 REPRESENTATIONS OF PRINCIPAL W-ALGEBRA FOR THE SUPeralgebra $Q(n)$

ELENA POLETAЕVA AND VERA SERGANOVA

ABSTRACT. We classify irreducible representations of finite W-algebra of the queer Lie superalgebra $Q(n)$ associated with the principal nilpotent coadjoint orbits.

1. INTRODUCTION

In the classical case a finite W_e-algebra is a quantization of the Slodowy slice to the adjoint orbit of a nilpotent element e of a semisimple Lie algebra g. Finite-dimensional simple W_e-modules are used for classification of primitive ideals of $U(g)$, [7, 8, 9].

In the supercase the theory of the primitive ideals is even more complicated, [3]. It is interesting to generalize Losev’s result to the supercase. One step in this direction is to study representations of finite W-algebras for a Lie superalgebra g. In the case when $g = gl(m|n)$ and e is the even principal nilpotent, Brown, Brundan and Goodwin classified irreducible representation of W_e and explored the connection with the category O for g using coinvariants functor, [1, 2].

In this paper, we study representations of finite W-algebras for the Lie superalgebra $Q(n)$ associated with the principal even nilpotent coadjoint orbit. Note that in this case the Cartan subalgebra h of $g = Q(n)$ is not abelian and contains a non-trivial odd part. By our previous results ([12]), we realize W as a subalgebra of the universal enveloping algebra $U(h)$. The main result of the paper is a classification of simple W-modules (they are all finite-dimensional by [12]). The technique we use is completely different from one used in [2] due to the lack of triangular decomposition of W in our case. Instead we can describe the restriction of simple $U(h)$-modules to W and prove that any simple W-module occurs as a constituent of this restriction.

Note that our results should have applications to classification of simple modules for super Yangians of type Q. We also plan in a subsequent paper to study the coinvariants functor from the category O for $Q(n)$ to the category of W-modules.
2. Notations and preliminary results

We work in the category of super vector spaces over \mathbb{C}. All tensor products are over \mathbb{C} unless specified otherwise. By Π we denote the functor of parity switch $\Pi(X) = X \otimes \mathbb{C}^{[0]}$.

Recall that if X is a simple finite-dimensional \mathcal{A}-module for some associative superalgebra \mathcal{A}, then $\text{End}_{\mathcal{A}}(X) = \mathbb{C}$ or $\text{End}_{\mathcal{A}}(X) = \mathbb{C}[\epsilon]/(\epsilon^2 - 1)$, where the odd element ϵ provides an \mathcal{A} isomorphism $X \to \Pi(X)$. We say that X is of M-type in the former case and of Q-type in the latter (see [6, 4]).

If X and Y are two simple modules over associative superalgebras \mathcal{A} and \mathcal{B}, we define the $\mathcal{A} \otimes \mathcal{B}$-module $X \boxtimes Y$ as the usual tensor product if at least one of X, Y is of M-type and the tensor product over $\mathbb{C}[\epsilon]$ if both X and Y are of Q-type.

In this paper we consider the Lie superalgebra $\mathfrak{g} = Q(n)$ defined as follows (see [5]). Equip $\mathbb{C}^{n|n}$ with the odd operator ζ such that $\zeta^2 = -\text{Id}$. Then $Q(n)$ is the centralizer of ζ in the Lie superalgebra $\mathfrak{gl}(n|n)$. It is easy to see that $Q(n)$ consists of matrices of the form $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$ where A, B are $n \times n$-matrices. We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ to be the set of matrices with diagonal A and B. By \mathfrak{n}^+ (respectively, \mathfrak{n}^-) we denote the nilpotent subalgebras consisting of matrices with strictly upper triangular (respectively, low triangular) A and B. The Lie superalgebra \mathfrak{g} has the triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ and we set $\mathfrak{b} = \mathfrak{n}^+ \oplus \mathfrak{h}$.

Denote by W the finite W-algebra associated with a principal even nilpotent element φ in the coadjoint representation of $Q(n)$. Let us recall the definition (see [14]). Let $\{e_{i,j}, f_{i,j} \mid i, j = 1, \ldots, n\}$ denote the basis consisting of elementary even and odd matrices. Choose $\varphi \in \mathfrak{g}^*$ such that

$$\varphi(f_{i,j}) = 0, \quad \varphi(e_{i,j}) = \delta_{i,j+1}.$$

Let I_φ be the left ideal in $U(\mathfrak{g})$ generated by $x - \varphi(x)$ for all $x \in \mathfrak{n}^-$. Let $\pi : U(\mathfrak{g}) \to U(\mathfrak{g})/I_\varphi$ be the natural projection. Then

$$W = \{\pi(y) \in U(\mathfrak{g})/I_\varphi \mid \text{ad}(x)y \in I_\varphi \text{ for all } x \in \mathfrak{n}^\text{-}\}.$$

Using identification of $U(\mathfrak{g})/I_\varphi$ with the Whittaker module $U(\mathfrak{g}) \otimes_{U(\mathfrak{n})} \mathbb{C}_\varphi \simeq U(\mathfrak{b}) \otimes \mathbb{C}$ we can consider W as a subalgebra of $U(\mathfrak{b})$. The natural projection $\vartheta : U(\mathfrak{b}) \to U(\mathfrak{h})$ with the kernel $\mathfrak{n}^+U(\mathfrak{b})$ is called the Harish-Chandra homomorphism. It is proven in [12] that the restriction of ϑ to W is injective.

The center of $U(\mathfrak{g})$ is described in [16]. Set

$$\xi_i := (-1)^{i+1} f_{i,i}, \quad x_i := \xi_i^2 = e_{i,i},$$

then

$$U(\mathfrak{b}) \simeq \mathbb{C}[\xi_1, \ldots, \xi_n]/(\xi_i \xi_j + \xi_j \xi_i)_{i < j \leq n}.$$

1There is a unique open orbit in the nilpotent cone of the coadjoint representation, elements of this orbit are called principal.
The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}[x_1, \ldots, x_n]$ and the image of the center of $U(\mathfrak{g})$ under the Harish-Chandra homomorphism is generated by the polynomials $p_{2k+1} = x_1^{2k+1} + \cdots + x_n^{2k+1}$ for all $k \in \mathbb{N}$. These polynomials are called Q-symmetric polynomials.

In [12] we proved that the center Z of W coincides with the image of the center of $U(\mathfrak{g})$ and hence can be also identified with the ring of Q-symmetric polynomials.

3. The structure of W-algebra

Using Harish-Chandra homomorphism we realize W as a subalgebra in $U(\mathfrak{h})$. It is shown in [12] that W has n even generators z_0, \ldots, z_{n-1} and n odd generators $\phi_0, \ldots, \phi_{n-1}$ defined as follows. For $k \geq 0$ we set

\begin{equation}
\phi_0 := \sum_{i=1}^{n} \xi_i, \quad \phi_k := T^k(\phi_0),
\end{equation}

where the matrix of T in the standard basis ξ_1, \ldots, ξ_n has 0 on the diagonal and

\begin{equation}
t_{ij} := \begin{cases} x_j & \text{if } i < j, \\ -x_j & \text{if } i > j. \end{cases}
\end{equation}

For odd $k \leq n - 1$ we define

\begin{equation}
z_k := [\sum_{i_1 \geq i_2 \geq \cdots \geq i_k+1} (x_{i_1} + (-1)^k \xi_{i_1}) \cdots (x_{i_k} - \xi_{i_k})(x_{i_{k+1}} + \xi_{i_{k+1}})]_{\text{even}},
\end{equation}

and for even $k \geq 0$ we set

\begin{equation}
z_k := \frac{1}{2}[\phi_0, \phi_k].
\end{equation}

Let $W_0 \subset W$ be the subalgebra generated by z_0, \ldots, z_{n-1}. By [12] Theorem 6.6, W_0 is isomorphic to the polynomial algebra $\mathbb{C}[z_0, \ldots, z_{n-1}]$. Furthermore there are the following relations

\begin{equation}
[\phi_i, \phi_j] = \begin{cases} (-1)^i z_{i+j} & \text{if } i + j \text{ is even} \\ 0 & \text{if } i + j \text{ is odd} \end{cases}
\end{equation}

Define the \mathbb{Z}-grading on $U(\mathfrak{h})$ by setting the degree of ξ_i to be 1. It induces the filtration on W, for every $y \in W$ we denote by \bar{y} the term of the highest degree.

Note that for even k, we have $z_k = \bar{z}_k$. Moreover, z_k is in the image under the Harish-Chandra map of the center of the universal enveloping algebra $U(Q(n))$. Therefore by [16] z_{2p} is a Q-symmetric polynomial in $\mathbb{C}[x_1, \ldots, x_n]$ of degree $2p + 1$. For example,

$$z_0 = x_1 + \cdots + x_n, \quad z_2 = \frac{1}{3} \left((x_1^3 + \cdots + x_n^3) - (x_1 + \cdots + x_n)^3 \right).$$
For odd \(k \) the leading term is given by the complete symmetric polynomial

\[
\bar{z}_k = \sum_{i_1 \geq i_2 \geq \ldots \geq i_{k+1}} x_{i_1} \cdots x_{i_{k+1}}.
\]

Lemma 3.1.

1. \(\text{gr } W_0 \) is isomorphic to the algebra of symmetric polynomials \(\mathbb{C}[x_1, \ldots, x_n]^{S_n} = \mathbb{C}[\bar{z}_0, \ldots, \bar{z}_{n-1}] \) and the degree of \(\bar{z}_k \) is \(2k + 2 \);
2. \(U(\mathfrak{h}) \) is a free right \(W_0 \)-module of rank \(2^n n! \).

Proof. Since \(\bar{z}_0, \ldots, \bar{z}_{n-1} \) are algebraically independent generators of \(\mathbb{C}[x_1, \ldots, x_n]^{S_n} \) we obtain (1).

It is well-known fact that \(\mathbb{C}[x_1, \ldots, x_n] \) is a free \(\mathbb{C}[x_1, \ldots, x_n]^{S_n} \)-module of rank \(n! \), see, for example, [17] Chapter 4. Since \(U(\mathfrak{h}) \) is a free \(\mathbb{C}[x_1, \ldots, x_n] \)-module of rank \(2^n \) we get that \(U(\mathfrak{h}) \) is a free \(\mathbb{C}[x_1, \ldots, x_n]^{S_n} \)-module of rank \(m = 2^n n! \). Let us choose a homogeneous basis \(b_1, \ldots, b_m \) of \(U(\mathfrak{h}) \) over \(\mathbb{C}[x_1, \ldots, x_n]^{S_n} \). We claim that it is a basis of \(U(\mathfrak{h}) \) as a right module over \(W_0 \). Indeed, let us prove first the linear independence. Suppose

\[
\sum_{j=1}^{m} b_j y_j = 0
\]

for some \(y_j \in W_0 \). Let \(k = \max\{ \deg y_j + \deg b_j | j = 1, \ldots, m \} \). If \(J = \{ j | \deg y_j + \deg b_j = k \} \) we have \(\sum_{j \in J} b_j y_j = 0 \). By above this implies \(y_j = 0 \) for all \(j \in J \) and we obtain all \(y_j = 0 \). On the other hand, it follows easily by induction on degree that \(U(\mathfrak{h}) = \sum_{j=1}^{m} b_j W_0 \). The proof of (2) is complete. \(\square \)

Consider \(U(\mathfrak{h}) \) as a free \(U(\mathfrak{h}_0) \)-module and let \(W_1 \) denote the free \(U(\mathfrak{h}_0) \)-submodule generated by \(\xi_1, \ldots, \xi_n \). Then \(W_1 \) is equipped with \(U(\mathfrak{h}_0) \)-valued symmetric bilinear form \(B(x, y) = [x, y] \).

Lemma 3.2. Let \(p(x_1, \ldots, x_n) := \prod_{i<j} (x_i + x_j) \) and \(\Gamma \) denotes the Gramm matrix \(B(\phi_i, \phi_j) \). Then \(\det \Gamma = cp^2 x_1 \cdots x_n \), where \(c \) is a non-zero constant.

Proof. Recall that \(\phi_k = T^k \phi_0 \). Since the matrix of the form \(B \) in the basis \(\xi_1, \ldots, \xi_n \) is the diagonal matrix \(C = \text{diag}(x_1, \ldots, x_n) \), then \(\Gamma = Y^t CY \), where \(Y \) is the square matrix such that \(\phi_i = \sum_{j=1}^{n} y_j \xi_j \). Hence \(\det \Gamma = x_1 \cdots x_n \det Y^2 \). Since \(B(\phi_i, \phi_j) \) is a symmetric polynomial in \(x_1, \ldots, x_n \), the determinant of \(\Gamma \) is also a symmetric polynomial. The degree of this polynomial is \(n^2 \). Therefore it suffices to prove that \((x_1 + x_2)^2 \) divides \(\det \Gamma \), or equivalently \(x_1 + x_2 \) divides \(\det Y \). In other words, we have to show that if \(x_1 = -x_2 \), then \(\phi_0, \ldots, \phi_{n-1} \) are linearly dependent. Indeed, one can easily see from the form of \(T \) that the first and the second coordinates of \(T^k \phi_0 \) coincide, hence \(\phi_0, T \phi_0, \ldots, T^{n-1} \phi_0 \) are linearly dependent. \(\square \)
We also will use another generators in W introduced in [13], Corollary 5.15:

\begin{equation}
(3.6) \quad u_k(0) := \left[\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k}) \right]_{\text{even}},
\end{equation}

\begin{equation}
(3.7) \quad u_k(1) := \left[\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k}) \right]_{\text{odd}}.
\end{equation}

For convenience we assume $u_k(0) = u_k(1) = 0$ for $k > n$.

Let $i + j = n$. We have the natural embedding of the Lie superalgebras $Q(i) \oplus Q(j) \hookrightarrow Q(n)$. If \mathfrak{h}_r denotes the Cartan subalgebra of $Q(r)$, the above embedding induces the isomorphism

\begin{equation}
(3.8) \quad U(\mathfrak{h}) \simeq U(\mathfrak{h}_i) \otimes U(\mathfrak{h}_j).
\end{equation}

The following lemma implies that we have also the embedding of W-algebras.

Lemma 3.3. Let $i + j = n$. Then W is a subalgebra in the tensor product $W^i \otimes W^j$, where $W^r \subset U(\mathfrak{h}_r)$ denotes the W-algebra for $Q(r)$.

Proof. Introduce generators in W^i and W^j:

\begin{equation}
(3.9) \quad u_k^+(0) := \left[\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq i} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k}) \right]_{\text{even}},
\end{equation}

\begin{equation}
(3.10) \quad u_k^-(1) := \left[\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq j} (x_{i_1} + (-1)^{k+1} \xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k}) \right]_{\text{odd}}.
\end{equation}

Then for $d, e, f \in \mathbb{Z}/2\mathbb{Z}$ we have

\begin{equation}
(3.11) \quad u_k(d) = \sum_{e+f=d, a+b=k} (-1)^{eb}u_a^+(e)u_b^-(f).
\end{equation}

Here we assume $u_0^+(0) = 1$ and $u_0^-(1) = 0$. \hfill \square

Corollary 3.4. If $i_1 + \ldots + i_p = n$, then W is a subalgebra in $W^{i_1} \otimes \ldots \otimes W^{i_p}$.

4. IRREDUCIBLE REPRESENTATIONS OF W

4.1. **Representations of $U(\mathfrak{h})$.** Let $s = (s_1, \ldots, s_n) \in \mathbb{C}^n$. We call s regular if $s_i \neq 0$ for all $i \leq n$ and typical if $s_i + s_j \neq 0$ for all $i \neq j \leq n$.

It follows from the representation theory of Clifford algebras that all irreducible representations of $U(\mathfrak{h})$ up to change of parity can be parameterized by $s \in \mathbb{C}^n$. Indeed, let M be an irreducible representation of $U(\mathfrak{h})$. By Schur’s lemma every x_i acts on M as a scalar operator $s_i \text{Id}$. Let I_s denote the ideal in $U(\mathfrak{h})$ generated by
If $s_i = 0$, then the quotient algebra $U(\mathfrak{h})/I_s$ is isomorphic to the Clifford superalgebra C_s associated with the quadratic form:

$$B_s(\xi_i, \xi_j) = \delta_{ij}s_i.$$

Then M is a simple C_s-module.

The radical R_s of C_s is generated by the kernel of the form B_s. Let $m(s)$ be the number of non-zero coordinates of s, then C_s/R_s is isomorphic to the matrix superalgebra $M(2^{m-1}|2^{m-1})$ for even m and to the superalgebra $M(2^{m-1})\otimes \mathbb{C}[e]/(e^2 - 1)$ for odd m.

Therefore C_s has one (up to isomorphism) simple \mathbb{Z}_2-graded module $V(s)$ of type Q for odd $m(s)$, and two simple modules $V(s)$ and $IIV(s)$ of type M for even $m(s)$ (see [10]). In the case when s is regular, the form B_s is non-degenerate and the dimension of $V(s)$ equals 2^k, where $k = \lceil n/2 \rceil$. In general, $\dim V(s) = 2^{[m(s)/2]}$.

Consider the embedding $Q(p) \oplus Q(q) \hookrightarrow Q(n)$ for $p+q = n$ and the isomorphism (3.7). It induces an isomorphism of $U(\mathfrak{h})$-modules

$$(4.1) \quad V(s) \simeq V(s_1, \ldots, s_p) \boxtimes V(s_{p+1}, \ldots, s_n).$$

4.2. Restriction from $U(\mathfrak{h})$ to W. We denote by the same symbol $V(s)$ the restriction to W of the $U(\mathfrak{h})$-module $V(s)$.

Proposition 4.1. Let S be a simple W-module. Then S is a simple constituent of $V(s)$ for some $s \in \mathbb{C}^n$.

Proof. Since W_0 is commutative and S is finite-dimensional, there exists one dimensional W_0-submodule $\mathbb{C}_\nu \subset S$ with character ν. Therefore S is a quotient of $\text{Ind}_{W_0}W_0$ \mathbb{C}_ν. On the other hand, the embedding $W \hookrightarrow U(\mathfrak{h})$ induces the embedding $\text{Ind}_{W_0}W_0 \mathbb{C}_\nu \hookrightarrow \text{Ind}_{W_0}U(\mathfrak{h}) \mathbb{C}_\nu$. Thus, S is a simple constituent of $\text{Res}_W \text{Ind}_{W_0}U(\mathfrak{h}) \mathbb{C}_\nu$. By Lemma 3.1, $\text{Ind}_{W_0}U(\mathfrak{h}) \mathbb{C}_\nu$ is finite-dimensional, and hence has simple $U(\mathfrak{h})$-constituents isomorphic to $V(s)$ for some s. Hence S must appear as a simple W-constituent of some $V(s)$. \square

4.3. Typical representations.

Theorem 4.2. If s is typical, then $V(s)$ is a simple W-module.

Proof. First, we assume that s is regular, i.e. $s_i \neq 0$ for all $i = 1, \ldots, n$. The specialization $x_i \mapsto s_i$ induces an injective homomorphism $\theta_s : W/(I_s \cap W) \hookrightarrow C_s$ and a specialization of the quadratic form $B \mapsto B_s$. By Lemma 3.2 $\det \Gamma(s) \neq 0$. Therefore B_s is non-degenerate and θ_s is an isomorphism. Thus, $V(s)$ remains irreducible when restricted to W.

If s is typical non-degenerate, there is exactly one i such that $s_i = 0$. Let $s' = (s_1, \ldots, s_i - 1, s_{i+1}, \ldots, s_n)$. Note that $(\theta_s(\xi_i))$ is a nilpotent ideal of C_s and hence ξ_i acts by zero on $V(s)$. Then $V(s)$ is a simple module over the quotient $C_s' \cong C_s/(\theta_s(\xi_i))$.

\[2\text{We consider Clifford algebras as superalgebras with the natural } \mathbb{Z}_2\text{-grading.}\]
Recall Y from the proof of Lemma 3.2 and let Y' denote the minor of Y obtained by removing the i-th column and the i-th row. Then

$$
\phi_k = \sum_{j \neq i} y_{kj} \xi_j \mod (\xi_i).
$$

Hence $\theta_s(\phi_0), \ldots, \theta_s(\phi_{n-1})$ generate $C_s' \cong C_s/(\theta_s(\xi_i))$ and the statement follows from the regular case for $n - 1$.

4.4. **Simple W-modules for $n = 2$.** Let $n = 2$, then by Theorem 4.2 $V(s)$ is simple as W-module if $s_1 \neq -s_2$. The action of $U(\mathfrak{h})$ in $V(s_1, s_2)$ is given by the following formulas in a suitable basis:

$$
\xi_1 \mapsto \begin{pmatrix} 0 & \sqrt{s_1} \\ \sqrt{s_1} & 0 \end{pmatrix}, \quad \xi_2 \mapsto \begin{pmatrix} 0 & \sqrt{s_2} \\ -\sqrt{s_2} & 0 \end{pmatrix}.
$$

Note that W is generated by ϕ_0, ϕ_1, z_0 and z_1', where $z_1' := u_2(0)$. Using

$$
\phi_0 = \xi_1 + \xi_2, \quad \phi_1 = x_2 \xi_1 - x_1 \xi_2, \quad z_0 = x_1 + x_2, \quad z_1' = x_1 x_2 - \xi_1 \xi_2
$$

we obtain the following formulas for the generators of W:

\begin{align}
(4.2) \quad & \phi_0 \mapsto \begin{pmatrix} 0 & \sqrt{s_1} + \sqrt{s_2} \\ \sqrt{s_1} - \sqrt{s_2} & 0 \end{pmatrix}, \quad \phi_1 \mapsto \begin{pmatrix} \sqrt{s_1 s_2} & \sqrt{s_2} - \sqrt{s_1} \\ \sqrt{s_2} + \sqrt{s_1} & 0 \end{pmatrix}, \\
(4.3) \quad & z_0 \mapsto (s_1 + s_2) \text{Id}, \quad z_1' \mapsto \begin{pmatrix} s_1 s_2 + \sqrt{s_1 s_2} & 0 \\ 0 & s_1 s_2 - \sqrt{s_1 s_2} \end{pmatrix}.
\end{align}

Assume that $s_1 = -s_2$. If $s_1, s_2 = 0$ then $V(s)$ is isomorphic to $\mathbb{C} \oplus \Pi \mathbb{C}$, where \mathbb{C} is the trivial module. If $s_1 \neq 0$, we choose $\sqrt{s_1}, \sqrt{s_2}$ so that $\sqrt{s_2} = \sqrt{s_1} i$. Note that the choice of sign controls the choice of the parity of $V(s)$. The following exact sequence easily follows from (4.2) and (4.3):

\begin{align}
(4.4) \quad & 0 \to \Pi \Gamma_{-x^t + s_1} \to V(s) \to \Gamma_{-x^t - s_1} \to 0,
\end{align}

where Γ_1 is the simple module of dimension $(1|0)$ on which ϕ_0, ϕ_1 and z_0 act by zero and z_1' acts by the scalar t. The sequence splits only in the case $s_1 = 0$, when $\Gamma_0 \cong \mathbb{C}$ is trivial. Thus, using Proposition 4.1, Theorem 4.2 and (4.4) we obtain

Lemma 4.3. If $n = 2$, then every simple W-module is isomorphic to one of the following

1. $V(s_1, s_2)$ or $\Pi V(s_1, s_2)$ for $s_1 \neq -s_2, s_1, s_2 \neq 0$;
2. $V(s, 0)$ if $s \neq 0$;
3. Γ_t or $\Pi \Gamma_t$.

4.5. Invariance under permutations.

Theorem 4.4. Let $s' = \sigma(s)$ for some permutation of coordinates.

1. If s is typical, then $V(s)$ is isomorphic to $V(s')$ as a W-module.
2. If s is arbitrary, then $[V(s)] = [V(s')]$ or $[\Pi V(s')]$, where $[X]$ denotes the class of X in the Grothendieck group.

Proof. First, we will prove the statement for $n = 2$. Assume first that $s_2 \neq -s_1$. In this case $V(s_1, s_2)$ is a $(1|1)$-dimensional simple W-module.

Let

$$D = \begin{pmatrix} \sqrt{s_2} + \sqrt{s_1} & 0 \\ 0 & \sqrt{s_1} + \sqrt{s_2} \end{pmatrix}.$$

Then by direct computation we have

$$D\phi_0 D^{-1} = \begin{pmatrix} 0 & \sqrt{s_2} + \sqrt{s_1} \\ \sqrt{s_2} - \sqrt{s_1} & 0 \end{pmatrix}$$

and

$$D\phi_1 D^{-1} = \sqrt{s_1 s_2} \begin{pmatrix} 0 & \sqrt{s_1} - \sqrt{s_2} \\ \sqrt{s_2} + \sqrt{s_1} & 0 \end{pmatrix}.$$

Therefore D defines an isomorphism between $V(s_1, s_2)$ and $V(s_2, s_1)$.

Now consider the case $s_1 = -s_2$. Then the structure of $V(s_1, -s_1)$ is given by the sequence (4.4). Let $V(s'_2) = V(-s_1, s_1)$, then analogously we have the exact sequence

$$0 \rightarrow \Pi\Gamma_{-s_1^2} \rightarrow V(s'_2) \rightarrow \Gamma_{-s_1^2 + s_1} \rightarrow 0.$$

The statement (2) now follows directly from comparison of (4.4) and (4.5). Now we will prove the statement for all n. Note that it suffices to consider the case of the adjacent transposition $\sigma = (i, i + 1)$.

The embedding of $Q(i-1) \oplus Q(2) \oplus Q(n-i-1)$ into $Q(n)$ provides the isomorphism

$$U(\mathfrak{h}) \simeq U(\mathfrak{h}^-) \otimes U(\mathfrak{h}^0) \otimes U(\mathfrak{h}^+),$$

where \mathfrak{h}^-, \mathfrak{h}^0 and \mathfrak{h}^+ are the Cartan subalgebras of $Q(i-1)$, $Q(2)$ and $Q(n-i-1)$ respectively. Using twice the isomorphism (4.4) we obtain the following isomorphism of $U(\mathfrak{h})$-modules

$$V(s) \simeq (V(s_1, \ldots, s_{i-1}) \boxtimes V(s_i, s_{i+1})) \boxtimes V(s_{i+2}, \ldots, s_n).$$

Suppose that $s_i \neq -s_{i+1}$. Let $D_{i,i+1} = 1 \otimes D \otimes 1$. By Corollary 3.3 we have that W is a subalgebra in $W^{i-1} \otimes W^2 \otimes W^{n-i-1}$ and hence $D_{i,i+1}$ defines an isomorphism of W-modules $V(s)$ and $V(s')$.

If $s_i = -s_{i+1}$, then the statement follows from (4.4) and (4.5). This completes the proof of the theorem. \qed
4.6. **Construction of simple W-modules.** Now we give a general construction of a simple W-module. Let $r, p, q \in \mathbb{N}$ and $r + 2p + q = n$, $t = (t_1, \ldots, t_p) \in \mathbb{C}^p$, $t_1, \ldots, t_p \neq 0$, and $\lambda = (\lambda_1, \ldots, \lambda_q) \in \mathbb{C}^q$, $\lambda_1, \ldots, \lambda_q \neq 0$, such that $\lambda_i + \lambda_j \neq 0$ for any $1 \leq i \neq j \leq q$. Recall that by Corollary 3.3 we have an embedding $W \hookrightarrow W^r \otimes (W^2)^{\otimes p} \otimes W^q$. Set

$$S(t, \lambda) := \mathbb{C} \otimes \Gamma_{t_1} \otimes \cdots \otimes \Gamma_{t_p} \otimes V(\lambda),$$

where the first term \mathbb{C} in the tensor product denotes the trivial W^r-module. For $q = 0$ we use the notation $S(t, 0)$.

Lemma 4.5. All $u_k(1)$ act by zero on $S(t, 0)$. The action of $u_k(0)$ is given by the formula

$$u_k(0) = \begin{cases} 0 & \text{for odd } k, \text{ and for } k > 2p, \\ \sigma_{k}(t_1, \ldots, t_p) & \text{for even } k, \end{cases}$$

where σ_a denote the elementary symmetric polynomials, $0 \leq a \leq p$.

Proof. The first assertion is trivial. We prove the second assertion by induction on p. For $p = 1$ it is a consequence of the definition of Γ_t for $Q(2)$. For $p > 1$ we consider the embedding $Q(n - 2) \oplus Q(2) \hookrightarrow Q(n)$. The formula (3.10) degenerates to

$$u_k(0) = u_k^+(0) \otimes 1 + u_{k-1}^+(0) \otimes z_0 + u_{k-2}^+(0) \otimes z_1'.$$

As z_0 acts by zero on Γ_{t_p}, the statement now follows from the obvious identity

$$\sigma_k(t_1, \ldots, t_p) = \sigma_k(t_1, \ldots, t_{p-1}) + t_p \sigma_{k-1}(t_1, \ldots, t_{p-1}).$$

\[\square\]

Theorem 4.6.

1. $S(t, \lambda)$ is a simple W-module;
2. Every simple W-module is isomorphic to $S(t, \lambda)$ up to change of parity.

Remark 4.7. By construction, if q is odd then $S(t, \lambda)$ is of type Q and of dimension 2^{2+1}. If q is even then $S(t, \lambda)$ is of type M and of dimension 2^{1+2}. Let $u_k^-(d), d \in \mathbb{Z}/2\mathbb{Z}, 1 \leq k \leq n$ be as in (3.9) where indices are taken in the interval $[n - q + 1, n]$. If $q = 0$ we set $u_k^-(0) = 1$ and $u_k^-(1) = 0$. Using Lemma 4.5 and formula (3.10) we can easily write the action of $u_k^-(d)$ in $S(t, \lambda)$ in terms of $u_k^-(d)$ after identifying $S(t, \lambda)$ with $V(\lambda)$:

$$(4.6) \quad u_k(d) = \sum_{2a + j = k} \sigma_a(t_1, \ldots, t_p) u_j^-(d),$$

From these formulas we see that $u_k^-(d)$ and $u_k(d)$ generate the same subalgebra in $\text{End}_\mathbb{C}(V(\lambda))$. By Theorem 4.2 this proves irreducibility of $S(t, \lambda)$.

To show (2) we use Proposition 4.1. Every simple W-module is a subquotient of $V(s)$. By Theorem 4.4 (2) we may assume that $s_1 = \cdots = s_r = 0, s_i \neq 0$ for $i > r$, $s_{r+1} = -s_{r+2}, \ldots, s_{r+2p-1} = -s_{r+2p}$. We can compute $W^r \otimes (W^2)^{\otimes p} \otimes W^q$-simple
constituents of $V(s)$. They are $S(t, \lambda)$ (up to change of parity) with $t_j = -s_{r+2j}^2 \pm s_{r+2j}$ and $\lambda_i = s_{r+2p+i}$. By (1) $S(t, \lambda)$ remains simple when restricted to W. Hence the statement.

4.7. **Central characters.** Recall that the center of $U(Q(n))$ coincides with the center Z of W, see Section 2. Every s defines the central character $\chi_s : Z \rightarrow \mathbb{C}$. Furthermore, Theorem 4.6 (2) implies that every simple W-module admits central character χ_s for some s. For every $s = (s_1, \ldots, s_n)$ we define the core $c(s) = (s_{i_1}, \ldots, s_{i_m})$ as a subsequence obtained from s by removing all $s_j = 0$ and all pairs (s_i, s_j) such that $s_i + s_j = 0$. Up to a permutation this result does not depend on the order of removing. Thus, the core is well defined up to permutation. We call m the length of the core. The notion of core is very useful for describing the blocks in the category of finite-dimensional $Q(n)$-modules, see [11] and [15].

Example 4.8. Let $s = (1, 0, 3, -1, -1)$, then $c(s) = (3, -1)$.

The following is a reformulation of the central character description in [16].

Lemma 4.9. Let $s, s' \in \mathbb{C}^n$. Then $\chi_s = \chi_{s'}$ if and only if s and s' have the same core (up to permutation).

It follows from Lemma 4.9 that the core depends only on the central character χ_s, we denote it $c(\chi)$. By Theorem 4.4 we obtain the following.

Corollary 4.10. Let $\chi : Z \rightarrow \mathbb{C}$ be a central character with core $c(\chi)$ of length m. Then W^m-module $V(c(\chi))$ is well-defined. From now on we denote it by $V(\chi)$ and call it the core representation.

The category $W \mod$ of finite dimensional W-modules decomposes into direct sum $\bigoplus W^\chi \mod$, where $W^\chi \mod$ is the full subcategory of modules admitting generalized central character χ.

Lemma 4.11. A simple W-module S belongs to $W^\chi \mod$ if and only if it is isomorphic to $S(t, \lambda)$ with $\lambda = c(\chi)$.

Proof. We have to compute the central character of $S(t, \lambda)$. For a Q-symmetric polynomial $p_k = x_1^{2k+1} + \cdots + x_n^{2k+1}$ we have $p_k(t, \lambda) = \lambda_1^{2k+1} + \cdots + \lambda_q^{2k+1}$. Since p_k generate the center of W the statement follows.

Proposition 4.12. Two simple modules $S(t, \lambda)$ and $S(t', \lambda')$ are isomorphic if and only if $t' = \sigma(t)$ and $\lambda' = \tau(\lambda)$ for some $\sigma \in S_p$ and $\tau \in S_q$.

Proof. First, (4.6) and Theorem 4.4 imply the “if” statement. To prove the “only if” statement, assume that $S(t, \lambda)$ and $S(t', \lambda')$ are isomorphic. Then these modules admit the same central character. Therefore by Lemma 4.11 $\lambda' = \tau(\lambda)$ for some $\tau \in S_q$. Hence without loss of generality we may assume that $\lambda' = \lambda$. Denote by $tr x$ and $tr' x$ the trace of $x \in W$ in $S(t, \lambda)$ and $S(t', \lambda)$ respectively. Then we must have $tr u_k(0) = tr' u_k(0)$.

Using the formula (4.6) we get

\[\text{tr} u_k(0) = \sum_{2a+j=k} \sigma_a(t_1, \ldots, t_p) \text{tr}_{V(\lambda)} u_j^-(0), \]

\[\text{tr'} u_k(0) = \sum_{2a+j=k} \sigma_a(t'_1, \ldots, t'_p) \text{tr}_{V(\lambda)} u_j^-(0). \]

Let \(b_j := \text{tr}_{V(\lambda)} u_j^-(0) \). Then the above implies

\[\sigma_a(t_1, \ldots, t_p)b_0 + \sigma_{a-1}(t_1, \ldots, t_p)b_2 + \cdots + \sigma_0(t_1, \ldots, t_p)b_{2a} = \]

\[\sigma_a(t'_1, \ldots, t'_p)b_0 + \sigma_{a-1}(t'_1, \ldots, t'_p)b_2 + \cdots + \sigma_0(t'_1, \ldots, t'_p)b_{2a}, \]

where we assume \(b_i = 0 \) for \(i > q \). Since \(b_0 = \text{dim} V(\lambda) \neq 0 \) the above equations imply \(\sigma_a(t_1, \ldots, t_p) = \sigma_a(t'_1, \ldots, t'_p) \) for all \(a = 1, \ldots, p \). Therefore \(t' = \sigma(t) \) for some \(\sigma \in S_p \). \(\square \)

We denote by \(\mathcal{P}^l \) the subcategory of \(W^l \)-modules which admit trivial generalized central character.

Lemma 4.13. Let \(\chi : Z \to \mathbb{C} \) be a central character with core \(c(\chi) \) of length \(m \). Then the functor \(W^{n-m} - \text{mod} \to W - \text{mod} \) defined by \(F(M) = \text{Res}_W (M \otimes V(\chi)) \) restricts to the functor \(\Phi : \mathcal{P}^{n-m} \to W^\chi - \text{mod} \). Furthermore, \(\Phi \) is an exact functor which sends a simple object to a simple object.

Proof. The first assertion is immediate consequence of Lemma 4.11 and the second follows from the construction of \(S(t, \lambda) \). \(\square \)

Conjecture 4.14. The functor \(\Phi : \mathcal{P}^{n-m} \to W^\chi - \text{mod} \) defines an equivalence of categories.

Acknowledgments

This work was supported by a grant from the Simons Foundation (#354874, Elena Poletaeva) and the NSF grant (DMS-1701532, Vera Serganova). We would like to thank V. G. Kac for useful comments.

References

1. J. Brown, J. Brundan, S. Goodwin, Principal \(W \)-algebras for \(GL(m|n) \), *Algebra Numb. Theory* 7 (2013), 1849–1882.
2. J. Brundan, S. Goodwin, Whittaker coinvariants for \(GL(m|n) \), arXiv:1612.08152v2.
3. K. Coulembier, I. Musson, The primitive spectrum for \(gl(m|n) \), *Tohoku Math. J.* (2) 70 (2018), no. 2, 225–266.
4. S.-J. Cheng W. Wang, Dualities and representations of Lie superalgebras. Graduate Studies in Math., *Amer. Math. Soc.* 144 (2012), Providence, RI.
5. V. G. Kac, Lie superalgebras, *Adv. Math.* 26 (1977) 8–96.

\[^3 \text{We consider here the usual exterior tensor product in contrast with } \boxtimes \]
6. V. G. Kac, Representations of classical Lie superalgebras, *Lecture Notes in Math.* 676 (1978) 597–626.
7. I. Losev, Finite W-algebras, *Proceedings of the International Congress of Mathematicians.* Volume III, 1281–1307, Hindustan Book Agency, New Delhi, 2010. arXiv:1003.5811v1.
8. I. Losev, Quantized symplectic actions and W-algebras, *J. Amer. Math. Soc.* 23 (2010) 35–59.
9. I. Losev, Finite-dimensional representations of W-algebras, *Duke Math. J.* 159 (2011), 99–143.
10. E. Meinrenken, Clifford algebras and Lie theory, *Surveys in Mathematics* 58, Springer, Heidelberg, 2013.
11. I. Penkov, Characters of typical irreducible finite-dimensional $q(n)$-modules, *Funktional. Anal. i Prilozhen.* 20 (1986), 37–45.
12. E. Poletaeva, V. Serganova, On Kostant’s theorem for the Lie superalgebra $Q(n)$. *Adv. Math.* 300 (2016), 320–359. arXiv:1403.3866v1.
13. E. Poletaeva, V. Serganova, On the finite W-algebra for the Lie superalgebra $Q(n)$ in the non-regular case. *J. Math. Phys.* 58 (2017), no. 11, 111701. arXiv:1705.10200
14. A. Premet, Special transverse slices and their enveloping algebras, *Adv. Math.* 170 (2002) 1–55.
15. V. Serganova, Finite-dimensional representations of algebraic supergroups, *Proceedings of ICM*, V. 1. 603–632, Kyung Moon Sa, Seoul 2014.
16. A. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n,\mathbb{C})$, *Lett. Math. Phys.* 7 (1983) 177–179.
17. T. A. Springer, Invariant theory. *Lecture Notes in Math.*, 585, (1977).

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539

E-mail address: elena.poletaeva@utrgv.edu

Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720

E-mail address: serganov@math.berkeley.edu