Efficient Photocatalytic Reduction of CO₂ Catalyzed by the Metal–Organic Framework MFM-300(Ga)

Tian Luo1, Zi Wang1,2, Xue Han1, Yinlin Chen1, Dinu Iuga3, Daniel Lee4, Bing An1, Shaojun Xu1, Xinchen Kang5, Floriana Tuna1,2, Eric J. L. McInnes1,2, Lewis Hughes6, Ben F. Spencer7, Martin Schröder1* & Sihai Yang1*

1Department of Chemistry, University of Manchester, Manchester M13 9PL, 2Photon Science Institute (PSI), University of Manchester, Manchester M13 9PL, 3Department of Physics, University of Warwick, Coventry CV4 7AL, 4Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, 5Institute of Chemistry, Chinese Academy of Science, Beijing 100190, 6Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, 7Department of Materials, University of Manchester, Manchester M13 9PL

*Corresponding authors: M.Schroder@manchester.ac.uk; Sihai.Yang@manchester.ac.uk

Cite this: CCS Chem. 2022, 4, 2560–2569
DOI: 10.31635/ccschem.022.202201931

Photocatalytic reduction of CO₂ to carbon fuels is an important target but highly challenging to achieve. Here, we report the efficient photoconversion of CO₂ into formic acid over a Ga(III)-based metal–organic framework (MOF) material using triethanolamine as the sacrificial agent. Under light irradiation and at room temperature, photoreduction of CO₂ over MFM-300(Ga) yields formic acid with a selectivity of 100%, a high productivity of 502±18 μmol·gcat⁻¹·h⁻¹, and excellent catalytic stability. In situ electron paramagnetic resonance spectroscopy reveals that MFM-300(Ga) promotes the generation of CO₂⁻⁻ radical anions as a reaction intermediate driven by strong binding and activation of CO₂ molecules at the bridging –OH sites within the pore. This study represents the first example of a Ga(III)-based MOF catalyst for CO₂ reduction.

Introduction

The development of efficient photocatalysts to convert CO₂ into value-added chemicals has attracted much interest. In addition to TiO₂, various Ga-based semiconductors, such as GaN, GaP, Ga₂O₃, and ZnGa₂O₄, have been widely investigated as photocatalysts to drive this reaction. However, their wide optical bandgap (Eg) restricts the use of solar light mainly to the ultraviolet region, and, more importantly, their nonporous nature limits the mass transport of CO₂. This impedes charge transfer between catalyst and substrate and also leads to the undesirable recombination of photogenerated electrons and holes. A number of strategies have been exploited to improve the photocatalytic performance of Ga-based semiconductors. For example, doping of metals (e.g., Ge, Zn) or nonmetals (e.g., N, Si) can narrow the bandgap and improve the light-harvesting efficiency...
Fabrication of ultrathin nanosheets, nanowires, or porous structures can increase the surface area and CO₂ uptake. Meanwhile, the introduction of a cocatalyst, noble metal nanoparticles, or a second semiconductor to construct Z-scheme or heterojunction-type systems can promote electron transfer. However, the photocatalytic efficiency over state-of-the-art Ga-based semiconductors remains limited, and only gaseous products such as CH₄ and CO are produced. For example, a top-performing heterostructure of Au/Al₂O₃/p-GaN shows a photocatalytic productivity for CO of 230 μmol·g⁻¹·h⁻¹.

Metal–organic framework (MOF) materials incorporate active sites fixed uniformly in 3D space, thus preventing aggregation of catalytic centers and potentially enhancing charge separation. MOFs are therefore emerging as important photocatalysts for the reduction of CO₂, showing potential to overcome the barriers of conventional semiconductors. For example, the intrinsic microporosity and catalytically active sites confined in MOFs can form unique “microreactors” to promote the adsorption and activation of CO₂ via the formation of strong host-guest interactions. More importantly, the backbone of MOFs consisting of infinite metal-ligand linkages...

Figure 1 Characterisation and crystal structure of MFM-300(Ga). (a) The UV-DRS spectrum of MFM-300(Ga) with Tauc plot (insert); (b) SEM image of MFM-300(Ga) with TEM image (insert); (c) high-resolution XPS spectrum of Ga 2p, and (d) ⁷¹Ga{¹H} D-HMQC 2D MAS NMR spectrum of MFM-300(Ga) and corresponding 1D direct excitation ⁷¹Ga (top) and ¹H (left) MAS NMR spectra, recorded at 20.0 T with a MAS frequency of 60 kHz; crystal structure of MFM-300 (Ga): (e) octahedral [GaO₄(OH)₂]; (f) ligand; (g and h) views of binding sites (bridging -OH groups) for adsorbed CO₂ molecules within MFM-300(Ga) studied by In situ synchrotron X-ray single-crystal diffraction. Host-guest hydrogen bonds and intermolecular dipole interactions are highlighted in cyan and yellow, respectively.

DOI: 10.31635/ccschem.022.202201931
Citation: CCS Chem. 2022, 4, 2560–2569
Link to VoR: https://doi.org/10.31635/ccschem.022.202201931
can facilitate efficient ligand-to-metal-charge-transfer (LMCT), thus prolonging the excitation lifetime by boosting the isolation and utilisation of photoinduced electrons.22 A number of MOF systems have been tested for photoreduction of CO$_2$,18,20 and Ti-based MOFs are particularly attractive.32,34 In contrast, to date, no Ga-based MOF has been shown to exhibit activity for CO$_2$ conversion, and we report here the first example for the efficient photoreduction of CO$_2$. Under light irradiation and at room temperature, MFM-300(Ga) catalyzes the conversion of CO$_2$ into formic acid with a 100% selectivity and an excellent productivity up to 502 ± 18 μmol·g$_{\text{cat}}^{-1}$·h$^{-1}$, significantly higher than conventional Ga-based semiconductors and among the best-behaving MOF-based photocatalysts for this reaction. Importantly, in situ electron paramagnetic resonance (EPR) spectroscopy confirms that the CO$_2$ radical anion (CO$_2$$^-$) is generated as an intermediate to the production of formic acid over MFM-300(Ga).

Results and Discussion

MFM-300(Ga), [Ga$_2$(OH)$_2$(L)] (H$_4$L = biphenyl-3,3’5,5’-tetracarboxylic acid) was chosen for the photoreduction of CO$_2$ due to its high stability, high adsorption, and strong binding of CO$_2$ molecules via the formation of hydrogen bonds to the bridging –OH groups in the pore.25 MFM-300(Ga) is comprised of chains of [GaO$_4$(OH)$_2$]$_\infty$ octahedra linked by cis-μ_2-OH groups, and these chains are further bridged by tetracarboxylate ligands to form a ‘wine rack’ open framework. Desolvated MFM-300(Ga) shows a Brunauer-Emmett-Teller (BET) surface area of 1064 m2·g$^{-1}$ and an uptake of CO$_2$ of 5.00 mmol·g$^{-1}$ at 298 K and 1 bar (see Supporting Information Figure S1). The purity of the bulk material has been confirmed by powder X-ray diffraction (PXRD) (see Supporting Information Figure S2) and thermogravimetric analysis (see Supporting Information Figure S3a). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that crystals of MFM-300(Ga) exhibit cuboid-shaped morphology with an average size of 15 μm (Figure 1b). High-resolution X-ray photoelectron spectroscopy (XPS) analysis of MFM-300(Ga) shows the peaks of Ga 2p$_{1/2}$, 2p$_{3/2}$, 3d$_{x^2-y^2}$, and 3d$_{3z^2-r^2}$ at 1145.5, 1186.6, 21.2, and 20.7 eV, respectively, consistent with the trivalent Ga(III) (Figure 1c, see Supporting Information Figure S4). Solid-state 13C and 71Ga NMR spectroscopy reveal a highly ordered structure consistent with a single repeating octahedral [GaO$_4$(OH)$_2$]$_2$ environment (see Supporting Information Figure S5).26 The high-field 7Ga(1H) 2D through-space (dipolar) heteronuclear correlation NMR spectrum of MFM-300(Ga) demonstrates this more extensively with strong correlations between the Ga environment and the hydroxyls (at δ(1H) = 2.8 ppm) and a weaker interaction with the more distant aromatic proton between the carboxylates (at δ(1H) = 9.0 ppm), with no other correlations observed (Figure 1d). Moreover, the ratio of the 1H NMR signal intensities of the aromatic protons to the hydroxy protons is ~3:1 (see Supporting Information Figure S5c), entirely consistent with the structural model shown in Figures 1e–1h. Solid-state UV-vis diffuse reflectance spectroscopy (UV-DRS) of MFM-300(Ga) shows an intensive and broad absorption band in the ultraviolet region, which is assigned to the $\pi$$\rightarrow$$\pi^*$ transition of the biphenyl ligand (Figure 1a).27 The Tauc plot yields an optical bandgap of 3.30 eV, lower than that of commercial Ga$_2$O$_3$ (E_g = 4.56, 4.70, and 4.67 eV for α-, β-, and γ-Ga$_2$O$_3$, respectively)28 and ZnGa$_2$O$_4$ (E_g = 4.18 eV).9 The photocurrent response of MFM-300(Ga) confirms that the current density increases upon irradiation and decreases upon turning off the light (see Supporting Information Figure S6).

![Figure 2](https://doi.org/10.31635/ccschem.022.202201931)

Figure 2	Photocatalytic CO$_2$ reduction over MFM-300(Ga). (a) Different reaction time; (b) recycling tests. Reaction conditions: MFM-300(Ga) (10 mg), TEOA/CH$_3$CN (3 mL/15 mL, saturated with CO$_2$), 25 ºC, 350–780 nm, light irradiation for 4 h.
DOI: 10.31635/ccschem.022.202201931	
Citation: CCS Chem. 2022, 4, 2560–2569	
Link to VoR: https://doi.org/10.31635/ccschem.022.202201931	
The photocatalytic activity of MFM-300(Ga) toward the reduction of CO$_2$ has been studied in CO$_2$-saturated CH$_3$CN-containing triethanolamine (TEOA) as the sacrificial agent under irradiation at 350–780 nm for 1–12 h. The gaseous products were analysed by gas chromatography and the liquid product by 1H NMR spectroscopy. The photocatalytic efficiency was measured as the moles of product obtained per gram of catalyst per hour (mol·g$_{\text{cat}}^{-1}$·h$^{-1}$) to afford a direct comparison with reported catalysts. Formic acid was the only product detected in the liquid phase, and no carbon-containing gaseous products were detected. The photocatalytic performance as a function of reaction time over MFM-300(Ga) indicates that a high productivity of 502 ± 18 μmol·g$_{\text{cat}}^{-1}$·h$^{-1}$ for formic acid was achieved at 4 h (Figures 2a, see Supporting Information Figure S7). More importantly, the photocatalytic activity and the crystallinity of MFM-300(Ga) were retained over three cycles of reaction (Figure 2b). The photocatalytic efficiency of MFM-300(Ga) is higher than the majority of reported MOFs (Table 1) for converting CO$_2$ into formic acid, such as amino-functionalised MIL-125(Ti), UiO-66(Zr), and MIL-101(Fe), and is only lower than two cases. One is the mixed metal and mixed ligand systems of NH$_2$-UiO-66(Zr/Ti) and (NH$_2$)$_2$-UiO-66(Zr/Ti), which are prepared via post-synthetic modifications to introduce Ti(IV) sites into the framework. The other is a recent report describing a π-conjugated naphthoporphyrin system constructed with Zr metal clusters, which demonstrates the highest value (6630 μmol·g$_{\text{cat}}^{-1}$·h$^{-1}$) reported in the literature. A comparison of state-of-the-art studies of thermal hydrogenation of CO$_2$ into formic acid over MOF-based catalysts is given in Supporting Information Table S1.

To gain further insights into this reaction, a series of control experiments were conducted (Table 2). No carbon-containing product was detected from reactions in the absence of (1) MFM-300(Ga), (2) CO$_2$ (where N$_2$ is used instead), or (3) light. These results confirm that the carbon source of formic acid is CO$_2$ and that the reaction proceeds via photocatalytic routes driven by the MOF catalyst. Replacement of TEOA with triethylamine (TEA) gives a low productivity of 64 μmol·g$_{\text{cat}}^{-1}$·h$^{-1}$ for formic acid, which is consistent with recent reports on the important role of TEOA in binding and assisting the transport of CO$_2$ in CH$_3$CN. A range of different organic solvents have been tested, and CH$_3$CN demonstrates the highest activity due to the optimal efficiency of mass transfer and the enhanced binding of CO$_2$ by TEOA in CH$_3$CN (see Supporting Information Figure S8). Interestingly, no product was observed when using Ga$_2$O$_3$ (~50 mesh, $E_g = 4.57$), GaN ($E_g = 3.04$), or a powdered mixture of Ga(NO$_3$)$_3$ and H$_2$L as the photocatalyst (see Supporting Information Figure S9). This indicates that the

Table 1: Comparison of the Photocatalytic Efficiency of MFM-300(Ga) and a Selection of MOFs Reported for this Reaction in the Literature

MOF-Based Materials	Chemical Formula	CO$_2$ Uptake /mmol kg$^{-1}$ (atm)	Sacrificial Agent	Solvents	Photocatalytic Efficiency /μmol·g$_{\text{cat}}^{-1}$·h$^{-1}$	References
TNP-MOF	Zn$_6$(OH)$_2$(TMP)$_3$	1.69 (273 K)	TEOA	CH$_3$CN	6630	This work
NH$_2$-MIL-101(Fe)	NH$_2$-MIL-88(Fe)	1.52 (273 K)	TEOA and BNAH	CH$_3$CN	1052	23
NH$_2$-MIL-101(F)	NH$_2$-MIL-88(F)	1.48 (273 K)	TEOA	CH$_3$CN	782	31
Co-MOF	Fe$_3$(OH)$_3$(BDC-NH$_2$)$_3$	0.60 (273 K)	TEOA	CH$_3$CN	502	31
NH$_2$-MIL-101(Fe)	Fe$_3$(OH)$_3$(BDC)$_3$	0.64 (273 K)	TEOA	CH$_3$CN	456	24
NH$_2$-MIL-53(Fe)	Ni$_2$(OH)$_2$(BDC-NH$_2$)$_3$	0.66 (273 K)	TEOA	CH$_3$CN	445	24
Ni$_2$(OH)$_2$(BDC)$_3$	Ni$_2$(OH)$_2$(BDC-NH$_2$)$_3$	0.66 (273 K)	TEOA	CH$_3$CN	148	24
Fe$_3$(OH)$_3$(BDC-NH$_2$)$_3$	Fe$_3$(OH)$_3$(BDC)$_3$	0.66 (273 K)	TEOA	CH$_3$CN	116	24
Fe$_3$(OH)$_3$(BDC-NH$_2$)$_3$	Fe$_3$(OH)$_3$(BDC)$_3$	0.66 (273 K)	TEOA	CH$_3$CN	74	24

(Continues)
MOF-Based Materials	Chemical Formula	CO₂ Uptake /mmol g⁻¹ (1 atm)	Chemical Agent	Solvents	Photocatalytic Efficiency (μmol·gcat⁻¹·h⁻¹)	References
AD-MOF-2	[Co₂(HAD)₂(AD)₂ (IA)₂]·DMF	1.86 (298 K)	TIPA	CH₃CN	443	32
AD-MOF-1	[Co₂(HAD)₂ (AD)₂-(BA)]·DMF·2H₂O	2.33 (298 K)	TIPA	CH₃CN/H₂O	179	
Fe₃⁺Fe₂⁺-NH₂	[(Fe₂⁻Tı)(Fe₂(µ₃-O)(BDC-NH₂)₃)·4NO₃	1.38 (298 K)	TIPA	CH₃CN/H₂O	396	33
Fe₃⁺Fe₂⁺	[(Fe₂⁻Tı)(Fe₂(µ₃-O)(BDC)₃)·4NO₃	1.23 (298 K)	(1)		309	
PCN-138	[Zr₆(µ₃-O)₄(µ₅-OH)₄][TCP][TBTB]₈/₃	2.82 (273 K)	TIPA	H₂O	168	34
		1.82 (298 K)				
Ir-CP	[Y(Ir(ppy)₂(dbcbpy)₂][OH]	-	TEOA	CH₃CN	158	35
Eu-Ru(Phen)₃	[Eu₂(µ₂-H₂O)(H₂O)₃(L)₃]·(NO₃)₂·(2-FBA)·(H₂O)₂	-	TEOA	CH₃CN	94	36
Cd/Ru-MOF-1	{Cd₃[Ru-L]₂·2(Me₂NH₂)·solvent}n	-	TEOA	CH₃CN	67	37
Cd/Ru-MOF-2	{Cd[Ru-L]₃·3(H₂O)}n	72				
PCN-222(Zr)	Zr₆(µ₅-OH)₆(OH)₆(TCPP)₂	2.59 (273 K)	TEOA	CH₃CN	60	38
		1.56 (298 K)				
NNU-28(Zr)	[Zr₄O₄(OH)₆(L)₆]·6DMF	2.83 (273 K)	TEOA	CH₃CN	53	39
		1.49 (298 K)				
PCN-136	Zr₆(µ₃-O)₄(µ₅-OH)₆(OH)₆(HCHC)	2.72 (273 K)	TIPA	CH₃CN/H₂O	44	40
Zr-SDC-NH₂	[Zr₄O₄(OH)₆(L)₆]·8DMF	3.74 (273 K)	TEOA	CH₃CN	41	41
		1.57 (298 K)				
NNU-31-Zn	Fe₂⁺Zn(µ₃-O)(TCA)₂(H₂O)₃	1.65 (298 K)	-	H₂O	26	42
NH₂-MIL-125(Ti)	TiO₆O₆(OH)₄(BDC-NH₂)₆	5.90 (273 K)	TEOA	CH₃CN	16	23
MIL-125(Ti)	TiO₆O₆(OH)₄(BDC)₆	4.40 (273 K)	TEOA	CH₃CN	4	
NH₂-UO-66-(Zr/Ti)	(Zr/Ti)₆O₆O₆(OH)₆(BDC-NH₂)₆	3.79 (273 K)	TEOA	CH₃CN	12	43
NH₂-UO-66(Zr)	ZrO₆O₆(OH)₄(BDC-NH₂)₆	3.04 (273 K)	TEOA	CH₃CN	7	
NH₂-UO-66(Zr)	ZrO₆O₆(OH)₄(BDC-NH₂)₆	3.04 (273 K)	TEOA	CH₃CN	26	44
Uio-66(Zr)	Zr₂O₆(OH)₄(BDC)₆	2.37 (273 K)	TEOA	CH₃CN	0	

Notes: TEOA, triethanolamine; BNAH, 1-benzyl-1,4-dihydronicotinamide; H₂L, biphenyl-3,3′,5,5′-tetracarboxylic acid; H₂BDC, benzene-1,4-dicarboxylic acid; HAD, adenine; BA, butanedioic acid; IA, isobutyric acid; DMF, N,N-dimethylformamide; Tri, 1,2,4-triazole; DMAc, N,N-dimethylacetamide; TIPA, trispropanolamine; H₂TCP, tetrakis(4-carboxyphenyl)porphyrin; TBTB, 4,4′,4″-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzene; ppy, 2-phenylpyridine; dbcbpy, 2,2′-bipyridine-4,4′-dicarboxylate; H₄L₂, 2-amino-[1,1′:4,1″-terphenyl]-3,3′,5,5″-tetracarboxylic acid; H₃L₁, Ru(phen)₃-derived tricarboxylate acid metallogand; 2-FBA, 2-fluorobenzoate; L₁=5,5″-dbcbpy=2,2′-bipyridine-5,5″-dicarboxylate; L₂=(4,4′-dbcbpy)₂(bpy), bpy=2,2′-bipyridine; H₂L₁, 4,4′-anthracene-9,10-diylbis(ε-thyne-2,1-diyl) dibenzoic acid; HCHC, hexakis(4-carboxyphenyl)hexabenzocoronene; H₂L₂, 2,2-diamino-4,4′-stilbene dicarboxylic acid; TCA, 4,4′,4″-tricarboxytriphenylamine.
Table 2 | Summary of Reaction Conditions of Comparison Experiments

Entry	Catalyst	Light (nm)	Gas	HCOOH	
1	MFM-300(Ga)	350–780	TEOA	CO₂	502
2	n.a.	350–780	TEOA	CO₂	n.a.
3	MFM-300(Ga)	350–780	TEOA	N₂	n.a.
4	MFM-300(Ga)	350–780	n.a.	CO₂	n.a.
5	MFM-300(Ga)	n.a.	TEOA	CO₂	n.a.
6	MFM-300(Ga)	350–780	TEOA	CO₂	64
7	Ga(NO₃)₂·9H₂O and H₄L	350–780	TEOA	CO₂	n.a.
8	Ga₂O₃	350–780	TEOA	CO₂	n.a.
9	GaN	350–780	TEOA	CO₂	n.a.
10	GaP	350–780	TEOA	CO₂	n.a.
11	MIL-53(Ga)	350–780	TEOA	CO₂	n.a.
12	MIL-68(Ga)	350–780	TEOA	CO₂	n.a.

Reaction conditions: MFM-300(Ga) (10 mg), TEOA/CH₃CN (3 mL/15 mL, saturated with CO₂), 25 °C, 350–780 nm, light irradiation for 4 h. For entry 6, 3 mL TEA was added to replace TEOA. For entry 7, a powdered mixture of Ga(NO₃)₂·9H₂O (0.04 mmol, 16.7 mg) and H₄L (0.02 mmol, 6.6 mg) were used (H₄L, biphenyl-3,3',5,5'-tetracarboxylic acid). For entry 8–12, the catalysts used were 10 mg in each reaction.

The catalystic cycle for this reaction is proposed (Figure 3b). Upon light irradiation, MFM-300(Ga) is activated, and the electrons in the VB (2.2 V) are promoted to the CB (1.09 V), and the photoinduced holes at the VB are readily filled up by the electron sacrificial agent TEOA. Surprisingly, the photoinduced electrons with a reductive potential of −1.09 V versus NHE (see Supporting Information Table S3). This indicates that the CO₂ radical anion (CO₂−) is the direct intermediate to form formic acid. No radical was captured for the reaction conducted under dark conditions. Significantly, to the best of our knowledge, this is the first time that a direct intermediate radical has been detected in the photoreduction of CO₂ over a MOF-based catalyst.
simultaneously at a redox potential of -0.61 V versus NHE

$$E^0_{\text{redox}} = -1.90 \text{ V vs. NHE} \quad (1)$$

$$E^0_{\text{redox}} = -0.61 \text{ V vs. NHE} \quad (2)$$

Conclusion

The porosity and design flexibility of MOFs, coupled with their intrinsic semiconductor and photoelectrical properties, make them promising candidates as efficient photocatalysts. We report the first example of a Ga-MOF-based semiconductor that can promote the photoreduction of CO$_2$ to formic acid with a selectivity of 100% and a high productivity of $502 \pm 18 \mu$mol·g$_{\text{cat}}^{-1}$·h$^{-1}$ under light irradiation and at room temperature using TEOA as an electron sacrificial agent. MFM-300(Ga) shows excellent catalytic stability over three cycles of reactions with full retention of the productivity of formic acid. In situ EPR spectroscopic analysis confirms the generation of the CO$_2$$^{2-}$ radical anion as the reaction intermediate promoted by the strong host–guest interactions between the bridging μ_2-OH groups of MFM-300(Ga) and the adsorbed CO$_2$ molecules. Compared with other reported Ga-MOFs in literature, the presence of strong binding sites and efficient LMCT plays an important role in boosting the photocatalytic activity toward CO$_2$ reduction, which sheds light on the design of future MOF-based photocatalysts with improved activity.

Supporting Information

Supporting Information is available and includes detailed experimental procedures and characterization data.

Conflict of Interest

There is no conflict of interest to report.

Acknowledgments

This research was supported by EPSRC (EP/I011870, EP/V056409), the Royal Society and the University of Manchester with funding, and EPSRC for funding of the EPSRC National EPR Facility at the University of Manchester. This project has also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 742401, NANOCHEM). The UK High-Field Solid-State NMR Facility used in this research was funded by EPSRC and BBSRC (EP/T015063/1) as well as the University of Warwick including via partial funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands and the European Regional Development Fund.

Figure 3

(a) In situ X-band EPR spectra of photocatalytic reactions over MFM-300(Ga) using DMPO as spin trap, (black) before and (red) after light irradiation, with simulated (blue) spectrum showing a major component, DMPO-CO$_2$$^{2-}$ (green, simulation), and a minor component, DMPO-O$_x$ (cyan, simulation) under photocatalytic conditions over MFM-300(Ga). (b) The proposed mechanism of the photocatalytic reduction of CO$_2$ over MFM-300(Ga).
The authors wish to acknowledge Dr. Marek Nikiel for the help with XPS measurement.

References

1. Ran, J.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in Semiconductor-Based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Adv. Mater. 2018, 30, 1704649.

2. Zhang, W.; Mohamed, A. R.; Ong, W. J. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, 59, 22894–22915.

3. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids. Energy Environ. Sci. 2012, 5, 9217–9233.

4. Li, R.; Cheng, W.-H.; Richter, M. H.; DuChene, J. S.; Tian, W.; Li, C.; Atwater, H. A. Unassisted Highly Selective Gas-Phase CO2 Reduction with a Plasmonic Au/p-GaN Photocatalyst Using H2O as an Electron Donor. ACS Energy Lett. 2021, 6, 1849–1856.

5. Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP-Based Photoelectrochemical Cell. J. Am. Chem. Soc. 2008, 130, 6342–6344.

6. Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yama moto, M.; Tanabe, T.; Yoshida, T. Preparation of Ga2O3 Photocatalyst Highly Active for CO2 Reduction with Water Without Cocatalyst. Appl. Catal. B Environ. 2020, 262, 118247.

7. Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Lan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G. A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2. Angew. Chem. Int. Ed. 2010, 122, 6544–6548.

8. Marszewski, M.; Cao, S.; Yu, J.; Jaroniec, M. Semiconductor-Based Photocatalytic CO2 Conversion. Mater. Horizons 2015, 2, 261–278.

9. Yan, S.; Wang, J.; Gao, H.; Wang, N.; Yu, H.; Li, Z.; Zhou, Y.; Zou, Z. Zinc Gallagermanate Solid Solution: A Novel Photocatalyst for Efficiently Converting CO2 into Solar Fuels. Adv. Funct. Mater. 2013, 23, 1839–1845.

10. Tatsuki, H.; Teramura, K.; Huang, Z.; Wang, Z.; Akasaka, H.; Hosokawa, S.; Tanaka, T. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O. Langmuir 2017, 33, 13929–13935.

11. Yan, S.; Yu, H.; Wang, N.; Li, Z.; Zou, Z. Efficient Conversion of CO2 and H2O into Hydrocarbon Fuel over ZnAl2O4 Modified Mesoporous ZnGaNO under Visible Light Irradiation. Chem. Commun. 2012, 48, 1048–1050.

12. Sekimoto, T.; Hashiba, H.; Shinagawa, S.; Uetake, Y.; Deguchi, M.; Yotsushahi, S.; Okhawa, K. Analysis of Products from Photoelectrochemical Reduction of CO2 by GaN-Si Based Tandem Photoelectrode. J. Phys. Chem. C 2016, 120, 13970–13974.

13. Liu, Q.; Wu, D.; Zhou, Y.; Su, H.; Wang, R.; Zhang, C.; Yan, S.; Xiao, M.; Zou, Z. Single-Crystalline, Ultrathin ZnGa2O4 Nanosheet Scaffolds to Promote Photocatalytic Activity in CO2 Reduction into Methane. ACS Appl. Mater. Interfaces 2014, 6, 2356–2361.

14. Alotaibi, B.; Fan, S.; Wang, D.; Ye, J.; Mi, Z. Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires. ACS Catal. 2015, 5, 5342–5348.

15. Park, H. A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly Porous Gallium Oxide with a High CO2 Affinity for the Photocatalytic Conversion of Carbon Dioxide into Methane. J. Mater. Chem. 2012, 22, 5304–5307.

16. Yoshida, M.; Yamakata, A.; Takanabe, K.; Kubota, J.; Osawa, M.; Domen, K. ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. J. Am. Chem. Soc. 2009, 131, 13218–13219.

17. Pan, Y. X.; Sun, Z. Q.; Cong, H. P.; Men, Y. L.; Xin, S.; Song, J.; Yu, S. H. Photocatalytic CO2 Reduction Highly Enhanced by Oxygen Vacancies on Pt-Nanoparticle-Dispersed Gallium Oxide. Nano Res. 2016, 9, 1689–1700.

18. Cao, S.; Zhou, N.; Gao, F.; Chen, H.; Jiang, F. All-Solid-State Z-Scheme 3,4-Dihydroxybenzaldheyde-Functionalized Ga2O3/Graphitic Carbon Nitride Photocatalyst with Aromatic Rings as Electron Mediators for Visible-Light Photocatalytic Nitrogen Fixation. Appl. Catal. B Environ. 2017, 218, 600–610.

19. Li, D.; Kassymova, M.; Cai, X.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 Reduction over Metal-Organic Framework-Based Materials. Coord. Chem. Rev. 2020, 412, 213262.

20. Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and Photo catalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172.

21. Ding, M.; Fliag, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

22. Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-Org anic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angew. Chem. Int. Ed. 2016, 55, 5414–5445.

23. Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angew. Chemie. Int. Ed. 2012, 51, 3364–3367.

24. Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. Photocatalytic CO2 Reduction by a Mixed Metal (Zr/Ti), Mixed Ligand Metal-Org anic Framework Under Visible Light Irradiation. Chem. Commun. 2015, 51, 5735–5738.

25. Krap, C. P.; Newby, R.; Dhakshinamoorthy, A.; Garcia, H.; Cebula, I.; Easun, T. L.; Savage, M.; Eyley, J. E.; Gao, S.; Blake, A. J.; Lewis, W.; Beton, P. H.; Warren, M. R.; Allan, D. R.; Frogley, M. D.; Tang, C. C.; Cinque, G.; Yang, S.; Schröder, M. Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5-OH)6 Complexes. Inorg. Chem. 2016, 55, 1076–1088.

26. Ma, Z. L.; Wentz, K. M.; Hammann, B. A.; Chang, I.; Kamunde-devonish, M. K.; Cheong, P. H.; Johnson, D. W.; Terskikh, V. V.; Hayes, S. E. Solid-State 65Ga and 87Ga NMR Study of the Nanoscale Inorganic Cluster [Ga2(μ5-μ-OH)16 (μ2-OH)8(H2O)924](NO3)15. Chem. Mater. 2014, 26, 4978–4983.
Zirconium Metal–Organic Framework by Post-synthetic Annulation. J. Am. Chem. Soc. 2019, 141, 2054–2060.

41. Sun, M.; Yan, S.; Sun, Y.; Yang, X.; Guo, Z.; Du, J.; Chen, D.; Chen, P.; Xing, H. Enhancement of Visible-Light-Driven CO2 Reduction Performance Using an Amine-Functionalized Zirconium Metal–Organic Framework. Dalton. Trans. 2018, 47, 909–915.

42. Dong, L.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W.; Lan, Y. Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis. Angew. Chem. Int. Ed. 2020, 59, 2659–2663.

43. Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a Mediator for Enhancing Photocatalytic Performance via Post-Synthetic Metal Exchange in Metal–Organic Frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059.

44. Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on Photocatalytic CO2 Reduction over NH2-Uio-66 (Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal-Organic Frameworks. Chem. A Eur. J. 2013, 19, 14279–14285.

45. Wang, C.; Xie, Z.; Dekrafft, K. E.; Lin, W. Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454.

46. Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. CO2 Capture by a Rhenium(I) Complex with the Aid of Triethanolamine. J. Am. Chem. Soc. 2013, 135, 16825–16828.

47. Sampaio, R. N.; Grills, D. C.; Polyansky, D. E.; Szalda, D. J.; Fujita, E. Unexpected Roles of Triethanolamine in the Photochemical Reduction of CO2 to Formate by Ruthenium Complexes. J. Am. Chem. Soc. 2020, 142, 2413–2428.

48. Volkering, C.; Leisoe, T.; Guillou, N.; Férey, G.; Elkaïm, E.; Vimuth, A. XRD and IR Structural Investigations of a Particular Breathing Effect in the MOF-Type Gallium Terephthalate MIL-53(Ga). Dalton. Trans. 2009, 53, 2241–2249.

49. Wieme, J.; Lejaeghere, K.; Kresse, G.; Van Speybroeck, V. Tuning the Balance Between Dispersion and Entropy to Design Temperature-Responsive Flexible Metal-Organic Frameworks. Nat. Commun. 2018, 9, 4899.

50. Christophe, V.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Fe’rey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Malard, M. The Kagome Topology of the Gallium and Indium Metal–Organic Framework Type with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorg. Chem. 2008, 47, 11892–11901.

51. Zhang, R.; Song, X.; Liu, Y.; Wang, P.; Wang, Z.; Zheng, Z.; Dai, Y.; Huang, B. Monomolecular VB2-Doped MOFs for Photocatalytic Oxidation with Enhanced Stability, Recyclability and Selectivity. J. Mater. Chem. A 2019, 7, 26934–26943.

52. Guo, S. H.; Guo, S. H.; Qiu, X. J.; Zhou, H. M.; Zhou, J.; Wang, X. H.; Dong, M.; Zhao, X.; Sun, C. Y.; Wang, X. L.; Su, Z. M.; Su, Z. M. A Bimetallic-MOF Catalyst for Efficient CO2 Photoreduction from Simulated Flue Gas to Value-Added Formate. J. Mater. Chem. A 2020, 8, 11712–11718.

53. Buettner, G. R. Spin Trapping: ESR Parameters of Spin Adducts 1474 1528V. Free Radiac. Bio. Med. 1987, 3, 259–303.
54. Walger, E.; Marlin, N.; Mortha, G.; Molton, F.; Duboc, C. Hydroxyl Radical Generation by the H₂O₂/CuII/Phenan-throline System under Both Neutral and Alkaline Conditions: An EPR/Spin-Trapping Investigation. *Appl. Sci.* 2021, 11, 687.

55. Gimat, A.; Kasneryk, V.; Dupont, A. L.; Paris, S.; Averseng, F.; Fournier, J.; Massiani, P.; Rouchon, V. Investigating the DMPO-Formate Spin Trapping Method for the Study of Paper Iron Gall Ink Corrosion. *New J. Chem.* 2016, 40, 9098–9110.

56. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic Reduction of CO₂ on TiO₂ and Other Semiconductors. *Angew. Chem. Int. Ed.* 2013, 52, 7372-7408.

57. Takezawa, H.; Shitozawa, K.; Fujita, M. Enhanced Reactivity of Twisted Amides Inside a Molecular Cage. *Nat. Chem.* 2020, 12, 574–578.

58. Lin, L.; Sheveleva, A. M.; Silva, D.; Parlett, I. C.; Tang, Z.; Liu, Y.; Fan, M.; Han, X.; Carter, J. H.; Tuna, F.; McInnes, E. J. L.; Cheng, Y.; Daemen, L. L.; Rudić, S.; Ramirez-Cuesta, A. J.; Tang, C. C.; Yang, S. Quantitative Production of Butenes from Biomass-Derived γ-Valerolactone Catalysed by Hetero-Atomic MFI Zeolite. *Nat. Mater.* 2020, 19, 86–93.