Treatment of COVID-19 exacerbated asthma: should systemic corticosteroids be used?

Dr Kartik Kumar¹
Dr Timothy SC Hinks²
Dr Aran Singanayagam¹

Affiliations:
1. National Heart and Lung Institute. Imperial College London
2. Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, OX3 9DU, Oxfordshire, UK

Corresponding author:
Dr Aran Singanayagam PhD. MRCP.
National Heart and Lung Institute
Imperial College London
London
SW7 2AZ
a.singanayagam@imperial.ac.uk

Funding: KK is supported funding from the NIHR Biomedical Research Centre. TSCH is supported by grants from the Wellcome Trust (104553/z/14/z, 211050/Z/18/Z) and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). AS is supported by funding from the Wellcome Trust (215275/Z/19/Z) and the Association of Physicians of GB & Ireland.

Conflicts of interest: KK reports no conflict of interests. TSCH reports grants from The Wellcome Trust, grants from The Guardians of the Beit Fellowship; personal fees from Astra Zeneca, personal fees from TEVA, personal fees from Peer Voice, outside the submitted work. AS reports personal fees from Astra Zeneca, outside the submitted work.
Abstract

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is a new rapidly spreading infectious disease. Current guidance from the World Health Organisation (WHO) highlights asthmatics as a high-risk group for severe illness from COVID-19. Viruses are common triggers of asthma exacerbations and the current SARS-CoV-2 pandemic raises several questions regarding the optimum management strategies. Here, we discuss the contentious issue of whether the mainstay therapies systemic corticosteroids should be used in the routine management of COVID-19-associated asthma exacerbations. Recent guidance from the WHO has advised against the use of corticosteroids if COVID-19 is suspected due to concerns that these agents may impair protective innate anti-viral immune responses. This may not be appropriate in the unique case of asthma exacerbation, a syndrome associated with augmented type 2 inflammation, a disease feature that is known to directly inhibit anti-viral immunity. Corticosteroids, through their suppressive effects on type 2 inflammation, are thus likely to restore impaired anti-viral immunity in asthma and, in contrast to non-asthmatic subjects, have beneficial clinical effects in the context of SARS-CoV-2 infection.
Introduction

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is a new rapidly spreading infectious disease. Current guidance from the World Health Organisation (WHO) highlights asthmatics as a high-risk group for severe illness from COVID-19 (2) and widespread shielding of these patients has been advocated. Published case series of COVID-19 have not reported asthma as a common comorbidity (22) and there is currently limited evidence to inform on the optimum management of COVID-19 associated asthma exacerbations. Here, we discuss the contentious issue of whether the mainstay therapies systemic corticosteroids should be used in the routine management of COVID-19-associated asthma exacerbations.

Viruses and SARS-CoV-2 as triggers for asthma exacerbations

Asthma is a chronic respiratory condition, punctuated by the occurrence of acute symptomatic deteriorations ('exacerbations'). The link between virus infection and exacerbations is well established: rhinoviruses are the most commonly isolated pathogen at exacerbation (~50-80% of virally triggered episodes) with a range of other viruses (including coronaviruses) less frequently identified (17, 23). Experimental human infection challenge studies have confirmed unequivocally that viruses play a causal role in precipitating asthma exacerbations (10), driving augmented airway inflammation, mucus hypersecretion and lower respiratory tract symptoms (8, 10, 12). As with other coronaviruses, SARS-CoV-2 is anticipated to similarly exacerbate disease, although the precise immunopathological mechanisms through which this occurs are yet to be characterised.

Systemic corticosteroids in asthmatics with COVID-19: beneficial or harmful?

Current asthma guidelines advocate treatment with oral corticosteroids in acute exacerbations (typically oral prednisolone 40 - 50mg for 5 to 7 days (1)) and this therapy is prescribed almost ubiquitously for hospitalised episodes. Asthma exacerbations are associated with augmented airway inflammation which drives increased respiratory symptoms (10); corticosteroids are broad immunosuppressive agents that reduce these features to promote clinical recovery. Conversely, recent guidance from the WHO advises against the use of corticosteroids if COVID-19 is suspected, although with a caveat that they may be considered if there is underlying asthma or COPD (2). The recommendation of avoidance has been formulated based on previous data showing that, despite potentially beneficial anti-inflammatory effects, corticosteroids (inhaled or systemic) can inhibit production of the critical anti-viral mediators type I and III interferons. This has been shown in a range of in vitro and in vivo human and animal studies for several asthma-relevant viruses including rhinovirus, influenza and respiratory syncytial virus (RSV) (7, 18, 19). These effects precipitate increased virus replication (7, 18, 19) and augment virus-driven pathology including mucus hypersecretion and secondary bacterial infections (18). Similar detrimental effects are expected to occur with use of corticosteroids in the context of
COVID-19. Accordingly, studies in patients with other coronavirus infections (e.g. SARS-CoV1, MERS-CoV) have shown that corticosteroids increase viraemia and delay viral clearance with no evidence of clinical benefit (16).

Asthma is associated with an inherent impairment of interferon responses to virus infection (4, 20) and, therefore, in the context of overwhelming viral illness, further inhibition of interferon by corticosteroids in an already deficient state could have deleterious consequences. This leaves clinicians with the conundrum of whether oral corticosteroids, which are effective guideline-recommended therapies for asthma exacerbations, should be used in COVID-19-related exacerbation. However, multiple other lines of evidence in asthma indicate that certain disease mechanisms might counterbalance any potential adverse effects upon anti-viral immunity. Increased T-helper cell 2 (Th2) inflammation is present in a large proportion of asthmatic subjects and is augmented upon viral infection (10, 12). Sputum eosinophilia correlates negatively with impaired IFN induction in cultured asthmatic cells (4) and Th2 mediators (IL-4,IL-13) can directly inhibit epithelial production of type-I interferon (3). Interferon-α can additionally suppress Th2 cell polarization in T cell or mixed leukocyte culture models, attenuating expression of GATA3, IL-4, IL-5 and IL-13 (9, 14).

Furthermore, mice deficient in the type I IFN receptor-deficient mice (Ifnar-/-) have augmented pulmonary eosinophilia and type 2 inflammation in response to influenza infection (5). As corticosteroids suppress type 2 inflammation, their use in the context of COVID-19 associated exacerbation may thus lead to the beneficial effect of secondary restoration of impaired anti-viral immunity (see Figure 1). This was suggested by a previous study showing that inhaled budesonide did not impair CD8+ T cell infiltration into the bronchial epithelium following experimental rhinovirus infection in asthmatics (6) contrary to the clear suppressive effects of corticosteroids on T cells observed in the absence of pre-existing Th2 inflammation (18). Accordingly, in a recent report of histopathological autopsy findings from a non-asthmatic patient with COVID-19 treated with systemic corticosteroids, suppressed peripheral blood CD8+ T cell numbers were observed (21).

In a clinical setting, objective evidence of augmented type 2 inflammation could be ascertained by the presence of bronchoconstriction (since type 2 mediators, particularly IL-13, are major drivers of airway hyperresponsiveness) or by measurement of objective biomarkers of type 2 inflammation such as blood eosinophils. Interestingly, in case series to date, SARS-CoV2 infection appears to be associated with low blood eosinophils (15). A future hypothesis to explore is whether the presence of normal or elevated eosinophils in asthmatics infected with SARS-CoV-2 may reflect a type 2 inflammatory process that could be used as a biomarker for corticosteroid therapy. Although systemic steroids are highly effective in eosinophilic disease, exacerbations of airways disease are heterogeneous and viral exacerbations may also be characterised by neutrophilic inflammation (11) which is typically less responsive to steroids. It is currently unclear whether steroids can be safely withheld in patients with low blood eosinophil counts, although studies addressing this
question are needed. Moreover, early data suggests that the primary focus of lung pathology in COVID-19 may be the parenchyma rather than the airways with evidence of diffuse alveolar damage, pneumocyte desquamation and interstitial mononuclear inflammatory infiltrates reported (21). It remains unclear whether more prominent bronchial involvement will be observed in asthmatic subjects and larger case series with inclusion of such patients should shed light on this.

Concluding remarks and Future Perspectives

We remain in the early stages of our understanding of how COVID-19 affects patients with chronic respiratory diseases such as asthma and optimum management strategies still need to be determined and refined. However, the contraindication to corticosteroids that is being advocated for individuals who acquire SARS-CoV2 infection, is predominantly based on a lack of efficacy in treating COVID-19 disease, rather than evidence of harm. This should be balanced against their proven efficacy in reducing asthma symptoms and risk of relapse in patients with asthma (13), particularly those with evidence of augmented type 2 inflammation where corticosteroid use may restore anti-viral immunity and confer benefit. The decision to treat an asthmatic infected with SARS-CoV-2 will therefore require careful consideration on a ‘per-patient’ basis. Future studies should focus on characterising the immunopathology of COVID-19-related asthma exacerbation including the extent to which augmented type 2 inflammation drives pathology. This will facilitate determination of the optimum approaches to management of these patients.

Figure 1: Proposed differences between effects of corticosteroid therapy in asthmatic and non-asthmatic subjects infected with SARS-CoV2.
REFERENCES

1. Global Initiative For Asthma (GINA). Management and Prevention Guidelines. 2019.
2. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. Geneva: World Health Organization, Jan 28, 2020. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected (accessed Mar 20, 2020).
3. Contoli M, Ito K, Padovani A, Poletti D, Marku B, Edwards MR, Stanciu LA, Gnesini G, Pastore A, Spanevello A, Morelli P, Johnston SL, Caramori G, and Papi A. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy 70: 910-920, 2015.
4. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, and Johnston SL. Role of deficient type III interferon-lambda production in asthma exacerbations. Nature medicine 12: 1023-1026, 2006.
5. Duerr CU, McCarthy CD, Mindt BC, Rubio M, Meli AP, Pothlichet J, Eva MM, Gauchat JF, Qureshi ST, Mazer BD, Mossman KL, Malo D, Gamero AM, Vidal SM, King IL, Sarfati M, and Fritz JH. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nature immunology 17: 65-75, 2016.
6. Grunberg K, Sharon RF, Sont JK, In 't Veen JC, Van Schadewijk WA, De Klerk EP, Dick CR, Van Krieken JH, and Sterk PJ. Rhinovirus-induced airway inflammation in asthma: effect of treatment with inhaled corticosteroids before and during experimental infection. American journal of respiratory and critical care medicine 164: 1816-1822, 2001.
7. Gustafson LM, Proud D, Hendley JO, Hayden FG, and Gwaltney JM, Jr. Oral prednison therapy in experimental rhinovirus infections. The Journal of allergy and clinical immunology 97: 1009-1014, 1996.
8. Hewson CA, Haas JJ, Bartlett NW, Message SD, Laza-Stanca V, Kebadze T, Caramori G, Zhu J, Edbrooke MR, Stanciu LA, Kon OM, Papi A, Jeffery PK, Edwards MR, and Johnston SL. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-kappaB and EGFR pathways. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 36: 1425-1435, 2010.
9. Huber JP, Ramos HJ, Gill MA, and Farrar JD. Cutting edge: Type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol 185: 813-817, 2010.
10. Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Toralbo MB, Footit J, Jerico D-R, Telcian AG, Nikonova A, Zhu J, Aniscenko J, Gogsadze L, Bakhsohian E, Traub S, Dhariwal J, Porter J, Hunt D, Hunt T, Hunt T, Stanciu LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papadopoulos NG, Akdis CA, Westwick J, Edwards MJ, Cousins DJ, Walton RP, and Johnston SL. IL-33-dependent type 2 inflammation during rhinovirus-
induced asthma exacerbations in vivo. *American journal of respiratory and critical care medicine* 190: 1373-1382, 2014.

11. Message SD, and Johnston SL. The immunology of virus infection in asthma. *The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology* 18: 1013-1025, 2001.

12. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, Contoli M, Sanderson G, Kon OM, Papi A, Jeffery PK, Stanciu LA, and Johnston SL. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. *Proceedings of the National Academy of Sciences of the United States of America* 105: 13562-13567, 2008.

13. Normansell R, Kew KM, and Mansour G. Different oral corticosteroid regimens for acute asthma. *Cochrane Database Syst Rev* CD011801, 2016.

14. Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, and Upham JW. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. *J Immunol* 188: 5898-5905, 2012.

15. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, and Tian DS. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020.

16. Russell CD, Millar JE, and Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. *Lancet* 395: 473-475, 2020.

17. Satia I, Cusack R, Greene JM, O'Byrne PM, Killian KJ, and Johnston N. Prevalence and contribution of respiratory viruses in the community to rates of emergency department visits and hospitalizations with respiratory tract infections, chronic obstructive pulmonary disease and asthma. *PloS one* 15: e0228544, 2020.

18. Singanayagam A, Glanville N, Girkin JL, Ching YM, Marcellini A, Porter JD, Toussaint M, Walton RP, Finney LJ, Aniscencko J, Zhu J, Trujillo-Torralbo MB, Calderazzo MA, Grainge C, Loo SL, Veerati PC, Pathinayake PS, Nichol KS, Reid AT, James PL, Solari R, Wark PAB, Knight DA, Moffatt MF, Cookson WO, Edwards MR, Mallia P, Bartlett NW, and Johnston SL. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. *Nat Commun* 9: 2229, 2018.

19. Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, and Tate MD. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. *Scientific reports* 4: 7176, 2014.

20. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, and Davies DE. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. *J Exp Med* 201: 937-947, 2005.

21. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, and Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. *The Lancet Respiratory medicine* 2020.

22. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, and Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Allergy* 2020.

23. Zheng XY, Xu YJ, Guan WJ, and Lin LF. Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: a literature review. *Arch Virol* 163: 845-853, 2018.