The spatial structures and transportation infrastructure development in Banda Aceh City with TOD

N Fadhly*

Department of Civil Engineering, Engineering Faculty, Syiah Kuala University, Darussalam Banda Aceh, Indonesia

*nnoer6637@gmail.com

Abstract. The spatial structure and construction of transport infrastructure in the city of Banda Aceh, in accordance with the strategy for developing the Banda Aceh City Spatial Plan (RTRW) 2009-2029 which combines the development of "multi-canter" and "linear-growth". This has an impact on the inefficient development of transportation infrastructure with an increase in the number of vehicles 6% per year. The concept of TOD can eliminate urban sprawl, which turns urban sprawl into a compact city area. The method used is path analysis with, travel distance (X1), the purpose of the trip (X2), travel cost (X3) so that the equation can be obtained: Spatial Structure = 0.520 + 0.206X1 + 0.264X2 + 0.100X1, the relationship with infrastructure development transportation consists from variables, diversity of public/social facilities (X1), travel frequency (X2), the purpose of the trip(X3), travel costs (X4) and travel time (X5), so that the equation is obtained, Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X2 + 0.235X3 + 0.222X4 + 0.327X5, from the model obtained, it can be concluded that the development of transportation infrastructure with the concept of TOD is strongly influenced by the spatial structure.

1. Introduction
The spatial structure of the city of Banda Aceh after the Tsunami in 2004, experienced a very significant change caused by urban sprawl to the south and east of the city of Banda Aceh, this had an impact on inadequate facilities and infrastructure in the region, especially in the construction of transportation infrastructure. The result of this problem caused a shift in the role of urban service centers and was followed by an increase in the growth of activity centers in the southern and eastern regions of Banda Aceh, namely 33% and 44% of the total population of Banda Aceh, which was 249,282. This has resulted in the inefficient development of transportation infrastructure with an increase in the number of private vehicles 6% per year due to the integration of inter-city space so as to create a new city that caused congestion on arterial road segments in the city of Banda Aceh [1].

Increasing economic growth in the city of Banda Aceh is 6.12% in 2018, which has an increasing number of living standards and population mobility needs in the city of Banda Aceh. Transportation problems are due to unfavourable contractions in the development of transportation infrastructure and spatial structures, causing problems in various factors including the uneven road network in the city of Banda Aceh, trade facilities, public and social facilities that are still concentrated in Banda Aceh, and the shift of society to private transportation [2].

The concept of Transit Oriented Development (TOD), can synergize the spatial structure with the development of transportation infrastructure so that it can eliminate urban sprawl, which transforms into
a compact city by paying attention to several factors such as business zones, offices, public facilities, and social facilities, so that TOD can reduce dependency against private vehicles [2].

2. Literature review

2.1. Spatial structure of city
The phenomenon of urban space development is basically aimed at 2 basic rankings, namely the structure of "compact" and "sprawl" spaces, this is very much based on the shape of the space structure with these attributes that will affect the shape of the activity pattern or the orientation of movements that occur [3].

Regional development instruments contain a system and public resources that are arranged comprehensively, taking into account economic, social and environmental aspects, which can be arranged in the following hierarchy (Figure 1).

![Figure 1. Selection of regional planning.](image)

2.2. Spatial structure of Banda Aceh City
The development of the city of Banda Aceh can be categorized in the growing pattern of "Multi Nuclei Model" or which has several growing points. The growth pattern of these growth points turns out to have a tendency for linear and developing patterns to follow the road network so that it shows the pattern of space development with the Linear Growth Model [4].

From the existing spatial structure, it can be seen that the direction of urban development trends (Banda Aceh City) leads to the south (directly adjacent to Aceh Besar), trade and services, sports center is located between Aceh Besar Regency areas. Thus, the tendency of the Banda Aceh urban center to come is expected to lead to the South and even to the Greater Aceh District [5].

2.3. Transportation infrastructure development
Facilities that must be built in advance that will be used for activities to transport and move cargo (goods and people) from origin to destination, geographically between the layout and the capacity and location of transportation facilities combined together to obtain the volume and pattern of traffic flow that can be said reciprocity between layout and transportation [6].

2.4. Transit Oriented Development (TOD)
TOD is the allotment of mixed land in the form of housing or trade that is planned to maximize public transport access and often other activities are added to encourage users of public transport modes, the development of TOD is influenced by the physical social dimension to synergize 4 factors: mixed-use high density, non-motorized vehicle access and close to MRT / BRT stations [7].

The relationship between land use and transportation systems to accommodate these movements is designed to produce efficient spatial forms which will further form "spatial imprint" in the form of
spatial structures, and the determinants of successful TOD implementation include land use and transportation systems where both are elements forming space structures [8,9].

3. Methodology
The type of research used is quantitative using path analysis. Data used to model the development of transportation infrastructure and spatial structure with the TOD concept [10]. Spatial structure variable \((X_1)\) is a diversity of public/social facilities in sub-districts in Banda Aceh, and which is a variable in the development of transportation infrastructure \((X_2)\) is the type of land use and spatial structure becomes intervening variables, while other variables are travel distance, travel intent, and travel costs, and travel frequency.

3.1. Research hypothesis
The spatial of the city of Banda Aceh has an irregular and non-geometric pattern, giving rise to concentration in an area, with the TOD concept so that the construction of transportation infrastructure can follow the structure of space so that it affects the trip generation and attraction and can overcome congestion problems due to urban sprawl.

3.2. Data analysis model
The methodology developed will link the variables of Transportation Infrastructure Development and Space Structure with the TOD concept in the form of a model. The model used is a four-stage transportation planning model. Model calibration is carried out using data on transportation network conditions with the concept of TOD, socio-economic and population, and the structure pattern of existing space in Banda Aceh City. From the calibration results, several models are needed to predict future travel demand and transportation infrastructure performance.

4. Research result

4.1. Space structure regression analysis

Model	R	R Square	Adjusted R Square	Std. The error of the Estimate	Change Statistics
1	.789a	.623	.617	.37950	.623 110,159 6 400 .000
2	.789b	.623	.618	.37912	.000 190 1 400 .663
3	.788c	.621	.617	.37978	-.002 2,400 1 401 .122
4	.787d	.619	.616	.38027	-.002 2,043 1 402 .154

Source: Processed data 2019

The variability of spatial structure that can be explained by using the independent variable is 61.9% due to other variables outside of this model and so the error model 4, \(\varepsilon = 1 - R^4 = 1 - 0.619 = 0.381\).

The path coefficient after trimming can be seen in model 4 in the Table Coefficients.
Table 2. Space structure coefficients.

Model	Unstandardized Coefficients B	Std. Error	Standardized Coefficients Beta	t	Sig.	95.0% Confidence Interval for B Lower Bound	Upper Bound
(Constant)							
Travel Distance	,514	,071		7,266	.000	,375	,653
Transp network connect	-,012	,027	-.022	-,436	.663	-,-065	,041
1 Travel Frequency	-,100	,053	-.090	-1,875	.062	-,-204	,005
The purpose of the trip	,276	,030	,462	9,200	.000	,217	,335
Travel cost	,106	,033	,176	3,250	.001	,042	,171
Travel time	,073	,050	,063	1,463	,144	-,-025	,171
(Constant)							
Travel Distance	,504	,067		7,544	.000	,373	,636
Travel Frequency	-.101	,053	-.091	-1,910	.057	-,-206	,003
The purpose of the trip	,271	,028	,454	9,832	,000	,217	,325
Travel cost	,101	,030	,167	3,336	,001	,041	,160
Travel time	,076	,049	,066	1,549	,122	-,-021	,173
2 Travel Frequency	-,101	,053	-.091	-1,910	,057	-,-206	,003
The purpose of the trip	,271	,028	,454	9,832	,000	,217	,325
Travel cost	,101	,030	,167	3,336	,001	,041	,160
Travel time	,076	,049	,066	1,549	,122	-,-021	,173
(Constant)							
Travel Distance	,521	,066		7,881	,000	,391	,651
Travel Frequency	-.070	,049	-.063	-1,429	,154	-,-167	,026
The purpose of the trip	,272	,028	,456	9,870	,000	,218	,326
Travel cost	,105	,030	,173	3,462	,001	,045	,164
3 Travel Frequency	-.070	,049	-.063	-1,429	,154	-,-167	,026
The purpose of the trip	,272	,028	,456	9,870	,000	,218	,326
Travel cost	,105	,030	,173	3,462	,001	,045	,164
(Constant)							
Travel Distance	,520	,066		7,855	,000	,390	,650
Travel Frequency	-.070	,049	-.063	-1,429	,154	-,-167	,026
The purpose of the trip	,272	,028	,456	9,870	,000	,218	,326
Travel cost	,105	,030	,173	3,462	,001	,045	,164
4 Travel Frequency	-.070	,049	-.063	-1,429	,154	-,-167	,026
The purpose of the trip	,272	,028	,456	9,870	,000	,218	,326
Travel cost	,105	,030	,173	3,462	,001	,045	,164

Source: Processed data 2019

So that the equation of spatial structure is:

\[\text{Space Structure} = 0.520 + 0.206X_1 + 0.264X_2 + 0.100X_3 \]

\(X_1 = \) Travel distance
\(X_2 = \) The purpose of the trip
\(X_3 = \) Travel cost

Table 3. Summary of transportation infrastructure development models.

Model	R	R Square	Adjusted R Square	Std. The error of the Estimate	R Square Change	Change Statistics	F	df1	df2	Sig. F Change
1	.790	.624	.618	.81925	.624	94,639	7	399	.000	.000
2	.790	.624	.618	.81823	.000	.001	1	399	.971	.001
3	.789	.623	.618	.81887	-.002	1,634	1	400	.202	.001

Source: Processed data 2019

4.2 Regression analysis of transportation infrastructure development

At this stage, it will analyze the regression by looking at the effects in a combination and partially, by adding variable spatial structure to the development of transportation infrastructure, which is a variable of transportation infrastructure is land used.
The variability of transportation infrastructure development that can be explained by using independent variables is 62.3%, while the influence of 37.7% is caused by other variables outside of this model.

It appears that the coefficient of determination for models 1 and 2 (R^2) is 0.624 and model 3 (R^2) is 0.623. so that the error model, $\varepsilon = 1 - R^2 = 1 - 0.623 = 0.377$.

The path coefficient after trimming can be seen in model 3 in the Table Coefficients.

Model	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	95.0% Confidence Interval for B		
	B	Std. Error	Beta		Lower Bound	Upper Bound	
(Constant)	-1.527	.163	-9.394	.000	-1.847	-1.207	
Public/social facilities	.650	.108	.301	6.021	.000	.438	.862
Travel distance	.004	.099	.002	.037	.971	-1.911	1.985
Transp network connect	.074	.058	.065	1.263	.207	-0.041	.188
Travel Frequency	.373	.115	.155	3.229	.001	.146	.600
The purpose of the trip	.200	.071	.156	2.813	.005	.060	.341
Travel cost	.183	.072	.140	2.563	.011	.043	.324
Travel time	.345	.108	.137	3.195	.002	.133	.558
(Constant)	-1.526	.161	-9.492	.000	-1.842	-1.210	
Public/social facilities	.651	.105	.301	6.218	.000	.445	.857
Transp network connect	.074	.058	.065	1.278	.202	-0.040	.188
Travel Frequency	.374	.111	.156	3.365	.001	.155	.592
The purpose of the trip	.201	.071	.156	2.831	.005	.061	.340
Travel cost	.184	.068	.141	2.721	.007	.051	.317
Travel time	.346	.107	.137	3.242	.001	.136	.556
(Constant)	-1.457	.152	-9.615	.000	-1.755	-1.159	
Public/social facilities	.652	.105	.302	6.222	.000	.446	.858
Travel Frequency	.388	.111	.162	3.509	.001	.171	.606
The purpose of the trip	.235	.066	.183	3.588	.000	.106	.364
Travel cost	.222	.061	.170	3.657	.000	.103	.342
Travel time	.327	.106	.130	3.096	.002	.120	.535

Model	Coefficientsa	95.0% Confidence Interval for B					
	B	Std. Error	Beta	Lower Bound	Upper Bound		
(Constant)	-1.457	.152	-9.615	.000	-1.755	-1.159	
Public/social facilities	.652	.105	.302	6.222	.000	.446	.858
Travel Frequency	.388	.111	.162	3.509	.001	.171	.606
The purpose of the trip	.235	.066	.183	3.588	.000	.106	.364
Travel cost	.222	.061	.170	3.657	.000	.103	.342
Travel time	.327	.106	.130	3.096	.002	.120	.535

a. Dependent Variable: Land use type

Source: Processed data 2019

Transportation Infrastructure Development = -1.457 + 0.652X₁ + 0.388X₂ + 0.235X₃ + 0.222X₄ + 0.327X₅
X₁ = Public / social facilities
X₂ = Travel frequency
X₃ = The purpose of the trip
X₄ = Travel cost
X₅ = Travel time

4.3. Spatial structures and infrastructure development with the TOD concept

The results of the processing of path analysis methods obtained influence variables that have lower value if the direct effect is with the development of transportation infrastructure, but if the indirect effect through space structure has a greater influence, it can be seen from the spatial structure scheme - the construction of transportation infrastructure interpreted the concept of TOD has an influence on transportation infrastructure development through land use type.
5. Conclusions

The construction of a TOD transportation infrastructure is strongly influenced by the structure of space, this can be seen from the variables of influence, travel distance, transportation network connectivity, travel frequency, the purpose of the trip, travel costs, and travel time, which have a lower value direct influence with the construction of transportation infrastructure, but if the indirect influence through the structure of space has a greater influence.

References

[1] Fadhly N 2018 Implementation of Transit Oriented Development in Handling Congestion Effect on Urban Sprawl Phenomenon and Traffic Growth in Banda Aceh 3rd Annual Applied Science and Engineering Conference (AASEC 2018), IOP Conf. Series: Material Science and Engineering 434 012200

[2] Fadhly N 2018 Regression analysis of transportation infrastructure development using Transit Oriented Development concept Opcion, Ano, Especial 14

[3] Kusmantoro 2007 Initiating Alternative City Space Forms: Efforts to Reduce City Traffic Movement Intensity Jurnal Perencanaan Wilayah dan Kota ITB 18 3

[4] Fadhly N 2017 Effect of space structure against development of transport infrastructure in Banda Acehby using the concept of transit oriented development AIP Conference Proceeding 1903 060002

[5] Banda Aceh City Government 2009 Banda Aceh City Spatial Planning (RTRW) for 2009-2029 (Banda Aceh: Banda Aceh City Government)

[6] Mishra S and Ye X 2011 A functional integrated land use-transportation model for analysing transportation impact in the Maryland-Washington DC Region Science, Practice, & Policy Fall 7 2

[7] Ngo S 2012 Identifying Areas for Transit-Oriented Development in Vancouver Using GIS Trail Six: An Undergraduate Journal of Geography

[8] Ghani Z B A 2013 The Readiness of Transit Oriented Development In Nusajaya, Johor (Faculty of Built Environment, University Teknologi Malaysia)

[9] Moeckel R, Garcia C L, Chou A T M, Okrah M B 2018 Trends in integrated land-use/transport modelling: An evaluation of the state of the art The Journal of Transportation And Land Use 11 463-476

[10] Likaj R, Shala A and Bruqi M 2017 Aplication of Graph Theory to find Optimal Paths for the Transportation Problem International Journal of Current Engineering and Technology 2277-4106