HANKEL DETERMINANT OF TYPE $H_2(3)$ FOR INVERSE FUNCTIONS OF SOME CLASSES OF UNIVALENT FUNCTIONS WITH MISSING SECOND COEFFICIENT

M. OBRADOVIĆ AND N. TUNESKI

ABSTRACT. In this paper we determine the upper bounds of $|H_2(3)|$ for the inverse functions of functions of some classes of univalent functions, where $H_2(3)(f) = a_3a_5 - a_2^2$ is the Hankel determinant of a special type.

2010 Mathematics Subject Classification: 30C45, 30C55.

Keywords: Hankel determinant, inverse function, classes of univalent functions.

1. Introduction and preliminaries

Let \mathcal{A} be the class containing functions that are analytic in the unit disk $D := \{ |z| < 1 \}$ and are normalized such that $f(0) = 0 = f'(0) - 1$, i.e.,

$$f(z) = z + a_2z^2 + a_3z^3 + \cdots .$$

By S we denote the class of functions from \mathcal{A} which are univalent in D.

Also, we need the classes of functions of bounded turning, of convex functions, of starlike functions, and of functions starlike with respect to symmetric points, subclasses of S, defined respectively in the following way

$$\mathcal{R} = \{ f \in \mathcal{A} : \Re f'(z) > 0, \ z \in D \} ,$$

$$\mathcal{C} = \{ f \in \mathcal{A} : \Re \left[1 + \frac{zf''(z)}{f'(z)} \right] > 0, \ z \in D \} ,$$

$$S^* = \{ f \in \mathcal{A} : \Re \frac{zf'(z)}{f(z)} > 0, \ z \in D \} ,$$

$$S^*_s = \{ f \in \mathcal{A} : \Re \frac{2zf'(z)}{f(z) - f(-z)} > 0, \ z \in D \} .$$

In his paper [4] Zaprawa considered the Hankel determinant of the type

$$H_2(3)(f) = a_3a_5 - a_2^2,$$
defined for the coefficients of the function \(f \) given by (1). The author treated bounds of \(|H_2(3)(f)|\) for the classes \(\mathcal{R}, \mathcal{C}, \mathcal{S}^\star \) and gave sharp results in the case \(a_2 = 0 \). He also investigated the general case of these classes. In the same paper it is proved that
\[
\max \{|H_2(3)(f)| : f \in \mathcal{S}\} > 1.
\]

The object of current paper is to obtained the bounds of the modulus of the Hankel determinant \(H_2(3)(f - 1) \) of coefficients of the inverse of function from the classes \(\mathcal{R}, \mathcal{C}, \mathcal{S}^\star \) and \(\mathcal{S}_s^\star \), defined before, as well as for the class \(\mathcal{S} \). In all cases we suppose that function \(f \) is missing its second coefficient, i.e., \(a_2 = 0 \).

Namely, for every univalent function in \(\mathbb{D} \) exists inverse at least on the disk with radius 1/4 (due to the famous Koebe’s 1/4 theorem). If the inverse has an expansion
\[
f^{-1}(w) = w + A_2w^2 + A_3w^3 + \cdots,
\]
then, by using the identity \(f(f^{-1}(w)) = w \), from (1) and (2) we receive
\[
A_2 = -a_2, \\
A_3 = -a_3 + 2a_2^2, \\
A_4 = -a_4 + 5a_2a_3 - 5a_2^3, \\
A_5 = -a_5 + 6a_2a_4 - 21a_2^2a_3 + 3a_3^2 + 14a_2^2.
\]
Especially, when \(a_2 = 0 \), we have
\[
A_2 = 0, \quad A_3 = -a_3, \quad A_4 = -a_4, \quad A_5 = -a_5 + 3a_3^2.
\]

So, in this case,
\[
H_2(3)(f^{-1}) = A_3A_5 - A_4^2 = a_3a_5 - a_4^2 - 3a_3^3,
\]
i.e.,
\[
H_2(3)(f^{-1}) = H_2(3)(f) - 3a_3^3.
\]

For our further consideration we need the next lemma given by Carlson [1].

Lemma 1. Let
\[
\omega(z) = c_1z + c_2z^2 + \cdots
\]
be a Schwartz function, i.e., a function analytic in \(\mathbb{D} \), \(\omega(0) = 0 \) and \(|\omega(z)| < 1\). Then
\[
|c_1| \leq 1, \quad |c_2| \leq 1 - |c_1|^2, \quad |c_3| \leq 1 - |c_1|^2 - \frac{|c_2|^2}{1 + |c_1|}, \quad \text{and} \quad |c_4| \leq 1 - |c_1|^2 - |c_2|^2.
\]
2. Main results

Theorem 1. Let \(f \in A \) is given by (1) and let \(a_2 = 0 \). Then

(a) \(|H_3(2)(f^{-1})| \leq \frac{28}{45} \) if \(f \in \mathcal{R} \);

(b) \(|H_3(2)(f^{-1})| \leq \frac{2}{45} \) if \(f \in \mathcal{C} \);

(c) \(|H_3(2)(f^{-1})| \leq 2 \) if \(f \in S^* \);

(d) \(|H_3(2)(f^{-1})| \leq 2 \) if \(f \in S^*_s \).

All these results are sharp.

Proof.

(a) Since \(f \in \mathcal{R} \) is equivalent to

\[
 f'(z) = \frac{1 + \omega(z)}{1 - \omega(z)},
\]

for certain Schwartz function \(\omega \), we receive that

\[
 f'(z) = 1 + 2\omega(z) + 2\omega^2(z) + \cdots. \tag{6}
\]

Using the notations for \(f \) and \(\omega \) given by (1) and (5), and equating the coefficients in (6), we receive

\[
 \begin{aligned}
 a_2 &= c_1, \\
 a_3 &= \frac{2}{3}(c_2 + c_1^2), \\
 a_4 &= \frac{1}{2}(c_3 + 2c_1c_2 + c_1^3), \\
 a_5 &= \frac{2}{5}(c_4 + 2c_1c_3 + 3c_1^2c_2 + c_2^2 + c_1^4).
 \end{aligned} \tag{7}
\]

Since \(a_2 = 0 \), by (7) we have \(c_1 = 0 \), and the appropriate coefficients have the next form:

\[
 a_3 = \frac{2}{3}c_2, \quad a_4 = \frac{1}{2}c_3, \quad a_5 = \frac{2}{5}(c_4 + c_2^2). \tag{8}
\]

Now, from (3) and (8), after simple computation, we obtain

\[
 H_3(2)(f^{-1}) = \frac{4}{15}c_2c_4 - \frac{1}{4}c_3^2 - \frac{28}{45}c_2^3.
\]
and further,
\[|H_3(2)(f^{-1})| \leq \frac{4}{15} |c_2| |c_4| + \frac{1}{4} |c_3|^2 + \frac{28}{45} |c_2|^3. \]

Applying Lemma 1 (with \(c_1 = 0 \)) we receive
\[|H_3(2)(f^{-1})| \leq \frac{4}{15} |c_2|(1 - |c_2|^2) + \frac{1}{4}(1 - |c_2|^2)^2 + \frac{28}{45} |c_2|^3. \]

and, finally,
\[|H_3(2)(f^{-1})| \leq \frac{1}{4} + \frac{4}{15} |c_2| - \frac{1}{2} |c_2|^2 + \frac{16}{45} |c_2|^3 + \frac{1}{4} |c_2|^4 =: \varphi_1(|c_2|), \quad (9) \]

where \(0 \leq |c_2| \leq 1 \). Since
\[\varphi_1'(|c_2|) = \frac{4}{15} - |c_2| + \frac{16}{15} |c_2|^2 + |c_2|^3 \]
\[= \frac{4}{15} (1 - 2|c_2|^2) + \frac{1}{15} |c_2| + |c_2|^3 > 0, \]
we have \(\varphi_1(|c_2|) \leq \varphi_1(1) = \frac{28}{45} \), and from (9),
\[|H_3(2)(f^{-1})| \leq \frac{28}{45} = 0.622\ldots. \]

This result is best possible as the function \(f_1(z) = \ln \frac{1 + z}{1 - z} - z \) defined by \(f_1'(z) = \frac{1 + z^2}{1 - z^2} \), shows.

(b) We apply the same method as in the previous case. Namely, from the definition of the class \(\mathcal{C} \) we have
\[1 + z f''(z) = \frac{1 + \omega(z)}{1 - \omega(z)}, \]
where \(\omega \) is a Schwartz function, and from here
\[(z f'(z))^2 = [1 + 2 (\omega(z) + \omega^2(z) + \cdots)] \cdot f'(z). \quad (10) \]

Using the notations (1) and (5), and comparing the coefficients in the relation (10), after some simple calculations, we obtain
\[
\begin{aligned}
\left\{ \begin{array}{l}
a_2 = c_1, \\
a_3 = \frac{1}{3} (c_2 + 3c_1^2), \\
a_4 = \frac{1}{6} (c_3 + 5c_1c_2 + 6c_1^3) \\
a_5 = \frac{1}{30} (3c_4 + 14c_1c_3 + 43c_1^2c_2 + 30c_1^4 + 6c_2^2).
\end{array} \right.
\end{aligned}
\]
If $a_2 = 0$, then by (11) we have $c_1 = 0$, which implies
\[
a_3 = \frac{1}{3} c_2, \quad a_4 = \frac{1}{6} c_3, \quad a_5 = \frac{1}{10} (c_4 + 2c_2^2).
\] (12)

Using (3) and (12) we obtain
\[
H_3(2)(f^{-1}) = \frac{1}{180} (6c_2c_4 - 5c_3^2 - 8c_2^3).
\]

From the last relation we get
\[
|H_3(2)(f^{-1})| \leq \frac{1}{180} (6|c_2||c_4| + 5|c_3|^2 + 8|c_2|^3),
\]
and further, after applying Lemma1 (with $c_1 = 0$),
\[
|H_3(2)(f^{-1})| \leq \frac{1}{180} (6|c_2|(1 - |c_2|^2) + 5(1 - |c_2|^2)^2 + 8|c_2|^3),
\]
i.e.,
\[
|H_3(2)(f^{-1})| \leq \frac{1}{180} (5 + 6|c_2| - 10|c_2|^2 + 2|c_2|^3 + 5|c_2|^4) =: \varphi_2(|c_2|), \quad (13)
\]
where $0 \leq |c_2| \leq 1$. Since
\[
\varphi_2'(|c_2|) = \frac{1}{90} (3 - 10|c_2| + 3|c_2|^2 + 10|c_2|^3),
\]
which, after considering this polynomial in the interval $[0, 1]$, gives $\varphi_1(|c_2|) \leq \varphi_2(1) = \frac{2}{45}$, and further, from (13),
\[
|H_3(2)(f^{-1})| \leq \frac{2}{45} = 0.044 \ldots
\]

The function $f_2(z) = \text{artanh} z$ satisfying $1 + \frac{zf''(z)}{f'(z)^2} = \frac{1+z^2}{1-z^2}$ shows that the result is the best possible.

(c) From the definition of the class S^* we have that there exists a Schwartz function ω such that
\[
\frac{zf'(z)}{f(z)} = \frac{1 + \omega(z)}{1 - \omega(z)},
\]
and from here
\[
zf'(z) = \left[1 + 2 (\omega(z) + \omega^2(z) + \cdots)\right] \cdot f(z). \quad (14)
\]
As in the two previous cases ((a) and (b)), by comparing the coefficients in the relation (14), and some simple calculations, we have

\[
\begin{align*}
 a_2 &= 2c_1 \\
 a_3 &= c_2 + 3c_1^2 \\
 a_4 &= \frac{2}{3} \left(c_3 + 5c_1c_2 + 6c_1^3 \right) \\
 a_5 &= \frac{1}{2} \left(c_4 + \frac{14}{3} c_1c_3 + \frac{43}{3} c_1^2c_2 + 10c_1^4 + 2c_2^2 \right).
\end{align*}
\]

For the case \(a_2 = 0 \) we have the next

\[
\begin{align*}
 a_3 &= c_2, \\
 a_4 &= \frac{2}{3} c_3, \\
 a_5 &= \frac{1}{2} (c_4 + 2c_2^2).
\end{align*}
\]

(15)

So, from (3) and (15) we obtain

\[
H_3(2)(f^{-1}) = \frac{1}{18} \left(9c_2c_4 - 8c_3^2 - 36c_2^3 \right),
\]

and from here

\[
|H_3(2)(f^{-1})| \leq \frac{1}{18} \left(9|c_2||c_4| + 8|c_3|^2 + 36|c_2|^3 \right).
\]

Using estimates for \(|c_4| \) and \(|c_3| \) from Lemma 1 (with \(c_1 = 0 \)) from the last relation we receive

\[
|H_3(2)(f^{-1})| \leq \frac{1}{18} \left(8 + 9|c_2| - 16|c_2|^2 + 27|c_2|^3 + 8|c_2|^4 \right) =: \varphi_3(|c_2|),
\]

(16)

where \(0 \leq |c_2| \leq 1 \). Since

\[
\varphi'_3(|c_2|) = \frac{1}{18} \left(9 - 32|c_2| + 81|c_2|^2 + 32|c_2|^3 \right)
\]

\[
= \frac{1}{18} \left[9(1 - 3|c_2|)^2 + 22|c_2| + 32|c_2|^3 \right] > 0,
\]

then \(\varphi_3(|c_2|) \leq \varphi_3(1) = 2 \), and from (16),

\[
|H_3(2)(f^{-1})| \leq 2.
\]

The result is the best possible as the function \(f_3(z) = \frac{z}{1-z^2} \) shows.
From the definition of the class S^*_s we have that there exists a Schwartz function ω such that
\[
\frac{2zf'(z)}{f(z) - f(-z)} = \frac{1 + \omega(z)}{1 - \omega(z)},
\]
and from here
\[
2zf'(z) = [1 + 2(\omega(z) + \omega^2(z) + \cdots)] \cdot [f(z) - f(-z)]. \tag{17}
\]

Similarly as in previous cases, by comparing the coefficients in the relation (17), after some simple calculations, we receive
\[
\begin{aligned}
a_2 &= c_1 \\
a_3 &= c_2 + c_1^2 \\
a_4 &= \frac{1}{2} (c_3 + 3c_1c_2 + 2c_1^3) \\
a_5 &= \frac{1}{2} (c_4 + 2c_1c_3 + 5c_1^2c_2 + 2c_1^4 + 2c_2^3).
\end{aligned} \tag{18}
\]

For $a_2 = 0$, $(c_1 = 0)$, from (18) we get
\[
\begin{aligned}
a_3 &= c_2, \\
a_4 &= \frac{1}{2} c_3, \\
a_5 &= \frac{1}{2} (c_4 + 2c_2^2),
\end{aligned}
\]
and using (3),
\[
H_3(2)(f^{-1}) = \frac{1}{4} (2c_2c_4 - c_3^2 - 8c_2^3),
\]
and from here
\[
|H_3(2)(f^{-1})| \leq \frac{1}{4} (2|c_2||c_4| + |c_3|^2 + 8|c_2|^3).
\]

Using the estimates for $|c_4|$ and $|c_3|$ from Lemma 1 (with $c_1 = 0$) from the last relation we have
\[
|H_3(2)(f^{-1})| \leq \frac{1}{4} (1 + 2|c_2| - 2|c_2|^2 + 6|c_2|^3 + |c_2|^4) =: \varphi_4(|c_2|), \tag{19}
\]
where $0 \leq |c_2| \leq 1$. Since
\[
\varphi_4'(|c_2|) = \frac{1}{2} (1 - 2|c_2| + 9|c_2|^2 + 2|c_2|^3)
\]
\[
= \frac{1}{2} [((1 - |c_2|)^2 + 8|c_2| + 2|c_2|^3] > 0,
\]
then \(\varphi_4 \) is an increasing function and \(\varphi_4(|c_2|) \leq \varphi_4(1) = 2 \). So, from (19),

\[
|H_3(2)(f^{-1})| \leq 2.
\]

This result is the best possible as the function \(f_4 \) defined by

\[
\frac{2zf_4'(z)}{f_4(z) - f_4(-z)} = \frac{1 + z^2}{1 - z^2}
\]

shows.

Remark 1. From the relation (4) we get the following.

(a) For \(f \in \mathcal{R} \),

\[
|H_3(2)(f^{-1}) - H_3(2)(f)| = 3|a_3|^3 = 3\left(\frac{2}{3}|c_2|\right)^3 \leq \frac{8}{9},
\]

and the result is the best possible as the function \(f_1 \) shows (in this case \(H_3(2)(f_1) = \frac{4}{15} \) and \(H_3(2)(f_1^{-1}) = -\frac{28}{45} \)).

(b) For \(f \in \mathcal{C} \),

\[
|H_3(2)(f^{-1}) - H_3(2)(f)| = 3|a_3|^3 = 3\left(\frac{|c_2|}{3}\right)^3 \leq \frac{1}{9},
\]

and the result is the best possible as the function \(f_2 \) shows.

(c) For \(f \in \mathcal{S}^* \),

\[
|H_3(2)(f^{-1}) - H_3(2)(f)| = 3|a_3|^3 = 3|c_2|^3 \leq 3,
\]

and the result is the best possible as the function \(f_3 \) shows.

(d) For \(f \in \mathcal{S}_s^* \),

\[
|H_3(2)(f^{-1}) - |H_3(2)(f)| = 3|a_3|^3 = 3|c_2|^3 \leq 3,
\]

and the result is the best possible for the function \(f_4 \).
For obtaining the corresponding result for the whole class \mathcal{S} we will use method based on Grunsky coefficients. In the proof we will use mainly the notations and results given in the book of N.A. Lebedev ([3]).

Here are basic definitions and results.

Let $f \in \mathcal{S}$ and let

$$\log \frac{f(t) - f(z)}{t - z} = \sum_{p,q=0}^{\infty} \omega_{p,q} t^p z^q,$$

where $\omega_{p,q}$ are the Grunsky’s coefficients with property $\omega_{p,q} = \omega_{q,p}$. For those coefficients we have the next Grunsky’s inequality ([2, 3]):

$$\sum_{q=1}^{\infty} \left(\sum_{p=1}^{\infty} \omega_{p,q} x_p \right)^2 \leq \sum_{p=1}^{\infty} \frac{|x_p|^2}{p}, \quad \text{(20)}$$

where x_p are arbitrary complex numbers such that last series converges.

Further, it is well-known that if the function f given by (1) belongs to \mathcal{S}, then also

$$\tilde{f}_2(z) = \sqrt{f(z^2)} = z + c_3 z^3 + c_5 z^5 + \cdots \quad \text{(21)}$$

belongs to the class \mathcal{S}. Then, for the function \tilde{f}_2 we have the appropriate Grunsky’s coefficients of the form $\omega_{2p-1,2q-1}^{(2)}$ and the inequality (20) has the form:

$$\sum_{q=1}^{\infty} (2q - 1) \left(\sum_{p=1}^{\infty} \omega_{2p-1,2q-1} x_{2p-1} \right)^2 \leq \sum_{p=1}^{\infty} \frac{|x_{2p-1}|^2}{2p - 1} \quad \text{(22)}$$

Here, and further in the paper we omit the upper index (2) in $\omega_{2p-1,2q-1}^{(2)}$ if compared with Lebedev’s notation.

If in the inequality (22) we put $x_1 = 1$ and $x_{2p-1} = 0$ for $p = 2, 3, \ldots$, then we receive

$$|\omega_{11}|^2 + 3|\omega_{13}|^2 + 5|\omega_{15}|^2 + 7|\omega_{17}|^2 \leq 1 \quad \text{(23)}$$

As it has been shown in [3, p.57], if f is given by (1) then the coefficients a_2, a_3, a_4 and a_5 are expressed by Grunsky’s coefficients $\omega_{2p-1,2q-1}$ of the function \tilde{f}_2 given
by (21) in the following way:
\[
\begin{align*}
 a_2 &= 2\omega_{11}, \\
 a_3 &= 2\omega_{13} + 3\omega_{11}^2, \\
 a_4 &= 2\omega_{33} + 8\omega_{11}\omega_{13} + \frac{10}{3}\omega_{11}^3, \\
 a_5 &= 2\omega_{35} + 8\omega_{11}\omega_{33} + 5\omega_{13}^2 + 18\omega_{11}^2\omega_{13} + \frac{7}{3}\omega_{11}^4, \\
 0 &= 3\omega_{15} - 3\omega_{11}\omega_{13} + \omega_{11}^3 - 3\omega_{33}, \\
 0 &= \omega_{17} - \omega_{35} - \omega_{11}\omega_{33} - \omega_{13}^2 + \frac{1}{3}\omega_{11}^4.
\end{align*}
\] (24)

We note that in the cited book of Lebedev there exists a typing mistake for the coefficient \(a_5\). Namely, instead of the term \(5\omega_{13}^2\), there is \(5\omega_{15}^2\).

Theorem 2. Let \(f \in S\) is given by (1) and let \(a_2 = 0\). Then
\[
|H_3(2)(f^{-1})| \leq \frac{\sqrt{3}}{6\sqrt{7}} + 2\sqrt{3} = 3.57321 \ldots
\]

Proof. In the case when \(a_2 = 0\), from (24) we have \(\omega_{11} = 0\), and so
\[
\begin{align*}
 a_3 &= 2\omega_{13}, \quad a_4 = 2\omega_{33}, \quad a_5 = 2\omega_{35} + 5\omega_{13}^2, \quad \omega_{33} = \omega_{15}, \quad \omega_{35} = \omega_{17} - \omega_{13}^2.
\end{align*}
\] (25)

Using (3) and (25), we have
\[
H_3(2)(f^{-1}) = 4\omega_{13}\omega_{35} - 14\omega_{13}^3 - 4\omega_{33}^2,
\]
and after applying the two last relations from (25),
\[
H_3(2)(f^{-1}) = 4\omega_{13}\omega_{17} - 18\omega_{13}^3 - 4\omega_{15}^2.
\]

From here we have
\[
|H_3(2)(f^{-1})| \leq 4|\omega_{13}||\omega_{17}| + 18|\omega_{13}|^3 + 4|\omega_{15}|^2,
\]
or finally, using \(|\omega_{17}| \leq \frac{1}{\sqrt{7}}\sqrt{1 - 3|\omega_{13}|^2 - 5|\omega_{15}|^2}\) (from (23)) we get
\[
|H_3(2)(f^{-1})| \leq \frac{1}{\sqrt{7}}|\omega_{13}||\omega_{13}|\sqrt{1 - 3|\omega_{13}|^2 - 5|\omega_{15}|^2} + 18|\omega_{13}|^3 + 4|\omega_{15}|^2
=: \frac{1}{\sqrt{7}}\psi_1(|\omega_{13}|, |\omega_{15}|) + 2\psi_2(|\omega_{13}|, |\omega_{15}|),
\] (26)
where
\[\psi_1(y, z) = y \sqrt{1 - 3y^2 - 5z^2}, \quad \psi_2(y, z) = 9y^3 + 2z^2, \]
with \(0 \leq y = |\omega_{13}| \leq \frac{1}{\sqrt{3}}\) and \(0 \leq z = |\omega_{15}| \leq \frac{1}{\sqrt{5}} \sqrt{1 - 3y^2}\) (where we used the inequality (23)). It is easy to verify that for these range of \(y\) and \(z\), \(\psi_1(y, z) \leq \psi_1(1/\sqrt{6}, 0) = \frac{\sqrt{3}}{6}\) and \(\psi_2(y, z) \leq \psi_2(1/\sqrt{3}, 0) = \sqrt{3}\), so that from (26) we have
\[
|H_3(2)(f^{-1})| \leq \frac{\sqrt{3}}{6\sqrt{7}} + 2\sqrt{3} = 3.57321\ldots
\]

Remark 2. From the relation (4) we get for \(f \in \mathcal{S}\):
\[
|H_3(2)(f^{-1}) - H_3(2)(f)| = 3|a_3|^3 = 3|2\omega_{13}|^3 \leq 3 \left(2 \cdot \frac{1}{\sqrt{3}}\right)^3 = \frac{8}{\sqrt{3}} = 4.6188\ldots
\]

References

[1] F. Carlson, *Sur les coefficients d’une fonction bornée dans le cercle unité.*, Ark. Mat. Astr. Fys., 27A, 1, (1940), 8 pp.

[2] P.L. Duren, *Univalent function*, Springer-Verlag, New York, 1983.

[3] N.A. Lebedev, *Area principle in the theory of univalent functions*, Nauka, Moscow, 1975 (in Russian).

[4] P. Zaprawa, On Hankel determinant \(H_2(3)\) for univalent functions, *Results Math.*, (2018), 73-89.

Milutin Obradović
Department of Mathematics,
Faculty of Civil Engineering, University of Belgrade,
Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia.
email: obrad@grf.bg.ac.rs

Nikola Tuneski
Department of Mathematics and Informatics,
Faculty of Mechanical Engineering,
Ss. Cyril and Methodius University in Skopje,
Karloša II b.b., 1000 Skopje,
Republic of North Macedonia.
email: nikola.tuneski@mf.ukim.edu.mk