CoVA: Exploiting Compressed-Domain Analysis to Accelerate Video Analytics

Jinwoo Hwang, Minsu Kim, Daeun Kim
Seungho Nam, Yoonsung Kim, Dohee Kim
Hardik Sharma*, Jongse Park

KAIST, *Google
Growing Video Data

Video data makes up **82% of global IP traffic*** as of 2022, and is **growing**

* CISCO Annual Internet Report
Video Analytics

Video Analytic System analyzes video to extract high-level information and answers user queries.

Example

User Query: How many cars per hour?

Answer: 1,200 cars
Using Object Detector for Video Analytics

When does a car appear?

Answer: Frame 3!

Frame #	Class	X, Y, W, H
2	Person	(140, 550, 130, 100)
3	Person	(870, 570, 140, 100)
3	Car	(150, 410, 24, 64)
Challenge and Prior Approaches

Challenge

DNN-based object detector requires **heavy computation**
e.g., YOLO take 11 hours to process two weeks long video

Prior Approaches [VLDB’18, ICDE’20, VLDB’20]

Simple neural networks **specialized** for the user query

Cascade architecture constitute a pipeline of classifiers that trades accuracy and performance
Prior Approach: Specialized Neural Network

Complex Task
Determine location and class of *every object*

Simple Task
Determine if there is *any car* or not

Object Detector

Specialized Neural Network

When does *car* appear?

1.0 *car*

0.0 *no car*
Prior Approach: Cascade Architecture

Frames flowing...

Specialized NN

Frame 1

When does *car* appear?
Prior Approach: Cascade Architecture

When does *car* appear?
Prior Approach: Cascade Architecture

Frames flowing...

Object Detector

Frame 2

Frame 1

When does *car* appear?

Answer: Frame 2
Prior Approach: Cascade Architecture

When does *car* appear?

Answer: Frame 2 and 3!
Two Limitations of Prior Approaches

1. Bottleneck from Decoding

- Prior works ignore a compute-heavy preprocessing stage, *video decoding*!

* 720p video with HW acceleration, NVDEC
Two Limitations of Prior Approaches

2. Lack of Support for Spatial Query

Skipped object detection

Frame 3

Applied object detection

Frame 2

Frame 1

When does car appear?
Frame 2 and 3

Where does car appear?
Frame 2 at (150, 410)
Frame 3 at ?
Contribution 1: $4.8 \times$ end-to-end speedup by addressing decoding bottleneck

Contribution 2: Spatial query support
CoVA Overview

Track Detection
- BlobNet
- Blob Tracking

Frame Selection → Decoder → Object Detector → Label Propagation
Goal of Track Detection

Goal: without decoding, find track of moving objects

How can we find moving objects from compressed video?
How modern video codecs works

Algorithmic commonality: *Block-based compression*
Block-based Compression: Macroblock

Frames are first divided into a grid of *macroblocks*
Block-based Compression: Motion Vector

Macroblock is compressed by saving relative position to similar block
Challenge in Using Compression Metadata

Challenge: Find moving object from noisy compression metadata

Solution: Neural network based algorithm
BlobNet

Input
- Compression Metadata
 - Motion vector
 - MB type*
 - MB partition*

Embedding Layer
- Additional layer for neural network to embed compression metadata

Temporal U-Net
- Encoder-decoder architecture for denoising
- Video instance segmentation model architecture running in pixel domain

Output
- Training label generated using background subtraction in pixel domain

* Details omitted in the talk
BlobNet Result

- **blob**: region where moving objects appear

Decoded Video

Detected Blobs
Detecting Tracks from Blobs

Blobs detected by BlobNet are not tracked yet

Tracking with Simple Online and Realtime Tracking (SORT)
Frame Selection
Goal of Frame Selection

Goal: select minimal frames to decode

Decoding is required to see what *kinds* of objects they are. Can we just pick any of the frames to decode?
Not every frame has the same decoding cost
Dependency-Aware Frame Selection

Frame 40
Object A enters

Frame 120
Object B enters

Frame 140
Object C enters

Frame 170
Object A leaves

Frame 230
Object B leaves

Object A
Object B
Object C

Optimal frame to decode

Number of frames to decode

Frame number

Object A
Object B
Object C
Decoding and Object Detection on Selected Frame
Label Propagation
Goal of Label Propagation

Goal: combine results from previous stages to label tracks
Overlap based label propagation

blobs at the same timestamp

Retrieve *blob* location at the timestamp of object detected frame
Overlap based label propagation

Assigned labels are *propagated* throughout the track, including not decoded frames.
CoVA Summary

- **Track Detection**
 - BlobNet
 - Blob Tracking

- **Frame Selection**

- **Decoder**

- **Object Detector**

- **Label Propagation**

Compressed Domain
- Perform Filtering
- Extract Tracking Information

Pixel Domain
- Extract Label Information
Evaluation Setup

Datasets: five live stream videos / Average 28 hours long

Query specification	System specification
Binary Predicate (BP)	Software
Frames where querying object appears	C++ & Rust / CUDA 11.5
Global Count (CNT)	Decoder
Average count of querying object	FFmpeg v4.41 / NVDEC v5
Local Binary Predicate (LBP)	CPU
BP with spatial constraint	Two Intel Xeon CPU Gold 6226R
Local Count (LCNT)	GPU
GC with spatial constraint	NVIDIA RTX 3090
End to End System Throughput Improvement

Achieves 4.8× higher throughput in average compared to prior work
Filtration rate

Dataset	Decode Filtration Rate (%)	Inference Filtration Rate (%)
amsterdam	87.16	99.60
archie	72.94	99.15
jackson	94.81	99.79
shinjuku	77.18	99.26
taipei	74.03	99.81
geomean	80.80	99.39

Reduces decoding workload by 80.8%, and inference by 99.4% on average
Bottleneck Analysis of CoVA

Bottleneck of varies across dataset

Compressed domain filtering never becomes the bottleneck
Implication on accuracy

Degrades accuracy in modest level comparable to prior works

E.g., Degradation in binary predicate query is in the range of 10-15%

Dataset	BP (%)	CNT (Err)	Ground Truth*
amsterdam	85.79	0.15	1.40
archie	86.96	0.04	0.16
jackson	86.13	0.10	0.56
shinjuku	90.15	0.30	2.18
taipei	87.74	1.10	5.03
geomean	87.34		

*Comparison made against YOLOv4 as ground truth
Conclusion

• Novel video analytics pipeline that introduces compressed domain analysis
• 4.8× on average speedup by addressing decoding bottleneck
• Support for spatial query

Opensourced Artifact evaluated
