In vitro nuclear interactome of the HIV-1 Tat protein

Virginie W Gautier*1, Lili Gu1, Niaobh O'Donoghue2, Stephen Pennington2, Noreen Sheehy1 and William W Hall1

Address: 1UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland and 2Mass Spectrometry Resource, UCD-Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland

Email: Virginie W Gautier* - virginie.gautier@ucd.ie; Lili Gu - lili.gu@ucd.ie; Niaobh O'Donoghue - niaobh.odonoghue@ucd.ie; Stephen Pennington - stephen.pennington@ucd.ie; Noreen Sheehy - noreen.sheehy@ucd.ie; William W Hall - william.hall@ucd.ie

* Corresponding author

Abstract

Background: One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.

Results: Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.

Conclusion: We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
**Background**

HIV-1 encodes the nuclear regulatory protein Tat, which is essential for HIV-1 replication and which primarily orchestrates HIV-1 provirus transcriptional regulation. Tat transactivation from the viral promoter (LTR), is highly dependent on complex interactions between Tat, the short leader RNA present in the 5' region of all nascent HIV-1 transcripts, TAR (Trans-activation responsive element), and a number of host cellular proteins [1-4]. The molecular mechanisms whereby HIV-1 gene expression is regulated by Tat occurs at distinct levels. Initially, Tat enhances transcription initiation by promoting the assembly of the RNA polII complex by interacting with various transcription factors [2]. Subsequently, Tat activates elongation via two independent mechanisms: firstly, it enhances the processivity of RNA polII by interacting with elongation factors such as p16E-b, which phosphorylates RNA polII C-terminal domain, and secondly, by recruiting histone acetyltransferase proteins which modify the chromatin template such as p300/CBP (CREB binding protein) and p300/CBP-associated factor (PCAF) and, as recently described, by interacting with BRM and BRG1, two chromatin remodellers[5-10]. Although the recruitment of these specific cellular factors by Tat to the HIV-1 LTR are crucial for Tat function, they only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. Furthermore, Tat can be secreted by infected cells and extracellular Tat can exert autocrine or paracrine activities via interactions with cell surface receptors including integrins, CXCR4, CD26, HSPG and LRP[11].

While Tat is a small and compact protein, composed of only 86 or 101 amino acids, sequence and functional analysis reveals that Tat sequence encompasses a unique arrangement of five distinct and contiguous regions including the acidic, cysteine-rich, core, basic and glutamine-rich regions. Furthermore, Tat is subject to post-translational modifications, such as acetylation, methylation, phosphorylation and ubiquitination, thus increasing both the number and diversity of potential interfaces between Tat and cellular proteins [12-14].

Recently, a structural study employing nuclear magnetic resonance (NMR) spectroscopy has described Tat as a "natively unfolded" protein with fast dynamics lacking a well-structured three-dimensional fold. These characteristics would provide Tat the flexibility to interact with numerous cellular partners. Collectively these findings suggest that Tat is a potent, versatile protein suited for multiple interactions and highlights the concept that numerous protein-protein interactions underlie the molecular mechanisms of HIV-1 molecular pathogenesis [15-19].

In this report, we have attempted to further investigate the interplay of Tat with host cell proteins. Specifically, we have designed a proteomic strategy based on affinity chromatography (AC) coupled with mass spectrometry (MS) to purify Tat interacting proteins from T-cell nuclear extracts (Figure 1). Our approach has produced the *in vitro* Tat nuclear interactome, which includes a total of 183 individual nuclear components, most of which have not been previously identified as Tat partners. We subsequently applied *in silico* analysis, to validate our dataset and develop HIV-1 Tat interaction network maps. In this report, we have focused on the description of multi-protein complexes involved in gene expression regulation, which comprised the majority of our dataset and which clearly reflects Tat primary function.

**Results**

**Experimental Design**

To identify multi-protein complexes associated with HIV-1 Tat, we employed the experimental strategy depicted in Figure 1. Our priority was to ensure a highly sensitive and specific methodology to identify both transient interactions and low-abundance proteins associated with complexes, while ensuring potential contaminants (false positives) remained as low as possible. In this study, we focused on nuclear protein interactions as Tat has been shown to primarily localise in the nucleus. Protein complexes were identified using *in vitro" pull down" purification employing equivalent amounts of immobilised recombinant GST-Tat (bait) and GST (negative control) proteins, and incubation with T-cell nuclear extracts. Following extensive washes, captured protein complexes were eluted under denaturing conditions (Laemmli buffer) and resolved using a 1D SDS-PAGE gel. For protein identification, GST and GST-Tat interaction profiles within the entire separation range of each SDS-PAGE gel lane were systematically sliced into 2 mm gel pieces and subjected to in-gel tryptic digestion. Peptide mixtures were separated by liquid chromatography (LC) prior to tandem mass spectrometry analysis (MS/MS). The identity of selected proteins was validated by Western Blot (WB) analysis.

**Tat Interaction Profile**

Jurkat T-cell nuclear extracts were prepared as described in Materials and Methods and subjected to affinity chromatography (AC) with GST or GST-Tat. GST, GST-Tat and their respective associated proteins were eluted and separated by SDS-PAGE (Figure 2). A total of 164 gel slices from the GST and GST-Tat lanes were processed and the resulting tryptic peptides were analysed by LC-MS/MS. We successfully identified over 250 proteins with sizes ranging from 25 kDa to 400 kDa, which did not interact with
GST alone. Proteins were identified with a minimum of two individual peptides (see Table 1 and Additional file 1). In effect, we obtained a moderate to high amino acid sequence coverage by matching tryptic peptides, ranging from 2.5% (MLL) up to 71% (prohibitin), which was inversely correlated with increasing protein size.

**Dataset Curation Process**

To eliminate potential contaminants from the dataset, we modified our preliminary dataset by retaining proteins known to exist in the nucleus and excluding non-nuclear components such as those associated with mitochondria, cytoskeletal proteins, and common contaminants such as keratin, and ribosomal and histone proteins. The resulting dataset contained 183 candidate proteins that could interact directly or indirectly with HIV-1 Tat. Remarkably, 10% of the selected proteins have been previously identified by other studies, demonstrating the effectiveness and robustness of our approach (Table 1)[5,6,20-38]. The remainder, not previously described, highlighted the potential of our approach to identify new interactions. We subsequently confirmed the identity of 11 proteins identified as new Tat interactors by Western-Blotting analysis (Figure 3). Furthermore, these interactions appear to be robust since some of them, like SIN3A or HDAC1 could tolerate washes containing up to 1 M NaCl (Figure 3A). The specificity of these interactions was further confirmed, employing a Tat-NLS deletion mutant, which still bound with 5 of them (SIN3A, HDAC1, SAP18, Ikaros and SPT16) (Figure 3B). Of note however, our study did not identify certain proteins known to interact with Tat, including cyclin T1, TIP60, P/CAF or BRM[6,8,9,39-41]. However, when we performed GST pull-down with nuclear extract followed by Western-Blot (WB), we could
specifically detect the presence of Cyclin T1 in the Tat-eluted fraction, confirming that our recombinant GST-Tat is competent to interact with this well characterised nuclear partner (Figure 3A).

**Dataset Validation Process**

In the initial analysis of our dataset, we analysed the domain composition of each protein using CDD, Pfam and Smart databases[42-47]. The 10 most prevalent domains found within the entire dataset are listed in Table 2, where their frequency was compared against their expected frequency derived from the Nuclear Protein Database (NPD) Protein Domains[48,49]. Interestingly, the dataset is highly enriched for interaction domains of RNA (RRM, DEXDc, DSRM) and DNA (HMG and SANT) recognition motifs [50-53]. Other enriched interaction domains are well known to be involved in mediating protein-protein interactions and include the PHD, WD40, RRM or Bromodomain motifs [51,54-56]. Finally, the only enriched domains associated with a catalytic activity were the AAA domain, which is associated with diverse ATP-dependent functions and the DEXDc and HELICc domains, which have a helicase activity[50,57]. Several of these have been previously shown to mediate interactions of cellular proteins with Tat. The protein DICER has been shown to interact with Tat via its DEXDc domain, in an RNA-dependent manner[58]. The WD40 domain of LIS1 also interacts with Tat, and the Bromodomain of P/CAF specifically recognises the acetyl-lysine (K50) in Tat[9,59,60].

When examined individually, these domains are versatile, and occur in a wide variety of proteins. However, collectively, they are frequently found in individual proteins or large complexes associated with key functions in gene expression regulation, and more specifically at the level of chromatin remodelling (HMG, PHD, Bromo, AAA, DEXDc, HELICc, SANT, WD40), gene transcription (RRM, HMG, DSRM, WD40), RNA processing (AAA, RRM, DEXDc, HELICc DSRM) and DNA replication/chromosome structure (AAA, SANT)[50-57,61-67].

Overall, the protein domain analysis exhibited two distinct features: (i) our dataset appears to be specifically tailored to interact with molecules such as RNA, DNA and proteins; (ii) our dataset is highly specialised in gene expression regulation and DNA replication.

To examine functional composition, systematic gene annotation employing the online tool (G.O.) was carried out, and the entire dataset was organised according to the protein involvement in specific biological processes[68,69]. This resulted in the distribution of the proteins over 8 categories, ranging from transcription to DNA replication (Figure 4). Hence, Tat interacts with specific cellular components associated with a range of distinct activities, which may account for the marked pleiotropic activities of the protein. The best represented biological processes include transcription, RNA processing and translation, which collectively accounted for 64% of our

---

**Table 1: Previously characterised Tat interaction partners.**

| Symbol | G.O. Process | TurboSEQUEST Score | Coverage % | KD | Accession (GI) | MS/MS Peptide no. | Ref |
|--------|--------------|---------------------|------------|----|---------------|-------------------|-----|
| BRG1   | Transcription | 258.28              | 18.9       | 184529.4 | 21071056       | 32 (3 1 0 0 0)    | 5   |
| IN1    | Transcription | 40.25               | 18.30      | 40666.5  | 3226993        | 4 (4 0 0 0 0)     | 22  |
| BAF170 | Transcription | 70.26               | 8.20       | 132649.7 | 1549241        | 7 (7 0 0 0 0)     | 6   |
| CTIP2  | Transcription | 70.22               | 12.8       | 88420.5  | 12597635       | 8 (8 0 0 0 0)     | 35  |
| ILF2   | Transcription | 70.25               | 26.60      | 44669.4  | 1082895        | 11 (1 0 0 0 0)    | 27,30|
| ILF3   | Transcription | 60.22               | 16.6       | 61936.8  | 9714277        | 6 (6 0 0 0 0)     | 27,30|
| YBX1   | Transcription | 30.25               | 16.7       | 35902.7  | 27807361       | 6 (6 0 0 0 0)     | 21  |
| POLR2A | Transcription | 130.28              | 12         | 217042.6 | 7434772        | 14 (1 4 0 0 0)    | 24  |
| TAF15  | Transcription | 20.22               | 5.4        | 61520.8  | 4507353        | 2 (2 0 0 0 0)     | 28  |
| ERCC2  | Transcription | 30.16               | 5.6        | 83419.5  | 296645         | 3 (3 0 0 0 0)     | 26,39|
| POLR2B | Transcription | 40.22               | 5.1        | 133810.7 | 4505943        | 4 (4 0 0 0 0)     | 24  |
| BTAF1  | Transcription | 120.24              | 11.1       | 206754.5 | 27477070       | 12 (1 2 0 0 0)    | 28  |
| c1qbp  | RNA processing | 30.29               | 23.00      | 30888.4  | 338043         | 5 (5 0 0 0 0)     | 23  |
| NPM1   | RNA processing | 126.31              | 38.8       | 32582.9  | 33694244       | 43 (42 0 1 0)     | 29  |
| EEF1D  | Translation    | 50.27               | 11.6       | 71378.2  | 14043783       | 5 (5 0 0 0 0)     | 37  |
| CDC2   | Cell cycle     | 158.31              | 58.1       | 34187    | 30584091       | 22 (21 1 0 0)     | 33  |
| PPP1CC | Cell cycle     | 40.29               | 18.60      | 36959.8  | 4506007        | 4 (4 0 0 0 0)     | 20  |
| RFC1   | DNA replication| 50.24               | 6.2        | 128174   | 2136100        | 5 (5 0 0 0 0)     | 24  |
| LMNB   | nucleus organization | 126.22 | 24.2 | 66367.7 | 5031877 | 13 (12 0 1 0) | 31,32 |
| KPNB1  | nucleus organization | 70.25 | 11.5 | 971082.2 | 19923142 | 7 (7 0 0 0 0) | 36  |

List of the proteins identified by LC-MS/MS corresponding to known Tat interaction partners. Amino acid coverage (Coverage %), number of MS/MS peptides used for the identification (MS/MS peptide no), TurboSEQUEST score, GenInfo Identifier (GI) for protein and gene ontology (GO) analysis (cellular process) for each identification are indicated.
dataset. Other major biological processes include cell cycle (13%) and nucleus organisation (8%).

**HIV-1 Tat Interaction Map**

*Construction and mapping of the Tat interaction network*

While informative, linear analysis of the Tat interaction dataset is inadequate to fully appreciate the higher order organisation of the Tat interactome. As such, we constructed a network representation of the Tat interactome and subjected our dataset to *in silico* interaction analysis and employed Osprey as a visualisation tool[70]. We employed established PPI databases such as BIND and HPRD, complemented by extensive literature searches, to map previously characterised interactions between the candidate proteins and developed a detailed protein interaction network[71-74]. This is depicted in Figure 5[75-233].

**Global network characteristics**

Within the interaction map we included interactions involving a minimum of two proteins. Non-interacting and self-interacting proteins were excluded to simplify the network representation. The resulting network consists of 129 proteins linked by 299 interactions, with an average of 2.31 interactions per protein. Some proteins were highly connected, such as HDAC-1 and -2, which display a total of 23 and 23 interactions, respectively. A striking result of this mapping process was the identification of groups of proteins, which formed distinct and well-connected sub-networks corresponding to previously characterised multi-protein complexes (see below). These well-defined clusters are involved in complementary, consecutive and/or opposite steps of gene expression regulation, epigenetic control, chromosome and nuclear architecture. They include transcriptional repressors, such as SIN3/HDAC, NuRD, PRC2, MeCP1, and activators including SET, FACT, BAF53, SWI2/SNF2 and WICH; chromosome organisation factors including condensin, cohesin, toposome, minichromosome maintenance (MCM), and origin of replication complex (ORC); and nuclear structure including lamina, NPC and transport factors. Interestingly, the complexes could also be shown to be interconnected, which is a reflection of the fact that multiple proteins are shared between distinct complexes, as exemplified by RbAp46 and RbAp48, subunits of the SIN3/HDAC, NuRD and PRC2 complexes. Alternatively, other complexes (such as FACT) remain isolated with protein interactions solely restricted to the members of that complex.

**Functional modules**

Subdivision of the Tat interaction network into functional modules enabled us to gain insights into the functional properties of the multi-protein assembly. The depicted multi-subunit complexes are (i) chromatin modifying fac-

![Figure 2](image-url)

**Figure 2**

*Interaction profile of Tat associated proteins, isolated from Jurkat nuclear fractions.* T-cell nuclear extracts were incubated with immobilised GST (control) and GST-Tat (Bait). Specifically interacting proteins were subsequently eluted and resolved by SDS-PAGE and stained with Coomassie Blue. The resulting Tat interaction profile is specific and composed of bands of distinct size and intensity, representing putative proteins interacting with Tat. The purified recombinant proteins GST and GST-Tat are indicated by an arrowhead.
tors, which play central roles in the alteration of the structure and composition of chromatin, and are associated with the activation or repression of gene expression; (ii) chromosome organisation factors implicated in mitosis and DNA replication and (iii) nuclear structure components which participate in the nuclear architecture.

Activators of transcription

**SET1**
The Set1 histone methyltransferase complex includes, Setd1A, Ash2, CXXC1, RBBP5, WDR5 and Wdr83[234,235]. The Set1 complex mediates the methylation of Lys4 in histone H3, which ultimately results in the activation of transcription. Three components (Setd1A, CXXC1, WDR5) of this complex were identified in the co-eluate by MS/MS and the presence of WDR5 was further confirmed by GST pull-down followed by WB analysis (Figure 3).

**FACT**
The heterodimeric FACT complex (SPT16-SSRP1) has been characterised as an elongation factor, which enables RNA polymerase II to progress through the chromatin template, once transcription has been initiated[236]. FACT acts as a histone chaperone and mediates the disassembly and reassembly of H2A/H2B dimers. Both SPT16 and SSRP1 were identified by AC-MS/MS. We further confirmed the presence of SPT16 in the co-eluate by WB (Figure 3).

**BAF53, TRRAP/p400**
TRRAP/p400 is a chromatin remodeling complex, part of the INO80 family, characterised by a unique subunit composition and the presence of a distinct ATPase[237]. The core of the p400/TRRAP complex, consists of BAF53A, P400, RUVBL1, RUVBL2, TRRAP. These components were identified by our AC-MS/MS approach, and the presence of BAF53A was further validated by WB analysis of GST-pull down products (Figure 3). Additional subunits, including YEATS4, DMAP1 and Eaf6, known to be part of the p400/TRRAP complex, were also identified by our approach. Intriguingly, the TIP60 protein, which has been described in distinct protein complexes harboring p400, BAF53A and TRRAP and is a well characterised interaction partner of Tat, was not detected in the co-eluate[40].

**SWI2/SNF2**
SWI2/SNF2 is another chromatin remodeling complex, part of the SWI/SNF family[238]. Here, we have identified most of the components of BAF (BRG1/BRM, BAF250, BAF170, BAF155, BAF60a, BAF53A, actin and InI) and PBAF (BRG1, BAF180, BAF170, BAF155, BAF60a, BAF53A, actin and InI) complexes except BRM, BAF155 and BAF57. Importantly, BRM, BRG1, InI1 and BAF170 were previously shown to interact with Tat[5,6,22].

**WICH**
The WICH complex, composed of WSTF and SNF2H, is a member of the ISWI-containing chromatin remodeling complexes[239]. In addition to its role in replication, it has been suggested that because of its association with various transcription factors, it may have a role in transcription. Of note, both subunits were identified by AC-MS/MS and the presence of SNF2H in the co-eluate following GST pull-down was confirmed by WB (Figure 3).

Repressors of transcription

**SIN3/HDAC**
SIN3/HDAC is composed of SIN3A, SAP30, SAP18, HDAC-1 AND -2 and RbAp46/48 and remarkably, all of

---

Figure 3

Validation of the identity of selected proteins interacting with Tat. A. GST pull-downs were performed with immobilised GST or GST-Tat and Jurkat cell nuclear extracts (150 μg) followed by washes with increasing salt (NaCl) concentration (0.3 M, 0.5 M, 0.8 M and 1 M). Eluates were analysed by WB using the indicated antibodies. B. GST pull-downs were performed with immobilised GST or GST-Tat-NLS and Jurkat cell nuclear extract (150 μg) followed by washes with 300 mM NaCl. Expression levels of each endogenous protein are provided with the Input corresponding to 2 μg of nuclear extracts.
these proteins except SAP30 were recovered and identified by our approach. Additionally, the presence of HDAC-1, RbAp46/48, SAP18 and SIN3A in the co-eluate following GST pull-down was confirmed by WB (Figure 3). SIN3/HDAC has been described as a global regulator of transcription; indeed, SIN3A mediates additional interactions with transcription factors and co-repressors, which direct SIN3/HDAC to specific promoters[240]. SIN3A deacetylase activity is mediated by the HDAC-1 and -2 proteins and results in transcriptional repression. Of note, while the presence of HDAC proteins, SIN3A at the level of the HIV-1 LTR has been previously demonstrated, this is the first report showing that Tat interacts with these proteins[241].

**NuRD**

NuRD shares with SIN3/HDAC four individual components which include HDAC-1 AND -2 and RbAp46/48 and additionally contains CDH4/Mi-2, MTA1/2, MBD3, and MINT. NuRD is recruited to target genes via DNA-binding proteins, such as Ikaros identified here by our approach and validated by WB (Figure 3)[242]. In addition to its HDAC activity, NuRD has an ATP-dependent nuclease activity carried out by CHD4/Mi-2, a chromatin-remodelling ATPase protein, which encompasses a chromodomain of the SWI/SNF family. While we confirmed the presence of MTA1, we failed to detect NuRD in the co-eluate by WB analysis. Interestingly, the presence of MTA1 at the level of the HIV-1 LTR has been previously demonstrated, this is the first report showing that Tat interacts with these proteins[243].

**MeCP1**

MeCP1, also shares the HDAC-1/-2 and RbAp46/48 subunits and include the methyl-CpG-binding protein MBD2 and p66alpha identified by our approach[84,244-247]. MeCP1 specifically recruits SIN3/HDAC or NuRD to DNA methylation sites recognised by MBD2, which represents an alternative mechanism mediating methylation-dependent transcriptional repression involving histone deacetylation and chromatin remodeling.

**PRC2**

RbAp46/48 are subunits of the Polycomb Repressive Complex 2 (PRC2), which also include EED, EZH1, EZH2, SUZ12. PRC2 can methylate lysine residues (K9 and K27) of histone H3[248]. This ultimately results in the repression of gene expression. Here we have identified SUZ12.

**Replication and chromosome organisation factors**

**Condensin/Cohesin**

The structural maintenance of chromosomes (SMC) proteins form the core of the cohesin and condensin complexes[249]. They are principally involved in
chromosome condensation and cohesion and play an essential role into chromatid pairing and chromosome segregation during mitosis. Interestingly, recent studies have described their participation into transcriptional regulation and epigenetic processes. Here we have identified the following condensin I subunits, SMC2, SMC4, CAPG, CAPD2 and CAPH; and the following cohesin subunits: SMC3, PDS5A, and PDS5B to be part of the Tat nuclear interactome.

**TOPOSUME**

The toposome complex consists of the topoisomerase IIα associated with RNA helicase A (RHA), SSRP1, PRP8, hnRNP C and RIII/Gu[142]. This complex is involved in

---

**Figure 5**

*Tat interaction network.* Here we mapped, using Osprey as a visualization tool, previously established interactions between the individual components of the Tat interaction dataset employing publicly available protein-protein interaction databases (BIND and HPRD) combined with extensive literature search. The network reconstruction of the Tat interactome revealed the higher-order and collective behaviour of the Tat interacting proteins, which compose large but well defined biochemical entities, represented by coloured circles. Edges represent interactions and individual proteins are depicted as nodes. Names in bold and red indicate the previously known Tat interactors and names in bold and blue represent proteins which identity was validated by WB analysis.
chromosome condensation and segregation and it has been suggested that topoisomerase functions in collaboration with the condensing complex[250]. We have identified topoisomerase IIα, RHA, PRP8 and RHII/Gu as part of our Tat interaction dataset.

MCM
The minichromosome maintenance (MCM) proteins are essential for DNA replication and include six members: MCM2–MCM7 which form an heterohexamer complex that binds to DNA replication origins[64,251]. Additional complexes include MCM4/6/7 or MCM3/5. It has been suggested that these complexes play additional cellular roles such as transcriptional regulation and chromatin remodelling. Here we have identified three members of the MCM family, MCM3, MCM6 and MCM7.

ORC
The origin of replication complex is essential for DNA replication initiation[252]. The binding of the ORC complex marks the origin of replication, where the MCMs proteins are subsequently recruited and uploaded to form the pre-replication complex. However, ORC localisation is not restricted to the origin of replication and has been implicated to a broader spectrum of activities such as silencing and transcriptional regulation, heterochromatin assembly, nucleosome remodeling and chromosome condensation[252].

Nuclear structure components
NPC and nuclear transport machinery
The Nuclear Pore Complex (NPC) located in the nuclear envelope (NE) is composed of the outer nuclear membrane (ONM) and the inner nuclear membrane (INM), and enables the selective transport of macromolecules in and out of the nucleus[253]. It is composed of over 30 nucleoporins. Here, we have identified several nucleoporins (Nup358, Nup205, Nup153, Nup98, Nup93, Nup88, Nup85) and NPC associated proteins including nuclear transport factors (KPN2, KPN1, XPO1, RANGAP1 and RAN) and microfilaments/tubule (TUBB3, TUBBA2, NUMA1 and DNCL1).

LAMINA
The nuclear lamina lines the INM and is composed of lamins and NE lamin binding proteins including Nesprin-1 alpha, MAN1, lamina-associated polypeptides-1 and 2 (LAP1, LAP2), emerin and Lamin B receptor[254,255]. The four latter and Lamin B (LMNB) have been identified by our screen as components of the Tat nuclear interactome.

These results further substantiate the concept that chromosome architecture, chromatin remodeling, epigenetic control and nuclear organisation constitute pivotal mechanisms in the regulation of HIV-1 provirus gene expression and underscore the diversity of essential biological tasks influenced by Tat interactions.

Discussion
While considerable efforts have been dedicated to characterise individual proteins or specific macromolecular complexes interacting with Tat, no comprehensive characterisation of the Tat interactome has yet been reported. To place Tat into a wider context of interacting systems and pathways, we systematically analysed protein complexes interacting with Tat within the nucleus, by performing subcellular fractionation followed by AC-MS/MS. This experimental approach is prone to introducing technical artifacts or false positives which can then bias the subsequent analysis. To reduce this, we filtered the raw list of proteins, removed potential contaminants and obtained a final dataset of 183 interaction candidates. Subsequently, we employed computational tools and in silico analysis to validate our interaction dataset and to generate a Tat-interaction network representation. This has resulted in the in vitro Tat nuclear interactome in Jurkat T-cells.

Our studies have revealed that the Tat nuclear interactome exhibits unique signature(s). The motif composition analysis underlines the enrichment for domains mediating protein, RNA and DNA interactions, which collectively are highly represented in transcription, chromatin remodelling, chromosome structure and RNA processing complexes. We also noted the enrichment of three crucial motifs (HELIC, DEXDc and AAA) associated with helicase and ATPase activities essential for RNA processing, chromatin remodeling and chromosome architecture, which constitute the basis of both DNA replication and gene expression regulation. In support of this, the functional analysis demonstrated that proteins involved in chromatin remodeling, transcription regulation and RNA processing constitute the greater part of our dataset. Finally, the network reconstruction of the Tat nuclear interactome revealed the higher-order and collective behaviour of the Tat-interacting proteins, which compose large but well defined biochemical entities, involved in critical pathways mediating gene expression regulation, chromosome/chromatin structure, and nuclear architecture. Taken together, the remarkable enrichment for essential proteins together with their corresponding macromolecular complexes, and their roles in both activation and repression of gene expression indicate that the described Tat-interactome might act as a modular switch committed to control HIV-1 gene expression.

The presence of numerous, previously identified Tat-interacting partners further validates our dataset. Conversely, critical Tat cellular partners previously identified were not identified by our experimental approach. This could be
the result of the level of endogenous expression of these proteins in Jurkat cells and perhaps technical limitations including the following: (i) loss of a fraction of the proteins during the sub-cellular fractionation step; (ii) proteins resistant to trypsin digestion; (iii) proteins not detected by the MS/MS step; (iv) absence of specific Tat post-translational modifications on our recombinant bait, GST-Tat, which is produced by a bacterial expression system. Indeed, Tat interaction with its cellular partner has been shown to be regulated by the acetylation state of its lysines 28, 50 and 51. Interaction of cyclinT1 with Tat requires the acetylation on lysine 28, while acetylation on lysine 50 prevents Tat interaction with Brm but is necessary for its interaction with BRG1 [5-7,256,257]. Nevertheless, despite absence of CyclinT1 from our interaction dataset, we were able to detect it by WB, further establishing our recombinant GST-Tat as a suitable bait.

Our experimental approach does not enable us to distinguish direct from indirect interactions. Furthermore, while we treated our nuclear extract with the Benzonase® nuclease (included as part of the ProteoExtract® Subcellular Proteome Extraction Kit (Calbiochem)), which has both a DNase and an RNase activities, we cannot exclude that some of the observed interactions could be mediated by residual nucleic acids.

To explore the Tat interaction network in detail, we partitioned the interacting candidates into coherent functional modules, based on their reciprocal interactions. Our results further support the recently described role of SNF proteins in Tat-dependent transcription of the provirus[5-7,22,258,259]. Indeed, we have identified BRG1 and the various components of its related complex, SWI2/SNF2. We have also identified for the first time, WICH, an ISWI complex as a candidate Tat interactor.

Other complexes with histone-modifying activities include TRRAP/p400, a histone acetylase, and SET1, a histone methylase, both of which have critical positive effects on transcription. In addition, we isolated the histone chaperone FACT, directly involved in promoting the processivity of RNA polII through the chromatin template, which appears to be of relevance for Tat function in transcription elongation[236].

Importantly, we have provided the first evidence describing a direct or indirect interaction of Tat with cellular proteins, including YY1, HDAC-1/-2, and the components of the SIN3/HDAC and NuRD complexes, previously reported to interact with the integrated HIV-1 LTR. Indeed, earlier studies have identified the presence of HDAC-1 and -2 at the HIV-1 LTR in HeLa cells containing an integrated HIV-1 LTR reporter, as well in latently HIV-1 infected cell lines (ACH2, U1, J-Lat 6.3)[260-266]. They mediate histone deacetylation of nuc-1, the nucleosome positioned immediately downstream of the transcription start site, and are believed to be one of the processes mediating HIV-1 provirus transcriptional silencing throughout the establishment and/or maintenance of HIV-1 latency. In addition, two recent studies have identified the presence of SIN3A and MTA1, a component of the NuRD complex, at the integrated HIV-1 LTR in Jurkat cells, respectively recruited by CBF-1 and CTIP2[241,243]. While various studies have shown that several transcription factors (NF-kB (p50), AP-4, YY-1, c-myc, SP1, CBF-1 and LSF) can recruit HDAC-1 and -2, and SIN3A or MTA1 to the HIV-1 LTR, the molecular mechanism(s) regulating the activity and/or presence of HDAC-1/-2 and their associated complexes at the integrated HIV-1 LTR has not been fully elucidated[241,243,260-266]. The interaction of HIV-1 Tat with the SIN3/HDAC and NuRD complexes further implicates them as potential epigenetic regulators of HIV-1 post-integration latency and suggests how Tat might intersect with epigenetic pathways.

Alternatively, the enzymatic activities of the multi-protein complexes recruited by Tat, such as methylation, acetylation and deacetylation, could be directed to Tat itself and mediate post-translational modifications, as it has been shown previously with PCAF, p300/CBP, SIRT1, or SETDB1/2 [13,14,267,268].

Accumulative evidence has recently described how cellular proteins belonging to the DNA replication and the mitotic chromosome condensation machineries have been shown to carry out additional activities in gene expression regulation and/or silencing by selectively affecting the chromatin/chromosome architecture during the interphase. The identification of Tat interactions with multiple components of the cohesin, condensin, toposome, MCM and ORC complexes provide us with a new prospective on how these pathways might also influence Tat function and HIV-1 provirus expression and silencing.

In addition to its role in regulating the access of specific regulatory factors to the nucleus, the nuclear architecture can affect the genome subnuclear organisation and chromatin structure. In general, there is a strong correlation between the nuclear periphery and heterochromatin establishment and/or maintenance and accordingly gene silencing, while the NPCs have been implicated in preserving euchromatin from such a process[269,270]. More specifically, components of the inner nuclear envelope, lamina and NPC have been described to have an important role in regulating gene expression. LBR, part of our dataset, has been shown to interact with HP1 and consequently regulates heterochromatin formation[271]. Other lamin-associated proteins, such as emerin and Lap2, were also identified as Tat interactors in our studies, have been
shown to associate with and sequester a number of transcriptional repressors, including HDACs, BAF, NCoR and beta-catenin[270,272]. The identification of numerous crucial elements involved the nuclear architecture, as Tat interactors, suggest that they could be involved in regulating the transcriptional state of the provirus.

**Conclusion**
The results presented here, position the viral regulatory protein at the nexus of a range of interaction networks, which play essential and diverse roles in gene expression, RNA processing, chromatin organisation, chromosome structure and nuclear architecture, and provide the first insights into the modular network properties of the Tat interactome. Ultimately, the HIV-1 Tat rewiring of cellular networks could equip the provirus with a wide repertoire of tools to orchestrate HIV-1 gene expression and confer a remarkable adaptability to a continuously changing cellular environment. Overall, this confirms that Tat transactivation function appears to be the net result of complex interactions with distinct cellular complexes highly specialised in controlling gene expression and more specifically chromosome/chromatin structure. We anticipate that the data presented here will be useful for researchers investigating HIV-1 gene regulation and further studies will delineate the biological significance of these findings.

**Methods**

**Cell culture**
Jurkat cell line (Clone E6-1) was maintained in RPMI 1640 medium containing 10% fetal calf serum and supplemented with 0.3 mg/L of L-Glutamine (GIBCO) and antibiotics. Nuclear extracts were prepared from Jurkat cells with the ProteoExtract® Subcellular Proteome Extraction Kit (Calbiochem) according to the manufacturers instructions, which include the treatment of the nuclear fraction with Benzonase® nuclease.

**Production of recombinant proteins**
GST and GST-Tat (HIV-1 HXB2, 86 amino acids) recombinant proteins were produced in BL21 *E. coli* and purified with glutathione-Sepharose beads (Amersham) as described previously[273].

**In vitro GST–pull down assays**
To create high-density ligand surface, equivalent amounts of purified recombinant GST-Tat (bait) and GST (negative control) proteins were added in excess and immobilised on glutathione-Sepharose 4 Fast flow (Amersham). The supernatant was discarded and following extensive washes in Binding Buffer (BB) (20 mM Tris, pH 7.4, 300 mM NaCl, 100 mM NaF, 1 mM DTT, 50 mM EDTA, 1% triton X100, 10% glycerol and protease inhibitor cocktail Complete, EDTA-free (Roche)), the beads were incubated with Jurkat cell nuclear extracts (300 μg), rotating at 4°C overnight. Following extensive washes in binding buffer, specifically retained protein complexes were eluted from the resin by incubating the beads in 2× Leamni sample buffer at 95°C for 5 min.

**Gel electrophoresis and Coomassie staining**
The eluate was resolved on a 10% SDS-PAGE and the resulting interaction profiles were sliced into 2 mm bands across the entire separation range without bias with respect to size and relatively abundance. A total of 164 gel slices were produced.

**Sample preparation for Mass Spectrometric analysis**
1D gel bands were excised from the control and experimental lanes and subjected to in-gel trypsin digestion. Briefly gel bands were washed with sequential additions of ammonium bicarbonate and acetonitrile (ACN) buffers and cysteine residues were reduced and alkylated using DTT and IAA. Samples were digested overnight with 4 ng/μl trypsin at 37°C. Peptides were extracted using 60% ACN, 0.2% TFA buffer and were dried and stored for subsequent MS analysis.

**Protein identification by LC MS/MS**
LC MS/MS was carried out on a Finnigan LTQ mass spectrometer connected to a Surveyor chromatography system incorporating an autosampler. Tryptic peptides were resuspended in 0.1% formic acid and were separated by means of a modular CapalLC system (Finnigan) connected directly to the source of the LTQ. Each sample was loaded onto a Biobasic C18 Picofrit™ column (100 mm length, 75 μm ID) at a flow rate of 30 nL min⁻¹. The samples were then eluted from the C18 Picofrit™ column by an increasing acetonitrile gradient. The mass spectrometer was operated in positive ion mode with a capillary temperature of 200°C, a capillary voltage of 46 V, a tube lens voltage of 140 V and with a potential of 1.8 kV applied to the frit. All data was acquired with the mass spectrometer operating in automatic data dependent switching mode. A zoom scan was performed on the 5 most intense ions to determine charge state prior to MS/MS analysis.

**Data analysis**
All MS/MS spectra were sequence database searched using TurboSEQUEST. The MS/MS spectra were searched against the redundant TREMBL database. The following search parameters were used, precursor-ion mass tolerance of 1.5, fragment ion tolerance of 1.0 with methionine oxidation and cysteine carboxamidomethylation specified as differential modifications and a maximum of 2 missed cleavage sites allowed.

**Western-Blotting analysis**
To confirm the MS/MS identification of selected Tat-interacting proteins, we performed Western-Blotting analysis,
using BioTrace™ PVDF (Pall Corporation), on one fifth of the eluate resulting from GST-pull-down as described above, but carried out with Jurkat cell nuclear extract (150 µg) and washes in BB including various salt (NaCl) concentrations (300 mM, 500 mM, 800 mM and 1 M). Similarly, GST-pull down were performed with a Tat-deletion mutant GST-Tat-NLS described elsewhere. The following primary antibodies and their corresponding dilutions were employed: CyclinT1 (H-245) at 1/1000 dilution, mSin3a (K-20) at 1/5000 dilution, SAP18 (H-130) at 1/5000 dilution, SPT16 (H-300) at 1/1000 dilution (Santa Cruz Biotechnology); and BAF53A at 1/2000 dilution, Ikaros at 1/4000 dilution, HDAC1 at 1/5000 dilution, SNF2H at 1/1000 dilution, WRAP51/500 dilution and RbAp46/48 1/1000 dilution (Abcam). The following secondary antibodies (GE Healthcare) and their corresponding dilutions were employed: ECL™ Anti-mouse IgG at 1/5000 dilution and ECL™ Anti-rabbit IgG at 1/10000 dilution.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
VG conceived and designed the study, planned and coordinated its execution, conducted experimental procedures, data interpretation and in silico analysis, and drafted the manuscript. LG performed GST-pull down/ Western blotting experiments. NVD participated in the experimental design and performed LC MS/MS and peptide and protein identification. SP participated in the experimental design and supervised the proteomic analysis. NS participated in the interpretation of results and final editing of the manuscript. WWH supervised the study design, execution, analysis and revised the manuscript critically.

Additional material

Additional file 1
List of the 183 components of the Tat nuclear interactome in Jurkat identified by GST-pull-down combined with LC-MS/MS. Amino acid coverage (Coverage%), number of MS/MS peptides used for the identification (MS/MS peptide no). TurboSEQUEST score, Genebank accession number and gene ontology (GO) analysis (cellular process) for each identification are indicated. Click here for file
[http://www.biomedcentral.com/content SUPPLEMENTARY/1742-4690-6-47-S1.xls]

Acknowledgements
This work was supported by the National Virus Reference Laboratory (NVRL), University College Dublin, Dublin, Ireland and by the UCD-SMMS Research Support Scheme (2007), University College Dublin, Dublin, Ireland.

References
1. Bannwarth S, Gatignol A: HIV-1 TAR RNA: the target of molecular interactions between the virus and its host. Curr HIV Res 2005, 3:51-71.
2. Brady J, Kashanchi F: Tat gets the "green" light on transcription initiation. Retrovirology 2005, 2:69.
3. Nekhai S, Jeang KT: Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol 2006, 1:417-426.
4. Barboric M, Peterlin BM: A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 2005, 3:e76.
5. Agbozhah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F: Effect of SWI/SNF chromatin-remodeling complex on HIV-1 Tat activated transcription. Retrovirology 2006, 3:48.
6. Tread C, du Chéné I, Bres V, Kienran R, Benarous R, Benkirane M, Emiliani S: Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. Embry J 2006, 25:1690-1697.
7. Mahmoudi T, Parra M, Vries RG, Kaufer SE, Verrijzer CP, Otte M, Verbist G, Van de Wiele C, Verrijzer CP: The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci 2006, 11:708-717.
8. Hezner C, Dormeyer W, Schnolzer M, Otte M: Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect 2005, 7:1364-1370.
9. Van Dyne R, Easley R, Wu W, Berro R, Pedati C, Knez Z, Kehr-Hall K, Flynn EK, Syner DE, Kashanchi F, Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008, 5:40.
10. Blagova S, Pedal A, North BJ, Kaehlicke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklin P, Frye R, McBurney MW, et al: SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005, 3:e41.
11. Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, Ptak RG: Human immunodeficiency virus type 1, human protein interactor 1 (INI1) proteins facilitate Tat-mediated human immunodeficiency virus type 1 transcription. Curr HIV Res 2006, 4:117-130.
12. Takeuchi H, Matano T: Host factors involved in resistance to retroviral infection. Microb Immunol 2008, 52:318-325.
13. Tarsa T, Hottiger MO, Hubscher U: Functional genomics in HIV-1 virus replication: protein-protein interactions as a basis for recruiting the host cell machinery for viral propagation. Biol Chem 2001, 382:993-999.
14. Van Dyne R, Kehr-Hall K, Knez Z, Easley R, Heydarian M, Saifuddin A, Wu W, Kashanchi F: Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008, 5:507-528.
15. Ammosova T, Jerebtsova M, Beuillens M, Lesage B, Jackson A, Kashanchi F, Southland W, Gordeuk VR, Boilin M, Nekhai S: Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J Biol Chem 2005, 280:36364-36371.
16. Ansari SA, Safak M, Gallia GL, Sawaya BE, Amini S, Khalili K: Interaction of YB-1 with human immunodeficiency virus type 1 Tat and TAR RNA modulates viral promoter activity. J Gen Virol 1999, 80(Pt 10):2629-2638.
17. Ariumi Y, Serhal F, Turelli P, Trono D: The integrase interactor 1 (IN1) proteins facilitate Tat-mediated human immunodeficiency virus type 1 transcription. Retrovirology 2006, 3:47.
23. Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F: Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 2006, 80:3189-3204.

24. Cujec TP, Cho H, Maldonado E, Meyer J, Reinberg D, Peterlin BM: The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol Cell Biol 1997, 17:1817-1823.

25. Cujec TP, Okamoto H, Fujinaga K, Meyer J, Chamberlin H, Morgan DO, Peterlin BM: The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev 1997, 11:2645-2657.

26. Garcia-Martinez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D, Gaynor RB: Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. Embo J 1998, 17:3093-3102.

27. Hidalgo-Estevez AM, Gonzalez E, Punzon C, Fresno M: Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 1998, 265:411-412.

28. Kashanchi F, Piras G, Nanovich MF, Duvall JF, Fattaey A, Chiang CM, Roeder RG, Brady JN: Direct interaction of human CDK7 with the HIV-1 transactivator tat. Nature 1994, 367:295-299.

29. Li YP: Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus Tat. J Virol 1997, 71:4098-4102.

30. Maclan F, Rao A: Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1. Mol Cell Biol 1999, 19:3645-3653.

31. Muller WE, Okamoto T, Reuter P, Ugarkovic D, Schroder HC: Functional characterization of Tat protein from human immunodeficiency virus. Evidence that Tat links viral RNAs to nuclear matrix. J Biol Chem 1990, 265:3803-3808.

32. Muller WE, Wengler R, Reuter P, Renneisen K, Schroder HC: Association of Tat protein and viral mRNAs with nuclear matrix from HIV-1-infected H9 cells. Biochim Biophys Acta 1989, 1008:208-212.

33. Nekhai S, Zhou M, Fernandez A, Lane WS, Brady JN, Kumar PM: The SANT domain: a unique histone-tail-binding module. Nat Rev Mol Cell Biol 2004, 5:158-163.

34. Parada CA, Roeder RG: Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996, 384:375-378.

35. Rohr O, Lecessus D, Chasserot-Golaz S, Marban C, Avram D, Aunis D, Leid M, Schaeffer E: Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells. J Virol 2003, 77:5415-5427.

36. Tranvant R, Cullen BR: The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 1999, 19:1210-1217.

37. Xiao H, Neveu C, Benkirane M, Jeang KT: Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun 1998, 244:384-389.

38. Yoder K, Sarasin A, Kraemer K, Millhandon M, Bushman F, Fishel R: The DNA repair genes XBP and XPD defend cells from retroviral infection. Proc Natl Acad Sci USA 2006, 103:662-667.

39. Herrmann CH, Rice AP: Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxy-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 1995, 69:1612-1620.

40. Kamine J, Elangovan B, Subramanian T, Coleman C, Chinnadurai G: Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 1996, 214:357-366.

41. Yang X, Herrmann CH, Rice AP: The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxy-terminal domain of RNA polymerase II for function. J Virol 1996, 70:4576-4584.

42. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2006, 34:D281-288.

43. Leutice I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART: domains in the context of genomes and networks. Nucleic Acids Res 2006, 34:D257-260.

44. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Grishin NV, Hua L, He S, Hunzicker-Dunn JD, et al: CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 2007, 35:D237-240.

45. Pfam [http://pfam.sanger.ac.uk/]

46. Osprey: a network visualization tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.

47. Gene Ontology (G.O.) [http://www.geneontology.org/]

48. Breitkreuz BJ, Stark C, Tyers M: Osprey: a network visualization system. Genome Biol 2003, 4:R22.

49. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoi J, Betel D, Bobechko B, Boutilier K, Burgess E, et al: The Biomolecu-
92. Das BK, Xia L, Palandjian L, Gozani O, Chyung Y, Reed R: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.

93. TIGR Molecular Interaction Network Database [http://www.bind.ca]

94. HPRD Human Proteins Reference Database [http://www.hprd.org]

95. Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ Jr, Tkachuk DC: Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD43 and hSNF5/INI1 proteins. Mol Cell Biol 1999, 19:7050-7060.

96. Adzerikho RD, Aksentsev SL, Okun IM, Konev SV: Retrovirology 2007, 6:47 http://www.retrovirology.com/content/6/1/47

97. Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Livingston DM: GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002, 99:275-281.

98. Delphin C, Guan T, Melchior F, Gerace L: RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 1999, 8:2379-2390.

99. Dhar SK, Delmolino L, Dutta A: Architecture of the human origin recognition complex. J Biol Chem 2001, 276:29067-29071.

100. Doyon Y, Selleck W, Lane WS, Tan S, Cote J: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 2004, 24:1884-1896.

101. Dreger CK, Konig AR, Spring H, Lichter P, Herrmann H: Investigation of nuclear architecture in breast cancer. Mol Cell 2001, 19:7065-7077.

102. Fischle W, Dequiedt F, Gerace L: RanGAP1 induces GTPase activity of nuclear Ras-related GTPase Ran. J Biol Chem 1997, 272:19091-19098.

103. Fleischer TC, Yun UJ, Ayer DE: Identification and characterization of two novel class II histone deacetylase, HDAC10. J Biol Chem 2002, 277:6656-6666.

104. Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E: Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 2001, 276:35826-35835.

105. Fischle W, Dequiedt F, Hendzel MJ, Guertler MG, Lazar MA, Voelter W, Verdin E: Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/CoR. Mol Cell 2002, 9:45-57.

106. Fischle W, Dequiedt F, Hendzel MJ, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Verdin E: The p400 complex is an essential E1A transformation target. Cell 2001, 106:297-307.

107. Fujita H, Fuji R, Aratani S, Amano T, Fukunak A, Nakajima T: Anti-theoretic effects of MBD2a on gene regulation. Mol Cell Biol 2003, 23:2645-2657.

108. Fujita H, Yamada C, Goto H, Yokoyama N, Kuzushima K, Inagaki M, Tsurumi T: Cell cycle regulation of human CD6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem 1999, 274:25927-25932.

109. Fujita N, Jang KL, Majita I, Watanabe A, Takeishi Y, Nishizaki J, Tsurumi T: Cell cycle regulation of human CD6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem 1999, 274:25927-25932.

110. Furukawa K, Kondo T: Identification of the lamina-associated-polypeptide-2-binding domain of B-type lamin. Eur J Biochem 1998, 251:729-733.

111. Gacesa P, Why WJ: The immobilization of adenine nucleotides on polysaccharides by using glutaraldehyde coupling and borohydride reduction. Bioconjug Chem 1978, 175:349-352.

112. Gorlich D, Henklein P, Laskey RA, Hartmann E: A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. Embo J 1996, 15:1810-1817.

113. Griffis ER, Xu S, Powers MA: Nup98 localizes both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Cell Biol 2003, 14:600-610.
Grozinger CM, Haggis CA, Schreiber SL: Three proteins define a class of human histone deacetylases related to yeast Hda1p. J Cell Biol 1999, 146:488-497.

Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA 2002, 99:7420-7425.

Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R: A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 2002, 418:994-998.

Hakimi MA, Dong Y, Lane WS, Speicher DW, Shiekhattar R: A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J Biol Chem 2003, 278:7234-7239.

Harborth J, Weber K, Osborn M: GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA. J Biol Chem 2000, 275:31895-31898.

Harris TE, Chi A, Shabanowitz J, Hunt DF, Lawrence JC Jr: mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin. Embo J 2006, 25:1659-1668.

Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE: Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997, 89:341-347.

Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL: A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 1998, 95:3530-3534.

Hillig RC, Renault L, Vetter IR, Drell TS, Wittinghofer A, Becker J: The crystal structure of RNAI: a new fold for a GTPase-activating protein. Mol Cell 1999, 3:781-789.

Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG: The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999, 19:6767-7704.

Ishimi Y, Ichinose S, Omori A, Sato K, Kimura H: Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol 1999, 19:7782-7791.

Koipayil J, Georgopoulos K: A molecular dissection of the repression circuitry of Ikaros. J Biol Chem 2002, 277:27697-27700.

Koipayil J, Georgopoulos K: Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J Biol Chem 2002, 277:23143-23149.

Koipayil J, Renold A, Kim J, Georgopoulos K: Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. Embo J 1999, 18:3090-3100.

Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Gorlich D: Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. Embo J 1997, 16:1153-1163.

Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D: Localization of the Sin3 histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 2002, 22:835-848.

Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN: Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997, 89:349-356.

Lattanzi G, Cenni V, Marmioli S, Cattioli M, Merlini L, Squarzoni S, Malardi NM: Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem Biophys Res Commun 2003, 303:764-770.

Lee CG, Hague LK, Li H, Donnelly R: Identification of toposome, a novel multisubunit complex containing topoisomerase I alpha. Cell Cycle 2004, 3:638-647.

Lee JH, Skalnik DG: CpG-biding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 2005, 280:41725-41731.

Li YP, Busch RK, Valdez BC, Busch H: C23 interacts with B23, a putative nuclear-localization-signal-binding protein. Eur J Biochem 1996, 237:151-158.

Liu JH, Wei S, Burnette PK, Gamero AM, Hutton M, Djeu JY: Functional association of TGF-beta receptor II with cyclin B. Oncogene 1999, 18:269-275.

Liburdy KM, Richards SA, Perlunghe RR, Macara IG: Ran-binding domains promote the interaction of Ran with p97/beta-karyopherin, linking the docking and translocation steps of nuclear import. J Biol Chem 1996, 271:12357-2360.

Mahajan K, Delphin C, Guan T, Gerace L, Melchior F: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997, 88:97-107.

Makar AB, McMartin KE, Palese M, Tephy TR: Formate assay in body fluids: application in methanol poisoning. Biochem Med 1975, 13:117-126.

Marango J, Shimoyama M, Nishio H, Meyer JA, Mln D, Sirulnik A, Martinez-Martinez Y, Chesi M, Bergsagel PL, Zhou MM, et al.: The MMSET protein is a histone methyltransferase with characteristics of a transcriptional co-repressor. Blood 2008, 111:3145-3154.

Mayeur CL, Fraser CS, Peiretti F, Block KL, Hershew JY: Characterization of eIF3k: a newly discovered subunit of mammalian translation initiation factor eIF3. Eur J Biochem 2003, 270:4133-4139.

Mazumdar A, Wang RA, Mishra SK, Adam L, Bagheri-Yarmand R, Mandal M, Vadlamudi RK, Kumar R: Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 2001, 3:130-337.

Meiklejohn CS, Debieux CM, Boulon S, Bertrand E, Watkins NJ: A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. J Biol Chem 2007, 282:6782-6793.

Metzger N, Rom E, Olsen H, Sonenberg N: The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic translation factor 3 complex and interacts with p170. J Biol Chem 2002, 277:1110-1116.

Meurer MJ, Segitz K: [Antiphospholipid antibodies]. Hautarzt 1992, 43:111-113.

Moraes KC, Quresma AJ, Maehnss K, Kobarg J: Identification and characterization of proteins that selectively interact with
isomorphisms of the mRNA binding protein AUFI (hnRNP D). J Biol Chem 2003, 278:253-257.

156. Nishino J, Blobel G, Radoi A: RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153. Proc Natl Acad Sci USA 1997, 94:9699-9704.

157. Morris-Desbois C, Rety S, Ferro M, Garin J, Jalilnot P: The human protein HSPC021 interacts with int-6 and is associated with early embryonic translation initiation factor 3. J Biol Chem 2001, 276:45998-45995.

158. Munnia A, Schutz N, Romaine LF, Bader S, Maa S, Nas-tainczyk W, Feiden W, Fischer U, Meese E: Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene 2001, 20:4853-4863.

159. Musahl C, Schulte D, Burkhardt R, Knippers R: A human homologue of the yeast replication protein Cdc21. Interactions with other Mcm proteins. Eur J Biochem 1995, 230:1096-1101.

160. Natick MV, Chekman IS: The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp Cell Res 2000, 257:272-280.

161. Nicol SM, Causevic M, Prescott AR, Fuller-Pace FV: Identification of two distinct human SMC protein isoforms of the mRNA binding protein AUF1 (hnRNP D). J Biol Chem 1996, 271:3131-3136.

162. Nicola E, Xyralas V, Magrogi-Jakulin L, Harel-Bellan A, Richard-Foy H, Trouche D: Rabp48 belongs to the histone deacetylase HDAC3 targets Rabp48 to the ribonucleoprotein body. Nucleic Acids Res 2001, 29:1311-1316.

163. Nie Z, Yan Z, Chen EH, Zhang C, Ling C, Zhou S, Xue Y, Yang D, Murre O, Kanazawa T, et al.: Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 2003, 23:2942-2952.

164. Nikoloski AY, Papandoulou NA, Li M, Qin J, Gu W: Identification of a novel BRM1-homologue protein p40 as a component of the mSin3Ap33(ING1)/HDAC1 deacetylase complex. Biochim Biophys Acta 2004, 1682:69-75.

165. Nobin H, Tanaka Y, Tuitui T, Bann S: Extensive malignant schwannoma of the mandibular nerve. Case report. Int J Oral Maxillofac Surg 1992, 21:280-287.

166. Olave I, Wang W, Xue Y, Kuo A, Crabtree GR: Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev 2002, 16:2509-2517.

167. Reichman TW, Muniz LC, Mathews MB: The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 2002, 22:3433-3436.

168. Ronnert MR, Bachman KE, Baylin SB: DNMT1 binds HDAC2 and a new co-repressor, DAMP1, to form a complex at replication foci. Nat Genet 2000, 25:269-277.

169. Rogatsch-Kissek O, Hughes CM, Nanneyaga SJ, Shammugam KS, Copeland TD, Guszczynski T, Resau JH, Meyerson M: The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 2005, 25:612-620.

170. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Avivi-Guedehoussou N, et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437:1173-1178.

171. Saito M, Ishikawa F: The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NudR/MI2 components HDAC1 and MTA2. J Biol Chem 2002, 277:35434-35439.

172. Schmiesing JA, Gregson HC, Zhou S, Yokomori K: Identification of two distinct human SMG protein complexes involved in mitotic chromosome dynamics. Proc Natl Acad Sci USA 1998, 95:12906-12911.

173. Schmiesing JA, Gregson HC, Zhou S, Yokomori K: A human condensin complex containing C-cap/C-CAP-E and CAPN 1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol 2000, 20:6996-7006.

174. Schmiesing JA, Gregson HC, Albertson JD, Zhou S, Yokomori K: Identification of two distinct human SMG protein complexes involved in mitotic chromosome dynamics. Proc Natl Acad Sci USA 1998, 95:12906-12911.

175. Schmiesing JA, Gregson HC: The nuclear receptor function. Nat Genet 2001, 27:48714-48723.

176. Schwerk C, Prasad J, Degenhardt K, Erdjument-Bromage H, White E, Tempst P, Reinberg D: Bird A: MB2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 1999, 23:58-61.

177. Schmiedt DR, Schreiber SL: Molecular association between ATR and two components of the nucleosome remodeling and deacteylating complex, HDAC2 and CHD4. Biochemistry 1999, 38:14711-14717.

178. Shi Y, Downes M, Xie W, Kao HY, Ordentlich P, Tsai CC, Hon M, Evans RM: Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev 2001, 15:110-115.

179. Siff S, Saurin AJ, Imbalzano AN, Kingston RE: Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 2001, 15:603-618.

180. Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA: The zinc-finger domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem 1999, 274:37370-37378.

181. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Sroadicke M, Zenkner M, Schoenherr A, Koeppen S, et al.: A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. Embo J 2007, 26:764-774.

182. Takatsuka S, Yokoyama A, Okada M, Fujiki R, Iriyama A, Yanagi Y, Ito H, Takada I, Kishimoto M, Miyajima A, et al.: A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. Embo J 2007, 26:764-774.

183. Takizawa S, Yokoyama A, Okada M, Fujiki R, Iriyama A, Yanagi Y, Ito H, Takada I, Kishimoto M, Miyajima A, et al.: A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. Embo J 2007, 26:764-774.
taining DNMT1 at the replication foci in late S phase. Genes Cells 2000, 5:877-888.

196. Bouchard, T. & Sauer, B.: The coiled coil region (amino acids 129-250) of the tumor suppressor protein adenomatous polyposis coli (APC). Its structure and its interaction with chromosome maintenance region 1 (Crm-1). J Biol Chem 2002, 277:23322-23328.

197. Togashi, H., Hassig, A., Schmitz, C., Kingston, R.E., Schreiber SL: Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 1998, 395:917-921.

198. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E: Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 2000, 24:349-355.

199. Underhill C, Qutob MS, Yue SP, Torcho J: A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000, 275:40463-40470.

200. van der Vlag J, van Otterlo AP: The coiled coil box protein. J Biol Chem 2000, 275:26666-26673.

201. Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Yao YL, Yang WM, Seto E: HDAC1 and repress transcription in a promoter-specific activity. Proc Natl Acad Sci USA 2001, 98:5496-5501.

202. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ: Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem Biophys Res Commun 1975, 65:1201-1207.

203. Zhang H, Saitoh H, Mazin IJ: Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. J Biol Chem 2000, 275:40478-40485.

204. Zhang Y, Dufau ML: Silencing of transcription of the human uterine luteinizing hormone receptor gene by histone deacetylase-SAP18, a novel polypeptide, are components of a human Sin3 complex. Mol Cell Biol 1999, 19:8003-8015.

205. You A, Tong JK, Grozinger CM, Schreiber SL: CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc Natl Acad Sci USA 2001, 98:1454-1458.

206. You Z, Ishimi Y, Masai H, Hansaka F: Roles of Mcm7 and Mcm4 subunits in the DNA replication licensing process. Mol Cell 2004, 14:47-58.

207. You Z, Komamura Y, Ishimi Y: Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol Cell Biol 1999, 19:8003-8015.

208. Youngh DG, Attardi G: Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem Biophys Res Commun 1975, 65:1201-1207.

209. Zhang H, Saitoh H, Mazin IJ: Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. J Biol Chem 2000, 275:40478-40485.

210. Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S: B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 2004, 279:35726-35734.

211. Zhang Y, Dufau ML: Silencing of transcription of the human uterine luteinizing hormone receptor gene by histone deacetylase-mSin3A complex. J Biol Chem 2002, 277:33431-33438.

212. Zhang Y, Dufau ML: Dual mechanisms of regulation of transcription of luteinizing hormone receptor gene by nuclear orphan receptors and histone deacetylase complexes. J Steroid Biochem Mol Biol 2003, 85:401-414.

213. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D: Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 1997, 89:357-364.

214. Zhang Y, Leff WS, Shalgi R, Lane WS, Reinberg D: The dermatomysitis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998, 95:279-289.

215. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D: Analysis of the nuclear receptor reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 1999, 13:1924-1935.

216. Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D: SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1998, 1:1021-1031.

217. Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR: Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte activation. J Biol Chem 1998, 273:8125-8136.

218. Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM: Cell cycle regulation of chromatin at an origin of DNA replication. Embry 2005, 24:406-414.

219. Zhou K, Choe KT, Zsidi Z, Wang Q, Mathews HB, Lee CG: RNA helicase A interacts with gDNA and topoisomerase II alpha. Nucleic Acids Res 2003, 31:2253-2260.

220. Zhupan VF: [Causes of inflammation of an artificial esophagus and its treatment]. Vestn Khir Im I I Grek 1975, 114:83-87.

221. Dehe PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, Rodriquez-Gil A, Mkandawire M, Landsberg K, Shevchenko A, et al.: Protein interactions within the Set1 complex and their role in the regulation of histone 3 lysine 4 methylation. J Biol Chem 2006, 281:35404-35412.

222. Dehe PM, Gali V: The multiple faces of Set1. Biochem Cell Biol 2006, 84:536-548.

223. Reinberg D, Sims RJ: 3rd: de FACTo nucleosome dynamics. J Biol Chem 2006, 281:23297-23301.
elongation of human immunodeficiency virus type 1 RNA in a promyelocytic model of latency. Antivir Chem Chemother 1999, 10:275-284.

28. He G, Margolis DM: Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. J Biol Chem 2002, 277:2965-2973.

29. Imai K, Okamoto T: Transcriptional repression of human immunodeficiency virus type 1 by AP-1. J Biol Chem 2006, 281:12495-12505.

30. Jiang G, Espeut A, Hazuda DJ, Margolis DM: c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 2007, 81:10914-10923.

31. Kiefer HL, Hanley TM, Marcello JE, Karthik AG, Vigilanti GA: Retinoic acid inhibition of chromatin remodeling at the human immunodeficiency virus type 1 promoter. Uncoupling of histone acetylation and chromatin remodeling. J Biol Chem 2004, 279:43604-43613.

32. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC: NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. Embo J 2006, 25:139-149.

33. Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee GC, Kashanchi F: Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 2000, 277:278-295.

34. Ott M, Scholmerich M, Garnica J, Fischle W, Emiliani S, Rackwitz HR, Verdin E: Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Can Biol 1999, 9:1489-1492.

35. Kalverda B, Roling MD, Forerod M: Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008, 582:2017-2022.

36. Shaklai S, Amargilio R, Nechavli G, Simon AJ: Gene silencing at the nuclear periphery. Fabs J 2007, 274:1383-1392.

37. Ye Q, Callebaut I, Pezhan A, Courvalin JC, Worman HJ: Domain-specific interactions of human HPI-type chromodomain proteins and inner nuclear membrane protein LBR. J Biol Chem 1997, 272:14983-14989.

38. Dornier D, Gotsjmann J, Foisnier R: Nucleolastic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. Fabs J 2007, 274:1362-1373.

39. Gautier WW, Sheehy N, Duffy M, Hashimoto K, Hall WW: Direct interaction of the human I-mfa domain-containing protein, HIC, with HIV-1 Tat results in cytoplasmic sequestration and control of Tat activity. Proc Natl Acad Sci USA 2005, 102:16362-16367.