Regulated Secretion Is Impaired in AtT-20 Endocrine Cells Stably Transfected with Botulinum Neurotoxin Type A Light Chain*

(Received for publication, May 30, 1997, and in revised form, July 14, 1997)

Fernando Aguado‡, Lourdes Gombau§, Glò ria Majó‡, Jordi Marsal‡, Jerónimo Blanco§, and Juan Blasi‡**

From the ‡Department de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Campus de Bellvitge, c/Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain, §Institut de Recerca Oncologica, Departament de Biologia Cellular, and ¶Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Botulinum neurotoxin type A (BoNT/A) inhibits neurotransmitter release by specific cleavage of SNAP-25, a synaptosome-associated protein also expressed in the ACTH secretory cell line AtT-20. Expression of light chain BoNT/A (L-BoNT/A) gene transfected into AtT-20 cells resulted in a cleaved form of SNAP-25 indistinguishable from that generated by bona fide BoNT/A. L-BoNT/A-transfected cells showed no difference in replication rate, viability, or phenotype, compared with control AtT-20 cells. In contrast, L-BoNT/A-transfected cells could not be induced to secrete ACTH upon stimulation by b-hemotoxins-cAMP or KCl. In addition, a-latrotoxin induced ACTH release from control cells, but not from L-BoNT/A-transfected cells. These experiments suggest an important role for SNAP-25 in regulated secretion from AtT-20 cells and underline the usefulness of this cell system as a tool for the study of the molecular mechanism of peptide hormone secretion.

There is increasing evidence indicating that regulated secretion is controlled by a limited set of proteins (1, 2), such as synaptobrevin, syntaxin, and SNAP-25, which are also components of the docking and fusion machinery of synaptic vesicle exocytosis (3). These neuronal proteins form a complex also found in endocrine cells (4–7). Besides its essential role in synaptic vesicle exocytosis, SNAP-25 is involved in neurite elongation and synaptogenesis (8, 9) and is the molecular substrate of the botulinum neurotoxin types A and E (10, 11), which selectively block neurotransmitter release (12).

Like the other clostridial neurotoxins, botulinum neurotoxin type A (BoNT/A) is a dichain molecule formed by a light (M, 50,000) and a heavy (M, 100,000) chain linked by a single disulfide bond (13). The heavy chain is responsible for neuroelective recognition and binding of the toxin to ecto-acceptors at neuromuscular junctions and mediates the internalization of the active moiety of the toxin into nerve terminals (12–14). The light chain is a Zn2+-dependent protease that specifically cleaves SNAP-25 (10). Such protease activity is considered to be the molecular basis of the neurotransmission blockade by BoNT/A (12). BoNT/A inhibits exocytosis in cells not displaying selective acceptors on their plasma membranes, provided the neurotoxin light chain is introduced in the cells bypassing the recognition and binding steps (e.g. by microinjection or by using permeabilizing agents, such as streptolysin-O or digitonin, or by electroporation) (6, 15–17).

Successful expression of clostridial neurotoxins has been achieved by transient transfection of the tetanus toxin gene into COS cells (18) and by microinjection of *Aplysia* neurons with tetanus toxin and BoNT/A mRNA (19). However, there have been no reports of permanent transficients expressing the botulinum neurotoxins. The light chain of BoNT/A (L-BoNT/A) permanently transfected into nonneuronal cells should also be expressed and cleave SNAP-25. This approach, avoiding more aggressive permeabilizing methods, would also generate stably transfected cell lines useful in long term studies.

AtT-20 endocrine cells express high levels of SNAP-25 and secrete ACTH in response to stimulation with a variety of secretagogues. To study the role of SNAP-25 in regulated secretion, in this work we analyzed ACTH secretion from AtT-20 cells stably transfected with the L-BoNT/A gene and expressing the functional toxin.

EXPERIMENTAL PROCEDURES

Plasmid Construction—cDNA encoding L-BoNT/A was kindly provided by Dr. H. Niemann (Hannover, Germany). The entire L-BoNT/A coding sequence was amplified by polymerase chain reaction, using for 40 cycles the following parameters: denaturation 40 s at 95 °C; annealing, 40 s at 55 °C; and extension at 74 °C, 40 s. *Hind*III and *Xba*I restriction sites were included in the sense and antisense amplification primers, respectively. The polymerase chain reaction product was excised with *Hind*III and *Xba*I and cloned into the *Hind*III/*Xba*I-digested *pRCCMV* vector (Invitrogen, San Diego, CA). The *pRCCMV* vector contains the cytomeglovirus promoter and a neomycin resistance gene for selection of stably transfected cells in a medium containing the antibiotic G418 (Life Technologies, Inc.). Polymerase chain reaction products cloned in *pRCCMV* were sequenced to confirm the presence of L-BoNT/A sequences. Special attention was given to the catalytic domain.

Primary Cell Cultures and Growth of GH3 Cells—Pituitary cell cultures from male Sprague-Dawley rats (200–250 g) and rat GH3 cells obtained from ICN Biomedicals (Thame, Oxfordshire, UK) were prepared and grown as described previously (7).

Growth and Transfection of AtT-20 Cells—An AtT-20 mouse anterior pituitary cell line was obtained from the American Tissue Culture Collection (ATCC, Rockville, MD). Cells were routinely grown at 37 °C in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (Life Technologies, Inc.) and 2 mM/liter glutamine (Life Technologies, Inc.), in a humidified atmosphere of 5% CO2 and 95% air. AtT-20 cells were transfected with 2.5 μg of the DNA constructs (pRCCMV-BoNT/A) or the parental vector (pRC/CVM) using Lipofectin ac-
Transfection of L-BoNT/A in AtT-20 Cells

FIG. 1. Immunoblot analysis of SNAREs proteins in anterior pituitary-derived cells. Samples (12 μg of protein/lane) from anterior pituitary primary cell cultures, AtT-20 cells, and GH3 cells were analyzed by immunoblotting for the presence of syntaxin 1, SNAP-25, synaptobrevin 2, and α-tubulin. Longer exposures of the films revealed the presence of syntaxin 1 in AtT-20 cells (see also Fig. 3).

FIG. 2. A, immunoblot analysis of SNAP-25 and α-tubulin in samples from wild type (w.t.), control (cl.13), and L-BoNT/A-transfected (cl.2) cells, which were previously incubated in the presence or absence of BoNT/A (100 nM final concentration). Note the different SNAP-25 electrophoretic mobility (arrows), corresponding to intact and degraded (asterisk) SNAP-25 forms. B, silver-stained SDS-PAGE analysis from control (cl.13) and L-BoNT/A-transfected (cl.2) cells, which were previously incubated in the presence or absence of BoNT/A (100 nM final concentration). No differences in protein bands between control and L-BoNT/A-transfected cells were observed.

to near confluence. Before the experiments, cells were rinsed twice with serum-free Dulbecco’s modified Eagle’s medium and then incubated at 37 °C in 5% CO2 in 1 ml of serum-free Dulbecco’s modified Eagle’s medium containing the appropriate test substances. At the indicated times after incubation, conditioned medium was collected from each dish, centrifuged at 14,000 × g for 5 min, and stored at −20 °C until assayed for ACTH content. All tests were done at least in quadruplicate in two independent experiments. ACTH was determined by a two-site immunoradiometric assay (Allegro IRMA, Nichols Institute, San Juan Capistrano, CA), using synthetic human ACTH_{24–39} as the standard (25). All test were done in duplicate. 5 mM 8-Br-cAMP (Sigma), high (55 mM KCl) extracellular potassium concentration, and 3 mM α-latrotoxin (Alomone, Israel) were used to stimulate secretion. Before use in AtT-20 cells the excitatory capacity of α-latrotoxin was tested by measuring glutamate release in rat brain synaptosomes (26). The secretion data presented are the mean ± S.E. determined by a two-tailed, unpaired t test.

RESULTS

Cleavage of SNAP-25 in L-BoNT/A-transfected Cells—The pituitary-derived cell line AtT-20 selected for these transfection studies contained considerably higher levels of SNAP-25 than other anterior pituitary cell types (Fig. 1).

Geneticin-resistant AtT-20 cells transfected with the L-BoNT/A gene were tested for expression of L-BoNT/A protease activity by immunoblot analysis of SNAP-25 to show the appearance of the L-BoNT/A-specific SNAP-25 proteolytic fragment. Of the antibiotic-resistant clones having variable capacity to cleave SNAP-25 (data not shown) a clone (cl.2) showing complete L-BoNT/A specific cleavage of SNAP-25 was chosen for further studies (Fig. 2A).

The cleaving activity on SNAP-25 in the L-BoNT/A transfectants was indistinguishable from that of bona fide BoNT/A. Incubation of AtT-20 cell homogenates from either control
transfected with parental vector only, or wild type cells with exogenous BoNT/A, resulted in the appearance of the cleaved form of SNAP-25 having identical size to that of SNAP-25 fragments derived from the L-BoNT/A-transfected cells (cl.2) (Fig. 2A). Furthermore, no additional protein bands were detected when cell extracts from L-BoNT/A-transfected clones were incubated with the exogenous BoNT/A (Fig. 2A). Expression of L-BoNT/A had no detectable effect on the protein composition of the transfected cells as revealed by Coomassie Blue or silver staining of SDS-PAGE gels of cell lysates from control and L-BoNT/A-transfected cells (Fig. 2B).

The cleaved form of SNAP-25 in L-BoNT/A-transfected cells retained the capacity to form protein complexes with synaptobrevin 2 and syntaxin 1. Immunoprecipitation experiments followed by immunoblot analysis show that anti-SNAP-25 monoclonal antibodies recognized and immunoprecipitated SNAP-25 fragments derived from the L-BoNT/A-transfected clones. Immunoprecipitation experiments for the presence of syntaxin 1, SNAP-25, and synaptobrevin 2 showed that the extent of SNAP-25 processing in control clones was variable, a provable consequence of bona fide BoNT/A. The extent of SNAP-25 processing in L-BoNT/A-transfected AtT-20 cells expressed an L-BoNT/A activity indistinguishable from that of bona fide BoNT/A. The extent of SNAP-25 processing in L-BoNT/A transfectants was variable, a provable consequence of different dosages of genome-integrated L-BoNT/A sequences.

Therefore, simultaneous use of 8-Br-cAMP and α-latrotoxin resulted in even higher increases in released ACTH from control cells (p < 0.01) but again failed to stimulate hormone release from L-BoNT/A-transfected cells over basal levels (p > 0.5) (Fig. 5B).

DISCUSSION

The L-BoNT/A gene, coding for a protease that specifically targets the carboxyl terminus of SNAP-25 (10, 12), was introduced into ACTH-secreting AtT-20 cells as a probe to investigate the role of SNAP-25 in regulated secretion.

L-BoNT/A-transfected cells but not mock-transfected control cells expressed an L-BoNT/A activity indistinguishable from that of bona fide BoNT/A. The extent of SNAP-25 processing in L-BoNT/A transfectants was variable, a provable consequence of different dosages of genome-integrated L-BoNT/A sequences.

The majority of cellular parameters we tested were unaffected by expression of L-BoNT/A. Furthermore, transfected cells expressing L-BoNT/A activity at the highest level showed no detectable changes in viability and growth rate when compared with control cells, in agreement with previous studies showing that BoNT/A toxin injected into muscles or added to neuronal cell cultures caused no physical or morphological damage to neurons (30–32).

The similar cellular distribution of SNAP-25 in control and transfected cells suggests that synthesis, distribution, and sorting of this protein was not affected by L-BoNT/A. In contrast to
Fig. 5. Effect of concentration of extracellular potassium (A) or 8-Br-cAMP and α-latrotoxin (B, α-Ltx) on ACTH release from control (open bars) and L-BoNT/A-transfected (solid bars) cells. Cells were incubated with low (5.3 mM) or high (55 mM) potassium concentrations for 15 min (A) or with 5 mM 8-Br-cAMP and 3 mM α-latrotoxin for 60 min (B). ACTH release was determined by specific radioimmunounassay. Bars represent the mean value of at least four determinations from one independent experiment, whereas error bars represent values ± S.E. Asterisks indicate differences from control: *p < 0.01, **p < 0.05, and ***p < 0.001.

The observation of others (9), showing that BoNT/A impairs neurite extension and formation of new synapses in neuronal primary cell cultures, our data show that cellular processes, containing secretory granules and synaptic-like microvesicles typical of AtT-20 cells (24, 33, 34), were unaffected by expression of L-BoNT/A. This suggests that SNAP-23 is not essential for the elongation of cellular processes and transport of secretory organelles in AtT-20 cells. A plausible means of reconciling our results with those reports (9) is the finding of a non-neuronal form of SNAP-25, SNAP-23, that could fulfill the same role of SNAP-25 in AtT-20 cells (see below) (35).

The stimulus-evoked hormone secretion of ACTH, but not basal secretion, was completely blocked in L-BoNT/A-transfected cells regardless of the stimulus used, 8-Br-cAMP, KCl, α-latrotoxin, or both together, confirming a significant role of SNAP-25 in regulated exocytosis (10). A similar inhibitory effect of BoNT/A has been shown on insulin secretion from permeabilized pancreas-derived cells (6, 17).

The present report shows that at low concentration α-latrotoxin, an inducer of neurotransmitter and neuropeptide release from nerve terminals (29, 36, 37), evokes ACTH secretion from AtT-20 cells over basal levels, suggesting the presence of an α-latrotoxin receptor in these endocrine cells. Our finding that α-latrotoxin was unable to restore ACTH secretion in L-BoNT/A-transfected AtT-20 cells is in contrast with data showing that this toxin can stimulate neurotransmitter release from BoNT/A-poisoned nerve terminals (38). These observations may suggest the existence of different mechanisms in neurons and endocrine cells for the α-latrotoxin-induced secretion.

One of the most remarkable features observed in L-BoNT/A-transfected AtT-20 cells was that the basal secretion level of hormone was not significantly affected. One possible explanation for this result is that SNAP-23, a SNAP-25 homologue lacking the peptide bond cleaved by L-BoNT/A (35), may also be responsible for constitutive and/or basal secretion level of ACTH.

As far as we know the present report is the first successful attempt to obtain a stably transfected secretory cell line expressing the light chain of botulinum neurotoxin. This feature is especially relevant since the main effect of these toxins, the impairment of the regulated exocytosis, becomes amenable to study in secretory non-neural cells for long periods of time.

Acknowledgments—We thank Drs. R. Jahn and C. Barnstable for the antibodies used in this report and Dr. H. Niemann for L-BoNT/A cDNA. We are thankful to Dr. J. Herreros for neurotoxin purification, to I. Gomez de Aranda for technical help, and to Jordi Bullabriga and Rafael Abost for statistics. We are grateful to Dr. C. Gundersen for helpful discussions.

REFERENCES

1. Sudhof, T. C. (1995) Nature 375, 645–653
2. Augustine, G. J., Burns, M. E., DeBello, W. M., Pettit, D. L., and Schweizer, P. F. (1996) Annu. Rev. Pharmacol. Toxicol. 36, 659–701
3. Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromano, S., Tempst, P., and Rothman, J. E. (1993) Nature 362, 318–324
4. Jacobson, G., Bean, A. J., Scheller, R. H., Juntti-Berggren, L., Deeney, J. T., Berggren, P. O., and Meister, B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12487–12491
5. Roth, D., and Burgess, R. B. (1994) FEBS Lett. 351, 207–210
6. Sadoul, K., Lang, J., Montecucco, C., Weller, U., Regurazi, R., Catzicas, S., Wollheim, C. B., and Halban A. (1995) J. Cell Biol. 128, 1019–1028
7. Aguado, F., Majó, G., Ruiz-Montañes, B., Canals, J. M., Casanova, A., Marsal, J., and Blasi, J. (1995) Eur. J. Cell Biol. 69, 351–359
8. Osen-Sand, A., Catzicas, M., Staple, J. K., Jones, K. A., Ayala, G., Knowles, J., Grenchnileg, G., and Catzicas, S. (1993) Nature 364, 445–448
9. Osen-Sand, A., Staple, J. K., Naldi, E., Schiavo, G., Rossetto, O., Petipierre, S., Malagari, A., Montecucco, C., and Catzicas, S. (1996) J. Comp. Neurol. 367, 223–234
10. Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., Sudhof, T.C., Niemann, H., and Jahn, R. (1995) Nature 365, 160–163
11. Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Sudhof, T. C., Jahn, R., and Niemann, H. (1994) J. Biol. Chem. 269, 1617–1620
12. Niemann, H., Blasi, J., and Jahn, R. (1994) Trends Cell Biol. 4, 179–185
13. Simpson, L. L. (1998) Botulinum Toxin and Tetanus Toxin, Academic Press, San Diego, CA
14. Williams, R. S., Tse, C., Dolly, J. O., Hambleton, P., and Melling J. (1983) J. Biochem. 131, 437–445
15. Arun-Hilger, G., and Weller, U. (1993) Neuroscience 53, 547–552
16. Dayanithi, G., Arun-Hilger, G., Weller, U., Nordmann, J. J., and Gratl, M. (1990) Neuroscience 39, 711–715
17. Boyd, R. S., Duggan, M. J., Stone, C. C., and Foster, K. A. (1995) J. Biol. Chem. 270, 18216–18218
18. McMahon, R., Ushkaryov, Y., Aleder, L., Weller, U., Binz, T., Niemann, H., and Jahn, R. (1995) Nature 364, 346–349
19. Mochida, S., Poulain, B., Issel, U., Binz, T., Kurazumi, H., Niemann, H., and Tauc, L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7844–7848
20. DasGupta, B. R., and Sihra, T. S. (1986) Toxicon 24, 221–234
21. Molinoff, P. B., and Tappel, A. L. (1964) J. Biol Chem. 239, 207–210
22. Duchen, L. W. (1992) in Adams, J. H., and Edelmann, E., eds) 5th Ed., pp. 1–68, Edward Arnold, London
23. Edelman, E., Hanson, P. I., Chapman, E. R., and Jahn R. (1995) J. Neurosci. 15, 977–984
24. Rosenthal, L., and Meldolesi, J. (1989) Pharmacol. Ther. 42, 115–134
25. Duchen, L. W. (1992) in Greenfield’s Neuropathology (Adams, J. H., and Duchen, L. W., eds) 5th Ed., pp. 1–68, Edward Arnold, London
26. Nagaike, K., Watanabe, Y., Nakamura, T., Seki, Y., and Yamasaki, I. (1987) J. Gen. Microbiol. 133, 2647–2657
27. Tooke, J., Holliershead, M., Fuller, S. D., Tooke, A. S., and Huttner, W. B. (1989) Eur. J. Cell Biol. 49, 259–273
28. Nigee, J. K., Fleming, A. M., and Scheller, R. H. (1993) Mol. Biol Cell. 4, 747–756
29. Ravichandran, V., Chawla, A., and Roche, P. A. (1996) J. Biol. Chem. 271, 13090–13093
30. Waterman, S. A., and Maggi, C. A. (1995) Neuroscience 69, 977–984
31. Petrenko, A. G., Perin, M. S., Davletov, B. A., Ushkaryov, Y. A., Geppert, M., and Sudhof, T. C. (1991) Nature 353, 65–68
32. Cull-Candy, S. G., Lundh, H., and Thefels, S. F. (1976) J. Physiol. 260, 177–203