Supplementary Fig. S1. Correlation analyses of *Lhcb1* expression levels, ETR, as well as contents of MgProtoIX, soluble sugars and total carbohydrates. (A) *Lhcb1* expression vs MgProtoIX contents. MgProtoIX vs total carbohydrates (B), soluble sugars (C), or ETR (F). *Lhcb1* expression vs s total carbohydrates (D), soluble sugars (E), or ETR (G). The data were obtained from Figs. 1 to 3. Where necessary log2-ratios instead of absolute values were used. The colours represent Col-0 (black), *tpt-2* (blue), *adg1-1* (red) and *adg1-1/tpt-2* (dark purple).
Supplementary Fig. S2. Graphviz presentation of co-expression networks obtained with ATTEDII for data shown in Supplementary Table S7A and Supplementarty Document S3. The query genes were found amongst the commonly regulated genes 4h after LL/HL-transfer. ‘Query genes’ related to major CHO metabolism (up-regulated) (A), lipid metabolism up- (B) or down-regulated (C), are marked in light blue or purple colour, respectively. Co-expressed genes indentified as differentially regulated in the array experiment are marked in dark-blue or purple colour. All other genes within the co-expression network are marked in grey. The dark blue-coloured genes marked in (B) are associated with major CHO metabolism and were co-expressed with ‘query genes’ for lipid metabolism.
Supplementary Figure S3. Relative distribution of differentially regulated genes in publicly available microarray experiments compared to in-house expression data for Col-0 (A), tpt-2 (B), adg1-1 (C) and adg1-1/tpt-2 at t_{4h} and t_{48h} after LL/HL-transfer.
Supplementary Table S11. Contents of metabolites determined by GC/MS in leaves of (A) Col-0, (B) adg1-1, (C) tpt-2 and (D) adg1-1/tpt-2 grown either continuously in LL or HL or after a LL/HL-transfer at t4h or t48h. The data represent the mean of five independent samples ± SE.

Metabolites	Col-0 t0 (LL)	Col-0 t4h	Col-0 t48h	Col-0 (HL)
Sugars				
D-Sucrose	3.255 ± 0.062	6.063 ± 0.101	7.325 ± 0.124	6.776 ± 0.190
D-Glucose	0.532 ± 0.039	21.348 ± 0.680	12.206 ± 1.136	13.711 ± 1.251
D-Fructose	0.737 ± 0.042	16.803 ± 0.449	9.683 ± 1.846	12.775 ± 0.897
D-Mannose	0.146 ± 0.012	0.496 ± 0.044	0.967 ± 0.572	1.215 ± 0.104
D-Maltose	0.122 ± 0.007	0.250 ± 0.020	1.871 ± 0.255	0.519 ± 0.027
α,β-D-Trehalose	0.247 ± 0.026	0.476 ± 0.030	4.097 ± 0.431	2.844 ± 0.169
Raffinose	0.073 ± 0.015	0.369 ± 0.061	0.197 ± 0.027	2.117 ± 0.527
1,6-anhydro, β-D-Glucose	6.101 ± 0.939	8.124 ± 1.125	14.672 ± 1.616	10.773 ± 1.493
1-O-methyl-, α-D-Mannopyranoside	3.525 ± 0.158	3.642 ± 0.375	9.498 ± 0.492	6.665 ± 0.309
DL-Fucose	0.815 ± 0.025	2.280 ± 0.199	3.359 ± 0.314	3.463 ± 0.180
D-Arabinose	0.852 ± 0.054	0.609 ± 0.026	1.350 ± 0.066	1.502 ± 0.113
Glucoheptose	0.105 ± 0.012	0.331 ± 0.031	0.518 ± 0.062	0.400 ± 0.011
Amino acids				
DL-Glutamic acid	32.455 ± 1.864	124.727 ± 2.566	165.011 ± 2.397	39.409 ± 3.015
L-Aspartic acid	9.675 ± 0.164	9.138 ± 0.408	18.602 ± 1.704	6.243 ± 0.738
DL-Asparagine	n.d.	0.439 ± 0.167	3.457 ± 1.799	0.063 ± 0.007
DL-Alanine	1.700 ± 0.084	3.270 ± 0.615	5.075 ± 1.160	0.286 ± 0.039
Glycine	3.515 ± 0.228	144.514 ± 2.407	115.600 ± 1.315	14.483 ± 0.327
DL-Serine	10.116 ± 0.358	28.045 ± 0.745	54.533 ± 1.411	38.380 ± 0.840
DL-Threonine	12.512 ± 0.546	19.471 ± 0.774	31.469 ± 0.879	10.606 ± 0.532
DL-Cysteine	0.611 ± 0.041	1.021 ± 0.138	2.313 ± 0.511	1.789 ± 0.212
DL-Methionine	0.168 ± 0.012	0.852 ± 0.077	0.823 ± 0.174	0.069 ± 0.014
L-Isoleucine	0.803 ± 0.014	3.146 ± 0.190	3.806 ± 0.259	3.342 ± 0.077
DL-Valine	3.195 ± 0.098	14.803 ± 0.463	16.162 ± 0.968	10.188 ± 0.458
L-Lysine	0.195 ± 0.009	0.509 ± 0.037	0.649 ± 0.082	0.361 ± 0.031
DL-Arginine, -NH3	0.082 ± 0.013	0.339 ± 0.022	0.826 ± 0.394	0.094 ± 0.008
DL-Phenylalanine	0.723 ± 0.042	9.609 ± 0.630	5.678 ± 1.749	2.007 ± 0.095
DL-Tyrosine	n.d.	0.430 ± 0.042	0.443 ± 0.123	0.151 ± 0.020
L-Tryptophan	0.440 ± 0.016	0.662 ± 0.052	0.778 ± 0.038	0.722 ± 0.027
L-Proline	7.164 ± 0.833	35.885 ± 1.733	60.061 ± 3.783	14.332 ± 2.103
β-Alanine	0.159 ± 0.011	0.785 ± 0.065	1.383 ± 0.121	0.704 ± 0.051
Organic acids	Col-0 t₀ (LL)	Col-0 t₄h	Col-0 t₄₈h	Col-0 (HL)
---------------	---------------	------------	------------	------------
Pyruvic acid	0.610 ± 0.034	0.667 ± 0.061	0.967 ± 0.067	0.841 ± 0.048
2-methyl-DL-Malic acid	0.094 ± 0.007	0.338 ± 0.029	1.023 ± 0.028	0.516 ± 0.025
Glutaric acid	0.846 ± 0.058	1.611 ± 0.235	5.958 ± 0.397	4.389 ± 0.098
Succinic acid	0.667 ± 0.029	1.350 ± 0.114	6.427 ± 0.975	3.803 ± 0.257
Fumaric acid	106.355 ± 3.898	125.302 ± 1.852	111.564 ± 2.943	133.314 ± 2.247
Malonic acid	n.d.	0.197 ± 0.022	0.193 ± 0.022	0.124 ± 0.018
DL-Glyceric acid	0.581 ± 0.016	2.972 ± 0.359	3.602 ± 0.100	6.238 ± 0.211
3-hydroxy-Butyric acid	0.299 ± 0.017	0.399 ± 0.051	0.733 ± 0.069	0.436 ± 0.025
D-Gluconic acid or D-Galactonic acid	7.233 ± 0.486	11.108 ± 1.195	15.170 ± 1.927	20.526 ± 0.506
Benzoic acid	5.339 ± 0.149	6.958 ± 0.712	7.477 ± 0.391	6.589 ± 0.154
Miscellaneous	Col-0 t₀ (LL)	Col-0 t₄h	Col-0 t₄₈h	Col-0 (HL)
Glycerol	1.502 ± 0.067	2.968 ± 0.304	2.913 ± 0.140	3.985 ± 0.468
myo-Inositol	12.818 ± 0.580	19.915 ± 0.402	23.725 ± 1.369	26.920 ± 0.374
Galactinol	0.091 ± 0.012	0.571 ± 0.062	0.970 ± 0.174	4.876 ± 0.910
Erythritol	0.272 ± 0.012	0.730 ± 0.088	1.060 ± 0.073	0.821 ± 0.049
Tyramine	0.408 ± 0.013	0.797 ± 0.073	0.991 ± 0.154	1.452 ± 0.036
DL-Ornithine	0.601 ± 0.021	2.979 ± 0.132	5.020 ± 1.605	0.569 ± 0.098
Putrescine	1.086 ± 0.073	7.529 ± 0.641	10.936 ± 0.941	3.108 ± 0.486
Metabolites

Sugars	Relative metabolite content (arbitrary units·g⁻¹ fw)			
	adjg1-1 t₀ (LL)	adjg1-1 t₄h	adjg1-1 t₄8h	adjg1-1 (HL)
D-Sucrose	5.662 ± 0.184	6.691 ± 0.061	7.080 ± 0.047	7.897 ± 0.118
D-Glucose	6.765 ± 0.528	25.970 ± 0.174	24.411 ± 0.440	26.822 ± 0.368
D-Fructose	10.905 ± 0.632	20.173 ± 0.213	19.711 ± 0.366	20.947 ± 0.336
D-Mannose	0.486 ± 0.017	1.116 ± 0.115	3.837 ± 0.181	1.859 ± 0.126
D-Maltose	n.d.	0.545 ± 0.030	0.517 ± 0.044	0.142 ± 0.012
α,α’-D-Trehalose	0.162 ± 0.013	0.437 ± 0.034	3.334 ± 0.229	1.476 ± 0.066
Raffinose	n.d.	0.168 ± 0.019	0.074 ± 0.007	0.111 ± 0.015
1,6-anhydro, β-D-Glucose	7.350 ± 0.730	16.062 ± 0.622	18.570 ± 1.735	22.615 ± 3.391
1-O-methyl-, α-D-Mannopyranoside	3.547 ± 0.333	1.722 ± 0.139	1.457 ± 0.031	2.071 ± 0.223
DL-Glutamic acid	29.829 ± 1.808	65.857 ± 5.493	176.494 ± 1.888	37.772 ± 1.714
L-Aspartic acid	7.341 ± 0.280	8.407 ± 0.426	13.491 ± 0.952	5.025 ± 0.400
DL-Asparagine	0.193 ± 0.056	0.062 ± 0.013	12.021 ± 1.145	0.237 ± 0.065
DL-Alanine	1.778 ± 0.095	2.735 ± 0.452	10.569 ± 1.408	1.272 ± 0.161
Glycine	4.776 ± 0.235	84.629 ± 3.231	116.061 ± 1.886	22.941 ± 1.590
DL-Serine	6.097 ± 0.222	23.157 ± 1.375	49.678 ± 1.478	25.879 ± 1.761
DL-Threonine	16.884 ± 0.636	21.588 ± 1.051	33.180 ± 1.800	20.370 ± 1.934
DL-Cysteine	0.941 ± 0.035	1.374 ± 0.136	4.577 ± 0.420	3.200 ± 0.250
DL-Methionine	0.137 ± 0.016	0.485 ± 0.058	0.532 ± 0.066	0.106 ± 0.011
L-Isoleucine	0.925 ± 0.025	2.984 ± 0.338	3.552 ± 0.203	2.962 ± 0.256
DL-Valine	3.308 ± 0.922	12.348 ± 0.903	19.391 ± 1.093	12.170 ± 0.954
L-Lysine	0.284 ± 0.011	0.635 ± 0.038	0.961 ± 0.082	0.534 ± 0.049
DL-Arginine, -NH3	0.074 ± 0.007	0.335 ± 0.037	2.837 ± 0.324	0.221 ± 0.023
DL-Phenylalanine	1.869 ± 0.039	12.419 ± 1.041	14.324 ± 0.922	3.100 ± 0.172
DL-Tyrosine	0.060 ± 0.003	0.428 ± 0.031	1.004 ± 0.085	0.250 ± 0.040
L-Tryptophan	0.334 ± 0.016	0.636 ± 0.018	0.638 ± 0.018	0.581 ± 0.029
L-Proline	4.014 ± 0.293	30.162 ± 2.257	67.997 ± 7.015	18.805 ± 2.639
β-Alanine	0.353 ± 0.022	0.585 ± 0.078	2.124 ± 0.108	0.855 ± 0.057
Organic acids	adg1-1 t₀ (LL)	adg1-1 t₄h	adg1-1 t₄₈h	adg1-1 (HL)
---	----------------------	------------	-------------	----------------
Pyruvic acid	0.527 ± 0.043	0.525 ± 0.043	0.870 ± 0.050	1.086 ± 0.061
2-Methyl-DL-malic acid	0.121 ± 0.009	0.357 ± 0.033	1.132 ± 0.064	0.616 ± 0.023
Glutaric acid	1.075 ± 0.026	1.827 ± 0.183	5.075 ± 0.333	3.033 ± 0.141
Succinic acid	1.045 ± 0.040	3.746 ± 0.427	13.658 ± 0.547	4.391 ± 0.164
Fumaric acid	136.964 ± 4.410	115.525 ± 1.695	98.817 ± 3.491	116.770 ± 2.312
Malonic acid	n.d.	0.105 ± 0.018	0.176 ± 0.034	0.069 ± 0.012
DL-Glyceric acid	0.395 ± 0.008	2.993 ± 0.358	4.666 ± 0.256	3.977 ± 0.216
3-hydroxy-Butyric acid	0.210 ± 0.015	0.335 ± 0.039	0.589 ± 0.067	0.331 ± 0.051
D-Gluconic acid or D-Galactonic acid	10.026 ± 0.467	12.481 ± 1.317	14.139 ± 2.164	14.509 ± 1.642
Benzoic acid	4.206 ± 0.339	6.773 ± 0.685	6.524 ± 0.305	7.034 ± 0.272
Miscellaneous	adg1-1 t₀ (LL)	adg1-1 t₄h	adg1-1 t₄₈h	adg1-1 (HL)
Glycerol	1.243 ± 0.024	2.197 ± 0.245	2.552 ± 0.047	4.424 ± 1.145
myo-Inositol	6.351 ± 0.345	13.788 ± 0.778	18.833 ± 0.741	16.165 ± 0.538
Galactinol	n.d.	0.310 ± 0.034	0.170 ± 0.015	0.473 ± 0.077
Tyramine	0.444 ± 0.020	0.938 ± 0.084	0.643 ± 0.111	0.877 ± 0.086
Erythritol	0.527 ± 0.039	1.070 ± 0.125	4.685 ± 0.379	1.436 ± 0.093
DL-Ornithine	1.059 ± 0.047	2.072 ± 0.244	11.812 ± 1.380	1.245 ± 0.135
Putrescine	2.931 ± 0.101	9.603 ± 1.257	36.145 ± 2.688	11.367 ± 1.118
Metabolites	Relative metabolite content (arbitrary units·g⁻¹ fw)			
---	--			
	tpt-2 t₀ (LL)	tpt-2 t₄h	tpt-2 t₄₈h	tpt-2 (HL)
Sugars				
D-Sucrose	3.386 ± 0.063	4.175 ± 0.157	7.152 ± 0.127	8.134 ± 0.248
D-Glucose	0.666 ± 0.044	3.189 ± 0.224	22.065 ± 0.685	16.006 ± 0.748
D-Fructose	0.913 ± 0.032	3.376 ± 0.236	17.424 ± 0.464	8.609 ± 0.564
D-Mannose	0.191 ± 0.017	0.462 ± 0.041	0.769 ± 0.030	0.562 ± 0.059
D-Maltose	0.886 ± 0.045	0.509 ± 0.055	10.976 ± 0.813	6.708 ± 0.954
a,α'-D-Trehalose	0.248 ± 0.016	0.314 ± 0.029	1.223 ± 0.126	0.838 ± 0.080
Raffinose	0.104 ± 0.010	0.350 ± 0.057	0.250 ± 0.022	0.139 ± 0.023
1,6-anhydro, β-D-Glucose	3.593 ± 0.493	9.476 ± 1.402	10.553 ± 0.445	14.375 ± 2.019
1-O-methyl-, α-D-Mannopyranoside	6.533 ± 0.223	7.662 ± 0.506	2.200 ± 0.164	5.778 ± 0.810
DL-Fucose	0.920 ± 0.054	1.963 ± 0.130	3.657 ± 0.173	2.427 ± 0.341
D-Arabinose	0.815 ± 0.096	0.723 ± 0.060	1.221 ± 0.092	2.577 ± 0.249
Glucoheptose	0.096 ± 0.022	0.325 ± 0.043	0.374 ± 0.056	0.222 ± 0.021
Amino acids				
DL-Glutamic acid	53.294 ± 2.592	98.735 ± 6.497	169.430 ± 3.908	87.257 ± 9.739
L-Aspartic acid	12.935 ± 0.680	18.301 ± 1.220	19.163 ± 1.581	13.648 ± 1.869
DL-Asparagine	n.d.	0.045 ± 0.009	2.847 ± 0.382	0.820 ± 0.381
DL-Alanine	2.357 ± 0.057	3.526 ± 0.258	10.505 ± 0.598	3.275 ± 0.229
Glycine	4.407 ± 0.258	107.478 ± 1.701	109.623 ± 2.306	80.016 ± 3.388
DL-Serine	15.969 ± 0.706	65.008 ± 0.910	66.137 ± 1.239	63.031 ± 1.454
DL-Threonine	15.830 ± 0.973	42.280 ± 1.347	39.311 ± 1.212	44.857 ± 1.726
DL-Cysteine	0.558 ± 0.064	1.255 ± 0.155	2.019 ± 0.116	2.007 ± 0.316
DL-Methionine	0.238 ± 0.023	1.074 ± 0.155	0.782 ± 0.117	0.328 ± 0.061
L-Isoleucine	1.038 ± 0.041	3.647 ± 0.383	4.447 ± 0.150	3.851 ± 0.326
DL-Valine	4.621 ± 0.156	15.562 ± 1.432	24.076 ± 1.604	17.124 ± 1.605
L-Lysine	0.242 ± 0.017	0.488 ± 0.071	0.817 ± 0.033	0.637 ± 0.063
DL-Arginine, -NH3	0.128 ± 0.019	0.256 ± 0.039	0.877 ± 0.032	0.286 ± 0.055
DL-Phenylalanine	0.911 ± 0.037	3.388 ± 0.331	5.816 ± 0.289	3.486 ± 0.489
DL-Tyrosine	n.d.	0.102 ± 0.024	0.493 ± 0.021	0.229 ± 0.028
L-Tryptophan	0.492 ± 0.030	0.644 ± 0.044	0.731 ± 0.029	0.554 ± 0.033
L-Proline	6.839 ± 0.425	70.172 ± 4.469	42.499 ± 4.535	70.521 ± 5.587
β-Alanine	0.187 ± 0.008	0.862 ± 0.083	1.800 ± 0.082	1.360 ± 0.134
Organic acids	tpt-2 t₀ (LL)	tpt-2 t₄	tpt-2 t₄₈	tpt-2 (HL)
---	----------------	-----------	------------	------------
Pyruvic acid	0.794 ± 0.059	1.637 ± 0.176	1.069 ± 0.037	1.612 ± 0.190
2-Methyl-DL-malic acid	0.166 ± 0.007	0.416 ± 0.017	1.213 ± 0.043	0.557 ± 0.050
Glutaric acid	0.947 ± 0.045	1.632 ± 0.126	5.024 ± 0.269	2.771 ± 0.353
Succinic acid	1.447 ± 0.058	3.816 ± 0.270	10.514 ± 0.443	8.221 ± 0.919
Fumaric acid	117.778 ± 3.673	101.630 ± 2.485	91.506 ± 2.352	112.648 ± 3.501
Malonic acid	n.d.	0.207 ± 0.020	0.204 ± 0.015	0.247 ± 0.153
DL-Glyceric acid	0.804 ± 0.038	7.920 ± 0.485	8.878 ± 0.388	7.281 ± 0.698
3-hydroxy-Butyric acid	0.408 ± 0.018	0.560 ± 0.037	0.794 ± 0.042	0.524 ± 0.069
D-Gluconic acid or D-Galactonic acid	7.160 ± 0.460	11.984 ± 1.322	14.063 ± 1.256	25.587 ± 3.280
Benzoic acid	5.736 ± 0.143	7.487 ± 0.184	7.347 ± 0.295	8.712 ± 0.887
Miscellaneous				
Glycerol	1.415 ± 0.048	2.790 ± 0.236	2.413 ± 0.127	3.547 ± 0.182
myo-Inositol	11.443 ± 0.722	18.019 ± 0.436	23.179 ± 0.533	15.782 ± 0.559
Galactitol	0.127 ± 0.013	1.549 ± 0.204	1.312 ± 0.123	0.413 ± 0.047
Tyramine	0.422 ± 0.032	0.679 ± 0.048	0.854 ± 0.086	1.120 ± 0.134
Erythritol	0.352 ± 0.031	0.779 ± 0.062	1.283 ± 0.067	1.287 ± 0.161
DL-Ornithine	0.708 ± 0.047	1.835 ± 0.304	4.192 ± 0.348	1.745 ± 0.218
Putrescine	1.140 ± 0.054	3.902 ± 0.345	16.551 ± 0.999	14.764 ± 1.628
Metabolites	Relative metabolite content (arbitrary units·g\(^{-1}\) fw)			
-----------------------------------	--			
	adg1-1/tpt-2 (LL)	adg1-1/tpt-2 t_n	adg1-1/tpt-2 t_{48h}	adg1-1/tpt-2 (HL)
D-Sucrose	3.790 ± 0.149	5.294 ± 0.073	5.928 ± 0.082	4.770 ± 0.186
D-Glucose	2.923 ± 0.439	13.410 ± 1.300	10.768 ± 0.736	5.729 ± 0.771
D-Fructose	3.924 ± 0.476	5.836 ± 0.473	8.440 ± 0.537	3.758 ± 0.287
D-Mannose	0.300 ± 0.017	0.737 ± 0.085	0.582 ± 0.012	0.353 ± 0.022
α,α'-D-Trehalose	0.152 ± 0.019	0.178 ± 0.019	0.250 ± 0.026	0.759 ± 0.098
D-Galactose	n.d.	0.137 ± 0.016	0.032 ± 0.003	n.d.
1,6-anhydro, β-D-Glucose	5.285 ± 1.062	14.692 ± 1.139	16.991 ± 1.032	6.848 ± 1.479
1-O-methyl-α-D-Mannopyranoside	4.754 ± 0.185	4.072 ± 0.258	5.782 ± 0.318	3.755 ± 0.359
DL-Glutamic acid	35.303 ± 1.804	73.146 ± 5.631	70.013 ± 4.776	37.772 ± 4.500
L-Aspartic acid	10.986 ± 0.890	13.559 ± 0.590	15.069 ± 1.222	11.318 ± 1.376
DL-Asparagine	n.d.	0.030 ± 0.003	0.125 ± 0.032	0.505 ± 0.174
DL-Alanine	2.148 ± 0.188	5.947 ± 0.495	6.390 ± 0.614	0.950 ± 0.080
Glycine	2.523 ± 0.148	20.289 ± 1.631	7.615 ± 0.377	4.302 ± 0.255
DL-Serine	7.704 ± 0.517	19.015 ± 1.191	16.563 ± 0.494	14.933 ± 0.676
DL-Threonine	49.848 ± 0.911	68.305 ± 4.333	51.722 ± 2.373	72.887 ± 4.956
DL-Cysteine	0.791 ± 0.105	1.359 ± 0.183	2.661 ± 0.209	1.060 ± 0.156
DL-Methionine	0.125 ± 0.029	0.387 ± 0.070	0.269 ± 0.037	0.118 ± 0.018
L-Isoleucine	1.233 ± 0.052	3.347 ± 0.234	3.065 ± 0.178	2.165 ± 0.114
DL-Valine	4.867 ± 0.303	13.861 ± 0.900	12.719 ± 0.614	6.813 ± 0.446
L-Lysine	0.369 ± 0.019	0.604 ± 0.086	0.657 ± 0.029	0.523 ± 0.052
DL-Arginine,-NH3	0.092 ± 0.011	0.219 ± 0.026	0.194 ± 0.011	0.097 ± 0.010
DL-Phenylalanine	1.341 ± 0.115	3.051 ± 0.259	2.354 ± 0.112	1.095 ± 0.104
DL-Tyrosine	n.d.	0.092 ± 0.027	0.167 ± 0.018	0.121 ± 0.021
L-Tryptophan	0.482 ± 0.015	0.561 ± 0.041	0.632 ± 0.009	0.514 ± 0.037
L-Proline	6.943 ± 1.310	26.598 ± 1.854	22.410 ± 4.796	9.856 ± 1.323
β-Alanine	0.435 ± 0.016	0.614 ± 0.048	1.475 ± 0.046	1.003 ± 0.073
D (continued)

Organic acids	adg1-1/tpt-2 t₀ (LL)	adg1-1/tpt-2 t₄h	adg1-1/tpt-2 t₄₈h	adg1-1/tpt-2 (HL)
Pyruvic acid	0.623 ± 0.032	1.098 ± 0.066	1.085 ± 0.119	0.624 ± 0.024
2-Methyl-DL-malic acid	0.163 ± 0.017	0.380 ± 0.013	0.615 ± 0.021	0.164 ± 0.019
Glutaric acid	1.089 ± 0.039	1.516 ± 0.179	2.077 ± 0.054	1.113 ± 0.051
Succinic acid	1.055 ± 0.070	3.552 ± 0.184	2.543 ± 0.075	0.707 ± 0.050
Fumaric acid	96.776 ± 1.606	91.044 ± 1.664	85.786 ± 1.356	82.427 ± 10.166
Malonic acid	n.d.	0.141 ± 0.022	0.141 ± 0.008	0.077 ± 0.008
DL-Glyceric acid	0.401 ± 0.012	0.957 ± 0.103	0.897 ± 0.038	0.784 ± 0.056
3-hydroxy-Butyric acid	0.381 ± 0.024	0.502 ± 0.056	0.513 ± 0.020	0.308 ± 0.044
D-Gluconic acid or D-Galactonic acid	9.217 ± 0.680	15.217 ± 1.815	17.174 ± 0.751	11.413 ± 1.477
Benzoic acid	5.675 ± 0.215	5.329 ± 0.288	5.027 ± 0.070	5.944 ± 0.278
Miscellaneous				
Glycerol	1.222 ± 0.125	2.269 ± 0.164	2.330 ± 0.194	10.105 ± 3.539
myo-Inositol	7.066 ± 0.155	13.693 ± 0.513	16.346 ± 0.444	6.161 ± 0.348
Galactinol	0.127 ± 0.028	0.459 ± 0.059	0.166 ± 0.010	0.073 ± 0.013
Erythritol	0.886 ± 0.019	1.572 ± 0.086	1.794 ± 0.036	1.962 ± 0.211
Tyramine	0.527 ± 0.013	0.810 ± 0.116	0.688 ± 0.016	0.588 ± 0.034
DL-Ornithine	0.712 ± 0.057	0.945 ± 0.108	1.308 ± 0.085	1.252 ± 0.116
Putrescine	1.919 ± 0.123	6.920 ± 0.981	5.177 ± 0.385	5.953 ± 0.883
Document S1 (Table 1). Statistical analysis (ANOVA/Tukey-Kramer) of photosynthetic electron transport (ETR) and F_v/F_m ratios of wild-type and mutant plants in a time series after transfer from LL conditions (i.e. a PFD of 30 µmol·m$^{-2}$·s$^{-1}$) to HL (i.e. a PFD of 300 µmol·m$^{-2}$·s$^{-1}$) within 172 h. The plant lines are denoted, a = Col-0, b = tpt-2, c = adg1-1, d = adg1-1/tpt-2. Significance levels of $P < 0.05$ or $P < 0.01$ are indicated by light or dark blue colours.

Conditions	ETR	F/F_m										
Time	a vs b	a vs c	a vs d	b vs c	b vs d	c vs d	a vs b	a vs c	a vs d	b vs c	b vs d	c vs d
t_0 (LL)												
3h												
6h												
24h												
29h												
48h												
53h												
72h												
78h												
120h												
148h												
172h												
Document S1 (Table 2). Statistical analysis (ANOVA/Tukey-Kramer) of starch, soluble sugar, and anthocyanin levels of wild-type and mutant plants in a time series after transfer from LL conditions (i.e. a PFD of 30 μmol·m⁻²·s⁻¹) to HL (i.e. a PFD of 300 μmol·m⁻²·s⁻¹) within 148 min. The plant lines are denoted, a = Col-0, b = tpt-2, c = adg1-1, d = adg1-1/tpt-2. Significance levels of P < 0.05 or P < 0.01 are indicated by light or dark blue colours.

Condition	Starch	Sucrose	Glucose	Fructose	Condition	Anthocyanin				
Time	a vs b	a vs c	a vs d	b vs c	a vs b	a vs c	a vs d	b vs c	b vs d	c vs d
t₀ (LL)										
30 min										
60 min										
120 min										
240 min										
480 min										
HL										
t₀ (LL)										
4 h										
8 h										
24 h										
32 h										
HL										

Document S1 (Table 3). Statistical analysis (ANOVA/Tukey-Kramer) of MgProtoIX contents and Lhcb1 transcript abundance of wild-type and mutant plants in a time series after transfer from LL conditions (i.e. a PFD of 30 µmol·m⁻²·s⁻¹) to HL (i.e. a PFD of 300 µmol·m⁻²·s⁻¹) within 480 min. The plant lines are denoted, \(a\) = Col-0; \(b\) = tpt-2; \(c\) = adg1-1, \(d\) = adg1-1/tpt-2. Significance levels of \(P < 0.05\) or \(P < 0.01\) are indicated by light or dark blue colours.

Conditions	MgProtoIX	Lhcb2										
	\(a\ vs \ b\)	\(a\ vs \ c\)	\(a\ vs \ d\)	\(b\ vs \ c\)	\(b\ vs \ d\)	\(c\ vs \ d\)	\(a\ vs \ b\)	\(a\ vs \ c\)	\(a\ vs \ d\)	\(b\ vs \ c\)	\(b\ vs \ d\)	\(c\ vs \ d\)
HL												
LL												
\(t_{30}\)min												
\(t_{60}\)min												
\(t_{240}\)min												
\(t_{480}\)min												
Document S1 (Table 4). Statistical analysis (ANOVA/Tukey-Kramer) of contents of redox components of wild-type and mutant plants in a time series after transfer from LL conditions (i.e. a PFD of 30 µmol·m⁻²·s⁻¹) to HL (i.e. a PFD of 300 µmol·m⁻²·s⁻¹) within 4h compared to HL grown plants. The biotypes are denoted, a = Col-0; b = tpt-2, c = adg1-1, d = adg1-1/tpt-2. Significance levels of P < 0.05 or P < 0.01 are indicated by light or dark blue colours.

Compound	Conditions	a vs b	a vs c	a vs d	b vs c	b vs d	c vs d
DHA	t₀						
	t₄						
	HL						
Asc	t₀						
	t₄₉						
	HL						
DHA + ASC	t₀						
	t₄						
	HL						
GSSG	t₀						
	t₄₉						
	HL						
GSH	t₀						
	t₄₉						
	HL						
GSSG+GSH	t₀						
	t₄₉						
	HL						
Document S1 (Table 5). Statistical analysis (ANOVA/Tukey-Kramer) of metabolite contents of wild-type and mutant plants in a time series after transfer from LL conditions (*i.e.* a PFD of 30 µmol·m⁻²·s⁻¹) to HL (*i.e.* a PFD of 300 µmol·m⁻²·s⁻¹) within 4h and 48h compared to HL- or LL-grown plants. The conditions are denoted, \(a = t_0\) (LL); \(b = t_{4h}\) (HL), \(c = t_{48h}\) (HL), \(d = HL\). Significance levels of \(P < 0.05\) or \(P < 0.01\) are indicated by light or dark blue colours.

Metabolites	Col-0	tpt-2	adg1-1	adg1-1/tpt-2
Sugars				
Sucrose, D- (8TMS)				
Glucose, D- (1MEOX) (5TMS)				
Fructose, D- (1MEOX) (5TMS)				
Mannose, D- (1MEOX) (5TMS)				
Maltose, D- (1MEOX) (8TMS)				
Trehalose, alpha,alpha', D- (8TMS)				
Raffinose (11TMS)				
Glucose, 1,6-anhydro, beta-D- (3TMS)				
Mannopyranoside, 1-O-methyl-, alpha-D- (4TMS)				
Fucose, DL- (1MEOX) (4TMS)				
Arabinose, D- (1MEOX) (4TMS)				
Glucoheptose (1MEOX) (6TMS)				
Amino acids

Amino acids				
Pyroglutamic acid / Glutamic acid				
Aspartic acid, L- (3TMS)				
Asparagine, DL- (3TMS)				
Alanine, DL- (3TMS)				
Glycine (3TMS)				
Serine, DL- (3TMS)				
Threonine, DL- (3TMS)				
Cysteine, DL- (3TMS)				
Methionine, DL- (2TMS)				
Isoleucine, L- (2TMS)				
Valine, DL- (2TMS)				
Lysine, L- (4TMS)				
Arginine, DL-, -NH3 (3TMS)				
Phenylalanine, DL- (2TMS)				
Tyrosine, DL- (3TMS)				
Tryptophan, L- (2TMS)				
Proline, L- (2TMS)				
Alanine, beta- (3TMS)				
Organic acids				

Pyruvic acid (1MEOX) (1TMS)				
Malic acid, 2-methyl-, DL- (3TMS)				
Glutaric acid (2TMS)				
Succinic acid (2TMS)				
Fumaric acid (2TMS)				
Malonic acid (2TMS)				
Glyceric acid, DL- (3TMS)				
Butyric acid, 3-hydroxy- (2TMS)				
Gluconic/Galactonic acid (6TMS)				
Benzoic acid (1TMS)				
Others				

Glycerol (3TMS)				
Inositol, myo- (6TMS)				
Galactinol (9TMS)				
Erythritol (4TMS)				
Tyramine (3TMS)				
Ornithine, DL- (4TMS)				
Putrescine (4TMS)				
Document S1 (Table 6). Statistical analysis (ANOVA/Tukey-Kramer) of metabolite contents of wild-type and mutant plants in a time series after transfer from LL conditions (i.e. a PFD of 30 µmol·m⁻²·s⁻¹) to HL (i.e. a PFD of 300 µmol·m⁻²·s⁻¹) within 4h and 48h compared to HL- or LL-grown plants. The plant lines are denoted, a = Col-0; b = tpt-2, c = adg1-1, d = adg1-1/tpt-2. Significance levels of P < 0.05 or P < 0.01 are indicated by light or dark blue colours.

Metabolites	t₀ (LL)	t₄h (HL)	t₄₈h (HL)	HL
Sugars	a vs b	a vs c	a vs d	b vs c
Sucrose, D- (8TMS)				
Glucose, D- (1MEOX) (5TMS)				
Fructose, D- (1MEOX) (5TMS)				
Mannose, D- (1MEOX) (5TMS)				
Maltose, D- (1MEOX) (8TMS)				
Trehalose, alpha,alpha’, D- (8TMS)				
Raffinose (11TMS)				
Glucose, 1,6-anhydro, beta-D- (3TMS)				
Mannopyranoside, 1-O-methyl-, alpha-D- (4TMS)				
Fucose, DL- (1MEOX) (4TMS)				
Arabinose, D- (1MEOX) (4TMS)				
Glucoheptose (1MEOX) (6TMS)				
Amino acids				
-----------------------------------	-------	-------	-------	-------
Pyroglutamic acid / Glutamic acid				
Aspartic acid, L- (3TMS)				
Asparagine, DL- (3TMS)				
Alanine, DL- (3TMS)				
Glycine (3TMS)				
Serine, DL- (3TMS)				
Threonine, DL- (3TMS)				
Cysteine, DL- (3TMS)				
Methionine, DL- (2TMS)				
Isoleucine, L- (2TMS)				
Valine, DL- (2TMS)				
Lysine, L- (4TMS)				
Arginine, DL-, -NH3 (3TMS)				
Phenylalanine, DL- (2TMS)				
Tyrosine, DL- (3TMS)				
Tryptophan, L- (2TMS)				
Proline, L- (2TMS)				
Alanine, beta- (3TMS)				
Organic acids

Pyruvic acid (1MEOX) (1TMS)
Malic acid, 2-methyl-, DL- (3TMS)
Glutaric acid (2TMS)
Succinic acid (2TMS)
Fumaric acid (2TMS)
Malonic acid (2TMS)
Glyceric acid, DL- (3TMS)
Butyric acid, 3-hydroxy- (2TMS)
Gluconic/Galactonic acid (6TMS)
Benzoic acid (1TMS)
Others

Glycerol (3TMS)
Inositol, myo- (6TMS)
Galactinol (9TMS)
Erythritol (4TMS)
Tyramine (3TMS)
Ornithine, DL- (4TMS)
Putrescine (4TMS)
Supplementary Document S2

Static assessment of global gene expression after LL/HL-transfer

(A) *adg1-1* vs Col-0

The starch-free *adg1-1* single mutant contained the highest number of significantly altered genes in the static comparison, particularly under LL-conditions (Fig. 6A) or 48h after LL/HL-transfer. Under LL-conditions 16 gens belonging to the category ‘protein metabolism’ were differentially regulated as a part of the 144 highly altered genes. Interestingly, among these 16 genes, 12 genes related to ‘protein degradation’ were down-regulated and four genes related to ‘protein synthesis’ were up-regulated (Tables 1, Supplementary Table S2A), suggesting that in the absence of starch the maintenance of protein abundance is promoted.

The transfer from LL to HL had a profound impact on the functional categories of altered genes in the *adg1-1* single mutant. Although the number of differentially regulated genes dropped 4h after transfer to HL, 30 and 17 genes were up- and down-regulated, respectively, compared to the wild type (Table 1, Supplementary Table S3A). Among the 30 up-regulated genes, there were five genes related to ‘lipid metabolism’. Four of the five proteins reside in chloroplasts. Furthermore, four genes involved in ‘secondary metabolism’ (flavonoid biosynthesis) were up-regulated and five genes related to ‘stress’ were down-regulated (Table 1, Supplementary Table S3A). These data suggest an elevated input into lipid formation and/or secondary metabolism as a consequence of a deficiency in the night-path of photoassimilate export from the chloroplast.

The functional pattern of genes changed appreciably after 48h in HL (Fig. 6, Table 1, Supplementary Table S4A). There were a total of 209 genes specifically altered in *adg1-1* compared to the wild type. Interestingly, although the category ‘lipid metabolism’ was missing among the 58 highly up-regulated genes, there were seven genes belonging to this category among the 151 highly down-regulated genes, with four of these genes related to ‘lipid degradation’. Hence, the transient enhancement of lipid synthesis (i.e. 4h after LL/HL-transfer) was replaced by an inhibition of lipid degradation in the long term. Furthermore five genes involved in ‘major CHO metabolism’, 12 genes related to ‘proteins’ (including seven genes connected to ‘protein synthesis’), as well as six genes related to ‘regulation of transcription (RT)’ were highly up-regulated (Table 1). Moreover, the up-regulation of genes involved in ‘protein synthesis’ was accompanied by a down-regulation of 13 genes related to ‘protein degradation’, again suggesting an enhanced production and/or maintenance of proteins. Furthermore 21, 11, and seven genes related to ‘RT’, ‘stress’ and ‘signalling’,
respectively, were highly down-regulated in \textit{adg1-1} 48h after LL/HL-transfer (Supplementary Table S4A). Moreover, the gene coding for the glucose 6-phosphate/phosphate translocator 2 (\textit{GPT2}; At1g61800) was highly up-regulated in \textit{adg1-1}.

\textbf{(B) \textit{tpt-2} vs \textit{Col-0}}

Under LL-conditions, a limitation in the day-path of photoassimilate export from the chloroplast in the \textit{tpt-2} mutant resulted only in the down-regulation of a single gene encoding a disulfide isomerase-like protein (AtPDIL 5-4, At4g27080; Supplementary Table S2B). The number of highly altered genes in \textit{tpt-2} was increased to 36, 4h after the plants were transferred to HL. There were only two genes down-regulated, amongst them again AtPDIL 5-4 and a protein of unknown function (At4g27080; Supplementary Table S3B). The 34 highly up-regulated genes comprised three genes related to `major carbohydrate metabolism´ and seven, significantly over-represented genes involved in `protein degradation´ (Table 1). After 48h in HL, again, there were more genes highly up-regulated (104) than down-regulated (3) (Supplementary Table S4B). Interestingly, AtPDIL 5-4 still belonged to the down-regulated genes. Within the group of up-regulated genes there were three significantly over-represented functional clusters, \textit{i.e.} `cell wall´, `hormone metabolism´ and `stress´ (Table 1). Furthermore, genes related to `RT´ and `development´ were represented with at least five members. Ten genes, including a MAPkinase (At1g01560), were connected to `signalling´, in particular, `calcium signalling´ (nine genes).

\textbf{(c) \textit{adg1-1/tpt-2} vs \textit{Col-0}}

Despite the relative high number of specifically altered genes in the \textit{adg1-1} mutant, surprisingly, the combined deficiency in the day- and night-path of photoassimilate export resulted in an appreciable lower number of differentially regulated genes in \textit{adg1-1/tpt-2}. Under LL-conditions there were only 21 genes highly up- or down-regulated in the double mutant (Supplementary Table S2C). Among the nine up-regulated genes in \textit{adg1-1/tpt-2}, remarkably, there were three genes related to `abiotic stress´, sub-category heat. All three genes belong to the putative HSP20-type protein of unknown function (At1g53540, At3g46230, At5g12020). Of the 12 down-regulated genes one half is related to `histone proteins´ and `chromatin structure´, suggesting that parts of the DNA was not associated with proteins and/or the plants contained less DNA. The only gene dramatically down-regulated in the overlapping area of \textit{adg1-1/tpt-2} and \textit{tpt-2} was, as expected, the \textit{TPT} gene (Supplementary Table S2D). In the overlapping region between \textit{adg1-1/tpt-2} and \textit{adg1-1}
there were 13 up- and 33 down-regulated genes found. Among the down-regulated genes there were six genes related to ‘chromatin structure’ as well as five genes involved in ‘protein degradation’, again suggesting a function of starch and/or soluble sugars in protein maintenance and chromatin structure.

After 4h in HL only 10 genes were highly altered in adg1-1/tpt-2 (Fig. 6B, Supplementary Table S3C). The three up-regulated genes comprised a stress induced protein (At2g40170) involved in ABA metabolism and a chloroplast localised superoxide dismutase (At2g28190). Both genes were more pronounced up-regulated in adg1-1/tpt-2 compared to adg1-1 or tpt-2. Amongst the down-regulated genes there was a bHLH-type transcription factor (At4g17880; MYC4), which was highly and specifically down-regulated with a log2-ratio of -5.17 in adg1-1/tpt-2. Strikingly the same gene was also highly down-regulated after 48h in HL (log2-ratio = -4.21) and even in LL (log2-ratio = -3.68). A closer inspection of the expression profiles (eFP browser, Winter et al., 2007) revealed that this gene is highly regulated by various stress conditions, like for instance oxidative stress, and it responds to jasmonate (Fernández-Calvo et al., 2011). Moreover, the presence of externally fed Suc induces the expression of At4g17880. Furthermore, MYC4 has been identified to be one of the key players in the regulation of glucosinolate biosynthesis (Schweizer et al., 2013). At t48h there were eight more transcriptional regulators within the group of 112 highly down-regulated genes in adg1-1/tpt-2. Moreover, the functional categories ‘amino acids’, ‘cell wall’, and ‘major carbohydrate metabolism’ were significantly over-represented (Table 1). Interestingly, among the 36 highly up-regulated genes, 22 were plastome-encoded and belonged to the categories ‘PS light reaction’ (16 genes), ‘protein biosynthesis’ (five genes) and ‘lipid metabolism’ (one gene). Moreover, there were four nuclear-encoded genes involved in ‘RT’ up-regulated in adg1-1/tpt-2.
Genes associated with `major carbohydrate´- and `lipid metabolism´ as well as `transport´ were commonly up-regulated 4h after LL/HL-transfer

The group of commonly regulated genes as a response to LL/HL-transfer comprised also metabolic genes. Strikingly, seven and 11 genes associated with `lipid-´ and `major CHO metabolism´, respectively, were up-regulated only transiently at t₄h vs t₀ (Supplementary Table S7A).

Among the up-regulated genes associated with `lipid metabolism´, there were two genes involved in triacylglycerol (TAG) biosynthesis (At1g54570 and At2g19450), a sterol oxidase (At1g07420), probably anchored at the outer envelope (gene ontology, cellular component), a 16:0 delta9 desaturase (At2g31360) and a phospholipase A2 family protein (At2g06925). As an analysis with ATTED-II (version 6.1) revealed, all genes apart from a plastidial thioesterase (At1g54570) belong to a regulatory network (Supplementary Fig. S3B; Supplementary Table S7A).

Moreover, in the category `lipid metabolism´ there were ten and seven genes down-regulated at t₄h vs t₀ and t₄₈h vs t₀, respectively, with an overlap of five genes. The ten down-regulated genes at t₄h vs t₀ form, with the exception of At5g08030, a large network (Supplementary Fig. S3C), whereas there is no evidence for any exceptional network formation with the seven down-regulated genes at t₄₈h vs t₀ (not shown).

In the category `major CHO metabolism´, the 11 up-regulated genes at t₄h vs t₀ were - in a broader sense - all involved in either starch synthesis or degradation, despite the fact that the adg1-1 single mutant and the adg1-1/tpt-2 double mutant lack starch (Supplementary Table S7A). Furthermore, all 11 genes belong to a single regulatory network (Supplementary Fig. S2A). The list of highly up-regulated genes comprised not only chloroplast-localised metabolic enzymes such as α-amylase (At1g69830), disproportionating enzyme 1 (DPE1, At5g64860; Stettler et al., 2009), isoamylase/debranching enzyme (At4g09020; Streb et al., 2008; Wattebled et al., 2008), branching enzyme 1 and 2 (At3g20440; At2g36390; Walters et al., 2004; Dumez et al., 2006) and glucan phosphorylase (At3g29320), but also regulatory proteins such as glucan water dikinase (GWD; SEX1; At1g10760; Yu et al., 2001) phosphoglucan, water dikinases (PWD; AtGWD3; At5g26570; Kötting et al., 2005), involved in the phosphorylation of glucose residues in amyllopectin at C₆ and C₃ (Ritte et al., 2006), respectively, and a protein phosphatase (AtSEX4; At3g52180), involved in the dephosphorylation of the aforementioned glucose residues (Hejazi et al., 2010). Moreover,
two genes associated with the cytosolic conversion of maltose to sucrose (i.e. disproportionate enzyme 2 [At2g40840; Lu & Sharkey, 2004] and glucan phosphorylase 2 [At3g46970]) were highly up-regulated 4h after LL/HL-transfer in both wild-type and mutant plants. Again this regulation of genes involved in carbohydrate metabolism also occurred in the starch-free background (i.e. adg1-1 and adg1-1/tpt-2). Interestingly, three of the starch-related genes belong to the co-expression network of phospholipase A (At2g06925; Supplementary Table S7A). Moreover, within the co-regulation network of genes belonging to the category ‘major CHO metabolism’, there was a chloroplast localised AMP activated protein kinase induced 4h and 48h after transfer to HL (Supplementary Table S7, A and B). The respective gene (At5g39790) appears to contain a starch binding domain (SUBA3 database; Heazlewood et al., 2007; Tanz et al., 2013) and might hence be involved in carbohydrate metabolism or signalling. Most strikingly, the expression of ‘starch related’ genes occurred independently from the presence of starch (i.e. in the starch-free background adg1-1), suggesting that the resulting proteins might have additional unknown functions.

In the category ‘secondary metabolism’ there were five and 11 genes up-regulated, related to ‘flavonoids’ in a broader sense at t4h vs t0 and t48h vs t0, respectively (Supplementary Table S7, A and B). Only three of these genes were commonly differently regulated at both time points. In addition, three more up-regulated genes belonged to the sub-category ‘isoprenoids’ and ‘miscellaneous’.

Genes associated with specific ‘transport processes’ were differentially expressed most pronounced 4h after LL/HL-transfer

Genes associated with ‘transport processes’ were de-regulated both at 4h and 48h after LL/HL-transfer. Of the 14 up-regulated genes at t4h vs t0, only two genes were also found at t48h vs t0. Likewise, of the 18 down-regulated transport associated genes at t4h vs t0, only six were also found at t48h vs t0 (Supplementary Table S7, A and B). Interestingly two genes belonging to the phosphate translocator family were de-regulated after 4h in HL. The glucose 6-phosphate/phosphate translocator2 (GPT2; At1g61800) and the phosphoenolpyruvate/phosphate translocator2 (PPT2; At3g01550) were up- and down-regulated, respectively. It has been demonstrated that GPT2, which is usually only expressed in generative tissue (eFP browser; Winter et al., 2007), strongly responds to elevated soluble sugar levels (Kunz et al., 2010, Schmitz et al., 2012), e.g. in starch-free mutants or after feeding of exogenous sugars to the plants (Heinrichs et al., 2012). GPT2 was highly up-regulated with log2-ratios between 3.7 and 6.7 at t4h vs t0 in all plant lines.
(Supplementary Table S7). At 48h after LL-to-HL-transfer, the log2-ratios of GPT2 expression in the wild-type and the tpt-2 single mutant dropped to lower levels compared to t_{4h} vs t_{0}. However, in the adg1-1 mutant the expression of GPT2 was further increased from 6.7 at t_{4h} vs t_{0} to 7.2 at t_{48h} vs t_{0}, whereas in the double mutant GPT2 was not significantly altered. The changes in the GPT2 expression ratios in the time series correspond well with levels of soluble sugars in wild-type and mutant plants (Compare Fig. 1 and Table 4).

Of the 14 up-regulated transport-related genes, six genes encode proteins with a high probability of a mitochondrial localisation and only two are likely to be localised in the chloroplasts. The portion of organelle-localised gene products was further diminished in the group of down-regulated transport related genes (i.e. two mitochondrial and one plastidial).

Additional References (Supplementary Document S3)

Dumez S, Wattebled F, Dauvillee D, Delvalle D, Planchot V, Ball SG, D'Hulst C. 2006. Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. The Plant Cell 18, 2694-2709. [http://www.ncbi.nlm.nih.gov/pubmed/17028209]

Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I and Millar AH. 2007. SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Research. 35(D), 213-218. [http://www.ncbi.nlm.nih.gov/pubmed/17071959]

Hejazi M, Fettke J, Köttting O, Zeeman SC, Steup M. 2010. The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. Plant Physiology 152, 711-722. [http://www.ncbi.nlm.nih.gov/pubmed/20018599]

Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G. 2005. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Letters 580, 4872-4876. [http://www.ncbi.nlm.nih.gov/pubmed/16914145]

Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G. 2005. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Letters 580, 4872-4876. [http://www.ncbi.nlm.nih.gov/pubmed/16914145]
Stettler M, Eicke S, Mettler T, Messerli G, Hortensteiner S, Zeeman SC. 2009. Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. *Molecular Plant*, 2, 1233-1246. http://www.ncbi.nlm.nih.gov/pubmed/19946617

Streb S, Delatte T, Umhang M, Eicke S, Schorderet M, Reinhardt D, Zeeman SC. 2008. Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. *The Plant Cell*. 20, 3448-3466. http://www.ncbi.nlm.nih.gov/pubmed/19074683

Tanz SK, Castleden I, Hooper CM, Vacher M, Small I; Millar, AH. 2013. SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. *Nucleic Acids Research*. 41(D), 1185-1191. http://www.ncbi.nlm.nih.gov/pubmed/23180787

Wattebled F, Planchot V, Dong Y, Szydlowski N, Pontoire B, Devin A, Ball S, D'Hulst C. 2008. Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves. *Plant Physiology* 148, 1309-1323. http://www.ncbi.nlm.nih.gov/pubmed/18815382

Yu T-S, Kofler H, Häusler RE, Hille D, Flügge UI, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue W-L, Weber A. 2001. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not the chloroplast hexose transporter. *The Plant Cell* 13, 1907-1918. http://www.ncbi.nlm.nih.gov/pubmed/11487701