The work of the tent fence on the shearing strength in light metal structures

Ildar Valeev1[0000-0003-3907-1714], Gennady Shmelev1[0000-0001-6472-9413], Lenar Khaidarov1[0000-0003-2662-6020] and Anatoliy Antonov1[0000-0001-6750-4172]

1Kazan State University of Architecture and Engineering, Kazan, Russian Federation
E-mail: valeevldar@list.ru

Abstract. Over the past decades, the use of tent fences has increased significantly. Since the application of these materials is gaining great interest in use every year, sufficient experience in the design and research of tent fencing as part of structures has not yet been obtained. For structures with the use of tent fences, the research is aimed at studying the wind impact, and especially the joint work of the frame with the awning, their overall stiffness. Modern regulatory documents do not show a complete picture of the behavior of tent materials when they are included in the work of structural frames, so there is a need to analyze and study their behavior under the influence of wind load.

In this article, the work of the tent fence is considered, as well as a numerical study of the stress-strain state of light metal structures with a tent covering is performed.

Keywords: tent fence, rigidity of the metal frame, fictitious connection, elastic modulus, calculation method, modulus of rigidity.

1 Introduction

The purpose of this work is to develop a simplified method for calculating a light metal frame with tent fences (coverings).

The use of light metal structures [1], such as various tents and canopies, has become widespread relatively recently [2-4]. The presence of serious advantages, both in construction and operation, contributes to the rapid growth of popularity of this type of frame and tent structures. In fact, these structures are a variety of forms of awnings, tents, verandas and canopies [5-6], the key feature of which is their structure, which is based on the use of a strong frame and light coating [7-9]. Due to this structure, the construction is quick to assemble, easy, convenient and safe.

Frame and tent structures are [10-12] made of a metal frame covered with a PVC (polyvinyl chloride) fabric [13]. The frame provides strength and stability of the object [14], and also is able to withstand significant loads. The polyvinyl chloride canopy reliably protects against adverse climatic influences. A special protective coating makes the canvas waterproof, increases its resistance to rot, UV rays, and various contaminants. Modern technologies allow the product to be used in the atmospheric temperature range from -50 °C to +50 °C [5-6]. Prefabricated frame and tent structures are widely used as hangars for vehicles, agricultural structures, warehouses, trade pavilions, sports grounds.

The tent fencing stretched over the metal structure provides reliable protection from any adverse weather conditions: wind gusts, scorching sun, torrential rains, etc. [15-17].

The covering of frame and tent structures is made of frost-resistant and oil-resistant materials, meets all fire safety requirements [18-19], and does not collapse under the influence of UV rays. In
case of mechanical damage, cuts and breaks on the surface of the awning are easily eliminated, because the awning fabric is a multi-layer durable fabric made of synthetic fibers [20].

There are few works devoted to the analysis of loads acting on tent coverings. All types of tent fences are affected by the wind [21], and some are affected by the weight of snow. Therefore, the study of the work of the tent fence [22-26] is a very important task [27-32].

2 Methods

One of the main tasks related to the calculation of tent structures is the numerical description of the properties of fabric materials. According to the results of various experiments and tests, the ability of the fabric to resist longitudinal forces in the warp and weft directions is much greater than in other directions.

It turns out that the influence of shear stiffness in tent fabrics is insignificant.

Previously, in engineering calculations, taking into account various errors and deviations not taken into account in the calculations due to the imperfection of fabric materials, the influence of shifting forces of tent fences was ignored. This simplification was justified when calculating large structures, but when calculating small tents, it makes sense to take shear stiffness into account and take it into account.

In the article Dr.-Ing Robert Hartel reviewed the results of testing of flooring in a system of prefabricated structures based on scaffolding for the impact of horizontal loads in two mutually perpendicular directions.

As a result of cyclic loading, the "force-displacement" diagram is obtained. We also obtained averaged values of the stiffness of imaginary diagonal elements when considering the mechanical model of the structure.
The considered method of accounting for the shear stiffness of the flooring by replacing the actual flooring in the design scheme with an analog in the form of conditional connections with a diagonal lattice can be applied in structures with awning material. Based on the recommendations of the article, we considered a flat system of one cell of a frame-tent structure between two longitudinal frames with a step B and the height of the posts H. We consider only the case of the tent working in the direction along the crossbar (parallel to the plane of the longitudinal cell), considering the crossbar pivotally supported on the posts.

We consider a cross lattice of fictitious connections, since the tent can work for a shift in both directions. However, we take into account the connection that works only for tension with a horizontal load applied in a particular direction (flexible compressed connections lose stability and do not participate in the work). The task is to determine the elastic modulus E of a fictitious connection in order to set it in any software package that implements the finite element method.

For small rotation angles φ (since the displacements off are also small compared to H, B), we can assume that:

$$\Delta l = l - l_0 = f \cos \alpha,$$

where f – the relative displacement of the point A; $\cos \alpha = H/l_0$; $l_0 = \sqrt{H^2 + B^2}$ – initial geometric length of an unreformed fictitious connection.

Then the relative longitudinal strain of the fictitious connection corresponding to the displacement of f will be determined by the formula:

$$\varepsilon = \frac{\Delta l}{l} = \frac{f \cos \alpha}{l} = \frac{\sigma}{E} = \frac{N}{EA}.$$

The force that occurs in a fictitious connection from the load F:

$$N = \frac{F}{\cos \alpha}.$$

The linear modulus of elasticity is equal to:

$$c = \frac{EA}{l} = \frac{Nl}{\Delta l} = \frac{N}{\Delta l} = \frac{F}{f \cdot \cos^2 \alpha}.$$

Thus, the elastic modulus of a fictitious connection is determined by the formula:

$$E = \frac{F \cdot l}{f \cdot \cos^2 \alpha \cdot A}.$$

Thus, a formula was obtained for determining the modulus of rigidity of a fictitious connection:

$$EA = \frac{F \cdot l}{f \cdot \cos^2 \alpha}.$$
Based on the analytical method proposed above for taking into account the shear stiffness of the tent fence under the influence of a horizontal load, the work of the tent fence was modeled in the nonlinear formulation of the problem shown in figure 4.

Then, based on the obtained Eq. (6), the tent was replaced with a fictitious connection, and then the results obtained in the simulation of the tent and in the simulation of the fictitious connection were compared, and equal displacements were obtained. Thus, we can conclude that the proposed method of accounting for the shear stiffness of the awning when it is working on horizontal loads is effective. However, for the parameters for a fictitious connection, it is necessary that its modulus of elasticity depended on the modulus of elasticity of the used tent, therefore, to determine the general formula the variations of elastic modulus were considered: 1) from the angle α; 2) from the length l. To do this, the calculations in LIRA-SAPR were carried out, after which the following conclusions were made:

1. The inverse linear dependence of the elastic modulus of a fictitious connection on the cosine of the angle of inclination of the connection itself is observed;
2. An almost linear dependence of the elastic modulus of a fictitious connection on its length is observed.

Figure 5. Graphs of the dependence of the elastic modulus of a fictitious connection on the cosine of the angle of inclination of the connection: a) at $F = 5$ kN; b) at $F = 10$ kN.
Figure 6. Graphs of the dependence of the elastic modulus of a fictitious connection on the length of the fictitious connection: a) at $F = 5$ kN; b) at $F = 10$ kN.

However, for more accurate calculations, it is necessary that both parameters (the length of the fictitious connection l and the angle of inclination α) are included in the generalized formula. Based on the above conclusions, the following formula was obtained:

$$E = K \cdot E_{\text{tent}} \cdot l / \cos^2 \alpha.$$ (7)

For more accurate calculations, you need to perform linear interpolation and get a more accurate coefficient K, some of which can be selected from the table. 1:

α	F, kN	2.5	5	7.5	10
30	0.015	0.014	0.014	0.014	
37	0.015	0.014	0.013	0.013	
45	0.013	0.012	0.012	0.012	
60	0.008	0.007	0.007	0.007	

Table 1. Numerical values of the equalizing coefficient T.

3 Results and discussion

To confirm the obtained method, the design of the pavilion with a span of 10 m with a tent cover and a fictitious connection was considered. In this example we used a tent cover with an elastic modulus of 300 MPa. The results of the movements were almost identical.

Figure 7. Calculation scheme a) with a tent, b) with fictitious connections.

To identify the proportion of tent inclusion in real structures, we considered the simultaneous operation of schemes with existing flexible connections (figure 8) and schemes with a tent cover,
which was replaced with fictitious connections according to the obtained method (figure 9). As a result of the calculation, the incoming share of the tent was 19%.

4 Conclusions
Using the obtained method, a qualitative task for calculating tent structures was implemented, on the basis of which the following conclusions and recommendations were made:

1) A general formula for determining the elastic modulus of a fictitious connection was proposed:

\[E = K \cdot \frac{E_{\text{tent}} \cdot l}{\cos^2 \alpha} \]

2) For structures small in plan, it is advisable to use flexible connections, and when taking into account the shear stiffness of the tent fence in the longitudinal direction, it is entirely possible to increase the rigidity of the structure by 19%.

References
[1] Martinez P, Ahmad R, Al-Hussein M 2019 A vision-based system for pre-inspection of steel frame manufacturing Automation in Construction, vol. 97, pp 151-163. doi: 10.1016/j.autcon.2018.10.021
[2] Burke D 2007 Architects and fabric: achieving greater material performance Ind. Fabric Prod. Rev.
[3] Bhattacharyaa K, DeSimoneb A, Hanec K F, Jamesc R D, Palmstromd C J 1999 Tents and tunnels on martensitic films Materials Science and Engineering: A, vol. 273-275, pp 685-689. doi: 10.1016/S0921-5093(99)00397-4
[4] Berger H 1996 Light structures, Structures of Light. The Art and Engineering of Tensile
Architecture Birkhauser-Verlag fur Architektur, Basel.

[5] Eltahan E 2018 Structural parameters affecting tear strength of the fabrics tents *Alexandria Engineering Journal*, vol. 57, issue 1, pp 97-105. doi: 10.1016/j.aej.2016.12.005

[6] Messinger A, Flemin R, Csilla Z, Christopher P 2001 Architectural Fabric Structures: Exploration, Modeling, and Implementation *NTC Research Project*, October 1.

[7] Moritz K 2000 *Membrane Materials in Building*, Detail: Membrane Construction, Munich.

[8] Eremeyev V A, Zubov L M 2008 *Mechanics of Elastic Shells*, Nauka, Moscow.

[9] Novozhilov V V 2010 *Theory of Thin Shells* [The Theory of Thin Shells, St. Petersb. Publishing house, St. Petersburg.

[10] Asefi M, Bahremandi-Tolou M 2019 Design challenges of reciprocal frame structures in *architecture Journal of Building Engineering*, vol. 26. doi: 10.1016/j.jobe.2019.100867

[11] Chiaia B, Barchiesi E, De Biagi V, Placidi L 2019 A novel structural resilience index: Definition and applications to frame structures *Mechanics Research Communications*, vol. 99, pp 52-57. doi: 10.1016/j.mechrescom.2019.03.007

[12] Yan L, Gong J 2019 Development of displacement profiles for direct displacement based seismic design of regular reinforced concrete frame structures *Engineering Structures*, vol. 190, pp 223-237. doi: 10.1016/j.enganstruct.2019.04.015

[13] Vandenberge M 1996 Soft Canopies, Detail in Building, Academy Editions, Singapore.

[14] Fayed S, Basha A, Hamoda A 2019 Shear strengthening of RC beams using aluminum plates: An experimental work *Construction and Building Materials*, vol. 221, pp 122-138. doi: 10.1016/j.conbuildmat.2019.06.068

[15] Dhamija S, Chopra M 2007 Tearing strength of cotton fabrics in relation to certain process and loom parameters, *Indian J. Fibers Text. Res.*, pp 439-445.

[16] Blauwewandrad J, Hoefakker J H 2014 *Structural Shell Analysis*, Springer, Netherlands.

[17] Ambroziak A, Klosowski P 2010 Example of Tension Fabric Structure Analysis, Department of Structural Mechanics and Bridge Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology.

[18] Prete I D, Cefarelli G, Nigro E 2016 Application of criteria for selecting fire scenarios for structures within fire safety engineering approach *Journal of Building Engineering*, vol. 8, pp 208-217. doi: 10.1016/j.jobe.2016.10.010

[19] Chi J-H, Peng P-C 2020 Study of the structural safety assessment of steel bridge subjected in post-fire *Construction and Building Materials*, vol. 247.

[20] Chapelle D, Bathe K J 2011 *The Finite Element Analysis of Shells Fundamentals, Computational Fluid and Solid Mechanics*, Springer, Berlin. doi: 10.1115/1.1760517

[21] Elovengo D, Hirschb A, Kräusele V 2019 Mathematical Model of One and Two-Step Methods Calculation of Thermal Fields and Stress-Strain State of Multilayer Cylindrical Constructions. *Materials Today: Proceedings*, vol. 11, Part 1, pp 494-503.

[22] Belyaev A K, Zinovieva T V, Smirnov K K 2017 Theoretical and experimental studies of the stress-strain state of expansion bellows as elastic shell. *St. Petersburg Polytechnical University Journal: Physics and Mathematics*, vol. 3, issue 1, pp 7-14. doi: 10.1016/j.spjpm.2017.03.003

[23] Tret’yakova T, Wildemanna V 2019 Experimental study of the influence of strain-stress state on the jerky flow in metals and alloys *Procedia Structural Integrity*, vol. 17, pp 906-913. doi: 10.1016/j.prostr.2019.08.121

[24] Motazedian F, Wu Z, Zhang J, Shariat B S, Jiang D, Martyniuk M, Liu Y, Yang H 2019 Determining intrinsic stress and strain state of fibre-textured thin films by X-ray diffraction measurements using combined asymmetrical and Bragg-Brentano configurations, *Materials and Design*, vol. 181. doi: 10.1016/j.matdes.2019.108063

[25] Polivanov A A, Belov A V, Morozova E V 2017 Evaluation of Stress-Strain State of Engineering Structures Subject to Damage in Materials under Creep-Based Simulation. *Procedia Engineering*, vol. 206, pp 1464-1469.
[26] Frishter L, Ivanov P 2016 The Research of Stress-strain State Wall of the Section Gateway Taking Into Account Changes Stiffness Procedia Engineering, vol. 165, pp 1035-1038. doi: 10.1016/j.proeng.2016.11.816

[27] Afshari M J, Gholhaki M 2018 Shear strength degradation of steel plate shear walls with optional located opening Archives of Civil and Mechanical Engineering, vol. 18, pp 1547-1561. doi: 10.1016/j.acme.2018.06.012

[28] Deng M, Ma F, Ye W, Liang X 2018 Investigation of the shear strength of HDC deep beams based on a modified direct strut-and-tie model Construction and Building Materials vol. 172, pp 340-348. doi: 10.1016/j.conbuildmat.2018.03.274

[29] Dahhir M K, Nadir W 2018 A compression field based model to assess the shear strength of concrete beams reinforced with longitudinal FRP bars Construction and Building Materials vol. 191, pp 736-751.

[30] Ahmad S, Bhargava P 2018 Shear Strength Models for Reinforced Concrete Slender Beams: A Comparative Study. Structures, vol. 16, pp 119-128. DOI: 10.1016/j.istruc.2018.09.004

[31] Chen C-C, Lin K-T, Chen Y-J 2018 Behavior and shear strength of steel shape reinforced concrete deep beams Engineering Structures, vol. 175, pp 425-435. doi: 10.1016/j.engstruct.2018.08.045

[32] Ibrahim M M, Aghoury I M, Ibrahim S A-B 2020 Experimental and numerical investigation of ultimate shear strength of unstiffened slender web-tapered steel members Thin-Walled Structures, vol. 148, doi: 10.1016/j.tws.2020.106601

[33] Dr.-Ing. Robert Hertle 2009 Gerustbau-Stabilitat und statischkonstruktive Aspekte. In Dr.-Ing. Robert Hertle.: STAHLBAU KALENDER. Ernst & Sohn Verlag fur Architektur und technische Wissenschaften GmbH & Co. KG, Berlin.

[34] Kayumov R A, Mukhamedova I Z, Khanafiev A G, Tazyukov B F 2017 Methodology for calculating tent coverings News of KGASU. 3, pp 87-97.