QUARTIC JULIA SETS INCLUDING ANY TWO COPIES OF QUADRATIC JULIA SETS

Koh Katagata
National Institute of Technology, Ichinoseki College
Takanashi, Hagisho, Ichinoseki, Iwate 021-8511, Japan
(Communicated by Enrique Pujals)

Abstract. If the Julia set of a quartic polynomial with certain conditions is neither connected nor totally disconnected, there exists a homeomorphism between the set of all components of the filled-in Julia set and some subset of the corresponding symbol space. The question is to determine the quartic polynomials exhibiting such a dynamics and describe the topology of the connected components of their filled-in Julia sets. In this paper, we answer the question, namely we show that for any two quadratic Julia sets, there exists a quartic polynomial whose Julia set includes copies of the two quadratic Julia sets.

1. Introduction. Let \(f \) be a polynomial of degree \(d \geq 2 \). The Fatou set \(F(f) \) is the set of normality in the sense of Montel for the family \(\{f^n\}_{n=1}^\infty \), where \(f^n = f \circ \cdots \circ f \) denotes the \(n \)-th iterate of \(f \). The filled-in Julia set \(K(f) \) is defined as
\[
K(f) = \left\{ z \in \mathbb{C} : \{f^n(z)\}_{n=0}^\infty \text{ is bounded} \right\}.
\]
The Julia set \(J(f) \) is the complement \(\mathbb{C} \setminus F(f) \) or the topological boundary \(\partial K(f) \) of the filled-in Julia set. The Julia set \(J(f) \) and the filled-in Julia set \(K(f) \) are compact. The escaping set \(I(f) \) is the complement \(\mathbb{C} \setminus K(f) \). These four sets \(F(f) \), \(K(f) \), \(J(f) \) and \(I(f) \) are completely invariant under \(f \). The connectivity of the Julia set \(J(f) \) is affected by the behavior of finite critical points.

Theorem 1.1 ([1, 5]). Let \(f \) be a polynomial of degree \(d \geq 2 \). If all finite critical points of \(f \) belong to \(I(f) \), then \(J(f) \) is totally disconnected and \(J(f) = K(f) \). Furthermore, \(f\mid_{J(f)} \) is topologically conjugate to the shift map \(\sigma\mid_{\Sigma_d} \). On the other hand, \(J(f) \) and \(K(f) \) are connected if and only if all finite critical points of \(f \) belong to \(K(f) \).

The symbol space \(\Sigma_\nu = \{1, 2, \ldots, \nu\}^\mathbb{N} \) is the countable product of \(\nu \) symbols. For \(s = (s_n) \) and \(t = (t_n) \) in \(\Sigma_\nu \), the metric \(\rho \) on \(\Sigma_\nu \) is defined as
\[
\rho(s, t) = \sum_{n=0}^\infty \frac{\delta(s_n, t_n)}{2^n}, \quad \text{where} \quad \delta(k, l) = \begin{cases} 1 & \text{if } k \neq l, \\ 0 & \text{if } k = l. \end{cases}
\]
Then \((\Sigma_\nu, \rho) \) is a compact metric space. The shift map \(\sigma : \Sigma_\nu \to \Sigma_\nu \) is defined as
\[
\sigma((s_0, s_1, s_2, \ldots)) = (s_1, s_2, \ldots).
\]
The shift map \(\sigma \) is continuous with respect to the metric \(\rho \).

2010 Mathematics Subject Classification. Primary: 37F10; Secondary: 30D05, 37F50.

Key words and phrases. Julia sets, polynomial-like maps, quasiconformal / quasiregular maps.
If some critical orbits but not all critical orbits diverge, then the Julia set is disconnected and not generally totally disconnected. The author [3] simplified the dynamics of some quartic polynomial on its filled-in Julia set when the Julia set is disconnected and not totally disconnected.

Let \(f \) be a quartic polynomial and \(G = G_f \) the Green’s function associated with the filled-in Julia set \(K(f) \). For a polynomial \(p \) of degree \(d \), the Green’s function \(G_p \) is defined as:

\[
G_p(z) = \lim_{n \to \infty} \frac{1}{d^n} \log^+|p^n(z)|,
\]

where \(\log^+ x = \max\{ \log x, 0 \} \). The Green’s function \(G(z) \) is zero for \(z \in K(f) \) and positive for \(z \in I(f) \). By definition, the identity \(G(f(z)) = 4G(z) \) holds. The locus \(G^{-1}(x) \) with \(x > 0 \) is called an equipotential curve around the filled-in Julia set \(K(f) \). Note that \(f \) maps the equipotential curve \(G^{-1}(x) \) to the equipotential curve \(G^{-1}(4x) \) by a four-to-one fold covering map. Let \(\omega_1, \omega_2 \) and \(\omega_3 \) be different finite critical points of \(f \). We assume that \(G(\omega_1) = G(\omega_2) = 0 \) and \(G(\omega_3) > 0 \). The assumption indicates that \(\omega_1, \omega_2 \in K(f) \) and \(\omega_3 \in I(f) \).

Definition 1.2 (Polynomial-like maps). The triple \((g, U, V)\), consisting of bounded simply connected domains \(U \) and \(V \) such that \(U \subseteq V \) and a holomorphic proper map \(g : U \to V \) of degree \(d \), is called a polynomial-like map of degree \(d \). The filled-in Julia set \(K(g) \) of a polynomial-like map \((g, U, V)\) is defined as:

\[
K(g) = \left\{ z \in U : g^n(z) \in U \text{ for all } n \geq 0 \right\}
\]

and the Julia set \(J(g) \) as \(J(g) = \partial K(g) \). In the case that \(d = 2 \), the triple \((g, U, V)\) is called a quadratic-like map.

Theorem 1.3 (Straightening Theorem [2, 5]). Every polynomial-like map is hybrid equivalent to a polynomial of the same degree. Namely, for any polynomial-like map \((g, U, V)\) of degree \(d \geq 2 \), there exist a polynomial \(p \) of degree \(d \), a neighborhood \(W \) of \(K(g) \) in \(U \) and a quasiconformal map \(\varphi : W \to \varphi(W) \) such that:

1. \(\varphi(K(g)) = K(p) \),
2. the complex dilatation \(\mu_\varphi \) of \(\varphi \) is zero almost everywhere on \(K(g) \),
3. \(\varphi \circ g = p \circ \varphi \) on \(W \cap g^{-1}(W) \).

If \(K(g) \) is connected, \(p \) is unique up to conjugation by an affine map.

Let \(U \) be the bounded component of \(\mathbb{C} \setminus G^{-1}(G(f(\omega_3))) \). We suppose that \(U_A \) and \(U_B \) are the different bounded components of \(\mathbb{C} \setminus G^{-1}(G(\omega_3)) \) such that \(\omega_1 \in U_A \) and \(\omega_2 \in U_B \). Then \(U_A \) and \(U_B \) are proper subsets of \(U \). Moreover, \((f|_{U_A}, U_A, U)\) and \((f|_{U_B}, U_B, U)\) are quadratic-like maps. We define the \(A-B \) kneading sequence \((\alpha_n)_{n \geq 0}\) of \(\omega_1 \) as:

\[
\alpha_n = \begin{cases}
A & \text{if } f^n(\omega_1) \in U_A, \\
B & \text{if } f^n(\omega_1) \in U_B.
\end{cases}
\]

We assume that the \(A-B \) kneading sequence of \(\omega_1 \) is \(((AAA)\ldots)\) and the \(A-B \) kneading sequence of \(\omega_2 \) is \(((BBB)\ldots)\). This implies that filled-in Julia sets \(K(f|_{U_A}) \) and \(K(f|_{U_B}) \) are connected.

Let \(\Sigma_6 = \{1, 2, 3, 4, A, B\}^\mathbb{N} \) be the symbol space on 6 symbols. We define its subset \(\Sigma \) in Theorem 1.4 as follows: \(s = (s_n) \in \Sigma \) if and only if:

1. \(s_n = A \Rightarrow s_{n+1} = A \),
2. \(s_n = B \Rightarrow s_{n+1} = B \).
Figure 1. An example of Theorem 1.4. The black region is the filled-in Julia set of $f(z) = a(z + 2)^2(3z^2 - 8z + 8)/3 - 2$, where $a = 1/3$. Finite critical points -2 and 1 are superattracting fixed points. The orbit of the other critical point 0 tends to ∞.

Figure 2. Equipotential curves. The red one is $G^{-1}(G(0))$. It is a topological figure-eight through the origin. The blue one is $G^{-1}(G(f(0)))$. It is a topological circle through the critical value $f(0) = 14/9$.

(3) $s_n = A$ and $s_{n-1} \neq A \Rightarrow s_{n-1} = 3$ or 4,
(4) $s_n = B$ and $s_{n-1} \neq B \Rightarrow s_{n-1} = 1$ or 2,
(5) if $s = (s_n) \in \Sigma_4 = \{1, 2, 3, 4\}^N$, then there exist subsequences $(t_n)_{n=1}^\infty$ and $(u_n)_{n=1}^\infty$ such that $t_n = 1$ or 2 and $u_n = 3$ or 4 for all $n \geq 1$.

The property (5) of Σ is essential. For example, a sequence

$$\left\{ s^{(n)} = (1, 1, \ldots, 1, B, B, \ldots) \right\}_{n=1}^\infty$$

converges to $s = (1, 1, 1, \ldots)$ in Σ_6. However, it does not converge in Σ because $s \notin \Sigma$. Each $s^{(n)}$ corresponds to a component of backward iterated images of the
Figure 3. Another example of Theorem 1.4. This is the filled-in Julia set of \(f(z) = a(z + 2)^2(3z^2 - 8z + 8)/3 - 2 \), where \(a = 1/3 + 83/2000 \). Finite critical points \(-2\) and \(1\) belong to \(K(f) \). The other one \(0\) belongs to \(I(f) \). The critical point \(-2\) is a superattracting fixed point.

Figure 4. Equipotential curves. The red one is \(G^{-1}(G(0)) \) and the blue one is \(G^{-1}(G(f(0))) \).

filled-in Julia set \(K(f|_{\mathcal{U}_B}) \). These backward components converge to a repelling fixed point on \(\partial K(f|_{\mathcal{U}_A}) \).

Theorem 1.4 ([3, Theorem 1.5]). Let \(f \) be a quartic polynomial. Suppose that

(a) its finite critical points \(\omega_1, \omega_2 \in K(f) \) and \(\omega_3 \in I(f) \) are all different,
(b) the Julia set \(J(f) \) is disconnected but not totally disconnected,
(c) the \(A-B \) kneading sequence of \(\omega_1 \) is \((AAA\cdots) \) and the \(A-B \) kneading sequence of \(\omega_2 \) is \((BBB\cdots) \).

Then there exist a subset \(\Sigma \) of the symbol space \(\Sigma_6 \) and a homeomorphism \(\Lambda : K(f) \to \Sigma \) such that \(\Lambda \circ F = \sigma \circ \Lambda \), where \(K(f) \) is the set of all components of \(K(f) \) with the Hausdorff metric and \(F : K(f) \to K(f) \) is the map defined as \(F(K) = f(K) \) for \(K \in K(f) \).
The question is to determine the quartic polynomials exhibiting the above dynamics and describe the topology of the connected components of their filled-in Julia sets. In this study, we construct the quartic polynomial satisfying the assumptions of Theorem 1.4. The answer is the following theorem.

Theorem A. For any two quadratic Julia sets, there exists a quartic polynomial whose Julia set includes copies of the two quadratic Julia sets. More precisely, for any \(c_1, c_2 \in \mathbb{C} \), there exist a quartic polynomial \(f \) and distinct three bounded simply connected domains \(U_1, U_2, V \) such that \((f, U_1, V) \) and \((f, U_2, V) \) are quadratic-like maps and they are hybrid equivalent to the quadratic polynomials \(p_{c_1} \) and \(p_{c_2} \) respectively, where \(p_c(z) = z^2 + c \).

Corollary B. If \(c_1 \) and \(c_2 \) belong to the Mandelbrot set, then the quartic polynomial obtained in Theorem A satisfies the assumptions of Theorem 1.4.

2. Construction of the desired quartic polynomials

In this section, we construct the desired quartic polynomial \(f \) and prove Theorem A. The construction uses Lemma 2.1 and Theorem 2.2 on quasiregular mappings. In Lemma 2.1, “log” denotes the principal branch of the logarithm.

Lemma 2.1 ([4, Lemma 6.2]). Let \(k \in \mathbb{N}, 0 < R_1 < R_2 \) and \(\varphi_j(z) \) be analytic on a neighborhood of \(|z| = R_j \) such that \(\varphi_j(z) \) goes around the origin \(k \)-times \((j = 1, 2) \). If
\[
\left| \log \left(\frac{\varphi_2(R_2e^{iy})}{R_2^k}, \frac{R_1^k}{\varphi_1(R_1e^{iy})} \right) \right| \leq \delta_0 \tag{*}
\]
and
\[
\left| \frac{d}{dz} \log \frac{\varphi_j(z)}{z^k} \right| \leq \delta_1, \quad z = R_je^{iy}, \quad j = 1, 2 \tag{†}
\]
hold for every \(y \in [0, 2\pi] \) and for some positive constants \(\delta_0 \) and \(\delta_1 \) satisfying
\[
C = 1 - \frac{1}{k} \left(\frac{\delta_0}{\log(R_2/R_1)} + \delta_1 \right) > 0, \tag{§}
\]
then there exists a quasiregular map

\[H : \{ z \in \mathbb{C} : R_1 \leq |z| \leq R_2 \} \to \mathbb{C} \setminus \{0\} \]

without critical points such that \(H = \varphi_j \) on \(|z| = R_j \) \((j = 1, 2)\) and satisfies

\[K_H \leq \frac{1}{C}. \]

Theorem 2.2 (Quasiconformal surgery [4, Theorem 3.1]). Let \(g : \mathbb{C} \to \mathbb{C} \) be a quasiregular mapping. Suppose that there are disjoint measurable sets \(E_j \subset \mathbb{C} \) \((j = 1, 2, \ldots)\) satisfying:

1. For almost every \(z \in \mathbb{C} \), the \(g \)-orbit of \(z \) passes \(E_j \) at most once for every \(j \);
2. \(g \) is \(K_j \)-quasiregular on \(E_j \);
3. \(K_\infty = \prod_{j=1}^{\infty} K_j < \infty \);
4. \(g \) is holomorphic almost everywhere outside \(\bigcup_{j=1}^{\infty} E_j \).

Then there exists a \(K_\infty \)-quasiconformal map \(\varphi : \mathbb{C} \to \mathbb{C} \) such that \(f = \varphi \circ g \circ \varphi^{-1} \) is an entire function.

Notations. Let \(R > r > 0 \), \(A \in \mathbb{C} \setminus \{0\} \) and \(c \in \mathbb{C} \). We use the notations below.

- \(p_c(z) = z^2 + c \)
- \(q_c(z) = p_c(Az)/A = Az^2 + c/A \)
- \(h(z) = z^4 - 2R^4z^2 + R^8 \)
- \(h_1(z) = h(z - R^2) + R^2 = z^4 - 4R^2z^3 + 4R^4z^2 + R^2 \)
- \(h_2(z) = h(z + R^2) - R^2 = z^4 + 4R^2z^3 + 4R^4z^2 - R^2 \)
- \(\Gamma = \{ z \in \mathbb{C} : |z| = r \} \)
- \(\Gamma_1 = \{ z \in \mathbb{C} : |z + R^2| = r \} \)
- \(\Gamma_2 = \{ z \in \mathbb{C} : |z - R^2| = r \} \)

The quadratic polynomial \(q_c \) is affine conjugate to \(p_c \). The quartic polynomial \(h_1 \) and \(h_2 \) are affine conjugate to \(h \). It is easy to check that critical points of \(h \) are 0 and \(\pm R^2 \). Hence, critical points of \(h_1 \) are 0, \(R^2 \) and \(2R^2 \). Similarly, critical points of \(h_2 \) are 0, \(-R^2 \) and \(-2R^2 \). For the sake of convenience, we deal with the quartic polynomials \(h_1 \) and \(h_2 \) simultaneously as

\[h_*(z) = z^4 + 4R^2z^3 + 4R^4z^2 \pm R^2. \]

Lemma 2.3. Let \(k = 2 \), \(R_1 = r \), \(R_2 = R \), \(\varphi_1 = q_c \) and \(\varphi_2 = h_*. \) If \(A = 4R^4 \), \(r = R/2 \) and \(R \) is large enough, then the inequality (*) of Lemma 2.1 holds for \(\delta_0 = (\log 2)/3 \).

Proof. For \(y \in [0, 2\pi] \), we obtain that

\[\left| \log \left(\varphi_2 \left(\frac{R_2 e^{iy}}{R_1} \right) \right) \right| = \left| \log \left(\frac{h_*(R e^{iy})}{R^2} \right) \right| \]

\[\leq \left| \log \left(\frac{R^4 e^{iy} \pm 4R^5 e^{2iy} + 4R^6 e^{3iy} \pm R^2}{A r^2 e^{2iy} + r^2} \right) \right| \]
Similarly, the inequality
\[\left| z \frac{d}{dz} \log \frac{\varphi_2(z)}{z^k} \right| = \left| z \frac{d}{dz} \log \frac{h^*(z)}{z^2} \right| = \left| \frac{2z^2 + 4R^2z + 4R^4 \pm R^2z^{-2}}{z^2 + 4R^2z + 4R^4 \pm R^2z^{-2}} \right| \leq \frac{2R^2e^{i2y} + 4R^3e^{iy} + 2e^{-i2y}}{R^2e^{i2y} + 4R^3e^{iy} + 4R^4 \pm e^{-i2y}} \leq \delta_1 \]
holds if \(R \) is large enough.

\begin{lemma}
Let \(k = 2 \), \(R_1 = r \), \(R_2 = R \), \(\varphi_1 = q_c \) and \(\varphi_2 = h^* \). If \(A = 4R^4 \), \(r = R/2 \) and \(R \) is large enough, then the inequality (\(\dagger \)) of Lemma 2.1 holds for \(\delta_1 = 2/3 \).
\end{lemma}

\begin{proof}
If \(R \) is sufficiently large, we obtain that
\[\left| z \frac{d}{dz} \log \frac{\varphi_1(z)}{z^k} \right| = \left| z \frac{d}{dz} \log \frac{q_c(z)}{z^2} \right| = \left| \frac{-2c}{A} \right| \frac{2|c|}{Ar^2e^{i2y} + \frac{c}{A}} \leq \frac{|c|}{2R^4} \leq \delta_1. \]
Similarly, the inequality
\[\left| z \frac{d}{dz} \log \frac{\varphi_2(z)}{z^k} \right| = \left| z \frac{d}{dz} \log \frac{h^*(z)}{z^2} \right| = \left| \frac{2z^2 + 4R^2z + 4R^4 \pm R^2z^{-2}}{z^2 + 4R^2z + 4R^4 \pm R^2z^{-2}} \right| \leq \frac{2R^2e^{i2y} + 4R^3e^{iy} + 2e^{-i2y}}{R^2e^{i2y} + 4R^3e^{iy} + 4R^4 \pm e^{-i2y}} \leq \delta_1 \]
holds if \(R \) is large enough.
\end{proof}

\begin{lemma}
Let \(\delta_0 = (\log 2)/3 \), \(\delta_1 = 2/3 \), \(k = 2 \), \(R_1 = r \) and \(R_2 = R \). If \(r = R/2 \), then the inequality (\(\diamond \)) of Lemma 2.1 holds and \(C = 1/2 \).
\end{lemma}

\begin{proof}
\[C = 1 - \frac{1}{k} \left(\frac{\delta_0}{\log (R_2/R_1)} + \delta_1 \right) = 1 - \frac{1}{2} \left(\frac{\log 2}{3} + \frac{2}{3} \right) = \frac{1}{2} > 0. \]
\end{proof}

\begin{lemma}
If \(|z| > 1 + \sqrt{1 + R^4} \), then \(|h(z)| > 2|z| \) and \(h^n(z) \to \infty \) as \(n \to \infty \).
\end{lemma}

\begin{proof}
For \(x \geq 0 \), the inequality \(x^2 - R^4 > 2x \) is equivalent to \(x > 1 + \sqrt{1 + R^4} \). Hence, if \(|z| > 1 + \sqrt{1 + R^4} \), the inequality
\[|h(z)| = |z^2 - R^4|^2 \geq (|z|^2 - R^4)^2 > \left(2|z| \right)^2 > 2|z| \]
holds. Therefore, we obtain that
\[|h^n(z)| > 2^n |z| \to \infty. \]
\end{proof}
Lemma 2.7. Let \(r = R/2 \). If \(R \) is large enough, then the orbit of any point in \(\Gamma_1 \cup \Gamma_2 \) tends to infinity or

\[
h^n(re^{iy} + R^2) \to \infty.
\]

Proof. Since

\[
|h(z)| = |z|^4 \left| 1 - \frac{R^4}{z^2} \right|^2 \geq (R^2 - r)^4 \left| \frac{re^{2iy} + 2Rre^{iy}}{r^2e^{2iy} + 2Rre^{iy} + r^4} \right|^2
\]

\[
= \left(R^2 - \frac{R}{2} \right)^4 \left| \frac{R^2e^{2iy} \mp R^3e^{iy}}{R^4e^{2iy} \mp R^3e^{iy} + r^4} \right|^2 = R^4 \left(R - \frac{1}{2} \right)^4 \left| \frac{1}{4R^2e^{2iy} \mp 1} \frac{1}{r} e^{iy} + 1 \right|^2 > R^2 \left(R - \frac{1}{2} \right)^4 \frac{1}{2} > 1 + \sqrt{1 + R^4}
\]

holds if \(R \) is large enough. By Lemma 2.6, we obtain the result. \(\square \)

If \(R \) is large enough, the critical orbit \(h^n(0) = h^{n+1}(\pm R^2) \) tends to infinity. Therefore, \(G(0) \) and \(G(\pm R^2) \) are positive, where \(G = G_h \) is the Green’s function associated with the filled-in Julia set \(K(h) \). Since the preimages of the critical value \(R^3 = h(0) = 0 \) and \(\pm \sqrt{2}R^2 \), then the equipotential curve \(\Phi = G^{-1}(G(0)) \) is a figure-eight through \(0 \) and \(\pm \sqrt{2}R^2 \). It has symmetry with respect to the origin because \(h \) is even. Moreover, since critical points \(\pm R^2 \) are the preimages of the critical point \(0 \), then the equipotential curve \(G^{-1}(G(R^2)) = G^{-1}(G(-R^2)) \) has two components \(\Theta_1 \) and \(\Theta_2 \), which are the congruent quatrefoils centered at \(-R^2 \) and \(R^2 \) respectively. The quatrefoils \(\Theta_1 \) and \(\Theta_2 \) are surrounded by the figure-eight \(\Phi \). Since the critical orbit \(h^n(0) = h^{n+1}(\pm R^2) \) tends to infinity for sufficiently large \(R \), the Julia set \(J(h) \) is totally disconnected and it is surrounded by \(\Theta_1 \cup \Theta_2 \). By Lemma 2.7, it is also surrounded by \(\Gamma_1 \cup \Gamma_2 \).

The strategy of the proof of Theorem A.

1. Take \(R \) sufficiently large and cut off the Julia set \(J(h) \) by the two circles \(\Gamma_1 \) and \(\Gamma_2 \).
2. Paste two copies of the quadratic Julia sets \(J(p_{c_1}) \) and \(J(p_{c_2}) \) in the interior of the circles \(\Gamma_1 \) and \(\Gamma_2 \) respectively.
3. In order to construct a quasiregular map \(g \), interpolate \(h \) and two quadratic polynomials which are hybrid equivalent to \(p_{c_1} \) and \(p_{c_2} \) respectively.
4. To obtain the desired quartic polynomial \(f \), employ the quasiconformal surgery for \(g \).

Proof of Theorem A. Let \(r = R/2 \) and \(A = 4R^4 \). Since Lemma 2.3, Lemma 2.4 and Lemma 2.5 hold for sufficiently large \(R \), by Lemma 2.1, there exist quasiregular maps

\[
H_j : \{ z \in \mathbb{C} : R/2 \leq |z| \leq R \} \to \mathbb{C} \setminus \{0\} \quad (j = 1, 2)
\]

without critical points such that

\[
H_j = g_{c_j} \text{ on } |z| = R/2 \quad \text{and} \quad H_j = h_j \text{ on } |z| = R
\]

and satisfies

\[
K_{H_j} \leq \frac{1}{C} = 2
\]
for \(j = 1 \) and \(2 \). We take \(R \) sufficiently large such that \(\Gamma \) surrounds the filled-in Julia sets \(K(q_{c_j}) \) and \(K(q_{c_2}) \). We define a quasiregular map \(g : \mathbb{C} \to \mathbb{C} \) as follows:

\[
g(z) = \begin{cases}
q_{c_1}(z + R^2) - R^2 & \text{on } |z + R^2| \leq R/2, \\
H_1(z + R^2) - R^2 & \text{on } R/2 < |z + R^2| \leq R, \\
q_{c_2}(z - R^2) + R^2 & \text{on } |z - R^2| \leq R/2, \\
H_2(z - R^2) + R^2 & \text{on } R/2 < |z - R^2| \leq R, \\
h(z) & \text{otherwise.}
\end{cases}
\]

We check the assumptions of Theorem 2.2. Let

\[
E_1 = \{ z \in \mathbb{C} : R/2 \leq |z + R^2| \leq R \} \quad \text{and} \quad E_2 = \{ z \in \mathbb{C} : R/2 \leq |z - R^2| \leq R \}.
\]

If \(R \) is large enough, then

\[
E_1 \cup E_2 \subset \{ z \in \mathbb{C} : |z| < R^3 \}
\]

For \(z = re^{iy} + R^2 \in \Gamma_1 \cup \Gamma_2 \),

\[
|g(z)| = |q_{c_j}(z) + R^2| = \left| 4R^4 (z \pm R^2)^2 + \frac{c_j}{4R^4} \mp R^2 \right| \\
\geq \left| 4R^4 \cdot \frac{R^2}{4} \cdot e^{2iy} + \frac{c_j}{4R^4} \mp R^2 \right| \geq R^6 - \frac{|c_j|}{4R^4} - R^2 > R^3 > 1 + \sqrt{1 + R^4}
\]

if \(R \) is large enough. It indicates that

\[
g(E_1 \cup E_2) \subset \{ z \in \mathbb{C} : |z| > R^3 \}
\]

and the orbit of any point in \(E_1 \cup E_2 \) under \(g \) tends to infinity, which implies that the assumption (1) of Theorem 2.2 holds. The other assumptions (2), (3) and (4) of Theorem 2.2 obviously hold. Therefore, there exists a 4-quasiconformal map \(\varphi : \mathbb{C} \to \mathbb{C} \) such that \(f = \varphi \circ g \circ \varphi^{-1} \) is an entire function of degree 4. Hence, \(f \) is a quartic polynomial. We normalize \(\varphi \) as \(\varphi(0) = 0 \) and \(\varphi(1) = 1 \). Then the finite critical points of \(f \) are 0 and \(\varphi(\pm R^2) \).

Let \(U_1 \) and \(U_2 \) be the bounded components of \(\mathbb{C} \setminus G^{-1}(G(f(0))) \) such that \(\varphi(-R^2) \in U_1 \) and \(\varphi(R^2) \in U_2 \), where \(G = G_f \) is the Green’s function associated with the filled-in Julia set \(K(f) \). Let \(V \) be the bounded component of \(\mathbb{C} \setminus G^{-1}(G(f(0))) \). Then \((f|_{U_1}, U_1, V) \) and \((f|_{U_2}, U_2, V) \) become quadratic-like maps. By the straightening theorem, the quadratic-like map \((f|_{U_j}, U_j, V) \) is hybrid equivalent to the quadratic polynomial \(q_{c_j} \), which is affine conjugate to the quadratic polynomial \(p_{c_j} \) for \(j = 1 \) and 2.
Proof of Corollary B. Let $\omega_1 = \varphi(-R^2), \omega_2 = \varphi(R^2)$ and $\omega_3 = 0$. If c_1 and c_2 belong to the Mandelbrot set, the filled-in Julia sets $K(f|U_1)$ and $K(f|U_2)$ are connected. Moreover, $\omega_1 \in K(f|U_1) \subset K(f)$ and $\omega_2 \in K(f|U_2) \subset K(f)$, which imply that the A-B kneading sequence of ω_1 is $(AAA\cdots)$ and the A-B kneading sequence of ω_2 is $(BBB\cdots)$. Since $\omega_1, \omega_2 \in K(f)$ and $f^n(0) = f^n(\omega_3) \to \infty$ as $n \to \infty$, the Julia set $J(f)$ is disconnected but not totally disconnected. Therefore, the quartic polynomial f obtained in Theorem A satisfies the assumptions of Theorem 1.4.

Acknowledgments. I would like to thank the referee for valuable comments and suggestions that have improved the presentation of this paper.

REFERENCES

[1] P. Blanchard, Disconnected Julia sets, chaotic dynamics and fractals, Notes Rep. Math. Sci. Engrg., Academic Press, Orlando, FL, 2 (1986), 181–201.
[2] A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. (4), 18 (1985), 287–343.
[3] K. Katagata, On a certain kind of polynomials of degree 4 with disconnected Julia set, Discrete Contin. Dyn. Syst., 20 (2008), 975–987.
[4] M. Kisaka and M. Shishikura, On multiply connected wandering domains of entire functions, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 348 (2008), 217–250.
[5] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, 66. Cambridge University Press, Cambridge, 2000.

Received January 2015; revised July 2015.

E-mail address: katagata@ichinoseki.ac.jp