Original Article

FLT3 Internal Tandem Duplication and D835 Mutations in Patients with Acute Lymphoblastic Leukemia and its Clinical Significance

Ghaleb Elyamany1,2, Mohammed Awad2, Omar Alsuaibani2, Kamal Fadalla3, Omer Al Sharif 4, Mohammad Al Shahrani4, Fahad Alabbas1 and Abdulaziz Al-Abulaaly3

1 Department of Hematology and Blood Bank, Theodor Bilharz Research Institute.
2 Dept. of Central Military Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
3 Dept. of Adult Clinical Hematology and Stem cell Therapy, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
4 Dept. of Pediatric Hematology/Oncology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

Correspondence to: Ghaleb Elyamany MD, PhD, FRCPC. Lecturer, Theodor Bilharz Research Institute, Egypt Consultant Hematopathology, Prince Sultan Military Medical City, SA. PO Box 7897, Riyadh 11159, Kingdom of Saudi Arabia. Tel: 001 966 1 4777714 extension 28140, FAX 01 4783033. E-mail: ghalebelyamany@yahoo.com

Competing interests: The authors have declared that no competing interests exist.

Abstract. The fms-like tyrosine kinase 3 (FLT3) gene is a member of the class III receptor tyrosine kinase family. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia. Currently, there is no published data on FLT3 mutations in Saudi acute lymphoblastic leukemia (ALL) patients.

In this retrospective study, we have examined a cohort of 77 ALL patients to determine the prevalence of FLT3 mutations and the possible prognostic relevance of these mutations in ALL patients. Correlations to other biologic factors such as karyotype, molecular mutations, and leukocyte count were also considered.

FLT3 internal tandem duplication (ITD) mutations and point mutation in tyrosine kinase domain (D835) were analyzed in ALL patients, at diagnosis, by polymerase chain reaction (PCR). Two cases (2.6%, 2/77) were positive for FLT3 mutations; one was found to have FLT3/ITD and the other FLT3/D835.

Our findings suggest that FLT3 mutations are not common in Saudi ALL and do not affect clinical outcome.

Introduction. The human fms-like tyrosine kinase 3 (FLT3) gene is located on chromosome 13q12 and encompasses 24 exons. It encodes a membrane-bound glycosylated protein of 993 amino acids with a molecular weight of 158-160kDa, as well as a non-glycosylated isoform of 130-143 kDa that is not associated with the plasma membrane. The structure of FLT3 is shown in the figure 1.
Genomic aberrations of FLT3, including internal tandem duplication (ITD) and point mutations, have been demonstrated in approximately 25–35% of adults with acute myeloid leukemia (AML). ITD of the FLT3 gene is common in AML and is associated with a bad prognosis and poor response to chemotherapy. Single base mutations at the FLT3 tyrosine kinase domain (TKD), which frequently involves aspartic acid 835 of the kinase domain (D835), leads to a gain of function; however, due to its rarity, its prognostic significance is not well defined.

FLT3 is rarely mutated in leukemic lymphoblasts in adult and pediatric ALL, however, FLT3 mutations are relatively common among the cytogenetic subgroups of hyperdiploidy and mixed-lineage leukemia (MLL) translocation.

Recent studies have indicated a low overall frequency in childhood ALL (in the 1-8% range) while consistently demonstrating a higher incidence among those with MLL gene rearrangement and high hyperdiploidy. In adult ALL, FLT3 mutations are even rarer.

While there have been several studies describing activating mutations of the FLT3 gene in AML, there has been little work on these mutations in ALL.

In this study, we analyzed the prevalence of the two types of FLT3 activating mutations in 77 patients with ALL and its prognostic significance. No data currently exist regarding FLT3 mutations in Saudi ALL patients and this study is the first one conducted in Saudi Arabia describing FLT3 mutations in ALL patients.

Study Group: A retrospective review of both adult and pediatric (ages 1 to 15) cases of ALL was performed. Data was obtained from the files of the Department of Hematopathology, Prince Sultan Military Medical City, Saudi Arabia from 2005 to 2013. Leukemia samples were obtained from either bone marrow (BM) or peripheral blood (PB), at diagnosis, from patients with ALL (70 BM samples and 7 PB samples). The peripheral blood samples all had more than 15% blasts at diagnosis. Five samples obtained from normal bone marrow healthy donors were screened for FLT3 mutations as a reference group. Among the 77 patients, with an established diagnosis by cell morphology and flow cytometric immunophenotyping, 48 were pediatric (62.3%), 29 were adult (37.7%), in total, 45 of the patients were male (58.4%) and 32 female (41.6%) Table 1.

Samples were evaluated in addition to cytomorphology, and multiparameter flow cytometry, by cytogenetics, fluorescence in situ hybridization (FISH), and molecular genetics in parallel.

Pediatric patients were treated according to the UKALL 2003 chemotherapy protocol. Initially, eligible pediatric patients were stratified into three risk groups, standard risk (22 patients), intermediate risk (14 patients) and high risk (12 patients) based on age, WBC at presentation, immunophenotype and cytogenetic abnormalities.

Treatment of adult ALL patients was divided into two age groups. Patients at 20 years of age or less were treated according to the Dana-Farber Cancer Institute All Consortium Protocol 00-01 and patients over 20 years of age were treated with Hyper-CVAD chemotherapy. At first, risk groups at diagnosis were
Table 1. Clinical characteristics and cytogenetic findings of the patients included in the study.

Parameter	Pediatric ALL (n=48)	Adult ALL (n=29)
Male:Female	Male 28:20	Female 17:12
Median age (years)	5 (1-14)	31.5 (17-81)
Median WBCs Count (x 10^9/L)	10.500	16.000
Median Platelets Count (x 10^9/L)	37.000	30.500
Median Hb (g/dl)	8.2	9.8
Median BM Blasts	90%	70%
Median PB Blasts	40%	32%
5-year survival rate	82%	37%

FLT3 mutations Rate

FLT3 -ITD	1/48 (2.1%)	0/29 (0%)
FLT3-D835	1/48 (2.1%)	0/29 (0%)
Total	2/48 (4.2%)	0/29 (0%)

Cytogenetic Analysis

Karyotype (Available)	20 normal	11 normal
Available for Fish	8 abnormal	7 abnormal
t (9;22)	4 (8.3%)	6 (21.4%)
t (12;21)	6 (12.6%)	0 (0%)
MLL	4 (8.3%)	1 (3.6%)
MYC	1 (2.1%)	1 (3.6%)
t (1;19)	1 (2.1%)	1 (3.6%)
+21	6 (12.6%)	0 (0%)
Del 12p	2 (4.2%)	0 (0%)
+9	2 (4.2%)	1 (3.6%)
+8	1 (2.1%)	0 (0%)
-19	2 (4.2%)	1 (3.6%)
Hyperdiploid	3 (6.3%)	3 (10.7%)
tetraploidy	1 (2.1%)	0 (0%)
Other aberrations	3 (6.3%)	2 (7.1%)

Cytogenetic abnormalities was not a prerequisite for CR.

Molecular Methods:

1- Analysis of FLT3-ITD mutation. DNA was extracted using a QIAamp DNA Kit (Qiagen) according to the manufacturer’s recommendations.

2- Analysis of the FLT3- D835 mutation. PCR amplification was set up as above using specific primers for exon 20 (5'-CGGCCAGGAACGTGCTTG-3' and 5'-CCTTCAGCATTGACCGCAACC-3'), and 1U of gold Taq polymerase, in a volume of 50µl.

Statistical analysis: The Kaplan-Meier technique was used to analyze the probability of overall survival (OS). OS was calculated from time of diagnosis to death. Continuous variables, such as white blood cell count and hemoglobin, were compared using the Kruskal-Wallis test. Differences between means were considered as significant at $P < 0.05$. Complete remission (CR) was defined by less than 5% blast cells in a normocellular marrow and peripheral blood neutrophil count equal to or greater than 1.5 x 10^9/liter with a platelet count of more than 100 x 10^9/liter. Normalization of cytogenetic abnormalities was not a prerequisite for CR.
Results. Clinical characteristics at presentation and cytogenetic analysis of the patients in the studied group are summarized in **table 1**.

In total, the patient age range was 1 to 81 years with a median of 15 years. Pediatric patients were defined as less than 15 years of age. Of the 77 patients, 48 were pediatric (62.3%), all with de novo ALL (42 cases B-ALL and 6 cases T-ALL). 29 were adult patients (37.7%) in which there were 27 cases of de novo ALL (22 cases B-ALL and 5 cases T-ALL) and 2 cases of CML transforming to ALL. Two cases from the pediatric group were diagnosed as biphenotypic leukemia. In total, 45 of the patients were male (58.4%) and 32 female (41.6%).

Two of the 77 ALL patients examined showed FLT3 mutations (2/77) with an overall prevalence of 2.6%. Positive FLT3 mutation patients were both pediatric, one male and one female. One was found to have FLT3/ITD and the other was positive for FLT3/D835 (**Figure 2**). None of the adult ALL patients was positive for FLT3 mutations. None of the T-ALL (T-ALL - 11/77) and CML patients transforming to ALL showed FLT3/ITD or D835 mutations. None of the patients had a combination of FLT3/ITD and D835 mutation in the FLT3 gene.

The FLT3/ITD positive patient (male, 14 years old) showed a WBC of 91 x 10^9/liter with 70% of the peripheral blasts. The bone marrow (BM) blasts were 95% and showed a good response to chemotherapy resulting in CR. The FLT3/D835 positive patient (female, 4 years old) showed a WBC of 4.6 x 10^9/liter with 32% of peripheral blasts. The bone marrow (BM) blasts were 95%, and continuous complete remission (CCR) was achieved after chemotherapy.

Cytogenetic and molecular studies revealed that the FLT3/D835 positive patient was hyperdiploidy and reported as 54,XX,+2,+4,+8,+14,+16,+20,21,+21.nuc ish (ABL1,BCR) x2[100]/(ETV6,RUNX1)x3[95/100]/(5'MLL,3'MLL,5'MLL con 3'MLL)x2[100]//(5'MYC,3'MYC,5'MY con 3'MYC)x3 [95/100]/(TCF3,PBX1)x2[100]. An extra copy of chromosome 2, 4, 8, 12, 14, 16, 20 and 21 was detected in 95% of the studied cells. Cytogenetic analysis could not be performed due to an insufficient number of metaphases.

Discussion. FLT3 gene mutations, particularly ITD in AML, are well established as the most frequent somatic alterations in AML. A poor prognosis is associated with FLT3 gene mutations in AML and they are found in approximately 5-15% of children and 25-35% of adults with AML. FLT3 mutations are also found in adult and pediatric ALL, but are much rarer than in AML. FLT3 is overexpressed at the level of RNA and protein in most B lineage and acute myeloid leukemias. It is also overexpressed in a smaller subset of T-ALL and chronic myeloid leukemias (CML) in blast crisis.

This study is the first to report FLT3 mutations on ALL patients in Saudi Arabia. The overall rate of patients with ALL and FLT3 mutations, in this study, was 2.6% which is comparable with previously published reports. The incidence of FLT3 mutations in pediatric ALL of this study was 4.2% (2/48). The results are within the range of similar studies conducted in different geographic regions (see **table 2**).

The incidence of FLT3 mutations in pediatric leukemia is of particular interest due to the several
Table 2. Frequency of FLT3 mutations in ALL patients in the current study and in previous studies.

No. of ALL Cases	Mutation number	Mutation (%)	Type of mutation	Comments	Reference
77	2	2.6%	ITD and D835	No prognostic significance value, associated with hyperdiploidy (1/6)	Current Study
90	2	2.2%	ITD	Adult T-ALL	Grossmann et al, 2013 (37)
25	1	1.1%	TKD		
441	9	2%	2 FLT3 ITDs, one deletion mutation, and 6 point mutations	Pediatric group, more common in patients with high hyperdiploidy	Chang et al, 2010 (36)
80	6	7.5%	6 ITD, 0 TKD	Pediatric group, no prognostic difference between FLT3+ and FLT3-	Karbacak et al, 2010 (35)
83	2	2.4%	2 D835, 0 TKD	No Prognostic significance	Wang et al, 2010 (31)
86	2	2.3%	2 AL	Pediatric group, Co-Presence of RAS mutations, high frequency in Hyperdiploid Cases (2/9)	Braoudaki, 2009 (17)
61	3	4.9%	2 ITD, 1 TKD		Zhao et al, 2009 (39)
133	4	3%	3 ITD, 1 D835	Pediatric group, 86 de novo ALL, 37 relapsed ALL	Case M, 2008 (14)
25	0	0%		Pediatric group	Al-Tonbary, 2008 (40)
143	8	8%	2 % ITD, 6 % TKD	Pediatric group, High in Hyperdiploid	Andersson et al, 2008 (13)
95	1	1%	ITD	Pediatric group	Yamamoto et al, 2006 (16)
27	0	0%		25 ALL, 2 biphenotypic leukemia	Wang et al, 2005 (41)
63	2	3.2%	ITD	2 cases were Biphenotypic leukemia, associated with Poor Prognosis	Xu et al, 2005 (32)
162	14	9%	No ITD, 14 TKD	Pediatric group, high frequency in hyperdiploidy and MLL gene	Taketani et al, 2004 (34)
55	3	5.5%	2 ITD, 1 TKD	Adult T-ALL, 3 cases expressed CD117	Paietta et al., 2004 (18)
36	1	2.8%	TKD		
60	2	3.3%	ITD	2 cases were Biphenotypic, no prognostic value	Xu et al, 1999 (33)
55	0	0%			Yokota et al, 1997 (19)
50	0	0%			Nakao et al, 1996 (42)

promising FLT3 inhibitors currently under development.45

The frequency of both ITD and D835 mutations among adult ALL patients in this study was 0% (0/29); other studies have reported similar results;19,43,44 however, a few studies have reported FLT3 mutations among adult ALL patients at a very low frequency.18 As this is a rare occurrence, the limited sample size of this study is the most likely cause of the difference. Similarly, neither FLT3/ITD nor FLT3/D835 mutations were evident in any case of CML transforming to ALL or in T-ALL (0/11) which is consistent with the study by Anderson et al. 2008 (0% in 15 T-ALL patients).13 Some larger studies have reported a low frequency of FLT3/ITD and/or FLT3/D835 mutations ranging from 3.3% to 5.5% among T-ALL patients.18,39,46

In this study, one patient (male, 14 years old) was found to have the FLT3/ITD mutation. He showed leukocytosis and a high blast cell count in PB and BM. This patient exhibited a good response to chemotherapy and achieved complete remission, which is in-line with results of previous studies.35,37,39 This patient was also positive for myeloid antigen expression and was diagnosed as acute mixed-lineage leukemia (biphenotypic leukemia). This observation was reported in other studies which indicates a higher frequency among the biphenotypic group.
Cytogenetic analysis could not be performed due to the low number of metaphases.

The other FLT3 mutation patient in this study (female, 4 years old), was found to the FLT3/D835 mutation with no leukocytosis; however, she did show a high blast count in PB and BM. Cytogenetic and molecular studies revealed no association with balanced translocations or MLL gene rearrangement; however, hyperdiploidy (extra copy of chromosome 2, 4, 8, 12, 14, 16, 20 and 21) was detected in 95% of the studied cells. This finding represents a 16.7% incidence of hyperdiploidy in ALL (1/6) cases. Our results reinforced previous observations, Armstrong et al. 2004,12 in that the presence of the FLT3 mutation in hyperdiploid ALL did not affect the clinical outcome as the patient responded well to chemotherapy and achieved continuous complete remission (CCR).

In both cases, molecular studies using polymerase chain reaction (PCR) were negative for Philadelphia chromosome [t(9;22)(q34.1;q11.2)].

The only notable difference between this study and previous studies11,12,36 is the lack of association between the high frequency of FLT3 mutation and MLL gene rearrangement. The small sample size (5 ALL patients) is the most likely cause of the difference.

Neither ITD’s or D835 mutations were detected in the healthy donors of this study, and this is consistent with previously reported data.4,8,7

Conclusion. FLT3 mutations exist in a small proportion of Saudi ALL patients. Regarding clinical outcomes, there was no prognostic significance in ALL patients with or without FLT3 mutations. The observation of high frequency in hyperdiploid ALL is in agreement with similar studies from other geographical regions; however, there is a lack of association between MLL gene rearrangement and FLT3 mutations among ALL patient that may be due to the limited sample size. Further studies are needed to confirm and establish these results.

Acknowledgment. We thank Jon Johnston, Principal Clinical Scientist from Histopathology lab for editing this research article. We thank all the Hematology, Cytogenetic and Molecular Laboratories Staffs, especially Mr. Mohamed Asiri and Dalal Alkhammash from Hematology Lab for data collection and Ms Nadia Halawani from Molecular Lab for the great support in Molecular work of this study. We also thank Ms Khawla Al-Fayez from Cytogenetic Lab for excellent support and data collection in cytogenetic aspect of this study.

References:

1. Markovic A, MacKenzie KL, Lock RB: FLT-3: a new focus in the understanding of acute leukemia.Int J Biochem Cell Biol 2005, 37:1168-1172. http://dx.doi.org/10.1016/j.biocel.2004.12.005 PMid:15778081
2. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol. 2011 Apr 1;4: 13. http://dx.doi.org/10.1186/1756-8722-4-13 PMid:21453545 PMCID:PMC3076284
3. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002 Sep 1; 100(5): 1352-42. http://dx.doi.org/10.1182/blood.V100.5.1352 PMid:12176867
4. Yamamoto Y, Kiyoi H, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434-2439. http://dx.doi.org/10.1182/blood.V97.8.2434. PMid:11290608
5. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H and Naoe T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333-1337. http://dx.doi.org/10.1038/sj.leu.2401130 PMid:9737679
6. Lewis M and Small D. FLT3: ITD does matter in leukemia. Leukemia 2003; 17: 1738-1752. http://dx.doi.org/10.1038/sj.leu.2403099 PMid:12970773
7. Stirewalt DL, Radich JP: The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3(9):650-665. http://dx.doi.org/10.1038/nrc1169 PMid:12951584
8. Leung AY, Man CH, Kwong YL: FLT3-ITD inhibition: a moving and evolving target in acute myeloid leukemia. Leukemia. 2013 Feb;27(2):260-8. http://dx.doi.org/10.1038/leu.2012.195 PMid:22797419
9. Xu F, Taki T, Eguchi M, et al. Tandem duplication of the FLT3 gene is frequent in infant acute leukemia. Leukemia. 2000;14:945-947. http://dx.doi.org/10.1038/sj.leu.2401760 PMid:10803532
10. Nakao M, Jansen JWG, Erz D, Seriu T, Bartram CR. Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia. 2000;14:522-524. http://dx.doi.org/10.1038/sj.leu.2401695 PMid:10720156
11. Armstrong SA, Kung AL, Mahon ME, et al. Inhibition of FLT3 in MLL: validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3:173-183. http://dx.doi.org/10.1016/S1535-6108(03)00003-5
12. Armstrong SA, Mahon ME, Silverman LB, Li A, Gribben JG, Fox EA, Sallan SE, Korsmeyer SJ: FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004, 103(9):3544-3546. http://dx.doi.org/10.1182/blood-2003-07-2441 PMid:14670924
13. Andersson A, Paulsson K, Liljebjörn H, Lassen C, Strombeck B, Heldrup J, Behrendtz M, Johansson B, Fioretos T: FLT3 mutations in a 10 year consecutive series of 177 childhood acute leukemias and their impact on global gene expression patterns. Genes Chromosomes Cancer 2008, 47(1):64-70. http://dx.doi.org/10.1002/gcc.20508 PMid:17943971
14. Case M, Matheson E, Minto L, Hassan R, Harrison CJ, Bow N, Bailey S, Vormoor J, Hall AG, Irving JA: Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 2008, 68(16):6803-6809. http://dx.doi.org/10.1158/0008-5472.CAN-08-0101 PMid:18701506
15. Paulsson K, Horvat A, Strombeck B, Nilsson F, Heldrup J, Behrendtz M, Forestier E, Andersson A, Fioretos T, Johansson B: Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2008, 47(1):26-33. http://dx.doi.org/10.1002/gcc.20502 PMid:17919045
16. Yamamoto T, Isomura M, Xu Y, Liang J, Yagasaki H, Kamachy U, Kudo K, Kiyoi H, Naoe T, Kojima S: PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leuk Res
correlation to cytogénetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100:59-66. http://dx.doi.org/10.1182/blood.V100.1.59 PMid:12070020

38. Thiede C, Stroubl C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukaemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326-4333

39. Carow CE, Levenstein M, Kaufmann SH, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/FK2) in human leukemias. Blood.1996;87:1089-109. PMid:8562934

40. Wang W, Wang QX, Xu XP, Lin GW. Prevalence and prognostic significance of FLT3 gene mutations in patients with acute leukaemia: analysis of patients from the Shanghai Leukaemia Co- operative Group. J Int Med Res. 2010 Mar-Apr;38(2):432-42. http://dx.doi.org/10.1177/0300060509350174 PMid:20515557

41. Xu B, Li L, Tang JH, Zhou SY. Detection of FLT3 gene and FLT3/ITD mutation by polymerase chain reaction-single-strand conformation polymorphism in patients with acute lymphoblastic leukemia. Di Yi Jun Yi Da Xue Xue Bao. 2005 Oct;25(10):1207-1209. PMid:16185555

42. Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H, Kobayashi M, Bessho F, Yanagisawa S, Hayashi Y. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukemia as well as acute myeloid leukemia but not in myelodysplasia. Blood. 1995;85:3599-3605. PMid:7719393

43. Ahmad W, Al Balawi M, Al Abulaaly A, Al Abulaaly A. Frequency and Prognostic Relevance of FLT3 oncoproteins in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2009, 26(4):460-462. http://dx.doi.org/10.1016/j.hin.2009.04.004 PMid:19085113

44. Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Prognostic implication of FLT3 and NRAS gene mutations in acute myeloid leukemia as well as acute lymphoid leukemia but not in myelodysplastic syndrome. Blood. 1997; 90:2318-2328. PMid:9324777

45. Stirewal D, Kopecky KI, Messini S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589-3595. http://dx.doi.org/10.1182/blood.V97.11.3589 PMid:11696555

46. Balawi M, Al Abulaaly A, Ishfaq M, Malik A, Faiz M, Sheikh I, Asif M, Khan MN, Qureshi MS, Zahna A, Alqahtani MH, Rasool M. Molecular characterization of flt3 gene mutations in acute leukemia patients in Pakistan. Asian Pac J Cancer Prev. 2013;14(6):3911-3915. PMid:23915104

47. Elghaffar HA. Prognostic significance of foetal rh DNA heavy chain gene in patients with acute lymphoblastic leukaemia. Med Oncol. 2001. J Clin Oncol. 2013 Mar 20;31(9):1202-1208. PMid:23341344

48. Ishfaq M, Malik A, Faiz M, Sheikh I, Asif M, Khan MN, Qureshi MS. FLT3-ITD mutation in acute myeloid leukemia: analysis of patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752-1759. http://dx.doi.org/10.1182/blood.V98.6.1752 PMid:11355508

49. Kottaridas PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3/ITD internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752-1759. http://dx.doi.org/10.1182/blood.V98.6.1752 PMid:11355508

50. Gari M, Abuzenadah A, Chaudhary A, Al-Qahtani M, Bann M, Ahmad W, Al-Sayes F, Lary S, Dumanhouri G. Detection of FLT3 oncogene mutations in acute myeloid leukemia using conformation polymorphism in patients and cell lines. Leukemia 2000; 14: 675-683. http://dx.doi.org/10.1038/sj.leu.2400812 PMid:10888097

51. Kiyoi H, Naoe T, Nakao M, Iwai T, Misawa S, Okuda T et al. Prognostic implication of FLT3 and NRAS gene mutations in acute myeloid leukemia. Blood. 2001; 97: 90-94. http://dx.doi.org/10.1182/blood.V97.1.90 PMid:11133746
46. Hoehn D, Medeiros LJ, Chen SS, Tian T, Jorgensen JL, Ahmed Y, Lin P. CD117 expression is sensitive but nonspecific predictor of FLT3 mutation in T acute lymphoblastic leukemia and T/myeloid acute leukemia. Am J Clin Pathol. 2012 Feb;137(2):213-9. http://dx.doi.org/10.1309/AJCPR3N3JMSYLPG

PMid:19467916

47. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113: 983-988. http://dx.doi.org/10.1046/j.1365-2141.2001.02850.x

PMid:11442493