Double-stranded RNA bending by AU-tract sequences

Marin-Gonzalez, Alberto; Aicart-Ramos, Clara; Marin-Baquero, Mikel; Martín-González, Alejandro; Suomalainen, Maarit; Kannan, Abhilash; Vilhena, J G; Greber, Urs F; Moreno-Herrero, Fernando; Pérez, Rubén

Abstract: Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA sequences.

DOI: https://doi.org/10.1093/nar/gkaa1128

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-192879
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

Originally published at: Marin-Gonzalez, Alberto; Aicart-Ramos, Clara; Marin-Baquero, Mikel; Martín-González, Alejandro; Suomalainen, Maarit; Kannan, Abhilash; Vilhena, J G; Greber, Urs F; Moreno-Herrero, Fernando; Pérez, Rubén (2020). Double-stranded RNA bending by AU-tract sequences. Nucleic Acids Research: Epub ahead of print.
DOI: https://doi.org/10.1093/nar/gkaa1128
Double-stranded RNA bending by AU-tract sequences

Alberto Marin-Gonzalez, Clara Aicart-Ramos, Mikel Marin-Baquero, Alejandro Martín-González, Maarit Suomalainen, Abhilash Kannan, J. G. Vilhena, Urs F. Greber, Fernando Moreno-Herrero, and Rubén Pérez

1Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain, 2Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, 3Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland, 4Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain and 5FIMAC - Condensed Matter Physics Center, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

Received June 04, 2020; Revised October 08, 2020; Editorial Decision November 03, 2020; Accepted November 10, 2020

ABSTRACT

Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix. Using all-atom molecular dynamics simulations, we identified a sequence motif consisting of alternating adenosines and uracils, or AU-tracts, that strongly bend the RNA double-helix. This finding was experimentally validated using atomic force microscopy imaging of dsRNA molecules designed to display macroscopic curvature via repetitions of phased AU-tract motifs. At the atomic level, this novel phenomenon originates from a localized compression of the dsRNA major groove and a large propeller twist at the position of the AU-tract. Moreover, the magnitude of the bending can be modulated by changing the length of the AU-tract. Altogether, our results demonstrate the possibility of modifying the dsRNA curvature by means of its nucleotide sequence, which may be exploited in the emerging field of RNA nanotechnology and might also constitute a natural mechanism for proteins to achieve recognition of specific dsRNA.

INTRODUCTION

Double-stranded RNA (dsRNA) plays a central role in a number of biological processes. For instance, dsRNA molecules are involved in the regulation of gene expression by RNAi (1), or in the host responses to dsRNA encoded by viruses (2). In addition, dsRNA helices perform key functions as an essential part of tertiary RNA structures, including tRNA and riboswitches (3,4), and of macromolecular RNA-protein complexes such as ribosomal subunits and the spliceosome (5–7).

Many of the biological processes involving dsRNA exploit the conformational flexibility of dsRNA helices in order e.g. to achieve folding of the RNA into complex 3D structures (8–10) or in dsRNA:protein interactions (11–13). Therefore, a quantitative understanding of the physical properties of dsRNA can provide novel insights on these processes, and also, can aid the design of RNA nanostructures for biotechnological applications (14). Motivated by these considerations, immense research efforts have characterized the effect of helical imperfections, such as bulges or internal loops, on dsRNA conformations (15,16). However, the question of how the nucleotide sequence impacts the overall structure of canonical, Watson–Crick base-paired dsRNA helices remains largely unanswered (17).

In contrast to dsRNA, the sequence-dependent structure of the canonical DNA double-helix (dsDNA) has been characterized in great detail. A prime example of such sequence-dependent features are the so-called A-tracks, runs of adenines and thymines without a TpA step that, when in phase with the helical pitch yield a significant global curvature (18).
to have biological relevance. The former seems to stabilize DNA tertiary structures, such as loops and supercoils (22,23), whereas the latter is used by proteins to achieve binding specificity (24). Moreover, the DNA bending induced by A-tracts has aided the design of DNA rings as part of nanotechnological devices (25).

Scattered experimental evidence suggests the existence of sequence-induced curvature in a Watson–Crick base-paired RNA duplex. Early crystallographic works reported helical kinks in the structure of an RNA duplex consisting of alternating adenosines and uracils (26,27). However, this bent conformation was stabilized by the intermolecular interactions among the molecules forming the crystal and, therefore, bending could not be attributed to the RNA duplex alone. In parallel, analysis of structural databases and theoretical methods, such as molecular dynamics (MD) simulations, have provided valuable insight on sequence-dependent dsRNA conformations (17,28–31). In particular, recent MD studies have predicted strong sequence effects on the dsRNA shape (29,30) and flexibility (31), which could potentially lead to sequence-induced bending. Such simulation techniques hold great potential in deciphering the sequence-dependent dsRNA conformational landscape, provided that the computational predictions are thoroughly tested against experimental measurements. However, such comparison remains challenging due, in part, to the limited availability on high-resolution dsRNA experimental structures and the number of artifacts that are often found, e.g. in crystal structures (17).

Here, we present a procedure that led us to the direct experimental observation of single dsRNA molecules bent only by their nucleotide sequence. We combined MD simulations and atomic force microscopy (AFM) experiments; a technique especially suited for studying dsRNA bending, as demonstrated by AFM measurements of the dsRNA persistence length (32,33). We first performed a systematic analysis of how the sequence affects the structure of dsRNA using MD simulations. Our simulations predicted that a sequence motif, that we named AU-tract, would cause a bend in the RNA double-helix. We then synthesized long dsRNA molecules containing AU-tracks in phase with the helical pitch. Analysis of AFM images of these molecules revealed that they were indeed significantly more bent than control dsRNA molecules of arbitrary sequence. Finally, we propose a molecular mechanism for AU-tract bending based on a large propeller twist at A:U base pairs. Our work unveils the phenomenon of sequence-induced curvature in dsRNA, challenging the traditional picture of dsRNA as an invariant double helix.

We used the AMBER14 software suite with NVIDIA GPU acceleration (35,36). For the modeling of dsRNA molecules we resorted to the Cornell ff99 force field (37) with the parmbsc0 (38) refinement and the χOL3 modification (39). The ions were described according to the Joung/Cheatham (40) parametrization; and the TIP3P model (41) was used for water molecules. Periodic boundary conditions and Particle Mesh Ewald (with standard defaults and a real-space cutoff of 9 Å) were used to account for long-range electrostatics interactions. The same real space cutoff was used to truncate van der Waals forces. SHAKE algorithm was used to constrain bonds containing hydrogen atoms, thus allowing us to use an integration step of 2 fs. Coordinates were saved every 1000 steps. Average structures were computed using the cpptraj software of the AMBER14 suite. Helical, base pair step parameters and groove dimensions were computed using Curves+ (42) and 3DNA (43) and helical bending was calculated using Curves+ (42). The four base pairs adjacent to the termini of the molecules were excluded from the analysis.

Production of dsRNA molecules
In order to study the mechanical properties of AU-tracks at the single-molecule level, we produced dsRNA molecules that contain periodic repetitions of alternating AU nucleotides. We named them ExpAU-4 or ExpAU-5 depending on the length of four or five nucleotides of the AU-tract. These molecules were produced by hybridizing two long complementary ssRNAs. To fabricate these, the sequence of interest was cloned after the T7 RNA polymerase promoter between two KpnI sites. In this way, the fragment could be digested and ligated in the opposite orientation, allowing us to synthesize the two complementary ssRNA chains. In addition, a SmaI site was introduced at the end of the sequence, enabling the linearization of the plasmid vector to limit the length of the transcripts.

dsRNA molecules were synthesized accordingly to a previously described protocol (33,44) with slight modifications to increase yield for single-molecule manipulation purposes. Once each pair of plasmids were obtained, plasmid vectors used as transcription templates were linearized with SmaI followed by purification (QIAGEN). Afterwards, in vitro transcription using the commercial HiScribe™T7 High Yield RNA Synthesis Kit (NEB) gave rise to two complementary ssRNAs without any non-complementary nucleotides at their ends. After 3 h at 42°C, EDTA was
free H₂O. dsRNA constructs were stored at 4°C in RNase free H₂O. The final sequences are shown in Supplementary Table S1. Further details on the synthesis of the dsRNA molecules can be found in the Supplementary Material (see section 1, Supplementary Table S3 and Supplementary Figure S12).

Atomic force microscopy measurements

Imaging conditions and data analysis were similar to those employed in a previous work (33). A 10 μl solution containing 0.5 mM dsRNA, 2.5 mM NiCl₂, 25 mM TrisAc pH 7.5, 2.5 mM MgOAc and 100 mM NaCl was deposited onto freshly cleaved mica. After ~60 s, the sample was washed using Milli-Q water and dried using air nitrogen. Images were taken in tapping mode in air, using an AFM from Nanotech Electronica S.L. with PointProbePlus tips (PNNCH Nanosensors). Contour lengths were obtained using the WSxM software (45). Persistence lengths were computed using the tracing routine from (46,47). Traces of 170 nm were obtained with a point-to-point separation of 2.5 nm.

RESULTS AND DISCUSSION

The dsRNA sequence affects the width of the major groove, the extension, and twist of dsRNA

In order to explore how the nucleotide sequence affects the dsRNA structure, we first analyzed a set of six MD simulations from a previous work (31). These simulations had been performed on benchmark dsRNA sequences of the form Gₙ(NN)ₙGₙ, with NN = AA, AC, AG, AU, CG, GG (Table 1), where the Gₙ regions in the termini had been included to prevent edge fraying and were excluded from the analysis. We measured the size of the grooves of these benchmark sequences using the software Curves+ (42) and found that the major groove width was highly dependent on the sequence, being able to change by as much as 6 Å. This is shown in Figure 1A, where we represent the values of the major groove width along the helical axis for the benchmark molecules. Notice that, because these sequences consist of repeating dinucleotides, their major groove should be regular along the helical axis, as manifested by the flat lines of Figure 1A. In contrast, the minor groove dimensions as well as the major groove depth did not significantly change with the sequence (Supplementary Figure S1).

Notably, the major groove width was primarily responsible for modulating the extension and number of turns of the molecules. This was quantified by means of the helical rise and helical twist parameters, which were highly corre-
Figure 1. The major groove width modulates the overall structure of the dsRNA helix. (A) Values of the major groove width measured along the helix for the benchmark sequences (Table 1). The average structures over the simulation time were computed for the benchmark molecules using the software AmberTools. These structures were then analyzed with the software Curves+ (42) to obtain the values of the major groove width along the sequence. (B) Mean helical rise and (C), helical twist of the benchmark molecules measured as a function of the major groove width. Values of the helical rise and helical twist were obtained for each base pair step from the average structures of the benchmark molecules using the software Curves+ (42). These values, together with the major groove width values from panel (A), were then averaged over the 15 central base pair steps. Error bars are the standard error of the mean. X-axis error bars are within the symbols. The dotted line represents a fit of the data to a linear function. (D) Average structures of the poly-AU and poly-CG over the simulation time. These structures illustrate how the sequence induces an elongation in the molecule by enlarging the major groove.

Inclination and roll were found to be highly negatively correlated with the major groove width (Supplementary Figures S4 and S5). Finally, our results are in line with previous MD works performed on similar dsRNA benchmark sequences, although the poly-CG molecule presents certain variability attending to the water model and ionic conditions used (29,30) (see Supplementary Table S2).

AU-tracts induce a curvature in dsRNA by local compression alternating A’s and U’s, hereafter AU-tract. We thus simulated five different sequences with AU-tracts of lengths varying from three to seven base pairs, which were denoted as AU-3 to AU-7 (Table 1). All sequences were designed to be similar in length (24 or 25 bp) and to contain the AU-tract exactly in the center of the duplex.

Our results revealed a localized compression of the major groove at the position of the AU-tract. This can be seen in Figure 2A–C, where we represented the major groove width profiles of the poly-CG (same as Figure 1A). AU-4 and AU-5
Figure 2. AU-tracts produce a bend when inserted in poly-G dsRNA molecules. Average structure and major groove width profiles of the poly-G (A), AU-4 (B) and AU-6 (C) sequences. The AU-tracts are highlighted in red. The black lines represent a cylinder, which is unable to embed highly bent molecules, namely AU-4 and AU-6. An approximate helical axis was drawn in red dotted line to guide the eye. Major groove width profiles were computed and represented as in Figure 1A. Localized drops in these profiles are found in the AU-tracts (underscored in red) which coincide with the bending region of the molecule structure (on top). (D) Bending was computed for the AU-tracts of different lengths (values of the AU-tract length sequences are shown in Table 1). We divided the trajectories into five 200 ns-long windows and we then computed the average structure over each of these sub-trajectories. The bending angle of these average structures was then obtained using the curvilinear helical axis from the software Curves+ (42) and neglecting four base pairs on each terminal of the molecule. The plotted points are the mean values of the five time windows and the errors are the standard deviations. A line connecting the points was drawn to guide the eye.

Effect was amplified in longer AU-tracts (Supplementary Figure S6).

Interestingly, compression of the major groove by AU-tracts resulted in bent dsRNA structures. This can be noticed by visual inspection of the computed average structures of the molecules throughout the simulation time. The average structures of AU-4 and AU-6 presented a bend at the position of the AU-tract and were therefore unable to be embedded inside a virtual cylinder. The same reasoning applies to the other AU-tracts, namely AU-3, AU-5 and AU-7 (see Supplementary Figure S6). On the contrary, the poly-G was straight and, therefore, could be fitted inside a cylinder. This is only possible when neglecting four base pairs on each terminal of the molecule. AU-tracts are therefore considered as a zero-length AU-tract. These measurements corroborated the bending effect of AU-tracts that we inferred from visual inspection of the dsRNA structures. The poly-G sequence, which lacks AU-tracts, was found to be essentially straight, as quantified by a very small bending angle of ~2°. Interestingly, the shortest AU-tract considered, which was only 3 bp long, already induced a significant bending of ~8° in the RNA duplex. This value increased with the AU-tract length, saturating at ~14° with AU-tracts of 6 bp or longer.

AU-tracts are a major source of bending in arbitrary dsRNA structures.
but still substantially larger than any of the sequences lacking AU-tracts (Seqs. 4–6). Consistently, Seq. 1 presented a less pronounced drop in the major groove width compared with Seq. 2 and Seq. 3, which contain a longer AU-tract comprising four base pairs. Seq. 4 and Seq. 5 contained no AU-tract, but other motifs rich in A’s and U’s, namely AUU and UUA. Contrary to AU-tracts, these motifs produced very modest variations in the major groove width and, consequently, Seq. 4 and Seq. 5 were nearly straight (Figure 3). Seq. 6 presented a CG-tract that locally enlarged the major groove, in line with the results from Figure 1A. However, this effect was not translated into an enhanced bending of the duplex.

These results are in line with crystallographic studies reporting a bend in duplexes containing a central AU-tract (26, 27, 49). However, crystal packing can induce spurious bending in nucleic acids (50) and, indeed, the bent helices observed in the AU-tract structures were partly attributed to intermolecular interactions among different duplexes of the crystal (26, 27). In the following section we experimentally demonstrate that AU-tracts promote the formation of bent dsRNA structures at the single-molecule level.

Atomic force microscopy imaging shows that phased AU-tracts induce a macroscopic curvature in dsRNA

Motivated by our simulation findings, we performed atomic force microscopy (AFM) imaging to experimentally test the effect of AU-tracts on dsRNA bending. We hypothesized that AU-tracts located in phase with the dsRNA helical pitch would amplify their bending, similar to the case of A-tracts in hyperperiodic DNA sequences (19, 46, 52, 51). Therefore, we synthesized two dsRNA constructs that contained phased repetitions of an AU-tract with a periodicity of 11 bp. The first of these constructs was 612 bp-long and contained a periodic AU-tract of 4 bp; the second one, comprised 624 bp and the periodic AU-tract was 5 bp in length. These molecules were correspondingly denoted as ExpAU-4 and ExpAU-5 (see Table 2 and Supplementary Material). As control, we considered an arbitrary dsRNA sequence of 612 bp and GC-content of ~50% (see Supplementary Table S1). Figure 4A–C shows representative AFM images of control and AU-tracts dsRNA molecules. From the AFM images, we measured the contour length of the molecules and obtained a value of 179 nm for the three constructs, with an error (standard error of the mean) of 3 nm for the control and 4 nm for both AU-tracts molecules (see Table 2). These values yielded a ratio of 2.9 Å/bp, which coincides with crystallographic data of dsRNA (48) and with our MD
rated by a given contour length \(L \), and the angle, \(\theta_{z,z+L} \), defined by the tangents to the trajectory at those points (inset in Figure 4A, right). We then computed the square of \(R_{z,z+L} \) and the cosine of \(\theta_{z,z+L} \) and averaged over all the points of a trace and over all the measured traces. The resulting mean squared end-to-end distance, \(\langle R_{z,z+L}^2 \rangle \), and mean cosine of the tangents, \(\langle \cos \theta_{z,z+L} \rangle \), allowed us to study the mechanical properties of dsRNA in the context of polymer physics models, concretely the widely used worm-like chain (WLC) model:

\[
\langle R_{z,z+L}^2 \rangle = 4P(L + 2P(e^{-L/2P} - 1))
\]

In these equations, \(P \) is the persistence length, which is directly proportional to the bending rigidity \(B \) of the polymer \(P = B/k_BT \) (where \(k_B \) is the Boltzman constant and \(T \) is the temperature).

The control dsRNA data nicely fitted to the WLC model (Figure 5A, B). When fitted to Equation (1), the \(\langle R_{z,z+L}^2 \rangle \) data of the control dsRNA yielded a persistence length of \(P = 66 \pm 1 \) nm, consistent with previous single-molecule experiments on arbitrary dsRNA sequences (32,33,53) (Figure 5A). A fit of the \(\langle \cos \theta_{z,z+L} \rangle \) control data to Equation

\[
\langle \cos \theta_{z,z+L} \rangle = e^{-\frac{1}{2P}}
\]
Figure 5. Experimental quantification of dsRNA bending induced by AU-tracts. Mean squared end-to-end distance (A) and mean cosine of the tangents (B) plotted as a function of the contour distance between two points. The blue solid line is a fit of the control data to the WLC equations (Equation (1) for panel A, and Equation (2) for panel B), which yielded $P = 66 \pm 1$ nm and $P = 62 \pm 1$ nm for the (\bar{R}^2_{n+L}) and $(\cos \theta_{n+L})$ data, respectively. To guide the eye, theoretical WLC curves are included with persistence lengths of 30, 40, and 50 nm (bottom-up in both panels). Histograms of curvature distributions for fixed contour lengths of 15 nm (C) and 25 nm (D), showing the relative frequency of different curvature values. The distributions were fitted to Gaussian functions (solid lines). The standard deviation parameters obtained from these Gaussian fits are presented in Table 2.

Equation (2) resulted in a persistence length of $P = 62 \pm 1$ nm, slightly lower, but consistent with the value obtained using (\bar{R}^2_{n+L}) (Figure 5B). Importantly, these measurements prove that adsorption conditions preserve equilibrium conformations of the polymer.

Contrary to the control, the AU-tracts data were not well captured by the WLC model. The inadequacy of the WLC to describe the AU-tracts data is evident from the $(\cos \theta_{n+L})$ plot (Figure 5B), where both ExpAU-4 and ExpAU-5 molecules presented clear deviations from Equation (2). These deviations from the WLC behavior are particularly significant for the ExpAU-5 molecule, which showed a local minimum of $(\cos \theta_{n+L}) = 0.3$ at around $L = 60$ nm. The WLC model does not account for this behavior, suggesting that longer AU-tracts induce more pronounced bending.

The analysis of our data in the context of the WLC model indicated the presence of extra bending in the AU-tract sequences. In order to provide a more direct characterization of this AU-tract bending, we calculated the curvature of the molecules, following the procedure described in (46). We considered two points of the trace separated by a contour distance $L = 15$ nm, and a third, middle point located at a contour distance of $L/2 = 7.5$ nm from the other two. We then fitted a circle to the arc described by these three points and computed the curvature, C_L, as the inverse of the radius, r_L, of that circle (see Figure 4A, right). This calculation was performed for all the points of the traces and for all the
(see Table 2). The σ_C values obtained for the ExpAU-5 molecule were systematically larger than the σ_C values of ExpAU-4, which, in turn, were larger than those of the control. This finding indicates that AU-tract molecules were more prone to adopt highly curved conformations when compared to the control. Moreover, this effect was more pronounced for the ExpAU-5 molecule, supporting that the magnitude of AU-tract bending increases with the AU-tract length, as predicted by our MD simulations (Figure 2D).

AU-tracks: similarities and differences with DNA A-tracks

Sequence-dependent bending is known to take place in dsDNA by means of A-tracks: sequences of at least four A-T base pairs without a TpA step. When several A-tracks are located in phase with the helical pitch they produce a macroscopic curvature in the DNA (18). This curvature can be directly observed using AFM or electron microscopy (19,46,54,55), or can be inferred from gel electrophoresis experiments (51). In addition, A-tracks display a particular conformation at the molecular level, which differs from that of canonical B-DNA (18,20). In the following, we compare these well-known features of dsDNA A-tracks—macroscopic curvature and molecular conformation—with our findings on dsRNA AU-tracks.

Previous AFM works have provided a detailed picture of bending deformations in dsDNA molecules with A-track-induced curvature. These experiments showed that, as a consequence of that curvature, the structural properties of dsDNA sequences with phased A-tracks exhibit significant deviations from the WLC model (46). This effect was also observed for the dsRNA AU-tracks (see Figure 5A, B). Although our AU-tracks $\langle R^2_{2,\pm L}\rangle$ data showed no clear discrepancy with respect to the WLC prediction, such deviations only appeared in the A-tracks for contour lengths greater than ~ 120 nm length (19,46), which are beyond the range studied here (<100 nm). The $(\cos \theta_{2,\pm L})$ of the A-tracks, on the contrary, deviated from the WLC behavior at shorter contour lengths (~ 50 nm) and is, therefore, a better indicator of the existence of intrinsic curvature. Consistent with the presence of intrinsic bending, our AU-tracks also presented significant deviations from the WLC in the $(\cos \theta_{2,\pm L})(L)$ data. Moreover, the shape of the $(\cos \theta)(L)$ plot for the phased AU-tract studied here is remarkably similar to an intrinsically-bent A-track dsDNA that we recently reported (19).

![Figure 6](https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz7665/11287607656)

We then turned our attention to the molecular structure of A-tracks and AU-tracks. We compared the structural features of the dsRNA AU-track from Seq. 3 (see Table 1) with the DNA A-tract from a high-quality NMR structure of an A-track (Figure 6). Both structures, a large negative propeller twist was observed. Similar to what has been proposed for DNA A-tracks (18), a highly propeller twisted base pairs could stabilize the structure of AU-tracks, e.g. by favoring interstrand and intrastrand stacking interactions (see below) or by promoting the formation of A-tract and AU-tract bending (Figure 6). In both structures, a large negative propeller twist was observed. Similar to what has been proposed for DNA A-tracks (18), a highly twisted propeller base pairs could stabilize the structure of AU-tracks, e.g. by favoring interstrand and intrastrand stacking interactions (see below) or by promoting the formation of A-tract bending.
their intrastrand stacking interactions with their adjacent (intrastrand) adenine, while the opposing adenines in the UpA step engage in interstrand stacking (Figure 7 bottom, dotted lines; and Supplementary Figure S8). This propeller twist motion would then propagate along the AU-tract (Figure 7, motion #3), creating a region of highly negative propeller twist, in line with the data from Figure 6 and Supplementary Figure S10. It is important to note that such large propeller twisting motions are less favorable in G:C base pairs, where the three hydrogen bonds hinder rotation of the bases with respect to the base pairing axis. Consistently, other alternating purine-pyrimidine sequences that contain G:C base pairs presented a less pronounced propeller twisting than the poly-AU (Supplementary Figure S11). We propose that the combination of these two phenomena—zig-zag roll characteristic of alternating purine-pyrimidine and large propeller as a result of low GC content—make AU-tracts particularly effective at inducing groove distortion and curvature.

Potential implications on dsRNA sequence recognition

dsRNA structures are ubiquitous in cells, and together with dsRNA-binding proteins are central players in cellular processes, such as mRNA biogenesis and editing, microRNA processing and function, as well as anti-viral defense (58,59). In some of these processes, dsRNA-binding proteins can be rather selective in their target RNA sequences, although the recognition mechanism is not completely understood (60). Interestingly, these protein-dsRNA complexes sometimes present bent dsRNA structures. For example, dsRNA bending was observed in the crystal structure of an RNA duplex in complex with MDA5 (11) or OAS1 (13). Moreover, bending was predicted to occur in dsRNA upon the interaction with RIG-I (61) or Dicer (12,62). One can thus speculate that the dsRNA curvature at the AU-tracts observed in the present study might play a role in specific target recognition by dsRNA-binding proteins. Namely, it is conceivable that AU-tracts sequences will be preferred in protein-dsRNA interactions that require dsRNA bending. Finally, the narrow major groove characteristic of AU-tracts might also contribute to achieve dsRNA sequence specificity, as occurs with the minor groove in dsDNA A-tracts (24). This would add to other mechanisms of dsRNA sequence recognition, such as the recently proposed contacts through the minor groove (60,63). Future works should address the question of whether the structural features of AU-tracts here described play a role in protein-dsRNA sequence recognition.

In summary, we have investigated how the nucleotide sequences of AU-tracts, illustrated in Figure 7, interact with dsRNA and how they might be converted into such structures. We showed that a negative helix twist and a zig-zag roll are likely to occur in AU-tracts, with the AU-tracts creating a region with negative propeller twist, and these structural features are likely to be effective at inducing groove distortion and curvature. This study provides a deeper understanding of how such sequences can be involved in dsRNA recognition and how they might contribute to dsRNA structure formation.
AU-tracts located in arbitrary sequences. Our simulation results guided the design of dsRNA constructs suitable for measuring the effect of AU-tract bending in AFM experiments. Using AFM imaging, we found that these AU-tract molecules exhibited higher curvature than control dsRNAs of arbitrary sequence, confirming the prediction of our simulations. A molecular mechanism for AU-tract bending is proposed, where extensive propeller twisting of the A:U base pairs induce major groove compression.

Intrinsic bending induced by dsDNA A-tracts has been linked to multiple biological functions such as nucleosome positioning, localization of supercoils or germ-line gene silencing. It is therefore expected that the sequence-dependent bending reported here for dsRNA might also have important biological implications. On one hand, the bent structure of the AU-tracts could be exploited in the formation of tertiary contacts in the process of RNA folding. On the other hand, AU-tracts might provide a mechanism for sequence recognition based on dsRNA shape. Finally, our finding that the global dsRNA structure is sequence dependent might be relevant in the field of RNA nanotechnology. Future works might explore how this effect can be exploited in the design of complex RNA nanostructures.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS
The authors acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputacion at the Minotauro Supercomputer (BSC, Barcelona).

FUNDING
Spanish MINECO [MAT2017-83273-R (AEI/FEDER, UE) to R.P., BFU2017-83794-P (AEI/FEDER, UE to F.M.-H.) and Comunidad de Madrid (TecBio – S2018/NMT-4443 and NanoBioCancer – Y2018/BIO-4747 to F.M.-H.)]; R.P. acknowledges support from the Spanish Ministry of Science and Innovation, through the ‘María de Maeztu’ Programme for Units of Excellence in R&D [CEX2018-000805-M]; F.M.-H. acknowledges support from European Research Council (ERC) under the European Union Horizon 2020 research and innovation [681299]; J.G.V. acknowledges funding from a Marie Skłodowska-Curie Fellowship within the Horizons 2020 framework (DLY-795286) and the Swiss National Science Foundation (SNSF).

REFERENCES
1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. *Nature*, 391, 806–811.
2. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imazumi, T., Miyagishita, M., Taira, K., Akira, S. and Fujita, T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. *Nat. Immunol.*, 5, 730–737.
3. Schimmel, P. (2018) The emerging complexity of the RNA world: mammalian tRNAs beyond protein synthesis. *Nat. Rev. Mol. Cell Biol.*, 19, 45–58.
4. Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. *Nat. Rev. Mol. Cell Biol.*, 5, 451–463.
5. Wimberly, B.T., Brodersen, D.E., Clemens, W.M. Jr, Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T. and Ramakrishnan, V. (2000) Structure of the 3OS ribosomal subunit. *Nature*, 407, 327–339.
6. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. and Stitz, T.A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. *Proc. Natl. Acad. Sci. U.S.A.*, 98, 4899–4903.
7. Shi, Y. (2017) Mechanistic insights into precursor messenger RNA splicing by the spliceosome. *Nat. Rev. Mol. Cell Biol.*, 18, 655–670.
8. Marino, J.P., Gregorisan, R.S. Jr, Csankovszki, G. and Crothers, D.M. (1993) Bent helix formation between RNA hairpins with complementary loops. *Science*, 268, 1448–1454.
9. Denny, S.K., Bisaria, N., Yesserman, J.D., Das, R., Herschlag, D. and Greenleaf, W.J. (2018) High-Throughput investigation of diverse junction elements in RNA tertiary folding. *Cell*, 174, 377–390.
10. Das, R., Karanicolas, J. and Baker, D. (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. *Nat. Methods*, 7, 291–294.
11. Uchikawa, E., Lethier, M., Malet, H., Brunel, J., Gerieter, D. and Cusack, S. (2016) Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. *Mol. Cell.*, 62, 586–602.
12. MacRae, I.J., Zhou, K. and Doudna, J.A. (2007) Structural determinants of RNA recognition and cleavage by Dicer. *Nat. Struct. Mol. Biol.*, 14, 934–940.
13. Donovan, J., Dufner, M. and Korennykh, A. (2013) Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. *Proc. Natl. Acad. Sci. U.S.A.*, 110, 1652–1657.
14. Guo, P. (2010) The emerging field of RNA nanotechnology. *Nat. Nanotechnol.*, 5, 833–842.
15. Salmon, L., Yang, S. and Al-Hashimi, H.M. (2014) Advances in the determination of nucleic acid conformational ensembles. *Annu. Rev. Phys. Chem.*, 65, 293–316.
16. Ganser, L.R., Kelly, M.L., Herschlag, D. and Al-Hashimi, H.M. (2019) The roles of structural dynamics in the cellular functions of RNAs. *Nat. Rev. Mol. Cell Biol.*, 20, 474–489.
17. Šponer, J., Busi, G., Krepl, M., Bazek, P., Bottaro, S., Cunha, R.A., Gil-Ley, A., Pinamonti, G., Poblete, S., Jurčeka, P. et al. (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview. *Chem. Rev.*, 118, 4177–4338.
18. Haran, T.E. and Mohanty, U. (2009) The unique structure of A-tracts and intrinsic DNA bending. *Q. Rev. Biophys.*, 42, 41–81.
19. Martínez-González, A., Pastrana, C.L., Bocanegra, R., Martín-González, A., Vilhena, J.G., Pérès, R., Ibáñez, B., Aicart-Ramos, C. and Moreno-Herrero, F. (2020) Understanding the role of AU-tracts in the design of efficient RNA-mediated gene delivery vectors. *Mol. Ther.* (in press).
