FGNet
Functional Gene Networks
derived from biological enrichment analyses

Sara Aibar, Celia Fontanillo, Conrad Droste, and Javier De Las Rivas

Bioinformatics and Functional Genomics Group
Centro de Investigacion del Cancer (CiC-IBMCC, CSIC/USAL)
Salamanca - Spain

October 18, 2013

Version: 1.0

Contents

1 Introduction to Functional Gene Networks

2 Installation

3 Basic example: network from a list of genes/proteins

4 Advanced example: modifying default parameters and executing the workflow step by step
 4.1 Step 1: Query the functional enrichment analysis tool
 4.2 Step 2: Get the functional analysis results
 4.3 Step 3: Create the adjacency matrices to build the network
 4.4 Step 4: Build and plot the networks
 4.5 Example using DAVID Functional Annotation Clustering Tool
1 Introduction to **Functional Gene Networks**

Functional Gene Networks (FGNet) allows to analyze the results from a clustered functional enrichment analysis and transform them into a gene network. In this way, FGNet provides a functional gene network, which is analyzed and presented as a graphical object allowing an overview of the links and overlapping between genes and biological functions. The package also includes an interface to perform the enrichment and clustering through DAVID and *GeneTerm Linker* tools.

Biological functional analysis

After obtaining a list of genes or proteins from an experiment or omic studies (i.e. microarrays, RNAseq, mass spectrometry, etc), next step is usually to perform a functional analysis of the genes to search for the biological functions or processes in which they are involved. In order to facilitate the analysis of large lists of genes, multiple functional enrichment tools have been developed. These tools search for the genes in biological databases (i.e. GO, Kegg, Interpro), and test whether any biological annotations are over-represented in the query gene list compared to what would be expected in the whole population. However, the raw output from a functional enrichment analysis often provides hundreds of terms, and it still requires a lot of time and attention to go through the whole list of genes and annotations. A way to simplify this task is grouping genes and terms which often appear together and create associated networks. *Functional Gene Networks* algorithm has been designed with this purpose. To do so, it uses the output of a previous functional enrichment analysis. The package has been implemented to support two specific tools:

1. Functional Annotation Clustering from DAVID, which measures relationships among annotation terms based on their co-association with genes within the query gene list [1][2]. This type of clustering mostly results in groups of highly related terms, such as synonymous annotations from different annotation spaces (i.e. Glycolysis in KEGG and GO-BP), which also share most of their genes.

2. GeneTerm Linker, a post-enrichment tool, which focuses on clearing and sorting the results from a previous enrichment analysis. This is achieved by filtering little informative terms (i.e. *cellular process*) and redundant annotations (i.e. *metabolic process* and *primary metabolic process*). The remaining gene-term sets are grouped into *metagroups* based on their shared genes and terms (*reciprocal linkage*) [3].

![Different levels of overlap between gene groups.](image)
Functional network

The functional network is the representation of the results from a functional enrichment analysis clustering. Each of the genes is one node, and the genes are linked to each other if they are in the same gene-term set. In the plot, the groups (metagroups or clusters) are also represented by a coloured background. The genes that are only in one group, will also be coloured.

The package includes a report function which allows to automatically generate an HTML file with the functional network, the terms included in each group, the intersection network and distance matrix. The intersection network is a simplified functional network where all the genes that belong to only one metagroup are clustered into a single node. Therefore, the resulting network contains only the nodes in several groups (intersection between groups) linked to the metagroups they belong to. The distance matrix represents the similarity between the groups based on the genes they share with each other (binary distance).

A pdf version of this report is available at the end of this vignette.

2 Installation

To install FGNet from Bioconductor, type in your R console:

```r
> source("http://bioconductor.org/biocLite.R")
> biocLite("FGNet")
```

Note on libraries and dependencies: FGNet requires libraries igraph (version 0.6 or older), hwriter, RCurl, XML and R.utils. In addition, it may also use RColorBrewer and png. These libraries are not required for creating the Functional Networks, but they will enhance the network plots.

3 Basic example: network from a list of genes/proteins

FGNet can automatically generate an HTML report with the functional analysis and network directly from a gene list. To do so, just load the library, the gene list, and call either report_david() or report_gtLinker(). In this example we will use the sample yeast dataset provided by GeneTerm Linker:

```r
> library(FGNet)
> genesYeast <- c("ADA2", "APC1", "APC11", "APC2", "APC4", "APC5", "APC9", +  "CDC16", "CDC23", "CDC26", "CDC27", "CFT1", "CFT2", "DCP1", "DOC1", "FIP1", +  "GCN5", "GLC7", "HFI1", "KEM1", "LSM1", "LSM2", "LSM3", "LSM4", "LSM5", +  "LSM6", "LSM7", "LSM8", "MPE1", "NGG1", "PAP1", "PAT1", "PF32", "PTA1", +  "PTI1", "REF2", "RNA14", "RPN1", "RPN10", "RPN11", "RPN13", "RPN2", "RPN3", +  "RPN5", "RPN6", "RPN8", "RPT1", "RPT3", "RPT6", "SGF11", "SGF29", "SGF73", +  "SPT20", "SPT3", "SPT7", "SPT8", "TRA1", "YSH1", "YTH1")

> report_david(genesYeast)

> report_gtLinker(genesYeast, organism = "Sc")
```
These report functions are wrappers that include all the steps to query to the functional enrichment tool (DAVID or GtLinker) and generate the functional network (see Section Workflow). The first step for creating the functional network is to perform the functional enrichment and clustering. This which can be done directly in R (see following sections) but also through their web sites:

- DAVID: http://david.abcc.ncifcrf.gov (Functional Annotation Clustering Tool)
- GeneTerm Linker: http://gtlinker.dacya.ucm.es

To use an analysis performed at the web sites, take GeneTerm linker’s job ID or DAVID’s download file.

To generate the functional network out of a previously performed analysis, the jobID (GeneTerm Linker) or the .txt file (DAVID) can be used. `jobName` allows setting the name of the HTML file and the folder where the data will be saved.

```r
> report_gtLinker(jobID=1639610, jobName="Alzheimer")
```

When there many overlapping metagroups, a threshold can be set to filter out some metagroups. By default, this threshold is based on the metagroup/cluster silhouette (for GeneTerm Linker), or the enrichment score (in case of DAVID). (See following sections for more details).

```r
> report_gtLinker(jobID=1639610, jobName="Alzheimer_trh0.2", + threshold=0.2)
```

A PDF version of this report is available at the end of this vignette.

For help or more details on any functions or their arguments, just set a `?` before its name.

```r
> ?report_gtLinker
```

4 Advanced example: modifying default parameters and executing the workflow step by step

The report functions are wrappers that include several steps. We will now see each of them:

1. Query the functional enrichment analysis tool (DAVID or GeneTerm Linker)
2. Retrieve the functional enrichment results from the server
3. Create the adjacency matrices to build the network
4. Build and plot the networks

The workflows for GeneTermLinker and DAVID are equivalent. They only differ in the two first steps (analysis query and retrieval) since the parameters each of the tools require are different and the results they return are also in different formats. To avoid confusion, we will start with an example with GeneTerm Linker and explain the slight differences when using DAVID. An equivalent example with DAVID is available in section 4.5.

4.1 Step 1: Query the functional enrichment analysis tool

To perform the functional enrichment analysis through this package, all is needed is a list of genes. In case the functional analysis tool is GeneTerm Linker, it is also possible to specify the organism (Homo Sapiens by default).

```r
> genesYeast <- c("ADA2", "APC1", "APC11", "APC2", "APC4", "APC5", "APC9", + "CDC16", "CDC23", "CDC26", "CDC27", "CFT1", "CFT2", "DCP1", "DOC1", "FIP1", + "GCN5", "GLC7", "HFI1", "KEM1", "LSM1", "LSM2", "LSM3", "LSM4", "LSM5", + "LSM6", "LSM7", "LSM8", "MPE1", "NGG1", "PAP1", "PAT1", "PFS2", "PTA1", + "PTI1", "REF2", "RNA14", "RPN1", "RPN10", "RPN11", "RPN13", "RPN2", "RPN3", + "RPN5", "RPN6", "RPN8", "RPT1", "RPT3", "RPT6", "SGF11", "SGF29", "SGF73", + "SPT20", "SPT3", "SPT7", "SPT8", "TRA1", "YSH1", "YTH1")
> organism <- "Sc"
> jobID <- query_gtLinker(genesYeast, organism=organism)
```

The annotations spaces to perform the enrichment analysis can also be set. Note the annotation IDs are different for DAVID and GeneTermLinker. DAVID’s are available at its API description: http://david.abcc.ncifcrf.gov/content.jsp?file=DAVID_API.html. GeneTerm Linker allows these five:

```r
> annotations <- c("GO_Biological_Process", + "GO_Molecular_Function", + "GO_Cellular_Component", + "KEGG_Pathways", + "InterPro_Motifs")
```

To perform the analysis through DAVID, use `query_david` instead. Just note the annotation names are different, there is no need to provide the organism, and it will return the URL to the text file instead of the jobID.

```r
> results <- getResults_gtLinker(jobID, jobName="Set4yeast")
```
jobName allows to set a folder to save the results. In case the analysis results are already downloaded, to draw the network with different parameters, just provide the jobName or path:

```r
> results <- getResults_gtLinker(jobName="Set4yeast", + alreadyDownloaded=TRUE)
```

The variable results now contains the raw results from the functional enrichment and clustering:

```r
> names(results)
[1] "metagroups" "geneTermSets" "fileName"
```

```r
> head(results$metagroups)
```

Since DAVID instead of a job ID, returns the txt file with the results, it uses the function `getResults_david()`:

```r
> ?getResults_david
```

4.3 Step 3: Create the adjacency matrices to build the network

The raw results can now be transformed into adjacency matrices in order to create the network:

```r
> adjMat <- adjMatrix(results$geneTermSets)
```

These matrices now contain which genes are in each metagroup or cluster and in each gene-term set:

```r
> head(adjMat$metagroupGenesMatrix)

       1  2  3  4  5  6
ADA2 0  1  0  0  0  0
APC1 0  0  1  0  0  0
APC11 0  0  1  0  0  0
APC2 0  0  1  0  1  1
APC4 0  0  1  0  0  0
APC5 0  0  1  0  0  0
```

```r
> adjMat$gtSetGenesMatrix[1:5, 14:18]

        2.4 2.5 2.6 3.1 3.2
ADA2 0  1  1  0  0
APC1 0  0  0  1  1
APC11 0  0  0  1  1
APC2 0  0  0  1  1
APC4 0  0  0  1  1
```

Filtering the metagroups/clusters based on a score threshold can be done in this step. i.e. for filtering metagroups with silhouette under 0.2:
> adjMatFiltered <- adjMatrix(results$geneTermSets,
 + attribute=results$metagroups[, "Silhouette Width", drop=FALSE], threshold=0.2)

To see which metagroups/clusters have been filtered out and now are no longer in the adjacency matrices:

> adjMatFiltered$filteredOut

[1] "5"

4.4 Step 4: Build and plot the networks

Once the adjacency matrices are ready, they can be transformed into the network. The function \texttt{functionalNetwork()} generates the network and plots it:

> functionalNetwork(adjMat)

![Functional Network](image)

By setting the parameter \texttt{PlotType}="dynamic" instead of a static plot, it will create an interactive one.

> functionalNetwork(adjMat, plotType="dynamic")

By default, \texttt{functionalNetwork()} only plots the network. In order to obtain the igraph object with the actual graph/network, set the parameter \texttt{returnGraph=TRUE}.

> fNw <- functionalNetwork(adjMat, returnGraph=TRUE, plotType="none")
Since the returned network is an *iGraph* object, it can be used or analyzed as such:

```r
> library(igraph)
> fNw

IGRAPH UNW- 59 362 --
+ attr: name (v/c), weight (e/n)
```

```r
> str(fNw)
> vcount(fNw)
[1] 59

> ecount(fNw)
[1] 362
```

```r
> sort(betweenness(fNw), decreasing=TRUE)[1:30]
GLC7  APC2  PTA1  SGF11  RPN10  SGF73  
1082.0000000 780.8880952 343.6500000 296.6404762 281.3571429 270.3571429

RPN6  SPT7  YSH1  RNA14  LSM8  DOC1  
228.9857143 212.8928571 191.2750000 129.2857143 111.5500000 108.5523810

SGF29  LSM5  KEM1  RPN3  RPT6  CFT1  
93.5833333 85.4690476 75.2500000 58.8023810 33.9071429 9.1250000

CFT2  FIP1  PFS2  LSM3  LSM7  SPT8  
9.1250000 9.1250000 9.1250000 1.3190476 1.3190476 0.3333333

LSM2  LSM4  LSM6  MPE1  PAP1  YTH1  
0.2857143 0.2857143 0.2857143 0.1250000 0.1250000 0.1250000
```

Or transformed into other formats...

```r
> igraph.to.graphNEL(fNw)

A graphNEL graph with undirected edges
Number of Nodes = 59
Number of Edges = 362
```

In dynamic plots (tkp plot) it is not possible to draw the metagroup background. However, it is possible to use the `vLayout` argument to save the current 'dynamic' layout into an static plot:

```r
> functionalNetwork(adjMatFiltered, plotType="dynamic")

> # Modify the layout...
> saveLayout <- tkplot.getcoords(1)  # tkp.id (ID of the tkplot window)
> functionalNetwork(adjMatFiltered, vLayout=saveLayout)
```

In addition to the functional network, when there are nodes in several metagroups, the *intersection network* can also be plotted. This plot is a simplified functional network, containing only the nodes in several metagroups and the metagroups they belong to. The 'metagroup nodes' are the coloured nodes, which can be seen as a cluster of all the genes/proteins that belong only to that metagroup. By default, the intersection network is plotted automatically when requesting an interactive plot, but it can also be plotted by itself:
The terms in each metagroup can be seen in the raw results data frame or using `getTerms()`:

```r
> getTerms(results)[1]
```

```r
$`Metagroup 1`
Terms
[1,] "MRNA cleavage and polyadenylation specificity factor complex (CC)"
[2,] "MRNA polyadenylation (BP)"
[3,] "MRNA cleavage (BP)"
[4,] "MRNA cleavage factor complex (CC)"
[5,] "Termination of RNA polymerase II transcription, poly(A)-coupled (BP)"
[6,] "Termination of RNA polymerase II transcription, poly(A)-independent (BP)"
[7,] "MRNA surveillance pathway"
```

4.5 Example using DAVID Functional Annotation Clustering Tool

To generate the functional network with DAVID, the workflow is the same as with GeneTerm Linker. In this example we will use yeast genes from 3 metabolic pathways:
ergosterol biosynthesis, glycolysis/gluconeogenesis and tryptophan and tyrosine biosynthesis and degradation.

Option A) Generating the report automatically (getting an initial overview of the networks):

```r
> genesMetabolism <- c("CDC19", "ENO1", "ENO2", "FBA1", "FBP1", "GPM1", + "MAE1", "MDH1", "MDH2", "MDH3", "PCK1", "PFK1", "PFK2", "PGI1", "PGK1", + "PYC1", "PYC2", "PYK2", "TDH1", "TDH2", "TDH3", "TPI1", "ADH1", "ADH2", + "ADH3", "ADH4", "ADH5", "AR010", "AR07", "AR08", "AR09", "BNA1", "BNA2", + "BNA4", "BNA5", "BNA6", "BNA7", "PDC1", "PDC5", "PDC6", "SFA1", "TRP1", + "TRP2", "TRP3", "TRP4", "TRP5", "TYR1", "ERG1", "ERG11", "ERG2", + "ERG20", "ERG24", "ERG25", "ERG26", "ERG27", "ERG3", "ERG4", "ERG5", + "ERG6", "ERG7", "ERG9")

> report_david(genesMetabolism)
```

Or, if the analysis has already been performed at the website (see Section 3). This option is recommended for long gene lists (see `?report_david()` for details):

```r
> report_david(inputFileLocation="http://david... .txt")
```

DAVID usually provides many overlapping clusters. In order to simplify the results or explore the overlap between specific clusters, see the following example.

Option B) Executing the steps on the workflow one by one (i.e. to personalize the network):

```r
> txtFile <- query_david(genesMetabolism)
> results <- getResults_david(txtFile, jobName="David_Metabolism")
> adjMat <- adjMatrix(results$geneTermSets)
> functionalNetwork(adjMat)
```

To see the terms each cluster includes, use `getTerms()`:

```r
> getTerms(results)[2]
```

```
$`Cluster 2`  
Terms  
[1,] "Oxidation reduction"  
[2,] "Oxidoreductase"  
[3,] "Nad"
```

Since DAVID usually provides many overlapping clusters, it is useful to filter the results or select only a few clusters to plot. The filtering can be used to plot the top clusters based on their Enrichment score, the number of genes they contain, or any other parameter we might want to use:

a) Filtering based on a **parameter**:

```r
> colnames(results$clusters)
```
> quantile(results$clusters$EnrichmentScore, c(0.5, 0.75, 0.9))

 50% 75% 90%
3.10836000 7.27033330 10.25309930

> adjMatFiltered <- adjMatrix(results$geneTermSets,
+ attribute=results$clusters[, "EnrichmentScore", drop=FALSE], threshold=7)
> functionalNetwork(adjMatFiltered)

b) Inverse filtering/selection of lowest values. I.e. Overlap between clusters with least genes:

> quantile(results$clusters$nGenes, c(0.10, 0.25, 0.5, 0.75, 0.9))
> adjMatFiltered <- adjMatrix(results$geneTermSets,
+ attribute=-(results$clusters[, "nGenes", drop=FALSE]), threshold=-10)
> functionalNetwork(adjMatFiltered)

To use any other parameter, add it as column to the results$clusters data frame. Then use it to create the adjacency matrix and the network.

c) Selecting clusters with specific terms or keywords:

> keywords <- c("glycolysis", "ergosterol")
> selectedClusters <- sapply(getTerms(results),
+ function(x)
+ any(grep(paste("(", paste(keywords, collapse="|") ,")",sep=""), tolower(x))))
> results$clusters <- cbind(results$clusters,
+ selectedKeywords=as.numeric(selectedClusters))
> adjMatSelectedGroups <- adjMatrix(results$geneTermSets,
+ attribute=results$clusters[, "selectedKeywords", drop=FALSE], threshold=1)
> functionalNetwork(adjMatSelectedGroups)

d) Selection of specific groups. I.e. Selecting clusters 1, 3 and 8

> selectedClusters <- rep(FALSE, nrow(results$clusters))
> selectedClusters[c(1,3,8)] <- TRUE
> results$clusters <- cbind(results$clusters,
+ selectedClusters=as.numeric(selectedClusters))
> adjMatSelectedGroups <- adjMatrix(results$geneTermSets,
+ attribute=results$clusters[, "selectedClusters", drop=FALSE], threshold=1)
> functionalNetwork(adjMatSelectedGroups)
References

[1] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.

[2] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13.

[3] Fontanillo C, Nogales-Cadenas R, Pascual-Montano A, De Las Rivas J (2011) Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms. PLoS ONE 6(9): e24289. doi:10.1371/journal.pone.0024289
Automatic HTML report generated by FGNet:

Functional Gene Network

Parameters of the query:

Server/Tool: http://gtlinker.cnb.csic.es

Raw results from functional enrichment and clustering (.txt): [Global overview] [Mg1] [Mg2] [Mg3] [Mg4] [Mg5] [Mg6] [Mg7] [Mg8] [Mg9]

Job ID: 1639610

Results:

- **Number of metagroups:** 9
- **Number of genes included in all metagroups:** 77
- **Filtered metagroups (Silhouette Width < 0.2):** Mg1, Mg3, Mg4
- **Number of genes included in non-filtered metagroups:** 49

Functional network in other formats: [iGraph]

Simplified metagroup-terms table (shown below as legend): [Legend]

Metagroups (sorted by Silhouette):

Metagroup	Silhouette	P-value	Num genes
Metagroup 8	0.68	3e-06	7
Cell adhesion molecules (CAMs)	Kegg		
Metagroup 2	0.53	3.6e-12	13
Voltage-gated ion channel activity (MF)	GO		
Voltage-gated potassium channel activity (MF)	GO		
Voltage-gated potassium channel complex (CC)	GO		
Metagroup 5
Silhouette: 0.37
P-value: 3.2e-08
Num genes: 11
Axon (CC) GO
Cell projection (CC)

Metagroup 6
Silhouette: 0.36
P-value: 2.8e-07
Num genes: 13
Dendrite (CC) GO
Neuronal cell body (CC) GO
Cell surface (CC)

Metagroup 7
Silhouette: 0.28
P-value: 2.1e-06
Num genes: 9
Postsynaptic membrane (CC) GO
Synapse (CC) GO
Neuroactive ligand-receptor interaction Kegg [GO terms tree]

Metagroup 9
Silhouette: 0.27
P-value: 0.00035
Num genes: 12
Enzyme binding (MF) GO
Microtubule (CC) GO
Alzheimer's disease Kegg [GO terms tree]
MAPK signaling pathway Kegg [GO terms tree]

Distances between Metagroups:

Distance matrix:

	Mg8	Mg2	Mg7	Mg9	Mg5	Mg6
Mg8	0	0.95	0.93	1	1	0.95
Mg2	0.95	0	0.91	0.91	0.96	
Mg7	0.93	1	0	0.9	0.9	
Mg9	1	0.91	0.91	0.91	0.96	
Mg5	1	0.91	0	0.9	0.86	
Mg6	0.95	0.96	0.91	0.91	0.86	0