Backpropagation for long sequences: beyond memory constraints with constant overheads

Navjot Kukreja
Department of Earth Science and Engineering
Imperial College London
nkukreja@imperial.ac.uk

Jan Hückelheim
Department of Earth Science and Engineering
Imperial College London
j.hueckelheim@imperial.ac.uk

Gerard J. Gorman
Department of Earth Science and Engineering
Imperial College London
g.gorman@imperial.ac.uk

Abstract

Naive backpropagation through time has a memory footprint that grows linearly in the sequence length, due to the need to store each state of the forward propagation. This is a problem for large networks. Strategies have been developed to trade memory for added computations, which results in a sublinear growth of memory footprint or computation overhead. In this work, we present a library that uses asynchronous storing and prefetching to move data to and from slow and cheap storage. The library only stores and prefetches states as frequently as possible without delaying the computation, and uses the optimal Revolve backpropagation strategy for the computations in between. The memory footprint of the backpropagation can thus be reduced to any size (e.g. to fit into DRAM), while the computational overhead is constant in the sequence length, and only depends on the ratio between compute and transfer times on a given hardware. We show in experiments that by exploiting asynchronous data transfer, our strategy is always at least as fast, and usually faster than the previously studied “optimal” strategies.

1 Introduction

The current trend is towards training ever deeper networks as deeper networks have a larger capacity to learn. Since backpropagation requires the complete state of the forward propagation in reverse order, training a neural network with backpropagation requires memory that is proportional to the size of the network. Many state-of-the-art models already run out of memory on current hardware and this trend is only expected to get worse. [10]

One of the most common ways of managing memory consumption of neural network training is by controlling the batch size [10]. However, since the batch size is also used to sample from the training data, the choice of batch size can affect the convergence rate and cannot be used to tune the model’s memory consumption without side-effects.

Another common mitigation strategy is to split the training over multiple computational nodes [7]. However, this incurs significant message passing overheads and costs for hardware with low-latency interconnects. This strategy can also be wasteful if the peak memory consumption is only slightly larger than that of a single compute node.

A third strategy that is recently getting increased attention is checkpointing, and is briefly reviewed in the following section.

Preprint. Work in progress.
Figure 1: Memory requirement of a neural network during training. In conventional backpropagation, all states need to be stored, leading to a peak memory footprint at the end of the forward computation. During the backward pass, the stored states are used and their memory subsequently freed in the reverse order. Training can not be performed on hardware with too small memory. In contrast, checkpointing strategies store some intermediate states and resume recomputation from there when required. With asynchronous multistage checkpointing, the data is further offloaded to a larger, slower storage system (e.g. solid state drive) in the background while the computation is running, and prefetched before it is needed.

1.1 Checkpointing for neural networks

The idea behind checkpointing is not to store the entire state of the network through the forward propagation. Instead, the state of forward propagation is stored only at certain layers, and the number of layers that are kept at any given time can be limited to fit into the available memory. During the backpropagation phase, states that have not been stored can be recomputed as needed from the nearest available state. This allows a tradeoff between memory and computation. With this, problems can be made to fit on systems with limited memory in exchange for an increased computation time.

The pressure on the memory system during a backpropagation execution can be quantified using a memory ratio, i.e. the ratio between the memory available on a computer system and the expected peak memory consumption of a particular instance of backpropagation. We are only interested here in scenarios where the memory ratio is less than 1.

The amount of recomputation required in a checkpointing strategy is quantified using a recompute factor where a factor of 1 implies no recomputation. The factor grows as the memory ratio is reduced. The choice of layers at which to store checkpoints during the forward propagation directly affects the recompute factor and is called the checkpointing schedule.

Checkpointing is widely used for similar purposes in adjoint based optimisation problems, and a number of schedules have been developed that are optimal under certain assumptions. If the number of layers is known a priori, states have a uniform size, each layer takes the same time to compute, and the memory is fast and the time to store a checkpoint is thus negligible, then the Revolve algorithm gives the optimal schedule that minimises recomputation given a fixed amount of memory. Another schedule has been found to be optimal if the number of layers is not known initially. The development of these algorithms was motivated by adjoint solvers, where these assumptions are usually valid.

In contrast, the state size and computation cost of layers in neural networks is often non-uniform (e.g. different before and after a pooling layer). New checkpointing schedules have been developed specifically for machine learning applications, including a dynamic program that can be used to compute optimal schedules for networks of uniform and non-uniform checkpoint sizes.

1.2 Multistage checkpointing

When additional levels of memory are available, it is possible to leverage these additional levels to reduce the recompute factor. In the context of modern computer systems, the two levels of memory could be the accelerator memory and the host memory. Even on systems where only one level of memory is usually used, the second level memory could be a high-bandwidth disk, e.g. an
SSD. In the foreseeable future, other types of memory are expected to become available, such as storage-class memory \cite{14}.

For systems with two levels of memory, \cite{1} describes the optimal schedule that reduces the total time to solution for adjoint solvers or backpropagation, assuming that the first level memory is fast but has limited-capacity, while the second level is slow but has infinite capacity. The key idea is to increase the number of stored checkpoints, by storing the least frequently used checkpoints on the slow, large storage. The schedule assumes blocking data transfer, that is, the computation waits while data is transferred from the fast to the slow storage level.

Since transfers between first-level memory and second-level memory take a non-trivial amount of time, they can be carried out in parallel. This motivated a recent paper \cite{11} describing the use of asynchronous multistage checkpointing for a PDE solver. In that work, the solver itself uses all available RAM on a system, and the checkpoints are thus stored directly to a hard drive. Since the overall stored data is much larger than available hard drives, another system is transferring the data over the network to a tape archive while the computation is running.

A similar concept was also previously applied to neural networks \cite{10}. However, in this case every layer was transferred to the second-level memory, which slows down the forward propagation. A variation of this strategy, where a subset of states is transferred to the host memory and transferred back when required was also implemented for Tensorflow, but without any recomputation of forward propagated states. \cite{9}

1.3 Contributions

While the work in this paper is conceptually similar to that presented in \cite{11}, to the best of our knowledge, multistage checkpointing with recomputation of forward states has not been applied in the context of neural networks before. It has also not previously been investigated for systems other than the aforementioned hard drive/tape system. This is despite the fact that non-blocking asynchronous data transfer is possible on a variety of commonly used systems, such as GPU DRAM / CPU RAM, or from host RAM to another device using direct memory access (DMA). We therefore investigate asynchronous multistage checkpointing for neural networks on a system that consists an Intel XeonPhi Knight’s Landing (KNL), where the main computation and Level 1 memory is in fast MCDRAM, and the Level 2 storage is in the system’s DRAM. Figure 1 gives a high-level illustration of this idea.

After presenting the scheme in Section 2, we present a performance model for asynchronous checkpointing that works across a variety of hardware configurations in Section 3. We also developed a prototype implementation for asynchronous multistage checkpointing in Python, shown in Section 4. In Section 5, we demonstrate the use of this scheme on two different modern hardware platforms using an LSTM based network as a test case. We conclude in Section 6.

2 Asynchronous multistage checkpointing

In this section we outline the asynchronous multistage checkpointing strategy. We assume that there are two storage stages: Level 1, a fast but small memory, and Level 2, a large but slow storage. Examples for Level 1 memory include GPU DRAM or Xeon Phi MCDRAM, while a example for Level 2 storage is a solid state drive (SSD). Note that these roles depend on the overall configuration of the system. For example, RAM could either be a Level 2 storage in a system that is using DRAM as Level 1, or it could be Level 1 memory in a system that is using SSD or a hard drive for Level 2. What matters is not the absolute speed or size of the storage, but rather the relative speed and size compared to other storage in the same system.

In the asynchronous multistage checkpointing strategy, the computation itself completely resides in Level 1 memory. During the forward pass, copies of the state are transferred to the Level 2 storage at regular intervals, i.e. after every I layers, where I is the checkpointing interval. The transfer to storage happens asynchronously so as to not slow down the computation of the forward propagation. All forward activations are then cleared from Level 1 memory.

The backward pass will require the stored data in reverse order, at well-known points in time during the computation. For this reason, checkpoints that are required from Level 2 storage can be
Figure 2: Timeline of events for conventional backpropagation, Revolve checkpointing, and asynchronous multistage checkpointing. The conventional backpropagation would have the shortest runtime, but exceeds the available memory. Both other strategies respect the memory limits, but result in different time overheads. Revolve alternates between forward and reverse computations in a rather complex fashion to minimise the overhead if only one level of memory is available. The asynchronous strategy stores data to Level 2 storage in regular intervals, and restores the data before it is needed in backpropagation.

asynchronously transferred to Level 1 before they are needed. Since every I-th state was stored, the intermediate states need to be recomputed from the restored state. Assuming there is enough Level 1 memory available to store the entire forward propagation state for I layers, backpropagation can then proceed normally for these I layers. If there is not enough memory available, Revolve can be applied to find an optimal schedule for backpropagation through I layers within the limits of the Level 1 memory.

Compared to conventional backpropagation where every state is stored, this obviously has the advantage that it can fit into limited amounts of memory. Perhaps less obviously, this strategy is guaranteed to be faster than the “optimal” Revolve checkpointing strategy. This is because Revolve (or any of the other published single-stage checkpointing strategies) trades memory for additional computations, resulting in a time overhead that increases with the number of layers. Through the use of Level 2 storage, Revolve is only used for the n states between two subsequent stores, resulting in a time overhead that is constant in the number of layers. This is illustrated in Figure 2 and explained in more detail in Section 3.

3 Performance Model

We analyse in this section the expected performance of asynchronous multistage checkpointing and compare it with Revolve checkpointing. Following that, we demonstrate the performance in an experiment in Section 5.

On a given target computer, let the time taken to compute one layer’s activations be given as T_A and the time taken to propagate sensitivities backwards through that layer as T_B. For a network with n layers, the total time T_∞ for a combined forward/backward pass as used in training, assuming that there is no memory limit, is then obviously

$$T_\infty = n \cdot T_A + n \cdot T_B.$$

If Revolve checkpointing is used, some states need to be recomputed, leading to additional computations of activations. This is expressed in the recompute factor, which depends on the total number of layers n, as well as the number of checkpoints that simultaneously fit into memory, s. We refer to this as

$$R(n, s)$$

. The recompute factor is defined in [5], and can be computed by the reference implementation of Revolve or by using the pyrevolve Python package that can be downloaded from
Figure 3: Recompute factors, assuming that \(s = 100 \) (that is, 100 states fit into memory), for classic Revolve, and asynchronous multistage checkpointing with interval sizes \(I = 8, 64, 1024 \).

https://github.com/opesci/pyrevolve/. We note that the recompute factor increases if the number of layers \(n \) is increased, and also increases if the storage space \(s \) is decreased. This is true for all known single-stage checkpointing schemes, and the precise nature of the increase (sub-linear for most schemes, logarithmic for Revolve) determines the optimality of a schedule. The total time \(T_{\text{revolve}} \) for the combined forward/backward pass is then

\[
T_{\text{revolve}} = n \cdot R(n,s) \cdot T_A + n \cdot T_B.
\]

For asynchronous multistage checkpointing, we are also interested in the time that it takes to transfer a state from Level 1 memory to Level 2 storage. We refer to this time as \(T_T \). If \(T_T \leq T_A \), then we could asynchronously stream all data to storage while the computation is running without ever waiting for disk access. If \(T_T > T_A \), then we can only store a subset of all states. We choose to store states in regular intervals of length \(I \), given by

\[
I = \left\lceil \frac{T_T}{T_A} \right\rceil.
\]

In general, there are then \(n/I \) such intervals. Storing and prefetching happens asynchronously, meaning that these operations do not affect performance in this model (albeit they have a slight effect on performance in practice, see Section 5). Within each interval, we can use Revolve with a recompute factor of \(R(I,s) \). Overall, we thus have a runtime

\[
T_{\text{async}} = \frac{n}{I} \cdot (I \cdot R(I,s) \cdot T_A + I \cdot T_B)
= n \cdot R(I,s) \cdot T_A + n \cdot T_B.
\]

Due to the fact that \(R(I,s) \leq R(n,s) \) if the interval is at most \(n \), the asynchronous strategy is at least as fast as the classic Revolve strategy. In particular, the recompute factor in \(T_{\text{async}} \) depends only on \(I \), not on the total sequence length \(n \). Figure 3 shows this for a small number of interval lengths and assuming that 100 states fit into memory.

Note that in the case where there are very few layers, there might not be time to save a single checkpoint to second level memory before the entire forward pass is over. In this case this strategy would fall back to classic Revolve.

4 Implementation

The Revolve algorithm was accompanied by a similarly named utility that could be used to compute optimal schedules for a particular checkpointing scenario. pyrevolve [8] is a python package that
uses schedules automatically derived from this utility to provide checkpointing as a feature in python applications with minimal changes to the code. pyrevolve expects function references to a Forward Operator, and a Backward Operator, along with a Checkpoint object that describes the state variables from the Forward Operator that the Backward Operator requires. Provided these three objects, pyrevolve can drive the entire forward and backward passes, automatically calling the forward or backward operator as required by the optimal schedule. The implementation of the asynchronous multistage checkpointing strategy is offered as an additional mode in pyrevolve1 Due to the way it has been formulated, pyrevolve, and consequently the implementation for this strategy, can be used in applications ranging from PDE-constrained optimisation problems in seismic imaging and CFD to neural networks.

The implementation uses the python threading API to create background threads where the asynchronous reads and writes happen. Python threads are known to suffer from issues relating to the Global Interpreter Lock (GIL). However, python releases the GIL when doing IO-bound operations2. Hence, this implementation is expected to be asynchronous despite, if not even due to, the python GIL.

As of now, we implemented this strategy with two hardware architectures in mind - compute on CPU, DRAM for first level memory and SSD for second level memory - here we shall call this the CPU platform. The second architecture is - compute on an accelerator such as the Intel® Xeon PhiTM 7210 (KNL), with the accelerator memory, the MCDRAM in the case of the KNL, acting as the first-level memory and the host memory, or the DRAM in the case of KNL, acting as the second-level memory. In principle, what we describe here for the KNL platform applies equally to a GPU architecture where the GDDR memory acts as the first level and the host memory acts as the second level.

On the CPU platform, the background threads use the SSD by writing and reading the data to files using the python filesystem API. On the KNL platform, a ramdisk mounted to host memory is used as a second level memory, though this could be improved in future implementations.

5 Experimental Results

The test case on which to measure the performance of this strategy and implementation was adapted from an open source implementation of simple vanilla LSTM2 An LSTM was chosen because a simple LSTM has uniformly sized checkpoints as we go through the network. Using one of the popular frameworks like Tensorflow or pyTorch we could have implemented an LSTM in very few lines but the multiple layers of abstraction involved would hide some very important details that were relevant for this study. For example, the framework might be calling precompiled primitives for performant calculations, and choosing which implementation of a function to call based on runtime parameters. This caused spikes at certain network depths that are not relevant to the study at hand. Another issue was about the transparency of memory management, since we would like to choose exactly which objects to keep in memory. However, because the purpose of this experiment is to demonstrate the principle of asynchronous multistage checkpointing, we believe that this implementation written with \textit{numpy} as the only external library is sufficiently representative of a full-fledged LSTM training inside any of the popular NN frameworks.

The test case3 sets up a basic LSTM for text generation, including a manual implementation of \textit{RMSProp}. Additional tweaks like learning rate decay would probably help the convergence of this code in a real-life scenario. However here we are not concerned about a complete training cycle, our interest is limited to a single forward-backward iteration and its performance characteristics as the number of LSTM recurrences is changed.

Figure 4 shows the peak memory footprint for a single forward-backward pass for a network of given depth, and figure 5 shows how the recompute factor varies with network depth. The times were measured for 5 individual runs and the minimum reported. The memory reported was measured using the \textit{maximum resident set size} reported by the \textit{time} utility on the bash command line. The python interpreter was exited after each iteration to ensure that the memory is released back to the OS.

\begin{itemize}

\item 1https://github.com/opesci/pyrevolve
\item 2https://github.com/kevin-bruhwiler/Simple-Vanilla-LSTM
\item 3Code provided as supplementary material
\end{itemize}
Although the peak memory footprint is theoretically expected to be constant, regardless of the number of recurrent layers, we observe in the plots that the memory does go up slightly although at a rate significantly lower than standard backpropagation. This is because the implementation still requires some variables whose size is dependent on the depth of the network. In the case of this LSTM implementation, the list of expected outputs is the main such variable that can not be easily made to be independent of the depth of the network.

6 Conclusions and future work

We introduced asynchronous multistage checkpointing for backpropagation in large RNNs in environments with limited memory. The method allows backpropagation through sequences with arbitrary length for any given memory size, by recomputing some data and asynchronously transferring other data to a larger, slower storage such as host memory, RAM, or even SSDs. The runtime overhead compared to a pure inference is constant in the sequence length, as was shown in our experiment. The overhead is also at most as large as that of the optimal single-stage checkpointing strategy Revolve, as shown in a theoretical performance model.
The implementation currently only supports networks that have layers of the same size throughout, i.e. uniform checkpoint size. Instead of storing every I-th state for some fixed interval I, one could instead easily store the next state whenever the previous data transfer has completed, thereby supporting non-uniform checkpoint sizes. Within each interval, the known algorithm for non-uniform single-stage checkpointing could be used instead of Revolve.

The implementation currently supports Intel XeonPhi processors. In future work, we plan to extend our implementation to support more platforms, such as GPUs. Finally, the current implementation assumes that the states within each interval fit into memory, and this was true for the experiments conducted in this work. If required, our package can be modified to use Revolve within each interval, for example using the pyrevolve package.

Acknowledgments

This work has been funded by the Intel Parallel Computing Centre at Imperial College London. This paper benefitted greatly from conversations with Paul Kelly, Nicolas Melot, Lukas Mosser, Paul Hovland and Michel Schanen. This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.

References

[1] Guillaume Aupy, Julien Herrmann, Paul Hovland, and Yves Robert. Optimal multistage algorithm for adjoint computation. SIAM Journal on Scientific Computing, 38(3):C232–C255, 2016.

[2] David Beazley. Understanding the python gil. In PyCon, 2010.

[3] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

[4] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software (TOMS), 26(1):19–45, 2000.

[5] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw., 26(1):19–45, March 2000. ISSN 0098-3500.

[6] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient backpropagation through time. In Advances in Neural Information Processing Systems, pages 4125–4133, 2016.

[7] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997, 2014.

[8] Navjot Kukreja, Jan Hückelheim, Michael Lange, Mathias Louboutin, Andrea Walther, Simon W Funke, and Gerard Gorman. High-level python abstractions for optimal checkpointing in inversion problems. arXiv preprint arXiv:1802.02474, 2018.

[9] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper models by gpu memory optimization on tensorflow. 2017.

[10] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. vdnm: Virtualized deep neural networks for scalable, memory-efficient neural network design. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–13. IEEE, 2016.

[11] Michel Schanen, Oana Marin, Hong Zhang, and Mihai Anitescu. Asynchronous two-level checkpointing scheme for large-scale adjoints in the spectral-element solver nek5000. Procedia Computer Science, 80:1147–1158, 2016.

[12] Philipp Stumm and Andrea Walther. Multistage approaches for optimal offline checkpointing. SIAM Journal on Scientific Computing, 31(3):1946–1967, 2009.
[13] Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. *SIAM Journal on Scientific Computing*, 31(4): 2549–2567, 2009.

[14] Michele Weiland, Adrian Jackson, Nick Johnson, and Mark Parsons. Exploiting the performance benefits of storage class memory for hpc and hpda workflows. *Supercomputing Frontiers and Innovations*, 5(1), 2018. ISSN 2313-8734. URL http://superfri.org/superfri/article/view/164