A Cosserat model of elastic solids reinforced by a family of curved and twisted fibers

David J. Steigmann and Milad Shirani

Department of Mechanical Engineering,
University of California, Berkeley,
CA. 94720, USA
Content:

- Elastic Energy and Kinematics
- Fiber-Matrix interactions
- Examples
 - Torsion of a cylinder
 - Flexure of a rectangular block
 - Bending, stretching and shearing of a block
- References
Elastic Energy and Kinematics

* Fibers are modelled as Kirchhoff Rods with referential directors \(\{D_1 = D_1, D_2, D_3\} \) (shown in Figure 1), deformed directors \(\{d_1 = d_1, d_2, d_3\} \) with \(D \) and \(d \) being tangent to the fiber
 \[
 D_i \cdot D_j = \delta_{ij} \quad \text{and} \quad d_i \cdot d_j = \delta_{ij}
 \]

* Rotation Tensor
 \[
 R = d \otimes D + d_2 \otimes D_2 + d_3 \otimes D_3 = d_i \otimes D_i
 \]

* Fibers are embedded in the body and they deform with the body. Therefore, they are material curves; so, \(d \) and \(D \) are material vectors and
 \[
 |FD| \quad d = FD
 \]

![Figure 1: Schematic of a fiber in the reference configuration](image)
$F^+ D = F^- D$, but $F^+ D_\alpha \neq F^- D_\alpha,$ \hspace{1cm} (4)

Figure 2: Fibers and matrix are kinematically independent; their interface convects as a material surface.
Elastic Energy and Kinematics (Rods)

\[r'(s) = \lambda d, \quad \text{and} \quad \lambda = |r'(s)|, \]

\[R = d_i \otimes D_i \quad \text{with} \quad D_i(s) = A(s) E_i \]

\[d'_i = R' D_i + RD'_i \]

\[d'_i = Wd_i = w \times d_i, \]

\[W = R'R^t + RA' A^t R^t \]

\[w = axW = \kappa_i d_i, \]

\[\kappa_i = \frac{1}{2} e_{ijk} d_k \cdot d'_j. \]
Elastic Energy and Kinematics

\[S = \int_0^1 U ds, \]
\[\{ R, R', r' \} \rightarrow \{ QR, QR', Qr' \} \quad \text{select} \quad Q = R^t_t \]
\[R^t WR - A' A^t = R^t R' = (RD_i \cdot R' D_j)D_i \otimes D_j, \]
\[\gamma = \gamma_i D_i = ax(R^t R') \quad \text{with} \quad \gamma_i = \frac{1}{2} e_{ijk} R D_k \cdot R' D_j. \]
\[U = w(\lambda, \gamma; s). \]
\[\gamma_i = \kappa_i - \kappa_i^0, \quad \text{with} \quad \kappa_i^0 = \frac{1}{2} e_{ijk} D_k \cdot D'_j \]
\[\gamma = \kappa - \kappa^0, \]
\[\kappa = R^t w = \kappa_i D_i = ax(R^t WR). \]
\[w(\lambda, \kappa; s) = \frac{1}{2} A(s) \epsilon^2 + \frac{1}{2} T(s) \tau^2 + \frac{1}{2} F(s) \kappa_\alpha \kappa_\alpha, \]
\[\dot{S} = P \quad \text{where} \quad S = \int_0^l U ds, \]

\[\dot{U} = \dot{w} = w_\lambda \dot{\lambda} + m_i \dot{\gamma}_i, \quad \text{with} \quad w_\lambda = \partial w / \partial \lambda \quad \text{and} \quad m_i = \partial w / \partial \gamma_i \]

\[\lambda d = FD \quad \Rightarrow \quad \dot{\lambda} d + \omega \times r' = u' \quad \text{and} \quad \dot{d}_i = \omega \times d_i. \]

\[\dot{\kappa}_i = \frac{1}{2} e_{ijk} (\dot{d}_k \cdot d'_j + d_k \cdot d'_j) = \frac{1}{2} e_{ijk} [\omega \times d_k \cdot d'_j + d_k \cdot (\omega' \times d_j + \omega \times d'_j)] \]

\[\dot{\gamma}_i = \dot{\kappa}_i = d_i \cdot \omega'. \]

\[\dot{S} = \int_0^l (w_\lambda d \cdot u' + m \cdot \omega') ds, \]

\[m = m_i d_i. \]
Equilibrium

\[r' \cdot d_\alpha = 0; \quad \alpha = 2, 3. \] constraints \hfill (28)

\[E = S + \int_0^l f_\alpha r' \cdot d_\alpha ds, \quad f_\alpha(s) \text{ are Lagrange multipliers} \hfill (29) \]

\[\dot{E} = P, \hfill (30) \]

where

\[\dot{E} = \int_0^l \left[(w_\lambda d + f_\alpha d_\alpha) \cdot u' + m \cdot \omega' + f_\alpha d_\alpha \times r' \cdot \omega + f_\alpha r' \cdot d_\alpha \right] ds \quad (31) \]

\[\dot{E} = (f \cdot u + m \cdot \omega) |_0^l - \int_0^l [u \cdot f' + \omega \cdot (m' - f \times r')] ds, \hfill (32) \]

\[f = w_\lambda d + f_\alpha d_\alpha. \hfill (33) \]

\[P = (t \cdot u + c \cdot \omega) |_0^l + \int_0^l (u \cdot g + \omega \cdot \pi) ds, \hfill (34) \]

\[f' + g = 0 \quad \text{and} \quad m' + \pi = f \times r', \quad \text{endpoint conditions are} \quad f = t \quad \text{and} \quad m = c \hfill (35) \]
Equilibrium

From the strain-energy function

\[w(\lambda, \kappa; s) = \frac{1}{2} A(s)\varepsilon^2 + \frac{1}{2} T(s)\tau^2 + \frac{1}{2} F(s)\kappa_\alpha\kappa_\alpha, \]

we find

\[m_1 d_1 = T\tau d \quad \text{and} \quad m_\alpha d_\alpha = F\kappa_\alpha d_\alpha \]

Moreover,

\[\kappa_i = \frac{1}{2} e_{ijk} d_k \cdot d'_j \quad \text{with} \quad d \cdot d'_\mu = -d_\mu \cdot d \implies \kappa_\alpha = e_\alpha_1\mu d_\mu \cdot d'. \]

Also \(d \cdot d' = 0 \); therefore

\[d' = (d_\alpha \cdot d')d_\alpha \quad \text{and} \quad d \times d' = (d_\alpha \cdot d')d \times d_\alpha = (e_\beta_1\alpha d_\alpha \cdot d')d_\beta \]

thus

\[\kappa_\beta d_\beta = d \times d' \implies m_\alpha d_\alpha = F\kappa_\alpha d_\alpha = F d \times d' \]

so

\[m = T\tau d + F d \times d'. \]
Kinematical and constitutive variables in Cosserat elasticity

\[FD = \lambda d, \quad \text{where} \quad d = RD \quad \text{and} \quad \lambda = |FD|, \quad (42) \]

\[D_\alpha \cdot R^t FD = 0; \quad \alpha = 2, 3, \quad \text{constraints} \quad (43) \]

\[U(F, R, \nabla R; X), \quad (44) \]

\[F = F_{iA} e_i \otimes E_A, \quad R = R_{iA} e_i \otimes E_A \quad \text{and} \quad \nabla R = R_{iA,B} e_i \otimes E_A \otimes E_B \quad \text{with} \quad F_{iA} = \chi_{i,A}, \quad (45) \]

\[U(F, R, \nabla R; X) = U(QF, QR, Q\nabla R; X) = U(R^T F, R^T \nabla R; X) = W(E, \Gamma; X), \quad (46) \]

\[E = R^t F = E_{AB}E_A \otimes E_B; \quad E_{AB} = R_{iA}F_{iB}, \quad (47) \]

\[\Gamma = \Gamma_C \otimes E_C = \Gamma_{DC}E_D \otimes E_C; \quad \Gamma_{DC} = \frac{1}{2} e_{BAD}R_{iA}R_{iB,C}, \quad (48) \]
\[\dot{E} = P, \]
(49)

\[E = \int_\kappa Ud\nu + \int_\kappa \Lambda_\alpha D_\alpha \cdot EDd\nu, \quad (\Lambda_\alpha \text{ are Lagrange multipliers}) \]
(50)

\[\dot{U} = \dot{W} = \sigma \cdot \dot{E} + \mu \cdot \dot{\Gamma}, \quad \text{with} \quad \sigma = W_E \quad \text{and} \quad \mu = W_\Gamma \]
(51)

\[\dot{E} = \int_\kappa [(\sigma + \Lambda \otimes D) \cdot \dot{E} + \mu \cdot \dot{\Gamma} + \dot{\Lambda}_\alpha D_\alpha \cdot ED]d\nu \quad \text{where} \quad \Lambda = \Lambda_\alpha D_\alpha \]
(52)

\[\dot{E} = R^t(\nabla u - \Omega F), \quad \text{where} \quad u = \dot{\chi} \quad \text{and} \quad \Omega = \dot{R}R^t. \]
(53)

\[(\sigma + \Lambda \otimes D) \cdot \dot{E} = R(\sigma + \Lambda \otimes D) \cdot \nabla u - \Omega \cdot Skw[R(\sigma + \Lambda \otimes D)F^t] \]
(54)

\[(\sigma + \Lambda \otimes D) \cdot \dot{E} = R(\sigma + \Lambda \otimes D) \cdot \nabla u - 2ax\{RSkw[(\sigma + \Lambda \otimes D)E^t]R^t\} \cdot \omega \]
(55)

\[\dot{\Gamma} = R^t\nabla \omega \implies \mu \cdot \dot{\Gamma} = R\mu \cdot \nabla \omega, \]
(56)
In detail

We have \(E = R^T F \) and \(\Gamma_{DC} = \frac{1}{2} e_{BAD} R_{iA} R_{iB, C} \), thus

\[
E = R^T F \implies \dot{E} = R^T F + R^T \dot{F} = (\Omega R)^T F + R^T \nabla u = R^T (\nabla u - \Omega F) \tag{57}
\]

Similarly

\[
\dot{\Gamma}_{DC} = \frac{1}{2} e_{BAD} (\dot{R}_{iA} R_{iB, C} + R_{iA} \dot{R}_{iB, C}) \\
= \frac{1}{2} e_{BAD} (\Omega_{im} R_{mA} R_{iB, C} + R_{iA} \Omega_{im, C} R_{mB} + R_{iA} \Omega_{im} R_{mB, C}) \\
= \frac{1}{2} e_{BAD} \left\{ \Omega_{im} (R_{mA} R_{iB, C} + R_{iA} R_{mB, C}) + R_{iA} \Omega_{im, C} R_{mB} \right\} \\
= \frac{1}{2} (e_{BAD} R_{iA} R_{mB}) \Omega_{im, C} \\
= \frac{1}{2} (e_{mij} \Omega_{im, C}) R_{jD} \quad \text{(because } e_{mij} R_{jD} = e_{BAD} R_{iA} R_{mB}) \\
= \left(\frac{1}{2} e_{mij} \Omega_{im} \right)_{, C} R_{jD} \quad \text{(because } \omega_j = \frac{1}{2} e_{mij} \Omega_{im}) \\
= R_{jD} \omega_j, C \\
\implies \dot{\Gamma} = R^T \nabla \omega \tag{59}
\]
Equilibrium

\[
\dot{E} = \int_{\partial \kappa} [(R\sigma + \lambda \otimes D) \nu \cdot u + (R\mu) \nu \cdot \omega] \, da + \int_{\kappa} \dot{\Lambda}_\alpha D_\alpha \cdot ED \, dv \\
- \int_{\kappa} \{u \cdot \text{Div}(R\sigma + \lambda \otimes D)\} \, dv \\
- \int_{\kappa} \{\omega \cdot [\text{Div}(R\mu) + 2ax(RS\text{Skw}[(\sigma + \Lambda \otimes D)E^t]R^t)]\} \, dv,
\]

\[\lambda = R\Lambda = \Lambda_\alpha d_\alpha\] (60)

\[
P = \int_{\partial \kappa} (t \cdot u + c \cdot \omega) \, da + \int_{\kappa} (g \cdot u + \pi \cdot \omega) \, dv,
\]

where \(t\) and \(c\) are densities of force and couple acting on \(\partial \kappa\), and \(g\) and \(\pi\) are densities of force and couple acting in \(\kappa\).

\[
g = -\text{Div}(R\sigma + \lambda \otimes D) \quad \text{and} \quad \pi = -\text{Div}(R\mu) - 2ax(RS\text{Skw}[(\sigma + \Lambda \otimes D)E^t]R^t)\] in \(\kappa\),

(62)

and the natural boundary conditions

\[
t = (R\sigma + \lambda \otimes D) \nu \quad \text{on} \quad \partial \kappa_t \quad \text{and} \quad c = (R\mu) \nu \quad \text{on} \quad \partial \kappa_c,
\]

(63)

where \(\partial \kappa_t\) is a part of \(\partial \kappa\) where position is not assigned and \(\partial \kappa_c\) is a part where rotation is not assigned. We assume position to be assigned on \(\partial \kappa \setminus \partial \kappa_t\) \((u = 0)\), and rotation to be assigned on \(\partial \kappa \setminus \partial \kappa_c\) \((\omega = 0)\).
Fiber-matrix interaction

\[\gamma = ax(R^t R') = \gamma_i D_i \quad \text{with} \quad \gamma_i = \frac{1}{2} e_{ijk} D_k \cdot R^t R' D_j \quad \text{and} \quad R = d_i \otimes D_i \] (64)

\[R^t R' = R_{ic} R_{iA,B} D_B E_C \otimes E_A = e_{ACD} \Gamma_{DB} D_B E_C \otimes E_A \] (65)

\[\implies \gamma = \Gamma D \] (66)

\[W(E, \Gamma; X) = w(E, \gamma; X), \] (67)

\[\sigma = w_E. \] (68)

\[\dot{\gamma}_i = R D_i \cdot (\nabla \omega) D = D_i \cdot (R^t \nabla \omega) D = D_i \otimes D \cdot \dot{\Gamma} \] (69)

\[\mu \cdot \dot{\Gamma} = \dot{W} = \dot{w} = w_{\gamma} \cdot \dot{\gamma} = M \otimes D \cdot \dot{\Gamma}, \] (70)

\[M = w_{\gamma} = m_i D_i \quad \text{with} \quad m_i = \partial w / \partial \gamma_i, \] (71)

\[\mu = M \otimes D. \] (72)
Fiber-matrix interaction

\begin{align*}
\text{Div}(\lambda \otimes D) &= \lambda' + (\text{Div} D) \lambda, \quad \text{where} \quad \lambda' = (\nabla \lambda) D \\
2ax\{\text{RSkw}[(\Lambda \otimes D) E^t] R^t\} &= 2ax\{\text{Skw}[R(\Lambda \otimes D) E^t R^t]\} \\
&= 2ax[\text{Skw}(\lambda \otimes FD)] \\
&= ax(\lambda \otimes \chi' - \chi' \otimes \lambda) \\
&= \chi' \times \lambda, \quad \text{where} \quad \chi' = (\nabla \chi) D \quad (74)
\end{align*}

with

\begin{align*}
\text{Div}(R\mu) &= m' + (\text{Div} D) m, \quad \text{where} \quad m = RM = m_i d_i, \quad (75)
\end{align*}

we find

\begin{align*}
\lambda' + (\text{Div} D) \lambda + \text{Div}(R\sigma) + g &= 0, \quad t = (R\sigma)\nu + (D \cdot \nu)\lambda \quad (76)
\end{align*}

and

\begin{align*}
m' + \chi' \times \lambda + (\text{Div} D) m + 2ax[\text{RSkw}(\sigma E^t) R^t] + \pi &= 0, \quad c = (D \cdot \nu)m \quad (77)
\end{align*}
Some Remarks

Fiber inextensibility is accommodated by appending the constraint $\mathbf{D} \cdot \mathbf{ED} = 1$.

In this case Λ and λ are now 3-vectors given respectively by $\Lambda_i \mathbf{D}_i$ and $\Lambda_i \mathbf{d}_i$ in which Λ_1 is a constitutively undetermined density of axial force exerted on the fibers.

Incompressibility entails the constraint $\det \mathbf{F} (\equiv \det \mathbf{E}) = 1$, which may be accommodated by using

$$\tilde{W} = W + \Lambda_\alpha \mathbf{D}_\alpha \cdot \mathbf{ED} - p(\det \mathbf{E} - 1)$$

p is Lagrange multiplier

and we find

$$\text{Div}(\mathbf{R}\sigma - p\mathbf{F}^* + \lambda \otimes \mathbf{D}) = 0 \quad \text{and} \quad \mathbf{t} = (\mathbf{R}\sigma - p\mathbf{F}^* + \lambda \otimes \mathbf{D}) \mathbf{n}, \quad (79)$$

augmented by the Piola identity $\text{Div} \mathbf{F}^* = 0$.

Some Remarks

The dependence of the strain-energy function on γ (or Γ) introduces a natural length scale, L say, into the constitutive theory which is on the order of that of the microstructure and hence of the diameter of a fiber cross section or the spacing between adjacent fibers. Using the larger of these to define the dimensionless curvature-twist vector $L\gamma$, supposing that $|L\gamma| \ll 1$ in typical applications and assuming that the fibers transmit no moments when γ vanishes, we find that w is given to leading order by

$$ w(E, \gamma; X) = \varpi(E; X) + \frac{1}{2} \gamma \cdot K(E; X) \gamma, \quad (80) $$

where

$$ \varpi(E; X) = w(E, 0; X) \quad \text{and} \quad K(E; X) = w_{\gamma \gamma}|_{\gamma=0} \quad (81) $$

For E close to I we have $K(E; X) = K(I; X) + O(|E - I|)$, provided that $K(\cdot; X)$ is differentiable. Then the energy is approximated, as in

$$ w(\lambda, \gamma; s) = \frac{1}{2} A(s) \varepsilon^2 + \frac{1}{2} T(s) \tau^2 + \frac{1}{2} F(s) \gamma_\alpha \kappa_\alpha \quad \text{with} \quad \varepsilon = \lambda - 1 \quad (82) $$

by the decoupled energy

$$ w(E, \gamma; X) = \varpi(E; X) + \varphi(\gamma; X), \quad (83) $$

for some homogeneous quadratic function $\varphi(\cdot; X)$.
The reference placement κ of the body in the cylindrical polar coordinate system (r, θ, z) is the region defined by

$$0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq z \leq L$$

(84)

Position of a material point in the reference configuration and deformed configuration is

$$X = re_r(\theta) + zk, \quad \chi(X) = re_r(\phi) + zk \quad \text{where} \quad \phi = \theta + \tau z$$

(85)

The fiber are assumed to be everywhere aligned with the axis of the cylinder in the reference placement; thus, $D = k$, the fiber derivative is $(\cdot)' = \partial(\cdot)/\partial z$

Consider the elastic energy of the form

$$w(E, \gamma) = w_1(E) + w_2(E)(\gamma \cdot D)^2 + w_3(E) |1\gamma|^2$$

(86)

and

$$w_1(E) = \frac{1}{2} \mu (l_1 - 3), \quad w_2(E) = \frac{1}{2} T \quad w_3(E) = \frac{1}{2} F \quad \text{and} \quad 1 = I - D \otimes D$$

(87)

where $l_1 = tr(E^T E)$, μ, T and F are positive constants. Thus,

$$\sigma = \mu E \quad \text{and} \quad m = T\gamma d + Fd \times d' \quad \text{where} \quad \gamma = \gamma \cdot D$$

(88)
An Example: Torsion of a cylinder

By substituting the response functions in the balance laws, we find

\[\mu \text{div} B + \lambda' = \text{grad} p \quad \text{and} \quad m' + \chi' \times \lambda = 0 \] (89)

Consider deformations that satisfy

\[\mu \text{div} B = \text{grad} p \implies \lambda' = 0 \] (90)

Deformation gradient

\[d\chi = F dX \implies F = Q[I + r\tau e_\theta \otimes k] \] (91)

with

\[Q = e_r(\phi) \otimes e_r(\theta) + e_\theta(\phi) \otimes e_\theta(\theta) + k \otimes k \in \text{Orth}^+ \] (92)

This deformation is isochoric and hence kinematically admissible in an incompressible material.

Also

\[\lambda d = FD = k + r\tau e_\theta(\phi) \quad \text{and} \quad \lambda = \sqrt{1 + r^2\tau^2} \] (93)

We have

\[B = FF^T = I + r\tau[e_\theta(\phi) \otimes k + k \otimes e_\theta(\phi)] + r^2\tau^2 e_\theta(\phi) \otimes e_\theta(\phi) \] (94)

and

\[\text{div} B = -r\tau^2 e_r(\phi) \implies \text{grad} p = -\frac{r\tau^2}{\mu} e_r(\phi) \implies p(r) = p_0 - \frac{1}{2} \mu \tau^2 r^2 \] (95)

where \(p_0 \) is a constant.
An Example: Torsion of a cylinder

We have
\[m = T \gamma d + F d \times d' \longrightarrow m' = T \gamma' d + T \gamma d' + F d \times d'' \] \hspace{1cm} (96)

and, because
\[\lambda = R\Lambda = \Lambda_\alpha d_\alpha \longrightarrow \lambda \cdot d = 0 \] \hspace{1cm} (97)

we find
\[m' + \chi' \times \lambda = 0 \longrightarrow m' \cdot d = 0 \implies \gamma' = (\gamma \cdot D)' = 0 \] \hspace{1cm} (98)

Also
\[\lambda d = FD = k + r\tau e_\theta(\phi) \longrightarrow \lambda d' = -r\tau^2 e_r(\phi) \quad \text{and} \quad d \times d'' = \lambda^{-2} r\tau^3 e_r \] \hspace{1cm} (99)

so
\[m' = \frac{r\tau^2}{\lambda} \left(\frac{F_\tau}{\lambda} - T \gamma \right) e_r(\phi) \] \hspace{1cm} (100)

Moreover,
\[m' + \chi' \times \lambda = 0 \longrightarrow \lambda = \frac{1}{\lambda} d \times m' = -\frac{r\tau^2}{\lambda^3} \left(\frac{F_\tau}{\lambda} - T \gamma \right) [r\tau k - e_\theta(\phi)] \] \hspace{1cm} (101)

and
\[\lambda' = 0, \quad \text{and} \quad e_\theta' = -\tau e_r(\phi) \longrightarrow \gamma = \frac{F_\tau}{\lambda T} \] \hspace{1cm} (102)

and as a result
\[m = F\tau k \] \hspace{1cm} (103)

implying that every fiber transmits the same moment. This result is interesting in light of the fact that the individual terms in \(m = T \gamma d + F d \times d' \) associated with fiber twisting and bending are non-uniform.
An Example: Torsion of a cylinder

To complete the solution we impose the traction condition

\[t = (R\sigma - pF^* + \lambda \otimes D)n, \text{ with } D = k \]

\[(R\sigma - pF^*)e_r(\theta) = 0 \quad \text{at} \quad r = a. \quad (104) \]

This is equivalent to \((R\sigma)F^te_r(\phi) = pe_r(\phi)\) and thus, in the present circumstances, to

\[\mu Be_r(\phi) = pe_r(\phi) \quad \text{at} \quad r = a, \quad (105) \]

furnishing \(p(a) = \mu\) and hence \(p(r) = \frac{1}{2}\mu \tau^2(a^2 - r^2) + \mu\), finally yielding

\[(R\sigma)F^t - pl = \mu[\frac{1}{2}\tau^2(r^2 - a^2) - 1]l + \mu B. \quad (106) \]

The overall response of the cylinder may be determined by computing the net force on a cross section and the net torque required to effect the torsion. These in turn require the traction

\[t = [(R\sigma)F^t - pl]k = \frac{1}{2}\mu \tau^2(r^2 - a^2)k + \mu r\tau e_\theta(\phi) \quad (107) \]

acting on a cross section. This is the same as the traction appearing in

\[t = (R\sigma + \lambda \otimes D)n \quad (108) \]

because there is no change in cross-sectional area in the course of the deformation.
An Example: Torsion of a cylinder

The resultant force is

\[f = \int_0^{2\pi} \int_0^a t r dr d\phi = f(\tau)k, \]

(109)

where

\[f(\tau) = -\frac{1}{4} \pi a^4 \mu \tau^2, \]

(110)

and is a manifestation of the well known normal-stress effect in nonlinear elasticity.

Finally, the torque is

\[\rho = \int_0^{2\pi} \int_0^a (\chi \times t + m) r dr d\phi = \rho(\tau)k, \]

(111)

where

\[\rho(\tau) = \pi a^2 \tau (F + \frac{1}{2} \mu a^2). \]

(112)
An Example: Flexure

To describe flexure of a rectangular block we use Cartesian coordinates in the reference placement and polars in the current placement. Specifically,

\[\mathbf{X} = xi + yj + zk \quad \text{and} \quad \mathbf{\chi}(\mathbf{X}) = r e_r(\theta) + zk, \quad \text{where} \quad r = f(x) \quad \text{and} \quad \theta = g(y), \]

for some functions \(f \) and \(g \), to be determined. The deformation gradient is

\[\mathbf{F} = f' \mathbf{e}_r \otimes \mathbf{i} + fg' \mathbf{e}_\theta \otimes \mathbf{j} + \mathbf{k} \otimes \mathbf{k}, \]

yielding

\[1 = J = f(x)f'(x)g'(y) \]

in the case of incompressibility. This implies that \(g' = C \), a constant. We assume \(g \) to be an odd function and conclude that

\[g = Cy \quad \text{and} \quad f = \sqrt{C^{-1}x + B}, \]

where \(B \) is constant and we take \(C > 0 \) without loss of generality. We consider two cases:

* \(D = i \)
* \(D = j \)
An Example: Flexure, First Case $D = i$

The fibers are initially horizontal and mapped by the deformation to rays through the origin. From $\lambda d = FD$

$$\lambda d = Fi = f'(x)e_r \implies d = e_r(\theta) \quad \text{and} \quad \lambda = f'(x). \quad (117)$$

Then,

$$d' = d_x = e_\theta \theta_x = 0 \quad \text{(because θ is a function of y alone)} \quad (118)$$

Accordingly, the fibers remain straight in the course of the deformation, thus

$$m = T\gamma d + Fd \times d' \implies m = T\gamma e_r. \quad (119)$$

also

$$m' + \chi' \times \lambda = 0 \implies 0 = d \cdot m' = e_r \cdot m_x = T\gamma_x \implies \gamma'(= \gamma_x) = 0 \quad (120)$$

This in turn implies

$$m' = 0 \implies d \times \lambda = 0 \quad \text{because} \quad d \cdot \lambda = 0 \implies \lambda = 0 \quad (121)$$

Further, if there are no twisting couples at the vertical boundaries $x = \text{const.}$, then γ and m vanish everywhere; the fibers are effectively inactive. Of course there exists an equilibrating pressure field because this deformation is controllable.
The fibers are initially vertical and hence mapped by the deformation to concentric circles. In place of \(\lambda d = Fi = f'(x)e_r \) we have
\[
\lambda d = Fj = fg' e_\theta \quad \Rightarrow \quad d = e_\theta \quad \text{and} \quad \lambda = fg' = C\sqrt{C^{-1}x + B}. \quad (122)
\]
Then, \(d' = d_y = e_\theta' g'(y) = -Ce_r \).

Also
\[
m = T_\gamma d + F d \times d' \quad \Rightarrow \quad m = T_\gamma e_\theta + FCk. \quad (123)
\]

Moreover
\[
m' + \chi' \times \lambda = 0 \quad \Rightarrow \quad 0 = d \cdot m' = e_\theta \cdot m_y = T_\gamma, y \quad \Rightarrow \quad \gamma'(= \gamma, y) = 0 \quad (124)
\]

If no twisting couples are applied at the horizontal boundaries \(y = \text{const.} \), then the fiber twist vanishes everywhere and
\[
m = FCk \quad \Rightarrow \quad m' = 0 \quad \Rightarrow \quad \lambda = 0 \quad (125)
\]
as before. The moment \(m \) combines with the overall bending moment generated by the matrix material.
An Example: Bending, stretching and shearing of a block

This is another controllable deformation, obtained by composing transverse shear with flexure. First we deform the block by flexure to the configuration defined by $x_1 = \chi_1(X)$, where χ_1 is given by $\chi_1(X) = re_r(\theta) + zk$. Then the block is sheared to the configuration

$$x_2 = \chi_2(x_1) = re_r(\theta) + \varsigma k,$$

where $\varsigma = z + \beta \theta$, \hspace{1cm} (126)

with β a positive constant. This maps a plane $z = \text{const}.$ to a helicoidal surface. We obtain $F = F_2 F_1$ with

$$F_1 = f'e_r \otimes i + fg'e_\theta \otimes j + k \otimes k \quad \text{and} \quad F_2 = I + \beta r^{-1} k \otimes e_\theta. \hspace{1cm} (127)$$

For the case $D = j$ we compute

$$\lambda d = Fj = C(re_\theta + \beta k) \rightarrow \lambda = C\sqrt{r^2 + \beta^2} \hspace{1cm} \text{(a function of } x \text{ alone)} \hspace{1cm} (128)$$

The fibers $r = \text{const}.$ are circular helices of constant pitch. From these results we find

$$d' = d_y = \frac{-Cr}{\sqrt{r^2 + \beta^2}} e_r(\theta) \quad \text{and} \quad d \times d' = \frac{Cr^2}{r^2 + \beta^2}(k - \beta r^{-1} e_\theta). \hspace{1cm} (129)$$
Using $m = T \gamma d +Fd \times d'$ and $m' + \chi' \times \lambda = 0$ we again obtain $\gamma'(=\gamma, y) = 0$ and conclude that the fiber twist is a function of x alone. To determine it we substitute into $m' + \chi' \times \lambda = 0$, obtaining

$$T\gamma d' + Fd \times d'' = \lambda \lambda \times d,$$

and hence

$$\lambda \times d = \lambda^{-1}(F \frac{C^2 \beta r}{r^2 + \beta^2} - T \frac{\gamma Cr}{\sqrt{r^2 + \beta^2}})e_r. \quad (131)$$

This yields $\lambda = d \times (\lambda \times d)$ in terms of $\gamma(x)$.

A force-free solution ($\lambda = 0$) is available, with fiber twist

$$\gamma(x) = \frac{F}{T} \frac{C \beta}{\sqrt{r^2 + \beta^2}}, \quad \text{where} \quad r = f(x). \quad (132)$$

Then m is fully determined by the constitutive equation $m = T \gamma d + Fd \times d'$, and includes both bending and twisting components. We have satisfied

$$m' + \chi' \times \lambda = 0, \quad \lambda' = 0 \quad (133)$$

and so $\lambda' + \mu \text{div} B = \text{grad} p$ yields the existence of an equilibrating pressure field by virtue of the controllability of the deformation.
M. F. Beatty. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological materials - with examples. *Appl. Mech. Rev.*, 40:1699–1734, 1987.

J. L. Ericksen. Deformations possible in every isotropic, incompressible, perfectly elastic body. *Z. Angew. Math. Phys.*, 5:466–489, 1954.

L. D. Landau and E. M. Lifshitz. *Theory of Elasticity*, 3rd edition. Pergamon Press, Oxford, 1986.

R. W. Ogden. *Non-linear Elastic Deformations*. Dover, New York, 1997.

M. Shirani and D. J. Steigmann. A Cosserat model of elastic solids reinforced by a family of curved and twisted fibers. *Sym.* 12(7):1133, 2020.

D. J. Steigmann. Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. *Inter. J. Non-Lin. Mech.* 47(7):734-742, 2012.

D. J. Steigmann. Effects of fiber bending and twisting resistance on the mechanics of fiber-reinforced elastomers. In *Nonlinear mechanics of soft fibrous materials*, 269-305. Springer, Vienna, 2015.
thank you!