Extra View to: Asencio C, Davidson IF, Santavelia-Mamelow R, Li H, Meng MJ, Mall M, Wehling M, et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell 2012; 150:122-35; PMID:22770216; http://dx.doi.org/10.1016/j.cell.2012.04.043

Keywords: nucleus, nuclear envelope, cell cycle, LEM, barrier-to-autointegration factor, kinase, phosphatase, phosphorylation, VRK, PP2A

Submitted: 10/25/2012
Revised: 11/15/2012
Accepted: 11/19/2012

http://dx.doi.org/10.4161/nucl.22961
Correspondence to: Mátyás Gorjánácz;
Email: gorjanacz@embl.de

LEM-4 promotes rapid dephosphorylation of BAF during mitotic exit

Mátyás Gorjánácz
European Molecular Biology Laboratory; Heidelberg, Germany

The transitions between the successive cell cycle stages depend on reversible protein phosphorylation events. The phosphorylation state of every protein within a cell is strictly determined by spatiotemporally controlled kinase and phosphatase activities. Nuclear disassembly and reassembly during open mitosis in higher eukaryotic cells is one such process that is tightly regulated by the reversible phosphorylation of key proteins. However, little is known about the regulation of these mitotic events. In particular, although kinase function during entry into mitosis is better studied, very little is known about how proteins are dephosphorylated to allow nuclear reformation at the end of mitosis. We have identified LEM-4, a conserved protein of the nuclear envelope, as an essential coordinator of kinase and phosphatase activities during mitotic exit. Inhibition of VRK-1 kinase and promotion of a PP2A phosphatase complex by LEM-4 tightly regulate the phosphorylation state of BAF, an essential player of nuclear reformation at the end of mitosis. Here I offer extended comments on the contribution of LEM-4 in the regulation of protein phosphorylation and nuclear reformation.

The nuclear envelope (NE) is a subdomain of the endoplasmic reticulum (ER) double membrane system, which is specialized to passively separate chromatin from the cytoplasm and to actively regulate different nuclear events.1-3 The diverse functions of the NE are mediated by membrane-associated and integral membrane proteins of the NE. Some of these proteins are part of networks of interactions that reach from chromatin and lamin filaments in the nucleus to the cytoskeleton in the cytoplasm.4-6 Particularly, barrier-to-autointegration factor (BAF), an essential and highly conserved metazoan protein, is required to link the NE with the chromatin.7,8 BAF is known to bind specifically as a dimer to one LEM (LAP2/emerin/MAN1) domain9,10 of the inner nuclear membrane (INM) proteins and to two DNA helixes in a sequence-independent manner.11,12 Through these interactions, BAF contributes to the integrity of the NE (Fig. 1). Other linking proteins include HP-1, which in a similar manner, but through distinct interactions, also links the NE with the chromatin. This mechanism is however not conserved in all metazoans. Additionally, several integral INM proteins possess long basic domains that can mediate direct interactions between the NE and DNA.13

Many of the molecular interactions at the NE are disrupted during mitotic entry to allow cytoplasmic spindle microtubules to unperturbedly reach and segregate the duplicated sister chromatids. At the end of mitosis these interactions should be reset in a controlled sequence of mitotic events to rebuild the interphase nuclear structures.14-16 Many previous studies, including ours, have suggested that mitotic nuclear disassembly and reassembly are controlled by reversible phosphorylation events.17,18 Cyclin-dependent kinase 1 (CDK1) and other kinases that function downstream of CDK1 activation, such as protein kinase C (PKC), Aurora A, pololike kinase 1 (PLK1) and vaccinia-related kinase 1 (VRK1) have all been implicated in NE breakdown.19-21 They can phosphorylate different NE proteins leading to disassembly of the interphase nuclear structures. Consequently, soluble proteins

14 Nucleus Volume 4 Issue 1
are dispersed into the cytosol while transmembrane proteins are absorbed into the ER, which serves as a reservoir for the NE membranes and membrane proteins during mitosis. Upon mitotic exit and CDK1 inactivation all these proteins must be dephosphorylated in order to rebuild the interphase nuclear structures. It is still not known which phosphatases counteract CDK1 and other mitotic kinases during mitotic exit, and even less is known about how these phosphatases are regulated or how the opposing activities of kinases and phosphatases are integrated to allow orderly mitotic progression. It is known that NE reformation begins with the attachment of ER membranes to the anaphase chromatin surface and this step is mediated by direct interactions between DNA and the basic domains of a group of INM proteins. Consequently, BAF plays a central and evolutionarily conserved role in organizing and shaping these membranes around the decondensing chromatin into a closed NE rim.

To reveal how BAF is regulated during mitosis, we have screened a collection of temperature sensitive embryonic lethal Caenorhabditis elegans mutants. We identified a mutation in lem-4 gene, also known as amb-2, that encodes an evolutionarily conserved protein associated with the NE. Inactivation of lem-4 resulted in nuclear shape and NE membrane organization defects very similar to those caused by inactivation of the baf-1 gene. In both mutants the nuclei were multilobed and large parts of their chromatin were not covered with NE membranes. These phenotypic similarities prompted us to speculate that these two proteins might either function together or that one might regulate the other. While we found that BAF had no effect on LEM-4, we found that LEM-4 was an essential regulator of BAF-1 localization during mitotic exit in worm and human cells.

BAF shows a very dynamic localization pattern throughout the cell cycle, and this is conserved from worms to humans. During interphase, BAF is mainly enriched at the INM due to its specific interactions with the LEM domains of LEM-2, Emerin, and other proteins of the NE. Inactivation of these proteins consequently results in the loss of BAF from the INM. During mitotic entry BAF is released from the NE and the chromatin and is uniformly distributed throughout the cytoplasm. During mitotic exit however, BAF is very rapidly recruited to the segregated chromatids. It is strongly enriched in the transient dense structures around the anaphase chromatin called “core” regions. The appearance of these structures coincides with the reformation of the closed NE and is hypothesized to be essential for the organization of the membranes around the chromatin.

Inactivation of LEM-4, but not other LEM domain proteins, completely abolished the recruitment of BAF to the chromatin surface and to the “core” region in worm and human cells. Consequently, this resulted in abnormal nuclear structure and defects in NE membrane organization. We hypothesized that LEM-4 localizes BAF during mitosis in a way other than via direct interaction. We based this assumption on the facts that, surprisingly, BAF cannot bind to the LEM domain of the human LEM-4 protein as found by immunoprecipitation experiments and GST pulldown assays and its worm ortholog does not possess a recognizable LEM domain. Second, because BAF is recruited to the “core” region prior to any LEM domain protein. The question was then; how does LEM-4 regulate BAF localization and function during mitosis?

To address this question we turned to genetics and performed a suppressor screen on the temperature sensitive lem-4 mutant worm line. We identified a suppressor mutation in the vrk-1 gene, which suppressed not only the embryonic lethality, but also the nuclear defects seen in temperature sensitive lem-4 mutant worms at restrictive temperature. vrk-1 is an essential gene; its inactivation by...
its phosphorylation state, where LEM-4 is responsible for dephosphorylation of BAF and for its recruitment to the chromatin surface at the end of mitosis.

The intriguing question arising from this result is; how does LEM-4 regulate the dephosphorylation of BAF? One possible explanation might be that LEM-4 is a new phosphatase. However, we found that, at least in vitro, LEM-4 cannot dephosphorylate BAF, and thus hypothesized that LEM-4 might either inhibit the kinase activity of VRK-1 or activate a so far unidentified phosphatase to dephosphorylate BAF. Our experiments testing the first idea showed that worm and human LEM-4 can indeed directly bind to VRK-1 and completely inhibit its kinase activity (Fig. 1).24 The inhibitory effect of LEM-4 was specific to VRK-1, since the enzymatic activities of other mitotic kinases were not affected by the LEM-4 proteins. We assumed that the inhibition of VRK-1 by LEM-4 in living cells might occur during mitotic exit, since inactivation of the worm temperature sensitive mutation specifically during mitotic exit.25 The postmitotic reassembly of interphase structures is very rapid. For example, NE reformation in worm embryos is completed within ~2 min21 and in human cultures within ~10 min.22 Therefore the switch between the inactive phosphorylated and the active dephosphorylated states of the implicated key molecules must occur rapidly. This likely requires mechanisms to avoid the futile cycles, which occur when kinases and their counteracting phosphatases are active simultaneously. Optimal protein dephosphorylation therefore requires two synchronous actions; efficient inhibition of a kinase and co-activation of the counteracting phosphatase. Proteins with functions similar to LEM-4 might be the best candidates to ensure accurate spatial and temporal control of kinase and phosphatase activities. Since there are a multitude of proteins that form complexes with kinases and phosphatases, we predict that this mechanism might be more generally employed to control mitotic exit and very probably other phosphorylation-dependent events.

Further work is needed to reveal the cell cycle cues that regulate the activity of LEM-4 and its interactions with VRK-1.
and PP2A, as well as to understand, how other proteins are dephosphorylated in order that they can play their part in rebuilding the interphase nuclear structures such as nuclear pore complexes, lamin filaments or different nuclear lamina.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
I would like to thank Iain W. Mattaj for critically reading the manuscript. I was a Human Frontier Science Program Organization Fellow.

References
1. Heume MW, Wahlke JC, Mattaj IW. Pushing the envelope: structure, function, and dynamics of the nuclear envelope. Annu Rev Cell Dev Biol 2009; 25:245-71; PMID:18875839; http://dx.doi.org/10.1146/annurev.cellbio.24.092305.242713.
2. Stein GS, Zaidi SK, Brantley CD, Montecuccio M, van Wijnen AJ, Choi TV, et al. Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 2013; 13:584-92; PMID:23755352; http://dx.doi.org/10.1016/j.tcb.2013.05.009.
3. Mikkoli K, Mosialou D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 2010; 11:353-61; PMID:20414256; http://dx.doi.org/10.1038/nrm2894.

4. Wagn J, Carlson AM, Brei tkreutz A, Choi H, Sharom JR, Boucher L, et al. AKAPs: from structure to function(s) essential for chromosome segregation and cell division in C. elegans embryos. Mol Biol Cell 2011; 22:3196-213; PMID:21497765; http://dx.doi.org/10.1091/mbc.E10-09-0772.

5. Nicholls RJ, White MS, Toddman P. The vacuolated lamin filaments of the N. winterrana nuclear envelope disassemble during interphase. J Cell Biol 2012; 198:981-90; PMID:22944867; http://dx.doi.org/10.1083/jcb.200901106.

6. Kim W, Chakraborty G, Kim S, Shtol J, Park CH, Jung MW, et al. Matrix kinesin HLA-2 (neuromuscular) protein suppresses mitotic lamin VBR-1 during interphase. J Cell Biol 2012; 198:5787-99; PMID:22944867; http://dx.doi.org/10.1083/jcb.201110179.

7. Berge L, Wilson KL. Barrelet-to-arresting factor phosphorylation on Ser-6 regulates annexin binding to lamin A in vitro and Annexin localization in vivo. Mol Biol Cell 2004; 17:1534-43; PMID:14779112; http://dx.doi.org/10.1091/mbc.E03-04-0348.

8. Janssen V, Grot J. Protein phosphorylation: a tightly regulated family of protein kinases/phosphatases implicated in cell growth and signalling. FEMS Microbiol Rev 2001; 25:457-78; PMID:11353155; http://dx.doi.org/10.1111/j.1574-6976.2001.tb01065.x.

9. Korner I, Kolarova V, Dusek B, Jelinek J, Becva I. Barrelet to-arresting factor regulates the levels of centriole assembly factors. J Cell Biol 2008; 182:343-51; PMID:18599489; http://dx.doi.org/10.1083/jcb.200804066.

10. Starc DA, Ishihara TM, Iannáncio M, Santarella R, Starc DA, Ishihara TM, Iannáncio M, Santarella R, et al. The nuclear envelope in Caenorhabditis elegans embryos. Dev Cell 2011; 20:550-62; PMID:21497765; http://dx.doi.org/10.1016/j.devcel.2011.04.020.

11. Robinson DJ, Hetzer MW. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope reassembly during mitosis. J Cell Biol 2008; 182:451-64; PMID:18775970; http://dx.doi.org/10.1083/jcb.200804917.

12. Anderson DJ, Varges DS, Blaas JF, Hetzer MW. Regeneration of factionalized nuclear membranes in chromatin mediated nuclear envelope remodeling in vivo. Cell 2009; 138:1021-31; PMID:19405196; http://dx.doi.org/10.1016/j.cell.2009.06.056.

13. Gorjánácz M, Klerkx EP, Galy V, Santarella R, Gónczy P. Direct protein-phosphatase interaction network in yeast. Science 2010; 328:14525-35; PMID:21435960; http://dx.doi.org/10.1126/science.1182134.

14. Korner I, Kolarova V, Dusek B, Jelinek J, Becva I. Barrelet to-arresting factor-Emerin complex. J Biol Chem 2012; 287:5278-91; PMID:22377876; http://dx.doi.org/10.1074/jbc.M111454200.

15. Mall M, Wüther T, Grot J, Marais R, Unger S, Laurell E, Kutay U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009; 10:178-88; PMID:19188785; http://dx.doi.org/10.1038/nrm2641.

16. Song M, C Hendershot LM, Moazed D. The nuclear envelope in Caenorhabditis elegans. J Cell Sci 2009; 122:1963-73; PMID:19561667; http://dx.doi.org/10.1242/jcs.044575.

17. Kralovek VA, Wagn J, Carlson AM, Breit tkreutz A, Choi H, Sharom JR, Boucher L, et al. AKAPs: from structure to function(s) essential for chromosome segregation and cell division in C. elegans embryos. Dev Cell 2011; 21:558-69; PMID:21497765; http://dx.doi.org/10.1016/j.devcel.2011.02.005.

18. Song M, Hendershot LM, Anderson DK, Jogin WR, O’Connell KE. Protein phosphorylation 26-35:4935-49 rhodopsin mediated in C. elegans by controlling the levels of constitutive assembly factors. Dev Cell 2011; 20:287-96; PMID:21497765; http://dx.doi.org/10.1016/j.devcel.2011.04.007.

19. Breit tkreutz A, Chen H, Shawan JR, Brech L, Nakayama K, Nakayama KI. Protein kinase and phosphatase interaction network in yeast. Science 2010; 328:14525-35; PMID:21435960; http://dx.doi.org/10.1126/science.1182134.

20. Collinge M, sy DDS. AKAPs from structure to function. Trends Cell Biol 1999; 9:216-21; PMID:10354567; http://dx.doi.org/10.1016/S0962-8924(99)01558-5.

21. Breit tkreutz A, Chen H, Shawan JR, Brech L, Nakayama K, Nakayama KI. Protein kinase and phosphatase interaction network in yeast. Science 2010; 328:14525-35; PMID:21435960; http://dx.doi.org/10.1126/science.1182134.

22. Collinge M, sy DDS. AKAPs from structure to function. Trends Cell Biol 1999; 9:216-21; PMID:10354567; http://dx.doi.org/10.1016/S0962-8924(99)01558-5.

23. Liu L, Lee KK, Supperman TM, Noddal H, Wilson KL, Grahamhead T. MAN1 and SMRT encode full-length (full-length)B for chromatin segregation and cell division in C. elegans embryos. J Cell Biol 2003; 160:493-505; PMID:12800821; http://dx.doi.org/10.1083/jcb.200302043.

24. Aksentijevich I, Barlowe KL, Lamond AI. The nuclear envelope in C. elegans. J Cell Biol 2003; 161:855-61; PMID:12853503; http://dx.doi.org/10.1083/jcb.200304014.

25. Liu L, Lee KK, Supperman TM, Noddal H, Wilson KL, Grahamhead T. MAN1 and SMRT encode full-length (full-length)B for chromatin segregation and cell division in C. elegans embryos. J Cell Biol 2003; 160:493-505; PMID:12800821; http://dx.doi.org/10.1083/jcb.200302043.