In silico tools for accurate HLA and KIR inference from clinical sequencing data empower immunogenetics on individual-patient and population scales

Jieming Chen, Shravan Madireddi, Deepti Nagarkar, Maciej Migdal, Jason Vander Heiden, Diana Chang, Kiran Mukhyala, Suresh Selvaraj, Edward E. Kadel III, Matthew J. Brauer, Sanjeev Mariathasan, Julie Hunkapiller, Suchit Jhunjhunwala, Matthew L. Albert and Christian Hammer

Corresponding author: Christian Hammer, Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
E-mail: hammer.christian@gene.com

Abstract

Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.

Key words: HLA; KIR; immunogenetics; whole-genome sequencing; imputation; clinical sequencing

© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The classical human leukocyte antigen (HLA) gene complex on chromosome 6, and the killer-cell immunoglobulin-like receptor (KIR) genes on the leukocyte receptor complex on chromosome 19 are complex genomic loci that have been known to be difficult to genotype accurately. With the rapidly emerging treatment approaches in the fields of cancer immunotherapy [1, 2] and autoimmunity [3], the accurate characterization of a patient’s immunogenetic composition in the HLA and KIR regions is becoming more clinically important.

Classical HLA proteins play an important role in presenting peptides derived from self, tumor or microbial antigens. They display an extreme amount of allelic polymorphism, as a result of pathogen-driven and balancing selection [4]. Much research has shown these HLA variants to be strongly associated with multiple immune and nonimmune phenotypes in the fields of cancer [5, 6], autoimmunity [3, 7], neurodegeneration [8] and infectious diseases [3, 7]. In the clinic, achieving matched classical HLA alleles between the donor and recipient is critical for organ and stem cell transplantation, such that HLA typing and matching have been integrated as part of standard clinical protocols for decades [9-11]. HLA typing has also become increasingly important in diagnostics and clinical practice. For example, several approved drugs carry labels indicating increased risk for adverse events for carriers of specific HLA alleles [12-14].

KIR proteins are receptors for classical HLA class I ligands, and are predominantly expressed on natural killer (NK) cells. In contrast to most HLA genes, the genes coding for KIR display extensive copy number polymorphism [15], in addition to considerable allelic variation [16] for each gene. KIR have shown significant associations with disease phenotypes, mainly in the fields of infectious diseases, autoimmunity, inflammatory diseases and cancer [17]. Associations were found for both single KIR genes, and when considering their interactions with specific HLA molecules. HLA-KIR interactions were demonstrated to predict the risk of organ rejection after kidney transplantation, suggesting a clinical use case for KIR typing [18, 19]. KIR proteins are also known to be important codeterminants of NK cell education, which is in part mediated through their interactions with different HLA molecules. Such interactions significantly define the heterogeneity of NK cell responsiveness and their sensitivity to inhibition by HLA across individuals [20, 21]. As such, KIR proteins play a critical role in the recognition of “missing-self” phenotypes in infected or tumor cells, which are typically defined by the loss or down-regulation of HLA class I cell surface expression [22].

For research purposes, genotyping arrays covering single nucleotide polymorphisms (SNPs) across the genome have been used to impute HLA and KIR types. However, they require statistical imputation methods to disentangle the complex linkage disequilibrium (LD) between SNPs and HLA or KIR types [23, 24]. These methods also rely on the availability of ancestry-specific or multiancestry reference panels that can be difficult to obtain, especially for populations not well represented in genomic data sets [25]. In clinical diagnostics, dedicated immunogenetics laboratory solutions to HLA and KIR genotyping are being continually developed [26]. Initial molecular typing technologies were low throughput and/or probe-based assays [27, 28]. In recent years, high-throughput next generation sequencing (NGS) has become increasingly affordable [29]. This has enabled the prevalent use of short-read NGS, namely whole-genome sequencing (WGS) and whole-exome sequencing (WES), in the clinic [30, 31]. Although well-validated bioinformatics pipelines have been implemented to detect millions of genetic variants from the available clinical sequences [32, 33], they are typically employed uniformly to the entire genome or exome, and can be ineffective at particular genomic loci that are highly polymorphic, such as the HLA and KIR regions. Dedicated in silico typing tools that use NGS data and specifically target the HLA or KIR genes could be a cost-effective and efficient alternative to traditional laboratory HLA or KIR typing methods. Although such NGS-based approaches do not require linkage-disequilibrium-based statistical imputation for genotyping (because the sequencing reads directly contain the information to define e.g. the HLA allele status), they do require the use of comprehensive databases that capture the diversity and complexity of these genomic loci for alignment (as opposed to single reference genomes).

Despite their biological significance and many practical advantages, the development of clinically ready in silico HLA and KIR typing have thus far been largely hampered by the genetically complex and highly polymorphic nature of the two regions [7, 34]. Bauer et al. provided an extensive evaluation of available HLA genotyping tools in 2016 [35]. They showed that the concordance of HLA typing with their gold standard dataset is generally low, with the best accuracy for a combined HLA I and II genes at 73%. Since then, a new generation of in silico HLA genotyping tools has been created, which showed much promise for high accuracy. Here, we conducted a survey of the recent HLA and KIR typing capabilities for potential scaling and readiness in clinical applications. We evaluated available computational HLA inference tools by comparing the inferred HLA alleles from WES and WGS data to a gold standard dataset, which was generated using a commercial dedicated typing method. We also assessed and validated a recently published KIR method by Roe and Kuang [36], which can be used to infer KIR gene presence and absence from WGS data.

Methods

Generation of a gold standard HLA reference dataset

The gold standard reference dataset contains 56 patient samples. Genomic DNA was extracted from 1 ml of EDTA whole blood on the Roche MagNA Pure 96 system using the MagNA Pure 96 DNA and Viral NA Large Volume Kit. They were then sent to LabCorp (Burlington, NC, USA) for sequence-based, two-field HLA genotyping, using accepted scientific standards meeting the accreditation requirements of the American Society for Histocompatibility and Immunogenetics (ASHI) and the College of American Pathologists (CAP). HLA class I genotypes of HLA-A, -B and -C were determined using a combination of long-range sequencing from PacBio (Menlo Park, CA, USA) RSII and Sanger sequencing. Class II genotypes for HLA-DPA1, -DPB1, -DRB1, -DRB3, -DRB4, -DRB5 were determined using a combination of long-range sequencing from PacBio RSII, and NGS from Illumina (San Diego, CA, USA) TruSight and MiSeq technologies.

Generation of a KIR reference dataset

Genotyping of KIR alleles was performed for 72 patients using the LinkSeq KIR kit according to manufacturer’s user guide (Catalog No: 5358R, One Lambda, Canoga Park, CA, USA). Briefly, the human genomic DNA was amplified and melt curves were collected on a real-time PCR instrument (QuantStudio 5 system, Thermo Fisher Scientific, Waltham, MA, USA). The data were exported to SureTyper software 6.1.2 (One Lambda) for interpretation and reporting of the genotype.
Whole-genome and whole-exome sequencing

WGS and WES were performed for the samples in the HLA and KIR reference datasets, on Illumina HiSeq instruments using paired-end reads of 150 bp. The bait set used for WES was the Illumina Nextera Exome Kit with 38 megabases target territory (29 megabases baited). The WG samples were sequenced at an average of 37× coverage (range = 31–50×). For WES, all samples were sequenced at an average of 80× coverage (range = 70–99×), and passed QC criteria of 85% of targeted bases at 20× or greater coverage (±5%). FASTQ files were generated for each WG and exome, and were used as direct inputs for each tool, where appropriate. For tools that required BAM files as inputs, the FASTQ files were processed according to a workflow built using the Genome Analysis Toolkit (GATK) best practices from 2015 and GATK v3.5 [33]. Briefly, it includes read alignment using bwa 0.7.15 (bwa mem) with GRCh38 as the reference genome, duplicate marking using Picard tools v2.9, indel realignment using GATK v3.5, and then base quality score recalibration using GATK 3. For bwa, except for the ‘-M’ flag, all the default options were used. Individual-level genetic data for this study cannot be made publicly available due to consent restrictions.

Selection and configuration of HLA typing tools

For WGS and WES HLA genotyping, we specifically selected tools that (i) are recently published, (ii) are easy to install and implement, (iii) have the ability to work with WGS and WES data (iv) and could genotype both HLA I and II genes for potential clinical use. These included HLA-PRG:LA [37], xHLA v1.2 [https://github.com/humanlongevity/HLA] [38], HLA-HD v1.2 [https://www.genome.med.kyoto-u.ac.jp/HLA-HD/] [39], and HISAT2 v2.1 [https://ccb.jhu.edu/software/hisat2/index.shtml] [40]. As a comparison to a more widely used tool, we also assessed results from Polysolver v1.0 [41]. Polysolver has been widely utilized in many benchmarking and research studies, and has been shown to be one of the more accurate genotyping tools, albeit only for classical HLA class I genes [42-44]. We summarized each tool’s main algorithm of genotyping HLA alleles, unique characteristics, various features and implementation idiosyncrasies in Table 1. For more in-depth discussion on their algorithms, please refer to their respective publications and corresponding supplementary materials, for more details in implementation, please refer to related documented (listed in Table 1).

There are some tools that require a BAM file format, i.e. read alignment to a reference genome. For xHLA and Polysolver, FASTQs were aligned using BWA MEM to hg38 to produce BAMS. They then require further preprocessing. For xHLA, BAMS were preprocessed with an additional bash script provided by the authors [https://github.com/humanlongevity/HLA/blob/master/bin/get-reads-alt-unmap.sh]. Polysolver, by default, hardcoded hg18 or hg19 genomic coordinates for read extraction from chromosome 6 in the BAM files prior to HLA genotyping. In order to overcome this limitation, we modified the code to include the use of BAMS that are aligned to hg38 as well. No other modifications were made to the code. For HLA-HD and HISAT2, the raw FASTQs were used directly. All the tools were run using default settings, and with the HLA/IMGT databases versions that came with the respective tools. For the exact run parameters, please refer to Supplementary Table 1.

Evaluation of HLA typing tools

The tools typically give two alleles per HLA gene, but we do see in occasions, albeit rare, in our study where the algorithm provided more than one pair of possible alleles, and often in descending order of significance. For any results that offer more than two alleles, we only took the top two inferred HLA alleles; we assumed a diploid germline genome.

Each in silico HLA typing tool was evaluated by two accuracy metrics. (i) The ‘allele concordance’ with the gold standard dataset, which counts the number of concordant HLA alleles called by the tool when compared with the reference HLA genotypes obtained from LabCorp, for the classical HLA I and II genes. Its accuracy was defined as the quotient of the number of concordant calls and the sum of the number of concordant plus discordant calls. (ii) The ‘full-sample concordance’ counts the number of samples that have perfect concordance with the gold standard dataset. Its accuracy was defined as the quotient of the number of samples with full concordance and the total number of samples that were successful in the run for each tool. For uniformity, results from the tools were converted to four-digit resolution before evaluation, except for HLA-PRG:LA, which can only perform genotyping at G group resolution. A G group consists of HLA alleles that have identical nucleotide sequences in the exons coding for the peptide binding domain (exons 2 and 3 for HLA class I and exon 2 for class II), whereas a P group contains all HLA alleles that have the same amino acid sequence for the exons coding for the peptide binding domain. A minimum of P group resolution or higher (including G group, four-digit/two-field resolutions), is usually considered ‘high resolution typing’ and therefore clinically relevant [45]. For HLA-PRG:LA, gold standard results were first converted to G groups before evaluation. G group information was obtained from the IMGT/HLA database [http://hla.alleles.org/alleles/g_groups.html].

We split the evaluation of the tools’ accuracy into three categories: (i) HLA I, consisting of classical HLA I genes HLA-A, -B and -C, (ii) HLA IIa, consisting of classical HLA II genes HLA-DRB1, -DQB1, -DQA1, -DQB1 and -DRB1 and (iii) HLA IIb, consisting of a second group of classical HLA II genes, HLA-DRB3, -DRB4 and -DRB5 (Table 2). We created a second category (HLA IIb) for additional DR genes because only HLA-HD currently genotypes them. Additionally, since every individual carries a variable copy number of the three DRB3, DRB4 or DRB5 that is highly dependent on the DRB1 genotype [46], a no-call by the computational tool is considered concordant with the gold standard results if it is not also identified. Some tools cannot genotype the full set of the classical class II genes, thus we also provided the accuracy with respect to each class II gene (Table 3).

Evaluation of KIR typing with kpi and interpretation of results

For inference of KIR gene presence or absence, we evaluated kpi [https://github.com/droeatumn/kpi, downloaded 11 March 2020]. An earlier version of the software was recently presented in a preprint and did not provide a validation of its accuracy when compared to qPCR-based dedicated KIR typing methods [36]. Kpi requires WGS FASTQ files as input data and outputs a presence/absence call for each KIR gene, as well as possible combinations of KIR haplotypes according to a provided list of reference haplotypes [https://github.com/droeatumn/kpi/blob/master/input/haps.txt]. Each KIR gene can in principle be characterized by copy number and allelic variation. A KIR haplotype determines the order and presence of single KIR genes [47, 48]. However, kpi only detects presence or absence of each KIR gene, not allele status or copy number. As a result, the calls for haplotype pairs can be ambiguous (due to differences in copy
| Data type: | Designated data modality | Type of sequencing data reported | Dependencies: | Aligner | Other tools (beyond Linux apps) | Databases: | IMGT database version bundled with software | Can IMGT database used be updated? | Allows use of population allele frequencies? | Input: | Preprocessing required before actual implementation? | Input file format | Algorithm: Alignment to IMGT database reference | Statistical algorithm to determine calls | Output: | Results/output file format | Classical HLA genes beyond HLA I (HLA-A, -B, -C) | Maximum resolution | Ability to detect novel alleles | Other characteristics: | Average time taken for one sample in this study (preprocessing + HLA typing) | License | Troubleshooting | Best available documentation* | PMID | Source |
| --- |
| Polysolver | WES, WGS | Short-read | Novoalign | Java, Samtools, Picard | IMGT database version bundled with software | IMGT database version | Unknown | Unknown | Yes (optional) | No | No | BAM | DNA alignment | Bayesian classification approach per allele | VTSV | HLA-DQA1/B1, -DRB1 | Four-field | No | No | BSD-style license, but Novoalign is only free for educational, nonprofit use | WES: 1.5 h | | | Author correspondence | 26,372,948 | Broad Institute |
| HLA-PRG:LA | WES, WGS | Short-read, long-read | BWA MEM | Boost, Bamtools, Samtools, Picard | IMGT database version bundled with software | IMGT database version | Unknown | Unknown | Yes | No | No | BAM | DNA alignment, graph-based reference | Maximum likelihood per allele | JSON | HLA-DPB1, -DQB1, -DRB1 | Two-field | G group | No | GNU GPL v3.0 | Github | Github, Readme, blog post | Website, 29858813 | 29,858,813 | Wellcome Trust |
| xHLA | WES, WGS | Short-read | Diamond | Samtools, BWA, Bedtools | IMGT database version bundled with software | IMGT database version | Unknown | Unknown | Yes | No | Yes | BAM | Protein alignment, perfect match to core exons, then iterative refinement using noncore exons | Maximum score per top pair of alleles of a gene | JSON | HLA-DPA1/B1, -DQAI/B1, -DRB1 | Three-field | No | No | Free for research use | Github | Github, Readme, website, paper supplementary | Website, 28,419,628 | 31,375,807 | Human Longevity, Inc. |
| HLA-HD | WES, WGS, RNA-seq | Short-read | Bowtie2 | SAMtools, BWA, Bedtools | IMGT database version bundled with software | IMGT database version | V3.15.0 | Yes | Yes (conditional) | Yes | Yes | FASTQ | DNA alignment, perfect match to core exons, then to noncore exons, and up to two mismatches in introns | Expectation—maximization algorithm to find maximum likelihood estimate per allele | VExtracted from log file | HLA-DPA1/B1, -DQAI/B1, -DRB1 | Four-field | | | GNU GPL v3.0 | | |
| HISAT2 | WES, WGS, RNA-seq | Short-read | HISAT2 | Samtools | IMGT database version bundled with software | IMGT database version | V3.26.0 | Unknown | No | No | Yes | FASTQ | DNA alignment, graph-based reference | | | | | | | GNU GPL v3.0 | | | |

* Polysolver: https://software.broadinstitute.org/cancer/cga/polysolver_run
HLA-PRG:LA: Github - https://github.com/DiltheyLab/HLA-LA; Blog - https://genomeinformatics.github.io/HLA-PRG-LA/
xAHL-A: https://github.com/humanlongevity/HLA
HLA-HD: https://www.genome.med.kyoto-u.ac.jp/HLA-HD/
HISAT2: Github - https://github.com/DaehwanKimLab/hasit2; Website - http://ccb.jhu.edu/hisat-genotype/index.php/Main_Page
Table 2. Overall evaluation results for HLA typing using WES and WGS. HLA genes are categorized into classical class I genes (A, B and C), Ila genes (DPA1, DPB1, DQA1, DQB1 and DRB1), and Iib genes (DRB3, DRB4 and DRB5). The class Ila genes that each tool can genotype differ: HLA-HD can infer all of the above; xHLA can only infer DRB1, DQA1 and DRB1; HISAT2 and HLA+PRG:LA only DQA1, DQB1 and DRB1. Note that HLA+PRG:LA was evaluated based on the G group resolution. Results from the older and well-utilized Polysolver were provided as an additional source of comparison for HLA I genes. For each category, we also provided two accuracy metrics, (i) allele concordance, computing the total number of alleles that are concordant with the gold standard data, and (ii) full-sample concordance, computing the number of samples that have perfect concordance with the gold standard data.

Method	Allele or full-sample concordance	WES concordance (%)	WGS concordance (%)		
		a b l a	il a	b l a	il b
Polysolver	Allele	328/336 (97.6)	–	–	–
	Sample	49/56 (87.5)	–	–	–
	(G groups only)	–	51/56 (91.1)	–	–
	Sample	53/56 (94.6)	55/56 (98.2)	–	–
	xHLA	156/330 (47.2) a	187/330 (56.7) b	–	–
	Sample	6/55 (10.9)	7/55 (12.7)	–	–
	HISAT2	334/336 (99.4)	552/560 (98.6)	329/336 (97.9)	–
	Sample	54/56 (96.4)	48/56 (85.7)	50/56 (89.3)	54/56 (96.4)
	HISAT2	332/336 (98.8)	–	–	–
	Sample	52/56 (92.9)	42/56 (75)	–	–

*Sample failed to run in xHLA WES.

1 Included miscalls for a novel HLA-C allele at four-digit resolution. All tools matched the LabCorp result at two-digit resolution correctly.

Inference of HLA–KIR interactions

NK cell inhibiting as well as activating KIR interactions with their HLA class I ligands were defined according to Pende et al. [18] Briefly, some KIR interact with groups of four-digit HLA alleles according to specific HLA amino acid residues. HLA-B alleles were classified as either Bu4 or Bu6 according to amino acid positions 77–83. HLA-C alleles were assigned C1 or C2 status based on amino acid position 80 [18]. Other interactions were defined between KIR and specific two-digit or four-digit HLA alleles (e.g. A*03 – KIR3DL2).

Results

High accuracy for HLA I and II typing with current gold standard WES and WGS data

We selected HLA genotyping tools to infer HLA identities of 56 patients from the EXCELS (NCT00252135) [50] and AVANT (NCT00112919) [51] clinical trials. The inferred HLA types were then compared to results from the gold standard reference dataset. The diversity of HLA alleles is imperative in the evaluation of HLA genotyping tools, as it allows testing of the tools against different alleles. Despite the limited size of our dataset, the diversity of HLA class I alleles for each HLA gene in our samples is highly comparable to the publicly available, ethnically varied and sequencing-derived 1000 genomes/HapMap validation set generated by Ehrlich et al. [52] (Supplementary Table 1).

From the results consolidated in Table 2, all the selected genotyping tools perform generally well, at an allelic accuracy of >90% for most of the class I and II gene categories, except for xHLA on WES class I and Ila genes. xHLA demonstrated uncharacteristically low accuracy for our WES data for both classes I and II, when compared to both reported performance [38] and the other tools. HISAT2 and HLA-HD performed comparably for the HLA I genes A, B and C for both WES and WGS data, at >98.8% accuracy. Overall, for class II genes, HLA-HD is consistently the most accurate HLA typing tool for both WES and WGS data, at >97.6% accuracy for DRB3, DRB4 and DRB5, and >98.6% accuracy for the DPA1/B1, DQA1/B1 and DRB1 genes. Moreover, it also provides the widest range of HLA II genes, with the ability to genotype all the classical class II genes (including HLA-DRA, -DRB3, -DRB4 and -DRB5), whereas other tools are restricted to a subset of classical class II alleles. However, HLA-HD has lower accuracy for DQA1 when working off WES data, compared to HISAT2 (Table 3).

Although we observed similar or increased accuracy when comparing results from WGS to WES data from the same tool (Table 2), WGS and WES miscalls were not always the same. This is evident when assessing accuracy at the gene level. For example, the increase in overall accuracy of HISAT2 when using WGS data for identifying class II alleles was mainly due to a lower HLA-DRB1 accuracy when using WES data.

We next focused on the top performant methods, HLA-HD and HISAT2. Notably, the number of miscalls in HLA I genes was too low to characterize patterns or biases (Table 2; only a maximum of four miscalls). For class II genes, HISAT2 showed the highest number of HLA-DRB1 miscalls when using WES data (Table 3). This is largely due to a higher number of missing calls generated in HLA-DRB1 by HISAT2 in WES than WGS data. For WES data, 11/13 samples have no-calls in both HLA-DRB1 alleles, and for WGS, 2/6 samples. No-calls are quite rare in the results of the other tools (except xHLA in WES data). Coupled with the fact that similar observations occur in both WGS and WES (albeit to different degrees), the no-calls might indicate a larger issue with HISAT2 in calling HLA-DRB1 alleles. We found that there is an enriched number of no-calls originating from carriers of DRB1*15:01 compared to samples without DRB1*15:01 alleles in both WES (Fisher’s test P = 0.008) and WGS (P = 0.04).
Table 3. Evaluation results by HLA II genes for HLA typing using WES and WGS. Note that HLA † PRG:LA was evaluated based on the G group resolution, not at four-digit resolution. For each gene, we provided two accuracy metrics, (i) allele concordance, computing the total number of alleles that are concordant with the gold standard data, and (ii) full-sample concordance, computing the number of samples that have perfect concordance with the gold standard data.

HLA II gene	Allele or full-sample concordance	Polysolver (%)	HLA † PRG:LA (%)	xHLA (%)	HLA-HD (%)	HISAT2 (%)						
		WES	WGS	WES	WGS	WES	WGS	WES	WGS	WES	WGS	
A	Allele	112/112(100)	112/112(100)	112/112(100)	112/112(98.2)	111/112(99.1)	112/112(100)	112/112(98.2)	112/112(99.1)	112/112(98.2)	112/112(99.1)	112/112(98.2)
	Sample	56/56(100)	56/56(100)	54/56(96.4)	54/56(96.4)	19/55(34.5)	55/56(98.2)	111/112(99.1)	111/112(99.1)	110/112(98.2)	111/112(99.1)	110/112(98.2)
B	Allele	107/112(95.5)	109/112(97.3)	112/112(100)	112/112(100)	46/110(41.8)	107/112(95.5)	55/56(98.2)	55/56(98.2)	54/56(98.2)	55/56(98.2)	54/56(98.2)
	Sample	51/56(0.1)	53/56(0.6)	56/56(100)	56/56(100)	11/55(20)	50/56(89.3)	55/56(98.2)	55/56(98.2)	54/56(98.2)	55/56(98.2)	54/56(98.2)
C^b	Allele	103/112(97.3)	109/11297.3)	111/112(99.1)	111/112(99.1)	50/110(45.5)	103/11297.3)	55/56(98.2)	55/56(98.2)	54/56(98.2)	55/56(98.2)	54/56(98.2)
	Sample	53/56(0.6)	53/56(0.6)	55/56(98.2)	55/56(98.2)	10/55(18.2)	54/56(96.4)	55/56(98.2)	55/56(98.2)	54/56(98.2)	55/56(98.2)	54/56(98.2)
DP_{A1}	Allele	–	–	–	–	–	–	–	–	–	–	–
	Sample	–	–	–	–	–	–	–	–	–	–	–
DP_{B1}	Allele	–	–	–	–	7/110(63.6)	103/11297.3)	54/56(96.4)	54/56(96.4)	54/56(96.4)	54/56(96.4)	54/56(96.4)
	Sample	–	–	–	–	–	–	–	–	–	–	–
DQA₁	Allele	–	–	112/112(100)	112/112(100)	–	–	106/112(94.6)	111/112(99.1)	110/112(98.2)	110/112(98.2)	110/112(98.2)
	Sample	–	–	56/56(100)	56/56(100)	–	–	50/56(90.3)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
DQB₁	Allele	–	–	111/112(99.1)	112/112(100)	5/110(45.5)	107/11295.5)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
	Sample	–	–	55/56(98.2)	55/56(98.2)	16/55(29.1)	50/56(89.3)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
DRB₁	Allele	–	–	112/112(100)	111/112(99.1)	64/110(58.2)	111/11299.1)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
	Sample	–	–	56/56(100)	55/56(98.2)	20/55(36.3)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
DRB₃	Allele	–	–	–	–	–	–	110/112(98.2)	111/112(99.1)	110/112(98.2)	110/112(98.2)	110/112(98.2)
	Sample	–	–	–	–	–	–	54/56(96.4)	55/56(98.2)	55/56(98.2)	55/56(98.2)	55/56(98.2)
DRB₄	Allele	–	–	–	–	–	–	110/112(98.2)	110/112(98.2)	108/112(96.4)	108/112(96.4)	108/112(96.4)
	Sample	–	–	–	–	–	–	55/56(98.2)	55/56(98.2)	53/56(94.6)	53/56(94.6)	53/56(94.6)
DRB₅	Allele	–	–	–	–	–	–	103/112(97.3)	103/112(97.3)	103/112(97.3)	103/112(97.3)	103/112(97.3)
	Sample	–	–	–	–	–	–	53/56(94.6)	53/56(94.6)	53/56(94.6)	53/56(94.6)	53/56(94.6)

^a Sample failed to run in xHLA WES.

^b Included miscalls for a novel HLA-C allele at four-digit resolution. All tools matched the LabCorp result at two-digit resolution correctly.
High accuracy for identifying KIR gene absence/presence

We used kpi to infer KIR gene presence for 824 patients with available WGS data from the AVANT trial (NCT00112918) [51]. We found that the gene carrier frequencies were very similar to those of published KIR gene carrier frequencies from an English cohort of Caucasoid ethnicity [53]. (Figure 1A). The software was unable to predict possible haplotype pairs for 3% ($n = 25$) of cases.

We selected 72 of these 824 patients to perform qPCR-based KIR typing, based on DNA sample availability and the diversity of kpi-predicted KIR haplotypes. These patients are different from those selected for the HLA gold standard data because of limited availability of DNA. For HISAT2, many of the miscalls in class II genes were due to missing calls, i.e. calls that the tool was not able to assign an allele at all.

Additionally, we used a metric, we called ‘full-sample concordance’, where we computed the proportion of samples that were in full concordance with our reference dataset, for the three HLA gene categories and also for each HLA gene. We observe that most of the full-sample concordance exceeded 80% in both WES and WGS, which is expected given the high allelic concordance. This observation also implies that there is little sample bias in general, i.e. errors do not originate from the NGS data of specific samples. An exception is the WES results of HISAT2 in inferring HLA alleles that are in class IIa at 75%. This is primarily due to the enriched number of no-calls in HLA-DRB1 alleles by HISAT2 in WES data, as described above. Since DRB1∗15:01 is common in European samples, the high number of no-calls resulted in a decreased full-sample concordance despite high allelic concordance.
Discussion

The broad availability of NGS data, generated in a multitude of clinical scenarios, allows for the inference of disease-relevant immunogenetic variation without additional dedicated typing efforts. Hence, in order to evaluate the usefulness in a clinical setting, we were interested in a systematic comparison of the newest generation of computational HLA typing solutions, run alongside the more well-established HLA typing tool Polysolver, that is limited in only typing HLA class I genes. Our analyses suggest that for both WES and WGS data, most of the tools outperform Polysolver in HLA inference, in both class I genotyping accuracy and the ability to perform inference on HLA II genes. For KIR typing using kpi, we are not aware of a published independent validation of its performance. Our evaluation demonstrates that kpi performs well at determining the absence or presence of a KIR gene, but it is not able to ascertain KIR allele or gene copy number.

Our analyses also show the breadth of class II genes that current state-of-the-art tools can infer. In particular, only HLA-DRD and DRB4 and -DRB5, and we were able to further examine the results with our gold standard dataset. Interestingly, we found that many of the HLA-DRB3, -DRB4 and -DRB5 miscalls can be salvaged using knowledge of the (strong and clear) LD between the HLA-DRB1 gene and its DRB paralogs [54]. It appears that incorporating this piece of biological information could be useful in developing tools that would like to genotype all the DRB genes, especially when there is high accuracy in genotyping the HLA-DRB1 gene.

Additionally, with WGS and WES data for the same subjects, we observed that HLA inference from WGS data has yielded marginally higher accuracy compared to WES in many HLA genes (Tables 2 and 3). This possibly indicates that the addition of noncoding sequence information, or a more uniform read coverage in the HLA region, might be more relevant in these genes, especially in resolving alleles that are in the same G group, e.g. HLA-DQA1*03:01, -DQA1*03:02 and -DQA1*03:03. It might also point to the use of bait sets in WES, which can bias the calling of some alleles; WGS does not require such baits.

Of note, the dedicated HLA typing approach (LabCorp) identified one novel HLA-C allele in our cohort of 56 individuals at two-digit resolution. Even though all the tools gave an estimation (i.e. it was not a missing call) and were correct at the two-digit resolution, none of the tested tools were able to identify the allele as novel. This is because the inferences are all based on aligning sequencing reads to a database of known HLA alleles. This is not highly important for large-scale genetic association approaches, but might be relevant in a clinical setting focused on individual patients, especially for ethnicities that have thus far been underrepresented with regard to genome sequencing, let alone HLA typing [55, 56].

The choice and accuracy of a given HLA method might depend on read length and sequencing coverage, which are factors that are not included in the current study. A recent comparison of HLA-HD and xHLA for use with target capture methods or amplification sequencing suggested that HLA-HD might decrease in sensitivity at read lengths below 150 base pairs (paired-end) [57].

We noticed that documentation for most of the HLA typing tools tested is mainly centered on the final inference, but not the auxiliary output files. The latter set of files typically contains the scores for all the candidates used for inference. Although accuracy is important, tool documentation in a clinical setting is also imperative to better understand the tool and its outputs, so that best practices can be developed in the clinic for different contexts.

As for the KIR typing efforts, kpi was shown to predict KIR gene presence/absence at >99% accuracy overall, and at >95% for each gene. Six out of nine errors were found in a single individual. This was likely due to a sample swap, and the remaining three miscalls were all for KIR2DS3 in different patients. In this case, all other genes were inferred at 100% accuracy. However, since kpi detects gene presence/absence and does not perform an estimation of copy number, it assigns one or more possible haplotype combinations in many cases, resulting in considerable ambiguity. Thus, we recommend to analyze kpi results at the level of individual KIR genes, if possible. It is likely that the 25 uninterpretable haplotype pairs are due to carriers of rare haplotypes not present in the reference, which would prevent an assignment of possible reference haplotype combinations.

Notably, kpi requires WGS data and does not consider allelic variation within KIR genes. This is a significant limitation, since allotypes for a given KIR gene can be functionally different [58], and also have differential binding capacities to their predicted ligands [49, 59, 60]. Allele-level typing would be desirable. The only software we are aware of that provides this level of granularity (PING) was not designed to work with NGS data in a high-throughput setting [61].

In conclusion, our survey for both high-resolution four-digit clinically relevant HLA typing and inference of KIR gene presence from NGS data (of conventional read length and coverage) indicated that recently published software tools can yield very high accuracy (>97% for HLA alleles and >95% for KIR genes, respectively), that may be suitable not only for research use, but also for the clinic. For comparison, the 2019 Standards for Accredited Laboratories issued by the ASHI requires that at least 80% of the samples are in full concordance with another CLIA-certified ASHI-accredited laboratory to be deemed satisfactory in clinical testing [62]. Most of the tools were able to achieve this, especially when using WGS data (Tables 2 and 3). It is noteworthy that WGS and WES continue to become less expensive, thereby presenting an alternative even in scenarios that focus only on HLA or KIR typing. However, a foreseeable hurdle is the process of obtaining regulatory approval for computational tools for HLA and KIR typing in the clinic, either as a standalone device, or as part of a pipeline. Such a process could be tricky as it can be highly dependent on the context of how the tool is being applied in the clinic. There are pros and cons for each tool. Other considerations in the choice of method that we did not explore in this study and might merit investigation in the future, include the characteristics of the NGS datasets at hand, such as the read length and read coverage, which can affect accuracy and thus cause deviations from what is shown in the present report. Also, although Illumina short-read sequencing is a standard in clinical sequencing, novel long-read technologies (as offered by e.g. Pacific Biosciences or Oxford Nanopore) have great potential in resolving complex genetic loci. A higher error rate [63] is accompanied with challenges for HLA or KIR typing efforts and will require dedicated computational approaches likely resulting in a new generation of software tools. But there are also clear advantages in long-read approaches, for example the ability to phase HLA haplotypes, as recently demonstrated in the context of a targeted sequencing approach [64].

Finally, we would like to further emphasize that computational tools can generate HLA and KIR information in a high-throughput manner on large cohorts of patients with clinical sequencing. Furthermore, the time and logistical challenges and
risks associated with acquisition, preparation and shipping of valuable clinical specimens to perform a separate genotyping would be greatly reduced. In a clinical setting, the HLA and KIR results from these tools can then be applied directly to detect immunogenetic biomarkers that might be relevant for treatment decisions, or to predict the likelihood of adverse events for a given treatment of choice [65]. HLA typing is also a requirement in the context of individualized cancer treatment strategies, including immunization efforts and neoadjuvant-directed T-cell therapies [66, 67]. Neoepitope prediction requires highly accurate HLA types in order to maximize the likelihood of an immunogenic antitumor response [68]. KIR genes are emerging biomarkers in several disease areas, including cancer immunology [69], and should ideally be investigated in the context of their interactions with their HLA ligands. Having both HLA and KIR information will also allow stratification of patients according to their individual, and biologically relevant HLA–KIR interactions (demonstrated in Supplementary Figure S5) [22]. For example, it was shown that the presence of both KIR2DL3 and HLA-C1 ligands is associated with increased Hepatitis C virus clearance [70, 71]. The ability to investigate immunogenetic variation without having to engage in dedicated typing efforts might stimulate hypothesis generation and facilitate similar discoveries in the future. Finally, as more computational tools for HLA and KIR typing are likely being developed in the future, they should be continuously evaluated so that they can fulfill a greater role in assessing clinical genomes.

Key Points

- In silico typing of HLA and KIR holds the potential to allow large-scale analyses in research settings, as well as facilitate and accelerate clinical decision making.
- Recently published software tools for HLA typing from WGS and WES data are highly accurate for both class I and class II genes.
- A recently published tool for KIR haplotype inference accurately predicts KIR gene presence/absence, but does not consider allelic variation.
- Availability of both HLA and KIR types allows the coding of experimentally verified interactions and testing of biological hypotheses related to NK cell activity.

Supplementary Data

Supplementary data are available online at https://academic.oup.com/bib.

Acknowledgements

The authors would like to thank the author of kpi, David Roe, for helpful discussions. We are also thankful to Sean Kelley for support of this study.

References

1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. *Immunity* 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012.
2. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. doi: 10.1038/nrc3239.
3. Matzarakis V, Kumar V, Wijmenga C, et al. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. *Genome Biol* 2017;18(1):76. doi: 10.1186/s13059-017-1207-1.
4. Meyer D, C Aguiar VR, Bitarello BD, et al. A genomic perspective on HLA evolution. *Immunogenetics* 2018;70(1):5–27. doi: 10.1007/s00251-017-0107-3.
5. Kaneko K, Ishigami S, Kijima Y, et al. Clinical implication of HLA class I expression in breast cancer. *BMC Cancer* 2011;11:454. doi: 10.1186/1471-2407-11-454.
6. Aptsiauri N, Cabrera T, Mendez R, et al. Role of altered expression of HLA class I molecules in cancer progression. *Adv Exp Med Biol* 2007;601:123–31. doi: 10.1007/978-0-387-72005-0_13.
7. Trowsdale J. The MHC, disease and selection. *Immunol Lett* 2011;137(1–2):1–8. doi: 10.1016/j.imlet.2011.01.002.
8. O’Keefe GM, Nguyen VT, Benveniste EN. Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: implications in neurological diseases. *J Neurovirol* 2002;8(6):496–512. doi: 10.1080/13550280290100941.
9. Zachary AA, Leffell MS. HLA mismatching strategies for solid organ transplantation - a balancing act. *Front Immunol* 2016;7:575. doi: 10.3389/fimmu.2016.00575.
10. Mahdi BM. A glow of HLA typing in organ transplantation. *Clin Transl Med* 2013;2(1):6. doi: 10.1080/2001-1326-2-6.
11. Sheldon S, Poulton K. HLA typing and its influence on organ transplantation. *Methods Mol Biol* 2006;333:157–74. doi: 10.2174/092820906778049.
12. U.S. Food and Drug Administration. Table of pharmacogenomic biomarkers in drug labeling. White Oak, MD, USA: U.S. Food and Drug Administration. 2018. https://www.fda.gov/media/107901/download.
13. Dean L. Carbamazepine therapy and HLA genotype. In: Victoria M. Pratt, Howard L. McLeod, Wendy S. Rubinstein, et al., eds. *Medical genetics summaries [Internet]*. Bethesda (MD): National Center for Biotechnology Information (US); 2015. https://www.ncbi.nlm.nih.gov/books/NBK321445/.
14. Dean L. Phenytoin therapy and HLA-B*15:02 and CYP2C9 genotypes. In: *Medical genetics summaries [Internet]*. ethesda (MD): National Center for Biotechnology Information (US), 2016.
15. Wilson MJ, Torkar M, Haude A, et al. Plasticity in the organization and sequences of human KIR/ILT gene families. *Proc Natl Acad Sci USA* 2000;97(9):4778–83. doi: 10.1073/pnas.080588597.
16. Wagner I, Schefzyk D, Pruschke J, et al. Allele-level KIR genotyping of more than a million samples: workflow, algorithm, and observations. *Front Immunol* 2018;9:2843. doi: 10.3389/fimmu.2018.02843.
17. Kulkarni S, Martin MP, Carrington M. The Yin and yang of HLA and KIR in human disease. *Semin Immunol* 2008;20(6):343–52. doi: 10.1016/j.smim.2008.06.003.
18. Littera R, Piredda G, Argiolas D, et al. KIR and their HLA class I ligands: two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation. *PLoS One* 2017;12(7):e0180831. doi: 10.1371/journal.pone.0180831.
19. Jafari D, Nafar M, Yekaninejad MS, et al. Investigation of killer immunoglobulin-like receptor (KIR) and HLA genotypes to predict the occurrence of acute allograft rejection after kidney transplantation. *Iran J Allergy Asthma Immunol* 2017;16(3):245–55. http://www.ncbi.nlm.nih.gov/pubmed/28732438.
20. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol 2018;39(3):222–39. doi: 10.1016/j.it.2017.12.001.

21. Horowitz A, Djoud Z, Nemat-Gorgani N, et al. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol 2016;1(3). doi: 10.1126/sciimmunol.aag1672.

22. Pende D, Falco M, Vitale M, et al. Killer Ig-like receptors (KIRs): their role in NK cell maturation and developments leading to their clinical exploitation. Front Immunol 2019;10:1179. doi: 10.3389/fimmu.2019.01119.

23. Christiansen FT, Tait BD, eds. Cold Spring Harb Perspect Med 2014;6(11). doi: 10.1101/cshperspect.a025809.

24. Christiansen FT, Tait BD, eds. Immunogenetics. Vol 882. Totowa, NJ: Humana Press; 2012. doi: 10.1007/978-1-61779-842-9

25. Edgerly CH, Weimer ET. The past, present, and future of HLA typing in transplantation. Methods Mol Biol 2018;1802:1–10. doi: 10.1007/978-1-4939-8546-3_1.

26. Erlich H. HLA DNA typing: past, present and future. Tissue Antigens 2012;80(1):1–11. doi: 10.1111/j.1399-0039.2012.01881.x.

27. Check Hayden E. Technology: the $1,000 genome. Nature 2012;482:94–5. doi: 10.1038/48294a.

28. Shevchenko Y, Bale S. Clinical versus research sequencing. Cold Spring Harb Perspect Med 2016;6(11). doi: 10.1010/cshperspect.a025809.

29. Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens 2012;80(1):1–11. doi: 10.1111/j.1399-0039.2012.01881.x.

30. Li H, Handsaker B, Wyssoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352.

31. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43(5):491–8. doi: 10.1038/ng.806.

32. Thiffault I, Farrow E, Zellmer L, et al. Clinical genome sequencing in an unbiased pediatric cohort. Genet Med 2019;21(2):303–10. doi: 10.1038/s41436-018-0075-8.

33. Bauer DC, Zadoorian A, Wilson LOW, et al. Evaluation of computational programs to predict HLA genotypes from genomic sequencing data. Brief Bioinform 2018;19(2):179–87. doi: 10.1093/bib/bbw097.

34. Roe D, Kuang R. Predicting KIR structural haplotypes with novel sequence signatures from short-read whole genome sequencing. bioRxiv 2019. doi: 10.1101/541938.

35. Dilthey AT, Mentzer AJ, Carapito R, et al. HLA-LA-HLA typing from linearly projected graph alignments. Bioinformatics 2019;35(21):4394–6. doi: 10.1093/bioinformatics/btz235.

36. Xie C, Yeo ZX, Wong M, et al. Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc Natl Acad Sci USA 2017;114(30):8059–64. doi: 10.1073/pnas.1707945114.

37. Kawaguchi S, Higasa K, Shimizu M, et al. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat 2017;38(7):788–97. doi: 10.1002/humu.23230.

38. Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37(8):907–15. doi: 10.1038/s41587-019-0201-4.

39. Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37(8):907–15. doi: 10.1038/s41587-019-0201-4.

40. Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J Hum Genet 2012;67(3):397–405. doi: 10.1038/jhg.2016.141.

41. Larjo A, Eveleigh R, Kilpeläinen E, et al. Accuracy of programs for the determination of human leukocyte antigen alleles from next-generation sequencing data. Front Immunol 2017;8:1815. doi: 10.3389/fimmu.2017.01815.

42. Matey-Hernandez ML, Danish Pan Genome Consortium, Brunak S, et al. Benchmarking the HLA typing performance of Polysolver and Optitype in 50 Danish parental trios. BMC Bioinformatics 2018;19(1):239. doi: 10.1186/s12859-018-2239-6.

43. Nunes E, Heslop H, Fernandez-Vina M, et al. Definitions of histocompatibility typing terms. Blood 2011;118(23):e180–3. doi: 10.1182/blood-2011-05-353490.

44. Vierra-Green C, Roe D, Hou L, et al. Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals. PLoS One 2012;7(1):e47491. doi: 10.1371/journal.pone.0047491.

45. Pidala J, Kim J, Schell M, et al. Race/ethnicity affects the probability of finding an HLA-A, -B, -C and -DRB1 allele-matched unrelated donor and likelihood of subsequent transplant utilization. Bone Marrow Transplant 2013;48(3):346–50. doi: 10.1038/bmt.2012.150.
57. Meng R, Zhu T, Gong Y, et al. Benchmarking the HLA typing performance of three HLA assay and two software [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3. Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 5116.

58. Steiner NK, Dakshanamurthy S, VandenBussche CJ, et al. Extracellular domain alterations impact surface expression of stimulatory natural killer cell receptor KIR2DS5. *Immuno- genetics* 2008;60(11):655–67. doi: 10.1007/s00251-008-0322-2.

59. Blokhuis JH, Hilton HG, Guethlein LA, et al. KIR2DS5 allotypes that recognize the C2 epitope of HLA-C are common among Africans and absent from Europeans. *Immunity Inflamm Dis* 2017;5(4):461–8. doi: 10.1002/iid3.178.

60. Foley BA, De Santis D, Van Beelen E, et al. The reactivity of Bw4+ HLA-B and HLA-A alleles with KIR3DL1: implications for patient and donor suitability for haploidentical stem cell transplantations. *Blood* 2008;112(2):435–43. doi: 10.1182/blood-2008-01-132902.

61. Norman PJ, Hollenbach JA, Nemat-Gorgani N, et al. Defining KIR and HLA class I genotypes at highest resolution via high-throughput sequencing. *Am J Hum Genet* 2016;99(2):375–91. doi: 10.1016/j.ajhg.2016.06.023.

62. American Society for Histocompatibility and Immunogenetics. Proposed 2019 ASHI Standards with guidance. https://cdn.ymaws.com/www.ashi-hla.org/resource/resmgr/docs/standards/2019/clean_2019_0715_-_2019_ashi_.pdf. Mt. Laurel, New Jersey, USA: American Society for Histocompatibility and Immunogenetics.

63. Fu S, Wang A, Au KF. A comparative evaluation of hybrid error correction methods for error-prone long reads. *Genome Biol* 2019;20(1):26. doi: 10.1186/s13059-018-1605-z.

64. Stockton JD, Nieto T, Wroe E, et al. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing & phasing of class I & II alleles using Nanopore sequencing. *HLA* 2020tan.13926. doi: 10.1111/tan.13926.

65. Khan Z, Hammer C, Guardino E, et al. Mechanisms of immune-related adverse events associated with immune checkpoint blockade: using germline genetics to develop a personalized approach. *Genome Med* 2019;11(1):39. doi: 10.1186/s13073-019-0652-8.

66. Drake CG. Prostate cancer as a model for tumour immunotherapy. *Nat Rev Immunol* 2010;10(8):580–93. doi: 10.1038/nri2817.

67. Capietto A-H, Jhunjhunwala S, Delamarre L. Characterizing neoantigens for personalized cancer immunotherapy. *Curr Opin Immunol* 2017;46:58–65. doi: 10.1016/j.coi.2017.04.007.

68. The problem with neoantigen prediction. *Nat Biotechnol* 2017;35(2):97. doi: 10.1038/nbt.3800.

69. Trefny MP, Rothschild SI, Uhlenbrock F, et al. A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. *Clin Cancer Res* 2019;25(10):3026–34. doi: 10.1158/1078-0432.CCR-18-3041.

70. Khakoo SI, Thio CL, Martin MP, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. *Science* 2004;305(5685):872–4. doi: 10.1126/science.1097670.

71. Romero V, Azocar J, Zúñiga J, et al. Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in hepatitis C virus infection outcome. *Mol Immunol* 2008;45(9):2429–36. doi: 10.1016/j.molimm.2008.01.002.