Hornet 40: Network dataset of geographically placed honeypots

Veronica Valeros*, Sebastian Garcia

Artificial Intelligence Center, Department of Computer Science, FEL, Czech Technical University in Prague, Czech Republic

Abstract

Deception technologies, and honeypots in particular, have been used for decades to understand how cyber attacks and attackers work. A myriad of factors impact the effectiveness of a honeypot. However, very few is known about the impact of the geographical location of honeypots on the amount and type of attacks. Hornet 40 is the first dataset designed to help understand how the geolocation of honeypots may impact the inflow of network attacks. The data consists of network flows in binary and text format, with up to 118 features, including 480 bytes of the content of each flow. They were created using the Argus flow collector. The passive honeypots are IP addresses connected to the Internet and do not have any honeypot software running, so attacks are not interactive. The data was collected from identically configured honeypot servers in eight locations: Amsterdam, Bangalore, Frankfurt, London, New York, San Francisco, Singapore, and Toronto. The dataset contains over 4.7 million network flows collected during forty days throughout April, May, and June 2021.

* Corresponding author.

E-mail address: valerver@fel.cvut.cz (V. Valeros).

Social media: (V. Valeros), (S. Garcia)

https://doi.org/10.1016/j.dib.2022.107795

2352-3409/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Computer Science
Specific subject area	Honeypots network cybersecurity attacks
Type of data	Binary
	Table
	Figure
How the data were acquired	The network flows were collected by running Argus network flow collectors [1] on the network interfaces of geographically distributed cloud servers.
Data format	Raw
	Filtered
Parameters for data collection	Argus network traffic flow collectors run directly on the network interface of each honeypot and store all the received traffic into files. Administration connections were filtered out by deleting the traffic with the IP addresses used for administration.
Description of data collection	The network flow data was collected for forty days, from April 23rd, 2021 to June 1st, 2021, using the Argus network traffic flow collector previously installed in each honeypot. Argus captures all the packets on the network interfaces of the honeypots to generate the flows. During this time, approximately 4.7 million flows were captured in total. The network connections used to administer the honeypots were filtered out from the dataset.
Data source location	The data was collected from eight cloud servers used exclusively as honeypots from the Digital Ocean [2] cloud provider. The locations were Amsterdam, Bangalore, Frankfurt, London, New York, San Francisco, Singapore, and Toronto.
Data accessibility	The Hornet 40 dataset was uploaded to the Mendeley Data repository.
	Data identification number: 10.17632/tcfzkbpw46
	Direct URL to data: http://dx.doi.org/10.17632/tcfzkbpw46

Value of the Data

- The Hornet 40 dataset contains a unique collection of network flows, considered attacks from geographically distributed honeypots. It is useful for statistical and behavioral analysis of identically configured honeypots located in different geographical locations and regions.
- The data can benefit security practitioners, machine learning researchers, and statisticians working on network analysis, cyber security, or threat intelligence. It may also benefit network providers and antivirus companies. Data can be used to track attackers, to understand their origin, to understand changes in attacks patterns.
- The large amount of network flows can be used to evaluate and develop better attack detection mechanisms.
- The geography factor can be further used to evaluate better location placement of servers to reduce the number of attacks received by production servers.

1. Data Description

The Hornet 40 [3] dataset contains forty days of raw flow data, captured from eight cloud Linux passive honeypot servers. In this paper ‘raw flow data’ refers to network flows generated by a network flow collector from raw network data. Raw network data are the packets in the network.

Each honeypot was located in a different city in the regions of North America, Asia, and Europe. The cities were chosen from the available locations by the cloud provider Digital Ocean.
[2]. No honeypot software was running on the Linux servers, but each IP address received connections from the Internet.

The raw flow data was captured using the Argus network flow collector from April 23rd, 2021 to June 1st, 2021. The dataset contains a total of 4,758,657 bidirectional flows, generated by a total of 266,678 unique source IP addresses. A bidirectional network flow is an aggregation of features of all the packets in a network connection. It aggregates packets from both directions: from source IP to destination IP, and from destination IP to source IP.

The Argus flows have 118 features including 480 bytes of the content of the connection in both directions. Argus generates one binary flow file per day per honeypot. These binary files contain all the flows for that day. From this binary flow file, two more ASCII files were exported in CSV format, one with NetFlow v5 features, and other with up to 118 Argus features.

The Hornet 40 dataset consists of three main groups of files: one for the binary bidirectional Argus files (biargus), one for the ASCII files with NetFlow v5 features, and one for the ASCII files extended with up to 118 Argus features. Each of these groups is separated per honeypot, each separation per honeypot containing 40 files, one per day. The folders and file structure of the Hornet 40 dataset is as follows:

- **hornet40-biargus**
 - Honeypot-Cloud-DigitalOcean-Geo-1: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-2: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-3: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-4: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-5: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-6: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-7: Has 40 binary flow files
 - Honeypot-Cloud-DigitalOcean-Geo-8: Has 40 binary flow files

- **hornet40-netflow-v5**
 - Honeypot-Cloud-DigitalOcean-Geo-1: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-2: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-3: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-4: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-5: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-6: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-7: Has 40 ASCII files with NetFlow v5 features
 - Honeypot-Cloud-DigitalOcean-Geo-8: Has 40 ASCII files with NetFlow v5 features

- **hornet40-netflow-extended**
 - Honeypot-Cloud-DigitalOcean-Geo-1: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-2: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-3: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-4: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-5: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-6: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-7: Has 40 ASCII files with 118 flow features
 - Honeypot-Cloud-DigitalOcean-Geo-8: Has 40 ASCII files with 118 flow features

All source IP addresses (from now on Src IPs) communicating with the honeypots are considered attacking IPs, due to one of the definitions of honeypots: since a honeypot is not an authorized production service, nobody should connect to it, and therefore all connections are considered attacks [4]. The main difficulty of this definition is how to consider the scanning activities of companies and organizations mapping the Internet for probable benign purposes. In this paper we still consider these benign scans as attacks, since (i) they are unsolicited, or (ii) the data collected may be sold, or (iii) used by attackers later, or (iv) use in marketing campaigns and advertising. Moreover, it is not technically feasible to filter out some of these scans based on organizations names or IP ranges, especially since many scans may be done from shared cloud providers.
The Hornet 40 dataset contains a total of 4,758,657 network flows, containing 11,794,754 packets and 1,254,838,795 bytes, originating from 266,678 unique Src IPs. Table 1 provides a general overview of the Hornet 40 dataset per honeypot, including its location, the total unique source IPs, the total flows, the total bytes, and the total packets. Table 2 compares the number of connections per network protocol per honeypot.

To understand how the raw flow data is distributed in time, Fig. 1 shows the hourly traffic distribution per honeypot during the duration of the capture. The number of flows is displayed in logarithmic scale.

![Fig. 1. Distribution of the number of flows per hour per scenario in logarithmic scale.](image-url)

Table 1
Hornet 40 dataset overview per honeypot server.

Honeypot Name	City	Amount Unique Src IPs	Amount Flows	Amount Bytes	Amount Packets
Honeypot-Cloud-DigitalOcean-Geo-1	Amsterdam	36,441	347,195	554,894,141	2,052,308
Honeypot-Cloud-DigitalOcean-Geo-2	Bangalore	59,103	444,007	86,173,556	1,244,019
Honeypot-Cloud-DigitalOcean-Geo-3	Frankfurt	83,254	1,399,437	215,631,133	2,023,323
Honeypot-Cloud-DigitalOcean-Geo-4	London	60,273	1,199,306	146,574,789	2,565,162
Honeypot-Cloud-DigitalOcean-Geo-5	New York	48,967	298,851	57,456,984	927,028
Honeypot-Cloud-DigitalOcean-Geo-6	San Francisco	41,478	308,829	48,286,398	961,555
Honeypot-Cloud-DigitalOcean-Geo-7	Singapore	71,891	352,572	63,369,397	961,555
Honeypot-Cloud-DigitalOcean-Geo-8	Toronto	52,824	438,260	82,452,397	1,230,072

Table 2
Hornet 40 dataset comparison of number of flows by protocol and honeypot.

Honeypot Name	TCP	UDP	ICMP	ARP	SCTP	UDT
Honeypot-Cloud-DigitalOcean-Geo-1	310,273	18,671	16,960	1,284	3	1
Honeypot-Cloud-DigitalOcean-Geo-2	395,123	25,187	22,408	1,284	2	2
Honeypot-Cloud-DigitalOcean-Geo-3	324,677	1,057,897	15,558	1,287	2	15
Honeypot-Cloud-DigitalOcean-Geo-4	1,130,134	17,585	20,499	1,284	2	2
Honeypot-Cloud-DigitalOcean-Geo-5	270,509	16,065	10,985	1,289	2	1
Honeypot-Cloud-DigitalOcean-Geo-6	273,000	15,418	19,130	1,279	2	0
Honeypot-Cloud-DigitalOcean-Geo-7	303,422	25,772	22,083	1,287	5	2
Honeypot-Cloud-DigitalOcean-Geo-8	406,043	16,043	14,885	1,284	2	1
1.1. Argus binary network flows

The raw flow data capture on the network interface of each honeypot was performed using the Argus network flow system [1] version 3.0.8.2. Argus stores raw flow data in a binary format that includes 118 features (e.g., total amount of bytes), and the first 480 bytes of the application content in each direction in the connection (to the honeypot, and from the honeypot). The number of features included in the binary Argus will change depending on the Argus version. These application content bytes are gathered by concatenating the content of the packets on each direction of each connection, until reaching 480 bytes. The full list of features is described in Table 3. The binary format is highly convenient due to its high compression and thus low final size. The binary files can be read and processed using Argus client tools to generate any desired output.

The Hornet 40 dataset contains one file for the Argus flows, called hornet40-biargus.tar.gz that consists of eight folders, one per honeypot, each containing 40 Argus binary flow files with all the 118 features, and the 480 bytes in both directions.

1.2. ASCII flows using NetFlow v5 features

The Argus binary flow files were processed to generate flow files compatible with the NetFlow v5 standard [5]. This format is widely used, allowing to easily use and analyze data in CSV format. The NetFlow file is a format transformation from the original Argus file.

The Hornet 40 dataset contains one file, called hornet40-netflow-v5.tar.gz, that includes all the flows in the eight scenarios, and for each flow, it has the following features: Start-Time, Dur, Proto, SrcAddr, Sport, Dir, DstAddr, Dport, State, sTos, dTos, TotPkts, TotBytes, SrcBytes, and SrcPktts. These features are described in Table 3.

1.3. ASCII flows using Argus features

The Argus binary flow files were processed to generate files compatible with the NetFlow standard but with an extended number of features. These ASCII extended file are a format transformation from the original Argus file.

The Hornet 40 dataset contains one file for the extended flows, called hornet40-netflow-extended.tar.gz, that includes all the flows in the eight scenarios, and for each flow, it has all the 118 features described in Table 3.

1.4. Network features

The complete list of the 118 features in the biargus and flow extended files of the Hornet 40 dataset is shown in Table 3.

2. Experimental design, materials and methods

The dataset was collected from cloud server instances. The cloud server provider chosen for this dataset was Digital Ocean [2]. All cloud servers, have the same technical specifications:

- Operating System: Ubuntu 20.04LTS
- Capacity: 1GB / 1 Intel CPU
- Storage: 25 GB NVMe SSDs
- Transfer capacity: 1000 GB transfer
Table 3
Full list of network features per flow as captured by Argus network collector tool. The Ra field is the name of the field according to the Argus Ra tool.

Attribute	Ra Field	Attribute Description
StartTime	stime	record start time
Dur	dur	record total duration
Proto	proto	transaction protocol
SrcAddr	saddr	source IP address
Sport	sport	source port number
Dir	dir	direction of transaction
DstAddr	daddr	destination IP address
Dport	dport	destination port number
State	state	transaction state
sTos	stosv	source TOS (type of service) byte value
dTos	dos	destination TOS (type of service) byte value
TotPkts	pkts	total transaction packet count
TotBytes	bytes	total transaction bytes
SrcBytes	sbytes	source to destination transaction bytes
SrcPkts	spkts	source to destination packet count
Srcclid	scrid	argus source identifier
LastTime	ltime	record last time
Trans	trans	aggregation record count
Flgs	fflags	flow state flags seen in transaction
Seq	seq	argus sequence number
StdDev	stddev	standard deviation of aggregated duration times
SrcMac	smac	source MAC addr
DstMac	dmac	destination MAC addr
sDSb	sdsb	source diff serve byte (Differentiated Services) value
dDSb	ddsb	destination diff serve byte (Differentiated Services) value
sCo	sco	source IP address country code
dCo	dco	destination IP address country code
sTtl	sttl	source to destination TTL value
dTtl	dttl	destination to source TTL value
sHops	shops	estimate of number of IP hops from src to this point
dHops	dhops	estimate of number of IP hops from dst to this point
slpld	sipid	source IP identifier
dlpld	dipid	destination IP identifier
sMpls	smpls	source MPLS identifier
dMpls	dmpls	destination MPLS identifier
DstBytes	dbbytes	destination to source transaction bytes
TotAppByte	aabytes	total application bytes
SAPBytes	sappbytes	source to destination application bytes
DAppBytes	dappbytes	destination to source application bytes
Load	load	bits per second
SrcLoad	sload	source bits per second
Dstload	dload	destination bits per second
Loss	loss	pkts retransmitted or dropped
SrcLoss	sloss	source pkts retransmitted or dropped
DstLoss	dloss	destination pkts retransmitted or dropped
pLoss	ploss	percent pkts retransmitted or dropped
Rate	rate	pkts per second
SrcRate	srate	source pkts per second
DstRate	drate	destination pkts per second
SnltPkt	sintpkt	source interpacket arrival time (mSec)
SnltPktAct	sintpktact	source active interpacket arrival time (mSec)
SnltPktIdl	sintpktidl	source idle interpacket arrival time (mSec)
DnlntPkt	dinkpkt	destination interpacket arrival time (mSec)
DnlntPktAct	dinkpktact	destination active interpacket arrival time (mSec)
DnlntPktIdl	dinkpktidl	destination idle interpacket arrival time (mSec)
Srcjtter	sjit	source jitter (mSec)
SrcjitAct	sjitact	source active jitter (mSec)
Dstjitter	djit	destination jitter (mSec)
DstjitAct	djitact	destination active jitter (mSec)

(continued on next page)
Attribute	Ra Field	Attribute Description
srcUdata	suser	source user data buffer
dstUdata	duser	destination user data buffer
SrcWin	swin	source TCP window advertisement
DstWin	dwin	destination TCP window advertisement
sVlan	svlan	source VLAN identifier
dVlan	dvlan	destination VLAN identifier
sVid	svid	source VLAN identifier
dVid	dvid	destination VLAN identifier
sVpri	svpri	source VLAN priority
dVpri	dvpri	destination VLAN priority
SRange	sring	start time for the filter timerange
SrcTCPBase	stcpb	source TCP base sequence number
DstTCPBase	dtcpb	destination TCP base sequence number
TcpRtt	tcprr	TCP connection setup round-trip time ('synack' plus 'ackdat')
SynAck	synack	TCP connection setup time, time between SYN and SYN_ACK packets
AckDat	ackdat	TCP connection setup time, time between SYN_ACK and ACK packets
SrcStartTime	sstime	source start time
SrcLastTime	stime	source last time
SrcDur	sdur	source duration
DstStartTime	dttime	destination start time
DstLastTime	dtltime	destination last time
DstDur	ddur	destination duration
DstPkts	dpkts	destination to source packet count
pSrcLoss	sploss	percent source pkts retransmitted or dropped
pDstLoss	dploss	percent destination pkts retransmitted or dropped
sEnc	senc	source encoding
dEnc	denc	destination encoding
SIntPktsMax	sintpktmax	maximum source interpacket arrival time
SIntPktsMin	sintpktmin	minimum source interpacket arrival time
DIntPktsMax	dintpktmax	maximum destination interpacket arrival time
DIntPktsMin	dintpktmin	minimum destination interpacket arrival time
SIPActMax	sintpktactmax	source longest active interpacket arrival time
SIPActMin	sintpktactmin	source shortest active interpacket arrival time
DIPActMax	dintpktactmax	destination longest active interpacket arrival time
DIPActMin	dintpktactmin	destination shortest active interpacket arrival time
SIPIdlMax	sintpktidlmax	source longest inactive interpacket arrival time
SIPIdlMin	sintpktidlmin	source shortest inactive interpacket arrival time
DIPIdlMax	dintpktidlmax	destination longest inactive interpacket arrival time
DIPIdlMin	dintpktidlmin	destination shortest inactive interpacket arrival time
SrcJitIdl	sjitidl	source inactive jitter time
DstJitIdl	djitidl	destination inactive jitter time
dsPkts	dspkts	delta source packets
ddPkts	ddpkts	delta destination packets
dsBytes	dsbytes	delta source bytes
ddBytes	ddbytes	delta destination bytes
pdsPkt	pdspkts	percent delta source packets
pddPkt	pddpkts	percent delta destination packets
pdsByte	pdsbytes	percent delta source bytes
pddByte	pddbytes	percent destination bytes
tcpext	(null)	TCP extensions
JDelay	jdelay	join delay
LDelay	ldelay	leave delay
Bins	bins	
Bin	bin	
Inode	inode	ICMP intermediate node
sMaxPktSz	smaxsz	maximum packet size for traffic transmitted by the source
sMinPktSz	sminsiz	minimum packet size for traffic transmitted by the source
dMaxPktSz	dmaxsz	maximum packet size for traffic transmitted by the destination
dMinPktSz	dminsiz	minimum packet size for traffic transmitted by the destination
The honeypots were created within the same hour of the same day. Once created, the servers were configured simultaneously using the open-source tools parallel-ssh and parallel-scp. Each honeypot has its own public IP address assigned, which has not changed during the data capture.

The steps to create and configure the honeypots were as follows:

- Create one honeypot per available region in Digital Ocean with the technical specifications listed above.
- Store the list of public IPs from the honeypots in a text file named hosts.
- Update the software repository of all honeypots simultaneously using parallel-ssh: pssh -h hosts -l root -o output/ “apt update”, where hosts contains the list of IP addresses of the honeypots, -l root specifies the SSH user name, -o output/ the folder where to store the results, and “apt update” is the command that will be executed in parallel in the honeypots.
- Install the Argus network collector tool: pssh -h hosts -l root -o output/ “apt install -yq argus-client argus-server”. The Argus version 3.0.8.2 was used.
- Upload a new SSH configuration of all honeypots. The updated configuration moves the service to a non-standard port (See Subsection SSH Configuration) to avoid attacks on a real service: pscp -h root sshd_config /etc/ssh/sshd_config
- Restart the SSH server to load the new SSH configuration: pssh -h hosts -l root -o output/ “/etc/init.d/ssh restart”
- Update the hosts file to specify the new SSH port to use, e.g.: 0.0.0.0:902
- Upload a common Argus configuration (See Subsection Argus Configuration) to each honeypot: pscp -h hosts -l root argus.conf /etc/argus.conf
- Create a folder to store the raw flow data: pssh -h hosts -l root -o output/ “mkdir /root/dataset”
- Start the Argus network collector for all honeypots on the network interface eth0: pssh -h hosts -l root -o output/ “argus -F /etc/argus.conf -i eth0”
- Start the Argus service rasplit to store the network data received by Argus: pssh -h hosts -l root -o output/ “rasplit -S 127.0.0.1:900 -M time 1h -w /root/dataset/%Y/%m/%d/do-sensor.%H.%M.%S.biargus”, where -S indicates the Argus server and port where to retrieve data from, -M for splitting the collection by time every one hour, and -w indicates where to store the data and how to name the files.

The Argus and rasplit tools produce raw flow data files from each honeypot. The binary raw flow data can be read using the ra tool provided in the Argus-clients suite. The command to read the files is:

```
ra -F /etc/ra.conf -n -Z b -r 2021-04-23_honeypot-cloud-digitalocean-geo-1.biargus -
```

where -F specifies the configuration file to use (see Subsection Ra Configuration), -n avoids resolving port numbers to service names, -Z modifies the status field to show TCP flag values, -r specifies which file to read from, and - sends the output to the standard output in the terminal.

2.1. SSH configuration for administration of the honeypots

The honeypots are configured to be remotely administered using the SSH protocol. The port 902/TCP is used for the SSH server. The SSH server configuration file used, called sshd_config, is shown below:

```
AcceptEnv LANG LC_*
ChallengeResponseAuthentication no
Include /etc/ssh/sshd_config.d/*.conf
PasswordAuthentication no
```
PermitRootLogin yes
Port 902
PrintMotd no
Subsystem sftp/usr/lib/openssh/sftp-server
UsePAM yes
X11Forwarding yes

2.2. Argus configuration

The Argus servers in all honeypots used the same configuration for the collection of network data. The file used was argus.conf, and its content is shown below:

ARGUS_FLOW_TYPE="Bidirectional"
ARGUS_FLOW_KEY="CLASSIC_5_TUPLE"
ARGUS_ACCESS_PORT=900
ARGUS_INTERFACE=eth0
ARGUS_FLOW_STATUS_INTERVAL=3600
ARGUS_MAR_STATUS_INTERVAL=60
ARGUS_GENERATE_RESPONSE_TIME_DATA = yes
ARGUS_GENERATE_PACKET_SIZE=yes
ARGUS_GENERATE_JITTER_DATA=yes
ARGUS_GENERATE_MAC_DATA=yes
ARGUS_GENERATE_APPBYTE_METRIC=yes
ARGUS_GENERATE_TCP_PERF_METRIC=yes
ARGUS_GENERATE_BIDIRECTIONAL_TIMESTAMPS = yes
ARGUS_CAPTURE_DATA_LEN=480
ARGUS_BIND_IP="::1,127.0.0.1"

2.3. Ra configuration

The following Ra configuration can be used to read the binary flow files and export all the attributes of Argus:

RA_PRINT_LABELS=0
RA_FIELD_DELIMITER=',,'
RA_USEC_PRECISION=6
RA_PRINT_NAMES=0
RA_TIME_FORMAT="%Y/%m/%d %T.%f"
RA_FIELDSpecifier= srcid seq stime dur sstime sltime sdur
dstime dltime ddur srng drng trans flgs avgdur stddev mindur maxdur
saddr dir daddr proto sport dport sco dco stos dtsos dsdbs dsttl
dtl shops dhops dipid dipid pkts dpkts bytes bytes dbytes
appbytes sappbytes dappbytes dappbytes load sload dload rate srate drate
loss slloss dloss plloss dplloss senc denc smac dmac smpls dmpls svlan
dvlan svid dvid svpri dvpri sintpkt dintpkt sintpktact dintpktact
sintpktidl dintpktidl sintpktmax sintpktmin dintpktmax dintpktmin
sintpktactmax dintpktactmin dintpktactmax dintpktactmin dintpktidlmax
sintpktidlim dintpktidlimmax dintpktidlim dinkpktidlim dinkpktidlim
jit sjit djit jitact
sjitact djitact jitated sjitated dinkpktidlim sldelay dldelay bins binnnum
stcpb dtpcb tcprrt synack ackdat inode smaxsz sminsz dmaxsz dminsiz
Ethics Statements

The work did not involve any human subject or animal experiments. The Hornet 40 dataset files were analyzed by more than 50 Antivirus systems in VirusTotal and as of January 2021 it does not trigger any detection.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Author Statement

Veronica Valeros: Conceptualization, Methodology, Data curation, Writing – original draft; Sebastian Garcia: Validation, Writing – review & editing.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary Material

Supplementary material associated with this article can be found online at Mendeley Data at doi:10.17632/tcfzkbpw46, including the data for the Tables 1–3, and Fig. 1.

References

[1] C. Bullard, “OpenArgus”. [Online]. Available: https://openargus.org/. Accessed 5 2021.
[2] Digital Ocean, “DigitalOcean – the developer cloud”, 2011 Digital Ocean. [Online]. Available: https://www.digitalocean.com/. Accessed 5 2021.
[3] V. Valeros, “Hornet 40: network dataset of geographically placed honeypots,” 2021. [Online]. Available: https://data.mendeley.com/datasets/tcfzkbpw46/3.
[4] N. Provos, A virtual honeypot framework, in: Proceedings of the USENIX Security Symposium, 2004.
[5] “Netflow:: Version 5,” 2009. [Online]. Available: https://netflow.caligare.com/netflow_v5.htm. Accessed 5 2021.