Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan

Hana S. Elbadawi1,2†, Kamal M. Elhag2,3, Elsheikh Mahgoub4, Hisham N. Altayb5, Francine Ntoumi6,7, Linzy Elton8, Timothy D. McHugh9, John Tembo9, Giuseppe Ippolito10, Abdinasir Yusuf Osman11, Alimuddin Zumla8,12 and Muzamil M. Abdel Hamid1*†

Abstract

Background: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan.

Results: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blavIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftaziidine (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed.

Conclusions: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.

Keywords: Hospitalized patients, Carbapenemase resistant genes, Multidrug-resistant, Gram negative bacteria, Sudan

* Correspondence: Hanasalah200@gmail.com; mahdi@end.org; mahdi@uofk.edu
†Hana S. Elbadawi and Muzamil M. Abdel Hamid contributed equally to this work.
1Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
Full list of author information is available at the end of the article
Background
Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. The prevalence and distribution of antimicrobial resistant bacterial infections in the nosocomial settings in Africa is poorly defined [1, 2]. Carbapenems have been considered as a robust group of antibiotics to treat extended spectrum β-lactamase (ESBL)-producing bacteria in the past ten years and are widely prescribed for treatment of multidrug-resistant Gram-negative bacilli in systemic infections [3]. Overuse of these drugs can favor the selection and spread of multidrug resistant bacteria as well as Carbapenem resistant Enterobacteriales (CRE) [4] CRE, and spread of multidrug resistant bacteria as well as Carbanems are widely prescribed for treatment of extended spectrum β-lactamase (ESBL)-producing bacteria. The prevalence and distribution of antimicrobial resistant infections globally of nosocomial infections caused by carbapenem resistant Gram-negative bacilli (GNB), data from Africa have been scanty and antimicrobial stewardship is not optimally practiced. This study aimed to detect and characterize carbapenem resistance GNB isolated from patients treated at Soba University Hospital in Khartoum state, Sudan.

Results
Demographic distribution
The demographic characteristics of the inpatients and the frequency of GNB isolates according to age groups are shown in Fig. 1. Most of the isolates were from pediatric patients less than one year old (42.5 %), followed by age group ranged from 13 to 80 years (38 %) and the rest of the pediatric patients age group ranged from 1 to 12 years (19.5 %). Males 53.4 % (110/206) were predominant among inpatients, with females at 46.6 % (96/206). With regard to the distribution of carbapenemase producers by hospital location, the most carbapenemase producing isolates were found in the Neonatal Intensive Care Unit 32(26 %), followed by Medicine wards 26(22 %), Pediatric wards 22 (18 %), Surgery 18(15 %), ICU 15(12 %) and the Renal Unit 8(7 %). Carbapenemase producing isolates were most frequently distributed among the following clinical specimens; blood (36 %) followed by wound samples (24 %), urine (21 %), body fluids (7 %), catheter tips (6 %) and sputum samples (6 %).

Antimicrobial susceptibility and phenotypic screening
The antibiotic resistance pattern is shown in Fig. 2. Out of 206 isolates tested, the highest percentage of resistance was recorded in ampicillin (98 %) and cephalaxin (93.5 %), amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). The resistance rate was also high in ciprofloxacin (83.1 %), gentamicin (85 %) and amikacin (70 %). The resistance rate for meropenem and imipenem was 63.1 % and 61.6 %, respectively.

Phenotypic carbapenemase activity was detected in 171 (83 %) of the 206 clinical isolates. These isolates were positive for the production of one or more carbapenemase enzymes. Details of the carbapenemase activity among different isolates and phenotypic tests are given in Table 1.

Prevalence and distribution of carbapenemase genes among Gram negative bacilli
One or more carbapenemase genes were detected in 121 (58.7 %) of the 206 study isolates using PCR. blaNDM was the most commonly detected among the isolates, predominantly in K. pneumonia. blaNDM was also
detected more often in *A. baumannii*, *P. aeruginosa* and *E. coli*. The most prevalent gene was *blaNDM* 107 (52 %), followed by *blaIMP* 7 (3.4 %), *blaOXA-48* 5 (2.4 %), *blaVIM* 2 (0.9 %) and *blaKPC* 0 (0 %). ESBLs were detected among these isolates with high prevalence in 183 isolates (88.8 %), with the following genes: *blaCTXM* 126 (61.6 %), *blaSHV* 84 (40.7 %) and *blaTEM* 78 (37.8 %). The genes were unevenly distributed among the different study isolates and more details are given in Table 2.

Co-resistance carbapenemase genes were observed in a small number of isolates; *blaNDM* + *blaOXA-48* were detected in three isolates, while *blaNDM* + *blaVIM* and *blaNDM* + *blaIMP* were detected in two different isolates.

Out of 107 *blaNDM* genes detected, 75 (70 %) were *blaNDM*-1. Other subtypes of *blaNDM* were identified by sequencing, including *blaNDM*-5, and *blaNDM*-6. The sequence of the 14 NDM genes was analyzed to confirm the presumed most prevalent (NDM) gene type and all showed 97–100 % similarity with *blaNDM* genes from the NCBI database with accession number MF379688 and MG764089. Thereafter, all sequences have been deposited in the GenBank database under the following accession numbers: MK033562, MK033563, MK033564, MK363705, MK363706, MK363707, MK363708, MK363709, MK363710, MK371542, MK371543, MK371544, MK371545, and MK371546.
Our analysis revealed that phenotypic test versus Carbapenemase or ESBL gene detection were strongly correlated ($P = 0.0000001; P = 0.01$, respectively). The correlation between phenotypic and carbapenemase genes detection was highly significant for *K. pneumonia, E. coli, P. aeruginosa* and *A. baumannii* ($P = 0.0000031; P = 0.00079; P = 0.015; P = 0.02$, respectively) while for ESBL genes correlation was only significant for *P. aeruginosa* ($P = 0.038$) Table 3.

Co-resistance genes carried with NDM producing gram-negative bacilli
Several isolates carried more than one type of gene including blaNDM. ESBL were often observed together with blaNDM in 87 (81.3 %) of blaNDM producing isolates (107). Most of the isolates carried blaNDM with one ESBL gene in 38 (43.5 %) as the following: blaNDM + blaCTXM in 24 isolates, 27.6 %), blaNDM + blaTEM (8 isolates, 9.1 %), and blaNDM + blaSHV (6 isolates, 6.8 %). Isolates carried blaNDM with two ESBL genes in (39.2 %) as the following: blaNDM + blaCTXM + blaSHV (10 isolates, 11.5 %), blaNDM + blaCTXM + blaTEM (10 isolates, 11.5 %), blaNDM + blaSHV + blaTEM (14 isolates, 16.2 %). Isolates carried blaNDM with three ESBL genes, blaNDM + blaCTXM + blaSHV + blaTEM in 15 isolates (17.3 %). The distribution of co-resistance genes among different Gram-negative bacilli is shown in Table 4.

Discussion
Carbapenem have become the drug of choice for the treatment of severe nosocomial infections caused by Gram-negative bacilli. Carbapenem resistant Enterobacteriales (CRE) is a considerable health problem globally and are associated with increased mortality [3], and thus rapid detection of carbapenem resistance and adequate

Table 1	Frequency of carbapenemase producing among Gram-negative bacilli by phenotypic tests				
Bacterial isolates	Positive isolates for a particular phenotypic test	Total			
	EDTA	MHT + BA	EDTA + BA	EDTA + AB + MHT	n (%)
---------------------	-----------------	-----------	-----------	--------------------	--------
E. coli (n = 28)	17 (16.4)	2 (8.3)	3 (11.1)	4 (26.6)	26 (15.2)
Klebsiella spp. (n = 82)	41 (39)	10 (41.6)	12 (44.4)	8 (53.3)	71 (41.5)
Pseudomonas spp. (n = 45)	19 (18)	9 (37.5)	4 (14.9)	1 (6.6)	33 (19.2)
Acin. baumannii (n = 36)	19 (18)	3 (12.6)	6 (22.2)	2 (13.3)	30 (17.6)
Burkholderia cepacia (n = 2)	2 (1.9)	0 (0)	0 (0)	0 (0)	2 (1.2)
Enterobacter spp. (2)	2 (1.9)	0 (0)	0 (0)	0 (0)	2 (1.2)
Other GNB* (n = 11)	5 (4.8)	0 (0)	2 (7.4)	0 (0)	7 (4)
Total (n = 206)	105 (50.9)	24 (11.7)	27 (13.1)	15 (7.2)	171 (83)

-MHT positive = KPC + OXA48 - Boronic acid positive = KPC
-MHT + Boronic acid positive = KPC - MHT positive + boronic acid negative = OXA 48

Note: MHT applied only for Enterobacteraceae. -EDTA positive = Metallo-β-lactamase*These isolates just positive by BA and not MHT.*Other Gram-negative bacilli include: Citrobacter species (3), Serratia species (1), Proteus spp. (2), Stenotrophomonas maltophilia (3), Vibrio vulnificus (1) and Morganella morganii (1).

Table 2	Distributions of carbapenemase and ESBL genes among GNB isolates							
Bacterial isolates	Carbanapenemase genes	ESBL genes						
	NDM	OXA-48	IMP	VIM	KPC	CTXM	SHV	TEM
	n (%)							
K. pneumoniae (n = 82)	58 (54.3)	1 (20)	3 (43)	1 (50)	0 (0)	53 (41.7)	28 (33.4)	32 (40)
E. coli (n = 28)	9 (8.4)	1 (20)	2 (28.5)	0 (0)	0 (0)	14 (11.6)	6 (7.2)	4 (5)
Pseudomonas spp. (n = 45)	14 (13.1)	2 (40)	2 (28.5)	1 (50)	0 (0)	28 (22.3)	18 (21.5)	16 (20)
A. baumannii (n = 36)	17 (15.8)	1 (20)	0 (0)	0 (0)	0 (0)	20 (15.7)	24 (28.6)	18 (22.5)
Burkholderia (n = 2)	0	0 (0)	0 (0)	0 (0)	0 (0)	2 (1.6)	2 (2.4)	4 (5)
Enterobacter spp. (n = 2)	2 (1.8)	0 (0)	0 (0)	0 (0)	0 (0)	2 (1.6)	1 (1.2)	1 (1.25)
Other GNB* (n = 11)	7 (6.5)	0 (0)	0 (0)	0 (0)	0 (0)	7 (5.5)	4 (5.7)	5 (6.25)
Total (n = 206)	107 (52)	5 (2.4)	7 (3.4)	2 (0.9)	0 (0)	126 (61.1)	84 (40.7)	78 (37.8)

*Other Gram-negative bacilli include: Citrobacter species (3), Serratia species (1), Proteus spp. (2), Stenotrophomonas maltophilia (3), Vibrio vulnificus (1) and Morganella morganii (1)
treatment of such cases is mandatory in health care settings. This study was undertaken to determine the prevalence of different types of carbapenemase producing bacteria among Gram-negative bacilli isolated from various hospitalised patients at Soba University Hospital. The accurate detection of carbapenemase producing microorganisms is challenging for laboratories and requires phenotypic and genotypic analysis. Of 206 isolates, 171 (83 %) were positive by phenotypic analysis, including isolates with resistance to carbapenems. The genotypic analysis detected 121 (58.7 %) positive isolates.

Our results revealed that the prevalence of carbapenemase production among different Gram-negative isolates is increasing (up to 83 %). Of note, this finding is higher than the incidence observed in a previous study conducted in Khartoum State in 2017, which showed a prevalence of 56 % by phenotypic tests (unpublished data). The high frequency of MBL in Khartoum State might be attributed to the excessive use of meropenem in the treatment of patients associated with ESBL infections. Our results are in agreement with a study in Egypt, which reported that carbapenem resistance was 62.7 % among Enterobacterial [12]. High rates of carbapenem resistance in 28.6 % of isolates have also been observed in Uganda by Okoche in 2015 [13]. In Tanzania, the prevalence of carbapenemase producing isolates was 35 % [14]. In South Africa, it was found to be 68 % [15], and in Nigeria, 11.9 % [16]. Carbapenem resistance in low and middle-income countries (LMICs) in Africa is likely to increase as a result of unrestricted usage of antibiotics, as the majority of the population consumes antibiotics without a clinical prescription [17].

Carbapenemase genes have been recently recognized, and these genes are associated with mobile genetic elements that allow their rapid circulation among bacterial isolates. For instance, bla_{NDM} has the potential for rapid spread, as evidenced in Turkey and other countries across the globe [18]. In this study, carbapenemase genes were detected using PCR in 121 (58.7 %) of the sampled isolates. The most prevalent gene among the isolates was bla_{NDM} (88.4 %), mainly in $K. pneumonia$ and other Gram-negative bacilli, including $A. baumannii$, $P. aeruginosa$ and $E. coli$. Our results are comparable with those reported in India, South Africa, Saudi Arabia and other Middle Eastern countries [15, 19–21].

Carbapenemase genes are reported to be more frequent in some regions. For example, bla_{KPC} genes are dominant in some countries such as Greece, Israel, and USA, while bla_{NDM} genes are prevalent in isolates reported from the Far East, India, and Pakistan [11]. OXA-48 was first reported from Turkey, followed by reports from Central Asia and Europe [22]. In the current study, the genes were unevenly distributed among the different bacterial isolates. The bla_{NDM} gene was found in high prevalence (52 %) compared to other genes. Our findings, however, differ with several studies (for instance, in the Okoche study, the most common gene was bla_{VIM} (10.7 %), and bla_{NDM} (2.6 %) was the lowest gene [13], while Mushi reported IMP types were the most

Table 3 Comparison between phenotypic and genotypic results of carbapenem resistance among different GNB strains

Bacterial species	Resistant isolates n	Phenotypic testa n (%)	Carbenemase genesb n (%)	Correlation with carbapenemase	ESBL genesc n (%)	Correlation with ESBL
K. pneumoniae	82	71 (86.6) 11 (13.4)	63 (76.8) 19 (23.2)	0.0000031	72 (87.8) 10 (12.2)	0.017
E.coli	28	26 (92.8) 2 (7.2)	12 (42.8) 16 (57.2)	0.00079	19 (67.8) 9 (32.2)	0.123
P. aeruginosa	45	33 (73) 12 (27)	19 (42) 26 (58)	0.0015	39 (86.6) 6 (13.4)	0.038
A. baumannii	36	30 (83.3) 6 (16.7)	18 (50) 18 (50)	0.022	31 (86) 5 (14)	0.14
Other GNBd	15	11 (73) 4 (27)	9 (60) 6 (40)	0.055	15 (100) 0 (0)	0.08
Total	206	171 (83) 35 (17)	121 (58.7) 85 (41.3)	0.0000001	176 (85.4) 30 (14.6)	0.01

aPhenotypic test include: EDTA, Borinic Acid and Modified Hodge Test
bCarbapenemase genes include: NDM, VIM, IMP and OXA-48
cESBL genes include: CTX-M, SHV, and TEM
dOther GNB include: Citrobacter species (3), Burkholderia spp. (2), Enterobacter Spp.(2), Serratia species (1), Proteus spp. (2), Stenotrophomonas maltophilia (3), Vibrio vulnificus (1), and Morganella morganii (1)

Table 4 Co resistance genes with bla_{NDM} among Gram-negative bacilli

Bla genes	K. pn	E.coli	P. aer	A. bau	Enter	Total (%)
NDM + CTXM	15	2	5	2	0	24 (27.6 %)
NDM + SHV	2	0	2	2	0	6 (6.8 %)
NDM + TEM	4	1	1	1	1	8 (9.1 %)
NDM + CTXM + SHV	7	0	1	1	1	10 (11.5 %)
NDM + CTXM + TEM	6	2	0	2	0	10 (11.5 %)
NDM + SHV + TEM	7	0	1	6	0	14 (16.2 %)
NDM + All	9	1	3	2	2	15 (17.3 %)
Total	50	6	13	16	2	87 (100 %)

$ - K. pn = Klebsiella pneumoniae, P. aer = Pseudomonas aeruginosa, A. bau = Acinetobacter baumannii, Enter = Enterobacter spp $
predominant at 21.6 % in their study [14]. Other studies reported that \textit{bla}OXA-48 was the most prevalent gene [23, 24]. In contrast to global reports of a high prevalence of \textit{bla}KPC genes [11, 25], we have not detected \textit{bla}KPC among the tested isolates. NDM variants have been described differing by several amino acid changes include, \textit{bla}NDM-2, \textit{bla}NDM-4, \textit{bla}NDM-5, \textit{bla}NDM-6 and \textit{bla}NDM-7 [26]. In this study, 107 \textit{bla}NDM producer isolates had been identified using PCR, the most common subtype 75 (70 %) was \textit{bla}NDM-1. Other subtypes of \textit{bla}NDM were detected by sequencing including \textit{bla}NDM-5, and \textit{bla}NDM-6 among different Gram-negative bacilli, including \textit{K. pneumoniae}, \textit{E. coli}, \textit{A. baumannii}, \textit{P. aeruginosa} and \textit{Enterobacter} spp.

Carbenapenem producers are becoming highly distributed among Enterobacteriales, \textit{A. baumannii}, \textit{P. aeruginosa} and other Gram-negative bacilli. The highest prevalence of carbenapenemase production in this study was observed in \textit{K. pneumoniae}, followed by \textit{P. aeruginosa}, \textit{A. baumannii} and \textit{E. coli} Table 1. Similar studies in which \textit{K. pneumonia}, \textit{A. baumannii} and \textit{Pseudomonas} spp. as the most common carbenapenemase producing isolates were reported [27–29]. The prevalence of carbenapenemase producing isolates varies across hospital settings. This variation could be attributed to a wide range of factors including differences in collection time of isolates, study designs and target populations. Common carbenapenemase encoding genes have been associated with bacteria isolated from blood, urine, wounds and sputum, as reported in many studies in Africa and India [13, 14, 16, 30]. In this finding, carbenapenem producers were more frequently isolated from blood followed by wounds and urine as these results are compatible with a study in South Africa in which blood was the most common specimen type (25 %), followed by urine (22 %) [15].

Young patient age has long been considered as a risk factor for Carbenapenem resistant Enterobacteriales (CRE) infection, which agrees with this study’s finding that carbenapenemase-producing Gram negative bacilli were most frequent in children less than one year of age, located in the neonatal and pediatric wards. High rates of carbenapenem resistant infections were observed among elderly patients from Medicine wards (22 %) and ICU (12 %), which agrees with another study that found CRE to be more frequently isolated in the elderly [31].

Carbenapenem resistant Gram-negative bacilli are usually resistant to other routinely used antimicrobial agents [32–34]. The plasmids carrying carbenapenemase genes like \textit{bla}NDM-1 are diverse and can harbor a high number of additional resistance genes (e.g., ESBL-alleles) as well as other carbenapenemase genes like \textit{bla}OXA-48, \textit{bla}VIM. These plasmids were considered as the source of multidrug resistance in one single bacterium [20, 35]. Moreover, mechanisms of resistance to \(\beta\)-lactam antibiotics via the production of ESBL, AmpC and carbenapenemase were also noticed among the isolates that produce different combinations of the enzymes. In the present study, co-resistance of \textit{bla}NDM with \textit{bla}OXA-48, \textit{bla}VIM and \textit{bla}IMP were reported in few isolates. In connection to co-resistance with ESBL, \textit{bla}CTXM, \textit{bla}SHV and \textit{bla}TEM were detected in a high prevalence of \textit{bla}NDM positive isolates. Most of the isolates carried \textit{bla}NDM with one or more ESBL genes. This is in agreement with various studies that have reported co-resistance among clinical isolates [36, 37]. These multiple resistance genes found in some isolates, as observed in this study, are indicative of the existence of multidrug resistant pathogens, which are responsible for treatment failure, outbreaks of infections and higher treatment costs [38].

Sudan is a large country that shares its borders with seven other countries. People move freely between these borders with the potential passage of antibiotic resistant strains. The dynamic movements of people will make it challenging to monitor AMR in these countries, especially at the borders. These challenges may also represent an opportunity for wider continental monitoring and collaboration between countries rather than country-specific. Such an approach will aid in universal and intergovernmental initiatives to control and limit the AMR spread.

Conclusions
The frequency of carbenapenemase producing bacilli was found to be high in Soba University Hospital (SUH). \textit{bla}NDM was found to be the most prevalent carbenapenemase gene among clinical isolates. Improved antibiotic stewardship and infection control measures and close surveillance across all hospitals in Sudan is required. The relative distribution of carbenapenemase genes among Gram-negative bacilli (GNB) in nosocomial infections in Africa needs to be investigated.

Methods
Study design and clinical isolates
A cross-sectional laboratory-based study was conducted at the microbiology department in Soba University Hospital and Unit of Molecular Biology, Institute of Endemic Diseases (IEND), University of Khartoum; involving Gram negative clinical bacterial isolates, suspected as carbenapenemase producing based on breakpoints zone diameter of carbenapenems (CLSI, 2017) [39]. These were isolated from cultures of various clinical specimens; blood, urine, wound swabs, sputum, tips of catheters and other body fluids, between 1st October 2016 and 25th February 2017 from inpatients at Soba University Hospital. Quality control strains \textit{[E. coli} (ATCC #25,922) and \textit{P. aeruginosa} (ATCC #27,853)] were used in
antimicrobial susceptibility testing. Standard biochemical tests were used for primary identification [40] and molecular identification using PCR [8] was used for all study isolates with universal primer (16SrRNA). For species-specific isolates identified on biochemical testing, species-specific primers for Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii were used for confirmation [41–52]. All isolates were stored in 20% glycerol at -20°C until use.

Subculture, susceptibility testing, phenotypic screening and confirmatory tests for carbapenemase resistance

Selection of antimicrobial panels and interpretation of disk diffusion for each bacteria was completed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines [39].

Isolates were subcultured on blood agar (BA) and then subjected to susceptibility testing with the following antimicrobials (Mast Diagnostic, UK): amoxicillin-clavulanate (AMC) (30µg); cefuroxime (CXM) (30µg); cephalexin (CL) (30µg); ceftriaxone (CRO) (30µg); cef-tazidime (CAZ) (30µg); cefotaxime (CTX) (30µg); meropenem (MEM) (10µg); imipenem (IPM) (10µg); amikacin (AK) (30µg); gentamicin (CN) (10µg); ciprofloxacin (CIP) (5µg); trimethoprim-sulfamethoxazole (SXT) (25µg); temocillin (TEM) (30µg); aztreonam (AZT) (30µg). The Kirby Bauer (disk diffusion) was performed; each isolate was swabbed onto Muller-Hinton agar and the antibiotic discs were placed on top, incubated for 24 hours [39, 40].

Bacterial isolates that showed intermediate or resistance to imipenem or meropenem were considered as suspected carbapenemase producers and were screened. Phenotypic confirmatory tests for carbapenemase production were conducted using the boronic acid synergy test for class A β-lactamases, the EDTA synergy test for metallo-β-lactamase and the Modified Hodge Test (MHT) for Enterobacteriales to detect KPC and OXA-48 producers in addition to temocillin sensitivity [46].

Molecular identification of carbapenemase encoding genes

PCR was carried out using a thermal cycler and the following primers (Macrogen, Korea), blaVIM, blaIMP, blaNDM, blaNDM-1, blaKPC, blaOXA-48, blaTEM, blaSHV and blaCTX-M genes were used [47–51]. The reaction was carried out in a total reaction volume of 25µl (5µl master mix, Maxime RT premix kit) [8]. The purity and integrity of each PCR product was evaluated, and the amplified product was confirmed with reference to the standard DNA ladder.

DNA sequencing and genes analysis

The PCR product of blaNDM genes and 16S rRNA were purified and Sanger sequencing was performed by Macrogen Company (Seoul, Korea). Fourteen blaNDM gene products have been selected randomly to represent the study isolates.

Bioinformatics analysis

Firstly, DNA sequences were clarified and determined the overall quality of the sequences by reviewing nucleotide chromatogram by using Finch TV software version 1.4.0 () to ensure the ambiguous sites. Thereafter, nucleotide sequences of the NDM genes identified were searched for sequence similarity using nucleotide BLAST [52] (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Statistical analysis

Data were analysed using SPSS software version 20.0. Cross tabulation was used to present the relationships between data of antimicrobial sensitivity, phenotypic tests and resistant gene detection among the study isolates, qualitative data were performed through χ² test and significance was set at p ≤ 0.05.

Abbreviations

AK: Amikacin; AMC: Amoxicillin clavulanate; Amp C: Class C β-lactamases; AMR: Antimicrobial resistance; ATCC: American Type Culture Collection; AZT: Azteroname; BLAST: Basic local alignment search tool; bp: Base pair; CAZ: Cefazidime; CIP: Ciprofloxacin; CL: Cephalexin; CLSI: Clinical and Laboratory Standards Institute; CN: Gentamicin; CPR: Carbapenemase producer Enterobacteriales; CRE: Carbapenem resistance Enterobacteriales; CXM: Cefuroxime; DNA: Deoxyribonucleic acid; EDTA: Ethylene diamine tetraacetic acid; ESBL: Extended-Spectrum β-Lactamase; GNB: Gram-negative bacilli; ICU: Intensive care unit; IED: Institute of Endemic Diseases; IMP: Imipenem; MBL: Metallo-β-lactamas; MDR: Multi drug resistance; MEM: Meropenem; MHT: Modified Hodge test; NDM: New Delhi Metallo-β-lactamase; OXA: oxacillinases; P. aeruginosa: Pseudomonas aeruginosa; PCR: Polymerase Chain Reaction; S. maltophilia: Stenotrophomonas maltophilia; SHV: Sulphhydryl Reagent Variable; SUH: Soba University Hospital; SXT: Trimethoprim-sulfamethoxazole; TEM: Named after patient Temoniera; TBM: Temocillin; WHO: World Health Organisation; °C: Celsius degree; 16SrRNA: 16 small ribosomal RNA; µg: Microgram.

Acknowledgements

We would like to thank the medical and technical staff of Medical Microbiology Department in Soba University Hospital, University of Khartoum for their help in data collection. We thank Dr. Mohamed Osman for English corrections. FN; LE; TDM; AA; GI; AZ; AYO; HE; MMAH are members of the Pan African Network for Rapid Research, Response, and Preparedness for Infectious Diseases Epidemics consortium (PANDORA-ID-NET) supported by EDCTP2.

Authors’ contributions

HE, KE, AA and MMAH designed the study. HE carried out the microbiological analysis. HE, MMAH and HA analysed the data. HE and MMAH wrote the first draft. MMAH, KE, EM, HA, FN, LE, TDM, JT, AYO, GI and AZ were major contributors in revising the manuscript critically for important intellectual content. MMAH, EM, and KE supervised the work. MMAH, and HA...
secured funding for the practical work. AZ and AYO revised the final draft. All authors read and approved the final manuscript.

Funding

This research received partial funding research from the Ministry of Higher Education and Scientific Research, Sudan, grant number: SUD/MOH/MMAH/08/2016. FN, LE, TDM, MMDH, JT, GI, AZO and AZ are part of PANDORA-ID-NET Consortium supported by the European and Developing Countries Clinical Trials Partnership (EDCTP2) programme (RIA2016E-1609). The funders had no role in the study design, data collection, analysis, interpretation or writing of the manuscript.

Availability of data and materials

The antimicrobial data datasets used and/or analyzed during the current study are available at blaNMD gene sequences are deposited at NCBI under the accession numbers: MK033562- MK033564, MK363705-MK363710 and MK371542- MK371546 for the T65 rRNA sequences generated in this study are available from GenBank under successive accession numbers MWN34199–MWN34227.

Ethics approval and consent to participate

This study was approved by the Institutional Research Ethics Committee of the Institute of Endemic Diseases (IEND), University of Khartoum and Soba University Hospital (Ref: 12/2017). Written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
2. Soba University Hospital, University of Khartoum, Khartoum, Sudan.
3. Ahmad University for Women, Omdurman, Sudan.
4. Department of Microbiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
5. Department of Biochemistry, College of Sciences, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia.
6. Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo.
7. Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.
8. Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom.
9. UNZA-UCLMS and HERPEZ Research and training programs, University teaching Hospital, Lusaka, Zambia.
10. National Institute for Infectious Diseases, IRCVS, Via Pomezia 292, 00149 Lazzaro Spallanzani, Rome, Italy.
11. The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK.
12. UCL Hospitals NIHR Biomedical Research Centre London, London, UK.

Received: 15 July 2020 Accepted: 23 February 2021

References

1. Tadesse BT, Ashley EA, Onagbore S, Havumaki J, Wijegoonewardena M, Gonzalez LIDS. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;16166.
2. Kumwenda GP, Sugawara Y, Abe R, Akeda Y, Kasambara W, Chizani K, et al. First identification and genomic characterization of multidrug-resistant carbapenemase-producing Enterobacteriaceae clinical isolates in Malawi, Africa. J Med Microbiol. https://doi.org/10.1099/jmm.0.001087.
3. Hall BG, Barlow M. Evolution of the serine β-lactamases: past, present and future. Drug Resist Updat. 2007;7:111–23.
4. Harris P, Paterson D, Rogers B. Facing the challenge of multidrug-resistant carbapenemase-producing Enterobacteriaceae. Lancet Infect Dis. 2015;202243–7.
5. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. 2017. Available at: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_2017.pdf.
6. Nordmann P, Naas T, POirel L. Global spread of Carbapenemase-producing Enterobacteriaceae: Emerg Infect Dis. 2011;17(10):1791–8.
7. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–58.
8. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Mirigau O. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18:452–8.
9. Fournier S, Lepaintier M, Kasir-I-Chihani N, Huang M, Brun-Buisson C, Jasler V, et al. Link between carbapenemase-producing Enterobacteriaceae carriage and cross-border exchanges: eight-year surveillance in a large French multisectorial institution. J Travel Med. 2012;19:320–3.
10. Huang TD, Bogaerts P, Berhin C, Hoebeke M, Bauraing C, Glupczynski Y. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015. Eurosurveillance. 2017;1–9.
11. Pitout JDD, Nordmann P. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Anti Microb Agents Chemother. 2015;59(10):5873–84.
12. Amer WH, Khalil HS, Abd EL Wahab MA. Characterization of carbapenem resistant Enterobacteriaceae in risk factors, phenotypic and genotypic characterization of carbapenem resistant Enterobacteriaceae in Tanta University Hospitals, Egypt. Int J Infect Control. 2016;12:1–11.
13. Okojo D, Aisimwe BB, Katabazi FA, Kato L. Prevalence and characterization of Carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral. PLoS. 2015;481–11.
14. Mushli MF, Mhiana SE, Imizaralguo C, Bwanga F. Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary Hospital in Mwanza, Tanzania. Biomed Res Int. 2014;3–8.
15. Perovic O, Micro FSA, Micro M, Britz MB, Chib MB, Chetvy V. IN PRACTICE molecular detection of carbapenemase-producing genes in referral Enterobacteriaceae in South Africa: a short report. SAMU. 2016;10(6):975–7.
16. Yusuf I, Anzai AH, Haruna M, Sharif AA, Getso MI. Detection of multi drug resistant bacteria in major hospitals in Kano. Braz J Microbiol. 2014;45(3):791–8.
17. Mukongo JK, Namuwenge PM, Okure G, Mwesige B, Namussi OK, Mukanga D. Over-the-counter suboptimal dispensing of antibiotics in Uganda. J Multidisip Health. 2016;3:303–10 Published 2013 Aug 20.
18. Karabay O, Altimis M, Koroglu M, Karatuna O, Aydemir OA. The carbapenem-resistant Enterobacteriaceae threat is growing. NDM - 1 epidemic at a training hospital in Turkey. Ann Clin Microbiol Antimicrob. 2016;1:1–6.
19. Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: treatment options with carbapenems compromised. J Assoc Physicians India. 2010;58:147–9.
20. Kumurasamy K, Toleman M, Walsh T, AI. E. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602.
21. Sonnevend A, Ghazavi A, Hashmey R, Jamal W, Otimis V, Shibli A, et al. Characterization of carbapenem-resistant Enterobacteriaceae with high rate of autochthonous transmission in the arabian peninsula. PLoS One. 2015;10:e0131372.
22. Gülmez D, Woodford N, Palepou FM, Mushaq S, Metan G, Yakupogullari Y, et al. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int J Antimicrob Agents. 2008;31:523–6.
23. Dahab RA, Ibrahim AM, Altayb HH. Phenotypic and genotypic detection of carbapenemase enzymes producing gram-negative bacilli isolated from patients in Khartoum state [version 1; peer review: awaiting peer review]. F1000Research. 2017;6:e0131371.
24. Memish Z, Assiri A, Almash M, AI. E. Molecular characterization of carbapenemase production among gram-negative bacteria in Saudi Arabia. Microb Drug Resist. 2015;21(3):307–14.
25. Tångdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5):501–12. doi: https://doi.org/10.1111/joim.12342.
26. Bonnin A, Nordmann P. First identification of novel NDM Carbenapenem, NDM-7, in Escherichia coli in France. 2013;8(4):1–5.
27. Doi Y, Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med. 2015;36:74–84.
28. Zowawi HM, Sartor AL, Sjdjabat HE, Bailky HH, Walsh TR, Al Johani M. Molecular epidemiology of Carbapenem-resistant Acinetobacter baumannii isolates in the Gulf cooperation council States: dominance of OXA-23-type producers. J Clin Microbiol. 2015;53(3):896–903.

29. Karaslan A, Soykal A, Gelmiz GA, Kadayifci EK. Molecular characterization and risk factors for carbapenem-resistant gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect. 2016;92:67–72.

30. Bhaskar MM, Anand R, Harish BN. Prevalence of blaNDM-1 producing blood isolates of Escherichia coli, Klebsiella species and Enterobacter species in a tertiary care centre in South India. J Microbiol Res Rev. 2013;16(6):61–8.

31. Lin MY, Lyles-Banks RD, Lolans K, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57:1246–52.

32. Yusuf I, Arzai AH, Haruna M, Sharif AA, Getso MI. Detection of multi drug resistant bacteria in major hospitals in Kano, North-West, Nigeria. Braz J Microbiol. 2014;45(3):791–8 [cited 2020 June 23].

33. Levy HG, Gould I, Endimiani A, Al E. Detection, treatment, and prevention of carbapenemase-producing Enterobacteriaceae: recommendations from an international working group. J Chemother. 2013;25(3):129–40.

34. Legese MH, Weldearegay GM, Asrat D. Extended-spectrum beta-lactamase- and amiodarion children. Infect Drug Resist. 2017;10:27–34.

35. Nordmann P, Poirel L, Toleman MA, Walsh T. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by gram-negative bacteria? J Antimicrob Chemother. 2011;66(4):689–92.

36. Zhang X, Chen D, Xu G, Huang W, Wang X. Molecular epidemiology and drug resistant mechanism in carbapenem-resistant Klebsiella pneumoniae isolated from pediatric patients in Shanghai, China. PLoS One. 2018;20:1–10.

37. Nithya N, Remitha R, Jayasee PR, Faisal M, Manish Kumar PR. Analysis of beta-lactamases, blaNDM-1, and blaCMY-2 in Pseudomonas aeruginosa isolates from a tertiary care centre in South India. Indian J Med Res. 2017;146(Supplement):S38–45.

38. Cohen S, Leverstein-Van J, Hall M. Dutch working party on the detection of highly resistant microorganisms. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2010;36(3):205–10.

39. CLSI. M100 performance standards for antimicrobial. 27th ed; 2017. p. 106–43.

40. Wauters G, Vaneechoutte M. Approaches to the identification of aerobic gram-negative bacteria in major hospitals in Kano, North-West, Nigeria. J Clin Microbiol. 2009;47(6):1631–9.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.