Some identities of symmetry for the generalized Bernoulli numbers and polynomials

By

Taekyun Kim

Abstract. In this paper, by the properties of p-adic invariant integral on \mathbb{Z}_p, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties of p-adic invariant integral on \mathbb{Z}_p, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.

2000 Mathematics Subject Classification: 11B68, 11M38, 11S80.

Key Words and Phrases: p-adic invariant integral, Bernoulli numbers, Bernoulli polynomials.

§1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p,$ and \mathbb{C}_p will denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = 1/p$. Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable function on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined as

$$I(f) = \int_{\mathbb{Z}_p} f(x)dx = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x), \quad \text{(see [6])}. \tag{1}$$

From the definition (1), we have

$$I_1(f_1) = I_1(f) + f'(0), \quad \text{where} \quad f'(0) = \left. \frac{df}{dx} \right|_{x=0} \quad \text{and} \quad f_1(x) = f(x+1). \tag{2}$$

Let $f_n(x) = f(x+n), \ (n \in \mathbb{N})$. Then we can derive the following equation (3) from (2).

$$I(f_n) = I(f) + \sum_{i=0}^{n} f'(i), \quad \text{(see [6])}. \tag{3}$$
It is well known that the ordinary Bernoulli polynomials $B_n(x)$ are defined as

$$\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see [1-25]}),$$

and the Bernoulli number B_n are defined as $B_n = B_n(0)$.

Let d a fixed positive integer. For $n \in \mathbb{N}$, we set

$$X = X_d = \lim_{N \to \infty} \left(\mathbb{Z}/d^N \mathbb{Z} \right), \quad X_1 = \mathbb{Z}_p;$$

$$X^* = \bigcup_{0 < a < dp, (a,p) = 1} (a + dp \mathbb{Z}_p);$$

$$a + dp^N \mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},$$

where $a \in \mathbb{Z}$ lies in $0 \leq a < dp^N$. In [6], it is known that

$$\int_X f(x) dx = \int_{\mathbb{Z}_p} f(x) dx, \quad \text{for } f \in UD(\mathbb{Z}_p).$$

Let us take $f(x) = e^{tx}$. Then we have

$$\int_{\mathbb{Z}_p} e^{tx} dx = \frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

Thus, we note that

$$\int_{\mathbb{Z}_p} x^n dx = B_n, \quad n \in \mathbb{Z}_+, \quad (\text{see [1-25]}).$$

Let χ be the Dirichlet’s character with conductor $d \in \mathbb{N}$. Then the generalized Bernoulli polynomials attached to χ are defined as

$$\sum_{a=1}^{d} \frac{\chi(a) e^{at}}{e^{at} - 1} e^{xt} = \sum_{n=0}^{\infty} B_{n,\chi}(x) \frac{t^n}{n!}, \quad (\text{see [22]}),$$

and the generalized Bernoulli numbers attached to χ, $B_{n,\chi}$ are defined as $B_{n,\chi} = B_{n,\chi}(0)$.

In this paper, we investigate the interesting identities of symmetry for the generalized Bernoulli numbers and polynomials attached to χ by using the properties of p-adic invariant integral on \mathbb{Z}_p. Finally, we will give relationship between the power sum polynomials and the generalized Bernoulli numbers attached to χ.
§2. Symmetry of power sum and the generalized Bernoulli polynomials

Let \(\chi \) be the Dirichlet character with conductor \(d \in \mathbb{N} \). From (3), we note that

\[
\int_X \chi(x)e^{xt}dx = \frac{t \sum_{i=0}^{d-1} \chi(i)e^{it}}{e^{dt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!},
\]

(5)

where \(B_{n,\chi}(x) \) are \(n \)-th generalized Bernoulli numbers attached to \(\chi \). Now, we also see that the generalized Bernoulli polynomials attached to \(\chi \) are given by

\[
\int_X \chi(y)e^{(x+y)t}dy = \frac{\sum_{i=0}^{d-1} \chi(i)e^{it}}{e^{dt} - 1}e^{xt} = \sum_{n=0}^{\infty} B_{n,\chi}(x) \frac{t^n}{n!}.
\]

(6)

By (5) and (6), we easily see that

\[
\int_X \chi(x)x^n dx = B_{n,\chi}, \quad \text{and} \quad \int_X \chi(y)(x+y)^n dy = B_{n,\chi}(x).
\]

(7)

From (6), we have

\[
B_{n,\chi}(x) = \sum_{\ell=0}^{n} \binom{n}{\ell} B_{\ell,\chi}x^{n-\ell}.
\]

(8)

From (6), we can also derive

\[
\int_X \chi(x)e^{xt}dx = \sum_{i=0}^{d-1} \chi(i) \frac{t}{e^{dt} - 1}e^{(\frac{i}{d})dt} = \sum_{n=0}^{\infty} \left(d^n \sum_{i=0}^{d-1} \chi(i)B_n \left(\frac{i}{d} \right) \right) \frac{t^n}{n!}.
\]

Therefore, we obtain the following lemma.

LEMMA1. For \(n \in \mathbb{Z}_+ \), we have

\[
\int_X \chi(x)x^n dx = B_{n,\chi} = d^n \sum_{i=0}^{d-1} \chi(i)B_i \left(\frac{i}{d} \right).
\]

We observe that

\[
\frac{1}{t} \left(\int_X \chi(x)e^{(nd+x)t}dx - \int_X e^{xt} \chi(x)dx \right) = \frac{nd \int_X \chi(x)e^{xt}dx}{\int_X e^{ndxt}dx} = \frac{e^{ndt} - 1}{e^{dt} - 1} \left(\sum_{i=0}^{d-1} \chi(i)e^{it} \right). \tag{9}
\]

Thus, we have

\[
\frac{1}{t} \left(\int_X \chi(x)e^{(nd+x)t}dx - \int_X e^{xt} dx \right) = \sum_{k=0}^{\infty} \left(\sum_{\ell=0}^{d-1} \chi(\ell)e^{\ell k} \right) \frac{t^k}{k!}. \tag{10}
\]
Let us define the p-adic functional $T_k(\chi, n)$ as follows:

$$T_k(\chi, n) = \sum_{\ell=0}^{n} \chi(\ell) \ell^k, \quad \text{for } k \in \mathbb{Z}_+.$$ (11)

By (10) and (11), we see that

$$\frac{1}{t} \left(\int_X \chi(x)e^{(nd+x)t}dx - \int_X e^{xt}dx \right) = \sum_{n=0}^{\infty} \left(T_k(\chi, nd - 1) \right) \frac{t^k}{k!}. \quad (12)$$

By using Taylor expansion in (12), we have

$$\int_X \chi(x)(dn + x)^kdx - \int_X \chi(x)x^kdx = kT_{k-1}(\chi, nd - 1), \quad \text{for } k, n, d \in \mathbb{N}. \quad (13)$$

That is,

$$B_{k,\chi}(nd) - B_{k,\chi} = kT_{k-1}(\chi, nd - 1).$$

Let $w_1, w_2, d \in \mathbb{N}$. Then we consider the following integral equation

$$\frac{d}{X} \int_X \chi(x_1)\chi(x_2)e^{(w_1x_1+w_2x_2)t}dx_1dx_2 \int_X e^{dw_1x_2t}dx$$

$$= \frac{t(e^{dw_1x_2t} - 1)}{(e^{w_1dt} - 1)(e^{w_2dt} - 1)} \left(\sum_{a=0}^{d-1} \chi(a)e^{w_1at} \right) \left(\sum_{b=0}^{d-1} \chi(b)e^{w_2bt} \right). \quad (14)$$

From (9) and (12), we note that

$$\frac{d}{X} \int_X \chi(x)e^{xt}dx \int_X e^{dw_1x_2t}dx = \sum_{k=0}^{\infty} \left(T_k(\chi, dw_1 - 1) \right) \frac{t^k}{k!}. \quad (15)$$

Let us consider the p-adic functional $T_\chi(w_1, w_2)$ as follows:

$$T_\chi(w_1, w_2) = \frac{d}{X} \int_X \chi(x_1)\chi(x_2)e^{(w_1x_1+w_2x_2+w_1w_2x)\mu}dx_1dx_2 \int_X e^{dw_1x_2t}dx_3 \int_X e^{dw_1x_2t}dx_3. \quad (16)$$

Then we see that $T_\chi(w_1, w_2)$ is symmetric in w_1 and w_2, and

$$T_\chi(w_1, w_2) = \frac{t(e^{dw_1x_2t} - 1)e^{w_1w_2t}}{(e^{w_1dt} - 1)(e^{w_2dt} - 1)} \left(\sum_{a=0}^{d-1} \chi(a)e^{w_1at} \right) \left(\sum_{b=0}^{d-1} \chi(b)e^{w_2bt} \right). \quad (17)$$
By (16) and (17), we have

\[
T_\chi(w_1, w_2) = \left(\frac{1}{w_1} \int_X \chi(x_1)e^{w_1(x_1+w_2x)}dx_1 \right) \left(\frac{dw_2 \int_X \chi(x_1)e^{w_1x_1}dx_1}{\int_X e^{w_1x_1}dx} \right)
\]

\[
= \left(\frac{1}{w_1} \sum_{i=0}^{\infty} B_{i,\chi}(w_2x) \frac{w_1^i i!}{i!} \right) \left(\sum_{k=0}^{\infty} T_k(\chi, dw_1-1) \frac{w_2^k k!}{k!} \right)
\]

\[
= \frac{1}{w_1} \left(\sum_{\ell=0}^{\infty} \sum_{i=0}^{\ell} B_{i,\chi}(w_2x) T_{\ell-i}(\chi, dw_1-1) \frac{w_1^i w_2^{\ell-i} i!}{i!(\ell-i)!} \right) \frac{t^\ell}{\ell!}
\]

(18)

From the symmetric property of \(T_\chi(w_1, w_2) \) in \(w_1 \) and \(w_2 \), we note that

\[
T_\chi(w_1, w_2) = \left(\frac{1}{w_2} \int_X \chi(x_2)e^{w_2(x_2+w_1x)}dx_2 \right) \left(\frac{dw_1 \int_X \chi(x_1)e^{w_2x_2}dx_2}{\int_X e^{w_2x_2}dx} \right)
\]

\[
= \left(\frac{1}{w_2} \sum_{i=0}^{\infty} B_{i,\chi}(w_1x) \frac{w_2^i i!}{i!} \right) \left(\sum_{k=0}^{\infty} T_k(\chi, dw_2-1) \frac{w_1^k k!}{k!} \right)
\]

\[
= \frac{1}{w_2} \left(\sum_{\ell=0}^{\infty} \sum_{i=0}^{\ell} B_{i,\chi}(w_1x) w_2^i T_{\ell-i}(\chi, dw_2-1) \frac{w_1^{\ell-i} (\ell-i)!}{(\ell-i)!} \right) \frac{t^\ell}{\ell!}
\]

(19)

\[
= \sum_{\ell=0}^{\infty} \left(\sum_{i=0}^{\ell} \frac{\ell!}{i!} w_2^{i-1} w_1^{\ell-i} B_{i,\chi}(w_1x) T_{\ell-i}(\chi, dw_2-1) \right) \frac{t^\ell}{\ell!}
\]

By comparing the coefficients on the both sides of (18) and (19), we obtain the following theorem.

Theorem 2. For \(w_1, w_2, d \in \mathbb{N} \), we have

\[
\sum_{i=0}^{\ell} \left(\frac{\ell!}{i!} B_{i,\chi}(w_2x) T_{\ell-i}(\chi, dw_1-1) w_1^{i-1} w_2^{\ell-i} \right)
\]

\[
= \sum_{i=0}^{\ell} \left(\frac{\ell!}{i!} B_{i,\chi}(w_1x) T_{\ell-i}(\chi, dw_2-1) w_2^{i-1} w_1^{\ell-i} \right).
\]

Let \(x = 0 \) in Theorem 2. Then we have

\[
\sum_{i=0}^{\ell} \left(\frac{\ell!}{i!} B_{i,\chi} T_{\ell-i}(\chi, dw_1-1) w_1^{i-1} w_2^{\ell-i} \right)
\]

\[
= \sum_{i=0}^{\ell} \left(\frac{\ell!}{i!} B_{i,\chi} T_{\ell-i}(\chi, dw_2-1) w_2^{i-1} w_1^{\ell-i} \right).
\]
By (15) and (17), we also see that

$$T(w_1, w_2) = \left(\frac{e^{w_1 w_2 x}}{w_1} \right) \int_X \chi(x_1) e^{w_1 x_1 t} dx_1 \left(\frac{d}{dx} \int_X \chi(x_2) e^{w_2 x_2 t} dx_2 \right)$$

$$= \left(\frac{e^{w_1 w_2 x}}{w_1} \right) \int_X \chi(x_1) e^{w_1 x_1 t} dx_1 \left(\frac{d}{dx} \int_X \chi(x_2) e^{w_2 x_2 t} dx_2 \right)$$

$$= \left(\frac{e^{w_1 w_2 x}}{w_1} \right) \int_X \chi(x_1) e^{w_1 x_1 t} dx_1 \left(\frac{d}{dx} \int_X \chi(x_2) e^{w_2 x_2 t} dx_2 \right)$$

$$= \left(\frac{e^{w_1 w_2 x}}{w_1} \right) \int_X \chi(x_1) e^{w_1 x_1 t} dx_1 \left(\frac{d}{dx} \int_X \chi(x_2) e^{w_2 x_2 t} dx_2 \right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{w_2-1} \chi(i) B_{k,\chi}(w_1 x + \frac{w_1 i}{w_2}) \frac{w_2^{k+1}}{k!} \right) t^k.$$
Theorem 3. For $w_1, w_2, d \in \mathbb{N}$, we have
\[
\sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(w_2x + \frac{w_2}{w_1}i)w_1^{k-1} = \sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(w_1x + \frac{w_1}{w_2}i)w_2^{k-1}.
\]

Remark. Let $x = 0$ in Theorem 3. Then we see that
\[
\sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(\frac{w_2}{w_1}i)w_1^{k-1} = \sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(\frac{w_1}{w_2}i)w_2^{k-1}.
\]
If we take $w_2 = 1$, then we have
\[
\sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(\frac{i}{w_1})w_1^{k-1} = \sum_{i=0}^{d-1} \chi(i) B_{k,\chi}(w_1i).
\]

References

[1] L. C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.

[2] M. Cenkci, Y. Sisek, V. Kurt, Further remarks on multiple p-adic q-L-function of two variables, Adv. Stud. Contemp. Math. 14 (2007), 49-68.

[3] M. Cenkci, M. Can, V. Kurt, Multiple two-variable q-L-function and its behavior at $s = 0$, Russ. J. Math. Phys. 15(4) (2008), 447-459.

[4] T. Ernst, Example of a q-umbral calculus, Adv. Stud. Contemp. Math. 16(1) (2008), 1-22.

[5] A. S. Hegazi, M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), 9-18.

[6] T. Kim, q-Volkenborn Integration, Russ. J. Math. Phys. 9 (2002), 288-299.

[7] T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.

[8] T. Kim, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12(2) (2005), 186-196.
T. Kim, *Multiple p-adic L-function* Russ. J. Math. Phys. **13**(2) (2006), 151-157.

T. Kim, *q-Euler numbers and polynomials associated with p-adic q-integral*, J. Nonlinear Math. Phys. **14**(1) (2007), 15-27.

T. Kim, *A note on p-adic q-integral on \(\mathbb{Z}_p \)*, Adv. Stud. Contemp. Math. **15** (2007), 133-138.

T. Kim, *q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients*, Russ. J. Math. Phys. **15**(1) (2008), 51-57.

T. Kim, *On the symmetry of the q-Bernoulli polynomials*, Abstr. Appl. Anal. **2008** (2008), Article ID914367, 7 pages.

T. Kim, *Symmetries p-adic invariant integral on \(\mathbb{Z}_p \) for Bernoulli and Euler polynomials*, J. Difference Equ. Appl. **14**(12) (2008), 1267-1277.

T. Kim, *Note on q-Genocchi numbers and polynomials*, Adv. Stud. Contemp. Math. **17**(1) (2008), 9-15.

T. Kim, *Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_p \)*, Russ. J. Math. Phys. **16**(1) (2009), 51-54.

Y. -H. Kim, W. Kim, L.-C. Jang, *On the q-extension of Apostol-Euler numbers and polynomials*, Abstr. Appl. Anal. **2008** (2008), Article ID296159, 10 pages.

B. A. Kupershmidt, *Reflection symmetries of q-Bernoulli polynomials*, J. Nonlinear Math. Phys. **12** (2005), 412-422.

H. Ozden, Y. Simsek, S. -H. Rim, I. N. Cangul *A note on p-adic q-Euler measure*, Adv. Stud. Contemp. Math. **14** (2007), 233-239.

K. H. Park, Y.-H. Kim *On some arithmetical properties of the Genocchi numbers and polynomials*, Advances in Difference Equations. http://www.hindawi.com/journals/ade/aip.195049.html.

M. Schork, *A representation of the q-fermionic commutation relations and the limit q = 1*, Russ. J. Math. Phys. **12**(3) (2005), 394-399.

Y. Simsek, *Theorems on twisted L-function and twisted Bernoulli numbers*, Adv. Stud. Contemp. Math. **11** (2005), 205-218.

Y. Simsek, *On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers*, Russ. J. Math. Phys. **13**(3) (2006), 340-348.
[24] Y. Simsek, *Complete sums of (h, q)-extension of the Euler polynomials and numbers*, arXiv:0707.2849v1[math.NT].

[25] Y.-H. Kim, K.-W. Hwang. *Symmetry of power sum and twisted Bernoulli polynomials*, Adv. Stud. Contemp. Math. **18** (2) (2009), 105-113.
Some identities of symmetry for the generalized Bernoulli numbers and polynomials

Taekyun Kim
Division of General Education-Mathematics,
Kwangwoon University, Seoul 139-701, S. Korea
E-mail: tkkim@kw.ac.kr