Synthesis of 1, 2-dihydroazete-3-methyl ester

Xiaohan Hu, Bingbing Zhao, WenSheng Zou, Xuehui Yang, Pengwu Zheng*
School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China

*Corresponding author e-mail: zhengpw@jxstnu.edu.cn

Abstract. The invention relate to 1, 2-dihydroazete-3-methyl ester and a series of derivatives, which can be used to treat cardiovascular diseases and hepatitis c virus (HCV). This research mainly describe a synthesis route of the key intermediate for synthetizing Forskolin and HCV NS5B inhibitors. The synthesis routes is mainly consist of three steps of acylation, replacement and hydrolysis. This synthesis route provides some valuable references and experimental basis for the synthesis of Forskolin and HCV NS5B inhibitors.

1. Introduction
Cardiovascular and cerebrovascular diseases are the diseases that seriously endanger human health [1-3]. It is characterized by ischemic or hemorrhagic diseases in heart, brain and systemic tissues caused by hyperlipidemia, blood viscosity, atherosclerosis, and hypertension [4-5]. Middle-aged and elderly people over the age of 50 have high prevalence, high disability and high mortality [6]. Currently, many medicines to treat cardiovascular and cerebrovascular diseases are already developed, among which Forskolin is a typical medicine to treat cardiovascular and cerebrovascular diseases [7]. In this paper, we describerd the synthesis route of 1, 2-dihydroazete-3-methyl ester is an important intermediate for synthesis of Forskolin [8-10]. 1, 2-Dihydroazete-3-methyl ester can also be used to synthesize HCV NS5B inhibitors and treat HCV virus (HCV) [11-14].

Figure 1. Structures of Forskolin
Figure 2. Structures of HCV ns5B inhibitors

In this study, we synthesized 1, 2-dihydroazete-3-methyl ester. The final product was obtained through acylation, substitution and hydrolysis, making it more suitable for industrial production. Reactions have simple steps, mild conditions, and simple posttreatment prospects. The structure of Forskolin and HCV NS5B inhibitors is shown in figure 1 and figure 2, respectively.
2. Materials and methods
TLC analysis was carried out on silica gel plates GF254 (Qindao Haiyang Chemical, China). Elemental analysis was determined on a Carlo-Erba 1106. Mass spectra (MS) were taken in ESI mode on Agilent 1100 LC–MS (Agilent, Palo Alto, CA, USA). Elemental analysis instrument (Carlo Erba, Milan, Italy). All the materials were obtained from commercial suppliers and used without purification, unless otherwise specified. Yields were not optimized.

3. Synthesis of compounds
The structures and the synthetic route were shown in Scheme 1

4. 3-methyl ester-azetidine (2)
A mixture of acetyl chloride (15.6 g, 0.2 mol) in anhydrous ethanol (CH3OH, 30 ml) was stirred under the condition of ice bath for 75 min. Add azetidine-3-carboxylic acid (10 g, 0.09 mol) to the mixture and stirred overnight at room temperature. The reaction's progress was monitored by TLC. After the reaction was completed, vacuum distillation removed the solvent. The solution was then basified using saturated sodium bicarbonate solution to pH 8. The aqueous solution was extracted with ethyl acetate and combined the organic solution. Vacuum distillation removes solvent and get a yellow oily liquid (13.2 g, 89%). 1H NMR (500 MHz, DMSO-d6) δ 3.69 (s, 3H), 3.35 (dt, J = 10.7, 5.3 Hz, 2H), 3.18 (dt, J = 10.8, 5.3 Hz, 2H), 3.04 (p, J = 5.6 Hz, 1H), 1.73 (p, J = 4.9 Hz, 1H). MS (ESI): m/z 116.1[M+H]+.

5. 3-bromo-3-methyl ester-azetidine (3)
A mixture of 3-methyl ester-azetidine (4 g, 0.02 mol) and azodiisobutyronitrile (AIBN, 0.6 g, 0.004 mol) in THF (50 ml) was stirred under the temperature of 75°C for 70 min. N-Bromosuccinimid e(NBS, 3.56 g, 0.02 mol) was added to the mixture three times, each interval was one hour. The reaction's progress was monitored by TLC. After the reaction was completed, vacuum distillation removed the solvent. The residue was purified by silica gel column (eluant: dichloromethane: methanol =30:1) to obtain a light yellow liquid (3.2 g, 81%). 1H NMR (500 MHz, DMSO-d6) δ 3.69 (s, 3H), 3.35 (dt, J = 10.7, 5.3 Hz, 2H), 3.18 (dt, J = 10.8, 5.3 Hz, 2H), 3.04 (p, J = 5.6 Hz, 1H), 1.73 (p, J = 4.9 Hz, 1H). MS (ESI): m/z 194.2[M+H]+.

6. 1, 2-dihydroazete-3-methyl ester (4)
A mixture of 3-bromo-3-methyl ester-azetidine (1 g, 0.009 mol) and LiOH · H2O (0.4 g, 0.018 mol) in 1, 4 dioxane (30 ml) was stirred at reflux under the temperature of 120°C. The reaction's progress is monitored by TLC. After the reaction was completed, vacuum distillation removed the solvent. The residue was purified by silica gel column (eluant: dichloromethane: methanol =30:1) to obtain a light
yellow liquid (0.9 g, 67%). 1H NMR (500 MHz, DMSO-d6) δ 9.09 (dt, J = 6.6, 5.3 Hz, 1H), 7.88 (d, J = 6.4 Hz, 1H), 4.41 (d, J = 5.3 Hz, 2H), 3.75 (s, 3H). MS (ESI): m/z 114.1[M+H] +.

7. Conclusion
1, 2-Dihydroazete-3-methyl ester was synthesized from commercial 3-carboxycycline through three steps, including esterification, substitution and hydrolysis. The synthesis method and reaction conditions of 1, 2-dihydroazete-3-methyl ester were optimized, and the purity of the product was higher. The reaction had simple steps, mild conditions, simple post-processing and high yield. Therefore, the synthesis method is more suitable for industrial production and has a good application prospect.

Acknowledgments
We gratefully acknowledge the generous support provided by The National Natural Science Funds of China (No.21662014), Outstanding Youth Foundation of Jiangxi, Natural Science Foundation of Jiangxi, China(20171BCB23078), Natural Science Foundation of Jiangxi, China (20171ACB21052 &20181ACB20025, 20181BBG70003), Innovative Research Team of Jiangxi Science & Technology Normal University(2017CXTD002).

References
[1] Levi F, Lucchini F, Negri E, et al. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world [J]. Heart, 2002, 88 (2): 119 - 241.
[2] Herrmann S, Funkekaiser H, Schmidtpetersen K, et al. Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases. [J]. Arteriosclerosis Thrombosis & Vascular Biology, 2001, 21 (9): 1529 - 1538.
[3] Zhao L, Xue S, Chen F, et al. Inflammation, atherosclerosis and cardiovascular and cerebrovascular diseases [J]. Advances in Cardiovascular Diseases, 2005, 26 (2): 193 - 196.
[4] Sharma A, Singh G, Gulati A. Decompensation characterized by decreased perfusion of the heart and brain during hemorrhagic shock: role of endothelin-1. [J]. Journal of Trauma & Acute Care Surgery, 2002, 53(3):531-600.
[5] Tomita H, Metoki N, Saitoh G, et al. Elevated plasma brain natriuretic peptide levels independent of heart disease in acute ischemic stroke: correlation with stroke severity. [J]. Hypertension Research Official Journal of the Japanese Society of Hypertension, 2008, 31 (9): 1695 - 1702.
[6] Braga T B, Pfaffenbach G, Weiss D P, et al. Point prevalence of drug prescriptions for elderly and non-elderly inpatients in a teaching hospital. [J]. Sao Paulo Medical Journal, 2004, 122 (2): 48 - 52.
[7] Reinscheid R, Nothacker H, Bourson A, et al. Orphanin FQ: A neuropeptide that activates an opioidlike G Protein-Coupled receptor [J]. Science, 1995, 270 (5237): 792 - 794.
[8] Hidalgo I, Raub T, Borchardt R. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability [J]. Gastroenterology, 1989, 96 (3): 736 - 749.
[9] Seamon K, Padgett W, Daly J. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78 (6): 3363 - 3367.
[10] Laurezza A, Sutkowski E, Seamon K. Forskolin: a specific stimulator of adenyllyl cyclase or a diterpene with multiple sites of action [J]. Trends in Pharmacological Sciences, 1989, 10 (11): 442 - 447.
[11] Bacon B, Gordon S, Lawitz E, et al. Boceprevir for previously treated chronic HCV genotype 1 infection. [J]. N Engl J Med, 2011, 364 (13): 1195 - 1206.
[12] Regev A, Berho M, Jeffers L, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. [J]. American Journal of Gastroenterology, 2002, 97 (10): 2614 - 2618.
[13] Wang M, Ng K, Cherney M, et al. Non-nucleoside analogue inhibitors bind to an allosteric site
on HCV NS5B polymerase. Crystal structures and mechanism of inhibition [J]. Journal of Biological Chemistry, 2003, 278 (11): 9489 - 9515.

[14] Krueger A, Madigan D, Jiang W, et al. Inhibitors of HCV NS5B polymerase: synthesis and structure-activity relationships of N-alkyl-4-hydroxyquinolono-3-yl-benzothiadiazine sulfamides [J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16 (13): 3367 - 3370.