SYNTACTIC-GCN BERT BASED CHINESE EVENT EXTRACTION

Jiangwei Liu
School of Information Management and Engineering
Shanghai University of Finance and Economics
Shanghai 200433, China
majorliujw@gmail.com

Jingshu Zhang
School of Information Management and Engineering
Shanghai University of Finance and Economics
Shanghai 200433, China
cj19660606@163.sufe.edu.cn

Xiaohong Huang
School of Information Management and Engineering
Shanghai University of Finance and Economics
Shanghai 200433, China
huangxiaohong@163.sufe.edu.cn

Liangyu Min*
School of Information Management and Engineering
Shanghai University of Finance and Economics
Shanghai 200433, China
minux@163.sufe.edu.cn

December 18, 2021

ABSTRACT

With the rapid development of information technology, online platforms (e.g., news portals and social media) generate enormous web information every moment. Therefore, it is crucial to extract structured representations of events from social streams. Generally, existing event extraction research utilizes pattern matching, machine learning, or deep learning methods to perform event extraction tasks. However, the performance of Chinese event extraction is not as good as English due to the unique characteristics of the Chinese language. In this paper, we propose an integrated framework to perform Chinese event extraction. The proposed approach is a multiple channel input neural framework that integrates semantic features and syntactic features. The semantic features are captured by BERT architecture. The Part of Speech (POS) features and Dependency Parsing (DP) features are captured by profiling embeddings and Graph Convolutional Network (GCN), respectively. We also evaluate our model on a real-world dataset. Experimental results show that the proposed method outperforms the benchmark approaches significantly.

Keywords Event Extraction (EE) · Chinese Event Extraction · Information Extraction (IE) · Natural Language Processing (NLP) · Syntactic Dependency · Graph Convolutional Network (GCN)

1 Introduction

Online platforms generate an enormous quantity of web information every day. For example, news portals report real-time news; social media broadcast the hot news and generate related topics every moment. Information Extraction (IE) has gained increasing popularity because it helps exploit this potential by automatically extracting content from massive information. [1]. As a particular form of Information Extraction (IE), Event Extraction (EE) has gained increasing popularity due to its ability to automatically extract events from human language [2]. Event Extraction initially started in the late 1980s when the U.S. Defense Advanced Research Projects Agency (DARPA) boosted research into message understanding [3]. Now event extraction has become an important and challenging task, which aims to deal with the "5WH" questions, i.e., "who", "when", "where", "what", "why" and "how" of an event. Event extraction is closely related to computer science, statistics, and natural language processing as an interdisciplinary subject. As a particular form of information, event extraction involves named entity recognition (NER) and relation extraction (RE), and mostly depends on the results of these tasks.

*Corresponding author.
Following the event extraction task definition in ACE 2005, an event is frequently described as a change of state, indicating a specific occurrence of something that happens in a particular time and a specific place involving one or more participants. We give an English example in Fig. 1 and a Chinese example in Fig. 2 respectively. For example, there are two event types involved in sentence S1: “Die” and “Attack”, triggered by “died” and “fired”, respectively. For Die event, “Baghdad”, “cameraman”, and “American tank” are its arguments with corresponding roles: Place, Victim, and Instrument, respectively. For Attach event, “Baghdad”, “cameraman”, “American tank” and “Palestine Hotel” are its arguments with corresponding roles: Place, Victim, Instrument and Target, respectively. This is a somewhat more complex example with three arguments shared, which is more challenging than the simple case with one event type in one sentence. Figure 1 shows the English event extraction annotation and the syntactic parser results. In Fig. 2, the event type is “组织关系” and the sub event type is “裁员”. “前两天” and “软件服务商Oracle公司” are event arguments with corresponding roles: "时间" and "裁员方".

Due to its outstanding usefulness, event extraction has been applied in various fields, such as the biomedical [4, 5, 6], general information extraction [7, 8], finance and economics [9, 10], news recommendation [11], hate crime prediction [12] etc.

Event extraction can be divided into closed-domain and open-domain event extraction. From the view of techniques used, existing approaches can be divided into four categories: pattern matching [7, 8], machine learning [13, 14, 15], deep learning [16, 17, 18, 19, 20, 21, 22, 23, 24], and semi-supervised learning methods [25, 26, 27, 28, 29]. Feature engineering is the main challenging issue of traditional event extraction methods. And traditional machine learning methods have limitations in learning deep or complex nonlinear relations. Deep learning methods can alleviate these shortages and thus have become the mainstream event extraction methods.

Deep learning methods can learn distributed representation of knowledge, e.g., semantic features, avoiding feature engineering. Word embedding, character embedding, position embedding, entity type embedding, POS tag embedding, entity type embedding, word distance, relative position, path embedding, etc., are the most used features [18, 30, 31]. Except for the multi-channel distributed representation of the input, researchers have employed some techniques to capture the features contained in these representations. For example, to better capture the complex relationships among local and global contexts in biomedical documents, Zhao et al. [18] use a dependency-based GCN network to capture the local context and a hypergraph to model the global context. In addition, the fine-grained interaction between the
local and global contexts is captured by a series of stacked Hypergraph Aggregation Neural Network (HANN) layers. Inspired by [18], we propose an integrated approach that considers semantic features and syntactic features to extract Chinese events. In our framework, the semantic features are captured by BERT [32]. The Part of Speech (POS) features are initialized by random variables matrix. The Dependency parsing (DP) features are obtained by Stanford NLP[1] and transformed into a Graph Convolutional Network (GCN) from its parsing tree. All the POS and DP embeddings are treated as tensor variables and trained during the backpropagation. The difference between our approach and [18] is that [18] adopted sequence input: word embedding, position embedding, and entity type embedding are treated as input of stacked GCN layers. While our work embraces multiple channel input: semantic features generated by BERT, POS embeddings, and DP GCN embeddings are concatenated as input of fully connected layers.

We summarize the contributions of this study as follows:

(1) We propose an integrated framework to perform Chinese Event Extraction. The framework integrates the semantic features (BERT) and syntactic features (Part of Speech and Dependency Parsing). Considering the unique characteristics of the Chinese language, we adopt alignment of POS embeddings and DP embeddings to BERT input tokens.

(2) We also verify the proposed approach on an empirical dataset. Empirical experiments show that the proposed method can significantly enhance the extraction performance compared with BERT pre-trained models.

The remainder of this paper is organized as follows. We introduce the empirical dataset and its preprocessing in section 2 and propose our framework in section 3. Section 4 reports experimental results and discusses the reasonability, followed by the conclusion in Section 5.

2 Dataset and Preprocessing

2.1 Dataset

We choose the Chinese Event Extraction Dataset (DuEE 1.0) adopted in Language and Intelligent Technology Competition 2020[2] and 2021[3]. DuEE1.0 corpus is selected from the hot search board of Baidu, which reflects various interests of most Chinese people. The dataset includes a list of 65 pre-defined event types, a training set (12000 sentences), a development set (1500 sentences) and two test sets (3500 sentences), containing 17000 sentences total.

Considering that the 3500 labeled test sets are not public to users, we divide the 1500 development set into a new validation set (500 sentences) and a new test set (1000 sentences). In the following experiments, we train our model on the 12000 training set, choose the best model by the new validation set (500 sentences), and test the results on the new test set (1000 sentences).

One annotated example is shown Fig. 3.

2.2 Preprocessing

Some preprocessing needs to be performed before carrying out the experiments.

Firstly, re-split the new validation and test sets as described in the previous section.

Secondly, perform NER, Part of Speech (POS), Dependency Parsing (DP) using Stanford NLP.

Thirdly, align the POS, NER, and DP tags with BERT input tokens.

Lastly, reorganize the datasets.

3 Our Approach

Our framework contains three main modules: BERT module, Part of Speech embedding module, and Dependency Parsing GCN embedding module. The architecture is demonstrated in Fig. [4].

[1]https://nlp.stanford.edu/
[2]https://aistudio.baidu.com/aistudio/competition/detail/32/0/introduction
[3]https://aistudio.baidu.com/aistudio/competition/detail/65/0/introduction

3
4 Experiment

In this section, we mainly report the experimental results. Firstly, the event extraction evaluation metrics are introduced before demonstrating the experimental results. Then, we report the experimental results and provide analyses of the observations. Lastly, we discuss the effectiveness of the syntactic features and the shortcomings of our approach. We also list the planned experiments in the future.

4.1 Event Extraction Evaluation Metrics

The event extraction task, especially the closed-domain event extraction task, can be regarded as a classification task or Sequence Labeling task. Most existing literature uses classification metrics to evaluate the event extraction performance. In accordance with IE and TM, performance is generally measured by calculating the quantity of true positives and negatives, as well as that of false positives and negatives. The most used metrics, e.g., precision, recall, and F1 score, are calculated as follows:

\[
\text{Precision} = \frac{TP}{TP + FP} \quad (1)
\]

\[
\text{Recall} = \frac{TP}{TP + FN} \quad (2)
\]

\[
F1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = \frac{2 \times TP}{2 \times TP + FP + FN} \quad (3)
\]

Figure 3: One annotated example from the Chinese Event Extraction Dataset (DuEE 1.0).
These performance measures provide a brief explanation of the "Confusion Metrics". True positives (TP) and true negatives (TN) are the observations that are correctly predicted. In contrast, false positives (FP) and false negatives (FN) are the values that the actual class contradicts with the predicted class.

Following the DUEE competition evaluation rules, evaluation is case insensitive and calculated according to the token level. If an event argument has multiple annotated mentions, the one with the highest matching F1 will be used.

4.2 Benchmark and Our Approach Variant Models

We choose the state-of-the-art pre-trained model BERT as a benchmark in our experiment. We also provide variants of our method. Benchmark models and our approach variants are listed as follows:

- **BERT.** BERT is a bi-directional transformer architecture model, which has been trained on massive corpora and has learned fairly good semantic representations conditioned on token context and remains rich textual information. Recently, much research has used BERT pre-trained representation as shared textual input features of Event Extraction models. In our experiments, we use two variant BERT Models (e.g., RTB3 and RoBERTa-wwm-ext).

- **POS-DP-LSTM-BERT.** The input channels contain Part of Speech embeddings (POS), Dependency Parsing embeddings (DP), and semantic embeddings (BERT). One LSTM model the POS sequence, and another LSTM model the DP sequence. Finally, the fully connected layers model the concatenated embeddings (the two LSTM output and BERT output embeddings) and predict the BIOE labels.

- **POS-Embedding-BERT.** The input channels contain Part of Speech embeddings (POS) and semantic embeddings (BERT). The POS embeddings are obtained by looking up the POS embedding matrix by POS id. Finally, the fully connected layers model the concatenated embeddings (the POS embeddings and BERT output embeddings) and predict the BIOE labels.

- **DP-GCN-BERT.** The input channels contain Dependency Parsing embeddings (DP) and semantic embeddings (BERT). The DP embeddings are obtained by looking up the Dependency Parsing Graph Convolutional Network by DP id. Finally, the fully connected layers model the concatenated embeddings (the DP embeddings and BERT output embeddings) and predict the BIOE labels.
Table 1: The overall event extraction results.

BERT Models	Models	Precision	Recall	F1	Loss/epoch
RBT3	BERT	0.6064	0.7167	0.6555	0.2170
	POS-DP-LSTM-BERT	0.6182	0.7368	0.6700	0.2692
	POS-Embedding-BERT	0.9013	0.9646	0.9307	0.0255
	DP-GCN-BERT	0.8995	0.9605	0.9280	0.0236
	POS-DP-GCN-BERT	0.8886	0.9565	0.9200	0.0274
RoBERTa-wwm-ext	BERT	0.6703	0.7525	0.7082	0.2009
	POS-DP-LSTM-BERT	0.6545	0.7348	0.6912	0.2472
	POS-Embedding-BERT	0.8946	0.9240	0.9088	0.0297
	DP-GCN-BERT	0.8889	0.9157	0.9020	0.0294
	POS-DP-GCN-BERT	0.8925	0.9290	0.9101	0.0278

• **POS-DP-GCN-BERT.** This model integrated the POS-Embedding-BERT model and DP-GCN-BERT model. The input channels contain Part of Speech embeddings (POS), Dependency Parsing embeddings (DP), and semantic embeddings (BERT). The POS embeddings are obtained by looking up the POS embedding matrix by POS id. The DP embeddings are obtained by looking up the Dependency Parsing Graph Convolutional Network by DP id. Finally, the fully connected layers model the concatenated embeddings (the POS embeddings, DP embeddings, and BERT output embeddings) and predict the BIOE labels.

4.3 Experiment results

The overall event extraction results are shown in Table 1. RBT3 and RoBERTa-wwm-ext are two different variants of Chinese BERT pre-trained models. The most significant difference is the number of hidden layers: RBT3 has three hidden layers while RoBERTa-wwm-ext has twelve hidden layers.

From Table 1, some findings can be summarized as follows:

Firstly, considering the two benchmark models, RoBERTa-wwm-ext BERT model (70.82%) surpasses RBT3 BERT model (65.55%).

Secondly, part of speech features (POS Embeddings) can significantly improve the event extraction performance, no matter which BERT pre-trained model is used as a benchmark model. For example, POS-Embedding-BERT(RBT3) obtains 93.07% F1 score, and POS-Embedding-BERT(RoBERTa-wwm-ext) obtains 90.88% F1 score.

Thirdly, dependency parsing features (DP GCN Embeddings) can significantly improve the event extraction performance, no matter which BERT pre-trained model is used as a benchmark model. For example, DP-GCN-BERT(RBT3) obtains 92.80% F1 score, and DP-GCN-BERT(RoBERTa-wwm-ext) obtains 90.20% F1 score.

Fourthly, We integrate part of speech features and dependency parsing features to check whether they can further enhance the performance. When we choose the RoBERTa-wwm-ext BERT model as the benchmark, we find that the results are what we expected. The integrated model POS-DP-GCN-BERT achieves the best performance (91.01% F1 score). However, when the RBT3 is selected as the benchmark model, we find that the integrated model POS-DP-GCN-BERT (92.00% F1 score) is inferior to POS-Embedding-BERT (93.07% F1 score) and DP-GCN-BERT (92.80% F1 score), which only combine one kind of syntactic feature. We will explore the reasons in the discussion section.

Finally, we attribute the performance boost to multiple channel input information. BERT offers semantic features, while Part of Speech (POS) and Dependency Parsing (DP) provide syntactic features. They are not conflicted but complementary.

4.4 Discussion

The closed-domain event extraction task can be divided into four subtasks: trigger identification, event type classification, argument identification, and argument role classification. From the manner of how to organize the subtasks of the event extraction, most of the existing closed-domain event extraction methods can be divided into two mainstreming categories: pipelined-based method and joint-based method. To demonstrate the effectiveness of the Part of Speech and Dependency Parsing, we use the pipelined manner to train the models. We report the extraction results of the trigger identification and role classification subtasks in Table 2 and Table 3.

From Table 2 and Table 3, some findings can be summarized as follows:
Table 2: The trigger identification and role classification results based on pre-trained RBT3

Tasks	Models	Precision	Recall	F1	Loss/epoch
Trigger	BERT	0.7654	0.8372	0.7997	0.0727
	POS-DP-LSTM-BERT	0.778	0.8414	0.8085	0.0565
	POS-Embedding-BERT	0.9934	0.9958	0.9946	0.0009
	DP-GCN-BERT	0.9901	0.995	0.9925	0.0005
	POS-DP-GCN-BERT	0.9934	0.9983	0.9959	0.0007

Role	BERT	0.4474	0.5962	0.5112	0.3613
	POS-DP-LSTM-BERT	0.4583	0.6322	0.5314	0.4819
	POS-Embedding-BERT	0.8091	0.9334	0.8668	0.0500
	DP-GCN-BERT	0.8088	0.9259	0.8634	0.0467
	POS-DP-GCN-BERT	0.7837	0.9146	0.8441	0.0540

Table 3: The trigger identification and role classification results based on pre-trained RoBERTa-wwm-ext

Tasks	Models	Precision	Recall	F1	Loss/epoch
Trigger	BERT	0.802	0.848	0.8244	0.0634
	POS-DP-LSTM-BERT	0.7965	0.8355	0.8156	0.0731
	POS-Embedding-BERT	0.9818	0.9859	0.9838	0.0026
	DP-GCN-BERT	0.9793	0.9834	0.9814	0.0035
	POS-DP-GCN-BERT	0.981	0.9884	0.9847	0.0034

Role	BERT	0.5385	0.6569	0.5919	0.3383
	POS-DP-LSTM-BERT	0.5125	0.634	0.5668	0.4212
	POS-Embedding-BERT	0.8073	0.8621	0.8338	0.0568
	DP-GCN-BERT	0.7984	0.848	0.8225	0.0552
	POS-DP-GCN-BERT	0.804	0.8696	0.8355	0.0521

Firstly, the integrated POS-DP-GCN-BERT model achieves the best performance in the Trigger subtask. The F1 scores are 99.59% and 98.47%, respectively, when using RBT3 and RoBERTa-wwm-ext as benchmark models.

Secondly, in the role classification subtask, the integrated POS-DP-GCN-BERT model achieves the best performance when using RoBERTa-wwm-ext as a benchmark model. The F1 scores are 83.55%. But the integrated model POS-DP-GCN-BERT (84.41% F1 score) is inferior to POS-Embedding-BERT (86.68% F1 score) and DP-GCN-BERT (86.34% F1 score), which only combine one kind of syntactic feature.

Thirdly, from the above performance, we speculate that POS and DP features are both beneficial for Trigger identification and Role classification. More specifically, the POS features look more important than the DP features. However, this needs more experiments to verify this speculation.

Lastly, more experiments are needed to explore the details of the reasons why a smaller integrated BERT model (RBT3 as the benchmark) performs better than a more complex integrated BERT model (RoBERTa-wwm-ext as the benchmark), e.g., overfitting or underfitting problems.

5 Conclusion

This paper proposes an integrated framework to perform Chinese Event Extraction. It considers both the semantic features and syntactic features. The empirical experiments show that the Part of Speech and Dependency Parsing can significantly enhance the event extraction performance. However, there are still some shortcomings. Thus, in the future more datasets and experiments are required to verify some speculations obtained according to the current results.

References

[1] George R. Doddington, Alexis Mitchell, Mark A. Przybocki, Lance A. Ramshaw, Stephanie M. Strassel, and Ralph M. Weischedel. The automatic content extraction (ace) program-tasks, data, and evaluation. In Lrec, volume 2 of Lrec, pages 837–840. Lisbon, 2004.
[2] Jiangwei Liu, Liangyu Min, and Xiaohong Huang. An overview of event extraction and its applications. *arXiv preprint arXiv:2111.03212*, 2021.

[3] Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, Franciska De Jong, and Emiel Caron. A survey of event extraction methods from text for decision support systems. *Decision Support Systems*, 85:12–22, 2016.

[4] Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and Jun-ichi Tsujii. Event extraction from biomedical papers using a full parser. In *Biocomputing 2001*, Biocomputing 2001, pages 408–419. World Scientific, 2000.

[5] Halil Kilicoglu and Sabine Bergler. Syntactic dependency based heuristics for biological event extraction. In *Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task*, Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task, pages 119–127, 2009.

[6] Ekaterina Buyko, Erik Faessler, Joachim Wermter, and Udo Hahn. Event extraction from trimmed dependency graphs. In *Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task*, Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task, pages 19–27, 2009.

[7] Roman Yangarber, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen. Automatic acquisition of domain knowledge for information extraction. In *COLING 2000 Volume 2: The 18th International Conference on Computational Linguistics*, COLING 2000 Volume 2: The 18th International Conference on Computational Linguistics, 2000.

[8] Chang-Shing Lee, Yea-Juan Chen, and Zhi-Wei Jian. Ontology-based fuzzy event extraction agent for chinese e-news summarization. *Expert Systems with Applications*, 25(3):431–447, 2003.

[9] Jethro Borsje, Frederik Hogenboom, and Flavius Frasincar. Semi-automatic financial events discovery based on lexico-semantic patterns. *International Journal of Web Engineering and Technology*, 6(2):115–140, 2010.

[10] Jiangwei Liu and Xiaohong Huang. Forecasting crude oil price using event extraction. *IEEE Access*, 9:149067–149076, 2021.

[11] Songqiao Han, Hailiang Huang, and Jiangwei Liu. Neural news recommendation with event extraction. *arXiv preprint arXiv:2111.05068*, 2021.

[12] Songqiao Han, Hailiang Huang, Jiangwei Liu, and Shengsheng Xiao. American hate crime trends prediction with event extraction. *arXiv preprint arXiv:2111.04951*, 2021.

[13] Sophia Henn, Abigail Sticha, Timothy Burley, Ernesto Verdeja, and Paul Brenner. Visualization techniques to enhance automated event extraction. *arXiv preprint arXiv:2106.06588*, 2021.

[14] Yang Peng, Melody Moh, and Teng-Sheng Moh. Efficient adverse drug event extraction using twitter sentiment analysis. In *2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)*, 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 1011–1018, 2016.

[15] Wei Lu and Dan Roth. Automatic event extraction with structured preference modeling. In *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 835–844, 2012.

[16] Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi Chen. Text2event: Controllable sequence-to-structure generation for end-to-end event extraction. *arXiv preprint arXiv:2106.09232*, 2021.

[17] Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang. Gate: Graph attention transformer encoder for cross-lingual relation and event extraction. In *The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)*, The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), 2021.

[18] Weizhong Zhao, Jinyong Zhang, Jincai Yang, Tingting He, Huifang Ma, and Zhixin Li. A novel joint biomedical event extraction framework via two-level modeling of documents. *Information Sciences*, 550:27–40, 2021.

[19] Kevin Lybarger, Mari Ostendorf, Matthew Thompson, and Meliha Yetisgen. Extracting covid-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework. *Journal of Biomedical Informatics*, 117:103761, 2021.

[20] Kevin Lybarger, Mari Ostendorf, and Meliha Yetisgen. Annotating social determinants of health using active learning, and characterizing determinants using neural event extraction. *Journal of Biomedical Informatics*, 113:103631, 2021.

[21] Bonan Min, Benjamin Rozonoyer, Haoling Qiu, Alexander Zamanian, and Jessica MacBride. Excavatorcovid: Extracting events and relations from text corpora for temporal and causal analysis for covid-19. *arXiv preprint arXiv:2105.01819*, 2021.
[22] Jiawei Sheng, Shu Guo, Bowen Yu, Qian Li, Yiming Hei, Lihong Wang, Tingwen Liu, and Hongbo Xu. Casee: A joint learning framework with cascade decoding for overlapping event extraction. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 164–174, 2021.

[23] Tommaso Caselli, Osman Mutlu, Angelo Basile, and Ali Hürriyetoğlu. Protest-er: Retraining bert for protest event extraction. In Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021), Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021), pages 12–19, 2021.

[24] Qianren Mao, Xi Li, Hao Peng, Jianxin Li, Dongxiao He, Shu Guo, Min He, and Lihong Wang. Event prediction based on evolutionary event ontology knowledge. Future Generation Computer Systems, 115:76–89, 2021.

[25] Lifu Huang and Heng Ji. Semi-supervised new event type induction and event detection. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 718–724, 2020.

[26] Reza Mansouri, Mahmood Naderan-Tahan, and Mohammad Javad Rashti. A semi-supervised learning method for fake news detection in social media. In 2020 28th Iranian Conference on Electrical Engineering (ICEE), 2020 28th Iranian Conference on Electrical Engineering (ICEE), pages 1–5. IEEE, 2020.

[27] Koichi Miyazaki, Tatsuya Komatsu, Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, and Kazuya Takeda. Conformer-based sound event detection with semi-supervised learning and data augmentation. dim, 1:4, 2020.

[28] Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu, and Jinlong Li. What the role is vs. what plays the role: Semi-supervised event argument extraction via dual question answering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35 of Proceedings of the AAAI Conference on Artificial Intelligence, pages 14638–14646, 2021.

[29] Qi Chen, Wei Wang, Kaizhu Huang, Suparna De, and Frans Coenen. Multi-modal generative adversarial networks for traffic event detection in smart cities. Expert Systems with Applications, 177:114939, 2021.

[30] Jari Björne and Tapio Salakoski. Biomedical event extraction using convolutional neural networks and dependency parsing. In Proceedings of the BioNLP 2018 workshop, Proceedings of the BioNLP 2018 workshop, pages 98–108, 2018.

[31] Xiao Liu, Zhunchen Luo, and He-Yan Huang. Jointly multiple events extraction via attention-based graph information aggregation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1247–1256, 2018.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.