Search for New Bottomlike Quark Pair Decays $Q\bar{Q} \to (tW^+)(tW^-)$
in Same-Charge Dilepton Events

T. Aaltonen,26 J. Adelman,15 B. Álvarez González,13,w S. Amerio,46b,46a D. Amidei,37 A. Anastassov,41 A. Annovi,22
J. Antos,17 G. Apollinari,20 A. Apresyan,51 T. Arisawa,61 A. Artikov,18 J. Asaadi,57 W. Ashmanskas,20 A. Attal,4
A. Aurisano,49c,49a F. Azfar,35 W. Badgett,20 A. Barbaro-Galtieri,31 V. E. Barnes,51 B. A. Barnett,28 P. Barria,
G. Bauer,33 P-H. Beauchemin,49a F. Bedeschi,49a D. Beecher,33 S. Behari,28 G. Belletti,49,49a J. Bellinger,63
D. Benjamin,19 A. Beretvas,20 B. Berge,16 A. Bhatti,53 M. Binkley,20 D. Bisello,46b,46a Y. Bizjak,33,dd R. E. Blair,2
C. Blocker,7 B. Blumenfeld,28 A. Bocci,19 A. Bodek,52 V. Boisvert,52 D. Bortoletto,51 J. Boudreau,50 A. Boveia,11
B. Brau,11b A. Bridgeman,27 L. Brigliaiodi,6b,6a C. Bromberg,38 E. Brubaker,15 J. Budagov,18 H. S. Budd,52 S. Budd,
27 K. Burkett,20 G. Busetto,46b,46a P. Bussey,34 A. Buzatu,36 K.-L. Byrum,1 S. Cabrera,19,3 C. Calancha,34 S. Camarda,
M. Campanelli,33 M. Campbell,37 F. Caranelli,14,20 A. Capera,48 B. Carls,27 D. Carlsmith,63 R. Carosi,49a S. Carrillo,2,1o
S. Carron,20 B. Casal,13 M. Casarsa,20 A. Castro,6b,6a P. Castanini,49c,49a D. Cauz,58 V. Cavaliere,49,49a M. Cavalli-Sforza,
A. Cerri,31 L. Cerrito,33 S. H. Chang,30 Y. C. Chen,1 M. Chertok,8 G. Chiarelli,49a G. Chlachidze,70 F. Chlebana,20
K. Cho,30 D. Chokheli,18 J. P. Chou,25 K. Chung,20,p W. H. Chung,63 Y. S. Chung,52 T. Chwalek,29 C. I. Ciobanu,47
M. A. Ciocci,49c,49a A. Clark,23 D. Clark,7 G. Compostella,49c,49a M. Convery,20 J. Conway,8 M. Corbo,47 M. Cordelli,22
C. S. Moon,30 R. Moore,20 M. J. Morello,49a J. Morlock,29 P. Movilla Fernandez,20 J. Mülemenstädt,31 A. Mukherjee,20
Th. Muller,29 P. Murat,25 M. Mussini,6b,6a J. Nachtman,20,y N. Nagai,59 J. Naganoma,59 K. NAKAMURA,11 I. Nakano,13
A. Napier,60 J. Nett,34 C. Neu,39,a M. Neubauer,27 S. Neubauer,29 J. Nielsen,31,y L. Nodulman,54 M. Norman,10

PRL 104, 091801 (2010) PHYSICAL REVIEW LETTERS

week ending 5 MARCH 2010

0031-9007/10/91801(8) 091801-1 © 2010 The American Physical Society
O. Norniella, 27 E. Nurse, 33 L. Oakes, 45 S. H. Oh, 19 Y. D. Oh, 30 I. Oksuzian, 21 T. Okusawa, 44 R. Orava, 26 K. Osterberg, 26 S. Pagan Griso, 46b, 46c C. Pagliarone, 58a E. Palencia, 20 V. Papadimitriou, 20 A. Papaikonomou, 29 A. A. Paramanov, 2 B. Parks, 36 J. Patrick, 20 G. Pauletta, 58b, 58a M. Paulini, 14 C. Paus, 35 T. Peiffer, 29 D. E. Pellett, 8 A. Penzo, 58a T. J. Phillips, 19 G. Piacentino, 49a E. Pianori, 48 L. Pineria, 21 K. Pitts, 27 C. Plager, 9 L. Pondrom, 63 K. Potamianos, 51 O. Poukhov, 18a F. Prokoshin, 18a A. Pronko, 20 F. Ptohos, 20, 44 R. Rossin, 11 P. Roy, 36 A. Ruiz, 13 J. Russ, 14 V. Rusu, 20 B. Rutherford, 20 H. Saarikko, 26 A. Safonov, 57 W. K. Sakumoto, 52 L. Santi, 58b, 58a L. Sartori, 49a K. Sato, 59 A. Savoy-Navarro, 47 P. Schlachb, 20 A. Schmidt, 29 E. Schmidt, 20 M. A. Schmidt, 15 M. P. Schmidt, 64a M. Schmitt, 41 T. Schwarz, 8 L. Scodellaro, 13 A. Scribano, 49c, 49a F. Scucci, 49a A. Sedov, 51 S. Seidel, 40 Y. Seiya, 44 A. Semenov, 18 L. Sexton-Kennedy, 20 F. Sforza, 49a, 49b A. Sfyrla, 27 S. Z. Shalhout, 62 T. Shears, 32 P. F. Shepard, 50 M. Shimojima, 59a, b S. Shiraishi, 15 M. Shochet, 15 Y. Shon, 63 I. Shreyber, 39 P. Sinervo, 36 A. Sisakyan, 18 A. Slaughter, 20 J. Slaunwhite, 42 K. Sliwa, 60 J. R. Smith, 8 F. D. Sniper, 20 R. Snihur, 36 A. Soha, 20 S. Somalwar, 55 V. Sorin, 3 P. Squillacioti, 49c, 49a M. Stanitzki, 64 R. St. Denis, 24 B. Stelzer, 36 O. Stelzer-Chilton, 36 D. Stentz, 41 J. Strolgor, 40 G. L. Strycker, 37 J. Suh, 30 A. Sukhanov, 23 I. Suslov, 18 A. Taffard, 27, 28 R. Takashima, 43 Y. Takeuchi, 59 R. Tanaka, 45 J. Tang, 15 M. Tecchio, 37 P. K. Teng, 1 J. Thom, 20 J. J. Thompson, 27 A. Thompson, 27 E. Thomson, 48 P. Tipton, 64 P. Tito-Guzmán, 34 S. Tkaczyk, 20 D. Toback, 37 S. Tokar, 17 K. Tollefson, 38 T. Tomura, 59 D. Tonelli, 20 S. Torre, 22 D. Torretta, 20 P. Totaro, 58b, 58a S. Tourneur, 47 M. Trovato, 49d, 49a S.-Y. Tsai, 1 Y. Tu, 48 N. Turini, 49c, 49a F. Ukegawa, 59 S. Uozumi, 30 N. van Remortel, 26, c A. Varganov, 37 E. Vataga, 49d, 49a F. Vázquez, 21, o G. Velev, 20 C. Vellidis, 3 M. Vidal, 34 I. Vila, 13 R. Vilar, 13 M. Vogel, 36 I. Volobouev, 31, s G. Volpi, 49b, 49c P. Wagner, 48 R. G. Wagner, 2 R. L. Wagner, 20 W. Wagner, 29b, b J. Wagner-Kuh, 29 T. Wakasaka, 44 R. Wallny, 9 S. Wang, 1 A. Warburton, 36 D. Waters, 33 M. Weinberger, 57 J. Weiskel, 29 W. C. Wester III, 20 B. Whitehouse, 50 D. Whiteson, 48, g A. B. Wicklund, 2 J. W. Wicklund, 20 S. Wilbur, 15 G. Williams, 36 H. H. Williams, 48 M. G. Wilson, 56 P. Wilson, 20 B. L. Winer, 42 P. Wittich, 20 J. Wolbers, 20 C. Wolfe, 15 H. Wolfe, 42 T. Wright, 37 X. Wu, 23 F. Würthwein, 10 A. Yagil, 10 K. Yamamoto, 44 J. Yamaoka, 18 U. K. Yang, 15 Y. C. Yang, 30 W. M. Yao, 13 G. P. Yeh, 20 K. Yi, 26, c J. Yoh, 20 K. Yorita, 61 T. Yoshida, 44, m G. B. Yu, 19 I. Yu, 30 S. S. Yu, 20 J. C. Yun, 20 A. Zanetti, 58a Y. Zeng, 19 X. Zhang, 27 Y. Zheng, 9, e and S. Zucchelli, 6b, 6a (CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7Brandeis University, Waltham, Massachusetts 02254, USA
8University of California, Davis, Davis, California 95616, USA
9University of California, Los Angeles, Los Angeles, California 90024, USA
10University of California, San Diego, La Jolla, California 92093, USA
11University of California, Santa Barbara, Santa Barbara, California 93106, USA
12University of California, Irvine, Irvine, California 92697, USA
13Istituto di Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
14Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
15Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
16European Organization for Nuclear Research, Geneva 23, Switzerland
17Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
18Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
19Duke University, Durham, North Carolina 27708, USA
20Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
21University of Florida, Gainesville, Florida 32611, USA
22Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
23University of Geneva, CH-1211 Geneva 4, Switzerland
24Glasgow University, Glasgow G12 8QQ, United Kingdom
25Harvard University, Cambridge, Massachusetts 02138, USA

PRL 104, 091801 (2010) PHYSICAL REVIEW LETTERS week ending 5 MARCH 2010

091801-2
We report the most restrictive direct limits on masses of fourth-generation down-type quarks b', and quarklike composite fermions (B or $T_{5/3}$), decaying promptly to tW^\pm. We search for a significant excess of events with two same-charge leptons (e, μ), several hadronic jets, and missing transverse energy. An analysis of data from $p\bar{p}$ collisions with an integrated luminosity of 2.7 fb$^{-1}$ collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits $m_{b'} > 338$ GeV/c^2 and $m_{T_{5/3}} > 365$ GeV/c^2 at 95% confidence level.
The standard model (SM) of particle physics accommodates three generations of fundamental quarks and leptons, but does not prohibit a fourth. Recent measurements of charge-parity (CP) nonconservation in B-meson decays [1] are more than 2 standard deviations from SM expectations, and are sensitive to contributions [2] from a fourth-generation up-type quark, \(t' \). This pattern of measurements [3–6], if genuine, warrants a search for another generation of quarks or a multiplet of quarklike objects. A four-generation model (cf. [7]) could provide sources of particle-antiparticle asymmetries large enough to account for the baryon asymmetry of the Universe [8] and accommodate a heavier Higgs boson (the source of mass generation) than a three-generation model [9].

This Letter reports a search for heavy particles \(Q \) decaying to a \(t \) quark and a \(W \) boson at a mass scale relevant to both the \(B \)-meson anomalies and the Higgs mechanism. We search for pair-production of \(Q\bar{Q} \) via strong interactions, where \(Q \) is either a fourth-generation down-type quark \(b' \) or a quarklike (nonhadronic) composite fermion \(B \) or \(T_{5/3} \) [10]. The \(B \) and \(T_{5/3} \) (with 5/3 electron charge) that we consider might arise from symmetries, consistent with precise electroweak measurements [11,12]. If \(T_{5/3} \) exists, the existence of \(B \) is implied, doubling the expected event rate. Many models of new phenomena providing a Higgs mechanism predict particles with large couplings to \(b' \), and for \(B \), \(m_B > m_W \) and \(m_B > 255 \text{ GeV}/c^2 \). However, the requirement of a \(b \)-tag in the final selection introduces uncertainty regarding the misidentification model, leading to a final 100% systematic uncertainty, as described in [21].

We use a data sample corresponding to an integrated luminosity of 2.7 \(\text{fb}^{-1} \) collected with the CDF II detector [19] at the Tevatron \(p\bar{p} \) collider at Fermilab. The data acquisition system is triggered by \(e \) or \(\mu \) candidates with \(p_T > 18 \text{ GeV}/c \) [20]. We require the \(\ell^\pm \ell'^\pm b_j \ell_T \) signature, following [21]: two same-charge reconstructed leptons (\(e \) or \(\mu \)) with pseudorapidity magnitude \(|\eta| < 1.1 \) and \(p_T > 20 \text{ GeV}/c \), where at least one lepton is isolated [22]; at least two jets with \(E_T > 15 \text{ GeV} \) and \(|\eta| < 2.4 \); at least one of the jets with evidence of a long-lived particle (\(b \) tag) using the tight SECVTX algorithm [23]; and missing transverse energy \(E_T > 20 \text{ GeV} \) [24].

The dominant background comes from events in which one of the leptons is a misidentified light-flavor jet or a lepton from the decay of a bottom or charmed hadron in a heavy flavor jet, largely from \(W \) production in association with light or heavy flavor jets or from \(t\bar{t} \) production with semileptonic decays. This background is described using a lepton misidentification model from inclusive jet data [25] applied to \(W + \) jet events. In same-charge dilepton control regions without a \(b \)-tag requirement, this model describes well the kinematics of observed events with large \(E_T \). Nevertheless, the requirement of a \(b \)-tag in the final selection introduces uncertainty regarding the misidentification model, leading to a final 100% systematic uncertainty, as described in [21].

Other backgrounds include processes that produce electron–positron pairs. These may be reconstructed with the same charge due to asymmetric \(\gamma \) conversions in the process \(e_{\text{hard}} \rightarrow e_{\text{hard}}^\gamma \rightarrow e_{\text{hard}}e_{\text{soft}}^\gamma \), where hard and soft refer to large and small transverse momentum, respectively. The major contributions from this mechanism are

![FIG. 1](color online). (a) Missing transverse energy in events with same-charge leptons in 2.7 \(\text{fb}^{-1} \). The right outermost bin includes overflow events with \(E_T > 160 \text{ GeV} \). (b) Number of reconstructed jets for the expected backgrounds. The observed data and the \(b' \) (or \(B \)) signal are shown at the best-fit rate for \(m_q = 330 \text{ GeV}/c^2 \). The fitted size and shape for the \(T_{5/3} + B \) signal is nearly identical. In both, light gray represents events with fake leptons, medium gray \(Z \) or diboson events, and dark gray leptons from \(t\bar{t} \) events. In (b), the hatched area represents the fitted signal contribution.

091801-4
from events with a Z or virtual γ in association with jets (Z/γ* + jets), or from dileptonic t¯t decays.

Estimates of the backgrounds from Z/γ* + jets processes are made with the ALPGEN [26] v2.10 simulation code interfaced with PYTHIA 6.325 [27] in the MLM scheme [26] for the hadronization and fragmentation and normalized to data in opposite-charge events in the Z mass region. The detector response for both Z + jets and t¯t processes is evaluated using the CDF simulation program CDFSIM [28], where, to avoid double counting, the same-charge leptons are required to originate from the W or Z decays rather than from misidentified jets.

To validate the modeling of the rate of hard bremsstrahlung from electrons, we compare our prediction for the contribution of Z → e+e− to the observed sample of same-charge electrons or positrons without a b tag or missing transverse energy requirement. The shape of the dilepton invariant mass spectrum and yield in the Z mass region (Mll = [MZ − 20, MZ + 20]) agrees well with the prediction. In addition, μμ and eμ events have negligible contributions from hard bremsstrahlung, as predicted. Figure 1(a) shows that the missing transverse energy in inclusive same-charge dilepton events is well described.

The t¯t → ℓ+νℓ−νb ¯b backgrounds are estimated using events generated in PYTHIA 6.216 at mt = 172.5 GeV/c², assuming a t¯t production cross section of 7.2 pb. Modeling of the t¯t contribution is validated by comparing predicted and observed rates of events with opposite-charge leptons, large E_T, and at least one b-tagged jet, where t¯t is expected to dominate.

Backgrounds to the ℓ±ℓ±bjE_T signature with real same-charge leptons are rare in the SM; they are largely from WZ and ZZ production and are highly suppressed by the requirement of a b tag. Backgrounds from diboson production WW, ZZ, Wγ, and Zγ in association with b jets are modeled with PYTHIA 6.216 and BAUR [29] generators.

Backgrounds from charge mismeasurement are insignificant, as the charge of a particle with p_T = 100 GeV/c is typically determined with more than 5σ significance [30]. Charge mismeasurement is very rare in this range, confirmed by the absence of any strong features in dilepton invariant mass in the Z mass region in same-charge muon events. The largest potential source comes from t¯t events, in which the lepton momenta are typically smaller than 100 GeV/c. The final background estimates are given in Table I.

The b' and T$_{5/3}$ + B signals are modeled with the MADGRAPH simulation program following the minimal composite Higgs model described in [10] and paired with PYTHIA for hadronization and fragmentation. The acceptance is approximately 2.2%, nearly independent of heavy quark masses in the range 300–400 GeV/c². The expected numbers of events for b' (or B), and T$_{5/3}$ + B are given in Table II.

We observe two events in the signal region, in agreement with the expected backgrounds (see Table I). To calculate the most likely signal cross section, we perform a binned maximum-likelihood fit to the number of reconstructed jets. Figure 1(b) shows the number of reconstructed jets in the observed events, as well as the signal distribution

Table I. Expected background contributions to the ee, eμ, and μμ channels in 2.7 fb⁻¹ from (a) Z and diboson, (b) t¯t → ℓ+νℓ−νb, and (c) misidentified lepton.

Source	ee	eμ	μμ	Total ℓℓ
(a)	0.01 ± 0.01	0	0.02 ± 0.02	0.03 ± 0.03
(b)	0.06 ± 0.04	0	0.09 ± 0.03	0.15 ± 0.05
(c)	0.6 ± 0.6	0.3 ± 0.3	0.5 ± 0.5	1.4 ± 1.4
Total	0.7 ± 0.6	0.3 ± 0.3	0.6 ± 0.5	1.6 ± 1.4
Data	0	1	1	2

Table II. Theoretical cross sections (σ_{NLO} in fb [31,32]), expected yield (N), median expected 95% C.L limit (σ_{exp,d} in fb), and observed 95% C.L limit (σ_{obs} in fb) for b' (or B) and (T$_{5/3}$ + B) signals at varying masses.

	Mass [GeV/c²]	300	310	320	330	340	350	375	400
b' or B		227	176	137	106	83	64	34	18
σ_{NLO}		13.4	9.6	7.5	5.9	4.6	3.5	1.9	1.0
N		67	63	63	62	63	63	63	57
σ_{exp,d}		67	96	83	94	85	83	78	67
σ_{obs}		454	352	274	212	166	128	68	36
T$_{5/3}$ + B		27.0	19.5	15.3	11.9	9.4	7.1	3.6	2.1
N		86	89	69	69	98	91	83	79
σ_{exp,d}		86	89	69	69	98	91	83	79
σ_{obs}		86	89	69	69	98	91	83	79
with the best-fit value of the signal cross section. Kinematics of the two signal events is shown in Fig. 2 and the p_T values are given in Table III.

We construct confidence intervals [33] in the theoretical cross section by generating ensembles of simulated experiments that describe expected fluctuations of statistical and systematic uncertainties, including uncertainties in the jet-energy scale [34], gluon radiation [35], signal and background normalization, and parton distribution functions [36,37]. The median expected and observed limits and theoretical next-to-leading-order (NLO) cross sections [31,32] are given in Table II and shown in Fig. 3.

We convert limits on the pair-production cross sections to limits on the fermion masses and obtain $m_{\ell^+\mu^-}, m_B > 338$ GeV/c^2, and $m_{T_{5/3}} > 365$ GeV/c^2 at 95% confidence level. The two events observed are consistent with the predicted number of background events, although we note that the $e\mu$ event has a number of jets characteristic of the signal, reducing the observed lower limits from what is expected. This is the most restrictive direct lower limit on the mass of a down-type fourth-generation quark, significantly reducing the allowed SM mass range, and the first lower limits on the masses of quarklike fermions $T_{5/3}$ and B, which may figure prominently in future searches.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

PRL 104, 091801 (2010) PHYSICAL REVIEW LETTERS week ending 5 MARCH 2010

FIG. 3. Theoretical cross sections for b' (or B) and $T_{5/3} + B$ with expected and observed 95% C.L. limits overlaid.

TABLE III. Transverse momentum (in GeV/c) of leptons and transverse energy (in GeV) of jets in the two events with the \(\ell^+\ell^- \) signature.

Event	ℓ_1	ℓ_2	jet$_1$	b-jet	E_T	other jets
$\mu^+\mu^-$	80	31	78	25	87	40
$e^+\mu^-$	73	21	60	42	27	39, 33, 24

on the mass of a down-type fourth-generation quark, significantly reducing the allowed SM mass range, and the first lower limits on the masses of quarklike fermions $T_{5/3}$ and B, which may figure prominently in future searches.

FIG. 2 (color online). Event displays for the observed three-jet, $\mu\mu\mu$ event (a), (b) and the five-jet, $e\mu$ event (c), (d). Shown in (a) and (c) are views of the events along the beam axis; jets shown as cones, electrons as solid lines, muons as dotted lines, and missing transverse energy as an arrow; lengths are proportional to p_T (see Table III). Shown in (b) and (d) are views of the events in $\eta - \phi$; jets shown as open circles, electrons as filled circles, and muons as dashed circles; radii are proportional to p_T.
Specifically, we refer to the mixing-induced CP asymmetry in the decays $B_s \to J/\psi \phi$ [3], the difference between direct CP asymmetries in the decays $B^0 \to K^+ \pi^-$ and $B^+ \to K^+ \pi^0$ [4,6], and the values of mixing-induced CP asymmetry obtained from $B^0 \to J/\psi K_S^0$ or $B^0 \to (\phi, \eta') K^0_S K^0_S$ [5,6].

[1] W.-S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. Lett. 95, 141601 (2005); W.-S. Hou, M. Nagashima, G. Raz, and A. Soddu, J. High Energy Phys. 09 (2006) 012; W.-S. Hou, H. N. Li, S. Mishima, and M. Nagashima, Phys. Rev. Lett. 98, 131801 (2007); W.-S. Hou, M. Nagashima, and A. Soddu, Phys. Rev. D 76, 016004 (2007); A. Soni, A. K. Alok, A. Giri, R. Mohanta, and S. Nandi, Phys. Lett. B 683, 302 (2010).

[2] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 161802 (2008); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 241801 (2008); T. Aaltonen et al. (CDF Collaboration), CDF Public Note Report No. CDF9458, 2008.

[3] S.-W. Lin, Y. Unno, W.-S. Hou, and P. Chang et al. (Belle Collaboration), Nature (London) 452, 332 (2008); B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 091102 (2007); B. Aubert et al. (BABAR Collaboration), arXiv:hep-ex/0807.4226.

[4] E. Lunghi and A. Soni, Phys. Lett. B 666, 162 (2008).

[5] E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:hep-ex/0808.1297v3.

[6] P. H. Frampton, P. Q. Hung, and M. Sher, Phys. Rep. 330, 263 (2000).

[7] G. D. Kribis, T. Plehn, M. Spannowsky, and T. M. P. Tait, Phys. Rev. D 76, 075016 (2007).

[8] R. Contino and G. Servant, J. High Energy Phys. 06 (2008) 026.

[9] P. Sikivie, L. Susskind, M. B. Voloshin, and V. I. Zakharov, Nucl. Phys. B173, 189 (1980).

[10] A. Lister (CDF Collaboration), arXiv:hep-exp/0810.3349.

[11] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[12] A. Lister (CDF Collaboration), arXiv:hep-exp/0810.3349.

[13] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[14] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[15] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[16] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[17] A. Lister (CDF Collaboration), arXiv:hep-exp/0810.3349.

[18] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[19] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[20] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[21] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[22] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[23] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[24] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[25] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).

[26] A. Lister (CDF Collaboration), Phys. Rev. D 77, 037302 (2008).
[27] T. Sjostrand et al., Comput. Phys. Commun. 238, 135 (2001).
[28] T. Affolder et al. (CDF Collaboration), Nucl. Instrum. Methods 447, 1 (2000).
[29] U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990).
[30] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).
[31] R. Bonciani, S. Catani, M. L. Mangano, and P. Nason, Nucl. Phys. B529, 424 (1998).
[32] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, J. High Energy Phys. 04 (2004) 068.
[33] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[34] A. Bhatti et al., Nucl. Instrum. Methods 566, 375 (2006).
[35] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).
[36] J. Pumplin et al. (CTEQ Collaboration), J. High Energy Phys. 07 (2002) 012.
[37] A. D. Martin et al. (MRST Collaboration), Phys. Lett. B 356, 89 (1995).