(-a) = a \quad (A1a)
\]

\[
a \leq b \implies -b \leq -a \quad (A1b)
\]

\[
a \lor -a \text{ and } a \land -a \text{ exist and}
\]

\[
a \lor -a = 1 \quad (A1c)
\]

\[
a \land -a = 0 \quad (A1d)
\]

hold.

- If \(\mathcal{L} \) has a null element \(\mathbf{0} \), then an element \(x \) of \(\mathcal{L} \) is an atom if \(0 < x \) and there exists no element \(y \) of \(\mathcal{L} \) such that \(0 < y < x \). \(\mathcal{L} \) is Atomic, if for every nonzero element \(x \) of \(\mathcal{L} \), there exists an atom \(a \) of \(\mathcal{L} \) such that \(a \leq x \).

- A modular lattice is one that satisfies the modular law \(x \leq b \) implies \(x \lor (a \land b) \) = \((x \lor a) \land b \), where \(\leq \) is the partial order, and \(\lor \) and \(\land \) (join and meet, respectively) are the operations of the lattice. An orthomodular lattice is an orthocomplemented lattice satisfying the orthomodular law: \(a \leq b \) and \(\neg a \leq c \) implies \(a \lor (b \land c) \) = \((a \lor b) \land (a \lor c) \).

- Distributive lattices are lattices for which the operations of join and meet are distributive over each other. Distributive orthocomplemented lattices are called Boolean. The collection of subsets of a given set, with set intersection as meet, set union as join and set complement as orthocomplementation, form a complete bounded lattice which is also Boolean.

- Any quantum system represented by a separable Hilbert space \(\mathcal{H} \) has associated a lattice formed by all its closed subspaces \(\mathcal{P}(\mathcal{H}) \), where \(\mathbf{0} \) is the null subspace, \(\mathbf{1} \) is the total space \(\mathcal{H} \), \(\lor \) is the closure of the direct sum, \(\land \) is subspace intersection, and \(\neg(S) \) is the orthogonal complement of a subspace \(S \) [34]. This lattice was called “Quantum Logic” by Birkhoff and von Neumann and it is a modular one if the Hilbert space is finite dimensional, and orthomodular for the infinite dimensional case. The set of projection operators on \(\mathcal{H} \) forms a lattice which is isomorphic to \(\mathcal{P}(\mathcal{H}) \) (and thus, they can be identified).

CLASSICAL	QUANTUM	GENERAL	
LATTICE	\(\mathcal{P}(\Gamma) \)	\(\mathcal{P}(\mathcal{H}) \)	\(\mathcal{L} \)
ENTROPY	\(-\sum_i p(i) \ln(p(i)) \)	\(-\text{tr} \rho \ln(\rho) \)	\(\inf_{\mathcal{E} \in \mathcal{L}} H_{\mathcal{E}}(\mu) \)

TABLE I. Table comparing the differences between the classical, quantal, and general cases.
ACKNOWLEDGMENTS

This work has been supported by CONICET.

[1] M. Tribus and E. C. Mcirvine, Sci. Am. 225, 179 (1971).
[2] I. Bengtsson and K. Życzkowski, Geometry of quantum states: an introduction to quantum entanglement (Cambridge University Press, 2006).
[3] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
[4] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[5] R. Jozsa and B. Schumacher, Journal of Modern Optics 41, 2343 (1994).
[6] C. Tsallis, Journal of statistical physics 52, 479 (1988).
[7] A. Rastegin, Quantum Information And Computation 14, 0996 (2014).
[8] A. Rényi, On Measures of Entropy and Information (University of California Press, Berkeley, Calif., 1961) pp. 547–561.
[9] R. Rossignoli, N. Canosa, and L. Ciliberti, Phys. Rev. A 82, 052342 (2010).
[10] S. Zozor, G. M. Bosyk, and M. Portesi, Journal of Physics A: Mathematical and Theoretical 47, 495302 (2014).
[11] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, Journal of Mathematical Physics 54, 122203 (2013).
[12] i. c. v. Brukner and A. Zeilinger, Phys. Rev. A 63, 022113 (2001).
[13] C. Timpson, Studies in History and Philosophy of Science Part A, Quantum Information And Computation.
[14] J. Aczél, B. Forte, and C. T. Ng, Advances in Appl. Probability 6, 131 (1974).
[15] J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19 (Academic Press, New York-London, 1966) translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser.
[16] W. Ochs, Phys. Lett. A 54, 189 (1975).
[17] W. Ochs, Rep. Mathematical Physics 9, 331 (1976).
[18] W. Ochs, Rep. Mathematical Physics 8, 109 (1975).
[19] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[20] A. Kolmogorov, Foundations of Probability Theory (Julus Springer: Berlin, Germany, 1933).
[21] R. T. Cox, American Journal of Physics 14 (1946).
[22] R. Cox, The Algebra of Probable Inference (The Johns Hopkins Press: Baltimore, MD, USA, 1961).
[23] K. H. Knuth (Amer. Inst. Phys., Melville, NY, 2004) pp. 204–235.
[24] F. Goyal and K. H. Knuth, Symmetry 3, 171 (2011).
[25] K. H. Knuth, Neurocomputing 67, 245 (2005), geometrical Methods in Neural Networks and Learning.
[26] K. H. Knuth (Amer. Inst. Phys., Melville, NY, 2004) pp. 517–524.
[27] K. H. Knuth and J. Skillings, Axioms 1, 38 (2012).
[28] K. H. Knuth (Amer. Inst. Phys., Melville, NY, 2003) pp. 227–242.
[29] K. Knuth, in aistats05, edited by R. G. Cowell and Z. Ghahramani (Society for Artificial Intelligence and Statistics, 2005) pp. 174–180, (Available electronically at http://www.gatsby.ucl.ac.uk/aistats/).
[30] F. Holik, M. Sáenz, and A. Plastino, Annals of Physics 340, 293 (2014).
[31] A. K. J. Short and S. Wehner, New Journal of Physics 12, 033023 (2010).
[32] J. v. Neumann, Mathematische Annalen 102, 370 (1930).
[33] M. Rédei and S. J. Summers, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38, 390 (2007).
[34] M. Rédei, Quantum logic in algebraic approach, Fundamental Theories of Physics, Vol. 91 (Kluwer Academic Publishers Group, Dordrecht, 1998).
[35] F. J. Murray and J. von Neumann, Ann. Of Math. 37, 116 (1936).
[36] F. J. Murray and J. von Neumann, Trans. Amer. Math. Soc. 41, 208 (1937).
[37] J. von Neumann, Ann. Of Math. 41, 94 (1940).
[38] F. J. Murray and J. von Neumann, Ann. Of Math. 44, 716 (1943).
[39] J. Yngvason, Reports on Mathematical Physics 55, 135 (2005).
[40] For the case of negative probabilities, see for example [81,65].
[41] F. Holik and A. Plastino, in Contemporary Research in Quantum Systems, Physics Research and Technology, edited by Z. Ezziane.
[42] F. Holik, C. Massri, M. Sáenz, and A. Plastino, (2014), arXiv:1406.0913 [quant-ph].
[43] F. Holik, (2013), arXiv:0611295 [quant-ph].
[44] H. Barnum, J. Barrett, L. O. Clark, M. Leifer, R. Spekkens, N. Stepanik, A. Wilce, and R. Wilke, New Journal of Physics 12, 033024 (2010).
[45] A. Holevo, Probabilistic and statistical aspects of quantum theory, 2nd ed., Quaideri. Monographs, Vol. 1 (Edizioni della Normale, Pisa, 2011) pp. xvi+323, with a foreword from the second Russian edition by K. A. Valiev.
[46] J. Bub, Quantum Information And Computation 7, 281 (2007).
[47] O. Gühne, M. Kleinmann, A. Cabello, J.-A. Larsson, G. Kirchmair, F. Zähringer, R. Gerritsma, and C. F. Roos, Phys. Rev. A 81, 022121 (2010).
[48] A. Cabello, Phys. Rev. Lett. 104, 220401 (2010).
[49] K. S. Van Horn, International Journal of Approximate Reasoning 34, 3 (2003).
[50] S. Arnaborg and G. Sjödin, in AIP Conference Proceedings (IOP INSTITUTE OF PHYSICS PUBLISHING LTD, 2001) pp. 61–71.
[51] By classical logic one refers to the propositional calculus endowed with the operations ¬, ∨ and ∧. It is widely known that the algebraic structures corresponding to this propositional calculus are closely related to Boolean algebras.
[52] R. P. Feynman, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, Calif., 1951) pp. 533–541.
[53] F. Holik and A. Plastino, Phys. Rev. A 84, 062327 (2011).
[54] F. Holik, C. Massri, A. Plastino, and L. Zuberman, International Journal of Theoretical Physics 52, 1836 (2013).
[55] A. Gleason (Springer Netherlands, 1975) pp. 123–133.
The construction of \mathcal{B}_E is trivial: it is indeed the smallest Boolean subalgebra of $\mathcal{P}(\mathcal{H})$ containing E.

It is also the content of other similar approaches as well, such as the ones presented in Section II of [66].

Notice that maximal Boolean subalgebras of $\mathcal{P}(\mathcal{H})$ satisfy these conditions and that the disjunction may be infinite but denumerable.

[56] A. Peres, *Quantum Theory: Concepts And Methods*, Fundamental Theories of Physics, Vol. 72.

[57] The construction of \mathcal{B}_E is trivial: it is indeed the smallest Boolean subalgebra of $\mathcal{P}(\mathcal{H})$ containing E.

[58] It is also the content of other similar approaches as well, such as the ones presented in Section II of [66].

[59] E. G. Beltrametti and G. Cassinelli, *The logic of quantum mechanics*, Encyclopedia of Mathematics and its Applications, Vol. 15 (Addison-Wesley Publishing Co., Reading, Mass., 1981) with a foreword by Peter A. Carruthers.

[60] G. Birkhoff, *Lattice theory*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 25 (American Mathematical Society, Providence, R.I., 1979).

[61] Notice that maximal Boolean subalgebras of $\mathcal{P}(\mathcal{H})$ satisfy these conditions and that the disjunction may be infinite but denumerable.

[62] M. Navara and V. Rogalewicz, Mathematische Nachrichten **154**, 157 (1991).

[63] C. Hein, Foundations of Physics **9**, 751 (1979).

[64] J. A. de Barros and G. Oas, Physica Scripta **2014**, 014008 (2014).

[65] G. Oas, J. A. de Barros, and C. Carvalhaes, Physica Scripta **2014**, 014034 (2014).

[66] C. A. Fuchs and R. Schack, Rev. Mod. Phys. **85**, 1693 (2013).