THE FIRST L^p-COHOMOLOGY OF SOME GROUPS WITH ONE END

MICHAEL J. PULS

ABSTRACT. Let p be a real number greater than one. In this paper we study the vanishing and nonvanishing of the first L^p-cohomology space of some groups that have one end. We also make a connection between the first L^p-cohomology space and the Floyd boundary of the Cayley graph of a group. We apply the result about Floyd boundaries to show that there exists a real number p such that the first L^p-cohomology space of a nonelementary hyperbolic group does not vanish.

1. Introduction

In this paper G will always be a finitely generated infinite group with identity 1 and symmetric generating set S. Let $\mathcal{F}(G)$ denote the set of all real-valued functions on G. Let $1 \leq p \in \mathbb{R}$ and set

$$D^p(G) = \{ f \in \mathcal{F}(G) \mid \sum_{g \in G} |f(gs^{-1}) - f(g)|^p < \infty \text{ for all } s \in S \}.$$

The set $D^p(G)$ is known as the set of p-Dirichlet finite functions on G. Observe that the constant functions are in $D^p(G)$. We define a norm on $D^p(G)$ by

$$\| f \|_{D^p(G)} = \left(\sum_{s \in S} \sum_{g \in G} |f(gs^{-1}) - f(g)|^p + |f(1)|^p \right)^{1/p}.$$

Under this norm $D^p(G)$ is a Banach space. We now define an equivalence relation on $D^p(G)$ by $f_1 \sim f_2$ if and only if $f_1 - f_2$ is a constant function. Identify the constant functions by \mathbb{R}. Now $D^p(G)/\mathbb{R}$ is a Banach space under the norm induced from $D^p(G)$. That is, if $[f]$ is an equivalence class from $D^p(G)/\mathbb{R}$ then

$$\| [f] \|_{D^p(G)/\mathbb{R}} = \left(\sum_{s \in S} \sum_{g \in G} |f(gs^{-1}) - f(g)|^p \right)^{1/p}.$$

We shall write $\| f \|_{D^p(G)}$ for $\| [f] \|_{D^p(G)/\mathbb{R}}$. The norm for $D^p(G)$ and $D^p(G)/\mathbb{R}$ depends on the symmetric generating set S, but the underlying topology does not. If $A \subseteq D^p(G)$, then $\overline{A}_{D^p(G)}$ will denote the closure of A in $D^p(G)$. Similarly if $B \subseteq D^p(G)/\mathbb{R}$, then $\overline{B}_{D^p(G)/\mathbb{R}}$ will denote the closure of B in $D^p(G)/\mathbb{R}$. Let $L^p(G)$ be the set that consists of functions on G for which $\sum_{g \in G} |f(g)|^p$ is finite. Observe

Date: November 3, 2006.
2000 Mathematics Subject Classification. Primary: 43A15; Secondary: 20F65, 58J60, 60J50.
Key words and phrases. L^p-cohomology, groups with one end, Floyd boundary, nonelementary hyperbolic group, rotationally symmetric Riemannian manifold.
that $L^p(G)$ is contained in $D^p(G)/\mathbb{R}$. The main object of study in this paper is the space

$$\tilde{H}_1^p(G) = D^p(G)/(L^p(G) \oplus \mathbb{R})_{D(p)}.$$

The space $\tilde{H}_1^p(G)$ is known as the first reduced L^p-cohomology space of G. This paper was inspired by the paper [2].

It is well known that if G has two ends then $\tilde{H}_1^p(G) = 0$ for $1 < p \in \mathbb{R}$. It is also well known that if G has infinitely many ends then $\tilde{H}_1^p(G) \neq 0$ for $1 \leq p \in \mathbb{R}$, see [14, Corollary 4.3] for a proof. A reasonable question to ask is: What can we say about $\tilde{H}_1^p(G)$ if G has one end? It was shown in [14, Corollary 3.6] that if G has polynomial growth, then $\tilde{H}_1^p(G) = 0$ for $1 < p \in \mathbb{R}$. In [1, Theorem 2] it was shown that if G is a properly discontinuous subgroup of isometries of a proper CAT(-1) space with finite critical exponent and if the limit set of G has at least three points, then $\tilde{H}_1^p(G) \neq 0$ for $p > \max\{1, \text{critical exponent of } G\}$. Another result concerning groups with one end was given in [13] where it was shown that if G is a co-compact lattice in $Sp(n,1)$, then $\tilde{H}_1^p(G) \neq 0$ exactly for $p > 4n + 2$.

Before we state our first result we need to define what it means for a Riemannian manifold to be rotationally symmetric. Let M_n be a simply connected, n-dimensional Riemannian manifold with all sectional curvatures bounded above by a negative constant. Now fix a point on M_n and use the exponential map at this point to transfer the polar coordinates on R^n to the manifold. So the Riemannian metric on M_n can be written as $dx^2 = dr^2 + f(r)^2d\theta^2$ where $d\theta^2$ is the usual metric on the unit sphere $S^{n-1}, n \geq 2$. If the submanifolds $r = k$, where k is a constant, are spheres of constant curvature then we shall say that M_n is rotationally symmetric. In this paper we will prove:

Theorem 1.1. Let M_n be a complete, simply connected, n-dimensional Riemannian manifold with all sectional curvatures bounded above by a negative constant. Furthermore assume that M_n is rotationally symmetric. Suppose that G acts properly discontinuously on M_n by isometries and that the action is cocompact and free. Then for $1 < p \leq n - 1, \tilde{H}_1^p(G) = 0$.

What happens if $p > n - 1$? Let H^n denote hyperbolic n-space. By combining Theorem 2 of [1] with Theorem 1.6.1 of Nicholls [12] we obtain the following:

Theorem 1.2. Suppose that G acts properly discontinuously on H^n by isometries and that the action is cocompact and free. If the limit set of G has at least three points, then $\tilde{H}_1^p(G) \neq 0$ for $p > n - 1$.

One of the hypothesis for Theorem 1.2 is that the limit set of G, which is a subset of the $(n - 1)$-dimensional unit sphere, contain at least three points. Thus a possible first step in trying to determine whether $\tilde{H}_1^p(G)$ vanishes or does not vanish for groups with one end is to use a boundary for G that is finer than the end boundary. One such boundary is the Floyd boundary. In Section 3 we will prove

Theorem 1.3. Let G be a finitely generated group and let F be a Floyd admissible function on G. If the Floyd boundary of G with respect to F is nontrivial and if $\sum_{g \in G}(F(|g|)) < \infty$, then $\tilde{H}_1^p(G) \neq 0$.

All concepts in Theorem 1.3 that are unfamiliar to the reader will be explained in Section 3. We will conclude Section 3 by proving the following consequence, which appears to be known to Gromov (see pages 257-258 of [4]), of Theorem 1.3.
Corollary 1.4. Let G be a nonelementary hyperbolic group, then there exists a real number p such that $\tilde{H}^1_{(p)}(G) \neq 0$.

Let f be an element of $\mathcal{F}(G)$ and let $g \in G$. Let $1 < p \in \mathbb{R}$ and define

$$(\Delta_p f)(g) := \sum_{s \in S} |f(gs^{-1}) - f(g)|^{p-2}(f(gs^{-1}) - f(g)).$$

In the case $1 < p < 2$, we make the convention that $|f(gs^{-1}) - f(g)|^p = (f(gs^{-1}) - f(g))^p$.

Let $f \in \mathcal{F}(G)$ and let $g \in G$. Let $H^D_{(p)}(G)$ be the set of p-harmonic functions on G.

Theorem 1.5. Let $1 < p \in \mathbb{R}$ and suppose $(L^p(G))_{H^D_{(p)}(G)} \neq D^p(G)$. Then for $f \in D^p(G)$, we can write $f = u + h$, where $u \in (L^p(G))_{H^D_{(p)}(G)}$ and $h \in H^D_{(p)}(G)$. This decomposition is unique up to a constant function.

It follows from the theorem that each nonzero class in $\tilde{H}^1_{(p)}(G)$ can be represented by a nonconstant function from $H^D_{(p)}(G)$. This gives us the following:

Corollary 1.6. Let G be a finitely generated group

1. If G satisfies the hypothesis of Theorem 1.4, then $H^D_{(p)}(G) = \mathbb{R}$ for $1 < p \leq n - 1$.
2. If G satisfies the hypothesis of Theorem 1.2 then $H^D_{(p)}(G)$ contains a nonconstant function for $p > n - 1$.
3. If G is a nonelementary hyperbolic group, then there exist a real number p such that $H^D_{(p)}(G)$ contains a nonconstant function.

I would like to thank the referee for making many useful remarks that greatly improved the exposition of the paper. I would also like to thank Yaroslav Kopylov for some useful comments on a preliminary version of this paper. This work was supported by a grant from the research office at Eastern Oregon University. The author would like to thank the university for their kind support.

2. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. We will begin by giving some definitions and other preliminaries needed for the proof of the theorem. Let $g \in G$ and let $f \in \mathcal{F}(G)$. Convolution of f by $g - 1$, denoted by $f * (g - 1)$, is the function $(f * (g - 1))(x) = f(xg^{-1}) - f(x)$ for $x \in G$. Observe that $f * (g - 1) \in L^p(G)$ when $f \in D^p(G)$. The right translation of f by g is the function defined by $f_g(x) = f(xg^{-1})$. We will denote by $C_0(G)$ the set of those $f \in \mathcal{F}(G)$ for which the set $\{g \mid |f(g)| > \epsilon \}$ is finite for each $\epsilon > 0$. The $L^p(G)$-norm for functions f in $L^p(G)$ is denoted by $\|f\|_p$ and is given by $\|f\|_p^p = \sum_{g \in G} |f(g)|^p$.

Let M_n be a n-dimensional Riemannian manifold that satisfies the hypothesis of Theorem 1.1. The action of G on M_n will be denoted by xg^{-1}, where $x \in M_n$ and $g \in G$. The space $L^p(M_n)$ will consist of all real-valued functions on M_n for which $\int_{M_n} |f(x)|^pdx < \infty$, where $1 \leq p \in \mathbb{R}$. We now proceed to prove the theorem.
Suppose $\tilde{H}^1_{(p)}(G) \neq 0$ for some p that satisfies $1 < p \leq n - 1$. Then by the remark following Theorem 11.3 there exists a nonconstant p-harmonic function h in $HD^p(G)$ that represents a nonzero class in $\tilde{H}^1_{(p)}(G)$. Define an affine isometric action of G on $L^p(G)$ by $gf = f_g + h \ast (g - 1)$. Let (x_1, f_1) and (x_2, f_2) be elements of the direct product $M_n \times L^p(G)$. We shall say that (x_1, f_1) is related to (x_2, f_2) if and only if there exists a $g \in G$ for which $x_2 = x_1 g^{-1}$ and $f_2 = g f_1$. It is an easy exercise to show that this relation is an equivalence relation. Denote the quotient space of this equivalence relation by $M_n \times_G L^p(G)$. We now have a fibre bundle $M_n \times_G L^p(G) \xrightarrow{\pi} M_n / G$, where π denotes the projection map. Let s be a smooth section of this bundle. Then $s(x) = (x, f) = (x g^{-1}, g f)$ where $\pi(x, f) = x$. We now define a smooth map $\hat{s} : M_n \rightarrow L^p(G)$ by $\hat{s}(x) = f$. Observe that $\hat{s}(x g^{-1}) = g \hat{s}(x)$ since $(x, f) = (x g^{-1}, g f)$. We now define a real-valued function on M_n by $f(x) := (\hat{s}(x) + h)(1)$. If $g \in G$ and $x \in M_n$ then $f(x g^{-1}) = (g \hat{s}(x) + h)(1) = (\hat{s}(x) + h \ast (g - 1) + h)(1) = \hat{s}(x)(g^{-1}) + h(g^{-1}) = (\hat{s}(x) + h)(g^{-1})$. Since $df(x) = \hat{s}(x)(1)$ it now follows that $df(x g^{-1}) = \hat{s}(x)(g^{-1})$, where df is the differential of f. Due to the compactness of M_n / G there exists a constant C such that $\sum_{g \in G} |\hat{s}(x)(g^{-1})|^p = \| \hat{s}(x) \|_p < C$ for all $x \in M_n$. Thus $\int_{M_n} |df(x)|^p dx = \int_{M_n/G} \sum_{g \in G} |\hat{s}(x)(g^{-1})|^p dV \leq C(\text{volume}(M_n/G))$. Hence $df \in L^p(M_n)$ by the compactness of M_n / G. Using the canonical identification of df with ∇f, page 160 of [3], where ∇f is the gradient of f, we see that $\nabla f \in L^p(M_n)$. By [3] Theorem 5.8 there exists a constant c such that $f - c \in L^p(M_n)$. Thus $\int_{M_n/G} \sum_{g \in G} |(f - c)(x g^{-1})|^p dV = \int_{M_n} |(f - c)(x)|^p dx < \infty$. Hence, $\sum_{g \in G} |(f - c)(x g^{-1})|^p < \infty$ for a fixed $x \in M_n$. Consequently $\hat{s}(x) + h \ast c \in L^p(G)$. Thus the p-harmonic function $h - c \in L^p(G) \subseteq C_0(G)$ since $\hat{s}(x) \in L^p(G)$. Lemma 6.1 of [14] tells us that $h - c = 0$ on G, contradicting the fact that h is nonconstant. Therefore, $\tilde{H}^1_{(p)}(G) = 0$ for $1 < p \leq n - 1$. This concludes the proof of Theorem 11.3

3. FLOYD BOUNDARIES

Let (X, S) be the Cayley graph of G with respect to the generating set S. Thus the vertices of (X, S) are the elements of G, and $g_1, g_2 \in G$ are joined by an edge if and only if $g_1 = g_2 s^{\pm 1}$ for some generator s. For the rest of this paper we will denote (X, S) by X. We can make X into a metric space by assigning length one to each edge, and defining the distance $d_s(g, h)$ between any two vertices g, h in X to be the length of the shortest path between g and h. The metric d_s on X is known as the word metric. For the rest of this paper we will drop the use of the subscript s and $d(x, y)$ will always denote the distance between x and y in the word metric. We will denote $d(1, g)$ by $|g|$ for $g \in G$. If A is a set of vertices from X, then $|A| = \inf_{a \in A} d(1, a)$. Let F be a function from the natural numbers \mathbb{N} into the positive real numbers \mathbb{R}^+. We shall say that F is a Floyd admissible function if it is monotonically decreasing, summable and for which there is a positive constant L that satisfies $F(n + 1) \leq F(n) \leq LF(n + 1)$ for all $n \in \mathbb{N}$. We will now show how to construct a Floyd boundary for X with respect to F. First we use F to define a new metric on X. The new length of an edge joining g and h is $F(|\{g, h\}|)$. Let $\alpha = \{g_i\}$ be a path in X. The length L_F of α is given by $\sum_i F(|\{g_i, g_{i+1}\}|)$ and the new distance between x and y in X is $d_F(x, y) := \inf_{\alpha} L_F(\alpha)$, where the infimum is taken over all paths α connecting x and y. It is straight forward to verify that d_F is a metric on X. Let (\bar{X}^F, \bar{d}_F) denote the completion of (X, d_F) in the sense
of metric spaces. The Floyd boundary of X is the set $\partial_F X = \overline{X}^F \setminus X$. We shall say that $\partial_F X$ is trivial if it consists of only 0, 1 or 2 points. Lots of information about Floyd boundaries can be found in [9, 10, 11]. If A is a set, then the cardinality of A will be denoted by $\#(A)$.

We now prove Theorem 1.3. Let f be a continuous functions from \overline{X}^F into \mathbb{R} that satisfies a Lipshitz condition. Thus

$$\sum_{g \in G} \sum_{s \in S} |f(gs^{-1}) - f(g)|^p \leq \sum_{g \in G} \sum_{s \in S} C(d_F(gs^{-1}, g))^p$$

$$\leq \sum_{g \in G} \sum_{s \in S} C(F(|g|))^p$$

$$= #(S)C \sum_{g \in G} (F(|g|))^p < \infty.$$

So f restricted to G is an element of $D^p(G)$. Let $\xi \in \partial X_F$. Define a real-valued function on \overline{X}^F by $f(x) := d_F(x, \xi)$. Now $f \in D^p(G)$ since it satisfies a Lipshitz’s condition. Since d_F is a metric f is nonconstant on ∂X_F. By continuity of f it follows that $f(|g|)$ does not tend towards a constant number as $|g|$ goes to infinity in X. Thus f is not an element of $L^p(G) \oplus \mathbb{R}$. Also G is nonamenable since ∂X_F contains more than two points, [10 Corollary 2]. Hence $L^p(G) \oplus \mathbb{R}$ is closed in $D^p(G)$ [5, Corollary 1], also see [14 Theorem 4.1] for a proof. Therefore f represents a nonzero class in $\overline{R}(G)$ and the proof of Theorem 1.3 is now complete.

We will now apply Theorem 1.3 to a class of hyperbolic groups. For the rest of this section assume that G is a hyperbolic group with hyperbolic constant δ. Let X be the Cayley graph of G. The Gromov inner product with basepoint 1 in X is defined to be

$$(x \mid y) = \frac{1}{2}(||x|| + ||y|| - d(x, y))$$

where x and y are vertices in X. Let (x_n) be a sequence in X. We shall say that (x_n) converges to infinity if $\lim_{n,m \to \infty} (x_n \mid x_m) = \infty$. Let $S_\infty(X)$ be the set of all sequences on X which converge to infinity. We shall also say that two sequences, (x_n) and (y_n) in $S_\infty(X)$ are related if and only if $\lim_{n \to \infty} (x_n \mid y_n) = \infty$. This relation is an equivalence relation since G is hyperbolic. The sequential boundary of G, denoted by ∂G, is the set of equivalence classes of sequences under the above relation. A hyperbolic group is nonelementary if there are more than two elements in ∂G.

Choose $a > 0$ such that $e^{3a} - 1 < \sqrt{2} - 1$. Define a Floyd admissible function F from \mathbb{N} into \mathbb{R}^+ by $F(n) = e^{-an}$. Let $g \in G$ and $s \in S$. Then g and gs^{-1} are neighbors in X and $F(|(g, gs^{-1})|) = e^{-a|g||gs^{-1}|}$. Thus for x and y in X,

$$d_F(x, y) = \inf\{\sum_{i=1}^{\infty} e^{-a|x_i|x_{i+1}} \mid n \geq 1, x = x_0, x_1, x_2, \ldots, x_n = y \in X\},$$

where x_0, x_1, \ldots, x_n is a path from x to y in X. Now let (x_n) and (y_n) be sequences in X. By Proposition 22.8 of [16] we have the following inequality

$$(3 - 2e^{3a})e^{-a|x_n|y_n} \leq d_F(x_n, y_n) \leq e^{-a|x_n|y_n}.$$

Thus $\lim_{n \to \infty} d_F(x_n, y_n) = 0$ if and only if $\lim_{n \to \infty} (x_n \mid y_n) = \infty$. Hence, the cardinality of ∂X_F equals the cardinality of ∂G.
Since G is finitely generated it has at most exponential growth. Consequently, there exists a real number p such that
\[
\sum_{g \in G} |F(g)|^p = \sum_{g \in G} e^{-a|g|^p} \\
\leq 2k \sum_{n=1}^{\infty} (2k - 1)^{n-1} e^{-anp} \\
< \infty,
\]
where $2k$ is the cardinality of S. Now apply Theorem 1.3 to obtain Corollary 1.4.

REFERENCES

[1] Marc Bourdon, Florian Martin, and Alain Valette. Vanishing and non-vanishing for the first L^p-cohomology of groups. Comment. Math. Helv., 80:377–389, 2005.
[2] Donald I. Cartwright and Wolfgang Woess. Infinite graphs with nonconstant Dirichlet finite harmonic functions. SIAM J. Discrete Math., 5(3):380–385, 1992.
[3] R. W. R. Darling. Differential forms and connections. Cambridge University Press, Cambridge, 1994.
[4] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge, 1993.
[5] A. Guichardet. Étude de la l-cohomologie et de la topologie du dual pour les groupes de Lie à radical abélien. Math. Ann., 228(3):215–232, 1977.
[6] Ilkka Holopainen. Rough isometries and p-harmonic functions with finite Dirichlet integral. Rev. Mat. Iberoamericana, 10(1):143–176, 1994.
[7] Ilkka Holopainen and Paolo M. Soardi. p-harmonic functions on graphs and manifolds. Manuscripta Math., 94(1):95–110, 1997.
[8] Ilkka Holopainen and Paolo M. Soardi. A strong Liouville theorem for p-harmonic functions on graphs. Ann. Acad. Sci. Fenn. Math., 22(1):205–226, 1997.
[9] Anders Karlsson. Boundaries and random walks on finitely generated infinite groups. Ark. Mat., 41(2):295–306, 2003.
[10] Anders Karlsson. Free subgroups of groups with nontrivial Floyd boundary. Comm. Algebra, 31(11):5361–5376, 2003.
[11] Anders Karlsson. Some remarks concerning harmonic functions on homogeneous graphs. In Discrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, pages 137–144 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003.
[12] Peter J. Nicholls. The ergodic theory of discrete groups, volume 143 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1989.
[13] Pierre Pansu. Cohomologie L^p des variétés à courbure négative, cas du degré 1. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue):95–120 (1990), 1989. Conference on Partial Differential Equations and Geometry (Torino, 1988).
[14] Michael J. Puls. The first L^p-cohomology of some finitely generated groups and p-harmonic functions. J. Funct. Anal., 237(2):391–401, 2006.
[15] Robert S. Strichartz. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal., 52(1):48–79, 1983.
[16] Wolfgang Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.

M. J. PULS

Department of Mathematics, Eastern Oregon University, One University Boulevard, LaGrande, OR 97850, USA
E-mail address: mpuls@eou.edu