Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: the atoms Ga–Kr and In-Xe.

Jan M.L. Martin* and Andreas Sundermann

Department of Organic Chemistry, Kimmelman Building, Room 262, Weizmann Institute of Science, IL-76100 Rehovot, Israel. E-mail: comartin@wicc.weizmann.ac.il

(J. Chem. Phys. MS A0.09.107; Received Sept. 14, 2000; Revised October 31, 2018)

Abstract

We propose large-core correlation-consistent pseudopotential basis sets for the heavy p-block elements Ga–Kr and In–Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden
basis set-RECP combination supplemented by \((2f1g)\) functions with exponents given in the Appendix to the present paper.
I. INTRODUCTION AND THEORETICAL BACKGROUND

The two major factors that determine the quality of a wavefunction-based electronic structure calculation are the quality of the one-particle basis set and that of the n-particle correlation treatment.

Thanks to great progress in electron correlation methods (notably in the area of coupled cluster theory [1]), the n-particle problem is to a large extent solved, leaving the 1-particle basis set as the main factor that determines the quality of an electronic structure calculation.

Abundant research has been carried out on basis set convergence and the development of extended basis sets for first- and second-row systems (see e.g. [2] for a review): we note in particular the ANO (atomic natural orbital [3]) basis sets of Almlöf and Taylor, the WMR (Widmark-Malmqvist-Roos, or averaged ANO [4]) basis sets of the eponymous group, and the correlation consistent (cc) basis sets of Dunning and coworkers [5,6]. Due to their relative compactness in terms of Gaussian primitives, the cc basis sets have become very popular for benchmark wavefunction-based ab initio calculations: to a lesser extent, the same holds true for DFT (density functional theory [7]) calculations.

Basis set convergence of the dynamical correlation energy in conventional electronic structure calculations is known to be very slow. This is less of an issue for DFT calculations [8-12]: as a rule basis set convergence appears to be reached for basis sets of \(spdf \) quality and certainly for basis sets of \(spdfg \) quality. Standard basis sets of such quality are readily available for first- and second-row compounds: in addition, ANO and WMR basis sets are available for the first-row transition metals [13] and cc basis sets for the third-row main group elements [14].

Our group has recently become involved in a number of mechanistic studies by means of DFT methods (e.g. on competitive CC/CH activation by Rh(I) pincer complexes [15,16] and on Pd(0/II) and Pd(II/IV) catalyzed mechanisms of the Heck reaction [17]) that involve second-row transition metals and fourth-row main group elements. Generally, one is limited to basis set/ECP (effective core potential) combinations of approximately valence double-
zeta quality. If one wants to establish basis set convergence for a given property, one is forced to optimize basis sets ad hoc (as we have done [17]), which is however not necessarily the most elegant solution. Given that present-day DFT methods are less than ideal for the treatment of transition states [18–20], calibration calculations using coupled cluster methods are in order (at least for some small model systems) — and here the basis set issue becomes even more important.

It is well known that for such heavy elements, relativistic effects cannot gratuitously be neglected without paying a heavy toll in terms of reliability. The theory of relativistic electronic structure methods has been reviewed in detail by Pyykkö [21] and most recently by Reiher and Hess [22]. For systems in the size range of interest to organometallic chemists, four-component all-electron relativistic calculations are presently out of the question, and even quasirelativistic calculations are very costly: consequently, by far the most commonly employed alternative has been the application of relativistic effective core potentials (RECPs). A useful ‘fringe benefit’ of the latter is that they reduce the number of electrons that need to be treated, and hence, indirectly, the overall size of the basis set and cost of the calculation.

The theory and practice of ECPs have been reviewed repeatedly (e.g. [23–25]), most recently by Dolg [26]. Several ECP families are available for the range of the periodic table of interest to us, such as the LANL (Los Alamos National Laboratory) ECPs of Hay and Wadt [27], the CEP (Consistent Effective Potential) family of Stevens, Basch, and coworkers [28], the Ermler-Christensen family [29], and the Stuttgart-Dresden-Bonn (SDB) energy-consistent pseudopotentials [30].

The purpose of this paper is to present and validate valence basis sets for RECPs of a quality comparable to that of the cc-pVTZ and cc-pVQZ correlation-consistent basis sets for lighter elements, to be used in conjunction with the latter. In selecting the underlying RECP, we have opted for the SDB pseudopotentials for the following methodological and pragmatic reasons (some, but not all, of which are satisfied for the other popular ECPs):

- compact mathematical form
• ready availability in the commonly used quantum chemistry packages Gaussian 98 and MOLPRO 2000.

• consistent treatment of relativistic effects in all relevant rows of the periodic table

• independence of the ECP on the valence basis set

• availability of core polarization potentials (CPPs), since we were planning to use ‘large core’ potentials for the main group elements

• availability of extended valence basis sets (specifically, [6s5p3d] contractions) for the transition metals. In Appendix I, we shall present optimized [2f1g] polarization functions for those valence basis sets, to be used in conjunction with the presently derived SDB-cc-pVTZ basis sets for third- and fourth-row elements, and standard cc-pVTZ basis sets for first- and second-row elements.

To our knowledge, the only published example so far of a ‘correlation consistent’ basis set based on an ECP is the work of Bauschlicher, who published cc-pVnZ (n = T, Q, 5) basis sets for indium, optimized for (5s, 5p, 4d) correlation, to be used in conjunction with a small-core SDB pseudopotential. In this paper and a subsequent application study, benchmark calculations on a number of In compounds were presented that clearly support the idea that the development of SDB-based correlation consistent basis sets is warranted.

In the next section, we shall describe the procedure by which the valence basis sets were optimized. In the following section, we shall present validation calculations with these basis sets on a variety of diatomic molecules. Conclusions are presented in a final section.

II. GENERATION OF BASIS SETS

All electronic structure calculations were carried using MOLPRO2000 running on a Compaq ES40 at the Weizmann Institute of Science. Basis sets were carried out by means of an adaptation of the DOMIN program by P. Spellucci, which is an implementation of the BFGS (Broyden-Fletcher-Goldfarb-Shanno) variable-metric method. Numerical derivatives
of order two, four, and six were used: the lower orders until an approximate minimum was reached, after which the optimization was refined using the higher orders.

For the third-row main group elements, we employed the SDB pseudopotentials denoted by the SDB group as ECP28MWB [37], i.e. large-core (1s2s2p3s3p3d) energy-consistent pseudopotentials obtained from quasirelativistic Wood-Boring [38] calculations. For the fourth-row main group elements, we employed the ECP46MWB set [37], i.e. large-core (1s2s2p3s3p3d4s4p4d).

Unless indicated otherwise, all Hartree-Fock calculations were carried out using proper symmetry and spin eigenfunctions.

A. Valence sp basis sets

In order to obtain an idea as to the size of the required sp set for the valence orbitals, we carried out the following numerical experiment for the Se atom: a valence SCF calculation was carried out using the complete (26s17p) part of the all-electron cc-pV5Z basis set [14] added to the ECP28MWB pseudopotential. Then all primitives with coefficients below 10^{-5} were discarded, leaving us with a (16s13p) primitive set at the expense of only 0.38 microhartree in energy. Raising the ‘cutoff’ to 10^{-4} reduced the primitive set to (13s11p), and raises the energy by another 3 microhartree. Raising the cutoff by another order of magnitude reduces the primitive set to (12s9p), at the expense of an additional 13 microhartree. Applying the same sequence of cutoffs to the (21s16p) primitives in the all-electron cc-pVQZ basis set leads to (14s11p), (13s9p), and (11s7p), respectively: from the (20s13p) primitives of the all-electron cc-pVTZ basis set we obtain in the same manner (12s9p) for a 10^{-4} cutoff, and (10s7p) for a 10^{-3} cutoff. Similar patterns were observed for other third-row elements: the bottom line appears to be that 3–4 more s primitives are required than p primitives.

We subsequently attempted to minimize $((k + 4)skp)$ basis sets ($k=6–10$) directly at the SCF level. However, the Hessian for some of the higher-exponent s functions is extremely flat, and as a result no reliable optimization can be carried out. Considering the fact that, for instance, the outer (13s11p) exponents of the all-electron cc-pV5Z basis set
display roughly even-tempered sequences $\zeta_k = \alpha \beta^{k-1}$ except for the outermost four primitives of every symmetry, we adopted the compromise solution of optimizing the four outermost primitives of each symmetry without restriction, but constraining the remainder to follow an even-tempered sequence. This leads to an optimization problem with twelve parameters in all (eight independent exponents, plus one α, β pair each for s and p).

In this manner, we were able to obtain $(10s6p)$ through $(14s10p)$ primitive sets. For Ga, Ge, and As, multiple minima were invariably found, with a solution that exhibits a ‘gap’ between the 3rd and 4th (or 4th and 5th) outermost primitive being marginally lower in energy than a solution where no such gaps were present. (This behavior is particularly noticeable for the s primitives.) Carrying out 4-parameter optimizations with purely even-tempered $(14s10p)$ basis set quickly reveals the cause: as ζ increases, the coefficients are initially positive, but then decay and change sign as the higher exponent primitives ensure the proper inner shape of the orbital. The energy is rather insensitive to the location — or even the presence — of the primitive near the crossing point, and especially with smaller sets of primitives, a marginal gain in energy might be obtained from a solution with an additional primitive in the very high exponent region rather than in the ‘crossing’ region. Since for application in correlated calculations, the presence of a gap in the outer part of the exponent sequence is clearly undesirable, we have deliberately chosen the most ‘even-tempered’ solution even where it was not the global minimum.

Similar phenomena were observed for In–I: and likewise, we obtained the most ‘even-tempered’ primitive valence sets up to $(14s10p)$.

B. Addition of higher angular momentum functions

Parameters for added higher angular momentum functions were then optimized at the CISD level. At first even-tempered sequences of up to four $(3d)$-type functions were added, followed by up to three additional $(4f)$-type functions and up to two additional $(5g)$-type functions. For the third-row main group elements, these optimizations progressed uneventfully. Not surprisingly, the d exponents differ somewhat from those obtained by Dunning and
coworkers for all-electron basis sets: in the latter, the d functions do double-duty as angular correlation functions for the $(4s, 4p)$ orbitals and as $(3d)$ primitives, while in our case they solely take on the former role. For the f and g functions, the similarity is greater. In terms of energetic increments, the familiar ‘correlation consistent’ (2d1f) and (3d2f1g) groupings of functions with similar energy lowerings emerge.

In the fourth row, the convergence pattern of the d exponents is somewhat peculiar, in that for instance for Te and I, the energy lowerings for the 2nd and 3rd $(3d)$ function are similar. This is caused by the rather low-lying $(5d)$ orbital, which also causes a somewhat peculiar $(2d)$ exponent pattern for Te. We shall return to this point shortly.

C. Definition of the final contracted basis sets

We carried out an analysis similar to that of Dunning and coworkers, in that we for instance completely contracted the p orbital in a $(14s10p4d3f2g)$ basis set, then optimized even-tempered sequences of added p primitives. The optimum s and p exponents revealed similar trends. In terms of contracting our Se basis set for correlation, however, they unequivocally suggest that the 2nd and 4th outermost (s) and (p) primitives be decontracted for a valence triple zeta basis set, and the 2nd–4th outermost primitives for a valence quadruple zeta basis set. (From here on, we shall be counting primitives starting from the ‘outermost’, i.e. smallest and most diffuse, exponent.) By comparison, in the Dunning all-electron case these were the 1st and 3rd, and 1st–3rd primitives, respectively. However, our outermost (sp) primitives are considerably more diffuse than theirs, by virtue of the absence of the inner-shell ‘gravity well’ in the valence-only optimizations. The exponents of the decontracted primitives in fact are fairly similar.

This having been established, we determined our favored ‘VTZ’ and ‘VQZ’ contraction patterns for each element by comparing total energies between all six and four possible choices, respectively, among the four outermost primitives. If we denote decontraction of a primitive by a 1 and the lack thereof by a 0, and start at the lowest exponent, then the favored (i.e., lowest-energy) quadruple-zeta contraction pattern is found to be \{0111\} for Se,
Br, Kr, Te, I, and Xe, but \{1101\} for Ga, Ge, In, and Sn. (For As, \{1011\} is marginally lower in energy than \{0111\}, while for Sb, a \{1110\} pattern for the \(s\) was combined with a \{1101\} pattern for the \(p\) functions.) For the triple-zeta contractions, the \{0101\} pattern prevails for As, Se, Br, Kr, Te, I, and Xe, but the \{0110\} pattern for Ga, Ge, In, Sn, and Sb.

The final basis sets for most elements were then obtained simply by adding the optimum (2d1f) exponents to the ‘triple-zeta’ contraction — leading to a [3s3p2d1f] contracted basis set —, and the optimum (3d2f1g) exponents to the ‘quadruple-zeta’ contraction — leading to a [4s4p3d2f1g] contracted basis set. For Te and I, because of the peculiarities of the \(d\) exponents noted above, this procedure does not yield a satisfactory SDB-cc-pVTZ basis set. By obtaining CISD natural orbitals for Te and I using (3d1f) primitives, it was revealed that the highest-exponent primitive contributed appreciably (and similarly) to the lowest two \(d\)-type natural orbitals, but that the latter are mainly distinguished by a sign change in the lowest-exponent \(d\) primitive. Consequently, the two innermost \(d\) primitives were contracted based on their coefficients in the lowest \(d\) type natural orbital. The slight added cost should be well outweighed by the greater reliability. Considering the \(d\)-type ANOs in calculations with (3d1f) primitives on Sb, Sn, and In revealed that the same procedure might be beneficial for In, but would not affect Sn or Sb. Therefore, in our final SDB-cc-pVTZ basis sets, the \(d\) functions in In, Te, and I are in fact (3d) \(\rightarrow\) [2d] segmented contractions.

The final basis sets generated are available on the Internet World Wide Web at the Uniform Resource Locator \url{http://theochem.weizmann.ac.il/web/papers/SDB-cc.html} in both Gaussian 98 and MOLPRO format.

D. Diffuse function exponents

For anionic systems and some very polar compounds, the availability of (diffuse-function) ‘augmented’ basis sets, like the original aug-cc-pV\(n\)\(Z\) basis sets [39], is essential. We have obtained diffuse functions for use with our SDB-cc-pVTZ and SDB-cc-pVQZ basis sets using the following procedure: (a) one low-exponent \(s\) and \(p\) function, each, were added to the
sp part of the underlying basis set and optimized simultaneously at the SCF level for the corresponding atomic anion; (b) successive angular momenta of the underlying basis set were introduced, and one additional low-exponent primitive added and optimized, at the CISD level for the corresponding atomic anion. The final SDB-aug-cc-pVTZ and SDB-aug-cc-pVQZ basis sets are thus of \([4s4p3d2f]\) and \([5s5p4d3f2g]\) quality, respectively.

III. APPLICATION TO DIATOMIC MOLECULES

In order to validate our basis sets, we have carried out CCSD(T) calculations of the dissociation energy \((D_e)\), bond length \((r_e)\), harmonic frequency \((\omega_e)\) and first-order anharmonicity \((\omega_\text{x}r_e)\) of a number of third-row and fourth-row diatomic molecules selected from the compilation by Huber and Herzberg [40]. CCSD(T) energies were computed at eleven points spaced evenly at 0.01 Å intervals around the experimental \(r_e\), a fifth- or sixth-order polynomial in \(r\) was fit, and a standard Dunham analysis [41] carried out on the resulting polynomial. For the open-shell systems and the constituent atoms, the CCSD(T) definition according to Ref. [42] was employed throughout.

Since we are using ‘large’ cores, we also carried out calculations using core polarization potentials (CPPs). For elements of groups IV, V, and VI the parameters were taken from the work of Igel-Mann et al. [43], although the cutoff parameters given in that reference are not optimal for the ECP\textit{nn}MWB pseudopotentials. For group III elements, optimal cutoffs were taken from Leininger et al. [44], while optimal cutoffs for the halogens were taken from the online version of the SDB pseudopotentials [45]. (The valence basis set was left unchanged.)

For systems that include at most third-row atoms, all-electron calculations could be carried out for comparison using the corresponding standard cc-pV\textit{n}Z basis sets [5-45]. \(r_e\) and \(\omega_e\) for these species are given in Table I, while \(D_e\) values are given in Tables VII and V. For the remaining diatomics (which include at least one fourth-row atom), the corresponding data are found in Tables I and VI, respectively.

In comparing such data with all-electron calculations in which only valence electrons are correlated, it should be kept in mind that the CPPs approximately account for both inner-
shell relaxation/polarization ("static core polarization") and inner-shell correlation ("dynamic core polarization"). Therefore, a direct comparison appears to be somewhat ‘unfair’ to the all-electron calculations; on the other hand, since the standard cc-pVnZ basis sets are by definition of minimal basis set quality in the inner-shell orbitals, these basis sets are fairly limited in terms of flexibility for static polarization. For heavier elements, it should also be kept in mind that the ECP calculations include relativistic effects at least approximately, while their all-electron counterparts discussed here are entirely nonrelativistic.

For the late third-row species, it seems to be clear that the performance of our SDB-cc-pVnZ basis sets is on a par with that of the all-electron basis sets. Introduction of the core polarization potentials results in a significant improvement in the computed bond distance: agreement between SDB+CPP-cc-pVQZ and experimental bond lengths is particularly good for many species. This conclusion is less clear for the harmonic frequencies, where the known tendency [47] of CCSD(T) to slightly overestimate harmonic frequencies may mask any small improvements. The computed anharmonicities (not reported in Table I) agree very well between the various methods and experiment.

For the early third-row species, we noticed the at first sight peculiar phenomenon (Table III) that, while our data with CPP are in very good agreement with experiment, the all-electron bond lengths are considerably too long, e.g. 0.05 Å in GeF. (These differences are too large to be plausibly ascribed to relativistic effects accounted for by the pseudopotentials.) The cause lies in the impossibility to make a meaningful separation between ‘valence’ and (3d) orbitals in these molecules: if correlation from the (3d) orbitals is admitted, a dramatic improvement is seen in the computed bond distances. Needless to say, such calculations are vastly more expensive than those with the large-core pseudopotentials, and if the all-electron basis set would be expanded with the appropriate angular correlation functions for (3d) correlation (i.e., high-exponent f and g functions), this would further increase the cost differential.

As an illustration, we will consider the GaH molecule in somewhat greater detail (Table IV). The all-electron calculations with standard cc-pVnZ basis sets fortuitously reproduce ω_e.
very well, but overestimate the bond distance by almost 0.03 Å. In contrast, 4-electron ECP calculations with an 28-electron pseudopotential both underestimate ω_e and overestimate r_e. Admitting (3d) correlation with the cc-pVnZ basis sets leads to a dramatic shortening of r_e, but also to severely overestimated ω_e and anharmonicity. Obviously, this basis set needs to be significantly extended before it is suitable for (3d) correlation. We have generated such basis sets, denoted cc-pDVTZ and cc-pDVQZ, in the following manner. All basis functions in the original cc-pVQZ basis set were retained, but four additional d primitives were decontracted. After this, successive layers of f, g, and finally h primitives were optimized at the CISD level (13 electrons correlated) on top of the original basis set. We found that the first h, second g, and third f function yielded similar lowerings of the atomic energy, and hence added (3f2g1h) primitives to the basis set. (Exponents and other details can be found in the Supplementary Material.) Then we restored the original d functions and progressively uncontracted primitives: while the first additional uncontracted d yields a very large energy lowering, the second adds a 10 millihartree amount comparable to that of the h functions, while lowerings decay rapidly after that. Hence the final cc-pDVQZ basis set is of [7s6p6d5f3g1h] quality. By similar arguments, we find that the cc-pVTZ basis set requires addition of (2f1g) functions and decontraction of two additional d primitives, leading to a cc-pDVTZ basis set of [6s5p6d3f1g] quality. (While the f exponents in the cc-pDVQZ basis set span a continuous range, a ‘gap’ is present in the cc-pVTZ case. A similar phenomenon is seen in an earlier Ga basis set of Bauschlicher [48].) These basis sets indeed do represent an improvement (Table IV) but the 14-electron results clearly are still deficient in some respect. We considered also including (3s3p) correlation: to accommodate this, we uncontracted two additional s and p primitives each in the cc-pDVTZ basis set, as well as (to ensure adequate coverage of angular correlation from these orbitals) one additional d function. The resulting spectroscopic constants are in excellent agreement with experiment, which might lead to the conclusion that (3s3p) correlation is essential for a proper description of GaH. However, as we reduce the number of correlated electrons from 22 to 14, we see only quite minor effects on the spectroscopic constants. At that stage, the additional d function can be removed with
essentially no effect on the computed spectroscopic constants; the cc-pDVTZ+2s2p basis set is thus of \([8s7p6d3f1g]\) quality. Correlating valence orbitals only leads to \(r_e\) being too long and \(\omega_e\) too low, confirming that the excellent \(\omega_e\) with standard cc-pVnZ basis sets is indeed the result of an error compensation.

We now consider the use of small-core ECPs. The effect of reoptimizing exponents was deemed minimal: instead we simply (a) carried out an ECP10MWB Hartree-Fock calculation with an uncontracted cc-pVTZ or cc-pVQZ basis set; (b) deleted all primitives with coefficients×degeneracies that are significantly less than \(10^{-4}\); repeated the SCF calculation and recontracted the basis set with the orbital coefficients thus obtained. In the cc-pVTZ basis set, we were able to delete the innermost (5s2p) primitives; in the cc-pVQZ basis set, the innermost (6s3p) primitives could be deleted. The recontracted basis sets (which are of \([4s4p5d3f1g]\) and \([5s5p6d5f3g1h]\) contracted size; to this should be added the additional decontracted \(s\) and \(p\) primitives mentioned above, leading to an SDB-cc-pDVTZ+2s2p basis set of \([6s6p5d2f1g]\) quality and an SDB-cc-pDVQZ basis set of \([8s8p6d5f3g1h]\) quality.) We indeed find performance with these basis set-ECP combinations to be quite satisfactory (Table IV). (Note that for technical reasons, the SDB-cc-pDVQZ results do not include \(h\) functions.)

It should also be noted that the effects of (3d) correlation, while still important in accurate work, are significantly smaller with the cc-pDVTZ+2s2p and cc-pDVQZ+3s3p basis sets than with their less extended counterparts. The very large core correlation contributions seen in such studies as Ref. [49] are thus at least in part basis set artefacts.

Results for GeH (Table IV) follow similar trends as those for GaH, although the deviation from experiment incurred by neglecting (3d) correlation is definitely smaller. Continuing the series, our computed results for AsH, SeH, and HBr suggest no need for including (3d) correlation in these systems.

We also applied the cc-pDVTZ and cc-pDVQZ basis sets to the polar Ga and Ge compounds (Table III). A (sometimes notable) improvement is mainly seen in the vibrational
frequencies. Decontracting additional (sp) primitives in the Ga basis set was considered for GaF, and does not appear to greatly affect results. This parallels a finding noted earlier \[50\] for inner-shell correlation in first-row compounds, where flexibility of the core correlation basis set appears to be more important for A–H than for A–B bonds.

For the fourth-row systems, only a comparison with experiment is possible. Especially the SDB+CPP-pVQZ results agree very well with experiment, while the errors for the SDB+CPP-pVTZ basis sets are not dissimilar from those seen for the lighter-atom systems. A notable exception is constituted by a number of indium compounds, for which abnormally short bond distances are found. This problem has been noted previously for large-core pseudopotential calculations on heavy group III halides \[51\]. We attempted a number of calculations in which Bauschlicher’s correlation-consistent basis set for In was used in conjunction with regular cc-pV\(n\)\(Z\) basis sets on H–Ar and SDB-cc-pV\(n\)\(Z\) on Ga–Kr and Sn–Xe. The In (4d) electrons were correlated in these calculations. This completely resolves the problem. Discrepancies between all-electron and ECP28MWB basis sets on In are not inconsistent with the expected magnitude of relativistic effects on \(r_e\) and \(\omega_e\). For InBr and InI, consideration of a core polarization potential on the halogen has effects of -0.007 Å and -0.013 Å, respectively, on the bond distance, bringing them into excellent agreement with experiment. (Note that the +0.005 Å discrepancy between computed and observed \(r_e\) (InCl) found by Bauschlicher \[34\] with his largest basis set appears to be almost entirely due to \((2s2p)\) correlation in Cl: its inclusion reduces \(r_e\) by 0.005 Å.)

Finally, we shall consider dissociation energies. These are found in Tables \[VI, VII, and VIII\], together with experimental data from two sources. These are the 1979 Huber and Herzberg (HH) book \[40\], and a more recent compilation by Kerr and Stocker (KS) \[52\] which contains data through November 1998.

All computed dissociation energies are corrected for atomic and molecular first-order spin-orbit splitting, with the data taken from the experimental sources for the molecules and from Ref. \[53\] for the atoms.

Aside from atomization energies with SDB-cc-pV\(n\)\(Z\), SDB-aug-cc-pV\(n\)\(Z\), and all-electron
cc-pVnZ basis sets, the tables contain extrapolations to the infinite basis limit using the expression taken from W1 theory [54]:
\[E_\infty = E[VQZ] + (E[VQZ] - E[VTZ])/(4/3)^{3.22} - 1 \]
where the exponent 3.22 is specific to the VTZ/VQZ basis set combination. This is in fact a damped variant of the simple \(A + B/l^3 \) formula of Halkier et al. [55]: the damping is required [54] because the VTZ and VQZ basis sets are still not extended enough and lead to overshooting if the \(A + B/l^3 \) formula is applied to them. (The latter is the extrapolation of choice for larger basis sets.)

One conspicuous feature of the experimental results is just how uncertain they are for many molecules in these tables. For the late third-row systems, agreement between experiment and our extrapolated results including CPP is excellent for those molecules where the experimental value is precisely known. For most of the other systems, the computed value falls within the combined uncertainties of the experimental values. Agreement in fact appears to be slightly better than for the all-electron calculations, but this is not an entirely ‘fair’ comparison since the latter include neither inner-shell correlation nor scalar relativistic corrections, while both are included approximately in the SDB+CPP results through the core-polarization potential and the relativistic pseudopotential, respectively.

For the Ga, Ge, and In compounds, experimental dissociation energies are so uncertain that a meaningful comparison is essentially impossible. For those fourth-row systems where precise experimental data are available, agreement with experiment is still quite satisfactory, albeit less good than for the third-row compounds. In particular, an account for higher-order spin-orbit effects might be mandatory for some of the iodine compounds. Dolg [56] carried out benchmark calculations on the hydrogen halides and dihalides, and found near-exact spin-orbit contributions to \(D_e(HI) \) and \(D_e(I_2) \) of 0.26 and 0.49 eV, respectively: simply considering the fine structures of the constituent atoms (as done here) yields 0.315 and 0.63 eV, respectively. In other words, our calculated \(D_e \) values for HI and I\(_2\) are intrinsically too low by 0.07 and 0.14 eV, respectively.

As expected, the use of (diffuse function) ‘augmented’ basis sets yields improved results for \(r_e \) and \(\omega_e \) of highly polar molecules (e.g., GaF); for \(D_e \) values, differences of up to 0.05
eV are seen after extrapolation, which are definitely significant in accurate thermochemical work. As is the general rule [57,54], the addition of diffuse functions considerably improves the success of extrapolation methods and improves agreement with (precise) experimental dissociation energies.

Finally, we should address the question whether or not the RECPs used here provide an approximate account for scalar relativistic effects. Visscher and coworkers studied relativistic effects on the hydrogen halogenides [58], dihalogenides [59], and interhalogenides [60] by means of full four-component relativistic CCSD(T) as implemented by Visscher, Lee, and Dyall [61]. (Pisani and Clementi [62] also carried out Dirac-Fock calculations on the chalcogen hydrides — including SeH — and found an effect of -0.005 Å on \(r_e \).) Since down to Br, the effects are fairly small (e.g. +0.003 Å and -6 cm\(^{-1}\) in BrF), a comparison between all-electron and ECP results is somewhat dubious as an indicator for the recovery of relativistic effects. Given however the sizable relativistic contributions found in that work for the iodine compounds (e.g. IF: +0.012 Å and -23 cm\(^{-1}\)), the level of agreement with experiment found in the present paper is somewhat hard to explain unless the ECPs indeed recover most of the scalar relativistic effects.

IV. CONCLUSIONS

We have derived (fairly) compact valence basis sets of cc-pV\(n\)Z and aug-cc-pV\(n\)Z quality (\(n=T,Q\)) for the elements Ga–Kr and In–Xe, to be used in conjunction with large-core Stuttgart-Dresden-Bonn pseudopotentials. For the third row, the basis sets appear to be quite comparable to the corresponding all-electron cc-pV\(n\)Z basis sets. Agreement with experiment is quite satisfactory for compounds of the later heavy p-block elements. Highly accurate calculations on Ga and, to a lesser extent, Ge compounds require treating the (3d) electrons explicitly: we propose (3\(d\))-correlation basis sets for these elements. For In compounds, inclusion of (4d) correlation is a must, as previously found by Bauschlicher [34]: we recommend the basis sets in that reference.

Our principal objective was having extended basis sets available for studies on
organometallic compounds, including those with one or more heavy group V, VI, and VII elements. This objective appears to have been reached.

ACKNOWLEDGMENTS

JM is the incumbent of the Helen and Milton A. Kimmelman Career Development Chair. Research at the Weizmann Institute was supported by the Minerva Foundation, Munich, Germany, and by the Tashtiyot program of the Ministry of Science (Israel). AS acknowledges a Minerva Postdoctoral Fellowship. The authors would like to thank Dr. Charles W. Bauschlicher Jr. (NASA Ames Research Center) for critical reading of the manuscript prior to submission.

SUPPLEMENTARY MATERIAL

The SDB-cc-pVTZ, SDB-cc-pVQZ, cc-pDVTZ, and cc-pDVQZ basis sets developed in this paper are available for download on the Internet World Wide Web at the URL http://theochem.weizmann.ac.il/web/papers/SDB-cc.html

APPENDIX: F-AND G-FUNCTION EXPONENTS FOR THE TRANSITION METALS

For use in conjunction with the above SDB-cc-pVTZ basis set on Ga-Kr and In–Xe, and the standard cc-pVTZ basis set on the first two rows of the periodic table, we recommend the following basis set/ECP combination for transition metals.

For first-row transition metals, the pseudopotential denoted as ECP10MDF [63] (which has a small 10-electron core) was used in conjunction with the [6s5p3d] contraction of an (8s7p6d) primitive set given in Ref. [63]. For second-and third-row transition metals, we used the ECP28MWB and ECP60MWB quasirelativistic pseudopotentials, respectively, as given in Ref. [64], together with the [6s5p3d] contracted valence basis sets given in the same reference.
Two ($4f$)-type functions and one ($5g$)-type function were added, and their exponents optimized at the CISD level for the lowest-lying $(s)^1(d)^{n-1}$ and $(s)^2(d)^{n-2}$ states. (In addition, optimizations were carried out for the $(s)^0(d)^{10}$ ground state of Pd.) Proper symmetry and spin eigenfunctions were used for the Hartree-Fock reference, and only valence electrons were correlated. The optimum exponents for the two states considered (three in the case of Pd) are not very different: we recommend their averages as the f and g exponents, which are given in Table VIII.
REFERENCES

[1] R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989); P. R. Taylor., in Lecture Notes in Quantum Chemistry II (ed. B. O. Roos), Lecture Notes in Chemistry 64, 125 (1994); R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry, Vol. V (Lipkowitz, K. B., Boyd, D. B., Eds.) VCH, New York, 1994, pp. 65–169; T. J. Lee and G. E. Scuseria, In Quantum mechanical electronic structure calculations with chemical accuracy (ed. ed. S. R. Langhoff), Kluwer, Dordrecht, The Netherlands, 1995, pp. 47–108; R. J. Bartlett, in Modern Electronic Structure Theory, Vol. 2 (Yarkony, D. R., Ed.); World Scientific, Singapore, 1995, pp. 1047–1131.

[2] T. Helgaker and P. R. Taylor, in Modern electronic structure theory, Vol II, Ed. D.R.Yarkony (World Scientific Publishing, Singapore, 1995).

[3] J. Almlöf and P. R. Taylor, J. Chem. Phys. 86, 4070 (1987)

[4] P. O. Widmark, P. Å. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77, 291 (1990); P. O. Widmark, B. J. Persson, and B. O. Roos, Theor. Chim. Acta 79, 419 (1991); K. Pierloot, B. Dumez, P. Å. Malmqvist, and B. O. Roos, Theor. Chim. Acta 90, 87 (1995); R. Pou-Amerigo, M. Merchan, I. Nebot-Gil, P. O. Widmark, and B. O. Roos, Theor. Chim. Acta 92, 149 (1995).

[5] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).

[6] T.H. Dunning, Jr., K.A. Peterson, and D.E. Woon, “Basis sets: correlation consistent”, in Encyclopedia of Computational Chemistry, ed. P. von Ragué Schleyer (Wiley & Sons, 1998), vol. 1, pp. 88–115.

[7] R. G. Parr and W. Yang, Density functional theory for atoms and molecules (Oxford University Press, Oxford, 1989)

[8] A. C. Scheiner, J. Baker, and J. W. Andzelm , J. Comput. Chem. 18, 775 (1997)

[9] J. M. L. Martin, In Density Functional Theory — a bridge between chemistry and physics
[10] F. De Proft, In *Density Functional Theory — a bridge between chemistry and physics* (ed. P. Geerlings, F. De Proft, and W. Langenaeker), VUB Press, Brussels, 2000

[11] F. De Proft and P. Geerlings, J. Chem. Phys. **106**, 3270 (1997)

[12] F. De Proft, F. Tielens, and P. Geerlings, J. Mol. Struct. (Theochem) **506**, 1 (2000)

[13] C. W. Bauschlicher Jr. and P. R. Taylor, Theor. Chim. Acta **86**, 13 (1993); C. W. Bauschlicher Jr., Theor. Chim. Acta **92**, 183 (1995)

[14] A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning Jr., J. Chem. Phys. **110**, 7667 (1999)

[15] A. Sundermann, O. Uzan, D. Milstein, and J. M. L. Martin, J. Am. Chem. Soc. **122**, 7095 (2000)

[16] A. Sundermann, O. Uzan, and J. M. L. Martin, *J. Am. Chem. Soc.*, submitted.

[17] A. Sundermann, O. Uzan, and J. M. L. Martin, *Chemistry — a European Journal*, submitted.

[18] J. Baker, M. Muir, and J. Andzelm, J. Chem. Phys. **102**, 2063 (1995); J. Andzelm and P. R. Taylor, Chem. Phys. Lett. **237**, 53 (1995).

[19] B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A **104**, 4811 (2000).

[20] S. Parthiban, G. de Oliveira, and J. M. L. Martin, *J. Phys. Chem. A*, in press (JP0031000).

[21] P. Pyykkö, Chem. Rev. **88**, 563 (1988)

[22] M. Reiher and B. A. Hess, In *Modern methods and algorithms of quantum chemistry* (ed. J. Grotendorst), NIC Series Vol. 1, Forschungszentrum Jülich, 2000
[23] M. Krauss and W.J. Stevens, Ann. Rev. Phys. Chem. 35, 357 (1984)

[24] W.C. Ermler, R.B. Ross, and P A. Christiansen, Adv. Quantum Chem. 19, 139 (1988)

[25] O. Gropen, In Methods in Computational Chemistry, Vol. 2 (ed. S. Wilson), Plenum, New York, 1988.

[26] M. Dolg, In Modern methods and algorithms of quantum chemistry (ed. J. Grotendorst), NIC Series Vol. 1, Forschungszentrum Jülich, 2000

[27] P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985); W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985); P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

[28] W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992) and references therein.

[29] M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Ross, and W. C. Ermler, J. Chem. Phys. 84, 6840 (1986)

[30] M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987) and subsequent papers: see ref. [26] or [45] for a complete reference list.

[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian
98, Revision A.7 (Gaussian, Inc., Pittsburgh, PA, 1999).

[32] MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson.

[33] W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984); P. Fuentealba, H. Preuss, H. Stoll, and L. von Szentpály, Chem. Phys. Lett. 89, 418 (1982) P. Schwertfeger and H. Silberbach, Phys. Rev. A 37, 2834 (1988); erratum 42, 665 (1990)

[34] C. W. Bauschlicher Jr., Chem. Phys. Lett. 305, 446 (1999)

[35] C. W. Bauschlicher Jr., J. Phys. Chem. A 103, 6429 (1999)

[36] P. Spellucci, domin, a subroutine for BFGS minimization (Department of Mathematics, Technical University of Darmstadt, Germany, 1996).

[37] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993).

[38] J.H. Wood and A.M. Boring, Phys. Rev. B 18, 2701 (1978).

[39] R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)

[40] K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)

[41] J. L. Dunham, Phys. Rev. 41, 721 (1932)

[42] J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993)

[43] G. Igel-Mann, H. Stoll, and H. Preuss, Mol. Phys. 65, 1321 (1988)

[44] T. Leininger, A. Berning, A. Nicklass, H. Stoll, H.-J. Werner, and H.-J. Flad, Chem. Phys. 217, 19 (1997)
[45] http://www.theochem.uni-stuttgart.de/pseudopotentials/accueil.html

[46] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)

[47] J. M. L. Martin, Chem. Phys. Lett. 292, 411 (1998)

[48] C. W. Bauschlicher Jr., J. Phys. Chem. A 102, 10424 (1998)

[49] Y. Mochizuki and K. Tanaka, Theor. Chem. Acc. 99, 88 (1998)

[50] J. M. L. Martin Chem. Phys. Lett. 242, 343 (1995)

[51] P. Schwerdtfeger, Th. Fischer, M. Dolg, G. Igel-Mann, A. Nicklass, H. Stoll, and A. Haaland, J. Chem. Phys. 102, 2050 (1995); T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger, J. Chem. Phys. 105, 1052 (1996)

[52] J. A. Kerr and D. W. Stocker, “Bond strengths in diatomic molecules” in Handbook of Chemistry and Physics, 80th Edition, CRC Press, Boca Raton, FL, 1999.

[53] The required fine structure data for the first and second row, as well as for I, were taken from M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF thermochemical tables, 3rd edition, J. Phys. Chem. Ref. Data 14, supplement 1 (1985). Fine structure data for Ga, Ge, Se, and Br were obtained from http://physics.nist.gov/cgi-bin/AtData/main_asd and for In, Sn, and Te from http://cfa-www.harvard.edu/amdata/ampdata/kurucz23/sekur.html.

[54] J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999)

[55] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998)

[56] M. Dolg, Mol. Phys. 88, 1645 (1996)

[57] J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996)

[58] L. Visscher, J. Styszynski, and W. C. Nieuwoort, J. Chem. Phys. 105, 1987 (1996)
[59] L. Visscher and K. G. Dyall, J. Chem. Phys. 104, 9040 (1996)

[60] W. A. de Jong, J. Styszynski, L. Visscher, and W. C. Nieuwoort, J. Chem. Phys. 108, 5177 (1998)

[61] L. Visscher, T. J. Lee, and K. G. Dyall, J. Chem. Phys. 105, 8769 (1996)

[62] L. Pisani and E. Clementi, J. Chem. Phys. 103, 9321 (1995)

[63] M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987)

[64] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)
TABLE I. CCSD(T) and experimental spectroscopic constants (R_e in Å, ω_e in cm$^{-1}$) for molecules containing third row atoms

molecule	basis	R_e SDB	R_e CPP	R_e all e^-	Exp	ω_e SDB	ω_e CPP	ω_e all e^-	Exp
AlBr VTZ	2.3149	2.3088	2.3271	2.294807	383.0	384.4	377.3	378.0	
VQZ	2.3073	2.3014	2.3180	381.1	382.3	377.0			
AVTZ	2.3164	377.9							
AVQZ	2.3050	374.6							
As$_2$ VTZ	2.1265	2.1126	2.1348	2.1026	424.0	426.8	424.6	429.55	
VQZ	2.1098	2.0963	2.1284	432.1	435.1	428.7			
AsF $^3\Sigma^-$ VTZ	1.7298	1.7224	1.7464	1.7360	697.0	700.3	698.1	685.78	
VQZ	1.7291	1.7217	1.7446	693.6	696.9	697.1			
AVTZ	1.7298	687.1							
AVQZ	1.7185	700.9							
AsH $^3\Sigma^-$ VTZ	1.5320	1.5269	1.5354	1.5231a	2135.3	2138.2	2151.9	2155.503a	
VQZ	1.5286	1.5234	1.5335	2156.0	2159.5	2161.1			
AsN VTZ	1.6292	1.6227	1.6374	1.61843	1063.2	1069.7	1064.5	1068.54	
VQZ	1.6188	1.6124	1.6326	1079.1	1085.8	1071.9			
AsO $^2\Pi$ VTZ	1.6260	1.6200	1.6378	1.6236	973.6	978.2	971.2	967.08	
VQZ	1.6199	1.6138	1.6344	978.5	983.2	975.5			
AsP VTZ	2.0216	2.0142	2.0276	1.999	597.7	600.2	597.3	604.02	
VQZ	2.0083	2.0011	2.0194	607.8	610.3	604.1			
AsS $^2\Pi$ VTZ	2.0393	2.0319	2.0435	2.0174	559.5	561.5	561.3	567.94	
VQZ	2.0246	2.0174	2.0349	570.0	571.9	568.0			
BrBr VTZ	1.8964	1.8908	1.9060	1.8882	690.5	693.8	683.7	684.31	
VQZ	1.8942	1.8887	1.9034	685.8	688.6	681.1			
AVTZ	1.8918	1.9068	684.4	677.9					
AVQZ	1.8894	1.9044	700.9	678.8					
Br$_2$ VTZ	2.3138	2.3014	2.3108	2.28105	313.6	316.4	319.3	325.321	
VQZ	2.2970	2.2856	2.2983	323.8	326.1	325.9			
AVTZ	2.2941	2.3172	318.1	317.3					
AVQZ	2.2808	2.2986	326.9	325.1					
BrCl VTZ	2.1616	2.1555	2.1627	2.136065	434.3	436.2	435.9	444.276	
VQZ	2.1491	2.1432	2.1504	442.2	443.9	443.3			
AVTZ	2.1545	443.6							
AVQZ	2.1420	443.5							
BrF VTZ	1.7680	1.7628	1.7685	1.75894	661.0	664.0	666.5	670.75	
VQZ	1.7611	1.7559	1.7619	672.0	674.5	677.0			
AVTZ	1.7622	667.7							
AVQZ	1.7547	676.5							
Material	Basis Set	Ionization Energy	Total Energy	Enthalpy of Formation					
----------	-----------	-------------------	--------------	-----------------------					
CSe	VTZ	1.6921 1.6863 1.6966 1.67647	1019.3 1025.4 1024.1 1035.36						
	VQZ	1.6834 1.6776 1.6911	2656.1 2665.0 2660.0 2648.975						
HBr	VTZ	1.4147 1.4106 1.4203	2657.7 2667.2 2661.2						
	VQZ	1.4155 1.4112 1.4205	2647.2 2656.2 2657.2						
	AVTZ	1.4166 1.4124 1.4213	2651.9 2661.5 2658.1						
	AVQZ	1.4163 1.4120 1.4211	2648.9 2656.2 2648.9						
SeH	VTZ	1.4702 1.4654 1.4731	2406.3 2417.6 2421.715(23)						
	VQZ	1.4680 1.4630 1.4721	2416.6 2425.5 2425.4						
NSe	Π	1.6659 1.6606 1.6671	946.8 952.3 955.8 956.81						
	VQZ	1.6539 1.6487 1.6599	964.0 970.4 966.1						
Se₂	3Σ⁻	2.1911 2.1783 2.1915	2166.0 381.3 384.6 384.7 385.303						
	VQZ	2.1752 2.1628 2.1830	388.3 391.5 389.6						
SeO	3Σ⁻	1.6476 1.6425 1.6500	914.4 918.8 922.2 914.69						
	VQZ	1.6379 1.6328 1.6454	924.9 929.3 926.6						
SeS	3Σ⁻	2.0546 2.0482 2.0558	545.7 550.2 549.5 555.56						
	VQZ	2.0407 2.0344 2.0458	556.2 558.7 556.6						
SiSe	VTZ	2.0834 2.0770 2.0882	572.0 574.6 571.3 580.0						
	VQZ	2.0713 2.0650 2.0790	578.5 581.2 576.9						
	AVTZ	2.0840 2.0775 2.0887	569.3 572.1 569.1						
	AVQZ	2.0723 2.0659 2.0794	576.1 578.9 576.1						

SDB: calculations using large-core SDB pseudopotentials; CPP: ditto with core polarization potentials added.

\(^a\) AsH \((R_e\) and \(\omega_e)\): K. D. Hensel, R. A. Hughes, and J. M. Brown J. Chem. Soc. Faraday Trans. II 91, 2999 (1995).

\(^b\) SeH \((R_e\) and \(\omega_e)\): R. S. Ram and P. F. Bernath, J. Mol. Spectrosc. 203, 9 (2000).
molecule	basis	R_e	ω_e				
		SDB	CPP	Exp	SDB	CPP	Exp
AlI	VTZ	2.5591	2.5478	2.537102	321.1	323.1	316.1
	VQZ	2.5521	2.5408	318.4	320.1		
	AVTZ	2.5519	316.3				
	AVQZ	2.5441	316.8				
GaI	VTZ	2.6240	2.5955	2.57467	212.2	213.6	216.6
	VQZ	2.6150	2.5871	210.1	211.3		
GeTe	VTZ	2.3802	2.3596	2.340165	313.1	315.7	323.9
	VQZ	2.3554	2.3358	312.4	322.6		
HI	VTZ	1.6147	1.6073	1.60916	2314.7	2325.7	2309.014
	VQZ	1.6131	1.6054	2320.3	2332.7		
	AVTZ	1.6162	1.6088	2310.4	2321.4		
	AVQZ	1.6135	1.6058	2318.1	2330.3		
I$_2$	VTZ	2.7072	2.6831	2.6663	212.2	215.8	214.502
	VQZ	2.6876	2.6655	218.4	221.3		
IBr	VTZ	2.5049	2.4870	2.468989	263.6	266.9	268.640
	VQZ	2.4862	2.4698	271.5	274.2		
ICl	VTZ	2.3482	2.3371	2.320878	383.2	386.1	384.293
	VQZ	2.3349	2.3239	388.3	391.0		
	AVTZ	2.3358	385.4				
	AVQZ	2.3225	391.6				
IF	VTZ	1.9206	1.9204	1.90975	611.8	616.2	610.24
	VQZ	1.9158	1.9066	622.0	626.1		
	AVTZ	1.9196	616.8				
	AVQZ	1.9070	625.7				
InBr	VTZ	2.5377	2.5029	2.54318	229.1	231.2	221.0
	VQZ	2.5080	2.4716	228.7	230.5		
	CWB(t)	2.5556	224.0				
	CWB(q)	2.5486	224.0				
	ACWB(t)	2.5677	2.5606	218.1	219.0		
	ACWB(q)	2.5540	2.5474	220.7	221.6		
InCl	VTZ	2.3849	2.3553	2.401169	327.1	330.0	317.4
	VQZ	2.3571	2.3246	326.7	328.6		
	ACWB(t)	2.423	309				
	ACWB(q)	2.411	314				
	ACWB(5)	2.406	316				
all e-	CWB(t)	2.423	317				
Compound	Basis Set	A	B	C	A	B	
----------	-----------	---	---	---	---	---	
InF VTZ	1.9329	1.9109	1.985396	568.8	577.0	535.35	
VQZ 1.8976	1.8729	579.4	587.1				
CWB(t) 1.9833		538.5					
CWB(q) 1.9822		541.3					
ACWB(t) 1.9910		526.6					
ACWB(q) 1.9853		534.3					
InH VTZ 1.8653	1.8517	1.8380	1482.3	1472.7	1476.04		
VQZ 1.8317	1.8171	1503.5	1497.3				
CWB(t) 1.8395		1462.4					
CWB(q) 1.8374		1471.9					
InI VTZ 2.7698	2.7273	2.75365	179.0	181.1	177.1		
VQZ 2.7412	2.6983	178.9	180.6				
CWB(t) 2.7740	2.7605	177.8	179.0				
CWB(q) 2.7674	2.7543	177.0	178.1				
Sb$_2$ VTZ 2.5294	2.5045	2.476b	266.3	268.2	269.62b		
VQZ 2.5056	2.4816	273.0	275.1				
SbF $^3\Sigma^-$ VTZ 1.9252	1.9138	1.9177	615.3	619.8	609.0d		
VQZ 1.9137	1.9023	620.0	624.9				
SbH $^3\Sigma^-$ VTZ 1.7259	1.7181	1.7107c	1910.9	1914.0	1923.179c		
VQZ 1.7188	1.7107	1930.3	1933.6				
SbP VTZ 2.2335	2.2211	2.205	495.0	497.8	500.07		
VQZ 2.2183	2.2058	503.5	506.5				
SnO VTZ 1.8426	1.8297	1.832505	763.3	768.7	814.6		
VQZ 1.8271	1.8137	781.9	788.5				
SnS VTZ 2.2382	2.2220	2.209026	466.9	468.6	487.26		
VQZ 2.2214	2.205	474.9	476.8				
SnSe VTZ 2.3595	2.3379	2.325601	316.3	318.1	331.2		
VQZ 2.3398	2.3181	321.0	323.2				
AVTZ 2.3541	2.3319	315.5	317.9				
AVQZ 2.3421	2.3202	319.2	321.6				
SnTe VTZ 2.5563	2.5294	2.522814	253.5	255.4	259.5		
VQZ 2.5359	2.5091	256.9	258.9				
AVTZ 2.5492	2.5218	253.3	255.6				
(a) using ECP28MDF for In, (4d) electrons correlated

(b) Sb$_2$ (R_e, ω_e): H. Sontag and R. Weber, J. Mol. Spectrosc. 91, 72 (1982).

(c) SbH (R_e, ω_e): R.-D. Urban, K. Essig, and H. Jones, J. Chem. Phys. 99, 15911993.

(d) SbF (ω_e): D. K. W. Wang, W. E. Jones, F. Prévot, and R. Colin, J. Mol. Spectrosc. 49, 377 (1974).

(e) This work, using the MTavqz basis set [54] on Cl and including (2s,2p) correlation in Cl. CWB(t) and CWB(q) indicate the Bauschlicher [34] cc-pVTZ and cc-pVQZ basis sets on indium, and regular cc-pVnZ or SDB-ccpVnZ basis sets on the other atom. ACWB(t) and ACWB(q) indicate the same, but in conjunction with an augmented basis set on the other atom.
TABLE III. CCSD(T) and experimental spectroscopic constants \((R_e \text{ in Å, } \omega_e \text{ in cm}^{-1}) \) for diatomics involving Ga or Ge and an electronegative element

molecule	\(R_e \)	\(\omega_e \)								
\(R_e \)	SDB	CPP	all \(e^- \) (a)	all \(e^- \) (b)	Exp.	SDB	CPP	all \(e^- \) (a)	all \(e^- \) (b)	Exp.
GaBr VTZ	2.3912	2.3681	2.4013	2.3618	2.35248	261.7	262.6	268.6	274.9	263.0
VQZ	2.3829	2.3602	2.4007	2.3644	258.7	259.5	266.6	266.8		
13e\(^-\) DVTZ	2.3564	2.3668	275.5	270.9						
DVQZ	2.3486	2.3656	268.9	267.7						
GaCl VTZ	2.2411	2.2227	2.2554	2.2031	2.201690	353.5	353.6	381.3	382.4	365.3
VQZ	2.2320	2.2135	2.2572	2.2010	350.7	351.1	373.3	370.4		
13e\(^-\) DVTZ	2.2063	2.2070	372.9	374.7						
DVQZ	2.1987	2.2044	368.4	370.1						
GaF VTZ	1.7851	1.7688	1.8031	1.7756	1.774369	589.0	589.8	631.9	652.3	622.2
VQZ	1.7753	1.7587	1.8043	1.7697	586.3	588.0	625.4	644.8		
13e\(^-\) DVTZ	1.7704	1.7709	638.7	644.2						
DVQZ	1.7674	1.7716	636.1	637.6						
ADVTZ	1.7798	1.7812	619.7	623.7						
ADVQZ	1.7693	1.7741	631.2	628.9						
+2s2p DVTZ	1.7711	629.1								
+3s3p DVQZ	1.7714	629.3								
GeF \(^2\Pi\) VTZ	1.7655	1.7550	1.8047	1.7469	1.7452	642.6	645.3	746.2	688.6	665.67
VQZ	1.7577	1.7473	1.8096	1.7424	640.3	642.8	746.1	681.2		
13e\(^-\) DVTZ	1.7411	1.7450	683.1	677.6						
13e\(^-\) DVQZ	1.7407	1.7424	675.3	679.5						
GeO VTZ	1.6382	1.6290	1.6491	1.6341	1.624648	925.1	930.8	987.4	993.7	985.5
VQZ	1.6295	1.6205	1.6485	1.6276	943.2	949.1	989.3	1000.5		
13e\(^-\) DVTZ	1.6254	1.6293	995.4	992.3						
13e\(^-\) DVQZ	1.6214	1.6269	996.7	996.6						
GeS VTZ	2.0461	2.0356	2.0416	2.0280	2.012086	552.2	554.1	568.4	578.0	575.8
VQZ	2.0390	2.0290	2.0356	2.0192	560.5	552.4	572.3	597.2		
13e\(^-\) DVTZ	2.0207	2.0284	577.9	572.3						
13e\(^-\) DVQZ	2.0133	2.0190	577.5	578.2						
GeSe VTZ	2.1743	2.1580	2.1713	2.1574	2.134629	384.8	387.4	397.5	403.7	408.7
VQZ	2.1531	2.1377	2.1658	2.1506	393.5	444.5	400.2	403.5		
13e\(^-\) DVTZ	2.1479	2.1583	403.2	401.4						
13e\(^-\) DVQZ	2.1370	2.1495	405.0	403.8						

(a) all d electrons of Ga, Ge are frozen for the all electron calculation.

(b) d-shell correlated.
TABLE IV. Spectroscopic constants for GaH and GeH. All results at the CCSD(T) level.

Nonvalence	Pseudopotential	Basis set	\(r_e \)	\(\omega_e \)	\(\omega_e x_e \)	\(\omega_e \)	\(\omega_e x_e \)	
			Å	cm\(^{-1}\)	cm\(^{-1}\)	Å	cm\(^{-1}\)	
E\(^-\) correlated								
Experiment								
—	all-electron	cc-pVDZ	1.6860	1610.0	26.43	1.6083	1896.1	32.96
—	all-electron	ditto full CI	1.6867	1607.0	26.55	1.6090	1891.7	33.24
—	all-electron	cc-pVTZ	1.6878	1603.2	26.80	1.6039	1897.9	32.80
—	all-electron	cc-pVQZ	1.6864	1604.3	27.74	1.6021	1903.1	33.14
(3d)	all-electron	cc-pVTZ	1.6573	1691.8	31.15	1.5860	1956.9	36.24
(3d)	all-electron	cc-pVQZ	1.6449	1698.5	40.56	1.5764	1965.0	43.78
—	ECP28MWB	SDB-cc-pVTZ	1.6969	1530.9	24.27	1.6084	1844.4	30.67
—	+ CPP		1.6876	1524.2	24.35	1.6014	1845.8	30.72
—	ECP28MWB	SDB-cc-pVQZ	1.6820	1546.3	25.09	1.5990	1862.3	31.30
—	+ CPP		1.6729	1540.4	25.13	1.5921	1863.5	31.46
(3d)	all-electron	cc-pDVVTZ	1.6582	1658.2	32.91	1.5893	1900.4	31.65
(3d)	all-electron	cc-pDVQZ	1.6565	1653.6	36.20	1.5821	1950.2	42.03
(3d)	all-electron	cc-pDVVTZ+2d	1.6500	1659.5	33.07			
(3d,3p,3d)	all-electron	cc-pDVVTZ+2s2p1d	1.6647	1602.5	26.56			
(3d)	all-electron	cc-pDVVTZ+2s2p1d	1.6635	1604.4	25.82			
(3d)	all-electron	cc-pDVVTZ+2s2p1d	1.6863	1598.0	25.56			
(3d)	all-electron	cc-pDVVTZ+2s2p	1.6637	1604.0	25.69	1.5889	1906.2	32.30
—	ECP10MWB	cc-pDVVTZ	1.6550	1649.3	31.47	1.5783	1950.6	37.24
(3d)	ECP10MWB	cc-pDVQZ	1.6446	1662.8	37.57	1.5751	1941.7	40.79
(3d)	ECP10MWB	cc-pDVQZ+2s2p	1.6613	1588.8	25.09	1.5865	1893.2	32.12
—	ECP10MWB	cc-pDVQZ+2s2p	1.6838	1584.4	25.12	1.5993	1887.7	32.40
(3d)	ECP10MWB	cc-pDVQZ+3s3p	1.6584	1607.4	27.33			
(3d)	ECP10MWB	cc-pDVQZ+3s3p	1.6586	1605.6	26.92	1.5881	1910.8	32.86
—	ECP10MWB	cc-pDVQZ+3s3p	1.6829	1592.1	27.38	1.6006	1897.4	32.40
(3d,3p,3d)	ECP10MWB	cc-pDVQZ+3s3p	1.6602	1601.5	26.00	1.5898	1907.4	32.82

\(^a\) M. Molski, J. Mol. Spectrosc. 182, 1 (1997).

\(^b\) F. Ito, T. Nakanago, H. Jones, J. Mol. Spectrosc. 164, 379 (1994).

\(^c\) J. P. Towle and J. M. Brown, Mol. Phys. 78, 249 (1993).
Table V. Binding energies (D in eV) for molecules containing third row atoms.

molecule	SDB	CPP	all e−	Experiment							
	VTZ	VQZ	∞	VTZ	VQZ	∞	VTZ	VQZ	∞	HH	KS
AlBr	4.31	4.45	4.55	4.33	4.48	4.57	4.29	4.43	4.52	4.43	4.42±0.06
As₂	3.42	3.78	4.02	3.48	3.83	4.06	3.48	3.71	3.86	3.96	3.93±0.10
AsF³⁻	3.88	4.13	4.30	3.91	4.16	4.32	3.85	4.08	4.22	4.2	4.21
AsH³⁻	2.63	2.72	2.79	2.63	2.73	2.79	2.64	2.71	2.76	2.76 (AsD)	2.80±0.03
AsN	4.48	4.85	5.09	4.54	4.90	5.14	4.47	4.72	4.88	—	5.03±0.02
AsO²⁻	4.58	4.90	5.11	4.63	4.94	5.14	4.56	4.80	4.97	≤4.98	4.95±0.08
AsP	3.90	4.24	4.46	3.94	4.27	4.49	3.90	4.16	4.33	—	4.45
AsS²⁻	3.47	3.79	3.99	3.51	3.81	4.02	3.50	3.73	3.88	—	3.90±0.07
BBr	4.23	4.32	4.38	4.25	4.34	4.40	4.18	4.28	4.34	≤4.49⁹	4.07
Br₂	1.58	1.80	1.94	1.61	1.82	1.96	1.69	1.84	1.93	1.9707	idem
BrCl	1.90	2.08	2.20	1.91	2.09	2.21	1.94	2.10	2.20	2.233	2.223±0.003
BrF	2.18	2.40	2.54	2.20	2.41	2.55	2.25	2.44	2.57	2.548	2.87±0.12
CSe	5.72	5.92	6.06	5.76	5.97	6.06	5.73	5.89	6.00	5.98	6.08±0.06
HBr	3.62	3.69	3.74	3.64	3.71	3.76	3.63	3.70	3.75	3.758	idem
NSe²⁻	3.23	3.51	3.70	3.27	3.55	3.73	3.29	3.51	3.66	4.0	3.80±0.11
Se₂³⁻	2.94	3.19	3.35	2.99	3.23	3.39	3.05	3.23	3.34	3.410	3.417±0.004
SeH	3.08	3.16	3.22	3.09	3.18	3.23	3.11	3.19	3.24	—	3.221±0.01
SeO³⁻	4.02	4.29	4.47	4.05	4.32	4.49	4.08	4.29	4.42	4.41	4.78±0.22
SeS³⁻	3.42	3.65	3.80	3.45	3.68	3.83	3.46	3.65	3.78	3.7	3.81±0.07
SiSe	5.13	5.35	5.49	5.16	5.38	5.53	5.14	5.34	5.47	5.64	5.54±0.13
ditto aug-cc	5.16	5.36	5.49	5.20	5.40	5.53	5.18	5.36	5.48		

(a) Predissociation: Ref. [40] notes a possible potential hump of up to 0.13 eV in the upper a¹Π state.
TABLE VI. Binding energies (D_e in eV) for molecules containing fourth row atoms.

molecule	SDB			CPP			Experiment	
	VTZ	VQZ	∞	VTZ	VQZ	∞	HH	KS
AlI	3.49	3.60	3.67	3.52	3.63	3.71	3.77	3.81±0.02
ditto aug-cc								
GaI	3.18	3.34	3.45	3.26	3.42	3.53	3.47	3.47±0.10
GeTe	3.75	4.08	4.30	3.84	4.16	4.37	4.24	4.09±0.03
HI	2.90	2.96	3.00	2.93	2.99	3.03	3.0541	idem
ditto aug-cc								
I$_2$	1.07	1.25	1.37	1.13	1.30	1.42	1.54238	idem
ditto aug-cc								
IBr	1.37	1.57	1.70	1.42	1.61	1.74	1.817	idem
ditto aug-cc								
ICl	1.73	1.90	2.02	1.76	1.93	2.04	2.1531	idem
ditto aug-cc								
IF	2.24	2.48	2.64	2.27	2.51	2.66	2.879	\leq2.78
ditto aug-cc								
InBr	3.76	4.03	4.21	3.85	4.13	4.32	3.99	4.27±0.22
(b)	3.73	3.85	3.93					
(c)	3.75	3.86	3.93	3.77	3.88	3.95		
InCl	4.32	4.60	4.79	4.41	4.70	4.89	4.44	4.52±0.08
(c) [R]	4.29	4.45						
(e) [R]	4.32	4.43			4.46			
InF	5.41	5.87	6.17	5.50	5.97	6.28	5.25	5.21±0.15
(b)	5.18	5.35	5.46					
(c)	5.35	5.42	5.47					
(d)	5.26	5.42	5.53					
(e)	5.42	5.50	5.55					
InH	2.45	2.58	2.66	2.44	2.58	2.66	2.48	idem
(b)	2.43	2.47	2.49					
(d)	2.46	2.50	2.53					
InI	3.06	3.29	3.44	3.17	3.40	3.55	3.43	3.41±0.01
(b)	3.07	3.16	3.22	3.11	3.20	3.26		
Sb$_2$	2.51	2.88	3.13	2.60	2.97	3.21	2.995 a	3.07±0.07
SbF $^{3\Sigma^-}$	3.77	4.12	4.36	3.82	4.17	4.40	4.4	4.5±0.1
ditto aug-cc								
SbH $^{3\Sigma^-}$	2.43	2.52	2.59	2.44	2.54	2.60		
SnP	3.20	3.51	3.71	3.26	3.57	3.78	3.68	idem
SnO	4.86	5.28	5.54	4.96	5.38	5.65	5.49	5.48±0.13
SnS	4.31	4.61	4.81	4.39	4.69	4.89	4.77	4.78±0.03
SnSe	3.83	4.12	4.31	3.92	4.22	4.41	4.20	4.13±0.06
ditto aug-cc								

33
	3.29	3.56	3.74	3.39	3.66	3.84	3.69	idem
ditto aug-cc	3.40	3.58	3.70	3.50	3.68	3.79		

(a) Sb$_2$ (D_e): H. Sontag and R. Weber, J. Mol. Spectrosc. **91**, 72 (1982).

(b) using Bauschlicher [34] cc-pVnZ basis sets on In in conjunction with cc-pVnZ and SDB-
cc-pVnZ basis sets on other element.

(c) ditto, but using ‘augmented’ basis sets on other element.

(d) as (b), but using all-electron basis set on In.

(e) as (c), but using all-electron basis set on In.

(f) This work, correlating (2s2p) electrons on Cl and using the MTavqz core-correlation basis
set [54] on Cl.
molecule	basis	SDB	CPP	SDB-	all e⁻	all e⁻ with	Experiment		
	(3d) corr.	no	yes	no	yes	yes			
	cc-pDVnZ	cc-pVnZ	cc-pVnZ	cc-pDVnZ	HH	KS			
GaBr	VTZ	3.90	3.97	3.86	3.97	4.04	4.02	4.31	4.58±0.18
	VQZ	4.09	4.16	4.15	4.08	4.15	4.12		
	∞	4.22	4.29	4.35	4.16	4.23	4.19		
GaCl	VTZ	4.46	4.52	4.60	4.53	4.63	4.60	4.92	4.96±0.13
	VQZ	4.66	4.72	4.73	4.65	4.75	4.72		
	∞	4.79	4.84	4.81	4.73	4.83	4.80		
GaF	VTZ	5.67	5.74	5.83	5.74	5.87	5.85	5.98	5.95±0.15
	VQZ	5.94	6.01	6.00	5.91	6.03	6.01		
	∞	6.12	6.18	6.12	6.02	6.14	6.11		
GaH	VTZ	2.69	2.69	2.81	2.77	2.86	2.82	< 2.84	≤2.80
	VQZ	2.77	2.77	2.85	2.80	2.89	2.84		
	∞	2.82	2.81	2.88	2.82	2.90	2.85		
GeF ²Π	VTZ	4.78	4.83	4.99	4.83	4.99	4.98	5.0	5.0±0.2
	VQZ	5.07	5.12	5.17	5.02	5.20	5.18		
	∞	5.27	5.31	5.31	5.14	5.33	5.28		
GeH ²Π	VTZ	2.57	2.58	2.69	2.63	2.70	2.66	< 3.3	≤3.3
	VQZ	2.65	2.66	2.72	2.68	2.76	2.72		
	∞	2.71	2.71	2.75	2.72	2.80	2.76		
GeO	VTZ	6.19	6.27	6.57	6.41	6.54	6.53	6.78	6.80±0.13
	VQZ	6.57	6.65	6.76	6.60	6.77	6.74		
	∞	6.82	6.89	6.88	6.73	6.93	6.87		
GeS	VTZ	5.10	5.16	5.36	5.25	5.35	5.31	5.67	5.50±0.03
	VQZ	5.40	5.57	5.52	5.44	5.55	5.51		
	∞	5.59	5.83	5.63	5.56	5.68	5.63		
GeSe	VTZ	4.45	4.53	4.71	4.64	4.73	4.70	4.98±0.10	4.99±0.02
	VQZ	4.79	4.86	4.89	4.81	4.91	4.87		
	∞	5.01	5.07	5.01	4.92	5.03	4.98		
TABLE VIII. State-averaged optimum f and g exponents for the transition metals, to be used in conjunction with Stuttgart-Dresden ECPs and [6s5p3d] contracted valence basis sets. The cc-pVTZ and SDB-cc-pVTZ basis sets are recommended for the other elements.

State	$4F$	$5F$	$6D$	$7S$	$6D$	$5F$	$4F$	$3D$	$2S$	N/A
$(s)^1(d)^{n-1}$										
Sc	0.180	0.285	0.425	0.640	0.795	0.871	1.019	1.182	1.315	1.498
Ti	0.764	1.264	1.788	2.555	3.118	3.516	4.076	4.685	5.208	5.871
V	0.347	0.636	1.048	1.712	1.964	2.269	2.711	3.212	3.665	4.365
Cr										
Mn										
Fe										
Co										
Ni										
Cu										
Zn										
$(s)^2(d)^{n-2}$										
Sc	0.144	0.236	0.261	0.338	0.398	0.478	0.567	0.621	0.732	0.834
Ti	0.546	0.883	0.970	1.223	1.430	1.666	1.989	2.203	2.537	2.853
V	0.249	0.547	0.536	0.744	0.918	1.057	1.236	1.385	1.587	1.795
Cr										
Mn										
Fe										
Co										
Ni										
Cu										
Zn										
Y										
Zr										
Nb										
Mo										
Tc										
Ru										
Rh										
Pd										
Ag										
Cd										
La	0.120	0.163	0.210	0.256	0.327	0.347	0.395	0.443	0.498	0.545
Hf	0.456	0.557	0.697	0.825	0.955	1.067	1.189	1.323	1.461	1.580
Ta	0.209	0.352	0.472	0.627	0.636	0.860	0.982	1.100	1.218	1.384
W										
Re										
Os										
Ir										
Pt										
Au										
Hg										

Exponents were averaged over $(s)^1(d)^{n-1}$ and $(s)^2(d)^{n-2}$ states, except for Pd where in addition the $(s)^0(d)^{10}$ ground state was used, and Zn/Cd/Hg for which only the $(s)^2(d)^{n-2}$ is involved.