DIVERGENCE OF MORSE GEODESICS

HUNG CONG TRAN

Abstract. Behrstock and Drutu raised one question about the existence of Morse geodesics in CAT(0) spaces with divergence strictly greater than \(r^n \) and strictly less than \(r^{n+1} \), where \(n \) is an integer greater than 1. In this paper, we answer the question of Behrstock and Drutu by showing that there is a CAT(0) space \(X \) with a proper, cocompact action of some finitely generated group such that for each \(s \) in (2,3) there is a Morse geodesic in \(X \) with divergence \(r^s \).

1. Introduction

The divergence of two geodesic rays \(\alpha \) and \(\beta \) with the same initial point \(x_0 \) in a geodesic space \(X \), denoted \(\text{Div}_{\alpha,\beta} \), is a function \(g : (0, \infty) \to (0, \infty) \) which for each positive number \(r \) the value \(g(r) \) is the infimum on the lengths of all paths outside the open ball with radius \(r \) about \(x_0 \) connecting \(\alpha(r) \) and \(\beta(r) \). Consequently, the divergence of a bi-infinite geodesic \(\gamma \), denoted \(\text{Div}_{\gamma} \), is the divergence of the two geodesic rays obtained from \(\gamma \) with the initial point \(\gamma(0) \). The divergence of \(X \) is the supremum of \(\text{Div}_{\gamma} \) over all bi-infinite geodesics \(\gamma \) of \(X \). We define the divergence of a finitely generated group to be the divergence of its Cayley graph. A geodesic \(\gamma \) is Morse if for any constants \(K > 1 \) and \(L > 0 \), there is a constant \(M = M(K,L) \) such that every \((K,L) \)-quasi-geodesic \(\sigma \) with endpoints on \(\gamma \) lies in the \(M \)-neighborhood of \(\gamma \). When investigating the divergence of CAT(0) spaces, Behrstock and Drutu asked two questions:

Question 1.1. (see Question 1.3, [BD]) Are there examples of CAT(0) groups whose divergence is strictly between \(r^n \) and \(r^{n+1} \) for some \(n \)?

Question 1.2. (see Question 1.5, [BD]) If \(X \) is a CAT(0) space, can the divergence of a Morse geodesic be greater than \(r^n \) and less than \(r^{n+1} \) for some \(n \geq 2 \)?

If the answer for the Question 1.1 is positive, the positive answer for Question 1.2 follows easily. However, Question 1.1 is still open, which makes it harder to construct Morse geodesics for the answer of Question 1.2. Motivated by these questions, we show the following theorem:

\[\text{Date: August 27, 2014.} \]
\[2000 \text{ Mathematics Subject Classification.} \ 20F67, 20F65. \]
Main Theorem. There is a CAT(0) space X with a proper, cocompact action of some finitely generated group such that for each s in $(2, 3)$ there is a Morse geodesic in X with the divergence r^s.

The main theorem gives a positive answer for Question 1.2 and we hope that the positive answer for this question can shed a light for the positive answer for Question 1.1. The CAT(0) space we examine in this paper was constructed by Dani-Thomas [DT]. They showed that the divergence of this space is cubic and they constructed some periodic geodesics with quadratic and cubic divergence. However, the existence of Morse geodesic with divergence greater than r^2 and less than r^3 was still unknown.

Acknowledgments. I would like to thank my advisor Prof. Christopher Hruska for very helpful comments and suggestions.

2. Right-angled Coxeter groups

Definition 2.1. Given a finite, simplicial graph Γ, the associated right-angled Coxeter group G_Γ has generating set S the vertices of Γ, and relations $s^2 = 1$ for all s in S and $st = ts$ whenever s and t are adjacent vertices.

Definition 2.2. Given a nontrivial, connected, finite, simplicial, triangle-free graph Γ with the set S of vertices, we may define the Davis complex $\Sigma = \Sigma_\Gamma$ to be the Cayley 2–complex for the presentation of the Coxeter group G_Γ, in which all disks bounded by a loop with label s^2 for s in S have been shrunk to an unoriented edge with label s. Then the vertex set of Σ is G_Γ and the 1-skeleton of Σ is the Cayley graph C_Γ of G_Γ with respect to the generating set S. Since all relators in this presentation other than $s^2 = 1$ are of the form $stst = 1$, Σ is a square complex. The Davis complex Σ_Γ is a CAT(0) space and the group G_Γ acts properly and cocompactly on the Davis complex Σ_Γ (see [Dav08]).

Definition 2.3. Given a nontrivial, connected, finite, simplicial, triangle-free graph Γ and let $\Sigma = \Sigma_\Gamma$ be the associated Davis complex. We observe that each edge of Σ is on the boundary of a square. We define a midline of a square in Σ to be a geodesic segment in the square connecting two midpoints of its opposite edges. We define a hyperplane to be a connected subspace that intersects each square in Σ in empty set or a midline. Each hyperplane divides the square complex Σ into two components. We define the support of a hyperplane H to be the union of squares which contain edges of H.

Since each square in Σ has the label of the form $stst$, then each midline in each square of Σ connects two midpoints of edges with the same label. Thus, each hyperplane is a graph and vertices are the midpoints of edges with the same label. Therefore, we define the type of a hyperplane H to be the label of edges containing vertices of H. Obviously, if two hyperplanes with the types a and b intersect, then a and b commute.
Remark 2.4. The length of a path α in C_Γ is equal to its number of hyperplane-crossings. A path is a geodesic if and only if it does not cross any hyperplane twice (see Lemma 3.2.14 \cite{Dav08}).

Lemma 2.5. Let α be a geodesic in C_Γ. Let H_1 and H_2 be two hyperplanes that cross α. If H_1 and H_2 intersect, then we can find two hyperplanes that cross two consecutive edges of α which intersect. In particular, α contains two consecutive edges such that their labels commute.

The proof of the above lemma is quite obvious by using the fact that each hyperplane divides the square complex Σ into two components.

3. Proof of the Main Theorem

Let Γ be the graph and Γ_1 a full subgraph as drawn in Figure 1. We see that Γ and Γ_1 are finite, simplicial and triangle-free graphs. Denote S to be the set of all vertices of Γ. Let w be the word $b_1a_1a_2b_2b_0a_0b_2a_2a_3$ of length 9. Observe that each pair of consecutive generators of w does not commute. Moreover, the first and last generators of w do not commute and neither commutes with c.

For each $d > 1$ let γ_d be the bi-infinite path in C_Γ which passes through e and labeled by $\cdots wwwwcw[cw[cw[cw[cw[\cdots$, where $k = d - 1$, such that $\gamma_d(0) = e$, $\gamma_d(1) = c$ and $\gamma_d(-9) = w^{-1}$. We observe that the labels of two consecutive edges of γ_d do not commute. Thus, γ_d is a bi-infinite geodesic (see Theorem 3.4.2, \cite{Dav08}). We define a function f_d on the set of positive integers as follow:

$$f_d(n) = [1^{d-1}] + [2^{d-1}] + [3^{d-1}] + [4^{d-1}] + [5^{d-1}] + \cdots + [n^{d-1}].$$

There are constants $0 < h_d \leq 1/2$ and $n_d > 0$ such that for each $n > n_d$ the following holds:

$$h_d n_d^d \leq f_d(n) \leq n_d^d.$$

We are going to use the constants h_d and n_d many times in the rest of the paper.

The following lemma is a direct consequence of Lemma 4.10 in \cite{DT}.

\begin{figure}[h]
\centering
\begin{tabular}{ll}
(A) & (B) \\
\end{tabular}
\caption{The graph Γ and a full subgraph Γ_1}
\end{figure}
Lemma 3.1. Let α be an arbitrary geodesic ray emanating from e that travels along the support of the hyperplane labeled by c and let β be a path emanating from e consisting of a geodesic segment labeled cw^i followed by an arbitrary geodesic ray emanating from cw^j that travels along the support of hyperplane labeled by c. Then β is a geodesic, and for any $r > 20i$,

$$\operatorname{Div}_{\alpha, \beta}(r) \geq \frac{1}{16} r^2$$

The following lemma is obtained from Proposition 4.7 in [DT] and the fact that Σ_{Γ_1} embeds isometrically in Σ_{Γ} (see [Dav08]).

Lemma 3.2. Let α and β be two geodesic rays with the same initial point x_0 and edges labeled by the vertices of Γ_1. There is a positive constant M such that the following holds. For each positive number r, there is a path η outside the ball $B(x_0, r)$ in C_{Γ} connecting $\alpha(r)$ and $\beta(r)$ such that the length of η is bounded above by Mr^2.

Proposition 3.3. For each $d > 1$, the divergence $\operatorname{Div}_{\gamma_d} \leq r^{2+\frac{1}{4}}$.

Proof. For each number r large enough, we can choose an integer $n > n_d$ such that

$$r \leq h_d n^d \leq f_d(n) \leq n^d \leq \left(\frac{2}{h_d} \right) r.$$

Let $x = cw^{[2^k]}cw^{[3^k]}cw^{[4^k]} \cdots cw^{[n^k]}$, where $k = d - 1$. Then

$$|x|_S = n + 9\left(|1^{d-1}| + |2^{d-1}| + |3^{d-1}| + |4^{d-1}| + |5^{d-1}| + \cdots + |n^{d-1}| \right) = n + 9 f_d(n).$$

Thus, $5 f_d(n) \leq |x|_S \leq 10 f_d(n)$. Therefore, we can connect x and $\gamma_d(r)$ by a path β_1 outside $B(e, r)$ such that

$$\ell(\beta_1) \leq 10 f_d(n) - r \leq \left(\frac{20}{h_d} - 1 \right) r.$$

We now try to connect $\gamma_d(-r)$ and x by a path β_2 outside $B(e, r)$ such that $\ell(\beta_2) \leq Mr^{2+\frac{1}{4}}$ for some constant M not depending on r and which completes the proof of the proposition.

Let $k = d - 1$. Let $s_0 = e$ and $s_i = cw^{[2^k]}cw^{[3^k]}cw^{[4^k]} \cdots cw^{[i^k]}$ for $1 \leq i \leq n$. Let H_e be the support of the hyperplane that crosses the edge e with one endpoint e. For $0 \leq i \leq n$, let u_i and v_i be geodesic rays which run along the support $s_i H_e$ with the initial points s_i and $s_i c$ respectively. We can choose u_i and v_i such that they have the same label for all i. Thus, each edges of u_i and v_i is labeled by a_2 or b_2. For $0 \leq i \leq n - 1$, let m_i be a geodesic with the initial point $s_i c$ which runs along $w^{[i(i+1)^k]}$ followed by u_{i+1}. (The fact that m_i is a geodesic is guaranteed by Lemma 3.1.) Moreover, the ray σ with the initial point e which runs along a geodesic segment $cw^{[2^k]}cw^{[3^k]}cw^{[4^k]} \cdots cw^{[n^k]}$ followed by u_n is a geodesic since each pair of consecutive edges of σ is labeled by two group generators which do not commute.
For $0 \leq i \leq n - 1$, we can connect $u_i(20f_d(n))$ and $v_i(20f_d(n))$ by a single edge path η_i labeled by c. Let η_n be a subsegment of u_n connecting x and $u_n(20f_d(n))$. Obviously, each η_i must lie outside $B(e, r)$ for $0 \leq i \leq n$. By Lemma 3.2, we can connect $v_i(20f_d(n))$ and $m_i(20f_d(n))$ by a path η'_i outside $B(s_i, c, 20f_d(n))$ with length bounded above by $M_1(f_d(n))^2$ for some constant M_1 not depending on r and n. Thus, we can connect $m_i(20f_d(n))$ and $u_{i+1}(20f_d(n))$ by a path η''_i outside $B(s_i, c, 20f_d(n))$ such that the length of η''_i is bounded above by $9[(i + 1)^k]$. Thus, the length of η''_i is bounded above by $9n^k$. By the same argument as above, we can show that η''_i lies outside $B(e, r)$.

Let $\eta = (\eta_0\eta_1')\eta_1''(\eta_2\eta_2')\cdots(\eta_{n-1}\eta_{n-1}')\eta_{n-1}$. Thus, η is a path outside $B(e, r)$ connecting $u_0(20f_d(n))$ and x. Moreover,

$$\ell(\eta) \leq n\left(1 + M_1(f_d(n))^2 + 9n^k\right) + 20f_d(n).$$

It follows that there is some constant M_2 not depending on r and n, such that the length of η is bounded above by M_2n^{2d+1}. Therefore, there is some constant M_3 not depending on r and n, such that the length of η is bounded above by $M_3r^{2d+\frac{1}{2}}$.

Obviously, we can connect $u_0(20f_d(n))$ and $u_0(r)$ by a path α_1 outside $B(e, r)$ with length bounded above by $20f_d(n)$. Thus, the length of α_1 is bounded above by $40(h_d)r$. Using Lemma 3.2 again, we can connect $\gamma_d(-r)$ and $u_0(r)$ by a path α_2 outside $B(e, r)$ with length bounded above by M_4r^2 for some constant M_4 not depending on r. Let $\beta_2 = \alpha_2\alpha_1$. Then, β_2 lies outside $B(e, r)$ and connects $\gamma_d(-r)$ and x. Moreover, the length of β_2 is bounded above by $M_4r^{2d+\frac{1}{2}}$ for some constant M not depending on r. □

Before working on the lower bound of Div_{γ_d}, we have a small observation.

Remark 3.4. Let α and β be two geodesic rays in a CAT(0) space with the same initial point x_0. Assume that $\text{Div}_{\alpha, \beta}(r) \geq f(r)$. Using the fact that projections do not increase distances, we can show that if η is a path outside $B(x_0, r)$ connecting two points on α and β, then $\ell(\eta) \geq f(r)$. These observations will be used in the following proof.

Proposition 3.5. For each $d > 1$, we have $r^{2d+\frac{1}{2}} \leq \text{Div}_{\gamma_d}$.

Proof. For each number r large enough, we can choose an integer $n > n_d$ such that

$$r \leq 60h_d n^d \leq 60f_d(n) \leq 60n^d \leq \left(\frac{2}{h_d}\right)r.$$

Let η be any path outside $B(e, r)$ connecting $\gamma_d(-r)$ and $\gamma_d(r)$. Since γ_d restricted to $[-r, r]$ is a geodesic and η is a path with the same endpoints, η must cross each hyperplane crossed by $\gamma_d([-r, r])$ at least once. Let $s_0 = e$
and $s_i = cw^{[2^k]} c w^{[3^k]} c w^{[4^k]} \cdots c w^{[i^k]}$ for $1 \leq i \leq [h_d n]$, where $k = d - 1$.

Thus,

$$|s_i|_S \leq i + 9 \left([d^{-1}] + [2d^{-1}] + [3d^{-1}] + [4d^{-1}] + [5d^{-1}] + \cdots + [i^{-1}] \right) \leq 10 h_d n^d.$$

Let H_c be the support of the hyperplane that crosses the edge c with one endpoint e. For $0 \leq i \leq [h_d n]$, let (g_i, g_{i+1}) be the edge of C_T at which η first crosses $s_i H_c$, where g_i is the vertex in the component of the complement of the hyperplane in $s_i H_c$ containing e. Let v_i denote the geodesic connecting s_i and g_i which runs along $s_i H_c$. For $0 \leq i \leq [h_d n] - 1$, let η_i be a subsegment of η connecting g_i and g_{i+1}. Let m_i be a geodesic with the initial point s_i which runs along $cw^{[(i+1)^k]}$ followed by v_i+1. (The fact that m_i is a geodesic is guaranteed by Lemma 3.1.) Since

$$d_S(g_i, s_i) \geq d_S(g_i, e) - d_S(s_i, e) \geq r - 10 h_d n^d \geq 20 h_d n^d$$

and

$$d_S(g_{i+1}, s_i) \geq d_S(g_{i+1}, e) - d_S(s_i, e) \geq r - 10 h_d n^d \geq 20 h_d n^d,$$

then

$$\ell(\eta_i) \geq \frac{1}{16} (20 h_d n^d)^2 \geq 25 h_d^2 n^{2d}$$

by Lemma 3.1 and Remark 3.4. Thus,

$$\ell(\eta) \geq 25 h_d^2 n^{2d}(h_d n - 2) \geq M r^{2+\delta}$$

for some constant M not depending on r, which proves the proposition. □

Before showing that each bi-infinite geodesic γ_d is Morse, we would like to mention the concept of lower divergence as follows. The lower divergence of a bi-infinite ray γ, denoted $\text{ldiv} \gamma$, is a function $h : (0, \infty) \to (0, \infty)$ which for each positive number r the value $h(r) = \inf_{t} \rho_{\gamma}(r, t)$, where $\rho_{\gamma}(r, t)$ is the infimum of the lengths of all paths from $\gamma(t - r)$ to $\gamma(t + r)$ which lie outside the open ball of radius r about $\gamma(t)$.

Proposition 3.6. For each $d > 1$, the geodesic γ_d is Morse.

Proof. In this proof, we will use the result of Charney-Sultan [CS] that a bi-infinite geodesic in a CAT(0) space is Morse if its lower divergence is superlinear. For each t and each r large enough, let η be any path outside $B(\gamma_d(t), r)$ connecting $\gamma_d(t - r)$ and $\gamma_d(t + r)$. Since $\gamma_{[t-r,t+r]}$ is a geodesic and η is a path with the same endpoints, η must cross each hyperplane crossed by $\gamma_{[t-r,t+r]}$ at least once. By the construction of γ_d, we can choose two points u_1 and u_2 on γ_d which lie between $\gamma_d(t - r)$ and $\gamma_d(t + r)$ and satisfy the following conditions:

1. The distance between $\gamma_d(t)$ and u_1 is bounded above by 9, and the distance between $\gamma_d(t + r)$ and u_2 is also bounded above by 9
2. The subsegment γ_d^t between u_1 and u_2 is label by w^{n_0} for $n_0 \geq 1$ or
 $$w^{n_0} c w^{[n_1]} c w^{[(n_1+1)^k]} c w^{[(n_1+2)^k]} \cdots c w^{[(n_1+\ell)^k]} c w^{[n_2]}$$
 for non-negative numbers n_0, n_1, n_2, t and $k = d - 1$.

Thus, η lies outside the ball $B(u_1, r - 9)$; and the length of γ_d' is bounded below by $r - 18$ and above by $r + 18$.

Let m be the number of edges of γ_d' labeled by b_1 (the first generator of w). Then, $\ell(\gamma_d')/10 - 1 \leq m \leq \ell(\gamma_d')/9 + 1$. Thus, $(r - 28)/10 \leq m \leq (r + 27)/9$.

For $1 \leq i \leq m$, let e_i be the ith edge of γ_d' labeled by b_1. Thus, the endpoints of each e_i are s_i and $s_i b_1$. We assume that s_i is closer to u_1 than $s_i b_1$. Obviously, the distance between s_i and u_1 is bounded above by $10i$.

Let H_{b_1} be the support of the hyperplane that crosses the edge b_1 with one endpoint e. For $1 \leq i \leq m$, let $(g_i, g_i b_1)$ be the edge of C_I at which η first crosses $s_i H_{b_1}$, where g_i is the vertex in the component of the complement of the hyperplane in $s_i H_{b_1}$ containing u_1. Let v_i denote the geodesic connecting s_i and g_i which runs along $s_i H_{b_1}$. Thus, each edge of v_i is labeled by a_0, b_0 or b_2. For $1 \leq i \leq m - 1$, let η_i be a subsegment of η connecting g_i and g_{i+1}.

For $1 \leq i \leq m - 1$, let H_i be any hyperplane crossed by v_i, with the type y. Thus, y is a_0, b_0 or b_2. By the construction, the segment of γ_d' between s_i and s_{i+1} crosses a hyperplane of type y. Moreover, this hyperplane cannot intersect $s_i H_{b_1}$ by Lemma 2.5 and the construction of γ_d'. Therefore, it is distinct from H_i and consequently separates H_i from v_{i+1}. Similarly, H_i can not intersect γ_d'. Thus, H_i must separate g_i and g_{i+1} into distinct components, so η_i must cross H_i. Therefore,

$$\ell(\eta_i) \geq \ell(v_i) \geq d_S(g_i, u_1) - d_S(s_i, u_1) \geq (r - 9) - 10i \geq r - 9 - 10i.$$

Thus,

$$\ell(\eta) \geq \sum_{i=1}^{m-1} \ell(\eta_i) \geq (m - 1)(r - 9 - 5m) \geq \left(\frac{r - 28}{10} - 1 \right) \left(r - 9 - \frac{5(r + 27)}{9} \right)$$

Therefore, $\rho_{\gamma_d}(r, t)$ is bounded below by $f(r)$ for all t, where f is a quadratic function not depending on t. Thus, γ_d has superlinear lower divergence. \(\square\)

Thus, for each s in $(2, 3)$ the geodesic γ_d is Morse and has the divergence r^s, where $d = 1/(s - 2)$. This proves the Main Theorem.

REFERENCES

[BD] Jason Behrstock and Cornelia Drutu. Divergence, thick groups, and short conjugators. Preprint. arXiv:1110.5005.

[CS] Ruth Charney and Harold Sultan. Contracting boundaries of CAT(0) spaces. Preprint. arXiv:1308.6615.

[Dav-08] Michael W. Davis. *The geometry and topology of Coxeter groups*, volume 32 of *London Mathematical Society Monographs Series*. Princeton University Press, Princeton, NJ, 2008.

[DT] Pallavi Dani and Anne Thomas. Divergence in right-angled Coxeter groups. Preprint. arXiv:1211.4565.