18FDG PET/CT-derived parameters successfully predict clinical stage and prognosis of esophageal cancer.

CURRENT STATUS: UNDER REVIEW

BMC Medical Imaging ▶ **BMC Series**

Styliani Mantziari styliani.mantziari@chuv.ch
Centre hospitalier universitaire vaudois Departement des services de chirurgie et d’anesthesiologie
*
*Corresponding Author
**ORCID: 0000-0003-1315-1898*

Anastasia Pomoni
Centre Hospitalier Universitaire Vaudois

John Prior
Centre Hospitalier Universitaire Vaudois

Michael Winiker
Centre Hospitalier Universitaire Vaudois

Pierre Allemann
Centre Hospitalier Universitaire Vaudois

Nicolas Demartines
Centre Hospitalier Universitaire Vaudois

Markus Schäfer
Centre Hospitalier Universitaire Vaudois

DOI:
10.21203/rs.2.10238/v1

SUBJECT AREAS
Nuclear Medicine & Medical Imaging

KEYWORDS
Esophageal cancer; TNM stage; nuclear imaging; metabolic imaging; 18FDG PET/CT
Abstract

Background

Although 18FDG PET/CT is validated in baseline workup of esophageal cancer to detect distant metastases, it remains underused in assessing local staging and biology of the primary tumor. This study aimed to evaluate the association between 18FDG PET/CT-derived parameters of esophageal cancer, and its clinico-pathological features and prognosis.

Methods

All patients with esophageal adenocarcinoma or squamous cell cancer of operated between 2005-2014 were analyzed. Linear regression was used to identify clinico-pathologic features of esophageal cancer associated with the tumor’s maximal Standardized Uptake Value (SUVmax), Total Lesion Glycolysis (TLG) and Metabolic Tumor Volume (MTV). ROC curve analysis was performed to precise the optimal cutoff of each variable associated with a locally advanced (cT3/4) status, long-term survival and recurrence. Kaplan Meier curves and Cox regression were used for survival analyses.

Results

High baseline SUVmax was associated with cT3/4 status and middle-third tumor location, TLG with a cT3/4 and cN+ status, whereas MTV only with active smoking. A cT3/4 status was significantly predicted by a SUVmax >8.25g/mL (p<0.001), TLG>41.7 (p<0.001) and MTV>10.70 cm3 (p<0.01) whereas a SUVmax > 12.7 g/mL was associated with an early tumor recurrence and a poor disease-free survival (median 13 versus 56 months, p=0.030), particularly in squamous cell cancer.

Conclusions

Baseline 18FDG PET/CT has a high predictive value of preoperative cT stage, as its parameters SUVmax, TLG and MTV can predict a locally advanced tumor with high
accuracy. A SUVmax > 12.7 g/mL may herald early tumor recurrence and poor disease-free survival.

Background

Esophageal cancer is associated with aggressive lymphatic spread, resulting often in locally advanced or metastatic disease upon diagnosis [1]. Metabolic imaging with 18-Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography (18FDG-PET/CT) has been integrated into the preoperative workup of esophageal cancer for the detection of distant suspicions lesions [1–3], interval metastases [4] or assessment of response to neoadjuvant treatment [5]. Esophageal cancer workup should use three-modality staging with Computerized Tomography (CT), endoscopic ultrasound (EUS) and 18FDG PET/CT [2,3], as failure to identify locally advanced tumors (cT3/4 or N+) may lead to omission of neoadjuvant treatment before surgery, compromising patient survival [2,6]. To this day, 18FDG PET/CT- derived parameters SUV衔 (maximum Standardized Uptake Value), TLG (Total Lesion Glycolysis) and MTV (Metabolic Tumor Volume) remain underused for the cT and N staging of the primary tumor due to the poor spatial resolution within esophageal wall layers. However, Malik et al recently demonstrated a significant predictive value of MTV in differentiating early-stage (cT1/2) versus locally advanced (cT3/4) lesions [7]. Obtaining accurate cTN staging information through 18FDG PET/CT may be of prime importance particularly where EUS is unavailable, either by lack of an expert operator, or if the tumor is obstructive (up to 19% of patients) [7].

The aim of our study was to assess the association of several clinico-pathological characteristics of esophageal cancer and the 18FDG-PET/CT derived parameters SUV衔, TLG and MTV, as well as to evaluate the predictive value of these parameters in survival and tumor recurrence.
Methods

All patients operated for esophageal adenocarcinoma or squamous cell cancer, with curative intent, from 2005-2014 in our tertiary referral center and a baseline 18FDG-PET/CT in the preoperative workup were included in this study. Demographic, clinical and histological data were retrieved from our prospectively maintained database.

In all patients, routine preoperative staging was performed by esophagogastroduodenoscopy, EUS and thoraco-abdominal CT scan. Since 2005 18FDG-PET/CT was integrated in the baseline preoperative workup, according to current recommendations [2]. TNM stage was defined according to the 7th TNM classification [8]. Neoadjuvant treatment was administered for locally advanced lesions (cT3/4 and/or N+), with 5FU-platin or carboplatin-paclitaxel based chemotherapy and external beam radiation of 41-54 Gy. R0 resection was defined as the presence of tumor within 1mm of resection margins. Postoperative follow-up included a thoraco-abdominal CT scan every 4 months for the first two postoperative years and further workup in cases of suspected recurrence [9]. Early recurrence was defined as any documented recurrence in the first 12 postoperative months. Follow-up data were last updated in November 2018, to assure a minimum follow-up of 4 years for all patients.

Baseline 18FDG-PET/CT and derived parameters

Since the beginning of this study, we introduced our own PET/quality control program used in several national and international PET studies [10] until our center participated to the quality control program by EANM EARL as PET/CT Center of Excellence in October 2011, for which we have been accredited each year so far. For 18FDG-PET/CT, patients fasted for at least 6 hours before and blood glucose was measured before administration of the
radiotracer (<8.5 mmol/L). Each patient received 3.5 MBq/kg of \(^{18}\)F-FDG intravenously and remained in a calm and warm area for 1 hour. Thereafter, the patient was asked to void and subsequently was placed in the scanner. Images were acquired on PET/CT scanner (Discovery LS before 09/2011 and then Discovery D690 TOF; GE Healthcare, Waukesha, WI) with scatter and point-spread function recovery corrections. The CT scan (140 kV, 80-200 AutomA/SmartmA) was used for attenuation correction. The CT scan was followed by a PET over the same body region (2min/bed position). Two nuclear medicine physicians closely reviewed the images using for analysis an Advantage Workstation (version 4.6, GE Healthcare, Waukesha, WI) using PET VCAR to compute \(\text{SUV}_{\text{mean}}\), \(\text{SUV}_{\text{max}}\), TLG and MTV.

\(\text{SUV}_{\text{max}}\) was defined as the point of maximal radiotracer uptake value within the delineated tumor volume (g/mL). MTV represents the metabolically active tumor volume (cm\(^3\)), whereas TLG was computed as the product of MTV multiplied by the tumor’s \(\text{SUV}_{\text{mean}}\). In order to define the contouring margin of primary tumor, a volume of interest around the tumor was drawn carefully to incorporate the target lesion in transaxial, sagittal and coronal planes. For tumor delineation we used a 42% threshold, as it is one of the most commonly used in the literature [7,11].

Statistical analysis

Linear regression was performed to assess correlation between several clinicopathological variables and baseline \(\text{SUV}_{\text{max}}\), TLG and MTV. For each PET-CT derived parameter, a ROC curve analysis was performed to assess whether an optimal cutoff could be associated with locally advanced lesions (cT3/4), overall survival and early tumor recurrence. Overall and disease-free survival were analyzed with the Kaplan-Meier method and log-rank test as well as and a Cox regression analysis. Exploratory survival analyses were carried out
for each histological type (adenocarcinoma and squamous cell). Co-variates with a p-value<0.2 on a univariate level were entered to a backward elimination process, allowing to build the final multivariate model with the lowest AIC value. Significance level was set at p<0.05 and all tests were two-sided. Statistical analysis was performed with RStudio (version 3.2.3, RStudio Team 2015, Boston, USA) and SPSS (version 23.0, Chicago, USA).

Results

From the 141 patients operated in the study period, 89 had a baseline 18FDG-PET/CT in their workup (63%). Three of them were excluded from analysis because of histology other than adenocarcinoma or squamous cell; thus, the current series consists of 86 patients. Baseline patient characteristics are outlined in Table 1. Tumor location was distributed throughout middle, distal third and gastroesophageal junction (GEJ); sixty-three (73%) of all tumors were cT3/4 and 49 (57%) cN+. Adenocarcinoma represented 53% and squamous cell histology 47% of all lesions. During initial workup, 78 patients (91%) had an EUS, and the lesion was obstructive in 7 % of them; 94% of all tumors were FDG-avid in 18FDG-PET/CT.

Baseline 18FDG-PET/CT -derived parameters and initial tumor staging

a. SUV_{max} (maximal Standardized Uptake Value)

Median baseline SUV_{max} was 12.1 g/mL (range 2.8-48.0) for all tumors. Middle third tumor location, advanced cT and cN stage as well as squamous cell histology were associated with higher SUV_{max} values on a univariate level, however only tumor location and cT stage remained significant on multiple regression (Table 2). cT3/4 tumors had an expected SUV_{max} 6.61 higher than a cT1-2 lesion (β coefficient 6.61, 95%CI 2.40, 10.81,
p=0.002), and middle third tumors an expected SUV_{max} 7.01 higher than GEJ lesions (β coefficient 7.01, 95%CI 0.71-13.32, p=0.029). The multivariable model presented a good fit to the data ($R^2= 0.2804$, F-statistic 4.676 on 6 and 72 DF, p<0.0001).

Baseline SUV_{max} presented a good prognostic value of a cT3/4 status in ROC curve analysis (Figure 1a). A SUV_{max} of 8.25g/mL predicted a cT3/4 lesion with a sensitivity of 83.9% and a specificity of 68.4%. Overall accuracy as indicated by the area under the curve was 81.6% (AUC=0.816, 95%CI=0.704-0.928, p<0.001).

b) TLG (Total Lesion Glycolysis)

Median TLG for all tumors was 122.1 (range 1-1179). Simple linear regression revealed higher TLG values for cT3/4 and cN+ tumors, and both co-variates remained significant in multivariate analysis; expected TLG values for cT3/4 tumors were 162.9 higher than cT1/2 tumors (β coefficient 162.95, 95% CI 31.39-294.51, p=0.016), and cN+ had a TLG increased by 145.83 compared to cN0 lesions (β coefficient 145.83, 95% CI 34.47-256.19, p=0.010). (Table 3) The model presented a good fit to the data ($R^2= 0.1852$, F-statistic 7.841 on 2 and 69DF, p<0.001).

ROC curve analysis identified a TLG >41.7 as the optimal cutoff to detect a cT3/4 lesion, with a sensitivity of 86.4%, a specificity of 80% and an overall accuracy of 85.2% (AUC 0.852, 95%CI 0.744-0.960, p<0.001) (Figure 1b)

c) MTV (Metabolic Tumor Volume)

Median MTV for all FDG-avid tumors was 22.7 cm³ (range 1-519). Univariate analysis identified only active smoking being associated with higher baseline MTV (β coefficient 32.81, 95%CI 4.99-70.62, p=0.093) and thus, no multivariable analysis was possible for this parameter.

In ROC curve analysis a baseline MTV> 10.70 cm³ was identified as the optimal cutoff to
predict cT3/4 status (sensitivity 83.1%; specificity 75%, AUC 0.799, 95%CI 0.640-0.959, p=0.01) (Figure 1c).

Prognostic value of 18FDG-PET/CT -derived parameters for recurrence and patient survival

Among the three parameters studied, SUV$_{\text{max}}$ at baseline was the only one with a significant predictive value for early tumor recurrence (Figure 2). A SUV$_{\text{max}}$ ≥12.7 g/mL predicted early recurrence with 70.4% sensitivity and 64.6% specificity (AUC 0.660, 95% CI 0.535-0.785, p=0.019) (Figure 2a). Indeed, patients with a SUV$_{\text{max}}$ < 12.7 g/mL at baseline had a median disease-free survival (DFS) of 56 months (95%CI 7.68-104.31), versus 13 (95%CI 10.35-15.65) for those with a SUV$_{\text{max}}$ ≥12.7 g/mL (p=0.030) (Figure 3). Cox regression analysis confirmed SUV$_{\text{max}}$ ≥ 12.7 as an independent predictor of DFS (HR 2.54, 95%CI 1.26, 5.09, p=0.009), along with preoperative active smoking and pT3/4 status (Table 4).

When the two histological subtypes were analyzed separately, there was no significant association of SUV$_{\text{max}}$ with DFS for adenocarcinoma. For squamous cell carcinoma, a baseline SUV$_{\text{max}}$≥12.7g/mL along with pT and pN stage independently predicted worse DFS (Table 4).

No association was found between baseline SUV$_{\text{max}}$ and overall survival (OS), neither on the Kaplan-Meier (Figure 3) nor the Cox regression analysis. In the latter, only active smoking (HR 2.30, 95% CI 1.15-4.62, p=0.019) and pT4 stage (HR 21.42, 95%CI 5.00- 91.72, p<0.0001) independently predicted OS. None of the variables remained independent predictors of OS in adenocarcinoma or squamous cell subtypes.

Median follow-up of all patients, calculated with the reverse Kaplan-Meier method, was 50 months (95%CI 45.33-54.66).
Discussion

In this study, higher baseline SUV max of esophageal cancer was significantly related to a middle-third tumor location and a cT3/4 stage, whereas higher TLG was related to cT3/4 and cN+ stage. Baseline SUV max >8.25 g/mL, TLG > 41.7 and MTV > 10.70 cm³ were associated with cT4 stage, whereas SUV max ≥12.7 g/mL predicted early recurrence and poor disease-free survival.

The value of ¹⁸FDG-PET/CT in preoperative workup of esophageal cancer has been extensively studied since its first report in 1995 [12]. It is mostly used for the detection of distant metastases as it can identify suspicious lesions as small as 1cm [2,13,14]. Walker et al reported ¹⁸FDG-PET/CT-detected distant lesions precluding curative treatment in 21% of patients [14], even though the specificity of an FDG ‘hot spot’ remains low and may reflect an inflammatory process or even a synchronous neoplastic lesion in up to 9.3% of patients [15]. Limited spatial resolution of PET for esophageal wall layers and adjacent structures had restrained this modality as a detector of distant metastases [14], whereas metabolic information on the primary tumor are largely overlooked. Recent data, however, reinforce the role of ¹⁸FDG-PET/CT in better defining cTNM stage and the tumor’s biology, the latter being FDG-avid in 84-92% of cases especially if it infiltrates the submucosa [7,14,16].

Although it is generally admitted that all ¹⁸FDG-PET/CT-derived parameters are higher in advanced and aggressive tumors, no conclusive data exist as to their optimal cutoff, limiting their practical utility on preoperative cT/N staging. Our study used the most methodologically robust method, linear regression, to define whether and which associations exist between the tumor’s clinicopathologic characteristics and the ¹⁸FDG-
PET/CT parameters. Moreover, ROC curve analysis yielded significant cutoff values to predict preoperative cT3/4 status with high accuracy (SUV$_{\text{max}}$ > 8.25 g/mL, TLG > 41.7 and MTV > 10.70 cm3), offering a pragmatic and clinically meaningful interpretation of baseline 18FDG-PET/CT values of the primary tumor. Malik et al used a similar approach to identify optimal thresholds to distinguish cT1/2 from cT3/4 lesions, identifying a SUV$_{\text{max}}$ > 4.1 (sensitivity 85.4%, and specificity 47.5%), and an MTV > 23.4 cm3 (sensitivity 64.1%, specificity 66.6%) [7], obtaining a much lower accuracy for these cutoffs compared to our study.

One might argue that EUS is sufficient to identify locally advanced lesions (cT3/4 or N+) and thus to direct the patient to neoadjuvant treatment before surgery. However, previous data from our institution suggest a rather low rate of accurate usT (51%) and usN (72%) staging, with the highest rates of understaging among active smokers [17]. Indeed, a three-modality workup strategy (18FDG-PET/CT, CT and EUS) offers the highest probability (84%) to correctly select patients for surgery, a fortiori when 18FDG-PET/CT is the first exam performed [3]. Rather than advocating the superiority of a diagnostic modality over the others they should be used as complementary to improve staging accuracy, directing patients with locally advanced lesions to neoadjuvant treatment and avoiding its unnecessary toxicity for early-stage tumors.

Several studies have reported poor long-term prognosis associated with high baseline SUV$_{\text{max}}$ [15,18–21], although there is great variability in the suggested cutoff, ranging from 3 to 9 g/mL. A universally accepted SUV$_{\text{max}}$ associated to overall survival cannot be suggested so far, as cutoffs are chosen either arbitrarily, or using the median of each individual series. In the present study none of the 18FDG-PET/CT derived parameters
demonstrated significant association with overall survival. However, ROC curve analysis identified a significant association between baseline $\text{SUV}_{\text{max}} > 12.7 \text{g/mL}$ and early tumor recurrence. This was confirmed in a multivariate Cox regression, whereby $\text{SUV}_{\text{max}} > 12.7 \text{g/mL}$, pT3/4 status and active smoking were independent predictors of poor DFS. The independent predictive value of SUV_{max} for DFS was separately confirmed in squamous cell cancer, whereas it did not reach significance in adenocarcinoma patients. Schreurs et al previously reported worse DFS for patients with baseline $\text{SUV}_{\text{max}} > 3.67 \text{g/dl}$, although no correlation with overall survival was found in that study either [22]. Markers of aggressive biology (GLUT-1, p53, Ki-67, HK-II) were studied in relation to SUV_{max}, with no clear immunohistochemical profile found for high-FDG uptake tumors compared to the others [22]; thus, although it is generally admitted that high baseline SUV_{max} may herald tumor aggressiveness and early recurrence, the underlying mechanism remains poorly understood. Our team previously reported active smoking as an independent predictor of early recurrence after esophagectomy [23], which may also act through activation of pathologic DNA-methylation patterns and tumor proliferation genes [24].

This study has some limitations that need to be addressed. Retrospective analysis has an inherent drawback in data completeness, even though our institutional database is maintained prospectively, with a stringent follow-up of all patients. Although there was practically no heterogeneity in 18FDG-PET/CT protocols and interpretation over the years, inaccuracies in the preoperative workup may have occurred for both T and N staging especially with EUS, confounding associations with 18FDG-PET/CT parameters. Due to the small number of patients per histological type our subgroup analyses can only be considered as exploratory, and further confirmation is needed in this direction.

Conclusions
FDG-PET/CT derived parameters $\text{SUV}_{\text{max}} > 8.25\text{g/mL}$, $\text{TLG} > 41.7$ and $\text{MTV} > 10.70\text{cm}^3$ were significantly associated with locally advanced cT3/4 stage and a baseline $\text{SUV}_{\text{max}} > 12.7\text{g/mL}$ with early tumor recurrence and poor disease-free survival, particularly for squamous cell cancer. These findings need further validation to establish their predictive value in staging and prognosis of esophageal cancer. A prospective study is currently running in our institution to correlate these values with high-resolution CT and IRM characteristics of the primary tumor.

Declarations

Ethics approval and consent to participate: The study was approved by the Lausanne University Institutional Review Board. On the basis of the general research contentment form, the need for individual consent was waived.

Consent for publication: not applicable

Availability of data and material: The data that support the findings of this study are available from authors upon request and with permission of the Lausanne University Ethics Committee.

Competing interests: The authors declare that they have no competing interests

Funding: None

Authors’ contributions: SM and AP study design, data collection, PET/CT interpretation, statistical analysis and drafting of the manuscript. MW, PA and ND drafting and clinical review of the manuscript. JP study design, PET/CT interpretation, drafting manuscript and critical review of the manuscript. MS study design, statistical analysis, drafting and critical review of the manuscript. All authors read and approved the final manuscript.

Acknowledgements: None

References

1. Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2016 Apr 9;381(9864):400-12.

2. Lordick F, Mariette C, Haustermans K, et al. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016 Sep;27(suppl 5):v50-v57.

3. Schreurs LMA, Janssens ACJW, Groen H, et al. Value of EUS in Determining Curative Resectability in Reference to CT and FDG-PET: The Optimal Sequence in Preoperative Staging of Esophageal Cancer? Ann Surg Oncol. 2016;23:1021-8.
4. Kroese TE, Goense L, van Hillegersberg R, et al. Detection of distant interval metastases after neoadjuvant therapy for esophageal cancer with 18F-FDG PET/CT: a systematic review and meta-analysis. Dis Esophagus. 2018 Dec 1;31(12)

5. Lordick F, Ott K, Krause BJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8(9):797-805.

6. Pasquali S, Yim G, Vohra RS, et al. Survival After Neoadjuvant and Adjuvant Treatments Compared to Surgery Alone for Resectable Esophageal Carcinoma: A Network Meta-analysis. Ann Surg. 2017 Mar;265(3):481-491.

7. Pasquali S, Yim G, Vohra RS, et al. Survival After Neoadjuvant and Adjuvant Treatments Compared to Surgery Alone for Resectable Esophageal Carcinoma: A Network Meta-analysis. Ann Surg. 2017 Mar;265(3):481-491.

8. Sobin LH, Gospodarowicz MK, Wittekind C. Oesophagus including oesophagogastric junction malignant tumors. In : TNM UICC Classification of Malignant Tumours. 7th edition. Wiley-Blackwell Editions; 2011. p (66-72).

9. Allemann P, Mantziari S, Wagner D, et al. Curative treatment for esophageal cancer. Results of a multidisciplinary consensus ; traitement curatif du cancer de l’oesophage: Consensus multidisciplinaire multicentrique. Rev Med Suisse. 2016;12(523).

10. Gnesin S, Deshayes E, Camus F et al. Quantification and monitoring of PET/CT data in multicentre trials: The Swiss SAKK 56/07 trial experience. Médecine Nucléaire. 2017;41:259-266.

11. Xu W, Yu S, Ma Y, et al. No Effect of different segmentation algorithms on metabolic tumor volume measured on 18F-FDG PET/CT of cervical primary squamous cell carcinoma. Nucl Med Commun. 2017. Mar;38(3):259-265.
12. Yasuda S, Raja S, Hubner KF. Application of whole-body positron emission tomography in the imaging of esophageal cancer: report of a case. Surg Today. 1995;25(3):261-4.

13. van Vliet EP, Heijenbrok-Kal MH, Hunink MG, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer 2008;98(3):547-57.

14. Walker A, Spier B, Perlman S, et al. Integrated PET/CT Fusion Imaging and Endoscopic Ultrasound in the Pre-operative Staging and Evaluation of Esophageal Cancer. Mol Imaging Biol. 2011 Feb;13(1):166-71

15. Malik V, Johnston C, Donohoe C, et al. (18)F-FDG PET-detected synchronous primary neoplasms in the staging of esophageal cancer: incidence, cost, and impact on management. Clin Nucl Med. 2012;37(12):1152–8.

16. Kato H, Nakajima M, Sohda M, et al. The clinical application of 18F-fluorodeoxyglucose positron emission tomography to predict survival in patients with operable esophageal cancer. Cancer. 2009;115(14):3196–203.

17. Winiker M, Mantziari S, Figueiredo SG, Demartines N, Allemann P, Schäfer M. Accuracy of preoperative staging for a priori resectable esophageal cancer. Dis Esophagus. 2018; Jan 1;31(1):1-6.

18. Omloo JMT, Sloof GW, Boellaard R, et al. Importance of fluorodeoxyglucose-positron emission tomography (FDG-PET) and endoscopic ultrasonography parameters in predicting survival following surgery for esophageal cancer. Endoscopy. 2008;40(6):464–71.

19. Cerfolio RJ, Bryant AS. Maximum Standardized Uptake Values on Positron Emission Tomography of Esophageal Cancer Predicts Stage, Tumor Biology, and Survival. Ann Thorac Surg. 2006;82(2):391-5.

20. Rizk N, Downey RJ, Akhurst T, et al. Preoperative 18[F]-fluorodeoxyglucose positron...
emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg. 2006 Mar;81(3):1076-81

21. Hatt M, Visvikis D, Albaraghach NM, et al. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38(7):1191-202.

22. Schreurs LMA, Smit JK, Pavlov K, et al. Prognostic Impact of Clinicopathological Features and Expression of Biomarkers Related to 18F-FDG Uptake in Esophageal Cancer. Ann Surg Oncol. 2014; 21:3751-3757

23. Mantziari S, Allemann P, Winiker M, Demartines N, Schäfer M. Locoregional Tumor Extension and Preoperative Smoking are Significant Risk Factors for Early Recurrence After Esophagectomy for Cancer. World J Surg. 2018 Jul;42(7):2209-2217

24. Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and Epigenetic Alterations in Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology Clinics of North America. 2015. Jun;44(2):473-89

Tables

Table 1. Baseline demographics and preoperative workup of all patients.
Variable	N=86
Median age, years [range]	63 [38-82]
Male Gender (%)	66 (77)
Active smoking (%)	38 (44)
ASA class (%)	
1-2	61 (71)
3-4	25 (29)
Tumor location (%)	
Upper third	3 (4)
Middle third	27 (31)
Distal third	29 (34)
Gastroesophageal junction	27 (31)
Clinical T stage (cT)	
cT1-2	21 (24)
cT3-4	63 (73)
Missing data	2 (2)
Clinical N stage (cN)	
cN0	33 (38)
cN+	49 (57)
Missing data	4 (5)
Tumor histology	
Adenocarcinoma	46 (53)
Squamous cell carcinoma	40 (47)
Preoperative workup	
CT	86 (100)
EUS	78 (91)
EUS non-obstructive lesion	73 (85)
18FDG PET/CT	86 (100)
18FDG PET/CT *avid lesion*	81 (94)
Neoadjuvant treatment	71 (82)
Operative approach	
Transthoracic (Lewis)	65 (76)
Three-field (McKeown)	19 (22)
Transhiatal	2 (2)

ASA= American Society of Anesthesiology; CT= Computerized Tomography; EUS= Endoscopic Ultrasound; **18**FDG PET/CT= **18**-Fluorodeoxyglucose Positron Emission Tomography CT

Table 2 Linear regression analysis for baseline SUV_{max}
VARIABLE	Unadjusted β coefficient	95%CI	p-value	Adjusted β coefficient	95%CI
cT stage					
cT1-2	Ref				
cT3-4	7.76	3.64,11.87	<0.001	6.61	2.40,10.81
cN stage					
cN0	Ref				
cN+	4.12	0.29,7.95	0.038	3.28	-0.49,7.05
Tumor location					
GEJ	Ref				
Distal third	1.41	-2.99,5.80	0.532	1.59	-3.10,6.29
Middle third	6.27	1.80,10.75	0.007	7.01	0.71,13.32
Superior third	-1.42	-11.26,8.42	0.778	-1.47	-12.05,9.11
Histology					
Adenocarcinoma	Ref			3.84	0.23,7.45
Squamous cell	3.84		0.040	-0.630	-5.84,4.58

SUV\text{max} = maximal Standardized Uptake Value; GEJ = Gastroesophageal junction; 95%CI = 95% Confidence Intervals; Ref = Reference category (β coefficient=0)

Table 3 Linear regression analysis for baseline TLG

VARIABLE	Unadjusted β coefficient	95%CI	p-value	Adjusted β coefficient	95%CI
cT stage					
cT1-2	Ref				
cT3-4	198.42	61.42,335.43	0.006	162.95	31.39,294.51
cN stage					
cN0	Ref				
cN+	168.77	58.05,279.48	0.004	145.83	35.47,256.19

TLG=Total Lesion Glycolysis; 95%CI= 95% Confidence Intervals; Ref= Reference category (β coefficient=0)

Table 4 Cox regression analysis for disease-free survival (DFS)

VARIABLE	Unadjusted HR	95%CI	p-value	Adjusted HR	95%CI

17
All patients

factor	HR	95% CI	p	HR	95% CI
Active smoking	2.22	1.23,4.01	0.008	2.22	1.15,4.27
SUVmax>12.7g/mL	2.10	1.16,3.81	0.014	2.54	1.26,5.09

pT stage

stage	HR	95% CI	p		
pT0	Ref	Ref			
pT1	0.30	0.06,1.45	0.135	0.59	0.11,3.04
pT2	1.32	0.49,3.57	0.577	1.55	0.56,4.28
pT3	2.78	1.18,6.55	0.019	3.31	1.37,8.00
pT4	11.93	2.25,63.29	0.004	7.24	1.34,39.22

Resection margins

margins	HR	95% CI			
R0	2.47	1.04,5.89	0.041	2.09	0.77,5.68

Adenocarcinoma

factor	HR	95% CI	p		
Active smoking	2.34	1.04-5.28	0.039	2.54	1.05-6.14
SUVmax>12.7g/mL	1.87	0.85-4.11	0.119	1.54	0.65-3.62

pN stage

stage	HR	95% CI	p		
pN0	Ref	Ref			
pN1	5.76	2.06-16.09	<0.001	4.04	1.29-12.58
pN2	5.24	1.78-15.49	0.003	3.88	1.25-12.02
pN3	9.31	1.82-47.49	0.007	8.67	1.50-50.07

Resection margins

margins	HR	95% CI	p		
R0	4.37	1.44-13.25	0.009	2.78	0.78-9.94

Squamous cell cancer

factor	HR	95% CI			
SUVmax>12.7g/mL	1.82	0.76-4.36	0.176	5.06	1.44-17.71

pT stage

stage	HR	95% CI	p		
pT0	Ref	Ref			
pT1	0.84	0.16-4.33	0.833	1.23	0.21-7.17
pT2	1.95	0.56-6.76	0.290	5.67	1.34-24.01
pT3	5.97	1.95-18.29	0.002	5.05	1.10-23.16
pT4	11.75	1.17-118.29	0.037	10.67	0.93-122.39

pN stage

stage	HR	95% CI	p		
pN0	Ref	Ref			
pN1	0.22	0.03-1.67	0.144	0.09	0.01-0.92
pN2	4.51	1.42-14.31	0.010	4.71	1.00-22.14
pN3	4.39	0.95-20.32	0.058	6.72	0.90-49.88

HR=Hazard Ratio; 95%CI= 95% Confidence Intervals; Ref= Reference category (HR=1);
SUV\textsubscript{max} = maximal Standardized Uptake Value

Figures

ROC curve analyses for the predictive value of 18FDG-PET/CT derived parameters in relation to a cT3/4 status. All three parameters predicted significantly cT3-4 status of the primary tumor. a) SUV\textsubscript{max}>8.25 g/mL (sensitivity 83.9%, specificity 68.4%, p<0.001), b) TLG>41.7 g (sensitivity 86.4%, specificity 80%, p<0.001), c) MTV>10.7 cm3 (sensitivity 83.1%, specificity 75%, p=0.01).
Figure 2

ROC curve analyses for 18FDG-PET/CT derived parameters as predictors of early tumor recurrence. a) A SUVmax >12.7 g/mL was identified as the optimal threshold for early recurrence, with a sensitivity of 70.4%, specificity 63.6% (AUC 0.660, p=0.019). No optimal cutoff was defined for b) TLG (AUC 0.624, 95% CI 0.495-0.753, p=0.081) or c) MTV (AUC 0.570, 95%CI 0.431-0.709, p=0.332)
Baseline SUVmax as a predictor of disease-free and overall postoperative survival. a) SUVmax >12.7g/mL was a significant predictor of poor disease-free survival (median DFS 13 versus 56 months, p=0.030), b) but not of overall survival.