Endoparasites of Selected Native Non-Domesticated Mammals in the Neotropics (New World Tropics)

Kegan Romelle Jones¹,²,* Kavita Ranjeeta Lall ² and Gary Wayne Garcia ²

¹The Department of Basic Veterinary Sciences (DBVS), School of Veterinary Medicine (SVM), University of the West Indies (UWI), Mt. Hope, Trinidad and Tobago
²The Open Tropical Forage-Animal Production Laboratory (OTF-APL), Department of Food Production (DFP), Faculty of Food and Agriculture (FFA), The University of the West Indies (UWI), St. Augustine, Trinidad and Tobago; k_lee_24@yahoo.com (K.R.L.); prof.gary.garcia@gmail.com (G.W.G.)

*Correspondence: keganjones11@gmail.com; Tel.: +1-868-787-0833

Received: 1 June 2019; Accepted: 18 October 2019; Published: 30 October 2019

Abstract: In this review, information was summarized on endoparasites found in six non-domesticated neotropical animals. These mammals have the potential to be domesticated. The animals included three rodents, agouti (Dasyprocta leporina), lappe (Agouti paca), and capybara (Hydrochoerus hydrochaeris); a marsupial, manicou (Didelphis marsupialis insularis); and an artiodactyl, the collared peccary (Tayassu tajacu/Peccari tajacu) and a ruminant (the red brocket deer, Mazama americana). While there are many descriptions of the parasites present, the majority of publications failed to note the effect of them on the animals. Most information is available on endoparasites of capybara, while the endoparasites of the red brocket deer were the least reported. The manicou was reported to have had the most number of endoparasites, 44 species of parasites were reported, while there were only 24 endoparasites reported in the lappe. The most common parasites found in these neotropical animals were Paraspidodera uncinata, Strongyloides spp., Eimeria spp., Moniezia benedeni, Trichuris spp., Physoscelis spp., and Giardia spp. A large majority of the studies concluded that these animals were reservoirs for parasites that could affect domesticated livestock. Endoparasites of zoonotic significance were Echinococcus spp., Trichuris spp., Giardia spp., and Cryptosporidium spp.

Keywords: Dasyprocta leporina; Agouti paca; Hydrochoerus hydrochaeris; Didelphis marsupialis insularis; Tayassu tajacu; Peccari tajacu; Mazama americana

1. Introduction

In this review, updates were made on the current knowledge of endoparasites in non-domesticated animals with the potential for domestication. These animals have the potential to be meat protein sources for rural communities. Former reviews on endoparasites in the neotropics summarized the information on cattle (Bos indicus and Bos taurus), sheep (Ovis aries), goats (Capri hircus), horses, (Equus caballi), pigs (Sus surof), and chickens (Gallus domesticus) [1]. Endoparasites mainly found in these domesticated animals were Strongylus vulgaris in horses, Hystrostrongylus rubidis in pigs, Haemonchus contortus in ruminants, and Heterakis gallinarum in chickens. Some endoparasites of ducks (Anas platyrhynchos and Cairina moschata), turkeys (Melaegradis gallopavo), chinchillas (Chinchillas lanigera), guinea pigs (Cavia porcellus), and south american camelds (Lama glama, Lama pacos, Lama gunacoa, and Vicuna vicuna) were Nematodirus spp., Trichostrongylus spp., Giardia duodenalis, Cryptosporidium spp., and Ascaridia gallinarum [2].

Since these six native neotropical animals have potential for domestication [3], it is required to focus on factors which affect animal production. These factors are (i) feeding and nutrition, (ii) reproduction and breeding, (iii) health and disease, (iv) housing and environment, (v) economic and socioeconomic
factors, and (vi) animal behavior and psychology [3,4]. Recently, the agouti, *D. leporina*, has been studied in more detail, with focus on the anatomy of the male and female reproductive system, oestrus cycle in the female (28–31 days) as well as semen analysis using electroejaculation [5–8]. Further anatomical investigations of the digestive system of the agoutis revealed that the majority of the gastrointestinal tract was small intestine in conjunction with a large cecum [9]. The agoutis mainly are frugivorous with the majority of the diet consisting of nuts and fruits, with potentially a preferential particle size [10–13]. Earlier it was found that these animals were rather omnivorous and would consume eggs and chicks [14]. It is clear that there is a need for more investigation on their feeding habits. Several studies have reported on the blood values of captive reared animals, and differences in diets and environments did not affect those values [15]. As such, blood values are a good basis for determination of the health status of neotropical mammals.

The lappe was described as a frugivore, the manicou as an omnivore, the collared peccary as a pseudo-ruminant herbivore, and the red brocket deer was grouped with ruminants [12–19]. The manicou has a gestation period of three weeks [17,18]. Other information on these species is lacking. The objective of this review was to summarize the knowledge of endoparasites found in six native non-domestic neotropical animal species. These neotropical animals are potential sources of meat protein which can be utilized by rural communities.

2. Agouti (*Dasyprocta* spp.)

The earliest work on the gastrointestinal parasites of the agouti, *D. leporina*, was done in the mid 1930s. *Strongyloides agoutii* was described in the feces of the agouti. This parasite has a similar life cycle as the other species of the *Strongyloides* genus [20]. Similar work was done on agoutis found in Trinidad, but the entrails of the animals were analyzed for gastrointestinal parasites. In the early 1950s, the amphistome, *Stichorchis giganteus*; the tapeworm, *Raillietina demerariensis* var. *trinitatae*; and seven roundworms including *Strongyloides agouti*, *Trichuris gracilis* var. *trinitatae*, *Acanthocheilonema spp.*, *Fuellebornema agoutii*, *Pudica pudica*, *Aspidodera binansata* var. *agoutiae*, and *Helminthoxys urichi* were detected in the agouti [21].

In presumed healthy wild agoutis from Trinidad, *Trichuris gracilis* var. *trinitatae* (in cecum and large intestines), *Strongyloides agouti*, *Helminthoxys urichi*, *Eimeria* spp., ascarid-like ova (unidentified species), trematode (unidentified species), and an unidentified cestode were detected [22] and more recently in intensively reared agouti (*D. leporina*), *Strongyloides spp.* was found in 36.9%, *Trichuris* spp. in 4.62%, and *Paraspidodera uncinata* in 15.4% of the agoutis sampled (n = 65). Despite the presence of these parasites, the animals were in good body condition (average body condition score of 3 out of 5) and had no history of gastrointestinal illness [23]. Using fecal floatation techniques, *Trichuris* spp. were found at a concentration of 2.2 × 10^2 eggs/gram, *Strongyloides* spp. at 4.28 × 10^2 eggs/gram, and *Eimeria* spp. at 2.15 × 10^3 oocysts/gram, all with no signs of gastrointestinal illness and a body condition score of 3 out of 5 [24].

In Paraguay, wild agoutis (*D. azarae*) were positive for *Pudica pudica*, *Pudica gonosoma*, *Durettestrongylus baudi*, *Fuellebornema granulosa*, and *Fuellebornema demarsae* [25]. In several studies in Brazil, agouti parasites that were found included *Trichuris* spp. (in cecum), *Eucyathostomum copulatum*, *Helminthoxys urichi* (in cecum and intestines), *Physoclophalus meridionalis* (large intestine) and *Dipetalonema* spp. (body cavity), *Eucyathostomum copulatum* (large intestine), *Heligmostrongylus agouti*, *H. almeidai*, *Heligmostrongylus sedecimradiatus*, *Monodontus aguiari*, *Pudica pudica*, *Pereiraia spp.*, *Physoclophalus meridionalis*, *Trichuris gracilis* (cecum), *Raillietina trinitatae* (small intestine), *Physaloptera toressi*, *P. mediospiralis* (stomach), *Freistronyculus angulac* (stomach), *Vianella trichospicula*, and *Avellaria intermedia* were found [26–35]. The *Eimeria* spp. identified were *E. aguiari*, *E. cotiae*, and *E. paraensis*. The predilection site of these protozoan parasites was the small intestines, but none of the infected animals showed signs of illness and the fecal pellets found were of normal consistency [31]. Reported prevalences were 45.3% (24/53) for protozoan oocysts, 10.8% (7/53) for *Trichuris* spp. eggs, and 18.8% (10/53) for *Strongyloides* spp. [29].
In a zoo in Mephis Tennessee, *Echinococcus oligarthrus* hydatid cysts and *Strongyloides* spp. were found in healthy Brazilian agoutis from Guyana. These animals were treated with ivermectin (0.7 mg subcutaneously, twice daily for 14 days), praziquantel (28.4 mg intramuscularly, twice daily for 30 days), and albendazole (65 mg per os, once a day for 30 days) and some of the subcutaneous cysts were removed surgically [36]. In the studies performed in Argentina, similar parasites as to those mentioned above were found [37].

Other treatments that were reported included fenbendazole (5 mg/kg/day for 5 days) and piperazine citrate (180 mg/kg/day for 5 days), and the efficacy reported with these treatments were poor [38]. Most authors identified various parasites in captive-reared and wild agoutis in the neotropical region; however, only a few made reference to the effect these parasitic organisms had on the animals’ health and body condition. A summary of the endoparasites found in the agouti at different locations and the effects on the animals (host) can be seen in Table 1.

Parasites Location	Diagnostic Year	Ref.
Strongyloides spp.	Trinidad	Necropsy and microscopy 1940 [20]
Stichorchis giganteus, Raillietina demerariensis var. trinitatae, Strongyloides agouti, Trichuris gracilis var. trinitatae, Acanthocheilonema trinitate, Echinococcus oligarthrus	Trinidad	Necropsy and microscopy 1951 [21]
Pudica pudica, Pudica gonosoma, Durettestrongylus baudi, Fuellebornema granulosa, Fuellebornema demarsae	Paraguay	Necropsy and microscopy 1991 [25]
Trichuris spp., Eucyathostomum copulatum, Helminthoxys urichi, Physcephalus meridonatis, Dipeptidella demarsae	Brazil	Necropsy and microscopy 2002 [26]
Vianella trichospicula, Azellaria interna	Brazil	Necropsy and microscopy 2006 [28]
Protozoan oocysts, Trichuris spp., Strongyloides spp.	Brazil	Copsorscopy 2006 [29]
Trichuris gracilis, Helminthoxys urichi, Physaloptera torresi, P. mediospiralis, Raillietina trinitatae	Brazil	Necropsy, fecal flotation and microscopy 2006 [30]
E. aguti, E. cotiae, E. paraensis	Brazil	Fecal floatation 2007 [31]
Freitastrongylus anglensis	Brazil	Necropsy and microscopy 2007 [32]
Strongyloides agouti, Parascioidera uncincta, Helminthoxys urichi, Pudicinae, Trichurus gracilis	Brazil	Necropsy and microscopy 2008 [33]
Strongylida, Rhodostoma, Giardia spp., Eimeria spp.	Brazil	Fecal floatation 2008 [34]
Echinococcus oligarthrus (hydatid cyst), strongyles, Strongyloides spp.	Guyana	Clinically healthy with no significant findings on bloodwork 2009 [36]
Table 1. Cont.

Parasites	Location	Effect on Animal or Pathological Lesion	Diagnostic	Year	Ref.
Trichuris gracilis var. trinatae, Strongylodes agouti, Helminthoxys urichi, Eimeria spp., ascarid-like ova (unidentified species), trematode (unidentified species), cestode (unidentified species)	Trinidad	Presumed to the healthy animals	Necropsy, fecal floatation and microscopy	2016	[22]
Eucyathostomum copulatum	Brazil	Not recorded	Necropsy and microscopy	2016	[35]
Strongyloides spp., Trichuris spp., Paraspodora uncinata	Trinidad	All animals were in good body condition (average score of 3 out of 5) and no history of gastrointestinal illness	Fecal floatation	2017	[23]
Trichuris spp. (2.2 × 10^5 eggs/gram), Strongylodes spp. (4.26 × 10^5 eggs/gram), Eimeria spp. (2.15 × 10^3 oocysts/gram)	Trinidad	No signs of gastrointestinal illness and animals having an average body condition score of 3 out of 5	Fecal floatation (Mc Master)	2018	[24]

3. Lappe (Agouti paca/Cuniculus paca)

Most of the studies on lappe were from Brazil and the following parasites were found: Heligmostrongylus sedecimradiatus, Longistriata breviscapula, Oswaldonema cruzi, Oswaldonema skrjabini, Paraspodora uncinata, Paraspodora spp., Pereiraia spp., Turgida torresi, Trichuris spp., and Vianella avellari. Physocephalus spp. was found in the stomach, and Strongylodes spp. and Strongylus spp. were found in the small intestine. Heligmostrongylus agouti and Physostomum meridionalis were found in the stomach and Echinococcus vogeli and Calodium hepaticum were found in the liver [26,27,39].

Few studies reported the pathology caused on internal organs by the endoparasites. The liver pathology potentially caused by Echinococcus vogeli and Calodium hepaticum was characterized by fibrosis with a scanty infiltrate of lymphocytes and macrophages [39] and the histopathological lesions of Physostomum spp. in the stomach showed congestion, interstitial hemorrhaging, and mononuclear inflammatory infiltrates [40]. In a breeding farm in Brazil, Eimeria spp., Strongylodes spp., Trichuris spp., and Hymenolepis diminuta were found and managed by anthelmintics and sanitation [41]. Quick lime was also used as an anthelmintic treatment for the larval stages of the parasites in the soil [42].

In a few other countries, the Strongylodes spp. were found [43]. In Costa Rica, Strongylodes spp., Strongylida, Eimeria agouti, Capillaria spp., Ascaroidea, Taenia spp., and Trichuris spp. were found in the gastrointestinal tracts [44]. In Mexico, Strongylodes spp., Strongylida, Trichuris spp., and Eucoccidia were found [45] and in Venezuela, Raillietina demerariensis (a cestode) was found [46].

Echinococcus spp. take a special place in the list of parasites found in the lappe as they are zoonotic. They have been found in Columbia where approximately 47% (44/93) of the lappe were found to be infected [47]. In Bolivia as well as Peru, Echinococcus vogeli was found but there were no reliable prevalence figures available [48–50]. A later study in Peru demonstrated larval cysts of E. vogeli in 12% of the lappe (15/120) [51].

Echinococcosis has been reported as being zoonotic and the agouti (D. leporina) and the lappe (A. paca) are the intermediate hosts of E. vogeli and E. oligarthrus. However, humans become infected via the ingestion of eggs that come from the adult parasites present in dogs [51–56]. All data on endoparasites in the lappe are summarized in Table 2.
Table 2. Endoparasites found in the lappe (*Cuniculus paca*/*Agouti paca*) at different locations.

Parasites	Location	Effect on Animal or Pathological Lesion	Diagnosis	Year	References
Heligmostrongylus sedecimradiatus,	Brazil	Not recorded	Necropsy and microscopy	1997	[27]
Longistriata breviscapula, Oswaldenoma crazi,				---------	------------
Oswaldenoma skrjabini, Paraspidodera uncinata,				---------	------------
Paraspidodera spp., Pereiraeia spp., Turgida				---------	------------
torrei, Trichuris spp., Vianella avellari				---------	------------
Strongyloides spp., Strongylus spp.,	Brazil	Liver fibrosis with an infiltrate of lymphocytes and macrophages	Necropsy and microscopy	2013	[39]
Heligmostrongylus agouti, Physcephalus				---------	------------
meridionalis				---------	------------
Echinococcus vogeli, Calodium hepaticum	Brazil	Congestion, interstitial hemorrhaging, and mononuclear infiltrates	Necropsy and microscopy	2012	[40]
Physcephalus spp.	Brazil (Tocantins)			---------	------------
Eimeria spp., Strongyloides spp., Trichuris	Brazil	Not recorded	Fecal floatation	2018	[41]
spp., Hymenolepis diminuta				---------	------------
Strongyloides spp.	Brazil (Sao Luis)	Not recorded	Necropsy and microscopy	2018	[43]
Strongylus spp., Strongylidea, Eimeria agouti,	Costa Rica	Not recorded	Necropsy and microscopy	1991	[44]
Capillaria spp., Ascaroidea, Trichuris spp.,				---------	------------
Hymanolepis diminuta				---------	------------
Strongyloides spp., Strongylida, Trichuris	Mexico	Not recorded	Coproscopy	2001	[45]
spp., Eucoecidia				---------	------------
Raillietina demerariensis	Venezuela	Not recorded	Necropsy and microscopy	1988	[46]
Echinococcus spp.	Columbia	Cysts found in liver and peritoneum	Necropsy and microscopy	1979	[47]
Echinococcus vogeli	Bolivia	Not recorded	Necropsy and microscopy	1988, 2013	[48,49]

4. Capybara (*Hydrochoerus hydrochaeris*)

The first reports that were made in Panama on endoparasites was in the 1930s and amphistomate flukes (*Taxorchis schistocotyle*) were detected in a dead animal. However, no lesions were found in the intestinal tract. [57]. Another case report came from the San Diego Zoo, where *Balantidium coli* was associated with mortality as well as mucoid diarrhea. Histological findings of the colon found ulceration and cellular infiltrates that consisted of eosinophils, macrophages, and plasma cells [58]. In Brazil, the death of a capybara was associated with four specimens of trematodes, *Trichostrongylidae*, *Eimeria*, and *Strongyloides* spp. There was multifocal fibrosis with marked thickening of the liver capsule and granulomatous thickening of the bile ducts [59]. *Eimeria ichiloensis* and *Eimeria trinidadensis* have been associated with diarrhoea in the capybara [60].

In Brazil, numerous studies have been conducted on the gastrointestinal parasites of capybaras. *Taxorchis schistocotyle*, *Crurifilaria tuberocauda*, *Eucoecus hydrochoerii*, *Echinocolus hydrochoerii*, *Habronema clarki*, *Hydrochoerisinae anomalobursata*, *Protozoophaga obesa*, *Strongyloides chapini*, *Trichostrongylus axei*, *Vianella hydrochoeri*, *Yatesia hydrochoerii*, *Moneococcus hagmanni*, *M. hydrochoeri*, *M. macrobursatum*, *M. hagmani*, and *H. fuelleborni* have been found in capybaras. *Capillaria hydrochoerii*, *Philophthalmus lachrymosus*, *Hippocrepis hippocrepis*, *Neocotele neocotele*, *Fasciola hepatica*, *Nudacotyle tertius*, *Nudacotyle valdecognatus*, *Taxorchis schistocotyle*, *Eimeria ichiloensis*, *Fasciola hepatica*, *Eimeria spp.*, cestodes, *Trichostrongylidae*, *Capillaria spp.*, *Anoplocephalidae*, *Ascaridae*, and *M. jacobi* have also been found [27,35,61–68].

Three more detailed studies on both juvenile and adult capybaras located the helminths at their predilection sites: *Trichostrongylus axei* (stomach and small intestines), *Vianella hydrochoeri*
(stomach and small intestines), *Strongyloides chapini* (stomach and small intestines), *Yatesia hydrochoeroides* (stomach and small intestines), *Protozoophaga obesa* (pyloric region of the stomach, cecum, colon, and rectum), *Taxorchis schistocotyle* (small and large intestines including cecum), *Hippocrepis hippocrepis* (small intestine, colon, and rectum), *Nudacotyle tertius* and *Monoeocestus hydrochoeroides* (small intestines), *Hydrochoeristrema cabrali* [66,69–71] and *S. chapini* had a higher prevalence in juvenile animals in comparison with adults, while for *Y. hydrochoerus* and *C. hydrochoeroides*, the opposite was recorded [69].

A more epidemiology-based study on 45 samples showed that 5.52% of the samples were positive for *C. parvum* [72], while another study showed that, of the 250 samples tested, 52.4% were positive for *Eimeria trinidadensis*, *Eimeria ichiloensis*, *Eimeria boliviensis*, and *Eimeria araside* [73]. Nine percent of 134 capybaras were found positive for *Fasciola hepatica* [74]. In 31 free ranging capybaras, 58% were positive for *Protozoophaga* spp., 23% for *Vianella* spp., 10% for *Strongyloides* spp., and 10% for *Ancylostomatidae* [75]. In Argentina, about 70% of the capybaras were found positive for endoparasites and infections with multiple parasites and protozoa were higher in young animals and in spring. Parasites found included: *Eimeria* spp., *Blastocystis* spp., *Balantidium coli*, Ascaridia, Trichostrongylidae, *Protozoophaga obesa*, *Strongyloides* spp., *Capillaria hydrochoeroides*, *Monoecocestus hydrochoeroides*, and *Taxorchis schistocotyle* [76]. Other studies in Argentina found *Fasciola hepatica*, *Echinocoleus hydrochoeroides*, and *Taxorchis schistocotyle* [77,78]. In 2019, a new species named *Trichuris cutillasae* was identified in the cecum of capybaras [79].

In Bolivia, in the mid 1990, helminths including *Monoeocestus hagmanni*, *M. hydrochoeri*, *M. macrobursatum*, *Habronema clarki*, *Vianella hydrochoeroides*, *Protozoophaga obesa*, *Taxorchis schistocotyle*, and *Hippocrepis hippocrepis* were found [80], while the protozoa found were *Eimeria trinidadensis*, *E. ichiloensis*, and *E. boliviensis* [81]. A more detailed study in Venezuela found a negative association between the body condition and helminth intensity for *M. macrobursatum* (found in the small intestine), *V. hydrochoeroides* (small intestine), and *H. hippocrepis* (large intestine) [82]. Other parasites found were *Monoeocestus hagmanni* (small intestine), *Protozoophaga obesa* (cecum), *Taxorchis schistocotyle* (cecum), *Hippocrepis hippocrepis*, *Eimeria trinidadensis*, *E. ichiloensis*, and *E. boliviensis* [81,82]. In Columbia, the following protozoan parasites were identified: *Sarcocystis* spp., *Eimeria* spp., *Giardia* spp., *Cycloposthium hydrochaeris*, *C. incurvum*, *C. minutum*, *C. lenticularis*, and *C. compressum* [83].

Stress by feed restriction and physical restraint had a negative effect on growth and body condition and induced a significantly higher coccidia infestation, and a lower helminth burden showing that the living conditions may have an influence on parasitic infestation [84]. Environmental conditions such as season, age, and sex of the animals have also been associated with different parasitic infestations. This shows that the interactions amongst gastrointestinal parasites are complex and further research is needed [85].

Capybaras have been shown to have a wide range of endoparasites, but they appear largely resistant to their effects and show only a few signs of ill health [86]. The capybaras, being the largest rodents on earth, have been given a lot of attention. However, the majority of investigations only noted the presence or absence of endoparasites without making observations on the effects these organisms had on the animals (Table 3).
Table 3. Endoparasites found in the Capybara (*Hydrochoeris hydrochaeris*) at different locations.

Parasite	Location	Effect on Animal Health or Pathological Lesion	Diagnosis	Year	Ref.
Taxorchis schistocotyle	Panama	No lesions were observed in the intestinal tract	Necropsy and microscopy	1935	[57]
Balantidium coli	Florida	Ulceration on colon with infiltration of plasma cells, eosinophils and macrophages	Necropsy and histology	1961	[58]
Taxorchis schistocotyle	Brazil	Not recorded	Necropsy and microscopy	2016	[55]
Cruorifilaria tubercuca	Brazil	Not recorded	Necropsy and microscopy	1997	[69]
Balantidium coli	Brazil	Ulceration on colon with infiltration of plasma cells, eosinophils and macrophages	Necropsy and histology	1994	[69]
Strongyloides chapini	Brazil	Not recorded	Necropsy and microscopy	1995	[80]
Capillaria hydrochoeri	Brazil	Not recorded	Necropsy and microscopy	2002	[62]
Trichostrongylus axei	Brazil	Not recorded	Necropsy and microscopy	2004	[70]
Eimeria trinidadensis	Bolivia and Venezuela	Not recorded	Necropsy and microscopy	2005	[81]
Protozoophaga obesa	Bolivia	Not recorded	Necropsy and microscopy	2013	[78]
Eimeria spp.	Belgium	Not recorded	Necropsy and microscopy	2014	[75]
Capillaria hydrochoeri	Brazil	Not recorded	Necropsy and microscopy	2015	[83]
Hippocrepis hippocrepis	Brazil	Not recorded	Necropsy and microscopy	2015	[66]
Capillaria hydrochoeri	Brazil	Not recorded	Necropsy and microscopy	2016	[71]
Trichuris cutillae	Argentina	Not recorded	Molecular and Morphological techniques	2019	[79]
5. Manicou (Didelphis marsupialis insularis/Didelphis marsupialis)

The earliest data on endoparasites of the manicou (D. marsupialis insularis) were recorded in the early 1950s in Trinidad. In the large intestine, Aspidodera raillieti, Sublura trinitatis, Trichuris reesali, Trichuris minuta Trichuris urchi, Cruzia cameroni, Longistriata didelphis, and Viannaia hamata were identified. In the small intestine, Fuellebornema agouti, Delicata spp., Camerostrongylus didelphis, and Capillaria spp. were recorded. Physaloptera turgida and Spirocera cylicola (later found to be Didelphonema longispiculata [87]) were found in the stomach and small intestine. While, Helminthoxys urchi was found in the stomach [88]. The trematodes Achillurabainia recondita and Rhopalias coronatus were found in the intestines and Metadelphis evandroi was found in the bile duct [89].

In the US (Alabama and Georgia), Isospora boughtoni and Isospora spp. oocysts, Brachylaima virginianum, and Cruzia americana were found in the intestines of opossum (D. marsupialis) [90]. Physaloptera turgida was found in the stomach and ulcers penetrations from the glandular mucosa to the submucosal level [91]. In the lung, Capillaria aerophila and metastrongyloid nematodes which resembled Perostrongylus and Didelphostrongylus hayesi were found [91,92]. The lungs infested with Perostrongylus showed a diffuse interstitial pneumonia pattern [91].

In Brazil, two hundred and twenty-four D. marsupialis were examined and fifteen animals were found with Besnoitia spp. in cystic leasions in the muscles and viscera [93]. Other parasites detected in Brazil were Capillaria spp. (palate), Eucoleus fluminensis (mouth), Trichuris minuta (large intestine), Heterostrongylus spp. (lungs), Mammomonogamus laryngeus (nostrils), and Aspidodera raillieti (large intestine). Aspidodera spp., Cruzia tentaculata, Turgida turgida (stomach), Thelazia iheringi, Dipetalonema spp. (liver cysts, peritoneum, skin), Litomosoides spp. (skin), Lagochilascaris turgida, Viannaia hamata, and Sarcocystis neurona [26,27]. S. neurona caused neurological diseases in different animal species and is also zoonotic [94]. Similar endoparasites that were found in D. marsupialis in Brazil were also found in Peru [95].

In Costa Rica, the coccidian, Eimeria marmosopos, was found [96], and this coccidial species was located in the epithelial cell of the small intestines and caused cellular necrosis [97]. Recently in Mexico, the gall bladder was found to be the site of infection for Amphimerus caudatelestitis and Philandrophilus magnacirrus. In the intestines, Rhopalias coronatus, R. macracanthus, Thaumasioscole didelphidis, Viannaia viannai, Travassostrongylus spp., and Onicola luehei were found and the cecum was the predilection site for Cruzia tentaculata and Trichuris didelphis. Turgida turgida was found in the stomach and Capillaria spp. was found in the lungs [98]. Aspidodera spp. and C. tentaculata were found in the small intestines of D. marsupialis in Pocone, Brazil [35] (Table 4).
Table 4. Endoparasites found in the Manicou (*Didelphis marsupialis insularis/D. marsupialis*) at different locations.

Parasite	Location	Effect on Animal Health or Pathological Lesion	Diagnosis	Year	Ref.
Aspidodera raillieti, *Sublura trinitatis*, *Trichuris resali*, *Trichuris minuta* *Trichuris urichi*, *Cruzia cameroni*, *Longistriata didelphis*, *Viannaia hamata*, *Fuellebornema agouti*, *Delicata spp.*, *Camostronmglyus didelphis*, *Capillaria spp.*, *Phyaloptera turgida*, *Spirocerca cylindae*, *Helminthoxys urichi*	Trinidad	Not recorded	Necropsy and microscopy	1951	[88]
Didelphonemena longispiculata (syn. *Spirocerca cylindae*)	Trinidad	Not recorded	Necropsy and microscopy	1953	[87]
Achillarabainia recondita, *Rhopaliias coronatus*, *Metadelphis evandroi*	Trinidad	Not recorded	Necropsy and microscopy	1958	[89]
Isospora boughtoni, *Isospora spp.*	Alabama	Not recorded	Sedimentation techniques	1969	[90]
Phyaloptera turgida, *Brachyglainea virginianum*, *Cruzia americana*, *Capillaria aerophila*, *Peronstrongylus spp.*	Georgia	Weak, emaciated, circling and uncoordinated	Necropsy and microscopy	1975	[91]
Didelphostrongylus hayesi	Georgia	Not recorded	Necropsy and microscopy	1976	[92]
Besnoitia spp.	Brazil	Not recorded	Necropsy and Histology	1983	[93]
Aspidodera raillieti, *Cruzia tentaculata*, *Lagochilascaris turgida*, *Viannaia hamata*	Brazil	Not recorded	Microscopy	1997	[27]
Capillaria spp., *Eucoleus fluminensis*, *Trichuris minuta*, *Heterostronmglyus spp.*, *Mammamonomogamus larvaeous*, *Aspidodera raillieti*, *Aspidodera spp.*, *Cruzia tentaculata*, *Turgida turgida*, *Thelazia iheringi*, *Dipetalonem*a spp., *Litomosoides spp.*	Brazil	Not recorded	Necropsy and Microscopy	2002	[26]
Eimeria marmosus	Costa Rica	Not recorded	Fecal floatation and microscopy	2015	[96]
E. marmosopos (1 x 10^5 oocyst/gram)	Costa Rica	Necrosis of cells of the small intestine	Histology	2015	[97]
Amphimerus caudaletestis, *Philandrophila magnacirrus*, *Rhopaliias coronatus*, *R. macracanthus*, *Thaumasioculex didelphidi*, *Viannaia viennai*, *Travaomstrongylus spp.*, *Onicola lueheii*, *Cruzia tentaculata*, *Trichuris didelphids*, *Turgida turgida*, *Capillaria spp.*	Mexico	Not recorded	Necropsy and Microscopy	2015	[98]
Aspidodera spp., *Cruzia tentaculata*	Brazil	Not recorded	Necropsy and microscopy	2016	[35]
6. Collared Peccary (Pecari tajacu/Tayassu tajacu)

The earliest study on parasites in peccaries was done in the 1930s in Texas and Monezia benedeni and Parostertagia heterospiculum was found in the small intestine [99]. In the stomach, Physocephalus sexalatus was found and in the oesophagus, Parabronema spp. [99,100]. Much later and in the same region, Eimeria chaparralensis, Eimeria dicotylensis, Eimeria pecari, Eimeria spp., Klossia spp., Balantidium spp., Dirofilaria acutiuscula, Gongylonema baylisi, Gongylonema pulchrum, Physocephalus sexalatus, Parabronema pecariae (Stomach), Parostertagia heterospiculum, Physocephalus spp., Texicospirura turki, Moniezia benedeni, and Fascioloides magna were found [101–105], while another study failed to recover endoparasites [106] In Brazil, in the late 1930s, Gonglyonema baylisi was found in the oesophagus [107] and later on Texicospiruria turki, Parabronema pecariae, Physocephalus sexalatus, Gongylonema spp., and Gongylonema baylisi detected in the stomach. Monodontus semicircularis and Moniezia benedeni in the small intestine; Eucyathostomum dentatum, Trichuris spp., and Balantidium coli in the large intestine; and Dirofilaria acutiuscula, Molineus semicircularis, Nematodirus molina, and Oesophagostomumdentatum [27,108,109]. In Peru, eggs of Ascaris spp., ancylostomatids, spirurids, Paragonimus spp., Giardia spp., Cryptosporidium spp., Balantidium spp., and Eimeria spp. were identified in the fecal samples [110,111]. It should be noted that Cryptosporidium spp. and Giardia spp. are of zoonotic importance (Table 5).

In Surinam, Toxocara alienata were found but was not associated with poor body condition [112]. In Mexico, Globocephalus urosubulatus, Parabronema pecariae, Parostertagia spp., Texicospiruria turki, and Paramphistomum spp. were detected in the stomach and Oesophagostomum spp. Strongyloides spp., Eimeria spp., Isospora spp., Oesophagostomum spp., and Moniezia benedeni inhabited the intestines [113,114]. In Panama, Entamoeba coli, Entamoeba spp., Cryptosporidium spp., Endolimax nana, and Strongyloides spp. were detected [115]. In Bolivia, Texicospiruria turki, Monodontus angularis, Eucyathostomum spp., Stichorchis giganteus, Moniezia benedeni, Ascaris spp., and Eimeria spp. were detected [116]. In the work done in mid 1980s by Hellgren et al. [117] on collared peccaries with signs of respiratory distress and coughing, Ascaris suum was found in the bile duct and the same parasite was found in South America [117–119].
Table 5. Endoparasites found in the collared peccary (*Tayassu tajacu*) at different locations.

Parasite	Location	Effect on Animal Health or Pathological Lesion	Diagnostics	Year	Ref.
Monezia bendeni	Texas	Not recorded	Necropsy	1931	[99]
Physocephalus sexalatus, *Moniezia bendeni*, *Parostertagia heterospiculum*	Texas	Not recorded	Necropsy	1933	[100]
Texicospirura turki	Texas and New Mexico	Not recorded	Necropsy	1966	[110]
Balantidium spp., *Dirofilaria acutiuscula*, *Gongylonema baylisi*, *Parabronema pecariae*, *Parostertagia heterospiculum*, *Physocephalus spp.*, *Texicospirura turki*, *Moniezia benedeni*, *Fascioloides magna*	Texas	Not recorded	Necropsy	1970	[101]
Gongylonema pulchrum, *Parabronema pecariae*, *Texicospirura turki*, *Physocephalus sexalatus* and *Moniezia benedeni*	Texas	No evidence of disease or loss of body condition	Necropsy	1985	[102]
Eimeria chaparralensis, *Eimeria dicotyleosis*, *Eimeria pecari*, *Eimeria spp.*, *Klossia spp.*	Texas	Not recorded	Fecal floatation	1984	[103]
Ascaris suum	Texas	Respiratory distress and coughing	Necropsy	1984	[117]
Parabronema pecariae, *Trichostrongylus columbiformis*	Mexico	Not recorded	Necropsy	1968	[105]
Globcephalus urosubulatus, *Parabronema pecariae*, *Parostertagia spp.*, *Texicospirura turki*, *Paramphistomum spp.*, *Oesophagostomum spp.*, *Moniezia benedeni*	Mexico	Not recorded	Fecal floatation, sedimentation and necropsy	2008	[113]
Gongylonema baylisi	Brazil	Not recorded	Necropsy	1937	[107]
Dirofilaria acutiuscula, *Eucathostomum dentatum*, *Gongylonema baylisi*, *Molineus semicircularis*, *Nematodirus molina*, *Oesophagostomum dentatum*	Brazil	Not recorded	Necropsy	1997	[27]
Parabronema pecariae	Brazil	Not recorded	Necropsy	2000	[109]
Strongyloides spp., *Eimeria spp.*, *Isospora spp.*, *Oesophagostomum spp.*	Brazil	Not recorded	Fecal centrifugation floatation and Mc Master Technique	2014	[114]
Texicospiruria turki, *Monodontus angularis*, *Eucathostomum spp.*, *Stichorchis giganteus*, *Moniezia benedeni*, *Ascaris spp.*, *Eimeria spp.*	Bolivia	Not recorded	Fecal floatation and sedimentation	2014	[116]
Entamoeba coli, *Entamoeba spp.*, *Cryptosporidium spp.*, *Endolimax nana*, *Strongyloides spp.*	Panama	Not recorded	Fecal centrifugation floatation	2010	[115]
Ascaris spp., ancylostomatids, spirurid, *Paragonimus spp.*	Peru	Not recorded	Fecal floatational and sedimentation	2008	[110]
Texicospiruria turki, *Parabronema pecariae*, *Physocephalus sexalatus* and *Gongylonema spp.*, *Monodontus semicircularis*, *Moniezia benedeni*, *Eucathostomum dentatum*, *Trichuris spp.*, *Balantidium coli*	Central Amazon	Not recorded	Necropsy	1986	[108]
Toxocara alienate	Surinam	Not recorded	Necropsy	1982	[112]
Giardia spp., *Cryptosporidium spp.*, *Balantidium spp.*, *Eimeria spp.*	Brazil	Not recorded	Fecal floatation	2010	[111]
7. Red Brocket Deer (Mazama americana)

In Trinidad, in the 1930s, *Mazama simplicicornis* was found to have the following parasites; *Mazamanema longibursatum*, *Ierestrongylus filiformis*, *Mazamastrongylus trinitatis*, *Paramphistomum cotylophorum*, *Moniezia benedeni*, *Setaria bidentata*, *Eucyathostomum longibursatum*, *Strongyloides papillosus*, and *Nematodirus urichi*. Setaria bidentate was found in the omentum, and *Eucyathostomum longibursatum* and an oxyurid-type worm was found in the large intestine [120–122]. In Brazil, parasites found in *Mazama americana* were *Dictyocaulus* spp., *Eucyathostomum* spp., *Eucyathostomum longibursatum*, *Setaria bidentata*, *Seteria* spp., *Haemonchus contortus*, *Haemonchus similis*, *Trichostrongylus axei*, *Trichostrongylus colubriformis*, *Physocephalus sexulatus*, *P. lassencei*, *Pygarginema verrucosa*, *Paramphistomum* spp., *Eimeria* spp., and *Cooperia punctata* [27,61,123,124] (Table 6). Lux Hoppe et al. [125] found *Trichostrongylus axei*, *Haemonchus contortus*, *H. similis*, *Physocephalus lassancei*, and *Pygarginema verrucosa* in the abomasum. *Capillaria bovis*, *Bunostomum phlebotomum*, and *Cooperia punctata* inhabited the small intestine.

Table 6. Endoparasites found in the Red Brocket deer (*Mazama americana*) at different locations.

Parasites Location	Effect on Animal Health or Pathological Lesion	Diagnostic	Year	Ref.	
Mazzamanema longibursatum, Ierestrengylus filiformis, Mazamastrongylus trinitatis, Nematodirus urichi	Trinidad	Not recorded	Necropsy	1935	[120]
Eucyathostomum longibursatum, Setaria bidentata, Oxyurid	Trinidad	Not recorded	Necropsy	1936	[121]
Paramphistomum cotylophorum, Moniezia benedeni, Setaria bidentata, Eucyathostomum longibursatum, Nematodirus urichi, Mazamastrongylus trinitatis, Strongyloides papillosus	Trinidad	Not recorded	Necropsy	1936	[122]
Dictyocaulus spp., Eucyathostomum spp.	Brazil	Not recorded	Necropsy	1997	[27]
Trichostrongylus axei, Trichostrongylus colubriformis, Cooperia punctata	Brazil	Not recorded	Fecal floatation and sedimentation	2000	[123]
Paramphistomum spp., Eimeria spp.	Brazil	Not recorded	Fecal floatation and sedimentation	2007	[124]
Trichostrongylus axei, Haemonchus contortus, H. similis, Physocephalus lassancei, Pygarginema verrucosa, Capillaria bovis, Bunostomum phlebotomum, Cooperia punctata	Brazil	Not recorded	Necropsy	2010	[125]
Cooperia punctata, Eucyathostomum spp.	Brazil	Not recorded	Necropsy	2017	[61]
Haemonchus contortus, H. similis, Physocephalus sexulatus, P. lassencei, Setaria bidentata, Trichostrongylus axei, T. colubriformis, Pygarginema verrucosa	Brazil	Not recorded	Necropsy	2008	[115]
Paramphistomum cervi	Mexico	Not recorded	Necropsy	2008	[115]
Eimeria spp. and *Trichuris spp., Strongyloides spp.*	Mexico	Not recorded	Fecal floatation and Necropsy	2014	[116]
Taeinea hydatigena	Peru	Not recorded	Necropsy	2015	[126]

In Mexico, *Paramphistomum cervi* was found in the rumen and abomasum as well as *Eimeria spp.*, *Trichuris spp.*, *Strongyloides spp.*, and *Mammomonogamus spp.* [115,116] (Table 6). In Peru, the cysticercus of *Taenia hydatigena* was found in the omentum of *M. americana* as an intermediate host, while the definitive hosts were identified as carnivores [126]. A summary of endoparasites found in specific neo-tropical host species was provided (Table 7). Endoparasites that were common to different animal (host) was also listed (Table 7).
Neotropical Animals Species (Hosts)	Total No. of Internal Parasites Reported	Endoparasites Found in the Six Selected Host Species	Similar Endoparasites Found in Various Neotropical Animal Host Species
Manicou (D. marsupialis insularis)	44	Strongyloides spp., Stichorchis giganteus, Raillietina demarariensis var. trinitatiae, Strongyloides agouti, Trichuris gracilis var. trinitatiae, Trichuris spp., Acanthocheilonema spp., Fuellebornema agouti, Pudica pudica, Aspidodera binanusa var. agouti, Helminthcoxys urichi, Paraspisadora uncinata, Pudica gonomoma, Durestemrongylus laudi, Fuellebornema granulosa, Fuellebornema demarasia, Encystophostrongylus copulatum, Physophorus meridionalis, Physophalus torresi, Physophalus mediostralis, Diaptenema spp., Vianella trichospicula, Avellaria intermedia, Eimeria agouti, Eimeria coteia, Eimeria parasense, Eimeria spp., Giardia spp., Echinococcus oligarthrus, Freitastrongylus angulatus.	Strongyloides spp., Giardia spp., Eimeria spp. (agouti, lappe, capybara, and collared peccary)
Agouti (D. leporina)	6	Helminthcoxys urichi, Physophorus meridionalis, Eimeria agouti, Raillietina demarariensis, Eimeria spp., (agouti and lappe)	
Lappe (A. paca)	24	Helminthcoxys urichi, Helminthcoxys agouti, Longistriata breviscapula, Osuvaldoema cruzi, Osuvaldoema skrjabini, Paraspisadora uncinata, Paraspisadora spp., Pereiraia spp., Turgida torresi, Trichuris spp., Vianella avellari, Strongyloides spp., Strongyloides spp., Physophalus meridionalis, Echinococcus vogeli, Coladum hepaticum, Physophalus spp., Eimeria spp., Hymenolepis diminuta, Eimeria agouti, Capillaria spp., Tienia spp., Raillietina demarariensis, Echinococcus spp.	Trichostongylus columbianus, Strongyloides spp., Eimeria spp., Physophalus sexulatus, Trichuris spp., Moniezia benedeni, Paramphistomum spp. (capybara and red brocket deer)
Capybara (H. hydrochaeris)	42	Trichostongylus columbianus, Strongyloides spp., Eimeria spp., Physophalus sexulatus, Trichuris spp., Moniezia benedeni, Paramphistomum spp. (capybara and red brocket deer)	
Manicou (D. marsupialis insularis)	44	Trichostongylus columbianus, Strongyloides spp., Eimeria spp., Physophalus sexulatus, Trichuris spp., Moniezia benedeni, Paramphistomum spp. (capybara and red brocket deer)	

Table 7. Endoparasites found in selected non-domesticated neotropical animals.
Table 7. Cont.

Neotropical Animals Species (Hosts)	Total No. of Internal Parasites Reported	Endoparasites Found in the Six Selected Host Species	Similar Endoparasites Found in Various Neotropical Animal Host Species
Collared peccary (T. tajacu)	39	*Moniezia benedeni, Physocephalus sexalatus, Physcocephalus spp., Parostertagia heteropiculum, Texicospirura turki, Balantidium coli, Diroflaria acutiscula, Gongylonema baylisi, Gongylonema pulchrum, Parabronema pecarina, Fascioloides magna, Eimeria chapareleniensis, Eimeria dicotylensis, Eimeria pecari, Eimeria spp., Isospora spp., Klossia spp., Ascaris suum, Ascaris spp., Trichostrongylus columbiformis, Globocephalus urosubulatus, Paramphistomum spp., Oesophagostomum spp., Oesophagostomum dentatum, Nematodirus molinae, Eucyathostomum dentatum, Eucyathostomum spp., Stichorchis giganteus, Molineus semicircularis, Strongyloides spp., Paragonimus spp., Monodontus angularis, Entamoeba coli, Entamoeba spp., Cryptosporidium spp., Endolimax nana, Trichuris spp., Toxocara alienata, Giardia spp.*	*Trichuri spp., Strongyloides spp., Eimeria spp., Giardia spp., Stichorchis giganteus (agouti and collared peccary)*
Red Brocket deer (M. americana)	30	*Mazamanema longibursatum, Ierstrongyulus filiformis, Mazamastrongylus trinitatis, Nematodirus urichi, Eucyathostomum longisubulatum, Eucyathostomum spp., Setaria bidentata, Setaria spp., Paramphistomum cyglrophorum, Paramphistomum cervi, Paramphistomum spp., Moniezia benedeni, Strongyloides papillosus, Strongyloides spp., Dictyocaulus spp., Haemonchus contortus, Haemonchus similis, Trichostrongylus axei, Trichostrongylus columbiformis, Cooperia punctata, Eimeria spp., Physcocephalus lassancei, Physcocephalus sexalatus, Pygargonema verrucosa, Capillaria bovis, Bunostomum phlebotomum, Trichuris spp., Taenia spp.*, *Mammomonogamus spp.*	*Trichuri spp., Strongyloides spp., Eimeria spp. (agouti and red brocket deer)*

Trichuri spp., Strongyloides spp., Eimeria spp. (lappe and red brocket deer)
8. Conclusions

Most endoparasites were detected (clinical or subclinical) in the agouti, while for the red brocket deer (*Mazama americana*) few endoparasites were found (Table 7). This was in relation to the number of studies performed on these animals. A large majority of the authors viewed these neotropical non-domesticated animals as parasitic reservoirs that could affect domesticated introduced livestock species. The endoparasites of zoonotic significance found in the non-domesticated neotropical animals were *Echinococcus* spp., *Trichuris* spp., *Giardia* spp., and *Cryptosporidium* spp. There were a few reports of parasites showing negative effects on neotropical non-domesticated animals. Further studies on the effect of parasitism on these six neotropical species should elucidate their importance as pathogens, and their effect on the growth and performance of animals. Furthermore, the relation between the infestation grade and clinical manifestation should be determined.

Author Contributions: K.R.J. conceptualized and collected the literature for the composition of the draft document. G.W.G. and K.R.L. made revisions to the draft document. G.W.G. supervised the entire project.

Funding: This project was funded by the Campus Research and Publication Fund at the University of the West Indies, St. Augustine Campus.

Acknowledgments: Staff at the Alma Jordan Library, University of the West Indies St, Augustine Campus.

Conflicts of Interest: There authors declare no conflict of interest.

References

1. Jones, K.R.; Garcia, G.W. Gastrointestinal parasites of domesticated animals introduced into the Neo-tropics (New World Tropics). *Concept. Dairy Vet. Sci.* **2018**, 1, 51–67. Available online: https://www.lupinepublishers.com/cdvs/pdf/CDVS.MS.ID.000110.pdf (accessed on 15 March 2019).
2. Jones, K.R.; Garcia, G.W. Endoparasites of domesticated animals that originated in the neo-tropics (new world tropics). *Vet. Sci.* **2019**, 6, 24. [CrossRef] [PubMed]
3. Brown-Uddenberg, R.; Garcia, G.W.; Baptiste, Q.S.; Counand, T.; Adogwa, A.; Sampson, T. The Agouti (*Dasyprocta leporina*, *D. agouti*) Booklet and Production Manual. 2004. St. Augustine, Trinidad: GWG Publications, 24 Sagan Drive, Champs Fleur. Website: The Open School of Tropical Animal Science and Production. Available online: http://www.ostasp.brinkster.net (accessed on 15 April 2019).
4. Garcia, G. Intensification of Animal Production systems for improving wildlife conservation. In *Agriculture in the Caribbean, Issues and Challenges; University of the West Indies: Port of Spain, Trinidad and Tobago, 1999; Volume 3*, pp. 89–99.
5. Mollineau, W.M.; Sampson, T.; Adogwa, A.O.; Garcia, G.W. Anatomical stages of penile erection in the agouti (*Dasyprocta leporina*) induced by electro-ejaculation. *Anat. Histol. Embryol.* **2012**, 41, 392–394. [CrossRef] [PubMed]
6. Mollineau, W.M.; Adogwa, A.O.; Garcia, G.W. Spermatozoal morphologies and fructose and citric acid concentrations in agouti (*Dasyprocta leporina*) semen. *Anim. Reprod. Sci.* **2008**, 105, 378–383. [CrossRef]
7. Guimaraes, D.A.; Ramos, R.L.; Ohashi, O.M.; Garcia, G.W.; Vale, W.G. Plasma concentration of progesterone and 17β-estradiol of black-rumped agouti (*Dasyprocta leporina*) during the estrous cycle. *Rev. Biol. Trop.* **2011**, 59, 29–35.
8. Singh, M.D.; Adogwa, A.O.; Mollineau, W.M.; Garcia, G.W. Gross and microscopic anatomy of the reproductive tract of the female agouti (*Dasyprocta leporina*): A Neo-tropical rodent with potential for food production. *Trop. Agric. (Trinidad)* **2014**, 9, 38–46.
9. Garcia, G.W.; Baptiste, Q.S.; Adogwa, A.O.; Kakuni, M.; Arishima, K.; Makita, T. The Digestive System of the Agouti (*Dasyprocta leporina*)-Gross Anatomy and Histology. *Jpn. J. Zoo Wildl. Med.* **2000**, 5, 55–66. [CrossRef]
10. Henry, O. Frugivory and the Importance of Seeds in the Diet of the Orange-Rumped Agouti (*Dasyprocta leporina*) in French Guiana. *J. Trop. Ecol.* **1999**, 15, 291–300. [CrossRef]
11. Silvius, K.M.; Fragoso, J.M.V. Red-rumped agouti (*Dasyprocta leporina*) home range use in an Amazonian forest: Implications for the aggregated distribution of forest trees. *Biotropica* **2003**, 35, 74–83. [CrossRef]
12. Lall, K.R.; Jones, K.R.; Garcia, G.W. Nutrition of six selected neotropical mammals in Trinidad and Tobago with the potential for domestication. *Vet. Sci.* **2018**, 5, 52. [CrossRef]
13. Dookie, B.; Jones, K.R.; Mohammed, R.; Garcia, G.W. Feed particle size preference and feed wastage in agouti (Dasyprocta leporina) reared intensively in the Republic of Trinidad and Tobago. Livest. Res. Rural Dev. 2018, 30, 1–8.

14. Jones, K.R.; Lall, K.R.; Garcia, G.W. Omnivorous Behaviour of the Agouti (Dasyprocta leporina): A Neotropical Rodent with the Potential for Domestication. Scientifica 2019, 2019, 5. [CrossRef] [PubMed]

15. Jones, K.R.; Lall, K.R.; Garcia, G.W. Haematological and serum biochemical reference values of healthy Agoutis (Dasyprocta leporina) reared intensively in Trinidad, Republic of Trinidad and Tobago. Livest. Res. Rural Dev. 2019, 31, 1–9. Available online: http://www.lrrd.org/lrrd31/1/kegan31005.html (accessed on 15 April 2019).

16. Lall, K.R.; Jones, K.R.; Garcia, G.W. Infectious Diseases of Six Non-Domesticated Neo-Tropical Animals in Trinidad and Tobago. Int. J. Trop. Vet. BioMed Res. 2018, 3, 1–31. [CrossRef]

17. Tardieu, L.; Adogwa, A.O.; Garcia, G.W. Didelphis species, neo-tropical animals with the potential for intensive production: Part 1 Review of taxonomy, natural history, general biology, animal behaviour, and nutrition. Trop. Agric. 2017, 94, 157–174.

18. Tardieu, L.; Adogwa, A.O.; Garcia, G.W. Didelphis species, Neo-tropical animals with the potential for intensive production: Part 2 Review of reproductive systems. Trop. Agric. 2017, 94, 312–334.

19. Jones, K.R.; Lall, K.R.; Garcia, G.W. Gross Anatomy of the Gastrointestinal Tract of a Red Brocket Deer (Mazama americana): A Case Study. J. Adv. Vet. Res. 2018, 8, 26–31.

20. Griffiths, H.J. Studies on Strongyloides agoutii from the agouti (Dasyprocta agouti). Can. J. Res. D 1940, 18, 173–190. [CrossRef]

21. Cameron, T.W.M.; Reesal, M.R. Studies on the endoparasitic fauna of Trinidad mammals. Can. J. Zool. 1951, 29, 276–289. [CrossRef]

22. Suepaul, R.; Charles, C.; Dziva, F. Aerobic microflora and endoparasites of freshly shot wild agouti (Dasyprocta leporina) in Trinidad, West Indies. J. Zoo Wildl. Med. 2016, 47, 1044–1048. [CrossRef]

23. Jones, K.R.; Garcia, G.W. A survey of the gastrointestinal parasites present in the Agouti (Dasyprocta leporina) reared intensively in Trinidad. Livest. Res. Rural Dev. 2017, 29, 1–7.

24. Jones, K.R.; Garcia, G.W. Observations on the endoparasitic load in captive reared agouts (Dasyprocta leporina) without anthelminthic exposure in Trinidad, Republic of Trinidad and Tobago. Livest. Res. Rural Dev. 2018, 30, 1–8. Available online: http://www.lrrd.org/lrrd30/1/kegan30181.html (accessed on 10 March 2019).

25. Cassone, J.; Durette-Desset, M.C. Five species (three new) of trichostrongylid nematodes coparasites of Dasyprocta azarae, from Paraguay. Revue Suisse Zool. 1991, 98, 229–242. [CrossRef]

26. Noronha, D.; Vincente, J.J.; Pinto, R.M. A survey of new host records of nematodes form mammals deposited in the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC). Rev. Bras. Zool. 2002, 19, 945–949. [CrossRef]

27. Vincente, J.J.; Rodriguez, H.O.; Gomes, D.C.; Pinto, R.M. Nematoides do Brazil. Parte V. Nematoides de mamíferos. Rev. Bras. Zool. 1997, 14, 1–45. [CrossRef]

28. Durette-Desset, M.C.; Goncalves, A.Q.; Pinto, R.M. Trichostrongylina (Nematoda, Heligmosomoidea) coparasites in Dasyprocta fuliginosa Wagler (Rodentia, Dasyproctidae) from Brazil, with re-establishment of the genus Avellaria Freitas and Lent and the description of two new species. Rev. Bras. Zool. 2006, 23, 509–519. [CrossRef]

29. Mendonca, I.L.D.; de Almieda, M.M.; Conde Junior, A.M.; Cavalante, R.R.; de Moura, G.S.; de Carvalho, M.A.M. Coproparasitic analysis of agouti (Dasyprocta sp.) in captivity. Cienc. Anim. Bras. 2006, 7, 285–288.

30. Goncalves, A.Q.; Bola, M.N.; Coura, J.R.; Pinto, R.M. New records of helminths if hystricomorph rodents from the middle and high Rio Negro microregion, State of Amazonas, Brazil. Rev. Bras. Zool. 2006, 23, 716–726. [CrossRef]

31. Lainson, R.; Carneiro, L.; Silveira, F.T. Observations on the Eineria species of the Dasyprocta leporina (Linnaeus, 1758) (Rodentia: Dasyproctidae) for the state of Para, North Brazil. Mem. Inst. Oswaldo Cruz 2007, 102, 183–189. [CrossRef]

32. Goncalves, A.Q.; Pinto, R.M.; Durette-Desset, M.C. Parasitism of two zoonotic reservoirs Dasyprocta leporina and Dasyprocta fuliginosa (Rodentia) from the Amazonas with trichostrongylina nematodes (Heligmonellidae): Description of a new genus and a new species. Mem. Inst. Oswaldo Cruz 2007, 102, 763–768. [CrossRef]
33. Macedo, L.E. Nematóides Gastrintestinais Parasitos de Cutias (Dasyprocta spp.) do Municipio de Teresina-Piauí. Master’s Thesis, Brasil Universidade, Federal de Minas Gerais Brazil, Belo Horizonte, Brazil, 2008; pp. 9–63.

34. Da Silva, M.K.; da Silva, A.S.; Oliveira, C.M.; Montiero, S.G. Gastrointestinal parasites of the agouti (Dasyprocta leporina). Cienc. Anim. Bras. 2008, 9, 128–131.

35. Zimmerman, D.M.; Douglass, M.; Reavill, D.R.; Greiner, E.C. Echinococcus oligarthrus cystic hydatidosis in Brazilian agouti (Dasyprocta leporina). J. Zoo Wildl. Med. 2009, 40, 551–558. [CrossRef] [PubMed]

36. Ramos, D.G.S.; Santos, A.R.G.L.O.; Freitas, L.C.; Correa, S.H.R.; Kempe, G.V.; Morgado, T.O.; Aguiar, D.M.; Wolf, R.W.; Rossi, R.V.; Sinkoc, A.L.; et al. Endoparasites of wild animals form three biomes in the State of Mato Grosso, Brazil. Arq. Bras. Med. Vet. Zootec. 2016, 68, 571–578. [CrossRef]

37. Costa, A.F.; Perriera, A.L.M.; Almeida, K.D.S. Agouti helminthological fauna (Dasyprocta spp.): Implications for commercial production—Review. Rev. Cient. Electron. Med. Vet. 2013, 21, 1–20.

38. Da Silva, M.K.; da Silva, A.S.; Soares, J.F.; Montiero, S.G. Treatment of agoutis (Dasyprocta leporina) naturally infected with helminths. Fac. Zootec. Vet. Agron. 2007, 14, 181–186.

39. Almeida, F.; Caldas, R.; Corre, C.; Rodrigues-Silva, R.; Siqueira, N.; Machado-Silva, J.R. Co-infection of the cestode Echinococcus vogeli and the nematode Calodium hepaticum in the hystricomorphic rodent Agouti paca from a forest reserve in Acre, Brazil. J. Helminthol. 2013, 87, 489–493. [CrossRef]

40. De Freitas, F.L.C.; Mazzinghy, C.L.; da Costa Freitas, W.L.; Tebaldi, J.H.; Almeida, K.D.S. Parasitic gastritis in Cuniculus paca (Rodentia: Cuniculidae). Rev. Pathol. Trop. 2012, 41, 356–366. [CrossRef]

41. Ribiero, V.M.F.; de Souza, S.F.; Pinto, N.N.M.; Alves, A.L.F.; de Araujo Santos, F.G. Monitoring of the intestinal tract parasites load and of the sanitary management at the pacific breeding farm. Braz. Anim. Sci. 2015, 16, 608–614.

42. Ribiero, V.M.F.; Faino, A.L.; Peruquetti, R.C.; Souza, S.F.; Medeiros, L.S.; Karaccas, Y.; Santos, F.G.A. Evaluation of quickline efficacy in inactivating nematode eggs (Strongyloids spp.) parasites of paca (Cuniculus pacu) created in captivity. Arq. Bras. Med. Vet. Zootec. 2017, 69, 989–996.

43. Figueiredo, M.A.P.; Manrique, W.G.; Nogueira, R.M.S. Survey of gastrointestinal parasites of the centre for screening of wild animals for Sao Luis, Maranhao State, Brazil. Veterinaria 2018, 34, 60–68. [CrossRef]

44. Matamoro, Y.; Velazquez, J.; Pashov, B. Parasitos intestinales del tepezcuintle, Agouti paca (Rodentia: Dasyproctidae) en Costa Rica. Rev. Biol. Trop. 1991, 39, 173–176.

45. Ramirez-Hererra, O.; Rodriguez-Vivas, R.I.; Montes-Perez, R.; Torres-Acosta, J.F. Seguimiento anual de la parasitosis gastrointestinal del tepezcuintle, Agouti paca (Rodentia: Agoutidae) en cautiverio en la tropica mexicano. Revisa Biol. 2001, 49, 1171–1176.

46. Sato, H.; Okamoto, M.; Ohbayashi, M.; Basanez, M.G. A new cestode, Raillietina (Raillietina) oligocapsulata n. sp. and R. demeranensis (Daniels 1895) from Venezuelan mammals. Jpn. J. Vet. Res. 1988, 36, 31–45. [PubMed]

47. Morales, G.A.; Guzman, V.H.; Wells, E.A.; Angel, D. Polycystic echinococcus in Columbia: The larval cestodes in infected rodents. J. Wildl. Dis. 1979, 15, 421–428. [CrossRef] [PubMed]

48. Gardner, S.L.; Rausch, R.L.; Camacho, O.C.J. Echinococcus vogeli Rausch and Bernstein, 1972, from the paca, Cuniculus pacu L. (Rodentia: Dasyproctidae), in the Departmento de Santa Cruz, Bolivia. J. Parasitol. 1988, 74, 399–402. [CrossRef]

49. Gardner, S.L.; Dursahinhan, T.; Racz, G.R.; Batsaikhan, N.; Ganzorig, S.; Tinnin, D.S.; Damdinbazar, D.; Wood, C.; Peterson, A.T.; Alandia, E.; et al. Sylvatic species of Echinococcus for rodent intermediate hosts in Asia and South America. Mus. Texas Tech Univ. 2013, 318, 1–12.

50. Tantalean, M.V.; Angulo, J.V.; Martinez, R.R.; Diaz, S.M. First record of the Echinococcus vogeli (Cesotoda, Taeniidae) metacestode in finding in Iquitos, Peru. Peruiv. J. Parasitol. 2012, 20, 74–76.

51. Mayor, P.; Baquedano, L.E.; Sanchez, E.; Aramburu, J.; Gomes-Puerta, L.A.; Mamani, J.M.; Gavidia, C.M. Polycystic echinococcosis in Pacas, Amazon region, Peru. Emerg. Infect. Dis. 2015, 21, 456–459. [CrossRef]

52. Meneghelli, U.G.; Martinelli, A.L.C.; Velludo, M.A.S.L. Cisto de Echinococcus vogeli em figado de paca (Cuniculus pacu) oriignariar do estado do Acre, Brazil. Rievista Soc. Bras. Med. Trop. 1990, 23, 153–155. [CrossRef]

53. D’Alessandro, A.; Moraes, M.A.P.; Raick, A.N. Polycystic hydatid disease in Brazil, report of five new human cases and a short review of other published observations. Rievista Soc. Bras. Med. Trop. 1996, 29, 219–227. [CrossRef]
Corriale, M.J.; Milano, A.M.F.; Gomez-Munoz, M.A.; Herrera, E.A. 2001. Prevalence of gastrointestinal parasites in a natural population of Capybaras, Hydrochoerus hydrochaeris, in Esteros del Ibera (Argentina). Rev. Ibero Lat. Parasitol. 2011, 70, 189–196.

Moreira, R.A.; Ortiz, M.I.; Racioppi, O.; Alverez, J.D. 2014. Fallibility of coprology to differentiate eggs belonging to Fasciola hepatica and Taxorchis schistocotyle in Capybaras (Hydrochoerus hydrochaeris). Rev. Vet. 2012, 23, 147–148.

Robles, M.D.R.; Eberhardt, M.A.T.; Bain, O.; Beldomenico, P.M. 2019. Redescription of Echinocoleus hydrochoeri (Travassos, 1916) (Nematoda: Trichuridae) from Hydrochoerus hydrochaeris Linnaeus, 1766 (Rodentia: Caviidae) from Argentina. J. Parasitol. 2013, 99, 624–633. [CrossRef]

Eberhardt, A.T.; Robles, M.D.S.; Monje, L.D.; Beldomenico, P.M.; Callejon, R. 2016. A new Trichuris species (Nematoda: Trichuridae) from capybaras: Morphological-molecular characterization and polygenetic relationships. Acta Trop. 2019, 190, 244–252. [CrossRef]

Casas, M.C.; Zalles, L.M.; Patrick, M.J.; Dailey, M. 2015. Intestinal Helminths of Capybara (Hydrochoerus hydrochaeris) from Bolivia. J. Helminthol. Soc. Wash. 1995, 62, 87–88.

Casas, M.C.; Duszynski, D.W.; Zalles, L.M. 2016. Three new eimerians in capybara (Hydrochoerus hydrochaeris) populations from eastern Bolivia and southern Venezuela. J. Parasitol. 1995, 81, 247–251. [CrossRef]

Salas, V.; Herrera, E.O. 2018. Intestinal Helminths of Capybara (Hydrochoerus hydrochaeris) from Venezuela. Mem. Inst. Oswaldo Cruz 2004, 99, 563–566. [CrossRef]

Rodriguez-Duran, A.; Palma, L.C.B.; Florez, R.P. 2019. Main gastrointestinal protozoa in wild capybara (Hydrochoerus hydrochaeris) in a village in the municipality of Arauca, Colombia. Zootec. Trop. 2015, 33, 261–268.

Eberhardt, A.T.; Costa, S.A.; Marini, M.C.; Racca, A.; Baldi, C.J.; Robles, M.R.; Moreno, P.G.; Beldomenico, P.M. 2020. Parasitism and Physiological Rade-Offs in Stressed Capybaras. PLoS ONE 2013, 8, e70382. [CrossRef] [PubMed]

Moreno, P.G.; Eberhardt, M.A.T.; Lamattina, D.; Previtalli, M.A.; Beldomenico, P.M. 2019. Intra-phylum and inter-phylum associations among gastrointestinal parasites in two wild mammal species. Parasitol. Res. 2013, 112, 3295–3304. [CrossRef] [PubMed]

Cueto, G.R. 2021. Diseases of the Capybara. In Capybara: Biology, Use and Conservation of an Exceptional Neotropical Species; Moreira, J., Ferraz, K.M., Herrera, E.A., Macdonald, D.W., Eds.; Springer: New York, NY, USA, 2013; pp. 169–184.

Wolfgang, R.W. 2017. Studies on endoparasitic fauna of Trinidad mammals. IX. Didephonema, a new species of nematode from marsupials. Can. J. Zool. 1953, 31, 519–521.

Wolfgang, R.W. 2018. Studies on endoparasitic fauna in Trinidad mammals. VIII. Parasites of Marsupials. Can. J. Zool. 1951, 29, 352–373. [CrossRef]

Sandars, D.F. 2019. On some Trematodes from the manicou, Didelphis marsupialis insularis (Allen) from the West Indies. J. Helminthol. 1958, 32, 145–158. [CrossRef]

Ernest, J.V.; Cooper, C., Jr.; Chobotar, B. 2020. Isospora boughtoni Volk, 1938 and Isospora sp. (Protozoa: Eimeriidae) from an opossum Didelphis marsupialis. Bull. Wildl. Dis. Assoc. 1969, 5, 406–409.

Nettles, V.F.; Prestwood, A.K.; Davidson, W.R. 2021. Severe parasitism in an opossum. J. Wildl. Dis. 1975, 11, 419–420. [CrossRef]

Prestwood, A.K. 2013. Didelphostrongylus hayesi gen. et. sp. n. (Metastrongyloidea: Filaroididae) from opossum, Didelphis marsupialis. J. Helminthol. 1976, 62, 272–275. [CrossRef]

Naiff, R.D.; Arias, J.R. 2012. Protozoa: Toxoplasmatinae) isolado de mucuras Didelphis marsupialis na região Amazonica, Brazil. Mem. Inst. Oswaldo Cruz 1983, 78, 43–435. [CrossRef]

Rosenthal, B.M.; Lindsay, D.S.; Dubey, J.P. 2014. Relationship among Sarcozystis species transmitted by New World opossum (Didelphis spp.). Vet. Parasitol. 2001, 95, 133–142. [CrossRef]

Tantalean, M.; Diaz, M.; Sanchez, N.; Portocarrero, H. 2015. Endoparasites of small mammals from north-eastern Peru 1: Helminths of marsupials. Rev. Peru Biol. 2010, 17, 207–213.

Valerio-Campos, I.; Chinchilla-Carmona, M.; Duszynski, W. 2015. Eimeria marmosopos (Coccidia: Eimeriidae) from the Opossum Didelphis marsupialis L., 1758 (Didelphimorphia: Didelphidae), in Costa Rica. Comp. Parasitol. 2015, 82, 148–150. [CrossRef] [PubMed]
98. Acosta-Virgen, K.; Lopez-Caballero, J.; Garcia-Prieto, L.; Mata-Lopez, R. Helminths of three species of opossums (Mammalia, Didelphidae) from Mexico. *Zookeys* 2015, 511, 131–152.

99. Alicata, J.E. The occurrence of *Moniezia benedeni* in a peccary. *J. Parasitol.* 1931, 19, 83.

100. Schwartz, B.; Alicata, J.E. Descriptions of two parasitic nematodes from the Texas peccary. Proceeding of U.S. *Natl. Mus.* 1933, 82, 1–6. [CrossRef]

101. Samuel, W.M.; Low, W.A. Parasites of the Collared Peccary from Texas. *J. Wildl. Dis.* 1970, 6, 16–23. [CrossRef]

102. Corn, J.L.; Pence, D.B.; Warren, R.J. Factors affecting helminth community structure of adult collared peccaries in southern Texas. *J. Wildl. Dis.* 1985, 21, 254–263. [CrossRef]

103. Wilber, P.G.; Hellgren, E.C.; Gabor, T.M. Coccidia of the Collared Peccary (*Tayassu tajacu*) in Southern Texas with description of three new species of *Eimeria* (*Apicomplexa: Eimeriidae*). *J. Parasitol.* 1996, 82, 624–629. [CrossRef]

104. Chitwood, M.B.; Cordero de Campillo, M. *Texicospirura turki* gen et sp. n. (Nematoda: Spiruroidea) from the stomach of the peccary in the United States, and a key to the genera of Ascaropsinae. *J. Parasitol.* 1966, 52, 307–310. [CrossRef]

105. Sampson, K.S.; Donaldson, B.R. Parasites of Javalina in New Mexico. *Bull. Wildl. Dis. Assoc.* 1968, 4, 131. [CrossRef]

106. Gruver, K.S.; Guthrie, J.W. Parasites and Selected Diseases of Collared Peccaries (*Tayassu tajacu*) in the Trans-Pecos Region of Texas. *J. Wildl. Dis.* 1996, 32, 560–562. [CrossRef] [PubMed]

107. Texeira de Freitas, J.F.; Lent, H. Notas sobre Gongyloneminae Hall, 1916. *Mem. Inst. Oswaldo Cruz* 1937, 32, 299–304. [CrossRef]

108. Neto, J.B.; Thatcher, V.E. Estudos parasitologicos preliminaries en tayassuideos (*Tayassu tajacu*) na Amazonia Central. *Revista Bras. Med. Vet.* 1986, 8, 175–184.

109. Vincente, J.J.; Muniz-Pereira, L.C.; Noranha, D.; Pinto, R.M. Description of Males of *Parabronema pecariae* Ivaschkin, 1960 (Nematoda, Habronematoidea) parasitizing peccaries (Mammalia, Tayassuidae) in Brazil. *Mem. Inst. Oswaldo Cruz* 2000, 95, 849–851. [CrossRef]

110. Carlos, N.E.; Tantalean, M.; Leguia, P.V.G.; Alcazar, G.P.; Donadi, S.R. Frequency of helminths in wild white lipped peccaries (*Tayassu pecari* Link, 1795) from protected areas of Madre de Dios department, Peru. *Neotrop. Helminthol.* 2008, 2, 48–53.

111. Farret, M.H.; Fanfa, V.D.R.; da Silva, A.S.; Monteiro, S.G. Gastrointestinal protozoa in *Tayassu pecari* kept in captivity in Brazil. *Cienc. Agrar.* 2010, 31, 1041–1044. [CrossRef]

112. Sprent, J.F.A. Ascaridoid nematodes of South American Mammals, with a definition of a new genus. *J. Helminthol.* 1982, 56, 275–295. [CrossRef]

113. Romero-Castanon, S.; Ferguson, B.G.; Guiris, D.; Gonzales, D.; Lopez, S.; Paredes, A.; Weber, M. Comparative Parasitology of Wild and Domesticated Ungulates in the Selva Lacandona, Chiapas, Mexico. *Comp. Parasitol.* 2008, 75, 115–126. [CrossRef]

114. Mukul-Yerves, J.M.; Zapata-Escobedo, M.D.R.; Montez-Perez, R.C.; Rodriguez-Vivas, R.I.; Torres-Acosta, J.F. Gastrointestinal and ectoparasites in wildlife-ungulates under captive and free-living conditions in the Mexican tropic. *Revista Mex. Cienc.* 2014, 5, 459–469.

115. Valdes Sanches, V.V.; Saldana Patino, A.; Pineda Segundo, V.J.; Camacho Sandoval, J.A.; Charpentier Esquivel, C.V.; Cruz Sanchez, T.A. Gastrointestinal parasites of captive *Odocoileus virginianus* and *Tayassu tajacu* from Panama Republic. *Acta Zool. Mex.* 2010, 26, 477–480.

116. Limachi-Quinajo, R.; Nallar-Gutierrez, B.; Alandia-Robles, E. Gastrointestinal parasites in Free-ranging *Tayassu pecari* and *Pecari tajacu* from the Pilon Lajas Biosphere Reserve and indigenous territory, Beni-Bolivia. *Neotrop. Helminthol.* 2014, 8, 269–277.

117. Hellgren, E.C.; Lochmiller, R.L.; Grant, W.E. Infection of Captive Adult Collared Peccaries, *Dioctyles tajacu* (Woodbourne, 1968), with the Nematode, *Ascaris suum* (Goeze, 1782). *Proc. Helminthol. Soc. Wash.* 1984, 51, 160–161.

118. Harwell, G.M.; Davis, D.S.; Robinson, R.M.; Galvin, T.J. Experimental infection of Collared Peccary (*Dioctyles tajacu angulatus*) with the Swine Kidney worm (*Stephanurus dentatus*). *J. Wildl. Dis.* 1977, 13, 445–447. [CrossRef] [PubMed]
119. De Freitas Soares, F.E.; de Queiroz, J.H.; de Araujo, J.V.; Rodriguez, M.G.R.; de Oliveira Tavela, A.; Aguiar, A.R.; Lacerda, T.; Ferraz, C.M.; Rangel, M.C.V.; Senna, T.; et al. Action of proteases of the namatophagous fungi *Pochonia chlamydosporia* on *Ascaris suum* eggs of collared peccary (*Pecari tajacu*). *Afr. J. Microbiol. Res.* 2015, 9, 1883–1886.

120. Cameron, W.M. Studies on the endoparasitic fauna of Trinidad Mammals. I. Some parasites of Trinidad deer. *Can. J. Res. D* 1935, 13, 89–96. [CrossRef]

121. Cameron, W.M. Studies on the endoparasitic fauna of Trinidad Mammals. II. Additional parasites from Trinidad deer. *Can. J. Res. D* 1936, 14, 1–5. [CrossRef]

122. Cameron, W.M. Studies on the endoparasitic fauna of the Trinidad Mammal. IV. Further parasites of the Trinidad deer. *Can. J. Res. D* 1936, 14, 165–167. [CrossRef]

123. Nasciemento, A.A.; Bonuti, B.R.; Mapeli, E.B.; Tebaldi, J.H.; Arantes, I.G.; Zettermann, C.D. Natural *Trichostrongyloidea Cram, 1927* infection in deer (Mammalia: Cervidae) from the State of Mato Grosso do Sul and Sao Paulo. *Braz. J. Vet. Anim. Sci.* 2000, 37, 153–158.

124. Marques, S.M.T.; de Quadros, R.M.; Mazzolli, M.; de Jesus, J.R. Gastrointestinal parasites in the grey brocket deer (*Mazama gouazoubira*) from rural areas in planalt region to Santa Catarina, Brazil. *Vet. Foco* 2007, 5, 3–9.

125. Lux Hoppe, E.G.; Tebaldi, J.H.; Naciemento, A.A. Helminthological screening of free-ranging grey brocket deer (*Mazama gouazoubira* Fischer, 1817 (Cervidae: Odocoileini) from Brazilian Panatanal wetlands, with consideration on *Pygarginema verrucosa* (Molin, 1860) Kadenatzil, 1948 (Spirocercida: Ascaropsinae). *Braz. J. Biol.* 2010, 70, 417–423.

126. Gomez-Puerta, L.A.; Pacheco, J.; Gonzales-Viera, O.; Lopez-Urbina, M.T.; Gonzales, A.E. The taruca (*Hippocamelus antisensis*) and the red brocket deer (*Mazama americana*) as intermediate host of *Taenia hydatigena* in Peru, morphological and molecular evidence. *Vet. Parasitol.* 2015, 212, 465–468. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).