Three new species of *Stigmatodiscus* from Mallorca (Spain)

Hermann Voglmayr 1 · Angel Pintos Amengual 2

Received: 23 July 2018 / Revised: 17 August 2018 / Accepted: 22 August 2018 / Published online: 10 September 2018 © The Author(s) 2018

Abstract

During a survey on corticolous Dothideomycetes in Mallorca, several collections with ascomata, asci, and ascospores matching the genus *Stigmatodiscus* (Stigmatodiscaceae, Dothideomycetes) were revealed, which did not fit any described species. Therefore, these collections were cultured and sequenced, and a multigene matrix of four loci (nuc18S-ITS-28S rDNA, rpb2, tef1, and tub2) was produced. Based on the results of the phylogenetic analyses of this matrix and of morphological investigations, three new species (*Stigmatodiscus labiatus*, *S. oculatus*, and *S. pinicola*) are described and illustrated, *Asterodiscus* is synonymised with *Stigmatodiscus* and the new combination *S. tamaricis* is proposed. A key to all currently known species of *Stigmatodiscus* is provided.

Keywords Ascomycota · Dothideomycetes · Multigene phylogenetic analysis · Stigmatodiscaceae · Taxonomy · 3 new species · 1 new combination

Introduction

During a study of corticolous ascomycetes of Mallorca, the second author made several collections of dothideomycetes with hysteriform to apothecial ascomata embedded in host tissue and lacking an excipulum, which showed a character combination of branched, septate, apically swollen paraphyses with dark brown incrustation, saccate, bitunicate asci, and large, brown, asymmetric, one- or three-septate ascospores with an excentric euseptum and eventually two additional distosepta with large pores, each hemispore part being surrounded by a gelatinous sheath. These characters resembled the recently described genus *Stigmatodiscus* (Voglmayr et al. 2016, 2017), but the Mallorcan collections did not match any described species. Therefore, they were isolated in pure culture; DNA sequence data of nuc18S-ITS-28S rDNA, rpb2, tef1, and tub2 were generated for phylogenetic analyses; and detailed morphological examinations were conducted. As a result, three new species of *Stigmatodiscus* were revealed, which are here described and illustrated.

Materials and methods

Morphological observations

Stereomicroscopy illustrations were captured either with a Keyence VHX-6000 system or with a Nikon SMZ 1500 stereo microscope equipped with a Nikon DS-U2 digital camera. For certain images of ascomata, the stacking software Zerene Stacker version 1.04 (Zerene Systems LLC, Richland, WA, USA) was used. Hand sections of ascomata and conidiomata were made using a razor blade and mounted in water or 3% KOH on a microscope slide, gently torn apart with a preparation needle when necessary and covered with a cover slip. Slides were examined and photographed using a Zeiss Axio Imager.A1 (Zeiss, Jena, Germany) microscope equipped with a Zeiss Axiocam 506 colour digital camera. Measurements were done with the Keyence VHX-6000, NIS-Elements D v.3.0 or Zeiss ZEN Blue Edition software packages and are reported as maxima and minima in parentheses and the range representing the mean plus and minus the standard deviation of a number of measurements given in parentheses. The specimens were deposited in the fungarium of the University of Vienna (WU).
Pure culture isolation

Mature ascomata on corticated twigs were horizontally cut using a sterile razor blade, the apothecia separated from the surrounding host tissue, transferred to a sterile drop of water on a microscope slide, torn apart with forceps to release the ascospores from ascii, which were pipetted on a 2% malt extract agar (MEA) plate supplemented with 200 mg/l penicillin G and streptomycin sulphate (Sigma-Aldrich, St. Louis, MO). Germinated ascospores were then transferred to 2% MEA or 2% corn meal agar (CMA, Sigma-Aldrich) supplemented with 2% w/v dextrose (CMD) plates, which were sealed with laboratory film and incubated at 16 or 22 °C. Cultures were deposited at the Westerdijk Fungal Biodiversity Centre, Utrecht, The Netherlands (CBS culture collection).

DNA extraction, PCR and sequencing

Growth of liquid cultures and extraction of genomic DNA was done according to Voglmayr and Jaklitsch (2011), using the DNeasy Plant Mini Kit (QIAGen GmbH, Hilden, Germany). The following sequence regions were used for identification and phylogenetic analyses: the complete nucITS region and D1 and D2 domains of nuc28S rDNA region (ITS-LSU) were amplified using the primers V9G (de Hoog and Gerrits van den Ende 1998) and LR5 (Vilgalys and Hester 1990). The nuc18S rDNA region (SSU) was amplified with primers SL1 (Landvik et al. 1997) and NS24mod (Voglmayr and Jaklitsch 2011). A ca 1.2 kb fragment of the RNA polymerase II subunit 2 (rpb2) gene was amplified using the primers fRPB2-5f and fRPB2-7cr (Liu et al. 1999). A ca 1.3–1.7 kb fragment of translation elongation factor 1-α (tef1) gene was amplified with the primers EF1-728F (Carbone and Kohn 1999) and TEF1-LLErev (Jaklitsch et al. 2005) or EF1-2218R (Rehner and Buckley 2005), and a ca 0.8 kb fragment of the beta tubulin (tub2) gene with primers T1 (O’Donnell and Cigelnik 1997) or T1HV and BtHV2r (Voglmayr et al. 2016). PCR products were purified using an enzymatic PCR cleanup (Werle et al. 1994) as described in Voglmayr and Jaklitsch (2008). DNA was cycle-sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems, Warrington) and the PCR primers; in addition, the following primers were used: ITS-LSU region: ITS4 (White et al. 1990), LR2R-A (Voglmayr et al. 2012) and LR3 (Vilgalys and Hester 1990); SSU: NS1088 (Kauff and Lutzoni 2002). Sequencing was performed on an automated DNA sequencer (ABI 3730xl Genetic Analyzer, Applied Biosystems).

Phylogenetic analyses

To reveal the phylogenetic position of the new isolates produced in the present study, a matrix of aligned nucleotide sequences from the four different phylogenetic markers (SSU-ITS-LSU, rpb2, tef1 and tub2) was produced. GenBank sequences of four taxa (Anisomeridium abianum and Megalotremis verrucosa from Monoblastiales, Dyfroolomyces rhizophorae from Dyfroolomyctales and Palawania thailandense from Palawaniaceae) were selected as outgroup according to Voglmayr et al. (2017) and the results of BLAST searches. Sequences were aligned with the server version of MAFFT (www.ebi.ac.uk/Tools/mafft) and subsequently checked and refined using BioEdit version v. 7.0.9.0 (Hall 1999). For alignment of rpb2, the alignment was translated into a protein matrix and the gap positions corrected according to the codons. The combined sequence matrix contained 6723 nucleotide positions (1770 from SSU, 1514 from ITS-LSU, 1167 from rpb2, 1417 from tef1, 855 from tub2). GenBank accession numbers of the sequences included in the phylogenetic analyses are given in Table 1.

Maximum likelihood (ML) analyses were performed with RAxML (Stamatakis 2006) as implemented in raxmlGUI 1.3 (Silvestro and Michalak 2012), using the ML + rapid bootstrap setting and the GTR+GAMMA substitution model with 1000 bootstrap replicates. The matrix was partitioned for the individual gene regions, and substitution model parameters were calculated separately for them.

Maximum parsimony (MP) analyses were performed with PAUP v. 4.0a161 (Swofford 2002), using 1000 replicates of heuristic search with random addition of sequences and subsequent TBR branch swapping (MULTREES option in effect, steepest descent option not in effect). All molecular characters were unordered and given equal weight; analyses were performed with gaps treated as missing data; the COLLAPSE command was set to NO. Bootstrap analysis with 1000 replicates was performed in the same way, but using 5 rounds of random sequence addition and subsequent TBR branch swapping during each bootstrap replicate.

Bootstrap support below 70% was considered low, between 70 and 90% medium/moderate and above 90% high.

Results

Molecular phylogeny

For S. pinicola, no tef1 could be obtained. Of the 6723 nucleotide positions, 1016 were parsimony informative (64 from SSU, 310 from ITS-LSU, 258 from rpb2, 231 from tef1 and 153 from tub2). The parsimony analyses revealed 27 MP trees 2398 steps long, one of which is shown as phylogram in Fig. 1. Tree backbone of the 27 MP trees was identical, except for minor differences within S. enigmaticus. The best tree revealed by RAxML (−ln = 20,909.518) was fully compatible with the MP strict consensus tree.
Table 1 Isolates and GenBank accession numbers of sequences used in the phylogenetic analyses; those in bold were isolated/sequenced in the present study

Taxon	Origin	Host	Voucher	Type	Isolate	GenBank accession numbers²				
1						SSU	ITS-LSU	rpb2	wcl	tub2
Anisomeridium ubianum	Fiji		Lumbsch 19845j	MPN4	GU327682	–	–	–	–	–
Dymofolomyces rhizophorae	Hawaii, Oahu			JK	GU479766	–	–	–	–	–
Megalotremis verrucosa	Colombia		Luecking 26,316	MPN104	JN887383	–	–	–	–	–
Palavannas thailandense	Thailand	Dypsis lutescens	MFLU 16–1872	H	MFLUC14–1121	KY086495	KY086493	KY086496	–	–
Stigmatodiscus enigmaticus	Austria, Wien	Acer campestrae	WU 35913	H	L64	–	KU234114	KU234127	MH756082	KU234146
S. enigmaticus	Austria, Wien	Acer monspessulanum	WU 35914	H	L69 = CBS 132036	KU234130	KU234108	KU234121	MH756078	KU234140
S. enigmaticus	Croatia, Istria	Carpinus orientalis	WU 35915	H	L68	–	KU234107	KU234120	MH756077	KU234139
S. enigmaticus	Croatia, Istria	Carpinus orientalis	WU 35916	L71	CBS 131997	–	KU234109	KU234122	–	KU234141
S. enigmaticus	Czech Republic, Morava	Acer monspessulanum	WU 35917	L64	–	KU234129	KU234106	KU234119	–	KU234138
S. enigmaticus	France, Alpes-de-Haute-Provence	Acer monspessulanum	WU 35918	L76	CBS 132037	–	KU234111	KU234124	–	KU234143
S. enigmaticus	France, Var	Acer monspessulanum	WU 35919	L75	–	KU234110	KU234123	MH756079	KU234142	
S. enigmaticus	Greece, Crete	Acer sempervirens	WU 35911	L82	–	KU234112	KU234125	MH756080	KU234144	
S. enigmaticus	Greece, Crete	Acer sempervirens	WU 35912	L83	–	KU234131	KU234113	KU234126	MH756081	KU234145
S. enigmaticus	Italy, Lazio	Acer campestrae	WU 35920	L122	–	KU23404	KU234118	–	KU234137	
S. labiatus	Spain, Mallorca	Quercus coccifera	WU 39973	H	AP6516 = CBS 144700	MH756065	MH756065	MH756074	MH756083	MH756089
S. labiatus	Spain, Mallorca	Quercus cocifera	WU 39980	H	AP141216	–	–	–	–	–
S. oculatus	Spain, Mallorca	Populus canadensis	WU 39975	H	AP10816	–	MH756067	MH756067	MH756075	MH756084
S. oculatus	Spain, Mallorca	Cistus albidus	WU 39976	H	AP231016B	–	MH756068	MH756068	MH756085	MH756085
S. oculatus	Spain, Mallorca	Olea europaea	WU 39974	H	AP161116 = CBS 144701	MH756069	MH756069	MH756090	MH756090	
S. oculatus	Spain, Mallorca	Pistacia lentiscus	WU 39977	H	AP117116	–	MH756070	MH756070	MH756087	MH756091
S. oculatus	Spain, Mallorca	Globularia alpynum	WU 39978	H	AP311216	–	MH756071	MH756071	MH756088	MH756092
S. oculatus	Spain, Mallorca	Globularia alpynum	WU 39978	H	AP311216A	–	MH756072	MH756072	–	–
S. pincicolae	Spain, Mallorca	Pinus halepensis	WU 39979	H	AP21916B = CBS 144702	MH756073	MH756073	MH756076	MH756093	
S. pinni	Austria, Niederösterreich	Pinus spinosus	WU 39545	H	L167 = CBS 142598	KX611110	KX611110	KX611109	KX611111	MH756094
S. tamaricis	Austria, Wien	Tamarix tetandra	WU 39506	H	L114 = CBS 136919	KU234128	KU234101	KU234116	KU234133	KU234135
S. tamaricis	France, Bourgogne	Tamarix gallicia	WU 39508	H	L113 = CBS 136918	KU234100	KU234115	KU234132	KU234134	
S. tamaricis	Italy, Lazio	Tamarix sp.	WU 39510	H	L124	–	KU234102	KU234117	–	KU234136

1 H holotype
2 Sources of GenBank sequences: Nelsen et al. (2009, 2011), Suetrong et al. (2009), Mapook et al. (2016), Voglmayr et al. (2016, 2017)
3 Only LSU available
In the MP and ML analyses, the Stigmatodiscascales were highly supported, and all Stigmatodiscus species for which more than one accession was sequenced received maximum support. Within Stigmatodiscus, the newly described Stigmatodiscus oculatus formed a highly supported clade with Asterodiscus tamaricis, and this clade was revealed as sister group to the other Stigmatodiscus species with high support. The newly described S. labiatus clustered with S. pruni with low (59% MP) to medium (72% ML) support, and the newly described S. pinicola was placed as sister species to the S. pruni-S. labiatus clade without support. The clade containing S. enigmaticus, S. labiatus, S. pinicola and S. pruni received maximum (MP) or high (96% ML) support, but within this clade, the sister group relationship of S. enigmaticus to the S. pinicola-S. pruni-S. labiatus subclade was unsupported.

Culture characteristics

Culture images of the three new Stigmatodiscus species grown on CMD are shown in Fig. 2. Detailed culture descriptions are given under the respective species.

Taxonomy

Stigmatodiscus labiatus Voglmayr & Pintos, sp. nov. Figs. 3, 4.
MycoBank MB 827487.

Etymology: Referring to the lip-shaped ascomata.

Ascomata hysteriform, scattered, rarely gregarious or confluent, corticolous, erumpent through the periderm, in face view (275–)380–1000(–1610) μm long, (145–)200–350(–570) μm wide (n = 51), with sides consisting of usually two, rarely three black lips (peridium), (45–)90–170(–200) μm wide (n = 50), with a narrow central slit, usually closed when dry and not exposing the blackish elongated disc. Bark tissues not visibly altered, no black line visible in bark or wood. Peridium coriaceous, pseudoparenchymatous, black, up to 130 μm thick at the apex, 17–31 μm thick at the sides, almost absent to 10 μm thick at the base, composed of small angular to rounded, dark brown, thick-walled cells 4–8 μm diam. Hamathecium composed of hyaline, septate, filiform branched paraphyses 1.7–3 μm wide, embedded in a tough hymenial gel, simple, not anastomosing, 82–130 μm long, longer than asci, swollen at their apices up to 4 μm and incrusted with dark brown granules forming an epithecium, neither staining blue in Lugol nor in Melzer’s reagent after pre-treatment with 3% KOH. Asci (67–)78–103(–108) × (41–)43–59(–71) μm (n = 18), bitunicate, broadly ellipsoid to globose, almost sessile, with a distinct apical chamber, thick-walled, typically containing 8 irregularly bi- to triseriate ascospores, very stable, fissitunicate dehiscence not observed. Ascospores (34.5–)38–43(–47.5) × (13.8–)15.5–17.5(–19.3) μm, l/w = (2.2–2.3–2.6(–2.8) (n = 84), brown, asymmetric, broadly fusiform, straight, 1-septate, strongly constricted at the septum, each hemisphere surrounded by a separate gelatinous sheath quickly dissolving in water, upper cell slightly broader, with broadly rounded ends and distinctly constricted in the middle with a ring-like thickening inside; wall finely verruculose, brown, the contents granular, usually with a large and several smaller guttules per cell.
Conidiomata on the natural substrate associated with ascomata, visible as minute black dots 80–160 μm in diam, immersed, peridermal, pycnidial, unilocular, of circular shape, opening with a central ostiole, 100–200 μm diam, marginal wall thin, ca. 10 μm, composed of subhyaline to light brown cells, wall around ostiole ca. 22–50 μm thick, composed of dark brown cells. Conidiophores short, branched up to three times. Conidiogenous cells phialidic, cylindrical, (8.5–)9.0–12.3(15.5) × (1.5–)1.7–2.3(2.7) μm (n = 50). Conidia (14–)17–20(22) × (0.9–)1.1–1.4(1.7) μm (n = 36), hyaline, falcate to semicircular, aseptate.

Cultures slow-growing, with uneven lobed margins, colony on CMD reaching 42 mm diam after 42 days at 16 °C, first whitish, turning medium to dark red brown, with sparse lighter brown aerial mycelium in the centre, reverse zonate, dark brown in the centre, with medium and dark red brown concentric zones towards the margins, entire culture black after 6 months. No conidiomata seen in pure culture.

Habitat: on dead corticated branches of Quercus and Rhamnus alaternus.

Distribution: only known from Mallorca (Spain).

Holotype: Spain, Mallorca, Es Capdellà, Finca Son Martí, on corticated dead branches of Quercus sp., 6 May 2016, A. Pintos AP6516 (WU 39973), ex holotype culture CBS 144700.

Additional specimens examined: Spain, Mallorca, Calvià, Finca Pública Es Galatzò, on corticated dead branches of Quercus coccifera, 14 Dec. 2016, A. Pintos AP141216 (WU 39980); Esporlas, on dead corticated branches of Rhamnus alaternus, A. Pintos, 20 Aug. 2018 AP20818.

Notes: The hysteriform ascomata and 1- to 3-septate ascospores of S. labiatus are similar to the closely related S. pruni, but the latter has distinctly smaller ascospores (26–35 × 11–14 μm vs. 35–48 × 14–19 μm in S. labiatus), and it occurs on a different host, Prunus spinosa. In addition, the mature ascospore cells of S. labiatus are more distinctly constricted in the middle and have a ring-like thickening inside the wall.

Stigmatodiscus oculus Voglmayr & Pintos, sp. nov.

Fig. 5.

MycoBank MB 827488.

Etymology: Referring to its eye-shaped ascomata.

Ascomata hysteriform, scattered to gregarious, corticolous, erumpent through the periderm, commonly arranged in parallel to the branch axis, in face view (160–)280–510(–880) μm long, (110–)180–300(–380) μm wide (n = 96), with sides consisting of usually two, rarely three black lips (peridium) in mutual contact, with a slit-like to almost circular central opening exposing the blackish elongated to broadly oval disc. Bark tissues not visibly altered, no black line visible in bark or wood. Peridium coriaceous, pseudoparenchymatous, dark brown to black, up to 120 μm thick at the apex, 38–55 μm thick at the sides, almost absent to 20 μm thick at the base, composed of small angular to rounded cells 3–10 μm diam. Hamathecium composed of hyaline, septate, filiform branched paraphyses 1.7–2.5 μm wide, embedded in tough hymenial gel, simple, not anastomosing, 82–123 μm long, longer than asci, swollen at their apices up to 5.5 μm and incrusted with dark brown granules forming an epithecium, neither staining blue in Lugol nor in Melzer’s reagent after pre-treatment with 3% KOH. Asci 72–84(–90) × (29–)35–49 μm (n = 10), bitunicate, clavate to pyriform, almost sessile, with a distinct apical chamber, thick-walled, typically containing 1–3 irregularly bi- to triseriate ascospores, very stable, fissitunicate dehiscence not observed. Ascospores (25.5–)27.5–31(–33) × (9.5–)10.5–12.0(–12.5) μm, l/w = (2.3–)2.5–2.7(–2.9) (n = 63), brown, asymmetric, broadly fusiform, straight, first 1-septate, developing 2 additional distosepta and becoming 3-septate with age, strongly constricted at the primary septum, weakly at secondary septa,
Fig. 3 *Stigmatodiscus labiatus*, sexual morph. **a–h** Ascomata erumpent from bark in face view. **i, j** Vertical sections of ascomata embedded in bark. **k–m** Asci. **n** Apically inflated septate paraphyses, covered by an dark brown amorphous incrustation. **o–u** Vital ascospores. All in water. Sources: **a–h, l, o–u** WU 39973 (holotype); **i–k, m, n** WU 39980. Scale bars: **a, e** 500 μm; **c, d, f–h** 200 μm; **i, j** 50 μm; **k–u** 10 μm.
secondary septa with large pores, each hemispore surrounded by a separate gelatinous sheath quickly dissolving in water, upper hemispore slightly broader, with broadly rounded ends; wall finely verruculose, brown, the contents granular, often with a large and several smaller guttules per cell.

Conidiomata on the natural substrate and in pure culture not observed.

Cultures slow-growing, with uneven margins, colony on CMD reaching 58 mm diam after 42 days at 16 °C, first whitish, soon turning dark olive brown, with abundant woolly surface mycelium, reverse dark brown to black.

Habitat: on dead corticated branches of various Mediterranean trees and shrubs.

Distribution: only known from Mallorca (Spain).

Holotype: Spain, Mallorca, Campos, Sa Rápita, on corticated dead branches of Olea europaea, 16 Nov. 2016, A. Pintos AP161116 (WU 39974), ex holotype culture CBS 144701.

Additional specimens examined: Spain, Mallorca, Puig de Ros, on dead corticated branches of Populus canadensis, 10 Aug. 2016, A. Pintos AP10816 (WU 39975); Calvià, Playa Portals Vells, on dead corticated branches of Cistus albidus, 23 Oct. 2016, A. Pintos AP231016B (WU 39976); Campos, Sa Rápita, on dead corticated branches of Pistacia lentiscus, 17 Nov. 2016, AP171116 (WU 39977), Calvià, Portals Vells, on dead corticated branches of Globularia alypum, 31 Dec. 2016, AP311216 and AP311216A (WU 39978).

Notes: Stigmatodiscus oculatus is evidently polyphagous as it has been found on corticated twigs of various shrubs and trees. Within the Stigmatodiscus species with four-celled ascospores, it is well distinct by ascospores smaller than 33 × 12.5 μm.

Stigmatodiscus pinicola Voglmayr & Pintos, sp. nov.

Fig. 6 and 7.

MycoBank MB 827489.

Etymology: Referring to its growth on *Pinus*.

Ascomata hysteriform to apotheciod, scattered, corticolous, initially covered by bark, erumpent through the periderm, in face view (205–)255–410(–600) μm long, (145–)180–285(–375) μm wide (n = 30), with sides consisting of usually 2–3 black lips (peridium) not in mutual contact,
Fig. 5 *Stigmatodiscus oculatus*, sexual morph. a–h Ascomata erumpent from bark in face view. i, j Vertical sections of ascomata embedded in bark. k, l Asci. m Apically inflated septate paraphyses, covered by a dark brown amorphous incrustation. n Ascoma margin in transverse section. o–v Ascospores (o immature, p–v mature; o–q vital r–v dead). All in water, except k–n, u, v in 3% KOH. Sources: a, c, e, k–n, u, v WU 39977; b, d, f–i, r–t WU 39974 (holotype); j, o–q WU 39975. Scale bars: a, b 500 μm; c–h 200 μm; i, j 50 μm; k–v 10 μm
Fig. 6 *Stigmatodiscus pinicola*, sexual morph (WU 39979, holotype). a–j Ascomata erumpent from bark in face view. k Vertical section of ascoma. l Ascoma margin in transverse section. m, n Asci. o Apically inflated septate paraphyses, covered by an dark brown amorphous incrustation. p–v Ascospores (p–u vital, v dead). All in water, except l, o, v in 3% KOH. Scale bars: a 500 μm; b–k 100 μm; m, n 20 μm, l, o–v 10 μm.
with a slit-like to circular central opening exposing the blackish elongated to circular disc. Bark tissues not visibly altered, no black line visible in bark or wood. Peridium coriaceous, pseudoparenchymatous, dark brown, up to 70 μm thick at the apex, 15–25 μm thick at the sides, almost absent to 20–30 μm thick at the base, composed of small angular to rounded brown cells 3–9 μm diam. Hamathecium composed of hyaline, septate, filiform branched paraphyses 1.5–3.5 μm wide, embedded in tough hymenial gel, simple, not anastomosing, ca. 150–220 μm long, longer than asci, swollen at their apices up to 7 μm and incrusted with dark brown granules forming an epithecium, neither staining blue in Lugol nor in Melzer’s reagent after pre-treatment with 3% KOH. Asci (104–111×135–138) × 47–54(–57) μm (n = 10), bitunicate, broadly fusiform to ellipsoid, almost sessile, with a distinct apical chamber, thick-walled, typically containing 8 irregularly bi- to triseriate ascospores, very stable, fissitunicate dehiscence not observed. Ascospores (40.5–43.5–50(–52.5) × (13.5–14.5–16.8(–18.0) μm, l/w = (2.6–2.8–3.2(–3.5) (n = 45), brown, asymmetric, fusiform, straight, first 1-septate, developing 2 additional distosepta and becoming 3-septate with age, strongly constricted at the primary septum, weakly at secondary

Fig. 7 *Stigmatodiscus pinicola*, asexual morph (WU 39979, holotype).
a–c Conidiomata (pycnidia) immersed in periderm in vertical section; in c through ostiole.
d–h Conidiophores with densely aggregated phialides.
i–v Falcate to semicircular conidia. All in water, except **b, c** in 3% KOH. Scale bars: **a–c** 20 μm; **d–h** 10 μm; **i–v** 5 μm.
septa, secondary septa with large pores, each hemispore surrounded by a separate gelatinous sheath, upper hemispore slightly broader, with subacute to rounded ends, end cells lighter brown at maturity; wall finely verruculose, brown, the contents granular, often with a large and several smaller guttules per cell.

Conidiomata on the natural substrate associated with ascotama, visible as minute black dots 110–200 μm in diam, immersed, peridermal, pynidal, clypeate, unilocular, of circular shape, opening with a central ostiole, 140–230 μm diam, 130–210 μm high, marginal wall ca. 14–25 μm thick, of light brown cells, wall around ostiole ca. 30–60 μm thick, composed of brown cells. Ostiole dark brown, ca. 20–25 μm wide. Conidiophores short, branched up to two times. Conidiogenous cells phialidic, cylindrical, (9.5–12.0–17.2–21.2) × (1.9–2.2–2.9–3.0) μm (n = 30). Conidia (18–19–25(–28) × 1.1–1.6 μm (n = 30), hyaline, falcate to semicircular, aseptate.

Cultures slow-growing, with uneven margins, colony on CMD reaching 49 mm diam after 42 days at 16 °C, first whitish, then turning black, with sparse grey aerial mycelium, reverse black.

Habitat: on dead corticated branches of Pinus halepensis.

Distribution: only known from Mallorca (Spain).

Holotype: Spain, Mallorca, Es Capdellà, Castell Son Claret, on corticated dead branches of Pinus halepensis, 21 Sep. 2016, A. Pintos AP21916B (WU 39979), ex holotype culture CBS 144702.

Notes: Stigmatodiscus pinicola is well characterised by the small apothecoid-hysteriform ascotama with usually circular outline and indistinct lips and by its host, Pinus halepensis. Stigmatodiscus enigmaticus and S. tamaricis also have four-celled ascospores of similar size but have different hosts; in addition, S. enigmaticus differs by larger ascotama (0.4–1.5 vs. 0.2–0.4(–0.6) mm) which are surrounded by bark flaps, and S. tamaricis by ascotama long remaining (sub)hyaline and by paraphyses tips covered by an olivaceous, emerald to deep blue amorphous incrustation (Voglmayr et al. 2016).

Stigmatodiscus tamaricis (Voglmayr, Gardiennet & Jaklitsch) Voglmayr & Jaklitsch, comb. nov.

MycoBank MB 827490.

Basionym: Asterodiscus tamaricis Voglmayr, Gardiennet & Jaklitsch, Fungal Diversity 80: 276 (2016).

Specimen examined: Spain, Mallorca, Calvià, Magalluf, on corticated dead branches of Tamarix sp., 9 Sep. 2016, A. Pintos AP9916A.

Notes: With the addition of Stigmatodiscus oculatus, Asterodiscus tamaricis becomes phylogenetically embedded within Stigmatodiscus and is therefore transferred to the latter. Stigmatodiscus tamaricis is widely distributed on Tamarix spp. in Central and Southern Europe, and the specimen cited above is the second record of the species for Mallorca; the first Mallorcan record was recently published in Siquier et al. (2018).

Key to the species of Stigmatodiscus

1. Ascospores at maturity with a primary septum, only very rarely developing two additional distosepta, brown; ascotama distinctly hysteriform..2

 Ascospores at maturity with a primary septum and two additional distosepta, hyaline or brown; ascotama apothecioid or hysteriform...3

2. Ascospores (26.5–29–32.5(–34.5) × (10.8–11.5–12.7–13.8) μm; on Prunus spinosa ... S. pruni

 Ascospores (34.5–38–43(–47.5) × (13.8–15.5–17.5–19.3) μm; on Mediterranean Quercus spp. .. S. labiatus

 Mature ascospores brown; paraphyses tips covered by a dark brown amorphous incrustation; on other hosts..............................4

3. Mature ascospores in vital asci hyaline to light brown, becoming dark brown after ejection, (33.5–40–45(–49) × (12.8–)14.3–16.5(–17.7) μm; ascotama apothecioid, circular; paraphyses tips covered by an olivaceous, emerald to deep blue amorphous incrustation; on Tamarix spp. ... S. tamaricis

 Ascospores larger than 40 × 13 μm, ascotama mostly circular, apothecioid ... 5

4. Ascospores (25.5–27.5–31(–33) × (9.5–10.5–12.0–12.5) μm; ascotama hysteriform; polypha-

 gous... S. oculatus

 Ascomata 0.4–1.5 mm diam, surrounded by irregular bark flaps; ascospores (46–)54–64 (–73) × (16.5–)20.0–24.3 (–32.5) μm; on Acer sp.; Carpinus orientalis.. S. enigmaticus

 Ascomata 0.2–0.4(–0.6) mm diam, not surrounded by bark flaps; ascospores (40.5–)43.5–50(–52.5) × (13.5–)14.5–16.8(–18.0); on Pinus halepensis.......................... S. pinicola

Discussion

Voglmayr et al. (2016) established the two genera Asterodiscus and Stigmatodiscus within the new family and order Stigmatodiscaceae and Stigmatodiscales, respectively, primarily based on differences in ascotamathe shape and hyaline vs. brown ascospores. The morphological boundaries and phylogenetic differences between the two genera were considered distinct enough for establishing two genera. This concept was already challenged by Voglmayr et al. (2017), who described S. pruni, another new species with brown but two-
celled ascospores, which differed substantially from the generic type, *S. enigmaticus*, by distinctly hysteriform ascomata.

The results of the current phylogenies necessitate a re-evaluation of the genus *Asterodiscus*, because it forms a highly supported clade with *Stigmatodiscus oculatus*. Whereas the ascospore shape and septation of *S. oculatus* are similar to *A. tamaricis*, the brown ascospores are indicative of *Stigmatodiscus*. Therefore, if the genus *Asterodiscus* were maintained, this would necessitate an emendation of the genus. However, considering the morphology of the new species described since the study of Voglmayr et al. (2016), the morphological differences between *Asterodiscus* and *Stigmatodiscus* seem insufficient to maintain them as distinct genera, which are therefore here synonymised.

None of the newly described species produced asexual morphs in pure culture; however, in *S. labiatus* and *S. pinicola*, an asexual morph was found tightly associated with the sexual morphs on the natural substrate. As conidia did not germinate on MEA or CMD, the connection with the sexual morphs could not be experimentally proven. However, we are confident that the associated asexual morphs belong to the respective species, as the morphology of their conidiomata as well as their conidial ontogeny, size, and shape fully match the asexual morph of *S. enigmaticus*, which was documented from natural substrate as well as pure cultures originating from ascospores (Voglmayr et al. 2016), proving the connection.

It is astonishing that within a small area, three new species of *Stigmatodiscus* could be found. It remains so far unclear whether the new species are endemic to Mallorca, or whether they co-occur with their widely distributed hosts in other regions the Mediterranean. This once again demonstrates that in the Mediterranean, the species diversity of corticolous ascomycetes is very incompletely studied, and that many species still await description (e.g. Voglmayr andJaklitsch 2011; Jaklitsch and Voglmayr 2011, 2014; Voglmayr et al. 2016; Jaklitsch et al. 2014, 2015, 2018a, b; Galán et al. 2015; Checa et al. 2015). Considering that the Mediterranean is amongst the main biodiversity hotspots of the world (Myers et al. 2000), additional species of *Stigmatodiscus* are likely to be detected in this species-rich area.

References

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

Checa J, Jaklitsch WM, Blanco MN, Moreno G, Tello S et al (2015) Two new species of *Thyronectria* from Mediterranean Europe. Additions to genus. Mycologia 107:1314–1322

Galán R, Checa J, Blanco MN, Platas G, Tena R et al (2015) Taxonomic position of the genus *Bicornispora* and the appearance of a new species *Bicornispora sediflusa*. Mycologia 107:793–807

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis, program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

de Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41:183–189

Jaklitsch WM, Voglmayr H (2011) *Nectria eustromatica* sp. nov, an exceptional species with a hypocreaceous stroma. Mycologia 103:209–218

Jaklitsch WM, Voglmayr H (2014) Persistent hamathecial threads in the *Nectriaceae*. Hypocrea: *Thyronectria* revisited and re-instated. Persoonia 33:182–211

Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) *Hypocreovoglmyarrii* sp. nov. from the Austrian Alps represents a new phylogenetic clade in *Hypocreales* / Trichoderma. Mycologika 97:1365–1378

Jaklitsch WM, Fournier J, Rogers JD, Voglmayr H (2014) Phylogenetic and taxonomic revision of *Lopadostoma*. Persoonia 32:52–82

Jaklitsch WM, Fournier J, Dai DQ, Hyde KD, Voglmayr H (2015) *Valsaria* and the Valsariaceae. Fungal Divers 73:159–202

Jaklitsch WM, Checa J, Blanco MN, Olariaga I, Tello S et al (2018a) A preliminary account of the Cucurbitariaceae. Stud Mycol 90:174–189

Jaklitsch WM, Fournier J, Voglmayr H (2018b) Two unusual new species of Pleosporales: *Anteoglossum rubescens* and *Atrocalyx asteriensis*. Sydowia 70:129–140

Kauff F, Lutzoni F (2002) Phylogeny of *Gyalectales* and *Ostropales* (*Ascomycota, Fungi*): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

Landvik S, Egger K, Schumacher T (1997) Towards a subordinal classification of the *Pezizales* (*Ascomycota*): phylogenetic analyses of SSU rDNA sequences. Nordic J Bot 17:403–418

Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

Mapook A, Hyde KD, Hongsanan S, Phukhamsakda C, Li JF et al (2016) Palawaniaceae fam. nov., a new family (Dothideomycetes, Ascomycota). Mycoscopia 7:1732–1745

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

Nelson MP, Lücking R, Grube M, Mbatchou JS, Muggia L et al (2009) Unraveling the phylogenetic relationships of lichenised fungi in Dothideomycetes. Stud Mycol 64:135–144

Nelson MP, Lücking R, Mbatchou JS, Andrew CJ, Spielmann AA et al (2011) New insights into relationships of lichen-forming Dothideomycetes. Fungal Divers 51:155–162

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Mol Phylogenet Evol 7:103–116

Rehner SA, Buckley E (2005) *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* telemorphs. Mycologia 97:84–98

Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337
Siquier JL, Salom JC, Vega M, Pintos A, Llistosella J (2018) Contribució al coneixement micològic de les Illes Balears (Espanya). XXIV. Rev Catalana Micol 39:3–22
Stamatakis E (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690
Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkman-Kohlmeyer B et al (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173
Swoford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246
Voglmayr H, Jaklitsch WM (2008) Prosthecium species with Stegonsporium anamorphs on Acer. Mycol Res 112:885–905
Voglmayr H, Jaklitsch WM (2011) Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae). Fungal Divers 46:133–170
Voglmayr H, Rossman AY, Castlebury LA, Jaklitsch W (2012) Multigene phylogeny and taxonomy of the genus Melanconia (Diaporthales). Fungal Divers 57:1–44
Voglmayr H, Gardiennet A, Jaklitsch WM (2016) Asterodiscus and Stigmatodiscus, two new apothecial dothideomycete genera and the new order Stigmatodiscales. Fungal Divers 80:271–284
Voglmayr H, Fournier J, Jaklitsch WM (2017) Stigmatodiscus pruni, a new dothideomycete with hysteriform ascomata. Sydowia 69:29–35
Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355
White TJ, Bruns T, Lee S, Taylor J (1990) Amplified and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322