Mass reconstruction methods for PM$_{2.5}$: a review

Judith C. Chow1,2,3 · Douglas H. Lowenthal1,3 · L.-W. Antony Chen1,4 · Xiaoliang Wang1,3 · John G. Watson1,2,3

Received: 18 February 2015 / Accepted: 17 March 2015 / Published online: 7 May 2015

Abstract Major components of suspended particulate matter (PM) are inorganic ions, organic matter (OM), elemental carbon (EC), geological minerals, salt, non-mineral elements, and water. Since oxygen (O) and hydrogen (H) are not directly measured in chemical speciation networks, more than ten weighting equations have been applied to account for their presence, thereby approximating gravimetric mass. Assumptions for these weights are not the same under all circumstances. OM is estimated from an organic carbon (OC) multiplier (f) that ranges from 1.4 to 1.8 in most studies, but f can be larger for highly polar compounds from biomass burning and secondary organic aerosols. The mineral content of fugitive dust is estimated from elemental markers, while the water-soluble content is accounted for as inorganic ions or salt. Part of the discrepancy between measured and reconstructed PM mass is due to the measurement process, including: (1) organic vapors adsorbed on quartz-fiber filters; (2) evaporation of volatile ammonium nitrate and OM between the weighed Teflon-membrane filter and the nylon-membrane and/or quartz-fiber filters on which ions and carbon are measured; and (3) liquid water retained on soluble constituents during filter weighing. The widely used IMPROVE equations were developed to characterize particle light extinction in U.S. national parks, and variants of this approach have been tested in a large variety of environments. Important factors for improving agreement between measured and reconstructed PM mass are the f multiplier for converting OC to OM and accounting for OC sampling artifacts.

Keywords PM$_{2.5}$ · Mass closure · Chemical speciation · Organic matter · Sampling artifact

Introduction

Particles with aerodynamic diameters <2.5 μm (PM$_{2.5}$) and 10 μm (PM$_{10}$) mass concentrations are regulated by the National Ambient Air Quality Standards (NAAQS; Bachmann 2007; Chow et al. 2007a) in the USA, with variations being adopted in other countries (Cao et al. 2013). For compliance monitoring, ambient particles are collected over 24-h durations onto filters that are weighed before and after sampling (Chow 1995; Watson and Chow 2011). Chemically speciated PM is needed to better understand pollution sources, atmospheric processing (e.g., transport and transformation), temporal and spatial variations and long-term trends, as well as adverse health and environmental consequences. PM$_{2.5}$ mass and chemical components (i.e., ions, elements, and carbon) have been acquired in the National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) non-urban network, and the US Environmental Protection Agency (EPA) urban Chemical Speciation Network (CSN; Solomon et al. 2014; USEPA 2015) on an every-third- or sixth-day schedule since 1987/1988 and 1999/2000, respectively. Measurement
protocols for the US PM$_{2.5}$ networks are documented by Chow et al. (2010) and Solomon et al. (2014). Sampling and chemical analysis methods vary in these and other long-term networks and in special studies from the USA and elsewhere (e.g., Dabek-Zlotorynska et al. 2011; Zhang et al. 2012).

Chow and Watson (2013) summarize different PM chemical analysis methods. The major PM components measured to explain gravimetric mass include: (1) anions (e.g., chloride (Cl$^{-}$), nitrate (NO$_3^-$), and sulfate (SO$_4^{2-}$)) and cations (e.g., water-soluble sodium (Na$^+$), potassium (K$^+$), and ammonium (NH$_4^+$)); (2) elements, including metals (up to 51 elements from sodium (Na) to uranium (U)); and (3) organic carbon (OC) and elemental carbon (EC) and their carbon fractions. To accommodate chemical speciation, at least two types of sampling substrates (i.e., Teflon-membrane and quartz-fiber filters) are needed (Chow 1995). IMPROVE and CSN use three parallel channels, in which mass by gravimetry and elements by X-ray fluorescence (XRF; Watson et al. 1999) are measured on Teflon-membrane filters; ions by ion chromatography (IC; Chow and Watson 1999) are measured on nylon-membrane filters preceded by a sodium carbonate (Na$_2$CO$_3$) denuder (Ashbaugh and Eldred 2004) to remove nitric acid (HNO$_3$); and OC and EC by thermal/optical carbon analysis (Chow et al. 1993, 2007a, 2011) are measured on quartz-fiber filters. PM components include carbon (C), hydrogen (H), nitrogen (N), sulfur (S), oxygen (O), and a wide variety of other elements. Owing to practical analytical limitations (Chow and Watson 2013), most networks do not measure H and O associated with OC, geological minerals, and liquid water—with the exception of the IMPROVE network, where H was quantified from 1988 to 2010 (Nejedly et al. 1997). As a result, the sum of the measured species is often lower than the gravimetric mass. Watson (2004) specifies a percent mass explained of 100±20 % for source apportionment models, and this is a reasonably good criteria for mass reconstruction.

PM mass reconstruction (also called mass closure or material balance) applies multipliers to several of the measured species to estimate unmeasured components. Mass reconstruction is used to: (1) identify and correct potential measurement errors as part of data validation efforts (Chow et al. 1994a; Malm et al. 2011; Watson et al. 2001); (2) understand temporal and spatial variations of chemical composition (Hand et al. 2014; Malm et al. 2011); and (3) estimate source contributions to PM and light extinction (Chow and Watson 2013; Watson 2002). Mass reconstruction attempts to achieve closure between gravimetric mass and the sum of major components with assumptions to account for unmeasured species, but without double counting. For example, when SO$_4^{2-}$ is included, elemental S is omitted; inclusion of elemental chlorine (Cl) excludes water-soluble Cl$^{-}$; and the same applies for elemental potassium (K) and water-soluble potassium (K$^+$) (Chow et al. 1994a). Although this review focuses on PM$_{2.5}$, a similar approach is applicable for PM$_{10}$. As PM$_{2.5}$ is part of PM$_{10}$, mass reconstruction should be conducted for both PM$_{2.5}$ and PM$_{10}$ (i.e., PM$_{10-2.5}$) when PM$_{10}$ speciation is available (e.g., Chow et al. 2002a).

Various approaches have been taken for PM mass reconstruction (e.g., Frank 2006; Hand et al. 2011; Malm et al. 2011)—the widely used 11 equations are documented in “Commonly applied reconstructed mass equations.” Applications of these equations to past studies (summarized in the supplemental material) are enumerated in “Applications of mass reconstruction equations to special studies.” To provide a perspective on the fraction of mass explained, examples of mass reconstruction applications for the long-term US IMPROVE network are given in “Evaluation of mass reconstruction through analysis of large data sets.” Various regression techniques have been used to derive multipliers for major PM components and to examine the adequacy of using the IMPROVE equations for mass reconstruction. Major factors that bias mass reconstruction (e.g., the use of an OC multiplier to estimate organic matter (OM), carbon sampling and analysis artifact, ammonium and nitrate volatilization, and particle-bound water on Teflon-membrane filters) are discussed in “Major factors influencing mass reconstruction.” This review examined hundreds of prior studies and intends to: (1) track the evolution and approaches for mass reconstruction; (2) discuss the adequacy of each approach; and (3) address major PM sampling and analysis issues that influence mass reconstruction.

Commonly applied reconstructed mass equations

Table 1 summarizes 11 PM mass reconstruction methods (i.e., Eqs. 1 to 11, sequence in chronological order of publication) that have been applied to data acquired since the late 1970s. Some variations from other studies are referenced. Reconstructed mass (RM) is expressed as the sum of its seven representative chemical components, including: (1) inorganic ions; (2) OM or OC; (3) EC, also referred to as “black carbon” (BC), “soot,” or light absorbing carbon (LAC); (4) geological minerals (or materials), often referred to as “dust,” “soil,” or “crustal material”; (5) salt (sea salt near oceans and inland seas, but also deriving from wintertime de-icing material and desert playas); (6) trace elements (other elements that are not accounted for as minerals, as from fly ash); and (7) “others,” or “remaining mass,” representing other unaccounted or unidentified components. As such, RM equations take the following form:

$$\text{RM} = \text{Inorganic ions} + \text{OM} + \text{EC}$$
$$+ \text{Geological minerals} + \text{Salts}$$
$$+ \text{Trace elements} + \text{Others} \quad \text{(A)}$$

Each of these components can derive from a variety of sources, though they are often dominated by a few sources.
Table 1 Summary of the 11 mass reconstruction equations and their major chemical components

Equation No. (reference/study area)	Inorganic ions	Organic mass/organic carbon (OM/OC) ratio	Elemental carbon (EC)	Geological minerals^a	Salt^b	Trace elements^c	Others
Equation 1 (Macias et al. 1981)/Page, AZ	(NH₄)₂SO₄+NH₄NO₃	1.5^d	Yes	1.89Al+2.14Si+1.4Ca+1.2K+1.43Fe (assuming Al₂O₃, SiO₂, CaO, K₂O, and Fe₂O₃)	None	1.25Cu+1.24Zn+1.08Pb (assuming CuO, ZnO, and PbO)	None
Equation 2 (Solomon et al. 1989)/Los Angeles, CA	SO₄²⁻+NO₃⁻+NH₄⁺	1.4	Yes	1.89Al+2.14Si+1.4Ca+1.43Fe (no oxides were specified)	None	Sum of all species measured by XRF (excluding S, Al, Si, Ca, and Fe) plus Na⁺ and Mg⁺ measured by AAS	None
Equation 3 (Chow et al. 1994b)/Los Angeles, CA	SO₄²⁻+NO₃⁻+NH₄⁺	1.4	Yes	As in Eq. 2 (assuming Al₂O₃, SiO₂, CaO, and Fe₂O₃)	None	Sum of 40 elements (Na to U) by XRF excluding S, Al, Si, Ca, and Fe	None
Equation 4 (Malm et al. 1994)/IMPROVE network	4.125S as (NH₄)₂SO₄	1.4	Yes	As in Eq. 2 (assuming Al₂O₃, SiO₂, CaO, Fe₂O₃, and FeO (in equal amounts), TiO₂, and K₂O (assuming that soil K is 0.6Fe), with all oxide multipliers by 1.16 to account for other missing compounds)	None	None	None
Equation 5 (Chow et al. 1996)/San Joaquin Valley, CA	SO₄²⁻+NO₃⁻+NH₄⁺	1.4	Yes	As in Eq. 2	Na⁺+Cl⁻	As in Eq. 2: also excluding Na⁺, K⁺, and Cl⁻	None
Equation 6 (Andrews et al. 2000)/Great Smoky Mountains National Park, TN	SO₄²⁻+NO₃⁻+NH₄⁺ (MOUDI sampler NH₄⁺ was estimated by HEADS ratio)	1.4	Yes	As in Eq. 2 plus 1.67Ti (assuming Al₂O₃, SiO₂, CaO, Fe₂O₃, TiO₂, and Fe₂O₃)	None	Sum of remaining species (excluding S, Al, Si, Fe, Ti, Ca, and K; see Table S-1 of Andrews et al. 2000)	None
Equation 7 (Malm et al. 2000); original IMPROVE Eq./IMPROVE network	4.125S (as NH₄)₂SO₄+1.29NO₃⁻ (as NH₄NO₃)	1.4	Yes	As in Eq. 4	None	None	None
Equation 8 (Maenhaut et al. 2002)/Melpitz, Germany	SO₄²⁻+NO₃⁻+NH₄⁺	1.4	Yes	As in Eq. 4	Cl⁻+1.4486Na	Sum of all non-sea salt and non-crustal elements, excluding S and K. Non-crustal K (K⁻+0.6Fe)	None
Equation 9 (DeBell et al. 2006)/IMPROVE network	4.125S (as NH₄)₂SO₄+1.29NO₃⁻ (as NH₄NO₃)	1.8	Yes	As in Eq. 4	None	None	None
Equation 10 (Hand et al. 2011; revised IMPROVE Eq.)/IMPROVE network	1.375SO₄²⁻ (as NH₄)₂SO₄+1.29NO₃⁻ (as NH₄NO₃)	1.8	Yes	As in Eq. 4	1.8Cl⁻	None	None
Equation 11 (Simon et al. 2011)/IMPROVE network	(NH₄)₂SO₄+NH₄NO₃	1.8	Yes	3.48Si+1.63Ca+2.42Fe+1.94Ti	1.8Cl⁻	None	Non-crustal K=1.2×(K⁻+0.6Fe)

(NH₄)₂SO₄ ammonium sulfate, NH₄NO₃ ammonium nitrate, S sulfur, SO₄²⁻ sulfate, NH₄⁺ ammonium, NO₃⁻ nitrate, MOUDI Multi-Orifice Uniform Deposit Impactor, HEADS Harvard-EPA Annular Denuder System

^aGEOLOGICAL MINERALS INCLUDE: ALUMINUM (Al), ALUMINUM OXIDE (Al₂O₃), SILICON (Si); SILICON OXIDE (SiO₂), POTASSIUM (K); POTASSIUM OXIDE (K₂O), CALCIUM (Ca); CALCIUM OXIDE (CaO), TITANIUM (Ti), TITANIUM OXIDE (TiO₂), IRON (Fe), FERRIC OXIDE (Fe₂O₃), AND FERROUS OXIDE (FeO₁).

^bSALT INCLUDES: SEA SALT, CHLORIDE (Cl⁻), POTASSIUM ION (K⁺), AND SODIUM ION (Na⁺).

^cTRACE ELEMENTS INCLUDE: BARIUM (Ba), CHROMIUM (Cr), COPPER (Cu), LEAD (Pb), VANADIUM (V), ZINC (Zn), COPPER OXIDE (CuO), LEAD OXIDE (PbO), AND ZINC OXIDE (ZnO); MEASUREMENT METHODS ARE X-RAY FLUORESCENCE (XRF) AND ATOMIC ABSORPTION SPECTROSCOPY (AAS).

^dBASED ON ASSUMED ORGANIC COMPOUND COMPOSITION PROPORTIONAL TO CH₂O₀.­²₅.

^eHand et al. (2011) estimated (NH₄)₂SO₄ from the SO₄²⁻ concentration as 1.375×SO₄²⁻ to account for unmeasured NH₄⁺.
Minerals, for example, do not include OM that might be associated with engine exhaust or bioaerosols deposited onto roadways or agricultural soils. These would be included in the OM fraction. Similarly, some fugitive dust sources include salts, but these would be accounted for in the salt fraction; sulfates and nitrates that react with salt (Hoffman et al. 2004) would be accounted for in the inorganic ion fraction. The background and assumptions related to these RM components are described in the following subsections.

Inorganic ions

In addition to commonly measured anions and cations by IC, automated colorimetric (AC), atomic absorption spectroscopy (AAS), and inductively coupled plasma-atomic emissions spectroscopy (ICP-AES) have also been applied for ionic speciation. Inorganic ions measured by these methods include

- In the absence of NH$_4^+$ measurement, SO$_4^{2-}$ and NO$_3^-$ are assumed to be neutralized to ammonium sulfate ((NH$_4$)$_2$SO$_4$) and ammonium nitrate (NH$_4$NO$_3$), with the NH$_4^-$ fraction accounted for by stoichiometric multipliers: 1.375SO$_4^{2-}$ and 1.29NO$_3^-$, respectively. An ion balance based on molar equivalence between the measured anions and cations should be applied to verify the extent of neutralization.

- SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$ are summed without weighting factors. This does not account for H when SO$_4^{2-}$ is incompletely neutralized by NH$_4^+$ as in sulfuric acid (H$_2$SO$_4$), ammonium bisulfate (NH$_4$HSO$_4$), or letovicite ((NH$_4$)$_2$H(SO$_4$)$_2$).

- When only S is measured, it is assumed to be neutralized to (NH$_4$)$_2$SO$_4$ (i.e., 4.125S in Eqs. 7 and 9) and summed with either NO$_3^-$ (Landis et al. 2001) or NH$_4$NO$_3$ (1.29NO$_3^-$ in Eqs. 7 and 9). If NO$_3^-$ is not measured, NH$_4$NO$_3$ is assumed to be negligible. Abundant NO$_3^-$ has been found in several urban areas, especially during fall and winter (Green et al. 2015).

Assuming 1.29NO$_3^-$ for NH$_4$NO$_3$ may not be valid when HNO$_3$ reacts with suspended dust to form calcium nitrate (Ca(NO$_3$)$_2$) or when it reacts with sodium chloride (NaCl) from a marine intrusion or suspension from an alkaline playa to form sodium nitrate (NaNO$_3$) (Hoffman et al. 2004). Lee et al. (2008) noted the presence of PM$_{2.5}$ Ca(NO$_3$)$_2$ at several IMPROVE sites owing to a coarse particle NO$_3^-$ tail that extended below 2.5 μm. Harrison et al. (2003) applied Eq. 7 for PM$_{2.5}$ ions and added NaNO$_3$ for PM$_{10-2.5}$. Several studies used front filter NO$_3^-$ (i.e., non-volatilized NO$_3^-$ from Teflon-membrane or quartz-fiber filters), as volatilized NO$_3^-$ is not part of the gravimetric mass (Chow et al. 2002a). Ma et al. (2001) estimated NH$_4$NO$_3$ as 2.857 N, with N measured by an elemental analyzer, which is commonly applied to fuel assays. The presence of ammonium chloride (NH$_4$Cl) in PM$_{2.5}$ was noted by Kelly et al. (2013) for Utah’s Salt Lake valley; by Pant et al. (2015) in New Delhi, India, where there is abundant trash burning; and by Levin et al. (2010) for biomass burning samples.

Elemental S has been commonly measured by XRF or proton-induced X-ray emission (PIXE) analyses (Watson et al. 1999). Based on molecular weight, 3S can be used to estimate SO$_4^{2-}$, assuming that all S is water-soluble SO$_4^{2-}$. This is not the case when: (1) S is associated with insoluble organic compounds such as mercaptans; (2) S is not completely watersoluble, as is the case for minerals such as gypsum (CaSO$_4$·2H$_2$O) and pyrite (FeS$_2$); or (3) S consists of sulfur dioxide (SO$_2$) adsorbed onto soot or other particles (Watson 2002).

For coastal environments, non-sea-salt sulfate (i.e., nssSO$_4^{2-}$=SO$_4^{2-}$–0.252Na$,^+$, based on SO$_4^{2-}$/Na$^+$ molar ratio in sea water) can be estimated (Sciare et al. 2003). Summed nssSO$_4^{2-}$+NO$_3^-$/NH$_4^+$ has been applied to estimate contributions from inorganic ions (Cheung et al. 2011; Maenhaut et al. 2008; Mkoma et al. 2009; Querol et al. 2001; Terzi et al. 2010). Zhang et al. (2013) also included K$^+$ (a marker for biomass burning) as an additional inorganic ion.

Since NH$_4^+$ is not quantified in the IMPROVE network, (NH$_4$)$_2$SO$_4$ is estimated by 4.125S (Eq. 7). Due to variations between SO$_4^{2-}$ (by IC) and S (by XRF) ratios, Hand et al. (2011) used 1.375SO$_4^{2-}$ (Eq. 10). Both the original (Eq. 7) and the revised (Eq. 10) IMPROVE equations have been the foundation for reconstructing light extinction in the USA under the Regional Haze Rule (now termed the Clean Air Visibility Rule; Pitchford et al. 2007; USEPA 2001; Watson 2002).

Organic mass/organic carbon (OM/OC)

To account for the unmeasured H, O, N, and S in organic compounds, a conversion factor (or multiplier) is used to transform OC to OM, i.e.,

$$\text{OM} = f \times \text{OC}$$ \hspace{1cm} (B)

The f multipliers of 1.4 and 1.8 in Table 1 are not site or time specific. Depending on the extent of OM oxidation and secondary organic aerosol (SOA) formation, values for f vary from 1.2 for fresh aerosol in urban areas (Chow et al. 2002a, b) to 2.6 for aged aerosol (Countess et al. 1980; Robinson et al. 2007, 2010; Roy et al. 2011; Turpin and Lim 2001). For example, benzo(a)pyrene (C$_{20}$H$_{12}$), an indicator of incomplete fuel combustion found in engine exhaust (Lowenthal et
1994) has an f = 1.05; whereas cellulose (C₆H₁₀O₅)n, a major component of unburned biological material, has an f = 2.25 (Cerqueira et al. 2010; Puxbaum and Tenze-Kunit 2003; Sanchez-Ochoa et al. 2007).

The origins for f = 1.2–1.5 result from circular reasoning with limited measurements. Macias et al. (1981, Eq. 1) used 1.5 based on an assumed organic composition proportional to CH₂O₀.25. Solomon et al. (1989, Eq. 2) used 1.4, citing Gray et al. (1986), who used both 1.2 and 1.4 for studies in California’s South Coast Air Basin (SoCAB). The f = 1.2 originated from Countess et al. (1980), based on the analysis of ambient carboxylic acid (C₁₆₅(C+H+O)/C = 1.3), polynuclear aromatic ((C+H)/C = 1.08), and aliphatic compounds ((C+H)/C = 1.17) (van Vaeck and van Cauwenbergh 1978) in Denver, CO. Ma et al. (2001) used 1.4 but cited Countess et al. (1980).

As noted by Andrews et al. (2000) and Watson (2002), the 1.4 derives from Grosjean and Friedlander (1975), based on two Los Angeles total suspended particle (TSP) samples. The ratios of C to the sum of C, H, N, and O was 0.66 for oxygenated organics and 0.86 for aliphatics; the inverses are 1.5 and 1.2, respectively. Gray et al. (1986) referred to White and Roberts (1977), who used f = 1.4 to construct a chemical light extinction budget based on Grosjean and Friedlander (1975). Harrison et al. (2003) used 1.4 for urban background sites in Birmingham, UK, and 1.3 for roadside sites in London, UK, citing Russell (2003).

Chow et al. (1994b; 1996, Eqs. 3 and 5, respectively) used 1.4, citing Solomon et al. (1989). Andrews et al. (2000, Eq. 6) also used 1.4, citing both White and Roberts (1977) and Grosjean and Friedlander (1975). Maenhaut et al. (2002, Eq. 8) used 1.4 for samples from Melpitz, Germany, citing Turpin et al. (2000). DeBell et al. (2006, Eq. 9) and Hand et al. (2011, Eq. 10) increased the f from 1.4 to 1.8 for the revised IMPROVE equation (Eq. 10) based on non-urban aerosols (e.g., El-Zanan et al. 2005) and regression analysis by Malm and Hand (2007). The average regression coefficient was 1.7 for OC across all IMPROVE sites for years 1988–2003. This is similar to the f = 1.8 used by Maenhaut et al. (2008) for samples from K-puszta, an EUSAAR station in Hungary, and by Mkoma et al. (2009) for a rural site in East Africa.

Several studies (e.g., Mkoma et al. 2009; Ni et al. 2013; Remoundaki et al. 2013; Terzi et al. 2010; Vecchi et al. 2008; Viana et al. 2007) used an f multiplier of 1.6, whereas f = 1.7 was reported by others (e.g., Guinot et al. 2007; Putaud et al. 2000; Rees et al. 2004). The value of the f multiplier under different situations remains the subject of current research. Biomass burning (especially during the smoldering phase) may require a higher f multiplier as it contains many oxygenated organic compounds (Chen et al. 2010; Chow et al. 2007b), such as levoglucosan (C₆H₁₀O₅), a wood smoke marker (Simoneit et al. 1999) with the same chemical formula but a structure that differs from cellulose. For laboratory-generated vegetative burning, Levin et al. (2010) reported f = 1.55, consistent with a finding of f = 1.5 by Reid et al. (2005).

Aiken et al. (2008) reported f = 1.55–1.7 for primary biomass combustion emissions in Mexico City, lower than 1.9–2.1 found by Polidori et al. (2008) in Pittsburgh, PA, during winter and 2.2–2.6 suggested by Turpin and Lim (2001).

Elemental carbon

The RM equation in Table 1 contain EC without any multiplier. Since OC and EC are operationally defined, absolute OC and EC concentrations and the ratio of OC to EC vary by carbon analysis method (Watson 2005).

Geological minerals

Geological “minerals” might better represent geological “material,” as only assumed oxides of mineral elements (e.g., aluminum (Al), silicon (Si), calcium (Ca), K, titanium (Ti), and iron (Fe)) are included to calculate geological mass. These elements have been measured by XRF, PIXE (e.g., Maenhaut et al. 2008), and, in some cases, instrumental neutron activation analysis (INAA; Maenhaut et al. 2001; Siddique and Waheed 2014) or ICP-mass spectrometry (ICP-MS). Most researchers use one of the five soil formulae listed in Table 1. Macias et al. (1981, Eq. 1) expressed minerals as the sum of the oxides of Al, Si, Ca, K, and Fe assuming the common oxide forms of Al₂O₃, SiO₂, CaO, K₂O, and Fe₂O₃, respectively (Pettijohn 1975). Several studies eliminated the 1.2 K (Eq. 2), except for Andrews et al. (2000, Eq. 6), Kleindienst et al. (2010), and Ni et al. (2013), which also included 1.67 Ti. A higher value (1.95 Ca) was used by Terzi et al. (2010) and Remoundaki et al. (2013) to account for both CaO and CaCO₃.

The IMPROVE “soil” formula (Malm et al. 1994, Eq. 4), applied in Eqs. 7–10, follows Macias et al. (1981, Eq. 1) with the following modifications: (1) iron oxides are equally divided between Fe₂O₃ and FeO; (2) K in soil is estimated as 0.6Fe, based on the composition of coarse particles (Cahill et al. 1986); because some PM₂.₅ K is emitted by biomass burning; and (3) titanium dioxide (TiO₂) is included. All of the initial element coefficients are then multiplied by 1.16 to account for unmeasured O, therefore:

\[
\text{Geological minerals} = 2.2\text{Al} + 2.49\text{Si} + 1.63\text{Ca} + 1.94\text{Ti} + 2.42\text{Fe}
\]

The IMPROVE “soil” formula (Eq. C) has been applied in several other studies (e.g., Chan et al. 1997; Pant et al. 2015). Rogula-Kozlowska et al. (2012) applied Eq. C but supplemented with 2.4K based on the stoichiometric concentration of K₂O. Due to the uncertainties associated with Al by XRF.
and Okita (1994) used 3.27Na+, and others (e.g., Chan et al. 14.29Al. Besides 4.3Ca (from gypsum), Harrison et al. (2003) Hsu et al. (2008) used 12.5Al, and Zhang et al. (2013) used the sum of 9Fe for background and 3.5Fe to 5.5Fe for roadside sites, assuming 11Fe. Ohta Cl+1.44Na, based on the ratio of the sum of all elements (except Cl) to Na in sea water (Riley and Chester 1971). Using Al as a soil marker (Duce et al. 1980), Ho et al. (2006) used 13.77Al, Hsu et al. (2008) used 12.5Al, and Zhang et al. (2013) used 14.29Al. Besides 4.3Ca (from gypsum), Harrison et al. (2003) used the sum of 9Fe for background and 3.5Fe to 5.5Fe for roadside sites, assuming 11–29 % of Fe in fugitive dust. Putaud et al. (2000) summed non-sea-salt (nss)K+, nssCa++, and gravimetric analyses of water insoluble species as residues (600 °C for 8 h) to estimate minerals. Since geological minerals are not a major component of PM2.5, variations in the assumptions regarding metal oxides or multipliers do not contribute to large variations in RM.

Salt

Chow et al. (1996, Eq. 5) and Rogula-Kozlowska et al. (2012) used the sum of Na+ and Cl− to track summertime transport of marine aerosol in California. Others (e.g., Maenhaut et al. 2002, Eq. 8, 2008; Mkoma et al. 2009; Viana et al. 2007) used Cl+1.4486Na, based on the ratio of the sum of all elements (except Cl) to Na in sea water (Riley and Chester 1971). Ohta and Okita (1994) used 3.27Na+, and others (e.g., Chan et al. 1997; Chow et al. 2007a; Ho et al. 2006; Siddique and Waheed 2014; Yan et al. 2012) used 2.54Na+, whereas Harrison et al. (2003) and Joseph et al. (2012) used 1.65Cl− to represent salt content.

PM2.5 Na is a conservative marker for salt (Lowenthal and Kumar 2006; White 2008), but it suffers self-absorption interferences by XRF (Dzubay and Nelson 1975; Formenti et al. 2010; Watson et al. 1999). Therefore, 1.8Cl−, based on the abundance of Cl− in sea water (White 2008), is used in the revised IMPROVE equation (Eq. 10). This approach is reasonable when: (1) there is no depletion of Cl− in salt aerosols from reaction with H2SO4 or HNO3; (2) hydrochloride acid (HCl) is retained on the nylon-membrane filter, i.e., the preceding Na2CO3 denuder to remove HNO3 (Channel 2 of the IMPROVE sampler) does not remove any HCl; and (3) HCl only originated from reactions of acids with salt particles. In any case, 1.8Cl− is a lower limit to estimate salt, assuming that Cl− is measured accurately by IC (Chow and Watson 1999). With advances in chromatographic techniques, the Cl− signal in the chromatogram no longer overlaps the deionized distilled water dip and can be determined quantitatively. As Cl may be depleted under vacuum by XRF analysis, Cl− is a logical choice to estimate salt concentration. More water-soluble species in salt sources (e.g., sea water; Pytkowicz and Kester 1971) could be measured to reduce the uncertainty.

Depletion of Cl− occurs as H2SO4 or HNO3 reacts with sea salt, which exchanges Cl− for SO42− or NO3−, respectively. This will increase the sea salt mass as SO42− (MW=96) and NO3− (MW=62) are heavier than Cl− (MW=35) (Bardouki et al. 2003). For coastal samples from Canada, Yao and Zhang (2012) hypothesized Cl− replacement with di-nitrogen pentoxide (N2O5), instead of HNO3, and that SO42− may be associated with Cl− depletion under acidic conditions. Sciare et al. (2003) defined sea salt (ss) as the sum of Na+, Cl−, ssCa++, ssK+, water-soluble magnesium (Mg2+), and ssSO42−; Zhang et al. (2013) substituted ssMg2+ for Mg2+, whereas Hsu et al. (2010) used the sum of Na+, Cl−, and Mg2+.

Trace elements

Minor or trace elements, excluding geological species, can be added to the RM. Macias et al. (1981, Eq. 1) summed the trace elements in the form of CuO, ZnO, and PbO. Other studies (i.e., Eqs. 3, 5, 6, and 8) summed remaining elements by XRF, excluding S and the geological elements, with the exception of Solomon et al. (1989, Eq. 2), who also included Na+ and Mg++. Trace elements are more pronounced in coarse particles or at sampling sites near industrial facilities contaminated with toxic metals (Chow et al. 2002b) when some elements are not accounted for by the mineral formulae in Table 1. More complicated trace element oxides (TEOs; sum of oxides for vanadium (V), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), selenium (Se), strontium (Sr), phosphorus (P), chromium (Cr), and K) were used by Landis et al. (2001) and Zhang et al. (2013), but this component accounted for a small fraction (0.5–1.6 %) of PM2.5 mass. Therefore, summing the remaining elements may be sufficient.

Others

The remaining mass may be attributed to measurement errors, improper multiplier(s), missing source(s), and/or particle-bound water (e.g., Frank 2006; Malm et al. 2011). This component could represent negative mass if RM overestimates gravimetric mass.

Non-crustal K was estimated as “Others” by Maenhaut et al. (2002), Simon et al. (2011), and Yan et al. (2012) based on either K−0.6Fe (Eq. 8) or 1.2×(K−0.6Fe) (Eq. 11), respectively. Organic acids (sum of acetate, fomite, methane sulfonate, pyruvate, and oxalate) were added to RM by Putaud et al. (2000).
Applications of mass reconstruction equations to special studies

Supplemental Table S-1 summarizes previous studies which give rise to the 11 RM equations in Table 1. Only a subset of equations (i.e., Eqs. 1, 2, 3, 5, and 8) are applied in these short-term special studies. Concerns over visibility degradation in the southwestern USA prompted the establishment of the Western Fine Particle Network that measured size segregated mass and elements during 1977–1981 (Flocchini et al. 1981). As part of the Denver Winter Haze Study and Project VIST TA, Countess et al. (1980) and Macias et al. (1981) started using RM to determine sources of haze-causing aerosol in urban Denver and non-urban Grand Canyon areas, respectively. Equation 1 was developed by Macias et al. (1981) for PM samples at two remote desert sites near Page, AZ. SO4\(^{2-}\) was not completely neutralized based on the molar ratio of NH4\(^+\) to SO4\(^{2-}\) (1.65 instead of 2.0). RM accounted for 75–93 % of PM\(_{2.5}\) and 50–69 % of PM\(_{1.2.5}\). Low PM\(_{1.2.5}\) RMs were attributed to the absence of carbon measurements.

For nine sites in the SoCAB (Solomon et al. 1989, Eq. 2), RM accounted for 86–94 % (averaging 92 %) of annual PM\(_{10}\). Average measured NH4\(^+\) concentrations were 17 % lower than those estimated from (NH4)\(_2\)SO4 and NH4NO3, consistent with sulfates being slightly acidic or some of the nitrates being present as NaNO3. In another SoCAB study (Chow et al. 1994b, Eq. 3), RM accounted for 70–80 % of PM\(_{2.5}\) and 80–85 % of PM\(_{10}\) at nine sites during summer; unexplained mass was 5 % lower at six sites during fall. Chow et al. (1994b) measured OC on tandem quartz-fiber filter packs (i.e., OC on quartz-fiber front filter as OC\(_{QF}\), followed by a quartz-fiber backup filter as OC\(_{QBQ}\)) to estimate adsorption of volatile organic compounds (VOCs; Chow et al. 2006a; Subramanian et al. 2004; Turpin et al. 1994), but large variations were found in OC\(_{QBQ}\). Average OC field blanks (OC\(_{FB}\)) are commonly subtracted from OC\(_{QF}\) (Chow et al. 2010; Watson et al. 2009). In such cases, RM uses blank subtracted values.

In central California (Chow et al. 1996, Eq. 5), RM accounted for >90 % of PM\(_{2.5}\) and PM\(_{10}\) at ten sites. At PM concentrations <30 \(\mu g/m^3\), the RM often exceeded the measured PM mass. This was in part attributed to OC\(_{QF}\) that was not blank-corrected as OC\(_{QBQ}\) > OC\(_{QF}\) in 168 out of 584 (29 %) samples during ozone episodes. Uncorrected OC\(_{QF}\) may be affected by a combination of positive (adsorption) and negative (volatilization) biases (Chow et al. 2010; Watson et al. 2009).

In Melpitz, Germany, RM accounted for 86 % of PM\(_2\) and 116 % of PM\(_{10.2}\) (Mäehnert et al. 2002, Eq. 8). OC was overestimated owing to adsorption of VOCs on quartz-fiber filters, as PM mass was 21 % higher from the quartz-fiber than the collocated Nuclepore-membrane filters. Water associated with hygroscopic species was not accounted for by gravimetry. Considering that the sum of inorganic ions accounted for 34 % of the PM\(_{10.2}\), the associated water at 50 % filter equilibration RH could have accounted for the overestimation of PM\(_{10.2}\) mass.

Evaluation of mass reconstruction through analysis of large data sets

Several studies have evaluated RM in the IMPROVE network (see Eqs. 4, 6, 7, and 9–11 in Table 1), the largest and most consistently acquired chemical speciation data set in the world. Malm et al. (1994, Eq. 4) first applied the IMPROVE "soil" formula (Eq. C) to 36 sites, and RM accounted for 75–80 % of PM\(_{2.5}\), consistent with an OM underestimation using 1.4OC. Andrews et al. (2000, Eq. 6) reported low RM (58–67 % of PM\(_{2.5}\)) among four different types of samplers at Great Smoky Mountains National Park. Replacing SO4\(^{2-}\) with (NH4)\(_2\)SO4 increased RM by 6 %. The corresponding IMPROVE samples yielded RM as 83 % of measured mass. Andrews et al. (2000) attributed the mass deficit to: (1) under-estimation of geological minerals; (2) water retention on the Teflon-membrane filter deposit; and (3) underestimation of OM. However, the mineral contribution was too small to account for the deficit. The RM deficiency was reduced to 15–23 % after estimating water content; hygroscopic organics may result in additional particle-bound water (Saxena and Hildemann 1996). In addition to the low OM (1.4OC) estimate, subtracting OC\(_{QBQ}\) over-corrected for organic vapor adsorption (Andrews et al. 2000).

Lowenthal and Kumar (2003) applied Eq. 7 to 59 IMPROVE sites from 1988 to 1999. RM averaged 88 %, ranging 61–98 % of PM\(_{2.5}\). Incorporating Na, Cl, and trace elements increased RM by 30 % at the coastal Point Reyes site but had a small effect (~3 %) at other sites. RM accounted for a larger fraction during winter than summer at 51 of 59 sites.

At ~40 % RH (i.e., IMPROVE filter equilibration conditions for gravimetric analysis), (NH4)\(_2\)SO4 and NH4NO3 (Eq. 7) absorb about 0.3 and 0.2 g of water/g of dry compound, respectively, assuming supersaturated (NH4)\(_2\)SO4 (Chan et al. 1992; Tang and Munkelwitz 1994). The addition of water would increase RM by 11 % in summer and 12 % in winter. A more hygroscopic form of SO4\(^{-}\) or H2SO4 is needed during summer to account for the observed seasonal differences. However, this assumption cannot be tested without measured NH4\(^+\) or H\(^+\) and would not explain the discrepancies when SO4\(^{-}\) levels are low.

Using 2.1OC (Turpin and Lim 2001) increased RM by 14 % in summer and 16 % in winter (which overestimated measured PM\(_{2.5}\)). A lower f may be applicable in winter due to lower photochemical activity (i.e., less unmeasured O in OM). For IMPROVE sites, monthly median OC\(_{QBQ}\) (acquired at ~5 % of IMPROVE sites) was used for blank subtraction,
assuming VOCs adsorbed on both QF and QBQ became saturated (Watson et al. 2009). During 1990–1999, monthly median OC$_{QF}$ in summer were 0.155 μg/m3 (~3 % of PM$_{2.5}$) higher than winter. Gaseous organic adsorption and seasonal effects in the OC multiplier, evaluated by Lowenthal and Kumar (2003), narrowed the seasonal RM deficit.

PM$_{2.5}$ sampling methods in both the IMPROVE network and CSN result in artifacts for RM (DeBell et al. 2006, Eq. 9; Hand et al. 2011, Eq. 10). Malm et al. (2011) addressed the uncertainties in PM$_{2.5}$ gravimetric and speciation measurements. PM$_{2.5}$ ions (e.g., Cl$^-$, NO$_3^-$, and SO$_4^{2-}$) are measured on a nylon-membrane filter after a denuder to remove HNO$_3$, which captures both non-volatilized and volatilized NO$_3^-$. Particulate NH$_4$NO$_3$ exists in equilibrium with gaseous HNO$_3$ and ammonia (NH$_3$) (Hering and Cass 1999) depending on temperature, pressure, and RH. During sampling, NO$_3^-$ can evaporate as HNO$_3$ due to the pressure drop across the filter and be re-absorbed as volatilized NO$_3^-$. However, volatilized NO$_3^-$ is not part of the gravimetric mass, resulting in a negative artifact, which is most prominent during summer. The uptake of water by sulfates, nitrates, and organics during weighing (at ~40 % RH) counterbalances NO$_3^-$ volatilization from the Teflon-membrane filter (Chow et al. 2005).

Blank subtraction is applied to OC$_{QF}$ for IMPROVE samples but not for CSN samples (Chow et al. 2010; Watson et al. 2009). For the period prior to 2007/2008, carbon analysis followed the STN_TOT protocol in CSN (thermal/optical transmittance; Peterson and Richards 2002) and the IMPROVE_TOR protocol in IMPROVE (thermal/optical reflectance; Chow et al. 1993). Although total carbon (TC=OC+EC) is comparable, STN_TOT reports higher OC and lower EC than the IMPROVE_A_TOR protocol (Chow et al. 2007c). Malm et al. (2011) used collocated measurements in order to relate CSN to IMPROVE carbon concentrations using ordinary least squares (OLS; unweighted) regression:

$$\text{PM}_{2.5} = a_1 \times 1.375 \text{SO}_4^2^- + a_2 \times 1.29 \text{NO}_3^- + a_3 \times \text{OC} + a_4 \times \text{Other}$$ \hspace{1cm} (D)

where “Other” is the sum of EC, geological minerals, and salt (DeBell et al. 2006, Eq. 9). The two regression coefficients, a_1 and a_2, should equal unity if SO$_4^{2-}$ and NO$_3^-$ are present as (NH$_4$)$_2$SO$_4$ and NH$_4$NO$_3$, respectively. Equation D assumes no water uptake at weighing equilibration conditions and no NH$_4$NO$_3$ evaporation during sampling. a_3 is the OC multiplier (f) and $a_4=1$ if the weighting factors for geological minerals and salt are correct. For 168 IMPROVE sites during 1988–2008, average a_1, a_2, a_3, and a_4 values were 1.12, 0.75, 1.60, and 1.06, respectively. This implies a 12 % contribution from water mass associated with (NH$_4$)$_2$SO$_4$ during weighing, a net loss of 25 % NH$_4$NO$_3$ during sampling, and an OC multiplier of 1.6 with 6 % more EC, geological minerals, and salt. A higher a_3 for OC was found during summer (f=1.7) than winter (f=1.42), with a lower a_2 during summer showing more NH$_4$NO$_3$ evaporation, as expected.

Different regression analyses were conducted for 708 IMPROVE samples at the urban Fresno Supersite (Watson et al. 2000) from 2004 to 2010, as shown in Table 2. Ordinary weighted least squares (OWLS) regression takes into account the measurement uncertainty of the independent variable (i.e., PM$_{2.5}$), while effective variance (EV) regression takes into account the uncertainties of both the independent and dependent variables and should provide the most realistic results. Table 2 shows that average PM$_{2.5}$ NO$_3^-$ (3.9±4.9 μg/m3) and OC (3.2±2.5 μg/m3) were the major components, with 1.33±1.26 μg/m3 for SO$_4^{2-}$. The average EC, geological minerals, and salt concentrations were 0.93, 1.42, and 0.27 μg/m3, respectively. Without accounting for measurement uncertainties, a large OLS a_1 of 1.61 for SO$_4^{2-}$ yields an increment (1.61–1.00~0.61) five times higher than the 0.12 increment (i.e., regression coefficient of 1.12) from Malm et al. (2011)—this is inconsistent with 30–40 % RH weighing conditions. The 8 % NO$_3^-$ volatilization (i.e., $a_2=0.92$) and an OC multiplier (a_3) of 1.67 in Table 2 seem reasonable for typical ion concentrations. The geological mineral mass is overestimated ($a_4=0.59$) by the IMPROVE “soil” formula (Eq. C).

Table 2 shows $a_1$$\leq$$1$ (0.90–0.93) by OWLS and EV regression methods, implying SO$_4^{2-}$ is somewhat acidic in Fresno, which is probably not the case. NH$_3$ is abundant in this agricultural region (e.g., Chow et al. 1998, 1999, 2006b). The a2 of 0.85–0.88 is slightly lower than 0.92 in OLS, but it is consistent with NO$_3^-$ volatilization. The a3 is 2–4 % higher in OWLS (1.74) and EV (1.71) than OLS (1.67), but a4 (0.78) is ~30 % higher than OLS (0.59). The high a1 and low a4 in the OLS regression are not realistic. However, the regressions in all cases are statistically significant and the squared multiple correlations (r^2) are 0.98 or 0.99. Hand et al. (2011) and Malm et al. (2011) provide insights into sampling and analytical artifacts in long-term PM$_{2.5}$ networks. However, the example illustrated for Fresno indicates limitations on generalizing from a single dataset and one statistical approach.

Simon et al. (2011, Eq. 11) employed data screening procedures to eliminate suspect or physically unreasonable concentrations. Data sets with correlation coefficients (r) among explanatory variables greater than the absolute value of 0.85 were eliminated; whereas EC was removed due to correlations with OC. However, the effects of collinearity fell along a continuum, and selecting the level of correlation that can be tolerated is subjective. OLS regression was found to produce more bias in regression coefficients than OWLS or EV. Overall, the estimated median OC multipliers (a_3) at the 50th percentile were lower for winter (f=1.39) and fall (f=1.59) and comparable between spring (f=1.83) and summer.
Higher Day et al. 2010; Hawkins and Russell 2010; Ruthenburg et al. (2011). Lower (fahighe and indoor sampling (Reff et al. 2007), for ship emissions (i.e., the OM/OC ratio). As shown in Table 3, the results from Aircraft sampling with FTIR often yielded with these direct measurements are variable with Q-AMS), etc.) have been applied to estimate the (FTIR) spectroscopy, quadrupole-aerosol mass spectrometer solvents, and/or solid-phase extraction) and analytical Several aerosol extraction (a combination of water, organic methods; (4) ammonium and nitrate volatilization; and (5) water uptake on Teflon-membrane filter deposits at different equilibration RHs. The key factors affecting RM are examined for: (1) the OC multiplier (f); (2) sampling artifacts; (3) carbon analysis methods; (4) ammonium and nitrate volatilization; and (5) water uptake on Teflon-membrane filter deposits at different equilibration RHs. The OM/OC ratios ranged from 1.7 to 2.1. Aiken et al. (2008) also reported f=1.6–1.7 for biomass burning OA (BBOA). Based on a series of field studies, Philip et al. (2014) parameterize OM/OC from AMS measurements using f=1.3 for primary organic aerosol and f=2.1 for OOA. The OM/OC ratio is determined as 1.3(f_{POA})+2.1(1–f_{POA}), where f_{POA} is the primary organic aerosol (POA) fraction of the AMS data, a proxy for combustion emissions (derived from ambient NO2 measurements). The OM/OC ratios ranged from 1.7 to 2.1. The f multiplier is expected to be higher in rural than in urban areas due to oxidation and/or addition of SOA during transport. However, the results in Table 3 do not show systematic variations. Organic compounds vary by location, season, and time of day. Site-specific f values need to be measured.

Categorya	Coefficient a1 (SO4^-)	Coefficient a2 (NO3^-)	Coefficient a3 (OC)	Coefficient a4 (Other)	Average±standard deviationb	Minimum–maximum
Species	Avg. SO4^- (μg/m^3)	1.33±1.26	0.079–25			
	Avg. NO3^- (μg/m^3)	3.9±4.9	0.138–38			
	Avg. OC (μg/m^3)	3.2±2.5	0.54–24			
	Avg. Other (μg/m^3)	2.6±1.8	0.53–26			

a http://views.cira.colostate.edu/web. To ensure data quality, only samples with species concentrations exceeding their uncertainties were included for regression analyses
b Ordinary least squares—no weighting
c Ordinary weighted least squares—weighting depends on uncertainty of independent variable
d Effective variance least squares—weighting depends on uncertainties of both the independent (i.e., SO4^-, NO3^-, OC, and Other) and dependent variables (Watson et al. 1984)
e Average and calculated ranges are as follows (number of samples in all averages=708)

(f=1.81). The lowest median a3 (f=1.29) was estimated at western sites during winter. Simon et al. (2011) concluded that more realistic and unbiased estimates of the OC multiplier were obtained using an “error in variables” regression and eliminating EC.

Major factors influencing mass reconstruction

The key factors affecting RM are examined for: (1) the OC multiplier (f); (2) sampling artifacts; (3) carbon analysis methods; (4) ammonium and nitrate volatilization; and (5) water uptake on Teflon-membrane filter deposits at different equilibration RHs.

Measurement of the OC multiplier (f) to estimate OM

Several aerosol extraction (a combination of water, organic solvents, and/or solid-phase extraction) and analytical methods (e.g., elemental analysis, Fourier-transform infrared (FTIR) spectroscopy, quadrupole-aerosol mass spectrometer (Q-AMS), etc.) have been applied to estimate the f multiplier (i.e., the OM/OC ratio). As shown in Table 3, the results from these direct measurements are variable with f=1.27–2.2. Aircraft sampling with FTIR often yielded f=1.3–1.4 (Gilardoni et al. 2007; Maria et al. 2002; Russell 2003) with a higher f multiplier (1.6–1.8) found by Takahama et al. (2011). Lower f values (~1.4) were also found for personal and indoor sampling (Reff et al. 2007), for ship emissions (~1.6 by Gilardoni et al. 2007), and for urban areas (~1.6 by Day et al. 2010; Hawkins and Russell 2010; Ruthenburg et al. 2014). Higher f values (~2.0 to 2.2) were typically found for aged aerosols sampled in remote areas (e.g., Gilardoni et al. 2007; Takahama et al. 2011).

Weighing samples before and after solvent extraction (Japar et al. 1984) resulted in f=1.4 for diesel exhaust samples. In Pittsburgh, PA, Polidori et al. (2008) found that f increased with increasing polarity with f higher in summer (June and July) and winter (December and January) than in spring (March) and fall (October and November). High summer and winter values (f=2.08–2.11) were attributed to biomass burning and residential wood combustion (RWC), respectively. Accounting for both solvent extractable and non-extractable material, the annual average f was estimated to be 2.05±0.18.

Based on AMS measurements and multivariate analyses (e.g., principle component analysis (PCA), regression analysis, and positive matrix factorization (PMF)), Zhang et al. (2005) and Aiken et al (2008) reported average f=1.7–1.8 with f=1.2–1.3 for hydrocarbon-like organic aerosols (HOAs) and f=1.9–2.5 for oxygenated OA (OOA). Aiken et al. (2008) also reported f=1.6–1.7 for biomass burning OA (BBOA). Based on a series of field studies, Philip et al. (2014) parameterize OM/OC from AMS measurements using f=1.3 for primary organic aerosol and f=2.1 for OOA. The OM/OC ratio is determined as 1.3(f_{POA})+2.1(1–f_{POA}), where f_{POA} is the primary organic aerosol (POA) fraction of the AMS data, a proxy for combustion emissions (derived from ambient NO2 measurements). The OM/OC ratios ranged from 1.7 to 2.1.
Study	Particle size	Method/descriptiona	OM/OC (ratio)	Location	Season (sampling period)
Krivacsy et al. (2001)	PM$_{2.5}$	Used total organic carbon (TOC) analyzer to determine TC and WSOC Used solid-phase extraction on a copolymer sorbent Analyzed C, H, N, and S of OM by elemental analyzer with estimated O Determined OM mass by gravimetry	1.9	High alpine research station, Jungfraujoch, Switzerland (in the Swiss alps; elevation 3580 m above sea level (asl))	July to August 1998
Kisset al. (2002)	PM$_{1.5}$	Used total organic carbon (TOC) analyzer to determine TC and WSOC Used solid-phase extraction on a copolymer sorbent Analyzed C, H, N, and S of OM by elemental analyzer with estimated O Determined OM mass by gravimetry	1.93±0.038 (ranged from 1.9 to 2.0)	Rural K-puszta site with mixed forest, Hungary	January to September 2000
Maria et al. (2002, 2003)	PM$_{1}$	Calculated OC and OM from FTIR and compare with thermal/optical OC A 4-solvent rinsing procedure was used to separate functional groups into fractions of increasing hygroscopicity Used carbon monoxide (CO) vs. FTIR OC ratios to classify back trajectory clusters into 10 groups	1.27±0.02 to 1.49±0.28	Aircraft sampling over northeast Asia during the ACE-Asia Campaign	April and May 2001
Russell (2003)	Submicron PM	FTIR, estimated OC from the number of carbon bonds and OM from the molecular mass of each functional group	1.36±0.13 (1.2–1.6)	Aircraft and ship-based sampling in the Caribbean and northeastern Asiab	March to April and July 2001
El-Zanan et al. (2005)	PM$_{2.5}$	After sequential solvent extraction with dichloromethane, acetone, and water, the dried residue was weighed for OM and analyzed for OC by TOR OC. The water extracts were also analyzed for ions (Cl$^-$, NO$_3^-$, SO$_4^{2-}$, Na$^+$, K$^+$, and NH$_4^+$) to subtract inorganic ion mass.	1.92±0.40 (1.58–2.58)	U.S. National Parks (5 sites)c	Annual (1988–2003)
Zhang et al. (2005)	PM$_{1}$	Inorganic ions (e.g., sulfates, nitrates, ammonium) and organics by AMS, followed by deconvolution of AMS mass spectrum to identify HOAs and OOA.	Averaged 1.8 with 1.2 for HOA and 2.2 for OOA	Pittsburgh, PA	September 2002
Yu et al. (2005a, b)	PM$_{1.5}$	Used water and solvent extraction followed by GC/MS analysis for WSOC and solvent-soluble OC	Daytime 2.0±0.3 (1.4–2.5), Nighttime 1.8±0.2 (1.3–2.0)	Great Smoky Mountains National Park, TN	July to August 2005
Study	Particle size	Method/description	OM/OC (ratio)	Location	Season (sampling period)
-----------------------	---------------	--	----------------	---	--------------------------
Chen and Yu (2007)	PM$_{2.5}$	Determined OM by combining heating, gravimetric, and chemical constituents	2.1±0.3	Sub-urban site at Clearwater, Hong Kong	October 2003 to June 2005
Gilardoni et al. (2007)	PM$_1$	FTIR and comparison with IC-PILS for speciated carboxylic acids	1.4±0.12	Aircraft sampling of Ohio power plant emissions and regional background (12 flights)	Summer 2004
				Ship sampling in the Gulf of Maine	
				Appliance Island, ME	
				Chebogue Point, Nova Scotia, Canada	
Reff et al. (2007)	PM$_{2.5}$	FTIR for aliphatic (CH) and carbonyl (C=O and [(C=O)−OH] by partial least squares (PLS) equation	Outdoor 1.7–2.6	219 non-smoking homes in LA county, CA, Elizabeth, NJ, and Houston, TX	Summer 1999 to Spring 2001
			Indoor 1.3–1.7 (average 1.45±0.17)		
			Personal 1.3–1.6 (average 1.4±0.11)		
Aiken et al. (2008)	PM$_1$	Elemental analysis by AMS	1.84	Jungfraujoch, Switzerland	March 2006
Cozic et al. (2008)	PM$_1$	OM by Q-AMS, normalized to OC by OC/EC TOT carbon analyzer		Pittsburgh, PA	Annual (July 2001–July 2002)
Polidori et al. (2008)	PM$_{2.5}$	Used a combination of polarity-based extraction/fractionation method, determine OM by gravimetry and OC by thermal/optical analysis (polarity generally increases as organic oxygen content increases)			
			OM/OC ratios increase with increasing polarity: 1.37 for hexane, 1.66 for dichloromethane, 1.89 for ethyl acetate, 2.11 for acetone, and 2.25 for methanol extractions. Annual average ratios with (OM/OC$_{ex}$) and without (OM/OC$_{nonex}$) non-extractable material were 2.05±0.18 and 1.91±0.24, respectively		
Gilardoni et al. (2009)	PM$_1$	FTIR	1.8	Mexico City, Mexico Alztomoni (60 km SE of Mexico City, Mexico)	March 2006
Day et al. (2010)	PM$_1$	FTIR and comparison of OM with Q-AMS	1.66a	La Jolla, CA	February and March 2009
Hawkins and Russell (2010)	PM$_1$	FTIR and comparison with Q-AMS	1.55±0.17	La Jolla, CA	June to September 2008
Takahama et al. (2011)	Submicron PM	FTIR and comparison with ACSM	2.0–2.2	Whistler Mountain, BC, Canada	March and April 2009
			1.6–1.8	Aircraft sampling over Mexico and the Gulf of Mexico coast (12 flights)	May to September 2009
Study	Particle size	Method/description	OM/OC (ratio)	Location	Season (sampling period)
------------------------	---------------	-------------------	--------------	------------------	--------------------------
Ruthenburg et al. (2014)	PM$_{2.5}$	FTIR	1.83	Mesa Verde, CO	Annual (2011) at seven IMPROVE sites
			1.79	Olympia, WA	
			1.78	Proctor Maple R.F., VT	
			1.71	St. Marks, FL	
			1.73	Trapper Creek, AK	
			1.56	Phoenix, AZ	

PM particulate matter, PM$_x$, PM with diameter smaller than x micrometers at 50% cut-point, HOA hydrocarbon-like organic aerosol (represent gasoline and diesel engine exhaust emissions), OOA oxygenated organic aerosol (contains more oxygen atoms than HOAs, resemble humic-like substance, and have been associated with secondary organic aerosol), BBOA biomass burning organic aerosol

a Measurement methods include aerosol chemical speciation monitor (ACSM), aerodyne aerosol mass spectrometer (AMS), quadrupole-aerosol mass spectrometer (Q-AMS), ion chromatography-particle into liquid sampler (IC-PILS), Fourier transform infrared analysis (FTIR), total carbon (TC), thermal/optical reflectance (TOR), thermal/optical transmittance (TOT), water-soluble organic carbon (WSOC), water-soluble organic matter (WSOM)

*b During the aerosol characterization experiment (ACE)-Asia study in the western Pacific and the Passing Efficiency of the Low Turbulence Inlet Experiment (PELTI) study in the Caribbean *

c Sites are Acadia, ME; Great Smoky Mountains, TN; Big Bend, TN; Indian Gardens, Grand Canyon, AZ; and Mount Rainier, WA

*d During the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign, ground-based sampling was done at the T0 Supersite at the Instituto Mexicano del Petróleo (IMP) and aircraft data were collected aboard the NCAR C-130 aircraft over the city *

e Estimated based on the sum of carbon mass in the functional groups (Russel 2003)
Sampling and analysis artifacts

Different approaches to sampling and analysis introduce uncertainties and systematic biases, including carbon sampling artifacts, thermally evolved carbon analysis methods, ammonium and nitrate volatilization, and particle-bound water on Teflon-membrane filters. The following subsections address these measurement uncertainties.

Carbon sampling artifacts and carbon analysis by thermal evolution

As noted, PM$_{2.5}$ sampling onto quartz-fiber filters is accompanied by positive (e.g., VOC adsorption) and negative (e.g., volatilization during and after sample collection) OC artifacts (Chow et al. 2010; Putaud et al. 2000; Turpin et al. 1994; Watson et al. 2009). Positive artifacts (e.g., estimated by field blank (OC$_{FB}$), backup filter (OC$_{QBQ}$), preceding organic denuders, and regression analyses) often exceed negative artifacts (ten Brink 2004; Watson et al. 2009). OC artifacts may bias EC values by as much as ∼50 %, especially by TOT, as light attenuation due to charring of the adsorbed organics within the filter has greater influence than charring of the surface particle deposit in TOR (Chen et al. 2004; Chow et al. 2004).

Ammonium and nitrate volatilization

Compared with total particulate NO$_3$⁻, Chow et al. (2005) found volatilized NO$_3$⁻ losses ranging from <10 % during cold months to >80 % during warm months (from the front quartz-fiber filter) for urban and non-urban sites. The amount of NH$_4$NO$_3$ volatilization from the Teflon-membrane filter can be estimated by a thermodynamic model (Hering and Cass 1999; Mozurkewich 1993), but this is only possible when gaseous HNO$_3$ and NH$_3$, total particle NO$_3$⁻, temperature, and RH are known (Chow et al. 2005; Stelson et al.

Table 4 Comparison of common thermal/optical protocols: IMPROVE_A, STN, and EUSAAR_2

Carbon fraction	Atmosphered	IMPROVE_A_TORa	STN_TOTb	EUSAAR_2_TOTc		
	Temp. (°C)	Residence time (s)e	Temp. (°C)	Residence time (s)	Temp. (°C)	Residence time (s)
OC1	Inert	140 80–580	310 60		200 120	
OC2	Inert	280 80–580	480 60		300 150	
OC3	Inert	480 80–580	615 60		450 180	
OC4	Inert	580 80–580	900 90		650 180	
	Oven cooling	NA NA	NA 30		NA 30	
EC1	Oxidizing	580 80–580	600 45		500 120	
EC2	Oxidizing	740 80–580	675 45		550 120	
EC3	Oxidizing	840 80–580	750 45		700 70	
EC4	Oxidizing	NA NA	825 45		850 80	
EC5	Oxidizing	NA NA	920 120		NA NA	

a The non-urban Interagency Monitoring of Protected Visual Environments (IMPROVE) network and urban Chemical Speciation Network (CSN), measures and reports both thermal/optical reflectance (TOR), and thermal/optical transmittance (TOT), following the IMPROVE_A_TOR protocol (Chow et al. 2007b, 2011)

b Speciation Trends Network (STN), also called NIOSH-like protocol (Peterson and Richards 2002)

c European Supersites for Atmospheric Aerosol Research, EUSAAR_2, protocol (Cavalli et al. 2010)

d Inert atmosphere ultra-high purity (UHP) helium (He) for OC analysis. Oxidizing atmosphere 98 % He/2 % oxygen (O$_2$) for all protocols

e Ramping to the next temperature or atmosphere begins when the flame ionization detector (FID) response returns to either baseline or a constant value; these times represent minimum and maximum times to be spent in any segment, respectively

f At the end of OC analysis, a cooling blower turns on for ∼30 s. EC analysis starts ∼10 s after the introduction of 98 % He/2 % O$_2$
Volatilized NO3− is not considered in the USEPA’s (1997) PM2.5 Federal Reference Method (FRM) for compliance monitoring. However, for evaluating light extinction or health effects, it is necessary to account for NO3− volatilization during sampling.

Yu et al. (2005c) noted that gaseous HNO3 interacts with nylon filters and retains HNO3 that volatilized from NH4NO3. However, losses of NH4+ (i.e., gaseous NH3) from nylon filters after a Na2CO3 denuder for the selected six IMPROVE sites ranged from 10 to 28 % (monthly average) during summer. Yu et al. (2006) found that, for individual samples, the NH4+ losses spread between 1 and 65 %. NH4+ volatilization is enhanced by increasing temperature and RH, and with the fraction of total NH4+ present as NH3 (sum of NH3 and NH4+) present as NH3 (Chow et al. 2005).

Loses of NH4+ after sampling need to be investigated. Non-volatilized NH4+ can be acquired on Teflon-membrane or quartz-fiber filters without preceding denuders. Ideally, both non-volatilized and volatilized NH4+ should be acquired on a parallel channel, using a preceding citric acid denuder to remove NH3, followed by a quartz-fiber filter with a citric acid impregnated cellulose-fiber backup filter (e.g., Chow 1995; Chow et al. 1998).

Particle-bound water on the Teflon-membrane filter

The influence of particle-bound and particle-adsorbed water on PM has been explored in several studies (e.g., Frank 2006; Malm et al. 2011; Temesi et al. 2001). Water associated with PM was estimated by Harrison et al. (2003) by applying 1.29 to the sum of (NH4)2SO4 and NH4NO3 concentrations and in others (e.g., Murillo et al. 2012; Siddique and Waheed 2014) by multiplying 0.32 to the sum of (NH4)2SO4 and NH4NO3 concentrations to air pollution sources; (3) relate toxic components to public health and ecosystems; and (4) associate particle scattering and absorption properties with visibility.

Summary and conclusions

As PM2.5 mass concentration has been regulated in NAAQS to protect public health and welfare, it is important to understand the particle composition in order to: (1) examine the causes of elevated concentrations; (2) attribute ambient concentrations to air pollution sources; (3) relate toxic components to public health and ecosystems; and (4) associate particle scattering and absorption properties with visibility.
imperium, the Earth’s radiation balance, and climate change. With advances in sampling and analysis techniques, the demand for characterizing the chemical, physical, and optical properties of atmospheric aerosol is increasing worldwide. The validity of mass and chemical measurements needs to be examined prior to or in conjunction with air-quality modeling to develop pollution control strategies and reduce human exposure to hazardous pollutants.

Mass reconstruction is a simple and useful tool for validating the consistencies and addressing uncertainties among mass and chemical measurements. The reconstruction of measured mass was started by Countess et al. (1980) and Macias et al. (1981) as PM chemical speciation for ions, carbon, and elements became available. The 11 reconstructed mass (RM) equations examined here provide history and insight into the evolution of RM. Major PM components include: (1) major inorganic ions (e.g., SO_4^{2-}, NO_3^-, and NH_4^+); (2) OC and its multiplier (f) to estimate OM, (3) EC, (4) geological minerals (based on estimated metal oxides), (5) salt, (6) trace elements (excluding double counting of ions and crustal components in geological minerals), and (7) others (as remaining mass including particle-bound water). The remaining mass can be negative when RM overestimates the gravimetric mass.

For inorganic ions, either the sum of $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3 (calculated by their respective stoichiometric multiplier as 1.375SO_4 and 1.29NO_3) or the sum of SO_4^{2-}, NO_3^-, and NH_4^+ is most commonly applied. For coastal environments, variations account for non-sea salt SO_4^{2-} (nssSO_4), CaSO_4, $\text{Na(NO}_3)_2$, and NH_4Cl. The assumption that SO_4^{2-} is completely neutralized as $(\text{NH}_4)_2\text{SO}_4$ overestimates SO_4^{2-} mass when non-neutralized (acidic) sulfates are present. Summing of SO_4^{2-}, NO_3^-, and NH_4^+ will not account for H associated with partially neutralized SO_4^{2-} (e.g., NH_4HSO_4). Ion balances should be applied to ensure the molar equivalence between the measured anions and cations and to justify the degree of neutralization. NH_4^+ measurements should be included in routine monitoring networks and special studies, preferably on a quartz-fiber filter or with preceding citric acid denuder and citric acid impregnated backup filter that can capture both non-volatilized and volatilized NH_4^+, respectively.

$\text{PM}_{2.5}$ NH_4NO_3 may evaporate from Teflon-membrane and quartz-fiber filters during warm, non-winter periods, but its contribution to RM is expected to be highest during winter when low temperatures and high RH favor the particle phase. Ammonium and nitrate volatilization during sampling does not affect mass reconstruction. However, positive bias in RM is expected for CSN and the IMPROVE network where total particulate NO_3^- measured on a nylon-membrane filter includes volatilized NO_3^- that is not part of the gravimetric mass on Teflon-membrane filters. To account for this bias, gaseous HNO$_3$ can be removed with a preceding denuder and volatilized NO_3^- can be collected on a nylon filter or salt-impregnated filter behind one of the filters.

The OC multiplier (f) ranges from 1.2 to 2.6, depending on the extent of OM oxidation. The most commonly applied multipliers are 1.4 for urban and 1.8 for non-urban sites. The f multiplier is expected to be highest in non-urban areas due to oxidation and/or addition of secondary organic compounds during transport. Organic compounds vary by location, season, and time of day. Site-specific f values need to be measured. Future studies should focus on direct measurement of the OM/OC ratio at urban and remote locations with sampling periods covering warm and cold seasons.

Organic sampling artifacts need to be quantified using preceding carbon denuders, field blanks, and/or backup filters. Subtracting averaged field blanks from OC is the most convenient way to remove passive organic adsorption. Different thermal/optical analysis protocols may result in additional uncertainties. The analysis protocol used in the CSN prior to 2007/2008 overestimated OC and consistently led to high-biased RM. Consistent carbon analysis protocol should be applied nationwide and internationally. Among the seven $\text{PM}_{2.5}$ components, EC is the most straightforward as a single component without any multiplier. However, the abundance of EC is method dependent as OC and EC are operationally defined.

For geological minerals containing Al, Si, Ca, and Fe, compounds are assumed to be Al_2O_3, SiO_2, CaO, and Fe_2O_3, respectively, with variations including or excluding FeO, K_2O, and TiO_2. The IMPROVE “soil” formula applies a factor of 1.16 to account for unmeasured compounds and tends to overestimate geological minerals. This can be examined empirically by measuring the chemical composition of local geological samples after subtracting OM and ionic concentrations. Since geological minerals are not a major component of $\text{PM}_{2.5}$, variations in the assumptions regarding metal oxides or multipliers do not contribute to large variations in RM, but they are important for PM_{10} and PM_{10} RMs. Trace elements as a sum of remaining elements by XRF (excluding S and geological elements) or as complicated trace element oxides only account for a small fraction (0.5–1.6 %) of $\text{PM}_{2.5}$ mass.

There is no standard method to estimate salt. It is mainly based on: (1) the sum of elements (excluding Cl and Cl^-) to Na or Na^+ ratio in seawater; (2) straight sum of Na^+ and Cl^-; or (3) estimated as 1.8Cl^- as in the revised IMPROVE equation. Depletion of Cl^- by reaction with sea salt particles with a strong acid (e.g., H_2SO_4 and HNO_3) is difficult to estimate without additional measurement. However, the salt component should be accounted for at sampling sites near coastal areas, salt lakes, or desert playas, as it may comprise up to 20–30 % of $\text{PM}_{2.5}$ mass.

Potential bias in measured mass due to the absorption of water by hygroscopic species on the Teflon-membrane filter from which $\text{PM}_{2.5}$ mass is determined can be estimated theoretically from concentrations of water-soluble species.
measured on nylon-membrane or quartz-fiber filters using a thermodynamic model.

In conclusion, the principal sources of uncertainty are: (1) ammonium and nitrate volatilization and inconsistency between total particulate NO$_3^-$ on nylon-membrane filters and non-volatilized NO$_3^-$ on Teflon-membrane filters; (2) unknown OC multipliers (f) to estimate OM; (3) inaccurately accounting for OC sampling artifacts; (4) differences among OC and EC analytical protocols; (5) inaccurate conversion of crustal element concentrations to geological minerals; (6) various degrees of Cl$^-$ depletion at coastal locations; and (7) particle-bound water on the Teflon-membrane filter deposits. Reasonably accurate PM$_{2.5}$ mass reconstruction can be accomplished by minimizing sampling artifacts and conducting comprehensive chemical analyses to ensure mass closure.

Acknowledgments This work was jointly sponsored by the National Park Service (NPS) IMPROVE Contract No. P11PC00036, the National Science Foundation (CHE-1214163), and the San Joaquin Valley Air Pollution Control District (Contract No. 11-10 PM). The authors wish to thank Miss Iris Saltus for her help in assembling and editing the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Aiken AC, DeCarlo PF, Kroll JH, Worsnop DR, Huffman JA, Docherty KS, Ulbrich IM, Mohr C, Kimmel JR, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann PJ, Canagaratna MR, Onasch TB, Alfarra MR, Prevot ASH, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez JL (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485

Andrews E, Saxena P, Musarra S, Hildemann LM, Koutrakis P, McMurry PH, Olmiz E, White WH (2000) Concentration and composition of atmospheric aerosols from the 1995 SEAVS Experiment and a review of the closure between chemical and gravimetric measurements. J Air Waste Manage Assoc 50:648–664

Ashbaugh LL, Eldred RA (2004) Loss of particle nitrate from Teflon sampling filters: effects on measured gravimetric mass in California and in the IMPROVE Network. J Air Waste Manage Assoc 54:93–104

Bachmann JD (2007) Will the circle be unbroken? a history of the US national ambient air quality standards—2007 Critical Review. J Air Waste Manage Assoc 57:652–697

Bardouki H, Liakakou H, Economou C, Sciare J, Smolik J, Zdalv M, Eleftheriadis K, Lazaridis M, Dye C, Mihalopoulos N (2003) Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmos Environ 37:195–208

Cahill TA, Eldred RA, Feeney PJ (1986) Particulate monitoring and data analysis for the National Park Service 1982–1985. University of California, Davis, California

Cao JJ, Chow JC, Lee SC, Watson JG (2013) Evolution of PM$_{2.5}$ measurements and standards in the U.S. and future perspectives for China. AAQR 13:1197–1121

Cavalli F, Viana M, Yttri KE, Genberg J, Pataud JP (2010) Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos Meas Tech 3:79–89

Cerequeira M, Marques D, Caseiro A, Pio C (2010) Experimental evidence for a significant contribution of cellulose to indoor aerosol mass concentration. Atmos Environ 44:867–871

Chan CK, Flagan RC, Seinfeld JH (1992) Water activities of NH$_4$NO$_3$/(NH$_4$)$_2$SO$_4$ solutions. Atmos Environ 26A:1661–1673

Chen YC, Simpson RW, McTainsh GH, Woldes PD, Cohen DD, Bailey GM (1997) Characterisation of chemical species in PM$_2.5$PM$_{10}$ aerosols in Brisbane. Australia Atmos Environ 31:3773–3785

Chen L-WA, Doddridge BG, Chow JC, Dickerson RR, Ryan WF, Mueller PK (2003) Analysis of summertime PM$_{2.5}$ and haze episode in the mid-Atlantic region. J Air Waste Manag Assoc 53:946–956

Chen L-WA, Chow JC, Watson JG, Moosmüller H, Arnott WP (2004) Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/ optical analysis. J Aerosol Sci 35:765–780

Chen L-WA, Verburg P, Shackelford A, Zhu D, Susfalk R, Chow JC, Watson JG (2010) Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmos Chem Phys 10:6617–6625

Chen X, Yu JZ (2007) Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis. Atmos Environ 41:8857–8864

Chen X, Day D, Schichtel B, Malm W, Matzoll AK, Mojaic J, McDade CE, Hardison ED, Hardison DL, Walters S, De Water MV, Collett JL (2014) Seasonal ambient ammonia and ammonium concentrations in a pilot IMPROVE NH$_x$ monitoring network in the western United States. Atmos Environ 91:118–126

Cheung K, Daher N, Kam W, Shater MM, Ning Z, Schauer JJ, Sioutas C (2011) Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM$_{10}$, PM$_{2.5}$) in the Los Angeles area. Atmos Environ 45:2651–2662

Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmos Environ 27A:1185–1201

Chow JC, Fujita EM, Watson JG, Lu Z, Lawson DR, Ashbaugh LL (1994a) Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environ Monit Assess 30:49–80

Chow JC, Watson JG, Fujita EM, Lu Z, Lawson DR, Ashbaugh LL (1994b) Temporal and spatial variations of PM$_{2.5}$ and PM$_{10}$ aerosol in the Southern California Air Quality Study. Atmos Environ 28:2061–2080

Chow JC (1995) Critical review: measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manage Assoc 45:320–382

Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuijler RH, Magliano KL (1996) Descriptive analysis of PM$_{2.5}$ and PM$_{10}$ at regionally representative locations during SJAQS/AUSPEX. Atmos Environ 30:2079–2112

Chow JC, Watson JG, Lowenthal DH, Egami RT, Solomon PA, Thuijler RH, Magliano KL, Ranzieri AJ (1998) Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJAQS/AUSPEX ozone episodes. Atmos Environ 32:2835–2844

Chow JC, Watson JG (1999) Ion chromatography in elemental analysis of airborne particles. In: Landsberger S, Creatchman M (eds) Elemental Analysis of Airborne Particles, vol 1. Gordon and Breach Science, Amsterdam, pp 97–137
Chow JC, Watson JG, Lowenthal DH, Hackney R, Magliano KL, Lehman DE, Smith TB (1999) Temporal variations of PM$_{2.5}$, PM$_{10}$, and gaseous precursors during the 1995 Integrated monitoring study in central California. J Air Waste Manage Assoc 49:PM16–PM24

Chow JC, Watson JG, Edgerton SA, Vega E (2002a) Chemical composition of PM$_{10}$ and PM$_{2.5}$ in Mexico City during winter 1997. Sci Total Environ 287:177–201

Chow JC, Watson JG, Edgerton SA, Vega E, Ortize E (2002b) Spatial differences in outdoor PM$_{10}$ mass and aerosol composition in Mexico City. J Air Waste Manage Assoc 52:423–434

Chow JC, Watson JG, Ashbaugh LL, Magliano KL (2003) Similarities and differences in PM$_{10}$ chemical source profiles for geological dust from the San Joaquin Valley, California. Atmos Environ 37:1317–1330

Chow JC, Watson JG, Chen L-WA, Arnott WP, Moosmüller H, Fung KK (2006) Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 1. The acids as non-dissociating components. J Phys Chem A 110:5692–5717

Clegg SL, Kleeman MJ, Griffin RJ, Seinfeld JH (2008) Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model—part 1: treatment of inorganic electrolytes and organic compounds in the condensed phase. Atmos Chem Phys 8:1057–1085

Countess RJ, Wolf GT, Cadle SH (1980) The Denver winter aerosol: a comprehensive chemical characterization. J Air Pollut Control Assoc 30:1194–1200

Cozic J, Verheggen B, Weingartner E, Crosier J, Bower KN, Flynn M, Coe H, Henning S, Steinbacher M, Henne S, Coen MC, Petzold A, Baltensperger U (2008) Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos Chem Phys 8:407–423

Dabek-Zlotorynska E, Dunn TF, Martinezlango PK, Celo V, Brook JR, Mathieu D, Ding LY, Austin CC (2011) Canadian National Air Pollution Surveillance (NAPS) PM$_{2.5}$ Speciation program: methodology and PM$_{2.5}$ chemical composition for the years 2003–2008. Atmos Environ 45:673–686

Day DA, Liu S, Russell LM, Ziemann PJ (2010) Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmos Environ 44:1970–1979

Day DE, Malm WC, Kreidenweis SM (2000) Aerosol light scattering measurements as a function of relative humidity. J Air Waste Manage Assoc 50:710–716

DeBell LJ, Gebhart KA, Hand JL, Malm WC, Pitchford ML, Schichtel BA, White WH (2006) Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States: Report IV. National Parks Service, Fort Collins, CO

Duce RA, Umgi CK, Ray BJ, Prospero JM, Merrill JT (1980) Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: temporal variability. Science 209:1522–1524

Dzubay TG, Nelson RO (1975) Self absorption corrections for x-ray fluorescence analysis of aerosols. In: Pickles WL, Barrett CS, Newkirk JB, Rund CO (eds) Advances in X-ray analysis, vol 18. Plenum Publishing Corporation, New York, NY, pp 619–631

El-Zanan HS, Lowenthal DH, Zielinska B, Chow JC, Kumar NK (2005) Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples. Chemosphere 60:485–496

Engelhart GJ, Hildebrandt L, Kostendou E, Mihalopoulos N, Donahue NM, Pandis SN (2011) Water content of aged aerosol. Atmos Chem Phys 11:911–920

Facchini MC, Mirecea M, Fuzzi S, Charlson RJ (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401:257–259

Flochini RG, Cahill TA, Pitchford ML, Eldred RA, Feeney PJ, Ashbaugh LL (1981) Characterization of particles in the arid west. Atmos Environ 15:2017–2030

Formenti P, Nava S, Prati P, Chevaillier S, Klaver A, Lafon S, Mazzei F, Calzolai G, Chiari M (2010) Self-attenuation artifacts and correction factors of light element measurements by X-ray analysis: implication for mineral dust composition studies. J Geophys Res-Atmos 115, doi:10.1029/2009JD012701

Frank NH (2006) Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern cities. JAWMA 56:500–511

Gilardoni S, Russell LM, Soros候ian A, Flagan RC, Seinfeld BH, Bates TS, Quin P, Allan JD, Williams B, Goldstein AH, Onasch TB, Worsnop DR (2007) Regional variation of organic functional groups in aerosol particles on four US east coast platforms during the international consortium for atmospheric research on transport and transformation 2004 campaign. J Geophys Res-Atmos 112, doi:10.1029/2006JD007737

Gray HA, Cass GR, Huntzicker J, Heyerdahl EK, Rau JA (1986) Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environ Sci Technol 20:580–589
Green MC, Chow JC, Watson JG, Dick K, Inouye D (2015) Effects of snow cover and atmospheric stability on winter PM$_{2.5}$ concentrations in western US valleys. J Appl Meteorol Climatol. doi:10.1175/JAMC-D-14-0191.1

Grosjean D, Friedlander SK (1975) Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere. J Air Pollut Control Assoc 25:1038–1044

Guinot B, Cachier H, Okononomou K (2007) Geochemical perspectives from a new aerosol chemical mass closure. Atmos Chem Phys 7: 1657–1670

Han JH, Martin ST (1999) Heterogeneous nucleation of the efflorescence of (NH$_4$)$_2$SO$_4$ particles internally mixed with AlZO3, TiO2, and ZrO2. J Geophys Res-Atmos 104:2543–2553

Hand JL, Copeland SA, McDade CE, Day DE, Moore JCT, Dillner AM, Pitchford ML, Indresand H, Schichtel BA, Malm WC, Watson JG (2011) Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States, IMPROVE Report V. Cooperative Institute for Research in the Atmosphere, Fort Collins

Hand JL, Schichtel BA, Malm WC, Pitchford M, Frank NH (2014) Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States. J Geophys Res-Atmos 119:12832–12849

Harrison RM, Jones AM, Lawrence RG (2003) A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmos Environ 37:4927–4933

Hawkins LN, Russell LM (2010) Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires. Atmos Environ 44:4142–4154

Hering SV, Cass GR (1999) The magnitude of bias in the measurement of PM$_{2.5}$ arising from volatilization of particulate nitrate from Teflon filters. J Air Waste Manage Assoc 49:725–733

Ho KF, Lee SC, Cao JJ, Chow JC, Watson JG, Chan CK (2006) Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Sci Total Environ 355:276–287

Hoffman RC, Laskin A, Finlayson-Pitts BJ (2004) Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. J Aerosol Sci 35: 869–887

Houck JE, Chow JC, Watson JG, Simons CA, Pritchett LC, Goulet JM, Frazier CA (1989) Determination of particle size distribution and chemical composition of particulate matter from selected sources in the San Joaquin Valley, Final Report. A6-175-32 OMNI Environmental Services Inc. and Desert Research Institute, Beaverton and Reno

Hsu SC, Liu SC, Huang YT, Lung SCC, Tsai FJ, Tu JY, Kao SJ (2008) A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. J Geophys Res-Atmos 113. doi:10.1029/2007JD009574

Hsu SC, Liu SC, Arimoto R, Shiah FK, Gong GC, Huang YT, Kao SJ, Chen JP, Lin FJ, Lin CY, Huang JC, Tsai FJ, Lung SCC (2010) Effects of acidic processing, transport history, and dust and sea salt loadings on the dissolution of iron from Asian dust. J Geophys Res-Atmos 115. doi:10.1029/2009JD013442

Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonnahut H (2005) Chemical characterisation of PM$_{2.5}$, PM$_{10}$ and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651

Japar SM, Szkarlat AC, Gorse RA Jr, Heyerdahl EK, Johnson RL, Rau JA, Huntzicker JI (1984) Comparison of solvent extraction and thermal-optical carbon analysis methods; application to diesel vehicle exhaust aerosol. Environ Sci Technol 18:231–234

Joseph AE, Unnikrishnan S, Kumar R (2012) Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. AAQR 12:61–72

Kelly KE, Kotchenruther R, Kuprov R, Silcox GD (2013) Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol. J Air Waste Manage Assoc 63:575–590

Kiss G, Varga B, Galambos I, Ganszky I (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J Geophys. Res 107:JCC 1-1-JCC 1-8

Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO, Jaoui M, Zheng M, Ding XA, Edgerton ES (2010) Contribution of primary and secondary sources to organic aerosol and PM$_{2.5}$ at SEARCH network sites. J Air Waste Manage Assoc 60:1388–1399

Kravcys Z, Gelenescer A, Kiss G, Meszaros E, Molnar A, Hoffer A, Meszaros T, Sarvari Z, Temesi D, Varga B, Baltensperger U, Nyeki S, Weingartner E (2001) Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J Air Waste Manage Assoc 39:235–259

Landis MS, Norris GA, Williams RW, Weinsten JP (2001) Personal exposures to PM$_{2.5}$ mass and trace elements in Baltimore, MD, USA. Atmos Environ 35:6511–6524

Lee T, Yu XY, Ayres B, Kreidenweis SM, Malm WC, Collett JL Jr (2008) Observations of fine and coarse particle nitrate at several rural locations in the United States. Atmos Environ 42:2720–2732

Levin EJT, McMeeking GR, Carrico CM, Mack LE, Kreidenweis SM, Wold CE, Moosmüller H, Arnott WP, Hao WM, Collett JL Jr., Malm WC (2010) Biomass burning smoke aerosol properties measured during fire laboratory at Missoula experiments (FLAME). J Geophys Res-Atmos 115, D18210, doi:10.1029/2009JD013601

Lowenthal DH, Zielinska B, Chow JC, Watson JG, Gautam M, Ferguson DH, Neuroth GR, Stevens KD (1994) Characterization of heavy-duty vehicle diesel emissions. Atmos Environ 28:731–743

Lowenthal DH, Kumar NK (2003) PM$_{2.5}$ mass and light extinction reconstruction in IMPROVE. J Air Waste Manage Assoc 53:1109–1120

Lowenthal DH, Kumar NK (2006) Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. J Air Waste Manage Assoc 56:636–642

Lowenthal DH, Zielinska B, Mason B, Samy S, Samburova V, Collins D, Spencer C, Taylor N, Allen J, Kumar NK (2009) Aerosol characterization studies at Great Smoky Mountains National Park, summer 2006. J Geophys Res-Atmospheres 114. doi:10.1029/2008JD011274

Ma CI, Kasahara M, Tohno S, Hwang KC (2001) Characterization of the winter atmospheric aerosols in Kyoto and Seoul using PIXE, EAS and IC. Atmos Environ 35:747–752

Macias ES, Zwicker JO, Ouimette JR, Hering SV, Friedlander SK, Cahill TA, Kuhlmeay GA, Richards LW (1981) Regional haze case studies in the southwestern United States. J. Aerosol chemical composition. Atmos Environ 15:1971–1986

Maenhaut W, Raes N, Caffmeyer J, Chyi X (2000) Chemical mass closure during the eurotrac-2 aerosol intercomp 2000. J Aerosol Sci 32: 1017–1028

Maenhaut W, Schwarz J, Caffmeyer J, Chyi X (2002) Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000. Nucl Instrum Methods Phys Res Sec B: Beam Interac Mater At 189:233–237

Maenhaut W, Raes N, Chyi XG, Caffmeyer J, Wang W (2008) Chemical composition and mass closure for PM$_{2.5}$ and PM$_{10}$ aerosols at K–pusza, Hungary, in summer 2006. X-Ray Spectrum 37:193–197

Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99:1374–1370

Malm WC, Pitchford ML, Scruggs M, Sisler JF, Ames RG, Copeland S, Gebhart KA, Day DE (2000) Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States: IMPROVE Report III. ISSN: 0737-5352-47 Cooperative Institute for Research in the Atmosphere. Colorado State University, Ft. Collins
fine and coarse dusts in Zabrze, Poland. Bull Environ Contam Toxicol 88:722–729

Roy AA, Wagstrom KM, Adams PJ, Pandis SN, Robinson AL (2011) Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles. Atmos Environ 45:3132–3140

Russell LM (2003) Aerosol organic-mass-to-organic-carbon ratio measurements. Environ Sci Technol 37:2982–2987

Ruthenburg TC, Perlin PC, Liu V, McDade CE, Dillner AM (2014) Determination of organic matter and organic matter to carbon ratios by infrared spectroscopy with application to selected sites in the IMPROVE network. Atmos Environ 86:47–57

Sanchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Gelencser A, Legrand M, Pio C (2007) Concentration of atmospheric cellulose: a proxy for plant debris across a west-east transect over Europe. J Geophys Res Atmos 112. doi:10.1029/2006JD008180

Saxena P, Hildemann LM, McMurry PH, Seinfeld JH (1995) Organics alter hygroscopic behavior of atmospheric particles. J Geophys Res 100:18755–18770

Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. Atmos Chem Phys 24:57–109

Saxena P, Hildemann LM (1997) Water absorption by organics: survey of laboratory evidence and evaluation of UNIFAC for estimating water activity. Environ Sci Technol 31:3318–3324

Schell PA, Valiozis C (1990) Characterization and source identification of respirable particulate matter in Athens, Greece. Atmos Environ 24A:203–211

Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles. J Environ Sci Health-Part A-Tox Hazard Subst 31:689–698

Sempere R, Kawamura K (1994) Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach. Atmos Chem Phys 3:1743–1757

Sempere R, Kawamura K (1994) Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmos Environ 28:449–460

Siddique N, Waheed S (2014) Source apportionment using reconstructed mass calculations. J Environ Sci Health-Part A-Tox Hazard Subst Environ Eng 49:463–477

Simon H, Bhave PV, Swall JL, Frank NH, Malm WC (2011) Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmos Chem Phys 11:2933–2949

Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Sempere R, Kawamura K (1994) Aerosol organic-mass-to-organic-carbon ratio measurements. Environ Sci Technol 37:2982–2987

Terzi E, Argyropoulos G, Bougiatioti A, Mihalopoulos N, Nikolaou K, Samara C (2010) Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ 44:2231–2239

Turpin BJ, Hutzicker JJ, Hering SV (1994) Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmos Environ 28:3061–3071

Turpin BJ, Saxena P, Andrews E (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ 34:2983–3013

Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

USEPA (1997) National ambient air quality standards for particulate matter: final rule. Fed Regist 62:38651–38760

USEPA (2001) Draft guidance for tracking progress under the regional haze rule. U.S. Environmental Protection Agency, Research Triangle Park, NC

USEPA (2006) Modification of carbon procedures in the Speciation Network and FAQs. PM2.5 Speciation Trends Network Newsletter 2-3

USEPA (2015) Chemical speciation. U.S. Environmental Protection Agency, Research Triangle Park, NC

van Vaeck L, van Cauwenbergh K (1978) Cascade impactor measurements of the size distribution of the major classes of organic pollutants in atmospheric particulate matter. Atmos Environ 12:2229–2239

Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzef F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42:2240–2253

Viana M, Maenhaut W, Chi X, Querol X, Alastuey A (2007) Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: implications for EU air pollution policies. Atmos Environ 41:315–326

Watson JG, Cooper JA, Hutzicker JJ (1984) The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ 18:1347–1355

Watson JG, Chow JC, Frazier CA (1999) X-ray fluorescence analysis of PM10 aerosols collected in the Los Angeles area. J Air Pollut Control Assoc 39:154–163

Solomon PA, Crumpler D, Flanagan JB, Jaanty RKM, Rickman EE, McDade CE (2014) US National PM10 Chemical Speciation Monitoring Networks-CSN and IMPROVE: description of networks. J Air Waste Manage Assoc 64:1410–1438

Speer RE, Edney EO, Kleineldienst TE (2003) Impact of organic compounds on the concentrations of liquid water in ambient PM2.5. J Aerosol Sci 34:63–77

Stelson AW, Friedlander SK, Seinfeld JH (1979) A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate. Atmos Environ 13:369–371

Subramanian R, Khlystov AV, Cabada JC, Robinson AL (2004) Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Sci Technol 38:27–48

Takahama S, Schwartz RE, Russell LM, Macdonald AM, Sharma S, Leaitch WR (2011) Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site. Atmos Chem Phys 11:6367–6386

Tang IN, Munkelwitz HR (1994) Aerosol phase transformation and growth in the atmosphere. J Appl Meteorol 33:791–796

Tang IN, Tridico AC, Fung KH (1997) Thermodynamic and optical properties of sea salt aerosols. J Geophys Res 102:23269–23276

Temesi D, Molnar A, Feiczko T, Meszaros E (2001) Diurnal variation in the size distribution of water soluble organic compounds. J Aerosol Sci 32:689–698

ten Brink HM (2004) Artefacts in measuring (the composition of) Particulate Matter in Europe: introducing INTERCOMP2000. Atmos Environ 38:6457

Terzi E, Argyropoulos G, Bougiatioti A, Mihalopoulos N, Nikolaou K, Samara C (2010) Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ 44:2231–2239

USEPA (2001) Draft guidance for tracking progress under the regional haze rule. U.S. Environmental Protection Agency, Research Triangle Park, NC

USEPA (2006) Modification of carbon procedures in the Speciation Network and FAQs. PM2.5 Speciation Trends Network Newsletter 2-3

USEPA (2015) Chemical speciation. U.S. Environmental Protection Agency, Research Triangle Park, NC

van Vaeck L, van Cauwenbergh K (1978) Cascade impactor measurements of the size distribution of the major classes of organic pollutants in atmospheric particulate matter. Atmos Environ 12:2229–2239

Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzef F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42:2240–2253

Viana M, Maenhaut W, Chi X, Querol X, Alastuey A (2007) Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: implications for EU air pollution policies. Atmos Environ 41:315–326

Watson JG, Cooper JA, Hutzicker JJ (1984) The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ 18:1347–1355

Watson JG, Chow JC, Frazier CA (1999) X-ray fluorescence analysis of ambient air samples. In: Landsberger S, Creacthman M (eds) Elemental Analysis of Airborne Particles, vol I. Gordon and Breach Science, Amsterdam, pp 67–96

Watson JG, Chow JC, Bowen JL, Lowenthal DH, Hering SV, Ouchida P, Oslund W (2000) Air quality measurements from the Fresno Supersite. J Air Waste Manage Assoc 50:1321–1334

Watson JG, Turpin BJ, Chow JC (2001) The measurement process: Precision, accuracy, and validity. In: Cohen BS, McCammon CSJ (eds) Air Sampling Instruments for Evaluation of Atmospheric Contaminants, Ninth Edition, 9th edn. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, pp 201–216

Watson JG (2002) Visibility: science and regulation—2002 critical review. J Air Waste Manage Assoc 52:628–713
Watson JG (2004) Protocol for applying and validating the CMB model for PM$_{2.5}$ and VOC. EPA-451/R-04-001. U.S. Environmental Protection Agency, Research Triangle Park, NC

Watson JG, Chow JC, Chen L-WA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. AAQR 5:65–102

Watson JG, Chow JC, Chen L-WA, Frank NH (2009) Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks. J Air Waste Manage Assoc 59:898–911

Watson JG, Chow JC (2011) Ambient aerosol sampling. In: Kulkarni P, Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques and applications, third edition, 3rd edn. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 591–614

White WH, Roberts PT (1977) On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin. Atmos Environ 11:803–812

White WH (2008) Chemical markers for sea salt in IMPROVE aerosol data. Atmos Environ 42:261–274

Yan P, Zhang RJ, Huan N, Zhou XJ, Zhang YM, Zhou HG, Zhang LM (2012) Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. Atmos Environ 60:121–131

Yao XH, Zhang LM (2012) Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmos Environ 46:189–194

Yu LE, Shulman ML, Kopperud R, Hildemann LM (2005a) Fine organic aerosols collected in a humid, rural location (Great Smoky Mountains, Tennessee, USA): chemical and temporal characteristics. Atmos Environ 39:6037–6050

Yu LE, Shulman ML, Kopperud R, Hildemann LM (2005b) Characterization of organic compounds collected during southeastern aerosol and visibility study: water-soluble organic species. Environ Sci Technol 39:707–715

Yu XY, Lee T, Ayres B, Kreidenweis SM, Collett JL Jr, Malm WC (2005c) Particulate nitrate measurement using nylon filters. J Air Waste Manage Assoc 55:1100–1110

Yu XY, Lee T, Ayres B, Kreidenweis SM, Malm WC, Collett JL Jr (2006) Loss of fine particle ammonium from denuded nylon filters. Atmos Environ 40:4797–4807

Zhang Q, Worsnop DR, Canagaratna MR, Jimenez JL (2005) Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmos Chem Phys 5:3289–3311

Zhang XY, Wang YQ, Niu T, Zhang XC, Gong SL, Zhang YM, Sun JY (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 12:779–799

Zhang Y, Sartelet K, Zhu S, Wang W, Wu SY, Zhang X, Wang K, Tran P, Seigneur C, Wang ZF (2013) Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe—part 2: evaluation of chemical concentrations and sensitivity simulations. Atmos Chem Phys 13:6845–6875