Stroke work progressively increased until maximal exercise in long distance runners, but plateaued at submaximal exercise in sprinters

Taira Fukuda1, Akihiro Matsumoto2*, Miwa Kurano3, Hisashi Nagahama4 and Toshiaki Nakajima5

1 Department of Liberal Arts and Human Development, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka City, Kanagawa 238-0013, Japan
2 Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niza-shi, Saitama 352-8510, Japan
3 International Research Center of Nutrition, Food Culture, and Health, Jumonji University, 2-1-28 Sugasawa, Niza-shi, Saitama 352-8510, Japan
4 Faculty of Economics, Asia University, 5-24-10 Sakai, Musashino City, Tokyo 180-8629, Japan
5 Heart Center, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan

Received: June 19, 2017 / Accepted: January 9, 2018

Abstract The possible difference in the pattern of cardiac work and stroke work response during exercise between long-distance runners and sprinters remains unclarified. The present study was conducted to elucidate the difference in these responses during exercise between long-distance runners and sprinters. A total of 11 female college athletes (5 long-distance runners and 6 sprinters) performed incremental bicycle exercise testing with respiratory gas exchange measurement. Cardiac index and stroke volume index were continuously measured during exercise by a thoracic impedance method (Physioflow). Cardiac work index (CWI) and stroke work index (SWI) were calculated as the product of cardiac index and mean blood pressure, and the product of stroke volume index and mean blood pressure, respectively. CWI progressively increased from rest to maximal exercise both in long-distance runners and sprinters. SWI progressively increased until maximal exercise in long-distance runners (at 150W: 89.5 ± 3.3 vs. at maximal exercise: 109.3 ± 6.8 g · m · m⁻², p < 0.005), but plateaued at 150W in sprinters (at 150W: 107.9 ± 7.6 vs. at maximal exercise: 109.8 ± 6.7 g · m · m⁻², p = N.S.). In conclusion, SWI progressively increased until maximal exercise in long-distance runners, but plateaued at submaximal exercise in sprinters. Judging from SWI response during exercise, long-distance runners might have a superior cardiac function compared to sprinters.

Keywords: arterio-venous oxygen content difference, stroke work, endurance athlete, exercise

Introduction

Cardiac output and stroke volume are indices of cardiac reserve. Endurance sports athletes, such as long-distance runners, have been reported to have an increased heart volume and superior cardiac function compared to healthy controls1-4. Although several previous studies measured cardiac output and/or stroke volume during exercise in long-distance runners5-9, there has only been one study which measured cardiac output during exercise in both long-distance runners and sprinters7. In that study, only cardiac output at 20, 40 and 60% of exercise intensity was measured; and thus, it is still unknown whether cardiac output and stroke volume at intensities above 60% maximal oxygen uptake (VO₂ max) differ between long-distance runners and sprinters.

*Correspondence: akihirom@jumonji-u.ac.jp
Acronyms: VO₂ = oxygen uptake, C(a-v)O₂ = arterio-venous oxygen content difference, CWI = cardiac work index, SWI = stroke work index, HR = heart rate
jects, in patients with heart failure, and those with ischemic heart diseases. As for athletes, there has only been one study, and it only measured cardiac work at 45% and 70% VO₂ max in endurance trained long-distance bicyclists and runners. Therefore, in athletes, it remains unknown whether cardiac work and/or stroke work progressively increase until maximal exercise or not, and whether cardiac work and/or stroke work during exercise differ between athletes of different sports.

There is conflicting evidence as to whether stroke volume progressively increases until maximal exercise or not in healthy subjects, and athletes. Several reports indicated that the stroke volume of endurance trained athletes progressively increased until maximal exercise, and that the stroke volume plateaued at submaximal exercise in untrained subjects. Endurance training can induce cardiac adaptations, such as increased diastolic filling, and changes in left ventricular cavity dimensions, leading to a progressive increase in stroke volume until maximal exercise in endurance-trained athletes. However, stroke work, but not stroke volume, defines the area within the pressure-volume loop and directly reflects cardiac function. It has been hypothesized that endurance-trained athletes can use the Frank-Starling mechanism to a greater extent than non-athletes during incremental exercise. Therefore, stroke work might increase progressively until maximal exercise in athletes who have superior cardiac function.

We hypothesized that stroke work progressively increases until maximal exercise in long-distance runners, but that it progressively increases until submaximal exercise, and then plateaus in sprinters. The present study was conducted to elucidate whether stroke work during incremental exercise until maximal exercise differs between long-distance runners and sprinters.

Methods

Subjects. Eleven female college athletes (5 long-distance runners and 6 sprinters) performed symptom-limited bicycle exercise testing. Their age was 20.9 ± 0.3 years old (long-distance runners: 20.6 ± 0.5 vs. sprinters: 21.2 ± 0.4 years old, p = N.S., 1-β = 0.12), body height was 160.8 ± 1.4 cm (long-distance runners: 158.5 ± 1.4 vs. sprinters: 162.8 ± 2.0 cm, p = 0.13, 1-β = 0.33), body weight was 53.6 ± 1.7 kg (long-distance runners: 51.0 ± 1.8 vs. sprinters: 55.9 ± 2.5 kg, p = 0.16, 1-β = 0.28), body surface area was 1.55 ± 0.03 m² (long-distance runners: 1.50 ± 0.02 vs. sprinters: 1.59 ± 0.04 m², p = 0.10, 1-β = 0.38), and body mass index was 20.7 ± 0.5 kg·m⁻² (long-distance runners: 20.3 ± 0.8 vs. sprinters: 21.1 ± 0.7 kg·m⁻², p = N.S., 1-β = 0.10). They were not elite athletes, but participated in club activities five days a week and 3-4 hours a day. The 100 m best track records of those sprinters were about 12.1-12.7 seconds. They had no diseases including pectus excavatum. This study was approved by the Ethical Committee of Japan Women’s College of Physical Education (Approved No. 2008-20) and written informed consent was obtained from all subjects before participation in the study.

Exercise protocol and expired gas analysis. Before the study, subjects were asked to perform a familiarization exercise test with expired gas analysis, and then an incremental exercise test using a ramp protocol on an electromagnetically braked upright cycle ergometer (Aerobike 800, Combi, Tokyo, Japan) at least 2 hours after a meal. The exercise protocol and gas exchange analysis were performed according to our modified methods, as was previously described in detail. In brief, after a 2-minutes rest on the cycle ergometer, exercise was started at 20W for a 4-minute warm up and work rate was then increased in 1-W increments every 3 seconds. Blood pressure was measured by a doctor using a mercury sphygmomanometer (Yamasu No. 620, Kenzmedico, Saitama, Japan) every minute. Expired gases were measured continuously in all subjects on a breath-by-breath basis using an expired gas analyzer (AE-280, Minato Medical Science, Osaka, Japan). Ventilatory parameters, including oxygen uptake (VO₂), carbon dioxide output, minute ventilation, the ratio of minute ventilation to carbon dioxide output and end-tidal carbon dioxide pressure were calculated. The subjects were encouraged to continue when leg fatigue or dyspnea set in order to ensure that all subjects reached maximum exertion. The VO₂ max was defined as the highest VO₂ value at attainment of a plateau of VO₂ with increasing intensity, and respiratory exchange ratio >1.10.

Cardiac output measurement. During cardiopulmonary exercise testing, stroke volume and cardiac output were measured in all subjects by the impedance method, as previously described elsewhere in detail. In brief, an impedance cardiography device (Physioflow type PFO5L1, Manatec Biomedical, Paris, France) was used to determine HR, stroke volume, and cardiac output at rest and during exercise. Two sets of electrodes, one electrode transmitting and the other sensing, were applied above the supraclavicular fossa at the left base of the neck and along the xiphoid, respectively. Another set of two electrodes was used to monitor a single electrocardiogram (V1/V6 position). With this impedance device, a first evaluation of stroke volume was calculated during a calibration procedure based on 30 consecutive heart beats, recorded in the resting condition. The Physioflow measures changes in transthoracic impedance in response to an administered electrical current during cardiac ejection to calculate stroke volume. During the data-acquisition phase, the variation of parameters was analyzed and compared with those obtained during the calibration procedure. The Physioflow calculated cardiac output and stroke volume continuously at every heart beat, and these calculations made with Physioflow over a 30-second period were averaged. We previously investigated the reproducibility of stroke volume during exercise testing by the same method.
in 3 healthy male subjects (Age: 22.0 ± 1.5 years, Body height: 173.3 ± 2.7 cm, Body weight: 69.0 ± 3.1 kg, Body surface area: 1.83 ± 0.05 m², Body mass index: 22.9 ± 0.6 kg·m⁻²), and the coefficient of variation was 1.8% (unpublished data).

Derived parameters. Arterio-venous oxygen content difference (C[a-v]O₂), the difference between arterial oxygen content and venous oxygen content was calculated using the Fick principle: C(a-v)O₂ = VO₂ · cardiac output⁻¹.

The cardiac index (CI) and stroke volume index (SVI) were calculated using the equation: cardiac index (CI) = cardiac output (CO) · body surface area⁻¹ (BSA⁻¹), and stroke volume index (SVI) = stroke volume (SV) · body surface area⁻¹ (BSA⁻¹), respectively. Body surface area (BSA) was calculated by the formula of Haycock: Body surface area = 0.024265 · body weight⁰.⁵³⁷⁸ · body height⁰.₃⁹⁶⁸.

Cardiac work index (CWI) was calculated using the equation: CWI = cardiac index · mean blood pressure · 45¹⁻¹, where mean blood pressure is (systolic blood pressure + 2 · diastolic blood pressure) · 3¹⁻¹. Stroke work index (SWI) was calculated using the equation: SWI = 0.0136 · stroke volume index · mean blood pressure².

Statistics. Differences between the means at each time point in the two groups were performed by two-way analysis of variance for repeated measures followed by Tukey’s (honest significant difference) tests. Comparison for the variation in a parameter in relation to another parameter was performed by paired t-test. A value of probability <0.05 was considered significant. All data were shown as the mean ± standard error. Statistical analyses were performed with JMP 7.0.1 software (SAS Institute, Cary, NC, USA). Also, statistical power (1-β error probability) analysis was performed with G*Power 3²⁹.

Results

The maximal work load was higher in long-distance runners than in sprinters (long-distance runners: 236 ± 10 vs. sprinters: 197 ± 6 W, p < 0.01, 1-β = 0.87). VO₂ at rest was not significantly different both in long-distance runners and sprinters (long-distance runners: 4.6 ± 0.1 vs. sprinters: 4.5 ± 0.3 ml·kg⁻¹·min⁻¹, p = N.S., 1-β = 0.06, Table 1), but VO₂ max was higher in long-distance run-

Table 1. Summary of Hemodynamic Variables and Oxygen Uptake in Long Distance Runners and Sprinters at Rest and Maximal Exercise
VO₂ (ml·kg⁻¹·min⁻¹)
C(a-v)O₂ (ml·100ml⁻¹)
CI (l·min⁻¹·m⁻²)
SVI (ml·m⁻²)
HR (beats·min⁻¹)
DP
TPR (dyn·s·cm⁻⁵)
O₂ pulse (ml)
SWI (g·m⁻³)
CWI (W·m⁻²)

VO₂ indicates oxygen uptake; C(a-v)O₂, arterio-venous oxygen content difference; CI, cardiac index; SVI, stroke volume index; HR, heart rate; DP, double product; TPR, total peripheral resistance; SWI, stroke work index; CWI, cardiac work index; Ex, exercise. Values are mean ± SE. * p<0.05, *** p<0.005 vs. sprinters.
ners than in sprinters (long-distance runners: 49.9 ± 1.5 ml · kg⁻¹ · min⁻¹, range 44.8-53.3 vs. sprinters: 40.1 ± 1.6 ml · kg⁻¹ · min⁻¹, range 34.3-44.6, p < 0.005, 1-β = 0.99). Both in long-distance runners and sprinters, there was a linear increase in VO₂ as a function of work rate (Fig. 1a). VO₂ was not significantly different during submaximal exercise in both groups.

C(a-v)O₂ at rest was not significantly different in both long-distance runners and sprinters, but C(a-v)O₂ at maximal exercise was higher in long-distance runners than in sprinters (long-distance runners: 14.0 ± 0.7 vs. sprinters: 11.5 ± 0.6 ml · 100ml⁻¹, p < 0.05, 1-β = 0.71). Also, C(a-v)O₂ during submaximal exercise tended to be higher in long-distance runners than in sprinters when compared at the same work rate, although it did not reach statistical significance (at 100 W, long-distance runners: 11.8 ± 0.8 vs. sprinters: 9.3 ± 0.8 ml · 100ml⁻¹, p = 0.052, 1-β = 0.52; at 150 W, long-distance runners: 13.3 ± 0.9 vs. sprinters: 10.7 ± 1.0 ml · 100ml⁻¹, p = 0.082, 1-β = 0.42; Fig. 1b).

The cardiac index (CI) progressively increased from rest to maximal work rate in long-distance runners (at rest vs. at 20 W, p < 0.005, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.001, 1-β = 1.00; at 50 W vs. at 100 W, p < 0.001, 1-β = 1.00; at 100 W vs. at 150 W, p < 0.005, 1-β = 1.00; at 150 W vs. at maximal exercise, p < 0.001, 1-β = 1.00) and in sprinters (at rest vs. at 20 W, p < 0.001, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.001, 1-β = 1.00; at 50 W vs. at 100 W, p < 0.001, 1-β = 1.00; at 100 W vs. at 150 W, p < 0.001, 1-β = 1.00; at 150 W vs. at maximal exercise, p < 0.05, 1-β = 0.89; Fig. 1c). Cardiac index at rest was not significantly different in long-distance runners and sprinters. Although cardiac index at 150 W was lower in

![Graph 1a](image1.png)

Fig. 1 Oxygen uptake (a), arterio-venous oxygen content difference (b) and cardiac index (c) at rest, 20W, 50W, 100W, 150W and maximal exercise in relation to work rate in long-distance runners and sprinters. Bars show the mean value ± standard error (SE). *p < 0.05, ***p < 0.005 vs. sprinters.

(a) a main effect of group, p = 0.19; a main effect of work rate, p < 0.001; group × work rate interaction, p < 0.001.

(b) a main effect of group; p = N.S., a main effect of work rate; p < 0.001, group × work rate interaction; p < 0.05.

(c) a main effect of group; p = 0.11, a main effect of work rate; p < 0.001, group × work rate interaction; p < 0.01.
long-distance runners than in sprinters, cardiac index at maximal exercise was not significantly different between the two groups (long-distance runners: 12.2 ± 0.6 vs. sprinters: 12.3 ± 0.8 l·min⁻¹·m⁻², p = N.S., 1-β = 0.05).

The stroke volume index (SVI) almost progressively increased from rest to maximal exercise in long-distance runners (at rest vs. at 20 W, p < 0.001, 1-β > 0.99; at 20 W vs. at 50 W, p < 0.01, 1-β = 0.85; at 50 W vs. at 100 W, p = 0.076, 1-β = 0.85; at 100 W vs. at 150 W, p = N.S., 1-β = 0.08; at 150 W vs. at maximal exercise, p < 0.05, 1-β = 0.99). On the other hand, stroke volume index progressively increased from rest to 150 W and plateaued after that in sprinters (at rest vs. at 20 W, p < 0.001, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.005, 1-β > 0.99; at 50 W vs. at 100 W, p < 0.01, 1-β > 0.99; at 100 W vs. at 150 W, p < 0.01, 1-β = 0.92; at 150 W vs. at maximal exercise, p = N.S., 1-β = 0.18; Fig. 2a). Stroke volume index (SVI) at rest was not significantly different in both long-distance runners and sprinters. Stroke volume index during exercise was not significantly different between the two groups either (at maximal exercise, long-distance runners: 68 ± 4 vs. sprinters: 68 ± 4 ml·m⁻², p = N.S., 1-β = 0.05).

HR at rest was not significantly different in both long-distance runners and sprinters (long-distance runners: 68 ± 4 vs. sprinters: 72 ± 1 beats·min⁻¹, p = N.S., 1-β = 0.06). HR was lower in long-distance runners than in sprinters at 100 W and 150 W, but maximal HR was not significantly different in the two groups (long-distance runners: 179 ± 3 vs. sprinters: 181 ± 4 beats·min⁻¹, p = N.S., 1-β = 0.06, Fig. 2b).

Systolic blood pressure (SBP) and mean blood pressure (MBP) at rest, 20 W, 50 W, 100 W and maximal exercise were not significantly different in long-distance runners and sprinters, but those at 150 W were lower in long-distance runners than in sprinters (systolic blood pressure [SBP], long-distance runners: 153 ± 4 vs. sprinters: 165 ± 2 mmHg, p < 0.05, 1-β = 0.61; mean blood pressure [MBP], long-distance runners: 108 ± 3 vs. sprinters: 117 ± 2 mmHg, p < 0.05, 1-β = 0.59; Table 2). Diastolic blood pressure (DBP) at rest and during exercise was not significantly different in long-distance runners and sprinters.

CWI progressively increased until maximal exercise in long-distance runners (at rest vs. at 20 W, p < 0.005, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.001, 1-β = 1.00; at 50 W vs. at 100 W, p < 0.001, 1-β = 1.00; at 100 W vs. at 150 W, p < 0.001, 1-β = 1.00; at 150 W vs. at maximal exercise, p < 0.001, 1-β = 1.00). In sprinters, CWI also progressively increased until maximal exercise (at rest vs. at 20 W, p < 0.001, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.001, 1-β = 1.00; at 50 W vs. at 100 W, p < 0.001, 1-β = 1.00; at 100 W vs. at 150 W, p < 0.001, 1-β = 1.00; at 150 W vs. at maximal exercise, p < 0.05, 1-β > 0.99; Fig. 3a). CWI at rest was not significantly different in long-distance runners and sprinters. CWI at 50 W, 100 W, and 150 W was lower in long-distance runners than in sprinters (at 50 W, long-distance runners: 1.02 ± 0.07 vs. sprinters: 1.21 ± 0.06 W·m⁻², p < 0.05, 1-β = 0.45; at 100 W, long-distance runners: 1.46 ± 0.06 vs. sprinters: 1.96 ± 0.14 W·m⁻², p < 0.05, 1-β = 0.77; at 150 W, long-distance runners: 2.11 ± 0.07 vs. sprinters: 2.87 ± 0.18 W·m⁻², p < 0.01, 1-β = 0.91), but CWI at maximal exercise was not significantly different between the two groups (long-distance runners:

![Fig. 2](image_url)
Fig. 2 Stroke volume index (a) and heart rate (b) at rest, 20W, 50W, 100W, 150W and maximal exercise in relation to work rate in long-distance runners and sprinters. Bars show the mean value ± SE. *p < 0.05 vs. sprinters.
(a) a main effect of group; p = N.S., a main effect of work rate; p < 0.001, group × work rate interaction; p = 0.17.
(b) a main effect of group; p = 0.15, a main effect of work rate; p < 0.001, group × work rate interaction; p < 0.05.
in CWI from 150 W to maximal exercise in relation to that from rest to 150 W ($[\text{CWI}_{\text{max}} - \text{CWI}_{150\text{ W}}] \cdot [W_{\text{max}} - 150]^{-1} \cdot [\text{CWI}_{150\text{ W}} - \text{CWI}_{\text{rest}}]^{-1} \cdot 150$) was higher in long-distance runners than in sprinters (long-distance runners: 1.22 ± 0.13 vs. sprinters: 0.51 ± 0.13, $p < 0.005$, 1-β = 0.93).

SWI progressively increased until maximal exercise in long-distance runners (at rest vs. at 20 W, $p < 0.005$, 1-β = 0.93; at 20 W vs. at 50 W, $p < 0.005$, 1-β = 0.93; at 50 W vs. at 100 W, $p < 0.05$, 1-β = 0.93; at 100 W vs. at 150 W, $p < 0.005$, 1-β = 0.93; at 150 W vs. at maximal exercise, 3.19 ± 0.19 W·m$^{-2}$, $p = \text{N.S.}$, 1-β = 0.93). The ratio of the variation in CWI in relation to work rate from rest to 150 W ($[\text{CWI}_{150\text{ W}} - \text{CWI}_{\text{rest}}] \cdot 150^{-1}$) was lower in long-distance runners than in sprinters (long-distance runners: 0.0103 ± 0.0002 vs. sprinters: 0.0150 ± 0.0010 m$^{-2}$, $p < 0.005$, 1-β = 0.95). The variation in CWI in relation to work rate from 150 W to maximal exercise ($[\text{CWI}_{\text{max}} - \text{CWI}_{150\text{ W}}] \cdot [W_{\text{max}} - 150]^{-1} \cdot [\text{CWI}_{150\text{ W}} - \text{CWI}_{\text{rest}}]^{-1} \cdot 150$) tended to be higher in long-distance runners than in sprinters (long-distance runners: 0.0126 ± 0.0013 vs. sprinters: 0.0075 ± 0.0017 m$^{-2}$, $p = 0.059$, 1-β = 0.53). The ratio of the variation

	Systolic Diastolic Mean	Systolic Diastolic Mean				
Rest	106±4	68±4	80±4	105±2	68±3	80±3
20 W	114±4	70±1	85±2	113±4	73±2	86±3
50 W	124±5	72±3	90±4	128±4	76±4	94±3
100 W	142±4	73±5	96±4	145±5	84±4	105±4
150 W	153±4*	86±3	108±3*	165±2	93±2	117±2
Maximal Ex	174±5	90±3	118±3	178±3	90±4	119±3

Ex, exercise. Values are mean ± SE. * $p<0.05$ vs. sprinters.

Table 2. Summary of Blood Pressure in Long Distance Runners and Sprinters at Rest, 20 W, 50 W, 100 W, 150 W and Maximal Exercise
p < 0.005, 1-β = 1.00). On the other hand, SWI increased until 150 W, and after that it plateaued in sprinters (at rest vs. at 20 W, p < 0.001, 1-β = 1.00; at 20 W vs. at 50 W, p < 0.001, 1-β = 1.00; at 50 W vs. at 100 W, p < 0.005, 1-β = 1.00; at 100 W vs. at 150 W, p < 0.001, 1-β = 1.00; at 150 W vs. at maximal exercise, p = N.S., 1-β = 0.05; Fig. 3b). SWI at rest and during exercise was not significantly different in long-distance runners and sprinters (at maximal exercise, long-distance runners: 109.3 ± 6.8 vs. sprinters: 109.8 ± 6.7 g · m⁻¹ · m², p = N.S., 1-β = 0.05). The variation in SWI in relation to work rate from rest to 150 W ([SWI 150 W - SWI rest] · 150 W⁻¹) was higher in long-distance runners than in sprinters (long-distance runners: 0.253 ± 0.011 vs. sprinters: 0.370 ± 0.037 g · W⁻¹ · m⁻¹, p < 0.05, 1-β = 0.70). The variation in SWI in relation to work rate from 150 W to maximal exercise ([SWI max - SWI 150 W] · [W max - 150 W]⁻¹) was higher in long-distance runners than in sprinters (long-distance runners: 0.91 ± 0.24 vs. sprinters: 0.09 ± 0.18, p < 0.05, 1-β = 0.70).

Discussion

There have only been a few studies which investigated stroke volume (SV) during exercise in endurance-trained athletes, indicating that the stroke volume of endurance-trained athletes progressively increased until maximal exercise⁵⁻⁶. However, no reports have examined stroke volume during exercise in both long-distance runners and sprinters. The present study showed that stroke volume almost progressively increased until maximal exercise in long-distance runners, but it increased until submaximal exercise (150 W), and then plateaued in sprinters. Stroke work reflects the work done by the left ventricle to eject a volume of blood (i.e., stroke volume) into the aorta, and is used to assess ventricular function. The use of stroke work rather than stroke volume, has several advantages to evaluate cardiac function: 1. stroke work defines the area within the pressure-volume loop, 2. stroke work includes measurements of both systolic and diastolic performance, 3. stroke work contains the major variables that alter cardiac performance, such as HR, preload, and afterload. In the present study, SWI progressively increased from rest to maximal work rate during incremental exercise in long-distance runners, but SWI progressively increased from rest to submaximal exercise (150 W) and plateaued after that in sprinters. This discrepancy of the response of SWI might be due to differences in cardiac function during exercise. Endurance-trained athletes such as long-distance runners develop eccentric hypertrophy, and have compliant and distensible ventricles which enable a steeper slope of the Frank-Starling curve and lower left ventricular filling pressure to stroke volume during exercise. In endurance-trained athletes, an enhanced diastolic function allows for a more complete filling during the later stages of vigorous exercise. Stickland et al. demonstrated, in a study with a small number of subjects, that not only stroke volume, but also stroke work progressively increased until maximal exercise in those with high VO₂ max, but not in those with low VO₂ max. Thus, the continuous increase in SWI until exhaustion of long-distance runners in the present study could be explained by superior left ventricular function, such as greater left ventricular filling, which allows them to increasingly use the Frank-Starling mechanism throughout incremental exercise.

Cardiac work is the product of stroke work and HR, which is the equivalent of the triple product of stroke volume, mean blood pressure and HR. Because cardiac work is the rate of doing work (work per unit time) by the ventricle, it represents the power of the ventricle. In subjects with extremely high blood pressure during exercise and in subjects with slightly high blood pressure, when cardiac output is the same between the two, cardiac work in the former is greater than that in the latter. In patients with heart failure, it was reported that peak cardiac work measured during exercise had an association with adverse outcomes, and that peak cardiac work added independent prognostic information to peak VO₂ max. Thus, cardiac work is a more clinically important physiological marker than cardiac output. The present study for the first time showed that CWI progressively increased until maximal exercise in long-distance runners and in sprinters, but the increase progressively diminished from 150 W to maximal exercise in sprinters. This finding suggested that long-distance runners might have superior cardiac function compared to sprinters.

VO₂ max was higher in long-distance runners than in sprinters in the present study, which was in accordance with previous reports. Because VO₂ is the product of cardiac output and C(a-v)O₂, the finding of the higher VO₂ max in long-distance runners of the present study, compared to that in sprinters, was not due to increased cardiac output, but rather to increased C(a-v)O₂ at maximal exercise.

C(a-v)O₂ during exercise mainly reflects the oxygen uptake of exercising muscles during exercise, because most of the blood is delivered to working muscles during exercise. Endurance training can cause not only an increase in activated muscle volume, especially slow type (type I) fibers, but also an increase in oxygen diffusion capacitance in muscle tissue, mitochondria density and oxidative enzyme activity, and a significant increase in capillary density and the percentage of type I fibers. These mechanisms could induce a further increase in muscle oxygen consumption, resulting in a greater degree of decrease in the mixed venous oxygen pressure and a greater increase
in C(a-v)O$_2$ during exercise in long-distance runners, which was observed in the present study. Furthermore, 15-day cessation of training in middle-distance runners can cause a decrease in VO$_2$ max and a similar percentage decrease in C(a-v)O$_2$ at maximal exercise, which is consistent with the findings in the present study.

The cardiac output, determined by the impedance method of Physioflow, was validated against the direct Fick method during exercise in healthy subjects and patients. Charloux et al. showed that cardiac output measured by this impedance method was as accurate as that obtained with the Fick method during exercise in patients with sleep apnea syndrome and chronic obstructive pulmonary disease. Also, the stroke volume obtained by the Physioflow were reproducible, and the coefficient of variation was 1.8% in our previous findings and 3.6% in other reports. Furthermore, the superior aspect of the Physioflow is that it calculates stroke volume independently from baseline impedance values and that sweating and dehydration cannot affect stroke volume. Therefore, the measurement of cardiac output and stroke volume by this impedance method is a useful noninvasive method to assess the hemodynamic profile of subjects during exercise, and there have been many studies which evaluated cardiac output and stroke volume during exercise using this method.

Limitations for the present study are as follows. Firstly, although cycling is not specific for runners, a bicycle exercise test was used in the present study, because bicycle exercise is suitable to quantify the external work of subjects, and because blood pressure can be more accurately measured by bicycle exercise test than treadmill test. Secondly, the subjects of the present study were not elite athletes, and their VO$_2$ max was relatively low. Thus, if those were elite athletes, cardiac work and/or stroke work at maximal exercise might be higher in long-distance runners than those in sprinters. Thirdly, the sample size was relatively small to compare cardiac work and stroke work during exercise between long-distance runners and sprinters. Despite these limitations, we found that the patterns of CWI, and especially SWI during exercise, were different between long-distance runners and sprinters. Fourthly, the protocol of the present study was ramp incremental exercise of 1-W increments every 3 seconds, which is used in many investigations. By using this protocol, the subtle difference of VO$_2$ max and maximal exercise intensity can be detected. On the other hand, a steady state of respiratory and cardiac parameters is not obtained.

Manual auscultatory methods by an experienced doctor or investigators have been the most popular and most widely accepted method of blood pressure measurement during exercise, and have been employed in many studies investigating exercise blood pressure responses. Although intra-arterial blood pressure measurements are more accurate during exercise testing than manual auscultatory methods, intra-arterial blood pressure measurements have seldom been used because of technical difficulties and risks to subjects. Also, during exercise testing, an automated blood pressure measurement system is more affected by movement artifacts than the manual auscultatory method. Therefore, we used the manual auscultatory method because it is the most widely accepted method of blood pressure measurement during exercise, requires 10-20 seconds to measure blood pressure. Therefore, it happens that the timing to measure systolic blood pressure becomes faster than that of measuring diastolic blood pressure. In all subjects of the present study, the value of systolic blood pressure during exercise may probably be 1-2 mmHg lower than the true value, and thus, this phenomenon should be considered in the present study.

From the findings of the present study, it is useful to measure the pattern of SWI and CWI during exercise in order to examine whether cardiac function is superior or inferior in athletes, especially track and field athletes. When SWI and/or CWI progressively increase until maximal exercise in athletes, it may mean they have superior cardiac function. Thus, it may be possible to apply for exercise training, such as an incremental bicycle exercise test, as an exercise prescription in track and field and other athletes.

Taken together, in the present study, SWI progressively increased until maximal exercise in long-distance runners, but not in sprinters, suggesting that long-distance runners might have superior cardiac function compared to sprinters.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This study was supported, in part, by research grants from Jumonji University and Japan Women’s College of Physical Education.

References

1. Morganroth J and Maron BJ. 1977. The athlete’s heart syndrome: a new perspective. Ann N Y Acad Sci 301: 931-941.
2. Fagard R, Aubert A, Staessen J, Eynde EV, Vanhees L and Amery A. 1984. Cardiac structure and function in cyclists and runners. Comparative echocardiographic study. Br Heart J 52: 124-129.
3. Arbab-Zadeh A, Perhonen M, Howden E, Peshock RM, Zhang R, Adams-Huet B, Haykowsky MJ and Levine BD. 2014. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation 130: 2152-2161.
4. Stickland MK, Welsh RC, Petersen SR, Tyberg JV, Anderson WD, Jones RL, Taylor DA, Bouffard M and Haykowsky MJ. 2006. Does fitness level modulate the cardiovascular he-
modynamic response to exercise? J Appl Physiol 100: 1895-1901.
5) Gledhill N, Cox D and Jammik R. 1994. Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 26: 1116-1121.
6) Zhou B, Conlee RK, Jensen R, Fellingham GW, George JD and Fisher AG. 2001. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc 33: 1849-1854.
7) Torok DJ, Duey WJ, Bassett DR Jr, Howley ET and Mancuso P. 1995. Cardiovascular responses to exercise in sprinters and distance runners. Med Sci Sports Exerc 27: 1050-1056.
8) Ekblom B, Astrand PO, Saltin B, Stenberg J and Wallstrom B. 1968. Effect of training on circulatory response to exercise. J Appl Physiol 24: 518-528.
9) Doherty RA, Neary JP, Bhambhani YN and Wenger HA. 2003. Fifteen-day cessation of training on selected physiological and performance variables in women runners. J Strength Cond Res 17: 599-607.
10) Westerhof N. 2000. Cardiac work and efficiency. Cardiovasc Res 48: 4-7.
11) Loret BH and Grossman W. 1986. Dynamic and isometric exercise during cardiac catheterization. In: Grossman W (ed), Cardiac Catheterization and Angiography. Lea & Febiger, Philadelphia 251-266.
12) Hines RL and Barash PG. 1989. Hemodynamic monitoring in the intensive care unit. In: Scharf SM and Cassidy SS (ed), Heart lung interactions in health and disease. Marcel Dekker, New York 589-662.
13) Epstein SE, Robinson BF, Kahler RL and Braunwald E. 1965. Effects of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J Clin Invest 44: 1745-1753.
14) Hawkins MN, Barnes Q, Purkayastha S, Eubank W, Ogoh S and Raven PB. 2009. The effects of aerobic fitness and beta-adrenergic receptor blockade on cardiac work during dynamic exercise. J Appl Physiol 106: 486-493.
15) Hansen JS, Tabakin BS and Levy AM. 1968. Comparative exercise-cardiorespiratory performance of normal men in the third, fourth, and fifth decades of life. Circulation 37: 345-360.
16) Schultz MG, Climie RED, Nikolic SB, Ahuja KD and Sharman JE. 2012. Reproducibility of cardiac output derived by impedance cardiography during postural changes and exercise. Acta Physiol Hung 57: 176-181.
17) Tan LB. 1986. Cardiac pumping capability and prognosis in heart failure. Lancet 2: 1360-1363.
18) Roubin GS, Anderson SD, Shen WF, Choong CYP, Alwyn M, Hillery S, Harris PJ and Kelly DT. 1990. Hemodynamic and metabolic basis of impaired exercise tolerance in patients with severe left ventricular dysfunction. J Am Coll Cardiol 15: 986-994.
19) Najmi M, Griggs DM Jr, Kasparian H and Novack P. 1967. Effects of nitroglycerin on hemodynamics during rest and exercise in patients with coronary insufficiency. Circulation 35: 46-54.
20) Vieira SS, Lemes B, de T C de Carvalho P, N de Lima R, S Bocalini D, A S Junior J, Arsa G, A Casarin C, L Andrade E and J Serra A. 2016. Does stroke volume increase during an incremental exercise? A systematic review. Open Cardiovasc Med J 10: 57-63.
21) Matsumoto A, Itoh H, Eto Y, Kobayashi T, Kato M, Omata M, Watanabe H, Kato K and Momomura S. 2000. End-tidal CO2 pressure decreases during exercise in cardiac patients. Association with severity of heart failure and cardiac output reserve. J Am Coll Cardiol 36: 242-249.
22) Matsumoto A, Hirata Y, Momomura S, Suzuki E, Yokoyama I, Sata M, Ohtani Y and Serizawa T. 1995. Effects of exercise on plasma level of brain natriuretic peptide in congestive heart failure with and without left ventricular dysfunction. Am Heart J 129: 139-145.
23) Matsumoto A, Itoh H, Yokoyama I, Aoyagi T, Sugiuara S, Hirata Y, Kato M and Momomura S. 1999. Kinetics of oxygen uptake at onset of exercise relates to that of cardiac output, but not of arterio-venous oxygen difference in patients with chronic heart failure. Am J Cardiol 83: 1573-1576.
24) Lepretre PM, Koralsztein JP and Billat VL. 2004. Effect of exercise intensity on relationship between VO2 max and cardiac output. Med Sci Sports Exerc 36: 1357-1363.
25) Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, Geny B and Lonsdorfer J. 2000. A new impedance cardiograph device for the noninvasive evaluation of cardiac output at rest and during exercise: comparison with the "direct" Fick method. Eur J Appl Physiol 82: 313-320.
26) Lepretre PM, Foster C, Koralsztein JP and Billat VL. 2005. Heart rate deflection point as a strategy to defend stroke volume during incremental exercise. J Appl Physiol 98: 1660-1665.
27) Fukuda T, Maegawa T, Matsumoto A, Komatsu Y, Nakajima T, Nagai R and Kawahara T. 2010. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise. Int Heart J 51: 170-175.
28) Fukuda T, Matsumoto A, Kurano M, Takano H, Iida H, Mori tA, Yamashita H, Hirata Y, Nagai R and Nakajima T. 2012. Cardiac output response to exercise in chronic cardiac failure patients: role of stroke volume. Int Heart J 53: 292-298.
29) Faul F, Erdfelder E, Lang AG and Buchner A. 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175-191.
30) Rosenblum H, Helmske S, Williams P, Teruya S, Jones M, Burkhoff D, Mancini D and Maurer MS. 2010. Peak cardiac power measured noninvasively with a bioreactance technique is a predictor of adverse outcomes in patients with advanced heart failure. Congest Heart Fail 16: 254-258.
31) Child JS, Barnard RJ and Taw RL. 1984. Cardiac hypertrophy and function in master endurance runners and sprinters. J Appl Physiol 57: 176-181.
32) Ivy JL, Costill DL and Maxwell BD. 1980. Skeletal muscle determinants of maximum aerobic power in man. Eur J Appl Physiol 44: 1-8.
33) Hermansen L and Wachtlova M. 1971. Capillary density of skeletal muscle in well-trained and untrained men. J Appl Physiol 30: 860-863.
34) Holloszy JO. 1967. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242: 2278-2282.
35) Booth FW and Narahara KA. 1974. Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pflugers Arch 349: 319-324.
36) Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, Lampert E, Mettauer B, Geny B and Lonsdorfer J. 2001. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. *Eur J Appl Physiol* 85: 202-207.

37) Hsu AR, Kimberly EB, Nicolas KG, Joseph HL, Stewart WM and Anne LF. 2006. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. *J Appl Physiol* 100: 2031-2040.

38) Marcora SM, Bosio A and de Morree HM. 2008. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. *Am J Physiol Regul Integr Comp Physiol* 294: R874-R883.

39) Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun XG and Whipp BJ. 2012. Clinical exercise testing. In: *Principles of exercise testing and interpretation. Including pathophysiology and clinical applications 5th Edition*. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia 129-153.

40) Froelicher VF, Myers J, Follansbee WP and Labovitz AJ. 1993. Exercise testing methodology. In: Froelicher VF (ed), *Exercise and the Heart 3rd Edition*. Mosby Year book Inc., St. Louis 10-31.

41) Van Iterson EH, Snyder EM, Johnson BD and Olson TP. 2016. Influence of the metaboreflex on pulmonary vascular capacitance in heart failure. *Med Sci Sports Exerc* 48: 353-362.

42) Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J and Kitzman DW. 2012. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. *J Am Coll Cardiol* 60: 120-128.

43) Forman DE, Guazzi M, Myers J, Chase P, Bensimhon D, Caha lin LP, Peberdy MA, Ashley E, West E, Daniels KM and Arena R. 2012. Ventilatory power: a novel index that enhances prognostic assessment of patients with heart failure. *Circ Heart Fail* 5: 621-626.

44) Lightfoot JT. 1991. Can blood pressure be measured during exercise? A review. *Sports Med* 12: 290-301.

45) American Thoracic Society; American College of Chest Physicians. 2003. ATS/ACCP Statement on cardiopulmonary exercise testing. *Am J Respir Crit Care Med* 167: 211-277.