Crystal structure of (1-hydroxy-1-phosphono-pentyl)-phosphonic acid dimethyl ammonium salt, C7H21NO7P2, and of (1,8-dihydroxy-1,8,8-tris-phosphono-octyl)-phosphonic acid bis-dimethylammonium salt tetra-hydrate, C12H36N2O14P4 · 4H2O, evidence for trapped alcalkine species by bisphosphonic and tetraphosphonic acids in the crystalline state

A. Neuman, M. Coindet-Benramdane, H. Gillier, Y. Leroux, D. El Manouni and T. Prangé*

Université Paris-Nord, Chimie Structurale et Spectroscopie Biomoléculaire (UMR 7033 CNRS), UFR-SMBH, 74 rue M. Cachin, F-93017 Bobigny Cedex, France

Received November 27, 2001, accepted February 11, 2002; CCDC-No. 1267/773 and CCDC-No. 1267/774

Abstract
C7H21NO7P2, triclinic, P1̅ (No. 2), a = 11.404(2) Å, b = 10.426(2) Å, c = 6.199(2) Å, α = 92.1(1)°, β = 95.9(1)°, γ = 110.5(1)°, V = 684.9 Å³, Z = 2, R_p(F) = 0.061, wRifd(F²) = 0.160, T = 291 K.

C12H36N2O14P4, triclinic, P1 (No. 2), a = 10.052(2) Å, b = 9.336(2) Å, c = 8.289(2) Å, α = 98.4(1)°, β = 104.9(1)°, γ = 106.6(1)°, V = 699.9 Å³, Z = 1, R_p(F) = 0.084, wRifd(F²) = 0.209, T = 291 K.

Source of material
The syntheses of the acids C5H14O7P2 and C8H22O14P4 have already been reported [1,2]. Crystallizations were done by slow evaporation from methanolic solutions at room temperature: 0.1 g of C5H14O7P2 or C8H22O14P4 were dissolved in 25 ml of methanol:water (1:1). By slow evaporation, only oily products were obtained. If a separate solution of dimethylamine is set in the vicinity of the crystallization pot, the dimethylamonium salts (C7H21NO7P2, C12H36N2O14P4 · 4H2O) shortly crystallize as large prisms.

Experimental details
All H atoms were initially calculated at idealized positions and refined with C-H and O-H distances restraints. An isotropic displacement parameter was set for each hydrogen in HBPA and BHTP, riding 1.2 times of the value for the bonded atom.

Discussion
The hydroxy-bisphosphonic acid HBPA and the bishydroxy-tetraphosphonic acid BHTP are very efficient compounds for complexing metallic ions and for their transport properties in biological media [3-5]. The wide application of HBPA and BHTP ranges from their use in bone scintigraphy [6] to the extraction of trans actinides in nuclear industry [7]. In addition, several amino substituted hydroxy-bis phosphonic acids are under evaluation in medicinal treatment of bone deseases as they strongly interact and regulate the transport of calcium [3,8]. Most of these biological active bis-acids have an extended alkyl-amino chain linked to the central carbon. In this respect, the crystal structures of these uncomplexed amino phosphonic acids are zwitterionic species like amino-acids. HBPA and BHTP without amino function at C(1) show superacid properties [9,10]. These compounds as free acids have poor crystalline properties although a number of structures have been reported [10-13]. In this communication, it is given evidence that they can trap and stabilize cationic species derived from volatile alcalkine compounds like dimethylamine to give particularly stable crystals. A possible catalytic intermolecular dehydration of methanol, the solvent used in crystallizations, cannot be ruled out because of the superacid properties of the title compounds. This will lead to a dimethyloxonium cation [14] with a similar density signature than dimethylammonium. To confirm the nature of the central atom of the cation (N or O) and for accurate hydrogen bond location, a neutron study on HBPA has been undertaken. This study will be published elsewhere [15].

1. (1-Hydroxy-1-phosphono-pentyl)-phosphonic acid dimethyl ammonium salt, C7H21NO7P2

* Correspondence author (e-mail: prange@lure.u-psud.fr)
Table 1. Data collection and handling.

Crystal:	colourless, irregular, size 0.2 x 0.2 x 0.3 mm
Wavelength:	Cu Kα radiation (1.54180 Å)
μ:	31.26 cm⁻¹
Diffractometer, scan mode:	Philips PW1100, θ/2θ
2θmax:	128.04°
N(hkl)measured, N(hkl)unique:	1790, 1790
Criterion for Iobs, I(hkl)g:	Iobs > 2σ(Iobs), 1776
N(param)refined:	163
Programs:	SHELXS-86 [16], SHELXL-97 [17], Xtal-GX [18]

Table 2. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	x	y	z	U11	U22	U33	U12	U13	U23
P(1)	2i	0.38297(8)	0.0808(1)	0.1529(1)	0.0287(5)	0.0162(7)	0.0107(5)	0.0147(4)	-0.0020(4)	0.0059(4)
P(2)	2i	0.35859(8)	-0.3216(1)	-0.0715(1)	0.0285(5)	0.0121(7)	0.0195(5)	0.0124(4)	-0.0006(4)	0.0057(5)
O(12)	2i	0.3869(2)	-0.0661(3)	0.0891(4)	0.029(1)	0.014(2)	0.033(2)	0.011(1)	0.001(1)	0.009(1)
O(11)	2i	0.5106(3)	0.0840(3)	0.2379(4)	0.032(1)	0.020(2)	0.019(1)	0.017(1)	-0.004(1)	0.004(1)
O(13)	2i	0.3230(3)	0.1495(3)	0.3151(4)	0.047(2)	0.036(2)	0.015(1)	0.030(2)	0.004(1)	0.006(1)
O(21)	2i	0.6384(2)	0.2673(3)	-0.1274(4)	0.031(1)	0.018(2)	0.031(1)	0.017(1)	0.006(1)	0.010(1)
O(22)	2i	0.5616(2)	0.3980(3)	0.149(4)	0.042(2)	0.018(2)	0.019(1)	0.020(1)	-0.007(1)	-0.000(1)
O(23)	2i	0.5233(3)	0.4147(3)	-0.2589(4)	0.043(2)	0.019(2)	0.019(1)	0.021(1)	0.004(1)	0.012(1)
O(1)	2i	0.3740(2)	0.0915(3)	-0.2838(4)	0.038(1)	0.018(2)	0.009(1)	0.020(1)	-0.005(1)	-0.002(1)
C(11)	2i	0.3851(3)	0.1787(4)	-0.0912(5)	0.031(2)	0.021(2)	0.011(2)	0.016(2)	0.000(1)	0.009(2)
C(2)	2i	0.2759(3)	0.2313(4)	-0.1215(6)	0.030(2)	0.018(2)	0.019(2)	0.014(2)	-0.001(1)	0.006(2)
C(3)	2i	0.1444(4)	0.1219(5)	-0.1484(7)	0.030(2)	0.026(3)	0.039(2)	0.013(2)	-0.002(2)	0.011(2)
C(4)	2i	0.0409(4)	0.1779(5)	-0.2161(8)	0.029(2)	0.040(3)	0.046(3)	0.016(2)	-0.002(2)	0.013(2)
C(5)	2i	0.0298(5)	0.2804(7)	-0.049(1)	0.051(3)	0.083(5)	0.072(4)	0.043(3)	0.005(3)	0.000(4)
N(1)	2i	0.7185(3)	0.3460(4)	0.4759(5)	0.030(2)	0.033(2)	0.021(2)	0.011(2)	-0.003(1)	0.006(2)
C(15)	2i	0.7954(4)	0.2680(6)	0.4038(9)	0.037(2)	0.062(4)	0.059(3)	0.023(3)	-0.008(2)	-0.011(3)
C(25)	2i	0.7898(5)	0.4918(5)	0.527(1)	0.060(3)	0.033(3)	0.061(3)	0.000(3)	0.008(3)	0.010(3)

Table 4. Data collection and handling.

Crystal:	colourless, irregular, size 0.15 x 0.30 x 0.60 mm
Wavelength:	Cu Kα radiation (1.54180 Å)
μ:	32.07 cm⁻¹
Diffractometer, scan mode:	Philips PW1100, θ/2θ
2θmax:	123.92°
N(hkl)measured, N(hkl)unique:	1538, 1538
Criterion for Iobs, I(hkl)g:	Iobs > 2σ(Iobs), 1520
N(param)refined:	182
Programs:	SHELXS-86 [16], SHELXL-97 [17], Xtal-GX [18]
Table 5. Atomic coordinates and displacement parameters (in Å²).

Atom	Site	x	y	z	U₁₁	U₂₂	U₃₃
H(12)	2i	0.2980	0.3702	0.2125	0.032		
H(21)	2i	0.1214	0.4979	0.7642	0.043		
H(22)	2i	-0.0936	0.3604	0.5749	0.037		
H(1)	2i	0.0664	0.0737	0.3438	0.027		
H(21C)	2i	0.3932	0.2914	0.6527	0.038		
H(22C)	2i	0.2733	0.1443	0.6587	0.038		
H(1C3)	2i	0.2737	0.0153	0.3953	0.038		
H(2C3)	2i	0.3903	0.1630	0.3848	0.038		
H(1C4)	2i	0.5610	0.1420	0.6143	0.044		
H(2C4)	2i	0.4450	0.0006	0.6362	0.044		
H(1NS)	2i	0.8657	0.3642	0.1982	0.036		

References

1. Locourey, M.; Leroux, Y.: Synthèse de 1-hydroxy-1,1'-bisphosphonates. Heteroatom. Chem. 11 (2000) 556-561.
2. Sylvestre, J. P.; Khadraoui, H.; Gillier, H.; El Manouni, D.; Leroux, Y.; Neuman, A.; Prangé T.; Quy Dao N.: Synthèse et étude structurale d'acides dihydroxy-tétraphosphoniques et de sels de ces acides. III: Un cas d'isomorphisme entre le sel de potassium et l'acide 1,6-dihydroxyhexylidène-1,1,6,6-tétraphosphonique (DHHTP) hydraté. Phosphorus, Sulfur and and Silicon 170 (2001) 91-113.
3. Brunner, K. W.; Fleisch, H.; Senn, H. J.: In Recent results in Cancer Research, Phosphonates and Tumor osteolysis. Springer Verlag. (1989) p.116.
4. Fleisch, H.: Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 42 (1991) 919-944.
5. Balena, R.; Toolan, B. C.; Shea, M.; Markatos, A.; Meyers, E. R.; Lee, S. C.; Opass, E. E.; Seedor, J. G.; Klein, H. J.: The effects of 2-year treatment with the aminoibisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. Clin. Invest. 92 (1993) 2577-2586.
6. Blake, G. M.; Park-Holohan, S. J.; Cook, G. J.; Fogelman, I.: Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semina. Nucl. Med. 31 (2001) 28-49.
7. Leroux, Y.; Sylvester, J. P.; Wosniak, M.: French Patent CNRS (1990) FR90, 14256.
8. Windner, W.; Zbiden, A. M.; Treschel, U.; Fleisch, H.: Ultrafiltrability and chromatographic properties of pyrophosphate, 1-hydroxyethylidene-1,1-bisphosphonate, and dichloromethylenebisphosphonate in aqueous buffers and in human plasma. Calcif. Tissue Int. 35 (1983) 397-400.
9. Jerowska-Bojczuk, M.; Kiss, T.; Kozlowski, H.; Leroux, Y.; El Manouni, D.: 1-hydroxyalkane-1,1'-diposphonates as potent chelating agents for metal ions. Potentiometric and spectroscopic studies of copper(II) coordination. J. Chem. Soc. Dalton Trans (1996) 119-123.
10. Leroux, Y.; El Manouni, D.; Safsaf, A.; Neuman, A.; Gillier, H.: Etude structurale de l'acide butane hydroxy-1,4-diphosphonic acid. 1,1'. Phosphorus, Sulfur and Silicon 63 (1991) 181-191.
11. Deluchat, V.; Serpaud, D.; Caullet, C.: Constants de protonation et de complexation de l'acide hydroxyethano-1,1' diphosphonique (HEBP) vis a vis des cations bivalents, etude de complexes peu solubles de HEDP avec Pb(II) et Cd(II). Phosphorus Sulfur and Silicon 104 (1995) 81-92.
12. Ohanesian, J.; Avenel, D.; El Manouni, D.; Benramdane, M.: The molecular structure of 4-amino 1-hydroxy butylidene-1 bisphosphonic acid (AHBPBA); an uncommon anhydrous hydroxybisphosphonic acid. Phosphorus, Sulfur and Silicon 129 (1997) 99-110.
13. Sylvestre, J. P.; Nguyen Quy Dao; Leroux, Y.: A survey of the behavior of the hydroxybisphosphonic function in crystallized acids, metallic salts and some related compounds. Heteroatom Chem. 12 (2001) 73-90.
14. Coinnet-Benhamadane, M.: These de Doctorat, Université Paris-Nord, Villetteaneuse, France 1996.
15. Navaza, A.; Chevrier, G.; Kist, J. M.; Barbe, C.: Neutron studies of a hydroxy-bis phosphonic acid complex salt (2002) to be published.
16. Sheldrick, G. M.: SHELXS-86. Program for solution of crystal structures. University of Göttingen, Germany 1985.
17. Sheldrick, G. M.: SHEXL-97. A program for refining crystal structures. University of Göttingen, Germany 1997.
18. Hall, S.; duBoulay, D.: Xtal-GX program University of Western Australia, Australia 1997.
Instructions to Contributors

General

It is understood that contributions which are submitted to Zeitschrift für Kristallographie — New Crystal Structures have not, nor will be simultaneously submitted or published elsewhere unless otherwise agreed. With the acceptance of the file for publication the publishers acquire full and exclusive copyright for all languages and for all countries.

The journal contains two kinds of New Crystal Structure publications (NCS):

(i) results of determinations of hitherto unknown crystal structures which do not justify detailed discussion of determination procedure, crystal structure, and/or structure-property relations (routine determinations and structures);
(ii) refinements of previously published crystal structures which do not require a new description or discussion.

Each publication should contain information about one structure only. For strongly related structures (e.g. isotypes), two (exceptionally more) data sets can be included in one publication. Both, single crystal and powder data are acceptable.

Paper charge

The author is asked to pay EUR 135.00 (+16% VAT) for each publication and should indicate his agreement clearly in the item _publ_contact_letter of the CIF-file.

Submission

CIF-files, plot files and if necessary the hard copies of the figures shall be delivered via e-mail or on diskette to:

Oldenbourg Wissenschaftsverlag
Lektorat MINT
Mrs. K. Berber-Neriinger
Postfach 801360
D-81613 München, Germany

e-mail: zkrist@verlag.oldenbourg.de

Samples of CIF-files can be called from:
ftp://ftp.oldenbourg.de/pub/zkrist

Text part

The text part of the publication should be written in English and must be positioned in the following items:

_publ_section_exptl_prep
_publ_section_experimental
_publ_section_comment

It is expected, that the item _publ_section_exptl_prep contains information about the source of the material and/or synthesis conditions, the item _publ_section_experimental contains information about non-routine details of the diffraction experiment and the item _publ_section_comment should include crystal structure description and discussion. Special details of the experiments (chemical analysis data, melting points, spectroscopic results) can be included in the text if they are absolutely necessary for the interpretation of the crystallographic data.

Overall volume of the text part should not exceed 2800 characters (40 lines 70 characters each).

References

References in the text should read:

Arabic number in square brackets \(\Rightarrow [5] \).

The software used should also be referenced and the references should be added at the end of the reference list. The authors are asked to complete data items in the _computing_ category of the CIF format containing details about the computer programs used in the crystal structure analysis.

All references must be positioned in the item _publ_section_references.

The references have to follow the standard rules of citation:

Journal publications:

Fitch, A. N.; Cockroft, J. H. K.: The structure of solid carbon tetrafluoride. Z. Kristallogr. 203 (1993) 29–39.

Books:

Hausstühl, S.: Kristallphysik. Physik-Verlag, Verlag Chemie, Weinheim 1983.

Articles in multi-author book publications:

Thompson, J. B.; Waldbaum, D. R.; Hovis, G. L.: Thermodynamic properties related to ordering in end member alkali feldspar. In: The Feldspars (Eds. W. S. MacKenzie, J. Zussman), p. 218–248. Manchester University Press 1974.

Figures

Figures can be accepted in the following format: PostScript (PS, EPS), BitMap (BMP), Windows Metafile (WMF), HPGL or TIF. The figure containing files should be submitted together with CIF-files per e-mail or on the diskette (DOS, Windows 3.1, Windows 95 or Unix operation systems; Macintosh is not accepted).

Figures can also be submitted as sharp, high contrast, laser printer made hard copy, glossy prints, or original black ink drawings. For reasons of quality the submitted figures should have the final size (85 mm wide). Letters and numbers may not be smaller than 2 mm after reproduction.

Usually, only one figure is allowed for one structure. In this case, no figure caption will be printed. For two or more figures, the authors are asked to prepare the figure captions and locate them in the item _publ_section_figure_captions.

International System of Units/IUPAC

The International System of Units (SI, Système International d'Unités) is to be used wherever possible (especially the temperature values should be given in K). Unit cell parameters and distances should be given in Å. The nomenclature should follow the IUPAC-rules.

Please make sure, that you

- do not use word processors for editing CIF-files. At least the saving must be done in ASCII format.
- do not use LaTeX conventions for the text part.
- do not use non standard characters from the second half of the ASCII table (ā, Ą, č, Ć). In this case, the CIF convention should be applied (ā = \(\sqrt{\alpha} \), α = \(\sqrt{\alpha} \)); ask the editorial office for examples.
• do not write text lines longer than 80 characters.
• do not use tabs as separators in the CIF file.
• do not add or change information in the CIF items, which contradicts their definition in CIF format.
• do not use word processors for preparing the plots and sending plots as WORD documents.
• do not send Bitmaps files without paying attention to the resolution of the lines and curves in the figure.
• do not forget atom labels in the figure(s) or use different labels in the figure(s) and the tables.
• do not forget to show the orientation of the unit cell (axes).

Proofs

Proofs will be sent only once to the author explicitly marked as correspondence author. Corrections are to be restricted to typographical errors. Substantial corrections exceeding the original typesetting costs by 5% will be charged to the author(s).

Offprints

Thirty offprints of each article will be provided. Unless otherwise specified they will be sent to the correspondence author. Additional copies can be ordered upon return of the proofs. They will be charged according to the relevant price list.

Depositing of Data

The authors are asked to keep structure factor lists for one year after publication in case they are requested.

After the publication has been accepted, the submitted data will be deposited with the Fachinformationszentrum Karlsruhe (FIZ) or the Cambridge Crystallographic Data Centre (CCDC). Both databases provide the publisher with a deposition number, which will be included in the contribution in Zeitschrift für Kristallographie — New Crystal Structures.
Author Index of Volume 217 Issue 1

Achary, S. N., 23
Agostinho Moreira, J., 77, 79
Ahmed, I., 107
Almeida, A., 77, 79
Andrade, L. C. R., 77, 79
Arendt, Y., 63
Bagieu-Beucher, M., 1
Balogh-Hergovich, É., 61
Barberan, O., 128
Barbey, C., 137
Becquey, R., 47, 49
Becquaert, A., 128
Bente, K., 13
Bhalla, V., 104
Bodart, N., 109, 112
Boegéns, J. C. A., 9
Böhmer, V., 141, 144
Brion, J. D., 128
Burtard, A., 139
Cendrowski-Guillaume, S., 35
Chaves, M. R., 77, 79
Cheng, Y.-Q., 121
Chiappe, C., 119
Cointet-Benramdane, M., 154
Costa, M. M. R., 77, 79
Danu, A., 128
Dave, C. G., 29, 32
Deacon, G. B., 87
De Almeida, E. T., 147
Dee, C. M., 85
De Godoy Netto, A. V., 147
Devillers, M., 109, 112
Dieleman, C. B., 55
Dronowski, R., 118
El Manouni, D., 154
Elmes, P. S., 91
Emirdag-Eanes, M., 17
Epitrithikine, M., 35
Fang, L.-P., 121
Fleck, M., 15
Frey, W., 123, 125
Friedrich, H. A., 24
Gerlach, U., 139
Giester, Y., 69, 71
Gillier, H., 154
Giorgi, M., 61
Gourandou, F., 74, 149
Gretzrex, B. W., 83
Güttke, A., 125
Gysling, H. J., 151
Haase, D., 47, 49, 99, 101
Hahn, D. U., 123
Haassühl, E., 69, 71
Hegetschweiler, K., 133, 135
Hernandez, O., 11
Heuer, M., 13
Hofmann, A., 89
Horvath, M. J., 91
Hu, M.-L., 121
Huang, Y.-X., 3, 5, 7
Hundal, G., 104
Ichtar, V. V. H., 9
Jackson, W. R., 91
Jäger, V., 123, 125
Jalili, A. R., 74, 149
Jamali, F., 74, 149
Jansen, M., 19, 94, 95
Jäschke, T., 95
Jeitschko, U., 15
Kong, Z.-P., 65
Kumar, A. E., 147
Kuo, C.-Y., 3, 5, 7
Köhler, J., 23, 24
Koester, M., 99, 101
Kreibich, C., 147
Lang, H.-J., 139
Lecomte, M., 137
Le Gland, G., 35
Lejeune, M., 51
Lemoine, P., 128, 131
Lendoit, D., 119
Lentz, D., 59
Leroux, Y., 154
Lin, J.-L., 65, 67
Liu, X., 118
Lokshin, V., 57
Löwel, C. G., 91
Ludwig, R., 59
Mahjoth, A. R., 97
Mao, S.-Y., 3, 5, 7
Matt, D., 51, 55
Mauro, A. E., 147
Mikami, T., 43
Mizuguchi, J., 43, 45
Momiji-Movahed, A., 149
Moody, K., 91
Morgant, G., 131
Morita, A., 74, 97, 149
Mosset, A., 1
Müller, U., 119
Müller-Knabe, K., 38, 41
Neda, I., 55
Nelso, K. T., 87
Neumann, A., 154
Nguyen-Huy, D., 131
Nierlich, M., 35
Nuss, J., 19, 21
O'Sullivan, P., 141, 144
Ostendorf, D., 99, 101
Paixão, J. A., 77, 79
Patel, U. H., 29, 32
Paulus, E., 139, 141, 144
Pepe, G., 57
Perrin, A., 11
Pilet, G., 11
Poothre, M. R., 97
Prang, T., 11
Rabbi, C., 128
Rajeshwar, M., 151
Ramazani, A., 74, 149
Réglier, M., 61
Rexer, H., 107
Romma, J., 133, 135
Rossol, V., 57
Saak, W., 47, 49, 99, 101
Samat, A., 57
Santana, A. M., 147
Santos, M. L., 77, 79
Santos, R. H., 147
Sayfik, D., 91
Schütte, M., 27
Schmutzler, R., 55
Schnering, H. G. von, 21
Shah, H. C., 29, 32
Shams, E., 97
Singh, N., 104
Södervall, M., 38
Soetebier, F., 22
Souza Jr., J., 147
Speier, G., 61
Steinborn, D., 63
Steinhauser, S., 133, 135
Strook, J., 47, 49
Taylor, D. K., 83
Tiekink, E. R. T., 81, 83, 85, 87, 89, 91
Tilmanns, E., 69, 71
Tinant, B., 109, 112
Tojo, K., 45
Tomasi, A., 131
Tyagi, A. K., 23
Urland, D., 94
Viossat, B., 128, 131
Wattenbach, C., 119
Wei, Z.-B., 3, 5, 7
Weidenbruch, M., 99, 101
Wesslauer, D., 94
Wolf, W. M., 115
Wollens, H., 109, 112
Zhang, H.-L., 67
Zhao, J.-T., 3, 5, 7
Zheng, Y.-Q., 65, 67
Formulae Index of Volume 217 Issue 1

BHI11KO9P2, 3
BHI11NO9P2, 5
B4H12NaNaO4Pb, 7
Ba2O5SiZn, 25
Br2CsReOSe, 11
CCH4N, 4
CaH2OyPt, 94
C6H6OyC12H4, 118
C6H6OyC8H4NO5, 137
C6H6OyCl2S12, 154
C6H6OyOs, 93
C6H6OyPt, 123
C6H6OyCl2N2OyPt, 131
C6H6OyN2O, 77
C6H6OyB2N2Si, 95
C6H6OyB2N2SiO, 121
C6H6OyN2OyPb, 154
C6H6OyCl, 41
C6H6OyN2Oy3Zr, 71
C6H6Oy, 99
C6H6OyN, 149
C6H6OyN2Oy, 91

Cs3H20.6N2Oy4.6S, 139
Cs3H20.6N2Oy4.Pt, 87
Cs3H20.6N2Oy4.SS, 74
Cs3H20.6N2Oy4.6S, 65
Cs3H20.6N2Oy4.S, 61
Cs3H20.6N2Oy4.Pt, 38
Cs3H20.6N2Oy4.Zr, 69
Cs3H20.6N2Oy4.6S, 128
Cs3H20.6N2Oy4.6S, 133
Cs3H20.6N2Oy4.6S, 115
Cs3H20.6N2Oy4.6S, 115
Cs3H20.6N2Oy4.6S, 119
Cs3H20.6N2Oy4.6S, 89
Cs3H20.6N2Oy4.6S, 49
Cs3H20.6N2Oy4.6S, 47
Cs3H20.6N2Oy4.6S, 125
Cs3H20.6N2Oy4.6S, 85
Cs3H20.6N2Oy4.6S, 109
Cs3H20.6N2Oy4.6S, 112
Cs3H20.6N2Oy4.6S, 135
Cs3H20.6N2Oy4.6S, 81
Cs3H20.6N2Oy4.6S, 83
Cs3H20.6N2Oy4.6S, 45
Cs3H20.6N2Oy4.6S, 32
Cs3H20.6N2Oy4.6S, 67

Cs3H20.6N2Oy4.6S, 57
Cs3H20.6N2Oy4.6S, 104
Cs3H20.6N2Oy4.6S, 147
Cs3H20.6N2Oy4.6S, 43
Cs3H20.6N2Oy4.6S, 97
Cs3H20.6N2Oy4.6S, 29
Cs3H20.6N2Oy4.6S, 35
Cs3H20.6N2Oy4.6S, 101
Cs3H20.6N2Oy4.6S, 141
Cs3H20.6N2Oy4.6S, 144
Cs3H20.6N2Oy4.6S, 107
Cs3H20.6N2Oy4.6S, 55
Cs3H20.6N2Oy4.6S, 151
Cs3H20.6N2Oy4.6S, 51
Cs3H20.6N2Oy4.6S, 9
Cs3H20.6N2Oy4.6S, 21
Cs3H20.6N2Oy4.6S, 13
F34Pb8Y6, 23
GaRnSnO3, 27
Ge2H2NaOsSm3, 17
H2CuO4RhSe2, 15
H2NiO4RhSe2, 15
InP3, 24
Lu2OsS, 22
SbSc2, 19
Zeitschrift für Kristallographie — New Crystal Structures offers a place for researchers to present

(i) results of determinations of hitherto unknown crystal structures which do not justify detailed discussion of determination procedure, crystal structure, and/or structure-property relations (routine determinations and structures),

(ii) refinement of previously published crystal structures which do not require a new description or discussion.

New Crystal Structures (NCS) have to be electronically submitted to the publisher:

Oldenbourg Wissenschaftsverlag
Lektorat MINT
K. Berber-Nerlinger
Postfach 80 13 60
D-81613 München
Tel.: 49/89/4 50 51-3 24
Telefax: 49/89/4 50 51-2 92
e-mail: zkrist@verlag.oldenbourg.de
www: http://www.zkristallogr.de

Editor in chief:
Prof. W. Steurer
Managing Editor:
Dr. Yuri Grin.
Fax: +49-3 51-46 46-33 40
e-mail: grin@cpfs.mpg.de

© Copyright 2002 by Oldenbourg Wissenschaftsverlag GmbH, D-81671 München.
All rights reserved (including translation and storage by electronic means). No part of this issue may be reproduced in any form — by photoprint, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publisher.
The journal has been registered with the Copyright Clearance Center (CCC), 27 Congress Street, Salem, MA 01970, U.S.A., under the fee code 1433-7266. Registered names, trademarks, etc. used in this journal, even when not marked as such, are not to be considered unprotected by law.

Z. Kristallogr. NCS 217 (2002)
ISSN 1433-7266
Oldenbourg Wissenschaftsverlag, München

Subscription information
Volume 217: 4 issues will appear in 2002
Annual subscription prices: EUR 236.— + postage: EUR 38.— (Germany), EUR 54.— (elsewhere).
Single issue: EUR 71.— + postage.
For EU countries all prices are including 7% VAT, for all other countries they are gross prices.
Orders can either be placed with your bookdealer or sent directly to the publisher.

Cancellation of subscription
The publisher must be notified not later than three months before the end of the calendar year.

Setting and printing
Druckhaus „Thomas Müntzer“ GmbH, Bad Langensalza
Inorganic Crystal Structures

Ismail Ijjaali, Kwasi Mitchell and James A. Ibers
Crystal structure of diterfoium orthosilicate selenide,
Tb$_2$(SiO$_4$)Se 157

S. Budnyk, Yu. Prots, Yu. B. Kuz’m and Yu. Grin
Refinement of the crystal structure of dicerium heptanickel
tetraphosphide, Ce$_2$Ni$_7$P$_4$ 159

R. Demchyna, H. Borrmann, S. I. Chykhrij, Yu. B. Kuz’m
and Yu. Grin
Crystal structure of cerium silver phosphide (1:1.08:1.90),
CeAg$_1.08$P$_{1.90}$ 161

Y.-X. Huang, J.-T. Zhao, J.-X. Mi, H. Borrmann
and R. Kniep
Crystal structure of rubidium indium (monophosphate-hydro-
genmonoborate-monophosphate), RbIn[BP$_2$O$_5$(OH)] 163

M.-R. Li, S.-Y. Mao, Y.-X. Huang, J.-X. Mi, Z.-B. Wei,
J.-T. Zhao and R. Kniep
Crystal structure of ammonium gallium
(monophosphate-hydrogenmonoborate-monophosphate),
(NH$_4$)Ga[BP$_2$O$_5$(OH)] 165

J.-X. Mi, Y.-X. Huang, S.-Y. Mao, H. Borrmann,
J.-T. Zhao and R. Kniep
Crystal structure of potassium gallium
(monophosphate-hydrogenmonoborate-monophosphate),
KGa[BP$_2$O$_5$(OH)] 167

J.-X. Mi, Y.-X. Huang, J.-F. Deng, H. Borrmann,
J.-T. Zhao and R. Kniep
Crystal structure of caesium aluminum
catena-[monohydrogen-monoborate-bis(monophosphate)],
CsAl[BP$_2$O$_5$(OH)] 169

J.-X. Mi, J.-T. Zhao, Y.-X. Huang, J.-F. Deng,
H. Borrmann and R. Kniep
Crystal structure of rubidium aluminum
catena-[monohydrogen-monoborate-bis(monophosphate)],
RbAl[BP$_2$O$_5$(OH)] 171

M. L. Fornasini, P. Manfrinetti and A. Palenzona
Crystal structure of diytterbium palladium hexagermanide,
Yb$_2$PdGe$_6$ 173

I. Hartenbach and Th. Schleid
Crystal structure of tetracetrium(III) trisulfide
heptaoxidisilicate(IV), Ce$_4$S$_3$(Si$_2$O$_7$) 175

P. Ballirano and A. Maras
Refinement of the crystal structure of arsenolite,
As$_5$O$_3$ 177

W. Carrillo-Cabrera, R. Cardoso Gil and Yu. Grin
Crystal structure of the clathrate
Sr$_3$Ga$_{16-x}$Si$_{30-x}$, $x=2.18, 4.05$ 179

W. Carrillo-Cabrera, R. Cardoso Gil, V.-H. Tran
and Yu. Grin
Refinement of the crystal structure of the clathrate
Ba$_3$Ga$_{17.2}$Sn$_{28.8}$ 181

W. Carrillo-Cabrera, R. Cardoso Gil, S. Paschen
and Yu. Grin
Crystal structure of Ba$_3$Ga$_{44.44}$Ge$_{39.14}$I$_{2.42}$,
Ba$_3$Ga$_{43.62}$Ge$_{35.38}$, and Ba$_3$Ga$_{42.35}$Ge$_{33.27}$I$_{0.38}$,
three clathrate-I variants 183

R. Kniep, D. Koch and Th. Hartmann
Crystal structure of potassium aluminum catena-
(monohydrogenmonoborate)-bis(monophosphate),
KAl[BP$_2$O$_5$(OH)] 186

R. Kniep, D. Koch and H. Borrmann
Crystal structure of aluminum catena-[monohydrogen-
oborate-dihydrogenborate-bis(monohydrogenphosphate)]
monohydrate, Al[BP$_2$O$_5$(OH)]$_2$H$_2$O 187

Organic and Metalorganic Crystal Structures

Y.-Q. Zheng, J. Sun and J.-L. Lin
Crystal structure of trans-triaqua(1,10-phenanthroline-N,N')-
sulfatomanganese(II), Mn(H$_2$O)$_3$(C$_{12}$H$_8$N$_2$)SO$_4$ 189

Y.-Q. Zheng, J.-L. Lin and D.-Y. Wei
Crystal structure of carbonatobis(1,10-phenanthroline-N,N')-
zinc(II) heptahydrate, Zn(C$_{12}$H$_8$N$_2$)$_2$CO$_3$ · 7H$_2$O 191

Y.-Q. Zheng, J. Sun and J.-L. Lin
Crystal structure of diaquanitrato(l,10-phenan-
throline-N,N')copper(II) nitrate,
[Cu(H$_2$O)$_2$(C$_{12}$H$_8$N$_2$)(NO$_3$)]NO$_3$ 193

Y.-Q. Zheng, Z.-P. Kong and J.-L. Lin
Crystal structure of tetraaquato(4,4'-bipyridine-
N,N')nickel(II) fumarate tetrahydrate,
Ni(H$_2$O)$_4$(C$_{12}$H$_8$N$_2$)(C$_4$H$_4$O$_4$) · 4H$_2$O 195
K. Tojo and J. Mizuguchi
Refinement of the crystal structure of α-3,4:9,10-perylenetetracarboxylic dianhydride, C_{24}H_{8}O_{6}, at 223 K 253

K. Tojo and J. Mizuguchi
Refinement of the crystal structure of β-3,4:9,10-perylenetetracarboxylic dianhydride, C_{24}H_{8}O_{6}, at 223 K 255

A. S. Abu-Surrah, M. Klinga and M. Leskelä
Crystal structure of (benzonitrile)chloro(A/-phenylamidine-N-cyclohexylamine)platinum(II) chloride hydrate, [PtCl(C_{7}H_{5}N)(C_{13}H_{19}N_{3})Cl] · 1.33H_{2}O 257

J. Karolak-Wojciechowska, A. Fruzski, M. Paluchowska and M. Mokrosz
Crystal structure of 2-[2-(1-adamantanecarboxamido)ethyl]-1,2,3,4-tetrahydroisoquinolinium chloride monohydrate, (C_{22}H_{31}N_{2})Cl · H_{2}O 259

J. Karolak-Wojciechowska, A. Fruzski, S. Miszta and M. Mokrosz
Crystal structure of 2-[4-(cyclohexanecarboxamido)butyl]-1,2,3,4-tetrahydroisoquinoline chloride dihydrate, (C_{20}H_{31}N_{2})Cl · 2H_{2}O 261

F. Bentefrit, P. Lemoine, G. Morgan, A. Tomas, D. Nguyen-Huy and B. Viossat
Crystal structure of bis[(p-chlorophenyl)isopropylbiguadinium]tetrachloroplatinate(II) bisdimethylformamide, C_{28}H_{46}Cl_{8}N_{2}O_{2}Pt 263

M. Shoja, A. Krikava and R. Kabbani
Crystal structure of 6-bromo-3-(4'-chlorophenyl)-4-methylcoumarin, C_{16}H_{10}BrClO_{2} 267

M. Malam, B. Bildstein and K. Wurst
Crystal structure of 3,3'-dithio-bis(4-ferrocenylbenzo[4',5']imidazolo[1,2-c]-thiazol-1-thione), C_{33}H_{32}Fe_{2}N_{4}S_{6} 269

M. A. Walters, A. Sireci, C. D. Incarvito and A. L. Rheingold
Crystal structure of bis(acetonitrile)bis[μ-(benzylthiolato)]hexacarbonyl-di(molybdenum), [Mo(CO)_{3}(SCH_{2}C_{6}H_{5})(CH_{3}CN)]_{2} 271

D. Mrvoš-Sermek, M. Cetina, V. Križetafor, Z. Džolić and M. Mintas
Crystal structure of 9-methyl-[(6-N-pyrrolyl)purine, C_{10}H_{9}N_{5} 273

K. Dridi, M. Rzaigui and H. Zantour
Crystal structure of 5-ethyl-3-hydroxy-9-tert-butylthieno[3,2-e]-1,2,4-triazolo[2,3-c]pyrimidine, C_{13}H_{15}N_{4}OS 275

H. Marouani and M. Rzaigui
Crystal structure of 1,6-hexanediammonium tetra(phenylammonium) cyclohexaphosphate hexahydrate, [(C_{6}H_{12}(NH_{3})_{2})(C_{6}H_{5}NH_{3})]P_{6}O_{18} · 6H_{2}O 277

Z. Gültekin, W. Frey and V. Jäger
Crystal structure of (3aS,4R,5S,6R,6aS)-4,5,6-trihydroxy-5,6-O-isopropylidyne-3,3a,4,5,6,6a-hexahydro-1H-cyclopent[c]isoxazole, C_{16}H_{13}NO_{4} 279

Z. Gültekin, W. Frey and V. Jäger
Crystal structure of (3aS,4R,5S,6R,6aS)-1-benzyl-4,5,6-trihydroxy-5,6-O-isopropylidyne-3,3a,4,5,6,6a-hexahydro-1H-cyclopent[c]isoxazole, C_{16}H_{13}NO_{4} 281

Z. Gültekin, W. Frey and V. Jäger
Crystal structure of (1S,2R,3S,4R)-7-benzyl-2,3-O-isopropylidyne-6-oxa-7-aza-bicyclo[3.2.1]octan-2,3,4-triol, C_{16}H_{13}NO_{4} 283

A. Kelling, U. Schilde and M. Sefkow
Crystal structure of dimethyl-carbamic acid 2-(tert-butyldiphenyl-silanyl)-3-hydroxymethyl-6-methoxyphenyl ester, C_{27}H_{33}NO_{4}Si 285

J. Chiron and J.-P. Galy
Crystal structure of 4-bromomethyl-acridinium bromide—chloroform (1:1), C_{15}H_{12}Br_{2}Cl_{3}N 287

Y. Bibila Mayaya Bisseyou, R. Kakou-Yao, C. Uncuta, N. Ebbuy, J. P. Aycard and M. Giorgi
Crystal structure of 1-isopropyl-2,3,4,6-tetramethylpyridinium perchlorate, C_{12}H_{20}ClO_{4} 289

X. Li, Q.-H. Jin, Y.-Q. Zou and K.-B. Yu
Crystal structure of di(phenanthrolinate)di[μ-(2,3-dimethoxybenzato-O,O')-μ-(2,3-dimethoxybenzato-O,O':O')]-di(nitrate)dineodymium(III), Nd_{2}(NO_{3})_{2}(C_{9}H_{9}O_{4})_{4}(C_{12}H_{2}N_{2}) 292

S. Ben Sdira, M. B. Guidicelli, C. Bavoux, R. Lamartine and M. Perrin
Crystal structure of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis-[(dR)-(2-O-acetylopropanoyl)oxy]calix[4]arene, C_{64}H_{80}O_{16} 295

Errata 298

Author Index

Formulae Index

Further details of the structure determination can be accessed at the relevant database:
Data with CSD-numbers can be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany (e-mail: docdel@fiz-karlsrue.de).
Data with CCDC-numbers can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-33 60 33 or e-mail: deposit@chemcrys.cam.ac.uk).
