DEFORMATIONS OF THE CLASSICAL \mathcal{W}-ALGEBRAS ASSOCIATED TO D_n, E_6 AND G_2

ALEXANDER KOGAN

1. INTRODUCTION.

The purpose of this paper is the computation of the Poisson brackets in the deformed W-algebras $W_q(\mathfrak{g})$, where \mathfrak{g} is of type D_n, E_6 or G_2. Let us first briefly recall some facts about two main descriptions of W-algebras.

The first description is via the Drinfeld-Sokolov reduction. Let \mathfrak{g} be a simple Lie algebra, and \mathfrak{n} be its nilpotent subalgebra. Let $M = \mu^{-1}(f)/L\mathfrak{n}$, where $\mu : \hat{\mathfrak{g}}^* \to L\mathfrak{n}^*$ is the momentum map and $f \in L\mathfrak{n}^*$ is a certain character [2]. Then M is a Poisson manifold, and the ordinary W-algebra $W(\mathfrak{g})$ is the Poisson algebra of functions on M. The manifold M can be identified with the space of certain differential operators. For example if $\mathfrak{g} = \mathfrak{sl}_n$ then these operators are of the form

$$\partial^n + a_{n-2}\partial^{n-2} + \cdots + a_0,$$

and the Poisson structure under consideration is called the second Gelfand-Dickey bracket [9]. Recently in [8, 11] a q-deformation of W-algebras was obtained by considering the space of q-difference operators.

Let us now recall the second description of W-algebras. It was proved by B. Feigin and E. Frenkel [3, 4] that as Poisson algebras $W(\mathfrak{g}^L)$ is isomorphic to the center $Z(\hat{\mathfrak{g}})$ of the completion of the universal enveloping algebra $\hat{U}(\mathfrak{g})_{-h^\vee}$ of \mathfrak{g} at the critical level $-h^\vee$, where h^\vee is the dual Coxeter number and \mathfrak{g}^L is the Langlands dual of the algebra \mathfrak{g}. This description was used in [5] to produce a q-deformed W-algebras $W_q(\mathfrak{g})$, where \mathfrak{g} is of the classical type, and to compute the Poisson structure in the A_n case. In the cases B_n and C_n some Poisson brackets were computed in [6].

It is convenient to study W-algebras via the Miura transformation. For ordinary W-algebras it can be defined as follows (see [3, 4, 5]). One considers the Wakimoto homomorphism from $\hat{U}(\mathfrak{g})$ to the tensor product of some Heisenberg algebra and some commutative algebra
$H(\mathfrak{g})$ - algebra of functionals on some hyperplane in the dual space to the Heisenberg subalgebra \mathfrak{h} of \mathfrak{g}. The restriction of this map to the center gives the homomorphism $Z(\hat{\mathfrak{g}}) \to H(\mathfrak{g})$, composition of which with the isomorphism $W(\mathfrak{g}) \simeq Z(\hat{\mathfrak{g}})$ on the left is just the Miura transformation [2, 5].

The q-deformed version of this picture is the Wakimoto realization of $\hat{U}_q(\mathfrak{g})$ in the tensor product of a certain Heisenberg algebra and some Heisenberg-Poisson algebra $H_q(\mathfrak{g})$. The restriction to the center $Z_q(\hat{\mathfrak{g}})$ of $\hat{U}_q(\mathfrak{g})$ gives the q-deformed Miura transformation $Z_q(\mathfrak{g}) \to H_q(\mathfrak{g})$. The image is called the q-W-algebra $W_q(\mathfrak{g})$. Thus, in order to describe deformed W-algebras we have to describe the Heisenberg-Poisson algebra $H_q(\mathfrak{g})$ and the generators of $W_q(\mathfrak{g})$. In [5] E. Frenkel and N. Reshetikhin did this in the A_n case using the explicit formulas for the Wakimoto realization [1]. Motivated by these results they gave a conjectural description of $H_q(\mathfrak{g})$ for general \mathfrak{g} (see Sect. 11 of [5] and the next section) and of $W_q(\mathfrak{g})$ for \mathfrak{g} of classical series. The key element of this conjecture was that the formulas for the generators of the deformed W-algebra coincide with the formulas for the eigenvalues of the corresponding transfer-matrices obtained by analytic Bethe Ansatz (see Conjecture 1 of [5]). In order to verify this conjecture, one has to check that the Poisson brackets between the generators of $W_q(\mathfrak{g})$, constructed in this way, close among themselves. This had been done in [5] for the A_n series and in [6, 7] for the B_n and C_n series. However the question remained open for other series.

In this paper we study the case when \mathfrak{g} is of the type D_n, E_6 or G_2. We exhibit the generators and relations of the algebra $H_q(\mathfrak{g})$ explicitey and compute the Poisson brackets between them. Next, we construct the generators of the W-algebra $W_q(\mathfrak{g})$, following the conjecture of [5] that they should coincide with the corresponding formulas for the eigenvalues of transfer-matrices (see [10]). Finally, we compute the Poisson brackets between them.

The paper is organized as follows. In section 2 we describe the algebra $H_q(\mathfrak{g})$ via the generators and relations. Sections 3, 4 and 5 are devoted to the cases of D_n, E_6 and G_2 respectively. Each of these sections is divided in three subsections. In the first one we define matrices which are used in the construction of $H_q(\mathfrak{g})$. In the second subsection we describe the new set of generators of $H_q(\mathfrak{g})$ which is convenient for the computation of the Poisson brackets. Then we axiomatically define the generators of the corresponding W-algebra. In the last subsection we compute the Poisson brackets between the generators of $H_q(\mathfrak{g})$ and $W_q(\mathfrak{g})$.
Acknowledgements. I am very grateful to E. Frenkel and N. Reshetikhin for useful ideas and discussions. I would like to thank RIMS, and particularly Tetsuji Miwa, for the hospitality in July-August of 1997, when this work was being completed.

2. Heisenberg-Poisson algebras.

In this section we describe the algebra $H_q(g)$. The matrices M, \tilde{M} and D will be explicitly given in the next sections. It should be noted that \tilde{M} is the deformation of twice the symmetrized Cartan matrix of the corresponding algebra. The presentation in this section follows [6, 7].

Let g be either D_n, E_6 or G_2. Let $\hat{U}_q(\hat{g})$ be the completion of the quantum universal enveloping algebra $U_q(\hat{g})$ of g as defined in [5].

We consider a Heisenberg-Poisson algebra $H_q(g)$ with generators $a_i[n], 1 \leq i \leq \text{rank}(g)$ and relations:

$$\{a_i[n], a_j[m]\} = \tilde{M}_{ij}(q^n)\delta_{n,-m}.$$

There is unique set of "dual" generators $y_i[n]$ such that

$$\{y_i[n], a_j[m]\} = D_{ij}(q^n)\delta_{n,-m}.$$

Then $y_i[n]$ satisfy

$$\{y_i[n], y_j[m]\} = M_{ij}(q^n)\delta_{n,-m}.$$

Let’s form the generating series:

$$Y_i(z) = q^{2(\rho,\omega_i)} \exp \left(- \sum_{m \in \mathbb{Z}} y_i[m] z^{-m} \right)$$

They satisfy the following relations:

$$\{Y_i(z), Y_j(w)\} = \mathcal{M}_{ij} \left(\frac{w}{z} \right) Y_i(z) Y_j(w),$$

where

$$\mathcal{M}_{ij}(x) = \sum_{m \in \mathbb{Z}} M_{ij}(q^m)x^m.$$

The coefficients of the generating functions $Y_i(z)$ generate the algebra $H_q(g)$. In the next sections we will introduce the new generating functions $\Lambda_i(z)$ which also have generators as coefficients. Finally the generating functions whose coefficients generate $W_q(g)$ will be denoted $T_i(z)$, where $1 \leq i \leq \text{rank of the Cartan subalgebra of } g)$. In the D_n [6] and G_2 cases all $T_i(z)$’s can be constructed explicitly, whereas in the case of E_6 we explicitely construct only $T_1(z)$.

3. Matrices. Consider the matrices $M(t), D(t), \tilde{M}(t)$ defined as follows. Let $M(t) = (M_{ij}(t)), 1 \leq i, j \leq n,$ where
\[
M_{ij}(t) = \frac{(t_{\min(i,j)} - t_{\min(i,j)})(t_{\max(i,j)} - t_{\max(i,j)})}{(t^n - t^{(n-1)})},
\]
\[
M_{ni}(t) = M_{n-1,i}(t) = \frac{(t^n - t^{(n-1)})}{(t - t^{(n-1)})}, 1 \leq i, j \leq n - 2,
\]
\[
M_{n,n-1}(t) = \frac{(t^n - t^{(n-2)})}{(t + t^{(n-1)})(t^{(n-1)} + t^{(n-2)})},
\]
\[
M_{n-1,n-1}(t) = M_{nn}(t) = \frac{(t^n - t^n)}{(t + t^{(n-1)})(t^{(n-1)} + t^{(n-2)})}.
\]

Let $D(t) = (t - t^{-1}) \cdot I_n,$ where I_n is the $n \times n$ identity matrix. Then
\[
\tilde{M}(t) = D(t)M(t)^{-1}D(t) =
\]
\[
\begin{pmatrix}
t^2 - t^{-2} & -(t - t^{-1}) & \cdots & 0 & 0 & 0 \\
-(t - t^{-1}) & t^2 - t^{-2} & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & t^2 - t^{-2} & -(t - t^{-1}) & -(t - t^{-1}) \\
0 & 0 & \cdots & -(t - t^{-1}) & t^2 - t^{-2} & 0 \\
0 & 0 & \cdots & -(t - t^{-1}) & 0 & t^2 - t^{-2}
\end{pmatrix},
\]
which is a t–deformation of twice the Cartan matrix of $D_n.$

3.2. Generators. Introduce as in [5]

\[
\lambda_i(z) = Y_i(zq^{-i+1})Y_{i-1}(zq^{-i}), \quad i = 1, \ldots, n - 2,
\]
\[
\lambda_{n-1}(z) = Y_{n}(zq^{-n+2})Y_{n-1}(zq^{-n+2})Y_{n-2}(zq^{-n+1}),
\]
\[
\lambda_n(z) = Y_{n-1}(zq^{-n+2})Y_{n-1}(zq^{-n}),
\]
\[
\lambda_{n+1}(z) = Y_n(zq^{-n+2})Y_{n-1}(zq^{-n}),
\]
\[
\lambda_{n+2}(z) = Y_{n-2}(zq^{-n+1})Y_{n-1}(zq^{-n})Y_{n}(zq^{-n}),
\]
\[
\lambda_{2n-i+1}(z) = Y_{i-1}(zq^{-2n+i+2})Y_{i}(zq^{-2n+i+1}) \quad i = 1, \ldots, n - 2,
\]
where $Y_0(z) = 1.$

Remark. The relations between $Y_i(z)$ and the functions $Q_i(u), 1 \leq i \leq n,$ which appear in [10] in the formulas for the eigenvalues of the transfer matrices of the $D_n^{(1)}$ model are as follows:

\[
Y_i(zq^m) = \frac{Q_i(u + \frac{m+1}{2}\eta)}{Q_i(u + \frac{m-1}{2}\eta)}
\]
Let

\[T_1(z) = \sum_{i=1}^{2n} \Lambda_i(z). \]
\[T_2(z) = \sum_{(i,j) \in S} \Lambda_i(z) \Lambda_j(zq^2), \]

where the set \(S \) consists of pairs \((i, j)\) such that either \(i < j \) or \((i, j) = (n + 1, n)\).

\[\{ \Lambda_i(z), \Lambda_i(w) \} = M_{11} \left(\frac{w}{z} \right) \Lambda_i(z) \Lambda_i(w), \]
\[\{ \Lambda_i(z), \Lambda_j(w) \} = M_{11} \left(\frac{w}{z} \right) \Lambda_i(z) \Lambda_j(w) + \left(\delta \left(\frac{w}{zq^2} \right) - \delta \left(\frac{w}{z} \right) \right)
+ \left(\delta \left(\frac{w}{zq^{2n-2i}} \right) \delta_{i+j,2n+1} - \delta \left(\frac{w}{zq^{2n-2i-2}} \right) \delta_{i+j,2n+1} \right)
\times \Lambda_i(z) \Lambda_j(w), \]

if \(i < j \).

\[\{ T_1(z), T_1(w) \} = M_{11} \left(\frac{w}{z} \right) T_1(z) T_1(w)
+ \delta \left(\frac{w}{zq^2} \right) T_2(z) - \delta \left(\frac{wq^2}{z} \right) T_2(w)
+ \delta \left(\frac{w}{zq^{2n-2}} \right) - \delta \left(\frac{w^{2n-2}}{z} \right). \]
4. \textbf{E}_6 \text{ Case.}

4.1. \textbf{Matrices.} Consider the matrices $M(t), D(t), \tilde{M}(t)$ defined as follows. Let $M(t) = (M_{ij}(t)), 1 \leq i, j \leq 6, \text{ } M_{ij}(t) = M_{ji}(t)$, where

$$M_{11}(t) = M_{55}(t) = \frac{(t - t^{-1})(t^8 - t^{-8})}{(t^6 + t^{-6})(t^3 - t^{-3})}$$

$$M_{12}(t) = M_{45}(t) = \frac{(t - t^{-1})(t^5 - t^{-5})(t^2 + t^{-2})}{(t^6 + t^{-6})(t^3 - t^{-3})}$$

$$M_{22}(t) = M_{44}(t) = \frac{(t^4 - t^{-4})(t^5 - t^{-5})}{(t^6 + t^{-6})(t^3 - t^{-3})}$$

$$M_{13}(t) = M_{26}(t) = M_{46} = M_{35} = \frac{(t^4 - t^{-4})}{(t^6 + t^{-6})}$$

$$M_{23}(t) = M_{34}(t) = \frac{(t^4 - t^{-4})(t + t^{-1})}{(t^6 + t^{-6})}$$

$$M_{33}(t) = \frac{(t^3 - t^{-3})(t + t^{-1})(t^2 + t^{-2})}{(t^6 + t^{-6})}$$

$$M_{16}(t) = M_{56}(t) = \frac{(t - t^{-1})(t^2 + t^{-2})}{(t^6 + t^{-6})}$$

$$M_{36}(t) = \frac{(t^3 - t^{-3})(t^2 + t^{-2})}{(t^6 + t^{-6})}$$

$$M_{66}(t) = \frac{(t^4 - t^{-4})(t^3 + t^{-3})}{(t + t^{-1})(t^6 + t^{-6})}$$

$$M_{14}(t) = M_{25}(t) = \frac{(t^2 - t^{-2})(t^4 - t^{-4})}{(t^6 + t^{-6})(t^3 - t^{-3})}$$

$$M_{24}(t) = \frac{(t^2 - t^{-2})(t^4 - t^{-4})(t + t^{-1})}{(t^6 + t^{-6})(t^3 - t^{-3})}$$

$$M_{15}(t) = \frac{(t - t^{-1})(t^4 - t^{-4})}{(t^6 + t^{-6})(t^3 - t^{-3})}.$$

Let $D(t) = (t - t^{-1}) \cdot I_6$, where I_6 is the 6×6 identity matrix. Then

$$\tilde{M}(t) = D(t)M(t)^{-1}D(t) =$$

$$\begin{pmatrix}
 t^2 - t^{-2} & t^{-1} - t & 0 & 0 & 0 & 0 \\
 t^{-1} - t & t^2 - t^{-2} & t^{-1} - t & 0 & 0 & 0 \\
 0 & t^{-1} - t & t^2 - t^{-2} & t^{-1} - t & 0 & t^{-1} - t \\
 0 & 0 & t^{-1} - t & t^2 - t^{-2} & t^{-1} - t & 0 \\
 0 & 0 & 0 & t^{-1} - t & t^2 - t^{-2} & 0 \\
 0 & 0 & t^{-1} - t & 0 & 0 & t^2 - t^{-2}
\end{pmatrix}$$
is a t-deformation of twice the Cartan matrix of E_6.

4.2. **Generators.** Introduce

\[
\begin{align*}
\Lambda_1(z) &= Y_1^{-1}(zq^{-8})Y_2(zq^{-7})Y_3(zq^{-8})Y_6(zq^{-7}), \\
\Lambda_2(z) &= Y_1^{-1}(zq^{-8})Y_2(zq^{-7})Y_6(zq^{-9}), \\
\Lambda_3(z) &= Y_1^{-1}(zq^{-8})Y_3(zq^{-6})Y_4(zq^{-7}), \\
\Lambda_4(z) &= Y_1^{-1}(zq^{-8})Y_4(zq^{-5})Y_5(zq^{-6}), \\
\Lambda_5(z) &= Y_2^{-1}(zq^{-9})Y_3(zq^{-8})Y_6(zq^{-9}), \\
\Lambda_6(z) &= Y_2^{-1}(zq^{-9})Y_6(zq^{-7}), \\
\Lambda_7(z) &= Y_3^{-1}(zq^{-10})Y_4(zq^{-9}), \\
\Lambda_8(z) &= Y_4^{-1}(zq^{-11})Y_5(zq^{-10}), \\
\Lambda_9(z) &= Y_1(zq^{-6})Y_2^{-1}(zq^{-7})Y_3(zq^{-6})Y_4^{-1}(zq^{-7}), \\
\Lambda_{10}(z) &= Y_1(zq^{-6})Y_2^{-1}(zq^{-7})Y_4(zq^{-5})Y_5^{-1}(zq^{-6}), \\
\Lambda_{11}(z) &= Y_1(zq^{-6})Y_3^{-1}(zq^{-8})Y_6(zq^{-7}), \\
\Lambda_{12}(z) &= Y_1(zq^{-6})Y_6^{-1}(zq^{-9}), \\
\Lambda_{13}(z) &= Y_2(zq^{-5})Y_3^{-1}(zq^{-6})Y_4(zq^{-5})Y_5^{-1}(zq^{-6}), \\
\Lambda_{14}(z) &= Y_2(zq^{-5})Y_4^{-1}(zq^{-7}), \\
\Lambda_{15}(z) &= Y_3(zq^{-4})Y_5^{-1}(zq^{-6})Y_6^{-1}(zq^{-5}), \\
\Lambda_{16}(z) &= Y_5^{-1}(zq^{-6})Y_6(zq^{-3}), \\
\Lambda_{17}(z) &= Y_1^{-1}(zq^{-8})Y_5(zq^{-4}), \\
\Lambda_{18}(z) &= Y_1(zq^{-6})Y_2^{-1}(zq^{-7})Y_5(zq^{-4}), \\
\Lambda_{19}(z) &= Y_2(zq^{-5})Y_3^{-1}(zq^{-6})Y_5(zq^{-4}), \\
\Lambda_{20}(z) &= Y_3(zq^{-4})Y_4^{-1}(zq^{-5})Y_5(zq^{-4})Y_6^{-1}(zq^{-5}), \\
\Lambda_{21}(z) &= Y_4^{-1}(zq^{-5})Y_5(zq^{-4})Y_6(zq^{-3}), \\
\Lambda_{22}(z) &= Y_4(zq^{-3})Y_6^{-1}(zq^{-5}), \\
\Lambda_{23}(z) &= Y_5^{-1}(zq^{-3})Y_4(zq^{-3})Y_6(zq^{-3}), \\
\Lambda_{24}(z) &= Y_2^{-1}(zq^{-3})Y_3(zq^{-2}), \\
\Lambda_{25}(z) &= Y_1^{-1}(zq^{-2})Y_2(zq^{-1}), \\
\Lambda_{26}(z) &= Y_1(z), \\
\Lambda_{27}(z) &= Y_5^{-1}(zq^{-12}).
\end{align*}
\]

Remark. The relations between $Y_i(z)$ and the functions $Q_i(u), 1 \leq i \leq 6$, which appear in [10] in the formulas for the eigenvalues of the
transfer matrices of the $E_6^{(1)}$ model are as follows:

$$Y_i(zq^m) = \frac{Q_{\sigma(i)}(u - (m + 1)\eta)}{Q_{\sigma(i)}(u - (m - 1)\eta)},$$

where σ is a permutation $(1)(2)(3)(456)$.

Let

$$T_1(z) = \sum_{i=1}^{27} \Lambda_i(z).$$

4.3. Poisson brackets.

$$\{\Lambda_i(z), \Lambda_j(w)\} = M_{11}\left(\frac{w}{z}\right)\Lambda_i(z)\Lambda_j(w) + (\text{sum of } \delta\text{- functions})\Lambda_i(z)\Lambda_j(w).$$

$$\{T_1(z), T_1(w)\} = M_{11}\left(\frac{w}{z}\right)T_1(z)T_1(w) + \delta\left(\frac{wq^2}{z}\right)T_2(z) - \delta\left(\frac{w}{zq^2}\right)T_2(w) + \delta\left(\frac{wq^8}{z}\right)T_5(zq^4) - \delta\left(\frac{w}{zq^8}\right)T_5(wq^4),$$

where $T_5(z)$ is the W-algebra generator corresponding to the fifth fundamental weight (which is dual to the first one in our notation).

5. G_2 case.

5.1. Matrices. Consider the matrices $M(t), D(t)$ and $\widetilde{M}(t)$ defined as follows. Let $M(t) = (M_{ij}(t)), 1 \leq i, j \leq 2$, where

$$M_{22}(t) = \frac{(t^3 - t^{-3})(t + t^{-1})(t^2 + t^{-2})}{t^6 + t^{-6}},$$

$$M_{11}(t) = \frac{(t^3 + t^{-3})(t - t^{-1})(t^2 + t^{-2})}{t^6 + t^{-6}},$$

$$M_{12}(t) = M_{21}(t) = \frac{(t^3 - t^{-3})(t^2 + t^{-2})}{t^6 + t^{-6}}.$$

Let

$$D(t) = \begin{pmatrix} t - t^{-1} & 0 \\ 0 & t^3 - t^{-3} \end{pmatrix}.$$

Then

$$\widetilde{M}(t) = D(t)M(t)^{-1}D(t) = \begin{pmatrix} t^2 - t^{-2} & -(t^3 - t^{-3}) \\ -(t^3 - t^{-3}) & t^6 - t^{-6} \end{pmatrix}$$

is a t-deformation of the symmetrized Cartan matrix of G_2.
5.2. Generators. Introduce

\[\Lambda_1(z) = Y_1(z), \]
\[\Lambda_2(z) = Y_1^{-1}(zq^{-2})Y_2(zq^{-1}), \]
\[\Lambda_3(z) = Y_1(zq^{-4})Y_1(zq^{-6})Y_2^{-1}(zq^{-7}), \]
\[\Lambda_4(z) = Y_1(zq^{-4})Y_1^{-1}(zq^{-8}), \]
\[\Lambda_5(z) = Y_1^{-1}(zq^{-6})Y_1^{-1}(zq^{-8})Y_2(zq^{-5}), \]
\[\Lambda_6(z) = Y_1(zq^{-10})Y_2^{-1}(zq^{-11}), \]
\[\Lambda_7(z) = Y_1^{-1}(zq^{-12}). \]

Remark. The relations between \(Y_i(z) \) and the functions \(Q_i(u), i = 1, 2 \), which appear in [10] in the formulas for the eigenvalues of the transfer matrices of the \(G_{2}^{(1)} \) model are as follows:

\[Y_1(zq^m) = \frac{Q_1(u + \frac{13+m}{3} \eta)}{Q_1(u + \frac{11+m}{3} \eta)} \]
\[Y_2(zq^m) = \frac{Q_2(u + \frac{15+m}{3} \eta)}{Q_2(u + \frac{9+m}{3} \eta)} \]

Let

\[T_1(z) = \sum_{i=1}^{7} \Lambda_i(z). \]

\[T_2(z) = \sum_{i=2}^{7} \Lambda_1(z)\Lambda_i(zq^2) + \sum_{i=2}^{6} \Lambda_i(z)\Lambda_7(zq^2) + \left(\text{sum of } \delta \text{-functions} \right) \Lambda_i(z)\Lambda_7(zq^2). \]

5.3. Poisson brackets.

\[\{ \Lambda_i(z), \Lambda_j(w) \} = M_{11} \left(\frac{w}{z} \right) \Lambda_i(z)\Lambda_j(w) \]
\[+ \text{(sum of } \delta \text{-functions}) \Lambda_i(z)\Lambda_j(w). \]

\[\{ T_1(z), T_1(w) \} = M_{11} \left(\frac{w}{z} \right) T_1(z) T_1(w) \]
\[+ \delta \left(\frac{w}{zq^2} \right) T_2(z) - \delta \left(\frac{wq^3}{z} \right) T_2(w) \]
\[+ \delta \left(\frac{w}{zq^8} \right) T_1(zq^4) - \delta \left(\frac{wq^8}{z} \right) T_1(wq^4) \]
\[+ \delta \left(\frac{w}{zq^{12}} \right) - \delta \left(\frac{wq^{12}}{z} \right). \]

There is an obvious
Proposition 5.1. In the cases E_6 and G_2 if we replace $Y_i^\epsilon(zq^n)$ by $Y_i^{-\epsilon}(zq^{-n})$ in $T_1(z)$ then we obtain $T_\alpha(zq^{12})$, where $T_\alpha(z)$ corresponds to the dual root (i.e. $\alpha = 5$ in E_6 case and 1 in G_2 case).

References

[1] Awata, H., Odake, S., Shiraishi, J., Free boson realization of $U_q(\hat{\mathfrak{sl}}_N)$, Comm. Math. Phys. 162 (1994) 61-83.

[2] Drinfeld, V.G., Sokolov, V.V., Lie algebras and equations of Korteweg - de Vries type, Sov. Math. Dokl. 23 (1981), 457-62; J. Sov. Math. 30 (1985), 1975-2035.

[3] Feigin, B., Frenkel, E., Affine Lie algebras at the critical level and Gelfand-Dikii algebras, Int. J. Math. Phys. A7, suppl. A1 (1992), 197-215.

[4] Frenkel, E., Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction, PhD Thesis, Harvard University, 1991.

[5] Frenkel, E., and Reshetikhin, N., Quantum affine algebras and the deformations of the Virasoro and W-algebras, Comm. Math. Phys. 178 (1996), 237-264.

[6] Frenkel, E., and Reshetikhin, N., W-algebras associated to B_ℓ and C_ℓ. Preprint, February 1996.

[7] Frenkel, E., and Reshetikhin, N., Deformations of W-algebras associated to simple Lie algebras, Preprint q-alg/9708006

[8] Frenkel, E., Reshetikhin, N., Semenov-Tian-Shansky, M.A., Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras I. The case of Virasoro algebra, Preprint q-alg/9704011.

[9] Gelfand, I.M., Dikey, L.A., Family of Hamiltonian structures connected with integrable nonlinear equations. Collected papers of I.M. Gelfand, vol 1, Springer-Verlag (1987), 625-46.

[10] Reshetikhin, N., The spectrum of the transfer matrices connected with Kac-Moody algebras, Lett. Math. Phys. 14 (1987) 235-246.

[11] Semenov-Tian-Shansky, M.A., Sevostyanov, A.V., Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras II. General semisimple case, Preprint q-alg/9702016.

Department of Mathematics, University of California, Berkeley, 94720

E-mail address: kogan@math.berkeley.edu