Unexplained cyanosis revealing hepatopulmonary syndrome in a child with asymptomatic congenital hepatic fibrosis: a case report

Atqah Abdul Wahab1*, Maryam Al-Mansoori1, Mariam El-Hawli1 and Vishwanatha Kini2

Abstract
Introduction: Hepatopulmonary syndrome is a rare disease that affects patients of any age with acute or chronic liver disease. Liver transplantation is the only therapeutic option of proved benefit, and can result in substantial improvement or total improvement in postoperative gas exchange abnormalities.

Case presentation: We report the case of a cyanotic 13-year-old Pakistani boy whose chest computed tomography scan showed normal lung fields and mediastinum with incidental findings of a prominent liver surface with a collateral vein connecting a portal cavernoma to the dilated terminal inferior vena cava. Sonography of his abdomen along with a portal venous Doppler study showed multiple collateral veins replacing the portal vein. A liver biopsy revealed congenital hepatic fibrosis. Contrast-enhanced echocardiography with agitated saline and a 99m Technetium-macroaggregated albumin perfusion lung scan confirmed intrapulmonary shunting. The patient underwent a successful liver transplantation that resulted in improved gas exchange.

Conclusions: Hepatopulmonary syndrome should be included in the differential diagnosis of unexplained hypoxemia with an evaluation of possible portal hypertension or liver disease even in the absence of other clinical symptoms.

Keywords: Hepatopulmonary syndrome, Congenital hepatic fibrosis, Liver transplantation

Introduction
Hepatopulmonary syndrome (HPS) is a complication of portal hypertension defined by the presence of liver disease, hypoxemia, and evidence of intrapulmonary vascular dilatations (IPVD) producing intrapulmonary shunting [1]. The hallmark of HPS is the presence of IPVD, which may be secondary to portal hypertension producing a right-to-left intrapulmonary shunt [1,2]. The vascular dilatations cause over perfusion relative to ventilation, leading to ventilation-perfusion mismatch and hypoxemia. Liver transplantation is the only therapeutic option of proved benefit, and it can result in substantial improvement or total resolution in postoperative gas exchange [3]. However, the postoperative mortality rate of patients with severe hypoxemia before transplantation has been high [1]. Patients with a baseline PaO2 ≤50mm Hg have been associated with a poor survival rate [4]. We describe a rare case of a child presenting with unexplained hypoxemia in asymptomatic liver disease, revealing HPS and improved gas exchange post liver transplant.

Case presentation
A 13-year-old Pakistani boy presented to our clinic with cyanosis, an intermittent cough, decreased exercise tolerance and episodes of bluish discoloration of his hands and feet that had been ongoing for one year. A clinical examination revealed clubbing and cyanosis with room air oxygen saturation of 88% in the supine position and 87% while sitting. There was no history of jaundice, cholangitis, hematemesis, melena or rashes. The chest was clear and there was no heart murmur. An abdominal examination revealed no abnormalities. There was no hepatosplenomegaly. Skin examination showed no stigmata of chronic liver disease. The patient had an increased alveolar-arterial gradient (A-a PO2 gradient) of 26mm Hg and was started on two liters of oxygen that improved his oxygen
saturation to 97%. His chest X-ray and echocardiogram were normal. Spirometry revealed normal percentages of predicted FEV$_1$ (forced expiratory volume in one second) 90%, FVC (forced vital capacity) 86%, and FEV1/FVC 89%. Cardiac catheterization showed normal pulmonary pressure. His chest computed tomography (CT) scan was normal. An incidental finding of a prominent liver surface and collateral vessels connecting a dilated portal to the dilated terminal inferior vena cava (IVC) and mild splenomegaly was noted. Sonography of his abdomen along with the portal venous Doppler study showed a dilated portal vein. A magnetic resonance imaging (MRI) scan of his abdomen showed attenuated hepatic veins and normal intrahepatic portal vein branches with a maintained texture pattern. The main portal vein was replaced by multiple prominent collaterals transforming to a portal cavernoma (Figure 1).

His liver function tests, coagulation profiles, serum ceruloplasmin, alpha-1 antitrypsin, antinuclear antibodies (ANA), and antineutrophil cytoplasmic antibodies (ANCA) were all normal. Endoscopy of his upper gastrointestinal tract showed no esophageal varices. An ultrasound-guided liver biopsy showed hepatocytes in lobules without significant inflammation or necrosis, surrounding portal fibrosis and bile duct proliferation in the fibrosis areas with bile stasis and little inflammation, all suggestive of congenital hepatic fibrosis (Figure 2A, B).

Contrast-enhanced echocardiography with agitated saline (CEE) and a 99mTc Technetium-macroaggregated albumin perfusion lung scan (99mTc-MAA) were compatible with an intrapulmonary right-to-left shunt. CEE is considered diagnostic if the bubbles are in the left heart cavities at least three beats after their visualization in the right cavities, as was found in our patient [5]. 99mTc-MAA is an injectable radiopharmaceutical used in nuclear medicine. It consists of a sterile aqueous suspension of Technetium-99m (99mTc) labeled to human albumin aggregate particles in the pH range of 3.8 to 8.0. 99mTc-MAA perfusion scanning is a more sensitive procedure as it allows quantification of the degree of intrapulmonary shunting. 99mTc-MAA particles >20mm in diameter are entrapped in pulmonary vasculature and undergo decay [6]. In patients with a right-to-left shunt, the 99mTc-MAA enters the systemic circulation and distributes to systemic organs, as was found in our patient.

The patient underwent a successful living-related liver transplantation with no serious complications. Histopathology of his liver resection confirmed congenital hepatic fibrosis. The patient required oxygen in the

Figure 1 Coronal magnetic resonance imaging (MRI) scan of the chest and abdomen section: dilated portal vein (long arrow) and congested mesenteric veins (short arrow).

Figure 2 Hematoxylin and eosin stain of liver tissue (400X magnification). (A) Bile duct proliferation in the fibrosis areas with bile stasis and little inflammation. (B) Hepatocytes in lobules without significant inflammation or necrosis and surrounding portal fibrosis.
initial postoperative three months until his PO₂ improved to 90mm Hg in room air and he did not require further oxygen therapy.

Discussion

HPS is a rare complication of congenital hepatic fibrosis. Poor oxygenation with no major abnormalities detected from chest imaging and spirometry was the best diagnostic clue in this case.

HPS was first described in 1977 by Kennedy and Knudson [7]. The currently accepted diagnostic criteria for HPS are (1) presence of portal hypertension or liver failure, (2) decrease of arterial PO₂ (PaO₂ <70mm Hg, or in-clue in this case. HPS is a rare complication of congenital hepatic fibrosis.

Discussion

initial postoperative three months until his PO₂ improved to 90mm Hg in room air and he did not require further oxygen therapy.

Discussion

HPS is a rare complication of congenital hepatic fibrosis. Poor oxygenation with no major abnormalities detected from chest imaging and spirometry was the best diagnostic clue in this case.

HPS was first described in 1977 by Kennedy and Knudson [7]. The currently accepted diagnostic criteria for HPS are (1) presence of portal hypertension or liver failure, (2) decrease of arterial PO₂ (PaO₂ <70mm Hg, or in-clue in this case. HPS is a rare complication of congenital hepatic fibrosis.

Discussion

initial postoperative three months until his PO₂ improved to 90mm Hg in room air and he did not require further oxygen therapy.

Discussion

HPS is a rare complication of congenital hepatic fibrosis. Poor oxygenation with no major abnormalities detected from chest imaging and spirometry was the best diagnostic clue in this case.

HPS was first described in 1977 by Kennedy and Knudson [7]. The currently accepted diagnostic criteria for HPS are (1) presence of portal hypertension or liver failure, (2) decrease of arterial PO₂ (PaO₂ <70mm Hg, or in-clue in this case. HPS is a rare complication of congenital hepatic fibrosis.

Discussion

initial postoperative three months until his PO₂ improved to 90mm Hg in room air and he did not require further oxygen therapy.

Discussion

HPS is a rare complication of congenital hepatic fibrosis. Poor oxygenation with no major abnormalities detected from chest imaging and spirometry was the best diagnostic clue in this case.

HPS was first described in 1977 by Kennedy and Knudson [7]. The currently accepted diagnostic criteria for HPS are (1) presence of portal hypertension or liver failure, (2) decrease of arterial PO₂ (PaO₂ <70mm Hg, or in-clue in this case. HPS is a rare complication of congenital hepatic fibrosis.
9. Anand AC, Mukherjee D, Rao KS, Seth AK. Hepatopulmonary syndrome: prevalence and clinical profile. Indian J Gastroenterol 2001, 20:24–27.
10. Ishak KG, Sharp H. Developmental abnormalities and liver disease in childhood. In Pathology of the liver. 3rd edition. Edited by MacSween RN, Burt AD, Portmann BC, Ishak KG, Scheuer PJ, Anthony PP. Edinburgh: Churchill Livingstone; 2001:107–154.
11. Nagral A, Nabi F, Humar A, Nagral S, Doctor N, Khubchandani SR, Arndekar YK. Reversal of severe hepato-pulmonary syndrome in congenital hepatic fibrosis after living-related liver transplantation. Indian J Gastroenterol 2007, 26:88–89.
12. Collisson EA, Nourmand H, Fraiman MH, Cooper CB, Bellamy PE, Farmer DG, Vierling JM, Ghobrial RM, Busuttil RW. Retrospective analysis of the results of liver transplantation for adults with severe hepatopulmonary syndrome. Liver Transpl 2002, 8:925–931.
13. Tannuri AC, Gibelli NE, Ricardi LR, Santos MM, Maksoud-Filho JG, Pinho-Apezzato ML, Silva MM, Velhote MC, Ayoub AA, Andrade WC, Leal AJ, Miyatani HT, Tannuri U. Living related donor liver transplantation in children. Transplant Proc 2011, 43:161–164.

doi:10.1186/1752-1947-7-120
Cite this article as: Wahab et al: Unexplained cyanosis revealing hepatopulmonary syndrome in a child with asymptomatic congenital hepatic fibrosis: a case report. Journal of Medical Case Reports 2013 7:120.