An Evaluation of HIV Elite Controller Definitions within a Large Seroconverter Cohort Collaboration

Ashley D. Olson¹, Laurence Meyer², Maria Prins³, Rodolphe Thiebaut⁴, Deepti Gurdasani⁵,⁶, Marguerite Guiguet⁷,⁸, Marie-Laure Chaix⁹, Pauli Amornkul¹⁰, Abdel Babiker¹, Manjinder S. Sandhu⁵,⁶, Khoudou Porter⁷, for C A S C A D E Collaboration in EuroCoord²

¹ Medical Research Council Clinical Trials Unit University College London, London, United Kingdom, ² Institut National de la Santé et de la Recherche Médicale U1018, Université Paris-Sud, le Kremlin-Bicêtre, France, ³ Amsterdams Public Health Service, Amsterdam, Netherlands, ⁴ Institut National de la Santé et de la Recherche Médicale U897, Université Bordeaux Segalen, Bordeaux, France, ⁵ Wellcome Trust Sanger Institute, Hinxton, United Kingdom, ⁶ University of Cambridge, Cambridge, United Kingdom, ⁷ Institut National de la Santé et de la Recherche Médicale U943, Paris, France, ⁸ Université Pierre et Marie Curie 5943, Paris, France, ⁹ Université Paris Descartes, EA 3620, Hôpital Necker-Enfants Malades, Paris, France, ¹⁰ International AIDS Vaccine Initiative, San Francisco, California, United States of America

Abstract

Background: Understanding the mechanisms underlying viral control is highly relevant to vaccine studies and elite control (EC) of HIV infection. Although numerous definitions of EC exist, it is not clear which, if any, best identify this rare phenotype.

Methods: We assessed a number of EC definitions used in the literature using CASCADE data of 25,692 HIV seroconverters. We estimated proportions maintaining EC of total ART-naïve follow-up time, and disease progression, comparing to non-EC. We also examined HIV-RNA and CD4 values and CD4 slope during EC and beyond (while ART naïve).

Results: Most definitions classify ~1% as ECs with median HIV-RNA 43–903 copies/ml and median CD4>500 cells/mm³. Beyond EC status, median HIV-RNA levels remained low, although often detectable, and CD4 values high but with strong evidence of decline for all definitions. Median % ART-naïve time as EC was ≥92% although overlap between definitions was low. EC definitions with consecutive HIV-RNA measurements <75 copies/ml with follow-up≥ six months, or with 90% of measurements <400 copies/ml over ≥10 year follow-up preformed best overall. Individuals thus defined were less likely to progress to endpoint (hazard ratios ranged from 12.5–19.0 for non-ECs compared to ECs).

Conclusions: ECs are rare, less likely to progress to clinical disease, but may eventually lose control. We suggest definitions requiring individuals to have consecutive undetectable HIV-RNA measurements for ≥ six months or otherwise with >90% of measurements <400 copies/ml over ≥10 years be used to define this phenotype.

Introduction

HIV is typically characterised by a period of viral replication and CD4 cell decline leading to AIDS and death in the absence of antiretroviral therapy (ART). [1] Differences in the evolution of both markers over time, however, result in large variations in disease progression among HIV-positive individuals. [2,3] The long-term non-progressor (LTNP) phenotype was initially described to characterise individuals who experienced slow disease progression and stable CD4 counts over a number of years. [4,5] With the introduction of HIV-RNA assays in the mid-1990s, research shifted to focus on mechanisms which lead to control of viral replication. [6].
Table 1. 10 definitions of elite control from the literature applied to the CASCADE dataset; all require individuals to be AIDS-free and ART-naive.

Definition	Description
A	HIV-positive ≥6 months, with ≥2 consecutive HIV-RNA <75 copies/ml [22]
B	HIV-positive ≥1 year, with ≥1 HIV-RNA <50 copies/ml [16]
C	HIV-positive ≥1 year, with ≥1 HIV-RNA <75 copies/ml [15]
D	HIV-positive ≥1 year, with ≥3 HIV-RNA <2000 copies/ml [21]
E	HIV-positive ≥1 year, with ≥3 consecutive HIV-RNA <75 copies/ml spanning ≥12 months [8]
F	HIV-positive ≥1 year, with ≥3 consecutive HIV-RNA <75 copies/ml spanning ≥12 months with no previous blips ≥1000 copies/ml [6]
G	HIV-positive ≥2 years, with ≥2 HIV-RNA <75 copies/ml [19]
H	HIV-positive ≥5 years, with ≥5 consecutive HIV-RNA <500 copies/ml [23]
I	HIV-positive ≥10 years, with all measured HIV-RNA <50 copies/ml [20]
J	HIV-positive ≥10 years, with ≥90% of HIV-RNA (≥2 HIV-RNA ever) <400 copies/ml [7]

doi:10.1371/journal.pone.0086719.t001

Since the publication of initial definitions of EC, as was the case with the long-term non-progressor (LTNP) phenotype, many more definitions have been proposed; presumably to arrive at one definition which best defines true EC. There are currently numerous definitions, each of which differs by the follow-up time required and the number and threshold of undetectable HIV-RNA measurements.[6–8,15,16,19–23] It is not known which, if any, best characterise this rare phenotype, however. This is important to ensure that any difference between elite controllers and non-controllers can be attributed to the phenotype itself. An assessment of the relative merits of each definition has never been undertaken or a comparison between them performed.

The CASCADE (Concerted Action on SeroConversion on AIDS and Death in Europe) Collaboration, of HIV-positive individuals followed-up since HIV seroconversion, offers a unique opportunity to assess the ability of these definitions to capture EC. Using data from CASCADE, we aimed to evaluate a number of definitions considered, and used multivariable time dependent restricted entry to the risk set at 10 years post seroconversion, as with the long-term non-progressors, “LTNP”, “elite controller”, “elite control”, “viral controller” and “viral control” and evaluated 10 EC definitions (Table 1).[6–8,15,16,19–23] The list of definitions included in this paper is not intended to be exhaustive; rather it is representative of the spectrum by which the elite control phenotype is defined in the literature. Three definitions were most commonly used, all requiring HIV positive individuals to meet the following criteria while ART-naive and AIDS-free: 1) Definition E, used by the International HIV Controllers Consortium, of individuals who maintain HIV-RNA levels below 75 copies/mL for at least 1 year, [6] 2) Definition F, an adaptation of definition E allowing no previous HIV-RNA levels >1000 copies/ml [6] and 3) Definition J, initially proposed by the ANRS, of individuals known to be HIV positive for ≥10 years with ≥2 HIV-RNA measurements, ≥90% of which were required to be <400 copies/ml [7].

Elite Control Definitions

We undertook a systematic review of the literature, which is described elsewhere [25]. Briefly, we searched for terms previously used to describe control of HIV infection including “Long term non-progressors”, “LTNP”, “elite controller”, “elite control”, “viral controller” and “viral control” and evaluated 10 EC definitions (Table 1).[6–8,15,16,19–23] The list of definitions included in this paper is not intended to be exhaustive; rather it is representative of the spectrum by which the elite control phenotype is defined in the literature. Three definitions were most commonly used, all requiring HIV positive individuals to meet the following criteria while ART-naive and AIDS-free: 1) Definition E, used by the International HIV Controllers Consortium, of individuals who maintain HIV-RNA levels below 75 copies/mL for at least 1 year, [6] 2) Definition F, an adaptation of definition E allowing no previous HIV-RNA levels >1000 copies/ml [6] and 3) Definition J, initially proposed by the ANRS, of individuals known to be HIV positive for ≥10 years with ≥2 HIV-RNA measurements, ≥90% of which were required to be <400 copies/ml [7].

Statistical Methods

We identified three groups of individuals for each definition: those who fulfilled it, those who did not, and those whose EC status could not be determined, e.g. because insufficient follow-up or ART-naive HIV-RNA measurements were not available. For each definition we estimated the proportion of EC excluding individuals whose EC status was unknown from the denominator. Because there were large numbers with unknown status, we also estimated proportion of EC by assuming them to be non-EC and including them in the denominator, thus providing minimum proportion estimates.

For each definition we estimated the proportion of time they remained as EC by considering all available ART-naïve follow-up. To estimate the effect of EC status on disease progression we restricted entry to the risk set at 10 years post seroconversion, as this was the longest duration of follow-up required by all definitions considered, and used multivariable time dependent Cox proportional hazards models to estimate the hazard ratio for a
An Evaluation of HIV Elite Controller Definitions

composite endpoint of AIDS, death (all cause), ART initiation or CD4<350 cells/mm3 comparing non-ECs and unknowns to ECs. We formally tested differences in hazard ratios between the definitions by using 1000 bootstrap replicates. Definition I was excluded from the bootstrap analysis as there were few follow-up measurements among a small number of elite controllers providing unstable estimates.

We described median and interquartile ranges (IQR) of HIV-RNA and CD4 levels, based on median individual values, while classified as EC and during total ART-naive follow-up time. CD4 slopes were estimated using a linear mixed model on the square root scale, while classified as an elite controller, and also during total ART-naive follow-up time.

Results

Data from 28 cohorts of 25,692 individuals formed the base from which sub-populations of EC and non-EC were drawn according to each definition. Median (IQR) year of HIV seroconversion was 1999 (1992, 2005) and median age at seroconversion 31 years (25, 37). HIV risk groups were MSM (55%), MSW (26%) or IDU (14%), and the majority were male (78%).

Proportion Classified as EC and Patient Characteristics

The proportion classified as EC by each definition was 0.15–7.70% and did not necessarily reflect the length of follow-up required by the definition (Table 2). While variations in age, sex and risk group were observed for each definition, no consistent differences were observed across definitions.

The number of individuals fulfilling two definitions was generally low with 33% of individuals overlapping by <30% with another definition (Table 3).

Total Time Spent as EC

The risk of composite endpoint was consistently significantly higher for non-EC/unknown compared to ECs for all definitions, with hazard ratios ranging from 2.9–19.0 and being greatest for definitions A, E, F and J (Table 4). 1000 bootstrap replicates confirmed the superiority of A, E and F ($p<0.05$) above definitions B, C, D, G and H, the former 3 definitions not being statistically different from each other. Definition J was not statistically superior to any other definition.

Considering all available ART-naive follow-up from seroconversion, the proportion of time spent as EC, according to each definition, was remarkably high with median follow-up of 92% for all definitions, although 25% of EC, according to definitions C, D and F, spent ≥72% of their ART-naive follow-up time as EC (Table 4). Figure 1 illustrates total ART-naive follow-up for all individuals classified as EC by definitions A, E, F, and J.

HIV-RNA and CD4 Values during EC Status

Median HIV-RNA during the time of EC was generally low for all definitions varying from 35–903 copies/ml and median CD4 levels high at >300 cells/mm3 (Table 5). There was strong evidence of CD4 loss during this EC period, however, for at least 5 of the 10 definitions considered. For the remaining definitions,

Table 2. Number of elite controllers (EC), their proportion, and demographic characteristics applying the CASCADE dataset to 10 definitions of EC found in the literature.

Definition	EC (n)	Non-EC (n)	Unknown1 (n)	EC Proportion Best Estimate2 n (%)	EC Proportion Minimum Estimate3 n (%)	Seroconversion Age (Median)	Male (%)	MSM4 (%)	IDU4 (%)	MSW4 (%)
AF	282	20951	4396	1.33	1.10	32	31	74	78	53
BF	495	19568	5566	2.47	1.93	32	31	79	78	59
CF	827	19236	5566	4.12	3.23	32	31	74	78	54
DF	1416	16964	7249	7.70	5.52	30	31	67	79	49
EF	174	17160	8295	1.00	0.68	33	31	75	78	52
FF	95	17239	8295	0.55	0.37	32	31	63	78	37
GF	392	16891	8346	2.27	1.53	32	31	76	77	55
HF	146	10899	14584	1.32	0.57	31	30	74	77	47
IF	10	6694	18925	0.15	0.04	26	29	80	77	30
JF	47	6554	19028	0.71	0.18	31	29	74	77	34

1Individuals in the cohort without adequate follow-up or number of HIV-RNA measurements to classify them as EC or non-EC.

2Based on number of seroconverters whose EC status could be determined.

3HIV risk groups: MSM: Men who have sex with men; IDU: Injection drug users; MSW: Heterosexual contact.

4Assuming all individuals with unknown EC status are non-EC.
slopes were either level (no strong evidence of CD4 loss) or otherwise with a statistically significant positive slope. Such positive slopes are likely due to short follow-up, chance, or possibly informative censoring, as follow-up is censored for those with a negative slope once ART is initiated [26]. Median HIV-RNA, CD4 values and CD4 slopes during EC status excluding counts within 6 months of seroconversion showed similar results (data not shown).

Table 3. Two-way overlap of 10 definitions of elite control found in the literature applied to the CASCADE dataset.

Def.	A, n (%)	B, n (%)	C, n (%)	D, n (%)	E, n (%)	F, n (%)	G, n (%)	H, n (%)	I, n (%)	J, n (%)	Total
AF	–	195 (39)	279 (34)	275 (19)	174 (100)	95 (100)	250 (64)	113 (77)	4 (40)	35 (74)	282
BF	195 (69)	–	495 (60)	341 (24)	119 (68)	45 (47)	286 (73)	94 (64)	10 (100)	36 (77)	495
CF	279 (99)	495 (100)	–	542 (38)	174 (100)	95 (100)	392 (100)	133 (91)	10 (100)	42 (89)	827
DF	275 (98)	341 (69)	542 (66)	–	174 (100)	95 (100)	354 (90)	146 (100)	4 (40)	41 (87)	1416
EF	174 (62)	119 (24)	174 (21)	174 (12)	–	95 (100)	156 (42)	95 (65)	3 (30)	31 (66)	174
FF	95 (34)	45 (9)	95 (11)	95 (7)	95 (55)	–	91 (23)	53 (36)	3 (30)	25 (53)	95
GF	250 (89)	286 (58)	392 (47)	354 (25)	165 (95)	91 (96)	–	125 (86)	6 (60)	41 (87)	392
HF	113 (40)	94 (19)	133 (16)	146 (10)	95 (55)	53 (56)	125 (32)	–	3 (30)	29 (62)	146
IF	4 (1)	10 (2)	10 (1)	4 (0)	3 (2)	3 (3)	6 (2)	3 (2)	–	6 (13)	10
JF	35 (12)	36 (7)	42 (5)	41 (3)	31 (18)	25 (26)	41 (10)	29 (20)	6 (60)	–	47
Total	282	495	827	1416	174	95	392	146	10	47	

Example: 95 seroconverters were classified as EC by definition F of whom 25 (26%) were classified as EC by definition J. Conversely, of 47 seroconverters classified as EC by definition J, 25 (53%) were classified as EC by definition F.

HIV-RNA and CD4 Values During Total ART-naïve Follow-up

As expected, throughout available ART-naïve follow-up, median HIV-RNA values were generally higher, and CD4 counts lower than those considering only the time spent as EC. Nevertheless, median HIV-RNA throughout ART-naïve follow-up was low, <200 copies/ml for most definitions, and median CD4 values were >500 cells/mm3 for all definitions (Table 4).

Table 4. Estimated hazard ratios comparing non-elite controllers (EC) and unknown to EC for time from estimated HIV seroconversion to a composite endpoint of AIDS, Death, ART, or CD4 <350 cells/mm3 restricting entry to the risk set at 10 years post seroconversion using the CASCADE dataset applied to 10 definitions of EC found in the literature.

Def.	EC evaluated (experiencing composite endpoint) n (n)†	HR for time to composite endpoint* (95% CI)	% (IQR) ART-naïve follow-up time classified as EC
AF	46 (4)	12.5 (4.7, 33.6)	100 (78–100)
BF	53 (11)	4.6 (2.5, 8.3)‡	100 (78–100)
CF	86 (18)	4.8 (3.0, 7.7)‡	99 (72–100)
DF	134 (35)	4.0 (2.8, 5.7)‡	97 (71–100)
EF	36 (2)	19.0 (4.7, 76.4)	100 (78–100)
FF	26 (5)	15.3 (3.8, 61.3)	92 (66–100)
GF	60 (9)	7.5 (3.9, 14.5)‡	100 (86–100)
HF	56 (22)	2.9 (1.9, 4.4)‡	100 (75–100)
IF	4 (1)	3.4 (0.5, 24.0)	100 (100–100)
JF	35 (3)	13.2 (4.2, 41.3)	100 (98–100)

*Hazard ratios comparing ECs to Non-ECs (including those with unknown EC status) allowing for late entry at 10 years. For each definition, p-values were obtained from unadjusted log-rank test for time to composite endpoint and were all highly significant p<0.001.

†Number of Elites making it to 10 years follow up without experiencing composite endpoint and number subsequently experiencing composite endpoint.

‡Statistically different HRs compared to definition E, F, and A from 1000 bootstrap replicates. No definitions were statistically different from definition J at α=0.05.

41Number of Elites making it to 10 years follow up without experiencing composite endpoint and number subsequently experiencing composite endpoint.

1Median HIV-RNA, CD4 values and CD4 slopes during EC status excluding counts within 6 months of seroconversion showed similar results (data not shown).
Of note, however, CD4 slopes during total ART-naïve follow-up were significantly negative ($\alpha = 0.05$) for all but one definition. HIV-RNA and CD4 values and CD4 slopes showed consistent results when CD4 values within 6 months of seroconversion were excluded (data not shown).

Discussion

Using the large size of the CASCADE dataset we were able to provide reliable estimates of the proportion likely to be elite controllers in an HIV-positive population. Our findings confirm that, by whichever definition, elite control is a rare phenotype likely to comprise around 1% of individuals. This is in line with estimates reported by others [7,8,23] although it should be noted that the choice of denominator may distort the proportion (for example, considering all individuals regardless of their length of follow-up or HIV infection duration will tend to under-estimate this proportion of ECs). Interestingly, we also find evidence that ECs may eventually lose control of viraemia.

Definitions A, E, F and J which require low consecutive or a high proportion of low HIV-RNA measurements are best at capturing individuals with the slowest disease progression. When restricting the dataset to those with 10 years of follow-up, definitions A, E and F and J demonstrated the lowest hazard of AIDS, Death, ART or CD4 < 350 cells/mm3 compared to definitions with single measurements or higher levels of viremia. Definition J, with the longest follow-up of 10 years was not significantly different from all other definitions, although this is likely due to low numbers of individuals classified by this definition.

The proportion classified as EC varied according to each definition, with definition D, requiring an HIV-RNA threshold of <2000 copies/ml, classifying the greatest proportion as EC. This definition performed particularly poorly overall with the highest median HIV-RNA and fastest CD4 cell loss while classified as EC and during ART naïve follow-up. Given that the lower limit for available assays has been less than 1000 copies/ml for at least 10 years, inclusion of 2000 copies/ml limit is justifiably termed “viral controllers” rather than EC. The requirement of only one HIV-RNA measurement below a certain threshold (B and C) also resulted in relatively high proportions of EC (2.47% and 4.12%, respectively), agreeing with studies previously reporting proportions of individuals with ≥1 HIV-RNA undetectable [27,28], and suggesting that one undetectable measurement is insufficient in defining EC status. HIV-RNA values were relatively high during EC period for both definitions with the upper quartile experiencing HIV-RNA values >8000 copies/ml. Similarly, even while classified as EC, CD4 cell counts were significantly declining. Thus, the use of at least two HIV-RNA counts results in more
Table 5. HIV-RNA and CD4 values and estimated CD4 slope during elite control (EC), and throughout ART-naive follow-up using the CASCADE dataset applied to 10 definitions of EC found in the literature.

Def.	During Elite Control	During ART-naive follow-up				
	HIV-RNA value	CD4 Value	CD4 slope* (95% CI)	HIV-RNA value	CD4 Value	CD4 slope* (95% CI)
A	50 (35, 276)	675 (454, 877)	0.04 (0.01, 0.08)	66 (35, 495)	654 (441, 840)	0.09 (0.12, 0.06)
B	425 (35, 11641)	573 (409, 792)	−0.16 (−0.19, −0.12)	1043 (89, 13000)	546 (404, 751)	−0.28 (−0.30, −0.25)
C	354 (50, 8700)	596 (427, 796)	−0.18 (−0.21, −0.15)	660 (75, 11066)	567 (415, 764)	−0.31 (−0.34, −0.29)
D	903 (287, 1863)	615 (478, 789)	−0.27 (−0.29, −0.25)	1274 (370, 3304)	590 (451, 756)	−0.43 (−0.45, −0.41)
E	50 (35, 81)	699 (528, 922)	0.06 (0.01, 0.10)	50 (35, 165)	681 (527, 909)	−0.06 (−0.10, −0.02)
F	50 (35, 50)	839 (654, 1070)	0.05 (−0.00, 0.11)	50 (35, 77)	796 (629, 1020)	−0.08 (−0.13, −0.03)
G	113 (49, 1917)	644 (439, 824)	−0.06 (−0.09, −0.03)	176 (50, 2160)	625 (438, 806)	−0.15 (−0.18, −0.13)
H	76 (35, 283)	697 (541, 879)	−0.09 (−0.12, −0.05)	89 (35, 356)	687 (530, 879)	−0.23 (−0.26, −0.20)
I	35 (1, 35)	583 (755, 905)	−0.07 (−0.24, 0.09)	35 (1, 35)	583 (755, 905)	−0.05 (0.21, 0.11)
J	50 (35, 127)	783 (628, 970)	−0.03 (−0.09, 0.02)	50 (35, 169)	740 (583, 970)	−0.11 (−0.16, −0.06)

Note: all values unless otherwise stated are median (IQR).

*CD4 slope modelled on the square root scale with linear mixed models, specific p-values for CD4 slope and median number of CD4 measurements are presented in Table S1.

Regarding the main limitation to this study is for each definition, the number of individuals with unknown EC classification varied which could have introduced bias in proportion estimates. This is most evident in definition J, requiring >2 HIV-RNA measurements and at least 10 years of follow-up with >19,000 individuals.
with either insufficient follow-up or number of HIV-RNA measurements. To examine the impact of missing data on this, for each definition we classified individuals with inadequate information (insufficient number of HIV-RNA measurements or follow-up requirements specified by the definition) as EC and then as non-EC. The proportion of EC; however, may theoretically range from 0.04, if all unknowns are classified as non-EC, to 74%, if all unknowns are classified as EC (data not shown) indicating the difficulties with estimating the true proportion of this group in the presence of missing data. In spite of these possible limitations, our study highlights important differences captured by different EC definitions.

In conclusion, identification of a rare and extreme group may be possible even with definitions requiring a relatively short period of follow-up. We have shown that definitions requiring 6 months or more of follow-up with consecutive measurements requiring HIV-RNA ≤75 copies/ml preform just as well as definitions requiring ≥10 years follow-up with HIV-RNA measured using assays with a higher detection limit. Although Definition E preforms best overall in terms of percent classified, time to composite endpoint, percent of naive follow-up time spent as EC, HIV-RNA, and CD4 decline, definition A (2 consecutive HIV-RNA <75 copies/ml over 6 months), F (similar to E, but not allowing for blips above 1000 copies/ml) and J (10 years of follow-up with ≥90% HIV-RNA <400 copies/ml) also have their merits. It is unlikely, however, that elite control is an indefinite state, and that the few HIV-positive individuals who spontaneously control HIV replication may eventually need treatment or develop AIDS given the on-going, albeit slow, CD4 cell loss. However, ECs are much less likely to progress to clinical disease compared with non-ECs, and a better understanding of the mechanisms that lead to such control over extended periods may lead to new therapeutic strategies or the development of HIV vaccines.

Supporting information

Table S1 Number of HIV-RNA and CD4 measurements during elite control and ART naïve follow-up, time from SC to first HIV-RNA and number of HIV-RNA measurements with 6 months of HIV positive test date using the CASCADE dataset from 10 definitions found in the literature. Note: all values unless otherwise stated are median (IQR) †CD4 slope modelled on the square root scale with linear mixed models F:A: HIV-positive ≥6 months, with ≥2 consecutive HIV-RNA <75 copies/ml; B: HIV-positive ≥1 year, with ≥1 HIV-RNA <50 copies/ml; C: HIV-positive ≥1 year, with ≥1 HIV-RNA <75 copies/ml; D: HIV-positive ≥1 year, with ≥3 HIV-RNA <2000 copies/ml; E: HIV-positive ≥1 year, with ≥3 consecutive HIV-RNA <75 copies/ml spanning ≥12 months F: HIV-positive ≥1 year, with ≥3 consecutive HIV-RNA <75 copies/ml spanning ≥12 months with no previous blips ≥1000 copies/ml; G: HIV-positive ≥2 years, with ≥2 HIV-RNA <75 copies/ml; H: HIV-positive ≥5 years, with ≥3 consecutive HIV-RNA <500 copies/ml; I: HIV-positive ≥10 years, with all measured HIV-RNA <50 copies/ml; J: HIV-positive ≥10 years, with ≥90% of HIV-RNA ≥2 HIV-RNA ever <400 copies/ml.

Acknowledgments

CASCADE Steering Committee: Julia Del Amo (Chair), Laurence Meyer (Vice Chair), Heiner C. Bucher, Genevieve Chêne, Osamah Hamouda, Deenan Pillay, Maria Prins, Magda Rosinska, Caroline Sabin, Giota Touloumi.
Greece; Alain Volny Anne, European AIDS Treatment Group, France. Institute of Hygiene, Poland; Claire Thorne, University College London, Germany; Magda Rosinska, National Institute of Public Health, National Centre, Russian Federation; Ju¨rgen Rockstroh (Chair), University of Bonn, Medical Centre, Netherlands; Aza Rakhmanova, St. Petersburg City AIDS Medical Research Council, United Kingdom; Maria Prins, Academic Medical Centre, Netherlands; Azza Rahmanova, St. Petersburg City AIDS Centre, Russian Federation; Jurgen Rockstroh (Chair), University of Bonn, Germany; Magda Rosinska, National Institute of Public Health, National Institute of Hygiene, Poland; Claire Thorne, University College London, UK; Giotta Touloumi, National and Kapodistrian University of Athens, Greece; Alain Volny Anne, European AIDS Treatment Group, France.

Author Contributions
Conceived and designed the experiments: AO LM RT DG AB MS KP. Performed the experiments: AO AB KP LM. Analyzed the data: AO AB RT. Wrote the paper: AO LM MP RT DG MG MC PA AB MS KP.