POMDP-based Handoffs for User-Centric Cell-Free MIMO Networks

Hussein A. Ammar∗, Raviraj Adve∗, Shahram Shabbazpanahi†∗, Gary Boudreau†, and Kothapalli V. Srinivas‡
∗University of Toronto, Dep. of Elec. and Comp. Eng., Toronto, Canada
†University of Ontario Institute of Technology, Dep. of Elec. and Comp. Eng., Oshawa, Canada
‡Ericsson Canada, Ottawa, Canada

Abstract—We propose to control handoffs (HOs) in user-centric cell-free massive MIMO networks through a partially observable Markov decision process (POMDP) with the state space representing the discrete versions of the large-scale fading (LSF) and the action space representing the association decisions of the user with the access points. Our proposed formulation accounts for the temporal evolution and the partial observability of the channel states. This allows us to consider future rewards when performing HO decisions, and hence obtain a robust HO policy. To alleviate the high complexity of solving our POMDP, we follow a divide-and-conquer approach by breaking down the POMDP formulation into sub-problems, each solved individually. Then, the policy and the candidate cluster of access points for the best solved sub-problem is used to perform HOs within a specific time horizon. We control the number of HOs by determining when to use the HO policy. Our simulation results show that our proposed solution reduces HOs by 47% compared to time-triggered LSF-based HOs and by 70% compared to data rate threshold-triggered LSF-based HOs. This amount can be further reduced through increasing the time horizon of the POMDP.

Index Terms—Mobility, handoff, user-centric, POMDP.

I. INTRODUCTION

Users in user-centric cell-free massive multiple-input multiple-output (UC-mMIMO) networks are served by neighboring access points or distributed units (DUs) [1], [2]. This association produces an approximate uniform coverage for the whole network [3]. However, with this scheme, moving users need to update their serving clusters very often, which could affect performance [4]. A good strategy in managing handoffs (HOs) is to consider the temporal evolution of the channel states through some transition probabilities, which allows to connect the user to the best cluster of DUs based on current and future rewards.

Motivated by this, we propose to control HO decisions using a partially observable Markov decision process (POMDP) with the state space representing the discrete versions of the large-scale fading (LSF) and the action space representing the association decisions of the user with the access points. A POMDP is a Markov process with feedback control and partially observable states [5], [6]. We follow a divide-and-conquer approach in which the POMDP problem is broken down into many sub-problems each with a candidate set of DUs. Then, the sub-problem that produces the best expected reward is selected with its policy to be used for performing HOs during a specific time window (time horizon). Our POMDP formulation accounts for the temporal statistics and the non-observability of the channel state information (CSI) for non-connected DUs to the user. Both of these features provide an advantage for POMDP-based HOs compared to LSF-based HOs. Our POMDP solution demonstrates efficiency when used in a framework for controlling the number of HOs while providing minimum data rate guarantees.

The use of a POMDP to control HOs in UC-mMIMO networks is novel and never studied in the literature. Existing studies focus on the impact of channel aging on the performance. Most studies consider static network environments, where the temporal evolution of the network is not considered. However, studying HOs requires implementing the concept of temporal evolution for the status of the network.

The studies in [7], [8] are concerned with modeling and studying channel aging incurred from user movement. Additionally, the study in [9] investigates the impact of channel aging on the performance of cell-free massive MIMO networks by deriving closed-form expressions for the achievable rate in the uplink and downlink using coherent and noncoherent transmissions. Similarly, the study in [10] considers user mobility while focusing on phase noise resulting from imperfect synchronization of local oscillators at the DUs. The authors in [11] partially consider controlling the number of HOs when using millimeter wave communication inside UC-mMIMO networks through a heuristic approach. However, the study does not focus on minimizing the number of HOs and the temporal aspects of the problem are not studied. All in all, the literature never proposes a tool with detailed components to model the HO problem, hence the importance of our work.

II. HANDOFFS AS A POMDP

We consider the downlink of a network of DUs represented through the set B. Each DU is equipped with M antennas. We assume that the users are represented through the set U, and they are moving inside the network. The users are served by the neighboring DUs using the UC-mMIMO scheme. The mobility of the users necessitates that each user u updates its serving cluster, which is represented at decision cycle t through the set $C_u^{(t)}$.

Informed HO decisions require us to consider the temporal events experienced by the user and their effect on the performance. Based on this, we formulate the HO problem as a POMDP aiming to obtain a HO policy that instructs the user
A. POMDP Formulation

We consider a typical user moving through discrete time steps represented by decision cycles. HO can be initiated at the beginning of each decision cycle t. The channels between the user and the DUs constitute finite-state Markov processes over time. Furthermore, only the CSI between the user and the serving DUs (the user is currently connected to) can be known, which means the channels in the network can only be partially observed. This makes a POMDP a logical choice to model the HO operations. A POMDP contains a feedback control procedure that allows to determine the HO decisions based on the channels status and the system dynamics.

We define our POMDP framework using the following tuple

$$\mathcal{P}(\mathcal{B}_{\text{cand}}, \mathcal{T}_H) = (\mathcal{S}(\mathcal{B}_{\text{cand}}), \mathcal{A}(\mathcal{B}_{\text{cand}}), \mathcal{\Omega}(\mathcal{B}_{\text{cand}}))$$

$$\mathcal{P}(\mathcal{B}_{\text{cand}}, \mathcal{T}_H) = (\mathcal{S}(\mathcal{B}_{\text{cand}}), \mathcal{A}(\mathcal{B}_{\text{cand}}), \mathcal{\Omega}(\mathcal{B}_{\text{cand}})), \Omega(\mathcal{B}_{\text{cand}}))$$

where $\mathcal{S}(\mathcal{B}_{\text{cand}})$ is the state space when considering a set of candidate DUs $\mathcal{B}_{\text{cand}} \subseteq \mathcal{B}$, $\mathcal{A}(\mathcal{B}_{\text{cand}})$ is the action space, $\mathcal{\Omega}(\mathcal{B}_{\text{cand}})$ is the observation space, $\mathsf{P}(\mathcal{B}_{\text{cand}})$ is the transition probability matrix of the states, $\mathsf{P}(\mathcal{B}_{\text{cand}})$ is the observation probability matrix, $\mathsf{\omega}(\mathcal{B}_{\text{cand}})$ is the initial belief distribution, $\mathsf{R}(\mathcal{B}_{\text{cand}})$ is the reward function which depends on the current state $s(t)$ and the action $a(t)$ found at decision cycle t, and \mathcal{T}_H is the time horizon considered when solving the POMDP.

We use the indices i, j, and l to refer to a specific state vector $\tilde{s}_i \in \mathcal{S}$, action vector $\tilde{a}_j \in \mathcal{A}$ and observation vector $\tilde{a}_l \in \mathcal{\Omega}$. Also, $\mathcal{S}(\mathcal{B}_{\text{cand}}), \mathcal{A}(\mathcal{B}_{\text{cand}}), \mathcal{\Omega}(\mathcal{B}_{\text{cand}})$ and $\mathcal{S}, \mathcal{A}, \mathcal{\Omega}$ are used interchangeably.

B. Components of the POMDP

In this subsection, we define the components of the POMDP.

1) State space: $\mathcal{S}(\mathcal{B}_{\text{cand}}) = \{\tilde{s}_1, \tilde{s}_2, \ldots\}$, where the vector $\tilde{s}_t = [s_{1,b_u}, s_{2,b_u}, \ldots] \in \mathbb{R}^{|\mathcal{B}_{\text{cand}}|}$ represents a specific value for the state and s_{i,b_u} is a specific channel state between DU $b_1 \in \mathcal{B}_{\text{cand}}$ and typical user u.

We define the channel state as the discrete version of the LSF, where the values of LSF are quantized into 2 levels based on a threshold $\beta_{\text{threshold}}$ (two-state channel). Hence, we classify the channel state s_{b_u} at decision cycle t between DU $b \in \mathcal{B}_{\text{cand}}$ and the typical user as either a good channel β_t if $\beta_t > \beta_{\text{threshold}}$ where β_t is the LSF between DU $b \in \mathcal{B}_{\text{cand}}$ and the typical user at a decision cycle t, or a bad one β_0 otherwise.

As a result, we use the vector $s(t) = [s_{1,b_u}, s_{2,b_u}, \ldots] \in \mathbb{R}^{|\mathcal{B}_{\text{cand}}|}$ to denote the state at decision cycle t, which is a random variable. To prevent confusion, $s(t)$ simply represents the state at decision cycle t, while $s_{b_u}(t)$ represents a single channel state.

2) Action space: $\mathcal{A}(\mathcal{B}_{\text{cand}}) = \{\tilde{a}_1, \tilde{a}_2, \ldots\}$, where the vector $\tilde{a}_j = [a_{1,b_u}, a_{2,b_u}, \ldots] \in \mathbb{R}^{|\mathcal{B}_{\text{cand}}|}$ represents a specific action for the POMDP, with a_{i,b_u} being the action between DU $b \in \mathcal{B}_{\text{cand}}$ and the user.

At a specific t, user u can either connect to DU $b \in \mathcal{B}_{\text{cand}}$ or not. We use $a_{b_u} \in \{0, 1\}$ to represent the decision of either connect ($a_{b_u} = 1$) or disconnect ($a_{b_u} = 0$) to DU b. We use the notation $a(t) = [a_{1,t}, a_{2,t}, \ldots] \in \mathbb{R}^{|\mathcal{B}_{\text{cand}}|}$ to denote the action for user u at t with the DUs $\mathcal{B}_{\text{cand}}$, i.e., the vector $a(t)$ represents the action decided at t by the POMDP policy.

We further assume that a user is connected to $\mathcal{B}_{\text{con}} = \{b \in \mathcal{B}_{\text{cand}}\}$ DUs. This is represented through the condition $\sum_{b \in \mathcal{B}_{\text{cand}}} a_{b_u} = \mathcal{B}_{\text{con}}$. Using a fixed \mathcal{B}_{con} allows us to shrink the action space compared to an unconstrained number of associations. Based on this, $\mathcal{A}(\mathcal{B}_{\text{cand}})$ contains $|\mathcal{B}_{\text{cand}}| = |\mathcal{B}_{\text{con}}|)$ possible combinations of actions.

3) Transition probability: We use $\mathsf{P}(\mathcal{B}_{\text{cand}})$ to denote the transition probability matrix for the states at decision cycle t. For $s_i, s_i' \in \mathcal{S}(\mathcal{B}_{\text{cand}})$, element $\mathsf{P}(s_i, s_i') \in [0, 1]$ (at row i and column j' of the matrix) can be defined as

$$\mathsf{P}(s_i, s_i') = \prod_{b \in \mathcal{B}_{\text{cand}}} \mathsf{P}(s_{b_u} = s_i'| s_{b_u} = s_i)$$

Each row in the matrix $\mathsf{P}(s_i)$ sums up to 1.

Based on the two-state channel, we end up with the transition probabilities of the channel states depicted in Fig. 1. To characterize these probabilities we only need to characterize p_{11} and p_{01}, because $p_{11} + p_{10} = 1$ and $p_{00} + p_{01} = 1$.

Hence, each term inside the product in (2) is defined as

$$\mathsf{P}(s_{b_u} = s_i'| s_{b_u} = s_i) = \begin{cases} p_{11}, & \text{if } s_{b_u} = 1, \tilde{a}_i, \tilde{b}_i = \tilde{a}_1 \\ p_{01}, & \text{if } s_{b_u} = 0, \tilde{a}_i, \tilde{b}_i = \tilde{a}_0 \\ 1 - p_{11} - p_{01}, & \text{if } s_{b_u} = 0, \tilde{a}_i, \tilde{b}_i = \tilde{a}_1 \\ 1 - p_{11} - p_{01}, & \text{if } s_{b_u} = 0, \tilde{a}_i, \tilde{b}_i = \tilde{a}_0 \end{cases}$$

The transition probabilities p_{11} and p_{01} for the channel state between DU $b \in \mathcal{B}_{\text{cand}}$ and the user u can be calculated based on the user mobility through the correlated shadowing model between two different locations of the user before and after mobility [12], [13]. Check [14] for more details.

4) Observation Space $\mathcal{\Omega}(\mathcal{B}_{\text{cand}})$: The vector $\tilde{a}_j = [a_{1,b_u}, a_{2,b_u}, \ldots] \in \mathbb{R}^{|\mathcal{B}_{\text{cand}}|}$ is used to represent the observation at decision cycle t. We assume that the channel state between the user and the currently connected DUs is known, i.e., if $a_{b_u} = 0$, then $s_{b_u} = s_{b_u}$ and the channel state is observable. If the user is not connected to DU b, then the channel state s_{b_u}
is not observable and this will affect the observability of the state $s^{(t)}$. In such a case, a probabilistic approach should be constructed through the observation distribution.

5) Observation Distribution: We use $\mathbf{P}^{(t)}_{\omega_{i, o_{i}, j}, i, j} \in \mathbb{R}^{|S| \times |T| \times |A|}$ as the observation probability matrix. Herein, we assume that we can only observe the channel states toward the DUs that the user is currently connected to. For $\tilde{s}_{i} \in \mathcal{S}(|\mathcal{B}_{\text{cand}}|)$, $o_{i} \in \Omega(|\mathcal{B}_{\text{cand}}|)$, $\tilde{a}_{j} \in \mathcal{A}(|\mathcal{B}_{\text{cand}}|)$, element $\left[\mathbf{P}^{(t)}_{\omega_{i, o_{i}, j}}\right]_{i, j, l} \in [0, 1]$ is defined as

$$
\left[\mathbf{P}^{(t)}_{\omega_{i, o_{i}, j}}\right]_{i, j, l} = \mathbb{P}(o_{i} = \tilde{o}_{l, i} \mid s^{(t)} = \tilde{s}_{i}, a^{(t)} = \tilde{a}_{j}) = \prod_{b \in \mathcal{B}_{\text{cand}}} \mathbb{P}(\tilde{o}_{l, i} = o_{i, b} \mid s^{(t)} = \tilde{s}_{i}, a^{(t)} = \tilde{a}_{j}) = \left(\prod_{b \in \mathcal{C}^{(t)}_{o_{i}, j}} \tilde{c}_{b, i, l, j} \prod_{b \in \mathcal{B}_{\text{cand}} \setminus \mathcal{C}^{(t)}_{o_{i}, j}} \tilde{c}_{b, i, l, j}\right)
$$

(4)

where $\tilde{c}_{b, i, l, j}$ and $\tilde{c}_{b, i, l, j}$ correspond to the observed and non-observed channel state, respectively, and they are defined as

$$
\tilde{c}_{b, i, l, j} = \mathbb{P}(o_{i, b} = \tilde{o}_{l, i} \mid s^{(t)} = \tilde{s}_{i}, a^{(t)} = \tilde{a}_{j}) = \begin{cases} 1, & \text{if } l = i \\ 0, & \text{otherwise} \end{cases}
$$

(5)

$$
\tilde{c}_{b, i, l, j} = \mathbb{P}(o_{i, b} = \tilde{o}_{l, i} \mid s^{(t)} = \tilde{s}_{i}, a^{(t)} = \tilde{a}_{j}) = \begin{cases} \tilde{p}_{l, b, i}, & \text{if } \tilde{o}_{l, i} = \tilde{a}_{j} \\ \tilde{p}_{l, b, i}, & \text{if } \tilde{o}_{l, i} = \tilde{s}_{i} \end{cases}
$$

(6)

We note that this leads to $\sum_{i=1}^{|S|} \left[\mathbf{P}^{(t)}_{\omega_{i, o_{i}, j}}\right]_{i, j, l} = 1$ for any l and j, which is a requirement for the observation probability matrix. The probabilities $\tilde{p}_{l, b, i}$ and $\tilde{p}_{l, b, i}$ are calculated as

$$
\tilde{p}_{l, b, i} \triangleq \mathbb{P}(s^{(t)} = \tilde{s}_{i} \mid a^{(t)} = \tilde{a}_{j} \supseteq \mathbb{P}(a^{(t)} > \beta_{\text{threshold}})
$$

(7)

where (a) follows from the two-state channel, also

$$
\tilde{p}_{l, b, i} \triangleq 1 - \tilde{p}_{l, b, i}
$$

(8)

6) Reward: $R_{\mathcal{B}_{\text{cand}}}(s^{(t)}, a^{(t)})$ is the reward when executing action $a^{(t)}$ at state $s^{(t)}$. This function is on the achievable rate, and it is defined in the next section after we define some important system dynamics.

7) Time Horizon T_{H}: It is the number of decision cycles (in the future) to consider when optimizing the cumulative expected discounted reward of the POMDP.

8) Belief: The belief defines the posterior probability distribution over the state space and represents the knowledge of the POMDP decision maker about the state based on past actions and observations. We use $\omega_{\mathcal{B}_{\text{cand}}} = [\omega_{1, \mathcal{B}_{\text{cand}}}, \ldots, \omega_{|S|, \mathcal{B}_{\text{cand}}}]$ as the belief vector at decision cycle t, where $\omega_{i, \mathcal{B}_{\text{cand}}}$ is the probability of $s^{(t)}$ being equal to a particular value $\tilde{s}_{i} \in \mathcal{S}$, given all the action and observation history from $t = 0$ till $(t - 1)$. Hence,

$$
\omega_{i, \mathcal{B}_{\text{cand}}}^{(t)} = \mathbb{P}(s^{(t)} = \tilde{s}_{i} \mid \mathcal{H}_{t-1}) = \prod_{b \in \mathcal{B}_{\text{cand}}} \mathbb{P}(s^{(t)} = \tilde{s}_{i, b} \mid \mathcal{H}_{t-1}), \quad i = 1, \ldots, |S|
$$

(9)

where $\mathcal{H}_{t-1} = \{\mathcal{O}^{(t-1)}, \mathcal{A}^{(t-1)}, \mathcal{H}_{t-2}\}$ denotes the history of observations and actions.

We define the belief of state $s^{(t)}_{bu}$ being \tilde{b} as $\gamma_{bu}^{(t)}$ using

$$
\gamma_{bu}^{(t)} \triangleq \mathbb{P}(s^{(t)}_{bu} = \tilde{b} \mid \mathcal{H}_{t-1})
$$

$$
\begin{cases}
\tilde{p}_{11, bu}^{(t)}, & \text{if } \tilde{o}_{bu}^{(t-1)} = 1, s^{(t-1)}_{bu} = \tilde{b}_{1}, \\
\tilde{p}_{10, bu}^{(t)}, & \text{if } \tilde{o}_{bu}^{(t-1)} = 1, s^{(t-1)}_{bu} = \tilde{b}_{0}, \\
(1 - \gamma_{bu}^{(t-1)})\tilde{p}_{01, bu}^{(t)}, & \text{if } \tilde{o}_{bu}^{(t-1)} = 0
\end{cases}
$$

(10)

The third case term in (10) is written in a probabilistic fashion because when $\tilde{o}_{bu}^{(t-1)} = 0$ (user is not connect to DU b) the channel state $s^{(t-1)}_{bu}$ is unobservable.

For the initial belief $\omega_{\mathcal{B}_{\text{cand}}}^{(0)}$, we make use of the initial transition probabilities of the channels to define the elements $\{\omega_{i, \mathcal{B}_{\text{cand}}}^{(0)} : i = 1, \ldots, |S|\}$ of the initial belief as

$$
\omega_{i, \mathcal{B}_{\text{cand}}}^{(0)} = \mathbb{P}(s^{(0)} = \tilde{s}_{i} \mid \mathcal{H}_{-1}) = \prod_{b \in \mathcal{B}_{\text{cand}}} \mathbb{P}(s^{(0)}_{bu} = \tilde{s}_{i, b, i})
$$

(11)

C. Objective

The objective function is defined as the long term reward averaged over the different states as follows

$$
J_{H}(\omega_{\mathcal{B}_{\text{cand}}}^{(0)}) = \mathbb{E}_{\mathcal{S}}\left\{\sum_{t=1}^{|H|} \gamma_{t} R_{\mathcal{B}_{\text{cand}}}(s^{(t)}, a^{(t)}) \mid \omega_{\mathcal{B}_{\text{cand}}}^{(0)}\right\}
$$

(12)

where $0 \leq \gamma < 1$ is a discount factor for future rewards.

Finally, the aim is to determine an optimal policy Π^{*} that maximizes the objective function in (12), i.e.,

$$
\Pi^{*} = \arg \max_{\Pi} J_{H}(\omega_{\mathcal{B}_{\text{cand}}}^{(0)}), \quad \text{for any } \omega_{\mathcal{B}_{\text{cand}}}^{(0)}
$$

(13)

III. Problem Dynamics

User movement causes the communication channel to evolve quickly with temporal correlation. Within a decision cycle t (which contains many channel uses), channel change can be modeled through channel aging [8] that is the mismatch between the CSI at the time the channel was estimated and at the time it was used for data transmission. In the following, we will use $h_{bu}[n] \triangleq \sqrt{|\beta_{n}|}g_{bu}[n] \in \mathbb{C}^{M \times 1}$ as the channel between DU b and the user at a specific channel use (instant n) within a decision cycle, where $g_{bu}[n] \sim \mathcal{CN}(0, \mathcal{I}_{M})$ is the small-scale fading, and β_{n} is the large-scale fading that accounts for the shadowing and the path loss. Because the analysis is within a single decision cycle, we have dropped the superscript (t).

A. Channel Aging and Estimation Errors

Channel aging is modeled using Jakes’ model as follows [8]:

$$
g_{bu}[n] = \rho_{u}[n]g_{bu}[0] + \rho_{d}[n]v_{bu}[n],
$$

(14)

where $v_{bu}[n] \sim \mathcal{CN}(0, \mathcal{I}_{M})$ is the independent innovation component at instant n, $\rho_{u}[n]$ is the temporal correlation coefficient of user u between channel realizations at instant 0 and n, with $0 \leq \rho_{u}[n] \leq 1$, and $\rho_{d}[n] = \sqrt{1 - \rho_{u}[n]^2}$. The temporal correlation is defined as [8]

$$
\rho_{u}[n - n'] \triangleq J_{D} \left(2\pi (n - n') f_{D_{u}} T_{s}\right)
$$

(15)
where $J_0(\cdot)$ is the zeroth-order Bessel function of the first kind, f_{D_u} is the maximum Doppler shift, and T_s is the sampling period of each channel use.

Based on (14), during a pilot training phase, $\{g_{bu}[n] : n < n_{est}\}$ can be related to $g_{bu}[n_{est}]$ at time instant n_{est}, where n_{est} is the time instant of channel estimation, as follows:

$$g_{bu}[n] = \rho_u[n - n_{est}]g_{bu}[n_{est}] + \tilde{\rho}_u[n_{est} - n]v_{bu}[n]. \quad (16)$$

Using linear minimum mean square error (LMMSE), D_u estimates the channel of user u in U_i as

$$\hat{h}_{bu}[n_{est}] = \frac{\rho_u[n_{est} - i] \sqrt{p(i)} \beta_{bu}}{\sum_{u'\in U_i} p(i) \beta_{bu'} + \sigma_z^2} v_{bu}[i], \quad u \in U_i \quad (17)$$

where $p(i)$ is the pilot uplink transmit power of user, $v_{bu}[i]$ is the signal received at DU b at channel use instance i during the pilot uplink training phase, the set U_i represents the users using the same pilot as user u, and σ_z^2 is the variance of noise.

Using LMMSE estimation, the channel estimation error $e_{bu}[n_{est}] = \hat{h}_{bu}[n_{est}] - h_{bu}[n_{est}]$ is uncorrelated with the estimated channel $\hat{h}_{bu}[n_{est}]$, and is distributed as $e_{bu}[n_{est}] \sim \mathcal{CN}(0, \Theta_{bu})$, where the Θ_{bu} is the power of the noise and

$$\psi_{bu}[n_{est}] = \frac{\rho_u^2 [n_{est} - i] p(i) \beta_{bu}}{\sum_{u'\in U_i} p(i) \beta_{bu'} + \sigma_z^2}, \quad u \in U_i \quad (18)$$

B. Achievable Rate and Reward Function

For mathematical tractability, and to focus on the problem, we assume that the DUs use conjugate beamforming to serve the users. Hence, each DU uses the estimated channel at time instant n_{est} to construct the beamformer to send the data to its users ψ_b within instances n_{est} till τ_c, where τ_c is the number of channel uses per a single communication phase composed of pilot training and data transmission.

Using the channel aging model in (16) and the channel estimation error in (18), we can characterize the performance of channel uses per a single communication phase as

$$R_{\text{SNR}} \left(s^{(t)}, a^{(t)} \right) = \frac{1}{\tau_c} \sum_{n=n_{est}}^{n_{est} + \tau_c - 1} \log \left(1 + \frac{\xi_{1, s, u} [n, s^{(t)}, a^{(t)}]}{\xi_{2, s, u} [n, s^{(t)}, a^{(t)}] + \sigma_z^2} \right) \quad (19)$$

where σ_z^2 is the power of the noise and

$$\xi_{1, s, u} [n, s^{(t)}, a^{(t)}] = M p^{(d)} \rho_u^2 [n - n_{est}] \sum_{b \in B_u} a_{bu} \sqrt{\frac{\psi_{S, bu}[s^{(t)}]}{|E_b|}}$$

$$\xi_{2, s, u} [n, s^{(t)}, a^{(t)}] = M p^{(d)} \sum_{b \in B_u} a_{bu} \frac{\psi_{S, bu}[s^{(t)}]}{|E_b|} \quad (20)$$

where we made use of the notations to rewrite the variance of the estimated channel in (18) for a single-user case as

$$\psi_{S, bu} [s^{(t)}] = \frac{\rho_u^2 [n_{est} - i] p(i) \beta_{bu}}{\sigma_z^2}, \quad u \in U_i \quad (21)$$

and the allocated power $\eta_{S, bu}[n_{est}]$ to user u as

$$\eta_{S, bu}[n_{est}] = \frac{p(i)}{M |E_b| \psi_{S, bu} [s^{(t)}]} \quad (22)$$

Moreover, we used the fact that we can relate any term c_{bu} that contains a summation over $C_u^{(t)}$ to a summation over all the DUs B_u through

$$\sum_{b \in B_u} a_{bu} = \sum_{b \in B_u} a_{bu} c_{bu} \quad (23)$$

The term 21 is the desired signal, while 21 is the effect of beamformer uncertainty and channel aging. The allocated power 22 is already factored in 20 and 21. The reward function 19 is obtained by using the achievable rate while not accounting for the interference. The derivation of the achievable rate follows similar steps as in [15] and is skipped due to the limited space of the paper. More details are found in [14].

Algorithm 1: HO Policy Procedure: POMDP

1. Input: u, B_u, B_{base}, T_{H1}, $\{\beta_{bu} : b \in B_{base}\}$
2. Output: HO policy Π^* and candidate DUs B_u^{cand}
3. Construct $B_{other} = B_u \setminus B_u^{\text{base}}$.
4. Initialize $B_0 = B_{base} + 1$, loop$_{max} = |B_u| - B_{base} - 1$.
5. while $\ell \leq$ loop$_{max}$ do
6. Construct a pool of candidate DUs $B_u^{\text{cand}} = \{B_{base} \setminus b\}$, where $b = B_{other}$.
7. Construct POMDP sub-problem $P_{\ell} = \mathcal{P}(B_u^{\text{cand}}, T_{H1})$ with $P_{\ell}^{(1)} = P_{\ell}^{(2)} = P_{\ell}^{(3)} = P_{\ell}^{(4)} = \Phi_{b u}^{(1)} = \phi_{b u}^{(1)}$, $P_{\ell}^{(2)} = \phi_{b u}^{(2)}$, and $R_{\ell}^{\text{cand}} = \Phi_{b u}^{(3)}$ defined using (2), (4), (11), and (19) respectively.
8. Solve P_{ℓ} to obtain $\Pi = \{\pi_1, \ldots, \pi_T\}$ for a finite T_{H1} or $\Pi = \pi$ for an infinite T_{H1}.
9. Obtain total expected reward R_{ℓ} from POMDP solution.
10. $\ell = \ell + 1$
11. end
12. Select loopOpt = arg max R_{ℓ}.
13. Obtain $\Pi^* = \Pi_{\text{loopOpt}}$ and $B_u^{\text{cand}} = B_u^{\text{cand,loopOpt}}$.

Algorithm 2: Apply HO Policy While Controlling HO

1. Input: u, B_u, B_{base}, $C_u^{(0)}$, achievable rate $R_{\ell}^{(ib)}(0)$
2. Output: User association $C_u^{(1)}$ during mobility
3. Set $t = 1$, and $C_u^{\text{potential}} = C_u^{(0)}$.
4. while TRUE do
5. if $[\Pi^*, B_u^{\text{cand}}] = \text{POMDP}(u, B_u, B_{base} = C_{\text{potential}}$, B_{con}, T_{H1}, $\{\beta_{bu}^{(-1)} : b \in C_u^{(-1)}\}$) then
6. Calculate belief vector $\omega_{cand}^{(t)} = \omega_{1,\text{cand}}^{(t)}$, \ldots, $\omega_{|S|,\text{cand}}^{(t)}$ using (9).
7. Choose $a_t = \Pi^*(\omega_{cand}^{(t)})$
8. Choose $C_u^{\text{potential}} = \{\text{diag}(\omega_t) | b \in C_u^{(-1)}\}$.
9. if $R_{\ell}^{(ib)}(t-1) > R_{\text{threshold}}$ then
10. Choose $C_u = C_u^{(-1)}$
11. else
12. Choose $C_u = C_u^{\text{potential}}$
13. end
14. Calculate achievable rate $R_{\ell}^{(ib)}(t)$ at decision cycle t.
15. $t = t + 1$
16. end
TABLE 1: Simulation parameters.

Description	Parameter	Value		
Network	$	B	$, M, v_u	125, 8, 10 m/s
POMDP	γ, β_u, β_s, B_u, B_s, Δ	0.95, $\text{PL}(d=150 \text{ m})$, $\text{PL}(d=50 \text{ m})$, $\text{PL}(d=200 \text{ m})$, 5, $B_u + 1$, 1 s		
Power, pilots	$p_1^{(u)}$, $p_2^{(u)}$, τ_u, τ_p	-30 dBm, -20 dBm, -200, 16		
Channel fading	$\text{carrier frequency } \tau_c$, β_s, β_u	1.8 GHz, $66.7 \mu\text{s}$		
Path loss & fading	$d_{\text{con}}, d_{\text{pl}}, \alpha_d$, σ_{sh}, ℓ	ℓ		

with the current 3GPP Release 16 [16], where HO decisions are made independently for each user based on mobile assisted signal measurements and radio resource management (RRM) information.

Using (19) allows to define the POMDP formulation independently for each user using the typical user notation. Please note that defining a multi-user POMDP reward will incur huge computational complexity making the problem unsolvable.

IV. HO-POLICY AND DECREASING THE NUMBER OF HOs

To solve the POMDP in (1), we follow a divide-and-conquer approach described in the self-explanatory Algorithm 1. This algorithm is written as a procedure called POMDP, and it is called by Algorithm 2 which controls the number of HOs of the user by determining when to apply the POMDP policy to update the serving cluster for the user.

Algorithm 1 takes as input (Step 1) the index of the typical user u, set of DUs B, set of DUs B_{base} that the user is currently connected to, T_H, number of serving DUs B_{con}, and the LSF β_u for the channels between the user and B_{base}. The output of the algorithm is an HO policy π^* that maps the current belief to the best actions for the user; this policy uses a candidate set of DUs B_{cand}^u corresponding to the POMDP sub-problem that produces the best total expected reward.

Step 3 in Algorithm 1 constructs B_{other}, which corresponds to the set of DUs that the user is not connected to. Step 4 initializes $B_P = B_{\text{con}} + 1$, which represents the size of each POMDP sub-problem that will be solved independently; the same Step also determines loop_{max} that represents the number of POMDP sub-problems.

Each loop (Steps 5-10 in Algorithm 1) corresponds to solving a single POMDP sub-problem. Step 6 determines the candidate DUs pool $B_{\text{cand}, \ell}$ for each POMDP sub-problem ℓ. Step 7 defines the components of the POMDP. Step 8 solves the POMDP using the Finite Grid Algorithm which implements a variation of the point-based value iteration (PBVI) [17]. The PBVI approximates the exact value iteration solution by selecting a small set of belief points and then tracking the value for those points only. This makes the solution step faster compared to value iteration.

Step 12 in Algorithm 1 selects the index of the POMDP sub-problem that produced the largest total expected reward, and Step 13 returns the policy and candidate DU set of this selected sub-problem to be used during the time horizon T_H.

As indicated earlier, the divide-and-conquer approach makes it possible to solve the POMDP, because each POMDP sub-problem has a small number of state and action spaces. The intuition is that solving many POMDP sub-problems is always feasible, which is not the case when solving a single huge POMDP problem that has an exploding computational complexity with respect to the network size.

To decrease the number of HOs, the HO decisions are determined using Algorithm 2 through one of two ways;

1) use the POMDP policy: obtain best action using Step 7 in Algorithm 2 then determine serving cluster $C_u^{(i)}$ from this action using Step 12, or
2) keep the $C_u^{(i)}$ the same using Step 10 in Algorithm 2, so no HO occurs.

The choice of whether to perform HO or not is based on the comparison of the achievable data rate with a threshold $R_{\text{threshold}}$ (Steps 8-13 in Algorithm 2).

V. SIMULATION RESULTS

We simulate networks of $|B| = 125$ DUs uniformly distributed in a (1×1) km2 network area, each equipped with M antennas. The typical user is initially located around the network center and moves in a straight line in a trip of distance 1000 m at a speed of $v_u = 10$ m/s (36 km/h) through movements with a step size of duration $\Delta = 1$ s (moved distance is 10 m). Other mobility patterns, such as the mobility model in [18], can also be applied. To study the behavior of HOs, we apply network wrap around whenever the user reaches 200 m from the network boundary, which emulates a mobile network with infinite area. Typical user and the DUs have a height separation distance of $d_h = 13.5$ m even when the user moves. This is achieved through our path loss $\text{PL}^{(i)} = \left(\left(\sqrt{d_{\text{con}}^{(i)}}^2 + d_h^2 / d_0 \right)^{-\alpha_{\text{pl}}} \right)$ with usage of d_h as a minimum separation distance, where d_0 is the reference distance and α_{pl} is the path loss exponent. The correlated shadowing model [12], [13] is used with decorrelation spatial distance $d_{\text{decor}} = 100$ m, $\ell = 0.5$, and standard deviation $\sigma_{\text{sh}} = 4$ dB. The results are averaged over Monte Carlo simulations. In Table I, we summarize the remaining network parameters.

To benchmark our framework, we compare it with two variants of the LSF-based HO. The LSF-based gives the best HO decisions for the user provided that HO does not incur any overhead on performance (ideal case, not found in actual implementation). Moreover, the LSF-based HO requires the knowledge of the LSF between the user and all the DUs in the network at each user movement, which is likely impossible in practice. In the first LSF scheme (time-triggered), after each movement, the user connects to B_{con} DUs providing the best LSF. Provided that HO does not incur any overhead (which is not true in an actual deployment), this scheme represents the upper bound for the performance, and it cannot decrease the number of HO. In the second scheme (threshold-triggered),
We note that the rate does not fall below the chosen threshold. These amounts can be further tuned by changing the rate is observed compared to these two schemes, respectively. On the other hand, a lower percent of the POMDP, and the connection decisions between the user and the DUs as the action space. We introduced an algorithm that controls the number of HOs while providing guaranteed performance. We also managed the complexity of the solution as the network size increases by breaking the POMDP problem into sub-problems each solved individually, and then the sub-problem that produces the best expected reward is selected with its policy to manage HOs.

ACKNOWLEDGMENT

This work was supported in part by Ericsson Canada and in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. At the time of this work, Kothapalli Venkata Srinivas was with Ericsson Canada.

REFERENCES

[1] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “Downlink resource allocation in multiuser cell-free MIMO networks with user-centric clustering,” IEEE TWC, vol. 21, no. 3, pp. 1482–1497, 2022.
[2] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “Distributed resource allocation optimization for user-centric cell-free MIMO networks,” IEEE TWC, pp. 1–1, 2022.
[3] G. Interdonato et al., “Ubiquitous cell-free massive MIMO communications,” EURASIP JWCN, vol. 2019, no. 1, pp. 1–13, 2019.
[4] H. A. Ammar et al., “User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions,” IEEE Comm. Surveys & Tutorials, vol. 24, no. 1, pp. 611–652, 2022.
[5] V. Krishnamurthy, Partially observed Markov decision processes. Cambridge university press, 2016.
[6] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 1–51, 2013.
[7] K. T. Truong and R. W. Heath, “Effects of channel aging in massive MIMO systems,” J. of Comm. & Net., vol. 15, no. 4, pp. 338–351, 2013.
[8] R. Chopra et al., “Performance analysis of FDD massive MIMO systems under channel aging,” IEEE TWC, vol. 17, no. 2, pp. 1094–1108, 2018.
[9] J. Zheng, J. Zhang, E. Björnson, and B. Ai, “Impact of channel aging on cell-free massive MIMO over spatially correlated channels,” IEEE TWC, vol. 20, no. 10, pp. 6451–6466, 2021.
[10] W. Jiang and H. D. Schotten, “Impact of channel aging on zero-forcing precoding in cell-free massive MIMO systems,” IEEE Comm. Letters, pp. 1–1, 2021.
[11] C. D’Andrea, G. Interdonato, and S. Buzzi, “User-centric handover in mmwave cell-free massive MIMO with user mobility,” in 2021 29th European Signal Processing Conference (EUSIPCO), pp. 1–5, 2021.
[12] Z. Wang, E. K. Tameh, and A. R. Nix, “Joint shadowing process in urban peer-to-peer radio channels,” IEEE Trans. on Vehicular Technology, vol. 57, no. 1, pp. 52–64, 2008.
[13] M. Gudmundsson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, no. 23, pp. 2145–2146, 1991.
[14] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “Handoffs in user-centric cell-free MIMO networks: A POMDP framework,” Under review.
[15] J. Zheng, J. Zhang, E. Björnson, and B. Ai, “Cell-free massive MIMO with channel aging and pilot contamination,” in GLOBECOM 2020, pp. 1–6, 2020.
[16] 3GPP, NR: NR and NG-RAN Overall Description; Stage 2, 2021. www.3gpp.org/ftp/Specs/archive/38_series/38.300.
[17] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An anytime algorithm for POMDPs,” in IJCAI, vol. 3, pp. 1025–1032, Citeseer, 2003.
[18] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “RWP+- A new random waypoint model for high-speed mobility,” IEEE Communications Letters, vol. 25, no. 11, pp. 3748–3752, 2021.