NUAK1 is a member of the AMPK-related family of kinases. Recent evidence suggests that NUAK1 is an important regulator of cell adhesion and migration, cellular and organismal metabolism, and regulation of TAU stability. As such, NUAK1 may play key roles in multiple diseases ranging from neurodegeneration to diabetes and metastatic cancer. Previous work revealed a crucial role for NUAK1 in supporting viability of tumour cells specifically when MYC is overexpressed. This role is surprising, given that NUAK1 is activated by the tumour suppressor LKB1. Here we show that, in tumour cells lacking LKB1, NUAK1 activity is maintained by an alternative pathway involving calcium-dependent activation of PKCa. Calcium/PKCa-dependent activation of NUAK1 supports engagement of the AMPK-TORC1 metabolic checkpoint, thereby protecting tumour cells from MYC-driven cell death, and indeed, MYC selects for this pathway in part via transcriptional regulation of PKCa and ITPR. Our data point to a novel role for calcium in supporting tumour cell viability and clarify the synthetic lethal interaction between NUAK1 and MYC.

INTRODUCTION
NUAK1, also known as ARK5, is one of 12 kinases related by sequence homology to the catalytic α-subunits of the metabolic regulator AMPK.1 Perturbation of NUAK1 has revealed a diverse array of phenotypes, pointing to roles for NUAK1 in regulating cellular and organismal metabolism, cellular and organismal metabolism, and regulation of TAU stability. As such, NUAK1 may play key roles in multiple diseases ranging from neurodegeneration to diabetes and metastatic cancer. Previous work revealed a crucial role for NUAK1 in supporting viability of tumour cells specifically when MYC is overexpressed. This role is surprising, given that NUAK1 is activated by the tumour suppressor LKB1. Here we show that, in tumour cells lacking LKB1, NUAK1 activity is maintained by an alternative pathway involving calcium-dependent activation of PKCa. Calcium/PKCa-dependent activation of NUAK1 supports engagement of the AMPK-TORC1 metabolic checkpoint, thereby protecting tumour cells from MYC-driven cell death, and indeed, MYC selects for this pathway in part via transcriptional regulation of PKCa and ITPR. Our data point to a novel role for calcium in supporting tumour cell viability and clarify the synthetic lethal interaction between NUAK1 and MYC.

RESULTS
NUAK1 is specifically required for Ca2+-dependent AMPK activity. Depletion of NUAK1 impairs activation of AMPK in response to sustained MYC deregulation.21 We asked whether this requirement for NUAK1 is a general feature of AMPK regulation or rather a context-dependent event. AMPK is activated by phosphorylation of the α-subunit on Thr172 by LKB1, and activity is further enhanced upon a drop in the ATP:AMP/ADP ratio.27 Alternatively, CamKK2 can phosphorylate AMPKα Thr172 in response to calcium signalling.25 Additionally, AMPK can be activated upon direct binding of pharmacological agonists, such as salicylate or A769662.28 We therefore considered three modes of AMPK activation: indirect activation in response to energetic stress, direct activation by agonist binding and calcium-dependent activation.

In order to investigate the requirement of each mode of AMPK activation for NUAK1, we made use of a recently described highly selective NUAK1 kinase inhibitor, HTH-01-015. Treatment of U2OS cells with HTH-01-015 for 1 h, 6 h or overnight reduced Ser445 phosphorylation of the NUAK1 substrate MYPT1 in a dose-dependent manner (Figure 1a). In contrast, acute treatment with HTH-01-015 had no effect on basal Ser79 phosphorylation of the canonical AMPKα Thr172 by LKB1, and activity is further enhanced upon a drop in the ATP:AMP/ADP ratio.27 Alternatively, CamKK2 can phosphorylate AMPKα Thr172 in response to calcium signalling.25 Additionally, AMPK can be activated upon direct binding of pharmacological agonists, such as salicylate or A769662.28 We therefore considered three modes of AMPK activation: indirect activation in response to energetic stress, direct activation by agonist binding and calcium-dependent activation.

Calcium signalling links MYC to NUAK1

ORIGINAL ARTICLE

T Monteverde1, J Tait-Mulder1, A Hedley2, JR Knight2, OJ Sansom1,2 and DJ Murphy1,2

NUAK1 is a member of the AMPK-related family of kinases. Recent evidence suggests that NUAK1 is an important regulator of cell adhesion and migration, cellular and organismal metabolism, and regulation of TAU stability. As such, NUAK1 may play key roles in multiple diseases ranging from neurodegeneration to diabetes and metastatic cancer. Previous work revealed a crucial role for NUAK1 in supporting viability of tumour cells specifically when MYC is overexpressed. This role is surprising, given that NUAK1 is activated by the tumour suppressor LKB1. Here we show that, in tumour cells lacking LKB1, NUAK1 activity is maintained by an alternative pathway involving calcium-dependent activation of PKCa. Calcium/PKCa-dependent activation of NUAK1 supports engagement of the AMPK-TORC1 metabolic checkpoint, thereby protecting tumour cells from MYC-driven cell death, and indeed, MYC selects for this pathway in part via transcriptional regulation of PKCa and ITPR. Our data point to a novel role for calcium in supporting tumour cell viability and clarify the synthetic lethal interaction between NUAK1 and MYC.

INTRODUCTION
NUAK1, also known as ARK5, is one of 12 kinases related by sequence homology to the catalytic α-subunits of the metabolic regulator AMPK.1 Perturbation of NUAK1 has revealed a diverse array of phenotypes, pointing to roles for NUAK1 in regulating cellular and organismal metabolism, cellular and organismal metabolism, and regulation of TAU stability. As such, NUAK1 may play key roles in multiple diseases ranging from neurodegeneration to diabetes and metastatic cancer. Previous work revealed a crucial role for NUAK1 in supporting viability of tumour cells specifically when MYC is overexpressed. This role is surprising, given that NUAK1 is activated by the tumour suppressor LKB1. Here we show that, in tumour cells lacking LKB1, NUAK1 activity is maintained by an alternative pathway involving calcium-dependent activation of PKCa. Calcium/PKCa-dependent activation of NUAK1 supports engagement of the AMPK-TORC1 metabolic checkpoint, thereby protecting tumour cells from MYC-driven cell death, and indeed, MYC selects for this pathway in part via transcriptional regulation of PKCa and ITPR. Our data point to a novel role for calcium in supporting tumour cell viability and clarify the synthetic lethal interaction between NUAK1 and MYC.

RESULTS
NUAK1 is specifically required for Ca2+-dependent AMPK activity. Depletion of NUAK1 impairs activation of AMPK in response to sustained MYC deregulation.21 We asked whether this requirement for NUAK1 is a general feature of AMPK regulation or rather a context-dependent event. AMPK is activated by phosphorylation of the α-subunit on Thr172 by LKB1, and activity is further enhanced upon a drop in the ATP:AMP/ADP ratio.27 Alternatively, CamKK2 can phosphorylate AMPKα Thr172 in response to calcium signalling.25 Additionally, AMPK can be activated upon direct binding of pharmacological agonists, such as salicylate or A769662.28 We therefore considered three modes of AMPK activation: indirect activation in response to energetic stress, direct activation by agonist binding and calcium-dependent activation.

In order to investigate the requirement of each mode of AMPK activation for NUAK1, we made use of a recently described highly selective NUAK1 kinase inhibitor, HTH-01-015. Treatment of U2OS cells with HTH-01-015 for 1 h, 6 h or overnight reduced Ser445 phosphorylation of the NUAK1 substrate MYPT1 in a dose-dependent manner (Figure 1a). In contrast, acute treatment with HTH-01-015 had no effect on basal Ser79 phosphorylation of the canonical AMPKα Thr172 by LKB1, and activity is further enhanced upon a drop in the ATP:AMP/ADP ratio.27 Alternatively, CamKK2 can phosphorylate AMPKα Thr172 in response to calcium signalling.25 Additionally, AMPK can be activated upon direct binding of pharmacological agonists, such as salicylate or A769662.28 We therefore considered three modes of AMPK activation: indirect activation in response to energetic stress, direct activation by agonist binding and calcium-dependent activation.

In order to investigate the requirement of each mode of AMPK activation for NUAK1, we made use of a recently described highly selective NUAK1 kinase inhibitor, HTH-01-015. This molecule shows little-to-no activity towards AMPK, NUAK2 or other AMPK-related kinases (ARKs) in vitro.29 Treatment of U2OS cells with HTH-01-015 for 1 h, 6 h or overnight reduced Ser445 phosphorylation of the NUAK1 substrate MYPT1 in a dose-dependent manner (Figure 1a). In contrast, acute treatment with HTH-01-015 had no effect on basal Ser79 phosphorylation of the canonical AMPK substrate, ACC. Acute activation of AMPK in U2OS cells using the direct agonist A769662, the electron transport chain inhibitor phenformin or the widely-used Ca2+ ionophore A23187, all increased phospho-ACC levels. Co-treatment with HTH-01-015 attenuated this increase in response to AMPK activation by Ca2+ and by phenformin, but not by the direct AMPK agonist A769662,
indicating that the requirement for NUAK1 during AMPK activation is context dependent (Figure 1b).

Suppression of Ca\(^{2+}\)-dependent AMPK activity by HTH-01-015 suggested that NUAK1 may be important during LKB1-independent regulation of AMPK. We therefore repeated the above analysis in HeLa cells, which lack functional LKB1 (Figure 1c). As measured by ACC phosphorylation, activation of AMPK by either direct agonist or phenformin was much weaker in HeLa cells than in U2OS cells, and neither was affected by NUAK1 inhibition. In contrast, Ca\(^{2+}\) ionophore clearly increased AMPK activity and this increase was attenuated by NUAK1 inhibition (Figure 1d), suggesting a specific role for NUAK1 in this mode of AMPK activation.

NUAK1 is activated by calcium signalling

LKB1 is a master regulator of the AMPK-related kinases, including NUAK1.\(^1\) Our results in HeLa cells implied that NUAK1 is active in these cells despite the absence of LKB1. The myosin phosphatase targeting subunit of PP1\(^{\beta}\), MYPT1 (PPP1R12A), is to date the best-characterized substrate of NUAK1 kinase activity.\(^2\) Acute treatment of HeLa cells with HTH-01-015 reduced MYPT1 phospho-Ser445 levels, suggesting that NUAK1 is indeed catalytically active in these cells (Figure 2a). Depletion of NUAK1 using two independent siRNAs also reduced phospho-MYPT1\(^{S445}\), confirming the specificity of the inhibitor effect (Figure 2b). The partial reduction in phospho-MYPT1\(^{S445}\) observed upon NUAK1 suppression suggested that other kinases may contribute to MYPT1\(^{S445}\) phosphorylation. Indeed, NUAK2, the ARK most closely related to NUAK1, was previously reported to phosphorylate this site.\(^2\) Accordingly, depletion of NUAK2 also reduced phospho-MYPT1 S445 levels, while combined suppression of both NUAK1 and 2 almost completely abolished MYPT1S445 phosphorylation (Figure 2c). Pharmacological inhibition of both NUAK1 and NUAK2, using the dual-specificity inhibitor WZ400329 similarly abolished MYPT1 phosphorylation, corroborating the results of the siRNA (Supplementary Figure S1A). Thus, both NUAK1 and NUAK2 are active in HeLa cells despite their LKB1-null status.

These data indicate that NUAK1 is activated in HeLa cells by an alternative upstream kinase. We first asked if CamKK2, a known upstream activator of AMPK, might similarly activate NUAK1. Treatment of HeLa cells with the CamKK2 inhibitor STO-609 strongly suppressed phosphorylation of both AMPK\(^{\alpha1}\) and ACC\(^{\beta}\) but had no influence on phospho-MYPT1\(^{S445}\) levels (Figure 2d), suggesting that CamKK2 is not upstream of NUAK1. Strikingly, treatment with calcium ionophore A23187 increased phosphorylation of both ACC\(^{\beta}\) and MYPT1\(^{S445}\) and co-treatment with STO-609 reduced ACC\(^{\beta}\) phosphorylation but again had no effect on phospho-MYPT1\(^{S445}\), suggesting that NUAK1 is activated by a calcium-dependent kinase other than CamKK2. Accordingly, treatment of HeLa cells with two different Ca\(^{2+}\) ionophores,
Ionomycin or A23187, increased MYPT1S445 phosphorylation and this increase was attenuated by NUAK1 inhibition (Figure 2e). Conversely, treatment with the calcium chelator BAPTA strongly reduced basal levels of phospho-MYPT1S445 (Figure 2f). Collectively, these data suggest that Ca²⁺ signalling activates NUAK1 in the absence of LKB1. Interestingly, treatment with the Ca²⁺ ionophore A23187 could partially rescue MYPT1S445 phosphorylation in the presence of NUAK1 inhibitor but not in the presence of the dual NUAK1/NUAK2 inhibitor, WZ4003 (Supplementary Figure S1A). A23187 also partially rescued MYPT1S445 phosphorylation upon suppression of either NUAK1 or NUAK2 but not both (Supplementary Figure S1B), together suggesting that NUAK2 is also activated by calcium signalling in the absence of LKB1.

MYC drives increased PKC activity
Calcium regulates multiple kinases including Ca²⁺/Calmodulin-dependent kinases 1–4; CamKK1 and 2; and conventional isoforms of protein kinase C (cPKC). Noting our previously described link

Figure 2. Calcium signalling activates NUAK1. (a) Lysates from HeLa cells treated with the indicated concentrations of HTH-01-015 for 1 h and probed for phospho- and total MYPT1. (b) Lysates from HeLa cells transfected with NUAK1 siRNA and probed with the indicated antibodies. nt, non-targeting control siRNA. (c) Lysates from HeLa cells transfected with NUAK2 (+) or control (−) siRNA and treated ±10 μM HTH-01-015, as indicated. Densitometry shows phospho-MYPT1 levels from the image shown. (d) Lysates from HeLa cells pre-treated with 5 μg/ml STO-609 for 1 h prior to stimulation with 3 μM A23187 (10 min) as indicated, and probed with the indicated antibodies. (e) Lysates from HeLa cells pre-treated with 10 μM HTH-01-015 for 1 h prior to stimulation with 3 μM A23187 or Ionomycin (both 10 min) as indicated, and probed for phospho-MYPT1. (f) Lysates from HeLa cells treated ±20 μM BAPTA for 30 min. All images are representative of at least three independent experiments, except (f) where N = 2.
We next asked if targeted suppression of PKC impairs NUAK1. NUAK1 is activated by PKC. 
This consequence of MYC overexpression is conserved across HeLa cells reduced p-MARCKS levels (Figure 3d), suggesting that deregulated MYC select for increased calcium signalling. (Figure 3a). Notably, MYC was previously shown to bind the which regulates calcium release from the endoplasmic reticulum CamKKβ, along with the inositol tri-phosphate receptor ITPR1, which regulates calcium release from the endoplasmic reticulum (Figure 3a). Notably, MYC was previously shown to bind the promoters of all three genes in diverse cell types, including MEFs. MYC overexpression strongly enhanced PKC activity, as measured by phosphorylation of the canonical PKC substrate MARCKS, and modestly but reproducibly enhanced Ca²⁺-dependent activation of AMPK (Figures 3b and c). MARCKS phosphorylation was suppressed by BAPTA or by treatment with the PKCa/β inhibitor Gö6976, suggesting that deregulated MYC specifically increases activity of Ca²⁺-dependent PKC isoforms (Figure 3b). HeLa cells express high levels of MYC and depletion of MYC in HeLa cells reduced p-MARCKS levels (Figure 3d), suggesting that this consequence of MYC overexpression is conserved across species.

NUAK1 is activated by PKCa
We next asked if targeted suppression of PKC impairs NUAK1 activity. Inhibition of PKCa and β isoforms with Gö6976 strongly reduced p-MYPT1T172 in a dose-dependent manner (Figure 4a). Notably, this effect was transient, as p-MYPT1T172 levels rebounded within 16 h of Gö6976 treatment, and this was mirrored by a recovery in overall PKC activity (Figure 4b). SiRNA-mediated depletion of PKCa also reduced p-MYPT1T172 levels to a degree that was similar to NUAK1 inhibition but less than that observed after 1 h treatment with the highest concentration of Gö6976 tested, which may reflect promiscuity of the PKC inhibitor at this dose (Figure 4c, note that a lower concentration of Gö6976, 0.5 μM, was used for all subsequent experiments). No effect on p-MYPT1T172 was observed using siRNA targeting PKÇB1 (not shown).

In light of our data showing that both NUAK1 and NUAK2 contribute to Ca²⁺-induced MYPT1T172 phosphorylation, we asked if the effects of PKCa depletion were mediated by either NUAK1, NUAK2, or both. The reduction of p-MYPT1T172 achieved upon NUAK1 depletion was minimally influenced by co-depletion of PKCa (compare lane 2 with lane 4), consistent with a role for PKCa upstream of NUAK1. In contrast, suppression of MYPT1T172 phosphorylation by NUAK2 depletion was strongly enhanced by co-depletion of PKCa (compare lanes 5 and 6), suggesting that NUAK2 resides in a distinct pathway (Figure 4d). Interestingly, depletion of PKCa consistently reduced expression of NUAK1 (Figure 4d). This effect was observed using two independent siRNAs targeting PKCa and neither siRNA reduced expression of NUAK1 mRNA levels (Supplementary Figure S2), strongly suggesting that the effect does not reflect off-target activity of the siRNAs used. Proteasome inhibition largely rescued NUAK1 levels upon depletion of PKCa, suggesting that PKCa promotes NUAK1 protein stability (Supplementary Figures S2B and C).

To examine the effects of acute calcium signalling on NUAK1 activation, we requisitioned an affinity-purified phosphopeptide antibody against T211-phosphorylated NUAK1, and overexpressed either wild type or T211A mutant, FLAG-tagged, NUAK1 in HeLa cells. In FLAG immunoprecipitates, the antibody strongly detected a band migrating at the correct size for NUAK1 only in lysates from WT but not from T211A mutant-overexpressing cells. Identical results were obtained using a commercial anti-phospho-AMPKαT172 antibody that cross-reacts with overexpressed phospho-NUAK1T21134 (Supplementary Figure S2). For both antibodies, the intensity of this band increased within 10 min of Ca²⁺ ionophore treatment and decreased upon acute treatment with PKC inhibitor (Figure 4e and Supplementary Figure S2).
Figure 4. PKCα mediates calcium-dependent NUAK1 activation. (a) Lysates from HeLa cells treated with the indicated concentrations of Gö6976 for 1 h and probed with the indicated antibodies. (b) Lysates from HeLa cells treated with 1 μM Gö6976 or 10 μM HTH-01-015 for 1 or 16 h, probed with the indicated antibodies. (c) Lysates from HeLa cells transfected with PKCα siRNA and probed for phospho-S445 and total MYPT1 with densitometry of p-MYPT1 above. nt, non-targeting control siRNA. (d) Lysates from HeLa cells transfected with siRNA targeting PKCα and/or NUAK2 or NUAK1, probed with the indicated antibodies. Arrowhead indicates the correct band for NUAK2. (e) Anti-FLAG immunoprecipitates from HeLa cells transfected with FLAG-tagged WT or T211A mutant NUAK1, treated with 0.5 μM Gö6976 and/or 3 μM A23187, and probed with anti-phospho-NUAK1T211 antibody. (f) Lysates from HeLa cells pre-treated with 0.5 μM Gö6976 for 1 h prior to stimulation with 3 μM A23187, as per (e) and probed for phospho-MYPT1S445. All images are representative of at least three independent experiments, except (e) where N = 2.
Examination of p-MYPT1$^{S445}$ under the same conditions showed similar responses to Ca$^{2+}$ ionophore and PKC inhibitor treatment with one important difference: whereas Ca$^{2+}$ ionophore could partially rescue the effect of Gö6976 on MYPT1$^{S445}$ phosphorylation (Figure 4f), no such rescue was evident in p-NUAK1$^{T211}$ levels. Taken with the data above, these data suggest that Ca$^{2+}$ signalling regulates NUAK1 in HeLa cells via activation of PKCα, while MYPT1$^{S445}$ phosphorylation is regulated both via NUAK1 and via a distinct pathway involving Ca$^{2+}$-dependent, Gö6976-refractory, activation of NUAK2.

The PKCα–NUAK1 pathway supports viability of MYC-overexpressing cells

We previously showed that MYC-overexpressing cells require NUAK1 to sustain viability.21 HeLa cells express high levels of MYC

---

**Figure 5.** For caption see page 988.
and prolonged treatment (2 days) with 10 μM HTH-01-015 resulted in pronounced HeLa cell apoptosis (Figure 5a). Partial inhibition of NUAK1 with 5 μM HTH-01-015 was surprisingly well tolerated, suggesting that a threshold level of NUAK1 activity is sufficient to prevent cell death. Similar results were obtained using siRNA-mediated NUAK1 depletion, in that death was only induced upon very strong suppression of NUAK1 expression (Figure 5b). Death induced by 10 μM HTH-01-015 was significantly attenuated by reducing MYC levels with either of two MYC-targeting shRNAs (Figure 5c), consistent with our previous demonstration of MYC ‘dose-dependence’ for the synthetic lethal interaction with NUAK1.21 Consistent with a role for PKCα upstream of NUAK1, depletion of PKCα with either of two siRNAs also drove pronounced HeLa cell apoptosis (Figure 5d), while treatment of HeLa cells with Gö6976 significantly enhanced killing by a sublethal dose of NUAK1 inhibitor (Figure 5e). Note that Gö6976 treatment alone did not kill HeLa cells, likely owing to the transient nature of PKC inhibition by this compound (Figure 4b).

We asked if death induced upon loss of PKCα mechanistically mirrored that induced by loss of NUAK1. Under conditions of energetic stress, cancer cells activate a metabolic checkpoint in order to limit mTORC1-driven macromolecular synthesis, via phosphorylation of RAPTOR-Ser792 by AMPK.35 Failure to engage this checkpoint results in death of stressed cells4–6 and our previous work showed that NUAK1 is required for efficient checkpoint activation.31 Dynamic analysis of this checkpoint in HeLa cells revealed a complex response to Ca2+ ionophore, with p-RAPTOR–Ser792 increasing steadily over time whereas phospho-4EBP1T37/46 and phospho-AKT–Thr308 levels, downstream of mTORC1, rose initially before declining (Figure 5f), consistent with Ca2+–dependent activation of the AMPK–Raptor pathway.27 Importantly, depletion of either PKCα or NUAK1 reduced both basal and Ca2+-activated phosphorylation of RAPTOR–Ser792, suggesting that failure to efficiently engage the metabolic checkpoint may contribute to death in both instances (Figure 5g). Consistent with this hypothesis, treatment of HeLa cells with the mTORC1 inhibitor Rapamycin significantly rescued cells from death induced by depletion of either NUAK1 or PKCα, and the degree of rescue was similar in both instances (Figure 5h). Although these data do suggest that other downstream pathways likely contribute to cell death, they strongly support the core observation that NUAK1 and PKCα act in a similar manner to support cell viability.

NUAK1 regulates RAPTOR via both AMPK-dependent and independent mechanisms

Confirming the requirement for NUAK1 to restrain mTORC1 activity,33,34 methionine labelling showed increased protein translation in NUAK1-depleted HeLa and U2OS cells (Figure 6a), as shown previously.34 We therefore examined RAPTOR regulation by NUAK1 in greater detail. Activation of AMPK by Ca2+ ionophore (A23187), phenformin or salicylate in U2OS cells all lead to increased RAPTOR5792 phosphorylation. In contrast with the selective requirement for NUAK1 during AMPK regulation of ACC, RAPTOR5792 phosphorylation was reduced by NUAK1 inhibition under all conditions examined (Figure 6b). Depletion of NUAK1 also significantly reduced both basal and AMPK-activated RAPTOR5792 phosphorylation, confirming the specificity of this effect (Figure 6c). Inhibition of NUAK1 reduced AMPK-dependent RAPTOR5792 phosphorylation in immortalized Prkαa+/−,Prkαa−/− double floxed MEFs. Strikingly, phospho-RAPTOR5792 was still detectable in the same MEFs after CRE recombinase-mediated deletion of AMPKα1 and α2, albeit at reduced levels, and NUAK1 inhibition further reduced detection, indicating that NUAK1 can regulate RAPTOR in the absence of functional AMPK (Figure 6d). Accordingly, deletion of NUAK1 in Nuak1−/−,MEFs also reduced both basal and AMPK-activated RAPTOR5792 phosphorylation (Figure 6e).

Together these data show that efficient restraint of mTORC1 via inhibitory phosphorylation of RAPTOR requires both NUAK1 and AMPK.

DISCUSSION

Suppression of NUAK1 is synthetic lethal with MYC overexpression, suggesting that NUAK1 may present an attractive target for treatment of MYC-driven cancers.21,38 A thorough understanding of the signal transduction context of NUAK1 will be crucial to determine if such a strategy is feasible in human subjects. Here we show that NUAK1 is active in HeLa cells despite the absence of LKB1. We show modulation of NUAK1 activity by calcium perturbation, and present evidence that PKCα participates in NUAK1 activation in response to Ca2+ signalling. Importantly, Ca2+-dependent activation of the AMPK–mTORC1 metabolic checkpoint requires both PKCα and NUAK1, and depletion of either drives pronounced apoptosis, suggesting a positive role for this pathway in tumour maintenance. Our specific findings are summarized in Figure 7.

It is widely thought that the tumour suppressive function of LKB1 is mediated by one or more of the AMPK-family kinases.29,39 Loss of LKB1 would thus be predicted to result in loss of ARK activity, downstream. Accordingly, deletion of Stk11, encoding Lkb1, in wild-type MEFs was shown to suppress activity of AMPK and all related ARKs, as measured in cell-free kinase assays using a peptide substrate optimized for AMPK.1 However, several of the ARKs, including Nuak1, showed only weak activity towards the peptide used, suggesting it was a suboptimal substrate for these kinases. Indeed, subtle differences in peptide substrate sequences have revealed distinct preferential phosphorylation patterns of AMPK and MARK kinases.40 Thus, in vitro kinase assays with a one-size-fits-all peptide substrate likely fail to accurately reflect

Figure 5. The PKCα–NUAK1 pathway supports viability of MYC-overexpressing cells. (a) Apoptosis induced in HeLa cells by the indicated doses of HTH-01-015, measured by FACS analysis of cells stained with Annexin V and propidium iodide (AV/PI) 48 h post-treatment: Red bars denote AV single-positive cells while black bars denote AV/PI double-positive cells (for a–e, h). Mean and s.d. of three independent experiments shown (a, b, d, e, h). Statistical significance was determined by one-way ANOVA, Tukey’s multiple comparison test (a–e). The immunoblot shows suppression of MYPT1 phosphorylation after 1 h treatment. (b) Apoptosis in HeLa cells induced by NUAK1 siRNA, measured 3 days post-transfection. Immunoblot shows NUAK1 and p-MYPT1 levels at 24 h, nt, non-targeting control siRNA. (c) Depletion of either NUAK1 or PKCα driven pronounced HeLa cell apoptosis (Figure 5d), while treatment of HeLa cells with Gö6976 significantly enhanced killing by a sublethal dose of NUAK1 inhibitor (Figure 5e). Note that Gö6976 treatment alone did not kill HeLa cells, likely owing to the transient nature of PKC inhibition by this compound (Figure 4b). We asked if death induced upon loss of PKCα mechanistically mirrored that induced by loss of NUAK1. Under conditions of energetic stress, cancer cells activate a metabolic checkpoint in order to limit mTORC1-driven macromolecular synthesis, via phosphorylation of RAPTOR–Ser792 by AMPK.35 Failure to engage this checkpoint results in death of stressed cells4–6 and our previous work showed that NUAK1 is required for efficient checkpoint activation.31 Dynamic analysis of this checkpoint in HeLa cells revealed a complex response to Ca2+ ionophore, with p-RAPTOR–Ser792 increasing steadily over time whereas phospho-4EBP1T37/46 and phospho-AKT–Thr308 levels, downstream of mTORC1, rose initially before declining (Figure 5f), consistent with Ca2+–dependent activation of the AMPK–Raptor pathway.27 Importantly, depletion of either PKCα or NUAK1 reduced both basal and Ca2+-activated phosphorylation of RAPTOR–Ser792, suggesting that failure to efficiently engage the metabolic checkpoint may contribute to death in both instances (Figure 5g). Consistent with this hypothesis, treatment of HeLa cells with the mTORC1 inhibitor Rapamycin significantly rescued cells from death induced by depletion of either NUAK1 or PKCα, and the degree of rescue was similar in both instances (Figure 5h). Although these data do suggest that other downstream pathways likely contribute to cell death, they strongly support the core observation that NUAK1 and PKCα act in a similar manner to support cell viability.

NUAK1 regulates RAPTOR via both AMPK-dependent and independent mechanisms

Confirming the requirement for NUAK1 to restrain mTORC1 activity,33,34 methionine labelling showed increased protein translation in NUAK1-depleted HeLa and U2OS cells (Figure 6a), as shown previously.34 We therefore examined RAPTOR regulation by NUAK1 in greater detail. Activation of AMPK by Ca2+ ionophore (A23187), phenformin or salicylate in U2OS cells all lead to increased RAPTOR5792 phosphorylation. In contrast with the selective requirement for NUAK1 during AMPK regulation of ACC, RAPTOR5792 phosphorylation was reduced by NUAK1 inhibition under all conditions examined (Figure 6b). Depletion of NUAK1 also significantly reduced both basal and AMPK-activated RAPTOR5792 phosphorylation, confirming the specificity of this effect (Figure 6c). Inhibition of NUAK1 reduced AMPK-dependent RAPTOR5792 phosphorylation in immortalized Prkαa+/−,Prkαa−/− double floxed MEFs. Strikingly, phospho-RAPTOR5792 was still detectable in the same MEFs after CRE recombinase-mediated deletion of AMPKα1 and α2, albeit at reduced levels, and NUAK1 inhibition further reduced detection, indicating that NUAK1 can regulate RAPTOR in the absence of functional AMPK (Figure 6d). Accordingly, deletion of NUAK1 in Nuak1−/−,MEFs also reduced both basal and AMPK-activated RAPTOR5792 phosphorylation (Figure 6e).

Together these data show that efficient restraint of mTORC1 via inhibitory phosphorylation of RAPTOR requires both NUAK1 and AMPK.

DISCUSSION

Suppression of NUAK1 is synthetic lethal with MYC overexpression, suggesting that NUAK1 may present an attractive target for treatment of MYC-driven cancers.21,38 A thorough understanding of the signal transduction context of NUAK1 will be crucial to determine if such a strategy is feasible in human subjects. Here we show that NUAK1 is active in HeLa cells despite the absence of LKB1. We show modulation of NUAK1 activity by calcium perturbation, and present evidence that PKCα participates in NUAK1 activation in response to Ca2+ signalling. Importantly, Ca2+-dependent activation of the AMPK–mTORC1 metabolic checkpoint requires both PKCα and NUAK1, and depletion of either drives pronounced apoptosis, suggesting a positive role for this pathway in tumour maintenance. Our specific findings are summarized in Figure 7.

It is widely thought that the tumour suppressive function of LKB1 is mediated by one or more of the AMPK-family kinases.29,39 Loss of LKB1 would thus be predicted to result in loss of ARK activity, downstream. Accordingly, deletion of Stk11, encoding Lkb1, in wild-type MEFs was shown to suppress activity of AMPK and all related ARKs, as measured in cell-free kinase assays using a peptide substrate optimized for AMPK.1 However, several of the ARKs, including Nuak1, showed only weak activity towards the peptide used, suggesting it was a suboptimal substrate for these kinases. Indeed, subtle differences in peptide substrate sequences have revealed distinct preferential phosphorylation patterns of AMPK and MARK kinases.40 Thus, in vitro kinase assays with a one-size-fits-all peptide substrate likely fail to accurately reflect
physiological ARK activity in cells. Additionally, several independent groups have definitively shown that AMPK is directly phosphorylated by CamKK2, reflecting an alternative pathway to AMPK activation. Activation of AMPK by CamKK2 is particularly important in prostate cancer and in the physiological regulation of skeletal muscle and vascular endothelial cell function. Interestingly, the ARK SIK2 was recently shown to be activated by an as-yet unidentified Ca²⁺-dependent kinase in ovarian cancer cells. Our demonstration that NUAK1 and NUAK2 are similarly regulated by Ca²⁺-dependent signalling thus fits an emerging pattern of calcium regulating multiple ARKs, either alongside or in the absence of LKB1. This regulation may have particular relevance in LKB1-deficient disease settings.

Our data speak to the complexity of signal transduction through AMPK, NUAK1 and the related ARKs. Indeed, AMPK is often discussed as if it were a single entity. Rather, up to 12 different permutations of trimeric AMPK complexes can assemble from the 2α, 2β and 3γ-encoded subunits, not accounting for splice variants. It is likely that the different AMPK complexes may respond differentially to distinct upstream stimuli, and indeed in

Figure 6. NUAK1 regulates RAPTOR via AMPK-dependent and independent mechanisms. (a) Measurement of protein synthesis (methionine incorporation) in HeLa (left panel) and U2OS (right panel) cells transfected with non-targeting (−), NUAK1 and PKCα siRNA. Mean and s.d. from three independent experiments shown. Statistical significance was determined by one-tailed unpaired T-test. (b) Lysates from U2OS cells pre-treated with 10 μM HTH-01-015 for 1 h, where indicated, prior to treatment with 6 μM A23187 (10 min), 10 mM salicylate (1 h), 10 mM phenformin (1 h) or DMSO vehicle and blotted for phospho-S792 and total RAPTOR. N = 3. The asterisk denotes a nonspecific band in the p-RAPTOR panel (b, c). (c) Lysates from U2OS cells transfected where indicated with siRNA targeting NUAK1 and treated with 10 mM salicylate (1 h), 10 mM phenformin (1 h), 6 μM A23187 (10 min), 3 mM ionomycin (10 min) or DMSO vehicle, blotted for p-RAPTOR. N = 3. (d) Lysates from immortalized Prkaa1FL/FL;Prkaa2FL/FL double floxed MEFs, infected overnight with Adeno-LacZ or Adeno-CRE and treated as per (c) with AMPK activators in the presence or absence of 10 μM HTH-01-015, blotted with the indicated antibodies. N = 2. (e) Lysates from primary Nuak1FL/FL MEFs stably expressing Cre-ER were treated overnight with 100 nM 4-OH-Tamoxifen (+) or vehicle control (−) prior to stimulation as per (d, e) with AMPK activators, then immunoblotted for p-Raptor. N = 2.
Calcium signalling links MYC to NUAK1, NUAK2 and AMPK.

Figure 7. Diagram of calcium regulation of NUAK1, NUAK2 and AMPK.

terms of their activity towards specific downstream substrates. Our demonstration of a specific requirement for NUAK1 in Ca^{2+}-dependent AMPK activity towards ACC, and a more general requirement for NUAK1 in AMPK activity towards RAPTOR, points towards a highly contextual requirement for NUAK1 and may indicate that NUAK1 modulates the activity of a specific subset of AMPK complexes. On top of this, the 11 related ARKs can exhibit both overlapping and private substrate specificities. This is reflected by our demonstration of an AMPK-independent role for NUAK1 in RAPTOR regulation, and by phosphorylation of MYPT1 by NUAK1, NUAK2 and potentially by additional ARKs. Consistent with this, we also find Ca^{2+}-dependent phosphorylation of the canonical AMPK substrate ACC even after complete suppression of CamKKβ-dependent AMPK activity in HeLa cells. Clearly, considerably more work will be needed to disentangle these complex signalling networks.

Whereas calcium has long been recognized to drive MYC expression and the reciprocal regulation of calcium signalling by MYC has not garnered much attention. MYC was shown to increase calcium signalling during B-cell differentiation by suppressing expression of the calcium exporter PMCA.50 ChIP-SEQ analysis has revealed MYC binding to the promoters of ITPR1-3, PRKCA and CamKK2 in diverse cell types,30 consistent with our observation that MYC promotes expression of these genes. The pronounced increase in phosphorylation of the PKC substrate MARCKS compared with the much more modest effect of MYC overexpression on PKCa levels suggests that regulation of this pathway by MYC is only partially explained by the observed transcriptional effects. Nevertheless, our data do suggest that MYC actively selects for increased cellular sensitivity to calcium, and does so in part to promote NUAK1 activity, maintain metabolic homeostasis and thereby sustain cell viability. The relative contribution of calcium signalling to NUAK1 activation likely depends on several factors including the strength of calcium signalling, whether LKB1 is present or absent and, if activation likely depends on several factors including the strength of calcium influx, whether LKB1 is present or absent, and, if activation is necessary for NUAK1 in protecting tumour cells from non-apoptotic cell death and suggesting that calcium and PKCs may govern multiple pathways that promote tumour cell survival. Targeted suppression of these pathways may thus have therapeutic benefit in multiple cancers where MYC is deregulated.64

MATERIALS AND METHODS

Cell culture

The identity of all cell lines was verified using an in-house cell line validation service. HeLa and U2OS cells were maintained in Dulbecco’s modified Eagle’s medium containing 4.5 g/l glucose, 1% glutamine, 100 U/ml of streptomycin, 100 U/ml of penicillin, 10% fetal bovine serum and incubated at 37 °C in 5% CO_2. Primary MEFs were isolated from mouse embryos (wild type; Rosa26-Isl-Myc; Nuak1<sup>T117</sup>) at E13.5 days and cultured as above except for incubation in 3% oxygen. All cell lines were routinely tested for mycoplasma contamination and were validated by STR profiling using an approved in-house validation service (CRUK-BICR). Wild type, Rosa26-Isl-MYC MEFs were infected with 300 multiplicity of infection of Adeno-Cre replication-incompetent virus (University of Iowa) to induce MYC expression. Nuak1<sup>T117</sup> MEFs were infected with retrovirus expressing tamoxifen-inducible Cre-ER and selected on puromycin. SV40 T antigen-immortalized Prkaa1<sup>FL</sup>/<sup>FL</sup> and Prkaa2<sup>FL</sup>/<sup>FL</sup> double floxed MEFs were generously provided by Russell Jones, McGill University. For transient transfection, HeLa cells were plated on 10 cm diameter dishes and transfected with 3 µg of DNA (FLAG-Nuak1wt, FLAG-Nuak1T211 or empty vector) using Lipofectamine 3000 (Thermo Fisher, Waltham, MA, USA) and lysed 48 h post-transfection. For protein translation measurements, cells were cultured for with 30 µCi/ml 35S-Methionine label (EasyTag from Perkin Elmer, Beaconsfield, UK) for 30 min and total protein was precipitated using a final concentration of 12.5% trichloroacetic acid. Scintillation (Ecoscint, Thermo Fisher) was counted for 2 min.

Chemicals and antibodies

Phenformin, Sto-609, Rapamycin, phosphatase inhibitor cocktails (P0044 and P5726), protease inhibitor cocktail (P8340) and MG132 were purchased from Sigma-Aldrich (Irvine, UK); HTH-01-015 from Cambridge Bioscience (Cambridge, UK); A23187, Ionomycin and A769662 from Abcam (Cambridge, UK); WZ4003, Gö6976 and A706662 were purchased from Sigma-Aldrich. HTH-01-015 from the MRC PPU, Dundee, UK; anti-MARCKS (#ab72459) anti-Histone phospho-Ser445(#S508C) and anti-NUAK2 (#S225B) were from Abcam; anti-FLAG (#F1804), anti-MYPT1 phospho-Ser792(#2083), total Raptor (#3661), AMPK phospho-(Ser) PKC substrate (#2261), α-phospho-Ser9 (#2056), NUAK1 (#4458), phospho-(Ser) PKC substrate (#2261), MARCKS phospho-Ser159/163 (#11992) were purchased from Cell Signalling Technologies (Danvers, MA, USA); anti-FLAG (#F1804), anti-β-Actin (#A5441) were from Sigma-Aldrich; anti-MYPT1 phospho-Ser445(#5508C) and anti-NUAK2(#52258) were from the MRC PPU, Dundee, UK; anti-MARKS (#ab27459) anti-Histone H2B (#ab1790), anti-Vinuclein (#ab129002) and anti-c-Myc (#ab32072) were purchased from Abcam. The phospho-T211 NUAK1 antibody was generated by Eurogentec (Liege, Belgium) against the phosphopeptide KFLQ<sup>103</sup>FGCGPSYL. The antibody was affinity purified from reactive serum using the same phosphopeptide after counter-selection with non-phosphorylated peptide. In addition to the results shown, the antibody was further validated by loss of signal upon siRNA-mediated depletion of NUAK1. Secondary antibodies coupled to horseradish peroxidase anti-mouse and anti-rabbit were purchased from GE Healthcare (#NA931 and #NA934; Chicago, IL, USA), and anti-sheep was from Pierce (#31480; Thermo Fisher).
RNA interference

HeLa cells were passaged 12 h before transfection and transfected at 70% confluence using Lipofectamine RNAiMAX (Thermo Fisher) with the following siRNA from Qiagen (Manchester, UK): non-targeting control (1022076), NUAK1#1 (S00108388), NUAK1#2 (S00108388), PKCoA1 (S00605934), PKCoA2 (S00605927), NUAK2 (S02660224), MYC#1 (S00309002), MYC#2 (S02662611), MYC#3 (S03101847). shRNA against human MYC and a non-targeting control (Renilla) were designed by and purchased from Mirrmax Inc. (Woodbury, NY, USA): ShMYC1891—CTGACCTCTGAGACTGAAAGAT. HeLa cells were transfected with 3 μg of shRNA-encoding plasmid using Lipofectamine 3000. After transfection, cells were treated and analysed as for figure legends.

Quantitative real-time PCR

RNA was isolated by Trizol and was reversed transcribed using QuantiTect Reverse Transcription Kit (Qiagen), according to the manufacturer’s instructions. Real-time quantification was performed using SYBR Green Fast Mix (VWR, Lutterworth, UK) with C1000 thermal cycler (Bio-Rad, Watford, UK). Primers for NUAK1 (forward, 5′-cgcctgactgactgtatgg-3′; reverse, 5′-gtcatctctcaaccatcct-3′), ACTIN (forward, 5′-caaccccgagqagata; reverse, 5′-caga gntctgatgtagta-3′) ITPR1 (forward, 5′-gaggccatcttggaggagg-3′; reverse, 5′-acctgaggaagtcttgc-3′), PKCoA (forward, 5′-caaggggtgtaaagttgccc-3′; reverse, 5′-cctctctctgctgtaagg-3′), CaMKβ (forward, 5′-ggaggtggagtcttacggtc-3′), CaMKα (forward, 5′-cattggttcctacgagcatt-3′) and β2m (forward, 5′-acctccagatgtcgtctact-3′; reverse, 5′-ggagctgtgtttcctctcct-3′) were obtained from IDT (Leuven, Belgium).

Immunoprecipitation and immunoblotting

FLAG-NUAK1 wild type, mutant (T211A) or empty vector transiently overexpressed HeLa cells were rinsed with ice-cold phosphate-buffered saline and then lysed in Lysis Buffer containing 50 mm Tris-HCl (pH 7.5), 1% NP-40, 0.27 mM sucrose and phosphatase/protease inhibitors. Cell lysates (1 mg) were incubated overnight at 4 °C with anti-FLAG M2 Affinity gel (Sigma, Irvine, UK; A2220). Immunoprecipitated were washed twice with Lysis Buffer containing 0.15 M NaCl, twice with 50 mm Tris-HCl (pH 7.5) plus phosphate inhibitors and resuspended in sodium dodecyl sulphate sample buffer. For whole-cell extracts, cells were rinsed with ice-cold phosphate-buffered saline and then lysed in situ with lysis buffer containing 150 mm NaCl, 50 mm Tris (pH 7.5), 1% NP-40, 0.5% sodium deoxycholic acid, 1% sodium dodecyl sulphate plus protease and phosphatase inhibitor cocktails. Lysates were then sonicated to reduce viscosity and diluted in sodium dodecyl sulphate sample buffer. Immunoprecipitated and whole-cell extracts were resolved by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes for subsequent incubation with primary antibodies overnight at 4 °C. Densitometry analysis of individual immunoblots was performed using ImageJ (NIH, Bethesda, MD, USA).

Cell death analysis

HeLa cells were treated or transfected as for figure legends and on the day of the analysis the supernatant was collected, cells were rinsed in phosphate-buffered saline and harvested by trypsinization. Cells were then centrifuged (1000 g, 5 min at 4 °C, 5 °C) and pelleted in 200 μL Annexin V binding buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) containing APC-Annexin V (Biolegend, San Diego, CA, USA) for 10 min at room temperature. Propidium iodide was added prior to analysis by FACScanibur (BD Biosciences, Wokingham, UK) flow cytometry.

Statistical analysis

Raw data were uploaded into Prism (Graphpad, La Jolla, CA, USA) or Excel (Microsoft, Reading, UK) spreadsheets for generation of graphs. All experiments were performed on at least three occasions, except where noted, and mean and s.d. values from biological replicates are presented. Statistical significance was determined by T-test and one-way or two-way ANOVA as per figure legends. * denotes P < 0.05; ** < 0.01; *** < 0.001.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We acknowledge valuable input from the entire Murphy laboratory and numerous colleagues at the University of Glasgow Institute of Cancer Sciences and CRUK Beatson Institute. Nuak1 inhibitors were generously provided by Nathanael Gray prior to commercial availability. TM was supported by grant APHD13-5 from the British Lung Foundation. Additional support was provided by Wellcome trust grant 105614/ 2/142; the European Commission Marie Curie actions CIG 618484 ‘SERPLIC’ to DJM and institutional support provided by the University of Glasgow & CRUK Beatson Institute to DJM.

AUTHOR CONTRIBUTIONS

All experiments were performed by TM with assistance from JTM, AH and JK. Data analysis were performed by TM, JTM, AH, JK and DJM. Figures were prepared by TM and the manuscript was written by DJM with assistance from TM, JTM and AH. All authors read and approved the submission.

REFERENCES

1. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/ PAR-1. EMBO J 2004; 23: 833–843.
2. Zagorska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S et al. New roles for the LKB1-NUAK pathway in controlling myosin phosphorylase complexes and cell adhesion. Sci Signal 2010; 3: r25.
3. Hirano M, Kiyonari H, Inoue A, Furushima K, Murata T, Suda Y et al. A new senine/threonine protein kinase, Ompk1, essential to ventral body wall formation. Dev Dyn 2006; 235: 2229–2237.
4. Ohmura T, Shioi G, Hirano M, Aizawa S. Neural tube defects by NUAK1 and NUAK2 double mutation. Dev Dyn 2012; 241: 1350–1364.
5. Courchet J, Lewis Jr TL, Lee S, Courchet V, Liou DY, Aizawa S et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013; 153: 1510–1525.
6. Inazuka F, Sugiyama N, Tomita M, Abe T, Shioi G, Esumi H. Muscle-specific knockout of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance. J Biol Chem 2012; 287: 16379–16389.
7. Humbert N, Navaratnam N, Augert A, Da Costa M, Martien S, Wang J et al. Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO J 2010; 29: 376–386.
8. Lasagna-Reeves CA, de Haro M, Hao S, Park J, Rousseaux MW, Al-Ramahi I et al. Reduction of Nuak1 decreases Tau and reverses phenotypes in a tauopathy mouse model. Neuron 2016; 92: 407–418.
9. Kusakai G, Suzuki A, Ogura T, Miyamoto S, Ochiai A, Kaminishi M et al. ARKS expression in colorectal cancer and its implications for tumor progression. Am J Pathol 2004; 164: 987–999.
10. Riester M, Wei W, Waldron L, Culhane AC, Trippa L, Oliva E et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst 2014; 106. https://doi.org/10.1093/jnci/dju048.
11. Zhang HY, Li JH, Li G, Wang SR. Activation of ARKS/miR-1181/HOXA10 axis promotes epithelial-mesenchymal transition in ovarian cancer. Oncol Rep 2015; 34: 1193–1202.
12. Phippen NT, Bateman NW, Wang G, Conrads KA, Ao W, Teng PN et al. NUAK1 (ARK5) is associated with poor prognosis in ovarian cancer. Front Oncol 2016; 6: 213.
13. Chen P, Li K, Liang Y, Li L, Zhuo X. High NUAK1 expression correlates with poor prognosis and involved in NSCLC cells migration and invasion. Exp Lung Res 2013; 39: 9–17.
14. Monteverde T, Muthalagu N, Port J, Murphy DJ. Evidence of cancer-promoting roles for AMPK and related kinases. FEBBS J 2015; 282: 4658–4671.
15. Bellace RD, Khaleed M, Netaney D, Schubert S, Golson T, Busbaum A et al. Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol 2014; 134: 441–451.
16. Huang X, Lv W, Zhang JH, Lu DL. miR66 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int J Mol Med 2014; 34: 1599–1605.

Oncogene (2018) 982 – 992
Calcinings links MYC to NUAK1

T Monteverde et al.

17 Benach N, Woodhouse S, Goldie SJ, Mishra A, Quist SR, Watt FM. Rewiring of an epithelial differentiation factor, miR-203, to inhibit human squamous cell carcinoma metastasis. Cell Rep 2014; 9: 104–117.

18 Shi L, Zhang B, Sun X, Lu S, Liu Y et al. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer 2014; 111: 2316–2327.

19 Xiong X, Sun D, Chai H, Shan W, Yu Y, Pu L et al. MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma. Biochem Biophys Res Commun 2015; 465: 262–269.

20 Obayashi M, Yoshida M, Tsunematsu T, Ogawa I, Sasahira T, Kuniyasu H et al. microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer. Oncotarget 2016; 7: 8223–8239.

21 Liu L, Ulbrich J, Muller J, Wustefeld T, Aebberl L, Kress TR et al. Deregulated MYC expression induces dependence upon AMPK-related kinase S. Nature 2012; 483: 608–612.

22 Ross FA, Mackintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 2016; 283: 2987–3001.

23 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

24 Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinto RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

25 Woods A, Dickenson K, Heath R, Hong SP, Momcilovic M, Johnstone SR et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005; 2: 21–33.

26 Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005; 2: 5–15.

27 Harding DG, Alessi DR. LKB1 and AMPK and the cancer-metabolism link. Oncogene (2018) 992.

28 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

29 et al.

31 Martiny-Baron G, Kazanietz MG, Misschak H, Blumberg PM, Kochs G, Hug H et al. Selective inhibition of protein kinase C isoforms by the indolocarbazole Go6976. J Biol Chem 1993; 268: 9194–9197.

32 Adenium A. The MARKS brothers: a family of protein kinase C substrates. Cell 1999; 91: 713–716.

33 Fleming JS, Lu JS, Oppelt PJ, Smith JL, Suzuki A, Esumi H. Muscle contractions, AICAR, and insulin cause phosphorylation of an AMPK-related kinase. Mol Cell 2008; 30: 214–226.

34 Vincent EE, Coelho PP, Blagh J, Griss T, Violett B, Jones RG. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 2015; 34: 3627–3639.

35 Li RJ, Xu J, Fu C, Zhang J, Zheng YG, Jia H et al. Regulation of mTORC1 by interleukin 3 withdrawal. Oncogene 2015; 34: 200–211.

36 Fidzuns P, Losini G, Pfeiffer C, Saarela M, Rennert R, Ross K et al. PKA inhibition inhibits Akt phosphorylation and does not affect p53 dependent apoptosis in cancer cells. PLoS ONE 2016; 11: e0158199.

37 Carrick DJ, Feng J, Saccucci MJ, Negri A, Zullo A, Tivanic M et al. The differential role of Akt1 and Akt2 in apoptosis. Cell Death Dis 2011; 2: e204.

38 Raffan P, Schraff A, Schwarz T, Rock R, Ledolter K, Hartl M et al. Calmodulin-dependent binding of Myc to calmodulin. Oncotarget 2017; 8: 3327–3343.

39 Habib T, Park H, Tsang M, de Alborn RA, Nickles A, Watson L et al. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol 2007; 179: 717–731.

40 Evan GI, Christofori G, Lawlor EA, Ringshausen L, Prescott J, Dansen T et al. Oncogene-dependent tumor suppression: using the dark side of the force for cancer therapy. Cold Spring Harbor Symp Quant Biol 2005; 70: 263–273.

41 Murphy DJ, Junttila MR, Pouyet L, Kemezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 2008; 14: 447–457.

42 Reilhill JA, Ewart MA, Hardie DG, Salt IP. AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 2007; 354: 1088–1088.

43 Carling D, Sanders MJ, Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (London) 2008; 32(Suppl 4): S55–S59.

44 Conacci-Sorrell M, Noguelet C, Eisenman RN. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 2010; 142: 480–493.

45 Whelan RD, Kiley SC, Parker PJ. Tetradecanoyl phorbol acetate-induced microtubule reorganization is required for sustained mitogen-activated protein kinase activation and morphological differentiation of U937 cells. Cell Growth Differ 1999; 10: 271–277.

46 Pabo AO, Glazer R. Induction of p53-dependent, insulin-like growth factor-binding protein-3-mediated apoptosis in glioblastoma multiforme cells by a protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 2005; 65: 7462–7469.

47 Barr LF, Campbell SE, Baylin SB. Protein kinase Cbeta-2 inhibits cyclin D and decreases myc-induced apoptosis in small cell lung cancer cells. Cell Growth Differ 1997; 8: 381–392.

48 Li W, Zhang J, Flechiner L, Hyun T, Yam A, Franke TF et al. Protein kinase C-alpha overexpression stimulates Akt activity and suppresses apoptosis induced by interleukin 3 withdrawal. Oncogene 1999; 18: 6564–6572.

49 Partovian C, Simons M. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by upstream kinases. Apoptosis, Cell Growth Differ 2005; 16: 597–604.

50 Muthuswamy N, Juntila M, Wiese KE, Wolf E, Morton J, Bauer B et al. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell 2014; 18: 1347–1353.

51 Li B, Simon MC. Molecular pathways: targeting MYC-induced metabolic reprograming and oncogenic stress in cancer. Clin Cancer Res 2013; 19: 5835–5841.

© The Author(s) 2018

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies this paper on the Oncogene website (http://www.nature.com/onc)