Gene Polymorphisms Increasing the Risk of Intracranial Aneurysms: Interleukin-6 -174G>C and -572G>C (Part II)

Alice Giotta Lucifero¹, Matias Baldoncini², Ilaria Brambilla¹, Monica Rutigliano¹, Gabriele Savioli², Renato Galzio³, Alvaro Campero⁷⁻⁸, Michael T. Lawton⁹, Sabino Luzzi¹,10

¹Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; ²Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina; ³Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy; ³Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy; ³Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy; ³Neurosurgery Unit, Maria Cecilia Hospital, Cotignola, Italy; ⁷Servicio de Neurocirugía, Universidad Nacional de Tucumán, Argentina; ⁸Department of Neurosurgery, Hospital Padilla, San Miguel de Tucumán, Tucumán, Argentina; ⁹Department of Neurosurgery, Barrow Neurological Institute (BNI), United States; ¹⁰Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

Abstract. Introduction: The interleukin-6 (IL-6), a proinflammatory cytokine, supports the adaptive immune response and regulates inflammatory processes. The -174 G>C and -572 G>C promoter polymorphisms of the IL-6 gene take part in the pathogenesis of intracranial aneurysms (IAs) and influence the clinical presentation of subarachnoid hemorrhage. This meta-analysis purposes to evaluate whether and which IL-6 allelic variations are related to a risk of IAs formation. Methods: A PRISMA-based literature search was performed on the PubMed/Medline and Web of Science databases. The keywords used were “interleukin-6,” “IL-6,” “polymorphism,” “interleukin-6 genotype,” combined with “intracranial aneurysms” and “subarachnoid hemorrhage.” Only human case-control studies, with a study (IAs) and a control group, written in English, and published in the last 15 years were selected. A meta-analysis was performed, estimating odds ratios and 95% confidence intervals in fixed- or random-effects models, as applicable. Statistical analysis was conducted with RevMan 5.0 software. Results: 9 studies were eligible. No associations were found between -174 G>C polymorphisms and IAs susceptibility. Notable results were reported by the analysis of -572G>C polymorphisms. -572GG/GC/CC genotypes were strongly related to IAs occurrence with a statistical significance of $p=0.03$, $p=0.0009$, and $p=0.00001$, respectively. Conclusion: A higher incidence of -572G>C promoter polymorphisms were demonstrated in the IAs group, highlighting the pivotal role of inflammatory genes in the natural history of brain aneurysms. Additional studies are required considering the racial heterogeneity and the need to widen the population sample. (www.actabiomedica.it)

Key words: Allele Variations; Gene Polymorphisms; IL-6; Inflammatory Cytokines; Interleukin-6; Intracranial Aneurysm; Subarachnoid Hemorrhage.

Introduction

In their saccular type, intracranial aneurysms (IAs) turn out as focal bulges of the arterial wall. They have an overall incidence and prevalence of 4% and 2–5%, respectively (1-3). IAs are typified by specific histological features, including the loss of internal elastic lamina and destruction of tunica media (4). The sudden rupture of the thinned aneurysm layers causes subarachnoid hemorrhage (SAH), a life threatening cerebrovascular disease accounting for 30% of strokes and resulting in high morbidity and mortality (5-12).
Despite the precise mechanisms underlying the natural history of IAs being still unclear, the inflammatory cascade proved to be critical in the genesis, growth, and rupture of IAs (13-15). The local recruitment of inflammatory mediators, macrophages, cytokines, along with endothelial dysfunction and phenotypic switching of smooth muscle cells, leads to the weakening of the arterial wall (16-18).

Amid the pro-inflammatory cytokines recruited, the interleukin-6 (IL-6) has an active role in the boosting of the immune pathways, immunoregulation, and maintenance of inflammatory processes (19, 20). The human IL-6 gene was mapped in the short arm of chromosome 7 (21). It displays two biallelic polymorphisms at positions -174G/C and -572G/C in its promoter region, both due to the replacement of a sole nucleotide (GG/GC/CC) (22-24). IL-6 promoter polymorphisms were revealed to be potential risk factors for many vascular diseases, mostly abdominal aortic, coronary, and brain aneurysms (20, 25-42).

Given the limited pieces of evidence reported in the literature, the present meta-analysis sought to clarify the associations between IL-6 gene promoter polymorphisms, with single nucleotide substitutions, and the incidence of IAs.

Methods

Literature Search Strategy

A comprehensive online literature review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

The PubMed/Medline (https://pubmed.ncbi.nlm.nih.gov) and Web of Science (https://www.webofscience.com) electronic databases were used with the following keywords: “interleukin-6,” “IL-6,” “interleukin-6 polymorphism,” “IL-6 polymorphism,” “interleukin-6 genotype,” “IL-6 genotype”. The aforementioned terms were merged with further keywords as follows: “intracranial aneurysm,” “cerebral aneurysm”, and “subarachnoid hemorrhage.” Only articles written in English or translated, published in the last 15 years, were chosen and filtered according to the best match and relevance. Inclusion criteria were human case-control studies, available data on GG/GC/CC allele frequencies. Reviews, editorials, comments, case reports, letters to editor, and animal studies, were excluded. The Newcastle-Ottawa quality assessment scale (NOS) was employed to assess the quality of the selected articles (NOS ≥6 high quality).

Statistical Analysis

The meta-analysis was performed with the RevMan 5.0 software (Cochrane Informatics & Knowledge Management Department). Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were assessed using the Mantel-Haenszel method for fixed effects and the Der Simonian-Laird method for the random ones. The heterogeneity rate was estimated by the Cochrane’s Q test and the consequent p and I2 (% of effect due to heterogeneity) values. p <0.05 and I2 >50% identify a high heterogeneity of the study samples. Fixed-effects models were applied if the results of the Q test were not significant. Otherwise, studies with significant heterogeneity were further analyzed through the random-effect model. Z-test for overall effect was performed in all cases and the p-value was set at < 0.05. ORs and CIs of each endpoint were showed as a Forest plot. The risk of publication bias was estimated by Begg’s rank correlation method and Egger’s regression asymmetry, and reported as a Funnel plot if needed.

Results

Literature Volume

The literature search returned a total of 141 articles. After duplicate removal, screening, and implementation of the exclusion criteria, a total of 37 studies were assessed for eligibility. Further refinements limited the search to 9 studies. Among them, articles on the association between IL-6 -174G>C and IL-6 -572G>C polymorphisms and IAs risk were 8 and 6, respectively. Figure 1 reports the PRISMA flow chart of the study (Figure 1).

All studies reported the genotypes of IL-6 polymorphisms, -174G>C and -572G>C, differentiating
the frequency of alleles in GG/CG/CC. The study design was prospective for 6 articles, and retrospective for the remaining. 4 studies took place in China, 1 in the United Kingdom, 1 in Italy, 1 in Poland, and 1 in Turkey. The NOS score was higher than 6 for all the samples.

Demographic and Genetic Data

A total of 6765 patients belonging to 9 studies were involved in the meta-analysis. The IAs groups consisted of 1912 cerebral aneurysms, whereas the control ones accounted for 4853 healthy patients. The average patients’ age was 45.5 and 48.3 years for the IAs and control groups, respectively. The mean percentage of the male was 43% and 51% in the study and control groups, respectively. Details of patients’ demographics, genetic data, and studies’ features are shown in Table 1.

Quantitative Synthesis and Heterogeneity Analysis

The associations between IL-6 -174G>C polymorphisms and risk of IAs were investigated
Table 1. Overview of Data reported in the Literature about IL-6 Gene Polymorphisms and IAs

Author, Year	Study Type	Country	Timeframe	N° of patients	IAs Group	Control Group	IAs Group (average y-o)	Control Group (average y-o)	IAs Group [N° of male (%)]	Control Group [N° of male (%)]	Polymorphism	Allele	IAs Group (N° of patients)	Control Group (N° of patients)	NOS
Sun et al, 2008 (28)	ROS	China	2005-2007	240	240	45.2	41.8	104 (43)	116 (48)	-572G>C	GG	59	9		
Zhang et al, 2011 (29)	POS	China	2006-2008	182	182	36	33	103 (57)	95 (52)	-572G>C	GG	145	165		
Pera et al, 2012 (30)	POS	Poland	2002-2009	276	581	50.5	56	120 (43)	274 (47)	-174G>C	GG	82	186		
Liu et al, 2012 (31)	ROS	China	2012	220	220	47.4	45.6	95 (43)	103 (47)	-572G>C	GG	33	11		
Sathyan et al, 2015 (32)	ROS	India	2014	220	250	51.2	NA	123 (56)	NA	-174G>C	GG	144	153		
Bayri et al, 2015 (33)	POS	Turkey	2015	120	120	NA	NA	NA	NA	-174G>C	GG	72	66		
Xu et al, 2021 (18)	POS	China	2016-2020	384	384	57.1	66.5	117 (30)	117 (30)	-572G>C	GG	17	18		

C: Cytosine; G: Guanine; IAs: Intracranial Aneurysms; N: Number; NA: Not Available; NOS: Newcastle-Ottawa quality assessment Scale; POS: Prospective Observational Study; ROS: Retrospective Observational Study
in 6 studies. Results of the analysis on -174GG, -174GC, and 174CC genotypes were OR = 1.13, 95% CI [0.95-1.35], p = 0.17; OR = 0.96, 95% CI [0.81-1.14], p = 0.65; OR = 0.77, 95% CI [0.59-1.00], p = 0.05; respectively. Albeit revealing a clear correlation, the pooled results of each -174 genotype’s examinations did not show differences. Regarding the heterogeneity, the I^2 value was less then 50% and p >0.05 for all the -174G>C analyses (Figures 2-4).

IL-6 -572G>C polymorphisms and their rela-

Study or Subgroup	IAs Events	Total	Control Events	Total	Weight	M-H, Fixed, 95% CI	Odds ratio M-H, Fixed, 95% CI
Morgan 2006	40	91	867	2720	13.6%	1.68 [1.10, 2.56]	
Fontanella 2008	78	179	66	156	17.2%	1.05 [0.68, 1.63]	
Pera 2012	82	276	186	581	36.4%	0.90 [0.66, 1.23]	
Bayri 2015	72	120	66	120	11.4%	1.23 [0.74, 2.05]	
Sathyen 2015	144	220	153	250	21.4%	1.20 [0.82, 1.75]	
Total (95% CI)	**886**		**3827**		**100.0%**	**1.13 [0.95, 1.35]**	
Total events:	416		1338				
Heterogeneity:	Chi^2 = 5.76, df = 4 (P = 0.22); I^2 = 31%						
Test for overall effect: Z = 1.39 (P = 0.17)							

Figure 2. Forest plot for -174GG polymorphism

Study or Subgroup	IAs Events	Total	Control Events	Total	Weight	M-H, Fixed, 95% CI	Odds ratio M-H, Fixed, 95% CI
Morgan 2006	40	91	1358	2720	18.9%	0.79 [0.52, 1.20]	
Fontanella 2008	86	179	71	156	15.2%	1.11 [0.72, 1.70]	
Pera 2012	138	276	275	581	34.0%	1.11 [0.84, 1.48]	
Bayri 2015	36	120	42	120	11.3%	0.80 [0.46, 1.37]	
Sathyen 2015	63	220	80	250	20.5%	0.85 [0.57, 1.27]	
Total (95% CI)	**886**		**3827**		**100.0%**	**0.96 [0.81, 1.14]**	
Total events:	363		1826				
Heterogeneity:	Chi^2 = 3.11, df = 4 (P = 0.54); I^2 = 0%						
Test for overall effect: Z = 0.45 (P = 0.65)							

Figure 3. Forest plot for -174GC polymorphism

Study or Subgroup	Experimental Events	Total	Control Events	Total	Weight	M-H, Fixed, 95% CI	Odds ratio M-H, Fixed, 95% CI
Morgan 2006	6	91	495	2720	22.9%	0.32 [0.14, 0.73]	
Fontanella 2008	15	179	19	156	14.2%	0.66 [0.32, 1.35]	
Pera 2012	56	276	120	581	47.1%	0.98 [0.69, 1.40]	
Bayri 2015	12	120	12	120	8.3%	1.00 [0.43, 2.32]	
Sathyen 2015	8	220	11	250	7.6%	0.82 [0.32, 2.08]	
Total (95% CI)	**886**		**3827**		**100.0%**	**0.77 [0.59, 1.00]**	
Total events:	97		657				
Heterogeneity:	Chi^2 = 6.64, df = 4 (P = 0.16); I^2 = 40%						
Test for overall effect: Z = 1.94 (P = 0.05)							

Figure 4. Forest plot for -174CC polymorphism
tion to IAs was investigated in 8 case-control studies. About the -572GG genotype, the OR was 1.25, 95% CI [1.03 -1.51], and p=0.03. The analyses of -572GC and -572CC polymorphisms showed significant differences. Results were as follows: -572GC: OR=1.30, 95% CI [1.11-1.51], p= 0.0009; OR= 0.67, 95% CI [0.57-0.80], p= 0.00001 (Figures 5-7).

In the quantitative synthesis of the -572G>C genotype, the I² was found greater than 50% and the pq was <0.05. Consequently, the random-effect model was also applied, and the results were as follows: -572GG: OR= 1.33, 95% CI [0.73-2.42], p=0.34; -572GC: OR= 1.36, 95% CI [0.89-2.06], p= 0.15; -572CC: OR= 1.06, 95% CI [0.50-2.25], p= 0.88.

Publication Bias

Begg’s rank and Egger’s methods revealed no publication bias for the -174G>C genotype analysis (Figure 8).

Instead, increased risks of bias were found for the -572G>C polymorphism (Figure 9).

Discussion

This meta-analysis aimed to explore the correlation between genotype variability of IL-6 -174G>C and -572G>C and susceptibility to IAs.

In the era of translational medicine, advances in
molecular biotechnologies and haplotype-based genome-wide linkage analysis gave tremendous advantages in the identification of the inflammatory and genetic mechanisms underlying the pathogenesis of many neurovascular and neuro-oncological diseases (43-64).

The natural history of brain aneurysms is controversial, strongly influenced by individual immunogenetic stimuli. The primum movens was identified in the wall shear stress, which promotes endothelial dysfunction, vascular remodeling, and immune activation (13, 65-67). The recruited inflammatory cytokines and the endothelial oxidative stress progressively damage vessels, resulting in the thinning and bulging of the arterial wall (68-70). Genetic mutations of proinflammatory interleukin and the consequent imbalance in immunological response may affect the onset and progression of IAs (14, 71). IL-6 is secreted by macrophages, endothelial and lymphoid cells, and takes part in the adaptive immunity and tissue repair processes (72, 73).

Current pieces of evidence strongly support the correlation between the IL-6 -174G>C and -572G>C polymorphisms and SAH (74, 75). In 2006, Morgan et al. conducted the first population-based case-control study to test the relation of IL-6 genotypes with the intracranial aneurysmal disease, describing a reasonable association of the -572G>C polymorphism in Caucasian people (28). Studies on the Chinese population all reported a higher risk of IAs for patients harboring -572G>C genotype. The G allele variation was

Figure 6. Forest plot for -572GC polymorphism. (A) Fixed and (B) random model.
the most represented (30, 31, 33). Conversely, conflicting results were found in European populations. Neither Fontanella and colleagues, in 2008, nor Pera et al., in 2012, found any correlation between the IL-6 gene and IAs (29, 32). The most recent study by Xu et al. in 2021 demonstrated a close relation between proinflammatory cytokines polymorphisms and the genetic risk factors of IAs in Chinese people (20).

In accordance with the literature, our meta-analysis failed to find any connection between the -174G>C genotype and IAs. Moreover, we reported a statistical difference for -572GG/GC/CC genotypes distribution in the fixed-effects model (p=0.03, p= 0.0009; p= 0.00001), although limited by the high heterogeneity between the groups (I²= 88%, I²= 83%; I²= 92%). By applying the random- model, the associations were no longer detected.

Our results highlight the importance of ethnic-specific differences in genetic polymorphisms expression and the racial influence, as reported by European vs Chinese studies, in IAs pathogenesis.

The increasing allele frequency of -572G>C raises the serum concentration of IL-6. It upregulates the inflammatory cascade, inhibits collagen production in the endothelial cells, and causes progressive damage fragility of the arterial wall (31). IL-6 modulates lipid metabolism, increases the risk of intracranial arteriosclerosis, and has a direct cytotoxic effect on oligodendrocytes (76-80). Furthermore, it acts as a strong vascular vasoconstrictor (81). The high level of IL-6

Figure 7. Forest plot for -572CC polymorphism. (A) Fixed and (B) random model
increases the incidence of vasospasm after SAH, worse cerebral ischemia, and indirectly affects the patient’s outcome (81, 82).

Limitations of the Study

The present study has some limitations. First, the selection bias cannot be avoided because of the relatively limited sample size and the high heterogeneity across ethnicities. Second, we did not include the acquired risk factors like smoking and hypertension. Third, the retrospective nature of studies included in the meta-analysis was a further limitation to be considered.

Conclusion

Local recruitment of proinflammatory IL-6 at the arterial wall primes the endothelial dysfunction leading to the vessel damage and genesis of IAs.

IL-6 polymorphisms result in the upregulation of inflammatory pathways, thus affecting the natural history of IAs.

The present study reported a direct connection between IL-6 -572 GG/GC/CC polymorphisms and IAs, while no differences in -174 G>C polymorphisms were found.

Further genetic studies across different ethnicities are needed to confirm the association between IL6 gene polymorphisms and the risk of IAs.

Conflict of Interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article

References

1. Juvela S. Prevalence of and risk factors for intracranial aneurysms. Lancet Neurol. 2011;10(7):595-7.
2. Rinkel GJ, Djibuti M, Algra A, van Gijn J. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke. 1998;29(1):251-6.
3. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence
of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626-36.
4. Frösen J, Pippoo A, Patcu A, Kangasniemi M, Niemelä M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35(10):2287-93.
5. Pritchard C, Foulkes L, Lang DA, Neil-Dwyer JG. Psychosocial outcomes for patients and carers after aneurysmal subarachnoid haemorrhage. Br J Neurosurg. 2001;15(6):456-63.
6. Johnston SC, Sevin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50(5):1413-8.
7. Wiebers DO, Whisnant JP, Huston J, 3rd, Meissner I, Brown RD, Jr., Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103-10.
8. Serrone JC, Maekawa H, Tjahjadi M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysms: overall results of a large series. World Neurosurg. 2020;144:e119-e37.
9. Luzzi S, Gragnaniello C, Giotta Lucifero A, Del Maestro M, Galzio R. Microneurosurgical management of giant intracranial aneurysms: Results of a large series. World Neurosurg. 2020;144:e119-e37.
10. Luzzi S, Gragnaniello C, Giotta Lucifero A, Del Maestro M, Galzio R. Microneurosurgical management of giant intracranial aneurysms: Datasets of a twenty-year experience. Data Brief. 2020;33:106537.
11. Luzzi S, Del Maestro M, Galzio R. Letter to the Editor. Preoperative embolization of brain arteriovenous malformations. J Neurol Surg. 2019;132(6):2014-6.
12. Luzzi S, Del Maestro M, Elbahaa SK, Galzio R. Letter to the Editor Regarding "One and Done: Multimodal Treatment of Pediatric Cerebral Arteriovenous Malformations in a Single Anesthesia Event". World Neurosurg. 2020;134:660.
13. Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Reza B, Lehto H, et al. Local Hemodynamic Conditions Associated with Focal Changes in the Intracranial Aneurysm Wall. AJNR Am J Neuroradiol. 2019;40(3):510-6.
14. Tulamo R, Frösen J, Hernesniemi J, Niemelä M. Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg. 2010;2(2):120-30.
15. Giotta Lucifero A, Baldoncini M, Bruno N, Galzio R, Hernesniemi J, Luzzi S. Shedding the Light on the Natural History of Intracranial Aneurysms: An Updated Overview. Medicina (Kaunas). 2021;57(8).
16. Hasan D, Chalouhi N, Jabbour P, Hashimoto T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation. 2012;9:222.
17. Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Critical role of TNF-
30. Sun H, Zhang D, Zhao J. The interleukin-6 gene -572G>C promoter polymorphism is related to intracranial aneurysms in Chinese Han nationality. Neurosci Lett. 2008;440(1):1-3.
31. Zhang G, Tu Y, Feng W, Huang L, Li M, Qi S. Association of interleukin-6–572G/C gene polymorphisms in the Cantonese population with intracranial aneurysms. J Neurol Sci. 2011;306(1-2):94-7.
32. Pera J, Dziedzic T, Adamski M, Jagiella J, Krupa M, Moskal J, et al. Interleukin 6-174G>C polymorphism and risk of aneurysmal subarachnoid hemorrhage: case-control study and meta-analysis. Acta Neurol Scand. 2012;125(2):111-5.
33. Liu Y, Sun J, Wu C, Cao X, He M, You C. The interleukin-6-572G/C gene polymorphism and the risk of intracranial aneurysms in a Chinese population. Genet Test Mol Biomarkers. 2012;16(7):822-6.
34. Sathyan S, Koshy LV, Srinivas L, Easwer HV, Premkumar N, Sair S, et al. Pathogenesis of intracranial aneurysm is mediated by proinflammatory cytokine TNFA and IFNG and through soxastic regulation of IL10 and TGFβ1 by comorbid factors. J Neuroinflammation. 2015;12:135.
35. Bayri Y, Ta'kin E, Ulus A, Bayrakli F, Altun A, Bagci H. Lack of Association Between Interleukin 6 Gene Promoter Polymorphisms and Aneurysmal Subarachnoid Hemorrhage in Turkish Population. Journal of Neurological Sciences. 2015;32:288-92.
36. Treska V, Topolcan O, Pecen L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin Chem Lab Med. 2000;38(11):1161-4.
37. Lin CY, Lin CC, Hwang B, Chiang BN. Cytokines predict coronary aneurysm formation in Kawasaki disease patients. Eur J Pediatr. 1993;152(4):309-12.
38. Lindeman JH, Abdul-Hussien H, Schaapherder AF, Van Bockel JH, Von der Thüsen JH, Roelen DL, et al. Enhanced expression and activation of pro-inflammatory transcription factors distinguish aneurysmal from atherosclerotic aorta: IL-6- and IL-8-dominated inflammatory responses prevail in the human aneurysm. Clin Sci (Lond). 2008;114(11):97.
39. Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 2012;123(6):773-86.
40. Tang G, Chiocca A. Gene transfer and delivery in central nervous system disease. Neurosurg Focus. 1997;3(3):e2.
41. Lim M, Weller M, Chiocca EA. Current State of Immune-Based Therapies for Glioblastoma. Am Soc Clin Oncol Educ Book. 2016;35:e132-9.
42. Samuel N, Radovanovic I. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus. 2019;47(1):E10.
43. Caranci F, Briganti F, Cirillo L, Leonardi M, Muto M. Epidemiology and genetics of intracranial aneurysms. Eur J Radiol. 2013;82(10):1598-605.
44. Giotta Lucifero A, Luzzi S, Brambilla I, Trabatti C, Mosconi M, Savasta S, et al. Innovative therapies for malignant brain tumors: the road to a tailored cure. Acta Biomed. 2020;91(7-s):5-17.
45. Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, et al. The cell–based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11):e02818.
46. Luzzi S, Crovace AM, Valente V, Francioso E, Rossi G, et al. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats. Surg Neurol Int. 2018;9:19.
47. Palumbo P, Lombardi F, Augello FR, Giusti I, Luzzi S, Dolo V, et al. NOS2 inhibitor 1400W induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. Int J Mol Sci. 2019;20(12).
48. Raysi Dehcordi S, Ricci A, De Paulis D, Palumbo P, et al. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations. World Neurosurg. 2017;105:895-905.
49. Savioli G, Ceresa IF, Macedonio S, Gerosa S, Belliato M, Iotti GA, et al. Trauma Coagulopathy and Its Outcomes. Medicina (Kaunas). 2020;56(4).
50. Giotta Lucifero A, Luzzi S. Against the Resilience of High-Grade Gliomas: Gene Therapies (Part I). Brain Sci. 2021;11(3).
51. Giotta Lucifero A, Luzzi S. Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I). Brain Sci. 2021;11(8).
52. Elbabaa SK, Cinque B, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11):e02818.
53. Sani A, et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 2012;123(6):773-86.
61. Foiadelli T, Savasta S, Battistone A, Kota M, Passera C, Fiore S, et al. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomylitis. BMC Infect Dis. 2016;16:277.

62. Savasta S, Rovida F, Foiadelli T, Campana AM, Percivalle E, Marseglia GL, et al. West-Nile virus encephalitis in an immunocompetent pediatric patient: successful recovery. Ital J Pediatr. 2018;44(1):140.

63. Micher A, Musso P, Foiadelli T, Trabatti C, Lozza A, Franciotta D, et al. Bickerstaff Brainstem Encephalitis and overlapping Guillaum-Barré syndrome in children: Report of two cases and review of the literature. Eur J Paediatr Neurol. 2019;23(1):43-52.

64. Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, et al. Interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha, neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177(1):19-26.

65. Micher A, Musso P, Foiadelli T, Trabatti C, Lozza A, Franciotta D, et al. Rasmussen’s encephalitis: From immune pathogenesis towards targeted-therapy. Seizure. 2020;81:76-83.

66. Staarmann B, Smith M, Prestigiacomo CJ. Shear stress and aneurysms: a review. Neurosurg Focus. 2019;47(1):E2.

67. Sforza DM, Putman CM, Cebral JR. Hemodynamics of Cerebral Aneurysms. Annu Rev Fluid Mech. 2009;41:91-107.

68. Sakamoto N, Saito N, Han X, Ohashi T, Sato M. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem Biophys Res Commun. 2010;395(2):264-9.

69. Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation. 2014;129(3):373-82.

70. Frösen J. Smooth muscle cells and the formation, degeneration, and rupture of saccular intracranial aneurysms— a review of current pathophysiological knowledge. Transl Stroke Res. 2014;5(3):347-56.

71. Kataoka K, Taneeda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30(7):1396-401.

72. Le JM, Vilecek J. Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest. 1989;61(6):588-602.

73. Song M, Kellum JA. Interleukin-6. Crit Care Med. 2005;33(12 Suppl):S463-5.

74. Zheng S, Su A, Sun H, You C. The association between interleukin-6 gene polymorphisms and intracranial aneurysms: a meta-analysis. Hum Immunol. 2013;74(12):1679-83.

75. Hu L, Li B, Liao X, Yan J. Polymorphisms of Inflammatory Cytokine Genes and Risk for Intracranial Aneurysm: A Systematic Review and Meta-Analysis. Yonsei Med J. 2020;61(5):391-9.

76. Skirgaulas M, Awad IA, Kim J, Rothbard D, Criscuolo G. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery. 1996;39(3):537-45; discussion 45-7.

77. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha) in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage. Stroke Res. 2014;5(3):347-56.

78. Inder TE, Volpe JJ. Mechanisms of perinatal brain injury. Semin Neonatol. 2000;5(1):3-16.

79. Giacomini T, Foiadelli T, Annovazzi P, Nosadini M, Gastaldi M, Franciotta D, et al. Pediatric optic neuritis and anti MOG antibodies: Two paradigmatic cases and a review of the literature. Mult Scler Relat Disord. 2019;39:101917.

80. Foiadelli T, Gastaldi M, Scaranzin S, Franciotta D, Savasta S. Seizures and myelin oligodendrocyte glycoprotein (MOG) antibodies: a cohort of Italian patients. Mult Scler Relat Disord. 2020;41:102011.

81. Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien). 1998;140(9):943-51.

82. Kwon KY, Jeon BC. Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage. J Korean Med Sci. 2001;16(6):774-80.