POLYCHROMATIC COLORINGS OF 1-REGULAR AND 2-REGULAR SUBGRAPHS OF COMPLETE GRAPHS

JOHN GOLDWASSER* AND RYAN HANSEN*

Abstract. If G is a graph and \mathcal{H} is a set of subgraphs of G, we say that an edge-coloring of G is \mathcal{H}-polychromatic if every graph from \mathcal{H} gets all colors present in G on its edges. The \mathcal{H}-polychromatic number of G, denoted $\text{poly}_\mathcal{H}(G)$, is the largest number of colors in an \mathcal{H}-polychromatic coloring. In this paper we determine $\text{poly}_\mathcal{H}(G)$ exactly when G is a complete graph on n vertices, q is a fixed nonnegative integer, and \mathcal{H} is one of three families: the family of all matchings spanning $n-q$ vertices, the family of all 2-regular graphs spanning at least $n-q$ vertices, and the family of all cycles of length precisely $n-q$. There are connections with an extension of results on Ramsey numbers for cycles in a graph.

1. Introduction

If G is a graph and \mathcal{H} is a set of subgraphs of G, we say that an edge-coloring of G is \mathcal{H}-polychromatic if every graph from \mathcal{H} has all colors present in G on its edges. The \mathcal{H}-polychromatic number of G, denoted $\text{poly}_\mathcal{H}(G)$, is the largest number of colors in an \mathcal{H}-polychromatic coloring. If an \mathcal{H}-polychromatic coloring of G uses $\text{poly}_\mathcal{H}(G)$ colors, it is called an optimal \mathcal{H}-polychromatic coloring of G.

Alon et. al. [1] found a lower bound for $\text{poly}_\mathcal{H}(G)$ when $G = Q_n$, the n-dimensional hypercube, and \mathcal{H} is the family of all subgraphs isomorphic to Q_d, where d is fixed. Offner [12] showed this lower bound is, in fact, the exact value for all d and sufficiently large n. Bialostocki [3] showed that if $d = 2$, then the polychromatic number is 2 and that any optimal coloring uses each color about half the time. Goldwasser et. al. [10] considered the case when \mathcal{H} is the family of all subgraphs isomorphic to Q_d minus an edge or Q_d minus a vertex.

Bollobas et. al. [4] treated the case where G is a tree and \mathcal{H} is the set of all paths of length at least r, where r is fixed. Goddard and Henning [9] considered vertex colorings of graphs such that each open neighborhood gets all colors.

For large n, it makes sense to consider $\text{poly}_\mathcal{H}(K_n)$ only if \mathcal{H} consists of sufficiently large graphs. Indeed, if the graphs from \mathcal{H} have at most a fixed number s of vertices, then $\text{poly}_\mathcal{H}(K_n) = 1$ for sufficiently large n by Ramsey’s theorem, since even with only two colors there exists a monochromatic clique with s vertices.

*West Virginia University
E-mail addresses: jgoldwas@math.wvu.edu, rhansen@math.wvu.edu

Key words and phrases. polychromatic coloring, long cycles.
Axenovich et. al. [2] considered the case where \(G = K_n \) and \(\mathcal{H} \) is one of three families of spanning subgraphs: perfect matchings (so \(n \) must be even), 2-regular graphs, and Hamiltonian cycles. They determined \(\text{poly}_{\mathcal{H}}(K_n) \) precisely for the first of these and to within a small additive constant for the other two. In this paper, we determine the exact \(\mathcal{H} \)-polychromatic number of \(K_n \), where \(q \) is a fixed nonnegative integer and \(\mathcal{H} \) is one of three families of graphs: matchings spanning precisely \(n - q \) vertices, \((n-q)\)-cycles, and 2-regular graphs spanning at least \(n - q \) vertices (so \(q = 0 \)) gives the results of Axenovich et. al. in [2] without the constant.

This paper is organized as follows. We give a few definitions and state the main results in Section 2. We give some more definitions in Section 3. The optimal polychromatic colorings in this paper are all based on a type of ordering, and in Section 4 we state and prove the technical ordering lemmas we will need. In Section 5 we describe precisely the various ordered optimal polychromatic colorings of \(K_n \). In Section 6 we prove Theorem 2.1, a result about matchings. In Section 7 we use some classical results on Ramsey numbers for cycles to take care of polychromatic numbers 1 and 2 for cycles. In Section 8 we prove Theorem 2.6, a result about coloring cycles, and use some results on long cycles in the literature to prove a lemma we need. In Section 9 we give the rather long proofs of the three main lemmas we need. In Section 10 we show how our results can be reconstituted in a context which generalizes the classical results on Ramsey numbers of cycles presented in Section 7. In Section 11 we state a general conjecture of which most of our results are special cases.

2. Main Results

We call an edge coloring \(\varphi \) of \(K_n \) ordered if there exists an ordering \(v_1, v_2, \ldots, v_n \) of \(V(K_n) \) such that \(\varphi(v_i v_j) = \varphi(v_i v_m) \) for all \(1 \leq i < j < m \leq n \). Moreover this coloring is simply-ordered if for all \(i < j < m \), \(\varphi(v_i v_m) = \varphi(v_j v_m) = a \) implies that \(\varphi(v_i v_m) = a \) for all \(i \leq t \leq j \). Simply-ordered colorings play a fundamental role in this paper. An ordered edge coloring \(\varphi \) induces a vertex coloring \(\varphi' \) on \(V(K_n) \) called the \(\varphi \)-inherited coloring, defined by \(\varphi'(v_i) = \varphi(v_i v_m) \) for \(i < m \leq n \) and \(\varphi'(v_n) = \varphi'(v_{n-1}) \). We can represent the induced vertex coloring \(\varphi' \) by the sequence \(c_1, c_2, \ldots, c_n \) of colors, where \(c_i = \varphi'(v_i) \) for each \(i \). A block in this sequence is a maximal set of consecutive vertices of the same color. If \(\varphi \) is simply-ordered then the vertices in each color class appear in a single block, so in that case, the number of blocks equals the number of colors.

Let \(q \) be a fixed nonnegative integer. We define four families of subgraphs of \(K_n \) as follows.

1. \(F_q(n) \) is the family of all matchings in \(K_n \) spanning precisely \(n - q \) vertices (so \(n - q \) must be even).
2. \(C_q(n) \) is the family of all cycles of length precisely \(n - q \).
3. \(R_q(n) \) is the family of all 2-regular subgraphs spanning at least \(n - q \) vertices.
4. \(C_q^∗(n) \) is the family of all cycles of length precisely \(n - q \) where \(n \) and \(q \) are such that \(\text{poly}_{C_q(n)}(K_n) \geq 3 \).
Further, let $\varphi_{F_q}(n) = \text{poly}_{F_q}(K_n)$, $\varphi_{C_q}(n) = \text{poly}_{C_q}(K_n)$, and $\varphi_{R_q}(n) = \text{poly}_{R_q}(K_n)$. Our main result is that for $F_q(n)$, $R_q(n)$, and $C_q^*(n)$ there exist optimal polychromatic colorings which are simply ordered, or almost simply ordered (except for $C_q(n)$ if $\varphi_{C_q}(n) = 2$). Once we know there exists an optimal simply ordered (or nearly simply ordered) coloring, it is easy to find it and to determine a formula for the polychromatic number. Our main results are the following.

Theorem 2.1. For all integers q and n such that q is nonnegative and $n - q$ is positive and even, there exists an optimal simply-ordered F_q-polychromatic coloring of K_n.

Theorem 2.2. [2] If $n \geq 3$, then there exist optimal R_0-polychromatic and C_0-polychromatic colorings of K_n which can be obtained from simply-ordered colorings by recoloring one edge.

Theorem 2.3. If $n \geq 4$, then there exist optimal R_1-polychromatic and C_1-polychromatic colorings of K_n which can be obtained from simply-ordered colorings by recoloring two edges.

Theorem 2.4. Let $q \geq 2$ be an integer. If $n \geq q + 3$, then there exists an optimal simply-ordered R_q-polychromatic coloring of K_n. If $n \geq q + 4$, then there exists an optimal simply-ordered C_q-polychromatic coloring except if $n \in [2q + 2, 3q + 2]$ and $n - q$ is odd.

Theorem 2.5. Suppose $q \geq 2$ and $n \geq 6$

a) If $n - q$ is even then there exists a C_q-polychromatic 2-coloring of K_n if and only if $n \geq 3q + 3$.

b) If $n - q$ is odd then there exists a C_q-polychromatic 2-coloring of K_n if and only if $n \geq 2q + 2$.

Theorem 2.5 follows from results of Bondy and Erdős [5] and Faudree and Schelp [8].

The following result, which is needed for the proof of Theorem 2.4, may be of independent interest, so we state it as a theorem:

Theorem 2.6. Let n and j be integers with $4 \leq j \leq n$, and let φ be an edge-coloring of K_n with at least three colors so that every j-cycle gets all colors. Then every cycle of length at least j gets all colors under φ.

The statements about cycles in Theorems 2.2, 2.5 can be used to get an extension of the result of Faudree and Schelp [8] in the following manner. Let s and t be integers with $t \geq 2$, $s \geq 3$, and $s \geq t$. The t-polychromatic cyclic Ramsey number $PR_t(s)$ is the smallest integer $N \geq s$ such that in any t-coloring of the edges of K_N there exists an s-cycle whose edges do not contain all t colors. Note that in the special case $t = 2$, this is the classical Ramsey number for cycles, the smallest integer N such that in any 2-coloring of the edges of K_N there exists a monochromatic s-cycle. These numbers were determined for all s by Faudree and Schelp [8], confirming a conjecture of Bondy and Erdős [5].
Theorem 2.7. Let $\text{PR}_t(s)$ be the smallest integer $n \geq s \geq 3$ such that in any t-coloring of the edges of K_n there exists an s-cycle whose edges do not contain all t colors. If $t \geq 3$,

$$\text{PR}_t(s) = \begin{cases}
 s, & \text{if } 3 < s \leq 3 \cdot 2^{t-3} \\
 s + 1, & \text{if } s \in [3 \cdot 2^{t-3} + 1, 5 \cdot 2^{t-2} - 2] \\
 s + 2, & \text{if } s \in [5 \cdot 2^{t-2} - 1, 5 \cdot 2^{t-1} - 4] \\
 s + \text{Round} \left(\frac{s-2}{2^{t-2}} \right), & \text{if } s \geq 5 \cdot 2^{t-1} - 3
\end{cases}$$

where $\text{Round} \left(\frac{s-2}{2^{t-2}} \right)$ is the closest integer to $\frac{s-2}{2^{t-2}}$, rounding up if it is $\frac{1}{2}$ more than an integer.

3. Definitions

Recall that if φ is an ordered edge coloring of K_n with respect to the ordering v_1, \ldots, v_n of its vertices, we say that φ' is the φ-inherited coloring (or just inherited coloring) if it is the vertex coloring of K_n defined by $\varphi'(v_i) = \varphi(v_i)$ for $1 \leq i < j \leq n$ and $\varphi'(v_n) = \varphi'(v_{n-1})$. Given an ordering of $V(K_n)$, any vertex coloring φ' such that $\varphi'(v_{n-1}) = \varphi'(v_n)$ uniquely determines a corresponding ordered coloring. We define a color class M_i of color i to be the set of all vertices v where $\varphi'(v) = i$. In this paper, we shall always think of the ordered vertices as arranged on a horizontal line with v_i to the left of v_j if $i < j$. We say that an edge v_iv_m, $i < m$ goes from v_i to the right and from v_m to the left. If X is a (possibly empty) subset of $V(K_n)$, we say that the edge-coloring φ of K_n is

- **X-constant** if for any $v \in X$, $\varphi(vu) = \varphi(vw)$ for all $u, w \in V \setminus X$.
- **X-ordered** if it is X-constant and the vertices of X can be ordered x_1, \ldots, x_m such that for each $i = 1, \ldots, m$, $\varphi(x_ix_p) = \varphi(x_iw) = \varphi(x_i)$ for all $i < p \leq m$ and all $w \in V \setminus X$,.

If Z is a nonempty subset of $V(K_n)$ we say φ is

- **Z-quasi-ordered** if
 - (1) φ is X-constant
 - (2) Each vertex v_i in Z is incident to precisely $n - 2$ edges of one color, which we call the main color of v_i, and one edge v_iv_j of another color, where $v_j \in Z$. If that other color is t, then v_j is incident to precisely $n - 2$ edges of color t.

It is not hard to show that there are only two possibilities for the set Z in a Z-quasi-ordered coloring:

1. $|Z| = 3$, the three vertices in Z have different main colors, and there is one edge in Z of each of these colors
2. $|Z| = 4$, with two vertices u, v in Z with one main color, say i and two vertices y, z in Z with another main color, say j, and $\varphi(uv) = \varphi(uy) = \varphi(vz) = i, \varphi(yz) = \varphi(yv) = \varphi(zu) = j$.

- **quasi-ordered** if it is Z-quasi-ordered and φ restricted to $V \setminus Z$ is ordered
- **quasi-simply ordered** if it is Z-quasi-ordered and φ restricted to $V \setminus Z$ is simply ordered.
• nearly X-ordered if it is Z-quasi-ordered and the restriction of φ to $V(K_n) \setminus Z$ is T-ordered for some (possibly empty) subset T of $V(K_n) \setminus Z$ and $X = Z \cup T$. (If φ is nearly X-ordered then one or two edges could be recolored to get an X-ordered coloring.)

It is easy to check that if φ is quasi-ordered (quasi-simply-ordered) for some set Z then if $|Z| = 3$ one edge can be recolored, and if $|Z| = 4$, then two edges can be recolored to get an ordered (simply-ordered) coloring.

The maximum monochromatic degree of an edge coloring of K_n is the maximum number of edges of the same color incident with a single vertex. If the maximum monochromatic degree of a coloring is d, and the vertex v is incident with d edges of color t, and the other $n - 1 - d$ edges incident with v have color s, we say v is a t-max vertex and also a (t, s)-max vertex with majority color t and minority color s.

We extend the notion of inherited to quasi-ordered colorings as follows. If φ is a quasi-ordered coloring with ψ the ordered coloring which is a restriction of φ to $V \setminus Z$, we define φ', the φ-inherited coloring, by letting $\varphi'(x)$ equal the main color of x if $x \in Z$ and $\varphi(y) = \psi'(y)$ if $y \not\in Z$. We think of the vertices in Z preceding those not in Z, in the order left to right, and if $|Z| = 4$ we list two vertices in Z with the same main color first, then the other two vertices with the same main color.

4. Ordering Lemmas

Let φ be an ordered edge coloring of K_n with vertex order v_1, v_2, \ldots, v_n, colors $1, \ldots, k$, and φ' be the inherited coloring of $V(K_n)$. For each $t \in [k]$ and $j \in [n]$, let M_t be a color class t of φ' and $M_t(j) = M_t \cap \{v_1, v_2, \ldots, v_j\}$. The next Lemma is a key structural lemma that characterizes ordered polychromatic colorings.

Lemma 4.1. Let $\varphi : E(K_n) \to [k]$ be an ordered or quasi-ordered coloring with vertex order v_1, v_2, \ldots, v_n.

Then the following statements hold:

(I) φ is F_q-polychromatic $\iff \forall t \in [k] \exists j \in [n]$ such that $|M_t(j)| > \frac{i+q}{2}$,

(II) φ is C_q-polychromatic $\iff \forall t \in [k]$ either

(a) $\exists j \in [q + 1, n - 1]$ such that $|M_t(j)| \geq \frac{i+q}{2}$ or

(b) $q = 0$, φ is Z-quasi-ordered with $|Z| = 3$ and t is the color of some edge in Z or

(c) $q = 1$, φ is Z-quasi-ordered with $|Z| = 4$ and t is the color of some edge in Z.

(III) φ is R_q-polychromatic $\iff \forall t \in [k]$ either

(a) $\exists j \in [n]$ such that

(i) $|M_t(j)| > \frac{i+q}{2}$ or

(ii) $|M_t(j)| = \frac{i+q}{2}$ and $j \in \{2 + q, n - 2\}$ or

(iii) $|M_t(j)| = \frac{i+q}{2}$ and $|M_t(j + 2)| = \frac{i+q+2}{2}$ where $j \in [4 + q, n - 3]$.

(b) $q = 0$, φ is Z-quasi-ordered and t is the color of some edge in Z

(c) $q = 1$, φ is Z-quasi-ordered with $|Z| = 3$ and t is the color of some edge in Z.
Let x there is an edge of H edge in Z is not m with an endpoint in $H \in \{Z\}$.

Proof. Note that to prove the lemma, it is sufficient to consider an arbitrary color t and show for $H \in \{F_q, C_q, R_q\}$ and for each $H \in H$, that the given respective conditions are equivalent to H containing an edge of color t.

(I) Let j be an index such that $|M_t(j)| = m_j > (j + q)/2$ and let H be a 1-factor. Let x_1, \ldots, x_m be the vertices of M_t in order and let y_1, \ldots, y_{m-j} be the other vertices of $\{v_1, v_2, \ldots, v_j\}$ in order. Since $j - m_j < \frac{j-q}{2}$ and $m_j - q > \frac{j-q}{2}$, then at least one edge of H with an endpoint in $M_t(j)$ must go to the right, and thus, have color t.

On the other hand, by way of contradiction, assume that for each $j \in [n]$, $|M_t(j)| \leq (j + q)/2$. Letting $m = |M_t|$, we have $m \leq (n + q)/2$. Consider a 1-factor that spans all vertices except for q vertices in M_t. Let x_1, \ldots, x_{m-q} be the $m - q$ vertices remaining from M_t in order and let y_1, \ldots, y_{n-m}, be the vertices outside of M_t in order. Note that since $m \leq (j + q)/2$, it follows that $n - m \geq m - q$ since if $n - m < m - q$ then $n < 2m - q$ and so $j > n$ which is impossible. Now, let H consist of the edges $x_1 y_1, x_2 y_2, \ldots, x_{m-q} y_{m-q}$ and a perfect matching on $\{y_{m-q+1}, \ldots, y_{n-m}\}$ (if this set is non-empty). We will show that y_i precedes x_i in the order v_1, v_2, \ldots, v_n for each $i \in [m - q]$, so H has no edge of color t.

By way of contradiction, assume x_i precedes y_i for some $i \in [m - q]$. Letting $j = 2i + 1 + q$, y_i cannot be among the first j vertices in the order v_1, v_2, \ldots, v_n, because if it were there would be at least $i + q$ vertices of color t among these j vertices, so a total of at least $2i + q > j$ vertices. Hence

$$\frac{j + q}{2} = \frac{2i + 2q - 1}{2} < i + q \leq |M_t(j)| \leq \frac{j + q}{2}$$

which is impossible. Hence y_i precedes x_i for each i and φ is not F_q polychromatic.

(II) If t is a color such that (a) holds with strict inequality, the argument in (I) shows there is an edge of H with color t. If $|M_t(j)| = \frac{j+q}{2}$ for some $j \in [q + 1, n - 1]$ and every edge in H incident to a vertex in $M_t(j)$ goes to the left then, since each of these edges has its other vertex not in $M_t(j)$, H contains $\frac{j+q}{2}$ vertices in $M_t(j)$ and the same number not in $M_t(j)$. If $\frac{j+q}{2} = 1$, then the vertex in $M_t(j)$ is incident with at least one edge which goes to the right, and if $\frac{j+q}{2} > 1$ then H contains a 2-regular subgraph, which is impossible because an $n - q$ cycle can’t have a 2-regular subgraph on less than $n - q$ vertices.

If t is such that (b) holds, then note that t must be the main color of a vertex in Z and that the cycle must contain 2 edges incident with each vertex in Z. Any choice of these edges will contain an edge of color t since only one edge incident with each vertex in Z is not the main color of that vertex.

If t is such that (c) holds, then note that t must be the main color of a vertex in Z and any cycle on $n - 1$ vertices must contain 2 edges incident with at least three of the four vertices in Z. Any choice of these edges will contain an edge of color t since only one edge incident with each vertex in Z is not the main color of that vertex.

On the other hand, suppose that for each $j \in [q + 1, n - 1]$, $|M_t(j)| = m < \frac{j+q}{2}$ and φ is not Z-quasi-ordered with t a main color. In particular, when $j = n - 2$, we have that $|M_t(j)| = m < \frac{j+q}{2} - 1$. Consider a cycle that spans all vertices except for q vertices in M_t. Let x_1, \ldots, x_{m-q} be the other $m - q$ vertices in M_t in order and y_1, \ldots, y_{n-m} be the vertices outside of M_t in order. Note that if $m < \frac{j+q}{2}$, then $n - m > m - q$ since $n - m \leq m - q \implies j > n$.
which is impossible. Consider the cycle \(y_1x_1y_2x_2 \cdots y_{m-q}x_{m-q}y_{m-q+1} \cdots y_{n-m}y_1 \). Suppose \(y_i \) is to the right of \(x_i \) for some \(i \). Then at most \(i \) of the first \(j = 2i + q \) vertices are not in \(M_t(j) \), so \(|M_t(j)| \geq i + q = \frac{j+q}{2} \), which is impossible. Hence \(y_i \) and \(y_{i+1} \) are to the left of \(x_i \) for each \(1 \leq i \leq m \), all edges of \(H \) incident to \(M_t \) go to the left, and thus are not of color \(t \).

Observation. If \(H \) is a 2-regular subgraph that has no edge of color \(t \), and \(M \) is any subset of \(M_t \), then all edges of \(H \) incident to \(M \) go to the left, so at most half the vertices in \(H \) are in \(M_t \) and if \(|M_t(j)| = \frac{j+q}{2} \), then of the first \(j \) vertices, precisely \(j - q \) are in \(H \), precisely half of these in \(M_t \), and if \(j - q \geq 4 \) then these \(j - q \) vertices induce a 2-regular subgraph of \(H \).

(iii) Let \(j \) be an index such that (iii)a(i), (ii), or (iii) holds. Assume first that (i) holds, i.e., that \(|M_t(j)| > \frac{j+q}{2} \) and let \(H \) be a 2-factor. Then the argument given in (I) shows that at least one edge of \(H \) with an endpoint in \(M_t(j) \) must go to the right, and thus, have color \(t \). Assume that (ii) holds. If \(j = 2 + q \), then \(M_t \) contains \(q + 1 \) of the first \(q + 2 \) vertices, so \(H \) contains a vertex in \(M_t \) which has an edge that goes to the right, so there is an edge of color \(t \) in \(H \). If \(j = n - 2 \) and \(H \) has no edges of color \(t \), then (by the previous observation) the subgraph of \(H \) induced by \([n - 2]\) is a 2-factor. Since the remaining two vertices do not form a cycle, \(H \) is not a 2-factor, a contradiction. Finally, assume that (iii) holds. If \(H \) does not have an edge of color \(t \), then by the previous observation, \(H \) has a 2-regular subgraph spanning \(j - q + 2 \) vertices, which has a 2-regular subgraph spanning \(j - q \) vertices, which is impossible.

If (iii)b or (iii)c holds, by the argument for (II), \(H \) has an edge of color \(t \).

On the other hand, suppose that none of (iii)a, (iii)b, or (iii)c hold. We shall construct a 2-factor that does not have an edge of color \(t \). If \(|M_t(j)| < \frac{j+q}{2} \) for each \(j \in [q + 1, n - 1] \), then there is a cycle with no color \(t \) edge as described in (II). If not, let \(i_1, i_2, \ldots, i_k \) be the values of \(j \) in \([4 + q, n - 3]\) for which \(|M_t(j)| = \frac{j+q}{2} \). Since (iii)a(iii) is not satisfied, \(i_{q+1} - i_q \) is at least 4 and even for \(q = 1, 2, \ldots, k - 1 \). As before, suppose there are \(m \) vertices of color \(t \). Let \(x_1, x_2, \ldots, x_{m-q} \) be the last \(m - q \) of these, in order, and let \(y_1, y_2, \ldots, y_{n-m} \) be the other vertices, in order. Note that since \(m \leq \frac{n-q}{2} \) we have \(m - q \leq \frac{n-q}{2} \) and \(n - m \geq \frac{n-q}{2} \). For each \(q \) in \([1, k - 1]\), moving left to right within the interval \([i_q + 1, i_{q+1}]\), there are always more \(y \)'s than \(x \)'s (except an equal number of each at the end of the interval), since otherwise there would have been another value of \(j \) between \(i_q \) and \(i_{q+1} \) where \(|M_t(j)| = \frac{j+q}{2} \). Form an \((i_{q+1} - i_q)\)-cycle by alternately taking \(y \)'s and \(x \)'s, starting with the \(y \) with the smallest subscript. Also form an \(i_1 - q \) cycle using the first \(\frac{i_1 - q}{2} \) \(y \)'s and the same number of \(x \)'s, and an \(n - i_k \) cycle at the end, first alternating the \(y \)'s and \(x \)'s, putting any excess \(y \)'s at the end.

Lemma 4.2. Let \(\mathcal{H} \in \{F_q, R_q, C_q\} \). If there exists an ordered (quasi-ordered) \(\mathcal{H} \)-polychromatic coloring of \(K_n \) with \(k \) colors, then there exists one which is simply-ordered (quasi-simply-ordered) with \(k \) colors.

Proof. Let \(V(K_n) = [n] \) with the natural order. If \(c' \) is a coloring of \([n]\), a **block of** \(c' \) is a maximal interval of integers from \([n]\) which all have the same color. So a simply-ordered \(k \)-polychromatic coloring has precisely \(k \) blocks. We define a **block shift operation** as follows.
Assume that $t \in [k]$ is a color for which there are at least 2 blocks. Let $j(t) = j$ be the smallest integer so that $M_t(j) > (j + q)/2$ if such exists. If there is a block $[m, s]$ in M_t where $m > j$, delete this block, then take the color of the last vertex in the remaining sequence, and add $s - m + 1$ more vertices with this color at the end of the sequence. If each block of color t has its smallest element less than or equal to j, consider the block B of color t that contains j and consider another block B_1 of color t that is strictly to the left of B. Form a new coloring by “moving” B_1 next to B. We see that the resulting coloring has at least one less block.

Let c be an ordered (quasi-ordered) F_q-polychromatic coloring of K_n on vertex set $[n]$ with k colors such that the inherited vertex coloring c' has the smallest possible number of blocks. Assume that color t has at least 2 blocks. Let $j(t) = j$ be the smallest integer so that $M_t(j) > (j + q)/2$. Such j exists by Lemma 4.1(I) and the color of j is t. Apply the block shifting operation. The condition from part 1 of Lemma 4.1 is still valid for all color classes, so the new coloring is F_q-polychromatic using k colors. This contradicts the choice of c having the smallest number of blocks.

If c is an ordered (quasi-ordered) C_q-polychromatic coloring of K_n, an argument very similar to the one above shows if $[\text{I.I}][\text{a}][\text{b}][\text{c}]$ or $[\text{a}][\text{b}][\text{c}]$ hold, there exists a simply-ordered (quasi-simply-ordered) coloring that uses the same number of colors and that is C_q-polychromatic.

Finally, let c be an ordered $(X$-quasi-ordered) R_q-polychromatic coloring of K_n on vertex set $[n]$ with k colors such that the inherited vertex coloring c' has the minimum possible number of blocks. Assume that $t \in [k]$ is a color for which there are at least 2 blocks. If $[\text{III}][\text{b}]$ or $[\text{III}][\text{c}]$ hold, then the block shifting operation gives a coloring that is still R_q-polychromatic with the same number of colors and fewer blocks.

Thus, by Lemma 4.1(III) there exists j such that

1. $|M_t(j)| > (j + q)/2$ or
2. $M_t(2 + q) = 1 + q$ or
3. $|M_t(n - 2)| = (n + q - 2)/2$ or
4. $|M_t(n - 1)| = (n + q - 1)/2$ or
5. $|M_t(j)| = (j + q)/2$ and $|M_t(j + 2)| = (j + q + 2)/2$ and $4 + q \leq j \leq n - 3$.

If $[1]$ holds, then we apply the block shifting operation and observe, as in the case of F_q, that the resulting coloring is still R_q-polychromatic with the same number of colors and fewer blocks. The case when $[2]$ applies is similar.

Assume neither $[1]$ nor $[2]$ holds. If $[3]$ holds then, since $c'(v_{n-1}) = c'(v_n)$, neither v_{n-1} nor v_n can have color t. Hence there is another block of color t vertices to the left of the one containing v_{n-2}, so we can do a block shift operation to reduce the number of blocks, a contradiction.

The same argument works if $[4]$ holds.

Finally, assume that none of $[1][4]$ holds, but $[5]$ holds. This implies that $c'(j) = c'(j + 2) = t$ and $c'(j + 1) = u \neq t$. Now define c'' by $c''(i) = c'(i)$ if $i \not\in \{j + 1, j + 2\}$, $c''(j + 1) = t$, and $c''(j + 2) = u$. Clearly c'' has at least one fewer block than c'. Since $j + q + 1$ is odd, the
only situation where \(c'' \) would not be \(R_q \)-polychromatic is if \(M_u(j + 1) > \frac{j + q + 1}{2} \). However, then \(|M_u(j - 1)| = |M_u(j + 1)| - 1 > \frac{j + q - 1}{2} \), so \(c'' \) is \(R_q \)-polychromatic after all.

5. Optimal Polychromatic Colorings

The seven following colorings are all optimal \(F_q, R_q \), or \(C_q \) polychromatic colorings for various values of \(q \) and \(n \). Each of them is simply-ordered or quasi-simply-ordered. We describe the color classes for each, and give a formula for the polychromatic number \(k \) in terms of \(q \) and \(n \).

5.1. \(F_q \)-polychromatic coloring \(\varphi_{F_q} \) of \(E(K_n) \) (even \(n - q \geq 2 \)). Let \(q \) be nonnegative and \(n - q \) positive and even with \(k \) a positive integer such that

\[
(q + 1)(2^k - 1) \leq n < (q + 1)(2^{k+1} - 1).
\]

Let \(\varphi_{F_q} \) be the simply-ordered edge \(k \)-coloring with colors 1, 2, \ldots, \(k \) and inherited vertex \(k \) coloring of \(\varphi'_{F_q} \) with successive color classes \(M_1, M_2, \ldots, M_k \), moving left to right such that \(|M_i| = 2^{i-1}(q + 1) \) if \(i < k \) and \(|M_k| = n - \sum_{i=1}^{k-1} |M_i| = n - (2^{k-1} - 1)(q + 1) \). We have \(k \leq \log_2 \frac{n + q + 1}{q + 1} < k + 1 \) so \(\varphi_{F_q} = k = \left\lfloor \log_2 \frac{n + q + 1}{q + 1} \right\rfloor \).

5.2. \(R_q \)-polychromatic coloring \(\varphi_{R_q} \) (\(q \geq 2 \)). If \(q \geq 2 \), \(n \geq q + 3 \) and \(n \) and \(k \) are such that (5.1) is satisfied, we let \(\varphi_{R_q} = \varphi_{F_q} \) (same color classes), giving us the same formula for \(k \) in terms of \(n \).

5.3. \(C_q \)-polychromatic coloring \(\varphi_{C_q} \), (\(q \geq 2 \)). If \(q \geq 2 \), \(n \geq q + 3 \) and

\[
(2^k - 1)q + 2^{k-1} < n \leq (2^{k+1} - 1)q + 2^k
\]

let \(\varphi_{C_q} \) be the simply-ordered edge \(k \)-coloring with colors 1, 2, \ldots, \(k \) and inherited vertex \(k \) coloring \(\varphi'_{C_q} \) with successive color classes \(M_1, M_2, \ldots, M_k \) of sizes given by:

\[
|M_1| = q + 1
\]

\[
|M_i| = 2^{i-1}q + 2^{i-2} \text{ if } i \in [2, k - 1]
\]

\[
|M_k| = n - \sum_{i=1}^{k-1} |M_i| = n - 2^{k-1}q - 2^{k-2}
\]

From equation (5.2) we get \(\varphi_{C_q} = k = \left\lfloor \log_2 \frac{2(n + q - 1)}{2q + 1} \right\rfloor \).
5.4. \(R_0 \)-polychromatic coloring \(\varphi_{R_0} \) \((q = 0)\). If \(n \geq 3 \) and \(2^{k-1} - 1 \leq n < 2^{k-1} \) let \(\varphi_{R_0} \) be the quasi-simply-ordered coloring with \(|X| = 3 \) and color class sizes \(|M_1| = |M_2| = 1 \) and \(|M_3| = n - 2 \) if \(3 \leq n \leq 6 \), and if \(n \geq 7 \):

\[
|M_1| = |M_2| = |M_3| = 1 \\
|M_i| = 2^{i-2} \text{ if } i \in [4, k-1] \\
|M_k| = n - \sum_{i=1}^{k} i |M_i| = n - 2^{k-2} + 1
\]

From this, we get \(P_{R_0} = k = 1 + |\log_2(n+1)| \) where \(n \geq 3 \).

5.5. \(C_0 \)-polychromatic coloring \(\varphi_{C_0} \) \((q = 0)\). If \(n \geq 3 \) and \(3 \cdot 2^{k-3} < n \leq 3 \cdot 2^{k-2} \) let \(\varphi_{C_0} \) be the quasi-simply-ordered coloring with \(|X| = 3 \) and color class sizes \(|M_1| = |M_2| = 1 \) and \(|M_3| = n - 2 \) if \(3 \leq n \leq 6 \), and if \(n \geq 7 \):

\[
|M_1| = |M_2| = |M_3| = 1 \\
|M_i| = 3 \cdot 2^{i-4} \text{ if } i \in [4, k-1] \\
|M_k| = n - \sum_{i=1}^{k-1} i |M_i| = n - 3 \cdot 2^{k-4}
\]

From this, we get \(P_{C_0} = k = \left\lfloor \log_2 \frac{8(n-1)}{3} \right\rfloor \) where \(n \geq 4 \).

5.6. \(R_1 \)-polychromatic coloring \(\varphi_{R_1} \) \((q = 1)\). If \(n \geq 4 \) and \(3 \cdot 2^{k-1} - 2 \leq n < 3 \cdot 2^{k-2} \) let \(\varphi_{R_1} \) be the quasi-simply-ordered coloring with \(|X| = 4 \) and color class sizes \(|M_1| = 2 \) and \(|M_2| = n - 2 \) if \(4 \leq n \leq 9 \), and if \(n \geq 10 \):

\[
|M_1| = |M_2| = 2 \\
|M_i| = 3 \cdot 2^{i-2} \text{ if } i \in [3, k-1] \\
|M_k| = n - \sum_{i=1}^{k-1} i |M_i| = n - 3 \cdot 2^{k-2} + 2
\]

From this, we get \(P_{R_1} = k = \left\lfloor \log_2 \frac{2(n+2)}{3} \right\rfloor \) where \(n \geq 4 \).

5.7. \(C_1 \)-polychromatic coloring \(\varphi_{C_1} \) \((q = 1)\). If \(n \geq 4 \) and \(5 \cdot 2^{k-2} \leq n < 5 \cdot 2^{k-1} \) let \(\varphi_{C_1} \) be the quasi-simply-ordered coloring with \(|X| = 4 \) and color class sizes \(|M_1| = |M_2| = 2 \) and \(|M_3| = n - 4 \) if \(4 \leq n \leq 9 \) and change every edge of color 3 to color 2, and if \(n \geq 10 \):
\[|M_1| = |M_2| = 2 \]
\[|M_i| = 5 \cdot 2^{i-3} \text{ if } i \in [3,k-1] \]
\[|M_k| = n - \sum_{i=1}^{k-1} |M_i| = n - 5 \cdot 2^{k-3} + 1 \]

From this, we get \(P_{C_1} = k = \lfloor \log_2 \frac{4n}{5} \rfloor \) where \(n \geq 4 \).

6. PROOF OF THEOREM 2.1 ON MATCHINGS

We prove Theorem 2.1. This proof is similar to the proof of Theorem 1 in [2]. Let \(k = \varphi_{F_q}(n) \) be the polychromatic number for 1-factors spanning \(n-q \) vertices in \(G = K_n = (V,E) \). Among all \(F_q \)-polychromatic colorings of \(K_n \) with \(k \) colors we choose ones that are \(X \)-ordered for a subset \(X \) (possibly empty) of the largest possible size, and, of these, choose a coloring \(c \) whose restriction to \(V \setminus X \) has the largest possible maximum monochromatic degree. Let \(v \) be a vertex of maximum monochromatic degree, \(r \), in \(c \) restricted to \(G[V \setminus X] \), let the majority color on the edges incident to \(v \) in \(V \setminus X \) be color 1. By the maximality of \(|X| \), there is a vertex \(u \) in \(V \setminus X \) such that \(c(uv) \neq 1 \). Assume \(c(uv) = 2 \). If every 1-factor spanning \(n-q \) vertices containing \(uv \) had another edge of color 2, then the color of \(uv \) could be changed to 1, resulting in a \(F_q \)-polychromatic coloring where \(v \) has a larger maximum monochromatic degree in \(V \setminus X \), a contradiction. Hence, there is a 1-factor \(F \) spanning \(n-q \) vertices in which \(uv \) is the only edge with color 2 in \(c \).

Let \(c(vy_i) = 1 \), \(y_i \in V \setminus X \), \(i = 1, \ldots, r \). Note that for each \(k \in [r] \), \(y_k \) must be in \(F \). If not, then \(F - uv + vy_k \) is a 1-factor spanning \(n-q \) vertices with no edge of color 2 (since \(uv \) was the unique edge of color 2 in \(F \) and \(vy_k \) is color 1). For each \(i \in [r] \), let \(y_iw_i \) be the edge of \(F \) containing \(y_i \) (perhaps \(w_i = y_j \) for some \(j \neq i \)). See Figure 1. We can get a different 1-factor \(F_i \) by replacing the edges \(uv \) and \(y_iw_i \) in \(F \) with edges \(vy_i \) and \(uw_i \). Since \(F_i \) must have an edge of color 2 and \(c(vy_i) = 1 \), we must have \(c(uw_i) = 2 \) for each \(i \in [r] \).

\[\text{Figure 1. Maximum polychromatic degree in an } F_q \text{-polychromatic coloring} \]
If \(w_i \in X \) for some \(i \) then, since \(c \) is \(X \)-constant, \(c(w_iy_i) = c(w_iu) = 2 \), so \(y_iw_i \) and \(uv \) are two edges of color 2 in \(F \), a contradiction. So, \(w_i \in V \setminus X \). Thus \(c(uw_i) = c(uv) = \cdots = 2 \), and the monochromatic degree of \(u \) in \(V \setminus X \) is at least \(r + 1 \), larger than that of \(v \), a contradiction. Hence \(X = V \), \(c \) is ordered, and, by Lemma 4.2, there exists a simply-ordered \(F_1 \)-polychromatic coloring \(c_s \) with \(k \) colors. By Lemma 4.1 if \(M_1, M_2, \ldots, M_k \) are the successive color classes, moving left to right, of the inherited vertex coloring \(c'_{s} \), then \(|M_t| \geq 2^{t-1}(q + 1) \) for \(t = 1, 2, \ldots, k \). Since this inequality holds with equality for \(t = 1, 2, \ldots, k - 1 \) for the inherited vertex-coloring \(\varphi_{F_q} \), the number of color classes of \(c_s \) cannot be greater than that of \(\varphi_{F_q} \), so \(k \leq \left\lfloor \log_2 \frac{n+q+1}{q+1} \right\rfloor \).

7. \(C_q \)-polychromatic Numbers 1 and 2

The following theorem is a special case of a theorem of Faudree and Schelp.

Theorem 7.1. Let \(s \geq 5 \) be an integer and let \(c(s) \) denote the smallest integer \(n \) such that in any 2-coloring of the edges of \(K_n \) there is a monochromatic \(s \)-cycle. Then \(c(s) = 2s - 1 \) if \(s \) is odd and \(c(s) = \frac{3}{2}s - 1 \) if \(s \) is even.

Faudree and Schelp actually determined all values of \(c(r, s) \), the smallest integer \(n \) such that in any coloring of the edges of \(K_n \) with red and blue, there is either a red \(r \)-cycle or a blue \(s \)-cycle. Their theorem extended partial results and confirmed conjectures of Bondy and Erdős [5] and Chartrand and Schuster [6] (who showed \(c(3) = c(4) = 6 \)). The coloring of \(K_{2s-2} \) to prove the lower bound for \(s \) odd is a copy of \(K_{s-1,s-1} \) of red edges with all other edges blue, while for \(s \) even it’s a red \(K_{\frac{s}{2}-1,s-1} \) with all other edges blue.

Proof of Theorem 2.5. By Theorem 7.1 if \(s \geq 5 \) is odd then there is a polychromatic 2-coloring of \(K_n \) if and only if \(n \leq 2s - 2 = 2(n - q) - 2 \), so if and only if \(n \geq 2q + 2 \). If \(s \geq 5 \) is even then there is a polychromatic 2-coloring if and only if \(n \leq \frac{3}{2}s - 2 = \frac{3}{2}(n - q) - 2 \), so if and only if \(n \geq 3q + 4 \). Hence if \(n \in [2q + 2, 3q + 2] \) then \(\varphi_{C_q}(n) = 1 \) if \(n - q \) is even and \(\varphi_{C_q}(n) = 2 \) if \(n - q \) is odd. The smallest value of \(n \) for which there is a simply ordered \(C_q \)-polychromatic 2-coloring is \(n = 3q + 3 \), so there does not exist one if \(n - q \) is odd and \(n \leq 3q + 2 \).

We remark that the only values for \(q \geq 2 \) and \(n \) such that there is no optimal simply-ordered \(C_q(n) \)-polychromatic coloring of \(K_n \) are the ones given in Theorem 2.5 (\(n \in [2q + 2, 3q + 2] \) and \(n - q \) is odd), and \(q = 2, n = 5 \) (two monochromatic \(C_5 \)'s is a coloring of \(K_5 \) with no monochromatic \(C_5 \)'s).

8. Proofs of Theorem 2.6 and Lemmas on Long Cycles

We will need some results on the existence of long cycles in bipartite graphs.

Theorem 8.1. (Jackson [11].) Let \(G \) be a connected bipartite graph with bipartition \(V(G) = S \cup T \) where \(|S| = s, |T| = t \), and \(s \leq t \). Let \(m \) be the minimum degree of a vertex in
S and p be the minimum degree of a vertex in T. Then G has a cycle with length at least min\{2s, 2(m + p − 1)\}.

Theorem 8.2 (Rahman, Kaykobad, Kaykobad [13]). Let G be a connected m-regular bipartite graph with 4m vertices. Then G has a Hamiltonian cycle.

Lemma 8.3. Let B be a bipartite graph with vertex bipartition S, T where |S| = s, |T| = t, and s ≤ t. Suppose each vertex in T has degree m and each vertex in S has degree t − m. Then B has a 2s-cycle unless s = t = 2m and B is the disjoint union of two copies of K_{m,m}.

Proof. Suppose s < t. Summing degrees in S and T gives us s(t − m) = tm, so

\[
m = \frac{st}{s + t} > \frac{st}{2t} = \frac{s}{2}
\]

so B is connected. By Theorem 8.1 B has a 2s-cycle, since 2|m+(t−m)−1| = 2(t−1) ≥ 2s. If s = t, then B is an m-regular graph with 4m vertices. If B is connected then, by Theorem 8.2 it has a 2s-cycle. If B is not connected then clearly it is the disjoint union of two copies of K_{m,m}.

We say that a cycle H' of length n − q is obtained from a cycle H of length n − q by a twist of disjoint edges e_1 and e_2 of H if E(H) \{ e_1, e_2 \} ⊆ E(H'), i.e. we remove e_1, e_2 from H and introduce two new edges to make the resulting graph a cycle. Note that the choice of the two edges to add is unique (due to connectedness), however, both choices would result in a 2-regular subgraph.

One main difference between the definitions of C_q(n) and R_q(n) is that for the former, we consider only cycles of length precisely n − q, whereas, in the latter, we consider all 2-regular subgraphs spanning at least n − q vertices. This is because we can prove Theorem 2.7 for cycles, however, a similar result for 2-regular subgraphs remains elusive (see Conjecture 11.1).

8.1. Proof of Theorem 2.6. Suppose not. Let m be an integer in [j, n − 1] such that every m-cycle gets all colors but there is an (m + 1)-cycle H, v_1v_2, ..., v_{m+1}v_1 which does not have an edge of color t. Then c(v_i v_{i+2}) = t for all i, where the subscripts are read mod (m + 1), because otherwise, there is an m-cycle with no edge of color t.

Case 1. If m + 1 is odd, then v_1v_3v_5 \cdots v_{m+1}v_2v_4 \cdots v_{m-2}v_1 is an m-cycle with at most two colors, since all edges except possibly v_{m-2}v_1 have color t. This is impossible.

Case 2. Suppose m + 1 is even. Then c_E = v_2v_4 \cdots v_{m+1}v_2 and c_O = v_1v_3 \cdots v_m v_1 are \frac{m+1}{2}-cycles with all edges of color t. Suppose H has a chord v_jv_{j+r} with color t for some j and odd integer r in [3, m − 2]. Then v_{j+2}v_{j+4} \cdots v_{j-2}v_jv_{j+r}v_{j+r+2} \cdots v_{j+r-4} is a path with m vertices (missing v_{j+r−2}) and all edges of color t, so there is an m-cycle with at most two colors, which is impossible. Hence if v_i is a vertex in c_E and v_j is a vertex in c_O, then v(v_i v_j) ≠ t.

We claim that for each j and even integer s, c(v_j v_{j+s}) = t. If not, then v_{j}v_{j+s}v_{j+s+1} \cdots v_{j-3}v_{j-2}v_{j+s−1}v_{j+s−2} \cdots v_{j+1}v_j is an m-cycle (missing v_{j−1}) with no edge of color t (note c(v_{j−2}v_{j+s−1}) ≠ t because j − 2 and j + s − 1 have different parities). Hence, the vertices
of c_E and c_O each induce a complete graph with $\frac{m+1}{2}$ vertices and all edges of color t, and there are no other edges of color t in K_n.

If there is a color w, different than t, such that there exist two disjoint edges of color w, then it is easy to find an m-cycle with two edges of color w and the rest of color t. If there do not exist two such edges of color w, then all edges of color w are incident to a single vertex x, so any m-cycle with x incident to two edges of color t does not contain an edge of color w (these exist since $\frac{m+1}{2} \geq 3$).

We remark that the statement in Theorem 2.6 would be false without the requirement that there be at least three colors. If $m \geq 3$ is odd, then two vertex disjoint complete graphs each with $\frac{m+1}{2}$ vertices and all edges of color t with all edges between them of color w has an $(m+1)$-cycle with all edges of color w, while every m-cycle has edges of both colors. This is the reason for the difference between odd and even values of $n-q$ in Theorem 2.5. The statement would also be false with three colors if $j=3$ and $n=4$.

9. Main Lemmas and Proofs of Theorems

We now state and prove the three main lemmas needed for the proofs of Theorems 2.2, 2.3, and 2.4.

Lemma 9.1.

(a) Let $\mathcal{H} \in \{R_q(n), C_q^*(n)\}$. Of all optimal \mathcal{H}-polychromatic colorings, let φ be one which is X-ordered on a (possibly empty) subset X of $V(K_n)$ of maximum size and, of these, such that $G_m = K_n[Y]$ has a vertex $v \in Y$ of maximum possible monochromatic degree d in G_m where $Y = V(K_n) \setminus X$, $|Y| = m$, and $d < (m-1)$. If v is incident in G_m to d edges of color 1 and $u \in Y$ is such that $\varphi(vu) = 2$, then v is a $(1,2)$-max vertex in G_m and u is a $(2,t)$-max vertex in G_m for some color t (possibly $t=1$).

(b) The same is true if $X \neq \emptyset$ and φ is nearly X-ordered.

Proof of (a). Let $y_1, y_2, \ldots, y_d \in Y$ be such that $\varphi(vy_i) = 1$. Let $H \in C_q^*$ or $H \in R_q$ be such that uv is the only edge of color 2. There must be such an H otherwise we could change the color of uv from 2 to 1, giving an \mathcal{H}-polychromatic coloring with monochromatic degree greater than d in G_m. Orient the edges of H to get a directed cycle or 2-regular graph H' where uv is an arc.

If $y_i \in H'$ then the predecessor w_i of y_i in H' must be such that $\varphi(w_iu) = 2$, because otherwise we can twist uv and w_iy_i to get an $(n-q)$-cycle (if $H \in C_q^*$) or a 2-regular graph (if $H \in R_q$) with no edge of color 2. Note that w_i must be in Y because otherwise, since φ is X-constant, $\varphi(w_iu) = \varphi(w_iy_i) = 2$, contradicting the assumption that uv is the only edge in H of color 2.

Suppose $y_i \notin H$ for some $i \in [d]$. If $\varphi(y_iu) \neq 2$, then $J = (H \setminus \{uv\}) \cup \{vy_i, y_iu\}$ has no edge of color 2. This is impossible if $H \in R_q$, because J is a 2-regular graph spanning $n-q+1$ vertices. If $H \in C_q^*$, then J is an $(n-q+1)$-cycle with no edge of color 2, so by Theorem 2.6 since the polychromatic number of H is at least 3, there exists an $(n-q)$-cycle which is not polychromatic, a contradiction. Hence $\varphi(y_iu) = 2$ in either case.
Thus, for each $i \in [d]$, either $y_i \notin H$ and $\varphi(y_i u) = 2$, or $y_i \in H$ and $\varphi(w_i u) = 2$ where w_i is the predecessor of y_i in H'. That gives us d edges in G_m of color 2 which are incident to u. Since v has maximum monochromatic degree in G_m, it follows that $v = w_i$ for some i (otherwise wv is a different edge of color 2 incident to u) and it also follows that no edge in G_m incident to v can have color t where $t \notin \{1, 2\}$. This is because if vz were such an edge, as shown above, then either $z \in H$ and $\varphi(w'u) = 2$ where w' is the predecessor of z in H', or $z \notin H$ and $\varphi(zu) = 2$. In either case we get $d + 1$ edges of color 2 in G_m incident to u, a contradiction. So v is a $(1, 2)$-max-vertex and u is a $(2, t)$-max-vertex for some color t.

The proof of \([b]\) is exactly the same.

Lemma 9.2. Let $n \geq 7$ and $H \in \{R_q(n), C_q(n)\}$. If there does not exist an optimal H-polychromatic coloring of K_n with maximum monochromatic degree $n - 1$, then one of the following holds.

\begin{itemize}
 \item[a)] $H = C_q(n)$, $n - q$ is odd and $n \in [2q + 2, 3q + 2]$ \((\text{and } \varphi_{C_q}(n) = 2)\).
 \item[b)] $q = 0$ and there exists an optimal H-polychromatic coloring which is Z-quasi-ordered with $|Z| = 3$.
 \item[c)] $q = 1$ and there exists an optimal H-polychromatic coloring which is Z-quasi-ordered with $|Z| = 4$.
\end{itemize}

Proof. First assume that $H = C_q(n)$ and that $q \geq 2$ and n are such that $\varphi_{C_q}(n) \leq 2$. If $n - q$ is even then, by Theorem 2.5, there is a C_q-polychromatic 2-coloring if and only if $n \geq 3q + 3$. Since $3q + 3$ is the smallest value of n such that the simply-ordered C_q-polychromatic coloring φ_{C_q} uses two colors, if $\varphi_{C_q}(n) \leq 2$ and $n - q$ is even, then there is an optimal simply-ordered C_q-polychromatic coloring, and this coloring has a vertex (in fact $q + 1$ of them) with monochromatic degree $n - 1$.

If $n - q$ is odd then, by Theorem 2.5, there is a C_q-polychromatic 2-coloring if and only if $n \geq 2q + 2$. Since there is a simply-ordered C_q-polychromatic 2-coloring if $n \geq 3q + 3$, that means that if $n - q$ is odd, $\varphi_{C_q}(n) \leq 2$ and $n \notin [2q + 2, 3q + 2]$ then there is a simply-ordered C_q-polychromatic coloring. Thus if $\varphi_{C_q}(n) \leq 2$, there is an optimal simply-ordered C_q-polychromatic coloring, and hence one with maximum monochromatic degree $n - 1$, unless $n - q$ is odd and $n \in [2q + 2, 3q + 2]$, which are the conditions for \([a]\).

Now let $H \in \{R_q(n), C_q(n)\}$ and suppose there does not exist an optimal H-polychromatic coloring of K_n with maximum monochromatic degree $n - 1$. Of all optimal H-polychromatic colorings of K_n, let φ be the one with maximum possible monochromatic degree d (so $d < n - 1$).

Claim 1. $d > \frac{n-1}{2}$.

Proof. Since there are only two colors at a max-vertex, certainly $d \geq \frac{n-1}{2}$. Assume $d = \frac{n-1}{2}$ (so n is odd) and that x is a max-vertex where colors i and j appear. Then x is both an i-max and j-max vertex so, by Lemma 9.1, each vertex in V is a max-vertex.

Suppose there are more than 3 colors, say colors i, j, s, t are all used. If i and j appear at x then no vertex y can have colors s and t, because there is no color for xy. So the sets of colors on the vertices is an intersecting family of 2-sets. Since there are at least 4 colors, the
only way this can happen is if some color, say i, appears at every vertex. Let $n_{ij}, n_{is},$ and n_{it} be the number of (i,j)-max, (i,s)-max, and (i,t)-max vertices with $n_{ij} \leq n_{is} \leq n_{it}$. Then $n_{ij} < \frac{n}{3}$ (in fact, $n_{ij} \leq \frac{n}{4}$). If x is an (i,j)-max vertex and y is an (i,s)-max vertex, then $c(xy) = i$. Hence the number of edges of color j incident to x is at most $n_{ij} - 1 < \frac{n^2}{2} < d$, a contradiction.

Now suppose there are precisely 3 colors. Let A, B, C be the set of all $(1,2)$-max, $(2,3)$-max, and $(1,3)$-max vertices, respectively, with $|A| = a, |B| = b,$ and $|C| = c$. All edges from a vertex in A to a vertex in B have color 2, from B to C have color 3, from A to C have color 1; internal edges in A have color 1 or 2, in B have color 2 or 3, in C have color 1 or 3. We clearly cannot have $a, b,$ or c greater than $\frac{n-1}{2}$ so, without loss of generality, we can assume $a \leq b \leq c \leq \frac{n-1}{2}$ and $a + b + c = n$.

Consider the graph F formed by the edges of color 1 or 2. Vertices of F in B or C have degree $\frac{n-1}{2}$, while vertices in A have degree $n - 1$. Since $a \leq c$ we have $a \leq \frac{n-b}{2}$. The internal degree in F of each vertex in B is $\frac{n-1}{2} - a \geq \frac{n-1}{2} - \frac{n-b}{2} = \frac{b-1}{2}$. As is well known (Dirac’s theorem), that means there is a Hamiltonian path within B. Similarly there is one within C. If $a \geq 2$, that makes it easy to construct a Hamiltonian cycle in F. If $a = 1$ we must have $b = c = \frac{n-1}{2}$, so F is two complete graphs of size $\frac{n+1}{2}$ which share one vertex. This graph has a spanning 2-regular subgraph if $n \geq 7$ (a 3-cycle and a 4-cycle if $n = 7$), so no R_q-polychromatic coloring with 3 colors for any $q \geq 0$ if $n \geq 7$.

If $a = 1$ and $b = c = \frac{n-1}{2}$ consider the subgraph of all edges of colors 1 or 3. It consists of a complete bipartite graph with vertex parts $A \cup B$ and C, with sizes $\frac{n+1}{2}$ and $\frac{n-1}{2}$, plus internal edges in C. Clearly this graph has an $(n - 1)$-cycle, but no Hamiltonian cycle. Hence there can be a C_q-polychromatic coloring only if $q = 0$. However, the C_0-polychromatic coloring φ_{C_0} uses at least 4 colors if $n \geq 7$, so there is no optimal one with maximum monochromatic degree $\frac{n-1}{2}$.

Claim 2. If $q = 0$, then, up to relabeling the colors, there is a $(1,2)$-max-vertex, a $(2,3)$-max-vertex and a $(3,1)$-max-vertex.

Proof. Assume that every max-vertex has majority color either 1 or 2. Then u must be a $(2,1)$-max-vertex. This is because by Lemma 9.1 if it were a $(2,t)$-max-vertex for some third color t, and $c(uz) = t$, then z would have to be a t-max-vertex, a contradiction. Hence, every max-vertex is either a $(1,2)$-max-vertex or a $(2,1)$-max-vertex. Let S be the set of all $(1,2)$-max-vertices, T be the set of all $(2,1)$-max-vertices, and $W = V \setminus (S \cup T)$. Edges within S and from S to W must have color 1 (because any minority color edge at a max-vertex is incident to a max-vertex of that color), edges within T and from T to W must have color 2, and all edges between S and T must have color 1 or 2. If $|S| = s$ and $|T| = t$ and $m = n - 1 - d$, then each vertex in S is adjacent to m vertices in T by edges of color 2 (and adjacent to $t - m$ vertices in T by edges of color 1), and each vertex in T is adjacent to m vertices in S by edges of color 1.

Suppose $s < t$ and consider any edge ab from S to T of color 2. As before, there is an $H \in H$ which contains ab, but no other edges of color 2. Hence H has no edges from T to W. Since $s < t$ there must be an edge of H with both vertices in T, so it does have
another edge of color 2 after all, a contradiction. The same argument works if \(t < s \) with an edge with color 1. To avoid this, we must have \(s = t = 2m \). If there is an edge from \(S \) to \(W \) then, again, \(H \) has an internal edge in \(T \), which is impossible. Hence if \(H = C_0^* \) then \(W = \emptyset \) and every edge has color 1 or 2, which is impossible since \(H \) has at least 3 colors. If \(H = R_0 \) then the subgraph of \(H \) induced by \(S \cup T \) is the union of cycles. If \(m = 1 \) then \(S \cup T \) induces a 4-cycle in \(H \), two edges of each color, so \(ab \) is not the only edge with color 2. If \(m \geq 2 \) then two applications of Hall’s Theorem gives two disjoint perfect matchings of edges of color 1 between \(S \) and \(T \), whose union is a 2-factor of edges of color 1 spanning \(S \cup T \), which together with the subgraph of \(H \) induced by \(W \), produces a 2-factor \(H' \in R_0 \) with no edge of color 2.

We have shown that \(u \) is not a \((2,1)\)-max vertex, so it must be a \((2,3)\)-max vertex for some other color 3. Say \(\varphi(uz) = 3 \). Then, by Lemma 9.1, \(z \) is a 3-max vertex. If \(\varphi(vz) = 2 \), then \(z \) would be a 2-max vertex. So \(z \) would be both a 2-max and a 3-max vertex, and so \(d = \frac{n-1}{2} \), a contradiction to Claim 1. Hence \(\varphi(vz) = 1 \), which means \(z \) must be a \((3,1)\)-max vertex.

Claim 3. If \(q = 0 \) then \(V \) can be partitioned into sets \(A, B, D, E \) where the following properties hold (see Figure 3).

1. All vertices in \(A \) are \((1,2)\)-max-vertices.
2. All vertices in \(B \) are \((2,3)\)-max-vertices.
3. All vertices in \(D \) are \((3,1)\)-max-vertices.
4. No vertex in \(E \) is a max-vertex.
5. All edges within \(A \), from \(A \) to \(D \), and from \(A \) to \(E \) are color 1.
6. All edges within \(B \), from \(B \) to \(A \), and from \(B \) to \(E \) are color 2.
7. All edges within \(D \), from \(D \) to \(B \), and from \(D \) to \(E \) are color 3.
8. \(|A| = |B| = |D| = m = n - 1 - d|.

Proof. Let \(A = \{x : x \text{ is a } (1,2)\text{-max vertex}\}, B = \{x : x \text{ is a } (2,3)\text{-max vertex}\}, D = \{x : x \text{ is a } (3,1)\text{-max vertex}\} \) and \(E = V \setminus (A \cup B \cup D) \). Let \(x \in A \). If \(y \in A \), then \(\varphi(xy) = 1 \) because if \(\varphi(xy) = 2 \), then \(y \) would be a 2-max vertex. If \(y \in B \), then \(\varphi(xy) = 2 \) because that is the only possible color for an edge incident to \(x \) and \(y \) and, similarly, if \(y \in D \), then \(\varphi(xy) = 1 \).

Suppose \(w \) is a max-vertex in \(E \). Then the two colors on edges incident to \(w \) must be a subset of \(\{1,2,3\} \), because, otherwise, it would be disjoint from \(\{1,2\}, \{2,3\}, \) or \(\{1,3\} \), so there would be an edge incident to \(w \) for which there is no color. Say 1 and 2 are the colors at \(w \). Since \(w \notin A \), \(w \) is a \((2,1)\)-max vertex. Let \(z \) be a \((3,1)\)-max vertex. Then the edge \(wz \) must have color 1 so, by Lemma 9.1, \(z \) is a 1-max vertex, a contradiction. We have now verified (1)-(4). If \(x \in A \) and \(w \in E \) then \(\varphi(xw) = 1 \) because if \(\varphi(xw) = 2 \) then \(w \) would be a 2-max vertex. Similar arguments show that if \(y \in B \) then \(\varphi(yw) = 2 \) and if \(y \in D \) then \(\varphi(yw) = 3 \). We have now verified (1)-(7).

We have shown that if \(x \) is in \(A \) then \(\varphi(xy) = 2 \) if and only if \(y \in B \). That means \(|B| = m| \), and by the same argument \(|A| = |C| = m| \) as well, completing the proof of Claim 3.
Claim 4. If $\mathcal{H} \in \{C_0^*, R_0\}$, and there exists an optimal \mathcal{H}-polychromatic coloring satisfying (1)–(8) with $m > 1$, then there exists one with $m = 1$, i.e. one that is Z-quasi-ordered with $|Z| = 3$.

Proof. Let $A = \{a_i : i \in [m]\}, B = \{b_i : i \in [m]\}, D = \{d_i : i \in [m]\}$. Define an edge coloring γ by

$$
\gamma(a_1b_i) = 1 \text{ if } i > 1 \\
\gamma(b_1d_i) = 2 \text{ if } i > 1 \\
\gamma(d_1a_i) = 3 \text{ if } i > 1 \\
\gamma(uv) = \varphi(uv) \text{ for all other } u, v \in V.
$$

It is easy to check that γ has the structure described above with $m = 1$. We have essentially moved $m - 1$ vertices from each of A, B, and D, to E. Since a_1, b_1, and c_1 each have monochromatic degree $n - 2$, any 2-factor must have edges of colors 1,2, and 3 under the coloring γ, so if it had all colors under φ, it still does under γ. \hfill \blacksquare

We remark that the coloring γ with $m = 1$ in Claim 4 is Z-quasi-ordered with $|Z| = 3$. As we have shown, if there exists such an R_0-polychromatic coloring φ with $m > 1$, then there exists one with $m = 1$. However, if $m > 1$ and $n > 6$, a coloring φ satisfying properties (1)–(8) might not be R_0-polychromatic. This is because if E has no internal edges with color 1, then any 2-factor with a $2m$-cycle consisting of alternating vertices from A and B has no...
edge with color 1. However, the modified coloring γ (with $m = 1$) is an R_0-polychromatic coloring because then colors 1, 2, and 3 must appear in any 2-factor.

Claim 5. If $q \geq 1$ then, up to relabelling colors, every max vertex is a $(1, 2)$-max vertex or a $(2, 1)$-max vertex.

Proof. As before, we assume v is a $(1, 2)$-max vertex, that $\varphi(uv) = 2$ and that $H \in R_q$ (or $H \in C_q^*$) is such that uv is the only edge of color 2. We know that u is a $(2, t)$-max vertex for some color t. By way of contradiction, suppose u is a $(2, 3)$-max vertex. Then we have the configuration of Figure 2 with $|A| = |B| = |D| = m$. If uw is also an edge of H then $w \in D$, since otherwise $\varphi(uw) = 2$. Let Q be the set of vertices not in H (so $|Q| = q > 0$) and suppose $p \in Q$ but $p \notin B$. Then we can replace u in H with p to get a 2-regular graph (cycle) with no edge of color 2. Hence $Q \subseteq B$. Orient the edges of H to get a directed graph H' where \overrightarrow{uw} is an arc. Since $|B \setminus Q| < |D|$, and every vertex in D appears in H', for some $d \in D$ and $e \notin B$, \overrightarrow{de} is an arc in H'. Since $\varphi(du) = 3$ and $\varphi(ev) = 1$, when you twist uv and de you get a 2-regular graph (cycle) with no edge of color 2, a contradiction. Hence every max-vertex is a $(1, 2)$-max vertex or $(2, 1)$-max vertex.

Claim 6. If $q = 1$ then, up to relabelling colors, the vertex set can be positioned into S, T, W such that

1. S is the set of all $(1, 2)$-max vertices
2. T is the set of all $(2, 1)$-max vertices
3. W has no max vertices
4. All internal edges in S and all edges from S to W have color 1; all internal edges in T and all edges from T to W have color 2
5. The edges of color 1 between S and T form two disjoint copies of $K_{m,m}$, as do the edges of color 2 (so $|S| = |T| = 2m$, where $n - m - 1$ is the maximum monochromatic degree)

Proof. By Claim 5 if $q \geq 1$, then every max vertex is a $(1, 2)$ or $(2, 1)$-max vertex.

Let S be the set of all $(1, 2)$-max vertices and T be the set of all $(2, 1)$-max vertices, with $|S| = s$ and $|T| = t$, $s \leq t$, and let m be the maximum monochromatic degree. Let $W = V(G) \setminus (S \cup T)$ and let B be the complete bipartite graph with vertex bipartition S, T and edges colored as they are in G. So each vertex of B in S is incident with m edges of color 2 and $t - m$ edges of color 1, and each vertex of B in T is incident with m edges of color 1 and $s - m$ edges of color 2. All edges of G within S and between S and W have color 1 (otherwise there would be a $(2, 1)$-max vertex not in T) and all edges within T and between T and W have color 2.

We note that the edges of color 1 in B satisfy the conditions of Lemma 8.3 so B has a $2s$-cycle of edges of color 1 unless $s = t = 2m$ and the edges of color 1 (and those of color 2) form two disjoint copies of $K_{m,m}$.

Again, let $v \in S$ and $u \in T$ be such that $c(uv) = 2$, and let $H \in C_q^*(n)$ (or $H \in R_q(n)$), $q \geq 1$, be such that uv is the only edge of color 2. If uw is also an edge of H then $w \in S$, because otherwise $c(uw) = 2$. Hence if z is a vertex of G not in H then $z \in T$, because
otherwise we can replace \(u \) with \(z \) in \(H \) to get \(H'' \in C^*_q(n) \) (or \(H'' \in R_q(n) \)) with no edge of color 2. That means that if \(Q \) is the set of vertices of \(G \) not in \(H \), then \(Q \subseteq T \). Since \(uv \) is the only edge in \(H \) with color 2, each vertex in \(T \setminus Q \) is adjacent in \(H \) to two vertices in \(S \), so there are \(2(t - q) \) edges in \(H \) between \(S \) and \(T \), where \(q = |Q| \geq t - s \).

Let \(M \) be the subgraph of \(H \) remaining when the \(2(t - q) \) edges in \(H \) between \(S \) and \(T \) have been removed (along with any remaining isolated vertices). If \(q = t - s \) then, since every edge in \(H \) incident to a vertex in \(T \) goes to \(S \), either \(H \) is a 2s-cycle and \(W = \emptyset \) (if \(H \in C^*_q(n) \)) or the union of the components of \(H \) which have a vertex in \(T \) is a 2-regular graph spanning \(S \) and \(s = t - q \) vertices in \(T \). In either case, since \(s < t \), we can replace the components of \(H \) which intersect \(T \) with the 2s-cycle of edges of color 1 promised by Theorem 8.1, to get an \(H'' \in C^*_q(n) \) (or \(H'' \in R_q(n) \)) with no edge of color 2. Hence \(q > t - s \).

Each component of \(M \) is a path with at least one edge, both endpoints in \(S \) with interior points in \(S \) or \(W \). If a component has \(j > 2 \) vertices in \(S \), we split it into \(j - 1 \) paths which each have their endpoints in \(S \) with all interior points in \(W \). If a vertex of \(S \) is an interior point in a component then it is an endpoint of two of these paths. The number of such paths is \(2(s - (t - q)) = s - (t - q) > 0 \).

We denote the paths by \(P_1, P_2, \ldots, P_t \) where \(r = s - (t - q) \). For each \(i \) in \([r] \) where \(P_i \) has more than 2 vertices, we remove the edges containing the two endpoints (which are both in \(S \)), leaving a path \(W_i \) whose vertices are all in \(W \) (the union of the vertices in all the \(W_i \)'s is equal to \(W \)).

We will now show that there cannot be a 2s-cycle of edges of color 1 in \(B \). Suppose \(J \) is such a 2s-cycle. Let \(R = \{x_1, x_2, \ldots, x_r\} \) be the set of any \(r \) vertices in \(T \cap V(J) \) and let \(K \) be the subgraph of \(J \) obtained by removing the \(r \) vertices in \(R \). For each \(i \in [r] \) let \(y_{ia} \) and \(y_{ib} \) be the vertices adjacent to \(x_i \) in \(J \). Both are in \(S \) and possibly \(y_{ib} = y_{ja} \) if \(i \neq j \). Now, for each \(i \in [r] \), attach \(W_i \) to \(y_{ia} \) and \(y_{ib} \) \((R_i \text{ can be oriented either way})\). More precisely, if \(W_i \) is the path \(w_{i1}, w_{i2}, \ldots, w_{id} \) in \(W \), we attach it to \(K \) by adding the edges \(y_{ia}w_{i1} \) and \(y_{ib}w_{id} \), while if \(W_i \) is empty (meaning the \(i \)th component of \(M \) has only two vertices, so none in \(W \)) we add the edge \(y_{ia}y_{ib} \). The resulting graph \(H'' \) has no edge of color 2, since we constructed it using only edges from \(J \) and edges from \(H \) within \(S \cup W \). Since \(V(H'') = V(G) \setminus R \), \(H'' \) has \(n - q \) vertices. Clearly \(H'' \) is 2-regular and, if \(H \) is a cycle, so is \(H'' \) (if \(H \) is not a cycle, \(H'' \) will still be a cycle if \(H \) does not have any components completely contained in \(W \)). Thus \(H'' \in R_q(n) \) \((H'' \in C^*_q(n))\) and has no edge of color 2, a contradiction. Hence there is no 2s-cycle of edges of color 1 in \(B \).

By Lemma 8.3 it follows that \(s = t = 2m \) with the edges of color 1 forming two vertex-disjoint copies of \(K_{m,m} \). (If these two disjoint copies have vertex sets \(S_1 \cup T_1 \) and \(S_2 \cup T_2 \), where \(S_1 \cup S_2 = S \) and \(T_1 \cup T_2 = T \), then \(S_1 \cup T_2 \) and \(S_2 \cup T_1 \) are the vertex sets which induce two disjoint copies of \(K_{m,m} \) with edges of color 2.) We have now verified that properties (1)–(5) hold if \(q \geq 1 \). We will now show we get a contradiction if \(q \geq 2 \).

Assume \(q \geq 2 \). Let \(T_1 \) and \(T_2 \) be the sets of vertices in \(T \) in the two \(s \)-cycles of edges of color 1 \((|T_1| = |T_2| = \frac{s}{2}, T_1 \cup T_2 = T)\). Recall that \(v \in S \), \(u \in T \), and \(uv \) is the only edge of \(H \) of color 2. The subgraph \(M \) of \(H \) defined earlier still consists of paths which can be
split into paths P_1, P_2, \ldots, P_q (since $r = s - t + q = q$) with endpoints in S and interior points in W. Let J be the union of the two s-cycles of edges of color 1. Choose the subset Q of size q so that it has at least one vertex in each of T_1 and T_2, say $Q = \{x_1, x_2, \ldots, x_q\}$ where $x_1 \in T_1$ and $x_q \in T_2$. Again, let K be the subgraph obtained from J by removing the vertices in Q. Then, as before, the paths W_1, W_2, \ldots, W_q (perhaps some of them empty) can be stitched into W. We attach W_i to y_{ia} and y_{ib} if $i \in [2, q - 1]$ (just adding the edge $y_{ia}y_{ib}$ if W_i is empty). We attach W_1 to y_{1a} and y_{1b} and W_q to $y_{q1}a$ and y_{qa}, creating an $(n - q)$-cycle if no component of H is contained in W, and a 2-regular graph spanning $n - q$ vertices if H has a component contained in W. There is no edge of color 2 in this graph contradicting the assumption that if $q \geq 2$ and $H \in \{R_q(n), C_q^*(n)\}$ then the maximum monochromatic degree in all optimal \mathcal{H}-polychromatic colorings is less than $n - 1$.

Claim 7. If $\mathcal{H} \in \{C_1^*, R_1\}$ and there exists an \mathcal{H}-polychromatic coloring satisfying (1)–(5) in Claim 6 with $m > 1$, then there exists one with $m = 1$, i.e. one that is Z-quasi-ordered with $|Z| = 4$.

Proof. Assume there is an R_1-polychromatic coloring (C_1^*-polychromatic coloring) c with $q = 1$ satisfying (1) – (5) of Claim 6 where $s = t > 2$. Let v and x be vertices in S and u and y be vertices in T such that $c(vu) = c(xy) = 2$ and $c(xu) = c(vy) = 1$. Let c' be the coloring obtained from c by recoloring the following edges (perhaps they are recolored the same color they had under c):

$$
\begin{align*}
 c'(vp) &= 1 \text{ for all } p \in T \setminus \{u, y\} \\
 c'(xp) &= 1 \text{ for all } p \in T \setminus \{u, y\} \\
 c'(zu) &= 2 \text{ for all } z \in S \setminus \{v, x\} \\
 c'(zy) &= 2 \text{ for all } z \in S \setminus \{v, x\} \\
 c'(zp) &= 3 \text{ for all } p \in T \setminus \{u, y\} \text{ and } z \in S \setminus \{v, x\}
\end{align*}
$$

Since all but one edge incident to v and x have color 1 under c', certainly every $(n - 1)$-cycle contains an edge of color 1. Similarly for u and y and edges of color 2. Every edge which was recolored had color 1 or 2 under c, so c' must be a polychromatic coloring with the same number of colors. It has the desired form with $|S| = |T| = 2$, so, in fact, is Z-quasi-ordered with $Z = \{v, x, u, y\}$. \qed

We remark that a coloring c satisfying properties (1)–(5) of Claim 6 with $s = t > 2$ is actually not R_1-polychromatic. To see this, let $S_1 \cup T_1$ and $S_2 \cup T_2$ be the vertex sets of the two copies of $K_{m, m}$ of edges of color 1 ($S_1 \cup S_2 = S$, $T_1 \cup T_2 = T$) where $v \in S_1$, $u \in T_2$ and uv is the only edge of color 2 in $H \in R_1$. The subgraph M of H in the proof of Claim 6 has only one component (since $s - (t - q) = 1$), a path $dw_1w_2 \ldots w_ez$ where $d \in S_1$, $z \in T_1$, and $\{w_1, w_2, \ldots, w_e\} \subseteq W$. To construct a 2-regular subgraph with no edges of color 2 spanning $n - 1$ vertices, remove a vertex x in T_2 from one of the two s-cycles of edges of color 1. If y_a and y_b are the two vertices in S_2 adjacent to x in the s-cycle, attach the path $w_1w_2 \ldots w_e$ to y_a and y_b to get a 2-regular subgraph with no edge of color 2 spanning $n - 1$ vertices. However, this construction cannot be done when $m = 1$, so in this case you do get an R_1-polychromatic coloring.

21
Lemma 9.3. Let $\mathcal{H} \in \{R_q(n),C_q^*(n)\}$.

a) Suppose for some $X \neq \emptyset$ there exists an optimal X-ordered \mathcal{H}-polychromatic coloring of K_n. Then there is one which is ordered.

b) Suppose there exists an optimal Z-quasi-ordered \mathcal{H}-polychromatic coloring of K_n. Then there is one which is quasi-ordered.

Proof. Among all such \mathcal{H}-polychromatic colorings we assume φ is one such that

a) if φ is X-ordered then X has maximum possible size

b) if φ is Z-quasi-ordered then the restriction of φ to $V(K_n) \setminus Z$ is T-ordered for the largest possible subset T of $V(K_n) \setminus Z$. In this case, we let $X = Z \cup T$ so φ is nearly X-ordered (one or two edges could be recolored to make it X-ordered).

For both [a] and [b] we assume that φ is such that its restriction to $G_m = K_n[Y]$ has a vertex v of maximum possible monochromatic degree in G_m, where $Y = V(K_n) \setminus X$, $|Y| = m$, and the degree of v in G_m is $d < m - 1$ (if $d = m - 1$ then $|X|$ is not maximal).

Since v has maximum monochromatic degree d in G_m, by Lemma 9.1 it is a $(1,2)$-max vertex in G_m, for some colors 1 and 2, and if $u \in Y$ is such that $\varphi(uv) = 2$, then u is a $(2,t)$-max vertex for some color t (perhaps $t = 1$).

As before, let y_1, y_2, \ldots, y_d be vertices in Y such that $c(vy_i) = 1$ for $i = 1, 2, \ldots, d$. As before, let $H \in \mathcal{H}$ be such that uv is its only edge with color 2. Let H' be a cyclic orientation of the edges of H such that \bar{uv} is an arc, and let w_i be the predecessor of y_i in H' for $i = 1, 2, \ldots, d$. As shown before, $c(w_iu) = 2$ for $i = 1, 2, \ldots, d$.

Suppose there is an edge of H which has one vertex in X and one in Y. Then there exist $w \in Y$ and $x \in X$ such that $\bar{wx} \in H'$. Certainly w is not the predecessor in H' of any y_i in Y. Since φ is X-constant and uv is the only edge of color 2 in H, $\varphi(xv) = \varphi(xw) \neq 2$. Now twist xw, uv in H. Since $\varphi(xv) \neq 2$, we must have $\varphi(wu) = 2$, so u is incident in G_m to at least $d + 1$ vertices of color 2, a contradiction. Hence H cannot have an edge with one vertex in X and one in Y.

Now suppose $x \in X$ and $x \notin H$. If $\varphi(xv) = \varphi(xu) \neq 2$ then $H \setminus \{uv\} \cup \{ux, xv\}$ is an $(n - q + 1)$-cycle with no edge of color 2, which is clearly impossible if $\mathcal{H} = R_q(n)$, and is impossible if $\mathcal{H} = C_q^*(n)$ by Theorem 2.6. Hence $\varphi(xv) = \varphi(xu) = 2$ for each $x \in X$.

Since u is a $(2,t)$-max vertex for some color $t \neq 2$, we can repeat the above argument with u in place of v. That shows that $\varphi(xv) = \varphi(xu) = t$ for each $x \in X$, which is clearly impossible.

It remains to consider the possibility that $\mathcal{H} = R_q(n)$ and X is spanned by a union of cycles in H. Suppose xz is an edge of H contained in X. Then we can twist xz and uv to get another subgraph in R_q and, unless either x or z has main color 2, this subgraph has no edge of color 2. Hence at least half the vertices in X have main color 2 (and more than half would if H had an odd component in X).

The above argument can be repeated with u in place of v. If u is a $(2,t)$-max vertex then that would show that at least half the vertices in X have main color $t \neq 2$. So each vertex in X has main color 2 or t. Since φ is X-ordered or nearly X-ordered, some vertex $x \in X$
has monochromatic degree $n - 2$ or $n - 1$ and the main color of x must be 2 or t. Assume it is 2. Then every cycle containing x has an edge with color 2, contradicting the assumption that H has only one edge with color 2. Similarly, we get a contradiction if the main color of x is t. We have shown there is no vertex v with monochromatic degree $d < m - 1$, so φ is ordered or quasi-ordered. ■

Now there is not much left to do to prove Theorems 2.2, 2.3, and 2.4.

9.1. Proof of Theorem 2.4. Theorem 2.5 takes care of the case of C_q-polychromatic colorings when $q \geq 2$ and $n \in [2q + 2, 3q + 2]$. The smallest value of n for which there is a simply-ordered C_q-polychromatic 2-coloring is $n = 3q + 3$ (the coloring φ_{C_q} in Section 5.3). Hence if $q \geq 2$ and $\varphi_{C_q} \leq 2$ then there exists an optimal simply-ordered C_q-polychromatic coloring except if $n - q$ is odd and $n \in [2q + 2, 3q + 2]$, or if $q = 2$ and $n = 5$ (the coloring of K_5 with two monochromatic 5-cycles has no monochromatic 3-cycle). So we need only consider $H \in \{R_q(n), C_q(n)\}$ (when $q \geq 2$). Since [a] is not satisfied in Lemma 9.2 there exists an optimal H-polychromatic coloring with maximum monochromatic degree $n - 1$. That means it is X-ordered, for some nonempty set X, so by Lemma 9.3 there exists one which is quasi-ordered and then, by Lemma 4.2, one which is quasi-simply-ordered with $|Z| = 3$, so recoloring one edge would give a simply-ordered coloring. ■

9.2. Proof of Theorem 2.2. If $H \in \{R_0(n), C_0(n)\}$ then, by Lemma 9.2 there exists an optimal H-polychromatic coloring which is Z-quasi-ordered with $|Z| = 3$. Then, by Lemma 9.3 there exists one which is quasi-ordered and then, by Lemma 4.2 one which is quasi-simply-ordered with $|Z| = 3$, so recoloring one edge would give a simply-ordered coloring.

9.3. Proof of Theorem 2.3. Exactly the same as the proof of Theorem 2.2 except now $|Z| = 4$, so two edges need to be recolored to get a simply-ordered coloring.

10. Polychromatic cyclic Ramsey numbers

Let s, t, and j be integers with $t \geq 2, s \geq 3, s \geq t$, and $1 \leq j \leq t - 1$. We define $CR(s, t, j)$ to be the smallest integer n such that in any t-coloring of the edges of K_n there exists an s-cycle that uses at most j colors. Erdős and Gyárfás [7] defined a related function for cliques instead of cycles. So $CR(s, t, 1)$ is the classical t-color Ramsey number for s-cycles and $CR(s, 2, 1) = c(s)$, the function in Theorem 7.1. While it may be difficult to say much about the function $CR(s, t, j)$ in general, if $j = t - 1$ we get $CR(s, t, t - 1) = PR_t(s)$ the smallest integer $n \geq s$ such that in any t-coloring of K_n there exists an s-cycle that does not contain all t colors. This is the function of Theorem 2.7 if $t \geq 3$, while $PR_2(s) = c(s)$.

10.1. Proof of Theorem 2.7. Let $q \geq 0, s \geq 3$, and n be integers with $n = q + s$. Assume $q \geq 2$. By Theorem 2.4 and the properties of the coloring φ_{C_q} (see Section 5.3), there exists
a C_q-polychromatic t-coloring of K_n if and only if

\[q + s = n \geq (2^t - 1)q + 2^{t-1} + 1, \]
\[s \geq (2^t - 2)q + 2^{t-1} + 1, \]
\[q \leq \frac{s - 2^{t-1} - 1}{2^t - 2} = \frac{s - 2}{2^t - 2} - \frac{1}{2} \]

Since $q \geq 2$, we want to choose s so that the right-hand side of the last inequality is at least 2, so

\[s - 2 \geq \frac{5}{2}(2^t - 2) = 5 \cdot 2^{t-1} - 5 \]
\[s \geq 5 \cdot 2^{t-1} - 3 \]

So if $s \geq 5 \cdot 2^{t-1} - 3$, then the smallest n for which there does not exist a C_q-polychromatic k-coloring is $n = q + s$ where $q > \frac{s-2}{2^{t-2}} - \frac{1}{2}$, so $n = s + \left\lfloor \frac{s-2}{2^{t-2}} + \frac{1}{2} \right\rfloor = s + \text{Round} \left(\frac{s-2}{2^{t-2}} \right)$.

We note that if $3s \geq 5 \cdot 2^{t-1} - 3$ then Round $\left(\frac{s-2}{2^{t-2}} \right) \geq \text{Round} \left(\frac{s}{2} \right) = 3$, so PR$_t(s) \geq s + 3$ if $s \geq 5 \cdot 2^{t-1} - 3$.

Now we assume that PR$_t(s) = s + 2$. So $s + 2$ is the smallest value of n for which in any t-coloring of the edges of K_n there is an s-cycle which does not have all colors, which means there is a polychromatic t-coloring when $n = s + 1$. Since $q = 1$ in such a coloring, by Theorem 2.3 and the properties of the coloring φ_{C_1}, $n \geq 5 \cdot 2^{t-2}$. Hence if $s \in [5 \cdot 2^{t-2} - 1, 5 \cdot 2^{t-1} - 4]$, then PR$_t(s) = s + 2$.

Now we assume that PR$_t(s) = s + 1$. So $n - s$ is the largest value of n such that in any t-coloring of K_n, every s-cycle gets all colors. So $q = n - s = 0$ and, by Theorem 2.2 and properties of the coloring φ_{C_0}, $n \geq 3 \cdot 2^{t-3} + 1$.

Finally, since the t-coloring φ_{C_0} requires $n \geq 3 \cdot 2^{t-3} + 1$ where $t \geq 4$ if $n \leq 3 \cdot 2^{t-3}$ and $t \geq 4$, then in any t-coloring of K_n, some Hamiltonian cycle will not get all colors, so PR$_t(s) = s$ if $3 < s \leq 3 \cdot 2^{t-3}$.

11. Conjectures

We mentioned that we have been unable to prove a result for 2-regular graphs analogous to Theorem 2.6 for cycles. In fact we think it even holds for two colors, except for a few cases with j and n small.

Conjecture 11.1. Let $n \geq 6$ and j be integers such that $3 \leq j < n$, and if $j = 5$ then $n \geq 9$, and let φ be an edge-coloring of K_n so that every 2-regular subgraph spanning j vertices gets all colors. Then every 2-regular subgraph spanning at least j vertices gets all colors under φ.

This does not hold for $j = 3, n = 4$, and 3 colors; $n = 5, j = 3$, and 2 colors.

We can extend the notions of Z-quasi-ordered, quasi-ordered, and quasi-simply-ordered to sets Z of larger size, allowing a main color to have degree less than $n - 2$. Let $q \geq 0$ and $r \geq 1$ be integers such that $q \leq 2r - 3$. Hence $\frac{2r-2}{q+1} \geq 1$, and we let $k = \left\lceil \frac{2r-2}{q+1} \right\rceil + 1 \geq 2$ and $z = k(q + 1)$. Let Z be a set of z vertices. We define a *seed-coloring* φ with k colors on the
edges of the complete graph K_z with vertex set Z as follows. Partition the z vertices into k sets S_1, S_2, \ldots, S_k of size $q + 1$. For $j = 1, 2, \ldots, k$, all edges within S_j have color j, all edges between S_j and S_i ($i \neq j$) have color i or j, and for each j and each vertex v in S_j, v is incident to $\left\lceil \frac{(q+1)(k-1)}{2} \right\rceil$ or $\left\lfloor \frac{(q+1)(k-1)}{2} \right\rfloor$ edges with colors other than j (so, within round off, half of the edges from each vertex in S_j to vertices in other parts have color j). We say each vertex in S_j has main color j.

If $n \geq z$, we get a Z-quasi-ordered coloring c of K_n which is an extension of the coloring φ on Z if for each j and each $v \in S_j$, $c(vy) = j$ for each $y \in V(K_n) \setminus Z$. If c is Z-quasi-ordered then it is quasi-ordered if c restricted to $V(K_n) \setminus Z$ is ordered, and quasi-simply-ordered if c restricted to $V(K_n) \setminus Z$ is simply-ordered.

If $r > 0$ and $q \geq 0$ are integers we let $\mathcal{R}(n, r, q)$ be the set of all r-regular subgraphs of K_n spanning precisely $n - q$ vertices (assume $n - q$ is even if r is odd, so the set is nonempty), and if $r \geq 2$ let $\mathcal{C}(n, r, q)$ be the set of all such subgraphs which are connected.

Since $k - 1 = \left\lfloor \frac{2r-2}{q+1} \right\rfloor \leq \frac{2r-2}{q+1}$, we have $r \geq \frac{(q+1)(k-1)}{2} + 1 > \left\lfloor \frac{(q+1)(k-1)}{2} \right\rfloor$. So if H is in $\mathcal{R}(n, r, q)$ or $\mathcal{C}(n, r, q)$, then H contains an edge with each of the k colors on edges within Z, because it contains at least one vertex in S_j for each j, and fewer than r of the edges incident to this vertex have colors other than j. We can get an $\mathcal{R}(n, r, q)$-polychromatic or $\mathcal{C}(n, r, q)$-polychromatic quasi-simply-ordered coloring of K_n with $m > k$ colors by making the color classes M_t on the vertices in $V(K_n) \setminus Z$ for $t = k+1, k+2, \ldots, m$ sufficiently large. If $H \in \mathcal{R}(n, r, q)$, for each $t \in [k+1, m]$ we will need the size of M_t to be at least $q + 1$ more than the sum of the sizes of all previous color classes, while if $H \in \mathcal{C}(n, r, q)$ we will need the size of M_t to be at least q more than the sum of the sizes of all previous classes, with an extra vertex in M_m. To try to get optimal polychromatic colorings we make the sizes of these color classes as small as possible, yet satisfying these conditions.

For example, if $r = 2$ and $q = 0$ then $k = \left\lceil \frac{2r-2}{q+1} \right\rceil + 1 = 3$ and $z = k(q+1) = 3$, and we get the quasi-simply-ordered colorings φ_{R_0} and φ_{C_0} with $|Z| = 3$ of Theorem 2.2 If $r = 2$ and $q = 1$ then $k = 2$ and $z = 4$, and we get the colorings φ_{R_1} and φ_{C_1} with $|Z| = 4$ of Theorem 2.3.

Example 1 ($r = 3, q = 0$, so $k = 5, z = 5$). Let φ be the edge coloring obtained where $\{v_1, v_2, v_3, v_4, v_5\} = Z$ such that v_iv_{i+1} and v_iv_{i+2} (mod 5) have color i. The edges connecting v_i to the remaining vertices in $V(K_n) \setminus Z$ are color i. See Figure 3.

Example 2 ($r = 3, q = 3, k = 2, z = 8$). Z has two color classes, 4 vertices in each. The complete bipartite graph between these two sets of vertices could have two vertex disjoint copies of $K_{2,2}$ of one color and also of the other color, or could have an 8-cycle of each color.

Example 3 ($r = 4, q = 2, k = 3, z = 9$). So S_1, S_2, S_3 each have size $q + 1 = 3$. One way to color the edges between parts is for $j = 1, 2, 3$, each vertex in S_j is incident with 2 edges of color j to vertices in S_{j+1} and 1 edge of color j to a vertex in S_{j-1} (so is incident with one edge of color $j+1$ and two edges of color $j-1$, cyclically). The smallest value of n for which this seed can generate a quasi-simply-ordered $\mathcal{R}(n, 4, 2)$-polychromatic coloring with 5-colors

25
is \(n = 45 \) (the 4\(^{th}\) and 5\(^{th}\) color classes would have sizes \(9 + 2 + 1 = 12 \) and \(21 + 2 + 1 = 24 \) respectively), while to get a simply-ordered \(R(n, 4, 2) \)-polychromatic coloring with 5 colors you would need \(n \geq 69 \) (color class sizes 3, 3, 9, 18, 36 works).

Conjecture 11.2. Let \(r \geq 1 \) and \(q \geq 0 \) be integers such that \(q \leq 2r - 3 \). Let \(k = \left\lfloor \frac{2r-2}{q+1} \right\rfloor + 1 \geq 2 \) and \(z = k(q + 1) \). If \(n \geq z \) and \(n - q \) is even if \(r \) is odd, then there exist optimal quasi-simply-ordered \(R(n, r, q) \) and \(C(n, r, q) \)-polychromatic colorings with seed \(Z \) with parameters \(r, q, k, z \).

It is not hard to check that each of these quasi-simply-ordered colorings does at least as well as a simply-ordered coloring for those values of \(r \) and \(q \). The only question is whether some other coloring does better and the conjecture says no.

What if \(\frac{2r-2}{q+1} < 1 \)? Then \(k = \left\lfloor \frac{2r-2}{q+1} \right\rfloor + 1 = 1 \), which seems to be saying no seed \(Z \) exists with at least 2 colors.

Conjecture 11.3. Let \(r \geq 1 \) and \(q \geq 0 \) be integers with \(q \geq 2r - 2 \), \(n \geq q + r + 1 \), and not both \(r \) and \(n - q \) are odd. Then there exists an optimal simply-ordered \(R(n, r, q) \)-polychromatic coloring of \(K_n \). If \(r \geq 2 \) then there exists a \(C(n, r, q) \)-polychromatic coloring of \(K_n \) (unless \(r = 2 \), \(q \geq 2 \), \(n - q \) is odd, and \(n \in [2q + 2, 3q + 1] \)).

Theorem 2.1 says this conjecture is true for \(r = 1 \). Theorem 2.4 says it is true for \(C(n, r, q) \) for \(r = 2 \) and that it would be true for \(R(n, r, q) \) for \(r = 2 \) if Theorem 2.6 held for 2-regular graphs.

References

[1] N. Alon, A. Krech, and T. Szabó. Turán’s theorem in the hypercube. *SIAM Journal on Discrete Mathematics*, 21:66–72, 2007.
[2] M. Axenovich, J. Goldwasser, R. Hansen, B. Lidický, R. R. Martin, D. Offner, J. Talbot, and M. Young. Polychromatic colorings of complete graphs with respect to 1-, 2-factors and hamiltonian cycles. *Journal of Graph Theory*, 87:660–671, 2018.

[3] A. Bialostocki. Some ramsey type results regarding the graph of the n-cube. *Ars Combinatorica*, 1983.

[4] B. Bollobás, D. Pritchard, T. Rothvoss, and A. Scott. Cover-decomposition and polychromatic numbers. *SIAM Journal on Discrete Mathematics*, 27:240–256, 2013.

[5] J. A. Bondy and P. Erdős. Ramsey numbers for cycles in graphs. *Journal of Combinatorial Theory (B)*, 14:46–54, 1973.

[6] G. Chartrand and S. Schuster. On the existence of specified cycles in complementary graphs. *Bulletin of the American Mathematical Society*, 77:995–998, 1971.

[7] P. Erdős and A. Gyárfás. A variant of the classical ramsey problem. *Combinatorica*, 17:459–467, 1997.

[8] R. J. Faudree and R. H. Schelp. All ramsey numbers for cycles in graphs. *Discrete Mathematics*, 8:313–329, 1974.

[9] W. Goddard and M. Henning. Thoroughly dispersed colorings. *Journal of Graph Theory*, 88:174–191, 2018.

[10] J. Goldwasser, B. Lidicky, R. Martin, D. Offner, J. Talbot, and M. Young. Polychromatic colorings on the hypercube. *Journal of Combinatorics*, 9:631–657, 2018.

[11] B. Jackson. Long cycles in bipartite graphs. *Journal of Combinatorial Theory Series B*, 38:118–131, 1985.

[12] D. Offner. Polychromatic colorings of subcubes of the hypercube. *SIAM Journal on Discrete Mathematics*, 22:450–454, March 2008.

[13] M. S. Rahman, M. Kaykobad, and M. T. Kaykobad. Bipartite graphs, hamiltonicity and Z graphs. *Electronic Notes in Discrete Mathematics*, 44:307–312, 2013.