Genetic study of the hepcidin gene (HAMP) promoter and functional analysis of the c.-582A > G variant

Silvia Parajes1, Arturo González-Quintela2, Joaquín Campos2, Celsa Quinteiro1, Fernando Domínguez1,3, Lourdes Loidi1*

Abstract

Background: Hepcidin acts as the main regulator of iron homeostasis through regulation of intestinal absorption and macrophage release. Hepcidin deficiency causes iron overload whereas its overproduction is associated with anaemia of chronic diseases. The aims of the study were to identify genetic variants in the hepcidin gene (HAMP) promoter, to assess the associations between the variants found and iron status parameters, and to functionally study the role on HAMP expression of the most frequent variant.

Results: The sequencing of HAMP promoter from 103 healthy individuals revealed two genetic variants: The c.-153C > T with a frequency of 0.014 for allele T, which is known to reduce hepcidin expression and the c.-582A > G with a 0.218 frequency for allele G. In an additional group of 224 individuals, the c.-582A > G variant genotype showed no association with serum iron, transferrin or ferritin levels. The c.-582G HAMP promoter variant decreased the transcriptional activity by 20% compared to c.-582A variant in cells from the human hepatoma cell line HepG2 when cotransfected with luciferase reporter constructs and plasmid expressing upstream stimulatory factor 1 (USF1) and by 12-14% when cotransfected with plasmid expressing upstream stimulatory factor 2 (USF2).

Conclusions: The c.-582A > G HAMP promoter variant is not associated with serum iron, transferrin or ferritin levels in the healthy population. The in vitro effect of the c.-582A > G variant resulted in a small reduction of the gene transactivation by allele G compared to allele A. Therefore the effect of the variant on the hepcidin levels in vivo would be likely negligible. Finally, the c.-153C > T variant showed a frequency high enough to be considered when a genetic analysis is done in iron overload patients.

Background

Hepcidin was first isolated from urine as an antimicrobial peptide [1] and thereafter, it has been shown to act as the main regulator of iron homeostasis through regulation of intestinal iron absorption and macrophage release [2-5]. The first evidence was provided by mice studies which showed increased hepcidin mRNA levels in the liver of iron overload mice [6]. Further animal models and human disorders confirmed the relationship between this peptide and iron. Genetically modified mice showed that animals with reduced hepcidin expression developed severe iron overload [7], while those with increased expression had severe iron deficiency anaemia at birth [8]. In humans, inactivating mutations of hepcidin result in a rare form of juvenile haemochromatosis [9], whereas hepcidin overexpression in inflammation causes anaemia of chronic diseases with features of iron restricted erythropoiesis [10]. Besides, hepcidin has been described as a modifier peptide that exacerbates the phenotypic expression of patients with hereditary haemochromatosis (HFE) homozygous for the common HFE gene mutation, p.Cys282Tyr [11-13].

The gene encoding hepcidin, HAMP, is mainly expressed in the liver in situations of iron overload [14]. It is upregulated by hemojuvelin [15], transferrin receptor 2 [16] and HFE protein [17] mediated through the

* Correspondence: lourdes.loidi.fernandez@sergas.es
1 Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
Full list of author information is available at the end of the article

© 2010 Parajes et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
bone morphogenetic protein (BMP) signalling pathway [18]. Hepcidin is also upregulated in inflammation by interleukin 6 (IL-6) and other cytokines through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway [6,10,19]. Hepcidin is inhibited by hypoxia [20] and augmented erythropoiesis [21]. More recently, matriptase-2 has been described as the first known negative regulator of hepcidin expression [22].

Lately, two genetic variants in the HAMP promoter have been described as modulators of iron overload. Firstly, the c.-582A > G variant has been associated with higher liver iron concentration and with higher serum ferritin levels in beta-thalassemic patients [23]. Secondly, the c.-153C > T mutation, which is located within a BMP-Responsive Element, has been shown to contribute to a severe phenotype in HFE related haemochromatosis [11].

The aim of the study was to identify genetic variants in the HAMP promoter and their frequency distribution in the Galician population. Another objective was to assess possible associations between these variants and the serum iron, serum transferrin and serum ferritin levels in a random sample of Galician probands. Finally, we performed functional in vitro studies to determine the effect of variants on HAMP expression.

Results
Identification of genetic variants in the hepcidin gene promoter
The sequencing of the HAMP promoter in the random sample of 103 healthy individuals allowed the identification of two genetic variants each with an allele frequency higher than 0.01. Therefore, both loci could be considered polymorphic. The first variant c.-582A > G was found in 49 promoter sequences (58 individuals were homozygous for allele A, 41 heterozygous AG and 4 homozygous GG), which resulted in an allele frequency of 0.762 for c.-582A and 0.218 for c.-582G. This variant corresponded to single nucleotide polymorphism (SNP) rs10421768 in the NCBI SNP database http://www.ncbi.nlm.nih.gov/snp/. The second variant c.-153C > T was found in only three heterozygous CT. Thus allele frequency of allele c.-153T was 1.4%. Furthermore, unique variants were found in two heterozygous individuals: c.-572C > T and c.-188C > T. No transcription factor binding sites were predicted for these unique variants http://www.biobase-international.com/pages/index.php?id=transfac.

The genotype frequencies of the SNP located 582 bp upstream did not differ significantly between our sample of 224 individuals and the 103 healthy probands initially studied. No significant differences were found in the levels of serum iron, serum transferrin, transferrin saturation or ferritin levels between the c.-582A > G variant genotypes (Table 1). No significant differences were found either when males and females were stratified (data not shown).

Transactivation assays
The fold activation of VarA-Hep/Luc construct was 3.19 ± 0.10 in basal conditions and it increased to 7.99 ± 0.24 when cells were cotransfected with pCMV-USF1, 13.88 ± 0.53 with pCMV-USF2 and 9.92 ± 0.26 with pCMV-USF1+ pCMV-USF2. These results indicated that either USF1, USF2 or the combination of both (USF1+USF2 (1:1)) can transactivate VarA-Hep/Luc construct with a 2.5 ± 0.3, 4.3 ± 0.7 and 3.1 ± 0.3 (mean ± SEM) fold induction, respectively (Figure 1). The same experiments carried out for the VarG-Hep/Luc construct gave similar results. The fold activation of the VarG-Hep/Luc construct in basal conditions was 2.84 ± 0.33 and it increased to 6.36 ± 0.19 when cotransfected with pCMV-USF1, 12.27 ± 0.38 with pCMV-USF2 and 8.34 ± 0.23 with pCMV-USF1+ pCMV-USF2 (1:1 ratio). These meant a 2.2 ± 0.3, 4.3 ± 0.5 and 3.0 ± 0.4 (mean ± SEM) fold induction driven by USF1, USF2 or USF1+USF2 (1:1), respectively (Figure 2).

The c.-582G variant slightly decreased HAMP promoter transcriptional activity. Basal luciferase activity from VarG-Hep/Luc construct was 88.8% compared to that of VarA-Hep/Luc construct. When those constructs were transactivated with USF1, the VarG-Hep/Luc showed a significant 20% decrease in activity compared to VarA-Hep/Luc (p < 0.001). When transactivated with USF2 and USF1+USF2 a 12-14% reduction was obtained for the VarG-Hep/Luc with respect to VarA-Hep/Luc (p > 0.05 and p < 0.05, respectively) (Figure 3).

| Table 1 Serum iron, serum transferrin, serum ferritin and transferrin saturation according to HAMP c.-582A > G genotype in Galician population |
|---------------------------------|-----------------|-----------------|
| c.-582A > G Genotype | A/A | A/G and G/G |
| N (%) | 128 (57.1) | 96 (42.9) |
| SI mean ± SD (µg/dL) | 55.6 ± 30.7 | 55.5 ± 31.2 |
| ST mean ± SD (mg/dL) | 265.7 ± 280 | 2636 ± 308 |
| SF mean ± SD (µg/dL) | 959.9 ± 73.7 | 1066 ± 74.5 |
| TS mean ± SD (µg/dL) | 15.0 ± 8.5 | 15.2 ± 8.8 |

SI: Serum iron, ST: serum transferrin, SF: serum ferritin, TS transferrin saturation
Discussion

Hepcidin is the main regulator of iron homeostasis and, therefore, a better understanding of its regulation is of great interest. In the present work, we sequenced, in an initial sample group, the promoter of the hepcidin gene, *HAMP*. This allowed the identification of two genetic polymorphic variants in our population. In a further group of individuals the c.-582A > G was genotyped and a possible relationship with biochemical iron status markers was studied. In addition, we performed functional-in-vitro analysis to characterize the effect of the c.-582A > G variant on the hepcidin gene transactivation.

In the present work, we first sequenced the promoter of the hepcidin gene *HAMP* in a group of 103 healthy individuals. This allowed the identification of two polymorphic sites. In another group of 224 individuals, the c.-582A > G variant was genotyped and its possible relationship with biochemical data as well as its effect on *HAMP* transactivation was studied. The frequency distribution of this SNP in the Galician population is similar to that of a cohort of Italian healthy donors [24] and furthermore to those of other European populations [http://www.ncbi.nlm.nih.gov/snp/].

The c.-582A > G variant is located within an E-box, which is a responsive element for helix-loop-helix transcription factors (bHLH-ZIP). The canonical sequence of the E-box is CACGTG (consensus CANNTG). When the A is substituted by G, the E-box would be abolished and unable to bind the transcription factors. USF1 and USF2 are bHLH-ZIP transcription factors that have been shown to positively regulate hepcidin expression through E-boxes within the promoter [25]. Therefore, we decided to study the in-vitro effect of the c.-582A > G variant on the *HAMP* transactivation in response to USF stimulation. Our results confirmed the ability of USF1 and USF2 to transactivate the *HAMP* promoter in HepG2 cells. Additionally, we found that the USF transactivation was maintained in the c.-582G promoter. However, the USF promoter transactivation was slightly reduced in the case of the c.-582G allele compared to c.-582A. The subtle decrease in transactivation might be caused by the fact that only one of the four E-boxes present in the promoter is affected. Nonetheless, it cannot be ruled out that different endotoxin content or slightly incorrect DNA estimation in the plasmid preparations caused the small differences found between the two variants.

No significant association between the c.-582A > G genotype and serum iron, serum transferrin, transferrin saturation or ferritin levels were found, which might reflect no differences in liver iron concentration. These results are in agreement with Bruno and col. that did not find association either [24]. Conversely, this association was found among a series of thalassemia major patients. The experiments performed in the HepG2 cells...
showed, at its maximum, a 20% transactivation reduction by the c.-582G allele, compared to c.-582A. In addition, one has to bear in mind that the in-vitro model used may not completely reflect what happens in-vivo. This data together with the fact that HAMP is regulated by many different signals \([6,10,15-18,20-22]\) suggested that the effect of the c.-582A > G polymorphism on hepcidin levels, and therefore on the iron status in-vivo is most likely negligible. We hypothesize that the c.-582A > G variant in the human HAMP promoter would have no effect on the hepcidin transcription in normal situations but it might have some effect in physiopathological situations where more hepcidin was needed. However, further studies would be necessary to confirm this hypothesis.

The variation at the second polymorphic site, c.-153C > T, in the promoter region of the hepcidin gene had been previously identified in a patient with massive iron overload homozygous for the p.Cys282Tyr mutation in HFE \([11]\). Island and col. demonstrated that the c.-153C > T mutation, which is located in a BMP-Responsive Element, reduced basal hepcidin gene expression and impaired its response to BMPs and IL-6. This variation has been found at a very low frequency by other investigators: Island and col. found the variant with a 5% frequency in a group of haemochromatosis patients whilst in healthy individuals of the same population the allele frequency was only 0.4%. They suggested that this variant should be studied in a selected iron overload patients \([27]\). Our finding of a 1.4% frequency of the c.-153T allele in the Galician population additionally supports this recommendation for genotyping this locus in iron overload Galician patients.

Conclusions
Due to the role of hepcidin as a key modulator of systemic iron levels, it is plausible that differences in the level of its expression may partly account for the phenotypic variant in iron metabolism between individuals. In this report, no association was found between serum iron, transferrin or ferritin levels and the c.-582A > G HAMP promoter variant in a healthy population. This result was supported by the functional in-vitro studies, which showed only a 10-20% reduction of the promoter transactivation by allele c.-582G compared to the c.-582A allele.
Methods

Sample population
A total of 327 individuals were used for the present study. Initially, a sample of 103 healthy individuals was recruited from the university students and employees of the Hospital Clínico Universitario at Santiago de Compostela. Information about their parents’ and grandparents’ geographic origins was provided and all were from the Spanish Galician region, which is a relatively isolated European population at the westernmost continental edge. A second independent random sample of 224 individuals was randomly recruited from the general adult population of the Galician town La Estrada. Serum ferritin levels of this group were between 10-300 ng/mL. Detailed description has been reported elsewhere [28]. Informed consent was obtained from each participant. All the procedures were conducted according to the principles expressed in the Declaration of Helsinki and to the ethical standards of the local Ethics Committee.

Biochemical determinations
Serum iron and serum transferrin were assayed in an ADVIA-2400 Chemistry System (Siemens Medical Diagnostics, Germany) and serum ferritin was measured in an ADVIA-Centaur Immunoassay System (Siemens). Transferrin saturation (TS) was calculated with the following formula:
\[\text{TS (in %)} = \left(\frac{\text{[serum iron (in } \mu\text{g/dL]} \times 71}{\text{[transferrin (in mg/dL)]}} \right) \times 100 \]

Serum ferritin levels in adults are as follows:
- Serum iron, 45-160 μg/dL (males) and 40-150 μg/dL (females);
- Serum transferrin, 215-365 mg/dL (males) and 250-380 mg/dL (females);
- Transferrin saturation, 7-53%;
- Serum ferritin, 215-365 mg/dL (males) and 250-380 mg/dL (females).

Genetic analysis of the HAMP promoter
Blood samples were collected and DNA was extracted from peripheral blood leukocytes following standard procedures. A fragment of 951bp that extended from nucleotide 1013 upstream the ATG translation initiation codon of HAMP to 9bp downstream of exon 1 was PCR amplified with the following pair of primers: forward 5’-GTACTCATCGGACTGTAGATGTAGC-3’ and reverse 5’-GGAGGCTTTTGACGTCGCTTTTATGGGGCCTGC-3’.

PCR products were double-digested with HindIII and XhoI restriction enzymes (Promega Corporation, Madison, WA, USA). VarA-Hep/Luc and VarG-Hep/Luc constructs were generated using T4 DNA ligase (Promega) by cloning digested products into the same restriction sites of pGL3-Control vector (Promega). The nucleotide sequence of the constructs was confirmed by DNA sequencing.

Plasmids
Two 951 bp fragments, which included 942bp of the human HAMP promoter plus 9bp of 5’UTR of exon 1 were PCR amplified from homozygous c.-582A and c.-582G genomic DNAs respectively (Forward 5’-GGCTCGAGGTACTCATCGGACTGTAGGTATTAGC-3’, Reverse 5’-GGAGGCTTTTGACGTCGCTTTTATGGGGCCTGC-3’).

PCR products were double-digested with HindIII and XhoI restriction enzymes (Promega Corporation, Madison, WA, USA). VarA-Hep/Luc and VarG-Hep/Luc constructs were generated using T4 DNA ligase (Promega) by cloning digested products into the same restriction sites of pGL3-Control vector (Promega). The nucleotide sequence of the constructs was confirmed by DNA sequencing.

Plasmids pCMV-USF1 and pCMV-USF2, (kindly provided by Dr. M. Sawadogo University of Texas, MD USA and Dr. H K. Bayele University College London UK), were used for transactivation assays.

Luciferase assays
Approximately 1.4×10^5 HepG2 cells were plated in 12-well plates 24 h before transfection. Cells were transiently transfected with 1000 ng of DNA using FuGENE HD transfection reagent at an 8:2 ratio according to manufacturer’s protocol (Roche Applied Sciences, Indianapolis, USA). For promoter transactivation assays cells were transiently cotransfected with 350 ng of Hep/Luc constructs and 450 ng of pCMV-USF1, pCMV-USF2 or the combination of these latter two plasmids at a 1:1 ratio.

In all cases, 200 ng of pRL-TK vector (Promega) was included as an internal control of transfection efficiency. When necessary, pcDNA3.1 empty vector was used to equalize the total amount of DNA. pGL3-Control vector was used in each experiment as an interassay control to normalize transfection efficiencies. Cells were incubated with transfection reagents for 48 h at 37°C in full DMEM media, followed by further 18 h incubation in fresh full media. Luciferase and Renilla activities were determined using Dual-Glo®Luciferase Assay System.
(Promega) according to manufacturer’s protocol. Luminiscence was measured in a TRIAD LT luminometer (Dynex Technologies, Chantilly, VA, USA). All the experiments were independently performed in triplicate.

Transactivation of the HAMP promoter is expressed as fold induction of luciferase/renilla luminescence ratio of Hep/Luc expressing cells over the ratio obtained from cells transfected with pGL3-Control vector. Data are presented as mean values ± SEM.

Statistical analysis
Statistical analysis was performed using SPSS analysis software v.16.0 (SPSS Inc., Chicago, IL, USA). The differences found in the values of the biochemical indicators of iron status among the various genotypes at position c.-582 were tested by the Mann-Whitney and Kruskal-Wallis tests. The results from Luciferase assays were compared using one-way ANOVA for repeated measures followed by Tukey’s posthoc test. These analyses were performed using GraphPad Prism v.5.0 (GraphPad Software, San Diego, California). In all cases a p value less than 0.05 was considered significant.

Acknowledgements
The authors would like to thank Michelle Sawadogo, University of Texas and Henry K. Bayele, University College London for USF1 and USF2 expression plasmids.

This work was supported by a grant from the Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III (PI052249 to LL) and Xunta de Galicia (PGIDIT06PXIC3011136PN).

Author details
1Fundación Pública Galega de Medicina Xénómica, Santiago de Compostela, Spain. 2Department of Internal Medicine, Hospital Clínico Universitario, Santiago de Compostela, Spain. 3Department of Physiology, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

Authors’ contributions
SP participated in the conception and design of the study, carried out the functional studies and helped to draft and revised the manuscript. AGQ made acquisition of data for the study, carried out statistical analysis and revised the manuscript. LC made acquisition of data for the study. CQ carried out the molecular genetic studies. FD participated in the design of the study, interpretation of data and revised the manuscript. LL Conceived and designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Received: 12 July 2010 Accepted: 10 December 2010
Published: 10 December 2010

References
1. Park CH, Valeve EV, Waring AJ, Ganz T. Hecpccin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001, 276:7806-7810.
2. Fleming RE, Bacon BR. Orchestration of iron homeostasis. N Engl J Med 2005, 352:1741-1744.
3. Ganz T. Hecpccin-a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 2005, 18:171-182.
4. Leong WI, Lonnerdal B. Hecpccin, the recently identified peptide that appears to regulate iron absorption. J Nutr 2004, 134:1-4.
5. Roy CN, Andrews NC. Anemia of inflammation: the hepcidin link. Curr Opin Hematol 2005, 12:107-111.
6. Pigeon C, Ilyiv G, Courcelaud B, Leroyer P, Turlin B, Brissot P, Loréal O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001, 166:7811-7819.
7. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 2001, 17870-17875.
8. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 2002, 99:4596-4601.
9. Roetto A, Papamikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulou D, Camaschella C. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 2003, 33:21-22.
10. Nemeth E, Rivera S, Gabayan V, Keller C, Taoudot S, Pedersen BK, Ganz T. IL-6 mediates hyperferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004, 113:1271-1276.
11. Isard ML, Jouanolle AM, Mosser A, Deugnier Y, Vauthier G, Ordi-Ros J, Brezovar M, Parenti M, Vaulont S. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica 2009, 94:720-724.
12. Jacolot S, Le Gac G, Scotet V, Quene I, Mura C, Ferec C. HAMP as a modifier gene that increases the phenotypic expression of the HFE c.282Y homozygous genotype. Blood 2004, 103:2835-2840.
13. Merryweather-Clarke AT, Cadet E, Bomford A, Capron D, Viprakasit V, Miller A, McHugh PJ, Chapman RW, Pointon JJ, Wimhurst VL, Livesey KJ, Tampiahcitr V, Roffee J, Robson KJ. Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum Mol Genet 2003, 12:2341-2347.
14. Inamura J, Kuta J, Jimbo M, Shindo M, Sato K, Torimoto Y, Kohgo Y. Upregulation of hepcidin by interleukin-1beta in human hepatoma cell lines. Hepat Res 2005, 33:198-205.
15. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sids Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY. Bone morphogenetic protein signaling by heparin/versican regulates hepcidin expression. Nat Genet 2006, 38:531-539.
16. Fleming MD. The regulation of hepcidin and its effects on systemic and cellular iron metabolism. Hematology Am Soc Hematol Educ Program 2008, 151-158.
17. Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 2008, 7:205-214.
18. Babitt JL, Huang FW, Xia Y, Sids Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007, 117:1933-1939.
19. Wertzinge DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006, 108:3204-3209.
20. Premswong C, Zinkernagel AS, Schuepbach RA, Ranken E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 2007, 117:1926-1932.
21. Weirr-Stern O, Adamsky K, Amarni G, Levin C, Koren A, Breuer W, Rachmifietwiste E, Breda L, Filolle S, Tabanchik Z, Rechavi G. Deregulation of hepcidin and haemojuvelin expression in the hepatocyte cell-line HepG2 induced by thalassaemic sera. Br J Haematol 2006, 135:129-138.
22. Du X, She E, Gelbart T, Truska J, Lee P, Xia Y, Khovananthan K, Mudd S, Mann N, Mosresc EM, Beulte E, Beulte B. The serine protease TMPRSS6 is required to sense iron deficiency. Science 2008, 320:1088-1092.
23. Andrenani M, Radji FC, Testi M, De Bernardi C, Troiano M, Majore P, Bertucci P, Pochi P, Rosati R, Grammatico P. Association of hepcidin promoter c.-582 A > G variant and iron overload in thalassemia major. Haematologica 2009, 94:1293-1296.
24. Bruno F, Bonalumi S, Camaschella C, Ferrari M, Cremonesi L. The -582A > G variant of the HAMP promoter is not associated with high serum ferritin levels in normal subjects. Haematologica 2010, 95:849-50.
25. Bayele HK, McDavide H, Stai SK. Cls and trans regulation of hepcidin expression by upstream stimulatory factor. Blood 2006, 108:4237-4245.
26. Barton JC, Leinendecker-Foster C, Li H, DeRicoLaFreniere S, Acton RT, Eckfeldt JH. HAMP promoter mutation nc.-153C > T in 785 HEIRS Study participants. Haematologica 2009, 94:1465.
27. Aguilar-Martinez P, Giansily-Blaizot M, Bismuth M, Cunat S, Igual H, Schved JF: HAMP promoter mutation nc.-153C > T in non p.C282Y homozygous patients with iron overload. *Haematologica* 2010, 95:687-688.

28. Campos J, Gude F, Quinteiro C, Vidal C, Gonzalez-Quintela A: Gene by environment interaction: the -159C/T polymorphism in the promoter region of the CD14 gene modifies the effect of alcohol consumption on serum IgE levels. *Alcohol Clin Exp Res* 2006, 30:7-14.

doi:10.1186/1471-2156-11-110

Cite this article as: Parajes et al. Genetic study of the hepcidin gene (HAMP) promoter and functional analysis of the c.-582A > G variant. *BMC Genetics* 2010 11:110.