Finite temperature tensor network algorithm for frustrated two-dimensional quantum materials

Philipp Schmoll,1 Christian Balz,2 Bella Lake,3,4 Jens Eisert,1,3 and Augustine Kshetrimayum1,3,5
1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
3Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
4Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
5Theory Division, Saha Institute of Nuclear Physics, IAF Bidhannagar, Kolkata 700 064, India

Aimed at a more realistic classical description of natural quantum systems, we present a two-dimensional tensor network algorithm to study finite temperature properties of frustrated model quantum systems and real quantum materials. For this purpose, we introduce the infinite projected entangled simplex operator ansatz to study thermodynamic properties. To obtain state-of-the-art benchmarking results, we explore the highly challenging spin-1/2 Heisenberg anti-ferromagnet on the Kagome lattice, a system for which we investigate the melting of the magnetization plateaus at finite magnetic field and temperature. Making close connection to actual experimental data of real quantum materials, we go on to studying the finite temperature properties of Ca$_{10}$Cr$_7$O$_{28}$. We compare the magnetization curve of this material in the presence of an external magnetic field at finite temperature with classically simulated data. As a first theoretical tool that incorporates both thermal fluctuations as well as quantum correlations in the study of this material, our work contributes to settling the existing controversy between the experimental data and previous theoretical works on the magnetization process.

INTRODUCTION

Simulating complex quantum materials is considered to be one of the hardest problems in modern physics. Density functional theory is arguably the most popular approach to date for calculating the electronic structure of molecules and extended materials [1,2]. In situations in which strong correlations are expected to be dominant, however, its applicability can be limited. Ultimately, the core computational challenge in the numerical simulation of strongly correlated quantum materials arises from the exponential scaling of the size of the Hilbert space with the system size. Thus, it comes as no surprise that the exact diagonalization (ED) technique can only study small sizes and therefore may fail to capture the important physics of emergent many-body phenomena. Mean-field techniques are also unsuitable in the study of quantum materials as they neglect the most crucial ingredient in describing these systems: quantum entanglement. While quantum Monte Carlo constitutes a versatile tool for simulating unfrustrated strongly correlated systems [3], they suffer from severe limitations for frustrated quantum systems due to the sign problem. In this respect, tensor network techniques have emerged as a powerful alternative for studying challenging many-body problems which does not suffer from any of those limitations [4-7].

The success of one-dimensional tensor networks, also known as matrix product states (MPS) [8,11], in describing one-dimensional phases of matter have provided much impetus to the development of two-dimensional tensor network algorithms. While the situation is much more intricate and challenging in two spatial dimensions, such tensor network algorithms, also known as projected entangled pair states (PEPS) or iPEPS [5,12,13] in its infinite instance tackling directly the thermodynamic limit, have recently matured and have been employed successfully to study various challenging problems in two dimensions. This includes finding ground states of frustrated systems and real quantum materials [14-20] and non-equilibrium systems [21-27]. While most of the efforts has been dedicated towards identifying ground states of closed quantum systems, in order to accurately capture the physics of quantum materials in realistic conditions in the lab, one needs to include the effects of temperature. With this aim, there have been several recent works on two-dimensional finite temperature tensor network algorithms [28-33]. Most of these works have, however, focused on paradigmatic, theoretical models such as the Ising, Kitaev or Heisenberg models, and mostly models that are defined on the square lattice.

In this work, we develop a two-dimensional tensor network algorithm for studying finite temperature properties of existing quantum materials, thus mimicking experimental studies as closely as possible. We start by describing our method and then present results on two important instances of strongly correlated systems: (i) the paradigmatic spin-1/2 Kagome Heisenberg anti-ferromagnet both in the absence and presence of an external magnetic field and (ii) the real quantum material Ca$_{10}$Cr$_7$O$_{28}$ that features a bilayer Kagome structure.

METHOD

Our method substantially advances the algorithm proposed in Ref. [30] by extending it to the more challenging realm of frustrated quantum systems and real quantum materials. This step renders it possible to directly compare experimental data and theoretical tensor network simulations, as we do here. We will now review the underlying annealing algorithm and highlight the improvements. In order to simulate a quantum system at finite temperature $\beta := 1/T > 0$, we describe it by an (unnormalized) thermal quantum state

$$
\rho(\beta) = e^{-\beta H},
$$

(1)
where \(H \) is the full local many-body Hamiltonian. To obtain such a Gibbs state, we start from an infinite temperature state, i.e., \(\rho(\beta = 0) \) and cool down the system to the desired temperature \(\beta^{-1} > 0 \). The initial state is simply a tensor product of identities, the (unnormalized) single-particle thermal state in the limit \(T \to \infty \). The evolution to the desired temperature can be generated by suitably many small temperature steps \(\delta \beta \), so that the full quantum state is obtained for \(N \in \mathbb{N} \) by

\[
\rho(\beta) = \rho(\delta \beta)^N = \left(e^{-\delta \beta H} \right)^N \tag{2}
\]

with \(\delta \beta := \beta/N \) and \(\rho(\delta \beta) \) as what we call the infinitesimal thermal density matrix (ITDM). This cooling is implemented by a simple update technique \([30,34]\). The simple update is adopted here for its numerical stability and efficiency \([14,16,30,35]\), particularly relevant while working on systems with large physical dimensions, which seems a necessity for the demanding task considered here (see the Appendix).

Instead of directly cooling down to \(\beta > 0 \), it is advantageous to cool down to \(\beta/2 \) and evaluate the Gibbs state as

\[
\rho(\beta) = \rho(\beta/2)^\dagger \rho(\beta/2). \tag{3}
\]

This ensures that the resulting operator is positive semi-definite and hence reflects a valid quantum state, which is otherwise not guaranteed in tensor network implementations due to truncation effects \([36–38]\). Eq. (3) is the main difference to the underlying algorithm presented in Ref. \([30]\) and is the crucial improvement which enables the simulation of frustrated systems (along with using the correct tensor network structure of the underlying lattice of the model as we discuss in the next paragraph). Thus, we have the freedom of evolving up to only \(N/2 \) steps thereby saving a factor of two in the number of annealing steps or evolving up to \(N \) steps with each step size being \(\delta \beta/2 \). The latter choice is adopted in our simulations and decreases the Trotter error from \(\mathcal{O}(\delta \beta^2) \) to \(\mathcal{O}(\delta \beta^2/4) \).

We will now introduce the tensor network representation of the Gibbs state: The infinite projected entangled simplex operator (iPESO) shown in Fig. 1. It is the operator version of the infinite projected entangled simplex state (iPESS) proposed in Ref. \([39]\), applied to the simulation of thermal density matrices. In both tensor networks, the quantum correlations inherently present on the Kagome triangles are efficiently and accurately captured by exploiting the structure of its dual, the honeycomb lattice. Green tensors represent the lattice sites of the Kagome lattice, with two physical indices for the density matrix (as opposed to a quantum state, for which tensors only have a single physical index). They are connected by purely virtual simplex tensors shown in grey. The accuracy with which the iPESO approximates the thermal density matrix is controlled by the bond dimension of the virtual bulk indices, denoted as \(\chi_B \). It is important to note that \(\chi_B \) needs to be chosen sufficiently large to prevent truncation effects in the ITDM. This leads to a minimal bond dimension of \(p^2 \), where \(p \) is the dimension of the Hilbert space of the local physical degrees of freedom (a detailed explanation is given in the Appendix). For the final simulations of the targeted real material

we choose the bond dimension such that the total truncation error is below \(\sim 10^{-5} \), see Fig. 1. Expectation values are then directly computed in the tensor network representation of the thermal state according to

\[
\langle \hat{O} \rangle = N_\rho^{-1} \text{Tr} \left[\rho(\beta/2)^\dagger \hat{O} \rho(\beta/2) \right], \tag{4}
\]

with a normalization factor \(N_\rho := \text{Tr}[\rho(\beta/2)^\dagger \rho(\beta/2)] \). Expectation values can be computed by either using the simple update mean-field environment, or by a full corner transfer matrix renormalization group (CTMRG) procedure \([40–42]\), which captures quantum correlations more faithfully. For the latter, the environment bond dimension \(\chi_E \) controls the approximations in the contraction of the infinite two-dimensional lattice. Details for both the simple update cooling and calculations of expectation values are presented in detail in the Appendix. The smallest possible unit cell of the iPESO consists of three lattice site tensors and two simplex tensors, as presented in Fig. 1. Besides this structure, we also employ a nine-site unit cell in our numerical simulation. This is required to capture thermal states with larger structures that are not commensurate with three-site translational invariance.

MODELS AND RESULTS

Kagome Heisenberg anti-ferromagnet

The first application of the developed iPESO method is the finite temperature study of the frustrated spin-1/2 Heisenberg anti-ferromagnet on the Kagome lattice, a paradigmatic model that has been a topic of intense study in the community \([14,43–48]\). Its Hamiltonian is given by

\[
H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j - h_z \sum_i S_i^z, \tag{5}
\]

where \(\vec{S}_i \) are spin-1/2 operators on site \(i \) and \(\langle i,j \rangle \) denotes nearest-neighbours in the underlying lattice, \(h_z \) is a magnetic field applied along the \(z \)-axis. In the following, we employ the iPESO method to study the model at \(J = 1.0 \) over a large temperature range, choosing an infinitesimal temperature step \(\delta \beta = 10^{-3} \). In the main panel of Fig. 2, we show the thermal
state energy for a three-site iPESO ansatz at bulk bond dimensions up to $\chi_B = 10$. These results are computed using a CTMRG procedure with individual environment bond dimensions χ_B such that expectation values are well converged. The

energy of the thermal state approaches the ground state energy at $T = 0$ for low temperatures, as shown in the top inset. This, along with the vanishing magnetization when approaching the ground state (not shown here), indicates that the annealing procedure does not get stuck in local minima and flows towards the correct ground state as would have been obtained using ground state optimization. While the thermal state energies in Fig. 2 have been computed with CTMRG environments, we note that the accuracy is not affected while using the mean-field environment of the simple update. Therefore, we compute the heat capacity $C := \partial U/\partial T$ at a higher bulk bond dimension $\chi_B = 16$, using these environments. The result is shown in the bottom inset and matches previous finite temperature studies of the model. In the analysis of the model and for the targeted real material we therefore restrict to mean-field environments, since CTMRG calculations are limited to inexpressively small environment bond dimensions in those cases.

We further use our method to study the effect of temperature on the magnetization behaviour of the Heisenberg model in Eq. (5). It is known that four different magnetization plateaus at values $m_z/m_S = [1/9, 1/3, 5/9, 7/9]$ of the saturation magnetization $m_S = 1/2$ appear at $T = 0$ upon tuning the magnetic field h_z. We focus our study on the most prominent $m_z/m_S = 1/3$ magnetic plateau and classically simulate the Kagome Heisenberg model in a field for various temperatures in the range of $T \in [0.001, 100]$ using a nine-site iPESO at bond dimension $\chi_B = 12$. The results in Fig. 3 are complemented with regular iPESO simulations at $T = 0$ and $\chi_B = 12$, where the magnetization plateaus appear most prominently. Of all the $T = 0$ magnetization plateaus, we find that only the $1/3$ plateau survives at finite temperature up to $T \sim 2 \cdot 10^{-2}$, where T is in units of the interaction strength J. Above this temperature, the plateau starts melting and disappears. A cross section of Fig. 3 along constant temperature slices of $1/T = [\infty, 100, 80, 60, 40]$ reveals the melting of the plateau, shown as the inset on the face of the cube. We observe that the melting is stronger at the low-field end of the plateau, which is in agreement with a recent exact diagonalization study of the melting of the magnetization plateaus. Our results serve as an important guide to the experimental study of the magnetization process of closely related real materials such as Herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$ and its relatives.

Real material Ca$_{10}$Cr$_7$O$_{28}$

The material Ca$_{10}$Cr$_7$O$_{28}$ has a breathing bilayer Kagome structure, with alternating ferro- and anti-ferromagnetic Heisenberg interactions on neighbouring triangles, defined by

$$H = \sum_{k=1}^2 \left[J_{\gamma k} \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + J_{\Delta k} \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j \right] + J_{\text{inter}} \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j - h_z \sum_i S_i^z,$$

where $J_{\gamma k}$ and $J_{\Delta k}$ are the intra-Kagome couplings in the two layers $k = 1$ and $k = 2$ while J_{inter} denotes the coupling between the two layers. The lattice structure is shown in Fig. 4. The different coupling parameters have been deter-
FIG. 4. Breathing bilayer Kagome lattice with different couplings for the compound material Ca$_{110}$Cr$_7$O$_{28}$. The double bonds denote inter-layer coupling with coupling strength J_{inter}.

mined from neutron scattering experiments of the real material in Ref. [52]. These values (in meV) are $J_{\Delta 1} = +0.09(2)$, $J_{\Delta 2} = -0.27(3)$, $J_{\Delta 2} = -0.76(5)$, $J_{\Delta 2} = +0.11(3)$ and $J_{\text{inter}} = -0.08(4)$, where the numbers in round brackets indicate the uncertainties.

The bilayer Kagome structure can be mapped to a single layer by combining the two spins in the different layers to a single physical site, so that a regular iPESO ansatz with an enlarged local physical dimension of $d = 4$ can be used.

The large physical dimension of the system also means that the minimum bond dimension required for accurate simulations of the material needs to be sufficiently high ($\chi_B \geq 16$). This becomes a bottleneck in computing expectation values using CTMRG routines. For this reason, we have adopted the mean-field environment calculation which takes into account the quantum correlations within a cluster. We find that even with such approximations in computing the magnetization and heat capacity, our results are compatible with the experimental data and provide novel insights into the earlier discrepancy between theory and experiment data as we show below.

Magnetization behaviour

The magnetic properties of this real material have been investigated previously at zero temperature using tensor networks and compared to experimental measurements by some of the current authors [19]. While results at small magnetic fields were in good agreement, the magnetization curve has shown a significant discrepancy between simulation and experiment at large values of the field. Such a discrepancy has also been observed when comparing the experimental data to theoretical mean-field calculations [52]. Experimental data show that the magnetization of this material increases rapidly for small external magnetic fields up to 1 or 2 T above which the slope flattens and saturation is achieved for a field value of ≈ 12 T. In contrast, our previous tensor network simulation predicted saturation at a much smaller value of the external magnetic field of ≈ 1 T. This theoretical investigation, while quantum, has ignored thermal fluctuations. For comparison, molecular dynamics simulation which take temperature effects into account result in a better agreement [53], however the quantum fluctuations are ignored by this method. Our present technique encompasses both the quantum properties of the material as well as the effect of finite temperature.

We now investigate the quantum material Ca$_{110}$Cr$_7$O$_{28}$ in the presence of magnetic fields between 0 T and 12 T at various temperatures. The TN simulations are done with a nine-site iPESO at bond dimension $\chi_B = 30$ and with $\delta \beta = 10^{-2}$, results are shown in Fig. 5. Our theoretical results are plotted for temperatures $T = 1.81$ K and $T = 2.98$ K. This is then compared against the experimental data measured at $T = 1.8$ K and $T = 3.0$ K. The conversion factors between the theoretical calculations and experiment are shown in the Appendix. From the plots in Fig. 5, we see that as we increase the temperature, the field value at which the magnetization saturates becomes larger and approaches the experimental findings. Overall, we find that the magnetization curve shows a strong dependence on the temperature and the saturation sets in quicker for low T. This seems to indicate that the earlier discrepancy between theory and experimental data has been largely due to neglecting finite temperature effects in the theory simulations. For comparison, we show the $T = 0$ K magnetization curve obtained with a nine-site iPESO at $\chi_B = 24$ with mean-field environments.

Inelastic neutron scattering has previously revealed that the spin liquid ground state of this material is destroyed by a magnetic field of 1 T [52]. However, heat capacity measurements could show that magnetic fields of up to 0.5 T leave the spin liquid ground state intact as indicated by featureless C/T curves [52]. To check that the effect of small fields is correctly captured by our model, we have computed the magnetization as a function of temperature at fixed field strength $h_z = 0.1$ T and contrasted it with measured experimental data. The comparison is shown in the inset of Fig. 5 and the model indeed reproduces the experimental curve without any anomalies that
would indicate a phase transition into a magnetically ordered ground state.

Heat capacity and entropy

Finally, we compute the magnetic heat capacity from the thermal state energy U according to $C := \partial U / \partial T$ for two different values of the magnetic field $h_z = 2.0 \, \text{T}$ and $h_z = 3.0 \, \text{T}$ and compare it with the experimental data. Results are shown in Fig. 6. The conversion factors between the theoretical calculations and experiment are again shown in the Appendix. As well as the heat capacity data, we have also computed the thermodynamic entropy by integrating the heat capacity. This is shown in the inset of Fig. 6. We find good agreement between our theoretical predictions and experimental data.

The heat capacity of Ca$_{10}$Cr$_7$O$_{28}$ at intermediate fields is characterized by a broad and smooth peak of a Schottky anomaly due to the excitations that become gapped by the magnetic field. The position of this peak shifts to higher temperature with increasing field both in the model and the experimental data. This is in qualitative agreement with an increasing gap due to the Zeeman term in the Hamiltonian, see Eq. 6. Integrating C/T to obtain the magnetic entropy shows that the model does well in capturing the total possible entropy for spin-1/2 over the temperature range up to 15 K.

CONCLUSIONS AND OUTLOOK

In this work, we have presented a two-dimensional tensor network algorithm for studying finite temperature properties for the highly challenging realm of frustrated systems and two-dimensional quantum materials. We achieve this by introducing the infinite projected entangled simplex operator algorithm. Our algorithm explicitly preserves the positive semi-definiteness of the Gibbs state represented by the iPESO. We use our technique to benchmark against finite temperature properties of the well-known, paradigmatic model of the spin-1/2 Kagome Heisenberg anti-ferromagnet and obtain very competitive state-of-the-art results for the thermal state energy and heat capacity. We also study the melting of the magnetization plateaus of this model in the presence of external magnetic field at finite temperature. By focusing on the most prominent 1/3 plateau, we find that it starts melting and disappears at temperature $T \sim 2 \times 10^{-2}$. Moreover, the plateau starts melting from the lower end of the field, an observation that was also made recently in an independent exact diagonalization study [51].

Finally, we have investigated the finite temperature properties of the quantum material Ca$_{10}$Cr$_7$O$_{28}$ using our tensor network technique. This is particularly important due to a recent discrepancy in the magnetization process predicted by theoretical simulations compared to experimental findings. As a first theoretical study of this real material that includes both quantum correlations and finite temperature effects, we find a strong temperature dependence of the magnetization curve of this material in the presence of an external magnetic field. We find that on systematically increasing the temperature, our theoretical simulations approach the experimental data which was collected at finite temperature. We provide a direct comparison of the theoretical magnetization data with the experimental data at $T = 1.8 \, \text{K}$ and $T = 3.0 \, \text{K}$ and find them to be in surprisingly good but not quite perfect agreement. We also computed the magnetic heat capacity (C/T) as a function of temperature at different field strengths $h_z = 2.0 \, \text{T}$ and $h_z = 3.0 \, \text{T}$ as well as the entropy S. For all these quantities, we find good agreement with the experimental data.

One can argue that the agreement is striking, given that the Hamiltonian in Eq. 6 has only been recovered by neutron scattering techniques to finite precision considering five Heisenberg interactions, while Dzyaloshinskii-Moriya interactions have been excluded. Furthermore, there are truncation errors in the classical simulation. One can argue that the present analysis allows to cross-benchmark quantum experiments with classical simulations. The findings can also be seen as an invitation, however, to use high-precision tools of Hamiltonian learning to better identify the actual underlying microscopic Hamiltonian, given data from Gibbs states [54, 55], possibly even based on tensor networks akin the approach taken in Ref. [56]. These steps would further contribute to an engineering perspective of studying realistic strongly correlated quantum materials with tensor networks.

We believe our work to be an important step towards bridging the gap between theoretical simulations and experimental studies of quantum materials. It would be straightforward to extend our algorithm to other lattices and geometries that may suit other quantum materials. By incorporating both quantum correlations and finite temperature effects, we have now made direct comparison between experimental and theoretical data possible.
ACKNOWLEDGEMENTS

The authors are thankful for discussions with Ji-Yao Chen, Dante Kennes, Corinna Kollath, David Luitz, Jan Naumann, Roman Orús, Matteo Rizzi and Anne-Maria Visuri. The authors would like to thank the HPC Service of ZEDAT, Freie Universität Berlin, for computing time [57]. The FUB team acknowledges funding by the Deutsche Forschungsgemeinschaft (CRC 183 on ‘Entangled states of matter’ and FOR 2724 on ‘Thermal machines in the quantum world’), the Helmholtz Association, and the BMBF (MUNIQC-ATOMS), for which this work constitutes method development. B. L. acknowledges the support of Deutsche Forschungsgemeinschaft through project B06 of SFB 1143 on ‘Correlated magnetism: From frustration to topology’ (ID 247310070).

[1] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965)
[2] A. Tkatchenko and M. Scheffler, “Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data,” Phys. Rev. Lett. 102, 073005 (2009)
[3] F. Becca and S. Sorella, Quantum Monte Carlo approaches for correlated systems (Cambridge University Press, Cambridge, 2017).
[4] R. Orús, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states,” Ann. Phys. 349, 117–158 (2016)
[5] F. Verstraete, J. I. Cirac, and V. Murg, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems,” Adv. Phys. 57, 143 (2008)
[6] J. C. Bridgeman and C. T. Chubb, “Hand-waving and interpretive dance: An introductory course on tensor networks,” J. Phys. A 50, 223001 (2017)
[7] J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277 (2010)
[8] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863–2866 (1992)
[9] U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod. Phys. 77, 259–315 (2005)
[10] U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Ann. Phys. 326, 96–192 (2011)
[11] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix product state representations,” Quantum Inf. Comput. 7, 401 (2007).
[12] F. Verstraete and I. Cirac, “Renormalization algorithms for quantum-many body systems in two and higher dimensions,” arXiv: cond-mat/0407066 (2004).
[13] J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I. Cirac, “Classical simulation of infinite-size quantum lattice systems in two spatial dimensions,” Phys. Rev. Lett. 101, 250602 (2008)
[14] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, and T. Xiang, “Gapless spin-liquid ground state in the $S = 1/2$ Kagome anti-ferromagnet,” Phys. Rev. Lett. 118, 137202 (2017)

[15] T. Picot, M. Ziegler, R. Orús, and D. Poilblanc, “Spin-S Kagome quantum anti-ferromagnets in a field with tensor networks,” Phys. Rev. B 93, 060407 (2016)
[16] T. Picot and D. Poilblanc, “Nematic and supernematic phases in Kagome quantum anti-ferromagnets under the influence of a magnetic field,” Phys. Rev. B 91, 064415 (2015)
[17] A. Kshetrimayum, T. Picot, R. Orús, and D. Poilblanc, “Spin-$\frac{3}{2}$ Kagome XXZ model in a field: Competition between lattice nematic and solid orders,” Phys. Rev. B 94, 235146 (2016)
[18] C. Boos, S. P. G. Crone, T. A. Niesen, P. Corboz, K. P. Schmidt, and F. Milo, “Competition between intermediate plaquette phases in SrCu$_2$(BO$_3$)$_2$ under pressure,” Phys. Rev. B 100, 140413 (2019)
[19] A. Kshetrimayum, C. Balz, B. Lake, and J. Eisert, “Tensor network investigation of the double layer Kagome compound Ca$_4$Cr$_2$O$_7$,” Ann. Phys. (N.Y.) 421, 168292 (2020)
[20] N. Astrakhantsev, F. Ferrari, N. Niggemann, T. Müller, A. Chauhan, A. Kshetrimayum, P. Ghosh, N. Regnault, R. Thomale, J. Reuther, T. Neupert, and Y. Iqbal, “Pinwheel valence bond crystal ground state of the spin-$\frac{1}{2}$ Heisenberg anti-ferromagnet on the Shuriken lattice,” Phys. Rev. B 104, L220408 (2021)
[21] A. Kshetrimayum, H. Weimer, and R. Orús, “A simple tensor network algorithm for two-dimensional steady states,” Nature Comm. 8, 1291 (2017)
[22] P. Czarnik, J. Dziarmaga, and P. Corboz, “Time evolution of an infinite projected entangled pair state: An efficient algorithm,” Phys. Rev. B 99, 035115 (2019)
[23] C. Hubig and J. I. Cirac, “Time-dependent study of disordered models with infinite projected entangled pair states,” SciPost Phys. 6, 31 (2019)
[24] A. Kshetrimayum, M. Goihl, and J. Eisert, “Time evolution of many-body localized systems in two spatial dimensions,” Phys. Rev. B 102, 235132 (2020)
[25] A. Kshetrimayum, M. Goihl, D. M. Kennes, and J. Eisert, “Quantum time crystals with programmable disorder in higher dimensions,” Phys. Rev. B 103, 224205 (2021)
[26] J. Dziarmaga, “Time evolution of an infinite projected entangled pair state: Neighborhood tensor update,” Phys. Rev. B 104, 094411 (2021)
[27] J. Dziarmaga, “Time evolution of an infinite projected entangled pair state: A gradient tensor update in the tangent space,” Phys. Rev. B 106, 014304 (2022)
[28] P. Czarnik, L. Cinzio, and J. Dziarmaga, “Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas,” Phys. Rev. B 86, 245101 (2012)
[29] P. Czarnik and J. Dziarmaga, “Variational approach to projected entangled pair states at finite temperature,” Phys. Rev. B 92, 035152 (2015)
[30] A. Kshetrimayum, M. Rizzi, J. Eisert, and R. Orús, “Tensor network annealing algorithm for two-dimensional thermal states,” Phys. Rev. Lett. 122, 070502 (2019)
[31] P. Czarnik, A. Franchuz, and J. Dziarmaga, “Tensor network simulation of the Kitaev-Heisenberg model at finite temperature,” Phys. Rev. B 100, 165147 (2019)
[32] P. Czarnik, M. M. Rams, P. Corboz, and J. Dziarmaga, “Tensor network study of the $m = 1/2$ magnetization plateau in the Shastry-Sutherland model at finite temperature,” Phys. Rev. B 103, 075113 (2021)
[33] S. Mondal, A. Kshetrimayum, and T. Mishra, “Two-body repulsive bound pairs in a multibody interacting Bose-Hubbard model,” Phys. Rev. A 102, 023312 (2020)
[34] H. C. Jiang, Z. Y. Weng, and T. Xiang, “Accurate determination of tensor network state of quantum lattice models in two
dimensions,” Phys. Rev. Lett. **101**, 090603 (2008).

[35] O. Gauthé and F. Mila, “Thermal Ising transition in the spin-1/2 J_1-J_2 Heisenberg model,” Phys. Rev. Lett. **128**, 227202 (2022).

[36] B.-B. Chen, L. Chen, Z. Chen, W. Li, and A. Weichselbaum, “Exponential thermal tensor network approach for quantum lattice models,” Phys. Rev. X **8**, 031082 (2018).

[37] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert, and S. Montangero, “Positive tensor network approach for simulating open quantum many-body systems,” Phys. Rev. Lett. **116**, 237201 (2016).

[38] X. Chen, S.-J. Ran, T. Liu, C. Peng, Y.-Z. Huang, and G. Su, “Thermodynamics of spin-1/2 Kagomé Heisenberg anti-ferromagnet: algebraic paramagnetic liquid and finite-temperature phase diagram,” Science Bulletin **63**, 1545–1550 (2018).

[39] Z. Y. Xie, J. Chen, J. F. Yu, X. Kong, B. Normand, and T. Xiang, “Tensor renormalization of quantum many-body systems using projected entangled simplex states,” Phys. Rev. X **4**, 011025 (2014).

[40] T. Nishino and K. Okunishi, “Corner transfer matrix renormalization group method,” J. Phys. Soc. Jap. **65**, 891–894 (1996).

[41] R. Orús and G. Vidal, “Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction,” Phys. Rev. B **80**, 094403 (2009).

[42] R. Orús, “Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems,” Phys. Rev. B **85**, 205117 (2012).

[43] S. Sachdev, “Kagome- and triangular-lattice Heisenberg anti-ferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons,” Phys. Rev. B **45**, 12377–12396 (1992).

[44] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, “Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice,” Phys. Rev. Lett. **98**, 117205 (2007).

[45] H. C. Jiang, Z. Y. Weng, and D. N. Sheng, “Density matrix renormalization group numerical study of the Kagome anti-ferromagnet,” Phys. Rev. Lett. **101**, 117203 (2008).

[46] H.-C. Jiang, Z. Wang, and L. Balents, “Identifying topological order by entanglement entropy,” Nature Phys. **8**, 902–905 (2012).

[47] O. Götte, D. J. J. Farnell, R. F. Bishop, P. H. Y. Li, and J. Richter, “Heisenberg anti-ferromagnet on the kagome lattice with arbitrary spin: A higher-order coupled cluster treatment,” Phys. Rev. B **84**, 224428 (2011).

[48] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, “Gapless spin-liquid phase in the Kagome spin-1/2 Heisenberg anti-ferromagnet,” Phys. Rev. B **87**, 060405 (2013).

[49] A. M. Läuchli, J. Sudan, and R. Moessner, “$S = \frac{1}{2}$ Kagome Heisenberg anti-ferromagnet revisited,” Phys. Rev. B **100**, 155142 (2019).

[50] T. Picot, M. Ziegler, R. Orús, and D. Poilblanc, “Spin-S Kagome quantum anti-ferromagnets in a field with tensor networks,” Phys. Rev. B **93**, 060407 (2016).

[51] H. Schlüter, J. Richter, and J. Schnack, “Melting of magnetization plateaus for Kagomé and square-Kagomé lattice anti-ferromagnets,” J. Phys. Soc. Jap. **91**, 094711 (2022).

[52] C. Balz, B. Lake, A. T. M. Nazmul Islam, Y. Singh, J. A. Rodriguez-Rivera, T. Guidi, E. M. Wheeler, G. G. Simeoni, and H. Ryll, “Magnetic Hamiltonian and phase diagram of the quantum spin liquid Ca$_{10}$Cr$_7$O$_{28}$,” Phys. Rev. B **95**, 174414 (2017).

[53] R. Pohle, H. Yan, and N. Shannon, “Theory of Ca$_{10}$Cr$_7$O$_{28}$ as a bilayer breathing-Kagome magnet: Classical thermodynamics and semiclassical dynamics,” Phys. Rev. B **104**, 024426 (2021).

[54] J. Haah, R. Kothari, and E. Tang, “Optimal learning of quantum Hamiltonians from high-temperature Gibbs states,” (2021), arXiv:2108.04842.

[55] A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimaniifar, “Sample-efficient learning of quantum many-body systems,” Nature Phys. **17**, 931–935 (2021).

[56] F. Wilde, A. Kshetrimayum, I. Roth, D. Hangleiter, R. Sweke, and J. Eisert, “Scalably learning quantum many-body Hamiltonians from dynamical data,” (2022), arXiv:2209.14328.

[57] L. Bennett, B. Melchers, and B. Tropp, “Curta: A general-purpose high-performance computer at ZEDAT, Freie Universität Berlin,” http://dx.doi.org/10.17169/refubium-26754 (2020).

[58] S. Singh, R. N. C. Pfeifer, and G. Vidal, “Tensor network decompositions in the presence of a global symmetry,” Phys. Rev. A **82**, 050301 (2010).

[59] P. Schmoll, S. Singh, M. Rizzi, and R. Orús, “A programming guide for tensor networks with global SU(2) symmetry,” Ann. Phys. **419**, 168232 (2020).

[60] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Computational complexity of projected entangled pair states,” Phys. Rev. Lett. **98**, 140506 (2007).

[61] J. Haferkamp, D. Hangleiter, J. Eisert, and M. Gluza, “Contracting projected entangled pair states is average-case hard,” Phys. Rev. Research **2**, 013010 (2020).

[62] H. N. Phien, J. A. Bengua, H. D. Tuan, P. Corboz, and R. Orús, “Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing,” Phys. Rev. B **92**, 035142 (2015).

[63] P. Czarnik, J. Dziarmaga, and P. Corboz, “Time evolution of an infinite projected entangled pair state: An efficient algorithm,” Phys. Rev. B **99**, 035115 (2019).
Details of the tensor network algorithm

Simple update

The simple update describes an efficient, yet approximate scheme to do the annealing respectively the imaginary time evolution of the initial density matrix. It essentially implements the evolution in Eq. (3) together with a local truncation to keep the bulk bond dimension fixed. Without the loss of generality, we consider a Hamiltonian with local interactions in the form of

\[H = H_\nabla + H_\triangle, \]

(7)

where \(H_\nabla \) and \(H_\triangle \) are three-spin interactions on the two types of triangles of the Kagome lattice, respectively. Making use of a first-order Suzuki-Trotter decomposition, the imaginary time evolution to evolve the thermal density matrix \(\rho(\beta) \to \rho(\beta + \delta \beta) \) can be approximated by applying the operator

\[
U(\delta \beta) = e^{-\delta \beta H_\nabla} e^{-\delta \beta H_\triangle} + O(\delta \beta^2)
\approx U_\nabla(\delta \beta) U_\triangle(\delta \beta)
\]

(8)

to both three-site configurations in the tensor network. In Fig. 7, we illustrate the evolution of the iPESO with the three-body gate \(U_\nabla(\delta \beta) \). This step involves three lattice tensors, as well as the simplex tensor \(\nabla \). After the gate has been contracted with the tensors, a higher-order singular value decomposition (HOSVD) with subsequent truncation is used to separate the network back into simplex and lattice tensors. Since the truncation is based only on the singular values for the three indices, it is purely local. In a similar fashion, the simplex \(\triangle \) is updated alongside the three lattice site tensors by applying the three-body gate \(U_\triangle(\delta \beta) \). After both steps have been performed, we obtain the thermal density matrix \(\rho(\beta + \delta \beta) \), represented by a three-site iPESO. This process is repeated for a fixed number of steps, such that the final thermal density matrix represents the quantum system at the desired (inverse) temperature. Naturally, this can be extended to Hamiltonians with less or more than three-site interactions. Additionally, physical symmetries of the Hamiltonian (like \(U(1) \) or \(SU(2) \)) can be readily directly incorporated, exploiting symmetry-preserving tensors [58, 59].

As it is common in tensor network applications, the bond dimension controls the precision of the simulations. Here, we aim at presenting a discussion of the minimal bond dimensions required in order to obtain meaningful results. The infinitesimal thermal density matrix

\[
\rho(\delta \beta) = \prod_{i,j,k} e^{-\delta \beta H_{i,j,k}} + O(\delta \beta^2),
\]

(9)

to first order in the Suzuki-Trotter decomposition, can be constructed by applying the Trotterized Hamiltonian gates \(e^{-\delta \beta H_{i,j,k}} \) onto the infinite temperature Gibbs state \(\rho(\beta = 0) \), as shown in Fig. 8 (the infinite temperature state is simply a tensor product of identity matrices). An accurate representation (within the inevitable Trotter error) of this state is only possible if the resulting iPESO tensors are not truncated.

Effective environments and expectation values

In order to evaluate physical observables and compute expectation values accurately, the infinite two-dimensional iPESO tensor network needs to be contracted. It is known that this task cannot be performed exactly classically efficiently both in worst case and average case complexity [60, 61], without an exponential increase in computation time, so that approximate methods must be employed. Here we utilize the so-called corner transfer matrix renormalization group (CTMRG) to compute the effective environment tensors for every lattice site. To this end, we coarse-grain the iPESO network to an iPEPS network, the operator form of the famous infinite projected entangled pair state (iPEPS), as visualized in Fig. 5. After coarse-graining, the environment surrounding each local thermal density matrix can be conveniently computed using a standard CTMRG procedure. To this end, the contraction of the infinite square lattice is approximated by

FIG. 7. Simple update step for the (imaginary) time evolution of the iPESO ansatz. After applying the three-body gate to the physical indices, a truncated higher-order SVD is used to decompose the nine-index tensor and restore the lattice and simplex tensors.

FIG. 8. Construction of the infinitesimal thermal density operator \(\rho(\delta \beta) \) by a decomposition of the Trotter gates (see Eq. (8)). An exact representation (apart from the inevitable Trotter error) can only be achieved without truncating the virtual bulk bond dimension, which is therefore at least \(p^2 \).
FIG. 9. Coarse-graining of a three-site iPESO into a single-site iPEPO tensor. For larger iPESO unit cells the resulting iPEPO network will have a larger unit cell, too.

Coarse-graining

A set of fix-point environment tensors, as shown in Fig. 10. This enables both accurate calculations of expectation values

and would be essential in devising a sophisticated update procedure that includes all quantum correlations in the system — the so-called full update [62, 63]. Since the two physical indices are traced over, the procedure is a straightforward extension of a regular CTMRG routine for a two-dimensional iPEPS wave function. In order to ensure that the thermal density matrix is reflected by a positive semi-definite operator, a double-layer approach is taken in contrast to the original proposal in Ref. [30].

Truncation effects in the simple update

The annealing scheme adopted in this study is based on the simple update, which requires truncations in order to keep the bulk bond dimension \(\chi_B \) constant. Moreover, the choice of the infinitesimal cooling step \(\delta \beta \) controls the unavoidable error in the Trotterization, and the number of annealing steps which include a truncation. For the iPESO simulations of Ca\(_{10}\)Cr\(_7\)O\(_{28}\) we choose a step size of \(\delta \beta = 10^{-2} \), which leads to the accumulated truncation errors shown in Fig. 11 for several temperatures.

The accumulated truncation error is given by the sum of the discarded weights of all simple update annealing steps. The discarded weight is the sum of the discarded squared singular values in the singular value decomposition (SVD) [10]. Naturally, the truncation error decreases with increasing magnetic field, since the thermal states become closer to a reduced density matrix of a product state. Moreover, it increases with decreasing temperature, because more cooling steps are necessary to reach lower temperatures. In general, the large bond dimension of \(\chi_B = 30 \) keeps the accumulated truncation error low enough for our results to be meaningful down to the lowest temperatures we consider.

Conversion between experiment and simulation

In order to compare the simulated tensor network data with measured experimental data, we need to apply the correct conversion factors. Since the coupling constants in the Hamiltonian are given in units of meV and we set \(k_B = 1 \), the temperature \(T_{\text{sim}} \) is in meV, too. The proper conversion to K is, therefore, given by

\[
\frac{T_{\text{exp}}}{T_{\text{sim}}} = \frac{1 \text{ meV}}{k_B} = \frac{1.602 \times 10^{-22} \text{ J}}{k_B} \approx 11.6 \text{ K}.
\]

Furthermore, we need to convert the heat capacity \(C \) between simulated and measured data. The tensor network data is given per spin in units of meV K\(^{-1}\). In order to convert it, a factor of

\[
\frac{C_{\text{exp}}}{C_{\text{sim}}} = 6 \cdot 1.602 \times 10^{-22} \text{ J} \cdot N_A \approx 578.8 \text{ J mol}^{-1}
\]

with \(N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \) the Avogadro constant, is required. The additional factor of six stems from the fact, that one formula unit of Ca\(_{10}\)Cr\(_7\)O\(_{28}\) has six spin-1/2 chromium ions.