The bidirectional link between HDL and COVID-19 infections

Kenneth R. Feingold*
Department of Medicine, University of California San Francisco, San Francisco, CA, USA

Supplementary key words SAR-CoV-2 • COVID-19 • high-density lipoprotein cholesterol • low-density lipoprotein cholesterol • apolipoproteins • infection

EFFECT OF INFECTIONS ON LIPID AND LIPOPROTEINS

It is well recognized that gram positive and negative bacterial infections, tuberculosis, fungal infections, and parasitic infections result in changes in plasma lipid levels (1–12). Of note, viral infections, such as HIV, Epstein-Barr virus, and Dengue fever, also similarly alter plasma lipid levels (13–15). Typically, infections decrease total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels with either elevated triglyceride or inappropriately normal triglyceride levels for the decreased nutritional status that characteristically occurs with infections. As would be expected from the changes in lipid levels, apolipoprotein A-I, A-II, and B levels are also reduced (1, 7, 8). With recovery from infection, the alterations in plasma lipid levels return toward the baseline. The greater the severity of the infection, the greater the decrease in total cholesterol, LDL-C, and HDL-C levels (16–18). Numerous studies have shown that the degree of reduction in total cholesterol, HDL-C, and apolipoprotein A-I predict mortality in patients with severe sepsis (19–25).

Toward the end of 2019, a deadly new viral infection emerged caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which resulted in coronavirus disease 2019 (COVID-19) (26). This virus rapidly spread throughout the world, leading to a worldwide pandemic. It is estimated that approximately 80% of COVID-19 infections are either asymptomatic or result in only mild symptoms, but in a significant percentage of patients, the infection leads to a severe respiratory illness requiring hospital care and respiratory support (26, 27). As of January 20, 2021, there have been over 2 million deaths worldwide according to the John Hopkins Coronavirus Resource Center. Older age, obesity, diabetes, cardiovascular disease, hypertension, and male gender are some of the factors that increase the risk of severe infection and death (26, 27).

As observed with other infections, numerous studies have reported a decrease in total cholesterol, LDL-C, and HDL-C levels and variable changes in triglycerides in patients with COVID-19 infections (28–39). As expected, apolipoprotein A-I and B were also decreased (39–41). With recovery from COVID-19 infection, the lipid levels return toward levels present before infection (28–30, 42, 43). As expected, the greater the severity of the illness, the greater the reduction in LDL-C and/or HDL-C levels (29, 31–36, 38, 42, 44, 45). LDL-C and HDL-C levels are inversely correlated with C-reactive protein levels, that is, the higher the CRP levels, the lower the LDL-C or HDL-C level (28, 29, 31, 45). Low LDL-C and/or HDL-C levels at admission to the hospital predict an increased risk of developing a severe disease. Increased mortality was observed in patients with low total cholesterol, LDL-C, and/or HDL-C levels at admission to the hospital, and in these very ill patients, lipid levels continued to decline during the hospitalization (28, 36, 38, 41, 43–45). A single study reported that the time to develop a negative RT-PCR test for SARS-CoV-2 was increased in patients with low HDL-C levels (46). Finally, HDL isolated from patients with COVID-19 infections displayed a blunted ability to protect against TNF-alpha-induced increases in endothelial cell permeability, vascular endothelial–cadherin disorganization, and apoptosis (39).

EFFECT OF LIPID AND LIPOPROTEINS ON THE RISK FOR DEVELOPING INFECTIONS

A large number of observational studies have found that low total cholesterol, LDL-C, and/or HDL-C levels are associated with an increased risk of developing infections and sepsis (47–59). For example, in a cohort of men (55,300) and women (65,271) in the Kaiser...
In the current issue of the Journal of Lipid Research, Hilser et al. (62) utilized the UK Biobank to examine the association of HDL-C measured between 2006 and 2010 and the development of COVID-19 infections in 2020. They compared hospitalized patients who tested positive for COVID-19 (n = 1,117) (ie, individuals with severe COVID-19 infections) with patients who tested negative for COVID-19 infections in either in-patient or outpatient hospital settings (n = 3,544). Results in the overall group were analyzed and an additional analysis comparing matched hospital-based controls (n = 1,438) to cases (n = 719) at a ratio of 2:1 based on age, sex, obesity, hypertension, type 2 diabetes, and coronary artery disease. The major finding of this study was that increased HDL-C or apolipoprotein A1 levels measured many years before the onset of COVID-19 infections was associated with a reduced risk of developing COVID-19 infection. A 10 mg/dl increase in HDL-C or apolipoprotein A1 levels was associated with a 10% reduced risk of COVID-19 infection. In addition, an increased risk of death from COVID-19 infections was also inversely related to HDL-C and apolipoprotein A1 levels. In some analyses, increased triglyceride levels were also associated with an increased risk of COVID-19 infections. In contrast, increased LDL-C and apolipoprotein B levels were not associated with an increased risk of COVID-19 infections. To determine if this HDL-C protection from COVID-19 infections was the causal link, this study also evaluated the genetic effects of increased HDL-C using a genetic risk score based on SNPs and Mendelian Randomization but did not find an association of increased HDL-C levels and a decreased risk of COVID-19 infections. This failure to demonstrate an association could be due to the relatively small number of individuals in this study compared with the studies of Madsen and Trinder described above, which found a causal relationship between HDL-C and infections but studied a much larger number of individuals. Larger studies or meta-analyses of several smaller studies are needed to more definitively determine if there is a causal link between HDL-C levels and the risk of COVID-19 infections.

Finally, Hilser et al. (62) also confirmed prior studies that individuals with homozygosity for apolipoprotein E4 have a 2- to 3-fold increased risk of severe COVID-19 infections (63, 64) and that this was not due to dementia or Alzheimer’s disease. Studies have shown that patients who are apolipoprotein E3/4 have an increased inflammatory response to toll receptor ligands compared with patients who are apolipoprotein E3/3, which could result in an increased risk of a more severe response to COVID-19 infections (65). African Americans have an increased frequency of the E4 allele, which could be one factor that contributes to the increased severity of COVID-19 infections in this group (66). In addition, in patients with HIV, apolipoprotein E4/4 is associated with an accelerated disease progression and death compared with apolipoprotein E3/3 (67).

Several other studies using the UK Biobank have also demonstrated that low HDL-C was associated with an increased risk of COVID-19 infections (68–71). Aung et al. additionally reported that LDL-C and triglycerides were not associated with COVID-19 infections (69), whereas Scalsky and colleagues observed that elevated apolipoprotein A1 levels were associated with a reduced risk of testing positive for SARS-CoV-2 while LDL-C, apolipoprotein B, and triglyceride levels were not found to be significantly associated with an increased risk (70). However, Zhang et al. found that increased triglyceride levels were associated with an increased risk of COVID-19 infection (71). Thus, there is consistent evidence that baseline HDL-C and apolipoprotein A1 levels play a role in determining the risk of infections. Several studies have taken a genetic approach, which reduces the risk of confounding variables, to determine if there is a causal relationship between lipoprotein levels and infections. Madsen et al using two common variants in the genes encoding hepatic lipase and cholesterol ester transfer protein that regulate HDL-C levels and independently also increase the risk of infections and sepsis. In fact, in a recent study that found that low LDL-C levels were significantly associated with an increased risk of sepsis and admission to the ICU, the authors found that this association could be accounted for by comorbidities (60). Thus, more sophisticated studies, beyond observational studies, are necessary to demonstrate a causal relationship between low LDL-C and/or HDL-C levels with infections.

In the current issue of the Journal of Lipid Research, Hilser et al. (62) utilized the UK Biobank to examine the association of HDL-C measured between 2006 and 2010 and the development of COVID-19 infections in 2020. They compared hospitalized patients who tested positive for COVID-19 (n = 1,117) (ie, individuals with severe COVID-19 infections) with patients who tested negative for COVID-19 infections in either in-patient or outpatient hospital settings (n = 3,544). Results in the overall group were analyzed and an additional analysis comparing matched hospital-based controls (n = 1,438) to cases (n = 719) at a ratio of 2:1 based on age, sex, obesity, hypertension, type 2 diabetes, and coronary artery disease. The major finding of this study was that increased HDL-C or apolipoprotein A1 levels measured
developing COVID-19 infections. The effect of baseline triglyceride levels requires additional study.

Two studies have used a genetic approach to determine if lipoproteins play a causal role in COVID-19 infections. Ponsford et al using the UK Biobank (10,154 cases and 452,764 controls) and HUNT Study (Trondheim Health Study—2,301 cases and 67,121 controls) databases reported that there was no evidence supporting an association of genetically induced LDL-C with the risk for severe COVID-19 infections (72). In contrast, Aung et al also using the UK Biobank (1,211 cases and 387,079 controls) reported that genetically higher exposure to LDL-C was associated with an increased risk of COVID-19 (69). Clearly additional studies are required to determine if there is a causal relationship between LDL-C, HDL-C, or triglycerides with the risk of COVID-19 infections.

The potential HDL-C-mediated protection from COVID-19 could be due to HDL-C levels having beneficial effects on the host’s immune response to infection and/or to HDL-C levels having an inhibitory effect on viral replication. Studies have shown that HDL-C can modulate innate and adaptive immunity that could increase resistance to viral infections (73). Moreover, studies have shown that HDL-C and apolipoprotein A1 have antiviral properties (74–76). Furthermore, a recent study has shown that HDL has antiviral activity against SARS-CoV-2 (77). In addition, D-4F, an apolipoprotein study has shown that HDL has antiviral activity against have antiviral properties (74).

studies have shown that HDL-C and apolipoprotein A1 ratios significantly correlate with radiological extent of disease in patients with community-acquired pneumonia. Ponsford et al using the UK BioBank (10,154 cases and 452,764 controls) and HUNT Study (Trondheim Health Study—2,301 cases and 67,121 controls) databases reported that there was no evidence supporting an association of genetically induced LDL-C with the risk for severe COVID-19 infections (72). In contrast, Aung et al also using the UK Biobank (1,211 cases and 387,079 controls) reported that genetically higher exposure to LDL-C was associated with an increased risk of COVID-19 (69). Clearly additional studies are required to determine if there is a causal relationship between LDL-C, HDL-C, or triglycerides with the risk of COVID-19 infections.

The potential HDL-C-mediated protection from COVID-19 could be due to HDL-C levels having beneficial effects on the host’s immune response to infection and/or to HDL-C levels having an inhibitory effect on viral replication. Studies have shown that HDL-C can modulate innate and adaptive immunity that could increase resistance to viral infections (73). Moreover, studies have shown that HDL-C and apolipoprotein A1 have antiviral properties (74–76). Furthermore, a recent study has shown that HDL has antiviral activity against SARS-CoV-2 (77). In addition, D-4F, an apolipoprotein study has shown that HDL has antiviral activity against have antiviral properties (74).

Abbreviations
COVID-19, coronavirus disease 2019; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Manuscript received February 22, 2021 Published, JLR Papers in Press, March 17, 2021, https://doi.org/10.1016/j.jlr.2021.100067

REFERENCES
1. Alvarez, C., and Ramos, A. (1986) Lipids, lipoproteins, and apoproteins in serum during infection. Clin. Chem. 32, 142–145
2. Cappi, S. B., Noritomi, D. T., Velasco, I. T., Curi, R., Loureiro, T. C. A., and Soriano, F. G. (2012) Dyslipidemia: a prospective controlled randomized trial of intensive glycemic control in sepsis. Intensive Care Med. 38, 634–641
3. Gallin, J. L., Kave, D., and O’Leary, W. M. (1969) Serum lipids in infection. N. Engl. J. Med. 281, 1081–1086
4. Gordon, B. R., Parker, T. S., Levine, D. M., Saal, S. D., Wang, J. C. L., Sloan, B.-J., Barie, P. S., and Rubin, A. L. (1996) Low lipid concentrations in critical illness. Critical Care Med. 24, 584–589
5. Kerttula, Y., and Weber, T. H. (1986) Serum lipids in viral and bacterial meningitis. Scand. J. Infect. Dis. 18, 211–215
6. Khuvdshuntuk, W., Kim, M.-S., Memon, R. A., Shigenaga, J. K., Moser, A. H., Feingold, K. R., and Grunfeld, C. (2004) Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. 45, 1169–1196
7. Sammalkorpi, K., Valtonen, V., Kerttula, Y., Nikkila, E., and Taskinen, M.-R. (1988) Changes in serum lipoprotein pattern induced by acute infections. Metabolism. 37, 859–865
8. van Leeuwen, H. J., Heezeus, E. C. J. M., Dallinga, G. M., van Strijp, J. A. G., Verhoef, J., and van Kessel, K. P. M. (2003) Lipoprotein metabolism in patients with severe sepsis. Crit. Care Med. 31, 1359–1366
9. Visser, B. J., Wieten, R. W., Nagel, I. M., and Grobusch, M. P. (2013) Serum lipids and lipoproteins in malaria - a systematic review and meta-analysis. Malar. J. 12, 142
10. Sahin, F., and Viltziz, P. (2013) Distinctive biochemical changes in pulmonary tuberculosis and pneumonia. Arch. Med. Sci. 9, 656–661
11. Gazi, I. F., Apostolou, F. A., Liberopoulos, E. N., Filippatos, T. D., Tellis, C. C., Elisaf, M. S., and Tslepes, A. D. (2011) Leptospirosis is associated with markedly increased triglycerides and small dense low-density lipoprotein and decreased high-density lipoprotein. Lipids. 46, 953–960
12. Apostolou, F., Gazi, I. F., Kostoula, A., Tellis, C. C., Tslepes, A. D., Elisaf, M., and Liberopoulos, E. N. (2009) Persistence of an atherogenic lipid profile after treatment of acute infection with brucella. J. Lipid Res. 50, 2532–2539
13. Grunfeld, C., Pang, C. V., Stoller, W., Shigenaga, J. K., Jensen, P., and Feingold, K. R. (1999) Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 74, 1045–1052
14. Marín-Palma, D., Strois, C. M., Urcuequi-Inchima, S., and Hernández, J. C. (2019) Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One. 14, e0214245
15. Apostolou, F., Gazi, I. F., Lagos, K., Tellis, C. C., Tslepes, A. D., Liberopoulos, E. N., and Elisaf, M. (2010) Acute infection with Epstein-Barr virus is associated with atherogenic lipid changes. Atherosclerosis. 212, 607–613
16. Deniz, O., Gumus, S., Yaman, H., Çiftçi, F., Ors, F., Cakir, E., Tozkoparan, E., Bilgic, H., and Ekiz, K. (2007) Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin. Biochem. 40, 162–166
17. Deniz, O., Tozkoparan, E., Yaman, H., Cakir, E., Gumus, S., Ozcan, O., Bozlar, U., Bilgic, C., Bilgic, H., and Ekiz, K. (2006) Serum HDL-C levels, log (TG/HDL-C) values and serum total cholesterol/HDL-C ratios significantly correlate with radiological extent of disease in patients with community-acquired pneumonia. Clin. Biochem. 39, 287–292
18. El-Sadr, W., Mullin, C., Carr, A., Gibert, C., Rappoport, C., Visnegarwala, F., Grunfeld, C., and Raghavan, S. (2005) Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV Med. 6, 114–121
19. Barlage, S., Gnewuch, C., Liebisch, G., Wolf, Z., Audette, F-X., Glück, T., Fröhlich, D., Krämer, B. K., Rothe, G., and Schünz, G. (2009) Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocye and platelet activation. Intensive Care Med. 35, 1877–1885
20. Chien, J.-Y., Jerng, J.-S., Yu, C.-J., and Yang, P.-C. (2005) Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis®. Crit. Care Med. 33, 1688–1693
21. Gruber, M., Christ-Grain, M., Stoll, D., Keller, U., Muller, C., Bingisser, R., Tamm, M., Mueller, B., and Schuetz, P. (2009) Prognostic impact of plasma lipids in patients with lower respiratory tract infections - an observational study. Swiss Med. Wkly. 139, 166–172
22. Chien, Y.-F., Chen, C.-Y., Hsu, C-L., Chen, K.-Y., and Yu, C.-J. (2015) Decreased serum level of lipoprotein cholesterol is a poor prognostic factor for patients with severe community-acquired pneumonia that required intensive care unit admission. J. Crit. Care. 30, 506–510
23. Lekkou, A., Mouzaki, A., Siagris, D., Ravaniti, I., and Gogos, C. A. (2014) Serum lipid profile, cytokine production, and clinical outcome in patients with severe sepsis. J. Crit. Care. 29, 723–727
24. Carstec, M., Waller, K. B., Russell, J. A., Brunham, L. R., Genga, K. R., and Bovd, J. H. (2017) Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ...
dysfunction and death in patients with suspected sepsis. J. Crit. Care. 38, 289–294

25. Trinder, M., Genga, K. R., Kong, H. J., Blauw, L. L., Lo, C., Li, X., Cirstea, M., Wang, Y., Rensen, P. C. N., Russell, J. A., Walley, K. R., Boyd, J. H., and Brunham, L. R. (2019) Cholesterol ester transfer protein influences high-density lipoprotein levels and survival in severe sepsis. Am. J. Respir. Crit. Care Med. 199, 854–862

26. Gandhi, R. T., Lynch, J. B., and Del Rio, C. (2020) Mild or moderate Covid-19. N. Engl. J. Med. 383, 1757–1766

27. Berlin, D. A., Gulick, R. M., and Martinez, F. J. (2020) Severe Covid-19. N. Engl. J. Med. 383, 2451–2460

28. Fan, J., Wang, H., Ye, G., Cao, X., Xu, X., Tan, W., and Zhang, Y. (2020) Letter to the Editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 107, 15–2413

29. Hu, X., Chen, D., Wu, L., He, G., and Ye, W. (2020) Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chem. Acta. 510, 105–110

30. Tanaka, S., De Tynowski, G., Assadi, M., Zappella, N., Jean-Baptiste, S., Robert, T., Pecoh, K., Lorat-Jacob, B., Fontaine, L., Bouzid, D., Tran-Dinh, A., Tashk, P., Meilhac, O., and Montreavers, P. (2020) Lipoprotein concentrations over time in the intensive care unit COVID-19 patients Results from the ApCoV-19 study. PLoS One. 15, e0295573

31. Wang, H., Zhang, Y., Xu, X., Gao, X., Tan, W., and Wang, H. (2020) Hypolipidemia is associated with the severity of COVID-19. J. Lipid. 14, 297–304

32. Wang, D., Li, R., Wang, J., Jiang, Q., Gao, C., Yang, J., Ge, L., and Hu, Q. (2020) Correlation analysis between disease severity and clinical and biochemical characteristics of 145 cases of COVID-19 in Wuhan, China: a descriptive study. BMC Infect. Dis. 20, 519

33. Wang, G., Zhang, Q., Zhao, X., Dong, H., Wu, C., Wu, F., Yu, B., Lv, J., Zhang, S., Wu, G., Wu, S., Wang, X., Wu, Y., and Zhong, Y. (2020) Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 19, 204

34. Zhang, Q., Wu, Y., Chen, M., Wan, Q., and Chen, X. (2020) Clinical analysis of risk factors for severe COVID-19 patients with type 2 diabetes. J. Diabetes Complications. 34, 107666

35. Lv, Z., Wang, W., Qiao, B., Cui, X., Feng, Y., Chen, L., Ma, Q., and Liu, X. (2020) The prognostic value of general laboratory testing in patients with COVID-19. J. Clin. Lab. Anal. 35, e29608

36. Zhang, B., Dong, C., Li, S., Song, X., Wei, W., and Liu, L. (2020) Triglyceride to high-density lipoprotein cholesterol ratio is an important determinant of cardiovascular risk and poor prognosis in coronavirus disease-19: a retrospective case series study. Diabetes Metab. Syndr. Obes. 13, 3925–3936

37. Lin, L., Zhong, C., Rao, S., Lin, H., Huang, R., and Chen, F. (2021) Clinical characteristics of 78 cases of patients infected with severe acute respiratory syndrome coronavirus 2 in Wuhan, China. Exp. Ther. Med. 21, 7

38. Turgay Yildirim, O., and Kaya, S. (2021) The atherogenic index of plasma as a predictor of mortality in patients with COVID-19. Heart Lung. 50, 329–333

39. Begue, F., Tanaka, S., Mouktadi, Z., Rondeau, P., Veeren, B., Diotel, N., Tran-Dinh, A., Robert, T., Véila, E., Mavingui, P., Lagrange-Xelot, M., Montreavers, P., Courret, D., and Meilhac, O. (2021) Altered high-density lipoprotein composition and functions during severe COVID-19. Sci. Rep. 11, 2291

40. Kimhofer, T., Lodge, S., White, L., Gray, N., Loo, R. L., Loo, R. L., Water, N. G., Nitschke, P., Bong, S-H., Morrison, D. L., Begum, S., and Feingold, K. R. (1998) Association between serum total cholesterol and HIV infection in a high-risk cohort of young men. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology. 17, 51–57

41. Grion, C. M., Cardoso, L. T. Q., Perazolo, T. F., Garcia, A. S., Barbosa, D. S., Morimoto, H. K., Matsuo, T., and Carrilho, A. J. F. (2010) Lipoproteins and CETF levels as risk factors for severe sepsis in hospitalized patients. Eur. J. Clin. Invest. 40, 330–338

42. Guirgis, W. F., Donnelly, J. P., Dodani, S., Howard, G., Safford, M. M., Levanin, E. B., and Wang, H. E. (2016) Cholesterol levels and long-term rates of community-acquired sepsis. Crit. Care. 20, 408

43. Irbarren, C., Jacobs, D. R., Jr., Sidney, S., and Feingold, K. R. (1998) Cohort study of serum total cholesterol and HIV infection in a high-risk cohort of young men. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology. 17, 51–57

44. Kaysen, G. A., Grimes, B., Dalrymple, L. S., Chertow, G. M., Ishida, J. H., Delgado, C., Segal, M., Chiang, J., Dwier, T., and Johansen, K. L. (2018) Associations of lipoproteins with cardiovascular and infection-related outcomes in patients receiving hemodialysis. J. Clin. Lipidol. 12, 481–487.e14

45. Kaysen, G. A., Ye, X., Raimann, J. G., Wang, Y., Topping, A., Usyvat, L. A., Stuard, S., Canaud, B., van der Sande, F. M., Kooiman, J. P., and Kotanko, P. (2018) Lipid levels are inversely associated with infectious and all-cause mortality: international MONDO study results. J. Lipid Res. 59, 1519–1528

46. Canuel, N., Cauwker, V., Okbay, A., Vinkhireva-Inelly, O., and Eraldemir, B. (2002) Risk of nosocomial infections and effects of total cholesterol, HDL cholesterol in surgical patients. Clin. Nutr. 21, 431–436

47. Madsen, C. M., Varbo, A., Tybjerg-Hansen, A., Frikke-Schmidt, R., and Nordestgaard, B. G. (2018) U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. Eur. Heart J. 39, 1181–1190

48. Shor, R., Wainstein, J., Oz, D., Boaz, M., Matsa, Z., Fux, A., and Halabe, A. (2007) Low serum LDL cholesterol levels and the risk of fever, sepsis, and malignancy. Ann. Clin. Lab. Sci. 37, 343–348

49. Shor, R., Wainstein, J., Oz, D., Boaz, M., Matsa, Z., Fux, A., and Halabe, A. (2008) Low HDL levels and the risk of death, sepsis and malignancy. Clin. Res. Cardiol. 97, 227–233

50. Walley, K. R., Boyd, J. H., Kong, H. J., and Russell, J. A. (2019) Low-density lipoprotein levels are associated with, but do not causally contribute to, increased mortality in sepsis. Crit. Care. 47, 463–466

51. Feng, Q., Wei, W., Qiaozhi, X., Zhan, H., Cao, Y., Yao, W., Xu, X., Zeng, Y., Zhang, B., and Chen, X. (2020) Temporal changes in laboratory markers of survivors and non-survivors of adult inpatients with COVID-19. BMC Infect. Dis. 20, 952
62. Hilser, J. R., Han, Y., Biswas, S., Gukasyan, J., Cai, Z., Zhu, R., Tang, W. H. W., Deb, A., Luis, A. J., Hartiala, J. A., and Allayee, H. (2021) Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. *J. Lipid. Res.* 62, 100061

63. Kuo, C-L., Pilling, L. C., Atkins, J. L., Masoli, J. A. H., Delgado, J., Kuchel, G. A., and Melzer, D. (2020) ApoE e4 genotype and mortality with COVID-19 in UK Biobank. *J. Gerontol. A Biol. Sci. Med. Sci.* 75, 1801–1803

64. Kuo, C-L., Pilling, L. C., Atkins, J. L., Masoli, J. A. H., Delgado, J., Kuchel, G. A., and Melzer, D. (2020) APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. *J. Gerontol. A Biol. Sci. Med. Sci.* 75, 2231–2232

65. Gale, S. C., Gao, L., Mikacenic, C., Coyle, S. M., Rafaels, N., Murray Dudenkov, T., Madenspacher, J. H., Draper, D. W., Ge, W., Aloor, J. J., Azzam, K. M., Lai, L., Blackshear, P. J., Calvano, S. E., Barnes, K. C., et al. (2014) APOε4 is associated with enhanced in vivo innate immune responses in human subjects. *J. Allergy Clin. Immunol.* 134, 127–134

66. Howard, B. V., Gidding, S. S., and Liu, K. (1998) Association of apolipoprotein E phenotype with plasma lipoproteins in African-American and White young adults: The CARDIA study. *Am. J. Epidemiol.* 148, 859–868

67. Burt, T. D., Agan, B. K., Marconi, V. C., He, W., Kulkarni, H., Mold, J. E., Cavrois, M., Huang, Y., Mahley, R. W., Dolan, M. J., McCune, J. M., and Ahuja, S. K. (2008) Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE 4/4 genotype accelerates HIV disease progression. *Proc. Natl. Acad. Sci. U.S.A.* 105, 8718–8723

68. Ho, F. K., Celis-Morales, C. A., Gray, S. R., Katikireddy, S. V., Niedzwiedz, C. L., Hastie, C., Ferguson, L. D., Berry, C., Mackay, D. F., Gill, J. M., Pell, J. P., Sattar, N., and Welsh, P. (2020) Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: Results from a UK Biobank prospective cohort study. *BMJ Open.* 10, e040402

69. Aung, N., Khanji, M. Y., Munroe, P. B., and Petersen, S. E. (2020) Causal inference for genetic obesity, cardiometabolic profile and COVID-19 susceptibility: A Mendelian Randomization Study. *Front. Genet.* 11, 586308

70. Scalsky, R. J., Chen, Y. J., Desai, K., O’Connell, J. R., Perry, J. A., and Hong, C. C. (2021) Baseline cardiometabolic profiles and SARS-CoV-2 infection in the UK Biobank. *PLoS One.* 16, e0248602

71. Zhang, Y., Yang, H., Li, S., Li, W-D., Wang, J., and Wang, Y. (2021) Association analysis framework of genetic and exposure risks for COVID-19 in middle-aged and elderly adults. *Mech. Ageing Dev.* 194, 111433

72. Ponsford, M. J., Gkatzionis, A., Walker, V. M., Grant, A. J., Wootton, R. E., Moore, L. S., Fatumo, S., Mason, A. M., Zuber, V., Willer, C., Rasheed, H., Brampton, B., Hveem, K., Kristian Damás, J., Davies, N., et al. (2020) Cardiometabolic traits, sepsis, and severe COVID-19. *Circulation.* 142, 1791–1793

73. Gatapano, A. L., Pirillo, A., Bonacina, F., and Norata, G. D. (2014) HDL in innate and adaptive immunity. *Cardiovasc. Res.* 103, 372–383

74. Singh, I. P., Chopra, A. K., Coppenhaver, D. H., Anantharamaiah, G. M., and Baron, S. (1999) Lipoproteins account for part of the broad non-specific antiviral activity of human serum. *Antivir. Res.* 42, 211–218

75. Srinivas, R. V., Birkedal, B., Owens, R. J., Anantharamaiah, G. M., Segrest, J. P., and Comans, R. W. (1990) Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs. *Virology.* 176, 48–57

76. Kane, J. P., Hardman, D. A., Dimpfl, J. C., and Levy, J. A. (1979) Apolipoprotein is responsible for neutralization of xenotropic type C virus by mouse serum. *Proc. Natl. Acad. Sci. U.S.A.* 76, 5957–5961

77. Cho, K. H., Kim, J. R., Lee, I. C., and Kwon, H. J. (2021) Native high-density lipoproteins (hdl) with higher paraoxonase exerts a potent antiviral effect against SARS-CoV-2 (COVID-19), while glycated HDL lost the antiviral activity. *Antioxidants (Basel).* 10, 209

78. Van Lenten, B. J., Wagner, A. C., Anantharamaiah, G. M., Garber, D. W., Fishbein, M. C., Adhikary, L., Nayak, D. P., Hama, S., Navab, M., and Fogelman, A. M. (2002) Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an Apolipoprotein A-I mimetic peptide. *Circulation.* 106, 1127–1132