Intriguing Origins of Protein Lysine Methylation: Influencing Cell Function Through Dynamic Methylation

Natalie Mezey¹,a, William C.S. Cho²,*b, Kyle K. Biggar¹,*c

¹ Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
² Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China

Received 27 October 2018; revised 5 March 2019; accepted 28 March 2019
Available online 17 March 2020
Handled by Yu Xue

Introduction

“There is a kink (shoulder) on [the] Lys peak...” These words scribed in Richard P. Ambler’s laboratory notebook marked the discovery of protein methylation and a segue into a new field of scientific research [1]. Initially, through ion-exchange chromatography and two-dimensional paper chromatography of the hydrolysate of Salmonella typhimurium flagellin, this “kink” was interpreted as a “new amino acid”, the ε-N-methyl-lysine (NML). This discovery, bolstered by a subsequent examination of purified NML, was the first glimpse of protein methylation in living cells [1].

Although this exciting new discovery led to an initial surge in interest, focus on protein methylation quickly waned for a number of decades. By the time protein methylation emerged as a field of interest, research into other post-translational modifications (PTMs) was firmly underway. For example, the discovery of lysine (Lys) methylation predated tyrosine (Tyr) phosphorylation by two decades, following a fortuitous discovery of this new type of protein modification in v-Src associated kinase activity [2]. Following the path of early researchers in the discovery of non-histone protein methylation toward modern discoveries in methyllysine proteomics, this article aimed to unpack the key discoveries which paved the way of further understanding and characterization of the functional impact of this small modification over important cellular processes such as cellular growth signaling and DNA damage response, as well as other cellular pathways in disease pathology.

Post-translational lysine methylation: not just a mere afterthought

Although it was first discovered in 1959, protein methylation has only become a prolific area of discovery in recent decades. What we currently know of its properties and significance in biological function leaves many unanswered questions, making it all the more intriguing as research efforts continue.

PTM is well-known to regulate a wide range of biological functions, including the regulation of numerous protein interactions, protein localization, protein stability, and enzyme function [3]. However, protein lysine methylation has been primarily observed and studied on histone proteins, owing to its size, prevalence, and importance in packaging eukaryotic DNA into chromatin. For example, methylation of Lys 4 of...
histones that are still realized today. Ambler and Rees' observation of methyllysine in the flagellin of Salmonella typhimurium provided the scientific community with proof of protein methylation in living cells [11]. In addition to this pivotal discovery, their research also led them to providing a subtle hint into its dynamic nature. Ambler and Rees' observation of methyllysine in the flagellin provided the scientific community with proof of protein methylation in living cells [11].

Similarly, histone methylation is a functionally important PTM occurring on histone proteins. Although numerous lysine methyltransferase and demethylase enzymes have been characterized regarding their ability to control methylation at specific histone residues, their known targets have been rapidly expanding to include the methylation of non-histone proteins as well. Collectively, these findings have extended the role of Lys methylation well beyond the established “histone code” and its role in epigenetic regulation. Hundreds of such proteins are methylated at Lys residues and this PTM is involved in regulating cellular growth signaling and DNA damage response [8].

Approximately 80 Lys methyltransferase (KMT) and demethylase (KDM) enzymes have been discovered to regulate Lys methylation, with several displaying specificity only toward non-histone substrates [8,9]. Despite the number of known Tyr phosphorylation sites (upward of 20,000 modification sites) far outnumbering identified Lys methylation sites, the number of Lys modification sites have been on a continuous increase in recent years as new and reliable identification technologies are developed [10]. Indeed, methylation of non-histone proteins has emerged in recent years as a PTM with wide-ranging cellular implications since its discovery in 1959.

The 1990s and onwards: a revival of unfinished research

Although the physiological and regulatory roles of other PTMs such as phosphorylation had already been explored [12–14], the 1960s brought important contributions to the most basic understanding of Lys methylation. In 1964, Kenneth Murray discovered the presence of methyllysine in the hydrolysate of histones [15]. Kim and Paik demonstrated that methyllysine could not be conjugated to tRNAs, thus resolving a persisting question on how and when methylation occurred [16]. This discovery confirmed the earlier suggestion that histones were methylated following protein synthesis, not before. Building on these insights, Vincent Allfrey and fellow researchers posited what at the time would have been a truly prescient hypothesis, that methylation of histones could regulate gene transcription [17].

Following this initial curiosity, there was a precipitous drop in research in subsequent decades, in large part because no causal link could be established between protein methylation and regulation of biological processes. Kim and Paik diverted their focus to the enzymes involved in methylation throughout the 1960s and 70s. This was a fortunate detour, as they were able to establish the first methyltransferase activity: the enzymatic transfer of a methyl group from S-adenosylmethionine (SAM) to Lys, Arg, Asp, or Glu residues [16]. In the case of KMTs, it was determined that these enzymes were able to add a maximum of 3 methyl groups to the ε-nitrogen of the Lys residue (Figure 1) [18].

The 1960s: swinging the pendulum of research in the direction of lysine methylation

Ambler and Rees’ observation of methyllysine in the flagellin of Salmonella typhimurium provided the scientific community with proof of protein methylation in living cells [11]. In addition to this pivotal discovery, their research also led them to the discovery of a separate gene, which determined the presence or absence of methyllysine in flagellin, thereby demonstrating that methylation was indeed a PTM, and also providing a subtle hint into its dynamic nature. Ambler and Rees’ research was an impetus for further exploration. They reasoned that a specific enzyme must be responsible for the methylated Lys residues of a protein. These early theories lay the groundwork for the revelations in the field with implications that are still realized today.
was an increasing suspicion that the process of methylation must be reversible. This was confirmed by the discovery of Lys-specific demethylase 1 (LSD1), a KDM that demethylates H3K4me1 and H3K4me2 substrates [26]. LSD1 showed that protein methylation is a dynamic process similar to protein phosphorylation, a view which until that point had been strongly contested.

Zhang and his colleagues added Jumonji C-terminal (JmjC) domain-containing KDMs. JmjC-domain-containing proteins (also known as JMJDs) were a class of alpha-ketoglutarate-dependent KDMs, which demonstrated a unique method of methylation. While LSD1 demethylates by oxidizing the α-amino group of Lys, the larger class of JmjC-domain-containing KDMs oxidize the methyl groups, enabling the demethylation of Lys residues [27]. Taken together, this creates a dynamic writer, reader, and eraser model that is analogous to dynamic Tyr phosphorylation [8]. In this system, KMT functions as a ‘writer’ to add a methyl-moiety to a Lys residue on a given substrate. The chemical change accompanying methylation may also facilitate interactions with ‘reader’ methyl-binding proteins. The methylation signal is then terminated by a KDM, ‘erasing’ the Lys modification and returning the substrate to the demethylated state.

Moving on from histones: exploration of the non-histone methyl lysine proteome

While the role of Lys methylation in histones had been already being elucidated, the discovery of RNA-binding protein (RBP) methylation in 1998 expanded the scope of protein methylation. The methylation of RBPs was shown to have a regulatory role in RNP assembly, pre-mRNA splicing, and mRNA stability [28].

In 2004, Reinberg and his team observed an important function of Lys methylation in p53 tumor suppressor protein. In particular, they found that methylation of p53 by the KMT, SET domain-containing protein 7 (SETD7), resulted in enhanced transcriptional activity, nuclear stability, as well as apoptosis [29]. Subsequent studies revealed that p53 could function as an activator or repressor in response to dynamic methylation status of four neighboring Lys residues [30]. In 2007, Berger found that p53 could also be demethylated. Specifically, the KDM, LSD1, was found to demethylate the di-methylation modification at K370 (i.e., loss of p53K370me2), thereby disrupting the methyl-reader abilities of the Tudor domains of p53-binding protein 1 (53BP1) [31]. This ultimately resulted in the repression of p53 and DNA damage response. Furthermore, a number of different Lys methylation sites have been documented to be present in the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). The status of these Lys methylation events are suggested to dictate the ability of DNA-PKcs to effectively repair damaged DNA [32].

Further highlighting the broad reach of KMTs in non-histone Lys methylation, SETD7 has also been found to be the primary KMT for the methylation of ribosomal protein L29 (Rpl29) at K5 (i.e., Rpl29K5), a ribosomal protein that is prevalent in all cell types. Lys methylation of Rpl29 dictates its regulation and impacts subcellular localization. It has been determined that methylation of Rpl29K5 is so frequent that the methylation itself may be used as a cellular biomarker for SETD7 activity. Consequently, it is possible that Rpl29 methylation can be used as a target for SETD7 inhibitors [33]. Like p53, Rpl29 is demethylated by LSD1. LSD1 also demethylates, DNMT1, E2F1, as well as STAT3 [34]. The methylation of transcription factor E2F1 by SETD7 at K185 initiates the DNA damage response pathway by regulating the transcription of genes involved in repair [35].

Ubiquitin-like with PHD and RING finger domains1 (UHRF1) are also methylated by SETD7 and demethylated by LSD1. UHRF1 functions to regulate DNA methylation as well as heterochromatin formation. Methylation of UHRF1 has been shown to have unique functional response to DNA damage by regulating the enzymatic activity of repair proteins or the binding affinity of repair-associated transcription factors. Specifically, the methylation of UHRF1 induces the homologous recombination required for DNA repair, thus playing a critical role in the double-strand break repair mechanism [36].

Despite the rapid growth in our understanding of the function of Lys methylation, the field has experienced limited growth as a result of a lack of suitable identification technologies. Methylation exists as a relatively small uncharged protein...
modification. As a result, it is difficult to develop antibodies that do not suffer from low affinity or poor specificity, or that do not maintain specificity for the amino acid sequences surrounding the modified Lys. Although there have been several reports of successful immunoaffinity-enrichment of methyllysine peptides [10,37], a growing interest has emerged in the development of new chromatographic methods of enrichment [38] and the utility of naturally-occurring protein methyl-binding domains for affinity-based purification and enrichment prior to identification by mass spectrometry [32,39,40]. As methyllysine-specific antibodies cannot provide information of direct physical interactions that may occur in the cell, the use of methyl-binding domains has been utilized for the mapping of methyl-dependent protein complexes, a collection of interactions referred to as the methyl-interactome [32].

As we expand the breadth of protein Lys methylation events, there is a growing realization that Lys methylation plays a critical role in the development of many human diseases. Given the knowledge that Lys methylation plays a functional role in the regulation of an ever-expanding list of cellular processes (Figure 2), perhaps this is not surprising [41,42]. One pivotal study discovered that the KMT SET and MYND domain containing 3 (SMYD3) is a driver of Ras-driven leukemia, mediated by SMYD3-dependent methylation of the MAP3K2 protein at K260 (Figure 2) [43]. Given the involvement of Lys methylation in a growing number of different biological processes [8], it is not surprising that methylation has been increasingly documented to be critically important to human health. As modifiers of Lys methylation status, both KMT and KDM enzymes have correspondingly emerged as promising drug targets [18,44].

For example, SMYD3 is frequently upregulated in human colorectal, liver, and breast cancer cells, compared to their matched non-cancerous cells where expression is nearly undetectable, and this activity is associated with the growth of these tumors [45]. Taken together, these data provide an intriguing insight into how KMT dysfunction plays a crucial role in carcinogenesis. The inhibition of methyl-regulating enzymes could provide a novel therapeutic strategy for treatment of not only breast cancer, but also for the treatment of other cancers where KMT and KDM enzymes are involved.

Targeting lysine methylation for drug development

Targeted therapies are not available for a number of cancers. For example, systemic chemotherapy is the only treatment option for triple negative breast cancer after surgery. However, chemotherapy is highly toxic and cancer cells can eventually become resistant to the treatment. New drug targets and innovative research strategies are key for the cancer therapeutics. Recently, research in cancer biology has discovered that genes encoding KMT and KDM enzymes, e.g., the KMT2 (MLL) family proteins, are collectively among the most frequently dysregulated genes in many types of human cancers, and there is now a strong interest in developing targeted therapies against these modifying enzymes.

Given the extensive regulatory importance realized for Lys methylation, any mutations or dysfunction in KMT or KDM enzymes can lead to deregulated cell function, tumorigenesis, and chemotherapy resistance [46,47]. Indeed, a number of...
Table 1 Examples of KMT inhibitors that are under development and therapeutic testing

Compound	Target	Cellular potency (IC_{50})	In vivo activity	Status	Ref.
BIX-01294	EHMT1/2	500 ± 43 nM	No	Preclinical [58]	
UNC0638	EHMT1/2	81 ± 9 nM	No	Biological testing [59]	
EPZ005687	EZH2	80 ± 30 nM	No	Preclinical [60]	
EPZ6438 (tazemetostat)	EZH2	8 nM	Yes	Phase II [61]	
GSK126	EZH2	28 nM	Yes	Phase I [62]	
GSK343	EZH2	174 ± 84 nM	No	Preclinical [63]	
EPZ031686	SMYD3	36 nM	Yes	Preclinical [64]	
LLY-507	SMYD2	0.6 μM	No	Biological testing [65]	
A-893	SMYD2	42% reduction of p53K370mel	No	Biological testing [66]	

Note: KMT, lysine methyltransferase; EHMT1/2, euchromatic histone-lysine N-methyltransferase 1/2; EZH2, enhancer of zeste homologue 2; SMYD2/3, SET and MYND domain containing 2/3.

high-quality inhibitors for a handful of these enzymes have been recently identified. Several of these inhibitors elicit selective cancer killing in vitro and robust efficacy in vivo, suggesting that targeting Lys methylation pathways and their regulating enzymes may be a relevant, emerging cancer therapeutic strategy.

To date, a handful of KMT and KDM inhibitors have been discovered or developed, still many inhibitors are at the preclinical stages of development (Table 1) [47]. Indeed, given the similarity between catalytic domains among families of KMT and KDM enzymes, it has been difficult to develop an inhibitor specific for a dysfunctional enzyme without significant off-target effects. For example, the demethylase enzyme, LSD1, has been identified as a high-priority drug target as it has been found to be over-expressed in several different types of human cancer, playing a crucial role in cancer cell growth and proliferation. However, due to the similarity among catalytic sites and structural features, drugs targeting LSD1 have also been reported to act as monoamine oxidase (MAO) inhibitors [48]. At this point, several potent small molecule inhibitors of LSD1 have been discovered and show inhibitory activities in vitro and in vivo on various cancer cells.

As the delicate balance in the activity of KMT and KDMs serves to tightly regulate Lys methylation and maintain healthy homeostatic conditions, it is not surprising that a disruption can lead to various pathologies. Although there has been research connecting non-histone Lys methylation to tumorigenesis, less has been explored related to other pathological conditions, which presents a unique opportunity for future research. The Lys methylation of heat shock protein 70 (HSP70) plays a role in homeostasis and an over-abundance of HSP70 has been found to be implicated in autoimmune diseases [49]. For example, elevated level of HSP70 have been found in preeclampsia patients and is thought to contribute to the oxidative stress and inflammation that is characteristic of this condition [50]. HSP70 is also subjected to methylation at K561 and the presence of methylation site hints at a possible regulatory role in HSP function [51].

To date, the focus of non-histone Lys methylation has been toward its role in human pathology, however, recent research has suggested that non-histone Lys methylation may also be functionally significant in plant cells [52]. Uncovering plant methyllysine proteome is still in its infancy. Lys methylated proteins have been discovered in cytochrome C in wheat and cauliflower [53], as well as in spinach calmodulin [54]. In addition, Lys methylation occurs on the large subunit of Rubisco from pea plants, tomato, and tobacco plants [55]. Over 30 KMTs in the seven-beta-strand (SBS) and SET domain families are estimated to be implicated in plant Lys methylation. Although a functional role for these Lys methylation events in plants are yet to be characterized, the impact of environmental stressors on the expression of genes encoding KMTs points to methylation being implicated in a protective response for plants [52]. As the emerging scope of Lys methylation is expanding, it is expected that ongoing research will continue to demonstrate far greater importance than was first surmised by the earliest discoveries.

Summary

Decades of research into PTMs has characterized the functional importance of processes such as phosphorylation, acetylation, ubiquitination, and methylation of histones. Among these PTMs is a long-neglected and now rapidly expanding field of non-histone protein Lys methylation. Thanks to the advent of technologies, now we are able to perform molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain Lys and its sterically demanding analogs with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy [56]. Furthermore, PTM crosstalk between methylation and phosphorylation on histone peptides can be studied by host-assisted capillary electrophoresis. This is an effective method for studying PTM crosstalk with fast separation, high resolution, and low sample consumption [57]. However, there still remain a number of yet undiscovered Lys methylation sites within the proteome, and implications of these methylation events are still unclear. How dysfunction of Lys methylation contributes to carcinogenesis and how this intriguing PTM drives normal cell biology are looming questions within this relatively young research field and are intriguing questions of yet further study.

Competing interests

The authors have declared no competing interests.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (Grant No. 06151) awarded to KKB.
[47] Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 2015;15:110–24.

[48] Schmidt DM, McCafferty DG. Trans-2-phenylecyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 2007;46:4408–16.

[49] Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z, et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 2003;9:1469–76.

[50] Jirecek S, Hohlagschwandtner M, Temptler C, Knöfler M, Husslein P, Zeisler H. Serum levels of heat shock protein 70 in patients with preeclampsia: a pilot-study. Wien Klin Wochenschr 2002;114:730–2.

[51] Portelli M, Baron B. Clinical presentation of preeclampsia and the diagnostic value of proteins and their methylation products as biomarkers in pregnant women with preclampsia and their newborns. J Pregnancy 2018;2018:2632637.

[52] Serre NBC, Alban C, Bourguignon J, Ravanel S. An outlook on lysine methylation of non-histone proteins in plants. J Exp Botany 2018;69:4569–81.

[53] DeLange RJ, Glazer AN, Smith EL. Presence and location of an unusual amino acid, epsilon-N-trimethyllysine, in cytochrome C of wheat germ and Neurospora. J Biol Chem 1969;244:1385–8.

[54] Watterson DM, Iverson DB, Van Eldik LJ. Spinach calmodulin: isolation characterization and comparison with vertebrate calmodulins. Biochemistry 1980;19:5762–8.

[55] Houtz RL, Stulits JT, Mulligan RM, Tolbert NE. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 1989;86:1855–9.

[56] Temimi AHKA, Tran V, Tieuwen RS, Altunc AJ, Amadjaïs-Groenen HV, White PB, et al. Examining sterically demanding lysine analogs for histone lysine methyltransferase catalysis. Sci Rep 2020;10:3671.

[57] Lee J, Chen J, Sarkar P, Xue M, Hooley RJ, Zhong W. Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophore-sis. Anal Bioanal Chem 2020. https://doi.org/10.1007/s00216-020-02486-y.

[58] Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007;25:473–81.

[59] Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie Y, et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 2012;7:566–74.

[60] Knutson SK, Wigle TJ, Warholic NM, Snerreinger CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012;8:890–6.

[61] Kuntz KW, Campbell JE, Keilhacker H, Pollock RM, Knutson SK, Porter-Scott M, et al. The importance of being Me: magic methyls, methyltransferase inhibitors, and the discovery of tazemetostat. J Med Chem 2016;59:1556–64.

[62] McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012;492:108–12.

[63] Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP, Newlander KA, et al. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett 2012;3:1091–6.

[64] Mitchell LH, Borjaic-Sjoedin PA, Smith S, Thomenius M, Rioux N, Munchhof M, et al. Novel oxindole sulfonamides and sulfamides: EPZ031686, the first orally bioavailable small molecule SMYD3 inhibitor. ACS Med Chem Lett 2016;7:134–8.

[65] Nguyen H, Allali-Hassani A, Antonymasy S, Chang S, Chen LH, Curtis C, et al. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J Biol Chem 2015;290:13641–53.

[66] Swaïs RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, et al. Discovery of A-893, a new cell-active benzoazinone inhibitor of lysine methyltransferase SMYD2. ACS Med Chem Lett 2015;6:695–700.