Association between Promoter Polymorphisms of TFF1, TFF2, and TFF3 and the Risk of Gastric and Diffuse Gastric Cancers in a Korean Population

Eun-Heui Jin,1* Sang-Il Lee,2* JaeWoo Kim,1 Eun Young Seo,3 Su Yel Lee,4 Gang Min Hur,5 Sanghee Shin,2 and Jang Hee Hong1,5

1Clinical Trials Center, 2Department of Surgery, Chungnam National University Hospital, Daejeon, 3Department of Dermatology, Seoul National University College of Medicine, Seoul, 4National Biobank of Korea, Chungnam National University Hospital, Daejeon, 5Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Korea

*Eun-Heui Jin and Sang-Il Lee contributed equally to this work.

Received: 17 December 2014 Accepted: 17 April 2015

Address for Correspondence:
Jang Hee Hong, MD
Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 301-131, Korea
Tel: +82.42-280-8718, Fax: +82.42-280-8716
E-mail: bonii@cnu.ac.kr

Funding: This research was supported by a grant of the Korea Health Technology R&D Project Ministry of Health & Welfare, Republic of Korea (grant number: HI14C1731), a research fund of Chungnam National University, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: NRF-2014R1A1A0205617).

INTRODUCTION

Gastric cancer (GC) is one of the most common cancers in the world. The aims of this study were to evaluate the association between polymorphisms in TFF gene family, TFF1, TFF2, and TFF3 and the risk of gastric cancer (GC) and GC subgroups in a Korean population via a case-control study. The eight polymorphisms in TFF gene family were identified by sequencing and genotyped with 377 GC patients and 396 controls by using TaqMan genotyping assay. The rs184432 TT genotype of TFF1 was significantly associated with a reduced risk of GC (odds ratio, [OR] = 0.45; 95% confidence interval, [CI] = 0.25-0.86; P = 0.009), more protective against diffuse-type GC (OR = 0.20; 95% CI = 0.05-0.87; P = 0.035) than GC (OR = 0.34; 95% CI = 0.14-0.82; P = 0.017) in subjects aged < 60 yr, and correlated with lymph node metastasis negative GC and diffuse-type GC (OR = 0.44; 95% CI = 0.23-0.86; P = 0.016 and OR = 0.20; 95% CI = 0.05-0.87; P = 0.031, respectively). In addition, a decreased risk of lymph node metastasis negative GC and diffuse-type GC was observed for rs225359 TT genotype of TFF1 (OR = 0.46, 95% CI = 0.24-0.88; P = 0.020 and OR = 0.21, 95% CI = 0.05-0.88; P = 0.033, respectively). These findings suggest that the rs184432 and rs225359 polymorphisms in TFF1 have protective effects for GC and contribute to the development of GC in Korean individuals.

Keywords: Control-case Studies; Diffuse Type; Gastric Neoplasms; Polymorphism; TFF1 Protein, Human; TFF2 Protein, Human; TFF3 Protein, Human

In addition, trefoil factor 1 (TFF1) is a tumor suppressor gene (14) belonging to the TFF family. The TFF protein family consists of TFF1, TFF2, and TFF3, which are expressed and secreted in the mucous cells of the human stomach and protect the gastrointestinal epithelium (15-17). TFF are clustered in a 50-kb region of the chromosome 21q22.3 (18, 19). The abnormal expression levels of TFF proteins have been reported to be associated with the progression and development of several cancers such as colon cancer (20, 21), breast cancer (22, 23), prostate cancer (24, 25), and lung cancer (26). Some evidence suggests that TFF expression is involved in GC progression. TFF1-knockout mice developed antral adenomas, and 30% of them further developed multiple gastric carcinomas (27). TFF1 was normally expressed in gastric mucosa, but the expression of TFF1 and TFF2 was significantly lower in carcinomas than in normal tissues (28, 29).
Both decreased TFF1 and TFF2 expression and increased TFF3 expression have been reported in gastric carcinoma (30). Furthermore, downregulation of TFF1 expression and upregulation of TFF3 expression have also been reported in GC (31). Recently, association studies between polymorphisms of TFF and GC susceptibility were reported in two different ethnic groups: a polymorphism in the promoter region of TFF1 was associated with GC development in an Iranian population, and promoter polymorphisms of TFF2 and TFF3 were associated with GC susceptibility in a Chinese population (32, 33). Therefore, we hypothesized that the polymorphisms in TFF play a critical role in GC progression and development.

In the present study, we elucidated the relevance of polymorphisms in the coding and promoter regions of the TFF family to the risk of GC and GC subgroups in order to clarify our hypothesis in the Korean population.

MATERIALS AND METHODS

Subjects
This case-control study group included 377 patients with GC (267 men, 110 women) with a mean age of 60.1 ± 11.8 yr and 396 healthy controls (132 men, 264 women) with a mean age of 58.7 ± 9.0 yr. The blood samples used in this study were provided by the Chungnam National Hospital Biobank, which is a member of the National Biobank of Korea and is supported and audited by the Ministry of Health and Welfare of Korea. GC patients were recruited from the outpatient clinic at the Chungnam National University Hospital and classified according to Lauren’s classification (34). The healthy controls were randomly selected from among healthy volunteers visiting the Chungnam National University Hospital medical center for their annual physical examinations and who had no history of cancer.

DNA preparation and SNP identification
Genomic DNA was extracted from the peripheral blood by using the QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. To identify polymorphic sites in TFF1, TFF2, and TFF3, all exons including intron-exon boundaries, 1.5 kb of the 5′-flanking region, and the 3′-untranslated region (UTR) were amplified by polymerase chain reaction (PCR) with genomic DNA in 24 GC patients and 24 healthy controls. PCR was performed with 50 ng of genomic DNA, Taq DNA polymerase (EF Taq, SolGent, Daejon, Korea), and 0.5 pM of each primer under the following conditions: 30 cycles of denaturation for 10 sec at 98°C, annealing for 30 sec at 65°C, extension for 2 min at 72°C, and a final extension for 10 min at 72°C in a thermocycler (Gene Amp PCR System 9700; Applied Biosystems, Foster, CA, USA). The PCR product was used as a template for sequencing. The SNPs of TFF1, TFF2, and TFF3 were detected by a sequence analysis based on the reference sequence of human chromosome 21 (GenBank accession number: NT_011512.12).

Genotyping
Genotyping for the SNPs in TFF1 (rs184432, rs35448902, rs225359, and rs2156310), TFF2 (rs3814896, rs13052596, and rs225334), and TFF3 (rs225362) was performed by using the Applied Biosystems TaqMan SNP Genotyping Assay with the StepOnePlus Real-time PCR System (Applied Biosystems).

Statistical analysis
Chi-square tests were used to estimate the Hardy-Weinberg equilibrium (HWE) of each SNP and to detect age and gender in the GC and control groups. The association between the GC and control groups was analyzed by chi-square test. We used binary logistic regression to estimate the GC risk by odds ratios (OR) and 95% confidence intervals (CI). All statistical analyses were performed by using the SPSS (SPSS Inc., Chicago, IL, USA), version 20.0 for windows. \(P < 0.05 \) was considered statistically significant.

Ethics statement
All individuals enrolled in this study provided their written informed consent for blood collection and use. The study protocol was approved by the institutional review board of the Chungnam National University Hospital (IRB No. 2013-08-008).

RESULTS

The characteristics of the 377 GC cases and 396 controls are shown in Table 1. No significant difference was noted between GC cases and controls in the distribution of age (\(P = 0.063 \)), whereas the distribution of gender of GC case differed from that of controls (\(P < 0.001 \)). Of the 377 GC cases, 194 (51.5%) were classified as intestinal type, 138 (36.6%) as diffuse-type, 39 (10.3%) as mixed-type, and 6 (1.6%) were unclassified. GC cases differed from that of controls (\(P < 0.001 \)). Of the 377 GC cases, 194 (51.5%) were classified as intestinal type, 138 (36.6%) as diffuse-type, 39 (10.3%) as mixed-type, and 6 (1.6%) were unclassified. GC cases comprised of 264 (30.0%) negative cases and 113 (70%) positive cases for lymph node metastasis.

We conducted sequencing to detect SNPs with a minor allele frequency greater than 5% in 24 GC patients and 24 healthy controls (35). We identified 4 SNPs in TFF1 (rs184432, rs35448902, and rs225359 in the promoter region and rs2156310 in the 5′ UTR), 3 SNPs in TFF2 (rs3814896 and rs13052596 in the promoter region and rs225334 in the 3′ UTR), and 1 SNP in TFF3 (rs225362 in the promoter region) through gene sequencing. The genotype frequencies of 8 SNPs (rs184432, rs35448902, rs225359, rs2156310, rs3814896, rs13052596, rs225334, and rs225362) were in the HWE in both GC cases and controls (\(P > 0.05 \); data not shown).

To determine whether TFF1, TFF2, and TFF3 variations were associated with the risk of GC or GC subgroups, we analyzed the
genotypes and allele frequencies of TFFSNPs. The genotype and allele frequencies of rs184432 in TFF1 were significantly associated with a decreased GC risk (OR = 0.45, 95% CI = 0.25-0.82, \(P = 0.009 \) and OR = 0.75, 95% CI = 0.59-0.94, \(P = 0.012 \), respectively), whereas the remaining SNPs showed no association (Table 2, Supplementary Table 1).

Furthermore, stratification analyses were performed to evaluate the possible correlation of genetic variations of TFF1, TFF2, and TFF3 with the risk of GC or GC subgroups according to the age. Stratified analysis revealed that the genotype and allele frequencies of TFF1 rs184432 were significantly associated with a decreased risk of GC among subjects aged < 60 yr (OR = 0.34, 95% CI = 0.14-0.82, \(P = 0.017 \) and OR = 0.69, 95% CI = 0.49-0.96, \(P = 0.028 \), respectively), but not in subjects aged \(\geq 60 \) yr. In addition, we found that the genotype and allele frequencies of TFF1 rs184432 were related to a reduced risk of the development of diffuse-type GC in subjects aged < 60 yr (OR = 0.20, 95% CI = 0.05-0.89, \(P = 0.035 \) and OR = 0.60, 95% CI = 0.38-0.95, \(P = 0.028 \), respectively), but not in subjects aged \(\geq 60 \) yr (Table 3). We observed the lack of association between TFF2 (rs3814896, rs13052596, and rs225334) and TFF3 (rs225362) SNPs, GC risk, and age (data not shown).

In the present study, we investigated whether TFF SNPs were related to lymph node metastasis of GC or GC subgroups. The frequencies of CT and TT genotypes and T allele were associated with a decreased risk of GC, indicating negative lymph node metastasis (OR = 0.77, 95% CI = 0.59-0.99, \(P = 0.041 \), respectively) (Table 4). To estimate the relevance of TFF variations and lymph node metastasis in intestinal and diffuse-type GC, we conducted a logistic regression analysis. The TFF1 rs184432 TT genotype and T allele were related to a decreased risk of diffuse-type GC, indicating negative lymph node metastasis (OR = 0.20, 95% CI = 0.05-0.87, \(P = 0.031 \) and OR = 0.58, 95% CI = 0.38-0.87, \(P = 0.01 \), respectively). Further analyses revealed a significant association of TFF1 rs225359 TT genotype and T allele with a decreased risk of diffuse-type GC, indicating negative lymph node metastasis (OR = 0.21, 95% CI = 0.05-0.88, \(P = 0.033 \) and OR = 0.64, 95% CI = 0.43-0.96, \(P = 0.030 \), respectively) (Table 5). No association was observed between TFF2 (rs3814896, rs13052596, and rs225334) and TFF3 (rs225362) SNPs and lymph node metastasis of GC and GC subgroups (data not shown).

DISCUSSION

Until date, it has been implicated that alteration of TFF expression affects the development of several types of cancers. Recently, the association between polymorphisms of TFF and the development of GC was reported in Iranian and Chinese populations, but not in a Korean population (32,33). In the present study, we focused on TFF polymorphisms. The aim of this study

Table 1. Characteristics of gastric cancer patients and controls enrolled in the genetic analyses

Variables	Case N (%)	Control N (%)	\(P \) value*
All subjects	377 (100)	396 (100)	
Age (yr) (mean ± SD)	60.1 ± 11.8	58.7 ± 9.0	0.063
< 60	169 (44.8)	204 (51.5)	
\(\geq 60 \)	208 (55.2)	192 (48.5)	
Gender			
Male	267 (70.8)	132 (33.3)	< 0.001
Female	110 (29.2)	264 (66.7)	
Histological type			
Intestinal	194 (51.5)		
Diffuse	138 (36.6)		
Mixed	39 (10.3)		
Unclassified	6 (1.6)		
Lymph node metastasis			
Negative	264 (70.0)		
Positive	113 (30.0)		

*Two-sided chi-square test.

Table 2. Genotype and allele frequencies of TFF1 polymorphisms among gastric cancer patients and controls and their association with gastric cancer risk

SNPs	Genotype	Controls	GC vs. CON	\(OR \) (95% CI)	\(P \) value*	
TFF1	rs184432	CC	206 (52.0)	221 (58.6)	1.00 (ref.)	
		CT	153 (38.6)	138 (36.6)	0.84 (0.62-1.13)	0.254
		TT	37 (9.3)	18 (4.8)	0.45 (0.25-0.82)	0.009
	Allele	C	565 (71.3)	580 (79.6)	1.00 (ref.)	
		T	227 (28.7)	174 (23.1)	0.75 (0.59-0.94)	0.012
TFF1	rs35448902	GG	240 (60.6)	228 (60.5)	1.00 (ref.)	
		GA	128 (32.3)	125 (33.2)	1.03 (0.76-1.40)	0.860
		AA	28 (7.1)	26 (6.4)	0.90 (0.51-1.60)	0.726
	Allele	A	608 (76.8)	581 (77.1)	1.00 (ref.)	
		T	184 (23.2)	173 (22.9)	0.98 (0.78-1.25)	0.893
TFF1	rs225359	CC	212 (53.5)	209 (55.4)	1.00 (ref.)	
		CT	145 (36.6)	145 (38.5)	1.01 (0.75-1.37)	0.926
		TT	39 (9.9)	23 (6.1)	0.60 (0.35-1.04)	0.067
	Allele	C	569 (71.8)	563 (74.7)	1.00 (ref.)	
		T	223 (28.2)	191 (25.3)	0.87 (0.69-1.09)	0.210

SNPs, single nucleotide polymorphism; GC, gastric cancer; CON, controls; OR, odds ratio; CI, confidence interval.
was to investigate whether polymorphisms in TFF were associated with the risk of GC or GC subgroups in the Korean population. We scanned a Korean-specific polymorphism by sequencing the functional region of TFF that directly affect the gene expression, such as an exon, an exon boundary, and a promoter region. However, we did not detect any Korean-specific novel SNP. We finally selected 8 SNPs, 6 SNPs in the promoter region, 1 SNP in 5’UTR, and 1 SNP in 3’UTR after eliminating the SNP in tight LD (|D’| = 1 or r^2 = 1) for genotyping. The proportion of men in the test cases was higher than that in the control cases, whereas the trend in women was reverse (Table 1). To evaluate whether the difference of the proportion of gender is associated with GC risk, we attempted stratified analysis by gender, but any association between TFF SNPs, GC risk, and gender was not observed (data not shown). This result represented that the correlation between TFF SNPs and GC risk is not affected by gender. In our study, TT genotype and T allele of rs184432 in the promoter region of TFF1 was significantly associated with a reduced

SNPs	Genotype	Controls	GC vs. CON	Diffuse-type GC vs. CON		
		N (%)	N (%)	OR (95% CI) P value	N (%)	OR (95% CI) P value
TFF-1						
rs184432	CC	109 (53.4)	103 (50.8)	1.00 (ref.) 49 (63.6)	1.00 (ref.)	
Age	CT	73 (35.8)	59 (29.4)	0.86 (0.55-1.32) 0.482	26 (33.8)	0.79 (0.45-1.39) 0.415
rs225359	AA	13 (6.4)	12 (7.1)	1.18 (0.52-2.71) 0.694	6 (7.8)	1.25 (0.45-3.49) 0.672
Allele	C	98 (48.4)	88 (46.0)	1.51 (0.80-2.71) 0.326	99 (54.8)	1.76 (0.92-3.37) 0.105
≥ 60	GA	121 (63.0)	135 (68.4)	1.00 (ref.) 39 (25.3)	1.07 (0.70-1.65) 0.474	
Allele	AA	56 (29.2)	61 (32.3)	0.98 (0.63-1.51) 0.915	16 (26.2)	0.84 (0.44-1.63) 0.612
	T	274 (71.4)	315 (75.7)	1.00 (ref.) 85 (69.7)	1.00 (ref.)	
TFF-1						
rs225359	GG	119 (58.9)	93 (55.0)	1.00 (ref.) 44 (67.1)	1.00 (ref.)	
Age	GA	72 (35.3)	64 (37.9)	1.14 (0.74-1.75) 0.560	27 (35.1)	1.01 (0.58-1.78) 0.961
rs2156310	AA	13 (6.4)	12 (7.1)	1.18 (0.52-2.71) 0.694	6 (7.8)	1.25 (0.45-3.49) 0.672
Allele	G	310 (76.0)	250 (74.0)	1.00 (ref.) 115 (74.7)	1.00 (ref.)	
≥ 60	A	98 (48.4)	88 (46.0)	1.51 (0.80-2.71) 0.326	99 (54.8)	1.76 (0.92-3.37) 0.105
Allele	GG	121 (63.0)	135 (68.4)	1.00 (ref.) 39 (25.3)	1.07 (0.70-1.65) 0.474	
	AA	56 (29.2)	61 (32.3)	0.98 (0.63-1.51) 0.915	16 (26.2)	0.84 (0.44-1.63) 0.612
	T	274 (71.4)	315 (75.7)	1.00 (ref.) 85 (69.7)	1.00 (ref.)	
TFF-1						
rs2156310	CC	110 (53.9)	94 (55.6)	1.00 (ref.) 44 (67.1)	1.00 (ref.)	
Age	CT	73 (35.8)	65 (38.5)	1.04 (0.68-1.61) 0.852	30 (39.0)	1.03 (0.59-1.78) 0.923
rs2156310	TT	21 (10.3)	10 (5.9)	0.56 (0.25-1.24) 0.153	3 (3.9)	0.36 (0.10-1.26) 0.019
Allele	C	293 (71.8)	253 (74.9)	1.00 (ref.) 118 (76.6)	1.00 (ref.)	
≥ 60	CT	72 (37.5)	80 (38.5)	0.99 (0.65-1.54) 0.945	23 (37.7)	1.02 (0.55-1.88) 0.954
Allele	TT	18 (8.4)	13 (6.3)	0.64 (0.30-1.37) 0.252	6 (9.8)	1.06 (0.39-2.91) 0.906
	C	276 (71.9)	310 (74.5)	1.00 (ref.) 87 (71.3)	1.00 (ref.)	
	T	108 (28.1)	106 (25.5)	0.87 (0.64-1.20) 0.399	35 (28.7)	1.03 (0.66-1.61) 0.904

SNPs, single nucleotide polymorphism; GC, gastric cancer; CON, controls; OR, odds ratio; CI, confidence interval.
Table 4. Association of genetic polymorphisms in TFF1 with lymph node metastasis of gastric cancer

SNPs	Genotype	Controls	GC (negative) vs. CON	GC (positive) vs. CON	OR (95% CI)	P value	
		N (%)	N (%)	OR (95% CI)	N (%)	OR (95% CI)	P value
TFF1	rs184432	CC	206 (52.0)	64 (21.8)	74 (18.7)	1.00 (ref.)	0.230
		CT	153 (38.6)	87 (33.0)	51 (45.2)	1.00 (ref.)	1.00 (ref.)
		TT	37 (9.3)	13 (4.9)	5 (4.4)	1.00 (ref.)	0.49 (0.18-1.30)
Allele		C	565 (71.3)	415 (78.6)	169 (73.0)	1.00 (ref.)	0.151
		T	227 (28.7)	113 (21.4)	61 (27.0)	1.00 (ref.)	0.92 (0.66-1.28)
	rs35448902	GG	240 (60.6)	155 (58.7)	73 (64.6)	1.00 (ref.)	0.030
		GA	128 (32.3)	94 (34.6)	31 (27.4)	1.00 (ref.)	0.80 (0.30-1.28)
Allele		AA	28 (7.1)	15 (5.7)	9 (8.0)	1.00 (ref.)	0.14 (0.08-2.34)
		G	608 (76.8)	404 (76.5)	177 (78.3)	1.00 (ref.)	0.031
		A	184 (23.2)	124 (23.5)	49 (21.7)	1.00 (ref.)	0.92 (0.64-1.31)
	rs225359	CC	212 (53.5)	155 (58.7)	54 (47.8)	1.00 (ref.)	0.030
		CT	145 (36.6)	96 (34.6)	49 (43.4)	1.00 (ref.)	1.33 (0.35-0.60)
Allele		TT	39 (9.8)	13 (4.9)	10 (8.8)	1.00 (ref.)	1.01 (0.47-2.14)
		C	569 (71.8)	406 (76.9)	157 (69.5)	1.00 (ref.)	0.031
		T	223 (28.2)	122 (23.1)	69 (30.5)	1.00 (ref.)	1.12 (0.81-1.55)
	rs2156310	CC	130 (32.8)	82 (34.6)	44 (38.9)	1.00 (ref.)	0.030
		CT	192 (48.5)	127 (48.1)	52 (46.1)	1.00 (ref.)	0.80 (0.51-1.27)
Allele		TT	74 (18.7)	51 (19.3)	17 (15.0)	1.00 (ref.)	0.86 (0.35-1.27)
		C	527 (57.1)	299 (56.6)	140 (61.9)	1.00 (ref.)	0.031
		T	340 (42.9)	229 (43.4)	86 (38.1)	1.00 (ref.)	0.82 (0.60-1.11)

SNPs: single nucleotide polymorphism; GC, gastric cancer; CON, controls; OR, odds ratio; CI, confidence interval.

Table 5. Association of genetic polymorphisms in TFF1 with lymph node metastasis of diffuse-type gastric cancer

SNPs	Genotype	Controls	Diffuse-type GC (negative) vs. CON	Diffuse-type GC (positive) vs. CON	OR (95% CI)	P value	
		N (%)	N (%)	OR (95% CI)	N (%)	OR (95% CI)	P value
TFF1	rs184432	CC	206 (52.0)	55 (64.7)	74 (18.7)	1.00 (ref.)	25 (47.2)
		CT	153 (38.6)	28 (32.9)	51 (45.2)	1.00 (ref.)	24 (45.3)
Allele		TT	37 (9.3)	2 (2.4)	5 (4.4)	1.00 (ref.)	4 (7.5)
		C	565 (71.3)	138 (81.2)	74 (69.8)	1.00 (ref.)	44 (38.9)
		T	227 (28.7)	32 (18.8)	32 (30.2)	1.00 (ref.)	32 (30.2)
	rs35448902	GG	240 (56.6)	50 (58.8)	35 (66.0)	1.00 (ref.)	35 (66.0)
		GA	128 (32.3)	28 (32.9)	14 (26.5)	1.00 (ref.)	14 (26.5)
Allele		AA	28 (7.1)	6 (7.1)	4 (7.5)	1.00 (ref.)	4 (7.5)
		G	608 (76.8)	129 (75.9)	84 (79.2)	1.00 (ref.)	84 (79.2)
		A	184 (23.2)	41 (24.1)	22 (20.8)	1.00 (ref.)	22 (20.8)
	rs225359	CC	212 (53.5)	53 (62.4)	23 (43.4)	1.00 (ref.)	23 (43.4)
		CT	145 (36.6)	30 (35.2)	23 (43.4)	1.00 (ref.)	23 (43.4)
Allele		TT	39 (9.8)	2 (2.4)	7 (13.2)	1.00 (ref.)	7 (13.2)
		C	569 (71.8)	136 (80.0)	69 (65.1)	1.00 (ref.)	69 (65.1)
		T	223 (28.2)	34 (20.0)	37 (34.9)	1.00 (ref.)	37 (34.9)
	rs2156310	CC	130 (32.8)	28 (32.9)	20 (37.7)	1.00 (ref.)	20 (37.7)
		CT	192 (48.5)	40 (47.1)	27 (51.0)	1.00 (ref.)	27 (51.0)
Allele		TT	74 (18.7)	17 (20.0)	6 (11.3)	1.00 (ref.)	6 (11.3)
		C	452 (57.1)	96 (56.5)	67 (53.2)	1.00 (ref.)	67 (53.2)
		T	184 (23.2)	41 (24.1)	39 (36.8)	1.00 (ref.)	39 (36.8)

SNPs: single nucleotide polymorphisms; GC, gastric cancer; CON, controls; OR, odds ratio; CI, confidence interval.
risk of GC. In addition, in our age-stratified analysis, TT genotype and T allele of rs184432 were associated with a decreased risk of GC and diffuse-type GC in subjects aged < 60 yr. This stratified analysis elucidated that rs184432 SNP is more protective against diffuse-type GC than GC in subjects aged < 60 yr. Furthermore, our stratified study on lymph node metastasis revealed that CT or TT genotypes, and T allele of rs184432 SNP were associated with a reduced risk of lymph node metastasis-negative GC and negative diffuse-type GC. The TT genotype and T allele of rs225359 promoter SNP were associated with a decreased risk of lymph node metastasis-negative GC and negative diffuse-type GC. We demonstrated that the genetic variation at rs184432 and rs225359 may have a protective effect only on lymph node metastasis-negative GC and negative diffuse-type GC. More recently, a study reported that rs3814896 SNP of TFF2 and rs9981660 SNP of TFF3 selected from a meta-analysis of the Chinese Han Beijing ethnic group were associated with a decreased risk of GC in a Chinese population (33). Nevertheless, although a positive association of TFF2 and TFF3 has been reported in the Chinese population, we did not detect any association between TFF2 and TFF3 polymorphisms and the risk of GC in the studied Korean population (Supplementary Table 1). In our haplotype analysis of 8 SNPs of the TFF family, no statistical association between haplotypes and the risk of cancer was found (P > 0.05) (data not shown).

Our study has some limitations. First, the sample size was inadequate for stratified analysis and for analyzing the association in mixed-type GC patients. Second, although Helicobacter pylori is an independent risk factor (36, 37), we did not investigate the relevance of TFF polymorphism for H. pylori in GC owing to some ethical considerations. Third, we did not investigate whether genetic factors influence smoking, drinking, and diet associated with GC risk due to the lack of data from the GC and control groups. In our future study, the effect of these factors on GC risk will need to be assessed.

In conclusion, our data suggest that single nucleotide change of the rs184432 and rs225359 promoter SNPs of TFF1 might be associated with the susceptibility of diffuse-type GC in the Korean population. However, further functional studies are necessary to clarify the effect of rs184432 and rs225359 polymorphisms on TFF1 gene expression and research in other ethnic groups with larger sample size is recommended to confirm our findings.

DISCLOSURE

The authors have no conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Designed the experiment: Jin EH, Lee SI, Hur GM, Hong JH. Performed the experiments and analyzed the data: Jin EH, Lee SI. Contributed reagents/materials/analysis tools: Kim JW, Seo EY, Lee SY, Shin S. Wrote the manuscript and final decision to submit for publication: Jin EH, Lee SI, Hong JH. All authors read and approved the final manuscript.

ORCID

Jang Hee Hong http://orcid.org/0000-0002-0623-5455

REFERENCES

1. Bertuccio P, Chatenoud L, Levi F, Praud D, Ferlay J, Negri E, Malvezzi M, La Vecchia C. Recent patterns in gastric cancer: a global overview. Int J Cancer 2009; 125: 666-73.
2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
3. Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH, Lee JS. Prediction of cancer incidence and mortality in Korea, 2014. Cancer Res Treat 2014; 46: 124-30.
4. Nakatsuru S, Yanagisawa S, Furukawa Y, Ichii S, Kato Y, Nakamura Y, Horii A. Somatic mutations of the APC gene in precancerous lesion of the stomach. Hum Mol Genet 1993; 2: 1463-5.
5. Fang DC, Luo YH, Yang SM, Li KA, Ling XL, Fang L. Mutation analysis of APC gene in gastric cancer with microsatellite instability. World J Gastroenterol 2002; 8: 787-91.
6. Mingchao., Devereux TR, Stockton P, Sun K, Sills RC, Clayton N, Porter M, Flake G. Loss of E-cadherin expression in gastric intestinal metaplasia and later stage p53 altered expression in gastric carcinogenesis. Exp Toxicol Pathol 2001; 53: 237-46.
7. Morgan C, Jenkins GI, Ashton T, Griffiths AP, Baxter JN, Parry EM, Parry JM. Detection of p53 mutations in precancerous gastric tissue. Br J Cancer 2003; 89: 1314-9.
8. Yokozaki H, Shitara Y, Fujimoto I, Hiyama T, Yasui W, Tahara E. Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int J Cancer 1999; 83: 192-6.
9. Tomkova K, Belkhirri A, El-Rifai W, Zaika AL. p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells. Cancer Res 2004; 64: 6390-3.
10. Sato K, Tamura G, Tsuchiya T, Endoh Y, Usuba O, Kimura M, Motoyama T. Frequent loss of expression without sequence mutations of the DCC gene in primary gastric cancer. Br J Cancer 2001; 85: 199-203.
11. Baffa R, Veronese ML, Santoro B, Mandes B, Palazzo JP, Rugga M, Santoro E, Croce CM, Huebner K. Loss of FHIT expression in gastric carcinoma. Cancer Res 1998; 58: 4708-14.
12. Noguchi T, Malignant progression of p53. Loss of FHIT expression in gastrointestinal cancers. Cancer Res 2009; 125: 666-73.
13. Horii A. FHIT gene in gastric cancer: association with tumour progression and prognosis. J Pathol 1999; 188: 378-81.
14. Lee SH, Kim WH, Kim HK, Woe KM, Nam HS, Kim HS, Kim JG, Cho MH. Altered expression of the fragile histidine triad gene in primary gastric adenocarcinomas. Biochem Biophys Res Commun 2001; 284: 850-5.
15. Thim L. A new family of growth factor-like peptides. ‘Trefoil’ disulphide
loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmytic polypeptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett 1989; 250: 85-90.

16. Rio MC, Chenard MP, Wolf C, Marcellin L, Tomasetto C, Lathe R, Bellocq JP, Chambon P. Induction of pS2 and hSP genes as markers of mucosal ulceration of the digestive tract. Gastroenterology 1991; 100: 375-9.

17. Hanby AM, Poulsom R, Singh S, Elia G, Jeffery RE, Wright NA. Spasmolytic polypeptide is a major antral peptide: distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. Gastroenterology 1993; 105: 1110-6.

18. Theisinger B, Welter C, Grzeschik KH, Blin N. Assignment of the gene for human spasmolytic protein (hSP/SML1) to chromosome 21. Hum Genet 1992; 89: 681-2.

19. Tomasetto C, Rockel N, Mattei MG, Fujita R, Rio MC. The gene encoding the human spasmolytic protein (SML1/hSP) is in 21q 22.3, physically linked to the homologous breast cancer marker gene BCEI/pS2. Genomics 1992; 13: 1328-30.

20. Taupin D, Ooi K, Yeomans N, Giraud A. Conserved expression of intestinal trefoil factor in the human colonic adenoma-carcinoma sequence. Lab Invest 1996; 75: 25-32.

21. Huang YG, Li YF, Pan BL, Wang LP, Zhang Y, Lee WH, Zhang Y. Trefoil factor 1 gene alternations and expression in colorectal carcinomas. Tumori 2013; 99: 702-7.

22. Speiser P, Stolzlechner J, Haider K, Heinzl H, Jakesz R, Pecherstorfer M, Rosen H, Sevelda P, Zeilliger R. pS2 protein status fails to be an independent prognostic factor in an average breast cancer population. Anticancer Res 1994; 14: 2125-30.

23. May FE, Westley BR. Expression of human intestinal trefoil factor in malignant cells and its regulation by oestrogen in breast cancer cells. J Pathol 1997; 182: 404-13.

24. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML, Trent JM, Isaacs WB. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 2001; 61: 4683-8.

25. Vestergaard EM, Borre M, Poulsen SS, Nexø E, Terring N. Plasma levels of trefoil factors are increased in patients with advanced prostate cancer. Clin Cancer Res 2006; 12: 807-12.

26. Qu Y, Yang Y, Ma D, Xiao W. Increased trefoil factor 3 levels in the serum of patients with three major histological subtypes of lung cancer. Oncol Rep 2012; 27: 1277-83.

27. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 1996; 274: 259-62.

28. Wu MS, Shun CT, Wang HP, Lee WJ, Wang TH, Lin JT. Loss of pS2 protein expression is an early event of intestinal-type gastric cancer. Jpn J Cancer Res 1998; 89: 278-82.

29. Kim H, Eun JW, Lee H, Nam SW, Rhee H, Koh KH, Kim H. Gene expression changes in patient-matched gastric normal mucosa, adenomas, and carcinomas. Exp Mol Pathol 2011; 90: 201-9.

30. Leung WK, Yu J, Chan FK, To KF, Chan MW, Ebert MP, Ng EK, Chung SC, Malfertheiner P, Sung JJ. Expression of trefoil peptides (TFF1, TFF2, and TFF3) in gastric carcinomas, intestinal metaplasia, and non-neoplastic gastric tissues. J Pathol 2002; 197: 582-8.

31. Im S, Yoo C, Jung JH, Choi HJ, Yoo J, Kang CS. Reduced expression of TFF1 and increased expression of TFF3 in gastric cancer: correlation with clinicopathological parameters and prognosis. Int J Med Sci 2013; 10: 133-40.

32. Moghanibashi M, Mohamadynejad P, Basekhi M, Ghaderi A, Mohamadianpanah M. Polymorphism of estrogen response element in TFF1 gene promoter is associated with an increased susceptibility to gastric cancer. Gene 2012; 492: 100-3.

33. Xue Q, Chen MY, He CY, Sun LP, Yuan Y. Promoter polymorphisms in trefoil factor 2 and trefoil factor 3 genes and susceptibility to gastric cancer and atrophic gastritis among Chinese population. Gene 2013; 529: 104-12.

34. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965; 64: 31–49.

35. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27: 234-6.

36. Solcia E, Fiocca R, Luinetti O, Villani L, Padovan L, Calisti D, Ranzani GN, Chiaravalli A, Capella C. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. Am J Surg Pathol 1996; 20: 58-22.

37. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118: 3030-44.
Supplementary Table 1. Genotype and allele frequencies of *TFF2* and *TFF3* polymorphisms among gastric cancer patients and controls and their association with gastric cancer risk.

SNPs	Genotype	Controls	GC vs. CON	P value	
	N (%)	N (%)	OR (95% CI)		
TFF2					
rs3814896	TT	288 (72.7)	283 (75.1)	1.00 (ref.)	
	TC	94 (23.8)	84 (22.2)	0.91 (0.65-1.27)	0.581
	CC	14 (3.5)	10 (2.7)	0.73 (0.32-1.66)	0.450
Allele	T	670 (84.6)	650 (86.2)	1.00 (ref.)	
	C	122 (15.4)	104 (13.8)	0.88 (0.66-1.17)	0.370
rs13052596	GG	183 (46.2)	190 (50.4)	1.00 (ref.)	
	GT	166 (41.9)	145 (38.5)	0.84 (0.62-1.14)	0.261
	TT	47 (11.9)	42 (11.1)	0.86 (0.54-1.37)	0.525
Allele	G	532 (67.2)	525 (69.6)	1.00 (ref.)	
	T	260 (32.8)	229 (30.4)	0.89 (0.72-1.11)	0.300
rs225334	CC	208 (52.5)	215 (57.0)	1.00 (ref.)	
	CT	153 (38.7)	142 (37.7)	0.90 (0.67-1.21)	0.478
	TT	35 (8.8)	20 (5.3)	0.55 (0.31-0.90)	0.046
Allele	C	569 (71.8)	572 (75.9)	1.00 (ref.)	
	T	223 (28.2)	182 (24.1)	0.81 (0.65-1.02)	0.073
TFF3					
rs225362	TT	376 (94.9)	363 (96.3)	1.00 (ref.)	
	TC	20 (5.1)	14 (3.7)	0.73 (0.36-1.46)	0.367
	CC	0 (0)	0 (0)	-	-
Allele	T	772 (97.5)	740 (98.1)	1.00 (ref.)	
	C	20 (2.5)	14 (1.9)	0.73 (0.37-1.46)	0.372

SNPs, single nucleotide polymorphisms; GC, gastric cancer; CON, controls; OR, odds ratio; CI, confidence interval.