Correlation of Clinicopathological Features and IL6 Expression in Tumor Budding of Colorectal Adenocarcinoma

Takeshi Uehara (✉ tuehara@shinshu-u.ac.jp)
Shinshu University School of Medicine https://orcid.org/0000-0002-7694-9015

Koichi Sato
National Hospital Organization Shinshu Ueda Medical Center: Kokuritsu Byoin Kiko Shinshu Ueda Iryo Center

Mai Iwaya
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Tomoyuki Nakajima
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Yosuke Tobe
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Tadanobu Nagaya
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Yusuke Miyagawa
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Hiroyoshi Ota
Shinshu Daigaku - Matsumoto Campus: Shinshu Daigaku

Research article

Keywords: interleukin-6, cancer-associated fibroblast, tumor budding, RNA in situ hybridization, colorectal adenocarcinoma

DOI: https://doi.org/10.21203/rs.3.rs-496406/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Interleukin-6 (IL6) is one of the main cytokines produced by cancer-associated fibroblasts (CAFs). IL6 is linked with cancer progression and poor prognosis by activating cancer cells and modifying the cancer microenvironment. However, little is known about the expression of IL6 in tumor budding (TB) and its association with TB in colorectal adenocarcinoma.

Methods: The clinicopathological and prognostic significance of IL6 in TB was examined using a tissue microarray consisting of 36 patient samples of TB in CA. IL6 mRNA was detected by RNAscope kit. Patients were stratified into negative and positive IL6 expression groups.

Results: IL6 expression was overwhelmingly observed in CAFs but was negligible in cancer cells. In the IL6-positive group in CAFs, TB grade was higher than in the IL6-negative group ($P=0.0161$). There was a significant difference in overall survival (OS) between CA cases in the IL6-positive group and the IL6-negative group (log rank test, $P=0.0367$). Cox proportional hazard regression model revealed that the IL6-negative group (OR = 0.25; 95% CI: 0.05–0.96; $P=0.0440$) had better OS for CA than the IL6-positive group.

Conclusions: TB may be affected by IL6 expression, and IL6 expression in CAFs at TB may make IL6 an important prognostic marker.

Background

Colorectal adenocarcinoma (CA) has increasing morbidity and mortality worldwide and is a global health problem [1]. Despite the high prevalence of colorectal cancer, the pathological mechanisms remain largely unknown [2]. However, many prognostic factors for colorectal cancer have been studied. In particular, the tumor budding (TB) region is a unique site and is known to be deeply involved in metastasis and invasion [3]. It has been demonstrated that TB is involved in EMT, which is known to be affected by the surrounding microenvironment of cancer [4, 5]. Cancer-associated fibroblasts (CAFs) have an important role in the cancer microenvironment, and interleukin-6 (IL6) produced by CAFs is involved in various processes [6]. We focused on the microenvironment in TB. IL6 is an important cytokine but has not been studied in TB. We investigated the clinicopathological characteristics of IL6 expression using RNAscope, a recently developed ISH technique with high sensitivity.

Methods

Patients and Materials

This study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of Shinshu University School of Medicine (approval no. 4088). Among 115 CA cases surgically resected at Shinshu University Hospital, Matsumoto, Japan between 2010 and 2012, stage I–III cases with TB were selected. Clinicopathological data were obtained from medical records. Materials used for evaluation were archived formalin-fixed paraffin-embedded tissues. According to the report of
Lugli et al., TB was classified into Bd1 (0–4 buds), Bd2 (5–9 buds), and Bd3 (≥ 10 buds) [3]. Furthermore, Bd1 and Bd2 were defined as low-grade TB and Bd3 was defined as high-grade TB. In the budding area, the score of inflammatory cell infiltration (tumor-infiltrating lymphocytes, TILs) was measured. According to the report of Ropponen et al., the TIL scores were: none, 0; mild, 1; moderate, 2; and marked, 3[7]. TIL scores were classified into low-grade scores 0 and 1 and high-grade scores 2 and 3.

TMA construction

A tissue microarray (TMA) was prepared from paraffin blocks containing sufficient tumor. The TMA was 3 mm in diameter and contained a fully analyzable TB region. The TB region was defined as an area with a single cell or a detached group of tumor cells consisting of five cells or fewer, and was selected based on the morphology of the hematoxylin and eosin-stained slide [8]. The generation of the TMA was in accordance with our previous report [9].

IL6 RNA in situ hybridization

IL6 mRNA was detected using an RNAscope kit (Advanced Cell Diagnostics, Hayward, CA, USA), as previously described [9]. Intracellular brown dots indicated positive staining. *IL6* expression was measured according to a 5-grade scoring system recommended by the manufacturer's protocol. The 5-grade scoring system was determined under a 20× objective lens as follows: no staining, 0; 1–3 dots/cell, 1+; 4–10 dots/cell, 2+; 10–15 dots/cell, 3+; and > 15 dots/cell, defined as 4+. *IL6* mRNA expression was defined as negative expression in grade 0, 1+, and 2+, and positive expression in grade 3+ and 4+.

Statistical analysis

Pearson’s chi-squared test, log-rank test, and Cox proportional hazard regression analysis were analyzed by JMP Statistics software version 13 (JMP, Tokyo, Japan). A *P*-value less than 0.05 was considered significant.

Results

IL6 expression in cancer stroma

In the TB region, *IL6*-expressing cells were mainly identified in cancer stroma. These *IL6*-expressing cells were spindle-shaped and were considered as CAFs (Fig. 1A and 1C). In four cases, *IL6* expression could not be detected in the cancer stroma. Thirteen cases could be recognized as the *IL6*-high expression group. There was no tendency in the distribution of expressing cells in the stroma. However, there was almost no *IL6* expression in the cancer cells in the TB region. Cancer cells throughout the TMA core also had little *IL6* expression. Thirty cases were completely negative for *IL6* expression in cancer cells. *IL6* expression in the cancer cells was faint and had no characteristic distribution (Fig. 1B and 1D). No cases could be recognized as *IL6*-positive.

Association between IL6 expression and clinicopathological characteristics
As presented in Table 1, the clinicopathological characteristics of patients with CA are described in Table 1. In the IL6-positive group, TB grade was higher than in the IL6-negative group ($P = 0.0161$). There was no significant difference between the IL6-positive group and the IL6-negative group in terms of age, sex, vascular invasion, histological grade, TILs, or TNM stage.

Table 1

IL6 expression and clinicopathological characteristics in CA.

Factors	n	Positive (n = 13)	Negative (n = 23)	P-value
Age				0.9231
>70 years	17	6	11	
≤70 years	19	7	12	
Sex				0.8767
Male	16	6	10	
Female	20	7	13	
TILs				0.9685
High	22	8	14	
Low	14	5	9	
Histological grade				0.587
High	20	8	12	
Low	16	5	11	
Vascular invasion				0.7286
High	18	7	11	
Low	18	6	12	
Tumor budding grade				0.0161*
High	3	3	0	
Low	33	10	23	
TNM stage				0.587
I–II	20	8	12	
III	16	5	11	

Asterisk () indicates a significant difference between groups ($P < 0.05$).*
IL6 negativity predicts better prognosis of CA

To clarify the impact of *IL6* expression, Kaplan-Meier analysis with log-rank test was used to evaluate the association between *IL6* expression and OS in CA (Fig. 2). The *IL6*-negative group (median OS, 1980 (range, 1771–2531) days) had significantly better OS than the *IL6*-positive group (median OS, 1556 (range; 1212–2377.5) days) (log-rank test, *P* = 0.0367).

A Cox proportional hazard regression model revealed the relationship between clinicopathological factors and OS (Table 2). These results revealed that the *IL6*-negative group (OR = 0.25; 95% CI: 0.05–0.96; *P* = 0.0440) had better OS for CA than the *IL6*-positive group.

Table 2
Univariate analyses for prognostic factors of CA.

Factors	Univariate analysis	
	OR (95% CI)	*P*-value
Age: >70 years vs ≤ 70 years	2.82 (0.74–13.38)	0.1291
Sex: male vs female	3.36 (0.88–15.95)	0.0753
Histological grade: low vs high	0.33 (0.05–1.37)	0.135
TILs: low vs high	3.53 (0.93–16.77)	0.0638
Vascular invasion: absent vs present	0.822 (0.20–3.11)	0.7701
Tumor budding grade: low vs high	0.79 (0.14–14.58)	0.8253
TNM stage: I–II vs III	1.01 (0.27–4.08)	0.9883
IL6 expression: negative vs positive	0.25 (0.05–0.96)	0.044*

* Asterisk (*) indicates a significant difference between groups (*P* < 0.05).

Discussion

In the present study, we demonstrated that *IL6* expression in TB had significant effects on OS. Recently, it has been shown that CAFs, which account for the majority of the tumor stroma, have an important role in producing factors involved in invasion and metastasis. In CA, CAFs are known to be involved in prognostic factors such as invasion and metastasis [10] [11], and there are some reports of *IL6* expression in CAFs [12] [13]. Hugo et al. reported that cancer cells cause an inflammatory response in fibroblasts and promote *IL6* expression [14]. In our study, no association was found between *IL6* and inflammation expressed as TILs, possibly because of the method of evaluation and the number of cases. However, there are no reports of *IL6* expression in CAFs in CA. Nonetheless, there are reports of *IL6*
expression from CAFs in several other carcinomas [15] [16]. Qiao et al. reported that IL6 expression from CAFs is associated with poor prognosis in esophageal squamous cell carcinoma [16]. This is the first report on IL6 expression from CAFs in the TB region, and indicates that IL6 expression is a poor prognostic factor.

TB grade was previously reported to be associated with prognosis [17]. In our study, TB grade was not related to prognosis, possibly because of the small number of samples. The TB region strongly affects metastasis and invasion. Although the mechanism of TB involvement in prognosis is unclear, the involvement of EMT has been reported in recent years [5]. TB in CA has been shown to upregulate mesenchymal markers and known inducers of EMT, such as the transcription factors ZEB1 and ZEB2 [18]. However, another report revealed that TB shows downregulation of E-cadherin but does not share other regulatory changes common to EMT, suggesting that TB formation may occur by other mechanisms [19] [20]. Yamada et al. reported that ZEB1, an EMT protein, is highly expressed in stroma near TB [20]. Our study demonstrates that IL6 expression is correlated with TB grade. As mentioned above, its involvement of TB and EMT is speculated [20]. EMT and IL6 expression in the cancer stroma are known to be involved in miR-34A suppression [21]. This fact proves an indirect link between TB and IL6. However, IL6-affected TB may be directly involved in EMT IL6-affected TB may be directly involved in EMT.

There are several studies of IL6 in CA, but these mostly focused on IL6 expression in cancer cells [22] [23]. Although many reports indicate that IL6 expression in cancer cells is associated with poor prognosis [24] [25], one report demonstrated that IL6 expression at other sites confers a favorable prognosis [26]. Meanwhile, Nagasaki et al. reported that IL6 expression is higher in CAFs than in cancer cells when comparing cancer cells and CAFs isolated from human CA [12]. In our study, IL6 expression has been largely identified in the stroma corresponding to CAFs, and IL6 expression in cancer cells is negligible. Therefore, although IL6 produced by CAFs seems to have a strong effect on prognosis, further investigation is necessary. Many reports have examined IL6 expression by immunostaining [24] [25] [26], but there may be many nonspecific reactions. Thus, RNA in situ measurement may provide more accurate information.

There are several limitations of our study. An increased number of cases would enable more accurate information to be obtained. In addition, expression analysis of IL6 receptor in cancer cells in the TB area should be performed.

Taken together, inhibition of IL6 expression may be a potential therapeutic strategy for the treatment of cancers in which IL6 from CAFs may have important effects.

Conclusion

Our results reveal the relationship between IL6 expression of CAFs and TB in CA. A further study is warranted to confirm these findings.
Abbreviations
CA, colon adenocarcinoma; TB, tumor budding; IL6, interleukin-6; CAFs, cancer-associated fibroblasts; TIL, tumor-infiltrating lymphocyte; TMA, tissue microarray

Declarations

Ethics approval and consent to participate
The study protocol conformed to the Declaration of Helsinki and was approved by the ethic committee of the Ethics Committee of Shinshu University School of Medicine (Approval Code: 4088), with a waiver of the need for informed consent because of the retrospective study design.

Consent for publication
Not applicable.

Availability of data and materials
All data generated and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was partially supported by the Hokuto Foundation for Bioscience (grant awarded to T.U.). The funding body had no role in the study design, collection, analysis, or interpretation of data, or manuscript writing. The authors declare no conflicts of interest.

Authors’ contributions
TU participated in the design of the study, performed the pathological analysis, and drafted the manuscript. MI and HO helped with the pathological analysis. TU and TN performed statistical analysis. KS, TN, and YT conducted immunohistochemistry. TN and YM examined the clinical data of cases. HO critically revised the draft for important intellectual content. All authors have read and approved the manuscript.

Acknowledgements
We are grateful to Yukihoro Kobayashi, Masanobu Momose, Yasuyo Shimojo, Naoko Ogiwara, Akiko Inamura, Chitoshi Arai, Yasuhiro Kinugawa, Marina Nuno, Kanade Wakabayashi, Naoko Yamaoka, and
Tomoya Hachisu at Shinshu University Hospital for their excellent technical assistance. We thank H. Nikki March, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018.

2. Tariq K, Ghias K Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med. 2016;13:120-135.

3. Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson Het al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30:1299-1311.

4. Ueno H, Shinto E, Shimazaki H, Kajiwara Y, Sueyama T, Yamamoto Jet al. Histologic categorization of desmoplastic reaction: its relevance to the colorectal cancer microenvironment and prognosis. Annals of surgical oncology. 2015;22:1504-1512.

5. Zlobec I, Lugli A Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1:651-661.

6. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki Aet al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 2016;35:2634-2644.

7. Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol. 1997;182:318-324.

8. Lugli A, Karamitopoulou E, Zlobec I Tumour budding: a promising parameter in colorectal cancer. Br J Cancer. 2012;106:1713-1717.

9. Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H Distribution of Lgr5-positive cancer cells in intramucosal gastric signet-ring cell carcinoma. Pathol Int. 2016;66:518-523.

10. Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol. 2015;5:63.

11. Son GM, Kwon MS, Shin DH, Shin N, Ryu D, Kang CD Comparisons of cancer-associated fibroblasts in the intratumoral stroma and invasive front in colorectal cancer. Medicine (Baltimore). 2019;98:e15164.

12. Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 2014;110:469-478.

13. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CYet al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology. 2011;141:1046-1056.
14. Hugo HJ, Lebret S, Tomaskovic-Crook E, Ahmed N, Blick T, Newgreen DF et al. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenviron. 2012;5:83-93.

15. Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H et al. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest. 2019;99:777-792.

16. Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 2018;37:873-883.

17. Maffeis V, Nicole L, Cappelless R RAS, Cellular Plasticity, and Tumor Budding in Colorectal Cancer. Front Oncol. 2019;9:1255.

18. De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer. 2017;116:58-65.

19. De Craene B, Berx G Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97-110.

20. Yamada N, Sugai T, Eizuka M, Tsuchida K, Sugimoto R, Mue Y et al. Tumor budding at the invasive front of colorectal cancer may not be associated with the epithelial-mesenchymal transition. Hum Pathol. 2017;60:151-159.

21. Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853-1867.

22. Zeng J, Tang ZH, Liu S, Guo SS Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer. World J Gastroenterol. 2017;23:1780-1786.

23. Cui G, Yuan A, Sun Z, Zheng W, Pang Z IL-1beta/IL-6 network in the tumor microenvironment of human colorectal cancer. Pathol Res Pract. 2018;214:986-992.

24. Liang B, Li L, Miao R, Wang J, Chen Y, Li Z et al. Expression of Interleukin-6 and Integrin alphanubeta6 in Colon Cancer: Association with Clinical Outcomes and Prognostic Implications. Cancer Invest. 2019;37:174-184.

25. Chung YC, Chaen YL, Hsu CP Clinical significance of tissue expression of interleukin-6 in colorectal carcinoma. Anticancer Res. 2006;26:3905-3911.

26. Ahmad N, Ammar A, Storr SJ, Green AR, Rakha E, Ellis IO et al. IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients. Cancer Immunol Immunother. 2018;67:537-549.

Figures
Figure 1

Representative features of IL6 expression. Representative features of IL6 expression in CAFs (A and C). High levels of IL6 expression (arrow) were determined as IL6-positive. Representative features of IL6 expression in cancer cells at TB (B and D). Faint IL6 expression in cancer cells (arrow) was determined as IL6-negative. (A and B: HE; C and D: IL6 RNAscope)
Figure 2

Prognostic value of IL6 in CA by Kaplan-Meier analysis. There was a significant difference in OS between CA cases in the IL6-positive group (median OS, 1556 (range, 1212–2377.5) days) and the IL6-negative group (median OS, 1980 (range, 1771–2531) days) (log rank test, P=0.0367).