NB BLG model in N=8 superfields

Igor A. Bandos

Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), P.O. Box 644, 48080 Bilbao, Spain

and

Institute for Theoretical Physics,
NSC Kharkov Institute of Physics & Technology,
UA 61108, Kharkov, Ukraine.

ABSTRACT

We develop the N=8 superfield description of the Bagger–Lambert–Gustavsson (BLG) model in its Nambu bracket (NB) realization.

The basic ingredient is the octet of scalar \(d = 3 \) \(N = 8 \) superfields \(\phi^I \) depending also on the coordinates of a compact three dimensional space \(M_3 \). It is restricted by the superembedding-like equation, \(\mathbb{D}_A \phi^I = 2i\bar{\psi}^B \gamma^I_{BA} \), which can be treated as covariantization of the linearized superembedding equation for supermembrane (M2-brane) with respect volume preserving diffeomorphisms of \(M_3 \). The curvatures of SDiff\(_3\) connection are expressed through \(\phi^I \) by the N=8 superfield generalization of the BLG Chern–Simons equation (super-CS equation). We show how the dynamical BLG equations appear when studying consistency of these basic equations.

igor_bandos@ehu.es; supported by the Basque Science Foundation Ikerbasque.
1 Introduction

Recently, motivated by the search for the Lagrangian of multiple M2-brane system, Bagger, Lambert [1] and Gustavsson [2] proposed the \(d = 3 \) \(N = 8 \) supersymmetric action based on Filippov 3-algebra instead of Lie algebra. A particular infinite dimensional 3-algebra related with three dimensional volume preserving diffeomorphism group SDiff\(_3\) is given in terms of Nambu brackets (Nambu–Poisson brackets) \(\mathcal{B} \) on a three dimensional compact manifold \(M_3 \). For three functions on \(M_3 \), \(\Phi(y^i) \), \(\Xi(y^i) \), \(\Omega(y^i) \) \((i = 1, 2, 3) \), the Nambu brackets are defined by

\[
\{ \Phi, \Xi, \Omega \} := \bar{e}^{-1} \epsilon^{ijk} \partial_i \Phi \partial_j \Xi \partial_k \Omega , \quad \partial_i := \frac{\partial}{\partial y^i}
\]

(1.1)

(see [3, 4] and refs. therein; here, following [6, 7], we have introduced a fixed \(M_3 \) density \(\bar{e} = \bar{e}(y) \) in the definition of Nambu brackets).

As it was stressed in [4], Bagger–Lambert–Gustavsson model with Nambu bracket realization of the 3-algebra (NB BLG model) can be treated as 6-dimensional field theory. The BLG gauge fields become the gauge fields for the 3–volume preserving diffeomorphisms (see [8] as well as [7] and refs. therein). The SDiff\(_3\) gauge potential is given by the 1-form \(s^i = dx^\mu s^{i}_\mu \) on \(R^{1+2} \) obeying the conditions \(\partial_i (\bar{e} s^i) = 0 \). The SDiff\(_3\) field strength \(F^i := ds^i + s^j \wedge \partial_j s^i \) is also \(M_3 \) divergenceless, \(\partial_i (\bar{e} F^i) = 0 \),

\[
F^i := ds^i + s^j \wedge \partial_j s^i , \quad \partial_i (\bar{e} F^i) = 0 \iff \partial_i (\bar{e} s^i) = 0
\]

(1.2)

(see [7] for more details).

Furthermore, the authors of [4] proposed the identification of the NB BLG model with M-theory 5-brane (M5–brane, see [9] for equations of motion and [10] for the covariant action) with the worldvolume chosen to be \(R^{1+2} \otimes M_3 \). However, an attempt to obtain the NB BLG model from light-cone M5-brane [6] has resulted only in reproducing the Carrollian limit of the NB BLG model. This suggests to study the NB realization of BLG model separately, and this was the subject of [5, 6, 7, 11] and also of the original papers [4].

In this letter we present \(N=8 \) superfield description of the NB BLG model. It is the on-shell superfield description which does not allow for constructing the action, but reproduces equations of motion as the selfconsistency conditions of the basic equations.

2 Basic superfield equations

2.1 Superembedding-like equation for octet of \(d=3 \) \(N=8 \) scalar superfields

The complete on-shell \(N=8 \) superfield description of the Nambu bracket realization of the Bagger-Lambert-Gustavsson model (NB BLG model) is provided by the octet of
scalar $d=3$, $N=8$ superfields, $\phi^I = \phi^I(x^\mu, \theta^\alpha ; y^i)$, depending on additional coordinates y^i ($i = 1, 2, 3$) of a compact space M_3, which obeys the following basic equation

$$D_{\alpha A}\phi^I = 2i\gamma^I_{AB}\psi_{\alpha B}.$$ \hfill (2.1)

Here and below $\alpha, \beta, \gamma = 1, 2$ are spinorial and $a, b, c = 0, 1, 2$ are vector indices of $SO(1, 2)$, $\tilde{\gamma}^I_{AB} := \gamma^I_{BA}$ are the $SO(8)$ Klebsh-Gordan coefficients relating $\mathbf{8}_v$, $\mathbf{8}_c$ and $\mathbf{8}_s$ representation, which obey $\gamma^{(I}\gamma^{J)} = \delta^{IJ} I$, $\tilde{\gamma}^{(I}\gamma^{J)} = \delta^{IJ} I_c$ and $\psi_{\alpha B}$ is a fermionic superfield which is expressed through ϕ^I by the γ^I-trace part of Eq. (2.1). Finally $D_{\alpha A}$ is the covariant Grassmann derivative. It is covariant with respect to $d = 3$, $N = 8$ supersymmetry and under the volume preserving diffeomorphisms of M_3 (SDiff$_3$ group). Hence it involves a fermionic SDiff$_3$ connection $\gamma^i_{\alpha A}$ and, when act on SDiff$_3$ scalars (like ϕ^I and $\psi_{\alpha B}$), reads $D_{\alpha A} = D_{\alpha A} + \gamma^i_{\alpha A} \partial_i$ with $D_{\alpha A} = \frac{\partial}{\partial \theta^\alpha} + i\gamma^I_{\alpha A} \theta^\beta \partial_\mu$ ($\partial_\mu := \frac{\partial}{\partial x^\mu}$). These SDiff$_3$ covariant derivatives obey

$$\{D_{\alpha A}, D_{\beta B}\} = 2i\gamma^I_{\alpha B} \delta^I_{AB} D_\mu + 2i\epsilon_{\alpha \beta} W_{AB}^i \partial_i, \hfill (2.2)$$

where D_μ is the vector covariant derivative, which reads as $D_\mu = \partial_\mu + is^i_\mu \partial_i$ when acting on the vector SDiff$_3$ scalars. It involves the vector SDiff$_3$ gauge potential s^i_μ defined by $s^i = d\theta^\alpha (\gamma^I_{\alpha A} + (dx^\mu - id\theta^\alpha \gamma^\mu \theta_A))s^i_\mu$. The matrices $\gamma^I_{\alpha \beta}$ in (2.2) are real and symmetric; they obey $\gamma^{(\mu \nu \rho)} = \eta^{\mu \nu} \delta_\rho$, with $\gamma^{\mu \nu} = -\delta^{\mu \nu} = -i\gamma^{\mu \nu}$, with $\epsilon_\alpha = -\epsilon_\beta = -\epsilon_\gamma = i/2 = \text{antidiag}(1, -1, -1)$, and $\eta^{\mu \nu} = \text{diag}(1, -1, -1)$, is the flat metric in the $d = 3$ spacetime.

Finally, $W_{\hat{A}B}^i$ is the basic superfield strength of the SDiff$_3$ gauge supermultiplet. This carries the indices of $\mathbf{28}$ representation of $SO(8)$, i.e. $W_{\hat{A}B}^i = -W_{BA}^i$, and is a vector field with respect to SDiff$_3$ gauge group.

2.2 $N=8$ superfield generalization of the Chern–Simons gauge field equation

We impose on $W_{\hat{A}B}^i$ the superfield generalization of the Chern-Simons field equation. This reads

$$W_{\hat{A}B}^i = -\epsilon_{ijk} \partial_i \phi^j \phi^j \gamma^{IJ}_{\hat{A}B}, \hfill (2.3)$$

Notice that $W_{\hat{A}B}^i$ in (2.3) automatically satisfies the condition $\partial_i (\epsilon W_{\hat{A}B}^i) = 0$ necessary for any SDiff$_3$ field strength.

1. The $SO(8)$ generators acting on $\mathbf{8}_v$ and $\mathbf{8}_c$ spinors are $\gamma^{IJ}_{AB} := (\gamma^{IJ}_{\hat{A}B})_{AB}$ and $\tilde{\gamma}^{IJ}_{AB} := (\tilde{\gamma}^{IJ}_{\hat{A}B})_{AB}$. Among the useful properties of these $d=8$ γ-matrices are $\gamma^{IJ}_{AB} \gamma^{IJ}_{\hat{A}B} = \delta_{AB} \delta_{\hat{A}\hat{B}} + \frac{1}{4} \gamma^{IJ}_{\hat{A}B} \gamma^{IJ}_{\hat{A}B}$, $\gamma^{IJ}_{AB} \gamma^{KL} = \gamma^{IJKL} + 4\delta^{[I}[\gamma^{KL]}|J| - 2\delta^{I[K}\delta^{L]J}$ and $\gamma^{IJ}_{AB} \gamma^{KL}_{\hat{A}B} = 0$.

2. For simplicity, in (2.1) we presented the anticommutator applied to SDiff$_3$ scalar; the general expression is $\{D_{\hat{A}}, D_{\hat{B}}\} = 2i\gamma^I_{AB} \delta^I_{AB} D_\mu + 2i\epsilon \mathcal{L}_{W_{\hat{A}B}}$, where $W_{\hat{A}B} := W_{\hat{A}B}^i \partial_i$ and \mathcal{L} is Lie derivative.

3. An interesting, although technical, question is whether/how it can be obtained from the consistency of the scalar superfield equation (2.1) and constraints (2.2). However, as far as there is no hope to get an off shell superfield model with 16 supersymmetries, at least in the 'standard' superspace, (so that the real question is whether the constraints result in Chern-Simons or in the $D=3$ SYM equations) in this letter we impose the super-Chern-Simons equation as a constraint.
As far as \(\tilde{\gamma}^{IJ}_{AB} \) form the complete basis in the space of antisymmetric 8\(\times \)8 matrices, an equivalent form of the super Chern–Simons equation (2.3) is given by

\[
W^{IJ}\dot{i} = \overline{e}^{-1} \varepsilon^{ijk} \partial_i \phi^J \partial_j \phi^K , \quad W^{AB}_{\dot{A} \dot{B}} = W^{IJ}_{\dot{I} \dot{J}} \tilde{\gamma}^{IJ}_{AB} .
\] (2.4)

3 Bagger–Lambert equations of motion from the basic superfield equations

The spinor covariant derivative 'algebra' (2.2) simulates the constraints for SYM fields. However, Eq. (2.3) implies that the corresponding SDiff\(_3\) gauge theory super-multiplet is composed in the sense that all the field strengths are expressed through the scalar and spinor fields.

Indeed, studying the consequences of the gauge field Bianchi identities\(^4\) one finds, firstly, that the commutator of vector and spinor covariant derivatives reads \([\mathcal{D}_\alpha, \mathcal{D}_\beta] = \partial_\alpha \gamma^I_{\dot{I} \dot{J}} \partial_\beta \tilde{\gamma}^{IJ}_{AB} \) and that the Grassmann spinor octet field strength \(W_{\alpha \dot{B}}^{\dot{B}}\) is given by

\[
W_{\alpha \dot{B}}^{\dot{B}} = \frac{i}{4} \mathcal{D}_\alpha \tilde{\gamma}^{IJ}_{AB} \phi^I \phi^J + \frac{1}{3!} \overline{e} \varepsilon^{ijk} \partial_i \phi^J \partial_j \phi^K \tilde{\gamma}^{IJ}_{AB} .
\] (3.5)

and, secondly, that tensorial gauge field strength \(([\mathcal{D}_\mu, \mathcal{D}_\nu] = F^{\mu\nu}_{\dot{I} \dot{J}} \partial_\mu \phi^J \partial_\nu \phi^K \tilde{\gamma}^{IJ}_{AB} \) so that

\[
F^{\mu\nu}_{\dot{I} \dot{J}} = -2 \overline{e}^{-1} \varepsilon^{ijk} \epsilon_{\mu\nu\rho} \mathcal{D}_\rho \tilde{\gamma}^{IJ}_{AB} \left(\partial_\mu \phi^J \partial_\nu \phi^K + 2i \partial_\nu \phi_A \gamma^I \partial_\mu \psi_A \right) .
\] (3.6)

In (3.6) one recognizes the Chern–Simons type gauge field equations which can be obtained from the BLG Lagrangian of [11]. This expresses the tensorial gauge field strength through the matter (super)fields.

The dynamical bosonic and fermionic equations of motion of the NB BLG model follow from the superembedding–like equation (2.1) and the super-CS equation (2.3). Indeed, with the use of (2.2), one finds that the selfconsistency condition for Eq. (2.1) gives the expression for Grassmann covariant derivative of the fermionic superfield \(\psi_{\beta \dot{B}}\) in (2.1),

\[
\mathcal{D}_\alpha \tilde{\gamma}^{IJ}_{AB} = \frac{1}{2} \mathcal{D}_\rho \tilde{\gamma}^{IJ}_{AB} \mathcal{D}_\alpha \phi^I \phi^J + \frac{1}{3!} \overline{e} \varepsilon_{\alpha \beta \gamma} W^{IJ}_{\dot{I} \dot{J}} \partial_\alpha \phi^K \tilde{\gamma}^{IJ}_{AB} = \frac{1}{2} \mathcal{D}_\rho \tilde{\gamma}^{IJ}_{AB} \mathcal{D}_\alpha \phi^I \phi^J + \frac{1}{6} \varepsilon_{\alpha \beta \gamma} \phi^I \phi^J \phi^K \tilde{\gamma}^{IJ}_{AB} .
\] (3.7)

Next stage is to study the selfconsistency conditions for Eq. (3.7). Its SO(1,2) vector and SO(8) tensor \((\times \tilde{\gamma}^{IJKL}_{\alpha \beta} \gamma^K)\) irreducible part gives us the expression (3.3) for the spinor field strength of the SDiff\(_3\) gauge field (fermionic superpartner of the BLG

\(^4\)i.e. Jacobi identities for the covariant derivatives, \([\mathcal{D}_\alpha A, \mathcal{D}_C B, \mathcal{D}_D C] + \left(\alpha^A \langle \frac{\beta B}{2} \right) = 0 \) etc.

\(^5\)These equations can be also obtained from consistency of (2.1) with the use of (2.3) (see below).
Chern-Simons equation \((3.6)\). Taking this into account in the SO(1,2) vector -SO(8) scalar \((\propto \delta \dot{A} \dot{B} \gamma_{\alpha \beta}^\mu)\) irreducible part we obtain the BLG Dirac equation

\[
\gamma_{\alpha \beta}^\mu D_\mu \psi_B^\beta = -\frac{1}{e} \epsilon^{ijk} \partial_i \phi^I \partial_j \phi^J \partial_k \psi_{\alpha A} \gamma_{IJ}^{AB},
\]

which can be equivalently written in the following compact form

\[
\mathcal{D} \psi = -\{\phi^I, \phi^J, \psi\} \gamma^{IJ}.
\]

As usually, the bosonic equations of motion can be obtained by taking the covariant spinorial derivative of the fermionic ones. Acting by the covariant (SDiff_3 and SUSY covariant) spinor derivatives on \((3.8)\), and extracting the \(\propto \gamma_{IJK}^{\alpha \beta} \) irreducible part one finds

\[
D^\mu D_\mu \phi^I = 2 \{\phi^I, \phi^K, \{\phi^J, \phi^J, \phi^K\} \} - 4i \epsilon^{\alpha \beta} \{\psi^\alpha, \gamma^{IJ} \psi^\beta, \phi^J\}
\]

(3.10)

The \(\propto \gamma_{\alpha \beta}^\mu \gamma_{CA}^{IJ} \) irreducible part of the same relation can be used to obtain the bosonic Chern-Simons equation \((3.6)\), while the \(\propto \gamma_{IJK}^{\alpha \beta} \) irreducible parts vanish identically\(^7\).

To conclude, the superembedding–like equation \((2.1)\), supplemented by the covariant derivative algebra \((2.2)\) with the composite scalar field strength \((2.3)\), restricts field content of the basic octet of d=3, N=8 scalar superfields \(\phi^I\), depending in addition on three coordinates of a compact space \(M_3\), to the NB BLG supermultiplet, and, furthermore, accumulates all the equations of motion of the NB BLG model.

4 Conclusions

In this letter we presented the N=8 superfield description of the Nambu bracket (NB) realization of the Bagger-Lambert-Gustavsson (BLG) model. It is given by an octet of scalar N=8, d=3 superfields \(\phi^I\) which, in addition, depend on the three coordinates \(y^i\) of compact space \(M_3\). This octet of superfields is restricted by Eq. \((2.1)\), which, as we have shown, contains all the equations of motion of the NB BLG model when supplemented (at least, when supplemented) by super-Chern-Simons equation \((2.3)\) (or, equivalently, \((2.4)\)).

We call the basic Eq. \((2.1)\) superembedding–like equation because of its relation with the superembedding equation describing one M2-brane in the d=3 N=8 world-volume superspace which is as follows. To obtain \((2.1)\), one has first to linearize the

\(^6\)On the way of such a derivation of \((3.5)\) one should use the requirement of that the dependence of \(M_3\) coordinates should not be restricted, i.e. no additional conditions on \(\partial_i \phi^I\) may occur. Then, coming to the equation \((W_A^I - \ldots) \partial_i \phi^I = \kappa_B \gamma^{IJ} B_A^J\), one concludes that \(\kappa_B = 0\) and that \(W_A^I = \ldots\) where multidots denote the \(r.h.s\) of Eq. \((3.5)\).

\(^7\)To prove this, one has to use the consequences \(\{\phi^L, \phi^M, \{\phi^J, \phi^K, \phi^L\} \} = 0\) and \(\epsilon^{IJKLMNPQ} \{\phi^L, \phi^M, \{\phi^N, \phi^P, \phi^Q\} \} = 0\) of the so-called fundamental identity \(\{\phi^L, \phi^M, \{\phi^N, \phi^P, \phi^Q\} \} = 3 \epsilon \{\phi^L, \phi^M, \phi^N, \phi^P, \phi^Q\} \} \) (the presence of the density \(\tilde{e}(y)\) in the fundamental identity and its absence in its consequences above is not occasional).
supermembrane superembedding equation [12], see [13], and to fix the so-called static gauge on the worldvolume superspace, arriving at the equation $D_{\alpha\dot{A}}X^I = 2i\tilde{\gamma}^I_{AB}\Psi_{\alpha B}$. Then one replaces the octet of $d=3$, $N=8$ superfields $X^I(x,\theta)$ by the octet of superfields depending also on coordinates of M_3, $X^I(x,\theta) \mapsto \phi^I(x,\theta,y)$ (this automatically produces $\Psi_{\alpha B}(x,\theta) \mapsto \psi_{\alpha B}(x,\theta,y)$) and covariantize the result with respect to the volume preserving diffeomorphisms of M_3 ($D_{\alpha\dot{A}} \mapsto D_{\alpha\dot{A}} = D_{\alpha\dot{A}} + \varsigma_{\alpha A}^I \partial_I$).

We hope that our superfield description will be useful in studying the properties of the NB BLG model and in understanding its physical meaning.

Actually, such a way of passing from the complete nonlinear description of one M2-brane in the frame of superembedding approach [12] to the NB BLG model--namely first linearization, and than obtaining nonlinearities by a separate covariantization with respect to SDiff$_3$--suggests that NB BLG model may be not a description of multiple M2-brane, but rather an independent- and without any doubt very interesting- $d=3$, $N=8$ supersymmetric dynamical system.

Actually, a search for alternative candidates on the rôle of multiple M2-brane action can be witnessed. A very incomplete list includes the $N = 6$ supersymmetric model of [14], $d=3$, $N=2$ supersymmetric models of [15], as well as very recent construction of a candidate multiple M2-brane bosonic action, similar to the Myers action for the coincident bosonic D-branes, in [16].

The generalization of our on-shell $N=8$ superstring description for the case of arbitrary 3–algebra seems to be possible and, in many respects, looks interesting to develop in details.

Acknowledgments

The author is grateful to Paul Townsend for useful discussions and for collaboration in studying the SDiff$_3$ gauge theories, and thanks Neil Lambert for a discussion in CERN, on String 08 conference. This work was supported by the Basque Science Foundation Ikerbasque and partially by research grants from the Spanish MICI (FIS2008-1980), the INTAS (2006-7928), the Ukrainian National Academy of Sciences and Russian RFFI grant 38/50–2008.

Notes added

When this paper has been finished, the article [17], addressing the same subject from the pure spinor (pure spinor superspace) perspective, has appeared on the net. A very intriguing statement in [17] is on existence of the superspace action that, if so, would be the first known example of the superfield action with 16 supersymmetries.

8 This is better seen when one writes the SDiff$_3$ covariant derivatives in terms of Lie brackets of vector fields, $D\phi^I = D\phi^I + [s,\phi^I]$, $F = ds + \frac{1}{2}[s,s]$. Then these Lie brackets can be substituted by the commutators and the commutators of the field strengths are defined by 3-brackets with scalar and spinor fields, e.g. $[W^{IJ}, ...] = \{\phi^I, \phi^J, ... \}$.

The action presented in [17] can also be considered as a realization of the harmonic superspace programme of [18] with pure spinors substituting harmonic variables. The approach of [18] overcame some no-go theorems because the number of auxiliary fields in it was infinite. It would be very interesting to analyze the structure of auxiliary field sector in the action of [17].

After the first version of this paper appeared on the net, certain aspects of measure on the pure spinor space, which were left out and simply assumed to work in [17], were addressed in [20], where a similar pure spinor superspace formulation was also presented for the N=6 model of [14].

References

[1] J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955 [hep-th]]; Comments On Multiple M2-branes, JHEP 0802 (2008) 105 [arXiv:0712.3738 [hep-th]].

[2] A. Gustavsson, Algebraic structures on parallel M2-branes, arXiv:0709.1260 [hep-th]; Selfdual strings and loop space Nahm equations, JHEP 0804, 083 (2008) [arXiv:0802.3456 [hep-th]].

[3] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7, 2405-2414 (1973).

[4] P. M. Ho and Y. Matsuo, M5 from M2, JHEP 0806 (2008) 105 [arXiv:0804.3629 [hep-th]]; P. M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, arXiv:0805.2898 [hep-th].

[5] J. H. Park and C. Sochichiu, Single M5 to multiple M2: taking off the square root of Nambu-Goto action, arXiv:0806.0335 [hep-th].

[6] I. A. Bandos and P. K. Townsend, Light-cone M5 and multiple M2-branes, arXiv:0806.4777 [hep-th].

[7] I. A. Bandos and P. K. Townsend, SDiff Gauge Theory and the M2 Condensate, arXiv:0808.1583 [hep-th].

[8] E. Bergshoeff, E. Sezgin, Y. Tanii and P. K. Townsend, Super P-Branes As Gauge Theories Of Volume Preserving Diffeomorphisms, Annals Phys. 199 (1990) 340.

[9] P. S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [arXiv:hep-th/9611008].

[10] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M. Tonin, Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [arXiv:hep-th/9701149]; M. Aganagic, J. Park, C. Popescu and J. H. Schwarz, World-volume action of the M-theory five-brane, Nucl. Phys. B496, 191-214 (1997) [hep-th/9701166].

As the pure spinors for $D = 10$, $N = 1$ superstring parametrize, modulo overall scale factor, the $SO(10)/U(5)$ coset, one can also state that these pure spinors are harmonic variables.
[11] G. Bonelli, A. Tanzini and M. Zabzine, *Topological branes, p-algebras and generalized Nahm equations*, arXiv:0807.5113 [hep-th].

[12] I. A. Bandos, D. P. Sorokin, M. Tonin, P. Pasti and D. V. Volkov, *Superstrings and supermembranes in the doubly supersymmetric geometrical approach*, Nucl. Phys. B446, 79-118 (1995) [arXiv:hep-th/9501113].

[13] P. S. Howe and E. Sezgin, *The supermembrane revisited*, Class. Quant. Grav. 22, 2167 (2005) [arXiv:hep-th/0412245].

[14] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, *N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*, arXiv:0806.1218 [hep-th].

[15] S. Cherkis and C. Saemann, *Multiple M2-branes and Generalized 3-Lie algebras*, arXiv:0807.0808 [hep-th].

[16] R. Iengo and J. G. Russo, *Non-linear theory for multiple M2 branes*, arXiv:0808.2473 [hep-th].

[17] M. Cederwall, *N=8 superfield formulation of the Bagger-Lambert-Gustavsson model*, arXiv:0808.3242 [hep-th].

[18] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, *Unconstrained N=2 matter, Yang-Mills and supergravity theories in Harmonic superspace*, Class. Quantum Grav. 1 (1984) 469–498; A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E. S. Sokatchev, *Harmonic superspace*, Camb. Univ. Press (UK) 2001. 306 pp.

[19] N. Berkovits, *Super-Poincare covariant quantization of the superstring*, JHEP 0004, 018 (2000) [arXiv:hep-th/0001035].

[20] M. Cederwall, *Superfield actions for N=8 and N=6 conformal theories in three dimensions*, arXiv:0809.0318 [hep-th].