INTRODUCTION

Post-harvest loss (PHL) is the degradation in both quantity and quality of food produced from harvest to consumption. The quality of losses includes those that affect nutrients or caloric compositions (Kiaya, 2014). The post-harvest management of crops in most developing countries is far from satisfactory and the incidence of huge Post-harvest losses and the challenges of liberalization and globalization calls for serious need to reduce the trend (Asian Productivity Organization, APO, 2006). It is disheartening to note that while many resources are being devoted to planting crops, irrigation, fertilizer application and crop protection measures for increased productivity, little is being done to minimize post-harvest loss by implication, productive agricultural resources such as land, water, labour, managerial skills and other inputs that could have been channelled to more viable ends are being wasted (Adepoju, 2014). In developing countries, an estimated 32% of farm produce is lost and only 5% of research funding has been allocated to activities on post-harvest handling (Mitcham, 2014). This shows that very little is being done to reduce post-harvest losses and there is no way food security can be achieved if wastage is not curbed; not even by increase in production of food crops.

One of the most challenging issues in the world today is how to provide sufficient food to more than seven billion people. Food insecurity problem is thus a global phenomenon that all hands have being on deck to solve (Ayinde et al., 2020). PHL is a major challenge in food production and supply chains in developing countries like Nigeria (Balana et al., 2022). Nigeria faces a crisis of access to food and general food availability (Owoo, 2021). The PHL limit the potential income of the respondents, threaten food security and exacerbate conditions of poverty among rural households, whose income stream depends on the ability to store excess farm produce for a later date (Thamaga -Chitja et al., 2004 cited by Okoruwa et al., 2009). Ayandiji et al. (2011) and Luo et al. (2022), stated that food security can be reduced by increase in production and or reduction of losses. Major efforts have always been concentrated on the former to the neglect of the later. About 5-25% of fruits and vegetables leaving the farm gates are never consumed Watkins and Anubh, (2007) as cited in Mbuuk et al. (2011), Post-harvest losses in food crops can reach 50% of total food production. It is discouraging and counter-productive for respondents, after channelling so much of their limited resources to lose the harvested produce before it gets to the market or consumers due to factors beyond their control (Adepoju, 2014). This of course has kept the hydra-headed problem of food insecurity alive because according to Adepoju (2014), Post-harvest losses have negative impact on the per-capita income and consequently, on the welfare of the respondents. As far as food insecurity problem is concerned, post-harvest handling is one important area requiring attention in an effort to combat hunger, raise income and food security.
A better understanding of PHL in Katsina State is thus imperative as there are no recent studies that have describe the magnitude of the menace in the state. The objectives of the study are to describe the causes and stages of PHL as well as estimate the magnitude of PHL in physical and monetary terms. It is expected that the findings from the study will help in providing empirical information that can serve as basis for the design of technologies that will help in reducing the plague of PHL in the Guinea Savannah of Nigeria.

METHODOLOGY
The study was conducted in Katsina state, northern Nigeria. Katsina State is lies between latitude 11° 08’N - 13° 22’N and longitude 6° 52’E - 9° 21’E. The area has an estimated population of 5.081 million people and a total land area of 23,938 square Kilometres (NPC, 2006). Katsina is a mono-ethnic and monolingual state and the people are generally Hausa/Fulani (Wikipedia, 2017). It borders Kaduna State to the south, Jigawa and Kano States to the East, Zamfara State to the west and shares an international border with Republic of Niger to the North. The state extends from the tropical grassland known as Sudan Savannah to Arid Zone in the North (Wikipedia, 2017). The rainy season which lasts for five months covers the period between May and September while the dry season covers about seven months of the year between October and April. The dry season is usually accompanied by the dry Harmattan winds with lower temperatures (Wikipedia, 2017). The state has an average temperature of between 21 °C and 30 °C. Primary data was utilized for the study and was collected with the aid of structured questionnaire which was administered on the respondents by trained enumerators. A multi-stage sampling approach was adopted for the study. In the first stage, 16 Local Government Areas (LGAs) were randomly selected from each of the three agro-ecological zones in Katsina State. In the second stage, 3 villages were randomly selected from the 16 LGAs to give a total of 48 villages. In the last stage, five households were selected proportionately from each of the selected villages to give a total of 240 respondents for the study. The sampling size selection is presented in Table 1.

![Table 1: Sample Size Selection](image)

Data was collected on Village and household socio-economic characteristics, incidence of PHL such as major crops affected, cause of post-harvest loss, stage(s) of post-harvest loss, quantity and cost of post-harvest losses, food consumption and expenditure. Data was analysed using descriptive statistics, contingency valuation method, and ordered Probit model was used to establish the nexus between the household food security and PHL, the ordered Probit model was utilised. The model is presented below:

$$RCCSI = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + \beta_4 Z_4 + \beta_5 Z_5 + \beta_6 Z_6 + \beta_7 Z_7 + \beta_8 Z_8 + \beta_9 Z_9 + \beta_{10} Z_{10} + U$$

Where: $RCCSI$ = Reduced Consumption Coping Strategy Index or household food security status measured as food secure, less food insecure, moderately food insecure and severely food insecure, and ordered as 0, 1, 2 and 3 respectively; β_0= Constant; β_1-β_{10} = Coefficients, U= error term.

The explanatory variables that were used in the two models include:

- X_1 = Age of household head (years)
- X_2 = gender of household head (D=1 if male; 0=otherwise)
- X_3= Marital status of household head (Single=0; Married=1; Widowed=3; Divorced/Separated=4)
- X_4 = Household size (number)
- X_5= educational status of household head (years)
- X_6= farming experience of household head (years)
- X_7= farm size (hectares)
- X_8= farm income (naira)
- X_9= off-farm income (naira)
- X_{10}= membership of a social group (D=1 if member; 0=otherwise)
- X_{11} = access to agricultural credit (D=1 if yes; 0=otherwise)
- X_{12} = Livestock ownership (D=1 if owned; 0=otherwise)

![Table 1: Sample Size Selection](image)
X_{13} = Land ownership (D=1 if owned; 0= otherwise)

X_{14} = Dependency ratio

X_{15} = Postharvest loss of household (Kg)

The Reduced Consumption Coping Strategy Index (RCCSI) is a variant of the coping strategy index calculated based on the five standard consumption coping strategies: Eating less preferred food, borrowing food/money from friends and relatives, limiting portions at meal times, limiting adult intake and reducing the number of meals per day with their universal severity weighting. This index facilitates the comparison of food insecurity across various strata by normalising the behaviours and severity scores that are used to create the index. The RCCSI score denotes that the higher the values of the RCCSI score, the higher the level of food insecurity and vice-versa. (Edeh and Gyimah-Brempong, 2015).

RESULTS AND DISCUSSION

Socioeconomic Characteristics of respondents

To better understand the background of the respondents, a detailed socioeconomic characteristics is presented in Table 2 below. The results shows that majority (34%) of the respondents interviewed are within the age of 41-50 years, this group is closely followed by those that fall within the age category of 51-60 years (29.5%). About 54% are within the age range of 31-50 years which is referred to as the active years during which people are believed to put their best into agricultural activities. All the respondents are males showing that in the study area, major food crops are grown exclusively by male respondents.

Table 2: Socio-economic characteristics of respondents

S/N	VARIABLES	FREQUENCY	PERCENTAGE
A	Age		
21-30 years		6	2.5
31-40 years		48	20
41-50 years		82	34
51-60 years		71	29.5
61-70 years		26	11
71-80 years		7	3
B	Gender		
Male		240	100
Female		0	0
C	Marital Status		
Single		2	1
Married		238	99
D	Level of Education		
No formal education		4	2
Adult education		6	2.5
Quranic education		127	53
Primary education		34	14
Secondary education		46	19
Household Size	E		
----------------	---	---	
1-8	46	19	
9-16	132	55	
17-24	40	17	
25-32	18	7	
33-40	3	1.25	
41-48	1	0.75	

Main Occupation	F	
Crop farming	179	74.5
Livestock farming	21	9
Fish farming	2	1
Commercial driving	3	1.25
Tailoring	3	1.25
Petty trading	4	1.6
Mechanic	1	0.4
Carpentry	5	2
Others	22	9

Years of Farming Experience	G	
1-12	23	10
13-24	65	27
25-36	98	41
37-48	40	17
49-60	13	5

Access to Credit	H	
Yes	32	13
No	208	87

Source of Credit	I	
State Government	3	9
NGOs	1	3
Agric Bank	10	31
Local money lenders	4	13
Family	12	38
Friends	2	6
n = 32		

Membership of Cooperatives	J	
Yes	46	19
No	194	81

Years of Membership of Cooperative	K	
<1	3	7
1-5	17	37
6-10	8	17
11-15	8	17
16-20	4	9
>20	6	13
n= 46		

Contacts with Extension Agents	L	
Yes	46	19
No	194	81

PHL Training	M	
Yes	45	19
No	195	81

Source of Training	N	
ADP	9	20
NGOs	5	11
The result on Table 3 presents the distribution of respondents based on their farm holdings. Most of the respondents have farm holdings of between 0.5-5ha.

Table 3: Farm Holdings of Respondents

FARM SIZE (Hectares)	SORGHUM	MILLET	MAIZE	COWPEA		
Range	F	%	F	%	F	%
0.5-5	230	231	191	108		
5.1-10	8	6	5	2		
10.1-15	1	0	0	0		
15.1-20	0	0	0	0		
21.1-25	1	0	0	0		

Source: Authors computation from Field Survey, 2020

Major Food Crops prone to Post-harvest loss in Katsina State

The major food crops that are prone to post-harvest loss in the study area are presented in Figure 1 below. The results revealed that sorghum, millet, maize and cowpea are the major food crops that suffer high levels of post-harvest loss in Katsina state. Focus group discussions with the female household members revealed that all four crops are key to meeting household food security needs. This is because the crops are the major food crops consumed by the households in the form of local delicacies such as fura, Kunu, kosai, pate, tuwo, moimoi, white and jollof rice respectively. Inability to produce enough of these crops implies reduction in food consumption or purchase from market if the means is available.

![Major food crops in percentages](image-url)

- Multiple responses occurred.

Figure 1: Food Crops prone to Post-harvest loss in Katsina State
Stages of Occurrence of PHL in Major Food Crops

The stages of occurrence of PHL for the food crops in Katsina State are presented in Table 4 below. The results revealed that losses occur at various stages for each crop. For example, cowpea PHL are higher during storage, this is due to the fact cowpea has lots of pests both on the field and in the store. Sorghum PHL are higher during threshing and storage while maize PHL are higher during drying and at storage. Millet losses are also higher during threshing and storage respectively. The stages of PHL identified agrees with those reported by Olurunfemi and Kayode (2021). The use of rudimentary methods of post-harvest handling is not a key factor that contributes to high PHL observed for all crops. Also, absence of modern storage facilities in the state may not be unconnected with the high PHL at during storage.

Table 4: Stages of Occurrence of PHL for major Food Crops in Katsina State

Food Crops	Threshing	Winnowing	Drying	Transportation	Packaging	Storage
	Frequency of occurrence					
Cowpea	57	32	57	15	4	167
Groundnut	1	1	1	1	0	3
Sorghum	92	44	59	49	10	115
Maize	47	22	49	30	6	73
Millet	98	37	27	43	3	115
Rice	5	5	1	1	3	4

Source: Authors computation from Field Survey, 2020 (NB: Figures in bold indicate high frequencies)

Causes of PHL in Major Food Crops

The major causes of PHL in food crops are presented in Table 5 below. The results revealed that PHL in cowpea is mainly due to insect pest attack and spillage during post-harvest handling operations. Poor storage conditions and spillage are also responsible for the losses observed in sorghum. Maize PHL are mainly due to theft and spillage while millet losses are due to spillage and poor storage facilities. The findings agrees with those of Adeola (2020). The above implies the need to improve post-harvest handling of crops and the urgent need for provision of low cost storage facilities such as metal silos.

Table 5: Major causes of PHL in food crops

Food Crops	Insect pest attack	Theft	Spillage during post-harvest handling	Poor Transport facilities	Poor Packaging	Poor Storage facilities
Cowpea	185	67	99	16	8	4
Groundnut	5	1	2	1	0	0
Sorghum	4	88	174	47	11	158
Maize	9	78	86	14	56	6
Millet	5	83	124	30	11	106
Rice	4	3	10	1	1	0

Source: Authors computation from Field Survey, 2020 (NB: Figures in bold indicate high frequencies)

Estimation of Quantity of PHL in Monetary and physical terms

Data were collected on the estimated quantity of PHL of major food crops at different stages along their value chains. The results as presented in Table 6 revealed that farmers make huge losses from PHL. This confirms that PHL can lead to poverty as a result of loss of income by farming households. In other words PHL, if left unchecked can aggravate household poverty as the surplus that could have been sold to meet basic needs must now be consumed by household members instead.
Table 6: Average estimate of PHL in physical and monetary terms

Crop	PHL in Physical terms (Kg)	PHL (₦)
Sorghum	350	56,000
Maize	300	90,000
Millet	400	48,000
Cowpea	120	36,000

Source: Authors computation from Field Survey, 2020

Nexus between PHL and Food Security
The results of the ordered Probit model in Table 7 showed the nexus between PHL and food security. The Log likelihood of -266.40 with Prob > chi-square value of 0.0008 (28.34), which was significant at p<0.01, is an indication that the model as a whole was statistically significant and well fitted. The Pseudo R^2 was 0.051, while the estimated cut-off points (μ) showed that the categories were ranked in an ordered way of $\mu_3>\mu_2>\mu_1>\mu_0$. The results also revealed that household size, access to credit, years of education and post-harvest losses were the statistically significant explanatory variables that influenced food security among the food secure and moderately food insecure households in the study area. Access to credit, years of education were significant at p<0.01; while household size and post-harvest losses were significant at p<0.10, except for years of education among the moderately food insecure group that was significant at p<0.05. For the less food insecure group, results showed that only years of education was significant at p<0.05. However, for the severely food insecure category, access to credit and years of education significantly influenced their food security level at p<0.01 and p<0.05 respectively.
Table 7: Estimates of determinants of Food security among farming households

Variable	Coefficient	SE	Z statistics						
Age of household head	0.0163	0.0024	1.54	0.0019	1.49	0.0032	-1.54	0.0011	-1.49
Household size	-0.0207	0.0027	**-1.65**	0.0022	-1.58	0.0036	**1.65**	0.0013	1.57
Farming experience	0.0062	0.0022	0.60	0.0018	0.60	0.0030	-0.60	0.0010	-0.59
Farm income	-5.57e-08	0.0000	-1.06	0.0000	-1.04	0.0000	1.05	0.0000	1.04
Farm size	-0.0032	0.0034	-0.20	0.0026	-0.20	0.0045	0.20	0.0015	0.20
Access to credit (Base=No)	0.8928	0.0841	**3.07***	0.0359	0.85	0.0543	**-4.38***	0.0148	**-3.45***
Membership of a social	0.1339	0.0437	0.69	0.0261	0.79	0.0541	-0.72	0.0156	-0.76
group (Base=No)									
Education in years	0.0390	0.0033	**2.56***	0.0028	**2.33**	0.0044	**-2.53**	0.0016	**-2.33**
Post-harvest loss	0.0004	0.0001	**-1.68**	0.0000	-1.62	0.0001	**1.68**	0.0000	1.60
Cut 1	-0.6981								
Cut 2	0.7056								
Cut 3	2.1067								
Number of observations	240	LR chi2	28.34**	266.40	Pseudo R² = 0.051	Prob > chi2	0.0008***		
Log Likelihood									

Source: Authors computation from Field Survey, 2020

*** = 1% significant level, ** = 5% significant level, * = 10% significant level
Estimates of the Marginal Effect of the Nexus between PHL and Food Security

The marginal effect of the nexus between PHL and Food Security among farming households in the study area is as shown in Table 8. The results revealed the increase in the probability of being in any of the four levels of food security identified for a unit increase in the value of the explanatory variables and a change from one level to the base level for categorical and dummy variables. The results revealed that a 1% increase in the household size, significantly (p<0.10) decreased the probability of the farming household being food secure by 0.004, but increased the probability of the household being moderately food insecure by 0.006. Access to credit increased the probability (0.258) of being in the food secure category at p<0.01, but decreased the probability of being in the moderately food insecure and severely food insecure categories by 0.238 and 0.051 respectively. Likewise, a 1% increase in the years of education significantly (p<0.01) increased the probability of a farming household being in the food secure and the less food insecure categories by 0.008 and 0.007 respectively; but decreased the probability of being in the moderately food insecure and severely food insecure categories by 0.011 and 0.004 respectively. Lastly, a 1% increase in the quantity of PHL, significantly (p<0.10) decreased the probability of the farming household being food secure by 0.0001, but increased the probability of the household being moderately food insecure by 0.0001. The above results clearly showed the nexus between post-harvest losses and food security; that is, the higher the PHL, the lower the probability of a farming household being food secure. This implies that high levels of PHL are detrimental to the food security status of rural households.

Table 8: Marginal effect for the Determinants of Food security

Variables	Food secure	Less Food insecure	Moderately Food insecure	Severely Food insecure
Age of household head	0.0037	0.0029	-0.0049	-0.0016
Household size	-0.0044*	-0.0035	0.0060*	0.0020
Farming experience	0.0013	0.0010	-0.0018	-0.0006
Farm income	-1.18e-08	-9.28e-09	1.59e-08	5.27e-09
Farm size	-0.0007	-0.0005	0.0009	0.0003
Access to credit (Base=No)	0.2581***	0.0307	-0.2377***	-0.0511***
Membership of a social group (Base=No)	0.0301	0.0205	-0.0387	-0.0119
Education in years	0.0084***	0.0066**	-0.0112**	-0.0037**
Post-harvest loss	-0.0001*	-0.0001	0.0001*	0.00004

Source: Authors computation from Field Survey, 2020
Legend: *** = 1% significant level, ** = 5% significant level, * = 10% significant level

CONCLUSION AND RECOMMENDATIONS

Based on the findings of the study, we conclude that PHL occurs in major food crops in Katsina State especially sorghum, millet, maize and cowpea. The PHL in food crops occurs majorly during post-harvest handling and at storage. The major causes of PHL in food crops are improper post-harvest handling, poor storage facilities and use of poor packaging materials. The occurrence of PHL in food crops constitutes a serious threat to household food security and poverty. The determinants of PHL include age of farmer, distance to farm, experience and amount of credit obtained. Based on the findings of the study, the followings are recommended:

1. There is need to train respondents across the state on post-harvest handling techniques. This training can be carried out by extension agents during their regular visits to respondents. It is expected that such trainings will build the capacity of respondents thus reducing or totally eliminating PHL.
2. The provision of affordable and modern storage devices such as the metal silos will help to reduce losses occurring at storage.
3. Proper packaging materials such as the Purdue improved crop storage system should be introduced to respondents across the State to...
reduce losses experienced due to the use of poor packaging materials

Acknowledgements
The authors sincerely appreciate the Tertiary Education Trust Fund (TeTFund) for providing the funds utilised for the study under the Institution Based Research (IBR) Grant program.

REFERENCES
Adepoju, A.O. (2014). Post-harvest losses and welfare of tomato farmers in Ogbomosho, Osun State, Nigeria. Journal of stored products and postharvest Research. 5(2):8-13.

Adeola, E. H. (2020). A post-harvest management practices among rice farmers in Imo State Nigeria. European Journal of Biology and Biotechnology, 1(4) https://doi.org/10.24018/ejbio.2020.1.4.32

Asian Productivity Organisation (APO, 2005). Postharvest Management of Fruit and Vegetables in the Asia-Pacific Region Reports of the Asian Productivity Organisation seminar on Reduction of Postharvest Losses of Fruit and Vegetables held in India, 5–11 October 2004 and Marketing and Food Safety: Challenges in Postharvest Management of Agricultural/Horticultural Products in Islamic Republic of Iran, 23–28 July 2005 Published by Asian Productivity Organization Tokyo, Japan and Food and Agriculture Organization of the United Nations Agricultural and Food Engineering Technologies Service.

Ayandiji, A, Adeniyi, O. R., Omidiji, D (2012). Determinant Post-harvest losses among Tomato Farmers in Imeko-Afon Local Government Area of Ogun State, Nigeria. Global Journal of Science Frontier Research. 11(5):1-7

Ayiinde, I. A., Otekunrin, O. A., Akinbode, S. O., & Otekunrin, O. A. (2020). Food security in Nigeria: impetus for growth and development. J. Agric. Econ, 6:808-820.

Balana, B. B., Aghadi, C. N., & Ogunneloyi, A. I. (2022). Improving livelihoods through post-Harvest-loss management: evidence from Nigeria. Food Security, 14(1):249-265.

Edede, O.H and Gyimah-Brempong, K. (2015). Determinants of change and household response to food insecurity: Empirical evidence from Nigeria. African Journal of Agricultural Science 10(5):423-433

Folayan, J. A (2013) Determinants of Post-harvest losses of Maize in Akure North Local Government Area of Ondo State, Nigeria. Journal of Sustainable Society 2(1):12-19 DOI:10.11634/216825851302303

Kiaya, V. (2014). Post-harvest losses and strategies to reduce them being a Technical paper on Post-harvest loss of the Scientific & Technical Department, Action Contre La Faim (ACF) ACF-January 2014

Kulwijila, M. (2021). Socio-Economic Determinants of Post-Harvest Losses in the Grape Value Chain in Dodoma Municipality and Chamwino District, Tanzania. African Journal of Economic Review, 9(2):288-305.

Luo, Y, Huang, D and Wu, L (2022) On farm post-harvest loss reduction methods: evidence from China. International Journal of Agricultural Sustainability, 1-11

Mada, D.A,Hussaini, D.I., Medugu, A.I and Adams I.G (2014). Global Journal of Science frontier Research: Agriculture and Veterinary Vol. 14 Issue 2 version 1.0

Mbuk, E. M., Bassey, N. E., Udoh, E. S. and Udoh, E. J (2011). Factors influencing post-harvest loss of tomatoe in Urban market in Uyo, Nigeria. Nigerian Journal of Agriculture, Food and Environment. 7(2):40-46

Mitcham, B (2014). The Horticulture Innovation Lab and Its Focus on Improving Postharvest Practices A paper presented at the Feed the Future Innovation Lab Collaborative Research on Horticulture titled “Postharvest in Horticulture: Reducing losses and improving quality to capture high-value crops” at the University of California, Washington Center in Washington, D.C. on July 24, 2014.
