A Minimal GPU Stack for Client ML

Heejin Park
Purdue ECE

Felix Xiaozhu Lin
University of Virginia

Abstract

GPUReplay is a novel way for deploying GPU-accelerated computation on mobile and embedded devices. It addresses high complexity of a modern GPU stack for deployment ease and security. The idea is to record GPU executions on the full GPU stack ahead of time and replay the executions on new input at run time. We address key challenges towards making GR feasible, sound, and practical to use. The resultant replayer is a drop-in replacement of the original GPU stack. It is tiny (50 KB of executable), robust (replaying long executions without divergence), portable (running in a commodity OS, in TEE, and baremetal), and quick to launch (speeding up startup by up to two orders of magnitude). We show that GPUReplay works with a variety of integrated GPU hardware, GPU APIs, ML frameworks, and 33 neural network (NN) implementations for inference or training. The code is available at https://github.com/bakhi/GPUReplay.

1. Introduction

GPU stacks
Smartphones or IoT devices commonly use GPUs to accelerate machine learning (ML). As shown in Figure 1(a), a modern GPU software stack spans ML frameworks (e.g. Tensorflow [11] and ncnn [97]), a GPU runtime (e.g. OpenCL or Vulkan runtimes) that translates APIs to GPU commands and code, and a GPU driver that tunnels the resultant code and data to GPU. A GPU stack1 has a large codebase. Arm Mali, reported to be the most pervasive GPUs in the world [24], has a runtime of a 48-MB executable; the driver has 45K SLoC [25]. The stack often has substantial proprietary code and undocumented interfaces.

Such a sophisticated GPU stack has created a number of difficulties. (1) Weak security [53, 90, 107]. In the year of 2020, 46 CVEs on GPU stacks were reported, most of which are attributed to the stack’s complex internals and interfaces. (2) Deployment difficulty [101]. For instance, ncnn, a popular mobile ML framework, requires the Vulkan API. Yet the Vulkan runtime for ARM GPUs only exists on Android but not GNU/Linux or Windows [26]. Even on a supported OS, an ML app often only works with specific combinations of runtime/kernel versions [39, 49, 76]. (3) Slow startup. Even a simple GPU job may take several seconds to launch because of expensive stack initialization. This paper will show more details.

The complexity of a GPU stack was mostly for its original design goal: to support interactive apps with numerous dynamic GPU jobs. Such a goal is less important to ML apps, which often run a prescribed set of GPU jobs (albeit on new input data) [105]; many ML apps run GPU job batches without user interactions; they can multiplex on GPU at long intervals, e.g. seconds. The ML apps just need to quickly shove computation into GPU. They should not be burdened by a full-blown GPU stack.

Our approach
GPUReplay (GR) is a new way to deploy and execute GPU compute with little changes to the existing GPU stack. We focus on integrated GPUs on system-on-chips (SoCs). Figure 1(b) overviews its workflow. At development time, developers run their ML app and record GPU executions. The recording is feasible: despite much of the GPU stack is a blackbox, it interacts with the GPU at a narrow interface – registers and memory, which is managed by an open-source driver. Through lightweight instrumentation, an in-driver recorder can trace CPU/GPU interactions as a series of register accesses and memory dumps which enclose proprietary GPU commands and instructions. They are sufficient for reproducing the GPU computation.

To replay, an ML app invokes the recorded GPU executions on new input data. To the app, the GPU stack is substituted by a replayer, which is much simpler as it avoids GPU API translation, code generation, and resource management. It simply accesses GPU registers and loads memory dumps at specified time intervals. Throughout the process, the recorder/replayer remain oblivious to the semantics of most register accesses and memory dumps.

Use cases
Figure 1 shows deployment scenarios of the replayer.

1We stress that the GPU stack is software code running on CPU, not GPU.
D1. Co-existing with a GPU stack on the same OS. This applies to smartphones. Common interactive apps without GR run on the GPU stack. When they are not using GPU, the OS runs GR-supported ML with replay. Once the interactive apps ask for GPU, the OS preempts GPU from the ongoing replay with short delays (Section 5).

D2. In TEE. This applies to Arm TrustZone [88]. On the same machine, apps not using GR run on the GPU stack in the normal world and GR-supported ML runs atop a replayer in the secure world. A secure monitor at EL3 switches GPU between the two worlds.

D3. As a replacement for the system’s GPU stack. This applies to headless devices such as robots, where GR-supported ML apps share GPU cooperatively. Each ML app run its own replayer instance.

Benefits GR offers the following benefits:

(1) Security First, GR better shields the GPU stack. The GPU stack serving the target ML app is detached from the app and instead resides on the developer’s machine for recording only. Hence, the stack is no longer exposed to many threats in the wild but instead protected as part of software supply-chain, for which attacks require high capabilities and long commitment [31]. Second, on target machines, the replayer replaces the GPU stack for the app (D1/D2) or for the whole system (D3). As a result, either the app or the whole system is free from vulnerabilities from the GPU stack, which originate in rich features such as buffer management [8, 2] and fine-grained sharing [4, 10, 7], as well as complex interfaces such as framework APIs [3], IOCTLs [6], and directly mapped memory [9]. By comparison, the replayer only has a few K SLoC and exposes several simple functions; replay actions have simple, well-defined semantics and are amenable to checks. See Section 7 for a security analysis.

(2) Ease of ML deployment The replayer can run in various environments: at user or kernel level of a commodity OS, in a TEE, in a library OS, and even baremetal. Section 6 will present the details. GR brings mature GPU compute such as Tensorflow NNs to these environments without porting full GPU stacks. GR is compatible with today’s GPU ecosystems. It requires no reverse engineering of proprietary GPU runtimes, commands, and shaders. Agnostic to GPU APIs, GR can record and replay diverse GPU workloads.

(3) Faster GPU invocation GR reduces the GPU stack initialization to baremetal: register accesses and GPU memory copy. It removes expensive abstractions of multiple software layers, dynamic CPU/GPU memory management, and just-in-time generation of GPU commands and code.

Challenges First, we make reproduction of GPU workloads feasible despite the GPU’s complex interfaces and proprietary internals. We identify and capture key CPU/GPU interactions and memory states; we selectively dump memory regions and discover the input/output addresses operated by GPU commands/shaders.

Second, we ensure GR’s replay is correct in the face of nondeterministic CPU/GPU interactions. A key insight is that replay correctness is equivalent to the GPU finishing the same sequence of state transitions as recorded. To this end, we prevent many state divergences by eliminating their sources at the record time; we tolerate non-deterministic interactions that do not affect the GPU state at the replay time. GR’s approach to nondeterminism sets it apart from prior record-and-replay systems [29, 48, 106]: targeting program debugging, they seek to reproduce the original executions with high fidelity and preserve all nondeterministic events in replay.

Third, we investigate a variety of practicality issues. We identify the minimum GPU hardware requirements. We show that GR requires low developer efforts, and such efforts are often amortized over a family of GPUs supported by one driver. We explore GR’s deployment ranging from smartphones to headless IoT devices. We investigate how to map an ML workload to GR and quantify the impact of recording granularities. We propose a scheduling mechanism for the replayer to share GPU with interactive apps.

Results GR works on a variety of GPUs (Arm Mali and Broadcom v3d), APIs (OpenCL, GLES compute, and Vulkan), ML frameworks (ACL [22], ncnn [97], Tensorflow [11], and DeepCL [89]), and 33 NN implementations. We build replayers for userspace, kernel, TrustZone, and a baremetal environment. We show that a recording with light patching can be replayed on different GPU hardware of the same family. Compared to the original GPU stack, the replayer’s startup delays are lower by up to two orders of magnitude; its execution delays range from 68% lower to 15% higher.

This paper makes the following contributions:

1. GPUReplay (GR), a new way to deploy GPU computation.
2. A recorder that captures the essential GPU memory states and interactions for replay.
3. A safe, robust replayer that verifies recordings for security, supports GPU handoff and preemption, and detects and recovers from replay failures.
4. Realization of the design in diverse software/hardware environments.

2. Motivations

2.1. The GPU stack and its problems

CPU/GPU interactions As shown in Figure 2, CPUs request computation on GPUs by sending jobs to the latter. The GPU runtime directly emits GPU job binaries – GPU commands, metadata, and shaders – to GPU-visible memory. The runtime communicates with the driver with ioctl syscalls, e.g. to allocate GPU memory or to start a job.

Why are GPU stacks complex? Several key features of a GPU stack cater to graphics.

2GPU memory for short, with the understanding it is part of shared DRAM.
1. **Just-in-time (JIT) job generation.** Graphics apps emit numerous GPU jobs, from uploading textures to rendering fragments. For instance, during a game demo of 50 seconds [92], the v3d GPU executes 32K jobs. A game may rewrite shader sources for jobs [44]. Unable to foresee these jobs, the GPU stack generates their commands and shaders just in time.

2. **Dynamic resource management.** Depending on user interactions, graphics apps generate GPU jobs with various input sizes, data formats, and buffer lengths. They require dynamic management of GPU time and memory, which may further entail sophisticated CPU/GPU coordination [13].

3. **Fine-grained multiplexing.** Concurrent programs may draw on their screen regions. To support them, the GPU stack interleaves jobs at fine intervals and maintains separation.

Compute for ML shows disparate nature unlike graphics.

Prescribed GPU jobs: One app often runs pre-defined ML algorithms [105], requesting a smaller set of GPU jobs repeatedly executed on different inputs. Popular neural networks (NN) often have tens of GPU jobs each (§7). The needed GPU memory and time can be statically determined.

Coarse-grained multiplexing: On embedded devices, ML may run on GPU for long without sharing (e.g. object detection on a smart camera). On multiprogrammed smartphones, ML apps may run in background, e.g. model fine-tuning. Such an app tolerates delays of hundreds of milliseconds or seconds in waiting for a GPU; once on GPU, it can generate adequate workloads to utilize the GPU.

Runtime blackboxes Most GPUs have proprietary runtime, job binaries, and shaders. While GR can be more efficient had it known these internals or changed them, doing so requires deep reverse engineering and makes deployment harder. Hence, we avoid changing these blackboxes but only tap in the Linux GPU drivers which are required to be open-source.

Design Implication A GPU stack’s dual modality for graphics and compute becomes a burden. While an ML app still needs the GPU stack for translating higher-level programming abstractions to GPU hardware operations, the translation can happen ahead of deployment. At run time, the ML app just needs a simple path to push the resultant operations to GPU.

GPU virtual memory Today, most integrated GPUs run on virtual address spaces. To configure a GPU’s address space, the GPU stack populates the GPU’s page tables and links GPU commands and shaders to the virtual addresses.

GPU autonomy To reduce CPU overhead, a GPU job packs in much complexity – control flows, data dependency, and core schedule. The GPU parses a job’s binary, resolves dependency, and dispatches compute to shader cores. A job may run as long as a few seconds without CPU intervention.

Take Mali G71 as an example: a job (called a “job chain”) encloses multiple sub jobs and the dependencies of sub jobs as a chain. To run AlexNet for inference, the runtime (ACL v20.05) submits 45 GPU jobs, 5–6 GPU jobs per NN layer; the GPU hardware schedules a job over 8 shader cores.

Synchronous job submission Asynchronous GPU job submission is crucial to graphics, for which GPU executes smaller jobs. To hide job management delays, CPU streams jobs to GPU to keep the latter busy. Yet for compute, a job’s management delay is amortized over the job’s longer execution. For simplicity, shallow job queues in GPU drivers are common (max two outstanding jobs in the Mali [16] and one in v3d/vc4 [56, 65]). Figure 3 shows that synchronous job submissions incur minor computation performance overhead: with six NN inferences on Mali G71 (see Table 6 for details), we find that enforcing synchronous jobs only adds 4% delays on average (max: 11%, min: 2%).

2.3. Design choices

The trends above motivate the following choices.

GR focuses on synchronous GPU jobs, queuing them and executing one job at a time. It eschews recording or replaying concurrent GPU jobs. This deliberate decision ensures replay determinism: with concurrent GPU jobs, the number of possible CPU/GPU interactions would grow exponentially, making faithful replay difficult. The overhead of synchronous jobs is low as shown above.

For the same reason, GR eschews GPU sharing across apps during record and replay. Even without sharing, GR has important use cases. On smartphones, examples include background ML such as photo beautification and model fine-tuning; on headless smart devices without graphics, examples include ML pipelines for vision and prediction. Furthermore, the replayer can yield GPU to interactive apps with low delays (§5).
GR records at the lowest software level, i.e. the CPU/GPU boundary. This makes the replayer small and portable. By contrast, recording at higher levels, e.g. GPU APIs [43] or ML frameworks [52], would require the replayer to incorporate extensive runtime or driver functionalities.

3. GR

3.1. Using GR

A recording encodes a fixed sequence of GPU jobs, including the CPU/GPU interactions and GPU memory dumps needed to execute these jobs. To capture a workload in one recording, the workload is required to execute all its jobs regardless of input, i.e. the workload’s job graph contains no conditional branches that lead to different types of GPU jobs. The requirement does not preclude conditional branches inside a GPU job, i.e. among GPU instructions. This is because GR dumps a job’s entire binary, which includes all the branches within, no matter whether they were exercised at the record time.

The above requirement is met by most, if not all, popular NNs, including all 44 NNs shipped with ACL, ncnn, and Tensorflow [22, 97, 98]. Note that some NNs (e.g. SqueezeNet and GoogLeNet) use “branches” to refer to routes in their job graphs, which are in fact executed unconditionally.

As examples, Figure 4 shows two common NN workloads.

- **NN inference** runs a sequence of NN layers \(\{L_1...L_n\} \), each executing a sequence of GPU jobs unconditionally. To record, developers run the inference once and create recordings \(\{R_1...R_n\} \), one recording per NN layer. An ML app supplies input and replays \(\{R_1...R_n\} \) in sequence. After the replay, the replayer extracts output from GPU memory to the app.

- **NN training** runs a sequence of NN layers \(\{L_1...L_n\} \) iteratively; after each iteration, it evaluates a predicate \(P \) and terminates if \(P \) shows the result has converged. To record, developers run one iteration and creates a sequence of recordings \(\{R_1...R_n\} \). They do not handle conditionals. An ML app runs a training iteration by replaying \(\{R_1...R_n\} \). After the iteration, the app code on CPU evaluates \(P \). Unless \(P \) shows convergence, the app replays \(\{R_1...R_n\} \) again on refined input.

The only exception to the above requirements, to our knowledge, is a conditional NN [45] using branches to choose among normal NNs. In this case, developers record branches as separate recordings; at run time, an ML app evaluates branch conditions on CPU and conditionally replays recordings. Conditional NNs are rare in practice to our knowledge.

CPU/GPU coordination Beyond the examples above, GR supports a workload consisting of interleaved CPU/GPU phases. For such a workload, the recorder generates multiple recordings, one recording per GPU phase. At run time, the app executes the CPU phases (not recorded) and replays for the GPU phases.

Such a hybrid execution is possible because GR stitches CPU and GPU phases by their input/output. To do so, the recorder automatically discovers input/output addresses for GPU recordings; before and after replaying each recording, the replayer deposits/extracts data to/from the GPU memory, respectively. In particular, CPU/GPU synchronizations (e.g. CPU waits for an OpenCL event) are recorded/replayed by GR as waits for GPU interrupts at the driver level. See Section 4 for details.

Recording granularity is a tradeoff between composability and efficiency; it does not affect correctness. In the examples above, developers record separate NN layers; alternatively, they may record a whole NN execution as one recording. While per-layer recordings allow apps to assemble new NNs programatically, a monolithic recording improves replay efficiency due to reduction in data move and cross-job optimizations. Section 7 will evaluate these choices.

Recording portability By default, GR expects the GPU hardware (SKUs) and firmware versions used for record and replay to exactly match. As Section 6 will show, record/play with different SKUs of the same family is possible, yet lightweight patching is needed.

Developer efforts are on three aspects. (1) Instrumenting a GPU driver to build a recorder. The effort is no more than 1K SLoC per GPU family, as the instrumentation applies to the family of GPU SKUs supported by the driver. See Section 4 for examples. (2) Recording their ML workloads. The effort is per GPU SKU. With minor patches, a recording can further be shared across GPU SKUs of the same family. (3) Building a replayer. The effort is a few K SLoC per deployment environment, e.g. for a TEE.

3.2. The GPU Model

GR builds on a small set of assumptions as summarized in Table 1. As the “least common denominator” of modern integrated GPUs, the assumptions constrain GPU behaviors to be a reproducible subset.

- **CPU/GPU interfaces** include memory-mapped registers, shared memory, and interrupts. Some GPUs, e.g. NVIDIA Tegra X1, may invoke DMA to access GPU registers [77]. All these interactions can be captured at the driver level.

- **Synchronous job submission**. Disabling asynchronous jobs avoids interrupt coalescing and the resultant replay divergence. The performance loss is modest as described in Section 2.2.
We consider configuration; J is the job binary being executed.

(1) Timing. For instance, a GPU job’s delay may vary; the
TegraX1: inject synchronization points to a command buffer; Table 1: Our GPU model fits popular integrated GPUs. *= To en-
Adreno: check submitted job completion before a new com-
force sync job submission: Mali: reduce the job queue length; Adreno: check submitted job completion before a new com-

The major nondeterminism sources are as follows.
Nondeterministic CPU/GPU interaction
Even to repeat the same workload, the CPU/GPU interactions are likely to differ, e.g. CPU may observe diverging register values or receive extra/few interrupts. Hence, a raw trace cannot be replayed verbatim. The major nondeterminism sources are as follows. (1) Timing. For instance, a GPU job’s delay may vary; the CPU may poll the same register for different times until its value changes. (2) GPU concurrency. The order of finishing concurrent jobs and the number of completion interrupts may vary. (3) Chip-level hardware resources, e.g. changes in a GPU’s clockrate.

Because replay correctness only depends on GPU states, we treat nondeterminism as follows. (1) Nondeterminism not affecting GPU states. This includes most of timing-related behaviors. The recorder discovers and summarizes them as replay actions, so that the replayer can tolerate (§4). (2) Afffecting GPU states; preventable. This includes GPU concurrency and some configurable chip resources. We eliminate the nondeterminism sources, e.g. enforcing synchronous job submission as described in the GPU model above. (3) Afffecting GPU states; non-preventable. This mainly includes strong contention and failures in chip resources, such as power failures. The replayer detects them and attempts re-execution.

4. Record

4.1. Interface Knowledge and Instrumentation
The knowledge needed by the recorder is in Table 1:

• The registers for starting a GPU job and for resetting GPU.
• The register pointing to the GPU page tables; the GPU page table’s encoding for physical addresses. This allows to capture and restore the GPU virtual address space.
• The set of registers on which reads or writes do not change GPU state. This is to detect state-changing events.
• The events that a GPU interrupt handler starts and ends. Knowing them allows the replayer to enter and leave an interrupt context (via eret) just as the record time.
• (Optional) The events that the GPU hardware becomes busy or idle. The recorder uses them to remove unwanted delays.

We instrument the driver code: register accessors; register writes starting a GPU job; accessors of GPU page tables; interrupt handling. Many of these code locations are already abstracted as macros [57] or tracepoints [14]. We find manual instrumentation is more robust than tracing via page faults [1].

Developer efforts to extract interface knowledge and to instrument a driver are often amortized over a family of GPU SKUs supported by the driver. We confirm this is true for 6 GPU SKUs supported by the Arm Bifrost driver [25] and 17 GPU SKUs supported by the Adreno 6xx driver [68]. Although a driver may execute code conditionally depending on the GPU SKUs in use, the GPU interfaces in a GPU family, i.e. register names and semantics, are often identical.

4.2. Register access
A recording consists of actions listed in Table 2. An action may summarize a sequence of register accesses showing nondeterminism without affecting GPU state. For instance, CPU may wait for GPU cache flush by polling a register [58, 15], where

Features	Interface Knowledge								
	VirtAddr	SyncJob*	JobStart*	JobWait	Pgtables	Reset	IRQ		
Arm Mali [25]	Y	Y	[21]	[16]	[18]	[19]			
Bcom v3d [56]	Y	Y	NC	[59]	[61]	[62]	[60]		
Bcom v4 [64]	Y	NC	[65]	N/A	[67]	[66]			
NV TegraX1 [78]	Y	Y	[85]	[84]	[83]	[79]	[86]		
Qcom Adreno [68]	Y	Y	[69]	[72]	[73]	[71]	[70]		

Table 1: Our GPU model fits popular integrated GPUs.* = To enforce sync job submission; Mali: reduce the job queue length; TegraX1: inject synchronization points to a command buffer; Adreno: check submitted job completion before a new command flush. NC: no changes
the number of register reads depends on the nondeterministic flush delay. Such polling is summarized by RegReadWait().

To do the above, the recorder recognizes nondeterministic register accesses that do not change GPU state. With the GPU interface knowledge described above, we inspect a driver’s register accesses and instrument their callsites that match the patterns in Table 2. We tap in existing macros such as wait_for() [63, 81] and instrument tens of callsites per driver.

4.3. Dumping proprietary job binaries

The recorder must record for a job’s binary: (1) GPU commands for data copy or format conversion, often packed as nested arrays; (2) shaders, which include GPU code and metadata; (3) GPU page tables. A GPU binary is deeply linked against GPU virtual addresses: GPU commands contain pointers to each other, to the shader code, and to a job’s input data; shaders also reference to code and data. Therefore, GR dumps all memory regions that may contain the job binary; to replay, GR restores the memory regions at their respective GPU virtual addresses.

Time the dump

A GPU stock emits a job’s binaries and updates GPU page tables lazily — often not until it is about to submit the job. Accordingly, the recorder dumps GPU memory right before the driver kicks the GPU for a new job. At this moment, the runtime must have emitted the job’s binary to the GPU memory; the memory dump must be consistent: synchronous job submission ensures no other GPU jobs are running at this time and mutating the memory.

Locating job binaries in GPU memory

Memory dumps must include job binaries for correctness; they should exclude GPU buffers passed among jobs so that loading of memory dumps does not overwrite these buffers; they should leave out a job’s scratch buffers as many as possible for space efficiency.

The challenge is that the recorder does not know exactly where GPU binaries are in memory: the GPU runtime directly emits the binaries to mmap’d GPU memory, bypassing the GPU driver and our recorder therein. A naive dump capturing all physical memory assigned to GPU can be as large as GBs. An optimization is to only dump memory mapped to GPU at the moment of job submission, which reduces a memory dump to MBs. Section 6 presents hardware-specific optimizations to further shrink memory dumps.

4.4. Locating input and output for a recording

Record by value vs. by address

A recording accepts one or more input buffers. By default, GR records an input buffer by address: the recorder captures the buffer’s GPU address, allowing new data injected at the address at replay time. Use cases include an NN’s input buffer. If developers intent to reuse an input buffer’s values for replay, they may optionally annotate the input as “record by value” in the record harness. GR then captures the buffer values as part of memory dumps. Use cases include a buffer of NN parameters. An input recorded by value and by address simultaneously allows optional value overriding. Annotations only decide apps’ responsibility for providing input data at the replay time; improper annotations does not break replay correctness.

Discover input/output addresses

Recording by value is straightforward: just dump any memory region that may contain the input. Recording by address is more challenging: the recorder cannot track to which GPU address the runtime copies input, as the runtime is a kernel-bypassing blackbox; it does not know from which addresses the GPU code loads input, because the recorder cannot interpret the GPU code.

To reveal these memory locations, GR adopts simple taint tracking. The record harness injects input magic values – synthetic, high-entropy data — and looks for them in GPU memory dumps. The rationale is that it is very unlikely that a high-entropy input (e.g. a 64x64 matrix with random elements) coincides another GPU memory region with identical values.

We took care of a few caveats. (1) The output often has lower entropy because it is smaller (e.g. a class label). In case of multiple matches of output magic in memory, GR repeats runs with different input magics to eliminate false matches. (2) The above technique cannot handle the case when the ML framework runs CPU code to reshape data before/after the data is moved to/from GPU. Fortunately, we did not see such a behavior in popular ML frameworks: Tensorflow, ncnn, and ACL. For efficiency, they always invoke GPU, if available, for data reshaping. While we are aware of rigorous, fine-grained taint tracking [30], our simpler technique is sufficient for locating GPU input/output. This saves us from configuring symbolic execution on a closed-source GPU runtime of tens of MBs, which requires expertise and non-trivial effort.
4.5. Pace replay actions

CPU cannot replay as fast as possible, otherwise GPU may fail to catch up. For example, CPU needs to delay after resetting the GPU clock/power for them to stabilize [82, 20] and delay after requesting GPU to flush cache [80].

The recorder sets a minimum interval T for each action: if the replayer takes t to execute the current action, it pauses for at least $T - t$ to before the next action. Setting proper intervals is non-trivial. When running the GPU stack, CPU paces its interactions with GPU intentionally (e.g. calling delay()) or unintentionally (e.g. running unrelated apps). The replayer should not preserve the observed intervals, as doing so will unnecessarily slow down the replay.

Figure 5 shows an example, where most long intervals are unintended delays from CPU: (1) Resource management, such as initialization of GPU memory management; (2) JIT generation of GPU commands and shaders; (3) OS asynchrony, such as scheduling delays; (4) Recording overhead, e.g. dumping GPU memory; (5) Abstraction tax, e.g. frequent IOCTLs. Doing none of these, the replayer should simply skip the resultant intervals and fast-forward to the next action.

The challenge is to differentiate unintended delays from intended delays. It is unrealistic for the recorder to profile the complex, multi-threaded GPU stack. Instead, it follows a simple heuristics: if the GPU hardware has been idle through one interval, the interval is safely skippable. The rationale is that an idle GPU can always keep up with GPU’s next action without pause. With this heuristics, we add tens of lines of code per driver, which can prove GPU idle for more than half of the observed intervals. Skipping them speeds up the replay significantly, as we will show in Section 7. The recorder simply preserves the remaining intervals for replay.

5. Replay

The replayer provides the following APIs. (1) Init/Cleanup: acquire or release the GPU with reset. (2) Load: load a recording file, verify its security properties, and allocate the required GPU memory. (3) Replay: replay the recording with input/output buffers supplied by the app. The replayer consists of a static verifier; an interpreter that parses/executes a recording in sequence; a nano GPU driver to be invoked by the interpreter.

5.1. Verification of security properties

The replayer statically verifies the following security properties. While a full GPU driver may implement similar checks, the replayer provides stronger guarantees due to its simplicity and independence of an OS kernel.

- No illegal GPU register access by CPU. A recording contains GPU register names, which are resolved by the replayer as addresses based on the GPU memory mapping.
- No illegal memory access by GPU. A recording only specifies sizes and GPU addresses of memory regions. It is up to the replayer to allocate the underlying physical pages and set up GPU page tables. The replayer ensures the allocated physical pages contain no sensitive data. The GPU MMU prevents GPU code from accessing any CPU memory.
- Maximum GPU physical memory usage. The replayer scans a recording for `MapGpuMem` entries (Table 2) to determine the GPU memory usage at any given moment. Based on the result, apps or the replayer can reject memory-hungry recordings.

The replayer cannot decide semantic correctness which is orthogonal to security. Section 7.1 will present discussions.

5.2. The nano GPU driver

The nano driver abstracts GPU hardware; it only has of 600 SLoC. Most driver functions directly map to replay actions: mapping GPU registers to CPU addresses, copying data in and out of GPU memory, rewriting the GPU page table entries for loading memory dumps, etc. The driver includes a bare minimum interrupt handler, which simply switches the CPU to the interrupt context and continues to replay the subsequent actions. The interrupt management, such as waiting for interrupt, acknowledging an interrupt, and checking interrupt sources, is done implicitly by replaying the corresponding actions.

5.3. GPU handoff and preemption

During replay, the replayer fully owns the GPU and does not share with other apps. Before and after a replay, it soft-resets the GPU, ensuring the GPU starts from a clean state without data leaking, e.g. no subsequent apps will see unflushed GPU cache. The replayer allows the OS to reset and preempt the GPU at any time (e.g. yielding to an interactive app) without waiting for ongoing GPU jobs to complete. Hence, preemption incurs short delays. A preemption disrupts the current replay. To mitigate it, we implement optional checkpointing: periodically making copies of GPU memory and registers. A disrupted replay resume from the most recent checkpoint. Section 7 evaluates preemption and checkpointing experimentally.

5.4. Handling replay failures

Replay failures are GPU state divergences due to non-preventable nondeterminism at run time. Based on our GPU model (§3), the replayer will not miss detecting any state divergences the full GPU stack can detect. When the replayer
faces failures, it attempts to recover through re-execution: resetting the GPU and starting over the whole recording; if the divergence persists, the replay injects additional delay to the action intervals that precede the divergence occurrence.

Re-execution with delays can overcome transient failures and many timing-related failures, which are the most common failures based on the driver code comments, documentations, and our own experience. Examples include an underclocked GPU for replay fails to keep up with the replay actions; high contention on shared memory cause GPU jobs to timeout.

Re-execution cannot overcome persistent failures, e.g. occurring hardware errors. A full driver is unlikely to overcome such errors either. In this case, the replay sees to emits meaningful errors as the full driver does: it reports the failed action and the associated source locations in the full driver.

6. Implementations and Experiences

As summarized in Table 3, we implement GR for Arm Mali (reported to ship billions of devices [24]) and Broadcom v3d (the GPU for Raspberry Pi 4). The current implementations work for a variety of ML workloads (inference, training, and math kernels), programming abstractions (OpenCL, Vulkan, and GLES compute), and GPU runtimes (the official ones as well an experimental runtime fully written in Python).

6.1. The recorder for Arm Mali

We implement a recorder for Mali Bifrost family; it records complex and diverse GPU workloads, including 18 inferences and 1 training, some of which will be evaluated in Section 7. Leveraging ArmNN [23], our prototype for Mali is compatible with TensorFlow NN models. We adds around 700 SLoC to Mali’s stock driver, which is 1% of the driver’s 45K SLoC.

Our recorder exploits Mali’s page permission to shrink memory dumps. If a GPU-visible page is mapped as executable to GPU, the recorder treats the page as part of job chains and dumps it. If a GPU-visible page is non-executable to GPU and is unmapped from CPU, the recorder treats the page as part of GPU internal buffers and excludes it from dumping. This is because GPU-visible pages are mapped to CPU on demand; an unmapped page must never have been accessed by CPU.

6.2. The recorder for Broadcom v3d

Our recorder for v3d adds around 1K SLoC to v3d’s stock driver. To dump GPU memory, the recorder follows v3d’s reg-
Remove GPU runtime from app (D1,D2,D3)	CVE-2014-1376, High	Improper restriction of OpenCL calls [3]	Arbitrary code execution App. T
Remove GPU driver (D2, D3)	CVE-2017-18643, High	Leak of GPU context address of GPU mem region [4]	Sensitive info disclosure Kernel. C
Disable fine-grained GPU sharing (D1,D2)	CVE-2014-4072, N/A	Lack of write protection for IOMMU page table [2]	Kernel mem corruption Kernel. I

Table 4: GR eliminates common vulnerabilities and exposures (CVEs) in the GPU stack

The original stack	Ours				
GR	1. Integrity; 2. Confidentiality; 3. Availability				
GPU	ML Framework	Runtime	Driver	Rec	Replayer
Mali B/Wست	▫ ACL: 500 KSLoC, 30MB	▫ HBrml.so: 48 MB	▫ 4K	▫ 0:7:K	▫ User/kernel: 2-3:0.8 KSLoC 25KB+20KB
Bcm64	▫ Bcm; 223 KSLoC, 11 MB	▫ Broadcom, broadcom.so: 7 MB	▫ 4K	▫ In-TEE: 1K SLoC, 10 KB	

Table 5: Codebase comparisons. Binaries are stripped.

6.4. Reusing recordings across GPU SKUs

It is possible to share recordings across GPUs of the same family: these GPUs are likely to share job formats, shader instruction sets, and most of register/page table semantics. We analyze three Mali GPUs: G31 (low end), G52 (mainstream), and G71 (high end). We manage to patch a recording from G31/G52 and replay it on G71. Our patch adjusts: (1) Page table format: re-arranging the permission bits in the G31 page table entries, which are in a different order than G71 due to G31’s LPAE support. (2) MMU configuration: flipping a bit in the translation configuration register to enable read-allocation caching expected by G71. (3) Core scheduling hints: changing the value of core affinity register (JS_AFFINITY) so a job is mapped to G71’s all 8 shader cores. Overall, the patch includes fixes for two registers per recording and one register per job. Section 7.5 reports replay performance of a patched recording.

Despite our limited success above, we note that it would be difficult to replay with fewer GPU resources (e.g. record on G71 and replay on G31). This is because doing so would require (1) proprietary GPU knowledge, e.g. to relocate GPU shaders and compact memory and (2) a more sophisticated replayer, e.g. to swap GPU memory.

7. Evaluation

We evaluate GR with the following questions.

- Does GR make GPU computations more secure?
- Overhead: Do recordings increase app sizes? How does the replay speed compared to that of the original GPU stack?
- Do our key design choices matter?

7.1. Analysis

Semantic bugs, e.g. emission of wrong GPU commands, may preexist in the GPU stack for recording. Such bugs may propagate to the target machines, resulting in wrong replay results. GR neither mitigates nor exacerbates these bugs. Fortunately, semantic bugs are rare in production GPU stacks to our knowledge. GR’s recorder and replayer may introduce semantic bugs. The chance, however, is slim; they are small as a few KSLoC with simple logic. Our validation experiments in Section 7.2 strengthen our confidence. We next focus on security, a major objective of GR.

Threat models Corresponding to three deployment scenarios (D1-3) in Section 1: (D1) a user/kernel-level replayer on a commodity OS trusts the OS while facing local unprivileged and remote adversaries; (D2) a replayer in TEE trusts the TEE kernel while facing the local OS adversaries and remote ones; (D3) a baremetal replayer only faces remote adversaries.

We assume it is difficult to compromise the recording environment, including OS, GPU stack, and code signing: doing so often requires long campaigns to infiltrate the developers’ network where risk management is likely rigorous [31]. We will nevertheless discuss the consequences of such attacks.

Thwarted attacks corresponding to three deployment scenarios are as follows. (D1) When a replayer coexists with the GPU stack on the same OS, the app using the replayer is free of GPU runtime vulnerabilities which cause unauthorized access to app memory [9], arbitrary code execution in the app [3], and app hang [5]. (D2) When a replayer runs in TEE and coexists with the GPU stack outside the TEE, the app is free from attacks against the GPU stack by the local OS adversaries. (D3) When a replayer completely replaces the GPU stack in a system, the system is free from GPU stack vulnerabilities that cause kernel information disclosure [4], kernel crash [8], and kernel memory corruption [2]. Table 4 summarizes the eliminated vulnerabilities.

Attacks against GR (1) Attacks against developers’ machines or recording distribution. This is difficult as described above. Nevertheless, successful adversaries may fabricate recordings containing arbitrary actions and memory dumps. A fabricated recording may hang GPU but cannot break security guarantees enforced by the replayer, e.g. no illegal register access (§5.1). (2) Attacks against the replayer or its TCB. The chance of replayer vulnerabilities is slim due to simplicity. Nevertheless, successful adversaries may subvert recording verification. By compromising a user-level replayer or kernel-level/baremetal replayers, adversaries may gain unrestricted access to the GPU or the whole machine, respectively.
We add extensive logging to both the original driver code and the replayer: they log all the GPU registers on each CPU/GPU interaction; they take snapshots of GPU memory before each job submission and after each interrupt. We then compare these logs across runs and look for any discrepancies.

We run two inference workloads, MNIST and AlexNet, each for 1,000 times. In each replay run, we create strong interferences with GPU by co-executing CPU programs that: (1) generate high memory traffic which contends with GPU register and memory access; (2) burn CPU cycles to trigger SoC thermal throttling. We also repeat the tests with GPU running at different clockrates. Each MNIST (AlexNet) run generates a log of 3K (8K) registers accesses and 46 (120) memory snapshots, respectively. The only detected discrepancies are the numbers of register polling and GPU job delays, which do not affect GPU states; all other logs match.

We further verify that the replayer produces correct compute results. We replay all the workloads in Table 6 (a) 1,000 times each. We create random input, inject interference, and compare the GPU’s outcome with the reference answers computed by CPU. The replayer always gives the correct results. The reasons are (1) our design enforces determinism, e.g. by disallowing concurrent kernels and (2) no hardware errors during our benchmarks.

Failure detection & recovery We run a CPU program to artificially inject transient, non-preventable failures during the replay of AlexNet: (1) offlining GPU cores forcibly and (2) corrupting GPU page table entries. The replayer successfully detects the failures as diverging reads of a status register and GPU memory exceptions, because the original driver checks the register and enables the interrupt. Re-execution resets GPU cores and re-populates the page table, finishing the execution.

7.3. Memory overheads

Recording sizes A GPU recording is as small as a few hundred KBs when compressed as shown in Table 6. The size is a small fraction of a smartphone app, which is often tens of MBs [28]. Of a recording, memory dumps are dominant, e.g. on average 72% for Mali. Some v3d recordings are as large as tens of MBs uncompressed because they contain memory regions that the recorder cannot safely rule out from dumping. Yet, these memory regions are likely GPU’s internal buffers; they contain numerous zeros and are highly compressible.

CPU/GPU memory The replayer’s GPU memory consumptions show a negligible difference compared to that of the original GPU stack, because the replayer maps all the GPU memory as the latter does. The replayer’s CPU memory consumption ranges from 2 – 10 MB (average 5 MB) when executing NN inference, much lower than the original stack (220 – 310 MB, average 270 MB). This is because the replayer runs a much smaller codebase; by directly loading GPU memory dumps, it avoids the major memory consumers such as GPU contexts, NN optimizations, and JIT commands/shader generation.

7.4. Replay speed

We study the inference delays on a variety of NNs as listed in Table 6. Compared to the original GPU stacks (native execution), the replayer’s startup delays are significantly lower: by 26% – 98% (Mali) and lower by 77% – 99% (v3d); Our replay is even 20% faster (Mali) and only 5% slower (v3d) on average. Our overhead is much lower than prior TEE systems for secure GPU computation [46, 99, 100].

Startup delays We measure the startup delay from the time the testing app initializing a GPU context until the first GPU job is ready for submission. Figure 6 shows the results. Both the stacks for Mali and v3d take seconds to start up, yet showing different bottlenecks: Mali is bottlenecked at the runtime (libMali.so) compiling shaders and allocating memory; v3d is at the framework (ncnn) loading NNs and optimizing pipelines. By contrast, the replayer spends most time on GPU reset, loading of memory dumps, and reconstructing page tables.

Our startup comparison should not be interpreted as a quantitative conclusion, though. We are aware of optimizations to mitigate bottlenecks in GPU startup, e.g. caching compiled shaders [32] or built NN pipelines [96]. Compared to these point solutions, GR is systematic and pushes the caching idea to its extreme – caching the whole initialization outcome at the lowest software layer.

NN inference delays We measured the delay from the moment an app starting an inference with its ML framework to the moment app getting the outcome. The results are shown in Figure 7. In general, on benchmarks where the CPU overhead is significant, the replayer sees lower delay than the full stack, e.g. by 70% on MNIST (Mali). This is because the replayer minimizes user-level executions, kernel-level memory man-

Table 6: NN inference for evaluation. Choices of NNs for Mali vs. v3d are slightly different because their ML frameworks do not implement exactly the same set of NNs
7.5. Validation of Key Designs

Cross-GPU record/replay (§6.4) Figure 9 demonstrates it on different GPUs of the same family. We have recorded the same workload on Arm Mali G31 (low-end, 1 shader core) and G52 (mainstream, 2 cores). We attempt to replay the two recordings on Mali G71 (high-end, 8 cores). With patched GPU page tables and MMU register values, the replay completes with correct results, albeit with 4x – 8x lower performance. Further patching the core affinity register makes the replay utilize G71’s all 8 shader cores, resulting in full performance.

Impact of recording granularity We tested three granularities: one monolithic recording per NN (high efficiency); one recording per NN layer (high composability); per fused layer with layer fusion done by ACL [22] (a middle ground). Figure 11 shows that recordings of fused layers incur only 15% longer delays on average than a monolithic recording. The additional delays come from replay startup (see Figure 6). We conclude that for NN inference, recording every fused layer is a useful tradeoff between composability and efficiency.

Preemption delay for interactivity (§5.3) We measure the delay perceived by an interactive app when it requests to preempt GPU from the replayer. On both tested GPUs, the delay is below 1 ms, which translates to minor performance degradation, e.g. loss of 1 FPS for a 60 FPS app. The reason is preemption simplicity: a preemption primarily flushes GPU cache and GPU TLB followed by a GPU soft reset.

Checkpoint & restore (§5.3) Our results show that GPU state checkpointing is generally inferior to re-executing the whole replay. For instance, MobileNet making one checkpoint every 16 GPU jobs (50–60 jobs in total) slows down the whole NN execution by 8x. The primary cause is memory dump. MobileNet takes 140 ms to dumps all GPU memory (51 MBs)
while re-executing the NN takes only 45 ms.

8. Related Work

Record and replay was primarily used for diagnosis and debugging [29, 106, 48]. It has been applied to mobile UI apps [38, 91], web apps [75], virtual machines [35], networks [102], and whole systems [42]. None of prior work has applied the idea to the CPU/GPU interactions. Related to GR, Replaying syscalls and framework calls have been popular in reverse engineering GPU runtimes [12, 40, 55, 27] and reducing GPU scheduling overhead [52], respectively. Unlike them, GR records at the CPU/GPU boundary and therefore achieves the goal of a lean, trustworthy replayer.

Refactoring GPU stacks To leverage TEE, recent works isolate part of or the whole GPU stack for security. Sugar [107] subsumes a full GPU stack to an app’s address space. Graviton [100] pushes the function of isolation and resource management from OS to a GPU’s command processor. Telekine [43] spans a GPU stack between local and cloud machines at the API boundary. HIX [46] ports the entire GPU stack to a secure enclave and restricts the IO interconnect. HETEE [109] instantiates dedicated hardware controller and fabric to isolate the use of GPU. While efficacy has been shown, a key drawback is the high engineering effort (e.g., deep modifications of GPU software/hardware), limited to a special hardware component (e.g., software-defined PCIe fabric) and/or likely loss of compatibility with stock GPU stacks. Contrasting to all the above approaches of spatial refactoring, GR can be viewed as temporal refactoring of a GPU stack – between the development time and the run time.

GPU virtualization often interposes between GPU stack layers in order to intercept and forward interactions, e.g. to a hypervisor [95] or to a remote server [34]. The interposed interfaces include GPU APIs [34, 108] and GPU MMIO [33, 95]. Notably, AvA [108] records and replays API calls during GPU VM migration. GR shares the principle of interposition and gives it a new use – for recording computations ahead of time and later replaying it on a different machine.

Optimizing ML on GPU Much work has optimized mobile ML, e.g. by exploiting CPU/GPU heterogeneity [51]. Notably, recent studies found CPU’s software inefficiency leaving GPU under-utilized, e.g. suboptimal CLFlush [50] or expensive data transformation [103]. While prior solutions fix the causes of inefficiency in the GPU stack [50], GR offers blind fixes without knowing the causes: replaying the CPU outcome (e.g. shader code) and removing GPU idle intervals.

Secure ML Much work has transformed ML workloads rather than the GPU stack; outsourcing security-sensitive compute to TEE, they preserve data/model privacy or ensure compute integrity [41, 74, 54]. They often support CPU-only compute and their workload transformation is orthogonal to GR. While Slalom [99] proposed secure GPU offloading, it requires GPU stack in TEE and limited to linear operations.

9. Concluding Remarks

Broader applicability (1) The idea of GR applies to discrete GPUs. Our GPU hardware assumptions (§3.2) see counterparts on discrete GPUs albeit in different forms, e.g. registers and memory mapped via PCIe. In particular, GR can leverage NVIDIA MIG [87] to enable app multiplexing: the replayer can own an MIG instance while other apps use other instances; they are multiplexed on a physical GPU transparently by MIG. However, discrete GPUs raise new challenges including more complex CPU/GPU interactions, higher GPU dynamism, and recording cost due to larger memory dumps. (2) While this paper focuses on ML workloads, GR can extend to more GPU computation including numeric analysis and physics simulation. (3) GR’s principle is applicable to other TEEs. A replayer in an SGX enclave is possible, but would need additional support such as MMIO remoting or SGX’s extension for MMIO [46] because by default enclaves cannot directly access GPU registers.

Recommendation to GPU vendors We build GR without vendor support, respecting the GPU runtime blackbox (§2) and only reasoning/modifying at the driver level. It would be more attractive if vendors can implement GR and maintain as part of their GPU stacks. On one hand, the vendors can make GR more robust with first-party knowledge (e.g. GPU state machines for detecting state divergence) and lightweight interface augmentation (e.g. the runtime directly discloses a job’s input/output addresses). On the other hand, the modifications to GPU stacks are very minor and the GPU runtime internals still remain proprietary.

References

[1] In-kernel memory mapped i/o tracing. https://www.kernel.org/doc/html/latest/trace/mmiotrace.html.
[2] CVE-2014-0972: Unprivileged gpu command streams can change the iommu page table. https://nvd.nist.gov/vuln/detail/CVE-2014-0972, 2014.
[3] CVE-2014-1376: Improper restriction to unspecified openc api calls. https://nvd.nist.gov/vuln/detail/CVE-2014-1376, 2014.

[4] CVE-2017-18643: Information disclosure on samsung gpu. https://nvd.nist.gov/vuln/detail/CVE-2017-18643, 2017.

[5] CVE-2018-6253: Vulnerability in the opengl usermode drivers. https://nvd.nist.gov/vuln/detail/CVE-2018-6253, 2018.

[6] CVE-2019-10520: out of memory in snapdragon. https://nvd.nist.gov/vuln/detail/CVE-2019-10520, 2019.

[7] CVE-2019-14615: Information leakage vulnerability on the intel integrated gpu architecture. https://nvd.nist.gov/vuln/detail/CVE-2019-14615, 2019.

[8] CVE-2019-20577: Snmu page fault in mali gpu driver. https://nvd.nist.gov/vuln/detail/CVE-2019-20577, 2019.

[9] CVE-2019-5068: Exploitable shared memory permission vulnerability in mesa 3d graphics library. https://nvd.nist.gov/vuln/detail/CVE-2019-5068, 2019.

[10] CVE-2020-11179: Qualcomm adreno gpu ringbuffer corruption / protected bd mod_tbd_bpass. https://nvd.nist.gov/vuln/detail/CVE-2020-11179, 2020.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kiros, A. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 263–283, Savannah, GA, Nov. 2016. USENIX Association.

[12] Alyssa Rosenzweig. Dissecting the Apple M1 GPU, part II. https://rosenweig.io/blog/asahi-gpu-part-2.html.

[13] Android kernel. Arm Bifrost Graphics Driver. Confi_Mali_System_Trace. https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/ drivers/gpu/arm/midgard/mali_kbase.h#L46.

[14] Android kernel. Arm Bifrost Graphics Driver: kbase_cache_clean_worker(). https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/mali_kbase.h#C49.

[15] Android kernel. Arm Bifrost Graphics Driver: kbase_job_hw_submit(). https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/mali_kbase.h#C56.

[16] Android kernel. Arm Bifrost Graphics Driver: kbase_job_irq_handler(). https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/backend/mali_kbase_instr_backend.h#C45.

[17] Android kernel. Arm Bifrost Graphics Driver: kbase_mmu_insert_pages(). https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/mali_kbase.h#C46.

[18] Android kernel. Arm Bifrost Graphics Driver: kbase_pm_set_policy(). https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/mali_kbase.h#C57.

[19] Android kernel. Arm Bifrost Graphics Driver: SLOT_RB_SIZE. https://android.googlesource.com/kernel/arm64+/refs/tags/android-11.0.0_r67/drivers/gpu/arm/midgard/graphics_sdk/mali_kbase_pm_def.h#L46.

[20] Arm. Arm Compute Library. https://github.com/ARM-Software/ComputeLibrary.

[21] Arm. ArmNN. https://github.com/ARM-software/armnn.

[22] Arm. Mali for all occasions: New GPUs for all graphics workloads, use cases and consumer devices. https://community.arm.com/dev/tools-software/graphics/b/blog/posts/new-suite-of-arm-mali-gpus/.

[23] Arm. Open Source Mali Bifrost GPU Kernel Drivers. https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/bifrost-kernel.

[24] Arm. Vulkan SDK for Android. https://github.com/ARM-software/vulkan.

[25] ARM-software. Software for capturing gles calls of an application and replaying them on a different device. https://github.com/ARM-software/patrace.
[96] Tencent. ncnn Pipeline Cache. https://github.com/Tencent/ncnn/blob/master/src/pipelinecache.cpp.

[97] Tencent. Tencent ncnn framework. https://github.com/Tencent/ncnn.

[98] TensorFlow. Example NNs by TensorFlow. https://www.tensorflow.org/lite/guide/hosted-models.

[99] F. Tramer and D. Boneh. Slalom: Fast, verifiable and private execution of neural networks in trusted hardware. In International Conference on Learning Representations, 2019.

[100] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution environments on gpus. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages 681–696, Carlsbad, CA, Oct. 2018. USENIX Association.

[101] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine learning at facebook: Understanding inference at the edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 331–344, 2019.

[102] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. Ofrewind: Enabling record and replay troubleshooting for networks. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11, page 29, USA, 2011. USENIX Association.

[103] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and D. Brooks. Smaug: End-to-end full-stack simulation infrastructure for deep learning workloads. ACM Trans. Archit. Code Optim., 17(4), Nov. 2020.

[104] C. Xu, F. X. Lin, Y. Wang, and L. Zhong. Automated os-level device runtime power management. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15, pages 239–252, New York, NY, USA, 2015. ACM.

[105] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu. A first look at deep learning apps on smartphones. In The World Wide Web Conference, WWW ’19, page 2125–2136, New York, NY, USA, 2019. Association for Computing Machinery.

[106] M. Yan, Y. Shalabi, and J. Torrellas. Replayconfusion: Detecting cache-based covert channel attacks using record and replay. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–14, 2016.

[107] Z. Yao, Z. Ma, Y. Liu, A. Amiri Sani, and A. Chandramowlishwaran. Sugar: Secure gpu acceleration in web browsers. ASPLOS ’18, page 519–534, New York, NY, USA, 2018. Association for Computing Machinery.

[108] H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossbach. Ava: Accelerated virtualization of accelerators. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’20, page 807–825, New York, NY, USA, 2020. Association for Computing Machinery.

[109] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang, J. Ying, L. Zhang, and D. Meng. Enabling rack-scale confidential computing using heterogeneous trusted execution environment. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1450–1465, 2020.