Open Peer Review on Qeios

Decay Characteristics of Neutron Excess Magnesium Nuclei

Joseph Bevelacqua

Funding: The author(s) received no specific funding for this work.
Potential competing interests: The author(s) declared that no potential competing interests exist.

Abstract

In neutron star mergers, neutron excess nuclei and the r-process are important factors governing the production of heavier nuclear systems. A single-particle model evaluation of magnesium nuclei suggests that the heaviest Z = 12 nucleus will have mass 52 with filling of the 1f\textsubscript{5/2} neutron shell. A = 38 – 52 magnesium isotopes have limited experimental half-life data, but the model predicts beta decay half-lives in the range of 0.744 – 2.89 ms. Based on previous calculations for Z = 9 -11, 20, 26, and 30 systems and comparisons to the \(^{38}\text{Mg} \rightarrow ^{40}\text{Mg} \) calculations summarized in the Japanese Nuclear Data Compilation, the single-particle model results likely overestimate the half-lives of A = 38 – 52 neutron excess magnesium nuclei.

1.0 Introduction

The nucleosynthesis of heavy elements occurs by three basic processes that add protons or neutrons to a nuclear system1,2. The p-process adds protons and the s- or slow process and r- or rapid process adds neutrons. Capture of protons by nuclear systems produces predominantly proton-rich nuclei that tend to decay by positron emission and electron capture1,2. Neutron capture creates neutron-rich nuclei, and the resulting nuclear systems depend upon the rate of neutron addition and the beta decay rates of the residual nuclei.

In the s-process neutron capture chain, the time between successive neutron captures is sufficiently long for the product nucleus to beta decay to a stable system. Within the r-process, the time between neutron captures is too short to permit decays except for very rapid beta transitions. Therefore, the r-process must occur in an environment that has a high density of neutrons. The s-process typically occurs in red giant stars. The r-process occurs in a variety of astronomical events, including supernovae explosions and stellar mergers.

Binary neutron star or neutron star and stellar-mass black hole mergers can form a massive rotating torus around a spinning black hole1. The matter ejected from these structures and from supernovae explosions is an important source of rapid neutron capture (r-process) nucleosynthesis1. Fully understanding the r-process requires knowledge of the properties of neutron excess nuclei involved in
creating heavy nuclear systems. Unfortunately, the majority of these neutron excess systems have never been studied\(^2\).

Closing this knowledge gap was a motivation for funding facilities for rare-isotope beams (FRIB) constructed at research facilities located around the world. These facilities are located at RIKEN (Japan)\(^3,4\), GSI (Germany)\(^5\), and Michigan State University (US)\(^6\). The FRIB facilities enable a new class of experiments to determine the physical properties needed by theoretical models of the structure of unstable neutron excess nuclei. Theoretical studies would complement the forthcoming experiments that will provide critical information on the unstable nuclei that must be understood in order to explain nuclear abundances observed in the universe\(^2\). In particular, the study of neutron excess systems and their decay properties are significant considerations in understanding the r-process, and its importance in producing the observed elements in the universe.

The study of neutron excess systems is also important for studying nuclear decay properties, nuclear structure under extreme conditions, and nuclear reaction mechanisms. Existing theoretical models have not been extensively applied to many of these neutron excess nuclei.

This paper attempts to partially fill the void by calculating the decay properties of neutron excess systems that are important in nucleosynthesis. These theoretical studies should also assist in planning future experiments associated with neutron excess systems that are far removed from the line of stability.

Neutron excess nuclei that merit study occur throughout the periodic table\(^2,7\) including nuclei in the Z ≤ 32 range\(^7\). Although neutron excess nuclei occur throughout the periodic table, this paper focuses on magnesium systems as part of a continuing investigation of neutron excess nuclei that are of potential astrophysical significance\(^8,13\). Previous publications addressed neutron excess calcium\(^8\), iron\(^9\), fluorine\(^10\), zinc\(^11\), neon\(^12\), and sodium\(^13\) systems.

The study of light nuclear systems, including magnesium, is important for a comprehensive astrophysical interpretation of nucleosynthesis. For example, Terasawa et al.\(^14\) studied the role of light neutron-rich nuclei during r-process nucleosynthesis in supernovae.

In the neighboring fluorine systems, Recio-Blanco et al.\(^15\) noted the importance of these nuclei in nucleosynthesis, but observed that knowledge of excess neutron Z=9 systems and their associated properties are not well established. Mowlavi et al.\(^16\) also investigated the nucleosynthesis of fluorine with a focus on asymptotic giant branch stars. Ref. 1 noted that most previous studies of the r-process have concentrated on the synthesis of heavy unstable nuclei. However, in extreme environments such as those encountered in a supernova, light-mass nuclei are also expected to provide an important role in the production of r-process elements. Specifically, Ref. 14 noted that light neutron excess systems can significantly affect the heavy-element abundances.

A recent study of fluorine isotopes in intermediate-mass stellar systems\(^17,18\) concluded that oxygen fusion could occur at lower densities than initially assumed. This result suggests that intermediate-mass stars are more likely to encounter thermonuclear excursion rather than undergoing gravitational collapse. The resulting white dwarf stars would predominantly contain oxygen, neon, and magnesium. This result
was a direct consequence of the nuclear structure of 20F, and its influence on the beta decay to the 20Ne system17,18. Refs. 17 and 18 further support the study of neutron excess magnesium systems in understanding the nucleosynthesis of heavier elements.

Additional neutron excess systems in magnesium and neighboring nuclei were conducted by fragmentation of 345 MeV/nucleon 48Ca ions at the RIKEN Radioactive Isotope Beam Factory19. No events were observed for 32,33F, 35,36Ne, and 38Na and only one event for 39Na after extensive investigation. Ref. 19 suggests that 31F and 34Ne are the heaviest bound isotopes of fluorine and neon, respectively. The calculations summarized in Ref. 13 suggested that sodium nuclei more massive than 38Na could exist.

An et al.20 perform a theoretical study of $Z = 8 - 12$ isotopes in the relativistic mean field model. Ref. 20 notes that the last bound neutron-rich nuclei with $Z = 8, 9, 10, 11,$ and 12 varies with the theoretical models with upper limit mass values of 28, 33, 43, 45, and 46, respectively. The magnesium $A = 46$ mass limit is consistent with the predictions of this paper that also predicts 46Mg exists. However, the single-particle model utilized in this paper predicts that 52Mg is the limiting neutron excess magnesium system.

2.0 Calculational Methodology

A variety of models could be applied to the investigation of neutron excess nuclei. These vary in sophistication, but the proposed model utilizes a basic single-particle approach. This is a reasonable first step because there are uncertainties in the nuclear potential that likely are more significant than the limitations introduced by a single-particle approach.

Since the method for calculating single-particle energies in a spherically symmetric potential is well-established only salient features are provided. The model used to describe the particle plus core system represents an application of the standard method of Lukasiak and Sobiczewski21 and Petrovich et. al.22

The binding energy E_{NLSJ} of a particle in the field of a nuclear core is obtained by solving the radial Schrödinger Equation

$$\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} \left(\frac{L(L+1)}{r^2} \right) - E_{NLSJ} - V_{LSJ}(r) \right) U_{NLSJ}(r) = 0(1)$$

where r is the radial coordinate defining the relative motion of the nuclear core and the particle; $V_{LSJ}(r)$ is the model interaction; E_{NLSJ} is the core plus particle binding energy; $U_{NLSJ}(r)$ is the radial wave function; and L, S, and J are the orbital, spin, and total angular momentum quantum numbers, respectively. The N quantum number is the radial quantum number, and μ is the reduced mass.

The method of searching for E_{NLSJ} is provided by Brown, Gunn, and Gould23, and the methodology of Ref. 24 is utilized to obtain a converged solution. Refs. 8 - 13 and 22 provide a more complete description of the model, its numerical solution, and further definition of the individual terms appearing in Eq. 1.

3.0 Nuclear Interaction

Nuclear stability with respect to alpha decay, beta decay, positron decay, and electron capture is addressed using the method previously published by the author and coworkers$^{8-13, 22}$ that is similar to the
approach of Ref. 25. The single-particle level spectrum is generated using a Woods-Saxon potential.

Parameters of the potential are obtained from a fit to the single-particle energy levels in 209Pb and 209Bi performed by Rost26. The central potential strength of the Rost interaction26 has a standard form and can be explicitly defined as

$$V_0 = 51.6 \left[1 \pm 0.73 \frac{N - Z}{A}\right]$$

(2)

where the upper (lower) sign applies to protons (neutrons). The remaining parameters were held constant and are given by Rost26: $r_0 = 1.262 \,(1.295)$ fm, $r_{so} = 0.908 \,(1.194)$ fm, $a = 0.70 \,(0.70)$ fm, and $\gamma = 17.5 \,(28.2)$ for protons (neutrons)22,26. The spin-orbit interaction strength V_{so} is related to γ by the relationship26:

$$V_{so} = \frac{\gamma V_0}{180}$$

(3)

The scaling relationships of Eqs. 2 and 3 yield reasonable fits to observed single-particles levels in 120Sn and 138Ba. The pairing correction term of Blomqvist and Wahlborn27 is used in the calculations presented herein. The pairing correction improves the predicted energies of occupied levels in 120Sn, 138Ba, and 208Pb22.

When applied to specific nuclei, this methodology requires modification. For example, Ray and Hodgson28 note that 40Ca and 48Ca require different potentials to properly fit their single-particle level structure. Schwierz, Wiedenhöver, and Volya29 also investigated 40Ca and 48Ca and noted that a proper fit to the single-particle levels required a different potential for each energy level. Difficulties in the selection of an appropriate potential is an additional motivation for the utilization of a single-particle model and was noted in studies of neutron excess calcium8, iron9, fluorine10, zinc11, neon12, and sodium13 nuclei. Similar issues also apply to magnesium systems.

In view of the results of Refs. 28 and 29, the following modification is made to obtain the magnesium potential strength (V_A):

$$V_A = 51.6 \lambda \left[1 \pm 0.73 \frac{N - Z}{A}\right] \left[1 \pm a(A)\right] \text{MeV}$$

(4)

where λ is a potential strength multiplier that is selected to ensure consistency with available data, and $a(A)$ is a constant that is introduced to account for the variations in potential strength with A.28,29 In previous excess neutron nuclei calculations for calcium8, iron9, and zinc11, a value of $\lambda = 1.0$ was utilized. A λ value of 1.5 for fluorine10, neon12, and magnesium13 was determined by the available experimental data$^{30-32}$. Given the proximity to the $A = 9 - 11$ systems, a value of $\lambda = 1.5$ is also utilized for magnesium. Since the paper’s primary purpose is investigation of the neutron excess nuclei, determining a common $a(A)$ value for the heaviest magnesium systems is desirable.
The heaviest mass $A = 12$ isotope $^{30-32}$ suggested experimentally is 37Mg. Given the expected order of energy levels, 37Mg would have a $1f_{7/2}$ neutron single-particle level structure. Isotopes heavier than 37Mg would require filling of the $1f_{7/2}$ and the more weakly bound $2p_{3/2}$, $2p_{1/2}$, and $1f_{5/2}$ neutron single-particle levels. The possibility of bound magnesium isotopes with $A \geq 38$ is addressed in subsequent discussion.

Calculations incorporated into the Japanese nuclear data compilation32 provide calculated half-lives for 38Mg, 39Mg, and 40Mg. Ref. 20 suggests that the last bound neutron-rich magnesium nucleus has a value of $A = 46$.

4.0 Calculation of Half-Lives

Using Eq. 4, single-particle levels are calculated for $A \geq 20$ magnesium isotopes. $A \geq 20$ magnesium nuclei were evaluated for stability with respect to alpha decay, beta decay, positron decay, and electron capture. These calculations were performed to ensure that the nuclear structure contained no interloping states or structural defects, and that any decay modes in conflict with data were identified.

The decay modes and half-lives of $52 \geq A \geq 20$ magnesium isotopes are summarized in Table I, and compared to available data$^{30-32}$ and calculations incorporated in the Japanese data compilation32. The alpha decay energies are calculated using the relationship based on Ref. 33

$$Q_\alpha = 28.3\text{MeV} - 2S_n - 2S_p(5)$$

where S_n and S_p are the binding energies of the last occupied neutron and proton single-particle levels, respectively. Alpha decay half-lives can be estimated from Q_α using standard relationships21. Fortunately, no alpha decay modes occurred in the Table I summary of $52 \geq A \geq 20$ magnesium isotope decay properties.

The beta decay half-lives are determined following the log ft methodology of Wong33. Allowed (first forbidden) transition half-lives were derived using the values of log $ft = 5$ (8). Given the uncertainties in the calculated level energies, second and higher order forbidden transitions were not determined. Positron and electron capture half-lives were determined following the approach of Ref. 21.

5.0 Model Issues

Spherical single-particle energy level calculations produce reasonable results for alpha, beta, positron, and electron capture transitions$^{8-13, 25-29}$. However, these calculations are not expected to accurately model the very short-lived proton decay mode of 19Mg$^{30-32}$. Since 19Mg is far removed from the neutron excess magnesium isotopes of interest in this paper, this system is not addressed. In addition, very heavy magnesium isotopes have the potential to decay via neutron emission modes. However, these decays have not been observed in magnesium$^{30-32}$. The single-particle model is not the best approach for neutron emission calculations, and these decay modes are not included in this paper. Therefore, the results for the heaviest neutron excess magnesium nuclei only include the alpha decay, beta decay, positron decay, and electron capture modes. Except as noted previously, the single-particle model should provide reasonable results for the systems considered in the paper.
6.0 Results and Discussion

Using Eq. 4, the a(A) value was varied in increments of 0.001 - 0.0001 to assess the applicability of the proposed model to predict the decay properties of most 52 ≥ A ≥ 20 magnesium isotopes. In view of uncertainties in the model and associated interaction, a smaller increment was not deemed to be justified for most magnesium systems. However, for nuclei that have half-lives that deviate from stability trends in neighboring systems, a smaller increment was utilized. For example, a(A) was adjusted in increments of 0.00001 for the stable 24Mg, 25Mg, and 26Mg systems.

The issues associated with fitting all calcium, iron, fluorine, zinc, neon, and sodium nuclei with a single potential28,29 were noted in Refs. 8-13. These considerations are also applicable to the magnesium systems considered in this paper.

Table I summarizes the complete set of 52 ≥ A ≥ 20 magnesium isotopes considered in this paper. The lighter 52 ≥ A ≥ 20 magnesium isotopes fill the 1p$_{1/2}$ (20Mg), 1d$_{5/2}$ (21Mg - 26Mg), 2s$_{1/2}$ (27Mg and 28Mg), 1d$_{3/2}$ (29Mg - 32Mg), and 1f$_{7/2}$ (33Mg - 37Mg) neutron single-particle levels. These systems are the heaviest magnesium systems noted in Ref. 30 – 32 that have been observed experimentally. 33Na - 37Na partially fill the 1f$_{7/2}$ neutron single-particle level. Given the extrapolation used in formulating the single-particle potential of Eq. 4, the results become more uncertain due to the paucity of data for A>37 magnesium isotopes. The heavier 52 ≥ A ≥ 20 magnesium isotopes that complete the 1f$_{7/2}$, and fill the 2p$_{3/2}$, 2p$_{1/2}$, and 1f$_{5/2}$ neutron single-particle levels are also summarized in Table I. These systems represent the heaviest possible neutron excess systems that would occur in the Z=12 system.
Table I

Calculated Single-Particle and Experimental Decay Properties of Magnesium Systems with 20 ≤ A ≤ 52

Nuclide	a(A)	Half-Life (Decay Mode)	Experiment	This Work
20Mg	+0.029	91 ms (β⁺)	91.7 ms (β⁺)	
21Mg	+0.000	122 ms (β⁺)	122 ms (β⁺)	
22Mg	+0.0637	3.876 s	3.87 s (β⁺)	
23Mg	+0.0432	11.32 s	11.3 s (β⁺)	
24Mg	+0.06149	Stable	Stable	
25Mg	+0.02926	Stable	Stable	
26Mg	-0.00037	Stable	Stable	
27Mg	-0.0102	9.45 min (β⁻)	9.48 min (β⁻)	
28Mg	-0.04822	21.0 h (β⁻)	21.9 h (β⁻)	
29Mg	-0.0494	1.3 s (β⁻)	1.30 s (β⁻)	
30Mg	-0.0352	0.32 s (β⁻)	0.320 s (β⁻)	
31Mg	-0.0458	0.24 s (β⁻)	0.240 s (β⁻)	
32Mg	-0.0295	90 ms (β⁻)	90.0 ms (β⁻)	
33Mg	-0.0459	89 ms (β⁻)	88.9 ms (β⁻)	
34Mg	+0.0086	20 ms (β⁻)	20.0 ms (β⁻)	
35Mg	-0.0678	70 ms (β⁻)	70.0 ms (β⁻)	
36Mg	+0.0900	4 ms (β⁻)	4.01 ms (β⁻)	
Table I (Continued)

Calculated Single-Particle and Experimental Decay Properties of Magnesium Systems with $20 \leq A \leq 52$

Nuclide	$a(A)$	Half-Life (Decay Mode)a,b
37Mg	+0.0219	8 ms (β^-)a 8.00 ms (β^-)e
38Mg	+0.0900	f, g 2.89 ms (β^-)e
39Mg	+0.0900	f, h 2.50 ms (β^-)e
40Mg	+0.0900	f, i 2.19 ms (β^-)e
41Mg	+0.0900	f 1.94 ms (β^-)e
42Mg	+0.0900	f 1.72 ms (β^-)e
43Mg	+0.0900	f 1.55 ms (β^-)e
44Mg	+0.0900	f 1.40 ms (β^-)e
45Mg	+0.0900	f 1.27 ms (β^-)e
46Mg	+0.0900	f 1.16 ms (β^-)e
47Mg	+0.0900	f 1.07 ms (β^-)e
48Mg	+0.0900	f 0.987 ms (β^-)e
49Mg	+0.0900	f 0.913 ms (β^-)e
50Mg	+0.0900	f 0.851 ms (β^-)e
51Mg	+0.0900	f 0.794 ms (β^-)e
52Mg	+0.0900	f 0.744 ms (β^-)e
Table I (Continued)

Nuclide	a(A)	Half-Life (Decay Mode)\(^a,b\)	Experiment	This Work
\(a\) Ref. 30.				
\(b\) Ref. 31.				
\(c\) Allowed 1d\(_{5/2}(p)\) to 1d\(_{5/2}(n)\) positron decay transition.				
\(d\) Allowed 1d\(_{5/2}(n)\) to 1d\(_{5/2}(p)\) beta decay transition.				
\(e\) Allowed 1d\(_{3/2}(n)\) to 1d\(_{3/2}(p)\) beta decay transition.				
\(f\) No data provided in Ref. 30-32.				
\(g\) The Japanese data compilation\(^{32}\) notes a calculated value of 2.59 ms for \(^{38}\)Mg.				
\(h\) The Japanese data compilation\(^{32}\) notes a calculated value of 1.97 ms for \(^{39}\)Mg.				
\(i\) The Japanese data compilation\(^{32}\) notes a calculated value of 1.22 ms for \(^{40}\)Mg.				

The neutron excess systems summarized in Table I were based on an evaluation of alpha, beta, electron capture, and positron decay modes. Other decay modes that could possibly occur in neutron excess systems (e.g., n and 2n) are not readily evaluated using a single particle model, and were not evaluated. The results of Table I must be viewed with this limitation. However, since the neutron and proton decay modes tend to be much shorter than the alpha, beta, electron capture, and positron decay modes\(^{30-32}\), the model results provide upper bounds on the half-lives of neutron excess magnesium isotopes.

6.1 37 ≥ A ≥ 20 Magnesium Isotopes with Experimental Half-Life Data

The \(^{20}\)Mg system completes the 1p\(_{1/2}\) neutron shell. Its decay properties were best fit with an a(A) value of 0.029.

\(^{21}\)Mg to \(^{26}\)Mg systems were best fit with a(A) values between -0.00037 and 0.0637 with an average value of about 0.033. The \(^{21}\)Mg to \(^{26}\)Mg nuclei fill the 1d\(_{5/2}\) neutron shell. \(^{27}\)Mg and \(^{28}\)Mg fill the 2s\(_{1/2}\) neutron shell and are best fit with a(A) values of -0.0102 and -0.04822, respectively with an average value of about -0.029.

\(^{29}\)Mg to \(^{32}\)Mg systems were best fit with a(A) values between -0.0295 and -0.0494 with an average value of about -0.040. The \(^{29}\)Mg to \(^{32}\)Mg nuclei fill the 1d\(_{3/2}\) neutron shell.

The heaviest known magnesium neutron excess systems (i.e., \(^{33}\)Mg - \(^{37}\)Mg) partially fill the 1f\(_{7/2}\) neutron shell. There is no experimental half-life data for \(A > 37\) magnesium systems.

The \(^{33}\)Mg - \(^{37}\)Mg systems were best fit with a(A) values between -0.0678 and 0.900, with an average value of about 0.0014. The 0.090 value for \(^{36}\)Mg follows the beta decay half-life trends noted in Refs. 30 -
The 0.090 value is consistent with the limiting values noted for calcium (0.090), iron (0.115), fluorine (0.115), zinc (0.119), and sodium (0.160). Since it is the heaviest experimentally observed magnesium system consistent with the decreasing beta decay half-life trends noted in Refs. 8 – 13 and 30 - 32, the 36Mg value is used to extrapolate the half-lives of 38Mg and heavier magnesium nuclei. The a(A) value of 37Mg was not utilized because it is inconsistent with the aforementioned beta decay half-life trends.

Table I lists the half-life of the limiting decay transition (i.e., the transition that has the shortest decay half-life). For example, 29Mg has four beta decay transitions that are possible within the scope of the aforementioned single-particle model (i.e., allowed 1d$_{5/2}$(n) to 1d$_{5/2}$(p) [1.54 min], allowed 1d$_{3/2}$(n) to 1d$_{5/2}$(p) [1.30 s], allowed 2s$_{1/2}$(n) to 2s$_{1/2}$(p) [2.51 min], and allowed 1d$_{3/2}$(n) to 1d$_{3/2}$(p) [2.31 min]). For 29Mg, the limiting beta decay mode is the allowed 1d$_{3/2}$(n) to 1d$_{5/2}$(p) [1.30 s] transition.

As noted in Table I, the model predicts the proper decay mode for the known 37 ≥ A ≥ 20 magnesium nuclei. The results for the known systems summarized in Table I suggest that the model predictions of the neutron excess magnesium systems are reasonably credible.

The 20Mg system completes filling of the 1p$_{1/2}$ neutron shell and is correctly predicted to decay by positron emission. The single-particle model overestimates the half-life by about 1%.

For nuclei filling the 1d$_{5/2}$ neutron shell, model predictions for 21Mg, 22Mg, and 23Mg are within about 0.25% of the experimental positron decay half-lives. Both 27Mg and 28Mg decay by an allowed 1d$_{5/2}$(n) to 1d$_{5/2}$(p) beta decay transition. 29Mg, 30Mg, 31Mg, and 32Mg fill the 1d$_{3/2}$ neutron shell. The 29Mg, 30Mg, 31Mg, and 32Mg systems decay by an allowed 1d$_{3/2}$(n) to 1d$_{5/2}$(p) beta decay transition, and their beta decay half-lives are in agreement with the measured values.

The 1f$_{7/2}$ systems, 33Mg, 34Mg, 35Mg, 36Mg, and 37Mg, are within about 0.25% of their respective experimental beta decay half-lives. These systems decay by an allowed 1d$_{3/2}$(n) to 1d$_{5/2}$(p) beta decay transition. These are the heaviest magnesium nuclides that have measured decay half-life values and beta decay transition information.

6.2 52 ≥ A ≥ 38 Magnesium Isotopes without Experimental Half-Life Data

As noted in the previous section, the limiting a(A) value of 0.090 was derived from the heaviest magnesium isotope (36Mg) measured experimentally that is consistent with the beta decay half-life trends noted in Refs. 8 – 13 and 30 - 32. This a(A) value was used for all 52 ≥ A ≥ 38 magnesium systems.

Table I also summarizes calculated single-particle decay properties of magnesium systems with 52 ≥ A ≥ 38. Although experimental data for 52 ≥ A ≥ 38 magnesium systems are not available, these are nuclei of interest in astrophysical applications.
the characteristics of the interaction of Eq. 4. Although the existence of some of these systems may be an artifact of the model interaction, their study is of critical importance in understanding the role of neutron excess magnesium systems in nucleosynthesis.

The $^{38}\text{Mg} - ^{40}\text{Mg}$ systems complete filling the $1f_{7/2}$ neutron single-particle energy level. These systems have beta decay half-life values that decrease from 2.89 to 2.19 ms. Although no data is available for the $^{38}\text{Mg} - ^{40}\text{Mg}$ systems, the calculated beta decay half-life for these systems is consistent with the calculations of Ref. 32. The $^{38}\text{Mg} - ^{40}\text{Mg}$ systems decay through an allowed $1d_{3/2}(n)$ to $1d_{5/2}(p)$ beta decay transition.

The $^{41}\text{Mg} - ^{44}\text{Mg}$ systems fill the $2p_{3/2}$ neutron shell. These systems also decay through an allowed $1d_{3/2}(n)$ to $1d_{5/2}(p)$ beta decay transition. The $^{41}\text{Mg} - ^{44}\text{Mg}$ beta decay half-lives decrease from 1.94 to 1.40 ms, respectively.

The ^{45}Mg and ^{46}Mg systems fill the $2p_{1/2}$ neutron shell. In a similar manner, these systems decay through an allowed $1d_{3/2}(n)$ to $1d_{5/2}(p)$ beta decay transition. The ^{45}Mg and ^{46}Mg half-lives are 1.27 and 1.16 ms, respectively.

$1f_{5/2}$ is the last bound neutron shell. $^{47}\text{Mg} - ^{52}\text{Mg}$ systems fill the $1f_{5/2}$ neutron shell. These systems decay through an allowed $1d_{3/2}(n)$ to $1d_{5/2}(p)$ beta decay transition. The $^{47}\text{Mg} - ^{52}\text{Mg}$ beta decay half-lives decrease from 1.07 to 0.744 ms.

No magnesium isotopes with $A > 52$ are predicted by the model. This occurs because the $1f_{5/2}$ neutron single-particle level is the last bound neutron state, and only 40 neutrons are bound in magnesium systems. However, in view of the model potential uncertainties, the calculated properties of the heaviest magnesium systems summarized in Table I are not definitive.

The predicted $A = 38 - 52$ magnesium isotopes have no experimental half-life data, but the model predicts beta decay half-lives in the range of 0.744 – 2.89 ms. Based on calculations in $Z = 9 - 11, 20, 26,$ and 30 systems$^{8-13}$, these results likely overestimate the beta decay half-lives of these neutron excess magnesium nuclei. The model results are also likely to be an overestimate of the half-lives because the single-particle level calculations do not evaluate the short-lived neutron decay modes in the $A = 38 - 52$ magnesium nuclei.

7.0 Conclusions

Single-particle level calculations suggest that neutron excess magnesium isotopes terminate with ^{52}Mg and filling of the $1f_{5/2}$ neutron single-particle level. The $38 \leq A \leq 52$ magnesium systems have predicted beta decay half-lives in the $0.744 - 2.89$ ms range, and likely overestimate the actual half-life values.

References

1) D. M. Siegel and B. D. Metzger, Phys. Rev. Lett. **119**, 231102 (2017).
2) National Academy of Sciences Report No. 11796, Scientific Opportunities with a Rare-Isotope Facility in the United States, Washington DC: National Research Council (2007).
3) N. Fukuda et al., J. Phys. Soc. Jpn. **87**, 014202 (2018).
4) Y. Shimizu et al., J. Phys. Soc. Jpn. **87**, 014203 (2018).
5) J. Kurcewicz et al., Phys. Lett. B **717**, 371 (2012).
6) T. Baumann et al., Nature **449**, 1022 (2007).
7) O. B. Tarasov et al., Phys. Rev. C **87**, 054612 (2013).
8) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Calcium Nuclei, Physics Essays **31**(4), 462 (2018).
9) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Iron Nuclei, Physics Essays **32**(2), 175 (2020).
10) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Fluorine Nuclei, QEIOS **24XLL9**, 1 (2020). https://doi.org/10.32388/24XLL9.
11) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Zinc Nuclei, QEIOS, **JZI1LG**, 1 (2020). https://doi.org/10.32388/JZI1LG.
12) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Neon Nuclei, QEIOS **1WR291**, 1 (2021). https://doi.org/10.32388/1WR291.
13) J. J. Bevelacqua, Decay Characteristics of Neutron Excess Sodium Nuclei, QEIOS QEIOS **1Y819A**, 1 (2021). https://doi.org/10.32388/1Y819A.
14) M. Terasawa, K. Sumiyosh, T. Kajino, G. J. Mathews, and I. Tanihata, New Nuclear Reaction Flow during r-Process Nucleosynthesis in Supernovae: Critical Role of Light Neutron-Rich Nuclei, https://cds.cern.ch/record/509832/files/0107368.pdf.
15) A. Recio-Blanco, P. de Laverny, C. Worley, N. C. Santos, C. Melo, and G. Israeliian, Astron. Astrophys **538**, A117 (2012).
16) N. Mowlavi, A. Jorissen, and M. Arnould, Astron. Astrophys. **334**, 153 (1998).
17) O. S. Kirsebom et al., Phys. Rev. C **100**, 065805 (2019).
18) O. S. Kirsebom et al., Phys. Rev. Lett. **123**, 262701 (2019).
19) D. S. Ahn, N. Fukuda, H. Geissel, N. Inabe, N. Iwasa, T. Kubo, K. Kusaka, D. J. Morrissey, D. Murai, and T. Nakamura, et al. Phys. Rev. Lett. **123**, 212501 (2019).
20) R. An, G.-F. Shen, S.-S. Zhang, and L.-S. Geng, Chinese Physics C **44**, No. 7, 074101 (2020).
21) A. Lukasiak and A. Sobiczewski, Acta Phys. Pol. **B6**, 147 (1975).
22) F. Petrovich, R. J. Philpott, D. Robson, J. J. Bevelacqua, M. Golin, and D. Stanley, Phys. Rev. Lett. **37**, 558 (1976).
23) G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. **46**, 598 (1963).
24) L. Fox and E. T. Godwin, Proc. Cambridge Philos. Soc. **45**, 373(1949).
25) S. Hofmann and G. Münzenberg, Rev. Mod. Phys. **72**, 733 (2000).
26) E. Rost, Phys. Lett. **26B**, 184 (1968).
27) J. Blomqvist and S. Wahlborn, Ark. Fys. **16**, 545 (1959).
28) L. Ray and P. E. Hodgson, Phys. Rev. C **20**, 2403 (1979).
29) N. Schwierz, I. Wiedenhöver, and A. Volya, arXiv:0709.3525v1 [nucl-th] 21 Sep 2007.
30) E. M. Baum, M. C. Ernesti, H. D. Knox, T. R. Miller, and A. M. Watson, Nuclides and Isotopes – Chart of the Nuclides, 17th ed, Knolls Atomic Power Laboratory (2010).
31) National Nuclear Data Center, Brookhaven National Laboratory. NuDat (Nuclear Structure and Decay Data). http://www.nndc.bnl.gov/nudat2/.
32) H. Koura et al., Chart of the Nuclides 2018, Japanese Nuclear Data Committee and Nuclear Data Center, Japanese Atomic Energy Agency (2018).
33) C. Y. Wong, Phys. Lett. **21**, 688 (1966).