Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders

Vanessa Gadoury-Levesque, Lei Dong, Rui Su, Jianjun Chen, Kejian Zhang, Kimberly A. Risma, Rebecca A. Marsh, and Miao Sun

1Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH; 2Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA; 3Coyote Bioscience, USA, San Jose, CA; and 4Division of Bone Marrow Transplant and Immune Deficiency and 5Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH

Key Points

- A definite genetic diagnosis was made in 10.4% of 1892 patients with suspected HLH by a panel approach including 15 HLH-associated genes.
- HLH next-generation sequencing panels were ~400 test orders per year; single-gene tests related to HLH have drastically decreased.

This article explores the distribution and mutation spectrum of potential disease-causing genetic variants in hemophagocytic lymphohistiocytosis (HLH)–associated genes observed in a large tertiary clinical referral laboratory. Samples from 1892 patients submitted for HLH genetic analysis were studied between September 2013 and June 2018 using a targeted next-generation sequencing panel approach. Patients ranged in age from 1 day to 78 years. Analysis included 15 genes associated with HLH. A potentially causal genetic finding was observed in 227 (12.0%) samples in this cohort. A total of 197 patients (10.4%) had a definite genetic diagnosis. Patients with pathogenic variants in familial HLH genes tended to be diagnosed significantly younger compared with other genes. Pathogenic or likely pathogenic variants in the PRF1 gene were the most frequent. However, mutations in genes associated with degranulation defects (STXBP2, UNC13D, RAB27A, LYST, and STX11) were more common than previously appreciated and collectively represented >50% of cases. X-linked conditions (XIAP, SH2D1A, and MAGT1) accounted for 17.8% of the 197 cases. Pathogenic variants in the SLC7A7 gene were the least encountered. These results describe the largest cohort of genetic variation associated with suspected HLH in North America. Merely 10.4% of patients were identified with a clearly genetic cause by this diagnostic approach; other possible etiologies of HLH should be investigated. These results suggest that careful thought should be given regarding whether patients have a clinical phenotype most consistent with HLH vs other clinical and disease phenotypes. The gene panel identified known pathogenic and novel variants in 10 HLH-associated genes.

Introduction

Hemophagocytic lymphohistiocytosis (HLH) is an aggressive and life-threatening syndrome of hyper-inflammation characterized by pathologic activation and proliferation of T cells and macrophages. Although HLH frequently affects infants, it is also observed in children and adults of all ages. HLH can occur as a typical or principal manifestation of several genetically heterogeneous disorders. A group of diseases known as familial HLH types 2-5 are caused by pathogenic variants in PRF1, UNC13D, STX11, and STXBP2, respectively, which are all critical for normal cytotoxic lymphocyte granule-mediated cytotoxicity.1-5 In addition, loss-of-function mutations in the LYST, RAB27A, and AP3B1 genes cause problems in the formation of the cytotoxic granules or transport of the granules through the cytoplasm6-8 and can also lead to HLH as well as other problems such as pigmentary dilution in the disorders known as Chediak-Higashi syndrome, Griscelli syndrome type 2, and Hermansky-Pudlak syndrome type 2,
respectively. Other genetic disorders with more complex mechanisms of diseases that are associated with a high risk of HLH include X-linked lymphoproliferative syndrome type 1 and 2 (XLP1 and XLP2) caused by mutations in the SH2D1A and XIAP genes, respectively, X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia caused by defects in the MAGT1 gene,10 CD27 deficiency from loss of function in CD27,12 and interleukin-2 inducible T-cell kinase (ITK) deficiency from ITK dysfunction.13 Some metabolic disorders can also be complicated by the development of HLH, notably including lysinuric protein intolerance caused by mutations in the SLC7A7 gene.14

Defects in these genes are sometimes indistinguishable from each other clinically. Historically, genetic investigations started with Sanger sequencing of the most commonly defective gene, PRF1. Sequential examination of other HLH-related genes was then pursued if PRF1 testing was negative. This process not only prolonged the diagnosis in many cases but was also expensive. Next-generation sequencing (NGS) technology has allowed the creation of targeted gene panels in which several genes can be interrogated at once in a time and cost-efficient manner. At Cincinnati Children’s Hospital Medical Center (CCHMC), an NGS-based HLH sequencing panel including 15 HLH-associated genes was launched in September 2013. In this study, we aimed to examine the impact of NGS HLH panel on genetic testing ordering patterns and examine the distribution and details of genetic variants observed in 1892 patient samples submitted for NGS HLH panel sequencing.

Materials and methods

Patient samples and clinical information

The present study was approved by the institutional review board at Cincinnati Children’s Hospital, Cincinnati, OH. A total of 1892 patient samples and submitted clinical information were analyzed and reviewed after HLH sequencing panel testing was submitted to the Molecular Diagnostic Laboratory at CCHMC between September 2013 and June 2018. Of these, 33 orders clearly stated that the reason for testing was for mutation carrier status evaluation and these were excluded from further analysis for molecular diagnosis. Of the remaining 1859 samples, 1632 had only variants classified as benign, likely benign, or variants of uncertain significance. At least 1 pathogenic or likely pathogenic variant was detected in 227 samples. Among them, 197 samples were identified with either homozygous or compound heterozygous pathologic variants in an autosomal recessive condition, or a hemizygous pathologic variant in an X-linked disorder. In addition, 30 patient samples were identified carrying only 1 heterozygous pathogenic or likely pathogenic variant in a recessive condition (supplemental Figure 1). Patients were referred by physicians from 300 institutions across North America and the included patients were either referred with a clinical diagnosis of HLH or suspected related conditions. Patient age at time of referral ranged from 1 day to 78 years. Forty-seven percent (895/1892) were female and 53% (997/1892) were male. The reported cohort of 197 patients ranged from 1 day to 57.8 years, including 44% (86/197) female and 56% (111/197) male. Fifty-eight percent (114/197) were younger than 2 years old, and 30% (59/197) were between 2 and 18 years old (Table 1). Clinical information was collected using a standardized clinical checklist completed by the ordering physician that captured information such as age of onset, and general clinical history such as fever, liver and spleen abnormalities, infections, skin abnormalities, laboratory findings, neurological abnormalities, family history, and results of previous testing. Our laboratory did not systematically confirm clinical characteristics or prior laboratory investigations of patients reported by referring clinicians.

HLH NGS panel

Fifteen genes that have been associated with HLH or HLH-like conditions were included in our NGS HLH panel: PRF1, UNC13D, STX11, STXB2, ITK, CD27, SH2D1A, XIAP, MAGT1, LYST, RAB27A, AP3B1, BLOC1S6, SLC7A7, and GATA2. Their associated OMIM diseases, transcripts, and inheritance pattern are listed in supplemental Table 1. A typical turnaround time for this clinical testing is 4 weeks. Expedited turnaround time is available upon request.

NGS, data analysis, and Sanger confirmation

NGS was performed on the genomic DNA isolated from the patient samples using microdroplet polymerase chain reaction technology (RainDance Technologies Inc.) and sequenced on an Illumina HiSeq2500 instrument (Illumina Inc.). All exons, flanking intronic (±20 base pairs) and 5’ and 3’ untranslated regions of the 15 genes in the HLH panel (supplemental Table 1) were captured. Data for each sample were assessed for quality and confirmed they had at least 20× read depth at every target base. Sanger sequencing was performed to rescue all low coverage (<20× read depth) regions. Variants within those regions were identified and evaluated using a validated, custom bioinformatic pipeline. The American College of Medical Genetics and Genomics (ACMG) guidelines for sequence variant classification were used to categorize variants. All reported variants were confirmed by Sanger sequencing. In addition, allele-specific analysis for the 253-kb inversion as well as targeted analysis of the c.118-308 and c.118-307 regions in the UNC13D gene were performed for each sample because these variants have been reported to disrupt UNC13D transcription in lymphocytes and abolish Munc13-4 expression.15

We reviewed the results of the 1892 patient samples, excluded potential carriers based on clinical information provided, and reported the number of samples that were abnormal with pathogenic or likely pathogenic variants associated with HLH. Samples were classified according to the genes affected, types of mutations, and predicted impact on protein sequencing or structure. Pathogenic or likely pathogenic variants were identified in 10 genes: PRF1, STXB2, UNC13D, LYST, RAB27A, STX11, SLC7A7, XIAP, SH2D1A, and MAGT1.

Results

At CCHMC, a 15-gene NGS panel for the molecular diagnosis of HLH disorders was offered from September 2013. Since then, the number of orders for traditionally sequential single-gene tests related to HLH disorders drastically decreased. As shown in Figure 1, from 2013 to 2018, the orders for single-gene Sanger sequencing such as PRF1, UNC13D, STXB2, RAB27A, XIAP, and SH2D1A decreased from 308, 302, 277, 249, 132, and 104 in 2013 to 21, 3, 4, 1, 9, and 10 in 2018, respectively. On the other hand, the orders of HLH NGS panel jumped and maintained ~400 test orders per year from 2014 to 2018. A total of 1892 HLH panel testing results were analyzed, and clearly pathogenic and likely pathogenic variants were identified in 227
Patient no.	Sex	Age at testing, y (unless indicated otherwise)	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
1	Female	53 d	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
2	Male	63 d	Unknown	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
3	Male	0.4	Middle Eastern	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
4	Female	27 d	Unknown	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Absent perforin expression
5	Female	32 d	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Absent perforin expression
6	Male	4 d	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Absent perforin expression; sibling died of HLH
7	Female	0.4	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
8	Male	6 d	African American + European-white	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Absent perforin expression
9	Male	59 d	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
10	Male	13 d	African American	PRF1	c.50del(p.Leu17fs)	Homozygous	0.033	Symptoms of HLH
11	Female	0.4	Unknown	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent NK cell function
12	Female	0.3	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	ND	NA
13	Male	0.4	Unknown	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	NA
14	Male	3.3	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent perforin expression; brother with HLH
15	Female	0.5	Latino-Hispanic	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent perforin expression
16	Female	0.2	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent NK cell function
17	Male	66 d	Unknown	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	NA
18	Male	20.6	Latino-Hispanic	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	NA
19	Male	54 d	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Symptoms of HLH
20	Female	45 d	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent perforin expression
21	Male	32 d	Latino-Hispanic	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Symptoms of HLH
22	Male	0.3	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent perforin expression
23	Male	36.1	Unknown	PRF1	c.1116C>A(p.Pro370His)	Heterozygous	0.00081	NA
24	Female	1.2	Asian-American	PRF1	c.133G>A(p.Gly45Arg)	Homozygous	0.0012	Absent NK cell function
25	Female	37 d	Non-Hispanic white	PRF1	c.150del(p.Thr51fs)	Heterozygous	0.0004	Absent perforin expression
26	Male	69 d	Latino-Hispanic	PRF1	c.218G>C(p.Cys73Ser)	Homozygous	0.0004	Symptoms of HLH

NA, no data; ND, no data; NK, natural killer.

*gnomAD v2.1.1 total population frequency.

HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following *fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen.*

†According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
Table 1. (continued)

Patient no.	Sex	Age at testing, y (unless indicated otherwise)	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
27	Female	20	European-American	PRF1	c.227G>/>A(p.Cys76Tyr)	Heterozygous	0.00071	Absent perforin expression
27	Female	20	European-American	PRF1	c.826A>/>C(p.Gln209Pro)	Heterozygous	0.0012	
28	Female	21.8	Unknown	PRF1	c.272C>T(p.Ala91Val)	Heterozygous	2.92	Absent NK cell function, decreased perforin expression
29	Male	17	European-American	PRF1	c.445G>/>A(p.Gly149Ser)	Heterozygous	0.014	
30	Female	41.2	European-American	PRF1	c.272C>T(p.Ala91Val)	Heterozygous	2.92	Absent perforin expression
31	Female	8.3	European-American	PRF1	c.443C>/>G(p.Ala148Gly)	Heterozygous	0.0004	NA
32	Male	2.6	Unknown	PRF1	c.445G>/>A(p.Gly149Ser)	Homozygous	0.014	Absent NK cell function
33	Male	0.8	Latino-Hispanic	PRF1	c.445G>/>A(p.Gly149Ser)	Homozygous	0.014	Symptoms of HLH
34	Female	6	Latino-Hispanic	PRF1	c.445G>/>A(p.Gly149Ser)	Homozygous	0.014	NA
35	Female	0.3	European-American	PRF1	c.445G>/>A(p.Gly149Ser)	Homozygous	0.014	Family history of HLH
36	Male	42	Latino-Hispanic	PRF1	c.445G>/>A(p.Gly149Ser)	Heterozygous	0.014	NA
37	Male	4.6	Unknown	PRF1	c.445G>/>A(p.Gly149Ser)	Heterozygous	0.014	Absent perforin expression
38	Female	32	Middle Eastern	PRF1	c.501C>/>G(p.Tyr167*)	Homozygous	ND	Symptoms of HLH
39	Female	0.3	Unknown	PRF1	c.512C>/>A(p.Thr171Asn)	Homozygous	0.0028	Absent perforin expression
40	Male	9.5	European-American	PRF1	c.786_801del(p.Gln263fs)	Heterozygous	ND	Absent NK cell function
41	Male	59	Unknown	PRF1	c.853_855del(p.Lys285del)	Heterozygous	0.00071	NA
42	Female	0.7	Middle Eastern	PRF1	c.880del(p.Gln294fs)	Homozygous	ND	Symptoms of HLH
43	Female	2	Middle Eastern	PRF1	c.895C>/>T(p.Arg299Cys)	Homozygous	0.0012	Symptoms of HLH
44	Female	0.2	Latino-Hispanic	PRF1	c.904G>/>A(p.Glu302*)	Homozygous	ND	Absent perforin expression
45	Female	1.8	Unknown	PRF1	c.938A>/>T(p.Asp313Val)	Homozygous	0.0012	Symptoms of HLH
46	Female	10.3	European-American	PRF1	c.949G>/>A(p.Gly149Ser)	Heterozygous	0.014	Symptoms of HLH
47	Male	1.1	Unknown	PRF1	c.1081A>/>T(p.Arg361Trp)	Heterozygous	ND	Symptoms of HLH
48	Male	12.5	Middle Eastern	PRF1	c.1081A>/>T(p.Arg361Trp)	Homozygous	0.0011	Abnormal brain lesions and seizures
49	Female	2.6	Unknown	PRF1	c.1229_1230delinsCC(p.Arg410Pro)	Homozygous	ND	NA
50	Female	0.2	African American	PRF1	c.1304C>/>T(p.Ala435Met)	Heterozygous	0.0028	Absent perforin expression
51	Female	2.6	Latino-Hispanic	PRF1	c.1337A>/>C(p.Gln446Pro)	Homozygous	0.0016	NA
52	Female	2.6	Unknown	PRF1	c.1337A>/>C(p.Gln446Pro)	Homozygous	0.0016	Symptoms of HLH
53	Female	0.4	Middle Eastern	STXBP2	c.37+2T>C	Heterozygous	ND	Absent NK cell function
54	Male	0.6	Unknown	STXBP2	c.37+5G>A	Heterozygous	ND	NA

NA, no data; ND, no data; NK, natural killer.

*gnomAD v2.1.1 total population frequency.

†HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following: fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/hyperglycemies, and/or decreased fibrinogen.

‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
Patient no.	Sex	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
55	Female	Asian-American	STXBP2	c.193C>T(p.Arg65Trp)	Homozygous	0.00071	Absent NK cell function
56	Female	Unknown	STXBP2	c.194G>A(p.Arg65Gln)	Heterozygous	0.0028	Absent NK cell function
57	Male	European-American	STXBP2	c.194G>A(p.Arg65Gln)	Heterozygous	0.0028	Symptoms of HLH
58	Female	European-American	STXBP2	c.326-30_326-23del	Heterozygous	0.0068	Symptoms of HLH
59	Male	Latino-Hispanic	STXBP2	c.389T>C(p.Leu130Ser)	Homozygous	0.0032	Symptoms of HLH
60	Female	African American	STXBP2	c.389T>C(p.Leu130Ser)	Heterozygous	0.0032	Symptoms of HLH; family history of HLH
61	Male	European-American	STXBP2	c.752C>T(p.Ala251Val)	Heterozygous	ND	Symptoms of HLH
62	Female	Unknown	STXBP2	c.752C>T(p.Ala251Val)	Heterozygous	ND	Symptoms of HLH
63	Male	Middle Eastern	STXBP2	c.481del(p.Arg161fs)	Homozygous	0.0036	NA
64	Male	Latino-Hispanic	STXBP2	c.703C>G(p.Arg235Gly)	Homozygous	0.00071	Absent NK cell function
65	Female	Middle Eastern	STXBP2	c.1247-1G>C	Heterozygous	ND	Symptoms of HLH
66	Male	Unknown	STXBP2	c.902+5G>A	Heterozygous	0.002	NA
67	Male	Unknown	STXBP2	c.1247-1G>C	Heterozygous	0.02	Symptoms of HLH
68	Female	Latino-Spanish	STXBP2	c.1247-1G>C	Heterozygous	0.02	Decreased NK cell function
69	Male	European-American	STXBP2	c.1247-1G>C	Homozygous	0.02	Symptoms of HLH
70	Female	European-American	STXBP2	c.1247-1G>C	Homozygous	0.02	Symptoms of HLH
71	Male	European-American	STXBP2	c.1247-1G>C	Homozygous	0.02	NA
72	Male	European-American	STXBP2	c.1247-1G>C	Heterozygous	0.02	Absent NK cell function
73	Female	European-American	STXBP2	c.1247-1G>C	Heterozygous	0.02	Absent NK cell function
74	Female	Unknown	STXBP2	c.1247-1G>C	Heterozygous	0.02	Decreased NK cell function
75	Male	European-American	STXBP2	c.1247-1G>C	Heterozygous	0.02	Symptoms of HLH
76	Female	European-American	STXBP2	c.1247-1G>C	Heterozygous	0.02	Absent NK cell function
77	Female	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
78	Female	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	NA
79	Female	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
80	Female	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
81	Male	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	NA
82	Male	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
83	Female	Middle Eastern	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
84	Female	Unknown	STXBP2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH

NA, no data; ND, no data; NK, natural killer.
*gnomAD v2.1.1 total population frequency.
1HLH: hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following: fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen.
‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
Patient no.	Sex	Age at testing, y (unless indicated otherwise)	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
85	Male	0.6	Unknown	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Family history of HLH
86	Male	1.6	Middle Eastern	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
87	Male	0.3	Middle Eastern	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
88	Female	63 d	Middle Eastern	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Family history of HLH
89	Male	0.5	Unknown	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
90	Male	0.2	Middle Eastern	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Symptoms of HLH
91	Male	11.1	Unknown	STXB2	c.1430C>T(p.Pro477Leu)	Homozygous	0.00074	Absent NK cell function
92	Female	10.1	Unknown	STXB2	c.1430C>T(p.Pro477Leu)	Heterozygous	0.00074	Symptoms of HLH

STXB2	c.1696 +5G>T	Heterozygous	ND					
93	Male	0.5	Middle Eastern	STXB2	c.1452+1G>A	Homozygous	ND	Symptoms of HLH
94	Male	1	Middle Eastern	STXB2	c.1452+1G>A	Homozygous	ND	Abnormal NK cell function
95	Female	49 d	European-American	UNC13D	c.118-308C>T	Heterozygous	0.01	Dymorphic facies, decreased NK cell function
UNC13D	c.258,2267delins TACCTGTGTTCGA (p.Gly753fs)	Heterozygous	ND					
96	Male	0.7	European-American	UNC13D	c.118-308C>T	Heterozygous	0.019	Decreased NK cell function
UNC13D	c.2346_2349del(p.Arg782fs)	Heterozygous	0.01					
97	Male	0.2	European-American + Latino-Spanish	UNC13D	c.118-308C>T	Heterozygous	0.019	Decreased NK cell function
UNC13D	c.2346_2349del(p.Arg782fs)	Heterozygous	ND					
98	Female	1.3	Non-Hispanic white	UNC13D	c.118-308C>T	Heterozygous	0.019	Symptoms of HLH, seizures, normal NK cell function
UNC13D	c.2867C>T(p.Pro956Leu)	Heterozygous	ND					
99	Female	1	Non-Hispanic white	UNC13D	c.118-308C>T	Heterozygous	0.019	Absent NK cell function
UNC13D	c.3193C>T(p.Arg1065*)	Heterozygous	ND					
100	Female	3.2	European-American	UNC13D	c.118-308C>T	Heterozygous	0.019	Absent NK cell function
UNC13D	c.253Kb inversion	Heterozygous	ND					
101	Male	2.6	Unknown	UNC13D	c.1541G>C	Heterozygous	ND	Decreased NK cell function
UNC13D	c.651G>A(p.Tyr184*)	Heterozygous	ND					
102	Male	0.2	Unknown	UNC13D	c.253Kb inversion	Heterozygous	ND	Symptoms of HLH
UNC13D	c.651G>A(p.Tyr184*)	Heterozygous	ND					
103	Female	0.2	European-American	UNC13D	c.1389+1G>A	Heterozygous	ND	NA
UNC13D	c.1389+1G>A	Heterozygous	ND					
104	Female	0.2	European-American	UNC13D	c.2447+1G>A	Heterozygous	0.00051	Absent NK cell function
UNC13D	c.2447+1G>A	Heterozygous	ND					
105	Female	0.6	Non-Hispanic white	UNC13D	c.253Kb inversion	Heterozygous	ND	Decreased NK cell function
UNC13D	c.651G>A(p.Tyr184*)	Heterozygous	ND					
106	Male	11.4	Hispanic white	UNC13D	c.162A>G(p.Tyr51Cys)	Heterozygous	ND	Symptoms of HLH
UNC13D	c.778T>C(p.Trp260Arg)	Heterozygous	ND					
107	Male	0.4	European-American	UNC13D	c.2621G>A	Heterozygous	ND	Symptoms of HLH, abnormal NK cell function, family history of HLH
UNC13D	c.778T>C(p.Trp260Arg)	Heterozygous	ND					
108	Male	0.4	Unknown	UNC13D	c.321+1_321+2del	Heterozygous	ND	Decreased NK cell function
UNC13D	c.778T>C(p.Trp260Arg)	Heterozygous	ND					

NA, no data; ND, no data; NK, natural killer.
*gnomAD v2.1.1 total population frequency.
†HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following "fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen."
‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.

23 JUNE 2020 · VOLUME 4, NUMBER 12 FREQUENCY AND VARIATION OF HLH-RELATED GENES 2583
Patient no.	Sex	Age at testing, y	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†	
109	Male	0.3	Unknown	UNC13D	c.322-2A>T	Heterozygous	0.0024	Symptoms of HLH, decreased NK cell function	
110	Male	0.3	Unknown	UNC13D	c.419T>C	Ile140Thr	Heterozygous	0.0004	NA
				UNC13D	c.460C>T	p.Arg154Glu	Heterozygous	0.011	
111	Female	5.4	Middle Eastern	UNC13D	c.424dup(p.Gln142fs)	Homozygous	ND	Symptoms of HLH	
112	Male	7.7	Latino-Hispanic	UNC13D	c.518C>T	p.Ile173Thr	Heterozygous	0.0028	NA
113	Female	0.3	European-American	UNC13D	c.419T>C	p.Arg154Thr	Heterozygous	0.011	
114	Male	4.9	European-American	UNC13D	c.570-2A>T	Heterozygous	ND	Absent NK cell function	
115	Female	0.2	Middle Eastern	UNC13D	c.753+1G>T	Heterozygous	0.00044	Symptoms of HLH	
116	Female	0.6	European-American	UNC13D	c.551G>A	p.Trp184*	Heterozygous	0.0011	Abnormal NK cell function
117	Female	1.2	Latino-Spanish	UNC13D	c.766C>T	p.Arg256*	Heterozygous	0.00051	
118	Female	1	Non-Hispanic white	UNC13D	c.1055+1G>T	Heterozygous	ND	Decreased NK cell function, family history of HLH	
119	Male	0.7	European-American	UNC13D	c.1229_1230dup(p.Arg411fs)	Heterozygous	ND	Symptoms of HLH, hypertelorism	
120	Female	0.2	European-American	UNC13D	c.1256_1260del(p.Ser420fs)	Heterozygous	ND	Symptoms of HLH, decreased NK cell function	
121	Male	18.3	European-American	UNC13D	c.1387C>T	p.Gln463*	Heterozygous	0.011	
122	Female	58 d	European-American	UNC13D	c.1389+1G>A	Heterozygous	0.0071	Symptoms of HLH	
				UNC13D	c.1848+1G>C	Heterozygous	ND		
123	Female	0.2	Middle Eastern	UNC13D	c.1423C>T	p.Gln475*	Homozygous	ND	NA
124	Male	10 d	Pacific Islander	UNC13D	c.2296C>T	p.Gln766*	Homozygous	ND	Decreased NK cell function
125	Female	13.2	Unknown	UNC13D	c.2346_2349del(p.Arg782fs)	Heterozygous	0.01	NA	
126	Female	2	Unknown	UNC13D	c.3053T>C	p.Ala1018Thr	Homozygous	0.029	
127	Female	0.3	Middle Eastern	UNC13D	c.2553+1G>T	Heterozygous	ND	Symptoms of HLH	
128	Female	0.2	Middle Eastern	UNC13D	c.2553+1G>T	Heterozygous	ND	Symptoms of HLH	
129	Female	1	Asian	UNC13D	c.2688G>A	p.Gly863Asp	Homozygous	0.029	Decreased NK cell function
130	Female	0.4	African American	UNC13D	c.2695C>T	p.Arg899*	Homozygous	0.0018	Symptoms of HLH, absent NK cell function, dysmorphic facies
131	Male	0.7	Non-Hispanic white	UNC13D	c.2819del(p.Leu940fs)	Homozygous	ND	symptoms of HLH	
132	Female	0.6	Middle Eastern	UNC13D	c.3048dup(p.Glu1017fs)	Homozygous	ND	NA	
133	Female	0.7	Unknown	UNC13D	c.3053C>T	p.Ala1018Thr	Homozygous	0.00088	2 affected siblings
134	Male	13	European-American	RAB27A	c.121C>G	p.Thr41Ala	Heterozygous	ND	NA
				RAB27A	c.352C>T	p.Gln118*	Heterozygous	ND	
135	Male	9.6	Middle Eastern	RAB27A	c.244C>T	p.Arg82Cys	Homozygous	0.0016	NA

NA, no data; ND, no data; NK, natural killer.
*gnomAD v2.1.1 total population frequency.
†HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following "fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen."
‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
Patient no.	Sex	Age at testing, y (unless indicated otherwise)	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
136	Male	9.9	Middle Eastern	RAB27A	c.244C>T(C.Arg82Cys)	Homozygous	0.0016	NA
137	Female	2	Middle Eastern	RAB27A	c.244C>T(C.Arg82Cys)	Homozygous	0.0016	Failure to thrive, bone marrow failure
138	Female	9.4	Middle Eastern	RAB27A	c.244C>T(C.Arg82Cys)	Homozygous	0.0016	Symptoms of HLH
139	Male	10.6	Middle Eastern	RAB27A	c.244C>T(C.Arg82Cys)	Homozygous	0.0016	Symptoms of HLH
140	Male	19.5	Middle Eastern	RAB27A	c.244C>T(C.Arg82Cys)	Homozygous	0.0016	Symptoms of HLH
141	Female	0.3	Latino-Hispanic	RAB27A	c.335del(p.Asn112fs)	Homozygous	0.0044	Symptoms of HLH
142	Female	0.4	Middle Eastern	RAB27A	c.400A>C(p.Lys134Gln)	Homozygous	ND	NA
143	Female	53.9	Pacific Islander	RAB27A	c.476A>G(p.Tyr159Cys)	Homozygous	ND	Symptoms of HLH, absent NK cell function
144	Male	1.2	Middle Eastern	RAB27A	c.598C>T(C.Arg200*)	Homozygous	0.0004	NA
145	Female	0.4	European-American	RAB27A	c.638_642del(p.Glu213fs)	Homozygous	0.0008	Symptoms of HLH
146	Female	0.7	African American	LYST	c.925C>T(C.Arg309*)	Heterozygous	ND	Oculocutaneous albinism, neutropenia
147	Male	3.4	Unknown	LYST	c.3194del(p.Leu1065*)	Homozygous	0.0004	NA
148	Female	0.3	Middle Eastern	LYST	c.4158dup(p.Thr1387fs)	Homozygous	ND	Premature gray hair, anemia
149	Male	0.9	European-American	LYST	c.5715del(p.Asn1905fs)	Homozygous	ND	Oculocutaneous albinism, neutropenia, absent NK cell function
150	Female	6.9	Unknown	LYST	c.5784+1G>T	Homozygous	ND	Oculocutaneous albinism, dysmorphic facies, neutropenia
151	Male	3.2	Non-Hispanic white	LYST	c.6159_6160del(p.Met2053fs)	Homozygous	ND	NA
152	Male	1.8	Middle Eastern	LYST	c.7291del(p.Leu2431fs)	Homozygous	ND	Hyperpigmentation, anemia
153	Male	1.2	African American	LYST	c.8770C>T(C.Gln2924*)	Heterozygous	ND	Silver hair, hypopigmented skin lesions, pancytopenia
154	Female	7.1	Middle Eastern	LYST	c.10776C>G(p.Tyr3592*)	Homozygous	ND	Abnormal pigmentation, neutropenia
155	Female	1.2	Unknown	STX11	c.73G>T(C.Glu25*)	Heterozygous	0.0004	Decreased NK cell function
156	Female	5.6	Middle Eastern	STX11	c.748C>T(C.Gln250*)	Heterozygous	0.00081	
157	Female	11.6	Middle Eastern	STX11	c.173T>C(p.Leu58Pro)	Homozygous	0.0008	Symptoms of HLH, grayish hair
158	Male	2.9	European-American + Latino-Hispanic	STX11	c.462_463delinsA(p.Arg155fs)	Heterozygous	ND	Decreased NK cell function
159	Male	1.4	Asian-Indian	STX11	c.687dup(p.Gln230fs)	Homozygous	ND	NA
160	Female	12 d	Middle Eastern	SLC7A7	c.1429+1G>C	Homozygous	ND	Family history of HLH
161	Male	1.2	African American	SLC7A7	c.701del(p.Ser234fs)	Heterozygous	0.0016	NA
162	Female	13.7	European-American	SLC7A7	c.360_361delinsAA (p.Trp121Arg)	Homozygous	ND	NA
163	Male	5.4	African American	XIAP	c.145C>T(C.Arg49*)	Heterozygous	ND	Markedly decreased XIAP expression
164	Male	18.7	European-American	XIAP	c.345C>G(p.Tyr115*)	Homozygous	ND	Symptoms of HLH
165	Male	30.3	European-American	XIAP	c.608G>T(C.Cys203Phe)	Homozygous	ND	NA
166	Male	2	European-American	XIAP	c.664C>T(C.Arg222*)	Homozygous	ND	Symptoms of HLH
167	Male	8.9	European-American	XIAP	c.738del(p.Asp247fs)	Homozygous	ND	NA

*gnomAD v2.1.1 total population frequency.
†HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following "fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen."
‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
with degranulation defects were more common than previously (52/197) of patients (Figure 2A). Mutations in the genes associated PRF1 in these 197 patients. Pathogenic or likely causal variants in the genes resulted in a positive molecular diagnostic rate of 10.4% 35 samples with hemizygotes observed in an X-linked disorder. This heterozygotes observed in a recessive condition, respectively, and 20 diagnosis: 87 samples with homozygotes and 75 with compound patients. Of these, 197 samples had a definite molecular genetic diagnosis: 87 samples with homozygotes and 75 with compound heterozygotes observed in a recessive condition, respectively, and 35 samples with hemzygotes observed in an X-linked disorder. This resulted in a positive molecular diagnostic rate of 10.4% (supplemental Figure 1). Table 1 lists the genetic variants identified otherwise) Ethnicity Gene Variant Zygosity Population frequency (gnomAD*),% Symptoms/immunology testing/family history†

Patient no.	Sex	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*),%	Symptoms/immunology testing/family history†	
168	Male	European-American	XIAP	c.738del(p.Asp247fs)	Hemizygous	ND	Absent XIAP expression	
169	Male	African-American	XIAP	c.889A>T(p.Lys297*)	Hemizygous	ND	NA	
170	Male	Unknown	XIAP	c.894_898del(p.Lys299fs)	Hemizygous	ND	NA	
171	Male	European-American	XIAP	c.894_898del(p.Lys299fs)	Hemizygous	ND	Symptoms of HLH	
172	Male	African-American	XIAP	c.926_929del(p.Asp309fs)	Hemizygous	ND	Symptoms of HLH	
173	Male	European-American	XIAP	c.969G>A(p.Trp323*)	Hemizygous	ND	Decreased XIAP expression	
174	Male	Unknown	XIAP	c.1021_1022del(p.Asn341fs)	Hemizygous	ND	NA	
175	Male	4.5	Unknown	c.1056-1G>A	Hemizygous	ND	NA	
176	Male	2.7	Latino-Hispanic	XIAP	c.1141C>T(p.Arg381*)	Hemizygous	ND	NA
177	Male	11.8	Unknown	XIAP	c.1141C>T(p.Arg381*)	Hemizygous	ND	Absent XIAP expression
178	Male	1.9	Pacific-Islander	XIAP	c.1239_1242dup(p.Val415fs)	Hemizygous	ND	Markedly decreased XIAP expression
179	Male	1.9	Unknown	XIAP	c.1239_1242dup(p.Val415fs)	Hemizygous	ND	NA
180	Male	1.1	Unknown	XIAP	c.1301-1G>A	Hemizygous	ND	Symptoms of HLH
181	Male	1.5	Unknown	XIAP	c.1445C>G(p.Pro482Arg)	Hemizygous	ND	NA
182	Male	35	European-American	XIAP	c.1456dup(p.Thr486fs)	Hemizygous	ND	Symptoms of HLH
183	Male	4.5	European-American	SH2D1A	c.20A>G(p.Tyr7Cys)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
184	Male	1.8	Unknown	SH2D1A	c.117C>T(p.Gly39Gly)	Hemizygous	ND	NA
185	Male	3.5	Unknown	SH2D1A	c.130T>C(p.Cys44Arg)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
186	Male	27	European-American	SH2D1A	c.163C>T(p.Arg55*)	Hemizygous	ND	History of pneumonia
187	Male	8	Unknown	SH2D1A	c.172C>T(p.Gln58*)	Hemizygous	ND	NA
188	Male	6.8	African-American	SH2D1A	c.172C>T(p.Gln58*)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
189	Male	4.7	Latino-Hispanic	SH2D1A	c.199_201+19del(p.Glu67del)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
190	Male	1.3	African-American	SH2D1A	c.201G>A(p.Glu67Glu)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
191	Male	7	European-American	SH2D1A	c.245del(p.Asn82fs)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
192	Male	34	European-American	SH2D1A	c.296C>T(p.Gln99*)	Hemizygous	ND	Absent SAP in CD8⁺ T cells
193	Male	5.4	Middle-Eastern	MAGT1	c.154_161delinsC(p.Ile52fs)	Hemizygous	ND	Symptoms of HLH, bone pain in low extremities
194	Male	10.4	European-American	MAGT1	c.2223C>T(p.Gln75*)	Hemizygous	ND	NA
195	Male	18.4	European-American	MAGT1	c.407G>A(p.Tyr136*)	Hemizygous	ND	NA
196	Male	27.6	European-American	MAGT1	c.443_444del(p.Phe148fs)	Hemizygous	ND	Symptoms of HLH
197	Male	17.3	European-American	MAGT1	c.774del(p.Phe258fs)	Hemizygous	ND	NA

NA, no data; ND, no data; NK, natural killer.
*gnomAD v2.1.1 total population frequency.
†HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following: fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/leukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen.*
†According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.

patients. Of these, 197 samples had a definite molecular genetic diagnosis: 87 samples with homozygotes and 75 with compound heterozygotes observed in a recessive condition, respectively, and 35 samples with hemzygotes observed in an X-linked disorder. This resulted in a positive molecular diagnostic rate of 10.4% (supplemental Figure 1). Table 1 lists the genetic variants appreciated: 21.3% (42/197) of the patients had pathogenic or likely causal variants in STXBP2, 19.6% (39/197) in UNC13D, 6.1% (12/197) in RAB27A, 4.6% (9/197) in LYST, and 2.5% (5/197) in STX11. Pathogenic variants in the lysinuric protein intolerance gene SLC7A7 were identified in 1.5% (3/197) of the patients, the least frequent group of patients in our cohort. X-linked conditions accounted for 17.8% (35/197) of the patients: 20 (10.2%) patients had pathogenic or suspected diagnostic variants in XIAP, 10 (5.1%) in SH2D1A, and 5 (2.5%) in MAGT1 (Figure 2A). In addition, 30 of 227 patients with clinically suspected
HLH were identified to carry only 1 pathogenic or likely pathogenic variant in a recessive condition by this panel approach. Among them, 50% (15/30) had a PRF1 pathogenic variant, 3 had a STXBP2 pathogenic variant, 4 had an UNC13D pathogenic variant, 5 had a RAB27 pathogenic variant, 2 had a LYST pathogenic variant, and 1 patient had a STX11 pathogenic variant. Of these 30 patients, 3 (cases S18, S23, and S30) also carried another common PRF1 variant c.272C>T (p.Ala91Val) in the heterozygous state (Table 2).

When the patients were divided based on age ranges, the diagnostic rates in patients aged 0 to 12 months, 1 to 5 years, 5 to 12 years, 12 to 18 years, and older than 18 years are 28.6% (95/332), 11.3% (43/380), 6.7% (25/371), 3.3% (10/304), and 4.8% (24/505), respectively. Moreover, patients with a molecular diagnosis in familial HLH type 2-5 genes (PRF1, UNC13D, STX11, and STXBP2; supplemental Table 1) tended to be referred and diagnosed at an earlier age compared with other genes (median age, 0.7 years [4 days-57.8 years] vs 4.5 years [1 day-53.9 years]; P = .009). Patients with X-linked conditions (XIAP, SH2D1A, and MAGT1) were referred and diagnosed at relatively older ages (median age, 5.4 years [1 day-35 years]) (Figure 2B).

Ten of 15 genes in the HLH sequencing panel were identified with pathogenic or likely pathogenic variants in our patient cohort, with the highest allele number and unique variants in the PRF1 gene (115 alleles; 45 unique variants). The majority of the identified PRF1 variants (66.7%; 30/45) were missense changes that were distributed along the exons without a particular hot spot. The most frequent pathogenic variant identified in our cohort was c.50del (p.Leu17fs), which appeared in 37 alleles in 27 patients including 10 homozygotes, 12 compound heterozygotes, and 5 heterozygotes. Of the 27 patients carrying this variant, 16 were African American, 3 were Latino-Spanish, 1 was Middle Eastern, and 7 were unknown. The other frequently detected variant was c.445G>A (p.Gly149Ser), which was identified in 19.2% (10/52) of the patients including 3 homozygotes, 6 compound heterozygotes, and 1 heterozygote. Among these 10 patients, 4 were Latino-Spanish, 1 was European-American, and 5 were unknown. (Tables 1 and 2; Figures 3 and 4A).

The second most frequently mutated gene in our cohort was the STXBP2 gene but with fewer unique variants (87 alleles, 20 unique variants). One-half (10/20) of unique STXBP2 variants were missense changes. As shown in Figure 4B, the missense variant c.1430C>T (p.Pro477Leu) and the splicing variant c.1247-1G>C were the 2 most frequent variants identified in STXBP2, accounting for 33 alleles in 18 patients and 17 alleles in 12 patients, respectively. Of the 18 patients carrying the c.1430C>T (p.Pro477Leu) variant, 13 were Middle Eastern and 5 were unknown. This result implies that this particular mutation in the STXBP2 gene identified in these patients might be identical by descent (ie, they might be inherited from a common ancestry). On the other hand, among the 12 patients who carry at least 1 splicing variant c.1247-1G>C, 8 were European-American, 1 was Latino-Spanish, and 3 were unknown (Tables 1 and 2; Figures 3 and 4B).

UNC13D was identified with a similar number of causal alleles to STXBP2 but with the doubled number of unique variants (82 alleles, 45 unique variants). Fourteen of 45 unique UNC13D variants were splicing mutations. The intronic variant c.118-308C>T (p.Pro477Leu) variant, the 253-kb inversion were each identified in 6 patients in the compound heterozygous state along with a diverse second mutation, much higher than a recently reported Chinese cohort16 (Table 1; Figures 3 and 4C). As shown in Table 1, among the 39 patients with the UNC13D pathogenic or likely pathogenic variants, besides common HLH symptoms, cases 95 and 130 were also reported.

Figure 1. Volume of HLH-related single gene and HLH panel testing in Cincinnati Children's Hospital Medical Center from 2013 to 2018.

to have dysmorphic facies, case 98 seizures, and case 119 hypertelorism. Eleven mutated alleles and 7 unique alterations were identified in the STX11 gene in our cohort. Although most unique variants (5/7) are truncating variants, the missense variant c.173T>C (p.Leu58Pro) was the most frequently identified in STX11, appearing as 2 homozygotes in 2 patients with unknown relationship. Twenty-nine and 20 pathogenic or likely causal variants representing 11 and 13 unique genetic alterations were also identified in RAB27A and LYST, respectively. Most patients (7/9; 77.8%) with a molecular variation finding in the LYST gene were reported to have an albinism phenotype including silver hair, abnormal pigmentation, and oculocutaneous albinism (Tables 1 and 2; Figure 3; supplemental Figure 2).

Discussion

In this study, we analyzed 1892 samples tested for a panel of 15 HLH-associated genes, which were received between September 2013 and June 2018 at CCHMC. Both known and novel pathogenic or likely pathogenic variants have been identified in this
Table 2. List of 30 patients in whom only 1 heterozygous pathogenic or likely pathogenic variant was identified

Patient no.	Sex	Age at testing, y (unless indicated otherwise)	Ethnicity	Gene	Variant	Zygosity	Population frequency (gnomAD*), %	Symptoms/immunology testing/family history†
S01	Female	28.3	Unknown	PRF1	c.35_46del(p.Leu12_Leu15del)	Heterozygous	ND	NA
S02	Male	20 d	Unknown	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Decreased NK cell function and perforin expression
S03	Female	0.4	Unknown	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Symptoms of HLH
S04	Male	7.8	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Decreased perforin expression
S05	Female	11.2	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	Absent NK cell function
S06	Male	52	African American	PRF1	c.50del(p.Leu17fs)	Heterozygous	0.033	HLH, lymphoma
S07	Male	13.3	Native American	PRF1	c.112G>A(p.Val38Met)	Heterozygous	0.0073	Symptoms of HLH
S08	Male	16.6	Latino-Hispanic	PRF1	c.445G>A(p.Gly149Ser)	Heterozygous	0.014	Symptoms of HLH
S09	Female	9.9	Unknown	PRF1	c.563C>T(p.Pro188Leu)	Heterozygous	0.013	Symptoms of HLH
S10	Male	17.8	Unknown	PRF1	c.853_855del(p.Lys285del)	Heterozygous	0.0057	Thrombocytopenia, absent NK cell function
S11	Female	3.1	European-American	PRF1	c.1066C>T(p.Arg356Trp)	Heterozygous	0.0014	NA
S12	Female	3	Unknown	PRF1	c.1117C>T(p.Arg373Cys)	Heterozygous	0.0051	Symptoms of HLH, normal NK cell function
S13	Female	16.7	Unknown	PRF1	c.1117C>T(p.Arg373Cys)	Heterozygous	0.0051	Absent NK cell function
S14	Female	12 d	Middle Eastern	PRF1	c.1122G>A(p.Trp374*)	Heterozygous	0.0016	NA
S15	Female	9.7	Malaysian-Chinese	PRF1	c.1349C>T(p.Trim405Met)	Heterozygous	0.0028	History of HLH
S16	Female	0.5	Middle Eastern	STXB2	c.1430C>T(p.Pro477Leu)	Heterozygous	0.00074	Symptoms of HLH
S17	Female	0.5	Latino-Hispanic	STXB2	c.1717C>T(p.Pro573Ser)	Heterozygous	ND	NA
S18	Male	37 d	European-American	STXB2	c.1717C>T(p.Pro573Ser)	Heterozygous	ND	Absent NK cell function
S19	Male	14.9	Asian-American	UNC15D	c.118-307G>A	Heterozygous	ND	Absent NK cell function
S20	Male	20.3	Unknown	UNC15D	c.247C>T(p.Arg83*)	Heterozygous	0.0004	NA
S21	Female	62.9	European-American	UNC15D	c.1759C>T(p.Arg587Cys)	Heterozygous	0.019	Symptoms of HLH
S22	Female	13.1	European-American	UNC15D	c.2037_2038insG(p.Arg680fs)	Heterozygous	ND	Symptoms of HLH, one sibling deceased due to HLH
S23	Male	0.8	Middle Eastern	RAB27A	c.148_149delinsC(p.Arg60fs)	Heterozygous	ND	Gray hair, suspected for GS, consanguinity
S24	Male	3	European-American	RAB27A	c.240-47_240delins20	Heterozygous	ND	Rash, neutropenia
S25	Male	11.1	Indian	RAB27A	c.244C>T(p.Arg83Cys)	Heterozygous	0.0016	Symptoms of HLH
S26	Female	24.9	Latino-Hispanic	RAB27A	c.335del(p.Asn112fs)	Heterozygous	0.0044	Symptoms of HLH
S27	Male	2.1	Indian	RAB27A	c.400_410delinsC(p.Lys144fs)	Heterozygous	0.0004	Abnormal brain MRI, decreased NK cell function
S28	Male	29	European-American	LYST	c.485_496del(p.Asp157fs)	Heterozygous	ND	Pancytopenia, increased ferritin level

*gnomAD v2.1.1 total population frequency.

HLH hemophagocytic lymphohistiocytosis, symptoms of HLH reported included any or all of the following *fever, hepatosplenomegaly, anemia/cytopenias, neutropenia/eukopenia, elevated ferritin/triglycerides, and/or decreased fibrinogen.*

‡According to the ACMG guideline, c.272C>T(p.Ala91Val) in PRF1 was classified as a variant of unknown significance.
We found that 12% of the patients had at least 1 pathogenic or likely pathogenic variant in 1 of the 15 genes, and 10.4% of the patients had a definite molecular diagnosis in an HLH-associated gene. To our knowledge, this is the largest cohort of genetically diagnosed HLH, with the highest number of targeted HLH disease-causing genes tested simultaneously.

Patients with a definite genetic diagnosis were significantly younger than patients with only 1 heterozygote finding, with a median age of 14 months (197 cases) compared with 10 years (30 cases) ($P = .007$). When including all patients analyzed, we found that samples from younger patients were more likely to result in a genetic diagnosis (see "Results"). This observation in our cohort is consistent with previous reports in other similar studies. Together, the genes responsible for degranulation defects ($UNC13D$, $STXBP2$, $STX11$, $LYST$, $RAB27A$) accounted for the majority of cases (107/197; 54.3%). As seen in southern Europe, $FHL2$ and $FHL3$ account for a significant portion of our cases (91/197; 46.2%). However, whereas $FHL5$ accounted for a minor proportion of HLH in Europeans, it is much more prevalent in our cohort (42/197; 21.3%). $PRF1$ was the most frequent causal gene (52/197; 26.4%). Although this finding is not surprising, other groups have described $PRF1$ defects in 40% to 60% of their cases. Nevertheless, all cohorts reported to date used different methods and criteria to define their cases; some included the variants of unknown significance, and others reported only the known significant biallelic or hemizygous variants. These inconsistent criteria make it difficult to compare the results among different groups. The lower percentage of $PRF1$ gene mutations described in our cohort may possibly reflect the use of immunological screening (perforin detection by flow cytometry) before sending for genetic diagnosis.

Compared with other large cohorts previously reported, our results show an extremely wide range of different mutations, reflecting the vast multiethnic population living in North America. Among the 227 cases, mutations were found in 10 different genes ($PRF1$, $UNC13D$, $STX11$, $STXBP2$, $RAB27A$, $LYST$, $XIAP$, $SH2D1A$, $MAGT1$, and $SLC7A7$), with a total of 175 different mutations. Of these unique mutations, 105 were found in only 1 patient. Only 4 variants were observed in more than 7 patients ($PRF1$: c.50del, c.445G>A; $STXBP2$: c.1247-1G>C, c.1430C>T).

Together, the genes responsible for degranulation defects ($UNC13D$, $STXBP2$, $STX11$, $LYST$, $RAB27A$) accounted for the majority of cases (107/197; 54.3%). As seen in southern Europe, $FHL2$ and $FHL3$ account for a significant proportion of our cases (91/197; 46.2%). However, whereas $FHL5$ accounted for a minor proportion of HLH in Europeans, it is much more prevalent in our cohort (42/197; 21.3%). $PRF1$ was the most frequent causal gene (52/197; 26.4%). Although this finding is not surprising, other groups have described $PRF1$ defects in 40% to 60% of their cases. Nevertheless, all cohorts reported to date used different methods and criteria to define their cases; some included the variants of unknown significance, and others reported only the known significant biallelic or hemizygous variants. These inconsistent criteria make it difficult to compare the results among different groups. The lower percentage of $PRF1$ gene mutations described in our cohort may possibly reflect the use of immunological screening (perforin detection by flow cytometry) before sending for genetic diagnosis.

Compared with other large cohorts previously reported, our results show an extremely wide range of different mutations, reflecting the vast multiethnic population living in North America. Among the 227 cases, mutations were found in 10 different genes ($PRF1$, $UNC13D$, $STX11$, $STXBP2$, $RAB27A$, $LYST$, $XIAP$, $SH2D1A$, $MAGT1$, and $SLC7A7$), with a total of 175 different mutations. Of these unique mutations, 105 were found in only 1 patient. Only 4 variants were observed in more than 7 patients ($PRF1$: c.50del, c.445G>A; $STXBP2$: c.1247-1G>C, c.1430C>T). The well-described frameshift variant commonly found in patients with African American background, c.50del in $PRF1$, was the most common variant found in our cohort. The second most common mutation in $PRF1$ was c.445G>A, which has been previously described by multiple groups in different ethnic backgrounds, including Caucasian, Hispanic, Portuguese, German, and
Figure 4. Distributions and frequencies of pathogenic or likely pathogenic variants in the most frequently affected genes associated with HLH in our cohort. (A) Distributions and frequencies of pathogenic or likely pathogenic variants in PRF1. (B) Distributions and frequencies of pathogenic or likely pathogenic variants in STXB2. (C) Distributions and frequencies of pathogenic or likely pathogenic variants in UNC13D. Note: the 253-kb inversion is not shown in the graph. (D) Distributions and frequencies of pathogenic or likely pathogenic variants in XIAP. (A–D) The total number of alleles affected with each variant is indicated in the circles. *Novel variants.
Chinese, reflecting the multiethnic population in North America. Interestingly, the commonly reported mutation in the Turkish population, c.1122G>A, was found in only 1 patient in our cohort. Similarly, we have only 1 case with c.1349C>T, the most common PRF1 mutation among the Chinese population, and no cases of c.1090_1091del or c.207del, variants commonly found in the Japanese population. One of the most prevalent mutations in our cohort, c.1247-1G>C in STXBP2, was previously described by other groups and found in multiple ethnic background including Caucasian, Turkish, Northern European, and Pakistani.

Splicing mutations accounted for an important proportion of our UNC13D variants, with 14 of 45 unique mutations, which represents a different mutation spectrum of UNC13D variation from a Chinese cohort. We observed 3 cases of c.753+1G>T, a predominant mutation found in the German population as well as other parts of Europe (Italy and Croatia). The deep intronic variant c.118-308C>T was observed in 6 unrelated patients, being one of the most frequent UNC13D mutations in our cohort. This is one of the most commonly reported mutations among the Turkish population, but interestingly we had no cases of c.754-1G>C, the other very common mutation in Korea.

The NGS-based approach is highly accurate in capturing point mutations and small deletions and insertions (such as <10 base pair deletions, duplication or insertion), which are the vast majority of sequence changes causing HLH in this 15-gene panel. However, our NGS-based diagnostic pipeline could not reliably identify large structural variations such as large deletions, duplications, or insertions occurring in the genes in this panel because of the limitation of sensitivity and specificity. Better algorithms that could use enriched NGS data to reliably identify these types of variation are warranted. It may be helpful for making a definite genetic diagnosis in the 30 patients in whom only 1 suspicious heterozygous variant in the genes associated with autosomal recessive conditions was identified.

Overall, a genetic diagnosis could be made in 10.4% of the patients using this HLH panel approach. The relatively low diagnostic rate can be explained by multiple factors. Complete clinical information and fulfillment of HLH clinical criteria is crucial to understanding our genetic results. As a heterogeneous disease with different disease mechanisms, many HLH-associated genes have yet to be discovered. In addition, some newly discovered HLH-associated genes such as NLRC4 and CDC42 were not included in our panel and therefore could cause a missing genetic diagnosis for some of those negative cases. Some additional primary immune deficiencies have been reported to present with HLH, for example severe combined immunodeficiency, DiGeorge syndrome, Wiskott-Aldrich syndrome, chronic granulomatous disease, and STAT1 gain of function, among others. Several metabolic diseases also predispose to the development of HLH. With sequencing costs and analysis times going down, whole exome sequencing and even whole genome sequencing will provide more comprehensive solutions for detecting underlying genetic causes of HLH. Whole exome and whole genome sequencing would also identify genetic disorders that are associated with clinical phenotypes that mimic HLH. Indeed, a broader use of whole exome sequencing has already been recommended for patients with HLH. On the other hand, a significant proportion of the 1859 patients in this cohort likely had a secondary form of acquired HLH that developed in the context of malignancy, autoimmune disease, or infection, and whole exome and whole genome sequencing may not be a cost-effective approach for all patients with HLH at present. As the field of genetics continues to make clinical advances, clinicians should continue to weigh the ease, cost, completeness, and timeliness of genetic panel testing options for patients with HLH.

Acknowledgments

The authors thank the physicians and genetic counselors that referred patients to our laboratory for HLH testing and the patients and their families that participated in this testing.

Authorship

Contribution: K.A.R., R.A.M., and M.S. designed the research; V.G.-L., LD., RS., JC., K.Z., K.A.R., R.A.M., and M.S. analyzed data; V.G.-L. and M.S. interpreted results; V.G.-L., JC., R.A.M., and M.S. wrote the manuscript; and all authors edited the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

ORCID profiles: K.Z., 0000-0001-6334-9697; K.A.R., 0000-0003-0671-4859.

Correspondence: Miao Sun, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229; e-mail: miao.sun@cchmc.org; and Rebecca A. Marsh, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229; e-mail: rebecca.marsh@cchmc.org.

References

1. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286(5446): 1957-1959.
2. Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115(4):461-473.
3. zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14(6):827-834.
4. Côte M, Ménager MM, Burgess A, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119(12):3765-3773.
5. zur Stadt U, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85(4):482-492.
6. Barbosa MD, Nguyen QA, Tchernev VT, et al. Identification of the homologous beige and Chediak-Higashi syndrome genes [published correction appears in Nature. 1997;385(6611):97]. Nature. 1996;382(6588):262-265.

7. Enders A, Zieger B, Schwarz K, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108(1):81-87.

8. Ménache G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25(2):173-176.

9. Nichols KE, Harkin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95(23):13765-13770.

10. Rigaud S, Latour S. [An X-linked lymphoproliferative syndrome (XLP) caused by mutations in the inhibitor-of-apoptosis gene XIAP]. Med Sci (Paris). 2007;23(3):235-237.

11. Li FY, Chainge-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011; 475(7357):471-476.

12. van Montfrans JM, Hoeppelman AI, Otto S, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129(3):787-793.

13. Linka RM, Risse SL, Bienemann K, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26(5):963-971.

14. Molleran Lee S, Villanueva J, Sumegi J, et al. Characterisation of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet. 2004;41(2):137-144.

15. Meeths M, Chang SC, Wood SM, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118(22):5783-5793.

16. Chen X, Wang F, Zhang Y, et al. Genetic variant spectrum in 265 Chinese patients with hemophagocytic lymphohistiocytosis: Molecular analyses of PRF1, UNC13D, STX11, STXB2P, SH2D1A, and XIAP. Clin Genet. 2018;94(2):200-212.

17. Cetica V, Sieni E, Pende D, et al. Genetic predisposition to hemophagocytic lymphohistiocytosis: report on 500 patients from the Italian registry. J Allergy Clin Immunol. 2016;137(1):188-196.

18. Chinn IK, Eckstein OS, Peckham-Gregory EC, et al. Mechanic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood. 2018; 132(1):89-100.

19. Molleran Lee S, Villanueva J, Sumegi J, et al. Characterisation of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet. 2004;41(2):137-144.

20. Zur Stadt U, Beutel K, Kolberg S, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27(1):62-68.

21. Ammann S, Lehmbek K, Zur Stadt U, et al; HLH study of the GPOH. Effective immunological guidance of genetic analyses including exome sequencing in patients evaluated for hemophagocytic lymphohistiocytosis. J Clin Immunol. 2017;37(8):770-780.

22. Lee SM, Sumegi J, Villanueva J, et al. Patients of African ancestry with hemophagocytic lymphohistiocytosis share a common haplotype of PRF1 with a 50delT mutation. J Pediatr. 2006;149(1):134-137.

23. Zhang K, Jordan MB, Marsh RA, et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXB2P are associated with adult-onset familial HLH. Blood. 2011;118(22):5794-5798.

24. Tesi B, Chiang SC, El-Ghoneimy D, et al. Spectrum of atypical clinical presentations in patients with biallelic PRF1 missense mutations. Pediatr Blood Cancer. 2015;62(12):2094-2100.

25. Göransdotter Ericson K, Fadéel B, Nilsson-Ardnor S, et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Haematologica. 2008;93(3):590-597.

26. Trizzino A, zur Stadt U, Ueda I, et al; Histiocyte Society HLH Study group. Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis patients evaluated for hemophagocytic lymphohistiocytosis. Br J Haematol. 2010;152(1):15-21.

27. Ueda I, Morimoto A, Inaba T, et al. Characteristic perforin gene mutations of haemophagocytic lymphohistiocytosis patients in Japan. Br J Haematol. 2003;121(3):503-510.

28. Suga N, Takada H, Nomura A, et al. Perforin defects of primary haemophagocytic lymphohistiocytosis in Japan. Br J Haematol. 2002;116(2):346-349.

29. Rohr J, Beutel K, Maul-Pavicic A, et al. Atypical familial hemophagocytic lymphohistiocytosis due to mutations in UNC13D and STXB2P overlaps with primary immunodeficiency diseases. Haematologica. 2010;95(12):2080-2087.

30. Meeths M, Entesarian M, Al-Herz W, et al. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXB2P. Blood. 2010;116(15):2635-2643.

31. Santoro A, Cannella S, Trizzino A, et al. Mutations affecting mRNA splicing are the most common molecular defect in patients with familial hemophagocytic lymphohistiocytosis type 3. Haematologica. 2008;93(7):1086-1090.

32. Yoon HS, Kim HJ, Yoo KH, et al. UNC13D is the predominant causative gene with recurrent splicing mutations in Korean patients with familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95(4):822-826.

33. Santoro A, Cannella S, Bossi G, et al. Novel Munc13-4 mutations in children and young adult patients with hemophagocytic lymphohistiocytosis. J Med Genet. 2006;43(12):953-960.
34. Seo JY, Song JS, Lee KO, et al; Korea Histiocytosis Working Party. Founder effects in two predominant intronic mutations of UNC13D, c.118-308C>T and c.754-1G>C underlie the unusual predominance of type 3 familial hemophagocytic lymphohistiocytosis (FHL3) in Korea. *Ann Hematol.* 2013;92(3):357-364.

35. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. *Nat Genet.* 2014;46(10):1140-1146.

36. Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. *Nat Genet.* 2014;46(10):1135-1139.

37. Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: Yet another locus for thrombocytopenia and developmental delay. *Am J Med Genet A.* 2015;167A(11):2822-2825.

38. Bode SF, Ammann S, Al-Herz W, et al; Inborn Errors Working Party of the EBMT. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. *Haematologica.* 2015;100(7):978-988.

39. Leiding JW, Okada S, Hagin D, et al. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. *J Allergy Clin Immunol.* 2018;141(2):704-717.

40. Marsh RA, Haddad E. How I treat primary haemophagocytic lymphohistiocytosis. *Br J Haematol.* 2018;182(2):185-199.

41. Taurisano R, Maiorana A, De Benedetti F, Dionisi-Vici C, Boldrini R, Deodato F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. *Eur J Pediatr.* 2014;173(10):1391-1394.

42. Ikeda H, Kato M, Matsunaga A, Shimizu Y, Katsuura M, Hayasaka K. Multiple sulphatase deficiency and haemophagocytic syndrome. *Eur J Pediatr.* 1998;157(7):553-554.

43. Duval M, Fenneteau O, Doireau V, et al. Intermittent hemophagocytic lymphohistiocytosis is a regular feature of lysinuric protein intolerance. *J Pediatr.* 1999;134(2):236-239.

44. Althonaian N, Alsultan A, Morava E, Alfadhel M. Secondary hemophagocytic syndrome associated with COG6 gene defect: report and review. *JIMD Rep.* 2018;42:105-111.