Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection

Kai Zhang a, *, Zhenqiang Fan a, Yue Huang b, Yuedi Ding a, Minhao Xie a, **

a NHC Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
b College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China

A R T I C L E I N F O

Keywords:
SARS-CoV-2
RdRp gene
CRISPR-Cas12a
MXene
PEI-Ru@Ti3C2@AuNPs

A B S T R A C T

Early diagnosis and timely management of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are the keys to preventing the spread of the epidemic and controlling new infection clues. Therefore, strengthening the surveillance of the epidemic and timely screening and confirming SARS-CoV-2 infection is the primary task. In this work, we first proposed the idea of activating CRISPR-Cas12a activity using double-stranded DNA amplified by a three-dimensional (3D) DNA walker. We applied it to the design of an electrochemiluminescent (ECL) biosensor to detect the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. We first activated the cleavage activity of CRISPR-Cas12a by amplifying the target DNA into a segment of double-stranded DNA through the amplification effect of a 3D DNA walker. At the same time, we designed an MXene based ECL material: PEI-Ru@Ti3C2@AuNPs, and constructed an ECL biosensor to detect the RdRp gene based on this ECL material as a framework. Activated CRISPR-Cas12a cleaves the single-stranded DNA on the surface of this sensor and causes the ferrocene modified at one end of the DNA to move away from the electrode surface, increasing the ECL signal. The extent of the change in electrochemiluminescence reflects the concentration of the gene to be measured. Using this system, we detected the SARS-CoV-2 RdRp gene with a detection limit of 12.8 aM. This strategy contributes to the rapid and convenient detection of SARS-CoV-2-associated nucleic acids and promotes the clinical application of ECL biosensors based on CRISPR-Cas12a and novel composite materials.

1. Introduction

SARS-CoV-2 is a positive single-stranded RNA virus that coexists with zoonotic animals and is a coronavirus. The disease caused by it was officially named Coronavirus Disease 2019 (COVID-19). High-throughput sequencing showed that the pathogenic virus is a new type of severe acute respiratory syndrome (SARS) -coronavirus (SARS-CoV-2) [1]. The source of Covid-19 infection is mainly SARS-CoV-2 infected patients, including asymptomatic infections. Respiratory droplets and contact transmission are the main transmission routes. The transmission routes such as aerosols and digestive tract have yet to be clarified. SARS-CoV-2 infected patients usually present with pneumonia-like symptoms (fever, dry cough, and dyspnea) and gastrointestinal symptoms such as diarrhea, followed by severe acute respiratory infections [2]. Some cases may have acute respiratory distress with severe respiratory symptoms, complications, and even death. At present, there is no specific treatment for SARS-CoV-2 infected patients. Early diagnosis and timely management are the keys to preventing the spread of the epidemic and controlling new infection clues [3]. Therefore, strengthening the surveillance of the epidemic and timely screening and confirming SARS-CoV-2 infection is the primary task. Reverse transcription-polymerase chain reaction (RT-PCR) to detect viral nucleic acid is considered the gold standard for diagnosing SARS-CoV-2 [4]. However, this method has higher requirements for experimental conditions, facilities, personnel, many influencing factors, operation steps, and long detection time [1]. More importantly, although the specificity of nucleic acid detection is high, due to various reasons, the false-negative rate is high, which limits the detection of nucleic acid.

* Corresponding author.
** Corresponding author.
E-mail addresses: zhangkai@jsinm.org (K. Zhang), xieminhao@jsinm.org (M. Xie).

https://doi.org/10.1016/j.talanta.2021.122868
Received 29 July 2021; Received in revised form 6 September 2021; Accepted 8 September 2021
Available online 10 September 2021
0039-9140/© 2021 Elsevier B.V. All rights reserved.
There is no doubt that the COVID-19’s rapid and accurate identification can significantly help control the emerging pandemic.

Biological protein machinery is ubiquitous in biological systems and performs various physiological functions, including mechanical drive, intracellular transport, and signal transduction [5]. Inspired by these biological machines, researchers have tried to create various artificial molecular machines and motors that can use controlled molecular-level motion to perform specific tasks. Relying on the predictability, specificity, and versatility of Watson-Crick base coordination theory, researchers have designed and synthesized various mechanical devices made of DNA molecules, including DNA Walker, DNA tweezers, DNA motors, and DNA robots [6]. DNA Walker, which can be precisely controlled on the micron or nano DNA tracks, has shown great potential in biosensor analysis [7]. At present, the emergence of three-dimensional (3D) DNA orbits has brought new perspectives to DNA walkers’ research [8,9]. Compared with the restricted one-dimensional DNA track or two-dimensional DNA origami such as the DNA Walker track, the 3D DNA track composed of micro- or nano-particles has a larger specific surface area [6]. So the three-dimensional DNA track has a more vital ability to concentrate and expand. For example, Ellington and his colleagues first developed a 3D DNA Walker on the surface of particles using the principle of catalytic hairpin self-assembly (CHA) [10]. In this way, similar DNA Walkers expand. For example, Ellington and his colleagues first developed a 3D DNA Walker on the surface of particles using the principle of catalytic hairpin self-assembly (CHA) [10]. In this way, similar DNA Walkers expand. For example, Ellington and his colleagues first developed a 3D DNA Walker on the surface of particles using the principle of catalytic hairpin self-assembly (CHA) [10]. In this way, similar DNA Walkers expand. For example, Ellington and his colleagues first developed a 3D DNA Walker on the surface of particles using the principle of catalytic hairpin self-assembly (CHA) [10]. In this way, similar DNA Walkers expand. For example, Ellington and his colleagues first developed a 3D DNA Walker on the surface of particles using the principle of catalytic hairpin self-assembly (CHA) [10].

- The electronic properties are significantly enhanced because the electrons are confined within the 2D planar structure, which makes 2D nanomaterials ideal electron transport carriers for optoelectronic sensors.
- The strong covalent bonds within the lamellae and the thickness of the atomic layers make 2D nanomaterials exhibit excellent mechanical strength, flexibility and light transmission. Among them, Ti3C2Tx (MXene), as a new 2D lamellar material, possesses high intrinsic photosensitive conversion efficiency, while the abundant functional groups on its surface enable efficient modification and good homogeneous dispersion, which makes it highly promising as an ECL material for the construction of various ECL sensors [16].

Considering that the amplification product of DNA track-based DNA Walker contains DNA double-stranded, we pioneered the combination of DNA walker and CRISPR/Cas12a amplification by using the amplification product double-stranded DNA as a linkage, in order to achieve highly sensitive detection of novel coronaviruses. This double-stranded DNA can further activate CRISPR/Cas12a, which can indiscriminately cut the single-stranded DNA on the surface of the electrode, thus causing a change in the ECL signal, which can reflect the concentration of RdRp gene to be tested. Using this detection strategy, gene detection at 12.8 aM can be achieved. Therefore, the present method has potential application in the clinical screening of SARS-CoV-2 gene.

2. Experimental section

2.1. Materials and reagent

Gold chloride trihydrate (HAuCl4·3H2O), sodium citrate, sodium borodeuteride (NaBH4) were obtained from Aladdin Biochemical Technology Co. Ltd. (Shanghai, China). Ti3C2 dispersion liquid was obtained from Jiangsu XFNANO Materials Tech. Co. Ltd. (Nanjing, China). Tris (4,4′-dicarboxylic acid-2,2′-bipyridyl) ruthenium (II) dichloride (Ru(dcbpy)2Cl2) was obtained from Suna Tech Inc. (Suzhou, China). Tris(2-carboxethyl) phosphate hydrochloride (TCEP) and 6-mercaptopentanol (MCH) were gained from Sigma-Aldrich (St Louis, MO, USA). The purified DNA sequences (Table S1) were synthesized by Genscript Bio-technology Co. Ltd. (Nanjing, China).

2.2. Preparation of the PEI-Ru@Ti3C2@AuNPs-DNA7

The PEI-Ru@Ti3C2@AuNPs-DNA7 probe was successfully synthesized with slight modification by referring to our previous literature [16]. 10 mg of Ru(dcbpy)2Cl2 and EDC (200 mM)/NHS (50 mM) were simultaneously dissolved in 5 mL of PBS (0.1 M, pH = 7.4) with
continuous stirring for 2 h. The Ti₃C₂ suspension and PEI (1%, w/v) were mixed well and added to the PBS (0.1 M, pH = 7.4) of Ru (dcbpy)₃²⁺ for 1 h. Subsequently, 600 μL of HAuCl₄ (0.01 M) and 600 μL of fresh NaBH₄ (0.01 M) were added to the above solution and stirred for 1 h. To remove excess impurities, the prepared PEI-Ru@Ti₃C₂@AuNPs were centrifuged and washed three times and redispersed in 1 mL of PBS (0.1 M, pH = 7.4).

To prepare PEI-Ru@Ti₃C₂@AuNPs-DNA7 probes, we added 200 μL of DNA7 (10 μM) to 1 mL of Ru@Ti₃C₂@AuNPs and stored in a refrigerator at 4 °C for overnight. Finally, 100 μL of MCH (100 μM) was added to reduce non-specific adsorption. In this way, PEI-Ru@Ti₃C₂@AuNPs-DNA7 probes were successfully prepared.

2.3. Preparation of 3D DNA walker

Gold nanoparticles (AuNP) with a diameter of 13 nm were prepared as follows: after heating 200 mL of HAuCl₄ solution (0.01%) to 100 °C, 5.0 mL of trisodium citrate (1%) was rapidly added to the boiling solution under continuous stirring with a rotor. The reaction mixture was then continued to stir at 100 °C for 1 h until the color of the solution turned deep red and then stored at 4 °C.

The DNA1, DNA2 and DNA3 (20 μM each) solutions were first mixed and heated to 95 °C for 10 min, and then the nucleic acid mix was cooled naturally to room temperature for approximately 4 h. Next, 40 μL of the nucleic acid mix (20 μM DNA4 and 20 μM DNA1/DNA2/DNA3 complex with a volume ratio of 20:1) was incubated with 5 mM TCEP for 15 min and then mixed with AuNPs to a total volume of 6 μL. The above solutions were then mixed with 40 μL phosphate buffer (pH 7.5, 100 mM) and 180 μL ddH₂O to make a final volume of 400 μL and incubated for 15 min at room temperature. An equal volume of 400 μL NaCl solution (2.0 M) was added to the above solution in ten drops and shaken vigorously, and then incubation was continued for 2 h at room temperature. Afterward, the excess thiol modified ligonucleotides were completely removed by centrifugation at 12 000 rpm for 15 min at 4 °C and the precipitated AuNPs were resuspended in 400 μL of 1 × PBS containing 0.01% Tween-20. Next, the above DNA-functionalized AuNP solution was mixed with 12 μL of MCH (100 μM) and incubated for 1 h, thereby sealing the excess sites on the surface of the gold nanoparticles. Then 1 × PBS containing 0.01% Tween-20 was added and washed three times by centrifugation at 12 000 rpm for 15 min at 4 °C. The DNA-functionalized AuNPs were then resuspended in 400 μL of 1 × PBS containing 0.01% Tween-20.

2.4. 3D-DNA walker and CRISPR-Cas12a assay

Different concentration of RdRp gene incubated with 100 pM DNA-AuNP (DNA1/DNA2/DNA3 complex and DNA4), 5 nM DNA5 and 320 nM DNA6 for 60 min to generate DNA2/DNA6 duplex (contains Prototype Spacer Adjacent Mass (PAM) Sequence 5’-TTTA-3’). Next, 50 μL of the above reaction solution was added into the cleavage buffer (20 mM tris HCl, 100 mM KCl, 5 mM MgCl₂, 5% glycerol, and 1 mM DTT) containing 100 nM CRISPR-Cas12a/gRNA and incubated for 30 min to remove the excess free DNA from the solution by the shearing effect of CRISPR/Cas12a. For ECL assay, the DNA7 modified PEI-Ru@Ti₃C₂@AuNPs biosensor was immersed in the above prepared mixed
solution for 20 min. The ECL signal was captured by ECL-6B which is a gift from the State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, and the scanning range was from 0 to 1.25 V. Three-electrode system was used for testing, with a modified 3 mm GCE as the working electrode, platinum wire electrode as the counter electrode and Ag/AgCl as the reference electrode.

3. Results and discussion

3.1. The working principle

As shown in Scheme 1, The system we designed contains two parts: a 3D nano-machine and a CRISPR/Cas12a-based nucleic acid amplification ECL sensor. In the first part, our nano-machine mainly contains a DNA-modified AuNP (DNA-AuNP) a walking leg (DNA5), and a fuel (DNA6). The DNA-AuNP is a conjugate with a three-stranded substrate complex (DNA1/DNA2/DNA3) and affinity ligand (DNA4) on a single AuNP. The detailed sequence information for the nano-machine is shown in Table S1. DNA1 was modified with a thiol at 5′ end to modified on the AuNP surface and hybridized with part of DNA2, which co-hybridizes to DNA3. This forms a sandwich structure with a toehold at the 5′ end of DNA2. The recognition sequences for target DNA (RdRp gene) are designed to embed in DNA4 and DNA5, respectively. The binding target DNA and DNA5 to DNA4 bring DNA5 into proximity to the AuNP surface, leading to tethered to the AuNP to form a walkable leg with the capability to perform highly effective intramolecular hybridization. The entropy-driven catalytic reaction occurs as follows: DNA5 interacts with DNA2 via toehold and displaces DNA3 from DNA1/DNA2/DNA3 complex via toehold-mediated strand displacement to expose a new toehold on DNA2. DNA6 hybridizes to the new toehold and triggers branch migration to form a DNA2/DNA6 duplex (contains PAM Sequence 5′-TTTA-3′), resulting in the complete disassembly of the DNA1/DNA2/DNA3 complex. The interaction of DNA2 with DNA5 liberates DNA4 to move along the DNA-AuNP track to react with a toehold.
on another DNA1/DNA2/DNA3 complex, triggering autonomous surface-bound DNA1/DNA2/DNA3 disassembly the formation of more DNA2/DNA6 duplex. Following this pattern of continued operation, more and more DNA2/DNA6 duplex forms and leaves the AuNP surface.

The second part of the system mainly consists of the electrochemiluminescent sensor and CRISPR/Cas12a. We ingeniously designed sequences in the DNA2/DNA6 duplex that can activate CRISPR/Cas12a activity. When the first part of the DNA walker reaction is complete, the remaining gold nanoparticles/DNA complexes in the above solution are separated from the solution by centrifugation, and CRISPR/Cas12a is added to the solution and incubated for an hour to remove the excess free DNA from the solution by the shearing effect of CRISPR/Cas12a. Before cleavage, the electrode detects a low ECL signal caused by the system because the other end of the single-stranded DNA modified on the electrode surface is modified with ferrocene (Fc), which quenches the ECL signal on the electrode surface. In contrast, when activated CRISPR/Cas12a is present in the system, CRISPR/Cas12a cuts off the single-stranded DNA, causing the ferrocene to move away from the electrode surface, resulting in an increase in the ECL signal. Therefore, the intensity of the ECL signal can reflect the concentration of the RdRp gene in the system to be tested.

3.2. Feasibility assay

We first performed the feasibility analysis of this system (Fig. 1I). When no nucleic acid to be tested was present in the system, the system showed an extremely low ECL signal (curve a) because it could not trigger the amplification system to produce DNA2/DNA6 duplex, so it could not further activate the cleavage activity of CRISPR-Cas 12a. When 1000 aM of the nucleic acid to be tested was added to the system, a large amount of DNA2/DNA6 duplex was generated and successfully activated the cleavage activity of CRISPR-Cas 12a through the amplification effect of the DNA walker on the surface of the gold electrode, which in turn led to an increase in the ECL signal (curve b). When no gold nanoparticle-modified DNA walker was present in the system, the same low ECL signal was generated because the DNA walker reaction could not be triggered and no raw DNA2/DNA6 duplex could be produced to trigger the cleavage activity of CRISPR-Cas 12a (curve c). When CRISPR-Cas 12a was not added to the system, although the nucleic acid to be tested was able to trigger the DNA walker reaction and produce DNA2/DNA6 duplex, CRISPR-Cas 12a was not present in the system and therefore did not cleave DNA7 on the electrode surface, and thus, only a low ECL signal was obtained (curve d). All these data corroborate the mechanism of this experiment and prove the feasibility of our designed system.

3.3. SEM characterization of PEI-Ru@Ti3C2@AuNPs

The PEI-Ru@Ti3C2@AuNPs composites were characterized by EDX (Energy dispersive X-ray spectroscopy) mapping as shown in Fig. 1(II). Fig. 1(II)A shows the SEM image of the composites, and it can be seen that the major elements, C (Fig. 1(II)B), N (Fig. 1(II)C), Au (Fig. 1(II)D),
The mechanism of the ECL biosensor

The ECL enhancement mechanism of the ternary system (Ru(bpy)$_3^2^+$/PEI/TiS$_2$C$_2$) can be summarized as follows: (1) the co-reactants are modified PEI modified on MXene; (2) PEI is directly oxidized to PEI$^+$ under applied voltage and then directly deprotonated to PEI• radicals (PEI•); (3) PEI• reduced Ti$_3$C$_2$/Ru(bpy)$_3$ to form Ti$_3$C$_2$/Ru(bpy)$_3^{2+}$, which in turn reacts with PEI• in the oxidized state to form Ti$_3$C$_2$/Ru(bpy)$_3^{2+}$•. Eventually, Ti$_3$C$_2$/Ru(bpy)$_3^{2+}$• is finally converted to Ru(bpy)$_3$ and the ECL light signal is generated.

3.5. Characterization of electrode modification process

Electrochemical impedance spectroscopy (EIS), an effective method to probe the interfacial properties of electrode surface modifications, was also used to characterize the interfacial changes during the preparation of DNA walker and CRISPR-Cas12a based biosensors, and the results are shown in Fig. 2A. The impedance plot of the bare gold electrode shows that the native impedance semicircle diameter is less than 200 (curve a), which indicates that the bare gold electrode has excellent conductivity and low impedance. When PEI-Ru/Ti$_3$C$_2$/AuNPs were modified on the electrode surface and became a uniform film, the electrode impedance increased significantly (curve b), which is mainly due to the dense PEI-Ru/Ti$_3$C$_2$/AuNPs film hindering the electron transfer, thus leading to a more significant impedance of the sensor. When DNA7 was assembled on the electrode surface through Au-S bonding, the impedance of the biosensor increased significantly (curve c). This indicates that DNA7 further hinders the electron transfer. When MCH was modified on the AuNP surface, the impedance value increased further (curve d), indicating that MCH sealed the electrode surface even further. When the prepared biosensor was incubated with the DNA2/DNA6 duplex activated CRISPR Cas12a/gRNA complex, the impedance value of the biosensor decreased significantly (curve e), indicating that DNA7 was cleaved by the CRISPR Cas12a/gRNA complex, resulting in an increased electron transfer rate. Therefore, this data suggests the successful assembly of the target sensor.
Therefore, we next chose 20 min as the time of CRISPR-Cas12a treatment of the electrode.

3.7. Detection of SARS-COV-2 RdRp gene with the 3D DNA walker and CRISPR-Cas12 biosensor

Under the optimized conditions, we used the ECL biosensor system to detect the SARS-COV-2 RdRp gene. Fig. 3A depicts the increase in ECL signal intensity as the SARS-COV-2 RdRp concentration increased from 10 aM to 500 aM. The reason may be due to the fact that the RdRp gene triggers a 3D walker reaction on the gold electrode surface and generates a DNA2/DNA6 duplex. This duplex further activates the cleavage activity of CRISPR-Cas12a. The activated activity of CRISPR-Cas12a cleaves the DNA7 on the electrode surface, causing an increase in ECL signal. Fig. 3B insert also depicts an excellent linear relationship between the change in ECL signal intensity and the concentration of the RdRp gene, i.e., ECL = 3.84163 × C(RdRp) + 314.72, R² = 0.9952. The detection limit was 12.8 aM. In addition, we also did a comparison data between the gene to be tested and the previously reported SARS-COV-2 gene (Table 1). We can see that our detection system has a more comprehensive linear range and lower detection limit compared to conventional sensors.

3.8. Specificity and stability of the strategy

Specificity and stability are essential metrics for evaluating CRISPR-Cas12a and 3D DNA walker-based biosensors for RdRp gene detection. Therefore, next, we tested various nucleic acids to assess the specificity and stability of our constructed biosensing system (Fig. 4A). We selected a blank solution (no target DNA), SARS-COV RdRp gene (COV, 1 fM), ORF1b-COVID (OC, 1 fM) DNA1 with random mutation sites (M1, 1 fM), and DNA2 with random mutation sites (M2, 1 fM) as controls. As shown in Fig. 4A, there was no significant difference in the electrochemiluminescence signal after using the blank solution, SARS-COV RdRp gene, DNA1 with random mutation sites and DNA2 with random mutation sites acting on this assay system. In contrast, the electrochemiluminescence signal had a greater degree of variation after acting the SARS-CoV-2 RdRp gene (1 fM) on the CRISPR-Cas12a-based assay system. The reason for this experimental phenomenon may be that DNA containing the gene mutation site cannot promote the 3D DNA walker reaction on the surface of gold nanoparticles, and therefore does not activate the shearing activity of CRISPR-Cas12a. The results show that our constructed CRISPR-12a-based and 3D DNA walker has good selectivity for the RdRp gene of SARS-COV-2.

Stability is also an important performance indicator for the success of CRISPR-Cas12a and 3D DNA walker-based biosensor construction. We measured the stability of the electrochemiluminescence signal, and the results are shown in Fig. 4B. It can be seen from the figure that the electrochemiluminescence signal of this biosensor has good stability (RSD = 4.21%) despite performing twenty scans three times. Thus, this indicates that the constructed CRISPR-Cas12a and 3D DNA walker-based biosensor is expected to be used for the detection of SARS-COV-2 RdRp gene.

3.9. Real sample analysis in pharyngeal swabs

The detection capability of biosensors in real samples is a key metric to assess the potential clinical applications of the sensors. To examine the potential applications of ECL biosensors in clinical medicine. We performed recovery experiments by detecting the signal response of different concentrations of RdRp gene added in pharyngeal swabs according to the standard addition method. As described in Table S2, the experimental recoveries ranged from 98.97% to 102.51%, and the RSD values ranged from 3.2% to 4.57%. It indicates that the novel ECL biosensor has a good signal response for RdRp and can be applied to

Table 1

Method	Target	LOD	Reference
RT-qPCR RdRp gene	1.26 aM	[24]	
E gene	1.73 aM		
RT-qPCR ORF1b/N	4.15 aM	[25]	
Colorimetric N gene	43 nM	[26]	
Real-time optomagnetic	0.4 fM	[27]	
Dual-functional plasmonic RdRp gene	0.22 fM	[28]	
Electrochemical ORF1ab gene	0.33 fM	[29]	
Reverse-transcription recombinase-aided amplification assay N gene	3.32 aM	[30]	
ECL RdRp gene	2.67 aM	[3]	
ECL RdRp gene	12.8 aM	This work	

Fig. 4. (A) The specificity of ECL biosensor for different DNA; (B) The stability of ECL biosensor.
detect RdRp gene in real samples.

4. Conclusions

Unlike most 1D or 2D DNA nanomachines, our 3D DNA walker is built on a 3D DNA AuNP track. Combining all DNA components on a single AuNP ensures space for DNA walking. The corresponding increase in the effective local concentration of DNA probes also accelerates the entropy-based drive reaction, enabling the 3D DNA walker to perform the task of rapid release of double-stranded DNA (the activated nucleic acid sequence of CRISPR-12a). The concept of integrating multiple functional nucleic acids on a single nanoparticle and releasing CRISPR-12a triggered nucleic acid sequences also makes it easier to scale up the functionality of isothermal amplification and CRISPR-12a based detection strategies, making it a highly sensitive and fast nano-sensor system for novel coronavirus target nucleic acids. More importantly, the 3D DNA walker technology can accurately distinguish between the RdRp genes of SARS-CoV and SARS-CoV-2. In the context of the SARS-CoV-2 outbreak, the biosensor can provide a reliable and easy-to-implement diagnostic platform to improve the diagnostic accuracy of clinical tests and reduce the pressure of traditional PCR assays. Thus, our design of the 3D DNA walker and CRISPR-12a assay system opens up new concepts and strategies for the design of biosensing systems that may lead to the development of new DNA nanodevices, nucleic acid diagnostics, and biosensors.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21705061), the Jiangsu Provincial Key Medical Discipline (Laboratory) (ZDXKA2016017), and the Innovation Capacity Development Plan of Jiangsu Province (BM20180232).

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi.org/10.1016/j.talanta.2021.122868.

Credit author statement

Kai Zhang: Conceptualization, Drafting the manuscript, Methodology, Zhengqiang Fan: acquisition of data, Analysis of data, Yue Huang: Methodology. Yuedi Ding: Analysis of data. Minhao Xie: Conceptualization, Resources

References

[1] T. Ji, Z. Liu, G. Wang, X. Guo, S. Akbar khan, C. Lai, H. Chen, S. Huang, S. Xia, B. Chen, H. Jia, Y. Chen, Q. Zhou, Detection of COVID-19: a review from sample to result, Biosens. Bioelectron. 178 (2020) 112455, https://doi.org/10.1016/j.bios.2020.112455.
[2] R. Nouri, Z. Tang, M. Dong, T. Liu, A. Kh siragyar, W. Guan, CRISPR-based detection of SARS-CoV-2: a review from sample to result Biosens, Bioelectron 178 (2020) 113012, https://doi.org/10.1016/j.bios.2020.113012.
[3] Z. Fan, B. Yao, Y. Ding, J. Zhao, M. Xie, K. Zhang, Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with dimethylthiodiaminoterephthalate fluorophore and self-assembled DNA tetrahedron nanostructures probe, ACS Appl. Mater. Interfaces 12 (10) (2020) 14372–14379, https://doi.org/10.1021/acsami.9b17044.
[4] F. Wu, Y. Zhou, H. Zhang, R. Yuan, Y. Chai, Electrochemiluminescence peptide-based biosensor for detection of SARS-CoV-2: a review from sample to result, Biosens. Bioelectron. 178 (2020) 113012, https://doi.org/10.1016/j.bios.2020.113012.
[5] K. Zhang, Z. Fan, B. Yao, Y. Ding, J. Zhao, M. Xie, K. Zhang, Wu Huang, Dual wavelength electrochemiluminescence ratiometric biosensor for detection of SARS-CoV-2 RdRp coding sequence, Sensors 20 (2020) 4996–5002, https://doi.org/10.3390/s20154996.
sequence Biosens. Bioelectron 165 (2020) 112356, https://doi.org/10.1016/j.
bios.2020.112356.
[28] G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection, ACS Nano 14 (5) (2020) 5268–5277, https://doi.org/10.1021/acsnano.0c02439.
[29] H. Zhao, F. Liu, W. Xie, T. Zhou, J. OuYang, L. Jin, H. Li, C. Zhao, L. Zhang, J. Wei, Y. Zhang, C. Li, Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone, Sensor. Actuator. B Chem. 327 (2021) 128899, https://doi.org/10.1016/j.
snb.2020.128899.
[30] T. Wu, Y. Ge, K. Zhao, X. Zhu, Y. Chen, B. Wu, F. Zhu, B. Zhu, L. Cai, A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), Virology 549 (2020) 1–4, https://doi.org/10.1016/j.virol.2020.07.006.