Communication

Developing Oligo Probes for Chromosomes Identification in Hemp (Cannabis sativa L.)

Dmitry V. Romanov *, Gennady I. Karlov and Mikhail G. Divashuk

All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia; karlovgs@gmail.com (G.I.K.); divashuk@gmail.com (M.G.D.)
* Correspondence: akabos1987@gmail.com; Tel.: +7-499-976-6544

Abstract: Hemp (Cannabis sativa L., 2n = 20) is a valuable crop that is successfully used as a food, technical and medicinal crop. It is a dioecious plant with an XX/XY sex determination system. Some chromosomes of C. sativa have almost the same lengths and centromeric indexes. Cytogenetic markers help to distinguish similar plant chromosomes, including sex chromosomes, which is important for the breeding process. Two repeats (CS-1 and CS-237) were used to develop labeled oligo-probes for rapid and low-cost oligo-FISH. These oligos can be recommended for use as cytological markers to distinguish sex chromosomes (X and Y) and somatic chromosome pairs 3, 6, and 8 by rapid oligo-FISH in a short time.

Keywords: cytogenetic markers; crop; dioecious; oligo-FISH; hybridization; repeat

1. Introduction

Hemp (Cannabis sativa L.) is an important agricultural plant, that has been cultivated for more than 5000 years [1]. Furthermore, it is one of the oldest plant sources to serve as a food and technical crop [2–6]. C. sativa has long been used for medical purposes dating back to ancient times. The plant has medicinal usage in the treatment of burns, pain, glaucoma, nausea, cardiovascular and bronchopulmonary diseases, depression, neuralgia, anemia, and bone fragility, among others [7–15].

Plant sex chromosomes are very rare; they have been reported in about 40 species [16–18]. C. sativa is a dioecious plant with an XX/XY sex determination system [19–22]; the chromosome number is 2n = 20 [23]. The haploid nuclear genome size for males and females is calculated to be 843 mega-base pairs (Mbp) and 818 Mbp, respectively [24,25]. Sex determination is important for cannabis production and depends on the specific application. For instance, the unfertilized female flowers contain higher levels of cannabinoids and seeded flowers are undesirable for medicinal applications [24]. C. sativa can be used for better understanding of the evolution of sex chromosomes [23,26,27]. A high level of polymorphism has been noted in C. sativa [28,29]. Furthermore, the chromosomal polymorphism has been detected by FISH on the inter- and intra-cultivar levels of C. sativa [23]. The high level of polymorphism determines the importance of C. sativa cytological studies for cultivar identification and characterization.

Cytogenetic markers help to distinguish similar plant chromosomes, including sex chromosomes, which is important for the breeding process [19,30]. Cytogenetic markers also help us to associate genomic assemblies with physical chromosomes [31,32]. DNA repeats for FISH analysis usually need to be amplified in a bacterial plasmid, extracted, and then labeled by nick translation [33,34]. In addition, FISH probes can be generated by PCR, but DNA isolation is previously required [35–37]. Thus, the procedure for preparing the probes is time consuming. Synthetic oligonucleotides with a fluorescent label can also be used as a probe for FISH [38,39] or ND-FISH analysis [40–48]. Such a probe is convenient to use since fluorochrome labeled oligonucleotides can be purchased directly from commercial...
sources. ND-FISH have a short hybridization time and no denaturation process, saving
the structure of chromosomes, reagents and other resources [40,46,47,49]. Based on these
advantages, the method is widely used to identify plant chromosomes [39,40,42,47,48].
Moreover, ND-FISH technology can be used to identify crop varieties [50]. ND-FISH is
simple and convenient, but less reproducible in a series of experiments [46].

Oligos are being developed for easy application, which allows researchers to obtain
results by fast oligo-FISH or ND-FISH in a short time. Oligos have been developed and
successfully used for cereals [40–43,51,52] and other crops [53–55]. In this article, we report
the development of oligo-labeled probes, based on CS-1 [56] and CS-237 [31] repeats for
rapid oligo-FISH. The possibility of their use as cytological markers for C. sativa sex and
some somatic chromosomes is discussed.

2. Results and Discussion

To compare the efficiency between conventional FISH and oligo-FISH we used them
in turn. The first experiment was carried out on C. sativa chromosomes with PCR labelled
probes. As a result, hybridization signals of CS-1 (Figure 1a) and CS-237 (Figure 1b) were
detected as described by Divashuk et al. [56] and Alexandrov et al. [31], respectively.
Satellites are often separated from the chromosome 8, as shown in Figure 1b.

![Figure 1](image-url)

Figure 1. The results of FISH experiments with the PCR labelled probes CS-1 and CS-237 on C. sativa chromosomes: (a) pink—CS-1 probe; (b) pink—CS-237 probe. DAPI layer of chromosome 8 with satellite is enlarged and shown in gray. Distinguished chromosomes are indicated according to
Alexandrov et al. [31]. Bar equals 5 μm.

Labeled oligos were designed and synthesized for the repeats CS-1 and CS-237 by
Primer3 software [57] for more simple use of them as cytogenetic markers. For each
repeat we designed two different sequences of oligos to increase the chances of successful
hybridization. Labeling was carried out by using various fluorophores (FAM, TAMRA,
Cy5) (Table 1) for more convenient use in combination with other labeled probes.

Labeled Oligo-Probe	Repeat	Oligonucleotide	Dye
oligoCS-1-FAM	CS-1	5'−TAGTTATCTGTTAAAATCTCAACCTACACA-3′	5'-6-FAM
oligoCS-1-Cy5	CS-1	5'−TAGTTATCTGTTAAAATCTCAACCTACACA-3′	5'-Cy5
oligoCS-1-TAMRA	CS-1	5'−ATCGTTTTAATCGAAAATGTGAAATCTCA-3′	5'-TAMRA
oligoCS-237-FAM	CS-237	5'−ATGATTGCTGACTCATCATTGAAATCATC-3′	5'-6-FAM
oligoCS-237-Cy5	CS-237	5'−ATGATTGCTGACTCATCATTGAAATCATC-3′	5'-Cy5
oligoCS-237-TAMRA	CS-237	5'−TACGTTGGTTGAGGATGTTTGGAAA-3′	5'-TAMRA
All the oligos were hybridized on *C. sativa* chromosomes by rapid oligo-FISH (Figure 2). Hybridization signals were observed for all the developed oligos. The results of the oligo-FISH probe detection with all the oligos on *C. sativa* chromosomes were similar as for FISH with the PCR labelled probes. There were no non-specific signals interfering with the work with the metaphase plates.

![Figure 2](image_url)

Figure 2. The results of oligo-FISH experiments with the oligo-probes CS-1-FAM (green) and CS-237-TAMRA (pink) on *C. sativa* chromosomes. Distinguished chromosomes are indicated according to Alexandrov et al. [31]. Bar equals 5 μm.

We found that the oligo-probes oligoCS-1-FAM, oligoCS-1-Cy5, and oligoCS-1-TAMRA are located in the subtelomeric region on both arms of all *C. sativa* chromosomes, except for the long arm of chromosome 3, the short arm of chromosome 8, and the long arm of the Y chromosome at the same positions. The oligo-probes oligoCS-237-FAM, oligoCS-237-Cy5, and oligoCS-237-TAMRA are located in the proximal part of the short arm of chromosome 6 and in the distal part of the short arm of chromosome 8 at the same positions. Thus, we can use any oligo with any dye from Table 1 suitable for a particular experiment. The positions of the oligos completely coincide with the positions of the corresponding repeats on *C. sativa* chromosomes [31,56]. We noted a different intensity of signals in different plants of *C. sativa*, which is quite consistent with Razumova et al. [23], where subtelomere hybridization sites disappear or new hybridization sites appear. This interesting phenomenon for the cross-pollinated plant is relatively expected and requires further study.

Some chromosomes of *C. sativa* are difficult to distinguish from each other without the use of cytological markers (chromosomes 5 and 6, X and Y) since they have almost the same lengths and centromeric indexes. Differences in the position of the oligo-probes for CS-1 and CS-237 repeats on *C. sativa* chromosomes make it possible to distinguish chromosomes 5 and 6, X and Y and easily identify chromosomes 3 and 8. Razumova et al. [23] showed different variations of FISH signals for the CS-1 repeat on chromosome 8 and on chromosome X. Nevertheless, the combined use of the oligo-probes for CS-1 and CS-237 repeats can identify these chromosomes. Thus, the probes can be recommended as cytogenetic markers for better identification of *C. sativa* chromosomes 3, 6, 8, X and Y by rapid oligo-FISH.

3. Conclusions

In conclusion, the oligonucleotide probes oligoCS-1-FAM, oligoCS-1-Cy5, oligoCS-1-TAMRA, oligoCS-237-FAM, oligoCS-237-Cy5, and oligoCS-237-TAMRA have been developed in the present study. They can be used to conveniently identify sex and somatic chromosomes and their polymorphism in hemp using rapid oligo-FISH.
4. Materials and Methods

4.1. Plant Material

For the study of mitosis metaphase chromosomes, cv “Zenitsa” (dioecious) seeds of *C. sativa* were used (originated by P.P. Lukyanenko Krasnodar Research and the Development Institute of Agriculture, Krasnodar, Russia). The seeds were harvested in 2020 and then stored at +4 °C.

4.2. Chromosome Preparation

C. sativa seeds were germinated on moist filter paper in Petri dishes at 24 °C in the dark for 72 h. The seedlings (2–3 cm long) were used to prepare the slides of mitotic metaphase chromosomes as described by Romanov et al. [58].

4.3. DNA Probes and Labeling

Young seedlings of *C. sativa* were used for DNA isolation by the CTAB method [59]. Repeat sequences CS-1 and CS-237, previously described by Divashuk et al. [56] and Alexandrov et al. [31], respectively, were used to design primers and oligos by using the Primer3 software v.4.1.0 [57]. DNA labeling was performed by PCR with biotin-16-dUTP according to the manufacturer’s instruction (Boehringer, Germany). The oligos were synthesized and labeled by FAM, TAMRA or Cy5 (Evrogen JSC, Moscow, Russia).

4.4. Fluorescence In Situ Hybridization (FISH) and Oligo-FISH

The FISH experiments were performed as described by Karlov et al. [60]. Post-hybridization washing was performed in 50% (v/v) formamide in 2× SSC for 15 min at 42 °C, while the theoretical washing stringency was about 80%. The chromosomes were counterstained with 1 mg/mL DAPI and mounted in Vectashield (Vector laboratories, Burlingame, CA, USA). Oligo-FISH experiments were performed as FISH, but without the detection step, as described by Kuznetsova et al. [46]. The hybridization procedure for FISH and oligo-FISH lasted for 1 h and 16 h, respectively, at 37 °C.

4.5. Microscopy and Image Analysis

Chromosome preparations were viewed by using a THUNDER 3D Tissue microscope with a filter set DFT51111, a fluorescence light source LED3, and a digital camera DFC9000 GTC (Leica Microsystems, Wetzlar, Germany). Multichannel fluorescence recording, image processing for brightness/contrast and color settings were performed using LasX software (Leica Microsystems, Wetzlar, Germany). The karyotype for *C. sativa* metaphase chromosomes was developed by Divashuk et al. [56] and improved by Alexandrov et al. [31]. In this article, chromosome numbering is in accordance with Alexandrov et al. [31]. Chromosomes 3, 5, 6, 8, X, and Y according to Alexandrov et al. [31] correspond to chromosomes 4, 6, 3, 9, X, and Y, respectively, according to Divashuk et al. [56].

Author Contributions: Project administration, investigation, discussion, and writing the article, D.V.R.; methodology and discussion, G.I.K.; conceptualization, methodology and discussion, M.G.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 20-76-00036.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to P.P. Lukyanenko Krasnodar Research and the Development Institute of Agriculture (Krasnodar, Russia) for the seeds of *C. sativa* drug-free varieties.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of *Cannabis sativa* L. *Prog. Chem. Org. Nat. Prod.* 2017, 103, 1–36. [CrossRef]

2. Cherney, J.H.; Small, E. Industrial Hemp in North America: Production, Politics and Potential. *Agronomy* 2016, 6, 58. [CrossRef]
31. Alexandrov, O.S.; Romanov, D.V.; Divshuk, M.G.; Razumova, O.V.; Ulyanov, D.S.; Karlov, G.I. Studying and physical mapping of the 45S IGS linked CS-237 DNA repeat in Cannabis sativa L. Plants 2022, 11, 1396. [CrossRef]

32. Chao, Y.T.; Chen, W.C.; Chen, C.Y.; Ho, H.Y.; Yeh, C.H.; Kuo, Y.T.; Su, C.L.; Yen, S.H.; Hsueh, H.Y.; Yeh, J.H.; et al. Chromosome-level assembly, genetic and physical mapping of Plutella xylostella genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol. J. 2018, 16, 2027–2041. [CrossRef]

33. Bray-Ward, P. FISH Probes and Labelling Techniques. FISH. A Practical Approach; Oxford University Press: Oxford, UK, 2002; pp. 5–28.

34. Giorgetti, L.; Piolot, T.; Heard, E. High-resolution 3D DNA FISH using plasmid probes and computational correction of optical aberrations to study chromatin structure at the sub-megabase scale. In Nuclear Bodies and Noncoding RNAs; Humana Press: New York, NY, USA, 2015; Volume 1262, pp. 37–53. [CrossRef]

35. Huber, D.; von Voithenberg, L.V.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 4, 15–24. [CrossRef]

36. Jiang, J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019, 27, 153–165. [CrossRef]

37. Kroupin, P.; Kuznetsova, V.; Romanov, D.; Kocheshkova, A.; Karlov, G.; Dang, T.X.; Khuat, T.M.L.; Kirov, I.; Alexandrov, O.; Polkhovskiy, A.; et al. Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes 2019, 10, 113. [CrossRef]

38. Lang, T.; Li, G.; Wang, H.; Yu, Z.; Chen, Q.; Yang, E.; Fu, S.; Tang, Z.; Yang, Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 2019, 249, 663–675. [CrossRef]

39. Lang, T.; Yang, Z.; Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCs1, and pAWRC. 1 for FISH analysis. J. Appl. Genet. 2014, 55, 313–318. [CrossRef]

40. Fu, S.; Chen, L.; Wang, Y.; Li, M.; Yang, Z.; Qiu, L.; Yan, B.; Ren, Z.; Tang, Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci. Rep. 2015, 5, 10552. [CrossRef]

41. Tang, S.; Qiu, L.; Xiao, Z.; Fu, S.; Tang, Z. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes 2016, 7, 118. [CrossRef]

42. Tang, S.; Tang, Z.; Qiu, L.; Yang, Z.; Li, G.; Lang, T.; Zhu, W.; Zhang, J.; Fu, S. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front. Plant Sci. 2018, 9, 1104. [CrossRef]

43. Xi, W.; Tang, S.; Du, H.; Luo, J.; Tang, Z.; Fu, S. ND-FISH-positive oligonucleotide probes for detecting specific segments of rye (Secale cereale L.) chromosomes and new tandem repeats in rye. Crop J. 2020, 8, 171–181. [CrossRef]

44. Cuadrado, Á.; Golczyk, H.; Jouve, N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res. 2009, 17, 755–762. [CrossRef]

45. Cuadrado, Á.; Jouve, N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 2010, 119, 495–503. [CrossRef] [PubMed]

46. Kuznetsova, V.M.; Razumova, O.V.; Karlov, G.I.; Dang, T.X.; Kroupin, P.Y.; Divshuk, M.G. Some peculiarities in application of denaturing and non-denaturing in situ hybridization on chromosomes of cereals. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 75–80. [CrossRef]

47. Li, Z.; Ren, Z.; Tan, F.; Tang, Z.; Fu, S.; Yan, B.; Ren, T. Molecular cytogenetic characterization of new wheat-rye 1R (1B) substitution and translocation lines from a Chinese Secale cereal L. Aigan with resistance to stripe rust. PLoS ONE 2016, 11, e0163642. [CrossRef]

48. Xiao, Z.; Tang, S.; Qiu, L.; Tang, Z.; Fu, S. Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgounds. Molecules 2017, 22, 973. [CrossRef]

49. Ren, T.; He, M.; Sun, Z.; Tan, F.; Luo, P.; Tang, Z.; Fu, S.; Yan, B.; Ren, Z.; Li, Z. The polymorphisms of oligonucleotide probes in wheat cultivars determined by ND-FISH. Molecules 2019, 24, 1126. [CrossRef]

50. Jiang, M.; Xia, Z.Q.; Fu, S.L.; Tang, Z.X. FISH karyotype of 85 common wheat cultivars/lines displayed by ND-FISH using oligonucleotide probes. Cereal Res. Commun. 2017, 45, 549–563. [CrossRef]

51. Li, G.; Zhang, T.; Yu, Z.; Wang, H.; Yang, E.; Yang, Z. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticaceae. Plant J. 2021, 105, 978–993. [CrossRef]

52. Liu, X.; Sun, S.; Wu, Y.; Zhou, Y.; Gu, S.; Yu, H.; Yi, C.; Gu, M.; Jiang, J.; Liu, B.; et al. Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J. 2020, 101, 112–121. [CrossRef]

53. Fu, L.; Wang, Q.; Li, L.; Lang, T.; Guo, J.; Wang, S.; Sun, Z.; Han, S.; Huang, B.; Dong, W.; et al. Physical mapping of repetitive oligonucleotides facilitates the establishment of a genome map-based karyotype to identify chromosomal variations in peanut. BMC Plant Biol. 2021, 21, 107. [CrossRef]

54. Luo, X.; He, Z. Distribution of FISH oligo-5S rDNA and oligo-(AGGGTTT) 3 in Hibiscus mutabilis L. Genome 2021, 64, 655–664. [CrossRef] [PubMed]

55. Luo, X.; Liu, J.; He, Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes 2022, 13, 195. [CrossRef] [PubMed]

56. Divashuk, M.G.; Alexandrov, O.S.; Razumova, O.V.; Kirov, I.V.; Karlov, G.I. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome set determination system. PLoS ONE 2019, 4, e85118. [CrossRef] [PubMed]
57. Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. *Nucleic Acids Res.* 2012, 40, e115. [CrossRef]

58. Romanov, D.V.; Shirnin, S.Y.; Karlov, G.I.; Divashuk, M.G. Cytogenetic Study of *Aegopodium podagraria* (Umbelliferae) for Use in Breeding. *Mosc. Univ. Biol. Sci. Bull.* 2020, 75, 65–70. [CrossRef]

59. Rogers, S.O.; Bendich, A.J. Extraction of DNA from plant tissues. In *Plant Molecular Biology Manual*; Springer: Dordrecht, The Netherlands, 1989; Volume 1, pp. 73–83. [CrossRef]

60. Karlov, G.I.; Danilova, T.V.; Horlemann, C.; Weber, G. Molecular cytogenetics in hop (*Humulus lupulus* L.) and identification of sex chromosomes by DAPI-banding. *Euphytica* 2003, 132, 185–190. [CrossRef]