Solution Electrical Conductivity and Ratio of Nitrate to Other Nutrients Affect Accumulation of Nitrate in Hydroponic Lettuce

Martin P.N. Gent
Dept. of Forestry and Horticulture, Connecticut Agricultural Experiment Station, New Haven, CT 06504-1106

Additional index words. irradiance, growth rate, Lactuca sativa, nutrition, plant tissue composition

Abstract. Solution electrical conductivity (EC) and the supply of nitrate in proportion to other elements (nitrate supply ratio) should effect tissue composition of lettuce (Lactuca sativa L.) grown in hydroponic solution. These parameters were varied in several series of successive plantings in greenhouses in the northeast United States. In 1996, when the treatments differed only in EC, 0.65 and 0.9 dS·m⁻¹, but not in nitrate supply ratio, leaf tissue had more nitrate and total reduced-N and lettuce grew faster in the solution with higher EC. Over four series of plantings in 1997 and 1998, the nitrate supply ratio of a low-N treatment was only 60% of that for a high-N treatment, and EC was varied from 1.2 to 2.0 dS·m⁻¹. In 1997 and 1998, tissue nitrate was lower in the low-N treatment only when EC was less than in the high-N treatment. However, under irradiance greater than 10 MJ·m⁻²·day⁻¹, the lower EC also slowed growth. Stepwise regression over data from all experiments showed leaf nitrate was primarily a function of EC, and a term that described the interaction between irradiance and EC. Due to selective uptake by the plants, the ratio of elements in the recirculating solution differed from the ratio in which they were supplied. Under irradiance less than 10 MJ·m⁻²·day⁻¹ and solution EC greater than 1.5 dS·m⁻¹, nitrate accumulated in solution to a concentration greater than expected to prevent a rise in tissue and solution nitrate under low irradiance, both solution EC and nitrate supply ratio had to be reduced by about one-third, compared to the conditions required for rapid growth under high irradiance.

Some species of vegetables, such as beet (Beta vulgaris L.), celery (Apium graveolens L. var. dulce (Mill.) Pers.), lettuce (Lactuca sativa L.), and spinach (Spinacia oleracea L.), can accumulate more than 2500 mg nitrate per kg fresh weight of leaf tissue (Blom-Zandstra, 1989). Leaves of lettuce grown in hydroponics in northern Europe in winter can accumulate nitrate up to 6000 mg·kg⁻¹ (Van der Boon et al., 1990). Nitrate in leaf tissue grown in nitrate-supplied media (Scalf et al., 1986). Unfortunately, hydroponic lettuce was of poor quality when ammonium accounted for >20% of the total N in solution (Van der Boon et al., 1990). Replacing 20% of the nitrate in solution with ammonium (Van der Boon et al., 1990) or proteinate supplement, a crude mixture of amino acids (Gunes et al., 1994), decreased the nitrate in lettuce leaves by only 30%, compared to lettuce grown with nitrate alone. The limited effectiveness of these strategies to lower tissue nitrate may be due to feedback inhibition of nitrate reductase activity by reduced forms of N (Tischner, 2000). Genetic modification to increase nitrate reductase may also fail to lower tissue nitrate. Tissue nitrate concentration was not directly related to nitrate reductase activity measured in vitro in a survey of lettuce cultivars (Blom-Zandstra and Eenick, 1986).

Plants have one- or more uptake systems that are specific for nitrate (Tischner, 2000). In general, nitrate uptake is controlled by the requirement for plant growth, rather than being limited by the affinity of the transport system for uptake (Samuelson et al., 1995). However, nitrate may play a role in regulation of cell water potential. Blom-Zandstra and Lampe (1985) suggested nitrate replaced organic acids plus sugars in regulation of tissue water potential of lettuce grown under controlled conditions under different light intensities. Nitrate in leaves of greenhouse-grown lettuce also varies seasonally and is inversely related to the concentration of sugars (Drews et al., 1995). Plant sap must have negative water potential relative to the external solution to maintain cell turgor and to transport nutrients from the roots. If tissue nitrate is a major component of the regulation of water potential within plant cells, it should vary with solution electrical conductivity (EC). We hypothesize a low EC should lower the concentration of tissue nitrate. In commercial practice, a concentrated mixture of nutrients is added to hydroponic solution to maintain a certain EC. In general these nutrients are not adjusted individually, but they are added in fixed proportion. If plants do not absorb a nutrient at the rate in which it is supplied, it will either accumulate or become depleted in the solution, as more nutrient concentrate is added to maintain EC. Nitrate will accumulate to a high concentration if this manner of nutrient addition results in a supply in excess of growth requirements. We hypothesize that decreasing the ratio of nitrate to other elements in the concentrate should lower the nitrate supply to less than the growth requirements, and alleviate any accumulation of nitrate in solution. This should lower tissue nitrate in solution when solution composition is adjusted on the basis of EC.

Hydroponic lettuce was grown in a greenhouse to see if high tissue nitrate is a problem in the northeast United States. The output of these sensors was read by a pyranometer (LI 190S; LI-COR, Lincoln, Nebr.). The temperature in the greenhouses was measured with thermocouples insulated in glass tubes. Solar radiation outside the greenhouse was measured by a pyranometer (LI 190S; LI-COR, Lincoln, Nebr.). The output of these sensors was read every minute and recorded hourly by a data logger (CR10; Campbell Scientific, Logan, Utah).
The greenhouses were covered with 50% shade cloth after 28 May 1997 to achieve a wider range of irradiance. After this date, the reported irradiance is one-half the value measured outside the greenhouse.

There were two independent recirculating hydroponics systems within each greenhouse. Construction of these systems was described elsewhere (Gent, 2000). Nutrient solution was circulated past the plant roots and returned to a solution reservoir, where continuous feedback control was used to replenish the solution. A vertical liquid-level switch (model MB00B; Madison Controls, Branford, Conn.) was set in the reservoir to maintain 100 L of solution. A conductivity cell was immersed in the solution (model 13-620-160; Fisher Scientific, Pittsburgh) and readings were corrected for temperature. Relays for injection of water or nutrients were activated for a 1-min interval whenever readings from the float switch or conductivity cell were below their set points. Water was injected through a solenoid at 120 mL/min. Nutrient concentrates were injected through peristaltic pumps. All concentrates were injected at the same time and at a fixed rate of 3 mL/min.

Two different nutrient solutions were compared at any one time. Within each planting, a high-N treatment was compared to a low-N treatment. Except for nitrate, all essential elements were supplied at the same ratio to both treatments. In 1996, two nutrient concentrates were injected when conductivity fell below set points of 0.65 and 0.90 dS·m⁻¹, for low- and high-N treatments, respectively. The composition of concentrate #1 was 595 mM KNO₃, 100 mM K₂HPO₄, 211 mM KH₂PO₄, 114 mM MgSO₄, 4.6 mM H₂BO₃, 1.8 mM MnSO₄·H₂O, 0.74 mM ZnSO₄·7H₂O, 0.21 mM CuCl₂·2H₂O, and 0.03 mM MoO₃. Concentrate #2 contained 300 mM Ca(NO₃)₂, and 9.8 mM Fe chelate.

In 1996 and 1998, the two treatments differed in the supply of nitrate as a ratio of the other elements. Concentrate #1 contained 297 mM KNO₃, half the amount of used in 1996. Concentrate #2 contained 300 mM CaCO₃, titrated with 305 mM KNO₃ and 280 mM HCl, and 9.8 mM Fe chelate. A concentrate #3 containing 417 mM HNO₃ was injected only in the high-N supply. Thus, the nitrate supplied in the low-N treatment was only 60% of the high-N treatment, as a ratio of the other nutrients supplied. In 1997, the conductivity set point was 1.5 dS·m⁻¹ for both treatments. Conductivity varied among plantings in 1998. The set point was 0.12 dS·m⁻¹ in both treatments for two plantings harvested in mid-winter. The conductivity set points were 2.0 dS·m⁻¹ and 1.2 dS·m⁻¹ in the next three plantings, and 1.5 dS·m⁻¹ and 1.2 dS·m⁻¹, for three plantings harvested in Spring 1998, for high- and low-N treatments, respectively.

Lettuce seeds (Lactuca sativa L. ‘Buttercrunch’; Hart Seed Co., Wethersfield, Conn.) were germinated on wet paper and grown under controlled conditions of 25 to 30 °C and 18-h photoperiod of 60 W/m² irradiance. After 5 d, seedlings were transplanted in a tray of half-strength modified Hoagland solution (Lorenz and Maynard, 1980). After 14 d, the seedlings were moved to the greenhouses and transplanted into polyethylene troughs. The bare-root plants were supported by foam-rubber plugs placed in holes in the cover of the trough. Fifteen plants were spaced 20 cm apart within each trough, and six or eight troughs were planted in each hydroponic system. As the plants grew in the greenhouse, they were spaced further apart by sequential harvests and by separation of the troughs. Plant canopies never overlapped. Plants were grown for 4 to 6 weeks until they reached a size of 90 to 250 g fresh weight. Typically, three plantings were harvested in age by 2-week intervals grew simultaneously in one hydroponic system.

Measurement and analysis. Harvests of 8 to 12 plants per system were done at 1 or 2-week intervals. Fresh weight, leaf area, and dry weight were recorded. The total fresh weight and number of plants were recorded at the final harvest, at which time ≈40 plants remained in each system. One leaf from each plant was selected from the layer just under the outer leaves of the loose head. The aggregate fresh weight and area of these leaves was determined, and they were freeze-dried, weighed, and ground to a fine powder. Duplicate sub-samples of this leaf tissue were analyzed for nutrients. Nutrient solutions were sampled weekly for an independent measure of nutrient concentrations, conductivity, and pH.

The crop growth rate was the final weight per lettuce divided by the number of days elapsed from 1g fresh weight to harvest. Relative growth rate was calculated at 1–2 week intervals using the formula:

\[
\text{Relative growth rate} = \frac{\ln(w_{\text{final}}) - \ln(w_{\text{initial}})}{(\text{day}_{1} - \text{day}_{2})}. \tag{1}
\]

Dry weight ratio or fraction of dry matter, and leaf area to dry weight ratio were calculated from the sub-sample of leaves taken at the final harvest.

Subsamples of leaf tissue were wet-ashed. Cations were determined using inductively coupled plasma spectrometry (Gent, 2002) and total reduced nitrogen and phosphorus were determined in the tissue digests by colorimetric procedures (Gent, 2002). Other nutrients, as sub-samples were extracted with water and anions were analyzed by high pressure liquid chromatography (Gent, 2002).

Statistical analysis. Pair-wise comparisons of low-N to high-N treatment effects were tested for each series of plantings grown under similar conditions. The significance of the treatment effect was determined for growth rate and the concentrations of nutrients in leaf tissue and in solution. One treatment comparison was replicated over seven sequential plantings in 1996, but not within plantings, as there were only two hydroponic systems in one greenhouse. In 1997 and 1998, the high- and low-N treatments was replicated within each planting in identical systems in two greenhouses. In addition, treatments were replicated over a series of two to five sequential plantings. Analysis of variance (ANOVA) was used to determine their predictive value, with the condition that F statistic to enter >4.0. All statistics were done using SYSTAT (version 10.2; SPSS, Richmond, Calif.). Because there was a high correlation between temperature and irradiance (Table 3), mean temperature was not included as an independent variable in stepwise regression.

Results and Discussion

Solution composition. In 1996, the N-treatments only differed in EC, and both treatments had a lower EC than in later comparisons (Table 1). In 1997, the conductivity set points were about 1.5 dS·m⁻¹ for the two treatments, but the nitrate supply ratio for the low-N treatment was only 60% of that for the high-N treatments. The irradiance for the last two plantings in 1997 was reduced by shading the greenhouse with 50% shade cloth on 28 May, about half way through growth for plants harvested on 12 June. In 1998, the greenhouses were covered with 50% shade cloth, and EC was varied in three sets of plantings. The irradiance in mid- and late-Winter 1998 was much lower than in 1996 and 1997.

Fig. 1 shows the concentrations of nitrate-N, phosphate-P and potassium, and pH over a period of 2 months in 1997, as several plantings of lettuce were grown and harvested. The concentration of two nutrients changed, but no persistent accumulation or depletion of particular elements occurred (including those not shown in Fig. 1) as the solution was maintained by addition of water and nutrient concentrates. The low-N solution had less nitrate and phosphate than the high-N solution. More potassium was maintained in the solution with low-N treatments. The low-N solution pH was relatively constant, although there was no explicit pH control. The low-N solution pH was about 1 unit higher than that for the high-N solution, because more nitric acid was injected in the latter solution. The change in composition on 28 May 1997 was likely related to shading of the greenhouses beginning on this date. Nitrate was diminished in the low-N solution before the plants were shaded. The concentration of potassium in the low-N solution increased after shading. These changes illustrate that sunlight intensity can affect composition of the recirculating solution.

When plants grew under high irradiance in 1996 and 1997, solution nitrate was less than or equal to that expected from dilution of concentrates to the appropriate EC set point. However under low irradiance in Winter 1998, solution nitrate was greater than that expected from dilution, even in the low-N treatment with higher EC.
SOIL MANAGEMENT, FERTILIZATION, & IRRIGATION

Under a moderate irradiance in Spring 1998, plants depleted nitrate in the low-N solution far below that predicted from dilution of the concentrates. Irradiance had no such effect on the high-N solution. Stepwise regression of treatment and environment variables indicated a complex interaction of effects governing solution nitrate concentration (Table 4). The EC set point and nitrate supply ratio were significant independent variables, as was the interaction between these, and an interaction between EC and irradiance. Although both EC and nitrate supply ratio had to be lowered to deplete solution nitrate, the combined effect was less than additive.

In general, the solution concentrations of PO4-P and K were substantially less than those expected from dilution of concentrates to the appropriate EC set point (Table 1). When ever treatments differed in nitrate supply ratio, there was significantly less phosphate in low-N compared to high-N solutions. This result was surprising, as dilution of concentrate to the EC set point should result in more phosphate in low- compared to high-N treatments, particularly in 1997 and mid-Winter 1998, when a low nitrate supply ratio required a greater amount of all other nutrients to achieve a given EC. In contrast, potassium was much greater in the low-N than in the high-N solution, to provide the soluble salts necessary to maintain the EC set point.

Tissue composition. The treatments affected concentrations of several elements in leaf tissue of hydroponic lettuce (Table 2). Nitrate-N was more sensitive than other elements to environment or solution composition. The nitrate concentration in leaf tissue of hydroponic lettuce grown in a greenhouse in Connecticut was never as high as the action level of 4500 mg·kg–1 fresh weight developed by the European Economic Community. The range of tissue nitrate-N in individual plantings was 3 to 16 mg·g–1 dry weight. The highest level, corresponding to 3500 mg·kg–1 nitrate on a fresh weight basis, was observed when lettuce was grown in a shaded greenhouse in mid-winter with a solution EC of 2.0 dS·m–1 and a high nitrate supply ratio.

Tissue nitrate responded more to EC set point than to nitrate supply ratio. Tissue nitrate differed among treatments in 1996 (Table 2),
although nitrate supply ratio did not differ. Solution EC in 1996 was lower than in later comparisons, and tissue nitrate was also less. When EC differed among low- and high-N comparisons in later experiments, the low-N treatment lowered nitrate in leaf tissue significantly (Table 2). However, when treatments only differed in nitrate supply ratio, as in 1997, they had no significant effect on tissue nitrate.

Some of the highest concentrations of nitrate in leaf tissue were observed with a low nitrate supply ratio, when plants were grown under low irradiance and high EC in midwinter 1998. Stepwise regression showed conductivity and the interaction of conductivity and irradiance accounted for most of the variance in tissue nitrate (Table 4). This relation suggests solution EC can be used to moderate accumulation of nitrate in leaf tissue of hydroponic lettuce. The success of this method likely depends on the role of nitrate as a regulator of plant water potential, as suggested previously (Blom-Zandstra et al., 1985; Steingrover et al., 1986).

A high solution EC may require the plants to increase nitrate and other solutes in plant tissue to maintain a more negative water potential. It should be noted that EC was highly correlated with solution nitrate over all experiments, $r = 0.45$. Thus, accumulation of nitrate in the nutrient solution contributed to the high EC in midwinter 1998. The rate of nitrate absorption by lettuce starved for nitrogen increased more than tenfold as the root and shoot temperature was warmed from 8 to 15°C over all experiments (Fig. 2).

Frota and Tucker (1972) found temperature had a marked influence on nitrate absorption. The rate of nitrate absorption by lettuce starved for nitrogen increased more than tenfold as the root and shoot temperature was warmed from 8 to 17°C.

Table 2. The effect of N-supply treatment on tissue composition and growth of hydroponic lettuce. Values for the final harvest are averaged over each series of plantings.

Series	High-N	Low-N								
Reduced N mg·g⁻¹	47.0	43.3	5.4	5.0	7.4	7.2	71	62	156	97
Nitrate-N mg·g⁻¹	40.4	39.8	6.6	6.3	5.0	5.3	96	97	224	189
Phosphorus mg·g⁻¹			15.1	13.9	8.4	8.3	86	90	109	107
Potassium mg·g⁻¹	46.0	43.1	11.7	8.7	6.4	5.9	89	84	122	126
Fresh wt g	43.9	41.4	11.2	6.0	5.1	6.5	89	82	132	110
Growth rate g/d									5.6	4.5

* Significance at the 0.05 level.

** Significance at the 0.01 level.

*** Significance at the 0.001 level.

Table 3. Pairwise correlation coefficients between electrical conductivity (EC) set point, nitrate supply ratio, or environment variables, and tissue or solution composition or growth parameters for hydroponic lettuce.

Parameter	EC set point	Nitrate supply ratio	Ln (irradiance)	Temp
Tissue nitrate-N	0.737***	0.333***	---	---
Solution reduced-N	0.218	0.217	-0.323**	0.020
Solution nitrate-N	0.701***	0.021	-0.660***	-0.597***
Solution potassium	0.060	0.045	-0.179	0.198
Solution phosphate-P	0.615***	-0.271	-0.153**	-0.586***
Solution nitrate-N	0.870***	0.168	-0.531***	-0.536***
Solution phosphate-P	0.728***	0.282**	-0.388**	-0.508***
Solution potassium	0.690	-0.321***	-0.521***	-0.432***
Growth rate	-0.609***	0.248**	0.830***	0.688***
Relativ growth rate	-0.167	0.197	0.650***	0.335*
Ln (irradiance)	0.266	-0.252*	-0.294*	-0.393***
Leaf area ratio	0.227	0.041	-0.083**	-0.081

* Significant correlation at $P < 0.05$.

** Significant correlation at $P < 0.01$.

*** Significant correlation at $P < 0.001$.

$N = 64.$

Fig. 2. Nitrate concentration in lettuce tissue as a function of solution nitrate. Symbols are measurements for each planting and lines are linear regressions of tissue against solution nitrate, for high-N and low-N treatments, separately. The bars indicate standard error of the estimate for both tissue and solution nitrate.
to 23 °C. However, in our study, leaves had more nitrate when grown under low irradiance and cool temperature in winter than when grown under warm temperatures in summer. Thus, the temperature dependence of absorption did not appear to limit nitrate accumulation under the conditions in a heated greenhouse. It is likely that nitrate reductase activity in leaves was limited more by irradiance in winter than the uptake of nitrate by roots was limited by temperature.

The range of reduced-N in individual plantings was 38 to 49 mg·g⁻¹. The relative variation of reduced-N was small compared to that of nitrate. The N-treatments affected reduced-N significantly only in 1996. Environment and treatment variables accounted for only a small fraction of the variation in reduced-N (Table 3). High irradiance lowered the concentration of reduced nitrogen and an increase in nitrate supply ratio increased it.

The tissue potassium differed among N-treatments when they differed in EC (Table 2). Both tissue and solution potassium increased with solution conductivity and decreased with nitrate supply ratio (Table 3), but the relative changes in solution concentration were far greater than those in leaf tissue. The correlations between tissue and solution concentrations of potassium, r = 0.36, was much lower than for nitrate. The tissue concentrations of the other major elements (P, Ca, and Mg) were not correlated with any single treatment or environment variable. The depletion of solution phosphate that was related to a low nitrate supply ratio did not affect the concentration of phosphorus in leaf tissue. Thus nitrate in leaf tissue was unique in its responsiveness to the concentration in solution.

Growth. In 1996, growth rate per plant on a fresh weight basis was faster in solutions with an EC of 0.9 dS·m⁻¹ (high-N) than in solutions with an EC of 0.65 dS·m⁻¹ (low-N) (Table 2). Because low-N plants grew faster in 1997 than in 1996, solution composition did not affect the mean growth rate over the plantings in 1997. In mid- and late-Winter 1998, growth was slow, and N-treatments did not affect growth rate. As irradiance increased in spring 1998, plants grew faster in the high-N treatment (Table 1).

The growth rate was correlated primarily to sunlight (Table 3). Growth approached 10 g per day under irradiance of 25 MJ·m⁻² per day, compared to 3 g·d⁻¹ under the lowest irradiance of 5 MJ·m⁻² per day (Fig. 3). The effect of treatment depended on irradiance. Growth rate did not depend on N-treatment under low irradiance, but under high irradiance the low-N treatment slowed growth. N supply seemed to limit growth when irradiance was greater than 10 MJ·m⁻² per day (Fig. 3). Under continuous light conditions, lettuce seedlings required 400 mg·L⁻¹ nitrate for optimum growth (Mitchell et al., 1991), although 125 mg·L⁻¹ was sufficient for commercial production practices (Thompson et al., 1998). Thus, any changes used to lower the concentration of nitrate in solution should be applied with care, as they may inhibit rapid growth of lettuce under high light.

Bierhuizen et al. (1973) noted a linear relation between irradiance and dry matter accumulation of lettuce grown in soil in glasshouses in Holland, but in the present study the low-N treatment was a factor limiting growth above 10 MJ·m⁻² per day. A similar seasonal effect of nitrate nutrition was seen for hydroponic lettuce in Holland. In winter, yield and growth rates were the same with nitrate concentrations of 2.5 or 10 mM in the nutrient solution, but in summer, the yield with 2.5 mM nitrate was only 75% of that with 10 mM nitrate (Van der Boon et al., 1990).

Relative growth rate increased from 0.08 g·g⁻¹ per day at low irradiance up to ≈0.20 g·g⁻¹ per day, at irradiance above 20 MJ·m⁻² per day (data not shown). Stepwise regression showed irradiance accounted for most of the variance, and temperature accounted only for a weak inverse relation to EC set point, because the highest EC was under the lowest irradiance. Both the dry matter ratio and leaf area to weight ratio could be predicted by a single independent variable describing the interaction of irradiance and N treatment (Table 4), but the variance accounted for by regression was small compared to that for growth rate or relative growth rate. The average dry to fresh weight ratio was 0.053, and the leaf area per unit dry weight was 375 cm²·g⁻¹.

Air and root-zone temperatures in the range of 20 to 30 °C influence growth of lettuce in nutrient flow systems (Hicklenton and Woly-Netz, 1987; Thompson et al., 1998). In our experiments, daily average air and solution temperature ranged from 17 °C in winter to 25 °C in summer (Table 1). The cooler temperatures could have slowed growth. However, irradiance and temperature were highly correlated, so the influence of temperature could not be ascertained independently of that for irradiance. Logarithm of irradiance had a higher correlation with growth parameters than did temperature, except for the fraction of dry matter (Table 3). For lettuce grown in soil, the principal effect of temperature was on leaf area expansion, rather than dry weight gain (Bierhuizen et al., 1973).

Tissue nitrate was lowered by the low-N treatment, without affecting growth rate, only in late winter 1998. In this series of plantings, the nitrate concentrations measured in the recirculating solution were similar to those expected from dilution of nutrients (Table 1). When low-N treatments depleted solution nitrate below that expected from dilution of concentrates, in 1996 and Spring 1998, they also slowed growth with respect to the high-N treatment. In these instances nitrate in solution was <50 mg·L⁻¹, but far above the apparent affinity of the uptake system in lettuce, on the order of 15 μM or 0.2 mg·L⁻¹ (Swieder and Freiji, 1996). However, there may be a lower nitrate concentration in the solution in contact with roots than in the bulk solution. Any manipulations used to lower tissue nitrate should avoid depletion of nitrate below ≈50 mg·L⁻¹ in solution.
The growth response may be related to the modest change in tissue reduced-N for lettuce grown in sand, relative growth rate expressed in degree days was correlated with organic nitrogen content of leaves expressed on a fresh weight basis (Dapoigny et al., 1997). Our treatments had a significant effect on reduced-N only in 1996 (Table 2). Regression over all data under our growth conditions showed growth rate was only weakly correlated to reduced-N, r = 0.26, or to nitrate, r = 0.29, in leaf tissue on a dry weight basis.

Summary. When solution EC and nitrate supply ratio were used to control nutrient concentrations in the solution to grow hydroponic lettuce, there was a complex interaction between these variables and sunlight that defined the actual concentration of nitrate in solution. Tissue nitrate was affected more by EC set point than by nitrate supply ratio as a control variable. However, both solution EC and nitrate supply ratio had to be reduced by about one third, compared to the conditions for optimum growth under high light, to prevent accumulation of solution nitrate under low sunlight. There was a high correlation between concentrations of nitrate in solution and in leaves. Solution EC may affect leaf nitrate both through its effect on plant water potential, in which nitrate appears to play a role as an osmoticum, and through its effect on accumulation of nitrate in the nutrient solution.

Literature Cited

Bierhuizen, J.F., J.L. Ebbens, and N.C.A. Koomen. 1973. Effects of temperature and radiation on lettuce growing. Neth. J. Agr. Sci. 21:110–116.

Blom-Zandstra, M. 1989. Nitrate accumulation in vegetables and its relationship to quality. Ann. Appl. Biol. 115:553–561.

Blom-Zandstra, M., and A.H. Eenik. 1986. Nitrate concentration and reduction in different genotypes of lettuce. J. Amer. Soc. Hort. Sci. 111:908–911.

Blom-Zandstra, M. and J.E.M. Lampe. 1985. The role of nitrate in the osmo-regulation of lettuce (Lactuca sativa L.) grown at different light intensities. J. Expt. Bot. 36:1043–1052.

Dapoigny, L., A. Fleury, and P. Roblin. 1997. Relation between relative growth rate and nitrogen content during growth of lettuce (Lactuca sativa L.). Effects of radiation and temperature [French]. Agronomie 17:35–41.

Drews, M., I. Schonhof, and A. Krumbein. 1995. Influence of growth season on the content of nitrate, vitamin C, beta-carotene and sugar of head lettuce under greenhouse conditions [in German]. Gartenbauwissenschaft 60: 180–187.

Frota, J.N.E. and T.C. Tucker. 1972. Temperature influence on ammonium and nitrate absorption by lettuce. Soil Sci. Soc. Amer. Proc. 36:97–100.

Gent, M.P.N. 2000. Design for a re-circulating hydroponic system with feed-back control of nutrients and water. Proc. 29th Natl. Agr. Plastics Congr., Hershey, Pa.

Gent, M.P.N. 2002. Growth and composition of salad greens as affected by organic compared to nitrate fertilizer and by environment in high tunnels. J. Plant Nutr. 25:981–998.

Gunes, A., W.H.K. Post, E.A. Kirby, and M. Akta. 1994. Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. J. Plant Nutr. 17: 1929–1938.

Hicklenton, P.R., and M.S. Wolynetz. 1987. Influence of light- and dark-period air temperatures and root temperature on growth of lettuce in nutrient flow systems. J. Amer. Soc. Hort. Sci. 112:932–935.

Lorenz, O.A. and D.A. Maynard. 1980. Modified half strength Hoagland’s solution. Knotts Handbook for Vegetable Growers 2nd ed., Wiley, New York, p. 130–131.

Mitchell, C.A., T. Leakakos, and T.L. Ford. 1991. Modification of yield and chlorophyll content of leaf lettuce by HPS radiation and nitrogen treatments. HorticScience 26:1371–1374.

Mozafar, A. 1996. Decreasing the nitrate and increasing the vitamin C contents on spinach by a nitrogen deprivation method. Plant Foods for Human Nutrition 49:155–162.

Rooda van Eysinga, J.P.N.L. and M.Q. van der Meij. 1985. Effect of nitrogen nutrition and global radiation on yield and nitrate content of lettuce grown under glass. Comm. Soil Sci. Plant Anal. 16:1293–1300.

Samuelsen, M.E., E. Otten, M.K. Lind, and C.D.M. Larson. 1995. Nitrate regulation of nitrate uptake and nitrate reductase expression in barley grown at different nitrate ammonium ratios at constant relative addition rate. Physiologia Plantarum 94:254–260.

Scailfe, A.M., M.E. Saraiva-Ferreira, and M.K. Turner. 1986. Effect of nitrogen form on the growth and nitrate concentration of lettuce. Plant and Soil 94:3–16.

Steingrover, E., F. Ratering, and J. Siesling. 1986. Daily changes in uptake reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 66:550–556.

Stüwell, D.E. 1993. Evaluating the suitability of MSW compost as a soil amendment in field grown tomatoes: Part B Elemental analysis. Compost Sci. Util. 3:66–72.

Swiader, J.M. and F.G. Freij. 1996. Characterizing nitrate uptake in lettuce using very sensitive ion chromatography. J Plant Nutrition 19:15–27.

Thomas, R.L., R.W. Sheard, and J.R. Moyer. 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron. J. 59:240–243.

Thompson, H.C., R.W. Langhans, A.J. Both, and L.D. Albright. 1998. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J. Amer. Soc. Hort. Sci. 123: 361–364.

Tischner, B. 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23:1005–1024.

Van der Boon, J., J.W. Steenhuizen, and E.G. Steingrover. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH3/NO3 ratio and temperature of the recirculating nutrient solution. J. Hort. Sci. 65:309–321.