V–A sum rules with D=10 operators

K.N. Zyablyuk

Institute of Theoretical and Experimental Physics, B.Cheremushkinskaya 25, Moscow 117218, Russia. e-mail: zyablyuk@itep.ru

1 Introduction

The QCD sum rules \cite{1} have been widely used for the determination of fundamental theoretical parameters, such as the coupling constant α_s, quark masses and various nonperturbative condensates. Their accuracy depends on experimental errors and theoretical uncertainties. In many cases both experimental and theoretical errors are comparable by the order of magnitude, and any improvement is of interest.

In this paper we will consider the 2-point correlators of charged vector and axial-vector currents, constructed from light u,d-quarks:

$$\Pi^{(V)}_{\mu\nu}(q) = i \int dx e^{iqx} \langle TU^\dagger_{\mu}(x)U_{\nu}(0) \rangle$$

$$= (q_\mu q_\nu - g_{\mu\nu} q^2) \Pi^{(1)}_{V}(q^2) + q_\mu q_\nu \Pi^{(0)}_{V}(q^2)$$

(1)

where

$$U = V, A : \quad V_\mu = \bar{u}\gamma_\mu d, A_\mu = \bar{u}\gamma_\mu\gamma^5 d.$$

The polarization functions $\Pi^{(i)}(s)$ have a cut along the real axes in the complex $s = q^2$ plane. Their imaginary parts (spectral functions)

$$v_1/a_1(s) = 2\pi \text{Im} \Pi^{(1)}_{V/A}(s + i0),$$

$$a_0(s) = 2\pi \text{Im} \Pi^{(0)}_{A}(s + i0)$$

(2)

have been measured for $0 < s < m_c^2$ by ALEPH \cite{2} and OPAL \cite{3} collaborations from hadronic decays of τ-lepton.

Of particular interest is the difference $\Pi^{(V)}_{V/A}(s) - \Pi^{(A)}_{A}$, since it does not contain any perturbative contribution in the massless quark limit. The experimental data on the difference $v_1(s) - a_1(s)$ are shown in Fig. 1. As demonstrated in \cite{4}, the dispersion relation can be written in the following form:

$$\Pi^{(1)}_{V}(s) - \Pi^{(1)}_{A}(s) = \frac{1}{2\pi^2} \int_0^\infty \frac{v_1(t) - a_1(t)}{t-s} dt + \frac{f_\pi^2}{s}$$

$$= \sum_{D \geq 4} \frac{O^{V-A}_D}{(s)^{D/2}}$$

(3)

where the sum goes over even dimensions D of the operators (condensates) O_D. The term $f_\pi = 130.7$ MeV is the pion decay constant, is the kinematical pole of the axial polarization function Π^{A}_D, see \cite{4} for details. In \cite{5} and below the notation O^{V-A}_D stands for the condensates with all α_s corrections, including slowly varying logarithmic terms $\sim \ln^k(-s)$. The list of the condensate contribution to the vector and axial correlators separately can be found in \cite{5}.

The sum rules for the difference \cite{8} have been studied in \cite{4, 6, 10, 12} where the lowest order condensates O^{V-A}_6 were found. Although the published values of O^{V-A}_6 are close to each other (within the errors), this is not the case for the operator O^{V-A}_8. In \cite{4, 6} positive values of the $D = 8$ condensate were found, but the authors of recent publications \cite{9, 12} have obtained negative condensate O^{V-A}_8. The source of this discrepancy could be very large condensates of dimension $D = 10$ and higher, accounted in \cite{9, 12}: a typical ratio of the condensates in these papers is $|O_{2n+2}/O_{2n}| \sim 5 - 10$ GeV2. If this statement is correct, the OPE analysis of \cite{4} would be invalid, because the contribution of unknown high-order terms was estimated from the assumption $|O_{10}/O_6| \lesssim 1 - 2$ GeV4. For this reason it would be interesting to find the operator O^{V-A}_{10} independently and compare it with the sum rule results.

In this paper we repeat the analysis of \cite{4} with the $D = 10$ operator included. In Section 2 all necessary $V - A$ operators, obtained from the Operator Product Expansion in QCD, are listed and their values are estimated within
the framework of the factorization hypothesis. In Section 3 the operator values are obtained from the fit to Borel sum rules. In the last Section the validity of our assumptions is discussed and the results are compared with the ones obtained in other publications. The complete form of the $D = 10$ operator and technical details of its derivation are dropped to Appendices A,B.

2 V–A operator expansion

The first term in the operator series (3) is the $D = 4$ operator:

$$O_{4}^{V–A} = 2(m_u + m_d)\langle\bar{q}q\rangle$$

$$× \left[1 + \frac{4}{3} \frac{\alpha_s(Q^2)}{\pi} + \frac{59}{6} \frac{\alpha_s(Q^2)}{\pi} \right]$$ (4)

where $Q^2 = -q^2$, we assume $\langle\bar{u}u\rangle = \langle\bar{d}d\rangle = \langle\bar{q}q\rangle$. The α_s corrections have been computed in (13) and (14). In fact, the contribution of the $D = 4$ operator to the sum rules considered here, is small. So we can safely neglect the α_s corrections in (4) and put $O_{4}^{V–A} = -f_{\pi}^2 m_{\pi}^2 = -3.3 \times 10^{-4}$ GeV4, as follows from Gell-Mann-Oakes-Renner low energy theorem (15).

The $D = 6$ operator in factorized form is equal to:

$$O_{6}^{V–A} = -8\pi C_N \alpha_s \langle\bar{q}q\rangle^2 \left[1 + \frac{\alpha_s(\mu^2)}{\pi} \left(c_6 - \frac{1}{4} \ln \frac{Q^2}{\mu^2} \right) \right]$$ (5)

where $C_N = 1 - N_c^{-2} = 8/9$ is the color factor, which appears in the factorization of the 4-quark operators at the leading α_s order. The NLO terms were computed in (16) and the constant c_6 was found equal to $247/48$. In (17) another treatment of γ^5 matrix in dimensional regularization was employed, leading to $c_6 = 89/48$. For the later choice at $\mu = 1$ GeV and $\alpha_s(\mu^2) = 0.5$ one finds the factor in square brackets in (5) equal to 1.3 (the logarithmic term can be neglected due to small numerical coefficient).

The contribution of the $D = 8$ 4-quark condensates to the vector current correlator was originally obtained in (18) in factorized form and in (19) in complete (nonfactorized) form. In (4) these results were verified and an ambiguity of the factorization at the N_c^{-2} order was pointed out. Here we will follow the factorization procedure, described in Appendix B. The result is:

$$O_{8}^{V–A} = 8\pi C_N \alpha_s m_0^2 \langle\bar{q}q\rangle^2,$$ (6)

where the mass m_0 is defined from the 5-dimensional quark-gluon mixed condensate:

$$i\langle\bar{q}Gq\rangle = 2\langle\bar{q}D^2q\rangle = -m_0^2\langle\bar{q}q\rangle$$ (7)

where $\hat{G} = \gamma_\alpha\gamma_\beta G_{\alpha\beta}$, $G_{\alpha\beta} = i[D_\alpha, D_\beta]$ is the gluon field strength, see Appendix A for more definitions. The parameter m_0^2 has a meaning of typical momentum of virtual quarks in vacuum. It was found from baryonic sum rules $m_0^2 = 0.8 \pm 0.2$ GeV2 (20,21), and $B - B^*$ splitting (22). The values close to 1 GeV2 were also obtained from the latest lattice calculation (23) and in QCD string model (24).

There are many different condensates of dimension $D = 10$. They can be grouped into four parts:

$$O_{10}^{V–A} = O_{10}^{(0)} + O_{10}^{(2)} + O_{10}^{(4)} + O_{10}^{(6)}$$ (8)

where upper index (i) denotes the number of quarks in vacuum. This separation is shown diagrammatically in Fig. 2. The purely gluonic operators $O_{10}^{(0)}$ and the 2-quark ones $O_{10}^{(2)}$ cancel in the $V – A$ correlator in the limit of massless u, d-quarks. The operators with 6 quarks in vacuum have the structure $\langle\bar{q}q\rangle^2 \langle\bar{q}Dq\rangle$. After factorization they become $\sim m^3 \langle\bar{q}q\rangle^3$, which is again negligible for light quarks. The only essential contribution to the $V – A$ sum rules comes from the 4-quark operators $O_{10}^{(4)}$.

In this paper we have computed the contribution of the 4-quark condensates to the vector and axial current correlator. Details of calculation and complete form of the operator $O_{10}^{(4)}$ are given in Appendix A. The factorization scheme necessary to reduce large number of independent structures, is described in Appendix B. The result is:

$$O_{10}^{V–A} = \pi \alpha_s C_N \left[50 \langle\bar{q}Gq\rangle^2 - 16 \left(3X_1 - X_2 + X_3 + \frac{7}{6}X_4\right)\langle\bar{q}q\rangle^2\right]$$ (9)

In (9) the factor C_N was ignored, since $O(N_c^{-2})$ terms were neglected.
where X_i are 4 independent $D = 7$ quark-gluon condensates:

$$X_1 = \langle \bar{q}G_{\alpha\beta}G_{\alpha\beta}q \rangle, \quad X_2 = i\langle \bar{q}\gamma^5G_{\alpha\beta}\tilde{G}_{\alpha\beta}q \rangle, \quad X_3 = \langle \bar{q}G_{\alpha\beta}G_{\alpha\gamma}G_{\beta\gamma}q \rangle, \quad X_4 = i\langle \bar{q}\gamma_{\alpha\beta}(D_{\alpha\beta}J_3)q \rangle. \quad (10)$$

where $\tilde{G}_{\alpha\beta}$ is the dual gluon-field strength, $\gamma_{\alpha\beta} = \frac{1}{2}(\gamma_\alpha\gamma_\beta - \gamma_\beta\gamma_\alpha)$ and $J_3 = D_\beta G_{\alpha\beta}$. Their numerical values are not known. The condensate X_4 can be brought to the 4-quark form $X_4 \sim \langle (\bar{q}q)(\bar{q}Dq) \rangle \sim m(\bar{q}q)^2$, which is negligible. In order to estimate other condensates, we assume further factorization according to $\langle \bar{q}Gq \rangle = \langle \bar{q}q \rangle \langle \bar{q}q \rangle / (4N_c)$, the trace is taken both over color and spinor indices. Then:

$$X_1 = \frac{2\pi}{3}\alpha_s \langle \bar{q}G_{\alpha\beta}G_{\alpha\beta}q \rangle \langle \bar{q}q \rangle, \quad X_2 = X_3 = X_4 = 0. \quad (11)$$

Under these assumptions the operator O_9 takes the form:

$$O_{10}^{V-A} = -\pi \alpha_s C_N \langle \bar{q}q \rangle^2 \left[\frac{50}{9} m_0^4 + 32\pi \alpha_s \langle G^2 \rangle \right]. \quad (12)$$

It is rather difficult to find accurate value of the gluon condensate from any sum rule. Detailed analysis of charmonium sum rules performed in [25] has lead to the restriction $\langle \bar{q}q \rangle / G^2 \geq 0.009 \pm 0.007$ GeV4, in agreement with many previous estimations. Taking this central value and $m_0^2 = 1$ GeV2, one obtains $O_{10}^{V-A}/O_{10}^{V} = 0.8$ GeV4. For $O_{10}^{V-A} = -6.8 \pm 2.1 \times 10^{-3}$ GeV6 [3] we find the following estimation of the $D = 10$ $V - A$ condensate:

$$O_{10}^{V-A} = -5 \times 10^{-3} \text{GeV}^{10} \quad (13)$$

In the next section we will compare this estimation with results of the fit, obtained from the sum rules.

3 V–A sum rules

Many different sum rules have been investigated in order to determine numerical values of the condensates. Most of authors employ polynomial sum rules: the correlator $\Pi_{\alpha}^{(s)}(s) = \Pi_{\alpha}^{(s)}(s)$ is multiplied on some polynomial of s and then integrated over the circle $|s| = s_0$ in the complex s-plane. Their advantages are: 1) one does not need to know the spectral function $\nu_1(s) - a_1(s)$ for $s > s_0$, which allows to reduce high error from the region $s \approx m_2^2$ by choosing s_0 reasonably below m_2^2 and 2) all operators of dimension higher then the polynomial dimension, do not enter these sum rules due to Cauchy theorem. But the disadvantages are also obvious. If the operator expansion is divergent (asymptotic), the Cauchy theorem is not applicable to this series. Moreover, possible logarithmical terms $\sim \ln^k Q^2 / Q^{2n}$ appear at the NLO in α_s expansion. These terms contribute to any polynomial sum rules. It makes uncontrollable the contribution of the high order operators to the polynomial sum rules at $s_0 \lesssim 2$ GeV2, especially for large ones as obtained in [9,12].

For these reasons we prefer Borel sum rules, where the high order operators are suppressed as $O_{2n}/n!$. In order to separate out the contributions of different operators from each other, one may consider the Borel transformation in the complex plane of the Borel mass $M^2 \to M^2 e^{i(\tau - \phi)}$ (which is equivalent to the Borel operator applied to the dispersion relation [3] written along the ray $s = s e^{i\phi}$ in the complex s-plane [4]). The real and imaginary parts of the Borel transformation are:

$$\int_0^{s_m} \exp \left(\frac{s}{M^2} \cos \phi \right) \cos \left(\frac{s}{M^2} \sin \phi \right) (v_1 - a_1)(s) \frac{ds}{2\pi^2} = f_\pi^2 + \sum_{k=1}^{\infty} (-k \cos(k\phi)) \int_0^{\infty} \exp \left(\frac{s}{M^2} \sin \phi \right) (v_1 - a_1)(s) \frac{ds}{2\pi^2 M^2} \quad (14)$$

$$\int_0^{s_m} \exp \left(\frac{s}{M^2} \cos \phi \right) \sin \left(\frac{s}{M^2} \sin \phi \right) (v_1 - a_1)(s) \frac{ds}{2\pi^2 M^2} = \sum_{k=1}^{\infty} (-k \sin(k\phi)) \int_0^{\infty} \exp \left(\frac{s}{M^2} \sin \phi \right) (v_1 - a_1)(s) \frac{ds}{2\pi^2 M^2} \quad (15)$$

We made the imaginary part [15] dimensionless, while the real part [14] has dimension GeV2 in order to separate out the leading constant term f_π^2. The logarithmical terms are neglected in the rhs of [14,15], otherwise the terms $\sim \ln M^2$ appear. The only known logarithmical term is in the α_s-correction to the $D = 6$ operator [3]. It can be easily taken into account (see [3] for explicit formulae), but its relative contribution is negligible due to small numerical factor, so we shall ignore it.

The derivation of [14,15] from the dispersion relation [3] implies infinite upper integration limit $s_m = \infty$. Experimental data on the axial function $a_1(s)$ are available only for $s < m_2^2 = 3.16$ GeV2. However the data at $s > 3$ GeV2 are rather unstable and have large error because of low statistics, see Fig 1. For this reason we put $s_m = 3.0$ GeV2 in [14,15]. Removal of the data above this point does not change the Borel transform significantly (if M^2 is not sufficiently large), but may reduce the errors. In fact, the sum rules considered here do not rely on the high-energy data: say, if the upper integration limit s_m is reduced to 2.5 GeV2, the condensates change at most within 10% limit. If the data above 3 GeV2 are removed, both ALEPH and OPAL data give almost equal central values and similar errors of the Borel transforms [14,15]. For this reason we will present below the analysys of ALEPH data only, since they have smaller errors. The condensates, obtained from OPAL data are almost the same.

The argument of the exponent must be negative $\cos \phi < 0$ in order to suppress contribution of the high-energy states from unknown region $s > m_2^2$, which means $\pi/2 < \phi < \pi$. Of special interest are the closest to π (minimal error) angles at which the contribution of some operator O_{2k+2} vanishes. Such angles are $\phi = \pi(2k - 1)/(2k)$, $k = 2, 3, \ldots$ for real part [14] and $\phi = (k - 1)/k$, $k = 3, 4, \ldots$ for imaginary one [15]. The sum rules [14,15] at some of these angles were considered in [3] with the operators O_6 and O_8 as free parameters to fit. It was shown, that for $O_{10}^{V-A} = -(6.8 \pm 2.1) \times 10^{-3}$ GeV6 and $O_{10}^{V-A} = (7 \pm 4) \times 10^{-3}$ GeV6 they are well satisfied for $M^2 > 0.6$ GeV2.
It is more difficult to find high-order condensates (say O^{V-A}_{10}) from the sum rules, since several unknown parameters enter the same equation and the high-order condensate strongly depends on exact values of the low-order ones. Here one needs to consider the Borel transformation at several values of M^2, where the relative contributions of various condensates are different. In other words, we may fit the shape of theoretical curve with experimental one within some reasonable region $M_1^2 < M^2 < M_2^2$. For this purpose it is natural to define the least square deviation, normalized to experimental error:

$$
\chi^2 = \frac{1}{M_2^2 - M_1^2} \int_{M_1^2}^{M_2^2} dM^2 (\frac{B^{\text{theor}} - B^{\text{exp}}}{\Delta B^{\text{exp}}})^2
$$

(16)

where $B^{\text{theor}}/B^{\text{exp}}$ is the right/left hand side of the Borel sum rules (13). One may calculate χ^2 with theoretical condensates O_i as free parameters. It is quadratic function of them:

$$
\chi^2 = \chi_0^2 + \sum_{i,j} C_{ij} (O_i - \overline{O}_i)(O_j - \overline{O}_j)
$$

(17)

Obviously \overline{O}_i are the central values of the condensates. According to the definition (14) it is natural to consider equation $\chi^2 = 1$ as the one, which determines the border of the 1σ deviation area in the parameter space. Diagonalizing the matrix C_{ij} by means of orthogonal rotation we conclude, that C_{ij} is inverse to the covariance matrix $\Delta O_i \cdot \Delta O_j = (C^{-1})_{ij}$. For a good fit $\chi_0^2 \ll 1$.

The fit results depend on the Borel mass limits M_1^2, M_2^2 in (13). For $M^2 > 1\text{ GeV}^2$ the experimental errors are large, so we take $M_2^2 = 1\text{ GeV}^2$. The lower limit M_1^2 depends on the size of neglected high order operators. In [4] a good coincidence of experimental and theoretical curves was observed for $M^2 > 0.6\text{ GeV}^2$. Here we include the operator O_{10} in the analysis, so this value can be slightly reduced. As follows from our calculation of the 4-quark condensates [6, 10, 12], it is reasonable to assume $O_{2n+2}/O_{2n} \sim m_0^2 \approx 0.7\text{ GeV}^2$. It leads to an estimation $|O_{12}^{V-A}| \sim 3 \times 10^{-3}\text{ GeV}^{-12}$ which allows us to take $M_2^2 = 0.4\text{ GeV}^2$, where typical contribution of such operator is not higher than 20%. At the angles, where the contribution of the operator O_{12} vanishes, the Borel mass can be reduced even further, say, to $M_1^2 = 0.3\text{ GeV}^2$. All these assumptions are confirmed by the results of the fit, see Figures below.

The condensates, obtained from real part of Borel transformation [14], are sensitive to exact value of f_π. For this reason we shall use the imaginary part [15] for numerical fit. The best operators are $\phi = 2\pi/3, 3\pi/4, 4\pi/5$ where the contribution of the operators O_8, O_{10}, O_{12} vanishes respectively. The fit results for each angle are summarized in the Table. The lowest errors are obtained from the 2-parameter fits at the first two angles. The deviation χ_0^2 for these fits is sufficiently small. For this reason the inclusion of additional parameters, say O_{12}, will not improve the fit quality, but will increase the errors only.

The operator values, obtained from the sum rules, are not independent but have large covariances

$$
\rho_{ij} = \frac{\Delta O_i \cdot \Delta O_j}{(\Delta O_i)^2 (\Delta O_j)^2}^{1/2}.
$$

All fits give $\rho_{6,10} \approx 1$ and $\rho_{6,8} \approx \rho_{8,10} \approx -1$. For the 2-parameter fits the covariances can be demonstrated on the confidence level plots, see Fig 3. The equations $\chi^2 = n^2$ set the ellipses, which are the borders of the $n\sigma$ deviation area.

One may also try to fit the condensates at all these angles simultaneously by minimizing $\chi^2_{all} = \frac{1}{2} [\chi^2(2\pi/3) + \chi^2(3\pi/4) + \chi^2(4\pi/5)]$, see the last two lines in the Table.

ϕ	$M_f^2, \text{ GeV}^2$	O_6^{V-A}	O_8^{V-A}	O_{10}^{V-A}	χ_0^2
$2\pi/3$	0.4 - 1.0	-7.0 ± 1.4	-3.8 ± 3.3	0.14	
0.5 - 1.0	-7.0 ± 2.5	-3.9 ± 10.3	0.14		
$3\pi/4$	0.4 - 1.0	-7.3 ± 1.1	8.0 ± 2.1	0.17	
0.5 - 1.0	-7.9 ± 2.3	9.5 ± 2.5	0.12		
$4\pi/5$	0.3 - 1.0	-8.1 ± 1.8	10.3 ± 4.1	0.11	
0.4 - 1.0	-9.3 ± 5.1	13.8 ± 15.1	-13.2 ± 23.8	0.06	
all	-7.2 ± 1.2	7.8 ± 2.5	-4.4 ± 2.8	0.40	

Table 1. Operator fit obtained from eq (15) for different angles ϕ; operators are in 10^{-3} GeV^D. Last two lines contain combined fits for all these angles for upper/lower choice of M^2 range.
As the final result of our analysis we take this combined fit:

\begin{align}
O_{2}^{V-A} &= -(7.2 \pm 1.2) \times 10^{-3} \text{GeV}^6 \\
O_{8}^{V-A} &= (7.8 \pm 2.5) \times 10^{-3} \text{GeV}^8 \\
O_{10}^{V-A} &= -(4.4 \pm 2.8) \times 10^{-3} \text{GeV}^{10} \tag{18}
\end{align}

The lower limit of the Borel mass in (16) was taken $M^2_1 = 0.4 \text{GeV}^2$ for the first two angles and $M^2_1 = 0.3 \text{GeV}^2$ for the last one. If M^2_1 is taken by 0.1 GeV2 higher, the errors are increased, especially for the high dimension operators, see the last line in the Table.

The validity of our assumptions is demonstrated in the Figure 4. If the operator O_{12}^{V-A} is taken into account, a good agreement of theoretical and experimental values is observed for $M^2 > 0.4 \text{GeV}^2$. Below this value the contribution of the operator O_{12} could be large. Even better agreement can be found at the angles, where the operator O_{12} disappears, see the plots in the Figure 5. Here the fit can be extended down to $M^2 = 0.3 \text{GeV}^2$. One may also obtain the condensates by fitting the real part of the Borel transformation (14). Here the central values of the condensates turn out to be close to (18), but the errors are higher due to the presence of additional parameter f_π^2. Combined fit of eq (14) at different angles ϕ gives $f_\pi = 131 \pm 4 \text{MeV}$. As pointed in [4], f_π itself has an ambiguity of order $m_0^2/m_\rho^2 \sim 3\%$, the accuracy of the chiral lagrangian parameters. Notice the sign alternation in (18), in agreement with the minimal hadronic ansatz for $\Pi_V - \Pi_A$ correlator, constructed in [7] in the large N_c limit.

Finally, we write down the values of the quark condensate and the parameter m_0^2, obtained from the operators.
\[\alpha_s(\bar{q}q)^2 \left(1 + \frac{c_6}{\pi} \right) = (262 \pm 9 \text{ MeV})^6 \]

\[m_0^2 = -O_8^{V-A}/O_6^{V-A} = 1.1 \pm 0.2 \text{ GeV}^2 \]

The errors in the r.h.s. are purely experimental: they do not include possible contribution of the operator O_{12} and higher as well as unknown QCD corrections to the condensates. The factor c_6 is scheme dependent and left arbitrary in $[13]$. The accuracy of m_0^2 is better than accuracy of O_8^{V-A} because of high covariance of O_6 and O_8. Notice a very good agreement of the $D = 10$ condensate obtained from the sum rules, with the one estimated in previous section $[13]$ within the framework of the factorization hypothesis.

4 Conclusion

We have performed the analysis of the $V-A$ spectral functions, obtained from hadronic τ-decay channels, with the help of the Borel sum rules. The values of the condensates of dimension $D = 6, 8, 10$ were found $[13]$ by fitting the theoretical curves of the Borel transform to the experimental ones within its errorbands. The major contribution to these condensates comes from the 4-quark operators. Its contribution to the current correlators was calculated and their size was estimated by means of the factorizations hypothesis. The estimated value of the $D = 10$ condensate $[13]$ is found to be in good agreement with the fit result $[13]$, which demonstrates the validity of OPE approach in Quantum Chromodynamics.

Our results are based on several assumptions, in particular, the factorization (vacuum insertion) hypothesis. There is a statement in literature $[29]$, that factorization hypothesis underestimates the quartic condensates by a factor ~ 3. This conclusion is based on the comparison of the quark condensate obtained from the $D = 6$ operator in p-meson (vector) sum rules with the one calculated from the low-energy GMOR theorem. (Our result $[13]$ is also larger than GMOR condensate for reasonable theoretical parameters.) However this comparison has many other sources of error, such as scale-scheme ambiguity, high order QCD corrections, light quark masses, corrections from the chiral lagrangian etc. The accuracy of the factorization hypothesis can be of the same order as the ambiguity of the factorization of the $D = 8$ operators the level of $O(N_c^{-2})$ terms, as demonstrated in $[31]$. More careful statement about validity of the factorization hypothesis could be obtained by evaluating the contribution of the meson states to the 4-quark condensates.

Second objection may concern rather low value of the Borel mass $M_f^2 = 0.4 \text{ GeV}^2$ used in our fit $[13]$. Indeed, the typical scale where perturbative results for the current correlators are confirmed, is $Q^2 \geq 1 \text{ GeV}^2$. But our result for the $D = 10$ operator demonstrates rather low (power-like) growth of the operators $|O_{2n+2}/O_{2n}| \sim m_0^2$ in the $V-A$ channel. If the operators grow as $|O_{2n}| \sim m_0^{2n}$, then the Borel series behaves as $e^{-m_0^2/M^2}$. The contribution of the $n+1$-term in the exponent is small for $M^2 \gg m_0^2/n$. So for $n = 5$ the minimal scale $M_f^2 = 0.4 \text{ GeV}^2$ seems reasonable. For a faster growth of the operator series this choice could be inappropriate. For instance, if one plots the Borel transformation versus M^2 with the condensates values obtained in $[9]$, the divergence of the operator series will be obvious already at $M^2 \approx 0.7 \text{ GeV}^2$. However it should be mentioned, that the $D = 10$ condensate obtained there exceeds our value $[13]$ by an order of magnitude. It seems unlikely to explain such discrepancy by the inaccuracy of the factorization. All these assumptions can be confirmed or disproved only within a nonperturbative approach.

We have neglected the logarithmic terms $\sim \ln Q^2/Q_{\pi}^2$ in the OPE series $[3]$. Such contribution from the α_s-correction to the $D = 6$ condensate $[3]$ has a small numerical factor; its discontinuity along the real axis $Q^2 = -s < 0$ is too small to compare with the spectral function $v_1(s) - a_1(s)$. For this reason it would be interesting to calculate the α_s^2 correction to the $D = 6$ $V - A$ operator and α_s correction to the operator O_8^{V-A} and include them in the sum rule analysis.

Author thanks Sven Menke for providing OPAL datafiles and B.L.Ioffe for discussions. This work was supported in part by INTAS grant 2000-587 and RFBR grant 03-02-16209.

Appendix A: 4-quark operators

The calculation of the operator contribution to various current correlators can be performed within the framework of background field method, see for instance $[27]$. Here we describe the algorithm, conventions and basic formulae, necessary to calculate the contribution of the 4-quark condensates to the 2-current correlator, which correspond to the third diagram of the Fig. 2. We also present here complete form of the 4-quark operators up to dimension $D = 10$. For definiteness we consider only the vector current correlator; the condensate contribution to the axial current correlator is trivially obtained by the substitution $d \rightarrow \gamma^5 d$. The contribution of the 4-quark condensates can be written as:

\[\Pi_{\mu\nu}(q) = -\frac{i\gamma^2}{4} \int dx dy dz e^{i q x} \left(D_{\alpha\beta}^{ab}(y, z) \right) \]

\[\times \left(\tilde{u}(x) \gamma_\mu S(x, y) \gamma_\alpha \lambda^a \gamma_\nu d(y) + \tilde{u}(y) \gamma_\alpha \lambda^b S(y, x) \gamma_\nu d(x) \right) \times \left(\tilde{d}(0) \gamma_\rho S(0, z) \gamma_\beta \lambda^b u(z) + \tilde{d}(z) \gamma_\beta \lambda^a S(z, 0) \gamma_\rho u(0) \right) \]

Here $S(x, y) = \langle T q(x) \bar{q}(y) \rangle$ is the quark Green function and $D_\mu^{ab}(x, y) = \langle T a_\mu^a(x) a_\nu^b(y) \rangle$ is the gluon Green function in background gluon field $A_\mu \rightarrow A_\mu + a_\mu$. They obey the equations:

\[i \hat{D}_\mu S(x, y) = i \delta^4(x - y) \]

\[[D_\mu^2 g_{\mu\nu} + 2 G_{\mu\nu}(x)]^{\alpha c} D_{\alpha\beta}^{cb}(x, y) = i \delta^{ab} g_{\mu\nu} \delta^4(x - y) \]
where \(g_{\mu\nu} = (+, -, -, -) \) is Minkowski metric. The quarks are massless, the gluon Green function is taken in the Feynman gauge. The covariant derivative and the gluon field-strength tensor in the fundamental representation (A2) are defined as follows:

\[
D_\mu = \partial_\mu - i A_\mu, \quad A_\mu = \frac{g}{2} \lambda^a A^a_\mu, \\
G_{\mu\nu} = i[D_\mu, D_\nu] = \frac{g}{2} \lambda^a G^a_{\mu\nu},
\]

where \(\lambda^a \) are Gell-Mann matrices \(\text{tr}(\lambda^a \lambda^b) = 2 \delta^{ab}, [\lambda^a, \lambda^b] = i f^{abc} \lambda^c \). We shall also use additional compact notations for these objects in adjoint representation (A3):

\[
D_\mu^a = \partial_\mu \delta^{ab} + A_\mu^a, \quad A_\mu = \frac{g}{2} f^{abc} A_\mu^c, \quad G^a_{\mu\nu} = \frac{g}{2} f^{abc} G^c_{\mu\nu}.
\]

It is convenient to perform Fourier transformation of the Green functions:

\[
S(x, y) = \int \frac{d^4 q}{(2\pi)^4} e^{-iq(x-y)} \tilde{S}(q, y), \\
D^{ab}_{\mu\nu}(x, y) = \int \frac{d^4 q}{(2\pi)^4} e^{-iq(x-y)} \tilde{D}^{ab}_{\mu\nu}(q, y)
\]

Then one can write down the solution of equations (A2), (A3) as series in powers of background field \(A \):

\[
\tilde{S}(q, y) = S_0(q) \left[\sum_{n=0}^{\infty} \left[i \hat{A}(x) S_0(q) \right]^n \right], \\
\tilde{D}^{ab}_{\mu\nu}(q, y) = \left\{ D_0(q) \sum_{n=0}^{\infty} \left[i R(q, x) D_0(q) \right]^n \right\}_{\mu\nu}^{ab}
\]

where

\[
S_0(q) = \frac{iq^2}{q^2}, \quad D_0(q) = -\frac{i}{q^2}
\]

are free propagators, \(\hat{x} = y - i \overrightarrow{q} \), the derivative \(\overrightarrow{\partial} = \partial / \partial q \) acts on everything from the right as \([\overrightarrow{\partial}_\mu, q_\nu] = g_{\mu\nu} \); \(R \) is the following matrix operator:

\[
R^{ab}_{\mu\nu}(q, x) = [-i q_\alpha A^a_\alpha(\hat{x}) - i A^b_\alpha(\hat{x}) q_\alpha + A^c_\alpha(\hat{x}) A^b_\alpha(\hat{x})] g_{\mu\nu} + 2 G_{\mu\nu}^{ab}(x)
\]

The equations (A7), (A8) can be evaluated in a gauge covariant way in the fixed point gauge \(x^\mu A_\mu(x) = 0 \), where

\[
A_\mu(x) = - \int_0^1 d \alpha \alpha x^\mu G_{\mu\nu}(\alpha x) \\
= - x^\mu \sum_{n=0}^{\infty} \frac{x^\alpha_1 \ldots x^\alpha_n}{(n+2)!} D_{\alpha_1} \ldots D_{\alpha_n} G_{\mu\nu}(0)
\]

\[
q(x) = \sum_{n=0}^{\infty} \frac{x^\alpha_1 \ldots x^\alpha_n}{n!} D_{\alpha_1} \ldots D_{\alpha_n} q(0)
\]

In order to compute the propagators \(\tilde{S}, \tilde{D} \) for any fixed order \(n \), one has to substitute (A10) into (A7), (A8), move all the derivatives \(\overrightarrow{\partial} \) to the right and then leave only the terms without \(\overrightarrow{\partial} \).

The 4-quark condensate contribution (A11) can be written in terms of the propagators \(S, D \) as follows:

\[
\Pi_{\mu\nu}^V(q) = - \frac{ig^2}{4} \left[\tilde{u}(\overrightarrow{D}) \gamma_\mu S(q, -i \overrightarrow{\partial}) \gamma_\alpha \lambda^a d(-i \overrightarrow{\partial}) \right. \\
\times \tilde{D}^{ab}_{\alpha\beta}(q, -i \overrightarrow{\partial}) X^b_{\nu\beta}(q) + X^b_{\nu\beta}(q) \tilde{D}^{ba}_{\beta\alpha}(q, -i \overrightarrow{\partial}) \] \\
\times \tilde{u}(\overrightarrow{D}) \gamma_\alpha \lambda^a \tilde{S}(q, -i \overrightarrow{\partial}) \gamma_\mu d(-i \overrightarrow{\partial})
\]

(12)

where

\[
X^b_{\nu\beta}(q) = \tilde{d}(\overrightarrow{\partial}) \gamma_\beta \lambda^b \tilde{S}(q, 0) \gamma_\nu u(0) \\
+ \tilde{d}(0) \gamma_\nu \tilde{S}(0, -i \overrightarrow{\partial}) \gamma_\beta \lambda^b u(-i \overrightarrow{\partial})
\]

In the functions \(\tilde{S}(q, y) \) and \(\tilde{D}(q, y) \) the derivatives \(\overrightarrow{\partial}, \overrightarrow{\partial} \) over momentum \(q \) always stand on the right from any function of \(q \ldots q \ldots \overrightarrow{\partial} \). The derivatives inside (A11) do not act on anything outside \(X^b_{\nu\beta} \). After these derivatives are evaluated, we compute the transverse part \(\Pi^{(1)} = -\Pi_{\mu\nu}^V/(3q^2) \) defined according to (A11). (We also checked, that longitudinal part vanishes \(\Pi^{(0)} = 0 \).) And finally, to separate out the Lorentz invariant condensates, we average \(\Pi^{(1)} \) over directions of vector \(q_\mu \) according to:

\[
\overline{q_{\mu_1} \ldots q_{\mu_2n}} = \frac{2(n!)}{(2n+2)!} (q^2)^n g_{\mu_1\mu_2} \ldots g_{\mu_{2n-1}\mu_{2n}}; \\
\overline{q_{\mu_1} \ldots q_{\mu_{2n}} = 0},
\]

(14)

where \((\mu_1 \ldots \mu_n) \) denotes usual index symmetrization with weight \(1/n! \). All these calculations were performed on computer.

The most time-consuming part of the calculation is to reduce large number of terms in the final result to minimal number of independent structures. For this purpose we employ the quark equation of motion \(\hat{D} u = \hat{D} d = 0 \) and the "integration by part" identity \((A \hat{D} B) = -((\hat{D} A) B) \) (the vacuum average of the total derivative is zero \(\overline{\partial_\alpha O(x)} = \overline{\partial_\alpha (O(x))} = \overline{\partial_\alpha (O(0))} = 0 \) for any gauge invariant operator \(O(x) \)). It allows to bring the operators to obviously hermitean (real) form, which provides an additional verification of the result.

In order to write down the 4-quark condensates in a compact form, we introduce here the following bilinear
quark structures of increasing dimension D:

$3D:$ \(A_0 = \bar{d} \lambda \gamma^5 \gamma u \)

$4D:$ \(B_{\alpha \beta}^{(1)} = i(\bar{d} \lambda_{\alpha \beta} \gamma - \bar{d}_\beta \lambda \gamma u) \)
\(B_{\alpha \beta}^{(2)} = \bar{d} \gamma^5 \gamma u_{\beta} + \bar{d}_\beta \lambda \gamma u \)

$5D:$ \(C_{\alpha \beta \gamma}^{(1)} = i(\bar{d} \lambda_{\alpha \beta} \gamma u_{\gamma} - d_{\gamma} \lambda_{\beta \alpha} \gamma u) \)
\(C_{\alpha \beta \gamma}^{(2)} = \bar{d} \gamma^5 \gamma u_{\beta} + d_{\beta} \lambda \gamma u \)
\(C_{\alpha \beta \gamma}^{(3)} = \delta_{\alpha \beta} \lambda \gamma^5 \gamma u_{\gamma} + \delta_{\beta} \lambda \gamma^5 \gamma u_{\alpha} \)
\(C_{\alpha \beta \gamma}^{(4)} = 6 \{ \{ \lambda, \{ G_{\beta \alpha \beta}, \gamma u \} \} \} \gamma u \)

$6D:$ \(E_{\alpha \beta \gamma \delta}^{(1)} = \bar{d} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u_{\delta} + \delta_{\delta} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u \)
\(E_{\alpha \beta \gamma \delta}^{(2)} = \bar{d} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u_{\delta} + \delta_{\delta} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u \)
\(E_{\alpha \beta \gamma \delta}^{(3)} = i(\bar{d} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u_{\delta} - d_{\delta} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u) \)
\(E_{\alpha \beta \gamma \delta}^{(4)} = i(\bar{d} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u_{\delta} - d_{\delta} \{ \lambda, G_{\alpha \beta} \gamma u \} \gamma u) \)
\(E_{\alpha \beta \gamma \delta}^{(5)} = \delta_{\alpha \beta} \lambda \gamma^5 \gamma u_{\gamma} \gamma u_{\delta} + \delta_{\delta} \lambda \gamma^5 \gamma u_{\alpha} \gamma u_{\gamma} \)
\(E_{\alpha \beta \gamma \delta}^{(6)} = i \delta_{\alpha \beta} \lambda \gamma^5 \gamma u_{\gamma} \gamma u_{\delta} + i \delta_{\delta} \lambda \gamma^5 \gamma u_{\alpha} \gamma u_{\gamma} \)

$7D:$ \(F_{\alpha \beta \gamma \delta \epsilon}^{(1)} = i(\bar{d} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma} + \delta_{\epsilon} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma}) \)
\(F_{\alpha \beta \gamma \delta \epsilon}^{(2)} = i(\bar{d} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma} + \delta_{\epsilon} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma}) \)
\(F_{\alpha \beta \gamma \delta \epsilon}^{(3)} = i(\bar{d} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma} + \delta_{\epsilon} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma}) \)
\(F_{\alpha \beta \gamma \delta \epsilon}^{(4)} = i(\bar{d} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma} + \delta_{\epsilon} \lambda, \{ G_{\alpha \beta} \gamma u \} \gamma u_{\delta} \epsilon_{\gamma}) \)

The result of the factorization is well known:

\[\langle 0 | \bar{u} \gamma \lambda I_1 \bar{d} \gamma \lambda I_2 | u \rangle = -2C_N \text{tr} \left[\{ u \otimes \bar{u} \} \bar{d} \gamma \lambda I_1 \left(\frac{1}{2}D_{\alpha}D_{\beta} + D_{\beta}D_{\alpha} \right)u \right] \tag{A15} \]

\[-4E_{\alpha \beta \gamma \delta}^{(2)} - \frac{17}{2} G_{\alpha \beta \gamma \delta} \bar{A}_{\gamma} - 11J_{\beta} A_{\alpha} \right) + \left(-\frac{11}{2} E_{\alpha \beta \gamma}^{(2)} \right) \]

\[+ \frac{15}{4} E_{\alpha \beta \gamma}^{(2)} + \frac{5}{2} E_{\alpha \beta \gamma}^{(3)} + \frac{5}{2} E_{\alpha \beta \gamma}^{(3)} + \frac{1}{2} E_{\alpha \beta \gamma}^{(6)} + \frac{3}{2} E_{\alpha \beta \gamma}^{(6)} \]

\[-4E_{\alpha \beta \gamma}^{(6)} + \frac{17}{2} A_{\gamma} G_{\alpha \beta \gamma} + 11A_{\beta} J_{\alpha} - B_{(2)}^{(2)} \]

\[+ \tilde{A}_{\alpha} \left(-3F_{\beta \alpha \beta}^{(1)} + F_{\beta \alpha \beta}^{(1)} + 2F_{\beta \alpha \beta}^{(2)} - \frac{1}{2} F_{\alpha \beta \alpha}^{(2)} + F_{\alpha \alpha \beta}^{(3)} \right) \]

\[- \frac{45}{2} G_{\alpha \beta \gamma} C_{\gamma}^{(4)} + \frac{35}{2} G_{\beta \gamma} C_{\alpha}^{(4)} + \frac{75}{8} G_{\alpha \beta} C_{\gamma}^{(4)} \]

\[- \frac{45}{2} C_{\alpha \beta} G_{\gamma} - \frac{35}{2} C_{\alpha \beta} G_{\beta} - \frac{75}{8} C_{\alpha \beta} G_{\gamma} \] \tag{A18}

In (A15), (A18) the field strengths \(G, \tilde{G} \), \(J \) are in adjoint representation \(G_{\alpha \beta} = \frac{i}{2} \xi^{\alpha \beta} \xi \gamma \), etc; gauge indices are omitted, say \(A_{\alpha} G_{\beta \gamma}, A_{\alpha} \) denotes \(A_{\alpha} G_{\beta \gamma}^{(\alpha)} \). The operator \(O_{\alpha}^{V} \) can be easily brought to the form, obtained in [1] and [9].

Appendix B: Factorization of 4-quark condensates

At first let us remind, how the factorization (vacuum insertion) works for the \(D = 6 \) operators. It is illustrated by the following equation:

\[\langle \langle \bar{u} \gamma \lambda I_1 d \rangle \rangle (d \gamma \lambda I_2 u) \rangle = -2C_N \text{tr} \left[\{ u \otimes \bar{u} \} \bar{d} \gamma \lambda I_1 \left(\frac{1}{2}D_{\alpha}D_{\beta} + D_{\beta}D_{\alpha} \right) u \right] \tag{B1} \]

where \(I_1 \) are some Dirac matrices, \(C_N = 1 - 1/N_c^2 \), \(N_c \) is the color number, kept arbitrary here. In [B1] the notation \(\langle q \otimes q \rangle \) denotes \(4 \times 4 \) matrix in spinor space, the color indices are contracted. It is proportional to the quark condensate:

\[\langle q \otimes q \rangle = -\frac{1}{4} \langle \bar{q} q \rangle \tag{B2} \]

The result of the factorization is well known:

\[O_{\alpha}^{V} = -4\pi \alpha_s C_N \langle \bar{u}u \rangle \langle \bar{d}d \rangle \tag{B3} \]

(In the vector sum rules one also accounts additional operator \(\langle \bar{q} \gamma_\alpha J_{\alpha \beta} q \rangle \), which takes the 4-quark form when the gluon equation of motion is applied. Such operator comes from the 2-quark diagram, so it cancels in the \(V - A \) correlators.)

The factorization procedure becomes ambiguous at the level of \(D = 8 \) 4-quark condensates. As shown in [1], different ways of factorization give different terms \(\sim 1/N_c^2 \). For definiteness, here we follow the following factorization scheme. At first we replace the field strength by the derivatives as \(G_{\alpha \mu} = i[D_{\mu}, D_{\nu}] \) for fundamental representation and \(G_{\alpha \beta} = [D_{\mu}, D_{\nu}]_{ab} \) for adjoint one. Then we apply the equation (B1), where the quark wave functions \(u, \bar{u} \) and
\[\langle D_\alpha q \otimes \bar{q} \rangle = 0, \]
\[\langle D_\alpha D_\beta q \otimes \bar{q} \rangle = -\frac{1}{32} \left(g_{\alpha\beta} + \frac{1}{3} \gamma_{\alpha\beta} \right) i \langle \bar{q} G q \rangle, \quad (B4) \]

where \(\gamma_{\alpha\beta} = \gamma_{[\alpha} \gamma_{\beta]} = \frac{1}{2} \left(\gamma_{\alpha\beta} - \gamma_{\beta\alpha} \right) \). The result for the \(D = 8 \) condensate is:

\[
O_8^V = -2\pi\alpha_s C_N \left[\langle \bar{u}u \rangle \langle \bar{d}Gd \rangle + \langle \bar{d}d \rangle \langle \bar{u}Gu \rangle \right] \quad (B5)
\]

In the condensate \(O_{10} \) one encounters the terms with quarks carrying 4 derivatives. We average these terms with the help of the following rule:

\[
\langle D_\alpha D_\beta \gamma D_\lambda \bar{q} \rangle = -\frac{1}{24^2} \left[g_{\alpha\beta\gamma\delta} (3X_2 + 6X_3 - 2X_4) + g_{\alpha\gamma\beta\delta}(6X_1 + 3X_2 + 2X_3 + 4X_4) + g_{\alpha\delta\beta\gamma}(12X_1 + 3X_2 + 6X_3 + 4X_4) + (g_{\alpha\beta\gamma\delta} + g_{\alpha\gamma\delta\beta}) (X_1 + 2X_2 + 3X_3 + X_4) + 3(\gamma_{\alpha\beta\gamma\delta} X_2) \right] \quad (B6)
\]

where \(\gamma_{\alpha\beta\gamma\delta} = \gamma_{[\alpha\beta\gamma\delta]} \), \(X_i \) are 7-dimensional condensates, defined in [10].

Being applied to the operator \(AVS \), this procedure gives the following result:

\[
O_{10}^V = \pi\alpha_s C_N \left[\frac{25}{9} \langle \bar{u}G_u \rangle \langle \bar{d}G_d \rangle - 4 \left(3X_1^u - X_2^u + X_3^u + \frac{7}{6}X_4^u \right) \langle \bar{d}d \rangle - 4 \left(3X_1^d - X_2^d + X_3^d + \frac{7}{6}X_4^d \right) \langle \bar{u}u \rangle \right] \quad (B7)
\]

where \(X_i^q \) are constructed from the quark of flavor \(q \). The axial condensates can be obtained by simple replacement \(d \to \gamma^5 d \). For all factorized 4-quark operators \(O_D^A = -O_D^V \).

References

1. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys. B 147, 385, 448 (1979)
2. ALEPH collaboration: R. Barate et al, Eur. J. Phys. C 4, 409 (1998)
3. OPAL collaboration: K. Ackerstaff et al, Eur. J. Phys. C 7, 571 (1999)
4. B.L. Ioffe, K.N. Zyablyuk, Nucl. Phys. A 687, 437 (2001)
5. E. Braaten, S. Narison, A. Pich, Nucl. Phys. B 373, 581 (1992)
6. M. Davier, L. Girlanda, A. Hocker, J. Stern, Phys. Rev. D 58, 096014 (1998)
7. S. Peris, B. Phily, E. de Rafael, Phys. Rev. Lett. 86, 14 (2001)
8. J. Bijnens, E. Gamiz, J. Prades, JHEP 0110, 009 (2001)
9. V. Cirigliano, E. Golowich, K. Maltman, Phys. Rev. D 68, 054013 (2003)
10. C.A. Dominguez, A. Schilcher, Phys. Lett B 581, 193 (2004)
11. S. Ciulli, C. Sebu, K. Schilcher, H. Spiesberger, hep-ph/0312212
12. J. Rojo, J.T. Latorre, JHEP 0401, 055 (2004)
13. S.C. Generalis, J. Phys. G 15, L225 (1989)
14. K.G. Chetyrkin, S.G. Gorishny, V.P. Spiridonov, Phys. Lett. B 160, 149 (1985)
15. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)
16. L.V. Ladin, V.P. Spiridonov, K.G. Chetyrkin, Yad. Fiz. 44, 1372 (1986)
17. L.-E. Adam, K.G. Chetyrkin, Phys. lett. B 329, 129 (1994)
18. M.S. Dubovikov, A.V. Smilga, ITEP-82-42
19. A. Grozin, Y. Pinelis, Phys. Lett. B 166, 429 (1986)
20. V.M. Belyaev, B.L. Ioffe, Sov. Phys. JETP 56, 493 (1982)
21. H.G. Dosch, M. Jamin, S. Narison, Phys. Lett. B 220, 251 (1989)
22. S. Narison, Phys. Lett. B 210, 238 (1988)
23. T.-W. Chiu, T.-H. Hsieh, Nucl. Phys. B 673, 217 (2003)
24. A.Di Giacomo, Yu.A. Simonov, hep-ph/0404044
25. B.L. Ioffe, K.N. Zyablyuk, Eur. Phys. J. C 27, 229 (2003)
26. G. Launer, S. Narison, R. Tarrach, Z. Phys. C 26, 433 (1984)
27. A.G. Grozin, Int. J. Mod. Phys. A 10, 3497 (1995)