Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers

Ashley M Hopkins*,1,2, Andrew Rowland1,2, Ganessan Kichenadasse1, Michael D Wiese3, Howard Gurney4, Ross A McKinnon1, Chris S Karapetis1 and Michael J Sorich1,2

1Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, South Australia 5042, Australia; 2Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, South Australia 5042, Australia; 3School of Pharmacy and Medical Sciences, University of South Australia, Frome Street, Adelaide, South Australia 5000, Australia and 4Department of Medical Oncology, Westmead Hospital, Hawkesbury Road & Darcy Road, Westmead, Sydney, New South Wales 2145, Australia

Immune checkpoint inhibitors (ICI) are an important development in the treatment of advanced cancer. A substantial proportion of patients treated with ICI do not respond, and additionally patients discontinue treatment due to adverse effects. While many novel biological markers related to the specific mechanisms of ICI actions have been investigated, there has also been considerable research to identify routinely available blood and clinical markers that may predict response to ICI therapy. If validated, these markers have the advantage of being easily integrated into clinical use for nominal expense. Several markers have shown promise, including baseline and post-treatment changes in leucocyte counts, lactate dehydrogenase and C-reactive protein. While promising, the results between studies have been inconsistent due to small sample sizes, follow-up time and variability in the assessed markers. To date, research on routinely available blood and clinical markers has focussed primarily on ICI use in melanoma, the use of ipilimumab and on univariate associations, but preliminary evidence is emerging for other cancer types, other ICIs and for combining markers in multivariable clinical prediction models.

Immune checkpoint inhibitors (ICIs), particularly inhibitors of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death receptor-1 (PD-1) and its associated ligand (PD-L1), represent an important development in the treatment of advanced cancers (Champiat et al, 2016). Unfortunately a substantial proportion of patients treated with ICIs do not respond, while a small proportion of those with survival benefit display a period of apparent treatment failure (pseudoprogression) at the commencement of therapy (Henze et al, 2016). Additionally, ICI use is associated with a spectrum of unique and potentially severe toxicities termed immune-related adverse events (irAEs) (Champiat et al, 2016). Patients may discontinue treatment due to irAEs in a setting, where the necessary duration of treatment is unclear.

Immune checkpoint inhibitors appear capable of producing durable responses compared to existing treatments in a subset of patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 monoclonal antibody (mAb), and, although the proportion of melanoma patients who appear to benefit from treatment remains modest, there is approximately a 10% increase (doubling) of the survival at 5 years compared to cytotoxic chemotherapy (Garbe et al, 2016; Maio et al, 2015). Additionally, there was a very low mortality rate observed between 3 and 5 years of follow-up (Maio et al, 2015), providing hope that these individuals may continue to respond for many more years. The PD-1 inhibitors, nivolumab and pembrolizumab, are able to achieve a response in a larger proportion of melanoma patients, and although long-term survival data on these therapies are not yet mature, preliminary results are promising (Postow et al, 2015; Ribas et al, 2015; Robert et al, 2015; Robert et al, 2015; Weber et al, 2015; Seetharamu et al, 2016; Topalian et al, 2016). Combination therapy with ipilimumab and a PD-1 inhibitor may further improve response and survival in advanced melanoma, but greater rates of toxicity may occur.

*Correspondence: Dr AM Hopkins; E-mail: ashley.hopkins@flinders.edu.au

Received 26 March 2017; revised 6 July 2017; accepted 13 July 2017; published online 24 August 2017

© The Author(s) named above

Published by Springer Nature on behalf of Cancer Research UK.
There has been extensive research of novel biological markers that are specific to the mechanism of actions of ICI that may predict response to therapy and these markers have been recently validated to be predictive, routinely available blood and clinical markers are predictive of response and toxicity to ICIs. If these ongoing research conducted to identify if any routinely available blood and clinical markers have the advantage of being readily available in the clinic, and hence easily and quickly integrated in clinical decision-making. It is biologically plausible that some routinely available markers, such as peripheral blood lymphocyte count, may provide significant growth in the patient populations using ICIs, and thus optimising outcomes becomes increasingly important.

There has been extensive research of novel biological markers that are specific to the mechanism of actions of ICI that may predict response to therapy and these markers have been recently and extensively reviewed (Meng et al, 2015; Topalian et al, 2016). In parallel, there has also been considerable research conducted to identify if any routinely available blood and clinical markers are predictive of response and toxicity to ICIs. If validated to be predictive, routinely available blood and clinical markers have the advantage of being readily available in the clinic, and hence easily and quickly integrated in clinical decision-making. It is biologically plausible that some routinely available markers, such as peripheral blood lymphocyte count, may provide

Marker	ICI therapy	Cancer	N,	Study results	Reference
Lymphocyte count	Ipilimumab	Melanoma	51, 73	≥1000 per μl at week 6 → ↑ OS	(Delyon et al, 2013, Ku et al, 2010)
	Ipilimumab	Melanoma	82, 40	At 2–8 weeks vs baseline → ↑ response	(Bjorn et al, 2016, Martens et al, 2016b)
	Ipilimumab	Melanoma	95	At week 12 vs baseline → ↑ OS	(Simeone et al, 2014)
	Nivolumab	Melanoma	98	≥1000 per μl at week 3–6 → ↑ OS	(Nakamura et al, 2016)
Relative lymphocyte count	Ipilimumab	Melanoma	209	↑ Baseline → ↑ OS	(Martens et al, 2016a)
	Pembrolizumab	Melanoma	616	↑ Baseline → ↑ OS	(Weide et al, 2016)
Total leucocyte count	Ipilimumab	Melanoma	59	↓ Baseline → ↑ response	(Gebhardt et al, 2015)
Eosinophil count	Ipilimumab	Melanoma	209	↑ Baseline → ↑ OS	(Martens et al, 2016a)
	Ipilimumab	Melanoma	59	↑ At week 3 vs baseline → ↑ response	(Gebhardt et al, 2015)
	Ipilimumab	Melanoma	73	↑ At week 6 vs baseline → ↑ OS	(Delyon et al, 2013)
Relative eosinophil count	Pembrolizumab	Melanoma	616	↑ Baseline → ↑ OS	(Weide et al, 2016)
Neutrophil count	Ipilimumab	Melanoma	59	↓ Baseline → ↑ response	(Ferrucci et al, 2016)
	Ipilimumab	Melanoma	720	↓ Baseline → ↑ PFS and OS	(Ferrucci et al, 2016)
	Nivolumab	Melanoma	98	<4000 per μl at week 3–6 → ↑ OS	(Nakamura et al, 2016)
Neutrophil/lymphocyte ratio	Ipilimumab	Melanoma	58, 185	↓ Baseline → ↑ OS	(Khoja et al, 2016, Zaragoza et al, 2016)
	Nivolumab	Melanoma	187	↓ Baseline → ↑ PFS and OS	(Ferrucci et al, 2016)
	NSCLC	Melanoma	175	↓ Baseline → ↑ OS	(Bagley et al, 2017)
Derived neutrophil/lymphocyte ratio	Ipilimumab	Melanoma	720	↓ Baseline → ↑ PFS and OS	(Ferrucci et al, 2016)
Monocyte count	Ipilimumab	Melanoma	209	↓ Baseline → ↑ OS	(Martens et al, 2016a)
Lactate dehydrogenase	Ipilimumab	Melanoma	209, 73, 166, 58, 113, 183	↓ Baseline → ↑ OS	(Delyon et al, 2013, Kelderman et al, 2014, Valpione et al, 2015, Collins and Le Manach, 2016, Dick et al, 2016, Khoja et al, 2016, Zaragoza et al, 2016, Martens et al, 2016a)
	Nivolumab	Melanoma	98	↓ Baseline → ↓ OS	(Nakamura et al, 2016)
	Pembrolizumab	Melanoma	616	↓ Baseline → ↓ OS	(Weide et al, 2016)
	Pembrolizumab, nivolumab	Melanoma	66	↑ Baseline → ↑ OS	(Diem et al, 2016)
	Ipilimumab	Melanoma	95	↑ Baseline → ↑ response and OS	(Simeone et al, 2014)
		NSCLC	616	↑ Baseline → ↑ response and OS	
C-reactive protein	Ipilimumab	Melanoma	95	↑ At week 12 → ↑ response and OS	(Simeone et al, 2014)
Smoking status	Nivolumab	Melanoma	88	Current/former smokers → ↑ response	(Hellmann et al, 2014)
ECOG PS	Nivolumab	Melanoma	98	<1 at baseline → ↑ OS	(Nakamura et al, 2016)
	Nivolumab	NSCLC	175	<2 at baseline → ↑ OS	(Bagley et al, 2017)
Liver metastases	Nivolumab	NSCLC	175	Presence at baseline → ↑ OS	(Bagley et al, 2017)
irAE	Ipilimumab	Melanoma	139	Early irAE → ↑ response	(Downey et al, 2007)
	Nivolumab	Melanoma	298	No association with OS	(Horvat et al, 2016)
	Nivolumab	Melanoma	576	Any-grade AE → ↑ response	(Weber et al, 2016)
	Nivolumab	Melanoma	148	Rash, vitiligo and any grade AE → ↑ OS	(Freeman-Keller et al, 2016)
Pembrolizumab	Melanoma	67	Vitiligo → ↑ objective response	(Hua et al, 2016)	
Immunotherapy	Melanoma	322	vitiligo-like depigmentation → ↑ OS	(Teulings et al, 2015)	
Body composition	Ipilimumab	Melanoma	84	Baseline sarcopenia or low muscle attenuation → severe treatment-related toxicity	(Daly et al, 2017)

Abbreviations: ECOG PS = Eastern Cooperative Oncology Group Performance Status; ICI = immune checkpoint inhibitor; irAE = immune-related adverse events; NSCLC = non-small-cell lung cancer; OS = overall survival; PFS = progression-free survival. Derived neutrophil/lymphocyte ratio = Absolute neutrophil count/total leucocyte count–absolute neutrophil count.
insight into the activity of the immune system and hence provide the capacity for the immune system to mediate a strong antitumour effect in the presence of ICI therapy (Pardoll, 2012). The association between routinely available blood and clinical markers and ICI response/toxicity is, therefore, the focus of this review.

SEARCH PROCESS

Studies investigating the association between routinely available blood and clinical markers and ICI response/toxicity were identified through a structured search of Scopus and then Google Scholar in July 2017. The search terms included the name of FDA approved ICI’s (atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab), ‘biomarker’ OR ‘marker’ OR ‘predictor’, plus ‘response’ OR ‘survival’ OR ‘toxicity’. Studies were included if they reported investigation of the association between routinely available blood and clinical markers and ICI response or toxicity. References and citations of selected studies were hand-searched for reference to any additional relevant studies.

POTENTIAL PREDICTORS OF ICI EFFICACY

The relatively modest response rate with ICI therapy, coupled with the potential to achieve long-term response in those who do respond, suggests that the discovery of markers that predict ICI efficacy would be useful. Many biomarkers are being explored for ICI therapy and these are reviewed in depth elsewhere (Meng et al., 2015; Topalian et al., 2016; Gnjatic et al., 2017). In brief, predictive biomarkers proposed for ipilimumab response include baseline expression of CD4+ ICOSabh and Ki67 EOMES CD8+ T-cells, increased FOXP3 and indoleamine 2,3-dioxygenase expression, and reduced expression of regulatory T cells (Asciento et al., 2013). Circulating baseline levels of TGF-β1 and IL-10 are also proposed prognostic markers for relapse following ipilimumab therapy. Expression of PD-L1, particularly on infiltrating myeloid and T cells, but not tumour cells, is currently a promising predictive biomarker of response for anti-PD-1/PD-L1 mAbs, and positive expression of PD-L1 is associated with improved response rate, progression-free survival and overall response in a number of studies (Meng et al., 2015; Topalian et al., 2016). However, PD-L1-negative tumours may still respond to treatment. While mechanistically plausible, there is currently limited evidence for genetic and epigenetic markers such as miR34 expression (Remon et al., 2016). Exploratory analyses have shown The Cancer Genome Atlas (TCGA) subtypes and mutation load to be predictive of response to atezolizumab used in the treatment of metastatic urothelial carcinoma (Rosenberg et al., 2016). Programmed death receptor ligand-2, interferon gamma, EGFR mutations and anaplastic lymphoma kinase (ALK) rearrangements may represent novel biomarkers that could be explored further in the future (Gainor et al., 2016; Remon et al., 2016).

While the above-mentioned biomarkers may predict efficacy and improved response rates to ICIs, there would be a cost to integrating their measurement into clinical care. In contrast, several small retrospective investigations have evaluated routinely available blood and clinical markers that may predict therapeutic benefit from ICIs (Table 1). To date, the majority of investigations have focussed on ipilimumab, nivolumab or pembrolizumab in the treatment of melanoma. Baseline and post-treatment changes in leucocyte counts, lactate dehydrogenase (LDH) and C-reactive protein all show promise as predictive biomarkers for response (Table 1). A recent report highlights that smoking status may also be relevant (Hellmann et al., 2014), while the pattern of visceral metastasis has also been associated with changes to survival outcomes (Weide et al., 2016). Adverse events may also be a possible determinant of response to ICI therapy, albeit reports are inconsistent at this stage (Table 1).

Leucocyte count. Baseline and post-treatment changes in leucocytes including lymphocytes, eosinophils, neutrophils, neutrophil to lymphocyte ratio and monocytes counts are promising routinely available blood markers that have shown associations with response to ICI therapy (Table 1). Baseline changes in myeloid-derived suppressor cells (MDSCs) (Martens et al., 2016a) and regulatory T cells (Martens et al., 2016a, b) have also been associated with response to ICI therapy but are not currently routinely available leucocyte markers. Several of these leucocyte markers have shown associations across multiple studies with the direction of response generally aligning. However, differences between study designs, methodology, marker measurement and marker use have limited the ability to identify the effect size. In particular, there are significant inconsistencies between the leucocytes measured, the use of absolute or relative counts, the use of a baseline or a landmark analysis approach and the marker cut-point that most clearly distinguishes individuals likely and unlikely to respond to therapy.

As ipilimumab blocks CTLA-4 expressed on various lymphocyte populations, a high peripheral blood lymphocyte count may reflect a greater capacity of the immune system to mediate a strong antitumour effects in the presence of ipilimumab (Ku et al., 2010). Accordingly, the potential association between lymphocyte counts and ipilimumab response has been investigated in several studies. In melanoma patients treated with ipilimumab, high and increased absolute lymphocyte counts (ALC) at 2–12 weeks after treatment initiation have been associated with improved response and overall survival (OS) (Delyon et al., 2013; Ku et al., 2010; Martens et al., 2016b; Simeone et al., 2014). These results have been demonstrated in small cohorts ranging from 51 to 95 melanoma patients treated with ipilimumab at 3 and 10 mg kg−1 every 3 weeks (Delyon et al., 2013; Ku et al., 2010; Martens et al., 2016b; Simeone et al., 2014). Martens et al. (2016a) did not confirm these results, but did find that an increased relative lymphocyte count (RLC; percent of leucocytes that are lymphocytes) at baseline was associated with improved OS (n = 204). In one of the largest studies to investigate an association between lymphocytes and response to ICI to date (n = 616, European and American sites (Delyon et al., 2013; Ku et al., 2010; Martens et al., 2016b; Simeone et al., 2014). Martens et al. (2016a) did not confirm these results, but did find that an increased relative lymphocyte count (RLC; percent of leucocytes that are lymphocytes) at baseline was associated with improved OS (n = 204). In one of the largest studies to investigate an association between lymphocytes and response to ICI to date (n = 616, European and American melanoma patients), no association was found with ALC, but increased RLC at baseline was associated with improved OS (Weide et al., 2016). Similarly, Wolchok et al. (2013) found no association between increased ALC and response in melanoma patients treated with nivolumab and ipilimumab, although the study population was small (n = 53) and did not assess RLC. Similar inconsistencies in results have been demonstrated for eosinophil and neutrophil counts, and for neutrophil to lymphocyte ratios (Delyon et al., 2013; Wolchok et al., 2013; Ferrucci et al., 2015; Gebhardt et al., 2015; Ferrucci et al., 2016; Martens et al., 2016a; Weide et al., 2016; Zaragoza et al., 2016).

Despite these inconsistencies, leucocytes counts are among the most promising routinely available blood markers that may be able to predict response to ICI therapy. For example, Ku et al. (2010) indicated that an ALC>1000 cells per μl at week 7 correlated with a significantly improved clinical benefit rate (17 of 33 patients (51%) vs 0 of 8; P<0.01) and median OS (11.9 vs 14 months; P<0.001) compared with those with an ALC<1000 cells per μl. While Ferrucci et al. (2016) indicated that patients with an absolute neutrophil count (ANC)>7500 cells per μl and a derived neutrophil/lymphocyte ratio (dNLR)>3 had a significantly increased risk of death (hazard ratio (HR) = 5.76; 95% confidence interval (CI) 4.29–7.75) and disease progression (HR = 4.10; 95% CI 3.08–5.46) compared to patients with a lower ANC and dNLR.
Such results indicate that leucocyte and leucocyte sub-type counts may be able to be used in the clinic to spare patients potentially ineffective or toxic treatments, and thus allow the commencement of alternate treatments.

Variability in study design makes it difficult to compare results across studies. For example, Ferrucci et al (2016) conducted the largest study to date to assess leucocytes associations with response to ipilimumab treatment in melanoma patients (n = 720, Italian melanoma patients treated with 3 mg kg$^{-1}$ of ipilimumab every 3 weeks). However only absolute neutrophil and total leucocyte counts were available to researchers, but not lymphocyte, monocyte, eosinophil and basophil counts. Thus, it would be desirable to conduct a large study assessing all the routinely collected leucocyte counts to determine the most suitable marker of response/toxicity.

Lactate dehydrogenase. Elevated LDH levels are a prognostic factor for poor survival outcomes in patients with metastatic melanoma, mRCC and many other tumour types. This is recognised by the American Joint Committee on Cancer (AJCC), which includes LDH levels as part of their melanoma staging and classification system (Balch et al, 2009). Normal baseline LDH is associated with improved response and OS in melanoma patients treated with ipilimumab, pembrolizumab and nivolumab (Delyon et al, 2013; Simeone et al, 2014; Valpione et al, 2015; Collins and Le Manach, 2016; Diem et al, 2016; Khoja et al, 2016; Weide et al, 2016; Zaragoza et al, 2016; Martens et al, 2016a). The potential clinical importance of this finding is reflected in a real-world cohort of melanoma patients treated with nivolumab or pembrolizumab, in which half had elevated LDH levels at baseline (Diem et al, 2016). Post treatment increases in LDH levels were also associated with poorer response and survival in this cohort (Diem et al, 2016). Further demonstrating the potential clinical importance of LDH levels is the multivariable analysis conducted by Martens et al (2016a), which identified that normal baseline LDH, absolute monocyte counts, MDSCs frequencies, absolute eosinophil count, RLC and regulatory T cells (Treg) frequencies were associated with improved survival in ipilimumab-treated melanoma patients. In this analysis, LDH was a strong predictor of improved outcomes, with a median OS of 10 months for patients with baseline LDH up to 1.2-fold higher than the upper limit of normal, while for those >1.2- and >2.3-fold, it was only 5 and 2 months, respectively (P<0.0001) (Martens et al, 2016a).

Adverse events. Adverse events have been associated with response to a number of cancer medicines, in particular the targeted medications. For example, proteinuria was recently identified as being associated with improved survival in mRCC patients treated with vascular endothelial growth factor targeted agents (Sorich et al, 2016). In a meta-analysis of 137 studies evaluating cancer immunotherapies (including 11 general immune stimulation, 24 vaccine, 28 antibody-based and 16 adoptive transfer treatment arms), a strong association between vitiligo-like depigmentation and survival was also identified (P<0.024), but the association for ICI therapies specifically is unknown (Teulings et al, 2015). Since that time the irAE vitiligo has also been associated with improved objective response in a melanoma cohort treated with pembrolizumab (Hua et al, 2016), and survival in a melanoma cohort treated with nivolumab (Freeman-Keller et al, 2016). However both studies were relatively small and evidence on whether irAE are predictive of ICI response/survival, including but not limited to vitiligo, requires clarification in larger studies (Weber et al, 2017). Greater exposure to ipilimumab (i.e., higher plasma drug concentrations) is associated with increased response/survival and higher rates of irAEs (Feng et al, 2013), which is suggestive that irAE may predict response and survival.

POTENTIAL PREDICTORS OF ICI TOXICITY

Immune checkpoint inhibitors have been associated with severe irAEs such as rash, diarrhea, colitis, hypophysitis, hepatotoxicity and hypothyroidism (Champiat et al, 2016). Severe irAEs are more common with ipilimumab (15–43% of patients) than nivolumab or pembrolizumab. However, ~10–20% of patients treated with anti-PD-1 mAbs still develop severe, potentially life-threatening toxicities, and this increases further when combining with anti-CTLA-4 and anti-PD-1 mAbs (Postow et al, 2015; Champiat et al, 2016; Topalian et al, 2016). Potential predictors of ICI toxicity and irAEs have been less thoroughly investigated than predictors for response. Although, the presence of baseline sarcopenia and low muscle attenuation were recently associated with the occurrence of severe treatment-related toxicity (Daly et al, 2017). Several other potential baseline risk factors for severe irAEs have also been proposed, including family history of autoimmune diseases, tumour infiltration and location, previous viral infections such as HIV or hepatitis and the concomitant use of medicines with known autoimmune toxicities such as antiarrhythmics, antibiotics, anticonvulsants or antipsychotics (Champiat et al, 2016; Manson et al, 2016). A small study recently indicated that ipilimumab-treated patients experiencing irAEs appear to present with a diversification of the T-cell repertoire (Fong et al, 2016; Oh et al, 2017), while increased eosinophil count has also been linked to irAEs (Schindler et al, 2014). Another small study found that increased circulating IL-17 levels might be associated with gastrointestinal toxicity (Tarhini et al, 2015); however in general the investigation of predictors of ICI toxicity requires increased research.

FUTURE PERSPECTIVE

Following ICI therapy initiation, some patients have an influx of effector cells to the tumour masses and an apparent increase in tumour size (pseudoprogression) (Henze et al, 2016). To improve the assessment of the effect of immunotherapeutic agents, the immune-related Response Evaluation Criteria in Solid Tumors (irRECIST) was developed (Henze et al, 2016), while research continues to explore novel methods to detect early response to ICI. These factors exemplify the importance of identifying predictive markers of response that may justify continued therapy in lieu of a traditional response profile. To facilitate the translation of identified predictors into clinical strategies, prospective investigations comparing standard practices against modified strategies will be required. In this manuscript, we have focussed on compiling the studies that have identified routinely available blood and clinical markers associated with response and toxicity to ICIs. The benefits of such markers are that once validated they will generally be easily available and not require additional costs or setup to integrate into clinical care. Future research will also continue to explore other biomarkers routinely collected in the clinic that may predict response to ICI therapy. Biological plausibility and pilot investigations indicate that performance status, age, concomitant therapy (particularly high-dose corticosteroids), diversity of gut microbiome, prolactin, autoimmune diseases status, human leucocyte antigen class, DNA mismatch repair complex (MMR complex), tumour characteristics (size, location of metastases) and the level of tumour infiltrating lymphocytes are potential markers that should be more thoroughly investigated in the future (Friedman and Postow, 2016; Nishijima et al, 2016; Seliger, 2016; Topalian et al, 2016; Caponnetto et al, 2017; Wargo et al, 2017; Johnson et al, 2017).

To date, most of the research investigating routinely available blood and clinical markers as predictors of ICI response and
Predicting response and toxicity to ICI

Immune checkpoint inhibitors are an emerging option in the treatment of melanoma and other advanced cancers. However, a substantial proportion of patients do not respond to ICIs, while they can be associated with a range of potentially life-threatening irAEs. Several potential predictors of ICI response and toxicity have been proposed, including routinely available blood and clinical markers. However, to date these have not been extensively explored, particularly for the newer nivolumab or pembrolizumab. Several small retrospective investigations have identified association between pre- and post-treatment blood and clinical markers, and response to ipilimumab. While promising and easy to use in the clinic, these predictive markers require validation in adequately powered and well-designed multivariable analyses.

CONCLUSION

Immune checkpoint inhibitors are an emerging option in the treatment of melanoma and other advanced cancers. However, a substantial proportion of patients do not respond to ICIs, while they can be associated with a range of potentially life-threatening irAEs. Several potential predictors of ICI response and toxicity have been proposed, including routinely available blood and clinical markers. However, to date these have not been extensively explored, particularly for the newer nivolumab or pembrolizumab. Several small retrospective investigations have identified association between pre- and post-treatment blood and clinical markers, and response to ipilimumab. While promising and easy to use in the clinic, these predictive markers require validation in adequately powered and well-designed multivariable analyses.

REFERENCES

Ascierto PA, Kalos M, Scher DA, Callahan MK, Wolchok JD (2013) Biomarkers for immunostimulatory monoclonal antibodies in combination strategies for melanoma and other tumor types. Clin Cancer Res 19(5): 1009–1020.

Bagley SJ, Kothari S, Aggarwal C, Baum J, Alley EW, Kosteva JA, Ciunci CA, Gabriel PE, Thompson JC, Stonehouse-Lee S, Sherry VE, Gilbert E, Eaby-Sandy B, Mutale F, D’Lallo G, Cohen RB, Vachani A, Langer CJ (2017) Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 106: 1–7.

Balch CM, Gershenwald JE, Soong S-J, Thompson JF, Atkins MB, Byrd DR, Buzaic AD, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC, Morton DL, Ross MI, Sober AJ, Sondak VK (2009) Final version of 2009 AJCC Melanoma Staging and Classification. J Clin Oncol 27(36): 6199–6206.

Barbee MS, Ugurlu E, Horvat TZ, Dang T-O (2015) Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother 49(8): 907–937.

Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, Vogelzang NJ, Cibin MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gunney H, Quinn DI, Culine S, Sternberg CN, Mai Y, Pochlein CH, Perini RF, Bajorin DF (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11): 1015–1026.

Bjorn J, Juul Nitschke N, Zeeberg Iversen T, Schmidt H, Fode K, Svane IM (2016) Immunochemical correlates of response and toxicity in stage IV malignant melanoma patients treated with eπilumab. Oncoimmunology 5(4): e110788.

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GRI, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17): 1627–1639.

Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Arén Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baustedt C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2): 123–135.

ACKNOWLEDGEMENTS

Ashley Hopkins is a researcher funded by a Postdoctoral Fellowship from the National Breast Cancer Foundation, Australia. This manuscript was produced with the financial and other support of Cancer Council SA’s Beat Cancer Project on behalf of its donors and the State Government of South Australia through the Department of Health.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors were involved in the conception, design, acquisition of information and drafting of this review article. All authors have approved the final article.
Caponnetto S, Iannantuono GM, Barchiesi G, Magri V, Gelibter A, Cortesi E (2016) Prolactin as a potential early predictive factor in metastatic non-small cell lung cancer patients treated with Nivolumab. *Oncology* 93(1):62–66.

Chapmiat S, Lambotte O, Barreau E, Belkhir R, Berdelou A, Carbonnel F, Cauquil C, Chanson P, Collins M, Durrbach A, Ederhy S, Feuillet S, François H, Lazarovici J, Le Pavé J, De Martin E, Mateus C, Michot JM, Samuel D, Soria JC, Robert C, Eggermont A, Marabelle A (2016) Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. *Ann Oncol* 27(4):559–574.

Collins GS, Le Manach Y (2016) Small data sets to develop and validate prognostic models are problematic. *Eur J Cancer* 54:167–168.

Daly LE, Power DG, O’Reilly A, Donnellan P, Cushen SJ, O’Sullivan K, Delyon J, Mateus C, Lefeuvre D, Lanoy E, Zitvogel L, Chaput N, Roy S, Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE, Kammula Feng Y, Roy A, Masson E, Chen TT, Humphrey R, Weber JS (2013) Exposure-based collaborative position paper.

Diem S, Kasenda B, Lefevre D, Lanoy E, Zitvogel L, Chaput N, Roy S, Eggermont AMM, Routier E, Robert C (2013) Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. *Ann Oncol* 24(6):1697–1703.

Dick J, Lang N, Slynko A, Kopp-Schneider A, Schulz C, Dimitrakopoulou-Stauss A, Enk AH, Hassel JC (2016) Use of LDH and autoimmune side effects to predict response to ipilimumab treatment. *Immunotherapy* 8(9):1033–1044.

Diem S, Kasenda B, Spain L, Martin-Liberal J, Marconcini R, Gore M, Larkin J (2016) Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. *Br J Cancer* 116(3):256–261.

Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE, Kammula Feng Y, Roy A, Masson E, Chen TT, Humphrey R, Weber JS (2013) Exposure-response relationships of the efficacy and safety of ipilimumab in patients with advanced melanoma. *Clin Cancer Res* 19(14):3977–3986.

Ferrucci PF, Acierno PA, Pizogio J, Del Vecchio M, Maio M, Antonini Ferrucci PF, Gandini S, Battaglia A, Alfieri S, Di Giacomo AM, Giannarelli D, Martinoli C (2016) Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. *Ann Oncol* 27(4):732–738.

Ferrucci PF, Gandini S, Battaglia A, Alfieri S, Di Giacomo AM, Gandinieri D, Cappellini GCA, De Galtiis F, Marchetti P, Amato G, Lazzeri A, Pala L, Cocrorochio E, Martinolli C (2015) Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. *Br J Cancer* 112(12):1904–1910.

Fong L, Oh DY, Cham J, Zhang L, Fong G, Kwak SS, Klinger M, Faham M (2016) T cell repertoire diversification is associated with immune related toxicities following CTLA-4 blockade in cancer patients. *Cancer Res*; epub a head of print 28 December 2016; doi:10.1158/0008-5472.CAN-16-2324.

Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. *Clin Cancer Res* 22(4):886–894.

Friedman CF, Postow MA (2016) Emerging tissue and blood-based biomarkers that may predict response to immune checkpoint inhibition. *Curr Oncol Rep* 18(4):21.

Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huyhn TG, Zhao L, Fulton L, Schultz KR, Howe E, Farago AF, Sullivan RJ, Stone JR, Digumarthy S, Moran T, Atenafu EG, Templeton A, Qye Y, Chappell MA, Saibil S, Hogg D, Butler MO, Joshua AM (2016) The full blood count as a biomarker of outcome and toxicity in ipilimumab-treated cutaneous metastatic melanoma. *Cancer Med* 5(10):2792–2799.

Kuy GU, Yuan J, Page DB, Schroeder SEA, Panagias KS, Carvajal RD, Chapman PB, Schwartz GK, Allison JP, Wolchok JD (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting. *Cancer* 116(7):1767–1775.

Maio M, Grob J-J, Amdal S, Bondarenko I, Robert C, Thomas L, Garbe C, Chairion-Sileni V, Testori A, Chen T-T (2015) Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. *J Clin Oncol* 33(10):1191–1196.

Manson G, Norwood J, Marabelle A, Kohrt H, Houot R (2016) Biomarkers associated with checkpoint inhibitors. *Ann Oncol* 27(7):1199–1206.

Martens A, Wistuba-Hamprecht K, Poppen MG, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Acierno PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigenthaler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B (2016a) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with Ipilimumab. *Clin Cancer Res* 22(12):2908–2918.

Martens A, Wistuba-Hamprecht K, Yuan J, Postow MA, Wong P, Capone M, Madonna G, Khammari A, Schilling B, Sucker A, Schadendorf D, Martus P, Dreno B, Acierno PA, Wolchok JD, Pawelec G, Garbe C, Weide B (2016b) Increases in absolute lymphocytes and circulating CD4+ and CD8+ T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab. *Clin Cancer Res* 22(19):4849–4858.

Meng X, Huang Z, Teng F, Xing L, Yu J (2015) Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. *Cancer Treat Rev* 41(10):868–876.
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plummer ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu L-A, Waxman IM, Sharma P (2015) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19): 1803–1813.

Nakamura Y, Kitano S, Takahashi A, Tsutsuimada A, Namikawa K, Tanese K, Abe T, Funakoshi T, Yamamoto N, Amagai M, Yamazaki N (2016) Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget 7(47): 77404–77415.

Nishijima T, Iwaki T, Musha S, Bouchachia SS, Moschos SJ (2016) Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev 45: 30–37.

Oh DY, Cham J, Zhang L, Fong G, Yoon SH, Obaya M, Klinger M, Faham M, Fong L (2017) Predictive values of IL-2 activity for immune checkpoint inhibitors in non-small-cell lung cancer. J Clin Oncol 35 (suppl): 3035.

Remon J, Chaput N, Planchard D (2016) Predictive biomarkers for programmed death-1/programmed death ligand immune checkpoint inhibitors in nonsmall cell lung cancer. Curr Opin Oncol 28(2): 122–129.

Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Sorich MJ, Rowland A, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5): 275–287.

Valpione S, Martonili C, Fava P, Mocellin S, Campagna LG, Quaglini P, Ferrucci PF, Pigozzo J, Astrua C, Testori A, Chiarion-Sileni V (2015) Personalised medicine: development and external validation of a prognostic model for metastatic melanoma patients treated with VEGF inhibitors: a secondary analysis of pooled clinical trial data. Br J Cancer 114(12): 1313–1317.

Tahini AA, Zahoor H, Lin Y, Malhotra U, Sander C, Butterfield LH, Kirkwood JM (2015) Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer 3(1): 39.

Teulings HE, Limpens J, Jansen SN, Zwinderer AH, Reitsma JB, Spuls PI, Luiten RM (2015) Vittiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 33(7): 773–781.

Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5): 275–287.

Weber JS, D’Angelio SP, Minor D, Hodi FS, Gutzman R, Neyns B, Hoeller C, Khushalani NI, Miller JR WH, Lao CD, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Nishijima T, Iwaki T, Musha S, Bouchachia SS, Moschos SJ (2016) Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev 45: 30–37.

Oh DY, Cham J, Zhang L, Fong G, Kwek SS, Klinger M, Faham M, Fong L (2017) Immune toxicities elicited by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res 77(6): 1322–1330.

Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4): 252–264.

Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagner P, Wolchok JD, Hodi FS (2015) Nivolumab and Ipilimumab versus Ipilimumab in untreated melanoma. N Engl J Med 372(21): 2006–2017.

Powles T, Jin C, Zheng Y, Baveler P, Narwal R, Mukhopadhyay P, Jin X, Dennis PA, Gupta AK, Ben Y, Ho TW, Roskos L (2017) Tumor shrinkage and increased overall survival are associated with improved albumin, neutrophil lymphocyte ratio (NLR) and decreased durvalumab clearance in NSCLC and UC patients receiving durvalumab. J Clin Oncol 35 (suppl): 3035.
Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus Ipilimumab in advanced melanoma. *N Engl J Med* **369**(2): 122–133.

Zaragoza J, Caille A, Beneton N, Bens G, Christiann F, Maillard H, Machet L (2016) High neutrophil to lymphocyte ratio measured before starting ipilimumab treatment is associated with reduced overall survival in patients with melanoma. *Br J Dermatol* **174**(1): 146–151.