Endovascular treatment of lower extremity arteries is associated with an improved outcome in diabetic patients affected by intermittent claudication

Giuseppe Giugliano¹, Cinzia Perrino¹, Vittorio Schiano¹, Linda Brevetti¹, Anna Sannino¹, Gabriele Giacomo Schiattarella¹, Giuseppe Gargiulo¹, Federica Serino¹, Marco Ferrone¹, Fernando Scudiero¹, Andreina Carbone¹, Antonio Bruno¹, Bruno Amato², Bruno Trimarco¹, Giovanni Esposito¹*

From XXV National Congress of the Italian Society of Geriatric Surgery Padova, Italy. 10-11 May 2012

Abstract

Background: Lower extremity peripheral arterial disease (LE-PAD) is a highly prevalent condition among diabetic patients, associated with reduced walking capacity and a high incidence of cardiovascular events. Endovascular revascularization of lower extremities arteries improves walking performance and quality of life of diabetic patients affected by intermittent claudication, but few studies evaluated the impact of revascularization on cardiovascular outcome in this high-risk population. Accordingly, in the present study we evaluated if leg-ischemia resolution by effective lower limbs percutaneous revascularization can also impact cardiovascular outcome in a homogeneous group of diabetic patients affected by intermittent claudication.

Methods: 236 diabetic patients affected by LE-PAD at stage II of Fontaine’s classification, with ankle/brachial index ≤ 0.90 and one or more hemodynamically significant stenosis in at least one artery of the ileo-femoro-popliteal axis were enrolled in the study. According to the Trans-Atlantic Inter Society Consensus II recommendations, 123 (52.1%) underwent percutaneous transluminal angioplasty (PTA group), while 113 (47.9%) underwent conservative medical therapy only (MT group). The incidence of major cardiovascular events (cardiovascular death, myocardial infarction, ischemic stroke, coronary or carotid revascularization) was prospectively analyzed with Kaplan-Meier curves and the risk of developing a cardiovascular event calculated by Cox analyses.

Results: No baseline difference in cardiovascular risk factors were observed between the PTA and MT groups, except for a lower prevalence of males in PTA group (74.8% vs. 85.8%, p=0.034). Furthermore, patients in the PTA group showed a worse walking capacity as expressed by maximum walking distance (108.7 ± 300.9 vs 378.4 ± 552.3 meters, p<0.001). During a median follow-up of 20 months (12.0-29.0), the incidence of cardiovascular events was markedly lower in patients in the PTA group with respect to patients in the MT group (7.3% vs. 22.1%, p=0.001), and patients of the MT group had at Cox analysis a 3.9 increased risk with respect to PTA group, after adjustment for potential confounding factors (95% CI 1.1-15.3, p=0.049).

Conclusions: The present study shows that lower limbs revascularization of diabetic patients affected by intermittent claudication, in addition to improve walking performance, is associated with a reduction in the incidence of future major cardiovascular events.

* Correspondence: espogiov@unina.it

¹Department of Clinical Medicine and Cardiovascular and Immunological Sciences, “Federico II” University, via Pansini 5, 80131, Naples, Italy

Full list of author information is available at the end of the article

© 2012 Giugliano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Cardiovascular disease (CVD) represents the leading cause of death in western countries affecting especially middle-age people [1-3]. One of the most important risk factor, widely recognized as an independent predictor of outcome, is diabetes [4,5]. Diabetes affects nearly all vascular beds and in affected patients the risk of morbidity is about twice that of age-matched non diabetic patients [6]. The metabolic disorders accompanying diabetes seem to accelerate the progression of atherosclerosis and indeed more than half of diabetics will die as a result of a cardiovascular ischemic event [7,8].

Lower extremity peripheral arterial disease (LE-PAD), one of the main expressions of atherosclerosis, is a highly prevalent pathological condition among diabetic patients associated with reduced walking capacity and a high incidence of developing future cardiovascular ischemic events [9-14]. When LE-PAD develops in the setting of diabetes, it portends a significantly increased danger to both life and limb function [15,16].

While revascularization should be attempted without delay in all patients presenting with critical limb ischemia, whenever technically possible, the management of intermittent claudication varies depending on the severity of walking impairment and the associated impact of this functional disability on individual lifestyle [17]. According to the most recent guidelines, LE-PAD patients with limited walking capacity should be managed with limb revascularization procedures only when exercise and/or drug therapy fail to improve symptoms [17-23]. Both open repair/bypass surgery or percutaneous trans-luminal angioplasty (PTA) are effective revascularization approaches, and the choice is based upon the number, length and localization of the stenosis/occlusion, surgery risk score and patient preference [3,18].

PTA of the lower limbs is effective in improving not only functional status and quality of life in claudicants, [21,23] but it is also associated with improved cardiovascular outcome [9]. Whether these effects can be also observed in patients with diabetes and intermittent claudication is currently unknown. Thus, we conducted a prospective study to evaluate whether effective endovascular revascularization by PTA might be associated with a reduction in cardiovascular events compared to medical therapy only in a homogeneous cohort of diabetic patients affected by LE-PAD and intermittent claudication.

Methods
Study population
Consecutive diabetic patients referred to our vascular laboratory for suspected intermittent claudication were screened for enrollment in this study. Criteria for study entry were all of the following: 1) diagnosis of diabetes mellitus; 2) LE-PAD at stage II of Fontaine’s classification (intermittent claudication); 2) ABI ≤0.90; 3) one or more hemodynamically significant stenosis in at least one artery of the ilio-femoro-popliteal axis at B-mode ultrasound. Exclusion criteria were: 1) critical limb ischemia; 2) previous lower limb revascularization; 3) recent acute coronary or cerebrovascular ischemic events (6 months); 4) recent coronary or carotid revascularization procedures (6 months); 5) abnormal myocardial ischemia stress test at enrollment; 6) de-compensated heart failure; 7) malignant neoplasia or significant hepatic, renal, or inflammatory disease.

According to the inclusion/exclusion criteria, 252 consecutive diabetic patients affected by intermittent claudication were selected. All patients were treated with maximal medical therapy and encouraged to engage regular physical exercise for at least three months. After this time, patients complaining a severe disability caused by claudication, unable to perform normal work or with very serious impairment of daily life activities despite maximal medical therapy and regular physical exercise (n=139) were selected for angiography and eventually revascularization, while the remaining 113 patients were managed with medical therapy only (MT group). Among the patients initially selected for revascularization, 2 patients refused to undergo angiography, and were excluded from the study. Based on the angiograms, 12 patients displaying TASC D lesions were excluded from the study, while 125 underwent endovascular revascularization. Following PTA, only 123 patients displayed a successful angiographic result (2 patients showed a residual stenosis >30%), and therefore were included in the study (PTA group). All participants gave written informed consent to the study, which was approved by our institutional ethics committee.

Clinical assessment
In each patient, clinical history and risk factors were assessed at first visit. Smokers included current and former smokers. Hypertension was diagnosed if systolic arterial pressure exceeded 140 mmHg and/or diastolic arterial pressure exceeded 90 mmHg on repeated measurements, or if the patient used antihypertensive drugs. Hypercholesterolemia was diagnosed if plasma total cholesterol exceeded 200 mg/dl, plasma low-density lipoprotein cholesterol exceeded 130 mg/dl, or if the patient used lipid-lowering drugs because of a history of hypercholesterolemia. Hospital records documented previous cardiovascular events.

ABI and maximum walking distance assessment
ABI was measured at the first visit after participants had rested supine for 5 minutes. The systolic blood pressure in both brachial arteries and the ankle systolic blood pressure for the right and left posterior tibial and dorsalis
pedis arteries were measured using a Doppler probe. The ABI for each leg was then determined using the higher of the two readings from either the posterior tibial or dorsalis pedis arteries, and the higher of the two brachial readings. The lower ABI of the two legs was used for diagnostic purposes and as predictor of future cardiovascular events. Maximum walking distance (MWD) was tested by treadmill (speed 3 km/h, inclination 10%) at the first visit.

Endovascular procedure

Percutaneous Transluminal Angioplasty (PTA) was performed after diagnostic angiography and intra-venous injection of 70 U/kg of unfractionated heparin. bailout nitinol self-expanding stent implantation was performed when a suboptimal angiographic result was obtained. Successful angioplasty was defined by a final angiogram with residual stenosis <30%.

Assessment of cardiovascular events

Patients underwent regular follow-up clinical examinations at our Institution at 3-month intervals. The occurrence of cardiovascular death, myocardial infarction, ischemic stroke and coronary or carotid revascularization was prospectively assessed. Cardiovascular deaths comprised fatal myocardial infarction, fatal stroke, sudden death, and death secondary to arrhythmia or refractory heart failure. The minimum follow-up period was 6 months. Medical records and death certificates of all patients who had an event were obtained and validated by a physician unaware of patient’s peripheral treatment. For patients who had more than 1 event, only the first was considered in the analysis.

Statistical analysis

Statistical analyses were performed using SPSS 16.0 (SPSS, Inc., Chicago, IL, USA). Variables were expressed as absolute numbers and percentage or mean ± SD, with the exception of leukocyte count that was expressed as median and inter-quartile range because of its skewed distribution. Comparisons were made by t-test for unpaired samples, χ² test, or Mann-Whitney U test, as appropriate. Cumulative event rates in the PTA group vs. MT group were estimated by Kaplan-Meier curves and probability values by log-rank test.

Cox proportional hazard analyses were performed to verify if endovascular treatment was associated with a lower incidence of future cardiovascular events. The following covariates, known to be potential contributors of cardiovascular risk, were included in the adjusted model: age, sex, smoking, hypercholesterolemia, hypertension, baseline ABI, baseline maximum walking distance, and leukocyte count.

All statistical tests were two-sided. For all tests, a p-value < 0.05 was considered statistically significant.

Results

Patient characteristics

Table 1 reports the baseline characteristics of the patients in the PTA and MT groups. There were fewer males in the PTA group with respect to MT group (74.8% vs. 85.8%, p=0.034) and, not surprisingly, the MT group was characterized by a better functional capacity (maximum walking distance: 378.4 ± 552.3 vs. 108.7 ± 300.9 meters, p<0.001). Conversely, no difference between the two groups was observed with respect to the prevalence of classic cardiovascular risk factors, cardiovascular morbidity, and baseline ABI.

Endovascular treatment and outcome

During a median follow-up of 20.0 months (interquartile range 12.0 – 29.0), 34 of the 236 patients (14.4%) had a major cardiovascular event, of which 25 (22.1%) occurred in the MT group, while only 9 (7.3%) occurred in the PTA group (p<0.001). Importantly, the PTA group was characterized by a lower rate of cardiovascular deaths, especially driven by a reduction in the rate of fatal MI (data not shown). Consistent with these results, Kaplan-Meier curves depicting the incidence during follow-up of total cardiovascular events showed a significant advantage in the PTA group vs. MT group (Figure 1).

At Cox analysis, patients in the MT group had a 2.68-fold increased risk (95% CI 1.24-5.74, p = 0.011) of developing a cardiovascular event with respect to patients in the PTA group. Notably, this association remained statistically significant after adjustment for the

Table 1 Baseline characteristics of the study population

	PTA Group (n = 123)	MT Group (n = 113)	p
Age (yr)	64.7 ± 9.7	66.2 ± 8.9	0.323
Males	92 (74.8)	97 (85.8)	0.034
Risk factors			
Hypercholesterolemia	98 (79.6)	79 (69.9)	0.152
Hypertension	112 (91.0)	183 (92.0)	0.757
Smoking	107 (87.0)	91 (80.5)	0.239
BMI	27.6 ± 5.3	26.5 ± 5.2	0.831
LE-PAD severity			
ABI	0.66 ± 0.18	0.65 ± 0.17	0.580
MWD (meters)	108.7 ± 300.9	378.4 ± 552.3	0.001
Comorbidity			
Previous MI	32 (26.0)	33 (29.2)	0.584
Previous stroke	3 (2.4)	1 (0.9)	0.360
Inflammatory status	7.9 [6.6 – 9.3]	7.4 [5.9 – 9.1]	0.150

Values are n (%), or mean ± SD or median [interquartile range].

PTA = percutaneous transluminal angioplasty; MT = medical therapy; BMI = body mass index; LE-PAD = lower extremity peripheral arterial disease; ABI = ankle/brachial index; MWD = maximum walking distance; MI = myocardial infarction.
of lower extremities has been shown to improve the ABI, which is the most powerful prognostic indicator in LE-PAD patients [24,25]. Furthermore, PTA of the lower limbs has been also associated with the improvement of endothelial function [32], which plays an important role in the pathophysiology and natural history of lower extremities atherosclerotic disease [33], and may reduce the ischemia–reperfusion injury which promotes systemic inflammation [34]. At this regard, it is important to emphasize that an increased inflammatory status has been associated to the development and subsequent worsening of atherosclerosis including thrombotic complications, and that the elevation in circulating inflammatory markers increases the risk if ischemic cardiovascular events in LE-PAD [13].

Conclusions
In conclusion, the present study provides evidence that effective lower limb revascularization by PTA in diabetic patients affected by intermittent claudication not only ameliorates functional status and alleviates symptoms, but is also associated with an improvement of cardiovascular outcome. Further studies are needed to understand the possible mechanisms underlying this result.

List of abbreviations
CVD: Cardiovascular Disease; LE-PAD: Lower Extremity Peripheral Arterial Disease; PTA: percutaneous trans-luminal angioplasty; TASC: Trans-Atlantic Inter-Society Consensus; ABI: Ankle/Brachial Index.

Acknowledgements
This article has been published as part of BMC Surgery Volume 12 Supplement 1, 2012: Selected articles from the XXV National Congress of the Italian Society of Geriatric Surgery. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsurg/supplements/12/S1.

Author details
1Department of Clinical Medicine and Cardiovascular and Immunological Sciences, “Federico II” University, via Pansini S, 80131, Naples, Italy.
2Department of General, Geriatric, Oncologic Surgery and Advanced Technologies, “Federico II” University, via Pansini S, 80131, Naples, Italy.

Authors’ contributions
GG, CP, VS, LB, AS, GGS, GG, FS, MF, AC, AB: conception and design, critical revision, interpretation of data, given final approval of the version to be published; GE: conception and design, critical revision, given final approval of the version to be published; BA, BT: critical revision, interpretation of data, given final approval of the version to be published; MGUard versus bAre-metal.

Competing interests
The authors declare that they have no competing interests.

Published: 15 November 2012

References
1. Morrow DA, Braunwald E, Bonaca MP, Ameriso SF, Dalby AJ, Fish MP, Fox KA, Lipka LJ, Liu X, Nicolau JC, et al: Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med 2012, 366:1404-1413
2. Cassese S, Esposito G, Mauro C, Varbella F, Cerrato A, Montinana A, Cirillo P, Galasso G, Rapacciuolo A, Piscione F: MGUard versus bAre-metal.
stents plus manual thrombectomy in 5T-elimination myocadioaral infarction patients (GUARDIAN) trial: study design and rationale. Catheterization and cardiovascular interventions: official journal of the Society for Cardiovascular Angiography & Interventions. 2012, 79(11):18-21.

3. Amato B, Iuliano GP, Markbomaki AK, Piccielli V, Masone S, Campagna R, Esposito G, Piscione F: Endovascular procedures in critical leg ischemia of elderly patients. Acta bio-medica: Ateneo Parmensis 2005, 76(Suppl) 1:11-15.

4. Perrino C, Scudiero L, Petretta MP, Schiattarella GG, De Lauretis M, Iardi F, Maglùlo F, Carotenuto G, Esposito G: Total occlusion of the abdominal aorta in a patient with renal failure and refractory hypertension: a case report. Monaldi archives for chest disease - Archivio Monaldi per le malattie del torace / Fonadazione clinica del lavoro, RCGS (and) istituto di clinica tosidologica e malattie apparato respiratorio, Università di Napoli, Secondo ateneo 2011, 76:43-46.

5. Esposito G, Casseve S, Gargiulo A, Sannino A, Schiattarella GG, Piscione F, Chiariello M: Balancing hemorrhagic and thrombotic complications in a patient with a very late paclitaxel-eluting stent thrombosis: a clinical case report. J Cardiovasc Med (Hagenton) 2011, 12:366-369.

6. Vamos EP, Harris M, Milliet C, Page UJ, Khunti K, Curcin V, Molokhia M, Majeed A: Association of systolic and diastolic blood pressure and all cause mortality in people with newly diagnosed type 2 diabetes: retrospective cohort study. BMJ 2012, 345:e5657.

7. Marcano C, Galdens M, Gargiulo P, Acampa W, D’more C, Esposito R, Capasso E, Savino N, Caravita C, Lo Iudice F, et al: Effects of type 2 diabetes mellitus on coronary microvascular function and myocardial perfusion in patients without obstructive coronary artery disease. European journal of nuclear medicine and molecular imaging 2012, 39:1199-1206.

8. Indolfi C, Torella D, Cavuto L, Davalli AM, Coppola C, Esposito G, Carenzo MV, Rapacciuolo A, Di Lorenzo E, Stabile E, et al: Effects of balloon injury on neonatal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats. Circulation 2001, 103:2980-2986.

9. Giugliano G, Di Serafino L, Perrino C, Schiano V, Laurenzeno E, Cassese S, De Lauretis M, Schiattarella GG, Brevetti L, Sannino A, et al: Effects of successful percutaneous lower extremity revascularization on cardiovascular outcome in patients with peripheral arterial disease. International journal of cardiology 2012.

10. Weitz JI, Byrne J, Caglet GP, Farkouh ME, Porter JM, Sackett DL, Strandness DE Jr., Taylor LM: Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation 1996, 94:3026-3049.

11. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE: Peripheral arterial disease in the elderly: The Rotterdam Study. Atherosclerosis Tissue Vasc Biol 1998, 18:185-192.

12. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Fonseca FD, et al: Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 2001, 286:1317-1324.

13. Brevetti G, Giugliano G, Brevetti L, Hart WR: Inflammation in peripheral artery disease. Circulation 122:1862-1875.

14. Schiano V, Sinico G, Giugliano G, Laurenzeno E, Brevetti L, Perrino C, Brevetti G, Esposito G: Femoral plaque echogenicity and cardiovascular risk in diabetics. JACC Cardiovascular imaging 2012, 5:348-357.

15. Bosevski M: Peripheral arterial disease and diabetes. Polzal / Makedonska akademija na naukite i znanstvenote, Oddelenje za bilsko i medicinski nauki / Contributions / Macedonian Academy of Sciences and Arts, Section of Biological and Medical Sciences 2012, 33:65-78.

16. Indolfi C, Stabile E, Perrino C, Chiariello M: Mechanisms of restenos in after angioplasty and approach to therapy (Review). International journal of molecular medicine 1998, 2:143-148.

17. Tendler M, Abayans V, Bartelink ML, Baumgartner I, Clement D, Collet JP, Cremonesi A, De Carlo M, Erbel R, Fowkes FG, et al: ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). European heart journal 2011, 32:2851-2860.

18. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 2007, 45(Suppl S):S5-67.

19. Criqui MH, Langer RD, Fronck A, Feigelson HS, Klauber MR, McCann TJ, Browner D: Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 1992, 326:381-386.

20. Rockson SG, Cooke JP: Peripheral arterial insufficiency: mechanisms, natural history, and therapeutic options. Adv Intern Med 1996, 43:283-277.

21. Cook TA, O’Regan M, Galland RB: Quality of life following percutaneous transluminal angioplasty for claudication. Eur J Vasc Endovasc Surg 1996, 11:191-194.

22. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Fuschett JB, et al: ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006, 2011, 113:e463-654.

23. Keelings AN, Naughton PA, O’Connell A, Lee AJ: Does percutaneous transluminal angioplasty improve quality of life? J Vasc Interv Radiol 2008, 19:169-176.

24. Newman AB, Shemanski L, Manolio TA, Cushman M, Mittelmark M, Polak JF, Powe NR, Siscovick D: Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study. The Cardiovascular Health Study Group. Arterioscler Thromb Vasc Biol 1999, 19:538-545.

25. McKenna M, Wolfson S, Kuller L: The ratio of ankle and arm arterial pressure as an independent predictor of mortality. Atherosclerosis 1991, 87:119-128.

26. Alagaband S, Kivits R, Jan F, Bajwa T: Endovascular treatment of peripheral vascular disease. Curr Probl Cardiol 2009, 34:359-476.

27. Breek J, Hamming JF, De Vries J, Aquarius AJ, van Bergen Henegouwen DP: Quality of life in patients with intermittent claudication using the World Health Organisation (WHO) questionnaire. Eur J Vasc Endovasc Surg 2001, 21:118-122.

28. Barletta G, Ferra S, Sabba C, Catalano A, O'Boyle C, Brevetti G: Quality of life in patients with intermittent claudication: relationship with laboratory exercise performance. Vasc Med 1996, 1:3-7.

29. Leon AS, Connell J, Jacobs DR Jr, Rautama R: Leisure-time physical activity levels and risk of coronary heart disease and death. The Multiple Risk Factor Intervention Trial. JAMA 1987, 258:2388-2395.

30. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W, Heath GW, King AC, et al: Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273:402-407.

31. Paffenbargen RS Jr, Hyde RT, Wing AL, Lee IM, Jung DL, Kamlis J: The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993, 328:38-545.

32. Hussmann M, Dorffelt-Melly J, Kalka C, Dehm N, Baumgartner I, Silvestro A: Successful lower extremity angioplasty improves brachial artery flow-mediated dilation in patients with peripheral arterial disease. J Vasc Surg 2008, 48:1211-1216.

33. Brevetti G, Schiano V, Chiariello M: Endothelial dysfunction: a key to the pathophysiology and natural history of peripheral arterial disease? Atherosclerosis 2008, 197:1-11.

34. Khaira HS, Nash GB, Bahsa PS, Sanghera K, Gosling P, Caw AJ, Shearman CP: Thromboxane and neutrophil changes following intermittent claudication suggest ischaemia-reperfusion injury. Eur J Vasc Endovasc Surg 1995, 10:31-35.

doi:10.1186/1471-2482-12-S1-S19

Cite this article as: Giugliano et al: Endovascular treatment of lower extremity arteries is associated with an improved outcome in diabetic patients affected by intermittent claudication. BMC Surgery 2012, 12(Suppl 1):S19

http://www.biomedcentral.com/1471-2482/12/S1/S19