CHAIN REDUCTION PRESERVES THE UNROOTED SUBTREE PRUNE-AND-REGRAFT DISTANCE

CHRIS WHIDDEN AND FREDERICK A. MATSEN IV

Program in Computational Biology
Fred Hutchinson Cancer Research Center
Seattle, WA, USA 98109
Tel.: +1-206-667-1311
Fax: +1-206-667-2437

Abstract. The subtree prune-and-regraft (SPR) distance metric is a fundamental way of comparing evolutionary trees. It has wide-ranging applications, such as to study lateral genetic transfer, viral recombination, and Markov chain Monte Carlo phylogenetic inference. Although the rooted version of SPR distance can be computed relatively efficiently between rooted trees using fixed-parameter-tractable algorithms, in the unrooted case previous algorithms are unable to compute distances larger than 7. One important tool for efficient computation in the rooted case is called chain reduction, which replaces an arbitrary chain of subtrees identical in both trees with a chain of three leaves. Whether chain reduction preserves SPR distance in the unrooted case has remained an open question since it was conjectured in 2001 by Allen and Steel, and was presented as a challenge question at the 2007 Isaac Newton Institute for Mathematical Sciences program on phylogenetics.

In this paper we prove that chain reduction preserves the unrooted SPR distance. We do so by introducing a structure called a socket agreement forest that restricts edge modification to predetermined socket vertices, permitting detailed analysis and modification of SPR move sequences. This new chain reduction theorem reduces the unrooted distance problem to a linear size problem kernel, substantially improving on the previous best quadratic size kernel.

E-mail address: {cwhidden, matsen}@fredhutch.org.

Key words and phrases. phylogenetics, subtree prune-and-regraft distance, lateral gene transfer, agreement forest, discrete optimization.

This work was funded by National Science Foundation award 1223057 and 1564137. Chris Whidden is a Simons Foundation Fellow of the Life Sciences Research Foundation. The research of Frederick Matsen was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation.
1. Introduction

Molecular phylogenetic methods reconstruct evolutionary trees (a.k.a. phylogenies) from DNA or RNA data and are of fundamental importance to modern biology [26]. Phylogenetic inference has numerous applications including investigating organismal relationships (the “tree of life” [29]), reconstructing virus evolution away from innate and adaptive immune defenses [15], analyzing the immune system response to HIV [22], designing genetically-informed conservation measures [24], and investigating the human microbiome [34]. Although the molecular evolution assumptions may differ for these different settings, the core algorithmic challenges remain the same: reconstruct a tree graph representing the evolutionary history of a collection of evolving units, which are abstracted as a collection of taxa where each taxon is associated with a DNA, RNA, or amino acid sequence.

Phylogenetic study often requires an efficient means of comparing phylogenies in a meaningful way. For example, different inference methods may construct different phylogenies and it is necessary to determine to what extent they differ and, perhaps more importantly, which specific features differ between the trees. In addition, the evolutionary history of individual genes does not necessarily follow the overall history of a species due to reticulate evolutionary processes: lateral genetic transfer, recombination, hybridization, and incomplete lineage sorting [21]. Comparisons of inferred histories of genes to each other, a reference tree, or a proposed species tree may be used to identify reticulate events [6, 52] and distance measures between phylogenies may be used to optimize summary measures such as supertrees [38, 45, 3, 52].

Numerous distance measures have been proposed for comparing phylogenies. The Robinson-Foulds distance [40] is perhaps the most well known and can be calculated in linear time [18]. However, the Robinson-Foulds distance has no meaningful biological interpretation or relationship to reticulate evolution. Typically, distance metrics are either easy to compute but share this lack of biological relation, such as the quartet distance [13] and geodesic distance [37], or are difficult to compute such as the hybridization number [4] and maximum parsimony distance [14, 28, 35].

The subtree prune-and-regraft (SPR) distance is widely used due to its biological interpretability despite being difficult to compute [4, 5]. SPR distance is the minimum number of lateral gene transfer events required to transform one tree into the other (Figure 1(d)); it provides a lower bound on the number of reticulation events required to reconcile two phylogenies. As such, it has been used to model reticulate evolution [32, 36]. In addition, the SPR distance is a natural measure of distance when analyzing phylogenetic inference methods which typically apply SPR operations to find maximum likelihood trees [39, 44] or estimate Bayesian posterior distributions with SPR-based Metropolis-Hastings random walks [41, 12]. Similar trees can be easily identified using the SPR distance, as random pairs of \(n \)-leaf trees differ by an expected \(n - \Theta(n^{2/3}) \) SPR moves [2]. This difference approaches the maximum SPR distance of \(n - 3 - \left\lfloor (\sqrt{n} - 2 - 1)/2 \right\rfloor \) asymptotically. The topology-based SPR distance is especially appropriate in this context as topology changes have been identified as the main limiting factor of such methods [30, 27, 51]. Moreover, the SPR distance has close connections to network models of evolution [4, 11, 36].

Although it has these advantages, the SPR distance between both rooted and unrooted trees is NP-hard to compute [10, 25], limiting its utility. Despite the NP-hardness of computing the SPR distance between rooted phylogenies, recent algorithms can rapidly compare trees with hundreds of leaves and SPR distances of 50 or more in fractions of a second [17, 52]. This has enabled use of the SPR distance for inferring phylogenetic supertrees and lateral genetic transfer [52], comparing influenza phylogenies to assess reassortment [20], and investigating mixing of Bayesian phylogenetic posteriors [51, 50].

SPR distances can be computed efficiently in practice for rooted trees by computing a maximum agreement forest (MAF) of the trees [23, 1]. Due to this MAF framework, the development of efficient fixed-parameter and approximation algorithms for SPR distances between rooted trees...
2 CHAIN REDUCTION PRESERVES THE UNROOTED SUBTREE PRUNE-AND-REGRAFT DISTANCE

Figure 1. (a) An unrooted X-tree \(T\). (b) \(T(V)\), where \(V = \{1, 2, 5\}\). (c) \(T|V\). (d) An SPR operation transforms \(T\) into a new tree by \textit{pruning a subtree} and \textit{regrafting} it in another location.

has become an area of active research [5, 53, 8, 48, 43, 17] (see [48] for a more complete history), including recent extensions to nonbinary trees [49, 16], and generalized MAFs of multiple trees [42].

Reduction rules form a key step of these fixed parameter-algorithms, including the subtree reduction rule [1], chain reduction rule [1], and cluster reduction rule [31]. The first two optimizations collectively reduce the size of the compared trees to a linear-size problem kernel with respect to their SPR distance, while the third partitions the trees into smaller subproblems that can be considered independently. These optimizations greatly reduce the search space that must be considered during the MAF search.

Most phylogenetic inference packages today use reversible mutation models to infer unrooted trees, motivating SPR calculation for unrooted trees. However, unrooted SPR (uSPR) currently lacks some of the reduction rules available in the rooted case, making it difficult to analyze properties of the distance. In particular, although the subtree reduction rule is applicable to the unrooted case, only a weaker version of the chain reduction rule, the 9k-chain reduction rule [9] has been proven to preserve the uSPR distance. Correspondingly, a quadratic size kernel is the current state of the art for computing the uSPR distance, in contrast to the linear-size kernel for rooted SPR. This kernel is sufficient for proving that the problem is fixed-parameter tractable, but does not make for a practical foundation on which to develop an efficient algorithm. In part because of the lack of such a reduction rule, the best previous algorithm for computing the SPR distance between unrooted trees, due to Hickey et al. [25], cannot compute distances larger than 7 or reliably compare trees with more than 30 leaves.

In this paper, we substantially advance understanding of and computational algorithms for the unrooted SPR distance. We first introduce a new concept of socket agreement forests (SAFs) that allow us to look at uSPR paths in a new way and define equivalences between these paths, Then, building on previous work by Hickey et al. [25] and Bonet and St. John [9], we prove the 2001 conjecture that the chain reduction preserves the uSPR distance, reducing the uSPR distance problem to a linear size problem kernel.

2. Preliminaries

Nodes (i.e. vertices) of a tree graph with one neighbor are called \textit{leaves} and nodes with three neighbors are called \textit{internal nodes}. An (unrooted binary phylogenetic) \(X\)-\textit{tree} is a tree \(T\) whose nodes each have one or three neighbors, and such that the leaves of \(T\) are bijectively labeled with the members of a label set \(X\). \(T(V)\) is the unique subtree of \(T\) with the fewest nodes that connects all nodes in \(V\). \textit{Suppressing} a node \(v\) deletes \(v\) and its incident edges; if \(v\) is of degree 2 with
neighbors u and w, u and w are reconnected using a new edge (u, w). The V-tree induced by T is the unique smallest tree $T[V]$ that can be obtained from $T(V)$ by suppressing unlabeled nodes with fewer than three neighbors. See Figure 1.

An unrooted X-forest F is a collection of (not necessarily binary) trees T_1, T_2, \ldots, T_k with respective label sets X_1, X_2, \ldots, X_k such that X_i and X_j are disjoint, for all $1 \leq i \neq j \leq k$, and $X = X_1 \cup X_2 \cup \ldots \cup X_k$. We say F yields the forest with components $T_1 | X_1, T_2 | X_2, \ldots, T_k | X_k$, in other words, this forest is the smallest forest that can be obtained from F by suppressing unlabeled nodes with less than three neighbors. For an edge set E, $F - E$ denotes the forest obtained by deleting the edges in E from F and $F \div E$ the yielded forest. We say that $F \div E$ is a forest of F.

A subtree-prune-regraft (SPR) operation on an unrooted X-tree T cuts an edge $e = (u, v)$. This divides T into subtrees T_u and T_v, containing u and v, respectively. Then it introduces a new node v' into T_v by subdividing an edge of T_v, and adds an edge (u, v'). Finally, v is suppressed (Figure 1(d)). In the following we assume all trees are unrooted unless otherwise stated.

We often consider a sequence of operations applied to a tree T_1 that result in a tree T_2. These operations can be thought of as “moving” between trees and are also referred to as moves (e.g. an SPR move). A sequence of moves $M = m_1, m_2, \ldots, m_d$ applied to T_1 result in the sequence of trees $T_1 = t_0, t_1, t_2, \ldots, t_d = T_2$. We call such sequences of trees a path (e.g. an SPR path).

When considering how the tree changes throughout such sequences, it is often helpful to consider how nodes and edges of the tree change. Formally, we construct a mapping $\varphi_{i,j}$ that maps nodes and edges of t_i to t_j. Each mapping $\varphi_{i,i+1}$ between adjacent trees is constructed according to the corresponding move m_{i+1}: nodes and edges of t_i that are not modified by m_{i+1} are mapped to the corresponding nodes and edges of t_{i+1}. The deleted edge (u, v) of t_i is mapped to the newly introduced edge of t_{i+1} (e.g. (u, v') for an SPR move). Deleted nodes are mapped to \emptyset. Forward mappings $\varphi_{i,j}$, $i < j$, are constructed transitively. Reverse mappings $\varphi_{j,i}$, $i < j$, are constructed analogously by considering the moves that construct the reverse sequence $t_d, t_{d-1}, \ldots, t_0$.

We will use these mappings implicitly to talk about how a tree changes throughout a sequence of moves. With these mappings we can consider SPR tree moves as changing the endpoints of edges rather than deleting one edge and introducing another. We say that an edge is broken if one of its endpoints is moved by a rearrangement operation.

SPR operations give rise to a distance measure $d_{\text{SPR}}(\cdot, \cdot)$ between X-trees, defined as the minimum number of SPR operations required to transform one tree into the other. The trees in Figure 5(a), for example, have SPR distance $d_{\text{SPR}}(T_1, T_2) = 3$. We will refer to a minimum-length path of SPR moves between two trees as an optimal SPR path.

Given trees T_1 and T_2 and forests F_1 of T_1 and F_2 of T_2, a forest F is an agreement forest (AF) of F_1 and F_2 if it is a forest of both forests. F is a maximum agreement forest (MAF) if it has the smallest possible number of components. We denote this number of components by $m(F_1, F_2)$. For two unrooted trees T_1 and T_2, Allen and Steel [1] showed that the TBR distance is $m(T_1, T_2) - 1$. Figure 5(b) shows an MAF of the trees in Figure 5(a).

3. Socket Agreement Forests

In this section we introduce a new type of agreement forest, socket agreement forests (SAFs). SPR operations on general trees are difficult to analyze because they remove and introduce internal nodes. SAFs solve this difficulty by including a finite set of predetermined sockets which are the only nodes that can be involved in SPR operations and are never deleted or introduced. Due to this fixed nature, SAFs are unsuitable for enumeration or determining a distance metric directly. Instead, SAFs allow us to identify properties of independence with respect to optimal SPR paths and determine cases where such an optimal path can be modified to obtain a different optimal SPR path. Proofs of the Observations, Corollary, and Lemma in this section can be found in the
Appendix. We use these concepts in Section 4 to prove that the chain reduction preserves the SPR distance between unrooted trees.

Define a **socket forest** to be a collection of unrooted trees with special nodes, called **sockets**. Socket forests have special edges called **connections** that must be between two sockets. A collection of them is a **connection set**. Connections are not allowed to connect a socket to itself, although multiple connections to the same socket are allowed.

We define the **underlying** forest of a socket forest F to be the forest F_* obtained from F by deleting all connections and suppressing all unconnected sockets. We will say that a socket forest F permits an unrooted tree T if it is possible to add edges between the sockets of F, resolve any multifurcations in some way, and suppress unconnected sockets to obtain T. Moreover, we say that a socket forest F permits an **SPR path** if each intermediate tree along the path is permitted by F. Given two trees T_1 and T_2, a **socket agreement forest** (SAF) is a socket forest that permits both T_1 and T_2. Note that the underlying forest of an SAF is an AF of T_1 and T_2.

Because we will need to be precise concerning ways that connections are changing in socket forests, we offer the following clarifications. First, because each socket is separately identified (e.g. with a numbering), any connection can be described irrespective of the other connections in a socket forest. As with SPR moves on general trees, we consider the deletion and insertion of a connection as simply changing the endpoint of the connection. As such, the “new” connection maintains the same identifier. Thus, we can identify changes in a connection by the changes in the sockets it connects, again irrespective of the other connections in a socket forest. The fact that connections are well defined irrespective of other connections implies that there is a well defined notion of equivalence of moves: two moves are equivalent if they both attach a given endpoint of the same connection to the same socket.

We will also use the following terminology. A **panel** is a component of a socket agreement forest. A **singleton panel** is a panel with one socket. An **SPR move** for a given connection set is the replacement of one connection in a connection set for another that does not introduce cycles. We will denote SPR moves that replace a connection $c = (u, v)$ with a connection (u, v') by $(u, v) \rightarrow (u, v')$ for short. We say that this move breaks the connection c. Again, we can uniquely describe this move as changing the second endpoint of connection c to socket v', regardless of the current state of the socket forest. An SPR move attaching to socket v is **terminal** for a given sequence of moves if subsequent moves maintain the connection endpoint attached to v.

Let $M = m_1, m_2, \ldots, m_k$ be an optimal sequence of SPR moves transforming tree T_1 into tree T_2 via a socket forest F. We will often consider the sequence of trees $T_1, t_1, t_2, \ldots, t_k = T_2$ induced by these moves, that is the sequence of trees obtained by applying M to a fully-connected socket forest configuration of F that permits T_1 and results in T_2. We say that two such trees are **equivalent** if they are both permitted by the same binary phylogenetic tree. In this way we can discuss sockets and panels in the trees, as shorthand for the sockets and panels in the socket forest configurations that correspond to each tree.

We say that two SPR moves m_i and m_j, $i \neq j$ in such an optimal path are **independent** if there exists another optimal sequence of SPR moves transforming T_1 into T_2 such that equivalent moves to m_j and m_i occur in a different order. In contrast, connections to panels with multiple sockets may form cycles depending on the order of the moves.

Observation 1. An SPR move that breaks an edge connected to a singleton panel is independent of any other SPR move in an optimal SPR path.

We next observe that modifying a terminal SPR move to use a different socket in the same panel of an underlying AF creates a new sequence of SPR moves that results in the same tree other than
the modified connection. Let $M = m_1, m_2, \ldots, m_k$ be a sequence of SPR moves transforming tree T_1 into tree T_2, F a socket agreement forest that permits M, and F^* the AF underlying F.

Observation 2. If $m_i = (u, v) \rightarrow (u, v')$ is a terminal move of M and the component of F^* containing v' also contains a socket v'', then $M' = m_1, m_2, \ldots, m_{i-1}, m_i', m_{i+1}, m_{i+2}, \ldots, m_k$ is a valid sequence of SPR moves, where $m_i' = (u, v) \rightarrow (u, v'')$.

Note that a move m_i is terminal with respect to the subsequence $m_i, m_{i+1}, \ldots, m_{j-1}$, where m_j is the next move of the v' endpoint moved by m_i. Hence we can obtain a new sequence of SPR moves from M that results in an equivalent tree by modifying the non terminal move m_i to use a different socket in the same panel of the underlying AF. We must also accordingly modify the subsequent move m_j. Thus, we have the following corollary:

Corollary 1. Suppose $m_i = (u, v) \rightarrow (u, v')$ is a non-terminal move of M and the component k of F^* containing v' also contains a socket v''. Let $m_j = (w, v') \rightarrow (w, x)$ be the next move in M of the v' endpoint moved by m_i. Then $M' = m_1, m_2, \ldots, m_{i-1}, m_i', m_{i+1}, m_{i+2}, \ldots, m_{j-1}, m_j', m_{j+1}, m_{j+2}, \ldots, m_k$ is a valid sequence of SPR moves that results in an equivalent tree as M, where $m_i' = (u, v) \rightarrow (u, v'')$ and $m_j' = (w, v'') \rightarrow (w, x)$.

In other words, sockets of a given panel are interchangeable with respect to non terminal moves, and only the specific panel is important.

Given an AF F' of two trees T_1 and T_2, we say that an SPR path between T_1 and T_2 is **optimal with respect to F'** if there exists no shorter SPR path between T_1 and T_2 where each intermediate tree along the path is permitted by F'.

Lemma 1. Let F be a socket agreement forest of two trees T_1 and T_2. Then there exists an SPR path between T_1 and T_2 that is permitted by F and optimal with respect to the AF F^* underlying F.

Thus, if we can construct a socket agreement forest for T_1 and T_2, we can be assured of a valid SPR path between T_1 and T_2 that is optimal with respect to the underlying agreement forest. However, it is not trivial to compare socket agreement forests by the length of the SPR path between the trees, and thus they are only a partial analogue of maximum agreement forests.

4. Unrooted Chain Reduction is Distance-Preserving

In this section we investigate the chain reduction rule for unrooted trees, noting that chain reduction for rooted trees is a key component of fast rooted SPR algorithms and TBR algorithms.

Definition 1 (Chain Reduction Rule). Replace a chain of subtrees that occur identically in both trees with three new leaves with new labels oriented to preserve the direction of the chain (Figure 2).

Definition 2 (Subtree Reduction Rule). Replace a pendant subtree that occurs identically in both trees with a single new leaf [25].
In conjunction with the subtree reduction rule, the chain reduction rule for rooted trees reduces the number of leaves in each tree to a linear function of the MAF size k—at most $28k$—while preserving the rooted SPR and TBR distance. This rule is thus a key element of fixed-parameter tractability proofs for rooted SPR [10] and TBR [1]. Allen and Steel [11] conjectured that the chain reduction rule also holds for unrooted SPR, but this claim has been difficult to prove or disprove. Bonet and St. John [9] proved that a relaxed version of the chain reduction rule holds for unrooted trees: the $9k$-chain reduction rule, which replaces each chain of subtrees with $9k$ leaves rather than 3. Although useful to prove the fixed-parameter tractability of uSPR, this “reduction” will typically greatly inflate the size of the trees in practice. The resulting quadratic bound on the number of leaves—at most $76k^2$—is most impractical for computing the uSPR distance.

Previous work on unrooted trees has identified four cases that must be considered to prove that the chain reduction rule holds for unrooted trees, depending on which chain edges are broken by an optimal sequence of uSPR moves. Bonet and St. John [9] proved that the first two cases preserve uSPR distance and the latter two do not reduce it by more than 1. The basic idea behind their proofs (inspired by a similar idea of Hickey et al. [25]) was to alter the initial trees to obtain a new pair of trees, each of which differs from the original by one SPR, with the common chain as subtrees to which one can apply the subtree reduction rule. This directly gives a lower bound of two less than the distance, as shown by Hickey et al. [25]. Bonet and St. John refined this approach by adding two additional elements to the chain and removing two of the common chain subtrees.

In order to explain their procedure, we make the following trivial observation.

Observation 3. Assume two ordered pairs of trees (T_1, T_2) and (T'_1, T'_2), each tree in a pair with the same leaf set, such that there is a bijection between the two leaf sets that when applied to the ordered pair (T_1, T_2) results in the ordered pair (T'_1, T'_2). Then $d_{SPR}(T_1, T_2) = d_{SPR}(T'_1, T'_2)$.

We will say pairs of trees satisfying the hypothesis of this observation have the same tanglegram [33, 7], and so the observation can be rephrased as saying that pairs of trees with the same tanglegram have the same SPR distance.

Here we refine these previous bounds and thus show that the chain reduction rule is distance-preserving: an application of the chain reduction rule does not change uSPR distance. To discuss this formally, we introduce notation for common chains (Figure 3(a)). Pendant edges of a chain $1, 2, \ldots, l$ are labeled p_1, p_2, \ldots, p_l. The edges connecting the chain are labeled e_0, e_1, \ldots, e_l. e_0 is connected to subtree A and A' in T_1 and T_2, respectively. Similarly, e_l is connected to B and B'.

Bonet and St. John first add two pendant edges with leaves labeled $l + 1$ and $l + 2$ on the edge leading to l for each tree, obtaining new trees T_{1+2} and T_{2+2}. Any sequence of SPR moves that transforms T_1 into T_2 also transforms T_{1+2} into T_{2+2}. Thus, $d_{SPR}(T_1, T_2) = d_{SPR}(T_{1+2}, T_{2+2})$.

Next, they apply SPR to each of T_{1+2} and T_{2+2}, attaching B to e_3 and B' to e_3 (Figure 3(b)), obtaining new trees T'_1 and T'_2. T'_1 and T'_2 are at most 2 SPR moves closer than T_1 and T_2, that is, $d_{SPR}(T'_1, T'_2) \geq d_{SPR}(T_1, T_2) - 2$, simply by virtue of being a pair of moves away from T_{1+2} and T_{2+2}. T'_1 and T'_2 have a chain of length 3 and, after applying the subtree reduction rule and relabeling leaves, have the same tanglegram as the trees obtained by chain reduction applied to leaves $1, \ldots, l$ of T_1 and T_2. By the implied equality, chain reduction reduces the SPR distance by at most 2.

Finally, Bonet and St. John remove two of the three pendant edges (e.g. p_1 and p_2 in Figure 3(c)) to obtain trees T''_1 and T''_2. Let $\delta = d_{SPR}(T'_1, T'_2) - d_{SPR}(T''_1, T''_2)$. A leaf is moved at most once in an optimal SPR path (for a formal argument, see Observation 1). Thus, $\delta = 1$ if one of the removed pendant edges is moved as part of an optimal SPR path, and $\delta = 2$ if both are moved.

Observe that a pair of trees with the same tanglegram as the pair T''_1, T''_2 can be obtained from T_1, T_2 by a single SPR move applied to each tree of the pair. T''_1 can be obtained from T_1 by attaching B to e_0 and changing the labels of leaves 1, 2, \ldots, l to 3, 4, \ldots, $l + 2$. T''_2 can be obtained
Figure 3. (a) Notation for a common chain in trees T_1 and T_2. (b) The refined trees T'_1 and T'_2 after applying the refinement of Bonet and St. John but before removing any pendant edges. Two additional labels are added to the chain, which does not increase the SPR distance. These trees have a chain of length 3 after applying the subtree reduction rule. (c) The refined trees T''_1 and T''_2 after removing the pendant edges p_1 and p_2. Each refined tree can be obtained by applying a single SPR operation to the original and mapping the labels $1, 2, \ldots, l$ to $3, 4, \ldots, l + 2$.

An application of the chain reduction can never increase the SPR distance, because any move applied to the chain-reduced tree has an equivalent in the original trees, and equality of chain-reduced trees implies equality of the original trees. Therefore, the chain reduction does not change the SPR distance in the case that both removed edges were involved in an optimal SPR path (i.e. the case of $\delta = 2$), and the chain reduction reduces the distance by at most one when one removed edge was involved in such a path (i.e. the case of $\delta = 1$). Bonet and St. John showed that the case where $\delta = 0$ can be transformed to a case where $\delta = 1$, implying that the chain reduction reduces the distance by at most one in this case as well.

We look at this reduction in a different but related way. Let \bar{T}''_1 be T''_1 after relabeling the leaves $3, 4, \ldots, l + 2$ to $1, 2, \ldots, l$. One can use the same moves as found for going from T''_1 to T''_2 in order to get from \bar{T}''_1 to \bar{T}''_2. We thus have a path T_1 to \bar{T}''_1 to \bar{T}''_2 and, finally, to T_2. This sequence does not break any edge in the common chain, as the common chain becomes a common subtree in \bar{T}''_1 and \bar{T}''_2. We can thus directly apply this sequence to the chain-reduced trees. If using the resulting sequence of SPR moves avoids two SPR operations (involving p_1 and p_2) then this strategy
There exists an optimal sequence of moves M.

Similarly, Case 3: redirected to the ends of the chain at e. Thus, d maintains the common chain as an induced subgraph and, so, does not move the inserted elements.

Theorem 1. The chain reduction rule does not change uSPR distance.

Proof. Let T_1 and T_2 be trees with a common chain $1, 2, \ldots, l$. Let T_1^3 and T_2^3 be the result of applying the chain reduction rule to T_1 and T_2, labeled as in Figure 3(a) with $l = 3$. Let $d_{SPR}(T_1, T_2) = d$.

Let $M = m_1, m_2, \ldots, m_k$ be an optimal sequence of moves transforming T_1^3 into T_2^3. As above, $d \geq k$. Let F be a socket agreement forest that permits M. We consider four cases.

Case 1: There exists an optimal sequence of moves M transforming T_1^3 into T_2^3 without breaking p_1, p_2, p_3, e_1, or e_2. Insert elements $4, 5, \ldots, l$ on e_1 to obtain trees isomorphic to T_1 and T_2. M maintains the common chain as an induced subgraph and, so, does not move the inserted elements. Thus, $d = d_{SPR}(T_1, T_2) = d_{SPR}(T_1^3, T_2^3) = k$.

Case 2: M breaks two or three pendant edges from the set $\{p_1, p_2, p_3\}$. The transformation of Bonet and St. John recalled above shows that $d = k$.

Case 3: M breaks exactly one pendant edge, p_x. We will transform M into a sequence of moves that does not break any pendant edges p_i nor chain edges e_1 or e_2. Then by Case 1, $d = k$.

By Observation 1, we can assume that M moves p_x last, so that m_k breaks p_x and m_i does not, for all $1 \leq i < k$. We modify M to $M' = m'_1, m'_2, \ldots, m'_{k-1}$ to avoid moves that change the middle of the chain (edges p_2, e_1, and e_2) but result in an equivalent final tree. These moves will be redirected to the ends of the chain at e_0 and e_3. We set up this redirection so that at least one of A' and B' will be attached to the correct end of the chain. As such, we obtain a socket agreement forest F' that permits M' by making e_0 and e_3 into connections if they were not already, which results in at most 4 more sockets (see Figure 4 which shows possible sockets along each edge). We refer to the sockets of a connection c by s_c and t_c (e.g. s_{e_0} and t_{e_0}). The connections corresponding to e_0 in T_1 and T_2 may differ, and as such we label them differently, as e_0 and e'_0, respectively. Similarly, e_3 and e'_3 denote the connections that correspond to e_3 in T_1 and T_2, respectively.
Specifically, we apply the following move modification rules:

I. If a move \(m_i \) attaches a connection to a socket of \(e_1, p_2, \) or \(e_2, \) we instead redirect it to one end or another of the chain to define \(m_i' \): if \(x = 1, \) attach it to \(t_{e_0}; \) if instead \(x = 2 \) or \(3, \) attach it to \(s_{e_3}. \) Recall that multiple connections may connect to the same socket, so this does not prevent any future moves, including other redirected moves. A subsequent move \(m_j \) of that connection does so from its new position, defining the equivalent move \(m_j' \).

II. If a move \(m_i \) attaches a connection to a socket of \(p_1, m_i' \) instead attaches it to \(t_{e_0}. \) Similarly, connections to \(p_3 \) are redirected to \(s_{e_3}. \)

III. We also redirect breaks in the middle of the chain to one side or the other: if a move \(m_i \) breaks \(e_1 \) or \(e_2, \) define \(m_i' \) to be the corresponding move that breaks \(e_0 \) or \(e_3, \) respectively, and attaches to the same side of that connection. For example, if \(m_i \) changes \(e_1 = (s_{e_1}, t_{e_1}) \) to \((s_{e_1}, x) \) then \(m_i' \) changes \(e_0 = (s_{e_0}, t_{e_0}) \) to \((s_{e_0}, x). \) In this case where \(m_i \) breaks \(e_1, \) any subsequent move \(m_j \) that would attach a connection to the \(e_0-p_1 \) path (i.e. sockets \(t_{e_0}, s_{e_1}, s_{p_1}, \) and \(t_{p_1} \)) before leaf 1 returns to the chain instead attach to \(s_{e_0}. \) In the case that \(m_i \) breaks \(e_2, \) we redirect connections to the \(e_2-p_2 \) path to \(t_{e_3} \) in the analogous manner. Note that (thinking for a moment in terms of trees rather than socket forests) an SPR move breaking \(e_1 \) contracts the \(e_0-p_1 \) path into a single edge adjacent to leaf 1 in the original tree. Moreover, no move of \(M \) except \(m_k \) breaks such an edge, and \(M' \) does not apply \(m_k. \)

This implies that no subsequent moves in \(M' \) try to break \(e_0 \) (resp. \(e_3), \) after they have already been broken by transforming an \(e_1 \) break into an \(e_0 \) break.

IV. Any move \(m_n \) not covered by the previous rules is replaced by an equivalent move \(m_n' \) attaching the same end of the same numbered connection to the same socket.

By Observation [2] and Corollary [1] attaching to \(t_{e_0} \) or \(s_{e_3} \) in place of \(e_1, e_2, p_1, p_2, \) or \(p_3 \) sockets does not prevent any allowed moves if we maintain the chain as a single panel. Similarly, we do not break any of the \(p_i \)'s until \(m_k, \) so breaking \(e_0 \) in place of \(e_1 \) (or \(e_3 \) in place of \(e_2 \)) does not prevent any moves. Thus, \(M' \) transforms \(T_3^1 \) into a tree consisting of \(A' \) and \(B' \) attached in some manner to the chain 1, 2, 3.

Now, consider the location of \(A' \) and \(B' \). As defined above, socket \(s_{e_0}' \) is the socket of a panel \(A'' \) of \(A' \) that is connected to the chain in \(T_2 \) by a connection \(e_0'. \) Similarly, let socket \(t_{e_3}' \) be the socket of a panel \(B'' \) of \(B' \) that is connected to the chain in \(T_2 \) by a connection \(e_3'. \) We will first show that one of these is in the correct location, that is, \(A' \) is connected to the left side of the chain (\(e_0' \) connects \(s_{e_0}' \) of \(A'' \) and \(t_{e_0} \)) or \(B' \) is connected to the right side (i.e. \(e_3' \) connects \(t_{e_3}' \) of \(B'' \) and \(s_{e_3}). \)

There are three possible events that joined \(A'' \) to the chain in the original sequence of tree moves, which we describe first in socket forest terms and then parenthetically with respect to “classical” SPR moves on trees without sockets:

i. \(e_0' \) was attached to \(t_{e_0}, \) or \(e_0' \) was attached to a socket of \(p_1, e_1, p_2, \) or \(e_2 \) and then \(m_d \) moved leaf \(t \) to recreate the chain (\(A'' \) was moved to the chain).

ii. \(e_0' \) was attached to \(s_{e_0}' \) (the chain was moved to \(A''). \)

iii. \(e_0' \) was never changed (a subtree on the path from \(A'' \) to the chain was moved).

Note that it is possible that two or more such events occurred to \(e_0' \) during the application of \(M \). We consider only the last such event. Similarly, there are three analogous events that can join \(B' \) to the chain, depending on whether \(e_3' \) was attached to the chain, \(t_{e_3}' \), or never changed. We consider each pair of events with respect to our modified \(M'. \)

If \(A'' \) was moved to the chain by \(M, \) then \(e_0' \) was either attached to \(t_{e_0} \) by \(M \) or attached to a socket in \(\{p_1, e_1, p_2, e_2\} \) and \(x = 1. \) Our first modification rule therefore implies that \(M' \) attaches \(e_0' \) to \(t_{e_0}. \) Similarly, if \(B'' \) was moved to the chain by \(M \) then \(M' \) attaches \(e_3' \) to \(s_{e_3}. \)
If the chain was moved to both A'' and B'' then either $e_0 = e'_0$, $e_3 = e'_3$, or there must be two moves m_i, m_j, so that m_i attaches w.l.o.g. e'_0 to the chain and m_j connects e'_0 to s'_{e_0}. In the first two cases, the fact that moving p_x with m_k results in T_2^3 implies that at least one of A'', B'' is in the correct location after applying M'. In the latter case, m_i either attached e'_0 to t_{e_0} or m_j attached t_{e_0} to a socket of p_1, e_1, p_2, or e_2 and then m_k moved leaf 1, that is $x = 1$. Our rules again imply that m'_i attaches e'_0 to t_{e_0}. Then m'_j attaches e'_0 to s'_{e_0} by Observation 2 and Corollary 1.

If both e'_0 and e'_3 never change during M, i.e. a subtree on the path from A'' to the chain was moved, and similarly for B'', then the fact that moving p_x with m_k results in T_2^3 again implies that at least one of A'', B'' is in the correct location.

Thus we conclude that one of the subtrees (say A') must be in the correct location. The fact that M results in T_2^3 implies that e'_3 exists but connects t'_{e_3} to a socket other than s_{e_3} after applying M' (in fact, our rules imply that it is connected to t_{e_0}). We apply a final move m'_{k_1} to connect e'_3 to s_{e_3}, replacing the p_x move of M in a one-sided variant of Bonet and St. John’s refinement. We then have that $m'_1, m'_2, \ldots, m'_{k-1}, m'_{k}$ transforms T_2^3 into T_2^3 while maintaining the common chain.

Case 4: None of the above. M breaks at least one of $\{e_1, e_2\}$ and does not break p_1, p_2, or p_3.

We first observe that breaking e_1 and e_2 also effectively breaks p_2, so Case 3 applies. Now, suppose M breaks exactly one of e_1 or e_2 and refer to the connection as e_y. Modify M to $M' = m'_1, m'_2, \ldots, m'_k$, using the modification rules I through IV, with y in place of x as the criteria for deciding the side of the chain to which to redirect connections. We again consider how the chain becomes connected to A'' and B''. The above argument holds if we move both A'' and B''. Moreover, w.l.o.g. if we do not move A'' then we either connect the chain directly to A'' or break pendant edges along the path from A'' to the chain. In either event, the fact that we do not break any edge p_i in M along with our rules for M' imply that e'_0 connects s'_{e_0} and t_{e_0} and that e'_3 connects s_{e_3} and t'_{e_3} after applying m'_{k}. Thus, $d = k$ and the claim follows.

Combining the subtree and chain reduction rules we achieve a reduction procedure for computing the SPR distance between unrooted trees that results in a linear-size kernel. This combined reduction procedure provides the base step for efficient SPR distance calculations on unrooted trees.

Corollary 2. Let T_1 and T_2 be a pair of unrooted trees. Repeatedly applying the subtree and chain reduction rules to T_1 and T_2 until neither rule is applicable results in a pair of trees T'_1 and T'_2 with at most $28d_{\text{SPR}}(T_1, T_2)$ leaves and such that $d_{\text{SPR}}(T_1, T_2) = d_{\text{SPR}}(T'_1, T'_2)$.

5. Conclusions

We have worked to extend understanding of and methods to calculate the SPR distance between unrooted trees in several directions. The maximum agreement forest framework used to prove properties of the rooted SPR distance and analyze algorithms for computing the distance can not be directly applied to the unrooted case. Instead, we developed a more general representation called a socket agreement forest. SAFs cannot determine the unrooted SPR distance, and instead are useful for determining notions of independent SPR moves and equivalences between SPR rearrangement sequences. We used these ideas to prove the long-standing conjecture that the chain reduction rule preserves the SPR distance between unrooted trees. Repeatedly interleaving the chain reduction rule and subtree reduction rule provides the first pillar of an efficient fixed-parameter algorithm—reducing the problem to a linear-size problem kernel. This is a major improvement over the previous best quadratic-size problem kernel for this problem. Chain reduction is a key subroutine of our new uspr software [40] for computing the unrooted SPR distance which can quickly compute distances up to 14 between trees with 50 leaves (manuscript in preparation). Moreover, it is likely that our SAF framework will lead to new insights and algorithms for computing the unrooted SPR distance and related phylogenetic distances just as the MAF framework did for the rooted SPR distance.
Selected Proofs and Figures

Observation 1. An SPR move that breaks an edge connected to a singleton panel is independent of any other SPR move in an optimal SPR path.

Proof. Consider an SPR move m_i that breaks a connection (u,v) and creates a connection (u,v'). We observe that an SPR move must leave the singleton panel connected, and thus u must be the socket in the singleton panel. Performing any such move will not change acyclicity when done in any context, thus it does not prevent any subsequent moves. This implies that an optimal SPR path does not break the singleton panel connection more than once, as one could simply remove the first such SPR move to obtain a shorter SPR path resulting in an equivalent tree. Then the sequences $m_i, m_1, m_2, \ldots, m_{i-1}, m_{i+1}, m_{i+2}, \ldots, m_k$ and $m_1, m_2, \ldots, m_{i-1}, m_{i+1}, m_{i+2}, \ldots, m_k, m_i$ both result in T_2. Therefore m_i is independent from each other move m_j in the sequence.

Corollary 1. Suppose $m_i = (u,v) \rightarrow (u,v')$ is a non-terminal move of M and the component k of F^* containing v' also contains a socket v''. Let $m_j = (w,v') \rightarrow (w,x)$ be the next move in M of the v' endpoint moved by m_i. Then $M' = m_1, m_2, \ldots, m_{i-1}, m_i', m_{i+1}, m_{i+2}, \ldots, m_{j-1}, m_j', m_{j+1}, m_{j+2}, \ldots, m_k$ is a valid sequence of SPR moves that results in an equivalent tree as M, where $m_i' = (u,v) \rightarrow (u,v'')$ and $m_j' = (w,v'') \rightarrow (w,x)$.

Proof. Suppose, for the purpose of obtaining a contradiction, that the corollary is false: either some move m_i' is not a valid SPR move or the sequence M' does not result in an equivalent tree as the sequence M.

First, suppose that some move m_i' is not a valid SPR move, i.e. suppose that some intermediate connection set does not form a tree in the sequence of socket agreement forests t_1', t_2', \ldots, t_k' induced by applying M' to T_1. Let q be the smallest corresponding index. Then m_q' cuts an edge (x,y) between subtrees T^x and T^y of t'_{q-1} and attempts to add an edge (x,y') such that $y' \in T^x$. Observe that t_{q-2} and t'_{q-1} differ only in the use of socket v'. This implies that the path from x to y' in t_{q-1} contains an edge (z,v'). However, s' is in the same component of F^* as v. Then, (z,v') and (z,v) connect the same components of F^* and, thus, the fact that move m_q is valid implies that m_q' is a valid SPR move.
Second, suppose that \(t_k \) is not equivalent to \(t'_k \). We observe that \(t'_{j-1} \) differs from \(t_{j-1} \) only in the use of socket \(v' \). We have already shown that \(M' \) is a valid sequence of SPR moves and we have that each \(m'_r \) is equivalent to \(m_r \), for all \(j < r \leq k \). Thus, the fact that \(m'_j \) is equivalent to \(m_j \) implies that \(t'_{j} \) is equivalent to \(t_j \) and, moreover, each \(t'_r \) is equivalent to \(t_r \), for all \(j < r \leq k \), contradicting the supposition.

\(\square \)

Lemma 1. Let \(F \) be a socket agreement forest of two trees \(T_1 \) and \(T_2 \). Then there exists an SPR path between \(T_1 \) and \(T_2 \) that is permitted by \(F \) and optimal with respect to the AF \(F^* \) underlying \(F \).

Proof. Let \(F \) be a socket agreement forest of two trees \(T_1 \) and \(T_2 \). Let \(F^* \) be the AF underlying \(F \). Let \(d \) be the length of an optimal SPR path from \(T_1 \) to \(T_2 \) with respect to \(F^* \); such a path must exist as \(F^* \) is an AF of \(T_1 \) and \(T_2 \). To show the lemma, we will prove by induction on \(d \) that \(F \) permits an SPR path between \(T_1 \) and \(T_2 \) that is optimal with respect to \(F^* \).

For the base case, suppose \(d = 1 \). Then \(T_1 \) and \(T_2 \) differ by a single SPR move, such that our path \(P = T_1, T_2 \). The fact that \(F \) is a socket agreement forest of \(T_1 \) and \(T_2 \) implies that \(P \) is permitted. This path is optimal with respect to \(F^* \).

Now, suppose the claim holds for all \(d^0 < d \). Let \(t_1 \) be a tree that is adjacent to \(T_1 \) on an optimal SPR path between \(T_1 \) and \(T_2 \) with respect to \(F^* \). If \(F \) permits \(t_1 \), then, by the inductive hypothesis, there is an SPR path \(P = t_1, t_2, \ldots, t_d \) (where \(t_d = T_2 \)) such that \(F \) permits \(P \). Thus, \(P' = T_1, t_1, \ldots, t_d \) is an SPR path between \(T_1 \) and \(T_2 \) that is permitted by \(F \) and optimal with respect to \(F^* \), and the claim holds.

Now, assume that \(F \) does not permit \(t_1 \). Because \(t_1 \) is one SPR away from \(T_1 \), it is possible to add a socket \(s \) to \(F \) to obtain a forest \(F' \) that permits \(t_1 \), is also underlain by \(F^* \), and is optimal. Then, by the inductive hypothesis, there is an SPR path \(P = t_1, t_2, \ldots, t_d \) that is permitted by \(F' \) and, hence, \(F^* \). Let \(M = m_1, m_2, \ldots, m_d \) be the sequence of moves that induce \(T_1, t_1, t_2, \ldots, t_d \). We modify \(M \) to obtain \(M' = m'_1, m'_2, \ldots, m'_d \) by modifying each move \(m_i \) that used \(s \) to instead use a different socket \(s' \) in the same component of \(F^* \) (each such component must have another socket because \(s \) was added to a component that already had a socket in it by definition of a socket forest). Now, the fact that \(T_2 = t_d \) is permitted by \(F \) implies that \(s \) is not connected after applying \(M \) to \(T_1 \) to obtain \(t_d \), that is each modified move is a non terminal move of \(M \) and \(M' \). Let \(P' = t'_0, t'_1, \ldots, t'_d \) be the SPR path induced by \(M' \). By Corollary 1, this is a valid SPR path resulting in \(t'_d = t_d \), which, along with the fact that \(P' \) only uses sockets of \(F \), proves the claim.

\(\square \)

Corollary 2. Let \(T_1 \) and \(T_2 \) be a pair of unrooted trees. Repeatedly applying the subtree and chain reduction rules to \(T_1 \) and \(T_2 \) until neither rule is applicable results in a pair of trees \(T'_1 \) and \(T'_2 \) with at most \(28d_{SPR}(T_1, T_2) \) leaves and such that \(d_{SPR}(T_1, T_2) = d_{SPR}(T'_1, T'_2) \).

Proof. We first prove that interleaving the reduction rules results in a pair of trees with the same SPR distance. Allen and Steel [1] proved that repeated application of these rules to a pair of trees \(T_1 \) and \(T_2 \) results in a pair of trees \(T'_1 \) and \(T'_2 \) on the same leaf set such that neither rule is applicable. Allen and Steel [1] also proved that the subtree reduction preserves the SPR distance. In combination with Theorem [1] this proves that \(d_{SPR}(T_1, T_2) = d_{SPR}(T'_1, T'_2) \).

Now consider the size of the reduced trees \(T'_1 \) and \(T'_2 \). Allen and Steel [1] proved that these trees have at most \(28d_{TBR}(T_1, T_2) \) leaves. The fact that \(d_{TBR}(T_1, T_2) \leq d_{SPR}(T_1, T_2) \) proves that they also have at most \(28d_{SPR}(T_1, T_2) \) leaves.

\(\square \)
REFERENCES

[1] Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Comb. 5(1), 1–15 (2001)
[2] Atkins, R., McDiarmid, C.: Extremal distances for subtree transfer operations in binary trees. arXiv preprint arXiv:1509.00669 (2015). URL http://arxiv.org/abs/1509.00669
[3] Bansal, M.S., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-Foulds supertrees. Algorithms for Molecular Biology 5(18), 1–12 (2010)
[4] Baroni, M., Grünewald, S., Moulton, V., Semple, C.: Bounding the number of hybridisation events for a consistent evolutionary history. Journal of Mathematical Biology 51(2), 171–182 (2005)
[5] Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6(1), 15 (2006)
[6] Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America 102(40), 14,332–14,337 (2005)
[7] Billey, S.C., Konvalinka, M., Matsen IV, F.A.: On the enumeration of tanglegrams and tangled chains. J. Combin. Theory Ser. A 146, 239–263 (2017). DOI 10.1016/j.jcta.2016.10.003. URL http://www.sciencedirect.com/science/article/pii/S0097316516301029
[8] Bonet, M.L., St. John, K.: Efficiently calculating evolutionary tree measures using SAT. In: Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science, vol. 5584, pp. 4–17. Springer-Verlag (2009)
[9] Bonet, M.L., St John, K.: On the complexity of uSPR distance. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 7(3), 572–576 (2010)
[10] Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8(4), 409–423 (2005)
[11] Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Applied Mathematics 155(8), 914–928 (2007)
[12] Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J.: BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10(4), e1003,537 (2014)
[13] Brodal, G.S., Fagerberg, R., Pedersen, C.N.: Computing the quartet distance between evolutionary trees in time O (n log n). Algorithmica 38(2), 377–395 (2004)
[14] Bruen, T.C., Bryant, D.: Parsimony via consensus. Systematic Biology 57(2), 251–256 (2008). DOI 10.1080/10635150802040597. URL http://sysbio.oxfordjournals.org/content/57/2/251.abstract
[15] Castro-Nallar, E., Pérez-Losada, M., Burton, G.F., Crandall, K.A.: The evolution of HIV: inferences using phylogenetics. Molecular phylogenetics and evolution 62(2), 777–792 (2012)
[16] Chen, J., Fan, J.H., Sze, S.H.: Parameterized and approximation algorithms for maximum agreement forest in multifurcating trees. Theoretical Computer Science 562, 496–512 (2015)
[17] Chen, Z.Z., Fan, Y., Wang, L.: Faster exact computation of rSPR distance. Journal of Combinatorial Optimization 29(3), 605–635 (2013)
[18] Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal of Classification 2(1), 7–28 (1985)
[19] Ding, Y., Grünewald, S., Humphries, P.J.: On agreement forests. Journal of Combinatorial Theory, Series A 118(7), 2059–2065 (2011)
[20] Dudas, G., Bedford, T., Lycett, S., Rambaut, A.: Reassortment between Influenza B lineages and the emergence of a co-adapted PB1-PB2-HA gene complex. Molecular biology and evolution p. mst287 (2014)
[21] Galtier, N., Daubin, V.: Dealing with incongruence in phylogenomic analyses. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1512), 4023–4029 (2008)
[22] Haynes, B.F., Kelsoe, G., Harrison, S.C., Kepler, T.B.: B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nature biotechnology 30(5), 423–433 (2012)
[23] Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71(1-3), 153–169 (1996)
[24] Helmus, M.R., Bland, T.J., Williams, C.K., Ives, A.R.: Phylogenetic measures of biodiversity. The American Naturalist 169(3), E68–E83 (2007)
[25] Hickey, G., Dehne, F., Rau-Chaplin, A., Blouin, C.: SPR distance computation for unrooted trees. Evolutionary Bioinformatics Online 4, 17 (2008)
[26] Hillis, D.M., Moritz, C., Mable, B.K. (eds.): Molecular Systematics. Sinauer Associates (1996)
[27] Höhna, S., Drummond, A.J.: Guided tree topology proposals for Bayesian phylogenetic inference. Systematic Biology 61(1), 1–11 (2012)
[28] Kelk, S., Fischer, M.: On the complexity of computing MP distance between binary phylogenetic trees. arXiv preprint arXiv:1412.4076 (2014)
[29] Koonin, E.V.: The turbulent network dynamics of microbial evolution and the statistical tree of life. Journal of molecular evolution pp. 1–7 (2015)
[30] Lakner, C., Van Der Mark, P., Huelsenbeck, J.P., Larget, B., Ronquist, F.: Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Systematic Biology 57(1), 86–103 (2008)
[31] Linz, S., Semple, C.: A cluster reduction for computing the subtree distance between phylogenies. Annals of Combinatorics 15(3), 465–484 (2011)
[32] Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)
[33] Matsen, F., Billey, S., Kas, A., Konvalinka, M.: Tanglegrams: a reduction tool for mathematical phylogenetics. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–1 (2016). DOI 10.1109/TCBB.2016.2613040. URL http://dx.doi.org/10.1109/TCBB.2016.2613040
[34] Matsen, F.A.: Phylogenetics and the human microbiome. Systematic Biology 64(1), e26–e41 (2015)
[35] Moulton, V., Wu, Y.: A parsimony-based metric for phylogenetic trees. Advances in Applied Mathematics 66, 22–45 (2015)
[36] Nakheh, L., Warnow, T., Lindner, C.R., St. John, K.: Reconstructing reticulate evolution in species—theory and practice. Journal of Computational Biology 12(6), 796–811 (2005)
[37] Owen, M., Provan, J.S.: A fast algorithm for computing geodesic distances in tree space. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 8(1), 2–13 (2011)
[38] Pisani, D., Cotton, J.A., McInerney, J.O.: Supertrees disentangle the chimerical origin of eukaryotic genomes. Molecular Biology and Evolution 24(8), 1752–1760 (2007). DOI 10.1093/molbev/msm095
[39] Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5(3), e9490 (2010)
[40] Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1-2), 131–147 (1981)
[41] Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539–542 (2012). DOI 10.1093/sysbio/sys029. URL http://dx.doi.org/10.1093/sysbio/sys029
[42] Shi, F., Chen, J., Feng, Q., Wang, J.: Approximation algorithms for maximum agreement forest on multiple trees. In: Computing and Combinatorics: 20th International Conference, COCOON 2014, Atlanta, GA, USA, August 4-6, 2014. Proceedings, vol. 8591, p. 381. Springer (2014)
[43] Shi, F., You, J., Feng, Q.: Improved approximation algorithm for maximum agreement forest of two trees. In: Frontiers in Algorithmics, pp. 205–215. Springer (2014)
[44] Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006). DOI 10.1093/bioinformatics/btl446
[45] Steel, M., Rodrigo, A.: Maximum likelihood supertrees. Systematic Biology 57(2), 243–250 (2008). DOI 10.1080/10635150802033014. URL http://dx.doi.org/10.1080/10635150802033014
[46] Whidden, C.: uspr. https://github.com/cwhidden/uspr (2015)
[47] Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT algorithms for computing rooted agreement forests: theory and experiments. In: Experimental algorithms, pp. 141–153. Springer (2010)
[48] Whidden, C., Beiko, R.G., Zeh, N.: Fixed-Parameter algorithms for maximum agreement forests. SIAM J. Comput. 42(4), 1431–1466 (2013)
[49] Whidden, C., Beiko, R.G., Zeh, N.: Fixed-Parameter and approximation algorithms for maximum agreement forests of multifurcating trees. Algorithmica pp. 1–36 (2015). Doi: 10.1007/s00453-015-9983-z
[50] Whidden, C., IV, F.A.M.: Ricci-Ollivier curvature of the rooted phylogenetic subtree-prune-regraft graph. proceedings of the Thirteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO16) (2016)
[51] Whidden, C., Matsen IV, F.A.: Quantifying MCMC exploration of phylogenetic tree space. Systematic Biology 64(3), 472–491 (2015). DOI 10.1093/sysbio/syv006. URL http://dx.doi.org/10.1093/sysbio/syv006
[52] Whidden, C., Zeh, N., Beiko, R.G.: Supertrees based on the subtree prune-and-regraft distance. Systematic Biology 63(4), 566–581 (2014)
[53] Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)