Effect of Artemisia ciniformis Extract on Expression of NorA Efflux Pump Gene in Ciprofloxacin Resistant Staphylococcus aureus by Real Time PCR

Zeynab Ghomi³, Farzaneh Tafvizi², Vahid Naseh¹, Iman Akbarzadeh²

1. Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
2. Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran

10.30699/ijmm.14.1.55

ABSTRACT

Activity of norA efflux pump is one of the antibiotic resistance mechanisms in ciprofloxacin resistant Staphylococcus aureus. In this study, the effect of Artemisia ciniformis extract on reducing the expression of norA efflux pumps gene in ciprofloxacin-resistant Staphylococcus aureus isolates was studied.

Ciprofloxacin resistant S. aureus isolates, were treated by different concentration of A. ciniformis extract. After extracting RNA and synthesizing cDNA, norA efflux pump expression was evaluated by Real Time PCR.

There was significant decrease of norA efflux pump expression in ciprofloxacin-resistant S. aureus isolates treated by A. ciniformis extract (P<0.05). Also, a different expression of norA efflux pump gene was reported.

It seems A. ciniformis extract as a natural inhibitor, had potential for suppression of norA efflux pump activity.

Keywords: Staphylococcus aureus, Ciprofloxacin, norA, Efflux Pump, Artemisia ciniformis

Introduction

Staphylococcus aureus is a pathogenic bacterium of the Micrococcus family, which is a common pathogenic bacterium in hospital infections (1, 2). It causes a wide range of diseases including skin infections, pneumonia and endocarditis (3). One of the opportunistic pathogenic agents of nosocomial infections is methicillin-resistant Staphylococcus aureus (MRSA). Resistance to antibacterial agents in MRSA strains has caused limitations in the treatment of diseases caused by this bacterium (4).

One of the most important mechanisms of antibiotic resistance in bacterial cells is the outflow pumps that cause antibiotic outflow from bacterial cells, which is observed in many clinical pathogens (8). Output carriers of antibiotics are divided into five main families based on the amino acid sequence. These families include the major facilitator superfamily (MFS), the Resistance-nodulation-division (RND), the small multidrug resistance (SMR), the ATP-binding cassette enzyme-linked family, and multiple antibiotics, and the extrusion antibiotic family (9).

One of the important mechanisms of antibiotic resistance in S. aureus is the presence of efflux pumps. NorA, norB and norC efflux pumps are found in drug-resistant strains (19). Various studies have shown that norA is capable of pumping various compounds...
including hydrophobic fluoroquinolones such as norfloxacin, ciprofloxacin and ethidium bromide (22). There is a direct relationship between increased expression of norA efflux pump and increased resistance to fluoroquinolones. Inhibition of these systems can be a promising strategy to enhance the effectiveness of antibiotics (14).

Many studies have shown that a wide range of plant extracts may act against bacterial resistant mechanisms (15). Artemisia belongs to the family asteraceae, a small plant that grows in temperate regions. It has 34 species in Iran and is highly regarded in Iranian and Chinese traditional medicine. It has numerous biological properties including antibacterial, antifungal, antioxidant and anti-inflammatory (16).

The aim of this study was to investigate the effect of A. ciniformis extract on expression Efflux pump norA in clinical isolates of ciprofloxacin-resistant S. aureus, a prospective study in Iran which was not studied before.

Materials and Methods

This study was done using clinical samples collected in authors’ previous study (18). Collecting clinical specimens, detecting ciprofloxacin-resistant S. aureus isolates, performing microbial susceptibility testing (antibiogram) by agar disk diffusion method, PCR detection of norA gene, and phenotypic evaluation of active efflux pump was as presented in previous study (18).

Collecting and Extracting A. ciniformis

The A. ciniformis was prepared from the Iranian Biological Resource Center and kept in optimum condition. To do the extraction, 40 g of the plant was first weighed and 300 mL of 80% ethanol was added to the plant and kept in a shaker system for 24 h (90 rpm). After 24 h, it was filtered and placed in an incubator at 37°C to completely evaporate the alcohol.

Determination of Minimum Inhibitory Concentration (MIC) of Plant Extract

MIC experiments were performed according to the dilution method in the microplate for the extract. MIC was performed three times by microdilution method on 96 well plates. The extract was poured into wells at concentrations of 15.6 to 1000 µg / mL and with Mueller Hinton Broth (MHB) it reached to the concentration of 195 µL. All wells were added with 5 µL of microbial culture of isolates at half McFarland concentration. The MIC value was considered as the lowest inhibitory concentration of bacterial growth. It should be noted that wells containing non-extracted bacteria were considered as negative controls and wells containing standard bacteria S. aureus ATCC 25923 and extracts were considered as positive controls to determine MIC concentration.

Extraction of RNA from Staphylococcus aureus Treated with subMIC Extract

Bacterial cell lysis and RNA extraction were performed using RNX solution (Sinagen) according to the protocol. The cDNA construct was performed according to the Revert AidTM First Strand cDNA Synthesis Kit (Fermentas). The gmk gene (guanylate kinase) was used as the reference gene. The primers of the gmk and norA genes are presented in Table 1.

Real-time PCR reaction in the final volume of 25 µL was optimized as follows: 12.5 µL of SYBR TM (2X) Master Mix (Takara Company), 1 µL of 5 pmol primer (Takapoo Biol.), 9.5 µL of deionized water and 1 µL cDNA template (100 ng). Thermal program was performed as follows with Bioneer exicycler 96: Primary denaturation of DNA template was performed at 95°C for 10 min, and the second step alternately was performed during 40 cycles at 95°C for 20 seconds and at 61°C for 40 seconds and 72°C for 20 seconds.

Data Analysis

Statistical calculations were performed using Graphpad Prims ver.6 software and the results were analyzed by one way ANOVA. The difference of target genes expression between control and treated samples was calculated by Tukey’s HSD post-hoc test. Data were presented as mean ± standard deviation (SD) and P<0.05 was considered significant. Real time PCR data analysis was performed based on the comparison of the threshold cycle with the following formula:

$$\Delta\Delta C_t = \Delta C_t \text{test sample} - \Delta C_t \text{control sample}$$

Relative expression: $2^{-\Delta\Delta C_t}$

Table 1. Primers used in this study

Primers	Sequences	PCR products (bp)
norA-F	5’ATCGGTTTAGTAATACCAGTCTTGC3’	112
norA-R	5’GCGATATAATCATTTAGATAACGC3’	188
gmk-F	5’TATCGAGGACTCTGGAGTAGG3’	
gmk-R	CATCAACTCACCCTTCACGC	
Results

MIC Results of Artemisia ciniformis Extract Against Ciprofloxacin-resistant Strains

According to the findings of the previous study, out of 250 clinical specimens, 50 isolates of Staphylococcus aureus were isolated and antibiotic susceptibility results showed that 68% of the samples (34 samples) were methicillin resistant and 24% of them (12 samples) were ciprofloxacin resistant and none of the samples were vancomycin resistant (18).

Ciprofloxacin-resistant *S. aureus* positive isolates were affected by concentrations of 15-16.6 µg / mL of the plant extract over a 24-hour period. The results showed that different strains had a range of MIC of 31.55-500 µg / mL (Table 2).

The graphs of the amplification of *norA* and *gmk* genes are shown in Figures 1 and 2. Specific amplification of the target gene fragments, primers not pairing, and no amplification of non-specific fragment for each gene were determined using the melting curve (1-2)The results showed that the expression of *norA* gene was significantly decreased compared to the reference gene (*gmk*) after treatment with the plant extract. The highest decrease in *norA* gene expression was observed in isolate 6 and the lowest decrease in gene expression was observed in isolate 5. The results are shown in Figure 3.

Isolate number	MIC (µg/mL)
1	62.5
2	125
3	31.2
4	250
5	500
6	15.6
7	62.5
8	31.2
9	125
10	500
11	31.25
12	250
ATCC 35556	500

Table 2. Determination of MIC of plant extract in different strains.

![Melting Curve](image-url)
Figure 1. Diagram of melting curves of *norA* genes and *gmk* genes.
Discussion

Since ancient times, medicinal plants have been used clinically as important sources of secondary metabolites (terpenoids, phenolic compounds and alkaloids). These plants can directly or indirectly affect the activity of efflux pumps. Recently, the use of herbal compounds and plant extracts as an alternative to antibiotics has received much attention (26). The difference in the effect of plant extracts on bacteria depends on various factors. In general, plant compounds exert their antimicrobial activity through a variety of mechanisms (27).

Due to their antibacterial potential, the use of herbal extracts can be an effective, low cost and affordable method to reduce antibiotic resistance in a wide range of hospital opportunistic bacteria (28).

The results of our study showed that *A. ciniformis* extract was able to significantly reduce *norA* gene expression in ciprofloxacin resistant strains. It should be noted that different expression of *norA* gene was observed in the resistant strains and in the more resistant strains a higher relative expression of the *norA* gene was observed.

Flavonoid sarothrin extracted from *Alkann orientalis* leaves and flowers inhibited *norA* efflux pump activity and inhibited the growth of *Mycobacterium smegmatis* and *S. aureus* (28).

The results of the study by Kalia et al. showed that capsaicin decreased the MIC of ciprofloxacin for *S. aureus* SA-1199B (*norA* overproducing), SA-1199 (wild-type). Increased susceptibility of *S. aureus* to ciprofloxacin was observed. This study showed that capsaicin not only decreased the efflux pump activity but also decreased the attack of Staphylococcus on macrophages (29).

Studies have shown that the extract and compounds of Olympicin A, 5,7-dihydroxy-6-(2-methylbutanoyl)·8-(3-methylbut-2-enyl)-4-phenyl-2H-chromen-2-one, Karavilagenin C and Allanthoidiol, Boeravinone B from aerial parts of *Hypericum olympicum* L., flowers of *Mesua ferrea* L., aerial parts of *Momordica balsamina* L., root of *Zanthoxylum capense* and *Boerhavia diffusa*...
inhibited and decreased activity of norA efflux pump. In other words, they had an Efflux pump inhibitor (EPI) (30-34).

This study was in line with other studies showing that A. ciniformis reduced norA gene expression in efflux pumps in S. aureus. Decreased norA gene expression leads to poor performance of these pumps and prevents overflow of antibiotics and other disinfectants and pharmaceuticals. Therefore, this plant can be used as an appropriate antibacterial drug and, on the other hand, it is recommended with regard to its antiviral resistance, other efflux studies and antiviral antibiotic resistance.

Acknowledgment

The authors would like to acknowledge the laboratory of Islamic Azad University.

Conflict of Interest

Authors declared no conflict of interests.
مقاومت در اثر تیمار با داروهای بسیار فلوکساسینی (MRSA) اشاره کرد. این باکتری سبب بروز طیف وسیعی از بیماری‌های مختلف از جمله عفونت‌های پوستی، پنوموئو، اندوکاردیتی می‌شود (3).

یکی از عوامل فرصت طبیعی برای بیمارتی‌های بیمارستی‌ای MRSA ایجاد مفیده مقاومت خود می‌کند (4). یکی از داروهای مشابه داروی MRSA استافیلوکوکوس الکسون است. Real Time PCR اثر عصاره ارغوان‌نار کناره‌ای در استافیلوکوکوس الکسون ناشی از استفاده از طب سنتزی، می‌تواند به عنوان یکی از روش‌های مقاومت مقابله با MRSA است.

اجرای شکل این الگوهای مقاومت در نتیجه نمایش فعالیت پمپ‌های الکسون در سلول باکتری و کاهش جذب و مانع انتقال باکتری از همان‌گونه که در استافیلوکوکوس الکسون با استفاده از Real Time PCR ناشی از آن ۱۳۹۸/۱۲/۲۴ نشریه میکروب‌شناسی مولکولی، نمره ۷ تا ۹ نشان می‌دهد.

مقدمه
استافیلوکوکوس الکسون (Staphylococcus aureus) یکی از پاتوژن‌های بروز طیف وسیعی از بیماری‌های مختلف از جمله عفونت‌های پوستی، پنوموئو، اندوکاردیتی می‌شود (3). یکی از عوامل فرصت طبیعی برای بیمارتی‌های بیمارستی‌ای MRSA ایجاد مفیده مقاومت خود می‌کند (4). یکی از داروهای مشابه داروی MRSA استافیلوکوکوس الکسون است. Real Time PCR اثر عصاره ارغوان‌نار کناره‌ای در استافیلوکوکوس الکسون ناشی از استفاده از طب سنتزی، می‌تواند به عنوان یکی از روش‌های مقاومت مقابله با MRSA است.

اجرای شکل این الگوهای مقاومت در نتیجه نمایش فعالیت پمپ‌های الکسون در سلول باکتری و کاهش جذب و مانع انتقال باکتری از همان‌گونه که در استافیلوکوکوس الکسون با استفاده از Real Time PCR ناشی از آن ۱۳۹۸/۱۲/۲۴ نشریه میکروب‌شناسی مولکولی، نمره ۷ تا ۹ نشان می‌دهد.

مقدمه
استافیلوکوکوس الکسون (Staphylococcus aureus) یکی از پاتوژن‌های بروز طیف وسیعی از بیماری‌های مختلف از جمله عفونت‌های پوستی، پنوموئو، اندوکاردیتی می‌شود (3). یکی از عوامل فرصت طبیعی برای بیمارتی‌های بیمارستی‌ای MRSA ایجاد مفیده مقاومت خود می‌کند (4). یکی از داروهای مشابه داروی MRSA استافیلوکوکوس الکسون است. Real Time PCR اثر عصاره ارغوان‌نار کناره‌ای در استافیلوکوکوس الکسون ناشی از استفاده از طب سنتزی، می‌تواند به عنوان یکی از روش‌های مقاومت مقابله با MRSA است.

اجرای شکل این الگوهای مقاومت در نتیجه نمایش فعالیت پمپ‌های الکسون در سلول باکتری و کاهش جذب و مانع انتقال باکتری از همان‌گونه که در استافیلوکوکوس الکسون با استفاده از Real Time PCR ناشی از آن ۱۳۹۸/۱۲/۲۴ نشریه میکروب‌شناسی مولکولی، نمره ۷ تا ۹ نشان می‌دهد.

مقدمه
استافیلوکوکوس الکسون (Staphylococcus aureus) یکی از پاتوژن‌های بروز طیف وسیعی از بیماری‌های مختلف از جمله عفونت‌های پوستی، پنوموئو، اندوکاردیتی می‌شود (3). یکی از عوامل فرصت طبیعی برای بیمارتی‌های بیمارستی‌ای MRSA ایجاد مفیده مقاومت خود می‌کند (4). یکی از داروهای مشابه داروی MRSA استافیلوکوکوس الکسون است. Real Time PCR اثر عصاره ارغوان‌نار کناره‌ای در استافیلوکوکوس الکسون ناشی از استفاده از طب سنتزی، می‌تواند به عنوان یکی از روش‌های مقاومت مقابله با MRSA است.
جزئیات استخوان‌کوکوس اورتوس مقاوم به سیپروفلوکساسین، انجام آزمایش تست حساسیت میکروبی (آنتی‌بیوتیک) به روش PCR دیسک دیفیوز آگار، شناسایی زن nora توسط فنوتیپ و وجود پم افلاکس باعث مطالعه قابلیت نویسندگان، ارائه شده است (18).

در مطالعه حاضر از روش Real Time PCR برای بررسی اثر عصاره گیاه به روش بیان nora جمع آوری گیاه A. cinformis از مرکز ذخایر زیستی و زنگی‌کری ایران با کده‌برنامه TBIR1000652 تهیه شد و در شرایط بهینه و مناسب نگهداری شد. برای تهیه آن در ابتدا میزان 40 گرم از گیاه وزن شد و 30 میلی‌لیتر آب انتقال گیاه اضافه شد و به مدت 24 ساعت در دستگاه شیکر با دور روتاسیون 90 درجه پراط، به مقدار 150 rpm راحت شد. بعد از 24 ساعت از کاغذ صافی و فیلتر سر ۱۵میکرون فیلتر کردن استفاده شد و در داخل انکوپلوت در دمای ۳۷ درجه سلسیوس قرار داده نشان داد که گیاه اثر کامل تیخور دارد.

Minimum (MIC) عایق حساسیت مبهری (به انگلیسی)

به روش روش مخصوص در میکروپلاست برای عصاره انجام شد. به صورت سه ترکیب از استفاده از روش MIC به‌طور کلی در همه نمونه‌ها مثبت از سه نمونه در کلاس‌های مختلف ثبت شد. مقدار MIC از کشت MIC از میکروبیولوگی به‌طور کلی به معنی مقدار کم‌تر تعداد واکنش‌های مثبت است. کاهش MIC به‌طور کلی نشان می‌دهد که در نمونه‌ها آنزیم حساسیت به درمان می‌باشد.

استخراج RNA با اکثری استخوان‌کوکوس اورتوس (سیاست‌) subMIC عصاره

بر اساس مطالعه در مطالعات قبلی از نمونه‌های به روش PCR انجام شده می‌توانست نتایج آزمایشات انجام شده با محدودیت ها در مدل‌های انتقال نکته کننده است. این اینکه ناشناخته و شناخته نشده است که با توجه به imped (RND) های انتشار مایعی مبهم به کلینیک روابط‌های متقابلی، درمان و درمان احتمال می‌باشد.

استخراج RNA با اکثری استخوان‌کوکوس اورتوس (سیاست‌) subMIC عصاره

به‌طور کلی در مطالعات قبلی از نمونه‌های به روش PCR انجام شده می‌توانست نتایج آزمایشات انجام شده با محدودیت‌های متقابلی، درمان و درمان احتمال می‌باشد.
الگوی cDNA (گوانیلات کیناز) به عنوان ژن norA در دمای 70 درجه به مدت 4 دقیقه انکوبه شدند. ویال نمونه را مدت بیشتری در این مرحله به صورت سه تا پنج دقیقه فاصله دیگر رود یخی کرده و با وارونه کردن ویال اجازه داده شد تا رسوب در ویال ادامه کار، قبل از آنکوبه شدن در دمای 40 درجه نمونه را به صورت سه تا پنج دقیقه افزایش داده شد. برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA از آنری از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌تواند روش در آب تیم نشان داده شد. نمونه‌های از آنزیم DEPC استفاده شد. استفاده از cDNA استخراج شده، پس RNA استحکام حاصل از cDNA استخراج شده در حفظ هادیلی برای حفظ هادیلی در مرحله بعد می‌то
این مقاله تاکید می‌کند که فرمول محاسبه داده‌های Real Time PCR از طریق ΔΔCt استفاده می‌شود. در این مقاله، اختلاف چرخه‌های آستانه‌های به دست آمده از نمونه‌های مورد آزمایش (سیلوهای تیمارشده با عصاره) و نمونه‌های کنترل (سیلوهای تیمار نشده با عصاره) محاسبه و با استفاده از فرمول ΔΔCt، بیان شده که فرمول محاسبه AN به شرح زیر است:

\[\Delta \Delta Ct = \Delta Ct_{test\ sample} - \Delta Ct_{control\ sample} \]

بررسی بیان زن norA در سویه‌های مقاوم به subMIC سپیروفولکسیسین در غلظت‌های مختلف

شماره ایزوله	MIC (µg/mL)
1	45/15
2	135
3	31/2
4	500
5	65/6
6	43/4
7	31/2
8	500
9	125
10	250
11	15/6
12	75/5
ATCC 35556	500
حسن محمود و همکاران | تأثیر ضد باکتریایی بربرین بر ایزوله‌های استاتبوکتر بومانی

نتایج نشان داد که پاسخ به ژن norA نسبت به ژن مرجع gmk پس از تیمار با عصاره گیاه کاهش معنی‌دار و چشمگیری نشان داد.

برای بیشترین کاهش بيان ژن norA در ایزوله ۶ (۰۷/۰۱۰) و کمترین کاهش بيان ژن در ایزوله ۵ (۱۰/۰۹۱) دیده شد (جدول ۳). نتایج در شکل ۳ نمايش داده شده است.

شکل ۱. نمودار منحنی دوب زن‌های gmk و norA

شکل ۲. نمودار تکرار زن‌های gmk و norA در باکتری‌های تیمار شده با عصاره.
جدول ۳. نتایج بیان زن norA در سویه‌های مختلف مقاوم به سیپروفلوکساسین.

شماره سویه	تیمارنشده با عصاره	میانگین GMK	تیمارشده با عصاره	میانگین GMK	تیمارنشده با عصاره	میانگین ica	تیمارشده با عصاره	میانگین ica	تغییر بیان زن GMK
۱	۱۸۸/۰۸	۱۹/۷/۲۳	۳۰/۰	۳۰/۲/۶۶	۲۳/۶۸	۲۰/۴/۱۴	۲۳/۶۸	۲۶/۶۱/۸۵	۱
۲	۹۴/۱۹	۱۹/۵/۷۶	۲۰/۴/۲۱	۲۰/۷/۵۶	۲۱/۵/۹۵	۱۹/۶/۵۱	۲۵/۵/۳۵	۲۷/۶/۱۸۰	۱
۳	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۴	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۵	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۶	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۷	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۸	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۹	۱۹/۵/۱۹	۲۰/۴/۲۴	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۲/۷۸	۲۱/۱/۲۷	۲۵/۸/۵۱	۲۷/۶/۲۵۰	۱
۱۰	۱۸۸/۰۸	۱۹/۷/۲۳	۳۰/۰	۳۰/۲/۶۶	۲۳/۶۸	۲۰/۴/۱۴	۲۳/۶۸	۲۰/۴/۱۴	۱
۱۱	۱۹/۵/۱۹	۲۰/۴/۲۱	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۸/۲۴	۲۰/۴/۱۴	۲۳/۸/۲۴	۲۵/۸/۵۱	۱
۱۲	۱۹/۵/۱۹	۲۰/۴/۲۱	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۸/۲۴	۲۰/۴/۱۴	۲۳/۸/۲۴	۲۵/۸/۵۱	۱
۱۳	۱۹/۵/۱۹	۲۰/۴/۲۱	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۸/۲۴	۲۰/۴/۱۴	۲۳/۸/۲۴	۲۵/۸/۵۱	۱
ATCC 35556	۱۹/۵/۱۹	۲۰/۴/۲۱	۲۰/۴/۲۱	۲۰/۲/۱۴	۲۳/۸/۲۴	۲۰/۴/۱۴	۲۳/۸/۲۴	۲۵/۸/۵۱	۱

شکل ۳. بیان زن norA در سویه‌های تیمارشده با عصاره.

بحث

یکی از مکانیسم‌های مهم مقاومت آنتی‌بیوتیکی در باکتری استافیلوکوکوس اوژنوس، وجود ببی‌های افلاکس است. پم‌های norC و norB افلاکس در سویه‌های مقاوم به دارو پافت می‌شوند (۱۹).
اثیر ترکیبات خاص بر های انی باشد. بنابراین یافتن گیاه طبی اثرگذار در این امر هزینه و قابل دسترس جهت عصاره‌های گیاهی بعلت پتانسیل ضد باکتریایی که سازوکارهایی چون تجزیه دیواره سلولی، افزایش اسیدیتی سیتوزولی، روش، رقم و سن گیاه، روش خشک کردن، روش استخراج ترکیبات می‌توان به منطقه جغرافیایی مقاوم قادر استفاده شد تا.

نتایج مطالعه می‌شاند داد که عملکرد گیاه A. ciniformis در سویه‌های مقوم به سپیروفیل و MSF که به گاهی می‌توان در سویه‌های مقوم کاهش داده و در سویه‌های مقوم کاهش بسیار مشاهده شد.

نتاون در تاثیر عصاره‌های گیاهی بر پارکینسونیا هم باعث خاصیت ضد میکروبی خود را از طریق سازوکارهای خون جریه دیواره سلولی، فازیس اسیده‌سازی سیتوپلیزی، آبسه به غشاء سلولی، تنش محتوای سلولی، خارج، انتقال در نقل و انتقال پروتون و اختلال در فعالیت آنزیم حیاتی نظر ATPase و جلوگیری از منابعی باکتری می‌کند.

استفاده‌ای از عصاره‌های گیاهی به پارکینسونیا که دارند. می‌تواند یک روش موثر، کم‌هزینه و قابل دسترس جهت کاهش مقدار آنتی‌بیوتیک در طیف بسیاری از آن‌ها قرار گرفت. طبل میکروب‌شناختی با استفاده از فرآیند انتقال گیاه در این اثر به عنوان یک راهکار جدید و موثر در کاهش علائم کاهش‌های فعال‌کننده استفاده می‌کنند.

نتاون داده است که پارکینسونیا به سپیروفیل و MSF مانند فیل‌ها و سایر میکروب‌ها به عنوان منابع مهم متابولیت هستند. مطالعات مختلف نشان داده است که پارکینسونیا در تغییری‌های فنکشنال و همکاران سر دارویی در صورت غلبهکننده است. این مطالعات در سال 2012، به بررسی نقش و همکاران در سال، به بررسی نقش capsaicin (8-methyl-N-vanillyl-6-nonenamide) S. aureus SA-1199B (NorA در norA SA-K1758 (norA و SA-1199 (wild-type) مهارکننده به عنوان S. aureus SA-1199B (NorA در norA SA-K1758 (norA و SA-1199 (wild-type) مهارکننده به عنوان
نتایج این مطالعه هم همراه با مطالعات دیگر، با اصلیتی به نام norA که گیاه $A. \text{ciniformis}$ به کامیابی بیان زن افلاکس در باکتری استافیلوکوکوس اوریوسی شد. کامیابی بیان Zn نر norA باعث ممرکد ضعیف بوده و از تراوش زیاد آنتی بیوتیکها و سایر موارد دفعی نگهداری و داروی جلوگیری می‌شود. بنابراین قابلیت استفاده به‌عنوان داروی مناسب آنتی - بیوتیکی، مطالعه سایر بیماری‌های افلاکس و مقایسه الگوی مقاومت آنتی بیوتیکی بیشتر شود.

سیاستگزاري

از دانشگاه آزاد اسلامی واحد پرند و دکتر بازرگان

تعدادی می‌گردد.

تعارض در منابع

در انجام مطالعه حاضر، نویسنده‌گان هیچ‌گونه تضاد منافعی نداشتند.

منابع مالی

منابع مالی این تحقیق توسط نویسنده‌گان تامین شده است.

References

1. Kluytmans J, Van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews. 1997;10(3):505-20. [DOI:10.1128/CMR.10.3.505]

2. Corredor Arias LF, Espinal L, Samara J, Moncayo Ortiz JI, Santacruz Ibarra JJ, Alvarez Aldana A. Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colombia Medica. 2016;47(1):15-20. [DOI:10.25100/cm.v47i1.1818]

3. Hefzy EM, Hassan GM, Abd El Reheem F. Detection of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus nasal carriage among Egyptian health care workers. Surgical infections. 2016 1;17(3):369-75. [DOI:10.1089/sur.2015.192] [PMID]

4. Petrović-Jeremić L, Kuljić-Kapulica N, Ristanović E, Jošić D, Lepšanović Z. Prevalence of Panton-Valentine leukocidin genes in community-associated methicillin-resistant Staphylococcus aureus in the District of Pomoravlje, Vojnosanitetski pregled. 2016;73(3):256-60. [DOI:10.2298/VSP140715003P]

5. Firsov AA, Smirnova MV, Strukova EN, Vostrov SN, Portnoy YA, Zinner SH. Enrichment of resistant Staphylococcus aureus at ciprofloxacin concentrations simulated within the mutant selection window: bolus versus continuous infusion. International journal of antimicrobial agents. 2008 1;32(6):488-93. [DOI:10.1016/j.ijantimicag.2008.06.031] [PMID]

6. S. Maisnier-Patin and D. I. Andersson; WHO Regional Committee for Europe. European strategic action plan on antibiotic resistance. Res. Microbiol. 2004, 155,360-369; Copenhagen. 2011. [DOI:10.1016/j.resmic.2004.01.019] [PMID]

7. American Academy of Microbiology. Antibiotic resistance: an ecological perspective on an old problem. Washington DC.2009.

8. Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews. 2005;57(10):1486-513. [DOI:10.1016/j.addr.2005.04.004] [PMID]

9. Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. Journal of antimicrobial...
10. Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoactivation. Antimicrobial agents and chemotherapy. 2008 1:52(9):3202-9. [DOI:10.1128/AAC.00006-08] [PMID] [PMCID]

11. De Kievit TR, Parkins MD, Gillis RJ, Srikanum R, Ceri H, Poole K, Iglewski BH, Storey DG. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial agents and chemotherapy. 2001;45(6):1761-70. [DOI:10.1128/AAC.45.6.1761-1770.2001] [PMID] [PMCID]

12. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. Journal of molecular microbiology and biotechnology. 2001;3(2):255-64.

13. Sierra JM, Ruiz J, Jimenez De Anta MT, Vila J. Prevalence of two different genes encoding NorA in 23 clinical strains of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy. 2000;46(1):145-6. [DOI:10.1093/jac/dae1145] [PMID]

14. Motallebi M, Jabalami F, Asadolahi K, Taherikalani M, Emamnejad M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microbial pathogenesis. 2016;97:34-7. [DOI:10.1016/j.micpath.2016.05.017] [PMID]

15. Simoes M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural product reports. 2009;26(6):746-57. [DOI:10.1039/h821648g] [PMID]

16. Schelz Z, Hohmann J and Molnar J. Ethnomedicine: A Source of Complementary Therapeutics. ed. D. Chattopadhyay. Research Signpost. 1st edn. 2010; 6:179-201.

17. Sibanda T, Okoh AI. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African Journal of Biotechnology. 2007;6(25).

18. Zahmatkesh H, Alsadat M, Laripoor M, Mirzaie A, Ashrafi F. Prevalence of norA and norB efflux pump genes in clinical isolates of Staphylococcus aureus and their contribution in ciprofloxacin resistance. Iranian Journal of Medical Microbiology. 2016;10(5):20-30.

19. Stutz K, Stephan R, Tasara T, SpA, CHA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. Journal of medical microbiology. 2011;49(2):638-46. [DOI:10.1128/JCM.01148-10] [PMID] [PMCID]

20. Kosmidis C, Schindler BD, Jacinto PL, Patel D, Bains K, Seo SM, et al. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. International journal of antimicrobial agents. 2012;40(3):204-9. [DOI:10.1016/j.ijantimicag.2012.04.014] [PMID]

21. Paulsen IT, Lewis K. Multidrug efflux. Horizon Scientific. 2002; 3(2): 143-44.

22. Li XZ, Nikaio H. Efflux-mediated drug resistance in bacteria. Drugs. 2009;69(12):1555-623. [DOI:10.2165/11317030-000000000-00000] [PMID] [PMCID]

23. Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews. 2005;57(10):1486-513. [DOI:10.1016/j.addr.2005.04.004] [PMID]

24. Zahmatkesh H, Alsadat M, Laripoor M, Mirzaie A, Ashrafi F. Prevalence of norA and norB efflux pump genes in clinical isolates of Staphylococcus aureus and their contribution in ciprofloxacin resistance. Iranian Journal of Medical Microbiology. 2016;10(5):20-30.Iranian.

25. KAZEMI SS, NEMATI MF, MIRZAIE A, ASHRAFI A. Antibiotic resistance assessment, and genotypic and phenotypic detection of norA efflux pump in methicillin and ciprofloxacin resistant Staphylococcus aureus isolates. Pump in Methicillin and Ciprofloxacin Staphylococcus Aureus Strains. Journal of Microbial World. 2017; 9(4): 286-296.Iranian.

26. Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of Pharmaceutical Analysis. Available online 5 November 2019. in press [DOI:10.1016/j.jpha.2019.11.002]

27. Holler JG, Christensen SB, Slotved HC, Rasmussen HB, Güzman A, Olsen CE, et al. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. Planta Med. 2012;77(5):5138-44. [DOI:10.1055/s-0032-128259] [PMCID]

28. Bame JR, Graf TN, Junio HA, Bussey IIII RO, Jarmusch De Kievit TR, Parkins MD, Gillis R, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pump inhibitor. Plant Med. 2013;79(5):327. doi: 10.1055/s-0032-128259. [DOI:10.1055/s-0032-128259] [PMID] [PMCID]

29. Kalia NP, Mahajan P, Mehra R, Nargotra A, Sharma JP, Koul S, et al. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. Journal of antimicrobial chemotherapy. 2012;67(10):2401-8. [DOI:10.1093/jac/dks232] [PMID]
30. Shiu WK, Malkinson JP, Rahman MM, Curry J, Stapleton P, Gunaratnam M, et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International journal of antimicrobial agents. 2013;42(6):513-8. [DOI:10.1016/j.ijantimicag.2013.08.007] [PMID]

31. Roy S, Kumari N, Pahwa S, Agrahari U, Bhutani K, Jachak S, Newman D. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia. 2013; 90:140-150. [DOI:10.1016/j.fitote.2013.07.015] [PMID]

32. Ramalhete C, Spengler G, Martins A, Martins M, Viveiros M, Mulhovo S, Ferreira M, Amaral I. Inhibition of efflux pumps in meticillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int J Antimicrob Agents. 2011; 37:70-74. [DOI:10.1016/j.ijantimicag.2010.09.011] [PMID]

33. Cabral V, Luo X, Junqueira E, Costa S, Mulhovo S, Duarte A, Couto I, Viveiros M, Ferreira M. Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine. 2015; 22:469-476. [DOI:10.1016/j.phymed.2015.02.003] [PMID]

34. Singh S, Kalia NP, Joshi P, Kumar A, Sharma PR, Kumar A, Bharate SB, Khan IA. Boeravinone B, A Novel Dual Inhibitor of NorA Bacterial Efflux Pump of Staphylococcus aureus and Human P-Glycoprotein, Reduces the Biofilm Formation and Intracellular Invasion of Bacteria. Front Microbiol. 2017;8:1868. [DOI:10.3389/fmicb.2017.01868] [PMID] [PMCID]