Assessing kinetic fractionation in brachiopod calcite using clumped isotopes

David Bajnai1, Jens Fiebig1, Adam Tomášových2, Sara Milner Garcia2, Claire Rollion-Bard3, Jacek Raddatz1, Niklas Löfler1,4, Cristina Primo-Ramos5 & Uwe Brand6

Brachiopod shells are the most widely used geological archive for the reconstruction of the temperature and the oxygen isotope composition of Phanerozoic seawater. However, it is not conclusive whether brachiopods precipitate their shells in thermodynamic equilibrium. In this study, we investigated the potential impact of kinetic controls on the isotope composition of modern brachiopods by measuring the oxygen and clumped isotope compositions of their shells. Our results show that clumped and oxygen isotope compositions depart from thermodynamic equilibrium due to growth rate-induced kinetic effects. These departures are in line with incomplete hydration and hydroxylation of dissolved CO2. These findings imply that the determination of taxon-specific growth rates alongside clumped and bulk oxygen isotope analyses is essential to ensure accurate estimates of past ocean temperatures and seawater oxygen isotope compositions from brachiopods.

Biomineralising marine organisms serve as important geochemical archives of past climate conditions. Brachiopods constitute one group of calcifying invertebrates that have great potential for palaeoenvironmental reconstructions due to their common occurrences in Phanerozoic sediments since the Cambrian1. Their high abundance in Palaeozoic sediments makes them particularly valuable for deep-time seawater temperature reconstructions based on shell oxygen isotope compositions2. Unlike many other biogenic archives fossil and modern brachiopods can be found from tropical to polar environments and from a great range of water depths1,3.

A limitation of the conventional oxygen isotope palaeothermometer method is that it requires an assumption for the oxygen isotope composition of the palaeo-seawater4. The common assumption that the seawater δ18OVSMOW values remained constantly between −1‰ and 0‰ during the Phanerozoic leads to relatively low apparent oxygen isotope fractionation between ancient seawater and brachiopod calcite, and hence to unrealistically high seawater temperature estimates2. Alternatively, it has been claimed that the progressive 18O depletion of brachiopod shells with age during the Phanerozoic reflects increasing post-depositional alteration or a secular decline in seawater δ18O values of about −6‰ compared to the modern ocean2. To investigate the underlying cause of presumably erroneous extremely warm Phanerozoic temperature estimates, independent constraints on past seawater temperatures and δ18O values are needed.

In contrast to oxygen isotope thermometry, the carbonate clumped isotope thermometer does not require an estimate for the oxygen isotope composition of the seawater, as it considers the fractionation of isotopes exclusively amongst carbonate isotopologues5. In thermodynamic equilibrium, the clumped isotope composition (Δcl) of a given carbonate is solely a function of the carbonate precipitation temperature. Fossil brachiopod shells have been analysed both for their oxygen and clumped isotope composition to independently constrain ocean temperatures and seawater δ18O2–8. However, previous investigations into the temperature dependence of the clumped isotope composition of modern brachiopod shells have reported inconsistent results. Came et al.9 reported a significantly steeper Δcl–temperature slope compared to the theoretical calibration10 and to the
empirical calibration based on brachiopods and molluscs11. Came et al.9 exclusively investigated brachiopods, whereas the calibration of Henkes et al.11 was primarily based on molluscs. Differences in phosphoric acid digestion temperatures (90 °C vs. 25 °C) were suggested as a possible explanation for the discrepant Δ_{47}–temperature slopes8. However, it remains an open question whether kinetic fractionation processes may account for the observed discrepancies in the Δ_{47}–temperature slopes.

Kinetic isotope fractionations driven by diffusion, pH or incomplete oxygen isotope exchange between water and dissolved inorganic carbonate species can cause calcite to be precipitated with isotope values that are offset from those predicted for thermodynamic equilibrium12–14. Kinetic fractionation effects have been recognised in other important calcifying groups, including in warm and cold-water corals and in certain foraminiferan species12,14–16. It has been postulated that brachiopods incorporate oxygen isotopes into shell calcite (secondary and tertiary layers) in equilibrium with ambient seawater, although certain parts of the shell (i.e., primary layer, uppermost part of the secondary layer, umbo and muscle scar areas) yield depleted δ^{18}O values17–21. In these shell areas, the observed δ^{18}O-depletion has been linked to growth-rate-driven kinetic isotope fractionation18,22–26.

Here, we investigate the significance of kinetic controls (also called vital effects) on brachiopod shell Δ_{47} and δ^{18}O values. We analysed the bulk and clumped isotope compositions of eighteen modern brachiopod shells at a phosphoric acid digestion temperature of 90 °C. The studied specimens represent fourteen species collected from different geographic locations and water depths that cover a substantial range of growth temperatures (Supplementary Table 1). Growth temperatures and seawater δ^{18}O values for each brachiopod were independently-determined and we complemented our measurements with trace element and ion probe–based \textit{in situ} oxygen isotope analyses.

Results

Trace element analyses. The magnesium concentration of the studied modern brachiopod shells was between 0.27 mol% (\textit{Terebratalia transversa}) and 6.8 mol% (\textit{Pajaudina atlantica}) MgCO\textsubscript{3}. Our results are consistent with the expected range of modern brachiopod calcite and fall along the Global Brachiopod Mg Line20 (Supplementary Fig. 1a).

Bulk and clumped isotope analyses. The δ^{18}O\textsubscript{VPDB} values of the modern brachiopod shells analysed in this study range between $-2.20(\pm0.02)$‰ and $3.92(\pm0.02)$‰, while the δ^{13}C\textsubscript{VPDB} values range between $-0.88(\pm0.02)$‰ and $2.44(\pm0.01)$‰. These values are consistent with the range in isotope compositions of modern brachiopod shells (secondary and tertiary layers) reported elsewhere23,25,27. The difference between the oxygen and carbon isotope composition of the shells determined using the [\textit{Gonfiantini}] and the [\textit{Brand}] sets of isotopic parameters28 is -0.01‰. This is similar or less than the 1σ S.E. of replicate measurements and can therefore be ignored (see Methods).

The Δ_{47}\textsubscript{(CDES 25)} values measured for the modern brachiopod shells calculated with the [\textit{Gonfiantini}] parameters range between $0.671(\pm0.007)$‰ and $0.775(\pm0.004)$‰, while the 1σ S.E., calculated from 4–10 replicate analyses, ranges between 0.004–0.014‰. The Δ_{47}\textsubscript{(CDES 25)} values for the brachiopods calculated with the [\textit{Brand}] parameters are between $0.664(\pm0.007)$‰ and $0.767(\pm0.004)$‰, while the 1σ S.E., calculated from 4–10 replicate analyses, ranges between 0.004–0.013‰. The difference between the Δ_{47}\textsubscript{(CDES 25)} values calculated with the [\textit{Gonfiantini}] and the [\textit{Brand}] sets of isotopic parameters is between 0.005‰ and 0.008‰.

Apparent Δ_{47}–temperature relationship. To obtain a Δ_{47}–temperature relationship for modern brachiopod calcite, a least-squares fit linear regression29,30 was performed on the measured Δ_{47}\textsubscript{(CDES 25)} values and the independently-sourced brachiopod growth temperatures31 (Supplementary Tables 1 and 2). This approach considered uncertainties arising from both the clumped isotope measurements and the growth temperatures. The statistical analyses yielded the following Δ_{47}–temperature relationship (Fig. 1a and Supplementary Fig. 2a):

$$\delta^{18}O_{sample} = 0.0454(\pm0.0033) \times 10^\frac{-T}{2} + 0.1840(\pm0.0413)$$

$$R^2 = 0.83, p\text{-value} < 0.001, N = 18, \text{[Gonfiantini]}$$

(1)

$$\delta^{18}O_{sample} = 0.0453(\pm0.0033) \times 10^\frac{-T}{2} + 0.1789(\pm0.0415)$$

$$R^2 = 0.83, p\text{-value} < 0.001, N = 18, \text{[Brand]}$$

(2)

where Δ_{47} is in ‰, T (temperature) is in K and the two-tailed p-values are calculated using a t-test.

The slope of our Δ_{47}–temperature calibration line (eqs 1 and 2) is steeper compared to the theoretical calibration29 and to previous calibrations made at > 70 °C12,19,25, and shallower than most 25 °C calibrations33. However, the slope of our Δ_{47}–temperature calibration line is indistinguishable from the brachiopod-only calibration of Came et al.9, made at 25 °C.

Δ_{47} and δ^{18}O offsets from apparent equilibrium. The difference between the measured and apparent equilibrium values are here referred to as offset values (Supplementary Data 2). Annual mean habitat temperatures (i.e., brachiopod growth temperatures) were acquired from the World Ocean Atlas 201331. Annual mean seawater δ^{18}O values representative of the sampling location and depth were taken from the Global Seawater Oxygen-18 Database38. For thirteen out of eighteen specimens, directly measured seawater δ^{18}O values were also available, giving actual seawater oxygen isotope compositions at the water depth where the brachiopods were collected39 (Supplementary Table 1). To remain consistent, we distinguish between the two datasets: one using only the seawater δ^{18}O values acquired from the Global Seawater Oxygen-18 Database38 and the other in which gridded δ^{18}O values were replaced by the directly measured δ^{18}O values where available.
Figure 1. Brachiopods show an offset from equilibrium Δ_{47} and $\delta^{18}O$ values. (a) Δ_{47}-temperature dependence derived from the eighteen modern brachiopods analysed in this study, calculated using the [Gonfiantini] set of isotopic parameters. (b) The offset $\delta^{18}O$ and offset Δ_{47} values show a significant negative correlation. The brachiopods, which show apparent clumped isotope equilibrium are enriched by up to $+1\%$, relative to Kim and O’Neil. Seawater $\delta^{18}O$ values were acquired from the Global Seawater Oxygen-18 Database. (c) The correlation between offset $\delta^{18}O$ and offset Δ_{47} values is still present if, where available, the directly measured seawater $\delta^{18}O$ values (Supplementary Table 1) were used for the calculations. For all plots: linear regression lines fitted to our data consider the errors. Corresponding two-tailed p-values are computed using a t-test. Error bars for the offset $\delta^{18}O$ values indicate the mean deviation from oxygen isotope equilibrium calculated using the minimum and the maximum temperature estimates. Error bars for the offset Δ_{47} values indicate the 1σ S.E. of the replicate measurements.
Apparent δ¹⁸Ocalcite equilibrium values were calculated using the 1000lnαcalcite–water–temperature relation of Kim and O’Neil35 (see Supplementary Information) and that of Brand et al.20, respectively. The latter includes a correction for the Mg-effect, which accounts for a 0.17‰ change per mol% MgCO₃ in the δ¹⁸O values of the calcite, in agreement with laboratory precipitation experiments20. Apparent ∆⁴十七 equilibrium values were calculated using the theoretical calibration of Passey and Henkes10, i.e., their eq. 5, with the empirically determined intercept of 0.280 (Fig. 1b,c and Supplementary Fig. 2). This equation considers a 25–90 °C acid fractionation factor of 0.081‰ and has been verified in the 0–40 °C temperature range by empirical and experimental approaches11,29,36,37. In addition, offset ∆⁴十七 values were also calculated assuming that the most recent calibrations of Bonifacie et al.32 or Kelson et al.38 represent the clumped isotope equilibrium (Supplementary Fig. 3). Offset ∆⁴十七 values were computed using both the [Gonfiantini] and the [Brand] processed data.

Most of the analysed brachiopods in this study exhibit combined offsets from clumped and oxygen isotope equilibrium, irrespective how the offset values were calculated (Fig. 1b,c and Supplementary Figs 2b,c and 3). The largest deviations from the equilibrium ∆⁴十七 values were observed in the temperate- to cold-water brachiopod species, particularly those of the species Magellania venosa and Magasella sanguinea. In contrast, most of the warm-water (>20 °C) taxa, such as Thecildellina congregata, Argyrotheca sp., Megerlia sp., and P. atlantica, exhibit apparent clumped isotope equilibrium.

Oxygen isotope analyses with ion probe. High resolution (20 μm) in situ oxygen isotope analysis was performed on two M. venosa shells using SIMS (Secondary Ion Mass Spectrometry). In the secondary layer of the two investigated M. venosa shells, the δ¹⁸O values range from −2.91‰ to 1.35‰ (sample 130) and from −2.02‰ to 0.60‰ (sample 143; Fig. 2). This species does not have a tertiary layer and the primary layer was too thin to be analysed (Supplementary Fig. 6). The variation in δ¹⁸O between the outer and inner part of the shell was 4.3‰ for sample 130 and 2.6‰ for sample 143 (Supplementary Data 3, Fig. 2).

Discussion

Multiple processes can lead to the deviation of measured δ¹⁸O and ∆⁴十七 values from thermodynamic equilibrium. If the offset seen in the modern brachiopod δ¹⁸O values would arise solely from the varying Mg-content of the analysed shells, one would expect that this offset would disappear if the equilibrium values were calculated using the equation of Brand et al.20 instead of Kim and O’Neil35, since the former includes a correction for the Mg-effect. However, the scatter of the brachiopod δ¹⁸O values around the assumed oxygen isotope equilibrium is even greater if the Brand et al.20 equation is used, thus the offset δ¹⁸O values cannot be explained by the Mg-content of the shells (compare Fig. 1b,c to Supplementary Figs 1b,c). We also exclude a direct effect of the Mg-content of the shells on the ∆⁴十七 values, considering the recent findings of Bonifacie et al.32 who, for a given precipitation temperature, did not find any difference in the clumped isotope composition between dolomite and calcite reacted at 90 °C.
A mixture of carbonates of different compositions will mix linearly with respect to $\delta^{13}C$ and $\delta^{18}O$ but non-linearly with respect to Δ_{VPDB}. The resulting mixture can, therefore, have a greater or lower Δ_{VPDB} value than the weighted sum of the end-member Δ_{VPDB} values, introducing an artificial bias in Δ_{VPDB}. The range of variation in $\delta^{18}O$ and $\delta^{13}C$ in modern brachiopod shells is usually not larger than 6‰, considering both the variation within secondary layer calcite and between the juvenile and the adult parts of the shell. Assuming the most-extreme scenario of 50–50% mixing of carbonates precipitated at the same temperature with a 6‰ difference in both their $\delta^{13}C$ and $\delta^{18}O$ values, the maximum effect of carbonate mixing on Δ_{VPDB} in modern brachiopods would be $+0.009‰$.[40] To further investigate the role of sample heterogeneity on our data, we assessed the range of variation in $\delta^{18}O$ values in two M. venosa shells that exhibited a high (0.024‰ and 0.038‰, respectively) Δ_{VPDB} offset with respect to Passey and Henkes.[10] Our data show that the difference in $\delta^{18}O$ values in brachiopod secondary layer calcite can be as high as 4.3‰ between the outer and the inner part of the shell (Fig. 2). A covariance of $\delta^{18}O$ and $\delta^{13}C$ along the depth transects of modern brachiopods shells suggests that the range of variation in $\delta^{13}C$ will be comparable to that of $\delta^{18}O$.[22–24;41] A 50–50% mixing of carbonates precipitated at the same temperature with a 4.3% difference in both their $\delta^{13}C$ and $\delta^{18}O$ values results in a Δ_{VPDB} mixing effect of $+0.005‰$.[40] This bias is much smaller than the observed maximum offset Δ_{VPDB} value of 0.038‰ and unresolvable from the external analytical precision (1σ) received for most replicates. Thus, it is highly unlikely that a mixing of carbonates of different compositions through the shell significantly contributes to the positive Δ_{VPDB} offsets observed in this study.

Differences in laboratory procedures, such as reaction temperatures, have previously been suggested as a possible explanation for the discrepancy in the slopes between the Came et al.[7] calibration, made at 25 °C, and the Henkes et al.[11] calibration, made at 90 °C. Although, Henkes et al.[11] also analysed brachiopods (N = 4), their calibration is predominantly based on molluscs (N = 40). Since our study and that of Came et al.[7] yielded the same calibration slope despite using different acid digestion temperatures, we consider this slope gradient to be characteristic of brachiopods and exclude acid digestion temperature as a valid explanation for the difference in slopes between the Came calibration, made at 25 °C, and the higher (70 °C) temperature calibration slopes.

Growth rates of the modern brachiopods analysed in this study correlate well with both the offset Δ_{VPDB} (R² ≈ 0.55, p-value < 0.01; Fig. 3a) and the offset $\delta^{18}O$ values (R² > 0.52, p-value < 0.01; Fig. 3b). The slowest growing brachiopods (T. congregata, Argyrotheca sp., Megerlia sp., P. atlantica) are in apparent clumped isotope equilibrium, whereas the fastest growing brachiopods (M. venosa, T. transversa) show a positive Δ_{VPDB} offset. The offset $\delta^{18}O$ values show a negative correlation with growth rate. A similar depletion of ^{18}O with increasing growth rate was observed in other modern brachiopod species by Takayanagi et al.[44]. The slowest growing brachiopods that are closest to clumped isotope equilibrium relative to Passey and Henkes[10] are enriched in ^{18}O relative to the apparent oxygen isotope equilibrium as predicted by Kim and O’Neil[45]. This strongly implies that growth rate exerts control on the kinetic mechanisms responsible for the observed departures from apparent clumped and oxygen isotope equilibria.

The calcite shells of articulated brachiopods are secreted in the outer epithelium of the mantle. The primary layer is formed by indirect secretion in the extrapallial fluid, while the secondary layer is formed by extracellular mineralization. To aid our discussion, we consider a simplified model of calcification, introduced for molluscs and corals, but that has also been applied to brachiopods.[47;48] (Supplementary Fig. 4a). In this model, carbonate formation occurs in a semi-isolated volume, separated from the ambient environment by an organic membrane.[51] The organism requires calcium (Ca²⁺) and carbonate (CO₃⁻²) ions via hydration (eq. 3) and hydroxylation (eq. 4) reactions:

\[
\text{CO}_2(aq) + H_2O \leftrightarrow H^+ + HCO_3^- \tag{3}
\]

\[
\text{CO}_2(aq) + OH^- \leftrightarrow HCO_3^- \tag{4}
\]

It has recently been demonstrated that kinetic effects related to the CO₂(aq) hydration and hydroxylation reactions, as well as diffusion, can produce a positive Δ_{VPDB} and a negative $\delta^{18}O$ offset from thermodynamic equilibrium.[12,50,51] (Supplementary Fig. 4b).

Kruedes-diffusion predicts that a gas diffusing through a membrane will be depleted in ^{18}O but enriched in Δ_{VPDB}, relative to the residual gas.[54] When correlating the Δ_{VPDB} and $\delta^{18}O$ offsets from equilibrium, the diffused and residual gas fractions would plot along a slope of ~0.023. An identical slope would be obtained if kinetic fractionations were evoked by diffusion of CO₂(aq) through water.[55]

The reaction rate of hydration and hydroxylation of the dissolved CO₂ is orders of magnitude slower than the reaction rate of bicarbonate dissociation.[52] Both CO₂(aq) hydration and hydroxylation preferentially select light isotopes (^{18}O, ^{13}C) and discriminate against heavy isotopes (^{16}O, ^{12}C). If the carbonate precipitation rate is high, HCO₃⁻ can dissociate into CO₂⁺ and H⁺ before reaching equilibrium with CO₂(aq) in the calcifying fluid, therefore, the solid carbonate will inherit lighter $\delta^{18}O$ values.[53] Simultaneously, incomplete CO₂(aq) hydration or hydroxylation results in an increased Δ_{VPDB} value of the aqueous HCO₃⁻, which can be inherited by the solid carbonate if the precipitation rate is high.[44] Theoretical calculations predict a regression slope between the offset Δ_{VPDB} and offset $\delta^{18}O$ values in the order of ~0.05 and ~0.01 for kinetic controls associated with hydration and hydroxylation reactions, respectively.[12,54] (Supplementary Fig. 4b). Carbonic anhydrase, an enzyme often present in calcifying organisms, such as corals, promotes rapid oxygen isotope exchange between dissolved inorganic...
Figure 3. Offset Δ_{47} and offset $\delta^{18}O$ values correlate with brachiopod growth rates. The dashed and dotted lines are simple linear regressions calculated using the maximum and the minimum growth rate estimates, respectively. (a) Offset Δ_{47} values, calculated using the [Gonfiantini] set of isotopic parameters, positively correlate with brachiopod growth rates. (b) Offset $\delta^{18}O$ values negatively correlate with brachiopod growth rates. Seawater $\delta^{18}O$ values were acquired from the Global Seawater Oxygen-18 Database. (c) The correlation between offset $\delta^{18}O$ and brachiopod growth rates is still present if, where available, the directly measured seawater $\delta^{18}O$ values were used for the calculations. For all plots: two-tailed p-values are calculated using a t-test. Error bars for the offset Δ_{47} values indicate the mean deviation from oxygen isotope equilibrium calculated using the minimum and the maximum temperature estimates. Error bars for the offset $\delta^{18}O$ values indicate the 1σ S.E. of the replicate measurements.
δ calculated from CO$_2$(aq) transforms into HCO$_3^-$ in the brachiopod calcifying fluid. The balance between the rates of hydration and hydroxylation reactions is defined as $R = (k_{\text{H}_2\text{O}}/(k_{\text{CO}_2} + k_{\text{OH}^-}\text{H})) * 100$, where $k_{\text{H}_2\text{O}}$ and $k_{\text{OH}^-}\text{H}$ are the rate constants for CO$_2$(aq) hydration and hydroxylation, respectively and $a\text{H}^+$ is the H$^+$ activity. R is calculated for three salinity (S) – temperature (T) scenarios, characteristic to modern seawater. The shaded area represents the internal pH range of modern brachiopods.

Our data exhibits an offset Δ-δ^{18}O slope of $-0.017(\pm 0.03)$ if the offset δ^{18}O values are calculated using the seawater oxygen isotope compositions acquired from the Global Seawater Oxygen-18 Database (Fig. 1b). If the offset δ^{18}O values are calculated using directly measured water δ^{18}O values where possible, the offset Δ_{47}-δ^{18}O slope becomes as steep as $-0.039(\pm 0.01)$ (Fig. 1c). Both slopes are significant and stay consistent, irrespective of data processing, i.e., [Gonfiantini] vs. [Brand] parameters, and the clumped isotope calibration we used to calculate the offset values (Supplementary Figs 2b,c and 3).

The observed correlation slopes (-0.017 to -0.039, depending on the seawater δ^{18}O dataset) between offset Δ_{47} and offset δ^{18}O point to the importance of kinetic effects associated with diffusion and incomplete hydration and hydroxylation of CO$_2$(aq). The hydration and hydroxylation reactions occur superimposed onto the diffusion of CO$_2$(aq). Consequently, diffusion alone cannot be the sole kinetic mechanism responsible for the observed trend in our data. If heterogeneous oxygen isotope exchange between water and CO$_2$(aq) proceeds to equilibrium, it would erase the offsets from equilibrium Δ_{47} and δ^{18}O generated during diffusion. Tang et al. precipitated calcites at a pH < 9 and > 10 and observed that Δ_{47} values increased by approximately 0.016‰ for every 1‰ decrease in δ^{18}O at high (> 10) pH. They suggested that a combined effect of diffusion and hydroxylation could be responsible for the observed slope. Interestingly, their slope is indistinguishable from the one we observe when we exclusively use the Global Seawater Oxygen-18 Database to infer seawater δ^{18}O. However, pH > 10 would be inconsistent with the internal pH range of modern brachiopods, which is likely to be between 7.7 and 8.2, calculated from δ^{13}B values. Hydroxylation is more prominent at low (< 8.4) pH while hydrogenation is more prominent at high (> 8.4) pH, assuming temperature and salinity values characteristic of modern seawater (Fig. 4).

In the pH range characteristic for modern brachiopods, only 10–40% of the oxygen isotope exchange between water and CO$_2$(aq) should occur via the hydroxylation reaction, whereas 60–90% should proceed via the hydration reaction (Fig. 4). Such a dominance of hydration over hydroxylation would result in an offset Δ_{47}-δ^{18}O slope of -0.034 to -0.046, assuming estimated slopes of -0.05 and -0.01 to be characteristic of the hydration and hydroxylation reactions, respectively. This range of offsets is in agreement with our result based on the dataset that combines gridded seawater δ^{18}O data with directly measured values (Fig. 1c and Supplementary Figs 2c and 3).

The δ^{18}O values of the temperate modern brachiopod shells analysed in this study correlate well with corresponding δ^{13}C values ($R^2 = 0.89, p$-value < 0.001; Fig. 5a). Brand et al. showed that parallel correlations are present between shell δ^{18}O and δ^{13}C among tropical (latitudes < 30°), temperate (latitudes 30°–60°) and polar (latitudes > 60°) brachiopods, respectively. These parallel trends are related to the distinct habitat seawater temperatures and oxygen isotopic compositions of these groups. With the exchange of the shell δ^{18}O values for the offset δ^{18}O values, the seawater and temperature effect on the shell δ^{18}O can be eliminated. The offset δ^{18}O
values of the modern brachiopod shells analysed in this study correlate with corresponding δ13C values ($R^2 > 0.29$, p-value < 0.05; Fig. 5b,c). A covariation of δ18O and δ13C has been also observed in single brachiopod shells by other authors. A synchronous depletion of the heavy isotopes (18O and 13C) in biogenic carbonates, as values of the modern brachiopod shells analysed in this study correlate with corresponding δ13C values ($R^2 > 0.29$, p-value < 0.05; Fig. 5b,c). A covariation of δ18O and δ13C has been also observed in single brachiopod shells by other authors. A synchronous depletion of the heavy isotopes (18O and 13C) in biogenic carbonates, as
observed for the modern brachiopods analysed in this study (Fig. 5a,b,c), agrees with the preferential selection of light isotopes during CO$_2$(aq) hydration and hydroxylation reactions49,53,59. There is still an ongoing debate if the experiments of Kim and O’Neil35 are characteristic for the attainment of overall equilibrium between calcite and water. A natural example for equilibrium precipitation might be the Devil’s Hole carbonate that grow extremely slowly in a constant geochemical environment. Its isotope composition has therefore been postulated not to be affected by kinetics60. The δ18O value of the Devil’s Hole carbonate is approximately +1.5‰ higher than could be calculated using the equation of Kim and O’Neil35. Laboratory experiments, comparing oxygen isotope fractionation factors of slowly and rapidly precipitated synthetic calcites61, and theoretical computations62 provide further evidence that the Kim and O’Neil35 equation is not representative of thermodynamic equilibrium between calcite and water. The δ18O values of the modern brachiopods analysed in this study, which show apparent clumped isotope equilibrium, are enriched by up to 1‰, relative to the Kim and O’Neil35 equilibrium (Fig. 1b,c and Supplementary Figs 2b,c and 3). This finding is in line with the hypothesis$^{60–62}$ that oxygen isotope equilibrium between calcite and water is expressed by fractionations exceeding those of Kim and O’Neil35.

In summary, the oxygen and clumped isotope composition of modern brachiopod shells are affected by growth rate-induced kinetic effects (i.e., incomplete hydration and/or hydroxylation of CO$_2$(aq) at higher growth rates) as indicated by (1) the negative correlation between offset Δ$_C$ and offset δ18O values, (2) the correlation between growth rates and both Δ$_C$ and δ18O offsets and (3) the positive correlation between shell δ18C and δ18O values. Kinetic effects may significantly contribute to the bottom seawater temperatures calculated from brachiopod shell δ18O and Δ$_C$. Combining isotope data derived from multiple species is likely to result in higher variability in observed δ18O and Δ$_C$ that does not reflect real temperature changes. Based on our findings, information about taxon-specific growth rate and kinetics involved in calcite precipitation is essential whenever constraining seawater temperatures from Δ$_C$ and δ18O values in brachiopods. A future study considering seasonal variations in seawater δ18O values and in growth rates could further improve our understanding of the nature and extent of the kinetic isotope effect in brachiopods.

Methods

Sampling of shells. Organic tissue and encrusting organisms were removed from the brachiopod shells using a metal pin and a brush. Specimen S006L, DS420L, and DS430L were submerged in diluted NaOCl for 5–10 minutes to soften the organic material. The shells were cleaned in an ultrasonic bath using deionized water. Afterwards, the shells were dried using pressured air and stored at room temperature. For the larger species, the primary layer of the shells was mechanically removed using a hand-held electric drill (Proxxon Micromot IBS/E) on the lowest speed setting and only the secondary and/or tertiary layers were sampled. An approximately 0.5 cm2 area from the anterior part of the ventral valve was crushed and homogenised using an agate mortar and pestle. We avoided sampling the umbo area, the hinge area, the muscle scar area and the youngest parts of the shell. Exceptions to this were the micromorphic shells of P. atlantica, T. congregata, Argyrotheca sp., and Megerlia sp., where 4 to 20 whole shells had to be crushed to acquire enough material for multiple replicate analyses.

Growth rate. The growth of brachiopods can be described by the von Bertalanffy asymptotic function63. Juvenile individuals grow the fastest and the growth rate decreases with age, before reaching the species-specific maximum size. To compare comparable, species-specific growth rates, we estimated a minimum and a maximum growth rate for each analysed species. The maximum growth rate, in our case, depicted the average growth rate of the brachiopod until it reached 50% of its maximum size. Similarly, the minimum estimate was the average growth rate after the brachiopod had already reached 50% of its maximum size. For M. venosa63, M. fragilis64, M. sanguinea65, C. inconspicua66, T. transversa67 and L. neozeanica68, detailed studies were available, thus both a minimum and a maximum growth rate estimate could be calculated. Such a study has not, to date, been made for N. migrans, therefore we used the available average juvenile growth rate69 as a maximum estimate. For the micromorphic brachiopods P. atlantica, Argyrotheca sp., Megerlia sp., and T. congregata, we assumed a 0.5 mm/yr and a 1.2 mm/yr as a minimum and as a maximum growth rate estimate, respectively. These growth rates are characteristic for micromorphic brachiopods70.

Trace element analyses. The magnesium content of the studied brachiopod shells was analysed using a Thermo Scientific iCap 6000 dual view ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) at the Goethe University, Frankfurt, Germany. For the analyses, we took 120–150 μg of carbonate powder from the homogenised batches that were also used for the isotope measurements and dissolved them in 0.500 cm3 2% HNO$_3$. An aliquot of 0.300 cm3 of the sample solution was diluted with 1.500 cm3 yttrium water (until 1.000 mg/dm3) prior to measurement to correct for matrix biases during analyses. The Mg/Ca measurements were drift-corrected and standardized to an internal consistency standard (ECRM 752–1) measured alongside with the samples. The external reproducibility (2σ S.E.) for this standard was ±0.1 mmol/mol Mg/Ca. Finally, the MgCO$_3$ concentration values (mol%) were adjusted to a 100% carbonate basis and were normalised to a combined Ca and Mg value of 395,000 ppm20.

Stable isotope analyses. Clumped isotope analyses were made using a fully automated gas extraction and purification line connected to a ThermoFisher MAT 253 gas-source isotope-ratio mass spectrometer at the Goethe University, Frankfurt, Germany. Homogenised carbonate powder was reacted at 90°C with >105% phosphoric acid. In general, six replicate analyses were made every day including one carbonate standard, one equilibrated gas (1000 °C or 25°C) and four sample replicates. Background correction was performed for the sample and the reference gas separately, as described in Fiebig et al.71 (Supplementary Fig. 5). Background-corrected equilibrated gas data displays slopes that are within errors indistinguishable from zero (Supplementary Data 1).
Additional information concerning the methodology of the clumped isotope measurements can be found in the Supplementary Information.

The raw $\Delta_{27, \text{Cl}}$, $\delta^{18} \text{O}$ and $\delta^{13} \text{C}$ values were calculated using two sets of isotope parameters. In the [Gonfiantini] set, the parameters are as follows: $R_{\text{PDB}}^{13} = 0.0112372$, $R_{\text{VSMOW}}^{18} = 0.0020052$, $R_{\text{VSMOW}}^{17} = 0.0003799$ and $\lambda = 0.5164$. In the [Brand] set, the parameters are: $R_{\text{PDB}}^{13} = 0.01118$, $R_{\text{VSMOW}}^{18} = 0.0020052$, $R_{\text{VSMOW}}^{17} = 0.00038475$ and $\lambda = 0.528$. The raw Δ_{27} values were projected to the CDES (Carbon Dioxide Equilibrium Scale) using equilibrated gases. Empirical transfer functions (ETFs) were determined using gases of various bulk isotope compositions equilibrated at 25°C and at 1000°C, respectively. The intercept values of the equilibrated gases in the Δ_{27} vs. $\delta^{18} \text{O}$ space were constant between 06.06.2016–12.22.2016 and 01.06.2017–04.05.2017 (Supplementary Data 1, Supplementary Table 3). For referencing the Δ_{27} values to 25°C, we used an acid fractionation factor of 0.081‰. Two internal carbonate reference materials were analysed along with the samples to verify the precision and the stability of clumped isotope measurements: Carrara marble calcite (Carrara) and Arctica islandica (mollusk) shell aragonite (MuStd). The mean $\Delta_{47(CDES_{25})}$ values (± 1 S.E.) for the Carrara ($N = 123$) and the MuStd ($N = 83$) reference materials, calculated using the [Gonfiantini] set of isotopic parameters were $0.396(\pm 0.001)‰$ and $0.743(\pm 0.002)‰$, and using the [Brand] set of isotopic parameters were $0.395(\pm 0.001)‰$ and $0.738(\pm 0.002)‰$, respectively. The 1 S.D. of the Δ_{27} values for the reference materials is $0.014‰$. The Δ_{47} values agree within $\pm 0.005‰$ with corresponding $\Delta_{47(CDES_{25})}$ values reported elsewhere for Carrara [13,25,72] and MuStd after applying a consistent acid fractionation factor to these datasets.

Secondary Ion Mass Spectrometry. The ion probe analyses were carried out using a Cameca IMS 1280-HR2 at CRPG-CNRS (Nancy, France). A short summary of the technique is reported in the Supplementary Information. The exact location of the ion probe transects and the analysed points are shown on Supplementary Figure 6. The two analysed shells were also investigated for clumped isotopes. The ventral valve of each brachiopod was cut in half from anterior to posterior part to produce a longitudinal section. One half was mounted approximately 3 mm above the anterior margin, at the exact location where the shell was sampled for the clumped and trace element analyses.

Data availability. All data pertinent to this manuscript and its reported findings can be found in the manuscript itself or the associated Supplementary Information file.

References
1. Curry, G. B. & Brunton, C. H. C. In Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised) (ed P. A. Selden) 2901–3081 (Geological Society of America, University of Kansas, 2007).
2. Veizer, J. & Prokop, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146, 92–104 (2015).
3. Brand, U., Webster, G. D., Azny, K. & Logan, A. Bathymetry and productivity of the southern Great Basin seaway, Nevada, USA: An evaluation of isootope and trace element chemistry in mid-Carboniferous and modern brachiopods. Palaeoecogr. Palaeoclimatol. Palaeoecol. 256, 273–297 (2007).
4. Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 0, 562–581 (1947).
5. Ghosh, P. et al. $^{13} \text{C} - ^{18} \text{O}$ bonds in carboniferous: A new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006).
6. Came, R. E. et al. Coupling of surface temperatures and atmospheric CO$_2$ concentrations during the Palaeozoic era. Nature 449, 198–201 (2007).
7. Brand, U. et al. Climate-forced change in Hudson Bay seawater composition and temperature, Arctic Canada. Chem. Geol. 388, 78–86 (2014).
8. Cummins, R. C., Finnegon, S., Fike, D. A., Eiler, J. M. & Fischer, W. W. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater $P^{18} \text{O}$. Geochim. Cosmochim. Acta 140, 241–258 (2014).
9. Came, R. E., Brand, U. & Affleck, H. P. Clumped isotope signatures in modern brachiopod carbonate. Chem. Geol. 377, 20–30 (2014).
10. Passey, B. H. & Henkes, G. A. Carbonate clumped isotope bond reordering and geosembeddometry. Earth Planet. Sci. Lett. 351-352, 223–236 (2012).
11. Henkes, G. A. et al. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim. Cosmochim. Acta 106, 307–325 (2013).
12. Spooner, P. T. et al. Clumped isotope composition of cold-water corals: A role for vital effects? Geochim. Cosmochim. Acta 179, 123–141 (2016).
13. Adkins, J. F., Boyle, E. A., Curry, W. B. & Luterbacher, A. Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim. Cosmochim. Acta 67, 1129–1143 (2003).
14. Saenger, C. et al. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. Geochim. Cosmochim. Acta 99, 224–242 (2012).
15. Kimball, J., Eagle, R. & Dunbar, R. Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gonophic deep-sea corals. Biogeosciences 13, 6487–6505 (2016).
16. Graul, A.-L. et al. Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high-resolution climate reconstructions. Geochim. Cosmochim. Acta 108, 125–140 (2013).
17. Lowenstam, H. A. Mineralogy, O^{18}/O^{16} ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. Journ. Geol. 69, 241–260 (1961).
18. Carpentier, S. J. & Lohmann, K. C. $^{87} \text{O}$ and $^{81} \text{C}$ values of modern brachiopod shells. Geochim. Cosmochim. Acta 59, 3749–3764 (1995).
19. Cusack, M. & Huerta, A. P. & EIMF. Brachiopods recording seawater temperature - A matter of class or maturation? Chem. Geol. 334, 139–143 (2012).
20. Brand, U. et al. Oxygen isotopes and MgCO$_3$ in brachiopod calcite and a new paleotemperature equation. Chem. Geol. 359, 23–31 (2013).
21. Parkinson, D. & Curry, G. B., Cusack, M. & Fallick, A. E. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chem. Geol. 219, 193–235 (2005).
49. McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: II.

64. Brey, T., Peck, L. S., Gutt, J., Hain, S. & Arntz, W. E. Population dynamics of

63. Baumgarten, S., Laudien, J., Jantzen, C., Häussermann, V. & Försterra, G. Population structure, growth and production of a recent

45. Williams, A. Differentiation and growth of the brachiopod mantle. Am. Zool. 27, 107–120 (1987).

46. Simkiss, K. & Wilbur, K. M. Intra-shell variability, controls, and potential as a paleo-pH recorder. Chem. Geol. 340, 32–39 (2013).

34. LeGrande, A. N. & Schubale, E. δ18O/δ13C in Earth’s atmosphere. Geochim. Cosmochim. Acta 68, 4767–4777 (2004).

35. Kim, S.-T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461–3475 (1997).

29. Wacker, U. Composition and temperature effects of phosphoric acid fractionation on (Ca, Mg, Fe)CO3 carbonates. Geochim. Cosmochim. Acta 75, 4416–4425 (2011).

25. Rollion-Bard, C. Solution chemistry on carbonate mineral composition. Geochim. Cosmochim. Acta 79, 344–371 (2015).

23. Yamamoto, K., Asami, R. & Iryu, Y. Variability in magnesium, carbon and oxygen isotope compositions of brachiopod shells: Implications for paleoceanographic studies. Chem. Geol. 442, 49–60 (2016).

21. Keith, M. L. & Weber, J. N. Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. Science 150, 498–501 (1965).

20. Coplen, T. B. Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957 (2007).

19. Uchida, J. & Zeebe, R. E. The effect of carbonic anhydride on the kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: Implications for δ18O vital effects in biogenic carbonates. Geochim. Cosmochim. Acta 95, 15–34 (2012).

18. Watkins, J. M., Hunt, J. D., Ryerson, F. J. & DePaolo, D. J. The influence of temperature, pH, and growth rate on the 818O composition of inorganically precipitated calcite. Earth Planet. Space Lett. 404, 332–343 (2014).

17. Jackson, D. J. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition. Geochim. Cosmochim. Acta 166, 344–371 (2015).

16. Thiagarajan, N., Adkins, J. & Eiler, J. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim. Cosmochim. Acta 75, 4416–4425 (2011).

15. Brand, U. et al. Carbon isotope composition in modern brachiopod calcite: A case of equilibrium with seawater? Chem. Geol. 411, 81–96 (2015).

14. Keith, M. L. & Weber, J. N. Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. Science 150, 498–501 (1965).

13. Coplen, T. B. Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957 (2007).

12. Dietzel, M., Tang, J. W., Leis, A. & Kohler, S. J. Oxygen isotopic fractionation during inorganic calcite precipitation - Effects of temperature, precipitation rate and pH. Chem. Geol. 268, 107–115 (2009).

11. Watkins, J. M., Nielsen, L. C., Ryerson, F. J. & DePaolo, D. J. The influence of kinetics on the oxygen isotope composition of calcium carbonate. Earth Planet. Sci. Lett. 375, 349–360 (2013).

10. Baumgarten, S., Landien, J., Jantzen, C., Häussermann, V. & Försterra, G. Population structure, growth and production of a recent brachiopod from the Chillean fjord region. Mar. Ecol. 35, 401–413 (2014).

9. Brey, T., Peck, L. S., Gutt, J., Hain, S. & Arntz, W. E. Population dynamics of Magellania fragilis, a brachiopod dominating a mixed-bottom macrobenthic assemblage on the Antarctic shelf. J. Mar. Biol. Ass. 75, 857–886 (1995).
65. Ostrow, D. G. Larval dispersal and population genetic structure of brachiopods in the New Zealand fjords PhD thesis, University of Otago, (2004).
66. Doherty, P. J. Demographic study of a subtidal population of the New Zealand articulate brachiopod Terebratula inconspicua. Mar. Biol. 52, 331–342 (1979).
67. Paine, R. T. Growth and size distribution of the brachiopod Terebratalia transversa Sowerby. Pac. Sci. 23, 337–343 (1969).
68. Baird, M. J., Lee, D. E. & Lamare, M. D. Reproduction and growth of the terebratulid brachiopod Liothyrella neozelanica Thomson, 1918 From Doubtful Sound, New Zealand. Biological Bulletin 225, 125–136 (2013).
69. Lee, D. E. et al. Observations on recruitment, growth and ecology in a diverse living brachiopod community, Doubtful Sound, Fiordland, New Zealand. Spec. Pap. Palaeo. 84, 177–191 (2010).
70. Pakhnevich, A. V. Reasons of micromorphism in modern or fossil brachiopods. Palaeontol. J. 43, 1458–1468 (2010).
71. Fiebig, J. et al. Slight pressure imbalances can affect accuracy and precision of dual inlet-based clumped isotope analysis. Isot. Environ. Health Stud. 52, 12–28 (2016).
72. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P. & Eiler, J. M. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim. Cosmochim. Acta 75, 7117–7131 (2011).
73. Kele, S. et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim. Cosmochim. Acta 168, 172–192 (2015).

Acknowledgements
We thank S. Hofmann and C. Schreiber (J. W. Goethe-Universität) for their technical assistance during the clumped isotope analyses, D. Henkel (GEOMAR) and L. Angiolini (University of Milan) for providing the P. atlantica and N. nigricans specimens and R. Sheward for language editing. This paper benefited from the constructive suggestions of Kozue Nishida and two anonymous reviewers. This project was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 643084 (BASE-LiNE Earth).

Author Contributions
B.D. and J.F. designed the study and wrote the manuscript. C.P.R. helped with the statistical treatment of data. A.T., U.B., J.R., C.R.B. and S.G.M. helped interpreting the data. B.D. and N.L. made the stable isotope measurements. J.R. and B.D. carried out the trace element analyses. S.G.M. and C.R.B. made the SIMS analyses.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17353-7.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017