Contents

\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CDCl}_3, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (6) 2}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (4)..... 6}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (11) 10}\)
\(^1 \text{H}, ^{13} \text{C}, \text{HMBC-NMR (CD}_2\text{Cl}_2, 400/126 \text{ MHz, 22/25 °C) and HR-ESI-MS spectra of compound (2) ... 14}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (12) 19}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (13) 23}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 500/126 \text{ MHz, 25 °C) and HR-ESI-MS spectra of compound (7) 27}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (5) 31}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 500/126 \text{ MHz, 25 °C) and HR-ESI-MS spectra of compound (3) 35}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CDCl}_3, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (14) 39}\)
\(^1 \text{H}, ^{13} \text{C}-\text{NMR (CD}_2\text{Cl}_2, 400/101 \text{ MHz, 22 °C) and HR-ESI-MS spectra of compound (15) 43}\)
\(^1 \text{H}, ^{13} \text{C}, \text{COSY-, NOESY-, HMQC-, HMBC-NMR (CD}_2\text{Cl}_2, 500/126 \text{ MHz, 22 °C) and HR-ESI-MS spectra and full assignment of compound (1) ... 47}\)
Computational investigations .. 54
Crystal data for 11 .. 55
Photostability investigations ... 56
Electrochemical investigations .. 82
1H-, 13C-NMR (CDCl$_3$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (6)

1H NMR (400 MHz, CDCl$_3$, 22 °C) δ
8.46 (d, J = 8.4 Hz, 2H),
8.26 (d, J = 8.4 Hz, 2H),
8.24 (dd, J = 7.8, 1.3 Hz, 2H),
7.87 (s, 2H),
7.61 (dd, J = 7.9, 1.3 Hz, 2H),
7.52 (td, J = 7.6, 1.4 Hz, 2H),
7.38 (td, J = 7.5, 1.4 Hz, 2H),
0.13 (s, 18H).

13C NMR (101 MHz, CDCl$_3$, 22 °C) δ
157.68, 146.22, 143.06,
135.23, 133.46, 131.08,
129.21, 128.47, 127.90,
126.45, 124.63, 121.63,
105.10, 98.23, -0.16.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mFormula	db	Conf.	even	1+
431.0671	1	C 23 H 20 Br N 2 Si	100.00	431.0574	0.2	-0.2	7.6	15.5	even	1+	
453.0395	1	C 23 H 19 Br N 2 Na Si									

Mass list

#	m/z	l%	l
1	165.1144	4.4	3727
2	160.1179	0.5	417
3	167.0787	0.5	395
4	201.1025	0.5	401
5	205.0592	1.5	1234
6	217.1043	0.8	634
7	239.0869	0.8	664
8	241.0825	0.7	621
9	273.1050	0.5	448
10	279.0923	1.5	1270
11	280.0599	0.5	430
12	301.0742	3.4	2803
13	301.1276	0.8	727
14	302.1078	0.9	762
15	304.2615	0.9	772
16	315.1913	0.7	578
17	322.1654	0.5	449
18	323.1606	1.7	1434
19	331.0468	0.6	493
20	367.1072	0.7	548
21	393.2580	0.5	451
22	413.2686	1.7	1422
23	430.6919	0.6	491
24	430.9182	0.6	525
25	430.9428	0.6	480
26	430.9696	0.8	633
27	431.0017	0.5	444
28	431.0571	93.9	78815
29	431.2372	0.6	485
30	431.2474	0.6	462
31	431.2911	0.5	400
32	431.9708	0.5	418
33	432.0596	28.3	23763
34	432.2630	0.5	446
35	432.7568	0.6	480
36	432.9057	0.6	486
37	432.9322	0.8	697
38	432.9578	0.6	519
39	432.9897	0.8	674
40	433.6553	100.0	83898
41	433.2897	0.5	432
42	433.3500	0.5	456
43	433.3737	0.5	306
44	434.0580	29.0	24339
45	435.6570	0.4	5348
46	436.6587	1.3	1073
47	444.1894	2.8	2358
48	445.1017	1.5	1277
49	447.3438	0.8	664
50	453.6395	0.3	7761
51	453.1746	0.6	464
52	454.0412	3.0	2514
53	455.0375	10.9	9184
54	456.0388	2.5	2139
55	467.0385	0.6	447
56	469.0118	0.6	476
57	494.9770	0.5	409
58	525.2173	1.3	1093
59	526.2168	0.7	507
60	731.1234	0.6	475
61	661.1044	6.8	5685

Bruker Compass DataAnalysis 4.0 Acquisition Date: 22.10.2018 11:11:29 Page 2 of 3
#	m/z	%
62	852.1005	4.3
63	853.1033	14.8
64	854.1059	8.5
65	855.1037	9.0
66	856.1052	4.7
67	857.1016	2.0
68	858.1071	0.6
69	874.2357	1.2
70	875.2382	1.0
71	876.2397	1.3
72	877.2371	0.8
73	878.2382	0.5
74	883.0863	12.1
75	884.0903	7.4
76	884.9027	0.5
77	886.0854	28.0
78	888.8862	0.6
79	886.9873	15.7
80	887.0849	17.4
81	888.0865	8.5
82	889.0847	3.3
83	890.0882	1.1
84	899.0993	0.5
85	901.0560	0.9
86	902.0610	0.6
87	903.0590	0.6
88	923.0279	2.0
89	924.0287	1.3
90	925.0290	5.3
91	926.0291	3.2
92	927.0230	4.7
93	928.0244	2.6
94	929.0226	1.9
95	930.0275	0.8
96	931.0224	0.5
97	1017.1866	0.7
98	1019.1882	1.2
99	1020.1871	0.7
100	1021.1833	0.5

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	Set Dry Heater	Set Dry Gas	Set Ion Energy (MS only)
Focus	Not active	Set Capillary	3600 V	0.4 Bar	180 °C	4.0 l/min	4.0 eV
Scan Begin	75 m/z	Set End Plate Offset	-500 V	Set Collision Cell RF	350.0 Vpp		
Scan End	1700 m/z						
1H, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (4)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.50 (d, $J = 8.3$ Hz, 4H),
8.16 (d, $J = 8.4$ Hz, 4H),
8.08 (s, 4H),
7.11 (dd, $J = 7.8$, 0.8 Hz, 4H),
7.06 (dd, $J = 7.7$, 0.8 Hz, 4H),
6.72 (td, $J = 7.7$, 1.3 Hz, 4H),
6.23 (td, $J = 7.6$, 1.3 Hz, 4H),
0.05 (s, 36H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
156.91, 143.88, 141.66, 136.46,
132.95, 129.25, 129.08, 128.98,
127.85, 127.72, 127.35, 121.74,
103.54, 100.26, -0.23.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err (mDa)	err (ppm)	mSigma	mDB	e⁻	Cont	e⁻	z
967.2713	1	C_62 H_48 Cu N_4 S_i_2	100.00	967.2708	-0.5	-0.5	18.0	425	even	1	even	
1039.5108	1	C_66 H_50 Cu N_4 S_i_3	100.00	1039.5103	-0.4	-0.4	20.2	425	even	1	even	
1111.3490	1	C_68 H_64 Cu N_4 S_i_4	100.00	1111.3499	0.8	0.8	13.4	425	even	1	even	

Mass list

#	m/z	[%]
1	567.1335	3.0
2	568.1360	1.7
3	569.1306	2.2
4	590.1346	1.2
5	583.1369	0.9
6	855.2908	1.0
7	895.2316	10.0
8	896.2352	7.1
9	897.2316	6.4
10	898.2333	3.7
11	899.2367	1.5
12	905.2345	1.0
13	906.3029	1.0
14	927.3315	4.5
15	928.3331	3.5
16	929.3340	1.7
17	947.3170	1.4
18	948.1497	0.9
19	957.2713	58.1
20	958.2740	46.5
21	959.1371	1.1
22	969.2718	45.0
23	970.2724	27.5
24	971.2739	10.6
25	972.2731	3.6
26	973.2713	1.0
27	977.2652	2.3
28	979.3619	2.0
29	979.3607	1.2
30	955.1215	1.0
31	995.3659	7.2
32	1000.3726	6.6
33	1001.3749	3.3
34	1002.3739	1.4
35	1019.1677	1.4
36	1020.1911	1.0
37	1022.5602	1.2
38	1024.6620	0.9
39	1025.6588	3.1
40	1026.5610	2.0
41	1027.5654	2.9
42	1028.5686	1.7
43	1029.6002	1.3
44	1030.5915	2.0
45	1030.1961	1.3
46	1031.1925	2.1
47	1032.1046	1.5
48	1033.1922	1.1
49	1039.6177	1.0
50	1040.1030	1.7
51	1039.3108	100.0
52	1039.8101	1.1
53	1039.8657	1.5
54	1040.0740	1.3
55	1040.1331	1.7
56	1040.2009	1.1
57	1040.3132	88.4
58	1040.4046	0.9
59	1040.6529	1.5
60	1040.7058	0.9
High Resolution Mass Spectrometry Report

#	m/z	%	
01	1040.0054	1.0	1010
02	1041.0291	1.1	1044
03	1041.0801	1.0	1005
04	1041.1575	1.0	1015
05	1041.3133	87.2	86268
06	1041.6008	1.1	1079
07	1042.1291	1.0	1036
08	1042.3122	57.1	56553
09	1043.1471	1.0	961
10	1043.5123	25.7	25428
11	1044.3127	0.7	9572
12	1045.3134	3.3	3279
13	1046.3158	0.9	862
14	1049.4237	1.1	1138
15	1050.4209	1.3	1285
16	1057.1586	1.0	1002
17	1071.4090	4.1	4020
18	1072.4119	3.5	3440
19	1073.4130	2.3	2311
20	1074.4132	1.1	1115
21	1095.9683	1.0	956
22	1096.0860	1.0	954
23	1097.0972	2.6	2003
24	1098.1014	2.0	1985
25	1099.0961	2.9	2691
26	1100.0978	2.1	2049
27	1101.0967	1.4	1418
28	1101.2295	2.0	1984
29	1102.2327	1.9	1907
30	1103.2300	2.8	2742
31	1104.2321	1.8	1755
32	1105.2304	1.3	1330
33	1111.3490	52.5	51998
34	1112.3513	48.8	48259
35	1113.3496	52.1	51815
36	1114.3500	36.0	35660
37	1115.3503	17.9	17771
38	1116.3507	7.5	7419
39	1117.3504	2.6	2758
40	1118.3505	0.9	936

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus Begin	Not active	Set Capillary	3600 V	Set Dry Heater	180 °C
Scan End	1700 m/z	Set Collision Cell RF	500 V ppp	Set Dry Gas	4.6 l/min
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus Begin	Not active	Set Capillary	3600 V	Set Dry Heater	180 °C
Scan End	1700 m/z	Set Collision Cell RF	500 V ppp	Set Dry Gas	4.6 l/min
1H-, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (11)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.53 (d, $J = 8.3$ Hz, 4H), 8.10 (d, $J = 8.4$ Hz, 4H), 8.08 (s, 4H), 7.14 (td, $J = 8.2$, 1.3 Hz, 8H), 6.79 (td, $J = 7.6$, 1.4 Hz, 4H), 6.32 (td, $J = 7.6$, 1.3 Hz, 4H), 3.05 (s, 4H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
156.66, 143.94, 141.82, 136.99, 133.34, 129.32, 129.05, 129.04, 127.92, 127.66, 127.44, 120.62, 82.72, 82.29.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Mass list	#	m/z	I%	I
1	1	202.0886	2.6	851
2	2	292.1984	1.9	633
3	3	392.2429	2.2	742
4	4	301.1398	2.6	891
5	5	315.1603	2.6	862
6	6	315.1913	6.6	2210
7	7	316.1665	2.0	769
8	8	317.1721	3.4	1133
9	9	319.1657	2.0	665
10	10	321.2391	2.2	725
11	11	321.2744	1.8	615
12	12	331.1081	1.8	613
13	13	339.1768	2.3	760
14	14	353.2568	3.8	1277
15	15	365.2870	2.1	716
16	16	367.2079	2.1	713
17	17	370.1221	100.0	3378
18	18	380.1226	29.4	5917
19	19	381.1376	31.8	10711
20	20	381.2971	3.8	1277
21	21	382.1410	10.2	3442
22	22	385.0283	2.8	943
23	23	391.2266	1.9	691
24	24	301.2845	2.6	972
25	25	392.0096	7.5	2532
26	26	393.0069	4.1	1382
27	27	393.2971	3.8	1284
28	28	394.0078	7.5	2539
29	29	395.0047	4.6	1541
30	30	397.1354	2.0	669
31	31	400.0029	3.1	1037
32	32	413.1276	2.0	667
33	33	413.2654	11.8	3969
34	34	414.2085	2.0	975
35	35	418.0994	2.0	666
36	36	420.9384	1.8	607
37	37	421.3285	2.7	920
38	38	422.0380	2.7	904
39	39	431.0568	5.8	1942
40	40	432.0586	1.9	638
41	41	433.0544	5.0	1974
42	42	433.1026	12.5	4196
43	43	434.1074	3.6	1199
44	44	441.0443	6.8	2283
45	45	441.2567	3.6	1219
46	46	442.0477	2.5	629
47	47	443.0522	15.0	5041
48	48	444.0632	5.4	1833
49	49	444.1891	8.9	2981
50	50	445.0579	6.8	2301
51	51	445.1914	3.2	1090
52	52	446.0592	1.6	615
53	53	447.3438	5.2	1744
54	54	449.2950	2.5	841
55	55	453.3757	2.2	740
56	56	457.3113	2.2	753
57	57	459.3287	3.2	1093
58	58	473.3170	2.4	622
59	59	473.3410	1.9	843
60	60	477.0443	1.9	633
61	61	492.1177	5.7	1915
62	62	492.0778	4.0	1361
High Resolution Mass Spectrometry Report

#	m/z	I %	I
63	403.1222	1.0	664
64	403.9696	1.9	641
65	494.9759	6.9	2317
66	495.0797	2.5	828
67	496.0757	2.5	653
68	506.1113	7.4	2482
69	507.1135	3.1	1033
70	508.1093	4.4	1484
71	509.1138	1.9	627
72	511.0423	1.8	611
73	517.3688	2.0	672
74	525.2172	3.5	1179
75	561.3655	1.9	659
76	567.3381	3.3	1101
77	589.1368	2.0	677
78	649.4486	2.2	745
79	685.4305	1.6	601
80	693.4647	1.0	633
81	705.5813	2.0	672
82	819.1592	7.2	2433
83	820.1625	4.0	1342
84	821.1574	4.0	1342
85	822.1644	2.2	738
86	823.1905	28.0	9436
87	824.1805	6.0	6694
88	825.1919	20.0	6737
89	826.1918	8.7	2941
90	827.1949	4.0	1341
91	835.0484	2.3	790
92	873.1099	3.6	1215
93	874.1108	2.0	672
94	875.1096	5.2	1766
95	876.1131	2.9	964
96	877.1097	2.2	759
97	925.0251	2.3	773
98	938.1560	3.0	994
99	1019.1650	1.9	625
100	1135.2621	2.1	709

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3800 V	Set Dry Heater	180 °C
Scan Begin	75 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1750 m/z	Set Collision Cell RF	500.0 Vpp	Set Ion Energy (M3 only)	4.0 eV

Bruker Compass DataAnalysis 4.0 Acquisition Date 22.10.2018 13:18:32 Page 3 of 3
1H-, 13C-, HMBC-NMR (CD$_2$Cl$_2$, 400/126 MHz, 22/25 °C) and HR-ESI-MS spectra of compound (2)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.42 (d, J = 8.4 Hz, 4H),
7.99 (d, J = 8.6 Hz, 6H),
7.95 (d, J = 6.7 Hz, 6H),
7.66 (dd, J = 7.7, 1.5 Hz, 4H),
7.59 (td, J = 7.7, 1.5 Hz, 4H),
7.49 (td, J = 7.5, 1.2 Hz, 4H).

13C NMR (126 MHz, CD$_2$Cl$_2$, 22 °C) δ
157.29, 146.10, 142.13, 137.08,
131.80, 130.92, 129.23, 128.39,
126.99, 124.42, 120.87, 92.43.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

#	m/z	l %	l	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e^− Conf	z			
1	273.1544	0.8	1130	1819.1599	1	C 56 H 28 Cu N 4	100.00	1819.1604	0.5	0.6	25.1	44.5	even	1+

Mass list

#	m/z	l %	l
1	273.1544	0.8	1130
2	299.1512	1.2	1765
3	301.0650	0.6	265
4	301.1311	1.6	2257
5	304.2509	1.7	2356
6	315.1839	1.2	1685
7	317.1831	3.9	5438
8	318.1868	0.8	1138
9	331.1795	0.6	778
10	331.2008	1.1	1525
11	339.1470	1.1	1548
12	339.1705	0.6	801
13	353.2599	1.0	1440
14	360.3173	2.3	3208
15	361.3211	0.7	1029
16	379.0349	0.6	645
17	379.1183	100.0	138278
18	380.1213	28.6	39014
19	381.1293	7.1	9170
20	381.2924	0.8	1134
21	382.1356	1.9	2641
22	389.0299	1.9	2634
23	391.0220	2.1	2948
24	392.0265	0.8	1127
25	393.0017	1.6	2154
26	393.2937	0.8	1167
27	394.0041	1.2	1628
28	394.0097	1.6	2254
29	395.1139	0.9	1201
30	399.1060	1.1	1489
31	401.1000	5.8	8064
32	402.1042	1.8	2514
33	411.1093	1.2	1692
34	412.1141	0.6	852
35	413.1244	1.8	2532
36	413.2631	4.6	6351
37	414.1281	0.6	783
38	414.2567	1.3	1807
39	415.1095	1.4	1888
40	424.1091	1.1	1460
41	425.0064	0.6	830
42	427.0882	0.8	1112
43	431.0540	2.0	2762
44	432.0576	0.7	933
45	433.0526	2.2	3000
46	433.0994	1.4	1964
47	434.0954	0.8	1104
48	436.0036	0.6	897
49	441.0412	0.9	1265
50	441.2950	1.2	1720
51	444.1904	0.9	1203
52	447.3421	2.0	2632
53	448.3446	0.6	763
54	453.0375	1.2	1662
55	455.0357	1.2	1663
56	463.3171	1.0	1368
57	492.1171	0.9	1209
58	492.9770	1.3	1840
59	494.0700	1.9	2026
60	495.9796	0.6	804
61	496.9725	0.7	924
62	506.1103	0.6	875

Bruker Compass Data Analysis 4.0

Acquisition Date: 22.10.2016 12:06:45

Page 2 of 3

SI - 17
High Resolution Mass Spectrometry Report

#	m/z	I %	I
63	611.0412	0.9	990
64	613.3391	1.0	1383
65	623.3231	2.9	4002
66	624.3264	0.9	1282
67	625.2170	0.9	1037
68	657.3652	1.2	1713
69	569.0097	0.7	937
70	571.0590	0.7	911
71	573.1032	0.7	947
72	601.3916	1.1	1562
73	645.4173	1.0	1322
74	655.4598	0.8	1122
75	660.4446	0.7	970
76	757.2382	8.3	11416
77	758.2409	5.8	8035
78	759.2409	2.0	2708
79	761.2339	0.6	852
80	771.2337	0.7	977
81	779.2193	11.5	15958
82	780.2234	7.2	9691
83	781.2257	2.4	3399
84	782.2302	2.1	948
85	769.2276	0.6	877
86	819.1599	5.1	6994
87	820.1625	3.2	4399
88	821.1602	2.9	4059
89	822.1637	1.7	2332
90	831.1523	0.8	1107
91	833.0415	0.9	1188
92	833.1529	0.9	1205
93	834.0465	0.6	770
94	835.0406	1.2	1690
95	850.0419	0.8	1137
96	857.0419	0.6	821
97	849.9225	0.9	1272
98	850.9208	0.9	1202
99	825.0271	0.8	1135
100	827.0250	0.8	1104

Acquisition Parameter

Source Type	ESI
Ion Polarity	Positive
Set Nebulizer	0.4 Bar
Focus	Not active
Set Capillary	3600 V
Scan Begin	75 m/z
Set End Plate Offset	-500 V
Scan End	1700 m/z
Set Collision RF	500.0 Vpp
Set Ion Energy (MS only)	4.0 eV
Set Dry Heater	180 °C
Set Dry Gas	4.0 l/min
Acquisition Date	22.10.2018 12:06:45

Bruker Compass DataAnalysis 4.0
1H, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (12)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.19 (d, $J = 8.6$ Hz, 2H),
7.68 (s, 2H),
7.52 (dd, $J = 7.7$, 1.7 Hz, 2H),
7.41 (dd, $J = 8.2$, 1.2 Hz, 2H),
7.31 (ddd, $J = 8.2$, 7.4, 1.8 Hz, 2H),
7.24 (d, $J = 8.6$ Hz, 2H),
7.19 (td, $J = 7.5$, 1.2 Hz, 2H),
0.91 (s, 42H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
161.96, 155.20, 144.02, 140.16,
134.29, 130.34, 126.77, 125.02,
124.53, 122.84, 117.57, 114.03,
103.10, 96.23, 18.82, 11.72.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	Theoret. m/z	err [ppm]	err [mDa]	mSigma	nDB	eConf	Even
725.3948	1	C45H57N2O2Si2	100.00	725.3983	0.5	0.7	13.4	21.5	even	1+
747.3773	1	C45H59N2NaO2Si2	100.00	747.3773	1.0	1.4	8.3	21.5	even	1+

Mass list

#	m/z	%	
1	173.08119	0.5	746
2	183.08086	1.0	1551
3	185.1177	4.7	7050
4	201.1046	1.1	1625
5	205.0821	5.5	8271
6	206.0657	0.5	717
7	215.1278	0.6	843
8	217.1069	1.2	1827
9	239.0903	0.7	1119
10	245.0800	0.6	844
11	261.1313	0.6	782
12	273.1683	1.5	2303
13	301.1406	0.8	1245
14	315.1521	0.8	1162
15	331.2087	1.1	1050
16	353.2661	0.6	841
17	361.2964	0.5	727
18	393.2962	0.5	703
19	413.2657	1.2	1895
20	433.1021	1.3	1988
21	441.2688	2.1	3191
22	442.3385	0.7	1013
23	447.3437	0.8	1248
24	463.3095	1.1	1684
25	464.3120	0.5	713
26	492.1175	0.6	849
27	633.3675	0.8	1101
28	634.3710	0.5	738
29	724.7456	0.6	885
30	725.1371	0.6	952
31	725.1740	0.6	856
32	725.2070	0.7	1081
33	725.2605	1.1	1614
34	725.2848	100.00	15160
35	725.6000	0.6	929
36	725.7152	0.5	829
37	725.7727	0.5	701
38	725.8332	0.6	893
39	725.8701	0.6	897
40	726.0006	0.6	1194
41	726.1554	0.5	712
42	726.2137	0.6	970
43	726.2630	0.6	852
44	726.3666	0.7	1016
45	726.3974	58.7	8965
46	727.0201	0.5	744
47	727.3677	24.1	30547
48	728.3974	6.7	10202
49	729.4002	1.6	2457
50	730.4005	0.5	832
51	731.5263	0.6	800
52	733.5301	0.5	726
53	747.3762	218.0	33109
54	748.3793	13.6	20647
55	749.3790	5.3	803
56	750.3789	1.7	2541
57	763.3495	2.8	4246
58	764.3522	1.6	2398
59	765.3511	0.7	1081
60	767.3157	12.4	19701
61	788.3189	7.8	11812
High Resolution Mass Spectrometry Report

#	m/z	%	Int
62	780.3155	0.0	12077
63	780.3167	4.2	6321
64	781.3178	1.7	2546
65	810.3834	0.6	842
66	826.5141	3.5	5294
67	827.5178	2.2	3299
68	828.5180	1.0	1529
69	907.5461	0.8	1174
70	908.5451	0.5	791
71	969.4646	4.0	6113
72	970.4669	3.3	4937
73	971.4647	3.4	5219
74	972.4657	2.1	3140
75	973.4659	1.1	1981
76	1199.4332	1.0	1458
77	1200.4366	0.8	1154
78	1201.4347	0.6	1144
79	1202.4366	0.7	9816
80	1449.7796	1.2	1747
81	1450.7801	1.5	2305
82	1451.7818	1.1	1686
83	1452.7842	0.6	892
84	1466.8035	0.5	740
85	1467.8049	0.6	881
86	1471.7604	7.0	10628
87	1472.7633	0.6	13071
88	1473.7642	5.9	9020
89	1474.7670	3.1	4730
90	1475.7648	1.3	2009
91	1476.7703	0.5	732
92	1487.7342	0.5	785
93	1488.7365	0.7	999
94	1489.7403	0.6	949
95	1490.7417	0.5	774
96	1511.7025	1.7	2578
97	1512.6991	1.8	2719
98	1513.7007	1.8	2743
99	1514.7021	1.4	2137
100	1515.7046	0.9	1303

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3500 V	Set Dry Heater	180 °C
Scan Begin	75 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1700 m/z	Set Collision Cell RF	300.0 Vpp	Set Ion Energy (MS only)	4.0 eV
1H-, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (13)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.24 (d, $J = 8.6$ Hz, 2H),
7.72 (s, 2H),
7.58 – 7.54 (m, 2H),
7.39 – 7.31 (m, 4H),
7.27 (d, $J = 8.6$ Hz, 2H),
7.22 (ddd, $J = 7.7$, 6.4, 2.2 Hz, 2H),
3.14 (s, 2H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
162.17, 155.72, 143.98, 140.46,
134.41, 130.80, 126.85, 125.26,
124.79, 122.72, 116.18, 113.93,
82.25, 79.82.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	Formula	Score	Theo m/z	err [mDa]	err [ppm]	mSigma	rdb	e	Conf	z
413.1265	C28 H17 N2 O2	100.00	413.1265	-0.6	-0.8	10.4	21.5	even	1+	
435.1902	C28 H16 N2 Na O2	100.00	435.1904	0.5	1.1	0.8	21.0	even	1+	

Mass list

#	m/z	Int.	
1	165.0485	0.3	889
2	183.0778	0.4	149
3	185.1146	0.5	10814
4	186.1715	0.6	2144
5	201.0579	0.3	934
6	201.1014	0.2	744
7	205.0568	1.5	5269
8	215.1244	0.3	1060
9	215.1049	0.5	1559
10	239.0984	0.4	1395
11	241.0681	0.3	877
12	273.1666	0.5	1667
13	301.1969	0.3	1102
14	315.1020	0.2	750
15	331.2085	0.5	1620
16	339.1797	0.2	750
17	353.2654	0.3	979
18	367.2865	0.2	685
19	381.2971	0.2	732
20	383.1409	0.2	809
21	389.2529	0.3	918
22	391.2837	0.3	868
23	393.2981	0.3	1000
24	405.1223	0.3	940
25	412.9777	0.2	712
26	412.9968	0.3	981
27	413.0072	0.2	710
28	413.0385	0.4	1415
29	413.0633	0.3	1021
30	413.1265	100.00	345404
31	413.2668	1.0	3517
32	413.3165	0.4	1261
33	413.3459	0.3	1094
34	413.4646	0.2	851
35	413.5640	0.2	745
36	414.0509	0.2	739
37	414.1314	29.0	99473
38	414.2004	0.3	1024
39	415.1344	4.7	16157
40	416.1366	0.6	944
41	420.2401	0.3	1010
42	420.2812	0.2	753
43	433.1026	0.4	1382
44	435.1099	15.6	53462
45	436.1131	4.0	13910
46	437.1169	0.8	2768
47	439.1432	0.4	1449
48	441.2962	0.2	794
49	447.3436	0.5	1730
50	451.0937	4.0	13661
51	452.0683	1.3	4394
52	453.0832	0.5	1617
53	458.1859	0.4	1430
54	465.3660	0.2	730
55	475.0490	0.4	1405
56	477.0489	0.3	1130
57	486.1822	0.4	1259
58	514.2481	0.4	1447
59	596.4413	0.2	763
60	597.2066	1.1	3883

Bruker Compass Data Analysis 4.0 Acquisition Date 03.12.2018 10:07:10 Page 2 of 3
High Resolution Mass Spectrometry Report

#	m/z	I %	l
62	558.2090	0.6	2041
63	579.1878	0.2	730
64	601.1641	0.2	778
65	605.4145	0.3	896
66	624.4935	0.2	719
67	644.4918	0.2	775
68	659.5051	0.2	799
69	689.5126	0.2	730
70	691.4686	0.2	739
71	693.4632	0.2	769
72	717.5446	0.2	774
73	732.5433	0.2	688
74	733.5338	0.2	784
75	737.4993	0.2	693
76	749.5230	0.2	697
77	820.6010	0.2	700
78	826.2479	4.5	15602
79	826.2504	3.1	10508
80	827.2540	1.0	3317
81	828.2564	0.2	804
82	842.2702	0.2	790
83	847.2294	16.0	57975
84	848.2326	10.6	36952
85	849.2355	3.6	12080
86	849.6198	0.2	686
87	850.2393	0.7	25507
88	863.2027	2.8	9417
89	864.2050	1.7	5762
90	865.2073	0.7	2491
91	865.6126	0.2	684
92	866.2087	0.3	874
93	867.1685	6.7	23006
94	868.1717	4.4	15096
95	869.1602	4.2	14530
96	890.1712	2.2	7664
97	891.1729	0.7	2497
98	951.3062	0.3	890
99	992.3070	0.2	790
100	1063.7647	0.2	744

Acquisition Parameter

- **Source Type**: ESI
- **Ion Polarity**: Positive
- **Set Nebulizer**: 0.4 Bar
- **Set Dry Gas**: 4.0 L/min
- **Set Ion Energy**: (MS only) 4.0 eV
- **Scan Begin**: 75 m/z
- **Scan End**: 1700 m/z
- **Set Collision Cell RF**: 350.0 Vpp
- **Set End Plate Offset**: -500 V
- **Set Capillary**: 3600 V
- **Set Dry Heater**: 180 °C

Bruker Compass DataAnalysis 4.0

Acquisition Date: 03.12.2018 10:07:10

Page 3 of 3
1H-, 13C-NMR (CD$_2$Cl$_2$, 500/126 MHz, 25 °C) and HR-ESI-MS spectra of compound (7)

1H NMR (500 MHz, CD$_2$Cl$_2$, 25 °C) δ
8.23 (d, $J = 8.6$ Hz, 2H),
7.71 (s, 2H),
7.47 (ddd, $J = 7.7$, 1.7, 0.6 Hz, 2H),
7.37 – 7.29 (m, 4H),
7.27 (d, $J = 8.8$ Hz, 2H),
7.19 (ddd, $J = 7.7$, 7.1, 1.6 Hz, 2H),
-0.04 (s, 18H).

13C NMR (126 MHz, CD$_2$Cl$_2$, 25 °C) δ
162.29, 155.67, 143.97, 140.22,
133.88, 130.54, 126.75, 125.20,
124.63, 122.93, 117.21, 114.12,
101.02, 100.10, -0.13.
High Resolution Mass Spectrometry Report

Sample Name: Thomas Brandl / BRT5G2
Comment: 10 ug/mL in MeCN, analyzed in MeCN
Instrument: maxxis 4G
Method: 22 Direct_pos_mid.m

![Mass Spectrogram](chart)

- C34H32N2O2S2H, M 557.21
- C34H32N2O2S2Na, M 575.19
- C34H32N2O2S2Na2, M 1135.39

Buiker Compass Data Analysis 4.0 Acquisition Date: 03.12.2018 09:48:59 Page 1 of 3
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	nSigma	db	e~ Conf.
557 2074	1	C34 H33 N2 O2 Si2	100.00	557.2075	0.2	0.3	15.7	21.5	even
579 1892	1	C34 H32 N2 O2 Si2	100.00	579.1895	0.2	0.4	17.3	21.5	even
1135 3887	1	C68 H64 N4 Na O4 Si4	100.00	1135.3897	1.0	0.8	9.4	42.5	even

Mass list

#	m/z	I%
1	165.1141	1.4
2	205.0590	2.9
3	217.0331	1.2
4	481.2551	1.6
5	482.2685	0.9
6	511.1828	0.7
7	537.2347	0.7
8	557.0243	0.8
9	557.0511	0.8
10	557.2074	100.00
11	558.2097	46.5
12	560.2000	15.0
13	560.2056	4.5
14	561.2099	0.9
15	579.0813	1.0
16	579.1802	73.0
17	580.1917	32.9
18	581.1913	11.4
19	582.1919	2.9
20	583.1912	0.7
21	595.1632	7.9
22	596.1655	4.3
23	597.1645	1.9
24	613.2700	2.2
25	614.2725	1.1
26	619.1280	5.1
27	620.1312	2.4
28	621.1279	3.1
29	622.1300	1.6
30	635.2516	0.9
31	658.3281	1.1
32	658.4081	7.9
33	658.4085	7.0
34	658.4099	4.4
35	676.4113	2.0
36	677.4132	0.8
37	678.4336	4.6
38	679.4345	4.3
39	679.4357	2.8
40	683.4356	1.6
41	684.4339	0.8
42	694.8237	0.8
43	694.8083	0.8
44	695.0372	1.3
45	695.1711	0.8
46	695.1559	0.7
47	695.2305	0.9
48	695.2367	84.6
49	695.6702	1.0
50	695.7507	0.7
51	695.8048	0.9
52	695.8518	1.0
53	695.9085	0.7
54	695.9484	1.5
55	695.9990	1.1
56	696.0686	1.3
57	696.1305	1.0
58	696.2000	0.9
59	696.2642	1.0
60	696.3909	82.9
High Resolution Mass Spectrometry Report

#	m/z	i %	I
61	1136.5546	0.8	663
62	1136.7120	0.7	609
63	1136.7926	0.7	589
64	1136.8513	0.8	653
65	1136.9536	0.8	665
66	1136.9963	0.9	748
67	1137.0405	0.9	705
68	1137.1048	1.2	962
69	1137.1530	0.7	500
70	1137.1879	0.9	723
71	1137.3819	50.8	41483
72	1137.7360	0.8	645
73	1137.7818	0.9	722
74	1137.8290	0.8	649
75	1137.9021	0.8	627
76	1138.0566	1.0	765
77	1138.3923	22.1	18047
78	1138.9565	0.8	672
79	1139.3923	8.5	6954
80	1140.3222	2.5	2006
81	1141.4116	1.5	1299
82	1142.3358	0.8	650
83	1143.4556	0.9	771
84	1144.7480	0.7	579
85	1145.6966	0.7	564
86	1151.3617	9.0	7333
87	1152.3845	9.7	7952
88	1153.6363	6.6	5361
89	1154.3637	3.4	2813
90	1155.3083	1.5	1204
91	1156.3669	0.7	552
92	1175.3271	4.7	3858
93	1176.3321	4.3	3548
94	1177.2262	4.9	4227
95	1178.3305	3.3	2657
96	1179.3305	1.0	1341
97	1180.3260	0.7	563
98	1191.4500	1.6	1328
99	1192.4530	1.9	1519
100	1193.4540	1.3	1028

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3600 V	Set Dry Heater	180 °C
Scan Began	75 m/z	Set Collision Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1700 m/z	Set Collision Cell RF	350.0 Vpp	Set Ion Energy (MS only)	4.0 eV

Bruker Compass DataAnalysis 4.0 Acquisition Date 03.12.2018 09:48:59 Page 3 of 3
1H, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (5)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.40 (d, $J = 8.7$ Hz, 4H),
7.90 (s, 4H),
7.30 (d, $J = 8.7$ Hz, 4H),
7.03 (dd, $J = 7.7$, 1.7 Hz, 4H),
6.76 (ddd, $J = 8.3$, 7.4, 1.7 Hz, 4H),
6.65 (dd, $J = 8.3$, 1.2 Hz, 4H),
6.55 (td, $J = 7.6$, 1.2 Hz, 4H),
-0.10 (s, 36H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
160.52, 154.46, 142.11, 140.84,
134.66, 130.12, 126.84, 125.46,
124.81, 120.13, 116.86, 115.71,
101.17, 100.18, -0.14.
High Resolution Mass Spectrometry Report

Sample Name: Thomas Brandt / BRT563
Comment: 10 µg/mL in MeCN, analyzed in MeCN
Instrument: maXis 4G
Method: 24 Direct_pos_high.m

+-MS, 0.24-0.34 min #1(14-20)

+-MS, 0.24-0.34 min #1(14-20)

C34H32N2O2S2H₂M⁺, M⁺, 587.21

C34H32N2O2S2Na⁺, M⁺, 579.19

C34H32N2O2S2Cu⁺, M⁺, 619.13

C68H64N4O4S4Na⁺, M⁺, 1135.39

C68H64N4O4S4Cu⁺, M⁺, 1175.33

Bruker Compass DataAnalysis 4.0 Acquisition Date: 29.11.2018 10:50:56 Page 1 of 3
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

#	m/z	Formula	Score	m/z	err [Da]	err [ppm]	mSigma	rdp	z	Conf
1	381.2076	C34H33N2O2Si2	100.00	557.2075	-0.5	-0.8	14.1	21.5	even	1+
1	381.2076	C34H33N2O2Si2	100.00	579.1995	-0.2	-0.4	13.4	21.5	even	1+
1	381.2076	C34H33N2O2Si2	100.00	619.1293	0.3	0.5	5.7	21.5	even	1+
1	381.2076	C34H33N2O2Si2	100.00	1135.3897	0.5	0.5	15.7	42.5	even	1+
1	381.2076	C34H33N2O2Si2	100.00	1175.3295	0.9	0.8	23.7	42.5	even	1+

Mass list

#	m/z	I %	I
1	381.2076	0.9	1214
2	429.3163	0.8	1088
3	439.1463	6.1	7609
4	440.1475	2.1	2662
5	443.2327	1.0	1242
6	453.1236	7.7	9936
7	454.1270	2.5	3246
8	461.1263	2.4	3161
9	462.1297	0.9	1123
10	475.1052	11.4	14718
11	476.1081	3.9	5077
12	477.1087	0.9	1140
13	491.0792	3.4	4341
14	492.0821	1.3	1731
15	501.0660	1.9	2465
16	503.0647	1.0	1275
17	515.0459	1.4	1767
18	517.0439	0.9	1112
19	557.2080	66.3	65729
20	558.2107	30.4	52069
21	559.2107	10.6	13724
22	560.2107	2.9	3711
23	579.1697	76.6	96061
24	580.1021	35.5	48844
25	581.1913	12.1	15607
26	582.1921	3.3	4323
27	595.1634	7.3	9382
28	596.1659	3.4	4386
29	597.1647	1.8	2284
30	613.2695	1.2	1538
31	619.1290	32.0	42191
32	620.1316	15.8	26471
33	621.1281	20.2	26158
34	622.1300	8.6	11129
35	623.1294	3.0	3920
36	624.1322	0.9	1152
37	693.2719	0.9	1116
38	905.2376	1.2	1581
39	920.2352	1.0	2500
40	930.2368	1.2	1602
41	939.2007	1.1	1424
42	943.2071	1.0	1267
43	966.3430	1.0	1269
44	1000.3239	2.5	3216
45	1010.3237	2.0	2575
46	1011.3252	1.1	1373
47	1017.3261	1.2	1524
48	1018.3276	1.1	1371
49	1026.3500	0.9	1200
50	1031.3036	7.9	10174
51	1032.3068	6.5	8413
52	1033.3076	3.6	4600
53	1034.3073	1.5	1877
54	1047.2785	2.1	2720
55	1048.2622	1.9	2465
56	1049.2623	1.3	1630
57	1052.2695	1.1	1412
58	1056.2674	1.0	1326

Bruker Compass Data Analysis 4.0

Acquisition Date: 29.11.2018 10:50:56
High Resolution Mass Spectrometry Report

m/z	Intensity	%	Intensity
59	1059.2022	1.1	1425
60	1063.3477	1.3	1708
61	1064.3404	1.2	1598
62	1093.2684	0.9	1120
63	1113.4066	3.3	4309
64	1144.4097	3.4	4401
65	1115.4084	1.9	2492
66	1116.4108	0.9	1176
67	1130.4332	1.2	1561
68	1131.4380	1.1	1406
69	1132.4309	0.8	1091
70	1135.0518	1.2	1495
71	1135.1189	1.2	1558
72	1135.3894	100.0	129313
73	1135.7722	0.9	1141
74	1136.0442	0.8	1098
75	1136.1211	0.9	1114
76	1136.3516	96.2	120697
77	1136.6602	1.1	1378
78	1137.0542	1.0	1326
79	1137.2542	0.9	1152
80	1137.3026	56.6	73150
81	1138.0800	0.8	1069
82	1138.3928	25.5	32921
83	1139.3934	9.5	12296
84	1140.3323	3.0	3885
85	1141.3342	1.1	1389
86	1151.3518	6.3	8175
87	1152.3553	6.0	7794
88	1153.3044	3.8	4957
89	1154.3665	2.1	2755
90	1155.3625	1.0	1235
91	1175.3286	23.9	30889
92	1176.3309	23.0	29776
93	1177.3206	23.3	30072
94	1178.3299	16.4	21248
95	1179.3311	8.5	11074
96	1180.3311	3.6	4590
97	1181.3332	1.5	1878
98	1191.4407	1.0	2445
99	1192.4538	1.9	2500
100	1193.4542	1.2	1591

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	3600 V	Set Dry Heater	180 °C
Scan Begin	75 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	2000 m/z	Set Collision Cell RF	1000.0 Vpp	Set Ion Energy (MS only)	4.0 eV

Bruker Compass DataAnalysis 4.0 Acquisition Date 29.11.2018 10:50:56 Page 3 of 3
1H-, 13C-NMR (CD$_2$Cl$_2$, 500/126 MHz, 25 °C) and HR-ESI-MS spectra of compound (3)

1H NMR (500 MHz, CD$_2$Cl$_2$, 25 °C) δ
- 8.38 (d, $J = 8.9$ Hz, 4H),
- 7.84 (s, 4H),
- 7.60 (dd, $J = 8.2$, 7.5, 1.7 Hz, 4H),
- 7.44 (dd, $J = 7.6$, 1.7, 0.5 Hz, 4H),
- 7.35 – 7.30 (m, 8H),
- 6.96 (d, $J = 8.9$ Hz, 4H).

13C NMR (126 MHz, CD$_2$Cl$_2$, 25 °C) δ
- 162.34, 156.59, 143.05, 141.18,
- 133.27, 132.19, 127.45, 126.62,
- 125.07, 123.23, 116.68, 111.62,
- 80.54, 79.05.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Mass List	m/z	Int. %	Score	m/z, err [mDa]	err [ppm]	mSigma	rdb	e-Conf	z
883.1414	411.1123	4.5	8741						
	412.1156	1.3	2642						
	433.0347	1.9	3726						
	434.0977	0.5	1000						
441.5859	2.3	4458							
	482.0705	1.2	2312						
	442.5706	1.4	2758						
	443.0712	0.7	1390						
	443.1933	0.8	1520						
	473.0348	1.5	2012						
	474.0902	0.6	1150						
	475.0535	0.6	1192						
	505.0605	0.6	1180						
	531.1529	0.5	1006						
	799.1363	0.6	1144						
	821.2188	2.6	5022						
	822.2214	2.0	3655						
	823.2252	0.0	1502						
	825.1913	0.9	1617						
	826.1964	0.5	992						
	827.1989	0.6	1124						
	843.2005	2.6	5114						
	844.2026	1.7	3248						
	845.2101	0.7	1404						
	869.2003	0.6	1093						
	875.2214	0.4	762						
	882.9039	0.5	900						
	883.5688	0.5	915						
	883.5691	0.6	1088						
	883.1414	100.0	196422						
	883.2872	0.4	765						
	883.3329	0.4	779						
	883.5111	0.4	770						
	883.6096	0.4	765						
	883.6339	0.4	757						
	883.6780	0.4	782						
	883.9504	0.4	878						
	884.0308	0.5	884						
	884.0655	0.4	857						
	884.1442	60.7	119318						
	884.6376	0.4	854						
	884.7052	0.4	851						
	885.0040	0.5	695						
	885.0095	0.6	1234						
	885.1420	69.7	17282						
	886.1343	29.7	59382						
	887.1465	10.2	20037						
	888.1518	2.9	5774						
	889.1515	0.6	1172						
	891.1964	2.2	4242						
	918.1692	1.5	2659						
	917.1863	1.6	3184						
	918.1693	0.8	1512						
	919.1757	0.4	772						
	933.1777	4.5	8614						
	934.1809	3.2	6239						
	935.1787	3.0	5620						
	936.1692	1.8	3541						
	937.1871	0.4	856						
	945.1768	0.6	1120						
	946.1798	0.0	895						
	947.1861	0.5	1064						

Bruker Compass DataAnalysis 4.0
Acquisition Date: 06.03.2019 10:17:51
Page 2 of 3
High Resolution Mass Spectrometry Report

#	m/z	I %	I
53	957.1949	1.7	3250
64	958.1980	1.4	2629
55	959.1976	1.0	1987
56	960.1905	0.7	1396
67	961.2031	0.4	776
68	963.1737	0.6	1512
69	964.1903	0.6	1183
70	965.1992	0.6	1252
71	967.2100	1.0	1986
72	967.1988	0.5	918
73	963.2047	0.5	993
74	969.1694	0.9	1762
75	1000.1691	0.7	1343
76	1001.1010	2.3	4698
77	1002.1645	1.7	3348
78	1003.1905	1.5	2991
79	1004.1669	1.0	2025
80	1001.1664	0.9	1624
81	1002.1902	0.7	1313
82	1003.1945	0.6	1104
83	1034.2013	0.4	658
84	1041.3902	0.4	688
85	1049.2001	1.0	1996
86	1050.2078	0.7	1322
87	1051.2084	0.5	1054
88	1052.2056	0.6	898
89	1233.2420	0.9	1760
90	1234.3323	0.8	1351
91	1235.3330	0.7	1338
92	1323.2530	0.9	1612
93	1294.2558	0.9	1760
94	1295.2590	0.8	1028
95	1266.2613	0.6	1185
96	1703.3798	1.3	2509
97	1704.3825	1.5	2988
98	1705.3830	1.2	2450
99	1706.3855	1.1	2101
100	1707.3877	0.6	1262

Acquisition Parameter

General					
Fore Vacuum	2.68e+000 mBar	High Vacuum	9.53e-008 mBar	Source Type	ESI
Scan Begin	75 mV	Scan End	2000 mV	Ion Polarity	Positive
Source					
Set Nebulizer	0.4 Bar	Set Capillary	3600 V	Set Dry Gas	4.0 l/min
Set Dry Heater	180 °C	Set End Plate Offset	-500 V		

Quadrupole Set Ion Energy (MS only) | 4.0 eV
Coll. Cell Collision Energy | 10.0 eV
Ion Cooler Set Ion Cooler Transfer Time | 160.0 μs
Ion Cooler Set Ion Cooler Pre Pulse Storage Time | 18.0 μs

Bruker Compass DataAnalysis 4.0 Acquisition Date 06.03.2019 10:17:51 Page 3 of 3
1H, 13C-NMR (CDCl$_3$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (14)

1H NMR (400 MHz, CDCl$_3$, 22 °C) δ
8.19 (d, $J = 8.6$ Hz, 2H),
7.68 (s, 2H),
7.40 – 7.29 (m, 8H),
7.24 – 7.17 (m, 4H).

13C NMR (101 MHz, CDCl$_3$, 22 °C) δ
162.06, 154.13, 143.69, 139.83,
129.64, 126.19, 124.55, 124.23,
121.17, 113.88.
High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Mass list	#	m/z	l %	I
1	1	123.0917	0.3	1504
2	2	137.1072	0.3	1576
3	3	136.0910	0.2	1351
4	4	139.0902	0.2	960
5	5	140.0916	0.3	1541
6	6	147.0914	0.4	1916
7	7	149.0232	0.3	1581
8	8	163.1025	0.2	1221
9	9	163.1327	0.6	393
10	10	169.0467	0.2	1023
11	11	173.0764	0.4	2893
12	12	183.0777	0.4	2007
13	13	183.0968	0.2	1131
14	14	185.1147	5.2	27002
15	15	186.1182	0.4	2376
16	16	187.0782	0.2	1280
17	17	201.1033	0.7	3532
18	18	205.0568	0.4	1929
19	19	211.0037	0.2	1251
20	20	215.1254	0.2	1007
21	21	217.1044	0.7	3886
22	22	219.0476	0.2	1348
23	23	225.1064	0.2	1068
24	24	241.0294	0.2	1227
25	25	251.1613	0.3	1564
26	26	261.1299	0.3	1350
27	27	265.1763	0.2	1128
28	28	267.1569	0.4	1936
29	29	273.1671	0.3	1375
30	30	273.1945	0.3	1633
31	31	279.2284	0.2	1117
32	32	283.1012	0.2	1073
33	33	281.1932	0.2	1233
34	34	293.2065	0.3	1466
35	35	303.1779	0.8	4367
36	36	304.2067	0.2	1162
37	37	305.2086	0.3	1659
38	38	309.2048	0.2	1032
39	39	315.1025	0.3	1813
40	40	319.2244	0.3	1565
41	41	321.2035	0.2	1071
42	42	331.2065	0.3	1443
43	43	339.1764	0.2	968
44	44	363.1453	0.3	1788
45	45	353.2660	0.9	4674
46	46	354.2696	0.2	1078
47	47	363.1490	0.5	2722
48	48	365.0978	0.3	1564
49	49	365.1289	100.0	541132
50	50	365.2760	0.2	1202
51	51	365.3164	0.3	1513
52	52	365.3497	0.2	1224
53	53	365.3859	0.2	1103
54	54	365.4053	0.2	1141
55	55	365.4422	0.2	1102
56	56	365.4964	0.2	1288
57	57	360.1318	25.1	135939
58	58	367.1345	3.5	18969
59	59	365.1349	0.4	2200
60	60	381.2076	0.7	3064
61	61	382.3012	0.2	1328
62	62	360.2926	0.2	1026

Bruker Compass DataAnalysis 4.0 Acquisition Date 10.05.2019 12:46:43 Page 2 of 3
High Resolution Mass Spectrometry Report

#	m/z	I %	I
63	587.1102	4.7	25256
64	388.1132	1.4	7551
65	389.1100	0.2	1185
66	391.2646	0.2	1211
67	393.2692	0.2	1160
68	403.0037	0.3	1649
69	413.2696	0.7	3684
70	414.2691	0.2	569
71	427.0496	0.9	4613
72	427.2086	0.6	4277
73	428.0536	0.2	1228
74	428.2116	0.2	1164
75	429.0484	0.4	2302
76	429.3179	0.3	1588
77	433.1033	0.3	1647
78	441.3275	0.2	1315
79	447.3449	0.3	1807
80	449.3748	0.2	1027
81	473.3436	0.3	1781
82	487.3062	0.2	1043
83	512.4154	0.2	1003
84	517.3703	0.2	1269
85	556.4406	0.2	1047
86	561.3981	0.2	1319
87	700.6294	0.2	1098
88	705.5813	0.4	2082
89	729.2485	1.3	6950
90	730.2529	0.7	3703
91	731.2530	0.2	1153
92	735.2591	0.2	1220
93	751.2313	3.6	19695
94	752.2341	2.1	11427
95	753.2376	0.6	3224
96	791.1712	6.1	32004
97	792.1749	3.2	17222
98	793.1706	3.2	17290
99	794.1727	1.6	6607
100	795.1748	0.4	2187

Acquisition Parameter

Parameter	Value
General Fore Vacuum	2.79e+000 mBar
General Scan Begin	75 m/z
General Source Nebulizer	0.4 Bar
General Source Dry Heater	180 °C
Quadropole Set Ion Energy (M3 only)	4.0 eV
Collision Cell Energy	8.0 eV
Ion Cooler Transfer Time	55.0 μs
Source Capillary	3600 V
Source End Plate Offset	-500 V
Source Ion Cooler	350.0 Vpp
Source Ion Cooler Pro Pulse Storage Time	7.0 μs
1H-, 13C-NMR (CD$_2$Cl$_2$, 400/101 MHz, 22 °C) and HR-ESI-MS spectra of compound (15)

1H NMR (400 MHz, CD$_2$Cl$_2$, 22 °C) δ
8.43 (d, $J = 8.7$ Hz, 4H),
7.91 (s, 4H),
7.29 (d, $J = 8.7$ Hz, 4H),
6.94 – 6.87 (m, 8H),
6.77 – 6.69 (m, 4H),
6.66 – 6.59 (m, 8H).

13C NMR (101 MHz, CD$_2$Cl$_2$, 22 °C) δ
160.31, 153.69, 141.95, 140.47,
129.47, 126.20, 124.78, 124.55,
118.90, 115.06.
Measured m/z vs. theoretical m/z

Mass	m/z	%	I	Score	m/z	err [mDa]	err [ppm]	mSigma	ndx	Conf	z
791.1724	1	C_{46}H_{52}CuN_{4}O_{4}	100.00	791.1714	-1.0	-1.3	16.7	34.5	even	1+	

Mass list

#	m/z	%	I
1	315.1930	0.5	2049
2	353.2681	1.4	5707
3	365.1287	39.1	154740
4	366.1319	9.8	36636
5	367.1345	1.4	5465
6	368.2977	2.3	6968
7	369.3007	0.6	2232
8	369.3053	0.4	1746
9	387.1105	19.9	78768
10	388.1138	5.0	16878
11	389.1168	0.8	3186
12	390.2680	0.7	9733
13	403.0845	4.3	17186
14	404.0875	1.1	4445
15	407.3151	0.6	1603
16	413.2663	3.4	13633
17	414.2696	0.9	3665
18	421.3294	0.8	3086
19	429.2408	0.6	2677
20	429.3199	0.7	2788
21	435.3444	0.5	2111
22	441.2691	0.9	3541
23	447.3449	2.6	10301
24	448.3490	0.7	2704
25	449.3512	0.9	3716
26	463.3169	0.5	1872
27	463.3759	0.5	2066
28	469.3268	0.7	2812
29	472.3448	0.6	3038
30	487.3611	0.5	1700
31	517.3720	0.8	3123
32	523.3249	0.6	2339
33	524.3277	0.6	2324
34	531.3863	0.6	2247
35	533.3456	0.6	2186
36	561.3970	1.0	3903
37	575.4131	0.6	2470
38	577.3722	0.8	3086
39	577.4806	0.9	1010
40	591.3877	0.5	2028
41	591.4595	0.5	2032
42	605.4225	0.9	3493
43	619.4332	0.6	2332
44	621.3962	0.8	3046
45	635.4130	0.5	1919
46	646.4511	0.8	3201
47	663.4638	0.8	3264
48	665.4242	0.6	3187
49	677.4659	0.5	1526
50	679.4382	0.7	2947
51	685.4359	1.4	5547
52	686.4395	0.7	2738
53	691.4094	0.6	2258
54	693.4728	0.7	2742
55	700.6277	1.0	4012
56	701.5998	0.6	1076
57	705.5267	0.6	2427
58	705.5831	16.9	66977
59	706.5681	0.4	33333
60	707.4889	0.6	2480
61	707.5870	2.4	9530
62	708.5869	0.7	2783

Bruker Compass DataAnalysis 4.0

Acquisition Date: 10.05.2019 12:54:56
#	m/z	I [%]	I [a.u.]
63	709.4992	0.5	2013
64	719.5428	0.7	2975
65	721.5014	0.5	2021
66	721.5689	3.1	12162
67	722.5690	1.5	5763
68	723.5699	0.4	1758
69	723.5628	0.7	2797
70	729.2487	0.7	2759
71	733.5587	0.6	2417
72	737.5996	0.6	2429
73	747.5723	0.4	1771
74	751.5112	9.3	3694
75	751.5103	0.5	1919
76	752.2346	4.8	18762
77	753.2374	1.4	5681
78	767.2048	0.9	3697
79	768.2073	0.5	2160
80	769.2141	0.7	2622
81	790.2404	0.5	2028
82	791.1724	100.0	395546
83	791.5837	0.5	1889
84	792.1753	53.1	210033
85	793.1722	55.5	219700
86	794.1739	24.8	97946
87	795.1764	0.6	26029
88	796.2416	0.5	2004
89	796.1791	1.4	5482
90	1049.5577	0.8	3333
91	1050.5595	0.7	2703
92	1069.7020	1.0	3930
93	1070.7081	0.8	3092
94	1095.6582	0.7	2586
95	1096.6612	0.4	1772
96	1129.9375	0.5	2171
97	1338.1772	2.0	7907
98	1339.1815	1.8	6925
99	1390.1827	1.0	3967
100	1391.1852	0.5	1965

Acquisition Parameter

General	Fore Vacuum	2.86e+000 mBar	High Vacuum	1.02e-007 mBar	Source Type	ESI
Scan Begin	75 m/z	Scan End	2000 m/z	Ion Polarity	Positive	
Source	Set Nebulizer	0.4 Bar	Set Capillary	3500 V	Set Dry Gas	
Set Dry Heater	100 °C	Set End Plate Offset	-500 V			
Quadrupole Set Ion Energy (MS only)	4.0 eV					
Collision Cell	Collision Energy	10.0 eV	Set Collision Cell RF	1000.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer Time	160.0 µs	Set Ion Cooler Pre Pulse Storage Time	18.0 µs		
1H, 13C, COSY-, NOESY-, HMQC-, HMBC-NMR (CD$_2$Cl$_2$, 500/126 MHz, 22 °C) and HR-ESI-MS spectra and full assignment of compound (1)

1H NMR (500 MHz, CD$_2$Cl$_2$, 25 °C) δ
8.37 (d, $J = 8.9$ Hz, 4H),
7.84 (s, 4H),
7.28 (ddd, $J = 7.9, 5.7, 3.4$ Hz, 4H),
7.24 – 7.16 (m, 8H),
7.11 (d, $J = 7.8$ Hz, 3H),
7.03 (d, $J = 8.8$ Hz, 4H),
2.24 (ddd, $J = 14.4, 10.3, 4.7$ Hz, 4H),
2.11 – 2.01 (m, 4H),
1.54 – 1.44 (m, 4H),
1.16 (ddd, $J = 9.4, 6.6, 4.3$ Hz, 4H).

13C NMR (126 MHz, CD$_2$Cl$_2$, 25 °C) δ
162.37, 151.43, 142.94, 141.12,
135.75, 131.55, 128.48, 127.41,
126.33, 124.91, 122.62, 112.12,
29.92, 29.16.
Measured m/z vs. theoretical m/z

Mass list	#	m/z	l%	l
1	1	282.2779	3.0	489
2	2	293.2442	2.5	416
3	3	299.1614	4.1	602
4	4	301.1367	3.0	484
5	5	304.2602	3.8	823
6	6	305.2051	10.6	1735
7	7	310.2375	15.6	2540
8	8	312.1847	4.6	750
9	9	315.1929	100.0	16305
10	10	316.1958	16.9	2762
11	11	320.1810	3.2	526
12	12	321.2709	4.4	722
13	13	325.2002	2.4	390
14	14	331.1660	5.7	929
15	15	331.1878	33.9	5518
16	16	331.2162	2.3	371
17	17	332.1910	6.6	1074
18	18	341.1613	3.2	520
19	19	347.1833	15.1	2456
20	20	348.1890	3.9	631
21	21	353.2684	28.3	4607
22	22	354.2659	5.0	813
23	23	355.2152	3.6	587
24	24	356.2106	2.8	464
25	25	375.2145	6.9	1103
26	26	381.2678	23.2	3758
27	27	382.2697	5.0	822
28	28	413.2669	2.7	430
29	29	419.2416	13.4	2182
30	30	420.2445	4.9	795
31	31	427.2851	2.2	382
32	32	445.3209	2.9	471
33	33	467.3176	27.9	4952
34	34	468.3190	7.9	1293
35	35	483.3108	2.6	428
36	36	551.3660	2.3	382
37	37	623.3079	3.6	858
38	38	645.4000	5.5	896
39	39	645.4725	4.9	799
40	40	645.4730	2.4	391
41	41	647.4553	2.3	378
42	42	663.4545	20.2	3296
43	43	664.4603	6.3	1020
44	44	673.5031	3.0	497
45	45	674.4981	2.5	404
46	46	679.4167	7.8	1284
47	47	680.4218	3.3	541
48	48	680.4807	16.8	2740
49	49	681.4847	8.7	1420
50	50	682.4866	2.3	382
51	51	683.5414	3.3	546
52	52	685.4343	19.0	3104
53	53	686.4835	7.8	1296
54	54	687.4360	3.0	497
55	55	699.4990	3.4	557
56	56	751.4683	2.8	482
57	57	705.5511	3.7	606
58	58	706.5668	2.5	400
59	59	711.5730	4.0	640
60	60	712.5755	2.7	444
61	61	733.6013	3.5	564
62	62	745.5031	2.4	396

SI - 52
High Resolution Mass Spectrometry Report

#	m/z	I %	I
63	764.5721	3.1	508
64	647.5663	2.2	362
65	697.5478	7.3	1196
66	866.5410	5.2	841
67	995.5653	68.1	11108
68	602.5665	30.7	6307
69	901.5660	36.7	5684
70	922.5675	18.5	3014
71	953.5718	5.1	830
72	639.5683	2.6	422
73	944.7277	3.7	600
74	951.7299	2.6	417
75	958.7353	3.2	517
76	967.7112	2.4	308
77	972.8618	3.0	488
78	977.6410	20.2	3290
79	978.6423	11.1	1903
80	979.6429	4.6	738
81	993.6344	5.6	941
82	994.6399	3.5	564
83	1015.7156	6.5	1062
84	1016.7143	4.0	657
85	1045.7435	5.1	826
86	1044.7455	5.3	857
87	1129.7621	9.7	1574
88	1130.7632	7.7	1250
89	1131.7732	3.4	582
90	1325.9913	4.6	753
91	1326.9963	3.3	543
92	1342.9348	7.6	1241
93	1343.9264	5.1	838
94	1344.9284	3.6	566
95	1347.9418	2.4	362
96	1348.9412	14.6	2420
97	1349.9419	7.4	1200
98	1350.9415	3.9	634
99	1356.0272	2.3	379

Acquisition Parameter

Feature	Value
Fore Vacuum	2.68e+000 mBar
Scan Begin	75 m/z
Set Neulitser	0.4 Bar
Set Dry Heater	180 °C
Ion Energy (MS only)	4.0 eV
Collision Energy	8.0 eV
Set Ion Cooler Transfer Time	80.0 µs
Set Collision Cell RF	500.0 Vpp
Set Ion Cooler Pre Pulse Storage Time	18.0 µs
Computational investigations

Figure SI1: DFT-optimized structure (left) and calculated frontier orbitals HOMO (middle) and LUMO (right) of reference complex 15.

Figure SI2: Space-filling representations of the optimized excited state geometries of the macrocyclic complex 1 (left) and the reference complex 15 (right).
Crystal data for 11

Single crystals were grown by vapor diffusion technique using dichloromethane as solvent and diethyl ether as anti-solvent. Solid state structure in the manuscript are displayed with rotation ellipsoids at 50% probability. Hydrogen atoms, solvent molecules and the PF$_6$ counter ions were omitted for clarity. Color code: N: blue, Cu: yellow, C: gray for one and purple for the other ligand for clarity.

Formula C$_{56}$H$_{32}$Cu$_1$F$_6$N$_4$P$_1$, M = 969.40, F(000) = 988, brown block, size 0.23 x 0.28 x 0.31 mm3, triclinic, space group P -1 , Z = 2, a = 8.8141(10) Å, b = 14.6956(16) Å, c = 16.8143(19) Å, α = 95.110(3)°, β = 95.863(3)°, γ = 90.880(3)°, V = 2157.3(4) Å3, D$_{calc}$ = 1.492 Mg*m$^{-3}$. The crystal was measured on a Bruker Kappa Apex2 diffractometer at 130(2)K using graphite-monochromated Cu K$_\alpha$-radiation with λ = 1.54178 Å, Θ_{max} = 70.376°. Minimal/maximal transmission 0.91/1.00, μ = 1.677 mm$^{-1}$. The Apex2 suite has been used for data collection and integration. From a total of 21167 reflections, 7807 were independent (merging r = 0.041). From these, 7806 were considered as observed (I>2.0σ(I)) and were used to refine 613 parameters. The structure was solved by other methods using the program Superflip. Least-squares refinement against Fsqd was carried out on all non-hydrogen atoms using the program CRYSTALS. R = 0.0371 (observed data), wR = 0.0910 (all data), GOF = 0.9995. Minimal/maximal residual electron density = -0.28/0.38 e Å$^{-3}$. Chebychev polynomial weights were used to complete the refinement. Plots were produced using CAMERON. Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Center, the deposition number is (1948428). Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].
Photostability investigations

A very similar strategy as in our recent investigation on acridinium dyes was used to compare the photostabilities of 1 and 15.[1]

We irradiated diluted and deoxygenated solutions of both complexes, and monitored their UV-Vis spectra over two hours of photoirradiation. The cuvettes were irradiated in the sample chamber of the spectrophotometer (see Figure SI4) with a 455 nm LED from Thorlabs (M455L3-C1, 500 mW optical output). Our cuvette holder permits LED irradiation of the whole detection volume. For recording the absorption spectra after the desired irradiation times, the LED was blocked for 2 minutes.

The absorptions of both irradiated solutions at the LED peak wavelength (455 nm) were standardized to 0.10, which ensures that almost the same amount of light is absorbed while sample heating is avoided. Concentrations of ~36 μM for 1 and ~211 μM for 15 were required for these standardized conditions.

The UV-Vis data displayed in figure 6 of the main paper show good photostability for 1 under our test conditions. A significant decrease of the MLCT absorption band is expected to occur upon photodecomposition, but all spectra are virtually identical; the maximum relative absorption variation is with less than 0.5% within the accuracy of the analysis.

The situation is completely different for 15. Our photostability assay revealed a constant decrease of the MLCT band, which amounts to 7% after 2 hours of photoirradiation (compare, lower part of figure 6a and figure 6b). Assuming that the decomposition products do not absorb at the detection wavelength allows us to set a lower limit for the concentration change caused by photodecomposition: 14.8 μM (211 μM x 0.07). To be able to make a relative stability statement, we assume a maximum absolute concentration change for 1 under identical irradiation conditions of 0.4 μM, corresponding to an experimental error of up to 1% hiding the alteration of the observed MLCT band (36 μM x 0.01). Taking the widely differing starting concentration of both complexes into account[2] the actual photodecomposition of 15 is thus significantly faster (compared to that of 1) than the absorption spectra in figure 6 suggest. Hence, the analysis presented in this section revealed the photodegradation of 1 (macrocycle) to be slower than that of 15 by a factor of at least ~37.

In order to identify the photodecomposition product, we irradiated complex 15 in an NMR tube. The peaks in acetonitrile-d₃ are rather broad, which is the reason why we performed this experiment in deuterated dichloromethane. In the NMR spectrum recorded after irradiation with a blue high-power LED at 440 nm (from Kessil), which was very recently purchased and has a much higher output than the 455 nm LED used for the investigations presented in figure 3 of the main paper, we observed noticeable photodecomposition after 3h of irradiation, but we could not detect the release of the free ligand (Figure SI3). The photodecomposition products could not be identified.

1 C. Fischer, C. Kerzig, B. Zilate, O. S. Wenger, C. Sparr, ACS Catal. 2019, DOI 10.1021/acscatal.9b03606.
2 C. Kerzig, X. Guo, O. S. Wenger, J. Am. Chem. Soc., 2019, 141, 2122-2127.
Figure SI3: NMR investigations of the photodecomposition of the reference complex 15 upon irradiation with an LED at 440 nm. The NMR spectra in deuterated dichloromethane of the free ligand (top), the complex (middle) and the decomposition product after irradiation for 3 hours (bottom) are illustrated. It can be seen that the decomposition product is not the free ligand.
Figure S14: Instrumental setup for the photostability investigations.

Table S1: UV-Vis data of complex 1 after 0, 60 and 120 minutes photoirradiation.

Wavelength [nm]	Absorption before irradiation	Absorption after 60 min irradiation	Absorption after 120 min irradiation			
750	6.33E-04	5.59E-04	6.62E-04			
749	6.76E-04	5.29E-04	6.31E-04			
748	7.24E-04	6.53E-04	7.36E-04			
747	5.84E-04	5.49E-04	6.76E-04			
746	6.35E-04	6.58E-04	7.66E-04			
745	7.26E-04	7.03E-04	6.47E-04			
744	5.78E-04	6.04E-04	6.13E-04			
743	6.72E-04	6.15E-04	7.78E-04			
742	6.47E-04	5.66E-04	7.55E-04			
741	6.68E-04	5.83E-04	6.42E-04			
740	6.54E-04	6.20E-04	6.64E-04			
739	6.58E-04	6.30E-04	6.84E-04			
738	7.14E-04	7.67E-04	7.11E-04			
737	5.85E-04	7.25E-04	6.35E-04			
736	6.58E-04	6.54E-04	6.13E-04			
735	5.59E-04	5.11E-04	5.92E-04			
----	-------	-------	-------			
734	6.16E-04	6.23E-04	6.62E-04			
733	6.20E-04	6.77E-04	6.65E-04			
732	5.75E-04	6.27E-04	6.60E-04			
731	6.79E-04	6.74E-04	6.88E-04			
730	6.21E-04	4.94E-04	5.71E-04			
729	5.85E-04	7.07E-04	7.45E-04			
728	5.72E-04	5.99E-04	6.07E-04			
727	7.09E-04	6.27E-04	6.59E-04			
726	5.00E-04	5.13E-04	5.03E-04			
725	5.82E-04	5.72E-04	5.82E-04			
724	5.93E-04	5.45E-04	4.75E-04			
723	6.36E-04	5.57E-04	5.31E-04			
722	6.61E-04	5.26E-04	5.59E-04			
721	6.27E-04	5.44E-04	4.87E-04			
720	5.71E-04	4.99E-04	4.84E-04			
719	4.90E-04	5.00E-04	4.97E-04			
718	5.25E-04	5.28E-04	5.37E-04			
717	5.53E-04	5.02E-04	4.14E-04			
716	4.85E-04	4.86E-04	5.26E-04			
715	5.62E-04	5.41E-04	4.40E-04			
714	5.30E-04	5.43E-04	4.96E-04			
713	5.70E-04	4.52E-04	4.62E-04			
712	4.49E-04	4.78E-04	4.05E-04			
711	5.06E-04	3.82E-04	4.28E-04			
710	4.61E-04	4.62E-04	4.56E-04			
709	4.46E-04	3.90E-04	3.67E-04			
708	5.10E-04	4.04E-04	3.89E-04			
707	4.37E-04	4.50E-04	3.47E-04			
706	4.35E-04	4.40E-04	3.42E-04			
705	4.12E-04	3.92E-04	3.50E-04			
704	4.70E-04	4.08E-04	3.78E-04			
703	4.24E-04	3.42E-04	4.04E-04			
702	4.98E-04	3.99E-04	3.85E-04			
701	4.35E-04	4.06E-04	3.89E-04			
700	3.83E-04	3.67E-04	2.96E-04			
699	4.24E-04	4.11E-04	3.34E-04			
698	4.03E-04	4.28E-04	4.14E-04			
697	4.31E-04	3.85E-04	3.86E-04			
696	4.35E-04	3.79E-04	3.14E-04			
695	3.22E-04	3.25E-04	3.14E-04			
694	3.78E-04	3.81E-04	3.02E-04			
693	3.71E-04	3.53E-04	3.03E-04			
692	4.12E-04	3.88E-04	3.37E-04			
691	3.78E-04	3.49E-04	3.32E-04			
690	4.33E-04	3.58E-04	3.90E-04			
689	3.91E-04	3.64E-04	3.64E-04			
688	3.27E-04	3.74E-04	3.08E-04			
---	-----	-----	-----			
687	3.62E-04	3.11E-04	2.97E-04			
686	4.00E-04	3.42E-04	3.43E-04			
685	3.78E-04	3.11E-04	2.89E-04			
684	3.96E-04	3.10E-04	2.89E-04			
683	3.40E-04	3.45E-04	3.09E-04			
682	3.55E-04	2.87E-04	3.23E-04			
681	3.54E-04	3.30E-04	3.06E-04			
680	3.18E-04	2.88E-04	2.42E-04			
679	3.85E-04	3.47E-04	2.81E-04			
678	4.30E-04	3.26E-04	2.74E-04			
677	4.16E-04	2.76E-04	2.69E-04			
676	3.68E-04	3.22E-04	2.63E-04			
675	2.79E-04	2.84E-04	2.51E-04			
674	3.45E-04	3.22E-04	2.59E-04			
673	3.84E-04	3.50E-04	3.25E-04			
672	3.81E-04	3.24E-04	3.10E-04			
671	3.84E-04	3.24E-04	3.21E-04			
670	3.28E-04	3.11E-04	2.60E-04			
669	3.73E-04	3.64E-04	2.78E-04			
668	3.48E-04	3.35E-04	2.73E-04			
667	3.87E-04	3.44E-04	2.95E-04			
666	3.19E-04	2.96E-04	3.39E-04			
665	3.48E-04	3.42E-04	2.64E-04			
664	3.57E-04	3.42E-04	3.34E-04			
663	3.25E-04	2.79E-04	2.71E-04			
662	4.09E-04	3.56E-04	3.38E-04			
661	4.85E-04	4.87E-04	4.75E-04			
660	3.23E-04	3.63E-04	2.90E-04			
659	3.23E-04	2.45E-04	2.10E-04			
658	4.07E-04	4.08E-04	3.51E-04			
657	4.85E-04	4.37E-04	3.81E-04			
656	3.51E-04	3.00E-04	2.53E-04			
655	2.99E-04	2.76E-04	2.86E-04			
654	3.95E-04	3.67E-04	3.32E-04			
653	4.16E-04	3.94E-04	3.49E-04			
652	3.84E-04	3.32E-04	3.11E-04			
651	4.17E-04	3.95E-04	3.71E-04			
650	3.92E-04	3.86E-04	3.64E-04			
649	4.28E-04	3.86E-04	3.60E-04			
648	4.42E-04	3.57E-04	3.54E-04			
647	4.29E-04	3.82E-04	3.53E-04			
646	4.43E-04	3.75E-04	3.82E-04			
645	4.38E-04	3.58E-04	3.43E-04			
644	4.70E-04	4.55E-04	3.95E-04			
643	4.81E-04	4.40E-04	4.24E-04			
642	4.72E-04	4.47E-04	4.13E-04			
641	5.33E-04	4.85E-04	4.56E-04			
-----	--------	--------	--------			
640	5.23E-04	4.66E-04	4.76E-04			
639	5.35E-04	4.80E-04	4.79E-04			
638	5.45E-04	5.10E-04	4.59E-04			
637	6.02E-04	5.40E-04	5.24E-04			
636	5.97E-04	5.29E-04	5.28E-04			
635	6.67E-04	5.84E-04	6.26E-04			
634	6.37E-04	5.89E-04	5.98E-04			
633	6.50E-04	6.13E-04	5.73E-04			
632	6.92E-04	6.81E-04	6.49E-04			
631	6.87E-04	6.49E-04	6.36E-04			
630	7.36E-04	7.43E-04	7.14E-04			
629	7.87E-04	7.31E-04	7.35E-04			
628	8.85E-04	7.98E-04	7.99E-04			
627	8.88E-04	8.73E-04	8.22E-04			
626	8.81E-04	8.24E-04	8.17E-04			
625	9.12E-04	8.83E-04	8.60E-04			
624	9.66E-04	9.25E-04	8.84E-04			
623	0.00103	0.00101	9.63E-04			
622	0.00106	0.00103	0.00105			
621	0.00111	0.00107	0.00106			
620	0.00115	0.00111	0.00108			
619	0.00123	0.00119	0.00119			
618	0.00131	0.00125	0.00122			
617	0.00142	0.00133	0.00129			
616	0.00157	0.0014	0.00143			
615	0.00159	0.00147	0.00148			
614	0.0016	0.00149	0.0015			
613	0.00163	0.00155	0.00149			
612	0.00175	0.00167	0.00169			
611	0.0019	0.00179	0.00176			
610	0.00197	0.00187	0.00188			
609	0.0021	0.00191	0.00188			
608	0.0021	0.00204	0.00201			
607	0.00216	0.00214	0.00212			
606	0.00227	0.00224	0.00221			
605	0.00236	0.00232	0.00231			
604	0.00249	0.00246	0.00245			
603	0.00263	0.00253	0.00258			
602	0.00274	0.00265	0.00267			
601	0.00282	0.00283	0.00277			
600	0.00294	0.00289	0.00287			
599	0.0031	0.00299	0.00305			
598	0.00326	0.00322	0.00323			
597	0.0034	0.00337	0.00337			
596	0.00349	0.00342	0.00344			
595	0.00366	0.00359	0.00364			
594	0.00382	0.00376	0.0038			
593	0.00399	0.00397	0.00396			
592	0.00414	0.00408	0.00407			
591	0.00432	0.00424	0.00427			
590	0.00449	0.00446	0.00447			
589	0.00465	0.00462	0.00466			
588	0.00486	0.00482	0.00481			
587	0.00506	0.00501	0.00503			
586	0.00528	0.00519	0.0052			
585	0.00543	0.00535	0.0054			
584	0.00567	0.00558	0.00565			
583	0.00592	0.00582	0.00586			
582	0.00604	0.00604	0.00605			
581	0.00627	0.00628	0.00622			
580	0.00656	0.00651	0.00651			
579	0.00668	0.00674	0.00678			
578	0.00701	0.00695	0.00706			
577	0.00729	0.0072	0.00728			
576	0.00756	0.0075	0.00756			
575	0.00778	0.00775	0.00777			
574	0.00811	0.00803	0.00813			
573	0.00835	0.00829	0.00837			
572	0.00867	0.00853	0.00863			
571	0.00886	0.00878	0.00886			
570	0.0091	0.00907	0.00914			
569	0.00943	0.00939	0.00945			
568	0.00975	0.00969	0.00977			
567	0.01008	0.01002	0.01008			
566	0.01042	0.01028	0.01037			
565	0.01063	0.01062	0.01072			
564	0.01101	0.01094	0.011			
563	0.01129	0.01121	0.01134			
562	0.01168	0.01164	0.01175			
561	0.01201	0.01193	0.01202			
560	0.01233	0.01227	0.01234			
559	0.01267	0.01258	0.01271			
558	0.01298	0.01286	0.01302			
557	0.01337	0.01331	0.01342			
556	0.01364	0.01361	0.01373			
555	0.01405	0.01397	0.01408			
554	0.01444	0.01432	0.01441			
553	0.01479	0.0147	0.01485			
552	0.01512	0.01498	0.01519			
551	0.01544	0.01537	0.01552			
550	0.01583	0.01579	0.01595			
549	0.01616	0.01606	0.01624			
548	0.01651	0.01646	0.01662			
547	0.01693	0.01683	0.01697			
546	0.01727	0.01712	0.0173			
-----	---------	---------	---------			
545	0.01772	0.01761	0.01781			
544	0.01802	0.01795	0.01814			
543	0.01838	0.01829	0.0184			
542	0.01879	0.01876	0.0189			
541	0.01918	0.01912	0.01933			
540	0.01952	0.01941	0.01959			
539	0.01987	0.0198	0.02002			
538	0.02026	0.02023	0.02042			
537	0.0207	0.02062	0.02079			
536	0.02107	0.02099	0.02117			
535	0.02143	0.02133	0.0215			
534	0.02186	0.02172	0.02195			
533	0.02223	0.0221	0.02234			
532	0.02255	0.02253	0.02275			
531	0.02299	0.02289	0.02316			
530	0.02342	0.02328	0.02352			
529	0.02376	0.02369	0.02395			
528	0.02425	0.02412	0.02437			
527	0.02469	0.02448	0.02481			
526	0.02504	0.02496	0.02518			
525	0.02553	0.02536	0.02562			
524	0.02591	0.02586	0.02613			
523	0.02637	0.0263	0.02656			
522	0.02684	0.02678	0.02703			
521	0.02729	0.0272	0.02747			
520	0.0278	0.02769	0.02802			
519	0.02831	0.0282	0.02854			
518	0.02885	0.02875	0.02905			
517	0.02935	0.02936	0.02965			
516	0.02999	0.02982	0.03019			
515	0.03052	0.03038	0.03074			
514	0.03116	0.03105	0.0314			
513	0.0318	0.03168	0.03207			
512	0.0325	0.03239	0.03275			
511	0.03322	0.03311	0.03351			
510	0.03404	0.0339	0.03428			
509	0.03476	0.03463	0.03505			
508	0.03559	0.03549	0.03588			
507	0.03647	0.03641	0.03682			
506	0.03744	0.03735	0.03774			
505	0.03851	0.03838	0.03882			
504	0.03953	0.03943	0.03983			
503	0.04062	0.04048	0.04097			
502	0.04181	0.04169	0.04217			
501	0.04301	0.0429	0.04336			
500	0.04432	0.04422	0.04474			
---	---	---	---			
499	0.04568	0.04555	0.04608			
498	0.04715	0.04701	0.0475			
497	0.04867	0.04845	0.04906			
496	0.05009	0.04991	0.05055			
495	0.0517	0.05152	0.05215			
494	0.05334	0.0532	0.05384			
493	0.05503	0.0549	0.0555			
492	0.05675	0.05662	0.05723			
491	0.05848	0.05831	0.05894			
490	0.06024	0.06007	0.06077			
489	0.06201	0.06182	0.06255			
488	0.06383	0.06361	0.06438			
487	0.06562	0.06547	0.06618			
486	0.06738	0.06723	0.06794			
485	0.06912	0.069	0.06973			
484	0.07088	0.07065	0.07142			
483	0.07259	0.07234	0.07319			
482	0.07416	0.07395	0.07477			
481	0.0758	0.0756	0.07639			
480	0.07741	0.07717	0.07801			
479	0.07895	0.07865	0.07951			
478	0.08029	0.08003	0.08092			
477	0.08165	0.08142	0.08232			
476	0.08291	0.08266	0.08364			
475	0.08419	0.08394	0.08487			
474	0.0853	0.08512	0.086			
473	0.08642	0.08617	0.08708			
472	0.08746	0.08715	0.08808			
471	0.08843	0.0881	0.08902			
470	0.08931	0.08905	0.08995			
469	0.09014	0.08987	0.09083			
468	0.09096	0.09068	0.09165			
467	0.09167	0.09137	0.09229			
466	0.09227	0.09199	0.09299			
465	0.09291	0.0926	0.09358			
464	0.09346	0.09316	0.09415			
463	0.09396	0.09374	0.09469			
462	0.09447	0.09422	0.0952			
461	0.09493	0.09465	0.09563			
460	0.09532	0.09502	0.09595			
459	0.09564	0.09533	0.09634			
458	0.09596	0.09566	0.09666			
457	0.09619	0.09591	0.09695			
456	0.09639	0.09618	0.09719			
455	0.09665	0.09634	0.09724			
454	0.09671	0.09644	0.09736			
453	0.09685	0.09655	0.09754			
---	--------	--------	--------			
452	0.09687	0.09656	0.09761			
451	0.09684	0.09652	0.09755			
450	0.09682	0.09653	0.09745			
449	0.09669	0.09644	0.09736			
448	0.0965	0.0962	0.09724			
447	0.0963	0.09591	0.09685			
446	0.09594	0.09561	0.09658			
445	0.09562	0.09536	0.09637			
444	0.0953	0.09503	0.09602			
443	0.09481	0.09454	0.09549			
442	0.09437	0.09408	0.09499			
441	0.09381	0.09351	0.09447			
440	0.09327	0.09299	0.09391			
439	0.09265	0.09235	0.0933			
438	0.09203	0.09172	0.09261			
437	0.09136	0.09108	0.09198			
436	0.09056	0.09029	0.0912			
435	0.08984	0.08954	0.0904			
434	0.08903	0.08877	0.08965			
433	0.08828	0.08795	0.08887			
432	0.08743	0.08718	0.08806			
431	0.08661	0.08635	0.08719			
430	0.08576	0.08555	0.08635			
429	0.08498	0.0847	0.08551			
428	0.08414	0.08385	0.08473			
427	0.08323	0.08292	0.08381			
426	0.08236	0.08213	0.08292			
425	0.08153	0.08126	0.08209			
424	0.08073	0.08048	0.08126			
423	0.07987	0.07958	0.08035			
422	0.07896	0.07866	0.07948			
421	0.07813	0.07785	0.07867			
420	0.07727	0.07701	0.07778			
419	0.07642	0.07615	0.07695			
418	0.07554	0.07533	0.07599			
417	0.07473	0.07449	0.07517			
416	0.07379	0.07355	0.0743			
415	0.07304	0.07276	0.07351			
414	0.07217	0.07195	0.0727			
413	0.07145	0.07117	0.0719			
412	0.07056	0.07038	0.0711			
411	0.06991	0.06966	0.07029			
410	0.06912	0.06886	0.0696			
409	0.06839	0.06813	0.06885			
408	0.06776	0.0675	0.06816			
407	0.06712	0.06687	0.0675			
406	0.06654	0.06629	0.06693			
x	y1	y2	y3			
----	------	------	------			
359	0.08226	0.08144	0.08175			
360	0.08122	0.08037	0.0807			
361	0.08031	0.07956	0.07988			
362	0.07941	0.07876	0.07893			
363	0.0787	0.07811	0.07837			
364	0.07781	0.07737	0.0777			
365	0.07718	0.07645	0.07697			
366	0.07651	0.07589	0.07621			
367	0.07586	0.07524	0.07555			
368	0.07498	0.07428	0.07474			
369	0.07396	0.07346	0.07383			
370	0.07302	0.07257	0.07298			
371	0.07195	0.07148	0.07195			
372	0.07102	0.07042	0.07093			
373	0.07002	0.06948	0.06997			
374	0.06911	0.06866	0.06911			
375	0.06813	0.06785	0.06829			
376	0.06724	0.06687	0.06744			
377	0.06641	0.06611	0.06666			
378	0.06564	0.06529	0.06586			
379	0.06498	0.06467	0.06512			
380	0.06441	0.06415	0.06458			
381	0.0638	0.06359	0.06413			
382	0.06331	0.06308	0.06358			
383	0.06291	0.06263	0.06318			
384	0.06247	0.06216	0.06271			
385	0.0622	0.06189	0.06238			
386	0.06196	0.06166	0.06223			
387	0.0619	0.06159	0.06214			
388	0.06158	0.0614	0.06194			
389	0.06152	0.06128	0.06187			
390	0.06152	0.06125	0.06182			
391	0.06151	0.0612	0.06175			
392	0.06156	0.06132	0.06192			
393	0.06174	0.0615	0.06206			
394	0.06181	0.06161	0.06216			
395	0.06204	0.06177	0.06237			
396	0.06221	0.06195	0.06261			
397	0.06242	0.0622	0.06276			
398	0.06281	0.06259	0.0632			
399	0.06316	0.06291	0.06348			
400	0.06347	0.06331	0.06387			
401	0.06394	0.06366	0.0643			
402	0.06436	0.06408	0.06471			
403	0.06486	0.06457	0.06516			
404	0.06533	0.06513	0.06573			
405	0.06586	0.0657	0.06626			
---	------	------	------			
358	0.08347	0.08258	0.08287			
357	0.08506	0.08417	0.08541			
356	0.08674	0.08587	0.08594			
355	0.08867	0.08764	0.0878			
354	0.09083	0.08975	0.08984			
353	0.09315	0.09197	0.09209			
352	0.09559	0.09443	0.09447			
351	0.09814	0.09689	0.09685			
350	0.10071	0.09946	0.09936			
349	0.10359	0.1012	0.10194			
348	0.10744	0.1046	0.10426			
347	0.10883	0.1067	0.10656			
346	0.11021	0.10878	0.10931			
345	0.11373	0.11188	0.11247			
344	0.11738	0.11487	0.11531			
343	0.11944	0.11729	0.11746			
342	0.1218	0.12037	0.1201			
341	0.12598	0.12467	0.12426			
340	0.13084	0.12859	0.12858			
339	0.13405	0.13207	0.13205			
338	0.13919	0.13683	0.1367			
337	0.14394	0.14173	0.1414			
336	0.1492	0.14682	0.14667			
335	0.15459	0.15224	0.15186			
334	0.16028	0.15754	0.15701			
333	0.16569	0.16265	0.16224			
332	0.17182	0.16883	0.16836			
331	0.17836	0.17502	0.17444			
330	0.1849	0.18166	0.18096			
329	0.19266	0.18944	0.18833			
328	0.20173	0.19821	0.19715			
327	0.21216	0.20819	0.20707			
326	0.22395	0.2195	0.218			
325	0.23741	0.23268	0.23074			
324	0.25276	0.24746	0.24531			
323	0.26925	0.26382	0.26167			
322	0.28807	0.28255	0.27991			
321	0.30916	0.30276	0.30019			
320	0.33309	0.32647	0.32393			
319	0.36031	0.35345	0.35132			
318	0.39279	0.38589	0.38353			
317	0.4316	0.42468	0.42288			
316	0.47902	0.47175	0.47058			
315	0.53697	0.52946	0.52851			
314	0.6067	0.59838	0.59828			
313	0.68603	0.67765	0.67827			
312	0.77648	0.76732	0.76825			
-----	-----	-----	-----			
311	0.86148	0.86054	0.8617			
310	0.95007	0.94943	0.95072			
309	1.02648	1.02538	1.02726			
308	1.08354	1.08141	1.08384			
307	1.12394	1.11994	1.1221			
306	1.15238	1.14587	1.14819			
305	1.17554	1.16728	1.16979			
304	1.19657	1.1898	1.19288			
303	1.22313	1.21601	1.21863			
302	1.24686	1.2421	1.2446			
301	1.27096	1.26477	1.26785			
300	1.29058	1.28439	1.28679			
299	1.30673	1.30069	1.3046			
298	1.32021	1.31574	1.3188			
297	1.33493	1.32963	1.33246			
296	1.3473	1.34104	1.34448			
295	1.35634	1.3498	1.35315			
294	1.36165	1.35486	1.35761			
293	1.36179	1.35728	1.36022			
292	1.36118	1.3578	1.3602			
291	1.35954	1.35581	1.35719			
290	1.3547	1.35245	1.35316			
289	1.34628	1.34597	1.34728			
288	1.3341	1.33421	1.33642			
287	1.31783	1.31747	1.31928			
286	1.29546	1.29562	1.29702			
285	1.27041	1.26962	1.27091			
284	1.2424	1.24063	1.24179			
283	1.21205	1.21019	1.21039			
282	1.18096	1.17957	1.18027			
281	1.15168	1.15098	1.15091			
280	1.12444	1.12346	1.12322			
279	1.10147	1.09917	1.09844			
278	1.0806	1.07811	1.07701			
277	1.06222	1.05928	1.05827			
276	1.04609	1.04332	1.04211			
275	1.03157	1.02873	1.02705			
274	1.01597	1.01328	1.01235			
273	0.99903	0.99593	0.99489			
272	0.97914	0.97618	0.97541			
271	0.95839	0.95503	0.95383			
270	0.93693	0.93407	0.93299			
269	0.91772	0.91488	0.91381			
268	0.89978	0.89685	0.89588			
267	0.87974	0.87754	0.87679			
266	0.85739	0.855	0.85452			
265	0.83186	0.82973	0.82908			
---	-------	-------	-------			
264	0.80335	0.80159	0.80102			
263	0.77469	0.77269	0.77233			
262	0.74579	0.74431	0.74425			
261	0.71923	0.71755	0.71775			
260	0.69569	0.6942	0.69418			
259	0.67498	0.67381	0.67371			
258	0.65779	0.6563	0.65642			
257	0.64301	0.6418	0.64172			
256	0.63125	0.63012	0.6305			
255	0.62205	0.62136	0.62178			
254	0.61546	0.61489	0.61517			
253	0.61213	0.61141	0.61211			
252	0.61298	0.61233	0.61295			
251	0.61874	0.61823	0.61892			
250	0.63086	0.63019	0.63126			
249	0.64968	0.64961	0.65081			
248	0.67707	0.67698	0.67808			
247	0.71134	0.71123	0.71216			
246	0.75339	0.75337	0.75449			
245	0.80236	0.80188	0.80316			
244	0.85707	0.85676	0.85813			
243	0.91799	0.91749	0.91864			
242	0.98516	0.98497	0.98585			
241	1.05992	1.05911	1.06043			
240	1.14299	1.14202	1.14322			
239	1.23217	1.23129	1.23304			
238	1.32933	1.32824	1.3304			
237	1.42941	1.42755	1.43006			
236	1.52687	1.52621	1.52861			
235	1.61908	1.61839	1.62113			
234	1.69758	1.69674	1.69948			
233	1.763	1.76168	1.76307			
232	1.8127	1.81108	1.81344			
231	1.85413	1.85151	1.85323			
230	1.88722	1.88527	1.88626			
229	1.9132	1.90806	1.90978			
228	1.92876	1.92429	1.92649			
227	1.93466	1.93215	1.93214			
226	1.92874	1.92382	1.92362			
225	1.91333	1.91152	1.91068			
224	1.89315	1.88967	1.88913			
223	1.87229	1.86766	1.87079			
222	1.85887	1.85374	1.85572			
221	1.85661	1.85132	1.85058			
220	1.86876	1.86386	1.86684			
Wavelength [nm]	Absorption before irradiation	Absorption after 6 min irradiation	Absorption after 25 min irradiation	Absorption after 60 min irradiation	Absorption after 120 min irradiation	
----------------	-------------------------------	-----------------------------------	-----------------------------------	-----------------------------------	-----------------------------------	
750	1.81E-03	2.06E-03	2.41E-03	0.00246	0.00219	
749	1.68E-03	2.03E-03	2.30E-03	0.00237	0.00207	
748	1.76E-03	2.09E-03	2.35E-03	0.0023	0.00214	
747	1.83E-03	2.17E-03	2.34E-03	0.00235	0.00215	
746	1.82E-03	2.13E-03	2.37E-03	0.00232	0.00212	
745	1.82E-03	2.18E-03	2.40E-03	0.00238	0.00209	
744	1.78E-03	2.20E-03	2.37E-03	0.00238	0.00217	
743	1.69E-03	2.12E-03	2.34E-03	0.00229	0.00212	
742	1.71E-03	2.11E-03	2.26E-03	0.0023	0.00207	
741	1.86E-03	2.16E-03	2.43E-03	0.00228	0.00207	
740	1.77E-03	2.16E-03	2.34E-03	0.00227	0.00212	
739	1.70E-03	2.00E-03	2.17E-03	0.00225	0.00195	
738	1.61E-03	2.00E-03	2.28E-03	0.00226	0.00204	
737	1.77E-03	2.17E-03	2.36E-03	0.00239	0.00216	
736	1.73E-03	2.06E-03	2.38E-03	0.00229	0.00207	
735	1.66E-03	2.10E-03	2.22E-03	0.00222	0.00199	
734	1.64E-03	2.02E-03	2.24E-03	0.00226	0.00201	
733	1.68E-03	2.08E-03	2.28E-03	0.00224	0.00205	
732	1.74E-03	2.09E-03	2.32E-03	0.00234	0.00208	
731	1.69E-03	2.12E-03	2.33E-03	0.00231	0.00212	
730	1.79E-03	2.10E-03	2.30E-03	0.00228	0.00209	
729	1.70E-03	2.07E-03	2.21E-03	0.00222	0.00205	
728	1.76E-03	2.04E-03	2.19E-03	0.00228	0.00197	
727	1.74E-03	1.97E-03	2.30E-03	0.00226	0.00194	
726	1.64E-03	2.03E-03	2.25E-03	0.00227	0.00194	
725	1.73E-03	2.07E-03	2.24E-03	0.00229	0.00208	
724	1.62E-03	2.02E-03	2.25E-03	0.0022	0.002	
723	1.65E-03	1.97E-03	2.17E-03	0.00221	0.00192	
722	1.64E-03	2.00E-03	2.18E-03	0.00216	0.00199	
721	1.67E-03	1.99E-03	2.18E-03	0.00228	0.00199	
720	1.68E-03	2.05E-03	2.19E-03	0.00226	0.00204	
719	1.65E-03	1.92E-03	2.24E-03	0.00214	0.00201	
718	1.68E-03	1.98E-03	2.17E-03	0.00211	0.00191	
717	1.70E-03	2.07E-03	2.28E-03	0.00227	0.00207	
716	1.60E-03	1.99E-03	2.09E-03	0.00211	0.00191	
715	1.68E-03	2.05E-03	2.16E-03	0.00218	0.00197	
714	1.63E-03	1.91E-03	2.15E-03	0.00213	0.00189	
713	1.60E-03	1.98E-03	2.18E-03	0.00223	0.00193	
712	1.56E-03	1.98E-03	2.14E-03	0.00217	0.00193	
711	1.62E-03	2.03E-03	2.17E-03	0.00217	0.00192	
710	1.65E-03	1.98E-03	2.10E-03	0.00205	0.00186	
709	1.60E-03	1.96E-03	2.10E-03	0.00224	0.00193	
708	1.65E-03	1.93E-03	2.10E-03	0.00217	0.00184	
707	1.51E-03	1.92E-03	2.12E-03	0.00205	0.00177	
	6.9E-03	1.99E-03	2.16E-03	0.00218	0.00172	
-----	---------	----------	----------	----------	----------	
658	1.65E-03	1.97E-03	2.16E-03	0.00211	0.00176	
657	1.70E-03	1.98E-03	2.17E-03	0.00206	0.00178	
656	1.71E-03	2.06E-03	2.21E-03	0.00214	0.0018	
655	1.80E-03	2.05E-03	2.21E-03	0.00218	0.00179	
654	1.76E-03	2.10E-03	2.24E-03	0.00217	0.00181	
653	1.80E-03	2.10E-03	2.26E-03	0.0022	0.00186	
652	1.82E-03	2.13E-03	2.25E-03	0.00222	0.00184	
651	1.85E-03	2.18E-03	2.31E-03	0.00224	0.00185	
650	1.91E-03	2.23E-03	2.38E-03	0.00232	0.00198	
649	1.93E-03	2.25E-03	2.40E-03	0.00231	0.00192	
648	1.97E-03	2.25E-03	2.39E-03	0.00235	0.00192	
647	2.07E-03	2.37E-03	2.47E-03	0.00243	0.00203	
646	2.06E-03	2.30E-03	2.47E-03	0.00244	0.00206	
645	2.07E-03	2.40E-03	2.53E-03	0.00245	0.00213	
644	2.09E-03	2.40E-03	2.57E-03	0.00251	0.00212	
643	2.19E-03	2.47E-03	2.63E-03	0.0025	0.00214	
642	2.23E-03	2.52E-03	2.65E-03	0.00259	0.00219	
641	2.27E-03	2.54E-03	2.67E-03	0.00264	0.00222	
640	2.33E-03	2.64E-03	2.79E-03	0.00271	0.00231	
639	2.41E-03	2.69E-03	2.86E-03	0.00279	0.00237	
638	2.44E-03	2.75E-03	2.89E-03	0.00276	0.00236	
637	2.51E-03	2.82E-03	2.95E-03	0.00289	0.00245	
636	2.63E-03	2.88E-03	2.99E-03	0.00293	0.00252	
635	2.69E-03	2.92E-03	3.09E-03	0.00303	0.00263	
634	2.76E-03	3.06E-03	3.20E-03	0.00312	0.0027	
633	2.83E-03	3.10E-03	3.26E-03	0.00318	0.00277	
632	2.86E-03	3.18E-03	3.32E-03	0.00318	0.00281	
631	2.99E-03	3.26E-03	3.39E-03	0.0033	0.00287	
630	3.10E-03	3.37E-03	3.47E-03	0.00339	0.00298	
629	3.21E-03	3.48E-03	3.58E-03	0.00353	0.00304	
628	3.27E-03	3.56E-03	3.60E-03	0.00356	0.00311	
627	3.40E-03	3.65E-03	3.77E-03	0.00368	0.00316	
626	3.50E-03	3.69E-03	3.85E-03	0.00378	0.00329	
625	3.60E-03	3.89E-03	3.97E-03	0.00383	0.00345	
624	3.78E-03	4.02E-03	4.10E-03	0.00405	0.00356	
623	0.00384	0.00412	4.21E-03	0.00411	0.00369	
622	0.004	0.0043	0.00432	0.00421	0.00374	
621	0.00419	0.00436	0.0045	0.00429	0.00385	
620	0.00419	0.00451	0.00461	0.00439	0.00391	
619	0.00444	0.00464	0.00469	0.00459	0.00407	
618	0.00457	0.0048	0.00488	0.00474	0.00417	
617	0.0048	0.00498	0.00509	0.00497	0.0044	
616	0.00498	0.00512	0.0052	0.00507	0.00452	
615	0.00513	0.0053	0.00538	0.00524	0.00474	
614	0.00523	0.00544	0.00554	0.00536	0.00482	
613	0.00546	0.0057	0.00576	0.00558	0.00505	
----	------	------	------	------	------	
612	0.00567	0.00584	0.00591	0.00576	0.00523	
611	0.00587	0.00607	0.0061	0.00595	0.00537	
610	0.00613	0.00626	0.00635	0.00622	0.0056	
609	0.00626	0.00641	0.00645	0.00631	0.00574	
608	0.00653	0.00666	0.00674	0.00655	0.00598	
607	0.00673	0.00669	0.00693	0.00677	0.00624	
606	0.00698	0.00712	0.00714	0.00699	0.00647	
605	0.00722	0.00735	0.00736	0.00719	0.00664	
604	0.00751	0.00763	0.00764	0.00746	0.0069	
603	0.00778	0.00786	0.00788	0.00772	0.00715	
602	0.00801	0.00813	0.00813	0.00792	0.00739	
601	0.00839	0.00885	0.00846	0.00825	0.00775	
600	0.00865	0.00876	0.00872	0.00854	0.00793	
599	0.00895	0.009	0.00896	0.00879	0.0082	
598	0.00924	0.00931	0.00921	0.00904	0.0085	
597	0.00954	0.00961	0.00957	0.00934	0.00879	
596	0.00988	0.00993	0.00992	0.00966	0.00913	
595	0.01018	0.01024	0.01019	0.00997	0.00943	
594	0.01052	0.01057	0.01049	0.01026	0.00973	
593	0.01094	0.01095	0.01084	0.01063	0.01005	
592	0.01125	0.01129	0.01115	0.01095	0.01039	
591	0.01163	0.01163	0.01154	0.01128	0.01069	
590	0.01199	0.01195	0.01187	0.01164	0.01105	
589	0.0123	0.01229	0.01216	0.01188	0.01132	
588	0.01273	0.0127	0.01254	0.01229	0.01173	
587	0.0131	0.01305	0.01291	0.01264	0.01206	
586	0.01357	0.01345	0.01332	0.01304	0.01242	
585	0.01393	0.01389	0.01372	0.01346	0.01283	
584	0.01439	0.01426	0.01415	0.01383	0.01321	
583	0.01479	0.01471	0.01445	0.01416	0.01354	
582	0.01518	0.0151	0.0149	0.01455	0.01397	
581	0.01568	0.01556	0.01529	0.01504	0.01442	
580	0.01616	0.01592	0.01567	0.01542	0.01477	
579	0.01656	0.01636	0.0162	0.01587	0.01519	
578	0.01698	0.01685	0.01661	0.0162	0.01558	
577	0.0175	0.01735	0.01711	0.01668	0.01605	
576	0.01794	0.01775	0.01746	0.01706	0.01642	
575	0.01843	0.01824	0.01795	0.01758	0.01695	
574	0.01891	0.01872	0.0184	0.018	0.01734	
573	0.01944	0.0192	0.01889	0.01853	0.01783	
572	0.01986	0.0196	0.01924	0.01888	0.01819	
571	0.0204	0.02012	0.01979	0.01937	0.01871	
570	0.02083	0.02061	0.02024	0.0199	0.01919	
569	0.02138	0.02108	0.02075	0.02037	0.01964	
568	0.02185	0.0215	0.02116	0.02083	0.02008	
567	0.0224	0.02211	0.02162	0.02126	0.02053	
566	0.02286	0.02254	0.02201	0.02167	0.02094	
---	-------	-------	-------	-------	-------	-------
565	0.02337	0.02302	0.02255	0.02213	0.02141	
564	0.02381	0.02345	0.02297	0.02252	0.02178	
563	0.02439	0.02401	0.02351	0.02304	0.02236	
562	0.02489	0.02451	0.02396	0.02356	0.0228	
561	0.02538	0.02497	0.02444	0.02401	0.02324	
560	0.02587	0.02554	0.02491	0.02451	0.02374	
559	0.02641	0.0262	0.02574	0.02496	0.02419	
558	0.02683	0.02647	0.02594	0.02541	0.02462	
557	0.02739	0.02696	0.02635	0.02587	0.02516	
556	0.02788	0.02742	0.02678	0.02632	0.02559	
555	0.02837	0.02792	0.0273	0.02679	0.02608	
554	0.02887	0.0284	0.02775	0.02727	0.0265	
553	0.02941	0.02887	0.02825	0.02774	0.02697	
552	0.02984	0.02934	0.02874	0.0282	0.02743	
551	0.03032	0.02979	0.02917	0.02865	0.02785	
550	0.03081	0.03032	0.02967	0.02914	0.02836	
549	0.03128	0.03075	0.03005	0.02956	0.02874	
548	0.03177	0.03121	0.03048	0.03003	0.02923	
547	0.03222	0.03162	0.03095	0.03043	0.0296	
546	0.03263	0.03202	0.03133	0.03082	0.03001	
545	0.03308	0.03253	0.03181	0.03128	0.03046	
544	0.03353	0.03291	0.0322	0.0317	0.03084	
543	0.034	0.03342	0.03264	0.03218	0.03128	
542	0.03441	0.03377	0.03301	0.03249	0.03168	
541	0.03487	0.03424	0.03354	0.03298	0.03213	
540	0.03524	0.03463	0.03388	0.03335	0.03247	
539	0.03565	0.03508	0.03432	0.03376	0.03287	
538	0.03603	0.03543	0.03462	0.03408	0.03326	
537	0.03649	0.03586	0.03506	0.03448	0.03365	
536	0.03679	0.03615	0.03541	0.03489	0.03398	
535	0.03723	0.03658	0.03591	0.03531	0.03443	
534	0.03761	0.03699	0.03631	0.03572	0.03487	
533	0.03801	0.03733	0.03666	0.03609	0.03519	
532	0.0384	0.03771	0.03703	0.03646	0.03555	
531	0.0387	0.03804	0.03737	0.03678	0.03587	
530	0.03919	0.03846	0.03772	0.03718	0.03625	
529	0.03948	0.03879	0.03804	0.03749	0.0366	
528	0.03983	0.03909	0.0384	0.03784	0.03689	
527	0.04018	0.03946	0.03878	0.03817	0.03726	
526	0.04048	0.03981	0.03911	0.03851	0.03759	
525	0.04084	0.04017	0.03944	0.03882	0.03786	
524	0.04123	0.04053	0.03975	0.0392	0.03813	
523	0.04153	0.04081	0.04008	0.03947	0.03847	
522	0.04191	0.04116	0.04045	0.03979	0.03879	
521	0.04219	0.04146	0.04077	0.04003	0.03906	
520	0.04243	0.04178	0.041	0.0403	0.03934	
519	0.04288	0.04214	0.04133	0.04069	0.03974	
---	---	---	---	---	---	
518	0.04318	0.04249	0.04159	0.04101	0.04003	
517	0.04351	0.04275	0.04187	0.04131	0.04035	
516	0.04381	0.04308	0.0423	0.04164	0.04068	
515	0.04419	0.04345	0.04274	0.04204	0.04109	
514	0.04451	0.04378	0.04301	0.0424	0.04142	
513	0.04491	0.04419	0.04344	0.04276	0.04179	
512	0.04531	0.04453	0.04376	0.04314	0.04212	
511	0.04569	0.04491	0.04412	0.04352	0.04249	
510	0.04608	0.04534	0.04458	0.04391	0.04291	
509	0.04648	0.0447	0.04492	0.04428	0.04326	
508	0.04687	0.04614	0.04542	0.0447	0.0437	
507	0.0473	0.04654	0.04576	0.04509	0.04408	
506	0.04777	0.04704	0.0462	0.04556	0.04451	
505	0.0483	0.04752	0.04671	0.0461	0.045	
504	0.04879	0.04795	0.04721	0.04652	0.04546	
503	0.04933	0.04852	0.04779	0.04705	0.04598	
502	0.0498	0.04907	0.04828	0.04754	0.04648	
501	0.05043	0.04965	0.04887	0.0481	0.04702	
500	0.05101	0.05026	0.04943	0.0487	0.04761	
499	0.05169	0.05092	0.05006	0.04931	0.0482	
498	0.05244	0.0516	0.05076	0.04999	0.04887	
497	0.05316	0.0523	0.05146	0.05077	0.04959	
496	0.05393	0.05304	0.05221	0.05139	0.0503	
495	0.05466	0.0538	0.05296	0.05216	0.05102	
494	0.05549	0.05462	0.0537	0.0529	0.05183	
493	0.05641	0.0555	0.05459	0.05381	0.05261	
492	0.05735	0.05641	0.05549	0.05471	0.05348	
491	0.05828	0.05733	0.0564	0.05555	0.05435	
490	0.05926	0.05832	0.05736	0.05653	0.05528	
489	0.06029	0.05936	0.05836	0.05748	0.05625	
488	0.06133	0.06036	0.05932	0.05849	0.05722	
487	0.06247	0.06145	0.06047	0.05958	0.05831	
486	0.06361	0.06255	0.06154	0.06062	0.05931	
485	0.06483	0.06378	0.06274	0.06176	0.06046	
484	0.06601	0.06495	0.06384	0.0629	0.06161	
483	0.06722	0.06613	0.06501	0.06409	0.06271	
482	0.06848	0.06736	0.0662	0.06522	0.06387	
481	0.0698	0.06865	0.06744	0.06643	0.06505	
480	0.07103	0.06988	0.06861	0.06764	0.0662	
479	0.07244	0.07124	0.06993	0.06891	0.06749	
478	0.07372	0.07245	0.07124	0.07009	0.06864	
477	0.075	0.07374	0.07244	0.0714	0.06988	
476	0.07637	0.07512	0.07376	0.07264	0.0714	
475	0.07765	0.07636	0.07492	0.07388	0.07238	
474	0.0791	0.07773	0.07632	0.07517	0.0736	
473	0.08041	0.07901	0.07756	0.07641	0.07483	
472	0.0818	0.08036	0.07892	0.07771	0.07612	
471	0.0831	0.08163	0.08017	0.07891	0.07729	
470	0.08442	0.08293	0.08137	0.08015	0.07857	
469	0.08583	0.08432	0.0827	0.08145	0.07977	
468	0.08716	0.0856	0.08395	0.08275	0.08103	
467	0.08849	0.08686	0.08527	0.08393	0.08226	
466	0.08978	0.08816	0.08651	0.08517	0.08344	
465	0.09104	0.08938	0.08773	0.08636	0.08465	
464	0.09237	0.09068	0.08896	0.08759	0.0859	
463	0.09364	0.09193	0.09014	0.08878	0.08702	
462	0.09494	0.0932	0.09139	0.08999	0.08826	
461	0.0963	0.09447	0.09269	0.09123	0.08942	
460	0.09749	0.09566	0.09388	0.0924	0.09057	
459	0.0987	0.09679	0.09495	0.09345	0.09167	
458	0.09998	0.09807	0.09604	0.09457	0.09274	
457	0.10124	0.09935	0.09735	0.09576	0.09392	
456	0.1024	0.10048	0.09854	0.09695	0.09501	
455	0.10364	0.10174	0.09978	0.09821	0.09627	
454	0.10483	0.10283	0.10089	0.09928	0.09735	
453	0.10596	0.10396	0.10196	0.10031	0.09842	
452	0.10709	0.10508	0.10302	0.10137	0.0995	
451	0.10826	0.10625	0.10416	0.1025	0.10057	
450	0.10931	0.10714	0.10506	0.10344	0.1015	
449	0.11029	0.1082	0.10603	0.10439	0.1024	
448	0.11143	0.10936	0.10713	0.10536	0.10338	
447	0.11242	0.11024	0.10817	0.10643	0.10431	
446	0.11336	0.11122	0.10907	0.10738	0.10532	
445	0.1143	0.1122	0.10995	0.10822	0.10624	
444	0.11513	0.113	0.11081	0.10906	0.10704	
443	0.11603	0.11385	0.11155	0.1099	0.10784	
442	0.11682	0.11461	0.1123	0.11051	0.10848	
441	0.11744	0.11525	0.11297	0.11119	0.10904	
440	0.11815	0.11586	0.11366	0.11185	0.10978	
439	0.11864	0.11644	0.1142	0.11239	0.11034	
438	0.11912	0.11695	0.11461	0.11287	0.11076	
437	0.11961	0.11732	0.11498	0.11323	0.11114	
436	0.11992	0.11765	0.1154	0.11356	0.11136	
435	0.12019	0.11793	0.11565	0.11386	0.11167	
434	0.12034	0.11809	0.11584	0.11405	0.11199	
433	0.12041	0.11819	0.11595	0.11406	0.11193	
432	0.12044	0.11825	0.11594	0.1141	0.11204	
431	0.12042	0.11819	0.11591	0.11415	0.11209	
430	0.12025	0.11793	0.11573	0.11394	0.1118	
429	0.12001	0.11782	0.11561	0.11374	0.11157	
428	0.11969	0.11758	0.11531	0.11355	0.11144	
427	0.11936	0.11726	0.11502	0.1133	0.11122	
426	0.11899	0.11693	0.1147	0.11283	0.11079	
425	0.11859	0.11646	0.11432	0.11252	0.11046	
	377	0.12015	0.11897	0.11768	0.11652	0.11495
---	-----	---------	---------	---------	---------	---------
376	0.1214	0.1202	0.11904	0.11792	0.11623	
375	0.12269	0.12154	0.12049	0.11932	0.11774	
374	0.12399	0.12291	0.12187	0.12072	0.11921	
373	0.12542	0.12445	0.1232	0.12219	0.12072	
372	0.12696	0.1259	0.1248	0.12371	0.12229	
371	0.12858	0.12764	0.12641	0.12546	0.12405	
370	0.13021	0.12917	0.12807	0.12711	0.12584	
369	0.13193	0.13087	0.12984	0.12899	0.12769	
368	0.13369	0.13261	0.13156	0.13063	0.12949	
367	0.13546	0.13454	0.13347	0.13261	0.13149	
366	0.13743	0.13638	0.13542	0.13473	0.13358	
365	0.13967	0.13861	0.13765	0.13686	0.13584	
364	0.14214	0.14111	0.14014	0.13946	0.13852	
363	0.14503	0.14403	0.14309	0.14246	0.14154	
362	0.14818	0.14718	0.1464	0.14576	0.14495	
361	0.15203	0.15104	0.1503	0.14955	0.14886	
360	0.15628	0.15542	0.15461	0.1539	0.15334	
359	0.16099	0.16012	0.15926	0.15886	0.15824	
358	0.16589	0.16499	0.16403	0.16373	0.16323	
357	0.17078	0.1698	0.16916	0.16866	0.16826	
356	0.17543	0.17448	0.17383	0.17345	0.17321	
355	0.17972	0.17876	0.17805	0.17776	0.17757	
354	0.18418	0.18331	0.1825	0.18242	0.18232	
353	0.18875	0.18789	0.18724	0.18717	0.18727	
352	0.19397	0.19312	0.19249	0.1924	0.19257	
351	0.19989	0.19905	0.19838	0.19837	0.19867	
350	0.20635	0.20544	0.20488	0.20488	0.20534	
349	0.21243	0.21143	0.21038	0.21121	0.21065	
348	0.22289	0.22206	0.22172	0.22125	0.2212	
347	0.23163	0.23085	0.23145	0.23024	0.23081	
346	0.2408	0.24003	0.23954	0.23918	0.23981	
345	0.25233	0.25155	0.25026	0.24994	0.2507	
344	0.26572	0.26447	0.26405	0.26339	0.26412	
343	0.27934	0.27839	0.27827	0.27811	0.27844	
342	0.29231	0.29121	0.29094	0.29132	0.29174	
341	0.30596	0.30452	0.30449	0.30427	0.30478	
340	0.31792	0.31683	0.3162	0.3154	0.3166	
339	0.32761	0.32693	0.32609	0.3262	0.32686	
338	0.33604	0.33519	0.33474	0.33434	0.33557	
337	0.3436	0.3428	0.34189	0.34204	0.34366	
336	0.35214	0.351	0.35037	0.35088	0.35266	
335	0.36153	0.3603	0.35996	0.36049	0.36257	
334	0.37235	0.3714	0.37127	0.37175	0.37417	
333	0.385	0.38369	0.38378	0.38462	0.38703	
332	0.39982	0.39874	0.39869	0.39936	0.40276	
331	0.41673	0.41574	0.41546	0.41655	0.42031	
330	0.43737	0.43582	0.43586	0.43751	0.44152	
329	0.46032	0.45898	0.4596	0.46151	0.46601	
328	0.48837	0.48732	0.48775	0.4897	0.49514	
327	0.51967	0.51841	0.51924	0.52104	0.52741	
326	0.55335	0.55154	0.55265	0.55538	0.56248	
325	0.58926	0.5876	0.58881	0.59146	0.59995	
324	0.62565	0.62405	0.62514	0.62857	0.63744	
323	0.66319	0.66156	0.66255	0.66653	0.67712	
322	0.70313	0.70072	0.70236	0.70647	0.71785	
321	0.74602	0.74365	0.74462	0.74919	0.76143	
320	0.79398	0.79141	0.79214	0.79645	0.80961	
319	0.84946	0.84629	0.8463	0.8514	0.86444	
318	0.91309	0.90928	0.90927	0.91364	0.92661	
317	0.98757	0.98365	0.98201	0.98693	0.99936	
316	1.07609	1.07144	1.0696	1.07249	1.08541	
315	1.17975	1.17414	1.1702	1.17422	1.18591	
314	1.29995	1.29227	1.28836	1.29049	1.30247	
313	1.43373	1.42489	1.41976	1.42206	1.43417	
312	1.5827	1.57071	1.56378	1.56637	1.57971	
311	1.73744	1.7273	1.71635	1.71668	1.72724	
310	1.89905	1.88121	1.87578	1.87334	1.8895	
309	2.0535	2.03759	2.02746	2.02897	2.04127	
308	2.21389	2.20209	2.18667	2.185	2.19527	
307	2.37129	2.35535	2.34051	2.3317	2.35284	
306	2.52929	2.5264	2.50353	2.49823	2.5056	
305	2.68721	2.68288	2.64673	2.62738	2.65	
304	2.8505	2.81505	2.79199	2.76109	2.799	
303	2.97916	2.93146	2.93625	2.8622	2.88129	
302	3.03997	3.02976	3.01712	2.92828	2.91943	
301	3.12881	3.05553	3.07882	2.98752	2.93646	
300	3.14512	3.12629	3.07804	3.03773	3.02039	
299	3.12222	3.14133	3.11773	3.05718	3.04773	
298	3.17349	3.19632	3.13876	3.08438	3.05854	
297	3.20052	3.17376	3.13311	3.02062	3.04721	
296	3.21625	3.22382	3.18469	3.11392	3.07324	
295	3.21179	3.21788	3.19007	3.10458	3.10956	
294	3.30109	3.31584	3.19788	3.07795	3.15469	
293	3.23109	3.27259	3.22791	3.14459	3.14165	
292	3.25181	3.20104	3.23438	3.18793	3.16276	
291	3.334	3.26699	3.21558	3.19881	3.14092	
290	3.35061	3.2814	3.29038	3.17687	3.16709	
289	3.34431	3.31882	3.26682	3.18641	3.20726	
288	3.29072	3.30237	3.29689	3.21367	3.21452	
287	3.3442	3.36022	3.3705	3.21635	3.20981	
286	3.3833	3.45496	3.35672	3.21393	3.25933	
285	3.33541	3.57932	3.31657	3.24959	3.21796	
284	3.36973	3.50518	3.30564	3.22345	3.20144	
----	-------	-------	-------	-------		
283	3.30735	4.6392	3.24665	3.194		
282	3.27843	3.62403	3.29523	3.19789		
281	3.31897	3.41942	3.24833	3.19554		
280	3.29248	3.52668	3.20829	3.18674		
279	3.26373	3.51869	3.2423	3.1659		
278	3.21195	3.37145	3.24151	3.17219		
277	3.21475	3.27774	3.18377	3.12686		
276	3.25324	3.22804	3.20214	3.13909		
275	3.21014	3.22419	3.16077	3.13918		
274	3.1709	3.18502	3.11233	3.12686		
273	3.14035	3.21491	3.124	3.10622		
272	3.1112	3.1647	3.11233	3.11803		
271	3.08902	3.05044	3.07128	3.05061		
270	3.11185	3.04282	3.06208	3.04337		
269	3.05613	3.10975	3.02599	3.01792		
268	3.02012	3.00604	2.99591	2.98297		
267	2.95774	2.98152	2.93627	2.94316		
266	2.91829	2.92294	2.90131	2.88947		
265	2.87837	2.89838	2.87096	2.84674		
264	2.82836	2.81608	2.82417	2.81802		
263	2.77554	2.7313	2.78867	2.77767		
262	2.73918	2.69563	2.71683	2.71627		
261	2.6807	2.65089	2.66484	2.65561		
260	2.61891	2.59303	2.61352	2.59517		
259	2.55633	2.54233	2.5552	2.55702		
258	2.50674	2.50384	2.50266	2.49665		
257	2.46088	2.4659	2.45748	2.45527		
256	2.43245	2.4269	2.43009	2.42318		
255	2.42224	2.41159	2.41342	2.40725		
254	2.42142	2.41955	2.42048	2.41395		
253	2.43765	2.44104	2.44133	2.43151		
252	2.48725	2.48388	2.4793	2.47302		
251	2.53968	2.55175	2.53638	2.52709		
250	2.61999	2.63545	2.61655	2.60284		
249	2.71655	2.73331	2.70779	2.70355		
248	2.83606	2.8537	2.83391	2.8187		
247	2.98292	3.00913	2.96047	2.94712		
246	3.13577	3.21536	3.13552	3.09126		
245	3.2817	3.4343	3.27616	3.21405		
244	3.43073	3.59488	3.35661	3.32828		
243	3.48731	3.72126	3.48735	3.37472		
242	3.56927	3.73018	3.56101	3.46279		
241	3.63481	4.17702	3.57772	3.47142		
240	3.65077	3.95821	3.64564	3.49378		
239	3.72959	3.95401	3.60581	3.54487		
238	3.69096	3.67707	3.554	3.55191		
237	3.6727	3.63635	3.67595	3.562		

SI - 80
	SI	AI	SI-AI	SI	AI
236	3.68275	3.66374	3.57358	3.55622	3.52526
235	3.6392	3.76789	3.57046	3.5416	3.49835
234	3.64212	3.65816	3.55262	3.53397	3.50245
233	3.62529	3.66562	3.5918	3.48042	3.46854
232	3.65775	3.61407	3.57447	3.51077	3.53543
231	3.59879	3.46724	3.55259	3.49939	3.45765
230	3.67739	3.52781	3.60564	3.49652	3.53628
229	3.63603	3.52275	3.59006	3.52117	3.47702
228	3.60925	3.66613	3.5603	3.41461	3.47867
227	3.55174	3.65488	3.5788	3.50431	3.49178
226	3.64724	3.68299	3.53808	3.53167	3.4533
225	3.64914	3.50055	3.52065	3.43466	3.50253
224	3.64229	3.49292	3.55342	3.43767	3.44659
223	3.54244	3.63704	3.53928	3.49207	3.45375
222	3.54817	3.59049	3.47952	3.42542	3.44556
221	3.58572	3.65803	3.48654	3.44533	3.36517
220	3.54737	3.62303	3.48656	3.45621	3.38905
Electrochemical investigations

Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed with an AutoLab PGSTAT302 potentiostat-galvanostat controlled by resident NOVA 2.1.3 software.

A spectroelectrochemical cuvette from ALS Japan was used as electrochemical cell to scope with the very limited amount of available material. Two platinum wires served as working and auxiliary electrode respectively, and a silver/silver chloride electrode served as reference.

The measurements were conducted in HPLC grade acetonitrile (CH$_3$CN) and tetrabutyl-ammonium hexafluorophosphate (Bu$_4$NPF$_6$) was used as supporting electrolyte at a concentration of 0.1 M. All recorded potentials are given relative to Ag/AgCl/3M KCl. In all the experiments, the scan rate was 100 mV/s for CV and the pulse frequency was 15 Hz for SWV.

For all complexes (1, 2, 3, 4, 5 and 15) no redox signals at negative potentials were recorded, indicating that the ligand-centered reduction steps occur outside of the potential window accessible with our set-up and skills (-1.5 to 1.5 V). And indeed, the reduction of copper(I) diimine complexes is reported in literature between -1.5 and -1.7 V vs. SCE, corresponding to values between -1.532 and -1.732 V vs. Ag/AgCl/3M KCl.

The recorded voltamograms of the complexes 1, 2, 3, 4, 5 and 15 are displayed in figure SI5 and the extracted redox values are listed in table SI3. Due to the limited stability and/or isolation properties of the complexes 2-5, the redox studies were performed with the best available sample quality. However, the appearance of additional oxidation waves in 5 and even more pronounced in 2, is most likely rather due to impurities than due to intrinsic redox features of the parent complexes.

3Armaroli, Chem. Soc. Rev., 2001, 30, 113-124.
Figure SI5: CV (black lines) and SWV (red lines) voltamogramms recorded in 0.1M n-Bu4NPF6/CH3CN at 25 °C. Potentials are given relative to Ag/AgCl/3M KCl.

Table SI3: Electrochemical data for complexes 1-5 and 15. The measurements are performed in 0.1M n-Bu4NPF6/CH3CN at 25 °C (WE: Pt wire; RE: Ag/AgCl/3M KCl; CE: Pt wire). a) The appearance of two oxidation signals is most likely due to the quick decomposition of the complex and not a redox feature of the parent macrocyclized complex 2l.

Complex	E_{1/2} (V vs. Ag/AgCl/3M KCl)
15	1.00
4	1.00
2	0.68, 0.93\(^a\)
5	0.70
3	0.76
1	1.01