Looking for Pure Rotational H$_2$ Emission from Protoplanetary Disks

M. J. Richter1 and D. T. Jaffe1

Astronomy Department, University of Texas, Austin, TX 78712

richter@astro.as.utexas.edu, dtj@astro.as.utexas.edu

Geoffrey A. Blake1

Divisions of Geological & Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125

gab@gps.caltech.edu

and

J. H. Lacy1

Astronomy Department, University of Texas, Austin, TX 78712

lacy@astro.as.utexas.edu

ABSTRACT

We report on a limited search for pure-rotational molecular hydrogen emission associated with young, pre-main-sequence stars. We looked for H$_2$ $v = 0$ $J = 3 \rightarrow 1$ and $J = 4 \rightarrow 2$ emission in the mid-infrared using the Texas Echelon-Cross-Echelle Spectrograph (TEXES) at NASA’s 3m Infrared Telescope Facility. The high spectral and spatial resolution of our observations lead to more stringent limits on narrow line emission close to the source than previously achieved. One star, AB Aur, shows a possible (2σ) H$_2$ detection, but further observations are required to make a confident statement. Our non-detections suggest that a significant fraction, perhaps all, of previously reported H$_2$ emission towards these objects could be extended on scales of 5″ or more.

Subject headings: circumstellar matter — infrared: stars — planetary systems: protoplanetary disks — stars: pre-main sequence

1Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract from the National Aeronautics and Space Administration.
1. Introduction

Formation of a circumstellar disk is recognized as a natural step in the process of star formation and a vital step toward forming planets. Currently our knowledge of protoplanetary disk properties at anthropically interesting distances of 1-30 AU is relatively limited. The best spectroscopic constraints on disk temperature and density structure are dominated by material either within 0.5 AU of the central source (Najita et al. 1996; Carr, Mathieu, & Najita 2001) or at radii \geq 50 AU (Dutrey, Guilloteau, & Simon 1994). This radial sampling results from the tracers utilized to date: dust emission and scattering and CO ro-vibrational and rotational emission. Using H$_2$ rotational lines as a tracer may allow study of disks at radii of 1-50 AU.

Recent work by Thi et al. (1999, 2001a, 2001b) report H$_2$ $v = 0 \ J = 2 \rightarrow 0$ and $J = 3 \rightarrow 1$ emission from pre-main-sequence and main-sequence stars with circumstellar disks. From Infrared Space Observatory (ISO) data, these authors derive gas temperatures of 100-200 K and masses up to 2×10^{-3} M_\odot. In the case of disks around main-sequence stars (Thi et al. 2001a), previously thought to be mostly gas-free (Zuckerman, Forveille, & Kastner 1995), the presence of a substantial reservoir of H$_2$ alters ideas on the formation of giant planets (Lissauer 2001). Unfortunately, the large aperture and low spectral resolution of the observations leave open the question of whether the emission really comes from a disk.

Three mid-IR H$_2$ pure rotational lines are readily available from high, dry sites if observed at moderately high spectral resolution: $v = 0 \ J = 3 \rightarrow 1$ [i.e. S(1)] at 17 μm, $J = 4 \rightarrow 2$ [i.e. S(2)] at 12 μm, and $J = 6 \rightarrow 4$ [i.e. S(4)] at 8 μm. The high spectral and spatial resolution possible with ground-based spectroscopy, together with large telescope apertures, can result in greater sensitivity to certain gas distributions than satellite observations. In particular, ground-based spectroscopy is well suited for detecting point sources with narrow line emission, such as gas in Keplerian orbit at a radius of 1-50 AU from a solar-mass star.

We report here on observations of a small sample of young stars taken with the Texas Echelon Cross Echelle Spectrograph (TEXES) in an effort to confirm the ISO detections and explore the feasibility of ground-based observations of H$_2$ from circumstellar disks.

2. Observations

We used TEXES (Lacy et al. 2002) at the NASA 3m Infrared Telescope Facility (IRTF) to observe the H$_2$ $J = 3 \rightarrow 1$ transition [$\lambda = 17.0348 \mu$m or $\nu = 587.032$ cm$^{-1}$] and the $J = 4 \rightarrow 2$ transition [$\lambda = 12.2786 \mu$m or $\nu = 814.425$ cm$^{-1}$]. All the observations were made
with TEXES in high-resolution mode. Pertinent details regarding the observations may be found in Table 1. All sources were observed while using the IRTF offset guide camera as well as guiding on the dispersed continuum seen through the spectrograph.

The case of GG Tau deserves special comment since it has weak continuum, is a strong case for ISO detection (Thi et al. 1999; Thi et al. 2001b), and has a unique geometry. The source is a quadruple system composed of a pair of binaries. GG Tau A is a 0.ʺ25 binary with millimeter continuum emission (Guilloteau, Dutrey, & Simon 1999) and HST scattered light observations (Silber et al. 2000) showing a circumbinary ring extending roughly from 180 to 260 AU (1.ʺ29 - 1.ʺ86). The ring is tipped at 37°, resulting in an ellipse on the sky with the major axis running essentially E-W. When we observed GG Tau A, we widened the slit to 3ʺ and rotated the instrument to orient the slit so that the major axis of the projected ellipse would lie along our slit. The weak continuum of GG Tau meant we could not guide on continuum signal through the spectrograph. Therefore, we repeatedly checked our infrared boresight by observations of α Tau, a nearby, bright infrared source. The maximum boresight offset found based on the α Tau observations was 0.ʺ5, with a mean offset of 0.ʺ2. By summing over ≈4ʺ along the slit, we can confidently state that we observed essentially all of the GG Tau A gap region.

Correction for atmospheric transmission was done using bright infrared continuum objects, either stars or asteroids. Although most stars later than spectral type G show photospheric features at $R \geq 20,000$, we can locate features using the Kitt Peak Sunspot Atlas (Wallace, Livingston, & Bernath 1994) and the ATMOS3 photospheric atlas (Geller 1992) and know that there are no features near the H$_2$ transitions. Asteroids have no features at our resolution. Both the $J = 3 \to 1$ and $J = 4 \to 2$ lines are near telluric atmospheric lines, but the Doppler shift of the source, the Earth’s motion, and the high spectral resolution available with TEXES helped to minimize atmospheric effects.

Flux calibration was done using a blackbody and standard stars.

3. Results

The data were reduced using the TEXES data pipeline (Lacy et al. 2002). We extracted spectra from the data with several strategies: optimal extraction of the point source to look for emission coincident with the continuum, sums over the nodded region to look for diffuse emission covering half the slit length, and selected sums along the slit to look for isolated emission offset from the point source. We saw no evidence for extended emission in any spectrum, although uniform emission on $\gtrsim 5$ʺ scales would not be recovered.
Figure 1 presents $J = 3 \rightarrow 1$ spectra for the three sources we observed that also have reported ISO detections: GG Tau, AB Aur, and HD 163296. To indicate the line flux reported by Thi et al. (2001b), we overplot Gaussians with an integrated line flux equal to the ISO measurements. Since ISO was unable to resolve the line profiles, we have simply assumed Gaussian FWHM matching our resolution (5 or 7.5 km s$^{-1}$, depending on slit width) and 30 km s$^{-1}$, with the Gaussians centered at the systemic V_{LSR}. The figures clearly show a discrepancy between the reported line flux and our observations.

Of all our spectra, only the AB Aur 12 μm spectrum shows a possible detection (Figure 2). A Gaussian fit to the AB Aur data finds a feature centered at the systemic velocity with a FWHM=10.5 km s$^{-1}$ and a line flux of $2.0 \pm 1.0 \times 10^{-14}$ ergs s$^{-1}$ cm$^{-2}$. There are no terrestrial lines and no photospheric absorption lines in the comparison star at this frequency that might artificially produce an emission feature. We discuss the implications of these data, particularly in light of the non-detection of the $J = 3 \rightarrow 1$ line, below.

Table 2 summarizes the results for all our observations. In all cases, we measure continuum levels comparable to past measurements, although the noise for GG Tau is such that many pixels must be combined to obtain a significant continuum measurement. We established line flux errors by summing over the number of pixels corresponding to the assumed line widths at all parts of the spectrum with comparable atmospheric transmission. We then use the line flux upper limit for the more conservative case of a 30 km s$^{-1}$ FWHM line to calculate a maximum mass of H$_2$ assuming temperatures of 150 K and 300 K. Note that these masses assume no extinction and do not include gas in equilibrium with optically thick dust.

4. Discussion

We observed six sources with reasonable evidence for disks and report no convincing detection of H$_2$ pure-rotational emission. Our non-detections have bearing on the interpretation of previous ISO reports and on the distribution of gas and dust in these sources. In all cases where we set limits, those limits are subject to uncertainties in the assumed gas temperature and the assumed line widths. To provide an example of our sensitivity to these assumptions, we include two line widths and two gas temperatures in Table 2.

Three reported ISO detections of H$_2$ from circumstellar disks, out of three tested, are not seen with TEXES. For ISO to detect emission that we would miss, the emission can either be extended or it can be spectrally broad. Given that the ISO-SWS aperture at 17 μm covered 14$''$ by 27$''$, compared with our effective aperture of 2$''$ by 2$''$ (280 AU by 280 AU at
Taurus: d=140 pc.), and that ISO detected H$_2$ rotational lines from molecular clouds with even fairly modest incident UV fields (Li et al. 2002), the presence of extended emission is possible. Thi et al. (2001b) address this issue using 12CO 3-2 emission and conclude that GG Tau shows no contaminating molecular material, that the bulk of molecular material for HD 163296 lies in the disk, but that AB Aur may have a significant contribution from an extended envelope. For the case of broad lines, we believe we would have seen lines as broad as \approx50 km s$^{-1}$ (see Figure 1 and Table 2). Even for the case of GG Tau, we would have seen a line as broad as 30 km s$^{-1}$ at the 2σ level, given the best fit line flux in Thi et al. (2001b), although the uncertainties are large enough that these observations may not be in conflict, especially for a broad line. Recent H$_2$ $v = 1 \rightarrow 0$ $J = 3 \rightarrow 1$ observations at 2 μm show line widths <15 km s$^{-1}$ for GG Tau (J. Bary, in preparation), while CO ro-vibrational emission toward AB Aur is unresolved at 12 km s$^{-1}$ (G. Blake, in preparation). Although the relationship between these tracers and the pure rotational H$_2$ emission depends in detail upon the excitation mechanism, these observations show that our assumption of 30 km s$^{-1}$ line widths when calculating mass upper limits is likely conservative. As a fiducial point, the projected Keplerian velocity at a distance of 1 AU around GG Tau Aa ($M = 0.8$ M_{\odot}; White et al. 1999) and assuming any circumstellar disk has the same orientation as the more extended circumbinary ring (inclination $i = 37^\circ$), would be $v=16$ km s$^{-1}$. For AB Aur, taking $M=2.4$ M_{\odot} (van den Ancker et al. 1998) and inclination $i < 45^\circ$ (Grady et al. 1999), the projected Keplerian velocity would be $v< 32$ km s$^{-1}$. Of course, emission lines broadened by Keplerian rotation will generally have widths broader than their characteristic Keplerian velocity.

Although TEXES is a relatively new instrument, we feel reasonably confident in our results. The successful detection of continuum emission from each source at levels consistent with past observations means we were pointed at the source and that our flux determinations are not dramatically in error. We have detected H$_2$ rotational emission in sources such as Uranus (L. Trafton, private communication) and NGC 7027 (H. Dinerstein, in preparation). The ISO detections are the result of special data processing and are near the sensitivity limit (Thi et al. 2001b). Because the ISO reports of molecular gas reservoirs around main-sequence stars such as β Pic (Thi et al. 2001a) have such important ramifications for our understanding of planetary formation, the current non-detections in pre-main-sequence disk sources strongly argue for follow-up observations of the main-sequence stars observed by ISO, all of which are reported to be “medium confidence” detections. Follow-up observations are particularly needed for the well studied source β Pic, where FUSE observations detect no H$_2$ absorption through the edge-on disk against a stellar O VI emission line (Lecavelier des Etangs et al. 2001) and where Na I emission shows a gas disk that seems to coexist with the well known dust disk (Olofsson, Liseau, & Brandeker 2001; Heap et al. 2000).
In the disk sources we observed, the absence of H\(_2\) emission certainly does not mean there is no warm H\(_2\). Where the dust in the disk is optically thick, an emission line would result only if there is spatial and/or temperature separation between the dust and H\(_2\), such as a gap in the dust disk or a hot layer above the optically thick disk (D’Alessio et al. 1998; Chiang & Goldreich 1997) Gaps are believed to be present in GG Tau and GW Ori (Guilloteau et al. 1999; Mathieu, Adams, & Latham 1991); for these sources, the mass upper limits constrain the gas within the gap. In general, our observations argue, albeit weakly, for little spatial separation or temperature differentiation between the bulk of the H\(_2\) gas and dust.

As described in Section 3, the 12 \(\mu\)m spectrum of AB Aur has a 2\(\sigma\) bump at the correct velocity for the \(J = 4 \rightarrow 2\) line and with a reasonable width. When taken with the 3\(\sigma\) upper-limit on \(J = 3 \rightarrow 1\) emission from this source, \(3.3 \times 10^{-14}\) ergs s\(^{-1}\) cm\(^{-2}\), the \(J = 4 \rightarrow 2\) line flux of \(2.0 \pm 1.0 \times 10^{-14}\) ergs s\(^{-1}\) cm\(^{-2}\)(−1\(\sigma\), +1\(\sigma\)) implies \(T_{\text{gas}} > 380\) K (275 K, 500 K), assuming no differential extinction. This is warmer than the 140 K seen in CO ro-vibrational lines (G. Blake, in preparation). For simple thermal emission, we would expect the H\(_2\) pure rotational lines to come from cooler regions than CO ro-vibrational emission, although 140 K gas would not collisionally excite ro-vibrational CO emission. The 3\(\sigma\) upper-limit on \(J = 5 \rightarrow 3\) line flux as observed with ISO, \(0.4 \times 10^{-14}\) ergs s\(^{-1}\) cm\(^{-2}\), (Thi et al. 2001b) combined with the possible \(J = 4 \rightarrow 2\) detection (−1\(\sigma\), +1\(\sigma\)) suggest \(T < 190\) K (220 K, 170 K). Given the errors and the resulting inconsistency, we consider the AB Aur spectrum to give an upper limit to the \(J = 4 \rightarrow 2\) integrated line flux of \(4.0 \times 10^{-14}\) ergs s\(^{-1}\) cm\(^{-2}\). As well as reobserving the \(J = 3 \rightarrow 1\) and \(J = 4 \rightarrow 2\) lines, ground-based observations of the \(J = 6 \rightarrow 4\) line at 8 \(\mu\)m, which should be quite strong if the gas is truly at 380 K, would help determine if the \(J = 4 \rightarrow 2\) is actually as strong as it appears.

While the next infrared satellites will have exceptional mid-infrared sensitivity, they may not be able to detect low line-to-continuum ratio features such as may be present in the AB Aur 12 \(\mu\)m data. If AB Aur were observed at R=600, the maximum resolution available with the SIRTF InfraRed Spectrograph (Roellig et al. 1998), a SNR of \(\approx\)1000 would give a 3\(\sigma\) detection of our derived line flux. The recommended mid-infrared imager/spectrograph for NGST, with R=1500 (Mather & Stockman 2000), would require SNR of 450 for a 3\(\sigma\) detection. Higher spectral resolution on NGST, still a design goal, would dramatically ease this type of observation. Future ground-based observations with 8-10m class telescopes and high resolution spectrographs such as TEXES will improve on the sensitivity described here by an order of magnitude (a factor of 100 in time).

In conclusion, we have attempted to confirm several reports of H\(_2\) pure-rotational emis-
mination from young circumstellar disks without success. Our observations generally set more stringent limits on gas within \(\sim 50 \) AU of the source and with widths \(\leq 50 \) km s\(^{-1} \) than obtained with ISO. We have found possible \((2\sigma)\) emission from one source, AB Aur, although inconsistencies in derived gas temperatures lead us to consider the result as an upper limit. The absence of emission suggests the gas and dust have little segregation in temperature and/or spatial extent, although more observations are necessary. We have shown that ground-based, high-resolution spectroscopy is an effective way to search for narrow, pure rotational \(\text{H}_2 \) line emission such as that expected from circumstellar disks.

We are happy to acknowledge the day and night staff at the IRTF; without their hard work, none of this observing would be possible. We appreciate the comments of Ewine van Dishoeck and an anonymous referee. This work was supported by grant TARP 00365-0473-1999 from the Texas Advanced Research Program. MJR acknowledges USRA grant USRA 8500-98-008 through the SOFIA program. This research has made use of NASA’s Astrophysics Data System and the SIMBAD database operated at CDS, Strasbourg, France.
REFERENCES

Carr, J. S., Mathieu, R. D., & Najita, J. R. 2001, ApJ, 551, 454

Chiang, E. I. & Goldreich, P. 1997, ApJ, 490, 368.

D’Alessio, P., Canto, J., Calvet, N., & Lizano, S. 1998, ApJ, 500, 411.

Dutrey, A., Guilloteau, S., & Simon, M. 1994, A&A, 286, 149

Geller, M. 1992, Washington, D.C.: National Aeronautics and Space Administration, Scientific and Technical Information Service, 1992., Vol. III

Grady, C. A., Woodgate, B., Bruhweiler, F. C., Boggess, A., Plait, P., Lindler, D. J., Clampin, M., & Kalas, P. 1999, ApJ, 523, L151.

Guilloteau, S., Dutrey, A., & Simon, M. 1999, A&A, 348, 570

Heap, S. R., Lindler, D. J., Lanz, T. M., Cornett, R. H., Hubeny, I., Maran, S. P., & Woodgate, B. 2000, ApJ, 539, 435

Lacy, J. H., Richter, M. J., Greathouse, T. K., Jaffe, D. T., & Zhu, Q. 2002, PASP, 114, 153

Lecavelier des Etangs, A. et al. 2001, Nature, 412, 706

Li, W., Evans, N. J. II, Jaffe, D. T., van Dishoeck, E. F., & Thi, W. F. 2002, ApJ, in press

Lissauer, J. J. 2001, Nature, 409, 23

Mather, J. C. & Stockman, H. S. 2000, The Institute of Space and Astronautical Science Report SP No. 14, p. 203-209., 14, 203

Mathieu, R. D., Adams, F. C., & Latham, D. W. 1991, AJ, 101, 2184

Najita, J., Carr, J.S., Glassgold, A.E., Shu, F.H., & Tokunaga, A.T. 1996, ApJ, 462, 919

Olofsson, G. ;., Liseau, R. ;, & Brandeker, A. 2001, ApJ, 563, L77.

Roellig, T. L. et al. 1998, Proc. SPIE, 3354, 1192

Silber, J., Gledhill, T., Duchêne, G., & Ménard, F. 2000, ApJ, 536, L89

Thi, W., van Dishoeck, E. F., Blake, G. A., van Zadelhoff, G., & Hogerheijde, M. R. 1999, ApJ, 521, L63

Thi, W. F. et al. 2001a, Nature, 409, 60
Thi, W. F. et al. 2001b, ApJ, 561, 1074

van den Ancker, M. E., de Winter, D., & Tjin A Djie, H. R. E. 1998, A&A, 330, 145.

Wallace, L., Livingston, W., & Bernath, P. 1994, NSO Technical Report, Tucson: National Solar Observatory, National Optical Astronomy Observatory, —c1994,

White, R. J., Ghez, A. M., Reid, I. N., & Schultz, G. 1999, ApJ, 520, 811

Zuckerman, B., Forveille, T., & Kastner, J. H. 1995, Nature, 373, 494
Table 1. Observation Information

Star	Line	Resolving Power \([R = \lambda/\delta\lambda]\)	Slit Width \(['']\)	Slit Length \(['']\)	Integ. Time [sec]
GG Tau	\(J = 3 \rightarrow 1\)	40,000	3.0	11.5\(^a\)	7000
AB Aur	\(J = 3 \rightarrow 1\)	60,000	2.0	11.5	1800
	\(J = 4 \rightarrow 2\)	83,000	1.4	7.5	2600
HD 163296	\(J = 3 \rightarrow 1\)	60,000	2.0	11.5	2400
GW Ori	\(J = 3 \rightarrow 1\)	60,000	2.0	11.5\(^a\)	1600
	\(J = 4 \rightarrow 2\)	83,000	1.4	7.5	3800
L1551 IRS5	\(J = 3 \rightarrow 1\)	60,000	2.0	11.5	2000
DG Tau	\(J = 4 \rightarrow 2\)	83,000	1.4	7.5	4800

\(^a\)The slit was aligned East-West. Normally, the slit orientation is North-South.
Table 2. Results Summary

Source	F_{ν}^{a}	$J = 3 \rightarrow 1$ Line Flux $^{[10^{-14}\text{ergs/s/cm}^2]}$	λ	F_{ν}^{b}	5 km/s	30 km/s	150 K	300 K	Massc	10^{-5}M_\odot
GG Tau	1.1	2.8 (0.8)	17	0.7 (1.4)	<1.6e	<3.9	<47	<3.0		
AB Aur	24.4	30 (9)	17	22.7 (2.3)	<3.3	<7.2	<91	<5.9		
	–	–	12	18.7 (1.3)	<4.0f	–	<1250f	<8.7f		
HD 163296	16.9	22 (6)	17	15.3 (2.5)	<2.0	<5.1	<46	<3.0		
L1551 IRS5	–	–	17	20.0 (1.7)	<1.4	<4.3	<51	<3.3		
GW Ori	–	–	17	6.8 (2.0)	<1.6	<3.9	<330	<21.		
DG Tau	–	–	12	6.1 (0.5)	<0.5	<2.2	<5300	<37.		

aFrom Thi et al. 2001b with 1σ errors given in parenthesis.

bErrors given are 1σ per pixel. Continuum level determined from >450 pixels where the atmospheric transmission is reasonably good.

cUpper limits are 3σ assuming Gaussian FWHM of 5 km/s and 30 km/s, except as noted.

dMass upper limits assume 30 km/s FWHM Gaussian line profile, except as noted, and assume a temperature of 150 K or 300 K.

eAssuming FWHM=7.5 km/s due to 3$''$ slit.

fDerived from fit to feature at systemic velocity plus 2σ (see text). Fitted FWHM=10.5 km/s.
Fig. 1.— $^{12} \text{H}_2 \ J = 3 \rightarrow 1 \ (\lambda = 17.035 \ \mu m)$ observations of the three sources observed by TEXES with reported ISO detections: (a) GG Tau; (b) AB Aur; and (c) HD 163296. In all cases, the data (histograms) and overplotted with Gaussians that have integrated line flux equal to that reported in Thi et al. (2001b). The narrow Gaussian (dotted) matches our instrumental resolution, FWHM=7.5 km/s for GG Tau and FWHM=5 km/s for AB Aur and HD 163296. The wide Gaussian (dashed) has FWHM=30 km/s. The Gaussians are centered on the systemic velocity. At this wavelength, the spectral order is larger than the detector; regions of the spectrum set to 0 Jy are not sampled. The increased noise toward negative velocities is due to increasing telluric opacity.

Fig. 2.— $^{12} \text{H}_2 \ J = 4 \rightarrow 2 \ (\lambda = 12.279 \ \mu m)$ spectrum of AB Aur. One complete order (out of 8) is shown, but the region near -40 km/s where the terrestrial atmospheric transmission is less than 75% is set to zero. The data (histogram) are overplotted with a Gaussian fit. The resulting fit has FWHM=10.5 km s$^{-1}$ and centroid at the systemic velocity. The dotted line shows the spectrum of Capella (divided by 10), the atmospheric calibrator. The features in Capella near -80 km/s and +70 km/s are photospheric OH absorption. Although we attempted to correct for the OH absorption before dividing AB Aur by Capella, some contamination may still be present.
Flux [Jy] vs. V_{LSR} [km/s] for AB Aur and Capella (× 0.1).