Health management in cancer survivors: Findings from a population-based prospective cohort study—the Yamagata Study (Takahata)

Sho Nakamura, Hiroto Narimatsu, Yuriko (Ito) Sasahara, Ri Sho, Ryo Kawasaki, Hidetoshi Yamashita, Isao Kubota, Yoshiyuki Ueno, Takeo Kato, Takashi Yoshioka, Akira Fukao and Takamasa Kayama

1Department of Clinical Oncology, Faculty of Medicine, Yamagata University; 2Department of Public Health, Yamagata University Graduate School of Medicine, Yamagata; 3Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, Yokohama; and (ii) the risk of second primary cancer compared with those who never had cancer, although smoking status did not differ between the groups (P = 0.30). Univariate logistic regression analysis showed increased risk of death (odds ratio [OR], 3.64; 95% confidence interval [CI], 2.19–6.05) and heart disease (OR, 2.60; 95% CI, 1.06–6.39) in cancer survivors. Increased risk of heart disease was also significant (OR, 2.95; 95% CI, 1.05–8.26; P = 0.04) in the multivariate analysis of the smoking-related cancer subgroup. Current smoking significantly increased risk of death (OR, 2.42; 95% CI, 1.13–5.18). Specific management should be implemented for cancer survivors. More intense management against smoking is necessary, as continued smoking in cancer survivors may increase the risk of second primary cancer. Moreover, cancer survivors are at a high risk of heart disease; thus, additional care should be taken.

Key words
Health behavior, lifestyle risk reduction, preventive health services, second cancer, survivors

Correspondence
Hiroto Narimatsu, Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Ashi-ku, Yokohama, Kanagawa 241-8515, Japan.
Tel: +81-045-520-2222; Fax: +81-045-520-2216; E-mail: hiroto-narimatsu@umin.ac.jp

Funding Information
Project Future, Relay for Life, Japan Cancer Society.

Received July 10, 2015; Revised August 31, 2015; Accepted September 1, 2015

Cancer Sci 106 (2015) 1607–1615
doi: 10.1111/cas.12811

The number of cancer survivors is increasing in accordance with an ageing population and owing to recent progress in earlier cancer diagnosis and improved cancer treatment. Health management (reducing modifiable risk factors for non-communicable diseases, including second primary cancer) for cancer survivors is a crucial issue not only for oncologists, but also for primary care physicians, who play an important role. Such management should aim at prevention of non-communicable diseases, including second primary cancer.

Healthy lifestyle habits, including physical activity, healthy diet, healthy weight, and smoking cessation, are related with better health outcomes and quality of life. However, guidelines for health management in cancer survivors remain relatively general, as there is still only limited knowledge of detailed effects or risks of lifestyle habits on health outcomes. For example, cancer survivors are considered to be at a high risk of non-communicable diseases such as cardiovascular disease, diabetes, dyslipidemia, or stroke compared with those who never had cancer, but the effect of lifestyle habits on the actual risk for non-communicable diseases is unknown. Therefore, health management and prevention of non-communicable diseases for cancer survivors remain unclear. Considering that prognosis of cancer survivors is adversely affected by comorbid non-communicable diseases, there is a need to clarify whether the current non-specific strategy is sufficient. Two facts suggest that specific guidance for cancer survivors is needed: (i) adhering to a healthy lifestyle decreases the risk of recurrence and mortality in specific cancers; and (ii) the risk of second primary cancer and its lesions differs depending on the primary cancer. Specific guidance for health management and prevention of non-communicable diseases in cancer survivors has not yet been established, owing to limited evidence regarding the effect of lifestyle habits on non-communicable diseases in cancer survivors and the risk of non-communicable diseases in cancer survivors. To elucidate the risk of non-communicable diseases, including second primary cancer, and the effect of lifestyle habits on risk of non-communicable diseases, we...
compared cancer survivors and those who never had cancer using a prospective cohort study of healthy participants. These data will provide important information for primary care practitioners and oncologists to conduct good health management and patient education.

Materials and Methods

Study population. The Yamagata Study (Takahata) is a population-based cohort study of the general Japanese population aged over 40 years. Takahata City is 300 km north of Tokyo, Japan; in 2010, 15,244 of its inhabitants were over 40 years old. The study design has been described elsewhere. In brief, the baseline survey of 2292 participants was carried out from 2004 to 2006. Of these, 2124 participants completed the follow-up survey in 2011. The study profile is shown in Figure 1. Both surveys were carried out in conjunction with a health check-up, at which anthropometric traits and data from blood chemical tests were obtained. Japanese universal health coverage is based upon either residence-based, or employment-based insurance. Participants of this study were recruited at health check-ups for those who were covered by residence-based insurance, run by the local government (Takahata City). Medical history of cancer and other lifestyle-related diseases and information on lifestyle factors such as nutrition, physical activity, and smoking status were obtained using a self-administered questionnaire. This study was approved by the Ethics Committee of the Yamagata University School of Medicine (Yamagata, Japan), and written informed consent was obtained from all participants.

Assessment of cancers. Participants with a medical history of cancer at baseline were defined as cancer survivors, and those who had never had cancer were defined as non-cancer controls. Cancer incidence and information regarding death from any cause from 2006 to 2008 was provided by the Yamagata Prefectural Cancer Registry, which was sufficient in quality; in 2008, the rates of death certificate notification and death certificate only were 14.2% and 3.5%, respectively. History of death was determined by reviewing death certificates through January 3, 2012.

Assessment of lifestyle factors. Weight and height were measured by an examiner and used to calculate body mass index (BMI; kg/m²). Blood pressure was measured using a mercury manometer. Smoking status was assessed as never-smoker (participants who had never smoked), former smoker (participants who smoked in the past but had already quit smoking at baseline), or current smoker (participants who smoked at baseline). Daily nutritional intake status was assessed using the brief self-administered diet history questionnaire. Physical activity status was assessed using the Japan Arteriosclerosis Longitudinal Study Physical Activity Questionnaire, which allows total energy and activity-specific energy to be quantified in metabolic equivalents–hours per day (METs-h/day). We converted Japanese Diabetic Society HbA1c values to that of the National Glycohemoglobin Standardization Program by adding 0.4% to the Japan Diabetic Society value. Other methods in collection of the data in the Yamagata Study (Takahata) have been described in detail elsewhere.
Statistical analysis. Continuous data were compared between cancer survivors and non-cancer controls using F-test followed by Student’s t-test. If a P-value >0.20 was observed, then Welch’s t-test was used. Categorical data were compared using Pearson’s χ²-test with Yates’ continuity correction. When any category’s expected values were <5, Fisher’s exact test was carried out. We conducted a logistic regression analysis to calculate the odds ratio (OR) of the outcomes by comparing cancer survivors and non-cancer controls. Multivariate models included possible confounders as covariates, based on the known risk factors for non-communicable diseases: age, sex, BMI, physical activity, smoking status, fruit and vegetable intake, red meat intake, alcohol intake, and salt intake. As there were few outcome events, models for several diseases were over-fitted; thus, interaction terms were not added to the model for a reliable analysis. We graphically checked that continuous variables were linear on the logit using a generalized additive model with a smoothing spline with the gam function from the mgcv package using R software version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria). Any variable that could not achieve linearity on the logit as a continuous variable was categorized in the corresponding analysis (Fig. S1). Age was categorized into quarters (40–55, 56–63, 64–71, 72–87 years), BMI was categorized into three groups (<18.5, 18.5–24.99, ≥25 kg/m²), physical activity was categorized into quarters (25.8–32.0, 32.0–35.2, 35.2–39.3, 39.3–46.0 METs-h/day), intake of fruit and vegetable was categorized into two groups (<400, ≥400 g/day), intake of red meat was categorized into two groups (<500, ≥500 g/day), alcohol intake was categorized into three groups (0, <150, ≥150 g/week), and salt intake was categorized into two groups (<6, ≥6 g/day). Multicollinearity was assessed using the variance inflation factor (VIF) with the vif function from the DAAG package in R, and the largest VIF value was 4.4, indicating that there was no collinearity in the models. Available participants with no missing data were included in each analysis. We also carried out the same analysis for logistic regression models, after excluding outliers using the Smirnov–Grubbs test. All reported P-values are two-sided; a P-value <0.05 was considered to be statistically significant. Statistical analyses were carried out with R software.

Results
The number of cancer survivors and non-cancer controls at the baseline survey was 124 (men/women; 57/67) and 2168 (939/1229), respectively. Lesions of the primary cancers were as follows: gastrointestinal (GI) cancer (n = 50), smoking-related cancer (n = 81), and others (n = 46). Six cases were included as they were registered to the cancer registry before the baseline survey. Multiple primary cancer was seen in six cases.

The baseline characteristics are shown in Tables 1 and S1. Smoking status did not differ between the groups (P = 0.16). We also compared blood chemical values at the baseline survey between cancer survivors and non-cancer controls (Table S2). Gamma-glutamyl transferase (P = 0.01), cholinesterase (P = 0.03), iron (P = 0.03), albumin (P = 0.02), total cholesterol (P = 0.003), and low-density lipoprotein cholesterol (P = 0.04) were significantly lower in the cancer survivor group compared to the non-cancer controls.

The ORs of the outcomes comparing cancer survivors and non-cancer controls are shown in Table 2. The outcomes included deaths (172), onset of cancer (95), diabetes (95), hypertension (452), heart disease (50), dyslipidemia (623), and stroke (43) during the follow-up period. The risk of death (OR, 3.64; 95% confidence interval [CI], 2.19–6.05) and heart disease (OR, 2.60; 95% CI, 1.06–6.39) in cancer survivors was unfavorable compared to non-cancer controls. In multivariate models, the association between being a cancer survivor and death (OR, 1.23; 95% CI, 0.50–3.05) and the onset of cancer (OR, 1.54; 95% CI, 0.67–3.56) was not significant. Current smoking significantly increased the risk of death (OR, 2.42; 95% CI, 1.13–5.18; data not shown). These results did not differ even after excluding the outliers. The OR of each lifestyle factor is shown in Table 3.

Information regarding smoking status and cancer onset was available for 2000 of the 2165 non-cancer controls; cancer onset was observed for 4.1% (68/1661) of never or former smokers and 5.3% (18/339) of current smokers. In contrast, information regarding smoking status and cancer onset was available for 116 of the 124 cancer survivors; cancer onset was observed in 6.7% (7/104) of never or former smokers and 16.7% (2/12) of current smokers. Of the nine cases of second primary cancer, seven cases were smoking-associated: six cases were in never or former smokers, and one case was in a current smoker. The relative risk of second primary cancer caused by current smoking was 2.48 (95% CI, 0.58–10.59) in cancer survivors, and 1.50 (95% CI, 0.78–2.15) in non-cancer controls.

We also compared the characteristics and outcomes of non-communicable diseases according to the lesions of the primary cancer (Tables 4, S3). Survivors of GI cancer and smoking-related cancer were older than non-cancer controls (P < 0.001 for both). Smoking status significantly differed only in GI cancer survivors (P = 0.02); however, there was no difference in the proportion between cancer survivors and non-cancer controls (GI cancer, P = 0.46; smoking-related cancer, P = 0.12; cancer of other lesions, P = 0.37), when current smokers were compared with never and former smokers. Alcohol intake status did not differ between GI cancer survivors and non-cancer controls (P = 0.41). Increased risk of second primary cancer (OR, 2.26; 95% CI, 1.01–5.06) and heart disease (OR, 3.37; 95% CI, 1.25–9.07) was observed in smoking-related cancer survivors. Increased risk of heart disease was also significant in the multivariate analysis (OR, 2.95; 95% CI, 1.05–8.26; P = 0.04).

Discussion
In this population-based study, we investigated differences in lifestyle and the risk of non-communicable diseases, including the onset of cancer, between cancer survivors and non-cancer controls. The current results may indicate that smoking cessation is not emphasized enough for cancer survivors, although cancer survivors have been reported to be at high risk for the development of second primary cancers. We also suggest that being a cancer survivor per se is a possible risk factor for some non-communicable diseases.

We believe that intense management against smoking is necessary for cancer survivors. Smoking is a major cause of cancer, and it increases the risk of smoking-related cancers up to approximately 3–5-fold in cancer survivors. The increased risk caused by smoking in cancer survivors in our study (relative risk, 2.48) is comparable to those in previous studies. Our results and previous studies showed that smoking increases the risk of primary cancer in non-cancer controls by 1.5-fold, thus, it is reasonable to conclude that the risk of
Table 1. Characteristics compared between cancer survivors and non-cancer controls

Characteristics†	All participants (n = 2292)	Non-cancer controls (n = 2168)	Cancer survivors (n = 124)	P-value
General characteristics				
Age, years	62.4 (0.2)	62.2 (0.2)	66.8 (0.8)	<0.001
Sex				
Men	996 (43.5%)	939 (43.3%)	57 (46.0%)	0.626
Women	1296 (56.5%)	1229 (56.7%)	67 (54.0%)	
METs,‡ METs-h/day	36.1 (0.1)	36.2 (0.1)	35.2 (0.5)	0.066
BMI, kg/m²	23.5 (0.1)	23.5 (0.1)	23.3 (0.3)	0.485
Blood pressure, kPa				
Systolic	17.84 (0.04)	17.84 (0.05)	17.91 (0.16)	0.717
Diastolic	10.57 (0.03)	10.57 (0.03)	10.60 (0.11)	0.807
Smoking status				
Never	1588 (69.3%)	1497 (69.0%)	91 (73.4%)	0.155
Former	322 (14.0%)	302 (13.9%)	20 (16.1%)	0.249
Current	382 (16.7%)	369 (17.0%)	13 (10.5%)	
Nutritional intake§				
Total energy, kJ/day	9336.6 (65.7)	9328.4 (68.1)	9471.1 (240.8)	0.570
Carbohydrate	322.5 (2.2)	322.5 (2.3)	329.8 (9.0)	0.412
% of total energy	58.5 (0.2)	58.6 (0.2)	58.4 (0.6)	0.883
Sugar	21.2 (0.2)	21.1 (0.2)	22.3 (1.0)	0.004
Protein	37.5 (0.3)	37.4 (0.3)	38.9 (1.1)	0.204
% of total energy	5.9 (0.1)	6.0 (0.1)	6.3 (0.5)	0.188
Animal protein	39.3 (0.5)	39.1 (0.6)	42.8 (2.2)	0.093
% of total energy	5.9 (0.1)	6.0 (0.1)	6.3 (0.5)	0.188
Vegetable protein	37.5 (0.3)	37.4 (0.3)	38.9 (1.1)	0.204
% of total energy	6.7 (0.02)	6.7 (0.02)	6.8 (0.1)	0.281
Fat	57.3 (0.5)	57.1 (0.6)	60.6 (1.9)	0.087
% of total energy	22.9 (0.1)	22.9 (0.1)	24.1 (0.4)	0.081
Animal fat	23.4 (0.3)	23.3 (0.3)	25.4 (1.1)	0.070
% of total energy	12.3 (0.3)	12.3 (0.3)	12.3 (0.3)	0.362
Vegetable fat	33.8 (0.3)	33.8 (0.3)	35.2 (1.2)	0.289
% of total energy	7.6 (0.1)	7.6 (0.1)	7.6 (0.1)	0.034
Saturated fatty acid	14.0 (0.1)	14.0 (0.1)	14.0 (0.1)	0.004
% of total energy	7.6 (0.1)	7.6 (0.1)	7.6 (0.1)	0.034
Monounsaturated fatty acid	20.0 (0.2)	19.9 (0.2)	21.1 (0.7)	0.110
% of total energy	8.0 (0.05)	7.9 (0.05)	8.4 (0.2)	0.016
Polysaturated fatty acid	15.9 (0.1)	15.9 (0.1)	16.7 (0.5)	0.141
% of total energy	6.4 (0.04)	6.4 (0.04)	6.6 (0.1)	0.118
Cholesterol, g × 10⁻³/day	330.7 (4.1)	329.1 (4.2)	356.8 (16.4)	0.158
Fiber	15.0 (0.1)	14.9 (0.1)	16.3 (0.6)	0.025
Soluble fiber	3.3 (0.04)	3.3 (0.04)	3.6 (0.1)	0.027
Insoluble fiber	10.8 (0.1)	10.8 (0.1)	11.8 (0.4)	0.017
Alcohol	12.2 (0.6)	12.6 (0.6)	5.9 (1.4)	0.001
0 g/week	1009 (53.9%)	941 (53.3%)	68 (63.6%)	0.013
<150 g/week	496 (26.5%)	466 (26.4%)	30 (28.0%)	0.009
≥150 g/week	368 (19.6%)	359 (20.3%)	9 (8.4%)	0.177
Salt	12.8 (0.1)	12.8 (0.1)	13.3 (0.4)	0.737
<6 g/week	44 (2.3%)	41 (2.3%)	3 (2.8%)	0.016
≥6 g/week	1829 (97.7%)	1725 (97.7%)	104 (97.2%)	0.176
Sodium, g × 10⁻³/day	5083.6 (37.2)	5071.2 (38.3)	5288.0 (150.7)	0.029
Magnesium, g × 10⁻³/day	292.5 (2.5)	291.5 (2.6)	309.9 (9.9)	0.040
Potassium, g × 10⁻³/day	2724.8 (25.8)	2711.0 (26.6)	2952.9 (103.5)	0.088
Calcium, g × 10⁻³/day	616.5 (6.4)	613.3 (6.6)	669.8 (27.1)	0.083
Phosphorus, g × 10⁻³/day	1158.3 (10.7)	1153.7 (11.1)	1237.7 (42.2)	0.083
Iron, g × 10⁻³/day	9.2 (0.1)	9.1 (0.1)	10.0 (0.3)	0.016
Zinc, g × 10⁻³/day	9.4 (0.1)	9.4 (0.1)	10.0 (0.3)	0.049
Copper, g × 10⁻³/day	1.5 (0.01)	1.4 (0.01)	1.5 (0.04)	0.044
cancer onset is exacerbated more by smoking in cancer survivors compared to non-cancer controls, although the small sample size precludes a definitive conclusion. Therefore, more intense management promoting smoking cessation should be provided for cancer survivors to help prevent second primary cancer.

However, the smoking rate of cancer survivors and non-cancer controls was similar, indicating that smoking cessation

![Table 1 (continued)](attachment:image)

Table 2. Logistic regression analysis for death, second primary cancer, and non-communicable diseases in cancer survivors and non-cancer controls

Outcomes	Univariate analysis†	Multivariate analysis‡		
	Odds ratio (95% CI)	P-value	Odds ratio (95% CI)	P-value
Death				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	2.05 (1.07–3.95)	0.03	1.23 (0.50–3.05)	0.65
Cancer onset				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	1.87 (0.92–3.82)	0.09	1.54 (0.67–3.56)	0.31
Diabetes				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	1.11 (0.46–2.64)	0.82	0.97 (0.40–2.36)	0.95
Dyslipidemia				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	0.97 (0.57–1.65)	0.92	0.95 (0.55–1.64)	0.86
Heart disease§				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	2.60 (1.06–6.39)	0.04	2.05 (0.80–5.22)	0.13
Hypertension				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	0.75 (0.41–1.39)	0.36	0.56 (0.29–1.08)	0.08
Stroke¶				
Non-cancer controls	Reference	–	Reference	–
Cancer survivors	1.22 (0.37–4.06)	0.74	0.88 (0.25–3.09)	0.84

†Number of participants was 2114 (non-cancer controls/survivors, 1998/116) for death, 2116 (2000/116) for cancer onset, 1089 (1026/63) for diabetes, 1057 (997/60) for dyslipidemia, 1053 (993/60) for heart disease, 831 (787/44) for hypertension, and 1132 (1066/66) for stroke. ‡Number (non-cancer controls/survivors) of participants were 1556 (1467/89) for death, 1558 (1469/89) for cancer onset, 1089 (1026/63) for diabetes, 1057 (997/60) for dyslipidemia, 1053 (993/60) for heart disease, 831 (787/44) for hypertension, and 1132 (1066/66) for stroke. §Heart disease includes heart failure and angina pectoris. ¶Stroke includes intracranial hemorrhage, subarachnoid hemorrhage, and cerebral infarction.

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Table 3. Odds ratios of covariates in multivariate logistic regression analysis of cancer survivors and non-cancer controls

	Death (n = 1556)	Cancer onset (n = 1558)	Diabetes (n = 1089)	Dyslipidemia (n = 1057)	Hypertension (n = 831)	Heart disease† (n = 1053)	Stroke (n = 1132)			
	Odds ratio (95% CI)	P-value								
Age, years										
≥40, <56										
≥56, <64										
≥64, <72										
≥72, <88										
Men	Reference		Reference		Reference		Reference		Reference	
Women	0.38 (0.18-0.80)	0.01	0.77 (0.41-1.47)	0.43	0.72 (0.41-1.28)	0.27	1.08 (0.77-1.53)	0.65	0.77 (0.52-1.16)	0.21
Smoking status										
Never	Reference		Reference		Reference		Reference		Reference	
Former	1.59 (0.78-3.26)	0.20	1.59 (0.79-3.18)	0.19	0.94 (0.48-1.82)	0.85	0.86 (0.58-1.29)	0.47	0.78 (0.48-1.29)	0.34
Current	2.42 (1.13-5.18)	0.02	1.65 (0.82-3.33)	0.16	0.92 (0.45-1.86)	0.81	1.12 (0.75-1.68)	0.57	0.71 (0.45-1.13)	0.15
Metabolic										
equivalents,										
BMI, kg/m²										
≥25.8, <32.0	Reference		Reference		Reference		Reference		Reference	
≥32.0, <35.2	0.39 (0.18-0.85)	0.02	0.62 (0.33-1.17)	0.14						
≥35.2, <39.3	0.45 (0.21-0.95)	0.02	0.54 (0.28-1.25)	0.07						
≥39.3, <46.0	0.74 (0.37-1.47)	0.39	0.35 (0.28-1.09)	0.09						
Fruit and vegetable										
Lost/g/day	Reference		Reference		Reference		Reference		Reference	
<18.5	Reference		Reference		Reference		Reference		Reference	
≥18.5, <25	0.48 (0.20-1.15)	0.10			0.98 (0.56-1.72)	0.94	2.23 (1.17-4.25)	0.01		
≥25	0.50 (0.19-1.30)	0.15			1.78 (0.98-3.25)	0.06	3.80 (1.91-7.56)	<0.001		
Alcohol/g/day										
<0.9 g/day	Reference		Reference		Reference		Reference		Reference	
≥0.9, <1.5	0.00 (0.00-0.69)	0.01	0.79 (0.17-3.61)	0.76			0.35 (0.10-1.22)	0.10	0.74 (0.09-6.26)	0.79
Cerebral infarction.										
BMI, body mass index; METs/h/day, metabolic equivalents-hours per day. †Heart disease includes heart failure and angina pectoris. ‡Stroke includes intracranial hemorrhage, subarachnoid hemorrhage, and cerebral infarction. Odds ratio and 95% confidence interval (CI) was derived with logistf function from the logistf package in R software.										
approximately 70% prevalence in cancer survivors is similar in Japan and the USA, with the 20% rate in Japan – 15% in the USA, with the 20% rate in Japan. Insufficient support of smoking cessation for the cancer survivors would be in part due to the lack of knowledge in general physicians, resulting from the limited research on health management for cancer survivors. In Japan, there is no nationwide smoking cessation program specific for cancer survivors.

The prevalence of smoking in the general population is approximately 15% in the USA, with the 20% rate in Japan about 10–15 years behind. The USA began taking antismoking measures prior to Japan, and many medical societies support smoking cessation; moreover, services such as Quitline are available. In Japan, the environment for smoking cessation is not as well maintained. Notwithstanding, smoking prevalence in cancer survivors is similar in Japan and the USA. This is due to the paucity of smoking cessation services specific for cancer survivors in both countries: only approximately 70–80% of designated cancer hospitals provide smoking cessation services, and clinicians possibly lack knowledge to support smoking cessation and feel reluctant to even carry out the initial evaluation. Smoking cessation is a big challenge for cancer survivors. Therefore, support for smoking cessation should be widely provided in clinical practice, and its benefits should be clarified in future research.

In addition to support for smoking cessation, the current results show that the following health management targets may be necessary for cancer survivors: First, the risk of heart disease was higher in cancer survivors compared to non-cancer controls. This implies a need for additional care for heart disease among cancer survivors. Smoking is a mutual risk factor for heart disease and cancer, and chemotherapy may be cardiotoxic or increase cardiac load in relevant cases; hence, survivors would be at risk of heart disease. Second, subgroup analysis showed an excess risk of cancer onset among smoking-associated cancer survivors. Cancer survivors also need management for prevention of second primary cancer. Furthermore, most of the second primary cancers in smoking-associated cancer survivors were also smoking-associated. This reinforces the need to support smoking cessation, especially in smoking-associated cancer survivors, given that the prevalence of smoking was comparable between smoking-related cancer survivors and non-cancer controls. As cancer survivors would be more likely to die before the cancer onset because of comorbid conditions or complications and with the effect of confounding factors like age, increased risk of cancer onset was scarcely detectable only in smoking-associated cancer survivors. Risk of second primary cancer and its lesions differs depending on the primary cancer; thus, the effect of smoking on those risks needs to be elucidated. For this, a larger study with sufficient statistical power is needed.

Baseline characteristics differed between cancer survivors and non-cancer controls. Cancer survivors abstained from alcohol, indicating that current management regarding alcohol consumption is providing sufficient results. However, 5/41 (12.2%) of GI cancer survivors still consumed more than 150 g alcohol per week. Physicians should be aware of this population and continue to emphasize alcohol abstinence, as alcohol is an established risk factor for GI cancer. In addition, cancer survivors tended to be malnourished, as indicated by cholinesterase, albumin, total cholesterol, and low-density lipoprotein levels (Table S2), especially in GI cancer survivors.
Malnutrition in cancer survivors arises from causes other than nutritional intake, as energy intake (Tables 1, S3) and energy intake per body weight (data not shown) did not differ between cancer survivors and non-cancer controls. Dietary management is generally directed toward limiting intake (often caloric) or endorsing frugal meals, although some survivors need the opposite and should be encouraged to have sufficient nutrition to avoid malnourishment. We could not infer the cause of other differences observed in food and nutritional intake or blood chemical values, thus we were unable to determine whether these differences between cancer survivors and non-cancer controls result from the cancer per se; the potential causal relationship needs to be addressed in a larger population-based or interventional study. We emphasize the importance of this study, because the general public wants to know what kind of foods they should eat or avoid in order to reduce the risk of non-communicable diseases. At present, recommendations and management of dietary habits for cancer survivors is the same as that for the general public for factors other than those revealed in the present study.

The strength of this study was that detailed information regarding lifestyle was obtained after the onset of cancer for cancer survivors. Also, the onset of non-communicable diseases, including the onset of second cancer after the baseline survey, was prospectively obtained. These allowed us to investigate the risk of non-communicable diseases caused by being a cancer survivor. We observed an increased risk of death, cancer onset, and heart disease for cancer survivors; although statistical power was insufficient, an increased risk was verified in multivariate analysis for heart disease. Conversely, our results indicated that known risk factors, such as age, smoking, and unknown confounding factors had a larger effect than being a cancer survivor on the risk of non-communicable diseases, especially in diseases other than heart disease; for example, age was significantly higher in cancer survivors. Note that for stroke, although intracranial and subarachnoid hemorrhages were included, due to the lack of information in the questionnaire, it could not be determined whether these strokes were caused by cerebrovascular disease or by another cause. This is highly important, because smoking is an evident risk factor for cerebrovascular disease. In addition, the influence of GI cancer history should also be considered, as its incidence was greatest (40.3%). Another limitation is that we could not compare the difference in the risk of each lifestyle factor between cancer survivors and non-cancer controls, due to the number of participants and events that were available. Selection bias exists for cancer survivors in this study as survivors included those who had survived for a certain period of time and could come to the health check-up. In other words, survivors who had an undesirable course after the diagnosis of cancer were unable to participate in this study. Therefore, participants who had an undesirable course might be more likely not to have adhered to a healthy lifestyle than those who participated in this study. Moreover, we could not take into account the time period of being a cancer survivor, as it was not obtained in the questionnaire. Self-reported history of cancer at baseline and the short follow-up period were also limitations of this study.

Our population-based cohort study in a Japanese general population was consistent with the results of previous studies. Specific health management for cancer survivors as suggested above may also apply to other developed nations in Europe and North America, but this needs to be verified in future studies. In addition, information regarding differences in lifestyle and risk of non-communicable diseases between cancer survivors and non-cancer controls is limited in the Asian population. The current results suggest that a large study in an Asian population would be worthwhile. We are now advancing a prospective cohort study of approximately 20,000 people, with detailed information of lifestyles, aiming in part to validate the results of the current study.

In conclusion, the current study indicates that smoking, known but undetermined lifestyle habits, and other unknown factors are associated with the risk of non-communicable diseases in cancer survivors. These data are valuable in that they elucidate the need to establish specific health management for cancer survivors with a focus on the prevention of non-communicable diseases, including second primary cancer. The need for smoking cessation is commonly accepted, although cancer survivors need more intense management against smoking. In addition, cancer survivors should receive additional care for heart disease.

Acknowledgments

This work was supported by Project Future, Relay for Life, Japan Cancer Society. We would like to thank Editage for English language editing.

Disclosure Statement

The authors have no conflict of interest.

References

1 Coleman MP, Forman D, Bryant H et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 2011; 377: 127–38.

2 Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA. Future of cancer treatment and survivorship nation. J Clin Oncol 2009; 27: 2758–65.

3 DeSantis CE, Lin CC, Mariotto AB et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014; 64: 252–71.

4 McCabe MS, Bhatia S, Oeffinger KC et al. American Society of Clinical Oncology statement: achieving high-quality cancer survivor care. J Clin Oncol 2013; 31: 631–40.

5 Report of the Joint WHO/FAO Expert Consultation. Diet, Nutrition and the Prevention of Chronic Diseases, WHO Technical Report Series, No. 916, 2003.

6 Rock CL, Doyle C, Demark-Wahnefried W et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 2012; 62: 243–74.

7 National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Fort Washington: Survivorship, 2014.

8 Wolin KY, Dart H, Colditz GA. Eight ways to stay healthy after cancer: an evidence-based message. Cancer Causes Control 2013; 24: 827–37.

9 From Cancer Patient to Cancer Survivor. Washington DC: The National Academies Press, 2005.

10 Barone BB, Yeh HC, Snyder CF et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008; 300: 2754–64.

11 Yabroff KR, Lawrence WF, Clauer S, Davis WW, Brown ML. Burden of illness in cancer survivors: findings from a population-based national sample. J Natl Cancer Inst 2004; 96: 1322–30.

12 Liu L, Lemmens VE, De Heugh I et al. Second primary cancers in subsites of colon and rectum in patients with previous colorectal cancer. Dis Colon Rectum 2013; 56: 158–68.

13 Youlden DR, Baade PD. The relative risk of second primary cancers in Queensland, Australia: a retrospective cohort study. BMC Cancer 2011; 11: 83.
Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Checking linearity assumption of each logistic regression using smoothing spline.

Table S1. Food intake according to brief self-administered diet history questionnaire (BDHQ) compared between cancer survivors and non-cancer controls.

Table S2. Odds ratio of covariates in multivariate logistic regression analysis.

Table S3. Characteristics of subgroups according to cancer lesions.
Author/s: Nakamura, S; Narimatsu, H; Sasahara, YI; Sho, R; Kawasaki, R; Yamashita, H; Kubota, I; Ueno, Y; Kato, T; Yoshioka, T; Fukao, A; Kayama, T

Title: Health management in cancer survivors: Findings from a population-based prospective cohort study-the Yamagata Study (Takahata)

Date: 2015-11-01

Citation: Nakamura, S., Narimatsu, H., Sasahara, Y. I., Sho, R., Kawasaki, R., Yamashita, H., Kubota, I., Ueno, Y., Kato, T., Yoshioka, T., Fukao, A. & Kayama, T. (2015). Health management in cancer survivors: Findings from a population-based prospective cohort study-the Yamagata Study (Takahata). CANCER SCIENCE, 106 (11), pp.1607-1615. https://doi.org/10.1111/cas.12811.

Persistent Link: http://hdl.handle.net/11343/261941

File Description: Published version

License: CC BY-NC-ND