Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
What’s trending in the infection prevention and control literature? From HIS 2012 to HIS 2014, and beyond

J.A. Otter*
Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King’s College London, and Guy’s and St Thomas’ Hospital NHS Foundation Trust, London SE1 9RT, UK

SUMMARY
This is an informal review of some of the trends in the infection prevention and control literature since the last Healthcare Infection Society (HIS) conference in late 2012. Google Trends was used to investigate how the volume of interest in various infection control topics had changed over time. Ebola trumped all the others in Google searches, reflecting a surge of publications in the literature. Aside from Ebola, other trends in the infection prevention and control literature covered in this article include Middle East Respiratory Syndrome (MERS) coronavirus, universal versus targeted interventions, faecal microbiota transplantation, whole genome sequencing, carbapenem-resistant Enterobacteriaceae, and some aspects of environmental science. The review ends with an attempt to predict some of the trends in the infection prevention and control literature between now and the next HIS conference in 2016.

© 2015 Published by Elsevier Ltd on behalf of the Healthcare Infection Society.

Introduction
To track some of the trends in the infection prevention and control literature since the last HIS conference in late 2012, I plugged some search terms into Google Trends (a facility that compares the variation in volume of searches for selected terms over time). One infection control trend trumped all others: Ebola (Figures 1 and 2). Whereas trends in Google searches may not necessarily correlate with trends in the infection prevention and control literature, in this case it is true that the outbreak of Ebola in West Africa has prompted a lot of publications in the literature — as well as consuming an awful lot of professional time for all who are connected with hospital infection prevention and control! Aside from Ebola,
other trends in the infection prevention and control literature covered in this article include Middle East respiratory syndrome coronavirus (MERS-CoV), universal versus targeted interventions, faecal microbiota transplantation, whole genome sequencing, carbapenem-resistant Enterobacteriaceae (CRE), and some aspects of environmental science. Finally, I attempt to predict some of the trends in the infection prevention and control literature between now and the next HIS conference in 2016.

Ebola, MERS, influenza

A few weeks before HIS 2012, a novel coronavirus was reported in Saudi Arabia that was subsequently named Middle Eastern respiratory syndrome coronavirus (MERS-CoV).\(^1,2\) Much like severe acute respiratory syndrome (SARS) coronavirus before it, MERS-CoV is associated with unnervingly high mortality (~30%), and its potential for airborne dissemination, gastrointestinal shedding, and asymptomatic carriage present infection prevention and control challenges.\(^3\) Most of the 600 cases reported to date have occurred in the Middle East (mainly Saudi Arabia) but a few cases have occurred elsewhere, including the UK and USA.\(^4\) The management of MERS in Saudi Arabia has been shrouded in controversy, with ‘missing’ cases reported months after they occurred.\(^5\) How to safely manage MERS-CoV in developed healthcare systems has also been controversial, with questions over whether airborne or droplet precautions are necessary to contain the virus. Recent data indicate that small droplet nuclei may be emitted most of the time by influenza-infected patients, which argues for airborne precautions for MERS-CoV.\(^6\) A hospital outbreak in Jeddah in Saudi Arabia put the world on red alert in preparation for a pandemic, but that outbreak was contained and few cases are being reported currently.

By contrast, the outbreak of Ebola infection continues unabated in West Africa. There have been more than 10,000 cases in the current outbreak, around five times more cases of Ebola than had ever been reported prior to this outbreak. Furthermore, the three secondary transmissions that have occurred from the 13 cases cared for outside of West Africa to date (two in the USA and one in Spain) have pushed the Ebola crisis to the top of the agenda of many hospitals around the world. This has led to a degree of politicization, where regional and national decisions are made for political reasons rather than based on evidence, resulting in measures such as mandatory quarantine, airport screening, and immigration bans.\(^7,8\)

Politicization aside, research performed during the current outbreak has provided some new insight into the epidemiology of Ebola. It is most usually transmitted through direct contact with blood or body fluids including droplet sprays (through broken skin or mucous membranes).\(^9,10\) However, transmission can also occur through indirect contact with contaminated environments.\(^9,12\) Indeed, one outbreak report from Sierra Leone identified incorrect personal protective equipment (PPE) for cleaning staff as a likely contributor to transmission.\(^12\) Furthermore, despite being enveloped viruses, Ebola (and indeed MERS-CoV) has the capacity to survive on dry surfaces for...
days, not hours.13–15 One study even suggests an Ebola survival time measured in weeks, but this study was done at 4°C, so does not represent field conditions.15 These in-vitro survival times combined with the potential for blood and body fluid contamination argue for careful attention to cleaning and disinfection when caring for patients with Ebola virus disease.

Several studies have evaluated the basic reproductive number (R_0) for Ebola infection in field settings, which seems to be \~2. One study found that R_0 is significantly higher in non-survivors (2.36) than in survivors (0.66), reinforcing the suggestion that contact with patients in the latter stages of disease is the most important risk factor for acquiring Ebola virus.16

Another area of controversy has been the appropriate type of PPE when dealing with Ebola. Earlier US recommendations were upgraded following the transmissions in Dallas, and now recommend a ‘no skin in the game’ approach, where all skin is covered.17 However, having the right PPE policy is only part of the solution — you also need to ensure PPE supply and that staff know how to don and doff it safely.18,19

Universal versus targeted interventions

Several high-profile studies have suggested that we should move away from ‘targeted’ interventions, particularly screening and decolonization, towards ‘universal’ interventions such as chlorhexidine daily bathing for all intensive care unit (ICU) patients.20,21 The most persuasive evidence for a universal approach involves the use of chlorhexidine for daily bathing for all ICU patients. It is worth noting, in passing, that this is not a truly universal approach since it is applied to a targeted population! The studies are impressive, especially in terms of design and to a lesser degree in terms of impact (Table I).22–25 Similarly, the use of antibiotics for selective digestive decontamination (SDD) or selective oral decontamination (SOD) has been advocated for all ICU patients. Again, the study design and impact are impressive, with reduced transmission and reduced mortality (Table II).26–29 However, indiscriminate use of biocides (such as chlorhexidine) and especially antibiotics is not without ‘collateral damage’.30 Several studies have reported increased antibiotic resistance associated with SOD and SDD, and other studies have reported reduced bacterial susceptibility associated with universal use of chlorhexidine.28,31–34 So we need to consider carefully the downside before wholeheartedly adopting universal decolonization.

Another universal strategy that has been evaluated recently is the universal use of gloves and gowns for the care of ICU patients.35 This impressive cluster-randomized controlled trial failed to meet the primary endpoint [a reduction in a composite measure of MRSA and vancomycin-resistant enterococci (VRE)], although MRSA was reduced. Furthermore, compliance with glove and gowning was high in the study (85%) whereas another study monitoring glove and gown use in the real world recorded much lower compliance (29%).36 Compliance with correct use of gloves and gowns fell as the proportion of
Table I

Study	Setting	Design	Intervention	Results
Derde et al.	ICU	Time-series analysis	Universal CHG plus hand hygiene	Reduction in all MDROs and MRSA (but not VRE or ESBLs)
Climo et al.	ICU	Cluster RCT	Universal CHG	Reductions in MRSA/VRE acquisition and all BSI; BSI mainly CoNS
Milstone et al.	ICU	Cluster RCT	Universal CHG	BSI reduced; mainly CoNS
Huang et al.	ICU	Cluster RCT	Universal CHG + mupirocin	Reduction in MRSA clinical isolates and all BSI; MRSA BSI not reduced

ICU, intensive care unit; CHG, chlorhexidine gluconate; MDROs, multidrug-resistant organisms; MRSA, meticillin-resistant *Staphylococcus aureus*; VRE, vancomycin-resistant enterococcus; ESBL, extended-spectrum beta-lactamase producer; RCT, randomized controlled trial; BSI, bloodstream infection; CoNS, coagulase-negative staphylococci.

Table II

Study	Setting	Design	Intervention	Results
de Jong et al.	ICU	RCT	SDD	Mortality and acquisition of MDR-GNB reduced
de Smet et al.	ICU	Cluster RCT SDD or SOD	Both SOD and SDD reduced mortality	
Oostdijk et al.	ICU	Cluster RCT SDD vs SOD	No significant difference in mortality, but SDD → more antibiotic resistance	
Saidel-Odes et al.	Adults	RCT	SDD	Reduced, but did not eliminate, CRE colonization

ICU, intensive care unit; RCT, randomized controlled trial; MDR-GNB, multidrug-resistant Gram-negative bacilli; CRE, carbapenem-resistant Enterobacteriaceae.
Another application of WGS that has emerged in recent years is to dissect outbreak epidemiology with unprecedented detail. For example, during an outbreak of carbapenem-resistant Enterobacteriaceae, a US team was able to turn a ‘plate of spaghetti’ map of epidemiologically related contacts into a clear transmission map by laying WGS data over epidemiological contacts.

Carbapenem-resistant Enterobacteriaceae

Carbapenem-resistant Enterobacteriaceae (CRE) have prompted an enormous amount of interest in the last few years. CRE more than any other organism have led to dire warning from world leaders on the impending post-antibiotic era. Both the UK and US governments have published CRE toolkits so that hospitals can prepare and manage problems due to CRE effectively. The prevalence of CRE in the UK seems to be low at present, judging by the prevalence of carbapenem resistance in invasive K. pneumoniae isolates reported to the European Antimicrobial Resistance Surveillance Network (EARS-Net) (<1%). However, the number of referrals to Public Health England is increasing, and there are parts of the UK with more established problems. The picture from elsewhere is more disturbing. For example, there has been a sharp increase in CRE in Italy since 2009, and one recent study reported a high level of colistin resistance (43% of 191 CRE isolates from 21 laboratories across Italy). Furthermore, there have been some shocking reports from some US regions. For example, ~30% of patients in Chicago long-term acute care hospitals carried CRE in a point prevalence survey, and the rate in individual facilities ranged from ~10% to almost 60%.

What should we do to prevent and control the spread of CRE and other multidrug-resistant Gram-negative organisms? The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) has published comprehensive guidelines outlining the core principles of prevention and control, including active surveillance, contact precautions, antibiotic stewardship, hand hygiene, and cleaning and disinfection. However, we still do not really know what is effective in controlling multidrug-resistant Gram-negatives in general, and CRE in particular. Some interesting analysis of Gram-negative outbreak reports found that bundled interventions were less likely to fail than single interventions. Put another way, when in doubt, throw in the kitchen sink!

Environmental science

A key question for some time has been whether automated room disinfection systems are able to reduce the rate of transmission compared with conventional cleaning and disinfection. A US study found that patients admitted to rooms decontaminated using hydrogen peroxide vapour (HPV) were 64% less likely to acquire multidrug-resistant organisms than patients admitted to rooms disinfected using standard methods. Although this study is not without its problems, as outlined in accompanying editorial, it does reinforce the need to do a better job of cleaning and disinfection, particularly at the time of patient discharge.

There has been an explosion of interest in the potential use of ultraviolet (UV)-based systems for automated room disinfection. Our understanding of these systems is evolving rapidly, and the following now seem clear. UV-C is fundamentally different to pulsed-xenon UV (PX-UV). UV systems are
more effective than conventional cleaning and disinfection. UV systems are faster and easier, but less effective than HPV. UV systems are less effective out of direct line of sight; using multiple locations in the room helps to mitigate this. Some evidence is emerging that UV room disinfection reduces transmission. The results of a US Centers for Disease Control and Prevention-funded study in progress into the clinical impact of UV for terminal room disinfection are eagerly awaited.

There has been much interest in the potential for antimicrobial surfaces to provide a continuous reduction in the level of microbes on hospital surfaces. A US study evaluated the impact of introducing copper hand-touch surfaces into ICU rooms. The randomized study of 614 patients in three ICUs found that patients admitted to ‘copperized’ rooms had significantly less healthcare-associated infection or colonization. The study has come under fire for some aspects of its design and reporting, but it does provide compelling data that antimicrobial surfaces should be evaluated further.

An age-old question is whether contaminated hands or surfaces are more important in the transmission of healthcare-associated infection. A model provides new insight into this question. The model simulates patient-to-patient transmission in a 20-bed ICU; 100 simulations were run for each pathogen of interest, evaluating the impact of stepwise changes in hand hygiene or terminal cleaning compliance. The key finding is that improvements in hand hygiene compliance are more or less twice as effective as improving terminal cleaning in hand hygiene or terminal cleaning compliance. However, although this may be overstressing the model, it appears that improving terminal cleaning may make more impact than improving hand hygiene at higher levels of compliance (Figure 6).

A recent Australian study discovered biofilms, some containing viable MRSA, on dry hospital surfaces. There are important implications if the presence of biofilms on dry hospital surfaces turns out to be a widespread occurrence. Biofilms could explain why vegetative bacteria can survive on dry hospital surfaces for so long, be part of the reason why they are so difficult to remove or inactivate using disinfectants, and explain, to some degree, the difficulty in recovering environmental pathogens by surface sampling. Further work is required to explore the prevalence and composition of biofilms on dry hospital surfaces.

What will be trending at HIS 2016?

Looking into my crystal ball for HIS in 2016, it seems unlikely that the Ebola outbreak will be ongoing in West Africa, and I hope that we will have seen the last of MERS-CoV. However, pandemic influenza will be around for at least as long as mankind! It does seem likely that there will be a move towards universal interventions. The impressive data on FMT is likely to continue; it will quickly become the standard of care for recurrent CDI, and other applications will come through. WGS is unlikely to be so topical, only because it will increasingly become a standard tool used for day-to-day hospital epidemiology. I am sure that environmental science will continue to grow, and the global CRE epidemic curve will only go one way: upwards. Finally, as financial constraints continue to squeeze us, studies of cost-effectiveness and healthcare economics will become increasingly important to direct our precious resources.

And finally …

A team from Imperial College, London, evaluated Twitter trends relating to antibiotics, finding that peak Twitter activity correlated neatly with various antibiotic-related national and international announcements. Regardless of how you feel about social media, it is good to see that the issue of antibiotic resistance is receiving considerable public attention.

Conflict of interest statement
The author is employed part-time by Bioquell.

Funding sources
None.

References

1. de Groot RJ, Baker SC, Baric RS, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV); announcement of the Coronavirus Study Group. J Virol 2013;87:7790–7792.
2. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814–1820.
3. Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 2014;20:233–241.
4. Zumla A, Hui DS. Infection control and MERS-CoV in health-care workers. Lancet 2014;383:1793.
5. Holmes D. MERS-CoV enigma deepens as reported cases surge. Lancet 2014;383:1793.
6. Bischoff WE, Swett K, Leng I, Peters TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis 2013;207:1037–1046.
7. Mabey D, Flasche S, Edmunds WJ. Airport screening for Ebola. BMJ 2014;349:g6202.
8. Drazen JM, Kanapathipillai R, Campion EW, et al. Ebola and quarantine. N Engl J Med 2014;371:2029–2030.
transplantation for relapsing *Clostridium difficile* infection. *JAMA* 2014;312:1772–1778.

52. Lawley TD, Clare S, Walker AW, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing *Clostridium difficile* disease in mice. *PLoS Pathog* 2012;8:e1002995.

53. Freedman A, Eppes S. Use of stool transplant to clear fecal colonization with carbapenem-resistant *Enterobacteriaceae* (CRE): proof of concept. *Abstract #1805. ID Week 2014.*

54. Eyre DW, Cule ML, Wilson DJ, et al. Diverse sources of *C. difficile* infection identified on whole-genome sequencing. *N Engl J Med* 2013;369:1195–1205.

55. Curry SR, Muto CA, Schlackman JL, et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in *Clostridium difficile* transmission. *Clin Infect Dis* 2013;57:1094–1102.

56. Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant *Klebsiella pneumoniae* with whole-genome sequencing. *Sci Transl Med* 2012;4:148ra116.

57. US Centers for Disease Control and Prevention. CRE Toolkit – Guidance for control of carbapenem-resistant *Enterobacteriaceae* (CRE); 2012.

58. Public Health England. Acute trust toolkit for the early detection, management and control of carbapenemase-producing *Enterobacteriaceae*. London: PHE; 2013.

59. European Antimicrobial Resistance Surveillance Network (EARS-Net). *Antimicrobial resistance surveillance in Europe 2012.* Stockholm: European Centre for Disease Prevention and Control; 2012.

60. Monaco M, Giani T, Raffone M, et al. Colistin resistance super-imposed to endemic carbapenem-resistant *Klebsiella pneumoniae*: a rapidly evolving problem in Italy, November 2013 to April 2014. *Euro Surveill* 2014;19 pii: 20939.

61. Centers for Disease Control and Prevention. Vital signs: carbapenem-resistant Enterobacteriaceae. *Morb Mortal Wkly Rep* 2013;62:165–170.

62. Lin MY, Lyles-Banks RD, Lolans K, et al. The importance of long-term acute care hospitals in the regional epidemiology of *Klebsiella pneumoniae* carbapenemase-producing *Enterobacteriaceae*. *Clin Infect Dis* 2013;57:1246–1252.

63. Tacconelli E, Cataldo MA, Dancer SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant *Gram-negative* bacteria in hospitalized patients. *Clin Microbiol Infect* 2014;20(Suppl. 1):1–55.

64. Cataldo MA, Foschi F, De Angelis G, et al. Main failings of inter-vention aimed at minimising the hospital spread of multidrug-resistant *Gram-negative* bacteria. *Abstract #0125. ECCMID 2014.*

65. Otter JA, Yezli S, Perl TM, Barbut F, French GL. Is there a role for “no-touch” automated room disinfection systems in infection prevention and control? *J Hosp Infect* 2013;83:1–13.

66. Passaretti CL, Otter JA, Reich NG, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. *Clin Infect Dis* 2013;56:27–35.

67. McDonald LC, Arduino M. Climbing the evidentiary hierarchy for environmental infection control. *Clin Infect Dis* 2013;56:36–39.

68. Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE, Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant *Staphylococcus aureus*. *BMC Infect Dis* 2014;14:187.

69. Anderson DJ, Gergen MF, Smathers E, et al. Decontamination of targeted pathogens from patient rooms using an automated ultraviolet-C-emitting device. *Infect Control Hosp Epidemiol* 2013;34:466–471.

70. Havill NL, Moore BA, Boyce JM. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. *Infect Control Hosp Epidemiol* 2012;33:507–512.

71. Mahida N, Vaughan N, Boswell T. First UK evaluation of an automated ultraviolet-C room decontamination device (Tru-D). *J Hosp Infect* 2013;84:332–335.

72. Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated *Clostridium difficile* infection in a community hospital. *Am J Infect Control* 2013;41:746–748.

73. Otter JA. An overview of options for antimicrobial hard surfaces in hospitals. In: Borkow G, editor. *Use of biocidal surfaces for reduction of healthcare acquired infections.* Berlin: Springer; 2014.

74. Salgado CD, Sepkowitz KA, John JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. *Infect Control Hosp Epidemiol* 2013;34:479–486.

75. Salgado CD, Sepkowitz KA, John JF, et al. Reply to Harbarth, et al. *Infect Control Hosp Epidemiol* 2013;34:997–999.

76. Harbarth S, Maiwald M, Dancer SJ. The environment and healthcare-acquired infections: why accurate reporting and evaluation of biological plausibility are important. *Infect Control Hosp Epidemiol* 2013;34:996–999.

77. Barnes SL, Morgan DJ, Harris AD, Carling PC, Thom KA. Preventing the transmission of multidrug-resistant organisms: modeling the relative importance of hand hygiene and environmental cleaning interventions. *Infect Control Hosp Epidemiol* 2014;35:1156–1162.

78. Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gossel I B. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. *J Hosp Infect* 2012;80:52–55.

79. Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of *Acinetobacter baumannii* on dry surfaces. *J Hosp Infect* 2012;80:56–60.

80. Otter JA, Vickery K, Walker J, et al. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. *J Hosp Infect* 2015;89:16–27.

81. Dyar OJ, Castro-Sanchez E, Holmes AH. What makes people talk about antibiotics on social media? A retrospective analysis of Twitter use. *J Antimicrob Chemother* 2014;69:2568–2572.