Non-equilibrium Model for Nanofluid Free Convection Inside a Porous Cavity Considering Lorentz Forces

M. Sheikholeslami², Ilyas Khan¹ & I. Tlili³

In current article, transportation of CuO nanoparticles through a porous enclosure is demonstrated. The enclosure has complex shaped hot wall. Porous media has been simulated via two temperature equations. Magnetic force impact on nanofluid treatment was considered. Control volume based finite element method has been described to solve current article in vorticity stream function form. Single phase model was chosen for nanofluid. Nanofluid characteristics are predicted via KKL model. Roles of solid-nanofluid interface heat transfer parameter (Nhs), porosity, Hartmann and Rayleigh numbers have been illustrated. Outputs illustrated that conduction mode reduces with augment of Ra. Increasing magnetic forces make nanofluid motion to decrease. Temperature gradient of nanofluid decreases with augment of Nhs. Reducing porosity leads to enhance in Nusselt number.

Solar power collectors and drying technologies are two common uses for porous enclosure. In some application, researchers should consider two- temperature model. Alsabery et al.¹ demonstrated nanoparticle transportation in a tilted porous cavity. They indicated that convective flow is significantly influenced by the permeable layer augmentation. Lu et al.² investigated about convective flow in a composite porous media containing gyrotactic microorganism with anisotropic slip. They considered the effect of activation energy. Zaimi et al.³ illustrated nanofluid boundary layer movement on a porous plate. Sheikholeslami and Shehzad⁴ showed the two temperature model for nanoparticle migration inside a permeable medium. They revealed that Nu increases with decrease of porosity. Khan et al.⁵ reported the nanofluid mixed convection over an oscillating vertical plate. They utilized Laplace transform method to solve the governing equations.

Sheikholeslami and Shehzad⁶ investigated the role of radiation on nanoparticle treatment. They found that Nu decreases with reduce of radiation parameter. Haq et al.⁷ used carbon nanotubes to improve convective heat transfer over plate with slip flow. Carbon Nanotubes has been dispersed in to engine oil by Haq et al.⁸ is examined of magnetic forces. Tripathi et al.⁹ illustrated viscous dissipation and Hall effects on nanofluid rotating flow. Selimefendigil and Oztop¹⁰ depicted impact of inclination on hydrothermal behavior. They found that tilted angle can be used as control parameter.

Promvonge et al.¹¹ applied new way in a duct to improve the thermal characteristics. Sheikholeslami¹² described the impact of electric filed on nanofluid free convection. He proved that Nusselt number enhances by adding electric field. Aman et al.¹³ illustrated the nanofluid thermal improvement in migration of CNTs nanoparticles. Sheikholeslami and Seyyednezhad¹⁴ illustrated nanofluid Electrohydrodynamic flow in a permeable enclosure. Different applications of Fe3O4-water nanofluid were categorized by Sheikholeslami and Rokni¹⁵. Akbar et al.¹⁶ showed the role of Hartmann flow on nanoparticles migration in a duct. Najib et al.¹⁷ demonstrated the impact of chemical factor on flow style. They found that the Nu augments with augment of curvature. Various articles were been available about nanoparticle migration through porous media¹⁸⁻²¹.

Current publication is about nanoparticle migration in a porous enclosure with two temperature model via CVFEM considering magnetic force. Results illustrate the roles of significant parameters on contours.

Explanation of Geometry

Figure 1 illustrates the details of current geometry. The hot wall can formulate by:

¹Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. ²Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran. ³Energy and Thermal Systems Laboratory, National Engineering School of Monastir, Street Ibn El Jazzar, 5019, Monastir, Tunisia. Correspondence and requests for materials should be addressed to I.K. (email: ilyaskhan@tdt.edu.vn)
Figure 1. (a) Geometry and the boundary conditions with (b). A sample triangular element and its corresponding control volume.

Coefficient values	CuO—Water
a_1	-26.593310846
a_2	-0.403818333
a_3	-33.356805
a_4	-1.915825591
a_5	$6.42185846558E-02$
a_6	48.40336955
a_7	-9.78756683
a_8	190.24561009
a_9	10.928586565
a_{10}	-0.72069983664

Table 1. The coefficient values of CuO—Water nanofluid.

Material	$\rho \text{ (kg/m}^3\text{)}$	$C_p \text{ (J/kg K)}$	$k \text{ (W/m K)}$	$\beta \times 10^6 \text{ (K}^{-1}\text{)}$	$d_p \text{ (nm)}$	$\sigma \text{ (m}^{-1}\text{)}$
Water	997.1	4179	0.613	21	$-$	0.05
CuO	6500	540	18	29	29	10^{-10}

Table 2. Thermo physical properties of water and nanoparticles.
\[r_{\text{out}} = r_{\text{in}} + A \cos(N(\zeta - \zeta_0)) \quad (1) \]

\[r_{\text{out}}, r_{\text{in}}, A, N \] are outer and inner radius, amplitude, number of undulation. The porous enclosure is full of nanofluid and influenced by magnetic force.

CVFEM and Explanation

Formulation. According to existence of magnetic force and two temperature model for porous medium the basic formulas are:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (2) \]

\[-\frac{\partial P}{\partial x} + \sigma_{ij} B_0^2 \left[v (\sin \gamma)(\cos \gamma) - u(\sin \gamma)^2 \right] - \frac{\mu_{nf}}{K} u = 0 \quad (3)\]
Figure 3. Streamlines (Ψ), isotherms for the nanofluid (θ_{nf}) and the solid (θ_s) at $Ra = 100$, $Ha = 0$, $\phi = 0.04$.

Table 4. Nu_{ave} for various Gr and Ha at $Pr = 0.733$.
\[
\frac{h_{nf}}{K} v = -\frac{\partial P}{\partial y} + (T - T_0)g_{by} \beta_{nf}
\]
\[
+ \sigma_{nf} B_0^2 [\mu (\cos \gamma) (\sin \gamma) - \nu (\cos \gamma)^2]
\]
(4)

\[
\frac{1}{\varepsilon} \left\{ \frac{\partial T_{nf}}{\partial x} + \nu \frac{\partial T_{nf}}{\partial y} \right\} = \frac{h_{nf} \varepsilon}{(\varepsilon) (\rho C_p)_{nf}} (-T_{nf} + T_0) + \frac{k_{nf}}{(\rho C_p)_{nf}} \left(\frac{\partial^2 T_{nf}}{\partial y^2} + \frac{\partial^2 T_{nf}}{\partial x^2} \right)
\]
(5)

Figure 4. Streamlines (Ψ), isotherms for the nanofluid (\(\theta_{nf}\)) and the solid (\(\theta\)) at Ra = 100, Ha = 20, \(\phi = 0.04\).
\[
\frac{k_f}{(\rho C_p)_f} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \frac{k_{nf}}{(1 - \phi)(\rho C_p)_s} (T_{nf} - T_i) = 0
\]

(\(\rho C_p\), \(\rho\beta\), \(\rho\), \(\sigma\), and \(k_{nf}, \mu_{nf}\) can define as: \(22\).

\[
(\rho C_p)_{nf} = \phi(\rho C_p)_p + (1 - \phi)(\rho C_p)_f
\]
Equation 8:
\[
(\rho\beta)_nf = (1 - \phi)(\rho\beta)_f + \phi(\rho\beta)_p
\]

Equation 9:
\[
\rho_{nf} = \rho_f(1 - \phi) + \rho_p\phi
\]

Equation 10:
\[
\frac{\sigma_{nf}}{\sigma_f} = \frac{(MM - 1)3\phi}{(MM + 2) + \phi(1 - MM)} + 1, \quad MM = \frac{\sigma_p}{\sigma_f}
\]

Figure 6. Streamlines (Ψ), isotherms for the nanofluid (θ_{nf}) and the solid (θ_{s}) at Ra = 500, Ha = 20, φ = 0.04.
Figure 7. Streamlines (Ψ), isotherms for the nanofluid (θ_{nf}) and the solid (θ_s) at $Ra = 1000$, $Ha = 0$, $\phi = 0.04$.

\[
\frac{k_{nf}}{k_f} = 1 - 3 \left(1 - \frac{k_f}{k_f} \right)^{-\phi} + \frac{\nu_f}{\rho_f \alpha_{nf}} c_{p_f} (5 \times 10^4) g'(d_p, T, \phi) \rho_f \phi
\]

\[
g'(d_p, T, \phi) = (a_2 \ln(d_p) + a_3 + a_3 \ln(\phi) + a_3 \ln(d_p)^2 + a_4 \ln(d_p) \ln(\phi)) \ln(T) + (a_5 \ln(d_p) \ln(\phi) + a_6 \ln(d_p^2) + a_7 \ln(d_p) + a_8 + a_9 \ln(\phi))
\]

(11)
\[\mu_f = \frac{\mu_f}{(1 - \phi)^2} + \frac{\mu_f}{k_f} (k_{\text{Brownian}}/Pr) \]

(12)

where \(\phi \) is nanofluid volume fraction. Required characteristics and parameters are illustrated in Tables 1 and 2. Considering following definitions:

Figure 8. Streamlines (\(\Psi \)), isotherms for the nanofluid (\(\theta_{nf} \)) and the solid (\(\theta_s \)) at \(Ra = 1000, Ha = 20, \phi = 0.04 \).
\[\nu = -\frac{\partial \psi}{\partial x}, \quad (X, Y) = (x, y)/L, \quad \nu = \frac{\partial \psi}{\partial y} \]

\[\Theta_{ef} = (T_{ef} - T_e)/(T_h - T_e), \quad \Psi = \psi/\alpha_{nf}, \quad \Theta_f = (T_f - T_e)/(T_h - T_e). \]

Final equations are:

\[\frac{\partial^2 \Psi}{\partial X^2} + \frac{\partial^2 \Psi}{\partial Y^2} = \frac{A_1}{A_2} \frac{Ha}{A_3} \left[\frac{\partial^2 \Psi}{\partial Y^2} (\sin^2 \gamma) + \frac{\partial^2 \Psi}{\partial X^2} (\cos^2 \gamma) + 2 \frac{\partial^2 \Psi}{\partial X \partial Y} (\sin \gamma)(\cos \gamma) \right] \]

\[\frac{\partial^2 \Theta_{ef}}{\partial Y^2} + \frac{\partial^2 \Theta_{ef}}{\partial X^2} + Nhs(\Theta_f - \Theta_{ef}) = -\frac{\partial \Theta_{ef}}{\partial Y} \frac{\partial \Psi}{\partial X} + \frac{\partial \Psi}{\partial Y} \frac{\partial \Theta_{ef}}{\partial X}. \]
\[\varepsilon \left(\frac{\partial^2 \theta}{\partial Y^2} + \frac{\partial^2 \theta}{\partial X^2} \right) + Nhs \delta(\theta_{nf} - \theta_s) = 0 \] (16)

where:

A_1 = \frac{\rho_{nf}}{\rho_f}, \quad Ra = (\rho\beta_f) \frac{k_g L \Delta T}{\alpha_f \mu_f}, \quad A_5 = \frac{\mu_{nf}}{\mu_f}

A_2 = \frac{(\rho C_p)_{nf}}{(\rho C_p)_f}, \quad \delta_s = k_{nf}/[k_f(1 - \varepsilon)], A_4 = \frac{k_{nf}}{k_f}

A_3 = \frac{(\rho \beta)_nf}{(\rho \beta)_f}, \quad Ha = \frac{\sigma_f K B_0^2}{\mu_f}

Nhs = h_{nf} L^2/k_{nf}, \quad A_6 = \frac{\sigma_{nf}}{\sigma_f} \tag{17}

Boundary conditions are:
\[\theta_{of} = \theta_{i} = 0.0 \] on outer wall
\[\Psi = 0.0 \] on all walls
\[\theta_{of} = \theta_{i} = 1.0 \] on inner wall

\[\begin{align*}
\text{Nu}_{loc} \text{ and } \text{Nu}_{ave} \text{ are:} \\
\text{Nu}_{loc} &= \frac{k_{of}}{k_f} \frac{\partial \theta_{of}}{\partial r} \\
\text{Nu}_{ave} &= \frac{1}{2\pi} \int_{0}^{2\pi} \text{Nu}_{loc} \, dr
\end{align*} \tag{19} \]

CVFEM. The innovative in which triangular element is used and upwind method is applied for advection term is CVFEM (Fig. 1(b)). Gauss-Seidel is the name of the method which is used for final step as mentioned in ref.23.

Mesh Independent Test and Validation

Obviously, the final outputs should not alter by changing mesh size. So, this test should be done for various cases as illustrated Table 3. Also, we should be sure about accuracy of written code by applying this code for previous published problem. Table 4 and Fig. 2 illustrates nice accuracy24–26.

Results and Discussion

In current research, migration of CuO nanoparticles is simulated via Non-equilibrium. Innovative method is applied to show the impacts of porosity, buoyancy, magnetic forces and the Nhs. Results show that \text{Nu}_{ave} reduces with augment of Ha, ε, Nhs. Convective flow enhances with increase of Nhs and ε while it reduces with enhance of magnetic force. When Ra = 1000, ε = 0.3, increasing Nhs leads to 17.06 percent decrement of \text{Nu}_{ave} in absence of magnetic field. Impact of Nhs is negligible in existence of Lorentz force. Also \text{Nu}_{ave} decreases about 53% with augment of Hartmann number.

Conclusions

In current research, migration of CuO nanoparticles is simulated via Non-equilibrium. Innovative method is applied to show the impacts of porosity, buoyancy, magnetic forces and the Nhs. Results show that \text{Nu}_{ave} reduces with augment of Ha, ε, Nhs. Convective flow enhances with increase of Nhs and ε while it reduces with enhance of magnetic force. When Ra = 1000, ε = 0.3, increasing Nhs leads to 17.06 percent decrement of \text{Nu}_{ave} in absence of magnetic field. Impact of Nhs is negligible in existence of Lorentz force. Also \text{Nu}_{ave} decreases about 53% with augment of Hartmann number.

References

1. Alsabery, A. I., Chamkha, A. J., Saleh, H. & Hashim, I. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Scientific Reports, 7, 2357 (2017).
2. Dianchen, L., Ramzan, M., Naeem, U., Chung, J. D. & Umer, F. A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. Scientific Reports, 7, 17008 (2017).
3. Khairy, Z., Anuar, I. & Ioan, P. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Scientific Reports, 4, 4404 (2014).
4. Shikhholeslami, M. & Shehzad, S. A. Simulation of water based nanofluid convective flow inside a porous enclosure via Non-equilibrium model. International Journal of Heat and Mass Transfer 120, 1200–1212 (2018).
5. Khan, I., Shah, N. A. & Dennis, L. C. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate. Scientific Reports, 7, 40147 (2017).
6. Shikhholeslami, M. & Shehzad, S. A. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. International Journal of Heat and Mass Transfer 109, 82–92 (2017).
7. Ul Haq, R., Nadeem, S., Khan, Z. H. & Noor, N. F. M. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: Condensed Matter 457(15), 40–47 (2015).
8. Ul Haq, R., Shahzad, F. & Al-Mdallal, Q. M. MHD Pulsatile Flow of Engine oil based Carbon Nanotubes between Two Concentric Cylinders. Results in Physics 7, 57–68 (2017).
9. Tripathi, R., Seth, G. S. & Mishra, M. K. Double diffusive flow of a hydromagnetic nanofluid in a rotating channel with Hall effect and viscous dissipation: Active and passive control of nanoparticles. Advanced Powder Technology 28, 2630–2641 (2017).
10. Fatih, S. & Hakan, F. O. Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. Journal of Molecular Liquids 216, 67–77 (2016).
11. Promvonge, P. Thermal performance in square-duct heat exchanger with quadruple V-finned twisted tapes. Applied Thermal Engineering 91, 298–307 (2015).
12. Sheikholeslami, M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. Journal of Molecular Liquids 249, 1212–1221 (2018).
13. Sidra, A., Khan, I., Zulkhibri, I., Mohd, Z. S. & Qaseem, M. M. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Scientific Reports 2445, 01358–3 (2017).
14. Sheikholeslami, M. & Mohadeseh, S. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. International Journal of Heat and Mass Transfer 120, 772–781 (2018).
15. Sheikholeslami, M. & Rokni, H. B. Simulation of nanofluid heat transfer in presence of magnetic field: A review. International Journal of Heat and Mass Transfer 115, 1203–1233 (2017).
16. Noreen, S. A., Raza, M. & Ellahi, R. Interaction of nano particles for the peristaltic flow in an asymmetric channel with the induced magnetic field. The European Physical Journal- Plus 129, 155–167 (2014).
17. Najwa, N., Norfifah, B., Norihan, M. A. & Anuar, I. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. Scientific Reports 4178, 04178 (2014).
18. Sheikholeslami, M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. Journal of Molecular Liquids 249, 921–929 (2018).
19. Syam, L. S. et al. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nano composite nanofluids. Scientific Reports 0439, 04039 (2014).
20. Sheikholeslami, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. Journal of Molecular Liquids 249, 739–746 (2018).
21. Yuan, M., Fenghua, S. & Yangzhi, C. Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Scientific Reports 31246, 31246 (2016).
22. Sheikholeslami, M. Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letters A 381, 494–503 (2017).
23. Sheikholeslami, M. Application of Control Volume based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer, Elsevier, ISBN: 9780128141526 (2018).
24. Kim, B. S., Lee, D. S., Ha, M. Y. & Yoon, H. S. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International Journal of Heat and Mass Transfer 51, 1888–1906 (2008).
25. Khanafer, K., Vafai, K. & Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46, 3639–3653 (2018).
26. Rudraiah, N., Barron, R. M., Venkatachalappa, M. & Subbaraya, C. K. Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Engng. Sci. 33, 1075–1084 (1995).

Author Contributions
I.K. formulated the problem. M.S. computed the numerical results. I.K. and M.S. wrote the main manuscript text.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-33079-6.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018