Bioactive compounds of fourth generation gamma-irradiated \emph{Typhoniumflagelliforme} Lodd. mutants based on gas chromatography-mass spectrometry

N F Sianipar1,4, R Purnamaningsih2 and Rosaria3

1Research Interest Group Food Biotechnology, Bina Nusantara University, 15325 Tangerang, Indonesia
2Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (BB-Biogen), 16111 Bogor, Indonesia
3Alumni of Biology Department, Faculty of Science and Technology, Pelita Harapan University, 15811 Tangerang, Indonesia

E-mail: nestipro@yahoo.com

Abstract. Rodent tuber (\emph{Typhonium flagelliforme}Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant’s genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. \textit{In vitro} calli were irradiated with 6 Gy of gamma ray to produce \textit{in vitro} mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers of the fourth generation of rodent tuber’s vegetative mutant clones (MV4) and control plants by using GC-MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer \textit{a}, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

1. Introduction

Rodent tuber (\emph{Typhonium flagelliforme} Lodd.) is a native Indonesian medicinal plant from Araceae family [1]. Rodent tuber contains antineoplastic/anticancer and antivirus chemical agents[2]. Bioactive compounds in this plant are alkaloids, saponins, steroids, and glycosides [3]. Rodent tuber’s extract was cytotoxic against the cancer of lung, breast [4], liver [5], blood(leukemia)[6], colon, prostate gland, and cervix [7]. Its hexane extract was cytotoxic against \emph{Artemia salina} larvae[8]. It also had antibacterial and antioxidant properties [9].

Rodent tuber from Indonesia has a low genetic diversity because it is usually propagated by conventional vegetative methods[1]. Genetic diversity must be increased in order to obtain plant clones which contain a high amount of anticancer compounds. Mutation induction is one of the ways...
to increase plant’s genetic diversity. Mutation could be induced by irradiating plants with physical mutagens, such as gamma ray.

In vitro embryogenic somatic cell population/calli of rodent tuber plant from Bogor have been induced, proliferated, and regenerated by single node culture method [10]. The mutation induction of those embryogenic calli were done by combining the effects of 6 Gy gamma irradiation and *in vitro* somaclonal variation. *In vitro* plantlets, which were regenerated from those induced calli, showed various morphological characters [11] and had genetic differences from control plants according to Randomly Amplified Polymorphic DNA (RAPD) molecular marker analysis [12]. *In vitro* plantlets were acclimated in a greenhouse. There were 37 clones of the first generation of rodent tuber vegetative mutant (MV1). MV1 clones had various morphological characters [13]. Out of those 37 MV1 clones, there were 17 clones which were genetically different from control plants according to RAPD [14].

Genetic mutation may result in a change of the composition and quantities of phytochemical compounds in a plant, which could be detected by Gas Chromatography-Mass Spectrometry (GC-MS). GC uses gas as the mobile phase to separate chemical compounds. MS will identify those separated compounds by referring to a database [15]. GC-MS has been used to identify the chemical contents of herbal plants, such as *Meliaorientalis* [16], *Maranta arudinacea* L. [17], and the nonpolar fraction of the Malaysian rodent tuber [18].

MV1 clones of rodent tuber have been propagated and regenerated into the fourth generation mutant clones (MV4). The purpose of this research was to identify the chemical composition and analyzing the anticancer bioactive components of the polar fraction of leaves and tubers of rodent tuber MV4 clones by using GC-MS method.

2. Materials and methods

2.1. Plant materials and extract preparation

Rodent tuber plant from Bogor, Indonesia was isolated, propagated *in vitro* [10], and irradiated with gamma ray to induce genetic mutation [11]. Rodent tuber plantlets were acclimated in a greenhouse [13]. Mutant and control plants were harvested for extraction. One control plant and eight MV4 mutant clones, i.e. 6-9-1, 6-3-3-6, 6-1-1-6, 6-3-2-5, 6-6-3-6, 6-2-8-2, 6-1-1-2, 6-1-2 were analyzed in this research. Shoots and tubers were dried and homogenised. Homogenised samples were macerated in 100ml of ethanol 96% and incubated overnight for two days to obtain chemical components in its ethanol fractions. Ethanol fractions were filtered with Whatman filter paper.

2.2. GC-MS analysis

Sample’s ethanol fractions were injected into the GC column. Injection volume was 5µl with 5:1 split ratio and the injection temperature was 250°C. Helium was used as carrier gas with velocity 0.8 µl per minute. Column temperature was set at 70°C with 5°C per minute increment. When the temperature reached 200°C, it remained constant for 1 minute and then will be increased at the rate of 20°C per minute until the temperature reached 280°C. The temperature remained constant for another 28 minutes. Mass spectrometer was operated in electron impact ionisation mode with 70 eV voltage.

2.3. Identification of phytochemical compounds

Identification of the mass spectrum of GC-MS was performed by referring to the National Institute Standard Technique (NIST) database with ≥90% fit factor. The relative abundance percentages of each compound were calculated by comparing its average peak area to the total area.

3. Results and discussion

GC-MS has successfully identified phytochemicals in the leaves and tubers of rodent tuber’s control and MV4 clones (Figure 1). There were 32 different chemical compounds in theethanolic fraction of a control plant. The 5 most abundant compounds were neophytadiene (10.6%), phytol isomer (13.07%),

2nd International Conference on Agricultural and Biological Sciences (ABS 2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 41 (2016) 012025 doi:10.1088/1755-1315/41/1/012025
alpha tocopherol (8.85%), campesterol (7.23%), and stigmasterol (8.90%). Ethanolic fractions of the tubers contained at least 33 different chemical compounds, the most abundant were 9,12-octadecadienoic acid (7.67%), octacosane (9.35%), nonacosane (11.03%), octacosane (8.66%), and stigmasterol (7.88%).

Figure 1. A: control; B: MV4 clone 6-1-2; C: MV4 clone 6-3-2-5; D: MV4 clone 6-1-1-6. Rodent tuber control and mutant clones after 20 weeks of growing in a green house.

GC-MS analysis revealed that leaves and tubers of control plants contained a range of different phytochemicals. The phytochemicals which were contained in higher amounts in leaves than in tubers were phytol, squalene, and stigmasterol. Whilst, tubers contained higher amounts of hexadecanoic acid methyl ester, hexadecanoic acid ethyl ester, hexadecanoic acid, 9,12-octadecadienoic acid methyl ester, 9,12,15-octadecatrienoic acid methyl ester, 9,12-octadecadienoic acid ethyl ester, hexadecanamide, 4,22-stigmastadiene-3-one, and stigmast-4-en-3-one compared to leaves.

Based on GC-MS analysis, there were chemical composition differences between control and mutant clones and between each of the different clones of mutant plants. Some anticancer bioactive compounds were present in higher amounts in the mutant clones compared to in control plants. Mutant clones also contained several new anticancer compounds which were not found in control (figure 2, table 1 and 2). Leaves of mutant clones contained higher amounts of two anticancer compounds compared to control, i.e. hexadecanoic acid ethyl ester and hexadecanoic acid methyl ester. They also contained five new anticancer compounds, i.e. hexadecanoic acid, stigmaster-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid. Tubers of mutant clones contained higher amounts of five anticancer compounds, i.e. hexadecanoic acid, hexadecanoic acid methyl ester, hexadecanoic acid ethyl ester, squalene, and 2-methoxy-4-vinylphenol. Among those five compounds, the relative abundance of hexadecanoic acid in 6-6-3-6 clone was the most different compared to control, i.e. increasing 30.63% from control plants.

The higher amounts of some anticancer compounds in the mutant compared to control plants has also been observed in GC-MS profile of rodent tuber first generation mutant clones (MV1) [19]. Leaves and tubers of MV1 contained higher amounts of three and four anticancer compounds compared to control, respectively. In addition, leaves and tubers of MV1 each contained four new anticancer compounds which were not found in control plants.

Hexadecanoic acid (palmitic acid) was selectively cytotoxic against leukemia cancer cells MOLT-4 due to its interaction with DNA topoisomerase I and its ability to induce apoptosis. Hexadecanoic acid had in vivo antitumor activity[20]. Biological activities of hexadecanoic acid ethyl ester were antioxidant, antimicrobial[21], and could reduce the risk of coronary heart disease. Hexadecanoic acid methyl ester was able to inhibit the growth and induce apoptosis of human gastric cancer cells[22]. Stigmast-5-en-3-ol (3.beta.,24s) (beta-sitosterol) is a phytosterol with various biological activities. It could reduce the cell’s cholesterol level, modify membrane lipid profile [23], and it was antidiabetic [24], and able to inhibit the growth of cancer cells. Ergost-5-en-3-ol (3 beta) (campesterol) is a phytosterol which has been proven to be able to inhibit various cancer cells, such as lung [25], gastric [26], and ovary [27] cancers. Farnesol is a non-sterol isoprenoid which is commonly found in various fruits and aromatic plants, such as citrus, sage, spearmint, nutmeg, basil, lemon grass, and chamomile. Farnesol could selectively inhibit the proliferation and induce apoptosis of leukemia and cervical cancer cells[28]; [29]. Farnesol had in vivo antitumor and anticarcinogenic activities [30]; [31].
IOP Conf. Series: Earth and Environmental Science 41 (2016) 012025 doi:10.1088/1755-1315/41/1/012025

Table 1. Comparison of the composition of anticancer compounds in leaves of rodent tuber control and MV4 mutant clones based on GC-MS. NA is not available, which means that the quantity of a compound was not high enough to be detected by GC-MS. The quantities of anticancer bioactive compounds in MV4 mutant clones which were higher than control were indicated by the yellow highlights.

Name of Compound	Relative abundance (%) in control	Relative abundance (%) in mutant							
	6-9-1	6-3-6	6-1-6	6-3-2-5	6-6-3-6	6-2-8-2	6-1-1-2	6-1-2	
Hexadecanoic acid, methyl ester	39.0	1.33	0.82	0.82	0.84	0.71	0.32	0.41	0.48
Hexadecanoic acid, ethyl ester	0.50	0.51	0.86	0.64	1.07	1.00	0.86	0.86	1.01
Hexadecanoic acid	NA	16.7	20.89	19.46	29.09	19.33	24.53	19.36	32.85
Stigmast-5-en-3-ol	NA	3.64	NA	NA	NA	NA	NA	NA	2.14
Ergost-5-en-3-ol	NA	NA	3.17	3.40	NA	2.29	NA	2.47	NA
Farnesol isomer a	NA	NA	NA	NA	0.33	NA	NA	NA	NA
Oleic acid	NA	NA	NA	NA	NA	2.03	NA	NA	NA

Table 2. Comparison of the composition of anticancer compounds in tubers of rodent tuber control and MV4 mutant clones based on GC-MS. NA is not available, which means that the quantity of a compound was not high enough to be detected by GC-MS. The quantities of anticancer bioactive compounds in MV4 mutant clones which were higher than control were indicated by the yellow highlights.

Name of Compound	Relative abundance (%) in control	Relative abundance (%) in mutant							
	6-9-1	6-3-6	6-1-6	6-3-2-5	6-6-3-6	6-2-8-2	6-1-1-2	6-1-2	
Hexadecanoic acid	7.23	19.52	26.62	10.72	27.16	37.86	32.36	36.76	25.50
Hexadecanoic acid, methyl ester	1.46	0.83	0.68	2.51	0.69	0.54	0.34	0.66	NA
Hexadecanoic acid, ethyl ester	0.87	1.13	1.18	2.02	1.39	1.94	1.31	1.23	3.69
Squalene	0.86	NA	NA	NA	1.24	NA	0.49	0.55	1.32
Alpha tocopherol	NA	0.24	NA	NA	0.59	NA	NA	0.61	NA
Ergost-5-en-3-ol	NA	2.95	2.85	3.31	2.43	2.56	2.20	0.36	1.35
2-methoxy-4-vinylphenol	0.90	NA	NA	0.96	0.45	NA	NA	0.46	NA
Beta-elemene	NA	4.33	NA	0.13	NA	NA	NA	NA	NA

Oleic acid is a n-9 monounsaturated fatty acid which was cytotoxic against several types of cancer cells. Oleic acid could inhibit the growth [32] and induce apoptosis [33] of breast cancer cells and inhibit colon adenocarcinoma[34]. Squalene was able to inhibit carcinogenesis of various cancer cells, such as colon cancer [35]. Vitamin E (α and γ-tocopherol) has been proven to be able to reduce the risk of carcinogenesis [36]. 4-vinyl-2-methoxy-phenol was able to inhibit carcinogenesis which is induced by Polycyclic Aromatic Hydrocarbons (PAHs) benzo(a)pyrene (BaP) by regulating the cell cycle protein in order to prevent hyper-phosphorilation of retinoblastome’s tumor suppressor protein [37]. Beta-elemene could induce apoptosis of non-small lung carcinoma by activating caspase-3, -7 and -9, reducing the expression of Bcl-2, inducing the release of cytochrome c, and increasing the level of...
caspase-9 and poly(ADP-ribose) polymerase[38]. Bete-elemene also had antiproliferative activity against prostate carcinoma cell DU145 and PC-3. In addition, it was able to inhibit the growth of lung, colon, cervix, breast, and brain carcinoma cells [39]. Based on GC-MS analysis, mutant clone 6-1-2 had the highest total amount of anticancer compounds in leaves (38.95%) compared to control (0.89%) and the other mutant clones (table 1). GC-MS identified 20 chemical compounds in the ethanolic fraction of 6-1-2’s leaves (Tabel 5). The five most abundant compounds in leaves of 6-1-2 were hexadecanoic acid (32.85%), (2E)-3,7,11,15-tetramethyl-2-hexadecen-1-ol (8.71%), ethyl (9z,12z)-9,12-octadecadienoate (5.67%), hexadecanoic acid (5.74%), and 9,12-octadecadienoic acid (Z,Z) (16.07%).

![Figure 2](image-url)

Figure 2. GC-MS chromatogram of the leaves and tubers of MV4 mutant clones. a) leaves of 6-1-2; b) tubers of 6-6-3-6. X-axis represents retention time while Y-axis represents relative abundance. The chemical structures of compounds with the highest relative abundances were shown (chemical structure was obtained from NIST database).

Retention Time	Name of Compound\(^a\)	Relative Abundance\(^b\)
31.106	Neophytadiene	1.39
31.161	(2E)-3,7,11,15-tetramethyl-2-hexadecene	0.81
31.513	Neophytadiene	0.58

\(^a\)Compounds were identified by comparing retention time data with authentic standard database of NIST/EPA/NIH fit factor ≥90%. \(^b\)Relative abundance was determined based on area percentage of each compound.
31.906 Hexadecanoic acid, methyl ester 0.48
32.402 Hexadecanoic acid, ethyl ester 1.01
32.657 Hexadecanoic acid 7.03
32.850 Hexadecanoic acid 4.29
32.940 Hexadecanoic acid 2.86
33.057 9,12-octadecadienoic acid (Z,Z)-methyl ester 4.37
33.099 Hexadecanoic acid 3.92
33.209 (2E)-3,7,11,15-tetramethyl-2-hexadecen-1-ol 8.71
33.430 Ethyl (9z,12z)-9,12-octadecadienoate 5.67
33.471 Hexadecanoic acid 3.49
33.581 Hexadecanoic acid 5.74
33.699 9,12-octadecadienoic acid (Z,Z) 16.07
33.823 Hexadecanoic acid 5.52
34.119 14-methyl-8-hexadecyn-1-ol 4.75
35.181 Methyl 20-methyl-heneicosanoate 0.57
36.312 Tetracosanoic acid, methyl ester 0.33
37.022 Squalene 0.70
39.415 7-bromo-5-(2-bromo-phenyl)-1,3-dihydrobenzo(e)(1,4)diazepin-2-one 3.05
40.125 Stigmastan-3,5-diene 2.68
40.483 Alpha-tocopherol 0.86
42.119 Ergost-5-en-3-ol 2.47
42.759 Stigmasterol 2.96
43.883 Stigmast-5-en-3-ol 2.14
45.455 4,22-stigmastadiene-3-one 1.56

43.39% of compounds identified in the tuber of mutant clone 6-6-3-6 were known to have anticancer activity, which was the highest amount of anticancer compounds compared to control, which anticancer compounds only comprised 11.32% of the identified compounds, and the other mutant clones (table 1). GC-MS identified 18 chemical compounds in the ethanolic fraction of the tuber of MV4 6-6-3-6 clone (table 4). The five most abundant compounds in leaves of MV4 6-6-3-6 clone were hexadecanoic acid (37.86%), 9,12-octadecadienoic acid (Z,Z)-methyl ester (3.39%), ethyl (9z,12z)-9,12-octadecadienoate (8.19%), (9E,12E)-9,12-octadecadienoic acid (25%), and stigmasterol (3.85%).

Table 4. Chemical compounds in tubers of rodent tuber MV4 mutant clone 6-6-3-6 based on GC-MS.

*aCompounds were identified by comparing retention time data with authentic standard database of NIST/EPA/NIH fit factor ≥90%.
*bRelative abundance was determined based on area percentage of each compound.

Retention Time	Name of Compound	Relative Abundance
31.899	Hexadecanoic acid, methyl ester	0.54
32.409	Hexadecanoic acid, ethyl ester	1.94
32.747	Hexadecanoic acid	14.58
32.837	Hexadecanoic acid	3.87
32.940	Hexadecanoic acid	2.50
33.057	9,12-octadecadienoic acid (Z,Z)-methyl ester	3.39
33.099	Hexadecanoic acid	3.38
33.202	Hexadecanoic acid	3.56
33.264	Hexadecanoic acid	1.33
33.443	Ethyl (9z,12z)-9,12-octadecadienoate	8.19
Some chemical compounds, i.e. ethyl (9z,12z)-9,12-octadecadienoate, 14-methyl-8-hexadecyn-1-ol, methyl 20-methyl-heneicosanoate, tetracosanoic acid methyl ester, stigmastan-3,5-diene, and ergost-5-en-3-ol, were detected in leaves of MV4 clone 6-1-2 but not in leaves of control. Tubers of MV4 clone 6-6-3-6 contained seven chemical compounds, i.e. ethyl (9z,12z)-9,12-octadecadienoate, tetracosanoic acid methyl ester, methyl 17-methyl-octadecanoate, 7-bromo-5-(2-bromo-phenyl)-1,3-dihydro-benzo(e)(1,4)diazepin-2-one, ergost-5-en-3-ol, (23s)-ethylcholest-5-en-3beta-ol, and ergost-4-en-3-one,(24R)-, which were not detected in control plants. This finding indicated the difference in metabolomic profile between mutant and control plants due to gamma irradiation-induced genetic mutation.

The difference in chemical contents between control and mutant plants was due to gamma irradiation and somaclonal variation during plant tissue culture process. The application of auxin-type plant growth regulators, such as 2,4-D, in plant culture medium could increase heritable genetic diversity [40]. In addition, the combination of stress condition in in vitro culture and physical mutagen irradiation was able to induce retrotransposon activity, i.e. the movement of DNA from one chromosome to the other. This phenomenon could alter the genetic makeup of a cell, either by increasing or silencing the expression rate of nearby genes or genes which are located next to the retrotransposon [41]. In this respect, the expression of nearby genes which might be responsible for expressing certain organic compounds could also be increased. This research has shown that the usage of plant growth regulators in in vitro culture and the irradiation of calli with gamma ray were able to produce mutant clones which contained a high amount of anticancer compounds. Beside that, gamma irradiation and somaclonal variation were also able to alter the biochemical process [40]. In this research, some MV4 mutant clones showed an increase in the amount of primary and secondary metabolites compared to control plants.

4. Conclusion
The chemical compounds in control and fourth generation vegetative mutant clones (MV4) of rodent tuber have been successfully detected by GC-MS. There were metabolomic profile differences between leaves and tubers, and between mutant and control plants. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds whose quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer α, and oleic acid while the new anticancer compounds in tubers were α-tocopherol, ergost-5-en-3-ol, and β-elemene. The
difference in chemical compounds between mutant and control plants was due to the 6-Gy gamma ray irradiation and somaclonal variation of *in vitro* calli.

Acknowledgement

The authors would like to thank the Indonesian Directorate General of Higher Education (DIKTI) who funded our research through competitive grant (hibah bersaing) project. We would also like to thank Prof. Ika Mariska for reviewing this manuscript.

References

[1] Essai 1986 *Medicinal Herbs Index in Indonesia* (Jakarta: PT Essai Indonesia) p357

[2] Teo CKH and Ch’ng BI 1996 *Cancer Yet They Live* (Penang: CA Care Publication)

[3] Syahid SF 2007 *Perbanyakan keladi tikus (Typhonium flagelliforme Lodd) secara in vitro* *Warta Puslitbangbun* 13(3) 19-20

[4] Lai CS, Mas RH, Nair NK, Mansor SM and Navaratnam V 2010 *Chemical constituents and in vitro anticancer activity of Typhoniumflagelliforme*(Araceae) *J. Ethnopharmacol.* 127 486-94

[5] Lai CS, Mas RHMH, Nair NK, Majid MIA, Mansor SM and Navaratnam V 2008 *Typhoniumflagelliformeinhibits cancer cell growth in vitro and induces apoptosis: an evaluation by the bioactivity guided approach*. *J. Ethnopharmacol.* 118 14-20

[6] Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Aspollah SM, Abdullah R, Taha MM, Beng NK and Isa NM 2010 *Typhoniumflagelliforme in inhibits the proliferation of murine leukemia WEHI-3 cells in vitro and induces apoptosis in vivo*. *Leuk. Res.* 34 1483-92

[7] Hoesen DSH 2007 *Pertumbuhan dan perkembangan tunas Typhonium secara in vitro*. *Berita Biologi* 8(5) 413-22

[8] Sianipar NF, Maarisis W and Valencia A 2013a *Toxic activities of hexane extract and column chromatography fractions of rodent tuber (Typhonium flagelliforme Lodd.) on Artemia salina*. *Indones. J. Agric. Sci.* 14(1) 1-7

[9] Mohan S, Bustamam A, Ibrahim S, Al-Zubairi AS and Aspollah M 2008 *Anticancerous Effect of Typhonium flagelliforme on human T4-lymphoblastoid cell line CEM-ss*. *J. Ethnopharmacol.* 118 449-56

[10] Sianipar NF, Rustikawati, Maarisis W, Wantho A and Sidabutar DNR 2011 *Proc. Int. Conf. on Biological Science BIO-UGM* (Jogjakarta: Universitas Gajah Mada)

[11] Sianipar NF, Wantho A, Rustikawati and Maarisis W 2013b *The effect of gamma irradiation on growth response of rodent tuber (Typhonium flagelliforme Lodd.) mutant in in vitro culture*. *HAYATI J. Biosci.* 20(2) 51-6

[12] Sianipar NF, Ariandana and Maarisis W 2015a *Detection of gamma-irradiated mutant of rodent tuber (Typhonium flagelliforme Lodd.) in vitro culture by RAPD molecular marker*. *Procedia Chem.* 14 285-94

[13] Sianipar NF, Laurent D, Purnamaningsih R and Darwati I 2013c *Proc. Int. Conf. on Biological Science ICBS UGM* (Jogjakarta: Universitas Gajah Mada)

[14] Sianipar NF, Laurent D, Purnamaningsih R and Darwati I 2015b *Genetic variation of the first generation of rodent tuber (Typhonium flagelliforme Lodd.) mutants based on RAPD molecular markers*. *HAYATI J. Biosci.* 22(2) 98-104

[15] Kayser O and Quax W 2007 *Medicinal Plant Biotechnology* (Germany: Wiley VCH)

[16] Marimuthu S, Padmaja Band Nair S 2013 *Phytochemical screening studies on Melia orientalis* by GC-MS analysis *Pharmacognosy Res.* 5(3) 216

[17] Nishaa S, Vishnupriya M, Sasikumar JM and Gopalakrishnan VK 2013 *Phytochemical screening and GC-MS analysis of ethanolic extract of rhizomes of Maranta arudinacea L.* *RJPBCS*. 4(2) 52-9

[18] Mohan S, Bustamam A, Ibrahim S, Al-Zubairi A, Aspollah M, Abdullah R and Elhassan MM 2011 *In vitro ultramorphological assessment of apoptosis on CEMss induced by linoleic acid-rich fraction from Typhonium flagelliforme tuber*. *Evid. Based Complement. Alternat. Med.* 2011 1-12
[19] Sianipar NF, Purnamaningsih R, Darwati I and Laurent D 2016 *Appl. Mathematics in Science and Engineering Int. Conf.* (Malaysia: Malaysia Technical Scientist Association)

[20] Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J and Kamei Y 2002 Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga *Anticancer Res.* **22** 2587-90

[21] Bodoprost J and Rosemeyer H 2007 Analysis of Phenacylester derivatives fatty acids from human skin surface sebum by reversed-phase HPTLC: chromatographic mobility as a function of physicochemical properties *Int. J. Mol. Sci.* **8** 1111-24

[22] Yu F, Lian X, Guo H, McGuire P, Li R, Wang R and Yu F 2005 Isolation and characterzation of methyl esters and derivatives from *Euphorbia kansui* (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells *J. Pharm. Pharmaceut Sci.* **8**(3) 528-35

[23] Awad AB, Chen YC, Fink CSand Hennessey T 1996 Beta-sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids *Anticancer Res.* **16** 2797-804

[24] Sujatha S, Anand S, Sangeetha KN, Shilpa K, Lakshmi J, Balakrishnan A and Lakshmi BS 2010 Biological evaluation of (3β)-stigmast-5-en-3-ol as potent anti-diabetic agent in regulating glucose transport using *in vitro* model *Int. J. Diabetes Mellitus* **2** 101-9

[25] Mendilaharsu M, Stefani ED, Deneo-Pellegrini H, Carzoglio J and Ronco A 1998 Phytoesters and risk of lung cancer: A case-control study in Uruguay *Lung cancer* **21** 37-45

[26] De Stefani E, Boffetta P, Ronco AL, Brennan P, Deneo-Pellegrini H, Carzoglio JC and Mendilaharsu M 2000 Plant sterols and risk of stomach cancer: a case-control study in Uruguay *Nutr. Cancer* **37** 140-4

[27] McCann SE, Freudenheim JL, Marshall JR and Graham S 2003 Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups *J. Nutr.* **133** 1937-42

[28] Rioja A, Pizzey AR, Marson CM and Thomas NS 2000 Preferential induction of apoptosis of leukaemic cells by farnesol *FEBS Letter* **467**(2-3)291-5

[29] Yazlovitskaya EM and Melnykovych G 1995 Selective farnesol toxicity and translocation of protein kinase C in neoplastic HeLa-S3K and non-neoplastic CF-3 cells *Cancer Lett.* **88**(2) 179-83

[30] Belanger JT 1998 Perillyl alcohol: applications in oncology *Altern. Med. Rev.* **3**(6) 448-57

[31] Crowell PL 1999 Prevention and therapy of cancer by dietary monoterpenes *J. Nutr.* **129** 775S-8S

[32] Escrich E, Solanas M, Moral R, Grau L, Costa I and Vela EER 2008 Dietary LIPIDS and breast cancer: Scientific clinical, anatomopathological and molecular evidences *Revista espanola de obesidad* **6** 129-38

[33] Menendez JA, Vellon L, Colomer R and Lupu R 2005 Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification *Ann. Oncol.* **16** 359-71

[34] Carrillo C, Cavia MM and Alonso-torre SR 2011 Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells *Eur. J. Nutr.* **51** 677-84

[35] Rao CV, Newmark HL and Reddy BS 1998 Chemopreventive effect of squalene on colon cancer *Carcinogenesis* **19** 287-90

[36] Jiang Q, Chisten S, Shigenaga MK and Ames BN 2001 γ-tocopherol, the major form of vitamin E in the US diet, deserves more attention *Am. J. Clin. Nutr.* **74** 714-22

[37] Jeong JB and Jeong HJ 2010 2-methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo(a)pyrene-treated NIH3T3 cells *Biochem. Biophys. Res. Commun.* **400** 752-7

[38] Wang G, Li X, Huang F, Zhao J, Ding H, Cunningham C, Coad JE, Flynn DC, Reed E and Li Q 2005 Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death *Cell Mol. Life Sci.* **62** 881-93
[39] Li QQ, Wang G, Huang F, Banda M and Reed E 2010 Antineoplastic effect of beta-elemene on prostate cancer cells and other types of solid tumour cells *J. Pharm. Pharmacol.* **62** 1018-27
[40] Jayasankar S 2005 *Variation in Tissue Culture*, ed R N Trigiano and DJ Gray (New York: CRC Press LLC) pp 301-9
[41] Kaeppler SM, Kaeppler HF and Rhee Y 2000 Epigenetic aspects of somaclonal variation in plants *Plant. Mol. Biol.* **43** 179-88