Correction to “Generalized Self-Shrinking Generator”

Amparo Fúster-Sabater
Instituto de Física Aplicada, C.S.I.C.
Serrano 144, 28006 Madrid, Spain
amparo@iec.csic.es

Abstract

In this correspondence, it is given a correction to Theorem 4 in Y. Hu, and G. Xiao, “Generalized Self-Shrinking Generator,” IEEE Transactions on Information Theory, vol. 50, No. 4, pp. 714-719, April 2004.

Keywords: Least period, m-sequence, generalized self-shrinking generator, stream cipher.

1 Introduction

The purpose of this note is to point out that Theorem 4 in [1] is not valid in all cases. The statement of the theorem reads:

[1, Theorem 4]: No more than $1/4$ of the sequences from $B(a)$ have least periods less than 2^{n-1}.

In the following, two counter examples of Theorem 4 and a reformulation of such a theorem are given.

Counter example 1: We take the $n = 3$ degree m-sequence $a = 1110010 \sim$ whose minimal polynomial is $x^3 + x^2 + 1$. Then we get $B(a)$ i.e., the family of 2^3 generalized self-shrinking sequences based on a (see [1]):

- 1. $G = (000), \{b(G)\} = 0000 \sim$
- 2. $G = (100), \{b(G)\} = 1111 \sim$
- 3. $G = (010), \{b(G)\} = 0110 \sim$
- 4. $G = (110), \{b(G)\} = 1001 \sim$
- 5. $G = (001), \{b(G)\} = 1010 \sim$
- 6. $G = (011), \{b(G)\} = 1100 \sim$

This work was supported in part by CDTI (Spain) and the companies INDRA, Unión Fenosa, Tecnobit, Visual Tools, Brainstorm, SAC and Technosafe under Project Cenit-HESPERIA as well as supported by Ministry of Science and Innovation and European FEDER Fund under Project TIN2008-02236/TSI.
7. \(G = (101), \{b(G)\} = 0101 \sim \)
8. \(G = (111), \{b(G)\} = 0011 \sim \)

In \(B(a) \), there are 4 generalized self-shrinking sequences with least period \(T = 2^2 \), i.e., \{0110 \sim, 1001 \sim, 1100 \sim, 0011 \sim \}. Nevertheless, there are \(|B'| = 4 \) generalized self-shrinking sequences with periods less than \(2^2 \), i.e., \{0000 \sim, 1111 \sim \} with least period \(T = 1 \) and \{0101 \sim, 1010 \sim \} with least period \(T = 2 \). Thus, 1/2 of the sequences from \(B(a) \) have least period less than \(2^2 \), contradicting the claimed result. Such a contradiction can be justified as follows:

In the proof of Theorem 4 in [1], it is stated that \(b(v^{(1)}) + B', b(v^{(2)}) + B' \) and \(b(v^{(3)}) + B' \) are different cosets of \(B' \).

Nevertheless, in this particular example we have:

- \(B'(0000 \sim, 1111 \sim, 0101 \sim, 1010 \sim) \)
- \(b(v^{(1)}) = b(010) = \{0110 \sim\} \)
- \(b(v^{(2)}) = b(011) = \{1100 \sim\} \)
- \(b(v^{(3)}) = b(001) = \{1010 \sim\} \).

Therefore,

- \(b(v^{(1)}) + B' = \{0110 \sim, 1001 \sim, 0011 \sim, 1100 \sim\} \)
- \(b(v^{(2)}) + B' = \{1100 \sim, 0011 \sim, 1001 \sim, 0110 \sim\} \)
- \(b(v^{(3)}) + B' = \{1010 \sim, 0101 \sim, 1111 \sim, 0000 \sim\} \).

Thus, the set of generalized self-shrinking sequences \(b(v^{(1)}) + B' \) equals \(b(v^{(2)}) + B' \) as well as \(b(v^{(3)}) + B' \) equals \(B' \). Analogous results can be obtained for the reverse version of the 3 degree \(m \)-sequence \(a \). Consequently, for \(n = 3 \) there are no three different sets of generalized self-shrinking sequences with least period \(T = 2^{n-1} \).

Counter example 2: We take the \(n = 2 \) degree \(m \)-sequence

\[a = 110 \sim \]

whose minimal polynomial is \(x^2 + x + 1 \). Then we get \(B(a) \) i.e., the family of \(2^2 \) generalized self-shrinking sequences based on \(a \) (see [1]):

1. \(G = (00), \{b(G)\} = 00 \sim \)
2. \(G = (10), \{b(G)\} = 11 \sim \)
3. \(G = (01), \{b(G)\} = 01 \sim \)
4. \(G = (11), \{b(G)\} = 10 \sim \)

In \(B(a) \), there are now 2 generalized self-shrinking sequences with least period \(T = 2 \), i.e., \{01 \sim, 10 \sim\}. Nevertheless, there are \(|B'| = 2 \) generalized self-shrinking sequences with period less than 2, i.e., \{00 \sim, 11 \sim\} with least period \(T = 1 \). Thus, 1/2 of the sequences from \(B(a) \) have least periods less than 2, contradicting the claimed result. Such a contradiction can be justified as before:
In the proof of *Theorem 4* in [1], it is stated that \(b(v^{(1)}) + B' \), \(b(v^{(2)}) + B' \) and \(b(v^{(3)}) + B' \) are different cosets of \(B' \). In this particular example:

\[
B' = \{00 \sim, 11 \sim\}
\]
\[
b(v^{(1)}) = b(01) = \{01 \sim\}
\]
\[
b(v^{(2)}) = b(11) = \{10 \sim\}
\]
\[
b(v^{(3)}) = b(10) = \{11 \sim\}.
\]
Therefore,
\[
b(v^{(1)}) + B' = \{01 \sim, 10 \sim\}
\]
\[
b(v^{(2)}) + B' = \{10 \sim, 01 \sim\}
\]
\[
b(v^{(3)}) + B' = \{11 \sim, 00 \sim\}.
\]

Thus, the set of generalized self-shrinking sequences \(b(v^{(1)}) + B' \) equals \(b(v^{(2)}) + B' \) as well as \(b(v^{(3)}) + B' \) equals \(B' \). Consequently, for \(n = 2 \) there are no three different sets of generalized self-shrinking sequences with least period \(T = 2^{n-1} \).

For \(n \geq 4 \), the theorem holds (see the example given in [1] for \(n = 4 \)) as the number of sequences from \(B(a) \) with least periods \(T < 2^{n-1} \) is at most \(1/4 \) of \(|B(a)| \). Therefore, the sets of generalized self-shrinking sequences \(b(v^{(1)}) + B' \), \(b(v^{(2)}) + B' \) and \(b(v^{(3)}) + B' \) are actually different cosets of \(B' \).

In brief, the result in [1, Theorem 4] regarding the number of generalized self-shrinking sequences having least period less than \(2^{n-1} \) is not affected for values of \(n \geq 4 \). In this way, *Theorem 4* can be reformulated as follows:

[1, Theorem 4 - Revised]: *If* \(n \geq 4 \), *then no more than* \(1/4 \) *of the sequences from* \(B(a) \) *have least periods less than* \(2^{n-1} \).

References

[1] Y. Hu and G. Xiao, Generalized Self-Shrinking Generator, IEEE Trans. Inform. Theory, Vol. 50, pp. 714-719, April 2004.