Abstract: The main components of sambong (Blumea balsamifera) are listed in this article. The whole plant and its crude extracts, as well as its isolated constituents, display numerous biological activities, such as antitumor, hepatoprotective, superoxide radical scavenging, antioxidant, antimicrobial and anti-inflammation, anti-plasmodial, anti-tyrosinase, platelet aggregation, enhancing percutaneous penetration, wound healing, anti-obesity, along with disease and insect resistant activities. Although many experimental and biological studies have been carried out, some traditional uses such as rheumatism healing still need to be verified by scientific pharmacological studies, and further studies including phytochemical standardization and bioactivity authentication would be beneficial.
Keywords: Traditional Chinese Medicines; *Blumea balsamifera*; sambong; herbal authentication; phytochemistry; biological activities

1. Introduction

Nowadays, herbal medicines are widely consumed and their sales have been rising significantly all over the world. According to the reports of the World Health Organization (WHO), to treat diseases over 80% of the populations in developing countries mainly rely on herbs, which are considered to be safer and more effective than synthetic drugs [1–3].

Blumea balsamifera (L.) DC. (Asteraceae), also known as sambong, has been used as medicine for thousands of years in Southeast Asia countries, such as China, Malaysia, Thailand, Vietnam, and Philippines. Sambong is the most important member of the genus *Blumea* and is an indigenous herb of tropical and subtropical Asia, especially in China. This plant grows on forest edges, under forests, river beds, valleys and grasses [4,5]. In China, it is generally a common used herb in the areas south of the Yangtze River, such as Hainan, Guizhou, Yunnan, and Guangdong provinces and Taiwan [6–8].

B. balsamifera is commonly called “Ainaxiang” and “Dafeng’ai” in Chinese and used as incense because it has a high level of essential oils [9]. It was originally recorded in “Bei Ji Qian Jin Yao Fang” in 652 by Sun Simiao. The whole plant or its leaves were used as a crude Chinese traditional medicinal material to treat eczema, dermatitis, beriberi, lumbago, menorrhagia, rheumatism, skin injury, and as an insecticide [10]. Bing Pian and Aipian are two important traditional Chinese medicines (TCMs) extracted from plants and have been used as one in prescriptions for centuries in China. Both of them mainly contain borneol and are similar in efficacy [11]. They are synonymous in the Chinese pharmaceutical industry nowadays. Before 2010, sambong was one of the most important plant sources for Bing Pian, but since 2010, the Pharmacopoeia of the People’s Republic of China records *B. balsamifera* as the only plant source for Aipian [11], with a consistent efficacy with *B. balsamifera* medicinal materials, which could induce resuscitation, clear heat, and relieve pain. Recently, extracts of its leaves have been verified to display various new physiological activities, such as antitumor [12–14], antifungal [13,15], radical-scavenging [16], and anti-obesity properties [17]. The main active compound is L-borneol, which was characterized by a high volatility. Besides, essential oils, flavonoids, and terpenoids with several different biological activities were also reported [18]. These studies could explain why this plant has multiple pharmacological effects.

In this review, botanical descriptions, herbal authentications, and phytochemical constituents of *B. balsamifera* are covered. In addition, the previous *in vitro* and *in vivo* studies conducted on its biological activities are reviewed, concentrating on antitumor, hepatoprotective, superoxide radical scavenging, antioxidant, antimicrobial, anti-inflammation, antiplasmodial, antityrosinase, platelet aggregation, wound healing, anti-obesity, disease and insect resistant activities as well as enhancing percutaneous penetration.
General Botanical Description

According to the description of Flora Republicae Popularis Sinicae and Chinese Materia Medica [19,20], *B. balsamifera* is a perennial herb or subshrub, which rises about 1–3 meters in height. Its stem is strong and taupe, and erects with taupe, longitudinal edges. Its upper internodes are covered by dense tawny nonglandular hair. Its leaves, when triturated, send out a unique, cool aroma, which can make people feel refreshed. The leaves are wide ovoid or oblong-lanceolate in shape at the bottom, 22–25 cm in length, 8–10 cm in width. Its base is attenuated with petiole, narrow linear appendants of 3–5 pairs on both sides, pubescent above, slight brown or thick yellow-white silky-villous, highlighted below midrib, with lateral veins of 10–15 pairs. The leaves at the top are oblong-lanceolate or ovate-lanceolate in shape, 7–12 cm in length, 1.5–3.5 cm in width, with an acuminate apex, a slightly acuminate base, without petiole or with a short petiole with narrow linear appendants of 1–3 pairs, entire or with thin serration or pinnatopectinate. Capitulum is arranged in much more branched leafy panicles; a peduncle with yellow and dense pubescence; an involucre campanulate, and a dense pubescence at the back. Its flower is yellow, with numerous female parts; tubular corolla, receptacle honeycomb, and corolla thin tubulous. Akene is cylindrical, with five edges, a dense pubescence, and a red-brown rough hairy pappus. The flowering period almost covers the whole year. *B. balsamifera* often grows in forest edges, under forests, river beds, valleys, or grasslands, and the altitude is 600–1000 m. In addition to its various Chinese locations it is also distributed in India, Pakistan, Burma, Indo-China Peninsula, Malaysia, Indonesia and Philippines.

2. Phytochemistry

There have been more than 100 volatile or non-volatile constituents isolated from sambong, including monoterpenes, sesquiterpenes, diterpenes, flavonoids, organic acids, esters, alcohols, dihydroflavone, and sterols. The study of the plant mainly focused on the volatile oils and flavonoids, which possessed various bioactivities in vivo and in vitro. The chemical constituents of *B. balsamifera* have been reviewed earlier [8,18].

2.1. Volatile Constituents

The volatile constituents account for the largest amount of the constituents in *B. balsamifera*, which are the major active constituents containing terpenoids, fatty acids, phenols, alcohols, aldehydes, ethers, ketones, pyridines, furans, and alkanes (Table 1, Appendix A). The most important constituent is l-borneol. To address the need for a natural borneol, different extraction methods have been used to extract the volatile constituents from *B. balsamifera*. Steam distillation (SD), simultaneous distillation and extraction (SDE), and CO₂ supercritical extraction were the most common methods in the extraction of volatile oils [21–24]. Wang et al. have adopted SD, SDE, and headspace solid-phase micro-extraction (HS-SPME) in order to obtain the volatile compounds of *B. balsamifera* leaves [23]. The extracts were then isolated and were identified by gas chromatography mass spectrometry (GC-MS). They found that alcohols and terpenoids were the main volatile compounds and the terpenoids accounted for a considerable proportion. Fifty, twenty-four, and forty-nine kinds of compounds were extracted by SD, SDE, and HS-SPME, respectively.
Table 1. The known volatile constituents of B. balsamifera.

Classification	Compound name	Molecular formula	References
Monoterpenes	l-borneol	C_{10}H_{18}O	[22,25,26]
	Isoborneol	C_{10}H_{18}O	[22,23,27]
	(+)-Limonene	C_{10}H_{16}	[21,25,28]
	(−)-Limonene	C_{10}H_{16}	[23]
	(E) Ocimene	C_{10}H_{16}	[23,27,28]
	(Z)-β-Ocimene	C_{10}H_{16}	[23]
	β-Myrcene	C_{10}H_{16}	[28]
	Camphene	C_{10}H_{16}	[21,23,25,27,28]
	α-Pine ne	C_{10}H_{16}	[21,25,27,28]
	β-Pine ne	C_{10}H_{16}	[21,25,27,28]
	Terpinen-4-ol	C_{10}H_{18}O	[21,22,27]
	Perillyl alcohol	C_{10}H_{18}O	[21,28]
	Chrysantheneone	C_{10}H_{18}O	[21,23,27]
	α-Terpineol	C_{10}H_{18}O	[22,23,26,27]
	Bornyl acetate	C_{12}H_{20}O_{2}	[23]
	Sabinene	C_{10}H_{16}	[27]
	α-Thujene	C_{10}H_{16}	[27]
	Trans-linalool oxide	C_{10}H_{18}O	[27]
	Linalool oxide	C_{10}H_{18}O	[21]
	1,8-Cineole	C_{10}H_{18}O	[26]

Oxygenated monoterpenes			
Perilla aldehyde	C_{10}H_{18}O	[21,25,28]	
Cuminaldehyde	C_{10}H_{18}O	[27,28]	
Myrtenal	C_{10}H_{18}O	[21,27]	
Thymohydroquinone dimethyl ether	C_{12}H_{20}O_{2}	[21]	

α-Gurjunene	C_{15}H_{34}	[21,23,25,27]
Alloaromadrene	C_{15}H_{34}	[23,25]
(+)-Aromadrene	C_{15}H_{34}	[23]
Aromadrene	C_{15}H_{34}	[21,23,27,28]
Aromadrene oxide	C_{15}H_{32}O	[28]
Aromadrene, dehy dro	C_{15}H_{32}	[28]
Longifolene	C_{15}H_{34}	[23,27]
α-Caryophyllene	C_{15}H_{34}	[21,23,25–28]
β-Caryophyllene	C_{15}H_{34}	[21,25,27]
Caryophyllene oxide	C_{15}H_{32}O	[21,22,26–28]
Guai-a-3,9-diene	C_{15}H_{34}	[26,28]
γ-Cadinene	C_{15}H_{34}	[21,27]
δ-Cadinene	C_{15}H_{34}	[21,27,28]
β-Selinene	C_{15}H_{34}	[27]

(+)-β-Selinene(β-Selinene)	C_{15}H_{34}	[26]
β-Gurjunene	C_{15}H_{34}	[26]
(+)-γ-Gurjunene	C_{15}H_{34}	[23]
Thujopsene-13	C_{15}H_{34}	[23,28]
β-Elemene	C_{15}H_{34}	[28]
(-)-β-Elemene	C_{15}H_{34}	[23]
(-)-γ-Cadinene	C_{15}H_{34}	[23]
(-)-δ-Cadinene	C_{15}H_{34}	[23]
10-Epi-γ-Eudesmol	C_{15}H_{36}O	[21,23,25,27]
Globulol	C_{15}H_{36}O	[27,28]
(-)-Guaiol	C_{15}H_{36}O	[21,22,25,28]
Ledol	C_{15}H_{36}O	[21,23,25,28]
γ-Muurole ne	C_{15}H_{34}	[26,28]
Elemol	C_{15}H_{36}O	[21,23,27]
α-Eudesmol	C_{15}H_{36}O	[21,25]
β-Eudesmol	C_{15}H_{36}O	[21,23,27,28]
Table 1. Cont.

Classification	Compound name	Molecular formula	References
Sesquiterpenes			
56	γ-Eudesmol	C_{15}H_{26}O	[21,23,25,28]
57	Carotol	C_{15}H_{26}O	[23,28]
58	Cubenol	C_{15}H_{26}O	[23,28]
59	16-Kaurene	C_{26}H_{32}	[23]
60	1-Ang-4,7-dihydroxyeudesmane	C_{26}H_{30}O	[9]
61	Phytol	C_{20}H_{40}O	[26,28]
62	Blumeaene A	C_{20}H_{30}O	[9]
63	Blumeaene B	C_{20}H_{30}O	[9]
64	Blumeaene C	C_{20}H_{30}O	[9]
65	Blumeaene D	C_{20}H_{30}O	[9]
66	Blumeaene E	C_{20}H_{30}O	[9]
67	Blumeaene F	C_{20}H_{30}O	[9]
68	Blumeaene G	C_{20}H_{30}O	[9]
69	Blumeaene H	C_{20}H_{30}O	[9]
70	Blumeaene I	C_{20}H_{30}O	[9]
71	Blumeaene J	C_{20}H_{30}O	[9]
Diterpenes			
72	(11Z)-11-hexadecenoic acid	C_{16}H_{30}O	[23]
73	Trans-2-undecenoic acid	C_{12}H_{24}O	[22]
74	9-Hexadecenoic acid	C_{16}H_{30}O	[27]
75	Capric acid	C_{10}H_{20}O	[27]
76	Palmitic acid	C_{12}H_{20}O	[23]
Phenols			
77	Xanthoxylin	C_{10}H_{12}O	[23,29,30]
78	Eugenol	C_{10}H_{12}O	[21,22,26]
79	Dimethoxydurene	C_{12}H_{18}O	[25]
Alcohols			
80	1-Octen-3-ol	C_{8}H_{16}O	[21,23,25,27]
81	3-Octanol	C_{8}H_{16}O	[21,23,25]
Aldehydes			
82	3-Propyl benzaldehyde	C_{10}H_{12}O	[25,31]
83	4-Isopropylbenzaldehyde	C_{10}H_{12}O	[21,22]
Ketones			
84	3-Octanone	C_{8}H_{16}O	[21,23]
85	2-Hydroxy-4,6-dimethoxyacetophenone	C_{10}H_{14}O	[27]
Pyridines			
86	3-Fluoro-5-amino-pyridine	C_{5}H_{4}FN_{2}	[22]
Furans			
87	Furan,4,5-diethy-2,3-dihydro-2,3-dimethyl	C_{10}H_{14}O	[22]
88	1,3,4,5,6,7-hexahydro-2,5,5-trimete-hyl-2H-2,4A-et hanonaphthalene	C_{10}H_{14}	[23,25]
Others			
89	Paracyanine (4-Isopropylflouleu)	C_{10}H_{14}	[27]
90	3-Nitrophthalic acid	C_{6}H_{4}NO_{3}	[23]
91	α-Butenoic acid, 3-methoxy-4-nitro	C_{6}H_{4}NO_{3}	[22]
92	O-acetyl-1-serine	C_{6}H_{4}NO_{3}	[22]
93	4,4-dimethyltetracyclo[6.3.2.0^{2,5}.0^{1,8}]tridecan-9-ol	C_{13}H_{22}O	[28]

Several volatile oils are contained in the leaves and branchlets of *B. balsamifera*, which are the key crude materials of refined borneol [28]. Volatile oil in *B. balsamifera* is a yellow oily liquid with a unique aroma [32]. The oil yield of this plant is at least 2.5 mg/g (D·W) in Guizhou, China. If the plants are fertilized in certain way, it can be much higher, may be up to 7.72 mg/g (D·W) [33]. In Hainan (China), Pang et al. also got an oil yield of 3.2–4.3 mg/g (unpublished data). Some previous studies have reported that the volatile oils of *B. balsamifera* mainly contained monoterpenes and sesquiterpenes, such as L-borneol, 10-epi-γ-eudesmol, γ-eudesmol, β-eudesmol, α-eudesmol, limonene, L-camphor, palmitic acid, and D-camphor [21]. Hao et al. have qualitatively and quantitatively analyzed the volatile oil of *B. balsamifera* growing in Guizhou Province by GC-MS [25]. A total of 28 constituents were identified in this study, including: L-borneol, β-caryophyllene, camphor, γ-eudesmol, L-octen-3-ol, trans-β-ocimene, and 1,3,4,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalene.
Fifty-six compounds were separated and identified in the volatile oils of *B. balsamifera* by GC-MS according to the studies of Du *et al.* [22]. According to their studies, the main constituents are borneol and camphor. Others are isoborneol, terpineol, caryophyllene, eugenol, guaiol, and cubenol. Bhuiyan *et al.* also studied the volatile oils of *B. balsamifera* leaves to isolate fifty constituents, which contributed to 99.07% of the oil [28]. The main constituents were borneol (33.22%), caryophyllene (8.24%), ledol (7.12%), and 4,4-dimethyltetraycloc[6.3.2.02,5.01,8]tridecan-9-ol, (5.18%). It was difficult to give a trivial name to or classify 4,4-dimethyltetraycloc-[6.3.2.02,5.01,8]tridecan-9-ol, because it had a non-typical structure, which made it seem rather a fragment of some other compound(s). The contents of other constituents such as phytol, caryophyllene oxide, thujopsene-13, guaiol, dimethoxydurene, and γ-eudesmol were 3%–5%. Wen *et al.* adopted a RP-HPLC method to measure the content of xanthoxylin in different parts of *B. balsamifera* [34]. Xia *et al.* selected fourteen different regions of *B. balsamifera* to establish a GC chromatographic fingerprint [35]. The sample plants were selected from Hongshuine village (II), Luodian, and Guizhou with the highest concentration of L-borneol. Chu *et al.* reported 1,8-Cineole contribute 20.98% to *B. balsamifera* oil in Nanning, Guangxi Zhuang Autonomous Region, China, while Pang *et al.*, didn’t find it when they analyzed sambong oil with GC-MS (unpublished data), as well as some other research [22,25]. Sun, Shirotia, and Xu also determined the contents of constituents in *B. balsamifera* oil [36–38]. The Aifen, *B. balsamifera* powder, is a crude product during the production of Aipian. Jiang *et al.* found that the yield and extraction rate of Aifen increased significantly if the plant materials were harvested from October to December [39].

2.2. Non-Volatile Constituents

2.2.1. Flavonoids Constituents

Flavonoids, including flavonoid, flavanone and chalcone constituents, are the major non-volatile constituents of *B. balsamifera* (Table 2, Appendix B). The ultrasonic extraction methods of total flavonoids of *B. balsamifera* were studied by Pang *et al.* [40]. It was found that 30% ethanol was the suitable extraction solvent with the solid/liquid ratio of 1/300. It was then extracted by ultrasonic frequency (85 Hz), twice, each time for 30 min, where the extraction yield was 208.6 mg/g. Previous phytochemical studies have shown that the leaves of *B. balsamifera* included a number of flavonoids, such as blumeatin, velutin, tamarixetin, dihydroquercetin-7,4'-dimethyl ether, ombuine, rhamnetin, luteolin-7-methyl ether, luteolin, quercetin, 5,7,3',5'-tetrahydroxyflavanone, and dihydroquercetin-4'-methyl ether [16,41–44]. With the advances in phytochemical studies of *B. balsamifera*, flavonoids have been recognized for their medicinal properties and the investigation, validation, standardization of the local plant have been developed as an herbal medicine. Ali *et al.* extracted 3,4',5-trihydroxy-3',7-dimethoxyflavanone from the ligroin extract of *B. balsamifera* leaves [31]. The constituents of 3',4',5-trihydroxy-7-methoxyflavanone and a new bioflavonoid, determined as 3-O-7''-biluteolin, were extracted by acetone. Zhu *et al.* isolated three constituents, including: xanthoxylin, blumeatin, dihydroquercetin-7, and 4'-dimethylthele [29]. Chen *et al.* also obtained three flavonoid compounds from aerial parts of *B. balsamifera* [45]. The compounds of 5,7-dihydroxy-3',4'-trim ethoxy flavone, davidigenin, catechin, ayanin, and davidioside were originally extracted from *B. balsamifera*. In the
same year, Huang et al. isolated and identified seven constituents from this plant [46]. The constituents of 5,4'-dihydroxy-7-methoxyflavone and 5,4'-dihydroxy-3,3',7-trimethoxy flavanone were first found in the plant. Deng et al., Zhu, Saewan et al., Yan et al., and Tan et al. also studied the flavonoid constituents [14,29,47–49]. Liang et al. used the methods of silica gel column chromatography, TLC, and Sephadex LH-20 column chromatography in order to isolate the chemical constituents of the plant, the structures of which were determined by physico-chemical constants and spectral analysis [39]. As a result, seven constituents were isolated. Besides, the contents of the flavonoids were determined by different methods. The chromatographic methods of RP-HPLC (reversed-phase high-performance liquid chromatographic), and HPLC were the most widely used to determine the contents of flavonoids of B. balsamifera [44,50]. Huang et al. determined the total amount of flavonoids in different parts of B. balsamifera [51]. The results exhibited that the total flavonoid content was 2.94%, 1.21%, and 1.36% in the leaves, branch, and stem, respectively.

Table 2. The known non-volatile constituents of B. balsamifera.

Classification	Compound Name	Molecular Formula	References
Flavones			
1	4',5-Dihydroxy-7-methyletherflavanone	C_{16}H_{12}O_{5}	[30,46]
2	Luteolin	C_{15}H_{10}O_{6}	[9,14,30,39,46]
3	Luteolin-7-methyl-ether	C_{16}H_{12}O_{6}	[14,30,46]
4	Diosmetin (Luteolin 4'-methyl ether)	C_{16}H_{12}O_{6}	[48]
5	Chrysoeriol (Luteolin 3'-methyl ether)	C_{16}H_{12}O_{6}	[48]
6	Quercetin	C_{15}H_{10}O_{7}	[9,14,39,44]
7	3,5,3',4'-Tetrahydroxy-7-methoxyflavone	C_{16}H_{12}O_{7}	[9,31,47]
8	3,5,3'-Trihydroxy-7,4-dimethoxyflavone	C_{17}H_{14}O_{7}	[9,45,47]
9	Rhamnetin (7-Methoxyquercetin)	C_{16}H_{12}O_{7}	[14,30,46]
10	Tamarixetin	C_{16}H_{12}O_{7}	[14]
11	Ombuine	C_{17}H_{14}O_{7}	[49]
12	3,5,7-Trihydroxy-3',4'-dimethoxyflavone	C_{17}H_{14}O_{7}	[48]
13	3,3',4',5-Tetrahydroxy-7-methoxyflavone	C_{16}H_{12}O_{7}	[48]
14	3,5-Dihydroxy-3',4',7-trimethoxyflavone	C_{18}H_{16}O_{7}	[48]
15	4',5-Dihydroxy-3,3',7-trimethoxyflavone	C_{18}H_{16}O_{7}	[30,46]
16	5,7-Dihydroxy-3,3',4',trimethoxyflavone	C_{18}H_{16}O_{7}	[9,45]
17	Ayanin	C_{18}H_{16}O_{7}	[9,45]
18	Chrysosplenol	C_{18}H_{16}O_{6}	[45]
19	4',5,7-Trihydroxy-3,3'-dimethoxyflavone	C_{17}H_{14}O_{7}	[48]
20	Hyperoside	C_{21}H_{20}O_{12}	[48]
21	Isoquercitrin	C_{21}H_{20}O_{12}	[48]
Flavanones			
22	Blumeatin (5,3,5'-trihydroxy-methoxydihydro-flavone)	C_{16}H_{14}O_{6}	[9,14,29,30,45,52]
23	Eriodictyol	C_{15}H_{12}O_{6}	[30,46]
24	5,7,3',5'-Tetrahydroxyflavanone	C_{15}H_{12}O_{6}	[9,44,45]
25	3',4',5-Trihydroxy-7-methoxyflavanone	C_{18}H_{15}O_{6}	[45]
Table 2. Cont.

Classification	Compound Name	Molecular Formula	References	
Flavanonols				
26	Dihydroquercetin-4’-methylether	C_{16}H_{14}O_{2}	[9,12,14,30,39,45,52,53]	
27	Dihydroquercetin-7,4’-dimethylether	C_{17}H_{16}O_{2}	[9,14,29,30,39,45,52,53]	
28	3,4’5-Trihydroxy-3’7-dimethoxyflavanone	C_{17}H_{18}O_{6}	[45]	
29	3,3’,5’,7-Pentahydroxyflavanone	C_{15}H_{11}O_{2}	[48]	
30	3,3’,4’,5-Tetrahydroxy-7-methoxyflavanone	C_{16}H_{15}O_{6}	[48]	
31	3,3’,5-Trihydroxy-4’,7-dimethoxyflavanone	C_{17}H_{18}O_{6}	[48]	
32	3,3’,5-Tetrahydroxy-4’-methoxyflavanone	C_{16}H_{15}O_{6}	[48]	
33	3’,4’,5-Trihydroxy-3,7-dimetoxyflavanone	C_{17}H_{18}O_{6}	[48]	
Flavanols				
34	Catechin	C_{15}H_{14}O_{6}	[9,45]	
35	(2R,3R)-(+)7-O-Methyldihydroquercetin		[53]	
Chalcones				
36	Davidoside	C_{17}H_{22}O_{6}	[9,45]	
37	Davidigenin	C_{15}H_{15}O_{4}	[9,45]	
Sesquiterpene lactone				
38	Blumealactone A	C_{19}H_{26}O_{6}	[54]	
39	Blumealactone B	C_{20}H_{28}O_{6}	[54]	
40	Blumealactone C	C_{16}H_{22}O_{6}	[54]	
Sterides				
41	β-Sitosterol	C_{20}H_{32}O	[9]	
42	5a,8a-Epideoxyergosta-6,22-dien-3β-ol	C_{35}H_{44}O_{3}	[9]	
43	Daucosterol	C_{35}H_{44}O_{6}	[9,39]	
Diterpenes				
44	Cryptomeridiol	C_{19}H_{32}O_{2}	[55]	
Triterpenes				
45	3,13-Clerodadiene-6,15-diol	C_{20}H_{32}O_{2}	[9]	
46	Austroinulin	C_{20}H_{32}O_{4}	[55]	
Lignans				
47	Syringaresinol	C_{22}H_{28}O_{6}	[9]	
Coumarin				
48	Hydrangetin	C_{10}H_{10}O_{4}	[9]	
49	Umbelliferone (7-hydroxycoumarin)	C_{8}H_{8}O_{3}	[9]	
Naphthalenone	50	5,7-Dihydroxychromone	C_{16}H_{14}O_{4}	[49]

2.2.2. Sterols

Apart from the above constituents, a small number of sterols were also isolated from *B. balsamifera*. Zhao *et al.* obtained colorless acicular as well as sheet crystals from *B. balsamifera* by silica gel column chromatography [56], where the crystals were identified to be stigmasterol and β-sitosterol by TLC and melting point measurement. Chen isolated β-sitosterol, daucosterol, and 5α,8α-epideoxyergosta-6,22-dien-3β-ol from the aerial sections of *B. balsamifera* collected from Mengla, Yunnan by MS determination [9]. Liang *et al.* yielded seven compounds, which were isolated from ethyl acetate and chloroform extract, including daucosterol [39].

2.2.3. Sesquiterpene Lactone (SLs)

Sesquiterpene lactones (SLs) are a group of common chemicals in many Asteraceae plants. They were famous because they had cytotoxic and potential to be tumor inhibitors [57,58]. In sambong, a member of Asteraceae family, there were three sesquiterpene lactones, Blumealactone A, Blumealactone B, and Blumealactone C. Fujimoto *et al.* isolated them by extracting its dried leaves with 90% ethanol [54].
2.2.4. Other Constituents

There were some other constituents in this plant. Chen found two coumarin constituents, such as umberlliferone and hydranngetin, in *B. balsamifera*. He also found a lignans constituent, which was syringaresinol [9].

3. Biological Activities

3.1. Antitumor Activity

Hasegawa *et al.* extracted a dihydroflavonol from *B. balsamifera* as a result of screening among more than 150 plant materials [12]. The dihydroflavonol components showed the most significant synergism with tumor related apoptosis inducing ligand (TRAIL). It enhanced the level of TRAIL-R2 promoter activity and promoted the expression of surface protein in a p53-independent manner. The ethanol extract of *B. balsamifera* leaves was tested on male mice to investigate its hepatotoxicity. The results exhibited that the hepatic cells, sitoplasm, nucleus, and sinusoid of the mice liver were damaged through some changes in the liver color and texture [59]. The methanol extract of *B. balsamifera* inhibited the growth in rat and showed no cytotoxicity on human hepatocellular carcinoma cells. The methanol extract decreased the expression of cyclin-E and phosphorylation of retinoblastoma (Rb) protein resulting in cell cycle arrest. Likewise, it decreased the level of the proliferation related ligand (APRIL) [60,61]. Moreover, the methanol extract of *B. balsamifera* was used to determine its cytotoxicity on a panel of human cancer cell lines by MTT assay. There was no regular or acute cytotoxicity on the cells of HepG2, HCT-116, T-47D, NCI-H23 and CCD-18Co [62]. Saewan *et al.* found six compounds out of nine isolated flavonoids to have cytotoxicity against KB, MCF-7, and NCI-H187 cancer cell lines [14]. These six compounds were evaluated for cytotoxicity against KB, MCF-7, and NCI-H187 cancer cell lines. Three compounds were active against the KB cells with the IC$_{50}$ values of 17.09, 47.72, and 17.83 µg/mL, respectively. Another three compounds exhibited a moderate activity against the NCI-H187 cells with the IC$_{50}$ values of 16.29, 29.97, and 20.59 µg/mL. Luteolin-7-methyl ether showed a strong cytotoxicity against human lung cancer (NCI-H187) cell lines with an IC$_{50}$ of 1.29 µg/mL and a moderate toxicity against oral cavity cancer (KB) cell lines with an IC$_{50}$ of 17.83 µg/mL. Li *et al.* studied the antitumor activity determined by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay [13]. The three endophytic streptomyces strains of *B. balsamifera*, including: YIM 56092, YIM 56093, and YIM 56099 exhibited anticancer activity. Yet, different strains displayed different antitumor activities. The YIM 56092 strain displayed a cytotoxic activity on polyketide synthases I (PKS-I) nonribosomal peptide synthetases (NRPS) and P388D1. The YIM 56093 strain displayed a cytotoxic activity on PKS-II, NRPS, and P388D1. The YIM 56099 was on the PKS-I, PKS-II, and NRPS. Fujimoto *et al.*, extracted blumealactone A, B, and C from sambong’s dried leaves and found them could inhibit the growth of Yoshida sarcoma at the concentration of 5–10 µg/ml [54]. Lee disclosed a medication combination including sambong (Ainaxiang) and found it could enhance the efficiency of curing hepatoma and pancreatic cancer treatments [63].
3.2. Hepatoprotective Effects

Xu et al. demonstrated that oral blumeatin (5,3′,5-trihydroxy-7-methoxydihydroflavone) exhibited a significant protective activity against the liver injury caused by paracetamol and prednisolone [64]. Furthermore, Xu and Zhao have shown that five other blumea flavanones possessed protective activity for acute experimental liver injury [65]. Pu et al. further verified the five blumea flavanones protecting the hepatocytes against lipid peroxidation, which was induced by CCl4 or FeSO4+cysteine. Certain concentration of the five compounds (10–100 μmol/L) inhibited the malonaldehyde production, GSH depletion, and GPT leakage of hepatocytes [66]. Furthermore, blumea flavanone II showed the strongest activity. They also reported that the blumea flavones had protective effects against acute liver injury induced by different chemicals [67].

3.3. Superoxide Radical Scavenging Activity

The methanol extracts of B. balsamifera leaves showed a higher radical scavenging activity than the chloroform extracts. However, the pet-ether extracts had less activity against nonenzymatically generated superoxide radicals. The capacity of nine kinds of flavonoids (100 mmol/L) of the plant was decreased as follows: quercetin > luteolin > 5,7,3′,5′-tetrahydroxyflavanone > blumeatin > rhamnetin > tamarixetin > luteolin-7-methyl ether > dihydroquercetin-4′-methyl ether > dihydroquercetin-4′,7-dimethyl ether. The flavonoids showed more activity than methylated compounds [16]. Zhao and Xu studied antiperoxidant activities of five compounds of blumea flavanones [68]. As a result, five compounds with the concentration of 10⁻⁵–10⁻⁴ mol/L of blocked malondialdehyde formation in homogenates and in liver mitochondria of rats in vitro.

3.4. Antioxidant Activity

Nguyen et al. demonstrated the methanol extracts of B. balsamifera (collected in Lam Dong province) with strong xanthine oxidase inhibitory activity with an IC₅₀ value of 6.0 μg/mL [69]. They also verified the seven compounds of B. balsamifera methanol extract in Vietnam, which exhibited significant xanthine oxidase inhibitory activity. Three compounds among them, such as (2R,3S)-(−)-4′-O-methylidihydroquercetin, quercetin, and quercetin-3,3′,4′, showed a higher potent inhibitory activity, with their IC₅₀ values ranging from 0.23 to 1.91 mmol/L, as compared to that of the positive control allopurinol (IC₅₀ of 2.50 mmol/L) [70]. Furthermore, Nessa et al. have found that the methanol extract of B. balsamifera exhibited a higher xanthine oxidase inhibitory activity as compared to that of the chloroform and pet-ether extracts [71]. The activity of the isolated flavonoids’ order was as follow: allopurinol > luteolin > quercetin > tamarixetin > 5,7,3′,5′-tetrahydroxyflavanone > rhamnetin > luteolin-7-methylether > blumeatin > dihydroquercetin-4′-methylether > dihydroquercetin-7,4′-dimethyl ether > L-ascorbic acid. The plant of B. balsamifera was collected in Taiwan and the dry powder of the whole plant was extracted twice with methanol. The methanol extracts showed an activity on scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC₅₀ value of 72 g/mL. The superoxide anion scavenging activity was over 200 g/mL [72].
3.5. Anti-Microbial and Anti-Inflammation Activity

Ongsakul et al. claimed that the crude aqueous and ethanolic extracts of *B. balsamifera* displayed no significant antibacterial activity against the strains of *Staphylococcus aureus* and *Escherichia coli* [73]. However, the strain of *B. balsamifera*, including YIM 56092 and YIM 56093, displayed a significant activity against *S. epidermidis*, such that YIM 56099 was active against *E. coli*. There seems to be no antimicrobial activity against *S. aureus*, *Klebsiella pneumonia*, and *Candida albicans* [13]. Chen isolated twelve new compounds [9], four of which displayed inhibitory activities against LPS-induced NO production in RAW 264.7 with the IC\(_{50}\) values of 40.06, 46.35, 57.80, and 59.44 \(\mu\)g/mL, respectively. Sakee et al. reported the essential oil of *B. balsamifera* to have a minimum inhibitory concentration (MIC) of 150 \(\mu\)g/mL and 1.2 mg/mL against *Bacillus cereus*, *S. aureus* and *Candida albicans*, respectively [74]. Furthermore, the hexane extract inhibited *Enterobacter cloacae* and *S. aureus*. These results suggested that the extracts of *B. balsamifera* possessed an activity against certain kinds of infectious and toxin-producing microorganisms. It could potentially be utilized to prevent and treat microbial diseases.

3.6. Antiplasmodial Activities

According to the traditional efficacy of relieving fever, the methanol extract of *B. balsamifera* from Forest Research Institute Malaysia was investigated for any potential antiplasmodial activity. The extracts of roots and stems exhibited some activity against *Plasmodium falciparum* D10 strain (sensitive strain) with an IC\(_{50}\) value of (26.25 ± 2.47) \(\mu\)g/mL and (7.75 ± 0.35) \(\mu\)g/mL, respectively [75].

3.7. Antityrosinase Activities

The ethylacetate extract consisting of nine flavonoids were isolated from the leaves of *B. balsamifera*. Their antityrosinase activities were surveyed by Saewan et al. [14]. According to their reports, compared with arbutin, two dihydroflavonols, dihydroquercetin-4'-methylether and dihydroquercetin-7,4'-dimethylether, and three flavonols, quercetin, rhamnetin and tamarixetin, showed a significantly higher inhibitory activity, but another two flavanones, 5,7,3',5'-tetrahydroxyflavanone and blumeatin, and two flavones, luteolin and luteolin-7-methyl ether, showed a lower inhibitory activity. The possible mechanism of the antityrosinase activity might be the cause of chelating with copper in the active center of tyrosinase.

3.8. Platelet Aggregation Activities

The concentration of 1.26 \(\mu\)mol/L blumeatin displayed a significant promoting activity on the rat and human platelet aggregation caused by arachidonic acid, 5-hydrotypamice, and epinephrine. However, concentrations of 0.315 and 2.52 \(\mu\)mol/L inhibited platelet aggregation. It suggested that the effects of blumeatin on the platelet aggregation were dependent upon the concentration used. The injection of *B. balsamifera* extracts decreased the blood pressure, expanded the blood vessels, and inhibited the sympathetic nervous system in order to address the high pressure and insomnia. The infusion of the plant also had the function of diuresis [67].
3.9. Enhancing Percutaneous Penetration Activity

The l-borneol, as the main effective compound of *B. balsamifera*, showed a percutaneous penetration enhancer effect. The essential oil camphor and 1-menthol of the plant specifically promoted the percutaneous absorption of nicotinamide [9]. Fu et al. further verified the 0.5%, 1.0%, and 2.0% *B. balsamifera* oil enhancing albuterol sulfate transdermal absorption, respectively [76]. The percutaneous penetration of a combination of 1.0% *B. balsamifera* oil and 1.0% azone was less than that of their separate uses.

3.10. Wound Healing Activity

Wang et al. discovered that the external application of *B. balsamifera* oil on the intact and damaged skin of rats exhibited no acute toxicity [77]. The rats with pure *B. balsamifera* oil exposure at dosage of 2000 mg/kg for 24 h showed no allergic reaction or acute toxicity reaction, but a better wound recovery activity as compared to the one treated with non-*B. balsamifera* oil formulations. The results were consistent with the traditional use in ethnic minority, Li and Miao, in China in order to heal the skin wound and itch [19].

3.11. Anti-Obesity Activity

Kubota et al. reported that the extracts of *B. balsamifera* inhibited the lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activities [17], which mainly decreased the expressions of key adipogenic transcription factors, such as peroxisome proliferator-activated receptor γ, CCAAT element binding protein, and leptin in the 3T3-L1 adipocytes. Therefore, the extracts of *B. balsamifera* might possess antidiabetic, antiatherogenic, and anti-inflammatory functions. The methanol extracts of *B. balsamifera* (100 μg/mL) were used to investigate the ability of inhibiting blood vessel’s formation by the method of rat aortic ring. The results exhibited that there was no remarkable differences between *B. balsamifera* extracts and vehicle control treatment [62].

3.12. Disease and Insect Resistant Activity

Luo et al. reported that the acetone extracts of *B. balsamifera* possessed an activity against *Pyricutaria oryzae*, *Fusarium oxysporum* sp., *Colletorichum musae*, *C. gloeosporioides*, *C. capsici*, and *F. oxysporum* f. *sp. in vitro*, with an inhibition rate of over 90.0% [78]. The volatile oil of *B. balsamifera* inhibited *Aeromonas hydrophila*, *F. graminearum*, and *Magnaporthe grisea* [27]. Wang et al. also demonstrated that the extract of *B. balsamifera* leaves showed a 60.8% insecticidal activity against the adult *Aleurodicus disperses* [23]. Furthermore, the essential oil of *B. balsamifera* showed fumigant toxicity against the maize weevils, such as *Sitophilus zeamais* [26]. The crude oil also induced the death in the *S. zeamais* adults. The results suggested that the extracts of *B. balsamifera* possessed significant disease and insect resistant activities, and could be used as new potential plant pesticides.
4. Conclusions

In traditional medicine, the source of the plant should be primarily clear and definite. Thus, the general botanical description should be reviewed according to the *Flora Republicae Popularis Sinicae* and *Chinese Materia Medica* [19,20]. The herbal authentication of *B. balsamifera* was then further carried out to verify the plant source and medicinal efficacy [19]. These studies confirmed the accuracy and uniqueness of the source of *B. balsamifera*. In the same way, as a folk medicine, *B. balsamifera* has been widely used in South Asian countries, especially in China. Due to the chemical constituents contained in this plant for the different effects, the phytochemical research has been reviewed in this article. The chemical constituents were mostly volatile and non-volatile. The former constituents occupied the largest amount, which mainly included: terpenoids, fatty acids, phenols, alcohols, aldehydes, ethers, ketones, pyridines, furans, and alkanes. l-borneol was the most abundant and active constituent in this plant, while other constituents included flavonoids, sterols, sesquiterpene lactones, and other constituents [8,18]. The chemical composition of *B. balsamifera* oils varies from different plant populations [22,25,26,28], indicating more studies should be done on individual’s structural development, the cultivation, geographical, and climate conditions and essential oil standardization. The survey and summary of the extensive studies revealed that *B. balsamifera* was an essential and valuable medicinal plant used for folk treatments such as treating eczema, dermatitis, beriberi, lumbago, menorrhagia, rheumatism, skin injury, or used as insecticide [45]. As a traditional medicine, the biological and pharmacological studies of the plant materials, crude extracts, and isolated chemical constituents of *B. balsamifera* offered experimental and scientific proofs for its various traditional uses. The pharmacological studies focused on studying the anti-microbial and anti-inflammatory effects [13,15], antiplasmodial effects [75], platelet aggregation [79], wound healing [77], and disease and insect resistant activities [26], all of which confirmed the plant’s traditional uses. Moreover, some new pharmacological uses were discovered, such as antitumor [12–14], hepatoprotective [66], superoxide radical scavenging [16], antioxidant [69], antityrosinase [14], enhancing percutaneous penetration [76], and anti-obesity activities [17]. However, there was no experimental and pharmacological evidence to prove the traditional uses of this plant in rheumatism and lumbago. Besides, the isolated chemical constituent and its correspondent pharmacological effects were rarely simultaneously carried out in one study. Hasegawa *et al.* extracted a dihydroflavonol from *B. balsamifera*, which exhibited a significant synergism with TRAIL by pharmacological experiment [12]. Nevertheless, more studies should be done in abundance to understand the pharmacodynamic chemical constituents. The outcome from this study could establish the basis for its future clinical utilization in modern science.

On the basis of the above review, several prospects were revealed. In order to further define the effective chemical compounds, the biological activities of monomeric compounds, the plant material, and its crude extraction further studies were proposed. In addition, some traditional effects of *B. balsamifera*, such as rheumatism still need to be testified by more modern methods and further pharmacological trials. Few more aspects such as pharmacokinetics, molecular biology, and naturel medicinal chemistry should be utilized to study its phytochemical standardization and bioactivity identification according to its bioactive metabolism. Moreover, in the production process of TCM Aipian, *B. balsamifera* oil and Aifen could be important accessory substances yielded, which also
possess many chemical and biological activities to be further studied in the future. Therefore, we concluded that the area of *B. balsamifera* research should be significantly expanded.

Acknowledgments

We thank Dr. Lingliang Guan for grammar correction, Mr. Yingbo Zhang for valuable comments, Qing Wen and all other sixteen master degree candidates for modifying the spelling and grammar mistakes in this review. This project was supported by the Natural Science Fund of Hainan Province, China (Grant No. 312022) and the Natural Science Fund of China (Grant No. 81374065, 81303171). We are grateful to Professor Chen Song-bi (Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences) for critical reviewing and revision of the manuscript.

Author Contributions

Dan Wang: Acquisition, interpretation of data and wrote the manuscript. References management. Obtained funding; Zuowang Fan: Draw the structural formulas. Classified the chemical components. Xiaolu Chen: References management. Revising the review critically for important intellectual content. Fulai Yu: Obtained funding. Xuan Hu: References management. Participate in drafting the article. Kai Wang: Drafted the structural formulas. Lei Yuan: Drafted the structural formulas. Yuxin Pang: Contributed to conception and design of the review. Obtained funding. Overall responsibility.

Appendix 1. The structures of the volatile chemical constituents.

1. *L*-borneol
2. Isoborneol
3. (+)-Limonene
4. (-)-Limonene
5. (E)-β-Ocimene
6. (Z)-β-Ocimene
7. β-Myrcene
8. Camphene
9. α-Pinene
10. β-Pinene
11. Terpinen-4-ol
12. Perillyl alcohol
Appendix 1. Cont.
Appendix 1. Cont.

41. β-Gurjunene

42. (+)−γ-Gurjunene

43. Thujopsene-13

44. β-Elemene

45. α-Elemene

46. (-)−γ-Cadinene

47. (-)−δ-Cadinene

48. 10-epi-γ-Eudesmol

49. Globulol

50. (-)-Guaiol

51. Ledol

52. γ-Murolene

53. Elemol

54. α-Eudesmol

55. β-Eudesmol

56. γ-Eudesmol

57. Carotol

58. Cubenol

59. 16-Kaurene

60. 1-Ang-4,7-dihydroxy eudesmane

61. Phytol

62. Blumeaene A

63. Blumeaene B

64. Blumeaene C

65. Blumeaene D

66. Blumeaene E

67. Blumeaene F
Appendix 1. Cont.

68. Blumeaene G

69. Blumeaene H

70. Blumeaene I

71. Blumeaene J

72. (11Z)-11-Hexadecenoic acid

73. Trans-2-undecenoic acid

74. 9-Hexadecenoic acid

75. Capric acid

76. Palmitic acid

77. Xanthoxylin

78. Eugenol

80. 1-Octen-3-ol

81. 3-Octanol

84. 3-Octanone

85. 2-Hydroxy-4,6-dimethoxy acetophenone

88. 1,3,4,5,6,7-hexahydro-2,5,5-trimethyl-2H-2,4a-ethanonaphthalene

89. 4-isopropyltoluene

90. 3-Nitrophthalic acid

82. 3-Propyl benzaldehyde

83. 4-Isopropyl benzaldehyde

86. 3-Fluoro-5-amino-pyridine

87. 4,5-diethy-2,3-dihydro-2,3-dimethylfuran
Appendix 1. Cont.

91. α-Butenoic acid, 3-methoxy-4-nitro

92. O-acetyl-l-serine

93. 4, 4-dimethyltetradecanol [6. 3. 2. 0^2, 5. 0, 8]tridecan-9-ol

Appendix 2. The structures of the non-volatile chemical constituents.

A. 1–5 are flavones.
B. 6–21 are flavonols.

Number	Name	Structure
1	4',5-Dihydroxy-7-methyletherflavanone	![Structure 1](#)
2	Luteolin	![Structure 2](#)
3	Luteolin-7-methyl-ether	![Structure 3](#)
4	Diosmetin	![Structure 4](#)
5	Chrysoeriol (Luteolin 3'-methyl ether)	![Structure 5](#)
6	Quercetin	![Structure 6](#)
7	3,5,3',4'-Tetrahydroxy-7-methoxyflavone	![Structure 7](#)
8	3,5,3'-Trihydroxy-7,4'-dimethoxyflavone	![Structure 8](#)
9	Rhamnetin	![Structure 9](#)
10	Tamarixetin	![Structure 10](#)
11	Ombuine	![Structure 11](#)
12	3,5,7-Trihydroxy-3',4'-dimethoxyflavone	![Structure 12](#)
13	3',4',5-Tetrahydroxy-7-methoxyflavone	![Structure 13](#)
14	3,5-Dihydroxy-3',4',7-trimethoxyflavone	![Structure 14](#)
15	4',5-Dihydroxy-3,3',7-trimethoxyflavonone	![Structure 15](#)
16	5,7-Dihydroxy-3,3',4'-trimethoxyflavone	![Structure 16](#)
17	Ayalin	![Structure 17](#)
18	Chrysosplenol C	![Structure 18](#)
19	4',5,7-Trihydroxy-3,3'-dimethoxyflavone	![Structure 19](#)
20	Hyperoside	![Structure 20](#)
21	Isoquercitrin	![Structure 21](#)
Appendix 2. Cont.

C. 22–25 are flavanones.
D. 26–33 are flavanonols.

\[
\begin{align*}
\text{R1} & \quad \text{R2} & \quad \text{R3} & \quad \text{R4} & \quad \text{R5} \\
22. \text{Bumeatin} & & -H & -\text{OMe} & -\text{OH} & -H & -\text{OH} \\
23. \text{Eriodictyol} & & -H & -\text{OH} & -\text{OH} & -\text{OH} & -H \\
24. \text{5,7,3',5'-Tetrahydroxyflavanone} & & -H & -\text{OH} & -\text{OH} & -\text{OMe} & -H \\
25. \text{3',4',5-Trihydroxy-7-metoxyflavanone} & & -H & -\text{OMe} & -\text{OH} & -\text{OH} & -H \\
26. \text{Dihydroquercetin-4'-methylether} & & -\text{OH} & -\text{OH} & -\text{OH} & -\text{OMe} & -H \\
27. \text{Dihydroquercetin-7,4'-dimethylether} & & -\text{OH} & -\text{OMe} & -\text{OH} & -\text{OMe} & -H \\
28. \text{3,5,4'-Trihydroxy-3',7-dimethoxyflavanone} & & -\text{OH} & -\text{OMe} & -\text{OMe} & -\text{OH} & -H \\
29. \text{3,3',5,5',7-Pentahydroxyflavanone} & & -\text{OH} & -\text{OH} & -\text{OH} & -H & -\text{OH} \\
30. \text{3,3',4',5-Tetrahydroxy-7-methoxyflavanone} & & -\text{OH} & -\text{OMe} & -\text{OH} & -\text{OH} & -H \\
31. \text{3,3',5-Trihydroxy-4',7-dimethoxyflavanone} & & -\text{OH} & -\text{OMe} & -\text{OMe} & -\text{OMe} & -H \\
32. \text{3,3',5,7-Tetrahydroxy-4'-methoxyflavanone} & & -\text{OH} & -\text{OH} & -\text{OMe} & -\text{OMe} & -H \\
33. \text{3',4',5-Trihydroxy-3,7-dimetoxyflavanone} & & -\text{OMe} & -\text{OMe} & -\text{OH} & -\text{OH} & -H \\
\end{align*}
\]

E. 34–35 are chalcones.

\[
\begin{align*}
34. \text{Davidioside} \\
35. \text{Davidigenin}
\end{align*}
\]

F. 36–37 are flavanols

\[
\begin{align*}
36. \text{Catechin} \\
37. \text{(2R,3R)-(+)7-O-methyl dihydroquercetin}
\end{align*}
\]
Appendix 2. Cont.

38. Blumealactone A
39. Blumealactone B
40. Blumealactone C

H. 41–43 are steroids.

41. β-Sitosterol
42. 5α,8α-epidioxyergosta-6,22-dien-3β-ol
43. Daucosterol

I. 44 is diterpene, 45–46 are triterpenes.

44. Cryptomeridiol
Appendix 2. Cont.

45. 3,13-Clerodadiene-6,15-diol
46. Austronulin

G. 47 is lignan; 48, 49 are coumarins; 50 is naphthalenone.

47. Syringaresinol
48. Hydranngetin
49. Umbrlliferone

50. 5,7-Dihydroxychromone

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Singh, A.; Singh, D.K. Molluscicidal activity of Lawsonia inermis and its binary and tertiary combinations with other plant derived molluscicides. Indian J. Exp. Biol. 2001, 39, 263–268.
2. Bhathena, S.J.; Velasquez, M.T. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 2002, 76, 1191–1201.
3. Canter, P.H.; Thomas, H.; Ernst, E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005, 23, 180–185.
4. Chinese Academy of Sciences editorial commission of the flora. Flora Republicae Popularis Sinicae; Sciences Press: Beijing, China, 1988.
5. Yuan, Y.; Pang, Y.X.; Wang, W.Q.; Zhang, Y.B.; Yu, J.B.; Zhu, M. Research advances in the genus of Blumea (inuleae) phylogenetic classification. Chin. J. Trop. Agric. 2011, 31, 81–86.
6. Pang, Y.X.; Wang, W.Q.; Zhang, Y.B.; Mo, T.H.; Yuan, Y. Clonal diversity and structure in natural populations of Blumea balsamifera. Guihaia 2010, 30, 209–214.
7. Yuan, Y.; Pang, Y.X.; Wang, W.Q.; Zhang, Y.B.; Yu, J.B. Investigation on the plants resources of *Blumea balsamifera* (L.) DC. in China. *J. Trop. Org.* **2011**, *2*, 78–82.

8. Guan, L.L.; Pang, Y.X.; Wang, D.; Zhang, Y.B.; Wu, K.Y. Research progress on Chinese Minority Medicine of *Blumea balsamifera* L. DC. *J. Plant Genet. Res.* **2012**, *13*, 695–698.

9. Chen, M. Studies on the Active Constituents of *Blumea balsamifera*. Master Degree, Shanghai Jiaotong University, Shanghai, China, 2009.

10. Chen, M.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, X.H.; Zhang, W.D.; Jin, H.Z. Blumeaenes A–J, sesquiterpenoid esters from *Blumea balsamifera* with NO inhibitory activity. *Planta Med.* **2010**, *76*, 897–902.

11. Chinese Pharmacopeia Commission. *Pharmacopoeia of the People’s Republic of China*, 2010 ed.; The medicine science and technology press of China: Beijing, China, 2010.

12. Hasegawa, H.; Yamada, Y.; Komiyama, K.; Hayashi, M.; Ishibashi, M.; Yoshida, T.; Sakai, T.; Koyano, T.; Kam, T.S.; Murata, K.; *et al*. Dihydroflavonol BB–1, an extract of natural plant *Blumea balsamifera*, abrogates TRAIL resistance in leukemia cells. *Blood* **2006**, *107*, 679–688.

13. Li, J.; Zhao, G.Z.; Chen, H.H.; Wang, H.B.; Qin, S.; Zhu, W.Y.; Xu, L.H.; Jiang, C.L.; Li, W.J. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. *Lett. Appl. Microbiol.* **2008**, *47*, 574–580.

14. Saewan, N.; Koysomboon, S.; Chantrapromma, K. Anti-tyrosinase and anti-cancer activities of flavonoids from *Blumea balsamifera* DC. *J. Med. Plants. Res.* **2011**, *5*, 1018–1025.

15. Ragasa, C.Y.; Co, A.L.K.C.; Rideout, J.A. Antifungal metabolites from *Blumea balsamifera*. *Nat. Prod. Res.* **2005**, *19*, 231–237.

16. Nessa, F.; Ismail, Z.; Mohamed, N.; Haris, M.R.H.M. Free radical–scavenging activity of organic extracts and of pure flavonoids of *Blumea balsamifera* DC leaves. *Food Chem.* **2004**, *88*, 243–252.

17. Kubota, H.; Kojima-Yuasa, A.; Morii, R.; Huang, X.; Norikura, T.; Rho, S.N.; Matsui-Yuasa, I. Anti-obesity effect of *Blumea balsamifera* extract in 3T3-L1 preadipocytes and adipocytes. *Am. J. Chin. Med.* **2009**, *37*, 843–854.

18. Chen, M.; Jin, H.Z.; Zhang, W.D.; Yan, S.K.; Shen, Y.H. Chemical constituents of plants from the genus *Blumea*. *Chem. Biodiver.* **2009**, *6*, 809–817.

19. State Administration of Traditional Chinese Medicine. *Chinese Materia Medica*; Scientific and Technical Publishers: Shanghai, China, 1999.

20. Chinese Academy of Sciences editorial commission of the flora. *Flora Republicae Popularis Sinicae*; Sciences Press: Beijing, China, 1979.

21. Zhou, X.; Yang, X.S.; Zhao, C. Chemical components of volatile oil from folium et cacumen *Blumea balsamifera* originated from Guizhou. *J. Instrem. Anal.* **2001**, *20*, 76–78.

22. Du, P.; Zhang, X.J.; Sun, X.D. Chemical constituents of volatile oil from *Blumea balsamifera* (Linn.) DC. in Yunnan. *Chem. Ind. For. Prod.* **2009**, *29*, 115–118.

23. Wang, Y.H.; Tian, H.Y.; He, S.J.; Hu, Q.P.; Wang, H.X.; Zhou, C.L.; Wang, X. Analysis of volatile components from leaf in *Blumea balsamifera* (L.) DC. with different extraction methods by gas chromatography–mass spectrometry. *Sci. Tech. Food Ind.* **2012**, *33*, 97–105.

24. Liu, J.X.; Wang, K.X.; Li, C.P. The questions and solutions in extraction of volatile oils from Traditional Chinese Medicine by vapour distillation. *Lishizhen Med. Mater. Med. Res.* **2008**, *19*, 97–98.
25. Hao, X.Y.; Yu, Z.; Ding, Z.H. The study on chemical constituents of volatile oil on Blumea balsamifera growing in Guizhou. Guiyang Yi Xue Yuan Xue Bao 2000, 25, 121–122.
26. Chu, S.S.; Du, S.S.; Liu, Z.L. Fumigant compounds from the essential oil of Chinese Blumea balsamifera leaves against the maize weevil (Sitophilus zearaiz). J. Chem. 2013, 2013, 1–7.
27. Gao, Y.Q. The Chemical Composition and Biological Activities of Volatile Oils of Nineteen Plants. PhD. Thesis, Guizhou University, Guiyang, China, 2007.
28. Bhuiyan, N.I.; Chowdhury, J.U.; Begum, J. Chemical components in volatile oil from Blumea balsamifera (L.) DC. Bangladesh J. Botany 2009, 38, 107–109.
29. Zhu, Y.C.; Wen, Y.X.; Wang, H.S.; Huang, Y.L. Chemical constituents in Blumea balsamifera (I). Guihaia 2008, 28, 139–141.
30. Zhu, T.C. Study on Chemical Constituents of the Extracts of Ethyl Acetate from Blumea balsamifera DC. Master Thesis, Guangxi Normal University, Guilin, China, 2007.
31. Ali, D.M.; Wong, K.C.; Lim, P.K. Flavonoids from Blumea balsamifera. Fitoterapia 2005, 76, 128–130.
32. Bai, Z.W.; Zhu, L.; Lu, Y.; Su, J.P. The research progress of Miao medicine Blumea balsamifera (L.) DC. J. Med. Pharm. Chin. Minor. 2012, 18, 65–67.
33. He, Y.; Chai, L.; Ding, Y.; Xian, F.; PAN, J. Effect of N nutrition on yield and active ingredient in Blumea balsamifera. Guizhou Agri. Sci. 2006, 34, 28–30.
34. Wen, Y.X.; Huang, Y.L.; Zhu, Y.C.; Zhao, Z.G. Analysis of Xanthoxylin in different section of Blumea balsamifera DC. by RP–HPLC. Lishizhen Med. Mater. Med. Res. 2007, 18, 2137–2138.
35. Xia, J.Z.; Zhao, Z.; An, J.; Deng, Y.H. GC fingerprint of herba Blumea from different habitats. Zhong Guo Yao Shi 2011, 12, 1191–1194.
36. Sun, Y.M. The methodology validation of the determination of Blumea balsamifera oil. Guizhou Med. J. 2011, 35, 757–759.
37. Shirotta, O.; Oribello, J.M.; Sekita, S.; Satake, M. Sesquiterpenes from Blumea balsamifera. J. Nat. Prod. 2011, 74, 470–476.
38. Xu, J.; Jin, D.Q.; Liu, C.; Xie, C.; Guo, Y.; Fang, L. Isolation, characterization, and NO inhibitory activities of sesquiterpenes from Blumea balsamifera. J. Agric. Food Chem. 2012, 60, 8051–8058.
39. Liang, H.L.; Cao, P.X.; Qiu, J.Y.; Li, X.; Cai, L.; Liang, G.Y. Study on the chemical constituents of Blumea balsamifera DC. Lishizhen Med. Mater. Med. Res. 2011, 22, 308–309.
40. Pang, Y.X.; Wang, D.; Yuan, Y.; Yu, F.L.; Wu, K.Y.; Di, M. Study on the extraction technology of total flavonoids from Blumea balsamifera (L.) DC. Chin. J. Trop. Crop. 2013, 34, 168–170.
41. Ruangrungsi, N.; Tappayuthprijarn, P.; Tantivatana, P.; Borris, R.P.; Cordell, G.A. Traditional Medicinal Plants of Thailand. I. Isolation and structure elucidation of two new flavonoids, (2R,3R)-dihydroquercetin-4'-methyl ether and (2R,3R)-dihydroquercetin-4',7-dimethyl ether from Blumea balsamifera. J. Nat. Prod. 1981, 44, 541–545.
42. Lin, Y.C.; Long, K.H.; Deng, Y.J. Studies on the chemical constituents of the Chinese medicinal plant Blumea balsamifera. Acta Sci. Natur. Univ. Sunyaatensi 1988, 2, 77–81.
43. Nessa, F.; Mohamed, N.; Ismail, Z.; Haris, M.R.H.M. Phytochemical investigation on Blumea balsamifera DC. J. Trop. Med. Plants 2001, 2, 17–22.
44. Nessa, F.; Ismail, Z.; Karupiah, S.; Mohamed, N. RP–HPLC method for the quantitative analysis of naturally occurring flavonoids in leaves of Blumea balsamifera DC. J. Chromatogr. Sci. 2005, 43, 416–420.
45. Chen, M.; Jin, H.Z.; Yan, L.; Hu, X.J.; Qin, J.J.; Liu, J.H.; Yan, S.K.; Zhang, W.D. Flavonoids from Blumea balsamifera. Nat. Prod. Res. 2010, 991–994.
46. Huang, Y.L.; Zhu, T.C.; Wen, Y.X.; Wang, H.S.; Chen, Y.Y. Isolation and identification of chemical constituents from Blumea balsamifera. Guihaia 2010, 30, 560–562.
47. Deng, Q.Y.; Ding, C.M.; Zhang, W.H.; Lin, Y.C. Studies on the flavonoid constituents in Blumea balsamifera. Chin. J. Magn. Resonance 1996, 5, 447–452.
48. Yan, Q.X.; Tan, D.P.; Kang, H.; Feng, H.L.; Zeng, W.Z. Study on flavonoids constituents of Blumea balsamifera. Chin. J. Exp. Tradit. Med. Form. 2012, 18, 86–89.
49. Tan, D.P.; Yan, Q.X.; Kang, H.; Zeng, W.Z.; Feng, H.L. Chemical constituents of Blumea balsamifera DC. Nat. Prod. Res. Dev. 2012, 24, 718–721.
50. Huang, Y.L.; Wen, Y.X.; Zhao, Z.G.; Zhu, T.C. Determination of flavanones and flavanonols in Blumea balsamifera DC. by RP–HPLC. Guangxi Sci. 2007, 14, 140–142.
51. Huang, Y.L.; Zhao, Z.G.; Wen, Y.X. Determination of total flavonoid in different sections of Blumea balsamifera. Phytochemistry 1988, 27, 1109–1111.
52. Nessa, F.; Mohamed, N.; Ismail, Z. Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharm. Biol. 2005, 43, 15–20.
53. Ishibashi, M.; Ohtsuki, T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med. Res. Rev. 2008, 28, 688–714.
54. Fujimoto, Y.; Soemartono, A.; Sumatra, M. Sesquiterpene lactones from Blumea balsamifera. Phytochemistry 1988, 27, 1109–1111.
55. Osaki, N.; Koyano, T.; Kowithayakorn, T.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Sesquiterpenoids and plasmin-inhibitory flavonoids from Blumea balsamifera. J. Nat. Prod. 2005, 68, 447–449.
56. Zhao, J.H.; Kang, H.; Yao, G.H.; Zeng, W.Z. The study of chemical constituents of Blumea balsamifera DC. Chin. Trad. Herb. Drug. 2007, 38, 350–352.
57. Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids Lactones: Benefits to Plants and People. Int. J. Mol. Sci. 2013, 14, 12780–12805.
58. Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 2010, 15, 668–678.
59. Arifin, H.; Widianingsih, I.; Marusin, N.; Andalas, J.F.F.M. Pengaruh pemberian akut ekstrak etanol daun Capo (Blumea balsamifera DC) terhadap gambaran morfolofis dan histologi hati mencit putih jantan. J. Sains Tek. Far. 2007, 12, 82–88.
60. Norikura, T.; Kojima-Yuasa, A.; Shimizu, M.; Huang, X.; Xu, S.; Kametani, S.; Rho, S.N.; Kennedy, D.O.; Matsui-Yuasa, I. Anticancer activities and mechanisms of Blumea balsamifera extract in hepatocellular carcinoma cells. Am. J. Chin. Med. 2008, 36, 411–424.
61. Norikura, T.; Kojima-Yuasa, A.; Shimizu, M.; Huang, X.; Xu, S.; Kametani, S.; Rho, S.; Kennedy, D.O.; Matsui-Yuasa, I. Mechanism of growth inhibitory effect of Blumea balsamifera extract in hepatocellular carcinoma. Biosci. Biotechnol. Biochem. 2008, 72, 1183–1189.
62. Ng, K.W.; Salhimi, S.M.; Majid, A.M.; Chan, K.L. Anti–angiogenic and cytotoxicity studies of some medicinal plants. *Planta Med.* **2010**, *76*, 935–940.
63. Lee, C.Y. Medication Combination for Hepatoma and Pancreatic Cancer and Preparation Protocol. U.S. Patent US6998141 B2, 14 February 2006.
64. Xu, S.Y.; Bian, R.L.; Chen, X. *Methodology of Pharmacological Experiments*, 2nd ed.; People’s Medical Publishing House: Beijing, China, 1994.
65. Xu, S.B.; Zhao, J.H. Protective actions of *Blumea* flavonones on experimental liver injury. *Chin. Phar. Bull.* **1998**, *14*, 191–192.
66. Pu, H.L.; Zhao, J.H.; Xu, S.B.; Hu, Q. Protective actions of *Blumea* flavonones on primary cultured hepatocytes against lipid peroxidation. *Chin. Trad. Herb. Drug.* **2000**, *31*, 1113–1115.
67. Xu, S.B.; Hu, Y.; Lin, Y.C.; Yang, Z.B. Study on protection of blumeatin against experimental liver injury and aggregation of platelet. *Suppl. J. Sun Yatsen Univer.* **1994**, *1994*, 48–53.
68. Zhao, J.H.; Xu, S.B. Effects of *Blumea* flavonones on lipid peroxidation and active oxygen radicals. *Chin. Phar. Bull.* **1997**, *5*, 17.
69. Nguyen, M.T.; Awale, S.; Tezuka, Y.; Tran, Q.L.; Watanabe, H.; Kadota, S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. *Biol. Pharm. Bull.* **2004**, *27*, 1414–1421.
70. Nguyen, M.T.; Nguyen, N.T. Xanthine oxidase inhibitors from Vietnamese *Blumea balsamifera* L. *Phytother. Res.* **2012**, *26*, 1178–1181.
71. Nessa, F.; Ismail, Z.; Mohamed, N. Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of *Blumea balsamifera*. *Pharm. Biol.* **2010**, *48*, 1405–1412.
72. Shyur, L.; Tsung, J.; Chen, J.; Chiu, C.; Lo, C. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. *Int. J. Appl. Sci. Eng.* **2005**, *3*, 195–202.
73. Ongsakul, M.; Jindarat, A.; Rojanaworarit, C. Antibacterial effect of crude alcoholic and aqueous extracts of six medicinal plants against *Staphylococcus aureus* and *Escherichia coli*. *J. Health Res.* **2009**, *23*, 153–156.
74. Sakee, U.; Maneerat, S.; Cushnie, T.P.; De-Eknamkul, W. Antimicrobial activity of *Blumea balsamifera* (Lin.) DC. extracts and essential oil. *Nat. Prod. Res.* **2011**, *25*, 1849–1856.
75. Noor, R.A.; Khozirah, S.; Mohd, R.M.; Ong, B.K.; Rohaya, C.; Rosilawati, M.; Hamdino, I.; Badrul, A.; Zakiah, I. Antiplasmodial properties of some Malaysian medicinal plants. *Trop. Biomed.* **2007**, *24*, 29–35.
76. Fu, W.J.; Wang, D.; Pang, Y.X.; Wang, H.; Wang, Z.; Nie, H.; Yu, F.L.; Zhang, Y.B. Effect of *Blumea balsamifera* oil on percutaneous absorption of salbutamol sulfate. *Chin. J. Exp. Tradit. Med. Form.* **2013**, *19*, 174–177.
77. Wang, D.; Fu, W.J.; Pang, Y.X.; Wang, H.; Hu, X.; Nie, H. The study of skin allergy and acute toxicity of *Blumea balsamifera* oil. *Chin. J. Trop. Crop.* **2013**, *34*, 2499–2502.
78. Luo, Y.; Zheng, F.; Yang, Y. Antifungal activities of 128 southern Chinese herbs against 6 pathogens. *Chin. J. Trop. Crop.* **2004**, *25*, 106–111.
79. Huang, T.K.; Ding, Z.Z.; Zhao, S.X. *Modern Compendium of Materia Medica*; Chinese Medical Science and Technology Press: Beijing, China, 2000.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).