MR Perfusion to Determine the Status of Collaterals in Patients with Acute Ischemic Stroke: A Look Beyond Time Maps

K. Nael, A. Doshi, R. De Leacy, J. Puig, M. Castellanos, J. Bederson, T.P. Naidich, J. Mocco, and M. Wintermark

ABSTRACT

BACKGROUND AND PURPOSE: Patients with acute stroke with robust collateral flow have better clinical outcomes and may benefit from endovascular treatment throughout an extended time window. Using a multiparametric approach, we aimed to identify MR perfusion parameters that can represent the extent of collaterals, approximating DSA.

MATERIALS AND METHODS: Patients with anterior circulation proximal arterial occlusion who had baseline MR perfusion and DSA were evaluated. The volume of arterial tissue delay (ATD) at thresholds of 2–6 seconds (ATD^{2–6} seconds²) and >6 seconds (ATD^{>6} seconds²) in addition to corresponding values of normalized CBV and CBF was calculated using VOI analysis. The association of MR perfusion parameters and the status of collaterals on DSA were assessed by multivariate analyses. Receiver operating characteristic analysis was performed.

RESULTS: Of 108 patients reviewed, 39 met our inclusion criteria. On DSA, 22/39 (56%) patients had good collaterals. Patients with good collaterals had significantly smaller baseline and final infarct volumes, smaller volumes of severe hypoperfusion (ATD^{2–6} seconds²), larger volumes of moderate hypoperfusion (ATD^{2–6} seconds²), and higher relative CBF and relative CBV values than patients with insufficient collaterals. Combining the 2 parameters into a Perfusion Collateral Index (volume of ATD^{2–6} seconds² × relative CBV^{2–6} seconds²) yielded the highest accuracy for predicting collateral status: At a threshold of 61.7, this index identified 15/17 (88%) patients with insufficient collaterals and 22/22 (100%) patients with good collaterals, for an overall accuracy of 94.1%.

CONCLUSIONS: The Perfusion Collateral Index can predict the baseline collateral status with 94% diagnostic accuracy compared with DSA.

ABBREVIATIONS: ASITN = American Society of Interventional and Therapeutic Neuroradiology; ATD = arterial tissue delay; PCI = Perfusion Collateral Index; rCBF = relative cerebral blood flow; rCBV = relative cerebral blood volume; ROC = receiver operating characteristic; Tmax = time-to-maximum

In patients with acute ischemic stroke, the status of collateral blood supply can be an independent predictor of reperfusion success and can impact the clinical outcome. In addition, promising data suggest that good collateral status can prolong the time that tissue-at-risk remains salvageable, which, in turn, may allow extension of the therapeutic window. Therefore, noninvasive evaluation of the collateral blood supply may be helpful in identifying patients who may benefit from endovascular thrombectomy. Noninvasive imaging of collateral status can be assessed by direct visualization of the collateral vessels with CTA or MRA or by the assessment of the efficiency of collateral perfusion with CT perfusion or MR perfusion. These techniques are complementary: CTA and MRA provide anatomic information about collateral vessels, while perfusion techniques provide functional and circulatory information on leptomeningeal and secondary collateral pathways. Although various perfusion parameters have been used to measure collateral status, specific perfusion criteria to assess collateral status have yet to be defined. Most research has focused on time-based perfusion maps, assuming that patients with good collaterals have less severe delays and larger perfusion delay volumes. Some investigators have also looked into using CBV and CBF from raw perfusion data to assess collateral status.
In this study, we hypothesized that MR perfusion time maps, which show only delayed perfusion, are insufficient to predict the status of collaterals if used alone. By applying a multiparametric approach, we aimed to identify perfusion parameters that can represent the extent of collaterals, approximating DSA.

MATERIALS AND METHODS

Patients

Patients with anterior circulation acute ischemic stroke who presented within 9 hours of symptom onset and who were considered for revascularization treatment were retrospectively reviewed under an approved institutional review board protocol. Inclusion criteria were the following: 1) large unilateral proximal arterial occlusion (internal carotid or proximal middle cerebral artery), 2) baseline MR imaging including DSC perfusion and DSA, and 3) follow-up imaging to determine the final infarct volume. Patients were excluded if DSC perfusion was nondiagnostic or DSA studies did not allow adequate evaluation of collaterals.

We recorded clinical data, including patient age, sex, baseline NIHSS scores, time from stroke onset, time from onset to groin puncture, and treatment type, including intravenous tissue plasminogen activator (IV tPA) and/or mechanical thrombectomy when available.

Image Analysis

DWI was acquired using a single-shot spin-echo EPI sequence with the following parameters: TR/TE, 4900/98 ms; flip angle, 90°; FOV, 22 × 22 cm; matrix, 128 mm; sections, 30 × 5 mm. Diffusion gradients were applied along 6 noncollinear directions with b-values of 0 and 1000 s/mm², resulting in a 51-second acquisition time. DSC perfusion was performed with a single-shot gradient-echo EPI sequence with the following parameters: TR/TE, 1450/22 ms; flip angle, 90°; FOV, 22 × 22 cm; matrix, 128 mm; sections, 30 × 4.4 mm. Sixty dynamic frames were obtained during a 90-second acquisition time. A generalized autocalibrating partially parallel acquisition technique with an acceleration factor of 2 was used for both DWI and DSC.

DSC perfusion was processed with US Food and Drug Administration–approved software (Olea Sphere; Olea Medical, La Ciotat, France) by applying a Bayesian probabilistic method.¹⁸ Bayesian is a delay-insensitive probabilistic method in which the Bayes rule is applied to combine experimental perfusion data and a priori information about the parameters, to compute a posteriori probability distribution functions for every parameter of interest. From these distributions, parameter estimates and errors on those estimates can be derived (eg, the mean and SD of the posteriori distributions). Arterial tissue delay (ATD), defined as time-to-groin time, was calculated from the follow-up imaging (obtained within 7 days from the initial imaging) using the volume of FLAIR-hyperintense tissue or CT-hypodense tissue.

DSA Analysis

Angiographic collateral grading was performed with the American Society of Interventional and Therapeutic Neuroradiology (ASITN)/Society of Interventional Radiology Collateral Flow Grading System on baseline angiography (ASITN grades 0–4)²¹: grade 0: no collaterals visible; grade 1: slow collaterals to the periphery of the ischemic site with persistence of some of the defect; grade 2: rapid collaterals to the periphery of the ischemic site with persistence of some of the defect; grade 3: collaterals with slow-but-complete angiographic blood flow of the ischemic bed by the late venous phase; and grade 4: complete and rapid collateral blood flow to the vascular bed in the entire ischemic territory by retrograde perfusion.

Patients were dichotomized to those with good collaterals (ASITN grades 3 and 4) and insufficient collaterals (ASITN grades 0, 1, and 2). Primary revascularization following mechanical thrombectomy was assessed with the TICI scale.²² Data were dichotomized with TICI ≥ 2b as an indication of successful revascularization.

Statistical Analysis

Baseline characteristics and neuroimaging variables were compared between subjects with insufficient-versus-good collaterals using the Fisher exact and Wilcoxon rank sum tests as appropriate. For multivariate analysis, a Classification Tree (binary recursive partition) model was used to simultaneously evaluate all (n = 12) included imaging (baseline infarct volume, final infarct volume, ATD2–6 seconds, rCBV2–6 seconds, rCBF, rCBV, and PCI) and clinical (age, sex, baseline NIHSS score, IV tPA administration, time-to-groin puncture from last known well) parameters of insufficient-versus-good collaterals.
Accuracy statistics were computed with a nonparametric receiver operating characteristic (ROC) analysis. Thresholds for separating insufficient from good collaterals were chosen to maximize the unweighted overall accuracy, defined as the weighted average of the percentage of sufficient and good collateral vessels. Sensitivity, specificity, overall accuracy defined as (sensitivity + specificity) / 2, and the area under the ROC curve were reported. The significance level was set at P = .05 in our statistical analysis.

RESULTS

Among 108 charts reviewed, 39 patients met our inclusion criteria. In 61 patients, baseline DSA was inadequate to provide a score of collateral vessels (lack of an adequate number of phases and injections). Eight patients were excluded due to inadequate and nondiagnostic MR perfusion data. Of those patients included in the analysis, 22 were men, 17 were women (mean age, 63.3 years; range, 37–85 years). The median and interquartile range of the NIHSS scores were 17 and 14–19. Five patients had distal internal carotid occlusion, and 34 patients had proximal MCA occlusion. Twenty-two (56%) patients were classified as having good collaterals defined by ASITN ≥ 3 on baseline conventional angiography.

Clinical Data

Demographic data and basic clinical information for patients with insufficient-versus-good collaterals are provided in Table 1. Among the 39 patients included, 18 (46%) received IV tPA before undergoing conventional angiography. Administration of IV tPA was not significantly different (P = .45) between patients with good (10/22, 45%) versus insufficient collaterals (8/17, 47%) (Table 1). The time gap between MR imaging and DSA was not significantly different between patients with good collaterals (mean, 100 ± 45 minutes) versus insufficient collaterals (mean, 128 ± 39 minutes). Endovascular treatment was performed with a Merci retriever (Concentric Medical, Mountain View, California) catheter (n = 12) or the Penumbra (Penumbra, Alameda, California) suction thrombectomy catheter (n = 16) and stent retrieval device (n = 11).

Imaging Data

Univariate analysis showed significantly smaller baseline infarct volume, final infarct volume, and volume of severe (ATD2–6 seconds) delayed perfusion in patients with good collaterals (Table 2). On the other hand, rCBF, rCBV, PCI, and the volume of moderate (ATD2–6 seconds) delayed perfusion were significantly higher in patients with good collaterals (Table 2). The rate of primary postprocedural recanalization did not differ significantly between the 2 groups (Table 2). Figs 1 and 2 show examples of our image analysis in 2 patients with right proximal MCA occlusion; one had good and the other had insufficient collaterals, respectively.

The Classification Tree (binary recursive partition) model in the simultaneous evaluation of all 12 included predictive parameters of insufficient-versus-good collaterals showed that the 2 best single parameters with the highest predictive ability were rCBV2–6 seconds and volume of moderate (ATD2–6 seconds) hypoperfusion, with an overall diagnostic accuracy of 85% and 82.1%, respectively. Both rCBV2–6 seconds (at a threshold of >1.6) and volume of ATD2–6 seconds (at a threshold of >38.28 mL) could identify 18/22 (81.8%) patients with good collaterals when used alone. A combination of the 2 parameters used in our newly defined Perfusion Collateral Index (Volume of ATD2–6 seconds × rCBV2–6 seconds) resulted in improved predictive accuracy over each measure alone to correctly identify all 22 patients (100%) with good collaterals. Model accuracy statistics, including sensitivity, specificity, overall accuracy, and area under the ROC curve in addition to the optimal threshold for the variables that reached statistical significance, are reported in Table 3. In further analysis of our Classification Tree model, a combination of PCI and baseline infarction volume showed further improvement in predictive accuracy, providing the best tree model with a nominal (not validated) 100% accuracy and ROC area = 1.0 (Fig 3).
DISCUSSION

In this study, we showed that multiparametric MR perfusion enables accurate assessment of collateral status in patients with anterior circulation proximal arterial occlusion who may be candidates for endovascular revascularization. By incorporating rCBV in addition to commonly used perfusion time maps, we defined the Perfusion Collateral Index as a new perfusion parameter superior to other baseline imaging variables to predict the status of collateral flow.

FIG 1. A 61-year-old woman with left hemiparesis who had right MCA (M1) occlusion (not shown) but sufficient collaterals on baseline conventional angiography. DWI shows right MCA territorial infarction. Processed perfusion maps show 3.5 mL of severe (ATD > 6 seconds) hypoperfusion, 42 mL of moderate (ATD 2–6 seconds) hypoperfusion, and a mean rCBV 2–6 seconds of 1.7 within the hypoperfused area. The Perfusion Collateral Index is $42 \times 1.7 = 71.4$.

In this study, we showed that multiparametric MR perfusion enables accurate assessment of collateral status in patients with anterior circulation proximal arterial occlusion who may be candidates for endovascular revascularization. By incorporating rCBV in addition to commonly used perfusion time maps, we defined the Perfusion Collateral Index as a new perfusion parameter superior to other baseline imaging variables to predict the status of collateral flow.
collaterals with a diagnostic accuracy of 94% in comparison with baseline DSA.

There are several studies on the use of MR perfusion for assessing the collateral status in patients with acute ischemic stroke with predominant focus on the use of perfusion time maps. In 2008, Bang et al.5 showed that patients with good collaterals had a larger volume of mild (2 seconds ≤ Tmax < 4 seconds) delayed perfusion, but they found no relationship between collateral status and perfusion-diffusion mismatch using Tmax ≥ 4 seconds. Later, in 2013, Campbell et al.12 showed that better baseline collateral flow measured by digitally subtracted perfusion MR imaging was associated with a larger diffusion-perfusion mismatch using Tmax > 6 seconds. In 2014, good collateral status was shown to be associated with a smaller volume of severe hypoperfusion using Table 3: Optimal threshold, sensitivity, specificity, overall accuracy, and ROC area imaging variables that were significant with univariate analysis

Variable	Threshold	Specificity	Sensitivity	Overall Accuracy	ROC Area
Base infarct volume (mL)	24.1	76.5%	63.6%	70.1%	0.717
Final infarct volume (mL)	45	82.4%	59.1%	70.7%	0.706
Volume of ATD ≥ 6 sec (mL)	27.77	88.2%	63.6%	75.9%	0.777
Volume of ATD 2–6 sec (mL)	38.28	82.4%	81.8%	82.1%	0.906
rCBF	1	58.8%	90.9%	74.9%	0.709
rCBV 2–6 sec	1.6	88.3%	81.8%	85.0%	0.900
PCIa = Volume of ATD 2–6 sec × rCBV 2–6 sec	61.70	88.2%	100.0%	94.1%	0.973

FIG 2. A 70-year-old woman with left paresis who had right MCA (M1) occlusion (not shown) and insufficient collaterals on baseline conventional angiography. DWI showed right MCA territorial infarction. Processed perfusion maps show 17 mL of severe (ATD ≥ 6 seconds) hypoperfusion, 20 mL of moderate (ATD 2–6 seconds) hypoperfusion, and a mean rCBV 2–6 seconds of 0.9 within the hypoperfused area. The perfusion collateral index is 20 × 0.9 = 18.
This may be explained by intrinsic technical differences between Bayesian-estimated ATD and singular value decomposition–estimated Tmax.

To increase the broad acceptance of perfusion imaging in the stroke neurology community, further improvement of methodology in image postprocessing is required, especially when dealing with a noisy imaging environment such as DSC perfusion. In this study, we used ATD rather than Tmax to take advantage of inherent noise-resistance behavior of the Bayesian postprocessing. Although Bayesian-derived ATD is equivalent to deconvolution-derived Tmax in terms of definition (maximum time-to-peak of the residue function), they do not share the same properties. The Bayesian method is a robust probabilistic method that minimizes effects of oscillation, tracer delay, and low SNR during residue function estimation compared with other deconvolution methods. The inherent delay insensitivity of the Bayesian technique is essential for accurate evaluation of the perfusion time delay to minimize the effect of existing underlying arterial occlusion. In addition, simulation studies in agreement with the recommendations from the Acute Stroke Research Imaging Roadmap II have shown highly reproducible and accurate data for ATD estimation. A follow-up study between ATD and Tmax-estimated PCI may be helpful for exploring potential differences between these techniques.

Our study has several limitations. First, we acknowledge potential selection bias associated with retrospective studies. Second, our small sample size may affect some part of our results. For example, we showed that patients with good baseline collaterals tend to have a higher recanalization rate, but this trend was not statistically significant (P = .19), which may have been a function of the small sample size. In our Classification Tree model, combining PCI and baseline infarct volume yielded a nominal accuracy of 100% (Fig 3). However, this result must be interpreted in the context of our small sample, and like any predictive model, our results need to be validated in a large prospective cohort. Finally, we excluded 61 patients due to inadequate DSA data for collateral scoring. This is an inevitable challenge in acute ischemic
stroke because performing a complete diagnostic angiography for collateral assessment poses a delay in treatment. This further highlights the need for development of an advanced noninvasive collateral grading system such as ours from which accurate collateral status may be imputed. To establish the accuracy of our perfusion parameters, we had to compare our results with the current standard of reference (DSA). It is, however, plausible that perfusion imaging may outperform rough collateral grading obtained from 2D DSA as shown by prior reports.12

CONCLUSIONS

Using a multiparametric MR imaging approach, we identified the Perfusion Collateral Index, defined as Volume of ATT3–6 seconds/ rCBV2–6 seconds, as a new perfusion parameter that provides accurate noninvasive estimation of baseline collateral status with a diagnostic accuracy of 94% compared with DSA. If its potential is realized, the PCI can be used to accurately identify patients with good collaterals, potentially extending the treatment window and increasing the number of patients who may benefit from endovascular treatment in the current era of endovascular therapy.

Disclosures: Kambiz Nael—UNRELATED: Board Membership: Olea Medical. Comments: Medical Advisory Board; Consultancy: Olea Medical. Thomas Naidech—UNRELATED: Consulting Fee or Honorarium: Elsevier. J Mocco—UNRELATED: Consultancy: Rebound Medical, EndoStream, Synchron, Cerebrotech Medical. Other: Apama. The Stroke Project, EndoStream, Synchron, Cerebrotech Medical, Neurvana. NeuroTechnology Investors, Comments: investment. Max Wintermark—UNRELATED: Board Membership: GE-NFL Advisory Board.

REFERENCES

1. Bang OY, Saver JL, Kim SJ, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 2011;42: 693–99 CrossRef Medline
2. Liebeskind DS, Tomisch TA, Foster LD, et al; IMS III Investigators. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 2014;45:759–64 CrossRef Medline
3. Jung S, Gilgen M, Slotboom J, et al. Factors that determine penumbra-brial tissue loss in acute ischemic stroke. Brain 2013;136:3554–60 CrossRef Medline
4. Galimanis A, Jung S, Mono ML, et al. Endovascular therapy of 623 patients with anterior circulation stroke. Stroke 2012;43:1052–57 CrossRef Medline
5. Bang OY, Saver JL, Buck BH, et al; UCLA Collateral Investigators. Impact of collateral flow on tissue fate in acute ischemic stroke. J Neurol Neurosurg Psychiatry 2008;79:625–29 Medline
6. Menon BK, O’Brien B, Bivard A, et al. Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. J Cereb Blood Flow Metabol 2013;33:365–71 CrossRef
7. Lima FO, Furie KL, Silva GS, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 2010;41:2316–22 CrossRef Medline
8. Hernández-Pérez M, Puig J, Blasco G, et al. Dynamic magnetic reso-nance angiography provides collateral circulation and hemodynamic information in acute ischemic stroke. Stroke 2016;47:531–34 CrossRef Medline
9. Ernst M, Forkert ND, Brehmer L, et al. Prediction of infarction and reperfusion in stroke by flow- and volume-weighted collateral signal in MR angiography. AJNR Am J Neuroradiol 2015;36:273–82 CrossRef Medline
10. Shuaib A, Butcher K, Mohammad AA, et al. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 2011;10:909–21 CrossRef Medline
11. Wintermark M, Rowley HA, Lev MH. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro CT. Radiology 2009;251:619–26 CrossRef Medline
12. Campbell BC, Christensen S, Tress BM, et al; EPITHET Investigators. Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metabol 2013;33:1168–72 CrossRef Medline
13. Marks MP, Lansberg MG, Mlynash M, et al; Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution 2 Investigators. Effect of collateral blood flow on patients undergoing endovascular therapy for acute ischemic stroke. Stroke 2014;45:1035–39 CrossRef Medline
14. Lee MJ, Son JP, Kim SJ, et al. Predicting collateral status with magnetic resonance perfusion parameters: probabilistic approach with a Tmax-derived prediction model. Stroke 2015;46: 2800–07 CrossRef Medline
15. Keedy AW, Fischette WS, Soares BP, et al. Contrast delay on perfu-sion CT as a predictor of new, incident infarct: a retrospective cohort study. Stroke 2012;43:1295–301 CrossRef Medline
16. Vagal A, Menon BK, Foster LD, et al. Association between CT angio-graphic collaterals and CT perfusion in the Interventional Management of Stroke III Trial. Stroke 2016;47:535–38 CrossRef Medline
17. Kim SJ, Son JP, Ryoo S, et al. A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Ann Neurol 2014;76:356–69 CrossRef Medline
18. Boutelier T, Kudo K, Pautot F, et al. Bayesian hemodynamic param-eter estimation by bolus tracking perfusion weighted imaging. IEEE Trans Med Imaging 2012;31:1381–95 CrossRef Medline
19. Nicolì F, Salzo F, Saver JL, et al; UCLA Stroke Investigators. The combination of baseline magnetic resonance perfusion-weighted imaging-derived tissue volume with severely prolonged arterial-tissue delay and diffusion-weighted imaging lesion volume is predictive of MCA-M1 recanalization in patients treated with endovascular thrombectomy. Neuroradiology 2014;56:117–27 CrossRef Medline
20. Dardzinski BJ, Satok CH, Fisher M, et al. Apparent diffusion coef-fi-cient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med 1993;30: 318–25 CrossRef Medline
21. Higashida RT, Furlan AJ, Roberts H, et al; Technology Assessment Committee of the American Society of Interventional and Therapeu-tic Neuroradiology, Technology Assessment Committee of the Society of Interventional Radiology. Trial design and reporting stan-dards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34:e109–37 CrossRef Medline
22. Tomisch T, Broderick J, Carrozella J, et al; Interventional Management of Stroke II Investigators. Revascularization results in the In-terventional Management of Stroke II trial. AJNR Am J Neuroradiol 2008;29:582–87 CrossRef Medline
23. Olivot JM, Mlynash M, Inoue M, et al; DEFUSE 2 Investigators. Hypoperfusion intensity ratio predicts infarct progression and func-tional outcome in the DEFUSE 2 cohort. Stroke 2014;45:1018–23 CrossRef Medline
24. Liebeskind DS. Collateral circulation. Stroke 2003;34:2279–84 CrossRef Medline
25. Mouridsen K, Friston K, Hjort N, et al. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006;33:570–79 CrossRef Medline
26. Sasaki M, Kudo K, Boutelier T, et al; UCLA Stroke Investigators. Management of Stroke (IMS) III trial. Stroke 2003;34:e109–37 CrossRef Medline
27. Wintermark M, Albers GW, Broderick JP, et al. Acute Stroke ImAGING Research Roadmap II. Stroke 2013;44:2628–39 CrossRef Medline