The pattern and treatment outcomes for rectal cancer with concurrent locoregional recurrence and distant metastases after total mesorectal excision

Yikuan Chen1,2†, Yaqi Li1,2†, Shaobo Mo1,2†, Xiang Hu1,2, Fangqi Liu1,2, Sanjun Cai1,2, Xiaoji Ma1,2* and Junjie Peng1,2*

Abstract
Background: To study the pattern and treatment outcome of rectal cancer (RC) with concurrent locoregional recurrence (LR) and distant metastasis (DM) after total mesorectal excision (TME) and to identify patient-, disease-, and treatment-related factors associated with differences in prognosis after concurrent LR and DM.

Methods: RC patients who were diagnosed with concurrent LR and DM after TME from May 2015 to June 2019 were included in our study. All patients received single or multiple treatment modalities under the guidance of multidisciplinary team (MDT) of colorectal cancer in Fudan University Shanghai Cancer Center. The prognostic value of various clinicopathological factors for survival were calculated by Kaplan–Meier curves and Cox regression analyses.

Results: A total of 74 RC patients with concurrent LR and DM who had undergone TME with a median follow-up of 27 months were eligible for analysis. The median survival of the included patients was 34 months, and 30 patients (41%) died. Fifty-nine patients (80%) underwent comprehensive treatments. Patients with oligometastatic disease (OMD) achieved no evidence of disease (NED) status more frequently than those with multiple metastases (P = 0.003). In the univariate analysis, patients achieving NED, diagnosed with OMD and five or less peritoneal metastases tended to have longer survival after LR and DM diagnosis (P < 0.05). In the multivariate analysis, attaining NED status was the only independent factor for survival (hazard ratio (HR), 2.419; P = 0.032). Survival after concurrent LR and DM in the non-NED group was significantly shorter than that in the NED group (median survival, 32 vs. 46 months; HR, 2.7; P = 0.014).

Conclusions: The pattern and treatment outcome of RC with concurrent LR and DM after TME has changed with the development of multiple treatment modalities. Although the prognosis remains poor, pursuing NED status through comprehensive treatments may improve the survival of RC patients with concurrent LR and DM after TME.

Keywords: Locoregional recurrence, Distant metastasis, Rectal cancer, Treatment outcome, NED

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Colorectal cancer (CRC) is the third most common cancer worldwide, and its overall 5-year survival rate is approximately 65% [1–3]. Approximately 50% of patients with CRC develop distant metastasis (DM) after curative resection, the most common of which is liver metastases [4, 5]. Rectal
cancer (RC) accounts for 29% of all CRCs \[2, 6\]. Total mesorectal excision (TME) combined with pre-operative or postoperative radiotherapy (RT) or chemoradiotherapy (CRT) significantly reduces the locoregional recurrence (LR) rate in patients with RC to less than 10%, even 5% in some clinical centers \[7, 8\]. There are about 3% RC patients diagnosed with concurrent LR and DM after TME, which may cause severe disabling symptoms and usually have fatal outcomes \[7–12\].

For early and locally advanced RC, normative guidelines can be adopted for standardized treatment \[7\], while no consensus of treatment has been reached for concurrent LR and DM after TME. With the development of different treatment modalities, perioperative chemotherapy, palliative chemotherapy, targeted therapy, RT, radiofrequency ablation (RFA) and surgical resection can be applied singly or multiply \[13–17\]. However, several key problems have not been solved, including the sequence of local intervention and systemic treatment, the selection of surgical resection or RFA for local treatment, and the evaluation of tumors’ sensitivity to chemotherapy or RT. Thus, the individualized and comprehensive treatment of concurrent LR and DM still needs to be intensively studied.

Here, our study was designed to study the pattern and treatment outcome of RC with concurrent LR and DM after TME and to identify patient-, disease-, and treatment-related factors associated with differences in prognosis after concurrent LR and DM.

Patients and methods

Study design and patients

RC patients who were diagnosed with concurrent LR and DM after TME from May 2015 to June 2019 and fulfilled the following criteria were eligible for study entry:

(i) aged from 18 to 80 years old at the time of diagnosis of concurrent LR and DM;
(ii) diagnosed with resectable RC (histologically proven rectal adenocarcinoma) and received TME surgery with or without preoperative CRT;
(iii) received treatment for LR and DM at Fudan University Shanghai Cancer Center (FUSCC);
(iv) had complete medical records since RC diagnosis. After being diagnosed with concurrent LR and DM, all patients received single or multiple treatment modalities, including palliative chemotherapy, RT, RFA and surgical resection with or without preoperative chemotherapy under the guidance of multidisciplinary team (MDT) of CRC at FUSCC.

![Fig. 1](image-url) **Time of diagnosis of concurrent locoregional recurrence (LR) and distant metastasis (DM) after total mesorectal excision (TME)**
Patients were followed up regularly according to Chinese guidelines for CRC and ended at date of death or on December 31, 2019. Physical examination and carcinoembryonic antigen (CEA) were performed every 3–6 months for the first 2 years, every 6 months within the third to fifth year, and then annually. Chest/abdominal/pelvis computed tomography was performed annually for up to 5 years, and colonoscopy was performed for proper patients the first year after treatment and repeated in the third year if no advanced adenoma was found and then every 5 years. Clinical and pathological data were collected from electronic medical record system. Data on treatments and follow-up were gathered from surgeons, medical oncologists and radiologists. Patient data were collected prospectively using a standard form by researchers. All the follow up data of 74 patients are complete. The study was reviewed and approved by Institutional Ethics Committees of Fudan University Shanghai Cancer Center. All methods were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/or their legal guardian(s) before undergoing TME surgery and/or treatment of recurrent disease. All the patients and/or legal guardians gave their consent that their data was used for this specific study.

Evaluations of LR, DM and NED
LR was defined as radiologic and/or histologic evidence of a tumor within the lesser pelvis or the perineal wound after a macroscopically complete resection. LR location was categorized according to an adapted version of the subdivision proposed by Philipsen et al. [18] into recurrences located at the level of the anastomosis, regional lymph node and pelvic recurrences. DM was defined as radiologic and/or histologic evidence of a tumor in any other area. In this study, oligometastatic disease (OMD) was defined as DM in up to 2 organs or structures including liver, lung and localized lymph node, absence of ascites and peritoneal, bone and central nervous system metastasis. No evidence of disease (NED) status was defined as all LR and DM being grossly resected or ablated and with no sign of remnant disease at one month after surgery. Clear circumferential margin of local recurrence was not mandatory for determination of NED. Two fixed senior radiologists checked all images reported LR and DM.

Statistical analyses
Chi-square tests were used to compare proportions, and Mann–Whitney U tests were used to compare continuous variables. Kaplan–Meier analyses were used to compare overall survival in patients between different groups. Cox regression was used for univariate and multivariate analyses with hazard ratios (HRs) and 95% confidence intervals (CI). Factors that were statistically significant in the univariate analysis were included in the multivariate analysis. P<0.05 was considered as significant. Data on patients who were alive were censored at date of last contact. Because the aim of the study was to document the pattern and treatment outcome of RC patients with concurrent LR and DM after TME, the starting point for all

Table 1 Baseline characteristics of all eligible patients (n = 74)
Characteristics
Gender
Male
Female
Age (years)
< 60
≥ 60
Primary tumor location: distance from the anal verge (cm)
> 5
≤ 5
Type of local recurrence
Anastomotic recurrence
Regional lymph node recurrence
Undetermined pelvic recurrence
Distant metastasis
Liver/lung/localized lymph node
3 or more organs/structures involved or peritoneal metastases
Type of resection of primary tumor
Anterior resection
Abdominoperineal resection
Others
T stage of primary tumor
T1-2
T3
T4
N stage of primary tumor
N0
N1
N2
Tumor grade of primary tumor
G1-2
G3
Preoperative CRT or RT of primary tumor
Yes
No
Time to recurrence
< 24 months
24–36 months
> 36 months
survival analyses was the date of LR and DM diagnosis. All analyses were performed with SPSS statistical software (version 19.0 for Windows; SPSS Inc, Chicago, IL).

Results

Patients characteristics
Among 8,376 patients with RC received TME surgery at FUSCC from May 2015 to June 2019, a total of 74 patients diagnosed with concurrent LR and DM were included in our study. The diagnostic rate of concurrent LR and DM in RC patients was 0.88%. Median time between date of LR and DM and date of primary tumor diagnosis was 16 months (range, 1 to 60 months) (Fig. 1).

The clinicopathological characteristics of 74 eligible patients were summarized in Table 1. Among all patients, half were aged over 60 years old. The primary tumor of 62.2% (46/74) patients were located over 5 cm from the anal verge. In terms of characteristics for the primary tumor, 91.9% (68/74) were diagnosed as T3-4, 60.8% as positive lymph nodes involved and 23.0% as G3 tumors. 74.3% (55/74) had anterior resection and 31.1% (23/74) had preoperative CRT or RT. For the type of local recurrence, 47.3% (35/74) of patients were diagnosed as regional lymph node recurrence while 31.1% (23/74) as anastomotic recurrence and 21.6% (16/74) as undetermined pelvic recurrence. For the type of distant metastasis, 71.6% (53/74) of patients were diagnosed with OMD and 28.4% (21/74) of patients were diagnosed to have metastases in 3 or more organs or in peritoneal. 73.0% and 85.1% of observed LR and DM had occurred within 2 and 3 years.

Treatment modalities
Treatment modalities for 74 RC patients with concurrent LR and DM were listed in Table 2. 70 patients (94.6%) underwent at least one of the local treatments including surgical resection, RT and RFA. 48 patients (64.9%) received systemic treatments such as peroperative chemotherapy and palliative chemotherapy, 59 patients (79.7%) underwent multiple treatments. The results suggested that the vast majority of patients with LR and DM received comprehensive treatment no matter aggressively or palliatively.

Survival

During follow-up, 30 patients (40.5%) died and for the remaining 44 patients, median time between date of LR and DM diagnosis and date of last contact was 27 months (range, 17 to 48 months). Median survival after LR and DM diagnosis was 34 months (95% CI, 28.6 to 39.4 months) and three-year survival after LR and DM was estimated at 49.3% (Fig. 2).

In univariate analysis, type of distant metastasis (HR, 2.464; 95%CI, 1.132–5.362; P = 0.023), number of peritoneal metastases (HR, 2.637; 95%CI, 1.140–2.229; P = 0.023) and NED status (HR, 2.727; 95%CI, 1.229–6.049; P = 0.014) were associated with survival (Table 3). Kaplan–Meier analysis showed that patients achieving NED (P = 0.009), diagnosed with OMD (P = 0.017) and five or less peritoneal metastases (P = 0.017) tended to have longer survival after LR and DM diagnosis (Fig. 3).

Table 2 Treatment modalities of patients

Treatment modality	8	12	5	16	3	10	9	4	3	4
Surgical resection	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Perioperative chemotherapy	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Palliative chemotherapy	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Radiotherapy	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Radiofrequency ablation	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Cases	8	12	5	16	3	10	9	4	3	4
Percentage (%)	10.8	16.2	6.8	21.6	4.1	13.5	12.2	5.4	4.1	5.4

Fig. 2 Overall survival of 74 patients after concurrent locoregional recurrence (LR) and distant metastasis (DM) diagnosis
Related factors	Univariate		Multivariate			
	HR	95% CI	P value	HR	95% CI	P value
Gender						
Male	1.000					
Female	0.658	0.300–1.433	0.296			
Age (years)						
< 60	1.000					
≥ 60	0.691	0.327–1.460	0.333			
Primary tumor location: distance from the anal verge (cm)						
> 5	1.000					
≤ 5	0.933	0.443–1.965	0.856			
Type of local recurrence						
Anastomotic recurrence	1.000					
Regional lymph node metastasis	0.461	0.205–1.038	0.856			
Undetermined pelvic recurrence	0.565	0.182–1.751	0.333			
Distant metastasis						
Liver/lung/localized lymph node	1.000					
3 or more organs/structures involved or peritoneal metastases	2.464	1.132–5.362	0.023	2.106	0.947–4.684	
Localized abdominal recurrence	0.060					
0	1.000					
1–3	0.695	0.279–1.734	0.023	0.513		
> 3	2.011	0.696–5.806	0.565			
Peritoneal metastases						
0–5	1.000					
> 5	2.637	1.140–6.099	0.023			
Type of surgery of primary tumor						
Anterior resection	1.000					
Abdominoperineal resection	2.064	0.857–4.971	0.023			
Others	1.111	0.257–4.815	0.023			
T stage of primary tumor						
T1-2	1.000					
T3	1.668	0.220–12.624	0.023			
T4	0.965	0.121–7.668	0.023			
N stage of primary tumor						
N0	1.000					
N1	0.979	0.441–2.174	0.424			
N2	1.904	0.652–5.565	0.424			
Tumor grade of primary tumor						
G1-2	1.000					
G3	0.551	0.222–1.368	0.023			
Preoperative treatment of primary tumor						
Chemoradiotherapy or radiotherapy	1.000					
None	1.801	0.673–4.822	0.023			
Time to recurrence						
< 24 months	1.000					
24–36 months	3.074	0.835–11.315	0.023			
> 36 months	1.779	0.599–5.290	0.023			
No evidence of disease						
NED	1.000					
Non-NED	2.727	1.229–6.049	0.023	2.419	0.107–5.427	

Table 3 Univariate and multivariate Cox regression analysis for survival
After multiple variables adjustment in the Cox proportional hazards regression model, number of peritoneal metastases lost its statistically significance (HR, 1.380; 95%CI, 0.526–3.623; \(P = 0.513\)) and type of distant metastasis was marginal statistically significant for predicting survival (HR, 2.106; 95%CI, 0.947–4.684; \(P = 0.068\)) (Table 3). NED status was the only independent factor for survival after LR and DM diagnosis (HR, 2.419; 95%CI, 1.078–5.427; \(P = 0.032\)) (Table 3).

NED status
The relationship between clinicopathological features and NED status was then analyzed (Table 4). The type of distant metastasis \((P = 0.003)\), number of localized abdominal recurrence \((P = 0.005)\), number of peritoneal metastases were all significantly related with NED status \((P = 0.001)\). Thus, patients with OMD can achieve NED status more frequently.

Further survival analysis showed that 11 patients (26.8%) in NED group and 19 patients (57.6%) in non-NED group died during follow-up (Table 5). Three-year survival after LR and DM was estimated to be 61.8% in NED group and 29.6% in non-NED group. Patients in NED group have longer median survival after LR and DM diagnosis of 46 months (95% CI, 37.5 to 54.5 months), compared with that of 32 months (95% CI, 24.2 to 39.8 months) in non-NED group. Consequently, RC patients with concurrent LR and DM after TME have a poor prognosis, but reaching NED status after treatments can improve patients’ survival.

Discussion
Though the incidence of concurrent LR and DM after TME of rectal cancer is quite low, which is 0.88% in our study, the prognosis of this subset of patients is poor. Our study retrospectively collected the pattern and treatment outcome of 74 RC patients with concurrent LR and DM after TME, to identify patient-, disease-, and treatment-related factors associated with differences in prognosis.

We found that the vast majority of patients with LR and DM received comprehensive treatment no matter aggressively or palliatively. Although the prognosis is still poor, pursuing NED status through comprehensive treatments may improve the survival of RC patients with concurrent LR and DM after TME. There are several possible explanations for this finding.
The first explanation concerns the treatment modalities. With development of multiple treatment modalities and MDT, the pattern and treatment outcome of RC with concurrent LR and DM after TME has changed. Our results indeed showed that the majority of patients (79.7%) underwent multiple treatments no matter aggressively or palliatively. Compared with Dutch trial in 2004 [9], more drugs with better clinical applications, more options for local and systematic treatment and modified therapy with LR and DM can be reached at present. For example, short-term preoperative RT (a total dose of 25 Gy in five fractions over 5 to 7 days) was

| Table 4 Association of NED status and clinicopathological features in 74 eligible patients |
|---------------------------------|-----------------|-----------------|------|---|
Characteristics	NED, n (%)	Non-NED, n (%)	χ^2	P value
Gender				
Male	25 (33.8)	20 (27.0%)	0.001	0.974
Female	16 (21.6)	13 (17.6%)		
Age (years)				
< 60	17 (23.0)	20 (27.0%)	2.680	0.102
≥ 60	24 (32.4)	13 (17.6%)		
Primary tumor location: distance from the anal verge (cm)				
$>$ 5	26 (35.1)	20 (27.0%)	0.061	0.804
≤ 5	15 (20.3)	13 (17.6%)		
Type of local recurrence				
Anastomotic recurrence	10 (13.5)	13 (17.6%)	2.115	0.347
Regional lymph node metastasis	22 (29.7)	13 (17.6%)		
Undetermined pelvic recurrence	9 (12.2)	7 (9.5%)		
Distant metastasis				
Liver/lung/localized lymph node	35 (47.3)	18 (24.3%)	8.525	0.003
3 or more organs/structures involved or peritoneal metastases	6 (8.1)	15 (20.3%)		
Localized abdominal recurrence				
None	10 (13.5)	4 (5.4%)	10.636	0.005
< 3	29 (39.2)	18 (24.3%)		
≥ 3	2 (2.7)	11 (14.9%)		
Peritoneal metastases				
None or < 5	39 (52.7)	22 (29.7%)	10.223	0.001
> 5	2 (2.7)	11 (14.9%)		
T stage of primary tumor				
T1-2	3 (4.1)	3 (4.1%)	1.161	0.560
T3	25 (33.8)	16 (21.6%)		
T4	13 (17.6)	14 (18.9%)		
N stage of primary tumor				
N0	17 (23.0)	12 (16.2%)	2.920	0.232
N1	17 (23.0)	19 (25.7%)		
N2	7 (9.5)	2 (2.7%)		
Tumor grade of primary tumor				
G1-2	30 (40.5)	27 (36.5%)	0.773	0.379
G3	11 (14.9)	6 (8.1%)		
Preoperative treatment of primary tumor				
Chemoradiotherapy or radiotherapy	16 (21.6)	7 (9.5%)	2.708	0.100
None	25 (33.8)	26 (35.1%)		
Treatment modality				
Single treatment	8 (10.8)	7 (9.5%)	0.033	0.857
Multiple treatment	33 (44.6)	26 (35.1%)		
used at that time, while long-term preoperative RT (a total dose of 45 Gy in 25 fractions over about 5 weeks) is widely used in FUSCC at present. Meanwhile, treatment of metastasis is more aggressive at present [19, 20]. With the development of treatment strategies, the median survival after LR and DM diagnosis was 34 months in our study and the median survival after LR 6.1 months in preoperative RT + TME group and 15.9 months in TME group in Dutch trial [9].

The second explanation concerns the survival. Although RC with concurrent LR and DM after TME has a poor prognosis, many studies have focused on attaining NED status after treatments to improve the overall survival which is also confirmed by our results. Furthermore, we found patients with OMD can achieve NED status after treatments more frequently. Consequently, patients with OMD after TME are the candidates to pursue NED status through upfront curative resection from the initial of the treatment, including CRT and RFA [21, 22].

The third explanation concerns surgical resection which is an important treatment modality to achieve NED status. However, if NED status not achieved, surgical resection of LR still plays an essential role. Due to the limited pelvic space, recurrent tumors are easy to compress other organs, such as ureter and blood vessels, leading to renal insufficiency and lower limb edema, which seriously affects the quality of life and subsequent treatment. Patients undergoing R0 resection have the greatest survival advantage following surgery for recurrent rectal cancer. Meanwhile, there is a survival advantage for R1 over R2 resection [23].

The present study has several limitations. First, the study design was a retrospective single-center trial. Second, this research does not include data for treatment intent. However, in the actual clinical treatment process, we made the choice of curative or palliative treatment intent upon initial diagnosis according to the LR and DM, whether it was resectable, whether it was OMD, the patient’s physical condition, the patient’s own will, and other factors, combined with MDT discussion opinions. Third, we defined OMD as metastasis in up to 2 organs or structures including liver, lung and localized lymph node, without taking the number, size of tumors into account. In ASCO-GI 2020, OMD was defined as up to 5 metastasis, up to 3 metastasis in one organ, up to 3 affected organs, size ≤ 3 cm, absence of ascites and peritoneal, bone and central nervous system metastasis [24]. Thus, it is possible that less patients were counted into OMD status.

Conclusions

In conclusion, our study showed that RC patients with concurrent LR and DM after TME have a poor prognosis. Patients with OMD are the candidates to pursue NED status through multiple treatments including curative resection which may improve the overall survival.

Abbreviations
CRC: Colorectal cancer; RC: Rectal cancer; LR: Locoregional recurrence; DM: Distant metastasis; TME: Total mesorectal excision; MDT: Multidisciplinary team; OMD: Oligometastatic disease; NED: No evidence of disease; HR: Hazard ratio; RT: Radiotherapy; CRT: Chemoradiotherapy; RFA: Radiofrequency ablation; FUSCC: Fudan University Shanghai Cancer Center; CEA: Carcinoembryonic antigen; CI: Confidence interval.

Acknowledgements
We would like to thank the patients and family members who gave their consent on presenting the data in this study, as well as the investigators and research staff involved in this study.

Authors’ contributions
JP contributed to conception and design; YC, SM, and YL contributed to development of methodology; YC, SM, X.M, Y.L., and X.H. contributed to acquisition of data; YC, Y.L., and S.M. contributed to analysis and interpretation of data; YC, S.M., Y.L., and X.M. contributed to writing of the manuscript; FL, SC, and JP contributed to review and revision of the manuscript; J.P. contributed to study supervision. All authors approved the final version of the manuscript, including the authorship list.

Funding
The study was supported by grants from the National Natural Science Foundation of China (U1932145 to JP, 82002946 to YL), Science and Technology Commission of Shanghai Municipality (18401933402 to JP), Fudan University Shanghai Cancer Center Basic and Clinical Translational Research Seed Foundation (YZZ201902 to SC), and Shanghai Sailing Program (22YF1408800 to SM, 19YF1409500 to YL).

Availability of data and materials
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Declarations

Ethical approval and consent to participate
The studies involving human participants were reviewed and approved by Institutional Ethics Committees of Fudan University Shanghai Cancer Center. All methods were carried out in accordance with relevant guidelines and regulations. Informed consent was obtained from all subjects and/or their legal guardian(s).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.
