K2P2—A PHOTOMETRY PIPELINE FOR THE K2 MISSION

Mikkel N. Lund1,2, Rasmus Handberg1,2, Guy R. Davies1,2, William J. Chaplin1,2, and Caitlin D. Jones1,2

1 Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark; mikkelnl@phys.au.dk
2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Received 2015 February 16; accepted 2015 April 16; published 2015 June 5

ABSTRACT

With the loss of a second reaction wheel, resulting in the inability to point continuously and stably at the same field of view, the NASA Kepler satellite recently entered a new mode of observation known as the K2 mission. The data from this redesigned mission present a specific challenge; the targets systematically drift in position on an ~6 hr timescale, inducing a significant instrumental signal in the photometric time series—this greatly impacts the ability to detect planetary signals and perform asteroseismic analysis. Here we detail our version of a reduction pipeline for K2 target pixel data, which automatically defines masks for all targets in a given frame; extracts the target’s flux and position time series; corrects the time series based on the apparent movement on the CCD (either in 1D or 2D), combined with the correction of instrumental and/or planetary signals via the Kepler Asteroseismic Science Operations Center (KASOC) filter, thus rendering the time series ready for asteroseismic analysis; computes power spectra for all targets; and identifies potential contaminations between targets. From a test of our pipeline on a sample of targets from the K2 campaign 0, the recovery of data for multiple targets increases the amount of potential light curves by a factor of \(\geq 10\). Our pipeline could be applied to the upcoming TESS and PLATO 2.0 missions.

Key words: asteroseismology – methods: data analysis – stars: solar-type – techniques: image processing – techniques: photometric

1. INTRODUCTION

K2 (Howell et al. 2014) is the continuation of the nominal NASA Kepler mission (Borucki et al. 2010; Gilliland et al. 2010b), which ended with the loss of a second reaction wheel in 2013 May. The stability solution for the Kepler satellite is to balance in an unstable equilibrium against the Solar photon pressure and correct rolls with thruster firings, while pitch and yaw are controlled by the two remaining reaction wheels; this strategy allows for observations in fields along the ecliptic plane, with an observing length per field of close to 80 days. This time span is known as a “Campaign” (C) and is the analogue to the 3 months “Quarters” (Q) used in the nominal Kepler mission. In the nominal mission, targets were designated using a Kepler-Input Catalog (KIC) number, which has now been replaced by the Ecliptic Plane Input Catalog (EPIC) number.

The systematic pointing drift in the K2 observations from the adopted stabilization of the spacecraft calls for new light curve correction methods. One such method has recently been proposed by Vanderburg & Johnson (2014) and uses the positions on the CCD as a function of time to decorrelate the induced variations in the light curve. The larger fields around targets in K2—needed to account for the apparent movement of the target on the CCD—and the increased crowding from pointing toward the ecliptic means that often many stars are found in a given frame. This, combined with the potential lack of aperture masks from the Kepler team, necessitates the development of new methods to extract the flux and position of targets from custom apertures; and this in an efficient and robust manner.

The paper is structured as follows. In Section 2 we describe the steps taken in our light curve construction, starting from raw Target Pixel Files (TPF) and going to the definition of pixel masks and extraction of target positions and light curves. Section 3 pertains to the correction of the light curves from the time-dependent movement on the CCD; here we describe our version of the 1D self-flat-fielding introduced by Vanderburg & Johnson (2014) in Section 3.1, as well as our suggestion for a 2D approach in Section 3.2. In Section 4 we present results from a test of our pipeline on a target sample during C0, and we conclude in Section 5.

2. LIGHT CURVE CONSTRUCTION

The nominal Kepler mission delivered a pixel aperture (a mask), where the chosen pixels optimized the mean signal-to-noise ratio (S/N) based on estimates of the pixel response function (PRF) and information from the KIC (Bryson et al. 2010; Jenkins et al. 2010). This mask could be used to construct custom masks by adding or removing pixels to the starting mask based, for example, on the amount of flux in the pixels. This procedure was adopted in the Kepler Asteroseismic Science Operations Center (KASOC) filter pipeline (Handberg & Lund 2014) using the routine developed by S. Mathur et al. (2015, in preparation). Masks are no longer delivered, at least not for the data releases made to date, which calls for a new method to define pixel masks. Masks constructed from ranking pixels in order of their S/N and then including the number of pixels—which optimizes, for instance, the combined differential photometric precision noise metric (Gilliland et al. 2011; Christiansen et al. 2012) or the mean S/N—could run into problems if signals from other stars are not removed; this is especially difficult if there are secondary objects in close proximity to the primary target.

In the following we describe our pipeline for the construction of light curves, called K2P2 (K2-Pixel-Photometry), which delivers both the position and flux for all the objects in the delivered frames. The stellar position as a function of time is used to filter the light curve from variations in flux induced by the movement of the stars over different pixels, which have varying sensitivities (see Section 3). We define fixed masks...
from a summed image (see Section 2.2), which is large enough to encompass the stellar movement on the CCD. We go through the different steps in the K2 pipeline below. In all examples, times will be in Truncated Barycentric Julian Date (TBJD)

2.1. Background Estimation

As the initial step of K2, we estimate the sky background as a function of time because this contribution is unaccounted for in the flux from the raw K2 target pixel data. For each time step we calculate the mode of the flux kernel density estimation (using Scott’s 1979 rule for setting the bin width) from all pixels as the maximum likelihood estimator for the sky background. We thus assume a uniform background flux across a given image.

The sky background level is far from constant but increases gradually (by around ~25% in C0) over the course of a campaign; a typical example can be seen in Figure 1. In C0 the background level was further increased for many channels by the antipodal ghost image of Jupiter as it fell on one of the dead modules. The change in background levels can largely be attributed to changes in focus as the heating of the spacecraft gradually degraded attitude.

If the background level variation is unaccounted for it will appear in the extracted light curve; it is preferential to isolate this component and separate it from trends caused by the degraded attitude.

2.2. Summed Image

For setting pixel masks we create a summed image. Here, frames are coadded after first having subtracted the corresponding sky background levels (see Section 2.1). We make use of the quality flags available in the pixel data FITS files (Fraquelli & Thompson 2012) and ignore all frames with a flag indicating any nonoptimal data. The effect of neglecting this is illustrated in Figure 2. Including frames with bad-quality flags, for instance when reaction wheel momentum dumps are made, results in the creation of a shifted ghost image. If a summed image including a shifted ghost image would be used in setting masks, these would be much larger than needed and would essentially only add noise for the majority of the time series. It would also be difficult for an automatic routine that can separate close targets to identify the ghost image as belonging to the main target rather than being a target on its own.

2.3. Pixel Mask Selection

To fix the masks we first select which pixels can be included in a mask by setting a flux threshold. The threshold is obtained as the median absolute deviation (MAD) of the summed image flux distribution, which falls to the left-hand side of the mode of the distribution. Only the left-hand side of the distribution is used, as the right-hand side is influenced more strongly by the stellar flux.

On the pixels with flux levels above the threshold we run an unsupervised clustering algorithm to locate targets in the frame and set individual masks for these. Specifically, we use the density-based spatial clustering of applications with noise routine (DBSCAN; Ester et al. 1996), as implemented in the Python-based library Scikit-learn5 (see Pedregosa et al. 2011). DBSCAN only takes two input parameters: a neighborhood radius, r, and a minimum number of points needed to form a cluster, N_{min}. Given the regularity of the pixel grid, these parameters can be set optimally to yield a desired output. An advantage of the DBSCAN routine is that it does not need a predefined number of clusters and the clusters

3. This differs from the Barycentric Kepler Julian Data (BKJD) given as BJD–2454833.
4. http://keplerscience.arc.nasa.gov/K2/C0drn.shtml
5. http://scikit-learn.org/
can have very irregular shapes—allowing it to encompass the spatial distribution of flux from a star on the CCD in K2, which depends both on time and position on the focal plane.

The working principle of the DBSCAN algorithm is, briefly: (1) select at random a point, with “points” being the pixels with flux above the threshold; (2) check how many other points, N_r, are within the neighborhood radius, r_c, of the selected point; (3) if $N_r \geq N_{min}$, the point is designated as a core point and the start of a cluster; otherwise, if $N_r < N_{min}$, it is (at this step) designated as a noise point; (4) step 2 is now run on points within r_c of the first point and so on for their respective neighborhood points, and points are added to the first cluster until no more points are density-reachable—that is, can be connected by a chain of points to the initial point seeding the cluster; (5) a point that falls within r_c of a cluster core point but which has $N_r < N_{min}$ in its own neighborhood is designated as an edge point to the cluster (note that if such an edge point was the first point considered by the routine, it would have been flagged as a noise point, but it will change status later in the routine if found within r_c of a cluster core point); and (6) when no more points can be added to the first cluster, one of the remaining points is selected at random, and the steps are run through anew. This continues until all points have a designation.

An illustration is provided in Figure 3 where we set $r_c = \sqrt{2}$ pixels and $N_r = 3$. Each of the clusters returned is seen as a target, with the core and edge members of the individual clusters defining the outer boundary of the masks of the targets. Edge members within reach of more than one cluster could belong to either one of the clusters, and the membership of such a point would be determined entirely by the random initialization of the routine. Core members, on the other hand, can be assigned clusters with full determinism and will always group in the same way. We find, however, that the gain from a larger mask, which includes both core and edge members, outweighs the potential ambiguity and loss of repeatability from including a point that could belong to more than one cluster. In order to make the clustering reproducible we chose a fixed random seed for the algorithm,6 which ensures that the clustering and designation of points will stay the same for a rerun with the same settings. The pixel mask selection for an example target (EPIC 20212 7012) is illustrated in Figures 4 and 5.

2.4. Saturated Targets

The setting of masks for saturated targets calls for some extra attention. The saturation limit is at a Kepler magnitude7 of Kp ~ 11.3 (Gilliland et al. 2010a), and saturated targets will typically have pixel column trails along which flux spills, or bleeds. If the ends of these trails fall outside the mask the variability in the flux will be missed, resulting in a high-flux truncation of the light curve. The bleed-out is position-dependent from the varying pixel sensitivities across the focal plane, but in K2 it will also depend on time because the targets now have a time- and position-dependent movement on the detector. This results in an even poorer predictability of the amount of bleed-out; we find that bleed-outs generally start for Kp $\lesssim 9$.

An optimum inclusion of bleed-out trails is particularly difficult if the trail extends to other targets or reaches the detector edge; in such cases a trade-off must be made between the amount of flux that can be included from the main target and the contamination from neighboring targets.

We have implemented the following procedure for dealing with saturated targets (see Figure 6): for a given target we compute for each pixel column, using pixels in the target’s mask, the ratio between the absolute value of the median of the first differences in the flux counts of the pixels and the maximum flux count of the pixels. A low value of this ratio indicates a small relative variability in the flux counts, as would be the case for a near-constant flux level in a column with many saturated pixels. If the ratio is below 1%, and the median of the pixel flux counts (still only for the pixels in the mask) is equal to or larger than half of the maximum flux count for the entire mask, the column is taken as having saturated pixels. The restriction on the median of the flux counts ensures that columns containing many pixels with flux levels close to the background, where the relative variability also is small, are recognized as nonsaturated. For the columns identified as saturated we then add pixels to the mask if these have counts above the flux threshold used in Section 2.3. This could potentially result in pixels belonging to both a saturated target as well as a nearby secondary target.

For the brightest and most saturated targets (Kp $\lesssim 8$), with bleed-outs spanning many tens of pixels (e.g., EPIC 202061312) and with much flux contained in diffraction spikes on the CCD, typically with multiple secondary targets in the near vicinity, the mask should be defined manually—as was done, for instance, for the 16 Cyg stars in the nominal Kepler mission (Lund et al. 2014; Davies et al. 2015).

2.5. Separating Close Targets

After a set of clusters has been identified there is still the possibility that a given cluster might encompass two or more stars, if these lie close to each other. To separate such targets in

6 Specifically, we used seed 1138 (see Lucas 1977).

7 Nearly equivalent to an R-band magnitude (Koch et al. 2010).
a given cluster we run an algorithm often used in image segmentation problems known as the watershed method (Beucher & Lantuejoul 1979; Beucher & Meyer 1993), as implemented in Scikit-image\(^8\) (see van der Walt et al. 2014). The idea in a watershed algorithm is to find the line(s) between two or more regions that may be seen as topographical surfaces; considering two neighboring catchment basins that are flooded with water, the watershed will be the line where water levels meet.

To transform the pixel clusters to a topographical relief, each point in a given cluster is assigned a value from the metric, given either by the negative of the euclidean distance to the nearest background point (i.e., a point not in the specific cluster) or the negative value of its flux. This results in cluster points close to the edge having low negative values, whereas central points of the cluster, which are further away from the background and generally have higher flux levels, have high negative values; this constitutes the catchment basins. If a cluster includes two or more stars that are not completely covered by a common envelope, they will have distinctive central dips in both the distance and the flux metric. If the stars share a common envelope (seen if the stars are very close, or if one star greatly outshines the other), the flux metric is superior in making distinctive dips for the two (or more) stars; the

\(^8\) http://scikit-image.org/
distance metric will rather make a central dip for the whole region covered by the common envelope. As the default we use the flux metric to separate targets.

In the adopted watershed algorithm we first identify the local minima of the metric used and then use these as markers for the centers of the catchment basins, which are then flooded to find the watershed lines. To avoid noise peaks being considered as markers we first smooth the surface with a 2D Gaussian filter, and then locate the most prominent minima—these are then fed as markers to the watershed routine. We now have pixel masks for all targets in a given frame.

Following the method outlined in Sections 2.3–2.5, for setting the pixel mask, we obtain, for a sample of 4691 targets observed during C0 (see Section 4), mask sizes as a function of magnitude (see Section 2.6), as given in Figure 7. Here we note a slight gradient in the mask size as a function of angular distance to the spacecraft bore sight for a given Kp; this is as expected because the arc traced in apparent movement on the CCD from the roll of the spacecraft increases linearly with distance from the bore sight. The scatter in this relation will have contributions from the dependence of the degree of flux-smearing on the target position on the focal plane and the uncertainty of the determined magnitude. For comparison we also show the magnitude dependence of aperture sizes from Aigrain et al. (2014), where the authors use circular apertures/masks.

2.6. Target Magnitudes

Our pipeline enables the extraction of data for multiple targets in a given frame, but from the information in the target pixel data we only have a Kepler magnitude, Kp, for the primary target. First, however, it should be noted that when targets were proposed for C0 the EPIC did not exist. Therefore, a magnitude given in the EPIC for a given C0 target is the one provided by the principal investigator proposing the target, rather than one computed by the Kepler team. For the same reason, no information is given in the KepFlag entry of the EPIC for C0, which is supposed to contain information on the data used to compute Kp—one should therefore consult the proposal of a given target to assess how the magnitude was constructed. For the sample of targets we have analyzed, viz., proposal GO1038 (see Section 4), it turns out that the EPIC Kepler magnitudes are given by the J-band magnitudes from 2MASS (Skrutskie et al. 2006). To transform these J-band magnitudes to more proper Kepler magnitudes we use the transformation from Howell et al. (2012) between the Kp and 2MASS J – Kepler colors.

In order to investigate how parameters such as mask size and noise measures vary with magnitude we need a way to estimate Kp for all targets in a given frame. We approximate Kp by the proxy Kepler magnitude, Kp1, defined as

\[Kp_1 \equiv 25.3 - 2.5 \log_{10}(S), \]

(2.1)

where “S” denotes the median of the flux time series extracted for the target (in units of e⁻/s). The correspondence between Kp and Kp1 is shown in the left panel of Figure 8; some of the scatter in this relation will originate from the scatter in the mask size versus magnitude relation (see Figure 7) and a variation in pixel sensitivities between targets. We note that Aigrain et al. (2014) define a proxy Kepler magnitude in the same manner and also find an offset of ~25.3.

As a means of identifying targets falling within a given mask (see Section 2.7), we use the USNO-B1.0 catalog (Monet et al. 2003), which is an all-sky catalog with completeness down to V = 21. We would like a measure of Kp for all targets from the USNO-B1.0 catalog within a given frame because this is used in the identification of targets (see Section 2.7). In addition we can estimate potential contaminations when multiple targets fall within the same mask. For each of the identified targets from the USNO-B1.0 catalog that fall within a given mask, we first compute the magnitude RB from the
The correspondence between K and R-band magnitudes:

$$RB = \begin{cases}
0.1B_{\text{mag}} + 0.9R_{\text{mag}}, & (B_{\text{mag}} - R_{\text{mag}}) \leq 0.8 \\
0.2B_{\text{mag}} + 0.8R_{\text{mag}}, & (B_{\text{mag}} - R_{\text{mag}}) > 0.8.
\end{cases} \tag{2.2}$$

According to Brown et al. (2011), this corresponds to the way $Kepler$ magnitudes, K_p, are calculated in the KIC if only the R- and B-band magnitudes are available. We define the following relation as a second proxy $Kepler$ magnitude:

$$Kp_2 \equiv RB - 0.33. \tag{2.3}$$

The correspondence between K_p and Kp_2 is shown in the right panel of Figure 8.

The relation giving the Kp_1 proxy has the smallest amount of scatter and will be used to relate mask sizes and noise measures to magnitude; Kp_2 will be used in the identification of targets and estimation of contaminations. An advantage of having both Kp_1 and Kp_2 is also that a large discrepancy between the two measures can be used to identify targets where the mask is either much too large or small.

The offsets for both Kp_1 and Kp_2 were estimated in a Bayesian manner, using the affine invariant $emcee$ sampler (Foreman-Mackey et al. 2013) and given by the median of the marginalized posteriors; the uncertainties were obtained from the 68% highest-probability density of the marginalized posteriors.

2.7. Locating Main and Secondary Targets

In K2 a standardized mask is no longer delivered for the main target, at least not in the data releases so far. This, combined with the increased crowding in the equatorial pointing and larger frames, makes it more difficult to assert which target is the main target. Additionally, the primary target is sometimes fainter than secondary targets in the frame. A starting point for locating the primary target is the assumption that it is (approximately) centered in the frame, but still it will be difficult to use this exclusively in crowded fields. The TPF from K2 do deliver a world coordinate system (WCS; Calabretta & Greisen 2002; Greisen & Calabretta 2002; Greisen et al. 2006) metric in the FITS format. The WCS from K2 data release 2 is fairly well calibrated (not available in the engineering data), as shown in Figure 9. Here we have marked the positions of all targets from the USNO-B1.0 catalog (Monet et al. 2003), using the WCS transformation to pixel coordinates; it is clear that the WCS delivers a reasonable transformation, generally within 2 pixels of maxima in the summed images. An advantage of our pipeline is that masks are defined for all targets in the field (unless they are too faint), so identification can be made at a later stage.

So far we have made identifications using the Python module Astroquery (Ginsburg et al. 2013), together with the WCS module in the Kaptayn package.\footnote{http://www.astro.rug.nl/software/kapteyn/} This enables us to link targets with objects from the USNO-B1.0 catalog. The procedure for the identification of targets is as follows: (1) load sky coordinates for all targets located within a circular region that fully contains the frame for the EPIC target in question; (2) transform the sky coordinates of these targets to pixel positions, using the WCS from the K2 target pixel file; (3) compute a proxy for the $Kepler$ magnitude, Kp_2 (see Section 2.6 above); (4) locate maxima in the summed image (Section 2.2) where a 0.5-pixel-wide Gaussian smoothing has been applied; (5) compute all X- and Y-pixel differences between the targets and the maxima of the summed image; (6) run a DBSCAN clustering on all pixel differences within ±5 pixels in both the X and Y direction, with the clustering parameters set to $r_c = 0.5$ pixels and $N_c \leq N_{\text{max}}$—the value of N_c will initially be the number of identified local maxima and will iteratively be decreased until a cluster is identified in the differences (a “difference cluster”); (7) If more than one difference cluster is found within ±5 pixels, choose the cluster with the lowest mean Kp_2 magnitude; (8) as the correction that should be applied to the WCS transformation, take the weighted average of X and Y differences in the difference cluster, using one over the Kp_2 magnitudes as weights (see Figure 9). (Note that this correction only includes translation, but ignores rotation. This could be amended by using a pattern-matching algorithm (see,
e.g., Spratling & Mortari 2009), but the offsets are low enough that this can be safely omitted; and (9) the target from USNO-B1.0 with corrected pixel coordinates closest to the median centroids of identified target clusters is used to identify the cluster. Here we also note if other targets fall in the mask of a given target cluster.

2.8. Target Flux and Position

The above steps were concerned with the creation of pixel masks for all the different targets in a given frame. For all of these targets we compute the position and flux as a function of time—this will be used later for the correction of the spacecraft roll. We use weights, \(w_i \), on the pixels in the individual masks when extracting fluxes and calculating the target position via the centroid (CEN) with the \((X, Y)\) components given as

\[
\text{CEN}_X = \frac{\sum_i p_i w_i X_i}{\sum_i p_i w_i}, \quad \text{CEN}_Y = \frac{\sum_i p_i w_i Y_i}{\sum_i p_i w_i} \tag{2.4}
\]

Here \(p_i \) denotes the flux for the \(i \)th pixel in a given mask, and \(X_i \) and \(Y_i \) denote the coordinates of the pixel.

We have defined the following three pixel weightings \(w_1 - w_3 \); in \(w_1 \), all weights are set to \(w_1 = 1 \), giving an "in/out" mask where all pixels have equal weight; in \(w_2 \), weights are given as the exact euclidean distance between a pixel in the mask \((X, Y)\) and the closest background pixel \((X_{ib}, Y_{ib})\):

\[
w_i = \sqrt{(X_{ib} - X_i)^2 + (Y_{ib} - Y_i)^2}. \tag{2.5}
\]

In \(w_3 \), weights are set to create a soft edge on the mask, with a uniformly weighted central region. This is accomplished by dividing every pixel into 11 \(\times \) 11 subpixels, each of which is assigned a weight given by Equation (2.5) and normalized by 11.3. If this normalized weight is above 1, it is set to 1. This results in a mask edge of just over 1 pixel width, where the weight gradually increases from 1 divided by 11.3 to 1.

We then tested our pipeline using four different schemes: (1) \(w_1 \) is used for the extraction of both centroids and flux. Here all pixels will influence the position and flux with equal weight; (2) \(w_2 \) is used for the extraction of both centroids and flux. Such a weighting reduces the sensitivity of the extracted positions to the exact mask configuration, where, for example, a high spatial frequency of the mask from pixels at the mask edges could result in an unwanted flickering in the extracted parameters for a \(w_1 \) weighted mask. In many ways this resembles the weighting done naturally when using PRF to extract centroids (Bryson et al. 2010), but without the need to optimize for centroid and total flux using a parametrized function. The use of *Kepler*-calibrated PRFs is further complicated by the fact that the pointing jitter (now with an attitude control bandwidth of 0.02 Hz until C3, where it will be increased to 0.05 Hz, which is half of the bandwidth of nominal *Kepler* observation), and systematic movements within a cadence are different in *Kepler* from the nominal *Kepler* mission. Also, for saturated targets the parametrization fails to represent the flux distribution, and the PRFs are only defined for long-cadence (LC) observations; (3) \(w_3 \) is used for the extraction of both centroids and flux; and (4) \(w_2 \) is used for the extraction of centroids, whereas \(w_1 \) is used for the extraction of flux.
3. CORRECTING THE LIGHT CURVE

We have combined the correction part of our pipeline with the KASOC filter (Handberg & Lund 2014), meaning that the corrections based primarily on the target movement on the CCD are combined with corrections made for long- and short-term instrumental trends via the KASOC filter—and this in an iterative manner. Briefly, the KASOC filter works by computing two median-filtered versions of the time series with different filter windows and then forming a weighted combination of the two to correct the time series for instrumental features. We refer to Handberg & Lund (2014) for further details on the KASOC filter. The integration with the KASOC filter also includes the iterative use of phase curve corrections, which is particularly useful for separating the flux variations from the target movement on the CCD from those of stellar variability with a strict periodicity (for instance the eclipses of a planetary or binary system).

Below we describe the two possible correction methods in the pipeline. For both methods it generally holds true that when the amplitude of the underlying stellar signal dominates the variations, such as in many classical pulsators, the correction of the instrumental signal is less effective.

3.1. One-dimensional Correction

Our 1D correction draws heavily on the method presented by Vanderburg & Johnson (2014)—which these authors called a self-flat-fielding correction—which in turn make some use of methods developed for correction of *Spitzer* data (Knutson et al. 2008; Ballard et al. 2010; Stevenson et al. 2012). These methods use the correlation between flux variation and position on the CCD (from pixel sensitivity differences across the CCD) to correct the time series from the systematic ~6 hr variability.
We break the time series into segments that are corrected individually. This segmentation was implemented because even though the movements on the CCD generally follow a well-defined pattern (which depends on position on the focal plane), there are slow uncorrected drifts as a function of time (see Figure 11 for an example of this in C0). Currently, the times where breaks are introduced are determined manually and are kept constant for all targets in a given campaign; we provide flags for the times where breaks are introduced in the final output. For C0 the time series was broken into two segments, namely, a ~13 days segment before and a ~35 days segment after a safe mode event occurring in C0 (lasting approximately 24 days).

For each segment, we start by identifying and flagging times during which a rapid positional change occurs as the times when the time derivative of the change in centroid positions, i.e., the velocity, falls outside the range of five times the standardized MAD11 around the median velocity; these data points are then excluded in the following corrections.

We then apply a principle component analysis (PCA) on the X and Y pixel positions of each data segment. Before applying the PCA, we select which of the X and Y pixel positions should be retained in the estimate of the correction; only positions with a nearest neighbor at a distance less than four times the standardized MAD of all nearest neighbor distances are retained in the analysis. This is needed, as the PCA otherwise is very sensitive to outliers. The PCA transformation of the retained positions to the coordinate system given by the two first principal components helps to ensure that the relationship between the transformed pixel positions \(X'\) and \(Y'\) can be described as a single-valued function, which is needed for the following steps in the correction. It is, however, not always clear if the first or the second principal component should be used as the regressor. If, for instance, the relationship between the X and Y pixel positions could be described as \(Y = X^2\) (which is already a single-valued relationship), and the range in Y values is larger than the range in X values, then the first principal component would lie along the ordinate; and, consequently, a transformation making this the regressor, that is, \(Y \rightarrow X'\) and \(X \rightarrow Y'\), would result in the multivalued relationship \(X' = \pm \sqrt{Y'}\). We decide which of the principal components is the best regressor by running a LOWESS (Cleveland 1979, 1981) filter on the transformed pixel positions, using in turn the two principal components as regressors and computing the summed squared difference (\(\chi^2\)) between the filtered and unfiltered data. The principal component with the lowest \(\chi^2\) is used as the regressor.

In the transformed coordinates we compute a smoothed version of the \(Y'\) versus \(X'\) positions by again applying a LOWESS filter. We then calculate the curve length, \(s\), along this filtered relationship as

\[
s = \int_{X_0}^{X_f} \sqrt{1 + \left(\frac{dY'_{\text{LOWESS}}}{dX'}\right)^2} \, dX',
\]

using finite differences as the derivative of the curve and cumulatively integrate for the curve length, using the composite trapezoidal rule. The curve length serves as the new 1D representation of the 2D stellar position on the CCD.

The correction to the light curve is then found from a LOWESS filtering of the relative flux as a function of curve length, thereby capturing the average positional dependency of the flux level. In the correction step we make sure to remove any long-term trends in the light curve to obtain the relative flux, as such changes will correlate poorly with the movement on the CCD. Some of the long-term variability could in principle be caused by the slow drift of the target on the CCD (Figure 11) but could just as well be a separate instrumental effect—for instance, from focus changes caused by heating of the mirror. The background flux level could also enter in the long-term variability if this is not corrected for properly during the light curve extraction. We make the correction iteratively with a better separation between long-term and positional dependent variations as the outcome.

In Figure 12 we give an example of the 1D correction for the C0 observations of star 2 (TYC 1329-1325-16) in EPIC

\[\text{Figure 11. Illustration of the change in centroid position of star 1 in EPIC 202127012 on the CCD during the second half (approximately) of C0; time is encoded in the color scale. A sigma clipping has been applied in the time domain to remove points far away from the mean centroid position.}\]

\[\text{Figure 12. Illustration of 1D correction for star 2 (TYC 1329-1325-16) in EPIC 202127012 (see Figure 5). Top: uncorrected time series in flux relative to the median. Middle: time series corrected for long-term, short-term, and positional trends. Bottom: time series corrected for long-term, short-term, and positional trends and the phase curve constructed from the middle panel (see Figure 13).}\]

11 Defined as us \(1.4826\) times the MAD, with the constant being the scale factor that makes the MAD a consistent estimator for the standard deviation of a normally distributed random variable.
202127012 (see Figure 5); here we further include in the KASOC filter a correction for the dominating periodic signal by iteratively correcting by the phase curve of this signal (see Figure 13). The input period for this correction was determined from the autocorrelation function of the time series.

3.2. Two-dimensional Correction

In our second approach we make a 2D histogram of the measured X and Y centroids of the star. In each bin we compute the median of the relative flux of points falling in that bin; this will capture the positional variation in the relative flux in a robust manner. In the reconstruction of the flux variability in the time domain we use a rectangular bivariate linear spline to interpolate between the bin centers. The reason for going to 2D is that flux variations also occur in the direction perpendicular to the overall roll motion (see Figure 14 for an example). Such variations are unresolved in the 1D treatment because the scatter in the relative flux versus curve length is reduced to a line; one would therefore suspect that the 1D treatment will leave residuals in the corrected light curve that could be accounted for in a 2D treatment.

The most difficult aspect of the 2D binning is the choice of bin size. If the bins are too small the reconstruction of the flux variation will be noisy; one is effectively overfitting. On the other hand, if the bins are too large the reconstructed variation will be a smoothed version of the underlying variation, and significant residuals may be left in the light curve. The sensitivity to the bin size is largest for LC (Δt ≈ 29.4 minutes) observations due to the smaller number of data points and, consequently, larger variance on the median. The method is thus best suited for SC observations where the exact bin size is less influential on the reconstructed instrumental variability.

Depending on the shape of the stellar movement in the X–Y plane it can be advantageous to transform the movements to a (predominantly) horizontal variation before making the 2D histogram—this could, for instance, be achieved by dividing the centroid Y components with a smoothed fit to the movement in order to reduce the span of the histogram and, thus, the size of the histogram.

So far, in our testing of this method on SC data we have not found it to be preferable to the 1D method. This is likely a result of the current value of the attitude control bandwidth of 0.02 Hz (50 s), which is very close to the SC integration time. Because of the allowed amount of movement within a SC integration, this will lead to a larger smear and variance in the bin medians. We expect this to improve from C3 onward when the bandwidth will be increased to 0.05 Hz.

4. PIPELINE TEST

As a test of the pipeline we analyzed the pixel frames of the 452 LC targets in the C0 proposal GO011812 (“Galactic Archaeology on a grand scale”; PI: Stello, D.). We also analyzed the known transiting system WASP-85 (see Brown et al. 2014), which was observed in SC during C1.

Because our pipeline enables the extraction of data from several targets in a given frame, we ended with a total of 4691 targets from the GO0118 proposal and, thus, light curves to analyze—this corresponds to a gain in the amount of data by a factor of ∼10.4, even when adopting a limit on the minimum number of pixels in a mask of 8 before a target would be considered.

4.1. Power Spectrum

After data were extracted using the K2P2 pipeline, they were corrected with the KASOC pipeline (Handberg & Lund 2014), using the 1D correction method described in Section 3.1, and a frequency power density spectrum was calculated. The 1D correction removes most of the signal from the spacecraft roll, but residual spikes still often appear at harmonics of ∼47.2281 μHz. These spikes are damaging to any automated search for power; to remedy this we tested the effect of “cleaning” the residual spikes, using a prewhitening routine.
(see, e.g., Ponman 1981; Belmonte et al. 1991), which removes all significant power in a ±1 μHz window around the residual spikes. For every window, oversampled by a factor of 10, we iteratively remove the frequency with the highest power-to-background ratio (PBR; the background is calculated as the median of the power within the window multiplied by the background ratio \(\chi^2 \)). Here the residuals from the spacecraft roll are clearly visible at integers of \(\sim 47.2281 \) Hz. The red curve gives the spectrum after prewhitening the residual peaks. Right: average spectral window for the 4691 time series, normalized to 1 at zero frequency. In the averaging of the power spectrum and spectral window both of these were interpolated onto a common frequency scale, using a smoothing spline interpolation.

Figure 15. Left: effect of cleaning residual peaks from the spacecraft roll. The black curve gives the mean of the 4691 power spectra, each of which has been divided by a 5 μHz window running median smooth to convert to a power-to-background ratio (PBR). Here the residuals from the spacecraft roll are clearly visible at integers of \(\sim 47.2281 \) Hz. The red curve gives the spectrum after prewhitening the residual peaks. Right: average spectral window for the 4691 time series, normalized to 1 at zero frequency. In the averaging of the power spectrum and spectral window both of these were interpolated onto a common frequency scale, using a smoothing spline interpolation.

Most sensitive to high-frequency noise; variability on timescales longer than the LC sampling of \(\sim 29.4 \) minutes will, on the other hand, contribute very little to the MDV. To enable a comparison of the MDV for K2 with that of the nominal Kepler data, we compute the point-to-point MDV for the set of 6210 LC targets from the Kepler APOKASC (Pinsonneault et al. 2014) data release 1 sample. In the KASOC filtering we used the following filter settings: \(\tau_{\text{long}} = 3 \) days and \(\tau_{\text{short}} = 0.25 \) days (see Handberg & Lund 2014 for details on these settings); for the APOKASC targets we used \(\tau_{\text{long}} = 30 \) days, which is too long a timescale for the duration of the K2 light curves. Figure 16 shows the resulting MDV measures as a function of magnitude for both the K2 and nominal Kepler targets. Our results from the nominal Kepler data are in overall agreement with the results presented in Basri et al. (2013). We find that at \(K_p \leq 10 \) the ratio between the median MDV in K2 and nominal Kepler falls below \(\sim 2 \) and increases to \(\sim 10 \) at \(K_p \sim 14 \). For the K2 values we further see an indication of a slight gradient in the MDV with angular distance to the bore sight for a given magnitude, which might be expected from the larger systematic imprint on the light curve further away from the bore sight. Comparing our values to those from Aigrain et al. (2014; their Table 1, 3 pixel radius masks), we find, as evident from Figure 16, an excellent agreement. We also computed point-to-point MDVs for our target sample as corrected in Vanderburg (2014) and find that the median-binned values generally agree within a factor of two. For these comparisons it should be noted that we are unaware if the authors of the comparison studies checked the sources of the Kepler magnitudes from the TPD, entering the magnitude calibration, and how they possibly transformed these.

4.2. High-frequency Photometric Variability

To detect stellar oscillations in the frequency power spectrum, it is important that the white (shot) noise level does not dominate the signal—this is especially true for the detection of low-amplitude stochastic solar-like oscillations. It is thus of interest to know the characteristic levels of the short-timescale (high-frequency) noise in K2 LC data as a function of Kepler magnitude, or in our analysis \(K_p \). We note, however, that a measure of the high-frequency noise is not necessarily tantamount to a measure of the constant-power spectral-density white-noise level. For each of the targets in the sample we computed a proxy for the instrumental variability using the median of the absolute point-to-point flux difference of the KASOC corrected and cleaned time series; this proxy was coined the median differential variability (MDV) by Basri et al. (2013). As detailed in Basri et al. (2013), the MDV will on short timescales (with point-to-point being the shortest) be

most sensitive to high-frequency noise; variability on timescales longer than the LC sampling of \(\sim 29.4 \) minutes will, on the other hand, contribute very little to the MDV. To enable a comparison of the MDV for K2 with that of the nominal Kepler data, we compute the point-to-point MDV for the set of 6210 LC targets from the Kepler APOKASC (Pinsonneault et al. 2014) data release 1 sample. In the KASOC filtering we used the following filter settings: \(\tau_{\text{long}} = 3 \) days and \(\tau_{\text{short}} = 0.25 \) days (see Handberg & Lund 2014 for details on these settings); for the APOKASC targets we used \(\tau_{\text{long}} = 30 \) days, which is too long a timescale for the duration of the K2 light curves. Figure 16 shows the resulting MDV measures as a function of magnitude for both the K2 and nominal Kepler targets. Our results from the nominal Kepler data are in overall agreement with the results presented in Basri et al. (2013). We find that at \(K_p \leq 10 \) the ratio between the median MDV in K2 and nominal Kepler falls below \(\sim 2 \) and increases to \(\sim 10 \) at \(K_p \sim 14 \). For the K2 values we further see an indication of a slight gradient in the MDV with angular distance to the bore sight for a given magnitude, which might be expected from the larger systematic imprint on the light curve further away from the bore sight. Comparing our values to those from Aigrain et al. (2014; their Table 1, 3 pixel radius masks), we find, as evident from Figure 16, an excellent agreement. We also computed point-to-point MDVs for our target sample as corrected in Vanderburg (2014) and find that the median-binned values generally agree within a factor of two. For these comparisons it should be noted that we are unaware if the authors of the comparison studies checked the sources of the Kepler magnitudes from the TPD, entering the magnitude calibration, and how they possibly transformed these.

We note that a comparison of MDVs cannot be seen directly, as a comparison of the quality of the light curves and the corrections applied and should be evaluated in the context for which the corrected data is intended. A measure like the MDV will depend strongly on the choice of free parameters in the

13 https://www.cfa.harvard.edu/~avanderb/k2.html
correction. In Vanderburg (2014) the C0 light curves were processed with the intent of detecting planets. Here the light curves are corrected individually in three segments; the values from the mask with the lowest hr scatter were adopted, trying 20 masks of different sizes and the fit to the flux versus curve length was made with a finer binning than in Vanderburg & Johnson (2014)—all of these tweaks will conspire to give a lower point-to-point scatter, suited for planet detection.

4.3. Target Examples

In the following we show a few examples of the many targets among the 4691 that display astrophysical signals. We note that we have not performed a systematic assessment of the targets.

Figure 17 gives an example of three red giant targets, showing low-frequency solar-like oscillations. The levels of power here suggest that for C0 it should in general be possible to detect oscillations in red giants and obtain average asteroseismic measures, such as $\Delta \nu$ and ν_{max}. We note that for the three cases shown in Figure 17 the K_p magnitudes were all <11, and the high-frequency noise in the time domain (approximated by the MDV) is, according to Figure 16, only about 2–3 times higher in K2 compared to the nominal Kepler mission. If we assume the MDV scales linearly with the shot noise, this translates to a factor of 4–9 times higher noise in the power density spectrum compared to the nominal Kepler mission. For a systematic analysis of the C0 red giants we refer to D. Stello et al. (2015, in preparation).

Figure 18 gives an example of three classical pulsators, showing, predominantly, δ-Scuti-like oscillations. For this type of star the noise introduced in K2 is clearly of little importance, due to the large amplitudes of the oscillations.

In Figure 19 we present the SC data and corrected phase curve for WASP-85 (Brown et al. 2014), having the EPIC number 201862715. The raw data for this system show a clear modulation from surface spots, together with the smaller-amplitude instrumental modulation. In the reduction of this light curve we used the information of the orbital period of the system in the iterative correction performed by the KASOC filter. The bottom panel of Figure 19 gives the phase curve at the final iterative step.

In Figure 20 we present the light curves for a few targets showing distinct eclipse-like features. We note that in none of these cases did the target correspond to the target associated with the respective EPIC numbers, and they would thus have been missed had only the primary target been extracted.

5. CONCLUSION

We have presented our version of a K2 data analysis pipeline, with the objective that it should be fully automatic and work robustly. From the analysis of LC targets from C0 proposal GO0118 we found that the pipeline indeed works very robustly and were able to separate close targets and extract data for multiple targets in a given pixel frame. This resulted in an increase in the number of available light curves by a factor of ~ 10.4 for C0 and will naturally vary with the amount of crowding in the different campaigns. Given the large increase in the number of potential targets for each assigned EPIC, it needs to be settled how these new targets might be named and identified in other studies.

Concerning the construction of pixel masks we note that many of the published studies of K2 data apply circular masks. However, the flux distribution for a target in K2 is generally far from circular and symmetric, especially if a summed image is used. If a circular mask is used it needs to be large enough to encompass the movement of the target on the CCD; this in turn considerably increases the risk of contamination from other nearby targets. The use of clustering of pixels from the summed image for defining the masks better approximates the actual flux distribution of the target. For later versions of the pipeline we will investigate in greater detail if any weighting of the pixel masks can lead to a reduction of the high-frequency noise, e.g., as measured via the point-to-point MDV. In relation to this we will also test further the potential impact of a high spatial frequency of the derived pixel masks. More effort needs to be invested in improving the correction of instrumental trends via the 2D method. When data from C3 become available, where the fine pointing of the spacecraft should be improved, we will revisit this method in more detail. This could also include an implementation of the procedure outlined in Kjeldsen et al. (2013a, 2013b). We will also continue to try and improve the 1D correction that in our tests still seems to leave artifacts at harmonics of $\sim 47.2281 \mu$Hz. A better removal of these artifacts is clearly needed if an automatic search of asteroseismic power is desired, and simply masking the peaks in the power spectrum will only have a limited impact if the effect of the spectral window is neglected. Our attempt at cleaning the instrumental peaks did improve the power spectrum but still could not fully remove the instrumental peaks, and the window function persisted, which might be expected from cleaning a highly nonsinusoidal signal. As part of the correction we will look into measures other than the centroids for the position of the stars on the CCD; this could include the construction of a mean relative movement on the CCD from combining the measures of all targets in a given pixel frame. Also of interest is whether the housekeeping data from the Kepler spacecraft can be incorporated for a better overall positional correction. We will
attempt to improve the treatment of saturated targets, which are difficult to deal with via the DBSCAN clustering routine. Aspects that should be improved here are, for instance, a better separation of targets that fall within or close to high-flux pixels from a saturated target.

We note that our method could potentially be used for dense fields, including stellar clusters, and could also be applied to superstamps from K2 and the nominal Kepler mission, as well as the upcoming TESS (Ricker et al. 2014) and PLATO 2.0 (Rauer et al. 2013) missions. During the development of K2, we tested the application of the pixel clustering on every time step for the pixel frame of a given target rather than using the summed image. A complication of this method over using the summed image is that the number of targets identified in the pixel frame varies slightly with time due to noise, and the cluster number of a given target will also vary in time. From tests of this version of the pipeline on K2 engineering data, we found that using the pixel clustering on every time step could enable the detection of asteroids and/or comets (or other unidentified objects) as they passed through the pixel frame (see Szabó et al. 2015, for an analysis of asteroids found during the K2 engineering run). When scatterplotting centroid estimates for all identified targets (at a given time step) against time, moving targets such as asteroids make clear centroid trails that deviate from the horizontal trails of quasi-stationary targets.

We note that our method could potentially be used for dense fields, including stellar clusters, and could also be applied to superstamps from K2 and the nominal Kepler mission, as well as the upcoming TESS (Ricker et al. 2014) and PLATO 2.0 (Rauer et al. 2013) missions. During the development of K2, we tested the application of the pixel clustering on every time step for the pixel frame of a given target rather than using the summed image. A complication of this method over using the summed image is that the number of targets identified in the pixel frame varies slightly with time due to noise, and the cluster number of a given target will also vary in time. From tests of this version of the pipeline on K2 engineering data, we found that using the pixel clustering on every time step could enable the detection of asteroids and/or comets (or other unidentified objects) as they passed through the pixel frame (see Szabó et al. 2015, for an analysis of asteroids found during the K2 engineering run). When scatterplotting centroid estimates for all identified targets (at a given time step) against time, moving targets such as asteroids make clear centroid trails that deviate from the horizontal trails of quasi-stationary targets.
such as stars. Identification and analysis of such centroid trails could lead to the detection and tracking of hitherto unknown asteroids/comets.

We would like to thank all active participants at the first K2 data analysis workshop in Aarhus (Denmark, 2014) for many useful discussions on approaches to K2 data extraction and correction. A special thanks to Bram Buysschaert for giving us the idea of cleaning residual peaks from the power spectrum, to Daniel Huber for providing useful input on the EPIC, and to Hans Kjeldsen for commenting on the paper. Finally, we would like to thank the anonymous referee for suggestions and comments that helped to improve the final version of this paper. Funding for the Stellar Astrophysics Centre (SAC) is provided by The Danish National Research Foundation (Grant agreement no. DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no. 267864). W.J.C., G.R.D., and C.D.J. acknowledge the support of the UK Science and Technology Facilities Council (STFC). This research took advantage of the SIMBAD and VizieR databases at the CDS, Strasbourg (France); NASA’s Astrophysics Data System Bibliographic Services (adswww.harvard.edu); arxiv.org, maintained and operated by the Cornell University Library; and the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/).

REFERENCES
Aigrain, S., Hodgkin, S. T., Irwin, M. J., Lewis, J. R., & Roberts, S. J. 2015, MNRAS, 447, 2880
Appourchaux, T. 2004, A&A, 428, 1039
