Thermodynamic Geodesics of a Reissner Nordström Black Hole

Christine Farrugia and Joseph Sultana

1Department of Mathematics, Faculty of Science, University of Malta, Msida MSD 2080, Malta

Abstract
Starting from a Geometrothermodynamics metric for the space of thermodynamic equilibrium states in the mass representation, we use numerical techniques to analyse the thermodynamic geodesics of a supermassive Reissner Nordström black hole in isolation. Appropriate constraints are obtained by taking into account the processes of Hawking radiation and Schwinger pair-production. We model the black hole in line with the work of Hiscock and Weems [1]. It can be deduced that the relation which the geodesics establish between the entropy S and electric charge Q of the black hole extremises changes in the black hole’s mass. Indeed, at any given point along a geodesic, the value of dS/dQ is of the same order of magnitude as the rate at which entropy changes with charge during a constant-mass perturbation. Our claim is further justified by the fact that the expression for the entropy of an extremal black hole is an exact solution to the geodesic equation.

1 Introduction
Black holes are commonly thought of as regions of spacetime where gravity is so strong that it allows nothing, not even light, to escape. Such regions can be fully characterised by their mass, electric charge, and angular momentum, a property better known as the No-Hair Theorem of black holes [2]. The black hole concept has its origins in the 18th century, when John Michell [3] and Pierre-Simon Laplace [4] considered classical bodies with escape velocities exceeding the speed of light. Until the 1970s, black holes were thought of as ‘black’, non-emitting objects at absolute zero. Things began to change when it became apparent that unless black holes were assigned an entropy, the second law of thermodynamics could be violated [5]. Bekenstein conjectured that this entropy would be proportional to the black hole area [5]. In 1973, Bardeen, Carter and Hawking put together a number of similarities between black hole mechanics and ordinary thermodynamics to formulate the four laws of black hole thermodynamics [6]. The following year, Stephen Hawking discovered that black holes radiate particles continuously with a black body spectrum [7]; this radiation earned the name Hawking radiation. Since then, black holes have increasingly been studied in terms of their thermodynamic properties.

The last few decades have seen a growing interest in the use of geometry as a means of extracting important information about the thermodynamics of a system. The key points in the development of this practice are highlighted in [8] [9]. Stemming from the pioneering work of Gibbs [10] and Carathédory [11], geometric thermodynamics refers to the modelling of thermodynamic systems in terms of differential ‘thermo-dynamic’ manifolds. Riemannian geometry was introduced into thermodynamics by Rao in 1945 [12]. In the 1970s, Hermann modelled the thermodynamic phase space as a manifold with contact structure [13], while the first application of Riemannian geometry to the space of equilibrium states - a subset of the phase space - was due to Weinhold and Ruppeiner, who constructed metric structures on this space consisting of the Hessian matrices of the internal energy [14] and entropy [15], respectively. The two metric structures are conformally equivalent [16]. Using these metrics, Nulton et al [17] concluded that if a system undergoes a quasi-static thermodynamic process made up of K steps, each equilibrating with a proper reservoir, the minimum changes in the availability and entropy of the Universe are proportional to the squared thermodynamic length of the path traversed. In other words, thermodynamic length controls the dissipation in finite-time processes. Indeed, starting from the Ruppeiner metric structure, it can be shown that the entropy produced irreversibly during a fixed thermodynamic time is least when the system evolves along a geodesic.
The formalism of Geometrothermodynamics (GTD) was put forward in recent years by Quevedo [8]. In GTD, a system with \(n \) thermodynamic degrees of freedom is described by a thermodynamic phase space, this being defined as a Riemannian contact manifold \((T^n, \Theta, G)\). \(T^n \) represents a \((2n + 1)\)-dimensional manifold equipped with a non-degenerate metric \(G \), and \(\Theta \) is a linear differential 1-form with the property that \(\Theta \wedge (d\Theta)^n \neq 0 \). An \(n \)-dimensional submanifold \(\varepsilon \) is defined by requiring that the smooth embedding map \(\varphi : \varepsilon \to T^n \) has a pullback \(\varphi^* \) which satisfies \(\varphi^*(\Theta) = 0 \); \(\varepsilon \) is termed the space of thermodynamic equilibrium states and its geometric properties, described by means of the metric \(g = \varphi^*(G) \), yield information on the equilibrium thermodynamics of the corresponding physical system [20].

The \((2n + 1)\) coordinates of the phase space \(T^n \) consist of \(n \) extensive variables \(E^a \), \(n \) conjugate intensive variables \(I^b \) and the thermodynamic potential \(\Phi \). The subset of extensive variables is usually chosen to coordinate \(\varepsilon \). The first law of thermodynamics, \(d\Phi = I_a dE^a \), is satisfied on \(\varepsilon \) and in turn, so are the conditions for equilibrium. In other words, \(I_a = \partial \Phi / \partial E^a \) for all intensive variables \(I^b \) [20].

Unlike the Ruppeiner and Weinhold formalisms [21, 22], GTD is Legendre invariant [20]. Legendre transformations refer to the exchange of the role played by one or more extensive variables with that of the conjugate intensive ones, and invariance under such transformations ensures that the various thermodynamic potentials give rise to equivalent descriptions of the system [23]. This is in line with equilibrium thermodynamics, in which the physical properties of a system are independent of the thermodynamic potential used to describe it [23].

As pointed out in [20], all the known field interactions have an associated curvature that acts as a measure of the interaction. This is also one of the benefits of the geometric description of thermodynamics embodied in GTD. More specifically, the curvature of the space of equilibrium states can serve to probe the thermodynamic interactions of the system – for instance, curvature singularities indicate the presence of phase transitions. The link between geometry and thermodynamics in GTD has been investigated for a number of diverse systems, in works such as [5, 20, 31, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In particular, the geometrothermodynamics of the Reissner Nordström (RN) black hole are tackled in [24, 20, 27], and those of the asymptotically anti-de Sitter RN black hole in [20].

Equipped with GTD, it becomes possible to investigate the thermodynamic geodesics in the space of equilibrium states by extremising the thermodynamic ‘length’ \(\int \sqrt{g_{ab} dE^a dE^b} \). However, not all solutions to the geodesic equations are necessarily competent with the laws of thermodynamics. Those that do satisfy these laws represent quasi-static thermodynamic processes, which can hence be interpreted as a dense collection of equilibrium states [31]. In [32], the authors obtain the geodesics numerically by means of the equation \(\ddot{E}^a + \Gamma^a_{bc} \dot{E}^b \dot{E}^c = 0 \) (where a dot denotes differentiation with respect to an arbitrary affine parameter); the Christoffel symbols are calculated from the thermodynamic metric on the space of equilibrium states. A different approach is taken in [33], where a thermodynamic metric is constructed for several systems, including a Kerr black hole. In the case of the black hole, the equations for the temperature \(T \) and angular velocity \(\Omega \) take the role of equations of state, from which a metric is derived; the geodesic equations are determined from Hamilton’s equations and it is pointed out that they can also be obtained by extremising the reparametrisation-invariant action.

The main aim of this work is to investigate the thermodynamic geodesics of an RN black hole in the space of equilibrium thermodynamic states. In a 2010 work by Vázquez, Quevedo and Sánchez, it was reported that there is no explicit time parameter in the GTD metric structures, and that the formalism did not as yet incorporate non-equilibrium thermodynamics [34]. To our knowledge, this is still the situation at the present time. We therefore refrain from delving into finite-time thermodynamics and the associated dissipations. To this end, the black hole is modelled in such a way that its properties do not change significantly on a ge-
metrical time scale, as further described in Sec.
3.

The procedure we adopt is as follows: in Sec.
2 we derive a differential equation for the geodesics,
and in Sec. 3 present a model of an RN black hole
that evolves slowly via Hawking radiation and the
Schwinger mechanism. We then solve the geodesic
equation numerically for this black hole in Sec.
4. Results and conclusions are presented in Sec.
5. Throughout this paper, metrics are assigned
the signature (+,−,...,−) and, unless otherwise
stated, the geometric unit system is adopted, with
\(G = c = k = k_e = 1 \) \((k_e\text{ is the Coulomb constant, equivalent to }1/4\pi\epsilon_0)\). In these units, the reduced
Planck’s constant \(\hbar \) becomes 2.6121 \times 10^{-70} \text{ m}^2\) (to five significant figures and without the associated uncertainty\(^2\). Furthermore, the electric charge \(Q \) of the black hole is assumed to be positive \((Q > 0)\).

All numerical analysis was carried out using
Wolfram Mathematica\(^\circledR\) 10. The figures were
created using the LevelScheme scientific figure prepa-
ration system \([36]\).

2 A Differential Equation for the Geodesics

Thermodynamic systems characterised by second-
order phase transitions, such as black holes, can
be modelled as a contact manifold \(T^r \) with ther-
monic metric \([24]\):

\(G = (d\Phi − \delta_{ab} I^a dE^b)^2 + (\delta_{ab} E^a I^b)(\eta_{cd} dE^c dI^d) \) (1)

where \(\delta_{ab} \) and \(\eta_{ab} \) are the Euclidean and
Minkowski metrics, respectively.

This in turn gives rise to the thermodynamic
metric \(g \) on \(\epsilon \) \([24]\):

\(g = \left(E^a \frac{\partial \Phi}{\partial E^a}\right) \left(\eta^c \frac{\partial^2 \Phi}{\partial E^c \partial E^d} dE^b dE^d\right) \) (2)

The metric \(g \) can easily be computed for a
given thermodynamic system once the fundamen-
tal equation \(\Phi = \Phi(E^a) \) is known \([24]\).

In the mass representation \(i.e. \) with the mass
acting as thermodynamic potential, the ther-
odynamic metric \(g \) describing an RN black hole in

\[[g_{ab}] = (S M_S + Q M_Q) \begin{pmatrix} M_{SS} & 0 \\ 0 & −M_{QQ} \end{pmatrix} \] (3)

\(M \) stands for the total mass of the black hole and \(S \)
its entropy, while \(Q \) represents the electric charge.
Subscripts denote partial derivatives with respect
to the corresponding coordinate. Eq. \([3]\) was ob-
tained from \([20]\), where it was used to describe an
RN anti-de Sitter black hole, but it can easily be
deduced that it is also valid in the absence of a
cosmological constant. The metric signature was
changed to \((+,−).\)

The Lagrangian \(L \) takes the generic form
\(\sqrt{g_{ab} \dot{x}^a \dot{x}^b}; \)

\(L = \sqrt{(SM_S + Q M_Q)(M_{SS} \dot{S}^2 − M_{QQ} \dot{Q}^2)} \) (4)

The dot signifies derivatives with respect to an
arbitrary parameter \(\zeta \) that is assumed to be affine.
Substituting for \(L \) in the Euler-Lagrange equations
(where \(x^1 \) stands for \(S \) and \(x^2 \) for \(Q \)):

\(\frac{d}{d\zeta} \left(\frac{\partial L}{\partial \dot{x}^a}\right) = \frac{\partial L}{\partial x^a}, \quad a = \{1, 2\} \) (5)

then yields:

\(\chi_S \dot{S}^2 + 2\chi_Q \dot{Q} \dot{S} + \xi_S \dot{Q}^2 = −2\chi \dot{S} \) (6)

\(\chi_Q \dot{S}^2 + 2\xi_S \dot{Q} \dot{S} + \xi_Q \dot{Q}^2 = −2\xi \dot{Q} \) (7)

with

\(\chi = M_{SS}(SM_S + Q M_Q) \)

\(\xi = M_{QQ}(SM_S + Q M_Q) \) (8)

Expressions for \(M_S, M_Q, M_{SS} \) and \(M_{QQ} \) can be
obtained by first deriving an expression for \(M \)
from the Bekenstein-Hawking area-entropy relation,
which reads \([4,37,38]\):

\(S = \frac{A}{4\hbar} \) (9)

The event-horizon area \(A \) is computed as the
surface area of a 2-sphere with radius \(r_+ \), so that

\(A = 4\pi r_+^2 \) (10)

where \(r_+ \) is the radius of the (outer) event horizon
and is given by:

\(r_+ = M + \sqrt{M^2 − Q^2} \) (11)
One can then simply write A in terms of M and Q via (10) and (11) and solve (9) for M:

$$M = \frac{\pi Q^2 + hS}{2\sqrt{\pi}hS}$$ \hspace{1cm} (12)

This is equivalent to the Smarr mass formula [39] with the angular momentum set equal to zero, although [39] gives M in terms of A and Q rather than S and Q.

The quantities M_S, M_Q, M_{SS} and M_{QQ} then follow easily from (12), giving for χ and ξ (Eq. 8):

$$\chi = \frac{9\pi Q^4 - h^2 S^2}{32\pi h S^3}; \quad \xi = \frac{3\pi Q^2 + hS}{4hS}$$ \hspace{1cm} (13)

The geodesics in the space of equilibrium states can be determined by substituting for χ, ξ and their derivatives in (6) and (7) and solving the resulting differential equations. Nonetheless, a few comments are in order before we proceed. An RN black hole can be characterised by any two variables from the set $\{S, Q, M\}$. In this case, we have chosen the entropy S and charge Q, with the third variable - the mass M - uniquely determined by S and Q via (12). However, given that the space of equilibrium states has coordinates χ and ξ, the geodesic would have an equation of the form $f(S, Q) = 0$. In other words, the geodesic equations introduce a dependence between S and Q. Furthermore, as will be shown later, this dependence causes any changes in M to be extremised.

The starting point, therefore, is to write the derivative $\dot{S} = dS/d\xi$ as $\dot{S} = dS/dQ \times dQ/d\xi = dS/dQ \times \dot{Q}$ (note that it is also possible to choose Q as the dependent variable. This will be treated in greater detail in Sec. 4). Consequently, it becomes possible to combine (6) and (7) into one equation that reads (assuming $\dot{Q} \neq 0$):

$$\xi S + \frac{dS}{dQ} \left[2\chi Q - \frac{\chi}{\xi} \xi Q \right] + \left(\frac{dS}{dQ}\right)^2 \left[\chi S - 2\chi \frac{\xi S}{\xi} \right] - \left(\frac{dS}{dQ}\right)^3 \frac{\chi}{\xi} \xi Q = -2\chi \frac{d^2 S}{dQ^2}$$ \hspace{1cm} (14)

Substituting for χ, ξ (Eq. 13) and the corresponding partial derivatives in (14) yields:

$$- \frac{3\pi Q^2}{4hS^2} + \frac{h^2 S^2 - 3\pi Q^2 (3\pi Q^2 + 2hS)}{32\pi h S^4} \left(\frac{dS}{dQ}\right)^2$$

$$+ \frac{3Q(9\pi Q^2 + hS)}{16hS^3} \frac{dS}{dQ} = \frac{h^2 S^2 - 9\pi^2 Q^4}{16\pi h S^4} \frac{d^2 S}{dQ^2}$$

$$+ \frac{9Q^3(3\pi Q^2 - hS)}{64hS^6} \left(\frac{dS}{dQ}\right)^3$$ \hspace{1cm} (15)

The complexity of the differential equation thus obtained makes it exceedingly hard to solve analytically. Numerical techniques will instead be employed, but these require constraints which can only be determined by choosing an appropriate black hole model.

3 Choosing a Black Hole Model

In any astrophysically realistic case, charged black holes tend to get neutralised quickly. This happens because particles with an opposite charge are attracted to the black hole, neutralising some of its charge until this becomes too small to have a significant effect on the surrounding spacetime. Thus one begins by assuming that the black hole exists in isolation, surrounded by a perfect vacuum that is devoid of even cosmic background radiations [1]. The assumption of complete isolation is perhaps not very plausible, but it becomes indispensable if an RN black hole with a geometrically interesting charge is to be investigated [1].

Even if the black hole is not surrounded by any matter or radiation, it nonetheless discharges quickly due to the creation of electron-positron pairs in the electric field close to the horizon [1]. This pair-production would be rapid unless the mass of the black hole is very large ($>10^5$ M_\odot) [40]. Hence one makes the assumption that the black hole mass exceeds the said limit. This - together with the isolation of the black hole - allows the magnitude of the charge to be comparable to that of the black hole mass; the electric charge would then have a considerable effect on the geometry of spacetime [1]. Very massive, charged black holes in isolation were considered by Hiscock and

3 The number of particles emitted by the black hole itself is not large enough to violate this assumption.
where $\mathcal{M} >> Q$, the latter difference between the two processes. In the case of Hawking radiation, the primary factor responsible for the separation of a virtual particle pair into real particles is the presence of a causal disconnection, while for the Schwinger mechanism is it the strong electric field surrounding the black hole. Both processes, however, lead to the slow evaporation of the black hole. For the purpose of this study, ‘slow’ means that the mass and/or charge do not change significantly on a geometrical time scale τ ($\tau \approx M$) [1]. Thus the spacetime around the black hole can still be equipped with the usual RN metric, and its line element is given by

$$ds^2 = f dt^2 - f^{-1} dr^2 - r^2(d\theta^2 + \sin^2 \theta d\phi^2)$$

where

$$f \equiv \left(1 - \frac{2\mathcal{M}}{r} + \frac{Q^2}{r^2}\right)$$

(16)

although \mathcal{M} and Q should now be seen as slowly-varying functions of time [1].

Hiscock and Weems make several other assumptions to construct their model. Three of these place a lower bound on the mass \mathcal{M} of the black hole, and they can be summarised as the requirement that $\mathcal{M} >> Q_0$, where $Q_0 = e\hbar/\pi m_e^2 \approx 1.7 \times 10^5 \, \text{M}_\odot$ (e being the elementary charge and m_e the mass of an electron). This justifies the use of flat-space quantum electrodynamics, the Schwinger formula for the rate of pair-creation and certain approximations required to derive an expression for dQ/dt, which is quoted below. Furthermore, scattering of the particles created with the same-sign charge as the black hole is neglected, as these would be acted upon by a very large radial repulsive force [1].

The rate of charge loss from the black hole is then given by [1]:

$$\frac{dQ}{dt} = -\frac{1}{2\pi^3} \frac{e^4}{\hbar m_e^2} \frac{Q^3}{r_{+}^4} \exp\left(-\frac{r_{+}^2}{Q_0 Q}\right)$$

(17)

where Q_0 is as defined above and r_+ is the radius of the event horizon (Eq. (11)).

Since dQ/dt has an exponential dependence on the square of the mass of the created particles in the denominator (via Q_0), the contributions of muons and heavier particles were ignored [1].

The evaporation of the charged black hole results in mass being lost at a total rate:

$$\frac{d\mathcal{M}}{dt} = -\sigma \varepsilon T^4 A + \frac{Q}{r_+} \frac{dQ}{dt}$$

(18)

where ε is the emissivity, T the Hawking temperature and A the event-horizon area. The Stefan-Boltzmann constant σ is given by:

$$\sigma = \frac{\pi^2}{60 \hbar^3}$$

(19)

Since a black hole is modelled as a black body, ε is set equal to one.

The first term on the right-hand side of (18) is simply the radiated power as embodied in the Stefan-Boltzmann law, and accounts for the energy lost as a result of the emission of massless particles. It is a slightly modified version of the expression in [1]. Hiscock and Weems model the rate of mass loss due to thermal emission in terms of the total cross section of the black hole, while taking into account - via a parameter α - the number of neutrino species produced and the thermally-averaged cross sections for neutrinos, photons and gravitons. The use of their expression in (18) instead of $-\sigma \varepsilon T^4 A$ simply amounts to replacing r_+^2 (which determines A according to [10]) with the product of α and the critical value b_0 of the apparent impact parameter for photons, and did not yield any significant differences in our results. In
fact, if α is fixed at 0.26792, the ratio of $\alpha \beta^2$ to r^2, for the values set down in [28] is close to unity, meaning that the thermal power has the same order of magnitude, irrespective of the approach adopted. Hence we opt for the Stefan-Boltzmann law, this being considerably simpler and, in fact, quite popular in the literature (see, for instance, [44, 45, 46]). The second term on the right-hand side of (18) arises due to pair-production via the Schwinger mechanism.

It now becomes necessary to consider the first law of black hole thermodynamics as applied to an RN black hole:

$$dM = T dS + \phi dQ$$ \hspace{1cm} (20)

Equivalently:

$$\frac{dM}{dt} = T \frac{dS}{dt} + \phi \frac{dQ}{dt}$$ \hspace{1cm} (21)

and since the electrostatic potential ϕ is given by Q/r_+, it can easily be deduced, by comparing (21) with (18), that

$$T \frac{dS}{dt} = -\sigma T^4 A$$ \hspace{1cm} (22)

The Hawking temperature T is related to the surface gravity κ via the equation $T = (\hbar \kappa)/2\pi$ [7, 38], but it can also be obtained by considering Eq. (12). Since M is a state function, dM must be an exact differential, from which it follows that $\partial M/\partial S = T$ (and similarly, $\partial M/\partial Q = \phi$). Eq. (12) then gives for T:

$$T = -\frac{\pi Q^2 + h S}{4\sqrt{\pi \hbar S^3}}$$ \hspace{1cm} (23)

The radius of the event horizon can be written as a function of S by substituting for M (Eq. (12)) in (11):

$$r_+ = \sqrt{h S/\pi}$$ \hspace{1cm} (24)

so that Eq. (10) becomes $A = 4hS$. This can be inserted, together with equations (19) and (23), into

4 Choosing Appropriate Constraints and Solving

From (25) and (26) it follows that:

$$\frac{dS}{dt} = \frac{dS}{dQ} \frac{dQ}{dt} = \frac{\pi^2 \hbar^{5/2} m_e^2 S^{1/2} (\pi Q^2 - h S)^3 \exp\left(\frac{m_e^2 S}{\pi Q^2}\right)}{480 e^4 Q^3 (h S)^{7/2}}$$ \hspace{1cm} (27)

The elementary charge e and electron mass m_e have values 1.602×10^{-19} m and 6.7643×10^{-30} m, respectively. Each stated to
Using the equation:
\[eQ/r_+ = \Delta M \left(\frac{M + \sqrt{M^2 - Q^2}}{\sqrt{M^2 - Q^2}} \right) - \frac{Q \Delta Q}{\sqrt{M^2 - Q^2}} \]

in conjunction with the relations \[\Delta M = -eQ/r_+ \]
and \[\Delta Q = -e \] yields the result \[\Delta r_+ = 0. \] Hence, the area of the event horizon (Eq. (10)) remains constant and, as follows from Eq. (9), so does the entropy.

One should also note that the closer \(Q_* \) is to the extremal value, the smaller the value of \(S_* \) and consequently, the lower the corresponding curve. Since the five sets of constraints were obtained for the same value of \(M_* \), this mirrors the fact that at a fixed value of \(M (= M_*) \), the entropy \((S_*) \) is least when the black hole is closest to extremality. Furthermore, each curve bends downwards as \(Q \) approaches its extremal value, so that the entropy decreases and is least for maximum \(Q \). In the limit of extremality, however, Eq. (15) becomes stiff. This is in line with the third law of black hole thermodynamics, which forbids a non-extremal black hole from evolving into an extremal one. Strictly speaking, the definition of an extremal black hole refers to one which has \(M \) equal to \(Q \) (in the geometric unit system), and given that \(M \) evolves from its constraining value \(M_* \) along the geodesic, the reader should be aware that the word ‘extremality’ is used rather loosely in this situation, since here an extremal black hole is considered to be one with \(Q = M_* \).

The analysis was repeated for two other constraining values of \(M_* \), and the results are presented in Fig. 3. In all three cases, the constraints were not chosen as randomly as it might seem, because certain values for \(M_* \), despite being significantly greater than \(1.7 \times 10^9 \) \(M_\odot \), yield very high rates of change for values \(Q_* \), whose order of magnitude is comparable to that of \(M_* \), implying a black hole that would discharge much too quickly to be of relevance to this work. In most of these situations, \((dS/dt)_* \) also turns out to be unacceptably large.

The fact that \(S \) always decreases for a black hole with \(Q = Q_* \) and \(S = S_* \), regardless of what \(Q \) does, might initially seem at odds with the assumption that \(S \) is a function of \(Q \). However, although the Schwinger mechanism does not change the area \(A \) of the event horizon, it does af-

5 The full values and uncertainties, in SI units, are given in [59].
Fig. 2 Thermodynamic geodesics over a restricted domain. M_* is set to 3×10^9 m, with Q_* being: (a) 6×10^8 (b) 7×10^8 (c) 8×10^8 (d) 9×10^8 and (e) 1×10^9 metres
flect \(dA/dt \). Indeed, the loss of charge makes \(A \) decrease faster, and thus effectively increases the rate at which entropy is lost. This becomes apparent if one takes the time derivative of the relation \(A = 4\hbar S \) (the Bekenstein-Hawking area-entropy relation, Eq. (9)) and substitutes for \(dS/dt \) (Eq. (25)), getting:

\[
\frac{dA}{dt} = -4\hbar \sqrt{\frac{\pi}{\pi S - \pi Q^2}} \frac{3}{960(hS)^{3/2}} \tag{30}
\]

Given that the Schwinger mechanism leaves the entropy intact but decreases the charge, the overall result is an increase in \(dA/dt \) and hence in the rate of entropy loss. In other words, changes in \(Q \) have a direct bearing on the amount by which \(S \) decreases in a given time. It is in this sense that the geodesics in the space of thermodynamic equilibrium states can be expressed as a function \(f(S, Q) = 0 \). Furthermore, one might just as well have chosen \(Q \) as the dependent variable, because any function \(Q(S) \) has a corresponding inverse \(S(Q) \), provided it is one-to-one. Should a solution \(Q(S) \) to the geodesic equation (this having been expressed in terms of \(Q'(S) \) and \(Q''(S) \)) be many-to-one, its inverse - or a portion of it - would still turn up as a solution of Eq. (15), but the gradient of the resulting curve would be singular at one or more points, and the solver would detect a stiffness problem there. Fortunately, the solutions presented in this work are not stiff over the given domain, and so the possibility that the technique employed might be generating portions of one-to-many solutions is eliminated.

In Sec. 2 it was claimed that a geodesic in the space of equilibrium states is a trajectory that extremises the change in the mass of a black hole evolving along it. Now there emerges a justification for this claim: it turns out that the expression for the entropy of an extremal black hole - i.e. \(S = \pi Q^2/\hbar \) - is an exact solution to Eq. (15). Let us consider a point \(P \) on this curve. A black hole at \(P \), being extremal, cannot increase its charge unless it first gains mass. The smallest increase in mass occurs if the black hole remains extremal as it evolves - i.e. if it ‘moves’ to a state \(P + \delta P \) that also lies on the curve \(S = \pi Q^2/\hbar \). On the other hand, should the black hole at \(P \) lose charge, it could only keep to the curve if the decrease in \(M \) is the largest possible. In other words, the curve \(S = \pi Q^2/\hbar \) is a solution to the geodesic equation which extremises the change in mass accompanying a variation in the electric charge of a hypothetical black hole, maximising \(\Delta M \) if the black hole discharges and minimising it if \(Q \) increases.

Fig. 3 Thermodynamic geodesics obtained by solving Eq. (15) numerically for 5 different sets of constraints, each calculated at (a) \(M_* = 5 \times 10^9 \text{ m} \) \((3.4 \times 10^6 M_\odot)\) and (b) \(M_* = 7 \times 10^9 \text{ m} \) \((4.7 \times 10^6 M_\odot)\)
5 Conclusion

It can thus be inferred, irrespective of whether the solution \(S = \pi Q^2/\hbar \) has physical meaning\(^7\), that any solution to the geodesic equation extremises the change in \(M \) for a given increase or decrease in \(Q \). To strengthen our argument, we consider the expression for \(dS/dQ \) that emerges from the first law of black hole thermodynamics (Eq. (20)) when \(dM \) is set equal to zero:

\[
\frac{dS}{dQ} = \frac{4\pi QS}{\pi Q^2 - \hbar S} \tag{31}
\]

and then evaluate this expression at each point along a given geodesic. It turns out that at any point \(P \), the value of \(dS/dQ \) from (31) is of the same order of magnitude as that calculated directly from the numerical solution of (15). The situation is illustrated in Fig. 4. The reader should bear in mind that the two curves in each sub-figure necessarily differ, because the black hole model we considered to solve Eq. (15) incorporates the Schwinger and Hawking mechanisms, which alter the mass of the black hole as it evolves.

\[\]

5 Conclusion

In this work, using an appropriate thermodynamic metric that emerges from the recently introduced formalism of Geometrothermodynamics [20], a differential equation is obtained to describe the geodesics in the space of thermodynamic equilibrium states of a supermassive Reissner-Nordström black hole in isolation. The geodesic equation is then solved numerically by considering the processes of Hawking radiation and Schwinger pair-production to derive sets of appropriate constraints. We construct our black hole model on the one presented by Hiscock and Weems [1]. However, we replace their expression for the rate of mass lost due to thermal emission with the Stefan-Boltzmann law for a black body.

Since we work in the mass representation (i.e. with the mass of the black hole acting as thermodynamic potential), the space of equilibrium states is coordinatized by the entropy \(S \) and electric charge \(Q \). Consequently, geodesic curves establish a relation between the entropy and charge of the black hole. It is shown that at any given point along a geodesic, the value of \(dS/dQ \) is of the same order of magnitude as the rate at which entropy changes with charge during a constant-mass perturbation. Together with the fact that the expression for the entropy of an extremal black hole is an exact solution to the geodesic equation, this allows us to conclude that the geodesics extremise changes in the mass of the black hole as it evolves.

\[\]

\[^7\] Several authors are of the opinion that a black hole which is exactly extremal has zero entropy; see, for instance, [47] [48] [49] [50] [51].
Acknowledgements

C. F. would like to thank Prof. H. Quevedo of the Universidad Nacional Autónoma de México, Prof. J. Muscat (Department of Mathematics, University of Malta) and Prof. K. Zarb Adami (Institute of Space Sciences and Astronomy, University of Malta).

References

[1] W. A. Hiscock and L. D. Weems, “Evolution of charged evaporating black holes,” Phys. Rev. D, vol. 41, pp. 1142–1151, 1990.

[2] J. A. Wheeler and R. Ruffini, “Introducing the black hole,” Phys. Today, vol. 24 (1), pp. 30–41, 1971.

[3] J. Michell, “On the Means of discovering the Distance, Magnitude, etc. of the Fixed Stars,” Phil. Trans. R. Soc. London, vol. 74, pp. 35–57, 1784.

[4] C. C. Gillispie, Pierre-Simon Laplace, 1749-1827: A Life in Exact Science, ch. 19, p. 175. New Jersey: Princeton University Press, 1997. Reprinted in 2000.

[5] J. D. Bekenstein, “Black Holes and the Second Law,” Lett. Nuovo Cimento, vol. 4, pp. 737–740, 1972.

[6] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four Laws of Black Hole Mechanics,” Commun. Math. Phys., vol. 31, pp. 161–170, 1973.

[7] S. W. Hawking, “Black Hole Explosions?,” Nature, vol. 248, pp. 30–31, 1974.

[8] H. Quevedo, “Geometrothermodynamics,” J. Math. Phys., vol. 48, no. 013506, 2007.

[9] H. Quevedo and M. N. Quevedo, “Fundamentals of Geometrothermodynamics,” in Electronic Journal of Theoretical Physics - Zacatecas Proc. II, pp. 1–16, 2011. edited by V. V. Dvoeglazov, A. Molgado and C. Ortiz (Workshop Editors) and J. L. López Bonilla, I. Licata and A. Sukaji (EJTP Editors).

[10] J. W. Gibbs, The Collected Works of J. Willard Gibbs, vol. 1. New Haven: Yale University Press, 1948.

[11] C. Carathéodory, “Untersuchungen über die Grundlagen der Thermodynamik,” Math. Ann., vol. 67, pp. 355–386, 1909. English translation by Kestin, J.: Investigation into the foundations of thermodynamics. In: Kestin, J. (ed.) The Second Law of Thermodynamics, pp. 229-256. Dowden, Hutchinson and Ross, Stroudsburg, PA (1976).

[12] C. R. Rao, “Information and Accuracy Attainable in the Estimation of Statistical Parameters,” Bull. Calcutta Math. Soc., vol. 37 (3), pp. 81–91, 1945.

[13] R. Hermann, Geometry, Physics, and Systems. New York: M. Dekker, 1973.

[14] F. Weinhold, “Metric geometry of equilibrium thermodynamics. I-V,” J. Chem. Phys. 63, 2479-2483 (1975); 63, 2484-2487 (1975); 63, 2488-2495 (1975); 63, 2496-2501 (1975); 65, 559-564 (1976).

[15] G. Ruppeiner, “Thermodynamics: A Riemannian geometric model,” Phys. Rev. A, vol. 20, pp. 1608–1613, 1979.

[16] P. Salamon, J. Nulton, and E. Ihrig, “On the relation between entropy and energy versions of thermodynamic length,” J. Chem. Phys., vol. 80, pp. 436–437, 1984.

[17] J. Nulton, P. Salamon, B. Andresen, and Qi Anmin, “Quasistatic processes as step equilibrations,” J. Chem. Phys., vol. 83, pp. 334–338, 1985.

[18] L. Diósi, K. Kulacsy, B. Lukács, and A. Rácz, “Thermodynamic length, time, speed, and optimum path to minimize entropy production,” J. Chem. Phys., vol. 105, pp. 11220–11225, 1996.

[19] G. E. Crooks, “Measuring Thermodynamic Length,” Phys. Rev. Lett., vol. 99, no. 100602, 2007.

[20] H. Quevedo and A. Sánchez, “Geometrothermodynamics of asymptotically Anti-de Sitter
black holes,” *J. High Energy Phys.*, vol. 09, no. 034, 2008.

[21] P. Salamon, E. Ihrig, and R. S. Berry, “A group of coordinate transformations which preserve the metric of Weinhold,” *J. Math. Phys.*, vol. 24, pp. 2515–2520, 1983.

[22] R. Mrugala, J. D. Nulton, J. C. Schöen, and P. Salamon, “Statistical approach to the geometric structure of thermodynamics,” *Phys. Rev. A*, vol. 41, pp. 3156–3160, 1990.

[23] A. Bravetti, C. S. Lopez-Monsalvo, F. Nettel, and H. Quevedo, “The conformal metric structure of Geometrothermodynamics,” *J. Math. Phys.*, vol. 54, no. 033513, 2013.

[24] A. Bravetti, D. Momeni, R. Myrzakulov, and H. Quevedo, “Geometrothermodynamics of higher dimensional black holes,” *Gen. Relativ. Gravit.*, vol. 45, pp. 1603–1617, 2013.

[25] H. Quevedo, A. Sánchez, and A. Vázquez, “Relativistic like structure of classical thermodynamics,” *Gen. Relativ. Gravit.*, vol. 47, no. 36, 2015.

[26] J. L. Álvarez, H. Quevedo, and A. Sánchez, “Unified geometric description of black hole thermodynamics,” *Phys. Rev. D*, vol. 77, no. 084004, 2008.

[27] H. Quevedo, “Geometrothermodynamics of black holes,” *Gen. Relativ. Gravit.*, vol. 40, pp. 971–984, 2008.

[28] A. Bravetti and O. Luongo, “Dark energy from geometrothermodynamics,” *Int. J. Geom. Methods. M.*, vol. 11 (8), no. 1450071, 2014.

[29] Y. Han and G. Chen, “Thermodynamics, geometrothermodynamics and critical behavior of (2+1)-dimensional black holes,” *Phys. Lett. B*, vol. 714, pp. 127–130, 2012.

[30] A. Bravetti, C. S. Lopez-Monsalvo, F. Nettel, and H. Quevedo, “Representation invariant Geometrothermodynamics: Applications to ordinary thermodynamic systems,” *J. Geom. Phys.*, vol. 81, pp. 1–9, 2014.

[31] A. Vázquez, H. Quevedo, and A. Sánchez, “Thermodynamic systems as bosonic strings,” arXiv:0805.4819v5.

[32] H. Quevedo and A. Rámirez, “A geometric approach to the thermodynamics of the van der waals system,” arXiv:1205.3544v1.

[33] C. Vaz, “A lagrangian description of thermodynamics.” arXiv:1110.6152v1.

[34] A. Vázquez, H. Quevedo, and A. Sánchez, “Thermodynamic systems as extremal hypersurfaces,” *J. Geom. Phys.*, vol. 60, pp. 1942–1949, 2010.

[35] P. J. Mohr, D. B. Newell, and B. N. Taylor, “CODATA recommended values of the fundamental physical constants: 2010,” *Rev. Mod. Phys.*, vol. 84, pp. 1527–1605, 2012.

[36] M. A. Caprio, “LevelScheme: A level scheme drawing and scientific figure preparation system for Mathematica,” *Comput. Phys. Commun.*, vol. 171, pp. 107–118, 2005. http://scidraw.nd.edu/levelscheme

[37] J. D. Bekenstein, “Black Holes and Entropy,” *Phys. Rev. D*, vol. 7, pp. 2333–2346, 1973.

[38] S. W. Hawking, “Particle creation by black holes,” *Commun. Math. Phys.*, vol. 43, pp. 199–220, 1975.

[39] L. Smarr, “Mass Formula for Kerr Black Holes,” *Phys. Rev. Lett.*, vol. 30, pp. 71–73, 1973.

[40] G. W. Gibbons, “Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes,” *Commun. Math. Phys.*, vol. 44, pp. 245–264, 1975.

[41] J. Schwinger, “On Gauge Invariance and Vacuum Polarization,” *Phys. Rev.*, vol. 82, pp. 664–679, 1951.

[42] R. Parentani and P. Spindel, “Hawking radiation.” http://www.scholarpedia.org/article/Hawking_radiation 2011. Accessed 15 January 2016.

[43] Particle Data Group, “Leptons,” *Phys. Lett. B*, vol. 667, pp. 479–548, 2008.
[44] M. P. Hobson, G. Efstathiou, and A. N. Lasenby, *General Relativity: An Introduction for Physicists*, ch. 11, p. 277. New York: Cambridge University Press, 2006.

[45] S. T. Thornton and A. Rex, *Modern Physics for Scientists and Engineers*, ch. 15, p. 568. Boston: Cengage Learning, 4 ed., 2013.

[46] J. D. Walecka, *Introduction to General Relativity*, ch. 14, p. 304. Singapore: World Scientific, 2007.

[47] S. W. Hawking, G. T. Horowitz, and S. F. Ross, “Entropy, area, and black hole pairs,” *Phys. Rev. D*, vol. 51, pp. 4302–4314, 1995.

[48] S. Hod, “Evidence for a null entropy of extremal black holes,” *Phys. Rev. D*, vol. 61, no. 084018, 2000.

[49] C. Teitelboim, “Action and entropy of extreme and nonextreme black holes,” *Phys. Rev. D*, vol. 51, pp. 4315–4318, 1995.

[50] S. M. Carroll, M. C. Johnson, and L. Randall, “Extremal limits and black hole entropy,” *J. High Energy Phys.*, vol. 11, no. 109, 2009.

[51] S. Das, A. Dasgupta, and P. Ramadevi, “Can Extremal Black Holes have Nonzero Entropy?,” *Mod. Phys. Lett. A*, vol. 12, pp. 3067–3079, 1997.