Regulation of Sodium Iodide Symporter Gene Expression by Rac1/p38β Mitogen-activated Protein Kinase Signaling Pathway in MCF-7 Breast Cancer Cells*

Takahiko Kogai, Yan-Yun Liu, Kaizeen Mody, Deborah V. Shamsian, and Gregory A. Brent

From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073 and the Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073

Background: Induction of the iodide transporter in cancer cells confers targeted cytotoxicity with radioiodide.

Results: Isoforms of p38 MAPK were identified that specifically promote iodide uptake in breast cancer cells.

Conclusion: p38 isoform-specific stimulation may induce iodide uptake sufficient for radioiodide therapy in breast cancer.

Significance: Study of p38 isoform-specific signaling improves understanding of cancer cell differentiation and identifies novel therapeutic targets.

Activation of p38 MAPK is a key pathway for cell proliferation and differentiation in breast cancer and thyroid cells. The sodium/iodide symporter (NIS) concentrates iodide in the thyroid and lactating breast. All-trans-retinoic acid (tRA) markedly induces NIS activity in some breast cancer cell lines and promotes uptake of β-emitting radioiodide 131I sufficient for targeted cytotoxicity. To identify a signal transduction pathway that selectively stimulates NIS expression, we investigated regulation by the Rac1-p38 signaling pathway in MCF-7 breast cancer cells and compared it with regulation in FRTL-5 rat thyroid cells. Loss of function experiments with pharmacologic inhibitors and small interfering RNA, as well as RT-PCR analysis of p38 isoforms, demonstrated the requirement of Rac1, MAPK kinase 3B, and p38β for the full expression of NIS in MCF-7 cells. In contrast, p38α was critical for NIS expression in FRTL-5 cells. Treatment with tRA or overexpression of Rac1 induced the phosphorylation of p38 isoforms, including p38β. A dominant negative mutant of Rac1 abolished tRA-induced phosphorylation in MCF-7 cells. Overexpression of p38β or Rac1 significantly enhanced (1.9- and 3.9-fold, respectively), the tRA-stimulated NIS expression in MCF-7 cells. This study demonstrates differential regulation of NIS by distinct p38 isoforms in breast cancer cells and thyroid cells. Targeting isoform-selective activation of p38 may enhance NIS induction, resulting in higher efficacy of 131I concentration and treatment of breast cancer.

p38 kinase, a member of the MAPK family, is a key regulator of intracellular signal pathways influencing cell proliferation, differentiation, cell survival, and migration. The catalytic activ-

* This work was supported, in whole or in part, by National Institutes of Health Grant RO1 CA089364 (to G. A. B.). This work was also supported by Veterans Affairs Merit Review Funds.

1 To whom correspondence may be addressed: Molecular Endocrinology Laboratory, Bldg. 114, Rm. 229, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA 90073. Fax: 310-268-4818; E-mail: tkogai@ucla.edu.

2 To whom correspondence may be addressed: Molecular Endocrinology Laboratory, Bldg. 114, Rm. 230, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA 90073. Fax: 310-268-4818; E-mail: gbrent@ucla.edu.

3 The abbreviations used are: NIS, sodium iodide symporter; Ab, antibody; CHOP, C/EBP homologous protein; CREB, cAMP-response element-binding protein; MKK, MAPK kinase; RAR, retinoic acid receptor; RXR, retinoic X receptor; TSH, thyroid-stimulating hormone; tRA, all-trans-retinoic acid.
in the NIS induction by tRA may lead to more effective induction of NIS in some breast cancer.

The induction of NIS by tRA is primarily mediated by the heterodimer of retinoic acid receptor (RAR)-β and retinoid X receptor (RXR)-α (14, 16). tRA-stimulated RAR-RXR has been shown to up-regulate NIS expression in MCF-7 cells (16, 17). Although RAR-RXR can act as a transcription factor and directly stimulate gene expression, it can also activate signaling pathways, such as phosphoinositide 3-kinase and p38 (16, 18).

NIS gene expression is differentially regulated in thyroid and breast tissues. In thyroid cells, stimulation with TSH, followed by cAMP accumulation, is critical for NIS expression (15, 19). In contrast, cAMP does not influence NIS expression in breast cancer cells (11). tRA, the NIS inducer in breast cancer cells, reduces NIS expression in FRTL-5 rat thyroid cells (11, 20). Stimulation of p38 MAPK activity is required for TSH-induced NIS expression in thyroid cells (21) as well as tRA-induced NIS expression in MCF-7 cells (17). The Rac1-p38 pathway is up-regulated by TSH-cAMP stimulation in thyroid cells (21) and by tRA treatment in MCF-7 breast cancer cells (18). We hypothesized that the Rac1-p38 pathway was a common pathway for NIS induction in breast cancer cells and thyroid cells.

Four isoforms of p38, α, β, γ, and δ, have been reported in mammalian cells. There are isoform differences in tissue distribution and substrate specificity (22–24), which may confer differential activation of downstream signaling pathways. We therefore determined the role of each p38 isoform in the regulation of NIS in MCF-7 breast cancer cells and compared it with the role in FRTL-5 rat thyroid cells. We identified a p38 MAPK cascade that selectively regulates NIS expression in MCF-7 cells. The effect of tRA treatment on the NIS-selective p38 signal transduction pathway was also investigated.

EXPERIMENTAL PROCEDURES

Materials—Signal transduction inhibitors were purchased from EMD Biosciences (La Jolla, CA). tRA and other chemicals were purchased from Sigma, unless otherwise noted. pcMV6-Myc/FLAG-p38β and pcMV6-Entry vector were obtained from Origene (Rockville, MD). Rac1 constructs, pcDNA3.1–3xHA-Rac1 G12V and pcDNA3.1–3xHA-Rac1 T17N, were obtained from Missouri S&T cDNA Resource Center (Rolla, MO). pcDNA3.1+ vector was purchased from Invitrogen. Anti-p38β antibodies (Abs), P38-11A5 and C28C2, were purchased from Zymed Laboratories (San Francisco, CA) and Cell Signaling Technology (Danvers, MA), respectively. Anti-phospho-p38 (rabbit polyclonal Ab and rabbit monoclonal Ab, D3F9), anti-DYKDDDDK (FLAG) tag, anti-HA tag (C29F4), and anti-MKK3B Abs were purchased from Cell Signaling Technology.

Cell Culture—MCF-7 cells (lot F15100 and 205623 from the ATCC, Manassas, VA), MBA-MD-231 cells, and FRTL-5 cells were maintained as described previously (11, 25, 26). BT-474 cells were grown in Dulbecco’s modified Eagle’s medium (ATCC) with 10% fetal bovine serum (ATCC). When cells were treated with tRA and/or signal transduction inhibitors, they were maintained with 0.1% DMSO vehicle and fed with fresh media with the agents every 24 h.

Transfection of siRNA—Reverse transfection of RNAi duplex was performed with Lipofectamine RNAiMAX (Invitrogen), as recommended. Briefly, MCF-7 cells (2 × 10⁵ cells/well), digested with 2.5 g/liter trypsin (Invitrogen), were incubated with RNAi duplex-Lipofectamine RNAiMAX complexes, containing 20 nmol of SMARTpool siRNA (Dharmacon, Lafayette, CO) or Stealth RNAi (Invitrogen), in 6-well plates for 48 h. Cells were then fed with fresh media and treated with or without tRA for 12 h starting 60 h after the beginning of transfection.

Transfection of Plasmid—In transient expression experiments, 2 µg of plasmid was transfected into ~10⁶ MCF-7 cells with the Nucleofector system (Lonzia, Gaithersburg, MD), as recommended by the manufacturer. For stable expression experiments, the transfected cells were selected in 400 mg/liter G418 (Invitrogen) for 3–4 weeks.

Iodide Uptake—The iodide uptake assay was performed as described previously (27) with minor modifications. Briefly, cells were grown in 12-well dishes, washed with Hanks’ balanced salt solution, and incubated for 1 h at 37 °C with 500 µl of Hanks’ balanced salt solution containing ~0.1 µCi of carrier-free Na¹²⁵I (MP Biomedicals, Solon, OH) and 10 µM NaI. The specific activity under these conditions was 20 mCi/mmol. In some experiments, 30 µM KClO₄, the specific inhibitor of NIS, was added to the Hanks’ balanced salt solution to measure iodide uptake independent of NIS. After incubation, the cells were washed once with ice-cold PBS and scraped from each well, and radioactivity was measured in a γ-counter. Cell number was determined by counting in a hemocytometer. The radioactivity was normalized to the cell number at the time of the assay. In the signal transduction inhibitor dose-response experiments, iodide uptake was normalized to the amount of cellular protein. Cells were incubated with Na¹²⁵I and lysed with the addition of 200 µl of passive lysis buffer (Promega) to each well. The radioactivity in the cell lysates was determined by a γ-counter, and the protein content was determined by the Bio-Rad protein assay (Bio-Rad).

Analysis of mRNA Expression—Two-step quantitative RT-PCR was performed, as described previously (14, 26). Primers for human NIS, GAPDH, and rat Gpdh were designed, as described (14, 26). Quantitative PCR of isoforms of human and rat p38 cDNA was performed with the QuantiTect primer assay (Qiagen). Quantitative RT-PCR of human MKK3A (NM_002756) and MKK3B (NM_145109) was carried out with custom primers (Invitrogen), 5′-GTCTCAGTTGGCCGTCGTTG/5′-CCACTTGCATCAGGCTCCACCTC and 5′-CCA-CTTGACGACGGGATCG/5′-CCATTGCGACGATGCG, respectively. Standard curves representing 6-point serial dilution of the corresponding control group were analyzed in each assay and used for calculation of relative expression values. The sample quantifications were normalized by the internal control GAPDH mRNA.

Western Blot Analysis—Cells grown in 10-cm Petri dishes were rinsed, scraped with PBS containing phosphatase inhibitor mixture 2 (Sigma), spun down by centrifugation, and lysed in cell lysis buffer (Sigma), containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, protease inhibitor mixture (Sigma), and phosphatase inhibitor mixture 2 (Sigma). The cell extracts were clarified by centrifugation, and protein
concentrations were determined by using a protein assay reagent (Bio-Rad). In some experiments, cells grown in 6-well plates were directly lysed in a culture dish with SDS sample buffer, containing 62.5 mM, Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM DTT, 0.01% bromphenol blue, protease inhibitor mixture (Sigma), and phosphatase inhibitor mixture 2 (Sigma). Aliquots of protein were resolved by SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore, Bedford, MA) by using standard procedures. The membranes were then subjected to Western blotting, and the blots were developed with the advanced ECL Western blot detection kit (GE Healthcare).

Immunoprecipitation—Exogenous FLAG-tagged p38β expressed in MCF-7 cells was immunoprecipitated with the FLAG immunoprecipitation kit (Sigma), as recommended. Briefly, clarified cell lysate in the cell lysis buffer with protease inhibitor mixture (Sigma) and phosphatase inhibitor mixture 2 (Sigma) was incubated with anti-FLAG M2 agarose gel (Sigma) at 4 °C for 16 h. The fraction eluted with SDS sample buffer (Sigma) and the cell lysate before the immunoprecipitation were applied to Western blot analysis.

Statistical Analysis—Unless otherwise noted, statistical significance, at a p value of <0.05, was determined by conducting a paired Student’s t test. Mann-Whitney U test was performed for data that were not normally distributed.

RESULTS

Effects of MAPK Cascade Inhibitors on Iodide Uptake in MCF-7 Cells—The potent p38 inhibitor, ML3403, significantly reduces tRA-induced NIS mRNA expression in MCF-7 cells (17). We tested the specificity of p38 inhibition on tRA-induced iodide uptake in MCF-7 cells with specific pharmacological inhibitors to determine the pathways involved. The p38 inhibitors, SB203580 (30 μM), SB239063 (10 μM), and ML3403 (30 μM), significantly reduced tRA-stimulated iodide uptake (Fig. 1A). Inhibitors of the MEK/ERK signaling pathway, PD98059 (30 μM), U0126 (30 μM), or ERK inhibitor (30 μM) (Fig. 1B), however, did not significantly influence tRA-stimulated iodide uptake (Fig. 1A). The p38 inhibitors, SB203580 and SB239063, inhibited iodide uptake in a dose-dependent fashion (Fig. 1C), although the IC50 value of these inhibitors (5.32 ± 0.72 and 7.73 ± 0.69 μM, respectively), was higher than the usual reported range in cell culture (<1 μM) (28). The marked tRA induction of NIS mRNA was significantly reduced by the addition of the p38 inhibitors, SB203580 (30 μM) and SB239063 (30 μM) (Fig. 1D), consistent with the effects of these inhibitors on iodide uptake. The p38 inhibitors utilized for these studies target p38 α and β but not γ and δ (29–31). These data indicate that p38 α and/or β play a major role in mediating tRA induction of NIS expression and iodide uptake in MCF-7 cells.

Differential Effects of p38 Inhibitors on Iodide Uptake in MCF-7 Cells and FRTL-5 Cells—TSH receptor/cAMP signaling, critical for the maintenance of NIS expression in thyroid cells, up-regulates the p38 MAPK cascade (15, 21). Inhibition of p38, by SB203580 and ML3403, significantly reduced NIS expression in FRTL-5 cells (17, 21). Because the IC50 for p38 inhibition of iodide uptake in MCF-7 cells was relatively high, we compared the kinetics of the inhibitory effect of SB203580 in MCF-7 cells with that in FRTL-5 rat thyroid cells. The IC50 in FRTL-5 cells was 0.65 ± 0.01 μM, which was significantly lower than that in MCF-7 cells, 5.17 ± 0.12 μM (Fig. 2).

The IC50 of SB203580 required to inhibit p38α activity was more than 10 times lower than that reported for p38β inhibition (29). We therefore determined if the difference in IC50 for p38α inhibition between MCF-7 and FRTL-5 cells was due to the differential expression of p38 isoforms. We evaluated the endogenous expression profile of p38 isoforms in these cell lines by quantitative RT-PCR. In MCF-7 cells, all p38 isoforms were abundantly expressed with a relative ranking of α > δ > γ > β. In these experiments, the IC50 for p38 inhibition of iodide uptake in MCF-7 cells was relatively high, we compared the kinetics of the inhibitory effect of SB203580 in MCF-7 cells with that in FRTL-5 rat thyroid cells. The IC50 in FRTL-5 cells was 0.65 ± 0.01 μM, which was significantly lower than that in MCF-7 cells, 5.17 ± 0.12 μM (Fig. 2).

The IC50 of SB203580 required to inhibit p38α activity was more than 10 times lower than that reported for p38β inhibition (29). We therefore determined if the difference in IC50 for p38α inhibition between MCF-7 and FRTL-5 cells was due to the differential expression of p38 isoforms. We evaluated the endogenous expression profile of p38 isoforms in these cell lines by quantitative RT-PCR. In MCF-7 cells, all p38 isoforms were abundantly expressed with a relative ranking of α > δ >
p38β Regulates Iodide Transporter in Breast Cancer Cells

Effects of Selective siRNA Knockdown of p38 Isoforms on the NIS mRNA Expression in MCF-7 Cells—Our analysis with pharmacologic inhibitors indicate the importance of p38α and/or p38β for NIS expression in MCF-7 cells. To determine which isoform of p38 is critical, we utilized siRNA to knock down the isoforms in MCF-7 cells. The transfection of p38β-specific siRNA, but not p38α siRNA, significantly decreased tRA-induced NIS mRNA expression in MCF-7 cells (~60% reduction compared with non-targeting siRNA; Fig. 3A). The siRNA knockdown of p38β also modestly decreased (~24% reduction) the basal NIS expression before tRA treatment (Fig. 3A). Although the p38β protein sequence has ~70% homology with p38α (22), the isoform-selective siRNAs reduced expression of only the targeted isoform (Fig. 3B). These data demonstrate that p38β, but not p38α, is required for full expression of NIS in MCF-7 cells.

Table 1: mRNA expression of p38 isoforms in MCF-7 cells and FRTL-5 cells

	MCF-7 Without tRA	MCF-7 With tRA	FRTL5
p38α	4.08 ± 0.02	5.79 ± 0.36	122 ± 34.5
p38β	3.53 ± 0.33	4.98 ± 0.53	Undetectable
p38γ	1.31 ± 0.04	1.66 ± 0.05	0.07 ± 0.01
p38δ	18.0 ± 0.50	8.19 ± 0.37	110 ± 4.08

Rac1 Regulates NIS Expression in MCF-7 Cells—The activity of the p38 MAPK cascade is regulated by tRA through Rac1 (18). To investigate if Rac1 plays an important role in NIS expression in MCF-7 cells, we added a pharmacological Rac1 inhibitor, NSC23766. tRA-induced iodide uptake was significantly decreased by NSC23766 (~66% reduction compared with tRA only), and the inhibitory effect was enhanced by the addition of the p38 inhibitor SB203580 (Fig. 5A). Induction of NIS mRNA by tRA was also significantly decreased by the Rac1 inhibitor NSC23766 (Fig. 5B) at every time point tested (76% reduction after 12 h of treatment with tRA). A constitutively active mutant of Rac1, Rac1 G12V, stably transfected in MCF-7 cells (Fig. 5C), significantly increased the tRA-induced NIS mRNA expression (3.4-fold compared with empty vector; Fig. 5D). The sensitivity of iodide uptake induction to tRA was significantly increased by Rac1 G12V. The EC50 of tRA (3.03 × 10−7 M) was significantly decreased to 9.57 × 10−8 M by the Rac1 activation (Fig. 5E). The iodide uptake in Rac1-overexpressing cells, treated with 10−7 M tRA, was significantly higher than in cells transfected with the empty vector (Fig. 5F). These data indicate a critical role of Rac1 in the tRA-induced NIS expression in MCF-7 cells.
MKK3B Is Important for NIS Expression in MCF-7 Cells—p38 is a substrate of MKK3 and MKK6. To investigate which MKK contributes to NIS expression, we evaluated the effects of selective siRNA knockdown of MKKs on NIS mRNA expression in MCF-7 cells. The knockdown of MKK3, but not MKK6, significantly decreased tRA-induced NIS mRNA expression (∼74% reduction; Fig. 6A). NIS mRNA expression in MCF-7 cells without tRA treatment was also reduced by MKK3 siRNA (∼38% reduction), but the change was not significant, consistent with the p38β siRNA (Fig. 3).

Two variants of MKK3, MKK3A and -B, have been reported (33). MKK3B is an alternatively spliced form of MKK3A with an additional 29 amino acids fused to the N-terminal end of MKK3A. MKK3A selectively activates p38α, whereas MKK3B activates both p38α and -β (33). The siRNA used in our knockdown studies targeted both MKK3A and -B. Our quantitative RT-PCR indicated abundant expression of MKK3A in MCF-7 cells, both with and without tRA treatment (Table 2). These data indicate that among variants of MKK3 and MKK6, the MKK3B is most important for NIS expression in MCF-7 cells.

tRA Induces Phosphorylation of p38β in MCF-7 Cells—tRA induces the phosphorylation of p38 in MCF-7 cells (18). The commercially available anti-phospho-p38 Abs recognize the common activation site motif contained in all four p38 isoforms. Previous studies of phosphorylation of p38, therefore, have not identified specific isoforms. We determined that Western blot of cell extracts prepared from cell pellet identified phosphorylated p38α as well as other isoforms. Only phospho-p38α was detected when the lysis buffer was directly added to monolayer cells (Fig. 7). Our study demonstrated that tRA treatment (1 μM) stimulated phospho-p38α at 0.5 h, whereas phosphorylation of other p38 isoforms was not induced by tRA until 12 h or later (Fig. 8A).

p38β and -δ migrate at ∼43 kDa, so we could not detect the phosphorylation of each isoform individually in the Western blot analysis using the pan-phospho-p38 Ab. In our preliminary experiments, the expression level of endogenous p38β in MCF-7 cells was not sufficient to immunoprecipitate with anti-p38β Ab (data not shown). We therefore transfected the expression vector Myc/FLAG-tagged p38β into MCF-7 cells and isolated the exogenous p38β by immunoprecipitation with anti-FLAG tag Ab after tRA treatment. The phosphorylation of exogenous p38β in MCF-7 cells was induced 6 h or longer after treatment with tRA (1 μM) (Fig. 8B), consistent with the West-
p38β Regulates Iodide Transporter in Breast Cancer Cells

Figure 6. Effects of siRNA knockdown of MKK3 and MKK6 mRNA on NIS expression in MCF-7 cells. Cells were transfected with Stealth RNAi to MKK3 or MKK6 or non-targeting siRNA (NT), grown in 6-well plates, and treated with or without tRA (1 μM) for 12 h. A, results of quantitative RT-PCR of NIS. The samples with both tRA and non-targeting siRNA were used as standards for quantification. The inset graph shows results without tRA treatment. *, p < 0.01, compared with the group with both non-targeting siRNA and tRA treatment (n = 3). B and C, quantitative RT-PCR of MKK3 (B) and MKK6 (C) in the cells 60 h after the beginning of transfection. *, p < 0.01, compared with the group of non-targeting siRNA (n = 3).

Table 2
mRNA expression of MKK3 variants in MCF-7 cells

siRNA	MKK3A	MKK3B
NT	0.03 ± 0.01	43.7 ± 2.90
tRA	0.06 ± 0.01	71.9 ± 5.81

DISCUSSION

In this study, we demonstrated the importance of Rac1, MKK3B, and p38β for NIS expression in MCF-7 breast cancer cells. tRA up-regulated p38β phosphorylation through Rac1 and MKK3B. The induction of NIS by tRA was, at least partially, through the Rac1-MKK3B-p38β pathway. NIS in thyroid cells was also regulated by p38 signaling; however, p38α, and not p38β, was critical for the expression of thyroid NIS.

In thyroid cells, several signaling pathways downstream of cAMP, such as PKA-CREB, Refl-PAX8, and Rac1-p38, contribute to maintenance of differentiated function of thyroid, such as iodide uptake by NIS (15). cAMP signaling activates p38 (21) and its downstream effector, CCAAT/enhancer-binding protein-homologous protein (CHOP) (34), through Rac1, MKK3, and/or MKK6 (21). Overexpression of CHOP transcriptionally enhances NIS expression in FRTL-5 cells (34). Our pharmacologic and gene expression analysis demonstrated the importance of p38α for expression of NIS in thyroid. The signaling pathway of cAMP-Rac1-MKK3/6-p38α-CHOP, therefore, contributes to NIS expression in thyroid cells (Fig. 10).

We demonstrated that NIS expression in MCF-7 breast cancer cells was dependent on p38β but not p38α. MKK6 activates the NIS-inducible CHOP in thyroid cells (34), whereas MKK3B, but not MKK6, was critical for NIS expression in MCF-7. Moreover, our preliminary study showed that overexpression of CHOP did not significantly increase NIS expression in MCF-7 cells. Although the Rac1-p38 pathway stimulates NIS expression in both thyroid cells (21, 34) and MCF-7 breast cancer cells, the Rac1 signals diverge into at least two pathways through distinct isoforms of p38, probably resulting in differential regulation of NIS in these cell types (Fig. 10).

Our previous pharmacological study has demonstrated various regulatory mechanisms for NIS expression involving several signaling pathways in MCF-7 cells (17). A phosphoinositide-3-kinase inhibitor, LY294002, significantly reduces tRA-induced NIS expression, but not basal expression, in MCF-7 breast cancer cells (4). Although the Rac1-p38 pathway stimulates NIS expression in both thyroid cells (21, 34) and MCF-7 breast cancer cells, the Rac1 signals diverge into at least two pathways through distinct isoforms of p38, probably resulting in differential regulation of NIS in these cell types (Fig. 10).

* T. Kogai and G. A. Brent, unpublished observation.
p38β Regulates Iodide Transporter in Breast Cancer Cells

FIGURE 7. Detection of phosphorylated p38β in Western blot analysis. The anti-phospho-p38 Abs (rabbit polyclonal Ab and rabbit monoclonal D3F9 Ab) recognizes the sequence around phosphorylation sites of Thr-180/Tyr-182, the common activation site motif among four p38 isoforms. Expected molecular masses of these isoforms are as follows: α, 40 kDa; β and δ, 43 kDa; γ, 46 kDa. A, detection of phosphorylated p38α and other isoforms in MCF-7 cells. Whole cell extracts from MCF-7 cells treated with tRA (1 μM) for 24 h as well as control cell extracts of anisomycin-treated C6 cells (Cell Signaling Technology) were applied to Western blot with the indicated Abs. C6 cells express abundant p38α, but not p38β. In tRA-treated MCF-7 cells, a broad band around 43–46 kDa (denoted by the asterisk), corresponding to p38β, γ, and δ, and a narrow band at 40 kDa, corresponding to p38α, were observed with the anti-phospho-p38 polyclonal Ab. Blotting with anti-p38β Ab (P38-11A5) indicated the major band at 43 kDa, corresponding to the upper broad band of phosphorylated p38. B, differences in the Western blot analysis with anti-phospho-p38 polyclonal Ab is dependent on the methods of cell extract preparation. Monolayer MCF-7 cells were directly lysed in a culture dish with SDS sample buffer containing 2% SDS, as described under “Experimental Procedures.” The harvested cell pellet was lysed with the lysis buffer containing 1% Triton X-100, as described under “Experimental Procedures.” The broad band of 43–46 kDa (denoted by the asterisk), probably including phospho-p38β, was not visualized with cell extracts directly prepared from monolayer cells. C, Western blot analysis of FLAG-tagged p38β expressed in MCF-7 cells. Cells were transfected with Myc/FLAG-tagged p38β-expressing pCMV6 vector and treated with tRA (1 μM) for 24 h. Proteins immunoprecipitated by anti-FLAG tag Ab (IP), or whole cell extracts before the immunoprecipitation (Input), were applied to Western blot analysis with the indicated Abs. Phospho-p38β with the Myc/FLAG tag migrated around 46 kDa (top), whereas endogenous p38β migrated around 43 kDa as a minor band (indicated by the arrow) in the whole cell extracts (bottom). The predicted molecular mass of the Myc/FLAG tag is 3,620 Da. The result with anti-phospho-p38 Abs (D3F9), shown here, was reproduced with the anti-phospho-p38 polyclonal Ab.

FIGURE 8. Phosphorylation of p38β in tRA-treated MCF-7 cells. Anti-phosphorylated p38 (P-38) polyclonal Ab recognizes the common phosphorylation site motif among four p38 isoforms; anti-p38α Ab and anti-p38β Ab (P38-11A5) were used for Western blotting. A, Western blot analysis of whole cell lysates from cells treated with tRA (1 μM) for the indicated time. The upper broad band, at 12 and 24 h, consists of at least two closely migrating bands corresponding to p38γ and p38β/δ. B, immunoprecipitation assay of phosphorylated p38β in MCF-7 cells. Cells were transfected with pCMV-Myc/FLAG-p38β and treated with tRA (1 μM) for the indicated time. Immunoprecipitated proteins with anti-FLAG Ab (IP) as well as whole cell extracts (Input) were applied to Western blot analysis with the indicated Abs.

FIGURE 9. Regulation of p38β by Rac1 in MCF-7 cells. A, Western blot analysis of whole cell extracts with anti-phosphorylated p38 Ab (D3F9), anti-p38β Ab (C28C2), and anti-HA tag Ab. Cells were transfected with pcDNA3.1–3xHA-Rac1 G12V, pcDNA3.1–3xHA-Rac1 T17N, or pcDNA3.1+–3xHA-Rac1 T17N, or pcDNA3.1+ Empty and treated with or without tRA (1 μM) for 12 h. B, immunoprecipitation assay of phosphorylated p38β in MCF-7 cells expressing exogenous Rac1 mutants. Cells were transfected with pcDNA3.1+–3xHA-Rac1 G12V, pcDNA3.1+–3xHA-Rac1 T17N, or pcDNA3.1+–3xHA-Rac1 T17N, or pcDNA3.1+ Empty and treated with tRA (1 μM) for 12 h. Proteins immunoprecipitated with anti-FLAG Ab (IP), as well as whole cell extracts (Input), were applied to Western blot analysis with the indicated Abs.

Cells (17). Retinoic acid stimulation of NIS involved direct interaction of an RAR-RXR heterodimer with phosphoinositide 3-kinase (16). In contrast, inhibition of p38 reduces NIS at base line and in tRA-stimulated MCF-7 cells (17). Loss-of-function experiments of p38β, as well as MKK3B, demonstrate a modest reduction of basal NIS expression in MCF-7 cells but very significant reduction of tRA-induced NIS expression. Overexpression of p38β, as well as Rac1, significantly enhanced tRA induction of NIS expression, consistent with the activation of Rac1 (18) and p38β by tRA. These results indicate that p38β proba...
cells express multiple p38 isoforms.

Because activation of p38 is dependent on dual phosphorylation, we focused our study on the dual phosphorylation site, common among all p38 isoforms. A monoclonal pan-phospho-p38 Ab, as well as a polyclonal pan-phospho-p38 Ab, was used in the present study to analyze the phosphorylated p38 in MCF-7 cells from the previous study using a pan-phospho-p38 Ab, however, showed a single band, corresponding to p38α, even with the same polyclonal pan-phospho-p38 Ab. In contrast, experiments with cell extracts prepared directly from monolayer cells produced a single band, corresponding to p38α, even with the same polyclonal phospho-p38 Ab. To analyze the phosphorylated p38β isoform in MCF-7 cells by Western blotting, cells need to be pelleted before lysing. Caution is required in analysis of p38 isoforms, which were not required for the full induction of NIS.

Superoxide dismutase (SOD) and catalase are natural scavengers of reactive oxygen species (ROS) and can potentiate signaling of p38 through activation of Rac1, which results in a more efficient induction of radioiodide uptake and increased survival of breast cancer cells.

Most studies on p38 signaling have focused on the p38α isoform, especially its responses to stress and inflammation. p38β is thought to be a minor pathway in immune system or stress signaling (37). Deficiency of p38β in mice actually causes no apparent phenotype, probably due to redundant functions among the isoforms (37). Increasing evidence points to an association of p38α with cell proliferation, malignant transformation, and tumor invasion in cancer cells, whereas the role of p38β in breast cancer is not established (1). A number of in vitro studies, however, have demonstrated that each isoform of p38 activates different downstream effectors (22–24). We demonstrate here that a retinoic acid-regulated p38β signal transduction pathway stimulates NIS expression, a promising target for breast cancer therapy. Confirmation of this p38β isoform specificity in additional in vitro and in vivo breast cancer models will be important. Dissection of isoform-specific signaling pathways is a potential novel strategy for breast cancer treatment.

REFERENCES

1. Wagner, E. F., and Nebreda, A. R. (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549.
2. Dohán, O., De la Vieja, A., Paroder, V., Riedel, C., Artani, M., Reed, M., Ginter, C. S., and Carrasco, N. (2003) The sodium/iodide symporter (NIS). Characterization, regulation, and medical significance. Endocr. Rev. 24, 48–77.
3. Trujillo, M. A., Oneal, M. J., McDonough, S., Qin, R., and Morris, J. C. (2010) A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiotherapy of prostate cancer. Gene Ther. 17, 1325–1332.
4. Penheiter, A. R., Wegman, T. R., Classic, K. L., Dingli, D., Bender, C. E., Russell, S. J., and Carlson, S. K. (2010) Sodium iodide symporter (NIS)-mediated radiotherapy for pancreatic cancer. AJR Am. J. Roentgenol. 195, 341–349.
5. Rischo-Eizaguirre, G., De la Vieja, A., Rodríguez, I., Miranda, S., Martín-Duque, P., Vassaux, G., and Santisteban, P. (2011) Telomerase-driven expression of the sodium iodide symporter (NIS) for in vivo radioiodide treatment of cancer. A new broad-spectrum NIS-mediated antitumor approach. J. Clin. Endocrinol. Metab. 96, E1435–E1443.
6. Klutz, K., Willhauck, M. J., Wunderlich, N., Zach, C., Anton, M., Senekowitsch-Schmidtke, R., Göke, B., and Spitzweg, C. (2011) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
7. Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, Q. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., and Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.
8. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J. Clin. Endocrinol. Metab. 88, 1880–1888.
9. Welch, P. L., and Mankoff, D. A. (2000) Taking up iodide in breast tissue. J. Clin. Endocrinol. Metab. 96, E1435–E1443.
10. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
11. Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, Q. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., and Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.
12. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
13. Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, Q. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., and Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.
14. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
15. Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, Q. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., and Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.
16. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
17. Tazebay, U. H., Wapnir, I. L., Levy, O., Dohan, O., Zuckier, L. S., Zhao, Q. H., Deng, H. F., Amenta, P. S., Fineberg, S., Pestell, R. G., and Carrasco, N. (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6, 871–878.
18. Wapnir, I. L., van de Rijn, M., Nowels, K., Amenta, P. S., Walton, K., Montgomery, K., Greco, R. S., Dohan, O., and Carrasco, N. (2003) Sodium Iodide Symporter (NIS)-Mediated Radiouclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery. Hum. Gene Ther. 22, 1403–1412.
19. Welcb, P. L., and Mankoff, D. A. (2000) Taking up iodide in breast tissue. J. Clin. Endocrinol. Metab. 96, E1435–E1443.
20. Boelkaert, G., and Franklyn, J. A. (2003) Sodium iodide symporter. A novel strategy to target breast, prostate, and other cancers? Lancet 361, 796–797.
21. Kogai, T., Schultz, J. J., Johnson, L. S., Huang, M., and Brent, G. A. (2000) Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc. Natl. Acad. Sci. U.S.A. 97, 8519–8524.
22. Tanosaki, S., Ikezoe, T., Heaney, A., Said, J. W., Dan, K., Akashi, M., and Koeffer, H. P. (2003) Effect of ligands of nuclear hormone receptors on sodium/iodide symporter expression and activity in breast cancer cells. Breast Cancer Res. Treat. 79, 335–345.
p38β Regulates Iodide Transporter in Breast Cancer Cells

13. Kogai, T., Kanamoto, Y., Che, L. H., Taki, K., Mostamed, F., Schultz, J. I., and Brent, G. A. (2004) Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. *Cancer Res. 64*, 415–422

14. Kogai, T., Kanamoto, Y., Li, A. I., Che, L. H., Ohashi, E., Taki, K., Chandraratna, R. A., Saito, T., and Brent, G. A. (2005) Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. *Endocrinology* **146**, 3059–3069

15. Kogai, T., Taki, K., and Brent, G. A. (2006) Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. *Endocr. Relat. Cancer* **13**, 797–826

16. Ohashi, E., Kogai, T., Kagechika, H., and Brent, G. A. (2009) Activation of the PI3 kinase pathway by retinoic acid mediates sodium/iodide symporter induction and iodide transport in MCF-7 breast cancer cells. *Cancer Res. 69*, 3443–3450

17. Kogai, T., Endo, T., Saito, T., Miyazaki, A., Kawaguchi, A., and Onaya, T. (1997) Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. *Endocrinology** **138**, 2227–2232

18. Schmutzler, C., Winzer, R., Meissner-Weigl, J., and Köhrle, J. (1997) Retinoic acid stimulation of the sodium/iodide symporter in MCF-7 breast cancer cells is mediated by the insulin growth factor-1-phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways. *J. Clin. Endocrinol. Metab.* **93**, 1884–1892

19. Alsayed, Y., Uddin, S., Mahmud, N., Lekmine, F., Calvokanolou, D. V., Minucci, S., Bokoch, G., and Platanias, L. C. (2001) Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. *J. Biol. Chem. 276*, 4012–4019

20. Kogai, T., Che, L. H., and Brent, G. A. (2006) Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. *Cancer Res. 64*, 415–422

21. Pomerance, M., Abdullah, H. B., Kamerji, S., Correze, C., and Blondeau, J. P. (2003) CCAAT/enhancer-binding protein-A, rac1, and reactive oxygen species. *J. Biol. Chem. 278*, 2283–2294

22. Wang, X. S., Diener, K., Manthey, C. L., Wang, S., Rosenzweig, B., Bray, J., Delaney, J., Cole, C. N., Chat-Hui, P. Y., Mantlo, N., Lichenstein, H. S., Zukowski, M., and Yao, Z. (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. *J. Biol. Chem. 272*, 23668–23674

23. Enslen, H., Branco, D. M., and Davis, R. J. (2000) Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. *EMBO J*. **19**, 1301–1311

24. Pomerance, M., Carapau, D., Chantoux, F., Mockey, M., Correze, C., Francon, J., and Blondeau, J. P. (2003) CCAAT/enhancer-binding protein-homologous protein expression and transcriptional activity are regulated by 3′,5′-cyclic adenosine monophosphate in thyroid cells. *Mol. Endocrinol.* **17**, 2283–2294

25. Pramanik, R., Qi, X., Borowicz, S., Choubey, D., Schultz, R. M., Han, J., and Chen, G. (2003) p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. *J. Biol. Chem. 278*, 4831–4839

26. Kogai, T., Kanamoto, Y., and Brent, G. A. (2003) The modified firefly luciferase reporter gene (luc+) but not Renilla luciferase is induced by all-trans-retinoic acid in MCF-7 breast cancer cells. *Breast Cancer Res. Treat. 78*, 119–126

27. Kogai, T., Sajid-Crockett, S., Newmarch, L. S., Liu, Y. Y., and Brent, G. A. (2008) Phosphoinositide 3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. *J. Endocrinol. 199*, 243–252

28. Weiss, S. I., Philip, N. I., and Grollman, E. F. (1984) Iodide transport in a continuous line of cultured cells from rat thyroid. *Endocrinology* **114**, 1090–1098

29. Barros, L. F., Young, M., Saklatvala, J., and Baldwin, S. A. (1997) Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by asisemicopy. p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells. *J. Physiol. 504*, 517–525

30. Eyers, P. A., Craxton, M., Morrice, N., Cohen, P., and Goedert, M. (1998) Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino acid substitution. *Chem. Biol. 5*, 321–328

31. Ju, H., Nerurkar, S., Sauermelch, C. F., Olzinski, A. R., Mirabile, R., Zimmerman, D., Lee, J. C., Adams, J., Sisko, J., Berova, M., and Willette, R. N. (2002) Sustained activation of p38 mitogen-activated protein kinase contributes to the vascular response to injury. *J. Pharmacol. Exp. Ther. 301*, 15–20

32. Munoz, L., Ramsay, E. E., Manetsch, M., Ge, Q., Peifer, C., Lafer, S., and Ammit, A. J. (2010) Novel p38 MAPK inhibitor ML3403 has potent anti-inflammatory activity in airway smooth muscle. *Eur. J. Pharmacol. 635*, 212–218

33. Wang, X. S., Diener, K., Manthey, C. L., Wang, S., Rosenzweig, B., Bray, J., Delaney, J., Cole, C. N., Chat-Hui, P. Y., Mantlo, N., Lichenstein, H. S., Zukowski, M., and Yao, Z. (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. *J. Biol. Chem. 272*, 23668–23674

34. Tomlinson, R., Moore, B. A., and Davis, R. J. (2000) Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. *EMBO J*. **19**, 1301–1311

35. Pomerance, M., Carapau, D., Chantoux, F., Mockey, M., Correze, C., Francon, J., and Blondeau, J. P. (2003) CCAAT/enhancer-binding protein-homologous protein expression and transcriptional activity are regulated by 3′,5′-cyclic adenosine monophosphate in thyroid cells. *Mol. Endocrinol.* **17**, 2283–2294

36. Unterholzner, S., Willhauck, M. J., Cengic, N., Schütz, M., Göke, B., Morris, J. C., and Spitzweg, C. (2006) Dexamethasone stimulation of retinoic acid-induced sodium iodide symporter expression and cytotoxicity of131I treatment in breast cancer cells. *J. Endocrinol. Metab. 91*, 69–78

37. Beardmore, V. A., Hinton, H. J., Efthymi, C., Apostolaki, M., Armaka, M., Darragh, J., McIlrath, J., Carr, J. M., Armit, L. J., Clacher, C., Malone, L., Kolias, G., and Arthur, J. S. (2005) Generation and characterization of p38β (MAPK11) gene-targeted mice. *Mol. Cell Biol. 25*, 10454–10464