Implementation of Zero Run-Off (ZRO) system on Cocoa land to increase watershed performance

Suhardi 1, A Munir 1, M T Sapsal 1, S N Faridah 1, and Samsuar 1
1Department of Agricultural Engineering, Hasanuddin University, Makassar, 90245, Indonesia

E-mail: suhardi@unhas.ac.id

Abstract. One indicator of the decline in watershed performance is the increase in the ratio of maximum discharge to minimal discharge due to major surface runoff when rain occurs. Land use for cocoa cultivation can increase surface runoff by 389% compared to forest land. For this reason, it is necessary to implement a zero run-off system technology that can minimize surface runoff through increasing groundwater recharge. Groundwater recharge in the Zero runoff system (ZRO) was determined using Darcy's approach. This approach requires hydraulic gradient data obtained through measurements of groundwater levels around the ZRO system using two monitoring wells and hydraulic conductivity data of saturated soil. Groundwater levels are measured interactively using an aqua plumb liquid level sensor with data logger recording. The saturated hydraulic conductivity was determined using the falling head approach. Based on the result of the research, the hydraulic gradient in one of the ZRO system in the research location is 0.4, and the saturated hydraulic conductivity of 2.61×10^{-5} m/s shows that the soil in the research location is moderately coarse or loamy textured. Thus, the velocity of water entering the subsurface is 1.04×10^{-5} m/s, so that discharge of the groundwater recharge for one ZRO system is 4.16×10^{-5} m3/s with the cross-sectional area of the ZRO system is 4 m2.

1. Introduction
The impact of cocoa cultivation on the hydrological function of a watershed can be seen regarding the elementary flow in the river network. A watershed is declared good if the ratio between maximum discharges to minimum discharge is small. This ratio uses the ratio between peak flow (maximum discharge) to base flow (minimum discharge) [1].

Efforts to minimize the maximum discharge ratio to the minimum discharge is to reduce the maximum discharge (minimize surface flow) and or increase the minimum discharge by increasing groundwater recharge. Both of these efforts can be carried out by maximizing the inclusion of surface flows into the soil as groundwater recharge. However, with the conversion of natural forest functions into a cocoa land, it can increase surface flow by up to 389% for young plants, while in adult cocoa plants by 284% [2]. Efforts to improve watershed performance on cocoa land are implementing the Zero Run-Off system (ZRO). This technology can minimize surface flow [3] so that it can provide a worthy response to the environment [4] and provide environmental and economic benefits [5]. The primary function of the ZRO System is to reduce surface flow so that the research knows the function of the system to groundwater recharge as an effort to improve the watershed performance of the cocoa land.
2. Methods

2.1. Groundwater recharge

The ZRO system analysis of groundwater recharge using Darcy's approach. Groundwater recharge is calculated using data on groundwater level differences. The velocity of groundwater input is calculated based on the saturated hydraulic conductivity of the soil using Darcy's law [6] which explains that the flow of water entering the soil has a linear relationship between differences in pressure and flow rate [7]. Thus, the calculation of groundwater recharge using equation:

\[Q = K \cdot i \cdot A \] \hspace{1cm} (1)

Where \(Q \) = Earth debit (m³/day), \(K \) = Hydraulic conductivity (m/day), \(i \) = Hydraulic gradient, \(A \) = sectional area of flow (m²).

The hydraulic gradient is the ratio between the difference in groundwater level and the distance between the monitoring wells. The cross-sectional area is assumed to be the same as the area of the wall of the wet building, whose value depends on the dimensions of the ZRO system.

2.2. Saturated hydraulic conductivity

Measurement of Hydraulic conductivity with falling head method using [8]:

\[\frac{dh}{dt} = \frac{K_s}{a} \] \hspace{1cm} (2)

Where \(h_0 \) = the initial water level in the manometer pipe above the water surface (m), \(h \) = water level in the manometer pipe at time \(t \) (m), \(A \) = sample surface area (m²), \(a \) = cross-sectional area of manometer pipe (m²), \(L \) = average sample thickness (m), \(K_s \) = saturated hydraulic conductivity (m/s), \(t \) = time (s).

3. Result and Discussion

3.1. Saturated hydraulic conductivity

Saturated soil hydraulic conductivity is a function of the flow of water coming out of the ZRO system. The hydraulic conductivity is measured by the falling head method. Soil samples were taken using a sample ring, so that the soil sample has the same consistency as when it was in the field, therefore the ability of the soil to pass water with the infiltration process is close to the conductivity value that measured. Data for determining soil conductivity are presented in table 1.

Table 1. Water level measurement data to determine the saturated hydraulic conductivity of the soil[9]

Water level position	Water level (m)	time (s)	ln (h/h₀)
h₀	0.60	5.95	0.087011
h₁	0.55	12.98	0.182322
h₂	0.50	19.33	0.287682
h₃	0.45	26.91	0.405465
h₄	0.40	35.41	0.538997
h₅	0.35	45.24	0.693147
h₆	0.30	57.13	0.875469
h₇	0.25	71.13	1.098612
h₈	0.20	90.53	1.386294
The data is plotted into the graph of the relationship between time and ln (h / ho). The results of data plotting are as in figure 1 below:

![Figure 1](image1)

Figure 1. Soil hydraulic conductivity measurement graph.

From the graph, it is known that the value of A * Ks / a.L = 0.0172. With the measuring instrument specifications A = 0.025434 m², a = 0.000314m² and L = 0.01m so that the hydraulic conductivity is saturated at 2.61 x10⁻⁵ m / s. This result indicates that the soil on the cocoa field is moderately coarse or loamy textured with moderate rapid hydraulic conductivity [10] or sandy loam [11].

3.2. Groundwater recharge debit

Groundwater recharge is calculated using Darcy's approach (equation 1). The flow gradient value is determined based on the difference in groundwater level around the ZRO system. Measurements tools record water level in the ZRO system, and two monitoring wells around it. The graph in figure 2 provides the real-time water level measurement of each well.

![Figure 2](image2)

Figure 2. The water level in the zero run-off system and monitor well 1 and 2
From the data in figure 2, the average water level in the ZRO system, monitoring well 1 (SP1) and SP 2 respectively are about 20 cm. The distance between the ZRO system to SP1 and SP1 to SP2 is 50 cm each; then the hydraulic gradient is 0.40. Thus, the speed of the flow of water entering the soil is $0.40 \times 2.61 \times 10^{-5} \text{ m} / \text{s} = 1.04 \times 10^{-5} \text{ m} / \text{s}$. The wet field area of the ZRO system is $0.36 \times 1 \times 4 = 1.44 \text{ m}^2$. Thus, the surface flow debit that enters the ground for 1 unit of ZRO system is $4.16 \times 10^{-5} \text{ m}^3 / \text{s} = 3.59 \text{ m}^3 / \text{day}$, with a cross-sectional area of the system is 4 m^2.

4. Conclusion
The zero run-off system is effective in improving watershed performance through the inclusion of surface flows into the soil as groundwater recharge. The bigger the dimensions of the system, the bigger the groundwater recharge debit.

Acknowledgment
Our gratitude goes to Hasanuddin University, for the help of research costs provided through LP2M with the 2017 Indonesian Specific Maritime Research (BMIS) SKIM in 2017.

References
[1] Pantouw J P, Limantara L M, Bisri M and Rispiningtati 2013 Ratio between maximum and minimum discharge ($q_{\text{max}}/q_{\text{min}}$) as the anticipated indicator of river disaster in 30 watersheds of indonesian World Applied Sciences Journal 25 (7) 1031-35
[2] Hidayat Y, Sinukaban N, Pawitan H and Tarigan S D 2007 Dampak perambahan hutan taman nasional lore lindu terhadap fungsi hidrologi dan beban erosi (studi kasus daerah aliran sungai nopu hulu, sulawesi tengah) Jurnal Ilmu Pertanian Indonesia 12(2) 84-92
[3] Suhardi, Munir A, Faridah S Nur and Sapsal M T 2016 Penyediaan kadar air tanah secara alami dan menekan erosi dengan penerapan teknologi zero run-off untuk mendukung budidaya tanaman kakao secara berkelanjutan Laporan Tahunan Penelitian MP3EI (Makassar : LPPM Unhas)
[4] Uva W F i L and Weiler TC 1996 A survey of planning and adoption of zero runoff systems in greenhouse operations Hortscience 31 (4) 608
[5] Piatti R., Amoroso G, Frangi P and Fini A 2009 International Symposium on High Technology for Greenhouse Systems: GreenSys2009 (ISHS Acta Horticulturae 893) p 1173 -77
[6] Niu Q, Fratta D and Wang Y 2015 The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils Journal of Hydrology 522 475 - 87
[7] Schweizer B 2015 Darcy’s law and groundwater flow modelling Snapshots of modern mathematics from Oberwolfach no 7 (Germany : Mathematisches Forschungsinstitut Oberwolfach)
[8] Abu-Zreig M M and Atoum M F 2004 Hydraulic characteristics and seepage modelling of clay pitchers produced in Jordan Canadian Biosystems Engineering 46 1.15 - 20
[9] Suhardi, Sapsal MT and Samsuar 2017 Prosiding Seminar nasional PERTETA (Banda Aceh: Universitas Syiah Kuala) p 415-421
[10] USDA 2017 Saturated Hydraulic Conductivity Natural Resources Conservation Service Soils.
[11] Todd D K and Mays L W 2004 Groundwater Hydrology 3rd Edition (Hoboken : John Wiley and Sons, Inc.) p 652