Automated Detection of Solar Radio Bursts Using a Statistical Method

Dayal Singh1 · K. Sasikumar Raja1,2 · Prasad Subramanian1 · R. Ramesh3 · Christian Monstein4

Received: 16 October 2018 / Accepted: 23 July 2019 / Published online: 26 August 2019
© Springer Nature B.V. 2019

Abstract Radio bursts from the solar corona can provide clues to forecast space-weather hazards. After recent technology advancements, regular monitoring of radio bursts has increased and large observational datasets are produced. Hence, manual identification and classification of them is a challenging task. In this article, we describe an algorithm to automatically identify radio bursts from dynamic solar radio spectrograms using a novel statistical method. We use e-CALLISTO (Compound Astronomical Low Cost Low Frequency Instrument for Spectroscopy and Transportable Observatory) radio spectrometer data obtained at Gauribidanur Observatory near Bangalore in India during 2013–2014. We have studied the classifier performance using the receiver operating characteristics. Further, we analyze type III bursts observed in the year 2014 and find that 75% of the observed bursts were below 200 MHz. Our analysis shows that the positions of flare sites, which are associated with the type III bursts with upper frequency cutoff $\gtrsim 200$ MHz originate close to the solar disk center.

Keywords Corona, radio emission · Radio bursts · Instrumentation and data management

✉ K. Sasikumar Raja
sasikumarraja@gmail.com

D. Singh
dayal.singh@students.iiserpune.ac.in

P. Subramanian
p.subramanian@iiserpune.ac.in

R. Ramesh
ramesh@iiap.res.in

C. Monstein
monstein@irsol.ch

1 Indian Institute of Science Education and Research, Pashan, Pune 411 008, India
2 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
3 Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560 034, India
4 Istituto Ricerche Solari Locarno (IRSOL), Via Patocchi–Prato Pernice, 6605 Locarno Monti, Switzerland
1. Introduction

Radio bursts from the Sun play an important role in understanding the solar atmosphere, solar wind, and particularly coronal mass ejections. Many of these bursts provide clues to understand space weather. Radio bursts are observed over a wide range of frequencies (from few GHz to kHz) and they help to probe the solar atmosphere from chromospheric heights to 1 AU and beyond. Based on their morphology and frequency drift speeds (drift rates) in the dynamic spectrograms, they are classified into five primary types, viz. type I, type II, type III, type IV, and type V bursts (Wild, 1967). Type J and type U are the other complex bursts, which are often observed in the solar corona (Kundu, 1965; McLean and Labrum, 1985).

Technology advancements have enabled us to observe solar radio bursts with sophisticated telescopes both from ground and space. For example, some ground-based solar dedicated radio spectrographs are the: Radio Solar Telescope Network (RSTN) operated by the US airforce (Guidice et al., 1981), Gauribidanur Low frequency Solar Spectrograph (GLOSS) in India (Kishore et al., 2014), Hiraiso Radio Spectrograph (HiRAS) in Japan (Kondo et al., 1994), IZMIRAN in Russia (Gorgutsa et al., 2001), ARTEMIS IV in Greece (Caroubalos et al., 2001), and many others. Apart from these, there are more than 150 observing stations set up around the world to monitor the Sun, 24 hours a day. Presently about 52 of them regularly upload and make available data in a server at the University of Applied Sciences (FHNW) in Brugg, Windisch, Switzerland. The data processing is managed at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. All these stations jointly constitute the e-CALLISTO (Compound Astronomical Low Cost Low Frequency Instrument for Spectroscopy and Transportable Observatory) network2 (Benz et al., 2009; Sasikumar Raja et al., 2018). Space-based observations at ≲ 14 MHz are carried out using the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind (Bougeret et al., 1995) and the WAVES instrument onboard the Sun–Earth Connection Coronal and Heliospheric Investigation (STEREO) (Kaiser, 2005; Rucker et al., 2005). There are attempts to combine these space-based observations with ground-based observations also (see for example Hariharan et al., 2016). All these spectrometers produce large datasets. For instance, in the present work, we used data observed using the CALLISTO spectrometer located at Gauribidanur Observatory, India (Monstein, Ramesh, and Kathiravan, 2007) that recorded ≈ 13,000 files in two years. Therefore, manual identification of radio bursts is not possible, hence the present work.

In recent times, machine learning applications have been widely used in classification problems. It is well known that, if we want to apply them to classify various types of solar radio bursts, the machine needs to be “trained” and we need large sets of data for each type of burst. As mentioned previously, manual identification of bursts in a training dataset is an onerous task. We also know that the more training data, the better the performance of the classifier (or classification method). Hence, in this article, we present an algorithm to automatically identify the radio bursts using a statistical method. The developed algorithm can detect whether or not there is a radio burst present in the spectrogram. Our primary motivation is to use the database prepared using the algorithm described in the article and develop an automated classifier which would recognize various types of individual bursts. So far, there have been attempts to automatically identify specific type of bursts (Lobzin et al., 2009, 2010; Lobzin, Cairns, and Zaslavsky, 2014; Salmane et al., 2018; Zhang, Wang, and

1 https://www.astro.gla.ac.uk/users/eduard/cesra/?page_id=187.
2 http://www.e-callisto.org/.
Ye, 2018). However, automatic recognition of all types of bursts was never reported in the literature to the best of our knowledge.

In this article, Section 2 describes the observational details of the data used. In Section 3, a novel statistical method to automatically identify the radio bursts is explained. Section 4 describes the performance of the algorithm using the receiver operating characteristics and the analysis of all type III bursts observed in the year 2014. The summary, conclusions, and future work are discussed in Section 5.

2. Observations

The observations of e-CALLISTO spectrometers began in the year 2009. Since then, more than 150 stations were installed around the globe as previously mentioned. Most of the stations use the log-periodic dipole antenna (LPDA) as the primary receiving element (see, for example, Kishore et al., 2014; Sasikumar Raja et al., 2013a). The e-CALLISTO receiver is designed to operate over the bandwidth 45 – 870 MHz. But different e-CALLISTO stations operate over different user selected radio windows based on the local conditions. For this study, we use the data observed at Gauribidanur Observatory, located at longitude 77°27′07″ E, latitude 13°36′12″ N, and ≈ 694 meters above sea level (Ebenezer et al., 2007; Ramesh, 2011; Kishore et al., 2015). At Gauribidanur Observatory, spectral radio observations of the Sun with the e-CALLISTO are carried out everyday from 02:30 to 11:30 UT. The frequency range of operation is 45 – 450 MHz. The observed data, about 400 frequencies per sweep, are stored as FITS files. The time resolution of the instrument is 0.25 s at the rate of 200 channels per spectrum (i.e. 800 pixels/s). The integration time is 1 ms and the radiometric bandwidth is about 300 kHz. The overall dynamic range of the e-CALLISTO is > 50 dB.

Statistically, the number of radio bursts observed during solar maximum is larger (in comparison to solar minimum). Therefore, we select the years 2013 and 2014 (solar maximum of Solar Cycle 24) for this study. The detailed method and results are discussed in the subsequent sections.

3. Method

In order to classify the radio bursts, the basic observed parameters used from the dynamic spectrograms are area, slope, relative intensity, start and end time of the bursts, and the frequency range over which they were observed. We carefully inspect the above parameters to identify the radio bursts. The terrestrial radio frequency interferences (RFI) appear in general as continuous features in the dynamic spectra (for example FM, television, satellite signals, etc.); in some cases they appear as sharp pulses. By contrast, solar radio bursts drift as they propagate from high to low frequencies. We identify and eliminate the RFI making use of this key difference between RFI and radio bursts. The drift rate of the radio bursts can be measured using Equation 1. This is one of the main parameters which we use to identify solar radio bursts from the data. Figure 1 shows the spectrogram observed on 04 January 2013. Panel a shows the observed raw spectrogram (before processing). We calculate the median over time for every frequency channel and the resultant column matrix is subtracted from every column of the raw data corresponding to the spectrogram shown in panel a. After median filtering (background subtraction) most of the continuous local RFI are eliminated (see panel b). We repeat this process for the entire dataset observed in the
Figure 1 Various stages of processing the spectrogram observed at Gauribidanur Observatory on 04 January 2013 are shown. (a) Shows the raw spectrogram, (b) is the spectrogram after the background subtraction, (c) is the binary image of the spectrogram in (b), the region shown in red in (d) indicates the burst identified by the classifier discussed in the article.

year 2013 (Set-P). We find the standard deviation (i.e., \(\sigma \)) of the entire processed Set-P to be 0.6 dB. We select the \(5\sigma = 3 \) dB as the initial cutoff to identify whether or not there is a solar radio burst present in the frame. To reduce complexity, we convert every processed image to a binary image, i.e., if the signal is greater than 3 dB we assigned the number one, else the number is zero. The binary image is shown in panel c. Using the binary images, contours of the images are traced using the “opencv” python library and the area \(A_c \) and coordinates of the contours are measured. In the e-CALLISTO spectrometers, channels with high RFI are avoided due to practical reasons. Therefore, in the cases where the radio bursts intercept the RFI band, our algorithm underestimates the area. For instance, at Gauribidanur Observatory, the FM band \(\approx 87 – 109 \) MHz was not used and therefore, the measured \(A_c \) was underestimated by a factor \(\approx 22 \times \) duration of the radio burst. However, this factor does not significantly impact our results.

By knowing the coordinates, we calculate the slope \(v_d \), also called f–t range ratio) of the radio bursts using

\[
v_d = \frac{\Delta f}{\Delta t} = \frac{f_2 - f_1}{t_2 - t_1},
\]

where \(f_2 \) and \(f_1 \) are the maximum and minimum frequencies, respectively, \(t_2 \), and \(t_1 \) are the start and end times of the radio burst. As previously described, most of the RFI appears as horizontal and vertical lines. They are successfully eliminated by selecting the \(v_d \) in the range \(0.81 \text{ MHz s}^{-1} < v_d < 162 \text{ MHz s}^{-1} \).
Figure 2 Variation of the probability ratio (P_r) with the ASI. The horizontal and vertical dash-dotted lines denote $P_r = 1.5$ and $ASI \approx 1312 \text{ MHz}^2$. The points in the gray shaded region with $P_r \gtrsim 1.5$ and $ASI \gtrsim 1312 \text{ MHz}^2$ indicate the presence of at least one radio burst in the spectrogram. There are no bursts present in the white region. $P_r = 0$ indicates that there were no images with at least one radio burst present in it for the corresponding ASI value.

We find that A_c and v_d alone are not sufficient to automatically identify the bursts. The area depends on the bandwidth and duration of the observed burst. At the same time, we find that the drift rate can mislead the algorithm for smaller Δf and Δt. Therefore, we define a new parameter called the area slope index (ASI):

$$ASI = A_c \times v_d.$$ \hfill (2)

If the maximum ASI measured for each file is greater than a certain threshold, we conclude that there is at least one solar radio burst present in the image. If the ASI is less than the threshold, we conclude that no significant solar radio burst is present in the image.

In order to decide the ASI threshold, we manually separate the bursts observed in the year 2013 and named them as Set-B. We measure the probability of finding the number of bursts for a given ASI value ($P_B(ASI)$) for Set-B using

$$P_B(ASI) = \frac{N_B(ASI)}{N_{TB}},$$ \hfill (3)

where $N_B(ASI)$ and N_{TB} are the number of bursts for a given ASI and the total number of bursts in Set-B, respectively.

Similarly, using the complete dataset observed in 2013 (Set-U, which includes the data with bursts and without bursts), we define another parameter,

$$P_U(ASI) = \frac{N_U(ASI)}{N_{TU}},$$ \hfill (4)

where $N_U(ASI)$ and N_{TU} are the number of bursts for a given ASI and the total number of bursts in the Set-U, respectively.

The ratio between Equations 3 and 4 (which gives P_r, the probability ratio) for different ASI is calculated using

$$P_r(ASI) = \frac{P_B(ASI)}{P_U(ASI)}.$$ \hfill (5)

The probability ratio is then plotted as shown in Figure 2. From Figure 2, we find that $P_r = 1.5$ corresponds to an $ASI \approx 1312 \text{ MHz}^2$. As mentioned in the flowchart (Figure 3), if
Figure 3 The flow chart shows the algorithm to identify whether or not the input file has radio burst emission.

- Start
- Input image
- Subtract the background
- Convert to binary
- Find A_c, v_d and compute maximum ASI
- Max. ASI > cutoff?
 - No
 - Output is not a burst
 - Yes
 - Output is a burst
 - Stop

The ASI is greater than the cutoff value of 1312 MHz2, we conclude that the corresponding image has at least one solar radio burst. Otherwise, there is no burst present in the image. We use this method to identify all the solar radio bursts in the years 2013 and 2014. We note here that, for certain ASI values, there might be no images with radio bursts present – hence the value P_t is zero as seen in Figure 2.

Radio emission from the quiet-Sun component remains relatively constant throughout the solar cycle. The slowly varying component varies with the solar cycle, but this is mostly observed at microwave frequencies. Due to sensitivity limitations neither the quiet Sun, nor the slowly varying components of radio emission can be observed using e-CALLISTO. The non-thermal radio bursts are easily observed with the e-CALLISTO, since they are comparatively stronger. Furthermore, although the occurrence rate of solar radio bursts varies with solar cycle, their characteristic properties (i.e. v_d, bandwidth, and duration of the radio burst) vary only minimally. Therefore the ASI cutoff (which depends on v_d, bandwidth, and
duration of the radio burst) remains unchanged throughout the solar cycle. The performance of the classifier is discussed in Section 4.

4. Results and Discussions

4.1. Performance of the Algorithm

We processed the raw data and identify the radio bursts using the method described in Section 3 and Figure 3. Using the receiver operating characteristics (ROC), we study the performance of the classifier (Fawcett, 2006). Herewith, we summarize the necessary terms for the sake of completeness. If the instance is positive and it is classified as positive then it is termed “true positive”. If the instance is negative and is classified as positive, then it is called “false positive”. By manually counting these parameters in the classified dataset (by the algorithm), we measure the true positive rate (tp rate or recall) using

\[
tp \text{ rate} = \frac{TP}{P},
\]

where TP and P are the positives correctly classified and the total number of positive instances.

We also measured the false positive rate (fp rate or false alarm rate) of the classifier using

\[
fp \text{ rate} = \frac{FP}{N},
\]

where FP and N are negatives incorrectly classified and the total negative number of instances.

By the tp rate and fp rate (see Equations 6 and 7), we calculate the recall and precision using

\[
\text{Recall} = \frac{TP}{P},
\]

\[
\text{Precision} = \frac{TP}{TP + FP}.
\]

Note that a high value of recall and precision indicate a small number of “false negatives” (i.e., where the instance is positive and classified as negative) and false positives, respectively. The calculated values of recall and precision for different ASI cutoffs are tabulated in Table 1. In the year 2013, for the significant ASI (i.e., 1312 MHz), the calculated recall and precision are 95.82% and 50%, respectively. The recall and precision for the dataset observed in 2014 (Set-Q, for the same ASI value) are 95.67% and 61.7%, respectively. The recall and precision for different ASI values are shown in Figure 4. The figure shows that the parameter recall is more or less consistent for both Set-P and Q. However, the precision shows a difference of 12% between Set-P and Q. We find that the improved precision in the year 2014 is due to the reduced RFI and the availability of the dataset.

4.2. Preliminary Analysis of Type III Bursts

We carry out a preliminary analysis of all the type III bursts detected during the year 2014 using the automatic detection method described in this article. We find a total of 238 type
Table 1 Variation of recall and precision of the Set-P and Set-Q for different area slope indices.

No.	ASI (MHz²)	Set-P Recall	Set-P Precision	Set-Q Recall	Set-Q Precision
1	1312	95.82	50.00	95.67	61.70
2	1394	93.59	51.85	93.75	63.40
3	1476	92.76	53.45	92.55	63.90
4	1558	92.20	55.26	90.87	66.08
5	1640	91.09	56.57	89.18	66.85
6	1722	91.09	56.97	87.74	67.72
7	1804	90.25	57.86	86.30	68.38

Figure 4 The ROC parameters, recall (left panel) and precision (right panel), are shown for different ASI. The red circles and blue triangles indicate the years 2013 (Set-P) and 2014 (Set-Q).

III bursts during our observing period (≈ 02:30 – 11:30 UT). Out of the above, 88 type III bursts were associated with GOES soft X-ray and/or Hα flares.3,4,5,6 Note that we define a type III burst to be flare associated if it occurred during the onset to end phase of the flare. The observational details of type III bursts and associated flares are provided in the Appendix (see Table 2). The remaining 150 type III bursts were not associated with any flare. These 150 bursts were probably due to weak energy releases in the solar atmosphere reported earlier in the literature (for example, Ramesh et al., 2010, 2013; Saint-Hilaire, Vilmer, and Kerdraon, 2013; Sasikumar Raja and Ramesh, 2013b; Mugundhan, Harihara, and Ramesh, 2017; James, Subramanian, and Kontar, 2017; James and Subramanian, 2018; Sharma, Oberoi, and Arjunwadkar, 2018).

3 https://cdaw.gsfc.nasa.gov/CME_list/NOAA/org_events_text/.
4 https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/goes-xrs-report_2014.txt.
5 http://www.lmsal.com/solarsoft/ssw/last_events-2014/.
6 http://hec.helio-vo.eu/hec/hec_gui.php.
We also find that 75% of the type III bursts in our list were observed below 200 MHz (left panel of Figure 5). An inspection of the source region of the associated flares indicates a pattern. While the flare locations are uniformly distributed between 0° and 90° longitudes for bursts with upper frequency cutoff < 200 MHz, they are limited to 0° – 50° longitudes for bursts with upper frequency cutoff > 200 MHz (see right panel of Figure 5). This seems to indicate that bursts with higher starting frequencies are more directive. A detailed investigation of these results (using more data) will be reported elsewhere.

5. Summary and Conclusions

In this article, we have presented an automated method to detect solar radio bursts. Although this method does not classify the types of radio bursts, it is able to discriminate between dynamic spectra with and without solar radio bursts. Our algorithm can operate with all standard image formats and does not need FITS files. The method is tested on two years of e-CALLISTO data observed at Gauribidanur Observatory. Using this method, we have identified 1182 radio bursts from January 2013 – April 2018. The list of these bursts can be found at http://www.iiserpune.ac.in/~p.subramanian/Bursts.zip. Furthermore, we study all type III bursts observed in the year 2014 and found that 75% of the bursts observed were below 200 MHz. The source region of the associated flares was close to the disk center (i.e. heliographic longitudes 0° - 50°) for bursts with upper frequency cutoff > 200 MHz (Figure 5).

We have defined an area slope index (ASI) and found that the dynamic spectra images with $ASI \gtrsim 1312 \text{ MHz}^2$ have at least one solar radio burst. Using this ASI threshold, the recall for this method is over 95% and the precision is between 50 and 61.7%. The precision and recall for different ASI values are shown in Figure 4. The precision of the method can be improved (at the cost of poor recall by increasing the ASI cutoff) and vice versa. The precision can also be improved by comparing with the observations at other e-CALLISTO stations. One of the drawbacks of this method is that the weak radio bursts whose signal-to-noise ratio (SNR) is < 5σ are insensitive to it. Better data (which allow for a lower SNR cutoff) can overcome this drawback.
A successful classifier with good performance can play a crucial role in understanding properties of solar radio bursts like drift rates, spectral indices, and emission mechanisms, which are in turn very useful in solving long-standing solar physics problems associated with coronal heating, propagation of coronal mass ejections, and other problems. For instance, it is well known that some kinds of radio bursts (such as type II and type IV) correlate with geomagnetic storms, auroras, and other space-weather effects.

Accordingly, we plan to develop an automated burst classifier (that can discriminate between different kinds of bursts) in the future. We know that more the number of training datasets, the better the performance of the classifier. However, this is a challenge because of the way the data is processed. Since e-CALLISTO stores one frame every 15 min and since observations are carried out for \(\approx 9 \) hours per day, it produces \(\approx 65,000 \) files in 5 years. Therefore, a 52 station e-CALLISTO network produces \(\approx 3.37 \) million files in 5 years. Each file size is \(\approx 700 \) kB. The file sizes are expected to be much higher for digital back end instrumentation based on field programmable gate arrays (FPGAs) and fast analog-to-digital converters (ADCs) (see, for example, Kumari et al., 2017; Mugundhan et al., 2018); hence, the necessity of a sophisticated algorithm to classify solar radio bursts. We want to remark here that there are other type of short duration (\(< 0.1 \) s) spike bursts (e.g. Tarnstrom and Philip, 1972) with a small area difficult to identify using the reported algorithm. In the future, we will attempt to develop an algorithm which can identify such bursts by cross-comparing the dynamic spectrograms observed by different observatories (which would help in mitigating local RFI). Such an algorithm cannot only identify spike bursts but also improve the efficiency of the scheme reported in this article.

Acknowledgements D.S. acknowledges the INSPIRE-SHE program of the Department of Science and Technology, India. K.S.R. acknowledges the financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology, India (PDF/2015/000393). K.S.R. acknowledges the NVIDIA Corporation for supporting this project by donating the Titan Xp GPU. The authors would like to thank the anonymous referee for his/her comments that helped in improving the manuscript.

Disclosure of Potential Conflicts of Interest The author declares that there are no conflicts of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Details of flare associated solar radio type III bursts mentioned in Section 4.2 are listed in Table 2.

Table 2 Flare associated type III bursts observed using Gauribidanur e-CALLISTO during 2014.

No.	Date	Type III bursts	Start time (UT)	Frequency (MHz)	Flares				
			Start	Stop	Time (UT)	Class	Active region	Location	
1	20140101	7:25:14	47	143	07:21	07:29	C	11940	S12W47
2	20140126	8:28:44	45	219	08:26	09:33	C	11967	S14E85
No.	Date	Type III bursts	Flares						
-----	------------	-----------------	--------						
		Start time (UT)	Frequency (MHz)	Time (UT)	Class	Active region	Location		
		Start	Stop	Onset	End				
3	20140126	10:07:31	171	10:05	10:19	C	11960	S15W24	
4	20140129	4:16:44	157	04:06	04:42	C	11967	S12E65	
5	20140129	6:54:50	161	06:53	07:34	C	11967	S12E65	
6	20140129	7:00:25	98	06:53	07:34	C	11967	S12E65	
7	20140129	7:28:47	168	06:53	07:34	C	11967	S12E65	
8	20140130	7:53:54	127	07:54	08:41	M	11967	S12E52	
9	20140131	5:32:56	168	04:46	05:17	C	11967	S14E37	
10	20140210	5:03:01	177	05:04	05:23	C	11974	S12E30	
11	20140215	8:24:09	148	08:25	08:39	C	11974	S13W38	
12	20140303	7:22:29	135	07:10	07:19	C	11989	N07W31	
13	20140415	7:06:00	315	07:04	07:11	C	12035	S15E27	
14	20140415	9:16:07	284	09:15	09:25	C	12035	S14E25	
15	20140416	3:20:38	106	03:03	03:16	C	12035	S15E16	
16	20140416	4:15:03	163	04:11	04:14	C	12042	N19E79	
17	20140416	5:01:50	181	04:57	05:14	C	12035	S15E14	
18	20140416	5:15:00	242	04:57	05:14	C	12035	S15E14	
19	20140416	5:34:13	111	05:21	05:38	C	12042	N19E78	
20	20140416	6:37:11	358	06:37	06:48	C	12035	S17E13	
21	20140416	6:44:04	312	06:37	06:48	C	12035	S17E13	
22	20140416	7:16:59	253	07:17	07:26	C	12034	N03W01	
23	20140416	8:19:42	152	08:12	08:20	C	12034	N03W01	
24	20140416	8:48:38	166	08:36	08:51	C	12035	N19E75	
25	20140419	9:18:44	105	09:17	09:22	C	2032	N12W76	
26	20140419	9:25:00	254	09:24	09:29	C	2036	S15W42	
27	20140501	4:06:00	180	03:58	04:04	B	12048	N19W78	
28	20140506	8:49:46	104	08:41	09:21	M	12051	S15W84	
29	20140604	7:20:52	105	07:07	07:16	B	12080	S11E51	
30	20140611	4:40:50	103	04:39	04:56	C	12087	S12E71	
31	20140611	5:31:15	152	05:30	05:36	M	12080	S12W35	
32	20140611	7:07:46	140	07:09	07:15	C	12080	S12W36	
33	20140611	8:58:06	104	08:59	09:10	X	12087	S18E65	
34	20140613	7:44:00	105	07:49	07:59	M	12089	N18W01	
35	20140613	7:50:30	108	07:49	07:59	M	12089	N18W01	
36	20140613	9:14:28	236	09:14	09:20	C	12087	S17E41	
37	20140613	9:16:20	180	09:14	09:20	C	12087	S18E39	
38	20140617	6:29:04	183	06:29	06:31	B	12087	S20W07	
39	20140617	7:38:40	154	07:36	07:46	B	12085	S23W65	
40	20140617	8:22:55	103	08:13	08:49	C	12093	S11E61	
41	20140617	10:07:01	169	09:59	10:05	B	12085	S22W68	
No.	Date	Type III bursts	Flares						
------	---------------	-----------------	-------------------------						
		Start time (UT)	Frequency (MHz) Time (UT)	Class	Active region	Location			
		Start Stop	Start Stop Stop Onset End						
42	20140625	7:57:44	45 101	07:53 08:26	B	12096	N09E42		
43	20140628	7:35:57	45 173	07:36 07:49	C	12104	S12E89		
44	20140630	6:51:43	45 100	06:52 07:10	C	12100	N09E20		
45	20140630	7:04:16	45 104	06:52 07:10	C	12100	N09E20		
46	20140702	6:56:33	53 100	06:41 06:49	C	12106	N15E45		
47	20140702	7:39:07	53 153	07:34 07:38	C	12108	S08E64		
48	20140702	10:50:03	53 152	10:26 10:58	C	12102	N15E28		
49	20140708	2:31:09	54 98	02:31 02:36	C	12114	S19E88		
50	20140708	5:30:00	45 100	05:31 05:39	C	12113	N09E60		
51	20140709	4:37:42	51 176	04:37 04:39	C	12114	S12E61		
52	20140709	6:17:00	45 107	05:29 06:12	C	12113	N11E48		
53	20140723	7:28:02	45 228	07:28 07:51	B	12121	N07E69		
54	20140724	9:24:06	45 192	09:10 09:17	B	12121	N08E56		
55	20140725	6:58:50	45 280	06:57 07:07	C	12121	N11E35		
56	20140731	4:39:22	45 156	04:39 05:09	B	12127	S05E30		
57	20140810	6:41:42	45 138	06:44 06:52	B	12137	S18W10		
58	20140811	6:16:52	45 104	06:21 06:27	B	12137	S17W24		
59	20140811	10:07:26	45 208	10:09 10:12	B	12137	S19W26		
60	20140905	6:50:42	45 174	06:16 07:18	C	12152	S13W45		
61	20141003	3:04:36	45 179	02:57 03:15	C	12173	S13W85		
62	20141009	7:43:13	45 111	07:35 07:51	C	12182	S18W46		
63	20141011	4:12:09	45 104	03:26 04:25	B	12187	S13E88		
64	20141018	6:50:00	45 176	06:43 06:48	C	12192	S13E72		
65	20141021	4:05:18	45 177	04:03 04:07	B	12192	S09E30		
66	20141021	8:08:16	45 243	08:08 08:12	C	12192	S09E31		
67	20141024	3:55:45	45 107	03:56 04:02	C	12192	S22W00		
68	20141027	7:25:58	45 106	07:11 07:20	C	12192	S18W48		
69	20141031	9:21:06	45 280	09:19 09:27	C	12201	S02E59		
70	20141101	10:22:45	45 220	10:20 10:30	C	12201	S05E47		
71	20141102	3:06:28	45 184	03:05 03:11	B	12201	S05E36		
72	20141102	5:53:36	45 228	05:41 05:50	B	12201	S05E34		
73	20141103	3:47:59	45 360	03:47 03:56	C	12201	S03E21		
74	20141103	4:48:34	45 330	04:50 04:56	C	12201	S03E18		
75	20141103	7:04:00	45 253	07:06 07:09	B	12201	S03E17		
76	20141104	5:25:25	45 111	05:19 05:40	C	12205	N16E84		
77	20141108	4:54:31	45 108	05:02 05:10	C	12207	S12E88		
78	20141130	5:17:48	45 251	04:52 05:38	C	12222	S18E31		
79	20141130	8:42:58	45 404	07:58 09:15	B	12222	S18E29		
80	20141201	5:12:59	45 180	05:11 05:22	C	12217	S16W25		
Table 2 (Continued.)

No.	Date	Type III bursts	Flares	Location					
		Start time	Frequency (MHz)	Time (UT)	Class	Active region			
		(Start)	(Stop)	Onset	End				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
81	20141203	2:33:05	45	186	02:30	02:37	C	12217	S16W54
82	20141214	4:26:57	45	156	04:17	04:41	C	12241	S11E74
83	20141214	4:30:29	45	107	04:17	04:41	C	12241	S11E74
84	20141214	6:17:18	45	97	06:19	06:24	C	12227	S02W79
85	20141214	6:21:12	45	166	06:19	06:24	C	12227	S02W79
86	20141214	8:02:41	45	97	08:04	08:12	C	12237	S02E51
87	20141214	8:25:05	45	187	08:25	08:37	C	12237	S18E49
88	20141226	5:31:00	45	186	05:18	05:36	C	12249	S12W37

References

Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho, K.-S.: 2009, A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104, 277. DOI. ADS.

Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

Caroubalos, C., Maroulis, D., Patavalis, N., Bougeret, J.-L., Dumas, G., Perche, C., Alissandrakis, C., Hillaris, A., Moussas, X., Preka-Papadema, P., Kontogeorgos, A., Tsitsipis, P., Kanelakis, G.: 2001, The new multichannel radiospectrograph ARTEMIS-IV/HECATE, of the University of Athens. Exp. Astron. 11, 23. ADS.

Ebenezer, E., Subramanian, K.R., Ramesh, R., Sundararajan, M.S., Kathiravan, C.: 2007, Gauribidanur radio array solar spectrograph (GRASS). Bull. Astron. Soc. India 35, 111. ADS.

Fawcett, T.: 2006, An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861. DOI.

Gorgutsa, R.V., Gnezdilov, A.A., Markeev, A.K., Sobolev, D.E.: 2001, An upgrade of the Izmiran’s solar digital radio spectrograph: First results. Astron. Astrophys. Trans. 20, 547. DOI. ADS.

Guidice, D.A., Cliver, E.W., Barron, W.R., Kahler, S.: 1981, The air force RSTN system. Bull. Am. Astron. Soc. 13, 553. ADS.

Harirahan, K., Ramesh, R., Kathiravan, C., Abhilash, H.N., Rajalingam, M.: 2016, High dynamic range observations of solar coronal transients at low radio frequencies with a spectro-correlator. Astrophys. J. Suppl. Ser. 222, 21. DOI. ADS.

James, T., Subramanian, P.: 2018, Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations. Mon. Not. Roy. Astron. Soc. 479, 1603. DOI. ADS.

James, T., Subramanian, P., Kontar, E.P.: 2017, Small electron acceleration episodes in the solar corona. Mon. Not. Roy. Astron. Soc. 471, 89. DOI. ADS.

Kaiser, M.L.: 2005, The STEREO mission: An overview. Adv. Space Res. 36, 1483. DOI. ADS.

Kishore, P., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2014, Gauribidanur low-frequency solar spectrograph. Solar Phys. 289, 3995. DOI. ADS.

Kishore, P., Ramesh, R., Kathiravan, C., Rajalingam, M.: 2015, A low-frequency radio spectropolarimeter for observations of the solar corona. Solar Phys. 290, 2409. DOI. ADS.

Kondo, T., Isebe, T., Igi, S., Watari, S.-i., Tokumaru, M.: 1994, The new solar radio observation system at Hiraoso. Commun. Res. Lab. Rev. 40, 85. ADS.

Kumari, A., Ramesh, R., Kathiravan, C., Wang, T.J.: 2017, Strength of the solar coronal magnetic field – a comparison of independent estimates using contemporaneous radio and white-light observations. Solar Phys. 292(11), 161. DOI. ADS.

Kundu, M.R.: 1965, Solar Radio Astronomy. ADS.

Lobzin, V.V., Cairns, I.H., Zaslavsky, A.: 2014, Automatic recognition of type III solar radio bursts in STEREO/WAVES data for onboard real-time and archived data processing. J. Geophys. Res. 119, 742. DOI. ADS.
Lobzin, V.V., Cairns, I.H., Robinson, P.A., Steward, G., Patterson, G.: 2009, Automatic recognition of type III solar radio bursts: Automated radio burst identification system method and first observations. Space Weather 7, S04002. DOI. ADS.

Lobzin, V.V., Cairns, I.H., Robinson, P.A., Steward, G., Patterson, G.: 2010, Automatic recognition of coronal type II radio bursts: The automated radio burst identification system method and first observations. Astrophys. J. Lett. 710, L58. DOI. ADS.

McLean, D.I., Labrum, N.R.: 1985, Solar Radiophysics: Studies of Emission From the Sun at Metre Wavelengths. ADS.

Monstein, C., Ramesh, R., Kathiravan, C.: 2007, Radio spectrum measurements at the Gauribidanur observatory. Bull. Astron. Soc. India 35, 473.

Mugundhan, V., Harisharan, K., Ramesh, R.: 2017, Solar type IIIb radio bursts as tracers for electron density fluctuations in the corona. Solar Phys. 292, 155. DOI. ADS.

Mugundhan, V., Ramesh, R., Kathiravan, C., Gireesh, G.V.S., Hegde, A.: 2018, Spectropolarimetric observations of solar noise storms at low frequencies. Solar Phys. 293(3), 41. DOI. ADS.

Ramesh, R.: 2011, Low frequency solar radio astronomy at the Indian Institute of Astrophysics (IIA). In: Astronomical Society of India Conference Series, 2. ADS.

Ramesh, R., Kathiravan, C., Barve, I.V., Beeharry, G.K., Rajasekara, G.N.: 2010, Radio observations of weak energy releases in the solar corona. Astrophys. J. Lett. 719, L41. DOI. ADS.

Ramesh, R., Sasikumar Raja, K., Kathiravan, C., Narayanan, A.S.: 2013, Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762, 89. DOI. ADS.

Rucker, H.O., Macher, W., Fischer, G., Oswald, T., Bougeret, J.L., Kaiser, M.L., Goetz, K.: 2005, Analysis of spacecraft antenna systems: Implications for STEREO/WAVES. Adv. Space Res. 36, 1530. DOI. ADS.

Saint-Hilaire, P., Vilmer, N., Kerdraon, A.: 2013, A decade of solar type III radio bursts observed by the Nançay radioheliograph 1998–2008. Astrophys. J. 762, 60. DOI. ADS.

Sasikumar Raja, K., Ramesh, R.: 2013, A method for the automated detection of solar radio bursts in dynamic spectra. J. Space Weather Space Clim. 8(27), A43. DOI. ADS.

Sasikumar Raja, K., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2013a, Design and performance of a low-frequency cross-polarized log-periodic dipole antenna. Astrophys. J. Suppl. Ser. 207, 2. DOI. ADS.

Sasikumar Raja, K., Ramesh, R.: 2013b, Low-frequency observations of transient quasi-periodic radio emission from the solar atmosphere. Astrophys. J. 775, 38. DOI. ADS.

Sasikumar Raja, K., Subramanian, P., Ananthakrishnan, S., Monstein, C.: 2018, CALLISTO spectrometer at IISER-Pune. ArXiv e-prints. ADS.

Sharma, R., Oberoi, D., Arjunwadkar, M.: 2018, Quantifying weak nonthermal solar radio emission at low radio frequencies. Astrophys. J. 852, 69. DOI. ADS.

Tarnstrom, G.L., Philip, K.W.: 1972, Solar radio spike bursts. Astron. Astrophys. 16, 21. ADS.

Wild, J.P.: 1967, The radioheliograph and the radio astronomy programme of the Culgoora Observatory. Proc. Astron. Soc. Aust. 1, 38. DOI. ADS.

Zhang, P.J., Wang, C.B., Ye, L.: 2018, A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data. Astron. Astrophys. 618, A165. DOI. ADS.