FLAT DEFORMATIONS OF \mathbb{P}^n

CAROLINA ARAUJO AND JOSÉ J. RAMÓN-MARÍ

Abstract. In this paper we study projective flat deformations of \mathbb{P}^n. We prove that the singular fibers of a projective flat deformation of \mathbb{P}^n appear either in codimension 1 or over singular points of the base. We also describe projective flat deformations of \mathbb{P}^n with smooth total space, and discuss flatness criteria.

1. Introduction

It is a well-known theorem of Siu that \mathbb{P}^n is rigid (see [Siu92, Main Theorem]). This means that, if $\pi : X \to Y$ is a smooth proper morphism between connected complex manifolds, and if the general fiber of π is isomorphic to \mathbb{P}^n, then every fiber of π is isomorphic to \mathbb{P}^n. The aim of these notes is to prove similar results for projective flat deformations of \mathbb{P}^n.

A \mathbb{P}^n-bundle is a smooth projective morphism between complex analytic spaces whose fibers are all isomorphic to \mathbb{P}^n. The simplest examples are scrolls. These are \mathbb{P}^n-bundles $\pi : X \to Y$ satisfying the following equivalent conditions.

1. There is a locally free sheaf \mathcal{E} of rank $n + 1$ on Y, and an isomorphism $X \cong \mathbb{P}(\mathcal{E})$ over Y.
2. There is a line bundle \mathcal{L} on X whose restriction to every fiber X_t satisfies $\mathcal{L}|_{X_t} \cong \mathcal{O}_{\mathbb{P}^n}(1)$.
3. The morphism π admits a section $\sigma : Y \to X$.

We call a line bundle \mathcal{L} as in (2) a global $\mathcal{O}(1)$ for π. Given \mathcal{E} as in (1), the tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is a global $\mathcal{O}(1)$ for π. Conversely, given \mathcal{L} as in (2), \mathcal{E} can be taken to be $\pi_*\mathcal{L}$. The equivalence with (3) can be seen by considering the associated \mathbb{P}^n-bundle of hyperplanes (see [Mü80, p.134]).

We recall the following characterization of scrolls, due to Fujita.

Theorem F1 ([Fuj75, Corollary 5.4]). Let X and Y be irreducible and reduced complex analytic spaces, and $\pi : X \to Y$ a proper flat morphism whose fibers are all irreducible and reduced. Suppose that the general fiber of π is isomorphic to \mathbb{P}^n, and that there exists a π-ample line bundle \mathcal{L} on X such that $\mathcal{L}|_{X_t} \cong \mathcal{O}_{\mathbb{P}^n}(1)$ for general $t \in Y$. Then π is a \mathbb{P}^n-bundle and \mathcal{L} is a global $\mathcal{O}(1)$ for π.

Every \mathbb{P}^n-bundle over a smooth curve carries a global $\mathcal{O}(1)$. In general, not every \mathbb{P}^n-bundle is a scroll, although this is the case locally in the étale topology. (See [Art82] for the connection between this condition and Brauer-Severi varieties.) So, it is natural to look for more general characterizations of \mathbb{P}^n-bundles, without requiring the existence of a global $\mathcal{O}(1)$. We start by observing that Theorem F1 does not hold if we drop the assumptions on the line bundle \mathcal{L}. This is illustrated in the following example.
Example 1. Let $\nu : \mathbb{P}^n \to \mathbb{P}^N$ be the d-uple embedding of \mathbb{P}^n, with $n, d \geq 2$. Denote by V the image of ν in \mathbb{P}^N, and let $C(V) \subset \mathbb{P}^{N+1}$ be the cone over V with vertex P. Let Γ be a general pencil of hyperplane sections of $C(V)$ in \mathbb{P}^{N+1}. It gives rise to a projective flat morphism $\pi : X \to Y = \mathbb{P}^1$ whose fibers are precisely the members of Γ. There is a unique member of Γ that passes through P. It is isomorphic to the cone over a general hyperplane sections of V in \mathbb{P}^N. Let $o \in Y$ be the point corresponding to this singular member of Γ. Then $X_t \cong \mathbb{P}^n$ for every $t \in Y \setminus \{o\}$, while X_o is a singular cone.

We call the reader’s attention to the following properties of π.

- The locus of Y over which the fibers are not isomorphic to \mathbb{P}^n has codimension one in Y.
- The total space X is singular.

We will see that these properties are typical for non-smooth flat deformations of \mathbb{P}^n.

The following is the key result in our study of flat deformations of \mathbb{P}^n. We henceforth denote the unit ball of \mathbb{C}^m by Δ^m.

Theorem 2. Let X be a complex analytic space, and $\pi : X \to \Delta^m$ a projective surjective flat morphism, with $m \geq 2$. Suppose that $X_t \cong \mathbb{P}^n$ for every $t \in \Delta^m \setminus \{\bar{0}\}$. Then X is smooth and π is a scroll.

As a consequence of Theorem 2, the singular fibers of a projective flat deformation of \mathbb{P}^n appear either in codimension 1, or over rather singular points of the base. To state this precisely, we introduce some notation. Given a surjective morphism $\pi : X \to Y$ between algebraic varieties, we denote by S_π the locus of points of Y over which π is not smooth. It is a closed subset of Y.

Corollary 3. Let $\pi : X \to Y$ be a projective surjective flat morphism between algebraic varieties with general fiber isomorphic to \mathbb{P}^n, and fix $y \in S_\pi$. Suppose that there is a surjective quasi-finite morphism from a smooth variety onto a neighborhood of y in Y. Then S_π has pure codimension 1 at y.

Next we describe projective flat deformations of \mathbb{P}^n with smooth total space. In order to state our result, we introduce some more notation.

Notation-Remark 4. Let $\pi : X \to Y$ be a proper surjective equidimensional morphism between normal algebraic varieties. We denote by R_π the locus of points of Y over which the fibers of π are reducible. Note that R_π is a constructible set. Indeed, let d denote the relative dimension of π. Then, for every $y \in Y$, $H^{2d}(X_y, \mathbb{Z})$ is free and its rank is the number of irreducible components of X_y. On the other hand, the sheaf $R^{2d}\pi_*\mathbb{Z}_X$ is constructible by the proper base change theorem on étale cohomology and Artin’s comparison theorem (see [Mil80, Theorem VI.2.1]).

Theorem 5. Let X be a smooth complex quasi-projective variety, Y a normal complex quasi-projective variety, and $\pi : X \to Y$ a proper surjective flat morphism. Suppose that the general fiber of π is isomorphic to \mathbb{P}^n. Then either

1. Y is smooth and $\pi : X \to Y$ is a \mathbb{P}^n-bundle; or
2. S_π is of pure codimension 1, and $S_\pi = R_\pi$.

The second case described in Theorem 5 is exemplified by suitable blow-ups of \mathbb{P}^n-bundles.
It is also useful to have characterizations of \mathbb{P}^n-bundles without flatness assumptions. These can be obtained by applying our flatness criteria discussed in Section 3.

Notation. Our ground field is always \mathbb{C}.

Let $\pi : X \to Y$ be a morphism of complex analytic spaces. Given $t \in Y$, we denote by X_t the scheme-theoretical fiber over t. We refer to the reduced scheme $(X_t)_{\text{red}}$ as the set-theoretical fiber over t.

Given a locally free sheaf E on a complex analytic space X, we denote by $\mathbb{P}(E)$ the Grothendieck projectivization $\text{Proj}_X(\text{Sym}(E))$.

Varieties are always assumed to be irreducible and reduced.

2. Proofs

In order to characterize \mathbb{P}^n-bundles that are not necessarily scrolls, we will use the following lemma to construct “local $\mathcal{O}(1)$’s”. This result follows from the proof of [AM97, Lemma 3.3]. We reprove it here for the reader’s convenience.

Lemma 6. Let X and U be complex analytic spaces, with $U \setminus \{o\} \cong \Delta^m \setminus \{0\}$ for some point $o \in U$ and some $m \geq 2$. Let $\pi : X \to U$ be a surjective projective morphism whose restriction to $X \setminus \pi^{-1}(o)$ is a \mathbb{P}^n-bundle, and assume that $\text{codim}_X (\pi^{-1}(o)) \geq 2$. Let \mathcal{M} be a π-ample line bundle on X, and let $d \in \mathbb{Z}_{\geq 0}$ be such that $\mathcal{M}|_{X_t} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ for every $t \in U \setminus \{o\}$. Then there exists a coherent sheaf \mathcal{L} on X such that $\mathcal{L}|_{X \setminus \pi^{-1}(o)}$ is invertible and $(\mathcal{L}|_{X \setminus \pi^{-1}(o)})^\otimes d \cong \mathcal{M}|_{X \setminus \pi^{-1}(o)}$. If, moreover, X is smooth, then there is a line bundle \mathcal{L} on X such that $\mathcal{L}^\otimes d \cong \mathcal{M}$.

Proof. Set $U^* = U \setminus \{o\}$, $X^* = X \setminus \pi^{-1}(o)$, and $\mathcal{M}^* = \mathcal{M}|_{X^*}$. We will apply Leray spectral sequence to the morphism $\pi|_{X^*} : X^* \to U^*$ and the locally constant sheaf \mathbb{Z}_{X^*}. Set $E_2^{p,q} := H^p(U^*, R^q(\pi|_{X^*}), \mathbb{Z}_{X^*})$, and denote the differentials of the corresponding spectral sequence by $d_2^{p,q}$. The cohomology classes $c_1(\mathcal{M})^k$ yield the Leray-Hirsch theorem for \mathbb{Q}_{X^*} (see [Vo92, Theorem 7.33]) and its proof, or [BT82, p.192-3]). Hence, $d_2^{p,q} \otimes \mathbb{Q} = 0$ for $r \geq 2$, and abutment at E_2 follows by recursion on r, using that the $E_2^{p,q}$’s are free abelian groups. So there is an isomorphism of $H^*(U^*, \mathbb{Z})$-algebras

$$H^*(X^*, \mathbb{Z}) \cong H^*(U^*, \mathbb{Z}) \otimes H^*(\mathbb{P}^n, \mathbb{Z}).$$

In particular, $H^2(X^*, \mathbb{Z}) \cong \mathbb{Z}$, and the cokernel of the composed Chern class map

$$c_1 : \text{Pic}(X^*) \to H^2(X^*, \mathbb{Z}) \cong \mathbb{Z}$$

is finite. On the other hand, this cokernel injects into $H^2(X^*, \mathcal{O}_{X^*})$, which is torsion-free. Hence c_1 is surjective.

Note that $c_1(\mathcal{M}^*) = d$. Since the kernel of c_1 is divisible, there is a line bundle \mathcal{L} on X^* such that $(\mathcal{L}^*)^\otimes d \cong \mathcal{M}^*$. We take \mathcal{L} to be a coherent sheaf on X extending \mathcal{L}^* (see [Ser66, Theorem 1]). If X is smooth, then, since $\text{codim}_X (X \setminus X^*) \geq 2$, there is an isomorphism $\mathcal{P}(\mathcal{L}^*) \cong \mathcal{P}(\mathcal{L})$. Let $\mathcal{L} \in \text{Pic}(X)$ correspond to $\mathcal{L}^* \in \text{Pic}(X^*)$. Then $\mathcal{L}^\otimes d \cong \mathcal{M}$.

Proof of Theorem 5. In order to show that π is a \mathbb{P}^n-bundle, it suffices to prove that the scheme-theoretical fiber X_0 over $0 \in \Delta^m$ is isomorphic to \mathbb{P}^n. By intersecting Δ^m with a 2-plane passing through 0, we may assume that $m = 2$.

Let \mathcal{M} be a π-ample line bundle on X, and let $d \in \mathbb{Z}$ be such that $\mathcal{M}|_{X_t} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ for every $t \in \Delta^2 \setminus \{0\}$. The restriction $\mathcal{M}|_{X_0}$ is ample. Hence, by replacing \mathcal{M}
with a sufficiently high tensor power if necessary, we may assume that $M|_{X_t}$ is very ample and that $H^i(X_t, M|_{X_t}) = 0$ for every $t \in \Delta^2$ and $i > 0$. Since π is flat, $\chi(X_t, M|_{X_t})$ is constant on $t \in \Delta^2$, and hence so is $h^0(X_t, M|_{X_t})$. Set $\mathcal{F} = \pi_* M$. Then \mathcal{F} is locally free and the natural map $\pi^* \mathcal{F} \to M$ is surjective (see for example [Loo75] Theorem 1.4)). This yields an embedding $i : X \to \mathbb{P}(\mathcal{F})$ over Δ^2.

By Lemma 6 there is a coherent sheaf \mathcal{E} on X such that $\mathcal{E}|_{X \setminus \pi^{-1}(\bar{0})}$ is invertible and $(\mathcal{E}|_{X \setminus \pi^{-1}(\bar{0})})^{\otimes d} \cong M|_{X \setminus \pi^{-1}(\bar{0})}$. Set $\mathcal{E} = \pi_*(\mathcal{F})^{\vee \vee}$. Since Δ^2 is smooth and two-dimensional, \mathcal{E} is locally free (see for example [OSS80] II. Lemma 1.1.10)). Consider the projectivization $p : \mathbb{P}(\mathcal{E}) \to \Delta^2$, with tautological line bundle $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$. There is an isomorphism $\varphi : \mathbb{P}(\mathcal{E}) \setminus p^{-1}(\bar{0}) \cong X \setminus \pi^{-1}(\bar{0})$ such that $\varphi^*(M|_{X \setminus \pi^{-1}(\bar{0})}) = \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d)|_{\mathbb{P}(\mathcal{E}) \setminus p^{-1}(\bar{0})}$.

Note that $p_* \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d)$ is locally free and that the natural map $p^* p_* \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d) \to \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d)$ is surjective. The corresponding morphism $\mathbb{P}(\mathcal{E}) \to \mathbb{P}(p_* \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d))$ is an embedding over Δ^2, which restricts to the d-uple embedding of \mathbb{P}^n on each fiber of p. By construction, the locally free sheaves $p_* \mathcal{O}_{\mathbb{P}(\mathcal{E})}(d)$ and \mathcal{F} are isomorphic over $\bigcup \{0\}$, hence isomorphic over Δ^2. Thus, there is an embedding $j : \mathbb{P}(\mathcal{E}) \to \mathbb{P}(\mathcal{F})$ over Δ^2 such that $j = i \circ \varphi$ on $\mathbb{P}(\mathcal{E}) \setminus p^{-1}(\bar{0})$. It follows that the closure of $i(X \setminus \pi^{-1}(\bar{0}))$ in $\mathbb{P}(\mathcal{E})$ is $j(\mathbb{P}(\mathcal{E}))$, and thus $X \cong \mathbb{P}(\mathcal{E})$.

Once we know that π is a \mathbb{P}^n-bundle, we use Lemma 6 to construct a global $\mathcal{O}(1)$ for π.

Proof of Corollary 5. Let U be a smooth variety, and $U \to V$ a surjective quasi-finite morphism onto an open subset $V \subset Y$. Theorem 2 applied to the induced flat morphism $X \times_Y U \to U$ shows that S_π has pure codimension 1 on V.

Proof of Theorem 5. First we prove that S_π is either empty or has pure codimension 1. Given $y \in S_\pi$, let $Z \subset X$ be a complete intersection of n general very ample divisors on X. Then Z is smooth by Bertini’s Theorem, and $\pi|_Z : Z \to Y$ is finite over a neighborhood of y. Our claim follows from Corollary 5.

If $S_\pi = \emptyset$, then Y is smooth. Indeed, given $y \in Y$, by Bertini’s Theorem, we can take Z as above such that $\pi|_Z : Z \to Y$ is unramified over y.

Next, we show that R_π is Zariski dense in S_π. Let $C \subset Y$ be a smooth curve obtained as complete intersection of general very ample divisors on Y. Then $X_C = \pi^{-1}(C)$ is smooth by Bertini’s Theorem, and C intersects every irreducible component of S_π at general points. Set $U := C \setminus R_\pi$ and $X_U := \pi^{-1}(U)$. The relative Picard number $\rho(X_U/U)$ equals 1, since every fiber of π over U is irreducible. Let $V \subset U$ be an open subset over which π is a \mathbb{P}^n-bundle. Since $\dim V = 1$, every \mathbb{P}^n-bundle over V is a scroll. Hence there is a line bundle \mathcal{L}_V on $\pi^{-1}(V)$ such that $\mathcal{L}_V|_{X_t} \cong \mathcal{O}_{\mathbb{P}^n}(1)$ for every $t \in V$. We can extend \mathcal{L}_V to a line bundle \mathcal{L} on X_C. The restriction of \mathcal{L} to X_U is π-ample since $\rho(X_U/U) = 1$. Since $c_1(\mathcal{L})^n \cdot X_t = 1$ for every $t \in C$, all fibers of π over U are reduced. Theorem F1 then implies that $\pi|_{X_U} : X_U \to U$ is a \mathbb{P}^n-bundle. This shows that $R_\pi = S_\pi$.

3. **Flatness criteria**

It is often useful to have characterizations of \mathbb{P}^n-bundles without flatness assumptions. In this context, we recall the following result of Fujita.

Theorem F2 ([Fuj87] Lemma 2.12]). Let X be a smooth complex projective variety, Y a normal complex projective variety, and $\pi : X \to Y$ a surjective equidimensional
morphism. Let L be an ample line bundle on X, and suppose that $(X_t, L|_{X_t}) \cong (\mathbb{P}^n, O_{\mathbb{P}^n}(1))$ for general $t \in Y$. Then Y is smooth, π is a \mathbb{P}^n-bundle, and L is a global $O(1)$ for π.

One reduces Theorem F2 to Theorem F1 by applying the following flatness criterion.

Criterion 7 ([Gro66, 6.1.5]). An equidimensional proper morphism $\pi : X \to Y$ of algebraic varieties is flat, provided that Y is smooth and X is locally Cohen-Macaulay.

Remark 8. Let $\pi : X \to Y$ be a finite flat morphism of algebraic varieties. Suppose that Y is locally Cohen-Macaulay at a point $y = \pi(x)$. We claim that X is locally Cohen-Macaulay at x. Indeed, by [Eis95, Corollary 18.17], this is the case if Y is smooth at y. The general case can be reduced to this one by applying Noether normalization theorem to Y and observing Criterion 7.

More refined flatness criteria can be found in [Kol95] and [Kol11]. The problem is more delicate under the presence of everywhere nonreduced fibers. The next example illustrates this situation.

Example 9. Let σ be an involution of \mathbb{P}^n. Consider the diagonal action of μ_2 on $\mathbb{P}^n \times \mathbb{A}^2$, where the action on \mathbb{P}^n is given by σ, and the action on \mathbb{A}^2 is given by the antipodal map. Set $X := (\mathbb{P}^n \times \mathbb{A}^2)/\mu_2$, $Y := \mathbb{A}^2/\mu_2$, and denote by $o \in Y$ the unique singular point of Y. The actions induce a proper equidimensional morphism $\pi : X \to Y$ such that $X_t \cong \mathbb{P}^n$ for $t \in Y \setminus \{o\}$, while X_o is not generically reduced. Moreover $(X_o)_{\text{red}} \cong \mathbb{P}^n/\mu_2$. Note that $\pi : X \to Y$ is not flat. This can be seen by considering the induced morphism $X \times_Y \mathbb{A}^2 \to \mathbb{A}^2$ and applying Theorem 7.

We end the paper with some flatness criteria.

Proposition 10. Let $\pi : X \to Y$ be a projective surjective equidimensional morphism between normal algebraic varieties. Then π is flat at $x \in X$, provided that one of the following conditions holds.

1. π has connected fibers, X is smooth at x, and there is a surjective quasi-finite morphism from a smooth variety onto a neighborhood of $\pi(x)$ in Y that is étale in codimension 1.
2. X is locally Cohen-Macaulay at x, and there is a finite flat morphism from a smooth variety onto a neighborhood of $\pi(x)$ in Y.

Remark 11. The last part of condition (1) above holds for example if the fiber through x has a generically reduced irreducible component, or if $\pi(x)$ is a quotient singularity of Y.

Proof. Assume (1) holds. Let $U \to V$ be a surjective quasi-finite morphism from a smooth variety onto a neighborhood of $\pi(x)$, étale in codimension 1. Set $X' := X \times_Y U$, and note that it is irreducible since π has connected fibers and X is normal (and so is the general fiber of π). The induced morphism $\varphi : X' \to X$ is quasi-finite and étale in codimension 1. By purity of the branch locus (see [AK71]), we conclude that φ is étale, and thus X' is smooth at any point x' over $x \in X$. The induced morphism $\pi' : X' \to U$ is then flat at x' by Criterion 7 hence π is flat at x (see [Har77, Theorem III.9.9]).

Assume (2) holds. Let $U \to V$ be a finite flat morphism from a smooth variety onto a neighborhood of $\pi(x)$. Set $X' := X \times_Y U$. By Remark 8 X' is locally
Cohen-Macaualay at any point \(x' \) over \(x \in X \). The induced morphism \(\pi' : X' \rightarrow U \) is then flat at \(x' \) by Criterion\(^7\) hence \(\pi \) is flat at \(x \).

\[\square \]

Remark 12. Theorem F2 can be generalized to normal varieties \(X \) (see [AD12, Proposition 4.10]). Other characterizations of scrolls in a similar vein appear in [HN12].

References

[AD12] C. Araujo and S. Druel, *On codimension 1 del pezzo foliations on varieties with mild singularities*, pre-print math.AG/1210.4013, 2012.

[AK71] A. Altman and S. Kleiman, *On the purity of the branch locus*, Comp. Math. 23 (1971), no. 4, 461–465.

[AM97] M. Andreatta and M. Mella, *Contraction on a manifold polarized by an ample vector bundle*, Trans. Amer. Math. Soc. 349 (1997), no. 11, 4669–4683.

[Art82] M. Artin, *Brauer-Severi varieties*, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 194–210.

[BT82] R. Bott and L. Tu, *Differential forms in algebraic topology*, Graduate Texts in Mathematics, vol. 82, Springer, New York, 1982.

[Eis95] D. Eisenbud, *Commutative algebra with a view toward algebraic geometry*, GTM, Springer-Verlag, New York, 1995.

[Fuj75] T. Fujita, *On the structure of polarized varieties with \(\Delta \)-genera zero*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 103–115.

[Fuj87] T. Fujita, *On polarized manifolds whose adjoint bundles are not semipositive*, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 167–178.

[Gro66] A. Grothendieck, *Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (3ème partie)*, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28.

[Har77] R. Hartshorne, *Algebraic geometry*, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.

[Kol95] J. Kollár, *Flatness criteria*, J. Algebra 175 (1995), no. 2, 715–727.

[Kol11] János Kollár, *Simultaneous normalizations and algebra husks*, Asian J. Math. 15 (2011), no. 3, 437–450.

[Mil80] J.S. Milne, *Étale Cohomology*, Universitext, Princeton University Press, Princeton, 1980.

[OSS80] C. Okonek, M. Schneider, and H. Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics, vol. 3, Birkhäuser Boston, Mass., 1980.

[Ser66] J. P. Serre, *Prolongement de faisceaux analytiques cohérents*, Ann. Inst. Fourier 16 (1966), no. 1, 363–374.

[Siu92] Y. T. Siu, *Nondeformability of the complex projective space*, J. Reine Angew. Math. 399, Errata 431 (1992), 208–219, Errata 65–74.

[Uen75] K. Ueno, *Classification theory of algebraic varieties and compact complex spaces*, Springer-Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 439.

[Voic02] C. Voisin, *Hodge theory and complex algebraic geometry I*, Cambridge studies in advanced mathematics, vol. 76, CUP, Cambridge, UK, 2002.