Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in *Plasmodium falciparum* in Thailand

Jiraporn Kuesap*, Nutnicha Suphakhonchuwong, Lertluk Kalawong, Natthaya Khumchum

Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand

Abstract: Drug resistance is an important problem hindering malaria elimination in tropical areas. Point mutations in *Plasmodium falciparum* dihydrofolate reductase (*PfDhfr*) and dihydropteroate synthase (*PfDhps*) genes confer resistance to antifolate drug, sulfadoxine-pyrimethamine (SP) while *P. falciparum* chloroquine-resistant transporter (*PfCrt*) genes caused resistance to chloroquine (CQ). Decline in *PfDhfr/PfDhps* and *PfCrt* mutations after withdrawal of SP and CQ has been reported. The aim of present study was to investigate the prevalence of *PfDhfr*, *PfDhps*, and *PfCrt* mutation from 2 endemic areas of Thailand. All of 200 blood samples collected from western area (Thai-Myanmar) and southern area (Thai-Malaysia) contained multiple mutations in *PfDhfr* and *PfDhps* genes. The most prevalent haplotypes for *PfDhfr* and *PfDhps* were quadruple and double mutations, respectively. The quadruple and triple mutations of *PfDhfr* and *PfDhps* were common in western samples, whereas low frequency of triple and double mutations was found in southern samples, respectively. The *PfCrt* 76T mutation was present in all samples examined. Malaria isolated from 2 different endemic regions of Thailand had high mutation rates in the *PfDhfr*, *PfDhps*, and *PfCrt* genes. These findings highlighted the fixation of mutant alleles causing resistance of SP and CQ in this area. It is necessary to monitor the re-emergence of SP and CQ sensitive parasites in this area.

Key words: *Plasmodium falciparum*, dihydropteroate synthase, dihydrofolate reductase, chloroquine-resistant transporter, molecular marker

INTRODUCTION

Although malaria is an ancient disease caused by *Plasmodium* parasite, it remains important to public health to present era. *Plasmodium falciparum* infection causes variable clinical symptoms ranging from asymptomatic to severe manifestations. The emergence of resistance of *P. falciparum* to the available antimalarial drugs is an important factor for malaria control [1]. In Thailand, resistance to many antimalarial drugs, including chloroquine (CQ), sulfadoxine-pyrimethamine (SP), mefloquine, and artemisinin has been reported [2,3]. CQ resistant *P. falciparum* was reported in the early 1960s [4,5]. In 1973, SP replaced CQ as the first-line treatment for uncomplicated falciparum malaria due to widespread resistance [1,6], but after 10 years, SP was ineffective [1,7]. Then, mefloquine was introduced in 1985 and resistance emerged in the same decade [8]. Artemisinin-based combination therapy was introduced as first-line treatment in 1995 [9].

Molecular epidemiological investigation provides information for detecting the emergence and spread of antimalarial drug resistance. Mutations in the *P. falciparum* dihydrofolate reductase (*PfDhfr*) and *P. falciparum* dihydropteroate synthase (*PfDhps*) genes (at codons 51, 59, 108, and 164 of *PfDhfr* and 437, 540, and 581 of *PfDhps*) are associated with SP treatment failures [10,11]. The mutations in *PfDhfr* and *PfDhps* genes were staged, resulting in increased levels of SP drug resistance [12]. The *P. falciparum* CQ resistance transporter gene (*PfCrt*) K76T mutation has been linked to *P. falciparum* CQ resistance [13].

In some countries, the withdrawal of CQ for *P. falciparum* treatment, *PfCrt* mutation (K76T) gently decreased and disappeared completely [14-17]. Similar to withdrawal of SP for *P. falciparum* treatment, *PfDhfr* and *PfDhps* gene mutations also decreased in some countries [18-21]. Conversely, alleles conferring CQ and SP resistance still occur at high frequency after discontinuation of these drugs [22,23]. However, declining of *PfDhfr*, *PfDhps*, and *PfCrt* mutations might be associated with duration of drug withdrawal and geographical differences.

The objective of the present study was to investigate the
prevalence of 5 \textit{P}dhfr (A16V, N51I, C59R, S108N/T, and I164L), 5 \textit{P}dhps (S436A, A437G, K540E, A581G, and A613S/T) and 1 \textit{P}fcr (K76T) mutation from 2 different endemic areas of Thailand.

MATERIALS AND METHODS

Ethics approval

The study protocol was reviewed and approved by the Ethics Committee of Thammasat University (COA No. 134/2561). All patients were informed about the study objectives, sampling technique, and the benefits of the study. Informed consents were obtained according to the ethical standards from all patients.

Sample collection

A total of 200 dried blood spot samples were collected during 2007-2017 from patients with \textit{P. falciparum} infection who attended malaria clinics in the western (Tak Province) and southern (Yala Province) regions along the Thai-Myanmar and Thai-Malaysian border, respectively.

Extraction of parasite genomic DNA

Genomic DNA of all blood samples was prepared using a QIAamp DNA extraction mini-kit (QIAGEN, Valencia, California, USA) according to manufacturer's instruction and used as a template for polymerase chain reaction (PCR) amplification.

Amplification and detection of the \textit{P}dhfr and \textit{P}dhps

\textit{P}dhfr and \textit{P}dhps genes were amplified by nested PCR using \textit{P}dhfr and \textit{P}dhps specific primers (Table 1) according to the previously described methods with some modification [24]. Briefly, the PCR was carried out with the following reaction mixture including 0.25 \(\mu\text{M}\) of each primer, 1.5 mM MgCl\(_2\) (Thermo scientific, Waltham, Massachusetts, USA), 1 \times Taq buffered with KCl (Thermo scientific), 200 \(\mu\text{M}\) deoxynucleotides (dNTPs) (Bioline, London, UK), 2 \(\mu\text{l}\) of genomic DNA in the primary PCR, and 1 \(\mu\text{l}\) of primary PCR product in nested PCR and 1 unit of Taq DNA polymerase (Thermo scientific). All of the PCR products were then analyzed on 1% agarose gel and visualized under UV illuminator. PCR products were digested with restriction enzymes (Table 1) [24] then the restriction fragments were analyzed on 1.2% agarose gel and visualized under UV illuminator.

Table 1. The primers and enzymes for genotyping of \textit{P}dhfr, \textit{P}dhps and \textit{P}fcr genes

Gene	PCR	Primer	Primer sequence (5' to 3')	RFLP position	Restriction enzyme	PCR size (bp)	Restriction product size (bp)	
\textit{P}dhfr	Primary	M1	TTTGATGGGAAACAGACCTGC	A16V	NalI	522	376, 93, 53	376, 146
		M5	AGTATATACACGCTAACAGA	N51I	MluI	154, 120, 65, 55	218, 120, 65, 55	
	Secondary	M3	TTTGATGGGAAACAGACCTGCACGGT	S108T	BstNI	522	522	522
		F/	AAATCTTGATGAAACAGACCTGTTA	S108N	BsrI	245, 171, 107	245, 143, 107	
					I164L	DraI	245, 171, 107	
\textit{P}dhps	Primary	R2	AACCTAAGTGCTGCTTCAA	S436A	MnlI	438	317, 121	278, 121, 39
		R/	AATTGTGTTTTGTCACGAA	A437G	AvaII	438	438	404, 34
	Secondary	K	TCTATGTTTATAGATAGAGATGACTC	K540E	FokI	404, 33	320, 85, 33	
		K/	ATATAAGGAGATATGCAATTGCAATGCAAGAA	A613S	BsaWI	161	161	128, 33
		L/	ATAGGATCTACTCATGATATGGGCCAGGATTTC	A613T	AgeI	161	161	128, 33
\textit{P}fcr	Primary	CRTP1	CCGTTTATATAATAAACACGGAG	K76T	Apol	2	100, 34	134
		CRTP2	CAGATGCTTACAAAACTATAGTTACC					
	Secondary	CRTP1	CCGTGCTATGGTTTAAACTT					
		CRTP2	CAAACTATAGTCACTACAGTGGTTC					
Amplification and detection of the \(Pfcrt \)

Amplification of K76T was performed by nested PCR using \(Pfcrt \) specific primers (Table 1) according to the previously described methods with some modification [25-27]. Briefly, the PCR was carried out with the following reaction mixture including 0.1 µM of each primer, 2.5 mM MgCl\(_2\) (Thermo scientific), 1×Taq buffered with KCl (Thermo scientific), 100 µM deoxynucleotides (dNTPs) (Bioline), 0.5 µl of genomic DNA in the primary PCR, and 0.5 µl of primary PCR product in nested PCR and 0.5 unit of Taq DNA polymerase (Thermo scientific). All of the PCR products were then analyzed on 1.5% agarose gel and visualized under UV illuminator. PCR products were digested with restriction enzymes ApoI (New England Biolabs Inc., Hertfordshire, UK) (Table 1), as described by the manufacturer. Then the restriction fragments were analyzed on 2.0% agarose gel and visualized under UV illuminator.

Statistical Analysis

Data analysis was performed by SPSS software version 21.0

\(\text{Fig. 1. The polymorphism of } pfdhfr \) (A), \(pfdhps \) (B), and \(pfcrt \) (C) gene by gel electrophoresis. W-wildtype, M-mutant, S/N-serine/threonine, Mi-mixed, K1- \(P. \) falciparum K1 strain, 3D7- \(P. \) falciparum 3D7 strain, U-undigested fragment. Fragment sizes in base pair (bp) are shown.
The chi-square test was used to compare the frequencies and correlations of all data. The level of significance was set at $P < 0.05$.

Table 2. Prevalence of *Plasmodium falciparum* dihydrofolate reductase (*Pfdhfr*) and dihydropteroate synthase (*Pfdhps*) single nucleotide polymorphisms (SNPs) in 200 *P. falciparum* isolates from 2 endemic areas of Thailand

Gene	Amino acid position	SNPs	Prevalence (%)	Total $n=200$	Tak Province $n=100$	Yala Province $n=100$	P-value
Pfdhfr	16	A (wild-type)	200 (100.0)	100 (100.0)	100 (100.0)	-	
		V (mutant)	0 (0.0)	0 (0.0)	0 (0.0)	-	
	51	N (wild-type)	3 (1.5)	3 (3.0)	0 (0.0)	0.001*	
		I (mutant)	187 (93.5)	87 (87.0)	100 (100.0)	-	
		M (mix)	10 (5.0)	10 (10.0)	0 (0.0)	-	
	59	C (wild-type)	0 (0.0)	0 (0.0)	0 (0.0)	-	
		R (mutant)	200 (100.0)	100 (100.0)	100 (100.0)	-	
	108	S (wild-type)	0 (0.0)	0 (0.0)	0 (0.0)	-	
		T (mutant)	0 (0.0)	0 (0.0)	0 (0.0)	-	
	164	N (mutant)	200 (100.0)	100 (100.0)	100 (100.0)	-	
		I (wild-type)	84 (42.0)	6 (6.0)	78 (78.0)	<0.001*	
		L (mutant)	103 (51.5)	86 (86.0)	17 (17.0)	-	
		M (mix)	13 (6.5)	8 (8.0)	5 (5.0)	-	
Pfdhps	436	S (wild-type)	158 (79.0)	79 (79.0)	79 (79.0)	0.946	
		A (mutant)	29 (14.5)	14 (14.0)	15 (15.0)	-	
		M (mix)	13 (6.5)	7 (7.0)	6 (6.0)	-	
	437	A (wild-type)	0 (0.0)	0 (0.0)	0 (0.0)	-	
		G (mutant)	200 (100.0)	100 (100.0)	100 (100.0)	-	
	540	K (wild-type)	116 (68.0)	16 (16.0)	100 (100.0)	<0.001*	
		E (mutant)	83 (41.5)	83 (83.0)	0 (0.0)	-	
		M (mix)	1 (0.5)	1 (1.0)	0 (0.0)	-	
	581	A (wild-type)	7 (3.5)	7 (7.0)	0 (0.0)	0.007*	
		G (mutant)	193 (96.5)	93 (93.0)	100 (100.0)	-	
	613	A (wild-type)	100 (100.0)	100 (100.0)	100 (100.0)	-	

aP-value were statistically significant between 2 areas.

Table 3. *Plasmodium falciparum* dihydrofolate reductase (*Pfdhfr*) and dihydropteroate synthase (*Pfdhps*) alleles in 170 *P. falciparum* isolates from 2 endemic areas of Thailand

Pfdhfr haplotypes	Amino acid position	Prevalence (%)	Total $n=170$	Tak Province $n=81$	Yala Province $n=89$					
16 51 59 108 164		A	I	R	N	L		78 (45.9)	6 (7.4)	72 (80.9)
Triple mutation	A	N	R	N	L	3 (1.8)	3 (3.7)	0 (0.0)		
Quadruple mutation	A	I	R	N	L	89 (52.4)	72 (88.9)	17 (19.1)		

Pfdhps haplotypes	Amino acid position	Prevalence (%)	Total $n=170$	Tak Province $n=81$	Yala Province $n=89$					
436 437 540 581 613		S	G	E	A	A		2 (1.2)	2 (2.5)	0 (0.0)
Double mutation	S	G	K	G	A	85 (50.0)	11 (13.6)	74 (83.1)		
Double mutation	A	G	E	A	A	2 (1.2)	2 (2.5)	0 (0.0)		
Triple mutation	A	G	K	G	A	16 (9.4)	1 (1.2)	15 (16.9)		
Triple mutation	S	G	E	G	A	57 (33.5)	57 (70.4)	0 (0.0)		
Quadruple mutation	A	G	E	G	A	8 (4.7)	8 (9.9)	0 (0.0)		

aP-value were statistically significant between 2 areas.
RESULTS

Analysis of Pf dhfr and Pf dhps mutations

A total of 200 P. falciparum samples were successfully amplified and analyzed for both the Pf dhfr and Pf dhps genes. The polymorphisms at each codon were demonstrated by restriction fragments (Fig. 1A, B). The frequencies of Pf dhfr and Pf dhps mutations was summarised in Table 2. All samples had at least 1 codon mutation in the Pf dhfr (A16V, N51I, C59R, S108N/T, and I164L) and Pf dhps (S436A, A437G, K540E, A581G, and A613S/T). Four codon mutations were detected in Pf dhfr (51I, 59R, 108N, and 164L) in samples from 2 areas. All isolates carried mutations at codon 59 and 108 in Pf dhfr. Four codon mutations were detected in Pf dhps (436A, 437G, 540E, and 581G) in samples from Tak Province, whereas 3 codon mutations were detected from Yala Province. All isolates carried wild-type alleles at codon 613 in Pf dhps. Mixed genotypes were detected in thirty isolates by codon 51 and 164 of Pf dhfr, and 436 and 540 of Pf dhps that were no processed further. There was no wildtype allele ANCSI, but 3 alleles (AIRNL, AIRNL, and ANRNL) of Pf dhfr were identified in this study (Table 3). AIRNL was the most prevalent allele (52.4%) in all P. falciparum isolates collected from Tak Province (88.9%) (Fig. 2). AIRNI was the most prevalent allele in P. falciparum isolates

| Table 4. Allele combinations of Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) in 170 P. falciparum isolates from 2 endemic areas of Thailand |
|---------------------------------|-----------------|-----------------|-----------------|
| Pfdhfr-Pfdhps allele combinations | Prevalence (%) | Total n = 170 | Tak Province n = 81 | Yala Province n = 89 |
| AIRNI-AGEGA | 1 (0.6) | 1 (1.2) | 0 (0.0) |
| AIRNI-AEGKA | 13 (7.6) | 0 (0.0) | 13 (14.6) |
| AIRNI-SGEGA | 4 (2.4) | 4 (4.9) | 0 (0.0) |
| AIRNI-SGKGA | 60 (35.3) | 1 (1.2) | 59 (66.3) |
| AIRNL-AGEGA | 7 (4.1) | 7 (8.6) | 0 (0.0) |
| AIRNL-AGKGA | 3 (1.8) | 1 (1.2) | 2 (2.2) |
| AIRNL-SGEEA | 2 (1.2) | 2 (2.5) | 0 (0.0) |
| AIRNL-SGEGA | 52 (30.6) | 52 (64.2) | 0 (0.0) |
| AIRNL-SGKGA | 25 (14.7) | 10 (12.3) | 15 (16.9) |
| ANRNL-AGEEA | 2 (1.2) | 2 (2.5) | 0 (0.0) |
| ANRNL-SGEEA | 1 (0.6) | 1 (1.2) | 0 (0.0) |

Fig. 2. The proportions of mutations in 3 resistance genes (pfdhfr, pfdhps, and pfcrt) observed in P. falciparum isolates in this study.

Kuesap et al.: Molecular markers for antimalarial drug resistance
from Yala Province (80.9%). Statistical significance was found between 2 study areas (P<0.001). For Pf dhps, 6 alleles were identified (Table 3). SGKGA was the most prevalent allele (50.0%) found in P. falciparum isolates from Yala Province (83.1%). SGEGA was the most prevalent allele in P. falciparum isolates from Tak Province (70.4%). Statistical significance was found between 2 study areas (P<0.001). Eleven allele combination of Pf dhfr-Pf dhps were found in this study (Table 4). The quintuple mutation (AIRNI-SGKGA), which comprise triple mutations in Pf dhfr and 2 mutations in Pf dhps were found to be most prevalent in study population (35.3%) and in isolates from Yala Province (66.3%). The septuple mutation (AIRNL-SGEGA), which comprised quadruple mutations in Pf dhfr and 3 mutations in Pf dhps were most frequent in isolates from Tak Province (64.2%).

Analysis of Pf crt mutations

A total of 187 samples (93.5%) were analyzed by nested PCR for the Pf crt K76T gene. The Pf crt mutation resulting in substitution of threonine (T) for lysine (K) at position 76 was present in all studied samples from 2 endemic areas (Figs. 1C, 2).

DISCUSSION

Mutations on Pf dhfr and Pf dhps genes associated with SP resistance have been reported in several malaria endemic areas such as Guinea [28], Indonesia [29], Malaysia [30], Myanmar [31], and Thailand [32,33]. In Thailand, a previous study revealed that the change of Pf dhfr point mutations from double mutations to triple and quadruple mutations in some areas [34,35] which the number of mutations is correlated with increased level of SP resistance [12]. In the present study, all P. falciparum isolates had at least three mutation point in Pf dhfr genes, indicated persistence of highly mutations on SP resistant markers. The Pf dhps mutation studies conducted between 2001 and 2007 in Thailand indicated that there has been fluctuation of the Pf dhps mutations between triple and quadruple mutations. In this study, predominant frequency of double mutation was found especially in isolates from southern endemic area. The predominance of triple mutations was also found in isolates from western area. This result indicated that high mutation in Pf dhfr and Pf dhps genes with different frequency existed in these 2 different localities. In Thailand, SP was withdrawn from P. falciparum treatment for many years. Although decreased of Pf dhfr and Pf dhps mutations were reported from some countries after the withdrawal of these drugs, high frequency of Pf dhfr and Pf dhps mutations still present in Thailand. This existence of mutations on Pf dhfr and Pf dhps genes may be associated with using of other antifolate drugs that can also induce pressure on Pf dhfr and Pf dhps.

A previous study has demonstrated that high prevalence of Pf crt K76T mutation in study isolates might contribute to CQ resistance to P. falciparum [36]. A high prevalence rate of Pf crt K76T mutation was previously observed in several countries such as Mali [25], Kenya [37], Indonesia [26], Philippines [38] and Thailand [39-41]. Declining of Pf crt mutations after withdrawal of CQ has been reported in Malawi [14], Tanzania [15], Kenya [16], and China [17]. However, even CQ was withdrawn from Thailand for long period, the CQ resistance allele still remains with high frequency. This complete fixation of CQ resistance in P. falciparum is might due to the co-existence of P. falciparum and P. vivax infections in this country while CQ is a standard regimen for P. vivax malaria treatment, leading to the phenomenon of continuous exposure to drug pressure in P. falciparum.

Our study demonstrates a high prevalence of Pf dhfr, Pf dhps, and Pf crt mutations of P. falciparum isolates from 2 endemic areas in Thailand, emphasizing the fixation of mutant Pf dhfr, Pf dhps and Pf crt alleles that confer consistent resistance of SP and CQ. SP and CQ drugs are still not appropriate for P. falciparum treatment in Thailand and other antimalarial groups should be considered.

ACKNOWLEDGMENT

This research was supported by the Program Management Unit for Human Resources and Institutional Development, Research and Innovation, NXPO [grant number B05F630043].

CONFLICT OF INTEREST

The authors have no conflict of interest.

REFERENCES

1. Na-Bangchang K, Congpuong K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med 2007; 211: 99-113. https://doi.org/10.1620/tjem.211.99
2. Wongsrichanalai C, Pickard AL, Wermsdorfer WH, Meshnick SR.
Epidemiology of drug-resistant malaria. Lancet Infect Dis 2002; 2: 209-218. https://doi.org/10.1016/s1473-3099(02)00239-6
3. Noedl H, Sochet D, Satimai W, Artemisinin-resistant malaria in Asia. N Engl J Med 2009; 361: 540-541. https://doi.org/10.1056/NEJMoa0900231
4. Harinasuta T, Suntharasamai P, Viranan C. Chloroquine resistant falciparum malaria in Thailand. Lancet 1965; 286: 657-660. https://doi.org/10.1016/s0140-6736(65)90395-8
5. Young MD, Contacos PG, Stitcher JE, Millar JW. Drug resistance in Plasmodium falciparum from Thailand. Am J Trop Med Hyg 1963; 12: 305-314. https://doi.org/10.4269/ajtmh.1963.12.305
6. Chin W, Bear DM, Colwell EJ, Kosakal S. A comparative evaluation of sulfa-trimethoprim and sulphamethoxine-pyrimethamine against falciparum malaria in Thailand. Am J Trop Med Hyg 1973; 22: 308-312. https://doi.org/10.4269/ajtmh.1973.22.308
7. Johnson DE, Roendje P, Williams RG. Falciparum malaria acquired in the area of the Thai-Khmer border resistant to treatment with Fansidar. Am J Trop Med Hyg 1982; 31: 907-912. https://doi.org/10.4269/ajtmh.1982.31.907
8. Wongsinchanalai C, Sirichaisinthop J, Karwacki JJ, Congquong K, Miller RS, Pang L, Thimasarn K. Drug resistant malaria on the Thai-Myanmar and Thai-Cambodian borders. Southeast Asian J Trop Med Public Health 2001; 32: 41-49.
9. WHO Mekong Malaria Programme. Malaria in the Greater Mekong Subregion: Regional and Country Profiles. World Health Organization. Geneva, Switzerland. 2008. http://www.whoithai.org/EN/Section3/Section113.htm.
10. Reeder JC, Rieckmann KH, Genton B, Lorry K, Wines B, Bowman AE. Point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes and in vitro susceptibility to pyrimethamine and cycloguanil of Plasmodium falciparum isolates from Papua New Guinea. Am J Trop Med Hyg 1996; 55: 209-213. https://doi.org/10.4269/ajtmh.1996.55.209
11. Basco LK, Eldin de Pecoulas P, Wilson CM, Le Bras J, Mazabraud A. Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in Plasmodium falciparum. MolBiochem Parasitol 1995; 69: 135-138. https://doi.org/10.1016/0166-6851(94)00207-4
12. Plowe CV, Cortese JE; Djimde A, Nwananywu OC, Watkins WM, Winstanley PA, Estrada-Franco JG, Moliniedo RE, Avila JC, Cespedes JL, Carter D, Doumbo OK. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfa-doxine use and resistance. J Infect Dis 1997; 176: 1590-1596. https://doi.org/10.1086/514139
13. Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D. High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfdmrt1. J Infect Dis 2001; 183: 1535-1538. https://doi.org/10.1086/320195
14. Kublin JG, Cortese JE; Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 2003; 187: 1870-1875. https://doi.org/10.1086/375419
15. Mohammed A, Ndayo A, Kalinga A, Manjurano A, Mosha JE, Mosha DE, van Zwetselaar M, Koenderink JB, Mosha FW, Alfirangis M, Reyburn H, Roper C, Kavise RA. Trends in chloroquine resistance marker. Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar J 2013; 12: 415. https://doi.org/10.1186/1475-2875-12-415
16. Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G, Sasi P, Marsh K, Bormann S, Mackinnon M, Nzila A. Chloroquine resistance before and after its withdrawal in Kenya. Malaria J 2009; 8: 106. https://doi.org/10.1186/1475-2875-8-106
17. Wang X, Xu J, Li G, Chen P, Guo X, Fu L, Chen L, Su X, Wellens TE. Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People’s Republic of China. Am J Trop Med Hyg 2005; 72: 410-414.
18. McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother 2007; 51: 2085-2091. https://doi.org/10.1128/AAC.01228-06
19. Hailemeskel E, Kassa M, Tadesse G, Mohammed H, Woyessa A, Tesew G, Sleshi M, Kebede A, Petros B. Prevalence of sulfadoxine-pyrimethamine resistance-associated mutations in dhfr and dhps genes of Plasmodium falciparum three years after SP withdrawal in Bahir Dar, Northwest Ethiopia. Acta Trop 2013; 128: 636-641. https://doi.org/10.1016/j.actatropica.2013.09.010
20. Pearce RJ, Ord R, Kaur H, Lupala C, Schellenberg J, Shirima K, Manzi F, Alonso P, Tanner M, Mshinda H, Roper C, Schellenberg D. A community-randomized evaluation of the effect of intermittent preventive treatment in infants on antimalarial drug resistance in southern Tanzania. J Infect Dis 2013; 207: 848-859. https://doi.org/10.1093/infdis/jis742
21. Raman J, Sharp B, Kleinschmidt I, Roper C, Streut E, Kelly V, Barnes KI. Differential effect of regional drug pressure on dihydrofolate reductase and dihydropteroate synthetase mutations in southern Mozambique. Am J Trop Med Hyg 2008; 78: 256-261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748784
22. Khim N, Bouchier C, Ekala MT, Incardona S, Lim P, Legrand E, Jambou R, Doung S, Puijalon OM, Fandeur T. Countrywide survey of sulfadoxine-pyrimethamine resistance-associated mutations in dhfr and dhps genes of Plasmodium falciparum three years after SP withdrawal in Bahir Dar, Northwest Ethiopia. Acta Trop 2013; 128: 636-641. https://doi.org/10.1016/j.actatropica.2013.09.010
23. McCallum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother 2007; 51: 2085-2091. https://doi.org/10.1128/AAC.01228-06
24. Duraisingh MT, Curtis J, Warhurst DC. *Plasmodium falciparum*: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase genes by PCR and restriction digestion. Exp Parasitol 1998; 89: 1-8. https://doi.org/10.1006/expr.1998.4274

25. Djimdé A, Doumbo OK, Cortese JE, Kayentao K, Doumbo S, Diourté Y, Coulibaly D, Dicko A, Su XZ, Nomura T, Fidock DA, Wellemes TE, Plowe CV. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 2001; 344: 257-263. https://doi.org/10.1056/NEJM200101253440403

26. Maguire JD, Susanti AI, Krisin, Sismadi P, Fryauff DJ, Baird JK. Detection of chloroquine-resistant *Plasmodium falciparum* infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia. Malar J 2013; 12: 352. https://doi.org/10.1186/1475-2875-12-352

27. Golassa L, Enweji N, Erko B, Aseffa A, Swedberg G. Detection of a substantial number of submicroscopic *Plasmodium falciparum* infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia. Malar J 2013; 12: 352. https://doi.org/10.1186/1475-2875-12-352

28. Jiang T, Chen J, Fu H, Wu K, Yao Y, Eyé JUM, Matea RA, Obono MMO, Du W, Tan H, Lin M, Li J. High prevalence of Pf dhfr Pfdhps quadruple mutations associated with sulfadoxine–pyrimethamine resistance in *Plasmodium falciparum* isolates from Bioko Island, Equatorial Guinea. Malar J 2019; 18: 101. https://doi.org/10.1186/s12936-019-2734-x

29. Basuki S, Fitriah, Riyanto S, Budiono, Dachlan YP, Uemura H. Two novel mutations of *pf dhps* K540T and I588F affecting sulfadoxine-pyrimethamine-resistant response in uncomplicated falciparum malaria at Banjar district, South Kalimantan Province, Indonesia. Malar J 2014; 13: 135. https://doi.org/10.1186/1475-2875-13-135

30. Lau TY, Sylvi M, William T. Mutational analysis of *Plasmodium falciparum* dihydrofolate reductase and dihydropteroate synthetase genes in the interior division of Sabah, Malaysia. Malar J 2013; 12: 445. https://doi.org/10.1186/1475-2875-12-445

31. Zhao Y, Liu Z, Soe MT, Wang L, Soe TN, Wei H, Than A, Aung PT, Li Y, Zhang X, Hu Y, Wei H, Zhang Y, Burgess J, Siddiqui FA, Menezes L, Wang Q, Kyaw MP, Cao Y, Cui L. Genetic variations associated with drug resistance markers in asymptomatic *Plasmodium falciparum* infections in Myanmar. Genes 2019; 10: 692. https://doi.org/10.3390/genes10090692

32. Alam MT, Vinayak S, Congguong K, Wongsrichanalai C, Satimai W, Slutsker L, Escalante AA, Barnwell JW, Udhayakumar V. Tracking origins and spread of sulfadoxine-resistant *Plasmodium falciparum* dhps alleles in Thailand. Antimicrob Agents Chemother 2011; 55: 155-164. https://doi.org/10.1128/AAC.00691-10

33. Sugaram R, Suwannasint N, Kunosal C, Mathema VB, Day NPJ, Sudathip P, Prempree P, Dondorp AM, Imwong M. Molecular characterization of *Plasmodium falciparum* antifolate resistance markers in Thailand between 2008 and 2016. Malar J 2020; 19: 107. https://doi.org/10.1186/s12936-020-03176-x

34. Imwong M, Jindaknad T, Kunosal C, Sutawong K, Vejakama P, Dondorp AM. An outbreak of artemisinin-resistant falciparum malaria in Eastern Thailand. Sci Rep 2015; 5: 17412. https://doi.org/10.1038/srep17412

35. Kudsood S, Imwong M, Wilairatana P, Pukrittayakamee S, Nonprasert A, Snounou G, White NJ, Looreesuwon S. Artesunate–dapsone–proguanil treatment of falciparum malaria: genotypic determinants of therapeutic response. Trans R Soc Trop Med Hyg 2005; 99: 142-149. https://doi.org/10.1128/AAC.47.11.3500-3505.2003

36. Sethiaudom C, Tan-ariya P, Sittichot N, Khosininthikul R, Suwandittakul N, Leelayoova S, Munghin M. Role of *Plasmodium falciparum* chloroquine resistance transporter and multidrug resistance 1 genes on in vitro chloroquine resistance in isolates of *Plasmodium falciparum* from Thailand. Am J Trop Med Hyg 2011; 85: 606-611. https://doi.org/10.4269/ajtmh.2011.11-0108

37. Holmgren G, Gil JP, Ferreira PM, Veiga MI, Björkman A. Amodiaquine resistant *Plasmodium falciparum* malaria in vivo is associated with selection of *pfcr* 76T and *pfmdr1* 86Y. Infect Genet Evol 2006; 6: 309-314. https://doi.org/10.1016/j.meegid.2005.09.001

38. Chen N, Kyle DE, Pasay C, Fowler EV, Baker J, Peters JM, Cheng Q. *pfcr* allelic types with two novel amino acid mutations in chloroquine-resistant *Plasmodium falciparum* isolates from the Philippines. Antimicrob Agents Chemother 2003; 47: 3500-3505. https://doi.org/10.1128/AAC.47.11.3500-3505.2003

39. Lopes D, Rungsihirunrat K, Nogueira F, Seugorn A, Gil JP, do Rosário VE, Cravo P. Molecular characterisation of drug-resistant *Plasmodium falciparum* from Thailand. Malaria J 2002; 1: 12. https://doi.org/10.1186/1475-2875-1-12

40. Congguong K, Na Bangchang K, Munghin M, Bualombai P, Werdsrfor WH. Molecular epidemiology of drug resistance markers of *Plasmodium falciparum* malaria in Thailand. Trop Med Int Health 2005; 8: 717-722. https://doi.org/10.1111/j.1365-3156.2005.01450.x

41. Rungsihirunrat K, Chaijareonkul W, Seugorn A, Na-Bangchang K, Thaithong S. Association between chloroquine resistance phenotypes and point mutations in *pfcr* and *pfmdr1* in *Plasmodium falciparum* isolates from Thailand. Acta Trop 2009; 109: 37-40. https://doi.org/10.1016/j.actatropica.2008.09.011