The essential role of AMPA receptor GluA2 subunit RNA editing in the normal and diseased brain

Amanda Wright1,2 and Bryce Vissel1,2*

1 Neurodegenerative Disorders Laboratory, Neuroscience Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
2 Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

Edited by: R. Gautam Zulauf, Albert Einstein College of Medicine, USA
Reviewed by: Tim Green, University of Liverpool, UK
Lorna Role, SUNY Stony Brook, USA
*Correspondence: Bryce Vissel, Neurodegenerative Disorders Laboratory, Neuroscience Department, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia. e-mail: b.vissel@garvan.org.au

This article is part of a Special Issue entitled “Calcium permeable AMPARs in synaptic plasticity and disease.”

INTRODUCTION
The release of the neurotransmitter glutamate from presynaptic densities activates postsynaptic glutamate-gated ion channels including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, N-methyl-D-aspartate (NMDA) receptors and kainate (KA) receptors. Once activated, the glutamate-gated ion channels flux sodium (Na+) and in some cases will also flux calcium (Ca2+). NMDA receptors are uniformly Ca2+-permeable, with well-recognized roles in synaptic plasticity and disease. Most AMPA receptors are Ca2+-impermeable, however Ca2+-permeable AMPA receptors (Liu et al., 1996; Lam et al., 2007) and KA receptors (Vissel et al., 2001; Lemke et al., 2003; Suz et al., 2009) also exist at some synapses where they can play a role in synaptic plasticity and disease (Gorter et al., 1997; Pellegrini-Giampietro et al., 1997; Liu and Zukin, 2007). This review focuses on the critical role of glutamine/arginine (Q/R) site RNA editing by the ADAR2 enzyme. The ability of the GluA2 subunit to regulate AMPA receptor Ca2+-permeability varies depending on whether the GluA2 subunit is present within the tetramer. The ability of the GluA2 subunit to regulate AMPA receptor Ca2+-permeability in turn depends on RNA editing. RNA editing is a post-transcriptional modification that alters a codon encoding glutamine (Gln; Q) to a codon encoding arginine (Arg; R) in the GluA2 mRNA. AMPA receptors are Ca2+-impermeable if they contain the edited GluA2(R) subunit. Conversely, AMPA receptors are Ca2+-permeable if they are GluA2-lacking or if they contain the unedited GluA2(Q) subunit.

Studies to date provide strong evidence that GluA2-lacking AMPA receptors contribute to normal brain function and disease (Pellegrini-Giampietro et al., 1997; Isaac et al., 2007; Wiltgen et al., 2010; Man, 2011). Additional to this, almost no unedited RNA exists in the brain; less than 1% of all RNA on average across the gray matter of the brain encodes unedited GluA2(Q) (Kawahara et al., 2003). Taken together, the evidence has largely been accepted to suggest that unedited GluA2 does not play a major role in brain function and disease. More recently, however, sophisticated studies have revealed a possible role for unedited GluA2 in regulating excitotoxic neuronal cell death in ischemia and ALS (reviewed in Kwak and Kawahara, 2009; Kwak and Weiss, 2006; Liu and Zukin, 2007; Kwak et al., 2010). This is perhaps surprising given many earlier studies previously ruled out a role for unedited GluA2 in ischemia (Akbarian et al., 1999; Rump et al., 1996; Kortenbrock et al., 2001). These recent studies demonstrate that whilst only ~1% GluA2 RNA is unedited on average across the brain, it can
vary substantially from cell-to-cell reaching much higher levels in some individual cells. Thus unedited GluA2 RNA is difficult to detect. This raises the possibility of an as-yet undetected role for unedited GluA2 in specific aspects of physiology and in other diseases.

The original discovery of AMPA receptor RNA editing established the critical implications of this type of post-transcriptional modification to genes. As such, RNA editing has now been extensively investigated throughout the mammalian genome (Mattick and Mehler, 2008). In this review, we will explore the role of GluA2 RNA editing and outline new insights into the mechanisms that control this process. We will further discuss the role of GluA2-lacking receptors and GluA2 unedited receptors and suggest that understanding the role of unedited GluA2(Q) containing receptors, and the mechanisms that regulate RNA editing, will become increasingly important for understanding normal brain function and excitotoxic cell death. We propose that, despite the low percentage of unedited GluR2 mRNA present in the brain, it is not yet possible to rule out a critical, and substantial, role of unedited GluA2 in health and disease.

**THE GluA2 SUBUNIT OF THE AMPA RECEPTOR PLAYS A KEY ROLE IN NORMAL CENTRAL NERVOUS SYSTEM FUNCTION**

Glutamate, the major excitatory neurotransmitter in the central nervous system (CNS), activates AMPA, NMDA, and KA receptors and can potentially cause influx of Ca\(^{2+}\) into the postsynaptic density (Figure 1A). Conventionally, NMDA receptors were considered to be the primary glutamate receptor involved in synaptic plasticity and Ca\(^{2+}\)-mediated excitotoxic cell death in the healthy and diseased brain, respectively. However, abundant evidence now suggests that Ca\(^{2+}\)-permeable AMPA receptors are also involved in synaptic plasticity (Malinow and Malenka, 2002; Cull-Candy et al., 2006; Isaac et al., 2007; Liu and Zukin, 2007), play a role in...
memory and learning (Reedel et al., 1999; Wilten et al., 2010), and contribute to excitotoxic cell loss in disease (Pellegrini-Giampietro et al., 1997; Tanaka et al., 2000; Kosak and Weiss, 2006).

**SUBUNIT COMPOSITION DETERMINES AMPA RECEPTOR PROPERTIES AND CHARACTERISTICS**

The four subunits of AMPA receptors, GluA1−GluA4, share 68−73% sequence identity. Each subunit consists of a large extracellular N-terminal domain, an intracellular C-terminal domain and three transmembrane domains (M1, M3, and M4; Figure 1B). The putative second membrane domain (M2) consists of a hairpin structure, which changes direction within the membrane and returns to the intracellular side of the cell (Figure 1C). Each subunit exists in two forms created by alternative splicing, termed "flip" and "flop," which is an interchangeable sequence consisting of 38-amino acids found prior to the fourth membrane domain. Each form is expressed preferentially in different regions of the brain (Hollmann and Heinemann, 1994). The kinetic properties of the AMPA receptors are regulated by the splice variants of the subunits. For example, the flop variants of GluA2−GluA4 desensitize faster than flip variants, but recover more slowly (Somasundaram et al., 1990). On the other hand, GluA1 flip and flop variants desensitize at equal rates depending on the concentration of glutamate (Mossbacher et al., 1994). Within the hippocampus and cerebral neocortex, the majority of AMPA receptors contain GluA2, which predominantly forms heteromers with GluA1 (Wenthold et al., 1996; Greger et al., 2002). Lower levels of GluA3 and GluA4 are expressed in these areas (Wenthold et al., 1996). In the absence of the GluA2 subunit, AMPA receptors often consist of GluA1/GluA3 hetero-oligomers, which may lead to reduced expression of the AMPA receptor at the synapse (Somasundaram et al., 2003).

**THE GluA2 SUBUNIT REGULATES CALCIUM PERMEABILITY AND TRAFFICKING OF AMPA RECEPTORS**

The ability of Ca2+ to enter the cell through the AMPA receptor is determined by the GluA2 subunit, which is preferentially incorporated into the receptor (Somasundaram et al., 2003). When AMPA receptors are assembled from combinations of GluA1, GluA3, and GluA4, the receptors are highly permeable to Ca2+. However, when GluA2 is contained within the AMPA receptor, the Ca2+ permeability is profoundly decreased (Figure 1D; Hollmann et al., 1991). Thus, since the vast majority of AMPA receptors are hetero-oligomers consisting of GluA1/GluA2 or GluA2/GluA3 subunits, they are Ca2+-impermeable (Wenthold et al., 1996).

The subunit composition of AMPA receptors is important as it affects not only Ca2+-permeability, but also the trafficking of the receptors (Malinow and Malenka, 2002). AMPA receptors are assembled in the endoplasmic reticulum (ER) and are trafficked to the plasma membrane and their presence at the synapse is in a dynamic equilibrium between insertion (exocytosis) and removal (endocytosis; Malinow and Malenka, 2002; Keifer and Zheng, 2010; Man, 2011). The presence of the GluA2 subunit is important for the stability and trafficking of AMPA receptors within the synapse, though it is not essential (Bou et al., 2008; Panicker et al., 2008). The C-terminus of GluA2 binds with, among other proteins, N-ethylmaleimide-sensitive factor (NSF), an ATPase, which is involved in the insertion of the AMPA receptor into the synapse and synaptic activation of the receptor (reviewed in Bassani et al., 2009). In fact, A synchrony of complex intracellular mechanisms drives AMPA receptor trafficking (ZDS, 2007; Kessels and Mall, 2009; Jackson and Nicoll, 2011). As we shall discuss, GluA2 RNA editing at the Q/R site can also regulate trafficking (discussed in Section "GluA2 RNA Editing has a Role in AMPA Receptor Trafficking").

**THE IMPORTANCE OF GluA2 IN THE TETRAMERIC ASSEMBLY OF THE AMPA RECEPTOR**

As we note above, AMPA receptors are generally considered to be tetramer assemblies of various combinations of GluA1−GluA4 (Rosenmund et al., 1998; Nakagawa, 2010). The GluA1−GluA4 subunits consist of an extracellular amino-terminal domain, which is involved in receptor assembly and trafficking, a ligand binding domain and a transmembrane domain, which form the ion channel (Figure 2A). GluA2 subunit assembly begins with the formation of dimers in which the amino-terminal and transmembrane domain terminal segments are coupled. Sobolevsky et al. (2009) have been able to determine the structure of elements of the GluA2 AMPA receptor ion channel tetramer, using X-ray diffraction data. Their study revealed the receptor has a twofold axis of molecular symmetry and within the ion channel domain there is a fourfold axis of rotational symmetry (Sobolevsky et al., 2009).

The crystal structure does not as-yet fully resolve the gate or the Q/R site within the membrane. However it is known that tetrameric assemblies of GluA1−GluA4 subunits form a large pore with a diameter of approximately 0.78 nm (Burnashev et al., 1996). When GluA2 is present within the receptor, the Q/R site is located within the cytoplasmic side of the channel pore, immediately below the transmembrane central cavity (Sobolevsky et al., 2009). Interestingly, the amino acid residue present at the Q/R site does not affect the diameter of the pore. When Glu is present, a negative electrostatic potential is formed with the N-terminal of the M2 loop and thus attracts cations. However, the replacement of the neutral Gin with a large positively charged Arg residue neutralizes this potential and thus prevents the diffusion of divalent cations through the channel (Kuner et al., 2001). It is still unclear, however, how many Arg are required to prevent cation diffusion. This raises the question of how anywhere from one to four Arg's present at the membrane pore can become selective for Na+ over Ca2+. Further studies are required to determine why the process of RNA editing at only one subunit can dramatically alter the Ca2+-permeability of the receptor, while four GluA2(R) subunits can also have exactly the same effect.

**DISCOVERY OF GluA2 RNA EDITING AND ITS NECESSITY FOR AMPA RECEPTOR FUNCTION**

The Heinemann group was the first to show that the GluA2 subunit is an essential role determinant of the Ca2+-permeability of AMPA receptors (Hollmann et al., 1991; Kume et al., 1991). The investigators further showed that the effect of GluA2 on AMPA receptor Ca2+-permeability results from a single amino acid present at position 607 in GluA2 mRNA (Figure 1C). Specifically they discovered that GluA2 mRNA encodes an Arg at position 607, while the equivalent position in GluA1, GluA3, and GluA4 subunit...
mRNA encodes a Gln. The investigators used site-directed mutagenesis to alter the Arg in GluA2 mRNA to a Gln, as found in the other subunits (Hume et al., 1991). They showed that GluA2(Q) subunits self-assembled into functional Ca\(^{2+}\)-permeable AMPA receptors while GluA2(R) subunits self-assembled into AMPA receptors with low Ca\(^{2+}\)-permeability (Hume et al., 1991). Thus, these studies established categorically that the Arg at position 607 of GluA2 is the critical determinant of AMPA receptor Ca\(^{2+}\)-permeability.

It was later discovered, somewhat remarkably, by Sommer et al. (1991) in Seeburg’s group, that the Arg at position 607 is not encoded in the DNA but is introduced post-transcriptionally. The investigators found that the codon encoding the critical Arg at position 607 was present in the GluA2 cDNA, however the GluA2 gene DNA sequence at this position encoded a Gln (Sommer et al., 1991). They then showed through a series of elegant studies that the codon for Arg is introduced into the mRNA by RNA editing. Specifically, RNA editing converts an adenosine (A) in the critical CAG codon (encoding Gln) found in the pre-mRNA to an inosine (I), which creates a CIG codon (encoding Arg) in the mRNA (Melcher et al., 1996). Since ribosomes read the inosine as a guanosine (G), the editing effectively alters the CAG codon (encoding Arg) to a CGG codon (encoding Arg). The resulting edited GluA2(R) subunit prevents Ca\(^{2+}\) influx when it is incorporated in the AMPA receptor. Conversely, AMPA receptors containing unedited GluA2(Q) are highly permeable to Ca\(^{2+}\) (summarized in Figure 2B). Unedited GluA2 at the Q/R site can cause AMPA receptor-mediated excitotoxicity, a process we shall discuss later in this review.

Notably, GluA2 RNA editing at the Q/R site occurs in ~99% of cases where GluA2 is present. The editing process is reliant upon an intronic sequence called the editing complementary sequence (ECS), which is located in intron 11 downstream of the editing site (Higuchi et al., 1993). This ECS forms a dsRNA structure with the editing site in the pre-mRNA. The primary RNA editing enzyme, adenosine deaminase acting on RNA (ADAR), identifies this dsRNA structure and alters the CAG codon encoding Gln to a CIG codon encoding Arg, though it is still unclear how this site recognition occurs (Dabiri et al., 1996). Currently, three ADAR family members have been identified (ADAR1–3), in which ADAR2 is the primary modifier of the GluA2/Q/R site (Melcher et al., 1996; Bass, 2002). All three ADARs are preferentially expressed in the nervous system. Interestingly, ADAR3 is exclusively expressed in the brain, however its function remains unknown and it may play a regulatory role in RNA editing (Chen et al., 2000).

ADAR2 also edits GluA2 at amino acid position 764, which alters a codon for Arg to a glycine codon (R/G site). The R/G editing site, but not the Q/R site, is also found in GluA3 and GluA4. The R/G site, along with the flip/flop, is involved in desensitization and recovery of the receptor, though is not involved in Ca\(^{2+}\)-permeability. Receptors containing GluA2 edited at the R/G site are able to recover from desensitization more rapidly than receptors containing unedited GluA2 at the R/G site. Interestingly, despite this site also being edited by ADAR2, approximately only 90% of RNA is edited at the R/G site of GluA2, and this is lower during development (Lomeli et al., 1994). Both the Q/R site and the R/G site are regulated by ADAR2, yet the extent of editing appears to be regulated differentially between the two sites. It is still unclear as to how and why developmental regulation at the R/G site occurs. However, it appears that currently unidentified mechanisms differentially regulate editing at the Q/R and R/G sites.
sites. It remains to be determined if glutamate signaling regulates editing in some way, similar to serotonin regulation of RNA editing of the 5-HT 2C RNA (Burns et al., 1997).

There have been extensive efforts to identify RNA editing sites in the mammalian genome since the discovery of GluA2 RNA editing (Bass, 2002; Mattick and Mehler, 2008). RNA editing was observed early on in the GluA1 and GluA2 subunits of KA receptors, but has so far not been found to occur in NMDA receptors. Recent studies have provided evidence of extensive editing throughout the mammalian genome (Mattick and Mehler, 2008). A summary of editing sites in glutamate receptors is shown in Table 1.

**CHARACTERISTICS OF CALCIUM-PERMEABLE AMPA RECEPTORS**

AMPA receptors can be Ca²⁺-permeable because they are GluA2-lacking or because they contain the unedited GluA2(Q) subunit. Ca²⁺-permeable AMPA receptors can be detected by Ca²⁺ imaging, but more often than not these receptors are detected using electrophysiology. Unfortunately, however, current techniques are unable to differentiate between GluA2-lacking receptors and AMPA receptors containing unedited GluA2 at the synapse.

AMPA receptors have the same characteristics whether they are GluA2-lacking or whether they contain the unedited GluA2(Q) subunit. First, they are Ca²⁺-permeable. Second, the AMPA receptors exhibit inward rectification (decreased conductance of AMPA receptors’ synaptic currents’ potentials from positive to 0 mV) when the polyamine, spermine, is diffused into the cell from the recording electrode; this is measured as an altered rectification when the polyamine, spermine, is diffused into the cell from the recording electrode; this is measured as an altered rectification when the polyamine, spermine, is diffused into the cell from the recording electrode; this is measured as an altered rectification when the polyamine, spermine, is diffused into the cell from the recording electrode; this is measured as an altered rectification.

Third, Ca²⁺-permeable AMPA receptors become selectively sensitive to block by Joro spider toxin (STX) and to related drugs such as 1-naphthylacetyl spermine (NAS) and IEM-1460. Sometimes these changes are also associated with AMPA receptor-mediated synaptic transmission being enhanced, which is detected as an increased ratio of AMPA/NMDA receptor-mediated synaptic currents.

While Ca²⁺-permeable AMPA receptors can be identified by electrophysiology, it is not possible, by any currently available methods to directly distinguish GluA2-lacking AMPA receptors from AMPA receptors containing unedited GluA2 subunits. Unedited GluA2 is, at present, only identified by analyzing RNA from specific cells or brain regions using one of three methods: (1) A “primer extension” assay (Schiffer and Heinemann, 1999; Vissel et al., 2001), (2) DNA sequencing (which measures the ratio of edited G nucleotide peak to unedited A nucleotide peak in total cDNA; Mass et al., 2001), and (3) restriction enzyme based assays, usually using the enzyme BbvI (Kawahara et al., 2004a; Peng et al., 2006).

The only way to infer the presence of functional unedited GluA2 containing AMPA receptors is to combine electrophysiology with an RNA editing assay. In general, this has been achieved by studying neurons with patch clamp electrophysiology to demonstrate the presence of Ca²⁺-permeable AMPA receptors. Following this, the nucleus is extracted into the patch electrode and the RNA is isolated. Single cell PCR is performed in combination with an editing assay to demonstrate the percentage of edited and unedited GluA2 mRNA within the cell (Peng et al., 2006). If unedited GluA2 mRNA is found to be present concurrently with Ca²⁺-permeable AMPA receptors it suggests that AMPA receptors contain unedited GluA2 at the synapse. Conversely, if the RNA in a cell does not contain unedited GluA2 then it can be inferred that Ca²⁺-permeable receptors are GluA2-lacking.

In most studies, however, rarely are editing analyses carried out when Ca²⁺-permeable AMPA receptors are observed at synapses. Once GluA2 is almost 100% edited in the normal brain, it is generally assumed that unedited GluA2 does not play a significant role in normal brain function. Therefore, while AMPA receptors lacking GluA2 and AMPA receptors containing unedited GluA2 show similar properties, the appearance of Ca²⁺-permeable AMPA receptors at synapses – usually detected by electrophysiology – is generally interpreted to mean the GluA2-lacking AMPA receptor has been inserted at the synapse, rather than AMPA receptors containing unedited GluA2.

It remains a critical problem that it is difficult to differentiate edited GluA2(R) protein from unedited GluA2(Q) protein at synapses. Many studies have shown that in circumstances where Ca²⁺-permeable AMPA receptors exist, GluA2 expression is reduced relative to expression of GluA1. This is consistent with the notion that the observed AMPA receptors are Ca²⁺-permeable because they are GluA2-lacking. However, this does not experimentally rule out that GluA2 unedited receptors may also be present and contribute to Ca²⁺-permeability in parallel to GluA2-lacking receptors. For example, as we shall discuss, GluA2-lacking receptors have been observed and implicated in the excitotoxic cell loss following brain ischemia (Pellegrini-Giampietro et al., 1992; Calabresi et al., 2003). More recently it was found that unedited GluA2 also occurs in ischemia and that this is critical to the excitotoxic neurodegeneration that follows (Peng et al., 2006). Consequently recent data suggests that the Ca²⁺-permeable receptors following ischemia result at least in part from unedited GluA2. This leaves open a largely unexplored possibility that in other scenarios where Ca²⁺-permeable receptors are observed, unedited GluA2 may play an as-yet unidentified role, even though previous evidence suggests such receptors are GluA2-lacking.

---

**Table 1 | Summary of ionotropic glutamate receptor editing sites and their effects.**

| Receptor | Subunit | Site | Editing | Consequence |
|----------|---------|------|---------|-------------|
| AMPA     | GluA2   | Q/P site M2 | A → I | Ca²⁺-permeability |
|          |         |       |         | Conductance |
|          |         |       |         | Spermine block |
|          |         |       |         | Blockade by toxins |
|          | GluA2,3,4 | R/G site between M3 and M4 | A → I | Recovery from desensitization |
| Kainate  | GluK1,2 | Q/P site M2 | A → I | Ca²⁺-permeability |
|          |         |       |         | Conductance |
|          |         |       |         | Spermine block |
|          |         |       |         | Blockade by toxins |
| GluA2    | IV site M1 | A → I | Ca²⁺-permeability |
|          | YC site M1 |       |         | Conductance |

---

* fnmol-05-00034 — 2012/4/9 — 12:34 — page 5 — #5 Frontiers in Molecular Neuroscience www.frontiersin.org April 2012 | Volume 5 | Article 34 | 5
TO DATE, GluA2-lACKING, BUT NOT UNEDITED GluA2-CONTAINING, AMPA RECEPTORS ARE KNOWN TO PLAY A ROLE IN ENHANCING SYNAPTIC PLASTICITY. We will only briefly touch on the role of GluA2-lacking receptors in this review for the purpose of noting that this form of Ca\(^{2+}\)-permeable AMPA receptors are critical in brain function (Call-Candy et al., 2006; Isaac et al., 2007; Liu and Zukin, 2007; Man, 2011). While there is no known role of unedited GluA2 in normal brain function, there is now thought to be a role for GluA2-lacking AMPA receptors. GluA2-lacking AMPA receptors offer an alternative route to NMDA receptors for Ca\(^{2+}\) flux into cells at synapses and are now recognized to play an important role in synaptic plasticity by triggering LTP (Ila et al., 1996; Harvey et al., 2001; Meng et al., 2001; Lu et al., 2007; Avar et al., 2009; Wilgen et al., 2010). Notably however, the properties of AMPA receptor-mediated LTP are different to NMDA receptor-mediated LTP (Lutrao et al., 2007; Kullmann and Lutrao, 2008).

Due to their distinct physiological effects, GluA2-lacking receptors have recently been discovered to be important in learning and memory. Wilgen et al. (2010) showed that NMDA receptor-independent learning was not impaired in mice with a selective GluA2 KO in the CA1 region of the hippocampus. However, by blocking Ca\(^{2+}\)-permeable AMPA receptors during an NMDA receptor-independent learning process, NMDA receptor-independent learning was significantly impaired (Wilgen et al., 2010). Further, Clem and Barth (2006) demonstrated that evoked activity of a single spared whisker (after removal of the others) increases the trafficking of GluA2-lacking receptors into the barrel column of the spared whisker, suggesting that a sensory experience can increase Ca\(^{2+}\)-permeable AMPA receptors and strengthen neocortical excitatory synapses (Clem and Barth, 2006). In addition, GluA2-lacking receptors are increased in the ventral tegmental area of mice following a single injection of cocaine and are thought to contribute to cocaine-evoked plasticity (Belloine and Lascher, 2006), thus contributing to time dependent seeking of cocaine following self administration (Conrad et al., 2008). These studies suggest that GluA2-lacking receptors may be involved in synaptic strengthening and are essential for NMDA receptor-independent learning and processes in the healthy brain.

As noted above, it has generally been concluded that the occurrence of Ca\(^{2+}\)-permeable receptors results from the presence of GluA2-lacking receptors, rather than unedited GluA2. It is plausible, however, that like GluA2-lacking receptors, there may indeed be a role for unedited GluA2 in brain processes such as LTP and LTD that has not yet been determined. As we will now show, however, while the role of unedited GluA2 in the healthy brain remains unknown, recent evidence suggests that GluA2 RNA editing is essential for survival and unedited GluA2 plays an important role in neuronal loss in certain diseases.

MICE ENGINEERED WITH GluA2 MUTATIONS REVEAL AMPA RECEPTORS CONTAINING UNEDITED GluA2 HAVE DISTINCT PHYSIOLOGICAL EFFECTS

While GluA2-lacking receptors appear to have a role in synaptic plasticity, unedited GluA2 receptors have a fundamentally different physiological effect. Mice in which GluA2 is ablated (GluA2 KO mice) have Ca\(^{2+}\)-permeable AMPA receptors made up of the GluA1, GluA3, and GluA4 subunits. These mice are viable, and live an old age, suggesting that the presence of Ca\(^{2+}\)-permeable AMPA receptors may not be intrinsically excitotoxic. In contrast, mice engineered with reduced RNA editing show a profoundly different phenotype. Brusa et al. (1995) engineered mice in which the ECS is replaced with a loxP sequence (GluA2\(\text{neo}^{+/+}\) mice). The lack of the ECS in the intron means GluA2 Q/R RNA editing was impaired. This resulted in approximately 25% unedited GluA2 mRNA at the Q/R site compared to age-matched wild-type littermates, which have almost no unedited GluA2 mRNA. In contrast to Ca\(^{2+}\)-permeable AMPA receptors in GluA2 KO mice (Ila et al., 1996; Sans et al., 2003; Wilgen et al., 2010), the presence of an increased number of unedited GluA2 containing AMPA receptors in mice lead to seizures and premature death by several weeks of age (Brusa et al., 1995).

In addition to the GluA2\(\text{neo}^{+/+}\) mice engineered by Brusa et al. (1995), Feldmeyer et al. (1999) developed mice with varying degrees of GluA2/Q/R RNA editing. These mice included the GluA2\(\text{neo}^{−/−}\) mouse, and an additional strain in which the loxP-flanked neomycin gene was left in the gene, replacing the ECS site (GluA2\(\text{neo}^{+/−}\)). The practical result of this was that the most unedited GluA2 RNA was observed in GluA2\(\text{neo}^{−/−}\) (98% unedited GluA2 mRNA), slightly less was observed in GluA2\(\text{neo}^{+/−}\) mice (~27% unedited GluA2 mRNA) and less again was observed in GluA2\(\text{neo}^{+/+}\) mice (8.7% unedited GluA2 mRNA). The reduced editing efficiency in each of the mice strains correlated with the Ca\(^{2+}\)-permeability of the AMPA receptor and the phenotype. GluA2\(\text{neo}^{−/−}\) which expressed 98% unedited GluA2(Q) mRNA showed severe dendritic deficits and early death by postnatal day 20. In comparison, GluA2\(\text{neo}^{+/−}\) mice had 8.7% expression of GluA2(Q), showing less dramatic increases in AMPA receptor Ca\(^{2+}\)-permeability and a 20% death rate (Feldmeyer et al., 1999).

Recent studies have indicated that the lethality of the unedited GluA2(Q) subunit may be due to a GluA2–NSF interaction (Mahanjan and Ziff, 2007). Thus, alteration to GluA2 RNA editing efficiency has detrimental effects, and the extent of this effect is dependent upon the percentage of unedited GluA2(Q) RNA expressed, highlighting the absolute requirement for GluA2 RNA editing in synaptic function.

Although reducing RNA editing efficiency results in lethality, the unedited GluA2 is not essential for survival. Kail et al. (1998) used gene targeting to generate mice in which the codon for Arg was encoded in the GluA2 gene (GluA2\(\text{R}^{+/−}\)). These mice are essentially “forced-edited” as the Arg is encoded in the exon and there is no requirement for RNA editing to post-transcriptionally alter GluA2 at the Q/R site, therefore there is no GluA2(Q) present in these mice. The authors noted that these GluA2\(\text{R}^{+/−}\) mice are fundamentally normal with no obvious deficiencies. This suggests that there is no essential functional requirement of the GluA2 Gln allele and it is still unclear as to why RNA editing occurs in the normal brain as opposed to exon coding of the codon for Arg.

As described earlier, Adar2 is essential for GluA2 RNA editing. Interestingly, mice engineered with Adar2 ablation (Adar2\(^{−/−}\); Higuchi et al., 2008) are phenotypically comparable to GluA2\(\text{neo}^{+/+}\) mice (Brusa et al., 1995). Adar2\(^{−/−}\) mice...
show fully unedited GluA2 and display a 30-fold increase in Ca\textsuperscript{2+}-permeability of AMPA receptors, resulting in lethality at just several weeks of age (Higuchi et al., 2000). In addition, knockdown of hippocampal ADAR2 levels using viral vectors expressing siRNA increased Ca\textsuperscript{2+}-permeability of AMPA receptors by approximately 15-fold and increased cell death (Peng et al., 2006).

Notably, when ADAR2\textsuperscript{-/-} mice were crossed with GluA2\textsuperscript{R/R} mice, the lethal phenotype observed in the ADAR2\textsuperscript{-/-} mice was rescued, and survival rates were significantly increased to several months of age (Higuchi et al., 2000). Therefore, if the GluA2 gene is artificially “forced-edited,” then ADAR2 is no longer essential for survival. This remarkable experiment revealed that ADAR2 is essential for survival because of its role in editing GluA2 at the Q/R site. Thus, although other roles have been explored (Horsch et al., 2011), it appears that RNA editing at the Q/R site of GluA2 is the essential target substrate of ADAR2.

Combined, the aforementioned studies make it clear that alteration to the RNA editing, by modifying the ECS or by ablation of ADAR2 is detrimental to cell survival, leading to the hypothesis that these mechanisms could possibly contribute to excitotoxicity in disease. Perhaps, the most important conclusion that can be drawn from these outstanding studies is that unedited GluA2, when expressed in a neuron, will be expressed at synapses and will have a functional effect.

**A POSSIBLE ROLE FOR GluA2 EDITING?**

Given its importance for regulating Ca\textsuperscript{2+} influx, it might be expected that Q/R site RNA editing in GluA2 would be an exquisitely regulated process in the normal CNS. Surprisingly, however, it has been accepted for many years that the AMPA receptor subunit GluA2 in its Q/R site-unedited form is not essential for brain development and function (Higuchi et al., 1993; Kask et al., 1998). Indeed, unedited GluA2 at the Q/R site accounts for <1% of GluA2 mRNA in the normal brain where GluA2 is present. Despite this, GluA2 Q/R site editing occurs in mammals, amphibians, and some species of fish (Kung et al., 2001), suggesting that GluA2 Q/R site RNA editing is evolutionarily conserved. This raises the significant question as to why a complicated process like RNA editing has evolved to convert a CAG codon encoding Gln in the gene into a CGG codon encoding Arg in the mRNA, as opposed to simply encoding the CGG codon for Arg in the GluA2 gene. A clue to the answer may lie in the observation that the efficiency of RNA editing varies between certain brain regions and may differ between specific cells (Nutt and Kamboj, 1994; Kawahara et al., 2003, 2004a; Peng et al., 2006). This raises the tantalizing possibility that unedited GluA2 RNA may have a role in certain regions in the CNS. Thus, the question still remains as to what role unedited GluA2 plays in the normal functioning brain.

**NOVEL INSIGHTS INTO THE IMPORTANCE AND REGULATION OF GluA2 Q/R SITE RNA EDITING**

It is clear that ADAR2 depletion and reduced editing can cause catastrophic downstream effects. What is not understood, however, is why such a complex RNA editing mechanism occurs in neurons. In addressing this question, it should be taken into consideration that although it is often stated that there is an average ~1% of unedited GluA2 in the adult, it is feasible that editing is temporally and spatially regulated, potentially even varying between individual neurons.

It is now established that ADAR2 expression is regulated, suggesting in turn that GluA2 RNA editing may be regulated. For example, ADAR2 expression is modulated during development and is only expressed within the thalamic nuclei in the fetal brain (Passard et al., 1999) and expression levels increase gradually over time (Jacobs et al., 2009). In addition to this, studies have shown that human neural progenitor cells (Whitney et al., 2008; Janson et al., 2011), and malignant gliomas (Mans et al., 2001), are Ca\textsuperscript{2+}-permeable and express unedited GluA2. These studies give indication that unedited GluA2 may play a role in cell function, even though the process is not essential for survival (Higuchi et al., 1993; Kask et al., 1998). Further research is required to understand the need for RNA editing of GluA2 in order to determine if, how, and why it is modulated in the normal brain and in disease.

GluA2 RNA editing has a role in AMPA receptor trafficking

While it is well established that the GluA2 subunit regulates trafficking (discussed in Section “The GluA2 Subunit Regulates Calcium Permeability and Trafficking of AMPA Receptors”), GluA2 RNA editing has also been shown to be involved in AMPA receptor trafficking. It is known that a significant proportion of edited GluA2 remains in the ER before being trafficked to the synapse (Greger et al., 2002). In addition, the rate of direct insertion of edited GluA2 into the membrane is lower than that of unedited GluA2. This insertion of unedited GluA2, in conjunction with the NSF binding site present on the C-terminus of GluA2, accelerates the insertion into the membrane (Araki et al., 2010). In contrast, edited GluA2 at the Q/R site forms a more stable pool of the subunit in the ER that is stored for later AMPA receptor formation. In addition, GluA2 RNA editing at the Q/R site also plays a role in AMPA receptor tetramerization as edited GluA2 preferentially forms dimers (Greger et al., 2003). In the absence of GluA2 Q/R site RNA editing, hetero- and homotetramers are formed and are rapidly trafficked from the ER to the plasma membrane. This is, however, also dependent upon the editing at the R/G site (Greger et al., 2007). When editing occurs at the Q/R site, but is not present at the R/G site, GluA2 subunits are more likely to tetramerize (Greger et al., 2006). Thus, in the presence of unedited GluA2, Ca\textsuperscript{2+}-permeable AMPA receptors are potentially incorporated into the synapse, permitting an influx of Ca\textsuperscript{2+} ions, although more studies are required. If so, it is possible that even though there is only ~1% of GluA2 present, there is a disproportional effect on AMPA receptor Ca\textsuperscript{2+}-permeability.

GluA2 is typically rapidly transported to the synapse when unedited GluA2 forms heterotetramers with GluA3 and interacts with NSF. This could potentially lead to excessive Ca\textsuperscript{2+} influx in the diseased brain. Mahajan and Ziff (2007) showed that the addition of a peptide, pep2m, blocks the interaction between NSF and the heterotetramer and, thus, reduces the toxicity to the cell in vitro. Though this has yet to be studied in vivo, the results suggest that interfering with the interaction of unedited GluA2 with other proteins may regulate unedited GluA2 mediated excitotoxicity. If true, then interfering with such interactions may act as a viable
treatment for diseases associated with low GluA2 editing efficiency (Mahajan and Ziff, 2007).

**REGULATION OF GluA2 RNA EDITING**

The molecular mechanisms that regulate GluA2 RNA editing are beginning to emerge. Feng et al. (2006) showed that altered cAMP response element-binding (CREB)-transcriptional regulation leads to a reduction in ADAR2 expression. By virally expressing CREB following transient global ischemia, ADAR2 production was restored, thereby increasing GluA2/RNA editing levels back to levels over 90%. This study was the first to give a mechanism by which GluA2 RNA editing deficiencies occur in the diseased brain. More recently, other transcriptional regulators have been shown to play a role in ADAR2 expression. In the absence of peptideyl-prolyl isomerase NIMA interacting protein 1 (Pin1), which is responsible for phosphorylation of ser/thr-pro motifs, editing efficiency at the Q/R site is reduced (Marcucci et al., 2011). By co-transfecting a plasmid encoding ADAR2 with a GluA2 minigene, an RNA editing level of 100% was achieved. However, when Pin1 was blocked by siRNA, the editing efficiency dramatically fell to 53%. Similar levels of Q/R site editing were seen when co-transfection was conducted with the GluA2 minigene and ADAR2 into immortalized mouse fibroblast cell lines derived from GluA2 RNA editing deficiencies.

**MODULATION OF GluA2 RNA EDITING AT THE Q/R SITE HAS IMPLICATIONS FOR SURVIVAL**

Through elegant studies, it is now known that modifications to RNA editing at the Q/R site can lead to effects on synaptic and cellular physiology and can lead to neuronal cell loss (Brusa et al., 1995; Kawahara et al., 2004b; Feng et al., 2006). As noted above, GluA2RNA editing deficiencies in the diseased state, potentially contribute to excitotoxicity, despite such receptors also being required for maintenance of synaptic plasticity. This is analogous to NMDA receptor-mediated excitotoxicity, whereby a normal Ca2+-permeable AMPA receptor that is essential to synaptic plasticity is also critically implicated in excitotoxic cell death (reviewed in Harding and Budig, 2003).

**AMPA RECEPTORS ARE INVOLVED IN EXCITOTOXIC NEURONAL DEATH IN DISEASE**

Downregulation of GluA2 occurs in disease Downregulation of GluA2 occurs in disease AMPA receptors (Pellegrini-Giampietro et al., 1997; Tanaka et al., 2000). GluA2 gene downregulation results in formation of AMPA receptors lacking GluA2. Hippocampal cells normally express GluA2, and changes in expression levels may have effects on the Ca2+-permeability of AMPA receptors. It has been shown that 24–72 h following ischemic insult, GluA2 protein is downregulated, particularly in the CA1 region of the hippocampus, where cell death is abundant (Pellegrini-Giampietro et al., 1992). The internalization of AMPA receptors following oxygen-glucose deprivation, a model of ischemia, has been shown to lead to a subsequent delivery of Ca2+-permeable AMPA receptors to the synapse (Liu et al., 2006). This process is regulated by the gene silencing transcription factor neuronal repressor element-1 silencing transcription factor (REST). Global ischemia increases REST mRNA expression in the CA1 region of the hippocampus, which in turn suppresses GluA2 gene expression. In addition, the suppression of REST expression by the use of antisense oligodeoxynucleotides increased neuronal survival 72 h post oxygen-glucose deprivation (Caldерone et al., 2003).

While these Ca2+-permeable AMPA receptors observed in the ischemic brain appear to be in part GluA2-lacking (due to down regulation of GluA2, Pellegrini-Giampietro et al., 1992) recent evidence suggests they may also result from the presence of unedited GluA2 (see GluA2/RNA editing Deficiencies Occur in Ischemia). These Ca2+-permeable AMPA receptors when in the diseased state, potentially contribute to excitotoxicity, despite such receptors also being required for maintenance of synaptic plasticity. This is analogous to NMDA receptor-mediated excitotoxicity, whereby a normal Ca2+-permeable AMPA receptor that is essential to synaptic plasticity is also critically implicated in excitotoxic cell death (reviewed in Harding and Budig, 2003).
epilepsy is not clear. Unedited GluA2 was not found in the hippocampus and temporal cortex of epileptic patients (Kortenbruck et al., 1992). It may be due to the difficulty of detecting unedited RNA in disease (Kawahara et al., 2004a; Peng et al., 2006). Thus, as our current knowledge is limited, further studies using individual cell based assays are required to elucidate the role of GluA2 editing in epilepsy. Similarly, the editing mutant mice raise the possibility, but do not prove that, unedited GluA2 is important in any human disease. The most important point to be taken from the elegant study conducted by Brusa et al. (1995) is that unedited GluA2 can have critical functional effects on cellular physiology.

**GluA2/Q/R RNA Editing Deficiencies Occur in Amyotrophic Lateral Sclerosis**

As noted above, it has been suggested that Ca\(^{2+}\)-permeable AMPA receptors resulting from GluA2 downregulation occurs in various neurological diseases such as ischemia and epilepsy (Pellegrini-Giampietro et al., 1992; Pollard et al., 1993; Gorter et al., 1997). In addition, reduced GluA2 Q/R site RNA editing also results in formation of Ca\(^{2+}\)-permeable GluA2(Q)-containing AMPA receptors in ischemia. Historically, numerous attempts were made to identify unedited GluA2 RNA and little, if any, was ever found to be present in both the healthy and diseased brain (Albarran et al., 1995; Bump et al., 1996; Kortenbruck et al., 2001). This led to the widely held concept that the presence or absence of the GluA2 subunit, rather than RNA editing, is the main process for regulating Ca\(^{2+}\)-permeability. RNA editing at the GluA2 Q/R site showed extremely high variability (7–98%) in editing efficiency following ischemic insult within neurons of the CA1 region of the hippocampus. This editing efficiency correlated closely to the Ca\(^{2+}\)-permeability of the neurons. Neither cell death nor GluA2 RNA editing deficiencies were seen in the CA1 region, indicating the CA1 region is most vulnerable to editing changes and ischemic insult. Interestingly, this cellular death closely correlates with the downregulation of ADAR2 (Peng et al., 2006). The authors demonstrated that by virally mediated expression of ADAR2 in vivo, the RNA editing efficiency at the GluA2Q/R site was adequately enhanced to over 95% post the ischemic insult and consequently lead to neuroprotection. These experiments provide substantial evidence that GluA2 RNA editing plays a vital role in mediating excitotoxic neuronal death during ischemia.

Since Ca\(^{2+}\)-permeable AMPA receptors appear to occur due to the presence of unedited GluA2 and also from GluA2-lacking receptors in ischemia, the question arises as to which of these two types of AMPA receptors are expressed at the synapse and if only one type, or both, contributes to cell death. Given the astonishing results by Peng et al. (2006), which showed that the over-expression of ADAR2 is able to rescue cell loss following ischemic insult, it is possible that despite GluA2-lacking receptors being present, the unedited GluA2 is critical for cell death, as previously mentioned in Section "Novel Insights into the Importance and Regulation of GluA2Q/R RNA Editing."

**Neuroprotective Mechanisms for Calcium-Mediated Excitotoxicity**

Currently, the primary treatments to prevent against Ca\(^{2+}\)-mediated neurotoxicity involve NMDA receptor antagonists. The beneficial effects are less than ideal and in addition there are often side effects, possibly due to blocking the physiological actions due to the downregulation of ADAR2, which has decreased expression in the spinal cords of patients with sporadic ALS (Kawahara and Kawa, 2009; Hideyama et al., 2010). In fact, the ablation of ADAR2 expression in mice results in a phenotype very similar to ALS patients including the progressive death of motor neurons and a decline in motor function (Hideyama et al., 2010). ADAR2 downregulation in ALS correlates with phosphorylated TDP-43, an RNA binding protein whose mutations are associated with ALS (Aizawa et al., 2010). These studies could suggest that GluA2 RNA editing deficiencies may be an important event in ALS, though the cellular mechanisms that regulate RNA editing deficiencies in ALS remain unsolved.
of glutamate neurotransmission and plasticity in non-injured neurons (reviewed in Parsons et al., 2007). Studies have also suggested, however, that blocking Ca\(^{2+}\)-permeable AMPA receptors in animal models of ischemia can protect against cell death in vulnerable neurons. When given intraperitoneal injections of the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f][1,4]diazepine (DNQX), which blocks GluA2-lacking and unedited GluA2 containing AMPA receptors, exerts neuroprotective effects. Noh et al. (2005) demonstrated that by administering Naspm to mice 9–40 h postischemic injury, there is increased cell survival within the CA1 region. These studies demonstrate that Ca\(^{2+}\)-permeable AMPA receptors play a role in modulating cell death and show antagonists to AMPA can protect against cell loss in ischemia. An important idea, given the evidence in ischemia for example, is whether more effort is needed to block altered RNA editing in order to protect against excitotoxicity in disease.

**CONCLUSION**

Little consideration has been given to what role the evolutionarily conserved process of GluA2 RNA editing may play in normal brain function. Many early studies suggested that unedited GluA2 exists at very low levels in the brain and that the extent of unedited GluA2 is not altered substantially in most diseases where editing was investigated (Akbarian et al., 1995; Rump et al., 1996; Kortenbruck et al., 2001). Taken together, the evidence has been compelling that unedited GluA2 does not play a major role in brain function. However with some notable exceptions, few recent studies have probed the role of unedited GluA2 in disease (Kawahara et al., 2004a; Peng et al., 2006). We therefore propose that it is not yet possible to establish the role of unedited GluA2 and also to contribute to the presence of Ca\(^{2+}\)-permeable AMPA receptors in normal brain function, such as synaptic plasticity.

The blockade of Ca\(^{2+}\)-permeable AMPA receptors is known to improve cell survival in injured neuronal tissues, however the extent to which unedited GluA2 contributes to excitotoxic neuron death still needs to be established. It is yet to be revealed a possible role for unedited GluA2 in ischemia and ALS, despite previous studies ruling out a role for unedited GluA2 in ischemia (Kawahara et al., 2004a; Peng et al., 2006). By extension, the lack of evidence for extensive unedited GluA2 in other scenarios so far investigated does not rule out a role for unedited GluA2 in normal physiology or disease. Evidence that unedited GluA2 is preferentially trafficked to the cell surface is important because it adds weight to the view that small amounts of unedited GluA2 can have an impact on normal neuronal function (Greger et al., 2001, 2003, 2007). Furthermore, mice engineered to date to reveal that unedited GluA2 can have an important effect on cellular physiology and cell survival (Brusa et al., 1995; Feldmeyer et al., 1999). Taken together, it is clear that while the average amount of unedited GluA2 is always very low, it can vary between cells with functional consequences.

In conclusion, we suggest that the presence of unedited GluA2, in addition to GluA2-lacking receptors, should be considered as a possibility in studies where Ca\(^{2+}\)-permeable AMPA receptors are described or observed. Numerous studies show that Ca\(^{2+}\)-permeable receptors are critical in normal brain function and disease. Studies are essential to determine the extent to which both unedited GluA2 and GluA2-lacking AMPA receptors contribute in these circumstances.

Exciting recent studies have indicated that ADAR2 is downregulated in disease, concomitant with reduced RNA editing. Mechanisms in which ADAR2 expression is regulated are now being investigated and the complex pathways involved in GluA2 RNA editing are being increasingly unravelled. This emerging knowledge may aid in understanding the regulation and functional role of GluA2 Q/R RNA editing. It is possible that such studies in future may reveal that the ∼1% unedited GluA2 found in the mammalian brain may have as-yet unknown role in synaptic plasticity and disease.

**ACKNOWLEDGMENTS**

This work was supported by Office for Science and Medical Research through their spinal fund, SpinalCure Australia. The Roth Foundation, Bill Gruy, Patricia A. Quick foundation, Nick Kell, Geoffrey Townser, Amedeus Energy Ltd., Walter and Edith Sheldon, Tony and Vivian Howland-Rose, and Glenelg Securities. We would like to thank members of the Neurodegenerative Disorders Laboratory including Andrea Abidipranoto, Lyndsey Kell, Geoffrey Townser, and Vivian Howland-Rose, and Gleneagle Securities. We would like to thank Dr. Sarah Woodworth and Steven Wright for editing and Johanna Stacey and Mauricio Perez for their contribution to the design of figures.

**REFERENCES**

Akbarian, S., Sawada, J., Hladky, T., Yamashita, T., Katsurana, T., Hasho, N., Kimura, T., Yahara, Q., and Kork, S. (2010). TIE2 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol 120, 75–84.

Akhbarian, S., Smith, M. A., and Jono, E. G. (1995). Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 699, 297–304.

Aoki, K., Lin, D., and Huganir, R. L. (2010). Plasma membrane insertion of the AMPA receptor GluA2 subunit is regulated by NSF binding and Q/R editing of the ion pore. Proc. Natl. Acad. Sci. U.S.A. 107, 11080–11085.

Azer, S., Zhou, Z., Ren, W., and Jin, Z. (2009). Ca\(^{2+}\)-permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinase but not Ca\(^{2+}\)-dependent kinase II. J. Neurosci 29, 4539–4550.

Barria, M. J., Harvey, N. J., Elliott, F. L., Saneto, S. D., Baker, K. L., Doan, R. L., Akiyama, A., Strehl, J. A., Harbeson, S. L., and Li, Z. (1994). Calpain inhibitor A-293 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25, 2265–2270.

Bassani, S., Valnegri, P., Beretta, F., and Pasqualini, M. (2009). The GluA2 subunit of AMPA receptors: synaptic role. Neuroscience 158, 55–61.

Bellone, C., and Lüscher, C. (2006). Cocaine triggered AMPA receptor trafficking is reversed in vivo by rIA7-dependent long-term depression. Nat. Neurosci. 9, 630–641.

Bessa, M., Bhattacharyya, S., and Malenka, R. C. (2008). Endocytosis and recycling of AMPA receptors lacking GluA2. Proc. Natl. Acad. Sci. U.S.A. 105, 1038–1043.
Brusa, R., Zimmermann, F., Koh, D. S., Finkielstein, M., Gao, P., Seibberg, P. H., and Sprengel, R. (1995). Early-onset epilepsy and postural lethality associated with a novel arginine deficient Glu-B all in mice. Science 269, 1677–1680.

Buchan, A. M., Li, H., Cho, S., and Palmiter, R. D. (1991). Blockade of the AMPA receptor protein causes CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci. Lett. 123, 255–258.

Burnahm, D., Villaruel, A., and Sakmann, B. (1996). Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site unedited AMPAR subunit Glu-R-B. Nat. Neurosci. 2, 57–64.

Burns, C., Chu, H., Ruster, S., Hamilton, S., Cantor, H., Shoham-Bush, E., and Emerson, R. (1997). Regulation of serotonin-2C receptor G protein coupling by RNA editing. Nature Med. 3, 303–309.

Calabresi, A., Jover, T., Nok, K., Tamaka, H., Yokota, H., Yoko, Y., Groves, P., Regis, R., Remer, M., and Zakian, S. (2005). Ischemic insults depress the gene silencer REST in neurons destined to die. J. Neurosci. 25, 2112–2123.

Chen, C., Teng, D., Wang, Q., Lai, F., Carter, K., and Nozhtura, K. (2003). A third of the human specific adenovirus gene family, ADARs, contains both single- and double-stranded RNA binding domains. RNA 9, 755–767.

Clark, R. L., and Barth, A. (2006). Pathways-specific triggering of native ADARs by in vivo experience. Neuron 50, 118–121.

Comi, K. L., Tseng, K. Y., and Tsung, K. (2000). A third of the human specific adenovirus gene family, ADARs, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767.

Doble, A. (1999). The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81, 163–221.

Döbeli, H., Kühn, K., Brusa, R., Korn, H. C., Koulakovo, B., Rostor, A., Burnahm, N., Jansen, V., Fruthbo, O., Spring, R., and Seiberg, P. H. (1999). Neurological dysfunctions in mice expressing altered levels of the Q/R site-unedited AMPAR subunit Glu-B-2. Nat. Neurosci. 2, 57–64.

Dorsey, R. H., and Single, F. N. (2003). Ischemic insults derepress RNA editing. Trends Neurosci. 26, 81–89.

Emerson, R., Bennet, M., and Zukin, R. (1997). Regulation Q/R site residues. Annu. Rev. Neurosci. 20, 35–43.

Feldmeyer, D., Sprengel, R., and Seeburg, P. H. (1995). Early-onset epilepsy and postnatal lethality associated with an editing-deficient AMPA receptor subunit composition. Science 269, 1861–1862.

Feldmeyer, D., Kunkel, P., Kluft, L., and Zifit, E. B. (2006). Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Nature 437, 85–97.

Feng, J. I., Kluft, L., Kong, X., and Zifit, E. B. (2003). AMPA receptor tetrodotoxin is mediated by RNA editing. Nature 407, 753–754.

Futai, M., and Higuchi, M. (1999). AMPA receptor-mediated Ca2+ influx in hippocampal CA3 neurons. J. Neurosci. 19, 6179–6188.

Higuchi, M., Akamari, P., Kluft, L., and Zifit, E. B. (2004). Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Nature 437, 85–97.

Higuchi, M., Kluft, L., and Zifit, E. B. (2003). AMPA receptor tetrodotoxin is mediated by RNA editing. Nature 407, 753–754.

Higuchi, M., and Single, F. N. (2001). RNA editing at the Q/R site of AMPA receptor subunits. Trends Neurosci. 24, 407–416.

Higuchi, M., and Bangalore, H. (2006). The expanding social network of ionotropic glutamate receptor TARPs and other transmembrane auxiliary subunits. Neuron 54, 789–872.

Jackson, A. C., and Nosek, B. A. (2010). RNA editing of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 31, 18–23.

Kawahara, Y., and Nosek, S. (2005). Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Annu. Rev. Neurosci. 28, 131–144.

Kawahara, Y., Hus, S., Ito, M., Kanazawa, I., and Nosek, S. (2006b). Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Downs’s syndrome brains. Birth Defects Res. B Dev. Compar. Mol. Biol. 75, 151–155.

Kawahara, Y., Hus, S., Sun, H., Ito, M., Kanazawa, I., and Nosek, S. (2006a). Low efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 31, 18–23.

Kawahara, Y., and Nosek, S. (2005). Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Annu. Rev. Neurosci. 28, 131–144.

Kawahara, Y., Hus, S., Ito, M., Kanazawa, I., and Nosek, S. (2006b). Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Downs’s syndrome brains. Birth Defects Res. B Dev. Compar. Mol. Biol. 75, 151–155.

Kawahara, Y., Hus, S., Sun, H., Ito, M., Kanazawa, I., and Nosek, S. (2006a). Low efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 31, 18–23.

Kawahara, Y., and Nosek, S. (2005). Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Annu. Rev. Neurosci. 28, 131–144.

Kawahara, Y., Hus, S., Ito, M., Kanazawa, I., and Nosek, S. (2006b). Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Downs’s syndrome brains. Birth Defects Res. B Dev. Compar. Mol. Biol. 75, 151–155.
AMPARs in LTP. EMBO J. 26, 4879–4880.

Lu, Y., Mao, J., Hayashi, M., Hayashi, Y., and Jin, H. (2006). Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Nat Rev Neurosci. 7, 126–134.

Lomeli, H., Mosbacher, J., Melcher, M., Usachev, Y. M., McKnight, G. S., and Hall, I. W. (2007). Agedependent requirement of AKAP90-anchored PrA and GluA2-lacking AMPA receptors in LTP. EMBO J. 26, 4879–4880.

Lomeli, H., Mosbacher, J., Melcher, M., Usachev, Y. M., McKnight, G. S., and Hall, I. W. (2007). Agedependent requirement of AKAP90-anchored PrA and GluA2-lacking AMPA receptors in LTP. EMBO J. 26, 4879–4880.

Lomeli, H., Mosbacher, J., Melcher, M., Usachev, Y. M., McKnight, G. S., and Hall, I. W. (2007). Agedependent requirement of AKAP90-anchored PrA and GluA2-lacking AMPA receptors in LTP. EMBO J. 26, 4879–4880.
Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989.

Whitney, N. P., Peng, H., Erdmann, N. B., Tian, C., Monaghan, D. T., and Zheng, J. C. (2008). Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. J. Neurosci. 28, 1982–1989.

Wiltgen, B. J., Rogers, G. A., Gray, E. E., Abdipranoto, A., Thangthaeng, S., Heinemann, S. F., O'Dell, T. J., Fanselow, M. S., and Vissel, B. (2010). A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS ONE 5, e12818. doi: 10.1371/journal.pone.0012818

Ziff, E. B. (2007). TARPs and the AMPA receptor trafficking paradox. Neuron 55, 627–633.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 18 September 2011; accepted: 29 February 2012; published online: 11 April 2012.

Citation: Wright A and Vissel B (2012) The essential role of AMPA receptor GluA2 subunit RNA editing in the normal and diseased brain. Front. Mol. Neurosci. 5:34. doi: 10.3389/fnmol.2012.00034

Copyright © 2012 Wright and Vissel. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.