Delbourgo, R.; Lashmar, D.
Born reciprocity and the $1/r$ potential. (English) Zbl 1161.81444
Found. Phys. 38, No. 11, 995-1010 (2008).

Summary: Many structures in nature are invariant under the transformation pair, $(p, r) \rightarrow (b r, -p/b)$, where b is some scale factor. Born’s reciprocity hypothesis affirms that this invariance extends to the entire Hamiltonian and equations of motion. We investigate this idea for atomic physics and galactic motion, where one is basically dealing with a $1/r$ potential and the observations are very accurate, so as to determine the scale $b \equiv m \Omega$. We find that an $\Omega \sim 1.5 \times 10^{-15} \text{s}^{-1}$ has essentially no effect on atomic physics but might possibly offer an explanation for galactic rotation, without invoking dark matter.

MSC:
81V45 Atomic physics
83F05 Relativistic cosmology

Keywords:
Born reciprocity; atomic physics; galactic rotation; dark matter

Full Text: DOI arXiv

References:
[1] Born, M.: Rev. Mod. Phys. 21, 463 (1949) - Zbl 0035.27206 - doi:10.1103/RevModPhys.21.463
[2] Born, M.: Nature 163, 207 (1949) - Zbl 0031.37802 - doi:10.1038/163207a0
[3] Green, H.S.: Nature 163, 208 (1949) - Zbl 0031.37803 - doi:10.1038/163208a0
[4] Olling, R.P., Merrifield, M.R.: Mon. Not. R. Astron. Soc. 326, 164 (2001) - doi:10.1046/j.1365-8711.2001.04581.x
[5] Korchagin, V.I., et al.: Astrophys. J. 126, 2896 (2003)
[6] Battaglia, G., et al.: Mon. Not. R. Astron. Soc. 370, 1055 (2005)
[7] Clemens, D.P.: Astrophys. J. 205, 422 (1985) - doi:10.1086/163386
[8] McClure-Griffiths, N.M., Dickey, J.M.: Astrophys. J. 671, 427 (2007) - doi:10.1086/522297
[9] Anderson, J.D., et al.: Phys. Rev. Lett. 81, 2858 (1998) - doi:10.1103/PhysRevLett.81.2858
[10] Clowe, D., et al.: Astrophys. J. Lett. 648, 109 (2006) - doi:10.1086/508162
[11] Low, S.G.: J. Phys. A 35, 5711 (2002) - Zbl 1068.81032 - doi:10.1088/0305-4470/35/27/312
[12] Jarvis, P.D., Morgan, S.O.: Found. Phys. Lett. 19, 501 (2006) - Zbl 1111.81077 - doi:10.1007/s10702-006-1006-5
[13] Govaerts, J., Jarvis, P.D., Morgan, S.O., Low, S.G.: J. Phys. A 40, 12095 (2007) - Zbl 1158.81011 - doi:10.1088/0305-4470/40/40/006
[14] Milgrom, M.: Astrophys. J. 270, 365 (1983) - doi:10.1086/161130
[15] Milgrom, M.: Astrophys. J. 302, 617 (1986) - doi:10.1086/164021
[16] Milgrom, M.: Ann. Phys. 229, 384 (1994) - doi:10.1006/aphy.1994.1012
[17] Bekenstein, J.D.: Contemp. Phys. 47, 387 (2006) - doi:10.1080/00107510701244055
[18] Bekenstein, J., Maguejo, J.: Phys. Rev. D 73, 103513 (2006) - doi:10.1103/PhysRevD.73.103513

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.