Non-uniform continuity on initial data for the two-component b-family system in Besov space

Xing Wu¹ · Cui Li² · Jie Cao¹

Received: 25 March 2022 / Accepted: 3 October 2022 / Published online: 18 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
This paper studies a two-component b-family system, which includes the two-component Camassa-Holm system and the two-component Degasperis-Procesi system as special case. It is shown that the solution map of this system is not uniformly continuous on the initial data in Besov spaces $\mathcal{B}^{-1}_{p,r}(\mathbb{R}) \times \mathcal{B}^s_{p,r}(\mathbb{R})$ with $s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}$, $1 \leq p, r < \infty$. Our result covers and extends the previous non-uniform continuity in Sobolev spaces $H^{s-1}(\mathbb{R}) \times H^s(\mathbb{R})$ for $s > \frac{5}{2}$ to Besov spaces (Nonlinear Anal., 2014, 111: 1-14). Compared with the generalized rotation b-family system considered by Holmes et al. (Z. Angew. Math. Mech., 2021), our non-uniform continuity is established in a broader range of Besov spaces.

Keywords Non-uniform dependence · Two component b-family system · Besov spaces

Mathematics Subject Classification 35B30 · 35G25 · 35Q53

1 Introduction
In this paper, we are concerned with the following two-component b-family system on \mathbb{R}:

Communicated by Adrian Constantin.

Xing Wu
ny2008wx@163.com

¹ College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, Henan, China

² School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450000, Henan, China
\[
\begin{align*}
\dot{m}_t &= u m_x + k_1 u_x m + k_2 \rho \rho_x, \\
\dot{\rho}_t &= k_3 (u \rho)_x, \\
m &= u - u_{xx}, \\
u(0, x) &= u_0, \rho(0, x) = \rho_0.
\end{align*}
\] (1.1)

which was introduced by Guha in [18]. As shown in [18], there are two cases about this system: (i) \(k_1 = b, k_2 = 2b\) and \(k_3 = 1\); (ii) \(k_1 = b + 1, k_2 = 2\) and \(k_3 = b\) with \(b \in \mathbb{R}\).

If \(k_1 = 2\) and \(k_3 = 1\), then system (1.1) becomes the following two-component Camassa-Holm system

\[
\begin{align*}
\dot{m}_t &= u m_x + 2 u_x m + \sigma \rho \rho_x, \\
\dot{\rho}_t &= (u \rho)_x, \\
m &= u - u_{xx},
\end{align*}
\] (1.2)

here \(\sigma = \pm 1\). System (1.2) was derived by Constantin and Ivanov [9] in the context of shallow water theory, and then has attracted much more attention. The local well-posedness for system (1.2) in Sobolev and Besov space were established in [9, 14, 16, 20]. The global existence of strong solutions and wave-breaking criteria were investigated in [14, 16, 19, 20], and the global weak solution has been obtained in [17]. Moreover, when \(\rho = 0\), (1.2) reduces to the classical Camassa-Holm equation modeling the unidirectional propagation of shallow water waves over a flat bottom. It was shown that the Camassa-Holm equation has a bi-Hamiltonian structure [2], is completely integrable [8] and can describe wave-breaking phenomena [5](namely, the wave remains bounded while its slope becomes infinite in finite time). The Cauchy problem of the Camassa-Holm equation was studied in the series of papers [3, 4, 6, 7, 11, 22, 32]. Danchin[11, 12] showed the local existence and uniqueness of strong solutions to Camassa-Holm equation with initial data in \(B^s_{p,r}\), for \(s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}\), \(1 \leq p \leq \infty, 1 \leq r < \infty\). The continuous dependence of the solution on the initial data has been supplemented by Li and Yin in [32].

If \(k_1 = 3\) and \(k_3 = 2\), then system (1.1) becomes the following two-component Degasperis-Procesi system

\[
\begin{align*}
\dot{m}_t &= u m_x + 3 u_x m + \sigma \rho \rho_x, \\
\dot{\rho}_t &= 2(u \rho)_x, \\
m &= u - u_{xx},
\end{align*}
\] (1.3)

which was first proposed in [39] as a natural generalization of the Degasperis-Procesi equation in the context of supersymmetry. The local well-posedness of system (1.3) was established in [15, 29, 42], the precise blow-up scenario and some blow-up rate of strong solutions were also presented in [29, 42]. Moreover, when \(\rho = 0\), (1.3) becomes the integrable Degasperis-Procesi equation with bi-Hamiltonian structure and admits traveling wave solutions [13]. The local well-posedness of Degasperis-Procesi equation in Sobolev and Besov spaces were established in [21, 43], and an inverse scattering method for smooth localized solutions developed for Degasperis-Procesi equation can be found in [10].
As an important part of the well-posedness theory, the continuity of solution suggests ways to solve the Cauchy problem of the equation under consideration. In fact, the non-uniform continuous dependence of the solution mapping on the initial data implies that the local well-posedness cannot be obtained by the contraction mappings principle since this would suggest that the solution is Lipschitz continuous. After the non-uniform dependence for some dispersive equations was studied by Kenig et al. [30], the issue of non-uniform continuity of solutions on initial data has attracted much more attention. Using constructed traveling wave solutions, Himonas et al. showed that the data-to-solution map of the Camassa-Holm equation can not be better than continuous in the Sobolev spaces H^s for $s \geq 2$ on the circle [23] and for $s = 1$ on both the circle and the line [24]. We mention that these types of construction solutions are only suitable in Sobolev spaces with exponent less than $\frac{3}{2}$ on the line. Later, a sequences of the high-low frequency approximate solutions have been used to show that the solution map of the Camassa-Holm equation is not uniformly continuous in Sobolev spaces H^s ($s > \frac{5}{2}$) on the line [25], which was applied earlier by Koch and Tzvetkov [31] to the Benjamin-Ono equation. Similar results can be obtained for the Degasperis-Procesi equation [26] and for the famous Novikov equation [27]. Recently, by developing a new approximation technique, the above results in Sobolev spaces were extended to the Besov space $B^s_{p,r}(\mathbb{R})$ with $s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}$, $1 \leq p \leq \infty, 1 \leq r < \infty$ or $(s, p, r) = (\frac{3}{2}, 2, 1)[34, 35, 40, 41]$.

For $\rho \neq 0$, and $b \in \mathbb{R}$, the Cauchy problem of system (1.1) in Sobolev space was first established by Liu and Yin [37] for $(u_0, \rho_0) \in H^s \times H^{s-1}$ with $s \geq 2$. Later, Lv and Wang [38] proved that the solution map is not uniformly continuous for $s > \frac{5}{2}$ by using the approximate solutions. The local well-posedness space was further enlarged, and established in Besov space $B^s_{p,r} \times B^{s-1}_{p,r}$ with $s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}$, $1 \leq p, r \leq \infty$ (however, for $r = \infty$, the continuity of the data-to-solution map is established in a weaker topology)[36, 44]. Some aspects concerning blow-up scenario, global solutions, persistence properties and propagation speed, see the discussions in [37, 45]. In the present paper, motivated by [34, 41], we aim at showing that the solution map of (1.1) is not uniformly continuous depending on the initial data in Besov spaces $B^s_{p,r} \times B^{s-1}_{p,r}$ with $s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}$, $1 \leq p, r < \infty$. However, one problematic issue is that we here deal with a coupled system with these two components of the solution in different Besov spaces. On the other hand, compared with Novikov equation with cubic nonlinearity [35], quadratic nonlinearity for system (1.1) weakens the attenuation we need. Therefore, the analysis of the two component b-family system would be somewhat more difficult.

For studying the non-uniform continuity of a two-component b-family system, it is more convenient to express (1.1) in the following equivalent nonlocal form

$$
\begin{align*}
\begin{cases}
 u_t - uu_x &= f(u) + g(\rho), \\
 \rho_t - k_3u\rho_x &= k_3 \rho u_x, \\
 u(0, x) = u_0, \rho(0, x) = \rho_0,
\end{cases}
\end{align*}
$$

(1.4)
where \(f(u) = f_1(u) + f_2(u) \) and
\[
\begin{align*}
 f_1(u) &= \partial_x (1 - \partial^2_x)^{-1} \left(\frac{k_1}{2} u^2 \right), \\
 f_2(u) &= \partial_x (1 - \partial^2_x)^{-1} \left(\frac{3 - k_1}{2} u^2 \right), \\
 g(\rho) &= \partial_x (1 - \partial^2_x)^{-1} \left(\frac{k_2}{2} \rho^2 \right).
\end{align*}
\]

Our main result is stated as follows.

Theorem 1.1 Let
\[
 s > \max \left\{ 1 + \frac{1}{p}, \frac{3}{2} \right\}, \quad 1 \leq p \leq \infty, \ 1 \leq r < \infty.
\]

The solution map \((u_0, \rho_0) \rightarrow (u(t), \rho(t))\) of the initial value problem \((1.4)\) is not uniformly continuous from any bounded subset of \(B^s_{p,r}(\mathbb{R}) \times B^{s-1}_{p,r}(\mathbb{R})\) into \(C([0, T]; B^s_{p,r}(\mathbb{R}) \times B^{s-1}_{p,r}(\mathbb{R}))\). More precisely, there exist two sequences of solutions \((u_n^1(t), \rho_n^1(t))\) and \((u_n^2(t), \rho_n^2(t))\) such that the corresponding initial data satisfy
\[
 \|u_n^1(t), u_n^2(t)\|_{B^s_{p,r}} + \|\rho_n^1(t), \rho_n^2(t)\|_{B^{s-1}_{p,r}} \leq 1,
\]
and
\[
 \lim_{n \to \infty} (\|u_n^1(0) - u_n^2(0)\|_{B^s_{p,r}} + \|\rho_n^1(0) - \rho_n^2(0)\|_{B^{s-1}_{p,r}}) = 0,
\]
but
\[
 \lim_{n \to \infty} \|u_n^1(t) - u_n^2(t)\|_{B^s_{p,r}} \gtrsim t, \quad \lim_{n \to \infty} \|\rho_n^1(t) - \rho_n^2(t)\|_{B^{s-1}_{p,r}} \gtrsim t, \quad t \in [0, T_0],
\]
with small positive time \(T_0\) for \(T_0 \leq T\).

Remark 1.1 Since \(B^{\frac{s}{2}}_{2,2} = H^s\), our result covers and extends the previous non-uniform continuity of solutions on initial data in Sobolev spaces \(H^s(\mathbb{R}) \times H^{s-1}(\mathbb{R})\) for \(s > \frac{5}{2}\) [38] to Besov spaces.

Remark 1.2 Recently, Holmes et al. [28] established the non-uniform continuity of the data-to-solution map to a generalized rotation b-family system under the product Besov space \(B^s_{p,r} \times B^{s-1}_{p,r}\), where \(s > \max\{1 + \frac{1}{p}, 2 - \frac{1}{p}\}, 1 \leq p \leq \infty, 1 \leq r < \infty\). Our result differs from that of [28] in the sense that our non-uniform continuity is established in a broader range of Besov spaces and we choose \(\rho_n^1(0)\) and \(\rho_n^2(0)\) different, which is important in the background of the two-component system.

Notations Given a Banach space \(X\), we denote the norm of a function on \(X\) by \(\|\cdot\|_X\), and
\[
 \| \cdot \|_{L^\infty_T(X)} = \sup_{0 \leq t \leq T} \| \cdot \|_X.
\]
For \(f = (f_1, f_2, ..., f_n) \in X \),
\[
\|f\|^2_X = \|f_1\|^2_X + \|f_2\|^2_X + ... + \|f_n\|^2_X.
\]
The symbol \(A \lesssim B \) means that there is a uniform positive constant \(C \) independent of \(A \) and \(B \) such that \(A \leq C B \).

2 Littlewood-Paley analysis

In this section, we will review the definition of Littlewood-Paley decomposition and nonhomogeneous Besov space, and then list some useful properties. For more details, the readers can refer to [1].

There exists a couple of smooth functions \((\chi, \varphi)\) valued in \([0, 1]\), such that \(\chi \) is supported in the ball \(B \triangleq \{ \xi \in \mathbb{R} : |\xi| \leq \frac{4}{3} \} \), \(\varphi \) is supported in the ring \(C \triangleq \{ \xi \in \mathbb{R} : \frac{3}{4} \leq |\xi| \leq \frac{8}{3} \} \). Moreover,
\[
\forall \xi \in \mathbb{R}, \, \chi(\xi) + \sum_{j \geq 0} \varphi(2^{-j} \xi) = 1, \\
\forall \xi \in \mathbb{R} \setminus \{0\}, \, \sum_{j \in \mathbb{Z}} \varphi(2^{-j} \xi) = 1, \\
|j - j'| \geq 2 \Rightarrow \text{Supp } \varphi(2^{-j} \cdot) \cap \text{Supp } \varphi(2^{-j'} \cdot) = \emptyset, \\
j \geq 1 \Rightarrow \text{Supp } \chi(\cdot) \cap \text{Supp } \varphi(2^{-j} \cdot) = \emptyset.
\]

Then, we can define the nonhomogeneous dyadic blocks \(\Delta_j \) as follows:
\[
\Delta_j u = 0, \text{ if } j \leq -2, \quad \Delta_{-1} u = \chi(D) u = \mathcal{F}^{-1}(\chi \mathcal{F} u), \\
\Delta_j u = \varphi(2^{-j} D) u = \mathcal{F}^{-1}(\varphi(2^{-j} \cdot) \mathcal{F} u), \text{ if } j \geq 0.
\]

Definition 2.1 ([1]) Let \(s \in \mathbb{R} \) and \(1 \leq p, r \leq \infty \). The nonhomogeneous Besov space \(B^s_{p,r}(\mathbb{R}) \) consists of all tempered distribution \(u \) such that
\[
\|u\|_{B^s_{p,r}(\mathbb{R})} \triangleq \left\| \left(2^{js} \|\Delta_j u\|_{L^p(\mathbb{R})} \right)_{j \in \mathbb{Z}} \right\|_{l^r(\mathbb{Z})} < \infty.
\]

In the following, we list some basic lemmas and properties about Besov space which will be frequently used in proving our main result.

Lemma 2.1 ([1])

1. Algebraic properties: \(\forall s > 0, \, B^s_{p,r}(\mathbb{R}) \cap L^\infty(\mathbb{R}) \) is a Banach algebra. \(B^s_{p,r}(\mathbb{R}) \) is a Banach algebra \(\iff B^s_{p,r}(\mathbb{R}) \iff L^\infty(\mathbb{R}) \iff s > \frac{1}{p} \) or \(s = \frac{1}{p}, \, r = 1 \) with \(1 \leq p < \infty \).
(2) For any $s > 0$ and $1 \leq p, r \leq \infty$, there exists a positive constant $C = C(s, p, r)$ such that
\[
\|uv\|_{B^s_{p,r}({\mathbb R})} \leq C \left(\|u\|_{L^\infty({\mathbb R})} \|v\|_{B^{s}_p({\mathbb R})} + \|u\|_{L^\infty({\mathbb R})} \|v\|_{B^s_{r}({\mathbb R})} \right).
\]

(3) Let $m \in \mathbb{R}$ and f be an \mathcal{S}^m-multiplier (i.e., $f : \mathbb{R} \to \mathbb{R}$ is smooth and satisfies that $\forall \alpha \in \mathbb{N}$, there exists a constant C_α such that $|\partial^\alpha f(\xi)| \leq C_\alpha (1 + |\xi|)^{m-\alpha}$ for all $\xi \in \mathbb{R}$). Then the operator $f(D)$ is continuous from $B^s_{p,r}({\mathbb R})$ to $B^{s-m}_{p,r}({\mathbb R})$.

(4) Let $1 \leq p, r \leq \infty$ and $s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}$. Then we have
\[
\|uv\|_{B^{s-2}_{p,r}({\mathbb R})} \leq C \|u\|_{B^{s-2}_{p,r}({\mathbb R})} \|v\|_{B^{s-1}_{p,r}({\mathbb R})}.
\]

Lemma 2.2 ([1, 33]) Let $1 \leq p, r \leq \infty$. Assume that
\[
\sigma > -\min\left\{\frac{1}{p}, 1 - \frac{1}{p}\right\} \quad \text{or} \quad \sigma > -1 - \min\left\{\frac{1}{p}, 1 - \frac{1}{p}\right\} \quad \text{if} \quad \text{div} \, v = 0.
\]

There exists a constant $C = C(p, r, \sigma)$ such that for any solution to the following linear transport equation:
\[
\partial_t f + v \partial_x f = g, \quad f|_{t=0} = f_0,
\]
the following statements hold:
\[
\|f(t)\|_{B^s_{p,r}} \leq \|f_0\|_{B^s_{p,r}} + \int_0^t \|g(\tau)\|_{B^s_{p,r}} d\tau + \int_0^t CV_p(v, \tau) \|f(\tau)\|_{B^s_{p,r}} d\tau
\]
or
\[
\sup_{s \in [0, t]} \|f(s)\|_{B^s_{p,r}} \leq Ce^{CV_p(v, t)} \left(\|f_0\|_{B^s_{p,r}} + \int_0^t \|g(\tau)\|_{B^s_{p,r}} d\tau \right),
\]
with
\[
V_p(v, t) = \begin{cases}
\int_0^t \|\partial_x v(s)\|_{B^s_{p,r}} ds, & \text{if } \sigma > 1 + \frac{1}{p} \text{ or } \{\sigma = 1 + \frac{1}{p} \text{ and } r = 1\}, \\
\int_0^t \|\partial_x v(s)\|_{B^s_{p,r}} ds, & \text{if } \sigma = 1 + \frac{1}{p} \text{ and } r > 1, \\
\int_0^t \|\partial_x v(s)\|_{B^s_{p,\infty} \cap L^\infty} ds, & \text{if } \sigma < 1 + \frac{1}{p}.
\end{cases}
\]

3 Non-uniform continuous dependence

In this section, we will give the proof of our main theorem. For brevity, we sometimes use $u_{0,n}^i, \rho_{0,n}^i$ to denote $u_n^i(0)$ and $\rho_n^i(0)$ respectively, $i = 1, 2$.

\[\mathcopyright \text{Springer} \]
Let \(\hat{\phi} \in C_0^\infty(\mathbb{R}) \) be an even, real-valued and non-negative function on \(\mathbb{R} \) and satisfy
\[
\hat{\phi}(x) = \begin{cases}
1, & \text{if } |x| \leq \frac{1}{2}, \\
0, & \text{if } |x| \geq \frac{1}{2}.
\end{cases}
\]

Define the high frequency function \(f_n \) and the low frequency function \(g_n \) by
\[
f_n = 2^{-ns} \phi(x) \sin \left(\frac{17}{12} 2^n x \right), \quad g_n = 2^{-n} \phi(x), \quad n \gg 1.
\]

It has been showed in [34] that \(\| f_n \|_{B^\sigma_{p,r}} \lesssim 2^{n(\sigma-s)} \).

Let
\[(u^1_n(0), \rho^1_n(0)) = (f_n, 2^n f_n), \quad (u^2_n(0), \rho^2_n(0)) = (f_n + g_n, 2^n f_n + g_n),\]
then it is easy to verify that
\[
\| u^1_n(0), u^2_n(0) \|_{B^{s+\sigma}_{p,r}} \lesssim 2^{n\sigma} \text{ for } \sigma \geq -1 \quad \text{and}
\| \rho^1_n(0), \rho^2_n(0) \|_{B^{s+l}_{p,r}} \lesssim 2^{n(l+1)} \text{ for } l \geq -2, \quad (3.1)
\]

Consider the system (1.4) with initial data \((u^1_n(0), \rho^1_n(0))\) and \((u^2_n(0), \rho^2_n(0))\), respectively. According to the local well-posedness result in [36, 44], there exists corresponding solution \((u^1_n, \rho^1_n), (u^2_n, \rho^2_n)\) belonging to \(C([0, T]; B^s_{p,r} \times B^{s-1}_{p,r}) \) and has common lifespan \(T \approx 1 \). Moreover, by Lemma 2.1-2.2, there holds
\[
\| u^1_n \|_{L^\infty_T(B^s_{p,r})} + \| \rho^1_n \|_{L^\infty_T(B^{s+1}_{p,r}-1)} \lesssim \| u^1_n(0) \|_{B^s_{p,r}} + \| \rho^1_n(0) \|_{B^{s+1}_{p,r}-1} \lesssim 2^{nk}, \quad k \geq -1, \quad (3.2)
\]
\[
\| u^2_n \|_{L^\infty_T(B^{s+l}_{p,r})} + \| \rho^2_n \|_{L^\infty_T(B^{s+l-1}_{p,r})} \lesssim \| u^2_n(0) \|_{B^{s+l}_{p,r}} + \| \rho^2_n(0) \|_{B^{s+l-1}_{p,r}} \lesssim 2^{nl}, \quad l \geq -1. \quad (3.3)
\]

In the following, we shall firstly show that for the selected high frequency initial data \((u^1_n(0), \rho^1_n(0))\), the corresponding solution \((u^1_n, \rho^1_n)\) can be approximated by the initial data. More precisely, that is

Proposition 3.1 Under the assumptions of Theorem 1.1, we have
\[
\| u^1_n - u^1_n(0) \|_{L^\infty_T(B^s_{p,r})} + \| \rho^1_n - \rho^1_n(0) \|_{L^\infty_T(B^{s-1}_{p,r})} \lesssim 2^{-\frac{s}{2}(s-\frac{3}{2})}. \quad (3.4)
\]

Proof Denote
\[
\epsilon = u^1_n - u^1_n(0), \quad \delta = \rho^1_n - \rho^1_n(0),
\]
then we can derive from (1.4) that \((\epsilon, \delta)\) satisfies

\[
\begin{align*}
\epsilon_t - u_n^1 \partial_x \epsilon &= (u_n^1 - u_{0,n}^1)\partial_x u_{0,n}^1 + [f(u_n^1) - f(u_{0,n}^1)] + [g(\rho_n^1) - g(\rho_{0,n}^1)] \\
&\quad + f(u_{0,n}^1) + g(\rho_{0,n}^1) + u_{0,n}^1 \partial_x u_{0,n}^1, \\
\delta_t - k_3u_n^1 \partial_x \delta &= k_3(u_n^1 - u_{0,n}^1)\partial_x \rho_{0,n}^1 + k_3u_{0,n}^1 \partial_x \rho_{0,n}^1 + k_3 \rho_{n}^1 \partial_x u_{n}^1, \\
\epsilon(0, x) &= 0, \quad \delta(0, x) = 0,
\end{align*}
\] (3.5)

Applying Lemma 2.2 yields

\[
\|\epsilon\|_{B^{s-1}_{p,r}} \lesssim \int_0^t \|\partial_x u_n^1\|_{B^{s-1}_{p,r}} \|\epsilon\|_{B^{s-1}_{p,r}} d\tau + \int_0^t \|f(u_n^1) - f(u_{0,n}^1), g(\rho_n^1) - g(\rho_{0,n}^1)\|_{B^{s-1}_{p,r}} d\tau \\
+ t \|f(u_{0,n}^1), g(\rho_{0,n}^1), u_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-1}_{p,r}},
\]

(3.6)

\[
\|\delta\|_{B^{s-2}_{p,r}} \lesssim \int_0^t \|\partial_x u_n^1\|_{B^{s-2}_{p,r}} \|\delta\|_{B^{s-2}_{p,r}} d\tau + \int_0^t \|u_n^1 - u_{0,n}^1\|_r \|\partial_x \rho_{0,n}^1, \rho_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-2}_{p,r}} d\tau \\
+ \int_0^t \|\rho_n^1 \partial_x u_n^1 - \rho_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-2}_{p,r}} d\tau + t \|u_{0,n}^1 \partial_x \rho_{0,n}^1, \rho_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-2}_{p,r}}.
\]

(3.7)

Using Lemma 2.1 and the fact that \(B^{s-1}_{p,r}(\mathbb{R})\) is a Banach algebra when \(s > \max\{1 + \frac{1}{p}, \frac{3}{2}\}\), we have

\[
\begin{align*}
\|(u_n^1 - u_{0,n}^1) \partial_x u_{0,n}^1\|_{B^{s-1}_{p,r}} &\lesssim \|u_n^1 - u_{0,n}^1\|_{B^{s-1}_{p,r}} \|\partial_x u_{0,n}^1\|_{B^{s-1}_{p,r}} \\
&\lesssim \|u_n^1 - u_{0,n}^1\|_{B^{s-1}_{p,r}} \|u_{0,n}^1\|_{B^{s-1}_{p,r}}, \\
\|f(u_n^1) - f(u_{0,n}^1)\|_{B^{s-1}_{p,r}} &\lesssim \|u_n^1 - u_{0,n}^1\|_{B^{s-1}_{p,r}} \|u_{0,n}^1\|_{B^{s-1}_{p,r}}, \\
\|g(\rho_n^1) - g(\rho_{0,n}^1)\|_{B^{s-2}_{p,r}} &\lesssim \|\rho_n^1 - \rho_{0,n}^1\|_{B^{s-2}_{p,r}} \|\rho_n^1\|_{B^{s-1}_{p,r}} \\
\|(u_n^1 - u_{0,n}^1) \partial_x \rho_{0,n}^1\|_{B^{s-2}_{p,r}} &\lesssim \|\partial_x \rho_{0,n}^1\|_{B^{s-2}_{p,r}} \|u_{0,n}^1 - u_{0,n}^1\|_{B^{s-1}_{p,r}} \\
&\lesssim \|u_n^1 - u_{0,n}^1\|_{B^{s-1}_{p,r}} \|\rho_{0,n}^1\|_{B^{s-1}_{p,r}}, \\
\|u_{0,n}^1 \partial_x \rho_{0,n}^1\|_{B^{s-2}_{p,r}} &\lesssim \|u_{0,n}^1 \partial_x \rho_{0,n}^1\|_{B^{s-2}_{p,r}} \|\rho_{0,n}^1\|_{B^{s-1}_{p,r}} \\
&\lesssim \|u_{0,n}^1\|_{B^{s-1}_{p,r}} \|\partial_x \rho_{0,n}^1\|_{L^\infty} \|\rho_{0,n}^1\|_{B^{s-1}_{p,r}} \\
&\lesssim 2^{-ns} 2^{n(\frac{1}{2} + \frac{3}{2})} + 2^{-3n} 2^n 2^{-ns} 2^n \lesssim 2^{-n(s - \frac{1}{2})}, \\
\|\rho_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-2}_{p,r}} &\lesssim \|\rho_{0,n}^1 \partial_x u_{0,n}^1\|_{B^{s-2}_{p,r}} \|\rho_{0,n}^1\|_{B^{s-1}_{p,r}} \\
&\lesssim 2^{n(s - \frac{3}{2})} \\
\|\rho_{0,n}^1, \partial_x u_{0,n}^1\|_{L^\infty} \|\rho_{0,n}^1, \partial_x u_{0,n}^1\|_{L^p} \lesssim 2^{-n(s - \frac{1}{2})}.
\end{align*}
\]
Again using Lemma 2.1 and the Banach algebra property of \(B^{s-1}_{p,r} \), one has

\[
\| f_1(u_{0,n}) \|_{B^{s-1}_{p,r}} \lesssim \| (u_{0,n})^2 \|_{B^{s-1}_{p,r}} \lesssim \| u_{0,n} \|_{L^\infty} \| u_{0,n} \|_{B^{s-1}_{p,r}} \leq 2^{-n(s+\frac{1}{2})},
\]

\[
\| f_2(u_{0,n}) \|_{B^{s-1}_{p,r}} \lesssim \| (\partial_x u_{0,n})^2 \|_{B^{s-1}_{p,r}} \lesssim \| \partial_x u_{0,n} \|_{L^\infty} \| \partial_x u_{0,n} \|_{B^{s-1}_{p,r}} \leq 2^{-n(s-\frac{1}{2})},
\]

\[
\| g(\rho_{0,n}) \|_{B^{s-1}_{p,r}} \lesssim \| (\rho_{0,n})^2 \|_{B^{s-1}_{p,r}} \lesssim \| \rho_{0,n} \|_{L^\infty} \| \rho_{0,n} \|_{B^{s-1}_{p,r}} \leq 2^{-n(s-\frac{1}{2})},
\]

\[
\| u_{0,n} \partial_x u_{0,n} \|_{B^{s-1}_{p,r}} \lesssim \| u_{0,n} \|_{L^\infty} \| \partial_x u_{0,n} \|_{B^{s-1}_{p,r}} + \| u_{0,n} \|_{B^{s-1}_{p,r}} \| \partial_x u_{0,n} \|_{L^\infty} \leq 2^{-ns}.
\]

For the term

\[
\rho_n \partial_x u_n - \rho_{0,n} \partial_x u_{0,n} = (\rho_n - \rho_{0,n}) \partial_x u_n + \rho_{0,n} \partial_x (u_n - u_{0,n}).
\]

Following the same procedure of estimates as above, we find that

\[
\| (\rho_n - \rho_{0,n}) \partial_x u_n \|_{B^{s-1}_{p,r}} \lesssim \| \rho_n - \rho_{0,n} \|_{B^{s-1}_{p,r}} \| \partial_x u_n \|_{B^{s-1}_{p,r}} \lesssim \| \rho_n - \rho_{0,n} \|_{B^{s-1}_{p,r}} \| u_n \|_{B^{s-1}_{p,r}},
\]

\[
\| \rho_{0,n} \partial_x (u_n - u_{0,n}) \|_{B^{s-1}_{p,r}} \lesssim \| \partial_x (u_n - u_{0,n}) \|_{B^{s-1}_{p,r}} \| \rho_{0,n} \|_{B^{s-1}_{p,r}} \lesssim \| u_n - u_{0,n} \|_{B^{s-1}_{p,r}} \| \rho_{0,n} \|_{B^{s-1}_{p,r}}.
\]

Denote

\[
X_s = \| \epsilon \|_{B^{s}_{p,r}} + \| \delta \|_{B^{s-1}_{p,r}}.
\]

taking the above estimates into (3.6)–(3.7), we get

\[
X_s - 1 \lesssim \int_0^1 X_{s-1}(\| u_{0,n} \|_{B^{s}_{p,r}} + \| \rho_{0,n} \|_{B^{s-1}_{p,r}}) + 2^{n(s-\frac{1}{2})},
\]

since \(\{u_{1,n}, \rho_{1,n}\} \) is bounded in \(B^{s}_{p,r} \times B^{s-1}_{p,r} \), which together with the Gronwall Lemma imply

\[
X_{s-1} \lesssim 2^{-n(s-\frac{1}{2})}.
\]

Combining with (3.2) for \(k = 1 \) and the interpolation inequality, we obtain that

\[
X_s \lesssim X_{s-1} \frac{1}{2} X_{s+1} \frac{1}{2} \lesssim 2^{-\frac{n}{2}(s-\frac{1}{2})} 2^{n} \lesssim 2^{-\frac{n}{2}(s-\frac{1}{2})}.
\]

Thus we have complete the proof of Proposition 3.1. \(\square \)

In order to obtain the non-uniformly continuous dependence property for the system (1.4), we will show that for the constructed initial data \((u_{1,n}(0), \rho_{1,n}(0)) \) with small perturbation, it can not approximate to the solution \((u_{n}, \rho_{n}(0)) \).
Proposition 3.2 Under the assumptions of Theorem 1.1, we have

\[\|u_n^2 - u_0^2 - n - t\psi^2_0\|_{B^{p,r}_{n+1}} + \|\rho_n^2 - \rho_0^2_{n} - tw_0^n\|_{B^{p,r}_{n+1}} \lesssim t^2 + 2^{-n}\min(s-\frac{3}{2}, \frac{1}{2}) \tag{3.8} \]

here, \(\psi_0^n = u_{0,n}^2 \partial_{x} u_{0,n} \), \(w_0^n = k_3 u_{0,n}^2 \partial_{x} \rho_{0,n}^2 \).

Proof Firstly, due to (3.1) and making full use of the product estimates in Lemma 2.1, for \(\sigma \geq -1 \), we have

\[\|\psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|u_{0,n}^2\|_{L^\infty} \|\partial_{x} u_{0,n}^2\|_{B^{p,r}_{n+1}} + \|u_{0,n}^2\|_{B^{p,r}_{n+1}} \|\partial_{x} u_{0,n}^2\|_{L^\infty} \lesssim (2^{-ns} + 2^{-n}) 2^n(\sigma+1) + 2^{\alpha} (2^{-ns} 2^n + 2^{-n}) \lesssim 2^{\alpha} \tag{3.9} \]
\[\|\psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|u_{0,n}^2\|_{L^\infty} \|\partial_{x} \rho_{0,n}^2\|_{B^{p,r}_{n+1}} + \|u_{0,n}^2\|_{B^{p,r}_{n+1}} \|\partial_{x} \rho_{0,n}^2\|_{L^\infty} \lesssim (2^{-ns} + 2^{-n}) 2^n(\sigma+2) + 2^{\alpha} (2^{n-s} 2^n + 2^{-n}) \lesssim 2^{n(\sigma+1)} \tag{3.10} \]
\[\|\psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|\partial_{x} \rho_{0,n}^2\|_{B^{p,r}_{n+1}} \|u_{0,n}^2\|_{B^{p,r}_{n+1}} \lesssim 2^{-n} \tag{3.11} \]

Let

\[\begin{aligned}
z_n &= u_n^2 - u_0^2 - n - t\psi_0^n, \\
\omega_n &= \rho_n^2 - \rho_0^2_{n} - tw_0^n,
\end{aligned} \tag{3.12} \]

then we can derive from (1.4) that \((z_n, \omega_n) \) satisfies

\[\begin{aligned}
\partial_t z_n - u_n^2 \partial_{x} z_n &= (z_n + t\psi_0^n)\partial_{x} u_0^2_n + tu_n^2 \partial_{x} \psi_0^n + f(u_n^2) + g(\rho_n^2) \\
\partial_t \omega_n - k_3 u_n^2 \partial_{x} \omega_n &= k_3 (z_n + t\psi_0^n) \partial_{x} \rho_0^2_n + k_3 tu_n^2 \partial_{x} \psi_0^n + k_3 \rho_n^2 \partial_{x} u_n^2,
\end{aligned} \tag{3.12} \]

Applying Lemma 2.1, using (3.3), (3.9)–(3.10), we arrive at

\[\|z_n\|_{B^{p,r}_{n+1}} \lesssim \|z_n\|_{B^{p,r}_{n+1}} \|\partial_{x} \rho_0^2_n\|_{B^{p,r}_{n+1}} \lesssim 2^n \|z_n\|_{B^{p,r}_{n+1}}, \tag{3.13} \]
\[\|z_n\|_{B^{p,r}_{n+1}} \lesssim \|z_n\|_{B^{p,r}_{n+1}} \|\partial_{x} \rho_0^2_n\|_{B^{p,r}_{n+1}} \lesssim \|z_n\|_{B^{p,r}_{n+1}}, \tag{3.14} \]
\[\|\psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|\psi_0^n\|_{B^{p,r}_{n+1}} \|\partial_{x} \rho_0^2_n\|_{B^{p,r}_{n+1}} \lesssim 2^{-n} 2^n \lesssim C, \tag{3.15} \]
\[\|\psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|\psi_0^n\|_{B^{p,r}_{n+1}} \|\partial_{x} \rho_0^2_n\|_{B^{p,r}_{n+1}} \lesssim 2^{-n} \tag{3.16} \]
\[\|u_n^2 \partial_{x} \psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|u_n^2 \|_{B^{p,r}_{n+1}} \|\partial_{x} \psi_0^n\|_{B^{p,r}_{n+1}} \lesssim 2^{-n} 2^n \lesssim C, \tag{3.17} \]
\[\|u_n^2 \partial_{x} \psi_0^n\|_{B^{p,r}_{n+1}} \lesssim \|u_n^2 \|_{B^{p,r}_{n+1}} \|\partial_{x} \psi_0^n\|_{B^{p,r}_{n+1}} \lesssim 2^{-n} \tag{3.18} \]

It needs to pay more attention to deal with the term \(k_3 \rho_n^1 \partial_{x} u_n^1 \) and it can be can be decomposed as

\[\rho_n^2 \partial_{x} u_n^2 = \rho_n^2 \partial_{x} z_n + (\omega_n + \rho_0^2_n) \partial_{x} u_0^2_n + t(\rho_n^2 \partial_{x} \psi_0^n + \psi_0^n \partial_{x} u_0^2_n). \]
With (3.3), (3.9)–(3.10) at hand, by Lemma 2.1, we find that

\[
\begin{align*}
\|\rho_n^2 \partial_x z_n\|_{B^{s-1}_{p,r}} &\lesssim \|\rho_n^2\|_{B^{s-1}_{p,r}} \|\partial_x z_n\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \\
\|\rho_n^2 \partial_x z_n\|_{B^{s-2}_{p,r}} &\lesssim \|\partial_x z_n\|_{B^{s-2}_{p,r}} \|\rho_n^2\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \\
\|\omega_n \partial_x u_0^2\|_{B^{s-1}_{p,r}} &\lesssim \|\omega_n\|_{B^{s-1}_{p,r}} \|\partial_x u_0\|_{B^{s-1}_{p,r}} \lesssim \|\omega_n\|_{B^{s}_{p,r}}, \\
\|\omega_n \partial_x u_0^2\|_{B^{s-2}_{p,r}} &\lesssim \|\omega_n\|_{B^{s-2}_{p,r}} \|\partial_x u_0\|_{B^{s-1}_{p,r}} \lesssim \|\omega_n\|_{B^{s}_{p,r}}, \\
\|\rho_{0,n}^2 \partial_x u_0^2\|_{B^{s-1}_{p,r}} &\lesssim \|\rho_{0,n}^2\|_{B^{s}_{p,r}} \|\partial_x u_0\|_{B^{s-1}_{p,r}} \lesssim \|\rho_{0,n}^2\|_{B^{s}_{p,r}} \|\partial_x u_0\|_{B^{s}_{p,r}} L_{\infty} \\
&\lesssim (2^{-ns} 2^n + 2^{-n}) \cdot 1 + 1 \cdot (2^{-ns} 2^n + 2^{-n}) \lesssim 2^{-n \min\{s-1, 1\}}.
\end{align*}
\]

(3.19) \hspace{1cm} (3.20) \hspace{1cm} (3.21) \hspace{1cm} (3.22) \hspace{1cm} (3.23)

Applying Lemma 2.2 to the second equation of (3.12), using the fact that \{u_n^2\} is bounded in \(L_{\infty}^{\infty} (B^s_{p,r})\), firstly with (3.14), (3.16), (3.18), (3.20), (3.22), (3.24), (3.26), (3.28), we infer that

\[
\|\omega_n\|_{B^{s-2}_{p,r}} \leq C \int_0^t (\|z_n\|_{B^{s}_{p,r}} + \|\omega_n\|_{B^{s-2}_{p,r}}) d\tau + Ct^2 2^{-n} + C 2^{-n \min\{s-1, 1\}},
\]

(3.29)

and again combining with (3.13), (3.15), (3.17), (3.19), (3.21), (3.23), (3.25), (3.27), we obtain that

\[
\|\omega_n\|_{B^{s-1}_{p,r}} \leq C \int_0^t (\|z_n\|_{B^s_{p,r}} + \|\omega_n\|_{B^{s-1}_{p,r}}) d\tau + C \int_0^t 2^n \|z_n\|_{B^{s-1}_{p,r}} d\tau + Ct^2 + C 2^{-n \min\{s-1, 1\}}.
\]

(3.30)

In the following, we shall estimate \(z_n\) in \(B^{s-1}_{p,r}\) and \(B^s_{p,r}\), respectively. With the aid of Lemma 2.1 and (3.3), (3.9), one has

\[
\|z_n \partial_x u_0^2\|_{B^{s}_{p,r}} \lesssim \|z_n\|_{L_{\infty}} \|\partial_x u_0^2\|_{B^{s}_{p,r}} + \|z_n\|_{B^{s}_{p,r}} \|\partial_x u_0^2\|_{B^{s}_{p,r}} L_{\infty} \\
\lesssim \|z_n\|_{B^{s-1}_{p,r}} \|\partial_x u_0^2\|_{B^{s}_{p,r}} + \|z_n\|_{B^{s}_{p,r}} \|\partial_x u_0^2\|_{B^{s}_{p,r}}
\]

\(\mathbb{C}\) Springer
\[\lesssim 2^n \|z_n\|_{B^{s-1}_{p,r}} + \|z_n\|_{B^{s}_{p,r}}, \]
(3.31)
\[\|z_n \partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s-1}_{p,r}} \|\partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s-1}_{p,r}}, \]
(3.32)
\[\|v_0^n \partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|v_0^n\|_{B^{s-1}_{p,r}} \|\partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \leq C, \]
(3.33)
\[\|v_0^n \partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|v_0^n\|_{B^{s-1}_{p,r}} \|\partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \leq 2^{-n}, \]
(3.34)
\[\|u_{0,n}^2 \partial_x v_0^n\|_{B^{s-1}_{p,r}} \lesssim \|u_{0,n}^2\|_{B^{s-1}_{p,r}} \|\partial_x v_0^n\|_{B^{s-1}_{p,r}} + \|u_{0,n}^2\|_{B^{s-1}_{p,r}} \|\partial_x v_0^n\|_{B^{s-1}_{p,r}} \leq C, \]
(3.35)
\[\|u_{0,n}^2 \partial_x v_0^n\|_{B^{s-1}_{p,r}} \lesssim \|u_{0,n}^2\|_{B^{s-1}_{p,r}} \|\partial_x v_0^n\|_{B^{s-1}_{p,r}} \leq 2^{-n}. \]
(3.36)
For the term \(f(u_n^2) = f_1(u_n^2) + f_2(u_n^2) \), we have from Lemma 2.1 and (3.3) that
\[\|f_1(u_n^2)\|_{B^{s}_{p,r}} \lesssim \|(u_n^2)^2\|_{B^{s-1}_{p,r}} \lesssim \|u_n^2\|_{B^{s-1}_{p,r}}^2 \lesssim 2^{-2n}, \]
(3.37)
while it needs to be more careful to deal with \(f_2(u_n^2) \). By making full use of the structure of \(u_n^2 \), we find that
\[f_2(u_n^2) = \frac{3 - k_1}{2} \partial_x (1 - \partial_x^2)^{-1} (\partial_x (u_n^2 + u_{0,n}^2) \partial_x z_n) \]
\[+ \frac{3 - k_1}{2} \partial_x (1 - \partial_x^2)^{-1} (t \partial_x (u_n^2 + u_{0,n}^2) \partial_x v_0^n) \]
\[+ \frac{3 - k_1}{2} \partial_x (1 - \partial_x^2)^{-1} ((\partial_x u_{0,n}^2)^2), \]
and
\[\|f_{2,1}\|_{B^{s}_{p,r}} \lesssim \|\partial_x (u_n^2 + u_{0,n}^2)\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \]
(3.38)
\[\|f_{2,1}\|_{B^{s-1}_{p,r}} \lesssim \|\partial_x (u_n^2 + u_{0,n}^2)\|_{B^{s-2}_{p,r}} \lesssim \|z_n\|_{B^{s-1}_{p,r}}, \]
(3.39)
\[\|f_{2,2}\|_{B^{s}_{p,r}} \lesssim \|\partial_x (u_n^2 + u_{0,n}^2)\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \]
(3.40)
\[\|f_{2,2}\|_{B^{s}_{p,r}} \lesssim \|\partial_x (u_n^2 + u_{0,n}^2)\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \]
(3.41)
\[\|f_{2,3}\|_{B^{s}_{p,r}} \lesssim \|\partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s}_{p,r}}, \]
(3.42)
\[\|f_{2,3}\|_{B^{s-1}_{p,r}} \lesssim \|\partial_x u_{0,n}^2\|_{B^{s-1}_{p,r}} \lesssim \|z_n\|_{B^{s-1}_{p,r}}, \]
(3.43)
\[g(\rho_n^2) = \frac{k_2}{2} \partial_x (1 - \partial_x^2)^{-1}(\omega_n(\rho_n^2 + \rho_0^2, n)) + \frac{k_2}{2} \partial_x (1 - \partial_x^2)^{-1}(t w_0^n(\rho_n^2 + \rho_0^2, n)) \]

\[+ \frac{k_2}{2} \partial_x (1 - \partial_x^2)^{-1}((\rho_0^2, n)^2) , \]

and

\[\|g_1\|_{B^r_{p, r}} \lesssim \|\omega_n(\rho_n^2 + \rho_0^2)\|_{B^{r-1}_{p, r}} \lesssim \|\omega_n\|_{B^{r-1}_{p, r}} , \] (3.44)

\[\|g_1\|_{B^{r-1}_{p, r}} \lesssim \|\omega_n(\rho_n^2 + \rho_0^2)\|_{B^{r-2}_{p, r}} \lesssim \|\omega_n\|_{B^{r-2}_{p, r}} , \] (3.45)

\[\|g_2\|_{B^r_{p, r}} \lesssim \|w_0^n(\rho_n^2 + \rho_0^2)\|_{B^{r-1}_{p, r}} \leq C , \] (3.46)

\[\|g_2\|_{B^{r-1}_{p, r}} \lesssim \|w_0^n(\rho_n^2 + \rho_0^2)\|_{B^{r-2}_{p, r}} \lesssim 2^{-n} , \] (3.47)

\[\|g_3\|_{B^r_{p, r}} \lesssim \|(\rho_0^2, n)^2\|_{B^{r-1}_{p, r}} \lesssim \|\rho_0^2, n\|_{L^\infty} \|\rho_0^2, n\|_{B^{r-1}_{p, r}} \]

\[\lesssim (2^{-ns} 2^n + 2^{-n}) \cdot 1 \lesssim 2^{-n \min\{s, 1\}} , \] (3.48)

\[\|g_3\|_{B^{r-1}_{p, r}} \lesssim \|(\rho_0^2, n)^2\|_{B^{r-1}_{p, r}} \lesssim \|\rho_0^2, n\|_{L^\infty} \|\rho_0^2, n\|_{B^{r-1}_{p, r}} \]

\[\lesssim (2^{-ns} 2^n + 2^{-n}) \cdot 2^{-\frac{3}{2}} \lesssim 2^{-n \min\{s - \frac{1}{2}, \frac{3}{2}\}} . \] (3.49)

Applying Lemma 2.2 firstly together with (3.32), (3.34), (3.36), (3.37), (3.39), (3.41), (3.43), (3.45), (3.47), (3.49) to the first equation of (3.12), using the fact that \(\{u_n^2\}\) is bounded in \(L_T^\infty(B^s_{p, r})\), we infer that

\[\|z_n\|_{B^{r-1}_{p, r}} \leq C \int_0^t (\|z_n\|_{B^{r-1}_{p, r}} + \|\omega_n\|_{B^{r-2}_{p, r}}) d\tau + C t 2^{-n} + C 2^{-n \min\{s - \frac{1}{2}, \frac{3}{2}\}} , \] (3.50)

and again combining with (3.31), (3.33), (3.35), (3.37), (3.38), (3.40), (3.42), (3.44), (3.46), (3.48), we obtain

\[\|z_n\|_{B^r_{p, r}} \leq C \int_0^t (\|z_n\|_{B^r_{p, r}} + \|\omega_n\|_{B^{r-1}_{p, r}}) d\tau + C \int_0^t 2^n \|z_n\|_{B^{r-1}_{p, r}} d\tau + C t^2 + C 2^{-n \min\{s, 1\}} . \] (3.51)

Using Gronwall Lemma to (3.23) and (3.43) imply

\[\|z_n\|_{B^{r-1}_{p, r}} + \|\omega_n\|_{B^{r-2}_{p, r}} \leq C t^2 2^{-n} + C 2^{-n \min\{s - \frac{1}{2}, \frac{3}{2}\}} , \]
which together with (3.30) and (3.51) yield that
\[\|z_n\|_{B_{p,r}^s} + \|\omega_n\|_{B_{p,r}^{s-1}} \leq Ct^2 + C2^{-n \min\left\{ \frac{3}{2}, \frac{1}{2} \right\}}. \]

Thus, we have finished the proof of Proposition 3.2. \(\square \)

Proof of Theorem 1.1 It is obvious that
\[
\|u_{0,n}^2 - u_{0,n}^1\|_{B_{p,r}^s} = \|g_n\|_{B_{p,r}^s} \leq C2^{-n},
\]
\[
\|\rho_{0,n}^2 - \rho_{0,n}^1\|_{B_{p,r}^{s-1}} = \|g_n\|_{B_{p,r}^{s-1}} \leq C2^{-n},
\]
which means that
\[
\lim_{n \to \infty} (\|u_{0,n}^2 - u_{0,n}^1\|_{B_{p,r}^s} + \|\rho_{0,n}^2 - \rho_{0,n}^1\|_{B_{p,r}^{s-1}}) = 0.
\]

However, according to Proposition 3.1 and Proposition 3.2, we get
\[
\|\rho_n^2 - \rho_n^1\|_{B_{p,r}^{s-1}} = \|\omega_n + tw_0^n + gn + \rho_{0,n}^1 - \rho_{0,n}^1\|_{B_{p,r}^{s-1}} \\
\geq t\|w_0^n\|_{B_{p,r}^{s-1}} - 2^{-n} - t^2 - 2^{-n \min\left\{ \frac{3}{2}, \frac{1}{2} \right\}} - 2^{-n(3/2)}.
\]
\[(3.52) \]

Notice that
\[
w_0^n = k_3u_{0,n}^2\partial_x \rho_{0,n}^2 = k_3(f_n + gn)\partial_x(2^n f_n + gn)
= k_3f_n\partial_x(2^n f_n) + k_3 gn\partial_x(2^n f_n) + k_3 f_n\partial_x gn + k_3 g_n\partial_x gn.
\]

With the aid of Lemma 2.1 and the Banach algebra property of $B_{p,r}^{s-1}$, we find that
\[
\|f_n\partial_x(2^n f_n)\|_{B_{p,r}^{s-1}} \lesssim \|f_n\|_{L^\infty}\|\partial_x(2^n f_n)\|_{B_{p,r}^{s-1}} + \|f_n\|_{B_{p,r}^{s-1}}\|\partial_x(2^n f_n)\|_{L^\infty}
\lesssim 2^{-ns}2^n + 2^{-ns}2^{-n}2^{-ns}2^n \lesssim 2^{-n(s-1)},
\]
\[
\|f_n\partial_x gn\|_{B_{p,r}^{s-1}} \lesssim \|f_n\|_{B_{p,r}^{s-1}}\|\partial_x gn\|_{B_{p,r}^{s-1}} \lesssim 2^{-2n},
\]
\[
\|g_n\partial_x gn\|_{B_{p,r}^{s-1}} \lesssim \|g_n\|_{B_{p,r}^{s-1}}\|\partial_x gn\|_{B_{p,r}^{s-1}} \lesssim 2^{-2n}.
\]

However, using the fact that $\Delta_j(g_n\partial_x(2^n f_n)) = 0$, $j \neq n$ and $\Delta_n(g_n\partial_x(2^n f_n)) = g_n\partial_x(2^n f_n)$ for $n \geq 5$, direct calculation shows that for $n \gg 1$,
\[
\|g_n\partial_x(2^n f_n)\|_{B_{p,r}^{s-1}} = 2^{n(s-1)}\|g_n\partial_x(2^n f_n)\|_{L^p}
= 2^{-n}\phi(x)\partial_x\phi(x) \sin\left(2 \pi \frac{17}{12} 2^n x\right) + 2^{-n}\phi^2(x) \cos\left(2 \pi \frac{17}{12} 2^n x\right) \|L^p
\gtrsim \|2^{-n}\phi^2(x) \cos\left(2 \pi \frac{17}{12} 2^n x\right) \|_{L^p} - 2^{-n} \to 17 \frac{2 \pi}{12} \frac{\int_0^{2\pi} |\cos x|^p dx}{2\pi} \|\phi^2(x)\|_{L^p},
\]
\[\square \]
by the Riemann Theorem.
Taking the above estimates into (3.52) yields

\[\liminf_{n \to \infty} \| \rho_n^2 - \rho_n^1 \|_{B_{t}^{p,r-1}} \gtrsim t \quad \text{for } t \text{ small enough}. \]

Similarly, we have

\[\liminf_{n \to \infty} \| u_n^2 - u_n^1 \|_{B_{t}^{r,v}} \gtrsim t \quad \text{for } t \text{ small enough}. \]

This completes the proof of Theorem 1.1. \qed

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant No.12001163) and Natural Science Foundation of Henan Province (Grant No.212300410164).

Data Availability Statement Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Declarations

Conflicts of interest Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag, Berlin (2011)
2. Constantin, A.: The Hamiltonian structure of the Camassa-Holm equation. Expo. Math. **15**(1), 53–85 (1997)
3. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Classe Sci. **26**, 303–328 (1998)
4. Constantin, A., Escher, J.: Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. **51**, 475–504 (1998)
5. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. **181**, 229–243 (1998)
6. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) **50**, 321–362 (2000)
7. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. **211**, 45–61 (2000)
8. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. Ser. A **457**, 953–970 (2001)
9. Constantin, A., Ivanov, R.: On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A **372**, 7129–7132 (2008)
10. Constantin, A., Ivanov, R.I., Lenells, J.: Inverse scattering transform for the Degasperis-Procesi equation. Nonlinearity **23**, 2559–2575 (2010)
11. Danchin, R.: A few remarks on the Camassa-Holm equation. Differ. Integral Equ. **14**, 953–988 (2001)
12. Danchin, R.: A note on well-posedness for Camassa-Holm equation. J. Differ. Equ. **192**, 429–444 (2003)
13. Degasperis, A., Holm, D., Hone, A.: A new integrable equation with peakon solutions. Theor. Math. Phys. **133**, 1461–1472 (2002)
14. Escher, J., Lechtenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Contin. Dyn. Syst. **19**, 493–513 (2007)
15. Escher, J., Kohlmann, M., Lenells, J.: The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations. J. Geom. Phys. 61, 436–452 (2011)
16. Guan, C., Yin, Z.: Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. J. Differ. Equ. 248, 2003–2014 (2010)
17. Guan, C., Yin, Z.: Global weak solutions for a two-component Camassa-Holm shallow water system. J. Geom. Phys. 61, 436–452 (2011)
18. Guan, C., Yin, Z.: Global existence and wave-breaking criteria for the two-component Camassa-Holm system. J. Funct. Anal. 258, 4251–4278 (2010)
19. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa-Holm system. J. Funct. Anal. 258, 4251–4278 (2010)
20. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa-Holm system. Math. Z. 268, 45–66 (2011)
21. Gui, G., Liu, Y.: On the Cauchy problem for the Degasperis-Procesi equation. Quart Appl. Math. 69, 445–464 (2011)
22. Guo, Z., Liu, X., Molinet, L., Yin, Z.: Ill-posedness of the Camassa-Holm and related equations in the critical space. J. Differ. Equ. 266, 1698–1707 (2019)
23. Himonas, A., Misiołek, G.: High-frequency smooth solutions and well-posedness of the Camassa-Holm equation. Int. Math. Res. Not. 51, 3135–3151 (2005)
24. Himonas, A., Misiołek, G., Ponce, G.: Non-uniform continuity in H^1 of the solution map of the CH equation. Asian J. Math. 11, 141–150 (2007)
25. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Diff. Integr. Equ. 22, 201–224 (2009)
26. Himonas, A., Holliman, C.: On well-posedness of the Degasperis-Procesi equation. Discrete Contin. Dyn. Syst. 31, 469–488 (2011)
27. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)
28. Holmes, J., Thompson, R., Tiğlay, F.: Nonuniform dependence of the R-b-family system in Besov spaces. Z. Angew. Math. Mech. (2021). https://doi.org/10.1002/zamm.202000329
29. Jin, L., Guo, Z.: On a two-component Degasperis-Procesi shallow water system. Nonlinear Anal. RWA 11, 4164–4173 (2010)
30. Kenig, C., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. 106, 617–633 (2001)
31. Koch, H., Tzvetkov, N.: Nonlinear wave interactions for the Benjamin-Ono equation. Int. Math. Res. Not. 30, 1833–1847 (2005)
32. Li, J., Yin, Z.: Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces. J. Differ. Equ. 261, 6125–6143 (2016)
33. Li, J., Yin, Z.: Well-posedness and analytic solutions of the two-component Euler-Poincaré system. Monatsh. Math. 183, 509–537 (2017)
34. Li, J., Yu, Y., Zhu, W.: Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces. J. Differ. Equ. 269, 8686–8700 (2020)
35. Li, J., Li, M., Zhu, W.: Non-uniform dependence for Novikov equation in Besov spaces, 2020. J. Math. Fluid Mech. 22(4), 50 (2020)
36. Li, J., Yang, K.: On the Cauchy problem for a two-component b-family system with high order nonlinearity. J. Math. Anal. Appl. 485, 123818 (2020)
37. Liu, J., Yin, Z.: On the Cauchy problem for a two-component b-family system. Nonlinear Anal. RWA 12, 3608–3620 (2011)
38. Lv, G., Wang, X.: On the Cauchy problem for a two-component b-family system. Nonlinear Anal. 111, 1–14 (2014)
39. Popowicz, Z.: A two-component generalization of the Degasperis-Procesi equation. J. Phys. A Math. Gen. 39, 13717–13726 (2006)
40. Wu, X., Xiao, Y.: Non-uniform continuity on initial data for a Camassa-Holm-type equation in Besov space. J. Math. Anal. Appl. 494, 124621 (2021)
41. Wu, X., Yu, Y., Xiao, Y.: Non-uniform dependence on initial data for the generalized Camassa-Holm-Novikov equation in Besov space. J. Math. Fluid Mech. 23, 104 (2021)
42. Yan, K., Yin, Z.: On the Cauchy problem for a two-component Degasperis-Procesi system. J. Differ. Equ. 252, 2131–2159 (2012)
43. Yin, Z.: On the Cauchy problem for an integrable equation with peakon solutions. Illinois J. Math. 47, 649–666 (2003)
44. Zhu, M., Xu, J.: On the Cauchy problem for the two-component b-family system. Math. Meth. Appl. Sci. 36, 2154–2173 (2013)
45. Zong, X.: Properties of the solutions to the two-component b-family systems. Nonlinear Anal. 75, 6250–6259 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.