Triton calculations with the new Nijmegen potentials

J.L. Friar
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
and Institut für Kernphysik, Johannes Gutenberg-Universität, D-6500 Mainz, Germany

G.L. Payne
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242

V.G.J. Stoks and J.J. de Swart
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands
(submitted to Phys. Lett. B)

Abstract

Triton properties are calculated using new nucleon-nucleon potentials, which were fit to the world nucleon-nucleon data. All potentials are charge dependent and explicitly incorporate the mass difference between the charged and neutral pions. Three of these models have a nearly optimal \(\chi^2 \) per degree of freedom and can therefore be considered as alternative partial-wave analyses, which in quality can almost compete with the Nijmegen partial-wave analysis. The triton binding energy obtained with three local models (Nijm II, Reid93, AV18) can be summarized as 7.62\(\pm \)0.01 MeV, which is nearly 900 keV lower than experiment. The non-local model Nijm I binds by 7.72 MeV.
I. FEW-NUCLEON SYSTEMS

In recent years one of the important problems of few-nucleon physics has been resolved. The non-relativistic Schrödinger (or Faddeev [1]) equation can now be solved numerically for an arbitrary (energy-independent) potential model, and with negligible error. Such complete or “exact” solutions have been carried out at the level of 1% (or less) error for the ground states [2] of \(^3\)He and \(^3\)H (including a Coulomb interaction in the former case), for the ground state [3] of \(^4\)He, for the low-lying (continuum) states [4] of \(^5\)He, for the zero-energy scattering states of the \(n-d\) and \(p-d\) systems [5] and for transitions [6] between these systems and the ground states, and for the \(n-d\) continuum states above breakup threshold [7].

The results of these calculations can be rather simply summarized. The ground states are underbound and their underbinding is correlated. The triton is underbound by an amount which varies from 0.2 to 1.1 MeV for a wide variety of potential models [2]. The sizes of these systems are strongly correlated with their binding, and reasonable extrapolations to the physical binding energies of \(^3\)H and \(^3\)He produce sizes which agree with experiment. The Coulomb energy [1] of \(^3\)He (properly extrapolated) accounts for about 85% of the \(^3\)He–\(^3\)H binding-energy difference, and a variety of small charge-symmetry-breaking mechanisms [8] produces the remaining 15%. The alpha particle is underbound by an amount which is correlated with the triton underbinding (by roughly a factor of four) and correcting one problem will likely correct the other. Low-energy \(n-d\) and \(p-d\) scattering and capture reactions are in reasonable agreement [5,6] with experiment (after extrapolating), except for the \(p-d\) scattering length, whose experimental value may be suspect. Scattering calculations (above breakup threshold [7]) are almost entirely in agreement with experiment. Those few areas where disagreements exist could be the result of using rather poor two-body forces, comparing \(n-d\) calculations to (Coulomb-modified) \(p-d\) data, inaccurate data, or an incompletely understood nuclear force. Few groups have performed these difficult scattering calculations.

Among the interesting physics which might manifest itself in these comparisons is three-nucleon forces [9]. Traditionally, the nuclear force is described by a sum of two-body (pairwise) potentials. However, more complicated three-body forces are present; the latter require the simultaneous specification of the spatial coordinates of all three nucleons, as well as their spin and isospin states. These three-nucleon forces are expected to contribute a rather small amount of binding, which can be understood as follows. Their amount of binding is schematically given by \(\langle V_\pi \rangle^2/Mc^2\), where \(\langle V_\pi \rangle\) is the contribution of OPEP (the one-pion-exchange potential) to the triton potential energy and \(M\) is the nucleon mass, which has been chosen to be the generic “large mass” scale which remains after one treats the pion. Using \(\langle V_\pi \rangle \sim 30-40\) MeV, one estimates the contribution of three-nucleon forces to be 1–2 MeV to the triton potential energy (out of a total of roughly 50 MeV). Considerable effort has been made to calculate the longest-range part of the three-nucleon force (due to two-pion exchange). However, the short-range part of that force is not easily amenable to theoretical treatment and unfortunately the triton binding is sensitive to that short-range behavior. Calculations of the triton binding which include three-nucleon forces are consistent [1] with the estimates given above.

The scale of a few percent of the kinetic or potential energy is also the scale for relativistic corrections. A representative momentum scale in the few-nucleon systems is the pion mass: \(m_\pi c\). An estimate for the size of the relativistic corrections for the nucleons is then
\[(v/c)^2 \sim (m_\pi/M)^2 \sim 2\%, \] which is indeed the size of correction we estimated for three-body forces. Calculations performed to date typically find corrections of small magnitude from special relativity (\(\sim 0.2-0.3 \text{ MeV} \)), but are not otherwise in agreement [10] [13]. Complicating matters further is the fact that at least a subset of relativistic corrections is comprised of three-nucleon forces.

In addition to the uncertainties from relativity and three-body-force mechanisms there is the uncertainty in the two-nucleon force. All of the calculations described above were performed with two-nucleon forces which are called “realistic.” Such forces contain OPEP and give at least a qualitative fit to the scattering data. The \(\chi^2 \) per degree of freedom for such a potential compared to the scattering data can nevertheless vary greatly. This is particularly true when a potential which has been fit to the \(np \) data is compared to the \(pp \) data [14]. One of the reasons being that charge dependence between the \(T = 1 \) \(np \) and \(pp \) partial waves in such a fit is not always accounted for properly (e.g., effects due to the presence of the Coulomb interaction are included, whereas equally important effects due to the neutral-to-charged pion mass difference are completely neglected). Another reason is that the \(np \) data are not nearly as accurate as the \(pp \) data. So in a fit to only the \(np \) data the constraints on the parameters of the model are less restrictive, which can result in a set of parameters which give a poor description of the \(pp \) data. The parameters should be fit to both \(pp \) and \(np \) data. Differences in the quality of the fit to the data will produce differences in the predicted triton binding. In addition, differences in the assumed form of the potential, or of its type (local, or momentum dependent), might also affect the binding energy and yet not affect the fit to the scattering data in the 0–350 MeV energy region, which is the traditional domain of nucleon-nucleon (NN) potential models.

While it is not yet possible to resolve problems with the three-nucleon forces and with relativistic corrections, it should be possible to eliminate much of the uncertainty associated with the two-nucleon force. In the triton the charge dependence of the nuclear force can be taken into account by using an effective charge-symmetric \(^1S_0 \) force given by [15]

\[V_{\text{eff}} = \frac{2}{3} V_{pp} + \frac{1}{3} V_{np} , \] (1)

which prescription has an error the order of a few keV. Potential models whose \(^1S_0 \) forces are fit only to \(pp \) scattering generate a triton binding energy approximately 100 keV too low, while those fit only to \(np \) scattering are roughly 200 keV too high. Obviously, using a force model which builds in the proper amount of charge dependence (i.e., fits both \(pp \) and \(np \) data) eliminates this problem. After applying this correction to previous triton calculations, potential models still underbind the triton by 0.4 to 1.0 MeV. This spread of values is larger than most estimates of relativistic effects and comparable to the contribution of most three-nucleon forces.

It has been known for many years that weakening the \(T = 0 \) tensor force (but still maintaining a fit to the two-nucleon data) increases the triton binding energy. The reason is that the deuteron is even more sensitive to the tensor force than is the triton, in spite of the fact that more than half of the triton’s potential energy has that source. Consequently, when one is fitting the \(NN \) potential to the two-nucleon scattering data, slight variations in the tensor force (increases or decreases) must be compensated by opposite variations (decreases or increases) in the central force. The triton is relatively more sensitive to the central force.
Thus a weaker tensor force increases the triton binding because the deuteron binding is fixed. Until recently, published measures of the tensor force were of poor quality, and almost any force seemed acceptable. This situation has definitely been changed with the completion of a new and comprehensive partial-wave analysis (PWA), which we now discuss.

II. NIJMEGEN PARTIAL-WAVE ANALYSIS
AND POTENTIAL

The Nijmegen partial-wave analysis has been described in detail elsewhere [16–19]. We list here a few of the salient features which are relevant to our present calculation.

The Nijmegen procedure treats OPEP explicitly (allowing the pion-nucleon couplings to be determined by the data) and incorporates Coulomb, magnetic moment, and vacuum polarization interactions explicitly in the appropriate places. As a consistency check [20] the pion masses in OPEP are allowed to vary and the masses of the neutral and charged pions are found to be $m_{\pi^0} = 135.6(13)$ MeV and $m_{\pi^\pm} = 139.4(10)$ MeV. These results agree with the free pion masses and the small error bars emphasize the importance of OPEP. The pion-nucleon coupling constants are consistent with being equal. The explicit inclusion of these different pion masses (next to other, less important, contributions) produces a charge-dependent nuclear force.

By fitting all the NN scattering data simultaneously in an energy-dependent (or multi-energy) partial-wave analysis, uncertainties associated with poor quality data in a few kinematical regions can be compensated by good quality data at other energies. Energy-independent (or single-energy) partial-wave analyses do not have this advantage. Moreover, the energy bin analyzed in a single-energy analysis may not contain the appropriate types of scattering data to pin down a particular phase parameter. An example in this context is the lack of np spin-correlation data near 100 MeV, which dictates that the $J = 1$ mixing parameter, ε_1, cannot be determined accurately in a single-energy analysis at this energy. Similarly, recent data at 67 MeV [21,22] and their inclusion in the partial-wave analysis [20] have helped to reduce the uncertainties associated with ε_1 in the single-energy analysis at 50 MeV. On the other hand, the errors associated with a complete multi-energy partial-wave analysis are typically much smaller than those associated with single-energy partial-wave analyses. The reason, of course, being that in a single-energy analysis of one particular energy bin the information about the overall energy dependence of the phase parameters is not incorporated. So the set of single-energy analyses covering the typical 0–350 MeV energy range requires many more fit parameters than the multi-energy analysis covering the same energy range. In the multi-energy analysis the ε_1 mixing parameter can be determined very well at all energies, due to the presence of spin-correlation data at various different energies throughout the 0–350 MeV region [20]. This is demonstrated clearly in Fig. 1, which depicts the Nijmegen multi-energy and single-energy values and errors for that quantity [19].

Since ε_1 is the most commonly used measure of the tensor force, it is incorrect to state that virtually any tensor force is consistent with the NN scattering data. Figure 1 demonstrates unequivocally that there are very tight constraints on the tensor force. This is also illustrated in Table 1, where we give ε_1 at 50 MeV of the Nijmegen multi-energy partial-wave analysis [19] (Nijm PWA93) and of the various new potential models to be discussed next. The spread in ε_1 values of the different models (Nijm PWA93, Nijm I, Nijm II, and Reid93)
gives an indication for the systematic error on ε_1, which we believe is about 0.05°. However, one has to bear in mind that the potential models, though of high quality, are still not as good as the Nijm PWA93 analysis.

The original Nijmegen potential [23] (Nijm78) is a one-boson-exchange potential which incorporates the non-strange mesons of the pseudoscalar, vector, and scalar nonets. These mesons can be identified with the lowest-lying Regge trajectories. The identification leads to a Gaussian regularization of the short-range behavior. Using 13 parameters, the description of the pp data is reasonably good [14], whereas the description of the np data is rather poor. In order to improve its quality, we are currently constructing an update using 15 parameters. The preliminary version (Nijm92) gives a much better description of the pp as well as the np data with χ^2 per datum of 1.92. However, its quality is still not as good as the quality of the Nijmegen partial-wave analysis Nijm PWA93, which has χ^2 per datum of 0.99. We therefore also followed a different approach in that we constructed a Reid-like model where each partial wave is parametrized independently. Introducing as many parameters as necessary, it is then easy to arrive at a model with a (nearly) optimal χ^2 per datum. The Reid-like Nijmegen model constructed this way is denoted by Nijm I.

A feature of relativistic origin in the Nijmegen potentials is the momentum-dependent part of the central potential, which follows from field theory. It gives rise to a non-local structure ($\Delta\phi(r) + \phi(r)\Delta$) to the potential in configuration space (see, e.g., Ref. [23]). Such a term might be expected to behave differently in the triton, which is one of the reasons we constructed two Reid-like versions of the Nijmegen potential: The non-local Nijm I potential, which contains these momentum-dependent terms (as do the Nijm78 and Nijm92 potentials), and a local Nijm II potential, where these terms are intentionally omitted. We also constructed updates of two other local potentials. The Reid soft-core potential [24] was reparametrized using sums of regularized Yukawa functions and is here denoted by Reid93. The Argonne potential [25] was extended to include charge-independence breaking in the phenomenological parametrization of the short-range interaction and is here denoted by AV18. All these models will be discussed in more detail elsewhere [26]. Here we only want to mention that all potentials explicitly include the charge-dependent OPEP described earlier.

It is important to note that the Nijmegen partial-wave analysis Nijm PWA93 has not been used in constructing these potentials. The parameters of all models have been optimized in a direct fit to the data. In fact, both the Nijmegen potentials Nijm I and Nijm II, as well as the regularized Reid soft-core potential Reid93, are alternative partial-wave analyses: They have roughly the same number of fit parameters as our original partial-wave analysis Nijm PWA93, they are fit to the same data, and they achieve nearly the same values of χ^2_{min}, which is significantly better than any other previous potential model. It is even significantly better than other multi-energy partial-wave analyses. The χ^2_{min} per datum for the new models is given in Table I.

III. TRITON CALCULATIONS

The potentials used in this work comprise two Reid-like Nijmegen models (Nijm I and Nijm II), a regularized update of the Reid soft-core model (Reid93), and preliminary updates of the Nijmegen and Argonne models (Nijm92 and AV18, respectively). The Faddeev
equations for the triton bound state were solved for these new potentials using up to 34 channels (three-nucleon partial-wave states), which guarantees partial-wave convergence at the level of 10 keV. This includes all partial waves of the NN interaction with $J \leq 4$.

We should also mention that the new potential models have been fit to the deuteron binding energy using relativistic kinematics, which means that the binding energy of the deuteron is taken to be $2M - 2\sqrt{M^2 - \kappa^2}$, rather than κ^2/M. The difference is very small, and versions of the Nijm I and Nijm II potentials were constructed to accommodate the latter form; this changes the triton binding by less than 1.5 keV, a truly negligible effect.

The triton bound-state result for the non-local Nijm I potential for 34 channels is 7.72 MeV, which is nearly 800 keV lower than the experimental value of 8.48 MeV. The charge radii for 3H and 3He, and the Coulomb energy of 3He are not significantly different from what one would expect for these binding energies.

The results for this Nijm I potential are not significantly different from those of the original Nijm78 potential, whose binding energy for the triton is 7.63 MeV. That potential, however, had a pp-type 1S_0 force, so that the result should be increased by roughly 100 keV. We note that these similar results should not be unexpected in view of a rather similar tensor force in the two models. The Nijm78 and Nijm I models have deuteron D-state probabilities of 5.39 and 5.66%, respectively. Moreover, the two models have an identical structural form. We also note that the Nijm I potential generates 72% of the total triton potential energy (48 MeV) from the tensor force and about 74% of that energy from the (iterated) OPEP component (i.e., $\langle V_T \rangle$). The bulk of the potential energy typically comes from the tensor force and OPEP.

The quality of the local Nijm II potential is equally as good as that of the non-local Nijm I potential, both having a χ^2 per datum of 1.03. The deuteron D-state probability is 5.64%, which is virtually the same as that of the Nijm I potential. Triton calculations with the Nijm II potential produces 7.62 MeV for 34 channels. This is a strong indication that replacing local structure in configuration space by a non-local one can affect the triton binding energy, even when the quality of the fit to the NN data remains unchanged. This potential generates 52% and 67% of the triton potential energy from the tensor and (iterated) OPEP forces, respectively.

A significant question which can be posed is the following: how important are differences in the specific functional forms used to parameterize the radial dependence in the various parts of the potential? In order to answer this question in part, we also solved the triton bound state for the Reid93 and AV18 potentials. The Reid93 potential has an equally good fit to the NN data. The deuteron D-state probability is 5.70%, which is virtually the same as that of the Nijm I potential. Triton calculations with the Nijm II potential produces 7.62 MeV for 34 channels. This is a strong indication that replacing local structure in configuration space by a non-local one can affect the triton binding energy, even when the quality of the fit to the NN data remains unchanged. This potential generates 52% and 67% of the triton potential energy from the tensor and (iterated) OPEP forces, respectively.

Finally, we mention that the (non-local) preliminary update of the original Nijm78 potential, denoted by Nijm92, gives a triton binding energy of 7.68 MeV. The difference with the Nijm I result is at least partially due to the difference in amount of non-locality. The results for all five potential models are given in Table I. Note that the Nijm92 potential has
the largest $\langle V_T \rangle$ and $\langle V_\pi \rangle$, indicating a very strong tensor force. Surprisingly, its values for P_d and ε_1 at 50 MeV are the smallest, implying an anticorrelation.

All of the local potentials treated here have virtually the same triton binding energy (7.62 MeV) and deuteron D-state probability (5.66%). This similarity may not be coincidental. If one fits the partial waves of the potential to the partial-wave “data” which result from a partial-wave analysis, and if one further assumes that the potential is local, the resulting fit to the relevant deuteron properties and phase-shift data at all energies yields a unique potential [27]. In practice one does not fit to data at all energies, of course, but it has long been an article of faith in nuclear physics that scattering data at high energies are unimportant to calculations of the nuclear bound states. Equivalently, these data primarily determine details of the potential at very short distances, which are known to be rather unimportant. Our results here are consistent with this picture.

In general, the local potentials tend to have a fairly large binding energy difference between the 5- and 34-channel cases (> 200 keV), while the opposite is true for the non-local potentials. The results for the non-local Nijm I potential for 5, 9, 18, 26, and 34 channels are: 7.70, 7.77, 7.67, 7.72, and 7.72 MeV. The results for the local Nijm II potential are 7.39, 7.56, 7.51, 7.61, and 7.62 MeV for 5, 9, 18, 26, and 34 channels, respectively. This trend is consistent with most other potential models [2].

IV. SUMMARY

Solutions to the Faddeev equations for the triton ground state were obtained for five new NN potentials, three of which fit the NN data with a nearly optimal χ^2 per datum of 1.03. The three local potentials (Nijm II, Reid93, and AV18) bind the triton by 7.62±0.01 MeV. The non-local potential Nijm I, which is of similar quality as Nijm II, is more bound by roughly 100 keV. An update of the original non-local Nijm78 potential, denoted by Nijm92, binds the triton by 7.68 MeV. The local potential results suggest (but obviously do not prove) that local potentials which fit the NN scattering data very well, bind the triton by a unique value of about 7.62 MeV. Should this prove to be true, the physics issues in the triton problem (besides the question of three-nucleon forces) then shift to the origin and presence of nonlocalities in the NN force. Indeed, the 100 keV difference between the Nijm I and Nijm II models is the effect of just such a nonlocality. With respect to their fit to the scattering data, these new Nijmegen potentials are the best ever constructed, and triton binding calculations with them provide a benchmark against which calculations with other potential models should be compared.

ACKNOWLEDGMENTS

The work of J.L.F. was performed under the auspices of the U.S. Department of Energy, while the work of G.L.P. was supported in part by the U.S. Department of Energy. The work of V.G.J.S. was performed under auspices of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).
We would like to thank Dr. Th.A. Rijken and R. Klomp for many valuable discussions, Dr. R.B. Wiringa for his help and for letting us use the AV18 model prior to publication, and H. Leeb for a stimulating summary of the “inverse problem.” One of us (J.L.F.) would like to thank the Alexander von Humboldt-Stiftung for support.
REFERENCES

[1] L.D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys. - JETP 12, 1014 (1961)].
[2] C.R. Chen, G.L. Payne, J.L. Friar, and B.F. Gibson, Phys. Rev. C 31, 2266 (1985); 33, 1740 (1986); J.L. Friar, B.F. Gibson, and G.L. Payne, ibid, 35, 1502 (1987); J.L. Friar, B.F. Gibson, and G.L. Payne, ibid, 37, 2869 (1988); these references contain a representative set of potential model results.
[3] J. Carlson, Phys. Rev. C 36, 2026 (1987).
[4] J. Carlson, (to be published).
[5] C.R. Chen, G.L. Payne, J.L. Friar, and B.F. Gibson, Phys. Rev. C 44, 50 (1991).
[6] J.L. Friar, B.F. Gibson, H.C. Jean, and G.L. Payne, Phys. Rev. Lett. 66, 1827 (1991).
[7] W. Glöckle, H. Witała, and Th. Cornelius, Nucl. Phys. A508, 115c (1990); W. Glöckle and H. Witała, Kerntechnik 57, 228 (1992).
[8] Y. Wu, S. Ishikawa, and T. Sasaki, Phys. Rev. Lett. 64, 1875 (1990); 66, 242(E) (1991).
[9] S.A. Coon, M.D. Scadron, P.C. McNamee, B.R. Barrett, D.W.E. Blatt, and B.H.J. McKellar, Nucl. Phys. A317, 242 (1979); S.A. Coon and J.L. Friar, Phys. Rev. C 34, 1060 (1986).
[10] J. Carlson, V.R. Pandharipande, and R. Schiavilla, Phys. Rev. C 47, 484 (1993).
[11] G. Rupp and J.A. Tjon, Phys. Rev. C 45, 2133 (1992).
[12] W. Glöckle, T.-S. H. Lee, and F. Coester, Phys. Rev. C 33, 709 (1986).
[13] F. Sammarruca, D. P. Xu, and R. Machleidt, Phys. Rev. C 46, 1636 (1992).
[14] V. Stoks and J.J. de Swart, Phys. Rev. C 47, 761 (1993).
[15] J.L. Friar, B.F. Gibson, and G.L. Payne, Phys. Rev. C 36, 1140 (1987).
[16] J.R. Bergervoet, P.C. van Campen, W.A. van der Sanden, and J.J. de Swart, Phys. Rev. C 38, 15 (1988).
[17] J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp, J.-L. de Kok, T.A. Rijken, V.G.J. Stoks, and J.J. de Swart, Phys. Rev. C 41, 1435 (1990).
[18] R.A.M. Klomp, T.A. Rijken, V.G.J. Stoks, and J.J. de Swart, Few-Body Systems, Suppl. 6, 105 (1992).
[19] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart, in preparation.
[20] R.A.M. Klomp, V.G.J. Stoks, and J.J. de Swart, Phys. Rev. C 44, R1258 (1991).
[21] M. Hammans, C. Brogli-Gysin, S. Burzynski, J. Campbell, P. Haffter, R. Henneck, W. Lorenzon, M.A. Pickar, I. Sick, J.A. Konter, S. Mango, and B. van den Brandt, Phys. Rev. Lett. 66, 2293 (1991).
[22] P. Haffter, C. Brogli-Gysin, J. Campbell, D. Fritschi, J. Götz, M. Hammans, R. Henneck, J. Jourdan, G. Masson, L.M. Qin, S. Robinson, M. Tuccillo, J.A. Konter, S. Mango, and B. van den Brandt, Nucl. Phys. A548, 29 (1992).
[23] M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D 17, 768 (1978).
[24] R.V. Reid, Ann. Phys. (N. Y.) 50, 411 (1968).
[25] R.B. Wiringa, R.A. Smith, and T.A. Ainsworth, Phys. Rev. C 29, 1207 (1984).
[26] V.G.J. Stoks, R.A.M. Klomp, and J.J. de Swart, in preparation.
[27] K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, (Springer-Verlag, New York, 1977).
TABLE I. Potential models used in this work, the values of χ^2_{min} per datum obtained in producing them, values of ε_1 in degrees at 50 MeV and the deuteron D-state percentages, the corresponding triton binding energies, and percentage contributions of the tensor force and OPEP to the total potential energy. The first entry contains the results of the Nijmegen partial-wave analysis [19] (Nijm PWA93) for comparison.

Model	χ^2_{min}/N_d	ε_1(50 MeV)	P_d(%)	E_B(MeV)	$\langle V_T \rangle$	$\langle V_\pi \rangle$
Nijm PWA93	0.99	2.11±0.05	–	–	–	–
Nijm I	1.03	2.09	5.66	7.72	72%	74%
Nijm92	1.92	1.98	5.61	7.68	77%	113%
Nijm II	1.03	2.00	5.64	7.62	52%	67%
Reid93	1.03	2.03	5.70	7.63	57%	71%
AV18	1.30	2.16	5.65	7.62	52%	77%
FIGURES

FIG. 1. The ε_1 mixing parameter in degrees as a function of T_{lab} in MeV. The shaded band represents the multi-energy solution with its statistical multi-energy error. The black dots represent the single-energy determinations with their single-energy errors.