Muddled mechanisms: recent progress towards antimalarial target identification [version 1; referees: 2 approved]

Rachel L. Edwards¹, Audrey R. Odom John¹,²

¹Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
²Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA

Abstract
In the past decade, malaria rates have plummeted as a result of aggressive infection control measures and the adoption of artemisinin-based combination therapies (ACTs). However, a potential crisis looms ahead. Treatment failures to standard antimalarial regimens have been reported in Southeast Asia, and devastating consequences are expected if resistance spreads to the African continent. To prevent a potential public health emergency, the antimalarial arsenal must contain therapeutics with novel mechanisms of action (MOA). An impressive number of high-throughput screening (HTS) campaigns have since been launched, identifying thousands of compounds with activity against one of the causative agents of malaria, Plasmodium falciparum. Now begins the difficult task of target identification, for which studies are often tedious, labor intensive, and difficult to interpret. In this review, we highlight approaches that have been instrumental in tackling the challenges of target assignment and elucidation of the MOA for hit compounds. Studies that apply these innovative techniques to antimalarial target identification are described, as well as the impact of the data in the field.
Introduction

Due to the concerted efforts to reduce malaria morbidity and mortality, it is estimated that since 2000, more than 663 million clinical cases and 6.2 million deaths have been averted in sub-Saharan Africa. The drastic reduction in malaria burden is largely due to the implementation of infection control measures, including the adoption of the highly effective artemisinin-based combination therapies (ACTs). In Africa alone, ACTs save approximately 100,000 lives each year. Despite these successes, malaria remains a major threat to public health. Annually, 3.2 billion people are at risk of infection and more than 400,000 die, with young children and pregnant women being disproportionately affected. While ACTs remain the cornerstone for global malaria treatment, recent reports indicate that current regimens are failing. Thus, new classes of antimalarial compounds are desperately needed to combat emerging and existing drug-resistant parasites, if the progress made in the last decade is not to be undone.

To this end, over 6 million compounds have been screened against Plasmodium falciparum, the etiological agent responsible for the bulk of malaria deaths. Initially, high-throughput screening (HTS) campaigns concentrated on the intraerythrocytic stage of P. falciparum, which resulted in an unprecedented number of hits with the potential to treat the symptomatic stage of the disease. Antimalarials that target the liver stages and the asymptomatic gametocyte stages will be critical as priorities shift from treatment towards local elimination. Thus, recent endeavors have focused on screening agents against these more tenacious stages of the P. falciparum life cycle. As a result of the collaborative efforts between academia and the pharmaceutical industry, more than 25,000 compounds with half-maximal inhibitory concentration (IC₅₀) activity ≤ 1 μM against P. falciparum now await target identification and further characterization.

Estimates suggest that 7% of drugs approved by the US Food and Drug Administration (FDA) lack a defined target, and approximately 18% lack a definitive mechanism of action (MOA). While assigning the target and MOA of a compound are clearly not essential for its development, this information is often crucial in hit-to-lead optimization. For example, target identification informs medicinal chemistry to improve selectivity and/or pharmacokinetic and toxicity profiles, without sacrificing potency. A molecular understanding of compound action may also direct dosing, aid in partner drug selection, and assist with drug resistance surveillance. Finally, once a target has been identified and validated, inhibitors may be instrumental in probing essential parasite biology.

Elucidating the molecular targets responsible for the phenotypic effects observed in cell-based assays is often one of the most challenging and time-consuming steps in drug discovery. For P. falciparum, MOA assignment for first-in-class drugs has traditionally been quite difficult, as almost 50% of the genome lacks annotation, transcriptional profiling has had varying results, and heterologous protein expression remains problematic. Moreover, the majority of known antimalarial agents have pleiotropic effects and exhibit polypharmacology, a likely outcome for many of the identified hits that will further complicate target assignment. Often, tedious biochemical, genetic, and cellular studies are needed to deeply understand the MOA of a compound, as demonstrated by many attempts to identify the targets and biological effects of the elusive antimalarials atovaquone and artemisinin. To overcome these barriers, a number of target deconvolution strategies have been developed, including resistance screening, transcriptional profiling, proteomic analysis, and metabolic analysis. In this brief review, we describe the recent advances in experimental target identification in P. falciparum and present examples that exemplify each method. Of note, in silico approaches of target assignment have been covered separately in recent reviews.

Genetic approaches of target identification

Resistance screening

To discern the target and the MOA of a novel antimalarial agent, one method that has been commonly employed is in vitro evolution of resistant parasites. Drug pressure is applied to cloned P. falciparum cultures either at a single concentration or in a stepwise fashion. In a recent large study to develop resistant mutants against many novel antimalarials, de novo resistance appears to occur rapidly in more than half of such attempts.

Resistant parasites are then cloned, and the genomic DNA is isolated and analyzed by next-generation sequencing to identify genetic changes associated with resistance. The genomes of the parental and mutant parasite lines are compared to identify single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Propagation of drug-resistant P. falciparum has successfully assigned a number of known and proposed antimalarial targets, including 1-deoxy-D-xylulose 5-phosphate reductoisomerase, cytochrome bc1, apicoplast-localized and cytoplasmic isoleucyl tRNA synthetase, signal peptide peptidase, lysyl-tRNA synthetase, dihydroorotate dehydrogenase, prolyl-tRNA synthetase, and the P-type ATPase 4 (PfATP4).

Remarkably, genetic changes in PfATP4 have been found to associate with resistance to multiple antimalarial chemotypes (spirinodolones, pyrazoles, dihydroisoquinolones, MMV722, MMV011567, and MMV007275). Currently, the reason for this commonly observed, PfATP4-associated resistance is unclear, but several mechanisms have been proposed.

Caution is required when assigning compound MOA based on in vitro resistance selection and associated genetic changes. Multiple examples in malaria parasites and other organisms have shown that mutations in genes distinct from the molecular target may yet confer resistance. For example, mutations in the P. falciparum multi-drug resistance transporters, such as MDR1, mediate resistance to multiple classes of antimalarials due to compound transport. Resistance alleles may reveal related parasite biology, as in work by Guggisberg et al., which demonstrated that a mutation in a metabolic regulator, HAD1, confers resistance to fosmidomycin (FSM) due to changes in intracellular metabolite levels. These genetic changes would arguably have been far more difficult to interpret if the target of FSM (PfDXR) had not already been well established. While the generation of resistant mutants has been instrumental for target validation in P. falciparum, neither genetic nor chemical methods alone can definitively conclude that an enzyme, metabolic pathway, or cellular function is indeed the target; thus, complementary approaches must be utilized.
Chemogenomic profiling

To date, global chemical-genetic methods for drug target identification have been relatively underutilized in *P. falciparum*. Chemogenomic profiling represents a powerful tool that deduces MOA by comparing alterations in drug fitness profiles within a panel of mutants84,65. In 2015, the first chemogenomic screen of *P. falciparum* was performed with a library of 71 random pigment transposon insertion mutants and 53 antimalarial drugs and metabolic inhibitors64. The antimalarial drug sensitivities were monitored in the mutant parasite lines, and thus the chemogenomic interactions and the relationships between drug pairs were discerned64. Interestingly, a cluster of seven mutants were identified that were sensitive to artemisinin, including one with a mutation in the K13-propeller gene that is associated with resistance84,66,67. In a second study by Aroonsri et al., reverse-genetic chemogenomic profiling was used to uncover novel antimalarial agents that target dihydrofolate reductase-thymidylate synthase (DHFR-TS)68. By screening a small compound library, two novel DHFR-TS inhibitors (MMV667486 and MMV667487) were identified with activity against blood-stage *P. falciparum*. Presumably, additional DHFR-TS inhibitors could be discovered by screening larger, more diverse chemical libraries65. Together, the aforementioned studies demonstrate the utility of chemical-genetic approaches in target assignment and pave the way for additional chemogenomic profiling in *P. falciparum*.

Target predictions via transcriptional analysis

Monitoring the global changes in gene expression may reveal regulatory and metabolic networks affected by drug treatment84. Thus, expression data may help elucidate the MOA of a drug and facilitate the characterization of unannotated genes84. Unfortunately, transcriptional profiling of drug-treated *P. falciparum* has been met with mixed results85. Several studies reported that expression changes are limited following antimalarial treatment, suggesting that malaria parasites are transcriptionally hard-wired3,34-36. Conversely, other studies have shown that chemical perturbations produce transcriptional responses in the expected target biological pathways70-71.

Recent work from Siwo et al. profiled the effect of 31 chemically and functionally diverse small molecules on *P. falciparum*11. By building a series of controls into their study design and by incorporating several normalization steps into their analysis, the transcriptional responses induced by each drug were successfully disentangled11. This novel approach not only identified transcriptional changes in expected target pathways but also provided evidence that artemisinin targets cell cycle and lipid metabolism, consistent with previous data74,75. Further, the MOA were predicted for several HTS-selected compounds by correlating the connections identified in the small molecule-Gene Ontology (GO) network with the functions of genes located in their quantitative trait locus (QTL)11,24. Importantly, the study explains why previous gene expression studies failed to tease out drug-specific responses and demonstrates that transcriptional profiling can capture the complexity of drug effects and accurately assign drug targets.

Proteomic approaches of target assignment

Despite the trove of information that can be gleaned from using DNA and RNA analyses to identify drug targets, genomic methods alone are insufficient to capture the total cellular effects of a given antimalarial84. *P. falciparum* has approximately 5,300 protein-encoding genes64,86. In theory, monitoring the global proteomic changes following drug treatment may inform on the function, expression, localization, interacting partners, and regulation of every protein, thus providing clues to compound MOA87. Conventional proteomic methods have been used for drug target identification in *P. falciparum*. For example, mass spectrometry (MS) was used to analyze alterations in the parasite proteome following chloroquine or artemisinin treatment88, two-dimensional gel electrophoresis (2-DE) and tandem MS were used to identify protein changes in chloroquine-treated *P. falciparum*89, and finally isobaric tags for absolute and relative quantification (iTRAQ) and two-dimensional fluorescence gel electrophoresis (2D-DIGE) were used to monitor protein expression in doxycycline-treated parasites90. More recently, 2-DE and tandem MS identified proteins differentially expressed following treatment with quinine, mefloquine, or the natural product diosgenone91. While these traditional methods can provide useful information regarding global proteomic changes, it should be mentioned that a major limitation of these techniques is that low-abundance proteins may be outside the detection limits.

Chemical proteomics

The emerging field of chemical proteomics uses synthetic chemistry to design and generate probes to identify small-molecule–protein interactions92,93. This global proteomic approach detects interacting partners via MS-based affinity chromatography, and interactions are then mapped to signaling and metabolic pathways92. Applications include characterizing drug targets, deducing protein function, and uncovering off-target effects92,93. Chemical proteomic techniques are separated into two classifications: (1) activity-based protein profiling (ABPP), which monitors enzyme activities, or (2) compound-centric approaches, which reveal direct molecular interactions between compounds and targets92,94. Both methods provide broad, unbiased analyses and have been successfully applied to antimalarial discovery research.

A typical chemical strategy is synthesis of compound analogs to incorporate a “click” handle to facilitate drug target identification and validation in *P. falciparum*. For example, a bifunctional compound based on the clinical candidate albitalizolium was synthesized that was photocatalytically taggable95. MS identified a discrete list of potential drug targets in *P. falciparum*, while bioinformatic and interactome analyses were used to predict protein functions96. As albitalizolium inhibits phospholipid metabolism, most of the target proteins are involved in lipid metabolic activities96. A number of surprising targets were also uncovered, such as proteins involved in vesicular budding and transport functions, thereby demonstrating the utility of the method96. Further, in work by Wang et al., an artemisinin analog was engineered with a “clickable” alkyne tag that was coupled with either a biotin moiety for protein target identification...
or a fluorescent dye that would enable the activation mechanism of the drug to be monitored89. This dual chemical proteomics approach identified 124 putative direct targets of artemisinin, 33 of which had been proposed previously as antimalarial drug targets86. In a subsequent study, a panel of activity-based probes was generated that incorporated the endoperoxide scaffold of artemisinin as a warhead to alkylate the molecular targets in *P. falciparum*. Tagged proteins were then isolated and identified by liquid chromatography (LC)-MS/MS92. Importantly, alkylated targets were identified in glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, supporting the promiscuous activity of artemisinin86,93,97.

Methods of target identification have been developed that do not rely on chemical modification of the investigative compound, including the cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), and thermal proteome profiling (TPP)89. While successful identification is largely dependent on the abundance of the drug target, these methods are less time consuming, avoid diminishing or altering drug activity, and can capture both the on- and off-target proteomic effects on a global scale89.

Recently, a DARTS assay was conducted to identify targets for Torin 2, a lead compound with low nM activity against *P. falciparum* gametocytes99. Three gametocyte proteins (phosphoribosylpyrophosphate synthetase, PF3D7_1325100; aspartate carbamoyltransferase, PF3D7_1344800; and a transporter, PF3D7_0914700) were identified as putative targets for Torin 2, demonstrating the utility of label-free, chemical proteomic approaches in *P. falciparum*. We anticipate that due to their unbiased nature and versatility, future antimalarial drug discovery ventures will incorporate comparable technologies into the pipeline, thereby accelerating target assignment.

Target identification through metabolite analysis

Small metabolic perturbations can have a dramatic impact on critical cellular processes such as cell division, differentiation, and stress response pathways. Accordingly, a number of antimalarial agents in clinical development target metabolic enzymes, including the enzymes of the electron transport chain (ELQ-300, GSK932121, DSM265)90-92, the methylerythritol phosphate (MEP) pathway (FSM, MMV008138)93-96, the folate biosynthetic pathway (P218)97, and phosphoinositide metabolism (MMV390048)98. It is predicted that many of the active compounds uncovered by HTS projects will also have metabolic targets. To expedite target assignment of the novel drugs and drug scaffolds identified via HTS projects, metabolomic strategies are increasingly being incorporated into the drug-screening pipeline.

Targeted metabolite profiling

When candidate targets are known, researchers may focus their efforts by analyzing only a subset of metabolites; however, this requires prior knowledge of the enzymes, their kinetics and end products, and the established pathways in which they participate99. Targeted methodologies facilitate the enrichment of low-abundance analytes and incorporate the use of internal standards to permit quantitative metabolite analysis99. Such metabolite profiling has been successfully employed to identify and validate a number of antimalarial drug targets. Notable examples include identification of targets for the novel quinolone CK-2-68 (NADH:ubiquinone oxidoreductase and cytochrome bc\(_1\)), eflopinthine (ornithine decarboxylase), MDL73811 (AdoMetDC), and a second target for the MEP pathway inhibitor FSM90,94,95,99,111.

More recently, targeted metabolite analysis was also used to characterize the enzymes of the NAD\(^+\) salvage pathway in *P. falciparum*112. By tracing \(^1^C\)-labeled compounds via mass spectrometry, O’Hara et al. demonstrated that parasites scavenge exogenous niacin from their host112. Nicotinate mononucleotide adenyllyltransferase (PtNMNAT) enzyme within the pathway was required for NAD\(^+\) metabolism and, further, the *P. falciparum* enzyme was similar to bacterial NMNATs112. Parasites were then screened against a panel of bacterial NMNAT inhibitors and a compound with a minimum inhibitory concentration (MIC) <1 μM against ring-stage *P. falciparum* was identified, validating NMNATs as an inhibitable drug target112.

Metabolomics

In contrast, untargeted metabolite analysis may be used to perform a global survey of the metabolic fluctuations induced by drug treatment. Metabolomic-based technologies measure the small molecule repertoire of the cell in response to a stimulus, such as drug treatment111,111. The resulting metabolic signature reveals the metabolites and pathways that are perturbed and, accordingly, assists with target identification100. Moreover, metabolomic strategies are especially useful in characterizing drugs that impact multiple targets and identifying any off-target drug effects114. It is important to note that extraction efficiencies, separation methods, and sample degradation can greatly influence the chemical diversity and concentrations of the metabolites present114,115. In addition, many metabolite features within a sample will remain unassigned, as current databases contain a small number of identified compounds114,116. While experimental techniques and metabolite identification methods have greatly advanced in recent years, untargeted metabolomic approaches for determining MOA remain limited.

Metabolomics in *P. falciparum* is arguably in its infancy. However, two new studies have demonstrated the utility of unbiased metabolite analysis in drug discovery. First, a dual gas chromatography (GC)-MS and LC-MS approach was used to map the metabolic changes induced by known antimalarial agents in blood-stage parasites117. Although the MOA was confirmed for a number of clinical agents, metabolomics data uncovered that dihydroartemisinin (DHA) not only disrupts hemoglobin catabolism but also perturbs pyrimidine biosynthesis31. The authors then used their untargeted MS approach to characterize a novel antimalarial, Torin 2, as an inhibitor of hemoglobin catabolism31.

In a second study, the total lipid landscape was surveyed during *P. falciparum* blood-stage development116. In addition to identifying ten new lipid classes and confirming the essentiality of the prominent lipid classes in the parasite, the authors tested a panel of compounds known to target lipid metabolisms116. Several inhibitors
had low micromolar activity against asexual *Plasmodium falciparum* (CAY10499, Orlistat, DL-threo-1-phenyl-2-palmitoylamo-no-3-morpholino-1-propanol, GW4869, epoxiquinone, and N,N-dimethylsphingosine), suggesting that the lipid metabolic enzymes are possible drug targets\(^6\). Taken together, these two influential studies demonstrate that integration of metabolomics into the drug discovery pipeline will be crucial for accelerating target assignment.

Concluding remarks

In the past decade, the research and development portfolio of antimalarial agents has expanded, with approximately 20 new drugs now at various stages of development\(^1\). Considerable time, effort, and cooperation between academia and industry have led to the identification of 25,000 hit compounds, many of which may prove inevitable and resistance development is expected\(^1\). Assignment for a novel drug demands that innovative approaches to successful therapeutics and cooperation between academia and industry have led to the identification of 25,000 hit compounds, many of which may prove inevitable and resistance development is expected\(^1\). The hope of catalyzing drug discovery is almost certainly required for target assignment and MOA identification in the *P. falciparum* drug discovery pipeline.

Author contributions

All authors were involved in the drafting and revision of the manuscript and have agreed to the final content.

Competing interests

The authors declare that they have no competing interests.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. Bhattacharjee S, Weiss DJ, Cameron E, et al.: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2016; 526(7572): 207–11. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
2. Kong LY, Tan RX: Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep. 2015; 32(12): 1617–21. PubMed Abstract | Publisher Full Text
3. World Health Organization: World malaria report. 2015. Reference Source
4. Noedl H, Se Y, Schaecher K, et al.: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008; 359(24): 2619–20. PubMed Abstract | Publisher Full Text
5. Dondorp AM, Nosten F, Yi P, et al.: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361(5): 455–67. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
6. Roberts L: Malaria wars. Science. 2016; 352(6284): 398–402, 404–5. PubMed Abstract | Publisher Full Text
7. Saunders DL, Vanachayangkul P, Lon C: Dihydroartemisinin-piperazine failure in Cambodia. N Engl J Med. 2014; 371(5): 484–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation
8. World Health Organization: Status report on artemisinin and ACT resistance. 2015. Reference Source
9. Corey VC, Lukens AK, Ishvan ES, et al.: A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016; 7: 11901. PubMed Abstract | Publisher Full Text | Free Full Text
10. Wells TN, Hoefl van Huisduijnen R, van Voorhis WC: Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015; 14(6): 462–42. PubMed Abstract | Publisher Full Text | F1000 Recommendation
11. Plouffe D, Brinker A, McMama G, et al.: In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A. 2008; 105(28): 9309–64. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
12. Gamo FJ, Sanz LM, Vidal J, et al.: Thousands of chemical starting points for antimalarial lead identification. Nature. 2010; 465(7296): 305–10. PubMed Abstract | Publisher Full Text | F1000 Recommendation
13. Guiguerned WA, Shelat AA, Bouch D, et al.: Chemical genetics of Plasmodium falciparum. Nature. 2010; 465(7296): 311–5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
14. Spangenberg T, Burrows JN, Kowalczyk P, et al.: The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One. 2013; 8(6): e62906. PubMed Abstract | Publisher Full Text | Free Full Text
15. Pèrez-Moreno G, Cantarini J, Sánchez-Carrasco P, et al.: Discovery of new compounds active against Plasmodium falciparum by high throughput screening of microbial natural products. PLoS One. 2016; 11(1): e0145812. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
16. Zhang J, Bowling JJ, Smithson D, et al.: Diversity-oriented natural product platform identifies plant constituents targeting Plasmodium falciparum. Malar J. 2016; 15(1): 270. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
17. Avery VM, Bashyam S, Burrows JN, et al.: Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar J. 2014; 13: 190. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
18. Meister S, Plouffe DM, Kuhnel KL, et al.: Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011; 334(6061): 1372–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
19. Derbyshire ER, Prudêncio M, Mota MM, et al.: Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci U S A. 2012; 109(22): 8511–6. PubMed Abstract | Publisher Full Text | Free Full Text
20. Raphemot R, Lafuente-Monasterio MJ, Gamo-Benito FJ, et al.: Discovery of dual-stage malaria inhibitors with new targets. Antimicrob Agents Chemother. 2015; 60(3): 1430–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
drug discovery. Trends Parasitol. 2007; 23(12): 589–95.
Published Abstract | Publisher Full Text | Free Full Text

64. Pradhan A, Sraw GH, Singh N, et al.: Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery. Sci Rep. 2015; 5: 15930.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

65. Alonso-Peñaranda S, Osimkina O, Posapayapit N, et al.: Identifying antimalarial targets by directed evolution of DHFR-TS by chemogenomic profiling. Int J Parasitol. 2016; 46(8): 527–35.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

66. Anzevini F, Wilkowski B, Amanatunga C, et al.: A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014; 508(7481): 50–5.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

67. Ashley EA, Dwork M, Fairhurst RM, et al.: Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014; 371(5): 411–23.
Published Abstract | Publisher Full Text | Free Full Text

68. Shaw KJ, Mortow BJ: Transcriptional profiling and drug discovery. Curr Opin Pharmacol. 2003; 3(5): 508–12.
Published Abstract | Publisher Full Text | Free Full Text

69. Hu G, Cabrera A, Koro M, et al.: Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol. 2010; 28(1): 91–8.
Published Abstract | Publisher Full Text

70. van Brummelen AC, Olzeski KL, Wilinski D, et al.: Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbations specific compensatory regulatory mechanisms by transcriptome, proteome, and metabolome analyses. J Biol Chem. 2008; 283(7): 4635–46.
Published Abstract | Publisher Full Text | Free Full Text

71. Mok S, Inowie M, Mackinnon MJ, et al.: Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011; 12: 391.
Published Abstract | Publisher Full Text | Free Full Text

72. Tamas PA, Bhattacharjee S, van Ooj C, et al.: An erythrocyte vesicle protein exported by the malaria parasite promotes tubovesicular lipid import from the host cell surface. PLoS Pathog. 2008; 4(8): e1000118.
Published Abstract | Publisher Full Text | Free Full Text

73. Kranz O, Buchfeld E, Deplaine G, et al.: Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics. 2008; 9: 388.
Published Abstract | Publisher Full Text | Free Full Text

74. Sraw GH, Smith RS, Tan A, et al.: An integrative analysis of small molecule transcriptional responses in the human malaria parasite Plasmodium falciparum. BMC Genomics. 2015; 16: 1030.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

75. Sabiroeh N, Pesapane B, Waiyana P, et al.: Effect of artemisinin on lipid peroxidation and fluidity of the erythrocyte membrane in malaria. Biol Pharm Bull. 2009; 23(11): 1275–80.
Published Abstract | Publisher Full Text | Free Full Text

76. Berman PA, Adams PA: Artemisinin enhances heme-catalysed oxidation of lipid membranes. Free Radic Biol Med. 1997; 22(7): 1283–8.
Published Abstract | Publisher Full Text

77. Chen N, LaRue AN, Teuscher F, et al.: Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum. Antimicrob Agents Chemother. 2014; 58(4): 4773–81.
Published Abstract | Publisher Full Text | Free Full Text

78. Tucker MS, Mukta T, Sparks K, et al.: Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother. 2012; 56(1): 303–14.
Published Abstract | Publisher Full Text | Free Full Text

79. Klonis N, Xie SC, McCaw JM, et al.: Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci U S A. 2013; 110(13): 5157–62.
Published Abstract | Publisher Full Text | Free Full Text

80. Wiktorow B, Lelejova J, Barragan MJ, et al.: Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quinone mechanism. Antimicrob Agents Chemother. 2010; 54(5): 1872–7.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

81. Mok S, Ashley EA, Ferreira PE, et al.: Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015; 347(6220): 431–5.
Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

82. Eichhorn T, Winter D, Büchele B, et al.: Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol. 2013; 85(1): 38–45.
Published Abstract | Publisher Full Text | Free Full Text

83. Bhushitthibhan J, Pan XG, Hosler PA, et al.: The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem. 1998; 273(26): 16192–8.
Published Abstract | Publisher Full Text | Free Full Text
106. Wu W, Herrera Z, Ebert D, et al.: A chemical rescue screen identifies a Plasmodium falciparum apicoplast inhibitor targeting MEP isoprenoid precursor biosynthesis. Antimicrob Agents Chemother. 2015; 59(1): 356–64. PubMed Abstract | Publisher Full Text | Free Full Text

107. Yuthavong Y, Tamchompoon B, Vilaivan T, et al.: Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci U S A. 2012; 109(42): 16823–8. PubMed Abstract | Publisher Full Text | Free Full Text

108. Ghidelli-Disse S, Lafuente-Monasterio M, Waterson D, et al.: Identification of Plasmodium PI4 kinase as target of MMV390048 by chemoproteomics. Malar J. 2014; 13(Suppl 1): P38. Publisher Full Text | Free Full Text

109. Roberts LD, Souza AL, Gerszten RE, et al.: Targeted metabolomics. Curr Protoc Mol Biol. 2012; Chapter 30: Unit 30.2.1–24. PubMed Abstract | Publisher Full Text | Free Full Text

110. Biagini GA, Fisher N, Shone AE, et al.: Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Natl Acad Sci U S A. 2012; 109(21): 8298–303. PubMed Abstract | Publisher Full Text | Free Full Text

111. Vincent IM, Barrett MP: Metabolomic-based strategies for anti-parasite drug discovery. J Biomol Screen. 2015; 20(1): 44–55. PubMed Abstract | Publisher Full Text

112. O'Hara JK, Kerwin LJ, Cobbold SA, et al.: Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum. PLoS One. 2014; 9(4): e94061. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

113. Kumar B, Prakash A, Ruhela RK, et al.: Potential of metabolomics in preclinical and clinical drug development. Pharmacol Rep. 2014; 66(6): 956–63. PubMed Abstract | Publisher Full Text

114. Cuperlovic-Culf M, Culf AS: Applied metabolomics in drug discovery. Expert Opin Drug Discov. 2016; 11(8): 759–70. PubMed Abstract | Publisher Full Text

115. Aretz I, Meierhofer D: Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. Int J Mol Sci. 2016; 17(5): pii: E632. PubMed Abstract | Publisher Full Text | Free Full Text

116. Gulati S, Ekland EH, Ruggles KV, et al.: Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host Microbe. 2015; 18(3): 371–81. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

117. Medicines for Malaria Venture: Global portfolio of antimalarial medicines. 2016. Reference Source

118. Van Voorhis WC, Adams JH, Adelfio R, et al.: Open source drug discovery with the malaria box compound collection for neglected diseases and beyond. PLoS Pathog. 2016; 12(7): e1005763. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1. Maria (Belen) Cassera, Department of Biochemistry & Molecular Biology, University of Georgia, GA, USA
 Competing Interests: No competing interests were disclosed.

2. Frederick Buckner, Department of Medicine, University of Washington, Seattle, Washington, USA
 Competing Interests: No competing interests were disclosed.