ON CO-ORDINATED QUASI-CONVEX FUNCTIONS

M. EMIN ÖZDEMİR, AHMET OCAK AKDEMİR, AND ÇETIN YILDIZ

Abstract. In this paper, we give some definitions on quasi-convex functions and we prove inequalities contain J-quasi-convex and W-quasi-convex functions. We give also some inclusions.

1. INTRODUCTION

Let \(f : I \subset \mathbb{R} \to \mathbb{R} \) be a convex function on the interval of \(I \) of real numbers and \(a, b \in I \) with \(a < b \). The following double inequality

\[
f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)dx \leq \frac{f(a) + f(b)}{2}
\]

is well-known in the literature as Hadamard’s inequality. We recall some definitions;

In [25], Pecaric et al. defined quasi-convex functions as following

Definition 1. A function \(f : [a, b] \to \mathbb{R} \) is said quasi-convex on \([a, b]\) if

\[
f(\lambda x + (1-\lambda)y) \leq \max \{f(x), f(y)\}, \quad (QC)
\]

holds for all \(x, y \in [a, b] \) and \(\lambda \in [0, 1] \).

Clearly, any convex function is quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex.

Definition 2. (See [6], [12]) We say that \(f : I \to \mathbb{R} \) is a Wright-convex function or that \(f \) belongs to the class \(W(I) \), if for all \(x, y + \delta \in I \) with \(x < y \) and \(\delta > 0 \), we have

\[
f(x + \delta) + f(y) \leq f(y + \delta) + f(x)
\]

Definition 3. (See [6]) For \(I \subseteq \mathbb{R} \), the mapping \(f : I \to \mathbb{R} \) is wright-quasi-convex function if, for all \(x, y \in I \) and \(t \in [0, 1] \), one has the inequality

\[
\frac{1}{2} [f(tx + (1-t)y) + f((1-t)x + ty)] \leq \max \{ f(x), f(y) \}, \quad (WQC)
\]

or equivalently

\[
\frac{1}{2} [f(y) + f(x + \delta)] \leq \max \{ f(x), f(y + \delta) \}
\]

for every \(x, y + \delta \in I \), \(x < y \) and \(\delta > 0 \).
Definition 4. (See [6]) The mapping \(f : I \to \mathbb{R} \) is Jensen- or J-quasi-convex if
\[
f \left(\frac{x + y}{2} \right) \leq \max \{ f(x), f(y) \}, \quad (JQC)
\]
for all \(x, y \in I \).

Note that the class \(JQC(I) \) of J-quasi-convex functions on \(I \) contains the class \(J(I) \) of J-convex functions on \(I \), that is, functions satisfying the condition
\[
f \left(\frac{x + y}{2} \right) \leq \frac{f(x) + f(y)}{2}, \quad (J)
\]
for all \(x, y \in I \).

In [6], Dragomir and Pearce proved the following theorems containing J-quasi-convex and Wright-quasi-convex functions.

Theorem 1. Suppose \(a, b \in I \subseteq \mathbb{R} \) and \(a < b \). If \(f \in JQC(I) \cap L_1[a, b] \), then
\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx + I(a, b)
\]
where
\[
I(a, b) = \frac{1}{2} \int_0^1 |f(ta + (1-t)b) - f((1-t)a + tb)| \, dt.
\]

Theorem 2. Let \(f : I \to \mathbb{R} \) be a Wright-quasi-convex map on \(I \) and suppose \(a, b \in I \subseteq \mathbb{R} \) with \(a < b \) and \(f \in L_1[a, b] \), one has the inequality
\[
\frac{1}{b - a} \int_a^b f(x) \, dx \leq \max \{ f(a), f(b) \}.
\]

In [6], Dragomir and Pearce also gave the following theorems involving some inclusions.

Theorem 3. Let \(WQC(I) \) denote the class of Wright-quasi-convex functions on \(I \subseteq \mathbb{R} \), then
\[
QC(I) \subset WQC(I) \subset JQC(I).
\]
Both inclusions are proper.

Theorem 4. We have the inclusions
\[
W(I) \subset WQC(I), \quad C(I) \subset QC(I), \quad J(I) \subset JQC(I).
\]
Each inclusion is proper.

For recent results related to quasi-convex functions see the papers [1]-[11] and books [23], [24]. In [19], Dragomir defined co-ordinated convex functions and proved following inequalities.

Let us consider the bidimensional interval \(\Delta = [a, b] \times [c, d] \) in \(\mathbb{R}^2 \) with \(a < b \) and \(c < d \). A function \(f : \Delta \to \mathbb{R} \) will be called convex on the co-ordinates if the partial mappings
\[
f_y : [a, b] \to \mathbb{R}, \quad f_y(u) = f(u, y)
\]
and
\[
f_x : [c, d] \to \mathbb{R}, \quad f_x(v) = f(x, v)
\]
are convex where defined for all \(y \in [c, d] \) and \(x \in [a, b] \).
Recall that the mapping \(f : \Delta \to \mathbb{R} \) is convex on \(\Delta \), if the following inequality:

\[
(1.6) \quad f(\lambda x + (1 - \lambda) z, \lambda y + (1 - \lambda) w) \leq \lambda f(x, y) + (1 - \lambda) f(z, w)
\]

holds for all \((x, y), (z, w) \in \Delta \) and \(\lambda \in [0, 1] \).

Theorem 5. (see [19], Theorem 1) Suppose that \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is convex on the co-ordinates on \(\Delta \). Then one has the inequalities:

\[
(1.7) \quad f\left(\frac{a + b}{2}, \frac{c + d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b - a} \int_{a}^{b} f\left(x, \frac{c + d}{2}\right) \, dx + \frac{1}{d - c} \int_{c}^{d} f\left(\frac{a + b}{2}, y\right) \, dy \right]
\]

\[
\leq \frac{1}{(b - a)(d - c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx
\]

\[
\leq \frac{1}{4} \left[\frac{1}{b - a} \int_{a}^{b} f(x, c) \, dx + \frac{1}{b - a} \int_{a}^{b} f(x, d) \, dx
\]

\[
+ \frac{1}{d - c} \int_{c}^{d} f(a, y) \, dy + \frac{1}{d - c} \int_{c}^{d} f(b, y) \, dy \right]
\]

\[
\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{4}
\]

The above inequalities are sharp.

Similar results can be found in [13]-[22].

This paper is arranged as follows. Firstly, we will give some definitions on quasi-convex functions and lemmas belong to this definitions. Secondly, we will prove several inequalities contain co-ordinated quasi-convex functions. Also, we will discuss the inclusions a connection with some different classes of co-ordinated convex functions.

2. DEFINITIONS AND MAIN RESULTS

We will start the following definitions and lemmas;

Definition 5. A function \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said quasi-convex function on the co-ordinates on \(\Delta \) if the following inequality

\[
f(\lambda x + (1 - \lambda) z, \lambda y + (1 - \lambda) w) \leq \max\{f(x, y), f(z, w)\}
\]

holds for all \((x, y), (z, w) \in \Delta \) and \(\lambda \in [0, 1] \)

\(f : \Delta \to \mathbb{R} \) will be called co-ordinated quasi-convex on the co-ordinates if the partial mappings

\[
f_{y} : [a, b] \to \mathbb{R}, \quad f_{y}(u) = f(u, y)
\]

and

\[
f_{x} : [c, d] \to \mathbb{R}, \quad f_{x}(v) = f(x, v)
\]

are convex where defined for all \(y \in [c, d] \) and \(x \in [a, b] \). We denote by \(QC(\Delta) \) the classes of quasi-convex functions on the co-ordinates on \(\Delta \). The following lemma holds.

Lemma 1. Every quasi-convex mapping \(f : \Delta \to \mathbb{R} \) is quasi-convex on the co-ordinates.
Proof. Suppose that \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is quasi-convex on \(\Delta \). Then the partial mappings
\[
f_y : [a, b] \to \mathbb{R}, \quad f_y (u) = f (u, y), \quad y \in [c, d]
\]
and
\[
f_x : [c, d] \to \mathbb{R}, \quad f_x (v) = f (x, v), \quad x \in [a, b]
\]
are convex on \(\Delta \). For \(\lambda \in [0, 1] \) and \(v_1, v_2 \in [c, d] \), one has
\[
f_x (\lambda v_1 + (1 - \lambda) v_2) = f (x, \lambda v_1 + (1 - \lambda) v_2)
\]
\[
= f (\lambda x + (1 - \lambda) x, \lambda v_1 + (1 - \lambda) v_2)
\]
\[
\leq \max \{ f (x, v_1), f (x, v_2) \}
\]
which completes the proof of quasi-convexity of \(f_x \) on \([c, d]\). Therefore \(f_y : [a, b] \to \mathbb{R}, \quad f_y (u) = f (u, y) \) is also quasi-convex on \([a, b]\) for all \(y \in [c, d] \), goes likewise and we shall omit the details. \(\square \)

Definition 6. A function \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said \(J \)-convex function on the co-ordinates on \(\Delta \) if the following inequality
\[
f \left(\frac{x + z}{2}, \frac{y + w}{2} \right) \leq \frac{f (x, y) + f (z, w)}{2}
\]
holds for all \((x, y), (z, w) \in \Delta\). We denote by \(\mathcal{J}(\Delta) \) the classes of \(J \)-convex functions on the co-ordinates on \(\Delta \).

Lemma 2. Every \(J \)-convex mapping defined \(f : \Delta \to \mathbb{R} \) is \(J \)-convex on the co-ordinates.

Proof. By the partial mappings, we can write for \(v_1, v_2 \in [c, d] \),
\[
f_x \left(\frac{v_1 + v_2}{2} \right) = f \left(x, \frac{v_1 + v_2}{2} \right)
\]
\[
= f \left(\frac{x + z}{2}, \frac{v_1 + v_2}{2} \right)
\]
\[
\leq \frac{f (x, v_1) + f (x, v_2)}{2}
\]
\[
= f_x (v_1) + f_x (v_2)
\]
which completes the proof of \(J \)-convexity of \(f_x \) on \([c, d] \). Similarly, we can prove \(J \)-convexity of \(f_y \) on \([a, b]\). \(\square \)

Definition 7. A function \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said \(J \)-quasi-convex function on the co-ordinates on \(\Delta \) if the following inequality
\[
f \left(\frac{x + z}{2}, \frac{y + w}{2} \right) \leq \max \{ f (x, y), f (z, w) \}
\]
holds for all \((x, y), (z, w) \in \Delta\). We denote by \(\mathcal{JQC}(\Delta) \) the classes of \(J \)-quasi-convex functions on the co-ordinates on \(\Delta \).

Lemma 3. Every \(J \)-quasi-convex mapping defined \(f : \Delta \to \mathbb{R} \) is \(J \)-quasi-convex on the co-ordinates.
Proof. By a similar way to proof of Lemma 1, we can write for \(v_1, v_2 \in [c, d] \),

\[
\begin{align*}
 f_x \left(\frac{v_1 + v_2}{2} \right) & = f \left(x, \frac{v_1 + v_2}{2} \right) \\
 & = f \left(\frac{x + x}{2}, \frac{v_1 + v_2}{2} \right) \\
 & \leq \max \{ f(x, v_1), f(x, v_2) \} \\
 & = \max \{ f_x(v_1), f_x(v_2) \}
\end{align*}
\]

which completes the proof of J-quasi-convexity of \(f_x \) on \([c, d]\). We can also prove J-quasi-convexity of \(f_y \) on \([a, b]\). □

Definition 8. A function \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said Wright-convex function on the co-ordinates on \(\Delta \) if the following inequality

\[
f((1 - t)a + tb, (1 - s)c + sd) + f(ta + (1 - t)b, sc + (1 - s)d) \leq f(a, c) + f(b, d)
\]

holds for all \((a, c), (b, d) \in \Delta \) and \(t, s \in [0, 1] \). We denote by \(W(\Delta) \) the classes of Wright-convex functions on the co-ordinates on \(\Delta \).

Lemma 4. Every Wright-convex mapping defined \(f : \Delta \to \mathbb{R} \) is Wright-convex on the co-ordinates.

Proof. Suppose that \(f : \Delta \to \mathbb{R} \) is Wright-convex on \(\Delta \). Then by partial mapping, for \(v_1, v_2 \in [c, d], x \in [a, b], \)

\[
\begin{align*}
 f_x((1 - t)v_1 + tv_2) + f_x(tv_1 + (1 - t)v_2) & = f(x, (1 - t)v_1 + tv_2) + f(x, tv_1 + (1 - t)v_2) \\
 & = f((1 - t)x + tx, (1 - t)v_1 + tv_2) + f((1 - t)x, tv_1 + (1 - t)v_2) \\
 & \leq f(x, v_1) + f(x, v_2) \\
 & = f_x(v_1) + f_x(v_2)
\end{align*}
\]

which shows that \(f_x \) is Wright-convex on \([c, d]\). Similarly one can see that \(f_y \) is Wright-convex on \([a, b]\). □

Definition 9. A function \(f : \Delta = [a, b] \times [c, d] \to \mathbb{R} \) is said Wright-quasi-convex function on the co-ordinates on \(\Delta \) if the following inequality

\[
\frac{1}{2} \left[f(tx + (1 - t)z, ty + (1 - t)w) + f((1 - t)x + tz, (1 - t)y + tw) \right] \leq \max \{ f(x, y), f(z, w) \}
\]

holds for all \((x, y), (z, w) \in \Delta \) and \(t \in [0, 1] \). We denote by \(WQC(\Delta) \) the classes of Wright-quasi-convex functions on the co-ordinates on \(\Delta \).

Lemma 5. Every Wright-quasi-convex mapping defined \(f : \Delta \to \mathbb{R} \) is Wright-quasi-convex on the co-ordinates.
Theorem 6. Suppose that $f : \Delta \to \mathbb{R}$ is Wright-quasi-convex on Δ. Then by partial mapping, for $v_1, v_2 \in [c, d],$

\[
\frac{1}{2} [f_x (tv_1 + (1-t) v_2) + f_x ((1-t) v_1 + tv_2)]
\]
\[
= \frac{1}{2} [f (x, tv_1 + (1-t) v_2) + f (x, (1-t) v_1 + tv_2)]
\]
\[
= \frac{1}{2} [f (tx + (1-t) x, tv_1 + (1-t) v_2) + f ((1-t) x + tx, (1-t) v_1 + tv_2)]
\]
\[
\leq \max \{f (x, v_1), f (x, v_2)\}
\]
\[
= \max \{f_x (v_1), f_x (v_2)\}
\]

which shows that f_x is Wright-quasi-convex on $[c, d]$. Similarly one can see that f_y is Wright-quasi-convex on $[a, b]$. \qed

Theorem 6. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is J-quasi-convex on the co-ordinates on Δ. If $f_x \in L_1 [c, d]$ and $f_y \in L_1 [a, b]$, then we have the inequality:

\[
\frac{1}{2} \left[\frac{1}{b-a} \int_a^b f \left(x, \frac{c+d}{2} \right) dx + \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy \right]
\]
\[
\leq \frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x, y) dxdy + H(x, y)
\]

where

\[
H(x, y) = \frac{1}{4(d-c)} \int_c^d \int_0^1 |f (ta + (1-t) b, y) - f ((1-t) a + tb, y)| dt dy
\]
\[
+ \frac{1}{4(b-a)} \int_a^b \int_0^1 |f (x, tc + (1-t) d) - f (x, (1-t) c + td)| dt dx.
\]

Proof. Since $f : \Delta \to \mathbb{R}$ is J-quasi-convex on the co-ordinates on Δ. We can write the partial mappings

\[
f_y : [a, b] \to \mathbb{R}, \quad f_y (u) = f (u, y), \quad y \in [c, d]
\]

and

\[
f_x : [c, d] \to \mathbb{R}, \quad f_x (v) = f (x, v), \quad x \in [a, b]
\]

are J-quasi-convex on Δ. Then by the inequality (1.2), we have

\[
f_y \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f_y(x) dx + \frac{1}{2} \int_0^1 |f_y (ta + (1-t) b) - f_y((1-t) a + tb)| dt.
\]

That is

\[
f \left(\frac{a+b}{2}, y \right) \leq \frac{1}{b-a} \int_a^b f(x, y) dx + \frac{1}{2} \int_0^1 |f (ta + (1-t) b, y) - f ((1-t) a + tb, y)| dt.
\]
Integrating the resulting inequality with respect to y over $[c, d]$ and dividing both sides of inequality with $(d - c)$, we get

\begin{equation}
\frac{1}{d - c} \int_c^d f \left(\frac{a + b}{2}, y \right) dy
\leq \frac{1}{(b - a) (d - c)} \int_c^d \int_a^b f(x, y) dxdy
+ \frac{1}{2(d - c)} \int_c^d \int_0^1 |f \left(ta + (1 - t) b, y \right) - f \left((1 - t) a + tb, y \right) | dt dy.
\end{equation}

By a similar argument, we have

\begin{equation}
\frac{1}{b - a} \int_a^b f \left(x, \frac{c + d}{2} \right) dx
\leq \frac{1}{(b - a) (d - c)} \int_a^b \int_c^d f(x, y) dydx
+ \frac{1}{2(b - a)} \int_a^b \int_0^1 |f \left(x, tc + (1 - t) d \right) - f \left(x, (1 - t) c + td \right) | dt dx.
\end{equation}

Summing (2.2) and (2.3), we get the required result. \hfill \Box

Theorem 7. Suppose that $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is Wright-quasi-convex on the co-ordinates on Δ. If $f_x \in L_1 [c, d]$ and $f_y \in L_1 [a, b]$, then we have the inequality;

\begin{equation}
\frac{1}{(b - a) (d - c)} \int_c^d \int_a^b f(x, y) dxdy
\leq \frac{1}{2} \left[\max \left\{ \frac{1}{(b - a)} \int_a^b f(x, c) dx, \frac{1}{(b - a)} \int_a^b f(x, d) dx \right\}
+ \max \left\{ \frac{1}{(d - c)} \int_c^d f(a, y) dy, \frac{1}{(d - c)} \int_c^d f(b, y) dy \right\} \right].
\end{equation}

Proof. Since $f : \Delta \to \mathbb{R}$ is Wright-quasi-convex on the co-ordinates on Δ. We can write the partial mappings

\[f_y : [a, b] \to \mathbb{R}, \quad f_y (u) = f (u, y), \quad y \in [c, d] \]

and

\[f_x : [c, d] \to \mathbb{R}, \quad f_x (v) = f (x, v), \quad x \in [a, b] \]

are Wright-quasi-convex on Δ. Then by the inequality (1.3), we have

\[\frac{1}{b - a} \int_a^b f_y (x) dx \leq \max \{ f_y (a), f_y (b) \}. \]

That is

\[\frac{1}{b - a} \int_a^b f(x, y) dx \leq \max \{ f(a, y), f(b, y) \}. \]

Dividing both sides of inequality with $(d - c)$ and integrating with respect to y over $[c, d]$, we get

\begin{equation}
\frac{1}{(b - a) (d - c)} \int_c^d \int_a^b f(x, y) dxdy \leq \max \left\{ \frac{1}{(d - c)} \int_c^d f(a, y) dy, \frac{1}{(d - c)} \int_c^d f(b, y) dy \right\}.
\end{equation}
By a similar argument, we can write
\[(2.6)\]
\[
\frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x,y)dx\,dy \leq \max \left\{ \frac{1}{b-a} \int_a^b f(x,c)\,dx, \frac{1}{b-a} \int_a^b f(x,d)\,dx \right\}.
\]

By addition \((2.5)\) and \((2.6)\), we have
\[
\frac{1}{(b-a)(d-c)} \int_c^d \int_a^b f(x,y)dx\,dy \leq \frac{1}{2} \left[\max \left\{ \frac{1}{(b-a)} \int_a^b f(x,c)\,dx, \frac{1}{(b-a)} \int_a^b f(x,d)\,dx \right\} \right.
\]
\[+ \max \left\{ \frac{1}{(d-c)} \int_c^d f(a,y)\,dy, \frac{1}{(d-c)} \int_c^d f(b,y)\,dy \right\}\]

which completes the proof.

Theorem 8. Let \(C(\Delta), J(\Delta), W(\Delta), QC(\Delta), JQC(\Delta), WQC(\Delta)\) denote the classes of functions co-ordinated convex, co-ordinated J-convex, co-ordinated JQC, co-ordinated convex, co-ordinated J-convex, co-ordinated WQC functions on \(\Delta = [a,b] \times [c,d]\), respectively, we have the following inclusions.

\[(2.7)\]
\[QC(\Delta) \subset WQC(\Delta) \subset JQC(\Delta)\]

\[(2.8)\]
\[W(\Delta) \subset WQC(\Delta), \quad C(\Delta) \subset J(\Delta), \quad J(\Delta) \subset JQC(\Delta).\]

Proof. Let \(f \in QC(\Delta)\). Then for all \((x,y), (z,w) \in \Delta\) and \(t \in [0,1]\), we have
\[
f((1-t)x + tz, (1-t)y + tw) \leq \max \{f(x,y), f(z,w)\}.
\]

By addition, we obtain
\[(2.9)\]
\[
\frac{1}{2} \left[f((1-t)x + tz, (1-t)y + tw) + f((1-t)x + tz, (1-t)y + tw) \right] \leq \max \{f(x,y), f(z,w)\}
\]

that is, \(f \in WQC(\Delta)\). In \((2.9)\), if we choose \(\lambda = \frac{1}{2}\), we obtain \(WQC(\Delta) \subset JQC(\Delta)\). Which completes the proof of \((2.7)\).

In order to prove \((2.8)\), taking \(f \in W(\Delta)\) and using the definition, we get
\[
\frac{1}{2} \left[f\left(\left((1-t)a + tb, (1-s)c + sd \right) + f\left(\left((1-t)b, sc + (1-s)d \right) \right) \right \right] \leq \frac{f(a,c) + f(b,d)}{2}
\]

for all \((a,c), (b,d) \in \Delta\) and \(t \in [0,1]\). Using the fact that
\[
\frac{f(a,c) + f(b,d)}{2} + f(a,c) - f(b,d) = \max \{f(a,c), f(b,d)\}
\]

we can write
\[
\frac{f(a,c) + f(b,d)}{2} \leq \max \{f(a,c), f(b,d)\}
\]

for all \((a,c), (b,d) \in \Delta\), we obtain \(W(\Delta) \subset WQC(\Delta)\).

Taking \(f \in C(\Delta)\) and, if we choose \(t = \frac{1}{2}\) in \((1.0)\), we obtain
\[
\frac{f\left(\frac{x+y}{2}, \frac{z+w}{2} \right)}{2} \leq \frac{f(x,y) + f(z,w)}{2}
\]
for all \((x, y), (z, w) \in \Delta\). One can see that \(C(\Delta) \subset J(\Delta)\).

Taking \(f \in J(\Delta)\), we can write
\[
f\left(\frac{x + z}{2}, \frac{y + w}{2}\right) \leq \frac{f(x, y) + f(z, w)}{2}
\]
for all \((x, y), (z, w) \in \Delta\). Using the fact that
\[
f(x, y) + f(z, w) + \left|f(x, y) - f(z, w)\right| = \max\{f(x, y), f(z, w)\}
\]
we can write
\[
\frac{f(x, y) + f(z, w)}{2} \leq \max\{f(x, y), f(z, w)\}.
\]
Then obviously, we obtain
\[
f\left(\frac{x + z}{2}, \frac{y + w}{2}\right) \leq \max\{f(x, y), f(z, w)\}
\]
which shows that \(f \in JQ(\Delta)\). □

REFERENCES

[1] Alomari, M. and Darus, M., Dragomir, S.S., Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), Supplement, Article 14.

[2] Alomari, M. and Darus, M. and Dragomir, S.S., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), Supplement, Article 17.

[3] Alomari, M., Darus, M. and Kirmacı, U.S., Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Computers and Mathematics with Applications, 59 (2010), 225-232.

[4] Alomari, M. and Darus, M., On some inequalities Simpson-type via quasi-convex functions with applications, RGMIA Res. Rep. Coll., 13 (2010), 1, Article 8.

[5] Alomari, M. and Darus, M., Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010), 2, Article 3.

[6] Dragomir, S.S. and Pearce, C. E. M., Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385.

[7] Ion, D.A., Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.

[8] Set, E., Özdemir, M.E. and Sarıkaya, M.Z., On new inequalities of Simpson’s type for quasi-convex functions with applications, RGMIA Res. Rep. Coll., 13 (2010), 1, Article 6.

[9] Sarıkaya, M.Z., Sağlam, A. and Yıldırım, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, arXiv:1005.0451v1 (2010).

[10] Tseng, K.L., Yang, G.S. and Dragomir, S.S., On quasi convex functions and Hadamard’s inequality, RGMIA Res. Rep. Coll., 6 (2003), 3, Article 1.

[11] Yıldız, Ç., Akdemir, A.O. and Avci, M., Some Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives Absolute Values Are Quasi Convex, Submitted.

[12] Wright, E.M., An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622.

[13] Latif, M. A. and Alomari, M., On Hadamard-type inequalities for \(h\)-convex functions on the co-ordinates, International Journal of Math. Analysis, 3 (2009), no. 33, 1645-1656.

[14] Latif, M. A. and Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.

[15] Alomari, M. and Darus, M., Hadamard-type inequalities for \(s\)-convex functions, International Mathematical Forum, 3 (2008), no. 40, 1965-1975.

[16] Alomari, M. and Darus, M., Co-ordinated \(s\)-convex function in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sciences, 3 (2008), no. 32, 1557-1567.
10

[17] Alomari, M. and Darus, M., The Hadamard’s inequality for \(s \)--convex function of 2--variables on the co-ordinates, International Journal of Math. Analysis, 2 (2008), no. 13, 629-638.

[18] Özdemir, M.E., Set, E. and Sarıkaya, M. Z., Some new Hadamard’s type inequalities for co-ordinated \(m \)--convex and \((\alpha, m)\)--convex functions, Accepted.

[19] Dragomir, S.S., On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), no. 4, 775-788.

[20] Hwang, D. Y., Tseng, K. L. and Yang, G. S., Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese Journal of Mathematics, 11 (2007), 63-73.

[21] Sarıkaya, M. Z., Set, E., Özdemir, M.E. and Dragomir, S. S., New some Hadamard’s type inequalities for co-ordinated convex functions, Accepted.

[22] Bakula, M.K. and Pecaric, J., On the Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292.

[23] Dragomir, S.S. and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA (2000), Monographs. [ONLINE : http://ajmaa.org/RGMIA/monographs/hermite_hadamard.html].

[24] Greenberg, H.J. and Pierskalla, W.P., A review of quasi convex functions Reprinted from Operations Research, 19 (1971), 7.

[25] Pečarić, J., Proschan, F. and Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press (1992), Inc.

* Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey
E-mail address: emos@atauni.edu.tr

Current address: • Ağrı Ibrahim Çeşen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey
E-mail address: ahmetakdemir@agri.edu.tr

* Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey
E-mail address: yildizetiin@yahoo.com