Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction

Patil, Pravin; Mishra, Bhupendra; Sheombarsing, Gitanjali; Kurpiewska, Katarzyna; Kalinowska-Tluścik, Justyna; Dömling, Alexander

Published in:
Acs combinatorial science

DOI:
10.1021/acscombsci.7b00137

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Patil, P., Mishra, B., Sheombarsing, G., Kurpiewska, K., Kalinowska-Tucik, J., & Dömling, A. (2018). Library-to-Library Synthesis of Highly Substituted -Aminomethyl Tetrazoles via Ugi Reaction. Acs combinatorial science, 20(2), 70-74. https://doi.org/10.1021/acscombsci.7b00137

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 25-04-2020
Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction

Pravin Patil,† Bhupendra Mishra,† Gitanjali Sheombarsing,† Katarzyna Kurpiewska,‡ Justyna Kalinowska-Tłusćik,‡ and Alexander Dömling*†

†University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
‡Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Biocrystallography Group, Ingardena 3, 30-060 Kraków, Poland

Supporting Information

ABSTRACT: α-Aminomethyl tetrazoles, recently made accessible by an Ugi multicomponent reaction (MCR), were shown to be excellent starting materials for a further Ugi MCR, yielding substituted N-methyl-2-(((1-methyl-1H-tetrazol-5-yl)methyl)amino)acetamides having four points of diversity in a library-to-library approach. The scope and limitations of the two-step sequence was explored by conducting more than 50 reactions. Irrespective of electron-rich and electron-deficient oxo-components and the nature of the isocyanide component, the reactions give excellent yields. Sterically less hindered α-aminomethyl tetrazoles give better yields of in further Ugi MCR. The target scaffold has four points of diversity and is finding applications to fill screening decks for high-throughput screening (HTS) in the European Lead Factory and in structure-based drug design.

KEYWORDS: Ugi reaction, library-to-library approach, high-throughput screening, structure-based drug design, European Lead factory

High-throughput screening (HTS) often yields poor or no results for difficult post-genomic targets, such protein–protein interactions. One potential reason is the overpopulation of certain types of molecular shapes in many pharmaceutical screening libraries, which are often based on the preferential use of certain reactions, such as Suzuki–Miyaura and Buchwald–Hartwig coupling processes. In other words, libraries are often designed with synthetic chemistry in mind rather than oriented toward targets and properties.1 Library generation employs familiar steps incorporating easy-to-functionalize groups (e.g., amine, OH, −CHO) addressed with standard commercial reagents (e.g., acid chlorides, boronic acids, sulfonyl chlorides). Multicomponent reaction chemistry different from this standard library approach in that MCRs build complex scaffolds in one step after which no further functionalization is needed or performed.2 We focus here on the tetrazole functional group, a metabolically stable and drug-like fragment accessible by MCR but largely underrepresented in screening libraries. Some MCR-prepared tetrazole scaffolds are shown in Scheme 1 and have been recently reviewed.3–19

We have recently introduced a Ugi tetrazole variation in which ammonia can be used as an amine component and α-aminomethyl tetrazoles are formed in good yields and diversity.20 To take advantage of the large scope of the reaction, we decided to use the products of the Ugi tetrazole reaction as educts in another Ugi-3CR (Scheme 2), thus perusing a library-to-library approach.

α-Amino monosubstituted methyl tetrazoles can be obtained from aldehydes, whereas α-amino disubstituted methyl tetrazoles are derived from ketones.20,21 To initiate the study, we scaled up few α-amino mono or disubstituted methyl tetrazoles with selected aldehydes and ketone (Table 1). These reactions proceeded at 10−25 mmol scale in the same manner as the previously reported

Received: September 21, 2017
Revised: November 21, 2017
Published: December 7, 2017

Scheme 1. Sixteen Recently Disclosed Mono-, Bi-, Tri-, and Macroyclic Tetrazole Scaffolds Accessible via Multicomponent Reactions

© 2017 American Chemical Society
For the optimization of the reaction conditions, we tested the Ugi three-component reaction (U-3CR) of tert-octyltetrazolo-5-methylamine (A1), p-chlorobenzaldehyde (B1), and benzyl isocyanide (C1) with various Lewis acids, such as Sc(OTf)3, Al(OTf)3, Cu(OTf)3, Zn(OTf)2, ZnCl2, HClO4, TiCl4, ZrCl4, B(OH)3, CH3SO3H, Al(OTf)3, Cu(OTf)3, Zn(OTf)3, ZnCl2, HClO4, TiCl4, ZrCl4, B(OH)3, CH3SO3H, p-TSA in 10 to 20 mol % and HCl in methanol (1 equiv), in solvents, such as toluene, dichloromethane, and methanol. Disappointingly, all initial attempt failed to provide good yield of product 1d. Then, we increasing the reaction time with various temperature combinations from room temperature to 55 °C, but again we did not obtain satisfactory product 1d formation. Next, we following the procedures of List22 and Li23 and we tested this reaction with 10% phenyl phosphinic acid22 in toluene and 20% BCl3, B(OH)3, CH3SO3H, Al(OTf)3, Cu(OTf)3, Zn(OTf)3, ZnCl2, HClO4, TiCl4, ZrCl4, B(OH)3, CH3SO3H, p-TSA, (9:1), rt giving the desired product in excellent yield (Scheme 3a). Moreover, the reaction of A3 with bulky 1-adamantyl isocyanide (26c) also gave good yield (26d, 71%). Use of hydrophilic 2-morpholinoethyl isocyanide resulted in lowering of the yield (23d, 63%), presumably due to loss of material during workup.

Furthermore, we extend the scope and limitation analysis toward the amine component using several other N-alkyl tetrazolo-5-α,α,α-disubstituted methylamines, such as A4–A10 (Table 3, entries 28–52). For example, the gem-dimethyl moiety is frequently used to improve PKPD and target engagement properties of compounds.24 Use of N-tert-buty1 tetrazolo-5-α,α,α-dimethyl methylamine (A4) provided the product in 42–81% yields (Table 3, entry 28–36). Aromatic aldehydes gave excellent yields (Table 3, entry 33–35). When we used bulkier N-tert-octyl tetrazolo-5-α,α,α-dimethyl methylamine (A5), yields dropped as compared to N-tert-octyl tetrazolo-5-methylamine (A1). In this case, aromatic heterocyclic aldehydes failed to give any products (Table 3, entries 41–44).

Next, we investigated combinations of bulky α,α,α-disubstituted methylamines with N-tetrazolyl side chains, such as phenylethyl, benzyl, and cyclohexyl groups (Table 3, entry 45–52). Surprisingly, excellent results were also obtained in these cases (Table 3, entries 45–52).

The same reaction strategy was also applied to N-H-tetrazolo-5-methylamine,25,26 analogously to the report of Ley et al.27 (Scheme 3a) but no product could be isolated. However, we could synthesize a similar product (5) by acidic cleavage of the N-tert-octyl group of the intermediate Ugi adducts (14d). Usage of 6N aqueous hydrochloric acid and stirring overnight accomplished the product 5 in excellent yield (Scheme 3b).

With these optimized reaction conditions in hand we initiated our study to explore the scope and limitations of the N-alkyl tetrazolo-5-methylamines (A), oxo components (B), and isocyanides (C) (Table 3).

First, the reaction of various oxo-components (aldehydes and ketones) and isocyanides with N-tert-octyl tetrazolo-5-methylamine (A1) as the amine component was studied (Table 3, entries 1–22). Aromatic, substituted aromatic and heterocyclic aldehydes, for example indole-3-carboxaldehyde (Table 3, 12b, 73%) gave good yields (Table 3, entries 1–12). The electronic properties of aromatic aldehydes did not influence the yields of the reactions (Table 3, entry 4–11). Aliphatic aldehydes and ketones including sterically demanding cyclic ketones, similarly, gave excellent yields (Table 3, entries 13–22). Moreover, the reaction of A3 with bulky 1-adamantyl isocyanide (26c) also gave good yield (26d, 71%). Use of hydrophilic 2-morpholinoethyl isocyanide resulted in lowering of the yield (23d, 63%), presumably due to loss of material during workup.

Furthermore, we extend the scope and limitation analysis toward the amine component using several other N-alkyl tetrazolo-5-α,α,α-disubstituted methylamines, such as A4–A10 (Table 3, entries 28–52). For example, the gem-dimethyl moiety is frequently used to improve PKPD and target engagement properties of compounds.24 Use of N-tert-butyl tetrazolo-5-α,α,α-dimethyl methylamine (A4) provided the product in 42–81% yields (Table 3, entry 28–36). Aromatic aldehydes gave excellent yields (Table 3, entry 33–35). When we used bulkier N-tert-octyl tetrazolo-5-α,α,α-dimethyl methylamine (A5), yields dropped as compared to N-tert-octyl tetrazolo-5-methylamine (A1). In this case, aromatic heterocyclic aldehydes failed to give any products (Table 3, entries 41–44).

Next, we investigated combinations of bulky α,α,α-disubstituted methylamines with N-tetrazolyl side chains, such as phenylethyl, benzyl, and cyclohexyl groups (Table 3, entry 45–52). Surprisingly, excellent results were also obtained in these cases (Table 3, entries 45–52).

The same reaction strategy was also applied to N-H-tetrazolo-5-methylamine,25,26 analogously to the report of Ley et al.27 (Scheme 3a) but no product could be isolated. However, we could synthesize a similar product (5) by acidic cleavage of the N-tert-octyl group of the intermediate Ugi adducts (14d). Usage of 6N aqueous hydrochloric acid and stirring overnight accomplished the product 5 in excellent yield (Scheme 3b).
With these overall results, we propose a plausible reaction mechanism (Scheme 4). Accordingly, the reaction proceeds with N-alkyl tetrazolo-5-methylamines to form an imine (I-1), with loss of one equivalent of water. Protonation with p-toluenesulfonic acid activates the imine to yield the iminium ion (I-2), which then undergoes nucleophilic addition to the isocyanide (C) to give the intermediate nitrilium ion species (I-4). The nucleophilic trapping of this intermediate by the p-toluenesulfonate counteranion affords the p-toluenesulfonic imidoyl species (I-5). The final step is a Mumm rearrangement with the transfer of the p-toluenesulfinate group (I-3) from the oxygen atom to the nitrogen atom of the former amine (Scheme 4) to form p-toluenesulfinic amide (I-6, pathway A). Since p-toluenesulfonate is a good leaving group, it is replaced by the nucleophile water which was generated during the imine formation process. Alternatively, water attacks
Scheme 4. Plausible Reaction Mechanism

![Diagram](image)

Crystallographic information file for compound 1d (CIF)
Crystallographic information file for compound 2d (CIF)
Crystallographic information file for compound 17d (CIF)
Crystallographic information file for compound 18d (CIF)
Crystallographic information file for compound 22d (CIF)

General methods, preparations of compound d, 1H NMR, 13C NMR and SFC-MS data and 1H NMR and 13C NMR spectra for compounds 1d−52d and 5, crystal structure determination, (PDF)

AUTHOR INFORMATION

Corresponding Author
Fax: (+31)503637582. E-mail: a.s.s.domling@rug.nl. Website: www.drugdesign.nl.

ORCID
Pravin Patil: 0000-0002-0903-8174
Justyna Kalinowska-Tłuczk: 0000-0001-7714-1651
Alexander Dömling: 0000-0002-9923-8873

Author Contributions
The manuscript was written through contributions of P.P. and A.D. The crystallographic study contributed by K.K and K.J.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The work was financially supported by the NIH (NIH 2R01GM097082-05) and by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115489, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution and was also supported by the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Moreover, funding has also been received from the European Union’s Horizon 2020 research and innovation program under MSC ITN “Accelerated Early stage drug Discovery” (AEGIS, grant agreement No 675555), and CoFund ALERT (grant agreement No 665250).

REFERENCES

(1) (a) Brown, D. G.; Bostroim, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? J. Med. Chem. 2016, 59, 4443–4458. (b) Roughley, S. D.; Jordan, A. M. The medicinal chemists toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 2011, 54, 3451.

(2) (a) Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17–89. (b) Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology Of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135.

(3) (a) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds: Applications of Microwaves. Synth. Commun. 2015, 45, 1711–1742. (b) Maleki, A.; Sarvary, A. Synthesis of tetrazoles via isocyanide-based reactions. Rsc Adv. 2015, 5, 60938–60955. (c) Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Diversity 2015, 19, 189–212.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscambsci.7b00137.

Figure 1. Crystal structure analysis and hydrogen bonding interactions (red dotted lines) of 1d, 2d, 17d, 18d, and 22d. Compound 1d for example is a noncovalent dimer formed by hydrogen bonds between tetrazole-N3 and the amide NH of the adjacent molecule.
(4) Ugi, I.; Steinbrueckner, C. Isonitrile, II. Reaktion von Isonitrilen mit carboxyverbindungen, Aminen und Stickstoffwasserstoffsaure. *Chem. Ber.* 1961, 94, 734—742.

(5) Ugi, I.; Bodesheim, F. Isonitrile, VIII. Umsetzung von Isonitrilen mit Hydrazonen und Stickstoffwasserstoffsaure. *Chem. Ber.* 1961, 94, 2797—2801.

(6) Patil, P.; Zhang, J.; Kurpiewska, K.; Kalinowska-Thüsicke, J.; Dömling, A. Hydrazine in the Ugi Tetrazole Reaction. *Synthesis 2016*, 48, 1122—1130.

(7) Zinner, G.; Morderhak, D.; Hantelmann, O.; Bock, O. Hydroxylamine in der Vierelementen-Kondensation nach Ugi. *Chem. Ber.* 1974, 107, 2947—2955.

(8) Nikey, T.; Kelly, M.; Hulme, C. The one-pot solution phase preparation of fused tetrazole-ketopiperazines. *Tetrahedron Lett.* 2000, 41, 8729—8733.

(9) Patil, P.; Zhang, J.; Kurpiewska, K.; Kalinowska-Thüsicke, J.; Dömling, A. Ammonia-Promoted One-Pot Tetrazolo(piperinderinone Synthesis by Ugi Reaction. *ACS Comb. Sci.* 2017, 19, 343—350.

(10) Gunawan, S.; Nichol, G.; Hulme, C. Concise route to a series of novel 3-(tetrazolo-5-yl)quinazolin2(1H)-ones. *Tetrahedron Lett.* 2012, 53, 1664—1667.

(11) Medda, F.; Hulme, C. A facile and rapid route for the synthesis of novel 1,5-substituted tetrazole hydantoin and trihydroxytetrazoles via a TMSN3-Ugi/RNCX cyclization. *Tetrahedron Lett.* 2012, 53, 5593—5596.

(12) Liao, G.; Abdelraheem, E.; Neochoritis, C.; Kurpiewska, K.; Kalinowska-Thüsicke, J.; McGowan, D.; Dömling, A. Versatile Multi-component Reaction Macrocycle Synthesis Using α-Isocyanocarbonylic Acids. *Org. Lett.* 2015, 17, 4980—4983.

(13) Shaabani, A.; Herzarkhiz, Z.; Mofakham, H.; Ng, S. Synthesis of highly regioselective bifunctional tricyclic tetrazole-1-benzo[b][1,4]diazipines. *Synlett* 2013, 24, 1485—1492.

(14) Gunawan, S.; Hulme, C. Bifunctional building blocks in the Ugi condensation reaction: a general strategy toward exploration of new molecular diversity. *Org. Biomol. Chem.* 2013, 11, 6036—6046.

(15) Stolyarenko, V.; Evdokimov, A.; Shishkin, V. Synthesis of Tetrazole-substituted Spirocyclic γ-Lactams by One-pot Azido-Ugi Reaction—cyclization. *Mendeleev Commun.* 2013, 23, 108—109.

(16) Nikey, T.; Kelly, M.; Semin, D.; Hulme, C. Short solution phase preparation of fused azepine-tetrazoles via a UDC (Ugi/de-Boc/cyclize) strategy. *Tetrahedron Lett.* 2002, 43, 3681—3684.

(17) Borisov, R.; Polyakov, A.; Medvedeva, L.; Khrustalev, V.; Guranova, N.; Voskressensky, L. Concise Approach toward Tetrazolo[1,5-a][1,4]benzodiazinepines via a Novel Multicomponent Isocyandine-Based Condensation. *Org. Lett.* 2010, 12, 3894—3897.

(18) Wu, R.; Gao, S.; Chen, X.; Yang, G.; Pan, L.; Hu, G.; Jia, P.; Zhong, W.; Yu, C. Synthesis of 1-(1H-Tetrazol-5-yl)-2H-isoinole Derivatives through Ugi Four-Component and Silver-Catalyzed Reactions. *Eur. J. Org. Chem.* 2014, 2014, 3379—3386.

(19) Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. A Universal Isocyandine for Diverse Heterocycle Syntheses. *Org. Lett.* 2014, 16, 5736—5739.

(20) Patil, P.; de Haan, M.; Kurpiewska, K.; Kalinowska-Thüsicke, J.; Dömling, A. Versatile Protecting-Group Free Tetrazolomethane Amine Synthesis by Ugi Reaction. *ACS Comb. Sci.* 2016, 18, 170—175.

(21) Zhao, T.; Boljtes, A.; Herdtweck, E.; Dömling, A. *Org. Lett.* 2013, 15, 639—641.

(22) Pan, S. C.; List, B. Catalytic Three-Component Ugi Reaction. *Angew. Chem., Int. Ed.* 2008, 47, 3622—3625.

(23) Saha, B.; Frett, B.; Wang, Y.; Li, H. Y. A p-toluensulfonic acid-catalyzed three-component Ugi-type reaction and its application for the synthesis of α-amino amides and amindines. *Tetrahedron Lett.* 2013, 54, 2340—2343.

(24) Talele, T. Natural-Products-Inspired Use of the gem-Dimethyl Group in Medicinal Chemistry. *J. Med. Chem.* 2017, DOI: 10.1021/acs.jmedchem.7b00315.

(25) Verseschagin, L. I.; Petrov, A. V.; Kizhnyayev, V. N.; Pokatilov, F. A.; Smirnov, A. I. Polynuclear nonfused bis(1,3,4-oxidiazole)-containing systems. *Russ. J. Org. Chem.* 2006, 42, 1049—1055.

(26) Matthews, H.; Ranson, M.; Tyndall, J.; Kelso, M. Synthesis and preliminary evaluation of amidol analogs as inhibitors of the urokinase-type plasminogen activator (uPA). *Bioorg. Med. Chem. Lett.* 2011, 21, 6760—6766.

(27) Franckeviduciu, V.; Longbottom, D.; Turner, R.; Ley, S. 8,9,10,10a-tetrahydro-6H-tetrazolo[1,5-a] pyrrolo[2,1-c]pyrazines: New heterocyclic frameworks generated by an Ugi-type multicomponent reaction. *Synthesis 2006*, 2006, 3215—3223.

(28) (a) Besnard, J.; Jones, P. S.; Hopkins, A. L.; Pannifer, A. D. The joint European compound library: Boosting precompetitive research. *Drug Discovery Today* 2015, 20, 181—186. (b) Karawajczyk, A.; Giordano, F.; Benningshofs, J.; Hamza, D.; Kallikoski, T.; P ouwer, K.; Morgentin, R.; Nelson, A.; Muller, G.; Piechot, D.; Tzalis, D. Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective. *Drug Discovery Today* 2015, 20, 1310—1316. (c) Mullard, A. European lead factory opens for business. *Nat. Rev. Drug Discovery 2013*, 12, 173—175.

(d) Nelson, A.; Roche, D. Innovative approaches to the design and synthesis of small molecule libraries. *Bioorg. Med. Chem. 2015*, 23, 2613.

(e) Paillard, G.; Cochrane, P.; Jones, P. S.; Caracoti, A.; van Vlijmen, H.; Pannifer, A. D.; et al. The ELF Honest Data Broker: informatics enabling public-private collaboration in a precompetitive arena. *Drug Discovery Today 2016*, 21, 97—102. (f) The European Lead Factory. https://www.europeanleadfactory.eu/ (accessed on 21 Nov 2017).