Abstract—TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). It is a sampling detector where scintillating tiles are embedded in steel absorber plates. The tiles are grouped to form cells, which are read-out on both sides using wavelength-shifting fibers by two photomultiplier tubes (PMTs). The PMT digital samples are transmitted to the read-out drivers (RODs) located in the back-end system for the events accepted by the Level 1 trigger system. The ROD is the core element of the back-end electronics, and it represents the interface between the front-end electronics and the ATLAS overall data acquisition (DAQ) system. The commissioning of the RODs was completed in 2008 before the first LHC collisions. Since then, several hardware and firmware updates have been implemented to accommodate the RODs to the evolving ATLAS Trigger and DAQ conditions adjusted to follow the LHC performance. The initial ROD system, the different updates implemented, and the operational experience during the LHC Run 1 and Run 2 are presented.

Index Terms—Calorimetry, digital filters, digital signal processors, field programmable gate arrays (FPGAs).

I. INTRODUCTION

TileCal [1] is the central hadronic calorimeter of the ATLAS experiment [2] at the Large Hadron Collider (LHC). It is a sampling detector where scintillating tiles are embedded in steel absorber plates. The tiles are grouped to form cells, which are read-out on both sides using wavelength-shifting fibers by two photomultiplier tubes (PMTs). The electric signals produced by approximately 10,000 PMTs are sampled at 40 MHz synchronously with the LHC bunch crossing (Fig. 1). The digitized samples are stored in pipelined memories located in the front-end electronics [3]. Seven samples per channel are transmitted to the Read-Out Drivers (ROD) [4] located in the back-end system if the Level 1 (L1) trigger accepts the event. The commissioning of the RODs was completed in 2008 before the first LHC collisions. Since then, several hardware and firmware updates have been implemented to adapt the RODs to the evolving ATLAS Trigger and DAQ conditions [5] adjusted to follow the evolution of the LHC performance.

The ROD is the core element of the TileCal back-end electronics. It represents the interface between the front-end electronics and the ATLAS overall data-acquisition (DAQ) system. The TileCal ROD module is a standard 9U VME board equipped with DSP-based processing units mezzanine cards (Fig. 2) and connected to a rear transition module (RTM) through the VME backplane. The RODs are responsible for the energy and time reconstruction, trigger and data synchronization, busy handling, data integrity checking, and lossless data compression. A total of 32 ROD modules are required to read-out the entire TileCal detector. Each ROD module has to process the data from up to 360 PMTs in less than 10 μs established by the maximum L1 trigger rate [6]. A digital finite impulse response (FIR) filter called optimal filtering (OF) is used in the DSPs to reconstruct the amplitude (A) and phase (Ar) of the pulses (Fig. 3). It exploits the knowledge of the pulse shape and noise of the electronics and the amount of expected signals pileup to reduce the contribution of noise and determine the time of deposition.

The input data and the output-reconstructed fragments are stored in the DSPs in elastic buffers with configurable depth. A veto signal (busy) is generated in the DSP and propagated to the ATLAS Central Trigger Processor to stop the L1 trigger generation when the input buffer is almost full. This mechanism prevents the overwriting of data in the input buffer with the consequent data loss, but it introduces undesired deadtime in the detector. The processing time, the output data bandwidth, the depth of the buffers, and the almost full threshold are the key parameters to reduce the deadtime introduced by the RODs.

A. Optimal Filtering Method

OF [7] is a relatively simple algorithm used to reconstruct in real time the energy, which is proportional to the pulse...
amplitude, and phase of the PMT pulses in the DSPs of the RODs. The OF method relies on the usage of a digitization clock synchronized with the trigger, thus the signal pulses and the samples have always a fixed phase with small variations [8]. This feature permits the discrimination of out-of-time pileup energy depositions.

The amplitude and phase of the real pulse is obtained as a linear combination of the digital samples \(S_i \) and the weights \((a_i, b_i) \). There are two versions of the OF algorithm: OF1 subtracts the pedestal \(p \) from the samples before applying the filter (1), whereas OF2 includes an additional constraint in the weights \(\sum_{i=1}^{n} a_i = 0 \), which implies that any common variation in all the samples is canceled (2)

\[
A = \sum_{i=1}^{n} a_i (S_i - p) \quad A\tau = \sum_{i=1}^{n} b_i (S_i - p) \quad (1)
\]

\[
A = \sum_{i=1}^{n} a_i S_i \quad A\tau = \sum_{i=1}^{n} b_i S_i. \quad (2)
\]

The weights are computed from the known pulse shape, expected phase, and electronics and pileup noise. The expected phase and electronics noise are measured with calibration data and they are independent of the LHC conditions. On the contrary, the pileup noise depends on the LHC beam conditions and the cell position. Thus, any pulse shape distortion strongly affects the performance of the OF method. In particular, signal pileup different than expected deforms the signal of interest and biases the results of the signal reconstruction. Basically, the OF2 algorithm is more robust in absence of pileup noise because it is not affected by any pedestal variation. However, OF2 always assumes that the pulse is located in the central samples and the pedestal in the two first or last samples. Therefore, out-of-time pileup is considered as a high pedestal with a negative pulse in the central samples and OF2 provides in this case an undesired reconstructed negative amplitude. In addition, there is an iterative version of OF where the weights are selected according to the phase reconstructed in the previous iteration. This iterative method optimizes the reconstruction when the trigger is not synchronous with the digitizing clock, like in cosmic runs, and when the bunch spacing is larger than the seven samples window (±75 ns), which ensures the absence of out-of-time pileup.

III. EVOLUTION OF DATA-PROCESSING ALGORITHMS DURING RUN 1

The first LHC beams collided in ATLAS in 2009. Since then, the LHC parameters such as bunch spacing and number of interactions per bunch crossing evolved, gradually reaching 75% of the nominal instantaneous luminosity in 2012. The TileCal DAQ system followed this evolution to optimize its performance and efficiency. The output read-out format and the reconstruction algorithms were optimized with various firmware upgrades.

A. Commissioning and Early Run 1 Operation

During the first year the LHC was operated with larger bunch spacing and lower instantaneous luminosity than the nominal design parameters [10]. Under these conditions the ATLAS L1 trigger rate was reduced, which permitted the usage of large time-consuming reconstruction algorithms and big output data fragments in the RODs with a data-taking efficiency close to 100%. The iterative version of the OF algorithm was used to minimize the effect of phase variations.
larger than the digitizing clock period produced by particles with different arrival time or crossing the cells at different locations. This method is capable of detecting the peak of the pulse and applying different filter weights according to its position. The output data fragment included both the online reconstructed magnitudes and the front-end digital samples for all the channels. Then, the digital samples were reconstructed offline to validate and certify the online reconstructed magnitudes.

B. ROD Firmware Optimizations and Performance During Run 1

During the second half of Run 1 there was an increase of the LHC instantaneous luminosity and a reduction of the bunch spacing, and the consequent increase in the L1 trigger rate forced a change in the read-out strategy. To minimize the effect of out-of-time pileup and to reduce the computing time, the OF iterative method was replaced by a non-iterative algorithm using pre-calibrated filter weights for each channel according to the cell position. The increase in the L1 trigger rate reduced the output bandwidth available for each output fragment. A lossless data compression algorithm was implemented to reduce the output fragment size to avoid link saturation and the resulting undesirable deadtime. Fig. 4 shows the ROD output fragment size for each of the 64 ROD output read-out links (ROL) (32 RODs, two ROL each) for a 2011 run with a peak luminosity of 3.5×10^{33} cm$^{-2}$s$^{-1}$ for the legacy (a) and the compressed (b) output dataformats. The plots show the limit for running without deadtime for a L1 trigger rate of 100 and 75 kHz. The legacy dataformat [Fig. 4(a)] exceeds the limit for 100 kHz and thus the data-taking efficiency is affected. With the compressed dataformat [Fig. 4(b)] it is possible to run at 100 kHz without deadtime from the RODs. The data compression algorithm relies on the fact that the majority of the channels have no signal and only few bits are needed to pack the samples.

In Run 1, ATLAS recorded 21.3 fb$^{-1}$ of data with a data-taking efficiency of 93%. After these optimizations, TileCal data-taking efficiency at the end of Run 1 was around 95%, mainly because of failures in the front-end low-voltage power supply system. The TileCal data quality efficiency, which determines the percentage of useful recorded data, was 98.7% [11].

IV. ROD SYSTEM UPGRADE FOR RUN 2

In view of the expected LHC instantaneous luminosity increase for Run 2, the different ATLAS sub-systems used the Long Shutdown 1 (2013–2014) to consolidate and upgrade their read-out systems. In particular, TileCal repaired and consolidated the front-end electronics components and replaced the low-voltage power supplies with a more radiation-tolerant version. As presented in Sections IV-A and IV-B, the ROD system was also upgraded to operate with the new LHC conditions. The LHC Run 2 started in 2015 reaching a peak luminosity of two times the nominal value (2×10^{34} cm$^{-2}$s$^{-1}$) in 2016. The number of proton–proton interactions per bunch crossing exceeded the nominal values thus producing very high detector occupancy, signals pileup, and high L1 trigger rates.

A. Motivation for a ROD Upgrade

During the Long Shutdown 1 TileCal system undertook a major hardware upgrade in the ROD system in order to cope with the expected evolution of the LHC parameters and in particular the increase of the ATLAS L1 trigger rate while keeping a high data-taking efficiency. The ROD-processing power and the output data bandwidth were doubled. Two processing units and two output high-speed optical link for ATLAS (HOLA) cards [9] per ROD were installed in the available empty slots (Fig. 5). A total of 64 HOLA cards dismantled from the ATLAS Muons system were installed in the ROD RTMs. The processing unit cards were produced and certified in the laboratory test-bench during the first year of the Long Shutdown 1. The second year of the Long Shutdown 1 was used to install the 64 processing units in the empty ROD slots and commission the new upgraded ROD system. The ROD firmware and DAQ control software were adapted to run with the new hardware conditions.

B. ROD Upgrade and Performance During Run 2

The signal reconstruction algorithm was updated to avoid a feature of the OF2 method, which reconstructs negative energies for large out-of-time pulses. The increase of the collision pileup above the nominal value enlarged this effect, which was specially affecting high-level trigger algorithms.

Fig. 4. ROD output fragment size per read-out link for the legacy (a) and compressed (b) dataformat [12]. The plots show the limit for running without deadtime for a L1 trigger rate of 100 and 75 kHz. The Read-Out Link index is mapped to the ROD boards. The first 32 ROLs modules correspond to the central part of the detector and the last 32 to the large η regions.
based on the total transverse energy in the calorimeter. Thus, the OF2 method was replaced with OF1, which requires a periodical pedestal calibration but does not provide negative energies when it is properly measured. In addition, the pileup noise was introduced in the calculation of the OF weights. Because the average pileup noise depends on the cell position, different sets of weights per cell are now used and the database and procedure for loading the values into the DSPs were updated accordingly.

These ROD hardware upgrades and firmware optimizations permitted a successful operation during Run 2, and it should provide stable and smooth operation during the coming Run 3 that should start in 2021 after the Long Shutdown 2 (2019–2020). The ATLAS overall data-taking efficiency was 94% during Run 2 and the data quality losses from TileCal were below 0.4%.

V. CONCLUSION AND PROSPECTS FOR RUN 3 AND BEYOND

The TileCal ROD system has evolved following the requirements imposed by the evolution of the LHC during Run 1 and Run 2. Overall, the TileCal DAQ system has operated successfully during this period with data-taking and quality efficiencies compatible with the rest of the ATLAS sub-systems. Moreover, the ROD system is ready to operate smoothly during Run 3 without major modifications.

The ATLAS read-out strategy will be radically changed for the high-luminosity LHC where an increase of up to 7.5 times the LHC nominal instantaneous luminosity is expected. TileCal will replace the read-out electronics, and most of the front-end functionalities will be moved to the off-detector PreProcessor (PPr) modules, which are the natural evolution of the current RODs [13]. The PMT signals will be digitized and transmitted to the PPr modules before any event selection is applied. The PPr will be the interface with the trigger and the ATLAS overall data-taking system [13].

REFERENCES

[1] ATLAS Collaboration, “ATLAS tile calorimeter detector technical design report,” Tech. Des. Rep. ATLAS, CERN, Geneva, Switzerland, Tech. Rep. CERN-LHCC 96-42, 1996.
[2] ATLAS Collaboration, “The ATLAS experiment at the CERN large hadron collider,” J. Instrum., vol. 3, no. 8, Aug. 2008, Art. no. S08003, doi: 10.1088/1748-0221/3/08/S08003.
[3] K. Anderson et al., “Design of the front-end analog electronics for the ATLAS tile calorimeter,” Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 551, nos. 2−3, pp. 469−476, Oct. 2005, doi: 10.1016/j.nima.2005.06.048.
[4] A. Valero et al., “ATLAS TileCal read out driver production,” J. Instrum., vol. 2, no. 5, May 2007, Art. no. P05003, doi: 10.1088/1748-0221/2/05/P05003.
[5] ATLAS Collaboration, “ATLAS high-level trigger, data-acquisition and controls: Technical design report,” Tech. Des. Rep. ATLAS, CERN, Geneva, Switzerland, Tech. Rep. CERN-LHCC-2003-022, 1998.
[6] ATLAS Collaboration, “ATLAS level-1 trigger: Technical design report,” Tech. Des. Rep. ATLAS, CERN, Geneva, Switzerland, Tech. Rep. CERN-LHCC-98-014, 2003.
[7] A. Valero et al., “DSP online algorithms for the ATLAS TileCal read-out drivers,” IEEE Trans. Nucl. Sci., vol. 55, no. 1, pp. 158−164, Feb. 2008, doi: 10.1109/TNS.2007.910401.
[8] E. Fullana et al., “Digital signal reconstruction in the ATLAS hadronic tile calorimeter,” IEEE Trans. Nucl. Sci., vol. 53, no. 4, pp. 2139−2143, Aug. 2006, doi: 10.1109/TNS.2006.877267.
[9] ATLAS Collaboration. HOLA S-Link Cards. Accessed: Jan. 18, 2021. [Online]. Available: http://hsi.web.cern.ch/HSI/s-link/devices/hola/
[10] G. Aad et al., “Readiness of the ATLAS tile calorimeter for LHC collisions,” Eur. Phys. J. C, vol. 70, no. 4, pp. 1193−1236, Dec. 2010, doi: 10.1140/epjc/s10052-010-1508-4.
[11] M. Aaboud et al., “Operation and performance of the ATLAS tile calorimeter in run 1,” Eur. Phys. J. C, vol. 78, no. 12, Dec. 2018, doi: 10.1140/epjc/s10052-018-6374-z.
[12] ATLAS Collaboration. ATLAS Experiment—Public Results. Accessed: Oct. 21, 2020. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TileCaloPublicResultsSignalReadOut
[13] ATLAS Collaboration, “Technical design report for the Phase-II upgrade of the ATLAS tile calorimeter,” Tech. Des. Rep. ATLAS, CERN, Geneva, Switzerland, Tech. Rep. CERN-LHCC-2017-019, ATLAS-TDR-0282, Sep. 2017.