Original article

Enhancement of Quantum Efficiency of A Dye-Sensitized Electrochemical Cell by using Triturated Zinc Oxide Mixed with Two Organic Dyes, Azure C and Rose Bengal

Poonam Bandyopadhyay¹,², Ruma Basu¹,³, Sukhen Das¹,², Durga Shankar Bhar¹, Rajkumar Manchanda⁴, Papiya Nandy¹,*

¹Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
²Physics Department, Jadavpur University. Kolkata 700032, India
³Physics department, Jogamaya Devi College. Kolkata 700026, India
⁴Central Council for Research in Homeopathy, New Delhi – 110058, India
*Corresponding Author; E-mail: publicationpnandy@gmail.com, Tel.: +919830021785

Abstract

For efficiently utilising solar energy, when suitable nanoparticles are being engineered, triturated zinc oxide an eco-friendly, easily available, low-cost material has been used as an agent for solar energy conversion. Two organic dyes Azure C and Rose bengal having absorption bands in two different spectral regions at 545 nm and 610 nm respectively, were chosen in order to overcome the band absorption limits of each dye and utilise the broad spectrum of solar radiation. The material was mixed with these two dyes in a specially devised electrochemical cell and photovoltage with significant efficiency was generated. The energy conversion efficiency of the cell using three different potencies 6C, 30C and 200C of triturated zinc oxide with the same concentration of two dyes (0.5x10⁻⁵ M) in all cases are 0.39%, 0.43% and 0.35% respectively. The efficiency is only 0.15% for the mixed dye under similar conditions.

Keywords: Energy conversion efficiency, electrochemical cell, mixed dyes, triturated zinc oxide, adsorption.

Introduction

Mankind faces a great energy challenge due to the depletion of fossil fuels at an alarming rate with exponential increase in population and growing demand for the modern lifestyle. To overcome this situation, utilisation of omnipresent and abundant solar energy has become the most promising one. Conventional silicon technology based photovoltaics has its own limitations. So research on developing new and novel materials for conversion of solar energy into electrical energy with high efficiency is emphasised. Many photosensitive dyes are being used for such conversion.¹-²

The invention of nanoparticles, which possess the unique chemical and physical properties with size and shape variations, has a strong impact in photovoltaic technology as they can facilitate the conversion process of solar energy to electrical energy.³-¹¹
For designing new and more effective light energy harvesting devices in cost effective way, several nanomaterials have been synthesised. Amongst them, TiO$_2$, ZnO, SnO$_2$ are the maximum utilised nanomaterials due to their proper physical and chemical properties.$^{12-14}$

While searching for novel and suitable materials, the idea of utilisation of the nanoparticle aspect of triturated zinc oxide (ZnO) has been explored.15 This material is in the true sense a quite innovative one for use as an agent for solar energy conversion. To ensure the performance of the electrochemical cell over a broad solar spectrum range, two dyes Azure C and Rose bengal, having absorption bands in two different spectral regions 545 nm and 610 nm respectively, were chosen in order to overcome the band absorption limits of each dye and were combined together.

Our result shows that photo-induced voltage with significant efficiency is generated when triturated ZnO is used in combination of these two different photosensitive organic dyes in a specially devised electrochemical cell. The energy conversion efficiency of the cell using three different potencies 6C, 30C and 200C of triturated zinc oxide with a same concentration of the two dyes (0.5×10^{-5} M) in all cases are 0.39%, 0.43% and 0.35% respectively. The efficiency is only 0.15% for the mixed dye under similar conditions.

Materials & experimental method

A. Materials

Freshly prepared triturated ZnO of three potencies (6C, 30C and 200C) were obtained from Hahnemann Publishing Company, India. The dyes Azure C ($C_{13}H_{12}ClIN_3S$) and Rose bengal ($C_{20}H_{4}ClI_4O_5$) were purchased from Loba Chemie, Mumbai, India and were used without further purification.

B. Methods

Preparation of Azure C – Rose bengal-triturated ZnO system:

The stock solutions of Azure C and Rose bengal were prepared by dispersing them in water. The final concentration of the solutions was 0.5×10^{-5} M. For UV-VIS spectral study and photovoltage generation, desired concentration of Azure C and Rose bengal mixed solutions were prepared by further diluting the stock solutions. Triturated ZnO of specific potency was mixed with a certain concentration of dye solution (0.85μM) in 1:5 volume ratios.

C. Photovoltage generation study:

Photovoltage generation was recorded for potency 6C, 30C and 200C in a specially devised electrochemical (EC) cell (Figure I).

![Figure-I: Schematic diagram of the photoelectrochemical cell; A & B – Platinum electrode; M – Multimeter; E – Electrometer; R – variable resistance; C – Platinum foil.](https://doi.org/10.51910/ijhdr.v16i1.855)

The two arms of the U-shaped glass cell were separated by a platinum foil barrier.

Cite as: Bandyopadhyay P, Basu R, Das S, Bhar DS, Manchanda R, Nandy P. Enhancement of Quantum Efficiency of A Dye-Sensitized Electrochemical Cell by using Triturated Zinc Oxide Mixed with Two Organic Dyes, Azure C and Rose Bengal. Int J High Dilution Res. 2017;16(1): 1-6.
Two platinum electrodes were placed symmetrically on two sides of the barrier. Saturated iodine/iodide solution was poured into one arm of the cell and the mixed solution of two dyes and triturated ZnO at specific potency were poured in the other arm. The variation of generated voltages and currents were measured by means of a Keithley digital multimeter (DM196). A 60 W lamp was used for illumination and the light intensity was measured with a Luxmeter (D & L Instrument MS6610). Maximum efficiency was observed for triturated ZnO at 30C potency.

Result and discussion

The photovoltage generation in EC cell has been observed using Azure C and Rose bengal solution and triturated zinc oxide (Figure-II).

Figure-II: Growth and decay curve of V_{oc} (photovoltage) generation for mixed Azure C, Rose bengal and triturated zinc oxide of potency 6C, 30C and 200C.

Figure-III: Current versus voltage characteristic curves for mixed Azure C, Rose bengal and triturated zinc oxide of potency 6C, 30C and 200C.

The I-V characteristic of the cell was studied (Figure-III) and the energy conversion efficiency has been calculated for all four cases (Table 1).

Table-I: The characteristics of an electrochemical cell using mixed Azure C, Rose bengal and triturated zinc oxide of potency 6C, 30C and 200C.

In all cases, photo-induced voltage generation upon illumination started rising with time and reached a maximum saturation value and remained constant at that value. When the light was cut off the voltage decreased slowly and the storage duration for 30C was more than 4 hrs to reach the initial value. Also at this potency,
higher efficiency of PEC cell was obtained. The photovoltage cycle was reproducible upon further illumination. The energy conversion efficiency (η%) of the cell and the fill factor (FF) have been calculated using the following equations:

\[
FF = \frac{V_{pp} \times I_{pp}}{V_{oc} \times I_{sc}}
\]

\[
\eta\% = FF \times \frac{V_{oc} \times I_{sc} \times 100}{P_{in}}
\]

where \(V_{pp} \) = voltage power point, \(I_{pp} \) = current power point, \(V_{oc} \) = open circuit voltage and \(I_{sc} \) = short circuit current, \(P_{in} \) = measured input power ~ 130 mW. The values of \(V_{oc}, I_{sc}, \) storage time, \(\eta\% \) are summarised in Table 1.

In order to understand how triturated ZnO tuned the photoelectric properties of the dye molecules, the absorption spectra of the mixed dye in presence of triturated zinc oxide at different potencies had been studied (Figure-IV). Azure C and Rose bengal have their characteristic bands at 545 nm and 610 nm respectively. With the addition of the triturated ZnO, the characteristic peaks of the dye remain unchanged but absorbance increased.

Figure-IV: Absorption spectra of mixed Azure C, Rose bengal and triturated zinc oxide system with a concentration of mixed dyes solution 0.85μM and triturated zinc oxide of potency 6C, 30C and 200C.

Our experimental results on photovoltage generation using triturated ZnO show presence of nanoparticles of almost spherical shape and particle sizes within 5-7 nm. Due to adsorption of dye molecule on the surface of triturated ZnO nanoparticles, the absorption efficiency of the dye molecule increased. There is also a high possibility of forming exciplex between these two dyes at excited state which could not participate in the process of conversion of solar energy. The addition of triturated zinc oxide also plays a vital role here. As the dyes got adsorbed on the surface of these nanoparticles they could participate now actively in the conversion process and the problem of spectral loss was reduced by better exploitation of the incident photon. The increase in efficiency of triturated zinc oxide at 30C to 6C can be explained by the fact that with increasing potency the particle size decreases, leading to increased surface to volume ratio. However, at 200C the concentration of nanoparticle is very low to participate in conversion process resulting in lower efficiency than 6C and 30C.

Conclusion

Our study of photovoltage generation in a dye-sensitized photo-electrochemical cell using Azure C, Rose bengal and triturated zinc oxide at three different potencies shows that with addition of triturated zinc oxide in mixed solution of Azure C and Rose bengal system, magnitude of photovoltage, storage duration and energy conversion efficiency increases.
efficiency get enhanced significantly and has maximum value at 30°C potency.

Spectral studies reveal that with the addition of the nanoparticle, the characteristics of the dye solution remains unchanged while the only overall optical density of the system increases indicating that there is no chemical reaction between the dyes and the triturated zinc oxide nanoparticle.

Acknowledgement
The work has been done in technical collaboration with Central Council for Research in Homeopathy, New Delhi.

Conflict of Interest: None declared.

References
1. Kamat PV. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. 2007;111:2834-60.
2. Basu R, Das S, Nandy P. Photoinduced proton transport mechanism in merocyanine-dye-probed planar lipid membranes. J. Photochem. Photobiol. B. 1993;18:155-159.
3. Mondal A, Basu R, Das S, Nandy P. Heat induced voltage generation in electrochemical cell containing zinc oxide nanoparticles. Energy. 2010;35:2160–2163.
4. Bandyopadhyay P, Dey A, Basu R, Das S, Nandy P. Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion. Current Applied Physics. 2014;14:1149-1155.
5. Mondal A, Basu R, Das S, Nandy P. Increased quantum efficiency in hybrid photoelectrochemical cell consisting of thionine and zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A. 2010;11:143-146.
6. Dey A, Basu R, Das S, Nandy P. Enhancement of storage capacity and conversion efficiency of photoelectrochemical cells: effect of dyes adsorbed on carbon nanotubes. Photochemistry and Photobiology. 2010;86:1000-1004.
7. Bandyopadhyay P, Nandy P, Basu R, Das S. Morphology dependent change in photovoltage generation using dye-Cu doped ZnO nanoparticle mixed system. Energy. 2015;89:318-323.
8. Aklalouch M, Calleja A, Granados X, Ricart S, Boffa V, Ricci F, Puig T, Obradors X. Hybrid sol-gel layers containing CeO$_2$ nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics. Solar Energy Materials & Solar Cells. 2014;120:175-182.
9. Liu Z, Seo S, Lee E-C. Improvement of power conversion efficiencies in Cr$_2$O$_3$-nanoparticle-embedded polymer solar cells. Applied Physics Letters. 2013;103:133306(1-5).
10. Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N. Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy. 2014;106:23-37.
11. Naidu BVK, Park JS, Kim SC, Park S-M, Lee E-J, Yoon K-J, Lee SJ, Lee JW, Gal YS, Jin S-H. Novel hybrid polymer photovoltaics made by generating silver nanoparticles in
polymer: fullerene bulk-heterojunction structures. Solar Energy Materials & Solar Cells. 2008;92:397-401.

12. Bach U, Lupo D, Comte P, Moser JE, Weisssortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO$_2$ solar cells with high photon-to electron conversion efficiencies. Nature. 1998;395:583-585.

13. Baxter JB, Aydil ES. Nanowire-based dye-sensitized solar cells. Applied Physics Letters. 2005;86:053114 (1-3)

14. Chappel S, Zaban A. Nanoporous SnO$_2$ electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO$_2$ colloids. Solar Energy Materials & Solar Cells. 2002;71:141–152.

15. Upadhyay RP, Nayak C. Homeopathy emerging as nanomedicine. International Journal of High Dilution Research. 2011;10:299-310.

16. Bandyopadhyay P, Nandy P, Basu R, Bhar DS, Das S. Effect of dilution on thermovoltage generation using homeopathic nanomedicine Zincum oxydatum. International Journal of Innovative Research in Science and Engineering. 2015;3:226-230.

17. Bandyopadhyay P, Chakraborty S, Basu R, Das S, Bhar DS, Manchanda RK, Khurana AK, Nayak D, Nandy P. Efficiency of a dye-sensitized photoelectrochemical device using thionine and triturated zinc oxide at different potency. Energy Sources, Part-A: Recovery, Utilization and Environmental effects. 2016;13:1833-1839.

18. Kar S, Bandyopadhyay P, Chakraborty S, Chakrabarty M, Paul BK, Ghosh S, Basu R, Das S, Bhar DS, Manchanda RK, Khurana AK, Nayak D, Nandy P. Derivation of an empirical relation between the size of the nanoparticle and the potency of homeopathic medicines. International Journal of High Dilution Research. 2015;14:2-7.

Received: Nov 05 2016. Accepted: February 02, 2017.

© International Journal of High Dilution Research.
Not for commercial purposes.

Cite as: Bandyopadhyay P, Basu R, Das S, Bhar DS, Manchanda R, Nandy P. Enhancement of Quantum Efficiency of A Dye-Sensitized Electrochemical Cell by using Triturated Zinc Oxide Mixed with Two Organic Dyes, Azure C and Rose Bengal. Int J High Dilution Res. 2017;16(1): 1-6.

https://doi.org/10.51910/ijhdr.v16i1.855