An Educational Intervention in Primary School Students Regarding Sun Protection: A Pilot Study

Saridi M¹, Toska A¹, Rekleiti M¹, Sarafis P², Zoukas L³, Souliotis K⁴* and Birbas K⁵

¹Department of Nursing, General Hospital of Korinthos, Greece
²Faculty of Nursing, Technological Educational Institute, Lamia, Greece
³Department of Gynecology, General Hospital of Korinthos, Greece
⁴Faculty of Social Sciences, University of Peloponnese, Korinthos, Greece
⁵Faculty of Nursing, National and Kapodistrian, University of Athens, Greece

Abstract

Background: Epidemiological data have established a correlation between prolonged sun exposure during childhood and adolescence and occurrence of malign melanoma later in life. The aim of the present study was to investigate knowledge and attitudes of primary school students regarding sun protection measures and sun-related risks before and after an educational intervention.

Methods: It is a descriptive randomized pilot study of two stages with comparison of the results before and after an educational intervention. Sixty students aged 8-12 years from a coastal area participated in this study. Students first completed an anonymous questionnaire and after that took part in an intervention program. After 15 days the same students completed the questionnaire again. Data analysis was performed using the SPSS 17.0 and statistical significance was set to 0.05.

Results: Students’ awareness and knowledge level about sun-related risks and sun protection measures before the implementation of the intervention was satisfactory. Regarding sun protection factor, students’ knowledge levels also increased and 85% of them answered correctly. The students’ attitudes after the intervention showed some improvement, yet without any significant variation. There were no changes regarding the use of sunglasses and wearing appropriate clothing (hat, long-sleeve shirts, etc.). The proportion of children who used a sunscreen with SPF 30+ was significantly higher in students after the intervention (p<0.001). Sunburn incidence was found to be high. 35% of the students reported having at least one sunburn in the past summer. Children after the intervention had significantly higher knowledge scores compared to those before the program but the score in attitudes was not so high.

Conclusions: This pilot study showed that a similar intervention in a larger sample could increase and expand the students’ knowledge about sun protection.

Keywords: Sun protection; Sun exposure; Sun block; Melanoma; Sunburn

Introduction

Solar light, entering the Earth’s atmosphere, is filtered by the ozone layer which is at the stratosphere and absorbs most of the UVR by transforming it to heat. Ozone depletion in the last decades has resulted in a 1-3% annual increase in skin cancer cases worldwide [1,2]. Solar radiation risks are widely known and well-established in the literature. Solar radiation may have direct effects on the kin (redness, sunburn, etc.) that occur within hours or days after exposure, or long-term effects (squamous-cell carcinoma, basal-cell carcinoma, malign melanoma) that occur after prolonged exposure for many years [3].

Epidemiological data have established a correlation between prolonged sun exposure during childhood and adolescence and occurrence of malign melanoma later in life. Sunburn incidence in these age-groups is also a risk factor for skin cancer [4,5]. Children and adolescents are the main target groups of educational interventions in countries with high skin cancer incidence, such as Australia, New Zealand and USA. WHO and CDC have launched in the last decade similar programs that have been used as an example for other countries that wish to implement similar interventions too [6-9].

Relative studies and interventions have highlighted the students’ awareness about sun-related risks and sun protection measures as well. They have also investigated the students’ attitudes, beliefs and behaviours regarding sun exposure and sun protection. It has been documented that providing systematic and continuous information can change erroneous attitudes and lead to wiser behaviours [8-10].

The aim of the present study was to investigate knowledge and attitudes of primary school students regarding sun protection measures and sun-related risks before and after an educational intervention. It is a pilot study and its findings will be the basis for a full-scale study in the future. The present study will provide some useful insight about methodological problems and difficulties that may arise during planning, implementation, data collection and assessment of the intervention.

Material and Methods

Research planning

The present study is a pilot study that will be used as a guideline for a large-scale epidemiological study. It is a descriptive randomized study of two stages with comparison of the results before and after an educational intervention. One hundred and twenty students aged 8-12 years were our sample. They attended a school in the prefecture

*Corresponding author: Kyrilikos Souliotis, Assistant Professor of Health Policy, Faculty of Social Sciences University of Peloponnesse, Korinth, Greece, Tel: +30 27410 74991; Fax: +30 27410 74990; E-mail: soulioti@hotmail.com

Received October 24, 2013; Accepted March 10, 2014; Published March 18, 2014

Citation: Saridi M, Toska A, Rekleiti M, Sarafis P, Zoukas L, et al. (2014) An Educational Intervention in Primary School Students Regarding Sun Protection: A Pilot Study. Primary Health Care 4: 153. doi:10.4172/2167-1079.1000153

Copyright: © 2014 Saridi M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
of Korinthia which was later excluded from the final large-scale study. Response rate was 98% and the study took place from January 2009 until March 2009.

Inclusion/Exclusion criteria -Ethics

In this study, the sample comprised of elementary school students (n=120) aged 8-12 years. Their school was in an urban area and was later excluded from the final large-scale study. The students attended the Fourth, Fifth and Sixth grades. The Greek Pedagogical Institute granted approval. Informed consent was granted by the students’ parents and the students themselves. Two non-Greek students had to be excluded due to poor Greek language skills. Strict anonymity was preserved. The school principal also granted permission. No banners or other advertising material was included in the intervention.

Data collection

The students had to complete a questionnaire that was administered to them before and after the intervention. In January 2009 students were administered the questionnaires for the first time. After that, the educational intervention took place, and then, in March, the same questionnaire was re-administered to them, in order to assess any changes in their awareness and attitudes regarding sun protection. Completion of the questionnaires took one school hour during the ‘Flexible Zone’ hours. The intervention took place after the collection of the questionnaires, and the researchers came back to the school 40 days later and administered the same questionnaires in order to assess the intervention’s effectiveness.

Instruments

Questionnaire: The literature review did not provide us with a questionnaire specifically designed for this particular age-group (8-12 years old students). Consequently, the researchers had to develop a special questionnaire drawing from the Intersun programme, developed by the WHO [8]. The relevant Australian programme (Sun Smart) also played a role in the development of our instrument [7].

The questions, apart from the demographics, aimed at assessing the students’ knowledge about sun-related risks and sun protection measures. The questionnaire included 21 items. Demographics included age, gender, nationality, place of residence and distance from the beach. Personal data that are important for someone’s attitude towards sun protection, such as complexion, eye colour, freckles and moles on the skin were also included. The students’ knowledge about sun-related risks and sun protection measures were also investigated. The biggest part of the questionnaire (items 10-21) was about daily sun-protection, especially in the summer. The questionnaire had also been designed along the lines of the Australian SunSmart [7] programme, granted approval. Informed consent was granted by the students’ parents and the students themselves. Two non-Greek students had to be excluded due to poor Greek language skills. Strict anonymity was preserved. The school principal also granted permission. No banners or other advertising material was included in the intervention.

Statistical analysis

Means and standard deviations were used for the description of quantitative variables. Absolute (N) and relative (%) frequencies were used for the qualitative variables. In order to compare quantitative variables among two groups, Student’s t-test was used, whereas for comparison among three or more groups parametric analysis (ANOVA) was used. Significance levels were bilateral and statistical significance was set to 0.05. The SPSS 17.0 software was used for the analysis.

Results

Demographics

The average age of the sample (n=120) was 9.9 years (±1.1), while 58% (n=75) were females and 42% (n=50) were males. Moreover, 80% (n=24) of the students were Greek, while 20% (n=24) were of non-Greek nationality. 26% (n=32) of the participants belonged to the high-risk group. More specifically, the high-risk group included children who had four out of five high-risk characteristics (fair complexion, light-coloured eyes or hair, freckles and moles) (Table 1).

Awareness and knowledge

Students’ awareness and knowledge level about sun-related risks and sun protection measures before the implementation of the intervention was satisfactory. After the intervention, there was an overall increase in knowledge levels. More specifically, before the intervention, 82% of the participants knew that the sun’s heat is at its peak between 10.00 a.m. and 16.00 p.m., 92% were aware that sunscreen can help prevent sunburns and 75% knew that excessive sun exposure may cause skin and eye damage. Yet only 25% of them knew that sunscreens for children should have a sun protection factor of 50. After the implementation of the programme, there was a positive shift in the students’ knowledge levels. More specifically, 91% of the students knew when the sun’s heat is at its peak, 95% had learned that sunscreen can prevent sunburns and 85% knew that excessive sun exposure may lead to skin and eye damage. Regarding sun protection factor, students’ knowledge levels also increased and 55% of them answered correctly.

There was also a significant difference regarding knowledge levels among children of different age. More specifically, after Bonferroni Correction was applied, students aged 10 years outsored both students aged less than 9 years (p<0.001), and students aged 9-10 years (p<0.001), as well.

Also there was no statistically significant difference regarding knowledge levels between females and males. The males’ percentage of

	N	%	
High-risk group			
No	88	74	
Yes	32	26	
Your complexion is			
Fair, prone to sunburns	30	25	
Darker, sunburns are rare	90	75	
Your eye-colour is			
light	24	20	
dark	96	80	
Your hair-colour is			
light	28	23	
dark	92	77	
Do you have freckles on your face/body?	No	88	80.6
Yes	32	19.4	
Do you have any moles on your face/body?	No	88	74
Yes	32	26	

Table 1: Individual characteristics.

Citation: Saridi M, Toska A, Rekleiti M, Sarafis P, Zoukas L, et al. (2014) An Educational Intervention in Primary School Students Regarding Sun Protection: A Pilot Study. Primary Health Care 4: 153. doi:10.4172/2167-1079.1000153
overall right answers increased significantly (2.8 ± 0.9 vs 3.2 ± 0.9), and so did the females’ right answers (2.9 ± 0.8 vs 3.4 ± 0.8).

Attitudes

The students’ attitudes after the intervention showed some improvement, yet without any significant variation (Table 2). It seems that there was a significant difference regarding applying sun protection measures before and after the intervention (Table 3). More specifically, children after the intervention said they applied sun protection measures more often than before the programme.

There were no changes regarding the use of sunglasses and wearing appropriate clothing (hat, long-sleeve shirts, etc.). The proportion of children who used a sunscreen with Sun Protection Factor (SPF) 30+ was significantly higher in students after the intervention (p<0.001). On the other hand, sunscreen use was higher among students when asked before the intervention (78.2% vs 65.5%). The percentage of children who re-applied sunscreen after getting out of the sea was much higher before the intervention (78.2% vs 65.5%). The percentage of children was significantly higher in students after the intervention (p<0.001). On the other hand, sunscreen use was higher among students when asked before the intervention (78.2% vs 65.5%). The percentage of children who re-applied sunscreen after getting out of the sea was much higher before the intervention (78.2% vs 65.5%).

In what regards the children’s activities and protection measures

Measurements	Before	After	P Student’s t-test	
Attitude score	mean 21.6	SD 3.45	mean 23.71	SD 3.48 <0.001

Table 2: Overall attitude before and after intervention.

What is the SPF of your sunscreen?	Before 15%	Lower than 15%	P Pearson’s x² test
I never used one/	8.8	9.0	<0.001
15	15.3	14.5	
30	29.7	54.8	
I do not know	46.2	21.6	

Do you re-apply sunscreen at the beach?	Before 30.5	After 32.5	P Pearson’s x² test
Every 2 hours	30.5	32.5	0.037

When tan, do you use keep using sunscreen?	Before 59	After 52.6	p<0.001
No	57.4	34.2	<0.001
Yes	26.5	39.5	
I don’t care	16.1	26.3	

Table 3: Attitude before and after intervention.
use sunscreen with SPF 30+ much more than before the intervention (27.2% vs 60.6%). Similarly, after the intervention the percentage of high-risk students who would re-apply sunscreen every two hours was much higher than before (28.3% vs 45.2%). Also, after the intervention the percentage of high-risk students who wanted to be tan, was again higher (25.4% vs 51%).

Discussion

The present study investigated the changes in knowledge and attitudes of students after an educational intervention. Also, it examined whether the questionnaire was easily understood by the students, in order to be administered to a larger sample without any significant methodological problems.

The implementation of prevention and educational programmes within primary education is an important part of Health Education in many countries. In Greece, some health promotion programmes have taken place during the last years, although it seems that sun protection is not a top priority for the Ministry of Health yet. Nevertheless, sun protection is a priority for many other countries, and also for the WHO and the CDC, and multiple prevention programmes have been launched and taken place in schools [6-9].

The international literature has established that systematic and well-coordinated programmes that focus on large population groups can have better results than sporadic, isolated interventions. The 8-12 age-group seems to be the best option for educational interventions aiming at knowledge improvement and healthier behaviours through attitude change [11-13].

Our demographic results showed that the number of males and females was almost the same. Almost 20% of the participants were of non-Greek nationality, something that shows that Greece has become essentially multicultural. In the larger study, it is expected that knowledge and attitudes will vary according to nationality, as well. This hypothesis is based on the assumption that other characteristics (e.g. phototype) and different clothing in other cultures may have an effect on the foreigners’ attitude towards sun exposure and sun protection measures [14-16].

The students’ knowledge level was high even before the intervention, but it got significantly higher after the intervention, something that confirms that this programme could be useful for a larger student sample. Our findings are in agreement with those of other studies that have reported high knowledge scores regarding sun protection measures [15-20]. Also, although before the intervention the students’ knowledge about sun protection factors was low (25%), after the intervention it increased to 55%, since the programme was specifically aiming at enhancing knowledge about SPF. Similar studies from Spain, the US, New Zealand and Turkey have found lower knowledge levels regarding SPF [21-24]. Several international studies have shown an improvement regarding choosing the appropriate sunscreen, similarly to the present study. Finally, older age students seem to have higher knowledge levels, as expected, since knowledge accumulates over time [10-15].

The students’ attitude showed some improvement after the intervention, although not a very significant one. Nevertheless, this was an encouraging sign for the present study. This finding could be attributed to the fact that new and healthier behavioral patterns cannot be adopted by children just on account of more knowledge, since family, peer and school influence play an important role in adopting wiser behaviors, as other studies have also shown [15,18,25]. Sunburn incidence is a well-known risk factor for sun-related damages, according to the literature. In the present study, a significant percentage of the participants (35%) reported having at least one sunburn in the past summer. Other studies have also found similar percentages [20,26-30]. In the present study, it wasn’t feasible to assess whether the intervention had reduced sunburn incidence, because it took place before the summer. The forthcoming full-scale study will include a full assessment. Similar interventions worldwide have been shown to reduce sunburn incidence among young person’s [26,28,31-33].

Distance between place of residence and the beach was also found to be a significant factor affecting knowledge and attitudes. Students who lived relatively away from the beach in semi-urban areas had, in general, low knowledge levels and did not take sun protection measures, compared to students who lived closer to the beach and had more frequent exposure to the sun. On the other hand, children from rural areas have prolonged exposure to the sun because they may help their parents at the farm or play outdoors [34,35].

This pilot study showed that educational interventions yield better results when implemented at a young age, a finding confirmed by other international studies. Interventions should be aimed at previously documented knowledge gaps and deficiencies and try to accomplish specific targets. The main target of the present study was to enhance the students’ knowledge about sun protection factors (SPF), appropriate use of sunscreens and sun-related risks. The long-term target was to make students adopt healthier attitudes and behavior towards sun exposure. The present pilot study used a small sample and was followed by a full-scale study with a sample of 5000 students.

Conclusion

This pilot study showed that a similar intervention in a larger sample could increase and expand the students’ knowledge about sun protection. The study was also used as a means of assessing the questionnaire and, in this respect, no methodological problems arose during all the stages of the study.

It is noteworthy that such interventions should be systematic and continuous, since a simple one-time presentation cannot expand the students’ knowledge. Systematic up-to-date information is required, and developing interventions specifically designed for each age-group is also essential. In order for such interventions to be successful, social, school and family environment should be included and should actively participate. Parents and teachers should also be informed, since students are by and large influenced by family and school environment.

References

1. Zepp RG, Erickson DJ 3rd, Paul ND, Sulzberger B (2011) Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 10: 261-279.
2. Zerofos CS, Meleti C, Balis DS, Bais AF, Giliotay D (2000) On changes of spectral UV-B in the 90’s in Europe. Advances in Space Research 26: 1971-1978.
3. Arola A, Lakkala K, Bais A, Kaurola J, Meleti C, et al. (2003) Factors affecting short- and long-term changes of spectral UV irradiance at two European stations. Journal of Geophysical Research 108.
4. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63: 8-18.
5. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10-29.
6. Cancer Society of New Zealand (2006) Sample Sun Protection Policy for Primary Schools. Wellington, New Zealand: Cancer Society of New Zealand.
7. Anti-Cancer Council of Victoria (2002) SunSmart Program 2003-2006. Victoria, Anti-Cancer Foundation of Victoria: 1-48.
8. World Health Organization (2003) Sun Protection and Schools: How to Make a Difference. Geneva: World Health Organization.

9. CDC (2003) Counseling to prevent skin cancer: recommendations and rationale of the US Preventive Services Task Force. MMWR 52: 13-17.

10. Dadhani C, Orlow SJ (2008) Planning for a brighter future: a review of sun protection and barriers to behavioral change in children and adolescents. Dermatol Online J 14: 1.

11. Horsley L, Charlton A, Waterman C (2002) Current action for skin cancer risk reduction in English schools: pupils’ behaviour in relation to sunburn. Health Educ Res 17: 715-731.

12. Buller DB, Buller MK, Reynolds KD (2006) A survey of sun protection policy and education in secondary schools. J Am Acad Dermatol 54: 427-432.

13. Eakin P, Maddock J, Techur-Pedro A, Kaliko R, Derauf DC (2004) Sun protection policy in elementary schools in Hawaii. Prev Chronic Dis 1: A05.

14. Saraiya M, Hall HI, Uhler RJ (2002) Sunburn prevalence among adults in the United States, 1999. Am J Prev Med 23: 91-97.

15. de Vries H, Lezwijin J, Hol M, Honing C (2005) Skin cancer prevention: behaviour and motives of Dutch adolescents. Eur J Cancer Prev 14: 39-50.

16. Hill D, Dixon H (1999) Promoting sun protection in children: rationale and challenges. Health Educ Behav 26: 409-417.

17. Dixon H, Borland R, Hill D (1999) Sun protection and sunburn in primary school children: the influence of age, gender, and coloring. Prev Med 28: 119-130.

18. Saridi M, Toska A, Rekleiti M, Wozniak G, Liachopoulou A, et al. (2012) Sun-protection habits of primary students in a coastal area of Greece. J Skin Cancer 2012: 629652.

19. Piperakis SM, Papadimitriou V, Piperakis MM, Zisis P (2003) Understanding Greek primary school children’s comprehension of sun exposure. Journal of Science Education and Technology 12: 135-142.

20. LaBat K, De Long M, Gahrning SA (2005) A Longitudinal Study of Sun-Protective Attitudes and Behaviors. Family and Consumer Sciences Research Journal 33: 240-254.

21. Giliberte Y, Alonso JP, Teruel MP, Granizo C, Gállego J (2008) Evaluation of a health promotion intervention for skin cancer prevention in Spain: the SolSanos program. Health Promot Int 23: 209-219.

22. Wright C, Reeder AI, Gray A, Cox B (2008) Child sun protection: sun-related attitudes mediate the association between children’s knowledge and behaviours. J Paediatr Child Health 44: 692-698.

23. Ergul S, Ozeren E (2011) Sun protection behavior and individual risk factors of Turkish Primary School Students associated with skin cancer: a questionnaire-based study. Asian Pac J Cancer Prev 12: 765-770.

24. Geller AC, Cantor M, Miller DR, Kenausis K, Rosseel K, et al. (2002) The Environmental Protection Agency’s National SunWise School Program: sunprotection education in US schools (1999-2000). J Am Acad Dermatol 46: 683-689.

25. Geller AC, Rutsch L, Kenausis K, Selzer P, Zhang Z (2003) Can an hour or two of sun protection education keep the sunburn away? Evaluation of the Environmental Protection Agency’s Sunwise School Program. Environ Health 2: 13.

26. Richtig E, Jung E, Aslãkç K, Trapp M, Hofmann-Wellenhof R (2009) Knowledge and perception of melanocytic nevi and sunburn in young children. Pediatr Dermatol 26: 519-523.

27. Cokkinides V, Weinstock M, Glanz K, Albano J, Ward E, et al. (2006) Trends in sunburns, sun protection practices, and attitudes toward sun exposure protection and tanning among US adolescents, 1998-2004. Pediatrics 118: 853-864.

28. Davis KJ, Cokkinides VE, Weinstock MA, O’Conell MC, Wingo PA (2002) Summer sunburn and sun exposure among US youths ages 11 to 18: national prevalence and associated factors. Pediatrics 110: 27-35.

29. Lowe JB, Borland R, Stanton WR, Baade P, White V, et al. (2000) Sun-safe behavior among secondary school students in Australia. Health Educ Res 25: 271-281.

30. Girgis A, Sanson-Fisher RW, Tripodi DA, Golding T (1993) Evaluation of interventions to improve solar protection in primary schools. Health Educ Q 20: 275-287.

31. Richards R, McGree R, Knight RG (2001) Sunburn and sun protection among New Zealand adolescents over a summer weekend. Aust N Z J Public Health 25: 352-354.

32. Milne E, Jacoby P, Giles-Corti B, Cross D, Johnston R, et al. (2006) The impact of the kidskin sun protection intervention on summer suntan and reported sun exposure: was it sustained? Prev Med 42: 14-20.

33. Banks BA, Silverman RA, Schwartz RH, Tunnessen WW Jr (1992) Attitudes of teenagers toward sun exposure and sunscreen use. Pediatrics 89: 40-42.

34. Aalborg J, Morelli JG, Mokrohisky ST, Asdigian NL, Byers TE, et al. (2009) Tanning and increased nevus development in very-light-skinned children without red hair. Arch Dermatol 145: 989-996.

35. SaridM, Bourdaki E, Rekleiti M (2014) Young students’ knowledge about sun protection and its relation with sunburn incidence. A systematic review. Health Science Journal 8: 4-21.