Artificial Intelligence May Help in the Containment of Cholera in Nigeria

Jamil Hassan Abdulkarim¹, Abuhuraira Ado Musa², Yusuf Muhammad Abdullahi³, Usman Hadijah Yamman⁴

¹Department of Public Health, Newgate College of Health Technology Minna, Niger State, Nigeria
²Department of Public Health, National Orthopedic Hospital Dala, Kano, Nigeria
³Department of Environmental Health, Africa Centre of Excellence, Centre for Public Health and Toxicological Research, (ACEPUTOR) University of Port Harcourt (UNIPORT), Port Harcourt, Nigeria
⁴Academic Units, Newgate College of Health Technology Minna, Niger State, Nigeria

Corresponding Author: Abuhuraira Ado Musa, Department of Public Health, National Orthopedic Hospital Dala, Kano, Nigeria. Tel: +2348037024849, Email: mshurairah@gmail.com

Copyright: © the author(s), publisher, and licensee OIRT. It is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium provided there is a proper citation for the original work.

INTRODUCTION

Artificial intelligence (AI) refers to the theory and development of computer systems to perform tasks usually requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages (Builtin, 2021). Furthermore, Artificial intelligence (AI) is a wide-ranging branch of computer science concerned with building smart machines capable of performing tasks that typically require human intelligence. It endeavors to replicate or simulate human intelligence in machines (Builtin, 2021).

In the recent era, AI technology has been widely used in different fields such as social science, public health, medicine, engineering, etc. In addressing trending issues of public concern. AI has also been applied to a broad spectrum of fields. Public health surveillance is one such area that has benefited significantly from these recent AI advances (Abdullahi & Muhammad, 2021; Abdullahi et al., 2021).

Historical Background:

Cholera is a highly contagious infection. It originated in India and spread far beyond Russia and Great...
Start of a new paragraph

Cholera Transmission:
Cholera is an acute diarrheal illness caused by infection of the intestine with *Vibrio cholerae* bacteria. Cholera disease is usually transmitted through the fecal-oral route of contaminated food or water caused by poor sanitation (Symington, 2011). Most cholera cases in developed countries are transmitted through contaminated food, whereas, in developing countries, it is more often through contaminated water (Mandal et al., 2011). Food transmission can occur when people harvest seafood such as oysters and shellfish in the waters infected with *V. cholerae*. People infected with cholera often have diarrhea, and hence disease transmission may occur if this diarrhea contaminates water used by other people (Miller et al., 1985). A single diarrheal incident can cause a one million increase in *V. cholerae* in the environment through waterways, groundwater, and drinking water supplies. Usually, cholera transmission directly from person to person is infrequent (Fung, 2014). The infection is often mild or without symptoms but can sometimes be severe and life-threatening. About 1 in 10 people with cholera will experience severe symptoms, which, in the early stages, include: profuse watery diarrhea, vomiting, thirst, leg cramps, and Restlessness or irritability (CDC, 2021).

Application of Artificial Intelligent (AI) in the Containment of Cholera:
Some countries have taken bold steps in deploying AI in the surveillance and containment of the cholera epidemic; however, four types of intelligence can contain the cholera outbreak in Nigeria.

Machine learning is an application of artificial intelligence that provides computer-based systems to automatically learn and improve from experience without being explicitly programmed (Demsar et al., 2013). Machine learning is categorized mainly into supervised and unsupervised algorithms. Supervised algorithms are used when the training data is classified and labeled, while unsupervised algorithms are used in unlabeled data (Sathyra & Abraham, 2013; Chao, 2011). The basic premise of machine learning is to build models that can receive input data and use statistical analysis to predict an output while updating...
outputs as new data becomes available (Olivera et al., 2017).
Over the past years, data determined the success of machine learning algorithms extensively; however, there has been a great revolution with innovative strategies such as sampling, decomposition, scaling, and aggregation (Dawson et al., 2015). A comprehensive review of some selected machine algorithms was carried out by Yahaya, Hassan, and Rabiu (2020), these algorithms are used to predict cardiovascular disease, and their performances were compared. Nowadays, machine learning is used in a wide range of applications such as timely decision making, virtual personal assistance, social media services, video surveillance, identifying disease and diagnosis, drug discovery, and clinical research, since it is capable of handling data innovatively towards achieving its intended goals (Domingos, 2012; Abassba et al., 2017).
A study set up software simulations of cholera outbreaks of varying sizes and small simulated serosurveys. This study found that testing as few as 500 people after an outbreak and applying their algorithm could generate good estimates of cholera incidence during these simulated epidemics, especially if the epidemics were relatively short, lasting weeks or months (Tectales, 2019). These advances may provide a much-needed tool for measuring and accelerating progress towards eliminating cholera as a public health threat by 2030, a recently announced objective by the WHO-backed Global Taskforce for Cholera Control. “Our approach worked quite well across a range of epidemic sizes and even with relatively small sample sizes, suggesting that models like ours—applied to data from surveys of healthy people where blood is collected—could be useful for better understanding cholera transmission in the field (Tectales, 2019). Because of this, it’s high time the Nigeria ministry of health collaborated with NCDC, WHO, CDC, and other relevant agencies to key into the transition. Furthermore, Nigeria's health care system needs to embrace Artificial Intelligence, especially in epidemiological data collection, surveillance, and the containment of disease outbreaks in Nigeria, not only on cholera outbreaks but other emerging and re-emerging diseases in the country.

Cholera Scenario in Nigeria:

Nigeria faces many public health problems and challenges (Baba and Omotara, 2012; Muhammad et al., 2017). The health issues that Nigeria faces are infectious diseases, sewage disposal, health insurance, water supply, poor housing condition, solid waste disposal, disaster management & control, doctor-population ratio, population-bed ratio, population per health facility, payment system/methods, utilization of care, access to care, improper coordination of donor funds, poor sanitation and hygiene, incessant doctors strike, disease surveillance, and urbanization. Lack of Information and Communication Technological (ICT) facilities that could replace the primitive approach to the health care system in the Northern part of Nigeria also leads to inadequate health information delivery in Primary Health Care Systems (Rabiu et al., 2019). Those mentioned above will give birth to a cholera outbreak in Nigeria if a concerted effort is not made to address the growing increase in infectious diseases rooted in poor water supply, sanitation, and hygiene and harnessing the potential in artificial intelligence in monitoring and tracking this epidemic. However, Nigeria's health problem will remain unsolved (Huhn, 2021).

According to Nigeria Centre for Disease Control and Prevention, since the beginning of 2021, the reported cases of cholera among the age group 5-14 is 27.0%. Of all suspected cases, 51.0% are males, and 49.0% are females (NCDC, 2021). Previous cholera outbreaks in Nigeria have claimed hundreds of lives. However, this current outbreak could place the country in a much more serious situation without robust efforts to mitigate the risks of inadequate sanitation services and practices (Huhn, 2021).

According to zonal distribution, the northeast has the highest reported suspected case of cholera; this may be due to insurgency in the area (Boko Haram), which has a devastating effect on water supply sanitation hygiene in the region. However, the northwest also follows the northeast in terms of high cases of suspected cholera; meanwhile has a similar case of security challenges of banditry, which may affect adequate sanitation and hygiene. Lastly, northcentral has a small number of suspected cholera cases (NCDC, 2021). Furthermore, according to the UN Office for the Coordination of Humanitarian Affairs, the number of confirmed and suspected cases reported in Borno, Adamawa, and Yobe states (North-Eastern part of Nigeria), as of 30 September 2021 (3,848), exceeds the number of cases...
reported for the whole year in 2020 or the entire year in 2019 (IFRC, 2021). Case management for cholera patients in affected states is said to be inadequate. Recent weeks have seen a gradual decline in cases, but additional states continue to report suspected cases (OCHA, 2021).

CONCLUSION
Statistics present in this study indicate the need for the federal ministry of health and other relevant health agency to key into the deployment of Artificial Intelligence in addressing health care problems, especially in the area of epidemic containment. For example, disease surveillance, as seen in other developed nations such as Great Britain, the United States, France, and some African countries such as Tanzania. Furthermore, this could be achieved via collaboration with information technology sectors to reduce morbidity mortality and reduce the economic burden of disease, the health burden of disease, and the global burden of the disease.

Conflict of Interest: None

Funding/Support: None

REFERENCES
Abdullahi, B. S., & Muhammad, F. (2021). The Artificial Intelligence (AI) during COVID-19 Pandemic. OIRT Journal of Information Technology, 1(1), 3–5. https://doi.org/10.53944/oirtj.2021
Abdullahi, B. S., Baballe, M. I., & Muhammad, F. (2021). The Information and Communication Technology (ICT) during the COVID-19 Pandemic. OIRT Journal of Information Technology, 1(1), 1–2. https://doi.org/10.53944/oirtj.2021
Abussba, A. O., Zhang, D., Luo, X., Shaheryar, A., & Ali, H. (2017). Improving classification performance through advanced ensemble-based heterogeneous extreme learning machines. Computational intelligence and neuroscience, 2017.
Acaps (2021). Nigeria and Niger Cholera Outbreak. Available from: https://www.acaps.org/sites/acaps/files/products/files/20211117.acaps_thematic_report_cholera_outbreak_in_niger_and_nigeria.pdf [Accessed on February 02, 2023]
Azizi, M., & Azizi, F. (2010). History of Cholera Outbreaks in Iran during the 19(a) and 20(th) Centuries. Middle East Journal of Digestive diseases, 2(1), 51–55.
Baba, M., & Omotara, B. (2012). Nigeria’s public health: gains and challenges. Equilibrium, Milano, 2(1), 1-2.
Builtin (2021). Artificial Intelligence. Available from: https://builtin.com/artificial-intelligence [Accessed on October 13, 2021]
Centre for Disease Control and Prevention (CDC) (2021). Cholera illness and Symptom. Available from: https://www.cdc.gov/cholera/illness.html [Accessed on October 16, 2021]
Chao, W. L. (2011). Machine learning tutorial. Digital Image and Signal Processing.
Dawson, P. M., Werkman, M., Brooks-Pollack, E., & Tildesley, M. J. (2015). Epidemic predictions in an imperfect world: modeling disease spread with partial data—proceedings of the Royal Society B: Biological Sciences, 282(1808), 20150205.
Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hočevar, T., Milutinović, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Stajdohar, M., Umek, L., Zagar, L., Zhontar, J., Žitnik, M., Zupan, B. (2013). Orange: data mining toolbox in python. Journal of Machine Learning Research, 14(35), 2349–2353, 2013.
Domíngos, P. (2012). Here are a few useful things to know about machine learning. Communications of the ACM, 55(10), 78-87.
Fung I. C. (2014). Cholera transmission dynamic models for public health practitioners. Emerging themes in epidemiology, 11(1), 1. https://doi.org/10.1186/1742-7622-11-1
Huhn, N. (2021). Cholera Outbreak in Nigeria. Available from: https://www.outbreakobservatory.org/outbreakthursday/17/29/2021/cholera-outbreak-in-nigeria [Accessed on February 22, 2022]
International Federation for Red Cross (IFRC). (2021). Nigeria: Cholera Epidemic 2021. Available from: https://go.ifrc.org/reports/14613 [Accessed on October 19, 2021]
Mandal, S., Mandal, M.D., & Pal, N.K. (2011). Cholera: A great global concern. Asian Pacific Journal of Tropical Medicine, 4(7), 573-580.
Miller, C. J., Feachem, R. G., & Drasar, B. S. (1985). Cholera epidemiology in developed and developing countries: new thoughts on transmission, seasonality, and control. Lancet (London, England), 1(8423), 261–262. https://doi.org/10.1016/s0140-6736(85)91036-0
Muhammad, F., Abulkareem, J. H., & Chowdhury, A. A. (2017). Major Public Health Problems in Nigeria: A review. Southeast Asia Journal of Public Health, 7(1), 6–11. https://doi.org/10.3329/seaajph.v7i1.34672
Nigeria Centre for Disease Control and Prevention (NCDC) (2021). Cholera in Nigeria: Urgent call to strengthen Water, Sanitation, and Hygiene (WaSH). Available from: https://reliefweb.int/report/nigeria/cholera/situation-report-nigeria-national-30-september-2021-week-21-week-36 [Accessed on October 13, 2021]
OCHA (2021). Northeast Nigeria: Cholera Situation Report as of 30 September 2021 (from week 21 to week 36). Available from: https://reliefweb.int/report/nigeria/northeast-nigeria-cholera-situation-report-30-september-2021-week-21-week-36 [Accessed on October 19, 2021]
Olivera, A. R., Roesler, V., Iochpe, C., Schmidt, M. L., Vigo, Á., Barreto, S. M., & Duncan, B. B. (2017). Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes-ELSA-Brasil: accuracy study. Sao Paulo Medical Journal, 135(3), 234-246.
Rabiu, A.M., Mukhtar, M.I, Abbas, F.M. & Abdul’azeem, Y. (2019). ICT Utilization and its Barries in Jigawa State Primary Health Care Centres. Information Technologist: An International Journal of Information and Communication Technology 16(2). Available from https://www.ajol.info/index.php/ict/article/view/192385
Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34-38.
Symington, V. (2011). Cholera: death by diarrhea. In Society for General Microbiology (p. 12).

Tectales (2019). Tracking Cholera Outbreak with Artificial Intelligence. Available from: https://tectales.com/ai/tracking-cholera-outbreaks-with-ai.html [Accessed October 19, 2021].

Weill, F. X., Domman, D., Njamkepo, E., Tarr, C., Rauzier, J., Fawal, N., Keddy, K. H., Salje, H., Moore, S., Mukhopadhyay, A. K., Bercion, R., Luquero, F. J., Ngandjio, A., Dosso, M., Monakhova, E., Garin, B., Bouchier, C., Pazzani, C., Mutreja, A., Grunow, R., … Thomson, N. R. (2017). The genomic history of the seventh pandemic of cholera in Africa. Science (New York, N.Y.), 358(6364), 785–789. https://doi.org/10.1126/science.aad5901

World Health Organization (WHO) (2021). Cholera. Available from: https://www.who.int/news-room/fact-sheets/detail/cholera [Accessed on October 15, 2021].

Yahaya, L., Hassan, I. & Rabiu, A.M. (2020). A survey of the performance of some selected machine learning algorithms for cardiovascular disease predictions. Bima Journal of Science and Technology 4(1), 165-180.