Elevated levels of endothelial molecules ICAM-1, VEGF-A and VEGFR2 in microscopic asymptomatic malaria

Augustina Frimpong¹,²*, Jones Ampomah², Dorothy Agyemang³, Abigail Sena Adjokatseh³, Sophia Eyiah-Ampah², Nana Aba Ennuson², Dorotheah Obiri¹,², Linda Eva Amoah², Kwadwo Asamoah Kusi¹,²,³*

¹. West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana
². Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Accra, Ghana
³. Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana

*Corresponding author: Augustina Frimpong, BSc, MPhil, PhD, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana, afrimpong@noguchi.ug.edu.gh /tinafrimp@gmail.com

Alternate corresponding author: Kwadwo A. Kusi, BSc, M Phil, PhD Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Accra, Ghana, AKusi@noguchi.ug.edu.gh,
Abstract

Background
In malaria, clinical disease has been associated with increased levels of endothelial activation due to the sequestration of infected erythrocytes. However, levels and impact of endothelial activation and pro-angiogenic molecules such as vascular endothelial growth factor (VEGF)-A and its receptor VEGFR2 in asymptomatic malaria have not been well characterized.

Methods
Blood samples were obtained from community children for malaria diagnosis using microscopy and PCR. A multiplex immunoassay was used to determine the levels of Intracellular adhesion molecule (ICAM)-1, VEGF-A, and VEGFR2 in the plasma of children with microscopic or submicroscopic asymptomatic parasitaemia and compared with levels in uninfected controls.

Results
Levels of ICAM-1, VEGF-A and VEGFR2 were significantly increased in children with microscopic asymptomatic parasitaemia compared with uninfected controls. Also, levels of VEGF-A were found to be inversely associated with age. Additionally, a receiver operating characteristic analysis revealed that plasma levels of ICAM-1 (AUC =0.72), showed a moderate potential in discriminating between children with microscopic malaria from uninfected controls when compared to VEGF-A (AUC =0.67) and VEGFR2 (AUC =0.69).
Conclusion

These data imply that endothelial activation and pro-angiogenic growth factors could be one of the early host responders during microscopic asymptomatic malaria, and may play a significant role in disease pathogenesis.

Keywords: malaria, asymptomatic, microscopic, submicroscopic, ICAM-1, VEGF-A, VEGFR2.
Summary: This article highlights the significance of endothelial molecules during microscopic and sub-microscopic asymptomatic malaria. Using a multiplex immunoassay, the study shows that levels of ICAM-1, VEGF-A and VEGFR2 are upregulated in children with microscopic asymptomatic malaria compared to non-infected children.
Introduction

Even though malaria cases continue to decline globally due to concerted control efforts, malaria burden remains high with about 409,000 deaths in 2019 and most of these deaths occurred in the WHO African region [1]. Infection with Plasmodium spp such as P. falciparum and P. vivax are associated with most of the malaria-related morbidity and mortality [2, 3]. Protective immunity to malaria may manifest as asymptomatic infection, which is characterized by the absence of clinical symptoms despite the presence of parasites in the blood. Individuals with asymptomatic malaria are rarely diagnosed and treated, making them serve as silent reservoirs that sustain malaria transmission [4, 5]. Whether these asymptomatic infections may be responsible for the development of any other health complications remain unclear [6, 7].

Notwithstanding, previous studies have identified that children with microscopic asymptomatic parasitaemia have increased levels of C-reactive protein and endothelial activation molecules such as platelet factor-4 and intercellular adhesion molecule (ICAM)-1 [8, 9]. For instance, Park et al. observed that the serum levels of ICAM-1, Vascular adhesion molecule-1 (VCAM-1) and von Willebrand factor (vWF) were elevated in children with microscopic asymptomatic parasitaemia compared to those with submicroscopic infections [9]. Also, other studies have reported increased thrombocytopenia and lymphocytopenia in individuals with asymptomatic malaria compared with uninfected controls [10, 11]. These imply that asymptomatic malaria may have a significant impact on the development of other health complications.

Inflammation, which is the body’s natural response to foreign antigens, precedes angiogenesis, the process whereby new red blood vessels develop from pre-existing ones. Inflammation may lead to tissue damage through the upregulation of adhesion molecules
such as ICAM-1. ICAM-1 enables the infiltration of immune cells to the site of inflammation, leading to the secretion of mediators such as chemokines and cytokines [12-14]. Tissue damage due to inflammation leads to the release of angiogenic growth factors such as vascular endothelial growth factor (VEGF)-A and VEGF receptor (R)2 [15, 16]. VEGF-A, an isoform of VEGF is important for controlling angiogenesis as well as for regulating the expression of the VEGF receptor VEGFR2 to maintain endothelial cell homoeostasis [17-19]. It is essential for endothelial cell proliferation, survival during endothelial cell activation and interacts with VEGFR1 and VEGFR2 [20, 21]. However, most signaling activities for VEGF-A are mediated through VEGFR2, making their biological interactions intertwined [22, 23]. The pathophysiology of infectious diseases such as sepsis and malaria that are driven by inflammation have been associated with increased levels of VEGF [24-27]. During severe malaria, VEGF levels were found to be increased in both blood and brain tissues in naïve populations and children exposed to malaria in an endemic region [28, 29]. ICAM-1 has also been shown to be important for the cytoadherence of infected erythrocytes to host endothelium and contribute to the exacerbation of disease in both human [30, 31] and murine models [32, 33].

P. falciparum can cytoadhere to the endothelium by binding to receptors such as CD36 in the vasculature, ICAM-1 and Endothelial Protein C Receptor (EPCR) in the brain leading to endothelial activation [34-36]. Sequestration enables the parasite to evade splenic clearance resulting in tissue damage which is repaired by endothelial growth factors that tightly regulate the endothelial function [37, 38]. While upregulation of these factors has mostly been demonstrated in mild and severe malaria cases [9, 35, 38], it is not clear whether endothelial activation occurs during asymptomatic malaria and can result in a dysregulated endothelial activity [8, 9]. Therefore, we hypothesized that asymptomatic malaria results in
dysregulated endothelial function that leads to increased expression of angiogenic molecules such as VEGF-A and VEGFR2. This study, therefore, aimed to compare the profiles of ICAM-1, VEGF-A and VEGFR2 in children with microscopic or submicroscopic asymptomatic malaria as well as determine if any of the molecules could help differentiate the study populations.

Materials and Methods

Patient consent statement
The study was approved by the Institutional Review Board of the Noguchi Memorial Institute for Medical Research, University of Ghana with approval number 089/14-15. Written informed consent was obtained from parents/guardians before recruitment and assent received from children of appropriate age. All methods were performed following relevant guidelines and regulations.

Study design and participants
This was a cross-sectional study that recruited infected asymptomatic and aparasitaemic children living in Obom, an area with stable malaria transmission. Obom is a farming community located in the Ga South Municipality in the Greater Accra Region of Ghana and peak malaria transmission occurs between June and August. Samples were collected at a one-time point in December. The malaria parasite prevalence in Obom estimated by microscopy during the raining season is 65% and dry season is 28%[39]. Children who qualified for this study were those ≤ 15 years of age. Asymptomatic cases were defined by the presence of parasitaemia and having an axillary temperature of <37.5 °C and not taken any anti-malarial medication within the last two weeks before sampling. Parasitaemia levels below the detection limit of microscopy but picked up by PCR were categorized as submicroscopic,
while those detectable by microscopy were referred to as microscopic. Uninfected controls were defined by the absence of parasite by both microscopy and PCR, axillary temperature <37.5 °C and had not been on any anti-malarial medication within the last two weeks before sampling. The study was explained to the community, parents, guardians and children before commencement.

Sample collection
Venous blood (5 ml) was collected from each volunteer into EDTA tubes. The collected blood samples were used to prepare both thick and thin blood films on microscope slides to define the microscopic asymptomatic group. The remaining blood samples were processed into blood cells, some of which were used for the genomic DNA (gDNA) extraction and plasma preparation. Plasma was stored in Eppendorf tubes at -80 °C till they were used for experiments.

Determination of parasitaemia by microscopy and polymerase chain reaction (PCR)
The prepared thick films were processed and Giemsa-stained to estimate parasite density by counting the number of parasites per 200 white blood cells on the film according to WHO standards with a limit of detection of about 40 parasites/ul of blood. Blood films were read by two independent microscopists. Blood films that were negative for microscopy were further assessed by PCR to determine whether they were positive for submicroscopic infections or negative. Briefly, gDNA was extracted from 100 μl of whole blood using the Zymo DNA Kit (Zymo Research, Irvine, USA) as per the manufacturer’s instructions. The *P. falciparum* 18S ribosomal RNA gene was amplified from extracted DNA and gDNA from the culture adapted 3D7 parasite strain (positive control) and a no template negative control using a
nested PCR with a limit of detection of 1-0.1 parasites/ul [40]. The amplified products were visualized on a 2% agarose gel stained with 0.5 µg/ml ethidium bromide. After electrophoresis, gels were viewed under ultraviolet light and images captured using Vilber Lourmat Gel Dock System (Vilber Wielandstrasse, Germany). Children who were positive for malaria parasites by PCR but negative by microscopy were categorized as having submicroscopic infections whereas those who were negative by both microscopy and PCR were categorized as uninfected.

Multiplex immunoassay
Plasma samples were retrieved and defrosted on ice. A magnetic bead-based multiplex assay was used for the quantification of soluble ICAM-1, VEGF-A and VEGFR2 using a 3-plex assay in a 96 well plate format (R & D Systems, USA). Sample dilutions, reagents, and standards were all prepared according to the manufacturer’s instructions. The blanks and standards used in the assay were prepared in duplicates on each plate to ensure uniformity. Likewise, for each individual, plasma sample was run in duplicates. Plates were read using the LUMINEX®200™ system, running on the Xponent 3.1 software. The levels of ICAM-1, VEGF-A and VEGFR2 were reported as median fluorescent intensity (MFI).

Statistical analysis
All data analyses were performed using Prism version 6.01 (GraphPad Software, Inc.) and R Software-version 3.5.2. Categorical data were analyzed using the Chi-square test. Continuous variables that were not normally distributed were analyzed using the Mann–Whitney U test and Kruskal–Wallis test followed by a Dunn’s post hoc test when necessary, whereas normally distributed data were analyzed using one-way ANOVA followed by a post hoc test.
Correlation between endothelial molecules was determined using Spearman’s rank correlation. Additionally, a generalized additive model which provides a very robust tool to assess the association between predictors and dependent variables was used. This GAM-based analysis was used to: (i) determine the effect of age on the levels of the endothelial activation molecule (ICAM-1), angiogenic molecules (VEGF-A and VEGFR2); (ii) the effect of parasitaemia on ICAM-1, VEGF-A and VEGFR2. The estimates of these effects were modeled using smoothing splines in the mgcv package in R[41]. The Medcalc version 19.4.1 was used for the receiver operator characteristics (ROC) curve analysis of the endothelial molecules ICAM-1, VEGF-A and VEGFR2 for children with microscopic asymptomatic malaria. Statistical significance was set at P-values < 0.05.

Results

Characteristics of the study participants

This was a cross-sectional study in which a total of 78 children were recruited; 20 uninfected controls, 22 with submicroscopic parasitaemia and 36 with microscopic parasitaemia. There was no significant difference in the proportions of males to females (p = 0.93). Likewise, age and haemoglobin levels did not differ between children with either microscopic or submicroscopic parasitaemia and uninfected controls (Table 1).

Levels of ICAM-1 are increased in children with microscopic asymptomatic infection

Levels of sICAM-1 were significantly increased in children with microscopic parasitaemia compared to uninfected controls (p = 0.01) but were not significantly different when compared to children with submicroscopic parasitaemia (p = 0.53). Also, ICAM-1 levels were not significantly different between children with submicroscopic parasites and uninfected controls (p = 0.48 Fig. 1A). Additionally, in a generalized additive model ICAM-1
did not have any significant association with parasitaemia (p = 0.27, Table 2) or age (p = 0.35, Table 3).

VEGF-A and its receptor VEGFR2 are upregulated in children with microscopic asymptomatic infection

Levels of VEGF-A and VEGFR2 were found to be significantly higher in children with microscopic parasitaemia compared to uninfected controls (p=0.03, p=0.048). However, levels between children with submicroscopic infections and uninfected controls were comparable for both VEGF-A and VEGFR2 (p>0.05 Fig. 1B and C). Additionally, levels of VEGF-A and VEGFR2 were positively correlated (r = 0.43, p = 0.009, Spearman rank correlation).

Increased levels of VEGF-A are negatively associated with age in microscopic asymptomatic malaria

To determine whether there was any association between any of the angiogenic molecules with parasitaemia or age in children with microscopic and submicroscopic asymptomatic malaria, a generalized additive model was used. First, it was observed that VEGF-A did not show any significant association with levels of parasitaemia (p = 0.67). However, VEGF-A levels were negatively associated with age (p = 0.015) in children with microscopic asymptomatic parasitaemia but not in children with submicroscopic parasitaemia (Fig. 2; Table 3). Therefore, we stratified the ages for the microscopic asymptomatic parasitaemia group to determine if VEGF-A levels may vary across different age ranges. Even though the difference was not significant, there was a trend of decreasing VEGF-A levels with
increasing age (p = 0.33; Fig. 3). However, for VEGFR2, no significant association was found with parasitaemia (Table 2) or age (Table 3).

Plasma levels of ICAM-1 can discriminate microscopic asymptomatic infection from uninfected controls

To assess the potential of the three molecules to differentiate individuals with asymptomatic microscopic malaria from uninfected controls, a receiver operating characteristic analysis was performed to determine the area under the curve (AUC). An AUC value of 1.00 is an accurate marker for differentiation whereas a value of 0.5 indicates the inability to differentiate between groups [42]. Comparing the molecules, ICAM-1 was a better predictive marker and showed a potential for discriminating between the groups with an AUC of 0.72 (95%CI 0.587-0.834), sensitivity of 0.75, and specificity of 0.70 (Fig. 4) compared to VEGF-A and VEGFR2 with an AUC of 0.67 and 0.69 respectively. Both VEGF-A and VEGFR2 had similar sensitivity and specificity of 0.97 and 0.35 respectively.

Discussion

There is a strong evidence of endothelial activation in symptomatic malaria including uncomplicated and severe malaria [37, 38, 43] while similar data in asymptotically infected persons is limited. In this study, we determined whether plasma levels of the angiogenic marker VEGF-A and its receptor VEGFR2 as well as the endothelial activation marker ICAM-1 are increased in asymptomatic children with either microscopic parasitaemia or submicroscopic parasitaemia compared with uninfected age-matched controls. The results from this study showed that ICAM-1, VEGF-A and VEGFR2 are upregulated in children with microscopic malaria compared to uninfected children. ICAM-1 showed a good potential
in discriminating between children with microscopic asymptomatic parasitaemia from uninfected controls. The study shows that asymptomatic malaria in children characterized by peripheral parasitemia is associated with endothelial activation. The results generally indicate that these molecules may have probable significance in disease pathogenesis.

In this study, we observed that significant differences only occurred when comparisons were made between uninfected controls and children with microscopic parasitaemia even though there was no significant association between the levels of these molecules and parasite levels. This is in agreement with the findings by Park et al. [9] and Mast et al. [8], who observed increased levels of vWf, VCAM-1, sICAM-1 and C-reactive protein respectively in children with microscopic asymptomatic malaria. This may indicate that endothelial cells may be one of the early host responders to parasite presence in infected persons, especially when parasitaemia reaches detectable levels by microscopy as compared to persons with submicroscopic infections. However, a previous study observed increased levels of endothelial activation molecules in naïve population who developed submicroscopic infection during a controlled human malaria infection[44]. The contrast between this and our study may indicate that some level of tolerance to the parasite due to repeated exposure to *Plasmodium* parasites exists in naturally infected persons, such that at the sub-patent level, there is no significant upregulation of endothelial molecules.

Vascular endothelial growth factor promotes vascular permeability, proliferation, survival and inflammation of endothelial cells. Levels of VEGF have been shown to increase in inflammatory diseases that may occur as a result of endothelial dysfunction [45, 46]. However, increasing age has been associated with a decline in endothelial repair activity. This has been reported to result in a decline in the production of pro-angiogenic cytokines and growth factors [47-49]. Even though the inverse association between VEGF-A and age was a bit moderate, it could denote that age is a contributing factor to the levels of VEGF-A
and may impact angiogenesis, endothelial cell activation and repair of damaged endothelial cells. Probably, it could also imply that repeated exposure to the parasite will result in tolerance, leading to a decrease in inflammation or a balanced pro- and anti-inflammatory response [50, 51]. For instance, in a previous study, levels of VEGF-A were comparable between pregnant women with asymptomatic malaria and healthy controls [52], implying that for persons in endemic areas, continuous exposure to malaria will lead to the establishment of immunological tolerance as one ages. This may indicate that tolerance to malaria will likely be associated with decreased levels and activity of VEGF-A as well as the development of other complications that may be associated with increased levels of this growth factor.

Increasing levels of endothelial activation molecules have been associated with adverse outcomes in diseases like diabetes resulting in endothelial dysfunction and organ damage [43, 53, 54]. With the recent malaria-high blood pressure hypothesis that seeks to determine the effect of chronic endothelial activation in malaria to the development of cardiovascular diseases, it may suggest that endothelial cell activation in asymptomatic infection may be an early indicator of some potential health complications [55, 56]. Besides, other studies have associated the presence of microscopic asymptomatic parasitaemia in children with poor cognitive function and educational outcomes, as well as susceptibility to invasive bacterial infections [57, 58]. This indicates that children with asymptomatic malaria infection do not only serve as silent reservoirs for malaria transmission but may also suffer some adverse consequences even if the infection does not progress to clinical disease. It will be interesting if this can be investigated in longitudinal studies in larger sample cohorts. Moreover, the study of other endothelial cell activation molecules such as angiopoietins (Ang)-2 which decreases the integrity of the endothelial barrier have been reported to be similar in children with mild and asymptomatic malaria [59]. Therefore, further studies on the role of both
(Ang)-1 and Ang-2 in children with microscopic asymptomatic malaria will help determine if they may have any associations with the development of cardiovascular disease.

Lastly, it was observed that plasma levels of ICAM-1 compared to VEGF-A and VEGFR2 was a moderate biomarker that could potentially help in discriminating children with microscopic asymptomatic malaria from uninfected controls. Also, the moderate specificity and sensitivity of ICAM-1 compared to VEGF-A and VEGFR2 makes ICAM-1 a much-preferred biomarker in determining disease progression and pathogenesis.

In summary, the study provides evidence that there are increased levels of endothelial activation marker ICAM-1 and pro-angiogenic molecules VEGF-A and VEGFR2 in children with microscopic asymptomatic parasitaemia. This suggests that even during asymptomatic malaria infections and before clinical symptoms may develop, endothelial activation and angiogenic events can occur. Therefore, the upregulation of these molecules may be associated with damage caused by the parasite probably through sequestration to host endothelium when the threshold between sub-microscopic and microscopic parasitaemia is crossed. Since microscopic asymptomatic malaria may already predispose to possible endothelial damage and adverse health consequences, malaria control strategies should aim at identifying and eliminating these asymptomatic infections.
Abbreviations

Ang-1: Angiopoeitin -1
AUC: Area Under the Curve
CI: Confidence Interval
DNA: Deoxynucleic acid
EDTA: Ethylenediamine tetraacetic acid
ICAM-1: Intracellular Adhesion Molecule-1
MFI: Median Fluorescence Intensity
PCR: Polymerase Chain Reaction
ROC: Receiver Operating Characteristic
VCAM-1: Vascular Growth Endothelial Growth Factor-1
VEGF-A: Vascular Endothelial Growth Factor A
VEGFR2: Vascular Endothelial Growth Factor Receptor 2
vWf: soluble von Willebrand factor
WHO: World Health Organization
Consent for publication

All authors have read and agreed to the content of this manuscript and its publication upon acceptance.

Availability of data and materials

The datasets generated and analyzed for the current study are available from the corresponding author(s) on reasonable request.

Authors’ contributions

AF and KAK conceived the idea and designed the experiments. KAK and AF supervised the work. JA, DA, ASA, performed the experiments in the study and were assisted by SEA and NAE. AF, DO, LEA and KAK wrote the manuscript. All authors reviewed and approved the final manuscript.

Funding

This work was supported by a WACCBIP-World Bank African Centres of Excellence Grant [ACE02-WACCBIP: Awandare].

Acknowledgments

The authors are grateful to the children, parents/guardians who participated in this study. We are also grateful to the Obom Health Directorate, and members of the Gametocytogenesis team at the Immunology Department, NMIMR.

Potential conflicts of interest

The authors have no potential conflict of interest.
References

1. Organization WH: World malaria report 2020: 20 years of global progress and challenges. 2020.
2. WHO: World malaria report 2019. 2019.
3. Baird JK: Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinical microbiology reviews 2013, 26:36-57.
4. Boussem T, Okell L, Felger I, Drakeley C: Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nature reviews Microbiology 2014, 12:833.
5. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L: The silent threat: asymptomatic parasitemia and malaria transmission. Expert Review of Anti-infective Therapy 2013, 11:623-639.
6. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, O’Meara W, Price RN, Riley EM: “Asymptomatic” Malaria: A Chronic and Debilitating Infection That Should Be Treated. PLOS Medicine 2016, 13:e1001942.
7. Björkman AB: Asymptomatic low-density malaria infections: a parasite survival strategy? The Lancet Infectious Diseases 2018, 18:485-486.
8. De Mast Q, Brouwers J, Syafruddin D, Bousema T, Baidjoe AY, de Groot PG, van der Ven AJ, Fijnheer R: Is asymptomatic malaria really asymptomatic? Hematological, vascular and inflammatory effects of asymptomatic malaria parasitemia. Journal of Infection 2015, 71:587-596.
9. Park GS, Ireland KF, Opoka RO, John CC: Evidence of endothelial activation in asymptomatic Plasmodium falciparum parasitemia and effect of blood group on levels of von Willebrand factor in malaria. Journal of the Pediatric Infectious Diseases Society 2012, 1:16-25.
10. Frimpong A, Kusi KA, Adu-Gyasi D, Amponsah J, Ofori MF, Ndifon W: VEGF-A as a Phenotypic Evidence of T Cell Exhaustion and Senescence During Symptomatic Plasmodium falciparum Malaria. Frontiers in immunology 2019, 10:1345-1345.
11. van Wolswinkel ME, Langenberg MC, Wammes LJ, Sauerwein RW, Koelewijn R, Hermens CC, van Hellemont JJ, van Genderen PJ: Changes in total and differential leukocyte counts during the clinically silent liver phase in a controlled human malaria infection in malaria-naïve Dutch volunteers. Malaria journal 2017, 16:457.
12. Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME: Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. In Seminars in immunopathologySpringer; 2009: 309-322.
13. Roebuck KA, Finnegan A: Regulation of intercellular adhesion molecule-1 (CD54) gene expression. Journal of leukocyte biology 1999, 66:876-888.
14. Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC: Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Frontiers in immunology 2019, 10:1078-1078.
15. Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano I, Repici A, Sturm A, Malesci A, Panes J, et al: VEGF-A Links Angiogenesis and Inflammation in Inflammatory Bowel Disease Pathogenesis. Gastroenterology 2009, 136:585-595.e585.
16. Ucuzian AA, Gassman AA, East AT, Greisler HP: Molecular mediators of angiogenesis. Journal of Burn Care & Research 2010, 31:158-175.
17. Dvorak HF, Nagy J, Feng D, Brown L, Dvorak A: Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. In Vascular Growth Factors and Angiogenesis. Springer; 1999: 97-132
18. Nagy J, Vasile E, Feng D, Sundberg C, Brown L, Manseau E, Dvorak A, Dvorak H: VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. In
19. Guangqi E, Cao Y, Bhattacharya S, Dutta S, Wang E, Mukhopadhyay D: Endogenous vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell homeostasis by regulating VEGF receptor-2 transcription. Journal of biological chemistry 2012, 287:3029-3041.

20. Ferrara N, Gerber H-P, LeCouter J: The biology of VEGF and its receptors. Nature Medicine 2003, 9:669-676.

21. Watanabe Y, Lee SW, Detmar M, Ajoka I, Dvorak HF: Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) delays and induces escape from senescence in human dermal microvascular endothelial cells. Oncogene 1997, 14:2025-2032.

22. Shibuya M, Claesson-Welsh L: Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental cell research 2006, 312:549-560.

23. Zeng H, Sanyal S, Mukhopadhyay D: Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. Journal of Biological Chemistry 2001, 276:32714-32719.

24. Pons S, Arnaud M, Loiselle M, Arrii E, Azoulay E, Zafrani L: Immune Consequences of Endothelial Cells' Activation and Dysfunction During Sepsis. Crit Care Clin 2020, 36:401-413.

25. Furuta T, Kimura M, Watanabe N: Elevated levels of vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor (VEGFR)-2 in human malaria. The American Journal of tropical medicine and hygiene 2010, 82:136-139.

26. Canavese M, Spaccapelo R: Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria. Pathogens and global health 2014, 108:67-75.

27. Tripathi AK, Sullivan DJ, Stins MF: Plasmodium falciparum-Infected Erythrocytes Increase Intercellular Adhesion Molecule 1 Expression on Brain Endothelium through NF-κB. Infection and Immunity 2006, 74:3262-3270.

28. Deininger MH, Winkler S, Kremersner PG, Meyermann R, Schlesener HI: Angiogenic proteins in brains of patients who died with cerebral malaria. J Neuroimmunol 2003, 142:101-111.

29. Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, Gitau E, Mwakesi R, Roberts DJ, Newton CR: High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 2008, 105:2634-2639.

30. Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B, et al.: An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. The American Journal of pathology 1994, 145:1057-1069.

31. Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, Williams TN, Makale JO, Liljander A, Urban BC, Bull PC, et al: Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PloS one 2011, 6:e14741-e14741.

32. Cunningham DA, Lin J-w, Brugat T, Jarra W, Tumwine I, Kushinga G, Ramesar J, Franke-Fayard B, Langhorne J: ICAM-1 is a key receptor mediating cytoadherence and pathology in the Plasmodium chabaudi malaria model. Malaria Journal 2017, 16:185.

33. Favre N, Da Laperousaz C, Ryffel B, Weiss NA, Imhof BA, Rudin W, Lucas R, Piguet PF: Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect 1999, 1:961-968.

34. Rowe JA, Claessens A, Corrigan RA, Arman M: Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert reviews in molecular medicine 2009, 11:e16-e16.
35. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JEV, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, et al: *Severe malaria is associated with parasite binding to endothelial protein C receptor*. Nature 2013, 498:502-505.

36. Tuikue Ndam N, Moussiliou A, Lavstsen T, Kamaliddin C, Jensen ATR, Mama A, Tahar R, Wang CW, Jespersen JS, Alao JM, et al: *Parasites Causing Cerebral Falciparum Malaria Bind Multiple Endothelial Receptors and Express EPCR and ICAM-1-Binding PFEMP1*. J Infect Dis 2017, 215:1918-1925.

37. Cunnington AJ, Riley EM, Walther M: *Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes*. Trends in Parasitology 2013, 29:585-592.

38. Turner G, Ly V, Nguyen T, Tran T, Nguyen H, Bethell D, Wyllie S, Louwrier K, Fox SB, Gatter KC: Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. The American journal of pathology 1998, 152:1477.

39. Ayanful-Torgby R, Quashie NB, Boampong JN, Williamson KC, Amoah LE: *Seasonal variations in Plasmodium falciparum parasite prevalence assessed by varying diagnostic tests in asymptomatic children in southern Ghana*. PloS one 2018, 13:e0199172-e0199172.

40. Wang B, Han S-S, Cho C, Han J-H, Cheng Y, Lee S-K, Galappaththy GNL, Thimasarn K, Soe MT, Oo HW, et al: *Comparison of Microscopy, Nested-PCR, and Real-Time-PCR Assays Using High-Throughput Screening of Pooled Samples for Diagnosis of Malaria in Asymptomatic Carriers from Areas of Endemicity in Myanmar*. Journal of Clinical Microbiology 2014, 52:1838.

41. Wood SN: *Generalized additive models: an introduction with R*. CRC press; 2017.

42. Mandrekar JN: *Receiver Operating Characteristic Curve in Diagnostic Test Assessment*. Journal of Thoracic Oncology 2010, 5:1315-1316.

43. Nemtsova V, Bilovol O, Shalimova A: *Vascular endothelial growth factor as a marker of endothelial dysfunction in poly-and comorbidity: focus on hypertension, type 2 diabetes mellitus and subclinical hypothyroidism*. 2019.

44. Mast Qd, Groot E, Lenting PJ, de Groot PG, McCall M, Sauerwein RW, Fijnheer R, van der Ven J, Jurisic G, Detmar M: *Lymphatic endothelium in health and disease*. Cell and Tissue Research 2009, 335:97-108.

45. Reinders MEJ, Sho M, Izawa A, Wang P, Mukhopadhyay D, Koss KE, Geehan CS, Luster AD, Sayegh MH, Briscoe DM: *Proinflammatory functions of vascular endothelial growth factor in atherosclerosis*. The Journal of clinical investigation 2003, 112:1655-1665.

46. Gennaro G, Ménard C, Michaud S-E, Rivard A: *Age-dependent impairment of reendothelialization after arterial injury: role of vascular endothelial growth factor*. Circulation 2003, 107:230-233.

47. Sadoun E, Reed MJ: *Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression*. Journal of Histochemistry & Cytochemistry 2003, 51:1119-1130.

48. Leccce L, Lam YT, Lindsay LA, Yuen SC, Simpson PJL, Handelsman DJ, Ng MKC: *Aging impairs VEGF-mediated, androgen-dependent regulation of angiogenesis*. Molecular endocrinology (Baltimore, Md) 2014, 28:1487-1501.

49. Portugal S, Moebius J, Skinner J, Doumbo S, Doumtabe D, Kone Y, Dias A, Kanakabandi K, Sturdevant DE, Virtaneva K: *Exposure-dependent control of malaria-induced inflammation in children*. PLoS pathogens 2014, 10:e1004079.

50. Frimpong A, Amponsah J, Adjokatseh AS, Agyemang D, Bentum-Ennin L, Ofori EA, Kyei-Baafour E, Akyea-Mensah K, Adu B, Mensah GI, et al: *Asymptomatic Malaria Infection Is Maintained by a Balanced Pro- and Anti-inflammatory Response*. Frontiers in Microbiology 2020, 11.
52. Wilson NO, Bythwood T, Solomon W, Jolly P, Yatich N, Jiang Y, Shuaib F, Adjei AA, Anderson W, Stiles JK: Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women. Infectious diseases in obstetrics and gynecology 2010, 2010.

53. Mahdy R, Nada W, Hadhoud K, El-Tarhony S: The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye 2010, 24:1576-1584.

54. Kubisz P, Chudý P, Staško J, Galajda P, Hollý P, Vyšehradský R, Mokáň M: Circulating vascular endothelial growth factor in the normo-and/or microalbuminuric patients with type 2 diabetes mellitus. Acta diabetologica 2010, 47:119-124.

55. Etyang AO, Smeeth L, Cruickshank JK, Scott JAG: The malaria-high blood pressure hypothesis. Circulation research 2016, 119:36-40.

56. Gallego-Delgado J, Walther T, Rodriguez A: The high blood pressure-malaria protection hypothesis. Circulation research 2016, 119:1071-1075.

57. Nankabirwa J, Wandera B, Kiwanuka N, Staedke SG, Kamya MR, Brooker SJ: Asymptomatic Plasmodium infection and cognition among primary schoolchildren in a high malaria transmission setting in Uganda. The American journal of tropical medicine and hygiene 2013, 88:1102-1108.

58. Scott JAG, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, Ndifa C, Lowe BS, Mwarumba S, Bauni E, et al: Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. The Lancet 2011, 378:1316-1323.

59. Petersen JE, Mkumbaye SI, Vaaben AV, Manjurano A, Lyimo E, Kavishe RA, Mwakalinga SB, Mosha J, Minja DT, Lusingu JP, et al: Plasma Ang2 and ADAM17 levels are elevated during clinical malaria; Ang2 level correlates with severity and expression of EPCR-binding PFEMP1. Sci Rep 2016, 6:35950.
Table 1: Clinical characteristics of the study participants

Characteristics	Controls	Sub-microscopic	Microscopic	P-value
Sample size (n)	20	22	36	
Sex (n)				
Male (%)	8 (40%)	10 (45.5%)	16 (44.4%)	0.93a
Age (±SD) years	10±2.241	11.45±2.695	10.24±2.737	0.14b
Parasitaemia (IQR), /µl	NA	NA	935.5(288.8-1973)	NA
Haemoglobin, level (IQR), g/dl	11.75(10.8-12.6)	11.25(10.7-12.48)	11.05(10.5-12.63)	0.41c

SD = Standard deviation; IQR = interquartile range; NA not applicable; a Chi square test; b ANOVA; c Kruskal–Wallis test
Table 2: A generalized additive model reporting on the parametric coefficient and p-values for the effect of parasitaemia on levels of ICAM-1, VEGF-A and VEGFR2.

	Estimate	Standard error	t-value	p-value
ICAM-1	0.3524	0.3147	1.120	0.2712
VEGF-A	12.7617	29.2645	0.436	0.6657
VEGFR2	-5.5143	2.8546	-1.932	0.0623
Table 3: A generalized additive model reporting on the parametric coefficient and Estimated degrees of Freedom (Edf), Reference Degrees of Freedom (Ref.df), F-statistics, and p-values for the effect of age on ICAM-1, VEGF-A and VEGFR2.

	Estimate	Standard error	t-value	p-value
Parametric Coefficients				
ICAM-1	0.00028	0.00029	0.961	0.345
VEGF-A	-0.06813	0.026	-2.606	0.0147
Non parametric (smooth terms)				
VEGFR2	4.194	5.162	0.82	0.558
Figure legends

Figure 1: Levels of ICAM-1 and angiogenic growth factors VEGF-A and VEGFR2 in **microscopic asymptomatic malaria.** The levels of (a) ICAM-1, (b) VEGF-A and (c) VEGFR2 were determined in children with microscopic asymptomatic malaria, submicroscopic asymptomatic malaria and uninfected controls. Dot plots show the distribution of the data in the various groups. Medians are indicated as horizontal lines with vertical lines indicating the confidence interval. Analyte levels were compared by the Kruskal-Wallis followed by a Dunn’s test when necessary.

Figure 2: A plot showing the association between endothelial molecules and age. The partial effects of each covariate (ICAM-1, VEGF-A and VEGFR2) are plotted as smoothed fits. The broken lines represent 2 standard errors, above and below the estimate of the nonlinear effect (smooth) being plotted. The short vertical lines on the x-axes of each of the plots denotes the values of the observations made.

Figure 3: The bar chart shows the levels of VEGF-A across different age groups; 4-6 years (n = 5), 7-9 years (n = 8), 10-12 years (n = 17) and 13-15 years (n = 6) in children with microscopic asymptomatic malaria.

Figure 4: Receiver operating characteristic curves for ICAM-1, VEGF-A and VEGFR2 in discriminating between children with microscopic asymptomatic malaria and uninfected controls. The sensitivity is found on the y-axis whilst the x-axis has the Specificity (100-specificity).
Figure 1

A

B

C

p = 0.01

p = 0.03

p = 0.048
Figure 4

A

ICAM-1

AUC: 0.72
(95% CI: 0.59-0.83)

B

VEGFA

AUC: 0.67
(95% CI: 0.53-0.79)

C

VEGFR2

AUC: 0.69
(95% CI: 0.55-0.81)