Combination chemotherapy in advanced gastrointestinal cancers: ex vivo sensitivity to gemcitabine and mitomycin C

PA Whitehouse1, SJ Mercer1, LA Knight1, F Di Nicolantonio1, A O’Callaghan2 and IA Cree*1 on behalf of the Portsmouth Upper GI and Colorectal Cancer Multidisciplinary Teams

1Department of Histopathology, Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK; 2Portsmouth Oncology Centre, St Mary’s Hospital, Portsmouth PO3 6AD, UK

Advanced or metastatic disease is common in both oesophagogastric and colorectal cancers, with poor 5-year survival despite palliative chemotherapy. We have investigated the sensitivity of gastrointestinal tumours to gemcitabine in combination with mitomycin C (GeM), using a modified ex vivo ATP-based tumour chemosensitivity assay (ATP-TCA). Tumour material from 41 colorectal and 22 oesophagogastric cancers were assessed. The GeM combination showed variable but definite activity in most of the samples tested. The results show that GeM achieves >95% inhibition at concentrations within the range achievable clinically in 60% of colorectal tumours (21 out of 35) and 38% of oesophagogastric tumours (five out of 13) tested. We did not identify any significant difference in sensitivity using concurrent or sequential exposure of tumour-derived cells to these two drugs. The results from this study suggest that GeM may be a useful combination in the treatment of advanced gastrointestinal malignancy.

Keywords: colorectal cancer; oesophageal cancer; gemcitabine; mitomycin C; chemotherapy; ATP-TCA

Colorectal adenocarcinoma (CRC) is the second most common cause of cancer death in the western world. Despite potentially curable surgical treatment in 70–80%, half of all patients will die from metastatic disease, often within 5 years of diagnosis. Palliative chemotherapy may reduce the symptoms, extend survival from 6 to 12 months, and despite treatment-related adverse effects, often improve or at least maintain the quality of life (Nordic Gastrointestinal Tumour Adjuvant Therapy Group, 1992). In the UK, the current NICE guidance on chemotherapy in advanced colorectal disease (NICE, 2002) advocates the use of 5-fluorouracil (5FU) with folinic acid (FA) as first line therapy. This combination achieves response rates of 18–22% and overall survivals of 12–15 months (de Gramont et al, 2000; Maiello et al, 2000). Combinations using newer agents such as irinotecan and oxaliplatin achieve higher response rates of up to 50% and longer median overall survivals (Douillard et al, 2000; Saltz et al, 2000; Grothey et al, 2002). However, the newer agents, especially in combination with 5FU/FA, are associated with greater toxicity, which may be severe and dose-limiting.

Oesophageal and gastric cancers together account for 7% of all cancer-related deaths. Palliative treatment may be achieved with chemotherapy, radiotherapy or chemoradiation. A number of chemotherapy regimens are in use. Most are triple therapies incorporating 5FU and cisplatin with either epirubicin or paclitaxel. Response rates of 48–70% have been achieved (Kim et al, 1993; Ilson et al, 1998) with a 2-year survival of 13.5% (Findlay et al, 1994); however, in general, the responses are often short lived and these treatments are associated with varying degrees of toxicity.

Recently, we investigated the chemosensitivity of colorectal and oesophageogastric adenocarcinomas (Mercer et al, 2003; Whitehouse et al, 2003) using a modified ex vivo ATP-based tumour chemosensitivity assay (ATP-TCA) (Andreetti et al, 1995; Cree et al, 1996). We demonstrated considerable differences in sensitivity between individual tumours of both tumour types. Mitomycin C (MMC) has been used in the treatment of gastrointestinal tumours for many years, although it is not now the most commonly used drug due to serious pulmonary, renal and haematological toxicities, which tend to occur with overdosage. It remains useful in the treatment of metastatic gastrointestinal tumours, usually in combination with 5-FA. Gemcitabine is licensed for use in pancreatic and non-small-cell lung cancers. It has also shown preclinical and clinical activity in several other solid tumours, including ovarian, head and neck and breast cancers (Carmichael et al, 1995; Markman, 2002). However, phase I/II trials of single-agent gemcitabine have not demonstrated any activity in advanced colorectal and gastric cancers (Moore et al, 1992; Christman et al, 1994; Mani et al, 1998). We therefore wished to test this combination on further gastrointestinal tumour samples and investigate any schedule dependency.

MATERIALS AND METHODS

Tumours

Material from 41 colorectal and 22 oesophagogastric tumours was tested. All the colorectal tumours were previously untreated. Six of the oesophagogastric tumours had received neoadjuvant
chemotherapy with epirubicin + cisplatin + 5-FA (ECF). The median age of patients undergoing colorectal resection was 70 years (range 39 – 86) and for oesophago gastric resection was 69 years (range 39 – 87). The local ethics committee approval for the use of tissue or cells not required for diagnosis was obtained, and informed consent gained from all patients.

ATP-tumour chemosensitivity assay

The ATP-tumour chemosensitivity assay (ATP-TCA) was performed as previously described (Andreotti et al, 1995; Cree, 1998). Tumour samples were transported to the laboratory in transport medium consisting of Dulbecco’s modified Eagle’s medium (Sigma; G8051). The concentration of collagenase used was 0.75 mg ml\(^{-1}\) for oesophago gastric samples and 1.5 mg ml\(^{-1}\) for colorectal samples. If necessary, the samples were purified using Ficoll-hypaque density centrifugation (Sigma; 1077-1) to remove red blood cells and cell debris. The remaining cells were resuspended in antibiotic containing serum-free complete assay medium (CAM) (DCS Innovative Diagnostik Systeme, Hamburg, Germany) at 200 000 cells ml\(^{-1}\). Additional amphotericin B (2.5 mg ml\(^{-1}\)) was added to the CAM for the oesophago gastric samples, and amphotericin B (2.5 mg ml\(^{-1}\)) and metronidazole (1 mg ml\(^{-1}\)) were added to the CAM for the colorectal samples, as previously described (Whitehouse et al, 2003). 96-well polyprep- lene plates (Corning-Costar, High Wycombe, UK) were prepared with 100 µl of CAM, to which the drugs were added at six concentrations in triplicate. Two internal controls were included in each plate: a maximum inhibitor (M1) that kills all the cells resulting in a zero ATP count, and a medium only (MO) without any drugs. After 6 days incubation at 37°C with 5% CO\(_2\), the cells were lysed with a detergent-based tumour cell extraction reagent (DCS Innovative Diagnostik Systeme). A volume of 50 µl from each well was transferred to the wells of a 96-well white plate (Thermo luciferase counting reagent (DCS Innovative Diagnostik Systeme) was added. The ATP content of each well was quantified by the amount of light produced in a microplate luminometer (Bethold). Data from each assay were transferred directly from the microplate luminometer to an Excel 2000 spreadsheet (Microsoft). A number of indices of efficacy can be calculated from the data, including the IC\(_{50}\). The natural logarithmic sum index (Index\(_{SUM}\)) calculated by summing the percentage inhibition at each concentration, has been found to allow the best comparison of responses between samples (Hunter et al, 1993). In addition, the area under the concentration–inhibition curve (Index\(_{AUC}\)) and the percentage of tumours achieving 95% inhibition have been calculated. Combination effects were assessed using the method established by Poeh et al (1995), as previously used with the ATP-TCA (Kurbacher et al, 1997). This is used in preference to the Chou and Talalay method, because it is better able to deal with drugs which produce a shallow dose–response curve (Chou and Talalay, 1984). However, we have also performed a Chou and Talalay analysis, where the combination index (CI) was determined at 90% cell death, and was defined as follows:

\[
CI_{A+B} = \left[\frac{[D_{A/A+B}]}{[D_A]} + \frac{[D_{B/A+B}]}{[D_B]} \right] + \alpha[D_{A/A+B} \times D_{B/A+B}] / [D_A D_B]
\]

where CI\(_{A+B}\) = CI for a fixed effect (F = 90%) for the combination of cytotoxic A and cytotoxic B; D\(_{A/A+B}\) = concentration of cytotoxic A in the combination A + B, giving an effect F; D\(_{A+B}\) = concentration of cytotoxic B in the combination A + B, giving an effect F; D\(_{A}\) = concentration of cytotoxic A alone, giving an effect F; D\(_{B}\) = concentration of cytotoxic B alone, giving an effect F. \(\alpha\) = parameter with value 0 when A and B are mutually exclusive, and 1 when A and B are mutually nonexclusive.

The combination index indicated: synergism <0.8; additivity 0.8 and <1.2; antagonism <1.2; slight synergistic and additive cytotoxic activity for values of 0.8 and 1.2, respectively.

RESULTS

Evaluable results were obtained from 60 out of 63 tumours, giving an evaluable rate of 95%. Three tumours were not evaluable due to contamination of the cell culture. Despite the addition of extra antibiotics during specimen preparation, contamination is a problem with such tissue and these samples are technically challenging (Whitehouse et al, 2003).

The single-agent results are shown in Figure 1 and Table 1. There is considerable heterogeneity between tumours for these two drugs, with sensitivity to MMC in 71% of the oesophago gastric tumours (15 out of 21) and 59% of the colorectal tumours (21 out of 39). For comparison between drugs and tumours, an Index\(_{SUM}\) of <300, representing an average 50% inhibition across all concentrations tested, has been used to indicate sensitivity, as previously published (Hunter et al, 1993; Cree et al, 1999). Despite these apparently encouraging results, MMC alone achieves >95% inhibition at clinically achievable concentrations in just 14% of oesophago gastric tumours (three out of 21) and 10% of colorectal tumours (four out of 39) tested. Gemcitabine alone is active on the basis of an Index\(_{SUM}\) <300 in 42% of oesophago gastric tumours and 50% of colorectal tumours. However, it tends to have a very shallow dose–response curve and only rarely produced >95% inhibition at clinically achievable concentrations: 6% of oesophago gastric tumours (one out of 17) and 3% of colorectal tumours (one out of 38).

In contrast to the single-agent results, gemcitabine in combination with MMC (Gem) achieves >95% inhibition at clinically achievable concentrations in 60% of colorectal tumours (21 out of 35) and 38% of oesophago gastric tumours (five out of 13) tested (Table 1). The use of an Index\(_{SUM}\) <300 threshold for combinations tends to overstate the sensitivity, and it is not surprising that 100% of the tumours tested reached this threshold for sensitivity, as applied to single agents. Even when the Index\(_{SUM}\) is decreased to <200, Gem is active in 100 and 89% of oesophago gastric and colorectal tumours, respectively. Figure 1 shows this as a shift in
activity towards the lower concentrations tested. In oesophageal tumours, the addition of gemcitabine decreased the MMC IC₉₀ from 3.89 to 0.86 μM, and for colorectal tumours the MMC IC₉₀ was decreased from 3.73 to 0.96 μM. Using the Chou and Talalay method, this equates for oesophageal cancers to a CI₉₀ of 0.41 (synergism) and for colorectal cancers to a CI₉₀ of 0.44 (synergism).

The CRC example shown in Figure 2A shows the advantage of the GeM combination over the individual agents in terms of inhibition. When analysed by the method of Poch et al (1995), by which the observed effect at each concentration tested is compared with that expected, the effect is greater than additive (Figure 2B).

Schedule experiments of gemcitabine and MMC are shown in Figure 3. These experiments were performed, in at least triplicate, by adding 6.25–200% TDC of gemcitabine to 6.25–200% TDC of MMC at 0, 6 and 24 h. Mitomycin C was also added to gemcitabine at 24 h. There was no apparent difference in inhibition between the

Figure 1 Summary of the heterogeneity of activity in the ATP-TCA to MMC, gemcitabine, and the combination (GeM) in (A) colorectal cancer (n = 39), and (B) oesophagogastric cancer (n = 21). The IndexSUM is a parameter describing the concentration–inhibition curve for each drug, or combination in a single number. Using the IndexSUM < 300 to indicate sensitivity, GeM is clearly more active than either single agent.

Figure 2 (A) Inhibition–concentration curve in a colorectal tumour sample. (B) By the method of Poch et al. (1995), the observed effect of the combination at each concentration is greater than the expected effect (independent action).

Table 1 Summary of sensitivity data (using an arbitrary threshold of sensitivity defined as a IndexSUM<300 for six concentrations used)

Drug	No. assessed	No. sensitive	Sensitivity (%)_{IndexSUM<300}	>95% Inhibition (%)
Oesophagogastric cancer				
Mitomycin C	21	15	71	14 (three out of 21)
Gemcitabine	17	7	42	6 (one out of 17)
Mitomycin C+Gemcitabine	13	13	100	38 (five out of 13)
Colorectal cancer				
Mitomycin C	39	21	54	10 (four out of 39)
Gemcitabine	38	19	50	3 (one out of 38)
Mitomycin C+gemcitabine	35	35	100	60 (21 out of 35)
The combination of MMC and 5FU has shown synergistic growth inhibition of cell lines (Sartorelli and Booth, 1965), including colorectal cancer cell lines (Russello et al, 1989). A randomised controlled trial in colorectal cancer found that MMC in combination with protracted venous infusion (PVI) 5FU increased the response rates to 54%, but with no benefit to overall and 1-year survival (Ross et al, 1997). A further phase III study confirmed an improved response rate with a survival benefit at 2 years (Price et al, 1999). Mitomycin C has been used in combination therapy of oesophagogastric cancers. Although initial response rates of 40% were quoted for treatment with FAM (5FU, doxorubicin and MMC) (MacDonald et al, 1979), no benefit has been demonstrated from the addition of MMC to 5FU (Tebbutt et al, 2002). MCF (MMC, cisplatin and 5FU) has also shown survival advantage over standard treatment with ECF (epirubicin, cisplatin, 5FU) (Ross et al, 2002).

Gemcitabine is an antimetabolite cytidine analogue with a number of mechanisms of cytotoxicity. Intracellular phosphorylation to its active metabolite results in (a) prevention of DNA synthesis by inhibiting DNA polymerases and by competing with deoxycytidine triphosphate, (b) inhibition of ribonucleotide reductase, depleting deoxynucleotide pools and favouring incorporation of gemcitabine into DNA, (c) incorporation into DNA, decreasing the accuracy of DNA replication and repair, and (d) incorporation into RNA. It should be noted that the effect of gemcitabine on ribonucleotide reductase could affect ATP levels, possibly as part of its cytostatic effect, though gemcitabine is inactive against many solid tumours (Neale et al, 1999) and this does not seem to be a problem for its use in the cancer.

Gemcitabine, which is cell cycle specific, and well tolerated clinically, is an attractive drug for use in combination with DNA-damaging agents (Huang et al, 1991); particularly it has been shown to modulate the activity of a wide range of DNA-damaging agents, including platinum (Peters et al, 1995; Sandler et al, 2000) and alkylating agents (Neale et al, 1999). We have not investigated the exact mechanism of modulation of MMC sensitivity with gemcitabine, but this may be due to inhibition of repair of alkylating agent-induced DNA adducts, an increase in DNA double-strand breaks or changes in dNTP pools. Studies of gemcitabine in combination with cisplatin are based on this mechanism of action (Cardenal et al, 1999). This study raises the question as to whether other alkylating agents might be effective in combination with gemcitabine in gastrointestinal cancer.

There are very few in vitro studies of gemcitabine and MMC. The combination was found to be synergistic after 4 h on a Lewis lung cancer cell line, without any increase in DNA double-strand breaks (van Moorsel et al, 1997). Similarly, MMC and gemcitabine had a synergistic effect, when administered concurrently, but not sequentially, on the HT29 human colon cancer cell line (Aung et al, 2000), suggesting that gemcitabine could be beneficial in the treatment of cancers sensitive to MMC.

Clinical studies are also few in number: intravenous and intraarterial locoregional treatment with MMC and gemcitabine has been found to be highly effective with improved response rates in pancreatic cancer (Klapdor et al, 2000). This drug combination (median total dose MMC 32 mg m⁻²) has been administered together with radiotherapy with tolerable toxicity (Korneck et al, 2001).

In this study, we have not demonstrated any schedule-specific alterations in chemosensitivity; there were no protective effects on the cells of prior addition of gemcitabine as we have previously reported for treosulfan + gemcitabine (Neale et al, 1999). It should be noted that the nature of the assay means that, in all experiments, the cells were exposed to the combination for at least 5 days. However, a study of MMC and gemcitabine on the HT29 human colon cancer cell line showed simultaneous exposure to be necessary to demonstrate synergism (Aung et al, 2000). The effect of gemcitabine in combination with other alkylating and platinum agents has also been shown to be time-dependent.
REFERENCES

Andreotti PE, Cree IA, Kurbacher CM, Hartmann DM, Linder D, Harel G, Gleiberman I, Caruso PA, Ricks SH, Untch M, Sartori C, Bruckner HW (1995) Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. *Cancer Res* 55: 5276–5282

Aung TT, Davis MA, Ensiminger WD, Lawrence TS (2000) Interaction between gemcitabine and mitomycin-C in vitro. *Cancer Chemother Pharmacol* 45: 38–42

Braakhuis BJ, Ruiz van Haperen VW, Welters MJ, Peters GJ (1995) Simultaneous administration should be feasible. These results have encouraged us to explore the GeM regimen further in a phase I/II clinical trial to establish its safety and efficacy in metastatic gastrointestinal cancer.

ACKNOWLEDGEMENTS

This project was partly funded by the European Commission (grant number BMH4-CT98-9522). Surg Lt Cdr Mercer RN is funded by the Royal Navy.

Goldie JH, Coldman AJ (1979) A mathematical model for relating the drug sensitivity of tumours to their spontaneous mutation rate. *Cancer Treat Rep* 63(11–12): 1727–1733

Grothey A, Deschler B, Kroening H, Ridszweiler K, Reichardt P, Kretzschmar A, Clemens M, Hirschmann W, Lorenz M, Asperger W, Buechele T, Schmoll H-J (2002) Phase III study of bolus 5-fluorouracil (5-FU)/folinic acid (FA) (mayo) vs weekly high-dose 24h 5-FU infusion/FA + oxaliplatin (OXA) (FUFOX) in advanced colorectal cancer (ACRC). *Proc ASCO* 512 (abstract)

Markmann M (2002) Second-line treatment of ovarian cancer with single-agent gemcitabine. *Semin Oncol* 29(Suppl 1): 9–10

Mancer SJ, Somers SS, Knight LA, Whitehouse PA, Sharma S, Di Nicolantonio F, Glaysher S, Simon Toh S, Cree IA, for the Portsmouth Upper GI Cancer Multi-Disciplinary Team (2003) Heterogeneity of chemotherapy in advanced gastrointestinal cancers.
Chemotherapy in advanced gastrointestinal cancers

PA Whitehouse et al

British Journal of Cancer (2003) 89(12), 2299–2304 © 2003 Cancer Research UK

dexamethasone of oesophageal and gastric carcinoma. Anti-Cancer Drugs 14: 397–403

Moore GE, Bross DJ, Haen R (1968) Mitomycin C therapy in advanced gastrointestinal cancer. JAMA 204: 1045–1048

Moore DF, Pazdur R, Daugherty K, Tarassoff P, Abbruzzese JL (1992) Phase II study of gemcitabine in advanced colorectal adenocarcinoma. Invest New Drugs 10: 323–325

Moore GE, Bross DJ, Azuman R, Nadler S, Jones R, Slack N, Rimm AA (1968) Effects of mitomycin C (NSC-26980) in 346 patients with advanced cancer. Cancer Chem Rep 52(6): 675–684

Neale MH, Myatt N, Cree IA, Kurkberha CM, Foss AJ, Hungerford JL, Ploewman PN (1999) Combination chemotherapy for chorioidal melanoma: ex vivo sensitivity to treosulian with gemcitabine or cytosine arabinoside. Br J Cancer 79: 1487–1493

NICE (2002) Guidance on the use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer – Technology Appraisal Guidance No. 33. National Institute for Clinical Excellence: London

Nordic Gastrointestinal Tumour Adjuvant Therapy Group (1992) Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal cancer: a randomised trial. J Clin Oncol 10(6): 904–911

Peters GJ, Bergman AM, Ruiz van Haperen VW, Veerman G, Kuiper CM, Braakhuis BJ (1995) Interaction between cisplatin and gemcitabine in vitro and in vivo. Semin Oncol 22(4 Suppl 11): 72–79

Poch G, Reiffenstein RJ, Kock P, Pancheva SN (1995) Uniform characterization of potentiation in simple and complex situations when agents bind to different molecular sites. Can J Physiol Pharmacol 73: 1574–1581

Price T, Cunningham D, Hickish T, Tait D, Norman A, Ross PJ, Middleton G, Ford HE, Sumpter K (1999) Phase III study of mitomycin-C with protracted venous infusion 5FU or circadian timed infusion 5FU in advanced colorectal cancer. Proc ASCO 1088 (abstract)

Ross P, Nicolson M, Cunningham D, Vallee J, Seymour M, Harper P, Price T, Anderson H, Iveson T, Hickish T, Lofts F, Norman A (2002) Prospective randomised trial comparing mitomycin, cisplatin and protracted venous-infusion fluorouracil (PVI 5-FU) with epirubicin, cisplatin and PVI 5-FU in advanced esophago-gastric cancer. J Clin Oncol 20(8): 1996–2004

Ross P, Norman A, Cunningham D, Webb A, Iveson T, Padhani A, Prendiville J, Watson M, Massey A, Popesca R, Oates J (1997) A prospective randomised trial of protracted venous infusion 5-fluourouracil with or without mitomycin C in advanced colorectal cancer. Ann Oncol 8: 995–1001

Russoello O, Romanini A, Civalieri D, Rosso R, Nicolin A, Sobrero A (1989) Time-dependent interactions between 5-fluorouracil and mitomycin C on a human cancer cell line, HCT-8, in vitro. Eur J Cancer Clin Oncol 25: S71–S72

Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, Maroun JA, Ackland SP, Locker PK, Pirota N, Elfringe GL, Miller LL (2000) Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343: 905–914

Sandler AB, Nemunatis J, Denham C, von Pawel J, Cormier Y, Gatzeimeir U, Mattson K, Manegold Ch, Palmer MG, Gregor A, Nguyen B, Niyikiza C, Einhorn KH (2000) Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 18: 122–130

Sartorelli AC, Booth BA (1965) The synergistic anti-neoplastic activity of combinations of mitomycins with either 6-thioguanine or 5-fluorouracil. Cancer Res 25: 1393–1400

Spanswick VJ, Cummings J, Ritchie AA, Smyth JF (1998) Pharmacological determinants of the antitumour activity of mitomycin C. Biochem Pharm 56: 1497–1503

Tebbutt NC, Norman A, Cunningham D, Iveson T, Seymour M, Hickish T, Harper P, Maisey N, Mochlinski K, Prior Y, Hill M (2002) A multicentre randomised phase III trial comparing protracted venous infusion (PVI) 5-fluorouracil (5-FU) with PVI 5-FU plus mitomycin C in patients with inoperable oesophago gastric cancer. Ann Oncol 13(10): 1568–1575

van Moorssel CJ, Pinedo HM, Smid K, Comijn EM, Voorn DA, Veerman G, van Moorsel CJ, Veerman G, Bergman AM, Guechev A, Vermorken JB, Postmus PE, Peters GJ (1997) Combination chemotherapy studies with gemcitabine. Semin Oncol 24(2 Suppl 7): S7-17–S7-23

Whitehouse PA, Knight IA, Di Nicolantonio F, Mercer SJ, Sharma S, Cree IA (2003) Heterogeneity of chemosensitivity of colorectal adenocarcinoma determined by a modified ex vivo ATP-tumour chemosensitivity assay (ATP-TCA). Anticancer Drugs 14: 369–375