A recursive construction of projective cubature formulas and related isometric embeddings

YURI I. LYUBICH and OKSANA A. SHATALOVA
Department of Mathematics, Technion, Haifa 32000, Israel
e-mail: lyubich@tx.technion.ac.il
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
e-mail: shatalov@math.tamu.edu

Abstract. A recursive construction is presented for the projective cubature formulas of index \(p \) on the unit spheres \(S(m, K) \subset K^m \) where \(K \) is \(\mathbb{R} \) or \(\mathbb{C} \), or \(\mathbb{H} \). This yields a lot of new upper bounds for the minimal number of nodes \(n = N_{K}(m, p) \) in such formulas or, equivalently, for the minimal \(n \) such that there exists an isometric embedding \(\ell^m_{2,K} \rightarrow \ell^m_{p,K} \).

2000 Mathematics Subject Classification: 46B04, 65D32.
Key words: cubature formula, Gauss-Jacobi quadrature, isometric embedding

1 Introduction and overview

Let \(K \) be one of three classical fields: \(\mathbb{R} \) (real), \(\mathbb{C} \) (complex), \(\mathbb{H} \) (quaternion). Its real dimension is

\[
\delta = \delta(K) = \begin{cases}
1 & (K = \mathbb{R}) \\
2 & (K = \mathbb{C}) \\
4 & (K = \mathbb{H}).
\end{cases}
\]

We consider the right \(K \)-linear space \(K^m \) consisting of the columns \(x = [\xi_i]^m_1, \xi_i \in K, 1 \leq i \leq m \). This becomes an Euclidean space being provided with the inner product

\[
\langle x, y \rangle = \sum_{i=1}^{m} \bar{\xi}_i \eta_i, \quad x = [\xi_i]^m_1, \quad y = [\eta_i]^m_1,
\]

where the bar means the standard conjugation in \(K \). Obviously,

\[
\langle x, y \rangle = \overline{\langle x, y \rangle}, \quad \langle x \alpha, y \beta \rangle = \overline{\alpha} \langle x, y \rangle \beta.
\]

The corresponding Euclidean norm is the case \(p = 2 \) in the family

\[
\|x\|_p = \left(\sum_{i=1}^{m} |\xi_i|^p \right)^{1/p}, \quad 1 \leq p \leq \infty.
\]

With the latter the space \(K^m \) is denoted by \(\ell^m_{p,K} \), so the Euclidean space \(K^m \) is just \(\ell^m_{2,K} \). In this case we will omit the subindex 2 in the notation of the norm.
Since $S(m, K) \equiv S(\delta m, R)$, the topological dimension of $S(m, K)$ is equal to $\delta m - 1$. In particular, $S(1, K) = U(K) \equiv \{ \alpha \in K, |\alpha| = 1 \}$. This is a multiplicative group acting as $x \mapsto x\alpha$ on $S(m, K)$. The corresponding quotient space is the projective space KP^{m-1}. Its topological dimension is equal to $\delta(m - 1)$. The space KP^0 is a singleton.

DEFINITION 1.1. [14] Let p be an integer even, $p \geq 2$. A function $\phi : K^m \to C$ belongs to the class $\Phi_K(m, p)$ if

a) ϕ is a homogeneous polynomial of degree p on the real space $R^{\delta m} \equiv (K^m)_R$ and

b) ϕ is $U(K)$-invariant in the sense that $\phi(x\alpha) = \phi(x)$, $x \in K^m$, $|\alpha| = 1$, or equivalently,

\[
\phi(x\alpha) = \phi(x)|\alpha|^p, \quad x \in K^m, \quad \alpha \in K.
\]

As a result, the restriction $\phi|S(m, K)$ is well defined on KP^{m-1}. Accordingly, it is called a polynomial function on KP^{m-1} [16]. For simplicity we preserve the notation ϕ for the projective image of $\phi \in \Phi_K(m, p)$. This is acceptable since the projectivization is one-to-one.

The simplest example of $\phi \in \Phi_K(m, p)$ is $\phi(x) = \|x\|^p$. Every $U(K)$-invariant (thus even) polynomial ψ of degree $\leq p$ can be included into $\Phi_K(m, p)$ by multiplying each of its homogeneous component ψ_d by $\|\cdot\|^{p-d}$, $d = \deg \psi_d = 0, 2, \ldots, p - 2, p$. Since its transformation does not change the restriction $\psi|S(m, K)$, we have the inclusions

\[
\Phi_K(m, d)|S(m, K) \subset \Phi_K(m, p)|S(m, K) \quad (d = 0, 2, \ldots, p - 2).
\]

For $K = R$ the $U(K)$-invariance reduces to the central symmetry, $\phi(-x) = \phi(x)$, since $U(R) = Z_2$. On the other hand, $Z_2 \subset U(K)$, hence

\[
\Phi_K(m, p) \subset \Phi_K(\delta m, p).
\]

Obviously, $\Phi_K(m, p)$ is a finite-dimensional complex linear space. For $K = R$ this space consists of all complex-valued homogeneous polynomials of degree p on R^m. The monomials

\[
\xi_1^{i_1} \cdots \xi_m^{i_m}, \quad (\xi_k)^{i_k} \in R^m,
\]

with $i_1 + \ldots + i_m = p$ form a basis of $\Phi_R(m, p)$. Accordingly,

\[
\dim \Phi_R(m, p) = \binom{m + p - 1}{m - 1}.
\]

In the space $\Phi_C(m, p)$ a natural basis consists of all monomials

\[
\xi_1^{i_1} \cdots \xi_m^{i_m} \xi_1^{j_1} \cdots \xi_m^{j_m}, \quad (\xi_k)^{i_k} \in C^m,
\]

where (i_1, \ldots, i_m) and (j_1, \ldots, j_m) independently run over all nonnegative m-tuples such that $i_1 + \cdots + i_m = j_1 + \cdots + j_m = p/2$. Thus, the space $\Phi_C(m, p)$ coincides with that of [11]. We have

\[
\dim \Phi_C(m, p) = \binom{m + p/2 - 1}{m - 1}^2.
\]

The structure of $\Phi_H(m, p)$ is much more complicated because of the non-commutativity of the field H. The point is that the quaternion monomials are not $U(H)$-invariant, in general. However, there exists an alternative way to calculate $\dim \Phi_K(m, p)$ for all fields K at once, see [11]. In particular,

\[
\dim \Phi_H(m, p) = \frac{1}{2m - 1} \binom{2m + p/2 - 2}{2m - 2} \binom{2m + p/2 - 1}{2m - 2}.
\]
DEFINITION 1.2 ([14], [16]). A projective cubature formula of index \(p \) in \(\mathbb{K} \mathbb{P}^{m-1} \) is an identity
\[
\int_{S(m, \mathbb{K})} \phi \, d\sigma_{\delta_{m-1}} = \sum_{k=1}^{n} \phi(x_k) \rho_k, \quad \phi \in \Phi_{\mathbb{K}}(m, p),
\]
(1.7)
where \(\sigma_{\delta_{m-1}} \) is the normalized measure on \(S(m, \mathbb{K}) \) induced by the volume in \(\mathbb{R}^{\delta_{m}} \), the nodes \(x_k \in \mathbb{K} \mathbb{P}^{m-1} \), all weights \(\rho_k > 0 \) and their sum is equal to \(1 \).

In an equivalent setting all \(x_k \in S(m, \mathbb{K}) \) and \(x_i \neq x_j \alpha \) for \(\alpha \in U(\mathbb{K}) \) and \(i \neq k \). In this sense \(x_k \) are pairwise projectively distinct.

For \(\mathbb{K} = \mathbb{R} \) the identity (1.7) is a spherical cubature formula of index \(p \) [6], [17]. In the case of equal weights the set of nodes of a spherical cubature formula is a spherical design [5] of the same index. Similarly, a projective design over any field \(\mathbb{K} \) can be defined as the set of nodes of a projective cubature formula with equal weights, c.f. [10]. Note that a spherical cubature formula is projective if and only if it is podal [17], i.e. there are no pairs of antipodal nodes.

For our purposes it is important that every projective cubature formula of index \(p \) is also of all indices \(d = 0, 2, \ldots, p-2 \). This immediately follows from (1.2) [14, 16]. Hence, a natural symmetrization of a podal spherical cubature formula of index \(p \) is an isometric embedding of degree \(p + 1 \) that means its validity for all polynomials on \(\mathbb{R}^m \) of degrees \(\leq p + 1 \).

Now note that the space \(\Phi_{\mathbb{K}}(m, p) \) contains all elementary polynomials \(\phi_{p, p}(x) = |(x, y)|^p, \ y \in \mathbb{K}^m \). Moreover, any function \(\phi \in \Phi_{\mathbb{K}}(m, p) \) is a linear combination of elementary polynomials [16]. For this reason the projective cubature formula (1.7) is equivalent to the identity
\[
\int_{S(m, \mathbb{K})} |(x, y)|^p \, d\sigma_{\delta_{m-1}}(x) = \sum_{k=1}^{n} |(x_k, y)|^p \rho_k, \quad y \in \mathbb{K}^m.
\]
(1.8)
On the other hand,
\[
\int_{S(m, \mathbb{K})} |(x, y)|^p \, d\sigma_{\delta_{m-1}}(x) = \gamma_{m, p, \mathbb{K}} \|y\|^p, \quad \gamma_{m, p, \mathbb{K}} = \text{const}, \quad y \in \mathbb{K}^m,
\]
(1.9)
see [14]. For \(\mathbb{K} = \mathbb{R} \) this is the identity applied by Hilbert [9] to solve the Waring problem in the number theory. Irrespective to \(\mathbb{K} \), we call (1.9) the Hilbert identity.

Comparing (1.9) to (1.8) we obtain
\[
\sum_{k=1}^{n} |(u_k, y)|^p = \|y\|^p, \quad y \in \mathbb{K}^m,
\]
(1.10)
where \(u_k = x_k \alpha_k \) with some \(\alpha_k > 0 \). This just means that the linear mapping \(y \mapsto ((u_k, y))_{k=1}^{n} \) is an isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \). Moreover, this one is irreducible in the sense that every pair of the vectors \(u_k, u_k \) is linearly independent, in particular, all \(u_k \neq 0 \). With any \(u_k \)'s the identity (1.10) can be reduced to a similar identity with some \(\tilde{u}_k \)'s, \(1 \leq k \leq n \leq m \), such that the corresponding isometric embedding is irreducible.

Conversely, every irreducible isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \) is generated by a projective cubature formula since (1.10) \& (1.10) \rightarrow (1.8) with \(x_k = u_k/\|u_k\| \) and \(\rho_k = \gamma_{m, p, \mathbb{K}}/\|u_k\|^p \). Thus, we have a 1-1 correspondence between projective cubature formulas of index \(p \) with \(n \) nodes on \(S(m, \mathbb{K}) \) and irreducible isometric embeddings \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \).

Note that the image of any isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \) is an Euclidean subspace of \(\ell^m_{p, \mathbb{K}} \), and all Euclidean subspace are of this origin.

For any \((m, p)\) and large \(n \) an identity of form (1.10) can be derived from the Hilbert identity directly (i.e. without (1.8), see [14] and the references therein. Accordingly, an isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \) exists with such \(m, p, n \).

The minimal \(n \) such that an isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \) exists is denoted by \(N_{\mathbb{K}}(m, p) \). Every minimal isometric embedding \(\ell^m_{2, \mathbb{K}} \rightarrow \ell^m_{p, \mathbb{K}} \) (i.e. such that \(n = N_{\mathbb{K}}(m, p) \)) is irreducible, obviously. Thus, \(N_{\mathbb{K}}(m, p) \) is also the minimal number of nodes in the projective cubature formulas of index \(p \) on \(S(m, \mathbb{K}) \).

It is known that
\[
N_{\mathbb{K}}(m, p) \leq \dim \Phi_{\mathbb{K}}(m, p) - 1,
\]
(1.11)
see [13] and the references therein. For any fixed \(m \) and \(p \rightarrow \infty \) the inequality (1.11) combined with the formulas (1.4), (1.5) and (1.6) yields the asymptotical upper bound
\[
N_{\mathbb{K}}(m, p) \lesssim \frac{p^{\gamma(m-1)}}{c_m(\mathbb{K})},
\]
(1.12)
where
\[c_m(R) = (m-1)!, \quad c_m(C) = 4^{m-1}(m-1)!^2, \quad c_m(H) = 16^{m-1}(2m-1)(2m-2)!. \] (1.13)

The exact values \(N_K(m,p) \) are unknown, except for some special cases, see [10], [11], [12], [15], [17], [20]. The trivial examples are
\[N_K(1,p) = 1, \quad N_K(m,2) = m. \] (1.14)
The simplest nontrivial example is \(N_K(2,4) = 3 \), see [12]. More generally,
\[N_K(2,p) = p/2 + 1, \] (1.15)
see [17], [20].

From (1.2) it follows that
\[N_K(m,p) \leq N_K(m,p). \] (1.16)
Another useful inequality is
\[N_K(m,p) \leq N_R(\delta m,p) \leq N_R(\delta,p)N_K(m,p). \] (1.17)
Here the left-hand side follows from (1.3) immediately. With \(K = C \) the right-hand side of (1.17) follows from [11].

In the present paper we construct a recursion with respect to \(m \) for the projective cubature formulas of index \(p \) in \(K \mathbb{P}^{m-1} \). For a large set of pairs \(m,p \) this yields the upper bounds for \(N_K(m,p) \) which are effective in the sense that they are better than (1.11). Later on we call the right-hand side of (1.11) the General Upper Bound, briefly GUB. This is a polynomial in \(p \) of degree \(\delta(m-1) \). It is an open problem to improve (1.11) in general.

Our Main Theorem is

Theorem 1.3. Let \(m \geq 2, p \geq 4 \). Any projective cubature formula of index \(p \) with \(n \) nodes on \(S(m-1,K) \) determines a projective cubature formula of the same index with \(n' \) nodes on \(S(m,K) \) where
\[n' = \begin{cases} \nu_K(p)(p/2+1)n, & p \equiv 2 \pmod{4} \\ \nu_K(p)((p/2)n+1), & p \equiv 0 \pmod{4} \end{cases} \] (1.18)
and
\[\nu_K(p) = N_R(\delta,2[p/4]) = \begin{cases} N_R(\delta,p/2-1), & p \equiv 2 \pmod{4} \\ N_R(\delta,p/2), & p \equiv 0 \pmod{4}. \end{cases} \] (1.19)

In fact, \(\nu_R(p) = 1 \) and \(\nu_C(p) = [p/4] + 1 \) according to (1.11) and (1.15), respectively. In contrast, for \(\nu_H(p) \) we only have an upper bound (see (1.17)), except for \(\nu_H(4) = N_R(4,2) = 4 \), see (1.14), and \(\nu_H(8) = N_R(4,4) = 11 \), see [20], Proposition 9.26.

In terms of isometric embeddings the Theorem 1.3 is reformulated as follows.

Theorem 1.4. Let \(m \geq 2, p \geq 4 \). Any irreducible isometric embedding \(\ell_2^{m-1} \rightarrow \ell_p^{n'}_{p,K} \) determines an irreducible isometric embedding \(\ell_2^{m}_{2,K} \rightarrow \ell_p^{n'}_{p,K} \) where \(n' \) is that of (1.18).

Taking \(n = N_K(m-1,p) \) in (1.18) we obtain

Corollary 1.5. The inequality
\[N_K(m,p) \leq \begin{cases} N_R(\delta,p/2-1)(p/2+1)N_K(m-1,p), & p \equiv 2 \pmod{4} \\ N_R(\delta,p/2)((p/2)N_K(m-1,p)+1), & p \equiv 0 \pmod{4} \end{cases} \] (1.20)

holds.

The inequality (1.20) being combined with the left-hand side of (1.17) yields

Corollary 1.6. The inequality
\[N_K(m,p) \leq \begin{cases} N_R(\delta,p/2-1)(p/2+1)N_R(\delta(m-1),p), & p \equiv 2 \pmod{4} \\ N_R(\delta,p/2)((p/2)N_R(\delta(m-1),p)+1), & p \equiv 0 \pmod{4} \end{cases} \] (1.21)

holds.
We prove the Main Theorem in Section 3 using a series of lemmas from Section 2. The recursion (1.18) corresponds to a partial separation of spherical coordinates and subsequent applying of some relevant cubature (in particular, quadrature) formulas for the partial integrals. For the spherical cubature formulas and designs this way is well known [2], [3], [4], [10], [19], [22], [24]. The lemmas mentioned above allow us to realize the recursion in the projective context. For the projective designs our proof can be adapted by using of a quadrature formula of Chebyshev type of degree $p/2$ instead of Gauss-Jacobi. This yields a counterpart of Corollary 1.5 with an upper bound for the number of nodes instead of 2.

In Section 4 we reformulate the Main Theorem for each of three fields separately and, as a result, explicitly. Then in each case we specify the range of m where the corresponding upper bound $N_K(m, p) \leq n$ is effective for all p. In addition, the Main Theorem yields a lot of “sporadic” numerical upper bounds arising from some known ones. In Section 5 these results are presented in form of tables.

2 The lemmas

Lemma 2.1. Denote by \hat{S}_{r-1} the (non-normalized) surface area on $S(r, R)$, $r \geq 2$. Let $1 \leq l \leq r - 1$, and let $x = [\xi]_r \in S(r, R)$, $y = [\xi]_l$, $z = [\xi]_{l+1}$, $\rho = ||z||$. With $\hat{y} = y/||y||$ and $\hat{z} = z/||z||$ ($y, z \neq 0$) the formula

$$d\hat{S}_{r-1}(x) = (1 - \rho^2)^{l-1} \rho^{r-l-1} d\rho d\hat{S}_{l-1}(\hat{y}) d\hat{S}_{r-l-1}(\hat{z})$$

(2.1)

holds (under agreement $d\hat{S}_0(\cdot) = 1$).

Proof. The column x can be written in the form

$$x = h(\rho, \hat{y}, \hat{z}) = \left[\sqrt{1 - \rho^2 \hat{y}^2} \right].$$

(2.2)

Denote by $\theta = (\theta_1, \ldots, \theta_{l-1})$ and $\varphi = (\varphi_1, \ldots, \varphi_{r-l-1})$ where θ_i and φ_j are the spherical coordinates of $\hat{y} \in S(l, R)$ and $\hat{z} \in S(r-l, R)$, respectively. (For $l = 1$ there is no θ, for $l = r - 1$ there is no φ.) From (1.16) we obtain the Jacobi matrix

$$J = \frac{Dh(\rho, \hat{y}, \hat{z})}{D(\rho, \theta, \varphi)} = \left[\begin{array}{ccc} \frac{\partial h}{\partial \rho} & 0 & \sqrt{1 - \rho^2} \hat{y}^2 \\ 0 & \rho Y & 0 \\ 0 & 0 & \rho Z \end{array} \right],$$

where $\left[\tilde{\xi} \right]_1^l = \tilde{y}$, $\left[\tilde{\xi} \right]_{l+1}^r = \hat{z}$,

$$Y = \left[\frac{\partial \tilde{\xi}_i}{\partial \theta_k} \right]_{1 \leq i \leq l, 1 \leq k \leq l-1}, \quad Z = \left[\frac{\partial \tilde{\xi}_i}{\partial \varphi_j} \right]_{l+1 \leq i \leq r, 1 \leq j \leq r-l-1}.$$

(There is no Y for $l = 1$, no Z for $l = r - 1$.)

The corresponding Gram matrix is

$$\Gamma = J' J = \left[\begin{array}{ccc} (1 - \rho^2)^{-1} & 0 & 0 \\ 0 & (1 - \rho^2) Y' Y & 0 \\ 0 & 0 & \rho^2 Z' Z \end{array} \right].$$

(2.3)

where dash means conjugation. Indeed, $||\tilde{y}||^2 = ||\tilde{z}||^2 = 1$ and

$$\tilde{y}' Y = \sum_{i=1}^l \hat{y}_i \frac{\partial \tilde{\xi}_i}{\partial \theta_k} = \frac{1}{2} \frac{\partial}{\partial \theta_k} \left(\sum_{i=1}^l \hat{y}_i^2 \right) = 0, \quad 1 \leq k \leq l - 1,$$

and

$$\tilde{z}' Z = \sum_{i=l+1}^r \hat{z}_i \frac{\partial \tilde{\xi}_i}{\partial \varphi_j} = \frac{1}{2} \frac{\partial}{\partial \varphi_j} \left(\sum_{i=l+1}^r \hat{z}_i^2 \right) = 0, \quad 1 \leq j \leq r - l - 1.$$

Note that $G \equiv Y' Y$ and $H \equiv Z' Z$ are the Gram matrices for the Jacobi matrices Y and Z of the mappings $(\theta_1, \ldots, \theta_{l-1}) \mapsto (\tilde{\xi}_1, \ldots, \tilde{\xi}_l)$ and $(\varphi_1, \ldots, \varphi_{r-l-1}) \mapsto (\hat{\xi}_{l+1}, \ldots, \hat{\xi}_r)$, respectively. From (2.3) it follows that

$$\det \Gamma = (1 - \rho^2)^{(l-2)} \rho^{2(r-l-1)} \det G \det H.$$
This results in (2.4) since
\[d\tilde{\sigma}_{\ell-1}(x) = \sqrt{\det\Gamma} \, d\rho d\theta_1 \ldots d\theta_{\ell-1} d\varphi_1 \ldots d\varphi_{\ell-1} \]
and
\[d\tilde{\sigma}_{\ell-1}(y) = \sqrt{\det G} \, d\theta_1 \ldots d\theta_{\ell-1}, \quad d\tilde{\sigma}_{\ell-1}(z) = \sqrt{\det H} \, d\varphi_1 \ldots d\varphi_{\ell-1}. \]

Now let \(x \in S(m, K) \), \(m \geq 2 \). Then \(x = \eta \oplus z \) where \(\eta \in K \) and \(z \in K^{m-1} \), and then
\[x = \sqrt{1 - \rho^2} \oplus \rho w, \quad \rho \in [-1, 1], \quad \theta \in S(1, K) \equiv S(\delta, R), \quad w \in S(m - 1, K) \equiv S(\delta(m - 1), R). \] (2.4)

Accordingly, we set
\[\phi(\rho, \theta, w) = \phi(\sqrt{1 - \rho^2} \oplus \rho w) \] (2.5)
for a continuous function \(\phi(x) \). Obviously, \(\phi(-\rho, \theta, -w) = \phi(\rho, \theta, w) \). If \(\phi(x) \) is central symmetric, i.e. \(\phi(-x) = \phi(x) \), then \(\phi(\rho, -\theta, -w) = \phi(\rho, \theta, w) \). As a result, \(\phi(\rho, -\theta, w) = \phi(\rho, -\theta, w) \). Therefore, the \(Z_2 \)-average with respect to \(\rho \), i.e.
\[\tilde{\phi}(\rho, \theta, w) = \frac{1}{2} (\phi(\rho, \theta, w) + \phi(-\rho, \theta, w)), \] (2.6)
coincides with the \(Z_2 \)-average with respect to \(\theta \):
\[\tilde{\phi}(\rho, \theta, w) = \frac{1}{2} (\phi(\rho, \theta, w) + \phi(\rho, -\theta, w)). \] (2.7)

Now we consider the integral
\[I_{\phi}(w) = \int_{S(1, K)} d\sigma_{\ell-1}(\theta) \int_0^1 \phi(\rho, \theta, w) \pi(\rho) \, d\rho \] (2.8)
with any integrable \(\pi(\rho) \).

Lemma 2.2. If \(\phi(x) \) is central symmetric then \(I_{\phi}(w) = I_{\tilde{\phi}}(w) \).

Proof. This follows from (2.7) since the measure \(\sigma_{\ell-1}(\theta) \) is central symmetric.

Lemma 2.3. If \(\phi(x) \) is \(U(K) \)-invariant then \(I_{\phi}(w) \) is also \(U(K) \)-invariant.

Proof. From (2.5) it follows that \(\phi(\rho, \theta, w) = \phi(\rho, \theta, w) \) for all \(\alpha \in U(K) \). On the other hand, the measure \(\sigma_{\ell-1}(\theta) \) is \(U(K) \)-invariant.

Actually, only the functions \(\phi(x) \) from \(\Phi_K(m, p) \) are needed for our purposes.

Lemma 2.4. If \(\phi(x) \) belongs to \(\Phi_K(m, p) \) then the function \(I_{\phi}(w) \) belongs to \(\Phi_K(m - 1, p)|S(m - 1, K) \).

Proof. In view of the Lemma 2.3 and inclusion (1.2) we only have to prove that \(I_{\phi}(w) \) is the restriction to the unit sphere of a polynomial of degree \(\leq p \) on \(R^{d(m-1)} \). Since \(\Phi_K(m, p) = \text{Span}\{\phi_{\nu, p} : \nu \in K^m\} \) and since the mapping \(\phi \mapsto I_{\phi} \) is linear, we can assume that \(\phi(x) = \phi_{\nu, p}(x) = |\langle x, \nu \rangle|^p, \nu \in K^m \). Let \(y = \xi \oplus v \) where \(\xi \in K, v \in K^{m-1} \). Then by (2.5)
\[\phi_{\nu, p}(\rho, \theta, w) = \sqrt{1 - \rho^2} \theta \xi + \rho \langle w, v \rangle \]
\[= \left((1 - \rho^2) \left| \theta \xi \right|^2 + \rho^2 \left| \langle w, v \rangle \right|^2 + 2 \rho \sqrt{1 - \rho^2} \Re \left(\theta \xi \langle w, v \rangle \right) \right)^{p/2}. \] (2.9)

With fixed \(\rho \) and \(\theta \) let us consider the right-hand side of (2.9) as a function of \(w \in R^{d(m-1)} \). This is a polynomial of degree \(\leq p \). Therefore, such is \(I_{\phi}(w) \) obtained by substitution of (2.9) into the integral (2.8).

The last lemma we need is
LEMMA 2.5. If \(\phi(x) \) belongs to \(\Phi_K(m,p) \) then with a fixed \(w \) the function \(\tilde{\phi}(\rho,\theta,w) \) defined by (2.6) is a linear combination of functions of form \(f(\rho^2)((\theta,\zeta)_R)^q \) where \(f \) is a polynomial of degree \(\leq p/2 \), \(0 \leq q \leq [p/4] \), \(\zeta \in K \), \((\theta,\zeta)_R = \Re(\theta \zeta) \).

Proof. As before, it suffices to consider \(\phi = \phi_{r,p} \), so we can use (2.4). Note that

\[
\Re \left(\xi (\theta,\nu,\omega) \right) = \Re \left((\nu,\omega) \tilde{\phi} \right) = \Re \left(\tilde{\theta} \xi (\nu,\omega) \right) = (\theta,\zeta)_R
\]

where \(\zeta = \xi (\nu,\omega) \). We have

\[
\phi(\rho,\theta,w) = (A(\rho^2) + B(\rho^2)\text{sign}(\rho) (\zeta R)_R)^{p/2}
\]

where

\[
A(t) = |\xi|^2 (1-t) + |(\nu,\omega)|^2 t, \quad B(t) = \sqrt{4t(1-t)}.
\]

Hence,

\[
\phi(\rho,\theta,w) = \sum_{k=0}^{p/2} \binom{p/2}{k} A(\rho^2)^{p/2-k} B(\rho^2)^k \left(\text{sign}(\rho) \right)^k ((\theta,\zeta)_R)^k.
\]

and then (2.6) yields

\[
\tilde{\phi}(\rho,\theta,w) = \sum_{q=0}^{[p/4]} \binom{p/2}{2q} \left(\sum_{k=1}^{p/2} \binom{p/2}{k} A(\rho^2)^{p/2-2q} B(\rho^2)^{2q} \right) ((\theta,\zeta)_R)^{2q}.
\]

It remains to note that \(A(t)^{p/2-2q} B(t)^{2q} \) is a polynomial of degree \(\leq p/2 \) for every \(q \leq [p/4] \). \(\square

3 Proof of the Main Theorem

Let \(\phi \in \Phi_K(m,p), x \in S(m,K), \phi(x) = \phi(\rho,\theta,w) \) as in (2.5). According to Lemma 2.1 with \(r = \delta m \) and \(l = \delta \), we have

\[
\int_{S(m,K)} \phi(x) \, d\sigma_{r-1}(x) = \int_{S(m-1,K)} d\sigma_{r-\delta-1}(w) \int_{S(1,K)} d\sigma_{\delta-1}(\theta) \int_{S(1,K)} \phi(\rho,\theta,w) \pi_{\alpha,\beta}(\rho) \, d\rho
\]

where

\[
\pi_{\alpha,\beta}(\rho) = C \rho^{2\alpha+1}(1-\rho^2)^\beta, \quad \alpha = \delta(m-1)/2, \quad \beta = \delta/2 - 1,
\]

the constant \(C = C_{r,\delta} \) comes from the normalization of the areas in (2.1):

\[
\int_0^1 \pi_{\alpha,\beta}(\rho) \, d\rho = 1.
\]

By (2.8) and Lemma 2.2 we get

\[
\int_{S(m,K)} \phi(x) \, d\sigma_{r-1}(x) = \int_{S(m-1,K)} d\sigma_{r-\delta-1}(w) \int_{S(1,K)} d\sigma_{\delta-1}(\theta) \int_0^1 \tilde{\phi}(\rho,\theta,w) \pi_{\alpha,\beta}(\rho) \, d\rho.
\]

Lemma 2.4 allows us to apply a projective cubature formula of index \(p \) on \(S(m-1,K) \) existing by assumption. If its nodes and weights are \(w_i \) and \(\lambda_i \), \(1 \leq i \leq n \), respectively, then

\[
\int_{S(m,K)} \phi(x) \, d\sigma_{r-1}(x) = \sum_{i=1}^n \lambda_i \int_{S(1,K)} d\sigma_{\delta-1}(\theta) \int_0^1 \tilde{\phi}(\rho,\theta,w_i) \pi_{\alpha,\beta}(\rho) \, d\rho.
\]

(3.1)

By Lemma 2.4 the integrals against \(d\sigma_{\delta-1}(\theta) \) in (3.1) can be calculated by a podal spherical cubature formula of index \(2[p/4] \) on \(S(1,K) \equiv S(\delta,R) \). The minimal number of nodes in such a formula is

\[
\nu = N_K(\delta,2[p/4]) = \begin{cases} N_K(\delta,p/2-1), & p \equiv 2 \pmod{4} \\ N_K(\delta,p/2), & p \equiv 0 \pmod{4}. \end{cases}
\]

(3.2)

As a result,

\[
\int_{S(m,K)} \phi(x) \, d\sigma_{r-1}(x) = \sum_{i=1}^n \sum_{j=1}^{\nu} \lambda_i \mu_j \int_0^1 \tilde{\phi}(\rho,\theta_j,w_i) \pi_{\alpha,\beta}(\rho) \, d\rho
\]

(3.3)
where \(\theta_j \) and \(\mu_j \) are the corresponding nodes and weights.

Now we consider the integral
\[
\int_0^1 f(\rho^2) \pi_{\alpha,\beta}(\rho) \, d\rho = \int_0^1 f(\tau) \chi_{\alpha,\beta}(\tau) \, d\tau
\]
where \(f \) is a polynomial of degree \(\leq p/2 \) and
\[
\chi_{\alpha,\beta}(\tau) = \frac{\pi_{\alpha,\beta}(\sqrt{\tau})}{2\sqrt{\tau}} = \frac{1}{2} C_\tau^\alpha (1 - \tau)^\beta, \quad \int_0^1 \chi_{\alpha,\beta}(\tau) \, d\tau = 1.
\]
Assume that \(p \equiv 2 \) (mod 4), i.e. \(p/2 \) is odd. Since \(\deg f \leq p/2 = 2(p+2)/4 - 1 \), the classical Gauss-Jacobi quadrature formula yields
\[
\int_0^1 f(\tau) \chi_{\alpha,\beta}(\tau) \, d\tau = \sum_{k=1}^{(p+2)/4} \omega_k f(\tau_k) \tag{3.4}
\]
with relevant nodes and weights, see [23], Theorems 3.4.1 and 3.4.2. Therefore,
\[
\int_0^1 f(\rho^2) \pi_{\alpha,\beta}(\rho) \, d\rho = \sum_{k=1}^{(p+2)/4} \omega_k f(\rho_k), \quad \rho_k = \sqrt{\tau_k}.
\]
By Lemma 2.5
\[
\int_0^1 \tilde{\phi}(\rho, \theta_j, \omega_i) \pi_{\alpha,\beta}(\rho) \, d\rho = \sum_{k=1}^{(p+2)/4} \omega_k \tilde{\phi}(\rho_k, \theta_j, \omega_i) = \frac{1}{2} \sum_{k=1}^{(p+2)/4} \omega_k \left(\phi(\rho_k, \theta_j, \omega_i) + \phi(\rho_k, -\theta_j, \omega_i) \right) \tag{3.5}
\]
for all \(1 \leq i \leq n, 1 \leq j \leq \nu \). The substitution from (3.5) into (3.3) yields
\[
\int_{X(m, K)} \phi(x) \, d\sigma_{r-1}(x) = \sum_{i=1}^{n} \sum_{j=1}^{\nu} \sum_{k=1}^{(p+2)/4} \varphi_{ijk} \left(\phi(x^+_{ijk}) + \phi(x^-_{ijk}) \right) \tag{3.6}
\]
where
\[
x^\pm_{ijk} = \pm \theta_j \sqrt{1 - \rho^2_k \pm \rho_k \omega_i}, \quad \varphi_{ijk} = \frac{1}{2} \lambda_j \mu_j \omega_k. \tag{3.7}
\]
The number of nodes \(x^+_{ijk} \) is
\[
n' = (p/2 + 1)\nu n = N_R(\delta, p/2 - 1)(p/2 + 1)n \tag{3.8}
\]
according to (3.2).

Now let \(p \equiv 0 \) (mod 4), i.e. let \(p/2 \) be even. In this case, instead of (3.4), we use its Markov’s modification (see [18], formula (1.16)):
\[
\int_0^1 f(\tau) \chi_{\alpha,\beta}(\tau) \, d\tau = \omega_0 f(0) + \sum_{k=1}^{p/4} \omega_k f(\tau_k). \tag{3.9}
\]
This is valid for all polynomials \(f \) of deg \(f \leq 2(p/4) = p/2 \). (Of course, the nodes and the weights in (3.9) are different from those of (3.4)) As before,
\[
\int_0^1 \tilde{\phi}(\rho, \theta_j, \omega_i) \pi_{\alpha,\beta}(\rho) \, d\rho = \omega_0 \phi(0, \theta_j, \omega_i) + \frac{1}{2} \sum_{k=1}^{p/4} \omega_k \left(\phi(\rho_k, \theta_j, \omega_i) + \phi(\rho_k, -\theta_j, \omega_i) \right)
\]
and then
\[
\int_{X(m, K)} \phi(x) \, d\sigma_{r-1}(x) = \sum_{j=1}^{\nu} \varphi_j \phi(x_j) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{\nu} \sum_{k=1}^{p/4} \varphi_{ijk} \left(\phi(x^+_{ijk}) + \phi(x^-_{ijk}) \right) \tag{3.10}
\]
where
\[
x_j = \theta_j \oplus 0, \quad \varphi_j = \mu_j \omega_0 \sum_{i=1}^{n} \lambda_i = \mu_j \omega_0, \tag{3.11}
\]
the rest of nodes and weights is determined as in (3.7). Now the total number of nodes is
\[
n' = \nu + (p/2)\nu n = N_R(\delta, p/2)((p/2)n + 1) \tag{3.12}
\]
according to (3.2) again.

It remains to note that in each of formulas (3.6) and (3.10) the nodes are projectively distinct. \(\square \)
4 Some applications

Further \(m \geq 2, p \geq 4 \) as in the Main Theorem. It is convenient to set \(p = 2s \), so \(s \) is an integer, \(s \geq 2 \).

Let us start with \(\mathbf{K} = \mathbb{C} \). In this case the Main Theorem takes the form of

Theorem 4.1. Any projective cubature formula of index \(2s \) with \(n \) nodes on \(S(m-1, \mathbb{C}) \) determines a projective cubature formula of the same index with \(n' \) nodes on \(S(m, \mathbb{C}) \) where

\[
n' = \begin{cases}
\frac{(s+1)^2}{2}n, & s \equiv 1 \pmod{2} \\
\frac{s+2}{2}(sn+1), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.1)

Proof. By (1.19) and (1.15)

\[
\nu_{\mathbb{C}}(2s) = N_{\mathbb{R}}(2, 2 \lfloor s/2 \rfloor) = \lfloor s/2 \rfloor + 1 = \begin{cases}
\frac{s+1}{2}, & s \equiv 1 \pmod{2} \\
\frac{s+2}{2}, & s \equiv 0 \pmod{2}.
\end{cases}
\]

The corollary (4.2) reduces to

Corollary 4.2. The inequality

\[
N_{\mathbb{C}}(m, 2s) \leq \begin{cases}
\frac{(s+1)^2}{2}N_{\mathbb{C}}(m-1, 2s), & s \equiv 1 \pmod{2} \\
\frac{s+2}{2}(sN_{\mathbb{C}}(m-1, 2s) + 1), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.2)

holds.

In particular,

\[
N_{\mathbb{C}}(2, 2s) \leq \begin{cases}
\frac{(s+1)^2}{2}, & s \equiv 1 \pmod{2} \\
\frac{(s+2)(s+1)}{2}, & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.3)

since \(N_{\mathbb{C}}(1, 2s) = 1 \). Asymptotically,

\[
N_{\mathbb{C}}(2, 2s) \lesssim \frac{1}{2}s^2, \quad s \to \infty.
\]

(4.4)

Taking \(m = 3 \) in (4.2) and using (4.3) we obtain

\[
N_{\mathbb{C}}(3, 2s) \leq \begin{cases}
\frac{(s+1)^4}{4}, & s \equiv 1 \pmod{2} \\
\frac{s+2}{2} \left(\frac{(s+2)(s+1)s}{2} + 1 \right), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.5)

whence

\[
N_{\mathbb{C}}(3, 2s) \lesssim \frac{1}{4}s^4, \quad s \to \infty.
\]

(4.6)

The upper bounds (4.3) and (4.5) are effective. Indeed, for \(\mathbf{K} = \mathbb{C} \) the cases \(m = 2, 3 \) in GUB (i.e., in (1.11)) are

\[
N_{\mathbb{C}}(2, 2s) \leq (s+1)^2, \quad N_{\mathbb{C}}(3, 2s) \leq \frac{(s+2)^2(s+1)^2}{4}.
\]

(4.7)
that is worse than (4.3) and (4.5), respectively. Asymptotically, (4.4) also remains effective, i.e. better than what the first inequality (4.7) implies. However, (4.6) coincides with the corresponding consequence of (4.7). (Clearly, it cannot be worse.)

The next iteration of (4.2) yields an ineffective upper bound for $N_{C}(m, 2s), m \geq 4$. However, for some s the effectiveness may be reached by using a more precise bound (or an exact value, if any) for $N_{C}(m - 1, 2s)$ in (4.4). Also, some effective bounds can be improved in this way. In Section 5 the reader can find a lot of examples of this approach (for all three fields). One of them is below.

EXAMPLE 4.3. From the known (see [15]) equality $N_{C}(2, 8) = 10$ it follows that

$$N_{C}(3, 8) \leq 3(4N_{C}(2, 8) + 1) = 123,$$

while (4.5) yields $N_{C}(3, 8) \leq 183$.

The following is the iterated form of Theorem 4.1.

THEOREM 4.4. Any projective cubature formula of index $2s$ with n nodes on $S(m - 1, C)$ determines a projective cubature formula of the same index with $n^{(l)}$ nodes on $S(m + l - 1, C)$, where $l \geq 0$ and

$$n^{(l)} = \begin{cases} \frac{(s + 1)^{2l}}{2^{l}}n, & s \equiv 1 \pmod{2}, \\ A(s + 2)^{l}s^{l} + B, & s \equiv 0 \pmod{2}, \end{cases} \tag{4.8}$$

with

$$A = \frac{(s + 3)s}{(s + 2)s - 2}, \quad B = -\frac{s + 2}{(s + 2)s - 2}. \tag{4.9}$$

Proof. For any s the sequence on the right-hand side of (4.8) satisfies the recurrent relation (4.1), and $A + B = 1$.

COROLLARY 4.5. The inequality

$$N_{C}(m + l - 1, 2s) \leq \begin{cases} \frac{(s + 1)^{2l}}{2^{l}}N_{C}(m - 1, 2s), & s \equiv 1 \pmod{2}, \\ A(s + 2)^{l}s^{l} + B, & s \equiv 0 \pmod{2}. \end{cases} \tag{4.10}$$

holds.

Now let us proceed to $K = R$. In this case we have

THEOREM 4.6. Any podal spherical cubature formula of index $2s$ with n nodes on $S(m - 1, R)$ determines a podal spherical cubature formula of the same index with n' nodes on $S(m, R)$ where

$$n' = \begin{cases} (s + 1)n, & s \equiv 1 \pmod{2} \\ sn + 1, & s \equiv 0 \pmod{2}. \end{cases} \tag{4.11}$$

Proof. $\nu_{R}(2s) = N_{R}(1, 2 \lfloor s/2 \rfloor) = 1$.

COROLLARY 4.7.

$$N_{R}(m, 2s) \leq \begin{cases} (s + 1)N_{R}(m - 1, 2s), & s \equiv 1 \pmod{2} \\ sN_{R}(m - 1, 2s) + 1, & s \equiv 0 \pmod{2}. \end{cases} \tag{4.12}$$
For $m = 2$ both inequalities (4.12) reduce to $N_R(2, 2s) \leq s + 1$. (In fact, $N_R(2, 2s) = s + 1$, see (1.15).) Hence,

$$N_R(3, 2s) \leq \begin{cases}
(s + 1)^2, & s \equiv 1 \pmod{2} \\
2s + s + 1 & s \equiv 0 \pmod{2},
\end{cases}$$

thus

$$N_R(3, 2s) \lesssim s^2, \quad s \to \infty.\quad (4.14)$$

The next iteration yields

$$N_R(4, 2s) \leq \begin{cases}
(s + 1)^3, & s \equiv 1 \pmod{2} \\
2(s + 1)(s + 1) & s \equiv 0 \pmod{2}.
\end{cases}$$

However, the latter can be improved by means of the inequality

$$N_R(2m, 2s) \leq (s + 1)N_C(m, 2s)\quad (4.16)$$

which is just the case $\delta = 2$ on the right-hand side of (1.17). Indeed,

$$N_R(4, 2s) \lesssim \frac{s^3}{2}, \quad s \to \infty,\quad (4.17)$$

instead of $N_R(4, 2s) \lesssim s^3$ that follows from (4.15).

Similarly,

$$N_R(6, 2s) \leq (s + 1)N_C(3, 2s) \leq \begin{cases}
\frac{(s + 1)^2}{4}, & s \equiv 1 \pmod{2} \\
2(s + 2)(s + 1) \frac{(s + 2)(s + 1)s}{2} + 1 & s \equiv 0 \pmod{2},
\end{cases}$$

by (4.23). Hence,

$$N_R(6, 2s) \lesssim \frac{s^6}{4}, \quad s \to \infty.\quad (4.20)$$

In addition, from (4.12) and (4.17) it follows that

$$N_R(5, 2s) \leq \begin{cases}
\frac{(s + 1)^3}{2}, & s \equiv 1 \pmod{2} \\
2(s + 2)(s + 1)^2s^2 + 1 & s \equiv 0 \pmod{2},
\end{cases}$$

hence,

$$N_R(5, 2s) \lesssim \frac{s^4}{2}, \quad s \to \infty.\quad (4.22)$$

All upper bounds for $N_R(m, 2s)$, $3 \leq m \leq 6$, obtained above are effective, even asymptotically, c.f. (1.12).

The \mathbf{R}-counterpart of Theorem 4.4 looks simpler.

Theorem 4.8. Any nodal spherical cubature formula of index $2s$ with n nodes on $S(m - 1, \mathbf{R})$ determines a nodal spherical cubature formula of the same index with $n^{(l)}$ nodes on $S(m + l - 1, \mathbf{R})$ where $l \geq 0$ and

$$n^{(l)} = \begin{cases}
(s + 1)^ln, & s \equiv 1 \pmod{2} \\
2s'(n - 1) & s \equiv 0 \pmod{2},
\end{cases}$$

(4.23)
Proof. Induction on \(l \).

COROLLARY 4.9.

\[
N_R(m + l - 1, 2s) \leq \begin{cases}
(s + 1)^l N_R(m - 1, 2s), & s \equiv 1 \pmod{2} \\
N_R(m - 1, 2s) + \frac{s^l - 1}{s - 1}, & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.24)

It remains to consider the case \(K = H \).

THEOREM 4.10. Any projective cubature formula of index \(2s \) with \(n \) nodes on \(S(m - 1, H) \) determines a projective cubature formula of the same index with \(n' \) nodes on \(S(m, H) \) where

\[
n' = \begin{cases}
N_R(4, s - 1)(s + 1)n, & s \equiv 1 \pmod{2} \\
N_R(4, s)(sn + 1), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.25)

Proof. We have

\[
\nu_H(2s) = N_R(4, 2[s/2]) = \begin{cases}
N_R(4, s - 1), & s \equiv 1 \pmod{2} \\
N_R(4, s), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.26)

COROLLARY 4.11. The inequality

\[
N_H(m, 2s) \leq \begin{cases}
N_R(4, s - 1)(s + 1)N_H(m - 1, 2s), & s \equiv 1 \pmod{2} \\
N_R(4, s)(sn_H(m - 1, 2s) + 1), & s \equiv 0 \pmod{2}.
\end{cases}
\]

(4.27)

holds.

The exact values of \(N_R(4, 2[s/2]) \) are unknown, except for the cases \(s = 2 \) and \(s = 4 \) when \(N_R(4, 2) = 4 \) and \(N_R(4, 4) = 11 \), respectively. However, we can use the upper bound (4.17).

THEOREM 4.12. Any projective cubature formula of index \(2s \) with \(n \) nodes on \(S(m - 1, H) \) determines a projective cubature formula of the same index with \(n' \) nodes on \(S(m, H) \) where

\[
16n' \leq \begin{cases}
(s + 1)^4n, & s \equiv 3 \pmod{4} \\
(s + 3)(s + 1)^3n, & s \equiv 1 \pmod{4} \\
(s + 3)^2(sn + 1), & s \equiv 2 \pmod{4} \\
(s + 4)(s + 2)^2(sn + 1), & s \equiv 0 \pmod{4}.
\end{cases}
\]

(4.28)

Proof. If \(s \equiv 0 \pmod{4} \) then \(s/2 \equiv 0 \pmod{2} \) and (4.17) yields

\[
N_R(4, s) \leq \frac{(s/2 + 2)(s/2 + 1)^2}{2} = \frac{(s + 4)(s + 2)^2}{16}.
\]

(4.29)

Now let \(s \equiv 1 \pmod{4} \). Then \(s - 1 \equiv 0 \pmod{2} \) and (4.29) turns into

\[
N_R(4, s - 1) \leq \frac{(s + 3)(s + 1)^2}{16}.
\]

(4.30)

Similarly, if \(s \equiv 2 \pmod{4} \) then \(s/2 \equiv 1 \pmod{2} \), hence

\[
N_R(4, s) \leq \frac{(s/2 + 1)^3}{2} = \frac{(s + 2)^3}{16}.
\]

(4.31)

by (4.17). Finally, if \(s \equiv 3 \pmod{4} \) then \(s - 1 \equiv 2 \pmod{2} \), hence

\[
N_R(4, s - 1) \leq \frac{(s + 1)^3}{16}.
\]

(4.32)

by (4.31). It remains to substitute the inequalities (4.29)-(4.32) into (4.25).
COROLLARY 4.13. The inequality
\[
16N_H(m, 2s) \leq \begin{cases}
(s + 1)^4N_H(m - 1, 2s), & s \equiv 3 \pmod{4} \\
(s + 3)(s + 1)^3N_H(m - 1, 2s), & s \equiv 1 \pmod{4} \\
(s + 2)^3(sN_H(m - 1, 2s) + 1), & s \equiv 2 \pmod{4} \\
(s + 4)(s + 2)^2(sN_H(m - 1, 2s) + 1), & s \equiv 0 \pmod{4}
\end{cases} \tag{4.33}
\]
holds.

In particular,
\[
16N_H(2, 2s) \leq \begin{cases}
(s + 1)^4, & s \equiv 3 \pmod{4} \\
(s + 3)(s + 1)^3, & s \equiv 1 \pmod{4} \\
(s + 2)^3(s + 1), & s \equiv 2 \pmod{4} \\
(s + 4)(s + 2)^2(s + 1), & s \equiv 0 \pmod{4}
\end{cases} \tag{4.34}
\]
Asymptotically,
\[
N_H(2, 2s) \lesssim \frac{1}{16}s^4, \quad s \to \infty. \tag{4.35}
\]

The upper bounds \((4.34)\) are effective, even asymptotically.

5 The numerical results

In this section we present the tables of effective numerical upper bounds for \(N_K(m, p)\) obtained by the recursion combined with other tools, if any. We do not include those of bounds which are worse than known once. Of course, it would be meaningless to tabulate the general inequalities like \((4.3)\). However, some their numerical consequences are presented for the reader convenience.

The tables are organized as follows. The Table 1 contains those known equalities of form \(n = N_K(m, p)\) which are used as the starting data (the input) for the recursion. The equalities are enumerated as \(e_1, e_2, \ldots\) Similarly, in the Table 2 the input inequalities \(N_K(m, p) \leq n\) are enumerated as \(i_1, i_2, \ldots\) The Tables 3, 4, 5 contain the resulting upper bounds for \(K = R, C, H\), respectively, enumerated as \(r_0, r_1, \ldots\) within each table. In every of these tables the enumeration is established in ascending order of \(m\). The effectiveness of all results is demonstrated by including of the corresponding GUB \((1.11)\) into the tables. Several cases of known upper bounds which are weaker than ours are mentioned after the tables.

All input data are provided with the bibliographic references. For all results we refer to the input data and to the general facts from Section 4 and, sometimes, from Section 1. Also, there are some cross-references between the Tables of results.

Let us remember three equivalent interpretations of the inequality \(N_K(m, p) \leq n\).

a) There exists a projective cubature formula of index \(p\) with \(n\) nodes on the sphere \(S(m, K)\).

b) There exists an isometric embedding \(l^n_{2, K} \to l^n_{p, K}\).

c) There exists an \(m\)-dimensional Euclidean subspace in the normed space \(l^n_{p, K}\).

Thus, each row of our tables is an existence theorem which can be formulated in any of equivalent form a), b), c) with some concrete values \(m, p, n\).
Table 1: Input equalities \(n = N_K(m, p) \)

K	m	p	n	References
e1	R	4	11	
e2	R	23	6	2 300
e3	R	24	10	98 280
e4	C	2	8	10
e5	C	2	10	12
e6	C	4	6	40
e7	C	6	6	126
e8	H	5	6	165

Table 2: Input inequalities \(N_K(m, p) \leq n \)

K	m	p	n	References
i1	R	4	6	23
i2	R	4	10	60
i3	R	4	18	360
i4	R	8	10	1200
i5	R	8	12	12 120
i6	R	8	14	13 200
i7	R	12	6	756
i8	R	12	8	4 032
i9	R	12	10	25 200
i10	R	14	4	378
i11	R	14	6	756
i12	R	14	8	44 982
i13	R	14	10	53 718
i14	R	16	6	2 160
i15	R	16	8	32 780
i16	R	16	10	65 760
i17	R	16	12	2 277 600
i18	R	20	4	1 980
i19	R	20	8	172 920
i20	R	20	10	2 263 800
i21	R	24	14	8 484 840
i22	R	24	16	207 501 840
i23	R	24	18	2 522 192 400
i24	R	26	4	10 920
i25	R	26	6	21 840
i26	R	32	6	73 440
i27	R	36	6	164 160
i28	C	9	4	90
i29	C	12	10	32 760
i30	C	28	4	4 060
i31	H	3	10	315

Table 3: Results \(N_R(m, p) \leq n \)

m	p	n	GUB	References	
r0	4	14	256	679	(4.14)
r1	4	16	360	968	(1.16), i3
r2	5	10	360	1000	(4.12), i2
r3	5	14	2 048	3 059	(4.21)
m	p	n	GUB	References	
-----	-----	-------	-------	------------	
r4	5	16	2881	4844	(4.13), r1
r5	5	18	3600	7314	(4.12), i3
r6	6	8	615	1286	(4.12), (4.13), r1(C)
r7	6	10	1296	3002	(4.12), (4.13), r2(C)
r8	8	8	1200	6434	(4.12), i4
r9	9	8	4801	12869	(4.12), r8
r10	9	10	7200	43757	(4.12), i5
r11	9	12	72721	125969	(4.12), i5
r12	9	14	105600	319769	(4.12), i6
r13	10	6	1280	5004	(4.12), r1(C)
r14	10	8	19205	24309	(4.12), i9
r15	10	10	43200	92377	(4.12), r10
r16	11	6	5120	8007	(4.12), r13
r17	13	6	3024	18563	(4.12), i7
r18	13	8	16129	125969	(4.12), i8
r19	13	10	151200	646645	(4.12), i9
r20	15	4	757	3059	(4.12), i10
r21	15	6	3024	38759	(4.12), r11
r22	15	8	179929	319769	(4.12), r12
r23	15	10	322308	1961255	(4.12), i13
r24	17	6	8640	74612	(4.12), i14
r25	17	8	131121	735470	(4.12), i15
r26	17	10	394560	5311734	(4.12), i16
r27	17	12	13665601	30421754	(4.12), i17
r28	18	6	34560	100946	(4.12), r24
r29	18	8	524485	1081574	(4.12), r25
r30	18	10	2367360	9436284	(4.12), r26
r31	20	6	3795	177099	(4.12), i1, e8
r32	21	4	3961	10625	(4.12), i18
r33	21	6	15180	230229	(4.12), r31
r34	21	8	691681	3108104	(4.12), i19
r35	21	10	13582800	30045014	(4.12), r20
r36	22	4	7923	12649	(4.12), r32
r37	22	6	60721	296009	(4.12), r33
r38	22	8	2766725	4292144	(4.12), r34
r39	24	4	9200	17549	(4.12), r40
r40	24	6	9200	475019	(4.12), e2
r41	24	8	98280	7888724	(4.12), e3
r42	25	6	36800	593774	(4.12), r40
r43	25	8	393121	10518299	(4.12), r41
r44	25	10	589680	131128139	(4.12), e3
r45	25	12	67878720	1251677699	(4.12), r46
r46	25	14	67878720	9669554099	(4.12), i21
r47	25	16	1660014721	62852101649	(4.12), i22
r48	25	18	252219240000	353697121049	(4.12), i23
r49	26	8	1572485	13884155	(4.12), r43
r50	26	10	3538080	183579395	(4.12), r44
r51	26	12	543029760	1852492995	(4.12), r52
r52	26	14	543029760	15084504385	(4.12), r46
r53	26	16	13280117760	103077446705	(4.12), r47
r54	26	18	252219240000	608359048205	(4.12), r48
r55	27	4	21841	27404	(4.12), i24
r56	27	6	87360	906191	(4.12), i25
r57	27	8	6289941	18156203	(4.12), r49
Continued from previous page

Table 4: Results $N_C(m, p) \leq n$

m	p	n	GUB	References	
r0	2	18	50	99	(4.3)
r1	3	8	123	224	(4.2), e4
r2	3	10	216	440	(4.2), e5
r3	3	18	2 500	3 024	(4.2), r0
r4	5	6	320	1 224	(4.2), e6
r5	7	6	1 008	7 055	(4.2), e7
r6	8	6	2 160	14 399	(4.2), r4
r7	9	6	17 280	27 224	(4.2), r6
r8	10	4	362	3 024	(4.2), e8
r9	11	4	1450	4 355	(4.2), r8
r10	12	4	5802	6 083	(4.2), r9
r11	12	6	32 760	132 495	(1.16), r12
r12	12	8	32 760	1 863 224	(1.16), r12
r13	13	6	73 600	207 024	(1.21), (1.14), r1
r14	13	8	393 123	3 312 399	(1.21), r2
r15	13	10	589 680	38 291 343	(1.21), i20
r16	14	6	174 720	313 599	(1.21), (1.14), i25
r17	14	8	4 717 479	5 664 399	(1.21), r14
r18	14	10	63 685 440	73 410 623	(1.21), (1.15), r50(R)
r19	17	6	587 520	938 960	(1.21), (1.14), i26
r20	19	6	1 313 280	1 768 899	(1.21), (1.14), i27
r21	20	4	16 242	189 224	(4.2), i30
r22	30	4	64 970	216 224	(4.2), r21

Table 5: Results $N_H(m, p) \leq n$

m	p	n	GUB	References	
r1	4	10	20 790	60 983	(1.20), e1, i31
r2	5	4	165	824	(1.16), e8
r3	6	4	1 324	1 715	(1.20), (1.14), r2
r4	6	6	2 640	26 025	(1.20), (1.14), e8
r5	7	6	42 240	63 699	(1.20), (1.14), r4
r6	7	10	6 486 480	8 836 463	(1.21), i2, e3

In conclusion let us note that

- $r_0(R)$ improves $N_R(4, 14) \leq 264$ from [8].
Recursion Construction Of Projective Cubature Formulas

- $r_{31}(R)$ improves $N_R(20, 6) \leq 3960$ from [1].
- $r_{39}(R)$ improves $N_R(24, 4) \leq 13104$ from [1].
- $r_{40}(R)$ improves $N_R(24, 6) \leq 26213$ from [1].
- $r_{0}(C)$ improves $N_C(2, 18) \leq 60$ from [15].

References

[1] Bachoc Ch., Venkov B., Modular forms, lattices and spherical designs, in Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., vol. 37, Enseign. Math., 2001, pp. 87-111.
[2] Bajnok B., Construction of spherical t-designs, Geom. Dedicata, 43, (1992), 167-179.
[3] Bajnok B., On Euclidean designs, Adv. Geom., 6 (2006), 423-438.
[4] Bondarenko A.V., Viazovska M.S., New asymptotic estimates for spherical designs, J. Approx. Th. 152 (2008), 101-106.
[5] Delsarte P., Goethals J.M., Seidel J.J., Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388.
[6] Goethals J.M., Seidel J.J., Cubature formulas, polytopes, and spherical designs, in Geometric Vein, The Coxeter Festschrift, Springer, Berlin, 1982, pp. 203-218.
[7] R.H. Hardin, N.J.A. Sloane, Expressing $(a^2 + b^2 + c^2 + d^2)^3$ as a sum of 23 sixth powers, J. Combin. Theory, A-68 (1994) 481-485.
[8] P. de la Harpe, C. Pache, B. Venkov, Construction of spherical cubature formulas using lattices, St. Petersbg. Math. J. 18, No. 1 (2007) 119-139. (Translated from Algebra and Analiz. 18, No. 1 (2006).)
[9] Hilbert D., Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem), Mat. Annalen, 67 (1909), 281-300 (in German).
[10] Hoggar S.G., t-designs in projective spaces, Europ. J. Combinatorics, 3 (1982), 233-254.
[11] König H., Isometric imbeddings of Euclidean spaces into finite dimensional ℓ_p-spaces, Banach Center Publications, 34 (1995), 79-87.
[12] Lyubich Y.I., On the boundary spectrum of the contractions in Minkowski spaces, Siberian Math.J. 11 (1970), 271-279.
[13] Lyubich Y.I., Upper bound for isometric embeddings $\ell^m_2 \rightarrow \ell^p_n$, Proc. Amer. Math. Soc. 136 (2008), 3953-3956.
[14] Lyubich, Yu. I. and Shatalova, O. A., Isometric embeddings of finite-dimensional ℓ_p-spaces over the quaternions, St. Petersburg Math. J. 16 (2005), no. 1, 9-24. (Translated from Algebra i Analiz 16 (2004), no. 1, 15-32.)
[15] Lyubich, Yu. I. and Shatalova, O. A., Euclidean subspaces of the complex spaces ℓ^m_p constructed by orbits of the finite subgroups of $SU(m)$, Geom. Dedicata 86 (2001), 169-178.
[16] Lyubich, Yu. I. and Shatalova, O. A., Polynomial functions on the classical projective spaces, Studia Math. 170 (2005), no. 1, 77-87.
[17] Lyubich, Y.I. and Vaserstein, L.N., Isometric embeddings between classical Banach spaces, cubature formulas and spherical designs, Geom. Dedicata 47(1993), 327-362.
[18] Mysovskikh, I.P., Interpolation cubature formulas, Nauka, 1981 (In Russian).
[19] Rabau, P. and Bajnok, B., Bounds for the number of nodes in Chebyshev type quadrature formulas, J. Approx. Th., 67 (1991), 199-214.
[20] Reznick, B., Sums of even powers of real linear forms, Memoirs AMS, 96 (1992).
[21] Salihov, G.N., Cubature formulas for a hypersphere that are invariant with respect to the group of the regular 600-face, Sovjet Math. Doklady, 16 (1975), 1046-1050.
[22] Stroud, A.H., Approximate calculation of the multiple integrals, Prentice-Hall, 1971.
[23] Szegö, G., Orthogonal polynomials, AMS Coll. Publ. 23 (1959).
[24] Wagner, G., On averaging sets, Monatshefte für Math. 111 (1991), 69-78.