Exposure to methoxyflurane: Low-dose analgesia and occupational exposure

Serah J Allison BSc, BHSc, PGCert, is an Intensive Care Paramedic¹,²; Paul D Docherty BE(Hons), PhD is Associate Professor²; Dirk Pons BSC, MSc, MLead, PhD, CPEng, MENZ is Associate Professor²; J Geoffrey Chase BSc, MSc, PhD, FENZ, FASME is Distinguished Professor²

Affiliation:
¹Wellington Free Ambulance, New Zealand
²Department of Mechanical Engineering, University of Canterbury, New Zealand

Abstract

Introduction
Evidence of nephrotoxicity led to abandonment of methoxyflurane anaesthesia. In lower doses via the Penthrox® inhaler, methoxyflurane is used for analgesia. We aim to review the literature to identify the relevance of methoxyflurane as an effective analgesic agent, identify whether there are any patient safety concerns in modern use, and determine occupational risk to healthcare personnel due to environmental methoxyflurane exposure.

Methods
Articles were located via PubMed, ScienceDirect, Google Scholar, Anaesthesiology and the Cochrane Library.

Results
Single low-dose exposure to methoxyflurane may elevate blood fluoride levels below the toxic range, and appears relatively safe for patients. There is limited literature of occupational methoxyflurane exposure within modern parameters. Risks could include nephrotoxicity or hepatotoxicity.

Conclusion
The safety of occupational methoxyflurane exposure is yet to be proved. Further independent studies quantifying occupational exposure and monitoring the health of personnel exposed to methoxyflurane need to be undertaken to ensure safety.

Keywords:
paramedic; emergency medical services; professionalism

Corresponding Author: Paul Docherty, paul.docherty@canterbury.ac.nz
Introduction

Methoxyflurane is a volatile organic liquid (1), or fluorinated hydrocarbon, used as an anaesthetic agent from 1958 (2). It is colourless and has a characteristic odour (3,4). It is non-explosive and vaporises readily (5). A decade after discovery, methoxyflurane was frequently used, making up 10% of annual purchases of inhaled anaesthetics in the United States (2). Sedation and analgesia were described (6,7), which prompted an extension of its use outside of the operating room. However, in the early 1970s researchers determined methoxyflurane caused post-anesthesia renal failure in some patients. Over two decades of use in anaesthesia, methoxyflurane is estimated to have been responsible for clinical nephrotoxicity in approximately 100 patients worldwide, with related death in approximately 20 cases (8). As a result, methoxyflurane administration was discontinued in the US in 1974 (9) and in the United Kingdom at a similar time (10).

In 1978, Medical Developments International (then Medical Developments Australia) began manufacture of the methoxyflurane delivery device Penthrox® specifically for analgesic use (9). Penthrox® is currently the only widely commercially available methoxyflurane administration device. The Penthrox® inhaler is a tube containing the methoxyflurane drug soaked into a gauze, with a whistle-like mouthpiece for the patient to inhale through (11). It features a ‘dilution hole’ which allows the patient to control the concentration delivered: 0.2% to 0.4% with the dilution hole open, and 0.5% to 0.7% with the hole closed (12).

Methoxyflurane via the Penthrox® device has been available for administration of pre-hospital analgesia in Australia for decades (13-15), and more recently in New Zealand (16,17). Methoxyflurane is also seeing a re-emergence in hospitals for short procedures, such as dressing changes (18).

Methoxyflurane is newly approved in the United Kingdom, the Republic of Ireland, France and Belgium (19,20), so any safety considerations will affect a significant population. In considering approval for methoxyflurane sale and use, relevant authorities typically consider the safety of the patient using information provided by the manufacturer (19,21). However, independent assessment of patient safety is also warranted. The safety of healthcare personnel may be exposed to methoxyflurane vapour in their occupational environment should also be considered. In this paper, ‘healthcare personnel’ is an inclusive term for doctors, nurses, hospital support personnel, ambulance personnel, defence force medics, and anyone near the patient care environment during treatment with methoxyflurane. These persons may repeatedly be in the presence of methoxyflurane vapour, and thus may be subject to similar health risks as patients to whom the medication is administered.

We conducted a systematic literature review to identify potential health effects of low-dose analgesia for the patient, and potential risk associated with occupational methoxyflurane exposure. We used computational analysis techniques to synthesise results for metanalysis.
analgesia was more likely when intravenous morphine or intranasal fentanyl were used instead (36), while another study found that methoxyflurane was more likely to reduce pain score by at least 2 points on a 0 to 10 scale than intranasal or intravenous fentanyl or intravenous morphine (37).

A pilot study found methoxyflurane provided comparable analgesia to a ketamine/midazolam regimen (38). When compared to midazolam/fentanyl during colonoscopy, methoxyflurane produced comparable analgesia, patient anxiety and procedure completion rates, with less time to return to full alertness and time until ready for discharge (39). Methoxyflurane compared favourably with ‘standard’ emergency department analgesic treatment as judged by the treating clinician, although some analgesic options are unlikely to have had an effect within the 20 minute window of the primary endpoint (40). Another study compared methoxyflurane against ‘standard’ care including intravenous morphine (0.1 mg/kg). The mean pain in the methoxyflurane group was 6 mm lower on a 100 mm visual analogue scale (VAS) scale than in the intravenous treatment group. Intravenous treatments were infused over 10 minutes, and by study design, would only have been partially efficacious at the 10-minute endpoint (41). Nonetheless, these studies demonstrate that methoxyflurane is an effective rapid-acting analgesic agent. Methoxyflurane has been used successfully in combination with longer acting slower onset oral analgesia (42), or with local anaesthesia (43).

Sedative effects were prolonged in 10% of healthy volunteers in one study who used methoxyflurane through hand-held inhaler devices delivering 0.4–0.6% concentration to achieve light sedation, exhibiting impaired coordination an hour after discontinuation (24). Inhaled concentrations and durations in that study are similar to use of the Pentrox® device with the dilution hole closed (3,12). However, another study showed that healthy volunteers had a return to baseline hand-eye coordination and digit symbol substitution tests at 30 minutes, and auditory reaction time at 60 minutes after 15 minutes of methoxyflurane use (44). Hence, it is feasible that occupational exposure to methoxyflurane vapour could potentially result in performance degradation for the care provider.

Overall, there is good evidence of the effectiveness of methoxyflurane as an analgesic agent, and therefore as a viable option for healthcare personnel aiming to manage the pain of patients in their care. However, some aspects of the recent literature raise concerns. One study reported patients undergoing third molar removal with lignocaine local anaesthesia (localised pain relief) and either methoxyflurane or nitrous oxide sedation, when asked identified a statistically significant preference for methoxyflurane over nitrous oxide. However, an exact binomial test using patient preference data found p=0.26, which would not usually meet the criterion for statistical significance (45).

Two other studies compared methoxyflurane with placebo (28,46). In the first study, patients undergoing bone marrow biopsy reported a reduction in pain of 1.64 on a scale from 0 to 10 with methoxyflurane (46). Whereas no conflict of interest was declared, three of the five authors including the lead author of this study were patent holders for the Pentrox® inhaler (31). The patent application acknowledges bone marrow biopsy is a painful procedure, and although this trial gained ethical approval, subjecting the 48 patients in the placebo group to bone marrow biopsy without analgesia seems an extreme approach. A total of 35% of patients in this study rated their pain as severe, and 30% of eligible people declined to participate (46). In a subsequent study (28) for which two further subgroup analyses have also been published (35,47), 150 patients presented to an emergency department with a mean pain level of 64 mm on a 100 mm VAS but received placebo for 20 minutes (28). While this study also gained ethical approval, given the previously described availability of literature demonstrating methoxyflurane analgesic efficacy it does not seem to conform to the Declaration of Helsinki on the use of placebo control (48).

Use of the Pentrox® device
The Pentrox® manufacturer currently recommends the device be used to deliver analgesic doses up to 6 mL per day and up to 15 mL per week (4). A 6 mL dose represents 0.59 MAC-hours exposure according to one report, although it is unclear how this value was determined (45). This is similar to what might be interpolated from data in other research, where 6 mL would represent 0.68 MAC-hours (49). Total administration time of 6 mL is reportedly up to 80 minutes (15). This is significantly longer than the 29.4 to 51.8 minutes that can be calculated for the administration of 6 mL doses from simulation data (49). This difference is possibly due to patients needing to inhale more frequently in the early phase of administration, while inhaling less frequently once a therapeutic level of methoxyflurane in the body is achieved. Regardless, environmental contamination with methoxyflurane vapour may occur for a prolonged period with a patient using the Pentrox® inhaler. Ambulance patients utilised the Pentrox® inhaler for a mean duration of 29 minutes (50). A retrospective database review of 97,705 cases where a patient received analgesia from ambulance personnel showed methoxyflurane was the sole analgesic agent in 55% of cases. When an analgesic agent was given, methoxyflurane was administered in 60% of cases overall (51). These studies demonstrate methoxyflurane can be a frequently used analgesic option. Thus, there are numerous occasions where ambulance personnel may be exposed to environmental methoxyflurane vapour for half an hour or more.

Nephrotoxicity
Serum fluoride was significantly increased in those who received methoxyflurane analgesia compared with placebo (46). Although no values were reported, a secondary report of this study indicates mean serum fluoride was 4.7 μmol/L, with a maximum of 10 μmol/L. It appears that no renal function tests were conducted (19), although this is well below the previously
suggested toxic threshold of 40 µmol/L (3). Patients presenting to an emergency department with acute pain received one 3 mL dose of methoxyflurane via Penthrox® inhaler (28). The authors of that study stated there were no nephrotoxicity markers on blood tests at the time or 14 days subsequently (28,47). Patients who received methoxyflurane for colonoscopy showed no renal dysfunction in blood tests at 1 month follow up (57).

Methoxyflurane was administered on several occasions to healthy volunteers: two to three episodes of inhalation each, with 4–6 days between each episode, to determine whether repeated exposure affected either liver or kidney function. The authors reported no changes in any measure, although no data are reported to allow independent confirmation. The authors concede the small sample size (six subjects) also limits drawing any conclusions regarding safety (24). Another paper presented two case reports of elderly women receiving methoxyflurane analgesia during dressing changes. In the first case, 60 mL methoxyflurane was administered over 14 days. Renal failure with oliguria initially responsive to peritoneal dialysis ensued, and the patient died from an infective complication four months later. In the second case, 60 mL methoxyflurane was administered over 16 days. Serum fluoride was 495 µmol/L, renal failure occurred that was initially responsive to haemodialysis. However, the patient died due to renal failure six months later (58). Note that the patients in these case reports received significantly higher weekly doses than the current weekly recommended maximum of 15 mL (4).

An ambulance patient record review was sponsored by the Penthrox® manufacturer, but was designed, undertaken, interpreted and written without input from the company. The review linked patient care records with hospital morbidity records, emergency department records, and the death register (59). That researcher included all patients transported by ambulance between 1990 and 2000 (135,770 patients), with follow up until 2004, meaning patient outcome was reviewed linked patient care records with hospital morbidity review linked patient care records with hospital morbidity records, emergency department records, and the death register (59). That researcher included all patients transported by ambulance between 1990 and 2000 (135,770 patients), with follow up until 2004, meaning patient outcome was measured between 4 and 14 years. Patients who received methoxyflurane (17,629 patients) were compared with those who received none. No increased risk of occurrence of any renal disease diagnosis was observed. However, this was not a controlled trial (59), so the cohort receiving methoxyflurane may not have been matched with the cohort that did not receive methoxyflurane and thus, increased risk could not be confirmed.

A recent review determined methoxyflurane was not associated with nephrotoxicity in analgesic doses (26). Another systematic review of studies of patients receiving methoxyflurane analgesia for up to 60 minutes reportedly found no reports of renal dysfunction or of serum fluoride levels above 20 µmol/L (11), which the authors noted was well below the threshold for toxicity (3). A table of the ‘general relationship between MAC-hours, serum fluoride and blood methoxyflurane levels in humans reported in the literature’ was provided (11). That review concluded that analgesic doses from the Penthrox® inhaler will result in significantly lower metabolite formation than anaesthetic doses, and therefore analgesia probably will not produce renal toxicity (11). We compared the reported serum fluoride values (11) with those found elsewhere in the literature. We located only one study which measured both dose in MAC-hours and also serum fluoride for each patient (60). The anaesthesia regimen described by Churchill et al in 1976 (61) approximates mean 0.7 MAC-hours exposure with reported mean serum fluoride of 34 µmol/L. Patient dose from Yoshimura et al in 1976 (62) can be converted from grams to MAC-hours by using 3 mL methoxyflurane as equivalent to 0.34 MAC-hours (49). Peak serum fluoride values can be estimated from these studies by least squares first and second order interpolation and extrapolation. Results of our analysis are provided in Table 1. Our analysis shows previously reported figures (11) approximate the values determined from one study (60) but are approximately half of the values determined from another study. Hence, the relationship between methoxyflurane exposure and resultant serum fluoride has not been clearly resolved. Furthermore, this analysis does not consider repeated low-dose exposure.

Women in labour who received methoxyflurane analgesia demonstrated a correlation between methoxyflurane dose and urine fluoride concentration. Newborns of those women demonstrated a similar correlation (63). Biochemical markers of renal failure were not measured in that study, which was an acknowledged limitation. Another study observed women using the Cardiff Penthrane Inhaler delivering 0.35% methoxyflurane for analgesia during childbirth for a mean duration of 73 minutes. That study found no significant difference in blood or

Study	Best-fit model	Serum fluoride (µmol/L) by MAC-hours exposure
Dayan (2016) (11)	-	10-13
	0.5	1.5
	2	2.5
	3	3.5
	4	4.5
	≥5	>90
Cousins (1973) (60)	First order	8.6
	17.2	25.8
	34.4	43.0
	51.6	60.2
	68.8	77.4
	85.8	
	Second order	11.9
	23.3	34.1
	44.3	54.1
	63.2	71.8
	79.9	87.4
	94.2	
Churchill (1976) (61)	-	34
Yoshimura (1976) (62)	First order	17.8
	35.6	53.4
	71.2	88.8
	106.6	124.3
	142.1	159.9
	177.7	
urine measures of kidney function between those receiving methoxyflurane or those receiving nitrous oxide. There was also no relationship between duration of using methoxyflurane and kidney function (64). Women in a third study who received methoxyflurane during labour had a mean peak serum fluoride level of 18.75 µmol/L, which typically occurred 2 hours postpartum (65). Serum fluoride decreased over the next 48 hours but had not returned to baseline by that time. Mean umbilical cord fluoride was highest immediately following delivery, at 11.95 µmol/L, and approximately halved to 5.79 µmol/L by 48 hours postpartum. At day one after birth the child’s mean urine fluoride was 39.05 µmol/L. These findings suggest newborns receive maternal fluoride and/or metabolise methoxyflurane to fluoride themselves. At day one, mean urine volume was within normal limits (66), suggesting no significant fetal renal effect. The researchers noted ‘no maternal or neonatal problems were encountered’ but did not measure biochemical markers of renal function in mothers or newborns, nor urine volume in mothers (65). Therefore, subclinical signs of nephrotoxicity would not have been identified if they were present. These studies reinforce the potential for the fetuses of exposed pregnant healthcare personnel to accumulate fluoride. No studies linked methoxyflurane with reproductive health effects.

Hepatotoxicity
One study reported no changes in any liver function tests after subjects were repeatedly exposed to methoxyflurane (24), although no test results were reported to confirm this claim. No increased risk was identified by linked database review of patients who received pre-hospital analgesia (59). No indications of hepatotoxicity were found after 3 mL methoxyflurane analgesia (28,47). Patients who received methoxyflurane for colonoscopy showed no liver dysfunction on blood tests at 1 month follow up (57).

Conversely, there have been reports of hepatitis after single methoxyflurane administrations (67-69). Three such cases are of women receiving methoxyflurane analgesia during labour. In the first case, a woman developed hepatitis with subacute hepatic necrosis following delivery, which improved after 23 days (67). Another woman evidenced hepatitis 6 days after delivery, recovering after an unstated period (67). The third case developed hepatitis 4–6 days after each of two pregnancies where she used methoxyflurane analgesia during the second stage of labour (69). These case reports did not describe the total delivered methoxyflurane dose. A middle-aged man who had been using methoxyflurane 2–4 mL almost every day for approximately 6 weeks for insomnia developed hepatitis, with resolution of clinical and biochemical abnormalities 52 days after methoxyflurane discontinuation (68). However, these anecdotal cases cannot confirm if methoxyflurane caused the hepatitis or distinguish between the effects of dose or repetition, and can thus not be used to infer the potential risks of patients or healthcare personnel.

Cardiac and other effects
The manufacturer of Penthrox® report the effect of 12 mL methoxyflurane, twice the recommended maximum daily dose (4), on cardiac and vital sign parameters of healthy volunteers (25). ‘QTc’ is a measured interval of electrical activity on a patient’s electrocardiogram (ECG), and a prolonged QTc is associated with increased risk of sudden cardiac death (70). Subjects demonstrated a mean change in QTc of 5 ms, with a one-sided upper 95% confidence interval (confidence interval) of 10 ms (direction not stated, presumed to be positive). This value is a small but not insignificant increase, and extrapolation (70) indicates that the upper 95% CI increase of 10 ms equates to an adjusted hazard ratio of sudden cardiac death of 1.38 for women and 1.24 for men compared with those with mean QTc. The authors stated there was no evidence of any effect on heart rate, on the other measures of ECG activity or on ECG morphology but did not report any statistics on other ECG parameters (25).

The linked database review calculated the risk of any ischaemic heart disease, any diabetes, or any cancer diagnoses in those who received methoxyflurane versus those who did not. No increased risk was identified in any of those categories (59). Adverse effects, most commonly headache and dizziness, were significantly more likely with methoxyflurane compared with placebo (28). In one study, 42% of adult patients receiving methoxyflurane were judged by the investigator to experience treatment-related adverse events, although no patients discontinued use due to these effects (47). In another study, 13 adverse events occurred over 173 procedures where methoxyflurane was used, including hypotension, desaturation, cough and nausea (38). In patients undergoing colonoscopy, there were significant decreases in procedure time, incidences of hypotension and incidences of respiratory desaturation in patients receiving methoxyflurane compared with anaesthesia-assisted deep sedation using agents selected by the treating anaesthesiologist (57).

Summary: methoxyflurane for light sedation and analgesia
Methoxyflurane produces analgesic and light sedative effects, and has been used for analgesia on numerous occasions. Nephrotoxicity may occur in large or repeated analgesic doses. Methoxyflurane appears not to produce patient nephrotoxicity in single doses up to the Penthrox® manufacturer’s currently recommended limit of 6 mL, which represents ~0.59 to 0.68 MAC-hours of methoxyflurane exposure for that patient. This exposure is significantly lower than the level of exposure identified as associated with nephrotoxicity. Methoxyflurane use by a woman who is pregnant but not in labour has not been explicitly studied. Women who receive methoxyflurane during labour may deliver newborns with elevated serum fluoride, but no harmful effects of this have been identified. There are some isolated reports linking methoxyflurane with hepatotoxicity, and one study found that methoxyflurane moderately increased QTc suggesting moderately increased risk of sudden cardiac death.

Allison: Exposure to methoxyflurane
Australasian Journal of Paramedicine: 2020;17
However, a large retrospective study found no association between methoxyflurane and increased occurrence of hepatic, heart disease, diabetes or cancer problems. Prospective studies have often had small sample sizes and inconsistent reporting of methoxyflurane dose and measures of effect. Limitations of study design, sample size or reporting indicate the need for further research to confirm patient safety.

Analysis of potential bias in methoxyflurane studies

Financial relationships between individual researchers and the pharmaceutical industry (71) and pharmaceutical industry sponsorship of research (72) are potential sources of bias in the publication of medical research. All studies of methoxyflurane use in human subjects since 2007 have used the Penthrox® inhaler as this device is the only easily available method of administering methoxyflurane. We conducted an analysis of this research to determine the potential for bias.

Studies investigating patient preference, reduction in patient pain and occurrence of harmful effects were included for analysis of bias. We categorised such studies as:

- Unlikely bias (no bias identified, and authors declared no conflict of interest).
- Possible bias (no conflict of interest statement provided); or
- High risk of bias, or possible bias (studies conducted by the Penthrox® manufacturer or patent holders, or whose authors received funding from the Penthrox® manufacturer), or positive outcome was reported in two studies published by the Penthrox® manufacturer (28,30,35,40-42,59).
- Marginal/negative outcome (not significant decrease in pain severity of ≥30% (36), and not based on the language used by each study to describe their results).

The studies were also categorised as:

- Positive outcome (significant decrease in reported pain, positive comparison with alternative analgesia, or lack of significant adverse effects); or
- Marginal/negative outcome (not significant decrease in reported pain, or equal or less effective than alternative analgesia).

Note that a ‘significant decrease in reported pain’ was defined as a reduction in pain severity of ≥30% (36), and not based on the language used by each study to describe their results.

Note that a ‘significant decrease in reported pain’ was defined as a reduction in pain severity of ≥30% (36), and not based on the language used by each study to describe their results. A positive outcome was reported in two studies published by the manufacturer of Penthrox® (25,31), and by seven publications that received financial assistance or equipment from the Penthrox® manufacturer (28,30,35,40-42,59). The risk of bias is potentially problematic in these studies. Positive outcomes were also reported by six other studies that did not provide a conflict of interest statement (27,34,37,43,45,47). Four studies reported positive outcomes and explicitly declared no competing interests (33,44,50,57).

One study received funding from the manufacturer of Penthrox®, three of the five study authors were patent holders, and reported a marginal/negative outcome (46). One further study reported a marginal/negative outcome and did not declare any competing interests (32). A further four studies reporting marginal/negative outcomes declared no competing interests (29,36,38,39).

Table 2 summarises the potential for bias against our categorised outcomes. Barnard’s unconditional test is an accurate method for determining statistical significance in 2×2 tables (73). A two-sided Barnard’s unconditional test with pooled variance on this data yields p=0.0453 for this categorisation. Thus, it is unlikely the apparent association between potential bias and positive study finding is simply due to chance. This result serves to highlight the need for further investigation by independent researchers.

Table 2. Counts of positivity of outcome and potential for bias in studies using Penthrox® inhaler

Counts of potential bias vs. positive findings	Positive outcome	Marginal/negative outcome
High risk of bias, or possible bias	15	2
Unlikely bias	4	4

Occupational exposure to methoxyflurane

Overview of occupational risk and mitigation approaches

Methoxyflurane has been widely used for analgesia across Australia and New Zealand (13,14,16-18,52-55), and is beginning to be used in the UK (56). Most available organisation guidelines for use of methoxyflurane include instructions on limiting occupational exposure. Some give specific instruction regarding use in confined spaces, such as: disallowing (13) or cautioning against (16,17) administration in confined spaces; limiting administration inside the ambulance to a single 3 mL dose per patient (14,52); limiting the number of doses an ambulance officer can administer in the ambulance to two per day (14); or advising that the ambulance be ventilated (16,17,54).

Use of the activated carbon filters are explicitly recommended in five service guidelines (16-18,54,56). Two guidelines do not have any special instructions on use of the carbon filters (53, 55), although it is possible those providers have policy statements regarding methoxyflurane in other documents. It is beyond the scope of this review to investigate the frequency of use of methoxyflurane within each individual organisation, or whether guidelines for occupational safety within each organisation have changed over time.

The manufacturer of Penthrox® estimates the inhaler has been used to provide over 5 million doses of methoxyflurane analgesia (11). This represents many opportunities for healthcare personnel to be occupationally exposed to methoxyflurane vapour. The Australian Therapeutic Goods Administration (TGA) collate reported cases of adverse effects from a range of stimuli (74). There were no reported cases of adverse effects caused by occupational exposure to methoxyflurane, thus suggesting occupational safety. However, while reassuring, this report lacks the scientific rigor to determine safe occupational exposure parameters. The TGA
warns health professionals of the potential risk of repeated occupational exposure and suggests they take steps to mitigate that risk. They recommend considering use of the activated charcoal filter and awareness of the risk of use in enclosed or poorly ventilated environments (74). Early reviews of methoxyflurane noted high blood gas solubility (2.75). This means patients exhale a significantly lower proportion of methoxyflurane into the local environment than they would other inhaled agents (76). This has positive implications for occupational safety of methoxyflurane compared with other inhaled agents. However, patients continued to exhale methoxyflurane for at least 12 days after being anaesthetised (77). This result suggests that patients administered methoxyflurane while outside of an ambulance would exhale methoxyflurane vapour into the much smaller ambulance environment and, subsequently, hospital rooms. Hence, occupational exposure is greater than the period of administration alone.

We found no research of the effects of methoxyflurane on the fertility of occupationally-exposed personnel of childbearing age, nor on the fetuses of occupationally-exposed pregnant personnel.

Occupational exposure from anaesthesia

Anaesthetists' work environment was contaminated with between 1.3 ppm methoxyflurane when delivering 0.2% methoxyflurane to the patient, and 9.8 ppm when delivering 1.0% methoxyflurane to the patient. By installing a local exhaust system, environmental concentrations were reduced to between 0.015 and 0.095 ppm. Before use of that exhaust system, methoxyflurane concentration on the anaesthetist's expired breath was measured following exposure. The period methoxyflurane was detectable on breath was related to the duration of exposure (77). A simple least-squares fitted second-order spline model of environmental contamination versus administered concentration yielded the end-of-exposure to cessation of expiration of methoxyflurane times shown in Table 3. The modern Penthrax inhaler is significantly different from the anaesthetic system used in this study. However, this data provides an indication as to how long methoxyflurane would likely be present in the body for a given exposure.

Anaesthetist exposure	Duration of exposure (minutes)	MAC-hours of exposure	Time until methoxyflurane undetectable on breath (hours)
A	130	0.0046	10.6
B	300	0.0097	28.6
C	360	0.0115	30.4

Occupational exposure from doses higher than used contemporarily

The Penthrane Analgizer was historically used as analgesia for women during labour. The analgizer is similar to the modern Penthrax inhaler, although a larger (15 mL) dose was used in the analgizer. Methoxyflurane concentration in the air of delivery rooms without a local exhaust system was 0.5 to 0.8 ppm, whereas with a local exhaust system the concentration was 0.1 to 0.3 ppm (78). Mean urine fluoride of delivery suite personnel exposed to 0.5 to 0.8 ppm methoxyflurane was 0.707 ppm, whereas unexposed controls had mean urine fluoride 0.352 ppm (79). Further study of personnel in a delivery suite with methoxyflurane air concentration 0.3–0.8 ppm found renal and hepatic biomarkers (blood urea nitrogen, uric acid, aspartate aminotransferase, alanine aminotransferase) were elevated compared with non-exposed controls (80). This demonstrates that occupational exposure to methoxyflurane has potential to affect health.

Occupational exposure in contemporary use

The only studies of modern ambulance officer occupational exposure to methoxyflurane (81-83) do not appear to be published, and discussion is based on results as cited in two secondary sources (3,29). One of those secondary sources (3) describes potentially contestable room ventilation conditions (discussed later in this review), suggesting those authors’ summaries of unpublished studies must be viewed with great caution. Treating ambulance officer 8-hour time-weighted average (TWA) airborne methoxyflurane concentration is reported as 0.06 ppm (81). It appears this study measured exposure during one patient contact and then divided that figure by 8 hours. Therefore, this result should be viewed as the occupational exposure if the ambulance officer were to only treat a single patient per day with methoxyflurane, which may not reflect actual practice. Elsewhere, ambulance officer exposure remained below 2 ppm over an hour and 0.5 ppm averaged over a work shift, provided oxygen was not administered through the inhaler (83). It is not current practice to administer oxygen through the inhaler (4). When methoxyflurane was administered using the Penthrax inhaler, ambulance personnel were exposed to 0.2–7 ppm per treatment (82). These values are in the order of anaesthetist exposures previously reported (77). The wide range of exposure concentrations likely represents a range of environments in which methoxyflurane was administered, including outdoors, indoors and administration inside the ambulance. It is unknown whether the activated charcoal filter was used. Mean ambulance attendant 8-hour TWA was 0.23 ppm (maximum 1.5 ppm) (82). This value is ~4 to 25 times higher than elsewhere reported ambulance officer TWA exposure (81). This difference may represent differences in utilisation of methoxyflurane by personnel of different organisations, and differences in ambulance configuration.
A study by Ruff et al measured occupational exposure in a 50 m² procedure room with room ventilation 3.5 ACH during methoxyflurane use for procedural sedation for bone marrow biopsy (84). The study authors noted that the Penthrox® device had an incorporated charcoal filter, but no information is provided regarding whether patients were compliant in exhaling through the filter. Nurses who prepared the delivery device and stood adjacent to the patient had median (IQR) exposures of 0.92 ppm (0.33–1.27 ppm) with maximum exposure of 2.88 ppm. Haematology trainees who stood behind the patient had median (IQR) exposures of 0.20 ppm (0.1–0.39 ppm) with maximum exposure of 0.61 ppm (84). These values are below the safety limit of 15 ppm over 8 hours previously proposed (3). These values imply safety for occupational single dose exposure.

Analyses

Table 4 collates the conditions and calculated exposure with extrapolated duration of exhalation of methoxyflurane by affected ambulance personnel. These calculations yield a wide range of predicted exhalation period outcomes which in one case exceeds the durations of anaesthetist methoxyflurane exhalation following occupational exposure shown in Table 3 (77).

Historic serum fluoride versus methoxyflurane data from anaesthetised patients (60) was extrapolated to conclude that ambulance officer occupational exposure would not produce nephrotoxicity (3). We previously investigated the range of possible regression lines that could result from such extrapolation, finding a wide range of possible serum fluoride values could result from ambulance personnel occupational exposure with up to a 4.3% likelihood of exceeding a safety threshold of 40 µmol/L depending on the model used (85). Extrapolation over several orders of magnitude does not provide assurance of occupational safety. The same anaesthetised patient dataset was used to determine a recommended maximum exposure level (MEL) 8-hour TWA of 15 ppm. The authors stated the odour threshold for methoxyflurane is 0.13–0.19 ppm and concluded methoxyflurane can be detected by smell at safe concentrations (3). Therefore, the authors conclude that smell is not a reliable indicator of toxic concentration of methoxyflurane.

Treatment environment contamination and healthcare worker 8-hour TWA methoxyflurane exposure has been modelled (3). Exposure in a health facility treatment room was determined to be a maximum 3.86 ppm 8-hour TWA, while exposure in an ambulance was determined to be a maximum 8-hour TWA 0.77 ppm. The lower ambulance environment ventilation rate of 26 air changes per hour used in the model is only achieved when cab and rear air conditioning systems are operating, while the ventilation rate for an ambulance without any airflow systems activated is only 2.9 ACH (86). This suggests that ambulance environmental contamination may be higher than determined by this model. Additionally, the model assumes the carbon filter will reduce occupational exposure by 85%, a figure obtained directly from the Penthrox® manufacturer. It may be assumed this rate was determined in experimental settings with the patient exhaling exclusively through the carbon filter. Non-compliance, such as with agitated or conversational patients, is expected to significantly reduce the contribution of the carbon filter. Although the activated charcoal scavenging chamber is mentioned by some reviewers, we have not identified primary publication of the effect of the filter on environmental contamination and consequent occupational exposure.

Study	Parameters	Exposure (MAC-hours) ×10⁻³	Predicted time exhaling methoxyflurane (hours)
Dahlgren (1979) (78)	Low exposure	0.031	0.1
	High exposure	4.000	10.2
Hibbs (2000) (81)	TWA	0.300	0.7
Flynn (2000) (83)	Did not exceed	3.800	9.6
Coffey (2011) (82)	Low exposure	0.063	0.2
	High exposure	35.000	120.3
	TWA	1.200	2.9
Summary of occupational exposure
Healthcare personnel may be exposed to a wide range of environmental methoxyflurane concentrations, likely dependent on frequency and duration of patient contact, use of contamination mitigation equipment, and the work environment itself. Further research should be published regarding frequency and magnitude of occupational exposure to methoxyflurane in typical environments. All reported environmental concentrations are below the calculated MEL 8-hour TWA of 15 ppm, yet alteration in renal function has been demonstrated in delivery suite personnel below that level. Methoxyflurane equilibrates between lung (breath) and body tissue, and prolonged detection of methoxyflurane on breath demonstrates that occupationally inspired methoxyflurane will remain in the healthcare worker’s body for a significant period. These findings also suggest that methoxyflurane could possibly accumulate if not completely eliminated before re-exposure. Finally, fluoride and other metabolites remain present long after the period of methoxyflurane elimination (77,87).

Occupational exposure standards
Neither Australia (88), New Zealand (89), South Africa (90), the UK (91) or the US (92,93) appear to have enforceable legal standards for methoxyflurane exposure. Canada has provincial legal standards. Two Canadian provinces were investigated and prescribe a TWA limit of exposure of 2 ppm, either averaged over 8 hours (94) or a working day or week (95). British Columbia additionally sets a limit for any 30-minute period at 6 ppm, and a moment-to-moment exposure limit of 10 ppm (94). WorkSafeBC clarify that the guiding principle with regard to exposure should be minimisation of exposure regardless of legal limit (94). In the US, the National Institute for Occupational Safety and Health recommend an exposure limit of 2 ppm for any 60-minute period, although this is not a legal standard (91). Older Australian Material Safety Data Sheets indicate the Australian National Occupational Health and Safety Commission (ANOHSC, now Safe Work Australia) historically suggested application of a TWA exposure standard of 0.5 ppm (96). Newer Australian Material Safety Data Sheets (AMSDS) refer to the determination (3) of a MEL of 15 ppm (97). In New Zealand, neither workplace (89) nor pharmaceutical (4) guidelines provide any recommendations of safe exposure limits for methoxyflurane.

Delivery room concentrations of methoxyflurane of 0.1–0.8 ppm (78-80) may exceed the historical ANOHSC standard but would be acceptable by all current standards. Reported and modelled exposure of Australian ambulance personnel (3, 81-83), modelled exposure of treatment facility personnel (3), and observed exposure of procedure room nurses (84) could exceed Canadian and US standards in some circumstances but are also below the AMSDS recommended MEL.

Limitations
This review was restricted to English language, searchable published literature. As such there is a risk some papers have been overlooked. Inclusion of other literature reviews in this review somewhat mitigates this weakness, as this allowed us to compare our analysis with that of other reviewers.

Extrapolation and interpolation used to compare across studies generally used small data sets. Hence, it difficult to draw definitive conclusions. This weakness reinforces the need for further research to measure safety in a range of relevant situations. A case for occupational safety may be assumed but has not been proven.

Conclusions
Methoxyflurane has been demonstrated to be a rapid acting and effective analgesic agent in isolation or in combination with other analgesia, and may be used instead of other analgesic or light sedative agents in some instances. Although patients receiving methoxyflurane frequently experience side effects such as dizziness or headache, patients still frequently indicate satisfaction and do not discontinue use.

Historic high dose anaesthetic use had implicated toxic metabolites causing renal failure. There is evidence of patient safety with the lower analgesic doses used in the modern setting, including a lack of nephrotoxicity identified in database reviews, a low number of significant adverse events reported to Australian authorities, and infrequent case reports of adverse health effects. However, this is evidence for safety of patients receiving one-off or infrequent doses of methoxyflurane.

Occupational exposure levels of methoxyflurane appear to usually be below most recommended limits. However, little is known about long term health effects of occupationally exposed personnel at the levels reported. Hence, there is not enough evidence to draw conclusions regarding safety with occupational exposures to methoxyflurane. It is remarkable that methoxyflurane is approved for use in a number of countries in which there is no occupational exposure standard. Evidence in favour of the occupational safety with methoxyflurane exposure is the long-standing use of methoxyflurane in Australian ambulance services without reported effects. However, this should not be considered conclusive proof. In particular, numerous health effects may go unnoticed, unattributed or unreported.

This review has also identified a number of gaps in the literature regarding occupational exposure.

The first relates to the actual exposure experienced by healthcare personnel, which is poorly established. There is limited publication of the frequency and duration of exposure of healthcare personnel to methoxyflurane vapour in various contemporary settings. Furthermore, there is the complication of the environmental setting. This relates to enclosure size, air change rate, patient-personnel proximity and patient...
compliance with exhaling through the filter. For example, the confined space of an ambulance interior may present a different exposure level to a hospital treatment room. There is a need for further studies with control over these environmental variables, so that the exposure in different settings can be determined. This is important for the next two points, but could also have the benefit of identifying where changes to hardware and procedures may help reduce occupational exposure.

The second is whether exposure to methoxyflurane vapour in the working environment affects the cognitive performance of healthcare personnel. Possible areas to investigate are speed and judgement in decision making, and rate or likelihood of human errors. There may also be effects on physical performance. A line of research based on human factors may be appropriate for this.

The third concerns the long-term consequences of occupational exposure. Key questions here are whether or not toxic metabolite accumulation occurs over time in occupationally-exposed healthcare personnel, and how various exposure parameters may contribute to accumulation. There is the further complication that individual healthcare personnel may respond differently, whether from individual differences in susceptibility or as an effect with concomitant medication they may be taking. The risk of exacerbation of comorbidities such as pre-existing renal or hepatic disease has not been satisfactory excluded, and would therefore benefit from further study. Another long-term risk that has not been excluded is harm to the developing fetus of pregnant healthcare personnel. These are challenging questions to address in a research design because of the need for longitudinal studies, compounded by the potentially large number of independent variables. Nonetheless this is worthwhile and potentially useful results might be achieved by longitudinal studies on relatively homogenous samples. It may be useful to measure markers of renal and hepatic function directly, or to observe for suspected toxic metabolite presence in exposed healthcare personnel.

The proportion of papers with links to methoxyflurane manufacturers and undeclared conflicts of interests is of concern, as is the accuracy of some analysis and degree of extrapolation undertaken in some research. There is a need for further independent research, robust representation of occupational exposure, and comprehensive (and completely disclosed) testing protocols. Pending the results of further research, we recommend that healthcare services utilising methoxyflurane ensure good ventilation of the working environment and use of the activated carbon filter with the delivery device.

Competing interests

The authors declare no competing interests. Each author of this paper has completed the ICMJE conflict of interest statement. SJA is an employee of Wellington Free Ambulance, working frequently in patient contact as an Intensive Care Paramedic and thus potentially administering and exposed to methoxyflurane vapour.

References

1. Heusler H. Quantitative analysis of common anaesthetic agents. J Chromatogr 1985;340:273-319.
2. Van Poznak A. Methoxyflurane and teflurane. In: Chenoweth MB, editor. Modern Inhalation Anaesthetics. Berlin, Germany: Springer; 1972. p. 77-92.
3. Frangos J, Mikkonen A, Down C. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox). Regul Toxicol Pharmacol 2016;80:210-25.
4. Penthrox - New Zealand data sheet. 2017. Douglas Pharmaceuticals. Available at: www.medsafe.govt.nz/profs/datasheet/p/penthroxinhp.pdf
5. McIntyre JWR, Gain EA. Methoxyflurane. Canad Anaesth Soc J 1962;9:319-24.
6. Andersen N, Andersen EW. Methoxyflurane: a new volatile anaesthetic agent. Acta Anaesthesiol Scand 1961;5:179-89.
7. Tomlin PJ, Jones BC, Edwards R, Robin PE. Subjective and objective sensory responses to inhalation of nitrous oxide and methoxyflurane. Br J Anaesth 1973;45:719-25.
8. Mazze RI. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology 2006;105:843-6.
9. Dayan A. Analgesic use of inhaled methoxyflurane: evaluation of its potential nephrotoxicity. 2015. Medical Developments International. Available at: www.medicaldev. com/
10. Fletcher S. From the Editor. RCA Bulletin. 2015. Available at: https://www.rcoa.ac.uk/sites/default/files/documents/2020-04/Bulletin92.pdf.
11. Dayan AD. Analgesic use of inhaled methoxyflurane: evaluation of its potential nephrotoxicity. Hum Exp Toxicol 2016;35:91-100.
12. Penthrox (methoxyflurane) inhalation – product information. 2013. Medsaf. Available at: www.medsafe.govt.nz/
13. Clinical Practice Guidelines for Ambulance and MICA Paramedics (updated 23 May 2016). Ambulance Victoria. Available at: http://s3-ap-southeast-2.amazonaws.com/prod.assets.ambulance.vic.gov.au/wp-content/uploads/2016/07/CPG-2016-Edition-Vs.1.1web-reducedsize-flattened-secure.pdf
14. Drug Therapy Protocols: Methoxyflurane. 2016. Queensland Ambulance Service. Available at: www.ambulance.qld.gov.au/docs/clinical/dtprotocols/DTP_Methoxyflurane.pdf
15. Ball C, Westthorpe RN. Methoxyflurane: then and now. Anaesth Int Care 2007;35:161.
16. Clinical procedures and guidelines - comprehensive edition. 2016. Wellington Free Ambulance. Available at: www.wfa.org.nz/file/931/WFACPg_Comprehensive_LQ170228.pdf
17. Clinical procedures and guidelines - comprehensive edition. 2016. St. John New Zealand. Available at: www.stjohn.org.nz/globalassets/documents/health-practitioners/cpg_comprehensive_web170525.pdf
References (continued)

18. Methoxyflurane (Penthrox) analgesia. 2013. Waikato District Health Board. Available at: www.aqua.ac.nz/upload/resource/Methoxyflurane%20Protocol.pdf

19. Public assessment report decentralised procedure – Methoxyflurane 3mL inhalation vapour, liquid (methoxyflurane). 2017. Medicines & Healthcare Products Regulatory Agency. Available at: www.mhra.gov.uk/home/groups/par/documents/website/resouces/con773654.pdf

20. Delivering the next generation Penthrox ‘green whistle’. 2017. CSIRO. Available at: www.csiro.au/en/Research/MF/Areas/Biomedical/Health-and-wellbeing/Penthrox-green-whistle

21. Mehta DK, Ryan RSM. Methoxyflurane: assessment of application for inclusion in the WHO model list of essential medicines. 2005. Available at: http://archives.who.int/eml/expcm/expcm14/methoxyflurane/methoxyflurane_ECM_review_10feb05.pdf

22. Digger T, Viira DJ. Anaesthesia and surgical pain relief – the ideal general anaesthetic agent. 2008. Available at: www.pharmaceutical-journal.com/learning/learning-article/anaesthesia-and-surgical-pain-relief-the-ideal-general-anaesthetic-agent/10030510.fullarticle

23. Thomason R, Light G, Holaday DA. Methoxyflurane anesthesia: a clinical appraisal. Anesth Analg 1962;41:225-9.

24. Artusio JF, Van Poznak A, Kass A, McGoldrick KE, Nigro MF. A triple crossover, partly blind comparison of the performance and the effect on CNS function of three handheld methoxyflurane inhalers. ibid. 1971;50:776-84.

25. International MD. ASX announcement: “Thorough QT/QTc” Penthrox clinical trial successfully meets all primary and secondary objectives. 2013. Available at: www.medicaldev.com/wp-content/uploads/2013/09/MVP-ASX-Announcement-Successful-Clinical-Study-Results1.pdf

26. Blair HA, Frampton JE. Methoxyflurane: a review in trauma pain. Clin Drug Invest 2016;36:1067-73.

27. Cloves P. 21st century first-on-scene pain relief. Amb Today 2016;1:29-31.

28. Coffey F, Wright J, Hartsholm S, et al. STOP!: a randomised, double-blind, placebo-controlled study of the efficacy and safety of methoxyflurane for the treatment of acute pain. Emerg Med J 2014;31:613-8.

29. Johnston S, Wilkes GJ, Thompson JA, Ziman M, Brightwell R. Inhaled methoxyflurane and intranasal fentanyl for prehospital management of visceral pain in an australian ambulance service. ibid. 2011;28:57-63.

30. Anwarri JS, Khalil L, Terkawi AS. Efficacy of the methoxyflurane as bridging analgesia during epidural placement in laboring parturient. Saudi J Anaesth 2015;9:370-5.

31. Medical Developments International patent WO 2007/033400 A1. 2007.

32. Lee C, Woo HH. Penthrox inhaler analgesia in transrectal ultrasound-guided prostate biopsy. ANZ J Surg 2015;85:433-7.

33. Umana E, Kelliher JH, Blom C, McNickoll B. Inhaled methoxyflurane for the reduction of acute anterior shoulder dislocation in the emergency department. CJEM 2019;21:468-72.

34. Babl F, Barnett P, Palmer G, Oakley E, Davidson A. A pilot study of inhaled methoxyflurane for procedural analgesia in children. Ped Anesth 2007;17:148-53.

35. Hartshorn S, Dissmann P, Coffey F, Lomax M. Low-dose methoxyflurane analgesia in adolescent patients with moderate-to-severe trauma pain: a subgroup analysis of the STOP! study. J Pain Res 2019;12:689-700.

36. Bendall JC, Simpson PM, Middleton PM. Effectiveness of prehospital morphine, fentanyl, and methoxyflurane in pediatric patients. Prehosp Emerg Care 2011;15:158-65.

37. Jennings PA, Lord B, Smith K. Clinically meaningful reduction in pain severity in children treated by paramedics: a retrospective cohort study. Am J Emerg Med 2015;33:1587-90.

38. Gaskell AL, Jephcott CG, Smithells JR, Sleigh JW. Self-administered methoxyflurane for procedural analgesia: experience in a tertiary Australasian centre. Anaesthesia 2016;71:417-23.

39. Nguyen NQ, Toscano L, Lawrence M, et al. Patient-controlled analgesia with inhaled methoxyflurane versus conventional endoscopist-provided sedation for colonoscopy: a randomized multicenter trial. Gastro Endo 2013;78:892-901.

40. Borobia AM, Collado SG, Cardona CC, et al. Inhaled Methoxyflurane Provides Greater Analgesia and Faster Onset of Action Versus Standard Analgesia in Patients With Trauma Pain: InMEDIATE: a randomized controlled trial in emergency departments. Ann Emerg Med 2020;75:315-28.

41. Mercadante S, Voza A, Serra S, et al. Analgesic efficacy, practicality and safety of inhaled methoxyflurane versus standard analgesic treatment for acute trauma pain in the emergency setting: a randomised, open-label, active-controlled, multicentre trial in Italy (MEDITA). Adv Ther 2019;36:3030-46.

42. Viglino D, Termoz Masson N, Verdetti A, et al. Multimodal oral analgesia for non-severe trauma patients: evaluation of a triage-nurse directed protocol combining methoxyflurane, paracetamol and oxycodone. Intern Emerg Med 2019;14:1139-45.

43. Huang S, Ppdpjonovic L, Konstantatos A, Frydenberg M, Grummet J. Penthrox alone versus Penthrox plus periprostatic infiltration of local analgesia for analgesia in transrectal ultrasound-guided prostate biopsy. ANZ J Surg 2016;86:139-42.

44. Nguyen NQ, Burgess J, Debreceni TL, Toscano L. Psychomotor and cognitive effects of 15-minute inhalation of methoxyflurane in healthy volunteers: implication for post-colonoscopy care. Endosc Int Open 2016;4:E1171-7.
References (continued)

45. Abdullah WA, Sheta SA, Nooh NS. Inhaled methoxyflurane (Penthrox) sedation for third molar extraction: a comparison to nitrous oxide sedation. Austral Dent J 2011;56:296-01.

46. Spruyt O, Westerman D, Milner A, Bressel M, Wein S. A randomised, double-blind, placebo-controlled study to assess the safety and efficacy of methoxyflurane for procedural pain of a bone marrow biopsy. BMJ Supp Pal Care 2014;4:342-8.

47. Coffey F, Dissmann P, Mirza K, Lomax M. Methoxyflurane analgesia in adult patients in the emergency department: a subgroup analysis of a randomized, double-blind, placebo-controlled study (STOP!). Adv Ther 2016;33:2012-31.

48. Carley S, Body R. Methoxyflurane is a better painkiller than placebo: but do we want to know more? Emerg Med J 2014;31:610.

49. Crankshaw DP, Eagle A, Komesaroff D. Methoxyflurane dosage with the Penthrox inhaler for analgesia during short painful procedures. Anaesth Int Care 2004;32:428.

50. Buntine P, Thom O, Babi F, Bailey M, Bernard S. Prehospital analgesia in adults using inhaled methoxyflurane. Emerg Med Australas 2007;19:509-14.

51. Bendall JC, Simpson PM, Middleton PM. Prehospital analgesia in New South Wales, Australia. Prehosp Disaster Med 2011;26:422-6.

52. Protocols and Pharmacology. 2011. Ambulance Service of New South Wales. Available at: www.ambo.com.au/download/protocol_2011.pdf

53. Methoxyflurane (Penthrane). 2012. Australian Capital Territory Ambulance Service. Available at: http://cdn.esa.act.gov.au/wp-content/uploads/METHOXYFLURANE.pdf

54. Drug therapy protocols. 2013. St. John Northern Territories. Available at: www.stjohnnt.org.au/img/documents/clinical-manuals/dthpV23june2013sjant.pdf

55. Medicines list for registered nurse prescribing in primary health and specialty teams. 2016. Nursing Council of New Zealand. Available at: www.nursingcouncil.org.nz/index.php/content/download/1656/7507/file/Medicines%20for%20registered%20nurse%20prescribing%20in%20primary%20health%20and%20speciality%20teams%202018%20September%202016.pdf

56. EDMS to be one of the first medical teams in UK to use Penthrox analgesia! 2016. Emergency Doctors Medical Service. Available at: www.edmsmedical.org/news/2016/3/edms-to-be-one-of-the-first-medical-teams-in-uk-to-use-penthrox-analgesia

57. Nguyen NQ, Toscano L, Lawrence M, et al. Portable inhaled methoxyflurane is feasible and safe for colonoscopy in subjects with morbid obesity and/or obstructive sleep apnea. Endosc Int Open 2015;3:E487-93.

58. Toomath RJ, Morrison RB. Renal failure following methoxyflurane analgesia. N Z Med J 1987;100:707-8.

59. Jacobs IG. Health effects of patients given methoxyflurane in the pre-hospital setting: a data linkage study. Op Emerg Med J 2010;3:7-13.

60. Cousins MJ, Maze RI, Barr GA, Kosek JC. Methoxyflurane nephrotoxicity: a study of dose response in man. JAMA 1973;225:1611-6.

61. Churchill D, Yacoub JM, Siu KP, Symes A, Gault MH. Toxic nephropathy after low-dose methoxyflurane anesthesia: drug interaction with secobarbital? Canad Med Assoc J 1976;114:326-33.

62. Yoshimura N, Holaday DA, Fiserova-Bergerova V. Metabolism of methoxyflurane in man. Anesthesiology 1976;44:372-9.

63. Dahlgren BE. Urinary fluoride concentration in mothers and neonates after methoxyflurane-nitrous oxide analgesia during labour. Acta Pharm Suec 1978;15:211-7.

64. Rosen M, Latto P, Asscher AW. Kidney function after methoxyflurane analgesia during labour. Br Med J 1972;1:81-3.

65. Cuasay OS, Ramamurthy R, Salem MR, et al. Inorganic fluoride levels in parturients and neonates following methoxyflurane analgesia during labor and delivery. Anesth Analg 1977;65:646-9.

66. Tietz clinical guide to laboratory tests. 4 edn. St. Louis: Saunders Elsevier; 2006.

67. Delia JE, Maxson WS, Breen JL. Methoxyflurane hepatitis: two cases following obstetric analgesia. Int J Gynaecol Ob 1983;21:89-93.

68. Okuno T, Takeda M, Horishi M, Okanoue T, Takino T. Hepatitis due to repeated inhalation of methoxyflurane in subanaesthetic concentrations. Canad Anaesth Soc J 1985;32:53-5.

69. Rubinger D, Davidson JT, Melmed RN. Hepatitis following the use of methoxyflurane in obstetric analgesia. Anesthesiology 1975;43:593-5.

70. Straus SM, Kors JA, De Bruin ML, et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 2006;47:362-7.

71. Stelfox HT, Chua G, O’Rourke K, Detsky AS. Conflict of interest in the debate over calcium-channel antagonists. New Engl J Med 1998;338:101-6.

72. Lundh A, Lexchin J, Mintzes B, Schroll JB. Industry sponsorship and research outcome (review). Cochrane Database Syst Rev 2017(2).

73. Mehta CR, Senchudhuri P. Conditional versus unconditional exact tests for comparing two binomials. 2003. Cytel Software Corporation. Cambridge, MA.

74. Administration TG. Methoxyflurane and occupational exposure. Med Safety Update 2014;5:63.

75. Tomlin PJ. Methoxyflurane. Br J Anaesth 1965;37:706-9.

76. Thomas W. Methoxyflurane, can it be used in the emergency department? Australas Emerg Nurs J 1997;1:13-5.

77. Corbeth TH, Ball GL. Chronic exposure to methoxyflurane: a possible occupational hazard to anesthesiologists. Anesthesiology 1971;34:532-7.
References (continued)

78. Dahlgren BE, Olander L, Ovrum P. Pollution of Delivery Ward air by nitrous oxide-methoxyflurane. Am Ind Hyg Assoc J 1979;40:666-72.

79. Dahlgren BE. Fluoride concentrations in urine of delivery ward personnel following exposure to low concentrations of methoxyflurane. J Occup Med 1979;21:624-6.

80. Dahlgren BE. Hepatic and renal effects of low concentrations of methoxyflurane in exposed delivery ward personnel. ibid. 1980;22:617-9.

81. Hibbs & Gatley. Occupation exposure study conducted for NSW Ambulance Service (technical report. Prepared by Hibbs & Associates and SHE Pacific Pty Ltd). Unpublished report, quoted in Frangos, J, Mikkonnen, A, & Down, C. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox). Regul Toxicol Pharmacol 2016;80:210-25.

82. Coffey. Environments, methoxyflurane exposure study. St. John Ambulance. Prepared for: St. John Ambulance project no.: ENVIBURW11507AB. Date: 14 October 2011. Unpublished report, quoted in Frangos, J, Mikkonnen, A, & Down, C. (2016). Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox). ibid. 2016;80:210-25.

83. Flynn M. Clinical update – methoxyflurane. Sirens 2002;7:2, quoted in Johnston S, Wilkes GJ, Thompson JA, et al. Inhaled methoxyflurane and intranasal fentanyl for prehospital management of visceral pain in an Australian ambulance service. Emerg Med J 2011;28:57-63.

84. Ruff R, Kerr S, Kerr D, Zalcberg D, Stevens J. Occupational exposure to methoxyflurane administered for procedural sedation: an observational study of 40 exposures. Br J Anaesth 2018;120:1435-7.

85. Allison SJ, Docherty PD, Pons D, Chase JG. A bootstrap approach for predicting methoxyflurane occupational exposure in paramedicine. 20th World Congress of The International Federation of Automatic Control; Toulouse, France 2017. p. 6666-71.

86. Seitz TA, Decker J, Jensen P. Health hazard evaluation report 95-0031-2601. 1996. Available at: www.cdc.gov/niosh/hhe/reports/pdfs/1995-0031-2601.pdf

87. Mazze RI, Trudell JR, Cousins MJ. Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. Anesthesiology 1971;35:247-52.

88. Workplace exposure standards for airborne contaminants. 2013. Safe Work Australia. Available at: www.safeworkaustralia.gov.au/system/files/documents/1705/workplace-exposure-standards-airborne-contaminants-v2.pdf

89. Workplace exposure standards and biological exposure indices. 2016. Worksafe. Available at: www.worksafe.govt.nz/worksafe/information-guidance/all-guidance-items/workplace-exposure-standards-and-biological-exposure-indices/workplace-exposure-standards-and-biological-indices-2016.pdf

90. Government Notice. R: 1179. 25 August 1995. Hazardous Chemical Substances Regulations. 1995. Department of Labour. Available at: www.labour.gov.za/DOL/downloads/legislation/legislation/occupational-health-and-safety/Regulation%20-%201179%20-%20OHS%20-%20 Hazardous%20Chemical%20Substances.doc

91. EH40/2005 Workplace exposure limits. 2011. Health and Safety Executive. Available at: www.hse.gov.uk/pubns/priced/eh40.pdf

92. Methoxyflurane. 2016. National Institute for Occupational Safety and Health. Available at: www.cdc.gov/niosh/npg/npgd0389.html

93. Kohler CE. Indiana University chemical fact sheet: Anesthetic gases. 2011. Available at: https://facweb.northeastern.edu/cduren/North%20Seattle%20AT%20 Program%202011-2012%20CJ%20Duren-Instructor/ ATEC%202011%20Survey%200f%20Perioperative%20 Administration/Week%208/Mandatory%20Website%20 Readings/Anesthetic%20Gases.pdf

94. Policies part 5 - controlling exposure. 2017. WorkSafeBC. Available at: www.worksafebc.com/en/law-policy/ occupational-health-safety/searchable-ohs-regulation/ohs-policies/policies-part-05

95. R.R.O. 1990, Regulation 833: Control of exposure to biological or chemical agents. 2017. Ontario Ministry of Labour. Available at: https://du0tsrdospf80.cloudfront.net/docs/900833_e.doc

96. Material safety data sheet (2009), 2009. Medical Developments International. Available at: http://halasstage.customer-self-service.com/documents/MSDS/MDI/Penthrox.pdf

97. Material Safety Data Sheet (2016). 2016. Medical Developments International. Available at: www.medicaldev.com/wp-content/uploads/2017/03/MSDS-Penthrox-April-2016.pdf