HURWITZ-HODGE INTEGRAL IDENTITIES FROM THE CUT-AND-JOIN EQUATION

WEI LUO, SHENGMAO ZHU

ABSTRACT. In this paper, we present some Hurwitz-Hodge integral identities which are derived from the Laplace transform of the cut-and-join equation for the orbifold Hurwitz numbers. As an application, we prove a conjecture on Hurwitz-Hodge integral proposed by J. Zhou in 2008.

1. INTRODUCTION

The Gromov-Witten theory for symplectic orbifolds has been developed by Chen-Ruan [4]. The algebraic part, the Gromov-Witten theory for smooth DM stacks, was established by Abramovich-Graber-Vistoli [1]. By the virtual localization, all the orbifold Gromov-Witten invariants for a toric DM stack descend to the computation of the Hurwitz-Hodge integrals on the moduli space $\overline{M}_{g,\gamma}(BG)$ of twisted stable maps to the classifying stack of a finite group G [11]. In [15], J. Zhou described an effective algorithm to calculate the Hurwitz-Hodge integrals. By applying Tseng's orbifold quantum Riemann-Roch theorem [13], Hurwitz-Hodge integrals can be reconstructed from the descendant Hurwitz-Hodge integrals on $\overline{M}_{g,\gamma}(BG)$.

Recall that the descendant Hodge integrals on moduli space of curves can be computed by the DVV recursion which is equivalent to the Witten-Kontsevich theorem [14, 10]. An easy approach to DVV recursion is by studying the cut-and-join equation for simple Hurwitz numbers. Combining the famous ELSV formula, one can obtain a polynomial identity for linear Hodge integrals. Then it is direct to derive the DVV recursion by looking at the highest terms in this identity [3, 12]. Similarly, collecting the lowest terms, one obtains a formula for λ_g-integrals [8, 18].

In [9], Johnson-Pandharipande-Tseng established the ELSV-type formula for orbifold Hurwitz numbers which also satisfy the cut-and-join equation. With the same technique used in [5], Bouchard-Serrano-Liu-Mulase [2] established the Laplace transform of the cut-and-join equation for orbifold Hurwitz numbers. Starting from this formula, with the same method used in [8, 3, 19, 12], we obtain the following Hurwitz-Hodge integrals identities.

Theorem 1.1. When $r \geq 1$ and $0 \leq k_i \leq r - 1$, for $1 \leq i \leq l$, the Hurwitz-Hodge integrals satisfy the following orbifold-DVV recursion:

\begin{equation}
\langle \tau_{b_L} \rangle_g^{r,k_L} = r \sum_{j=2}^{l} \frac{C_{b_1,b_j}^{k_1,k_j}}{(2b_1 + 1)!!(2b_j - 1)!!} \langle \tau_{b_1 + b_j - 1} \tau_{b_L \setminus \{1,j\}} \rangle_g^{r,(k_1 + k_j,k_L \setminus \{1,j\})} \\
+ \frac{r^2}{2} \sum_{m+n=2}^{a+b=k_1} \frac{(2m + 1)!!(2n + 1)!!}{(2b_1 + 1)!!} \langle \tau_{m\tau_n} \tau_{b_L \setminus \{1\}} \rangle_g \langle \tau_{(a,b,k_L \setminus \{1\})} \rangle_g^{-1}
\end{equation}

1991 Mathematics Subject Classification. Primary 57N10.
Key words and phrases. Orbifold Hurwitz numbers, cut-and-join equation, Hurwitz-Hodge integrals.
\[
\begin{aligned}
&+ \sum_{g_1+g_2=g} \sum_{J=L \setminus \{1\} \atop a+|k_i|=0} \frac{(2m+1)!!(2n+1)!!}{(2b_1+1)!!} \langle \tau_m \tau_{b_1} \rangle_{g_1} \langle \tau_n \tau_{b_2} \rangle_{g_2} \left(\sum_{r, k_1, k_2} C^{k_1, k_2}_{b_1, b_2} \right).
\end{aligned}
\]

Where the constant \(C^{k_1, k_2}_{b_1, b_2} \) can be calculated from the formula (37) in Lemma 3.2. We have not written down an explicit formula for it in general. However, when \(r = 1 \), then \(k_i = 0 \), for \(i = 1, ..., l \). It is easy to compute
\[
C^{0,0}_{b_1, b_2} = (2b_1 + 2b_2 - 1)!!.
\]

Therefore, we have

Corollary 1.2. When \(r = 1 \), the orbifold-DVV recursion is reduced to the ordinary DVV recursion which is equivalent to the original Witten conjecture.

\[
(3)
\begin{aligned}
&\langle \tau_{b_L} \rangle_g = \sum_{j=2}^{l} \frac{(2b_1 + 2b_j - 1)!!}{(2b_1 + 1)!!(2b_j - 1)!!} \langle \tau_{b_1 + b_j - 1} \rangle_{g} \langle \tau_{b_L \setminus \{1\}} \rangle_g \\
&+ \frac{1}{2} \sum_{m+n=b_1-2 \atop m \geq 0, n \geq 0} \left(\frac{(2m+1)!!(2n+1)!!}{(2b_1+1)!!} \langle \tau_m \tau_n \rangle_{g} \langle \tau_{b_L \setminus \{1\}} \rangle_{g} \right) \\
&+ \sum_{g_1+g_2=g} \frac{(2m+1)!!(2n+1)!!}{(2b_1+1)!!} \langle \tau_m \tau_{b_1} \rangle_{g_1} \langle \tau_n \tau_{b_2} \rangle_{g_2} \left(\sum_{r, k_1, k_2} C^{k_1, k_2}_{b_1, b_2} \right).
\end{aligned}
\]

The rank of the Hodge bundle \(\mathbb{E}^U \) (see Section 2 for the detail definition) on \(\overline{M}_{g, \gamma}(BZ_{1r}) \) depends on the monodories at the marking points. When all the monodories are trivial, \(\text{rk} \mathbb{E}^U = g \). Otherwise, the rank is given by formula (19). By looking at the lowest terms in the formula (36), we obtain the following theorem.

Theorem 1.3. When all the monodromies at the marking points are trivial, i.e. \(k_i = 0 \), for all \(1 \leq i \leq l \). If \(b_i \geq 0 \) for \(1 \leq i \leq l \), and \(\sum_{i=1}^{l} b_i = 2g-3+1 \), we have the following closed formula for \(\lambda_g^U \)-integrals:

\[
(4)
\begin{aligned}
\langle \tau_{b_L} \lambda_g^U \rangle_g = \left(\frac{2g-3+1}{b_1, ..., b_l} \right) \langle \tau_{2g-2} \lambda_g^U \rangle_g.
\end{aligned}
\]

where the one-point integral \(\langle \tau_{2g-2} \lambda_g^U \rangle_g \) is determined by the following formula given in \[9\] (See the formula before Section 4):

\[
(5)
\begin{aligned}
&\frac{1}{r} + \sum_{g \geq 0} t^{2g} \langle \tau_{2g-2} \lambda_g^U \rangle_g = \frac{1}{r} \frac{t/2}{\sin(t/2)}.
\end{aligned}
\]

Otherwise, the \(\lambda_g^U \)-integral satisfies the following identity:

\[
(6)
\begin{aligned}
&Z \langle \tau_{b_L} \lambda_g^U \rangle_g = \left(\sum_{i \in Z} \sum_{j \in k_L \setminus Z} C_{b_1+b_2, j}^{k_1} \langle \tau_{b_1+b_j-1} \rangle_{g} \langle \tau_{k \setminus \{1\}} \rangle_g \right) \\
&+ \sum_{i,j \in Z, i < j} C_{b_1, b_2}^{0} \langle \tau_{b_1+b_j-1} \rangle_{g} \langle \tau_{(0, k \setminus \{1\})} \rangle_g.
\end{aligned}
\]
Corollary 1.4. When \(b_i \geq 0 \) for \(1 \leq i \leq l \), and \(\sum_{i=1}^{l} b_i = 2g - 3 + l \),

\[
\langle \tau_{b_L} \lambda_g \rangle_g = \frac{1}{r} \langle \tau_{b_L} \lambda_g \rangle_g
\]

where the right hand side is the ordinary Hodge integral on moduli space of curves:

\[
\langle \tau_{b_L} \lambda_g \rangle_g = \int_{\mathcal{M}_{g,l}} \psi_{b_1} \cdots \psi_{b_l} \lambda_g.
\]

Proof. The ordinary \(\lambda_g \)-integral satisfies the following formula which was firstly obtained by Faber-Pandharipande [7]

\[
\langle \tau_{b_L} \lambda_g \rangle_g = \left(\frac{2g - 3 + l}{b_1, \ldots, b_l} \right) \langle \tau_{2g-2} \lambda_g \rangle_g
\]

where the one-point integral \(\langle \tau_{2g-2} \lambda_g \rangle_g \) is determined by

\[
1 + \sum_{g>0} t^{2g} \langle \tau_{2g-2} \lambda_g \rangle_g = \frac{t/2}{\sin(t/2)}.
\]

Hence, by formula (5),

\[
\langle \tau_{2g-2} \lambda_g \rangle_g = \frac{1}{r} \langle \tau_{2g-2} \lambda_g \rangle_g.
\]

Therefore, Corollary 1.4 is derived from the formula (4). \(\square \)

Remark 1.5. The formula (7) in Corollary 1.4 was first conjectured by J. Zhou [17]. We would like to thank Prof. Kefeng Liu and Hao Xu for pointing out it to us.

2. Preliminaries

2.1. Hurwitz-Hodge integrals. Let \(\overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_r) \) be the moduli space of stable maps to the classifying space \(B\mathbb{Z}_r \) where \(\gamma = (\gamma_1, \ldots, \gamma_n) \) is a vector elements in \(\mathbb{Z}_r \). In particular, when \(a = 1 \), the moduli space of stable maps \(\overline{\mathcal{M}}_{g,(0,0)}(B\mathbb{Z}_r) \) is specialized to \(\overline{\mathcal{M}}_{g,n} \). Let \(U \) be the irreducible \(\mathbb{C} \)-representation of \(\mathbb{Z}_r \) given by

\[
\phi^U : \mathbb{Z}_r \to \mathbb{C}^*, \quad \phi^U(1) = \exp(2\pi \sqrt{-1}/r).
\]

We have the corresponding Hodge bundle \(E_{g,\gamma}^U \to \overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_r) \) and the Hodge classes \(\lambda_{i}^{U,\mathbb{Z}_r,\gamma} = c_i(E_{g,\gamma}^U) \). More generally, for any irreducible representation \(R \) of \(\mathbb{Z}_r \), we denote the corresponding Hodge bundle and Hodge classes as \(E_{g,\gamma}^R \) and \(\lambda_{i}^{R,\mathbb{Z}_r,\gamma} \) respectively. In the following, for brevity, we
will also use the notations E^R and λ_i^R to denote the Hodge bundle and Hodge classes without confusion.

The i-th cotangent line bundle L_i on the moduli space of curves has fiber $L_i|_{(C, p_1, \ldots, p_n)} = T^*_p C$. The ψ-classes on $\overline{M}_{g,n}$ are defined by

$$\psi_i = c_1(L_i) \in H^2(\overline{M}_{g,n}, \mathbb{Q}).$$

The ψ-classes on $\overline{M}_{g,\gamma}(B\mathbb{Z}_r)$ are defined by pull-back via the morphism

$$\epsilon : \overline{M}_{g,\gamma}(B\mathbb{Z}_r) \to \overline{M}_{g,n}$$

as

$$\widetilde{\psi}_i = \epsilon^*(\psi_i) \in H^2(\overline{M}_{g,\gamma}(B\mathbb{Z}_r), \mathbb{Q}).$$

Hurwitz-Hodge integrals over $\overline{M}_{g,\gamma}(B\mathbb{Z}_r)$ are the top intersection products of the classes $\{\lambda_i^R\}$ and $\{\psi_j\}_{1 \leq j \leq n}$:

$$\int_{\overline{M}_{g,\gamma}(B\mathbb{Z}_r)} \overline{\psi}_1^{b_1} \cdots \overline{\psi}_n^{b_n} (\lambda_i^R)^{k_1} \cdots (\lambda_j^R)^{k_j} (\lambda^R_{rkE^U})^{k_{rkE^U}}.$$

We let

$$\Lambda^R(t) = \sum_{j \geq 0} (-t)^j \lambda_j^R,$$

where rkE^R is the rank of E^R determined by the orbifold Riemann-Roch formula.

2.2. Orbifold ELSV formula. In [9], Johnson-Pandharipande-Tseng established the following ELSV-type formula for orbifold Hurwtiz number $H_{g,l}^r(\mu_1, \ldots, \mu_l)$.

Theorem 2.1. The orbifold Hurwitz number has an expression in terms of linear Hurwitz-Hodge integrals as follows:

$$H_{g,l}^r(\mu) = r^{1-g+\sum_{i=1}^l (\frac{\mu_i}{r})} \prod_{i=1}^l \left(\frac{\mu_i}{r} \right)! \int_{\overline{M}_{g,\mu}(B\mathbb{Z}_r)} \frac{\Lambda}{\prod_{i=1}^l (1 - \mu_i \overline{\psi}_i)}.$$

where $\Lambda = \Lambda^U(r) = \sum_{j \geq 0} (-r)^j \lambda_j^U$, $\mu = (\mu_1, \ldots, \mu_l)$ is a partition with length l. The floor and fractional part of a $q \in \mathbb{Q}$ is denoted by $q = [q] + \langle q \rangle$.

The rank of the Hodge bundle E^U can be calculated by the orbifold Riemann-Roch formula. When all the monodromies are trivial, i.e. $\langle \mu_i \rangle = 0$, for all $i = 1, \ldots, l$, the rank of $E^U_{g,\mu}$ is g, otherwise, the rank is (see formula (3.17) in [2]) given by

$$rkE^U_{g,\mu} = g - 1 + \sum_{i=1}^l \left(\frac{\mu_i}{r} \right).$$

2.3. The Laplace transform of the cut-and-join equation for orbifold Hurwitz numbers. The orbifold Hurwitz number $H_{g,l}^{(r)}(\mu)$ also satisfies the cut-and-join equation, the following formula was established in Bouchard-Serrano-Liu-Mulase [2].

Theorem 2.2. (Cut-and-join equation [2])

$$sH_{g,l}^{(r)}(\mu) = \frac{1}{2} \sum_{i \neq j} (\mu_i + \mu_j) H_{g,l-1}^{(r)}(\mu_i + \mu_j, \mu(\hat{i}, \hat{j})).$$
where

\[s = 2g - 2 + l + \sum_{i=1}^{l} \frac{\mu_i}{r} \]

is the number of the simple ramification point given by the Riemann-Hurwitz formula. The notation \(\hat{i} \) indicates that the parts \(\mu_i \) is erased.

In order to describe the Laplace transform of the above cut-and-join formula (20). We need to introduce the auxiliary functions showed in \([2]\) (see section 7.2) firstly:

\begin{equation}
\xi_{r,k}^r(\eta) = \begin{cases}
\frac{1}{r} \eta^r, & k = 0, \\
\frac{1}{k r^{k/r}} \eta^k, & 0 < k < r.
\end{cases}
\end{equation}

and for \(m \geq -1 \), we let

\begin{equation}
\xi_{m+1}^r(\eta) = \frac{\eta}{1 - \eta^r} \frac{d}{d\eta} \xi_m^r(\eta).
\end{equation}

For the following exposition, we also need to fix some notations. let \(L = (1, \ldots, l) \) be an index set, we denote \(b_L = (b_1, \ldots, b_l) \) with \(b_i \geq 0 \), \(k_L = (k_1, \ldots, k_l) \) with \(0 \leq k_i < r \), \(|k_L| = \sum_{i=1}^{l} k_i \) and \(\tau_{b_L} = \prod_{i=1}^{l} \tau_{b_i} \), \(\xi_{b_L}^r(\eta_L) = \prod_{i=1}^{l} \xi_{b_i}^r(\eta_i) \).

The Hurwitz-Hodge integrals are abbreviated as

\begin{equation}
\langle \tau_{b_L} \Lambda \rangle_g^{r,k} := \langle \tau_{b_1} \tau_{b_2} \cdots \tau_{b_l} \Lambda \rangle_g^{r,k} = \int_{\tau_{b_L} \subset \mathbb{B}^r} \prod_{i=1}^{l} \psi_{b_i}^{r} \Lambda.
\end{equation}

Now the Laplace transform of the cut-and-join equation can be described as follows (see formula (7.26) in \([2]\)).

\begin{equation}
\sum_{|k_L|=0}^{r} \frac{r^{k_L}}{|b_L|} \langle \tau_{b_L} \Lambda \rangle_g^{r,k_L} \left[(2g - 2 + l) \xi_{b_L}^r(\eta_L) + \frac{1}{r} \sum_{i=1}^{l} (1 - \eta_i^r) \xi_{b_i+1}^r(\eta_i) \xi_{b_L \setminus \{i\}}^r(\eta_L \setminus \{i\}) \right]
\end{equation}

\begin{align*}
&= \sum_{1 \leq i < j \leq l \atop a + |k_L \setminus \{i,j\}| \geq 0 \atop m + b_L \setminus \{i,j\} \geq 3g - 4 + l} \frac{r^{a+|k_L \setminus \{i,j\}|}}{r^{a+|k_L \setminus \{i\}|}} \langle \tau_{m} \tau_{b_L \setminus \{i,j\}} \Lambda \rangle_g^{r,(a,k_L \setminus \{i,j\})} \frac{1}{\eta_i - \eta_j} \\
&\times \left[\frac{\eta_i \xi_{m+1}^r(\eta_i)}{1 - \eta_i^r} - \frac{\eta_j \xi_{m+1}^r(\eta_j)}{1 - \eta_j^r} \right] \xi_{b_L \setminus \{i,j\}}^r(\eta_L \setminus \{i,j\}) \xi_{b_L \setminus \{i\}}^r(\eta_L \setminus \{i\}) \\
&+ \frac{r}{2} \sum_{i=1}^{l} \left(\sum_{a+b+|k_L \setminus \{i\}| \geq 0 \atop m+n+|b_L \setminus \{i\}| \geq 3g - 4 + l} \frac{r^{a+b+|k_L \setminus \{i\}|}}{r^{a+b+|k_L \setminus \{i\}|}} \langle \tau_{m+n} \tau_{n+1} \Lambda \rangle_g^{r,(a,b,k_L \setminus \{i\})} \xi_{m+1}^r(\eta_i) \xi_{n+1}^r(\eta_i) \xi_{b_L \setminus \{i\}}^r(\eta_L \setminus \{i\}) \right)
\end{align*}
3. Proof of the main results

In this section, we present the proofs for the results showed in Section 1. First, we introduce the new variable \(t \) as

\[
t = \frac{1}{1 - \eta^r}.
\]

It is easy to get

\[
\frac{\eta}{1 - \eta^r} \frac{d}{d\eta} = t^{r+1}(t^r - 1) \frac{d}{dt}.
\]

Hence, in the new variable \(t \),

\[
\xi_{r,k}^{r,-1}(t) = \begin{cases}
\frac{1}{r} \left(\frac{t^r - 1}{t^r} \right), & k = 0, \\
\frac{1}{kr^k/r} \left(\frac{t^r - 1}{t} \right)^k, & 1 \leq k \leq r - 1.
\end{cases}
\]

and for \(m \geq -1 \), we have

\[
\xi_{r,k}^{r,m+1}(t) = t^{r+1}(t^r - 1) \frac{d}{dt} \xi_{r,k}^{r,m}(t).
\]

Lemma 3.1. For \(0 \leq k \leq r - 1 \), the function \(\xi_{r,k}^{r,m}(t) \) has the following expansion form:

\[
\xi_{r,k}^{r,m}(t) = \frac{1}{r^m} t^{(m+1)r-k}(t^r - 1) \left(c_{r,m}^k t^m + c_{r,m-1}^k t^{(m-1)r} + \cdots + c_{r,0}^k \right).
\]

where the coefficients \(c_{r,m,i}^k \), for \(0 \leq i \leq m \), satisfy certain recursion relations. In particularly, we have

\[
c_{r,m,m}^k = (2m - 1)!! r^m, \quad c_{r,m,0}^k = \prod_{j=1}^{m} (k - jr).
\]

Proof. By definition, we have

\[
\xi_{r,k}^{r,1}(t) = t^{r+1}(t^r - 1) \frac{d}{dt} \left(\frac{1}{r^r} t^r \left(\frac{t^r - 1}{t} \right)^k \right) = \frac{1}{r^r} t^{2r-k}(t^r - 1)^k (rt^r - (r-k)).
\]

So \(\xi_{r,k}^{r,1}(t) \) has the expansion form (30) showed in Lemma 3.1, with

\[
c_{r,1,1}^k = r, \quad c_{r,1,0}^k = k - r.
\]

When \(m \geq 1 \), one has

\[
\xi_{r,k}^{r,m+1}(t) = t^{r+1}(t^r - 1) \frac{d}{dt} \xi_{r,k}^{r,m}(t).
\]
\[
\frac{1}{r^r} t^{r+1} (t^r - 1) \frac{d}{dt} \left(t^{m+1} r - k (t^r - 1)^{\frac{k}{r}} \sum_{j=0}^{m} c_{m,j}^{k} t^r \right) \\
= \frac{1}{r^r} t^{(m+2)r-k} (t^r - 1)^{\frac{k}{r}} ((2m+1)r c_{m,m} t^{(m+1)r} + \cdots + (k - (m+1)r) c_{m,0}^k).
\]

Therefore,
\[
(35) \quad c_{m+1,m+1}^k = (2m+1)r c_{m,m}^k, \quad c_{m+1,0}^k = (k - (m+1)r) c_{m,0}^k.
\]

It is direct to obtain the formula (31) by the initial values in formula (33). \[\square\]

In terms of the new auxiliary functions \(\xi_m^{r,k}(t)\), the formula (25) can be changed to
\[
(36) \quad \sum_{|k_L| \equiv 0} \sum_{|b_L| \leq 3g-3+l} \left(t_{j_1}^{r+1} (t_{j_1} - 1)^{\frac{1}{r}} \xi_{m+1}^{r,a}(t_{j_1}) - t_{j_2}^{r+1} (t_{j_2} - 1)^{\frac{1}{r}} \xi_{m+1}^{r,a}(t_{j_2}) \right).
\]

Lemma 3.2. For \(0 \leq a \leq r - 1\), we have
\[
(37) \quad \frac{t_{j_1}^{r+1} (t_{j_1} - 1)^{\frac{1}{r}} \xi_{m+1}^{r,a}(t_{j_1}) - t_{j_2}^{r+1} (t_{j_2} - 1)^{\frac{1}{r}} \xi_{m+1}^{r,a}(t_{j_2})}{t_{j_1}^{r+1} (t_{j_1} - 1)^{\frac{1}{r}} - t_{j_2}^{r+1} (t_{j_2} - 1)^{\frac{1}{r}}} = \frac{1}{r^r} \sum_{p=0}^{m+1} \sum_{s=0}^{a-2} (t_{j_1}^{s+1}(m+3+p)r - (a-1-s) t_j (m+3+p)r - (s+1))
\]

\[
- \sum_{q=0}^{m+3+p} \binom{m+3+p}{q} (-1)^q \sum_{s=0}^{q-2} \binom{q-2}{s} (t_j^{s+1}(m+3+p)r - (q-1-s) t_j (m+3+p)r - (s+1))
\]
Proof. By a direct calculation, we have

\[
\frac{t_j^{r+1}(t_j^r - 1)^{\frac{1}{r}} \xi_m(t_i)}{t_j(t_j^r - 1)^{\frac{1}{r}} - t_i(t_i^r - 1)^{\frac{1}{r}}}
\]

(38)

\[
= \frac{1}{r^2} \sum_{p=0}^{m+1} \eta^{a-1}_{m+1,p} \sum_{p=0}^{m+1} \eta^{a-1}_{m+1,p} \left((1 - \eta_j)^{m+3+p} - \eta_j^m \right) \]

\[
= \frac{1}{r^2} \sum_{p=0}^{m+1} \eta^{a-1}_{m+1,p} \left((1 - \eta_j)^{m+3+p} - \eta_j^m \right) \]

\[
= \frac{1}{r^2} \sum_{p=0}^{m+1} \eta^{a-1}_{m+1,p} \left((1 - \eta_j)^{m+3+p} - \eta_j^m \right) \]

(39)

\[
\prod_{j=1}^{l} (t_j^r - 1)^{\frac{1}{r}} t_1^{(2b_1+2)r-k_1} \prod_{j=2}^{l} t_j^{(2b_j+1)r-k_j}.
\]

Proof of the Theorem 1.1:

Proof. When \(\sum_{j=1}^{l} b_j = 3g - 3 + l \), we consider the coefficient of the monomial
in the formula (36). This coefficient in the left hand side is equal to

\begin{equation}
\frac{1}{r} \prod_{j=2}^{l} \frac{k_j}{c_{b_j, b_j} (c \tau_{b_j})^r}.
\end{equation}

When \(m = b_1 + b_j - 1 \) and \(a \equiv k_1 + k_j \), for \(j = 2, \ldots, l \), by Lemma 3.2, we denote the coefficient of the term

\begin{equation}
(t_1^r - 1)^{k_1} t_j^{k_j} (t_j^r - 1)^{k_j} (2b_1 + 2)r - k_1 (2b_j + 1)r - k_j
\end{equation}

in the formula (37) as \(C_{b_1, b_j}^{k_1, k_j} \). Then the coefficient in the first term of the right hand side is

\begin{equation}
\sum_{j=2}^{l} C_{b_1, b_j}^{k_1, k_j} \prod_{i \neq 1, j} \frac{k_i}{c_{b_i, b_i} (c \tau_{b_i})^r} (r)(r_{(k_1^k + k_j^k)}, k_L \setminus (1, j))
\end{equation}

This coefficient in the second term of the right hand side is

\begin{equation}
\frac{r}{2} \prod_{j=2}^{l} \frac{k_j}{c_{b_j, b_j}} \sum_{\substack{a + b = k_1 \\text{stable} \\text{g}_1 + g_2 = g \\text{g}_1 + g_2 \equiv 0 \\text{g}_1 + g_2 \equiv 0 \\text{g}_1 + g_2 \equiv 0 \\text{g}_1 + g_2 \equiv 0}} \left(c_{m + 1, m + 1} c_{n + 1, n + 1} \left(c_{m + 1, m + 1} c_{n + 1, n + 1} \right) \left(c_{m + 1, m + 1} c_{n + 1, n + 1} \right) \right)
\end{equation}

Where the coefficient \(C_{b_1, b_j}^{k_1, k_j} \) are given by formula (31). Collecting the formulas (40),(42) and (43) together, we obtain the Theorem 1.1. \(\square \)

Proof of the Theorem 1.3:

Proof. Now we consider the lowest nonzero terms in the formula (36). The rank of the Hodge bundle \(\mathcal{E}^U_{g,k_L} \) is \(g \) if all the loop monodories are trivial, i.e. \(k_i = 0 \), for 1 \(\leq i \leq l \). Otherwise, the rank is

\begin{equation}
rk \mathcal{E}^U_{g,k_L} = g - 1 + \sum_{i=1}^{l} \left(- \frac{k_i}{r} \right).
\end{equation}

First, we consider the nontrivial case. So the smallest possible \(|b_L| \) is

\begin{equation} |b_L| = 3g - 3 + l - (g - 1 + \sum_{i=1}^{l} \left(- \frac{k_i}{r} \right))
\end{equation}

\begin{equation} = 2g - 2 + N(\{k_L\}) + \frac{|k_L|}{r},
\end{equation}

where we have used the notation \(N(\{k_L\}) \) to denote the number of the set \(\{i | k_i = 0, 1 \leq i \leq l\} \).

The lowest term of a \(\xi_n^r, k \) is

\begin{equation}
\frac{1}{r^{k/r}} \prod_{j=1}^{m} \left(t_j^r - 1 \right)^{k_j} (t_j^r - 1)^{k_j r}\n\end{equation}

where \(c_{m, 0}^k = \prod_{j=1}^{m} (k - j r) \). When \(|b_L| = \sum_{j=1}^{l} b_j = 2g - 2 + N(\{k_L\}) + \frac{|k_L|}{r} \), consider the coefficient of the monomial

\begin{equation}
\prod_{j=1}^{l} (t_j^r - 1)^{k_j/r} (t_j^r + 1)^{r - k_j}
\end{equation}
in the formula (36).

This coefficient in the left hand side of (36) is

\begin{equation}
(-r)^{r_k E_g, k_L} \langle \tau_{b_L} \lambda_{r_k E_g} \rangle_g^{r_k L} \prod_{j=1}^{l} c_{b_j, 0}^{k_j} (2g - 2 + l + \frac{1}{r} \sum_{i=1}^{l} (k_i - (b_i + 1)r))
\end{equation}

\begin{equation}
= (-r)^{r_k E_g, k_L} \langle \tau_{b_L} \lambda_{r_k E_g} \rangle_g^{r_k L} \prod_{j=1}^{l} c_{b_j, 0}^{k_j} (2g - 2 + \frac{|k_L|}{r} - |b_L|)
\end{equation}

\begin{equation}
= -N(\{k_L\})(-r)^{r_k E_g, k_L} \prod_{j=1}^{l} c_{b_j, 0}^{k_j} \langle \tau_{b_L} \lambda_{U} \rangle_g^{r_k L}
\end{equation}

To compute coefficients in the second term of right hand side of (36), first find that range of \(m, n\) with nonzero contribution in \(\langle \tau_m \tau_n \tau_{b_L \setminus \{i\}} \lambda_{g-1} \rangle_g^{r_{(a,b,k_L \setminus \{i\})}}\) is

\begin{equation}
m + n + |b_L \setminus \{i\}| \geq 2g - 4 + N(\{a, b, k_L \setminus \{i\}\}) + \frac{|k_L \setminus \{i\}| + a + b}{r} \iff
\end{equation}

\begin{equation}
m + n \geq b_i - 2 + N(\{a, b\}) - N(\{k_i\}) + \frac{a + b - k_i}{r}
\end{equation}

Range of \(m, n\) in \(\langle \tau_m \tau_{b_l} \lambda_{g-1} \rangle_g^{r_{(a,k_l)}} \langle \tau_n \tau_{b_J} \lambda_{g-1} \rangle_g^{r_{(b,k_J)}}\) is

\begin{equation}
m + |b_I| \geq 2g_1 - 2 + N(\{a, k_I\}) + \frac{|k_I| + a}{r}
\end{equation}

\begin{equation}
n + |b_J| \geq 2g_2 - 2 + N(\{b, k_J\}) + \frac{|k_J| + b}{r}
\end{equation}

Hence

\begin{equation}
m + n \geq b_i - 2 + N(\{a, b\}) - N(\{k_i\}) + \frac{a + b - k_i}{r}.
\end{equation}

Since \(0 \leq a, b, k_i < r\) and \(\frac{a + b - k_i}{r} = 0\), it is easy to obtain that \(a + b - k_i\) is equal to \(b_i - 1\) or \(b_i - 2\).

On the other hand, the lowest term of \(\xi^{r, a}_{m+1}(t_i) \xi^{r, b}_{m+1}(t_i)\) is

\begin{equation}
(t_i^r - 1) \frac{a+b}{r} t_i^{(m+n+4)r-a-b}
\end{equation}

Only when \(k_i = 0\) and \(a + b = r\), this term contributes a coefficient \(-1\) to the term

\begin{equation}
(t_i^r - 1) \frac{k_i}{r} t_i^{(b_i+1)r-k_i}.
\end{equation}

Hence, the coefficient of the monomial \(\prod_{j=1}^{l} t_j^{k_j/r} t_j^{(b_j+1)r-k_j}\) in the second term of right hand side is

\begin{equation}
- \frac{r}{2} \sum_{i \in \mathbb{Z}} \sum_{a+b=r, m+n=b_i-2} (-r)^{r_k E_g, (a,b,k_L \setminus \{i\})} \langle \tau_m \tau_n \tau_{b_L \setminus \{i\}} \lambda_{r_k E_g} \rangle_g^{r_k L} c_{a+m+1,0}^{a} c_{b+n+1,0}^{b} \prod_{j \neq i} c_{b_j, 0}^{k_j} + \sum_{\text{stable}} \sum_{\substack{g_1+g_2=g \\text{ and } \sum_{j \neq i} k_j \equiv 0 \mod r \\text{ and } \sum_{j \neq i} k_j \equiv 0 \mod r \\text{ and } m+|b_I|=2g_1-2+N(\{k_I\})+\frac{a+b}{r} \\text{ and } n+|b_J|=2g_2-2+N(\{k_J\})+\frac{b}{r} \\text{ and } a+b=k_i}} (-r)^{r_k E_g, (a,k_I)} + r_k E_g, (b,k_J)}
\end{equation}
By using the rank formula (19), it is easy to compute that the ranks appearing in the formulas (59) satisfy:

\[\sum_{j \neq i} k_j \geq N(\{a\}) - N(\{k_i, k_j\}) + b_i + b_j + \frac{a - k_i - k_j}{r}. \]

From the formula (37), only when \(k_i, k_j = 0\) and \(a = 0\) or \(k_i = 0\) and \(a = k_j\), we take \(m = b_i + b_j - 1\), then the left hand side of the formula (37) can contribute a coefficient \(-\frac{1}{r} r^a b_i b_j, 0\)

to the term \((t_i^r - 1) t_i^{(b_i+1)r-k_i} (t_j^r - 1) t_j^{(b_j+1)r-k_j}\).

If we define the index set \(Z \subseteq L\) as

\[Z = \{i | k_i = 0, 1 \leq i \leq l\}. \]

The coefficient of the monomial \(\prod_{j=1}^l (t_i^r - 1) t_i^{(b_i+1)r-k_i}\) in the first term of right hand side is

\[- \left(\sum_{i \in Z} \sum_{j \in k_L \setminus Z} (-r)^{r_{k_E^{g,(k_j,k_L\{i,j\})}\{}}} (\tau_{b_i+b_j-1} \tau_{b_L\setminus\{i,j\}} \lambda_{r_{k_E^{g}}^{U}})^{r_{k_E^{g,(k_j,k_L\{i,j\})}\{}}} c_{b_i+b_j,0} \right) \prod_{q \neq i,j} c_{q,0}. \]

By using the rank formula (19), it is easy to compute that the ranks appearing in the formulas (48), (56) and (59) satisfy:

\[r_{k_E^{g,(k_j,k_L\{i,j\})}} = r_{k_E^{g,k_L}}, \]
\[r_{k_E^{g,(0,k_L\{i,j\})}} = r_{k_E^{g,k_L}}, \]
\[r_{k_E^{g-1,(a,b,k_L\{i\})}} = r_{k_E^{g,k_L}} + 1, \]
\[r_{k_E^{g,(a,k_j)}} + r_{k_E^{g,(b,k_L\{i\})}} = r_{k_E^{g,k_L}} + 1. \]

Finally, combining (48), (56) and (59) together, we obtain the following formula

\[\sum_{j=1}^l c_{b_j,0}^r \sum_{i \in Z} \sum_{j \in k_L \setminus Z} (\tau_{b_i+b_j-1} \tau_{b_L\setminus\{i,j\}} \lambda_{r_{k_E^{g}}^{U}})^{r_{k_E^{g,(k_j,k_L\{i,j\})}\{}}} c_{b_i+b_j,0} \]

\[= \left(\sum_{i \in Z} \sum_{j \in k_L \setminus Z} (\tau_{b_i+b_j-1} \tau_{b_L\setminus\{i,j\}} \lambda_{r_{k_E^{g}}^{U}})^{r_{k_E^{g,(k_j,k_L\{i,j\})}\{}}} c_{b_i+b_j,0} \right) \prod_{q \neq i,j} c_{q,0} \]

\[- \frac{r^2}{2} \sum_{i \in Z} \left(\sum_{a+b=r}^{m+n=b-2} \sum_{m+n=b-2} (\tau_{m+n} \tau_{b_L\setminus\{i\}} \lambda_{r_{k_E^{g}}^{U}})^{r_{k_E^{g,(a,b,k_L\{i\})}} c_{m+1,0} r^b c_{b_j,0}} \right) \]
\[+ \sum_{g_1 + g_2 = g \atop \sum a_i = 0} \sum_{t \in \mathbb{Z}^2} \langle \tau_m \tau_{br} \lambda^U \rangle_{g_1}^{r(a,k_t)} \langle \tau_n \tau_{bj} \lambda^U \rangle_{g_2}^{r(b,k_j)} c_{m+1,0}^{t_n+1,0} \prod_{j \neq i} c_{b_j,0}^{k_j}\]

So we have the formula (6) in Theorem 1.3.

As to the trivial monodromies case, i.e. \(k_i = 0 \), for all \(1 \leq i \leq l \). We have \(r k^U = g \). With the analogue analysis as above, when \(\sum_i b_i = 2g - 3 + l \), the coefficients of \(\prod_{i=1}^{l} t_i^{2b_i+1} \) at the left hand side of formula (36) takes the form

\[(62) \quad (1 - l) \langle \tau_{b_i} \lambda^U \rangle_g^{r} \prod_{i=1}^{l} c_{b_i,0}^{0}.\]

While at the right hand side, only the first term has the contribution

\[(63) \quad \sum_{1 \leq i < j \leq t} \langle \tau_{b_i+b_j} \lambda^U \rangle_g^{r} \prod_{q \neq i,j} c_{b_q,0}^{0} \]

where the coefficients \(c_{b_i,0}^{0} \) is given by formula (31). So we obtain

\[(64) \quad \langle \tau_{b_i} \lambda^U \rangle_g^{r} = \frac{1}{l - 1} \sum_{1 \leq i < j \leq t} \frac{(b_i + b_j)!}{b_i! b_j!} \langle \tau_{b_i+b_j} \rangle_g^{r}.\]

Then by induction, we obtain the formula (4) in Theorem 1.3.

\[\square\]

Acknowledgements. The authors would like to thank Hao Xu for bringing the paper [17] to their attentions. Thank Prof. Kefeng Liu for useful discussions. This research is supported by China Postdoctoral Science Foundation 2011M500986 and National Science Foundation of China grants No.11201417.

References

[1] D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, arXiv: 0603151.
[2] V. Bouchard, D. H. Serrano, X. Liu and M. Mulase, Mirror symmetry for orbifold Hurwitz numbers, arXiv:1301.4871.
[3] L. Chen, Y. Li and K. Liu, Localization, Hurwitz numbers and the Witten conjecture, Asian J. Math. 12 (2008), no. 4, 511-518.
[4] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, in Orbifolds in mathematics and physics (Madison, WI, 2001), volume 310 of Contemp. Math., pages 25-85. Amer. Math. Soc., Providence, RI, 2002.
[5] T. Ekedahl, S. Lando, M. Shapiro and A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327.
[6] B. Eynard, M. Mulase and B. Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Marino conjecture on Hurwitz numbers, arXiv:1007.5224.
[7] C. Faber and R. Pandharipande, Hodge integrals, partition matrices, and the \(\lambda_g \) conjecture. Ann. Math. 157, 2003, 97-124.
[8] I. P. Goulden, D. M. Jackson and R. Vakil, A short proof of the \(g \)-conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves, J. Reine Angew. Math. 637 (2009), 175-191.
[9] P. Johnson, R. Pandharipande and H. Tseng, Abelien Hurwitz-Hodge integrals, Michigan Math. J. 60, 171-198 (2011).
[10] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23.
[11] C.-C. Liu, Localization in Gromov-Witten theory and orbifold Gromov-Witten theory, arXiv:1107.4712.
[12] M. Mulase and N. Zhang, *Polynomial recursion formula for linear Hodge integrals*, Commun. Number Theory Phys. 4 (2010), no. 2, 267C293.

[13] H.-H. Tseng, *Orbifold Quantum Riemann-Roch, Lefschetz and Serre*, arXiv:0506111.

[14] E. Witten, *Two-dimensional gravity and intersection theory on moduli space*, Surveys in Differential Geometry, vol.1, (1991) 243-310.

[15] J. Zhou, *On computations of Hurwitz-Hodge integrals*, arXiv:0710.1679.

[16] J. Zhou, *On recursion relation for Hodge integrals from the cut-and-join equations*, preprint 2009.

[17] J. Zhou, *From Hurwitz-Hodge integrals to Hodge integrals*, preprint 2008.

[18] S. Zhu, *Hodge integral with one λ-class*, Sci. China Math. 55 (2012), no. 1, 119-130.

[19] S. Zhu, *On the recursion formula for double Hurwitz numbers*, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3749-3760.

Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

E-mail address: luoweili428@gmail.com, zhushengmao@gmail.com