Pathogenic NF1 truncating mutation and copy number alterations in a dedifferentiated liposarcoma with multiple lung metastasis: a case report

Yoon-Seob Kim 1,2,3, Sun Shin 1,2,3, Seung-Hyun Jung 2,3,4 and Yeun-Jun Chung 1,2,3,5*

Abstract

Background: Dedifferentiated liposarcoma (DDLPS), which accounts for an estimated 15–20% of liposarcomas, is a high-grade and aggressive malignant neoplasm, exhibiting a poor response to available therapeutic agents. However, genetic alteration profiles of DDLPS as well as the role of NF1 mutations have not been studied extensively.

Case presentation: The current study reports a patient presenting with rapidly growing DDLPS accompanied by multiple lung and pleural metastases, in whom whole-exome sequencing revealed a NF1 truncating mutation of the known pathogenic variant, c.C7486T, p.R2496X, as well as multiple copy number alterations (CNAs), including the well-known 12q13–15 amplification, and multiple chromothripsis events encompassing potential cancer-related genes.

Conclusions: Our results suggest that, in addition to the 12q13–15 amplification, NF1 inactivation mutation and other CNAs may contribute to DDLPS tumorigenesis accompanied by aggressive clinical features.

Keywords: Case report, Copy number alteration, Liposarcoma, Mutation, NF1, Copy number alteration

Background

Liposarcoma is the most common type of adult soft tissue sarcoma. Dedifferentiated liposarcoma (DDLPS), which accounts for an estimated 15–20% of liposarcomas, is a high-grade, aggressive disease that shows a poor response to available therapies [1]. Genetic analysis of DDLPS via The Cancer Genome Atlas (TCGA) project revealed that, compared with other solid tumors, DDLPS carried frequent copy number alterations (CNA) including recurrent amplification at 12q13–15, and relatively lower somatic mutations with only a few recurrently mutated genes, such as TP53 and ATRX [2]. Regarding CNAs, DDLPS is characterized by highly recurrent amplifications in the 12q13–15 region that contains the potential oncogenes, MDM2, CDK4, YEATS4, and FRS2, and the adipocytic differentiation factors, DDIT, PTPRQ, and HMGA2 [2–6]. In addition to the 12q13–15 amplification, other CNAs such as the gain of 1p32 (JUN), and the loss of 17q11 (NF1) and Xq21 (ATRX) have been identified in DDLPS [2–6]. However, genetic alteration profiles of DDLPS have not been studied extensively.

According to studies such as GENIE [7] and TCGA [2], NF1 mutations in DDLPS are rare, being limited to 2/179 cases in GENIE and 1/56 cases in TCGA. (Fig. S1A). MDM4 amplification was observed in 0.6 and 5% of DDLPS cases via the GENIE study [7] and the TCGA study [2], respectively (Fig. S1A). In TCGA soft tissue sarcoma project (N = 265) in cBioPortal database, patients carrying NF1 truncating or missense mutations showed significantly lower NF1 mRNA expression levels than
those in non-mutated cases. (Mann-Whitney U test, \(P = 0.012 \)) (Fig. S1B). Patients carrying \(MDM4 \) gains or amplifications showed significantly higher \(MDM4 \) mRNA expression levels compared with those of diploid or shallow deletion cases. (Mann-Whitney U test, \(P < 0.001 \)) (Fig. S1C).

Herein, we report a patient with rapidly growing DDLPS with multiple lung and pleural metastasis, in whom whole-exome sequencing (WES) revealed a \(NF1 \) truncating mutation of a known pathogenic variant and multiple CNAs including \(MDM4 \) gain.

Case presentation
An eighty-four-year-old male visited the outpatient clinic complaining of a painful mass that had been present on his left thigh for 3 years. He was medically healthy and did not have a previous medical or familial history of malignancy. There was no clinical sign of neurofibromatosis. He had twice undergone excisional biopsies (18 and 3 years ago) of the mass at the same location under the presumed diagnosis of lipoma. Preoperative magnetic resonance imaging revealed an approximately 17.5 × 16.4 × 30.2 cm sized, extensive, lobulated heterogeneous mass with T2 high, T1 high signal intensity involving the left thigh. A wide local excision was performed. Gross pathology of the tumor showed a well circumscribed tumor mass with internal multi-lobulated areas (Fig. 1a). Multiple lung and pleural metastases were diagnosed via chest computed tomography (Fig. 1b). Histological findings showed dedifferentiated areas with spindle cells without a lipomatous portion and less dedifferentiated areas consisting of round cells with lipomatous portions, along with infiltrated polymorphonuclear cells (Fig. 1c). Based on these clinical and pathological findings, the mass was diagnosed as DDLPS. The patient died 2 months following surgery.

A DDLPS frozen tissue was obtained from the biobank of Seoul St. Mary Hospital (Seoul, Republic of Korea). Genomic DNA was extracted by microdissection of tumor cell rich area (> 70% of tumor cell purity) and whole blood of the patient using the DNeasy Blood & Tissue Kit (Qiagen, Milan, Italy). The whole-exome sequencing identified a heterozygous truncating \(NF1 \) variant (c.314delC, p.Trp105fsX202) that is absent from dbSNP (ID: rs11188468). The \(NF1 \) deletion variant was verified using Sanger sequencing (Fig. S2A, B). Whole-exome sequencing also revealed multiple \(MDM4 \) copy number alterations, including a gain (Fig. S2C).

Fig. 1 Pathological and radiological features of the DDLPS case. (A) Gross pathology, tumor showed well circumscribed tumor mass with internal multi-lobulated areas. (B) Multiple lung (blue arrow) and pleural metastases (red arrow) were detected by chest computed tomography. (C) Histological findings of representative tumor area showed dedifferentiated areas with spindle cells without lipogenic portion (left panel) and less dedifferentiated areas with round cells with lipogenic portion (right panel) (hematoxylin and eosin, original magnification, ×100).
Hilden, Germany). WES was performed using the Agilent SureSelect Human All Exome 50 Mb Kit (Agilent Technologies, Santa Clara, CA) and Illumina HiSeq 2500 platform (Illumina, San Diego, CA). Data pre-processing was done using the best practices workflows of The Genome Analysis toolkit (GATK, v4.1.1) (https://software.broadinstitute.org/gatk/) to align the sequence reads with the human reference genome (UCSC hg19) and local realignments with base recalibration, and to identify somatic mutations. The web ANNOVAR package was used to select somatic mutations located in the exonic sequences and to predict their functional consequences [8]. In order to obtain reliable and robust mutation calling, the following variants were eliminated: (i) read depth fewer than 20 in either the tumor or matched constitutional tissues; (ii) polymorphisms listed in the population databases of East Asians with a minor allele frequency 0.1% or more; and (iii) variant allele frequencies less than 5%. Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signatures were obtained via a Mutalisk package [9] using known mutation signatures of soft-tissue sarcoma [2] (signature 1, 2, 5, and 13). To define CNAs, we used the ngCGH module and

![Fig. 2](image-url)

Fig. 2 Identification of genomic alterations by WES from a DDLPS patient. **a** Identification of a somatic NF1 mutation. The red T letters indicate the presence of a truncating mutation (c.7486C>T, p.Arg2496*), variant allele frequency 15.7% in NF1 gene. **b** Genome-wide copy number alteration profile of the DDLPS patient. X-axis represents individual chromosome, and Y-axis represents depth ratio (tumor/constitutional) in log2 scale. Red and blue lines indicate the threshold of copy gain and copy loss. Bold red line indicates the threshold of amplification. Red and blue arrows represent the copy gain/amplification and loss, respectively. **c** Copy number alteration profiles of chromosome 1, 7, 8, 9, 12, and 20. X-axis represents individual chromosome, and Y-axis represents depth ratio (tumor/constitutional) in log2 scale. Red arrows represent the copy gain or amplification regions where known DDLPS related genes are located. Chromothripsis events were observed in 7p, 9q, and 20q
SNPRank Segmentation statistical algorithm in NEXUS software 9.0 (Biodiscovery, El Segundo, CA). Segments were classified as gains or losses when the log2 ratio was greater than 0.25 or less than −0.25, respectively. Amplification was defined as a log2 ratio greater than 1.0.

The average sequencing depths for tumor and constitutional DNA were 218X and 223X, respectively (Table S1). A total of 36 non-silent mutations were identified in the exonic area (Table S2), which corresponded to a mutation rate of 0.73 per Mb. The NF1 stop gain mutation (c.7486C > T, p.Arg2496∗), variant allele frequency 15.7% was identified among the cancer-related genes listed in the Cancer Gene Census of COSMIC database (Fig. 2a). This variant was classified as ‘pathogenic’ in ClinVar DB (RCV000218957.1), and not reported in population level variant databases. There is no germline variant classified as ‘pathogenic’ or ‘likely pathogenic’ in ClinVar DB. Thirty-five regions affected by CNAs were found, which correspond to 2% of the genome, including amplifications on 1q32, 5p13, 7p22, 8q11–12, 12q13–15, and multiple chromothripsis events were also observed in 7p, 9q, and 20q (Fig. 2c). In a mutational context, C > T mutations were predominant and signature decomposition analysis indicated predominant signatures 1 and 5 (clock-like mutational process) followed by a minor proportion of signatures 2 and 13 (APOBEC-related), which was consistent with the results of a TCGA study on DDLPS [2] (Fig. S2).

Discussion and conclusions

Although genetic alteration of NF1 is commonly found in liposarcomas (10–20%) [5, 6], inactivation of NF1 by a mutation or a deletion may contribute to the aggressiveness of liposarcoma [5, 10]. Processes associated with the occurrence of NF1 mutations in DDLPS remain unclear. Using WES, we identified a pathogenic NF1 truncating mutation with multiple CNAs in a DDLPS case exhibiting aggressive clinical features. The NF1 truncating mutation identified in this case was classified as a ‘pathogenic’ event (ClinVar) which could act as a driver. In spite of the tumor being located in the extremities, a relatively favorable area [11], the patient presented with aggressive features of a rapidly growing tumor mass accompanied by multiple lung and pleural metastases.

Decreased NF1 expression may lead to dysregulation of the Ras/MAPK pathway, thus contributing to tumorigenesis of the sarcoma [12]. In addition to the known 12q13–15 amplification, this case revealed other CNAs where potential cancer related genes, such as MDM4, are located. Amplification of MDM4 (1q32.1) is known to play a synergistic role by inducing the inactivation of TP53 and amplification of MDM2 [13]. Pissaloux et al. reported that a subset of DDLPS exhibited MDM4 amplification as an oncogenic alternative to MDM2 amplification [14]. Chromothripsis events were observed in 7p, 9q, and 20q where potential cancer related genes, such as RAC1, KLF4, MAFB, TOP1, PLCG1, and PTPRT, are located. This result was compatible with that of a previous study which reported that 100% of liposarcomas (18/18) showed chromothripsis [15].

In conclusion, we report a DDLPS patient who presented with aggressive clinical features. The patient harbored NF1 truncating mutations with multiple CNAs, including the well-known 12q13–15 amplification, and multiple chromothripsis events. Further studies may be needed to elucidate the role of NF1 inactivation mutations and multiple CNAs in DDLPS tumorigenesis accompanied by aggressive clinical features.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12881-020-01137-4.

Additional file 1.

Abbreviations
CNA: Copy number alterations; DDLPS: Dedifferentiated liposarcoma; TCGA: The Cancer Genome Atlas; WES: Whole exome sequencing

Acknowledgements
Not applicable.

Authors’ contributions
YSK and YJC wrote the manuscript. YJC conceived and designed the study. YSK and SS participated in acquisition of data and sample preparation. YSK, SS, and SHJ carried out the molecular genetic studies and following analysis. All authors read and approved the final manuscript.

Funding
This study was supported by grants from National Research Foundation of Korea (2017R1E1A1A01074913, 2019R1A5A2027588, and 2017M3C9A6047615). The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
WES data were deposited in the SRA database (Project ID: PRJNA529696). Human reference genome used in this study (UCSC hg19) can be downloaded at the following url: https://hgdownload.soe.ucsc.edu/downloads.html. Accession numbers of the putative pathogenic variant in this study (NF1 c.7486C > T, p.Arg2496∗) in ClinVar database is RCV000218957.1. Functional annotation of genetic variants listed in Supplementary Table S2 is generated by the web ANNOVAR package available at the following url: http://wannovar.wglab.org/. Genes listed in The Cancer Gene Census tier 1 curated by COSMIC project (v91 release) is available at the following url: https://cancer.sanger.ac.uk/census. All other
remaining data are available within the article and in the supplementary
data, or available from the authors upon reasonable request.

Ethics approval and consent to participate
This study was approved by the institutional review board of the Catholic
University of Korea (KC15TISI0966).

Consent for publication
The patient has provided written consent to publish this case report,
including medical data and images. A copy of the written consent forms is
available for review by the Editor Office of this journal.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Microbiology, College of Medicine, The Catholic University of
Korea, Seoul, Republic of Korea. 2Integrated Research Center for Genome
Polymorphism, College of Medicine, The Catholic University of Korea, Seoul,
Republic of Korea. 3Precision Medicine Research Center, College of Medicine,
The Catholic University of Korea, Seoul, Republic of Korea. 4Department of
Biochemistry, The Catholic University of Korea, Seoul, Republic of Korea.
5Biomedicine & Health Sciences, The Catholic University of Korea, Seoul,
Republic of Korea.

Received: 28 February 2020 Accepted: 1 October 2020
Published online: 12 October 2020

References
1. Lee ATJ, Thway K, Huang PH, Jones RL. Clinical and molecular Spectrum of
Liposarcoma. J Clin Oncol. 2018;36:151–9.
2. Comprehensive and Integrated Genomic Characterization of Adult Soft
Tissue Sarcomas. Cell. 2017;171:950–965.e128. https://pubmed.ncbi.nlm.nih.
gov/29100075/.
3. Amin-Mansour A, George S, Sioletic S, Carter SL, Rosenberg M, Taylor-
Weiner A, et al. Genomic evolutionary patterns of Leiomyosarcoma and
Liposarcoma. Clin Cancer Res. 2019;25:5135–42.
4. Beird HC, Wu CC, Ingrarn DR, Wang WL, Alimmohamed A, Gumbs C, et al.
Genomic profiling of dedifferentiated liposarcoma compared to matched
well-differentiated liposarcoma reveals higher genomic complexity and a
common origin. Cold Spring Harb Mol Case Stud. 2018;4. https://pubmed.
ncbi.nlm.nih.gov/29610390/.
5. Kanojia D, Nagata Y, Garg M, Lee DH, Sato A, Yoshida K, et al. Genomic
landscape of liposarcoma. Oncotarget. 2015;6:42429–44.
6. Barretina J, Taylor BS, Baneiji S, Ramos AH, Lagos-Quintana M, Decarolis PL,
et al. Subtype-specific genomic alterations define new targets for soft-tissue
sarcoma therapy. Nat Genet. 2010;42:715–21.
7. AACR Project GENIE. Powering precision medicine through an international
colaborative. Cancer Discov. 2017;7:818–31.
8. Chang X, Wang K. wANNOVAR: annotating genetic variants for personal
genomes via the web. J Med Genet. 2012;49:433–6.
9. Lee J, Lee AJ, Lee JK, Park J, Kwon Y, Park S, et al. Mutalisk: a web-based
somatic MUtation Analysis toolKit for genomic, transcriptional and
epigenomic signatures. Nucleic Acids Res. 2018;46:W102–W108.
10. Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the
neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015;15:290–301.
11. Dalal KM, Antonescu CR, Singer S. Diagnosis and management of
lipomatous tumors. J Surg Oncol. 2008;97:298–313.
12. Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1
somatic mutational landscape in sporadic human cancers. Hum Genomics.
2017;11:13.
13. Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G. Keeping p53
in check: essential and synergistic functions of Mdm2 and Mdm4. Cell
Death Differ. 2006;13:267–34.
14. Pissaloux D, Loarer FL, Decouvelaere AV, Paindavoine S, Houlier A, Vernay L,
et al. MDM4 amplification in a case of de-differentiated liposarcoma and in-
silico data supporting an oncogenic event alternative to MDM2
amplification in a subset of cases. Histopathology. 2017;71:1019–23.
15. Cortés-Criano I, Lee J-H, Xi R, Jain D, Jung YL, Yang L, et al. Comprehensive
analysis of chromothripsis in 2,658 human cancers using whole-genome
sequencing. Nat Genet. 2020;52:331–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions