Three-dimensional static and dynamic parallel transmission of the human heart at 7 T

Christoph Stefan Aigner1 | Sebastian Dietrich1 | Sebastian Schmitter1,2

1Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
2University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota

Correspondence
Christoph Stefan Aigner, Department of Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany.
Email: christoph.aigner@ptb.de

Funding information
German Research Foundation, Grant/Award Number: SCHM 2677/2-1 and GRK2260, BIOQIC

Three-dimensional (3D) human heart imaging at ultra-high fields is highly challenging due to respiratory and cardiac motion-induced artifacts as well as spatially heterogeneous B_1^+ profiles. In this study, we investigate the feasibility of applying 3D flip angle (FA) homogenization targeting the whole heart via static phase-only and dynamic kT-point in vivo parallel transmission at 7 T. 3D B_1^+ maps of the thorax were acquired under free breathing in eight subjects to compute parallel transmission pulses that improve excitation homogeneity in the human heart. To analyze the number of kT-points required, excitation homogeneity and radiofrequency (RF) power were compared using different regions of interest in six subjects with different body mass index (BMI) values of 20-34 kg/m² for a wide range of regularization parameters. One subset of the optimized subject-specific pulses was applied in vivo on a 7 T scanner for six subjects in Cartesian 3D breath-hold scans as well as in two subjects in a radial phase-encoded 3D free-breathing scan. Across all subjects, 3-4 kT-points achieved a good tradeoff between RF power and nominal FA homogeneity. For subjects with a BMI in the normal range, the 4 kT-point pulses reliably improved the coefficient of variation by less than 10% compared with less than 25% achieved by static phase-only parallel transmission. In vivo measurements on a 7 T scanner validated the B_1^+ estimations and the pulse design, despite neglecting ΔB_0 in the optimizations and Bloch simulations. This study demonstrates in vivo that kT-point pTx pulses are highly suitable for mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T. Furthermore, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.

KEYWORDS
heart, kT-points, parallel transmission, 7 T

Abbreviations used: 2D/3D, two-dimensional/three-dimensional; BMI, body mass index; CV, coefficient of variation; ECG, electrocardiogram; FA, flip angle; FOV, field of view; GRE, gradient recalled echo; IRB, institutional review board; MR, magnetic resonance; pTx, parallel transmission; RF, radiofrequency; RMS, root mean squared; RMSE, root mean squared error; ROI, region of interest; RPE, radial phase-encoding; SAR, specific absorption rate; SNR, signal-to-noise ratio; SPINS, spiral nonselective; TE/TR, echo time/repetition time; TIAMO, time interleaved acquisition of modes; UHF, ultra-high fields.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd

NMR in Biomedicine. 2021;34:e4450.
https://doi.org/10.1002/nbm.4450
Ultra-high field MR is often limited by inhomogeneities of the radiofrequency (RF) transmit magnetic field (B_1^+) yielding spatially variable flip angles (FAs) and, in the worst case, areas with zero FA. Various methods have been proposed to address the problem of spatial heterogeneities of the B_1^+ fields, including dedicated coil design,2,3 inductively coupled RF resonator arrays,3 dielectric padding,4 hybrid metasurfaces,5 adiabatic RF pulses6,7 or, in combination with multiple transmit coils, via parallel transmission (pTx).1 Different RF pulse design methods have been developed to compute slice-selective and spatially nonselective pTx RF pulses based on two-dimensional (2D) or three-dimensional (3D) B_1^+ maps for multi-dimensional applications, including static B_1^+ shimming,8 multi-dimensional (pTx-accelerated) excitation,9,10 slice-selective spokes,11 spatially nonselective kt-points12 or spiral nonselective (SPINS)13 pulses. Alternatively, precomputed universal pulses can be applied without the need to acquire subject-specific B_1^+ maps to improve the B_1^+ inhomogeneity in the human heart.14

Cardiovascular MRI (CMR) is generally more challenging because of multiple manifestations of physiological motion, including respiration-induced motion, blood flow and cardiac motion. Despite these difficulties, CMR is used in routine clinical practice at field strengths of 3 or 1.5 T. However, at ultra-high fields (UHF), standard techniques to address the aforementioned challenges, including electrocardiogram (ECG) triggering or the use of respiratory navigators, become less reliable and the RF transmit fields within the target volume becomes increasingly heterogeneous. Nevertheless, the higher SNR available at UHF could be used to push the spatial and temporal limits of cardiac imaging despite the difficulties caused by UHF. One prerequisite to achieving this is a homogeneous B_1^+ field. A homogeneous FA in the heart can be obtained using parallel transmission, assuming that the underlying B_1^+ field of each transmit coil is known. However, robustly mapping the magnitude and phase of B_1^+ in the upper body is a highly demanding task on multi-transmit architectures at UHF. To date, this has primarily been performed with ECG-based cardiac gating in single or multiple breath-holds, limiting B_1^+ mapping to a single or a few 2D slices,15–17 or alternatively without ECG in free breathing in a single 2D slice.18,19

Various groups have successfully demonstrated pTx based on 2D B_1^+ maps in the body, using static B_1^+ shimming for smaller 2D regions of interest (ROIs) such as the prostate or the human heart.20–22 For larger ROIs, two 2D acquisitions with different B_1^+ shims have been applied to address signal nonuniformity by using the time interleaved acquisition of modes (TIAMO) method.23 Dynamic pTx with slice-selective spokes RF pulses was shown to further improve excitation uniformity in the liver24 and the heart15–17 at 7 and 10.5 T.25 One main finding of these studies was that static B_1^+ shimming is not able to sufficiently mitigate the FA heterogeneity when targeting larger 2D ROIs, and naturally this can become exacerbated when large 3D volumes are targeted.

To date, SAR limits and the various motion sources, including respiration, cardiac motion and blood flow,22 have hindered the acquisition of acceptable channel-wise 3D B_1^+ maps of the human abdomen at 7 T and have prevented the investigation and development of dynamic 3D pTx pulses to homogenize larger body volumes, as seen at 7 and 9.4 T in the human head1,2,26 or at 3 T in the liver.27 These limitations can be avoided by the short acquisition of relative or absolute B_1^+ maps in one or a few 2D slices performed in a single or multiple breath-holds.15,28 For 3D B_1^+ maps requiring longer acquisition times, other approaches are needed. Relative 3D B_1^+ mapping in the human body while breathing freely29 permits a good tradeoff between acquisition time and SAR demands and also allows investigation of the static and dynamic 3D B_1^+ shimming in the body.

In this study, we demonstrate the feasibility and benefits of subject-specific spatially nonselective kt-point pulses to achieve 3D FA homogenization across the entire human heart at 7 T. The optimized kt-point pulses were compared with static phase-only B_1^+ shimming and were tested via various simulations for multiple kt-points optimized for subject-specific 3D B_1^+ maps. In vivo data were acquired with 3D gradient recalled echo (GRE) breath-hold scans in six subjects with different body sizes. Additional data were acquired in two subjects using 3D GRE radial phase-encoding (RPE) in free breathing with subject-specific static B_1^+ shimming and dynamic kt-point pulses.

The presented work achieves homogeneous FAs in the human heart using dynamic kt-point pTx pulses based on relative 3D B_1^+ maps of the human body and forms the basis for future 3D body imaging applications at UHF.

2 | METHODS

2.1 | Setup and hardware

MRI was performed on a 7 T scanner (Magnetom 7 T, Siemens Healthineers, Erlangen, Germany) equipped with an eight-channel transmit array (1 kW peak power per channel) and a whole-body gradient system, which can achieve a maximum amplitude of 40 mT/m and slew rate of 200 T/m/s. The in vivo measurements were performed with a commercial body coil array (MRI.TOOLS, Berlin, Germany), which consists of 32 transceiver elements (eight dipoles and 24 loops) that are driven in an 8Tx/32Rx channel mode. This coil was certified by a notified body to comply with the local SAR limits in the first level controlled mode of 20 W/kg (IEC 60601-2-33) with a field of view (FOV)/excitation of approximately more than 240 mm along the head-foot direction. Each of the transmit channels consists of one dipole and three loop elements. Reconstruction of the estimated relative B_1^+ maps, pulse design and creation of the pulse files was performed on a separate workstation PC (12 cores with 2.1 GHz, 128 GB RAM).
Eight healthy volunteers (four females and four males; average age 29 years, range 21-35 years) with a wide range of body mass index (BMI) values (20-34 kg/m²) were scanned in the supine position with a heart-centered FOV according to an approved institutional review board (IRB) protocol. All subjects participated voluntarily and signed an informed consent form. The volunteers were split into two different groups. Group 1 contained six volunteers whose data were used for a simulation study to analyze different shim settings. Group 2 contained two volunteers who were scanned to qualitatively analyze the subject-specific kT-point pulses in a 3D free-breathing measurement. We did not exclude any volunteer data from this study. The coil consisted of two parts, each with four transmit channels, and were positioned underneath the subject as well as on top of the chest. To monitor vital signs, ECG and infra-red plethysmography were recorded throughout the MR examination. The vital signs were not used in the reconstruction. For each subject, the transmit reference voltage was set to 170 V, which was close to the maximum of the 8 x 1 kW amplifier (Stolberg AG, Stolberg, Germany). The tune-up B₀ shim was used in all but one subject since initial tests showed no clear improvement of the B₀ homogeneity in the heart region after performing the vendor’s B₀ shimming routine. The tune-up B₀ shim was only replaced by a specific B₀ shim for subject 3, who had the highest BMI (34 kg/m²).

For B¹ mapping, a 3D GRE sequence with RPE trajectory was used. Eight 3D GRE datasets were acquired under free-breathing with the full receive capability of the body coil and transmitting via only one transmit channel (ch) while all others were deactivated. In addition, scans with all transmit channels activated, as well as without any transmission, were acquired using the default phase setting, resulting in 10 3D GRE datasets. The default phase was set by the manufacturer to provide sufficient B¹ throughout the aorta. The following parameters were used: nominal FA = 20°; TE/TR = 2.02/40 ms, FOV = 250 × 312 × 312 mm³, slice thickness = 4 mm, bandwidth = 399 Hz/Px and 256 RPE lines separated by the golden angle, resulting in a total acquisition time of 205 seconds to acquire all 10 3D GRE datasets. For subject 3, an extended FOV = 250 × 350 × 350 mm³ with otherwise identical parameters was used. Following acquisition, the raw data were exported to the remote workstation and reconstructed for an isotropic voxel size of 4 mm in less than 1 minute using full k-space information and without correction of respiratory or cardiac motion.

Relative 3D channel-wise B¹⁺ estimates were computed using the 3D GRE images from each transmit channel assuming that the sum of magnitudes of all transmit channels is equal to the sum of magnitudes of all receive channels for each spatial position of the eight channels. Figure S1 contains the source code to compute the channel-wise relative B¹⁺ maps. The underlying method has been frequently applied in 2D acquisitions providing good results for different 2D applications in the human body at 7 T. The channel-wise relative phase distributions were calculated relative to the first transmit channel. The channel-wise superpositions of the resulting B¹⁺ maps were used to manually draw the ROI of the heart on a slice-by-slice basis for each subject. This took less than 1 minute for 9-16 slices. The ROI was used as a binary mask for pulse design and quantitative evaluation.

ΔB₀ maps were acquired in 21 seconds using a bandwidth of 1260 Hz/Px, three different echo times (Tₑ1/Tₑ2/Tₑ3 = 1.02/2.04/3.06 ms, respectively) and a bipolar readout on an RPE trajectory. All other parameters were identical to those used for B¹⁺ mapping. Using the bipolar readout, the amplitude and phase of data of Tₑ2 were corrected prior to reconstruction. Finally, ΔB₀ maps were calculated with a multi-seeded region-growing algorithm.

2.3 Pulse design

In this work, we investigated the feasibility of improving the excitation homogeneity throughout the human heart using static phase-only RF shimming and dynamic magnitude and phase pTx for multiple kT-points with the small-tip-angle approximation. The assumption of small FA allowed manual calibration of the relative B¹⁺ maps to compute the nominal FA assuming a linear relationship between B¹⁺ and the FA. The scaled B¹⁺ maps were then used for the pulse design to predict and optimize the nominal FA distribution in each ROI. Note that this does not reflect the actual FA.

Three sets of ROIs were used to optimize the pulses:

I. ROI₁: a single slice of ROI₄ in the isocenter.
II. ROI₂: three slices of ROI₄ symmetrically distributed around the isocenter with a slice gap of 8 mm.
III. ROI₃: heart ROI covering 9-16 slices with a slice gap of 8 mm (on average 12 slices).

All pulse designs were computed in MATLAB R2014b (MathWorks, Natick, MA, USA).

2.3.1 Static phase-only shim

Static phase-only shimming was performed similarly to by solving a cost function that optimized the tradeoff between homogeneity measured by the coefficient of variation (CV)
Optimization was based on the magnitude of the \hat{B}_1^+ maps superimposed with complex RF phase factors $b_{ch} = e^{j\phi_{ch}}$, with ϕ_{ch} being the channel-dependent phase-offset and N_c being the number of channels and the sum of the magnitude of the \hat{B}_1^+ maps for a given ROI. Each optimization was performed eight times (this number was set empirically to avoid local minima) with different pseudo-random starting phases followed by an automated selection of the best solution based on the lowest cost function value. The computation times were of the order of seconds.

2.3.2 Dynamic kT-points

Dynamic kT-points consist of a series of complex weighted rectangular RF pulses separated by gradient blips to homogenize 3D volumes. The pulse design problem was solved using the small-tip-angle approximation with an interleaved greedy and local optimization solving

$$
\min_{b_{ch}} \frac{1}{2} \| m - \sum_{ch=1}^{N_c} \hat{B}_{1,\text{ch}} A(K) b_{ch} \|_{\text{ROI}}^2 + \frac{\beta}{2} \| b \|^2,
$$

(3)

to compute the complex RF weights b_{ch} (magnitude and phase) and k-space locations K for each kT-point, with m being the desired target pattern or FA, $\hat{B}_{1,\text{ch}}$ being the estimated \hat{B}_1^+ maps for each channel ch, $A(K)$ being the excitation system matrix and β being the regularization term balancing excitation fidelity and RF power, as described in Grissom et al. The complex RF weights b_{ch} were computed by solving the magnitude least-squares solution followed by a greedy method to select the next kT-point using. This alternating update scheme was repeated for all kT-points without coil compression for all channels. The initial regularization parameter was updated every 50 iterations, as described in Grissom et al. The temporal resolution of the RF pulses and gradient blips was set to the gradient raster time of 10 ms. Again, voxels outside the ROI were ignored by a binary mask. The impact of ΔB_0 variations on the optimized kT-point pulses was analyzed for subject 1 using ΔB_0 maps obtained with an RPE-based 3D multi-echo GRE sequence. If not otherwise stated, all other kT-point optimizations have been computed without including a ΔB_0 map.

2.4 Qualitative analysis

Two different excitation settings (a) static phase-only shim optimized for ROI3 (ROI3 static shim) and (b) 4 kT-points optimized for ROI4 (ROI4, 4 kT-points) were acquired in six healthy volunteers (group 1) to qualitatively check the computed \hat{B}_1^+ estimates $\hat{B}_{1,\text{ch}}$. The rectangular (hard) RF pulse series with optimized phase shim (ROI4 static shim) and the kT-points RF pulses and interleaved gradient blips were inserted in a high-resolution Cartesian 3D GRE sequence. The subjects were scanned in the supine position. To achieve abdominal coverage in the anterior-posterior (A-P) direction for all subjects, the amount of phase-encoding lines was adapted from 56.3% up to 75% (216 up to 288 mm). The increase in phase-encoding lines was compensated for by a reduction of the phase resolution to 70% to achieve a similar scan duration of ~30 seconds for each subject. Aside from these subject-specific adaptations, all the other parameters remained constant: nominal FA = 30°, TE/TR = 1.3/3.4 ms, FOV read = 384 mm, base resolution = 320, slice thickness = 2.77 mm, slices = 72, slice oversampling = 77.8% and GRAPPA = 2 with 24 reference lines and a bandwidth of 1120 Hz/Px. The short scan duration allowed acquisition of the entire 3D volume in a single breath-hold in the end expiration state.

2.5 Quantitative analysis

The impact of multiple kT-points, regularization parameters and ROIs on excitation fidelity, as well as the required RF power and pulse duration, were analyzed in a simulation study following acquisition of six in vivo subjects from group 1.

Two different timing schemes, (a) fixed subpulse duration and (b) fixed total pulse duration for adding kT-points, were implemented, and kT-points were optimized using fixed and automatic (updated every 50 iterations) regularization parameters. The first optimization runs were

\[CV = \text{std} \left(\left| \sum_{n=1}^{N_c} B_{1,\text{ch}} b_{ch} \right|_{\text{ROI}} \right) / \text{mean} \left(\left| \sum_{n=1}^{N_c} B_{1,\text{ch}} b_{ch} \right|_{\text{ROI}} \right) \]
computed for a fixed subpulse duration (a) of 0.24 ms, which consisted of a 0.1 ms square RF pulse followed by a 0.14 ms gradient blip. Each additional kT-point increased the total pulse duration by 0.24 ms, resulting in total pulse durations of between 0.48 and 1.44 ms. The second optimization runs were computed to achieve a fixed total pulse duration (b) of 0.96 ms with variable square RF pulse durations of between 0.36 and 0.02 ms. Each optimization was performed 20 times with different pseudo-random starting RF phases.

Static phase-shims and dynamic pTx pulses with 4 kT-points were both optimized for ROI1, ROI3 and ROIH. The optimized RF weights and kT-points were then converted to RF and gradient vectors. Dynamic kT-points were implemented using four 0.1 ms-long square RF pulses separated by 0.14 ms-long gradient blips, leading to a total duration of 0.96 ms. To achieve comparability, default phase settings and static phase-only shim settings were implemented with the same structure, except that the blip moments were set to 0 and the same phases were applied to all 4 kT-point pulses. Default and static shim RF vectors were also scaled to achieve the same nominal mean FA over the ROI as for the optimized kT-points pulse. The CV was computed within different ROIs to confirm the validity of the RF and gradient vectors prior to insertion into the MR sequence.

2.6 Experimental validation

Two subjects (group 2) were additionally scanned during the same MRI session after relative 3D B_1^+ mapping and kT-points pulse design with a high-resolution 3D RPE-GRE free-breathing sequence using 4 kT-points excitation pulses optimized for ROIH. The following parameters were used: nominal FA = 10°, TE/TR = 1.75/3.7 ms, FOV = $250 \times 312 \times 312$ mm3, slice thickness = 1.4 mm, bandwidth = 1015 Hz/Px and 256 RPE lines30 separated by the golden angle, resulting in a total acquisition time of 333 seconds. The acquired 3D RPE dataset was binned into four

FIGURE 1 Relative 3D estimated B_1^+ maps (left: magnitude, right: phase angle) of subject 1 at 7 T. Four channels are located on the chest and four channels are positioned under the subject’s back. The phase angle of channels 2 to 8 are computed relative to channel 1.
respiratory motion states using self-navigation and was reconstructed for an isotropic voxel size of 1.4 mm with a respiratory motion surrogate retrieved from a one-dimensional (1D) projection in the head–feet direction in the k-space center. The underlying motion field was estimated via image registration based on the aforementioned reconstructions and used to correct the respiratory motion. The resulting respiratory-corrected 3D dataset was then used to qualitatively validate the B_1^+ predictions.

3 | RESULTS

3.1 | B_1^+ maps and manually drawn ROIs

Figure 1 shows the relative 3D B_1^+ maps (4-mm isotropic magnitude and phase) of subject 1 for eight transmit channels in transversal, coronal and sagittal views. As clearly indicated by the maps, channels 4–7 are located posteriorly, while the remaining channels are located anteriorly. To suppress noise, the B_1^+ maps were masked based on a threshold applied to the sum-of-squares image of the 32 receive channels. Both the magnitude and the phase of each channel are free of breathing artifacts, despite acquiring the underlying 3D GRE data under free breathing. The same observation was made for all eight subjects. The 3D B_1^+ maps are free of motion artifacts and show magnitude and phase distributions comparable with the 2D reference images, thereby justifying the use of nonrespiratory-resolved 3D B_1^+ maps.

Figure 2 shows multiple transversal slices of the magnitude of the complex sum of B_1^+ maps shown in Figure 1, reflecting the default phase excitation mode. The resulting maps yield a strong B_1^+ gradient along the A-P direction across the heart and a band of low B_1^+ along the left–right (L-R) direction across the heart. Twelve 2D ROIs were drawn manually on a slice-by-slice basis to define the subject-specific volume ROI$_H$. The voxels outside the ROIs were subsequently excluded by applying a binary mask.

3.2 | Pulse design

Figure 3 shows the RF and gradient vectors that were selected and applied for the experimental validation in subject 1. These include (a) a default phase setting, (b) the optimized static ROI$_S$ phase-only shim, and (c) the optimized dynamic ROI$_H$ 4 kT-point pTx pulses.

Figure 4A shows the resulting nominal FA maps of subject 1 obtained from the Bloch simulations for the pulses shown in Figure 3. Note that the nominal FA results from a manual scaling of the RF pulses with respect to the relative B_1^+ maps and therefore does not reflect an absolute B_1^+.
measure. Figure S2 additionally shows the binary mask ROI₄ and results for all three of the different target regions, ROI₁, ROI₃ and the entire heart volume (ROI₄), for static shim and 4 kT-points. For visualization purposes, a shaded mask has been added that outlines the body shape (not part of the optimization). The static shim reduced the CV to 14.5% for ROI₁ and ROI₃ and to 21.6% for ROI₄. As expected, the 4 kT-point pulses performed best with a CV of ~5.6% for ROI₁ and ROI₃ and ~8.5% for ROI₄. Similar values have been observed for all but one of the eight subjects. Figure 4B shows the simulated FAs of subject 1 in the L-R and A-P directions with default, static shim ROI₃ and 4 kT-point ROI₄ pulses for three representative slices. Figure 4C shows the corresponding histograms for ROI₄. In all slices the 4 kT-points shim yields a homogeneous nominal FA, in contrast to the default and static shims, which show substantial spatial nominal FA variations. The standard deviation of the nominal FA for the default shim (9.6 ± 4.3%) is dramatically reduced across ROI₄ by the optimized static phase-only shim (9.5 ± 2.2%) and the proposed 4 kT-point pTx pulses (10.0 ± 0.9%).

Figure 5 shows measured ΔB₀ maps and simulated nominal FA maps with and without the inclusion of the ΔB₀ maps in the kT-point pulse designs and Bloch simulations. The ΔB₀ maps, acquired with the tune-up shim, show ΔB₀ variations ranging between −335 and −4 Hz (95 percentile) with a median of −178 Hz across the ROI₄. The impact of excluding ΔB₀ in the pulse design for the experimental validation was analyzed by the nominal FA results of three simulations: (I) ΔB₀ is excluded in both the kT-points pulse design and Bloch simulation (first line), (II) ΔB₀ is excluded in the kT-points pulse design but included in the Bloch simulation (second line), and (III) ΔB₀ is included in both the kT-points pulse design and Bloch simulation (third line). The nominal FA homogeneity remains almost unchanged by including ΔB₀ in the simulations with a CV of 8.5% (case I) and 8.7% (case II). Inclusion of ΔB₀ in the optimization and simulation resulted in a CV of 8.4% (case III).

3.3 | Quantitative analysis

Figure 6 shows double-logarithmic L-curve plots of the root mean squared (RMS) RF power and the nominal FA root mean squared error (RMSE) for ROI₄ of subject 1 (Figure 6A,B) and the final results for all six subjects in group 1 (Figure 6C). Two sets of optimizations with a fixed subpulse duration (Figure 6A) and fixed total pulse duration (Figure 6B) show the impact of adding kT-points upon RF power and nominal FA homogeneity. Figure 6A shows increasing pulse performance when adding more kT-points. However, this reduction comes at the cost of a linearly increasing total pulse duration since each additional kT-point adds 0.24 ms to the total pulse duration. Figure 6B shows the optimized results with a fixed total pulse duration of 0.96 ms. In this case, increasing the number of kT-points comes at the cost of shorter RF subpulses, which strongly impacts RF power. The results obtained with the automatic regularization parameter are highlighted in Figure 6A,B. Figure 6C shows the results for all subjects using an automatic regularization parameter and fixed total pulse duration of 0.96 ms. The highlighted data points represent the 4 kT-point settings used in the experimental validation. For all six subjects, the choice of 3-4 kT-points resulted in a good tradeoff between excitation fidelity and RF power requirements. The optimized gradient blips required maximum slew rates of 50-100 T/m/s across all subjects. The
FIGURE 4

A. 3D view of the nominal FA maps after Bloch simulation of the complex sum of estimated B_1^+ maps with the default phase setting (default), optimized ROI3 static phase setting (static shim) and optimized dynamic entire heart volume (ROIH) 4 kT-points of subject 1. The nominal FA is a result of the manually scaled relative B_1^+ maps assuming a linear relationship between B_1^+ and the FA. Note that this assumption only holds for small FAs. The Bloch simulations of the optimized static and dynamic pulses for ROI1, ROI3 and ROIH are shown in Figure S2. B, comparison of the simulated nominal FA patterns across the heart for the three shim settings used in the experimental validation of subject 1: default, static shim ROI3 and 4 kT-points ROIH. Depicted are the two outermost slices and the central isocenter slice of the manually drawn ROIH indicating the position of the 1D lines. For each slice, two 1D lines in the right–left and anterior–posterior directions are depicted. The homogeneous nominal FA achieved by the proposed 4 kT-points also holds for the slices not shown. C, the nominal FA distribution is depicted in histograms for the default, static shim ROI3 and 4 kT-points ROIH, demonstrating the superior nominal FA homogenization with the 4 kT-points for ROIH.
computation time to design 6 kT-points for the largest ROI was less than 30 seconds and less than 10 seconds for 4 kT-points using the automatic regularization parameter.

Figure 7 shows a side-by-side comparison of the CV for the default, static phase-only and dynamic 4 kT-point shims respectively optimized for ROI1, ROI3 and ROIH. With the exception of subject 3 (highest BMI), where the 4 kT-points shim of ROIH yielded a CV of 16.5%, the use of 4 kT-points resulted in a CV of less than 10% in each of the remaining five subjects in group 1. By comparison, static phase-only shims yielded an average CV of 25% across all subjects.

Figure 8 shows a graphic visualization of all six 3D B^*_1 predictions for group 1 using the calibrated relative B^*_1 maps with the ROIH optimized subject-specific 4 kT-points analyzed quantitatively in Figure 7. With the exception of subject 3, where a slight drop in the nominal FA at the top and the back part of the heart is visible, the B^*_1 predictions for the remaining subjects show a smooth nominal FA distribution across the whole heart. The predictions also show that nearby tissue such as the aortic arch or the descending aorta also benefit from the kT-points shim with smooth nominal FA patterns, although these regions were not part of the optimization.

3.4 Qualitative analysis

Figure 9 shows a qualitative analysis of B^*_1 predictions based on the manually calibrated relative B^*_1 maps with the default phase setting, optimized static phase-only and dynamic 4 kT-point pulses for subject 1. Residual signal drops apparent in the coronal and sagittal views using the static phase-only shim, indicated by the arrows, were fully compensated for by the 4 kT-points. Overall, compared with the default and optimized phase setting, the 4 kT-points resulted in a clear improvement of the nominal FA homogeneity throughout the ROIH, despite the larger ROI used for kT-optimization. The side-by-side comparison of the simulated and measured default and static shim settings for subjects 2–6 are shown in Figures S2, S3 and S4. Again, the experimental GRE measurements reproduce the FA patterns predicted by the Bloch simulations.
Figure 10 shows the acquired, respiratory-corrected 3D GRE images of subjects 7 and 8 (group 2) using subject-specific optimized 4 kT-point pulses for ROIH. Note that the shown 3D data have been acquired without cardiac gating due to scan time limitations resulting in unresolved cardiac motion. Nevertheless, there is an excellent match between B_1^+ predictions and the 3D GRE images, demonstrating the feasibility of achieving 3D spatial excitation uniformity with 4 kT-points. The remaining signal drop in the A-P direction results from the B_1^- receive profile, which has not been corrected in the plots.
FIGURE 8 Simulated nominal FA predictions for subjects 1 to 6 based on the manually scaled relative B1\(^+\) estimations and the dynamic 4 kT-point pulses optimized for the entire heart volume (ROI\(_h\)). Depicted are three views of the 3D volume to demonstrate the nominal FA homogenization across the entire human heart using the proposed 4 kT-point pulses.

FIGURE 9 Side-by-side comparison of B1\(^+\) predictions and reconstructed 3D breath-hold images (exhale) with the default phase setting as well as the optimized static phase-only and dynamic 4 kT-point pTx pulses of subject 1. Depicted are three views of the acquired 3D volume close to the position of the simulated views. The arrows point to signal drop-out regions in the heart, depending on the RF shim. The optimized 4 kT-point pulse corrects for B1\(^+\) variations and consistent signal is achieved across the entire heart volume (ROI\(_h\)). The remaining signal changes in the A-P direction of the acquired data are a result of receive (B1\(^-\)) variations. The comparison of the default phase setting, optimized static phase-only setting and 4 kT-points for the remaining subjects 2–6 are shown in Figures S3, S4 and S5.
In this study, mapping of the relative 3D B_1^+ fields was performed using an RPE-based GRE sequence during free breathing in 3 minutes 25 seconds for all eight transmit channels (4-mm isotropic resolution) utilizing a small FA approach. This approach was chosen over other relative B_1^+ mapping approaches because of two main advantages. First, it has a short acquisition time and, second, the B_1^+ estimation is robust against motion or flow due to short echo times. However, by providing only relative and not absolute B_1^+ maps, the resulting maps are biased by the square root of the proton density and by the assumption that the sum of magnitudes of all transmit channels is approximately equal to the sum of magnitudes of all receive channels. Therefore, we expect deviations to the actual B_1^+ field, particularly within close proximity to the coil.

Nevertheless, the same approach, which was used here to obtain 3D B_1^+ maps, has been successfully applied in several different 2D applications in the human body at 7 T, including generation of B_1^+ shimming solutions as well as spokes pTx pulses for the heart. The employed 3D B_1^+ mapping method was tested with a motion phantom and was compared with 2D (slice-selective) B_1^+ mapping (not shown). We further validated the nonrespiration-resolved and respiration-resolved 3D B_1^+ mapping method acquired in free breathing with reference 2D B_1^+ maps acquired in a breath-hold. To simplify the practical handling of the experiments, and because of only minor differences between nonrespiration-resolved and respiration-resolved B_1^+ maps in the present case of shallow breathing, respiration was not resolved in this work. Nevertheless, the resulting B_1^+ maps were free of obvious motion artifacts in all subjects and the high-resolution GRE scans with the optimized pulses fit well to the B_1^+ predictions. Preliminary data suggest that using the nonrespiration-resolved 3D B_1^+ maps to perform static or dynamic pTx is only justified for shallow breathing, which was the case in all subjects in the current work. For breathing patterns with a larger respiratory amplitude, the RF pulses calculated on the nonrespiration-resolved B_1^+ maps appear to perform inferiorly over the entire breathing cycle compared with respiration-robust pulses calculated based on multiple respiration-resolved B_1^+ maps.

Relative B_1^+ mapping, manual ROI selection and pulse design were performed in less than 10 minutes while the subjects remained in the MR scanner. To minimize this time, dynamic kT-point pulse design was carried out with an automatic regularization term with the small-tip-angle.
approach utilizing the spatial domain method, a justifiable simplification for low-FA rapid GRE imaging with a desired FA of 10°. If larger tip angles were required, the Bloch equations would have to be solved numerically for each subject, resulting in much higher computational effort. It has been shown that similarities in the B_1^+ maps of different subjects can be exploited to compute universal pulses, thus avoiding the necessity for subject-specific pulse design and long computation times during the scan. While this was shown for brain imaging, the B_1^+ maps of the human abdomen demonstrate a much higher inter-subject variability, thus making it more difficult to apply the universal pulses concept. This is supported by observed variations of the 3D B_1^+ maps for different BMI values and body shapes, resulting in different constructive/destructive interference of the different channels. An alternative approach may be to utilize machine learning for fast RF pulse design as proposed for single and parallel applications to the human head. Large FA pulses can be valuable for cardiac imaging to introduce tissue contrast, although high B_1^+ peak and RF power are limited in the body at UHF. Note that for large FA pulse design, absolute B_1^+ information is required for accurate FA prediction. The manual scaling of the relative B_1^+ maps used in this study only works for the small-tip-angle regime, where a linear relationship between B_1^+ and nominal FA can be assumed.

Another extension of the presented kT-points pulse design could be to include local SAR instead of RF power constraints. Here, we used power constraints because the RF power per channel is limited to fulfill the safety guidelines. Local SAR supervision was based on a worst-case shim analysis using electromagnetic field simulations of the DUKE model with 10 million random phase settings. The worst-case shim resulted in a $10 \text{ g-averaged peak spatial SAR of } 11.1 \text{ W/kg}$, thus leaving an additional safety margin of 1.8 to the 20 W/kg limit. This approach, that is, choosing the worst shim plus limiting the RF power per channel and setting an additional safety factor, is expected to be more restrictive than monitoring with virtual observation points (VOPs), which are frequently used for pTx applications in the human brain. Thus, we decided in favor of this approach, as our own calculation demonstrated that it yields peak SAR values that are less sensitive to the body shape and size compared with supervision using VOPs.

The acquisition of the absolute B_1^+ field or the actual FA for a 3D volume in the human body at 7 T is a very demanding task. Besides the limitations set by peak and mean RF power, scan times, respiratory and cardiac motion, as well as blood flow, the B_1^+ mapping method requires a high dynamic range, as the B_1^+ fields rapidly drop when moving from the surface towards the center of the body. Despite experimental difficulties, actual FAs in the experimental validation have been estimated retrospectively with a 3D actual flip-angle (AFI) approach. Multiple groups have proposed designing kT-points in the large-tip-angle regime, including applications to the human head. Large FA pulses can be valuable for cardiac imaging to introduce tissue contrast, although B_1^+ peak and RF power are limited in the body at UHF. Note that for large FA pulse design, absolute B_1^+ information is required for accurate FA prediction. The manual scaling of the relative B_1^+ maps used in this study only works for the small-tip-angle regime, where a linear relationship between B_1^+ and nominal FA can be assumed.

In contrast to a 2D slice-by-slice shim, where individual phase settings are computed for each slice, we optimized all static and dynamic pulses for one 2D and two 3D ROIs. Compared with a static phase-only B_1^+ shim, the higher degrees of freedom of 4 kT-point pulses yielded more homogeneous excitation patterns at the cost of higher RF amplitude and RF power requirements across all subjects and ROIs. For smaller volumes (ROI1 and ROI3), the CV of optimized static and dynamic shims showed a similar reduction across all subjects. In the case of ROI16, the optimized 4 kT-point pulses resulted in a CV of less than 10% in all but one subject. For this subject, the 4 kT-point pulses brought a smaller reduction of homogenization performance, possibly as a result of the higher BMI and thus higher RF power demands compared with the other subjects. However, even in this case the homogeneity of the dynamic B_1^+ shim outperformed the static B_1^+ shim and the overall image quality agreed well with the Bloch simulations. It should be noted that the nonconvex nature of static and dynamic B_1^+ shim optimization does not guarantee finding the global optimum.

A relatively short pulse duration of 0.96 ms was used to limit the sensitivity of the optimized kT-point pulses to B_0 off-resonance effects. This approach was supported by Bloch simulations showing no significant changes in the FA maps (CV = 8.5% vs. 8.7%) when pulses designed for $\Delta B_0 = 0$ were simulated with and without the presence of true B_0 inhomogeneities. Therefore, it was not deemed necessary to measure the ΔB_0 maps for each subject and to include them in the pulse design. The optimized pTx pulses were integrated into a 3D Cartesian GRE sequence where data were acquired in a single breath-hold, and a 3D RPE GRE sequence where data were acquired during free breathing. Both scans were reconstructed with unresolved cardiac motion. Although the data agree well with the unresolved cardiac motion of the B_1^+ maps, clinically relevant cardiac images require resolved cardiac motion. Further important steps towards clinically relevant cardiac MRI are the generation of clinically valuable contrast, a limitation of the presented small-tip-angle method and the evaluation of potential SNR gains when using kT-points compared with static pTx.

The experimental scans were performed to validate B_1^+ mapping and different pulse design methods and not to generate high-quality heart images at 7 T. For this purpose, the integration of kT-point pulses into cardiac-resolved 3D sequences will be analyzed in the future.

This study aimed to demonstrate the experimental feasibility and benefits of applying 3D kT-points excitation to the human heart at 7 T. The presented 4 kT-points approach resulted in a FA CV of ~10% across all six subjects compared with ~25% achieved with static phase-only pTx. Therefore, subject-specific kT-points could form the basis for future 3D imaging applications in the body, such as the heart or liver, and have the potential to push the limits of body imaging at 7 T and above.
Mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T was made feasible by kT-point pTx pulses designed with subject-specific 3D B_1^+ estimations. Across a wide range of subjects with different body shapes, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.

ACKNOWLEDGEMENTS

We gratefully acknowledge funding from the German Research Foundation (SCHM 2677/2-1 and GRK2260, BIOQIC). Open access funding enabled and organized by Projekt DEAL.

ORCID

Christoph Stefan Aigner https://orcid.org/0000-0003-3618-9610
Sebastian Dietrich https://orcid.org/0000-0002-1610-909X
Sebastian Schmitter https://orcid.org/0000-0003-4410-6790

REFERENCES

1. Padorno F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR Biomed. 2016;29:1145-1161.
2. Kraff O, Quick HH. Radiofrequency coils for 7 Tesla MRI. Top Magn Reson Imaging. 2019;28:145-158.
3. Alipour A, Seifert AC, Delman B, Adriany G, Balchandani P. Improvement of brain MRI at 7T using an inductively coupled RF resonator array. arXiv. 2020;1-12. https://arxiv.org/abs/2006.02500
4. Yang QX, Mao W, Wang J, et al. Manipulation of image intensity distribution at 7.0 T: Passive RF shimming and focusing with dielectric materials. J Magn Reson Imaging. 2006;24:197-202.
5. Schmidt R, Slobozhanynuk A, Belov P, Webb A. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci Rep. 2017;7(1678):1-7.
6. Garwood M, Ke Y. Symmetric pulses to induce arbitrary flip angles with compensation for rf inhomogeneity and resonance offsets. J Magn Reson. 1991;94:511-525.
7. Balchandani P, Khalighi MM, Glover G, Pauly J, Spieelman D. Self-refocused adiabatic pulse for spin echo imaging at 7 T. Magn Med Reson. 2012;67(4):1077-1085.
8. Adriany G, van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med. 2005;53:434-445.
9. Katscher U, Börnert P, Leussler C, von den Brink JS. Transmit SENSE. Magn Reson Med. 2003;49:144-150.
10. Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med. 2004;51:775-784.
11. Setsompop K, Alagappan V, Gagoski B, et al. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 Tesla using parallel RF excitation with a 16-element coil. Magn Reson Med. 2008;60:1422-1432.
12. Cloos MA, Boulant N, Luong M, et al. kT-points: short three-dimensional tailored RF pulses for flip-angle homogenization over an extended volume. Magn Reson Med. 2012;67:72-80.
13. Malik SJ, Keihaninejad S, Hammers A, Hajnal JV. Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses. Magn Reson Med. 2012;67:1303-1315.
14. Gras V, Vignaud A, Amadon A, Le Bihan D, Boulant N. Universal pulses: A new concept for calibration-free parallel transmission. Magn Reson Med. 2017;77:635-643.
15. Schmitter S, Delabarre L, Wu X, et al. Cardiac imaging at 7 Tesla: Single- and two-spece radiofrequency pulse design with 16-channel parallel excitation. Magn Reson Med. 2013;70:1210-1219.
16. Schmitter S, Wu X, Ugurbil K, Van de Moortele PF. Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla. Magn Reson Med. 2015;74:1291-1305.
17. Schmitter S, Moeller S, Wu X, et al. Simultaneous multislice imaging in dynamic cardiac MRI at 7T using parallel transmission. Magn Reson Med. 2017;77:1010-1020.
18. Hess AT, Jeaschke SHF, Chiew M. Click & run respiratory-resolved, ECG & navigator-free cardiac B0 & relative B1 calibration at 7T. ISMRM Work Ultrahigh Field Mag Reso. 2019.
19. Hess AT, Tanner J, Dragonu I, Chiew M. Accelerated 3D relative transmit mapping using structured low-rank matrix completion: evaluated in the body & brain. ISMRM Works Ultrah Field Mag Reso. 2019.
20. Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele PF. Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 2008;59:396-409.
21. Vaughan JT, Snyder CJ, Delabarre LJ, et al. Whole-body imaging at 7T: Preliminary results. Magn Reson Med. 2009;61:244-248.
22. Niendorf T, Graessl A, Thalhammer C, et al. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. J Magn Reson. 2013;229:208-222.
23. Ozsada S, Madervald S, Poser BA, Bitz AK, Quick HH, Ladd ME. RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI. Magn Reson Med. 2010;64:327-333.
24. Wu X, Schmitter S, Auerbach EJ, Ugurbil K, van de Moortele PF. Mitigating transmit B1 inhomogeneity in the liver at 7T using multi-spece parallel transmit RF pulse design. Quant Imaging Med Surg. 2014;4:4-10.
25. He X, Ertürk MA, Grant A, et al. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med. 2020;84:289-303.
26. Tse DH, Wiggins CJ, Ivanov D, et al. Volumetric imaging with homogenised excitation and static field at 9.4 T. MAGMA. 2016;29:333-345.
27. Tomi-Tricot R, Gras V, Mauconduit F, et al. B1 artifact reduction in abdominal DCE-MRI using kT-points: First clinical assessment of dynamic RF shimming at 3T. J Magn Reson Imaging. 2018;47:1562-1571.
28. Brunheim S, Gratz M, Johst S, et al. Fast and accurate multi-channel B1+ mapping based on the TIAMO technique for 7T UHF body MRI. Magn Reson Med. 2018;79:2652-2664.
29. Dietrich S, Aigner CS, Ludwig J, et al. 3D free-breathing multi-channel absolute B1+ mapping in the human body at 7T. Magn Reson Med. 2020. https://doi.org/10.1002/mrm.28602. Online ahead of print.
30. Prieto C, Uribe S, Razavi R, et al. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE. Magn Reson Med. 2010;64:514-526.
31. Buerger C, Clough RE, King AP, Schaeffter T, Prieto C. Nonrigid motion modeling of the liver from 3-D undersampled self-gated golden-radial phase encoded MRI. IEEE Trans Med Imag. 2012;3(31):805-815.
32. van de Moortele PF, Ugurbil K. Very fast multi channel B1 calibration at high field in the small flip angle regime. Proc. 17th Annual Meeting ISMRM, Honolulu, Hawaii, USA, 2009. Abstract 367; 367.
33. Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA. Water-fat separation with bipolar multiecho sequences. Magn Reson Med. 2008;60:198-209.
34. Berglund J, Johansson L, Ahlström H, Kullberg J. Three-point Dixon method enables whole-body water and fat imaging of obese subjects. Magn Reson Med. 2010:63:1659-1668.
35. Grissom WA, Khalighi MM, Sacolick LI, Rutt BK, Vogel MW. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods. Magn Reson Med. 2012;68:1553-1562.
36. Cao Z, Yan X, Grissom WA. Array-compressed parallel transmit pulse design. Magn Reson Med. 2016;76:1158-1169.
37. Pauly JM, Nishimura DG, Macovski A. A k-space analysis of small-tip-angle excitation. J Magn Reson. 1989;81:43-56.
38. Kolbitsch C, Bastkowski R, Schäffter T, et al. Respiratory motion corrected 4D flow using golden radial phase encoding. Magn Reson Med. 2020;83:635-644.
39. Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll DC. Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med. 2006;56:620-629.
40. Vinding MS, Skyum B, Sangill R, Lund TE. Ultrafast (milliseconds), multidimensional RF pulse design with deep learning. Magn Reson Med. 2019;82:586-599.
41. Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med. 2018;80:1871-1881.
42. Rund A, Aigner CS, Nohava L, et al. Optimal control based design of parallel transmission RF pulses with minimum local SAR. Proc. 26th Annual Meeting ISMRM, Paris, France. 2018. Abstract 3397, 2018.
43. Çavuşoğlu M, Mooiweer R, Pruessmann KP, Malik SJ. VERSE-guided parallel RF excitations using dynamic field correction. NMR Biomed. 2017;30. https://doi.org/10.1002/nbm.3697
44. Aigner CS, Rund A, Abo Seada S, et al. Time optimal control-based RF pulse design under gradient imperfections. Magn Reson Med. 2020;83:561-574.
45. Cao Z, Donahue MJ, Ma J, Grissom WA. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories. Magn Reson Med. 2016;75:1198-1208.
46. Gras V, Luong M, Amadon A, Boulan N. Joint design of kT-points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime. J Magn Reson. 2015;261:151-159.
47. Aigner CS, Dietrich S, Schmitter S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR in Biomedicine. 2021;34:e4450. https://doi.org/10.1002/nbm.4450

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Aigner CS, Dietrich S, Schmitter S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR in Biomedicine. 2021;34:e4450. https://doi.org/10.1002/nbm.4450