Review Article

Surgical treatment of oral submucosal fibrosis

Sara Ahmed Hifny1*, Lujain Khalil AlShaikh2, Sana Ghazai Alharthi3, Renad Maher Abushanab4, Noha Abduallah Aldahian5, Sarah Saleh Alnamlah6, Sara Mohammed Aljohani7, Haitham Amer Alghubairani8, Alghalia Essam Almalik5, Raghad Yousef Neyaz9, Amro Mohammed Abdulaziz10

INTRODUCTION
Oral submucosal fibrosis is a serious condition that might be associated with serious complications in the affected patient. The disease also represents a major challenge to the healthcare specialists and the patient before achieving proper management of the condition. Severe mental illness and physical disorders can result secondary to the condition, which might impair the affected patient’s

ABSTRACT
Oral submucosal fibrosis is a serious condition that might be associated with serious complications in the affected patient. The disease also represents a major challenge to the healthcare specialists and the patient before achieving proper management of the condition. Different pharmacological and surgical interventions have been validated. However, no single modality has been proved as an adequate management approach for the disease, which is probably due to the limited number of investigations in this concern and the limited knowledge about the pathogenesis of the condition. In the present literature review, we have discussed the different surgical approaches that have been reported in the literature for managing patients with oral submucosal fibrosis. These approaches mainly aimed to remove the fibrous bands in the oral cavity and maintain adequate mouth opening. It should be noted that it would be hard to write a solid conclusion in this concern because most of the current evidence was either lacking or obtained from a limited number of studies with no proper sample sizes or adequate follow up durations. Accordingly, the indication of the surgical intervention should be primarily done by the surgeon based on the degree of involvement of the oral cavity. Finally, we recommended that further comparative investigations be carried out to further demonstrate the most appropriate management modality and to rule out whether pharmacological or surgical modalities are more efficacious in these settings.

Keywords: Surgery, Oral submucosal fibrosis, Management, Treatment, Grafting

Received: 01 October 2021
Accepted: 16 October 2021

*Correspondence:
Dr. Sara Ahmed Hifny,
E-mail: sara.hifny@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI: https://doi.org/10.18203/2394-6040.ijcmph20214300
overall health status and quality of life. Social life can also be adversely impacted as a result of the limited practice or oral hygiene measures due to restricted mouth opening. Therefore, diagnosis and management of the condition should be adequately established and conducted before the emergence of these complications.

Many treatment modalities have been reported among the different studies in the literature, which have mainly been proposed to reduce or remove the fibrotic tissues that represent the main characteristic of the condition. In this context, different pharmacological and surgical interventions have been validated. However, no single modality has been proved as an adequate management approach for the disease, which was probably due to the limited number of investigations in this concern and the limited knowledge about the pathogenesis of the condition. Accordingly, our study aimed to discuss the surgical approaches that might be used to treat oral submucosal fibrosis.

Methods

This literature review was based on an extensive literature search in Medline, Cochrane and EMBASE databases which was performed on 3 September 2021 using the medical subject headings (MeSH) or a combination of all possible related terms. This was followed by the manual search for papers in Google Scholar while the reference lists of the initially included papers. Papers discussing the occupational asthma were screened for relevant information, with no limitation placed on date, language, age of participants or publication type.

DISCUSSION

Evidence indicated the validity of different surgical approaches for the successful management of oral submucosal fibrosis. The main indication to conduct a surgical intervention in these patients and not use the various medical treatment modalities that have been adequately validated in the literature was developing trismus, with a mouth opening that was <25 mm. It had been shown that the main aim of conducting the surgery in these patients was to adequately restore the mouth opening and the associated functional outcomes related to speech, articulation and mastication. Conducting these surgical approaches also served as a surveillance step that might be critical in intervening against early-stage cancers. Accordingly, in the present section, we aimed to provide a thorough discussion about the importance and techniques of conducting surgical approaches to manage oral submucosal fibrosis.

Using intra-positional grafts or flaps had been previously demonstrated to be the commonest surgical approach that had been used to manage cases with oral submucosal fibrosis. Different studies in the literature have described and validated the efficacy of these approaches and it had been demonstrated that distant and local flaps can be used in these events. To obtain local flaps, it had been demonstrated that the donor site was located in the head and neck location and pedicle attachments were usually used to transpose these flaps to the oral cavity. These included palatal island flaps and tongue flaps, which were also called intraoral flaps. Other local flaps might also include extra-oral flaps. These included nasolabial flaps, buccal fat pads and temporalis fascia flaps. On the other hand, to obtain distant flaps, it had been demonstrated that the donor site was located distally in the thigh or arm of the affected patient with an associated arteriovenous anastomosis.

Using tongue flaps had been previously validated by many investigations in the literature. For instance, a previous investigation by Bhrany et al which included 25 patients that were indicated to have tongue flaps, concluded that the obtained outcomes were satisfactory. Another investigation by Tepan et al also reported that 25 of their 100 population were indicated to have tongue flaps. The authors also reported that the obtained results were good. However, it should be noted that these patients were followed up for a single month only. On the other hand, a long follow up investigation for seven years was conducted by Mehrotra et al that included 60 patients with oral submucosal fibrosis that were indicated to have tongue flaps for stabilization of the inter-positional flaps. The reported results were also favorable indicating the efficacy of these flaps. However, it should be noted that the process might be associated with short-term effects on speech and mastication and potentially affecting the quality of life of the affected patients through oral fibrosis of the used flap on a long term basis.

Therefore, a potential affliction of the donor area might be the only contraindicating factor against the use of tongue flaps in these settings. However, it should be noted that evidence regarding this information was not sufficient in the literature and no histological evaluation was previously conducted to rule out the prognosis of such events. In another context, palatal island flaps were described in the investigation by Golhar et al that reported the effectiveness of these types of flaps, which was carried out in 33 out of 100 patients in their investigation. Besides, the authors reported that adjunct coronoidectomies and temporalis myotomies were used with the palatal flaps. Flap failure and torsion might occur secondary to the overextension of the flap. Besides, it might be challenging to reach these flaps, which might limit their use within the surgical settings. Furthermore, the maintenance of oral cavity opening was also reported after the buccal fat pad was administered among various studies in the literature.

Using the nasolabial flap had also been previously demonstrated as a common approach in this setting (Figure 1). The wide use of the nasolabial flaps has been attributed to many reasons. These included the easy accessibility to the flap and the potentiality to use this type of flap to cover any region within the oral cavity based on the availability of the sound vascular pedicles as...
obtained from healthy tissue and well-nourished area by the inferior nasal vasculature.7,13-15 It had been furtherly demonstrated that the flap did not involve within the condition of the underlying disease and therefore, these reasons attributed to the wide advantageous use of the flaps. Intraoral hair growth and development scars were the main complications that might be associated with these types of techniques. Another investigation also warned against the risk of developing squamous cell carcinoma following conducting nasolabial flaps.16 However, this was not supported by adequate evidence and further investigations were still needed. Using temporalis fascia flap to manage oral submucosal fibrosis was reported by a single investigation in the literature. The case series by Janjua et al validated the efficacy of the modality in five included patients.17 In another context and due to the recent surgical advances regarding the successful construction of microvascular anastomosis, using distal flaps has been adopted by various investigations in the management of oral submucosal fibrosis. However, it had been demonstrated that such approaches required high levels of experience, increased operational costs and anastomosis failure might be associated. Furthermore, it appeared that this approach had been adopted by studies in China only with no evidence on patients from other countries globally. Besides, it had been demonstrated that debulking processes might be needed in some patients secondary to stenotic complications and squamous cell carcinoma might also develop as a very rare event.18 To furtherly validate the use of this approach, further investigations were still needed from the different global healthcare surgical settings to study the efficacy and safety before being widely adopted.

![Figure 1: Surgical approaches aiming to achieve (A) nasolabial flap; (B) extended nasolabial flap; (C) intra-oral insertion extended nasolabial flap.4](image)

It had been furtherly reported that scalpel was commonly used to achieve primary excision. Nevertheless, no adequate evidence was provided in the current literature regarding band excision, in addition to the direction and extent of the excision. In the soft palate, circumferential bands were more common in the tongue, diffuse fibrosis without the presence of delineated bands was more common, while in the buccal mucosa, evidence indicated that vertical bands were the commonest.19 Previous studies have also demonstrated the use of laser for surgical primary excision.20,21 Among these studies, different types of lasers were used including KTP 532, ErYCCG and diode lasers.20,25 Nonetheless, it should be noted that favoring the use of lasers was not based on scientific evidence and was usually used based on their availability in surgical settings. Besides, the use of these modalities was also reported within limited areas and investigations regarding their oral uses were not encouraging. On the other hand, it should be noted that surgical excision with lasers was not associated with other adjuvant modalities, except for postoperative physiotherapy. Besides, it had been demonstrated that the efficacy of these modalities might be excellent and only 6 months of follow up were recommended for patients postoperatively. In the current literature, we did not find evidence regarding whether either scalpel or laser excisions were superior to one another. Following a successful excision of the underlying fibrous band, evidence regarding the administration of postoperative adjuvant therapy was contradicting about deciding the most appropriate and efficacious treatment modality. Using intra-positional grafts that were usually based on distant free flaps or local pedicle flaps was recommended by some investigations, while others suggested conducting muscle myotomy only or coronoidectomy/coroniodotomy as adjuvant surgical approaches.25 Using split-thickness grafts, artificial dermis or collagen membranes to cover the excised areas was also reported among studies in the literature as a third alternative option. Many procedures have been described in the literature as adjunct approaches with the process of primary excision. The most common approaches included coronoidectomy, which had been defined as deliberate sectioning of the coronoid process, irrespective of muscle detachment and coroniodotomy, which had been defined as detaching the coronoid process from its attachment in the temporalis muscle. Using these approaches had been explained to release the pulling of the temporalis muscles whenever oral excursion was done. This had been indicated in a previous investigation by Change et al which included 18 patients with head and neck cancers that were indicated for coronoidectomy secondary to trismus that had developed from radiation therapy.7 The authors reported that an increase in the oral opening was significantly noticed at the half and one year of follow up following the procedure. It should be noted that it was
also reported that physical therapy was done for three months amid the surgical intervention neither tumor excision nor tumor location had a notable impact on the outcomes of the included patients.

Using artificial dermis and collagen membrane, split skin grafts and amnion and human placenta have been reported to be the most common grafts that can be used in the surgical settings of managing oral submucosal fibrosis to graft muco-muscular defects. Using these grafts had been demonstrated to be for protective and supportive purposes to complete the healing process following the surgical intervention. In addition to all of the aforementioned approaches, further evidence indicated the efficacy of using prosthetic devices to adequately maintain the postoperative oral opening. Intermediary oral stents were used as effective prosthetic rehabilitation devices in these settings. After the fibrosed bands have been excised, the use of these stents can adequately guide the healing process of tissues postoperatively and had been reported as valuable adjunct devices among the different studies. In this context, a previous case report by Celik et al also described a novel device that had been used as a graft shortly after the surgical procedure to stabilize the clips. It should be noted that post-operative physiotherapy should be conducted to enhance the prognosis and maintain favorable outcomes. Conducting exercises related to mouth opening was an essential step to maintain adequate postoperative mouth opening and reduce the rate of post-operative trismus recurrence. The process was usually inaugurated 3 days after the surgical intervention had been successfully achieved and patient compliance was an essential step to maintain the success of this step.

CONCLUSION

Different surgical approaches aim to remove the fibrous bands in the oral cavity and maintain adequate mouth opening. It should be noted that it would be hard to write a solid conclusion in this concern because most of the current evidence is either lacking or obtained from a limited number of studies with no proper sample sizes or adequate follow-up durations. Accordingly, the indication of the surgical intervention should be primarily done by the surgeon based on the degree of involvement of the oral cavity. Finally, we recommended that further comparative investigations be carried out to further demonstrate the most appropriate management modality and to rule out whether pharmacological or surgical modalities are more efficacious in these settings.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Arakeri G, Brennan PA. Oral submucous fibrosis: an overview of the aetiology, pathogenesis, classification, and principles of management. Br J Oral Maxillofac Surg. 2013;51(7):587-93.
2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2004;85:1-334.
3. Kerr AR, Warnakulasuriya S, Mighell AJ, Dietrich T, Nasser M, Rimal J, et al. A systematic review of medical interventions for oral submucous fibrosis and future research opportunities. Oral Dis. 2011;17(1):42-57.
4. Arakeri G, Rai KK, Boraks G, Patil SG, Aljabab AS, Merkx MAW, et al. Current protocols in the management of oral submucous fibrosis: an update. J Oral Pathol Med. 2017;46(6):418-23.
5. Chole RH, Gondivkar SM, Gadbail AR, Balsaraf S, Chaudhary S, Dhore SV, et al. Review of drug treatment of oral submucous fibrosis. Oral Oncol. 2012;48(5):393-8.
6. Khanna JN, Andrade NN. Oral submucous fibrosis: a new concept in surgical management. Report of 100 cases. Int J Oral Maxillofac Surg. 1995;24(6):433-9.
7. Chang YM, Tsai CY, Kildal M, Wei FC. Importance of coronoidotomy and masticatory muscle myotomy in surgical release of trismus caused by submucous fibrosis. Plast Reconstr Surg. 2004;113(7):1949-54.
8. Bhrany AD, Izzard M, Wood AJ, Futran ND. Coronoidectomy for the treatment of trismus in head and neck cancer patients. Laryngoscope. 2007;117(11):1952-6.
9. Tepan MG, Saigal GS, Tilak SB. Use of tongue flap in submucous palatal fibrosis. J Laryngol Otol. 1986;100(4):455-60.
10. Mehrrota D, Pradhan R, Gupta S. Retrospective comparison of surgical treatment modalities in 100 patients with oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 2009;107(3):1-10.
11. Golhar S, Mahore M, Narkhede S. Tongue flap in oral submucous fibrosis. Indian J Otolaryngol. 1989;41(3):104-7.
12. Nataraj S, Guruprasad Y, Shetty JN. A comparative clinical evaluation of buccal fat pad and collagen in surgical management of oral submucous fibrosis. Arch Dent Sci. 2011;2(4):17-24.
13. Pandya H, Patel H, Dewan H, Babaria U, Bhavsar B, Thakkar D. Comparison of nasolabial flap versus buccal fat pad graft for management of submucous fibrosis. J Dent Sci. 2011;6:6-7.
14. Prasad LK, Chakravarthy P, Sridhar M, Ramkumar S, Krishna S, Vivekanand S. An evaluation of various treatment modalities in the management of oral submucous fibrosis. A clinical study. J Orofac Sci. 2009;1(2):17-20.
15. Cunha-Gomes D, Kavarana NM, Choudhari C, Rajendraprasad JS, Bhathena HM, Desai PB, et al. Total oral reconstruction for cancers associated with
advanced oral submucous fibrosis. Ann Plast Surg. 2003;51(3):283-9.
16. Saravanan K, Narayanan V. The use of buccal fat pad in the treatment of oral submucous fibrosis: a newer method. Int J Dentist. 2012;2012:935135.
17. Janjua OS, Bukhari SGA, Ibrahim MW, Mehmood S, Sarfraz T. Oral submucous fibrosis: reconstruction with nasolabial flap. PAFMJ. 2011;61(2):195-8.
18. Kavarana N, Bhathena H, Griffiths RW. Mouth: surgery for severe trismus in submucous fibrosis. Plast Reconstr Surg. 1989;83(2):401.
19. Kamath VV. Surgical Interventions in oral submucous fibrosis: a systematic analysis of the literature. J Maxillofac Oral Surg. 2015;14(3):521-31.
20. Chhaya VA, Sinha V, Rathor R. Oral submucous fibrosis-surgical treatment with CO₂ laser. World Artic Ear Nose Throat. 2010;3:1-2.
21. Murugavel C, Gnanam T. A modified approach using diode laser to reduce trismus in oral submucous fibrosis. Kerala State Dent J. 2012;35:224-8.
22. Chaudhary Z, Verma M, Tandon S. Treatment of oral submucous fibrosis with Er:Cr: YSGG laser. Indian J Dent Res. 2011;22(3):472-4.
23. Kameshwaran M, Raghavan D, Kumar RSA, Murali S. Surgical management of trismus due to oral submucous fibrosis-lysis of fibrotic bands with the KTP-532 laser. Indian J Otolaryngol Head Neck Surg. 2006;58(3):229-31.
24. Nayak DR, Mahesh SG, Aggarwal D, Pavithran P, Pujary K, Pillai S. Role of KTP-532 laser in management of oral submucous fibrosis. J Laryngol Otol. 2009;123(4):418-21.
25. Talsania JR, Shah UB, Shah AI, Singh NK. Use of diode laser in oral submucous fibrosis with trismus: prospective clinical study. Indian J Otolaryngol Head Neck Surg. 2009;61(1):22-5.
26. Chao CK, Chang LC, Liu SY, Wang JJ. Histologic examination of pedicled buccal fat pad graft in oral submucous fibrosis. J Oral Maxillofac Surg. 2002;60(10):1131-4.
27. Le PV, Gornitsky M, Domanowski G. Oral stent as treatment adjunct for oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 1996;81(2):148-50.
28. Patil PG, Parkhedkar RD. New graft-stabilizing clip as a treatment adjunct for oral submucous fibrosis. J Prosthet Dentist. 2009;102(3):191-2.
29. Mokal NJ, Raje RS, Ranade SV, Prasad JS, Thatte RL. Release of oral submucous fibrosis and reconstruction using superficial temporal fascia flap and split skin graft--a new technique. Br J Plast Surg. 2005;58(8):1055-60.
30. Wei FC, Chang YM, Kildal M, Tsang WS, Chen HC. Bilateral small radial forearm flaps for the reconstruction of buccal mucosa after surgical release of submucosal fibrosis: a new, reliable approach. Plast Reconstr Surg. 2001;107(7):1679-83.
31. Celik N, Wei FC, Chang YM, Yang WG, Chen DJ, Tsai CY. Squamous cell carcinoma of the oral mucosa after release of submucous fibrosis and bilateral small radial forearm flap reconstruction. Plast Reconstr Surg. 2002;110(1):34-8.
32. Rajalalitha P, Vali S. Molecular pathogenesis of oral submucous fibrosis-a collagen metabolic disorder. J Oral Pathol Med. 2005;34(6):321-8.

Cite this article as: Hifny SA, AlShaikh JK, AlHarthi SG, Albushanab RM, Alaldhian NA, Alnamlah SS, et al. Surgical treatment of oral submucosal fibrosis. Int J Community Med Public Health 2021;8:5583-7.