Efficacy of several biological therapies for treating moderate to severe psoriasis: A network meta-analysis

WENJUN GENG, JIANHUA ZHAO, JIXING FU, HUAMIN ZHANG and SHAOHUA QIAO

Department of Dermatology, The Second Hospital of Liaocheng, Linqing, Shandong 252601, P.R. China

Received December 8, 2015; Accepted December 19, 2016

DOI: 10.3892/etm.2018.6859

Abstract. The aim of the present meta-analysis was to systematically assess the efficacy of the various treatments available for moderate to severe psoriasis. PubMed and Embase databases were systematically searched to select relevant studies up to February 2015. Odds ratios (ORs) and their 95% confidence intervals (CIs) were used as effect estimates. In addition, the Psoriasis Area and Severity Index (PASI) 50, PASI 75 and PASI 90 responses for the therapies were systematically assessed. A total of 33 randomized controlled trials were included in the present study. For the PASI 75 response rate, infliximab (5 mg) may be the most effective option for the treatment of moderate to severe psoriasis. Furthermore, the pooled results of the PASI 50 response rate demonstrated that infliximab (5 mg) and ustekinumab (90 mg) may be superior to other drugs for treating moderate to severe psoriasis. For the PASI 90 response rate, infliximab (5 mg), ustekinumab (90 mg) and briakinumab (weeks 0 and 4, 200 mg; week 8, 100 mg) exhibited improved results compared with other treatments. In conclusion, infliximab (5 mg) may be a superior option to treat moderate to severe psoriasis due to the relatively high PASI scores. However, despite the high PASI 90 responses, further studies are required to identify the efficacy of ustekinumab (90 mg) and briakinumab.

Introduction

Psoriasis is a common immune-mediated skin disease. The prevalence of psoriasis in adults ranges between 0.91 and 8.5% worldwide and the incidence of psoriasis is higher in adults than in children (1). Psoriasis is characterized by symptoms of plaque, pustular and other skin lesions. Chronic plaque psoriasis accounts for 90% of all psoriasis cases (2,3).

A number of biological therapies are used to treat moderate to severe psoriasis, including etanercept, briakinumab, ustekinumab, adalimumab and infliximab (4-8). Etanercept, adalimumab and infliximab are monoclonal antibodies against tumor necrosis factor (TNF), which function by neutralizing the biological activity of TNF for treating the TNF-mediated inflammation (5,9). By contrast, ustekinumab and briakinumab are human monoclonal antibodies against interleukin (IL)-12/23p40 (8). These biological therapies are used to treat psoriasis and improved clinical outcomes have been observed. However, the efficacy of these therapies has not been systematically reviewed.

In the present study, a network meta-analysis was performed to review and compare the efficacy of these aforementioned biological therapies of psoriasis. The Psoriasis Area and Severity Index (PASI) response (10) was used as an indicator for assessing the effect of treatment on the severity of psoriasis. PASI 50, PASI 75 and PASI 90 responses for the therapies were systematically assessed. The pooled results provide further information on selecting the most suitable treatments for moderate to severe psoriasis.

Materials and methods

Data sources. The PubMed (www.ncbi.nlm.nih.gov/pubmed) and Embase (www.elsevier.com/solutions/embase-biomedical-research) databases were systematically searched in order to select relevant studies up to February 2015. The search terms included the following: Psoriasis, methotrexate (MTX), cyclosporin A (CSA), ustekinumab, etanercept, infliximab, briakinumab and adalimumab.

Inclusion and exclusion criteria. Studies with the following characteristics were included in the current meta-analysis: i) Randomized controlled trials (RCTs) reporting the treatment of moderate to severe psoriasis with the aforementioned drugs. Moderate to severe psoriasis is defined as body surface area >10 or psoriasis area and severity index >10 and dermatology life quality index >10 (11); ii) studies including the adults as participants; and iii) studies reporting the PASI response rate (50, 75 and 90%). Any reviews, case reports and letters were excluded from the meta-analysis. Any studies investigating patients with mild psoriasis and those written in a language other than English were also excluded.

Correspondence to: Dr Wenjun Geng, Department of Dermatology, The Second Hospital of Liaocheng, 306 Jiankang Street, Linqing, Shandong 252601, P.R. China

E-mail: wenjungeng@126.com

Key words: biological therapies, psoriasis, Psoriasis Area and Severity Index, network meta-analysis
Data extraction and quality assessment. Two reviewers independently extracted the following data: The name of the first author, publication year, sample size, intervention, demographic characteristics of the included patients and PASI response rate. The controversies were discussed with a third reviewer to reach consensus. The methodological quality of the included studies was evaluated by the Cochrane Collaboration Risk of Bias Tool (12).

Statistical analysis. All analyses were performed using the ADDIS software version 1.16.5 (Drug Information and Monitoring Systems, Groningen, The Netherlands). Odds ratios (ORs) and their 95% confidence intervals (CIs) were pooled. The network analysis performed was based on the Bayesian framework. Data were evaluated by Markov chain Monte Carlo methods and all analyses were performed using the random effects model. The consistency of the RCTs was assessed by Node-splitting analysis, and the consistency model was used if P>0.05. Otherwise, the inconsistency model was used to pool the odd ratios (13).

Results

Study selection. As presented in Fig. 1, a total of 897 studies were identified from PubMed and 917 studies from Embase by the initial search. Subsequent to excluding any duplicates, 1,113 studies remained. A total of 831 irrelevant studies were excluded by reviewing the titles and abstracts. In addition, 249 studies that did not meet the inclusion criteria were excluded. Finally, 33 RCTs were included in the present study (4-9,14-40).

Characteristics of the included studies. As presented in Table I, the demographic characteristics, including age, sex and weight of the patients in the included studies were similar. Included RCTs were published between 1994 and 2015. The mean duration of psoriasis of the included patients ranged between 11.1 and 21.5 years. Quality assessment demonstrated that the quality of the included RCTs was relatively high. With respect to random sequence generation (selection bias), a number of studies were assessed as having an unclear risk of bias. With regards to blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias) and incomplete outcome data (attrition bias), a small proportion of studies were assessed as having high risk of bias (Fig. 2) and were excluded from the current study. However, the studies by Laburte et al (25) and Cassano et al (15) were not excluded as they met with the inclusion criteria despite having quite a poor rating.

Network meta-analysis. Based on the results of node-splitting analysis (Table II), the effect sizes were pooled using an inconsistency model. Regarding the PASI 75 response rate, infliximab (5 mg) was the most effective option for the treatment of moderate to severe psoriasis (Table III and Fig. 3). The pooled results of the PASI 50 response rate demonstrated that infliximab (5 mg) and ustekinumab (90 mg) may be superior to other drugs for treating moderate to severe psoriasis (Table IV). In addition, regarding the PASI 90 response rate, treatment with infliximab (5 mg), ustekinumab (90 mg) and briakinumab (weeks 0 and 4, 200 mg; week 8, 100 mg) indicated improved results compared with other agents (Table V). Finally, the drugs can be ranked in the following order according to their efficacy, defined as their PASI 90 response rate: Briakinumab > ustekinumab (90 mg) > infliximab (5 mg)> ustekinumab (45 mg) > adalimumab > infliximab (3 mg)> etanercept (50 mg BIW) > CSA (5 mg) > etanercept (25 mg BIW) > MTX > etanercept (25 mg QW) > placebo (Table VI). The odds ratio value of infliximab (5 mg) compared with the other drugs was >1, therefore, infliximab (5 mg) was regarded as the best treatment agent, although it ranked as third in terms of efficacy.

Discussion

In the present study, a network meta-analysis was performed to systematically review and compare the efficacy of seven drugs used at different doses for treating moderate to severe psoriasis. Based on the results of the network analysis, infliximab (5 mg) may be an appropriate option to treat moderate to severe psoriasis.

Psoriasis has been reported to be associated with a high concentration of TNF-α (41) and infliximab treatment can neutralize the biological activity of TNF-α (42). However, the role of the TNF-α in the pathogenesis of psoriasis remains unclear. Previous studies have reported that TNF-α may serve an important role in the upstream of the inflammatory responses of psoriasis (43,44). An in vitro study determined that infliximab was able to inhibit the activation of skin-homing T cells and impair the antigen-presenting capacity of immature dendritic cells in psoriasis patients (43). However, another TNF-α inhibitor, etanercept, has been found to be effective in the treatment of psoriasis by reducing the Th17 cell products, as well as the production of IL-17, IL-22, IL-23 and inducible NO synthase from dendritic cells (44). Thus, it has been suggested that the infliximab may serve a different role with other treatments on moderate to severe psoriasis.

Although the present meta-analysis indicated that infliximab treatment had a high PASI score, a higher percentage
Table I. Characteristics of the included studies.

First author	Year	Follow-up	Treatment	N	Age (years)	M/F	Weight (kg)	Duration of psoriasis (years)	PASI score	PASI 75	PASI 50	PASI 90 (Refs.)	
Laburte et al	1994	0.2-18.3 months	CSA 5 mg	132	40.7±12.3	90/42	72.9±3.4	17.7±11.1	25.1±8.0	117	NA	NA	(25)
Gordon et al	2006	60 weeks	Adalimumab	45	46 (20-71)	32/13	93 (63-159)	21 (1.3-57.9)	16.7 (5.4-39.0)	24	NA	NA	(17)
Menter et al	2008	16 weeks	Adalimumab	814	44.1±13.2	546/268	92.3±23.0	18.1±11.9	19.0±7.0	578	NA	366	(2)
Asahina et al	2010	24 weeks	Adalimumab	38	47.8±12.8	32/6	69.7±15.4	14.2±9.2	25.4±8.9	24	31	15	(5)
Revicki et al	2008	16 weeks	Adalimumab	164	44.8±0.8	107/57	18.6±0.9	18.4±0.7	81	121	36	(27)	
Leonardi et al	2003	12 weeks	Etanercept 50 mg BIW	164	44.5 (21.0‑80.0)	130/64	20.1±12.6	18.3±7.6	146	230	65	(36)	
Papp et al	2005	12 weeks	Etanercept 50 mg BIW	196	46.0 (20.0‑87.0)	128/68	18.4±0.9	18.3±7.6	23	65	5	(32)	
Tyring et al	2006	12 weeks	Etanercept 50 mg BIW	307	45.6±12.1	216/91	19.7±11.4	18.1±7.4	15	43	3	(37)	
van de Kerkhof et al	2008	12 weeks	Etanercept 25 mg BIW	46	45.9±12.8	59/36	83.4±16.0	19.3±11.3	21.4±9.3	36	66	13	(38)
Cassano et al	2010	12 weeks	Etanercept 50 mg BIW	36	NA	NA	NA	19	33	NA	(40)		
Strober et al	2011	12 weeks	Etanercept 50 mg BIW	139	45.2±14.8	85/54	96.9±24.9	15.2±12.1	18.5±6.0	55	NA	19	(8)
Gottlieb et al	2011	12 weeks	Etanercept 50 mg BIW	141	43.1±12.5	98/43	94.5±20.4	17.0±12.7	19.4±8.0	78	NA	32	(19)
Bagel et al	2012	12 weeks	Etanercept 50 mg BIW	62	39 (18.0‑71.0)	29/33	30.2 (18.2‑44.2)	17.5 (1.4‑45)	15.5 (8.4‑66)	37	53	16	(35)
Gottlieb et al	2003	10 weeks	Infliximab 5 mg	99	44 (34, 53)	73/26	NA	16 (10, 25)	20 (14, 28)	87	96	47	(20)
Reich et al	2005	24 weeks	Infliximab 5 mg	301	42.6±11.7	207/94	NA	19.1±11.0	22.9±9.3	227	248	161	(33)
Menter et al	2007	14 weeks	Infliximab 5 mg	314	44.5±13.0	204/107	92.2±23.2	19.1±11.7	20.4±7.5	193	252	113	(29)
Torii and Nakagawa	2010	14 weeks	Infliximab 5 mg	35	46.9±13.0	22/13	68.5±13.4	14.2±8.9	31.9±12.8	25	29	17	(35)
First author	Year	Follow-up	Treatment	N	Age (years)	M/F	Weight (kg)	Duration of psoriasis (years)	PASI score	PASI 75	PASI 50	PASI 90	(Refs.)
--------------	------	-----------	-----------	----	-------------	-----	-------------	-------------------------------	-------------	---------	---------	---------	---------
Yang et al	2012	10 weeks	Infliximab 5 mg	84	39.4±12.3	60/24	68.2±9.2	16.0±10.8	NA	68	79	48	(39)
Barker et al	2011	26 weeks	Infliximab 5 mg	653	44.1 (±18-78)	438/215	84.5±18.6	18.8±16.6	21.4±8.0	502	529	333	(14)
Yang et al	2012	10 weeks	MTX	215	41.9 (±18-69)	184/126	83.8±18.2	17.0±10.3	21.1±7.6	66	103	32	
Leonardi et al	2008	12 weeks	Ustekinumab 90 mg	256	46.2±11.3	173/83	93.8±23.9	19.6±11.1	19.7±7.6	170	220	94	(26)
Barker et al	2011	26 weeks	Ustekinumab 45 mg	255	44.8±12.5	175/80	93.7±23.8	19.7±11.7	20.5±8.6	171	213	106	
Papp et al	2012	12 weeks	Placebo	409	45.1±12.1	283/126	93.8±23.8	19.3±11.7	20.4±8.0	19.4±7.5	273	342	173
Leonardi et al	2008	12 weeks	Placebo	410	47.0±12.5	283/127	94.2±23.5	20.8±12.2	19.4±7.5	15	41	3	
Tsai et al	2011	12 weeks	Ustekinumab 45 mg	61	40.9±12.7	50/11	73.1±12.7	11.9±7.5	25.2±11.9	41	51	30	(36)
Igarashi et al	2012	12 weeks	Placebo	60	40.4±10.1	53/7	74.6±13.0	13.9±7.3	22.9±8.6	3	8	1	
Heyendael et al	2003	17-52 weeks	CSA 2.5 mg	42	41.6±13.0	29/13	NA	14.0±6.6	30	NA	22		
Flystrom et al	2008	CSA 5 mg	MTX	43	38.3±12.4	28/15	NA	13.4±6.3	26	NA	NA		
Ho et al	2010	6 months	MTX	37	48±23.7	289/15	NA	14.1±7.0	22	24	4		
Gottlieb et al	2003	24 weeks	Etanercept 25 mg BIW	57	48.2 (25-72)	33/24	Mean: 91.8	23±1.6	17.8±1.1	17	40	6	(20)
Cassano et al	2006	12 weeks	Etanercept 50 mg BIW	53	42.3 (18-73)	57/22	NA	8.7 (5.4-11.6)	29	39	NA	(15)	
Stryer et al	2010	12 weeks	Etanercept 50 mg BIW	379	46±11	243/136	NA	19±12	20±11	208	NA	NA	(7)
Antoni et al	2005	16 weeks	Infliximab 5 mg	373	47±11	230/134	NA	19±11	19±10	134	NA	NA	
McInnes et al	2013	12 weeks	Ustekinumab 45 mg	204	47.0 (38.5-54.0)	116/88	NA	14.1 (5.4-22.4)	8.4 (4.8-14.7)	93	NA	NA	
Griffiths et al	2015	12 weeks	Etanercept 50 mg BIW	371	46.9±11.4	229	NA	18.6±11.4	19.0±9.8	148	NA	NA	(6)

Data are presented as the mean ± standard deviation, or as the median (range). PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly; M/F, male/female; NA, not available; Ref, study reference number; M, mean value.
of adverse events were observed in infliximab-treated patients compared with those in the placebo group (18), indicating that infliximab treatment induces adverse effects. In addition, infliximab treatment increases the incidence of infusion reactions (45). However, these outcomes were not considered to be important due to the small sample size of each study or the fact that the data were unavailable. Thus, the therapeutic effect of the infliximab should be systematically assessed in further studies. Besides, the dosage and treatment duration of infliximab should be optimized according to the disease severity of psoriasis.

In the present study, briakinumab and ustekinumab (90 mg) treatments were superior to other treatments for PASI 90 response. Thus, anti-IL-12/23 monoclonal antibodies appear to be more appropriate compared with anti-TNF-α treatment for treating moderate to severe psoriasis. However, briakinumab and ustekinumab showed no significantly improved therapeutic effect in PASI 75 and PASI 50 responses when compared with the anti-TNF-α treatments. In addition, the long-term safety profile, including severe infections and cardiac disorders, should be evaluated in further studies with large sample sizes and strict study design.

To the best of our knowledge, the present study is the first network meta-analysis for evaluating the efficacy of various treatments for moderate to severe psoriasis. The current results may provide information for clinician and patients on the selection of the suitable treatment for moderate to severe psoriasis. However, there were also several limitations in the present meta-analysis. Firstly, due to unavailable data in certain included studies, confounding variables could not be adjusted and subgroup analysis was not performed to reduce the effect

Table II. Node-splitting analysis.

Name	Direct effect	Indirect effect	Overall	P-value
PASI 75				
Adalimumab, MTX	-1.03 (-2.13, 0.09)	-0.13 (-1.44, 1.31)	-0.81 (-1.64, 0.10)	0.28
CSA 2.5 mg, CSA 5 mg	2.15 (1.15, 3.13)	-0.55 (-2.24, 1.08)	1.47 (0.44, 2.41)	0.01
CSA 2.5 mg, MTX	0.51 (-1.71, 0.64)	2.24 (0.71, 3.77)	0.46 (-0.62, 1.48)	0.01
Etanercept 25 mg BIW	0.02 (-1.18, 1.24)	-2.70 (-4.23, -1.12)	-1.01 (-2.06, 0.07)	0.01
Etanercept 50 mg BIW	0.64 (0.08, 1.35)	-0.05 (-1.03, 0.94)	0.41 (-0.27, 1.01)	0.23
Etanercept 50 mg BIW, Placebo	-3.02 (-3.57, -2.49)	-3.18 (-4.41, -2.32)	-3.03 (-3.51, -2.58)	0.74
Etanercept 50 mg BIW, Placebo	0.46 (-0.61, 1.51)	0.51 (-0.19, 1.18)	0.48 (-0.15, 1.08)	0.9
Ustekinumab 45 mg	0.77 (-0.29, 1.80)	0.54 (-0.20, 1.20)	0.62 (-0.00, 1.23)	0.69
Ustekinumab 90 mg				
Infliximab 3 mg, Placebo	-3.86 (-5.56, -2.35)	-3.95 (-5.09, -2.86)	-3.95 (-4.95, -3.01)	0.94
Infliximab 5 mg, MTX	-2.01 (-3.06, -1.04)	-2.18 (-3.45, -0.84)	-2.08 (-2.86, -1.25)	0.83
Infliximab 5 mg, Placebo	-4.83 (-5.77, -4.02)	-4.65 (-6.16, -3.25)	-4.73 (-5.59, -4.08)	0.81
MTX, Placebo	-2.53 (-3.72, -1.49)	-2.70 (-3.69, -1.78)	-2.66 (-3.50, -1.92)	0.81
Placebo, Ustekinumab 45 mg	3.54 (2.96, 4.11)	3.44 (2.39, 4.44)	3.52 (2.99, 4.02)	0.83
Placebo, Ustekinumab 90 mg	3.60 (2.97, 4.18)	3.83 (2.83, 4.83)	3.65 (3.11, 4.17)	0.65
PASI 50				
Adalimumab, MTX	-1.51 (-2.41, -0.70)	0.04 (-1.06, 1.18)	-1.10 (-2.03, -0.21)	0.02
Etanercept 25 mg BIW	0.64 (-0.05, 1.38)	0.73 (-0.20, 1.76)	0.61 (0.02, 1.21)	0.88
Etanercept 50 mg BIW	-3.13 (-3.66, -2.70)	-3.82 (-4.93, -2.73)	-3.22 (-3.78, -2.75)	0.24
Infliximab 3 mg, Placebo	-3.11 (-4.31, -1.87)	-2.93 (-4.01, -1.89)	-3.04 (-3.92, -2.25)	0.82
Infliximab 5 mg, MTX	-1.54 (-2.19, -0.88)	-3.08 (-4.17, -2.09)	-2.02 (-2.88, -1.37)	0.01
Infliximab 5 mg, Placebo	-4.45 (5.18, -3.92)	-2.93 (-3.90, -1.90)	-4.13 (-4.79, -3.55)	0.01
MTX, Placebo	-1.42 (2.34, -0.45)	-2.57 (-3.39, -1.73)	-2.11 (-2.85, -1.31)	0.06
PASI 90				
Adalimumab, MTX	-2.04 (-3.04, -0.99)	-0.49 (-1.91, 0.86)	-1.67 (-2.58, -0.81)	0.08
Etanercept 25 mg BIW	0.86 (0.14, 1.62)	-0.03 (-1.47, 1.35)	0.75 (0.04, 1.39)	0.24
Etanercept 50 mg BIW	-3.15 (-3.90, -2.45)	-3.34 (-4.48, -2.42)	-3.16 (-3.78, -2.63)	0.76
Etanercept 50 mg BIW, Placebo	0.63 (-0.36, 1.70)	0.99 (0.12, 1.83)	0.82 (0.19, 1.48)	0.53
Ustekinumab 45 mg	1.00 (0.01, 2.02)	0.73 (-0.10, 1.59)	0.90 (0.22, 1.52)	0.61
Ustekinumab 90 mg				
Infliximab 3 mg, Placebo	-4.12 (-8.54, -2.14)	-3.54 (-4.91, -2.48)	-3.56 (-4.64, -2.64)	0.69
Infliximab 5 mg, MTX	-1.80 (-2.74, -0.87)	-2.98 (-4.73, -1.17)	-2.07 (-2.97, -1.38)	0.18
Infliximab 5 mg, Placebo	-4.46 (-6.00, -3.33)	-3.33 (-4.77, -2.10)	-3.93 (-4.80, -3.18)	0.2
MTX, Placebo	-1.24 (-2.38, -0.45)	-2.30 (-3.34, -1.40)	-1.85 (-2.60, -1.07)	0.12
Placebo, Ustekinumab 45 mg	4.15 (3.45, 4.86)	3.78 (2.83, 4.68)	3.99 (3.37, 4.61)	0.37
Placebo, Ustekinumab 90 mg	3.99 (3.22, 4.77)	4.32 (3.40, 5.28)	4.07 (3.40, 4.70)	0.44

PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly.
of the confounding variables. Secondly, due to unknown bias, the network analyses of PASI 75 and PASI 50 responses were performed using an inconsistency model. Finally, the results of the network meta-analysis should be pooled only by a random effects model. Thus, the pooled results may be conservative and certain borderline significant effects may have been ignored (46).

In conclusion, the present meta-analysis results suggested that infliximab (5 mg) may be a superior option compared with other drugs for treating moderate to severe psoriasis due to the relatively high PASI scores of patients. However, despite the high PASI 90 responses, the efficacy of ustekinumab (90 mg) and briakinumab were also high and therefore should be investigated in further studies.
Table III. Network meta-analysis of PASI 75 response rate between drugs for treating psoriasis.

Drugs	Adalimumab	Briakinumab	2.5 mg	5 mg	100 mg	25 mg BIW	25 mg QW	50 mg BIW	50 mg QW	3 mg	5 mg	MTX	Placebo	45 mg	90 mg	
Etanercept	2.25	0.31	1.50		0.37	0.43	0.10	0.55	0.25							
	(0.49,7.32)	(0.08,1.34)	(0.34,8.64)		(0.06,1.53)	(0.11,1.59)	(0.02,0.45)	(0.11,1.67)	(0.04,0.94)							
Infliximab	0.44	-	0.14	0.67	0.16	0.20	0.04	0.23	0.11							
	(0.14,0.03)	(0.03,1.01)	(0.12,6.22)		(0.04,0.61)	(0.07,0.69)	(0.01,0.19)	(0.05,1.03)	(0.03,0.37)							
CSA 2.5 mg	3.22	7.11	-	4.98	1.16	1.43	0.34	1.74	0.78							
	(0.74,12.82)	(0.99,26.73)	(1.75,13.54)		(0.13,7.39)	(0.247,30)	(0.04,0.07)	(0.23,8.30)	(0.10,4.39)							
CSA 5 mg	0.67	1.49	0.20	-	0.24	0.29	0.07	0.36	0.16							
	(0.12,2.95)	(0.16,8.29)	(0.07,0.57)		(0.02,1.67)	(0.04,1.67)	(0.01,0.47)	(0.03,1.95)	(0.01,1.02)							
Etanercept	2.73	6.15	0.86	4.15	-	1.23	0.28	1.46	0.66							
	(0.06,17.41)	(1.63,23.99)	(0.60,51.05)		(0.35,5.34)	(0.08,1.07)	(0.62,3.62)	(0.22,2.09)								
Etanercept	3.23	5.07	0.70	3.40	0.82	-	0.28	1.43	0.55							
	(0.63,8.84)	(1.44,14.66)	(0.60,27.08)		(0.19,2.89)	-	(0.06,1.16)	(0.39,4.95)	(0.15,6.65)							
Etanercept	9.73	22.27	2.97	14.40	3.55	3.60	-	5.25	2.37							
	(22.58,96)	(53.85,70)	(2.13,179.59)		(0.94,1.12)	(0.86,16.14)	(1.99,13.30)	(0.73,3.72)								
Etanercept	1.83	4.29	0.58	2.75	0.69	0.70	0.19	-	0.45							
	(0.06,9.27)	(0.97,18.85)	(0.12,34.32)		(0.28,1.62)	(0.20,2.55)	(0.08,0.50)	(0.23,0.89)								
Etanercept	4.05	9.31	1.28	6.17	1.51	1.81	0.42	2.21	-							
	(1.07,23.01)	(2.69,31.73)	(0.23,10.48)		(0.48,4.51)	(0.61,8.64)	(0.41,1.36)	(1.12,4.33)								
Placebo	30.93	84.29	11.71	55.90	13.57	16.61	3.83	20.24	9.10							
	(16.26,58.97)	(37.74,187.34)	(2.86,69.09)		(0.34,3.87)	(0.73,18.81)	(4.73,37.52)	(3.34,24.47)								
Ustekinumab	1.09	2.48	0.35	1.60	0.40	0.49	0.11	0.60	0.27							
	(0.39,5.55)	(0.98,8.47)	(0.08,1.71)		(0.13,2.16)	(0.34,1.71)	(0.04,0.37)	(0.28,1.23)	(0.10,7.4)							
Ustekinumab	0.96	2.17	0.30	1.44	0.35	0.43	0.10	0.54	0.23							
	(0.34,5.97)	(0.85,6.58)	(0.07,1.95)		(0.11,1.10)	(0.18,1.23)	(0.03,0.33)	(0.13,2.07)	(0.09,6.4)							
Ustekinumab	0.96	2.17	0.30	1.44	0.35	0.43	0.10	0.54	0.23							
	(0.34,5.97)	(0.85,6.58)	(0.07,1.95)		(0.11,1.10)	(0.18,1.23)	(0.03,0.33)	(0.13,2.07)	(0.09,6.4)							

PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly.
Table IV. Network meta-analysis of PASI 50 response rate between drugs for treating psoriasis.

Drugs	Adalimumab	CSA 5 mg	Etanercept 100 mg QW	Etanercept 25 mg BIW	Etanercept 25 mg QW	Etanercept 50 mg BIW	Infliximab 3 mg	Infliximab 5 mg	MTX	Placebo 45 mg	Placebo 90 mg
Drugs	**-**	**0.59**	**0.41**	**0.17**	**0.79**	(0.018, 0.20)	(0.59, 0.64)	(0.12, 0.72)	(0.01, 0.11)	(0.36, 0.25)	(0.47, 0.57)
Adalimumab	**-**	**0.51**	**0.35**	**0.15**	**0.67**	(0.05, 1.57)	(0.26, 0.03)	(0.17, 0.62)	(0.00, 0.13)	(0.17, 0.72)	(0.22, 0.98)
CSA 5 mg	**0.89**	**-**	**0.70**	**0.29**	**1.33**	(0.10, 2.04)	(0.05, 0.10)	(0.70, 0.67)	(0.90, 0.10)	(0.45, 0.51)	(0.45, 0.51)
Etanercept	**1.97**	**2.83**	**2.53**	**2.23**	**2.13**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
100 mg QW	**0.37**	**1.06**	**0.42**	**1.33**	**1.06**	(0.6, 1.0)	(0.05, 0.10)	(0.70, 0.67)	(0.90, 0.10)	(0.45, 0.51)	(0.45, 0.51)
Edanercept	**1.43**	**1.26**	**1.37**	**2.02**	**1.33**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
25 mg BIW	**0.67**	**1.57**	**0.26**	**2.04**	**0.50**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
25 mg QW	**1.44**	**1.83**	**0.22**	**1.33**	**1.23**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
Etanercept	**2.57**	**6.76**	**4.24**	**1.88**	**1.54**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
Infliximab	**0.57**	**0.35**	**0.23**	**0.44**	**0.35**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
3 mg	**0.64**	**0.90**	**0.59**	**2.68**	**2.13**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
MTX	**1.14**	**1.41**	**1.41**	**1.59**	**1.59**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
Placebo	**2.54**	**19.15**	**19.15**	**5.56**	**25.18**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
Ustekinumab	**0.72**	**0.83**	**0.30**	**0.12**	**0.57**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
45 mg	**0.54**	**0.63**	**0.32**	**0.92**	**0.42**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)
Ustekinumab	**0.54**	**0.63**	**0.32**	**0.92**	**0.42**	(0.70, 0.90)	(0.12, 0.72)	(0.01, 0.11)	(0.75, 0.90)	(0.75, 0.90)	(0.75, 0.90)

PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly.
Table V. Network meta-analysis of PASI 90 response rate between different drugs used to treat psoriasis.

Drugs	Adalimumab	Briakinumab	CSA 5 mg	25 mg BIW	25 mg QW	50 mg BIW	3 mg	5 mg	MTX	Placebo	45 mg	90 mg
Adalimumab	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00				
Briakinumab	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
CSA 5 mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Etanercept	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Infliximab	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Placebo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Ustekinumab	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly.

Table VI. Rank analysis of PASI 90 response rate of the drugs for treating psoriasis.

Treatment	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8	Rank 9	Rank 10	Rank 11	Rank 12
Adalimumab	0.01	0.08	0.05	0.05	0.13	0.21	0.28	0.22	0.07	0.01	0.00	0.00
Briakinumab	0.06	0.08	0.03	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00
CSA 5 mg	0.03	0.07	0.04	0.04	0.06	0.07	0.09	0.25	0.59	0.14	0.00	0.00
Etanercept 25 mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Infliximab 3 mg	0.02	0.04	0.09	0.09	0.22	0.24	0.20	0.09	0.02	0.00	0.00	0.00
MTX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.70	0.10	0.00
Placebo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.93	0.00	0.00
Ustekinumab 45 mg	0.02	0.18	0.35	0.21	0.14	0.02	0.00	0.00	0.01	0.00	0.00	0.00
Ustekinumab 90 mg	0.02	0.37	0.28	0.16	0.10	0.05	0.02	0.00	0.00	0.00	0.00	0.00

Rank 1 indicates the best rating, while Rank 12 indicates the worst rating. PASI, Psoriasis Area and Severity Index; MTX, methotrexate; CSA, cyclosporin A; BIW, twice weekly; QW, once weekly.
References

1. Parisi R, Symmons DP, Griffiths CE and Ashcroft DM: Identification and Management of Psoriasis and Associated Comorbidity (IMPACT) project team: Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol 133: 377-385, 2013.

2. Menter A, Furst DE, Feldman SR, Van Voorhees AS, Leonardi CL, Gordon KB, Lebwohl M, Koo JY, Elmets CA, Korman NJ, et al: Guidelines of care for the management of psoriasis and psoriatic arthritis: Section I. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol 58: 826-850, 2008.

3. Griffiths CE and Barker JN: Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271, 2007.

4. Antoni CE, Kavanagh A, Kirkham B, Tutuncu Z, Burmester GR, Schneider U, Furst DE, Molitor J, Keystone E, Gladman D, et al: Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: Results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum 52: 1227-1236, 2005.

5. Asahina A, Nakagawa H, Etoh T and Ohtsuki M: Adalimumab M04-688 Study Group: Adalimumab in Japanese patients with moderate to severe chronic plaque psoriasis: Efficacy and safety results from a Phase II/III randomized controlled study. J Dermatol 37: 299-310, 2010.

6. Griffiths C, Sterry W, Brock F, Dilleen M, Stefanidis D, Germain JM and Mallbris L: Pattern of response in patients with moderate-to-severe psoriasis treated with etanercept. Br J Dermatol 172: 230-238, 2015.

7. Sterry W, Ortonne JP, Kirkham B, Brocq O, Robertson D, Pedersen RD, Estojak J, Moita CT and Freundlich B: Comparison of two etanercept regimens for treatment of psoriasis and psoriatic arthritis: PRESTA, a randomised double-blind multicentre trial. BMJ 340: c417, 2010.

8. Strober BE, Crowley JJ, Yamauchi PS, Olds M and Williams DA: Efficacy and safety results from a phase III, randomized controlled trial comparing the safety and efficacy of biakumab with etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 165: 663-668, 2011.

9. Bagel J, Lynde C, Tyring S, Kricorian G, Shi Y and Kleotka P: Moderate to severe plaque psoriasis with scalp involvement: A randomized, double-blind, placebo-controlled study of etanercept. J Am Acad Dermatol 67: 86-92, 2012.

10. Schäfer J, Hacker J, Rustenbach SJ, Radtke M, Franzke N and Augustin M: Concordance of the psoriasis area and severity index (PASI) and patient-reported outcomes in psoriasis treatment. Eur J Dermatol 20: 62-67, 2010.

11. Mrowietz U, Kragballe K, Reich D, Spuls P, Griffiths CE, Nast A, Franke J, Kopp A, Avercamp C, Arenberger P, Balieva F, et al: Definition of treatment goals for moderate to severe psoriasis: A European consensus. Arch Dermatol Res 303: 1-10, 2011.

12. Higgins JP, Altman DG, Gøtzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al: Measuring its impact (PASI) and patient-reported outcomes in psoriasis treatment. Br J Dermatol 165: 663-668, 2011.

13. Cassano N, Miracapillo A, Coviello C, Loconoscope F, Bellino M and Vena GA: Treatment of psoriasis vulgaris with the two-component product calcipotriol/betamethasone dipropionate followed by different formulations of calcipotriol. Clin Drug Investig 26: 227-233, 2006.

14. Goffe BS, Gaspari AA, Ling M, Weinstein GD, Nayak A, et al: A randomized trial of etanercept as monotherapy in patients with moderate to severe chronic plaque psoriasis. J Am Acad Dermatol 51: 534-542, 2004.

15. Gottlieb AB, Leonardi C, Kerdel F, Mehlis S, Olds M and Williams DA: Efficacy and safety of biakumab vs. etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 162: 655-660, 2010.

16. Gottlieb AB, Matheson RT, Lowe N, Krueger GG, Kang S, Goffe BS, Gaspari AA, Ling M, Weinstein GD, Nayak A, et al: A randomized trial of etanercept as monotherapy for psoriasis. Arch Dermatol 139: 1627-1632, 2003.

17. Griffiths CE: Comparing biological therapies in psoriasis: Implications for clinical practice. J Eur Acad Dermatol Venereol 24: Suppl (6): S10-S14, 2010.

18. Heyndaevel VM, Spuls PI, Opremc BC, de Borgie CA, Reitsma JB, Goldschmidt WF, Bossuyt PM, Bos JD and de Rie MA: Methotrexate versus cyclosporine in moderate-to-severe chronic plaque psoriasis. N Engl J Med 349: 658-665, 2003.

19. Ho SY, Yeung CK and Chan HH: Methotrexate versus traditional Chinese medicine in psoriasis: A randomized, placebo-controlled trial to determine efficacy, safety and quality of life. Clin Exp Dermatol 35: 717-722, 2010.

20. Igarashi A, Kato T, Kato S, Song M and Nakagawa H: Japanese Ustekinumab Study Group: Efficacy and safety of ustekinumab in Japanese patients with moderate-to-severe plaque-type psoriasis: Long-term results from a phase 2/3 clinical trial. J Dermatol 39: 242-252, 2012.

21. Laburte C, Grossman R, Abi-Rached J, Abeywickrama K and Dubbertret L: Efficacy and safety of oral cyclosporin A (CyA; Sandimmun) for long-term treatment of chronic severe plaque psoriasis. Br J Dermatol 130: 366-375, 1994.

22. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT and Gordon KB: PHOENIX I study investigators: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX I). Lancet 367: 1665-1674, 2006.

23. Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitrin R, Wadlj A and Gottlieb AB: Etanercept Psoriasis Study Group: Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349: 2014-2022, 2003.

24. McNees IB, Kavanagh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, Brodermerl C, Li S, Wang Y, Mendelsohn AM, et al: Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, phase 2/3, phase 3 phase 2/3. Lancet 372: 1227-1236, 2008.

25. Menter A, Feldman SR, Weinstein GD, Papp K, Evans R, Guzzo C, Li S, Dooley LT, Arnold C and Gottlieb AB: A randomized comparison of continuous versus intermittent immunomodulator therapy with methotrexate and placebo in moderate-to-severe psoriasis. J Am Acad Dermatol 51: 804-816, 2004.

26. Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, Sterbery BE, Kaul M, Gu Y, Okun M and Papp K: Adalimumab therapy for moderate to severe psoriasis: A randomized, controlled phase III trial. J Am Acad Dermatol 58: 106-115, 2008.

27. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S, et al: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a phase II/III, double-blind, placebo-controlled trial. J Am Acad Dermatol 60: 503-511, 2008.

28. Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CE, Nakashima AM, Znitk R, van de Kerkhof PC and Melvin L: Etanercept Psoriasis Study Group: A global phase III randomized controlled trial of etanercept in psoriasis: Safety, efficacy and effect of dose reduction. Br J Dermatol 154: 1304-1312, 2006.

29. Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT and Griffiths CE: EXPRESS study investigators: Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: A phase III, multicentre, double-blind trial. Lancet 360: 1575-1581, 2002.

30. Revicki D, Willian MK, Saurat JH, Papp KA, Ortonne JP, Sexton C and Caneva A: Impact of adalimumab treatment on health-related quality of life and other clinical outcomes in patients with moderate-to-severe plaque psoriasis. J Am Acad Dermatol 58: 598-606, 2008.

31. Gottlieb AB, Evans R, Li S, Dooley LT, Guzzo CA, Baker D, Bala M, Marano CW and Menter A: Infliximab induction therapy for patients with severe plaque-type psoriasis: A randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 51: 534-542, 2004.

32. Gottlieb AB, Leonardi C, Kerdel F, Melhis S, Olds M and Williams DA: Efficacy and safety of biakumab vs. etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 158: 655-660, 2008.
35. Torii H and Nakagawa H; Japanese Infliximab Study investigators: Infliximab monotherapy in Japanese patients with moderate-to-severe plaque psoriasis and psoriatic arthritis. A randomized, double-blind, placebo-controlled multicenter trial. J Dermatol Sci 59: 40-49, 2010.

36. Tsai TF, Ho JC, Song M, Szapary P, Guzzo C, Shen YK, Li S, Kim KJ, Kim TY, Choi JH, et al: Efficacy and safety of ustekinumab for the treatment of moderate-to-severe psoriasis: A phase III, randomized, placebo-controlled trial in Taiwanese and Korean patients (PEARL). J Dermatol Sci 63: 154-163, 2011.

37. Tysinge S, Gottlieb A, Papp K, Gordon K, Leonard C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, et al: Etanercept and clinical outcomes, fatigue, and depression in psoriasis: Double-blind placebo-controlled randomised phase III trial. Lancet 367: 29-35, 2006.

38. van de Kerkhof PC, Segaert S, Lahfa M, Luger TA, Karolyi Z, Kaszuba A, Legeheb G, Camacho FM, Forsea D, Zang C, et al: Once weekly administration of etanercept 50 mg is efficacious and well tolerated in patients with moderate-to-severe plaque psoriasis: A randomized controlled trial with open-label extension. Br J Dermatol 159: 1177-1185, 2008.

39. Yang HZ, Wang K, Jin HZ, Gao TW, Xiao SX, Xu JH, Wang BX, Zhang FR, Li CY, Liu XM, et al: Infliximab monotherapy for Chinese patients with moderate to severe plaque psoriasis: A randomized, double-blind, placebo-controlled multicenter trial. Chin Med J (Engl) 125: 1845-1851, 2012.

40. Cassano N, Loconsole F, Miracapillo A, Travaglini M, Digioseppa MD, Congedo M, Galluccio A, Buquicchio R, Mastrandrea V, Filieri M, et al: Treatment of psoriasis with different dosage regimens of etanercept: Preliminary results from the Toranta plastic study group. Int J Immunopathol Pharmacol 23: 797-802, 2010.

41. Mussi A, Bonifati C, Carducci M, D’Agosto G, Pimpinelli F, D’Urso D, D’Auria L, Fazio M and Ameglio F: Serum TNF-alpha levels correlate with disease severity and are reduced by effective therapy in plaque-type psoriasis. J Biol Regul Homeost Agents 11: 115-118, 1997.

42. Cooper C, Shafran S, Greenbloom S, Enns R, Farley J, Hilzenrat N, Williams K, Elkashab M, Abadir N and Neuman M: Single-dose infliximab in hepatitis C genotype 1 treatment-naive patients with high serum tumour necrosis factor-alpha does not influence the efficacy of pegylated interferon alpha-2b/ribavirin therapy. Can J Gastroenterol Hepatol 28: 35-40, 2014.

43. Bedini C, Nasorri F, Girolomoni G, Pità Od and Cavanà A: Antitumour necrosis factor-alpha chimeric antibody (inflimab) inhibits activation of skin-homing CD4+ and CD8+ T lymphocytes and impairs dendritic cell function. Br J Dermatol 157: 249-258, 2007.

44. Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, Chen F, Magliocco M and Krueger JG: TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 175: 2721-2729, 2005.

45. Steenholt C, Svensson M, Bendtzen K, Thomsen OB, Brynskov J and Ainsworth MA: Severe infusion reactions to infliximab: aetiology, immunogenicity and risk factors in patients with inflammatory bowel disease. Aliment Pharmacol Ther 34: 51-58, 2011.

46. Van Valkenhoef G, Tervonen T, Zwinkels T, de Brock B and Hilgehe H: ADDIS: A decision support system for evidence-based medicine. Decis Support Syst 55: 459-475, 2013.