SHORT EFFECTIVE INTERVALS CONTAINING PRIMES.

HABIBA KADIRI AND ALLYSA LUMLEY

ABSTRACT. We prove that if x is large enough, namely $x \geq x_0$, then there exists a prime between $x(1 - \Delta^{-1})$ and x, where Δ is an effective constant computed in terms of x_0.

1. INTRODUCTION.

In this article, we address the problem of finding short intervals containing primes. In 1845 Bertrand conjectured that for any integer $n > 3$, there always exists at least one prime number p with $n < p < 2n - 2$. This was proven by Chebyshev in 1850, using elementary methods. Since then other intervals of the form $(kn, (k+1)n)$ have been investigated. We refer the reader to [1] for $k = 2$, and to [12] for $k = 3$. Assuming that x is arbitrarily large, the length of intervals containing primes can be drastically reduced. To date, the record is held by Baker, Harman, and Pintz [2] as they prove that there is at least one prime between x and $x + x^{0.525 + \varepsilon}$. This is an impressive result since under the Riemann Hypothesis the exponent 0.525 can only be reduced to 0.5. On the other hand, maximal gaps for the first primes have been checked numerically up to $4 \cdot 10^{18}$ by Oliveira e Silva et al. [14]. In particular, they find that the largest prime gap before this limit is 1476 and occurs at $142572824437699411 = e^{41.8008...}$. The purpose of this article is to obtain an effective result of the form: for all $x \geq x_0$, there exists an $\Delta > 0$ such that the interval $(x(1 - \Delta^{-1}), x)$ contains at least one prime. In 1976 Schoenfeld’s [18, Theorem 12] gave this for $x_0 = 2010881.1$ and $\Delta = 16598$. In 2003 Ramaré and Saouter improved on Schoenfeld’s method by using a smoothing argument. They also extended the computations to many other values for x_0 ([16, Theorem 2 and Table 1]).

We present an example of numerical improvement this theorem allows, for instance when $x_0 = e^{59}$. Ramaré and Saouter [16] found that the interval gap was given by $\Delta = 209257759$. In [5] page 74, Helfgott mentioned an improvement of Ramaré using Platt’s latest verification of the Riemann Hypothesis [15]: $\Delta = 307779681$. Our Theorem 1.1 leads to $\Delta = 1946282821$.

We now mention an application to the verification of the Ternary Goldbach conjecture. This conjecture was known to be true for sufficiently large integers (by Vinogradov), and Liu and Wang [11] prove it for all integers $n \geq e^{3100}$. On the other hand, the conjecture was verified for the first values of n. In [16, Corollary 1], Ramaré and Saouter verified it for $n \leq 1.132 \cdot 10^{22}$. Very recently, Oliveira e Silva et. al. [14, Theorem 2.1] extended this limit to $n \leq 8.370 \cdot 10^{26}$. In [5, Proposition A.1.], Helfgott applied the above result on
short intervals containing primes ($\Delta = 307779681$) and found $n \leq 1.231 \cdot 10^{27}$. This allowed him to complete his proof [5] [6] of the Ternary Goldbach conjecture for the remaining integers. Here our main theorem gives:

Corollary 1.2. Every odd number larger than 5 and smaller than

$$1966196911 \times 4 \cdot 10^{18} = 7.864 \ldots \cdot 10^{27}$$

is the sum of at most three primes.

As of today, Helfgott and Platt [7] have announced a verification up to $8.875 \cdot 10^{30}$.

2. **Proof of Theorem**

We recall the definition of the classical Chebyshev functions:

$$\theta(x) = \sum_{p \leq x} \log p, \quad \psi(x) = \sum_{n \leq x} \Lambda(n), \quad \text{with } \Lambda(n) = \begin{cases} 1 & \text{if } n = p^k \text{ for some } k \in \mathbb{N}, \\ 0 & \text{otherwise}. \end{cases}$$

For each x_0, we want to find the largest $\Delta > 0$ such that, for all $x > x_0$, there exists a prime between $x(1 - \Delta^{-1})$ and x. This happens as soon as

$$\theta(x) - \theta(x(1 - \Delta^{-1})) > 0.$$

2.1. **Introduction of parameters.** We list here the parameters we will be using throughout the proof.

- * m integer with $m \geq 2$,
- * $0 \leq u \leq 0.0001$, $\delta = mu$ and $0 \leq \delta \leq 0.0001$,
- * $0 \leq a \leq 1/2$,
- * $\Delta = (1 - (1 + \delta a)(1 + \delta(1 - a))^{-1} e^{-u})^{-1}$, \hspace{1cm} (2.1)
- * $X \geq X_0 \geq e^{38}$,
- * $x = e^u X(1 + \delta (1 - a)) \geq x_0 = e^u X_0 (1 + \delta (1 - a))$,
- * $y = X (1 + \delta a) = x (1 - \Delta^{-1})$.

2.2. **Smoothing the difference** $\theta(x) - \theta(y)$. We follow here the smoothing argument of [16]. Let f be a positive function integrable on $(0, 1)$. We denote

$$\|f\|_1 = \int_0^1 f(t)dt,$$ \hspace{1cm} (2.2)

$$\nu(f,a) = \int_0^a f(t)dt + \int_{1-a}^1 f(t)dt,$$ \hspace{1cm} (2.3)

and

$$I_{\delta,u,X} = \frac{1}{\|f\|_1} \int_0^1 (\theta(e^u X(1 + \delta t)) - \theta(X(1 + \delta t))) f(t)dt. \hspace{1cm} (2.4)$$

Note that for all $a \leq t \leq 1 - a$, $\theta(e^u X(1 + \delta t)) - \theta(X(1 + \delta t)) \leq \theta(x) - \theta(y)$. We integrate with the positive weight f and obtain:

$$\int_a^{1-a} (\theta(e^u X(1 + \delta t)) - \theta(X(1 + \delta t))) f(t)dt \leq (\theta(x) - \theta(y)) \int_a^{1-a} f(t)dt. \hspace{1cm} (2.5)$$
We extend the left integral to the interval $(0, 1)$ and use a Brun-Titchmarsh inequality to control the primes on the extremities $(0, a)$ and $(1 - a, 1)$ of the interval (see [16 page 16, line -5] or [13 Theorem 2]):

\[
\int_{t \in (0, a) \cup (1 - a, 1)} (\theta(e^u X (1 + \delta t)) - \theta(X (1 + \delta t))) f(t) dt \leq 2(1 + \delta) (e^u - 1) \log \left(\frac{e^u X}{\log (e^u - 1)} \right) \nu(f, a) X. \tag{2.6}
\]

Note that [16] uses the slightly larger bound

\[
2.0004 u \log \frac{X}{\log(uX)} \nu(f, a) X.
\]

Combining (2.5) and (2.6) gives for $I_{\delta,u,X}$:

\[
I_{\delta,u,X} \leq (\theta(x) - \theta(y)) \frac{\int_0^{1-a} f(t) dt}{\|f\|_1} + 2(1 + \delta) (e^u - 1) \frac{\log(e^u X(1 + \delta)) \nu(f, a)}{\log(X(e^u - 1))} \|f\|_1 X. \tag{2.7}
\]

Thus $\theta(x) - \theta(y) > 0$ when

\[
I_{\delta,u,X} - 2(1 + \delta) (e^u - 1) \frac{\log(e^u X(1 + \delta)) \nu(f, a)}{\log(X(e^u - 1))} \|f\|_1 X > 0. \tag{2.8}
\]

It remains to establish a lower bound for $I_{\delta,u,X}$. To do so, we first approximate $\theta(x)$ with $\psi(x)$. This will allow us to translate our problem in terms of the zeros of the zeta function. We use approximations proven by Costa in [3, Theorem 5]:

Lemma 2.1. Let $x \geq e^{38}$. Then

\[
0.999 \sqrt{x} + \sqrt{x} < \psi(x) - \theta(x) < 1.001 \sqrt{x} + \sqrt{x}. \tag{2.9}
\]

Then we have that for all $0 < t < 1,$

\[
(\psi(e^u X (1 + \delta t)) - \theta(e^u X (1 + \delta t))) - (\psi(X (1 + \delta t)) - \theta(X (1 + \delta t))) < \sqrt{X} \sqrt{1 + \delta} \left(1.001 \frac{e^{u/2}}{X} - 0.999 + X^{-1/6}(1 + \delta)^{-1/6} \right) < \omega \sqrt{X}, \tag{2.10}
\]

where we can take, under our assumptions (2.1),

\[
\omega = 2.05022 \cdot 10^{-3}. \tag{2.11}
\]

We denote

\[
J_{\delta,u,X} = \frac{1}{\|f\|_1} \int_0^1 (\psi(e^u X (1 + \delta t)) - \psi(X (1 + \delta t))) f(t) dt. \tag{2.12}
\]

It follows from (2.10) that

\[
I_{\delta,u,X} \geq J_{\delta,u,X} - \omega \sqrt{X}. \tag{2.13}
\]

Note that [16] used older approximations from [18], which lead to $\omega = 0.0325$. To summarize, we want to find conditions on m, δ, u, a so that

\[
J_{\delta,u,X} - \omega \sqrt{X} - 2(1 + \delta) (e^u - 1) \frac{\log(e^u X(1 + \delta)) \nu(f, a)}{\log(X(e^u - 1))} \|f\|_1 X > 0. \tag{2.14}
\]

We are now left with evaluating $J_{\delta,u,X}$, which we shall do by relating it to the zeros of zeta through an explicit formula.
2.3. An explicit inequality for $J_{b,u,X}$.

Lemma 2.2. \textbf{[16] Lemma 4} Let $2 \leq b \leq c$, and let g be a continuously differentiable function on $[b,c]$. We have

$$\int_b^c \psi(u)g(u)\,du = \int_b^c ug(u) - \sum \int_b^c \frac{u^\varrho}{\varrho} g(u)\,du + \int_b^c \left(2\pi - \frac{1}{2} \log(1 - u^{-2})\right) g(u)\,du.$$ \hfill (2.15)

We apply this identity to respectively $g(t) = f \left(\delta^{-1} (e^{-u}X^{-1}t - 1) \right)$, $b = e^uX$, $c = e^uX(1 + \delta)$ and $g(t) = f \left(\delta^{-1} (X^{-1}t - 1) \right)$, $b = X$, $c = X(1 + \delta)$. It follows that

$$J_{b,u,X} = \frac{(e^u - 1)X}{\|f\|_1} \int_0^1 (1 + \delta t) f(t)\,dt - \frac{1}{\|f\|_1} \sum \int_0^1 \frac{(e^u - 1)}{\varrho} X^\varrho (1 + \delta t)^\varrho f(t)\,dt$$

$$- \frac{1}{2\|f\|_1} \int_0^1 \left(\log \left(1 - (e^uX(1 + \delta t))^{-2} \right) - \log \left(1 - (X(1 + \delta t))^{-2} \right) \right) f(t)\,dt.$$ \hfill (2.16)

Observe that the last term is $\geq -\frac{u}{X}$. We obtain

$$\frac{J_{b,u,X}}{(e^u - 1)X} \geq \frac{\int_0^1 (1 + \delta t) f(t)\,dt}{\|f\|_1} - \sum \left(\frac{(e^u - 1)}{\varrho} \int_0^1 (1 + \delta t)^\varrho f(t)\,dt \right) X^{\varrho q \varrho - 1} - \frac{u}{2(e^u - 1)X^2}.$$ \hfill (2.17)

We obtain some small savings by directly computing the first term whereas \textbf{[16] equation (13)} use the following bound in (2.16) instead:

$$\frac{\int_0^1 (1 + \delta t) f(t)\,dt}{\|f\|_1} \geq \frac{u}{e^u - 1}.$$ \hfill (2.18)

Let s be a complex number. We denote $G_{m,\delta,u}(s)$ the summand

$$G_{m,\delta,u}(s) = \frac{(e^{us} - 1)}{(e^u - 1)s} \int_0^1 (1 + \delta t)^s f(t)\,dt,$$ \hfill (2.19)

and we rewrite inequality (2.16) as

$$\frac{J_{b,u,X}}{(e^u - 1)X} \geq G_{m,\delta,u}(1) - \sum \left| G_{m,\delta,u}(\varrho) \right| X^{\varrho q \varrho - 1} - \frac{u}{2(e^u - 1)X^2}.$$ \hfill (2.20)

Since the right term increases with X, we can replace X with X_0 for $X \geq X_0$. Note that this is also the case for the other left term for

$$\frac{\omega}{(e^u - 1)\sqrt{X}} - 2(1 + \delta) \frac{\log(e^uX(1 + \delta))}{\log(X(e^u - 1))} \frac{\nu(f,a)}{\|f\|_1}.$$ \hfill (2.21)

For simplicity we denote

$$\Sigma = \Sigma_{m,\delta,u,X} = \sum \left| G_{m,\delta,u}(\varrho) \right| X^{\varrho q \varrho - 1}.$$ \hfill (2.22)

The following Proposition gives a first inequality in terms of the zeros of zeta and conditions on m, u, δ, a (and thus Δ) so that $\theta(x) - \theta(x(1 - \Delta^{-1})) > 0$: \hfill (2.23)
Proposition 2.3. Let \(m, u, \delta, a, \Delta, X_0 \) satisfy (2.1). If \(X \geq X_0 \) and
\[
G_{m,\delta,u}(1) - \sum_{m,\delta,u,X_0} \frac{u}{2(e^u - 1)} X_0^{-2} - \frac{\omega}{(e^u - 1)} X_0^{-1/2} - \frac{2\nu(f,a)(1+\delta)\log(e^uX_0(1+\delta))}{\|f\|_1} \log(X_0(e^u-1)) > 0, \tag{2.20}
\]
then there exists a prime number between \(x(1-\Delta^{-1}) \) and \(x \).

We are now going to make this Lemma more explicit by providing computable bounds for the sum over the zeros \(\Sigma_{m,\delta,u,X_0} \).

2.4. Evaluating \(G_{m,\delta,u} \). Let \(f \) be an \(m \)-admissible function over \([0,1]\). We recall the properties it entitles according to the definition of [16]:
- \(f \) is an \(m \)-times differentiable function,
- \(f^{(k)}(0) = f^{(k)}(1) = 0 \) for \(0 \leq k \leq m-1 \),
- \(f \geq 0 \),
- \(f \) is not identically 0.

Let \(k = 0, \ldots, m, s = \sigma + i\tau \) be a complex number with \(\tau > 0, 0 \leq \sigma \leq 1 \). We denote
\[
F_{k,m,\delta} = \frac{\int_0^1 (1+\delta t)^{1+k}|f^{(k)}(t)|dt}{\|f\|_1}. \tag{2.21}
\]

We provide here finer estimates than [16] for \(G_{m,\delta,u} \). Observe that
\[
\left| \frac{e^{us} - 1}{s} \right| = \left| \int_1^u e^{xs} dx \right| \leq \int_1^u e^{x\sigma} dx = \frac{e^{u\sigma} - 1}{\sigma}, \tag{2.22}
\]
\[
\left| \frac{e^{us} - 1}{s} \right| \leq \frac{e^{u\sigma} + 1}{\tau}, \tag{2.23}
\]
and
\[
\left| \int_0^1 (1+\delta t)^{s} f(t)dt \right| \leq \frac{1}{\delta^{k+1}} F_{k,m,\delta}. \tag{2.24}
\]

We deduce easily bounds for \(G_{m,\delta,u}(s) \) by combining (2.22) and (2.24) with respectively \(k = 0, k = 1, k = m \), and lastly by combining (2.23) and (2.24) with \(k = m \):
\[
|G_{m,\delta,u}(s)| \leq F_{0,m,\delta} \frac{e^{u\sigma} - 1}{(e^u-1)\sigma}, \tag{2.25}
\]
\[
|G_{m,\delta,u}(s)| \leq F_{1,m,\delta} \frac{e^{u\sigma} - 1}{(e^u-1)\sigma \delta \tau}, \tag{2.26}
\]
\[
|G_{m,\delta,u}(s)| \leq F_{m,m,\delta} \frac{e^{u\sigma} - 1}{(e^u-1)\sigma \delta^m \tau m}, \tag{2.27}
\]
\[
|G_{m,\delta,u}(s)| \leq F_{m,m,\delta} \frac{e^{u\sigma} + 1}{(e^u-1)\delta^m \tau m + 1}. \tag{2.28}
\]

2.5. Zeros of the Riemann-zeta function. We denote each zero of zeta \(g = \beta + i\gamma \), \(N(T) \) the number of zeros in the rectangle \(0 < \beta < 1, 0 < \gamma < T \), and \(N(\sigma_0,T) \) the number of those in the rectangle \(\sigma_0 < \beta < 1, 0 < \gamma < T \). We assume that we have the following information.

Theorem 2.4.
- (a) A numerical verification of the Riemann Hypothesis:
 There exists \(H > 2 \) such that if \(\zeta(\beta + i\gamma) = 0 \) at \(0 \leq \beta \leq 1 \) and \(0 \leq \gamma \leq H \), then \(\beta = 1/2 \).
(b) A direct computation of some finite sums over the first zeros:
Let \(0 < T_0 < H\) and \(S_0 > 0\) satisfy
\[
\sum_{0 < \gamma \leq T_0 \atop \beta = 1/2} 1 \leq N_0 = N(T_0),
\]
and
\[
\sum_{0 < \gamma \leq T_0 \atop \beta = 1/2} \frac{1}{\gamma} \leq S_0.
\]

(c) A zero-free region:
There exists \(R_0 > 0\) constant, such that \(\zeta(\sigma + it)\) does not vanish in the region
\[\sigma \geq 1 - \frac{1}{R_0 \log |t|} \text{ and } |t| \geq 2.\]

(d) An estimate for \(N(T)\):
There exist \(a_1, a_2, a_3\) positive constants such that, for all \(T \geq 2\),
\[
|N(T) - P(T)| \leq R(T),
\]
where \(P(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8}, R(T) = a_1 \log T + a_2 \log \log T + a_3.\)

(e) An upper bound for \(N(\sigma_0, T)\):
Let \(3/5 < \sigma_0 < 1\). Then there exist \(c_1, c_2, c_3\) constants such that, for all \(T \geq H\),
\[
N(\sigma_0, T) \leq c_1 T + c_2 \log T + c_3.\]

Note that [16] did not use any information of the type (2.30), (2.31), or (2.33). Instead they used (2.29), the fact that all nontrivial zeros satisfied \(\beta < 1/2\), and the classical bound (2.32) for \(N(T)\) as given in [17][Theorem 19]. Our improvement will mainly come from using a new zero-density of the form of (2.33).

2.6. Evaluating the sum over the zeros \(\Sigma_{m,\delta,u,X_0}\): We assume Theorem 2.4. We split the sum \(\Sigma_{m,\delta,u,X_0}\) vertically at heights \(\gamma = 0\) (so as to use the symmetry with respect to the \(x\)-axis) and consider
\[
\tilde{G}_{m,\delta,u}(\beta + i\gamma) = |G_{m,\delta,u}(\beta + i\gamma)| + |G_{m,\delta,u}(\beta - i\gamma)|.
\]

We then split at \(\gamma = H\) (so as to take advantage of the fact that all zeros below this horizontal line satisfy \(\beta = 1/2\)), and again at \(\gamma = T_0\) and \(\gamma = T_1\) (where \(T_1\) will be chosen between \(T_0\) and \(H\)), and consider:
\[
\Sigma_0 = \sum_{0 < \gamma \leq T_0} \tilde{G}_{m,\delta,u}(1/2 + i\gamma) X_0^{-1/2},
\]
\[
\Sigma_1 = \sum_{T_0 < \gamma \leq T_1} \tilde{G}_{m,\delta,u}(1/2 + i\gamma) X_0^{-1/2},
\]
and
\[
\Sigma_2 = \sum_{T_1 < \gamma \leq H} \tilde{G}_{m,\delta,u}(1/2 + i\gamma) X_0^{-1/2}.
\]

For the remaining zeros (those with \(\gamma > H\)), we make use of the symmetry with respect to the critical line, and we split at \(\beta = \sigma_0\) for some fixed \(\sigma_0 > 1/2\) (we will consider \(9/10 \leq \sigma_0 \leq 99/100\) for our
computations). We denote
\[
\Sigma_3 = \sum_{\gamma > H \atop \beta = 1/2} \tilde{G}_{m,\delta,u}(1/2 + i\gamma)X_0^{-1/2} + \sum_{\gamma > H \atop 1/2 < \beta \leq \sigma_0} \left(\tilde{G}_{m,\delta,u}(\beta + i\gamma)X_0^{\beta - 1} + \tilde{G}_{m,\delta,u}(1 - \beta + i\gamma)X_0^{-\beta} \right),
\]
(2.37)
\[
\Sigma_4 = \sum_{\gamma > H \atop \sigma_0 < \beta < 1} \left(\tilde{G}_{m,\delta,u}(\beta + i\gamma)X_0^{\beta - 1} + \tilde{G}_{m,\delta,u}(1 - \beta + i\gamma)X_0^{-\beta} \right).
\]
(2.38)

As a conclusion, we have
\[
\Sigma_{m,\delta,u,X_0} = \Sigma_0 + \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4.
\]
(2.39)

We state here some preliminary results (see [4, equations (2.18), (2.19), (2.20), (2.21), (2.26)]).

Lemma 2.5. Let \(T_0, H, R_0, \sigma_0 \) be as in Theorem 2.4. Let \(m \geq 2 \), \(X_0 > 10 \), and \(T_1 \) between \(T_0 \) and \(H \). We define
\[
S_1(T_1) = \left(\frac{1}{2\pi} + q(T_0) \right) \left(\log \frac{T_1}{T_0} \log \frac{\sqrt{T_1T_0}}{2\pi} \right) \frac{2R(T_0)}{T_0},
\]
(2.40)
\[
S_2(m,T_1) = \left(\frac{1}{2\pi} + q(T_1) \right) \left(\frac{1 + m \log T_1^2}{m^2T_1^m} - \frac{1 + m \log H^2}{m^2H^m} \right) + \frac{2R(T_1)}{T_1^{m+1}},
\]
(2.41)
\[
S_3(m) = \left(\frac{1}{2\pi} + q(H) \right) \left(\frac{1 + m \log H^2}{m^2H^m} \right) + \frac{2R(H)}{H^{m+1}},
\]
(2.42)
\[
S_4(m,\sigma_0) = \left(c_1 \left(\frac{1}{m} + \frac{1}{c_2 \log \frac{H}{H}} \right) + \left(c_3 + \frac{c_2}{m+1} \right) \frac{1}{H} \right) \frac{1}{H^m},
\]
(2.43)
\[
S_5(X_0, m, \sigma_0) = \left(c_1 + \frac{c_2 \log \frac{H}{H}}{H} + \frac{c_3}{H} + \left(c_1 + \frac{c_2}{H} \right) \frac{R_0}{2 \log X_0} \left(\frac{\sigma_0}{\log X_0} \right)^2 - \frac{1}{H^m} \right) \frac{1}{H^m}.
\]
(2.44)

We assume Theorem 2.4. Then
\[
\sum_{T_0 < \gamma \leq T_1} \frac{1}{\gamma} \leq S_1(T_1),
\]
(2.45)
\[
\sum_{T_1 < \gamma \leq H} \frac{1}{\gamma^{m+1}} \leq S_2(m, T_1),
\]
(2.46)
\[
\sum_{\gamma > H} \frac{1}{\gamma^{m+1}} \leq S_3(m),
\]
(2.47)
\[
\sum_{\gamma > H} \frac{1}{\gamma^{m+1}} \leq S_4(m, \sigma_0). \tag{2.48}
\]

Moreover, if \(\log X_0 < R_0m(\log H)^2 \), then
\[
\sum_{\gamma > H} \frac{X_0^{\gamma^{-1}}} {\gamma^{m+1}} \leq S_5(X_0, m, \sigma_0)X_0^{\gamma^{-1}(\log X_0) \frac{R_0 \log H}{\sigma_0 \log X_0}}.
\]
(2.49)
Lemma 2.6. Let \(m, \delta, X_0 \) satisfy (2.1). We assume Theorem 2.4 If \(\log X_0 < R_0 m (\log H)^2 \), then

\[
\Sigma_{m, \delta, u, X_0} \leq B_0(m, \delta)X_0^{-1/2} + B_1(m, \delta, T_1)X_0^{-1/2} + B_2(m, \delta, T_1)X_0^{-1/2} + B_3(m, \delta) \left(X_0^{-\sigma_0 - 1} + X_0^{-\sigma_0} \right) + B_{41}(X_0, m, \delta, \sigma_0)X_0^{-\frac{1}{R_0 \log H}} \]
\[
+ B_{42}(m, \delta, \sigma_0)X_0^{-1 + \frac{1}{R_0 \log H}}, \tag{2.50}
\]

where the \(B_i \)'s are defined in (2.51), (2.54), (2.58), (2.60), (2.62), and (2.63).

Proof. We investigate two ways to evaluate \(\Sigma_0 \) and \(\Sigma_1 \). For \(\Sigma_0 \), we can either combine (2.26) with (2.30) which computes \(\sum_{0 < \gamma \leq T_0} \gamma^{-1} \), or (2.25) with (2.29) which computes \(\sum_{0 < \gamma \leq T_0} 1 \). We denote

\[
B_0(m, \delta) = \min(\Sigma_{01}(m, \delta), \Sigma_{02}(m, \delta)), \tag{2.51}
\]

with

\[
\Sigma_{01}(m, \delta) = \frac{4F_{1,m,\delta}}{(e^{u/2} + 1)\delta} S_0 \quad \text{and} \quad \Sigma_{02}(m, \delta) = \frac{4F_{0,m,\delta}}{(e^{u/2} + 1)} N_0. \tag{2.52}
\]

We obtain

\[
\Sigma_0 \leq B_0(m, \delta)X_0^{-1/2}. \tag{2.53}
\]

For \(\Sigma_1 \), we can either combine (2.26) with the bound (2.45) for \(\sum_{T_0 < \gamma \leq T_1} \gamma^{-1} \), or (2.25) with the bound (2.32) for \(N(T) \) from Theorem 2.4. We denote

\[
B_1(m, \delta, T_1) = \min(\Sigma_{11}(m, \delta, T_1), \Sigma_{12}(m, \delta, T_1)), \tag{2.54}
\]

with

\[
\Sigma_{11}(m, \delta) = \frac{4F_{1,m,\delta}}{(e^{u/2} + 1)\delta} S_1(T_1), \quad \text{and} \quad \Sigma_{12}(m, \delta) = \frac{4F_{0,m,\delta}}{e^{u/2} + 1}(N(T_1) - N_0). \tag{2.55}
\]

We obtain

\[
\Sigma_1 \leq B_1(m, \delta, T_1)X_0^{-1/2}. \tag{2.56}
\]

It follows from (2.28) and (2.46) that

\[
\Sigma_2 \leq B_2(m, \delta, T_1)X_0^{-1/2}, \tag{2.57}
\]

with

\[
B_2(m, \delta, T_1) = \frac{2F_{m,m,\delta}}{(e^{u/2} - 1)\delta^m} S_2(m, T_1). \tag{2.58}
\]

We use (2.28) to bound \(\tilde{G} \) in \(\Sigma_3 \):

\[
\Sigma_3 \leq \frac{2F_{m,m,\delta}}{(e^{u} - 1)\delta^m} \sum_{1/2 \leq \gamma \leq \gamma_0 \leq \sigma_0} \frac{(e^{u\beta} + 1)X_0^{\beta - 1} + (e^{u(1-\beta)} + 1)X_0^{-\beta}}{\gamma^{m+1}}. \tag{2.59}
\]

Note that since \(\log X_0 > u \), then \((e^{u\beta} + 1)X_0^{\beta - 1} + (e^{u(1-\beta)} + 1)X_0^{-\beta} \) increases with \(\beta \geq 1/2 \). Moreover, we use (2.47) to bound the sum \(\sum_{\gamma \geq H \gamma^{-\beta} \geq \frac{1}{2}} \), and obtain

\[
\Sigma_3 \leq B_3(m, \delta, \sigma_0)X_0^{\sigma_0 - 1} + B_3(m, \delta, 1 - \sigma_0)X_0^{-\sigma_0}, \tag{2.59}
\]

where

\[
B_3(m, \delta, \sigma) = \frac{2F_{m,m,\delta} e^{u\sigma} + 1}{\delta^m e^{u} - 1} S_3(m). \tag{2.60}
\]
For Σ_4 we use again (2.28) to bound \tilde{G} and the fact that $X_0^{\beta-1} + X_0^\beta$ increases with β. Since $\beta \leq 1 - \frac{1}{\gamma_0\log \gamma}$ and $\gamma > H$ we obtain

$$\Sigma_4 \leq \frac{2(e^n + 1)F_{m,m,\delta}}{(e^n - 1)\delta m} \left(\sum_{\gamma > H} \frac{X_0^{-\frac{1}{\gamma_0\log \gamma}}} {\gamma^{m+1}} + X_0^{-1+\frac{1}{\gamma_0\log \gamma}} \sum_{\gamma > H} \frac{1}{\gamma^{m+1}} \right).$$

We apply (2.48) and (2.49) to bound the above sums over the zeros and obtain

$$\Sigma_4 \leq B_{41}(X_0, m, \delta, \sigma_0)X_0^{-\frac{1}{\gamma_0\log(H)}} + B_{42}(m, \delta, \sigma_0)X_0^{-1+\frac{1}{\gamma_0\log \gamma}}, \quad (2.61)$$

with

$$B_{41}(X_0, m, \delta, \sigma_0) = \frac{2(e^n + 1)F_{m,m,\delta}}{(e^n - 1)\delta m}S_5(X_0, m, \sigma_0), \quad (2.62)$$

$$B_{42}(X_0, m, \delta, \sigma_0) = \frac{2(e^n + 1)F_{m,m,\delta}}{(e^n - 1)\delta m}S_4(m, \sigma_0). \quad (2.63)$$

Note that $G_{m,\delta,u}(1) = F_{0,m,\delta}$. Finally we apply Proposition 2.3 and Lemma 2.6.

2.7. Main Theorem.

Theorem 2.7. Let $m, u, \delta, a, \Delta, X_0$, and x satisfy (2.1). Let T_0, H, R_0, σ_0 be as in Theorem 2.4. We assume Theorem 2.4. If $X \geq X_0$ and

$$F_{0,m,\delta} - B_0(m, \delta)X_0^{-1/2} - B_1(m, \delta, T_1)X_0^{-1/2} - B_2(m, \delta, T_1)X_0^{-1/2} - B_3(m, \delta, \sigma_0)X_0^{-\sigma_0-1} - B_3(m, \delta, 1 - \sigma_0)X_0^{-\sigma_0} - B_{41}(X_0, m, \delta, \sigma_0)X_0^{-1+\frac{1}{\gamma_0\log \gamma}} - B_{42}(m, \delta, \sigma_0)X_0^{-1+\frac{1}{\gamma_0\log \gamma}} - \frac{u}{2(e^n - 1)}X_0^{-2} - \frac{\omega}{(e^n - 1)}X_0^{-1/2} - \frac{2\nu(f,a)(1+\delta)}{\|f\|_1} \log (e^nX_0(1+\delta)) + \frac{\log \beta}{\log \gamma} > 0, \quad (2.64)$$

then there exists a prime number between $x(1-\Delta^{-1})$ and x.

3. Computations.

3.1. Introducing the Smooth Weight f. We choose the same weight as [16], that is

$$f_m(t) = (4t(1 - t))^m \text{ if } 0 \leq t \leq 1, \text{ and } 0 \text{ otherwise.}$$

We proved in [3] that a primitive of f_m was providing a close to optimum weight to estimate $\psi(x)$. Thus we believe that the above weight should also be close to optimal to evaluate $\psi(y) - \psi(x)$ when y is close to x. We recall [16] Lemma 6:

$$\|f_m\|_1 = \frac{2^{2m}(ml)!!}{(2m + 1)!}, \quad (3.1)$$

$$\|f_m^{(m)}\|_2 = \frac{2^{2m}m!}{\sqrt{2m + 1}}. \quad (3.2)$$

We now provide estimates for $F_{k,m,\delta}$ as defined in (2.21).
Lemma 3.1. Let $m \geq 2$, $\delta > 0$, and $0 < \sigma < 1$. We define
\[
\lambda_0(m, \delta) = \frac{(2m + 1)!}{2^{2m-1}(m!)^2},
\]
\[
\lambda_1(m, \delta) = \frac{(1 + \delta)(2m + 1)!}{2^{2m-1}(m!)^2},
\]
\[
\lambda(m, \delta) = \sqrt{\frac{(1 + \delta)^{2m+3} - 1}{\delta(2m + 3)}} \frac{(2m + 1)!}{m!\sqrt{2m + 1}}.
\]

Then
\[
1 \leq F_{0,m,\delta} \leq 1 + \delta,
\]
\[
\lambda_0(m, \delta) \leq F_{1,m,\delta}(\sigma) \leq \lambda_1(m, \delta),
\]
\[
F_{m,m,\delta}(\sigma) \leq \lambda(m, \delta).
\]

Proof. Inequalities (3.3) follow trivially from the fact $1 \leq (1 + \delta t) \leq 1 + \delta$.

To bound $F_{1,m,\delta}$, we note that
\[
\frac{\|f_m'\|_1}{\|f_m\|_1} \leq F_{1,m,\delta} \leq \frac{(1 + \delta)^2\|f_m'\|_1}{\|f_m\|_1}.
\]

Since $f_m'(t)$ has same sign as $1 - 2t$, we have
\[
\|f_m'\|_1 = \int_1^{1/2} f_m'(t)dt - \int_{1/2}^1 f_m'(t)dt = 2f_m(1/2) - f_m(0) - f_m(1) = 2.
\]

This together with (3.1) achieves to prove (3.4).

Lastly, for $F_{m,m,\delta}$, we apply (3.2) together with the Cauchy-Schwarz inequality:
\[
F_{m,m,\delta}(\sigma) \leq \frac{\sqrt{\int_0^1 (1 + \delta t)^{2(m+1)}dt \int_0^1 |f_m^{(m)}(t)|^2dt}}{\|f_m\|_1} = \sqrt{\frac{(1 + \delta)^{2m+3} - 1}{\delta(2m + 3)} \frac{\|f_m^{(m)}\|_2}{\|f_m\|_1}}.
\]

Note that while $F_{0,m,\delta}$ and $F_{1,m,\delta}$ can be easily computed as integrals, it is not the case for $F_{m,m,\delta}$.

The following observation helps us to compute $F_{m,m,\delta}$ directly. We recognize in the definition of $f_m^{(m)}$ the analogue of Rodrigues’ formula for the shifted Legendre polynomials:
\[
f_m^{(m)}(t) = 4^m m! P_m(1 - 2t),
\]
where $P_m(x)$ is the m^{th} Legendre polynomial, and
\[
P_m(1 - 2t) = (-1)^m \sum_{k=0}^{m} \binom{m}{k} \binom{m+k}{k} (-t)^k.
\]

For each each $P_m(1 - 2t)$, we denote $r_{j,m}$, with $j = 0, \ldots, m$, its $m + 1$ roots. Since $P_m(1 - 2t)$ alternates sign between each of them, we have
\[
F_{m,m,\delta} = \frac{\int_0^1 (1 + \delta t)^{m+1} |P_m(1 - 2t)|dt}{\|f\|_1} = \frac{1}{\|f\|_1} \sum_{j=0}^{m-1} (-1)^j \int_{r_j}^{r_{j+1}} (1 + \delta t)^{m+1} P_m(1 - 2t)dt,
\]
and GP-Pari is able to compute quickly this sum of polynomial integrals.
3.2. **Explicit results about the zeros of the Riemann zeta function.** We provide here the latest values for the constants appearing in Theorem 2.4.

Theorem 3.2.

(a) *A numerical verification of the Riemann Hypothesis (Platt [15]):*

\[H = 3.061 \cdot 10^{10} \]

(b) *A direct computation of some finite sums over the first zeros (using A. Odlyzko’s list of zeros):*

For \(T_0 = 1132491 \), \(N_0 = N(T_0) = 2001052 \), and \(S_0 = 11.637732363 \).

(c) *A zero-free region (Kadiri [8, Theorem 1.1]):*

\[R_0 = 5.69693 \]

(d) *An estimate for \(N(T) \) (Rosser [17, Theorem 19]):*

\[a_1 = 0.137, \ a_2 = 0.443, \ a_3 = 1.588. \]

(e) *An upper bound for \(N(\sigma,T) \) (Kadiri [10]): For all \(T \geq H \),

\[N(\sigma,T) \leq c_1T + c_2\log T + c_3, \]

where the \(c_i \)'s are given in Table 1.

\(\sigma \)	\(c_1 \)	\(c_2 \)	\(c_3 \)
0.90	5.8494	0.4659	\(-1.7905 \cdot 10^{11}\)
0.91	5.6991	0.4539	\(-1.7444 \cdot 10^{11}\)
0.92	5.5564	0.4426	\(-1.7007 \cdot 10^{11}\)
0.93	5.4206	0.4318	\(-1.6592 \cdot 10^{11}\)
0.94	5.2913	0.4215	\(-1.6196 \cdot 10^{11}\)
0.95	5.1680	0.4116	\(-1.5819 \cdot 10^{11}\)
0.96	5.0503	0.4023	\(-1.5458 \cdot 10^{11}\)
0.97	4.9379	0.3933	\(-1.5114 \cdot 10^{11}\)
0.98	4.8304	0.3848	\(-1.4785 \cdot 10^{11}\)
0.99	4.7274	0.3766	\(-1.4470 \cdot 10^{11}\)

Note that [17, Theorem 19] was recently improved by T. Trudgian in [19, Corollary 1] with \(a_1 = 0.111, \ a_2 = 0.275, \ a_3 = 2.450 \). Our results are valid with either Rosser’s or Trudgian’s bounds.

3.3. **Understanding the contribution of the low lying zeros.** We assume Theorem 3.2 and that

\[m \geq m_0 = 5, \delta < \delta_0 = 2 \cdot 10^{-8}, \text{ and } T_1 = 10^9 \] \hspace{1cm} (3.6)

(this would be consistent with the values we choose in Table 2). We observe that

\[B_0(m, \delta) = \Sigma_{02} \text{ and } B_1(m, \delta,T_1) = \Sigma_{12}. \]

where \(\Sigma_{02} \) and \(\Sigma_{12} \) are defined in (2.52) and (2.55) respectively. In other words, it turns out that we obtain a smaller bound for the sum over the small zeros \((0 < \gamma < T) \) by using \(N(T) \) directly instead of evaluating
\[\sum_{0 \leq \gamma \leq T} \gamma^{-1}. \] This essentially comes from the fact that our choice of parameters insures us with \(\delta \ll \frac{F_{1,m,\delta} S_0}{F_{0,m,\delta} N_0} \) and \(\delta \ll \frac{F_{1,m,\delta} S_1(T)}{F_{0,m,\delta} N(T_1) N_0} \). We first prove the inequality

\[\frac{S_1(t)}{N(t)} \geq c_0 \log \frac{t}{t}. \quad (3.7) \]

Proof. We denote

\[
\begin{align*}
\text{Proof. We denote} & \quad w_1 = \frac{1}{2} \left(\frac{1}{2\pi} + q(T_0) \right) = 0.0795 \ldots, \quad w_2 = -\log(2\pi) \left(\frac{1}{2\pi} + q(T_0) \right) = -0.2925 \ldots, \\
& \quad w_3 = \left(\frac{1}{2\pi} + q(T_0) \right) \left(\frac{-\log^2(T_0)}{2} + \log(T_0) \log(2\pi) \right) + \frac{2R(T_0)}{T_0} = -11.3860 \ldots, \\
& \quad v_1 = \frac{1}{2\pi} = 0.1591 \ldots, \quad v_2 = -\frac{\log(2\pi)}{2\pi} - 1 = -1.2925 \ldots, \quad v_3 = a_1 = 0.137, \\
& \quad v_4 = a_2 = 0.443, \quad v_5 = a_3 + \frac{7}{8} = 2.463.
\end{align*}
\]

and

\[S_1(t) = w_1 (\log t)^2 + w_2 \log t + w_3, \quad P(t) + R(t) = v_1 t \log t + v_2 t + v_3 \log t + v_4 \log \log t + v_5. \]

We have from (2.40) and Theorem 3.2 (d) that

\[\frac{S_1(t)}{N(t)} \geq \frac{S_1(t)}{P(t) + R(t)} = \frac{w_1 (\log t)^2 + w_2 \log t + w_3}{v_1 t \log t + v_2 t + v_3 \log t + v_4 \log \log t + v_5}. \]

Since \(t > t_1 = 10^9 \), we deduce the bound

\[\frac{S_1(t)}{N(t)} \geq c_0 \log \frac{t}{t}, \quad (3.8) \]

where

\[c_0 = \frac{w_1 + \frac{w_2}{\log t_1} + \frac{w_3}{(\log t_1)^2} \log t_1}{v_1 + \frac{v_2}{t_1 \log t_1} + \frac{v_3}{t_1 \log t_1} + \frac{v_4}{t_1 \log t_1} + \frac{v_5}{t_1 \log t_1}} \geq 0.7508. \quad (3.9) \]

We now establish that \(\Sigma_0 + \Sigma_{11}, \Sigma_0 + \Sigma_{12}, \) and \(\Sigma_0 + \Sigma_{11} \) are all larger than \(\Sigma_{02} + \Sigma_{12} \). We make use of Lemma 3.1 to provide estimates for the \(F_{k,m,\delta} \)'s of (3.8), and of the assumptions (3.6) on \(m, \delta, T_1 \).

Proof. We have

\[(\Sigma_0 + \Sigma_{11}) - (\Sigma_0 + \Sigma_{12}) = \frac{4}{e^{u/2} + 1} \left(\frac{F_{1,m,\delta}}{\delta} (S_0 + S_1(T_1)) - F_{0,m,\delta} N(T_1) \right) \]

\[> \frac{4(1 + \delta) N(T_1)}{e^{u/2} + 1} \left(\frac{(2m_0 + 1)!}{2^{2m_0 - 1} \delta_0 (1 + \delta_0)} \frac{1}{P(t_1) + R(t_1)} - \frac{S_0}{c_0 \log t_1} 1 - 1 \right) > 0, \]

since the right term between brackets is \(> 2.4796 - 1 > 0 \). We have

\[(\Sigma_0 + \Sigma_{12}) - (\Sigma_0 + \Sigma_{11}) = \left(\frac{S_0}{\delta} F_{1,m,\delta} - N_0 F_{0,m,\delta} \right) \frac{4}{e^{u/2} + 1} \]

\[> \frac{4(1 + \delta) N_0}{e^{u/2} + 1} \left(\frac{(2m_0 + 1)!}{2^{2m_0 - 1} \delta_0 (1 + \delta_0) N_0} - 1 \right) > 0 \]
since the right term between brackets is $> 1574 - 1$. Finally,

$$(\Sigma_{02} + \Sigma_{11}) - (\Sigma_{02} + \Sigma_{12}) = \frac{4}{e^{\pi/2} + 1} \left(\frac{F_{1,m,\delta}}{\delta} S_1(T_1) - F_{0,m,\delta}(N(T_1) - N_0) \right)$$

$$> \frac{4(1 + \delta)(N(T_1) - N_0)}{e^{\pi/2} + 1} \left(\frac{(2m_0 + 1)!}{2^{2m_0 - 1}(m_0)!} \delta_0(1 + \delta_0) \left(\frac{S_1(t_1)}{c_0 \log t_1} - N_0 \right) - 1 \right) > 0$$

since the right term between brackets is $> 1.3737 - 1$. \qed

The values for T_1 and a given in the next table are rounded down to the last digit.

Table 2. For all $x \geq x_0$, there exists a prime between $x(1 - \Delta^{-1})$ and x.

log x_0	m	δ	T_1	σ_0	a	Δ
log($4 \cdot 10^{18}$)	5	3.580 $\cdot 10^{-8}$	272 519 712	0.92	0.2129	36 082 898
43	5	3.349 $\cdot 10^{-8}$	291 316 980	0.92	0.2147	38 753 947
44	6	2.330 $\cdot 10^{-8}$	488 509 984	0.92	0.2324	61 162 616
45	7	1.628 $\cdot 10^{-8}$	797 398 875	0.92	0.2494	95 381 241
46	8	1.134 $\cdot 10^{-8}$	1 284 120 197	0.92	0.2651	148 306 019
47	9	8.080 $\cdot 10^{-9}$	1 996 029 891	0.92	0.2836	227 619 375
48	11	6.000 $\cdot 10^{-9}$	3 204 848 430	0.93	0.3050	346 582 570
49	15	4.682 $\cdot 10^{-9}$	5 415 123 831	0.93	0.3275	518 958 776
50	20	3.889 $\cdot 10^{-9}$	8 466 793 105	0.93	0.3543	753 575 355
51	28	3.625 $\cdot 10^{-9}$	12 399 463 961	0.93	0.3849	1 037 917 449
52	39	3.803 $\cdot 10^{-9}$	16 139 006 408	0.93	0.4127	1 313 524 036
53	48	4.088 $\cdot 10^{-9}$	18 290 358 817	0.93	0.4301	1 524 171 138
54	54	4.311 $\cdot 10^{-9}$	19 412 056 863	0.93	0.4398	1 670 398 039
55	56	4.386 $\cdot 10^{-9}$	19 757 119 193	0.93	0.4445	1 770 251 249
56	59	4.508 $\cdot 10^{-9}$	20 210 075 547	0.93	0.4481	1 838 818 070
57	59	4.506 $\cdot 10^{-9}$	20 219 045 843	0.93	0.4496	1 886 389 443
58	61	4.590 $\cdot 10^{-9}$	20 495 459 359	0.93	0.4514	1 920 768 795
59	61	4.589 $\cdot 10^{-9}$	20 499 925 573	0.93	0.4522	1 946 282 821
60	61	4.588 $\cdot 10^{-9}$	20 504 393 735	0.93	0.4527	1 966 196 911
150	64	4.685 $\cdot 10^{-9}$	21 029 543 983	0.96	0.4641	2 442 159 714

($\log(4 \cdot 10^{18}) = 42.8328 \ldots$)

3.4. **Verification of the Ternary Goldbach conjecture.**

Proof of Corollary [L2] Let $N = 4 \cdot 10^{18}$. We follow Oliveira e Silva, Herzog and Pardi [14]'s argument where the authors computed all the prime gaps up to $4 \cdot 10^{18}$. From Table 2, we have that for $x = e^{90}$ and $\Delta = 1 966 090 061$, there exists at least one prime in the interval $(x - x/\Delta, x]$. This one has length $5.8082 \cdot 10^{16}$. Then $N\Delta = 7.8647 \cdot 10^{22}$ and we may infer that the gap between consecutive primes up to $N\Delta$ can be no larger than N (since $N\Delta/\Delta = N$). The corollary follows by using all the odd primes up to $N\Delta$ to extend the minimal Goldbach partitions of 4, 6, \ldots, N up to $N\Delta$ (the method of computation is explained in [14 Section 1]). We also note that $N + 2 = 211 + (N - 209)$ and $N + 4 = 313 + (N - 309)$, where 211, 313, $N - 209$, and $N - 309$ are all prime. Thus, there is at least one way to write each odd number greater than 5 and smaller than $N\Delta$ as the sum of at most 3 primes. \qed
REFERENCES

[1] M. El Bachraoui, Primes in the interval $[2n, 3n]$, Int. J. Contemp. Math. Sci. 1 (2006), no. 13-16, 617–621.
[2] R. Baker, G. Harman & J. Pintz, The difference between consecutive primes, Proc. Lond. Math. Soc. (3) 83 (2001), no. 3, 532–562.
[3] N. Costa Pereira, Estimates for the Chebyshev Function $\psi(x) - \theta(x)$, Math. Comp., Vol. 44, No. 169 (1985), 211–221.
[4] L. Faber, H. Kadiri, Explicit new bounds for $\psi(x)$, to appear in Math. Comp.
[5] H. Helfgott, Minor Arcs for Goldbach’s Problem, arXiv:1205.5252v1, 2012
[6] H. Helfgott, Major arcs for Goldbach’s theorem, arxiv: 1305.2897, 2013.
[7] H. Helfgott, D. Platt, Numerical Verification of the Ternary Goldbach Conjecture up to $8.875 \cdot 10^{30}$, Exp. Math. 22 (2013), no. 4, 406–409.
[8] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117 (2005), no. 4, 303–339.
[9] H. Kadiri, Short effective intervals containing primes in arithmetic progressions and the seven cubes problem, Math. Comp. 77 (2008), 1733–1748.
[10] H. Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185–200.
[11] M. C. Liu, T. Z. Wang, On the Vinogradov bound in the three primes Goldbach conjecture, Acta Arith. 105 (2002), no. 2, 133–175.
[12] A. Loo, On the primes in the interval $[3n, 4n]$, Int. J. Contemp. Math. Sci. 6 (2011), no. 37-40, 1871–1882.
[13] H. Montgomery, R. C. Vaughan, The Large Sieve, Mathematika 20 (1973) 119-134.
[14] T. Oliveira e Silva, S. Herzog, S. Pardi, Empirical verification of the even Goldbach conjecture, and computation of prime gaps, up to $4 \cdot 10^{18}$, Math. Comp. 83 (2014), no. 288, 2033–2060.
[15] D. Platt, Computing degree 1 L-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
[16] O. Ramaré, Y. Saouter, Short effective intervals containing primes, J. Number Theory 98 (2003) 10–33.
[17] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232.
[18] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$ II, Math. Comp., 30 134 (1976), 337–360.
[19] T. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory, Volume 134, January 2014, 280–292.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE, 4401 UNIVERSITY DRIVE, LETHBRIDGE, ALBERTA, T1K 3M4 CANADA
E-mail address: habiba.kadiri@uleth.ca

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE, 4401 UNIVERSITY DRIVE, LETHBRIDGE, ALBERTA, T1K 3M4 CANADA
E-mail address: allysa.lumley@uleth.ca