Studying Quality of Drinking Water and Determining Sustainable Indicators for Water Resources of Villages of Harsin Town of Iran

Parviz Mohammadi¹,², Soheila Lotfi³, Seyede Parvin Moussavi⁴, Milad Mousazadeh⁵ and Reza Rostami⁶, *

¹Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
²Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
³Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
⁴Environmental Health Research Center, International Branch, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
⁵Student Research Committee, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
⁶Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran

*Corresponding author: Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran. Email: rezarostami745@gmail.com

Received 2018 August 20; Revised 2018 October 27; Accepted 2018 October 08.

Abstract

Background: Scale formation and corrosion continue to cause mild and serious problems in water dispensing systems. Although there are advanced technologies available today, such problems still persist and can lead to health problems and financial damage.

Objectives: To delve into this matter, the present study aimed to determine the water potential in terms of scale formation and corrosion in the water resources of villages in the vicinity Harsin town in Iran. Furthermore, the physical and chemical qualities of the water were also studied.

Methods: For this descriptive study, samples were prepared from 19 villages during the 8 months of the study duration. These were analyzed according to standard 1053 of Iran water standard and study institution, also calculated for Langelier, Rayzner, Puckorius and aggressive indices for scale formation and corrosion.

Results: Indices were 0.80 on Langelier, 6.68 on Rayzner, 10.92 on aggressiveness, and 6.85 on Puckorius calculations. Mean concentrations of calcium, magnesium, fluoride, and ammonium were respectively 63.8 ± 16.89, 21.1 ± 9.08, 0.3 ± 0.26, and 0 ± 0.01 milligram per liter which are reasonable according to national standards.

Conclusions: Findings revealed that all physical and chemical indices, and cations and anions of water samples were within a reasonable range. Other parameters involved in causing hardness were also at standard levels. The water resources of Harsin town were healthy in terms of scale formation and corrosion verification, but they still needed close attention in order to keep them within the current appropriate conditions with possible improvements.

Keywords: Scale Formation and Corrosion, Chemical Quality, Water Dispensing Systems

1. Background

Talking about factors affecting financial growth, water can be considered a priority. Owing to the importance of water, measurements have been conducted not only to scrutinize water quality and quantity, but also to optimize water consumption (1). Among the mentioned items, water quality verifications must be seriously considered in planning programs for water asset management and other management activities. Nevertheless, failures can be seen in this significant area (2, 3).

Some water resources are non-renewable and hidden. This is why certain problems like contaminations are exacerbated and can cause a reduction in water applicability verification in the long term. Another problem is rooted in the water chemical quality which can cause scale formation and corrosion in treatment equipment and infrastructures (4, 5).

Corrosion is a physical-chemical reaction which is the consequence of exposure to the environment and can cause a plethora of changes in materials verification. According to the verified definition of this phenomenon in material engineering, it is considered a consequence of ablation or electrochemical reactions (6). Another effect of water from generation to consumption would be scale formation. In this process, double-capacity cations such as calcium and magnesium react with other dissolved materials in water to form layers of scales on the inner walls of pipes. One such common layer is calcium carbonate which is considered an indicator in determining scale formation...
Mohammadi P et al.

Potable water and other types of usable water in industry and agribusiness should be non-corrosive in order to be considered appropriate by valid universal standards. Thus, this factor must be controlled according to standards regularly on a yearly basis. What makes scale formation notoriously highlighted is a deficiency of boilers and industrial equipment owing to this phenomenon. Furthermore, it can shorten the life of water dispensing systems or even deteriorate their function (9). The dire consequences of scale formation and corrosion include pipes blockages, reduction in water flow, unexpected flaws in pipes, and decay in the inner walls of pipes. In all the cases, large amounts of water can be wasted (10).

Studying measured concentrations and statistic indices can clarify reasons for disorders in dispensing systems. Shams et al. studied corrosion and scale formation in the rural dispensing network of Tabas in 2012. They found the water in this town to be corrosive due to sulfate and chloride anions (11).

Langelier saturation index (LSI) is a model that indicates water saturation level of calcium carbonate. This index defines the concept of saturation through pH as a main changeable factor. In other words, LSI can be described as pH changes required to bring water to equilibrium (12). Rayzner sustainability index (RSI) reveals the correlation between the saturated state of calcium carbonate and formation of scale layers. In RSI, pH is determined by considering factual pH, calcium and bicarbonate ion concentrations, total dissolved solids, and temperature (13). In other words, LSI and RSI indicate the difference between factual pH and saturated pH, caused by calcium carbonate, in water (14).

Aggressive index (AI) is mostly used for asbestos cement pipes. It studied the impacts of some items such as pH, calcium concentrations, and alkalinity on water corrosion and scale formation quality.

Puckorius scaling index (PSI) shows the buffering capacity of water and represents maximum possible scale formation to reach a balanced state. PI is experimental. Values obtained in this equation are similar to the Rayzner index (15, 16).

2. Objectives

It is practically hard to provide sufficient highly-quality water for people (urban and rural) year-round. Therefore, the present study as a research project can be applied by water institutions. The present study determined the physical-chemical parameters of underground water resources in the villages around Harsin town. It can prevent a waste of time and money. Furthermore, underground water resources with reasonable quality can be found and offered as a database to officials in order to preserve them. To this end, physical and chemical properties of underground water resources in villages near Harsin town were compared and analyzed. They were also studied according to the Langelier, Rayzner, Puckorius, and aggressive indices.

3. Methods

3.1. Purposed Area

Harsin town is located in eastern Kermanshah (Kermanshah province). Its central district is Harsin, with totally 1005 square meters surface area. The town has 2 districts (Bistoon and Central), 4 main villages, and 129 smaller villages. It is situated 44 kilometers from Kermanshah. Its precise location is shown in Figure 1 and Table 1.

3.2. Sampling and Analyzing Data

This descriptive study examined and analyzed 19 water resources in Harsin town in terms of physical and chemical indices over a period of 6 months. Sampling was done in summer and autumn of 2015 from wells by turning on discharge taps, and from subterranean resources by opening manholes. Plastic containers with a 0.5 liter capacity were used for this purpose. Preparing the samples and transporting them to the central laboratory was done according to focused parameters. The pH levels were measured in the sampling area with a pH-meter (Model, company, country).

3.3. Calculating Measuring Indices

To calculate the corrosion indices, samples from 54 water resources were collected in the villages of Kermanshah province, and stored and transferred to the laboratory in autumn according to standard methods and water quality parameters. Methods and laboratory devices used in this study are summarized in Table 2 (16). The accuracy of indices was estimated according to their capacity in determining states such as under-saturated, saturated, and over-saturated calcium carbonate. These included the LSI, RSI, PSI, and AI indices which were calculated according to the aforementioned parameters in Table 3 (17).

By comparing results, water resources were divided into the 3 categories of highly-formed scale, neutral, and corrosive. The data was reported as descriptive statistic figures and analyzed in Excel software version 2007.

4. Results

Measured physical and chemical parameters in water such as turbidity, pH, TDS, total hardness, alkalinity, and EC are presented in Table 4 as mean and standard deviation.
The cationic and anionic conditions of water in Harsin town are presented in Table 5. The relevant obtained data is presented in Table 6 separately.

According to findings, LSI was the highest in Gheisvand village (LSI = 1.39) and the least in Zolmabad village (LSI = 0.37). RSI was the highest in Zolmabad (RSI = 7.18) and the lowest in Gheisvand (RSI = 6.02). PSI was the highest in Pariveh village (PSI = 7.73) and the lowest in Garmyanak (PSI = 6.04). AI was the highest in Sarab Bornaj (AI = 12.78) and the lowest in Zolmabad (AI = 10.37) (Figure 2).

5. Discussion

A large population and over-crowdedness highlighted the importance of studying cleanliness indices in Harsin town. According to Table 4, the mean pH in the study areas was 8.3, which is reasonable according to national standards for permitted levels and pleasant levels (6.5 - 9). Water TDS was at appropriate levels with the exception of water in Blueredy and Elyasvand which were over the standard levels (16-18).

The highest hardness with 359.9 (mg CaCO$_3$/L) was in Elyasvand village, and the lowest hardness with 185 (mg CaCO$_3$/L) was in Sarab Bornaj (Table 4). This level of hardness in water resources can cause problems like blockages in house pipes or even the dispensing system network. High rates of hardness can be rooted in the type of water resources and also the existence of calcareous layers in these resources. A look at the geology and lithology aspects of the region shows that the northern altitudes of the neighboring Sahneh savannah are schist formations. Thus, they have no appropriate hydrodynamic properties due to impermeability and immovability, flowing water along fractures and breaks. Due to the formation of calcareous layers over schist formations, existing water in the calcareous layers springs out under appropriate geological conditions. This water flows along syncline channels from the schists but still within permitted levels. The only exception was the water acquired from Chehr village where this parameter was much higher than permitted levels, 8.19 NTU, due to the chemical qualities of the aquifer. Total hardness mean was higher than permitted levels in 84% of water resources in villages in the vicinity of Harsin town, but this was still within the permitted range of national standards (16, 18).

Comparing data revealed that turbidity in 58% of water resources in the study area was higher than pleasant levels but still within permitted levels. The only exception was the water acquired from Chehr village where this parameter was much higher than permitted levels, 8.19 NTU, due to the chemical qualities of the aquifer. Total hardness mean was higher than permitted levels in 84% of water resources in villages in the vicinity of Harsin town, but this was still within the permitted range of national standards (16, 18).
Table 2. Methods and Instruments Used in Laboratory

Row	Parameter	Test Method	Used Devices	Standard Unit
1	pH	Electrometric method	pH meter HANNA-pH 211	-
2	EC	2500 B. laboratory method (25°C)	Conductivity meter ELE 4070	µS/cm
3	Turbidity	2500 B. nephelometric method	HACH-2000 P turbidity meter	N.T.U
4	Temperature	-	Thermometer	-
5	Manganese	3500- Mn B. persulfate method	HACH-Dr 5000 spectrophotometer	mg/L Mn²⁺
6	Iron	3500- Fe B., phenanthroline method, 3500- Ca B.	HACH-Dr 5000 spectrophotometer	mg/L Fe²⁺
7	Calcium	EDTA titrimetric method	Titration	mg/L Ca²⁺
8	Magnesium	3500- Mg B. calculation method	-	mg/L Mg²⁺
9	Sodium	Flame photometry	Flame photometer	mg/L Na⁺
10	Potassium	Flame photometry	Flame photometer	mg/L K⁺
11	Sulfate	4500- P-D, stannous chloride method	HACH-Dr 5000 spectrophotometer	mg/L PO₄³⁻
12	Sulfate	4500- SO₄²⁻ E. spectrophotometric method	HACH-Dr 5000 spectrophotometer	mg/L SO₄²⁻
13	Nitrate	4500- NO₃⁻ B., ultraviolet spectrophotometric screening method	HACH-Dr 5000 spectrophotometer	mg/L NO₃⁻
14	Nitrite	4500- NO₂⁻ B., spectrophotometric method	HACH-Dr 5000 spectrophotometer	mg/L NO₂⁻
15	Fluoride	4500- F. SPADNS method	HACH-Dr 5000 spectrophotometer	mg/L F⁻
16	Chloride	4500- Cl B., argentometric method	Titration	mg/L Cl⁻
17	Bicarbonate	Calculation method	Titration	mg/L HCO₃⁻
18	Carbonate	Calculation method	-	mg/L CO₂⁻
19	Total hardness	2340 C. EDTA titrimetric method	Titration	mg/L CaCO₃
20	Alkalinity	2320 B. titration method	Titration	mg/L CaCO₃
21	Ammonia	2340 D. spectrophotometric method	HACH-Dr 5000 spectrophotometer	mg/L NH₃
22	Soluble solids	2540 C. total dissolved solids dried at 180°C	Avon exciton	mg/L TDS
23	Suspended solids	2540 D. total suspended solids dried at 103°C - 105°C	Avon exciton	mg/L TSS

Table 3. Calculating Method of Sustainability Indexes Using Measured Parameters

Index	Equation	Index Value	Water Condition
Puckorius scaling index (PSI)	PSI = 2 (pH(eq) · pHs)	PSI < 6	Scaling is unlikely to occur
	pH(eq) = 1.465 × log (TALK) + 4.54	PSI > 7	Likely to dissolve scale
Langelier saturation index (LSI)	LSI = pH - pHs	LSI > 0	Super saturated, tend to precipitate CaCO₃
	pHs = A + B · log (Ca²⁺) - log	LSI = 0	Saturated, CaCO₃ is in equilibrium
	(Alk)pH ≤ 9.3	LSI < 0	Under saturated, tend to dissolve solid CaCO₃
	(3) pH > 9.3		
Ryznar stability index (RSI)	RSI = 2 pHs - pH	RSI < 6	Super saturated, tend to precipitate CaCO₃
	6 < RSI < 7	RSI > 7	Saturated, CaCO₃ is in equilibrium
	6 < RSI < 7	Under saturated, tend to dissolve solid CaCO₃	
	6 < RSI < 7		
Aggressive index (AI)	AI = pH + log [(Alk) (H)]	AI > 12	Non aggressive
	10 < AI < 12	AI < 10	Very aggressive

and valleys to savannas. Then, groundwater is recharged once it is joined by this surface water. Aquifers form in savannas and alluviums. Therefore, this is the underlying cause of water hardness (19, 20).

In the present study, alkalinity was within the permitted range, with the exception of Elyasvand village where this parameter was close to permitted levels of 324 mg CaCO₃/L (Table 4). Thus, it needed closer control and improvement. Moreover, mean and standard deviation of other parameters of cations and anions were within the permitted range. Therefore, this was not a threat to human health and water dispensing quality. Electrical connectiv-
Table 4. Measured Physical and Chemical Parameters

Village Name	Turbidity (NTU)	pH	TDS (ppm)	Total Hardness (mg CaCO$_3$/L)	Alkalinity (mg CaCO$_3$/L)	EC (25ºC) (µs/cm)
Sarab Bornaj	2.09	8.25	178	185.8	170	290
Zolmabad	2.37	7.93	362	232.3	189	370
Pariveh	1.55	8.58	306	189.9	174	350
Blueiredy	0.67	7.97	506	323.2	258	640
Cheshmeh Sohrab	1.13	8.18	496	299	280	580
Chehr	8.19	8.09	402	258.6	232	540
Bernaj	1.82	8.15	270	204	187	370
Naderabad	0.34	8.22	364	206	191	410
Maranto	4.46	8.08	346	222.2	194	430
Kaminjeh	1.84	7.97	134	234.3	215	460
Aliabad Sirmaij	0.54	8.35	422	236.1	228	420
Babazeid	0.98	8.4	286	192.3	196	370
Anjirak	0.42	8.43	458	232.3	216	440
Garmyanak	0.39	8.1	428	232.3	230	410
Elavand	1.32	8.08	538	359.9	324	730
Kolekshavand	2.23	8.7	440	245.6	248	480
Tomorg	0.36	8.87	158	234.2	239	430
Gheisvand	0.73	8.25	500	318	299	630
Shahabad	1.3	8.81	440	293.2	292	510
Reasonable level	1	6.5-8.5	1000	200	120	400
Permitted level	5	6.5-9	1500	500	-	1500
Mean	1.7	8.3	370.2	247.3	229.6	466.3
SD	1.86	0.28	120.98	49.32	44.59	313.34

Figure 2. Maximum and minimum figures of erosion and sedimentation indexes

In a study by Rajaei et al. titled 'Studying drinking water quality of Birjand and Ghaen savannas', it was shown that hardness, sulfate, sodium, chloride, and EC were over national standards with 25%, 33%, 70%, 25%, and 51% respectively (21). As in the present study, all parameters were within pleasant and permitted standard ranges.

According to Table 6, scale formation and corrosion indices of Harsin town water resources were 0.8 for LSI, 6.85 for RSI, 10.92 for AI, and 6.85 for PSI. It revealed that the water resources of Harsin town were highly likely to sediment with regard to LSI, and corrosive with regard to PSI. RSI and
Table 5. Measured Cations and Anions

Village Name	Cations (mg/L)	Anions (mg/L)								
	Calcium	Magnesium	Sodium	Potassium	Ammonium	Fluoride	Phosphate	Sulfate	Carbonate	Bicarbonate
Sarab Bornaj	65.4	5.3	0.5	0.2	0.01	0	0	7.68	0	207.2
Zolmabad	95	20.4	3	0.3	0.01	0.02	0	7.7	0	230.8
Pariveh	33.1	25.7	7.5	0.2	0.01	0.07	0	5.96	2.15	210.3
Blueredy	90.5	23.3	14	0.4	0.03	0.08	0	16.62	0	348.4
Cheshmeh Sohrab	82	22.5	16	0.9	0.02	0.13	0	12.81	0	341.8
Chehr	66.3	22.3	15	1.2	0.03	0.23	0	10.71	0	283.3
Bernaj	71.1	6.3	1	0.2	0	0	0	7.23	0	228.2
Naderabad	60.6	13.1	7.5	0.5	0.02	0.06	0	7.86	0	233.4
Maranto	54.1	20.8	13	0.7	0.03	0.05	0	8.81	0	236.1
Kaminjeh	81.6	7.3	2	0.4	0	0	0	9.05	0	262.3
Allahabad Sirmaj	40.4	32.4	9	0.5	0.03	0.41	0	10.81	0	277.8
Babazeid	51.8	15.1	15	0	0.03	0.63	0	8.4	2.3	236.2
Anjirak	59.4	20.1	12	0.3	0.03	0.66	0	16.17	0	263.8
Garmyanak	63.2	17.8	16	0.8	0.02	0.41	0	8.15	0	280.6
Elyasvand	92.9	30.6	21	1.1	0.02	0.53	0	8.39	0	395.6
Kolehshavand	66.3	19.2	20	0.8	0.03	0.69	0	14.38	0	301.3
Tomorg	36.6	34.3	12	0.5	0.02	0.55	0	8.06	0	298.1
Ghessvand	80.7	27.9	22	0.3	0.03	0.52	0	19.38	0	364.8
Shahabad	56.4	36.6	14	0.2	0.02	0.5	0	9.3	2.3	354.1
Reasonable level	75	30	100	0.02	0.5	0.1	250	0	-	-
Permitted level	300	150	250	0.05	1.5	0.2	400	0	-	-

AI were within the neutral range.

A study by Khademian Ghadekolai et al. revealed that mean and standard deviation were 0.052 and 0.438 for LSI, 6.99 and 0.785 for RSI, 11.90 and 0.5 for PSI, and 5.85 and 0.81 for AI. According to the results, drinking water in Ghaemshahr was highly likely to sediment (22). Yousefi et
al. studied drinking water of Jolfa, reported LSI, RSI, PSI and AI respectively as 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), and 12.79 (± 0.47). Data revealed that the well water in this study was corrosive (23). In the Arkoo study on the scale formation capacity of underground water in a district in Turkey (related to 12 wells), results showed that water was not corrosive, with one exception due to high sulfate concentrations. Emphasis was also placed on the connectivity in changes between underground water height and CO2 concentrations (and consequently corrosion) (24).

5.1. Conclusions
The cations, anions, and physical and chemical indices of water resources in half the villages in the vicinity of Harsin town were within pleasant levels. Hardness parameters were within permitted levels. Indices related to scale formation and corrosion, regarding Langelier index, were mostly probable to form scales. The Pockurius index was corrosive. Rayzner and aggressiveness indices were neutral. Since water resources in Harsin town had a poor scale formation and corrosion capacity, finally, more precision was recommended in selecting pipes and other network dispensing equipment.

Footnote

Funding/Support: This study was provided by Kermanshah University of Medical Sciences.

References
1. Pal DK, Bhattacharaya T, Ray SK, Chandran P, Srivastava P, Durge SL, et al. Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded vertisols of the peninsular India in redefining the sodic soils. Geoderma. 2006;136(1-2):210-28. doi: 10.1016/j.geoderma.2006.03.020.
2. Khadam IM, Kaluarachchi JJ. Water quality modeling under hydrologic variability and parameter uncertainty using erosion-scaled export coefficients. J Hydrology. 2006;330(1-2):354-67. doi: 10.1016/j.jhydrol.2006.01.033.
3. Elshorbagy A, Ormsebe I. Object-oriented modeling approach to surface water quality management. Environ Modell Softw. 2006;21(5):689-98. doi: 10.1016/j.envsoft.2005.02.001.
4. Nan Bakhsh H. [Chemical and microbial quality of drinking water sources Urma in 1379]. Urmia Med J. 2003;11(6):41-50. Persian.
5. Setare P, Ahmadi E. [Analysis of the chemical quality of groundwater resources using software Aquas (prairie Songhor village of Kermanshah)]. Fourth Conference on Environmental Health. 2012;13-9. Persian.
6. Mokhtari SA, Alighadrif M, Hazeri S, Sadeghi H, Gharazi N, Ghobani L. [Evaluation of corrosion and precipitation potential in Ardebel drinking water distribution system by using Langelier and Rayzner indexes]. J Health. 2000;4(1):114-23. Persian.
7. Yousefi M, Saleh HN, Malvi AH, Alimohammadi M, Nabizadeh R, Mohammadi AA. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Dutu Brief. 2018;46:724-31. doi: 10.1016/j.dutubrief.2017.11.099. [PubMed: 29270455]. [PubMed Central: PMC5735294].
8. Costa DD, Gomes AA, Fernandes M, Lopes da Costa Borluzzi R, Magaluheo MLB, Skoronski E. Using natural biomass microorganisms for drinking water denitrification. Int J Environ Manag. 2018;22(7):520-30. doi: 10.1016/j.jenvman.2018.03.0120. [PubMed: 2963241].
9. Kurdi M, Ferdows Shahi M, Maghsoudi A. Sensitivity of corrosion and scaling indices based on ionic; case study Iran. Water Qual Expo Health. 2015;7(2):93-72. doi: 10.1016/j.wqeh.2015.05.056.28.
10. Bailey RT. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol J. 2016;25(4):1911-217. doi: 10.1007/s00498-016-1506-8.
11. Shams M, Mohamadi A, Sajadi S. [Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas]. Iran World Appl Sci J. 2012;7(1):141-9. Persian.
12. Rand MC, Greenberg AE, Taras MJ. Standard methods for the examination of water and wastewater. Ind ed. USA: American Public Health Association; 2005. p. 9-18.
13. Shultz CD, Bailey RT, Gates TK, Heesemann BE, Morway ED. Simulating selenium and nitrogen fate and transport in coupled stream- aquifer systems of irrigated regions. J Hydrology. 2018;560:512-29. doi: 10.1016/j.jhydrol.2018.02.027.
14. Mohammadi AA, Yousefi M, Mahvi AH. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. Data Brief. 2017;13:312-5. doi: 10.1016/j.dib.2017.05.045. [PubMed: 28649952]. [PubMed Central: PMC547219].
15. Rezai Kalantary R, Rezai A, Ahmadz E, Ahmadz Jelab M. [Quality evaluation and stability index determination of Qom rural drinking water resources]. J Health. 2017;1(3):9-16. Persian.
16. Eaton AD, Clesceri LS, Greenberg AE, Franson MAH. Standard methods for the examination of water and wastewater. University of Michigan: American Public Health Association; 1995.
17. Abbasnia A, Alimohammadi M, Malvi AH, Nabizadeh R, Yousefi M, Mohammadi AA, et al. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchestan province in Iran. Data Brief. 2018;18:6182-92. doi: 10.1016/j.dib.2017.11.003.
18. Soleimani H, Abbasnia A, Yousefi M, Mohammadi AA, Changani Khorasani F. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpole-Sahab city, Kermanshah province, Iran. Data Brief. 2018;27:448-56. doi: 10.1016/j.dib.2017.12.061.
19. Yousefi M, Saleh HN, Mohammadi AA, Malvi AH, Ghadirpoor M, Soleimani H. Data on water quality index for the groundwater in rural area Neyshabur county, Razavi province, Iran. Data Brief. 2017;13:3901-7. doi: 10.1016/j.dib.2017.10.052. [PubMed: 29159228]. [PubMed Central: PMC5681122].
20. World Health Organization. Calcium and magnesium in drinking water: Public health significance. World Health Organization; 2009.
21. Rajaei G, Medinejad MH, Hesari Motlagh S. [A survey of chemical quality of rural drinking water of Birjand and Qem plains, Iran]. J Health Sys Res. 2017;6(6):28-16. Persian.
22. Khademian Ghaedkolai M, Zamani M, Ghafer F, Rahimi M, Mahmodpor S. [Evaluation of corrosion and precipitation potential in Ghaemshahr, village drinking water]. Human Env. 2016;14(4):1-7. Persian.
23. Yousefi M, Najafi Saleh H, Malvi AH, Alimohammadi M, Nabizadeh R, Mohammadi AA. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Data Brief. 2018;18:724-31. doi: 10.1016/j.dib.2017.11.099.
24. Arko O. Assessment of scaling properties of groundwater with elevated sulfate concentration: A case study from Ergene Basin, Turkey. Arab J Geosci. 2015;8(11):4777-85. doi: 10.1007/s12517-012-0704-5.