The Neuroprotection Effects of Exosome in Central Nervous System Injuries: a New Target for Therapeutic Intervention

Li Zhang1 · Lei Mao1 · Handong Wang1

Received: 2 December 2021 / Accepted: 5 September 2022 / Published online: 14 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), and subarachnoid hemorrhage (SAH), are the most common cause of death and disability around the world. As a key subset of extracellular vesicles (EVs), exosomes have recently attracted great attentions due to their functions in remodeling extracellular matrix and transmitting signals and molecules. A large number of studies have suggested that exosomes played an important role in brain development and involved in many neurological disorders, particularly in CNS injuries. It has been proposed that exosomes could improve cognition function, inhibit apoptosis, suppress inflammation, regulate autophagy, and protect blood brain barrier (BBB) in CNS injuries via different molecules and pathways including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch1, and extracellular regulated protein kinases (ERK). Therefore, exosomes showed great promise as potential targets in CNS injuries. In this article, we present a review highlighting the applications of exosomes in CNS injuries. Hence, on the basis of these properties and effects, exosomes may be developed as therapeutic agents for CNS injury patients.

Keywords Central nervous system injuries · Exosomes · Downstream molecules

Introduction
Central nervous system (CNS) injuries and their potential long-term consequences are of major concern for public health. High rates of morbidity and mortality making them a global health challenge [1]. CNS is highly sensitive to external mechanical damage, such as traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and stroke, presenting a limited capacity for regeneration due to its inability to restore either damaged neurons or synaptic network [2]. Although some of the pathological processes of CNS injuries such as blood brain barrier (BBB) disruption, inflammation, and oxidative stress have been elucidated, the detailed mechanisms driving these processes are poorly understood [3]. Despite the progress has been made in the prevention and treatment of CNS injuries in the past, patients suffering from CNS injuries usually end up with poor prognosis [4]. Therefore, it is urgently needed to find optimal therapies and improve patients’ long-term neurological functioning after CNS injuries.

Extracellular vesicles (EVs) are lipid-bound vesicles that play a significant role in intracellular communication. EVs are classified into three main subtypes including microvesicles (MVs), apoptotic bodies, and exosomes [5]. Among EVs, exosomes are most broadly investigated. Exosomes are 30 to 120 nm endogenous nanovesicles containing proteins, lipids, and nucleic acids [6]. The exosome formation process mainly involves three steps: (1) the formation of early endosomes by invagination of the plasma membrane; (2) the early endosomes generate late endosomes and multivesicular bodies (MVBs) containing intraluminal vesicles. Upon fusion of MVBs with the plasma membrane, the vesicular contents are released, called exosomes; (3) if MVBs fuse with lysosomes, the MVBs are degraded. In addition, microvesicles are secreted by outward budding and splitting of plasma membrane, and apoptotic bodies containing DNAs, RNAs, proteins, and histone are produced by blebbing of apoptotic cells (Fig. 1) [7, 8]. Exosomes can cross the BBB and have the potential to specifically deliver molecules to CNS [9]. The initial function of exosomes is thought...
to be the elimination of non-functional proteins in cells, but the current view is that exosomes are vesicles that involved in intercellular communication [10]. Via cargo proteins, mRNAs, DNAs, and microRNAs (miRNAs), exosomes can work locally or be stably transferred to recipient cells and act as key players in triggering, transferring and regulating immune responses to neighboring cells [11]. Furthermore, most cells in CNS have been reported to secrete exosomes into the extracellular environment [12, 13]. It has been shown that exosomes were involved in the brain development, functional diversification, and contributed to diverse neurological disorders, such as CNS injuries [14, 15]. In this regard, exosomes could be a promising alternative to cell-based therapies, highlighting the potentially roles of exosomes in CNS injuries are important.

In the present study, we provide an overview of exosomes functions in CNS injuries and the associated molecular mechanisms. This review describes (1) the source of exosomes in CNS injuries, (2) the role of exosomes in CNS injuries, and (3) the downstream targets of exosomes.

The Source of Exosomes in CNS Injuries

In 1983, Pan et al. isolated a small vesicle from the supernatant of sheep erythrocytes by ultracentrifugation; the vesicle was later named exosome [16]. This observation led to investigations into the potential role of exosomes in multiple models [17]. Recently, the effects of exosomes in CNS injuries were elucidated. Although there are both exogenous and endogenous exosomes, the exosomes mentioned in our review were isolated from cells in vitro and used for the treatment of CNS injuries via intravenous injection or intracerebroventricular injection. Specifically, exosomes derived from astrocyte, microglia, neuron cells, mesenchymal stem cell (MSC), and brain endothelial cells (BECs) were found to influence brain damage in CNS injury models (Table 1).

Compared to direct cell transduction, exosomes also carry bioactive chemicals such as proteins, mRNAs, and miRNAs and have the same transduction functions of derived cells. In addition, exosomes own the diameter of nanoparticles and can cross the BBB, which are the key factors for the information transfer between derived cells and other cells. Studies have shown that most cells used to treat CNS diseases were attributed to their release of exosomes [18].

Astrocyte and Microglia

Astrocytes and microglia are able to release cytokines, chemokines, and growth factors in respond to brain damage [19]. These factors can affect the homeostatic balance of CNS and determine the degree of injury [20]. Recently, the astrocytes or microglia-derived exosomes have been demonstrated to regulate secondary brain injury after CNS injuries.

Astrocytes are the most abundant glial cells in the CNS [21]. Normally, astrocytes play crucial roles in promoting the formation of BBB, maintaining the function of neural circuit, modulating synaptic circuits and neurotransmitter recycling as well as repairing and scarring process of the brain [22]. In addition to upholding normal brain activities,
Astrocytes can function as reactive astrogliosis following CNS injuries by regulation of gene expression, morphology, and proliferative capacity [23]. Reactive astrogliosis is capable of secreting soluble factors such as transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), and basic fibroblast growth factor (bFGF), which further activate inflammatory response after CNS injuries [24]. The diversified functions of astrocytes make them predominant among other cells in CNS [25, 26].

Sources	Models	Animals and/or cells	Beneficial functions of exosomes	Molecular targets
Astrocyte	TBI	Mice, mouse neurons	Improve neurological deficits, decrease inflammation and apoptosis	ERK, NF-κB, GJA1-20 k
	IS	Mouse neurons	Suppress neuronal apoptosis, regulate autophagy	miR-7670-3p, SIRT1
	I/R injury	Rats, N2a cells	Promote cell proliferation, inhibit apoptosis	miR-34c, miR-361, NF-κB
	OGD/R injury	Mouse neurons, OPCs	Induce cell differentiation and migration, reduce apoptosis	miR-424-5p
Microglia	I/R injury	Mice, mouse neurons	Attenuate behavioral deficits, infarct volume and apoptosis	miR-124, USP14
	TBI	Mouse neurons, BV2 cells	Inhibit neuronal inflammation, contribute to neurite outgrowth	miR-124-3p, miR-5121
	IS	Mouse neurons	Decrease infarct volume, behavioral deficits, and apoptosis	miRNA-137, Notch1
	OGD/R injury	BMECs, mouse neurons	Reduce neurological dysfunctions and cell injury	miR-424-5p, miR-92b-3p
	ICH	Rats, rat neurons	Suppress neuronal necroptosis	miR-383-3p, ATF4
Umbilical MSC	HIBD	Ovine fetuses	Reduce the neurological sequelae and BBB damage	/
	PBI	Rat pups, BV2 cells	Rescue normal myelination and mature oligodendroglia	NF-κB
Bone marrow MSC	TBI	Mice, mouse neurons	Improve cognitive function and angiogenesis, reduce inflammation	miR-124-3p, miR-5121
	IS	Mice, mouse neurons, BV2 cells	Promote new regeneration, prevent immunosuppression	miR-34c, miR-361, NF-κB
	SCI	Rats, BMECs, mouse neurons	Reduce neurological dysfunctions and cell injury	NS-424-5p, miR-92b-3p
Adipose MSC	TBI	Rats	Facilitate functional recovery, inhibit inflammation	ERK, NF-κB, p38
Neuron	TBI	BV2 cells	Inhibit inflammation and apoptosis, promote neurite growth	miR-21-5p
	SAH	Mouse	Mitigate brain edema and BBB injury, reduce inflammation	miR-193b-3p
BEC	I/R injury	Mice, PC12 cells	Promote functional motor recovery, decrease apoptosis	miR-126-3p
USC	SCI	Mouse	Enhance neurological functional recovery, promote angiogenesis	PI3K/AKT
cEPC	IS	Mouse	Reduce infarct volume and apoptosis, promote angiogenesis	miR-126, PI3K/AKT
NSC	SCI	Rats, PC12 cells	Inhibit neuroinflammation and apoptosis	miR-219a-2-3p, NF-κB
Macrophages	IS	Rats, SH-SY5Y cells	Improve neurological function, decrease inflammation	/
DPSC	I/R injury	Mice	Alleviate brain edema, cerebral infarction, and inflammation	NF-κB

CNS central nervous system, TBI traumatic brain injury, ERK extracellular regulated protein kinase, NF-κB nuclear factor kappa-light-chain-enhancer of activated B, GJA1-20 k gap junction alpha 1-20 k, IS ischemic stroke, miRNA microRNA, SIRT1 sirtuin-1, I/R ischemia–reperfusion, OGD/R oxygen–glucose deprivation/reoxygenation, UPS14 ubiquitin-specific protease 14, BMEC brain microvascular endothelial cell, ICH intracerebral hemorrhage, ATF4 activating transcription factor 4, MSC mesenchymal stem cell, HIBD hypoxic/ischemic brain damage, BBB blood–brain barrier, PBI perinatal brain injury, SCI spinal cord injury, BSCB blood-spinal cord barrier, SAH subarachnoid hemorrhage, BEC brain endothelial cell, USC urine stem cell, PI3K/AKT phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B, cEPC circulating endothelial progenitor cell, NSC neural stem cell, DPSC dental pulp stem cell.

astrocytes can function as reactive astrogliosis following CNS injuries by regulation of gene expression, morphology, and proliferative capacity [23]. Reactive astrogliosis is capable of secreting soluble factors such as transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), and basic fibroblast growth factor (bFGF), which further activate inflammatory response after CNS injuries [24]. The diversified functions of astrocytes make them predominant among other cells in CNS [25, 26].
Microglia are brain-resident myeloid cells that regulate immune reaction and inflammatory response [27]. Microglia have been considered as the "gate-keepers" of CNS microenvironment with a large number of functions in development and remodeling of the nervous system [28]. Moreover, microglia modulate cell survival and neurological recovery in response to brain damage by release of trophic factors [29]. Upon brain damage, microglia are activated and move toward the lesioned zone, secreting growth factors such as insulin-like growth factor I (IGF-I) and proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) [30]. Deficiency of microglia has been reported to participate in CNS injuries such as stroke, TBI, and hypoxia–ischemia injury [31, 32].

In physiological conditions, astrocyte or microglia-derived exosomes are enriched with various biological molecules including genes, miRNA, and proteins. Conversely, in pathological conditions such as oxidative stress, inflammation, and nutrient deficiency, astrocyte or microglia-derived exosomes exert neuroprotective effects and promote neurite regeneration and outgrowth [33, 34]. Besides, the exosomes can be isolated from astrocyte or microglia in vitro. Firstly, supernatants collected from cultured astrocyte or microglia were filtered with a 0.2-μm filter to remove the large debris and dead cells. Then, small cell debris were removed by centrifugation at 10,000 g for 30 min and the supernatants were further recentrifuged at 100,000 g for 3 h. The supernatants were used as exosome-free controls and stored at 4 °C. The pellets were resuspended in phosphate buffered saline (PBS) and stored at −80 °C [35, 36].

Neuron Cell

Neurons are specialized cells with a high level of polarization, and the basic function of neurons is responsible for rapid communication of information [37]. Under normal or pathological conditions, neurons can secret exosomes and mediate a variety of different effects, including nutritional metabolic support, nerve regeneration, inflammatory responds, and the propagation of toxic components, playing an important role in health and neurodegenerative diseases [38]. The exosomes can also be isolated from neuron in vitro as described in the literature [39]. Interestingly, recent studies have shown that neuron-derived exosomes might be isolated by a precipitation/immunoaffinity approach using antibodies against neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) [40].

The exosomes secreted by neuron, astrocyte, and microglia could affect the interactions and the physiology of these cells by transmitting lipids, proteins, and RNAs, thus supporting their metabolic requests and responding to environmental stimuli [41]. Neuron exosomes can interact with astrocyte exosomes that sense and respond to neuronal activity and participate in the re-uptake of neurotransmitters [42]. For example, astrocyte exosomes regulate nutrients delivery through BBB based on neuronal activity [43]. Neuron exosomes could also affect microglia exosomes. It has been shown that exosomes release by neurons facilitated microglial removal of degenerating neurites by up-regulating the complement molecule C3 in microglia exosomes [34]. Moreover, microglia-derived exosomes interact with neuron exosomes by promoting neuronal production of ceramide and sphingosine, which positively affects excitatory neurotransmission [44]. Furthermore, microglia-derived exosomes drive the enrichment in proteins implicated in cell adhesion/extracellular matrix organization and cellular metabolism, which in turn affect the cellular response of recipient astrocyte exosomes [45]. In addition, through the capillaries, astrocyte exosomes can participate to the inflammatory response upon interact with neuron and microglia exosomes [46].

MSC

MSCs are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation [47]. MSCs were first derived from bone marrow; subsequently, they have been isolated from almost all tissues. MSCs can be isolated from adipose tissue, umbilical cord, menses blood, and so on [48]. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium [49]. Depending on different parameters such as tissue source, isolation method, and medium composition, the role of MSCs is different [50]. MSCs can secrete high levels of proteins, cytokines, and immune-receptors that functions in immunoregulation, revascularization, cutaneous wound healing, angiogenesis, and tissue regeneration [51]. In addition to secret proteins, MSCs also release exosomes, which could be a promising therapeutic target in diseases [52].

MSCs have the ability to generate large number of exosomes; the generation rate of exosomes is associated with the proliferation rate of MSCs [53]. There are a lot of methods that have been discovered to isolate exosomes from MSCs such as ultracentrifugation (UC), size-exclusion chromatography (SEC), filtration, and immunoaffinity isolation methods. Of these methods, UC was the most widely used. UC is to obtain purified exosomes by repeated differential centrifugation, filtration, and washing. However, membrane damage of exosomes may occur during centrifugation [54].

Very recent preclinical studies have identified exosomes as a dominant player in the MSC-mediated repair process of injured tissues [55]. MSC-derived exosomes coordinate intercellular communication and tissue repair through transfer of proteins, DNA, RNA, and lipids between cells, which is likely to constitute a novel mode of intercellular communication [56].
BECs

BECs are mesodermal derived modified simple squamous epithelial cells that form the walls of blood vessels [57]. A great number of studies have demonstrated that BECs play an important role in brain development, remodeling, and repair [58]. Acute injuries, including trauma, cerebral hemorrhage, and hypoxia–ischemia, can lead to BEC death, which further causes BBB disruption, inflammation, and oxidative stress [33]. Thus, the homeostatic balance of BEC death and survival is vital to brain development and maturation. BECs have unique properties, they lack fenestrations, undergo low rates of transcytosis, and are held together by tight junctions (TJs) [59]. These characteristics allow them to limit the vesicle-mediated transcellular movement of solutes and regulate the movement of cells, molecules, and ions between brain and blood [60]. Moreover, BECs prevent peripheral immune cells to CNS due to their low expression of adhesion molecules [61].

BECs also secret exosomes. Normally, BEC-derived exosomes can increase the proliferation, migration, and secretion of matrix metalloproteinase (MMP)-1 and MMP-3 in the mesenchymal stem cells, stimulating local trophic support. Moreover, in CNS injuries, BEC-derived exosomes can protect brain from damage [62]. The isolation of exosomes from BECs in vitro is also centrifugation, filtration, and washing as described in the literature [63].

Other Sources of Exosomes

To date, the four sources of exosome have been well-studied in CNS injuries. However, there are also some other sources of exosome that have been explored such as human urine stem cell (USC) [64], circulating endothelial progenitor cell (cEPC) [65], neural stem cell (NSC) [66], macrophages [67], and dental pulp stem cell (DPSC) [68]. All these sources of exosome may provide neuroprotection in CNS injuries.

The Function of Exosomes in CNS Injuries

Exosomes were firstly reported to exhibit neuroprotection on CNS injuries in 2012 [69]. Subsequently, many studies have demonstrated that exosomes could provide neuroprotective effects in CNS injuries. The neuroprotection of exosomes was reportedly attributed to their effects on improvement of cognitive function, inhibition of inflammation, suppression of apoptosis, regulation of autophagy, promotion of angiogenesis, and protection of BBB (Table 2). In CNS injuries such as SCI, TBI, and SAH, the relationships among cognition function, apoptosis, inflammation, angiogenesis, and autophagy have been clarified. It has been suggested that regulation of autophagy could decrease apoptosis, inflammation, and promote angiogenesis, resulting in improvement of cognition function [70, 71].

Cognitive Function

In animals, cognitive function is considered to be the ability to learn, retain, and recall information. However, in humans, it also represents a complex, multidimensional set of intellectual functions like judgment and evaluation [72]. Thus, in a broader context, cognitive function includes all mental abilities and processes related to knowledge including memory, reasoning, attention, comprehension, and language production [73]. Cognitive function was originally thought to be regulated by CNS, but now other systems, for example, the immune system and the intestinal microbiome may also be involved [74]. Cognitive function impairment may occur in CNS injuries and neurodegenerative disease, which is characterized by problems in attention, thinking, memory, language, and social communication [75]. People who suffer from cognitive decline experience poor quality of life and demand continuous care from their families and society, thus increasing the burden of family members and social insurance funds [76].

Table 2 Mechanisms of exosomes in CNS injuries

Mechanisms	Factors	Associated molecules
Improve cognitive function	Reduce neuronal loss in cortex and hippocampus	/
Promote angiogenesis	Induce endothelial proliferation and augment vasopermeability	VEGF
Suppress apoptosis	Reduce chromosomal DNA fragmentation and formation of apoptotic bodies	Bcl-2, Bax, caspase-3
Inhibit inflammation	Decrease inflammatory factors and attenuate inflammatory response	NF-κB, TNF-α, IL-1β, IL-4, IL-10
Affect autophagy	Increase the expression of LC3-II and promote the formation of autophagosome	Beclin-1, LC3
Protect BBB function	Reduce endothelial cell markers and tight junction protein loss	GSTo3, GPx

CNS central nervous system, VEGF vascular endothelial growth factor, DNA deoxyribonucleic acid, Bcl-2 B-cell lymphoma-2, Bax Bcl-2-associated X protein, NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells, TNF-α tumor necrosis factor-α, IL-1β interleukin-1β, IL-4 interleukin-4, IL-10 interleukin-10, LC3 microtubule-associated protein light chain 3, BBB blood–brain barrier, GSTo3 glutathione S-transferase alpha 3, GPx glutathione peroxidase

 Springer
The effects of exosomes on cognitive function after CNS injuries have been explored. In a rat TBI model, MSC-derived exosomes significantly improved spatial learning as measured by the modified Morris water maze test and recovered sensorimotor function as evidenced by reduced neurological deficits and foot-fault frequency [77]. Furthermore, treatment with exosomes derived from mouse BECs significantly improved neurological and cognitive functional outcome as evaluated by adhesive removal test and odor test in a mouse stroke model [63]. In addition, it has been shown that exosomes from human umbilical cord MSCs attenuated stress-induced hippocampal dysfunctions and improved motor recovery in an acute brain disorder model [78].

The precise mechanisms underlying how exosomes regulated cognitive function were unclear. Chen et al. found that exosomes derived from human adipose MSCs were mainly taken up by microglia/macrophages. They suggested that human adipose MSC-derived exosomes specifically entered microglia/macrophages and suppressed their activation during brain injury, thus facilitating functional recovery [79]. So, exosomes may improve cognitive function by regulation of microglia/macrophages activation. Moreover, it has been revealed that cognitive function impairment involved selective neuronal loss in the hippocampus and cortex [80]. Therefore, exosomes may improve cognitive function by intervene with these pathological processes.

Inflammation

Inflammation is one of the major determinants of secondary brain damage after CNS injuries [81]. In normal conditions, inflammation is a vital physiological immune response against noxious stimuli (such as injury or infection) and defends the host against pathogenic threats [82]. However, in respond to CNS injuries, excessive inflammation may provoke substantial detrimental effects [83]. This process involves initiating microglia activation and sustaining astrocytic activation. Once activated, these cells can induce a series of events including activation of glial, recruitment of leukocyte, and release of pro-inflammatory cytokines (e.g., IL-1β, IL-2, IL-6, TNF-α, interferon γ (IFN-γ)) and chemokines (e.g., C–C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 8 (CXCL8)) [84, 85]. These cytokines and chemokines recruit more inflammatory cells to amplify the inflammatory response, leading to BBB breakdown, cerebral edema, and cell death [86].

Numerous studies have proposed that exosomes exerted a central effect in CNS injury–induced inflammation. The effect of exosomes in CNS injury–induced inflammation was firstly described by Zhang et al. in 2015 [77]. They found that the density of CD68 + and GFAP + cells, which respectively represents inflammatory response and astrocyte activation, was significantly increased in the lesion boundary zone after TBI. MSC-derived exosomes treatment significantly reduced the CD68 + and GFAP + cells density in the injured cortex compared to the PBS treatment, suggesting that MSC-derived exosomes had anti-inflammatory effects in TBI [77]. Moreover, in a mouse model of SAH, bone marrow MSC-derived exosomes suppressed the expression and activity of histone deacetylase 3 (HDAC3) and up-regulated the acetylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, thus attenuating neuroinflammation in early brain injury [87]. Furthermore, in ischemic stroke (IS) models, exosomes secreted from the lipopolysaccharide (LPS)-stimulated macrophage promoted microglial polarization from the M1 phenotype to the M2 phenotype and reduced the production of IL-1β and TNF-α in vitro, indicating the anti-inflammatory effect of exosomes [67]. In addition, it has been shown that plasma exosomes could enhance melatonin therapeutic effects against ischemia-induced inflammatory responses and inflammasome-mediated pyroptosis in ischemic stroke [88].

The underlying mechanisms of exosome-mediated inflammation are immensely complicated. Studies have indicated that the NF-κB signaling pathway might be the key target. It has been shown that exosomes suppressed microglia/macrophage activation by inhibiting NF-κB and p38 mitogen–activated protein kinase (MAPK) signaling, thus suppressing inflammation [79]. Furthermore, exosomes inhibited LPS-induced microglial M1 phenotype transformation and the subsequent inflammation through decreased phosphorylation of extracellular signal-regulated kinase (ERK) and NF-κB p65 [35]. In addition, exosomes could interfere within the Toll-like receptor 4 (TLR4) signaling of microglia and prevent the degradation of the NF-κB inhibitor IκBα and the phosphorylation of molecules of the MAPK family in response to LPS stimulation [89].

Angiogenesis

Under physiological conditions, the brain vascular system is stable and contributes to the maintenance and growth of the tissue [90]. When brain vasculature is damaged under pathological conditions including injuries, angiogenesis is activated. Angiogenesis is a tightly regulated process through which new blood vessels are formed; it involves the participation of endothelial cells, extracellular matrix, and vascular cells to form capillaries [91]. This process requires an orchestrated interplay of many stimulators, inhibitors, and matrix components [92, 93]. Angiogenesis facilitates the generation of new vasculature, which further accelerates highly coupled neurorestorative process and promotes tissue perfusion [94]. Angiogenesis is controlled by vascular growth factors such as vascular endothelial growth factor (VEGF) [95]. VEGF owns a mitogenic effect on endothelial
cells, thus increasing the vascular permeability and promoting cell migration [96].

Since angiogenesis is beneficial for CNS injury–caused secondary injury, exosomes may attenuate brain damage by promoting angiogenesis. Consistent with this hypothesis, Zhang et al. proposed that MSC-derived exosomes significantly increased the vascular density and angiogenesis as identified by EBA/BrdU + double labeling for newborn endothelial cells in the injured cortex [77]. Furthermore, bone marrow MSC-derived exosomes increased the number of branch points as proven by tube formation assay in a rat hypoxic-ischemic injury model [97]. In another study, it was shown that miRNA-17–92 cluster-enriched exosomes derived from human bone marrow MSCs increased the formation of blood vessels after TBI, indicating that exosomes could promote angiogenesis [98].

Because angiogenesis is emerging as a therapeutic target for CNS injuries, therefore, exosome-based therapies by targeting angiogenesis might provide opportunities for the development of novel therapeutic strategies for CNS injuries. Recently, exosome-based therapies have already been applied successfully for angiogenesis-mediated tissue regeneration in TBI and stroke [99]. However, the potential mechanisms have not been fully explained. It has been proposed that exosomes could promote angiogenesis by regulation of VEGFR2. VEGFR2 is responsible for most downstream angiogenic effects of VEGF, binding of VEGF to VEGFR2-activated survival and migration pathways such as focal adhesion kinase. Exosomes improved angiogenesis and neurogenesis in the peri-infarct area of mice by upregulation of VEGFR2 [100]. Furthermore, exosomes could promote the migration of brain microvascular endothelial cells (BMECs), resulting in the activation of vascular cells and angiogenesis under the anoxic condition [101]. In addition, exosome-derived communication between BECs was responsible for the induction of local neo-vascularization in brain injury [102].

Apoptosis

Apoptosis is a very tightly programmed cell death (PCD) occurring regularly to eliminate unnecessary and unwanted cells as well as to maintain a homeostatic balance between cell survival and cell death [103, 104]. It has been shown that insufficient apoptosis can trigger cancer or autoimmunity, while excessive activation of apoptosis could be harmful and contribute to abnormal cell death, particularly in pathological conditions such as acute and chronic degenerative diseases, immunodeficiency, and trauma [71, 105]. If apoptosis occurs in CNS injuries, it can cause secondary brain injury, aggravating the damage of the brain [106].

The functions of exosomes in apoptosis have been studied. The results obtained by Song et al. demonstrated that microglia-derived exosomes significantly increased cell survival and decreased neuronal apoptosis in ischemia–reperfusion injury, as demonstrated by neuronal survival, TdT-mediated dUTP Nick-End labeling (TUNEL) staining and the lactate dehydrogenase (LDH) assay [36]. In addition, Ni et al. showed that in a mouse TBI model, bone marrow MSC-derived exosomes up-regulated the expression of B-cell lymphoma-2 (Bcl-2) while down-regulated the expressions of Bcl-2-associated X protein (Bax), suggesting that bone marrow MSC-derived exosomes attenuated cell apoptosis [107]. In another study conducted by Lai et al., they found that MSC-derived exosomes decreased apoptosis in the brain following SAH as shown by increased expression of Bcl-2 and decreased expression of caspase-3 [87]. In conclusion, these data suggested that exosomes could reduce cell apoptosis in models of CNS injury.

In the past decades, apoptosis was considered to release extracellular vesicles such as apoptotic bodies and microvesicles; however, exosome release due to apoptosis has not been accepted because defining exosomes in apoptosis is difficult [108]. Recently, the release of exosomes in apoptosis has been proposed and was named ApoExos. Besides the roles in intercellular communication, ApoExos share common features of exosomes such as size and density and express the typical exosomal marker such as CD63 and sphingosine 1-phosphate receptors 1/3 (S1PR1/3) [109]. It has been reported that the caspase 3-dependent formation of MVBs and the release of ApoExos in endothelial cells could lead to the delivery of translationally controlled tumor protein (TCTP) [110]. Therefore, exogenous exosomes may suppress apoptosis in CNS injuries through inhibiting the release of ApoExos. However, none of the studies has explained it in CNS injuries and this is a significant aspect worth investigating.

Researches so far have only studied the role of exosomes on apoptosis in general. However, apoptosis can be divided into two pathways: the mitochondria-dependent pathway (the intrinsic pathway) and the death receptor-dependent pathway (the extrinsic pathway) [111]. The intrinsic pathway involves a chain of intracellular events occurring in the mitochondrion including the release of cytochrome c, formation of the apoptosome with apoptotic protease-activating factor 1 (APAF1), activation of caspase-9, and subsequent caspase-3 [112]. The release of cytochrome c is positively regulated by the pro-apoptotic Bcl-2 family members such as Bax, Bcl-2 antagonist killer 1 (Bak), and Bid and negatively regulated by the anti-apoptotic Bcl-2 family members such as Bcl-2 and B-cell lymphoma-extra large (Bcl-xL) [113]. In contrast, the extrinsic pathway is initiated by the binding of TNF ligand to TNF receptor and the binding of Fas ligand to Fas receptor [71]. Upon ligand binding, the death receptors allow the binding of an initiator caspase-8 or caspase-10 to form death inducing signaling complex (DISC).
through its death effector domain (DED). The activation of caspase-8 relays the death signal to an execution caspase to bring about apoptosis [114, 115]. Thus, which apoptotic pathway is associated with the effects of exosomes in CNS injury–induced apoptosis remains unclear and further studies are needed to clarify it.

Autophagy

Autophagy is an evolutionarily conserved lysosomal pathway for the degradation of cytoplasmic components [116]. In conditions of starvation response, cell differentiation, and quality control, autophagy is activated and plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells [117–119]. Recent studies have revealed that the dysfunction of autophagy was implicated in CNS injuries and extensive activation of autophagy can lead to type II PCD [120]. Up to now, the dual role of autophagy in protective or destructive of CNS injuries remains controversial. Shi et al. found that in cerebral ischemia–reperfusion rats, inhibiting autophagy by sevoflurane attenuated brain damage, demonstrating a detrimental role of autophagy [121]. Conversely, Ahsan et al. reported that urolithin A–activated autophagy protected against ischemic neuronal injury by inhibiting endoplasmic reticulum (ER) stress both in vitro and in vivo, suggesting that autophagy played a beneficial role in stroke [122].

There were also studies showing that exosomes could affect autophagy in CNS injuries. However, the roles of exosome-regulated autophagy in CNS injuries were also controversial. Li et al. have shown that exosomes from neurons inhibited cell apoptosis and death in TBI by suppression of Rab11a-mediated autophagy, suggesting a detrimental role of autophagy in TBI [123]. Interestingly, another study conducted by Yuan et al., they found that bone marrow MSC-derived exosomes decreased ER stress in BV2 cells by induction of disabled homolog 2-interacting protein (DAB2IP)–mediated microglia autophagy, suggesting a protective role of exosomes and autophagy in brain injury [124]. The discrepancies may be due to the different source of exosomes and cell types used in these two studies. Taken together, by combination with the previous studies, we thought that depending on different CNS injury models, sources of exosomes and cell types, autophagy, and cell death may have inhibitory, additive, or even synergistic effects.

Both exosomes and autophagy share crosslink not only at function but also at molecular signaling and vesicular levels [125]. Autophagy can be activated in recipient cells after internalization of exosomes through the following ways: (1) Exosomes containing autophagic component induced autophagy via transferring the autophagic components or via the autophagic regulators in target cells, which called exosome-induced autophagy [125]. (2) Besides the autophagic component, exosome-related miRNAs including miR-19b, miR-20a/b, and miR-21 have been indicated to regulate the dynamic of autophagy and affect autophagy flux in target cells via modulation of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/akt)/mTOR, TLR, and AMPK signaling pathway as well as downstream autophagic molecules such as ATG, LC3, Beclin-1, P62, and ULK1 [126]. (3) Exosomes can affect autophagic degradation by changing the fusion of lysosomes with both MVBs and autophagosomes and the interference with transport or fusion of the organelles [127].

BBB Function

BBB is a highly specialized, semi-permeable physical barrier that locates at the interface between the CNS and the surrounding environment [128]. It is instrumental in regulating the metabolism of the brain, maintaining the micro-environmental homeostasis of CNS, and coordinating the functions of peripheral organs [128]. In addition, BBB is a dynamic metabolic interface that can bi-directionally regulate the transport of fluids, solutes, and cells [129]. Structurally, BBB is formed by BECs with TJ. Dysfunction of BBB is a common pathological feature in CNS injuries. Several underlying events are involved in BBB destruction, such as disruption of the TJ, breakdown of the BECs, and degradation of the extracellular matrix [130]. In an in vitro model of IS, Pan et al. found that MSC-derived exosomes alleviated BBB disruption in hypoxia/reoxygenation (H/R)-injured endothelial cells by analyzing the Evans blue dye extravasation and brain water content [131]. Moreover, Lai et al. suggested that bone marrow MSC-derived exosomes attenuated BBB permeability in early brain injury after SAH [87]. Furthermore, another in vivo study confirmed the protective effects of exosomes on BBB in ischemia–reperfusion injury [132]. It has been suggested that exosomes could protect BBB by attenuating the disturbances in BEC function, decreasing permeability and disruption of tight junctions, suppressing adhesion molecule expression, and increasing endothelial nitric oxide synthase expression [133, 134].

Downstream Molecules of Exosomes in CNS Injuries

The specific mechanisms mediating the functions of exosomes in CNS injuries have yet to be fully explained; a number of downstream molecules of exosomes have been suggested which may explain their biological effects (Fig. 2). The mechanisms described are not unique to those only from...
MiRNAs, a subset of non-coding RNAs, are 19 to 25 nucleotide long endogenously initiated short RNA molecules [135]. MiRNAs modulate gene expression at the post-transcriptional level via translational inhibition or messenger RNA (mRNA) degradation and control a range of biological functions, including developmental timing and host–pathogen interactions as well as cell proliferation, apoptosis, and tumorigenesis [136].

Recently, miRNAs have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells [137]. Exosomal miRNAs play an important role in disease progression and provide neuroprotection in CNS injuries [17, 138]. It has been shown that microglia-derived exosomes could attenuate behavioral deficits and neuronal apoptosis via exosomal miRNA-124, thus protecting the mouse brain from ischemia–reperfusion injury [36]. Moreover, in a rat hypoxic-ischemic injury model, bone marrow MSC-derived exosomal miRNA-29b-3p promoted angiogenesis and suppressed apoptosis in the brain [97]. Furthermore, MSC-derived exosomal miRNA-193b-3p attenuated neuroinflammation in early brain injury after SAH [87]. In addition, exosomes derived from bone marrow MSCs reduced cell apoptosis and neuroinflammation after TBI by the action of miRNA-181b [139].

Among exosomal cargo biomolecules, miRNAs obtain the most attention due to their regulative effects in gene expression [140]. Studies have shown that miRNAs are not randomly incorporated into exosomes; a subset of miRNAs may preferentially enter exosomes [141]. Although the precise mechanisms of sorting miRNAs into exosomes remain unclear so far, four potential modes have been suggested. These include the following: (1) the neural sphingomyelinase 2 (nSMase2)-dependent pathway, (2) the miRNA motif and sumoylated heterogeneous nuclear ribonucleoprotein (hnRNP)–dependent pathway, (3) the 3′-end of the miRNA sequence-dependent pathway, (4) The miRNA-induced silencing complex (miRISC)–related pathway [142]. However, further studies are needed to prove which mode is associated with the incorporation of miRNAs into exosomes in CNS injuries.

NF-κB

NF-κB is a family of dimeric transcription factors that involved in inflammatory responses, innate, and adaptive immunity as well as cell proliferation and differentiation [143]. NF-κB can protect cells against inflammation and cell death by regulating the transcription of genes including cytokines, chemokines, and adhesion molecules [144].
Exosomes were also shown to modulate inflammatory response in CNS injuries by activation of NF-κB. In ischemia–reperfusion injury models, the inflammatory response reflected by the levels of TNF-α, IL-1β, IL-6, and their mediator, NF-κB, was suppressed by DPSC-derived exosomes [68]. Moreover, adipose-derived stem cell (ADSC)–derived exosomes could inhibit the activation of microglia cells and prevent neuroinflammation by suppressing NF-κB in lipopolysaccharide (LPS)-induced neural injury [145]. Furthermore, in in vivo and in vitro SCI models, NSC-derived exosomes downregulated the NF-κB-p65 axis in rats and PC12 cells respectively, thus inhibiting the BBB damage and inflammation [66]. Similar results were found in SCI models using bone marrow MSC-derived exosomes both in vivo and in vitro, bone marrow MSC-derived exosomes reduced brain cell death, enhanced neuronal survival, and improved motor function via down-regulation of NF-κB p65 signaling [146]. Therefore, functional exosomes are important to regulate inflammation via regulation of NF-κB in CNS injuries.

How exosomes regulated NF-κB in CNS injuries have not been well characterized. There were reports showing that long noncoding RNAs (lncRNAs) and miRNAs may be involved. For example, stem cell–derived exosomes could prevent aging-induced cardiac dysfunction through the lncRNA MALAT1/NF-κB signaling pathway [147]. The regulation of NF-κB by lncRNAs can be mediated by the interaction between lncRNAs and the p65 subunit of NF-κB. LncRNAs bind with the p65 subunit of NF-κB and IκB to form a stable lncRNAs/NF-κB/IκB complex. Then, the phosphorylation sited of IκB is masked, thus inhibiting IκB kinase (IKK)–induced IκB phosphorylation and NF-κB activation [148]. In addition, it has been shown that miRNAs could regulate NF-κB by interfere with the signaling components upstream of NF-κB such as affecting the phosphorylation of IKK and IκB. For example, activation of miR-214-3p decreased cell apoptosis and inflammation in osteoarthritis (OA) by downregulated the IKK-β expression and led to the dysfunction of NF-κB signaling pathway [149]. Therefore, we speculated that exosomes might also regulate NF-κB via lncRNAs and miRNAs in CNS injuries. However, further studies were needed to confirm our hypothesis.

PI3K/AKT Pathway

The PI3K/AKT is an intracellular signaling pathway that participates in a broad range of cellular processes including cell proliferation, differentiation, metabolism, and quiescence [150]. The PI3K/AKT pathway can be activated by ligands, including cytokines, hormones, and growth factors [151]. This pathway can also be activated by loss of phosphatase and tensin homolog (PTEN). PTEN is a main negative regulator of the PI3K that dephosphorylates PIP3 to PIP2 [152].

Exosomes have been found to exhibit protective effects in CNS injuries by activation of the PI3K/AKT pathway. It has been identified that MSC-derived exosomes decreased ROS production, apoptosis, and TJ disruption in H/R-injured endothelial cells. Moreover, MSC-derived exosomes activated PI3K/AKT pathway and inhibition of PI3K by its inhibitor LY294002 ameliorated the protective effects of exosomes [131]. Moreover, Cao et al. revealed that USC-derived exosomes harboring ANGPTL3 enhanced spinal cord functional recovery after SCI by activation of the PI3K/AKT pathway [64]. Furthermore, Wang et al. indicated that cEPC-derived exosomes had beneficial effects on mouse IS by attenuating infarct volume and cell apoptosis, increasing angiogenesis, and promoting axon growth ability via activating the PI3K/AKT pathway [65]. In addition, Zhang et al. proposed that stem cell–derived exosomes improved cognitive function, decreased mitochondrial apoptosis, and inhibited inflammatory response via the PI3K/AKT pathway in a model of focal cerebral ischemia–reperfusion [153].

But how exosomes regulated the PI3K/AKT pathway in CNS injuries was uncertain. Recently, in many cancer models, it has been proposed that the regulation of the PI3K/AKT pathway by exosomes might be associated with the miRNA/PTEN pathway [154–156]. That means, exosomes firstly controlled miRNAs, which further regulated PTEN and the downstream PI3K/AKT pathway. For example, colorectal cancer (CRC) cell–derived exosomal miRNA-934 induced M2 macrophage polarization by downregulating PTEN expression and activating the PI3K/AKT signaling pathway [157]. In another case, exosomal miRNA-223 derived from macrophages promoted the drug resistance of epithelial ovarian cancer (EOC) cells via the PTEN-PI3K/AKT pathway. In addition, exosomal miRNA-32-5p induced multidrug resistance in hepatocellular carcinoma by down-regulation of PTEN to activate the PI3K/AKT signaling pathway [158]. Therefore, combined with these literatures, we speculated that exosomes may also regulate the PI3K/AKT pathway via miRNAs-PTEN axis in CNS injuries. Further studies are needed to explore it.

Notch1

Notch1 is a class I transmembrane protein that directly transduces extracellular signals into cells [159]. Notch1 modulates interactions between physically adjacent cells and plays an essential role in cell fate decisions and tissue homeostasis by binding to its ligands [160].

Recent studies have demonstrated that the Notch1 signaling pathway was involved in CNS injuries such as cerebral ischemic injury [161, 162]. Exosomes also facilitated Notch1 to provide neuroprotection in ischemic brain injury. It has
been suggested that down-regulation of Notch1 induced by microglia-derived exosomes was associated with decreased neurobehavioral deficits, fewer infarct areas in the brain, and less apoptosis in ischemia–reperfusion injury. In addition, the Notch1 inhibitor Crenigacestat further enhanced the effects [163].

The underlying mechanism of how exosomes regulate Notch1 may involve miRNAs. It has been shown that miRNA-137 could mediate the function of microglia-derived exosomes by binding to the 3′ untranslated region (UTR) of Notch1 [163]. In another case, Liu et al. found that in bone marrow MSCs, exosomes secreted by mesenchymal stem cell transplantation (MSCT) reduced intracellular levels of miR-29b, which resulted in recovery of DNA methyltransferase 1 (Dnmt1)–mediated Notch1 promoter hypomethylation and inhibition of Notch1 signaling [164]. These data indicated a critical role of miRNAs between exosomes and Notch1 signaling. However, the clear mechanisms of how exosomes regulate Notch1 in CNS injuries are unknown, which is an interesting aspect worth exploring.

ERK

ERK is a serine/threonine protein kinase that belongs to the MAPK family; it is widely expressed in eukaryotic cells [165]. In physiological states, ERK is essential for normal development and functional plasticity of the CNS. However, in pathological states such as cerebral ischemia, brain trauma, and ischemia–reperfusion injury, abnormally expression of ERK may play a detrimental role by promoting cell apoptosis and oxidative stress [166].

Exosomes have been shown to regulate ERK by affecting its phosphorylation. Long et al. implied that astrocyte-derived exosomes significantly inhibited LPS-induced microglial M1 phenotype transformation and the subsequent inflammation through decreased phosphorylation of ERK [35]. Besides, Chen et al. suggested that glia-derived exosomes increased the phosphorylation of glial gap junction protein connexin 43 (Cx43) via ERK signaling activation, leading to the recovery of brain functional and protection of BBB after TBI [167].

Other Aspects of Exosome Research in CNS Injuries

CNS injuries, caused by cerebrovascular pathologies or mechanical contusions, comprise a diverse group of pathological processes, including glutamate excitotoxicity, oxidative stress, apoptosis, and autophagy [168]. Although the functions of exosomes on CNS injury–induced cognitive function, inflammation, angiogenesis, apoptosis, autophagy, and BBB disruption have been widely described, its roles in excitotoxicity and oxidative stress have not been fully illustrated.

Excitotoxicity

Excitotoxicity is a phenomenon that describes the damage of cells due to exacerbated exposure to excitatory amino acids [169]. The underlying mechanisms of excitotoxicity include alterations in glutamate and Ca2+ metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors [170]. In this process, glutamate is the main factor that induces excitotoxic cell damage. Normally, glutamate plays crucial roles in neuronal growth, axon guidance and synaptic plasticity [171]. However, excessive or prolonged activation of glutamate causes the imbalance of neuronal Ca2+ homeostasis and final excitotoxicity, leading to mitochondrial destruction, neuronal damage, and oxidative stress [172].

The functions of exosomes in excitotoxicity have also been well established. It has been shown that long-term secretion of exosomes protected neurons from excitotoxic damage in the model of trophic factors deprivation [173]. Besides, astrocyte-derived exosomes suppressed glutatione-induced hippocampal neuron death in an in vitro glutamate excitotoxicity model [174]. Furthermore, in Alzheimer’s disease (AD) models, exosomes isolated from AD patient cerebrospinal fluid (CSF) and plasma, from the plasma of AD mouse models, and from the medium of neural cells expressing familial AD presenilin 1 mutation impaired neuronal Ca2+ handling and mitochondrial function and rendered neurons vulnerable to excitotoxicity [175]. In addition, MSC-derived exosomes inhibited glutamate excitotoxicity in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease [176]. Therefore, exosomes may also intervene excitotoxicity in CNS injuries. However, further studies are needed to verify it.

Oxidative Stress

Oxidative stress, defined as imbalance between the biological systems leading to the generation of oxidant (free) radicals and the systems responsible for the removal of free radicals, is harmful to cells due to the excessive generation of oxidant compounds such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) [177]. Under physiological conditions, both ROS and RNS are generated at moderate concentrations and act as second messengers to regulate signal transduction pathways [178]. However, the excessive generation of ROS and RNS due to depletion of the antioxidant system or excitotoxicity leads to the oxidation of biological molecules such as lipids, proteins, and DNA, resulting in oxidative damage in cells, tissues and organs [178]. Oxidative stress has been reported in CNS...
injury models and contributed to the secondary brain damage such as brain edema, BBB damage and apoptosis [179, 180].

There were also researches indicating that exosomes could regulate oxidative stress. Zhang et al. suggested that astrocyte-derived exosomes markedly reduced oxidative stress in the hippocampal neurons of TBI rats by increasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) [181]. Moreover, Du et al. proposed that astrocyte-derived exosomes could protect neonatal rats from hypoxic-ischemic brain damage (HIBD)–induced oxidative stress by inhibiting BNIP-2 expression [182]. In addition, adipose MSC-derived exosomes protected brain against sepsis syndrome in rats by decreasing the protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein) [183]. Therefore, the role of exosomes in CNS injury–induced oxidative stress is needed to be further studied.

Concluding Remarks

Exosomes play essential roles in CNS injuries and participate in a number of cellular and molecular processes of CNS injuries. In this review, we summarize the sources of exosomes, the functions of exosomes, as well as some downstream moleculars of exosomes in CNS injuries. Exploratory research on the participation of apoptosis, inflammation, and autophagy in CNS injuries may identify common and diverse mechanisms underlying exosomes. Moreover, microarray, proteomic, and metabolomic analyses of the downstream moleculars of exosomes may offer new avenues for restoring normal neuronal network and blocking the vital nodes promoting brain damage. In addition, these targets in the molecular pathways may serve as novel markers for exosomes. We consider that exosomes can to be attractive therapeutic targets for patients suffering from CNS injuries. Continued discoveries in this field will bring novel insights on exosomes involved in biological functions and disease progression. Ultimately, exosomes may hold promise for clinical challenges.

Author Contribution Professor Handong Wang conceived the whole work design and played a vital role in paper submission. Li Zhang finished the original manuscript including figures and tables. Lei Mao revised the manuscript.

Funding This work was supported by Grants from the construction of Key Medical Subjects of Jiangsu Province (No. ZDXKB2016023) from Handong Wang.

Data Availability All data generated during this review are included in this article.

Code Availability Not applicable.

** Declarations**

Additional Declarations for Articles in Life Science Journals That Report the Results of Studies Involving Humans and/or Animals Not applicable.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, Fox EJ, Fritz NE et al (2020) Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther 44(1):49–100. https://doi.org/10.1097/NPT.0000000000000303

2. Zhang L, Wang H (2019) Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Mol Ther Nucl Acids 17:754–766. https://doi.org/10.1016/j.mtna.2019.07.013

3. Devaney NA, Stewart AN, Gensel JC (2020) Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 329:113310. https://doi.org/10.1016/j.expneurol.2020.113310

4. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

5. Hill AF (2019) Extracellular vesicles and neurodegenerative diseases. J Neurosci 39(47):9269–9273. https://doi.org/10.1523/JNEUROSCI.0147-18.2019

6. Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J (2019) Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit 25:3329–3335. https://doi.org/10.12659/MSM.914027

7. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8(4):307. https://doi.org/10.3390/cells8040307

8. Zhang L (1871) Yu D (2019) Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2:455–468. https://doi.org/10.1016/j.bcr.2019.04.004

9. Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H et al (2020) Roles of exosomes in ocular diseases. Int J Nanomed 15:10519–10538. https://doi.org/10.2147/IJN.S277190

10. Li XH, Zhang J, Li DF, Wu W, Xie ZW, Liu Q (2020) Physiological and pathological insights into exosomes in the brain. Zool Res 41(4):365–372. https://doi.org/10.24272/ziss.2095-8137.2020.043

11. Levy E (2017) Exosomes in the diseased brain: first insights from in vivo studies. Front Neurosci 11:142. https://doi.org/10.3389/fnins.2017.00142

12. Gharbi T, Zhang Z, Yang GY (2020) The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Front Cell Dev Biol 8:568889. https://doi.org/10.3389/fcell.2020.568889
13. Chen J, Chopp M (2018) Exosome therapy for stroke. Stroke J Cereb Circ 49(5):1083–1090. https://doi.org/10.1161/STROKEAHA.117.018292
14. Zhang ZG, Buller B, Chopp M (2019) Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15(4):193–203. https://doi.org/10.1038/s41582-018-0126-4
15. Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J (2019) Role of exosomes in central nervous system diseases. Front Mol Neurosci 12:240. https://doi.org/10.3389/fnmol.2019.00240
16. Minetti G, Achilli C, Perotti C, Ciana A (2018) Continuous change in membrane and membrane-skeleton organization during development from proerythroblast to senescent red blood cell. Front Physiol 9:286. https://doi.org/10.3389/fphys.2018.00286
17. Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM (2020) Extracellular vesicle proteins and microRNAs as biomarkers for traumatic brain injury. Front Neurosci 11:663. https://doi.org/10.3389/fneur.2020.00663
18. Fan Y, Chen Z, Zhang M (2022) Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. J Transl Med 20(1):291. https://doi.org/10.1186/s12974-020-01761-0
19. Sacristán C (2020) Microglia and astrocyte crosstalk in immunity. Trends Immunol 41(9):747–748. https://doi.org/10.1016/j.it.2020.07.009
20. Guttenplan KA, Liddelow SA (2019) Astrocytes and microglia: models and tools. J Exp Med 216(1):71–83. https://doi.org/10.1084/jem.20182020
21. Morita M, Ikeshima-Kataoka H, Kreft M, Vardjan N, Zorec R, Noda M (2019) Metabolic plasticity of astrocytes and aging of the brain. Int J Mol Sci 20(4):941. https://doi.org/10.3390/ijms20040941
22. Sofroniew MV (2020) Astrocyte reactivity: subtypes, states, and diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 25(6):665–673. https://doi.org/10.1111/cns.13123
23. Spiranec Spes K, Hupp S, Werner F, Koch F, Volker K, Krebes L, Kammerer U, Heinze K et al (2020) Natriuretic peptides attenuate retinal pathological neovascularization via cyclic guanosine monophosphate signaling in pericytes and astrocytes. Arterioscler Thromb Vasc Biol 40(1):159–174. https://doi.org/10.1161/ATVBAHA.119.313400
24. Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M (2019) Astrocyte activation and reactive gliosis—a new target in stroke? Neurosci Lett 689:45–55. https://doi.org/10.1016/j.neulet.2018.07.021
25. Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci 20(3):571. https://doi.org/10.3390/ijms20030571
26. Li D, Lang W, Zhou C, Wu D, Zhang F, Liu Q, Yang S, Hao J (2018) Upregulation of microglial ZEB1 ameliorates brain damage after acute ischemic stroke. Cell Rep 22(13):3574–3586. https://doi.org/10.1016/j.celrep.2018.03.011
27. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, d’Errico P, Snaidero N, Costa Jordao MJ et al (2020) Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol 21(7):802–815. https://doi.org/10.1038/s41590-020-0707-4
28. Chen Z, Zhong D, Li G (2019) The role of microglia in viral encephalitis: a review. J Neuroinflammation 16(1):76. https://doi.org/10.1186/s12974-019-1443-2
29. Sominsky L, De Luca S, Spencer SJ (2018) Microglia: Key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol 94:56–60. https://doi.org/10.1016/j.biocel.2017.11.012
30. Tsuda M (2018) Microglia in the CNS and neuropathic pain. Adv Exp Med Biol 1099:77–91. https://doi.org/10.1007/978-981-3-1756-9_7
31. Rodriguez-Gomez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N et al (2020) Microglia: agents of the CNS pro-inflammatory response. Cells 9(7):1717. https://doi.org/10.3390/cells9071717
32. Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y (2020) Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells 9(4):851. https://doi.org/10.3390/cells9040851
33. Paolicelli RC, Bergamini G, Rajendran L (2019) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148–157. https://doi.org/10.1016/j.neurosci.2018.04.003
34. Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H (2020) Astrocyte-derived exosomes enriched with miR-783a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 17(1):89. https://doi.org/10.1186/s12974-020-01761-0
35. Song Y, Li Z, He T, Qu M, Jiang L, Li W, Shi X, Pan J et al (2019) M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Thrombosis 9(10):2910–2923. https://doi.org/10.7150/thno.30879
36. Carroll JA, Chesebro B (2019) Neuroinflammation, microglia, and cell-association during prion disease. Viruses 11(1):65. https://doi.org/10.3390/v11010065
37. Huo L, Du X, Li X, Liu S, Xu Y (2021) The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases. Front Neurosci 15:738442. https://doi.org/10.3389/fnstr.2021.738442
38. Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, Zhou Z, Rong Y et al (2020) Neuro-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnol 18(1):105. https://doi.org/10.1186/s12951-020-00665-8
39. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol 25(5):702–709. https://doi.org/10.1111/jnvi.12136
40. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003
41. Trotta T, Panaro MA, Cianciulli A, Mori G, Di Benedetto A, Porro C (2018) Microglia-derived extracellular vesicles in Alzheimer’s disease: a double-edged sword. Biochem Pharmacol 148:184–192. https://doi.org/10.1016/j.bcp.2017.12.020
42. Upadhya R, Zingg W, Shetty S, Shetty AK (2020) Astrocyte-derived extracellular vesicles: neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Rel 323:225–239. https://doi.org/10.1016/j.jconrel.2020.04.017
43. Mansoor SR, Zabihi E, Ghasemi-Kasman M (2019) The potential use of mesenchymal stem cells for the treatment of multiple...
scloisis. Life Sci 235:116830. https://doi.org/10.1016/j.lfs.2019.116830
48. Li Z, Liu F, He X, Yang X, Shan F, Feng J (2019) Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 67:268–280. https://doi.org/10.1016/j.intimp.2018.12.001
49. Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B et al (2020) Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 26(6):603–615. https://doi.org/10.1111/cns.13378
50. Gorabi AM, Kiae N, Barreto GE, Read MI, Tafti HA, Sahebkar A (2019) The therapeutic potential of mesenchymal stem cell-derived exosomes in treatment of neurodegenerative diseases. Mol Neurobiol 56(12):8157–8167. https://doi.org/10.1007/s12035-019-01663-0
51. Samper Agrelo I, Schira-Heinen J, Beyer F, Groh J, Butermann E, Agrelo I, Schira-Heinen J, Beyer F, Groh J, Butermann E (2021) Differentiation of human pluripotent stem cells: a comprehensive tool in nanomedicine. Front Pharmacol 11:590470. https://doi.org/10.3389/fphar.2020.00655
52. Branscombe H, Paul S, Yin D, El-Hage N, Agbottah ET, Zadeh MA, Liotta LA, Kanchani F (2020) Use of stem cell extracellular vesicles as a “holistic” approach to CNS repair. Front Cell Dev Biol 8:455. https://doi.org/10.3389/fcell.2020.00455
53. Harrell CR, Jovicic N, Djonov V, Arsenjevic N, Volarevic V (2019) Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 8(12):1605. https://doi.org/10.3390/cells8121605
54. Guo M, Yin Z, Chen F, Lei P (2020) Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer’s disease. Alzheimer’s Res Ther 12(1):109. https://doi.org/10.1186/s13195-020-00670-x
55. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X (2020) Mesenchymal stem cell-derived exosomes: a promising biological tool in nanomedicine. Front Pharmacol 11:590470. https://doi.org/10.3389/fphar.2020.590470
56. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19. https://doi.org/10.1186/s13578-019-01282-w
57. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030
58. Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B (2019) Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int J Mol Sci 20(21):5372. https://doi.org/10.3390/ijms20215372
59. Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A (2019) Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20(6):390–403. https://doi.org/10.1111/tra.12645
60. Minami T, Muramatsu M, Kume T (2019) Organ/tissue-specific vascular endothelial cell heterogeneity in health and disease. Biol Pharm Bull 42(10):1609–1619. https://doi.org/10.1248/bpb.b19-00531
61. Nishihara H, Gastefriend BD, Kasap P, Palecek SP, Shusta EV, Engelhardt B (2021) Differentiation of human pluripotent stem cells to brain microvascular endothelial cell-like cells suitable to study immune cell interactions. STAR protocols 2(2):100563. https://doi.org/10.1016/j.xpro.2021.100563
62. Xiao B, Chai Y, Lv S, Ye M, Wu M, Xie L, Fan Y, Zhu X et al (2017) Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med 40(4):1201–1209. https://doi.org/10.3892/ijmm.2017.3106
63. Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, Shen Y, Chen J (2019) MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 50(10):2865–2874. https://doi.org/10.1161/STROKEAHA.119.032571
64. Cao Y, Xu Y, Chen C, Xie H, Lu H, Hu J (2021) Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. Stem Cell Res Ther 12(1):20. https://doi.org/10.1186/s13287-020-02078-8
65. Wang J, Liu H, Chen S, Zhang W, Chen Y, Yang Y (2020) Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol 330:113325. https://doi.org/10.1016/j.expneuro.2020.113325
66. Ma K, Xu H, Zhang J, Zhao F, Liang H, Sun H, Li P, Zhang S et al (2019) Insulin-like growth factor-1 enhances neuroprotective effects of neural stem cell exosomes after spinal cord injury via an miR-219a-2-3p/YY1 mechanism. Aging 11(24):12278–12294. https://doi.org/10.18632/aging.102568
67. Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J (2019) Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomater Sci 7(5):2037–2049. https://doi.org/10.1039/d8bm01449c
68. Li S, Luo L, He Y, Li R, Xing Y, Xing Z, Li Y, Albashari AA et al (2021) Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response. Cell Prolif 54(8):e13093. https://doi.org/10.1111/cpr.13093
69. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem cells 30(7):1556–1564. https://doi.org/10.1002/stem.1129
70. Feng H, Cui Y, Liu J, Liu M, Zhou W, Yan Z, Zhang H, Wang Y et al (2022) Effects of 3-methyladenine on microglia autophagy and neuronal apoptosis after radiation-induced brain injury. Dose-Response 20(2):1559328221100592. https://doi.org/10.1177/1559328221100592
71. Wang XX, Zhang B, Xia R, Jia QY (2020) Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci 24(18):9601–9614. https://doi.org/10.26355/eurrev_202009_23048
72. Fu C, Li Z, Mao Z (2018) Association between social activities and cognitive function among the elderly in China: a cross-sectional study. Int J Environ Res Public Health 15(2):231. https://doi.org/10.3390/ijerph15020231
73. Kennedy DO (2019) Phytochemicals for improving aspects of cognitive function and psychological state potentially relevant to sports performance. Sports Med 49(Suppl 1):39–58. https://doi.org/10.1007/s40279-018-1007-0
74. Valentine G, Sofuoglu M (2018) Cognitive effects of nicotine: recent progress. Curr Neuropharmacol 16(4):403–414. https://doi.org/10.2174/1570159X1566617103152136
75. McCollum L, Karlawish J (2020) Cognitive impairment evaluation and management. Med Clin North Am 104(5):807–825. https://doi.org/10.1016/j.mcna.2020.06.007
76. Birle C, Slavova D, Balea M, Livint Popa L, Muresanu I, Stefanescu E, Vacaras V, Dina C et al (2021) Cognitive function: holarchy or holacracy? Neurol Sci 42(1):89–99. https://doi.org/10.1007/s10072-020-04737-3
77. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmoon A, Xiong Y (2015) Effect of exosomes derived from multipotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J
83. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol 18(11):1058–1066. https://doi.org/10.1016/S1474-4422(19)30078-X

84. Matsuda M, Huij Y, Ji RR (2019) Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 33(1):131–139. https://doi.org/10.1007/s00541-018-2579-4

85. Yuan J, Amin P, Ofegeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33. https://doi.org/10.1038/s41583-018-0093-1

86. Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108(4):608–622. https://doi.org/10.1016/j.neuron.2020.08.012

87. Lai N, Wu D, Liang T, Pan P, Yuan G, Li X, Li H, Shen H et al. (2020) Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation 17(1):74. https://doi.org/10.1186/s12974-020-01745-0

88. Wang K, Ku J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L et al. (2020) Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-kappaB pathway. Front Neurosci 14:848. https://doi.org/10.3389/fnins.2020.00848

89. Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A (2019) Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in peripheral brain injury. Stem Cell Res Ther 10(1):105. https://doi.org/10.1186/s13287-019-1207-z

90. Vannella KM, Wynn TA (2017) Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol 79:593–617. https://doi.org/10.1146/annurev-physiol-022516-034356

91. Yang J (2019) The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 123:62–67. https://doi.org/10.1016/j.mvr.2018.12.005

92. Dinet V, Petry KG, Badault J (2019) Brain-immune interactions and neuroinflammation after traumatic brain injury. Front Neurol 13:1178. https://doi.org/10.3389/fneuro.2019.01178

93. Vallon M, Chang J, Zhang H, Kuo CJ (2014) Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 71(18):3489–3506. https://doi.org/10.1007/s00018-014-1625-0

94. Latacz E, Caspani E, Barnhill R, Lugassy C, Verhoef C, Grunhagen D, Van Laere S, Fernandez Moro C et al. (2020) Pathological features of vessel co-option versus sprouting angiogenesis. Angiogenesis 23(1):43–54. https://doi.org/10.1007/s10456-019-09690-0

95. Ma S, Huang Z (2015) Neural regulation of CNS angiogenesis during development. Front Biol 10(1):61–73. https://doi.org/10.1007/s11515-014-1331-y

96. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

97. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K (2020) Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 17(1):46. https://doi.org/10.1186/s12974-020-1725-8

98. Zhang Y, Zhang Y, Chopp M, Pang H, Zhang ZG, Mahmood A, Xiong Y (2021) MiR-17-92 cluster-enriched exosomes derived from human bone marrow mesenchymal stromal cells improve tissue and functional recovery in rats after traumatic brain injury. J Neurotrauma 38(11):1535–1550. https://doi.org/10.1089/neu.2020.7575

99. Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D (2020) Recent approaches for angiogenesis in search of successful tissue engineering and regeneration. Curr Stem Cell Res Ther 15(2):111–134. https://doi.org/10.2174/1574888X14666911104151928

100. Wang J, Chen S, Zhang W, Chen Y, Bihi J (2020) Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci Ther 26(12):1255–1265. https://doi.org/10.1111/cns.13455

101. Sahebi R, Langhari H, Fatinezhad Z, Bahari Sani Z, Avan A, Ghayour Mobarak M, Rezayi M (2020) Exosomes: new insights into cancer mechanisms. J Cell Biochem 121(1):7–16. https://doi.org/10.1002/jcb.29120

102. Baruah J, Wary KK (2019) Exosomes in the regulation of vascular endothelial cell regeneration. Front Cell Dev Biol 7:353. https://doi.org/10.3389/fcell.2019.00353

103. Quillinan N, Herson PS, Traystman RJ (2016) Neuropathophysiology of brain injury. Anesthesiol Clin 34(3):453–464. https://doi.org/10.1016/j.anclin.2016.04.011

104. Zhu H, Toan S, Mui D, Zhou H (2021) Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol 231(3):e13590. https://doi.org/10.1111/apha.13590

105. Zhou H, Ren J, Toan S, Mui D (2021) Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev 66:101250. https://doi.org/10.1016/j.arr.2020.101250

106. Bruggeman GF, Haitmans IK, Dirven CMF, Volovic V (2021) Traumatic axonal injury (TAI): definitions, pathophysiology and imaging—a narrative review. Acta Neurochir 163(1):31–44. https://doi.org/10.1007/s00701-020-04594-1

107. Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, He Z, Yang J, Pan S et al. (2019) Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front Neurosci 13:14. https://doi.org/10.3389/fnins.2019.00014

108. Kakkar R, Hur J, Kim YJ, Kim J, Chwae YJ (2020) Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 52(1):1–6. https://doi.org/10.1038/s12276-019-0362-8

109. Tixeira R, Poon IKH (2019) Disassembly of dying cells in injury and repair by macrophages. Annu Rev Physiol 81:363–392. https://doi.org/10.1146/annurev-physiol-022518-083044

110. Hardy MP, Audemard E, Mignault F, Feghaly A, Brochu S, Gendron P, Boilard E, Major F et al. (2019) Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs. Sci Rep 9(1):7203. https://doi.org/10.1038/s41598-019-43591-y
117. Jang X, Andjelicovic AV, Zhu L, Tyng T, Bennett MVL, Chen J, Keep RF, Shi Y (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144–171. https://doi.org/10.1016/j.pneurobiol.2017.10.001

118. Langen UH, Ajlouo S, Gu C (2019) Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol 35:591–613. https://doi.org/10.1146/annurev-cellbio-100617-062608

119. Pan Q, Kuang X, Cai S, Wang X, Du D, Wang J, Wang Y, Chen Y et al (2020) miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 11(1):260. https://doi.org/10.1186/s13287-020-01761-0

120. Zhang L, Liu H, Jia L, Lyu J, Sun Y, Yu H, Li H, Liu W et al (2019) Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxid Med Cell Longev 2019:3753485. https://doi.org/10.1155/2019/3753485

121. Bhattacharjee R, Khalyfa A, Khalyfa AA, Mokhlesi B, Kheirandish-Gozal L, Almendros I, Peris E, Malhotra A et al (2018) Exosomal cargo properties, endothelial function and treatment of obesity hypoventilation syndrome: a proof of concept study. J Clin Sleep Med 14(5):797–807. https://doi.org/10.5096/jcsm.1110

122. Burek M, Konig A, Lang M, Fiedler J, Oerter S, Roever N, Bohnert M, Thal SC et al (2019) Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 10(6):672–683. https://doi.org/10.1007/s12975-018-0683-2

123. Tafrihi M, Hasheminasab E (2019) miRNAs: biology, biogenesis, their web-based tools, and databases. MicroRNA 8(1):4–27. https://doi.org/10.2174/2211536607666180827111633

124. Gjorgjieva M, Sobolewski C, Dolicia D, Correia de Sousa M, Foti M (2019) miRNAs and NAPFLD: from pathophysiology to therapy. Gut 68(11):2065–2079. https://doi.org/10.1136/gutjnl-2018-318146

125. Wang X, Zhou Y, Gao Q, Ding P, Wang Y, Wu W, Lin X, Fang Y et al (2020) The role of exosomal micrornas and oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev 2020:3232869. https://doi.org/10.1155/2020/3232869

126. Ghoreishy A, Khorasani A, Ghaemmaghami A (2019) Exosomal microRNA and stroke: a review. J Cell Biochem 120(10):16352–16361. https://doi.org/10.1002/jcb.29130

127. Wen L, Wang YD, Shen DF, Zheng PD, Tu MD, You WD, Zhu YR, Wang H et al (2022) Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury. Neuro Regen Res 17(12):2717–2724. https://doi.org/10.4103/1673-5374.339489

128. Wang L, Zhang L (2020) Circulating exosomal miRNA as diagnostic biomarkers of neurodegenerative diseases. Front Mol Neurosci 13:53. https://doi.org/10.3389/fnmol.2020.00053

129. Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, Lan X, Lei C et al (2020) Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif 53(3):e12857. https://doi.org/10.1111/cpr.12857

130. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z et al (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17(1):147. https://doi.org/10.1186/s12943-018-0897-7

131. Williams LM, Gilmore TD (2020) Looking down on NF-xB. Mol Cell Biol 40(15):e00104-20. https://doi.org/10.1128/MCB.00104-20
144. Choi MC, Jo J, Park J, Kang HK, Park Y (2019) NF-kappaB signaling pathways in osteoarthritic cartilage destruction. Cells 8(7):734. https://doi.org/10.3390/cells8070734

145. Feng N, Jia Y, Huang X (2019) Exosomes from adipose-derived stem cells alleviate neural injury caused by microglia activation via suppressing NF-κB and MAPK pathway. J Neuroimmunol 334:576996. https://doi.org/10.1016/j.jneuroim.2019.576996

146. Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, Yao Y, Duan R et al (2019) Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 13:209. https://doi.org/10.3389/fnins.2019.00209

147. Zhu B, Zhang L, Liang C, Liu B, Pan X, Wang Y, Zhang Y, Zhang Y et al (2019) Stem cell-derived exosomes prevent aging-induced cardiac dysfunction through a novel exosome/lncRNA MALAT1/NF-kappaB/TNF-alpha signaling pathway. Oxid Med Cell Longev 2019:7939258. https://doi.org/10.1155/2019/7939258

148. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H et al (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381. https://doi.org/10.1016/j.ccell.2015.02.004

149. Cao Y, Tang S, Nie X, Zhou Z, Ruan G, Han W, Zhu Z, Ding C (2021) Decreased miR-214-3p activates NF-kappaB pathway and aggravates osteoarthritis progression. EBioMedicine 65:103283. https://doi.org/10.1016/j.ebiom.2021.103283

150. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J et al (2019) PI3K/AKT signaling transduction pathway, erythropoiesis and glycosylation in hypoxia (review). Mol Med Rep 19(2):783–791. https://doi.org/10.3892/mmr.2018.9713

151. Xu F, Na L, Li Y, Chen L (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10:54. https://doi.org/10.1186/s13578-020-00416-0

152. Tsai CY, Dai KY, Fang C, Wu JCC, Chan SHH (2018) PTEN/PI3K/AKT signaling pathway and the pathogenesis of depression. Mol Neurobiol 56(9):6197–6205. https://doi.org/10.1007/s12035-019-1524-3

153. Nakamura Y, Park JH, Hayakawa K (2020) Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol 324:113114. https://doi.org/10.1016/j.expneurol.2019.113114

154. Laddak EA, Enam SA, Ibrahim MT (2019) A review of the molecular mechanisms of traumatic brain injury. World neurosurg 131:126–132. https://doi.org/10.1016/j.wneu.2019.07.039

155. Bivignat O, Olloquequi J (2020) Excitotoxicity as a target against neurodegenerative processes. Curr Pharm Des 26(12):1251–1262. https://doi.org/10.2174/138161282666200113162641

156. Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jpfs.2020.07.011

157. Yakovlev AA, Lyzhin AA, Aleksandrova OP, Khaspekov LG, Gulyaeva NV (2019) Exosomes secretion and autophagy in long-term protection of neurons from excitotoxic damage. Biomedletsinskai Khim 65(5):361–365. https://doi.org/10.18097/PBMC0196505361

158. Shakespeare N, Ogura M, Yamaki J, Homma Y (2020) Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP(+) induced apoptotic cell death through down-regulation of MKK4. Neurochem Res 45(5):1020–1033. https://doi.org/10.1007/s11064-020-02977-5

159. Eitan E, Hutchison ER, Marosi K, Comotto J, Mustapic M, Nigam SM, Suire C, Maharana C et al (2016) Extracellular vesicle-associated abeta mediates trans-neuronal bioenergetic and Ca(2+)-handling deficits in Alzheimer’s disease models. NPJ Aging Mech Dis 2. https://doi.org/10.1038/njapmd.2016.19

160. Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular...
vesicles. Front Cell Neurosci 11:80. https://doi.org/10.3389/fncel.2017.00080

177. Zhang L, Wang H (2018) Targeting the NF-E2-related factor 2 pathway: a novel strategy for traumatic brain injury. Mol Neurobiol 55(2):1773–1785. https://doi.org/10.1007/s12035-017-0456-z

178. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK (2018) Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord: Drug Targets 17(9):689–695. https://doi.org/10.2174/1871527317666180627120501

179. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, Bennett MVL, Chen J (2018) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 134(Pt B):208–217. https://doi.org/10.1016/j.neuropharm.2017.11.011

180. Rodriguez-Rodriguez A, Egea-Guerrero JJ, Murillo-Cabezas F, Carrillo-Vico A (2014) Oxidative stress in traumatic brain injury. Curr Med Chem 21(10):1201–1211

181. Zhang W, Hong J, Zhang H, Zheng W, Yang Y (2021) Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis. Aging 13(17):21642–21658. https://doi.org/10.18632/aging.203508

182. Du L, Jiang Y, Sun Y (2021) Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology 83:28–39. https://doi.org/10.1016/j.neuro.2020.12.006

183. Chang CL, Chen HH, Chen KH, Chiang JY, Li YC, Lin HS, Sung PH, Yip HK (2019) Adipose-derived mesenchymal stem cell-derived exosomes markedly protected the brain against sepsis syndrome induced injury in rat. Am J Transl Res 11(7):3955–3971

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.