Evolutionary origin of sex differentiation system in insects

Yasuhiko Chikami¹,², Miki Okuno³, Atsushi Toyoda⁴,⁵, Takehiko Itoh⁶, Teruyuki Niimi¹,²*

¹Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
²Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
³Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
⁴Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
⁵Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
⁶School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan

*Corresponding author:
Teruyuki Niimi
E-mail: niimi@nibb.ac.jp

This PDF file includes:
Main Text
Figures 1 to 6
Abstract

The evolution of the functionality of genes and genetic systems is a major source of animal diversity. Its best example is insect sex differentiation systems: promoting male and female differentiation (dual-functionality) or only male differentiation (single-functionality). However, the evolutionary origin of such functional diversity is largely unknown. Here, we investigate the ancestral functions of doublesex, a key factor of insect sex differentiation system, using the apterygote insect, Thermobia domestica, and reveal that its doublesex is essential for only males at the phenotypic level, but contributes to promoting female-specific vitellogenin expression in females. This functional discordance between the phenotypic and transcription-regulatory levels in T. domestica shows a new type of functionality of animal sex differentiation systems. Then, we examine how the sex differentiation system transited from the single-functionality to the dual-functionality in phenotypes and uncover that a conserved female-specific motif of doublesex is detected in taxa with the dual-functional doublesex. It is estimated that the role of the sex differentiation system for female phenotypes may have evolved through accumulating mutations in the protein motif structures that led to the enhancement of its transcription-regulatory function.
Sex is a fundamental principle in animal reproduction and is shared among almost all animals. The differences between males and females are a large source of diversity in mating systems, species, traits, and ecological dynamics in Metazoa (Darwin, 1871; Fryzell et al., 2019; Geddes and Thomson, 1889). The universality of sex suggests that sex is an ancient feature of metazoans. On the other hand, recent studies in various animals have revealed that regulatory systems for producing sex change rapidly during animal evolution (Bachtrog et al., 2014; Beukeboom and Perrin, 2014; Herpin and Schartl, 2015). For example, genes in the sex determination/sex differentiation systems are more likely to change upstream in the gene cascade than downstream (Bopp et al., 2014; Wilkins, 1995). In eutherian mammals such as mice and humans, a transcription factor called Sex-determining region Y (Sry) acts as a ‘master regulator’ of sex determination pathway, in which Sry induces expression of a transcriptional factor doublesex and mab-3 related transcriptional factor 1 (dmrt1) in males through chain reactions of transcription factors during embryogenesis (Gubbay et al., 1990; Koopman et al., 1991; Miyawaki et al., 2020; Sinclair et al., 1991). In contrast, in medaka fish, Oryzias latipes, a paralog of dmrt1, dmy (DM-domain gene on the Y chromosome) instead of Sry promotes male differentiation via a gene cascade inducing dmrt1 (Matsuda et al., 2002; Nanda et al., 2002). The diversity in gene repertoires composing sex differentiation systems has also been found in arthropods (e.g., Sharma et al., 2017; Suzuki et al., 2008; Xu et al., 2017).

Diversity of sex differentiation systems has referred to differences in gene repertoires among species or populations. At present, many evolutionary scenarios...
have been proposed to explain the evolutionary transition of gene repertoires in sex differentiation systems: e.g., neo-functionalization or sub-functionalization via gene duplication (e.g., Chandler et al., 2017; Hattori et al., 2012; Hasselmann et al., 2008; Matsuda et al., 2002; Sharma et al., 2017; Yoshimoto et al., 2008), positional exchange within the cascade via feedback loops (e.g., Myosho et al. 2012; Myosho et al., 2015; Smith et al., 2009; Takehana et al., 2014), and functional shifts via accumulation of mutations in cis- or trans-elements (e.g., Kamiya et al., 2012; Sato et al., 2010) (reviewed in Beukeboom and Perrin, 2014). Currently, most of the diversity of sex differentiation systems is explained by these well-understood scenarios for changes in gene repertoires. However, recently, a difference in sex differentiation systems without swapping gene repertoires has been discovered from pterygote insects.

Pterygote insects exhibit tremendous sexual dimorphisms in the head, abdomen, wings, and so on, realizing a complex mating strategy. Most of the sexual differences are produced by a sex differentiation system that uses a transcription factor *doublesex* (*dsx*, a homolog of *dmrt1*) as a bottom factor (Kopp, 2012; Verhulst and van de Zande, 2015). Studies on Aparaglossata (holometabolan insects excluding Hymenoptera) have shown that *dsx* promotes both male and female differentiation via the sex-specific splicing (Burris and Baker, 1989; Gotoh et al., 2016; Hildreth, 1964; Ito et al., 2013; Kijimoto et al., 2012; Ohbayashi et al., 2001; Shukla and Palli, 2012; Xu et al., 2017). Recent studies showed that *dsx* promotes only male differentiation in several hemimetabolan and hymenopteran insects, even though *dsx* has sex-specific isoforms (Mine et al., 2017; Takahashi et al., 2021; Wexler et al., 2015; Zhuo et al., 2018). Thus, there is a difference in outputs in the sex differentiation systems in
insects: promoting only male differentiation (single-functionality) or both male and female differentiation (dual-functionality). It is suggested that the output of the insect sex differentiation systems transited from the single-functionality to the dual-functionality (Wexler et al., 2019). However, it remains largely unclear how the difference in the output evolved independently of changes in gene repertoires and what drove such a transition (Hopkins and Kopp, 2021). Also, it is unidentified the ancestral roles of *dsx* isoforms in insects.

The evolutionary origin of the sex differentiation system in insects is ambiguous by the inability to estimate the status of the common ancestor of Insecta. All of the previous studies examining the *dsx* functionality have been limited to pterygote insects or crustaceans and chelicerates. In chelicerates and crustaceans, *dsx* has no sex-specific isoforms (Kato et al., 2011; Li et al., 2018; Panara et al., 2019; Pomerantz et al., 2015). We are currently forced to compare the status of crustaceans with that of pterygote insects, resulting in a large gap in phylogenetic mapping. Furthermore, previous reports of the single-functionality have been based mainly on the sexual differences acquired or complicated by each taxon in hemimetabolan insects. Therefore, it remains possible that the single-functionality reported so far results in a secondary loss of roles in female differentiation.

To address these issues, it is necessary to examine the function of *dsx* in taxa that retain the sexual traits of the common ancestor of Insecta and that emerged between the crustaceans and Pterygota. To this end, we focused on the firebrat *Thermobia domestica* (Zygentoma) belonging to Zygentoma, the sister group of Pterygota (Misof et al., 2014). The sexual traits of *T. domestica* are restricted to the female simple ovipositor and the male ‘penis’ that is not aedeagus. These sexual traits
mirror the ancestral state of insects (Beutel et al., 2017; Boudinot, 2018; Emeljanov, 2014; Kristensen, 1975; Matsuda, 1976). Here, to examine the exon-intron structure of dsx, we decoded the genome of T. domestica. Then, we developed the technology to effectively inhibit gene function during postembryonic development and investigated the roles of dsx for sexual traits, gametogenesis, and transcriptional regulation, and compared them with other insects.

Results

Molecular evolution of Doublesex in Pancrustacea

First, we examined the relationship among dsx homologs in animals (Figure 1–figure supplement 1, Table 1) and revealed that the pancrustacean transcription factor doublesex (dsx) occurs in four clades: crustacean Dsx, Entognatha Dsx, Insect Dsx clade 1, and clade 2. Thermobia domestica has two dsx genes, belonging to different clades (Insect Dsx clade 1 and 2) (Figure 1–figure supplement 2). We considered the gene belonging to Insect Dsx clade 1 to be an ortholog of the pterygote dsx, since this clade contains Dsx of pterygote insects including Drosophila melanogaster. We thus named the gene in Insect Dsx clade 2 dsx-like to distinguish it from dsx. Insect Dsx clade 2 contained dsx-like in Zygentoma as well as Ephemeroptera and Phasmatodea (Figure 1B), indicating that dsx was duplicated before the emergence of the Dicondylia (= Zygentoma + Pterygota) and was lost repeatedly in pterygote taxa. This fact supports that T. domestica retains the ancestral state for dsx related genes’ contents. Since these results suggested the involvement of
the gene duplication in the functional evolution of dsx, we also analyzed the
expression and function of dsx-like.

Figure 1. Molecular evolution and features of Doublesex in *Thermobia domestica*. (A
to B) Molecular phylogeny of Doublesex and Mab-3 related transcriptional factors
(DMRT) (A) and enlarged view of insect Dsx Clade2 (dsx-like clade) (B). The
numerical value on each node is the bootstrap supporting value. Bootstrap values < 70
are not shown. The node of each clade is indicated by colored shapes: black circle,
Arthropoda Dsx; orange pentagon, Crustacea Dsx; purple star, Hexapoda Dsx; red
sunburst, Insect Dsx Clade1; green diamond, Insect Dsx Clade2; blue square,
Entognatha Dsx. (C to F) Molecular features of dsx (C and D) and dsx-like (E and F).
(C and E) indicate exon-intron structures of dsx and dsx-like, respectively. (D and F)
show mRNA expression levels of dsx and dsx-like, respectively. Each plot is a value
of an individual. Sample size is listed in Table 2. Results of Brunner–Munzel tests are
indicated by asterisks: **P<0.01; ***P<0.001 and are described in Table 2.
Sex-specific splicing regulation of doublesex in Thermobia domestica

We detected two major isoforms of dsx of T. domestica (Figure 1C). Mapping these sequences to our genome data showed that the longer (951 bp) and shorter (756 bp) isoforms. Both isoforms shared a Doublesex and Mab-3 (DM) domain-containing exon, but differed in the 3’-terminus. The longer isoform was expressed at 40-fold higher levels in males than in females in the fat body. The shorter isoform was expressed in the fat body 18 times higher in females than in males (Figure 1D). We named thus the longer and shorter isoforms dsx male-type and dsx female-type, respectively. dsx-like was expressed two-fold more highly in males than in females (Figure 1F) but had no isoform (Figure 1E). Thus, dsx was regulated by a sex-specific splicing, whereas dsx-like was not under splicing control.

Before RNA interference (RNAi) analyses, we confirmed that expression levels of dsx and dsx-like mRNA were significantly reduced in dsx and dsx-like RNAi males and females. (Figure 1–figure supplement 3A and Table 2; see Materials and Methods section).

Single-functionality of doublesex for phenotypic sex differentiation in T. domestica

The sexual traits in T. domestica are the male penis and the female ovipositor (Figure 2A–D).

In T. domestica males, the penis is an unpaired appendix on the abdomen segment IX (Matsuda, 1976). The penis was sub-segmented into two parts. There were many setae on the left and the right side of the distal tips (Figure 2E, Figure2–figure supplement 1E). The surface of the penis had a reticulated pattern (Figure 2E, Figure2–figure supplement 1C, E). This simple penial structure was presumably gained at the last common ancestor of Ectognatha (Boudinot, 2018).
In *T. domestica* female, the ovipositor consists of two pairs of appendices (gonapophysis) and is derived from the retracted vesicles on the abdomen VIII and IX (*Emeljanov, 2014; Matsuda, 1976*). This ovipositor is an autapomorphy of Ectognatha (*Beutel, 2017; Kristensen, 1975*). The gonapophyses on the abdomen VIII (valvula I) were the ventral part of the ovipositor and a paired structure. The gonapophyses on the abdomen IX (valvula II) were the dorsal side of the ovipositor and were united to form an unpaired structure (Figure 2–figure supplement 2B). The distal tip of the valvula II remained a paired structure and possessed dense setae (Figure 2–figure supplement 2A). The valvula I was shorter than the valvula II (Figure 2–figure supplement 2A). Both valvulae were sub-segmented and have some setae (Figure 2F). The valvula I and II were connected through a tongue-and-groove structure (olistheter). The olistheter consisted of an aulax ("groove") on the valvula I and a rhachis ("tongue") on the valvula II (Figure 2–figure supplement 2B). Within the valvulae, the epithelial cells were beneath the cuticular layer. The cuticular layer was thickened and multi-layered in the outer surface of the ovipositor. In contrast, the inner surface (i.e., the side of the egg cavity) of the ovipositor had a thin and single-layered cuticle.

In *dsx* or *dsx* male-type RNAi males, a tubular organ was formed instead of the penis (Figure 2C, Figure2–figure supplement 1A). This tubular organ consisted of two pairs of appendage-like structures. The inner one is connected to the gonopore and the ejaculatory duct. The outer one had a lot of setae on its tip (Figure 2E, Figure2–figure supplement 1C, E). Thus, the inner pair was similar to the valvula I of the female ovipositor and the outer one was similar to the valvula II. These features indicated that the tubular organ in the *dsx* RNAi males was parallel to the female ovipositor. The same phenotype was found in the *dsx* and *dsx-like* double RNAi
males. In contrast, the dsx-like males possessed a penis the same as that of the control insects.

In females that were treated with RNAi for dsx, dsx isoforms, dsx-like, or both genes, the external genital organ was the same as the ovipositor of the control females that described in the above section (Figure 2D, F, Figure 2–figure supplement 1B, D, F, Figure2–figure supplement 2). Thus, in the view of histology, the location, and the relation to other elements, the external organ of the RNAi females was not different from the ovipositor of the control ones.

Figure 2. Function of Doublesex in sexually dimorphic traits in Thermobia domestica. (A) A pair of T. domestica. The female looks much the same as the male.
(B) Sexually dimorphic traits of *T. domestica*. Females possess an ovipositor and males have a penis. (C to F) Phenotypes of *dsx* and *dsx-like* RNA interference (RNAi) individuals. Light microscopic image (C and D) and scanning electron microscopic image (E and F). Scales: 1 cm (C and D); 50 µm (E and F). (G to H) Effect of *dsx* and *dsx-like* RNAi on the growth of the ovipositor. The ovipositor length was measured and is plotted with prothoracic width, an indicator of body size. The measurement scheme (G) and scatter plots (H). Each plot in (H) indicates a value of each individual. Sample size of (H) is listed in Table 4. Results of the generalized linear model analysis are listed in Table 4.

No evidence for the effects of doublesex on female phenotypes in *T. domestica*

To investigate whether *dsx* in *T. domestica* females has functions other than female differentiation for phenotypes, we examined its role in the growth and maintenance of female organs (Figure 2G). We did not detect a significant difference in ovipositor length and prothoracic width, an indicator of body size, between the controls and the *dsx* and *dsx-like* RNA females (Figures 2H, Figure 2–figure supplement 3, Figure2–figure supplement 4 and Table 4).

We then examined the effects of *dsx* on gonads, reproductive systems, and gametogenesis in *T. domestica*.

In males of *T. domestica*, a pair of testes was consisted of some testicular follicles (Figure 3A). Each testicular follicle was connected to the vas deferens via the vas efferens (Figure 3–figure supplement 1B). The seminal vesicle lay between the vas deferens and the ejaculatory duct. A pair of the ejaculatory ducts was associated with each other in the front of the gonopore in the penis (Figure 3C). The testicular follicles were a bean-like shape and the seminal vesicles were a bean pod-like shape. In the testicular follicle, the spermatogonia was in the antero-most part (Figures 3A). The primary and secondary spermatocytes lay in the middle part (Figures 3A). In the posterior part of the testicular follicle, there were some sperm bundles (Figures 3A). The wall of the testicular follicle consisted of a single flattened epithelial layer.
We observed the above features of the reproductive system in *dsx* or *dsx-like* RNAi males (Figure 3A and C). In *dsx* and both genes RNAi males, the seminal vesicles were round in shape. The vas efferens was filled with the sperm (Figure 3–figure supplement 1B). In contrast, we could not find differences in the morphology of the testicular follicles or spermatogenesis between the RNAi and control males. The male reproductive system and spermatogenesis showed no visible difference between *dsx* female-type and *dsx-like* RNAi females and the control ones.

In females of *T. domestica*, each ovary consists of five ovarioles and was attached to the anterior part of the abdomen via the terminal tuft (Figure 3–figure supplement 1). The ovarioles were associated with each other at the lateral oviduct. The lateral oviduct was connected to the common oviduct and subsequently opened at the gonopore in the valvula I. There was no vagina between the gonopore and the oviduct. The spermatheca was located on the branch point of the common oviduct along the midline (Figure 3–figure supplement 1A). The spermatheca was divided into two parts: anterior and posterior (Figure 3–figure supplement 2). The anterior part consisted of a pseudostratified layer of the columnar epithelial cells that were secretory. The posterior part was surrounded by a single layer of epithelial cells. The ovariole was panoistic-type and was composed of two parts: the germarium and the vitellarium (Figure 3A, B). The germarium contained many oogonia and young oocytes. The vitellarium had previtellogenic and vitellogenic oocytes. The oocytes in the vitellarium were surrounded by a single layer of follicle cells. There were pedicel cells in the terminal of the ovariole. The previtellogenic oocyte had a large germinal vesicle and basophilic cytoplasm. The vitellogenic oocyte was elongated along the anterior-posterior axis of the ovariole and had eosinophilic cytoplasm. Many eosinophilic lipid droplets were present in the peripheral region of the vitellogenic oocytes.
oocytes. The follicle cells were flattened and columnar in shape in the previtellogenesis and the vitellogenesis.

We observed the above features of the reproductive system in \textit{dsx} or \textit{dsx-like} RNAi females (Figures 3A, Figure 3–figure supplement 1, Figure 3–figure supplement 2). We could not detect differences in the female reproductive system or oogenesis between the RNAi females and the controls. This result suggests that the \textit{dsx} and \textit{dsx-like} have no function in the formation of female traits and gametogenesis at the tissue and cellular level.

Also, we were not able to detect any differences in the oocyte number and size between the controls and RNAi females (Figures 3B, Figure3–figure supplement 3 and Table 4). However, the seminal vesicle in males became round in shape in the \textit{dsx} RNAi males in contrast to the bean pod-like shape observed in the control males (Figures 3C, Figure3–figure supplement 1). We detected a significant reduction of the number of sperms within the seminal vesicle in \textit{dsx} RNAi males (Figure 3D and Table 5). \textit{dsx} thus contributed to the development of the reproductive system and gametes in males, but not in females, of \textit{T. domestica}.

Our results cannot show evidence for roles of \textit{dsx} in \textit{T. domestica} females.
Figure 3. Function of *doublesex* in reproductive systems and fecundity. (A) Effects of *dsx* and *dsx*-like RNAi on gonad morphology and gametogenesis. In images of the ovary, the left and right panel in each treatment show germarium/previtellogenesis and vitellogenesis, respectively. cc, cystocyte; fc, follicle cell; gv, germinal vesicle; og, oogonia; pvo, previtellogenic oocyte; sc, spermatocyte; sp, sperm; yg, yolk granule; vo, vitellogenic oocyte. (B) The effect of *dsx* and *dsx*-like RNAi on oocyte number in each oogenetic stage. The upper panels are images of an ovariole in *T. domestica*. The lower panel shows scatter plots of oocyte numbers and prothoracic width. Results of the generalized linear model analysis are in Tables 4 (female) and 5 (male). (C) The effect of *dsx* and *dsx*-like RNAi on the seminal vesicle. The upper panel is a gross image of the male reproductive system. The lower one shows the phenotype of each treatment. (D) The effect of *dsx* and *dsx*-like RNAi on sperm number in seminal vesicles. The upper panels are images of sperm in *T. domestica*. The sperm of *T. domestica* is usually paired with other sperm. The lower panel shows a scatter plot of sperm numbers by prothoracic width. Scales: 50 µm (A and C); 10 µm (D). Sample size are also listed in Tables 4 (D) and 5 (C).
Cryptic role of doublesex for female-specific transcripts in *T. domestica*

Previous studies in Hemimetabola (Takahashi et al., 2021; Wexler et al., 2015; Zhuo et al., 2018), and our results in Zygentoma show that *dsx* is not essential for the formation of female phenotypes in non-Holometabola. In contrast, considering the fact that the *dsx* female-specific isoform retains ORFs in non-Holometabola, there is a still possibility that *dsx* may have some function in non-holometabolan females. To investigate this functionality, we focused on the effect of *dsx* on female-specific gene expression.

We focused on the vitellogenin (*vtg*) gene, one of the major egg yolk proteins, which is specifically expressed in females of Bilateria (Byrne et al., 1989; Hayward et al., 2010). In the Holometabola, *dsx* promotes *vtg* mRNA expression in females and represses it in males (Shukla and Palli, 2012; Suzuki et al., 2003; Thongsaklaing et al., 2018). Our RNA-seq analysis showed that levels of the three *vtg* mRNAs in *T. domestica* were more than 10000-fold higher in females than in males (Figure 4A–C). We found that the *vtg* mRNAs were expressed at 40–100-fold higher levels in *dsx* RNAi males than in the control males (Figure 4D and Table 2). Notably, the *dsx* RNAi females produced around half the amount of *vtg* mRNA as the controls. The *dsx-like* RNAi and a double-knockdown of *dsx* and *dsx-like* also significantly reduced the expression of *vtg* in females (Figure 4E and Table 2).

This result is the first case that *dsx* can promote female-specific vitellogenin expression in non-holometabolan species, even though it does not affect female phenotypes such as the oocyte size and number. This finding suggests that it has opposite functionality between males and females in *T. domestica* at the gene-regulatory level.
Figure 4. Function of doublesex in vitellogenin gene expression. (A to C) Features of vitellogenin (vtg) genes of Thermobia domestica. An image of the vtg gene locus in an Integrated Genome Viewer (A). The vtg genes are highly expressed in females (B and C). The source data of B and C are provided as Figure 4—source data 1. (D and E) Effect of dsx and dsx-like RNAi on vtg genes’ expression in males (D) and females (E). The decreases were about 2/5–1/5, 1/10–3/50, and 1/9–1/20 in dsx, dsx-like, and both the genes RNAi females. The mRNA expression levels are shown as logarithmic scales. Each plot represents an individual. Sample sizes are listed in Table 2 (C and D). Results of Brunner–Munzel tests are indicated by asterisks: *P < 0.05; **P < 0.01; ***P < 0.001 and is also described in Table 2. P > 0.05 is not shown.
Differences of *doublesex* sequences between single- and dual-functional species

Genes can gain new functions due to gene duplication, co-factor function, changes in *cis- or trans*-region (*Carroll, 2005; Ganfornina and Sánchez, 1999; Mann and Carroll, 2002)*, or acquiring new exons. *dsx* paralog (*dsx-like*) found in this study did not contribute to female phenotypes (Figure 2 and 3). The female and male isoforms of *dsx* share the same DNA-binding domain, and *intersex*, a co-factor gene of *dsx*, contributes to the formation of female traits in *Nilaparvata lugens* (*Zhang et al., 2021*), which has the single-functional *dsx*. These facts indicate that the gene duplication, neo-functionalization of co-factors, and changes in *cis*-regulatory elements are not likely to contribute to the evolution of the dual-functionality. Thus, we explored the remaining possibilities: novel exons or *trans*-regions.

We found that there are alternative splice types in *T. domestica*, which has an alternative 5′ splice site, and in Pterygote insects, which have a mutually exclusive exon, but did not find any differences of exon structure between species with single-functionality of *dsx*, and those with dual-functionality (Figure 5A).

We finally discovered amino acid sequences in the female-specific region that differed between taxa with single- and dual-functionality of *dsx*. *dsx* isoforms are sexually different in the OD domain. This domain was divided into common, female-specific, and male-specific regions. Our multiple alignment analysis revealed that the female-specific region was highly conserved among the taxa with dual-functionality of *dsx*, but not among those with single functionality (Figures 5B, Figure 5–figure supplement 1). In contrast, the male-specific region was not highly conserved among the taxa with dual-functional *dsx* (Figure 5–figure supplement 2).
Figure 5. Comparisons of molecular features in *doublesex* among insect taxa. (A) Exon structure of *dsx* among insect taxa. The coding region of *dsx* is shown. The phylogenetic relationship is that of Misof et al. (2014) (B) Amino acid sequence of Dsx among insect taxa. The upper image shows the *dsx* structure of *Drosophila melanogaster*. Asterisks indicate conserved residues in Aparaglossata.
Discussion

A novel type of the output in the sex differentiation system

We show that the *dsx* of *Thermobia domestica* is essential for producing male phenotypes, but does not contribute to female phenotypes. In contrast to the phenotypes, this study showed that the female-specific *vitellogenin* genes are slightly promoted by *dsx* in *T. domestica* females. These facts indicate that *dsx* in *T. domestica* has an opposite transcription-regulatory function in males and females. Therefore, in *T. domestica, dsx* contributes only to male differentiation at the phenotypic level, but affects both sexes at the transcription-regulatory level (seemingly useless nature).

There have been two known types of outputs of the insect sex differentiation system: one that can regulate feminization via both transcription-regulation and phenotypes, and one that cannot. The former is found in Diptera, Lepidoptera, and Coleoptera (e.g., Luo and Baker, 2015; Suzuki et al., 2003; Shukla and Palli, 2012), the latter in Dictyoptera and Hemimetabola (Wexler et al., 2019; Zhuo et al., 2018). In some species, such as the dung beetle *Onthophagus taurus*, *dsx* contributes only to male trait formation in some tissues (Ledón-Rettig et al., 2017). In these species, *dsx* is also responsible for producing traits of both sexes in other tissues. Therefore, it is likely that the former type is the primary capability of the sex differentiation systems in these species and that the function for promoting female differentiation may tissue-specifically become silent. In contrast, the seemingly useless nature of *dsx* for females in *T. domestica* is a third type of the insect sex differentiation system (Figure 6A).

This third type indicates that phenotypic and transcription-regulatory levels do not necessarily coincide in the output of sex differentiation systems.
The sex differentiation systems of crustaceans, vertebrates, and nematodes have DMRT family transcription factors as bottom factors that are responsible for promoting male differentiation (Kato et al., 2011; Kopp, 2012; Raymond et al., 1998; Raymond et al., 2000). No hierarchical discrepancy has been found in the output of the sex differentiation system of these animals. Therefore, the output of the sex differentiation system in most animals can be classified into three categories: that are capable of contributing to 1) only masculinization (crustaceans, nematodes, vertebrates, Hemiptera, and Dictyoptera), 2) both masculinization and feminization (Diptera, Lepidoptera, and Coleoptera) or 3) both masculinization and feminization at the transcription-regulatory level but only masculinization at the phenotypic level (T. domestica).

On the origin of the sex-specific splicing of doublesex

In pterygote insects (e.g., Burtis and Baker, 1989; Shukla and Palli, 2012; Mine et al., 2017; Ohbayashi et al., 2001; Takahashi et al., 2019; Wexler et al., 2019; Zhuo et al., 2018), dsx has sex-specific isoforms, except for a termite Reticulitermes speratus (Miyazaki et al., 2021). In contrast, dsx is controlled via a male-specific transcription in chelicerates and crustaceans (Kato et al., 2011; Li et al., 2018; Panara et al., 2019; Pomerantz et al., 2015). Here, sex-specific splicing regulation is observed in dsx of T. domestica, suggesting that sex-specific splicing regulation originated between the common ancestor of Branchiopoda and Hexapods and the common ancestor of Dicondylia (Zygentoma + Pterygota) (Figure 6A).

On the origin of the role of the insect sex differentiation system for females

There are discrepancies in the output of the sex differentiation system in T. domestica at the phenotypic and transcription-regulatory levels. In such a case, it has
been proposed to map the characteristics of each hierarchical level separately on a phylogenetic tree (c.f., Abouheif, 1999).

Figure 6. Evolutionary transition of outputs of the insect sex differentiation system. (A) Phylogenetic mapping of functionality of dsx for females. crustaceans: Kato et al. (2011); Zygentoma: this study; hemimetabolans: Wexler et al. (2019), Zhuo et al. (2018); Aparaglossata: e.g., Shukla and Palli (2012), Suzuki et al. (2003). (B) ‘Parallel foundation’ model. (C) ‘Usefulness of useless’ model.

At the phenotypic level, previous studies have focused on taxon-specific or highly complex sex differences, leaving open the possibility of a secondary loss of function of dsx for females. However, the single-functionality of dsx even in T. domestica, which has an ancestral, simple sex difference, supports a single origin for dsx single-functionality. Based on a recent phylogenetic hypothesis (Beutel et al., 2017; Misof et al., 2014), the transition from the single- to dual-functionality is estimated to have occurred in the common ancestor of Aparaglossata (holometabolan
insects excluding Hymenoptera) (Figure 6A). At the phenotypic level, our findings ensure the evolutionary model by Wexler et al. (2019) that dsx initially acquired sex-specific isoforms and later became essential for female differentiation.

At the level of gene regulation, dsx in T. domestica can slightly promote the transcription of female-specific genes. Therefore, it is estimated that the common ancestor of Dicondylia already possessed the sexual dimorphic transcriptional control of dsx. In this case, it is inferred that the transcription-promoting function of female-specific genes was secondarily lost in hemimetabolan insects. Alternatively, it is possible that the common ancestor of the Dicondylia had also the single-functionality at the level of transcriptional regulation and that Zygentoma and Aparaglossata independently acquired the ability to promote transcription in females.

The question is how the function of dsx for the female phenotype evolved. We have found differences in the sequence of the female-specific region of dsx between phenotypically single-functional and dual-functional taxa. This region is located in the oligomerization (OD) domain, interacts with transcription factors (An et al., 1995; Erdman et al., 1996; Ghosh et al., 2019; Romero-Pozuelo et al., 2019) and transcriptional mediators such as intersex which is essential for female differentiation (Gotoh et al., 2016; Morita et al., 2019; Xu et al., 2019; Yang et al., 2008). Studies in Blattella germanica described low conservation of the OD domain (Wexler et al., 2019). Baral et al. (2019) also reported that the rate of non-synonymous substitutions in the female-specific region is low in Aparaglossata and high in Hymenoptera.

However, the evolutionary significance of this region has been unclear. Our result suggests that the accumulation of mutations in female-specific regions has led to the female-differentiating functions at the phenotypic level (Figure 6). It was theoretically predicted that non-functional isoforms gain functions through mutation accumulation
in coding regions (Keren et al., 2010). The functional evolution of dsx in insects may fit this prediction.

Evolutionary scenarios for the transition of the output of the sex differentiation system

In conclusion, we propose two alternative scenarios for the transition of the outputs of the insect sex differentiation system.

"Parallel foundation" hypothesis (Figure 6B): dsx has independently acquired the function for promoting female transcription in Zygentoma and Aparaglossata, and also gained the entirely novel role in phenotypic differentiation in females through the accumulation of coding mutations in Aparaglossata. This is the hypothesis that a useful functionality has arisen from a completely useless functionality.

"Usefulness of uselessness" hypothesis (Figure 6C): dsx, through the accumulation of mutations in its coding region, enhanced its weak transcription-promoting ability in females and became essential for producing the female phenotypes. This is the hypothesis that a useful functionality arose from a seemingly useless functionality.

Both these hypotheses can explain the diversity in outputs of the sex differentiation system via the accumulation of coding mutations in existing genes. Thus, a heterotypic evolution may drive the evolution of outputs of the sex differentiation systems. Textbook examples of the heterotypic evolution include a mutation of human hemoglobin β leading to sickle cells and coding mutations of Ultrabithorax that resulted in suppressed leg development in insects (reviewed in Arthur, 2010; Gilbert, 2013; Futuyma and Kirkpatrick, 2017). So far, heterotypy at the molecular level is considered as the change in the molecular function leading to entirely novel or no functions from existing functions of the molecule in phenotypes. On the other hand, the female isoform of dsx shows no function in female phenotypes.
Our hypotheses are models that a non-functional isoform gains functionality at the phenotypic level. The heterotypic evolution may need to be divided into modification from existing functions and innovation from non-functionality at phenotypic level.

In this study, we succeeded in detecting the transcription-promoting ability of \textit{dsx} in females by examining the expression of \textit{vitellogenin}. In hemimetabolan insects, the transcription-promoting function in females has not been found in \textit{vitellogenin} (Wexler et al., 2019; Zhuo et al., 2018), but might be detected in other female-specific genes. Future comprehensive examination of the effects of \textit{dsx} by transcriptome and comparisons at the mega-evolutionary level, i.e., higher taxa than families (Arthur, 2003), using broad insect taxa will test these hypotheses.

Materials and Methods

Animals

A firebrat, \textit{Thermobia domestica} (Packard, 1873), was used as an emerging model apterygote. \textit{T. domestica} is one of the species belonging to the Zygentoma (Lepismatidae). The insects were kept at 37°C in total darkness condition and fed with fish food (TetraFin Goldfish Flakes, Tetra GmbH, Melle, Germany) in our laboratory. Stock colonies were reared in plastic cases of 30 cm\times40 cm or 18 cm \times 25 cm in length. Eggs were collected from tissue paper in the case and incubated at 37°C. For nympha\textsc{v} RNAi analysis, colonies of hatched nymphs were reared up to the fourth instar in a six-well plate and then transferred into 24-well plates to be kept individually. For adult RNAi analysis, adult insects were collected from the stock colony and transferred into the plates. For nympha\textsc{v} RNAi analysis, we used firebrats from April to June, 2019, February to April, April to July, and September to
December, 2020. For adult RNAi, adult firebrats were manipulated from June to July, 2020.

Estimation of molt timing

Estimating the molt timing of insects is essential for the analysis of developmental processes and the functions of developmental regulatory genes. The timing of Hemi- or holometabolan insects can be estimated using morphological changes such as a wing growth. However, timing is hard to estimate in apterygote insects since they have little change in their morphology during postembryonic development. *T. domestica* forms scales in the fourth instar, and changes the number and length of its styli during the fourth to ninth instar under our breeding conditions. These features can be used to estimate molt timing, but it is difficult to apply these criteria to experiments using adults or a large number of nymphs. To resolve this problem, we used leg regeneration after autotomy and time-lapse imaging to estimate the molt timing of *T. domestica*. Autotomy occurs at the joint between the trochanter and femur in *T. domestica*. An autotomized leg regenerates after one molt (*Buck and Edwards, 1990*). For nymphal RNAi analysis, we amputated a right hindleg at the autotomic rift, using tweezers, and observed whether the leg had regenerated. This test enabled us to rapidly estimate the molt timing. For adult RNAi, time-lapse imaging was used to determine the precise time of molt. We build a time-lapse imaging system with a network camera system (SANYO, Tokyo, Japan) set in an incubator at 37°C (Figure 4–figure supplement 1A). Photos of insects in the 24-well plate were taken every five minutes. We created a time-lapse movie from the photos every 12 hours using ImageJ 1.52a (https://imagej.nih.gov/ij/) and observed whether the insects molted (Figure 4–figure supplement 1B, Video 1).

De novo genome assembly
A whole genome of *T. domestica* was sequenced to analyze the exon-intron structure of *dsx*. We selected an adult female of *T. domestica* from our stock colony and removed its alimentary canal. Genomic DNA was extracted from the sample using DNeasy Blood and Tissue Kit (QIAGEN K.K., Tokyo, Japan). A paired-end library was constructed from 1 µg of the DNA using TruSeq DNA PCR-Free LT Sample Prep kits (Illumina K.K., Tokyo, Japan) following the manufacturer’s instructions. The library was run on a sequencer (HiSeq 2500; Illumina K.K., Tokyo, Japan). We obtained 417 Gb of raw reads and assembled them using Platanus v1.2.4 assembler (*Kajitani et al., 2014*) after removal of the adapter sequences.

Transcriptome analysis

To search for *doublesex (dsx)* and *vitellogenin (vtg)* homologs, we performed RNA-seq analysis. Adults of 15 ♀♀ and 15 ♂♂ of *T. domestica* were sampled 1440 minutes after a molt in December, 2019. The fat bodies of the individuals were removed using tweezers in a phosphated buffered saline (PBS; pH=7.2). Three adults were used per sample. Total RNA was extracted from 10 samples (5 ♀♀, 5 ♂♂) using RNeasy Micro kits (QIAGEN K.K., Tokyo, Japan) following the manufacturer’s instructions. The concentration of purified RNA was measured using a Qubit 4 fluorometer (QIAGEN K.K., Tokyo, Japan) with Qubit RNA BR Assay kits (QIAGEN K.K., Tokyo, Japan). Paired-end libraries were constructed from 100 ng of the total RNAs using TruSeq RNA Library Prep kits v2 (Illumina K.K., Tokyo, Japan) following the manufacturer’s instructions. The libraries were run on a sequencer (HiSeq, Illumina, Tokyo, Japan). The library preparation and sequencing were performed by Genewiz Strand-Specific RNA-seq service. We mapped the reads obtained to the assembled genome using the HISAT2 program (*Kim et al., 2019*) with a default option and counted the mapped reads using the STRINGTie program.
Differential expression gene analysis was performed based on the count matrix using the “edgeR” package (Robinson et al., 2010) in R-v4.0.3 (R Core Team, 2020). Information about the samples can be obtained from the National Center for Biotechnology Information (NCBI) BioSample database (Accession number: SAMN18175012–SAMN18175021).

Molecular phylogenetic analysis

Dsx is a member of the Doublesex and Mab-3 Related transcriptional factors (DMRT) family, and has a DNA binding domain, Doublesex and Mab-3 (DM) domain. Pancrustacea generally has four DMRT family genes, Dsx, Dmrt11, Dmrt93B, and Dmrt99B (Mawaribuchi et al., 2019). Phylogenetic analysis of Dsx homologs was performed using the amino acid sequences of the DM domain. We used the Dsx sequences of D. melanogaster as a query and obtained 97 metazoan DMRT family proteins from the NCBI and the i5k databases (https://i5k.nal.usda.gov/) and our genome data of T. domestica by the BLAST analysis (listed in Table 1). We then aligned the sequences using MAFFT version 7 (Katoh et al., 2013) with the -linsi option (to use an accuracy option, L-INS-i) and manually extracted the DM domain, which consisted of 61 amino acids (Figure 1–figure supplement 1). Molecular phylogenetic analysis of the aligned sequences was performed using a maximum likelihood method after selecting a substitution model (JTT matrix-based model) with MEGA X (Kumar et al., 2018). Bootstrap values were calculated after 1000 replications.

Full-length cDNA and exon-intron structures

To elucidate the exon-intron structures of Dsx and Dsx-like, we determined the full-length cDNA sequences using a Rapid Amplification of cDNA Ends (RACE) method and performed a BLAST analysis for our genome database of T. domestica.
We extracted total RNA from eggs, whole bodies, fat body, and gonads of nymphs and adult females and males of *T. domestica* using TRI Reagent (Molecular Research Center Inc., Ohio, USA) following the manufacturer’s instructions. The total RNAs were treated with RNase-Free DNase I (New England BioLabs Japan Inc., Tokyo, Japan) to exclude remaining genomic DNA and purified by phenol/chloroform extraction and ethanol precipitation. For 5′-RACE analysis, mRNAs were purified from 75 µg of the total RNAs using Dynabeads mRNA Purification kit (Thermo Fisher Scientific K.K., Tokyo, Japan) following the manufacturer’s instruction. We then ligated an RNA oligo at the 5′-end of the mRNA using GeneRacer Advanced RACE kits (Thermo Fisher Scientific K.K., Tokyo, Japan). For 3′-RACE analysis, we ligated an RNA oligo of the SMART RACE cDNA Amplification Kit (Takara Bio Inc., Shiga, Japan) at 3′-end of the total RNA during reverse transcription. First stranded (fs-) cDNA was generated from the RNAs using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific K.K., Tokyo, Japan). We used primers specific to the RNA oligos and performed RACE analysis by nested RT-PCR using Q5 High-Fidelity DNA polymerase (New England BioLabs Japan Inc., Tokyo, Japan). The primers specific to *dsx* and *dsx-like* were made from sequences of the relevant genomic regions and are listed in Table 6. The amplicons were separated using the agarose gel-electrophoresis and cloned using TOPO TA Cloning Kit for Sequencing (Thermo Fisher Scientific K.K., Tokyo, Japan) following the manufacture’s protocol. We used a DH5α *Escherichia coli* strain (TOYOBO CO., LTD., Osaka, Japan) as the host cell. Plasmids were extracted using the alkaline lysis and purified by phenol-chloroform and ethanol precipitation. The nucleotide sequences of the cloned amplicons were determined from the purified plasmids by the Sanger Sequencing service of FASMAC Co. Ltd. (Kanagawa, Japan). We then
searched the genomic region of the full-length cDNA sequences of dsx and dsx-like via local blastn analysis.

Reverse transcription-quantitative PCR (RT-qPCR)

To quantitative mRNA expression levels, we performed RT-qPCR analysis. For investigating the sex-specific expression profile of dsx and dsx-like, we used the fat body of adults of *T. domestica* since the sexes can be distinguishable by the external morphology at this stage. Fat bodies also exhibit sex-specific physiological functions in adults. Thirteenth instar individuals and adults after molting were sampled for nymphal and adult RNAi analyses, respectively. The sample sizes are reported in the Table 2. We dissected the individuals in PBS and collected their fat body in 2 ml tubes containing TRI Reagent (Molecular Research Center Inc., Ohio, USA). The fat bodies then were disrupted using a TissueLyser LT small beads mill (QIAGEN K.K., Tokyo, Japan). These disrupted samples were preserved at −80°C until used. Total RNA was extracted from the samples according to the manufacture’s protocol for the TRI Reagent. Extracted RNA was treated with 2% RNase-free DNase I (New England BioLabs Japan Inc., Tokyo, Japan) at 37°C for 40 minutes and purified by phenol/chloroform extraction and ethanol precipitation. We measured the concentration of the total RNA using a spectrophotometer (DS-11+, Denovix Inc., Wilmington, USA). fs-cDNA was synthesized from 350 ng of the total RNA using SuperScript III Reverse Transcripase (Thermo Fisher Scientific K.K., Tokyo, Japan). We diluted the fs-cDNA to 1:2 with MilliQ water and preserved it at −30°C until it was used in RT-qPCR assay. The RT-qPCR assays were performed using a LightCycler 96 instrument (Roche, Basel, Switzerland) according to the manufacture’s protocol with the THUNDERBIRD SYBR qPCR Mix (TOYOBO Co. Ltd., Osaka, Japan). The reaction volume was 10 µl. We used 1 µl of the fs-cDNA as
templates. The preparation of the RT-qPCR solution proceeded on ice. The protocol of the RT-qPCR was as follows: preincubation at 95°C for 600 seconds and 45 cycles of three-step reactions, such as denaturation at 95°C for 15 seconds, annealing at 60°C for 15 seconds and extension at 72°C for 45 seconds. We used *ribosomal protein 49 (rp49)* as a reference gene, as described by *Ohde et al. (2011)*. We designed primer sets of the target genes by the Primer3Web version 4.1.0 (*Untergasser et al., 2012*) following the manufacturer’s recommended condition of the THUNDERBIRD SYBR qPCR Mix. We confirmed the primers’ specificity using melting curves ranging from 65°C to 95°C. We selected primer sets exhibiting a single peak. The primers are listed in Table 6. Each RT-qPCR was technically replicated three times. Some samples were excluded before analyzing the data when the Ct value of any genes was not detected (ND) in one or more replicates or when the Ct value of the reference gene deviated from that of other samples. In these removed data, a technical error was suspected. We calculated the expression level of target genes by the $2^{-\Delta \Delta Ct}$ method (*Livak and Schmittgen, 2001*) and performed the Brunner–Munzel (BM) test for ΔCt value. The BM test was carried out using R-v4.0.3. with the `brunnermuzel.test` function of the “brunnermuzel” package (https://cran.r-project.org/web/packages/brunnermunzel/index.html). Holm’s method was used for multiple comparison analyses between the control and treatments. The data are listed in Table 2. Also, its source data can be found in Table2–Source Data 1. In the *dsx* expression of the RNAi male, we performed the Smirnov-Grubbs (SG) test for ΔCt value using the `grubbs.test` function of the “outliers” package in R (https://cran.r-project.org/web/packages/outliers/index.html) (Table 3). An outlier was detected in the *dsx* RNAi male. We repeatedly performed the SG test using the data excluding the
outlier. No further outliers were detected. Lastly, we re-analyzed the data, excluding
the outlier, using the BM test (Table 2).

RNAi analysis

Nymphal RNAi can be used to analyze the roles of genes during
postembryonic development. The sexual differentiation of insects is generally
assumed to be a cell-autonomous mechanism that is independent of systemic
hormonal control (Verhulst and van de Zande, 2015) as discussed in De Loof and
Huybrechts (1998) and Bear and Monteiro (2013) and progresses during
postembryonic development. Therefore, nymphal RNAi is the most effective tool to
investigate the roles of genes on sexual trait formation. To reduce the possibility of
off-target effects, the dsRNA was designed to avoid the region of the DM domain. We
also confirmed that the dsRNA had no contiguous matches of more than 20 bases with
other regions of the genome. To produce templates for the dsRNA, we cloned the
regions of dsx and dsx-like from the fs-cDNA using the same method as the RACE
analysis. We amplified the template DNAs from purified plasmids with PCR using
Q5 High-Fidelity DNA Polymerase and purified the amplified DNA with the
phenol/chloroform extraction and the ethanol precipitation. dsRNA was synthesized
from the purified DNA using Ampliscribe T7-Flash Transcription kits (Epicentre
Technologies, Co., Wisconsin, USA). We designed the PCR primers using the
Primer3Web version 4.1.0 (Untergasser et al., 2012). The PCR primers are listed in
Table 6. In nymphal RNAi analysis, we injected the dsRNAs repeatedly into the
abdomen of the nymphs of T. domestica with each molt from the fourth or fifth instar
to thirteenth instar to sustain the RNAi effect during postembryonic development. The
initial stage was the same within a single experiment. This repeated nymphal RNAi
was effective in some insects such as Blattella germanica (Wexler et al., 2014). We
sampled the individuals one, three, and five days after molting, using phenotypic observations, analysis of *dsx* knockdown effects, and the oocyte size and number. To determine the sex of individuals, we initially observed the gonads: testis and ovary. In our nymphal RNAi analysis, the gonads completely formed and there was no difference between the control and *dsx* RNAi individuals in external morphology (Figures 1–figure supplement 3, Figure2–figure supplement 1A). Therefore, at least in this assay, the gonad morphology was effective for the identification of the sex of *dsx* RNAi individuals. Individuals with testis were males and those with ovaries were females. For the analysis of *vtg* genes, we used the adult RNAi assay. *T. domestica* molts throughout its life, even after sexual maturation, and produces *vtg* during each adult instar ([Rouset and Bitsch, 1993](#)). In the adult RNAi analysis, we injected dsRNA repeatedly into the adults every three days. The dsRNA was initially injected into adults 12 hours after molting. We sampled the adults at 720±20 minutes after subsequently molts, to analyze the *vtg* mRNA levels.

Phenotype observation

We dissected thirteenth instar individuals in PBS using tweezers and removed the thoraxes, reproductive systems, and external genital organs. We took images using the digital microscope system (VHX-5000, KEYENCE, Tokyo, Japan). The thoraxes and external genital organs were fixed with FAA fixative (formaldehyde: ethanol: acetic acid = 15:5:1) at 25°C overnight and then preserved in 90% ethanol. We used the length of the prothorax as an indicator of body size. To measure the prothoracic width, the prothoracic notum was removed from the fixed thorax after treatment with 10% NaOH solution at 60°C for 30 minutes to dissolve the soft tissues. The notum was mounted in Lemosol on a microscope slide. The prepared specimens were imaged using a KEYENCE VHX-5000. With the microscope at 50x, the length of the notum
was measured. The ovipositor length and oocyte size were also measured using the microscope at \(20\times\) and \(50\times\). The oocyte size was taken to be the major length of the late vitellogenic oocyte at the posterior most part of the ovariole. To count the sperm number, sperm was collected from seminal vesicles and diluted with 5 ml MilliQ water. 50 µl of the diluted sperm was spotted on a microscope slide and dried overnight. We technically replicated the measurement three times for ovipositor length and six times in sperm number and calculated these means. Measurement was performed by blinding the treatment. We counted the number of oocytes in ovarioles using an optical microscope at \(50\times\) (Olympus, Tokyo, Japan). A generalized linear model (GLM) was used to analyze differences in ovipositor length and oocyte size (length data) and sperm and oocyte number (count data) among RNAi treatments. The body size, target genes, and interactions between the target genes were used as explanatory variables. The length was assumed to follow a Gaussian distribution, and the count data to have a negative binomial distribution. We used R-v4.0.3 in these analyses and the \texttt{glm} and the \texttt{glm.nb} (MASS package) functions for the length and count data, respectively. To analyze the contribution of the explanatory variables, a likelihood ratio test for the result of GLM was performed using the \texttt{Anova} function of the car package. The statistical results are listed in Tables 4 (female) and 5 (male).

Scanning Electron Microscopy (SEM)

The NanoSuit method (Takaku et al., 2013) was used for the SEM analysis. Male penises and female ovipositors preserved in 90% ethanol were washed with distilled water and immersed in 1% Tween20 at 25°C for 10 minutes. The samples were mounted on stubs and imaged using a low-vacuum SEM (DX-500; KEYENCE, Tokyo, Japan).
Histology

The gonads of RNAi individuals were fixed with Bouin’s fixative (saturated picric acid: formaldehyde: glacial acetic acid = 15:5:1) at 25°C overnight and washed with 90% ethanol plus Lithium Carbonate (Li$_2$CO$_3$). The ovipositors of RNAi individuals were fixed with FAA fixative at 25°C overnight and then were transferred into 90% ethanol. The samples were dehydrated and cleared with an ethanol-butanol series. The cleared samples were immersed and embedded in paraffin at 60°C. The paraffin blocks were polymerized at 4°C and cut into 5 µm thick sections using a microtome (RM2155: Leica, Wetzlar, Germany). The sections were mounted on microscope slides coated with egg white-glycerin and stained using Delafield’s Hematoxylin and Eosin staining. The stained slides were enclosed with Canada balsam. We observed the slides on an optical microscope (Olympus, Tokyo, Japan) and took photos using a digital single-lens reflex camera (Nikon, Tokyo, Japan).

Comparison of exon-intron structure and amino acid sequences

We obtained exon-intron structures of \(dsx \) in seven insect species from NCBI. The female- and male-specific regions were visualized as red and blue colors, respectively. The exon-intron structures were mapped on a phylogenetic hypothesis based on Misof et al. (2014). We obtained amino acid sequences of Dsx isoforms of 10 species from the NCBI database. Wexler et al. (2014) showed that \(dsx \) of Pediculus humanus (Psocodea) has isoforms without sex-specificity. In this study, based on the blast search and exon structure, we determined that PhDsx1 in Wexler et al. (2019) corresponded to the \(dsx \) female-type and PhDsx2 to \(dsx \) male-type. The sequences were aligned using MAFFT version 7 with a -linsi option.

Data availability
The draft genome data was deposited in the DNA Data Bank of Japan (Accession number: DRA005797; Bioproject: PRJDB5781). The raw read data of the transcriptome was in the NCBI Sequence Read Archive (Accession numbers: SRR13870115–SRR13870124; Bioproject: PRJNA707122). The sequences of \textit{dsx} male-type, \textit{dsx} female-type, and \textit{dsx-like} are also in GenBank (Accession numbers: MW711323, MW711324, and MW711325, respectively).

Acknowledgments

We would like to thank Dr. Takahiro Ohde (National Institute for Basic Biology; Kyoto University) for his help to extract genomic DNA of \textit{T. domestica} and for a great advice to the discussion. We are also grateful to Dr. Toshiya Ando, Dr. Taro Nakamura, Dr. Shinichi Morita, Dr. Hiroki Sakai, and Dr. Tatsuro Konagaya (National Institute for Basic Biology) for technical advice and discussion on this manuscript. We also express our gratitude to Dr. Morita for providing a photo of \textit{Daphnia magna}. Computations were performed on the NIG supercomputer at ROIS, National Institute of Genetics and the Data Integration and Analysis Facility, National Institute for Basic Biology. We thank the Model Plant Research Facility, NIBB Bioresource Center for providing the network camera system. This work was supported by the JSPS KAKENHI Grant numbers JP25660265, JP16H02596, and JP16H06279 (PAGS) for TN and the Sasakawa Scientific Research Grant from The Japan Science Society for YC.

Author Contributions:
YC and TN conceived this study. YC performed the cloning of *dsx* and *dsx-like*, the RNAi, the RNA-seq, and the molecular phylogenetic analysis. AT sequenced the genome. MO and TI performed the de novo genome assembly. YC and T. wrote this manuscript; all authors commented on the manuscript.

Competing Interest Statement

The authors declare that have no competing interests.

References

Abouheif E. 1999. A method for testing the assumption of phylogenetic independence in comparative data. *Evolutionary Ecology Research* **1**: 895–909.

An W, Wensink PC. 1995. Integrating sex-and tissue-specific regulation within a single *Drosophila* enhancer. *Genes & Development* **9**: 256–266.

Arthur W. 2003. Micro-, Macro-, and Megaevolution In: Hall BK, Olson WM (Eds). *Keywords and Concepts in Evolutionary Developmental Biology*. Cambridge: Harvard University Press. p. 249–260.

Arthur W. 2010. *Evolution: A Developmental Approach*. New York: John Wiley & Sons.

Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, Tree of Sex Consortium. 2014. Sex determination: why so many ways of doing it? *PLoS Biol* **12**: e1001899.
Baral S, Arumugam G, Deshmukh R, Kunte K. 2019. Genetic architecture and sex–specific selection govern modular, male–biased evolution of doublesex. *Science Advances* 5: eaau3753.

Bear A, Monteiro A. 2013. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects. *Bioessays* 35: 725–732.

Beukeboom LW, Perrin N. 2014. *The evolution of sex determination*. Oxford: Oxford University Press.

Beutel RG, Yavorskaya MI, Mashimo Y, Fukui M, Meusemann K. 2017. The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. *Proceedings of the Arthropodan Embryological Society of Japan* 51: 1–15.

Bopp D, Saccone G, Beye M. 2014. Sex determination in insects: variations on a common theme. *Sexual Devevelopment* 8: 20–28.

Boudinot BE. 2018. A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota. *Arthropod Structure & Development* 47: 563–613.

Buck C, Edwards JS. 1990. The effect of appendage and scale loss on instar duration in adult firebrats, *Thermobia domestica* (Thysanura). *Journal of Experimental Biology* 151: 341–347.

Burtis KC, Baker BS. 1989. *Drosophila doublesex* gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex–specific polypeptides. *Cell* 56: 997–1010.

Byrne BM, Gruber MABG, Ab G. 1989. The evolution of egg yolk proteins. *Progress in Biophysics & Molecular Biology* 53: 33–69.
Caroll SB. 2005. Evolution at Two Levels: On Genes and Form. *PLoS Biol.* 3:,e245.

Chandler JC, Fitzgibbon QP, Smith G, Elizur A, Ventura T. 2017. *Y-linked idmrt1* paralogue (*iDMY*) in the Eastern spiny lobster, *Sagmariasus verreauxi*: The first invertebrate sex-linked *Dmrt*. *Developmental Biology* 430: 337–345.

Darwin C. 1871. *The Descent of Man, and Selection in Relation to Sex* vol. 1 London: John Murray.

De Loof A, Huybrechts R. 1998. “Insects do not have sex hormones”: a myth? *General and Comparative Endocrinology* 111: 245–260.

Emeljanov AF. 2014. The evolutionary role and fate of the primary ovipositor in insects. *Entomological Review* 94: 367–396.

Erdman SE, Chen HJ, Burtis KC. 1996. Functional and genetic characterization of the oligomerization and DNA binding properties of the *Drosophila doublesex* proteins. *Genetics* 144: 1639–1652.

Fryxell DC, Weiler DE, Kinnison MT, Palkovacs EP. 2019. Eco–evolutionary dynamics of sexual dimorphism. *Trends in Ecology and Evolution* 34: 591–594.

Futuyma D, Kirkpatrick M. 2017. *Evolution 4th edition* Sunderland: Sinauer Associates.

Ganfornina MD, Sánchez D. 1999. Generation of evolutionary novelty by functional shift. *Bioessays* 21: 432–439.

Geddes P, Thomson JA. 1889. *The evolution of sex*. London: Walter Scott.

Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M. 2009. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. *PLoS Biol.* 7: e1000222.
Ghosh N, Bakshi A, Khandelwal R, Rajan SG, Joshi R. 2019. The Hox gene Abdominal-B uses Doublesex as a cofactor to promote neuroblast apoptosis in the Drosophila central nervous system. Development 146: dev175158.

Gilbert SF. 2013. Developmental Biology 10th edition. Sunderland: Sinauer Associates.

Gotoh H, Zinna RA, Warren I, DeNieu M, Niimi T, Dworkin I, Emlen DJ, Miura T, Lavine LC. 2016. Identification and functional analyses of sex determination genes in the sexually dimorphic stag beetle Cyclommatus metallifer. BMC Genomics 17: 250.

Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R. 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250.

Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M. 2008. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454: 519–522.

Hattori, Y. Murai, M. Oura, S. Masuda, S. K. Majhi, T. Sakamoto, J. I. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandezino JI, Somoza GM, Yokota M, Strüssmann CA. 2012. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. PNAS 109: 2955–2959.

Hayward A, Takahashi T, Bendena WG, Tobe SS, Hui JH. 2010. Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Letters 584: 1273–1278.
Herpin A, Schartl M. 2015. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. *EMBO Reports* **16**: 1260–1274.

Hildreth PE. 1965. Doublesex, a recessive gene that transforms both males and females of *Drosophila* into intersexes. *Genetics* **51**: 659–678.

Hopkins BR, Kopp A. 2021. Evolution of sexual development and sexual dimorphism in insects. *Current Opinion in Genetics & Development* **69**: 129–139.

Ito Y, Harigai A, Nakata M, Hosoya T, Araya K, Oba Y, Ito A, Ohde T, Yaginuma T, Niimi T. 2013. The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle. *EMBO Reports* **14**: 561–567.

Luo SD, Baker BS. 2015. Constraints on the evolution of a doublesex target gene arising from doublesex’s pleiotropic deployment. *PNAS* **112**: 852–861.

Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in *Amhr2* is associated with sex determination in the tiger pufferfish, *Takifugu rubripes* (fugu). *PLoS Genetics* **8**: e1002798.

Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. *Genome Reserach* **24**: 1384–95.

Kato Y, Kobayashi K, Watanabe H, Iguchi T. 2011. Environmental sex determination in the branchiopod crustacean *Daphnia magna*: deep conservation of a Doublesex gene in the sex-determining pathway. *PLOS Genet.* **7**: e1001345.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* **30**: 772–780.

Keren H, Lev-Maor G, Ast G. 2010. Alternative splicing and evolution: diversification, exon definition and function. *Nature Review Genetics* **11**: 345–355.

Kijimoto T, Moczek AP, Andrews J. 2012. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. *PNAS* **109**: 20526–20531.

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT–genotype. *Nature Biotechnology* **37**: 907–915.

Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. 1991. Male development of chromosomally female mice transgenic for Sry. *Nature* **351**: 117–121.

Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. *Trends in Genetics* **28**: 175–184.

Kristensen NP. 1975. The phylogeny of hexapod “orders”. A critical review of recent accounts. *Journal of Zoological Systematics and Evolutionary Research* **13**: 1–44.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* **35**: 1547–1549.

Ledón-Rettig C, Zattara E, Moczek A. 2017. Asymmetric interactions between doublesex and tissue- and sex-specific target genes mediate sexual dimorphism in beetles. *Nature Communications* **8**: 14593.
Li S, Li F, Yu K, Xiang J. 2018. Identification and characterization of a doublesex gene which regulates the expression of insulin-like androgenic gland hormone in *Fenneropenaeus chinensis*. *Gene* 649: 1–7.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* 25: 402–408.

Mann RM, Caroll SB. 2002. Molecular mechanisms of selector gene function and evolution. *Current Opinion in Genetics & Development* 5: 592–600.

Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. *Nature* 417: 559–563.

Matsuda R. 1976. *Morphology and Evolution of the Insect Abdomen: With Special Reference to Developmental Patterns and their Bearings upon Systematics*. Oxford: Pergamon Press.

Mawaribuchi S, Ito Y, Ito M. 2019. Independent evolution for sex determination and differentiation in the DMRT family in animals. *Biology Open* 8: bio041962.

McQueen E, Rebeiz M. 2020. On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution? *Current Topics in Developmental Biology* 139: 375–405.

Mine S, Sumitani M, Aoki F, Hatakeyama M, Suzuki MG. 2017. Identification and functional characterization of the sex-determining gene *doublesex* in the sawfly, *Athalia rosae* (Hymenoptera: Tenthredinidae). *Applied Entomology and Zoology* 52: 497–509.

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T,
Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X. 2014. Phylogenomics resolves the timing and pattern of insect evolution. *Science* **346**: 763–767.

Miyawaki S, Kuroki S, Maeda R, Okashita N, Koopman P, Tachibana M. 2020. The mouse *Sry* locus harbors a cryptic exon that is essential for male sex determination. *Science* **370**, 121–124.

Miyazaki S, Fujiwara K, Kai K, Masuoka Y, Gotoh H, Niimi T, Hayashi Y, Shigenobu S, Maekawa K. 2021. Evolutionary transition of *doublesex* regulation in termites and cockroaches: from sex-specific splicing to male-specific transcription. *bioRxiv*.

Morita S, Ando T, Maeno A, Mizutani T, Mase M, Shigenobu S, Niimi T. 2019. Precise staging of beetle horn formation in *Trypoxylus dichotomus* reveals the pleiotropic roles of *doublesex* depending on the spatiotemporal developmental contexts. *PLOS Genetics* **15**: e1008063.
Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. 2015. Turnover of sex chromosomes in celebensis group medaka fishes. *G3: Genes, Genomes, Genetics* 5: 2685–2691.

Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M. 2012. Tracing the emergence of a novel sex-determining gene in medaka, *Oryzias luzonensis*. *Genetics* 191: 163–170.

Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes*. *PNAS* 99: 11778–11783.

Ohbayashi F, Suzuki MG, Mita K, Okano K, Shimada T. 2001. A homologue of the *Drosophila doublesex* gene is transcribed into sex-specific mRNA isoforms in the silkworm, *Bombyx mori*. *Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology* 128: 145–158.

Ohde T, Yaginuma T, Niimi T. 2011. Nymphal RNAi analysis reveals novel function of scalloped in antenna, cercus and caudal filament formation in the firebrat, *Thermobia domestica*. *Journal of Insect Biotechnology and Sericology* 80: 101–108.

Panara V, Budd GE, Janssen R. 2019. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. *Frontiers in Zoology* 16: 1–18.

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature Biotechnology* 33: 290–295.

Pomerantz AF, Hoy MA, Kawahara AY. 2015. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard...
predatory mite *Metaseiulus occidentalis* (Chelicerata: Arachnida: Acari: Phytoseiidae). *Journal of Biomolecular Structure and Dynamics* **33**: 1239–1253.

Raymond CS, Murphy MW, O'Sullivan MG, Bardwell VJ, Zarkower D. 2000. *Dmrt1*, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. *Genes & Development* **14**: 2587–2595.

Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D. 1998. Evidence for evolutionary conservation of sex-determining genes. *Nature*, **391**, 691–695.

R Core Team. 2020. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**: 139–140.

Romero-Pozuelo J, Foronda D, Martín P, Hudry B, Merabet S, Graba Y, Sánchez-Herrero E. 2019. Cooperation of axial and sex specific information controls Drosophila female genitalia growth by regulating the Decapentaplegic pathway. *Developmental Biology* **454**: 145–155.

Rousset A., Bitsch C. 1993. Comparison between endogenous and exogenous yolk proteins along an ovarian cycle in the firebat *Thermobia domestica* (Insecta, Thysanura). *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* **104**: 33–44.

Sato Y, Shinka T, Sakamoto K, Ewis AA, Nakahori Y. 2010. The male-determining gene *SRY* is a hybrid of *DGCR8* and *SOX3*, and is regulated by the transcription factor *CP2*. *Molecular and Cellular Biochemistry* **337**: 267–275.
Male sex in houseflies is determined by \textit{Mdmd}, a paralog of the generic splice factor gene \textit{CWC22}. \textit{Science} \textbf{356}: 642–645.

Shukla JN, Palli SR. 2012. Doublesex target genes in the red flour beetle, \textit{Tribolium castaneum}. \textit{Scientific Reports} \textbf{2}: 948.

Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. \textit{Nature} \textbf{346}: 240–244.

Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH. 2009. The avian Z-linked gene \textit{DMRT1} is required for male sex determination in the chicken. \textit{Nature} \textbf{461}: 267–271.

Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T. 2003. Analysis of the biological functions of a \textit{doublesex} homologue in \textit{Bombyx mori}. \textit{Developmental Genes and Evolution} \textbf{213}: 345–354.

Suzuki MG, Imanishi S, Dohmae N, Nishimura T, Shimada T, Matsumoto S. 2008. Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of \textit{Bombyx mori dsx} female exons. \textit{Molecular and Cellular Biology} \textbf{28}: 333–343.

Takaku Y, Suzuki H, Ohta I, Ishii D, Muranaka Y, Shimomura M, Hariyama T. 2013. A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum. \textit{PNAS} \textbf{110}: 7631–7635.
Takahashi M, Okude G, Futahashi R, Takahashi Y, Kawata M. 2021. The effect of the *doublesex* gene in body colour masculinization of the damselfly *Ischnura senegalensis*. *Biology Letters* **17**: 20200761.

Takahashi M, Takahashi Y, Kawata M. 2019. Candidate genes associated with color morphs of female-limited polymorphisms of the damselfly *Ischnura senegalensis*. *Heredity* **122**: 81–92.

Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K. 2014. Co-option of *Sox3* as the male-determining factor on the Y chromosome in the fish *Oryzias dancena*. *Nature Communications* **5**: 4157.

Thongsaiklaing T, Passara H, Nipitwathanaphon M, Ngernsiri L. 2018. Identification and characterization of *doublesex* from the pumpkin fruit fly, *Bactrocera tau* (Diptera: Tephritidae). *European Journal of Entomology* **115**: 602–613.

True JR, Carroll SB. 2002. Gene co-option in physiological and morphological evolution. *Annual Review of Cell and Developmental Biology* **18**: 53–80.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3--new capabilities and interfaces. *Nucleic Acids Research* **40**: e115.

Verhulst EC, van de Zande L. 2015. Double nexus—Doublesex is the connecting element in sex determination. *Briefings in Functional Genomics* **14**: 396–406.

Verhulst EC, van de Zande L, Beukeboom LW. 2010. Insect sex determination: it all evolves around *transformer*. *Current Opinion in Genetics & Development* **20**: 376–383.

Wexler J, Delaney EK, Belles X, Schal C, Wada-Katsumata A, Amicucci MJ, Kopp A. 2019. Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. *eLife* **8**: e47490.
Wexler JR, Plachetzki DC, Kopp A. 2014. Pan-metazoan phylogeny of the DMRT gene family: a framework for functional studies. Developmental Genes and Evolution 224: 175–181.

Wilkins AS. 1995. Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. Bioessays 17: 71–77.

Xu J, Chen S, Zeng B, James AA, Tan A, Huang Y. 2017. Bombyx mori P-element Somatic Inhibitor (BmPSI) is a key auxiliary factor for silkworm male sex determination. PLoS Genetics 13: e1006576.

Xu J, Yu Y, Chen K, Huang Y. 2019. Intersex regulates female external genital and imaginal disc development in the silkworm. Insect Biochemistry and Molecular Biology 108: 1–8.

Xu J, Zhan S, Chen S, Zeng B, Li Z, James AA, Tan A, Huang Y. Sexually dimorphic traits in the silkworm, Bombyx mori, are regulated by doublesex. 2017. Insect Biochemistry and Molecular Biology 80: 42–51.

Yang Y, Zhang W, Bayrer JR, Weiss MA. 2008. Doublesex and the regulation of sexual dimorphism in Drosophila melanogaster: structure, function, and mutagenesis of a female-specific domain. Journal of Biological Chemistry 283: 7280–7292.

Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. PNAS 105: 2469–2474.
Zhang HH, Xie YC, Li HJ, Zhuo JC, Zhang CX. 2021. Pleiotropic roles of the orthologue of the *Drosophila melanogaster* Intersex gene in the brown planthopper. *Genes* **12**: 379.

Zhuo JC, Hu QL, Zhang HH, Zhang MQ, Jo SB, Zhang CX. 2018. Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. *Insect Biochemistry and Molecular Biology* **102**: 31–42.
Video

Video 1. Time-lapse imaging of molting of *Thermobia domestica*.
Table 1. Taxa and proteins used for molecular phylogenetic analysis of DMRT family.

OTU name	gene	accession number	species	Order	Class/Subphylum	genome region	genome resource	
Aasp_Dsx-like	dsx	GAZQ02010078.1	Aretaon aspenimus	Phasmatodea	Ectognatha/Hexapoda			
Afsa_Dsx4	dsx	AW261109.1	Artenia franciscana	Anostreca	Brachiopoda/Crustacea			
Annu_Dmrt99_B	dm	GATX01081132.1	Anulipia sp.	Trichoptera	Ectognatha/Hexapoda			
Annu_Dsx	dsx	GATX01084595.1	Anulipia sp.	Trichoptera	Ectognatha/Hexapoda			
Anu_Dmrt11_E	dsx	XP_012262263.1	Athalia rosae	Hymenoptera	Ectognatha/Hexapoda			
Baet_Dsx-like	dsx	GATU02014641.1	Baealis sp.	Ephemeroptera	Ectognatha/Hexapoda			
Bdor_Dsx	dsx	AAB99948.1	Bactrocera dorsalis	Diptera	Ectognatha/Hexapoda			
Bger_Dsx	dsx	PSN43312.1	Blattella germanica	Dictyoptera	Ectognatha/Hexapoda			
Bhse_Dsx	dsx	GAYK02032082.1	Boreus hyemalis	Mecoptera	Ectognatha/Hexapoda			
Bmor_Dmrt11_E	bm	XP_004930266.1	Bombyx mori	Lepidoptera	Ectognatha/Hexapoda			
Bmor_Dmrt99_B	bm	XP_004924389.2	Bombyx mori	Lepidoptera	Ectognatha/Hexapoda			
Bmor_DsxF	dsx	XP_012544211.1	Bombyx mori	Lepidoptera	Ectognatha/Hexapoda			
Binut_Dmrt1	dm	ELRS3308.1	Bos mutus	Cetartiodactyla	Mammalia/Vertebrata			
Blau_Dmrt2	dm	XP_005210039.1	Bos taurus	Cetartiodactyla	Mammalia/Vertebrata			
Blyr_Dsx	dsx	AAV85880.1	Bactrocera tryoni	Diptera	Ectognatha/Hexapoda			
Caq-Dsx	dsx	CAQU003748-RA	Callajapyx aquilanus	Diptera	Ectognatha/Hexapoda			
Chac-Dsx	dsx	XP_012158607.1	Ceratitis capitata	Diptera	Ectognatha/Hexapoda			
Chac-CeDsx	dsx	GATG02018346.1	Cynidius comus	Megaloptera	Ectognatha/Hexapoda			
Cceul_Dmrt11E	dm	GAUX02031275.1	Ceuthophilus sp.	Orthoptera	Ectognatha/Hexapoda			
Cteu_Dsx	dsx	GAYP02016500.1	Ctenocephalus des felis	Siphonaptera	Ectognatha/Hexapoda			
Cgal_Dsx	dsx	GAWK02011923.1	Ceratophyllum sp.	Siphonaptera	Ectognatha/Hexapoda			
Choo_Dmrt11_E	dm	NQI010002646.1	Ciliarchus hookeri	Phasmatodea	Ectognatha/Hexapoda			
Choo-Dsx-like	dsx	NQI01000109.1	Ciliarchus hookeri	Phasmatodea	Ectognatha/Hexapoda			
Dcar_Dsx1	dsx	AIL86779.1	Daphnia carina	Diploteracea	Brachiopoda/Crustacea			
Dcar_Dsx2	dsx	AIL86780.1	Daphnia carina	Diploteracea	Brachiopoda/Crustacea			
Dgal_Dsx1	dsx	BAM33609.1	Daphnia galeata	Diploteracea	Brachiopoda/Crustacea			
Dgal_Dsx2	dsx	BAM33610.1	Daphnia galeata	Diploteracea	Brachiopoda/Crustacea			
Dmag_Dmrt11_E	dm	BAG12871.1	Daphnia magna	Diploteracea	Brachiopoda/Crustacea			
Dmag_	Dmrt93	dm	rt9	3b	BAG12872.1	Daphnia magna	Diptera	Brachiopoda/Crustacea
Dmag_	Dmrt99	dm	rt9	9b	BAG12873.1	Daphnia magna	Diptera	Brachiopoda/Crustacea
Dmag_	Dsx1	dsx	1	BAJ78307.1	Daphnia magna	Diptera	Brachiopoda/Crustacea	
Dmag_	Dsx2	dsx	2	BAJ78309.1	Daphnia magna	Diptera	Brachiopoda/Crustacea	
Dmel_	Dmrt11	dm	rt1 1e	NP_5111146.2	Drosophila melanogaster	Diptera	Ectognatha/Hexapoda	
Dmel_	Dmrt93	dm	rt9 3b	NP_524428.1	Drosophila melanogaster	Diptera	Ectognatha/Hexapoda	
Dmel_	Dmrt99	dm	rt9 9b	NP_524549.1	Drosophila melanogaster	Diptera	Ectognatha/Hexapoda	
Dmel_	Dsx	dsx	-	NP_731197.1	Drosophila melanogaster	Diptera	Ectognatha/Hexapoda	
Dmel_	Dsx	dsx	sx	AGJ52190.1	Daphnia pulex	Diptera	Brachiopoda/Crustacea	
Dmel_	Dsx	dsx	sx	BAM33608.1	Daphnia pulex	Diptera	Brachiopoda/Crustacea	
Dmel_	Dsx	dsx	rt1	AQQ04555.1	Danio rerio	Cypriniformes	Actinopterygii/Vertebrata	
Dmel_	Dsx	dsx	rt2	NP_571027.1	Danio rerio	Cypriniformes	Actinopterygii/Vertebrata	
Edan_D	Dmnt1	dm	rt1 1E	EDAN008414-RA	Ephemerida danica	Ephemeroptera	Ectognatha/Hexapoda	
Edan_D	Dmnt93B	dm	rt9 3b	EDAN004527-RA	Ephemerida danica	Ephemeroptera	Ectognatha/Hexapoda	
Edan_D	Dmnt99B	dm	rt9 9b	EDAN010869-RA	Ephemerida danica	Ephemeroptera	Ectognatha/Hexapoda	
Edan_Ds	dsx	Dsx-like	rt1 1E	GCCL01024227.1	Ecdyonurus insigins	Ephemeroptera	Ectognatha/Hexapoda	
Eros_	Dsx	dsx	- like	GAXW2019001.1	Euroleon nostras	Neuroptera	Ectognatha/Hexapoda	
Epen_	Dsx	dsx	- like	GAWT0203840.1	Empusa pennata	Mantodea	Ectognatha/Hexapoda	
Esup_	Dsx	dsx	- like	GAVW0200373.1	Epiphetia superstes	Odonata	Ectognatha/Hexapoda	
Eury_D	Dmnt11E	dm	rt1 1E	GAZG02011227.1	Eurylophella sp.	Ephemeroptera	Ectognatha/Hexapoda	
Eury_D	Dmnt93	dm	rt9 3b	GAZG02000044.1	Eurylophella sp.	Ephemeroptera	Ectognatha/Hexapoda	
Focc_D	Dsx	dsx	- like	FOCOC007514-RA	Frankliniella occidentalis	Thyssanoptera	Ectognatha/Hexapoda	
Gcor_	Dsx	dsx	- like	BAW32683.1	Gnatoecerus cornutus	Coleoptera	Ectognatha/Hexapoda	
Harm_	Dsx	dsx	- like	XP_021192052.1	Helicoverpa armigera	Lepidoptera	Ectognatha/Hexapoda	
Harm_	Dsx	dsx	- like	Holocentra duospinosa	Collembola	Ectognatha/Hexapoda		
Hydr_D	Hdeu	dsx	- like	GAVM02014074.1	Hydropsia sp.	Trichoptera	Ectognatha/Hexapoda	
Hydr_D	Hdeu	dsx	- like	Isonychia bicolor	Ephemeroptera	Ectognatha/Hexapoda		
Icra_D	x-sx	dsx	- like	GAZH02011000.1	Inocella crassicornis	Raphidioptera	Ectognatha/Hexapoda	
Lcup_D	mnt11E	dm	rt1 1E	XP_023291847.1	Lucilia cuprina	Diptera	Ectognatha/Hexapoda	
Lcup_D	mnt93B	dm	rt9 3b	XP_023302612.1	Lucilia cuprina	Diptera	Ectognatha/Hexapoda	
Lcup_D	mnt99B	dm	rt9 9b	XP_023308885.1	Lucilia cuprina	Diptera	Ectognatha/Hexapoda	
Lcup_D	sx	dsx	- like	ADG37648.1	Lucilia cuprina	Diptera	Ectognatha/Hexapoda	
Lful_Ds	sx	dsx	LPUL018497-RA	Ladona fulva	Odonata	Ectognatha/Hexapoda		
Lmig_D	sx	dsx	Locusta migratoria	Orthoptera	Ectognatha/Hexapoda	scaffold3427	NCBI	
--------	----	-----	-------------------	------------	----------------------	-------------	------	
Mdor_	Dmr11	E	X_P_019890834.1	Musca domestica	Diptera	Ectognatha/Hexapoda		
Mdor_	Dmr9	B	X_P_005186857.1	Musca domestica	Diptera	Ectognatha/Hexapoda		
Mdom_	Dsx	XAR2381.3	Musca domestica	Diptera	Ectognatha/Hexapoda			
Mext_D	mrt99B	Medex_00095964-RA	Medauroides extradentata	Phasmatodea	Ectognatha/Hexapoda			
Mext_D	sx	dsx	Medauroides extradentata	Phasmatodea	Ectognatha/Hexapoda			
Mext_D	sx-like	Xlae_D	Medex_0009178-RA	Medauroides extradentata	Phasmatodea	Ectognatha/Hexapoda		
Mfas_D	sx	GCNI01018035.1	Meropius fasciculatus	Diptera	Ectognatha/Hexapoda			
Mmus_	Dsx	X_P_005186857.1	Mus musculus	Rodentia	Mammalia/Vertebrata			
Mrel_	Dsx	GASW0220199.4	Mantisia religiosa	Mantodea	Ectognatha/Hexapoda			
Mvio_	Dsx	GATA02010186.1	Meloe violaceus	Coleoptera	Ectognatha/Hexapoda			
Ofur_D	sx	A_HF_81835.1	Ostrosticta furcata	Lepidoptera	Ectognatha/Hexapoda			
Otau_D	sx	AEX92938.1	Onthophagus taurus	Coleoptera	Ectognatha/Hexapoda			
Ppra_	Dsx	GAVW02027919.1	Pseudomallardus prasinus	Neuroptera	Ectognatha/Hexapoda			
Psch_D	sx-like	GAVW0102457.1	Penusphasma schultei	Phasmatodea	Ectognatha/Hexapoda			
Smag_	Dmr9	B	GEYQ01032489.1	Steganacarus magnus	Oribatida	Arachnida/Crustacea		
Tcsc_D	mrt99B	X_P_008199135.1	Tribolium castaneum	Coleoptera	Ectognatha/Hexapoda			
Tcsc_D	mrt99	B	X_P_975675.1	Tribolium castaneum	Coleoptera	Ectognatha/Hexapoda		
Tcsc_D	sx	X_P_001345539.1	Tribolium castaneum	Coleoptera	Ectognatha/Hexapoda			
Tcri_D	sx-like	GAVX0201084.1	Timema cristinae	Phasmatodea	Ectognatha/Hexapoda			
Tdic_D	sx	BAM93340.1	Tryptoxylus dichotomus	Coleoptera	Ectognatha/Hexapoda			
Tdor_	Dmr11	E	this study	Thermobia domestica	Zygoptera	Ectognatha/Hexapoda		
Tdor_	Dmr93	B	this study	Thermobia domestica	Zygoptera	Ectognatha/Hexapoda		
Tdor_	Dmr99	B	this study	Thermobia domestica	Zygoptera	Ectognatha/Hexapoda		
Tdor_	Dsx-like	this study	Thermobia domestica	Zygoptera	Ectognatha/Hexapoda			
Tger_	Dsx-like	GASG02037568.1	Tricholepidion gertschi	Zygoptera	Ectognatha/Hexapoda			
Tsub_	sx	GASG02027559.1	Tetrix subulata	Orthoptera	Ectognatha/Hexapoda			
Xant_D	sx	GAUJ0248130.1	Xanthostigmata sp.	Raphidophora	Ectognatha/Hexapoda			
Xiae_D	mri1	GP_00189969.1	Xenopus laevis	Anura	Amphibia/Vertebrata			
Xiae_D	mri4	AAI70678.2	Xenopus laevis	Anura	Amphibia/Vertebrata			
Xiae_D	mri5	AAI70676.1	Xenopus laevis	Anura	Amphibia/Vertebrata			

Note: The table contains information about different species and their biological classes, along with their gene names and coordinates from NCBI databases.
Table 2. Results of RT-qPCR assay and Brunner–Munzel test. Significant levels are indicated by asterisks in significance column: *P < 0.05, **P < 0.01, ***P < 0.001. n.s. means non-significance.

experiment	treatment	sample size (N)	median △Ct	95% confidence interval	Brunner-Munzel test	P-value adjusted by Holm’s method	significance	graph #
dsx male-type expression level	male	12	8.59	2.66.E-03, -5.00	0.83, 1.07	8.25, 12.82, 1.75.E-06	-	***
	female	8	13.89	6.64.E-05, -5.00	-0.01, 0.01	-92.63, 20.95, 2.20.E-16	-	***
dsx female-type expression level	male	11	9.98	9.90.E-04, -4.00	-0.01, 0.01	-92.63, 20.95, 2.20.E-16	-	***
	female	12	5.77	1.83.E-02, -4.18	0.58, 1.02	2.86, 21.84, 9.24.E-03	-	**
dsx-like expression level	male	12	3.62	8.13.E-02, -4.00	1.00	1.00	Inf NaN	2.20.E-16
	female	12	4.71	3.63.E-02, -4.00	0.47	1.00	Inf NaN	2.20.E-16
dsx expression level in males	egfp	12	7.50	5.52.E-03, -4.18	1.00	1.00	n.s.	Figure 1E
	dsx all	8	9.24	1.66.E-03, -4.00	0.30	0.45, 1.03	1.78, 13.61	1.94.E-01
	dsx-like	10	7.14	7.10.E-03, -4.18	1.29	0.07, 0.57	-1.54, 17.40	1.43.E-01
dsx expression level in males	egfp	12	7.50	5.52.E-03, -4.18	1.00	1.00	n.s.	Figure 1D
	dsx all	7	9.32	1.57.E-03, -4.00	0.28	0.64, 1.05	3.64, 13.87	5.45.E-03
	dsx-like	10	7.14	7.10.E-03, -4.18	1.29	0.07, 0.57	-1.54, 17.40	1.43.E-01
dsx expression level in females	egfp	10	5.18	2.76.E-02, -4.00	1.00	1.00	n.s.	Figure 1D
	dsx all	17	6.23	1.33.E-02, -4.00	0.48	0.57, 0.99	2.78, 16.21	2.65.E-02
	dsx-like	9	5.17	2.78.E-02, -4.00	1.01	0.20, 0.82	0.08, 15.38	9.40.E-01
dsx-like expression level in males	egfp	12	5.72	1.95.E-02, -4.00	1.00	1.00	n.s.	Figure 1D
	dsx all	8	6.17	1.39.E-02, -4.00	0.72	0.50, 0.98	2.08, 17.99	5.19.E-02
	dsx-like	10	10.17	8.68.E-04, -4.00	0.04	1.00, 1.00	Inf NaN	2.20.E-16
dsx-like expression level in females	egfp	10	6.08	1.49.E-02, -4.00	1.00	1.00	n.s.	Figure 1D
	dsx all	17	6.31	1.26.E-02, -4.00	0.85	0.47, 0.93	1.82, 16.18	8.76.E-02
	dsx-like	9	11.58	3.27.E-04, -4.00	0.02	1.00, 1.00	Inf NaN	2.20.E-16

54
	egfp	dsx all	dsx-like	dsx+dsx-like
vitellogenin-1 expression level in males				
egfp	5	15.00	3.06E-05	1.00
dsx all	9	4.42	4.68E-02	1530.72
dsx-like	7	10.18	8.62E-04	28.18
dsx+dsx-like	9	4.28	5.14E-02	1678.94
vitellogenin-2 expression level in males				
egfp	3	16.76	9.01E-06	1.00
dsx all	8	11.24	4.13E-04	45.89
dsx-like	5	15.48	2.19E-05	2.43
dsx+dsx-like	8	10.64	6.27E-04	28.64
vitellogenin-3 expression level in males				
egfp	10	11.28	4.21E-04	1.00
dsx all	10	3.25	1.07E-01	254.99
dsx-like	10	8.73	2.37E-03	5.64
dsx+dsx-like	9	2.82	1.42E-01	336.55
vitellogenin-1 expression level in females				
egfp	8	-2.67	6.34E+00	1.00
dsx all	10	-0.44	1.41E+00	0.22
dsx-like	7	-0.29	1.22E-00	0.19
dsx+dsx-like	8	0.90	5.40E-01	0.09
vitellogenin-2 expression level in females				
egfp	8	1.84	2.80E-01	1.00
dsx all	10	4.34	4.96E-02	0.18
dsx-like	7	5.24	2.65E-02	0.09
dsx+dsx-like	8	6.10	1.48E-02	0.05
vitellogenin-3 expression level in females				
egfp	8	-3.37	1.03E+00	1.00
dsx all	10	-1.98	3.95E+00	0.38
dsx-like	8	0.84	7.82E-01	0.08
dsx+dsx-like	8	0.05	1.09E+00	0.11

The source data of this table can be obtained in the Table2--source data I file.
Table 3. Results of Smirnov–Grubbs’ test for expression level of dsx mRNA in nympha RNAi males. The determination of whether a value is an outlier or not is based on the P-value and is shown in the “outlier?” column.

	max/min	value	G	U	P-value	outlier?
egfp	max	10.45	1.8587	0.65738	2.73.E-01	no
	min	5.31	1.59672	0.74715	5.74.E-01	no
dsx	max	10.47	0.97	0.85	1.00.E+00	no
	min	5.23	2.27	0.15688	5.14.E-03	yes
dsx-like	max	7.70	1.01	0.88	1.00.E+00	no
	min	5.12	2.08	0.47	8.35.E-02	no
reanalysis of dsx	max	10.47	1.52	0.55	3.52.E-01	no
	min	8.44	1.42	0.61	4.70.E-01	no
Table 4. Results of generalized linear model of female traits. Significant levels are indicated by asterisks in significance column: *$P<0.05$, **$P < 0.01$, ***$P < 0.001$. n.s. means non-significance.

objective variable	sample size (N)	explanatory variables	LR Chisq	Df	P-value	significance	Fig #
ovipositor length	egfp: 10, dsx all: 17, dsx-like: 9, dsx+dsx-like: 12, total: 48	dsx RNAi	0.26	1	6.08.E-01	n.s.	Figure 2H
		dsx-like RNAi	0.58	1	4.47.E-01	n.s.	Figure 2–figure supplement 3
		prothoracic width	297.00	1	2.00.E-16	***	Figure 2–figure supplement 4
		dsx RNAi:dsx-like RNAi	2.67	1	1.02.E-01	n.s.	
ovipositor length	egfp: 8, dsx all: 8, dsx male-type: 7, dsx female-type: 13, total: 36	dsx all RNAi	1.29	1	2.56.E-01	n.s.	
		dsx male-type RNAi	1.29	1	2.56.E-01	n.s.	
		dsx female-type RNAi	0.42	1	5.18.E-01	n.s.	
		prothoracic width	146.52	1	2.00.E-16	***	
prothoracic width	egfp: 10, dsx all: 17, dsx-like: 9, dsx+dsx-like: 13, total: 49	dsx RNAi	2.17	1	1.41.E-01	n.s.	
		dsx-like RNAi	1.96	1	1.61.E-01	n.s.	
		dsx RNAi:dsx-like RNAi	2.16	1	1.41.E-01	n.s.	
previtellogenic oocyte number	egfp: 7, dsx all: 16, dsx-like: 10, dsx+dsx-like: 9, total: 42	dsx RNAi	0.08	1	7.83.E-01	n.s.	Figure 3D
		dsx-like RNAi	0.23	1	6.31.E-01	n.s.	
		prothoracic width	0.97	1	3.25.E-01	n.s.	
	dsx RNAi	dsx-like RNAi	prothoracic width	dsx RNAi:dsx-like RNAi			
----------------------	----------	---------------	-------------------	-----------------------			
early vitellogenic	0.11	0.08	3.50	0.62			
oocyte number							
	egfp: 7, dsx all: 16, dsx-like: 10, dsx+dsx-like: 9, total: 42						
late vitellogenic	0.46	1.12	9.84	2.16			
oocyte number							
	egfp: 7, dsx all: 16, dsx-like: 10, dsx+dsx-like: 9, total: 42						
oocyte size	0.16	3.4291	4.273	1.4509			
	dsx RNAi	dsx-like RNAi	prothoracic width	dsx RNAi:dsx-like RNAi			
The source data of this table can be obtained in the Table4–source data 1 file.	0.06	1	8.10.E-01	n.s.			

Figure 3D
Table 5. Results of generalized linear model of male traits.

P-values are indicated by asterisks in significance column: ** *P* < 0.01. n.s. means non-significance.

objective variable	sample size (M)	explanatory variables	LR Chisq	Df	*P*-value	significance
sperm number		dsx RNAi	7.93	1	4.87.E-03	**
		dsx-like RNAi	2.06	1	1.51.E-01	n.s.
		prothoracic width	8.68	1	3.21.E-03	**
		dsx RNAi:dsx-like RNAi	0.02	1	8.79.E-01	n.s.
prothoracic width		dsx RNAi	0.03	1	8.71.E-01	n.s.
		dsx-like RNAi	2.82	1	9.31.E-02	n.s.
		dsx RNAi:dsx-like RNAi	1.09	1	2.96.E-01	n.s.

The source data of this table can be obtained in the Table5–source data 1 file.
No.	experiment	target	primer name	primer sequence (5' to 3')	length	note
1	5'RACE	doublesex (dsx)	Tdom_dsx_RACE_01	TCGCGTGACAAGGAAGAAGGCCCCCGG	26	gene specific primer
2	5'RACE	dsx	Tdom_dsx_RACE_02	AGGCCCGAGAATTGAAGACACTCT	25	nested gene specific primer
3	5'RACE	doublesex-like (dsx-like)	Tdom_dsx-like_RACE_01	CAGGTGGAAACGCAGGTCCTGATG	25	gene specific primer
4	5'RACE	dsx-like	Tdom_dsx-like_RACE_02	GGGCTGGATGTTGCTGTTAGTTGAA	25	nested gene specific primer
5	3'RACE	dsx	Tdom_dsx_RACE_03	GCTTCTTAATCCGGGGCTCTTCTCC	27	gene specific primer
6	3'RACE	dsx	Tdom_dsx_RACE_04	TCAATTCCGGGGCTCTTCTTCTTCA	27	nested gene specific primer
7	3'RACE	dsx-like	Tdom_dsx-like_RACE_03	AGACAGCAGCCGCAATGACGTTAAGA	25	gene specific primer
8	3'RACE	dsx-like	Tdom_dsx-like_RACE_04	ACAGCAGCAATGACGTTAAGA	25	nested gene specific primer
9	RT-qPCR	ribosomal protein 49 (rp49)	Tdom_rp49_RT-qPCR_F	ACCACCATAGTCAGGAGCGGGA	23	reference gene
10	RT-qPCR	ribosomal protein 49 (rp49)	Tdom_rp49_RT-qPCR_R	AACTGTCCAATTCAGCCCTTCC	23	reference gene
11	RT-qPCR	dsx male-specific region	Tdom_dsx_male_RT-qPCR_F	GCTTATCTGCCTGTATAGCAGAGA	23	reference gene
12	RT-qPCR	dsx male-specific region	Tdom_dsx_male_RT-qPCR_R	AGTCGTAGGACTAGTAGTACGTTGCT	24	reference gene
13	RT-qPCR	dsx female-specific region	Tdom_dsx_female_RT-qPCR_F	CTACCGCTGAAATTCGCTTCC	23	reference gene
14	RT-qPCR	dsx female-specific region	Tdom_dsx_female_RT-qPCR_R	TGGCTGATTAGTCAGATCCAGG	20	reference gene
15	RT-qPCR	dsx common region	Tdom_dsx_RT-qPCR_F	ACCCGAGCTAGTCCTCAGAAGA	23	reference gene
16	RT-qPCR	dsx common region	Tdom_dsx_RT-qPCR_R	CTTGAGCTGCTCCCTCACAGCA	23	reference gene
17	RT-qPCR	dsx-like	Tdom_dsx-like_RT-qPCR_F	ACAGGTTGGTTGCTTTTACATGCGT	23	reference gene
18	RT-qPCR	dsx-like	Tdom_dsx-like_RT-qPCR_R	TCTCTGAGTCATTGGCTGCTGCT	23	reference gene
19	RT-qPCR	vitellogenin-1	Tdom_vitellogenin-1_RT-qPCR_F	TGCTCCATTCAACACACCAGC	20	reference gene
Step	Method	Gene/Region	Primer/Sequence	Sequence Length	Notes	
------	-----------------	-----------------------	--	----------------	----------------	
20	RT-qPCR	vitellogenin-1	Tdom_vitellogenin-1_RT-qPCR_R AGCCCAGATGAACTTGACGA	20		
21	RT-qPCR	vitellogenin-2	Tdom_vitellogenin-2_RT-qPCR_F CCAGTGATGTGGCAATTCAAGGA	23		
22	RT-qPCR	vitellogenin-2	Tdom_vitellogenin-2_RT-qPCR_R TGTGGCTGTGACTGTCGTTTGT	23		
23	RT-qPCR	vitellogenin-3	Tdom_vitellogenin-3_RT-qPCR_F CACCAGCGATTTGACGAGAAGA	23		
24	RT-qPCR	vitellogenin-3	Tdom_vitellogenin-3_RT-qPCR_R GCTCAAACTCAGGCTCAAGTGA	23		
25	dsRNA	egfp	Tdom_egfp dsRNA_F ATCATGGCCGACAAGCAGAA	20	control of RNAi assay	
26	dsRNA	egfp	Tdom_egfp dsRNA_R AACTCCAGCAGGACCATGGA	20	control of RNAi assay	
29	dsRNA	dsx common region	Tdom_dsx dsRNA_F CCAAGCCCAAGCAGAAGC	18		
30	dsRNA	dsx common region	Tdom_dsx dsRNA_R CCGACTGTTACATAGGAGGGA	21		
31	dsRNA	dsx male-specific	Tdom_dsx_male-type dsRNA_F GCAGAATTAGAGGCTCATGCA	22		
32	dsRNA	dsx male-specific	Tdom_dsx_male-type dsRNA_R CGTACTGCGGCTTTACATGGT	21		
33	dsRNA	dsx female-specific	Tdom_dsx_female-type dsRNA_F TGCATGGAACAGGATATGG	22		
34	dsRNA	dsx female-specific	Tdom_dsx_female-type dsRNA_R TCAATTGATCTGACTTGTGCCT	22		
35	dsRNA	dsx-like	Tdom_dsx-like dsRNA_F CTCATGTCAGTGATGTCGC	20		
36	dsRNA	dsx-like	Tdom_dsx-like dsRNA_R TGGGTCAATGACAGCGAAA	20		
37	dsRNA	pCR4-TOPO vector	T7-pCR4-TOPO_F taatacgactctagggAGACCACGTCCTGACAGGTTAACC	45	T7 flanked	
38	dsRNA	pCR4-TOPO vector	T7-pCR4-TOPO_R taatacgactctagggAGACCACGACCTGACTGTCGGCA	45	T7 flanked	
Figure 1–figure supplement 1. Multiple sequence alignment of DM domain of DMRT family proteins for molecular phylogenetic analysis. The 65 amino acids of 97 DMRT proteins were used for the molecular phylogenetic analysis.
Figure 1—figure supplement 2. Comparison of DM domain sequences between Dsx and Dsx-like. The upper figures show the gene structures of \(dsx \) and \(dsx \)-like, and the lower one is the result of the multiple sequence alignment of the DM domain in Dsx and Dsx-like of \(T. \) The black-highlighted sequences are shared in both proteins.
Figure 1–figure supplement 3. Expression of dsx and dsx-like mRNA in nymphal RNAi individuals. (A) results of RT-qPCR assay. The expression profiles of dsx and dsx-like mRNA were analyzed by RT-qPCR assay and are indicated by their expression level relative to the expression of a reference gene (ribosomal protein 49). The upper graphs are the expression of dsx mRNA and the lower ones are that of dsx-like mRNA. The left column is the result in males and the right one is that in females. (B) the expression level of dsx mRNA in the nymphal RNAi males after excluding an outlier. To test the outlier, the Smirnov–Grubbs’ test was performed. Results of the Smirnov–Grubbs’ test are shown in Table 3. Results of the Brunner–Munzel test are indicated by asterisks: *P < 0.05; **P < 0.01; ***P < 0.001 and is also described in Table 2. P > 0.05 is not shown. Each plot is an individual. White plot is the outlier. Sample size are listed in Table 2.
Figure 2–figure supplement 1. External genital organs of nymphal RNAi individuals. (A) The penis in ventral view of dsx male or female-type RNAi males. (B) The ovipositor in ventral view of dsx male or female-type RNAi females. (C) SEM images of the male penis or the ovipositor-like organ. White frames are the areas shown in (E). (D) SEM images of the female ovipositor. Each image is separated into three parts. The left and right image is each lobe of the valvula I. The middle image is the valvula II. White frames are the areas showed in (F). (E) Higher magnification SEM images of the male genital organ in (C). Each image shows the higher magnification view of the area enclosed by the white frame in (C). (F) Higher magnification SEM images of the ovipositor. Each image shows the higher magnification view of the area enclosed by the white frame in (D). The arrowheads show the ovipositor-like organ in the dsx male-type RNAi male. Scales: 1000 µm (A, B, and D), 100 µm (C, E, and F).
Figure 2–figure supplement 2. Morphology of ovipositor in nymphal RNAi individuals. (A) Cross-section of the ovipositor. The photos show the morphology of the ovipositor in four parts: I (proximal part), II (middle part), III (distal part), and IV (most-distal part). D, dorsal; L, left; R, right; V, ventral. Scales: 50 µm. (B) Schematic figure of the ovipositor morphology. This figure is based on the cross-section of the part II in the control female.
Figure 2–figure supplement 3. Ovipositor length of dsx isoforms RNAi individuals. The ovipositor length of dsx all, male-, and female-type RNAi females is plotted against the prothoracic width. The results of the statistical analysis are described in Table 4.
Figure 2–figure supplement 4. Prothoracic width of nymphal RNAi individuals. The left and right graphs show the female and the male size, respectively. Data shows mean ± Standard Error (SE). The results of the statistical analysis are described in Tables 4 (female) and 5 (male).
Figure 3–figure supplement 1. Gonads of nymphal RNAi individuals. (A) female reproductive system. ol, ovariole; st, spermatheca. (B) male reproductive system. The upper photos are the area from the testicular follicle to the seminal vesicle. The lower ones are the high-magnification image of the vas efferens and the vas deferens. The arrowheads show the round-shape seminal vesicle. The arrows indicate sperm clots in the vas efferens. sv, seminal vesicle; tf, testicular follicle; ve, vas efferens; vd, vas deferens. Scales: 1 mm.
Figure 3–figure supplement 2. Morphology of spermatheca in nymphal RNAi individuals. The upper photos show the light microscopic images of the spermatheca. The middle ones are paraffin sections of the spermatheca. The lower one is the schematic image of the spermatheca of *T. domestica*. Scales: 500 µm.
Figure 3–figure supplement 3. Oocyte size of dsx isoforms RNAi individuals. The oocyte size of dsx all, dsx-like, and both dsx and dsx-like RNAi females is plotted against the prothoracic width. The results of the statistical analysis are described in Table 4.
Figure 4–figure supplement 1. Time-lapse imaging system. (A) A photo of the time-lapse imaging system used to observe the molt of *T. domestica*. (B) The images during the molt.
Figure 5–figure supplement 1. Multiple sequence alignments of insect Dsx female-specific region. (A) Comparison of the female-specific region of insect Dsx among the all taxa. (B) Comparison of the female-specific region of insect Dsx among the taxa with the dual-functionality. (C) Comparison of the female-specific region of insect Dsx among the taxa with the single-functionality. The black-highlighted sequences are shared in all given taxa.
Figure 5–figure supplement 2. Multiple sequence alignments of insect Dsx male-specific region. (A) Comparison of the male-specific region of insect Dsx among the all taxa. (B) Comparison of the male-specific region of insect Dsx among the taxa with the dual-functionality. (C) Comparison of the male-specific region of insect Dsx among the taxa with the single-functionality. The black-highlighted sequences are shared in all given taxa.
