ERCC1 and XRCC1 as biomarkers for lung and head and neck cancer

Alec Vaezi 1,2
Chelsea H Feldman 2
Laura J Niedernhofer 2,3
1 Department of Otolaryngology and Head and Neck Surgery, University of Pittsburgh School of Medicine, 2 University of Pittsburgh Cancer Institute, 3 Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, Pittsburgh, PA, USA

Abstract: Advanced stage non-small cell lung cancer and head and neck squamous cell carcinoma are both treated with DNA damaging agents including platinum-based compounds and radiation therapy. However, at least one quarter of all tumors are resistant or refractory to these genotoxic agents. Yet the agents are extremely toxic, leading to undesirable side effects with potentially no benefit. Alternative therapies exist, but currently there are no tools to predict whether the first-line genotoxic agents will work in any given patient. To maximize therapeutic success and limit unnecessary toxicity, emerging clinical trials aim to inform personalized treatments tailored to the biology of individual tumors. Worldwide, significant resources have been invested in identifying biomarkers for guiding the treatment of lung and head and neck cancer. DNA repair proteins of the nucleotide excision repair pathway (ERCC1) and of the base excision repair pathway (XRCC1), which are instrumental in clearing DNA damage caused by platinum drugs and radiation, have been extensively studied as potential biomarkers of clinical outcomes in lung and head and neck cancers. The results are complex and contradictory. Here we summarize the current status of single nucleotide polymorphisms, mRNA, and protein expression of ERCC1 and XRCC1 in relation to cancer risk and patient outcomes.

Keywords: nucleotide excision repair, base excision repair, DNA damage, DNA repair, chemotherapy, NSCLC, HNSCC, single nucleotide polymorphism

Introduction

Lung cancer is the second most common cancer in the USA and is the leading cause of cancer-related death. 1 Based on the predicted response to treatment and known risk factors, lung cancers are categorized in two groups: small cell and non-small cell lung cancers (NSCLC). NSCLC are more frequent, and smoking is a risk factor. Histologically, NSCLC are composed mainly of adenocarcinoma and, to a lesser degree, of squamous cell carcinoma (SCC) and large cell carcinoma. Treatment varies based on clinical stage. Early stage NSCLC is treated with surgery, while loco-regionally advanced and metastatic cancers are treated with multidrug systemic chemotherapy, which often includes a platinum compound. 2

Head and neck cancers are similar to NSCLC in many respects, although they are less common, representing the eighth most frequent type of cancer in the USA. 1 Smoking is a recognized risk factor for head and neck cancers, like for NSCLC. Pathologically, cancers of the aerodigestive tract are mostly head and neck squamous cell carcinoma (HNSCC). As for NSCLC, early stage HNSCC is successfully treated with surgery, while treatment of loco-regionally advanced tumors includes systemic therapy. 2–4

Frequently, concomitant radiotherapy and chemotherapy with a platinum-based DNA
damaging agent (cisplatin or carboplatin) is used, either as primary treatment or as adjuvant post-operative therapy. Alternative systemic treatments that do not rely upon DNA damage, such as taxanes, base analogs, and anti-metabolites can also be used. However, currently we do not have the tools to predict which patients will respond best to the various possible therapies.

To maximize treatment success of NSCLC and HNSCC, and to reduce unnecessary toxicity, there is great demand for identifying biomarkers that predict clinical outcomes prospectively. The goal is to measure validated biomarker(s) in individual tumors to probe the biology of each tumor and predict whether it is likely to be vulnerable to genotoxic agents such radiation and platinum drugs. This would enable identification of patients likely to be resistant to these modalities, allowing use of alternative therapies, preventing unnecessary toxic side-effects, and improving clinical outcomes.

Choosing a biomarker

Biomarkers in DNA repair pathways

DNA repair proteins are obvious candidate biomarkers for predicting how tumors will respond to genotoxic stress. The prediction is that overexpression of DNA repair proteins in tumors could mediate resistance to genotoxic therapies and therefore poor outcomes. In turn, persons with inherited defects in DNA repair mechanisms are frequently exquisitely hypersensitive to radiation and/or genotoxic agents. This is true of patients with ataxia telangiectasia (AT), ataxia telangiectasia-like disorder, severe combined immunodeficiency, Ligase IV syndrome, Rothmund–Thompson syndrome, Seckel syndrome, Werner syndrome, Nijmegen breakage syndrome, all due to defective repair of double-strand breaks (DSBs) or stalled replication forks. It is also true of patients with Fanconi anemia caused by defective repair of DNA interstrand crosslinks (ICLs) and patients with xeroderma pigmentosum due to a defect in nucleotide excision repair (NER) of helix-distorting DNA adducts. Since NSCLC and HNSCC are treated with cisplatin and radiation therapy, it is logical to predict that patients with reduced DSB repair, single-strand break (SSB) repair, ICL repair, or NER due to polymorphisms affecting the expression or function of DNA repair proteins might be most responsive to DNA damaging agents.

ERCC1-XPF repair endonuclease

ERCC1 is an attractive candidate biomarker. ERCC1 partners with XPF to form a bi-partite nuclease that is essential for NER and ICL repair, and participates in DSB repair (Figure 1). Platinum-based chemotherapy drugs react with DNA to induce adducts that affect one strand of DNA (monoa adducts and intrastrand crosslinks), which are repaired by NER, as well as adducts that affect both strands (ICLs), which are repaired by a distinct DNA repair mechanism: ICL repair. Because ERCC1-XPF is unique in being required for both NER and ICL repair pathways, it is the only enzyme required for removal of all types of DNA lesions caused by cisplatin and carboplatin. In addition, it facilitates the repair of DNA lesions caused by radiation therapy (bulky oxidative lesions and DSBs). Hence, it has been proposed that decreased expression of ERCC1-XPF might mediate increased susceptibility to chemoradiation and improved clinical outcome. It is therefore not surprising that ERCC1 has been extensively evaluated as a biomarker in NSCLC and HNSCC, with over 90 peer-reviewed reports published on the subject.
However, it is important to emphasize that the expression level of ERCC1-XPF has not been established as rate limiting for NER, ICL, or DSB repair, therefore the influence of ERCC1-XPF protein levels on the DNA repair capacity of cells or tumors is not known.

XRCC1 scaffold protein

XRCC1 is an equally promising candidate biomarker involved in the repair of oxidative DNA damage and single-strand breaks (SSBs) (Figure 2), two types of DNA damage abundantly produced by ionizing radiation. XRCC1 does not have enzymatic activity, but it is a critical scaffold protein for base excision repair (BER) and SSB repair (reviewed in Kennedy and D’Andrea,8 Hoeijmakers,16 Ladiges,17 and Almeida and Sobol).15 XRCC1 interacts strongly with PARP1, which recognizes SSBs, and LIGIII that seals SSBs and BER intermediates.17,19 Cells lacking XRCC1 are hypersensitive to ionizing radiation, oxidative stress and alkylating agents (reviewed by Caldecott).19 It is therefore plausible that reduced expression of XRCC1 in cancer patients may lead to increased susceptibility to chemoradiation and improved patient survival. However, like ERCC1-XPF, *XRCC1* has not been established as rate limiting for DNA repair. Thus, the impact of low expression of XRCC1 on a cell’s capacity for BER and SSB is not known.

Methods to assess biomarkers and clinical endpoints

Available methods to interrogate DNA repair

Directly measuring NER, DSB repair, ICL repair, or BER would be the ideal method for predicting an individual’s DNA repair capacity. However measuring DNA repair requires viable, and for some pathways, replicating cells. Thus, currently it is not possible to rapidly measure DNA repair in clinical samples because it first requires establishing a cell line from peripheral blood mononuclear cells, dermal fibroblasts, or tumors. Hence measuring DNA repair protein expression is used as a surrogate. Multiple techniques are available to measure ERCC1 and XRCC1 expression including immunohistochemistry or immunofluorescence of fixed tissue sections, quantification of mRNA expression by qRT-PCR, or quantification of protein expression by immunoblot if frozen specimens are available. It must be strongly emphasized, however, that it is not established that ERCC1 is rate limiting for NER or ICL repair, or that XRCC1 is rate limiting for BER or SSB repair. *ERCC1* and *XRCC1* can also be investigated by sequencing DNA to detect functional single nucleotide polymorphisms (SNP) affecting protein function or expression level.

Measuring protein expression

Immunohistochemistry (IHC) and immunofluorescence are semi-quantitative methods that permit estimation of protein expression level in clinical samples. The intensity of the histochemical reaction or fluorescent signal varies with the expression level of the protein of interest and can be scored as positive versus negative or on a graded scale. These methods are advantageous since they employ paraffin embedded tissue specimens, which are readily available. However, several caveats must be considered while interpreting data from immunohistochemical methods. Protein expression within a given tumor may vary from one area to another.20,21 Therefore expression measured on a biopsy specimen or in a tissue core in an array, which represent only a small fraction of a tumor, may not reflect overall expression. In one patient cohort, however, it was established that ERCC1 expression in biopsies correlated with expression measured in tumor sections.22 Another important technical consideration is the
fact that tissue collection method, handling, storage, fixation, processing, and analysis influence the biomarker readout, and causes inter-study variability. This has led to the publication of guidelines for evaluation of biomarkers, in an attempt to unify methods of biomarker analysis.

Equally important, immunodetection methods are by definition indirect measures of protein expression, dependent upon the sensitivity and specificity of the antibody used. The specificity of the commercially available antibodies is rarely rigorously tested. ERCC1 protein expression was erroneously quantified in virtually all oncology studies prior to 2010 due to the implementation of an antibody raised against ERCC1 that lacks specificity. Finally, methods for quantifying and scoring biomarker expression vary from study to study, and are somewhat subjective. For instance, biomarker positivity can be defined as the presence of any staining detected by a pathologist, calculated as an H-score based on the staining intensity and number of positive cells, or quantified by an automated system to minimize subjectivity. Thus, while immunohistochemical methods are potentially useful for quantifying biomarker protein expression, multiple factors can introduce intra- or inter-study variability.

Measuring mRNA expression

mRNA expression is often used as a surrogate marker for protein expression. Typically this is done by quantitative RT-PCR, using primers specific for the target biomarker. The advantages of quantifying mRNA are that the method is very sensitive, highly specific, and can be applied to fixed specimens. However, quantitative methods to measure mRNA levels are not readily available outside of biomedical research facilities. Importantly, mRNA and protein expression do not always correlate. Translational regulation, post-translational modification and protein stability alter protein levels independently of mRNA. So while mRNA levels can be a useful biomarker to predict clinical outcomes, mRNA levels do not necessarily reflect protein levels. Therefore, changes in mRNA levels should not be used to infer changes in biological activity in the absence of experimental evidence.

Genomic approaches

Base changes in a gene can lead to reduced expression of the encoded protein if they affect the promoter, 5’ or 3’ untranslated sequence, regulatory miRNA binding sites, splice sites, or the coding sequence if the change leads to protein misfolding or destabilization, or utilization of a less abundant tRNA during translation. Missense mutations in the coding sequence can also alter protein function by affecting protein:protein interactions or catalytic activity. Single nucleotide polymorphisms (SNPs) are defined as single base changes that occur in more than 1% of the population. They occur every 360 bases in the human genome, and, thus, affect all genes (reviewed by Kim and Misra). The National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/projects/SNP reports 246 SNPs in ERCC1, and 550 SNPs in XRCC1. In silico, in vitro, or epidemiological studies can be used to identify SNPs with the highest likelihood of being a useful biomarker. This includes SNPs with a known impact on mRNA level or protein expression, or activity. Fourteen SNPs in ERCC1 and eleven for XRCC1 have been investigated in NSCLC and/or HNSCC. The advantages of analyzing SNPs as biomarkers are that multiple SNPs can be evaluated in one sample using an array and DNA hybridization method and require only DNA extracted from a simple blood draw. However, it is important to remember that the genotype of a tumor may differ from the germline genotype found in the rest of the body, as tumors are inherently genetically unstable and accumulate DNA mutations. Therefore SNPs identified in a patient’s blood sample may not reflect a patient’s tumor’s genotype. Furthermore, because SNPs are much more abundant than recombination events in the human genome, they are inherited in clusters, referred to as haplotypes. Thus, a SNP in ERCC1 or XRCC1 could be a useful biomarker for predicting outcomes in cancer without having any impact on DNA repair.

Clinical endpoints

In oncology, clinical outcomes for which it would be desirable to have biomarkers include: (1) risk of cancer, (2) prognosis in untreated patients, (3) tumor response to therapy, (4) severity of treatment-related toxicities, (5) progression-free survival, and (6) overall survival. DNA repair-related endpoints could logically contribute to any of these endpoints, in particular when genotoxic chemotherapeutics or radiation is the therapy of choice.

One of the most widely recognized risk factors for NSCLC and HNSCC is smoking. The pathogenesis of these tumors involves tobacco-related DNA damage. It is rational to hypothesize that persons with low expression of ERCC1 or XRCC1 may have impaired ability to remove tobacco-induced DNA damage and therefore are more likely to develop smoking-related cancers. The best way to test this hypothesis is with well-powered prospective risk analysis. But these types of studies are difficult to conduct because they necessitate large cohorts and long follow-up times. For instance, >520,000 patients would have to be followed for...
10 years to find 116 lung cancer and 82 HNSCC. Thus, most published studies evaluating cancer risk associated with ERCC1 and XRCC1 are retrospective case-control studies, which have their inherent limitations.

Since DNA repair-related biomarkers could have value for multiple clinical endpoints, they could potentially have prognostic or predictive value. Prognostic biomarkers estimate progression-free or overall survival in an untreated patient population. It gives information on the natural course of the disease. In contrast, predictive biomarkers estimate how likely a given treatment is expected to work (efficacy). Predictive value is determined in prospective randomized trial settings with treatment and control arms. Both prognostic and predictive biomarkers are useful but they require different study designs. Once identifying a biomarker of interest, validation is essential and ultimately the greatest barrier to implementation of the biomarker in clinical practice. Validation includes establishing that a biomarker of interest (expression, genotype) consistently predicts a particular clinical outcome (response rate, progression free survival, overall survival). Thus, validation requires multiple clinical studies conducted by multiple independent groups. With these considerations in mind, we now critically review the literature on ERCC1 and XRCC1 SNPs as biomarkers in NSCLC and HNSCC.

ERCC1 as biomarker for NSCLC and HNSCC

ERCC1 as a biomarker for cancer risk

Two SNPs, Asn118Asn and C8092A, have been described as potentially affecting ERCC1 expression. Asn118Asn involves a synonymous polymorphism at codon 118, where AAC is changed to AAT. While the amino acid sequence does not change, the variant (T) allele is associated with lower mRNA and protein levels in ovarian cancer cells. C8092 is in the 3′-UTR of ERCC1. The 3′-UTR is implicated in translational repression of ERCC1 mRNA. However, the impact of the polymorphism on ERCC1 protein expression has not been critically evaluated to date. In patients, the C8092A polymorphism correlates neither with mRNA, nor with protein levels. Numerous other SNPs in ERCC1 have been studied, but like C8092, their functional impact on ERCC1 expression or activity has not been clearly established.

Studies evaluating ERCC1 as a potential biomarker to predict the risk of developing NSCLC or HNSCC rest principally on SNP analysis. There are ten studies examining ERCC1 SNPs in relation to NSCLC. In these studies, only 14 of 246 reported SNPs in ERCC1 were evaluated, with just six SNPs analyzed in greater than one study (Table 1). Most report retrospective case-controlled studies focused on Asn118, C8092, and IVS3. While case-control studies are important for identifying new biomarkers, they have inherent biases that can limit the generalization of the results. For instance, if the biomarker is not robust, confounding factors in the cohort may lead to erroneous conclusions. In most of the retrospective studies, SNPs in ERCC1 were not significantly associated with susceptibility of developing NSCLC. However, there was not good concordance between studies. To clarify the role of SNPs in ERCC1 as risk factor for NSCLC, meta-analyses were done. When patients from the diverse studies were combined into large data pools, none of the four SNPs in ERCC1 meeting study inclusion criteria reached statistical significance as a risk factor for NSCLC. Furthermore, mRNA levels in blood samples were not identified as a risk factor for lung cancer. In summary, our review of the literature suggests that neither SNPs in ERCC1 studied to date by more than one group, nor peripheral mRNA levels, constitute a risk factor for NSCLC.

Head and neck cancers are less common than lung cancer. Hence clinical studies to identify biomarkers that predict the risk of developing HNSCC are less frequent and smaller. We identified six studies evaluating whether polymorphisms in ERCC1 are a risk factor for HNSCC (Table 1). Only four SNPs were assessed more than once: (Asn118Asn), (C8092A), 119216 C > T. None showed statistically significant association with risk of HNSCC, with the exception of one large case control study in which 4855 C > T appeared to be protective. One small retrospective case-controlled study suggested that low ERCC1 mRNA in peripheral blood might be a risk factor for HNSCC, but the findings could not be confirmed by others after multivariate analysis. Therefore, we conclude that none of the SNPs in ERCC1 tested thus far, nor peripheral ERCC1 mRNA levels are definitive risk factors for HNSCC. However, 4855 C > T deserves close attention in future studies. Further, we cannot exclude the possibility that these or other ERCC1 SNPs may be useful biomarkers in selected subpopulations for predicting cancer risk.

ERCC1 SNPs as biomarkers for clinical outcome

Polymorphisms in ERCC1 could affect tumor sensitivity to treatment, and hence influence patient outcomes. Patients with a
Table 1 Association between SNPs in ERCC1 and cancer risk

Cancer	rs	SNPs	Alternate names	Reference	n (case-control)	Riska
NSCLC	rs11615	Asn18 Asn	C118T; 354 C > T; T19007C; C19007T; 3525 C > T	Zhou et al39	1752–1358	0
				Matullo et al32,34	116–520,000	0
				Yin et al35	151–143	0
				Hung et al44	4460–5217	0
				Yu et al45	988–986	0
				Deng et al42	315–315	1
				Zienolddyn et al44	343–413	1
	rs3212986	C8092A	14443 C > A	Zhou et al39	1752–1358	0
				Zienolddyn et al44	343–413	0
				Yu et al45	988–986	0
				Hung et al44	4688–4546	0
				Shen et al44	122–122	0
				Jones et al44	452–790	0
				Zienolddyn et al44	343–413	0
				Ma et al45	1010–1011	2
				Ma et al45	1010–1011	0
				Yu et al45	988–986	1
				Shen et al44	122–122	0
				Yu et al45	1000–1000	0
				Zienolddyn et al44	343–413	0
				Ma et al45	1010–1011	0
	rs3212981			Jones et al44	452–790	0
	rs16979802	15310 C > G		Zienolddyn et al44	343–413	1
	rs3212951			Ma et al45	1010–1011	0
	rs1007616			Ma et al45	1010–1011	2
	rs1319052			Jones et al44	452–790	0
	rs735482			Jones et al44	452–790	0
	rs2298881	262 G > T		Sheng et al44	122–122	0
				Zienolddyn et al44	343–413	0
				Ma et al45	1010–1011	0
				Jones et al44	452–790	0
				Ma et al45	1010–1011	0
				Sugimura et al44	122–244	(1); 1 in smokers
				Sturgis et al45	313–313	(2)
				Canova et al44	1511–1457	0
				Abbasi et al43	257–769	0
				Canova et al44	1511–1457	0
				Abbasi et al43	257–769	0
HNSCC	rs11615	Asn18 Asn	354 T > C; 19007	Abbasi et al43	257–769	0
			T > C; 3525 C > T	Matullo et al42	82–520,000	0
				Canova et al44	1511–1457	0
				Sugimura et al44	122–244	(1); 1 in smoker
				Sturgis et al45	313–313	(2)
				Canova et al44	1511–1457	0
				Jones et al44	175–790	0
				Canova et al44	1511–1457	0
				Abbasi et al43	257–769	0
				Canova et al44	1511–1457	0
				Jones et al44	175–790	0
				Canova et al44	1511–1457	0
				Jones et al44	175–790	0

Notes: aRisk for variable allele, 0 = non significant, (1) = trend to increased, 1 = increased, (2) = trend to protective, 2 = protective; *retrospective analysis of prospective study.

Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers; rs, reference SNP; SNPs, single nucleotide polymorphisms.

A polymorphic variant of ERCC1, which results in impaired NER and/or ICL repair capacity, may be exquisitely sensitive to chemotherapy with genotoxic agents or radiation. This could mean their tumors respond better to chemoradiation therapy and outcomes are improved. Alternatively, the host may be hypersensitive to genotoxic stress leading to exaggerated side effects of therapy and poor outcomes.

In NSCLC, we identified sixteen studies testing whether ERCC1 polymorphisms influence clinical outcome,38,57–71 including five prospective studies (Table 2).58,62,69,70 The only two SNPs tested were Asn118 and C8092. The results are inconsistent, weakening the generalizability of the conclusions. When more than 500 patients from multiple studies were pooled into a single meta-analysis, Asn118 Asn
Table 2 Association between SNPs in ERCC1 and clinical outcome

Cancer	rs	SNPs	Alternate names	Reference	n	Outcome*
NSCLC	rs11615	Asn118 Asn	C118T; 354 T > C; 19007 T > C; 3525 C > T	Zhou et al63	128	0
				Gandara et al (2005)b	526	0
				Suk et al69	214	0 (toxicity)
				De Las Penas et al71b	135	0
				Tibaldi et al61	65	0
				Takenaka et al72	122	0
				Vinolas et al62b	94	0
				Park et al64	178	(1); 1 for stage III
				Ryu et al65	109	1
				Isla et al58	62	1
				Su et al66	230	1
				Kalikaki et al57	119	1
				Okuda et al38	90	1
				Yin et al57	257	1
				Li et al73	115	2
				Zhou et al71	130	2
				Zhou et al64	128	1
				Suk et al69	214	1 (toxicity)
				Park et al64	178	0
				Okuda et al38	90	1
				Takenaka et al73	122	1
				Kalikaki et al57	119	2
				Li et al73	115	2
HNSCC	rs3212986	C8092A	14443 C > A	Quintela-Fandino et al74	103	–1
	rs735482	Lys259Thr	1264 A > C	Grau et al75	47	0
				Carles et al76	108	(but only 4% of carrier)

Notes: *Outcome for variable allele, 0 = non significant, (1) = trend to worse, 1 = worse, (2) = trend to better, 2 = better; prospective study.

Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers; rs, reference SNP; SNPs, single nucleotide polymorphisms.

was predictive of tumor response to chemotherapy.72 As expected, the variant allele (C→T), which presumably causes lower ERCC1 expression, correlated with a higher response rate.72 However, this meta-analysis excluded one important report, a large phase III study (n = 526) in which Asn118 did not predict clinical outcome, including response to treatment.58 These conflicting results, derived from equally large studies, suggest that this ERCC1 SNP is not a robust predictive biomarker in an unselected population. To our knowledge, C8092 has not been evaluated in a large prospective study or in a meta-analysis as a predictor of clinical outcomes in NSCLC. In retrospective cohorts, C8092 showed mixed results as predictive biomarker. The general tendency was slightly weighed toward the variant allele (C→A) predicting worse outcomes.38,59,63,73 In summary, none of the SNPs in ERCC1 tested have been identified as strongly predictive biomarkers for outcomes in NSCLC, but C8092 emerges as a potentially promising candidate.

In HNSCC, we identified only three studies evaluating the predictive value of SNPs in ERCC1 (Table 2).74–76 Like NSCLC, in HNSCC, there was a trend toward an association between the variant allele of C8092 (C→A) with poor response to chemoradiation, and no correlation with survival.74 A new SNP (rs735482) located in the 3′UTR of ERCC1 was evaluated for predictive value of clinical outcome in two separate cohorts, but results were mixed.75,76 Therefore, we conclude that there is currently no strong evidence that SNPs in ERCC1 can predict clinical outcome in HNSCC.

ERCC1 protein expression as a biomarker of patient outcomes in NSCLC

While SNPs are often used as a crude estimate of ERCC1 expression or activity, immunodetection approaches permit a more direct quantification of ERCC1 protein level in tumor samples. We identified 17 studies addressing whether quantification of ERCC1 expression in NSCLC tumors by immunohistochemistry has prognostic or predictive value (Table 3).27,38,60,73,77–91 In a seminal retrospective analysis of a phase III trial, more than 780 patients with fully resected early stage NSCLC were randomized to observation versus
multidrug chemotherapy.81 The results suggested that tumoral ERCC1 protein expression was a biomarker with a complex profile. High ERCC1 levels correlated with good prognosis for untreated cases. But patients with low ERCC1 levels did significantly better when treated with multidrug chemotherapy. These results are consistent with the prediction that decreased expression of ERCC1 could promote sensitivity to genotoxic chemotherapy. Most studies agree that low ERCC1 protein expression is a marker for better clinical outcome after genotoxic therapy in NSCLC. Thirteen of 17 studies reported that low ERCC1 correlated with better clinical outcome (total n = 1815),77, 85, 87, 91, 92 or had a statistical trend towards better outcome (total n = 218).38 Two studies showed no correlation between ERCC1 level and outcome (n = 218),89, 90 while two studies showed a significantly worse outcome (total n = 269).27, 88 in patients with tumors expressing low levels of ERCC1. A recent meta-analysis evaluated NSCLC patients treated with platinum compounds.93 Low expression of ERCC1 in tumors quantified by immunohistochemistry was associated with a better clinical response to cisplatin, which translated into better survival.93 Despite some variability between individual studies, ERCC1 appears to emerge as a good candidate biomarker predictive of clinical outcome in NSCLC. An important point, however, is that in all 18 of the studies the monoclonal antibody, 8F1 was used to measure ERCC1 expression, and this antibody is not specific for ERCC1.25 Therefore, the claim that low ERCC1 expression correlates with better outcome is inaccurate. The more precise conclusion is that low 8F1 signal correlates with better outcome. More recent studies comparing 8F1 and another antibody specific for ERCC1 reveal that they have different predictive capacities with relation to clinical outcomes in cervical cancer.94

In HNSCC, only five studies (total n = 285) evaluated whether ERCC1 protein expression in tumors correlated with clinical outcome (Table 3).31, 95–98 The 8F1 antibody was used in all of the studies. Low 8F1 signal was associated with better outcome in three studies (total n = 168),95, 97, 98 while no significant association was found in the other two (n = 117).31, 96

ERCC1 transcript levels as a biomarker in NSCLC and HNSCC

As a surrogate marker of ERCC1 expression, ERCC1 mRNA was measured in NSCLCs in cell lines59 and in six retrospective68, 101–104 and six prospective studies.105–110 The results were mixed, but most studies showed an association between low ERCC1 mRNA and better clinical outcome, either significantly (seven studies)100, 102–105, 108, 109 or with a statistical trend (three studies).68, 105, 110 In a meta-analysis, both low tumoral mRNA and protein levels correlated with a better response rate to chemoradiation and overall patient survival.93 While assays used to measure mRNA levels in tumors are not yet readily available for clinical use in all cancer centers, ERCC1 mRNA may prove to be a reasonable predictive biomarker of outcome in NSCLC patients treated with platinum-based chemotherapy.93 Interestingly, ERCC1 mRNA and protein levels were found to be not correlated in NSCLC27 and inversely correlated in ovarian cancer.111 Furthermore, mRNA levels were not correlated with chemosensitivity in NSCLC cell lines59 nor with response to chemotherapy in HNSCC.31 Thus, the relationship between ERCC1 mRNA and DNA repair capacity is not direct and remains to be clarified.

Table 3 Association between ERCC1 protein expression and clinical outcome

Cancer	Reference	n	Outcome*
NSCLC	Planchard et al90	188	0
	Koh et al92	130	0
	Zheng et al77	187	1
	Kang et al82	82	1
	Okuda et al98	55	(2)
	Okuda et al98	90	2
	Olausen et al98	783	2
	Azuma et al98	67	2
	Fuji et al98	35	2
	Lee et al97	130	2
	Holm et al96	163	2
	Azuma et al95	34	2
	Lee et al97	50	2
	Ota et al97	156	2
	Reynolds et al77a	69	2
	Vilmar et al77a	264	2
	Wang et al77	214	2
	Taillade et al72	34	Biopsy vs tumor correlation
	Gomez-Roca et al (2009)a	49	Primary vs metastasis
	Kang et al94	82	Primary vs metastasis
	Papay et al (2009)a	17	Change after chemotherapy
HNSCC	Besse et al (2010)c	761	Brain metastasis
	Fountzilas et alf1	37	0
	Koh et al98	80	0
	Handra-Luca et al97	96	2
	Jun et al98	45	2
	Fountzilas et alf1	26	2

Notes: *Outcome for low ERCC1 expression, 0 = non significant changes, \(1 = \) trend to worse, \(2 = \) worse, \(3 = \) trend to better, \(4 = \) better; \(\text{a} = \) retrospective study; \(\text{b} = \) prospective study; \(\text{c} = \) retrospective analysis of prospective study.

Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers.
XRCC1 as biomarker for NSCLC and HNSCC

XRCC1 as a biomarker for cancer risk

Similar studies have sought to establish whether **XRCC1** is linked with cancer risk, prognosis, or treatment outcome. SNPs in **XRCC1** have been extensively studied in NSCLC, although only 9 SNPs out of 550 possible have been evaluated in published reports. The majority of trials focus on Arg194Trp, Arg280His, and Arg399Gln, three nonsynonymous SNPs in **XRCC1** (reviewed by Schneider et al). Four studies, including two large ones, also analyzed a SNP in the **XRCC1** promoter (−77T→C). The variant allele −77T→C alters a binding site for the zinc finger transcription factor SP1, leading to reduced transcription of **XRCC1**. The variant allele at position 399 (Gln) correlates with lower DNA repair capacity and increased genomic instability in multiple studies. These functional SNPs in **XRCC1** are attractive candidate biomarkers in cancer.

XRCC1 SNPs as biomarkers for cancer risk

The assessment of SNPs in **XRCC1** as risk factors for developing NSCLC has focused mainly on **XRCC1** Arg194Trp, Arg280His and Arg399Gln, and to a lesser degree on −77T→C (Table 4). Studies failed to identify significant association between Arg194Trp, Arg280His, and Arg399Gln genotypes and NSCLC risk. However, −77T→C did emerge as a significant risk factor in two large studies. This is consistent with the notion that low **XRCC1** expression leads to impaired BER and SSB repair, greater mutational load and therefore increased cancer risk. A well conducted meta-analysis pooling more than 10,000 patients for the analysis of Arg194Trp, Arg280His, and Arg399Gln, and more than 1,000 patients for the analysis of Pro206Pro and −77T→C found that, in NSCLC, −77T→C was associated with cancer risk (P < 0.0001), while none of the other four SNPs analyzed in **XRCC1** showed association. Furthermore, this meta-analysis reviewed a total of 241 associations in 16 genes, and **XRCC1** −77T→C was one of the only two associations that maintained a significant association through the most stringent analysis. Thus, there is strong epidemiological and biological credibility supporting **XRCC1**−77T→C as a risk factor for NSCLC.

In HNSCC, only five SNPs have been evaluated as cancer risk factors. Four of them have been evaluated more than once: Arg194Trp, Arg280His, Arg399Gln, and Pro206Pro (Table 4). The results were mixed for all four SNPs, but primarily showed no significant association with cancer risk, except for a tendency for the homozygous variant 399Gln-Gln to be protective in Caucasians in one large pooled study. Interestingly, when patients from individual studies were pooled for a meta-analysis, Arg194Trp emerged as a significant risk factor for HNSCC, as well as for other solid cancers (skin, esophageal, and stomach). It will be interesting to follow whether future studies can validate this SNP as a biomarker for risk stratification in HNSCC.

XRCC1 SNPs as biomarkers for clinical outcome

Biologically, genetic polymorphisms in **XRCC1** could potentially predict clinical outcome, because reduced **XRCC1** expression in animal models confers sensitivity to ionizing radiation. We identified eleven studies looking at **XRCC1** SNPs (Arg194Trp, Arg280His, Arg399Gln, and −77T→C) including five prospective studies, totaling more than 1700 patients (Table 5). Results were mixed for Arg194Trp: three studies showed no association (total n = 382), one showed a worse prognosis for the allelic variant (n = 229), and one showed a better prognosis (n = 82). Results for Arg399Gln were also mixed, with significantly worse overall survival or toxicity for the allelic variant in three studies (total n = 515). While a better prognosis was found in two studies (n = 238) and no association was found in other studies (total n = 559). Finally, Arg280His showed no significant association with any outcome (2 studies; total n = 428). A meta-analysis and additional studies to examine −77T→C are needed to determine if SNPs in **XRCC1** have any value for predicting clinical outcomes in patients with NSCLC treated with chemoradiation.

In HNSCC, **XRCC1** has not been extensively studied. We identified only four reports assessing the predictive value of SNPs in **XRCC1**, focusing predominantly on Arg399Gln and to a lesser extent Arg194Trp (Table 5). Results for Arg399Gln were mixed; two out of the four studies (total n = 293) showed a better outcome for the allelic variant. Interestingly, Arg194Trp, which was previously identified as a significant risk factor for HNSCC, did not influence treatment outcome. As with NSCLC, more studies and larger prospective studies are needed to evaluate whether SNPs in **XRCC1** influence response to treatment in HNSCC.
Table 4 Association between SNPs in XRCC1 and cancer risk

Cancer	rs	SNPs	Alternate names	Reference	n (case-control)	Riska
NSCLC	rs1799782	Arg194Trp	194 C > T; 194 R > W; 194 Arg > Trp; C26304T	Butkiewicz et al124	96–96	0
				Hu et al114	710–710	0
				Shen et al26	122–122	0
				Matullo et al22	116–> 520,000	0
				Hao et al113	1024–1118	0
				Zienolddiny et al44	343–413	0
				Yin et al131	247–253	0
				Hung et al136	6463–6603	0
				Improta et al74	940–121	0
				Tanaka et al320	50–50	0
				Ratnasinghe et al128	108	0; 2 in drinkers
				David-Beabes126	332–704	0; 2 in African-Americans
				Schneider et al122	446–622	0; 2 in heavy smokers
				Hung et al127,b	2188–2198	0; 2 in heavy smokers
				Chen et al44	109–109	(1)
				Pachouri et al133	103–122	(1)
				De Ruycy et al136	110–110	2
				Yin et al67	55–74	2
				Butkiewicz et al124	96–96	0
	rs25489	Arg280His	280 G > A; 280 R > H; 280 Arg > His	Misra et al122a	305–305	0
				Vogel et al24	265–272	0
				Schneider et al122	446–622	0
				Shen et al26	122–122	0
				Hao et al113	1024–1118	0
				Zienolddiny et al44	343–413	0
				Hung et al136	6463–6603	0
				Yin et al131	55–74	0
				Yin et al131	247–253	0; 2 in non-smokers
				Hung et al127,b	2188–2198	0; 2 in heavy smokers
				Ratnasinghe et al128	108	1
				De Ruycy et al136	110–110	2
				Butkiewicz et al124	96–96	0
	rs25487	Arg399Gln	G28152A; 399 G > A; 399 R > Q; 399 Arg > Gln	David-Beabes126	332–704	0
				Ratnasinghe et al128	108	0
				Chen et al44	109–109	0
				Ito et al135	178–449	0
				Popanda et al137	463–460	0
				Vogel et al24	265–272	0
				Zhang et al129	1000–1000	0
				Hu et al114	710–710	0
				Hung et al127,b	2188–2198	0
				Zienolddiny et al44	343–413	0
				Hao et al113	1024–1118	0
				Yin et al131	247–253	0
				Lopez-Cima et al126	516–533	0
				Hung et al136	6463–6603	0
				Improta et al74	940–121	0
				Yin et al67	55–74	0
				De Ruycy et al136	110–110	0; 1 in light smokers, 2; in heavy smokers

(Continued)
Cancer	rs	SNPs	Alternate names	Reference	n (case-control)	Risk*
rs3213245		–(77) T > C		Misra et al122	305–305	0; (2) in heavy smokers
rs915927		Pro206Pro	206 A > G; 206 pro = pro	Schneider et al112	446–622	0; 2 in heavy smokers
rs17852150		Gln632Gln	632 G > A; 632 Gln = Gln	Ryk et al138	177–153	0; 2 in non-smokers
rs2307191		Pro161Leu	161 Pro > Leu	Matullo et al122	112–122	0; 2 in heavy smokers
rs2307177	n/a	Tyr576Ser	576 Tyr > Ser	Schindler et al116	110–110	0; 2 in non-smokers
HNSCC	rs1799782	Arg194Trp	194 C > T; 194 R > W; 194 Arg > Trp; C26304T	Zhou et al138	171–211	1 in Caucasian but not Hispanic
		Arg280His	280 G > A; 280 R > H; 280 Arg > His	Zhou et al138	172–143	1 in Caucasian but not Hispanic
		G28152A	G > A; 399 R > Q; 399 Arg > Gln	Zhou et al138	172–143	1 in Caucasian but not Hispanic

(Continued)
XRCC1 expression as a biomarker of patient outcomes in cancer

There is very little data on XRCC1 expression in tumors, despite the fact that at least in NSCLC cell lines increased XRCC1 mRNA is significantly associated with cisplatin resistance. There are two studies (both using the same patient cohort) reporting XRCC1 expression in NSCLC, as measured by immunohistochemistry. XRCC1 protein expression did not correlate with either response to treatment or survival. Interestingly, more than half of the metastases had a stronger immunohistochemical signal than their matched primary tumor, suggesting that the level of XRCC1 may increase during cancer progression. This could have therapeutic implications if elevated expression of XRCC1 renders cells more resistant to treatment.

Only one study evaluated XRCC1 protein expression and clinical outcome in HNSCC. High XRCC1 expression was correlated with resistance to radiotherapy. There is also a

Table 5 Association between SNPs in XRCC1 and clinical outcome

Cancer	rs	SNPs	Alternate names	Reference	n (case-control)	Riska
NSCLC	rs1799782	Arg194Trp	194 C > T; 194 R > W; 194 Arg > Trp; C26304T	Petty et al155	49 0	
	rs25489	Arg280His	280 G > A; 280 R > H; 280 Arg > His	Wang et al156	139 0	
	rs25487	Arg399Gln	G28152 A; 399 G > A; 399 R > Q; 399 Arg > Gln	Yoon et al158	229 0	
	rs3213245	-(77) T > C	194 C > T; 194 R > W; C26304T	Petty et al155	49 0	
	rs1799782	Arg194Trp	194 C > T; 194 R > W; C26304T	Geisler et al152	190 0	
	rs25487	Arg399Gln	G28152 A; 399 G > A; 399 R > Q	Csejtei et al145	108 1	

Notes: aOutcome for variable allele, 0 = non significant, (1) = trend to increased, 1 = increased, (2) = trend to protective, 2 = protective; ND = not done; prospective study; retrospective analysis of prospective study.

Abbreviations: NSCLC, non-small cell lung cancers; rs, reference SNP; HNSCC, head and neck squamous cell carcinoma; SCC, squamous cell carcinoma; SNPs, single nucleotide polymorphisms.
paucity of studies on the predictive value of either peripheral or tumor XRCC1 mRNA in cancer. In contrast to the protein data, XRCC1 mRNA appears to be lower in early stage lung cancer compared with more advanced cancer.166

Conclusion

In summary, for the past decade the biomedical community has evaluated DNA repair genes as potential biomarkers to predict cancer risk and prognosis of cancer patients treated with genotoxic agents. There has been considerable investment toward this endeavor, yet none of the candidate biomarkers, other than BRCA1 and BRCA2, have yet to be translated to clinic use. ERCC1 and XRCC1 are two good candidate biomarkers, with robust experimental evidence demonstrating that reduced expression or activity of either protein results in increased genomic instability and sensitivity to DNA damaging agents.7-9,11,19 To date, investigations as to whether ERCC1 and XRCC1 alter cancer risk or outcomes are primarily modest-sized retrospective case controlled studies, which have yielded conflicting results. The strongest associations to date are that a CC genotype at SNP –77 of XRCC1, which causes reduced XRCC1 mRNA, predicts increased risk of NSCLC. For ERCC1, there are numerous studies indicating that low mRNA or protein expression is associated with a better prognosis in HNSCC and NSCLC, respectively. However, it is not established that ERCC1 expression is regulated at the transcriptional level. Furthermore, in the studies measuring protein level, a nonspecific antibody was used. Therefore these studies, while validating the utility of these biomarkers (ERCC1 mRNA levels or 8F1 immunohistochemical signal) for predicting clinical outcomes, do not directly demonstrate that DNA repair levels are altered in tumors.

Acknowledgments

We would like to give special thanks to Dr Laura Alonso for her careful review of the manuscript and her suggestions. AV is supported by a T32 National Institutes of Health training grant (T32 CA060397 to JR Grandis). LJN and CHF are supported by the National Institute of Environmental Health Sciences (RO1 ES016114 and –03S2, respectively).

Disclosure

The authors report no conflicts of interest in relation to this paper.

References

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–249.

2. Seiwert TY, Salama JK, Vokes EE. The concurrent chemoradiation paradigm – general principles. Nat Clin Pract Oncol. 2007;4(2):86–100.

3. Murdoch D. Standard, and novel cytotoxic and molecular-targeted, therapies for HNSCC: an evidence-based review. Curr Opin Oncol. 2007;19(3):216–221.

4. Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol. 2007;4(3):156–171.

5. O’Driscoll M, Jeggo PA. The role of double-strand break repair – insights from human genetics. Nat Rev Genet. 2006;7(1):45–54.

6. Petersmann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010;11(10):683–687.

7. Niedernhofer LJ, Lalai AS, Hoeijmakers JH. Fanconi anemia (cross) linked to DNA repair. Cell. 2005;123(7):1191–1198.

8. Kennedy RD, D’Andrea AD. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol. 2006;24(23):3799–3808.

9. Niedernhofer LJ, Garinis GA, Raams A, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 2006;444(7122):1038–1043.

10. Ahmad A, Robinson AR, Duensing A, et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol. 2008;28(16):5082–5092.

11. Bhagwat N, Olsen AL, Wang AT, et al. XPF-ERCC1 participates in the fanconi anemia pathway of cross-link repair. Mol Cell Biol. 2009;29(24):6427–6437.

12. Jaspers NG, Raams A, Silengo MC, et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 2007;80(3):457–466.

13. Zwelling LA, Anderson T, Kohn KW. DNA-protein and DNA interstrand cross-linking by cis- and trans-platinum(II) diaminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res. 1979;39(2 Pt 1):365–369.

14. McGugh PJ, Spanwick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2(8):483–490.

15. Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14(5):1291–1295.

16. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–1485.

17. Ladiges WC. Mouse models of XRCC1 DNA repair polymorphisms and cancer. Oncogene. 2006;25(11):1612–1619.

18. Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst). 2007;6(6):508–515.

19. Zong Y, Hatem J, Wang J, Quinn A, Hicks D, Tang P. Tissue microarray-based immunohistochemical study can significantly underestimate the expression of HER2 and progesterone receptor in ductal carcinoma in situ of the breast. Biotech Histochem. 2010 Aug 12. Epub ahead of print.

20. Tamaki K, Sasano H, Ishida T, et al. Comparison of core needle biopsy (CNB) and surgical specimens for accurate preoperative evaluation of ER, PgR and HER2 status of breast cancer patients. Cancer Sci. 2010;101(9):2074–2079.

21. Taillade L, Penault-Llorca F, Boulet T, et al. Immunohistochemical expression of biomarkers: a comparative study between diagnostic bronchial biopsies and surgical specimens of non-small-cell lung cancer. Ann Oncol. 2007;18(6):1043–1050.

22. Babic A, Loftin IR, Stanislaw S, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52(4):287–300.

23. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97(16):1180–1184.

24. Niedernhofer LJ, Bhagwat N, Wood RD. ERCC1 and non-small-cell lung cancer. N Engl J Med. 2007;356(24):2538–2540; author reply 2540–2531.
26. Britten RA, Liu D, Tessier A, Hutchison MJ, Murray D. ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer. 2000;89(5):453–457.

27. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med. 2007;356(8):800–808.

28. McGurk CJ, Cummings M, Koberle B, Hartley JA, Oliver RT, Masters JR. Regulation of DNA repair gene expression in human cancer cell lines. J Cell Biochem. 2006;97(5):1121–1136.

29. Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:29–80.

30. Schneider J, Classen V, Philipp M, Helmig S. Rapid analysis of SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:29–80.

31. Ferte C, Andre F, Soria JC. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol. 2010;7(6):367–380.

32. Srivastava S, Gray JW, Reid BJ, Grad O, Greenwood A, Hawk ET. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol. 2010;7(6):367–380.

33. Fonteuzigas G, Kalogerza-Fountzila A, Lambaki S, et al. MMP9 but not EGFR, MET, ERCC1, P16, and P-53 is associated with response to concomitant radiotherapy, cetuxinib, and weekly cisplatin in patients with locally advanced head and neck cancer. J Oncol. 2009;2009:305908.

34. Matullo G, Dunning AM, Guerrera S, et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis. 2006;27(3):997–1007.

35. Schneider J, Classen V, Philipp M, Helmig S. Rapid analysis of ERCC1 polymorphisms using real-time polymerase chain reaction. Mol Cell Probes. 2006;20(3–4):259–262.

36. Fonteuzigas G, Kalogerza-Fountzila A, Lambaki S, et al. MMP9 but not EGFR, MET, ERCC1, P16, and P-53 is associated with response to concomitant radiotherapy, cetuxinib, and weekly cisplatin in patients with locally advanced head and neck cancer. J Oncol. 2009;2009:305908.

37. Yen M, Kim WH, Choi Y, et al. Effects of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis. 2009;20:8(5):1527–1530.

38. Okuda K, Sasaki H, Hikosaka Y, et al. Excision repair cross-complementation group 1 variants and their association with lung cancer: a pooled analysis from four case-control studies in the Japanese population. Cancer Genet Cytogenet. 2009;2009:305908.

39. Vaezi et al. Association studies of excision repair cross-complementation group 1 (ERCC1) haplotypes with lung and head and neck cancer risk in a Caucasian population. Cancer Epidemiol. 2011;35(2):175–181.

40. LiY, Yu S, Wu Q, et al. No association of ERCC1 C8092A and T19007C polymorphisms to cancer risk: a meta-analysis. Eur J Hum Genet. 2007;15(9):967–973.

41. Hung RJ, Christiani DC, Risch A, et al. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cancer susceptibility of the upper aerodigestive tract across 10 European countries: the ARCADE project. Cancer Res. 2009;69(7):2956–2965.

42. Abbas R, Ramroth H, Hecher H, Dietz A, Schmezer P, Popanda O. Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC1/C, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes. Int J Cancer. 2009;125(6):1431–1439.

43. Canova C, Hashibe M, Simonato L, et al. Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCADE project. Cancer Res. 2009;69(7):2956–2965.

44. Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Mol Sci. 2007;4(2):59–71.

45. Vines P, Manuguerra M, Kavourea FK, et al. A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst. 2009;101(1):24–36.

46. Yen M, Kim WH, Choi Y, et al. Effects of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis. 2009;20:8(5):1527–1530.

47. Fujimura T, Kumimoto H, Tohani I, et al. Environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms. J Oral Pathol Med. 2006;35(1):11–18.

48. Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes. Cancer Epidemiol Biomarkers Prev. 2009;18:13–20.

49. Yang M, Kim WH, Choi Y, et al. Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer. Eur J Cancer Prev. 2006;15(3):269–273.

50. Okuda K, Sasaki H, Hikosaka Y, et al. Excision repair cross-complementation group 1 polymorphisms predict overall survival after platinum-based chemotherapy for completely resected non-small-cell lung cancer. J Surg Res. 2009 Sep 26. Epub ahead of print.

51. Zhou W, Liu G, Park S, et al. Gene-smoking interaction associations for the ERCC1 polymorphisms in the risk of lung cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(2):491–496.

52. Yin J, Vogel U, Guo L, Ma Y, Wang H. Lack of association between DNA repair gene ERCC1 polymorphism and risk of lung cancer in a Chinese population. Cancer Genet Cytogenet. 2006;164(1):66–70.

53. Hung RJ, Christiani DC, Risch A, et al. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3081–3089.

54. Yu D, Zhang X, Liu J, et al. Characterization of functional excision repair cross-complementation group 1 variants and their association with lung cancer risk and prognosis. Clin Cancer Res. 2008;14(9):2878–2886.

55. Deng Q, Sheng L, Su D, et al. Genetic polymorphisms in ATM, ERCC1, APE1 and hASPP genes and lung cancer risk in a population of southeast China. Med Oncol. 2010 Mar 31. Epub ahead of print.

56. Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small-cell lung cancer. Carcinogenesis. 2006;27(3):560–567.

57. Ma H, Xu L, Yuan J, et al. Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics. 2007;17(6):417–423.

58. Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer. 2005;116(5):768–773.
66. Su D, Ma S, Liu P, et al. Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer. 2007; 56(2):281–288.
67. Yin Z, Zhou B, He Q, et al. Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma. BMC Cancer. 2009;9:439.
68. Isla D, Sarries C, Rosell R, et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol. 2004;15(8):1194–1203.
69. Zhou C, Ren S, Zhou S, et al. Predictive effects of ERCC1 and XRCC3 SNP on efficacy of platinum-based chemotherapy in advanced NSCLC patients. Jpn J Clin Oncol. 2010;40(10):954–960.
70. Li F, Sun X, Sun N, et al. Association between polymorphisms of ERCC1 and XPD and clinical response to platinum-based chemotherapy in advanced non-small cell lung cancer. Am J Clin Oncol. 2010;33(5):489–494.
71. De las Penas R, Sanchez-Ronco M, Alberola V, et al. Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol. 2006;17(4):668–675.
72. Wei SZ, Zhan P, Shi MQ, et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med Oncol. 2011;28(1):315–321.
73. Takenaka T, Yano T, Kiyohara C, et al. Effects of excision repair cross-complementation group 1 (ERCC1) single nucleotide polymorphisms on the prognosis of non-small cell lung cancer patients. Lung Cancer. 2010;67(1):101–107.
74. Quintela-Fandino M, Hitt R, Medina PP, et al. DNA-repair gene polymorphisms predict favorable clinical outcome among patients with advanced squamous cell carcinoma of the head and neck treated with cisplatin-based induction chemotherapy. J Clin Oncol. 2006;24(26):4333–4339.
75. Grau JJ, Caballero M, Campayo M, et al. Gene single nucleotide polymorphism accumulation improves survival in advanced head and neck cancer patients treated with weekly paclitaxel. Laryngoscope. 2009;119(8):1484–1490.
76. Carles J, Monzo M, Amat M, et al. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;66(4):1022–1030.
77. Wang X, Zhao J, Yang L, et al. Positive expression of ERCC1 predicts a poorer platinum-based treatment outcome in Chinese patients with advanced non-small-cell lung cancer. Med Oncol. 2010;27(2):484–490.
78. Vilmar AC, Santoni-Rugiu E, Sorensen JB. ERCC1, toxicity and quality of life in advanced NSCLC patients randomized in a large multicenter phase III trial. Eur J Cancer. 2010;46(9):1554–1562.
79. Reynolds C, Obara-C, Schell MJ, et al. Randomized phase III trial of gemcitabine-based chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in non-small-cell lung cancer. J Clin Oncol. 2009;27(34):5808–5815.
80. Ota S, Ishii G, Goto K, et al. Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy. Lung Cancer. 2009;64(1):98–104.
81. Olausson KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355(10):983–991.
82. Lee HW, Choi YW, Han JH, et al. Expression of excision repair cross-complementation group 1 protein predicts poor outcome in advanced non-small cell lung cancer patients treated with platinum-based doublet chemotherapy. Lung Cancer. 2009;65(3):377–382.
83. Fujii T, Toyooka S, Ichimura K, et al. ERCC1 protein expression predicts the response of cisplatin-based neoadjuvant chemotherapy in non-small-cell lung cancer. Lung Cancer. 2008;59(3):377–384.
84. Azuma K, Komohara Y, Sasada T, et al. Excision repair cross-complementation group 1 predicts progression-free and overall survival in non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Sci. 2007;98(9):1336–1343.
85. Azuma K, Sasada T, Kawahara A, et al. Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with a combination of cisplatin/docetaxel and concurrent thoracic irradiation. Cancer Chemother Pharmacol. 2009;63(3):565–573.
86. Holm B, Møllergaard A, Skov T, Skov BG. Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine. J Clin Oncol. 2009;27(26):4254–4259.
87. Lee KH, Min HS, Han SW, et al. ERCC1 expression by immunohistochemistry and EGFR mutations in resected non-small cell lung cancer. Lung Cancer. 2008;60(3):401–407.
88. Kang CH, Jang BG, Kim DW, et al. The prognostic significance of ERCC1, BRCA1, XRCCI, and betaIII-tubulin expression in patients with non-small cell lung cancer treated by platinum- and taxane-based neoadjuvant chemotherapy and surgical resection. Lung Cancer. 2010;68(3):478–483.
89. Koh Y, Jang B, Han SW, et al. Expression of class III beta-tubulin correlates with unfavorable survival outcome in patients with resected non-small-cell lung cancer. J Thorac Oncol. 2010;5(3):320–325.
90. Planchar D, Domont J, Taranchon E, et al. The NER proteins are differentially expressed in ever smokers and in never smokers with lung adenocarcinoma. Ann Oncol. 2009;20(7):1257–1263.
91. Okuda K, Sasaki H, Dumontet C, et al. Expression of excision repair cross-complementation group 1 and class III beta-tubulin predict survival after chemotherapy for completely resected non-small cell lung cancer. Lung Cancer. 2008;62(1):105–112.
92. Vilmar AC, Santoni-Rugiu E, Sorensen JB. ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial. Ann Oncol. 2010;21(9):1817–1824.
93. Chen S, Zhang J, Wang R, Luo X, Chen H. The platinum-based treatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A meta-analysis. Lung Cancer. 2010;70(1):63–70.
94. Doll CM, Prystajecky M, Eliasziw M, et al. Low ERCC1 mRNA and protein expression are associated with worse survival in cervical cancer patients treated with radiation alone. Radiother Oncol. 2010;97(2):352–359.
95. Fountzilas G, Bamias A, Kalogera-Fountzila A, et al. Induction chemotherapy with docetaxel and cisplatin followed by concomitant chemoradiotherapy in patients with inoperable non-nasopharyngeal carcinoma of the head and neck. Anticancer Res. 2009;29(2):529–538.
96. Koh Y, Kim TM, Jeon YK, et al. Class III beta-tubulin, but not ERCC1, is a strong predictive and prognostic marker in locally advanced head and neck squamous cell carcinoma. Ann Oncol. 2009;20(8):1414–1419.
97. Handra-Luca A, Hernandez J, Mountzios G, et al. Excision repair cross-complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by Cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma. Clin Cancer Res. 2007;13(13):3855–3859.
98. Jun HJ, Ahn MJ, Kim HS, et al. ERCCI expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation. Br J Cancer. 2008;99(1):167–172.
99. Shimizu J, Horio Y, Osada H, et al. mRNA expression of RRMI, ERCC1 and ERCC2 is not associated with chemosensitivity to cisplatin, carboplatin and gemcitabine in human lung cancer cell lines. Respiratory. 2008;13(4):510–517.
100. Rosell R, Felip E, Taron M, et al. Gene expression as a predictive marker of outcome in stage IIB-IIIa-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res. 2004;10(12 Pt 2):4215s–4219s.
101. Simon GR, Sharma S, Cantor A, Smith P, Bepler G. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. *Chest.* 2005;127(3):978–983.

102. Ceppi P, Volante M, Novello S, et al. ERCC1 and RRMI gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. *Ann Oncol.* 2006;17(12):1818–1825.

103. Lord RV, Brahender J, Gandara D, et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. *Clin Cancer Res.* 2002;8(7):2286–2291.

104. Ceppi P, Longo M, Volante M, et al. Excision repair cross-complementing-1 and topoisomerase I-alpha gene expression in small-cell lung cancer patients treated with platinum and etoposide: a retrospective study. *J Thorac Oncol.* 2008;3(6):583–589.

105. Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantititative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. *J Clin Oncol.* 2007;25(19):2747–2754.

106. Booton R, Ward T, Ashcroft L, Morris J, Heighway J, Thatcher N. Feasibility and efficacy of molecular polymorphisms in the DNA repair gene XRCC1; a phase III multicentre study. *J Natl Cancer Inst.* 2005;97(8):567–576.

107. Simon G, Sharma A, Li X, et al. Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small cell lung cancer. *J Clin Oncol.* 2007;25(19):2741–2746.

108. Su C, Zhou S, Zhang L, et al. ERCC1, RRMI and BRCAl mRNA expression levels and clinical outcome of advanced non-small cell lung cancer. *Med Oncol.* 2010 May 14. Epub ahead of print.

109. Ren S, Zhou S, Zhang L, et al. High-level mRNA of excision repair cross-complementation group 1 gene is associated with poor outcome of platinum-based doublet chemotherapy of advanced non-small cell lung cancer patients. *Cancer Invest.* 2010;28(10):1078–1083.

110. Bepler G, Kusmartseva I, Sharma S, et al. RRMI1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. *J Clin Oncol.* 2006;24(29):4731–4737.

111. Pers conum; 13th Annual Midwest DNA Repair Meeting, Toledo, Ohio, USA. Neha Baghwat, Laura J Niedernhofer, 2011.

112. Schneider J, Classen Y, Berresges U, Philipp M. XRCC1 polypeptide and lung cancer risk in relation to tobacco smoking. *Int J Mol Med.* 2005;16(4):709–716.

113. Hao B, Miao X, Li Y, et al. A novel T-77C polymorphism in DNA repair gene XRCC1 is a predictor of survival in resected patients with non-small cell lung cancer. *Chest.* 2005;127(3):978–983.

114. Hu Z, Ma H, Lu D, et al. A promoter polymorphism (–77T > C) of DNA repair gene XRCC1 is associated with risk of lung cancer in relation to tobacco smoking. *Pharmacogenet Genomics.* 2005;15(7):457–463.

115. Hsieh WC, Cheng YW, Lin CJ, Chou MC, Chen CY, Lee H. Prognostic significance of X-ray cross-complementing group 1 T-77C polymorphism in resected non-small cell lung cancer. *Jpn J Clin Oncol.* 2009;39(2):81–85.

116. De Ruyck K, Szumkessel M, De Rudder I, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. *Mutat Res.* 2007;631(2):101–110.

117. Ladiges W, Wiley J, MacAuley A. Polymorphisms in the DNA repair gene XRCC1 and age-related disease. *Mech Ageing Dev.* 2003;124(1):27–32.

118. Cheng J, Leng S, Li H, et al. Suboptimal DNA repair capacity predisposes coke-oven workers to accumulate more chromosomal damages in peripheral lymphocytes. *Cancer Epidemiol Biomarkers Prev.* 2009;18(3):987–993.

119. Abdel-Rahman SZ, El-Zein RA. The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. *Cancer Lett.* 2000;159(1):63–71.

120. Retlon CL, Daniel CP, Fisher A, Chase DS, Burt J, Tawn EJ. Polymorphisms of the DNA repair gene XRCC1 and the frequency of somatic mutations at the glycolphorin A locus in newborns. *Mutat Res.* 2002;502(1–2):61–68.

121. Lunen RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycolphorin A variant frequency. *Cancer Res.* 1999;59(11):2557–2561.

122. Misra RR, Ramasingshe D, Tangrea JA, et al. Polymorphisms in the DNA repair gene XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland. *Cancer Lett.* 2003;191(2):171–178.

123. Yin J, Vogel U, Ma Y, Qi R, Wang H. Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women. *Cancer Genet Cytofgenet.* 2009;188(1):26–31.

124. Butkiewicz D, Rusin M, Enevold L, Shields PG, Chorazy M, Harris CC. Genetic polymorphisms in DNA repair genes and risk of lung cancer. *Carcinogenesis.* 2001;22(4):593–597.

125. Chen S, Tang D, Xue K, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. *Carcinogenesis.* 2002;23(8):1321–1325.

126. Improta G, Scambato A, Bianchino G, et al. Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. *Anticancer Res.* 2008;28(5B):2941–2946.

127. Hung RJ, Brennan P, Czanian F, et al. Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. *J Natl Cancer Inst.* 2005;97(8):567–576.

128. Ratnasiginghe D, Yao SX, Tangrea JA, et al. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk. *Cancer Epidemiol Biomarkers Prev.* 2001;10(2):119–123.

129. Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA base excision repair genes APE1 and XRCC1 and lung cancer risk in Xuan Wei, China. *Anticancer Res.* 2005;25(1B):537–542.

130. Tanaka Y, Maniwa Y, Bermudez VP, et al. Nonsynonymous single nucleotide polymorphisms in DNA damage repair pathways and lung cancer risk. *Cancer.* 2010;116(4):896–902.

131. Yin J, Vogel U, Ma Y, Qi R, Sun Z, Wang H. The DNA repair gene XRCC1 and genetic susceptibility of lung cancer in a northeastern Chinese population. *Lung Cancer.* 2007;56(2):153–160.

132. David-Beabes GL, London SJ. Genetic polymorphism of XRCC1 and lung cancer risk among African-Americans and Caucasians. *Lung Cancer.* 2001;34(3):333–339.

133. Pachouri SS, Sobti RC, Kaur P, Singh J. Contrasting impact of DNA repair gene XRCC1 and XPD polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A. *Carcinogenesis.* 2004;25(8):1395–1401.

134. Vогel U, Nexo BA, Wallin H, Overvad K, Tjonneland A, Overvad K. Specific combinations of base excision repair gene polymorphisms and lung cancer risk in a population of northern Spain. *Cancer Genet Cytogenet.* 2007;188(1):26–31.

135. Vogel U, Nexo BA, Wallin H, Overvad K, Tjonneland A, Raaschou-Nielsen O. No association between base excision repair gene polymorphisms and risk of lung cancer. *Biochim Genet.* 2004;42(11–12):453–460.

136. Ito H, Matsuo K, Hamajima N, et al. Gene-environment interactions between the smoking habit and polymorphisms in the DNA repair genes APE1, XPD, and XRCC3 and risk of lung cancer. *Carcinogenesis.* 2004;25(8):1395–1401.

137. Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, et al. Polymorphisms in the DNA repair genes XRCC1 and XRCC3 and DNA repair genes and lung cancer risk in a population of northern Spain. *BMC Cancer.* 2007;7:162.

138. Popanda O, Schattenberg T, Phong CT, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. *Carcinogenesis.* 2004;25(12):2433–2441.

139. Ryk C, Kumar R, Thirumaran RK, Hou SM. Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and ever-smokers. *Lung Cancer.* 2006;54(3):285–292.
139. Zhang X, Miao X, Liang G, et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res. 2005;65(3):722–726.

140. Park JY, Lee SY, Jeon HS, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(11):23–27.

141. Zhou W, Liu G, Miller DP, et al. Polymorphisms in the DNA repair gene XRCC1 and survival in non-small-cell lung cancer patients treated with platinum-based chemotherapy. Cancer Biol Ther. 2010;10(9).

142. Sreeja L, Syamala VS, Syamala V, et al. Prognostic importance of DNA repair gene polymorphisms and risk of second primary neoplasms and head and neck cancer. J Cancer. 2004;111(5):805–808.

143. Divine KK, Gilliland FD, Crowell RE, et al. The role of DNA repair genes in lung cancer. Cancer Treat Rev. 2008;34(6):645–652.

144. Applebaum KM, McClean MD, Nelson HH, et al. Tobacco smoking modifies the relationship between XRCC1 haplotypes and HPV16-negative head and neck squamous cell carcinoma. Int J Cancer. 2009;124(11):2690–2696.

145. Csejeti A, Tibold A, Koltai K, et al. Association between XRCC1 polymorphisms and head and neck cancer in a Hungarian population. Anticancer Res. 2009;29(10):4169–4173.

146. Harth V, Schafer M, Abel J, et al. Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J Toxicol Environ Health A. 2008;71(13–14):887–897.

147. Shen H, Sturgis EM, Khan SG, et al. An intronic poly (AT) repeat polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res. 2001;61(8):3321–3325.

148. Olshan AF, Watson MA, Weisssler MC, Bell DA. XRCCI polymorphisms and head and neck cancer. Cancer Lett. 2002;178(2):181–186.

149. Kowalski M, Przybylewska K, Rusin P, et al. Genetic polymorphisms in DNA base excision repair gene XRCCI and the risk of squamous cell carcinoma of the head and neck. J Exp Clin Cancer Res. 2009;28:37.

150. Tae K, Lee HS, Park BJ, et al. Association of DNA repair gene XRCCI polymorphisms with head and neck cancer in Korean population. Int J Cancer. 2004;112(5):805–808.

151. Sturgis EM, Castillo EL, Li L, et al. Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis. 1999;20(11):2125–2129.

152. Cho EY, Hildesheim A, Chen CJ, et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev. 2003;12(10):1100–1104.

153. Gal TJ, Huang WY, Chen C, Hayes RB, Schwartz SM. DNA repair gene polymorphisms and risk of second primary neoplasms and mortality in oral cancer patients. Laryngoscope. 2005;115(12):2221–2231.

154. Huang WY, Olshan AF, Schwartz SM, et al. Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1747–1753.

155. Petty WJ, Knight SN, Mosley L, et al. A pharmacogenomic study of docetaxel and gemcitabine for the initial treatment of advanced non-small cell lung cancer. J Thorac Oncol. 2007;2(3):197–202.

156. Wang Z, Xu B, Lin D, et al. XRCC1 polymorphisms and severe toxicity in lung cancer patients treated with cisplatin-based chemotherapy in Chinese population. Lung Cancer. 2008;62(1):99–104.

157. Yuan P, Liu L, Wu C, et al. No association between XRCCI polymorphisms and hOGG1 and survival of non-small-cell lung cancer patients treated with platinum-based chemotherapy. Cancer Biol Ther. 2010;10(9).

158. Yoon SM, Hong YC, Park HJ, et al. The polymorphism and haplotypes of XRCCI and survival of non-small-cell lung cancer after radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(3):885–891.

159. Sun X, Li F, Sun N, et al. Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell lung cancer patients. Lung Cancer. 2009;65(2):230–236.

160. Giachino DF, Ghio P, Regazzoni S, et al. Prospective assessment of XRCCI and XPG and survival of non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol. 2004;22(13):2594–2601.

161. Geisler SA, Olshan AF, Cai J, Weissler M, Smith J, Bell D. Glutathione S-transferase polymorphisms and survival from head and neck cancer. Head Neck. 2005;27(3):232–242.

162. Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCCS, ERCC2, XPA and XRCCI transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005;4(1):18.

163. Kang CH, Jang BG, Kim DW, et al. Differences in the expression profiles of excision repair crosscomplementation group 1, x-ray repair crosscomplementation group 1, and betalII-tubulin between primary non-small cell lung cancer and metastatic lymph nodes and the significance in mid-term survival. J Thorac Oncol. 2009;4(11):1307–1312.

164. Nix P, Greenman J, Stafford N, Cawkwell L. Expression of XRCCI and ERCCI proteins in radiosensitive and radioresistant laryngeal cancer. Cancer Therapy. 2004;2(4):47–53.

165. Campioni M, Ambrogi V, Pompeo E, et al. Identification of genes down-regulated during lung cancer progression: a cDNA array study. J Exp Clin Cancer Res. 2008;27:38.

166. Jones NR, Spratt TE, Berg AS, Muscat JE, Lazarus P, Gallagher CJ. Association studies of excision repair cross-complementation group 1 (ERC1) haplotypes with lung and head and neck cancer risk in a Caucasian population. Cancer Epidemiol. 2010;35(2):175–81.

167. Varzim G, Monteiro E, Silva RA, Fernandes J, Lopes C. CYP1A1 and XRCCI gene polymorphisms in SCC of the larynx. Eur J Cancer Prev. 2003;12(6):495–499.