Detailed chemical compositions of planet-hosting stars: II. Exploration of the interiors of terrestrial-type exoplanets

H. S. Wang1,2, S. P. Quanz1,2, D. Yong3, F. Liu4, F. Seidler1, L. Acuña5, and S. J. Mojzsis6,7

1Institute for Particle Physics and Astrophysics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
2National Center of Competence in Research PlanetS (www.nccr-planets.ch)
3Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
4Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
5Aix-Marseille Univ., CNRS, CNES, LAM, Marseille, France
6Origins Research Institute, Research Centre for Astronomy and Earth Sciences, H-1112 Budapest, Hungary
7Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA

Accepted 2022 April 19. Received 2022 April 15; in original form 2021 October 6

ABSTRACT

A major goal in the discovery and characterisation of exoplanets is to identify terrestrial-type worlds that are similar to (or otherwise distinct from) our Earth. Recent results have highlighted the importance of applying devolatilisation – i.e. depletion of volatiles – to the chemical composition of planet-hosting stars to constrain bulk composition and interiors of terrestrial-type exoplanets. In this work, we apply such an approach to a selected sample of 13 planet-hosting Sun-like stars, for which high-precision photospheric abundances have been determined in the first paper of the series. With the resultant devolatilised stellar composition (i.e. the model planetary bulk composition) as well as other constraints including mass and radius, we model the detailed mineralogy and interior structure of hypothetical, habitable-zone terrestrial planets (“exo-Earths”) around these stars. Model output shows that most of these exo-Earths are expected to have broadly Earth-like composition and interior structure, consistent with conclusions derived independently from analysis of polluted white dwarfs. The exceptions are the Kepler-10 and Kepler-37 exo-Earths, which we predict are strongly oxidised and thus would develop metallic cores much smaller than Earth. Investigating our devolatilisation model at its extremes as well as varying planetary mass and radius (within the terrestrial regime) reveals potential diversities in the interiors of terrestrial planets. By considering (i) high-precision stellar abundances, (ii) devolatilisation, and (iii) planetary mass and radius holistically, this work represents essential steps to explore the detailed mineralogy and interior structure of terrestrial-type exoplanets, which in turn are fundamental for our understanding of planetary dynamics and long-term evolution.

Keywords: planets and satellites: composition – planets and satellites: interiors – planets and satellites: terrestrial planets – stars: abundances

1 INTRODUCTION

An important threshold has been crossed for detailed studies of interior structure and composition of terrestrial exoplanets following the ever more precise measurements of both planetary mass and radius (Weiss et al. 2016; Stassun et al. 2017, 2018; Otegi et al. 2020) and of host stellar photospheres that reveal the primordial elemental compositions of the systems (Nissen 2015; Brewer & Fischer 2016; Liu et al. 2016, 2020; Delgado Mena et al. 2017; Bedell et al. 2018; Clark et al. 2021; Adibekyan et al. 2021). Indeed, the past decade has witnessed a number of interior models that follow this lead (e.g. Dorn et al. 2015; Santos et al. 2015; Unterborn et al. 2016; Dorn et al. 2017; Brugger et al. 2017; Unterborn et al. 2018; Wang et al. 2019b; Acuña et al. 2021; Wang et al. 2022). We can anticipate that future observations of planetary atmospheres with JWST (Morley et al. 2017; Gialluca et al. 2021) and other innovative ground- and space-based missions and mission concepts such as ELT/METIS (Quanz et al. 2015; Bowens et al. 2021), ARIEL (Tinetti et al. 2018; Turri et al. 2021), PLATO (Rauer et al. 2014; Nascimbeni et al. 2022), and LIFE (Quanz et al. 2021, 2022) will reveal new details of the surface and interior characteristics of terrestrial exoplanets, given the evolutionary outcomes of the dynamic interactions between the interior, surface, atmosphere, and possible hydrosphere or even...
biosphere (Shahar et al. 2019; Bower et al. 2019; Ortenzi et al. 2020; Dyck et al. 2021; Hakim et al. 2021; Acuna et al. 2021; Kacar et al. 2021).

In the present work, we build upon the procedures outlined in Wang et al. (2019a,b) (W19a and b, thereafter) that introduced the idea of using the devolatilised host stellar abundances, rather than the unaltered host stellar abundances, to constrain the bulk composition and interior modelling of hypothetical habitable-zone terrestrial exoplanets (“exo-Earths”). This idea was established based on the observations of bulk composition differences and similarities of the Solar System’s rocky bodies relative to the Sun (Grossman & Larimer 1974; Bland et al. 2005; Davis 2006; Carlson et al. 2014; Wang et al. 2018; Sossi & Fegley 2018). Importantly, among the 10 major rock-forming elements (Mg, Si, Fe, Ni, Al, Ca, Na, O, S, and C), only Ca and Al (the two most refractory ones) are not observed to be depleted in rocky bodies relative to the Sun. All other elements have been depleted to some degree: e.g. for Mg, Si, Fe, and Ni the depletion is by ~ 10-20%; for volatiles like O, S, and C the depletion is over 80% (W19a). It is reasonable to argue that the devolatilisation process is not unique to the Solar System and may be a universal process in the formation of rocky (exo)planets. A recent study of the major rock-forming elements (including oxygen) for a sample of six white dwarfs (Doyle et al. 2019) shows that the bulk composition of the planetary debris polluting these white dwarfs resembles those of rocky planets in the Solar System. This suggests that the parent rocky bodies of these debris must also be the devolatilised pieces of their host stars (also see Harrison et al. 2021; Bonser et al. 2021), although the exact devolatilisation factors for such planetary systems are beyond what can be constrained with the existing data. Hence, starting with the best-known calibration of the devolatilisation based on our Solar System (in particular, Sun and Earth; W19a), we can apply it, to first order, to other Sun-like star systems and estimate the potential rocky planetary bulk composition from the measurable host stellar photospheric abundances. Subsequently, planetary interior composition and structure can be modelled, as shown for a sample of 4 planet-hosting stars in W19b. Even further, interior dynamics and thermo-chemical evolution (Spaargaren et al. 2020, 2021; Wang et al. 2020b), carbon cycle modelling (Hakim et al. 2021), and habitability arguments (Kacar et al. 2021) ensue from such an analysis.

Here, we extend the analysis to a further sample of 13 planet-hosting Sun-like stars for which detailed and precise chemical compositions (for up to 18 elements including all major rock-forming elements at a typical precision of ~ 0.025 dex) have been determined with high-quality spectra in the first paper of the series (Liu et al. 2020) (hereafter Paper I). We are interested in how diverse the interiors of the model exo-Earths around these stars would be.

The paper is organised by presenting our methodology and analysis in Section 2 and results in Section 3, followed by a discussion of the effect of varying devolatilisation scaling factors (within plausible bounds) and planetary size (within the terrestrial regime) on the interiors and of the model restrictions in Section 4. We summarise and conclude in Section 5.

2 METHODOLOGY AND ANALYSIS

2.1 Methodology

To carry out the analysis, two sets of software are employed: ExoInt (W19b) for devolatilising stellar abundances and modelling stoichiometric mantle and core compositions as well as core mass fractions; Perple_X (Connolly 2009) for modelling of a detailed mantle mineralogy and interior structure (e.g. self-consistent density, pressure and temperature profiles as well as core radius fraction). It is important to note that the devolatilisation model of W19a that we adopted is empirically quantified by the bulk elemental abundance ratio (f) between Earth and proto-Sun as a function of 50% condensation temperature (T_c; Lodders 2003):

$$\log(f) = \alpha \log(T_c) + \beta$$

(1)

where, the best-fit coefficients $\alpha = 3.676 \pm 0.142$ and $\beta = -11.556 \pm 0.436$.

An application of such a model to other planetary systems is by all means a simplification of devolatilisation processes and outcomes that may vary across different systems and, in principle, even at different orbital distances within one system. We therefore limit such an application to only habitable-zone, terrestrial-type exoplanets around Sun-like stars – i.e. exo-Earths by our definition. It has been shown in the literature (e.g. Wang 2018; Sossi & Fegley 2018; Yoshizaki & McDonough 2020) that the bulk compositional differences of Venus and Mars from the Sun are within the uncertainty of such a difference between Earth and Sun. We emphasise that the empirical devolatilisation model of W19a is the first-order quantitative model of such an important process. A sophisticated model of devolatilisation that involves disc evolution, accretion and hydrodynamic escape processes is still awaiting formalisation (e.g. Wang 2022). To account for potential variation in devolatilisation scales for the exo-Earths considered here, we vary the uncertainty range of the adopted W19a model arbitrarily by a factor of 3 to assess how this may affect the interior modelling results (to be discussed in Sect. 4.1).

For the detailed procedure of ExoInt, we refer the reader to Fig. 3 and Appendix A of W19b. It is briefly summarised here that we adopt the chemical networks of $Na_2O-CaO-MgO-Al_2O_3-SiO_2-FeO-NiO-SO_3-CO_3-C(graphite/diamond)-metal$ for the mantle composition (in terms of first-order oxides and reduced phases) and of Fe-Ni-Si-S alloy for the core composition of a terrestrial-type exoplanet. The core mass fraction is determined by mass balance after distributing the bulk planetary composition into the stoichiometric mantle and core compositions. The difference to W19b is that Si is not firstly oxidised in the oxidation sequence of major elements, but follows Na, Ca, Mg, and Al and precedes Fe, Ni, and S. This approach allows for the possibility that Si can be partially oxidised in the case of a reduced mantle (i.e. at a low oxidation state) and complies with the fact that it can be an important light element constituent of metallic cores (McDonough 2003; Hirose et al. 2013; Li & Fei 2014; Wang et al. 2018). This update has been applied in Wang et al. (2022) and the code is publicly accessible.1

Having determined stoichiometric mantle and core compositions as well as core mass fractions, planetary mineralogy (i.e. complex mineral assemblages) and structure are then modeled with Perple_X by assuming that these exo-Earths are all Earth-like in mass and radius. Later in the discussion (Sec. 4.2), we explore the effect of varied planetary mass and radius (within the terrestrial density regime) on the predictions of detailed interiors. The underlying method for computing mantle mineralogy given the mantle composition of major oxides and the pressure and temperature profiles for a terrestrial-type planet is Gibbs free energy minimisation (Connolly 2009). The mineral equations of state and thermodynamic parameters – essential for the Gibbs free energy minimisation – are adopted

1 https://github.com/astro-seanwhy/ExoInt/tree/master/v1.2 (IDL version); https://github.com/astro-seanwhy/ExoInt/tree/master/pyExoInt (Python version).
from Stixrude & Lithgow-Bertelloni (2011). For a given Fe-Ni-S-alloy core, we adopt the equation of state from Kuwayaama et al. (2020). We adopt an adiabatic thermal gradient, as similarly practiced in Dorn et al. (2015), Unterborn et al. (2018), and Lorenzo (2018), and integrate it with a mantle potential temperature of 1700 K at 1 bar, arbitrarily set to be approximate to that of the modern Earth (Anderson 2000). Hinkel & Unterborn (2018) found that different setups of a mantle potential temperature (at a typical range of 1500 K and 1900 K) for a terrestrial-type planet only introduce accountable effect towards the mineralogies in the transition zone between the upper and lower mantle – we have verified this finding with Earth as an example (Fig. B1). We also introduce a temperature jump at the core mantle boundary (CMB) by following Noack & Lasbleis (2020) for all of these exo-Earths and Stixrude (2014) (for the tested cases with masses out of $[0.8, 2]M_\oplus$ – the range in which the Noack & Lasbleis (2020) model is parameterised). It has been found that a variable thermal profile plays a negligible role in changing the interior structure (Dorn et al. 2015) – we have further verified this finding with varied temperature jumps at the CMB in the case of Earth (Fig. B2).

2.2 Sample selection and analysis

Our sample for this study is based on the planet-hosting stars studied in Paper I: Kepler-21, Kepler-37, Kepler-68, Kepler-93, Kepler-96, Kepler-K100, Kepler-131, K2-222 (EPIC220709978), K2-277 (EPIC212357477), Kepler-408, HD1461, and HD219828. The addition to this list is Kepler-10, for which the detailed elemental abundances are obtained in Liu et al. (2016) in the same fashion as in Paper I. We have excluded Kepler-409 because its oxygen abundance – essential for our analysis – is undetermined. We have also excluded HD179079 and HD190360, for which the values of C/O are larger than 0.8 (Fig. 1) and thus around which carbide planets may be developed (Bond et al. 2010; Teske et al. 2014; Brewer & Fischer 2016). Our model is based on silicate chemistry and thus does not apply to plausible carbide planets. For the reader interested in the interiors of carbide planets we refer to Hakim et al. (2018, 2019) for more details. Therefore, we have a sample of 13 Sun-like stars (with $5400 < T_{\text{eff}} < 6400$ K, $4.0 < \log g < 4.5$ cm s$^{-2}$, and $-0.3 < [\text{Fe/H}] < +0.3$), each of which has been confirmed to host at least one planet with a mass $< 10M_\oplus$ (except for HD 219828 that hosts a planet with a minimum mass of $\sim 21M_\oplus$). Since these detected planets are all in the proximity (with an orbital period < 50 days) of their host stars, they are not included in this study that focuses on hypothetical, (habitable-zone) exo-Earths.

As shown in Fig. 1, the values of Mg/Si (abundance ratio by number) in our sample are distributed within a narrow range from ~ 0.9 to ~ 1.4. Mg/Si modulates the dominant mineral phases in the mantle of a silicate planet: pyroxene (MgSiO_3) and various feldspars for Mg/Si < 1, a mixture of olivine (Mg_2SiO_3) and pyroxene assemblages for $1 < \text{Mg/Si} < 2$, and olivine with other Mg-rich species for Mg/Si > 2 (Bond et al. 2010; Suárez-Andrés et al. 2018). At first glance, therefore, the mantles of exo-Earths around our sample of stars would most likely be made of a mixture of olivine and pyroxene assemblages, while some (with Mg/Si < 1) may be slightly enriched in pyroxenes.

Following the study of W19b, we apply the Sun-to-Earth devolatilisation model (W19a) to the sample of stars for 10 major rock-forming elements: Mg, Si, Fe, Ni, Al, Ca, Na, O, S, and C. The differential abundances determined in Paper I (their Table 2) are firstly converted to the absolute abundances by referring to the latest solar abundances of Asplund et al. (2021). We ignore the diffusion effect since this effect is equivalent for those major rock-forming elements for the Sun (Asplund et al. 2009) and presumably for Sun-like stars as well. We also do not consider the effect of Galactic chemical evolution (GCE) on the host stellar abundances, since planets are fundamentally correlated with the properties (and formation environment) of individual host stars. In other words, whatever a GCE effect may have with the host stellar abundances should have also been an inherent part of the formation histories of planets around these stars. Thus, the GCE effect has validly shaped the chemical compositions of these planets. The resultant, “devolatilised” stellar abundances – i.e., the model planetary bulk composition – are listed in Table A1 and used as a principal set of constraints for a detailed modelling of the interiors of (hypothetical) exo-Earths around these stars.

3 RESULTS

3.1 Key planetary geochemical ratios

The abundance ratio of carbon to oxygen (hereafter C/O) in a planet host star is useful, as illustrated in Fig. 1, to indicate to first order if a potential rocky world around it would be dominated by silicates or by carbides. However, upon the application of the devolatilisation, both oxygen and carbon become so severely depleted that the remaining atoms are principally locked in planetary mineral assemblages. C/O in a rocky planet is therefore no longer a valid indicator of the mantle oxidation state, which, however, is essential to understand the planetary interiors.

For a silicate planet including our own, MgO and SiO$_2$ are the foremost mineral oxides in the mantle, with Fe being distributed between its oxidised form (e.g. FeO) in the mantle and its reduced, metallic/liquid iron phase in the core, depending on the oxygen fugacity (f_{O_2}) of the planet (McDonough & Sun 1995; Palme &
H.S. Wang et al.

O’Neill 2014; Dorn et al. 2015; Wang et al. 2019b). The calculation of f_{O_2}, often relative to either the quartz-faylite-magnetite buffer (O’Neill 1987; Cottrell & Kelley 2011) or the iron-wüstite buffer (e.g. Doyle et al. 2019), requires the prior knowledge of the relative fractions between different phases of iron, which we do not have in the first place for exoplanets. Based on the estimated bulk elemental composition (Table A1) and considering that O, Mg, Si, and Fe are the foremost abundant, rock-forming elements (Palme & O’Neill 2014; Wang et al. 2018), we propose the bulk (O-Mg-2Si)/Fe as a simple alternative of oxygen fugacity to indicate the oxidation state of a silicate terrestrial exoplanet.

Planetary Mg/Si (having no significant difference from its host stellar Mg/Si) is still critical to modulate the dominant mineral assemblages (olivine vs. pyroxene) in the mantle of a silicate planet. Further, Fe/Mg is preferred over Fe/Si as an indicator of the degree of core-mantle fractionation (determining the core size), owing to the fact that Si may be present as a major light element in the core of a rocky planet (McDonough 2003; Hirose et al. 2013; Li & Fei 2014; Wang et al. 2018) and is indeed considered in the core compositional model in this work.

Fig. 2 shows the distributions of these model exo-Earths on the diagram of (O - Mg - 2Si)/Fe vs. Mg/Si and (O - Mg - 2Si)/Fe vs. Fe/Mg. First, it shows that all of the sample planets are significantly below the unit line of (O - Mg - 2Si)/Fe, except Kepler-10 exo-Earth (“K10-exoE”) and Kepler-37 exo-Earth (“K37-exoE”). The direct implication is that most of these planets would have a large iron core and potentially an Earth-like structure while iron in K10-exoE and K37-exoE may be much more oxidised and thus these two planets would develop comparably smaller cores. The core size of K10-exoE would be the smallest due to its significantly high (O - Mg - 2Si)/Fe that would cause most of the iron to be oxidised and locked in the mantle. Considering that the core size is also modulated by Fe/Mg (right panel of Fig. 2), K37-exoE – which has the equivalent oxidation state as Mars, but lower Fe/Mg – would potentially develop a core that is smaller, in relative terms, than the core:mantle ratio of Mars. Frank et al. (2014) referred to this class of terrestrial-type exoplanets as “Super-Lunas”. Among those planets clumped around the Earth’s loci on both panels of the diagram, their mantle mineralogies would be more or less the same, with K93-exoE being likely the most olivine-rich due to its relatively high Mg/Si. These qualitative analyses are further verified by the following, detailed interior modelling.

3.2 Mantle and core compositions and core mass fraction

Our estimates of the mantle composition for all studied exo-Earths are presented in Table B1, with the normalised composition of the foremost major oxides (i.e. normalising the sum of SiO$_2$, MgO, and FeO to be 100 wt%) shown in the ternary diagram Fig. 3. Overall, the mantle compositions of these exo-Earths are very similar, except for K10-exoE and K37-exoE. The latter two are particularly enriched in FeO, consistent with the analysis above based on key geochemical ratios.

The estimates of core composition and core mass fraction (CMF; i.e. the core-to-planet mass ratio) of these exo-Earths are also presented in Table B1. We find that the core compositions of these exo-Earths are more or less the same, with the concentration of Fe ranging from ~ 80 to ~90 wt%. In contrast, the values of CMF are diverse, ranging from ~ 0 wt% to ~ 40 wt% (Fig. 4). K10-exoE and K37-exoE, for which the concentrations of FeO in the mantle are the highest (as mentioned above), are the ones with the lowest CMFs – 0.0$^{+0.4}_{-0.0}$ and 11.9$^{+15.0}_{-11.9}$ – broadly mimicking Moon-like and Mars-like structures, respectively. The CMFs of eight exo-Earths (K21-exoE, K93-exoE, K96-exoE, K100-exoE, K408-exoE, K2-222-exoE, K2-227-exoE, and HD219828) are consistent with the CMF (32.5 ± 0.3 wt%; Wang et al. 2018) of the Earth within uncertainties. The remaining three exo-Earths (K68-exoE, K131-exoE, and HD 1461-exoE) have CMFs statistically higher than that of the Earth, with K131-exoE – appearing at the bottom right (i.e. with the highest Fe/Mg and lowest (O-Mg-2Si)/Fe) in the right panel of Fig. 2 – being the highest (39.7$^{+4.4}_{-1.1}$ wt%).

The minor oxides – Na$_2$O, CaO, and Al$_2$O$_3$ – will be combined with the aforementioned three major oxides to model the detailed mineralogy of these exo-Earths. Other minor/trace end-members including NiO, SO$_3$, CO$_2$, C and metals are however not involved in the subsequently detailed interior modelling but their realisation is essential to correctly distribute oxygen into those more abundant oxides.

3.3 Mineralogy and internal structure

Using Kepler-21 exo-Earth (K21-exoE) as an example, we present its best-fit mineralogy and structure (in terms of self-consistent pressure, temperature and density profiles) in Fig. 5. It shows that in the upper mantle, pyroxenes (orthopyroxene – “opx”, clinopyroxene – “cpx” and high-pressure clinopyroxene – “hp-cpx”) are relatively enriched over olivine (“ol”), being consistent with the planet’s relatively low Mg/Si ratio (the left panel of Fig. 2). The lower mantle (starting from the density jump at ~ 0.9 R_\oplus) is dominated by magnesiopeilites (”mg-pv” and “mg-postpv”) and is similar to the Earth’s lower mantle composition (Palme & O’Neill 2014). By comparing its density profile with the Earth’s (in both cases a plausible) inner solid core has been ignored; Fig. 5), K21-exoE has a best-fit core slightly smaller than that of Earth. Please note that the best-fit result is obtained at the mean values of the first-order major oxides and core mass fraction (Table B1) and at a radius of 1 R_\oplus (with its self-consistent mass, returned together with the mineralogy, equivalent to 1 M_\oplus as well). The uncertainties of the best-fit results for each mineral in the mantle, the radius fraction of the core as well as other structural profiles (Fig. B3) are obtained at the 16% and 84% quartiles of a population of the mineralogy and structure analyses repeated from a random draw of the estimates of the mantle and core compositions as well as core mass fractions (Table B1).

The best-fit results for all planets, as shown in Figs. B4 and B5, reveal that most of these exo-Earths are Earth-like in both the mineralogy and structure. The notable exceptions are K10-exoE and K37-exoE. The former has a negligible core – as shown in Fig. 4 as well – and a gigantic mantle, whereas the latter has a core that is comparably smaller than all cases other than K10-exoE. Further, both have a deep mantle dominated by the high-pressure, “mg-postpv” phase – compared to the “mg-pv” phase (bridgemanite) for other cases. For the uppermost mantle (above ~ 0.95 R_\oplus), it is dominated by olivine over pyroxene assemblages (also similar to that of Earth; Palme & O’Neill 2014) for all exo-Earth cases, except K2-277-exoE (and to a lesser degree, K21-exoE as well). Particularly, K2-277-exoE is also the only planet with a mean value of Mg/Si < 1 (Fig. 2). This highlights the significance of Mg/Si in determining the mantle mineralogy, as investigated in Hinkel & Unterborn (2018) and Spaargaren et al. (2020) as well. The intermediate range between upper and lower mantle (~ 0.9-0.95 R_\oplus; i.e. the mantle transition zone) is dominated by wadsleyite (“wad”) and ringwoodite (“ring”) (also similar to Earth’s scenario), except for K10-exoE, K37-exoE, K68-exoE, and K2-277-exoE. Considering that both wadsleyite and
From detailed host stellar abundances to planetary interiors

Figure 2. \((O\cdot Mg\cdot 2Si)/Fe\) vs. Mg/Si and \((O\cdot Mg\cdot 2Si)/Fe\) vs. Fe/Mg diagrams for the sample of model exo-Earths. The dashed, vertical and horizontal lines classify these planets into different categories, in which different planetary interior properties may be expected (see text as well as the brief notations on the plot). Earth ("E", the blue dot; Wang et al. 2018) and Mars ("M", the brown dot; Yoshizaki & McDonough 2020) are shown for reference.

Figure 3. Ternary diagrams showing the estimated mantle compositions of major mineral oxides (normalized by \(SiO_2 + MgO + FeO = 100\) wt%) for the sample of model exo-Earths (for clarity, the sample is divided arbitrarily to two groups). The range of the squares indicates the modelled 1σ uncertainties in the normalised mantle compositions of the individual planets. The normalised compositions of SiO2, MgO, and FeO of Earth mantle (McDonough & Sun 1995) and of Martian mantle (Yoshizaki & McDonough 2020) are shown for reference.

Ringwoodite can store water in their crystal structures by about one order of magnitude higher than any other minerals including olivine, pyroxene and perovskite (Bercovici & Karato 2003; Pearson et al. 2014; Fei et al. 2017), these exceptional planets may also be the ones among the sample with the least water-storage capacity in its interior, although this assessment needs to be exercised with caution considering the yet-large uncertainty in the modelled mantle mineralogy.

Broadly speaking and by considering the uncertainty level of such an analysis (as assessed for K21-exoE as an example), all of...
these cases (except K10-exoE and K37-exoE) share both the internal structure and mineralogy of a broadly Earth-like planet.

4 DISCUSSION

4.1 The effect of varying devolatilisation scales on the interiors

Planet formation is a complex process. A variety of outcomes for the bulk composition of a rocky planet may result from composition-, location-, and time-scale-dependent differences in various devolatilisation processes (W19b; Dorn et al. 2019; Harrison et al. 2021). Our empirical understanding of the devolatilisation from the protosolar to terrestrial abundances cannot be a true reflection of the devolatilisation that occurred in other planetary systems, even for "exo-Earths" by our definition. However, we suppose that the discrepancy is not dramatic concerning the similar Earth-like composition for rocky exoplanets as revealed by the abundance measurements on polluted white dwarfs (Doyle et al. 2019).

To explore the effect of varying the devolatilisation scales on the interiors of exo-Earths, we apply the upper and lower limits of the 3σ range of the adopted devolatilisation model to the abundances of these host stars. As a result, we obtain two alternative sets of planetary bulk compositions, corresponding to the "less-depleted" (Fig. 6) and "more-depleted" (Fig. 7) scenarios, respectively. In the "less-depleted" scenario (Fig. 6), the mantle compositions (normalised by $\text{MgO} + \text{SiO}_2 + \text{FeO} = 100$ wt%) of these exo-Earths shift towards the direction where SiO$_2$ and FeO are more enriched (relative to the scenario under the standard devolatilisation model – Fig. 3). In such a case, oxygen – acting as a critical element to the mantle composition estimate – is much less depleted, resulting in a much higher mantle oxidation state and thus more Si and Fe in the planet being oxidised. Likewise, in the "more-depleted" scenario (Fig. 7), the normalised mantle compositions shift towards the direction where SiO$_2$ and FeO are more depleted (relative to the scenario under the standard devolatilisation model – Fig. 3). In this case oxygen is much more depleted, thus resulting in a reduced mantle and an increased amount of Si as well as Fe partitioned into the core.

The effect of such varied devolatilisation scales is also reflected onto the modelled core mass fractions (Fig. 4). In the "less-depleted" scenario (shown as open diamonds with error bars in Fig. 4), the core mass fractions are systematically smaller than those under the "standard" scenario (i.e. filled circles with error bars in Fig. 4), because the mantle is more oxidised with a reduced fractionation of metallic Fe and its alloy elements (Ni, Si, and S) into the core. Similarly, in the "more-depleted" scenario (shown as open circles with error bars in Fig. 4), the core mass fractions are systematically

Figure 4. Estimates of the core mass fraction (CMFs) of the sample of model exo-Earths under three different scenarios: (i) applying the standard Sun-to-Earth devolatilisation pattern (i.e., with the 1σ-uncertainty range) of W19a (filled circles with error bars in black); (ii) applying the 3σ upper limit of the standard devolatilisation model (open diamonds with error bars in grey); (iii) applying the 3σ lower limit of the standard devolatilisation model (open circles with error bars in grey). Earth’s core mass fraction (32.5 ± 0.3 wt%; Wang et al. 2018) and Mars’ core mass fraction (18^{+4}_{-3} wt%; Yoshizaki & McDonough 2020) are shown for reference.
larger than those under the "standard" scenario. In such a case, the mantle is more reduced and a larger fraction of Fe and its alloy elements is partitioned into the core. It is also noteworthy that the limits of our calculated CMFs (0–46%) under the different scenarios are statistically broader than those constrained by the unaltered stellar compositions in the literature – e.g. 20–46% (Plotnykov & Valencia 2020) and 21–41% (Schulze et al. 2021) – and narrower than those constrained purely by mass and radius measurements – e.g. 1–92% (Plotnykov & Valencia 2020) and 0–73% (Schulze et al. 2021) for (potentially) rocky planets. These discrepancies are fundamentally attributed to i) the difference in the available oxygen budget relative to other rock-forming elements in a planet (W19b) and ii) the inherent degeneracy in constraining planetary interiors with only mass and radius measurements (Dorn et al. 2015). For a detailed discussion of model and observational uncertainties on the determination of planetary interiors, we refer to Oegi et al. (2020).

Such a variance in the devolatilisation scales also induces a change to the modelled internal structure and mineralogy (Fig. 8; K21-exoE is taken for example, in comparison with Fig. 5). In the "less-depleted" scenario (left panel), the modelled core-mantle boundary (in line with the horizontal part of the solid black curve) is relatively deeper than that modelled under the "standard" scenario (dashed black curve), while it is opposite in the "more-depleted" scenario. For the mantle mineralogies as modelled under various scenarios, there are no significant differences, except for the minerals (e.g. ringwoodite – "ring", wadsleyite – "wad", and stishovite...
It is noteworthy that our exploration of the effect of varied devolatilisation scales may not be applicable to peculiar planets such as super-Mercuries (e.g. Adibekyan et al. 2021), nor to any type of planets around M stars such as the TRAPPIST-1 system (Gillon et al. 2017) and Proxima b (Anglada-Escudé et al. 2016). This is a consequence from potentially dramatic differences in planet formation histories and/or in stellar properties (e.g. XUV fluxes). To take into account these factors, a comprehensive investigation of nebular condensation (e.g. Wang et al. 2020a), disc evolution (e.g. Bergner et al. 2020), hydrodynamic escape (e.g. Benedikt et al. 2020), accretionary dynamics (e.g. Emsenhuber et al. 2021), and impacts (Helffrich et al. 2019) is warranted. Before such a comprehensive investigation sheds more light on devolatilisation (in a quantitative manner), however, the inclusion of such an empirical model is a first-order but integral part of the efforts in reducing the modelling degeneracies of interiors of terrestrial-type exoplanets.

4.2 The effect of varying mass and radius (within the terrestrial regime) on the interiors

As analysed in Sect. 3.3, these hypothetical exo-Earths are assumed to have a radius of 1 R_\oplus and a mass of 1 M_\oplus. In reality, habitable-zone terrestrial planets are unlikely to be an ideal Earth 2.0 and their mass and radius may vary. To test the effect of varying mass and radius (within the terrestrial regime) on the interiors, we assume two extreme cases for the size of a model terrestrial planet by referring to the definition of a rocky planet orbiting within the (empirical) habitable zone: 0.5 R_\oplus and 1.5 R_\oplus for the LIFE targets (Quanz et al. 2021). The mass is not predefined but computed together with the interiors by keeping the planet to be in the terrestrial regime. The modelling results are shown in Fig. 9.

For a model terrestrial planet of 0.5 R_\oplus orbiting in the habitable zone of Kepler-21, its mantle mineralogy and self-consistent mass (~ 0.1 M_\oplus) approximately resemble those of Mars (Yoshizaki & McDonough 2020). For a model terrestrial planet of 1.5 R_\oplus orbiting in the habitable zone of Kepler-21, however, there is no exact analogue in our Solar System, since its self-consistent mass of ~ 4.3 M_\oplus falls in the regime of a super-Earth and it has a lower mantle mineralogy distinctly dominated by the high-pressure "mg-postpv" phase, while its upper mantle mineralogy resembles that of Earth (McDonough & Sun 1995; Palme & O'Neill 2014).

Please note that, both cases are conducted under the standard devolatilisation model. Namely, the same set of the first-order mantle and core compositions as well as core mass fraction of Kepler-21 exo-Earth (Table B1) are input for producing Figs. 5 and 9. In other words, the significant differences in mantle mineralogy between these scenarios shown in Figs. 5 and 9 are dictated only by the size (and implicitly the mass) of the model planet. The trivial differences in core radius fraction are related to the difference in density compression between the smaller and larger (model) planets.

4.3 On the precision requirement of using (devolatilised) host stellar abundances to constrain exoplanet interiors

In W19b, a precision level of ≤ 0.04 dex (differentially) or $\leq 10\%$ is proposed for the host stellar abundances to be used, upon devolatilisation, to constrain and distinguish the interior compositions and structures of hypothetical terrestrial exoplanets. However, it is worth clarifying that this precision requirement has not taken into account the uncertainty in the reference solar abundance, which is typically at the level of ~ 0.03 dex (Asplund et al. 2009, 2021) for the aforementioned major rock-forming elements. If the latter were taken into account, the precision requirement for the host stellar abundances should be as small as ~ 0.025 dex (differentially) or ~ 6%, which has been achieved with high-precision spectroscopic analysis for bright Sun-like stars (e.g. Paper I; Spina et al. 2021) and binary stars (Morel 2018; Liu et al. 2018, 2021). Apart from the concern with the precision, there are also nontrivial systematic differences between different reference solar abundances (e.g. Asplund et al. 2021; Adibekyan et al. 2021; Lodders 2020; Wang et al. 2019a). Therefore, one must clarify which solar abundances are applied for converting the stellar differential abundances to the absolute abundances, which are then used for further modelling of the properties of individual planets. For a detailed discussion of the systematic differences between stellar abundances determined with different techniques and their impacts on many aspects including modelling planetary properties, please refer to Hinkel et al. (2016).

4.4 Remaining limitations

For our interior structure model, we must emphasize that it is a rigid two-layer model - i.e. mantle + core, without the layers such as crust and water, nor that we have divided the core to an inner component and an outer one. Considering the currently typical uncertainties of 5-10% and 10-20%, respectively, for radius and mass measurements (Otegi et al. 2020), such a simplification is practical for interior modelling and has a trivial effect on our estimates of mantle composition and internal structure (in terms of core radius/mass fraction). The modelling of crust formation and composition is an active field and usually involves the modelling of partial melts, tectonics, and even weathering (Rozel et al. 2017; Brugman et al. 2021; Hakim et al. 2021), which are however beyond the scope of this paper. Nonetheless, our estimates of mantle mineralogy and core size provide essential information for future modelling of the crust owing to the fact that the crust is fundamentally an extraction product of the upper mantle through magmatic processes (Rozel et al. 2017; Noack et al. 2012) and is also (ultimately) influenced by core formation (Dyck et al. 2021).

A water layer (while without a crust layer) has been considered in other interior models (e.g. Tian & Stanley 2013; Noack et al. 2016; Dorn et al. 2017; Brugger et al. 2017; Unterborn et al. 2018; Acuna et al. 2021). Based on numerical modelling, Shah et al. (2020) found that for a rocky planet with a mass of 0.1 – 3 M_\oplus, the effect of an isolated surface water (i.e. oceans) on the radius is $\leq 5\%$, while the effect of a hydration case (i.e. water being chemically mixed with minerals) is $\leq 2.5\%$ – see also Vazan et al. (2022). Such effects are still within the currently typical uncertainty for radius but may become more profound with the continuous improvement of the precisions of mass and radius measurements (e.g. up to 5% and 3%, respectively; Stassun et al. 2017). The effect of water inclusion on the mass of a terrestrial-type planet should be nonetheless negligible. However, water (regardless its amount) should be critically taken into account while extending a study on...
mineralogy and structure to that on internal dynamics (Evans et al. 2014; Spaargaren et al. 2020) and/or crust formation (Collins et al. 2020).

Finally, we treat the core to be completely molten and homogeneously composed of Fe, Ni, Si and S, without differentiating a plausible inner solid portion made of pure Fe and Ni from an outer liquid portion that contains the light elements (McDonough 2003; Hirose et al. 2013; Wang et al. 2018). This may inevitably underestimate the core mass and thus overestimate core radius should the planet’s core be differentiated. However, we envisage that the under-/over-estimation should not be significant, concerning that Earth’s inner solid core just accounts for 5% of the mass of the core (Yoder 1995; McDonough 2017) and that even a planet as small as Mars has been suggested to be in a molten state based on the most recent seismic data from the InSight mission (Stähler et al. 2021). Conflicting views on liquid/solid cores for super-Earths have been presented (e.g. Valencia et al. 2006; Morard et al. 2011), so do the models underpinning the two scenarios – c.f., ‘solid’ (Dorn et al. 2017; Brugger et al. 2017) vs. ‘liquid’ (Unterborn et al. 2018; Lorenzo 2018). The phase of a planet’s core should be not only related to the planet’s mass and size but also its formation history and age (Stevenson 2008; Stixrude 2014). Before we know better such information collectively, this issue will remain open for further discussion.
5 SUMMARY AND CONCLUSIONS

Based on the detailed chemical compositions of planet-hosting stars obtained in Paper I and Liu et al. (2016), this work extends the analysis of W19a,b and goes beyond the estimates of the first-order mantle oxide composition, core composition and core mass fraction to the detailed mineralogy (i.e. complex mineral phases that are often seen in a rocky planet like Earth) and interior structure (in terms of not only core mass fraction, but also core radius fraction and self-consistent density, pressure and temperature profiles). We have also assessed the uncertainties of the detailed interior estimates, which are contributed from the uncertainties associated with the host stellar abundances, the devolatilisation pattern, as well as the interior modelling degeneracy. Further, by respectively varying the devolatilisation scales and the planetary size, we test how such variabilities will affect the modelled interiors of terrestrial-type planets.

We find that among the 13 model exo-Earths, 11 are broadly Earth-like in both interior composition and structure, whereas Kepler-10 and Kepler-37 exo-Earths (both with high (O-Mg-2Si)/Fe, implying a high planetary oxidation state) are predicted to have substantially smaller cores. On the effect of varying devolatilisation scaling factors on planetary interiors, we find that interior structure is more affected than the mantle mineralogy, probably because the fractionation of Fe between mantle and core is more sensitive to the planetary oxidation state – thus determining the core size, whereas the mantle mineralogy is crucially modulated by Mg/Si (Hinkel & Unterborn 2018; Spaargaren et al. 2020) while this ratio is negligibly altered by devolatilisation (W19a). The further test of varying the planetary size (and implicitly mass, by keeping within the terrestrial regime) reveals the potential diversity of the mantle mineralogy of terrestrial planets even if they might have experienced an equivalent devolatilisation. We also recommend a precision level of ≤ 0.025 dex for the stellar differential abundances and a clarification of the reference solar abundances (and their uncertainties) in modelling planetary bulk composition and interiors.

Our model is nonetheless limited by its rigid assumption of a two-layer structure – i.e., mantle and core, with no crust (lithosphere) or water (potentially biosphere) considered yet, nor have we...
differentiated the core to be an inner component and an outer one based on their extent of solidification/crystallisation. However, such a simplification should have little impact on our modelling results of the static, mantle mineralogy and structure, while the model may be sophisticated further when the mass and radius measurements of real terrestrial planets become much more precise (e.g. up to 5% and 3%; Stassun et al. 2017; Rauer et al. 2014).

Exercised with caution, such an analysis (with a yet-large uncertainty) nevertheless offers an insight, in terms what we can learn already with the available data (essentially host stellar composition as well as planetary mass and radius) and with the bulk/interior models (with sensibly simplifications) that we can build, into the detailed properties of habitable-zone, terrestrial-type exoplanets, thus providing guidance for the target selections for future missions, such as PLATO (Rauer et al. 2014; Nascimbeni et al. 2022), Ariel (Turrini et al. 2021), and LIFE (Quanz et al. 2021, 2022).

ACKNOWLEDGEMENTS

We thank the reviewers, particularly Lena Noack, for their helpful comments, which have greatly improved the quality of the manuscript. This work has been carried out within the framework of the National Centre of Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). H.S.W and S.P.Q acknowledge the financial support of the SNSF. FL acknowledges the support of the Australian Research Council through Future Fellowship grant FT180100194. S.J.M. thanks the Research Centre for Astronomy and Earth Sciences (Budapest, Hungary) for support.

DATA AVAILABILITY

The spectral data underlying this article are available in Keck Observatory Archive at https://koa.ipac.caltech.edu/cgi-bin/KOA/nph-KOAlogin. They can be accessed with Keck Program ID: Z148 (Semester: 2016B, PI: Yong) and Z279 (Semester: 2018A, PI: Yong).
Table A1: Model bulk compositions (normalised to Al=100) of hypothetical habitable-zone terrestrial exoplanets ("exoE"), as devolatilised\(^a\) from their host stellar abundances\(^b\). The reported uncertainties are 1\(\sigma\).\(^c\)

	C	O	S	Na	Si	Mg	Fe	Ni	Ca	Al
K10-exoE	41\(\pm 10\)	3871\(\pm 445\)	31\(\pm 4\)	12\(\pm 1\)	819\(\pm 67\)	1048\(\pm 92\)	679\(\pm 84\)	38\(\pm 4\)	66\(\pm 5\)	100\(\pm 7\)
K21-exoE	57\(\pm 15\)	4862\(\pm 642\)	46\(\pm 6\)	23\(\pm 3\)	1490\(\pm 128\)	1515\(\pm 135\)	1225\(\pm 124\)	66\(\pm 7\)	110\(\pm 9\)	100\(\pm 7\)
K37-exoE	30\(\pm 3\)	2936\(\pm 339\)	45\(\pm 6\)	10\(\pm 1\)	670\(\pm 56\)	1013\(\pm 85\)	617\(\pm 78\)	34\(\pm 3\)	59\(\pm 5\)	100\(\pm 28\)
K68-exoE	23\(\pm 2\)	1857\(\pm 113\)	20\(\pm 2\)	10\(\pm 1\)	649\(\pm 53\)	744\(\pm 61\)	597\(\pm 59\)	35\(\pm 3\)	51\(\pm 3\)	100\(\pm 26\)
K93-exoE	30\(\pm 3\)	2889\(\pm 332\)	28\(\pm 3\)	12\(\pm 1\)	776\(\pm 64\)	996\(\pm 83\)	716\(\pm 75\)	41\(\pm 4\)	65\(\pm 5\)	100\(\pm 12\)
K96-exoE	36\(\pm 3\)	3176\(\pm 327\)	34\(\pm 4\)	14\(\pm 1\)	1000\(\pm 81\)	1153\(\pm 85\)	1026\(\pm 97\)	54\(\pm 5\)	86\(\pm 6\)	100\(\pm 10\)
K100-exoE	42\(\pm 10\)	2785\(\pm 361\)	35\(\pm 5\)	16\(\pm 2\)	906\(\pm 80\)	985\(\pm 86\)	759\(\pm 84\)	46\(\pm 5\)	64\(\pm 5\)	100\(\pm 10\)
K131-exoE	32\(\pm 3\)	2459\(\pm 291\)	28\(\pm 3\)	13\(\pm 1\)	861\(\pm 71\)	963\(\pm 72\)	847\(\pm 91\)	49\(\pm 5\)	71\(\pm 6\)	100\(\pm 8\)
K2-222-exoE	43\(\pm 3\)	3809\(\pm 311\)	40\(\pm 3\)	18\(\pm 2\)	1125\(\pm 96\)	1293\(\pm 114\)	960\(\pm 106\)	51\(\pm 6\)	84\(\pm 7\)	100\(\pm 11\)
K2-277-exoE	44\(\pm 13\)	3012\(\pm 392\)	37\(\pm 5\)	14\(\pm 2\)	966\(\pm 86\)	958\(\pm 87\)	851\(\pm 98\)	51\(\pm 6\)	70\(\pm 6\)	100\(\pm 12\)
K408-exoE	44\(\pm 3\)	3418\(\pm 342\)	38\(\pm 3\)	15\(\pm 2\)	1125\(\pm 101\)	1332\(\pm 116\)	957\(\pm 103\)	50\(\pm 6\)	93\(\pm 8\)	100\(\pm 9\)
HD1461-exoE	36\(\pm 3\)	2426\(\pm 293\)	30\(\pm 3\)	17\(\pm 2\)	867\(\pm 72\)	928\(\pm 78\)	762\(\pm 82\)	49\(\pm 5\)	59\(\pm 5\)	100\(\pm 10\)
HD219828-exoE	33\(\pm 3\)	2482\(\pm 318\)	28\(\pm 3\)	16\(\pm 2\)	840\(\pm 71\)	868\(\pm 77\)	730\(\pm 81\)	44\(\pm 5\)	60\(\pm 5\)	100\(\pm 9\)

\(^a\) The model of devolatilisation: Wi19a – Wang et al. (2019a); the specific devolatilisation factors for these listed elements can also be found in Table 1 of Wi19b – Wang et al. (2019b).

\(^b\) Sources of host stellar abundances: Paper I – Liu et al. (2020) (Table 2), except for Kepler 10 (Liu et al. 2016) (Table 2, derived with HET data).

\(^c\) The uncertainties are propagated from the 1\(\sigma\) uncertainties in both host stellar abundances and in the devolatilisation model.
APPENDIX B: MODELLING DETAILS OF PLANETARY INTERIORS

Table B1: Interior compositions and core mass fractions (with 1σ uncertainties) of hypothetical exo-Earths (exoE) around the sample of stars, in comparison with Earth.

Mantle composition (wt%)	Na2O	CaO	MgO	Al2O3	SiO2	FeO	NiO	SO2	CO2	C	Metals
K10-exoE	0.24±0.04	2.41±0.36	27.4±4.2	3.32±0.47	31.8±5.1	29.03±2.99	1.66±0.23	1.39±0.26	0.68±0.18	0.15±0.05	-
K21-exoE	0.41±0.09	3.52±0.62	35.7±6.2	2.92±0.51	47.8±5.3	8.62±6.89	0.42±0.47	0.50±0.10	0.03±0.01	0.38±0.12	0.15±0.28
K37-exoE	0.27±0.06	2.87±0.67	35.0±5.5	4.45±1.28	34.4±7.3	21.01±6.14	1.19±0.42	-	2.09±0.08	0.03±0.04	-
K68-exoE	0.49±0.07	4.32±0.55	45.6±5.6	7.82±2.31	41.0±5.7	0.22±0.43	0.03±0.02	0.04±0.01	-	0.41±0.10	0.03±0.15
K93-exoE	0.35±0.06	3.46±0.61	38.4±2.3	4.82±3.9	42.2±5.0	9.29±2.87	0.53±0.33	0.61±0.11	0.02±0.01	0.34±0.09	0.03±0.02
K96-exoE	0.38±0.07	4.31±0.56	41.5±5.3	4.53±0.68	45.7±4.2	2.47±2.90	0.12±0.16	0.25±0.03	-	0.38±0.09	0.37±0.30
K100-exoE	0.49±0.08	3.64±0.59	40.9±5.6	5.20±0.83	46.5±3.5	2.37±3.20	0.19±0.20	0.36±0.06	-	0.51±0.14	0.03±0.05
K131-exoE	0.47±0.07	4.56±0.59	44.7±2.9	5.85±0.83	43.5±6.1	0.39±0.81	0.04±0.02	0.07±0.02	-	0.43±0.11	0.05±0.07
K2-222-exoE	0.40±0.08	3.45±0.57	38.5±5.9	3.72±0.71	45.5±4.8	6.92±6.38	0.31±0.43	0.51±0.09	0.02±0.01	0.46±0.20	0.19±0.31
K2-277-exoE	0.42±0.08	3.72±0.62	36.8±5.6	4.83±0.74	48.7±4.5	4.25±3.37	0.31±0.19	0.13±0.11	-	0.42±0.16	0.19±0.17
K408-exoE	0.39±0.07	4.30±0.63	44.2±6.1	4.19±0.59	44.2±4.8	1.55±1.89	0.07±0.10	0.17±0.08	-	0.44±0.10	0.45±0.04
HD1461-exoE	0.61±0.09	3.88±0.82	43.8±5.8	5.97±0.69	44.7±5.2	0.33±0.27	0.08±0.05	0.07±0.02	-	0.51±0.14	0.06±0.08
HD219828-exoE	0.57±0.09	3.85±0.57	40.4±5.6	5.86±0.91	46.9±4.5	1.64±2.26	0.13±0.14	0.26±0.04	-	0.48±0.13	0.03±0.15
Earth \(a\)	0.36	3.58	38.1	4.49	45.4	8.11	-	-	-	-	-

Core composition (wt%) and core mass fraction (CMF, wt%)	Fe	Ni	Si	S	CMF
K10-exoE	90.4±4.1	5.5±0.1	3.0±0.1	3.9±0.1	0.07±0.0
K21-exoE	89.7±2.8	5.2±0.8	3.3±0.3	1.7±0.5	0.07±0.0
K37-exoE	93.4±0.0	5.7±0.0	0.9±0.1	1.7±0.5	0.07±0.0
K68-exoE	80.3±6.1	5.0±0.7	13.2±6.1	1.5±0.5	38.7±2.2
K93-exoE	90.6±5.8	5.0±0.7	12.2±6.5	1.8±0.5	26.5±2.1
K96-exoE	88.0±3.9	4.9±0.7	5.5±1.3	1.6±0.3	36.4±2.4
K100-exoE	85.7±8.2	5.4±0.8	7.3±5.2	2.1±0.0	33.7±3.7
K131-exoE	82.3±7.1	5.0±0.7	10.9±5.8	1.5±0.5	39.7±4.4
K2-222-exoE	89.3±2.0	5.1±0.4	3.6±3.2	1.9±0.5	29.4±3.2
K2-277-exoE	87.8±2.9	5.4±0.3	4.8±4.1	2.0±0.5	33.6±2.4
K408-exoE	84.1±8.3	4.6±0.8	9.4±6.1	1.9±0.4	34.1±3.7
HD1461-exoE	81.0±5.7	5.4±0.6	11.9±6.2	1.8±0.3	38.3±4.3
HD219828-exoE	84.5±6.1	5.3±0.7	8.5±5.4	1.8±0.3	35.9±4.9
Earth \(a\)	87.5	5.3	5.2	1.9	32.5±0.3

\(a\) Refer to McDonough & Sun (1995) and normalise the contents of the adopted six major oxides to 100 wt%.

\(b\) Refer to Wang et al. (2018) and normalise the contents of the adopted four elements in the core to 100 wt%.
Figure B1. The comparison of the modelled mantle mineralogies in the case of Earth given different mantle potential temperatures (T_0): 1500 K, 1700 K, and 1900 K, which respectively correspond to the dashed, solid, and dotted curves in the rightmost panel for the temperature profiles. The core-mantle temperature jump is fixed at 1537 K for all cases. The core in each case is only partially shown to highlight the mantle mineralogy.

Figure B2. The comparison of the modelled interior profiles for density (black curves), pressure (blue curves), and temperature (red curves) in the case of Earth given different core-mantle temperature jumps: 0 K, 1000 K, 1500 K, and 2000 K, which respectively correspond to the dotted, dashed, solid, and dash-dotted curves of these profiles. The mantle potential temperature is fixed at 1700 K for all cases.
Figure B3. The uncertainty assessment of the modelled mineralogy and structure (taking K21-exoE as an example). The best-fit mineralogy/structure profiles (corresponding to Fig. 5) are shown in dotted lines in each panel, with the 50th percentile and the range of 16th and 84th percentiles of the estimates shown in a solid line and a shadow area. The best-fit profiles of pressure and density are exactly coincident with their 50th percentiles. The vertical dashed line in each panel indicates the 50th percentile of the core size (R_{core}), with its uncertainty shown in the light grey area. The illustration of the 50th percentile and the embraced range of [16th, 84th] percentiles of the lower mantle mineralogy has been cut off beyond the 1σ lower limit of the radius.
Figure B4. The best-fit mineralogies and structures of half of the sample of exo-Earths. The dashed curves indicate the Earth density profile. For the explanation of other details of these individual diagrams, please refer to Fig. 5. The additional mineral name abbreviations – sp and neph – stand for spinel and nepheline, respectively.
Figure B5. Similar to Fig. B4 but for the other half of the sample.