FANCB (FA complementation group B)

Sylvie van Twest, Andrew Deans

St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy VIC 3065, Australia; svantwest@svi.edu.au; adeans@svi.edu.au

Published in Atlas Database: February 2019
Online updated version: http://AtlasGeneticsOncology.org/Genes/FANCBID49864chXp22.html
Printable original version: http://documents.revues.inist.fr/bitstream/handle/2042/70644/02-2019-FANCBID49864chXp22.pdf
DOI: 10.4267/2042/70644

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

FANCB protein is a component of the Fanconi Anemia (FA) core complex needed for DNA repair. Within the core complex, FANCB forms a protein subcomplex with two other proteins, FAAP100, and an E3 RING ligase FANCL (BL100) to monoubiquitinate FANCD2 and FANCI (ID2), a process that is defective in 95% of all FA patients. FA is a rare, genetic cancer pre-disposition syndrome characterized by chromosomal instability and hypersensitivity to DNA crosslinking agents, such as those used in chemotherapy like mitomycin C (MMC) (Kennedy D’Andrea, 2006). FANCB is the only known X-linked FA gene, and mutations account for 1% of FA cases (Alter Rosenberg, 2013).

Keywords: FANCB, Fanconi Anemia; Ubiquitination, VACTERL-H; Cancer pre-disposition; Chromosome X

Identity

Other names: FAB, FA2, FACB

HGNC (Hugo): FANCB
Location: Xp22.2

DNA/RNA

Description

FANCB has 10 exons, and the translation start site is in exon 3 (Meetei et al., 2004).

Transcription

The FANCB gene undergoes X-inactivation. The mutated FANCB allele is preferentially inactivated in female carriers (so the wild-type allele is expressed), while males with mutations in FANCB get FA (Meetei et al., 2004). FANCB linked FA accounts for 1% of FA cases, and only affects male patients.

Figure 1: Genomic context of FANCB on chromosome (Adapted from NCBI).
FANCB (FA complementation group B)

van Twest S, Deans A

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(1)

19

Protein

Description
The FANCB gene encodes FANCB protein comprised of 859 amino acids, with a molecular mass of 97726 Da. It has a putative C-terminal nuclear localization signal (Meetei et al., 2004).

Expression
Low expression in tissues. Results from Illumina bodyMap2 transcriptome (BioProject: PRJEB2445) of high throughput sequencing of individual and mixture of 16 human tissue RNA showed highest expression in white blood cells (mean RPKM 0.32), testes (mean RPKM 0.23), brain (mean RPKM 0.168), adrenal (mean RPKM 0.164), ovary (mean RPKM 0.153), and lymph nodes (mean PRKM 0.149). Another RNA sequencing project of total RNA from 20 human tissues (BioProject: PRJNA280600) found highest FANCB expression in brain cerebellum (mean RPKM 0.789), and thymus (mean RPKM 0.524). BioProject PRJEB4337 performed HPA RNA sequencing of normal tissues found highest FANCB expression in bone marrow and in lymph nodes.

BioProject PRJNA270632 looked at tissue specific FANCB RNA induction during human fetal development from 6 tissues between 10-20 weeks gestational time.

Function
FANCB is a component of the Fanconi Anemia 9 protein "core complex" that acts as a multiunit ubiquitin ligase to ubiquitinate FANCD2 and FANCI in response to DNA damage incurred during DNA replication in S-phase, or to detection of interstand cross links (ICL) (Ceccaldi, Sarangi, D'Andrea, 2016). The key event in the FA pathway is the monoubiquitination of ID2 that activates downstream DNA repair proteins. The core complex is comprised of 3 separate sub-complexes, FANCG, FAAP20 (AG20), FANCC, FANC E, FANCF (CEF), and FANCB, FANCL, FAAP100 (BL100) (Huang et al., 2014; Medhurst et al., 2006). The BL100 sub-complex is critical to core complex assembly as it forms a bridge between AG20 and CEF (van Twest et al., 2017). The BL100 subcomplex is dimeric, and FANCB homodimer forms the interface between two copies of FANCL (a RING E3 ligase), and FAAP100 to simultaneously ubiquitinate FANCD2 and FANCI (ID2) (Swuec et al., 2016; van Twest et al., 2017). Correspondingly, FANCB and FAAP100 stabilize FANCL (Rajendra et al., 2014), and enhance its activity by 5-fold in invitro assays (Ling et al., 2007). Mutation in any one of the 19 FA genes results in defective DNA repair.

Mutations
Somatic
Somatic FANCB mutations are very rare, and may occur at normal mutagenesis rate. Small insertions, point mutations, and large deletions have been reported in the FANCB gene (MccAuley et al., 2011; Meetei et al., 2004). Most FANCB mutations result in truncation of the encoded protein.
FANCB (FA complementation group B)

van Twest S, Deans A

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(1)

Figure 4: Schematic of Fanconi Anemia DNA damage response pathway. In response to interstrand cross links (ICL), or DNA damage from DNA replication, FANCM recruits the 9 protein core complex to DNA damage sites to monoubiquitinate FANC D2 and I. The core complex is comprised of 3 sub-complexes AG20 (FANC A, G, FAAP20), BL100 (FANC B, L, FAAP100), and CEF (FANC C,E,F). Dashed lines indicate groupings of sub-complexes, while triple lines indicate putative direct protein interactions. Within the core complex, FANCL has a RING E3 domain with ubiquitin ligase activity, but mutation in any one of the FA genes leads to defective DNA repair. Ubiquitinated ID2 is activated, and localized to chromatin in nuclear foci to interact with downstream DNA repair proteins (FANCD1, PALB2 (FANCN)) to repair DNA via homologous recombination. Once DNA repair is completed, USP1 deubiquitinates ID2 so that DNA damage response can be reinitiated. Figure adapted from https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fancb.

Implicated in

Fanconi Anemia

Disease

Mutated FANCB is implicated in Fanconi Anemia (FA), a rare genetic condition that results in progressive bone marrow failure (pancytopenia), congenital malformations in 75% of patients (short stature, urogenital defects, café au lait spots, skeletal malformations), and cancer pre-disposition (primarily acute myeloid leukaemia, and certain solid tumours) (Alter, 2014).

As the only X-linked FA gene, FANCB accounts for 1% of FA cases, in all other instances FA is autosomal recessive. Mutations in FANCB (and all other core complex FA proteins) is associated with hypersensitivity to DNA-damaging agents, chromosomal instability with increased chromosome breakage and defective DNA repair. In addition to FA, some patients with FANCB mutations also exhibit hydrocephalus-VACTERL (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies) syndrome. A frameshift FANCB mutation that results in a truncated protein (stop codon at position 446) was associated with
VACTERL-H (Holden et al., 2006; McCauley et al., 2011).

Prognosis

The prognosis for FA is poor as there is no cure, and the average lifespan is 20-30 years. If no congenital abnormalities are apparent at birth, patients are often diagnosed with FA when they present with aplastic anemia ages 8-10 (>700 fold risk) (Alter, 2014). Bone marrow transplants are often conducted to correct the haematological issues associated with FA, however due to faulty DNA repair FA patients retain high cancer risk particularly leukaemia, and head and neck squamous cell carcinomas (approximately 500 fold risk) (Shimamura & Alter, 2010).

Diagnostic

Diagnostics for FA is done with a chromosomal breakage test; when treated with interstand crosslinking agents such as mitomycin C (MMC) or diepoxybutane (DEB) FA cells exhibit high number chromosomal breakages, and abnormalities as compared to normal cells.

References

Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007;:29-39

Alter BP, Rosenberg PS. VACTERL-H Association and Fanconi Anemia. Mol Syndromol. 2013 Feb;4(1-2):87-93

Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016 Jun;17(6):337-49

Frischknecht W. [Early determination of handicaps in the newborn and infants] Schweiz Rundsch Med Prax 1971 Jul 27;60(30):1021-2

Holden ST, Cox JJ, Kesterton I, Thomas NS, Carr C, Woods CG. Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome J Med Genet 2006 Sep;43(9):750-4

Huang Y, Leung JW, Lowery M, Matsushita N, Wang Y, Shen X, Huang D, Takata M, Chen J, Li L. Modularized functions of the Fanconi anemia core complex Cell Rep 2014 Jun 26;7(6):1849-57

Kennedy RD, D'Andrea AD. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes J Clin Oncol 2006 Aug 10;24(23):3799-808

Ling C, Ishitai M, Ali AM, Medhurst AL, Neveling K, Kalb R, Yan Z, Xue Y, Oostra AB, Auerbach AD, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Takata M, Meetei AR, Wang W. FAAFP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway EMBO J 2007 Apr 18;26(8):2104-14

McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A, Michaud JL, Gibson K, Robertson J, Vaz F, Abbs S, Holden ST. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations Am J Med Genet A 2011 Oct;155A(10):2370-80

Medhurst AL, Laghmani el H, Steitenpool J, Ferrer M, Fontaine C, de Groot J, Rooimans MA, Scheper RJ, Meetei AR, Wang W, Joenje H, de Winter JP. Evidence for subcomplexes in the Fanconi anemia pathway Blood 2006 Sep 15;108(6):2072-80

Pagel PS, Kampine JP, Schmeling WT, Wartliic DC. Ketamine depresses myocardial contractility as evaluated by the preload recruitable stroke work relationship in chronically instrumented dogs with autonomic nervous system blockade Anesthesiology 1992 Apr;76(4):564-72

Rajendra E, Oestergaard VH, Langevin F, Wang M, Dornan GL, Patel KJ, Passmore LA. The genetic and biochemical basis of FANCD2 monoubiquitination Mol Cell 2014 Jun 5;54(5):858-69

Swuec P, Renault L, Borg A, Shah F, Murphy VJ, van Twest S, Snijders AP, Deans AJ, Costa A. The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2 Cell Rep 2017 Jan 17;18(3):611-623

van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P, O'Rourke JJ, Heierhorst J, Crismani W, Deans AJ. Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway Mol Cell 2017 Jan 19;65(2):247-259

. FARF Inc . Fanconi Anemia: Guidelines for Diagnosis and Management. Eugene, OR Fanconi Anemia Research Fund, Inc; 2014.

This article should be referenced as such:

van Twest S, Deans A. FANCB (FA complementation group B). Atlas Genet Cytogenet Oncol Haematol. 2020; 24(1):18-21.