Development of Ergonomic Leg Guard for Baseball Catchers through 3D Modeling and Printing

Hyojeong Lee · Ran-i Eom · Yejin Lee
Department of Clothing & Textiles, Chungnam National University, Korea

Abstract

To develop baseball catcher leg guards, 3-dimensional (3D) methodologies, which are 3D human body data, reverse engineering, modeling, and printing, optimized guard design for representative positions. Optimization was based on analysis of 3D body surface data and subjective evaluation using 3D printing products. Reverse engineering was used for analysis and modeling based on data in three postures: standing, 90° knee flexion, and 120° knee flexion. During knee flexion, vertical skin length increased, with the thigh and knee larger in anterior area compared to the horizontal dimension. Moreover, 120° knee flexion posture had a high radius of curvature in knee movement. Therefore, guard designs were based on increasing rates of skin deformation and numerical values of radius of curvature. Guards were designed with 3-part zoning at the thigh, knee, and shin. Guards 1 and 2 had thigh and knee boundaries allowing vertical skin length deformation because the shape of thigh and knee significantly affects to its performance. Guard 2 was designed with a narrower thigh and wider knee area than guard 1. The guards were manufactured as full-scale products on a 3D printer. Both guards fit better in sitting than standing position, and guard 2 received better evaluations than guard 1. Additional modifications were made and an optimized version (guard 3) was tested. Guard 3 showed the best fit. A design approach based on 3D data effectively determines best fitting leg guards, and 3D printing technology can customize guard design through immediate feedback from a customer.

Keywords: leg guard, 3D modeling, Skin length deformation, Radius of curvature, 3D printing

Corresponding author: Yejin Lee, Tel. +82-42-821-6824
E-mail: yejin@cnu.ac.kr

This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korean Government (MSIP) (No. 2013-1064-01)
I. Introduction

Individual protective equipment for sports activities reportedly greatly reduces injuries (Marshall et al., 2002; McIntosh & McCrory, 2005; Benson, Hamilton, Meeuwisse, McCrory & Dvorak, 2009). Therefore, design of protective equipment must deliver physical and psychological satisfaction to users with minimum restriction in free movement while providing protection (Watkins & Choi, 2001). In the past, options other than prevention of injuries were often overlooked in the design of protective equipment (Webster & Roberts, 2009). Recently however, materials development has improved the efficiency of protective equipment in prevention of injuries and securing safety; thus, there has been a shift in interest toward designing protective equipment with consideration of fit, mobility, thermal comfort, and aesthetics. Much movement is involved in sports. It is especially important to design for maximum mobility so that an athlete can focus on competition. However, there is little published research focusing on fit and mobility in protective sports equipment design. Most reports have been about evaluation of effectiveness in injury prevention (Benson et al., 2009; Marshall et al., 2005; Marshall et al., 2002; Rampton, Leach, Therrien, Bota & Rowe, 1997) or surveys on use of protective equipment (Mangus, Simons, Jacobson, Streib & Comez, 2004; Adams, Wyte, Paradise & Castillo, 1996; Williams-Avery & Makinnon, 1996; Marshall et al., 2001; Braham, Finch, McIntosh & McCrory et al., 2004; Lee et al., 2014; Kroncke, Niedfeldt & Young, 2008). At best, there has been ongoing research on the safety of headgear in full-contact sports (Rampton et al., 1997; McIntosh, McCrory & Finch, 2004).

Among research on the use of protective equipment, Lee, Eom and Lee (2015) conducted a survey of baseball catchers on leg guards and reported there were complaints about reduced mobility, clothing pressure, and weight. Webster and Roberts (2009) analyzed critical factors affecting comfort in players wearing cricket leg guards and ranked importance in the order of fit, protection, and weight. In a survey among in-line skaters on reasons for not wearing protective equipment, Young, Seth and Mark (1998) reported the lack of perceived need, excessive warmth, discomfort, equipment cost, and undesirable appearance, in that order. A survey on protective equipment among Australian football players also reported the reason for not wearing protective equipment was discomfort (Braham et al., 2004). Similar reports were found for other sports such as cycling, rugby, and squash (Marshall et al., 2001; Finch et al., 2001; Finch, 1996; Eime, Finch, Sherman & Garnham, 2002). To improve satisfaction with protective equipment, comfortability needs to be improved. For comfortability, wearing sensation has to be optimized, as well as the design of the structure and shape of protective equipment. Therefore, the design of protective equipment must allow free movement by considering ergonomic and athletic features in structure and shape, while following regulatory safety rules. Hard protective equipment has generally been produced with shape determined by molding material into a form. As a result, time was lost with wasted expense due to trial and error before a final form was determined. However, introduction of 3D printing shed light on 3D design as more effective than conventional form production. Today, the 3D printer is widely used as a general-purpose instrument. The market related to 3D printing has rapidly expanded, suggesting
a fourth industrial revolution (Jung, 2014). 3D printing enables small quantity batch production for personalized product development reflecting various needs of consumers. It is utilized in many fields such as machine, automobile, medical application, and design industries, and has a promising future (Lee et al, 2014). The 3D printing work process largely goes through modeling, printing, and rounding off. In the modeling process, 3D data are produced from a 3D modeling program (Han, 2013). Due to developments in 3D modeling and printing technology, modeling of design can receive immediate feedback, with modification and supplemental design before commercial production, which saves time and costs. Despite such improvements in 3D technology, there has been little research on its use in the development of protective equipment. As with other protective equipment, interaction with the human body during a sports activity is also important for a catcher’s leg guards. Improvement of mobility and fit can be enhanced by applying 3D data based on human body shape. A catcher’s leg guards have generally consisted of a hard and soft shell. The hard shell, which protects the body from the primary impact, was made of rigid materials such as fiberglass or plastic, and the soft shell, which absorbs the energy of an impact, was made of foam rubber and polyurethane. This research focused on applying 3D modeling to the hard shell, the structure and shape of which have a greater effect on comfortability of fit. Lee et al. (2015) completed two types of leg guards with hard shell modeling were comprised of 3 and 2 parts respectively. Biomechanical simulation confirmed that 3-part leg guards comprised of thigh, knee, and shin sections consume less energy. This study expanded on previous research to verify 3-part leg guard modeling by ergonomically reflecting 3D body shape and skin length deformation in major positions held by a baseball catcher. A full-scale leg guard model will be manufactured by using a 3D printer, and feedback will be obtained from wearing evaluation to provide optimal 3D leg guard modeling.

II. Methods

1. 3D modeling and printing of leg guards

Lee et al. (2015) reported a general increase in horizontal curvature and decrease in vertical curvature with noticeable changes in cross section compared to longitudinal section during knee joint flexion. Their study also reported larger changes in curvature when bending the knee joint by 120° compared to 90°. Therefore, this research used 3D body data for 120° knee joint flexion for comfortable movement, and 3D lower extremity data based on the average for age in the late twenties in 2010 SizeKorea (Korean Agency for Technology and Standards, 2010). Leg guard surface modeling was conducted by using Geomagic Design X (3D Systems, Inc., USA) on body mesh for curvature extraction, surface creation, sketch, and trim, as shown in Figure 1. Leg guard area distinguished boundaries of the thigh, knee, and shin based on the results of deformation in skin length change with movement. Modeling of leg guard 1 and leg guard 2 was performed by taking the boundary of areas as a design variable. Two types of leg guards were modified from wearing evaluation feedback, to optimize them into leg
guard 3. Characterized leg guards design are as in Table 1.

The hard shell data for the thigh, knee, and shin of the modeled leg guards was manufactured into a full-scale model by using a z650 3D printer (3D Systems, USA). The material used was zp150 (3D Systems, USA). The printer used a powder-based selective laser sintering method and features in fast printing speed, enabling production of a color model with excellent surface finish and intensity of materials.

2. Fit and wearing evaluation of leg guards

1) Subjects

Objective fit evaluation was performed with a male volunteer in his twenties, and subjective wearing evaluation was performed by 10 male volunteers in their twenties (average height: 176.6 cm, average weight: 73.6 kg, average age 23, average body mass index: 23.6). The experimental protocols received institutional review board approval from the university before the experiment and subjects were fully informed of the experimental protocols and background information for leg guard modeling before their participation. The average sizes of the thigh, knee, shin, and ankle circumference of the 10

![Figure 1. 3D Modeling Process of Leg Guards (Thigh part)](image)

Table 1. Features of Leg Guards 1, 2, and 3

	Leg guard 1	Leg guard 2	Leg guard 3
A larger area of the thighs than knee	A smaller area of the thighs than knee	Length reduction of the ankle center from Leg guard 1	
Table 2. Body Size of Subjects (unit: cm)

Item	Subject	Size Korea (2010)		
	Mean	(S.D.)	Mean	(S.D.)
Thigh C*	56.4	4.1	56.7	4.6
Knee C	37.6	1.2	37.6	2.3
Shin C	38.5	2	38.4	2.9
Ankle C	25	1.2	26.1	1.3

*C: circumference

subjects were within the average size range for the late twenties in 2010 SizeKorea as shown in Table 2.

2) Objective fit evaluation

For quantitative evaluation of leg guard fit, 3D information was obtained using a portable 3D scanner, Artec MHT (Artec Group, Inc., USA). First, the straight position was scanned and then 120° knee flexion without a leg guard was scanned. Subsequently, respective body scanning followed in the same two positions for leg guard 1 and 2. The 3D data were used to merge body and leg guards based on landmarks by using Geomagic Design X (3D Systems, Inc., USA). Cross-sectional area was sketched from mid-thigh, knee, and shin, and longitudinal area was sketched from anterior center as in Figure 2, to confirm the gap between body and leg guard, in other words, the level of tightness.

3) Subjective wearing evaluation

Wearing evaluation was assessed by responses to a 7-level Likert scale with respect to the straight position, knee joint flexion in 90° position, and knee joint flexion in 120° position, while wearing random leg guard models. The questions in the 7-level Likert scale considered overall size, thigh comfort, knee comfort, shin comfort, and ankle comfort, with 1 point for very negative, 4 points for acceptable, and 7 points for very positive. Comments on any dissatisfaction were solicited. Using feedback from wearing evaluation, leg guard modeling was modified and tested again, with another wearing evaluation to check the results.

4) Statistical analysis

All data of fit and wearing evaluation were statistically analyzed using SPSS Statistics 20 (IBM, Korea) and results of evaluation on leg guards were compared using paired t-tests. The
results of evaluation on previously manufactured leg guard 1 and 2 were compared to select the leg guard with better fit and comfortability. The selected leg guard went through another comparative evaluation against leg guard 3, which was modified by feedback. Confidence level was set at less than .05.

III. Results

1. Leg guard design according to deformation of the skin length

Skin length deformation was visualized during knee flexion based on the research of Lee et al. (2015) in the straight position as in Figure 3.

As shown in Figure 3, the vertical rate of deformation by knee flexion showed an increase in most of the anterior thigh and knee areas (H1–H10, V3–V5). The area with more than 30% increase is concentrated at H3 to H7. In contrast, the majority of the medial and lateral leg and areas near the ankle showed a decrease in length variation by knee flexion. Horizontal rate of change in length variation was not noticeable.

In conclusion, there was more than 30% increase at V4 in section H3 with knee flexion of 90° and in V4 and V5 of H4 with knee flexion of 120°. Section H5 also showed more than a 30% increase at V3, V4, and V5, and partial areas showed more than a 40% and 50% increase. Sections H6 and H7 showed more than about a 30% increase during knee flexion. The rate of increase began to decrease at section H8. Leg guards comprised of a unit structure from thigh to knee may not cover the rate of change in vertical length variation, leading to an uncomfortable fit. It was decided to divide the boundary of the leg guards in order to include changes in skin length variation based on the rate of deformation in vertical length of the body surface. In short, when deciding boundaries of thigh, knee, and shin parts of the leg guard, sections H3 and H4, with more than 30% vertical length increases, were chosen as variables. Leg guard 1 boundary was set at H4, with more than 30% increase at boundaries of thigh and knee parts. The modeling area was defined for the thigh as H1–H4, knee as H5–H7, and shin as H8–H16. Leg guard 2 boundary was set as H3, defined for the thigh as H1–H3, knee as H4–H7, and shin as H8–H16. Leg guard 2
was designed to have a narrower thigh and wider knee area compared to leg guard 1. The results of modeling are shown in Figure 4 (a) and (b). Because the modeling was originally based on knee flexion at 120°, clothing shape in the straight position was virtually simulated. Printed leg guards are seen in Figure 4 ©.

\[
\text{SL rate} = \frac{\text{SLF} - \text{SLS}}{\text{SLS}} \times 100
\]

(SL rate: skin length deformation rate, SLF: skin length in knee flexion from reference point to reference point, SLS: skin length in straight position from reference point to reference point)

2. Evaluation of leg guards

1) Objective fit evaluation

Figures 5 and 6 were longitudinal and cross sections created by aligning and overlapping 3D data of leg guards and the human body according to attached reference points. The longitudinal sections were sketched on the plane passing through the center of the front leg, and the cross sections were sketched on the plane passing through the mid-thigh, knee, and shin. This showed trends similar to those in Figure 4, in which the leg guard was virtually simulated. When the leg guard was worn in straight position as in Figure 5, guard 1 created gaps of 0.8–2.3 cm in thighs, 2.6–3.3 cm in knees, and 0.8–3.7 cm in shins. Leg guard 2 created gaps of 0.8–1.9 cm in thighs, 3.2–5.0 cm in knees, and 0.8–3.5 cm in shins. Knees showed relatively larger empty space in straight position, particularly for leg guard 2. This implied that the size of the sections is important in modeling, and that the low adherence to the knee in straight position would affect the wearing sensation.

However, as seen in Figure 6, both leg guards 1 and 2 are worn similar to the body section

Figure 4. Virtual Simulation of 3D Printing Models Using a 3D Lower Body and actual 3D Printing Products: (a) Leg guard 1 (above) and Leg guard 2 (below) in 120° knee flexion; (b) Leg guard 1 (above) and Leg guard 2 (below) in straight position; (c) Leg guard 1 (above) and Leg guard 2 (below) in straight position on a human body with actual 3D printing products
with knee joints in flexion to 120°. The gaps between body and leg guard 1 with knee joints bent to 120° are 1–2.2 cm for thighs, 1.4–2.5 cm for knees, and 0.8–1.5 cm for shins. In the case of leg guard 2, they were 2.5–2.6 cm for thighs, 1.3–2.2 cm for knees, and 1.3–1.7 cm for shins. Since the printed model of the leg guards was 0.8 cm in thickness, leg guards were quite adherent to the body in sitting position and therefore comfortable. However, leg guard 1 had 5.0 cm and 4.3 cm exposure of the body above and below the knee, respectively. Although leg guard 1 was closely adherent to the body, it left certain parts exposed, which required correction.

Figure 5. Cross-section and Longitudinal-section Sketches of 3D Data Wearing Leg Guards in Straight Position: (a) Leg guard 1, (b) Leg guard 2

Figure 6. Cross-section and Longitudinal-section Sketches wearing the Leg guard with Knee Joint Flexion at 120° for: (a) Leg guard 1, (b) Leg guard 2
2) Subjective wearing evaluation (Design modification by comparing leg guard 1 and leg guard 2)

The wearing evaluation results for leg guard 1 and leg guard 2 are shown in Figure 7. There was no significant difference between the leg guards when standing and when knee joints were bent to 90°. However, when knees were bent to 120°, leg guard 1 achieved 5 points for the question regarding overall size, which was significantly higher than for leg guard 2 ($t=2.248$, $p<.05$). In addition, there were no statistically significant differences at all positions, but for almost all questions leg guard 1 achieved higher average points than leg guard 2. When the results for each question regarding leg guard 1 wearing evaluation were thoroughly analyzed, thigh comfort achieved the highest points, whereas ankle comfort received the lowest points. Knee comfort scored around 4 points, meaning that it was considered acceptable. According to the analysis of freely-described content, the ankle comfort question received the lowest points because of the pressure due to a very long leg guard. Therefore, leg guard 1 was modified and improved as it earned a higher overall rating. The design was modified to address the problem of comfort at the ankle. The bottom center of the shin guard, where most pressure was felt, was shortened by approximately 2.0 cm. In addition, leg guard 1 required correction for the large gap in the knee part in sitting position, as reported in the objective evaluation. However, if the knee part was enlarged, the comfortability in standing position was negatively affected, so a mini-shell to protect the exposed
The paired t-test results between leg guard 3 and leg guard 1 are shown in Figure 8. For the straight position, leg guard 3 achieved significantly higher points for thigh comfort ($t=-2.250$, $p<.05$) and ankle comfort ($t=-3.973$, $p<0.05$). With knees bent at 90°, the ankle comfort question ($t=-2.689$, $p<.05$) scored significantly higher points, and with knees bent at 120°, the size appropriate ($t=-3.139$, $p<.05$) and ankle comfort questions ($t=-2.449$, $p<.05$) scored significantly higher points. Thus, in all positions the pressure on the ankle with leg guard 3 was improved. Moreover, all other questions for all other positions achieved higher points with leg guard 3 compared to leg guard 1.

IV. Discussion

This research focused on enhancing the wearing sensation or satisfaction of leg guards to promote athletic abilities by improving the mobility and fit of leg guards. Therefore, to correct the discomfort from the leg guard’s shape, reverse engineering was performed to lay the foundations for modeling based on the results of research on how leg guards affect the human body, using a 3D model. Reverse engineering has a low risk of failure and great benefit in being able to create products in less time at lower cost (Prabaharan, 2013).

Leg guard modeling was designed with horizontal curvature of the 3D surface data with knee flexion at 120°, because cross-section changes were greater than longitudinal-section changes when knees were bent (Lee et al. 2015). The hard shells of the leg guards were made of plastic with almost no elasticity; moreover, if this curvature was lower than or inadequate for the body curvature, it could cause discomfort. Therefore, in designing leg guards, the curvature of the hard shell and allocation of thigh, knee, and shin sections were most important. Meanwhile, as the modeling design was based on 120° flexion, leg guard 1 and 3 both showed higher fit points when knees were bent than when they were straight. This will
provide comfort for a catcher who maintains a sitting position throughout the game. Until now, construction, heritage restoration, vehicle, and mechanical industries mainly used reverse engineering. However, this research used human body 3D data to enhance the fit of leg guards with positive results. This method of designing products improves not only any other types of personal protective equipment, but also can be utilized for customized products for the disabled. Meanwhile, although comfortable hard shells for leg guards were designed using feedback from a 3D printed model, there was a limitation in that no comparison was made with current commercial leg guards. The choice of material was also critical, as recent research shows that most leg guard wearers complained about weight and thermal comfort. Therefore, in future studies, this product must be made with optimized material and undergo fit testing. In addition, careful design of the soft shell can also enhance the fit of leg guards.

V. Conclusion

This research designed and evaluated human engineered leg guards using 3-D human body modeling and its printing technology. The design was based on analysis of body changes caused by knee bending. The modeling was reverse engineered with the human body as the prototype, based on preceding research showing that curvature was greatest around the

![Figure 9. Wearing Evaluation Results for Leg Guard 1 and Leg Guard 3: size appropriate, thigh comfort, knee comfort, shin comfort, ankle comfort](image-url)
circumference in sitting position. The boundaries of thigh, knee, and shin sections of the leg guards were set by analyzing skin length deformation. The modeled data were produced using a 3D printer and were evaluated. The leg guards with a smaller knee section achieved better evaluation. The shortened leg guard that reflected complaints about pressure from the long ankle section received high scores regarding fit. The guard especially scored significantly higher points for ankle comfort in all positions, and also scored significantly higher points for appropriate size at 120° flexion. As a result, superior leg guards with hard shell modeling were completed using models based on the human body. This product design method not only ensures the athlete’s safety by enhancing the fit, but can also maximize athletic performance and even be customized for the wearer.

References

Adams, S. L., Wyte, C. D., Paradise, M. S., & Castillo, J. (1996). A prospective study of inline skating: Observational series and survey of active inline skaters—Injuries, protective equipment, and training. Academic emergency medicine, 3(4), 304–311.

Benson, B. W., Hamilton, G. M., Meeuwisse, W. H., McCrory, P., & Dvorak, J. (2008). Is protective equipment useful in preventing concussion? A systematic review of the literature. British journal of sports medicine, 43(Suppl 1), i56–i67.

Braham, R. A., Finch, C. F., McIntosh, A., & McCrory, P. (2004). Community football players’ attitudes towards protective equipment—a pre-season measure. British journal of sports medicine, 38(4), 426–430.

Eime, R. M., Finch, C. F., Sherman, C. A., & Garnham, A. P. (2002). Are squash players protecting their eyes?. Injury prevention, 8(3), 239–241.

Finch, C. F. (1996). Teenagers’ attitudes towards bicycle helmets three years after the introduction of mandatory wearing. Injury Prevention, 2(2), 126–130.

Finch, C. F., McIntosh, A. S., & McCrory, P. (2001). What do under 15 years old schoolboy rugby union players think about protective head equipment?. British journal of sports medicine, 35(2), 89–94.

Han, J. (2013). A study on the prototype modeling method using 3D printing. Research Bulletin of Package Culture Design, 34, 97–109.

Jung, J. (2014). A Study on the way of revitalization for design industry of 3D printing technology, Journal of Korea Design Knowledge, 31, 43–52.

Korean Agency for Technology and Standards. (2010). 6th Size Korea Direct Measurement Technical Report, Government Printing Office, Korea.

Kroncke, E. L., Niedfeldt, M. W., & Young, C. C. (2008). Use of protective equipment by adolescents in inline skating, skateboarding, and snowboarding, Clinical Journal of Sport Medicine, 18(1), 38–43.

Lee, H., Eom, R., & Lee, Y. (2015). 3D modeling of safety leg guards considering skin change and shape, Korean Journal of Human Ecology, 24(4), 555–569.

Lee, J., Lim, Y., Kim, S., Yu, H., Jin, M., Kong, W., Bae, H., & Park, K. (2014). Development of personalize glasses using 3D printing with evaluation of assembly characteristics, Autumn Conference of Journal of Mechanical Science
and Technology, 2014(11), 2058–2063.
Mangus, R. S., Simons, C. J., Jacobson, L. E., Streib, E. W., & Gomez, G. A. (2004). Current helmet and protective equipment usage among previously injured ATV and motorcycle riders, Injury Prevention, 10(1), pp. 56–58.
Marshall, S., Waller, A., Dick, R., Pugh, C., Loomis, D., & Loomis, D. (2002). An ecologic study of protective equipment and injury in two contact sports, International Journal of Epidemiology, 31(3), 587–592.
Marshall, S. W., Loomis, D. P., Waller, A. E., Chalmers, D. J., Bird, Y. N., Quarrie, K. L., & Feehan, M. (2005). Evaluation of protective equipment for prevention of injuries in rugby union, International journal of epidemiology, 34(1), 113–118.
Marshall, S. W., Waller, A. E., Loomis, D. P., Feehan, M. I. C. H. A. E. L., Chalmers, D. J., Bird, Y. N., & Quarrie, K. L. (2001). Use of protective equipment in a cohort of rugby players, Medicine and science in sports and exercise, 33(12), 2131–2138.
Mcintosh, A., McCrory, P., & Finch, C. (2004). Performance enhanced head equipment: a scientific approach to the development of protective head equipment. British journal of sports medicine, 34(1), 46–49.
Prabaharan, M. (2013). Application of CAD/CAE, reverse engineering and rapid prototyping in new product development industry. In ASME 2013 international mechanical engineering congress and exposition, American Society of Mechanical Engineers, V015T16A026–V015T16A026.
Rampton, J., Leach, T., Therrien, S. A., Bota, G. W., & Rowe, B. H. (1997). Head, neck, and facial injuries in ice hockey: the effect of protective equipment, Clinical Journal of Sport Medicine, 7(3), 162–167.
Watkins, S. M. (1998). Clothing: The portable Environment. (H. Choi, Trans.). Seoul: Ewha womans university press. (Original work published 1995).
Webster, J. M., & Roberts, J. (2009). Incorporating subjective end-user perceptions in the design process: a study of leg guard comfort in cricket, Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 223(2), 49–62.
Williams-Avery, R. M., & MacKinnon, D. P. (1996). Injuries and use of protective equipment among college in-line skaters, Accident Analysis & Prevention, 28(6), 779–784.
Young, C. C., Seth, A., & Mark, D. H. (1998), In-line skating: use of protective equipment, falling patterns, and injuries, Clinical Journal of Sport Medicine, 8(2), 111–114.

Received (May 2, 2016)
Revised (May 27, 2016)
Accepted (June 9, 2016)