Application of object-oriented programming in a time-dependent density-functional theory calculation of exciton binding energies

Zeng-hui Yang and Carsten A. Ullrich

Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA

(Dated: February 6, 2014)

This paper discusses the benefits of object-oriented programming to scientific computing, using our recent calculations of exciton binding energies with time-dependent density-functional theory (arXiv: 1302.6972) as a case study. We find that an object-oriented approach greatly facilitates the development, the debugging, and the future extension of the code by promoting code reusing. We show that parallelism is added easily in our code in a object-oriented fashion with ScaLAPACK, Boost::MPI and OpenMP.

PACS numbers: 71.15.-m, 31.15.ee, 71.35.Cc

I. INTRODUCTION

A. Object-oriented programming in scientific computing

A plethora of programming languages are available nowadays. While all are of academic interest, at least in principle, only a few are used in large scale computations, and these can be roughly categorized into two groups: those promoting imperative programming (such as Fortran and C) and those promoting object-oriented programming (OOP). For the usual implementations of imperative programming, each statement of the programming language can be translated into simple machine code constructs; while OOP is more abstract by considering data as opaque objects, each having a unique set of methods to manipulate data. Only a pre-defined set of operations are allowed on data, and the internal representation of data is not visible to the outside; this indirectness has been proven to be very helpful to the designing, the writing, and the modifying of the program. OOP was not widely used until the emergence of programming languages that support expressing OOP concepts natively, most notably C++.

C++ provides both the programming convenience of OOP (and other higher-level paradigms) and, most importantly, the runtime efficiency of C. C++ makes OOP not only of academic interest but also of practical use since the runtime efficiency is not compromised much.

To better distinguish these two paradigms, the concept of ‘coupling’ need to be introduced. If changing a certain part of the program induces the need to change another part, these two parts of the program are coupled. Since imperative programming is closer to machine code, one often manipulates raw data directly. This is inherently fast, but this also makes the program dependent on how the raw data is represented, creating tighter coupling between different parts of the program. If the representation of the data is to be changed later, a large amount of the code need to be changed. On the other hand, OOP promotes the separation of interface (what manipulation is to be done on the data) from implementation (how the data is actually manipulated). As a consequence, good OOP design achieves loose coupling and greater ease of maintenance.

The use of OOP in quantum mechanics was pioneered in the work of DFT++ by Ismail-Beigi, and since then many other applications have emerged, such as S/PHI/nX, JDFTx, and others. Despite the vast advantage provided by OOP, a considerable number of programs used in computational physics are still written with imperative programming in mind. While the runtime efficiency is good, the codes are harder to learn, to modify, and to extend. We have recently calculated exciton binding energies with time-dependent density-functional theory (TDDFT), and we have developed a C++ code for this calculation employing OOP. We provide a case study of our code to demonstrate how OOP is helpful in computational physics, and we thus hope to promote its usage.

B. Background of the physical problem

We briefly introduce the physical problem here to provide a context for our code, while the computational details of the problem are described later. Excitons are coupled electron-hole pairs in solids, and they show up in optical absorption spectra as discrete absorption peaks below the band gap. Many-body theories such as the Bethe-Salpeter equation (BSE) describe excitons well, but the computation is costly, and thus its use is limited. An alternative to the BSE is TDDFT, which is a promising excited-state electronic structure method widely used for finite systems such as molecules, but is gaining popularity for periodic systems. Density functional methods balance accuracy and computational cost by calculating an auxiliary non-interacting Kohn-Sham system that has the same electronic density as the real, interacting system. Though TDDFT is formally exact, one needs to approximate the exchange-correlation (xc) many-body effects in practice; numerous approximations for the xc potential v_{xc} and for the xc kernel $f_{xc} = \delta v_{xc}/\delta n$ (n is the one-particle density) have been successfully applied to describe electronic structure and
excitations in materials.

The excitons have been difficult to obtain from a TDDFT calculation. While the main difficulty is an unusually stringent requirement on the xc kernel, the commonly used calculation approach is also not suitable for exciton binding energies. We have developed an alternative approach for calculating exciton binding energies in TDDFT in our recent work. Our code constructs and solves an eigenvalue problem as follows (atomic units $\epsilon = \hbar = m_e = 1/4\pi\epsilon_0 = 1$ are used throughout the paper unless otherwise mentioned):

$$\sum_{(mn)} \left[\delta_{im}\delta_{jn}(\epsilon_j - \epsilon_i) + F^{i(j)(mn)}_{\text{xc}}(\omega) \right] \rho^{(mn)}(\omega) = \omega \rho^{(i)}(\omega),$$

where ϵ are the Kohn-Sham orbital energies of the underlying electronic ground-state calculated beforehand from the ABINIT code. i, m denote valence bands, j, n denote conduction bands, the eigenvalue ω is the excitation frequency, and the corresponding eigenvector ρ describes how single-particle excitations combine into the real excitation. The Hartree-exchange-correlation (Hxc) matrix $F^{i(j)(mn)}_{\text{xc}} = 2F_H + F_{\text{xc}}$ is composed of the Hartree part F_H and the xc part F_{xc}, defined as

$$F^{i(j)(mn)}_{\text{H}} = \frac{1}{V} \sum_{G \neq 0} \frac{4\pi}{|G|} \langle jk | e^{iG \cdot r} | ik \rangle$$

and

$$F^{i(j)(mn)}_{\text{xc}} = \frac{1}{V} \sum_{GG'} F_{\text{xc},GG'}(q = 0)$$

$$\times \langle jk | e^{iG' \cdot r} | ik \rangle \langle mn' | e^{-iG' \cdot r} | nk' \rangle.$$

(2)

Here, V is the volume of the crystal, G and G' are the reciprocal lattice vectors, k is the wavevector in the first Brillouin zone, and k together with band index i, j, m, or n specifies the Kohn-Sham orbitals. The approximation for the xc kernel F_{xc} is chosen by the user for each calculation.

The formalism above assumes spin-unpolarized systems and does not explicitly treat spin. It cannot describe spin-flip triplet excitations. Proper treatment of spin-flip excitations requires the non-collinear spin formalism. For spin-unpolarized systems, however, there is a shortcut for calculating triplet excitations. We define

$$f_{\text{xc}}^{\text{singlet}} = \frac{f_{\text{xc}}^{\uparrow\uparrow} + f_{\text{xc}}^{\downarrow\downarrow}}{2}, \quad f_{\text{xc}}^{\text{triplet}} = \frac{f_{\text{xc}}^{\uparrow\downarrow} - f_{\text{xc}}^{\downarrow\uparrow}}{2},$$

(4)

where $f_{\text{xc}}^{\uparrow\uparrow}$ and $f_{\text{xc}}^{\downarrow\downarrow}$ are parts of the spin-dependent xc kernel, and they need to be approximated as well as in practice. Solving Eq. (1) with $f_{\text{xc}}^{\text{singlet}}$ and $f_{\text{xc}}^{\text{triplet}}$ yields singlet and triplet excitations, respectively.

The $G = G' = 0$ part (so-called 'head') of f_{xc} requires special treatment, since it diverges as q^{-2} as $q \to 0$. For $q \neq 0$, the matrix element $\langle jk | e^{iG \cdot r} | ik \rangle$ in Eq. (2) and (3) becomes $\langle jk | e^{i(q+G) \cdot r} | ik - q \rangle$, and in the limit of $q \to 0$ the divergence in f_{xc} is canceled out. The head contribution to Eq. (3) is then calculated as

$$\lim_{q \to 0} \left[\frac{2}{V} \frac{\epsilon_{jk} - \epsilon_{ik}}{\epsilon_{nk'} - \epsilon_{mk'}} \right]$$

and

$$\times \left[\frac{2q^2}{V} f_{\text{xc},00}(q) \right].$$

(5)

where \hat{p} is the momentum operator, \hat{r} is the position operator, and V_{nl} is the non-local part of the pseudopotential. In our study, we are only interested in the exciton binding energy instead of the entire optical spectrum, so we only need to include a few bands in Eq. (1), which simplifies the problem.

This paper is structured as follows: in Sect. II we examine the needs of the exciton project, and we discuss the design of our code based on these needs; we then show the implementation details in Sect. III to demonstrate the role of OOP in the development of our code; we conclude in Sect. IV.

Several pseudo-code examples are given in the text; the reader is asked to refer to the supplemental material for the actual codes. The calculation results were presented in Ref. 9 and are not repeated here.

II. DESIGN

A. More general remarks on OOP

Before going into specifics of the design of our code, let us discuss a few important features OOP. We mentioned in Sect. I that OOP views data as opaque objects that are accessible only through a predefined set of methods, through which the visible interface (methods) and the invisible implementation (representation of data and their manipulation) are separated, allowing one to program without worrying about details. An object has a certain predefined type (known as ‘class’ in C++) that defines interface and encapsulates implementation, and one class can have more than one object instances.

Another defining feature of OOP is inheritance and polymorphism. Inheritance derives an object type from a base type by copying the code of the base type into its own definition. This achieves code reuse and uniformity, such that a common operation can be defined within a base type, and if later it is to be modified in the base type, the change automatically applies to all the derived types; but more importantly, inheritance models a logical connection between types, most commonly an ‘is a’ relation (for example, a long-range correction (LRC) xc
FIG. 1. UML19 collaboration diagram of our code, where every node is an object. Only the most important objects are shown. The arrows denote dependence between objects, with the arrowhead side depending on the arrowtail side. Only those objects which are directly related to the calculation are shown.

kernel (derived type) is an xc kernel (base type)]. This leads to the so-called polymorphism—an object of the derived type can be used anywhere an object of the base type is required, since the object of the derived type ‘is an’ object of the base type.

Polymorphism further decouples interface and implementation, so that the base type provides a uniform interface of methods, and the derived types do the actual calculation. For example, calculation of the $F_{jik}^{(ij)}(mnk')$ matrix elements in Eq. (3) requires the value of the reciprocal space xc kernel f_{xc} (defined as a base type), but this calculation does not need to know either the actual choice of f_{xc} or what types of f_{xc} are available (which all derive from the common f_{xc} base type and do the calculation); since this calculation does not rely on details of f_{xc} themselves, one can easily write a new derived type of f_{xc} and expect it to work like other f_{xc}’s, without needing to change the code for calculating the $F_{jik}^{(ij)}(mnk')$ matrix elements. In C++, polymorphism is provided through virtual methods.1,2

It should be noted that the main purpose of programming paradigms such as OOP is to provide a framework with which programmers can structure, modify, or extend their program with ease, and thus increase the productivity and the development speed. The runtime efficiency is not the primary concern of programming paradigms. Object-oriented programs generally produce more machine codes for the same task; object-oriented codes are harder to optimize by the compiler due to no direct mapping to machine codes; the memory access pattern is more difficult to predict—all these issues make object-oriented codes run slightly slower than programs written with imperative programming languages. The OOP compensates the runtime efficiency lost with a huge gain in development and maintenance efficiency.

OOP alone does not guarantee good programming quality, and one needs to design the object structure with care. We identify the following characteristics of our exciton project9 that guide the design of our code: this project is on a specific problem instead of general quantum physics; this project has been and will be worked on by different people; we do not want to reinvent the wheel, and thus we need to use functionalities provided by other codes as much as possible; we want to focus on the physical problem instead of numerical details, so we use specialized libraries; the focus of the project is on developing the theory instead of merely on calculating numbers.

With these characteristics in mind, the general requirements on the code are as follows: lightweight, fast to develop, easy to access and to extend, adaptable to different libraries, efficient to run moderate-sized calculations, and sufficient runtime flexibility to allow for rapid testing of ideas. We show the overall object layout in Fig. 1.

OOP helps the structuring the program by abstraction—the type of data is not determined by the representation, but by the allowed methods manipulating it. How the data is represented and how the methods change the data are implementation details that should not have any influence on the user of the data; thus, the user can avoid being sidetracked by details. But a common pitfall in the practice of OOP is to overly generalize the object
concept and complicate simple, unambiguous operations. Therefore it is important not to lose sight of the goal of the code in order to determine the level of abstraction and granularity of objects.

For example, the Hxc matrix F_{HXC} in Eq. (1) contains a large portion of data which are logically inseparable. The construction of this matrix involves complicated calculations and must be done efficiently, and the role of the matrix is pre-determined by Eq. (1). Packaging the involved calculations inside an `fmat` object is a good abstraction, since this decouples it from other important operations the code needs to perform—such as reading the input files, preparing ground-state orbitals and so on, so that these operations can be changed with confidence that such manipulations do not affect the calculation inside `fmat`. On the other hand, to treat each matrix element of F_{HXC} as an object would be unnecessarily complicated for the use in our exciton study.

B. Specifics of the project

In this project, we quickly found that there was a need to develop our own code. Although this is mainly be-
cause of the calculation being a new approach for solids not available in existing TDDFT codes, another important reason is that the rigid, tightly-coupled structure of these codes deters modification and extension. It was surprising to see how many changes are needed to the existing Fortran-based codes to implement the calculation described in Sect. 1B. We have been using the ABINIT code to calculate the ground-state data, so we use it as an example in the following. However, the problem described here is general with imperative programming, which is prevalent in existing electronic structure codes.

For example, ABINIT stores the ground-state orbitals in multi-dimensional arrays, and this poses three major problems. First, the source code itself (aside from comments) does not tell the meaning of each dimension, because as an imperative programming language Fortran is close to machine code, and therefore lacks self-documenting ability. Second, subroutines like normalization, symmetry operation, calculation of density and so on are logically related to the manipulation of orbitals, but the source code does not have the means for representing this relation. This information can only be discovered by reading other parts of the code or the documentation, during which more questions may emerge. Also, the compiler is not able to check this logical connection to ensure these operations are applied to valid data. Third, all of the raw data are accessible at once, and this risks introducing errors in the code accidentally. For example, suppose a subroutine needs to change a certain part of the data, but a programming bug affects other parts of the data as well; the compiler cannot detect this bug since nothing in the program explicitly forbids it. Such a bug can remain hidden for a long time.

As a consequence, one needs to have knowledge of a great portion of the code to be able to maintain even a small part of it. Though not necessarily a problem for the original developers, this tightly-coupled structure makes the code hard to learn and to modify for users with particular needs. In comparison, with good OOP design, the data is accessed through specialized methods with explicit meaning, the related operations on the data become inseparable parts of the object interface, and access privileges to the data are differentiated for different parts of the program. These features not only make the structure of the program clearer, but also make it possible to perform more error checking at compile-time rather than at runtime, since complex relationships between data can be represented in a more explicit manner.

We take advantage of polymorphism to provide extensibility, and we demonstrate the extensibility here by examples. The inheritance hierarchy of our code is shown in Fig. 2. We reuse ground-state data from other codes, so we package these data in the BandData class. To avoid being locked into a certain ground-state code, the base BandData class defines a virtual InitializeFromFile method, and it relies on derived classes to do the actual data input. We have defined a BandData_ABINIT to read the output of the ABINIT code, which is a pseudopotential code; changing to other band structure codes such as the full-potential ELK code20 are possible in the future. This will only require deriving a new class from BandData implementing InitializeFromFile.

Programming paradigms like OOP facilitate the development of the source code, and the efficiency of the compiled code is not the primary concern of the paradigms. The indirectness provided by OOP makes the structure of the program clearer, but it also incurs runtime cost: not only extra machine instructions, but also a potential decrease in cache-efficiency. To avoid such cost, we use special libraries such as ScaLAPACK21 and FFTW22 for numerical calculations. The interfaces to these libraries are more suitable for imperative programming, and we package the actual calls to these libraries inside adapter objects so that we can still benefit from OOP. This also provides the possibility to change to other libraries if needed—the adapter defines a uniform interface, and we only need to provide an implementation of this interface using the desired library, without worrying about the other parts of the code.

The main purpose of our code is to help our ongoing theoretical studies of TDDFT. Unlike general-purpose codes that perform established calculations, the type of calculations that our code performs need to change from time to time. We provide the runtime flexibility in several ways. Instead of hard-coding specific pieces of information, we make our code read as much input as possible at runtime to avoid re-compiling and to achieve data reuse. Making many functions depend on user input also calls for structured exception handling to detect human error and to allow for possible recovery from errors.

For example, we have calculated the exciton binding energies with different ϵ_{xc} in Eq. (3) for the same material. Some data like the matrix element $\langle k | e^{iG \cdot r} | k \rangle$ do not change between such calculations, and having to re-calculate it every time would be wasteful. In most cases we only need the exciton binding energy as the output, but occasionally we also need to calculate the entire spectrum from the eigenvectors of Eq. (1). The spectrum does not need to be calculated every time, and it is useful to allow its separate calculation after a calculation of only the binding energy, without having to diagonalize the F_{xc} matrix in Eq. (1) again.

We solve these problems by exporting the input/output (I/O) option of each object to the user and by employing the C++ exception handling mechanism. The output that the user requires determines what calculations are carried out, so that no extra calculation would be necessary: when a specific object is required during the calculation, the program searches for the user-specified input data file for this object and attempts to reuse the data; if the data file is corrupt or non-existent, an C++ exception is thrown, and the exception handler in the main program allows for recovery by calculating this part of data from scratch. The detailed implementation will be discussed below in Sect. III.
III. IMPLEMENTATION

The calculation performed by our program is shown in Fig. 1. The program starts by reading the ground-state data in the irreducible Brillouin zone and pseudopotentials (psp); the ground-state data is then extended to the full Brillouin zone by symmetry operations and stored in bands. Properties required for later calculation are then calculated beforehand in parallel. expigr, momentum, commutator are always calculated since they are required in the calculation of Eq. (3) and Eq. (5); other properties are only calculated when the specified fx needs them. The calculation of the xc kernel fxc is then carried out in xc with required properties and the ground state data. Then, fmat calculates the matrices in Eq. (2) (V matrix) and Eq. (3) (XC matrix), combines them into the left-hand side matrix in Eq. (1) (H matrix), and uses the provided eigensolver to solve Eq. (1). In the following, we describe certain details of the implementation of our code in order to demonstrate the benefits of OOP.

A. BandData

The BandData class holds all the ground-state data that is obtained from other codes. The class interface does not expose any raw data, but it contains methods for getting the values of the required data, such as the lattice vectors (in real or reciprocal space), the volume of the unit cell, the range of bands included in calculation, the orbital energies, the Bloch functions and so on. This not only disallows outside code to change the data, but also allows these methods to perform additional operations aside from getting the data.

For example, after the first executable version of our code was finished, we implemented an additional scissor correction within the method for getting band energies to shift the conduction band energies by a certain value. Other parts of the code that use band energies continue to use this method as in the previous version and require no changes. By contrast, one can create a new subroutine for this correction in imperative programming, but one is then forced to change the other parts of the code to ensure compatibility, which is both tedious and error-prone. One can also create a subroutine for getting the band energies from the beginning, and implement this correction within this subroutine; but this not only requires planning long before its actual use, but also requires the programmer to be aware of this subroutine and actively use it instead of using the raw data. Since imperative programming cannot represent the relation between this subroutine and the data, the burden of knowing the detailed structure of the program is on the programmer.

To decouple the structure of our code from any specific ground-state code, the BandData class (Fig. 2) does not implement the reading of actual data from provided files, but it defines the abstract InitializeFromFile method and relies on derived classes to implement the method. In our recent study,9 we have used the ABINIT code18 for the ground-state calculation, and we derive the class BandDataABINIT, which implements InitializeFromFile to read the data files produced by ABINIT. We plan to use the ELK code20 in the future. Although ELK uses a different basis set (linearized augmented plane waves instead of ordinary plane waves), we can hide these details in the new derived class which converts the basis set, so that other parts of the code do not need to know how the raw data is represented.

The ground-state band-structure codes usually use symmetry of the system to simplify the calculation; in our case the ground-state data only contains the k-points in the symmetry-reduced (irreducible) Brillouin zone. The TDDFT calculation Eq. (1) needs the k-points in the symmetry-reduced Brillouin zone. However, different parts of the program may need to work with different numbers of bands or k-points: the fmat object may use fewer bands than the xc object for faster calculation. We derive the BandDataBZ class from BandData for two purposes: to generate symmetry-related data and to make a selected part of the band viewable.

For the first purpose, BandDataBZ is mostly an extension to the BandData interface, providing more methods to access the symmetry-related data, and inheritance allows the code of general methods (such as getting the lattice vector) to be reused. For the second purpose, the methods for getting the band range and number of k-points defined in BandData now returns values suitable for the selection, so that user classes of BandDataBZ cannot distinguish whether the entire band or only a part is used, allowing them to be treated uniformly. As shown before, this loose-coupling between components helps modification and extension of the program.

B. Properties

While in principle all calculations can be done only with the data in the BandData class, some specific calculations occur frequently, so we encapsulate them in classes derived from Properties to allow data reuse and save time. The Properties interface only contains abstract I/O functions (read and print) and a name function (Fig. 2), with the intent that the required properties are calculated together and the I/O of them are done together in the main program. C++ uses streams to do I/O, and one can provide custom extraction (>>) and insertion (<<) operators to use user-defined classes together with streams. With the help of the abstract I/O functions of Properties, the extraction and insertion operators can be implemented by the following pseudo-code:

```cpp
istream& operator>>(istream& is, Properties& prop) {
    string tmp_name;
    is >> tmp_name;
    ... // other properties
}
```
if (tmp_name != prop.name()) // wrong file
 throw runtime_error(/*error message*/);

 return prop.read(is);
}

ostream& operator<<(ostream& os, const Properties& prop)
{
 os << prop.name();
 return prop.print(os);
}

We use C++ standard exception handling here, so in the main program doing I/O we can recover from reading a corrupted file:

try
{
 file >> prop;
}
catch(const runtime_error& err)
{
 if (err.what()==.../*I/O error message*/) {
 .../*construct prop from beginning instead of from file*/
 else throw;
 }
}

This has the advantage over returning an error code, because the exception cannot be ignored, and the exception handling can happen far away from the actual point of error. In the previous example, the error can happen both in operator>> and in the read method of a derived class of Properties. For a program using error codes, they need to be propagated and checked manually at every step, while C++ exceptions propagate automatically and will terminate the program if not handled. The resources are also automatically freed with the help of smart pointers. This not only makes the program more structured (by grouping error handling together), but also automatically prevents the program from being in an inconsistent state when an error occurs.

Properties is meant to hold frequently used intermediate results, such as $\langle jk e^{-G\tau} | k \rangle$ in Eq. (3), calculated by the Prop_ExpIGr class. Therefore it is crucial that these results can be accessed efficiently. We heavily use the C++’s standard template library (STL) as a way of organizing data, so that the time and space cost for accessing the data is well-defined and easy to change for different uses.

For example, Prop_ExpIGr values are labeled by i, j, k, and G. We define a custom expigr_key type to hold these values, and use it as the key of the standard map container. The map container guarantees fetching and inserting value in logarithmic time. Its interface overloads the array access operator (operator[]), so the use resembles the regular arrays. This makes accessing the values both efficient and intuitive. If later we need faster access of the results, we can change to use the standard unordered_map container which guarantees constant time access. Only one line of the code needs to be changed, and the implementation of Prop_ExpIGr does not need to change thanks to the similar interface between all standard containers.

STL also benefits from OOP, in the sense that only the interface is visible to the user. Different implementations of STL are available: some optimize for speed, some for memory usage, and some for thread safety. These implementations are completely decoupled from the codes using them, so we can change to a different implementation without changing anything in our source code. Separating interface and implementation is of course not a new concept, but OOP makes it easier and safer to use.

We calculate properties beforehand to exploit parallelism. We implement two level of parallelism in our code, the first being process (an instance of the program with its own address space) level implemented with the message-passing interface (MPI), and the second being thread level implemented with OpenMP compiler directives. We presume that communication between processes (which are running on different nodes of a cluster) is slow, and thus we minimize the number of communications and group communications together.

The derived classes of Properties involve doing the same calculation on different sets of data. We implement parallelism accordingly. We generate all the jobs that need to be done and pass roughly the same number of jobs to each process with MPI, and then use OpenMP to parallelize the calculation of the jobs on each process. When all calculations are done, we collect the results and distribute them to all processes using MPI. OpenMP is a standard for specific compiler directives, designed to be added to a serial program without changing its structure. For non-conforming compilers, these compiler directives are ignored, and the program reverts to a serial program automatically.

Unlike the OpenMP parallelism which can be easily added, the MPI standard is designed with imperative programming in mind. The MPI subroutines (even with its C++ binding) operate on raw data. The user is required to consider low-level details such as the buffer or the memory alignment, and this does not work well together with OOP. The Boost::MPI library encapsulates the low-level MPI subroutines in an object-oriented manner. With very few extra programming, Boost::MPI allows objects of user-defined types to be used in the same syntax as data of fundamental MPI types, and the low-level details involved in using user-defined types are determined automatically. The calculation of a derived class of Properties is done by the following pseudo-code:

```cpp
mpi::communicator world;
vector<key> myjob;

if (myid == ID_Master)
{
    vector<key_type> jobs;
```
// generate all the jobs on one node
for(/*all possible jobs*/)
 jobs.push_back(/*one job*/)

vector< vector<key_type> > splitted_jobs;
/*prepare the jobs to be distributed to each
nodes, store in 'splitted_jobs' */
...
/* distribute the jobs */
mpi::scatter(world,splitted_jobs,myjob,ID_Master);
} // jobs and splitted_jobs are destroyed here
else mpi::scatter(world,myjob,ID_Master);

size_t pos;
// OpenMP parallelization for jobs on this node
#pragma omp parallel for
for(pos = 0; pos < myjob.size(); ++pos)
 // store result in a container local_result
 DoCalculation(myjob[pos]);

result_type temp;
// gather results and distribute to all nodes
mpi::all_reduce(world, local_result, temp,
 /*an function object combining results*/);
local_result.swap(temp);
// now local_result contains all results

The C++ STL containers as well as user-defined types are used directly with Boost::MPI without exposing the underlying raw data. STL does not specify thread-safe write access, but thread-safety can be easily achieved with OpenMP synchronizing constructs such as the critical region. The pseudo-code for DoCalculation appeared above is

void DoCalculation(const key_type& key)
{
 /* do the calculation indicated by key,
 store in variable 'result' */
 ...
 // OpenMP critical region
 #pragma omp critical
 {
 local_result.insert(result);
 }
}

This guarantees that only one thread writes to the container at a time. Though critical regions are costly, in practice we find that the actual calculation takes much more time, compared to which the cost of the critical region is acceptable.

C. fxc

The xc kernel f_{xc} is central to a TDDFT calculation. Many approximations have been developed since the exact f_{xc} is unknown. In our recent study, different f_{xc}'s are treated uniformly as in Eq. (3), but we use several f_{xc}'s which are different in their own details: some only need trivial calculation, but some require extra data and significant calculation. These makes f_{xc} ideal to benefit from polymorphism.

The abstract fxc base class defines an interface (Fig. 2) for accessing the value of f_{xc} in reciprocal space (via fxcQspace and related methods) and for I/O. The I/O of fxc is done similarly as in Properties. It should be noted that the polymorphism of fxc can also be achieved by function pointers in imperative programming. Instead of an object of fxc type, the calculation of Eq. (3) can require several function pointers playing the role of fxc::fxcQspace and related methods.

The function pointer approach works well for simple xc kernels that can be calculated on-the-fly. However, xc kernels requiring heavy calculation (such as the 'bootstrap' kernel) must be calculated beforehand and the results must be stored; with function pointers this is only achievable by having stronger coupling between different parts of the program — one has to find a place to store these intermediate data, and thus making it harder to maintain. With the object approach, however, intermediate results are conveniently stored in private member variables and are concealed from other parts of the program. As shown previously, the major difference between OOP and imperative programming implementations is whether the relation between data (pre-calculated xc kernel) and subroutines manipulating it (fxcQspace etc.) can be explicitly expressed through native constructs of the programming language. This expressiveness of OOP compared to imperative programming allows more error-checking to be delegated to the compiler, reducing possible human error.

The polymorphism of fxc also helps when doing triplet calculations. As shown in Sect. 1B, singlet/triplet excitations for spin-unpolarized system can be calculated by using different xc kernels as in Eq. (4). We derive the abstract fxc::spin class from fxc, which contains an additional singlet/triplet mode switch. Since fxc::spin is an fxc, it is used in the same way for evaluating Eq. (3). One obtains both singlet and triplet results by doing two successive calculations with the corresponding mode of fxc::spin. The code calculating Eq. (3) neither knows that the calculation is spin-dependent, nor can a bug change the mode accidentally.

D. Hamiltonian

We define the Hamiltonian class to construct the matrices in Eqs. (2) and (3) and to solve the eigenvalue problem Eq. (1). The storage and I/O of data is one
FIG. 3. UML class diagram of `ComplexMatrix` and `LocalComplexMatrix`. Only important methods and member variables are shown.

of the main problems. The matrices have dimension \(N_v \times N_c \times N_k \), where \(N_v \) is the number of valence bands, \(N_c \) is the number of conduction bands, and \(N_k \) is the number of \(k \)-points in the full Brillouin zone. For a converged calculation, the number of matrix elements must be at least of the order of \(10^8 \). Hamiltonian thus contains hundreds of gigabytes of data in total. Due to hardware limitations, we are forced to use distributed storage and parallel algorithms to handle these matrices.

The ScaLAPACK library \(^{21} \) nicely suits our needs. It provides expertly tuned parallel algorithms for distributed matrices, but its interface exposes many implementation details that do not fit into the OOP framework. For example, the local storage format of the distributed matrix must be provided when calling most of the subroutines of ScaLAPACK. If Hamiltonian had to manage such details, it would create lots of duplicate code, which would be hard to maintain. Changing to other libraries would then involve major rewriting of the Hamiltonian class. We package the use of numerical libraries in the `ComplexMatrix` and `LocalComplexMatrix` classes (Fig. 3).

We use `ComplexMatrix` to store a matrix on one process: it allocates the necessary memory through a provided object of the `MatrixAllocator` class, it gives access to the matrix elements, and it provides commonly used operations such as adding two matrices. By wrapping several BLAS \(^{29} \) and LAPACK \(^{30} \) subroutines for computation-heavy tasks, `ComplexMatrix` not only provides numerical efficiency, but also hides the representation of the matrix, making substituting BLAS/LAPACK with other libraries possible.

For the use of matrices in the Hamiltonian class, we derive `LocalComplexMatrix` from `ComplexMatrix` to represent the local part of a distributed matrix. The code in `ComplexMatrix` is thus reused for operations not directly related to the distributed nature, such as adding two matrices. To solve the eigenvalue problem Eq. (1) represented in a `LocalComplexMatrix` object, we define an abstract `EigenSolver` class, whose derived classes package the actual ScaLAPACK subroutine calls. By doing so the Hamiltonian class is decoupled from the representation details of the distributed matrix.

The I/O of the distributed matrices is problematic, because simply saving the data on each node to disk forbids using a different number of nodes when reusing this data. We use MPI to deal with the I/O problem. ScaLAPACK uses a block-cyclic format for distributed matrices, which is supported by the MPI 2.0 standard as a representable data type. The MPI parallel I/O interface also contains unrelated details for the Hamiltonian class, so we package them into the `HamilInOutAdapter` class. In the end, the Hamiltonian class only determines what calculations need to be done, but does not depend on how they are actually carried out. In this way, the code achieves a high degree of flexibility and extensibility.

IV. CONCLUSION

We have presented and examined our code for the recent study of exciton binding energies with TDDFT.\(^9\) We provide our code as a case-study showing the advantages of OOP and promoting the use of OOP in scientific programming. The source code is made available as supplemental material,\(^10\) but it is not intended to be used as a black box; it only serves as an example to illustrate the power of OOP and to provide the background of this work.

Compared with imperative programming, OOP helps to analyze and model the computational problem at a level closer to the actual physical problem. By providing an explicit connection between data and operations manipulating the data (through programming language support), the structure of the program becomes loosely-coupled, i.e., changing one part of the code does not affect the behavior of other parts. Consequently the maintenance of the program becomes easier.

The versatility and expressiveness of OOP allows delegating many types of error-checking to the compiler, allowing earlier detection of bugs and reduction of human error. Encapsulating irrelevant details inside objects frees physicists from being entangled by implementation details and instead allows concentrating on the physical problem at hand. Like any other programming paradigms, OOP itself does not guarantee a good program, but the abstraction provided by it helps achieving higher programming quality.
ACKNOWLEDGEMENT

This work is funded by the National Science Foundation Grant No. DMR-1005651.