Abstract

With the proliferation of deep convolutional neural network (CNN) algorithms for mobile processing, limited precision quantization has become an essential tool for CNN efficiency. Consequently, various works have sought to design fixed precision quantization algorithms and quantization-focused optimization techniques that minimize quantization-induced performance degradation. However, there is little concrete understanding of how various CNN design decisions quantization effect the dynamic ranges of each layer. This in turn provides insight on the quantized behaviour of a CNN. Furthermore, we analyze the effect of these different weights initializations for a small set of different CNN architectures. Thus, we are able to isolate and observe the interplay between the CNN architecture choices (the parameterization) and the weights initialization strategy (the starting point on the parameterized loss surface). To our best knowledge, we are the first to perform such a systematic, low-level, quantitative analysis of weights initialization strategies and quantized behaviour. Furthermore, our framework for fine-grained analysis is applicable to analyzing any number of CNN design choices such as layer types, batch size, learning rate schedule etc.

2 Background

In early research, neural network parameters were often randomly initialized based on sampling from a normal or uniform distribution. The respective variance and range of these distributions would be hyperparameters for the practitioner to decide. While easily taken for granted, several works such as [15–17] have provided rigorous mathematical proofs showing how intelligent weights initialization strategies can solve issues of vanishing and exploding gradients. These works define fan_in and fan_out of a fully connected layer as the input/output units respectively. For convolution, it is defined as Eq. 1 where \(K \) is the kernel width (assumed square kernel).

\[
fan_{in/out} = K \times K \times \text{channel}_{in/out}
\]

3 Fine-grained Layerwise Analysis

Besides a high-level study of how different weight initializations affect 32-bit floating point (fp32) and eight-bit quantized (quint8) accuracy, we also wish to gain detailed insight on the layer-wise distributions of final trained weights and activations. This information can give us an in-depth look at how the learning dynamics of various weight initializations play out. Furthermore, the dynamic ranges of each weight/activation tensor determine the resolution of the quantized step-size and, by extension, the quantization noise in a CNN. Thus, this analysis can help explain the observed quantized inference behaviour of different trained models. We propose systematically ablating through a variety of different weight initialization strategies while tracking the dynamic ranges of each layer’s weights and activations during training. In this way, we can isolate the effect of these different design choices and analyze the changing distributions at each layer. We also track the “average channel precision”. Average channel precision is defined as Eq. 2. Channel precision in this context is the ratio between an individual channel’s range and the range of the entire layer. [19] uses this precision quantity to algorithmically maximize the channel precisions of each layer in a network prior to quantization. It can be seen as a measure of how well the overall layer-wise quantization encodings represent the information in each channel.
For dynamic ranges of activations, we randomly sample N training inputs from our training set and observe the corresponding activation values. We perform percentile clipping (Eq. top and bottom 1%) and track the dynamic range and average precision of the clipped activations. As percentile clipping has become a ubiquitous default quantization setting, we feel that this method establishes a realistic baseline of what can be expected during inference-time. Finally, there is one more set of dynamic ranges that must be observed. Batch Normalization has become the best-practice in a large range of CNN algorithms. However, their vanilla form is not well-suited for mobile hardware processing. Best practice for fast CNN inference usually involves folding the scale and variance parameters of a BatchNorm layer into the preceding layer’s convolution parameters prior to quantization, as shown in Eq. 3. Therefore, we must also track the dynamic range and precision of our CNN’s batchnorm-folded (BN-Fold) weights. In this manner, we can iterate through various weight initializations, gaining insights at each step on the trained models and their learning dynamics as well as the final weights and activations distributions. Our method can be extended to analyze a plethora of other design choices. These can include architecture choices such as layer-type, skip/residual connections as well as training hyperparameters such as learning rate schedules, batch size, optimizers etc. Despite their simplicity, such analyses can provide deep insight on the interplay of these various design choices and perhaps yield new understanding on their interaction.

\[
W_{fold} = \frac{w}{\sqrt{EMA(\sigma^2) + \epsilon}}
\] (3)

4 Experiment

For our experiment we use a simple, VGG-like macroarchitecture with four variations that differ in the micro-architecture of each layer (e.g. type of convolution block used, use of BatchNorm and Relu etc. See Figure 1 for the general macro-architecture and details on the different variations of convolution layers). Our four CNNs are trained and tested on CIFAR-10 with a wide variety of different weight initialization strategies. These strategies can be separated into two categories of naive, straightforward strategies and more intelligent, layer-aware methods. Furthermore, the most common random weight initializations can also be categorized by the type of sampling distribution: random sampling from uniform distributions (hereafter referred to as RandUni) and random sampling from normal distributions (hereafter referred to as RandNorm). With considerations of dynamic range in mind, we seek to select distributions for the naive methods that would roughly correspond to small, medium, and large initial weights ranges. For the layer-aware initialization strategies, we use four commonly used methods introduced in [15, 16]. Named after the authors, we call them Glorot Uniform (GlorotUni) and Glorot Normal (GlorotNorm) from [15], He Uniform (HeUnui) and He Normal (HeNorm) from [16]. In these works, the distribution range (for uniform sampling) and standard deviation (for normal sampling) for each layer are calculated based on \(\text{fan} _ \text{in} , \text{fan} _ \text{out} \), or some combination of the two. We choose to focus on only the convolution layers and so the fully connected layers are always initialized using Glorot Uniform initialization. Furthermore, we also keep the weight initialization of the first convolution layer constant; only Glorot Uniform initialization was used. This was to keep the very first convolution layer as constant as possible.

Based on initial results showing Glorot Uniform having the most success in fp32 accuracy, we further experiment with Modified Glorot Uniform (ModGlorotUni) weights initialization strategies. The method of computing the max/min range of the uniform sampling distribution in Glorot Uniform initialization can be generalized as Eq. 4. In the original paper, \(C = 3 \). Following our established method of selecting distributions corresponding to small, medium, and large initial weights ranges, we select two values of \(C \) that would roughly correspond to medium and large ranges. The original Glorot Uniform leads to fairly small ranges. See Table 1 for a detailed breakdown of the sampling methods used in each of the 48 experiments.

\[
\text{max/min} = \pm \sqrt{\frac{C}{\text{fan} _ \text{in} + \text{fan} _ \text{out}}}
\] (4)

Each network is trained for 200 epochs of SGD with Momentum = 0.9 and batch-size = 128. Initial learning rate is 0.01 and we scale it by 0.1 at the 75th, 120th, and 170th epochs. For the activation range tracking we perform top/bottom 1% clipping computed on a random sample of 1024 training samples. Basic data augmentation includes vertical/horizontal shift, zoom, vertical/horizontal flip and rotation. We use Tensorflow for training and quantizing the weights and activations to quant8 format.

For each network we evaluate testing performance with respect to 4 metrics: fp32 accuracy, quant8 accuracy, quantized mean-squared error (QMSE), and quantized crossentropy (QCE). Results are presented in Table 2. QMSE refers to the MSE between the fp32 network outputs and the quant8 network outputs after dequantization. Similarly, QCE measures the cross entropy difference between the fp32 network outputs and the dequantized quant8 network outputs. While QMSE directly measures how much the quant8 network outputs deviate from the fp32 network, QCE quantifies the difference in the distribution of the network outputs. For classification tasks, the quantized network can predict the same class as the fp32 network, despite deviations in logit values, if the overall shape of the output distribution is similar. Therefore QCE can sometimes be more reflective of differences in quantized behaviour. Additionally, we also observe the percent accuracy degradation (change in accuracy divided by fp32 accuracy) of each network after quantization. Though these quantities often track together, there can be scenarios where a network with more QMSE or QCE actually has less relative quantization degradation from a pure accuracy standpoint. This is likely explained by favourable rounding within the network.

5 Discussion

We can see in Table 2 that besides affecting the final FP32 accuracy of a given CNN architecture, the weights initialization strategy also has significant impact on the QUANT8 accuracy. Particularly worth noting is the markedly improved quantized behaviour in the DWS_Conv_With_BN networks trained using RandUni Large initialization. Equally noteworthy is the stark drop in QUANT8 accuracy observed with the DWS_Conv_With_BN networks trained with the HeNorm and HeUni weight initializations and the Regular_Conv_With_BN network trained with ModGlorotUni_Med initialization. As expected, quantized accuracy usually worsened when BatchNorm layers were introduced. This is often attributed to the increased dynamic ranges/distributional shift introduced by BatchNorm Folding.

While each CNN architecture is trained on twelve different initialization methods, Regular_Conv_No_BN only has four results. This is because the other initialization methods had issues of exploding gradients. Their results were omitted. Most of the DWS_Conv_No_BN experiments also did not learn but suffered from vanishing gradient issues instead. However, in our analyses we found that these vanishing gradients were not necessarily caused by a deep architecture leading to the gradient progressively vanishing during backpropagation. Instead, we observed a “vanishing activations” type phenomenon wherein the activations of the final Depthwise Separable Convolution block are exceedingly small. Thus, no gradients are able to propagate past the fully connected layers. Figure 2 shows a plot of the network activations in
For our analysis we use a fixed macro-architecture so that we can isolate the interactions between various weight initialization strategies and a few different convolutional layer choices. We train four variations of this macro-architecture determined by the type of conv-block used at each layer: Regular
Conv_With_BN, Regular
Conv_No_BN, DWS
Conv_With_BN, and DWS
Conv_No_BN. These respectively correspond to using regular convolution followed by BatchNorm and ReLU, regular convolution followed by only ReLU and no BatchNorm, depthwise separable convolution blocks with BatchNorm and ReLU after each convolution layer (same as the MobileNets block in [20]), and finally depthwise separable convolution with only ReLU and no BatchNorm after each convolution layer. The very first convolution layer stays fixed for all architectures, but follows the With/Without BatchNorm behaviour of the rest of the layers.

Table 2: Detailed results for each combination of weight initialization strategy and CNN architecture. The initialization strategies that suffered from vanishing/exploding gradients are omitted. DWS_Conv_No_BN_GlorotUni is kept for illustrative purposes.
DWS_Conv_No_BN_GlorotUni. For illustrative purposes, we keep the DWS_Conv_No_BN_GlorotUni result and omit the rest. The normalization introduced by BatchNorm alleviates this issue as expected. One could consider an additional interpretation of BatchNorm as adding capacity to the network in the form of a learned explicit scaling. Scaling that would otherwise be too difficult for the convolution parameters to learn in addition to extracting features. We seek to follow-up on this hypothesis in future works. While we focus on the variations in quantized behaviour in this work, the varying FP32 accuracies are also worthy of close study. Our method sets out a framework through which we can systematically study these phenomena.

To better understand why we are observing the given quantized behaviour, we can use the proposed fine-grained analysis and inspect the distributions of each model layer-by-layer. With regards to the significantly improved quantized accuracy for DWS_Conv_With_BN_RandUni_Large, we observe in Figure 3 (top) that weights ranges don’t necessarily tell the whole story. Despite having generally larger weights ranges, we start to see several other key areas in which the RandUni_Large layers stand out. For example, while the two He-initialized models tend to have a spike in the BN-Fold weights range at layer 2, RandUni_Large actually decreases in range. Furthermore, when we compare the BN-Fold weights precisions we also see a drop in precision for the other networks at layer 2 while the precision for RandUni_Large increases. With the activations, we see that all of the activation ranges increase at layer 2 while activation precisions decrease. However, RandUni_Large experiences a significantly smaller drop in activation precision. Thus, suggesting that RandUni_Large has a much higher retention of information in those crucial early stages of low-level feature extraction. Analyzing the change in the layerwise distributions during training might explain why we observe such a wide range of behaviour caused by varying weight initialization. It would also be worthwhile to observe the relative change in range/precision after BatchNorm folding. This would be a proxy for observing the distributional shift of the weights. While it is intractable to pinpoint any single reason, our layer-level analysis reveals a rich set of interactions that slowly build a detailed picture of each network’s system dynamics as well as inter-network trends. We could further expand our analysis to use more rigorous, yet scalable statistical methods of analysis. For example, we know that a uniformly distributed tensor would best utilize the quantized steps of our given discretization method. Thus, computing the KL-divergence between a given weight/activation tensor and its corresponding uniform distribution (ie. a uniform distribution with the same bounds as the tensor) is a potential metric to explore. Overall, from these initial analyses, we see that taking a fine-grained, systematic approach to analyzing various design choices can yield detailed insights on the learning dynamics of a CNN.

6 Conclusion

We conduct the first in-depth, quantitative study of the impact of weight initialization strategies on final quantized inference behaviour of various basic CNN architectures. We show that in addition to affecting final floating point accuracy, a well-chosen weight initialization can also significantly affect a CNN’s quantized accuracy. Future work includes further exploration of the interaction of BatchNorm with initial weight distributions, analysis of other intelligent initialization strategies, and analysis of weight initialization’s impact on more complex architectures.
References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[3] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the impact of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.

[4] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[5] B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp. 446–454.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[7] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440–1448.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[9] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol. abs/1703.06870, 2017.

[10] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” CoRR, vol. abs/1712.05877, 2017.

[11] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using logarithmic data representation,” CoRR, vol. abs/1603.01025, 2016.

[12] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep convolutional networks using vector quantization,” CoRR, vol. abs/1412.6115, 2014.

[13] S. R. Jain, A. Gural, M. Wu, and C. Dick, “Trained uniform quantization for accurate and efficient neural network inference on fixed-point hardware,” CoRR, vol. abs/1903.08066, 2019.

[14] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan, and K. Gopalakrishnan, “PACT: parameterized clipping activation for quantized neural networks,” CoRR, vol. abs/1805.06085, 2018.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: JMLR Workshop and Conference Proceedings, 13–15 May 2010, pp. 249–256. [Online]. Available: http://proceedings.mlr.press/v9/glorot10a.html

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[17] B. Hanin and D. Rolnick, “How to start training: The effect of initialization and architecture,” 2018.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[19] M. Nagel, M. Baalen, T. Blankevoort, and M. Welling, “Data-free quantization through weight equalization and bias correction,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society, nov 2019, pp. 1325–1334.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.