Research Article

Systemic Pharmacological Approach to Identification and Experimental Verification of the Effect of Anisi Stellati Fructus Extract on Chronic Myeloid Leukemia Cells

Youn Sook Kim, Su Yeon Sub, Yong Tae Ahn, Chul Won Lee, Sang Yull Lee, Soon Cheol Ahn, and Won G. An

1. School of Medicine, Pusan National University, Yangsan 50512, Republic of Korea
2. Okpo Korean Medicine Clinic, Daegu 42970, Republic of Korea
3. Research Institute for Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
4. Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea

Correspondence should be addressed to Won G. An; wgan@pusan.ac.kr

Received 20 August 2019; Revised 21 November 2019; Accepted 22 November 2019; Published 12 December 2019

Copyright © 2019 Youn Sook Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Anisi stellati fructus (ASF) is the dried fruit of the Illicium verum Hook. f. tree. The aim of this research was to evaluate the antileukemic effect of ASF on chronic myeloid leukemia (CML) cells, which was hypothesized from the systemic pharmacological analysis of ASF, focusing on the combined effect of ASF extract (ASFE) and imatinib (IM). The compounds of ASF were identified using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. The target gene information was acquired from the UniProt database. The compound and target interaction network was generated from Cytoscape 3.7.1. Using this analysis, 10 compounds effective against CML cells were obtained. ASFE was prepared and analyzed by high-pressure liquid chromatography to provide experimental proof for the relationship between ASF and CML. The anti-p210 Bcr-Abl effects of ASFE and ASFE + IM combination were evaluated by western blotting. Either ASFE alone or in combined treatment with IM on K-562 CML cells resulted in a significant reduction of the Bcr-Abl levels. As expected from the systemic analysis results, ASF had antileukemic activity, showing that it is a potential therapy for CML.

1. Introduction

Anisi stellati fructus (ASF) is fruit that comes from the evergreen aromatic tree, Illicium verum Hook. f. According to The Great Pharmacopoeia written by Li Shi Zhen, published in 1596, the fruit of Illicium verum Hook. f. (Chinese star anise) has been used as a remedy for infectious diseases. ASF has long been used as a food as well as for medical purposes because of its effect on eliminating odor and relieving symptoms such as high fever, diarrhea, and vomiting [1]. Additionally, Tamiflu, a treatment for swine-origin influenza A, was developed based on the components of ASF [2].

Chronic myeloid leukemia (CML) is considered to be a myeloproliferative neoplasm characterized by the expansion of a clone of hematopoietic cells that carries the abnormal Philadelphia chromosome and fused Bcr-Abl gene [3]. Bcr-Abl is a constitutively active cytoplasmic tyrosine kinase [4]. Bcr-Abl fusion protein is present in 95% of CML cases and 20%-30% of acute lymphoblastic leukemia cases [5, 6]. For these reasons, p210 Bcr-Abl is a major target of tyrosine kinase inhibitors (TKIs) [7]. CML is diagnosed in the chronic phase and is transformed into the acute phase in an average of 2-3 years, resulting in mortality within a few months despite antileukemic combination therapy [8, 9].

Imatinib (brand name: Gleevec, Novartis; formerly called STI571) is a relatively specific inhibitor of the Bcr-Abl tyrosine kinase, which has efficacy in CML [10]. Although
survival from CML was increased by imatinib (IM), drug resistance by mutated forms of Bcr-Abl led to the development of new drugs such as dasatinib, nilotinib, bosutinib, and ponatinib [11]. The K-562 CML cell line is highly resistant to various stimuli. However, the development of new drugs often causes resistance to these drugs [12].

To date, some studies have shown a correlation between infection and cancer, and approximately 2 million emerging cancer cases are due to infections from microorganisms [13–15]. Numerous studies have shown that antimicrobial peptides have cytotoxic effects on cancer cells and have the possibility of being used in anticancer therapy either alone or in combination with other conventional drugs. An increasing number of studies have shown that some of the cationic antimicrobial peptides, which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activities against cancer cells [16, 17]. Our previous study has shown that ASF contains 49 identified compounds, of which 35 compounds were analyzed to have target genes related to antimicrobial activities [18]. However, there has been minimal research on the anticancer effects of ASF. Only ASF has been reported to inhibit the metastasis and angiogenesis of malignant cancer cells [19]. In the present study, the 49 identified compounds of ASF were further investigated for their efficacy against cancer using systemic pharmacological analysis. The results showed that 20% of the total ASF compounds were associated with CML. Based on this result, we characterized the antileukemic potential of ASF against K-562 CML cells. The results showed that the ASF extract (ASFEx) either alone or in combination with IM significantly reduced the amount of p210Bcr-Abl protein, suggesting further studies to confirm ASF as an effective antileukemic adjuvant.

2. Materials and Methods

2.1. Chemicals and Reagents. IM was purchased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s phosphate-buffered saline (D-PBS) was purchased from Gibco (Grand Island, NY, USA). High-pressure liquid chromatography- (HPLC-) grade methanol and water were obtained from JT Baker (Phillipsburg, NJ, USA). The Cell Counting Kit-8 (CCK-8) was obtained from Dojindo Molecular Technologies (Rockville, MD, USA). Anti-Bcr and secondary antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Antibody specific to beta-actin was purchased from Sigma-Aldrich. The 4-anisaldehyde, 4-prophenylanisole, and other chemicals were purchased from Sigma-Aldrich.

2.2. Systemic Pharmacological Analyses of ASF

2.2.1. Identification of ASF Compounds. To search for identified compounds in ASF and to investigate the relationship between the compounds and cancers, the Traditional Chinese Medicine Systems Pharmacology (TCMSP, http://lsp.nwu.edu.cn/) database and analysis platform were used. The 49 compounds were found in ASF, and all diseases related to each compound were recorded. After screening a total of 49 compounds, 33 compounds were found to have relationships with cancer categories. Among them, 10 CML-related compounds were identified. To screen bioactive compounds of these 10 CML-related compounds, five parameters related to absorption, distribution, metabolism, and excretion were used: molecular weight (MW), oral bioavailability (OB), Caco-2 permeability (Caco-2 cells), drug likeness (DL), and drug half-life (HL) [20–22].

2.2.2. Target Collection. Molecular targets of the 10 CML-related compounds and the official gene information were acquired and listed using the UniProt database (http://www.uniprot.org).

2.2.3. Network Construction. To visualize the 10 CML-related compounds and their possible targets, a compound (C)-target (T) network was constructed using Cytoscape 3.7.1, an open-source bioinformatics platform for visualizing molecular interaction networks (https://cytoscape.org/). In the network, the node denoted either compounds or target proteins, and the edges represented compound-target connections.

2.3. Preparation of ASF. Dried fruits of ASF (1.0 g) obtained from Kwangmyungdang Medical Herbs (Ulsan, Republic of Korea) were broken into pieces, ground, and mixed with 10 mL of methanol. The mixture was vortexed and sonicated for 30 min at room temperature. The resulting mixture was centrifuged at 3,000 rpm for 30 min at room temperature. The supernatant was carefully collected and filtered through a 0.2 μm syringe filter (BIOFACT™, Yuseong-Gu, Republic of Korea). The filtrate was evaporated using a pressured gas blowing concentrator (MGS-2200; EYELA, Chula Vista, CA, USA). The yield of the ASF was 5%.

2.4. Chemical Profiling of ASF by HPLC

2.4.1. Chromatography Conditions. Analysis was performed using an Agilent 1290 HPLC system (Agilent Technologies, Palo Alto, CA, USA) consisting of a quaternary pump, an autosampler, a column oven, and a diode-array detector. The data were processed using ChemStation software, rev B. 03. 02 (Agilent). To separate the sample, an ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm; Waters, Milford, MA, USA) was used. The mobile phase was comprised of 0.1% formic acid in distilled water (A) and acetonitrile (B). The column temperature was maintained at 40°C. The analysis was conducted at a flow rate of 1.0 mL/min with PDA detection wavelengths of 254 nm and 275 nm. The injection volume was 5 μL.

2.4.2. Preparation of Standard Solutions. The standard stock solutions of 4-anisaldehyde and 4-prophenylanisole were prepared in methanol and stored at 4°C. A working standard solution was prepared by serial dilution of stock solutions with methanol. All calibration curves were obtained from assessments of peak areas of standard solutions in the
following concentration ranges: 4-anisaldehyde, 0.10–2.00 μg/mL; 4-prophenylanisole, 0.10–2.00 μg/mL.

2.4.3. Preparation of Sample Solution. The resulting solution of ASFE was filtered through a 0.2 μm syringe filter and injected into the HPLC instrument.

2.5. Cell Culture. Chronic myeloid K-562 leukemia cells were obtained from the American Type Culture Collection (Manassas, VA, USA) and maintained in RPMI 1640 containing 10% (v/v) heat-inactivated fetal bovine serum (Sigma-Aldrich) and 1% (v/v) penicillin/streptomycin (Gibco/BRL, Grand Island, NY) at 37°C in a 5% (v/v) CO₂ atmosphere. The cells were then incubated with 10% (v/v) heat-inactivated fetal bovine serum (Sigma-Aldrich) and 1% (v/v) penicillin/streptomycin (Gibco/BRL, Grand Island, NY) at 37°C in a 5% (v/v) CO₂ incubator.

2.6. Cell Viability Assay. Cell viability was determined using the CCK-8 assay according to the manufacturer’s instructions. K-562 cells were seeded at a density of 1 × 10⁴ well in a 96-well plate. After incubation for 24 h, the cells were treated with dimethyl sulfoxide or various concentrations of ASFE for 24 h at 37°C in an incubator with a 5% CO₂ atmosphere. The cells were then incubated with 10 μL of CCK-8 reagent for 4 h at 37°C. Absorbance was measured at 450 nm using an ELISA microplate reader (Tecan, Manndorf, Switzerland). Data are presented as the percentage viabilities of untreated cells (100%). The assay was independently repeated three times.

2.7. Western Blot Analysis. After treatment with ASFE, IM, and ASFE+IM by either a dose-dependent or time-dependent manner, K-562 cells were harvested by centrifugation at 4°C, washed once with ice-cold D-PBS, resuspended in lysis buffer (50 mM Tris (pH 7.5), 2 mM EDTA, 100 mM NaCl, and 1% NP-40) containing protease inhibitor cocktail (Sigma-Aldrich), and incubated for 30 min at 4°C. Following centrifugation for 15 min at 13,000 rpm at 4°C, the protein concentration of the lysate was determined using a bicinchoninic acid (BCA) Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. 30 μg of total protein was separated on a 6% or 7% sodium dodecyl sulfate-polyacrylamide gel and electroblotted onto polyvinylidene difluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA). The blots were incubated with a blocking solution (5% skim milk) for 1 h at room temperature, followed by incubation overnight with the primary antibodies (anti-Bcr, 1:3,000 dilution; anti-beta-actin, 1:1,000 dilution) at 4°C. The blots were then washed three times with Tween-20/Tris-buffered saline (TTBS), followed by incubation with the appropriate horseradish peroxide-conjugated secondary antibodies (1:5,000 dilution) for 1 h at room temperature, and then washed with TTBS. Immunoreactive bands were visualized using the Enhanced Chemiluminescence Detection Solution (ECL Plus; Thermo Fisher Scientific). ImageJ software was used to quantitate the band densities.

2.8. Quantification of Apoptosis by Annexin V Labeling. Apoptosis was quantified using an annexin V and 7-AAD Kit (Millipore, Hayward, CA, USA) according to the manufacturer’s instructions. Briefly, after 1 × 10⁶ K-562 cells were seeded in a 60 mm cell culture dish, ASFE (2 μg/mL), IM (2.0 μmol), or their combination was added. Following incubation for 24 h at 37°C in a 5% CO₂ incubator, the cells were collected and incubated with annexin-V and 7-AAD for 20 min at room temperature in the dark. The events for live, dead, and early (annexin V+/7-AAD+) cells were counted using the Muse cell analyzer (Merck Millipore, Billerica, MA, USA).

2.9. Statistical Analysis. Statistical analysis was performed using SPSS statistical software for Windows, version 23 (IBM, Armonk, NY, USA). Data are expressed as the mean ± standard deviation (SD) of triplicate determinations. Differences in means between groups were subjected to one-way analysis of variance followed by the least-significant multiple comparison test and independent t-test. P values <0.05 were considered significant differences.

3. Results

3.1. Screening 33 Cancer-Related Compounds. According to the TCMSP database, ASF contained 49 identified compounds. Every compound and its related diseases were investigated, and 33 cancer-related compounds were screened (Table 1).

3.2. Collecting 10 CML-Related Active Compounds and Systemic Pharmacological Analyses. Ten CML-related compounds and the analyzed results are shown in Table 2. To search bioactive compounds, the criteria of each parameter were suggested. Molecular weights from 180 to 500 Daltons were recognized as comparatively more druggable [23]. Oral bioavailability (OB) ≥30% and drug likeness ≥0.18 were used as ideal drug characteristics [24, 25]. Caco-2 cell permeability was tested using an in vitro experiment with the Caco-2 human intestinal cell line. Drug half-life (t1/2) represented how long it took for the drug to be internalized and reduced by half; a drug half-life ≤4 h was classified as the fast elimination group, between 4 and 8 h as the miedimelimination group, and ≥8 h as the slow-elimination group [20, 21].

Among the 10 CML-related compounds, luteolin (MW = 286.25, OB (%) = 36.16, Caco-2 = 0.19, DL = 0.25, and HL = 15.94), kaempferol (MW = 286.25, OB (%) = 41.88, Caco-2 = 0.26, DL = 0.24, and HL = 14.74), and quercetin (MW = 302.25, OB (%) = 46.43, Caco-2 = 0.05, DL = 0.28, and HL = 14.4) largely met the suggested criteria and have been reported as representative antibacterial compounds in previous studies [26–28], including our study [18]. Additionally, luteolin exhibited an antibacterial action that suppressed the activity of bacterial DNA topoisomerases 1 and 2 and reduced the synthesis of nucleic acids and proteins [29] and was also known to have antioxidant, anticancer, anti-inflammatory, and neuroprotective effects [30]. Kaempferol is a flavonoid and possesses anti-inflammatory, antioxidant, anticancer, and
Table 1: The 33 compounds and their related cancers.

Active compounds	Related cancers
C09628	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Prostate cancer
	Adrenocorticotropic hormone-secreting pituitary tumors
	Bladder cancer
	Pancreatic cancer
	Renal cell carcinoma
	Testicular cancer
	Thyroid follicular carcinoma
	Breast cancer
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Head and neck cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Chronic myelogenous leukemia (CML)
	Gastrointestinal stromal tumors (GIST)
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Multiple myeloma
	Non-small-cell lung cancer
	Ovarian cancer
	Refractory hematological malignancies
	Solid tumors
	Malignancies
Kaempferol	Gliomas
	Colon cancer
	Acute promyelocytic leukemia
	Chronic lymphocytic leukemia
	Prostate cancer (hormone-refractory)
	Waldenstrom’s macroglobulinemia
	Solid tumor
	Cancer (multidrug-resistant)
	Chondrosarcoma
	Hormone-refractory prostate cancer
	Kaposi’s sarcoma
	Breast neoplasms
	Colorectal neoplasms
	Ovarian neoplasms
	Urinary bladder neoplasms
	Bronchiolar carcinoma
	Cervical cancer
	Rectal neoplasms
	Chronic myeloid leukemia
	Gastrointestinal cancers
	Urological cancers
	Non-small-cell lung carcinoma
	Gastrointestinal cancers
	Gastrointestinal neoplasms
	Head and neck neoplasms
	Neoplasms
	Precursor cell
	Lymphoblastic leukemia-lymphoma
Table 1: Continued.

Active compounds	Related cancers
	Bladder cancer
	Breast cancer
	Cancer, unspecific
ZINC02040970	Carcinoma in situ unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Oropharyngeal squamous cell carcinoma Prostate cancer Renal cell carcinoma
(1R,5R,7S)-4,7-Dimethyl-7-(4-methylpent-3-enyl)bicyclo [3.1.1]hept-3-ene	Bladder cancer Breast cancer Cancer, unspecific Carcinoma in situ, unspecified Colorectal cancer Genitourinary tumors Lung cancer Malignant mesothelioma Oropharyngeal squamous cell carcinoma Prostate cancer Renal cell carcinoma
1,8-Cineole	Colon cancer Bladder cancer Breast cancer Cancer, unspecific Carcinoma in situ, unspecified Colorectal cancer Genitourinary tumors Lung cancer Oropharyngeal squamous cell carcinoma Prostate cancer
3-O-Feruloylquinic acid	Bladder cancer Breast cancer Cancer, unspecific Carcinoma in situ, unspecified Colorectal cancer Genitourinary tumors Lung cancer Malignant mesothelioma Oropharyngeal squamous cell carcinoma Prostate cancer Renal cell carcinoma Pancreatic cancer Tumors
Anis ketone	Gliomas Bladder cancer Breast cancer Cancer, unspecific Carcinoma in situ, unspecified Colorectal cancer Genitourinary tumors Lung cancer Malignant mesothelioma Meningioma Oropharyngeal squamous cell carcinoma Prostate cancer Renal cell carcinoma Colon cancer Pancreatic cancer
Active compounds	Related cancers
------------------	-----------------
Copaene	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
Terpine	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oesophageal cancer
	Oropharyngeal squamous cell carcinoma
	Pathological angiogenesis
	Gliomas
	Renal cell carcinoma
	Leukemia,
	Myeloid malignancies
	Prostate cancer
	Solid tumors
Guaiene	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
Active compounds	Related cancers
------------------	----------------
	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecified
	Carpal tunnel syndrome
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
Salicylic acid	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Bronchiolar carcinoma
	Cervical cancer
	Chronic myeloid leukemia
	Gastrointestinal cancers
	Pancreatic cancer
	Urological cancers
	Leukemia, myeloid,
	Acute
	Endometrial carcinoma
	Leukemia, unspecified
	Mesothelioma
	Tumors
	Precursor
	Cell lymphoblastic
	Leukemia-lymphoma
	Breast neoplasms
	Non-small-cell lung carcinoma
	Colorectal neoplasms
	Gastrointestinal neoplasms
	Head and neck neoplasms
	Neoplasms
	Ovarian neoplasms
	Rectal neoplasms
(Z)-Caryophyllene	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
Active compounds	Related cancers
------------------	-----------------
(R)-Linalool	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Acute promyelocytic leukemia
	Chronic myelogenous leukemia (CML)
	Gastrointestinal stromal tumors (GIST)
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Multiple myeloma
	Non-small-cell lung cancer
	Ovarian cancer
	Refractory hematological malignancies
	Solid tumors
Mairin	Breast cancer
	Gliomas
	Breast cancer
	Prostate cancer
	Endocrine independent cancer
	Adrenocorticotropic hormone-secreting pituitary tumors
	Pancreatic cancer
	Bladder cancer
	Renal cell carcinoma
	Testicular cancer
	Thyroid follicular carcinoma
	Solid tumors
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Refractory hematological malignancies
	Oropharyngeal squamous cell carcinoma
Honokiol	Chronic myelogenous leukemia (CML)
	Malignancies
	Multiple myeloma
	Gastrointestinal stromal tumors (GIST)
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Non-small-cell lung cancer
	Ovarian cancer
	Acute lymphoblastic leukemia (ALL)
	Acute myeloid leukemia (AML)
	Advanced solid tumors
	B-cell malignancies
	Chronic lymphocytic leukemia (CLL)
	Hepatocellular carcinoma (HCC)
	Nasopharyngeal cancer (NPC)
	Non-Hodgkin’s lymphoma leukemia
	Myeloid
	Oesophageal cancer
Active compounds	Related cancers
------------------	-----------------
Hemo-sol	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer

(1S,5S)-1-Isopropyl-4-methylenebicyclo[3.1.0]hexane	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma

CHEBI:7	Chronic myeloid leukemia
	Breast cancer
	Bladder cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Acute promyelocytic leukemia
Active compounds	Related cancers
Luteolin	Prostate cancer
	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Renal cell carcinoma
	Chronic myelogenous leukemia (CML)
	Gastrointestinal stromal tumors (GIST)
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Multiple myeloma
	Non-small-cell lung cancer
	Ovarian cancer
	Refractory hematological malignancies
	Solid tumors
	Malignancies
	Head and neck tumors
	Pancreatic cancer
	Solid tumor
	Squamous cell carcinoma tumors
	Colorectal neoplasms
	Brain cancer
	Hepatocellular carcinoma
	Hormone-refractory prostate cancer
	Kaposi’s sarcoma
	Cancer (multidrug-resistant)
	Kidney cancer
	Chondrosarcoma
	Breast neoplasms
	Non-small-cell lung carcinoma
	Gastrointestinal neoplasms
	Head and neck neoplasms
	Neuroplasms
	Ovarian neoplasms
	Precursor cell
	Lymphoblastic leukemia-lymphoma
	Rectal neoplasms
	Gastric cancer
	Prostate cancer (metastatic)
	Small-cell lung cancer
HCI	Gliomas
	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Malignancies
Active compounds	Related cancers
--	---
	Bladder cancer
	Breast cancer
	Cancer, unspecified
	Carcinoma in situ, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
Beta-selinene	Bladder cancer
	Breast cancer
	Cancer, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
2-Methyl-N-phenylmaleimide	Bladder cancer
	Breast cancer
	Cancer, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oesophageal cancer
	Prostate cancer
	Renal cell carcinoma
2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3-[(2R,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-chromone	Bladder cancer
	Breast cancer
	Cancer, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Acute promyelocytic leukemia
Anethole	Glaucoma
	Breast cancer
	Cancer (multidrug-resistant)
	Melanoma
(+)-Catechin	Breast cancer
	Endocrine independent cancer
	Bladder cancer
	Cancer, unspecified
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
	Refractory hematological malignancies
	Gastrointestinal stromal tumors (GIST)
	Precursor cell
	Lymphoblastic leukemia-lymphoma
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Non-small-cell lung cancer
	Ovarian cancer
	Solid tumors
Table 1: Continued.

Active compounds	Related cancers
Shikimic acid	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
Astragaline	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Colorectal cancer
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
	Renal cell carcinoma
	Acute promyelocytic leukemia
	Chronic myelogenous leukemia (CML)
	Gastrointestinal stromal tumors (GIST)
	Hematological malignancies
	HER2-positive
	Metastatic breast cancer
	Melanoma
	Multiple myeloma
	Non-small-cell lung cancer
	Ovarian cancer
	Refractory hematological malignancies
	Solid tumors
	Gliomas
	Malignancies
Cis-beta-farnesene	Bladder cancer
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecific
	Colorectal cancer
	Meningioma
	Genitourinary tumors
	Malignant mesothelioma
	Lung cancer
	Oropharyngeal squamous cell carcinoma
	Prostate cancer
	Renal cell carcinoma
5,7-Dihydroxy-2-(4-hydroxyphenyl)-3-[[2R,3R,4S,5R,6R]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one	Acute promyelocytic leukemia
	Cancer, unspecific
Beta-bisabolene	Bladder cancer
	Prostate cancer
	Breast cancer
	Cancer, unspecific
	Colorectal cancer
	Carcinoma in situ, unspecific
	Genitourinary tumors
	Lung cancer
	Malignant mesothelioma
	Meningioma
	Oropharyngeal squamous cell carcinoma
Active compounds	Related cancers
---	--
Quercetin	Prostate cancer
	Bladder cancer
	Pancreatic cancer
	Renal cell carcinoma
	Adrenocorticotropic hormone-secreting pituitary tumors
	Testicular cancer
	Thyroid follicular carcinoma
	Breast cancer
	Cancer, unspecific
	Carcinoma in situ, unspecified
	Colorectal cancer
	Malignant mesothelioma
	Meningioma
	Urinary bladder neoplasms
	Genitourinary tumors
	Lung cancer
	Melanoma
	Multiple myeloma
	Non-small-cell lung cancer Oropharyngeal squamous cell carcinoma
	Ovarian cancer
	Chronic myelogenous leukemia (CML)
	Solid tumors
	Hematological malignancies
	Malignancies
	Gastrointestinal stromal tumors (GIST)
	Gliomas
	HER2-positive
	Metastatic breast cancer
	Brain cancer
	Colon cancer
	Solid tumor
	Refractory hematological malignancies
	Tumor
	Acute promyelocytic leukemia
	Kaposi’s sarcoma
	Head and neck tumors
	Rectal neoplasms
	Cancer (multidrug-resistant)
	Kidney cancer
	Squamous cell carcinoma
	Colorectal neoplasms
	Breast neoplasms
	Ovarian neoplasms
	Chronic lymphocytic leukemia
	Hormone-refractory prostate cancer
	Waldenstrom’s macroglobulinemia
	Endometrial neoplasms
	Hepatocellular carcinoma
	Chondrosarcoma
	Bronchiolar carcinoma
	Urological cancers
	Non-small-cell lung carcinoma
	Gastrointestinal neoplasms
	Head and neck neoplasms
	Cervical cancer
	Chronic myeloid leukemia
	Gastrointestinal cancers
	Neoplasms
	Precursor cell lymphoblastic leukemia-lymphoma
antibacterial activities [31–33]. It has been shown to be effective against acne-induced *Propionibacterium acnes* and *Helicobacter pylori* found in the stomach [34]. Quercetin is a compound that plays an important role in inflammation, cancer, aging, cell signaling, proapoptotic effects, antiproliferative effects, antioxidant effects, and growth suppression [35, 36]. Astragalin (MW = 448.41, OB (%) = 14.03, Caco-2 = −1.34, DL = 0.74, HL = N/A) has been reported to inhibit autophagosome formation in airways [37]. Honokiol (MW = 266.36, OB (%) = 60.67, Caco-2 = 1.43, DL = 0.15, and HL = 2.88) has been shown to have antitumorogenic, anti-inflammatory, and antioxidant effects [38–40]. (+)-Catechin (MW = 290.29, OB (%) = 54.83, Caco-2 = −0.03, DL = 0.24, and HL = 0.61) is a well-known phenolic compound found in tea and wine.

3.3. Network Construction of 10 CML-Related Compounds and Their Related Targets.

To visualize the target genes of 10 CML-related compounds, a compound (C)-target (T) network was established. A total of 313 target proteins were collected from the TCMSP, and the official gene names of the targets were obtained from the UniProt database. Figure 1 shows that the C-T network revealed interactions between 10 CML-related compounds and 313 target genes. The nodes showed the 10 CML-related compounds and the target genes, and the edges represented the interaction of compounds and targets. The size of nodes was related to the degrees. Quercetin (degree = 77) had the greatest interaction with targets, followed by luteolin (degree = 56), kaempferol (degree = 36), salicylic acid (degree = 35), 2-methyl-N-phenylmaleimide (degree = 29), *R*-linalool (degree = 20), honokiol (degree = 18), astragalin (degree = 16), CHEBI:7 (degree = 15), and (+)-catechin (degree = 10).

3.4. HPLC Analysis of ASFE.

The main components of ASFE were determined using an HPLC system to evaluate the quality of ASFE. Because 4-anisaldehyde and 4-prophenylanisole [(E)-anethole] have been reported to be the main compounds of ASFE, we used them as standards and conducted the analysis. As shown in the representative chromatographic fingerprint of ASFE, the main components of ASFE were 4-anisaldehyde and 4-prophenylanisole (Figure 2).

3.5. Effect of ASFE on the Cell Viability of K-562 Cells.

The possible cytotoxic effect of ASFE (0–8 μg/mL) on K-562 cells was assessed (Figure 3). ASFE significantly inhibited the proliferation of K-562 cells in a dose-dependent manner. The IC50 value of ASFE was approximately 4.03 ± 2.3 μg/mL (*P < 0.05; **P < 0.01).

3.6. ASFE Treatment on K-562 Cells Decreases the Amount of p210*Ab* in a Time-dependent Manner.

ASFE or IM was
Figure 1: The network of 10 CML-related compounds and their related target genes. Triangle nodes represent compounds and circular nodes represent targets. Node size is relative to the degree, and the edges demonstrate the interaction between nodes.

Figure 2: Chromatograms of two major components (4-anisaldehyde and 4-prophenylanisole) identified in Anisi stellati fructus extract (ASFE). (a) Chromatograms of the standard mixture. (b) Chromatograms of the major components in ASFE. The chromatograms were obtained at 254.5 and 275 nm.
used to treat K-562 cells, and the \(p^{210}\text{Bcr-Abl} \) protein steady-state levels in the total lysate were analyzed by western blotting (Figure 4). 2 \(\mu \text{mol} \) IM was subjected based on previous studies [41]. The \(p^{210}\text{Bcr-Abl} \) protein levels were decreased after treatment with ASFE or IM on K-562 cells in a time-dependent manner (*\(P < 0.05 \); **\(P < 0.01 \)).

3.7. ASFE Enhanced IM-Induced Destabilization of \(p^{210}\text{Bcr-Abl} \). Figure 5 shows that when both ASFE and IM were added together to K-562 cells, the level of \(p^{210}\text{Bcr-Abl} \) was diminished compared to that of the lanes containing K-562 cells after treatment with IM or ASFE, indicating that the combined treatment of K-562 cells by ASFE and IM was more potent than each one separately.

3.8. Assessment of ASFE- and IM-Inducing Cell Death Mechanisms on K-562 Cells. Apoptosis, necrosis, and autophagy are well-known cell death mechanisms. To observe apoptosis and necrosis, we conducted flow cytometry using annexin V and 7-AAD staining. After 16 h treatment of IM, ASFE, or IM + ASFE, the cells were stained with both annexin V and 7-AAD, indicating that the combined treatment of K-562 cells by ASFE and IM was more potent than each one separately.

4. Discussion

Traditionally, ASF has been used in Chinese medicine for the treatment of skin inflammation, stomach aches, and rheumatic pain [1]. For decades, herbal medicine has been used as an adjunct in chemotherapy for cancer treatment, demonstrating their synergistic roles in enhancing efficacy, ameliorating side effects, and reducing drug resistance [42]. However, there have been few scientific studies describing the anticancer effects of ASF.

CML is a clonal myeloproliferative disorder characterized by the presence of a constitutive tyrosine kinase activity of the fusion oncogene, \(\text{Bcr-Abl} \) [11]. \(\text{Bcr-Abl} \) protein induces cellular transformation by activating the signaling molecules, STAT5 and Akt [43]. As a first-line treatment, TKI-targeted \(\text{Bcr-Abl} \) was expected to treat CML effectively, but it has shown drug resistance, so the next generation of drugs from imatinib has been required [44]. \(\text{Bcr-Abl} \) T315I is the most frequent resistant mutation to tyrosine kinase inhibitors [45]. Following imatinib, the second-generation inhibitors such as dasatinib, nilotinib, and bosutinib and third-generation inhibitor such as ponatinib have been used to treat resistant cases of CML. Ponatinib has been developed to overcome the T315I mutation. The next candidates of tyrosine kinase inhibitors, including danusertib, danusertib, tozasertib, HG-7-85-01, GNF-2, and 1,3,4-thiadiazole derivatives are presently undergoing approval as the next generation of therapeutic agents [46]. However, the issue of drug resistance is a rapidly increasing problem, and alternatives that are less toxic are urgently needed. Accordingly, this study aimed at providing the potential for exploring new therapies that are less harmful and more effective.

In the present study, we used a systemic pharmacological approach, filtered active compounds of ASF, constructed the compound-target network, and screened cancer-related compounds of ASF. ASF was found to contain 49 identified compounds, and 33 compounds were active in biological pathways related to cancers. Moreover, 10 of the 33 were classified as being associated with CML. Additionally, the compound-target network showed multiple compounds and multiple targeting characteristics of ASF. Multiple compounds and multiple targeting actions of other herbal medicines such as licorice [47], Xiao-Chaihu Decoction, Da-Chaihu Decoction [48], Pulsatillae Radix, Baekduong-tang [49, 50], and Bulsus [51] have also been studied. Based on our results, we propose that ASF is a potential antileukemic agent.

Experiments were conducted to confirm this possibility. First, the active components of ASF were extracted. According to previous studies, the extraction of ASF could be conducted using several extraction techniques such as hydrodistillation, steam distillation, solvent extraction, supercritical fluid \(\text{CO}_2 \) extraction, hydrodistillation-headspace solvent microextraction, and microwave-assisted extraction [52, 53]. In our study, a combination of solvent extraction and sonication, followed by pressured gas blowing concentration, was used. To obtain the maximum extraction ASF, methanol was used as a solvent [54], followed by sonication to increase the extraction efficiency. The 4-prophenylanisole was one of the main compounds of ASF and accounted for 94% of the essential oil [55]. Another major component of ASF was 4-anisaldehyde, which is used as a food fragrance and reported to have antifungal and saliva-enhancing effects [56]. In this study, the main
Compounds of 4-prophenylanisole and 4-anisaldehyde were identified in the ASFE using HPLC. The ASFE and ASFE+IM combination showed potent antileukemic effects by decreasing the p210Bcr-Abl levels. Because leukemic stem cells do not respond to TKI, when the drug supply is stopped, the cells can continuously multiply to allow the disease to persist. Moreover, the combination of treatment targets results, more efficiently, in

![Graph](image1)

Figure 4: Changes in the p210Bcr-Abl protein levels treated with ASFE or imatinib (IM). K-562 cells were treated with (a) ASFE (2 μg/mL) or (b) IM (2 μmol) for increasing time periods (0–16 h). The p210Bcr-Abl protein steady-state levels in the total lysates were analyzed by western blotting. Relative protein levels versus controls (beta-actin) were determined by densitometry. Data are the mean ± SD of three independent experiments (* P < 0.05; ** P < 0.01).

![Graph](image2)

Figure 5: ASFE + IM combined therapy led to a decrease of p210Bcr-Abl. K-562 cells were treated with IM (2 μmol), ASFE (2 μg/mL), and IM + ASFE combination for 12 h at 37 °C. The p210Bcr-Abl protein levels in the total lysate were analyzed by western blotting (* P < 0.05; ** P < 0.01).

![Graph](image3)

Figure 6: Apoptosis assessment of the effects of IM, ASFE, and IM + ASFE on K-562 cells. After 16 h of treatment, the cells were stained with annexin V/7-AAD reagent and cytometric analysis was performed using a MUSE™ cell analyzer. (a) Control, (b) IM, (c) ASFE, (d) IM + ASFE.
alternative surviving mechanisms of cancer cells such as autophagy [16].

Our results showed that ASFE combined with IM resulted in the significant death of K-562 cells. The results suggested the feasibility of further research to identify cell death mechanisms following a decrease in Bcr-Abl. In addition, our next phase of research will be to verify the effects of 10 CML-related compounds as well as two representative compounds of ASF, 4-anisaldehyde and 4-prophenylanisole, on CML. The workflow scheme of our study is summarized in Figure 7.

5. Conclusion
We have identified 10 CML-related compounds of ASF using systematic pharmacological analyses. The ASF extract significantly induced cell death of K-562 cells. In addition, combined treatment with ASFE and IM led to a significant decrease of Bcr-Abl protein levels. The results showed that ASF is a promising source of effective chemotherapeutic adjuvants and is a candidate, in combination with other chemotherapeutic drugs, for the treatment of CML patients, to ameliorate the side effects and overcome resistance. Although we do not know the exact mechanisms of the 10 compounds of ASF and their antileukemic effects, this study is the first to report the antileukemic effects of ASF on K-562 CML cells, which should prompt further mechanistic studies of these antileukemic compounds.

Data Availability
All data used to support the findings of this study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Won G. An designed the experiments. Youn Sook Kim performed the experiments, and Su Yeon Suh analyzed the data. Youn Sook Kim and Won G. An wrote the paper. Chul Won Lee, Sang Yull Lee, and Yong Tae Ahn reviewed and edited the manuscript. All the authors read and approved the final manuscript.

Acknowledgments
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07049092).

References
[1] G.-W. Wang, W.-T. Hu, B.-K. Huang, and L.-P. Qin, “Illicium verum: a review on its botany, traditional use, chemistry and pharmacology,” Journal of Ethnopharmacology, vol. 136, no. 1, pp. 10–20, 2011.
[2] S. Ghosh, Y. Chisti, and U. C. Banerjee, “Production of shikimic acid,” Biotechnology, vol. 30, no. 6, pp. 1425–1431, 2012.
[3] N. P. Shah, J. M. Nicoll, B. Nagar et al., “Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis,” Cancer Cell, vol. 2, no. 2, pp. 117–125, 2002.
[4] C. L. Sawyers, “Chronic myeloid leukemia,” New England Journal of Medicine, vol. 340, no. 17, pp. 1330–1340, 1999.
[5] T. Burmeister, S. Schwartz, C. R. Bartram, N. Gökbüget, D. Hoelzer, and E. Theil, “Patients’ age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMAIL study group,” Blood, vol. 112, no. 3, pp. 918-919, 2008.
[6] J. F. Apperley, “Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia,” The Lancet Oncology, vol. 8, no. 11, pp. 1018–1029, 2007.
Evidence-Based Complementary and Alternative Medicine

[7] B. J. Druker and N. B. Lydon, “Lessons learned from the development of an Abl tyrosine kinase inhibitor for chronic myelogenous leukemia,” Journal of Clinical Investigation, vol. 105, no. 1, pp. 3–7, 2000.

[8] R. Champlin and D. Golde, “Chronic myelogenous leukemia: recent advances,” Blood, vol. 65, no. 5, pp. 1039–1047, 1985.

[9] H. M. Kantarjian, M. J. Keating, M. Talpaz et al., “Chronic myelogenous leukemia in blast crisis: analysis of 242 patients,” The American Journal of Medicine, vol. 83, no. 3, pp. 445–454, 1987.

[10] R. M. Kantarjian, M. J. Keating, M. Talpaz et al., “Chronic myelogenous leukemia in blast crisis: analysis of 242 patients,” The American Journal of Medicine, vol. 105, no. 1, pp. 3–7, 2000.

[11] B. J. Druker, F. Guilhot, S. G. O'Brien et al., “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia,” New England Journal of Medicine, vol. 355, no. 23, pp. 2408–2417, 2006.

[12] R. Hehlmann, A. Hochhaus, and M. Baccarani, “Chronic myeloid leukemia,” The Lancet, vol. 370, no. 9584, pp. 342–350, 2007.

[13] G. V. Helgason, M. Karvela, and T. L. Holyoake, “Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML,” Blood, vol. 118, no. 8, pp. 2035–2043, 2011.

[14] D. M. Parkin, “The global health burden of infection-associated cancers in the year 2002,” International Journal of Cancer, vol. 118, no. 12, pp. 3030–3044, 2006.

[15] L. Iauk, A. M. Lo Bue, I. Milazzo, A. Rapisarda, and G. Blandino, “Antibacterial activity of medicinal plant extracts against periodontopathic bacteria,” Phytoresearch, vol. 17, no. 6, pp. 599–604, 2003.

[16] X. Yang, W. Zhang, Z. Zhao et al., “Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials,” Journal of Inorganic Biochemistry, vol. 167, pp. 36–48, 2017.

[17] Q. Wang and M. Xie, “Antibacterial activity and mechanism of luteolin on Staphylococcus aureus,” Wei Sheng Wu Xue Bao, vol. 50, no. 9, pp. 1180–1184, 2010.

[18] S. F. Nabavi, N. Braidy, O. Gortzi et al., “Luteolin as an anti-inflammatory and neuroprotective agent: a brief review,” Brain Research Bulletin, vol. 119, pp. 1–11, 2015.

[19] P. K. Devi, D. S. Malar, S. F. Nabavi et al., “Kaempferol and inflammation: from chemistry to medicine,” Pharmacological Research, vol. 99, pp. 1–10, 2015.

[20] S. Ilk, N. Sağlam, M. Özgen, and F. Korkusuz, “Chitosan nanoparticles enhances the antioxidant sensing activity of kaempferol,” International Journal of Biological Macromolecules, vol. 94, pp. 653–662, 2017.

[21] P. Rajendran, T. Rengarajan, N. Nandakumar, R. Palaniswami, Y. Nishigaki, and I. Nishigaki, “Kaempferol, a potential cytostatic and cure for inflammatory disorders,” European Journal of Medicinal Chemistry, vol. 86, pp. 103–112, 2014.

[22] M. Kataoka, K. Hirata, T. Kunikata et al., “Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori infected Mongolian gerbils,” Journal of Gastroenterology, vol. 36, no. 1, pp. 5–9, 2001.

[23] A. W. Boots, G. R. Haenen, and A. Bast, “Health effects of quercetin: from antioxidant to nutraceutical,” European Journal of Pharmacology, vol. 585, no. 2-3, pp. 325–337, 2008.

[24] W. Tao, X. Xu, X. Wang et al., “Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal radix curcumae formula for application to cardiovascular disease,” Journal of Ethnopharmacology, vol. 145, no. 1, pp. 1–10, 2013.

[25] P. Ertl, B. Rohde, and P. Selzer, “Fast calculation of molecular polar surface area as a sum of fragment-based contribution and its application to the prediction of drug transport properties,” Journal of Medicinal Chemistry, vol. 43, no. 20, pp. 3714–3717, 2000.

[26] J.-F. Yang, C.-H. Yang, H.-W. Chang et al., “Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens,” Journal of Medicinal Food, vol. 13, no. 5, pp. 1254–1262, 2010.

[27] L. Iauk, A. M. Lo Bue, I. Milazzo, A. Rapisarda, and G. Blandino, “Antibacterial activity of medicinal plant extracts against periodontopathic bacteria,” Phytoresearch, vol. 17, no. 6, pp. 599–604, 2003.

[28] X. Yang, W. Zhang, Z. Zhao et al., “Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials,” Journal of Inorganic Biochemistry, vol. 167, pp. 36–48, 2017.

[29] Q. Wang and M. Xie, “Antibacterial activity and mechanism of luteolin on Staphylococcus aureus,” Wei Sheng Wu Xue Bao, vol. 50, no. 9, pp. 1180–1184, 2010.

[30] S. F. Nabavi, N. Braidy, O. Gortzi et al., “Luteolin as an anti-inflammatory and neuroprotective agent: a brief review,” Brain Research Bulletin, vol. 119, pp. 1–11, 2015.

[31] P. K. Devi, D. S. Malar, S. F. Nabavi et al., “Kaempferol and inflammation: from chemistry to medicine,” Pharmacological Research, vol. 99, pp. 1–10, 2015.

[32] S. Ilk, N. Sağlam, M. Özgen, and F. Korkusuz, “Chitosan nanoparticles enhances the antioxidant sensing activity of kaempferol,” International Journal of Biological Macromolecules, vol. 94, pp. 653–662, 2017.

[33] P. Rajendran, T. Rengarajan, N. Nandakumar, R. Palaniswami, Y. Nishigaki, and I. Nishigaki, “Kaempferol, a potential cytostatic and cure for inflammatory disorders,” European Journal of Medicinal Chemistry, vol. 86, pp. 103–112, 2014.

[34] M. Kataoka, K. Hirata, T. Kunikata et al., “Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori infected Mongolian gerbils,” Journal of Gastroenterology, vol. 36, no. 1, pp. 5–9, 2001.

[35] A. W. Boots, G. R. Haenen, and A. Bast, “Health effects of quercetin: from antioxidant to nutraceutical,” European Journal of Pharmacology, vol. 585, no. 2-3, pp. 325–337, 2008.

[36] A. Brito, M. Ribeiro, A. Abrantes et al., “Quercetin in cancer treatment, alone or in combination with conventional therapeutic agents,” Current Medicinal Chemistry, vol. 22, no. 26, pp. 3025–3039, 2015.

[37] I. H. Cho, Y. J. Choi, J. H. Gong, D. Shin, and M.-K. Kang, “Astragalus inhibits autophagy-associated airway epithelial fibrosis,” Respiratory Research, vol. 16, no. 1, p. 51, 2015.

[38] E.-R. Hahn, K. Sakao, and S. V. Singh, “Honokiol activates reactive oxygen species-mediated cytotoxicity in human prostate cancer cell,” The Prostate, vol. 74, no. 12, pp. 1209–1221, 2014.

[39] H. Liu, C. Zang, A. Emde et al., “Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer,” European Journal of Pharmacology, vol. 591, no. 1–3, pp. 43–51, 2008.
[40] A. Woodbury, S. P. Yu, L. Wei, and P. Garcia, “Neutro-modulating effects of honokiol: a review,” *Frontiers in Neurology*, vol. 4, p. 130, 2013.

[41] H. Cai, X. He, and C. Yang, “Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway,” *Phytotherapy Research*, vol. 32, no. 9, pp. 1764–1769, 2018.

[42] X.-Q. Hu, Y. Sun, E. Lau, M. Zhao, and S.-B. Su, “Advances in synergistic combinations of Chinese herbal medicine for the treatment of cancer,” *Current Cancer Drug Targets*, vol. 16, no. 4, pp. 346–356, 2016.

[43] Y. Uchihara, K. Tago, and M. Funakoshi-Tago, “Mechanisms of taxodione-induced apoptosis in BCR-ABL-positive leukemia cells,” *Folia Pharmacologica Japonica*, vol. 153, no. 4, pp. 147–154, 2019.

[44] A. Hochhaus, E. Eigendorff, and T. Ernst, “Chronic myelogenous leukemia,” *DMW—Deutsche Medizinische Wochenschrift*, vol. 143, no. 18, pp. 1304–1310, 2018.

[45] F. E. Nicolini, M. J. Mauro, G. Martinelli et al., “Epidemiologic study on survival of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia patients with BCR-ABL T315I mutation,” *Blood*, vol. 114, no. 26, pp. 5271–5278, 2009.

[46] F. Rossari, F. Minutolo, and E. Oruciulo, “Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy,” *Journal of Hematology and Oncology*, vol. 11, no. 1, p. 84, 2018.

[47] H. Liu, J. Wang, W. Zhou, Y. Wang, and L. Yang, “Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice,” *Journal of Ethnopharmacology*, vol. 146, no. 3, pp. 773–793, 2013.

[48] B. Li, W. Tao, C. Zheng et al., “Systems pharmacology-based approach for dissecting the addition and subtraction theory of traditional Chinese medicine—an example using xiao-chaihu-decoction and da-chaihu-decoction,” *Computers in Biology and Medicine*, vol. 53, pp. 19–29, 2014.

[49] S. Y. Suh and W. G. An, “Systems pharmacological approach of *Pulsatillae radix* on treating crohn’s disease,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2017, Article ID 4198035, 21 pages, 2017.

[50] S. Y. Suh and W. G. An, *Network Pharmacological Analysis of Pulsatillae Radix and Baekduong-Tang*, Pusan National University, Busan, South Korea, 2017.

[51] S. Y. Suh and W. G. An, “Systems pharmacological approach to the effect of bulsu-san promotion parturition,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2017, Article ID 7236436, 15 pages, 2017.

[52] M. B. Gholivand, M. Rahimi-Nasrabadi, and H. Chalabi, “Determination of essential oil components of star anise (*Illicium verum*) using simultaneous hydrodistillation-static headspace liquid-phase microextraction-gas chromatography mass spectrometry,” *Analytical Letters*, vol. 42, no. 10, pp. 1382–1397, 2009.

[53] Y. Zhai, S. Sun, Z. Wang et al., “Microwave extraction of essential oils from dried fruits of *Illicium verum* Hook. F. and *Cuminum cyminum* L. using ionic liquid as the microwave absorption medium,” *Journal of Separation Science*, vol. 32, no. 20, pp. 3544–3549, 2009.

[54] A. Y. Lee, H. S. Kim, G. Choi, J. M. Chun, B. C. Moon, and H. K. Kim, “Comparison of major compounds in *Illici veri fructus* by extraction solvents,” *The Korea Journal of Herbalogy*, vol. 28, no. 6, pp. 47–51, 2013.

[55] A. Dzamic, M. Sokovic, M. S. Ristic, S. Grijic-Jovanovic, J. Vukojevic, and P. D. Marin, “Chemical composition and antifungal activity of *Illicium verum* and *Eugenia caryophyllata* essential oils,” *Chemistry of Natural Compounds*, vol. 45, no. 2, pp. 259–261, 2009.