Ultra-minimally invasive surgery in gynecological patients: a review of the literature

Marco La Verde1 · Gaetano Riemma1 · Alessandro Tropea2 · Antonio Biondi3 · Stefano Cianci4

Received: 15 June 2021 / Accepted: 21 January 2022 / Published online: 2 April 2022
© The Author(s) 2022

Abstract
In the last decade, Ultra-minimally invasive surgery (UMIS) including both minilaparoscopic (MH) and percutaneous (PH) endoscopic surgery achieved widespread use around the world. Despite UMIS has been reported as safe and feasible surgical procedure, most of the available data are drawn from retrospective studies, with a limited number of cases and heterogeneous surgical procedures included in the analysis. This literature review aimed to analyze the most methodologically valid studies concerning major gynecological surgeries performed in UMIS. A literature review was performed double blind from January to April 2021. The keywords ‘minilaparoscopy’; ‘ultra minimally invasive surgery’; ‘3 mm’; ‘percutaneous’; and ‘Hysterectomy’ were selected in Pubmed, Medscape, Scopus, and Google scholar search engines. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines were followed for the drafting of the systematic review. The systematic literature research provided 298 studies, of which 9 fell within the inclusion criteria. Two hundred ninety-six total patients were included, 148 for both PH and MH groups. Median age (48 years), BMI (24 kg/m²), OT (90 min), EBL (50 ml), time to discharge (1 day), self scar evaluation (10/10), and VAS (3/10) were reported. The most frequent intraoperative complication in both the PH and MH groups was surgical bleeding. The UMIS approaches were feasible and safe even for complex gynecological procedures. Operative times and complications were superimposable to the “classical” minimally invasive approaches reported in the literature. The reported results apply only to experienced surgeons.

Keywords Ultra-minimally invasive · Percutaneous approach · Minimally invasive surgery · Endoscopic surgery

Introduction

In the recent period, minimally invasive surgery (MIS) has been extensively used in all surgical specialities across the globe [1–6].

Compared to “traditional” surgical techniques, the reduced number and size of laparoscopic trocars was related to superior aesthetic results and pain tolerance while maintaining the same surgical safety [7–9].

Technological advancement has led to an increasing tendency to reduce the invasiveness of surgical experience [10–12], resulting in the establishment of a new branch of MIS, namely ultra minimally invasive surgery (UMIS), which includes both minilaparoscopic (3 mm trocar) and percutaneous endoscopic surgery [13, 14].

Suppose this trend towards a growing minimally-invasiveness is globally accepted and continuously developed in benign surgery. Minimal-invasiveness procedures also included another gynecologic area, for example, the hysteroscopic system that transitioned from a traditional approach...
[15, 16] to a virtual endoscopy that allows uterine cavity visualization without an invasive procedure utilizing a 3-D reconstruction [17–19].

In that case, the application of MIS in the management of gynecological malignancies must be carefully proposed in selected cases and paying attention to oncological adequacy [20–23].

The minimally invasive approach during endometrial cancer surgical staging represents the standard of care supported by the evidence of the international guidelines [24–27]. The potential of MIS during ovarian cancer surgical staging and debulking surgery [28–34] is currently under is already being investigated prospectively (Lance study) [35], whereas the discussion on its applicability to early-stage cervical cancers prompted by the LACC trial has yet to reach a consensus [34, 36–38].

Several studies [39–41] observed UMIS benefits in terms of shorter hospital stay, better aesthetic outcomes, less postoperative discomfort, and increased patient satisfaction compared to traditional laparoscopic or robotic surgery.

Furthermore, major gynecological procedures, such as percutaneous aided hysterectomy (PH) and minilaparoscopic hysterectomy (MH) using a 3 mm trocar, have been found to be safe and feasible in skilled hands [42–45].

However, most of the available data come from retrospective studies, with a small number of enrolled patients and a range of different surgical procedures included in the same research.

This literature review analyzed the most methodologically valid studies concerning major gynecological surgeries performed in UMIS. Additionally, the disadvantages and advantages of ultra-minimally intrusive techniques have been outlined.

Materials and methods

Two authors performed a literature review double-blind from January to April 2021.

The keywords ‘minilaparoscopy’; ‘ultra minimally invasive surgery’; ‘3 mm’; ‘percutaneous’; and ‘Hysterectomy’ were selected in Pubmed, Medscape, Scopus, and Google scholar search engines.

A third author oversaw the selection of articles by the two previous authors.

All studies in English-language, with more than 15 cases reporting “complex gynecological procedures”, and performed with UMIS technique were included in the analysis.

By “complex gynecological procedures” was meant interventions included at least hysterectomy with bilateral salpingo-oophorectomy with or without pelvic lymph node dissection.

Both MH and PH have been included in the UMIS group. The minilaparoscopic surgical technique involved the placement of a 10 or 5 mm transumbilical trocar and three 3 mm ancillary trocars in the suprapubic area and the right and left flank, respectively.

The percutaneous surgical technique involved one 10 or 5 mm transumbilical optic access, one 5 mm suprapubic trocar, and two needlescopic accesses in the right and left flank.

Author, year of publication, type of device, age, body mass index (BMI), operating time (OT), estimated blood loss (EBL), day of discharge, scar patient assessment, pain visual analog scale (VAS), complication, and the type of the performed procedure were collected for each article.

Patient scar rating was determined by the patient’s subjective assessment on a scale from 0 to 10.

The VAS scale was defined as a visual pain scale ranging from 0 to 10. Complications were classified according to the Clavien-Dindo definition.

All articles not falling within the inclusion criteria, with missing data, or not related to the objective of this review were excluded.

PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) [46] guidelines were followed to draft this systematic review of the literature.

Results

The systematic literature research provided 298 studies, of which 9 fell within the inclusion criteria (3 in PH and 6 MH group) [43, 47–54].

Ten articles were excluded because the cohort series was less than 15 patients. Eighteen case reports and 4 studies containing redundant data were excluded. One hundred and fifty-three studies did not report “complex gynecological procedures” and 111 articles did not adhere to the purpose of this review. The study selection flow chart is shown in Fig. 1. Of the included studies, 6 were retrospective in nature, one prospective, and 2 studies were randomized clinical trials.

Three studies included patients with benign disease, 4 studies involved patients with a benign disease or early-stage endometrial cancer, and 2 articles exclusively analyzed patients with malignant conditions (one included patients with early-stage endometrial cancer and the other one patients with early-stage cervical cancer).

After EC diagnosis, total hysterectomy with or without salpingo-oophorectomy were performed for all benign conditions, while nodal dissection was pursued in malignant cases [55].

Two hundred ninety-six total patients were included, 148 for both PH and MH groups.

Median age (48 years), BMI (24 kg/m²), OT (90 min), EBL (50 ml), time to discharge (1 day), self scar evaluation
(10/10), and VAS (3/10) were reported in Tables 1 and 2 for the PH and MH group.

As shown in Table 3, 21 total complications were reported, 2 intraoperative and 6 postoperative in the PH group, and 5 intraoperative and 8 postoperative in the MH group.

The most frequent intraoperative complication in both the PH and MH groups was surgical bleeding (6 cases out of 7 total intraoperative complications). The most commonly reported postoperative complications were bleeding (3 cases), fever (3 cases), and urinary infection (2 cases). All complications were managed with conservative treatment and were classified as Dindo grade 1 or 2.

Discussion and evidence synthesis

Based on the main findings of the literature we stratified the discussion by focusing on the strengths and weaknesses of the UMIS technique.

Strengths

Cosmetic outcomes

Since its introduction in 1998, UMIS was aimed to reduce the size of abdominal scars while simultaneously increasing the quality of life of patients [56].

According to subjective patient perception [57], there is no doubt that the decreased width of the surgical scar in both the PH and the MH groups resulted in superior aesthetic outcomes.

The percutaneous method, in particular, is regarded as the greatest example of “scarless surgery,” with the surgical scar reported on postoperative day 30 as scarcely discernible [58].

In our analysis, all patients showed an extremely high level of cosmetic satisfaction.

Similar results were also obtained for other general and urologic surgeries [59, 60]. Furthermore, as reported by David et al. [61], the same excellent cosmetic outcomes could be achieved for complex upper abdominal procedures.

The effects of abdominal surgical scars had received less attention than those of face surgical scars [36, 54], even though they might have significant physical and psychological consequences [44, 62].

Furthermore, further clinical studies are required to evaluate and further analyze the psychological influence of the abdominal scar on patients’ quality of life [63, 64] in this context.

Pain relief

Excellent pain management was noted in the patients included in the analysis, with a median “mild pain” reflected at the VAS score (VAS score 1–3 defines “mild pain”).

These findings are supported by a large amount of scientific research, which includes both the UMIS and the MIS approaches [65–68].

Donnez et al. [69] found a mean VAS score of 4 (3.5 2.6) at 1 h following surgery in MIS hysterectomy patients.

Furthermore, as hypothesized, the UMIS technique demonstrated a significant increase in pain management with fewer analgesics needed in various types of surgical
Table 1 Studies concerning single port (SP) robotic surgery

Authors, years	Type of study	Cases (number)	Surgical procedure	FIGO Stage	Operative time (min)	Ebl (ml)	Conversion rate	HS (day)	Complication (number/type)	General Outcomes	BMI (median)		
Mereu et al., 2012	Retrospective study	4	Hysterectomy and salpingo-oophorectomy	2 IA 2 IB	183	50	0	2	0	SP is technically feasible and reproducible	25.7		
Bogliolo et al., 2015	Prospective study	17	Hysterectomy and salpingo-oophorectomy	17 IA	171	20	0	2	4	2 Fever 1 Sciatalgic pain 1 Thromboembolism	SP is feasible and safe	32	
Chung et al., 2019	Retrospective study	15	Hysterectomy, salpingo-oophorectomy, pelvic node dissection	13 IA 1 IB 1 II	155	145	0	3	1	Incisional hernia	SP is feasible and safe	25.4	
Moukarzel et al., 2017	Retrospective cohort study	14	Hysterectomy with sentinel lymph node mapping	9 IA 1 IB 4 CAH	175	50	0	–	0	SP is cheaper than robotic multiport surgery	24.6		
Moukarzel et al., 2016	Retrospective study	16	Hysterectomy with sentinel lymph node mapping	13 IA 3 CAH	175	86	1	1 Multiport: Aortic lymph node staging	SP is associated with acceptable operative times and perioperative outcomes	26			
Corrado et al., 2016	Prospective study	125	Hysterectomy with or without pelvic node dissection	104 IA 19 IB 2 II	122	50	1	Not specified	2	10	2 Pelvic bleeding 2 Wound infection 2 Cystitis 1 Fever 1 Deep vein thrombosis 1 Vaginal vault hematoma 1 Lower limbs neuropathy	SP is technically feasible, safe and reproducible	27
Fagotti et al., 2013	Retrospective case-control study	19	Hysterectomy and bilateral salpingo-oophorectomy	17 IA 2 IB	90	75	0	2	1	1 Hemoperitoneum	SP is feasible and safe	26	
Vizza et al., 2013	Prospective cohort trial	17	Hysterectomy and bilateral salpingo-oophorectomy	17 IA	90	75	1	1 Vaginal surgery: hypercapnia in patients with severe obesity (BMI 52)	SP is technically feasible	26.6			

CAH complex atypical hyperplasia, OT operative time, SP single port, HS hospital stay, Ebl estimated blood loss, BMI body mass index
Table 2 Studies concerning telelap alf-x/senhance (AX/S) robotic surgery

Authors, years	Type of study	Cases number	Surgery	Stage	OT	Ebl	Conversion rate	HS	Complication number/type	Outcomes
Gueli Alletti et al., 2018	Pilot study	10	Hysterectomy and bilateral salpingo-oophorectomy	10 1A	110	100	0	2	0	AX/S platform could be safe for hysterectomy even in obese patients
Rossitto et al., 2016	Retrospective study, Cost analysis	81	Hysterectomy, bilateral salpingo-oophorectomy with or without pelvic node dissection	81 1A	215	30	6	2	2	AX/S robotic hysterectomy is feasible and safe and could offer specific advantages in terms of cost
Gueli Alletti et al., 2016	Retrospective cohort study	43	Hysterectomy, bilateral salpingo-oophorectomy with or without pelvic node dissection	43 1A	160	62	3	2	1	AX/S approach is feasible and safe in endometrial cancer staging
Fanfani et al., 2015	Phase II study	44	Hysterectomy, salpingo-oophorectomy, pelvic node dissection	28 1A	197	30	5	2	2	AX/S approach is feasible and safe in endometrial cancer staging
Fanfani et al., 2015	Phase II study	34	Hysterectomy, salpingo-oophorectomy, pelvic node dissection	34 1A	160	50	3	2	0	AX/S is feasible and safe

OT operative time, HS hospital stay, Ebl estimated blood loss, AX/S telelap alf-x/senhance, BMI body mass index
Authors, years	Type of study	Cases
Corrado et al., 2018	Retrospective multi-institutional study	249
Yim et al., 2015	Retrospective study	112
Al Badawi et al., 2011	Retrospective study	12
Smith et al., 2012	Retrospective study	46
Holloway et al., 2012	Retrospective study	35

Stage	OT	BMI median
Hysterecomy, salpingo-oophorectomy, pelvic node dissection	153 IA	36.3
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	58 IB	31.1
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	18 II	124
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	8 IIIA	848
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	2 IIIB	183
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	2 IVB	138
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	Not specified	208
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	Not specified	97 I
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	Not specified	12
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	Not specified	175
Hysterectomy, salpingo-oophorectomy, pelvic node dissection	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median
Hysterecmy	153 IA	36.3
Hysterectomy	58 IB	31.1
Hysterectomy	18 II	124
Hysterectomy	8 III	848
Hysterectomy	2 IIIB	183
Hysterectomy	2 IVB	138
Hysterectomy	Not specified	208
Hysterectomy	Not specified	97 I
Hysterectomy	Not specified	12
Hysterectomy	Not specified	175
Hysterectomy	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median
Hysterecmy	153 IA	36.3
Hysterectomy	58 IB	31.1
Hysterectomy	18 II	124
Hysterectomy	8 III	848
Hysterectomy	2 IIIB	183
Hysterectomy	2 IVB	138
Hysterectomy	Not specified	208
Hysterectomy	Not specified	97 I
Hysterectomy	Not specified	12
Hysterectomy	Not specified	175
Hysterectomy	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median
Hysterecmy	153 IA	36.3
Hysterectomy	58 IB	31.1
Hysterectomy	18 II	124
Hysterectomy	8 III	848
Hysterectomy	2 IIIB	183
Hysterectomy	2 IVB	138
Hysterectomy	Not specified	208
Hysterectomy	Not specified	97 I
Hysterectomy	Not specified	12
Hysterectomy	Not specified	175
Hysterectomy	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median
Hysterecmy	153 IA	36.3
Hysterectomy	58 IB	31.1
Hysterectomy	18 II	124
Hysterectomy	8 III	848
Hysterectomy	2 IIIB	183
Hysterectomy	2 IVB	138
Hysterectomy	Not specified	208
Hysterectomy	Not specified	97 I
Hysterectomy	Not specified	12
Hysterectomy	Not specified	175
Hysterectomy	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median
Hysterecmy	153 IA	36.3
Hysterectomy	58 IB	31.1
Hysterectomy	18 II	124
Hysterectomy	8 III	848
Hysterectomy	2 IIIB	183
Hysterectomy	2 IVB	138
Hysterectomy	Not specified	208
Hysterectomy	Not specified	97 I
Hysterectomy	Not specified	12
Hysterectomy	Not specified	175
Hysterectomy	Not specified	35

Stage	OT	BMI median
Hysterecmy	112	36.3
Hysterectomy	12	31.1
Hysterectomy	46	124
Hysterectomy	35	848

Stage	OT	BMI median									
Hysterecmy	153 IA	36.3									
Hysterectomy	58 IB	31.1									
Hysterectomy	18 II	124									
Hysterectomy	8 III	848									
Hysterectomy	2 IIIB	183									
Hysterectomy	2 IVB	138									
Hysterectomy	Not specified	208									
Hysterectomy	Not specified	97 I									
Hysterectomy	Not specified	12									
Hysterectomy	Not specified	175									
Hysterectomy	Not specified	35									
Authors, years	Type of study	Cases number	Surgery	Stage	OT min	Ebl ml	Conversion rate	HS day	Complication number/type	Outcomes	BMI median
----------------	---------------------	--------------	--	---------------------	--------	--------	-----------------	--------	--------------------------	---	------------
Ng et al., 2011	Retrospective study	17	Hysterectomy, salpingo-oophorectomy, with or without pelvic node dissection	Not specified	200	–	0	–	2	Vaginal cuff dehiscence, bleeding	–
Goel et al., 2011	Retrospective study	59	Hysterectomy, salpingo-oophorectomy, with or without pelvic and aortic node dissection	18 IA 21 IB 12 II 2 III A 8 III C	185	231	1	1.3	2	Injury to the external iliac vein, pelvic abscess	39.3
Peeters et al., 2011	Prospective study	171	Hysterectomy, salpingo-oophorectomy, pelvic node dissection, with or without aortic node dissection	122 I 16 II 24 III 3 IV 6 CAH	49	87	6	1.4	4	Wound complications	31.6
Holloway et al., 2009	Retrospective chart review	100	Hysterectomy, salpingo-oophorectomy, pelvic node dissection, with or without aortic node dissection	79 I 14 II Not specified	171	103	4	1.1	3	Fever, postoperative ileus, respiratory failure	29
Peiretti et al., 2009	Prospective study	80	Hysterectomy, salpingo-oophorectomy, with or without pelvic and aortic node dissection	62 IA 9 IB 2 II 3 IIIA 1 IIIB 3 IIIC	181	44	3	2.5	5	Bladder fistula, vaginal cuff dehiscence, small bowel obstruction	25.2

OT operative time, *HS* hospital stay, *Ebl* estimated blood loss, *MP* multi port, *BMI* body mass index.
procedures when compared to their laparotomic equivalent [70–72] (Figs. 2 and 3).

Indeed, the progressive reduction in the skin incision size is immediately mirrored in the decrease of parietal neuro-muscular injury with concomitantly reduced incisional pain. As reported by Cianci et al. [47], referred pain was better in the percutaneous approach than in the minilaparoscopic approach (VAS score 3 vs 5 at 24 h after surgery, respectively).

Overlapping results were also shown by Perrone et al. [73] in a multicentric cohort study comparing percutaneous with “classical laparoscopic surgery”.

Finally, since no clinical trials on this topic are currently available, we can conclude that both the percutaneous and minilaparoscopic approaches represent an opportunity to improve patient-referred pain compared to the “classical” minimally invasive approaches in selected cases and experienced hands (Tables 4, 5, 6, and 7).

Surgical outcomes

In our series, all the papers analyzed showed a comparable median OT, EBL, complication rate, and type of procedures between MIS and UMIS.
Furthermore, even in the setting of advanced surgical procedures, such as pelvic lymphadenectomy, median OT and complications were superimposable to that reported for the standard laparoscopic approach [74–77].

Besides, only “minor complications” (Clavien-Dindo grade 1–2) were reported in our series. However, all the analyzed reports were referred to high-volume third-level centers for gynecological malignancies, making more difficult the generalization of the obtained results.

Another technical aspect that contributes to the excellent surgical outcomes is the maintenance of the standard laparoscopic triangulation even in the UMIS approach. Usually, two needlescopic instruments in the left and right flank (2.9 mm of Percuvance™ or 2.4 mm of Mini-Grip™) and one 5 mm operative suprapubic trocar are positioned in percutaneous approach while three 3 mm trocar

Table 4 Type of complications

Type of complication	Single Port Group	Multi Port Group	Telelap Alf-x/ Senhance Group	Total	p value
Vascular					
n (%)					
3; 1.3%	8; 0.9%	3; 1.4%	14; 1.1%	0.42	
Vaginal	1; 0.4%	4; 0.5%	0; –	5; 0.4%	0.55
Urinary	2; 0.9%	2; 0.2%	2; 0.9%	6; 0.5%	0.6
Infectious	5; 2.2%	10; 1.1%	0; –	15; 1.1%	0.19
Thrombotic	2; 0.9%	1; 0.1%	0; –	3; 0.2%	0.41
Neurological	2; 0.9%	0; –	0; –	2; 0.2%	0.14
Bowel	1; 0.4%	2; 0.2%	0; –	3; 0.2%	0.57
Chyle ascites	0; –	1; 0.1%	0; –	1; 0.1%	0.52
Anesthesiological	0; –	2; 0.2%	0; –	2; 0.2%	0.25
Not Specified	0; –	22; 2.5%	0; –	22; 1.7%	0.52
Total	16; 7.0%	52; 5.9%	5; 2.4%	73; 5.5%	0.058

Vascular complication: hemoperitoneum, intra- or post-operative bleeding. Vaginal Complication: vaginal cuff hematoma or dehiscence. Urinary complication: urethral fistula, bladder lesion or bladder fistula. Infectious complications: fever, pelvic abscess, wound infection. Thrombotic complications: pulmonary thromboembolism, deep vein thrombosis. Neurological complications: sciatic pain, lower limb neuropathy. Bowel complications: paralytic ileus, incisional hernia. Anesthesiological complications: respiratory failure, supraventricular tachycardia.

Table 5 Laparotomic conversions

Type of conversion	Single Port Group	Multi Port Group	Telelap Alf-x/ Senhance Group	Total	p value
n (%)					
Surgical difficulty	1; 0.4%	7; 0.8%	3; 1.4%	11; 0.8%	0.22
Anesthesiological	1; 0.4%	3; 0.3%	4; 1.9%	8; 0.6%	0.02
Intra-operative bleeding	0; –	6; 0.7%	3; 1.4%	9; 0.7%	0.09
Large uterine size	0; –	10; 1.1%	7; 3.3%	17; 1.3%	0.02
Not specified	1; 0.4%	0; –	0; –	1; 0.1%	0.39
Total	3; 1.3%	26; 3.0%	17; 8.0%	46; 3.5%	0.051

Surgical difficulty: poor exposure, aortic nodal staging, bladder lesion, severe adhesion. Anesthesiological complications: hypercapnia.

Table 6 Surgical outcomes

Variables	Single Port Group	Multi Port Group	Telelap Alf-x/ Senhance Group	p value
Operative time (min)	163	181	160	0.528
Estimated blood loss (mL)	62.5	118	50	0.026
Conversion (n)	3	26	17	0.051
Complication (n)	16	53	5	0.058
Hospital stay (day)	2	1.4	2	1.000
FIGO stage > II (n)	2	148	0	0.023

All variables are expressed in median

Min minutes, mL milliliters, n number

Furthermore, even in the setting of advanced surgical procedures, such as pelvic lymphadenectomy, median OT and complications were superimposable to that reported for the standard laparoscopic approach [74–77].

Besides, only “minor complications” (Clavien-Dindo grade 1–2) were reported in our series. However, all the analyzed reports were referred to high-volume third-level centers for gynecological malignancies, making more difficult the generalization of the obtained results.

Another technical aspect that contributes to the excellent surgical outcomes is the maintenance of the standard laparoscopic triangulation even in the UMIS approach.
are placed, in the same positions, during minilaparoscopic approach [78].

In this scenario, percutaneous and minilaparoscopic surgery may be more feasible and manageable than other single port MIS in which triangulation is lacking [79].

Weaknesses

Manipulating tissue and coagulation

According to several authors, the fundamental limitation of percutaneous instrumentation is the limiting of tissue mobilization due to the shaft’s diameter [43]. As a result, percutaneous tools may buckle when treating heavy structures such as massive ovarian masses. In addition, the inefficient lever effect is amplified by the abdominal wall’s high resistance, which amplifies the instrument’s flexion. Even the small size of the instrument’s jaw could negatively impact the correct mobilization of enlarged uteri (> 250 g) or adnexal masses [80, 81] while determining an increased risk of tissue laceration [82].

Finally, as pointed out by several authors, the lack of energy in percutaneous instruments makes multifunction devices recommended, even in cases with relatively low technical difficulty [13, 43].

Consequently, if, on the one hand, an excellent surgical performance with reduced operating times was guaranteed through the use of an integrated energy device, on the other, costs were increased.

Feeling in managing tissues

Gueli Alletti et al. [42] has highlighted the lack of tissue manipulation feeling as the primary constraint of percutaneous endoscopic instrumentation in a research including 382 patients who received “complex gynecological procedures.”

Needleoscopic tools are inserted directly into the abdominal cavity losing the smooth glide of the instrument inside the trocar. In this way, the laparoscopic instrument rubbed with all components of the anterior abdominal wall (skin, subcutaneous fat, fascia, muscles, and peritoneum).

This pitfall together with the small and sharp operating tip makes tissue manipulation less sensitive by increasing the risk of tissue tearing if excessive traction is applied [48].

This limitation was particularly evident in the manipulation of soft tissues, such as in lymph node grasping during nodal dissection in endometrial cancer cases [42].

Review strengths and limitations

There were several limits to our review. First of all, we only considered studies performed at third-level oncological centers. It should be noted that all of the studies included were retrospective in design, and no control groups were included. At the least, the number of described case series is limited. The primary strength of our review was the only complex gynecological surgeries inclusion, hence minimizing the selection bias.

Conclusions

Even for complicated gynecological procedures, the UMIS techniques proved viable and safe.

Operation durations and problems were significantly decreased compared to “classical” minimally invasive procedures mentioned in the literature.

Funding

Open access funding provided by Università degli Studi della Campania Luigi Vanvitelli within the CRUI-CARE Agreement.

Availability of data and material

On request.

Code availability

Not applicable.

Declarations

Conflict of interest

None of the authors have a conflict of interest to disclose.

Ethics approval

Not applicable.

Informed consent

Not applicable.
Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gallotta V, Conte C, Giudice MT, Nero C, Vizzielli G, Gueli Alletti S et al (2018) Secondary laparoscopic cytoresection in recurrent ovarian cancer: a large, single-institution experience. J Minim Invasive Gynecol 25(4):644–650
2. Fagotti A, Costantini B, Gallotta V, Cianci S, Ronsini C, Petritelli M et al (2015) Minimally invasive secondary cytoreduction plus HIPEC versus open surgery plus HIPEC in isolated relapse from ovarian cancer: a retrospective cohort study on perioperative outcomes. J Minim Invasive Gynecol 22(3):428–432
3. Vitale SG (2019) The biopsy snake grasper sec. VITALE: a new tool for office hysteroscopy. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2019.12.014
4. Vitale SG, Lagana AS, Caruso S, Garzon S, Vecchio GM, La Rosa VL et al (2021) Comparison of three biopsy forceps for hysteroscopic endometrial biopsy in postmenopausal patients (HYGREG1-1): a multicenter, single-blind randomized clinical trial. Int J Gynaecol Obstet. https://doi.org/10.1002/ijgo.13669
5. Cianci S, Riemma G, De Franciscis P, Torella M, Schiattarella A et al (2020) Hyperthermic intraperitoneal chemotherapy (HIPEC) for ovarian cancer recurrence: systematic review and meta-analysis. Gland Surg 9(4):1140
6. Giampaolino P, Della Corte L, Improda FP, Perna L, Granata M, Di Spiezo SA et al (2021) Robotic hysterectomy as a step of gender affirmative surgery in female-to-male patients. J Invest Surg 34(6):645–650
7. Gueli Alletti S, Rossitto C, Cianci S, Scambia G (2016) Transvaginal specimen removal in minimally invasive surgery: feasibility and possible complications during the incision of the posterior vaginal wall. World J Urol 35(7):1155–1156
8. Vitale SG, Gasbarro N, Lagana AS, Sapia F, Rapisarda AMC, Valenti G et al (2016) Safe introduction of ancillary trocars in gynecological surgery: the “yellow island” anatomical landmark. Ann Ital Chir 87:608–611
9. Laganà AS, Vitale SG, Palmara V, Ban Frangež H, Triolo O (2017) Transvaginal specimen removal in minimally invasive surgery: feasibility and possible complications during the incision of the posterior vaginal wall. World J Urol 35(7):1155–1156
10. Vitale SG, Haimovich S, Riemma G, Ludwig A, Zizolfi B, De Angelis MC et al (2020) Innovations in hysteroscopic surgery: expanding the meaning of “in-office.” Minim Invasive Ther Allied Technol. https://doi.org/10.1080/13645706.2020.1715437
11. Vitale SG, Bruni S, Chiofalo B, Riemma G, Lasmar RB (2020) Updates in office hysteroscopy: a practical decalogue to perform a correct procedure. Updates Surg. https://doi.org/10.1007/s13304-020-00713-w
12. Giampaolino P, Della Corte L, Sardo ADS, Zizolfi B, Manzi A, De Angelis C et al (2019) Emergent laparoscopic removal of a perforating intrauterine device during pregnancy under regional anesthesia. J Minim Invasive Gynecol 26(6):1013–1014
13. Perrone E, Fanfani F, Rossitto C, Cianci S, Fagotti A, Restaino S et al (2020) Laparoscopic vs percutaneous hysterectomy in obese patients: a prospective evaluation. Facts Views Vis Obgyn 11(4):307–313
14. Gueli Alletti S, Cianci S, Perrone E, Fanfani F, Vascone C, Uccella S et al (2019) Technological innovation and personalized surgical treatment for early-stage endometrial cancer patients: a prospective multicenter Italian experience to evaluate the novel percutaneous approach. Eur J Obstet Gynecol Reprod Biol 234:218–222
15. De Franciscis P, Riemma G, Schiattarella A, Cobelli L, Colacurci N, Vitale SG et al (2020) Impact of hysteroscopic metaplasty on reproductive outcomes of women with a dysmorphic uterus and recurrent miscarriages: a systematic review and meta-analysis. J Gynecol Obstetr Hum Reprod 49(7):101763
16. Siristatidis C, Chrelia C, Salamalekis G, Kassanos D (2010) Office hysteroscopy: current trends and potential applications: a critical review. Arch Gynecol Obstet 282(4):383–388
17. Carugno J, Laganà AS, Vitale SG (2020) Use of 3D ultrasound in the hysteroscopic management of Asherman syndrome. Ann Transl Med. https://doi.org/10.21037/atm.2020.04.18
18. Saravelos S, Li T (2017) Virtual hysteroscopy with HDlive. Ultrasound Obstet Gynecol 49(2):284–286
19. Vitale SG, Lagana AS, Török P, Lasmar RB, Carugno J, Palumbo M et al (2021) Virtual sonographic hysteroscopy in assisted reproduction: a retrospective cost-effectiveness analysis. Int J Gynecol Obstetr. https://doi.org/10.1002/ijgo.13651
20. Uccella S, Franchi MP, Cianci S, Zorzato PC, Bertoli F, Alletti SG et al (2020) Laparotomy vs minimally invasive surgery for ovarian cancer recurrence: a systematic review. Gland Surg 9(4):1130–1139
21. Scalaletta G, Dini G, Capozzi V, Cianci S, Pelligra S, Ergasti R et al (2020) Comparison of minimally invasive surgery with laparotomic approach in the treatment of high risk endometrial cancer: a systematic review. Eur J Surg Oncol J Eur Soc Surg Oncol B Assoc Surg Oncol 46(5):782–788
22. Cosentino F, Vizzielli G, Turco LC, Fagotti A, Cianci S, Vargiu V et al (2018) Near-infrared imaging with indocyanine green for detection of endometriosis lesions (gre-endol trial): a pilot study. J Minim Invasive Gynecol 25(7):1249–1254
23. Vitale SG, Riemma G, Ciebiera M, Cianci S (2020) Hysteroscopic treatment of submucosal fibroids in perimenopausal women: when, why, and how? Climacteric 23(4):355–359
24. Network. NCC. Uterine Neoplasms (Version 1.2021). https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed 14 June 2021
25. Vitale SG, Rossetti D, Tropea A, Biondi A, Laganà AS (2017) Fertility sparing surgery for stage IA type I and G2 endometrial cancer in reproductive-aged patients: evidence-based approach and future perspectives. Updat Surg 69(1):29–34
26. Cignini P, Vitale SG, Laganà AS, Biondi A, La Rosa VL, Cutillo G (2017) Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up. Updat Surg 69(1):75–82
27. Vitale SG, Valenti G, Gulin FA, Cignini P, Biondi A (2016) Surgical treatment of high stage endometrial cancer: current perspectives. Updat Surg 68(2):149–154
28. Gueli Alletti S, Capozzi VA, Rosati A, De Blasias I, Cianci S, Vizzielli G et al (2019) Laparoscopy vs laparotomy for advanced ovarian cancer: a systematic review of the literature. Miner Med 110(4):341–357

 Springer
29. Gueli Alletti S, Bottoni C, Fanfani F, Gallotta V, Chiantera V, Costantini B et al (2016) Minimally invasive interval debulking surgery in ovarian neoplasm (MISSION trial-NCT02324595): a feasibility study. Am J Obstet Gynecol 214(4):503

30. Plotti F, Terranova C, Luvero D, Bartolone M, Messina G, Feole L et al (2020) Diet and chemotherapy: the effects of fasting and ketogenic diet on cancer treatment. Chemotherapy 65(3-4):77-84

31. Bizzarri N, du Bois A, Fruscio R, De Felice F, De Iaco P, Casarin J et al (2021) Is there any therapeutic role of pelvic and para-aortic lymphadenectomy in apparent early stage epithelial ovarian cancer? Gynecol Oncol 160(1):56-63

32. Bellia A, Vitale SG, Laganà AS, Cannone F, Houvenaeghel G, Rua S et al (2016) Feasibility and surgical outcomes of conventional and robot-assisted laparoscopy for early-stage ovarian cancer: a retrospective, multicenter analysis. Arch Gynecol Obstet 294(3):615-622

33. Rossetti D, Vitale SG, Gulino FA, Rapisarda AM, Valentì G, Zigarrelli M et al (2016) Laparoendoscopic single-site surgery for the assessment of peritoneal carcinomatosis resectability in patients with advanced ovarian cancer. Eur J Gynaecol Oncol 37(5):671-673

34. Vitale SG, Capriglione S, Zito G, Lopez S, Gulino FA, Di Guardo F et al (2019) Management of endometrial, ovarian and cervical cancer in the elderly: current approach to a challenging condition. Arch Gynecol Obstet 299(2):299-315

35. Nitiec R, Rauh-Hain JA, Melamed A, Scambia G, Pareja R, Coleman RL et al (2020) Laparoscopic cytoreduction after neoadjuvant chemotherapy (LANCE). Int J Gynecol Cancer 30(9):1450-1454

36. Uccella S, Zorzato PC, Lanzo G, Fagotti A, Gallotta V et al (2019) The role of sentinel node in early ovarian cancer: a systematic review. Miner Med 110(4):358-366

37. Leitao MM Jr (2018) The LACC trial: has minimally invasive surgery for early-stage cervical cancer been dealt a knockout punch? Int J Gynecol Cancer 28(7):1248-1250

38. Rossetti D, Vitale SG, Tropea A, Biondi A, Laganà AS (2017) Usefulness of vessel-sealing devices for periapartum hysterectomy: a retrospective cohort study. Updat Surg 67(3):301-304

39. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006-1012

40. Bianchi S, Perrone E, Rossitto C, Fanfani F, Tropea A, Biondi A et al (2020) Percutaneous-assisted vs mini-laparoscopic hysterectomy: comparison of ultra-minimally invasive approaches. Updates Surg. https://doi.org/10.1007/s13304-020-00893-5

41. Misirlioglu S, Giray B, Vatansever D, Arslan T, Urman B, Taskiran C (2020) Mini-plus percutaneous setting in total laparoscopic hysterectomy. Minim Invasive Ther Allied Technol. https://doi.org/10.1080/13645706.2020.1794899

42. Ghezzi F, Cromi A, Siesto G, Delle Marchette M, Fanfani F, Vaghi R et al (2015) Minilaparoscopic versus standard laparoscopic hysterectomy for uteri >/= 16 weeks of gestation: surgical outcomes, postoperative quality of life, and cosmesis. J Laparoendosc Adv Surg Tech A 25(5):386-391

43. Uccella S, Buda A, Morosi C, Di Martino G, Delle Marchette M, Reato C et al (2018) Minilaparoscopic versus conventional laparoscopic hysterectomy: results of a randomized trial. Minim Invasive Gynecol 25(3):461-466

44. Vitale SG, Carugno J, Riemma G, Torok P, Cianci S, De Franciscis P et al (2021) Hysterectomy for assessing fallopian tubal obstruction: a systematic review and diagnostic test accuracy meta-analysis. J Minim Invasive Gynecol 28(4):769-778

45. Gagner M, Garcia-Ruiz A (1998) Technical aspects of minimally invasive abdominal surgery performed with needlescopic instruments. Surg Laparosc Endosc 8(3):171-179

46. Cianci S, Rosati A, Capozzi VA, Tarascio M, Uccella S, Palumbo M et al (2021) Quality of life and sexual functioning of patients affected by endometrial cancer. Minerva Med 112(1):81-95

47. Rossetti D, Vitale SG, Bogani G, Rapisarda AM, Gulino FA, Frigerio L (2015) Usefulness of vessel-sealing devices for
end effectors during different laparoscopic procedures. Int J Surg (London, England) 11(Suppl 1):S61–S63

62. Brown BC, McKenna SP, Siddhi K, McGrath DA, Bayat A (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesth Surg JPRAS 61(9):1049–1058

63. Gueli Alletti S, Vizzielli G, Lafuenti L, Costantini B, Fagotti A, Fedele C et al (2018) Single-institution propensity-matched study to evaluate the psychological effect of minimally invasive interval debulking surgery versus standard laparotomic treatment: from body to mind and back. J Minim Invasive Gynecol 25(5):816–822

64. Caruso S, Rapisarda AM, Cianci S (2016) Sexuality in menopausal women. Curr Opin Psychiatry 29(6):323–330

65. Gueli Alletti S, Rossitto C, Cianci S, Restaino S, Costantini B, Fanfani F et al (2016) Telelap ALF-X vs standard laparoscopy for the treatment of early-stage endometrial cancer: a single-institution retrospective cohort study. J Minim Invasive Gynecol 23(3):378–383

66. Riemma G, Schiattarella A, Colacurci N, Vitale SG, Cianci S, Cianci A et al (2020) Pharmacological and non-pharmacological pain relief for office hysteroscopy: an up-to-date review. Climact J Int Menop Soc 23(4):376–383

67. Vitale SG, Caruso S, Ciebiera M, Török P, Tesarik J, Vilos GA et al (2020) Management of anxiety and pain perception in women undergoing office hysteroscopy: a systematic review. Arch Gynecol Obstet 301(4):885–894

68. Amer-Cuenca JJ, Martin-Buck A, Vitale SG, La Rosa VL, Caruso S, Cianci A et al (2020) Non-pharmacological pain control in outpatient hysteroscopies. Minim Invasive Ther Allied Technol Mitat Off J Soc Minim Invasive Ther 29(1):10–19

69. Donnez O, Donnez J, Dolmans MM, Dethy A, Baeyens M, Mitchell J (2015) Low pain score after total laparoscopic hysterectomy and same-day discharge within less than 5 hours: results of a prospective observational study. J Minim Invasive Gynecol 22(7):1293–1299

70. Fujita F, Lahmann B, Otsuka K, Lyass S, Hiatt JR, Phillips EH (2004) Quantification of pain and satisfaction following laparoscopic and open hernia repair. Arch Surg (Chicago). 139(6):596–600

71. Holzer A, Jirecek ST, Illievich UM, Huber J, Wenzl RJ (2006) Laparoscopic versus open myomectomy: a double-blind study to evaluate postoperative pain. Anesth Analg 102(5):1480–1484

72. Kum CK, Wong CW, Goh PM, Ti TK (1994) Comparative study of pain level and analgesic requirement after laparoscopic and open cholecystectomy. Surg Laparosc Endosc 4(2):139–141

73. Perrone E, Rossitto C, Fanfani F, Cianci S, Fagotti A, Uccella S et al (2020) Percutaneous-assisted versus laparoscopic hysterectomy: a prospective comparison. Gynecol Obstet Invest 85(4):318–326

74. Volpi L, Sozzi G, Capozzi VA, Ricco M, Merisco C, Di Serio M et al (2019) Long term complications following pelvic and para-aortic lymphadenectomy for endometrial cancer, incidence and potential risk factors: a single institution experience. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 29(2):312–319

75. Holub Z, Jabor A, Bartos P, Eim J, Kliment L (2002) Laparoscopic pelvic lymphadenectomy in the surgical treatment of endometrial cancer: results of a multicenter study. JSLS 6(2):125–131

76. Togami S, Kawamura T, Fukuda M, Yanazume S, Kamio M, Kobayashi H (2019) Learning curve and surgical outcomes for laparoscopic surgery, including pelvic lymphadenectomy, for early stage endometrial cancer. Jpn J Clin Oncol 49(6):521–524

77. Capozzi VA, Riemma G, Rosati A, Vargiu V, Granese R, Ercoli A et al (2021) Surgical complications occurring during minimally invasive sentinel lymph node detection in endometrial cancer patients. A systematic review of the literature and metaanalysis. Eur J Surg Oncol. https://doi.org/10.1016/j.ejso.2021.03.253

78. Gueli Alletti S, Rossitto C, Perrone E, Cianci S, De Blasis I, Fagotti A et al (2017) Needlescopic conservative staging of borderline ovarian tumor. J Minim Invasive Gynecol 24(4):529–530

79. Cianci S, Rosati A, Rumolo V, Gueli Alletti S, Galliotta V, Turco LC et al (2019) Robotic single-port platform in general, urologic, and gynecologic surgeries: a systematic review of the literature and meta-analysis. World J Surg 43(10):2401–2419

80. Uccella S, Crosci A, Bogani G, Casarin J, Fornenti G, Ghezzi F (2013) Systematic implementation of laparoscopic hysterectomy independent of uterus size: clinical effect. J Minim Invasive Gynecol 20(4):505–516

81. Giampaolino P, Della Corte L, Foreste V, Vitale SG, Chiofalo B, Cianci S et al (2019) Unraveling a difficult diagnosis: the tricks for early recognition of ovarian cancer. Minerva Med 110(4):279–291

82. Cianci S, Gueli Alletti S, Rumolo V, Rosati A, Rossitto C, Costantino F et al (2019) Total laparoscopic hysterectomy for enlarged uteri: factors associated with the rate of conversion to open surgery. J Obstet Gynaecol 39(6):805–810

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.