По данным литературы, только 5–20% пациентов после инсульта могут полностью восстановить двигательную функцию руки. Важны корректная постановка целей и индивидуальный подход, направленный на восстановление функционального статуса пациента. Целью исследования было на основе клинико-биомеханического анализа разработать алгоритм оценки нарушений двигательной функции руки у пациентов после инсульта и определить принципы выбора тактики реабилитации. В исследование были включены 25 пациентов с инсультом полушарной локализации и 10 здоровых добровольцев. Для оценки двигательной функции руки применены формализованные клинические шкалы (шкала Фугл–Мейера, Эшворта, тест ARAT) и видеанализ движений. Пациенты были разделены на 2 группы по степени тяжести пареза руки (легкий/умеренный и грубый/выраженный). В обеих группах проводили курс реабилитации, включающий механотерапию, массаж, ЛФК. Выявлено, что у пациентов 1-й группы восстановление двигательной функции в паретичной руке происходит по пути нормализации паттерна движения: нормализация биомеханических параметров, прямо коррелирующая с уменьшением клинической выраженности степени пареза по шкале Фугл–Мейера (r = 0,94; p = 0,01). У пациентов 2-й группы восстановление двигательной функции в паретичной руке происходит по пути компенсации двигательного дефицита: сохранение патологической симметрии по данным биомеханического анализа, обратно коррелирующее с уменьшением клинической выраженности степени пареза (r = –0,9; p = 0,03). В результате проведенного исследования сформирован алгоритм выбора тактики ведения пациентов, основанный на исходных клинических показателях.

**Ключевые слова:** инсульт, парез в руке, нейрореабилитация, адаптация, двигательное переобучение, биомеханика движений, видеанализ движений, патологическая симметрия

**Финансирование:** работа выполнена в рамках государственного заказа № 0512-2014-0036.

**Финансирование:** выполнена в рамках государственного заказа № 0512-2014-0036.

**Информация о вкладе авторов:** А. Е. Хижникова — планирование исследования, анализ литературе, сбор, анализ и интерпретация данных, подготовка черновика рукописи; А. С. Клочков — планирование исследования, анализ литературе, интерпретация данных, подготовка рукописи; А. М. Котов–Смоленский — проведение тренировок с пациентами, включенными в исследование, осмотр пациентов по клиническим шкалам, подготовка черновика рукописи; Н. А. Супонева — планирование исследования, интерпретация данных, подготовка рукописи; М. А. Пирадов — подготовка рукописи.

**Соблюдение этических стандартов:** исследование одобрено этическим комитетом ФГБНУ НЦН (протокол № 1–5/16 от 27 января 2016 г.). Все пациенты подписали добровольное информированное согласие на участие в исследовании.

**Для корреспонденции:** Анастасия Евгеньевна Хижникова
Волоколамское шоссе, д. 80, г. Москва, 125367; nastushkapal@gmail.com

**Статья получена:** 16.08.2019 **Статья принята к печати:** 30.08.2019 **Опубликована онлайн:** 31.08.2019

**DOI:** 10.24075/vrgmu.2019.056

**DYNAMICS OF POST-STROKE HAND PARESIS KINEAMIC PATTERN DURING REHABILITATION**
Khizhnikova AE, Klochkov AS, Kotov–Smolensky AM, Suponeva NA, Piradov MA
Research Center of Neurology, Moscow, Russia

According to the literature data, only 5–20% of post-stroke patients are able to restore the hand motor function completely. Correct goal setting and individual approach to the patient’s functional recovery are important. Our study aimed to develop an algorithm of impaired hand motor functioning assessment for post-stroke patients and to determine the principles of the rehabilitation tactics choosing based on the biomechanical analysis. Twenty five patients with hemispheric stroke and 10 healthy volunteers participated in the study. Formal clinical observation scales (Fugl-Meyer Assessment, Ashworth Scale, ARAT) and video motion analysis were used for evaluation of the hand motor function. Patients were divided into 2 groups according to the hand paresis severity (mild/moderate and pronounced/severe). Rehabilitation was carried out in both groups, including mechanotheraphy, massage and physical therapy. It was revealed that in the 1st group of patients the motor function recovery in the paretic hand was due to movement performance recovery: biomechanical parameters restoration directly correlated with a decrease in the paresis degree according to the Fugl-Meyer Assessment (r = 0,94; p = 0,01). In the 2nd group of patients, the motor function recovery in the paretic hand was due to motor deficit compensation: according to biomechanical analysis, the pathological motor synergies inversely correlated with a decrease in the paresis degree (r = –0,9; p = 0,03). As a result of the study, an algorithm for selecting the patient management tactics based on the baseline clinical indicators was developed.

**Keywords:** stroke, hand paresis, reneurohabilitation, adaptation, motor relearning, movement biomechanics, motion capture, abnormal synergy

**Funding:** the study was performed as a part of the public contract № 0512-2014-0036.

**Author contribution:** Khizhnikova AE — research planning, literature analysis, data acquisition, analysis and interpretation, manuscript draft writing; Klochkov AS — research planning, literature analysis, data interpretation, manuscript writing; Kotov–Smolensky AM — training of surveyed patients, patients examination using clinical scales; Suponeva NA — research planning, data interpretation, manuscript writing; Piradov MA — manuscript writing.

**Compliance with ethical standards:** the study was approved by the Ethics Committee of Research Center of Neurology (protocol № 5/16 dated January 27, 2016). All enrolled patients signed informed consent to participation in the study.

**Correspondence should be addressed:** Anastasia E. Khizhnikova
Volokolamskoye Shosse 80, Moscow, 125367; nastushkapal@gmail.com

**Received:** 16.08.2019 **Accepted:** 30.08.2019 **Published online:** 31.08.2019

**DOI:** 10.24075/brsmu.2019.056

Po данным ряда авторов, в остром периоде инсульта парез руки можно встретить в 48–77% случаев [1, 2]. В то же время только 5–20% пациентов могут полностью восстановить двигательную функцию паретичной руки к концу раннего восстановительного периода [3, 4]. Восстановление двигательной функции верхней конечности проходит за шесть последовательных стадий (от вялого пареза до возможности совершать сложные координированные движения), при этом улучшение может завершиться на любом из этапов и пациент останется с
частично или полностью утраченными возможностями самообслуживания [5]. В связи с этим важным условием эффективной двигательной реабилитации является определение тактики реабилитации пациента для достижения максимального функционального восстановления в зависимости от текущего этапа.

Известно, что у пациентов, перенесших инсульт, имеющих выраженный парез и повышение мышечного тонуса, физиологический паттерн движений становится невозможным. Вследствие этого возникают предпосылки для развития новых двигательных синергий, являющихся по своей сути компенсаторным механизмом. В результате организма искажаются для совершения двигательного акта сохранившиеся двигательные функции конечности либо активные движения в смежных суставах и функционально связанных кинематических цепях. Использование в составе компенсаторных синергий движений с более низким уровнем регуляции приводит к снижению степени приспособляемости к изменяющимся условиям окружающей среды. Впоследствии компенсаторные синергии приобретают патологический характер [6], что ведет к снижению функциональных возможностей пациента и замедлению темпов дальнейшей реабилитации.

Тем не менее стоит отметить, что, по данным некоторых авторов, механизмы компенсации необходимы для пациентов с грубым парезом и их наличие важно для успешного формирования движений у пациентов, перенесших инсульт [7]. В ходе процесса восстановления двигательные синергии проявляются более комплексно и становятся тесно связанными со спастичностью и содружественными реакциями. В настоящее время принято считать, что для лучшего функционального двигательного восстановления необходимо проводить тренировку в рамках существующего патологического стереотипа с последующим расширением зоны активных движений [8]. Благодаря этому на фоне двигательных тренировок, как правило, происходит перестройка патологической синергии за счет увеличения объема «выгодных» компонентов движения [9].

Важны корректная постановка целей и индивидуальный подход в разработке реабилитационной программы, направленной на восстановление прежде всего функционального статуса пациента. Видеоанализ движений паретичной руки и плечевого пояса с подробной оценкой межсуставных взаимоотношений и кинематических характеристик на фоне курса реабилитации может оказать неоцененную помощь в ретроспективной оценке успешности восстановительного процесса. Целью исследования было на основании клинического и биомеханического анализов разработать принципы выбора тактики реабилитации двигательной функции руки у пациентов, перенесших нарушение мозгового кровообращения.

Материалы и методы

Исследование проводили на базе отделения нейрореабилитации и физиотерапии ФГБНУ «Научный центр неврологии» (2017–2018 гг.). Критериями включения пациентов в исследование: пациенты мужского и женского пола в возрасте 18–80 лет; наличие подтвержденного нарушения мозгового кровообращения по ишемическому или геморрагическому типу; единичный очаг поражения полушарной локализации давностью от 3-х месяцев до 2-х лет; наличие постинсультного пареза в руке от 2 до 4 баллов по Британской шкале оценки мышечной силы [10]. Критерии исключения: степень пареза в руке меньше 2 баллов по Британской шкале оценки мышечной силы; грубое нарушение глубокой чувствительности; неглекст-синдром; повышение мышечного тонуса по шкале Эшворта больше 2 баллов (0 баллов соответствуют нормальному мышечному тонусу); грубое нарушение зрения, не позволяющее различать изображение на экране компьютера; выраженные когнитивные нарушения, затрудняющие выполнение инструкций; грубая сенсорная или моторная афазия; леворукость по данным Эдинбургского опросника мануальной асимметрии [11]. В исследование было включено 25 пациентов, перенесших нарушение мозгового кровообращения полушарной локализации.

Среди них было 17 мужчин и 8 женщин в возрасте 30–80 лет (медиана возраста — 55 [45; 61]). Давность инсульта составила от 3 до 23 месяцев (медиана давности инсульта — 7 месяцев [4; 12]). При этом 9 больных (36%) наблюдали в раннем восстановительном периоде, 9 больных (36%) — в позднем восстановительном периоде, 7 больных (28%) — в резидуальном. В исследование не включали пациентов с тяжелой степенью спастичности, грубыми речевыми и когнитивными нарушениями, ограничивающими возможность коммуникации и следования указаниям инструктора-методиста по лечебной гимнастике.

Для определения нормального кинематического портрета движения руки было отобрано 10 здоровых добровольцев в возрасте 24–42 года (4 женщины и 6 мужчин) с доминантной правой рукой без патологий опорно-двигательной и нервной систем. У каждого испытуемого была проведена оценка движений как в доминантной (правой), так и в недоминантной (левой) руке. Для клинической оценки двигательного дефицита, выраженной степени патологической синергии, рефлекторной активности, поверхностной и глубокой чувствительности, координации, объема пассивных движений и болевых ощущений при движениях в пораженных конечностях использовали шкалу Фут–Мейера [12]; раздел шкалы для оценки функции руки (общий максимум баллов по данному разделу в норме составляет 126). Для оценки спастичности в паретичной руке применяли шкалу Эшворта [13]. Для оценки мелкой моторики кисти и функциональных движений использовали тест ARAT [14].
автоматизированных действий. Измеряли только первую часть движения — достижение удаленно расположенного объекта.

Для изучения внутриус тавных и меж суставных угловых синергий в сагittalной и фронтальной плоскостях были введены следующие коэффициенты (K) синергий: K_1 — отношение объема сгибания в плечевом суставе (ПС) к объему отведения в ПС; K_2 — отношение объема разгибания в локтевом суставе (ЛС) к объему сгибания в ПС; K_3 — отношение объема разгибания в ЛС к объему отведения в ПС.

В рамках курса реабилитации у пациентов проводили тренировки функционального навыка паретичной руки с применением механотерапевтического экоскелетного комплекса с разгрузкой веса и обратной связью Armeo Spring (Hocoma; Швейцария), тренировки бимануальных и координационных движений с инструктором-методистом лечебной гимнастики, массаж паретичной руки. Во всех случаях курс реабилитации был успешным.

Статистическую обработку результатов проводили с помощью критериев Манна—Уитни (при сравнении независимых выборок), Уилкоксона (при сравнении зависимых выборок), коэффициента корреляции Спирмена, на персональном компьютере с применением пакета прикладных программ Statsoft Statistica v. 7.0 (StatSoft; США). Данные представляли в виде медианы и 25-й и 75-й квартилей медианы. Статистически значимыми считали различия при p < 0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Клиническая оценка

При проведении сравнительного анализа данных по шкале Фугл–Мейера у всех пациентов после курса реабилитации наблюдали статистически значимое увеличение активных движений в плече, предплечье, запястье и кисти. Было отмечено также достоверное увеличение объема пассивных движений в локтевом и лучезапястном суставах. Важно отметить, что согласно шкале Фугл–Мейера, оценивающего выраженность синергии, тем меньше сгибательной синергии (чем больше балл по шкале Фугл–Мейера у всех пациентов после курса реабилитации была менее значительна и составила всего 0,55 с

При анализе клинических данных по шкале Фугл–Мейера нами была выявлена тесная связь степени выраженности патологической сгибательной синергии в руке и степени общего двигательного дефицита (r = 0,81; r = 0,000000). Согласно клинической оценке по шкале Фугл–Мейера, нами были выделены больные с грубым парезом, двигательный дефicit которых составил менее 50% от максимального — баллы активных движений (менее 33 баллов), выраженные — 50–70% (34–46 баллов), умеренным — 71–89% (47–56 баллов) и легким парезом — 90–99% (57–65 баллов). Для дальнейшего анализа пациенты были разделены на 2 группы: группа 1 — пациенты с легким/умеренным парезом, группа 2 — пациенты с грубым/выраженным парезом.

При сравнительном анализе по отдельным подразделам шкалы Фугл–Мейера оказалось, что достоверное улучшение двигателной функции руки наступало как в проксимальных, так и в дистальных отделах руки в обеих подгруппах (табл. 2).

Видеоанализ движений паретичной руки при выполнении ричинг-теста

При анализе временных характеристик ричинг-теста было выявлено, что пациентам обеих групп на выполнение целевого движения было необходимо достоверно более времени, чем здоровому человеку. В случае с грубым/выраженным парезом на выполнение движения достижения удаленно расположенного объекта требовалось статистически достоверно больше времени, чем в норме (p = 0,001). Разница во времени между группой здоровых добровольцев и группой с легким/умеренным парезом была менее значительна и составила всего 0,55 с (рис. 1).

Таблица 1. Медиана показателей (Ме [25%; 75%]) двигательных нарушений в руке по подразделам шкалы Фугл–Мейера

| Раздел шкалы                  | До лечения       | Группа (n = 25)          |
|-------------------------------|------------------|--------------------------|
| Общий балл                    | 103 [91; 109]    | 109 [98; 120]            |
| Движения плеча и предплечья  | 29 [24; 34]      | 32 [24; 38]              |
| Движения запястья и кисти    | 18 [13; 21]      | 20 [9; 23,5]             |
| Синергии                     | 9 [6; 10]        | 9,5 [5; 11]              |
| Объем пассивных движений     | 21 [20; 22]      | 23 [22; 24]              |

При анализе временных характеристик ричинг-теста после курса реабилитации было показано, что у пациентов первой группы (с легким/умеренным парезом руки) происходит статистически значимое уменьшение времени, затрачиваемое на выполнение объекта (p = 0,04). У пациентов второй группы (грубый/выраженный парез) после курса реабилитации время, затрачиваемое на выполнение объекта, увеличивалось (p = 0,000000).
Рис. 1. Время (с) выполнения движения ричинг-теста у больных с разной степенью пареза в руке

Таблица 2. Медиана показателей (Me [25%; 75%]) двигательных нарушений в руке по шкале Фугл–Мейера у больных до и после реабилитации

| Движения плеча и предплечья, баллы (n = 25) | Легкий/умеренный парез (n = 13) | Грубый/выраженный парез (n = 12) |
|---------------------------------------------|---------------------------------|----------------------------------|
| До лечения                                  | 34 [32; 37]                     | 24 [21,5; 27]                   |
| После лечения                               | 38 [34; 41]                     | 30,5 [25,5; 33,5]               |
| p-level                                     | p = 0,041                       | p = 0,0068                      |

| Движения запястья и кисти, баллы (n = 25) | Легкий/умеренный парез (n = 13) | Грубый/выраженный парез (n = 12) |
|-------------------------------------------|---------------------------------|----------------------------------|
| До лечения                                 | 21 [19; 21]                     | 12 [8; 14,5]                    |
| После лечения                              | 23 [22; 24]                     | 14 [10; 19,5]                   |
| p-level                                    | p = 0,0044                      | p = 0,012                       |

При сравнении параметров максимума угловых амплитуд в суставах у пациентов первой группы до и после реабилитации статистически значимых различий в этих показателях обнаружено не было. В то же время при анализе изменения объема движений в суставах после тренировки были получены достоверные изменения биомеханических показателей в плечевом суставе: увеличение объема сгибания (p = 0,04) и уменьшение объема отведения (p = 0,01).

Анализ изменения скоростных параметров движения показал достоверное увеличение угловой скорости сгибания в плечевом суставе (p = 0,01), разгибания в локтевом суставе (p = 0,02), а также уменьшение угловой скорости отведения в плечевом суставе (p = 0,02). При изучении коэффициентов синергий, отражающих межсуставные взаимодействия у пациентов первой группы достоверные различия после курса реабилитации были выявлены только по коэффициенту K₂ (p = 0,04), отражающему взаимодействие между сгибанием в плечевом суставе и разгибанием в локтевом суставе во время выполнения ричинг-теста.

При сравнении показателей максимума угловых амплитуд в суставах у пациентов второй группы до и после реабилитации были выявлены значительно уменьшение угловой скорости сгибания локтевого сустава (p = 0,01). Достоверных изменений в других суставах не было отмечено.

При проведении анализа объема движений в суставах во второй группе пациентов наблюдали изменения, противоположные показателям, полученным у больных первой группы. На фоне проведения реабилитационных мероприятий объем сгибания в плечевом суставе достоверно уменьшился (p = 0,02), при этом также наблюдалось достоверное увеличение объема отведения в плечевом суставе (p = 0,04). В локтевом суставе достоверных различий до и после реабилитации не наблюдалось. Так же стоит отметить, что несмотря на явное ухудшение показателей после реабилитации, пациенты отметили значительное улучшение в функции и качестве жизни после курса лечения.

При анализе результатов биомеханического исследования было выявлено, что у больных с легким/умеренным парезом статистически значимо было уменьшено максимальное угловое сопротивление в плечевом суставе и увеличено максимальная угловая амплитуда отведения в плечевом суставе при выполнении ричинг-теста (рис. 2А).

Помимо уменьшения максимального угла движения в некоторых суставах у больных с легким/умеренным парезом увеличивалось время достижения максимумов угловой амплитуды при всех движениях по сравнению с нормой (рис. 3А, Б).

Кинематический портрет в группе больных с грубым/выраженным парезом был другим: при выполнении движения максимальный угол отведения в плечевом суставе был меньше, чем в норме (рис. 2Б), при этом значение максимального угла сгибания в локтевом суставе было значительно больше нормы (рис. 3Б, В).

Помимо уменьшения максимального угла в некоторых суставах у больных с грубым/выраженным парезом увеличивалось время достижения максимумов угловой амплитуды при всех движениях по сравнению с нормой. У пациентов этой группы обращает на себя внимание выявленная изменчивость времени достижения пиков угла в суставах при движении. Если в группе с легким/умеренным парезом порядок достижения максимумов угловой амплитуды при всех движениях остался прежним, то в группе с грубым/выраженным парезом он был иным. Так, при выполнении движения, достигавшееся первого из всех участвующих суставов как в норме, так и при легком/умеренном парезе, у пациентов с грубым/выраженным парезом появлялось только в середине движения, после разгибания в лучезапястном суставе.
на уменьшение объема сгибания в плечевом суставе, статистически значимых отличий от нормальных значений данного показателя обнаружено не было.

Достоверные отличия объемов движений от нормального двигательного стереотипа сохранялись по остальным показателям: объему отведения в плечевом суставе ($p = 0.04$), объему разгибания в локтевом суставе ($p = 0.007$), объему разгибания в лучезапястном суставе ($p = 0.02$). Кроме того, были выявлены противоположные изменения в скоростных характеристиках движения у пациентов второй группы по отношению к изменениям у пациентов первой группы. Так, после курса реабилитации отмечалось достоверное увеличение угловой скорости отведения в плечевом суставе ($p = 0.02$), в то же время в локтевом суставе произошло значимое уменьшение угловой скорости ($p = 0.02$) при одновременном уменьшении объема разгибания и максимума угловой амплитуды.

Анализ биомеханики движений плечевого пояса при выполнении ричинг-теста

Несмотря на то что полученные результаты показали отсутствие эффекта тренировок на выраженность патологической синергии у больных с грубым/выраженным парезом в руке, при клинической оценке наблюдали улучшение функциональных возможностей в паретичной руке, что было выражено в достоверном улучшении мелкой моторики по шкале ARAT. В одном
из исследований у пациентов с умеренным парезом с улучшением функциональности по клиническим шкалам наблюдало уменьшение смещения корпуса и плечевого пояса по данным видеоанализа движений [15, 16]. Для подтверждения гипотезы о наличии компенсаторного движения плечевого пояса у пациентов с грубым/выраженным парезом в руке был проведен дополнительный анализ движений во время выполнения ричинг-теста. Для этой цели оценивали смещение двух маркеров, располагавшихся на акромионе здорового и паретичного плечевого пояса во фронтальной плоскости.

Полученные результаты показали смещение плечевого пояса у пациентов с грубым/выраженным парезом в сторону объекта при выполнении ричинг-теста, как до тренировок (23 [19,8; 57,4] — здоровое плечо; 169 [88,0; 178,0] — паретичное плечо), так и после тренировок (66 [49,0; 81,0] — здоровое плечо; 215 [162,0; 229,0] — паретичное плечо), с достоверно большим преобладанием смещения паретического плеча. Помимо этого, проведенный анализ выявил достоверное (р = 0,04) увеличение смещения плечевого пояса вперед при выполнении ричинг-движения на фоне курса реабилитации.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

После курса реабилитационного лечения нами были получены данные о том, что обе группы пациентов не только различаются в значительной степени по кинематическому портрету, но и имеют разные пути двигательного восстановления.

Так, у пациентов с легким/умеренным парезом восстановление двигательной функции в паретичной руке происходит по пути нормализации паттерна движения, о чем свидетельствует увеличение коэффициента $K_2$, отражающего межсуставное взаимодействие в плечевом и локтевом суставах, что имеет прямую корреляцию с уменьшением клинической выраженности степени пареза по шкале Фугл–Мейера ($r = 0,94; p = 0,01$). У пациентов с грубым/выраженным парезом в руке восстановление двигательной функции в паретичной руке происходит по пути компенсации двигательного дефицита, о чем свидетельствует снижение коэффициента $K_2$, что имеет обратную корреляцию с уменьшением клинической выраженности степени пареза по шкале Фугл–Мейера ($r = –0,9; p = 0,03$), т. е. у данных пациентов происходит улучшение функциональных движений в руке при сохранении патологического паттерна движения. Дальнейший анализ показал, что у пациентов с грубым/выраженным парезом после курса реабилитации достоверно увеличивалось смещение плечевого пояса вперед при выполнении ричинг-девиния. При проведении корреляционного анализа была обнаружена отрицательная взаимосвязь смещения маркера на паретичном плече со значением $K_2$ ($r = –0,9; p = 0,03$). Взаимосвязь движений туловища и паретического плеча и паретический конечности подчеркивают и результаты ряда научных исследований [17]. Эти данные свидетельствуют о наличии у пациентов с грубым/выраженным парезом компенсаторного механизма и объясняют снижение этого коэффициента после проведения реабилитации, так как при большем смещении туловища объемы движений и максимальные углы в суставах становились меньше. Можно предположить, что при грубом/выраженном парезе восстановление двигательных навыков идет по пути компенсации, поэтому возвращения к нормальному

Рис. 4. Алгоритм выбора тактики реабилитационных мероприятий у больных с постинсультным парезом руки
паттерну движений у пациентов со сформировавшейся в полной степени патологической синергии в руке невозможно. По нашим данным, тренировка, проводимая специалистом по реабилитации, не во всех случаях должна быть направлена на преодоление патологических синергий, поскольку на адаптацию и обучение пациентов с грубым/выраженным парезом целесообразно использовать максимально эффективно компенсаторные механизмы. Такой вывод нашел подтверждение и при анализе данных клинического осмотра, так как после проведенного курса реабилитации было отмечено достоверное улучшение функциональности паретичной руки в обоих группах пациентов, в частности навыков, связанных с мелкой моторикой. Мы предполагаем, и это сопоставимо с данными многих мировых исследований [18–21], что этот эффект может быть связан с отсутствием ограничений степеней свободы в паретичной конечности во время тренировки, так как пациенты обучались действовать в рамках своего стереотипа и преодолевать его при необходимости произвольно.

На основании полученных клинико-биомеханических данных в группах пациентов с разной степенью спастичности и выраженностью пареза в руке был разработан алгоритм выбора тактики реабилитационных мероприятий у больных с постинсультным парезом (рис. 4). При этом оценку до начала курса реабилитации и разработки реабилитационной стратегии необходимо проводить по подразделу шкалы Фугл-Мейера для верхней конечности. Стоит отметить, что оценка по шкале Эшворта также необходима и обязательно должна быть проведена в трех мышечных группах: сгибателях локтевого сустава, сгибателях и разгибателях пальцев. Степень спастичности, влияющая на выбор тактики ведения пациента, составляет 1+ в двух и более мышечных группах.

**Выводы**

Проведенное детальное клинико-биомеханическое исследование динамики изменений кинематического портрета одного из самых функционально значимых для человека движений (ричинг-теста) на фоне реабилитационных мероприятий позволило, что определяющее значение для наиболее эффективного и успешного восстановления функции паретичной руки имеют исходная тяжесть поражения и степень спастичности. Именно они определяют формирование патологических двигательных синергий при постинсультном парезе руки и обусловливают включение различных механизмов трансформации двигательного стереотипа в процессе восстановления. Полученные данные позволили сформировать алгоритм выбора тактики реабилитационных мероприятий, основанный прежде всего на клинических показателях: у больных с легким/умеренным парезом целесообразно проводить тренировку в рамках физиологического паттерна движений с подавлением компенсаторных механизмов, направленную на коррекцию патологического стереотипа; у больных с грубым/выраженным парезом в руке, напротив, необходимы тренировки с поощрением механизмов компенсации и повышением функциональности паретичной руки в рамках сформировавшегося патологического стереотипа.

**Литература**

1. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. J Stroke. 2001; 32: 1279–84.
2. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. J BMC Neurol. 2012; (12): 162.
3. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke. In: Stroke: Pathophysiology, Diagnosis and Management. 4th ed. London: BMJ Group; 2008: 251–62.
4. Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke. 2011; 42 (6): 1482–8.
5. Brunnstrom S. Movement Therapy in Hemiplegia: A Neurophysiological Approach. Facts and Comparisons. NewYork: Harper and Row, 1970.
6. Santello M, Lang CE. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. J Front Hum Neurosci. 2015; (8): 1050.
7. van Kordelaar J, van Wegen EE, Kwakkel G. Unraveling the interaction between pathologic upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study. J Exp Brain Res. 2012; 221 (3): 251–62.
8. Van Vliet PM, Sheridan MR. Coordination between reaching and grasping in patients with hemiparesis and healthy subjects. J Arch Phys Med Rehabil. 2007; (88): 1325–31.
9. Hogan L, Dipietro HI, Krebs SE, et al. Changing Motor Synergies in Chronic Stroke. J Neuropsychol. 2007; (98): 757–68.
10. Compston A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty’s Stationery Office: 1942; pp. 48 (ii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier. Brain. 2010; 133 (10): 2388–44.
11. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; (9): 97–113.
12. Sanford J, Moreland J, Swanson LR, Stratford PW. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. J Gowland C Phys Ther. 1993: 73 (7): 447–54.
13. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. J Phys Ther. 1987: 62 (7): 206–7.
14. Doussoulin SA, Rivas SR, Campos SV. Validation of «Action Research Arm Test» (ARAT) in Chilean patients with a paretic upper limb after a stroke. Rev Med Chil. 2012: 140 (1): 59–65.
15. Alt Murphy M, Willén C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. J Neurorehabil Neural Repair. 2012: 26 (9): 1106–15.
16. Valdés BA, Glegg SMN, Van der Loos HFM. Trunk Compensation During Bimanual Reaching at Different Heights by Healthy and Hemiparetic Adults. J Mot Behav. 2017: 49 (5): 580–92.
17. van Kordelaar J, van Wegen EE, Kwakkel G. Unraveling the interaction between pathologic upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study. J Exp Brain Res. 2012; 221 (3): 251–62.
18. Rohl-J, Rymer WZ, Perreault Ej, et al. Saturated muscle activation contributes to compensatory reaching strategies after stroke. J Neuropsychol. 2013: 109 (3): 768–81.
19. Basteris A, Nijenhuis SM, Stienen AH, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework
for classification based on a systematic review. J Neuroeng Rehabil. 2014; 10 (11): 111.

20. Daunoraviciene K, Adomaviciene A, Grigonyte A, Griškevičius J, Juocevičius A. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. J Technol Health Care. 2018; 26 (2): 533–42.

References

1. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. J Stroke. 2001; (32): 1279–84.

2. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. J BMC Neurol. 2012; (12): 162.

3. Langhorne P, Coupar F, Pollock A, Motor recovery after stroke: a systematic review. Lancet Neurol. 2009; 8 (8): 741–54.

4. Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke. 2011; 42 (5): 1482–8.

5. Brunnstrom S. Movement Therapy in Hemiplegia: A Neurophysiological Approach. Facts and Comparisons. NewYork: Harper and Row, 1970.

6. Santello M, Lang CE. Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. J Front Hum Neurosci. 2015; (8): 1050.

7. van Kordelaar J, van Wegen EE, Kwakkel G. Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study. J Exp Brain Res. 2012; 221 (3): 251–62.

8. Van Vliet PM, Sheridan MR. Coordination between reaching and grasping in patients with hemiparesis and healthy subjects. J Arch Phys Med Rehabil. 2007; (88): 1325–31.

9. Hogan L, Dipietro Hl, Krebs SE, et al. Changing Motor Synergies in Chronic Stroke. J Neurophysiol. 2007; (98): 757–68.

10. Compton A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty's Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O'Brien for the Guarantors of Brain. Saunders Elsevier, Brain. 2010; 133 (10): 2838–44.

11. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; (9): 97–113.

12. Sanford J, Moreland J, Swanson LR, Stratford PW. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. J Gowland C Phys Ther. 1993; 73 (7): 447–54.

13. Bokhannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. J Phys Ther. 1987; 67 (2): 206–7.

14. Doussoulin SA, Rivas SR, Campos SV. Validation of «Action Research Arm Test» (ARAT) in Chilean patients with a parietic upper limb after a stroke. Rev Med Chil. 2012; 140 (1): 59–65.

15. Alt Murphy M, Willén C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. J Neurorehabil Neural Repair. 2012; 26 (9): 1106–15.

16. Valdés BA, Glegg SMN, Van der Loos HFM. Trunk Compensation During Bimanual Reaching at Different Heights by Healthy and Hemiparetic Adults. J Mot Behav. 2017; 49 (6): 580–92.

17. van Kordelaar J, van Wegen EE, Kwakkel G. Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study. J Exp Brain Res. 2012; 221 (3): 251–62.

18. Roh J, Rymer WZ, Perreault EJ, et al. Saturated muscle activation contributes to compensatory reaching strategies after stroke. J Neurophysiol. 2013; 109 (3): 768–81.

19. Basteris A, Nijenhuis SM, Stienen AH, et al. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014; 10 (11): 111.

20. Daunoraviciene K, Adomaviciene A, Grigonyte A, Griškevičius J, Juocevičius A. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. J Technol Health Care. 2018; 26 (2): 533–42.

21. Ustinova KI, Chernikova LA, Khizhnikova AE, Poydasheva AG, Suponeva NA, Piradov MA. Theoretical basis for classical methods of motor rehabilitation in neurology. Annals of clinical and experimental neurology; 2018; 12 (3): 54–60.