Importance of globin gene order for correct developmental expression

Olivia Hanscombe, David Whyatt, Peter Fraser, Nikos Yannoutsos, David Greaves, Niall Dillon, and Frank Grosveld

Laboratory of Gene Structure and Expression, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK

We have used transgenic mice to study the influence of position of the human globin genes relative to the locus control region (LCR) on their expression pattern during development. The LCR, which is located 5' of the globin gene cluster, is normally required for the activation of all the genes. When the human β-globin gene is linked as a single gene to the LCR it is activated prematurely in the embryonic yolk sac. We show that the correct timing of β gene activation is restored when it is placed farther from the LCR than a competing human γ- or α-globin gene. Correct timing is not restored when β is the globin gene closest to the LCR. Similarly, the human γ-globin gene is silenced earlier when present farthest from the LCR. On the basis of this result, we propose a model of developmental gene control based on stage-specific elements immediately flanking the genes and on polarity in the locus. We suggest that the difference in relative distance to the LCR, which is a consequence of the ordered arrangement of the genes, results in nonreciprocal competition between the genes for activation by the LCR.

[Key Words: Human globin genes; locus control region; transgenic mice; developmental expression]

Received April 18, 1991; revised version accepted May 30, 1991.

The human β-like globin genes lie as a cluster, εγßαß', on chromosome 11 in a 5'→3' order that reflects their developmental expression; ε is expressed in the embryonic yolk sac, γ in the fetal liver, and δ and β mainly in the adult bone marrow. Although there are some exceptions because of duplications and gene conversions (Collin and Weissman 1984; Margot et al. 1989), the order of the genes is conserved in mammals. A similar conservation of order has been observed in other multigene loci, for example, the order of segment-identity homeo-box genes has been conserved from fly to human (Gaunt and Singh 1990). The entire set of β-like globin genes is controlled by the locus control region (LCR), situated 5' of the ε-globin gene and >50 kb away from the β-globin gene (Forrester et al. 1987; Grosveld et al. 1987). In the absence of the LCR, human γ- or β-globin transgenes are expressed at the same developmental stage as the murine βm1' and βm4;' globin genes, that is, at the embryonic and fetal/adult stages, respectively (Magram et al. 1985; Townes et al. 1985; Chada et al. 1986; Kollias et al. 1986). The level of transgene expression is low, however, and it varies between mice because of integration position effects. Nevertheless, these experiments suggested that each gene and its immediate flanking region (~3 kb) contain sufficient information for developmentally correct expression. The addition of the LCR confers high-level expression and position independence on human globin transgenes in mice and cultured erythroid cells (Grosveld et al. 1987; Blom et al. 1989). Initial reports suggested that linkage of γ-globin gene alone to the LCR resulted in γ expression at all developmental stages (Enver et al. 1989, 1990; Behringer et al. 1990). Together with the observation of premature expression of an LCR-linked β-globin gene (Blom et al. 1989; Enver et al. 1989, 1990; Behringer et al. 1990, Lindenbaum and Grosveld 1990), this led to a proposal that γ- to β-globin switching is regulated by a reciprocal competition (Townes and Behringer 1990).

However, genetic data, particularly that for individuals with heterocellular δβ1' and ββ1' thalassemia, argue against the requirement of the β-globin gene for γ-globin gene silencing (Dillon et al. 1991). In addition, when the single γ-globin gene experiment was carried out on a number of transgenic lines carrying only one or two copies of the LCR–γ-globin gene construct, a different result was obtained. Although γ-globin gene expression persisted in the early fetal liver, it was silenced at adult stages, independent of the presence of the β-globin gene (Dillon and Grosveld 1991). Similar results have been obtained with the ε-globin gene (Lindenbaum and Grosveld 1990; Raich et al. 1990; Shih et al. 1990; Watt et al. 1991), supporting the notion that even in the presence of the LCR the ε- and γ-globin genes are suppressed at later stages of development in the absence of competition from other genes. This effect is mediated by the stage-specific sequences immediately flanking the genes and is independent of the presence of the β-globin gene, removing the basis of the argument for a reciprocal competition model.

In this paper we use a combination of the α-, γ-, and
β-globin genes to test competition in the globin locus. The results show that the developmental expression pattern of the γ- and β-globin genes is affected by their positions relative to the LCR. As a result, we propose a novel model of developmental regulation for the globin genes involving nonreciprocal competition. This competition is influenced by the sequences immediately flanking the genes and the positions of the genes relative to the LCR. The implication of gene order as an important parameter in developmental regulation could be important for our understanding of the developmental regulation of a number of other multigene loci.

Results

We decided to test the competition hypothesis by altering the order of the genes relative to the LCR and following expression during the early stages of development in transgenic mice. The human γ- and β-globin genes were linked to the small version of the globin LCR (Talbot et al. 1989) in two different orders, resulting in constructs μγβ and μβγ (Fig. 1). Each of these was injected into fertilized mouse eggs, and the level of human γ- and β-globin was measured by S1 nuclease protection analysis in transgenic embryos at 9.5 days of gestation or in fetal livers at 13.5 days (Fig. 2A). At these time points there is a clear difference between the expression levels of the mouse embryonic and fetal/adult genes (Fig. 2B), which were checked for each of the mice (not shown).

DNA from each of the embryos and fetuses was also Southern blotted and shown to contain multiple copies of the transgene construct, as determined by the relative density of an internal restriction fragment compared with end fragments and the endogenous mouse Thy-1 gene. γ- and β-globin signals were quantitated by densitometry and expressed as the ratio Hb/Hγ (Table 1). The result shows that the order of the genes alters their relative expression levels completely. When the β-globin gene is in the 5' position (μβγ), it is expressed during the embryonic and fetal periods, whereas when it is present in the 3' position (μγβ), it is barely detectable during the embryonic period. Expression of the γ-globin gene is also affected; expression is lower at 13.5 days when it is present in the 3' position, rather than the 5' position (μβγ vs. μγβ). Because of severe globin chain imbalance, it is difficult to obtain adult lines that pass on the transgenes. Thus, embryos were taken directly after injection for this experiment. For this reason, we cannot exclude the possibility that some of the animals are mosaic for the transgenes. As a consequence, only relative, not absolute, expression levels of the transgenes can be obtained from this experiment. Nevertheless, the results clearly show that the relative distance of the genes to the LCR influences their developmental expression pattern and that competition, if it occurs, would be dependent on gene order.

In an attempt to obtain germ-line transgenic mice and to see whether a different gene not normally linked to

Figure 1. LCR minilocus (mLCR) and microlocus (μLCR) constructs. Plasmid vector sequences are not shown. Genes are represented as shaded boxes. All genes are in the same transcriptional orientation, 5' → 3', with respect to each other and the LCR, with the exception of the last construct, where the orientation of the genes has been reversed relative to the LCR (arrows). The broken LCR lines indicate the situation in multicopy animals, where copies of the construct are integrated in a tandem array. The distance from a promoter to a 5' and 3' LCR is indicated by broken lines below the constructs.
the β-globin gene has the same effect, we tested the β-globin gene in combination with the human α-globin gene [Fig. 1]. Two types of constructs were tested: one set in the [so-called] minilocus (mββ and mβα), and the second set in the microlocus as for the γ and β-globin genes described above (μαβ and μβα). The minilocus contains the complete 5' LCR and the region 3' of the β-globin gene containing the 3'-hypersensitive site 1 (Grosveld et al. 1987). In multicopy animals the β- and α-globin genes are flanked by LCR sequences. However, measuring from a point in the middle of the LCR between the two most active 5'-hypersensitive sites (HS2 and HS3, for review, see Dillon et al. 1991), the promoters of both the α- and β-globin genes are closer to the 5' LCR than to the LCR brought in at the 3' side by the next copy of the same construct [see Fig. 1]. The human θ gene was included in the construct to prevent possible transcriptional interference by transcriptional readthrough from the α-globin gene (Proudfoot 1990). The θ-globin gene was not included in the μαβ construct, whereas in the converse μβα construct its presence is irrelevant, as only a single-copy breeding mouse line was obtained (Table 1). In all of the microlocus constructs the distances between the promoters of the genes and the middle of the LCR are reduced considerably [Fig. 1].

We obtained two breeding mouse lines for the mβα and one line for the μβα. S1 analyses show that the human β-globin gene is expressed during the embryonic stage at levels comparable to that of the human α-globin gene [Fig. 3A; Table 1]. However, this level is only 10–30% of the mouse βh1 gene [not shown]. The relative expression of the β-globin gene compared with human α- and mouse βmαβ-globin genes increases after the switch to the fetal liver stage, demonstrating that part of the stage specificity of the genes is maintained. The human

Construct	Ratio	Embryo	Fetus	Adult
μβγ	Hβ/Hγ	0.22	3.3	
		0.10	7.2	
		0.21	8.9	
		0.26		
μγβ	Hβ/Hγ	0.00	1.02	
		0.00	1.58	
		0.01		
mβα	Hβ/Hα	0.43	→ 6.65	→ 6.65
		0.15	→ 1.78	→ 2.27
μβα	Hβ/Hα	1.05	→ 2.57	→ 2.57
mαβ	Hβ/Hα	0.06	0.47	
		0.00	0.28	
		0.02	0.38	
		0.01		
μαβ	Hβ/Hα	0.01	→ 1.26	
		0.03		
θ βαβ	Hβ/Hα	0.26	0.42	
		0.53	0.26	
		0.09		

Data are shown in Figs. 2 and 3. The different columns show the ratio of Hβ/Hγ or Hβ/Hα for each construct at different stages of development. The values were obtained from scanning autoradiographs or cutting out and counting S1 nuclease-protected bands, followed by correction for specific activities of the probes. Numbers in parentheses indicate copy numbers of the constructs; arrows indicate bred lines. The mβα line has two copies of the Hβ gene but only one copy of the Hα gene [data not shown].

GENES & DEVELOPMENT 1389
α-globin gene, which would be expected to express at all stages of mouse development, is already expressed at the embryonic stage, even when it is present 3' to the β-globin gene [Fig. 3A; Table 1]. The fact that both α- and β-globin genes are expressed at reasonably similar levels at the embryonic and fetal stages makes it possible to obtain breeding lines for this type of construct (Hanscombe et al. 1989), although this is greatly facilitated by the inclusion of another α-globin gene (Greaves et al. 1990). When the gene order is reversed, the β-globin gene is expressed at very low levels at the embryonic stage and is activated to high levels only after the switch to the fetal stage [Fig. 3B; Table 1]. This again leads to a chain imbalance in early development, particularly in multicopy animals, which makes it difficult to obtain fully transgenic breeding lines. The two lines (μβ1 and μβ2) that we obtained were both mosaic mice, which passed the transgene only at very low frequency. The mxB construct did not result in any lines and was therefore only analyzed in embryonic yolk sacs and fetal liver samples taken directly after injection. Comparison of the results for the αβ and βα constructs agrees with those for the γβ and βγ constructs and shows a very similar pattern of changes in developmental regulation.

We can therefore draw a number of conclusions. The difference in transcriptional efficiency is unlikely to be caused by transcriptional interference (Proudfoot 1990), as this should not be influenced by developmental stage in the case of the α-globin gene, and inclusion of the γ-globin gene (which is itself only expressed at very low levels) [Hanscombe et al. 1989] does not change the result. Distance per se also does not appear to be very important, because changing the distance between the promoters and the LCR at its 5' end or the LCR of the next copy does not substantially alter the basic result. Instead, it appears that the relative order of the genes to the LCR is an important parameter and that the LCR has a preference for the nearest promoter, particularly at the embryonic stage of development. This is reminiscent of the effects observed when multiple genes were linked to a single enhancer sequence in transient transfection experiments (deVillers et al. 1983; Wasylyk et al. 1983). To test this possibility and change the relative distance without adding or removing sequences, we inverted the orientation of the genes relative to that of the LCR (μ < α < β; Fig. 1). Because we have shown that the LCR is active in both orientations [Talbot et al. 1989] the net effect of this alteration is a change of distances in the multicopy constructs. In contrast to the αβ construct, the β-globin gene promoter is now slightly closer to the two most active elements of the LCR (5' HS2 and HS3), namely those of the next copy [Fig. 1]. The result of the S1 analysis (Fig. 3C) of the expression of this construct in the embryonic yolk sac shows that the β-globin gene is now expressed at a higher level, relative to the αβ-globin gene, when compared with the result for αβ, further indicating that the LCR has a preference for acting on the closest promoter at the embryonic stage.

Discussion

The possibility that competition between the genes of the β-globin locus for the activating function of the LCR might play a role in stage-specific regulation has been discussed extensively in the literature (Blom et al. 1989; Enver et al. 1990; Townes and Behringer 1990). Competition from a γ-globin gene appears to be required for early silencing of the β-globin gene, but recent data showing that the ε- and γ-globin genes are silenced autonomously in the adult suggests that the parameters affecting competition in the locus are more complex than was originally thought. The experiments described in this paper were designed to examine the effect of one
such parameter, namely, the differences in the relative
distances of the genes from the LCR, which arise from
the ordered organization of the genes extending in one
direction away from the LCR. We have found that
the relative distance of a gene from the LCR has a profound
effect on its ability to affect the expression of another
gene. A γ-globin (or α-globin) gene located proximal to
the LCR can completely block embryonic expression of a
distal β-globin gene but loses the ability to do so when it
is located distally from the nearest LCR.

These results show that linkage of another gene is not
sufficient to allow competition and argues strongly
against a reciprocal competition model. Instead, it shows
that competition is polar. Previous data have shown that
the LCR is functional in both directions [Talbot et al.
1989]. This creates an apparent contradiction, namely,
how a nonpolar element (the LCR) has a polar effect on
multiple genes. Current ideas on the mechanisms by
which regulatory elements such as enhancers exert their
effect is the result of direct physical contact be-
tween LCR and gene promoter. We suggest that the key
interaction with the LCR and a greater frequency of con-
tact. When the ~/-globin gene is placed in the distal po-
tion, it predicts that in the μ < α < β construct,
both will be expressed in embryonic yolk sac, and this is
what is actually observed. In these experiments, quanti-
tation of relative expression levels and relating these
back to calculated effective volumes is less than ideal for
a number of reasons; for example, loop sizes vary be-
cause of random integration sites in the host genome,
and in multicopy integrations the most distal gene in the
most distal copy of an array contributes much less to the
expression levels than a distal gene in the middle of an
array.

Would this model also apply to the intact β-globin
locus in vivo, where distances from the LCR to the e, γ,
and β-globin genes differ by a factor of 2 or more? Several
lines of evidence in addition to our results indicate that
this may be the case. First, the genetic data obtained
for human β-thalassemia and nondeletion HPPH support
the existence of polar competition in vivo [Dillon et al.
1991]. Second, there is evidence to suggest that the hu-
man β-globin cluster is located on one large chromatin
loop. In erythroid cells the entire β-globin locus is part of
a region of DNase sensitivity that is dependent on the
presence of the LCR [Kioussis et al. 1983; Forrester et al.
1990] and extends at least 150 kb beyond the β-globin
gene [Forrester et al. 1990]. A number of matrix attach-
ment regions (MAR) sites have been mapped within the
locus [Jarman and Higgs 1988], and these could poten-
tially prevent the formation of a large loop. However, our
preliminary data indicate that none of these sites have
the in vivo functional properties described for other lo-
cus border elements [LBE] [Stief et al. 1989; Kellum and
Schedl 1991]. Additional evidence for directional compe-
tition comes from the mouse β-globin locus. This gene
cluster occurs in two forms, one containing a single
adult β-globin gene and one containing two adult genes,
the β_{max} and β_{min} globin genes [Skow et al. 1983]. The
difference in relative distances from the LCR [Moon
and Ley 1990] predicts that the proximal gene [β_{max}]
should have an advantage over the distal gene [β_{min}]. The
data of Skow et al. [1983] not only shows that this is the case but
also that deletion of the β_{max} globin gene in thalassemic
mice results in an increase in the levels of β_{min} globin
gene expression in accordance with our model.

Thus, the results reported in this paper and the genetic
evidence allow us to propose a model for the develop-
Hanscombe et al.

Figure 4. Model for regulation of γ- and β-globin gene expression during fetal and adult stages of development. The LCR, indicated by a lined box, lies 5' of the entire β-like globin gene locus. β-Like globin genes are indicated by hatched boxes. Interaction between the LCR and individual genes is represented by bars: An open bar indicates no interaction; a shaded bar indicates a weak interaction; a solid bar indicates a strong interaction. The volumes in which the LCR-β- or LCR-γ-globin genes operate are represented by two-dimensional circles. As the distance between the LCR and the gene increases linearly, this volume increases by the cube of the distance.

The model that we have put forward is based on certain assumptions. Detailed testing of the effect of large differences in relative distance between genes in the intact locus should permit assessment of the validity of these assumptions. In particular, we can test whether the genes and LCR are located on a single, large, open DNA loop that is free to move in solution or whether constraints such as physical attachment sites close to the genes are operating in vivo.

Materials and methods

Constructs

μγβ and βγ A 5.6-kb HindIII–EcoRI fragment of the human γ-globin gene was cloned into the μ-locus vector 1417 (Talbot et al. 1989). A 5.0-kb BglII fragment of the human β-globin gene was cloned 3' to γ for γβ and a 4.1-kb SphI–BglII fragment was cloned 5' of γ for μβγ.

μαβ and αμγ Human β-globin gene fragments were cloned into construct 1254 (Hanscombe et al. 1989) 5' and 3' to the α- and θ-globin genes as for μγβ and μγβ.

μBa and μαβ A 7.0-kb BglIII–Asp718 fragment of the human α1- and θ-globin genes was cloned into the μ-locus vector 1417. A 4.1-kb SphI–BglII fragment of the human β-globin gene was cloned 5' to the α- and θ-globin genes as for μβγ. A 3.0-kb BglII–XbaI fragment of human α-globin was cloned into the μ-locus vector 1417. A 5.0-kb BglIII fragment of the human β-globin gene was cloned 3' of the α-globin gene as for μαβ.

Microinjection and identification of transgenic mice

Minilocus SalI fragments and microlocus SstII fragments were purified by electrophoresis from agarose gels. DNA was injected at a concentration of 1 μg/ml into the pronuclei of...
[C57Bl x CBA/F, fertilized eggs (Hogan et al. 1986). Injected eggs were transferred on the same day to day-0.5 pseudopregnant F1 foster mothers. Embryos were analyzed at 9.5 days and 13.5 days directly after injection. Live mice were obtained for mβγ and μβγ and were bred to nontransgenic F1 mice to obtain 8.5-, 10.5-, and 13.5-day embryos. Embryos and pups were analyzed for the presence of the injected fragment by slot blot analysis of placent al and tail DNA, respectively, with a 0.9-kb BamHI–EcoRI fragment of the human β-globin gene as a probe.

Constructs were shown to be intact, and multicity mice were identified by Southern blotting (Southern 1975); probes used were a 0.75-kb BstEII fragment of the human α-globin gene, a 3.3-kb EcoRI fragment, and a 0.46-kb EcoRI–BglII fragment from the minilocus construct.

S1 nuclease analysis

Globin gene RNA was assayed by S1 nuclease protection (Berk and Sharp 1979). Probes were end-labeled with T4 polynucleotide kinase (βmax, Bγγ, and human β- and γ-globin genes) or reverse transcription [human α-globin gene], and specific activities were estimated by Cerenkov counting. Labeled probe (10 ng) was hybridized to total RNA in 20 μl of 40 mM PIPES [pH 6.4], 400 mM NaCl, 1 mM EDTA, and 80% [recrystalized] formamide overnight at 52°C. Samples were digested for 2 hr at 25°C with 150 units of S1 nuclease in 250 μl of 200 mM NaCl, 30 mM NaO acetate (pH 4.5), and 2 mM ZnSO4. Protected fragments were separated on 6% urea-polyacrylamide gels.

Probes used were 525-bp AccI fragment (human β-globin gene), 700-bp HindIII–NcoI fragment (βmax-globin gene), 225-bp BamHI fragment (human γ-globin gene), and 750-bp BstEII fragment (human α-globin gene).

Acknowledgments

We are grateful to Cora O’Carroll for the preparation of the manuscript. D.W. was supported by Imperial Chemical Industries (UK), and P.F. is a recipient of a National Institutes of Health postdoctoral fellowship. This work was supported by the Medical Research Council (UK) and in part by Cooley’s Anemia Foundation (USA).

The publication costs of this article were defrayed in part by page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Behringer, R.R., T.M. Ryan, R.D. Palmiter, R.L. Brinster, and T.M. Townes. 1990. Human γ to β-globin gene switching in transgenic mice. Genes & Dev. 4: 380–389.

Berk, A.J. and P.A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12: 721–732.

Bickel, S. and V. Pirotta. 1990. Self association of the Drosophila este protein is responsible for transvection effects. EMBO J. 9: 2959–2967.

Blom van Assendelft, G., O. Hanscombe, F. Grosveld, and D.R. Greaves. 1989. The β-globin domain control region activates homologous and heterologous promoters in a tissue-specific manner. Cell 56: 969–977.

Chada, K., J. Magram, and F. Costantini. 1986. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319: 685–689.

Choi, O.-R. and J.D. Engel. 1988. Developmental regulation of human β globin gene switching. Cell 55: 17–26.

Collins, F.S. and S.M. Weissman. 1984. The molecular genetics of human hemoglobin. Prog. Nucleic Acid Res. Mol. Biol. 31: 315–462.

deVilliers, J., C. Olson, J. Baneri, and W. Schaffner. 1983. Analysis of the transcriptional enhancer effect. Cold Spring Harbor Symp. Quant. Biol. 47: 911–919.

Dillon, N. and F. Grosveld. 1991. Human γ-globin genes silenced independently of other genes in the β-globin locus. Nature 350: 252–254.

Dillon, N., D. Talbot, S. Philipsen, O. Hanscombe, P. Fraser, M. Lindenbaum, and F. Grosveld. 1991. The regulation of the human β-globin locus. In Genome analysis (ed. K.E. Davies and S.M. Tilghman) [in press].

Enver, T., A.J. Ebens, W.C. Forrester, and G. Stamatoyannopoulos. 1989. The human β-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc. Natl. Acad. Sci. 86: 7033.

Enver, T., N. Raich, A.J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos. 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344: 309–313.

Forrester, W.C., S. Takegawa, T. Papayannopoulou, G. Stamatoyannopoulos, and M. Groudine. 1987. Evidence for a locus activation region. Nucleic Acids Res. 15: 10159–10177.

Forrester, W.C., E. Epner, C. Driscoll, T. Enver, M. Brice, T. Papayannopoulou, and M. Groudine. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes & Dev. 4: 1637–1649.

Gaunt, S.J. and P.A. Singh. 1990. Homeogene expression patterns and chromosomal imprinting. Trends Genet. 6: 208–212.

Greaves, D.R., P. Fraser, M.A. Vidal, M.J. Hedges, D. Ropers, L. Luzzatto, and F. Grosveld. 1990. A transgenic mouse model of sickle cell disorder. Nature 343: 183–185.

Grosveld, F., G. Blom van Assendelft, D.R. Greaves, and G. Kollias. 1987. Position-independent high level expression of the human β-globin gene in transgenic mice. Cell 51: 975–985.

Hanscombe, O., M. Vidal, J. Kaeda, L. Luzzatto, D.R. Greaves, and F. Grosveld. 1989. High-level, erythroid-specific expression of the human α-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes. Genes & Dev. 3: 1572–1581.

Hogan, B., F. Costantini, and E. Lacy. 1986. Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Jarman, A.P. and D.R. Higgs. 1988. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 7: 3337–3344.

Kellum, R. and P. Schedl. 1991. A position-effect assay for boundaries of high order chromosomal domains. Cell 64: 941–950.

Kioussis, D., E. Vanin, T. deLange, R.A. Flavell, and F. Grosveld. 1983. β-Globin gene inactivation by a DNA translacation in γ-thalassaemia. Nature 306: 662–666.

Kollias, G., N. Wrighton, J. Hurst, and F. Grosveld. 1986. Regulated expression of human ζγ, β-, and hybrid γβ-globin genes in transgenic mice: Manipulation of the developmental expression patterns. Cell 46: 89–94.

Lindenbaum, M. and F. Grosveld. 1990. An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes & Dev. 4: 2075–2085.

Magram, J., K. Chada, and F. Costantini. 1985. Developmental...
regulation of a cloned adult β-globin gene in transgenic mice. Nature 315: 338.
Margot, J.B., G.W. Demers, and R.C. Hardison. 1989. Complete nucleotide sequence of the rabbit β-like globin gene cluster. J. Mol. Biol. 205: 15–40.
Moon, A. and T. Ley. 1990. Conservation of the primary structure, organization and function of the human and mouse β-globin locus-activating regions. Proc. Natl. Acad. Sci. 87: 7693–7697.
Muller, H., J. Sogo, and W. Schaffner. 1989. An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 58: 767–777.
Proudfoot, N. 1990. Transcriptional interference and termination between duplicated α-globin gene constructs suggests a novel mechanism for gene regulation. Nature 322: 562–565.
Raich, N., T. Enver, B. Nakamoto, B. Josephson, T. Papayannopoulos, and G. Stamatoyannopoulos. 1990. Autonomous developmental control of human embryonic globin switching in transgenic mice. Science 250: 1147–1149.
Reitman, M., E. Lee, H. Westphal, and G. Felsenfeld. 1990. Site independent expression of the chicken βA globin gene in transgenic mice. Nature 348: 749–752.
Shih, D., R. Wall, and S. Shapiro. 1990. Developmentally regulated and erythroid-specific expression of the human embryonic β-globin gene in transgenic mice. Nucleic Acids Res. 18: 5465–5471.
Skow, L.C., B.A. Buckhart, F.M. Johnson, R.A. Popp, D.M. Popp, S.Z. Goldberg, W.F. Anderson, L.B. Barnett, and S.E. Lewis. 1983. A mouse model for β-thalassemia. Cell 34: 1043–1052.
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.
Stief, A., D.M. Winter, W.H. Straetling, and A.E. Sippel. 1989. A nuclear DNA attachment element mediates elevated and position independent gene activity. Nature 341: 343–345.
Talbot, D., P. Collis, M. Antoniou, M. Vidal, F. Grosveld, and D.R. Greaves. 1989. A dominant control region from the human β-globin locus conferring integration site-independent gene expression. Nature 338: 352–355.
Townes, T.M., J.S. Lingrel, H.Y. Chen, R.L. Brinster, and R.D. Palmiter. 1985. Erythroid specific expression of human β-globin genes in transgenic mice. EMBO J. 4: 1715–1723.
Townes, T.M. and R.R. Behringer. 1990. Human globin locus activation region (LAR): Role in temporal control. Trends Genet. 6: 219–223.
Wasylyk, B., C. Wasylyk, P. Augerean, and P. Chambon. 1983. The SV40 72bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32: 503–514.
Importance of globin gene order for correct developmental expression.

O Hanscombe, D Whyatt, P Fraser, et al.

Genes Dev. 1991, 5:
Access the most recent version at doi:10.1101/gad.5.8.1387