Generalized quantum isotonic nonlinear oscillator in d dimensions

Richard L Hall1, Nasser Saad2 and Özlem Yeşiltaş3

1 Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québec H3G 1M8, Canada
2 Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
3 Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara, Turkey

E-mail: rhall@mathstat.concordia.ca, nsaad@upei.ca and yesiltas@gazi.edu.tr

Received 23 July 2010, in final form 4 October 2010
Published 29 October 2010
Online at stacks.iop.org/JPhysA/43/465304

Abstract
We present a supersymmetric analysis for the d-dimensional Schrödinger equation with the generalized isotonic nonlinear-oscillator potential $V(r) = B^2/r^2 + \omega^2 r^2 + 2g(r^2 - a^2)/(r^2 + a^2)^2$, $B \geq 0$. We show that the eigenvalue equation for this potential is exactly solvable provided $g = 2$ and $(\omega a^2)^2 = B^2 + (\ell + (d-2)/2)^2$. Under these conditions, we obtain explicit formulae for all the energies and normalized bound-state wavefunctions.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

Recently, Cariñena et al [1] studied Schrödinger’s equation with a quantum nonlinear-oscillator potential of the form

$$
-\frac{d^2}{dx^2} + x^2 + 8 \frac{2x^2 - 1}{(2x^2 + 1)^2} \psi_n(x) = E_n \psi_n(x).
$$

Their interest in this study came from the fact that equation (1) is exactly solvable, in a sense that the eigenenergies and eigenfunctions can be obtained explicitly; they were able to show that [1]

$$
\psi_n(x) = \frac{P_n(x)}{(2x^2 + 1)^{1/2}} e^{-x^2/2},
E_n = -3 + 2n,
$$

where the polynomial factors $P_n(x)$ are related to the Hermite polynomials by

$$
P_n(x) = 1 \quad \text{if } n = 0
1 \quad \text{if } n = 3, 4, 5, \ldots
$$

where $H_n(x)$ and $H_{n-2}(x)$ are Hermite polynomials.
Soon afterwards, Fellows and Smith [2] considered another interesting case and, in particular, they showed that for certain values of the parameters \(w \) and \(g \), the potential in the Schrödinger equation

\[
-\frac{d^2}{dx^2} + \frac{w^2x^2}{(x^2 + a^2)^2} + 2g \frac{x^2 - a^2}{(x^2 + a^2)^2} \psi_n(x) = 2E_n \psi_n(x)
\]

(4)
is indeed a supersymmetric partner of the harmonic oscillator potential. By means of the supersymmetric approach, Fellows and Smith [2] were able to construct an infinite set of exactly soluble partner potentials, along with their eigenfunctions and eigenvalues. Very recently, Sesma [3], using a Möbius transformation, was able to transform equation (4) into a confluent Heun equation and thereby obtain a simple and efficient algorithm to solve the Schrödinger equation (4) numerically, no matter what values are chosen for the parameters \(w \) and \(g \). Furthermore, using suitable mass distributions, the position-dependent effective mass Schrödinger equation has been solved for a new nonlinear oscillator [4]. We note that the term \(2(x^2 - a^2)/(x^2 + a^2)^2 \) in equation (4) can be written as the sum of two centripetal barriers in the complex plane

\[
\frac{2(x^2 - a^2)}{(x^2 + a^2)^2} = \frac{1}{(x + ia)^2} + \frac{1}{(x - ia)^2}, \quad t = \sqrt{-1},
\]

that is to say, a rational potential with two imaginary poles symmetrically placed with respect to the origin [1]. The purpose of the present work is to use the supersymmetric approach to analyse the exact analytic solutions for the more general potential class (4). We consider the \(d \)-dimensional Schrödinger eigenvalue problem

\[
H \Psi(r) = E \Psi(r), \quad H = -\Delta + V,
\]

(5)

where \(\Delta \) is the \(d \)-dimensional Laplacian operator, \(d \geq 2 \), and \(V(r) \) is the central potential given by

\[
V(r) = \frac{B^2}{r^2} + \omega^2 r^2 + 2g \frac{(r^2 - a^2)}{(r^2 + a^2)^2}, \quad B^2 \geq 0.
\]

(6)

We show, through the factorization method, that the eigenequation for this potential, equation (5), is indeed exactly solvable provided \(g = 2 \) and \((\omega a^2)^2 = B^2 + (\ell + (d - 2)/2)^2\).

The paper is organized as follows. In section 2, we consider the \(d \)-dimensional Schrödinger equation with the nonlinear-oscillator potential (6). In section 3, we briefly review the factorization method and the basic formulae from supersymmetric theory that we need for our investigation [5, 6]. In section 4, we show that the isotonic nonlinear-oscillator potential [1, 2] and the Goldman–Krivchenkov potential are isospectral supersymmetric partner potentials. In section 6, the explicit construction of all the exact solutions of Schrödinger’s equation (5) with \(V(r) \) given by (6) is presented.

2. Schrödinger’s equation in \(d \) dimensions

By considering the action of the Laplacian operator on a wavefunction of the form

\[
\Psi(r) = u(r)Y_l(\theta_1, \theta_2, \ldots, \theta_{d-1})
\]

with a spherically symmetric factor \(u(r) \) and a generalized spherical harmonic factor \(Y_l \), we obtain the radial Schrödinger equation in \(d \) dimensions for a spherically symmetric potential \(V(r) \) as [7, 8]

\[
-\frac{d^2 u}{dr^2} - \frac{d - 1}{r} \frac{du}{dr} + \frac{\ell(\ell + d - 2)}{r^2} u + V(r)u = Eu,
\]

(7)

where, if \(r \in \mathbb{R}^d \), then \(r = ||r|| \), and

\[
u(r) \in L^2([0, \infty), r^{d-1}dr).
\]
The first-order derivative term can be removed by using the new radial function \(\psi(r) \) given by
\[
\psi(r) = r^{d/2} u(r), \quad d \geq 2, \quad \psi(0) = 0, \quad \psi(r) \in L^2([0, \infty), dr).
\]
Thus, we find
\[
-\frac{d^2\psi}{dr^2} + U(r)\psi = E\psi,
\]
where
\[
U(r) = V(r) + \frac{(2\ell + d - 1)(2\ell + d - 3)}{4r^2}.
\]
We now recall the definition of \(V(r) \) in (6) and combine the terms in \(1/r^2 \) to obtain
\[
U(r) = \frac{k(k + 1)}{r^2} + \omega^2 r^2 + 2g \frac{(r^2 - a^2)}{(r^2 + a^2)^2},
\]
where \(k \) is defined so that
\[
B^2 + \frac{1}{4}(2\ell + d - 1)(2\ell + d - 3) = k(k + 1),
\]
that is to say,
\[
k = \left[B^2 + \frac{\ell + d - 2}{2} \right]^2 - \frac{1}{2}.
\]
We find it convenient to label the energy eigenstates \(\psi_{nk} \equiv \psi_{n\gamma_d} \), where \(n = 0, 1, 2, \ldots \) is the number of radial nodes, and \(\gamma_d = k + \frac{1}{2} \).

3. The factorization method

In this section we give a brief review of some concepts of supersymmetric quantum mechanics (SUSY QM) that we need in the following sections; namely the factorization method and supersymmetric partner potentials. We start with Schrödinger’s time-independent equation for a one-dimensional radial problem (in the units \(\hbar = 2m = 1 \))
\[
H \psi(r) = \left[-\frac{d^2}{dr^2} + U(r) \right] \psi(r) = E \psi(r),
\]
where the potential \(U(r) \) is real and possibly singular at \(r = 0 \). The wavefunction \(\psi(r) \) must be square integrable and normalized in a sense that \(\int |\psi(r)|^2 dr = 1 \). The main idea of the factorization method, as introduced in this context by Schrödinger and Dirac, is to write the second-order differential operator \(H \) in (12) as the product of two first-order differential operators \(A^\dagger \) and \(A \), such that \(H = A^\dagger A \) and
\[
A^\dagger = -\frac{d}{dr} + W(r), \quad A = \frac{d}{dr} + W(r),
\]
where the function \(W(r) \) is a real function of \(r \) and is known as the superpotential of the problem. The operators \(A \) and \(A^\dagger \) are Hermitian conjugates of each other: \((A^\dagger)^\dagger = A \). Let us define
\[
H_1 = A^\dagger A = -\frac{d^2}{dr^2} + U_1(r), \quad H_2 = AA^\dagger = -\frac{d^2}{dr^2} + U_2(r).
\]
In general \(H_1 \equiv H \) and \(H_2 \) are two different Hamiltonians. They are known as partner Hamiltonians in SUSY QM and are given explicitly by
\[
H_1 = A^\dagger A = \left(-\frac{d}{dr} + W(r) \right) \left(\frac{d}{dr} + W(r) \right) = -\frac{d^2}{dr^2} + W^2(r) = \frac{d^2}{dr^2} + W^2(r) - \frac{dW(r)}{dr} = -\frac{d^2}{dr^2} + U_1(r)
\]
\[
(15)
\]
Similarly, we find
\[H_2 = AA^\dagger = \left(\frac{d}{dr} + W(r) \right) \left(-\frac{d}{dr} + W(r) \right) = -\frac{d^2}{dr^2} + W^2(r) + \frac{dW(r)}{dr} = -\frac{d^2}{dr^2} + U_2(r) \]
\[\text{(16)} \]
where the potentials \(U_1 \) and \(U_2 \) are known as supersymmetric partner potentials defined by
\[U_1(r) = W^2(r) - \frac{dW(r)}{dr} \quad \text{and} \quad U_2(r) = W^2(r) + \frac{dW(r)}{dr}. \]
\[\text{(17)} \]
Suppose that \(\psi_n^{(1)}(r) \) and \(\psi_n^{(2)}(r) \) are the eigenfunctions of \(H_1 \) and \(H_2 \), respectively. In the unbroken SUSY case, the ground state is not degenerate with a vanishing energy \(E_0 = 0 \) and it is usually expressed in terms of the superpotential \(W(r) \) as
\[A\psi_0^{(1)}(r) = \left(\frac{d}{dr} + W(r) \right) \psi_0^{(1)}(r) = 0 \Rightarrow \psi_0^{(1)}(r) = C \exp \left(-\int W(r) \, dr \right), \]
\[\text{(18)} \]
where \(C \) is the normalization constant. The key result is the iso-spectrality between the two Hamiltonians \(H_1 \) and \(H_2 \) for all but the ground state (\(n = 0 \)), which can be shown as follows. Since the energy eigenvalues of \(H_1 \) and \(H_2 \) are positive semi-definite \(E_n^{1,2} \geq 0 \), we have
\[H_2\psi_n^{(2)} = AA^\dagger \psi_n^{(2)} = E_n^{(2)} \psi_n^{(2)} \quad \text{and} \quad \text{by multiplying through by} \ A^\dagger \text{we see that} \]
\[H_1(A^\dagger \psi_n^{(2)}) = A^\dagger A(A^\dagger \psi_n^{(2)}) = A^\dagger H_2\psi_n^{(2)} = E_n^{(2)}(A^\dagger \psi_n^{(2)}). \]
\[\text{(19)} \]
Thus, \(A^\dagger \psi_n^{(2)} \) is an eigenstate of \(H_1 \) with the same energy eigenvalue \(E_n^{(2)} \), and there must be \(\psi_n^{(1)}(r) \) such that
\[\psi_n^{(1)}(r) = c_n A^\dagger \psi_n^{(2)}(r), \]
\[\text{(20)} \]
where \(c_n \) are constants for \(n = 1, 2, \ldots \). Similarly, for \(H_1\psi_n^{(1)} = A^\dagger A\psi_n^{(1)} = E_n^{(1)} \psi_n^{(1)} \) and multiplying through by \(A \), we find
\[H_2(A\psi_n^{(1)}) = AA^\dagger (A\psi_n^{(1)}) = AH_1\psi_n^{(1)} = E_n^{(1)}(A\psi_n^{(1)}). \]
\[\text{(21)} \]
Thus, \(A\psi_n^{(1)} \) is an eigenstate of \(H_2 \) with the same eigenvalue \(E_n^{(1)} \), and there must be \(\psi_n^{(2)}(r) \) such that
\[\psi_n^{(2)}(r) = c_n^* A\psi_n^{(1)}(r). \]
\[\text{(22)} \]
Furthermore, since
\[1 = \langle \psi_n^{(2)}(r) | \psi_n^{(2)}(r) \rangle = |c_n^*|^2 \langle A\psi_n^{(1)}(r) | A\psi_n^{(1)}(r) \rangle = |c_n^*|^2 \langle \psi_n^{(1)}(r) | A^\dagger A \psi_n^{(1)}(r) \rangle \]
\[= E_n^{(1)} |c_n^*|^2 \langle \psi_n^{(1)}(r) | \psi_n^{(1)}(r) \rangle, \]
we have
\[\psi_n^{(2)}(r) = (E_n^{(1)})^{-1/2} A\psi_n^{(1)}(r) = (E_n^{(1)})^{-1/2} \left(\frac{d}{dx} + W(r) \right) \psi_n^{(1)}(r). \]
\[\text{(23)} \]
Similarly, we find
\[\psi_n^{(1)}(r) = (E_n^{(2)})^{-1/2} A^\dagger \psi_n^{(2)}(r) = (E_n^{(2)})^{-1/2} \left(-\frac{d}{dx} + W(r) \right) \psi_n^{(2)}(r). \]
\[\text{(24)} \]
Thus, if we knew the eigenvalues and eigenfunctions of either of the two partner potentials, we could immediately derive the spectrum of the other. However, the above relations only give the relationship between the eigenvalues and eigenfunctions of the two partner Hamiltonians, but do not allow us to determine their spectra. In the next section, we are guided by the idea of finding the pairs of (essentially) isospectral Hamiltonians, one of which has a known solvable Hamiltonian.
4. Supersymmetric partner of the isotonic potential

A key step in this work was the idea to consider a candidate for a superpotential \(W(r) \) by means of the following ansatz:

\[
W(r) = \frac{k'}{r} + \omega' r + \frac{sr}{r^2 + a^2},
\]

where \(k', \omega' \) and \(s \) are real parameters to be determined shortly, and \(a \) is a fixed potential parameter. The potential \(U_1 \) then reads

\[
U_1(r) = \omega'^2 r^2 + \frac{k'(k' + 1)}{r^2} + \frac{s(-2a^2\omega' + s + 2k' + 1)r^2 - a^2 s(2\omega'^2 - 2k' + 1)}{(r^2 + a^2)^2} + (2s + 2k' - 1)\omega',
\]

and the potential \(U_2 \) is given by

\[
U_2(r) = \omega'^2 r^2 + \frac{k'(k' - 1)}{r^2} + \frac{s(s - 1 + 2k' - 2a^2\omega')r^2 + a^2 s(1 + 2k' - 2a^2\omega')}{(r^2 + a^2)^2} + (2s + 2k' + 1)\omega'.
\]

If we now compare the potential \(U_1(r) \) with

\[
V_1(r) = \frac{k(k + 1)}{r^2} + \omega^2 r^2 + 2g \frac{(r^2 - a^2)}{(r^2 + a^2)^2},
\]

we have for \(k' = k, \omega' = \omega, s(-2a^2\omega' + s + 2k + 1) = 2g, \) and \(s(2\omega'^2 - 2k' + 1) = 2g, \) so that

\[
\begin{aligned}
s &= 4(\omega a^2 - k), \\
g &= 2(\omega a^2 - k)(2\omega a^2 + 1 - 2k).
\end{aligned}
\]

With these values of \(s \) and \(g \) we may reduce \(U_2 \) by the assumption that \(s(s - 1 + 2k - 2a^2\omega) = 0 \) and \(a^2 s(1 + 2k - 2a^2\omega) = 0 \) to

\[
V_2(r) = \omega^2 r^2 + \frac{k(k - 1)}{r^2} + (8\omega a^2 - k) + 2k + 1)\omega.
\]

These assumptions are valid under the following conditions:

\[
\omega a^2 = k + \frac{1}{2}, \quad g = 2 \quad \text{and} \quad s = 2.
\]

In summary, we have two partner potentials

\[
\begin{aligned}
V_1(r) &= \frac{k(k + 1)}{r^2} + \omega^2 r^2 + 4\frac{(r^2 - a^2)}{(r^2 + a^2)^2} + \omega(2k + 3), \\
V_2(r) &= \frac{k(k - 1)}{r^2} + \omega^2 r^2 + \omega(2k + 5),
\end{aligned}
\]

provided the parameters \(\omega \) and \(a \) satisfy

\[
\omega a^2 = k + \frac{1}{2} = \sqrt{B^2 + \left(\ell + \frac{(d - 2)}{2} \right)^2}.
\]
5. Goldman–Krivchenkov potential in \(d \)-dimensional

Schrödinger’s equation with the Goldman–Krivchenkov potential [9] in \(d \) dimensions is given by

\[
\left(-\frac{d^2}{dr^2} + \frac{\Lambda(\Lambda + 1)}{r^2} + \frac{\beta r^2 + \alpha}{r^2} \right) \psi_{n\gamma_d}(r) = E_{n\gamma_d} \psi_{n\gamma_d}(r), \quad \Lambda = l + \frac{1}{2}(d - 3), \quad d \geq 2,
\]

and has exact eigenvalues given by [9]

\[
E_{n\gamma_d} = 2\sqrt{\beta} (2n + \gamma_d), \quad n, l = 0, 1, 2, \ldots.
\]

where

\[
\gamma_d = 1 + \sqrt{\alpha + \left(\Lambda + \frac{1}{2} \right)^2}.
\]

Meanwhile, the exact eigenfunctions are given by [9]

\[
\psi_{n\gamma_d}(r) = (-1)^n \frac{2\beta^{\gamma_d/2}(\gamma_d)_n}{n!\Gamma(\gamma_d)} r^{\gamma_d - 1/2} e^{-\frac{1}{2}\sqrt{\beta}r^2} _1F_1(-n; \gamma_d; \sqrt{\beta}r^2).
\]

Here, we use the Pochhammer symbol \((\gamma)_n\), where

\[(\gamma)_n = \gamma(\gamma + 1)(\gamma + 2) \cdots (\gamma + n - 1) = \frac{\Gamma(\gamma + n)}{\Gamma(\gamma)},\]

and \(_1F_1\) is the confluent hypergeometric function defined by ([10], chapter 7)

\[
_1F_1(-n; b; x) = \sum_{k=0}^{n} \frac{(-n)_k}{(b)_k} \frac{x^k}{k!}.
\]

Using these exact solutions for the Goldman–Krivchenkov potential, we can show that the Schrödinger equation

\[
\left(-\frac{d^2}{dr^2} + \frac{k(k - 1)}{r^2} + w^2 r^2 + \omega(2k + 5) \right) \psi_{n\kappa}(r) = \epsilon_{n\kappa} \psi_{n\kappa}(r)
\]

has exact solutions given by

\[
\epsilon_{n\kappa} = 2\omega(2n + 2k + 3),
\]

and

\[
\psi_{n\kappa}(r) = (-1)^n \sqrt{\frac{2\omega^{k+1/2}}{n!\Gamma(k + 1/2)}} r^{k + \frac{1}{2}} e^{-\frac{1}{2}\omega r^2} _1F_1(-n; k + \frac{1}{2}; \omega r^2),
\]

where

\[
k + \frac{1}{2} = \gamma_d = \omega a^2 = \left[B^2 + \left(\frac{d - 2}{d} \right)^{\frac{1}{d}} \right].
\]

It is clear from these relations that states having the same value for the combination \(2\ell + d \) are degenerate.
6. Exact solutions for isotonic nonlinear-oscillator potentials

The supersymmetric approach, briefly discussed in section 3, along with the exact solution of the Goldman–Krivchenkov potential allows us to obtain the exact solutions of Schrödinger’s equation

\[
\left(-\frac{d^2}{dr^2} + \frac{k(k+1)}{r^2} + \alpha^2 r^2 + \frac{4(r^2 - a^2)}{(r^2 + a^2)^2} + \omega(2k+3) \right) \phi_{nk}(r) = \epsilon_{nk} \phi_k(r),
\]

namely

\[
\epsilon_{nk} = 2\omega(2n + 2k + 3),
\]

and the corresponding wavefunctions are given by

\[
\phi_{nk}(r) = C'(n) \left(-\frac{d}{dr} + \frac{k}{r} + \omega r + \frac{2r}{r^2 + a^2} \right) r^k e^{-\frac{2\omega}{r}} L^{k-\frac{1}{2}}_{k-\frac{1}{2}}(\omega r^2),
\]

where

\[
C' = (-1)^n \frac{2\omega^{k+1/2}(k+1/2)_n}{2\omega(2n+2k+3)_n! \Gamma(k+1/2)}.
\]

Here we have used the well-known relation between the confluent hypergeometric function (37) and Laguerre polynomials (\cite{10}, p 203):

\[
_1F_1(-n; \alpha+1; z) = \frac{n!}{\alpha+1}_n L^\alpha_n(z).
\]

A straightforward computation, aided by the differential identity of Laguerre polynomials (\cite{10}, p 203, formula (11)), namely

\[
\frac{d}{dz} L^\alpha_n(z) = -L^\alpha_{n+1}(z) - n L^\alpha_n(z),
\]

yields

\[
\phi_{nk}(r) = C'_n r^{k+1} e^{-\frac{2\omega}{r}} \frac{2\omega^{k+1/2}(k+1/2)_n}{2\omega(2n+2k+3)_n! \Gamma(k+1/2)} \left[(2k + 2n + 3)L^{k-1/2}_{k-1/2}(\omega r^2)
- 2(n+1)L^{k-1/2}_{k+1/2}(\omega r^2) + 2\omega a^2 L^{k+1/2}_{k+1/2}(\omega r^2) \right],
\]

where we have used the identity (\cite{10}, p 203, formula (8))

\[
L^\alpha_n(z) = L^\alpha_{n-1}(z) + L^\alpha_{n+1}(z).
\]

Since \(wa^2 = k + 1/2\), we may write equation (47) as

\[
\phi_{nk}(r) = C'_n r^{k+1} e^{-\frac{2\omega}{r}} \frac{2\omega^{k+1/2}(k+1/2)_n}{2\omega(2n+2k+3)_n! \Gamma(k+1/2)} \left[(2k + 2n + 3)L^{k-1/2}_{k-1/2}(\omega r^2)
- 2(n+1)L^{k-1/2}_{k+1/2}(\omega r^2) + (2k+1)L^{k+1/2}_{k+1/2}(\omega r^2) \right].
\]

This may be compared with the results of Fellow and Smith (\cite{2}) by the use of the well-known relations between Hermite and Laguerre polynomials (\cite{10}, p 216, problem (1)):

\[
L^{-1/2}_{n+1/2}(\omega r^2) = \frac{(-1)^n}{2^{n+1}n!} H_{2n}(\sqrt{\omega} r)
\]

and

\[
L^{1/2}_{n+1/2}(\omega r^2) = \frac{(-1)^n}{2^{n+1+1}n!\sqrt{\omega}^{-2n+1}} H_{2n+1}(\sqrt{\omega} r).
\]
For $k = 0$, $\omega = 1$ using the identity ([10], p 188, formulae (4) and (6))

$$2\zeta H_k(z) = H_{k+1}(z) + 2k H_{k-1}(z),$$

we obtain

$$\phi_{nk}(r) = \left(-1\right)^n C'_n e^{-r^2/2} \left[4(2n + 3)H_{2n+1}(r) + 8n(2n + 3)H_{2n-1}(r) + H_{2n+3}(r)\right].$$

where

$$C'_n = \left(-1\right)^n \sqrt{\frac{\Gamma(n + \frac{1}{2})}{(2n + 3)n!\pi}}.$$

These general results agree with the results discussed by Carinena et al [1] and Fellows et al [2] for the comparable odd solutions $n = 3, 5, 7, \ldots$ in equation (2).

7. Conclusion

In this paper, we have studied a family of generalized quantum nonlinear oscillators in d dimensions. These isotonic oscillator problems have potentials $V(r)$ of the form

$$V(r) = \frac{B^2 r^2}{r^2} + \omega^2 r^2 + 2g \left(\frac{r^2 - a^2}{r^2 + a^2}\right)^2.$$

We show that if $g = 2$ and $(\omega a^2)^2 = B^2 + (\ell + (d - 2)/2)^2$, then this potential can be regarded as a supersymmetric partner of the Goldman–Krivchenkov potential, for which exact solutions can be constructed. Thus, under these conditions, we are able to solve the eigenproblem

$$H\psi = \left(-\Delta + V\right)\psi = E\psi$$

exactly in d dimensions, and provide formulae for all the discrete eigenvalues and corresponding normalized wavefunctions. We have shown that our solutions to the general problem agree with the results reported earlier in [1] and [2] for the comparable odd states $n = 3, 5, 7, \ldots$ in $d = 1$ dimension with $B = 0$.

Acknowledgments

Partial financial support of this work under grant nos GP3438 and GP249507 from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged by RLH and NS. ÖY and NS would also like to thank the Department of Mathematics and Statistics at Concordia University for their warm hospitality.

References

[1] Carinena J F, Perelomov A M, Rañada M F and Santander M 2008 J. Phys. A: Math. Theor. 41 085301
[2] Fellows J M and Smith R A 2009 J. Phys. A: Math. Theor. 42 335303
[3] Sesma J 2010 J. Phys. A: Math. Theor. 43 185303
[4] Kraenkel R A and Senthivelan M 2009 J. Phys. A: Math. Theor. 42 415303
[5] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[6] Hall R L and Yeşiltaş Ö 2010 Int. J. Mod. Phys. E (at press) (arXiv:1006.4628 [math-ph])
[7] Sommerfeld A 1949 Partial Differential Equations (New York: Academic)
[8] Hall R L, Katatbeh Q D and Saad N 2004 J. Phys. A: Math. Gen. 37 11629
[9] Hall R L, Saad N and von Keviczky A B 2002 J. Math. Phys. 43 94–112
[10] Rainville E D 1960 Special Functions (New York: Chelsea)