Supplementary Information

Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE

Haiyan Gao¹,²#, Xinqi Gong³,#, Jinchuan Zhou¹, Yubing Zhang¹,², Jinsong Duan⁴, Yue Wei¹,⁵, Liuqing Chen², Zixin Deng¹, Jiawei Wang⁴, Shi Chen¹,⁵*, Geng Wu²*, Lianrong Wang¹*
Supplementary Table 1. Data collection and refinement statistics of SspE\textsubscript{CTD} from *S. scabiei* DSM 41658

	Native SspE\textsubscript{CTD}	Se-Met SspE\textsubscript{CTD}
Data collection		
Space group	C222\textsubscript{1}	C222\textsubscript{1}
Cell dimensions		
\(a, b, c\) (Å)	108.7, 278.9, 182.3	107.9, 277.7, 181.8
\(\alpha, \beta, \gamma\) (°)	90, 90, 90	90, 90, 90
Wavelength	0.97849 Å	0.97893 Å
Resolution (Å)	50.00-2.73 (2.78-2.73)	50.00-3.00 (3.05-3.00)
\(R_{merge}\)	0.116 (0.738)	0.158 (1.189)
CC1/2	0.991 (0.912)	0.994 (0.804)
\(I/\sigma_I\)	26.00 (2.071)	16.00 (1.875)
Completeness (%)	99.8 (97.7)	100.0 (100.0)
Redundancy	13.1 (11.2)	13.2 (12.1)
Refinement		
Resolution (Å)	139.46-2.72	
No. reflections	70397	
\(R_{work}/R_{free}\)	21.22%/26.50%	
No. atoms		
Protein	14150	
Water	0	
B-factors		
Protein	81.246	
R.m.s. deviations		
Bond lengths (Å)	0.0083	
Bond angles (°)	1.3404	
Ramachandran plot		
statistics (%)		
Most favorable	95.5	
Additionally allowed	4.0	
Disallowed	0.5	

Only one crystal was used to identify the structure of SspE\textsubscript{CTD} from *S. scabiei* DSM 41658. Values in parentheses are for the highest-resolution shell.
Supplementary Table 2. Data collection and refinement statistics of SspE from S. yokosukanensis DSM 40224

	Full-length SspE
Data collection	
Space group	$P2_12_12_1$
Cell dimensions	
a, b, c (Å)	109.28, 137.82, 292.32
α, β, γ (°)	90, 90, 90
Wavelength	0.97849 Å
Resolution (Å)	50.00-3.30 (3.42-3.30)
R_{merge}	0.259 (1.089)
$CC1/2$	0.719 (0.779)
$I/\sigma I$	12.4 (1.9)
Completeness (%)	91.4 (93.6)
Redundancy	13.3 (13.6)
Refinement	
Resolution (Å)	46.14-3.42
No. reflections	61769
R_{work}/R_{free}	20.1%/27.6%
No. atoms	
Protein	24344
Water	0
B-factors	
Protein	94.2
Water	
R.m.s. deviations	
Bond lengths (Å)	0.014
Bond angles (°)	1.707
Ramachandran plot statistics (%)	
Most favorable	89.5
Additionally allowed	9.7
Disallowed	0.8

Only one crystal was used to identify the structure of SspE from *S. yokosukanensis* DSM 40224. Values in parentheses are for the highest-resolution shell.
Supplementary Table 3. Strains, plasmids, and phages used in this study

Strains and plasmids	Characteristics	Source or reference
Strains		
S. yokosukanensis	5'-C_P5CS-3' modification, GenBank: LMWN01000000	DSMZ
DSM 40224		
S. scabiei DSM 41658	5'-C_P5CS-3' modification, GenBank: NZ_LBNJ01000000	DSMZ
E. coli BL21(DE3)	F' _ompT gal dcm lon hsdS2(rB'mB')_λ(DE3 [lac/lacUV5-T7p07 _ind1 sam7 nin5]) [malB^+](λ^3)	Novagen
S. lividans HXY6	S. lividans 1326 derivative lacking _dnd_ and _ssp_ genes	1
Phages		
JXY1	_Podoviridae_, lytic, dsDNA	2
Plasmids		
pBluescript II SK(+)	Cloning vector, 3 kb, Amp'	3
pUC19	Cloning vector, 2.7 kb, Amp'	TransGen Biotech
pSET152	_E. coli-Streptomyces_ shuttle vector, _aac(3)IV_, ColEI, att_P231, ori T	4
pPT551	pET28a derivative expressing the CTD of _SspE_ from _S. scabiei_ DSM 41658, expression vector	This work
pPT552	pET28a derivative expressing the NTD of _SspE_ from _S. yokosukanensis_ DSM 40224, expression vector	This work
pPT553	pET28a derivative expressing the CTD of _SspE_ from _S. yokosukanensis_ DSM 40224, expression vector	This work
pPT555	pET28a derivative expressing _SspE_{K40A} from _S. yokosukanensis_ DSM 40224, expression vector	This work
pPT556	pET28a derivative expressing _SspE_{Q31A} from _S. yokosukanensis_ DSM 40224, expression vector	This work
pPT557	pET28a derivative expressing _SspE_{Y30A} from _S. yokosukanensis_ DSM 40224, expression vector	This work
pWHU3643	pET28a derivative expressing _SspE_{R100A} from _S. yokosukanensis_ DSM 40224, expression vector	2
pPT558	pET28a derivative expressing _SspE_{R404AR408A} from _S. yokosukanensis_ DSM 40224, expression vector	This work
pWHU3261	pET28a derivative expressing _SspE_{N667A} from _S. yokosukanensis_ DSM 40224, expression vector	2
pPT560	pET28a derivative expressing _SspE_{N667A} from _S. yokosukanensis_ DSM 40224, expression vector	This work
Expression Vector	Description	
-------------------	-------------	
pPT561	pET28a derivative expressing SspE_{N676A} from *S. yokosukanensis* DSM 40224, expression vector	
pPT562	pET28a derivative expressing CFP, expression vector	
pPT563	pET28a derivative expressing YFP-Ssp-CFP, expression vector	
pPT564	pET28a derivative expressing YFP-CFP, expression vector	
pPT565	pET28a derivative expressing CTD_{K395A/R526A} from *S. yokosukanensis* DSM 40224, expression vector	
pPT566	pET28a derivative expressing CTD_{R512A} from *S. yokosukanensis* DSM 40224, expression vector	
pPT567	pET28a derivative expressing CTD_{R404A/R408A} from *S. yokosukanensis* DSM 40224, expression vector	
pPT568	pET28a derivative expressing CTD_{396-771aa} from *S. yokosukanensis* DSM 40224, expression vector	
pWHU3658	pSET52 derivative with a 9.7-kb fragment carrying *sspABCDE* from *S. yokosukanensis* DSM 40224	
pPT581	pWHU3658 derivative expressing SspABCDE_{K40A}	
pPT582	pWHU3658 derivative expressing SspABCDE_{R404A/R408A}	
pPT583	pWHU3658 derivative expressing SspABCDE_{N667A}	
pPT584	pWHU3658 derivative expressing SspABCDE_{N676A}	
pPT585	pWHU3658 derivative expressing SspABCDE_{Q31A}	
pPT586	pWHU3658 derivative expressing SspABCDE_{Y30A}	
pPT590	pSET152 derivative with a 2.3-kb fragment carrying *sspE* from *S. yokosukanensis* DSM 40224	
pPT591	pPT590 derivative expressing SspE_{K40A}	
pPT592	pPT590 derivative expressing SspE_{R404A/R408A}	
pPT593	pPT590 derivative expressing SspE_{N667A}	
pPT594	pPT590 derivative expressing SspE_{N676A}	
pPT595	pPT590 derivative expressing SspE_{Q31A}	
pPT596	pPT590 derivative expressing SspE_{Y30A}	
pPT597	pPT590 derivative expressing SspE_{Y30A}	
Supplementary Table 4. Data collection and refinement statistics of SspE_{R100A} from *S. yokosukanensis* DSM 40224

| SspE_{R100A} |
|---|---|
| **Data collection** |
| Space group | *P2₁2₁2₁* |
| Cell dimensions |
a, b, c (Å)	110.03, 137.97, 292.35
α, β, γ (°)	90, 90, 90
Wavelength	0.97849 Å
Resolution (Å)	50.00-3.50 (3.56-3.50)
R_{merge}	0.306 (2.296)
CC_{1/2}	0.988 (0.583)
I/σI	15.0 (2.0)
Completeness (%)	99.7 (85.8)
Redundancy	12.9 (11.5)
Refinement	
Resolution (Å)	36.54-3.48
No. reflections	54087
R_{work}/R_{free}	25.7%/30.8%
No. atoms	
Protein	24462
Water	0
B-factors	
Protein	49.7
Water	
R.m.s. deviations	
Bond lengths (Å)	0.016
Bond angles (°)	1.829
Ramachandran plot statistics (%)	
Most favorable	87.4
Additionally allowed	11.9
Disallowed	0.7

Only one crystal was used to identify the structure of SspE_{R100A} from *S. yokosukanensis* DSM 40224. Values in parentheses are for the highest-resolution shell.
Supplementary Fig. 1. Crystal structures of SspE\textsubscript{CTD} from \textit{S. scabiei} DSM 41658.

(a) Ribbon diagram of the four molecules, shown in green, yellow, magenta, and cyan, in one asymmetric unit of SspE\textsubscript{CTD}. (b) Rotation (180°) of the SspE\textsubscript{CTD} monomer along the x-axis to show the back view. Helices are shown in cyan, and sheets are shown in magenta. Source data are provided as a Source Data file.
Supplementary Fig. 2. EMSA analysis of the binding of Ssp\textsubscript{ENTD} with increasing concentrations to linearized pUC19 DNA with or without PT modification at 5\textasciiquotesquot;-C\textsubscript{PS}CA-3\textasciiquotesquot;. The binding interaction between SspE and pUC19 DNA was used as a reference. Source data are provided as a Source Data file.
Supplementary Fig. 3. DNA nicking assay of SspE and SspE_{K40A} toward plasmid DNA in vitro. In this assay, supercoiled pUC19 and pGM1190 DNA with or without the PT modification were used as substrates. Three hundred nanograms of plasmid DNA were incubated with 0.2 or 2 µM protein at 28 °C in CutSmart buffer (New England Biolabs). At the indicated time points, the nicked DNA products were analyzed on 1% agarose gels. PT-modified pGM1190 and pUC19 were isolated from SspABCD-SspE-expressing <i>S. lividans</i> HXY6 and <i>E. coli</i> cells, respectively. Source data are provided as a Source Data file.
Supplementary Fig. 4. Assessment of the antiplasmid activity of SspE in *E. coli* 3234/A. (a) Wild-type SspABCD-SspE module-containing *E. coli* 3234/A and Ssp-lacking mutant ΔsspBCDE were used as host strains for transformation by equal amounts of PT-modified (PT⁺) or non-PT-modified (PT⁻) pUC19, respectively. (b) The results are presented as relative transformation efficiencies (ratios of PT⁻/PT⁺ plasmid) obtained by parallel transformation of PT⁻/PT⁺ plasmid DNA. Data and error bars represent the mean ± SD from four independent experiments. Statistical significance was calculated by unpaired two-sided Student t-tests; NS, not significant. Source data are provided as a Source Data file.

Supplementary References

1. Liang, J. *et al.* DNA modification by sulfur: analysis of the sequence recognition specificity surrounding the modification sites. *Nucleic Acids Res.* **35**, 2944-2954 (2007).
2 Xiong, X. et al. SspABCD–SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. *Nat. Microbiol.* **5**, 917-928 (2020).

3 Alting-Mees, M. A. & Short, J. M. pBluescript II: gene mapping vectors. *Nucleic Acids Res.* **17**, 9494 (1989).

4 Bierman, M. et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. *Gene* **116**, 43-49 (1992).