Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia

Getnet Chekole 1*, Zemede Asfaw 2 and Ensermu Kelbessa 2

Abstract

Background: Remnant forests found in areas that have long been converted to agricultural landscapes are refuges of wild useful plants; and societies inhabiting them are custodians of rich indigenous botanical knowledge. This study was undertaken to document the medicinal plants used by the people living in and around Tara-gedam and Amba remnant forests, northwestern Ethiopia, together with the associated ethnomedicinal knowledge.

Methods: Data were collected from 105 informants through semi-structured interviews, guided field walk, market survey; and analyzed using standard ethnobotanical analytical tools including ranking and comparison.

Results: A total of 163 medicinal plant species in 145 genera and 67 families were recorded among which Zehneria scabra drew the highest community consensus. Seventy-one percent of the medicinal plants were those used for treating human ailments only, 21% for both human and livestock and 8% for livestock only. Asteraceae, with 14 species, had the highest number of medicinal plant species. The medicinal plants mainly (79.1%) belong to the shrub and herb categories and most of them were sourced from the wild habitats. Leaves and fresh plant materials were more frequently used for medicine preparation than other parts. Protected government and church forests as well as tree propagation in nurseries followed by planting them and local practices constitute the major forest conservation efforts that indirectly protect the medicinal plants in the area. Elders and healers knew more about the medicinal plants, their distribution, the local ethnomedicinal practices and knowledge transfer patterns. Though important for the local healthcare system and with potentials for modern drug discovery, both the plants and the knowledge pool are under threat.

Conclusion: The diversity of medicinal plants and the associated indigenous knowledge of Tara-gedam and its environs are of a considerable value to the local community and beyond. There is, therefore, a need for conservation of the vegetation and the medicinal plants along with preservation of the wealth of the indigenous knowledge.

Keywords: Ethiopia, Ethnobotany, Indigenous botanical knowledge, Medicinal plants, Tara-gedam

Introduction

The relationship between plants and people is studied in ethnobotany, a field focusing on the study of the indigenous knowledge on how plants are perceived, used and managed [1,2]. Indigenous knowledge refers to the knowledge, rules, standards, skills and mental sets generated by and kept in custody of local people in a particular area [3]. It is the result of many generations and long years of experiences, careful observations and trial and error experiments [4]; and this study focuses on the medicinal plants and the associated ethnomedicinal knowledge in the environs of Tara-gedam forest. The cultural and spiritual identity of indigenous peoples is often linked to intact primary forests with their rich biodiversity [5]. Hence, plant resources possess and preserve cultural heritages, biological information and indigenous knowledge on plant identity and utility [6]. The ethnobotanical literature [7] underlines that both saving plant species and documenting and preserving indigenous knowledge associated with them are fundamental urgent concerns. There are around 6,000 species of vascular

* Correspondence: gchekole1@gmail.com
1 Department of Biology, Woldia University, P.O. Box 400, Woldia, Ethiopia
Full list of author information is available at the end of the article

© 2015 Chekole et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
plants in Ethiopia, out of which more than 14% are said to have been used as traditional plant medicines (TPMs) [8], while more than 1,000 species have been documented at the National Herbarium (ETH) database. Despite their treasured contributions, in particular in Ethiopia, thus far TPMs have been offered very little attention in modern research and development, while less effort has so far been made to upgrade the traditional herbal medical practices [9]. For the most part, the potential of practitioners of traditional herbal medicine to serve as partners in the process of drug discovery and in providing healthcare services is not equitably acknowledged [10]. Hence, documenting traditional medicinal plants and the related traditional medical knowledge is important in order to facilitate the discovery of new sources of drugs and promote sustainable use of natural resources in Ethiopia [11]. Tara-gedam forest, selected for the study, is among the national priority forest areas in Ethiopia [12] and Amba forest is found adjacent to it. Both these remnant forests are known as species rich forests in Amhara Region, and the nearby local communities are in constant interaction with the plant resources [13,14], particularly so for those living in the forest fringes. Research revealed that urbanization in Ethiopia had tremendous impacts on the useful plants and the practice of traditional medicine [15]. Since Tara-gedam and Amba forests are found adjacent to the growing Addis Zemen Town, the impacts have already been alluded to by some researchers [14]. The local people, as in other parts of Ethiopia depend on traditional medicine, which mostly relies on medicinal plants, to fulfill their healthcare needs as pointed out by Zegeye [14]. Despite this fact, there are no studies on ethnomedicinal plants and the associated knowledge in the environs of Tara-gedam and Amba forests. Hence, this study was framed with the aim of documenting the medicinal plants and the associated ethnomedicinal knowledge of people living in the environs of Tara-gedam and Amba forests.

Material and methods

The study area and the demographic background

The study was conducted in the general environment of Tara-gedam and Amba forests, located in Libo Kemkem District (Wereda) in the South Gondar Zone of the Amhara Regional State, northwestern Ethiopia located at around 12°04’35.1″-12°10.926″N and 37°44.266″-37°50.057″E. Tara-gedam forest ranges from 2062-2496 m a.s.l. and Amba from 2011-2541 m a.s.l. with the highest peak at Mt. Deboch. The climate data obtained from the National Meteorological Service Agency of Ethiopia shows that the mean annual maximum and minimum temperatures of the study area are 32.8°C and 8°C, respectively. The District receives a uni-modal rainfall of approximately 1300 mm per year and about 95.1% of the area is under moist weina dega (mid-highland) while the rest is under the wet Dega (highland) [16]. Medium and cold highland climatic features characterize the study area. The vegetation of the area belongs to the dry evergreen montane forest type consisting of forests, bushlands, shrublands and enrichment plantation interspersed with stands of natural vegetation [14]. Archival information [16] shows that forested land is about 4,429.5 hectares. Libo Kemkem District, in particular Tara-gedam, has several recreational sites. Mt. Kualla, along with diverse geographical features of the forest, Tara-gedam Monastery and many caves and forested churches are very useful for archaeological studies and for the tourism industry [17]. The 2007 census report of the Central Statistical Agency [18] of Ethiopia shows that Libo Kemkem District has an estimated population of 209,451 (106,564 males and 102,887 females). The inhabitants are mostly members of the Amhara ethnic community who speak the Amharic language with economies that are predominately based on rain-fed subsistence cultivation of crops mixed with livestock production [16]. There are 58 health services in the District [19]. Malaria, intestinal helminthiasis, and pneumonia were the top three human diseases and the major livestock ailments were pasteurellosis, anthrax, internal and external parasites, black leg, sheep pox, trypanosomiasis, respiratory tract infection, rabies and coccidiosis [20].

Site selection methods and procedures

Before starting the ethnobotanical study, contacts were made with various offices (District administration, tourism and culture, agriculture and rural development, traditional healers’ association and health affairs) to seek permission to carry out the study by informing them about the aims and significance of the study. Letters authorizing the study were obtained from the relevant offices which were then presented to the concerned kebele (lowest administrative unit in Ethiopia) offices, forest scouts and informants in the study area. In this way, full legal procedures were followed and the informed consent of interested participants was obtained. Twelve rural villages, namely: Agamoch, Kidanemhret, Tibabosgie, Washa Indiras, Aguat Mafsesha, Mantogera, Abay, Kualla Yihuans, Yifag Akababi, Lomiye, Abuarra, Asiba Mariam and the town Addis Zemen were selected around the two forests. These villages are within the seven kebeles (Figure 1) selected for the study. Relative distance, community-forest interactions and altitudinal differences were the basic site selection criteria. Relative distance and community forest interaction were taken as criteria after collecting information from forest scouts, kebele administrative offices and inhabitants of the area during the reconnaissance survey in order to compare the indigenous
knowledge of the communities found nearest to the forest with those found relatively far away (reached after traveling for more than five kilometers). This was undertaken from November-June 2010.

Informant selection and approaches
One hundred five informants (85 males and 20 females) aged 19 to 84 were interviewed in this research. Among these, 45 (42 males and three females) were key
informants and the rest 60 were general informants. Purposeful and random sampling techniques were employed to select traditional herbalists and general informants respectively. The traditional association leaders, members of the tourism and culture office, elderly people and religious leaders helped to identify the key informants. In addition, the identified traditional practitioners and members who had earlier been treated by the healers also helped to identify other traditional experts. The general informants were randomly picked (from the list of inhabitants) during field and house visits (5–7 in each study site) by checking their names from the list of residents obtained from kebele offices. All interviews were administered after obtaining voluntary consent of each informant and assuring them that the data will be used only for academic purposes.

Ways of data collection and type of data collected

Ethnobotanical data were collected during three months from November to January 2010 by living in close contact with the community in the study area, following standard methods [2,4,21]. Accordingly, semi-structured interview, guided field walk, direct observation, market survey and focus group discussions with key informants and other knowledgeable community members were applied and their knowledge on medicinal plants gathered. Interviews were held based on checklist of questions prepared before hand in English language and simultaneously translated into Amharic. Interviews focused to informants’ demographic features including sex, age, marital status, occupation, religion, educational background, and duration of time an informant lived in the study area, and indigenous ecological knowledge (traditional ways of classifying vegetation, plants, landscapes and the soils in the area). The major part of the interviews were focused on the local names of medicinal plants used, their habitats and habitats, plant part/s used, remedy preparation methods, materials used during preparation, condition of preparation, storage method, additives/ingredients used during preparation and administration, dosages administered, and route of administration. Likewise, side effect of the medicine (if any), use of antidotes for adverse effects, any taboos associated with medicinal plants, the season, month, dates and time of collection and preparation of plant medicines, and market value were also included. Further, the distribution (status) of medicinal plants, the interaction of healers with the District administration, threats and major problems, conservation methods, source of knowledge and ways of transfer and number of years of service as traditional healer were also the major interview points targeted, following the methods used by previous investigators [2,4,22].

The semi-structured interviews held with informants usually started at their sitting places and further broadened into field walk with interviewed informants in order to see the plants mentioned in their habitats and voucher collections following Martin [4]. This activity further helped to record growth habits of medicinal plants. Focus group discussions were done with traditional medicinal plant association members, other herbalists, monks and general informants to obtain additional information and to check the reliability. Informants were contacted two to three times and responses of an informant in harmony with each other were taken as relevant and used for data analysis. At times, the preparation methods of the medicinal plants were said to be secret and were not included during discussion. Most field observations were conducted with a single informant in order to keep the knowledge top-secret as this was what the healers in particular preferred. Some of the traditional healers were genuine herbalists, well-known by the local community and owned traditional home pharmacies derived from plant remedies. They were asked to demonstrate their work at their homes and in the field, which was recorded in order to check the consistency in knowledge and practice on the preparation of remedies and their effectiveness. The patients encountered at healers’ homes were also asked about the traditional plant medicines they have used and their effectiveness when applied by healers.

Plant collection and identification

Voucher specimens were collected for each plant species during guided field walk with the informants. At times, the field activities included taking notes on plants and the associated indigenous knowledge with preliminary identification of the plants to family and sometimes to species levels. Photographic records were also taken in the field to capture the field sites, plants and other useful memories. The specimens were dried, deep-frozen, and determinations were made at the National Herbarium (ETH), Addis Ababa University, using taxonomic keys and descriptions given in the relevant volumes of the Flora of Ethiopia and Eritrea [23-31] and by visual comparison with authenticated herbarium specimens. Finally, the accuracy of identifications was confirmed by a senior plant taxonomist and the voucher specimens with labels were deposited at the ETH.

Data analysis

The ethnobotanical data were analyzed using Microsoft Office Excel spreadsheet (2007) and SPSS version 20 software. The former was used to calculate sum, percentages, tabulate and draw graphs whereas the latter was used to generate results of descriptive statistics, and perform t-tests as well as draw graphs and charts. Ethnobotanical ranking and scoring methods such as preference and direct matrix rankings as well as pair-wise comparisons and informant consensuses were employed to distinguish priority species and to check consistency.
Preference/priority ranking activities were employed on six most preferred and widely used medicinal plant species for the treatment of wound and the most threatened medicinal plants. Direct matrix ranking was employed for the six most widely utilized multi-purpose plant species and for the five factors considered most threatening to medicinal plants. Pair-wise comparison was made on six of the most preferred and commonly used medicinal plants against stomachache. To do this, the number of possible pairs was determined by applying the formula $n(n-1)/2$, where n is the number of medicinal plant species being compared. For all the above ethnobotanical ranking and scoring techniques, the same seven key informants who had long time practical experience in traditional plant medicine preparation, administration and collection were engaged. The strength of knowledge of the key informants was evident to the first author who witnessed the clarity of explanations and accuracy of actions. The overall procedures for these activities were conducted following standard ethnobotany texts [2,4,22]. Informant consensus factor (ICF) for different ailment categories was calculated to test agreements of the informants on medicinal plant knowledge of each category by using the formula $\text{ICF} = \frac{\text{Nur} - \text{Nu}}{\text{Nur} - 1}$ where, nur is the number of uses reported in the study area, and Nu is the number of species reported in each category [32].

Ethical consideration
All data collections were done with special care on the base of the cultural view of the local communities in the study area. Informants were also informed that the objectives of the research were not for commercial purposes but for academic reasons. Since, ethnomedicinal indigenous knowledge is only obtained from traditional specialists within the community so any value that will obtain as a result of the research will benefit the community. According to ethnobiology code of ethics indigenous knowledge should be protected and a part of the value generated should be transferred back to the authors of the knowledge. Finally, informants were accepted the idea and came to reach an agreement.

Results
Demographic features of the informants
Of the total informants, 46 were in the age group of 51–85; 51 were illiterate and the greater proportion (88) belonged to the married category. Almost all informants (101) belonged to the Ethiopian Orthodox Church. Parallel to the population structure, there were more males than females who were willing to be included among informants as indicated by the demographic profile in Table 1.

Most informants (70) were farmers, 11 of them were house wives, seven were students and other groups were represented by fewer numbers. Of the total informants, 99 lived in the study area since birth and the rest have lived there from six to 20 years.

Indigenous ecological knowledge of people in the study area
The inhabitants of the study area are owners of rich ethnobotanical and ethnoecological knowledge as demonstrated by their wide array of knowledge on environmental matters. They classified the land forms; vegetation and soil based on knowledge surviving from ancestral practices (Table 2), now evident through their elaborate emic categorization systems.

Medicinal plant diversity and distribution
The study documented 163 species of medicinal plants belonging to 145 genera and 67 families. Three of the families had ten or more species each and the details are given in Table 3 and Table 4. The medicinal plant use reports showed that six species were cited by more than 20 informants each (Table 5). Twelve species were cited for the treatment of six and more ailments each (Table 6). *Achyranthes aspera* came out on the lists of both most effective and most cited medicinal plants and the details are tabulated (Table 4 and Table 5).

Among the reported medicinal plants of the area, some were also reported as wild edible plants (Table 4). Informants, during data collection, said that some of the species for example, the edible parts (fruits) of *Rosa abyssinica* are used to alleviate weakness or tension when eaten by children in the field. This is done without knowing the medicinal effects of the plants and those who eat it feel happy and accomplish their tasks effectively. Herbs accounted for 67 (41.1%) species followed by shrubs (62, 38.0%), trees (24, 14.7%) and climbers (10, 6.1%). The medicinal plants occur in the wild, homegardens and in both premises. The forests, farmlands, margins, living plants on fences, roadsides, around homes, fallow lands and

Sex	Age group (in yrs)	Illiterate	Religious education	Modern education	Marital status	Religious type				
	19-34	35-50	51-85							
Male	22	25	38	38	17	30	9	76	83	3
Female	5	7	8	13	0	7	8	12	19	1
Total	27	32	46	51	17	37	17	88	101	4
riversides are the habitats where the medicinal plants are found (Figure 2).

Health disorders treated and ICF
The analyses on application of plants showed that 115 (70.6%) species in 103 genera and 54 families were listed as medicines for human ailments, 34 (20.9%) species in 32 genera and 22 families for both human and livestock ailments and 14 (8.6%) species in 14 genera and 11 families were reported as medicine for livestock ailments only. These medicinal plants were claimed to be of use in the treatment of about 60 types of human ailments only, 10 types of both human and livestock health disorders and nine types of livestock ailments only. For the most common ailment (wound), 42 medicinal plant species were reported (Table 7). The ailments were classified into 13 categories and ICF values were computed and livestock ailments had the highest ICF value of 0.84 and other disease categories had lower values (Table 8).

Importance of the medicinal plants
Some medicinal plants were rated as important and used frequently by many, appearing in many formulations. Preferences for six common medicinal plant species said to be used for the treatment of the common ailment (wound) showed *Cordia africana* in the first rank order followed by *Sida rhombifolia* (Table 9). The pair-wise comparison of medicinal plants used for the treatment of stomachache showed that *Stephania abyssinica* was the most reported and ranked first, while *Otostegia integrifolia* was the least ranked plant species (Table 10). Matrix ranking of six popular multipurpose medicinal plants showed that *Cordia africana* was the most useful multipurpose medicinal plant that was ranked 1st while *Croton macrostachyus* was the least ranked one (Table 11).

Plant parts used and modes of remedy preparations
Out of the total plant parts used for remedy preparation, leaves were the highest (109, 31.2%), followed by roots (108, 30.9%) and lower values for other parts (Table 12). Information about the preparation of each plant has been included in Table 4. The results also showed that the majorities of remedies (89%) were prepared from single plant species and few (11%) were prepared from combinations of more than two medicinal plant species. Simple modes of preparation of medicine including crushing (90.5% informants), chewing, pounding, chopping and juice extraction were used (Table 13).

Condition of preparation and storage of plant medicines
The results of the analyses showed that 70.94% of the plant medicines were prepared from fresh plant parts, 9.69% from dried and 19.37% from both fresh and dried parts. Healers explained that some of the stored remedies were kept for about one year, from September to September of the next year and discarded on the Ethiopian New Year and replaced with new preparations. When a particular medicinal plant could not be

Table 2 Emic categorization of landscape, soil and vegetation in the area

Landscape (ethno-topographic) types	Soil (ethnopedologic and scientific) types	Vegetation (ethnofloristic) types
Amharic	**English**	**Amharic**
WOTAGEBA	KEYATIE	KUTQUATO
TERRARAMA	WALKA	GITOSH
MEDAMA/MESK	SERBOLA	CHAKA
SHELEQUAMA	CHINCHA	DENE
KOREBITA/GOBA	BORENK	CHEBECEB
DAGET	Hilly	
SINKURKUR		

Table 3 Plant families, number of medicinal plant species and proportions

No	Family	No of species in each	% of total									
1	Asteraceae	14	8.6									
2	Fabaceae	13	8.0									
3	Solanaceae	10	6.1									
4	Euphorbiaceae	8	4.9									
5	Lamiaceae	7	4.3									
6	Malvaceae	6	3.7									
7	Apiaceae	5	3.1									
8	Acanthaceae, Amaranaceae, Asclepiadaceae, Cucurbitaceae, Rubiaceae, Rutaceae (six families)	4	2.5									
9	Convolvulaceae, Moraceae, Rhamnaceae, Poaceae, Polygonaceae, Oleaceae (six families)	3	1.8									
10	Boraginaceae, Cappressaceae, Loganiacae, Myriniaceae, Myrtaceae, Ranunculaceae, Rosaceae, Scoruhulariaeae, Urticaceae, Apocynaceae (ten families)	2	1.2									
11	Other 38 families	1	0.6									
Scientific Names	Family	Vernacular name (Amharic)	Gf	Ailments treated	At	Pu	CP	Ra	Methods of preparation	Ha	Dn	Co. No.
----------------------------------	-------------------------	---------------------------	----	------------------	------	----	----	----	------------------------	----	-----	---------
Acacia abyssinica Hochst. ex Benth.*	Fabaceae	Girar	T	Scorpion poison	Hu B	F	De	Tie with inside part	F	Spr	GC097	
Acanthus polystachus Del.	Acanthaceae	Nech kusheshile	S	Rabies	Li R	F	O	Pound and give with water	Fal	Spr	GC031	
Acanthus sennii Chiov.*	Acanthaceae	Key kusheshilie	S	Evil eye	Hu R	FD	Na, O & De	Sniff, drink and fumigate with concoction	F	Wy	GC056	
				Arthritis/rheumatism	Hu R	F	De & O	Crush & tie or drink with honey	Bo			
				Tape worm	Hu R	F	O	Pound, immerse in water then drink the juice				
Achyranthes aspera L.	Amaranthaceae	Telenj	H	Eye problem	Hu L	F	Op	Pound, immerse to water, squeeze and insert with cotton	Wy		GC025	
				Wound	Hu L	FD	De	Crush, powder and tie				
				Wound	Hu L	F	De	Crush and tie				
				Excessive menstruation	Hu R	F	O	Crush, insert in water then drink juice				
				Tonsillitis	Hu L	F	De	Crush and tie				
				Bleeding	Li R	F	De	Crush and tie				
				Bone fracture	B R	FD	De	Tie the concoction				
				Bleeding	Hu R	FD	De	Tie the concoction				
				Tape worm	Hu R	F	O	Crush, insert in water then drink				
Acmella caulirhiza Del.	Asteraceae	Kutchamelik	H	Swelling	Hu L	FD	De	Crush and powder then tie with honey/better	Hg	Pa	GC134	
Acokanthera schimperi (A. DC.) Schweinf.	Apocynaceae	Merz/Mirez	S	Spider poison	Hu L	D	De	Crush and powder then cream with butter	Bo	Rr	GC047	
				Hepatitis	Hu Ap	D	Na, O & De	Crush, dry then fumigate				
Scientific name	Family	Vernacular name	Growth forms	Ailments treated	Ailment type	Parts used	Condition of preparation	Route of administration	Method of preparation	Habitat	Distribution	Collection number
---------------------------------	----------------	-----------------	--------------	------------------	--------------	------------	--------------------------	-------------------------	------------------------	----------	--------------	-------------------
Adiantum capillus-veneris L.	Adiantaceae	Joroasfit	H	Anthrax	Hu	R	F	O	Crush, insert in water then drink the juice	Ear wound	Hu	St
Allium sativum L.	Alliaceae	Nech shinkurt	H	Evil eye	Bu	F	Na, O & De	Spr	Sniff, drink and fumigate with concoction	Malaria	Bu	F
Aloe macrocarpa Tod.	Aloaceae	Eret	H	Impotency	Bu	F	De	Crush and powder, then cream with butter	Wound	B	Lx	
Alternanthera pungens Kunth	Amaranthaceae	Midir akef	H	Babies diseases	Hu	L	F	Rub, squeeze then cream	Creamed	De		
Alysicarpus quartinianus A. Rich.	Fabaceae	————	H	Ascaris	Hu	R	F	Crush then drink with milk	Fwl	Spr	GC146	
Argeome mexicana L.	Papaveraceae	Yahya eshoh	H	Rabies	Li	R	F	Crush then give with water	Rs	Wy	GC058	
Artemisia afra Jack. ex Willd.	Asteraceae	Chikugn	H	Evil eye	Hu	Ap	FD Na, O & De	Sniff unprocessed and powder then fumigate and drink concoction	Hg	R	GC168	
Asparagus africanus Lam.	Asparagaceae	Yesiet kest	S	Impotency, gonnoria,& syphilis	Hu	R	DF O	Crush, infusion with honey then drink the juice	Fal	Spr	GC151	
				Itchiness	Hu	R	DF De	Crush, powder then cream with butter				
				Excessive menstruation	Hu	R	F O	Chew and swallow the juice				
Scientific Name	Family	Vernacular Name	Ailments treated	Ailment type	Parts used	Condition of preparation	Route of administration	Method of preparation	Habitat	Distribution	Collection number	
-----------------	--------	-----------------	------------------	--------------	------------	--------------------------	------------------------	------------------------	---------	--------------	-------------------	
Astragalus atropilosus (Hochst.) Bunge	Fabaceae	Hu R D De	Sniff, drink and fumigate concoction	Fal Spr GC152								
Bersama abyssinica Fresen.	Melianthaceae	Azamir	Ascaris	Hu L FD O	Crush and powder, boil with tea then drink juice	Aw Spr GC107						
Bidens macroptera (Sch Bip.) ex Chiov. Mesfin	Asteraceae	Adey Abeba	Brain cancer	Hu Fl D Na	Powdered	Fal Wy GC143						
Brassica carinata A. Br.	Brassicaceae	Gomen	Stomachache & Anthrax	B Sm D O	Grind and drink with water	Hg Wy GC176						
Bridelia micrantha (Hochst.) Brain.	Euphorbiaceae	Yenebr tifir	Expel placenta	Li B F O	Crush then give with water	Rs Rare GC089						
Brucea antidysenterica Swiss Chard.	Simaroubaceae	Waynos/yedaga abalo	Wound & Scabies	Hu L D De	Crush, mixed with butter then cream	Fal Spr GC086						
Buddleja polystachya Fresen.	Loganiaceae	Anfar	Tonsillitis	Hu Sh F De	Tie and cream concoction	F Spr GC062						
Calotropis procera (Ait.) Ait.f.	Asclepiadaceae	Tobia	Intestinal parasite	Hu L D O	Crush and powder, immerse in TEJ then drink the juice							
Calpurnia aurea (Ait.) Benth.	Fabaceae	Zikita	Excessive menstruation	Hu L F Va	Make soft by rubbing, and insert with new cloth until bleeding stops							
Calotropis procera (Ait.) Ait.f.	Asclepiadaceae	Tobia	Wound	Hu Sh F De	Crush and tie	Rs Spr GC035						
Calpurnia aurea (Ait.) Benth.	Fabaceae	Zikita	External parasites	Li L F De	Cream concoction	Cream on point	Bo Spr GC020					
Calotropis procera (Ait.) Ait.f.	Asclepiadaceae	Tobia	Hemorrhoid	Hu Lx F De	Cream concoction	Cream on point	Bo Spr GC020					
Calpurnia aurea (Ait.) Benth.	Fabaceae	Zikita	Expel spine in wound	Hu Lx F De	Cream on point	Bo Spr GC020						
Calotropis procera (Ait.) Ait.f.	Asclepiadaceae	Tobia	External parasites	Li L F De	Crush, then wash with water							
Calpurnia aurea (Ait.) Benth.	Fabaceae	Zikita	Diarrhea & Bilharziasis	Hu Sd D O	Grind and eat after pounding with honey							
Calotropis procera (Ait.) Ait.f.	Asclepiadaceae	Tobia	Bloody diarrhea	B R F O	Crush then drink with water							
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type (At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution (Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Ailments Treated	Ailment Type (At)	Parts Used (Pu)	Condition of Preparation (Cp)	Route of Administration (Ra)	Method of Preparation	Habitat (Ha)	Distribution (Dn)	Collection Number (Co.No.)
Erthroblastosis	Hu Sd D De	Grind and drink with honey or tie powder/concoction on neck									
Expel foreign things from eye	Hu L F Et	Crush mixture, squeeze then insert with cotton wool									
Prolonged embryo in uterus	Hu R DF De	Tie concoction on spinal column									
Capparis tomentosa Lam.	Capparidaceae	Gimero	Evil eye	Hu R DF Na & O De	Sniff, drink and fumigate concoction						
Capsicum annuum L.	Solanaceae	Karia/keto	Malaria	Hu Fr F O	Crush and drink with honey or smash in water then drink						
Carica papaya L.	Caricaceae	Papy	Malaria	Hu L F O	Crush and drink with milk						
Chenopodium murale L.	Chenopodiaceae	Amedmado	Wound	Hu L DF De	Crush then cream with butter						
Cayratia gracilis (Guill.&Perr.) Suesseng	Vitaceae	Aserkush	Hemorrhoid	Hu R F De	Cream concoction						
Celosia trigyna L.	Amaranthaceae	Lemlemcho	Tape worm	Hu Sd D O	Grind and drink with water						
Chenopodium murale L.	Chenopodiaceae	Armedmado	Wound	Hu L DF De	Crush then cream with butter						
Ear problem	Hu L F De	Concoction inserted to ear tube									
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type (At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution (Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Growth Form	Ailment	Ailment Type	Part Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection No.						
Cicer arietinum L.	Fabaceae	Shinbira	H	Malaria	Hu	Sd	D	O	Germinate then eat with bulb of Allium sativum	Bo	Wy	GC115						
Cirsium englerianum O.	Asteraceae	Yahyakushshile	H	Beating with stick	Li St F	O	Scabies	Hu Sh F De	Crush, immerse in water then drink juice	F	Spr	GC050						
Cirsium aurantifolia Burn. f.	Rutaceae	Lomy	S	Wound	Hu	Fr F	De	Cream concussion	Hg	Spr	GC169							
Cirsium aurantium L.	Rutaceae	komtatie	S	Hypertension	Hu Fl F	O	Drink the juice	Hg	R	GC138								
Clausena anisata (Willd.) Benth.	Rutaceae	Limich	S	Evil eye	Hu R D Na, O & De	Crush, roast then cream	F	Spr	GC178									
Clematis simensis Fresen.	Ranunculaceae	Azo areg	Cl	Hemorrhoid	Hu L F	De	Crush then tied	F	Spr	GC043								
Clerodendrum myricoides (Hochst.) Watke	Lamiaceae	Mistroch	S	Evil eye & evil spirt	Hu LR & Sd	De & O	Crush, powder then tie on the neck or take with tooth paste	F	Spr	GC016								
Clutia lanceolata Forsk.	Euphorbiaceae	Fiyelefej	S	Diarrhea	Hu R F	De	Crush then tie on neck region	Fw	Wy	GC135								
Coffea arabica L.	Rubiaceae	Bunna	S	Common cold	Hu L F	O	Bone fracture	Hg	Spr	GC161								
Commelina latifolia Hochst. ex A Rich.	Commelinaceae	Yewuha enkur	H	Wound	Hu L F	De	Crush and tie	Ris	Spr	GC116								
Plant Species	Scientific Name	Vernacular Name	Growth Form	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number						
---------------	-----------------	-----------------	-------------	-----------------	--------------	------------	--------------------------	-------------------------	------------------------	----------	-------------	------------------						
Convolvulus arvensis L.	Convolvulaceae	Este filastot	H	Impotency	Hu	R	DF	O	Crush and powder then drink with GIN (AREKI)	Anthrax	Hu	R	F	O	Peep, chew then swallow juice	Fwl	Rr	GC175
Convolvulus sagittatus Thunb.	Convolvulaceae	——	H	Anthrax	Hu	R	F	O	Peep, chew then swallow juice	Ah	Rr	GC127						
Cordia africana Lam.*	Boraginaceae	Wanza	T	Eye problem	Li	L	DF	Op	Burn, then insert ash with butter	Fire burn	B	L	DF	De	Burn, then cream the ash	Ah	Rr	GC133
Crepis rueppellii Sch-Bip.	Asteraceae	——	H	Anthrax	Li	R	F	O	Crush and give with water	Expel ear mites	Hu	L	F	Et	Rub, squeeze, insert then cover cotton	Fwl	Rr	GC070
Crotalaria karagwensis Taub.	Fabaceae	Yeay tater	H	Itchiness	Hu	L	FD	De	Crush and powder then cream with butter		Ah	Rr	GC051					
Croton macrostachyus Del.	Euphorbiaceae	Misana	T	Intestinal & abdominal problems	Hu	L	F	O	Boil, grind then eat with butter, SHIRRO or TEFF ENJERA	Stomachache	Hu	Sh	F	O	Drink concoction	Aw	Wy	GC130
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type (At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution (Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Ailments treated	Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Co.No.		
Cucumis ficifolius A. Rich.	Cucurbitaceae	Yemidir enbuay	Bloody diarrhea	H	B Fr F O	Crush and mix with water	Bo Rr GC139						
			Evil eye		Hu R DF Na, O & De	Sniff, drink and fumigate concoction							
			Stomachache & Anthrax		Hu R F O	Peel, chew then swallow juice or drink and with water							
			Evil eye		Hu R &Fr FD De & O	Crush and tie on neck							
			Wound		Hu Fr F O	Insert the affect part into the fruit							
			Expel ear-mites		Hu Sh F Et	Crush, squeeze then insert							
Cucurbita pepo L.	Cucurbitaceae	Duba	Expel placenta	CI	B Fr F O	Chop then boil with water	Hg Spr GC166						
			Heart & gastritis problems		B Fr F O	Chop then boil with water							
			Sterile females		Hu R F O	Chew and swallow juice to be fertile							
Cupressus lusitanica Mill.	Cupressaceae	Yeferenge tid	Tooth ach	T	Hu L F O	Boil with salt then take with teeth							
Cyathula prostrata (L.) Brume	Amaranthaceae	Aregist	Anthrax	H	Li L F O	Rub, squeeze then give with water	Hg Pa GC145						
			Heart & gastritis problems		B Fr F O	Chop then boil with water							
Cynodon dactylon (L.) Pers.*	Poaceae	Serdo	Snake poison	H	Hu Ag F O	Chew and absorb the juice	Bo Wy GC173						
			Tape worm		Hu L& St F O	Drink the concoction							
Cynoglossum coeruleum (Hochst. ex A. Rich.) DC	Boraginaceae	Chegogit	Febrile illness	H	Hu L F De & O	Rub, squeeze then cream and drink the juice	Bo Wy GC114						
			Expel foreign things from eye		Hu L F Op	Crush mixture, squeeze then insert with cotton wool							
			Spider poison		Hu L F De	Crush, pound then cream with butter							
Plant Species	Family	Vernacular Name	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number		
---------------	----------------------	-----------------	------------------	--------------	-------------	--------------------------	-------------------------	------------------------	---------	--------------	-------------------		
Cyperus dichroostathyus	Cyperaceae	Giramta	Wound	Hu L F	De	Crush then cream							
Datura stramonium	Solanaceae	Astenagir	Eye problem	Hu L F	Op	Rub, squeeze then insert one-two droplets							
Cyperus dichroostathyus	Cyperaceae	Giramta	Expel ear-mites	Hu L F	Et	Rub, insert and squeeze							
Datura stramonium	Solanaceae	Astenagir											
Dichondra repens	Convolvulaceae	Afer kocher	Scabies and ear wound	Hu L F	De	Crush then cream							
Diplolophium africanum	Apiaceae	Zegerawta	Expel foreign things from eye	Hu L F	Op	Crush mixture, squeeze then insert with cotton wool							
Dipsacus pinnatifidus	Dipsacaceae	Ferezeng/kelem	Febrile illness	Hu L F	De	Rub, squeeze then cream except heart							
Discopodium penninervium	Solanaceae	Almit	Headache	Hu L F	Na	Sniff the unprocessed leaf							
Dodonaea angustifolia	Sapindaceae	Kitkita	Rabies	Li R F	O	Pound and give with water							
Dovyalis abyssinica	Flacourtiaceae	Koshim	Beating with stick	Hu Sh F	Na & Et	Crush and give with water							
Dregea rubicunda	Asclepiadaceae	Kuandira	Bone fracture	Li L& F St	De	Tie twig parts together							
Scientific Name	Family	Vernacular Name	Hg	Wound	Hu	L&	D	De	Crush, powder then tie				
---------------------------------	----------------	-----------------	-----	-------	-----	----	----	-----	------------------------				
Dyschoriste radicans Nees	Acanthaceae	————	H	Stomachache	Hu	Ap	F	O	Chew and swallow the juice				
Embelia schimperi Vatke*	Myrsinaceae	Enkoko	S	Tape worm	Hu	Fr	FD	O	Eat fresh or crush and drink with “TELA DIFDIF”				
Eragrostis tef (Zucc.) Trotter	Poaceae	Tef	H	Dandruff	Hu	Sd	D	De	Grind, prepare dough then cream on bare head				
Erythrina abyssinica Lam. ex DC.	Fabaceae	Kuara	T	Febrile illness	Li	B	D	De & O	Crush then fumigate or drink the concoction				
Eucalyptus globulus Labill.	Myrtaceae	Nech bahitzaf	T	Febrile illness & Common cold	Hu	L	F	Na, O & De	Boil and fumigate with the fume				
Euclea racemosa Hiern	Ebenaceae	Dedeho	S	Scorpion poison	Hu	R	F	De	Crush and tie F Spr GC018				
Euphorbia abyssinica Gmel.	Euphorbiaceae	Kulkual	T	Jaundice	Hu	R	F	O	Crush, immerse in water then drink or bake with bread then eat				
				Stomach and intestinal problems	Hu	R	F	O	Crush, mix with DORD WOTTE then eat with ENJERA				
				Rabies	Li	Lx	F	O	Mix with milk				
				Malaria	Hu	Lx	F	O	Eat bake with *Eragrostis tef* dough				
Scientific Name	Family	Vernacular Name	Growth Form	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number	
----------------	--------	----------------	-------------	-----------------	--------------	------------	--------------------------	------------------------	----------------------	----------	-------------	----------------	
Euphorbia tirucalli L.	Euphorbiaceae	Kinchib	S	Wound	B	Lx	F	De	Paint the affected part	Ah	Wy	GC131	
Ferula communis L. *	Apiaceae	Dog	H	Increase sexual needs	Li	R	F	O	Pound, then give with INGERA and butter	F	Wy	GC072	
Ficus carica L.	Moraceae	Beles	S	Wound	Hu	Lx	F	De	Cream the affected part	Fwl	Rr	GC104	
Ficus sur Forssk.*	Moraceae	Sholla	T	Toothache	Hu	B	F	D	Take by teeth	Ris	Spr	GC090	
Ficus vasta Forsk.*	Moraceae	Warka	T	Wound	Hu	Lx	F	De	Cream the concoction	Fal	Rr	GC162	
Foeniculum vulgare Miller	Apiaceae	Ensial	H	Cough	Hu	Ag	F	O	Boil with tea then drink	Bo	Rr	GC137	
Gardenia ternifolia Schumach. & Thonn.*	Rubiaceae	Gambillo	T	Erthroblastosis	Hu	R	DF	De	Grind and drink with honey or tie powder (concoction) on neck	Bo	Rr	GC087	
Scientific Name	Family	Vernacular Name	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number		
-----------------	-------------------------	-----------------	------------------	--------------	------------	--------------------------	--------------------------	-----------------------	----------	--------------	-------------------		
Gossypium barbadense L.	Malvaceae	Tit	Snake bite	Hu	R	DF & O	Tie on neck or chew, absorb the juice	Concoction on neck	Tonsillitis	Pu	Hg	GC096	
Grewia ferruginea Hochst. ex A. Rich.*	Tiliaceae	Lenquata	Expel placenta	Li	B	F	Peel the inside part, chop, emulsify with water then give	Tie on neck or neck	Danduff	Pu	F	GC123	
Guizotia schimperi Sch. Bip.ex Walp.	Asteraceae	Mech	Stomachache	Hu	R	F	Chew and swallow the juice	Absorb the juice	Wound	Li	Ag	GC123	
Helinus mystacinus (Ait.) E. Mey. ex Steud.	Rhamnaceae	Esat abrid	Fire burn	Hu	L	F	Crush and tie	Spice	Huernia	Li	Ag	GC099	
Heteromorpha arborescens (Spreng.) Cham. &Schldl.	Apiaceae	Yegib mirkuz	Snake bite	Hu	R	F	Chew, absorb and swallow or tie fresh on neck	Absorb the juice	Hibiscus	Hu	R	GC015	
Hibiscus macranthus Hochst. ex A. Rich.	Malvaceae	Nacha	Wound	Hu	L	F	Chew and cream with cotton	Absorb the juice	Olangeri	Hu	R	F	GC064
Huernia macrocarpa (A. Rich) Sprenger	Asclepiadaceae	Yemidir kulku	General medicine	Li	Ag	F	Chop and give or chop and give after baking with black barley	Absorb the juice	Indigofera	Hu	R	GC100	
Hypericum quartinianum A. Rich	Hypericaceae	Armujia	Urinary problem	Hu	R	D	Crush, powder then eat with honey	Absorb the juice	Indigofera	Hu	R	GC046	
Indigofera anecta Hochst. Ex A. Rich.	Fabaceae	—----------------	Snake bite	Hu	R	F	Chew and absorb the liquid	Absorb the juice	Indigofera	Hu	R	GC033	
Indigofera prieureana Guill &Perr.	Fabaceae	—----------------	Anthrax & Stomach ach	Hu	R	F	Chew and swallow juice or crush and give with water	Absorb the juice	Oleaceae	Tu	R	GC125	
Oleaceae	Tenbelel	S	Toothache	Hu	R	F	Take with teeth	Absorb the juice	Yemidir	Li	Ag	GC012	
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type(At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution(Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Growth Form	Ailment	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number
Jasminum abyssinicum	Oleaceae	Terhareg	T	Urine	Retention	Hu	Crush and drink with water	F	Sniff, drink and fumigate with concoction	F Spr	GC085	
Jasminum grandiflorum	Oleaceae	Tid	T	Wound	Ah	Li	Crush and powder then cream	Ah Wy GC154	Wash with fresh part	Li R F	F De	
Juniperus procera	Cupressaceae	Tid	T	Wound	External parasite	Li	Crush mix with water then drink the juice	Li F	F De & O Na			
Justicia schimperiana	Acanthaceae	Smiza	S	Wound	Common cold & Hasma	Hu	Sniff unprocessed or after rubbing	Hu L F	F De & O Na			
Kalanchoe laciniata L.	Crassulaceae	Endahula	H	General medicine	Li R F	De	Peel, tie with tiny rope then insert through skin on neck region	Li Ag F De	Heat and immediately touch part while hot	Fwl Wy	GC084	
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type(At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution(Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Growth Form	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Ailments Treated	Related Ailments	Method of Preparation	Habitat	Distribution	Collection Number
Lactuca intermis Forsk.	Asteraceae	Dememerarit	H	Broken bone	B	R	DF	Tie on the problematic part	Fal	Wy	GC118		
Laggera tomentosa (Sch. Bip. ex A. Rich.) Oliv. & Hiern	Asteraceae	Keskeso/ Shetie	H	Swelling	Hu	L	DF	Rub and tie or dry, crush, mix with honey and lemon juice then tie	Fwl	Wy	GC038		
Laggera crispata (Vahl) Hepper & Wood	Asteraceae	Keskeso/ alshasume	H	Gastric & Stomachache	Hu	L	F	Chew and swallow the juice	Fal	Wy	GC075		
Leonotis ocymifolia (Burm.f.) Iwarsson	Lamiaceae	Ferezeng	S	Snake bite	Hu	R	F	Crush and tie	Ah	Rr	GC105		
Leucas martinicensis (Jaq) R.Br.	Lamiaceae	————————————	H	Prevent diseases relapse	Hu	Ag	DF	Fumigate the fume	F	Rr	GC053		
Linum usitatissimum L.	Linaceae	Telba	H	Wound	Hu	R	D	Crush, mix with honey then cream	Fal	Spr	GC184		
Maesa lacozolata Forsk.	Myrsinaceae	Kilabo	S	Womb	Hu	Fr	D	Roast, grind, mix with butter then cream	F	Spr	GC068		
Malva verticillata L.	Malvaceae	Elit	H	Scabies	Hu	Ag	DF	Crush, powder and tie	Ah	Rr	GC103		
Melia azedarach L.	Meliaceae	Nim	T	Dandruff	Hu	L	F	Crush and cream	Hg	Spr	GC160		
Plant Name	Family	Vernacular Name	Growth Form (Gf)	Ailments Treated	Ailment Type (At)	Parts Used (Pu)	Condition of Preparation (Cp)	Route of Administration (Ra)	Method of Preparation	Habitat (Ha)	Distribution (Dn)	Collection Number (Co.No.)	
----------------------------	----------------	-----------------	------------------	--------------------------------------	-------------------	----------------	-------------------------------	-----------------------------	------------------------	----------------	-----------------	---------------------------	
Millettia ferruginea (Hochst.) Bak.	Fabaceae	Birbira	T	Leeches	Li L F O	Crush and powder, then spray with water	F R Spr GC067						
				Rabies	Li St DF De	Heat stick then touch their body with hot part							
Mimosa kummel A.D.C.*	Sapotaceae	Eshe	T	Hasma	Hu Fr F O	Eat raw fruit	Ris R Spr GC101						
Momordica foetida Schumach.	Cucurbitaceae	Yekurahareg/Kuramechat	H	Diarrhea & gonorrhea	Hu L F O	Pound, squeeze then drink	F Spr GC165						
				Tonsillitis	Hu L F O	Pound, squeeze then drink							
				Sun stroke	Li L F O	Crush and give with water							
				Evil spirit	Li L F R F De	Boil and fumigate							
Myrica salicifolia Hochst. ex A. Rich.	Myricaceae	Shinet	T	Common cold & bleeding	Hu B FD Na	Crush, powder then sniff	Ris R Spr GC106						
				Eye problem	Li B FD Op	Crush, powder then insert							
Nicandra physaloides (L.) Gaertn.	Solanaceae	Kassa	H	Fire burn	Hu L F De	Crush, mix with butter then cream	Fal Spr GC065						
Nicotiana tabacum L.	Solanaceae	Tinbaho	S	Wound	Hu L D De	Crush and powder then cream	Hg R Spr GC080						
Nuxia congesta R.Br. ex Fresen.	Loganiaceae	Atquar	S	Tonsillitis	Hu Sh F De & O	Rub, squeeze then drink and put on head	F Spr GC088						
Ocimum urticifolium Koth	Lamiaceae	Dama kesie	S	Febrile illness	Hu L F O	Boil with tea and drink	Hg Spr GC129						
				Common cold	Hu L F O	Boil with tea and drink							
Olea europaea L. subsp. cuspidata (Wall. ex G. Don) Cif.	Oleaceae	Woira	T	Tonsillitis	Hu L F O	Chew and absorb the juice	Ft Wy GC079						
				Evil eye	Hu St F De	Beating with fresh stick							
				Eye diseases	Hu L F Op	Pound, squeeze then drop with cotton							
				Deafness	Hu L F Et	Drop concoction with food oil							
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type (At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution (Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific name	Family	Vernacular name	Growth form	Ailments treated	Ailment type	Parts used	Condition of preparation	Route of administration	Method of preparation	Habitat	Distribution	Collection number
Ormocarpum pubescens (Hochst.) Cuf.ex. Gillett	Fabaceae	Murna	S	Wound	Hu L	DF	De	Crush, powder then tie	F Rr	GC014		
Orobanche ramosa L.	Orobanchaceae		H	Sunstroke	Li Ap D	De	FwL	Fumigate Fwl Rr	GC181			
Otostegia integrifolia Benth.	Lamiaceae	Tunjut	S	Epidemic & common cold	Hu Ag	De	F Spr	Fumigate Spr	GC141			
Pentas lanceolata (Forssk.) Defl.	Rubiaceae	Ras faris	S	Tite problem	Li L F	De	F Rr	Crush, powder then cream	GC066			
Periploca linearifolia Quant. Dill. & Rich.	Asclepiadaceae	Moider	Cl	Hemorrhoid	Hu St F	De	F Spr	Heat with fire then immediately apply	GC150			
Persea americana Mill.	Lauraceae	Avocado	S	Kidney infection	Hu R F	De	Hg Rr	Crush and tie	GC183			
Phytolacca dodecandra L'Herit.	Phytolaccaceae	Endod	H	Ring worm	Hu Lx F	De	Fal Rr	Cream Fal Rr	GC019			
Plantago lanceolata L.	Plantaginaceae	Wonberet/ Gorteb	H	Wound & bleeding	Hu L	DF	Fal Wy	Crush, powder then cream	GC117			

Chekole et al. Journal of Ethnobiology and Ethnomedicine 2015, 11:4
http://www.ethnobiomed.com/content/11/1/4

Page 21 of 38
Scientific Name	Family	Vernacular Name	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number	
Plectranthus tenuiflorus (vatke) Agnew	Lamiaceae	Mutansa	S	Weaken babies & evil spirit	Hu	Ap	DF	O	Crush, powder then give with water	Hg	Rr	GC148
Plumbago zeylanica L.	Plumbaginaceae	Amera	H	Wound	Hu	R	DF	De	Cream concoction	FwL	Rr	GC128
Premna schimperi Engl.	Lamiaceae	Chocho	S	Eye problem	Li	L	F	Op	Chew and spit	F	Spr	GC126
Prunus persica (L.) Batsch	Rosaceae	Kok	S	Diarrhea	Li	L	F	O	Crush, immerse in water then give	Hg	Rr	GC049
Punica granatum L.	Punicaceae	Roman	S	Cancer & skin diseases	Hu	Fr	F	O	Crush and eat	Hg	Pa	GC022
Rhamnus prinoides L'Herit	Rhamnaceae	Gesho	S	Tonsillitis	Hu	Sh	F	O	Crush and drink with water	Hg	Spr	GC094
Ricinus communis L.	Euphorbiaceae	Chakima/ Gulo	S	Calf diarrhea	Li	Fr	F	O	Pound cream the teat of cow then allow to suck	Hg	Rr	GC170
Rosa abyssinica Lindley*	Rosaceae	Kega	S	Tension/ dizziness	Hu	Fr	F	O	Eat the raw fruit	F	Spr	GC037
Rubia cordifolia L.	Rubiaceae	Mencherer	Cl	Cough	Hu	R & L	F	O	Drink the concoction with tea or coffee	F	Rr	GC110
Rumex abyssinicus Jacq.*	Polygonaceae	Mekmoko	H	Hypertension	Hu	R	DF	O	Pound, powder then drink with milk	Fal	Spr	GC076
Rumex nepalensis Spreng.	Polygonaceae	Tult	H	Tonsillitis & diarrhea	Hu	R	DF	De	Crush, mix with water then drink juice or tie on neck without processing	FwL	Spr	GC029
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type(At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution(Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Scientific Name	Family	Vernacular Name	Ailment	Ailment Type	Parts	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number	
Anthrax	Li R F O	Crush and give	Water								GC177	
Rumex nervosus	Polygonaceae	Enbuacho	S	Wart	Hu L F	De	Rub, squeeze then cream		Fal	Wy		
Vahl*												
Ruta chalepensis	Rutaceae	Tenadam	H	Evil eye	Hu L	DF De & O	Sniff, drink and fumigate with concoction		Hg	Rr GC186		
L.												
Sansevieria	Dracaenaceae	Chiret	S	Ear wound	Hu St	F Et	Heat, pound, squeeze then insert while cool		Hg	Rr GC111		
erythraeae												
Mattei												
Schefflera	Araliaceae	Getem	T	Snake poison	Hu B	F O	Crush and drink the infusion		F	R R GC171		
abyssinica												
(Hochst. ex A.												
Rich.) Harms.												
Schinus molle	Anacardiaceae	Kundoberbere	T	Cough	Hu Fr	DF O	Pound, cook in DORRO WOTE then eat with TEF ENGERA		Hg	Spr GC155		
L.												
Senega	Malvaceae	Serka Abeba	S	Bloating	Li L	F O	Crush and give with water		Fw	Wy GC122		
didymobotrya												
(Fresen.) Irwin												
&Bameby												
Sida ovata	Malvaceae	Yahya-nacha	H	Fire burn	Hu R	F De	Pound and cream the liquid with cotton		Fal	Spr GC032		
Forsk.												
Sida rhombifolia	Malvaceae	Gorgegit	S	Impotency	Hu R	F O	Drink concoction with honey		Bo	Spr GC120		
L.												
Sida tenuicarpa	Malvaceae	Chifrig	S	Wound	Hu L	F De	Crush and tie		Fw	Spr GC153		
Vollesen												
Solanecio	Asteraceae	Yashikoko gomen	S	Bloating	Li L	F O	Pound and give with water		Hg	Pa GC061		
gigas												
Vatke												
Solanum	Solanaceae	Zerch enboy	S	Wound	Hu L	DF De	Crush, pound and tie		F	Spr GC174		
anguivi Lam.												
Scientific Name	Family	Vernacular Name	Ailments treated	Condition of preparation	Route of administration	Method of preparation	Habitat	Distribution	Collection number			
-----------------	-------------	----------------	--	--------------------------	-------------------------	----------------------	---------	--------------	--------------------			
Solanum incanum L.	Solanaceae	Yekolla enboy	Wart	Cream with juice	De							
			Beating with stick	Crush and give the infusion								
			Stomachache	Crush, chew then absorb juice								
			Ring worm	Heat fruit then cream with juice								
			Wart	Cream with juice	De							
			Arthritis/ rheumatism	Pound and tie	De							
			Leeches	Insert juice								
			Diabetic	Chew and swallow juice								
			Febrile illness	Pound and give with water								
			Wound	Cream with juice	De							
			Scorpion poison	Drink juice with water								
Solanum marginatum L.f.	Solanaceae	Yedega enboy	Cough	Give juice with goat milk	F	R	GC095					
Solanum nigrum L.*	Solanaceae	Awut	Spider poison	Crush, squeeze then cream	F	R	GC140					
			Hemorrhoid	Pound and tie	De							
			Diarrhea	Crush, chew then swallow juice								
Steganotaenia araliacea Hochst. ex A. Rich.	Apiaceae	Endoka/Yefiyel chew	Hemorrhoid	Peel, heat then apply in the hot condition	F	Spr	GC083					
Stephania abyssinica (Dillon & A. Rich.) Walp.	Menispermaceae	Chewchawit	Anthrax & Stomachache	Crush and give with water	Fal	Spr	GC121					
			Anthrax	Chew and swallow the juice								
			Rabies	Crushed and given with milk and water								
			Tonsillitis	Crush and drink with water or cream on neck region								
Scientific Name	Family	Vernacular Name	Growth Form	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Method of Preparation	Habitat	Distribution	Collection Number
-----------------	--------	-----------------	-------------	------------------	--------------	------------	--------------------------	------------------------	---------------------	----------	--------------	-------------------
Stereospermum kunthianum Cham.	Bignonaceae	Zana	T	Eye problem	Li	B	DF	O	Cream the concoction with butter and apply to cattle	F	Spr	GC017
Scorpion & Snake poison	Hu	B	F	De	Pound and tie or chew and swallow the juice							
Striga hermonthica (Del.) Benth.	Scrophulariaceae	Gelmit	H	Bloating	Li	Ap	DF	O	Crush, powder and give with water	Fal	Spr	GC144
Syzygium guineense (Willd.) DC.	Myrtaceae	Dokima	T	Diarrhea	Hu	B	F	O	Crush and drink with water	Ris	Spr	GC045
Thalictrum rhynchocarpum Dill. & A. Rich.	Ranunculaceae	Sire-bizu	H	Scrotum swelling	Hu	R	F	De	Crush and drink with TELLA	F	Rr	GC078
Impotency	Hu	R	F	O	Drink concoction with honey							
Tragia brevipes Pax.	Euphorbiaceae	Abbelalit	H	Swelling	Hu	R	F	De	Pound and tie	F	Rr	GC013
Impotency	Hu	R	F	O	Drink concoction with honey							
Urena hypselodendron (Hochst.) ex A. Rich.	Urticaceae	Lankusso	CI	Anthrax	Li	Sh	F	O	Crush and give with water	F	Spr	GC060
Urtica simensis Steudel	Urticaceae	Sama	H	Gastric	Hu	L	F	O	Roast, grind and drink juice	F	Rr	GC179
Wound	Hu	L	F	De	Grind and cream with butter							
Verbascum sinaticum Benth.	Scrophulariaceae	Kutitina	S	Stomachache	Hu	R	F	O	Pound and drink with honey or water or butter	F	Spr	GC074
Diarrhea	Hu	R	F	O	Crush and drink with water							
Evil spirit	Hu	L	F	De	Boil and fumigate with the fume							
Evil eye	Hu	R	DF	Na, O, & De	Sniff, drink and fumigate concoction							
Verbena officinalis L.	Verbenaceae	Atuch	H	Bleeding	Hu	R	F	De	Crush and tie	Fal	Wy	GC069
Evil spirit & intestinal poison	Hu	Ag	DF	O	Crush and drink with water							
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type(At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution(Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Plant Species	Family	Vernacular Name	Science Names	Habitat	Growth Forms	Ailments Treated	Ailment Type	Parts Used	Condition of Preparation	Route of Administration	Preparation Method	Distribution	Collection Number
Vernonia adoensis Sch. Bip ex Walp.	Asteraceae	Eras abera/ Este musaye	S	EVIL EYE (skin rash)	Hu R F O	Crush and drink with water	De		Hg Spr GC147				
Vernonia amygdalina Del.	Asteraceae	Girawa	S	Bloating	Li L F O	Crush and give with water	De		Hg Rr GC055				
Vernonia myriantha Hook.f.	Asteraceae	Kotkoto	S	Impotency	Hu R DF O	Drink the concoction with TELLA	F		Fwl Wy GC057				
Vicia faba L.	Fabaceae	Bakela	H	Anemia	Hu Sd D O	Roast and drink infusion	O		Hg Spr GC109				
Withania somnifera (L.) Dunal in DC.	Solanaceae	Giziewa	S	Evil eye & evil spirit	Hu L & R DF O	Crush and drink with water or fumigate with the fume	De		Hg Rr GC048				
Xanthium strumarium L.	Asteraceae	Gid zemede	H	Danduff	Hu L F O	Crush and boil with milk then drink	O		Fwl Spr GC112				
Ximenia americana L.*	Olacaceae	Enkoy	S	Wound	Hu B DF O	Crush, grind and cream	O		F Rr GC054				
Table 4 List of plant species used to treat human and livestock ailments: scientific names, family, vernacular name, growth forms (Gf), Ailments treated, Ailment type (At), parts used (Pu), condition of preparation (Cp), route of administration (Ra), method of preparation, habitat (Ha), distribution (Dn), collection number (Co.No.) in the environ of Tara-gedam and Amba forests (Continued)

Zea mays L.	Poaceae	Mashilla	H	Dandruff	Hu	Sw	F	De	Burn and cream ashes with butter	Hg	Wy	GC030				
Zehneria scabra (Linn. f.) Sond.	Cucurbitaceae	Hareg resa	Cl	Swelling	Hu	L	F	De	Crush and tie	Ah	Rr	GC149				
									Rub and cream							
								Wound	Li	Ag	F	De				
								Febrile illness	Hu	Ag	F	De	Boil and take the fume in enclosed fashion			
								Diarrhea	Hu	L	F	O	Crush, chew then swallow juice			
Zuphis spinachristi (L.) Desf.	Pharmaceae	Gava	T	Dandruff	Hu	L	F	De	Pound and cream	Hg	Pa	GC163				

Key: Parts Used: B (stem bark), Rb (root bark), R (root), L (leaf), Ap (all part), St (stem), Bu (bulb), Lx (latex), Fl (flower), Sd (Seed), Sh (shoot), Fr (fruit), Sp (Sap), Sw (Straw), Gm (gum), Ag (above ground); Growth forms (Gf):-S (shrub), T (tree), Cl (climber), H (herb), P (parasite); Ailment type (At): Hu (Human) Li (livestock); CP (condition of preparation): F (fresh), D (dry), DF/FD (dry and fresh); Route of administration (Ra): De (Derma), O (Oral), Na (nasal), Op (Optical), Va (Vaginal), Et (Ear tube); Habitat (Ha): Wild (W Forest), Fal (Farm land), Fwl (Fallow land), Rs (Road side), Ris (river side), Ah (around home), Aw (All wild type of habitats i.e Forest, Farm land, Fallow land, Road side, river side and around home), Bo (all wild type habitats and homegarden), Hg (Homegarden), Distribution (Dn): Spr (Sparse), Wy (Widely), Rr (Rare), Pa (Particular area); Co. No.(Collection number) *Wild food plant species.

accessed easily, the previously stored remedy would be buried in the ground for one day (from the eve of the end of the first day of the New Year), after which time it is declared safe to be used. It was explained that remedies were stored secretly in a very secure place (mostly outside the living house at the top of the wall to keep them far from children) and no one is allowed to touch them without permission.

Route of remedy administration and dosage determination
It was found that the local people employ about 10 ways of medicine administration routes with varying frequencies. Of the total, 157 (44.9%) prescriptions were mainly those said to be applied through oral route (Table 14). The dosage varied between age and patient’s capacity as judged by healers. Traditional ways of dosage determination included measurements, namely, ATQ (referring to the size of the finger stripe/line, mostly of the small finger), TFIR (referring to the size of a fingernail), FINJAL (referring to the size of a fingernail), FINJAL (referring to the volume of the coffee cup), BIRCHIKO (referring to the volume of a glass, mostly of tea glass). And TASSA (referring to the volume of a tin can), MANKIA (referring to the size of a teaspoon) and FAGA (referring to a container made from a small fruit of the bottle gourd (Lagenaria siceraria) as well as number (leaves, fruits, seeds), size and droplets of plant parts. Smaller sizes (ATQ and TFIR) were used to determine dosages of the most toxic plants including Euphorbia abyssinica, Stephania abyssinica and Calpurnia aurea, and the two measurements plus FINJAL, BIRCHIKO and MANKIA are meant for oral administration of medicine for the treatment of internal human ailments. FINJAL, BIRCHIKO, TASSA and FAGA were used for less toxic plants that were diluted with liquid additives including tea, milk, coffee and water. Remedies were mixed mostly with water, honey, tea, milk, coffee, and dosages prescribed as half, one, two, and so on of materials used per day based on the nature of plants and patient’s age and general condition (body, health). TASSA and FAGA were prescribed for use to treat livestock ailments while FAGA for preparation and dosage determination for external application of remedies in the cases of both humans and livestock treatment. The concepts of dosage and measurement do exist in the traditional herbal medical system of the community as it emerges from the practices albeit the low precision. Even though the experienced medicinal plant practitioners showed serious concerns in determining the dosages very carefully; the measuring devices they used do not allow delivery of precise amounts. The members of the association of healers and some other local community members reported the effectiveness of traditional medicine, but they expressed discomfort when it comes to the amount given particularly in the case of internal human medicines. They actually recommended that technical assistance and psychological support through training must be given to minimize the fear and effect of incompatible dosage of remedies on patients. The measurements used to determine the dosages are not standardized except categorization by age, physical appearance and health conditions. The absence of adverse effects of traditional herbal medicines after administration was most
frequently mentioned by the traditional healers. Coffee and milk were mentioned for use as antidotes when formulations were made from *Euphorbia abyssinica*, for malaria, and *Calpurnia aurea* for diarrhea and anesthesia. Likewise, local beer (*TELLA*) is used as antidote when *Asparagus africanus* is used to treat impotence. The traditional healers indicated that they use the antidotes for dilution in cases of adverse effects.

Marketed medicinal plants in the study area

Survey of two towns in the proximity of the study sites (Addis Zemen and Yifag) did not show any medicinal plant mentioned during the interviews presented on the market. The respondents explained that most healers prepared and sold traditional medicinal plants in the home rather than in the open market. Healers usually had big signposts in front of their homes listing the health problems they treat. Some medicinal plants were marketed mainly for other use values (spices and food) but once bought they could be used as medicine at home as part of the common family home treatment. These include *Allium sativum*, *Ruta chalepensis*, *Brassica carinata* and *Cicer arietinum* usually traded for use as edible spices. On the other hand, *Carica papaya*, *Citrus aurantifolia*, *Citrus aurantium*, *Coffea arabica*, *Limon usitatissimum*, *Mimusops kummel*, *Persea americana*, *Prunus persica*, *Punica granatum*, *Zea mays*, *Eragrostis tef*, *Capsicum annuum* and *Vicia faba* were bought from the market for use as food items.

Taboos connected with handling and use of medicinal plants

Some of the taboos reported by experienced medicinal plant experts concern times of collection, ways of collection, preparation materials, administration and storage. Most of the medicinal plants were said to be collected on Wednesdays and Fridays in the early morning hours without contact and without talking to any other person and this is related to healers’ beliefs that doing it otherwise would reduce the efficacy of the herbal medicine. In the preparation of a single remedy, plant parts are mostly taken from individuals of the same species growing in three or seven different places. One healer said that this increases its remedial effectiveness. This could be a way of balancing the amount of phytochemical and pharmacological constituents based on habitat variation. Collection materials are *kara* (kind of knife), *ankasie/tore* (metallic spear), *weyra ejeta mekerfera* (digger with handle made of *Olea europaea* ssp. *cuspisata* wood) and most of the time stationary stones are the preferred preparation places. It was mentioned that sexual intercourse is forbidden for healers and patients alike during any medicinal plant collection, preparation and application.

Variation of indigenous plant knowledge in the study area

Significant correlation (Spearman correlation test, \(r = -0.450, \alpha = 0.05, p = 0.046 \)) was observed between male and female informants on the number of medicinal plant species they knew. The test, however, did not indicate significant correlation between healers and general informants (Spearman correlation test, \(r = -0.002, \alpha = 0.05, p = 0.991 \)) regarding the number of medicinal plant species they reported. The comparison of knowledge and experience of age groups (35–50 and 51–84) showed significant differences (\(P < 0.05 \)) while there was no significant difference between age groups 19–34 and 35–50 considering plant names and the respective medicinal uses (\(t = 0.05, \text{two tailed and df} = 52 \)). Progressively increasing results were obtained with increasing age of informants (Figure 3).

Local community members in Washa Indiras, Kidanemhret and Kulla Yihuans gave 162, 95 and 91 medicinal plant names with 128, 95 and 86 medicinal uses respectively. Informants from Washa Indiras village reported the highest plant names (162) and uses (128), while those in Yifag Akababi and Asiba turned in the least numbers (58, 56) and uses (52, 50) respectively. However, not all communities living nearby the forests gave higher reports compared to distant villages. For example, Tibabosgie is the nearest village to the forest, but the report from informants showed relatively lower numbers (48) and uses (50) than the other villages found relatively far from the forest, namely Aburarra (92 names and 80 uses), Lomye (73 names and 80 uses) and Agamoch (69 names and 66 uses). On the other hand, Mantogera village is located nearest to the forest, but the results showed 61 names and 61 uses, which is less than other nearby villages in the same (woina dega) agroclimatic zone. Furthermore, in Aguat Mafsesha located at higher altitude of all villages found in dega agroclimatic zone, showed that informants could only recall a few species and uses (40 names and 43 uses). Generally, however, informants in villages near the forest knew more plants (38.5%) and uses (38.9%) than those located in towns (30.3%, 30.0%) and far away from forests (30.8%, 31.5%).

Indigenous medicinal plant knowledge development and sharing

Traditional knowledge of medicinal plants in most cases is passed along the family line from parents and other intimates, especially gifted family members (which they described as *eju yemisebulet*, meaning one whose hands are skillful and effectual). Some of the traditional knowledge is generated through the community by listening and practicing while some copied secretly and systematically by following and observing the
knowledgeable individuals at times of medicinal plant collection and preparation. Others develop and transfer their medicinal plant knowledge to generations by following up healers after seeking treatment of their family members. In very few cases, individuals developed their medicinal plant knowledge upon careful observation of domestic carnivores, especially the cat, which immediately consumes medicinal plant parts upon preying on poisonous snakes, scorpions and spiders. One healer reported his discovery in this way of *Vernonia adoensis* for the treatment of snake poison.

Medicinal plant experts have developed some traditional medicinal plant knowledge from observations of animal feeding to know the plants that are never consumed, which hints at plants not for internal use to ensure safety of the vital organs but rather used for the treatment of dermal ailments such as wounds because of their possible toxic nature. Furthermore, experienced medicinal plant experts create new medicinal knowledge by relating the plant odour with previously known medicinal plants. Some healers were seen recording ethnomedicinal knowledge in small notebooks during fieldwork, which may testify their curiosity and keenness to develop and transfer indigenous knowledge to the next generation.

Threats to and conservation of medicinal plants and associated indigenous knowledge

The study found that medicinal plants are faced with threats in their habitats. Informants claimed that long before the past ten to twenty years Tara-gedam and the surrounding areas were full of natural vegetation around the farmlands, riversides and grazing lands in addition to the wealth of plant species in number and diversity in the forests. They further asserted that in those days almost all the medicinal plants were easily accessible within short distances of the living place. Today, it is not an easy task to get medicinal plants out of Tara-gedam and Amba forests due to habitat modification. Most informants perceived that agricultural expansion was the main threat to medicinal plants, firewood collection the next and others follow (Table 15). Similarly, preference ranking of five most threatened medicinal plant species indicated that *Withania somnifera* and *Huernia macrocarpa* are the two most threatened medicinal plants (Table 16). Through further discussion and interview with informants, 63 plant species that were said to have become sparse in distribution were recorded along with five species restricted in occurrence and in most cases found in the homegardens in recent years (Figure 4).

Conservation efforts specifically targeted to medicinal plants do not exist in the District. However, some of the medicinal plants are raised in the governmental nurseries for other purposes and conserved in the protected governmental and Orthodox Tewahedo church forests. The well known Tara-gedam and Amba natural forests and other relatively smaller patches of vegetation and plantations found in each kebele are nowadays being protected by the local people living around the forest fringes in collaboration with the government. Some of the medicinal plants occurring in the Orthodox Tewahedo church forests were *Adiantum capillus-veneris*, *Clerodendrum myricoides*, *Juniperus procera*, *Millettia ferruginea*, *Schefflera abyssinica*, *Urera hypselodendron* and *Ziziphus spina-christi*. The informants elaborated that some of the medicinal plants collected from the

Table 5 The six most acclaimed medicinal plants based on informant citation

Scientific name	Ailments claimed to treat	No. of citations	Percentage	Rank
Zehneria scabra	Diarrhea, wound, febrile illness and swelling	60	57.14	1st
Stephania abyssinica	Human and livestock anthrax, tonsillitis, rabies and stomachache	55	52.40	2nd
Otostegia integrifolia	Stomachache, hen’s coccolida, epidemic diseases and common cold	40	38.10	3rd
Verbascum sinalicum	Stomachache, diarrea, evil eye & evil spirit	32	30.47	4th
Capparis tomentosa	Evil eye, and epidemic diseases	27	25.71	5th
Achyranthes aspera	Tape worm, wounds, excessive menstrual flow, tonsillitis, bleeding, bone fracture, and eye problems	25	23.80	6th

Table 6 Single medicinal plant species prescribed for treatment of higher number of ailments

Plant species name	No. of ailment treated	Plant species name	No. of ailment treated
Justicia schimperiana	11	*Achyranthes aspera*, *Cucumis ficifolius* and *Euphorbia abyssinica*	7 each
Croton macrostachyus, *Verbena officinalis* and *Solanum incanum*	9 each	*Ferula communis*, *Cynoglossum, coeruleum*, *Asparagus africanus*, *Calpurnia aurea*	6 each
Phytolacca dodecandra	8		
homegardens namely, *Persea americana*, *Citrus aurantifolia*, *Citrus aurantium*, *Coffea arabica*, *Cordia africana*, *Ficus sur*, *Schinus molle* and *Punica granatum* were those raised from seedlings taken from the nursery. It was also observed that the local farmers make use of their indigenous knowledge in protecting important plant species on their farmlands, homegardens, or as live fence. Few traditional healers cultivate very rare species in their homegardens. Healers mentioned the difficulty of cultivating species that cannot be propagated outside their natural habitats and that they have to travel long distances for several hours to get the needed medicinal plants. Alternatively, healers may choose to get (on appointed date) such plants upon cash payment for people who are living in the vicinity of the medicinal plants. Medicinal plants that are known to have additional uses (ornamentals, fuel, forage, spice, food and soil conservation) in the area were planted most frequently in homegardens and farmlands. *Allium sativum*, *Foeniculum vulgare*, *Lepidium sativum*, *Ocimum gratissimum*, *Ruta chalepensis*, *Schinus molle* and few others were commonly planted.

Furthermore, the District administration has started considering the indigenous knowledge of the people as testified by the priority given to establish traditional health practitioners association along with the provision of some technical training and discussion on biodiversity conservation concepts. A good justification for the above scenario is the observation during our field study in the area the mutual exchange of knowledge and remedies at the time of monthly meetings. The first author had a chance to participate in two of their meetings and was kindly given permission to record the information.

Discussion

Despite the efforts made, only few women could take part in the study partly because of the tradition and being the usual case when the interviewers are men as in our case. Women are generally not expected to appear in public or discuss with stranger men both by society

S.no	Ailments	No of species for each ailment	S.no	Ailments	No of species for each ailment
1	Wound	42	6	Impotence	11
2	Stomachache	25	7	Tonsillitis, rabies, hemorrhoid, fibril illness, and snake bite	10
3	Intestinal parasites	23	8	Dandruff	8
4	Anthrax	16	9	Livestock bloating and malaria Common cold and cough	6

Figure 2 Distribution of medicinal plant species in different habitats.

Table 7 The most common disease with their respective number of medicinal plant species
and family (husbands deny permission in most cases) or other socio-cultural reasons, which our female informants refrained from describing openly. There were very few women practitioners in the community. More informants are expected to yield more knowledge of plants procured from the wild as was reported by other researchers [33-35]. The rich ethnoecological knowledge was revealed in their elaboration and categorization of the ecological units. They recognized six landscape, five soil and five vegetation types, reflecting their deep understanding of the differences and similarities in these key environmental components. This emanates from the ethnobotanical/ethnoecological knowledge that was shaped over generations and which they use for describing, managing and utilizing the land, the soil and vegetation. Their knowledge also stretches to the individual plants which they grouped into use categories, morphological classes and adaptive forms. Soils which were identified based on colour and texture are applied to terms and select those suitable for the type of crop varieties to be grown on a specific land. This knowledge shares similarities with the modern classification system [36] and the system used in another part of Ethiopia [37]. Such broad-based indigenous knowledge systems are indicative of prolonged experience, relationship and interaction of people with the biotic and abiotic components of the environment as rightly described for other areas in Ethiopia [38-40].

The top three families (Asteraceae, Fabaceae and Solanaceae) reported in this study are among those represented with higher number of taxa in the Ethiopian flora [39-44] and also found to have higher number of medicinal plants by other researchers working in other parts of Ethiopia [45-47]. This might be related to possession of more species that are widely distributed in almost all ecological areas and habitats since the Fabaceae and Asteraceae are respectively the first and third largest families of angiosperms in the Ethiopian flora [48]. These two families have many uses for the community as reported by other researchers [44-46,49]. The diversity of genera and families (29 with 2–14 species in many genera) is a good indication for the study area

Disease categories	Nu	Nur	Fic
Livestock diseases (external parasites, beating with stick and sun stroke)	16	94	0.84
Febrile illness, headache, anemia, brain tension and malaria	19	80	0.78
Rabies	11	46	0.76
Gastrointestinal disorders	52	205	0.75
Dermal diseases (wound and skin diseases)	72	221	0.68
Bone fracture and Arthritis	7	18	0.65
Reproductive and sexual organs	22	61	0.65
Bleeding and hypertension	7	14	0.54
Respiratory diseases (asthmatic reactions, cough, common cold, leech and tonsillitis)	24	48	0.51
Sense organs like eye and ear problems	21	42	0.51
Spider, snake, and scorpion poisons and bites	18	32	0.45
General disease (tension, epidemic, baby diseases and undefined diseases)	28	47	0.41
Organ diseases (diabetes, heart problem, jaundice, kidney infection, pneumonia, urinary problem)	12	16	0.26

Table 9 Simple preference ranking of six medicinal plants used against wound in the study area

Medicinal plant species	R1	R2	R3	R4	R5	R6	R7	Total	Rank
Brucea antidysenterica	5	5	1	4	6	5	3	29	3rd
Cordia africana	6	6	5	5	6	6	39	1st	
Dodonaea angustifolia	3	2	6	1	4	3	1	20	4th
Ficus carica	2	1	3	3	1	2	2	14	6th
Plantago lanceolata	1	3	2	2	1	4	15	5th	
Sida rhombifolia	4	4	4	6	3	4	5	30	2nd

Table 10 Paired comparison on five medicinal plants used to treat stomachache in the study area

Medicinal plants used	R1	R2	R3	R4	R5	R6	R7	Total	Rank
Cucumis ficifolius	1	2	1	2	2	1	1	11	4th
Indigofera prieureana	2	2	3	2	3	2	17	2nd	
Orostea integrofolia	0	1	0	2	1	1	3	8	5th
Stephania abyssinica	4	4	4	1	3	2	22	1st	
Verbascum sinalicum	3	1	2	0	3	1	2	12	3rd
being an important reservoir of medicinal plants and ethnomedicinal knowledge. Dependence on a great diversity of plant species for treatment of ailments is a good indicator of profound knowledge on medicinal plants. The six most cited medicinal plants that have relatively higher percentages of informants’ consensus could be considered for further analyses. The fact that *Achyranthes aspera* came both in the most cited and most effective medicinal plants for treating different diseases may indicate that in the long term this species could be locally threatened due to overharvesting. At the time of field data collection, the species was found widely distributed in both the wild lands as well as in and around homegardens.

Eight to fifty-five medicinal plant species recorded in this study have also been documented as medicinal in other parts of Ethiopia as our review of 20 sources [34,39-44,46,49-60] showed. This analysis confirms that those medicinal plants are important in the healthcare systems of different cultures in Ethiopia. On the other hand, 31 of the medicinal plant species reported in our study have not been mention in any of the ethnobotanical literature sources reviewed [34,39-44,46,49-60] suggesting that while the knowledge is shared in some respects it also has some uniqueness to the study communities.

The finding that shrubs and herbs were the most abundant medicinal plants indicated that people rely more on such plants, which may relate to the fact that they are relatively common compared to other growth forms. Other researchers [41,47,53,59,61] also found that shrubs and herbs are the most frequent medicinal plant species. Most of the wild medicinal plants were accessed from Tara-gedam and Amba forests. Healers and some knowledgeable members of the local community were seen cultivating some medicinal plants in their homegardens for easy access and use of fresh parts at times of remedy preparation. The distribution of medicinal plants in the wild, homegardens and in both premises [39-41,62,58] as well as finding of more species in the wild environments were reported by other researchers [33,43,47,62] in Ethiopia and other countries [63,64].

Use of diverse plant species in the treatment of ailments implied that the people of the study area to date prevent and cure human and livestock ailments with plant materials collected from the surrounding areas. Less number of livestock diseases and medicinal plants were reported compared to those of humans, which could probably be due to the fact that the people give more attention to human ailments compared to livestock diseases. Generally, the local people affirmed that they first try to find medicines for human ailments and then search for remedies for livestock ailments as reported in other areas [38]. The healers also mentioned that they refer to the pharmacopeias (ancient herbals written on parchment) to learn about medicinal plants and treatments for human diseases. Traditional pharmacopeias have also helped to transfer the knowledge to more people. Treatment of human ailments like womb problem, sterility of females, prolonging the life of embryos in the uterus, expelling foreign particles from the eyes and ears, and livestock ailments like increasing sexual

Table 11 Matrix ranks of six multipurpose medicinal plants in the study area

Plant species name	Medicine	Cash income	Fuelwood	Food	Forage/fodder	Construction/building	Shade	Total	Rank
Carissa spinarum	5	4	5	4	4	2	1	25	2nd
Cordia africana	4	5	3	5	5	2	3	27	1st
Croton macrostachyus	4	1	2	0	1	2	5	15	6th
Ficus sur	2	3	2	5	4	2	5	23	4th
Mimusops kummel	2	4	1	5	2	2	5	21	5th
Olea europaea ssp. cuspidata	3	5	5	0	4	5	2	24	3rd

Table 12 Frequency of plant parts used for the preparation of remedies

Plant parts used	No. of preparations	Percentage	No. of species	Plant parts used	No. of preparations each	Percentage	No. of species
Leaf	109	31.2	56	Stem	6	1.7	4
Root	108	30.9	45	Bulb	5	1.4	1
Fruit	25	7.2	13	Flower	4	1.1	3
Bark	15	4.3	11	Sap	1	0.3	1
Shoot	15	4.3	5	Gum	1	0.3	1
Latex	13	3.7	6	All parts	10	2.9	7
Seed	7	2.0	5	Two and three parts	15	4.3	13
needs and beating with stick are new plant uses not encountered in any of the previous publications reviewed.

Higher ICF values as in external parasites, beating with stick and sun stroke in the case of livestock, and febrile illness, headache, anemia, brain tension and malaria in human being are indicative of the presence of similar ethnomedicinal plant knowledge and their continued usage in similar ways among community members [32, 64] as also reported from other parts of Ethiopia [39–41].

Cordia africana, the most multipurpose species as in other areas [62], would be imagined to be most threatened in the future. The clue to this is its rare occurrence with sparse distribution around farmlands and some homegardens. This scarcity was due to over harvesting not only for medicinal purpose, but also for other uses, notably for timber production. All of the medicinal plant species and the top ranking ones in particular need urgent conservation actions and adoption of a suitable system of sustainable use.

The preferences of leaves and roots to other plant parts could be attributed to ease of preparation, the presence of medicinally active secondary metabolites and accessibility at the required time in the same manner as described for western [34], southern [45–47, 53, 59–61], northern [41, 58], central [62] and eastern [65] Ethiopia and other countries [63, 64]. The use of leaves for medicinal purposes is less likely to be destructive especially relative to the use of roots. The latter is likely to have negative influence on the survival of the plant. Cultural practices and beliefs requiring digging up of three or seven plants to prepare just a single remedy have been recorded. In some cases three or five or seven pieces each had to be removed from the same or different individual plants and applied to cure the disease, which would likely be unfavorable to conservation. Preparations made from all parts, three and two plant parts for remedy formulations (few in our case) may endanger the species unless mechanisms for sustainable utilization are put in place. Single plant preparations are easier to extract the curative chemical compounds as reported by others [33]. However, mixtures are expected to be more effective due to the additive effects of the combination of plants by increasing the compounds that could act on different pathogens.

Higher frequencies of crushed forms could be related to the ease of preparation at any place, using stones at most, which could be done by most local community members. Informants asserted that medicinal plant parts crushed and soaked in water lead to effective and immediate response to health problems. Crushing came out as the most frequent preparation method in other works [38]. A prescription that required crushed roots of *Asparagus africanus* concocted with honey and stored for seven days in a bottle was used for the treatment of impotency. Healers explained that such a preparation helps to extract the active chemicals and this is analogous to the methods used in modern phytochemical and pharmacological extractions using different solvents in the laboratory. This hints at a fair understanding of the local people about the science behind the traditional practices of herbal remedy preparation and treatment. About 71% of the medicinal plant remedies were prepared from fresh plant material highlighting that live medicinal plants have to be found near homes for instant use. Most herbalists advised that fresh material are more effective for treatment than dried forms further elaborating that drying could easily distort the efficacy of the medicine, and that stored plant medicine is culturally less liked and was also reported by other researchers [41, 53, 59] in Ethiopia. In modern herbal medicine, some secondary metabolites having active healing potentials are known to be quickly transformed to permanent compounds losing their healing power soon upon cutting [5, 8].

Table 13 Mode of preparation of medicinal plants
Types of preparation
Crushing
Grinding, concoction and creaming
Boiling, heating, burning and fumigation
Chewing, spitting and absorbing fluid/juice
Rubbing and squeezing
Using unprocessed plant part
Pounding and making infusion
Chopping and breaking

Table 14 Mode of administration of the plant remedies
Mode of administration
Oral
Dermal
Dermal, nasal and oral
Dermal and oral
Optical
Nasal
Ear
Vaginal
Dermal and nasal; nasal and ear; nasal and oral
use of dried plants and stored remedies were reported by very few healers, who said that they use dried plant material when availability of fresh material is seasonal. Dependency on fresh material is likely to throw the species to serious threats as had been warned by other sources [39].

Informants affirmed that after the New Year holiday, preparations from the past year could not have the potential to cure ailments if not buried on the eve of the holiday up to the next day to respect the cultural and religious beliefs. The newly prepared remedies are believed to have active constituents such as (volatile oils and other phytochemical and pharmaceutical ingredients) and these could be lost progressively due to factors including temperature, oxidation and reduction. This tradition of collecting most of the medicinal plant materials once in a year has the merit of minimizing over-harvesting. Various sources from central [33], western [34], southern [46,58-60], eastern [62] and northern [41] Ethiopia proclaim that oral route is most frequent. Some sources [33,34,58] that recorded measurements for remedies in a similar manner to ours noted the lack of precision and standardization as a drawback of the traditional herbal healthcare system. Additives are included in the medicines to minimize discomfort, improve the taste and reduce adverse effects such as vomiting and diarrhea, and enhance the efficacy and healing potential as explained by the informants. Mixing and using some medicinal plants with common foods and drinks is an easy way for effective treatment, particularly for children and facilitation of ingesting bitter tasting formulations as described in other sources [33,34,58].

The recorded taboos and other ritual-like actions related to the collection, preparation and administration of traditional medicine are beliefs carried over generations in the study area in a similar manner to the research results reported from Bale [52] in southeast Ethiopia. The

| Table 15 | Priority ranking results of seven respondents on six factors perceived as threats to medicinal plants |
Threatening factor	Respondents (R1-R7)	R1	R2	R3	R4	R5	R6	R7	Total	Rank
Agricultural expansion		6	6	6	5	5	6	4	38	1st
Overgrazing		3	4	5	6	6	5	3	32	3rd
Drought		2	2	2	1	3	4	4	18	5th
Fuelwood collection		6	4	6	2	6	4	5	33	2nd
Construction and building material		1	3	5	1	1	2	3	15	6th
Urbanization/Modernization		4	6	5	2	3	4	5	29	4th
interpretations correspond to healers’ perceptions of medicine and disease treatment whose scientific verification awaits further studies.

Elderly members of the society (aged 51–85 years) had expectedly more knowledge on medicinal plants and their uses due to their long-lasting direct and regular contact with the forests and other plant resources. In contrast, the younger generation is more exposed to modern education and hence not interested in learning and practicing the ethnomedicinal wisdoms, which may affect the continuity of indigenous knowledge. Medicinal plant knowledge difference among age groups was also reported in other studies [2,45,59,66] but one study from southern Ethiopia [47] deviated from this.

People living far away from forests (Asiba and Yifag Akababi) knew relatively fewer species than those residing near the forests (Washa Indiras, Kualla Yihuans and Kidanemhret) showing that contact with the plant resources helps to preserve and continue using the knowledge. Tibabosgie village being close to the forest reported less knowledge due to being more dependent on a few highly knowledgeable healers for their healthcare delivery. Mantogera village is close to Addis Zemen Town and the people have better access to modern medical system than traditional medicine. On the high land area of Aguat Mafsesha, the people live concentrated within a specific compatible area and intensive cultivation is the norm. Here, biodiversity is considerably reduced and the possibility of finding medicinal plants has been minimized.

The study confirmed that variation exists in species preferences among sites, partly due to the wide array of ecological niches within short distances. This is in turn expected to bring about differences in indigenous knowledge among informants of different sites. Similar trends have been reported in a study conducted in eastern central Ethiopia [38]. Though results indicated relative variations between town and rural villages, indigenous medicinal plant knowledge difference was hardly noticeable indicating that even town dwellers living close to forests keep considerable ethnomedical knowledge as reported in other studies [67,68].

It is no wonder that agriculture is the main culprit for the loss of medicinal plant habitats, vegetation and species because the communities in the study area depend more on mixed agriculture as their main economic activity with limited landholding and high human population [34,59,63,69]. Low living standards and lack of alternatives are major factors responsible for the decline of forest resources [14]. Cultivating the useful plants in homegardens is crucial, but conservation in the natural wild setting (in-situ) must also be considered since plants in their natural ecological area can grow at the limits of their potentials and provide the expected results including efficacy as medicine. Sustainable medicinal plant management and conservation are

Treating medicinal plant species	\(R_1 \)	\(R_2 \)	\(R_3 \)	\(R_4 \)	\(R_5 \)	\(R_6 \)	\(R_7 \)	Total	Rank
Cucumis ficifolius	4	1	4	1	2	2	3	17	3rd
Ficus carica	3	2	1	2	3	2	3	16	4th
Huernia macrocarpa	2	3	3	4	4	4	5	25	2nd
Solanum marginatum	1	2	2	3	1	3	2	14	5th
Withania somnifera	5	4	5	5	5	4	33	1st	

Table 16 Results of preference ranking of five most threatened medicinal plants

![Figure 4](http://www.ethnobiomed.com/content/11/1/4)
imperative for rural people’s healthcare and community well-being. The importance and conservation purposes of church forests have previously been reported [70]. Likewise, the governmental plant nursery in Addis Zemen Town is used as a germplasm source for the forest as well as the surrounding areas. The nursery is engaged in raising seedlings of selected species that are distributed for reforestation and afforestation programmes, which needs further enhancement and scaling up.

Conclusion

The present study showed that Tara-gedam and Amba forests harbour a high diversity of medicinally useful plants and the people living in the area have a long history of plant use, and that of medicinal plants is exceptionally notable and culturally rooted in the area. Despite the gradual socio-cultural transformation, the inhabitants have retained remarkable knowledge of the plants and their uses. Difficulties in knowledge transfer and the resulting generation gap in knowledge are threatening the continuity of the medicinal plants and the indigenous knowledge on them. On the other hand, the study provided evidence that medicinal plants will continue to play an important role in the healthcare system in the study area, given support through conservation and education. Knowledge and herbal medical practices for the treatment of various ailments among both rural and urban people are major parts of their livelihoods and culture. The traditional knowledge of the use and conservation of these plants is still being transferred from generation to generation, but appeared to be aging. The problem of transfer of knowledge from the elders to the young generation probably arose following the introduction of modern education, religious, spiritual and culture-related factors. Therefore, it is not only essential to conserve such a wealth of information hidden among the local people but also to apply modern science and technology to meet the ever increasing requirements of humankind. Furthermore, conservation of these biological resources is very important because their sustainable use can generate higher levels of employment and income.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors had significant intellectual contribution towards the design of the study, data collection and analysis and write-up of the manuscript. GC conducted the fieldwork, identified the plants, analyzed the data, wrote the draft manuscript and actively followed it up through revisions up to submission and after. ZA took part in plant identification, reviewed and edited the draft manuscript, provided comments and suggestions and checked its final version. EK checked and confirmed the identification of the plants, provided comments and suggestions on the draft manuscript and checked its final version. All authors read and approved the final manuscript and agreed to its submission.

Acknowledgements

The authors acknowledge with thanks the Department of Biology (Addis Ababa University) for the financial support used to carry out the research and the technical staff of the National Herbarium (ETH) for availing plant identification facilities. The people of Libo Kemkem District, who positively responded to the research idea and shared their valuable knowledge and time with generosity and warm hospitality as well as the District offices for Agriculture and Rural Development, Health, Administration and Information Affairs and Traditional Medicinal Plants Association for their kind provision of data, general information and writing supportive letters during data collection. The authors also acknowledge with thanks professors Sebsebe Demissew and Sileshi Nernomissa for their valuable comments on the earlier version of the research output. The first author would also like to thank his family members for their multidimensional support during field data collection in particular.

Author details

1Department of Biology, Woldia University, P.O. Box 400, Woldia, Ethiopia.
2Department of Plant Biology and Biodiversity Management and The National Herbarium (ETH), Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia.

Received: 13 April 2014 Accepted: 19 October 2014
Published: 7 January 2015

References

1. Choudhary KK, Singh M, Pillai U: Ethnobotanical survey of Rajasthan. American-Eurasian. J Botany 2008, 1:38–45.
2. Cotton CM: Ethnobotany: Principles and Applications. Chichester: John Wiley and Sons Ltd; 1996.
3. Quanash N: Bicultural diversity and integrated healthcare in Madagascar. Nat Resour 1998, 30:18–22.
4. Martin GJ: Ethnobotany: A Method Manual. London: Chapman and Hall; 1995.
5. Bodeker G: Medicinal Plant Biodiversity and Local Healthcare: Sustainable Use and Livelihood Development. The 17th commonwealth forestry conference, 2005, Colombo, Sri Lanka.
6. SCBD: Sustainable Forest Management, Biodiversity and Livelihoods: a Good Practice Guide. Montreal: IUCN; 2010.
7. Cunningham AB: People, Park and Plants use Recommendations for Multiple use Zones and Development Alternatives Around Bwindi: Impreretnam National Park Uganda: In People and Plants: Working Paper 4, pp. 18–25. Paris: UNESCO; 1996.
8. Awan T: Conservation of Medicinal Plants in Ethiopia. In The Proceedings of the First Medicinal Plant National Workshop Held in Addis Ababa, Ethiopia: June 30-July 2, 2003. Edited by Kelbessa U, Ayale A, Merga G. Addis Ababa: Ethiopian Health and Nutrition Research Institute; 2004:97–107.
9. Abebe D: The role of medicinal plants in health care coverage of Ethiopia, the possible integration. In conservation and sustainable use of medicinal plants in Ethiopia. In Proceeding of National Workshop on Biodiversity Conservation & Sustainable Use of Medicinal Plants in Ethiopia. Edited byzewdu M, Demissie A, Addis Ababa: ICR, 20016–21.
10. Lal R, Junior WF: Where Biodiversity, Traditional Knowledge, Health and Livelihoods Meet: Institutional Pillars for the Productive Inclusion of Local Communities. Brazil: International Policy Centre for Inclusive Growth; 2011.
11. Abebe D: Traditional medicine in Ethiopia: the attempts being made to promote it for effective and better utilization. SINET Ethiop J Sci 1986, 9:61–69.
12. Young J: Ethiopian Protected Areas, a Snapshot: A Reference Guide for Future Strategic Planning and Project; 2012.
13. Abyu A, Grater G, Teketay D, Gatzel G, Aerts R: Epiphytic recruitment of Schefflera abyssinica (A. Rich) Harms, and the role of microsites in affecting tree community structure in remnant forests in northwest Ethiopia. SINET Ethiop J Sci 2013, 36:11–44.
14. Zegeye H, Teketay D, Kelbessa E: Diversity and regeneration status of woody species in Tara-gedam and Abebaye forests, Northwestern Ethiopia. J Forestry Res 2011, 22:315–328.
15. Teshome W: Impacts of urbanization on the traditional medicine of Ethiopia. J Anthro 2005, 8:43–52.
16. UMYSO: Agro-Climatic Zones of Libo Kemkem Woreda. Addis Zemen: Libo Kemkem Woreda Information Source Office; 2010.
17. UKWCTO: Libo Kemkem Woreda Cultural and Tourism Records. Libo Kemkem: Woreda Culture and Tourism Office; 2010.
18. CSA: The 2007 Population and Housing Census for Ethiopia, Statistical Report Results at Country Level. Addis Ababa: Central Statistical Authority; 2007.
68. Leonard W, Wilkie D: Indigenous Knowledge and Consumption of Wild Plants: A Comparative Study of two Tsimane Villages in the Bolivian Amazon. Garcia: Victoria Reyes; 2008.

69. Tedla S, Lemma K: Environmental Management in Ethiopia: Have the National Conservation Plans Worked. Environmental Forum Publications Series no.1. Addis Ababa, Ethiopia: OSSREA; 1998.

70. Dagnachew M: The Role of the Ethiopian Orthodox Tewahedo Church in Preserving Trees and Woodlands. Addis Ababa: Ethiopian Orthodox Tewahedo Church; 2001.

doi:10.1186/1746-4269-11-4

Cite this article as: Chekole et al. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. Journal of Ethnobiology and Ethnomedicine 2015 11:4.