Cdkn1b overexpression in adult mice alters the balance between genome and tissue ageing

Steven C. Pruitt¹, Amy Freeland¹, Michael E. Rusiniak¹, Dimiter Kunnev¹ & Gillian K. Cady¹

Insufficient cell proliferation has been suggested as a potential cause of age-related tissue dysgenesis in mammals. However, genetic manipulation of cell cycle regulators in the germ lines of mice results in changes in animal size but not progeroid phenotypes. Here we increase levels of the cyclin-dependent kinase inhibitor Cdkn1b (p27kip1) in adult mice through doxycycline-inducible expression and show this results in reduced cell proliferation in multiple tissues. The mice undergo changes resembling ageing even in the absence of an elevated DNA damage response or evidence of senescent cells, suggesting an altered balance between genetic and tissue ageing. In contrast, suppressing cell proliferation by doxycycline treatment of neonates retards growth, but the onset of degenerative changes is delayed during the period of reduced body mass. These results support the hypothesis that many of the most recognizable features of mammalian ageing can result from an imbalance between cell production and the mass of tissue that must be maintained.

¹Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA. Correspondence and requests for materials should be addressed to S.C.P. (email: steven.pruitt@roswellpark.org).
accumulation of genetic damage in somatic tissue has been postulated to contribute to mammalian ageing\(^1,2\). Further, progeroid phenotypes are observed when mechanisms that maintain genome integrity (for example, telomerase\(^3\), Ercc1 (ref. 4) and BubR1 (ref. 5)) are compromised. Additional studies suggest that effects of genetic damage are indirect, resulting from induction of DNA damage response pathways. On DNA damage, p53 and/or Rb signalling pathways are induced, leading to elevation of the cyclin-dependent kinase inhibitors Cdkn1a (p21) and/or Cdkn2a (p16\(^{ink4a}\)), and either temporary or permanent cell cycle arrest\(^6\). One explanation for the progeroid phenotypes of mutations affecting genome integrity is that cell proliferation is suppressed to a level that causes tissue dysfunction\(^7\). In support of this idea, senescent cells accumulate in mammalian tissues with age, and both Cdkn1a and Cdkn2a are elevated in their expression\(^8\). Further, deletion of Cdkn1a or Cdkn2a has been shown to rescue progeroid phenotypes resulting from mutations that compromise genome integrity. For example, germline deletion of Cdkn1a delays the progeroid phenotype that occurs in late-generation telomerase knockout mice\(^9\). Similarly, germline deletion of Cdkn2a delays the premature ageing of BubR1 mutant mice\(^10\). In the context of otherwise normal mice, Cdkn2a deletion has been shown to result in a partial rescue of the decrease in stem/progenitor cell survival or function that occurs during ageing in at least a subset of tissues\(^11–13\) and germline deletion of Cdkn1a has been shown to increase stem and progenitor cell proliferation in a variety of specific tissues in vivo\(^14–16\). However, in the subventricular zone (SVZ) of the brain\(^14\) and haematopoietic system\(^16\), an early elevation in proliferation of neural stem cells (NSCs) or hematopoietic stem cells (HSCs) in Cdkn1a knockout mice is followed by reduced stem cell numbers later in life, consistent with stem cell exhaustion.

The phenotypes resulting when levels of an additional cyclin-dependent kinase, Cdkn1b (p27), are modulated are also relevant to the consequences of modulating cell proliferation for tissue maintenance. Cdkn1b is not directly induced by p53 or Rb, and does not show elevated expression during ageing. Instead, it is regulated by extracellular antiproliferative signals, including contact inhibition or serum deprivation\(^17,18\). Nonetheless, transgenic models in which the levels of Cdkn1b are affected do exhibit altered cell proliferation in the in vivo situation. Cdkn1b-null mice grow to approximately twice the normal size and exhibit organomegaly\(^19,20\). They develop pituitary adenomas by 10 weeks of age with high penetrance; hence, the effect on overall longevity is not known. Conversely, it has been possible to determine the effect of elevated Cdkn1b expression, as Cdkn1b is a primary target of the Culin-RING ubiquitin ligase SCF\(^{Skp2}\), which mediates its degradation. Skp2-null mice exhibit elevated levels of Cdkn1b, reduced proliferation in many tissues and grow to \(<75%\) of the size of wild-type (wt) animals\(^21\). Nonetheless, Skp2-null mice do not exhibit premature tissue degeneration. The lack of age-related phenotypes in these mice poses a particular challenge to the idea that insufficient cell proliferation accounts for age-related tissue dysfunction.

Here the consequences of reduced cell proliferation in multiple tissues of adult mice are assessed through the ectopic expression of Cdkn1b (p27\(^{kip1}\)) under doxycycline-inducible control. In sharp contrast to the phenotype of germline Skp2-knockout mice, doxycycline-induced overexpression of Cdkn1b in adult animals results in many changes that are characteristic of advanced age at both the gross phenotypic and histological levels within a few months of treatment.

Results

Cdkn1b expression in Tre-Tight-Cdkn1b transgenic mice. A line of transgenic mice in which Cdkn1b (p27\(^{kip1}\)) is expressed from the TreTight promoter (TreTight-Cdkn1b) was constructed and mated with ROSA26-TetON (R26-M2rtTA) transgenic mice to create R26-M2rtTA;TRE-Tight-Cdkn1b bionic mice. Cdkn1b expression is under tight control of doxycycline in R26-M2rtTA;TRE-tight-Cdkn1b transgenic mice. Figure 1a shows Cdkn1b expression levels in the thymus from R26-M2rtTA – and R26-M2rtTA + mice, which either do or do not carry the TRE-Tight-Cdkn1b transgene and which have been treated, or are untreated, with 1 mg ml\(^{-1}\) doxycycline in their drinking water. Cdkn1b expression over endogenous levels is evident only in R26-M2rtTA;TRE-Tight-Cdkn1b mice that have received doxycycline. In addition, the level of ectopic Cdkn1b expression is doxycycline dosage dependent (Fig. 1c) and the expression remains at elevated levels during prolonged doxycycline treatment in most tissues (Fig. 1b).

Cdkn1b overexpression in adults induces a progeroid phenotype. The gross phenotypic effects of Cdkn1b overexpression are shown in Fig. 1d–g. Phenotypic changes first become apparent at \(\sim 2–3\) weeks and manifest as a change in posture, ruffled fur and transient diarrhoea that resolves over a period of \(\sim 2–3\) weeks (Fig. 1d). An obvious nuchal to caudal wave of hair loss occurs at approximately the time of the second telogen (postnatal day 45–70 (ref. 22), which is consistent with delayed or inefficient re-initiation of hair growth (Fig. 1e). Over time, hair growth is re-established to varying degrees but is typically reduced in density and exhibits loss of pigmentation (Fig. 1f–g). Additional macroscopic changes occur over time, including thinning skin and lesions, loss of corneal transparency and generalized frailty. The time at which phenotypic changes occur is delayed in mice treated with lower doses of doxycycline, at least through 0.25 mg ml\(^{-1}\); however, the severity of changes is similar. Survival of mice treated with varying doses of doxycycline is shown in Fig. 1h. Loss of mice during the first 4–6 weeks, particularly at the highest dose, results from gastrointestinal problems (see below).

Histological examinations of several tissues were performed for Cdkn1b-overexpressing mice in comparison with controls. Abdominal skin is shown in Fig. 2a (R26-M2rtTA + control that does not carry TRE-Tight-Cdkn1b) and Fig. 2b (R26-M2rtTA;TRE-Tight-Cdkn1b) for mice treated with 0.25 mg ml\(^{-1}\) doxycycline for a period of 5 months and confirms that Cdkn1b overexpression results in a reduction in skin thickness to approximately half of that of control mice. The majority of this reduction is a consequence of loss of adipose tissue from the hypodermal layer. Gastrocnemius and abdominal muscles are shown in Fig. 2c–f. In each case, the diameter of individual fibres is reduced in Cdkn1b-overexpressing mice (Fig. 2g,h).

Stem and progenitor cell cycling in Cdkn1b-overexpressing mice. To measure the effect of Cdkn1b expression on cell proliferation, R26-M2rtTA;TRE-Tight-Cdkn1b transgenic mice were treated with doxycycline for various periods and administered 5-iododeoxyuridine (IdU) continuously for 3 days and 5-chlorodeoxyuridine (CldU) as a pulse 2 h before killing. Histological sections were prepared for the SVZ of the brain, a site of active neural stem cell proliferation in adults, as shown in Fig. 3a–f and Supplementary Fig. S1. Results from this study show that within 3 days of the start of 1.0 mg ml\(^{-1}\) doxycycline treatment, cells incorporating nucleoside analogues are reduced to \(\sim 1/5th\) the level of wt mice and that this reduction in the level of division is maintained throughout at least 5 months of treatment (Fig. 3g).

To determine whether the reduction in cell division evidenced by reduced nucleoside analogue incorporation resulted from loss of stem and progenitor cells, the presence of Mcn2-expressing
cells (Mcm2 marks cells, which are competent for replication) was compared for control and 1 mg ml\(^{-1}\) doxycycline-treated R26-M2rtTA;TRE-Tight-Cdkn1b mice (Fig. 3b,d and Supplementary Fig. S1). These studies demonstrate that despite reduced proliferation, Mcm2-expressing cells remain present in the SVZ during prolonged doxycycline treatment at levels that are similar to those found in untreated control animals. To confirm that these cells remain capable of entering the cell cycle, R26-M2rtTA;TRE-Tight-Cdkn1b mice that had been administered 1 mg ml\(^{-1}\) doxycycline continuously for 5 months were removed from doxycycline treatment for a period of 24 h and simultaneously labelled with IdU. Mice were additionally labelled with CldU during the final 2 h after doxycycline removal (Fig. 3e,f). These studies demonstrate that Mcm2-expressing cells resume cycling within 24 h after doxycycline removal, nearly to the level observed in untreated control animals (Fig. 3g). To confirm that stem cell levels in the brain are unaffected by prolonged Cdkn1b overexpression, neurosphere cultures were prepared in microwell plates at limiting dilution from control (R26-M2rtTA + littermates that do not carry TRE-Tight-Cdkn1b) and R26-M2rtTA;TRE-Tight-Cdkn1b mice after continuous treatment with 1.0 mg ml\(^{-1}\) doxycycline for a period of 14 months.

Cultures were maintained in the absence of doxycycline and the numbers of neurospheres present after 10 days of culture, or after two re-passages, were determined (Fig. 3h). For both the initial cultures and following re-passaging, the number of neurospheres recovered from mice that had been continuously treated with doxycycline for over 1 year was similar to or higher than that for controls. Together, these results show that although the rate of proliferation of neural stem/progenitor cells in Cdkn1b-overexpressing mice is reduced, these cells remain present at levels similar to control animals.

The frequency of muscle stem and progenitor cells was also assessed for the gastrocnemius muscle in R26-M2rtTA;TRE-Tight-Cdkn1b transgenic mice treated (beginning at 2 months of age) with 0.25 mg ml\(^{-1}\) doxycycline for 5 months and controls (R26-M2rtTA + littermates that do not carry TRE-Tight-Cdkn1b but were treated with doxycycline in parallel) using Pax7 as a stem/progenitor cell marker (Fig. 3i,j). The number of Pax7-positive and -negative nuclei per muscle fibre were determined (Fig. 3m). The total number of nuclei associated with the sections of each fibre is modestly reduced in Cdkn1b-overexpressing mice, from 1.9 to 1.6. A larger shift occurs in the distribution between Pax7-negative and -positive nuclei, where the frequency...
of Pax7-negative nuclei is reduced by over 1/3, from 1.7 to 1.0
nuclei per fibre, whereas the frequency of Pax7-positive nuclei per
fibre is nearly tripled, shifting from ~0.2 in control animals to
~0.6 in Cdkn1b-overexpressing mice. As, in wt mice, Pax7 is
known to be expressed in satellite cells and rapidly proliferating,
transient amplifying progeny, one explanation for this shift is that
delayed replication in the transient amplifying population results
in cells stalling at this step of differentiation with a resulting
reduction in contribution to muscle fibres. Consistent with this
observation, long-term labelling of muscle with IdU (3 weeks)
demonstrated that the number of nuclei incorporating IdU
decreased to ~20% of the wt levels in Cdkn1b-overexpressing
mice (Fig. 3k,l,n).

The effect of Cdkn1b overexpression on cell proliferation in the
small intestine was also examined. R26-M2rtTA;TRE-Tight-
Cdkn1b transgenic mice were treated with doxycycline for
various periods and administered IdU (3 days) and CldU (2 h)
before killing. The number of crypt nuclei incorporating CldU
during a 2-h labelling period is reduced to ~2% of wt values at 3
days of doxycycline administration in R26-M2rtTA;TRE-Tight-
Cdkn1b mice (from 23.1 (s.d., 3.3) to 0.45 (s.d., 0.6); Fig. 4a versus
Fig. 4b, green). In these animals, no crypts were observed to
contain more than three labelled nuclei, and over 60% of the
crypts contained no labelled nuclei. In addition, all crypts exhibit
evidence of Cdkn1b overexpression (Fig. 4b, red). Nonetheless,
IdU administration over a 3-day period resulted in a high
proportion of labelled cells, demonstrating that the effect of
Cdkn1b overexpression is to slow, rather than block, cell cycling
(Fig. 4e, red).

Prior studies have shown that the base of the small intestinal
crypt contains two types of cells, that is, crypt basal columnar
(CBC) cells (all of which express the wnt-responsive G
protein-coupled receptor Lgr5 (ref. 25) and Paneth cells. CBC cells have
been shown to be the predominant active stem cells within the
small intestine, and clonal tracing data supports that these cells
undergo frequent symmetric divisions to give rise to either two
transient amplifying cells, which move up the crypt and, after
several rapid divisions, differentiate to epithelial lineages, or two
basal columnar cells that replace stem cells lost to
differentiation26. The replication licensing factor Mcm2 is
expressed in all CBC cells and transit amplifying cells, but not
in Paneth cells27 (Supplementary Fig. S2a). Measurement of the
proportion of Mcm2+ cells incorporating CldU at different
positions within Cdkn1b-overexpressing crypts of 3 days and 2
weeks doxycycline-treated mice demonstrates that proliferation is
reduced in both CBC stem cells at the crypt base and progenitor
cells at higher positions within the crypts (Fig. 4g). This
observation demonstrates that Cdkn1b overexpression suppresses
cell division in both stem and transit amplifying cells. In addition,
these studies show that similar to that for transit amplifying cells,
the number of Mcm2+ CBC stem cells is progressively reduced
during Cdkn1b overexpression (Supplementary Fig. S2B–J).
Data not available.
It is likely to be that survival of Cdkn1b-overexpressing mice depends on replacement of the majority of the intestinal epithelia with cells in which the transgene is no longer expressed and that the early loss of a fraction of Cdkn1b-overexpressing mice, particularly at the highest doses of doxycycline, results from insufficient intestinal function.

DNA damage response and cellular senescence. To address the possibility that Cdkn1b overexpression caused tissue degeneration through increased genetic damage and induction of a DNA damage response, ser18 phosphorylation of p53, a key event in the DNA damage response was measured. The levels of pp53 (ser18) were determined in several tissues of 4-month-old Cdkn1b-overexpressing mice and compared with levels in 4- and 24-month-old controls (Fig. 5a). Rather than showing elevated levels, as might be expected if Cdkn1b expression results in increased genetic damage, pp53 (ser18) levels are reduced in many different tissues of Cdkn1b-overexpressing mice. Consistent with reduced pp53 (ser18) levels, the frequency of cells with γ-H2AX and TP53bp1 foci is reduced in the epidermis of Cdkn1b-overexpressing mice (Fig. 5b–g; similar results were obtained for γ-H2AX foci in SVZ cells, Supplementary Fig. S3). The possibility that elevated Cdkn1b levels induce cellular senescence was assessed by measuring the level of senescence-associated β-galactosidase (SAβgal) activity in abdominal fat, a tissue in which SAβgal activity is known to increase during ageing, and in progeroid mouse models of ageing5. Even though the total abdominal fat is reduced in Cdkn1b-overexpressing mice, the SAβgal activity is not elevated in this tissue relative to controls (Fig. 5h). Interleukin-6, a prominent cytokine expressed in DNA damage-induced senescent cells33, is also not elevated in Cdkn1b-overexpressing mice (Supplementary Fig. S4), consistent with the lack of accumulation of senescent cells. Finally, prior studies of Skp2-null mice, in which Cdkn1b is overexpressed to levels similar to those achieved here, have shown that nuclear enlargement and polyploidy occur within a subset of tissues, including the tubular epithelia of the kidney21. However, Skp2-null mice also overexpress cyclin E (ref. 21), and polyploidy within these tissues may result from cyclin E, rather than Cdkn1b, overexpression. Nuclear enlargement is not observed in the kidney tubular epithelial cells in Cdkn1b-overexpressing mice (Supplementary Fig. S5), demonstrating that Cdkn1b overexpression alone is not responsible for this phenotype of Skp2-null mice.

Reversibility of the Cdkn1b-overexpressing phenotype. The observations above demonstrate that despite degenerative

Figure 4 | CldU incorporation and Cdkn1b expression in the ileums of doxycycline (Dox)-treated R26-M2rtTA; TRE-Tight-Cdkn1b mice. M2rtTA; TRE-Tight-Cdkn1b mice were either untreated (a) or treated continuously at 2 months of age with 1 mg ml\(^{-1}\) Dox for 3 days (b,e), 2 weeks (c,f) or 5 months (d). Paraffin sections were prepared and stained for CldU incorporation (green) and Cdkn1b (red) (a,d,f), or CldU (green) and IdU (red) incorporation (e), and images were captured using a ×20 objective. In g, the frequency with which Mcm2+ nuclei (see Supplementary Fig. S2) at various positions from the bases of the crypts label with CldU after a 2-h pulse is quantified for control (blue squares) and Cdkn1b-overexpressing (red triangles) mice. In h–k, the distribution of crypts containing different numbers of nuclei incorporating CldU is plotted for untreated (h) and 3 days (i), 2 week (j) and 5 month (k) Dox-treated mice. Scale bars in a–f indicate 50 μm.
changes, adult mice overexpressing Cdkn1b for long periods of time retain neural stem/progenitor and muscle satellite cells. The continued presence of these cells and the lack of evidence for accumulation of senescent cells raise the possibility that many of the phenotypic changes resulting from Cdkn1b overexpression might be reversed on return of Cdkn1b to wt levels after the removal of doxycycline. To test this possibility, R26-M2rtTA;TRE-Tight-Cdkn1b mice that had been continuously treated with doxycycline for 8 or more months were removed from doxycycline treatment and were monitored for reversal of phenotypic changes. Surprisingly, these mice showed little improvement at a gross phenotypic level, and some aspects of their condition declined more rapidly when removed from doxycycline treatment than observed for mice that were continued on doxycycline for the same periods (Fig. 6a). In particular, the removal of Cdkn1b-overexpressing mice from doxycycline treatment resulted in exacerbation of skin lesions that limited the time over which the mice could be followed.

Histological sections of the skin from 12-month-old control (R26-M2rtTA mice that do not carry TRE-Tight-Cdkn1b but which were treated with doxycycline) and R26-M2rtTA;TRE-Tight-Cdkn1b mice continuously treated with doxycycline for 9 months and removed from doxycycline treatment for 3 months are shown in Fig. 6b–i. Thinning of the hypodermal layer is not reversed in mice removed from doxycycline treatment (Fig. 6b). Nonetheless, cell density within dermal and epidermal layers is increased. Hair follicles and sebaceous glands are more prominent in the dermal layer, and many of the new cells stain for smooth muscle actin expression in both the epidermal and dermal layers (Fig. 6c–e). Unstained phase-contrast images are shown in Fig. 6f,g and demonstrate the presence of pockets of melanocytes in mice removed from doxycycline treatment (brown spots are also observed in the skin of live mice, Fig. 6a). Deposition of IgG is also observed (Fig. 6h,i). The effect of Cdkn1b overexpression on CD34+ putative stem cells within the hair follicle bulge was also assessed (Supplementary Fig. S6). CD34+ cells are reduced to ~1/4 of control numbers in mice continuously overexpressing Cdkn1b; however, within the hair follicles that remain, the frequency of these cells recovers to near-control levels in mice that have been removed from doxycycline treatment.

The effect of doxycycline removal on the ratio of lymphoid to myeloid cells within the peripheral blood was also determined.
Mice treated continuously with doxycycline show a reduction in this ratio from ~8.4 to ~2.1 (Supplementary Fig. S7a,b). Removal of doxycycline does not result in a reversal of the effect through at least 7 weeks (Supplementary Fig. S7c).

Despite failure to reverse lymphoid/myeloid ratios in the blood and the worsened condition of the skin, there is evidence of recovery in some tissues of Cdkn1b mice after the removal from doxycycline treatment. Both the gastrocnemius and abdominal muscles show substantial recovery of muscle fibre diameter following doxycycline removal (Supplementary Fig. S8). There is, in addition, an increase in nuclei associated with each muscle fibre. However, these improvements are accompanied by an increased infiltration of adipose tissue. The infiltration of the muscle with adipose tissue and an increased presence of melanocytes and myofibroblasts within the skin are changes that frequently accompany normal ageing of these tissues. Although such changes may occur in response to tissue degeneration in normally ageing tissues, they may be suppressed by reduced proliferation in animals continuously overexpressing Cdkn1b. Overgrowth of subsets of cells on release from this proliferation block could account for the more rapid decline of Cdkn1b-overexpressing mice that have been removed from doxycycline treatment relative to those that are continued on doxycycline treatment. These observations suggest that loss of tissue

Figure 6 | Effect of doxycycline (Dox) removal on the gross phenotype and skin of R26-M2rtTA;TRE-Tight-Cdkn1b mice. The phenotype of an R26-M2rtTA;TRE-Tight-Cdkn1b mouse treated with 0.75 mg ml⁻¹ Dox from 2 through 9 months of age followed by removal from doxycycline for three additional months is shown in a (where the same animal is shown before removal from Dox treatment in Fig. 1g). (b–i) Images of histological sections from the abdominal skin of this mouse where b is haematoxylin and eosin stained and taken with a × 10 objective; (d–e) Immuno-fluorescence images stained for smooth muscle actin (red) and DAPI (4',6-diamidino-2-phenylindole; blue), and taken with a × 20 objective. (f,g) Unstained phase-contrast images taken with a × 20 objective. (h,i) Immuno-fluorescence images stained for IgG (green) and DAPI (blue), and taken with a × 20 objective. (c,f,h) Controls prepared from an R26-M2rtTA mouse treated with Dox; (d) from an R26-M2rtTA;TRE-Tight-Cdkn1b mouse treated continuously with Dox; and (e,g,i) from an R26-M2rtTA;TRE-Tight-Cdkn1b mouse following treatment with and removal from Dox as described above. Scale bars in b–i indicate 50 μm.
continuous Dox administration. Control littermate at 4 weeks of development after continuous treatment with 0.25 mg ml\(^{-1}\) was begun at 2 months of age (Fig. 7a). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater corneal transparency. Improvements are also apparent in histological sections of the skin and muscle relative to age-matched controls (Supplementary Fig. S9). Tissue sections from control and Cdkn1b-overexpressing mice are shown for the gastrocnemius muscle in panels a and b, and the abdominal muscles in panels c and d. Fibre diameters were determined (panel e) and demonstrate no significant difference between control and Cdkn1b-overexpressing mice for either of these muscles. Skin thickness is also similar between the 8-week-old control and Cdkn1b-overexpressing mice, (Supplementary Figs S9f,g).

Prior studies have shown that Cdkn1b is overexpressed throughout the development process in most tissues of Skp2-null mice\(^2\). Although these mice are smaller, they do not exhibit progeroid phenotypes. To examine the effect of Cdkn1b overexpression on immature mice, nursing mothers with newborn litters of neonatal R26-M2rtTA mice, either carrying or not carrying the TRE-Tight-Cdkn1b transgene, were treated with 1 mg ml\(^{-1}\) doxycycline, and weights of the animals were determined weekly, beginning at 3 weeks and through 15 weeks of age (Fig. 7a). Cdkn1b-overexpressing mice show a reduced rate of growth during the period between 4 and 10 weeks of age, during which non-transgenic animals grow nearly exponentially to more than double in weight. In contrast, Cdkn1b-overexpressing animals exhibit a more linear weight gain such that the greatest differences between control and Cdkn1b-overexpressing mice occur between weeks 4 and 6, during which the weight of control animals is nearly double that of the Cdkn1b-overexpressing animals. Morphologically, Cdkn1b-overexpressing mice exhibit an obvious developmental delay during this period (Fig. 7b,d,e). Despite the developmental delay, mice in which Cdkn1b is overexpressed during neonatal development show a significant reduction in degenerative phenotypes relative to mice that were initially treated with doxycycline for similar durations but beginning at 2-months of age (compare Fig. 7d–g with Fig. 7h–k). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater organization and irreversibility of compensatory changes may contribute significantly to the degeneration of some tissues during ageing.

Cdkn1b overexpression in neonatal mice. Prior studies have shown that Cdkn1b is overexpressed throughout the development process in most tissues of Skp2-null mice\(^2\). Although these mice are smaller, they do not exhibit progeroid phenotypes. To examine the effect of Cdkn1b overexpression on immature mice, nursing mothers with newborn litters of neonatal R26-M2rtTA mice, either carrying or not carrying the TRE-Tight-Cdkn1b transgene, were treated with 1 mg ml\(^{-1}\) doxycycline, and weights of the animals were determined weekly, beginning at 3 weeks and through 15 weeks of age (Fig. 7a). Cdkn1b-overexpressing mice show a reduced rate of growth during the period between 4 and 10 weeks of age, during which non-transgenic animals grow nearly exponentially to more than double in weight. In contrast, Cdkn1b-overexpressing animals exhibit a more linear weight gain such that the greatest differences between control and Cdkn1b-overexpressing mice occur between weeks 4 and 6, during which the weight of control animals is nearly double that of the Cdkn1b-overexpressing animals. Morphologically, Cdkn1b-overexpressing mice exhibit an obvious developmental delay during this period (Fig. 7b,d,e). Despite the developmental delay, mice in which Cdkn1b is overexpressed during neonatal development show a significant reduction in degenerative phenotypes relative to mice that were initially treated with doxycycline for similar durations but beginning at 2-months of age (compare Fig. 7d–g with Fig. 7h–k). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater organization and irreversibility of compensatory changes may contribute significantly to the degeneration of some tissues during ageing.

Dcdn1b overexpression in neonatal mice. Prior studies have shown that Cdkn1b is overexpressed throughout the development process in most tissues of Skp2-null mice\(^2\). Although these mice are smaller, they do not exhibit progeroid phenotypes. To examine the effect of Cdkn1b overexpression on immature mice, nursing mothers with newborn litters of neonatal R26-M2rtTA mice, either carrying or not carrying the TRE-Tight-Cdkn1b transgene, were treated with 1 mg ml\(^{-1}\) doxycycline, and weights of the animals were determined weekly, beginning at 3 weeks and through 15 weeks of age (Fig. 7a). Cdkn1b-overexpressing mice show a reduced rate of growth during the period between 4 and 10 weeks of age, during which non-transgenic animals grow nearly exponentially to more than double in weight. In contrast, Cdkn1b-overexpressing animals exhibit a more linear weight gain such that the greatest differences between control and Cdkn1b-overexpressing mice occur between weeks 4 and 6, during which the weight of control animals is nearly double that of the Cdkn1b-overexpressing animals. Morphologically, Cdkn1b-overexpressing mice exhibit an obvious developmental delay during this period (Fig. 7b,d,e). Despite the developmental delay, mice in which Cdkn1b is overexpressed during neonatal development show a significant reduction in degenerative phenotypes relative to mice that were initially treated with doxycycline for similar durations but beginning at 2-months of age (compare Fig. 7d–g with Fig. 7h–k). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater organization and irreversibility of compensatory changes may contribute significantly to the degeneration of some tissues during ageing.

Cdkn1b overexpression in neonatal mice. Prior studies have shown that Cdkn1b is overexpressed throughout the development process in most tissues of Skp2-null mice\(^2\). Although these mice are smaller, they do not exhibit progeroid phenotypes. To examine the effect of Cdkn1b overexpression on immature mice, nursing mothers with newborn litters of neonatal R26-M2rtTA mice, either carrying or not carrying the TRE-Tight-Cdkn1b transgene, were treated with 1 mg ml\(^{-1}\) doxycycline, and weights of the animals were determined weekly, beginning at 3 weeks and through 15 weeks of age (Fig. 7a). Cdkn1b-overexpressing mice show a reduced rate of growth during the period between 4 and 10 weeks of age, during which non-transgenic animals grow nearly exponentially to more than double in weight. In contrast, Cdkn1b-overexpressing animals exhibit a more linear weight gain such that the greatest differences between control and Cdkn1b-overexpressing mice occur between weeks 4 and 6, during which the weight of control animals is nearly double that of the Cdkn1b-overexpressing animals. Morphologically, Cdkn1b-overexpressing mice exhibit an obvious developmental delay during this period (Fig. 7b,d,e). Despite the developmental delay, mice in which Cdkn1b is overexpressed during neonatal development show a significant reduction in degenerative phenotypes relative to mice that were initially treated with doxycycline for similar durations but beginning at 2-months of age (compare Fig. 7d–g with Fig. 7h–k). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater organization and irreversibility of compensatory changes may contribute significantly to the degeneration of some tissues during ageing.

Cdkn1b overexpression in neonatal mice. Prior studies have shown that Cdkn1b is overexpressed throughout the development process in most tissues of Skp2-null mice\(^2\). Although these mice are smaller, they do not exhibit progeroid phenotypes. To examine the effect of Cdkn1b overexpression on immature mice, nursing mothers with newborn litters of neonatal R26-M2rtTA mice, either carrying or not carrying the TRE-Tight-Cdkn1b transgene, were treated with 1 mg ml\(^{-1}\) doxycycline, and weights of the animals were determined weekly, beginning at 3 weeks and through 15 weeks of age (Fig. 7a). Cdkn1b-overexpressing mice show a reduced rate of growth during the period between 4 and 10 weeks of age, during which non-transgenic animals grow nearly exponentially to more than double in weight. In contrast, Cdkn1b-overexpressing animals exhibit a more linear weight gain such that the greatest differences between control and Cdkn1b-overexpressing mice occur between weeks 4 and 6, during which the weight of control animals is nearly double that of the Cdkn1b-overexpressing animals. Morphologically, Cdkn1b-overexpressing mice exhibit an obvious developmental delay during this period (Fig. 7b,d,e). Despite the developmental delay, mice in which Cdkn1b is overexpressed during neonatal development show a significant reduction in degenerative phenotypes relative to mice that were initially treated with doxycycline for similar durations but beginning at 2-months of age (compare Fig. 7d–g with Fig. 7h–k). The improved phenotypes include reduced loss of hair and pigmentation, thicker skin with fewer lesions and greater organization and irreversibility of compensatory changes may contribute significantly to the degeneration of some tissues during ageing.

Discussion

Cdkn1b is a key regulator of cell cycle progression that was initially identified based on its induction by extracellular antiproliferative signals, including contact inhibition or serum deprivation. Similar to other members of this family, Cdkn1a (p21) and Cdkn1c (p57), Cdkn1b has the ability to bind to the cyclin-cyclin dependent kinase (CDK) holoenzyme and inhibit CDK complexes required for G1 progression and S-phase entry. It is known to inhibit cell cycle progression when overexpressed
in essentially all cell types in culture. Consistent with results from cultured cells, adult mice in which overexpression of Cdkn1b is broadly induced demonstrate reduced levels of cell proliferation in all of the tissues examined (SVZ, skeletal muscle, skin and transiently in the intestine) in the present study. Many of the degenerative changes observed in Cdkn1b-overexpressing mice are likely to be a consequence of reduced cell proliferation.

Additional functions for Cdkn1b have been described. Cytoplasmic Cdkn1b has been shown to regulate the actin cytoskeleton and affect cell migration by modulation of Rho34. This function of Cdkn1b could contribute to some of the phenotypes observed in the present study (for example, failure of SVZ progenitors to migrate to the olfactory bulb or failure of muscle satellite cells to fuse to myofibris). Cdkn1b has also been shown to interact in a transcriptional repressor complex35 and loss of Cdkn1b results in elevated Sox2 expression in multiple tissues, including the fibroblasts, lung, retina and brain36. Sox2 is known to be expressed in and contribute to the stem cell phenotype of a number of somatic stem cells37–39 and reduced Sox2 expression could result in loss of adult stem cells. However, it is unclear that wt levels of Cdkn1b are limiting for Sox2 repression and elevating Cdkn1b levels over wt may not result in a further reduction. The increase in SVZ and muscle stem and progenitor cells is also not consistent with this role.

The number of CBC stem cells per crypt is reduced in the small intestine following inhibition of cell division by Cdkn1b overexpression. Although it is possible that this loss is a direct result of a transcriptional repressor function of Cdkn1b, the mode of stem cell division in this tissue could also explain the observation. Prior studies have shown that intestinal crypt homeostasis is maintained by competition between symmetrically dividing stem cells40 such that over time the individual stem cell lineages become fixed or extinct. Cdkn1b reduces the rate of division of CBC stem cells and, unlike the case for an invariant asymmetric mode of division, reduced division of the stem cell pool is expected to result in the observed reduction of these cells. A smaller pool of stem cells is expected to increase the rate at which individual stem cell lineages become fixed or undergo extinction within a crypt. Further, the likelihood that all stem cells within a crypt are lost to differentiation is increased and would result in a reduction in the number of intestinal crypts were it not for replacement by crypt fission. A reduced rate of cell proliferation of stem cell within hair follicles may also account for the effects of Cdkn1b overexpression within this tissue. Similar to the intestine, the number of Cd34+ stem cells present in the bulge of each follicle increases when cell proliferation is suppressed by Cdkn1b overexpression. Loss of hair follicles due to a complete loss of stem cells within a follicle could account for alopecia in these mice. On removal of doxycycline, a number of Cd34+ stem cells recovers in the remaining follicles; however, very little reversal of alopecia is observed, consistent with a lack of generation of new follicles by fission. Additional studies will be necessary to determine whether the mode of division of lymphoid or myeloid-biased haematopoietic stem cells and the architecture of the haematopoietic stem cell niche have a role in the lymphoid-to-myeloid shift resulting from Cdkn1b overexpression or the failure to recover wt ratios after doxycycline removal.

A variety of mouse models in which genome stability is compromised have been shown to exhibit a progeroid phenotype where the phenotype is thought to result from activation of the DNA damage response and the accumulation of senescent cells. For example, loss of telomerase results in an impaired tissue maintenance and a shortened life span, where these consequences are thought to result from elevated genetic damage caused by telomere dysfunction40. However, the effect of genetic damage on the ageing phenotype may be indirect and result from reduced cell proliferation and induction of a senescent phenotype mediated by the DNA damage response. Consistent with this idea, Cdkn1a (p21) deletion improves stem cell function and partially rescues the life span of mice with dysfunctional telomeres9. Further, progeroid mice in which Trp53 is constitutively hyperactive (p53 + /m) exhibit reduced cell cycling, which may be a consequence of an elevated DNA damage response to normal rates of genetic damage41–42. The number of senescent cells is also increased in tissues of p53 + /m mice compared with that of wt mice43. BubR1 is a key inhibitor of the E3 ubiquitin ligase APC/CCdc20, which, among other functions, regulates chromosome segregation. BubR1 hypomorphic mice exhibit elevated levels of aneuploidy and, in a variety of tissues, degeneration at early ages43. Conversely, strengthening the mitotic checkpoint through elevated levels of BubR1 has been shown to reduce genetic damage accumulation and to extend the healthy life span of mice43. Within a subset of tissues of BubR1 hypomorphic mice (including the skeletal muscle fat and eye), p16Ink4a is expressed at chronically high levels, presumably in response to DNA damage. These tissues exhibit elevated levels of SAβgal and other markers of senescence and reduced levels bromodeoxyuridine (BrdU)-incorporating cells. Further, BubR1 hypomorphic mice lacking p16Ink4a and mice in which p16Ink4aexpressing cells are continuously ablated ameliorate degenerative changes specifically in these tissues and exhibit increased numbers of BrdU-incorporating cells10,44. It has been hypothesized that degenerative changes are a consequence of the effects of secretory changes associated with senescent cells on the tissue microenvironment44. The observation here that reduced cell proliferation, even in the absence of the accumulation of senescent cells, is sufficient to result in age-related degenerative changes suggests that many of the effects that senescent cells exert on the tissue microenvironment could result from suppression of cell proliferation.

pp53 (Ser18) levels and DNA damage foci are reduced in proliferating tissues of Cdkn1b-overexpressing mice relative to wt animals, suggesting that replication-related errors are responsible for much of the genetic damage that occurs during ageing. Consistent with this result, cancer incidence is greatly reduced in animals in which Cdkn1b is overexpressed as adults. Further, unlike p53 + /m, telomere-deficient mice or BubR1 hypomorphic mice senescent cells do not accumulate to elevated levels in Cdkn1b-overexpressing mice. Nonetheless, these mice are less robust than wt mice and exhibit degenerative tissue changes consistent with an aged phenotype. The apparent improvement in genome maintenance but reduction in tissue homeostasis suggest that Cdkn1b overexpression in adult animals alters the balance between genetic and tissue ageing.

Cdkn1b expression is not increased during ageing in wt animals. Further, in skeletal muscle a subset of satellite cells has been shown to break quiescence and increase proliferation in ageing mice due to changes in growth factor signalling in the aged niche45. However, it is not necessary that genes contributing to an aged phenotype show a change in their level of activity during ageing, rather simply that their basal level of activity is incompatible with complete tissue maintenance over time46. Loss of Cdkn1b function in knockout mice results in a preferential increase in progenitor cell division relative to stem cells47, suggesting that endogenous Cdkn1b functions to suppress division specifically in progenitor cells but not in stem cells. Hence, the modulation of stem and progenitor cell proliferation rates achieved by overexpressing Cdkn1b in the present study is unlikely to reflect a normal role for this gene in control of stem cell division during ageing of wt mice. Nonetheless, to the extent that reduced Cdkn1b expression allows increased division of progenitors without a corresponding increase in stem cell
division, the present studies suggest that partial suppression of Cdkn1b activity in ageing adult animals could improve tissue maintenance without loss of genome integrity within stem cells.

Methods

Plasmid and transgenic mouse construction. pTRE-Tight-Cdknb1 was constructed by insertion of a 1,261-bp fragment from pCMV-Sport6-Cdknb1 (Open Biosystems) containing the Cdknb1 coding sequence into multiple cloning site of pTRE-Tight (Invitrogen). Transgenic animals were produced by pronuclear injection of a 1.8-kb XhoI fragment isolated from pTRE-Tight-Cdknb1 and containing the TRE promoter, Cdknb1 gene and SV40 pA into C57Bl6/129 zygotes. One founder was identified and maintained on a C57Bl6 background using primers designed with the forward primer (5′-GAGTTTACTCCCTACATG CATAAGAAAACG-3′) in the TRE promoter and the reverse primer (5′-CTCCGACGCTATCCAGGCTCGGTCCTG-3′) immediately downstream of the SV40 pA. The TRE-Tight-Cdknb1 mouse line is available to the research community through The Jackson Laboratory (JAX Stock Number 017631).

Mouse crosses and treatments. B6.Cg-Gt(Rosa)26Sortm1(TAATAA)Jae (Jackson Laboratories, referred to as R26-M2rtTA) mice were crossed with TRE-Tight-Cdknb1 mice to generate bigenic R26-M2rtTA;TRE-Tight-Cdknb1 mice. Bigenic mice were administered doxycycline (Sigma) in their drinking water at the concentrations and durations indicated in the text.

In cases where mice were labelled with IdU and CldU, IdU was administered in the drinking water at 0.5 mg/ml for 3 days or 3 weeks in different experiments and mice were injected with 100 μl of 10 mg/ml CldU in isotonic saline 2 h before the end of the experiment. All procedures involving mice were approved by the Roswell Park Cancer Institute’s Institutional Animal Care and Use Committee.

Immunoblotting. Protein extracts from tissues were prepared using pre-chilled tubes containing RIPA buffer: (20 mM Tris, pH 8.0, 150 mM NaCl, 1% NP-40 and 1% sodium deoxycholate) containing protease and phosphatase inhibitors (Sigma-Aldrich). Whole cell lysates were then treated with 0.05–0.25% SDS and/or 1% Triton X-100 on ice for 1 h. Tissues were spun in a microcentrifuge for 40 min at 4°C at maximum speed (14,000 r.p.m.). The supernatant was collected and protein concentrations were established by BCA assays (Thermo Scientific, Pierce).

Immunohistochemistry. Tissues were paraffin embedded and 6 μm histological sections were prepared using standard techniques. Immunostaining for Cdkn1b, Pax7, myosin and Mcm2 were performed, following antigen recovery, using rabbit anti-p27(C-19) (1/200, catalogue number sc-528, Santa Cruz Biotechnology), mouse ME20 (1/200, Developmental Studies Hybridoma Bank) and mouse BM22 (1/200, Transduction Laboratories) primary antibodies followed by Alexafluor 594-conjugated donkey anti-rabbit and Alexafluor 488-conjugated anti-rabbit secondary antibody (1/2,000, AP132P GtxRb IgG (H+L), 1/1,000, catalog number A2066, Sigma) primary antibodies and horseradish peroxidase-conjugated anti-rabbit secondary antibody (1/2,000, AP132P GtxRb IgG (H+L), HRP, Millipore).

Peripheral blood analysis. Blood was collected from mice by retro-orbital bleeding and prepared for FACS analysis using mixture of CD4-Pacific Blue, CD8-Pacific Blue, B220-Pacific Blue, B220-PerCP, Mac1-PerCP and Gr-1-PerCP (1/100, catalogue numbers 48-0042, 48-0081, 48-0452, 25-0452, 25-0112, and 25-593, respectively) all from eBioscience) as described previously44. Briefly, red blood cells were lysed and samples were incubated with antibody mixture for 20 min on ice before washing and analysis by FACS using an LSRII (Becton Dickinson).

References

1. Sidar, L. On the nature of the aging process. Proc. Natl Acad. Sci. USA 45, 593–595 (1959).
2. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).
3. Holt, S. E., Shay, J. W. & Wright, W. E. Refining the telomere-telomerase hypothesis of aging and cancer. Nat. Biotechnol. 14, 836–839 (1996).
4. Weeda, G. et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–437 (1997).
5. Baker, D. J. et al. BubR1 insufficiency causes early onset of age-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749 (2004).
6. Campisi, J. & D’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).
7. Schoppky, D. W., Ruzankina, V. & Brown, E. J. Removing all obstacles: a critical role for p53 in promoting tissue renewal. Cell Cycle 9, 1313–1319 (2010).
8. Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93, 105–116 (2013).
9. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 39, 99–105 (2007).
10. Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and aging caused by BubR1 insufficiency. Nat. Cell Biol. 10, 825–836 (2008).
11. Krishnamurthi, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 435, 453–457 (2005).
12. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during aging. Nature 443, 448–452 (2006).
13. Janzen, V. et al. Stem-cell aging modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).
14. Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genesis 19, 756–767 (2005).
15. Cooke, P. S. et al. The F box protein S phase kinase-associated protein 2 regulates adipose mass and adipocyte number in vivo. Obesity 15, 1400–1408 (2007).
16. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).
17. Polyak, K. et al. Cln3, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).
18. Polyak, K. et al. p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 94, 834–846 (1998).
19. Nakayama, K. et al. Mice lacking p27kip1 display increased body size, multiple organ hyperplasia, renal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).
20. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27kip1. Cell 85, 721–732 (1996).
21. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).
22. Plikus, M. V. & Choung, C. M. Complex hair cycle domain patterns and regenerative hair waves in living rodents. J. Invest. Dermatol. 128, 1071–1080 (2008).
23. Maslov, A. Y., Barone, T. A., Plunkett, R. J. & Pruitt, S. C. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 24, 1726–1733 (2004).
24. Relax, F., Rocancourt, D., Mansouri, A. & Buckingham, M. A. Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 898–899 (2005).
25. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
26. Hlubek, J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).
27. Pruitt, S. C., Freeland, A. & Kudla, A. A cell cycle heterogeneity in the small intestinal crypt and maintenance of genome integrity. Stem Cells 28, 1250–1259 (2010).
28. Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell Biol. 26, 8418–8426 (2006).
29. Greenow, K. R., Clarke, A. R. & Jones, R. H. Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 28, 1443–1453 (2009).
30. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 11, 113–126 (2012).
31. van der Flier, L. G. et al. Transcription factor achaete-scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).
32. Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. *Nat. Genet.* **41**, 1138–1143 (2009).

33. Rodier, F. et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. *Nat. Cell Biol.* **11**, 973–979 (2009).

34. Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. *Genes Dev.* **18**, 862–876 (2004).

35. Pippa, R. et al. p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes. *Oncogene* **31**, 4207–4220 (2012).

36. Li, H. et al. p27(Kip1) directly represses Sox2 during embryonic stem cell differentiation. *Cell Stem Cell* **11**, 845–852 (2012).

37. Ferri, A. L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. *Development* **131**, 3805–3819 (2004).

38. Marqués-Torrejón, M. A. et al. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. *Cell Stem Cell* **12**, 88–100 (2013).

39. Sachs, P. C. et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. *Cell Tissue Res.* **349**, 505–515 (2012).

40. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. *Cell* **96**, 701–712 (1999).

41. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. *Nature* **415**, 45–53 (2002).

42. Hinkal, G. W., Gatza, C. E., Parikh, N. & Donehower, L. A. Altered senescence, apoptosis, and DNA damage response in a mutant p53 model of accelerated aging. *Mech. Ageing Dev.* **130**, 262–271 (2009).

43. Baker, D. J. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. *Nat. Cell Biol.* **15**, 96–102 (2013).

44. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature* **479**, 232–2366 (2011).

45. Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. *Nature* **490**, 355–360 (2012).

46. Kirkwood, T. B. Understanding the odd science of aging. *Cell* **120**, 437–447 (2005).

47. Cheng, T., Rodrigues, N., Domibkowski, D., Stier, S. & Scadden, D. T. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). *Nat. Med.* **6**, 1235–1240 (2000).

48. Mayle, A., Luo, M., Jeong, M. & Goodell, M. A. Flow cytometry analysis of murine hematopoietic stem cells. *Cytometry* **83**, 27–37 (2013).

Acknowledgements

This work was supported by grants from the Ellison Medical Foundation, the NIH-NIA (R01AG041854) and the NIH-NCI (CA130995) to S.C.P. Cost of animal maintenance was supported in part by an NCI-CCS grant to the Roswell Park Cancer Institute.

Author contributions

All authors performed experiments and analysed data. S.C.P. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Pruitt, S. C. et al. Cdkn1b overexpression in adult mice alters the balance between genome and tissue ageing. *Nat. Commun.* 4:2626 doi: 10.1038/ncomms3626 (2013).