Nonlinear absorption of high-intensity shortwave radiation in plasma within relativistic quantum theory

H.K. Avetissian¹, A.G. Ghazaryan¹, H.H. Matevosyan², and G.F. Mkrtchian¹

¹ Centre of Strong Fields Physics, Yerevan State University, 1 A. Manukian, Yerevan 0025, Armenia and
² Plasma Theory Group, Institute of Radiophysics and Electronics, NAS RA, 0203 Ashtarak, Armenia
(Dated: July 15, 2015)

On the base of the quantum kinetic equation for density matrix in plasma at the stimulated bremsstrahlung of electrons on ions, the nonlinear absorption rate for high-intensity shortwave radiation in plasma has been obtained within relativistic quantum theory. Both classical Maxwellian and degenerate quantum plasma are considered for x-ray lasers of high intensities. Essentially different dependences of nonlinear absorption rate on polarization of strong laser radiation is stated.

PACS numbers: 52.38.Dx, 05.30.-d, 42.55.Vc, 78.70.Ck

I. INTRODUCTION

At present, due to the rapid advance in free electron laser (FEL) technology [1–3] became real the implementation of ultrashort laser pulses in x-ray domain exceeding the intensities 10^{20} W/cm2. For such intensities the electron-wave field energy exchange over a x-ray wavelength is larger than the photon energy, and the laser-matter interaction has essentially multiphoton character [4]. Thus, in recent decade the wide research field is opened up, where common nonlinear effects are extended to high energy transitions for various systems - from atoms [5–9], through molecules [10–13], to plasma and solid samples [14–19]. Among the fundamental processes of laser-plasma interaction, the inverse bremsstrahlung absorption of an intense laser field in plasma is one of the contemporary problems that have applications ranging from plasma diagnostics to thermonuclear reactions and generation of intense x-ray radiation. Note that in the field of intense x-ray laser, an electron may gain considerable energies absorbing even of a few quanta, which makes it as an effective mechanism for laser-plasma heating. The theoretical description of this phenomenon in such superstrong radiation fields requires one to go beyond the scope of common Quantum Electrodynamics - Feynman diagrams corresponding to the perturbation theory.

With the advent of lasers many pioneering papers have been devoted to the theoretical investigation of the electron-ion scattering processes in gas or plasma in the presence of a laser field using nonrelativistic [20–31] as well as relativistic [32–36] considerations. The appearance of superpower ultrashort laser pulses of relativistic intensities has triggered new interest in stimulated bremsstrahlung (SB) in relativistic domain, where investigations were carried out in the Born [35–39], eikonal [34], and generalized eikonal [40] approximations over the scattering potential. Beyond this approximation for the infrared and optical lasers, in the multiphoton interaction regime, one can apply classical theory and the main approximation in the classical theory is low frequency or impact approximation [25–28]. Low frequency approximation have been generalized for relativistic case in Refs. [39, 40], where the effect of an intense EM wave on the dynamics of SB and nonlinear absorption of intense laser radiation by a monochromatic electron beam and by relativistic plasma due to the SB have been carried out. For the infrared and optical lasers the quantum effects in the SB process is smeared out due to smallness of the photon energy. Meanwhile for a intense x-ray radiation the quantum nonlinear over the field effects will be considerable. Besides, relativistic quantum effects may be essential for plasmas of high densities [41, 42]. Regarding the solid densities, absorption coefficient may reach considerably large values. As was shown in Ref. [43], where interaction of superstrong lasers with thin plasma targets of solid densities was investigated via particle-in-cell simulations, the inverse-bremsstrahlung absorption is dominant for electron densities above 10^{21} cm$^{-3}$. Thus, it is of interest to consider x-ray multiphoton absorption via inverse bremsstrahlung in ultradense classical as well as quantum plasmas.

In the present paper the inverse-bremsstrahlung absorption of an intense x-ray laser field in the dense classical and quantum plasmas is considered in the relativistic-quantum regime considering a wave-field exactly, while a scattering potential of a plasma ions as a perturbation. The x-ray radiation power absorbed in plasma is investigated for a circularly and linearly polarized waves (CPW and LPW, respectively) arising from the second quantized consideration. The Liouville-von Neumann equation for the density matrix is solved analytically for a grand canonical ensemble. With the help of this solution we investigate the nonlinear inverse-bremsstrahlung absorption rate for Maxwellian as well as for degenerate quantum plasmas. It is shown that depending on the intensity of an incident x-ray, one can achieve the quite large absorption coefficients. Hence the considered mechanism may serve as an efficient tool for ultrafast plasma heating.

The organization of the paper is as follows. In section II, the relativistic quantum dynamics of SB is presented with analytical results for density matrix and inverse-bremsstrahlung absorption rate. In section III, we consider the problem numerically. Finally, conclusions are.
II. BASIC MODEL AND THEORY

Let us consider the relativistic quantum theory of plasma nonlinear interaction with the arbitrary strong EM wave field by microscopic theory of electrons-ions interaction on the base of a single particle density matrix. The EM wave with the four-wave vector \(k \equiv (\omega/c, \mathbf{k}) \) is described by the four-vector potential

\[A^\mu = (0, \mathbf{A}), \]

where \(\mathbf{A}(\tau) = A_0\{e_1 \cos \omega \tau + e_2 g \sin \omega \tau\}; \]

\[\tau = t - \frac{\nu_0 r}{c}; \quad \nu_0 = \frac{c k}{\omega}; \quad e_1 \nu_0 = e_2 \nu_0 = e_1 e_2 = 0, \]

with the amplitude \(A_0 \), unit polarization vectors \(e_{1,2} \) and ellipticity parameter \(g \). The ions are assumed to be at rest and being either randomly or nonrandomly distributed in plasma, the static potential field of which (for nucleus/ion -as a scattering center- the recoil momentum is neglected) is described by the scalar potential

\[A^{(e)}(x) = (\varphi (r), 0), \]

where

\[\varphi(r) = \sum_i N_i \varphi_i (r - R_i). \]

Here \(\varphi_i \) is the potential of a single ion situated at the position \(R_i \), and \(N_i \) is the number of ions in the interaction region.

To investigate the quantum dynamics of SB we need the quantum kinetic equations for a single particle density matrix, which can be derived arising from the second quantized formalism. As is known, the Dirac equation allows the exact solution in the field of a plane EM wave (Volkov solution). Although the Volkov states are not stationary, as there are no real transitions in the monochromatic EM wave field (due to the violation of energy and momentum conservation laws), the state of an electron with a charge \(e \) and mass \(m \) in an EM wave field can be characterized by the quasimomentum \(\Pi \) and polarization \(\sigma \), and the particle state in the field \(\Pi, \sigma \) is given by the wave function:

\[\Psi_{\Pi,\sigma} = \left[1 + e^{(\gamma A)} \right] \frac{u_\sigma(p)}{\sqrt{2E_\Pi}} \exp \left[-\frac{i}{\hbar}\Pi x\right] \]

\[\times \exp \left\{ \frac{i}{\hbar} \frac{eA_0}{c(pk)} (e_1 p \sin \omega \tau - g e_2 p \cos \omega \tau) \right\} \]

\[- \frac{e^2 A_0^2}{8c^2(pk)} (1 - g^2) \sin(2\omega \tau) \right\}, \]

where \(V \) is the quantization volume, \(u_\sigma \) is the spinor amplitude of a free Dirac particle with polarization \(\sigma \), and \(\Pi = (E_\Pi/c, \mathbf{p}) \) is the average four-kinetic momentum or “quasimomentum” of the particle in the periodic field, which is determined via a free particle four-momentum \(p = (E/c, \mathbf{p}) \) and relativistic invariant parameter of the wave intensity \(\xi_0 = eA_0/mc^2 \) by the following equation

\[\Pi = p + k \frac{m^2 c^2}{4kp} (1 + g^2) \xi_0^2. \]

From this equation follows that

\[\Pi^2 = m^* c^2; \quad m^* = m \left(1 + \frac{1 + g^2}{2} \xi_0^2\right)^{1/2}, \]

where \(m^* \) is the effective mass of the particle in the monochromatic wave. The states \(| \Pi, \sigma \rangle \) are normalized by the condition

\[\int \Psi_{\Pi,\sigma}^\dagger \Psi_{\Pi,\sigma} d\mathbf{r} = \frac{(2\pi\hbar)^3}{V} \delta(\Pi - \Pi') \delta_{\sigma,\sigma'}. \]

Cast in the second quantization formalism, the Hamiltonian is

\[\mathcal{H} = \int \hat{\Psi}^+ \hat{\Pi}_0 \hat{\Psi} d\mathbf{r} + \mathcal{H}_{sb}, \]

where \(\hat{\Psi} \) is the fermionic field operator, \(\hat{\Pi}_0 \) is the one-particle Dirac Hamiltonian in the plane EM wave \(\Pi, \sigma \), and the interaction Hamiltonian is

\[\mathcal{H}_{sb} = \frac{1}{c} \int \hat{j} A^{(e)} d\mathbf{r}, \]

with the current density operator

\[\hat{j} = e \hat{\Psi}^+ \gamma_0 \gamma_1 \hat{\Psi}. \]

Making Fourier transformation

\[A^{(e)}(x) = \frac{1}{(2\pi)^3} \int A^{(e)}(q) e^{-iqr} d\mathbf{q}, \]

the expression \(\mathcal{H}_{sb} \) will have a form

\[\mathcal{H}_{sb} = \frac{1}{c(2\pi)^3} \int \hat{\Psi}^+ V(\mathbf{q}) e^{-iqr} \hat{\Psi} d\mathbf{q} d\mathbf{r}, \]

where

\[V(\mathbf{q}) = \int N_i e \varphi_i (r - R_i) e^{-iqr} d\mathbf{r}. \]

We pass to the Furry representation and write the Heisenberg field operator of the electron in the form of an expansion in the quasistationary Volkov states \(| \Pi, \sigma \rangle \)

\[\hat{\Psi}(r, t) = \sum_\sigma \int d\mathbf{r_0} \hat{\Psi}_{\Pi_0,\sigma} e^{\frac{i}{\hbar}E_{\Pi_0} t} \Psi_{\Pi_0,\sigma}(r, t), \]

\[\Psi_{\Pi_0,\sigma}(r, t). \]
where \(d\Phi_\Pi = \Gamma d^3\Pi / (2\pi \hbar)^3 \). In Eq. (11) we have excluded the antiparticle operators, since contribution of electron-positron intermediate states will be negligible for considered intensities and photon energies \(\varepsilon_\gamma = \hbar \omega \ll mc^2 \). The creation and annihilation operators, \(\hat{a}_{\Pi,\sigma}^+(t) \) and \(\hat{a}_{\Pi,\sigma}(t) \), associated with positive energy solutions satisfy the anticommutation rules at equal times

\[
\{ \hat{a}_{\Pi,\sigma}^+(t), \hat{a}_{\Pi',\sigma'}^+(t') \} = (2\pi \hbar)^3 \frac{\delta (\Pi - \Pi')}{V} \delta_{\sigma,\sigma'},
\]

(12)

\[
\{ \hat{a}_{\Pi,\sigma}^+(t), \hat{a}_{\Pi',\sigma'}(t') \} = 0.
\]

(13)

Taking into account Eqs. (11), (8), (7) and (3), the second quantized Hamiltonian can be expressed in the form

\[
\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{sb} (t).
\]

(14)

The first term in Eq. (11) is the Hamiltonian of Volkov dressed electron field

\[
\mathcal{H}_0 = \sum_\sigma \int d\Phi_\Pi E_\Pi \hat{a}_{\Pi,\sigma}^+ \hat{a}_{\Pi,\sigma},
\]

(15)

while the second term

\[
\mathcal{H}_{sb} (t) = \sum_{\sigma,\sigma'} \int d\Phi_\Pi \int d\Phi_{\Pi'} M_{\Pi',\sigma';\Pi,\sigma} (t) \hat{a}_{\Pi',\sigma'}^+ \hat{a}_{\Pi,\sigma}
\]

(16)

is the interaction Hamiltonian describing the SB with amplitudes

\[
M_{\Pi',\sigma';\Pi,\sigma} (t) = \frac{1}{V} \sum_{s=-\infty}^{\infty} e^{-is\omega t} M_{\Pi',\sigma';\Pi,\sigma}^{(s)}(t)
\]

(17)

\[
M_{\Pi',\sigma';\Pi,\sigma}^{(s)}(t) = \frac{V (q_s)}{2c \sqrt{E_\Pi E_{\Pi'}}} \Pi_{\sigma'}(p') \times \left[e_0 B_s + \left(\frac{e B_{1s} \hat{k} e_0}{2c (kp)} + \frac{e \hat{k} e_0 B_{1s}}{2c (kp)} \right) \right.
\]

\[
+ \frac{e^2 (k e_0) B_{2s}}{2c^2 (kp) (kp')} \right] \eta_s (p).
\]

(18)

In Eq. (18) the vector functions \(B_{1s}^\mu = (0, B_{1s}) \) and scalar functions \(B_s, B_{2s} \) are expressed via the generalized Bessel functions \(G_s (\alpha, \beta, \varphi) \):

\[
G_s (\alpha, \beta, \varphi) = \sum_{k=-\infty}^{\infty} J_{2k-s} (\alpha) J_k (\beta) e^{i(s-2k)\varphi},
\]

(19)

\[
B_{1s} = \frac{A_0}{2} \left(e_1 (G_{s-1} + G_{s+1}) \right)
\]

(20)

\[
B_s = G_s (\alpha, \beta, \varphi),
\]

(21)

\[
B_{2s} = \frac{A_0^2}{2} (1 + g^2) G_s + \frac{A_0^2}{2} (1 - g^2)
\]

(22)

\[
\times (G_{s-2} + G_{s+2})
\]

(23)

is the recoil momentum. The definition of the arguments \(\alpha, \beta, \varphi \) are:

\[
\alpha = \frac{e A_0}{\hbar c} \left[\left(\frac{e p_k}{\hbar^2} - \frac{e p'_k}{\hbar^2} \right)^2 + g^2 \left(\frac{e^2 p_k}{\hbar^2} - \frac{e^2 p'_k}{\hbar^2} \right)^2 \right]^{1/2},
\]

(24)

\[
\beta = \frac{e^2 A_0^2}{8 \hbar^2} \left(1 - g^2 \right) \left(\frac{1}{p_k} - \frac{1}{p'_k} \right),
\]

(25)

\[
\tan \varphi = \frac{g}{\left(\frac{e p_k}{\hbar^2} - \frac{e p'_k}{\hbar^2} \right)}.
\]

(26)

Thus, in order to develop microscopic relativistic quantum theory of the multiphoton inverse-bremsstrahlung absorption of ultrastrong shortwave laser radiation in plasma we need to solve the Liouville-von Neumann equation for the density matrix \(\hat{\rho} \):

\[
\frac{\partial \hat{\rho}}{\partial t} = i \hbar [\hat{\rho}, \mathcal{H}_0 + \mathcal{H}_{sb} (t)],
\]

(27)

with the initial condition

\[
\hat{\rho} (-\infty) = \hat{\rho}_G.
\]

(28)

Here \(\hat{\rho}_G \) is the density matrix of the grand canonical ensemble:

\[
\hat{\rho}_G = \exp \left[\frac{1}{T_e} \left(\omega + \sum_\sigma \int d\Phi_\Pi (\mu - E_\Pi) \hat{a}_{\Pi,\sigma}^+ \hat{a}_{\Pi,\sigma} \right) \right].
\]

(29)

In Eq. (29) \(T_e \) is the electrons temperature in energy units, \(\mu \) is the chemical potential, and \(\Omega \) is the grand potential. Note that the initial one-particle density matrix in momentum space is

\[
\rho_{\sigma_1,\sigma_2} (\Pi_1, \Pi_2, -\infty) = \text{Tr} \left(\hat{\rho}_G \hat{a}_{\Pi_1,\sigma_2} \hat{a}_{\Pi_1,\sigma_1} \right)
\]

(30)
We consider Volkov dressed SB Hamiltonian $H_{ab}(t)$ as a perturbation. Accordingly, we expand the density matrix as

$$\hat{\rho} = \hat{\rho}_G + \hat{\rho}^{(1)}.$$

Then taking into account the relations

$$\left[\hat{a}_{\Pi,s}^+, \hat{a}_{\Pi,s} \hat{\rho}_G \right] = \left(1 - e^{\frac{i}{\hbar} (E_n - E_{\Pi,1})} \right) \hat{\rho}_G \hat{a}_{\Pi,s}^+ \hat{a}_{\Pi,s}^\dagger,$$

and

$$\left[\hat{\rho}_G, H_0 \right] = 0,$$

for $\hat{\rho}^{(1)}$ we obtain

$$\hat{\rho}^{(1)} = \frac{1}{\hbar} \int_{-\infty}^{t} dt' \sum_{\sigma \sigma'} \int d\Phi_1 \int d\Phi_2 M_{\Pi,s, \sigma'} \Pi_{s, \sigma} (t') \times e^{\frac{i}{\hbar} (t' - t)(E_n - E_{\Pi,1})} \left(1 - e^{\frac{i}{\hbar} (E_n - E_{\Pi,1})} \right) \hat{\rho}_G \hat{a}_{\Pi,s}^+ \hat{a}_{\Pi,s}^\dagger. \quad (32)$$

Now with the help of this solution one can calculate the desired physical characteristics of the SB process. In particular, for the energy absorption rate by the electrons due to the inverse stimulated bremsstrahlung one can write

$$\frac{d\mathcal{E}}{dt} = \text{Tr} \left(\hat{\rho}^{(1)} \frac{\partial H_{ab}(t)}{\partial t} \right). \quad (33)$$

It is more convenient to represent the rate of the inverse-bremsstrahlung absorption via the mean number of absorbed photons by per electron, per unit time:

$$\frac{dN_{e}}{dt} = \frac{1}{\hbar \omega N_e} \frac{d\mathcal{E}}{dt}, \quad (34)$$

where N_e is the number of electrons in the interaction region. Taking into account decomposition

$$\left(1 - e^{\frac{i}{\hbar} (E_1 - E_2)} \right) \text{Tr} \left(\hat{\rho}_G \hat{a}_1^+ \hat{a}_2^+ \hat{a}_3 \hat{a}_4 \right)$$

$$= \left(1 - e^{\frac{i}{\hbar} (E_1 - E_2)} \right) n_1 (1 - n_2) \delta_{23} \delta_{14},$$

with the help of Eqs. (32), (33), (34), and (18) for large t we obtain

$$\frac{dN_{e}}{dt} = \sum_{s=1}^{\infty} \frac{dN_{e}}{dt} (s), \quad (35)$$

where the partial s-photon absorption rates are given by the formula

$$\frac{dN_{e}}{dt} (s) = \frac{8\pi s}{\hbar N_e V^2} \int \int d\Phi_1 d\Phi_2 \left| \mathcal{E} \right|^2 \left\| B_{\Pi,1}^{(s)} \right\|^2 \times \delta (E_{\Pi,1} - E_{\Pi,1} + s\omega) \left(1 - e^{-\frac{i}{\hbar} (E_n - E_{\Pi,1})} \right) \times n (E_{\Pi,1}) (1 - n (E_{\Pi,1})), \quad (36)$$

where

$$\left| B_{\Pi,1}^{(s)} \right|^2 = \frac{\left| \mathcal{E} E_{\Pi,1} \right|^2}{\left(k_p \right)^2} \left(\frac{\omega^2 E_{\Pi,1}^2}{2e^2(k_p)} \right)^2 \times \frac{h^2 q_e^2 c^2}{4} |B_s|^2 + \frac{\omega^2 |k_0 q_e|^2}{4(k_p)(k_p)} |B_{1A}|^2 - \text{Re} (B_{2A} B_{2A}^*), \quad (37a)$$

and $\delta(x)$ is the Dirac delta function that expresses the energy conservation law in SB process. The obtained expression for the absorption rate is general and applicable to arbitrary polarization, frequency and intensity of the wave-field. This formula is applicable for a grand canonical ensemble and is always positive. With the help of Eqs. (36) and (35) one can calculate the nonlinear inverse-bremsstrahlung absorption rate for Maxwellian, as well as for degenerate quantum plasmas.

III. NUMERICAL RESULTS AND DISCUSSION

For the obtained absorption rate (36) one need to concretize the ionic potential $V(q_s)$. For s single ion of charge number Z_a we will assume screening Coulomb potential with radius of screening κ_e^{-1} as a function of the plasma temperature and density of electrons n_e:

$$\kappa_e = \left(4\pi e^2 n_e \right)^{1/2}.$$

Thus, taking into account the plasma quasi-neutrality ($Z_a N_i = N_e$), we have

$$\left| V(q_s) \right|^2 = N_e \frac{16\pi^2 Z_a e^4}{(q_s^2 + \kappa_e^2)^2}. \quad (38)$$

Integrating in Eq. (36) over $E_{\Pi,1}$ we will obtain the following expression for partial absorption rates:

$$\frac{dN_{e}}{dt} (s) = \frac{\pi^2 e^4 s}{\pi^3 h^3 c^4} \int_{m \omega + s\omega} dE_{\Pi,1} d\Omega_{\Pi} \left| \mathcal{E} \right|^2 \left\| B_{\Pi,1}^{(s)} \right\|^2 \times \left(1 - e^{-\frac{i}{\hbar} (E_n - s\omega)} \right) N (E_{\Pi,1}) \times \left(1 - n (E_{\Pi,1}) \right), \quad (39)$$

where

$$\left| \mathcal{E} \right|^2 = \sqrt{\left(\Pi \right)^2 + h^2 s^2 k^2 - \frac{2E_{\Pi,1} s\omega}{c^2}}.$$
In general, the analytical integration over solid angles Ω, Ω' and energy is impossible, and one should make numerical integration. The latter for initially nonrelativistic plasma and at the photon energies $\hbar \omega > T_e$, is convenient to made introducing a dimensionless parameter

$$\chi_0 = \frac{eE_0}{\omega \sqrt{m \hbar \omega}}, \quad (40)$$

which is the ratio of the amplitude of the momentum transferred by the wave field to the momentum at the one-photon absorption. In Eq. (39) the dimensionless parameter $E_0 = \omega \alpha_0 \sqrt{1 + g^2/c}$ is the amplitude of the electric field strength. Hence the average intensity of the wave expressed via the parameter χ_0, can be estimated as

$$I_{\chi_0} = \chi_0^2 \times 1.74 \times 10^{12} \text{ W cm}^{-2} \left(\frac{\hbar \omega}{eV}\right)^3.$$

The intensity I_{χ_0} strongly depends on the photon energy $\hbar \omega$. At $\chi_0 \sim 1$, the multiphoton effects become essential. Particularly, for x-ray photons with energies $\varepsilon_\gamma \equiv \hbar \omega = 0.1 - 1$ keV, multiphoton interaction regime can be achieved at the intensities $I_{\chi_0} \sim 10^{18} - 10^{21} \text{ W/cm}^2$. In the opposite limit $\chi_0 \ll 1$, the multiphoton effects are suppressed.

For all calculations as a reference sample we take ions with $Z_a = 13$ (fully ionized Aluminum) and consider plasma of solid densities. In Fig. 1 and Fig. 2 the envelope of the partial rate of inverse-bremsstrahlung absorption for CPW and LPW in Maxwellian plasma...
The total rate of inverse-bremsstrahlung absorption scaled to χ_0 versus the parameter χ_0 for setup of Fig 3.

is shown for various wave intensities at $\varepsilon_\gamma = 1$ keV, $n_e = 10^{23}$ cm$^{-3}$, and $T_e = 100$ eV ($n_e \propto e^{\mu/T_e}$ and $\kappa_e = (4\pi e^2 n_e/T_e)^{1/2}$). As is seen from this figures, the multiphoton effects become essential with the increase of the wave intensity.

To show the dependence of the inverse-bremsstrahlung absorption rate on the laser radiation intensity, in Fig. 3 and Fig. 4 the total rate (35) with (39) for CPW and LPW in Maxwellian plasma versus the parameter χ_0 for various photon energies are shown. As is seen from these figures, the rate strictly depends on the wave polarization, and for the large values of χ_0 it exhibits a tenuous dependence on the wave intensity.

To compare with the linear theory [28], in Fig. 5 we plot scaled absorption rate $\chi_0^{-2}dN_{\gamma e}/dt$ versus χ_0. In the scope of the linear theory the scaled absorption rate does not depend on the wave intensity, while for the large values of χ_0 it is suppressed with the increase of the wave intensity. To show the dependence of the considered process on the plasma temperature, in Fig. 6 we plot total rate of the inverse-bremsstrahlung absorption of circularly polarized laser radiation in Maxwellian plasma, as a function of the plasma temperature for various wave intensities at $\varepsilon_\gamma = 1$ keV, and $n_e = 10^{23}$ cm$^{-3}$. The similar picture holds for LPW. Here for the large values of χ_0 we have a weak dependence on the temperature, which is a result of the laser modified scattering of electrons irrespective of its initial state. We have also made calculations for a degenerate quantum plasma. In Fig. 7 and Fig. 8 the envelope of the partial rate of inverse-bremsstrahlung absorption for CPW and LPW in degenerate plasma with Fermi energy $\mu \simeq \varepsilon_F = 11.7$ eV (Aluminum) is shown for various wave intensities at $\varepsilon_\gamma = 1$ keV, and $T_e = 0.1\varepsilon_F$ ($\kappa_e = (6\pi e^2 n_e/\varepsilon_F)^{1/2}$). The total rate of inverse-bremsstrahlung absorption via the mean number of absorbed photons by per electron, per unite time for CPW and LPW in degenerate plasma versus the parameter χ_0 at $\varepsilon_F = 11.7$ eV and $T_e = 0.1\varepsilon_F$ is shown in Fig. 9. As is seen from these figures, the rate strictly depends on the wave polarization, and for the large values of χ_0 it is saturated. Note that our consideration is valid when the pulse duration τ of an EM wave is restricted by the condition

$$\tau < \nu_{eff}^{-1},$$

where ν_{eff}^{-1} is the time scale during which the thermalization of the electrons energy in plasma occurs. In the presence of a laser field the electron-ion binary collisions
where L_{cb} is the Coulomb logarithm, and $\langle v \rangle$ is the mean values of electrons velocity in the laser field. For moderate intensities one can write $\langle v \rangle \approx \chi_0 \sqrt{\varepsilon_F / m}$. For the considered parameters we have $\nu_{eff} \approx 10^{14} - 10^{15} \text{s}^{-1}$. Thus, the pulse duration should be $\tau \lessapprox 1 \text{ fs}$. The latter is satisfied for x-ray sources. As is seen from Figs. 3, 4, and 9, for the pulse durations $\tau \lessapprox 1 \text{ fs}$ one can achieve an one absorbed x-ray photon by per electron, which means that in plasma of solid densities one can reach the plasma heating of high temperatures by x-ray laser with the intensity parameter $\xi \sim 0.1$ already at the one photon absorption process.

IV. CONCLUSION

Concluding, we have presented the microscopic relativistic quantum theory of multiphoton inverse-bremsstrahlung absorption of an intense shortwave laser radiation in the classical and quantum plasma. The Liouville-von Neumann equation for the density matrix has been solved analytically considering a wave-field exactly, while a scattering potential of the plasma ions as a perturbation. With the help of this solution we derived a relatively compact expression for the nonlinear inverse-bremsstrahlung absorption rate when electrons are represented by the grand canonical ensemble. Numerical investigation of the obtained results for Maxwellian, as well as degenerate quantum plasmas at x-ray frequencies and large values of laser fields has been performed. The obtained results demonstrate that for the shortwave radiation the SB rate being practically independent of the plasma temperature is saturated with the increase of the wave intensity. The obtained results showed that in the x-ray domain of frequencies one can achieve an efficient absorption of powerful radiation specifically in plasma of solid densities and reach the plasma heating of high temperatures.

Acknowledgments

This work was supported by SCS of RA under Project No. 13-1C066.

[1] P. Emma et al., Nature Photon. 4, 641 (2010).
[2] T. Ishikawa et al., Nature Photon. 6, 540 (2012).
[3] H. Mimura et al., Nat. Commun. 5, 3539 (2014).
[4] H. K. Avetissian, Relativistic Nonlinear Electrodynamics (Springer, New York, 2006).
[5] L. Young, et al., Nature 466, 56 (2010).
[6] E. P. Kanter, et al., Phys. Rev. Lett. 107, 233001 (2011).
[7] B. Rudek et al., Nat. Photonics 6, 858 (2012).
[8] C. Weninger, et al., Phys. Rev. Lett. 111, 233902 (2013).
[9] H. K. Avetissian, B. R. Avchyan, G. F. Mkrtchian, Phys. Rev. A 90, 053812 (2014).
[10] M. Hoener et al., Phys. Rev. Lett. 104, 253002 (2010).
[11] H. N. Champan, et al., Nature 470, 73 (2011).
[12] B. Erk, et al., Phys. Rev. Lett. 110, 053003 (2013).
[13] V. Kimberg and N. Rohringer, Phys. Rev. Lett. 110, 043901 (2013).
[14] S. M. Vinko et al., Nature (London) 482, 59 (2012).
[15] B. I. Cho et al., Phys. Rev. Lett. 109, 245003 (2012).
[16] S. P. Hau-Riege, et al., Phys. Rev. Lett. 108, 217402 (2012).
[17] T. Kluge, C. Gutt, L. G. Huang, J. Metzkes, U. Schramm, M. Bussmann, and T. E. Cowan, Phys. Plas-
mas 21, 033110 (2014).
[18] J. Clerouin, G. Robert, P. Arnault, C. Ticknor, J. D. Kress, and L. A. Collins, Phys. Rev. E 91, 011101(R) (2015).
[19] D. S. Rackstraw, et al., Phys. Rev. Lett. 114, 015003 (2015).
[20] J. Dawson, C. Oberman, Phys. Fluids 5, 517 (1962).
[21] D. Marcuse, Bell System Tech. J. 41, 1557 (1962); D. Marcuse, Bell System Tech. J. 42, 415 (1963).
[22] V. P. Silin, Sov. Phys. JETP 20, 1510 (1965).
[23] F. V. Bunkin, M. V. Fedorov Sov. Phys. JETP 22, 844 (1966).
[24] L. S. Brown, R. L. Goble, Phys. Rev. 173, 1505 (1968).
[25] G. J. Pert, J. Phys. A 5, 506 (1972); ibid, Phys. Rev. E 51, 4778 (1995); ibid, J. Phys. B 29, 1135 (1996).
[26] Y. Shima, H. Yatom, Phys. Rev. A 12, 2106 (1975).
[27] L. Schlessinger, J. Wright, Phys. Rev. A 20, 1934 (1979).
[28] F. V. Bunkin, A. E. Kazakov, M. V. Fedorov, Sov. Phys. Usp. 15, 416 (1973).
[29] J. I. Gersten, M. H. M. Mittleman, Phys. Rev. A 12, 1840 (1975).
[30] N. M. Kroll, K. M. Watson, Phys. Rev. A 8, 804 (1973); M. H. M. Mittleman, Phys. Rev. A 19, 134 (1979).
[31] H. K. Avetissian, A. K. Avetissian, H. A. Jivanian, S. V. Movsisian, J. Phys. B 25, 3201 (1992); ibid 25, 3217 (1992).
[32] H. K. Avetissian, A. G. Ghazaryan, G. F. Mkrtchian, J. Phys. B 46, 205701 (2013).
[33] C. Szymanowsky, V. Veniard, R. Tajeb, A. Maquet, C. H. Keitel, Phys. Rev. A 56, 3846 (1997); C. Szymanovsky, A. Maquet, Opt. Express 2, 262 (1998).
[34] T. R. Hovhannisyan, A. G. Markossian, G. F. Mkrtchian, Eur. Phys. J. D 20, 17 (2002); A. G. Markossian, AJP 2, 184 (2009).
[35] P. Panek, Z. Kaminski, F. Ehlotzky, Phys. Rev. A 65, 033408 (2002); S. M. Li, J. Berakdar, J. Chen, Z. F. Zhou, Phys. Rev. A 67, 063409 (2003); S. M. Li, J. Berakdar, J. Chen, Z. F. Zhou, J. Phys. B 37, 653 (2004).
[36] H. K. Avetissian, A. G. Markossian, G. F. Mkrtchian, S. V. Movsisian, Phys. Rev. A 56, 4905 (1997); H. K. Avetissian, K. Z. Hatsagortsian, A. G. Markossian, S. V. Movsisian, Phys. Rev. A 59, 549 (1999).
[37] H. K. Avetissian, G. F. Mkrtchian, Phys. Rev. E 65, 046505 (2002).
[38] B. Eliasson, and P. K. Shukla, Phys. Rev. E 83, 046407 (2011).
[39] S. Weber, G. Bonnau, J. -C. Gauthier, Phys. Plasmas 8, 387 (2001).