Peculiarities in the Organization of the Population of Ground Beetles (Coleoptera, Carabidae) in the Gradient of Urbanization

M N Belitskaya¹, I R Gribust¹, A I Belyaev¹, E E Nefed’eva²,³, V F Zheltobryukhov²

¹Federal Scientific Centre of Agroecology, Complex Meliorations and Protective Afforestation of the Russian Academy of Sciences, Volgograd, Russia
²Volgograd State Technical University, Volgograd, Russia
³Volgograd State University, Volgograd, Russia

E-mail: nefedieva@rambler.ru

Abstract. Gardening of urbanized areas by creating a system of protective plantings of different types is important to solve the problem of the protection of the environment and the preservation of biological diversity. Relationships between herpetobionts and plants in protective plantations can be demonstrated from the example of representatives of the family of the ground beetle (Coleoptera: Carabidae). We analysed the traits of the taxonomic composition and ecological structure of complexes of ground beetle in different types of plantings in the urbanized territory of Volgograd taking into account the gradient of technogenic and recreational impact. Amara and Harpalus genera were the leaders in the fauna diversity of ground beetles in recreational plantings and forest belts. An increase of the level of technogenic and recreational press on urban plantings was accompanied by an increase in the number of predatory ground beetles. The common dominant species in the plantations of different categories in the urbanized territory of Volgograd were Calathus distinguendus and C. ambiguus. Meadow-field species predominated in species abundance in the ecological structure of ground beetle complexes inhabiting habitats with an elevated level of anthropogenic press, and eurybiont species predominated in numerical abundance in the same ecological structure. The spectrum of life forms of the fauna of Carabidae was represented by two classes: zoophages and myxophytophages, with the dominance of the quantitative abundance of predatory ground beetles.

1. Introduction

The problem of the protection of the environment and the preservation of biological diversity touched significantly to anthropogenically transformed landscapes which were subjected to increasing technogenic and recreational impact [4, 5, 7, 11, 12, 15, 16, 18, 24-26]. Gardening of urbanized areas by creating a system of protective plantings of different types and categories becomes particularly important in solving the problem. The named systems are recreational and landscaping (forest parks, parks, squares) plantings, landscapes of special purpose (field shelter and roadside forest belts), etc. [4, 5, 17, 20, 21]. They absorb and neutralize the harmless of technogenic pollutants, as well as they contribute to the regulation of the microclimate, reduce the degree of recreational impact, and create ecological balance, etc. [17, 18, 22, 24-26].
The creation of protective plantings for various purposes, which differ in a number of parameters such as area, design parameters, floristic composition, age, nature of soils, etc. is accompanied by a substantial transformation of the urbanized landscape [4, 5].

The complex of anthropogenic factors determines the mosaic of ecological conditions in the plantations of urban agglomerations and, as a result, the change in biological diversity, abundance and spatial distribution of insects inhabited on the soil surface, which react most sensitively to environmental pollution [6, 11, 18]. The coevolutionary relationships that arise between herpetobionts and plants in protective plantations can be clearly demonstrated from the example of representatives of the family of the ground beetle (Coleoptera: Carabidae) [13, 16, 17, 20, 22]. It is a widespread and large group of insects that occur in areas of varying degrees of impairment. The peculiarities of changes in the species composition, abundance, and ecological structure of fauna of Carabidae under the influence of anthropogenic factors are well characterized [3, 6, 9, 13]. At the same time, studies of fauna and ecological features of ground beetles in protective plantings of urbanized areas are at the every source.

In this paper, we analysed the features of the taxonomic composition and ecological structure of complexes of ground beetle in different types and categories of plantings in the urbanized territory of Volgograd taking into account the gradient of technogenic and recreational impact.

2. Methodics

Researches were realized in 2015-2017 in recreational and planting plantations and forest belts located in the outer green bastion of the city. They are characterized by a wide representation of woody plants of the generic complex Ulmacea (U. pumila L., U. laevis Pull., U. glabra Huds.). They are accompanied by Robinia pseudoacacia L., Fraxinus excelsior L., Fr. lanceolata Borkh., Populus (P. alba L., P. nigra L.), Acer negundo L., A. tataricum L., Pinus sylvestris L., P. pallasiana D. Don. Shrubs occur only in certain habitats. Ligustrum vulgare L., Lonicera tatarica L., Cotinus coggygria Scop., Prunus virginiana L., Syringa sp. are more numerous among them. Riebes aureum Pursh., Amelanchier roindifolia Dum., Crataegus sp. etc are numerous in forest belts. The grass cover is also rich in species, but the major part is Gramineae sp., Chenopodiaceae sp.

Catching of ground beetles in different types of plantations was carried out during the vegetation period (late April-September) using Barber's soil traps [23]. Plastic cups with a volume of 250 ml with a fixing liquid of ethylene glycol were used as traps. In each biotope, 10 traps were placed along a straight line with a distance of 10 meters between them. The excavation of beetles was carried out simultaneously in all habitats with an interval of 7-10 days. 15 samples were taken for each season of research in biotopes in common[1, 8, 10].

We used the scale of D. Mossakowski, 1970 (with changes) to characterize the exchange of species. A comparative assessment of the species diversity of complexes of Carabidae was carried out with the determination of the Margalef diversity spectrum, the dynamics of the number distribution was realized according to Shannon method, an estimate of the degree of its uniformity was carried out according to Piel method, and also measures of Berger-Parker dominance were evaluated. The similarity of the faunal composition of the complexes was determined by a cluster analysis based on the index of Chekanovsky and Sersensen. Its graphical representation was carried out by the method of single joining by the maximum value of similarity. The reliability of the analysis was justified by the Pearson correlation criterion and the Wilcoxon rank coefficient [2, 8, 10, 14].

An analysis of the ecological structure of the communities was carried out with the identification of biotopic groups and life forms of the imago [19, 23].

The data of the State environmental monitoring for areas near the forest park, park, and square along the 2nd Longitudinal motorway (with length more than 50 km), as well as for the territory near roadside and field protective forest belts are given.

3. Results and Discussion

The characteristics of environmental factors in the researched plantations are presented in the table 1.
Table 1. Ecological traits of ecotopes.

Parameter	Recreation and greening plantings	Forest belts			
	Forest park	Park	Square	Roadside	Field protective
Time of existence, years	60	70	6	11	16
Number of species of woody plants	36	23	4	6	16
Number of species of herbaceous plants	9	8	6	11	17
Area, ha	225	18	120	55	580
Recreational load	medium	high	very high	high	low
Soils	light chestnut soil, heavy loam	light chestnut soil, loam	light chestnut soil, heavy heavy loam, solonetzic	light chestnut soil, heavy loam	
The flow of cars per hour	2420	2422	3288	2930	237
Pollution index (soil)	8.9	8.9	10.7	5.0	4.6
Gross content of As, mg / kg	7.43	4.39	5.56	7.70	5.33
Gross content of Zn, mg / kg	93.49	54.42	106.76	80.85	18.7
Gross Pb content, mg / kg	12.93	0.93	14.72	23.50	7.46
Suspended particles, 10 μm, mg/m³	0.33	0.22	0.24-0.27	0.33	0.15
Carbon monoxide, mg/m³	4.0	2.0	2.0-4.0	4.0	2.0
Nitrogen dioxide, mg/m³	0.07	0.04	0.05-0.07	0.07	0.04

Note. Pollution index and concentrations of pollutants were taken from the State Environment Report for Volgograd Region in 2017, recreational load was assessed as low if there were less than 10 people / ha, medium – 10-50 people / ha, high – 50-100 people / ha -, and very high – over 100 people / ha.

The table 1 demonstrates that the plantations exist for a long time, for decades, in a large area. Sustainable ecosystems were formed under the influence of biotic, abiotic and anthropogenic factors during that period. The forest park and the park are the richest in the species of woody and herbaceous plant, the least rich in squares along the highway and roadside forest belts. Protective forest belts occupy an intermediate position.

Ecotopes vary in recreational load. Squares were experienced the greatest load, the park and roadside forest belts had the highest load, the forest park had the middle one, and the field protective forest belts had the lowest load. The greatest motor load was in the squares, the lowest load was in the forest field protective belts. The highest pollution index was typical for a park, while the content of heavy metals (Zn and Pb) there was maximum. However, such a pollution index value is permissible (less than 16).

The best state of the atmospheric air is a characteristic of the field protective forest belts. In urban conditions, fairly high concentrations of dust (near the forest park, the park, roadside forest belts), as well as high concentrations of nitrogen dioxide and carbon dioxide (square) were found. The presence of harmful (polluting) substances in the air is caused by the development of motor transport (square, roadside forest belts) and the influence of metallurgical and chemical enterprises (forest park, park). The state of atmospheric air near the field protective forest belts corresponds to the background areas.

There were 74 species of ground beetles which belong to 26 genera (Table 2) in protective plantings of the urbanized territory of Volgograd. Two genera, which account was about 34% of the total diversity
of the family Carabidae, form the basis of the taxonomic structure of the Carabidae fauna. These are the genera *Harpalus* (14 species, 18.9%) and *Amara* (11 species, 14.9%).

A number of specific features characterized a complex of ground beetles lived in protective plantings of various types and categories. First of all, it concerns the variation of the richness of species of beetle groups. Faunal diversity reaches its maximum value in forest belts (62 species, 85.1%). At the same time, the taxonomic composition of ground beetles in field protective forest belts is 1.5 times higher than that in roadside forest belts.

Table 2. Composition of species and ecological characteristics of ground beetles in protective plantings of urbanized territory.

Species	Biotopic characteristic	Kind of plantings	Forest belts				
		Recreation and greening plantings	Forest park	Park	Square	Roadside	Field protective
Cicindela hybrida Linnaeus, 1758	S	Zfe	+				
C. campestris Linnaeus, 1758	Mf	Zfe	+				
C. germanica Linnaeus, 1758	M	Zfe	+				
C. solute Dejean, 1822	M	Zfe	+				
Notiophilus laticollis Chaudoir, 1850	F0	Zfss	+				
Calosoma denticolle Gebler, 1833	S	Zge	+				
C. investigator Illiger, 1798	E	Zge	+				
C. auropunctatum Herbst, 1784	F1	Zge	+				
C. inquisitor Linnaeus, 1758	F0	Zge	+				
C. sycophanta Linnaeus, 1758	F0	Zge	+				
Carabus hungaricus Fabricius, 1792	S	Zge	+				
C. estreicheri Fischer von Waldheim, 1822	E	Zge	+				
Brosus semistriatus Dejean, 1828	F0	Zr	+				
Bembidion gilvipes Sturm, 1825	F0	Zfs	+				
B. properans Stephens, 1828	Mf	Zsss	+				
B. quadrimaculatum Linnaeus, 1761	Mf	Zfss	+				
Poechius cupreus Linnaeus, 1758	Mf	Zfss	+				
P. punctatus Schaller, 1783	F1	Zfss	+				
P. versicolor Sturm, 1824	Mf	Zfs	+				
P. crenuliger Chaudoir, 1876	S	Zfs	+				
P. sericeus Fischer von Waldheim, 1824	S	Zfs	+				
P. puncticolli Dejean, 1828	S	Z. fs	+				
Pterostichus anthracitus Illiger, 1798	F0	Zsss	+				
Pt. melanarius Illiger, 1798	F0	Zsss	+				
Calathus distinguendus Chaudoir, 1846	E	Zfs	+				
C. ambiguus Paykull, 1790	E	Zfs	+				
C. cinctus Motschulsky, 1850	F0	Zfs	+				
C. halensis Schaller, 1783	F0	Zfs	+				
Amara pastica Dejean, 1831	F0	Mhg	+				
A. equestris Duftschmid, 1812	Mf	Mhg	+				
A. aenea DeGeer, 1774	Mf	Mhg	+				
A. apricaria Paykull, 1790	Mf	Mhg	+				
A. bifrons Gyllenhal, 1810	Mf	Mhg	+				
A. ingemia Duftschmid, 1812	Mf	Mhg	+				
A. consularis Duftschmid, 1812	Mf	Mhg	+				
A. matuscula Chaudoir, 1850	Mf	Mhg	+				
A. littorea C.G. Thomson, 1857 M Mhg + +
A. eryvnota Pazer, 1797 Mf Mhg +
A. similata Gyllenhal, 1810 Mf Mhg +
Zabrus tenebrioides Goeze, 1777 Fo Mhg + + + +
Anisodactylus signatus Panzer, 1796 Fi Mhg +
Harpalus froelichi Sturm, 1818 Fo Mhg + + + + +
H. smaragdinus Duftschmid, 1812 Mf Mhg + + + +
H. rubripes DeGeer, 1774 Fi Msch + + + +
H. serripes Quensel in Schonherr, 1806 Fi Msch + + +
H. distinguendus Duftschmid, 1812 Mf Mhg + + +
H. hirtipes Panzer, 1796 S Mhg +
H. anxius Duftschmid, 1812 Fo Mhg + + +
H. albanicus Reitter, 1900 Fo Mhg + + + +
H. alpinae Dejean, 1829 S Mhg + + +
H. grizeus Panzer, 1796 Mf Msch + + +
H. rubripes Duftschmid, 1812 Mf Mhgr +
H. subcylindricus Dejean, 1829 Mf Mhgr +
H. affinis Schrank, 1781 Mf Mhgr +
H. calceatus Duftschmid, 1812 S Mhg +
Acinopus striolatus Zoubkoff, 1833 S Mhg +
A. laevinus Menetries, 1832 S Mhg + + + +
Acupalpus meridianus Linnaeus, 1761 Mf Msch + + + +
Anisodactylus signatus Panzer, 1796 Fi Mhgr + + + +
Ophonus azureus Fabricius, 1775 E Zlch + + + + +
Chlaenius vestitus Paykull, 1790 Fi Zfs + + + +
Licinus cassidens Faricius, 1792 S Zfs + + + + +
L. depressus Paykull, 1790 Fo Zfs + + + + +
Badister bullatus Schrank, 1798 Fo Zfs + + + +
Lebia chlorocephala Hoffmann, 1803 M Zlch +
L. cyanocephala Linnaeus, 1758 Fi Zlch +
Syntomus truncatellus Linnaeus, 1761 Fo Zsfs + + + + +
Cymindis angularis Gyllenhal, 1810 S Zsfs + + + + + +
C. miliaris Fabricius, 1801 Fo Zsfs + + + + +
C. humeralis Geoffroy, 1785 Fo Zsfs + + + + + +
Curtonotus aculeatus, Panzer 1797 Mf Mhgr +
C. picta Pallas, 1771 Mf Mhgr +
Microlestes minutulus Goze, 1777 Mf Zsfs + + + + +
Dixus obscurus Dejean, 1825 Fo Mdg

Amount of species – 74
Total population – 7614.0
Note. Biotopic group: Fo – forest; M – meadow; Fi – field; Mf – meadow and field; S – steppe; E – eurybiontne.
Life forms: Z – zoophages (ge - gressorial epigeobionts walking, fe - flying epigeobionts, fs – floor stratobionts, bs – bark stratobionts, sfs - floor surface stratobionts, sfs - soil surface stratobionts, rdg - running-digging geobionts, lch – leaf chortobionts). M – myxophytophages (ss - slit stratobionts, sch - stratochortobionts, hg - harpaloid geochortobionts, dg - ditomoid geochortobionts).

The relation between the variability of diversity on the one hand and the conditions of the habitats on the other hand was clearly traced on the base of the values of the ecological and faunistic indicators of the ground beetles population (Table 3). The minimum of the abundance of species was noted in squares (DMg = 2.11), where plantings were under the influence of constant stress, which significantly limits the accumulation of ground beetles.
Table 3. Variations of the structural characteristics of complexes of carabids.

Kind of plantings	Parameter	Recreation and greening plantings	Forest belts			
		Forest park	Park	Square	Roadside	Field protective
Number of species. S	30	26	14	39	53	
S total		74				
Number. N	2191.5	868.5	472.5	820.5	3261.0	
N total		7614.0				
Margalef Index. DMg	3.77	3.69	2.11	5.66	6.43	
Shannon index. H	1.76	2.04	1.07	1.0	2.48	
Index Pielu. 1	0.52	0.63	0.41	0.27	0.62	
Berger-Parker index. d	0.48	0.47	0.60	0.38	0.24	
The reciprocal of the Berger-Parker index. 1-d	0.52	0.53	0.62	0.62	0.76	
Pearson correlation coefficient. rxy					0.972	

The relationship of the variability of biodiversity with ecological conditions was clearly observed on the basis of the values of ecological and faunal indicators of the ground beetle population (table 3). The minimum of abundance of species was observed in the squares (DMg = 2.11), where the plantings experienced constant anthropogenic stress, which significantly limited the maintenance of biodiversity and the preservation of natural regulatory mechanisms.

The reduction of anthropogenic press and recreational load promotes the full development of herbage; so it leads to the expansion of the living space of insects. Active accumulation of wealth of species and numerical wealth of ground beetles complexes were observed in a forest park, parks and roadside forest belts (DMg = 3.77, 3.69 and 5.66, respectively). The most favourable conditions for the vital activity of those insects were formed in forest shelter belts (DMg = 6.43).

An assessment of the level of diversity of local groups of ground beetles which took into account the equality and dynamic change in the number of rare species in the community showed that the most balanced community of ground beetles was also targeted to forest belts (H = 2.48). Communities of parks and forest parks were less harmonious in this respect (2.04 and 1.76 respectively). The measure of the diversity of the population of Carabidae of roadside forest belts and park was much poorer (1.0 and 1.07, respectively).

The distribution of the ratio of species and quantitative abundance in communities of ground beetles in different habitats was not uniform (Pielou index, l). This fact evidences to the impact of the degree of disturbance of biocenosis on complexes of Carabidae in the case of recreational plantings, which are under constant negative pressure. The level of formation of biocenosis affects the complexes of Carabidae in the case of field forest belt: it promotes the permanent formation of biocenosis, depending on the age of plants, design parameters, and crops in the adjacent fields.

Relationships of ground beetles within the framework of local complexes were distinguished by the intensity of communication. The maximum pressure of the dominant species in the communities (Berger-Parker index, d) was manifested in the group of beetles living in squares (d = 0.60). Also, the dominant load of the species was among ground beetles in parks (d = 0.47) and forest parks (d = 0.48). The role of the dominants in the community of forest plantations was minimal, i.e. the community was heterogeneous.

4. Conclusions

Results of the present research allowed getting the following conclusions. The field protective forest belts were distinguished by the richness of the Carabidae species composition in protective plantings of
the urbanized territory of Volgograd. The Amara and Harpalus genera were the leaders in the fauna diversity of ground beetles in recreational plantings and forest belts. That fact was typical for the dry-steppe zone in which the biotopes were located.

Obtained data indicated that an increase of the level of technogenic and recreational load on urban plantings was accompanied by an increase in the number of predatory ground beetles – zoophages. In our opinion, this phenomenon occurred due to the design features, the light intensity, and microclimate of the plantings, as well as due to the types of toxic effects.

Anthropogenic arrangement of the urban area caused a significant change in the structure of the population of ground beetles of certain types of plantings. First of all, this was due to a decrease in the number of dominants caused by the increase in the level of technogenic and recreational press. The common dominant species in the plantations of different categories in the urbanized territory of Volgograd were C. distinguendus and C. ambiguus.

Meadow-field species predominated in species abundance in the ecological structure of ground beetle complexes inhabiting habitats with an elevated level of anthropogenic press, and eurybiont species predominated in numerical abundance in the same ecological structure. The spectrum of life forms of the fauna of Carabidae was represented by two classes: zoophages and myxophytophages, with the dominance of the quantitative abundance of predatory ground beetles.

References

[1] Aleksanov VV 2017 Metody izucheniya biologicheskogo raznoobraziya (Methods for studying biological diversity) (Kaluga) 70 p.

[2] Belyuchenko I S Smagin AV Popok LB Popok LE 2015 Analiz dannykh i matematicheskoye modelirovaniye v ekologii i prirodopolzovanii (Data analysis and mathematical modeling in ecology and nature management) (Krasnodar: KubGAU) 313 p.

[3] Antsiferov AL 2016 / Sibirskiy ekologicheskiy zhurnal (Siberian Journal of Ecology) 1 47-55.

[4] Belitskaya MN Gribust IR Nefedyeva EE 2017 Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta (Bulletin of the Novosibirsk State Agrarian University) 2 (43) 41-51.

[5] Belitskaya MN Gribust IR Nefedyeva EE 2018 Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta (Bulletin of the Novosibirsk State Agrarian University) 2 (47) 7-18.

[6] Belskaya EA Zinovyev EV 2007 / Sibirskiy ekologicheskiy zhurnal (Siberian Journal of Ecology) 1 453-543.

[7] Gilyarov AM 2011 Priroda (Nature) 9 3-12.

[8] Ded'yukhin SV 2011 Printsipy i metody ekologo-faunisticheskikh issledovaniy nazemnykh nasekomykh (Principles and methods of ecological and faunal studies of land insects) (Izhevsk: Udmurtskiy universitet) 39 p.

[9] Dorokhov KV Shelukho VP Kisterniy GA 2016 Lesnoy zhurnal (Forest Journal) 5 29-91.

[10] Dunayev EA 1997 Metody ekologo-entomologicheskikh issledovaniy (Methods of ecological and entomological research) (M: MosgorSYuN) 44 p.

[11] Eremeyeva NI 2011 Izvestiya YuFU. Tekhnicheskiye nauki (News SFU. Technical science) 9 (122) 186-191.

[12] Eremeyeva NI Blinova SV Luzyanin SL 2010 Izvestiya Samarskogo nauchnogo tsentra Rossisskoy akademii nauk (News of the Samara Scientific Center of the Russian Academy of Sciences) 1 8 1970-1972.

[13] Isayeva IN 2012 Izvestiya Samarskogo nauchnogo tsentra Rossisskoy akademii nauk (News of the Samara Scientific Center of the Russian Academy of Sciences) 1 132-138.

[14] Pesenko JuA 1982 Printsipy i metody kolichestvennogo analiza v faunisticheskikh issledovaniyakh (Principles and methods of quantitative analysis in faunistic studies) (Moscow: Nauka (Science)) 284 p.

[15] Belonovskaya EA Bichekuyev OS Bobylev SN et al. 2015 5th nationalnyy doklad “Sokhraneniye bioraznoobraziya v Rossisskoy Federatsii” (5th National Report “Biodiversity Conservation in the Russian Federation”) (Moscow) 124 p.
[16] Romankina MYu 2010 Vestnik Vestnik Chelyabinskogo gosudarstvennogo pedagogicheskogo universiteta (Bulletin of the Chelyabinsk State Pedagogical University) 2 298- 312.
[17] Tregubov OV Kocherina MV Furmenkova ES 2014 Lesotekhnicheskij zhurnal (Journal of technical forestry) 3 (15) 61-76.
[18] Ho'ko EI Vetrova SN Matveenko AA Chushkov LS 1982 Pochvennye bespozvonochnye i promyshlennye zagryazneniya (Soil invertebrates and industrial pollution) (Minsk: Nauka i tekhnika) 264 p.
[19] Sharova IH 1981 Zhiznennye formy zhuzhelic (Coleoptera, Carabidae) (Life forms of ground beetles (Coleoptera, Carabidae)) Moscow: Nauka 283 p.
[20] Belitskaya MN et al. 2018 IOP Conf. Ser.: Earth Environ. Sci. 115 012015.
[21] Brigić A Starčević M Hrašovec B Elek Z. 2014 Eur. J. Entomol. 111 (5): 715-725
[22] Klausnitzer B von Tieren V 1988 (Wittenberg) 315 p.
[23] Mossakowski D 1970 Z. wiss. Zook 181(3/4) 233-316.
[24] Ohwaki A Kaneko Y Ikeda H 2015 Japan Eur. J. Entomol. 112 (1) 135-144.
[25] Schwerk A 2014 Eur. J. Entomol. 111 (5) 677-685.
[26] Venn St Kotze D. 2014 Eur. J. Entomol. 111 (5) 703-714.