Tuberculosis biomarkers: from diagnosis to protection

Delia Goletti,1 Elisa Petrucciolì,1 Simone A. Joosten,2 Tom H.M. Ottenhoff2
1Translational Research Unit, Department of Epidemiology and Predclinical Research, National Institute for Infectious Diseases, L. Spallanzani, Rome, Italy; 2Department of Infectious Diseases, Leiden University Medical Centre, The Netherlands

Abstract

New approaches to control tuberculosis (TB) worldwide are needed. In particular, new tools for diagnosis and new biomarkers are required to evaluate both pathogen and host key elements of the response to infection. Non-sputum based diagnostic tests, biomarkers predictive of adequate responsiveness to treatment, and biomarkers of risk of developing active TB disease are major goals. Here, we review the current state of the field. Although reports on new candidate biomarkers are numerous, validation and independent confirmation are rare. Efforts are needed to reduce the gap between the exploratory up-stream identification of candidate biomarkers, and the validation of biomarkers against clear clinical endpoints in different populations. This will need a major commitment from both scientists and funding bodies.

Introduction

Tuberculosis (TB) is a communicable infectious disease, spread almost exclusively by coughed aerosols carrying pathogens from the Mycobacterium tuberculosis (Mtb) complex. TB is characterized pathologically by necrotizing granulomatous inflammation usually in the lung, although almost any extra-pulmonary site can be involved. TB remains one of the most significant infectious causes of mortality and morbidity worldwide. As reported by the World Health Organization (WHO) it causes disease among 9.6 million people each year and ranks alongside the human immunodeficiency virus (HIV) as a leading cause of death worldwide.1 In 2014, 1.5 million TB deaths were reported and among them approximately 140,000 were children. The number of TB deaths is unacceptably high because with a well-timed diagnosis and appropriate treatment, almost all people with TB can be cured. Therefore all efforts to fight TB must be intensified. Additionally, it is estimated that one-third of the world’s population is latently (asymptomatically) infected with Mtb, and approximately 3 to 10% of these infected individuals are likely to progress to active disease during their life. The risk of reactivation and subsequent disease and mortality is significantly increased in individuals with HIV infection2,3 and therapy with TNFα inhibitors.4 Approaches to decrease TB morbidity and mortality, along with Mtb transmission, rely on effective treatment, correct diagnosis, and prevention of infection and disease.

Effective therapy is central to any strategy for controlling TB and biomarkers that indicate initiation of successful treatment could facilitate development of alternative treatment strategies. There is a need for shorter treatment regimens to increase compliance. Unfortunately, recent studies have not shown definitive results.4 In fact, in the REMoxTB Clinical Trials experience, despite early effectiveness (superior early bactericidal activity and 2-month culture conversion rates in patients treated with moxifloxacin compared to the standard regimen), the 4-month-regimen was less effective than the standard 6-month regimen in preventing TB recurrence.5,6 Moreover, correct and efficacious treatment is also needed to avoid multidrug-resistant (MDR)-TB. Globally, an estimated 3.3% of new TB cases and 20% of previously treated cases had MDR-TB in 2014.5 This translates into an estimated 480,000 people having developed MDR-TB in 2014 with a treatment success rate of only 48%.7 Patients with MDR-TB urgently require treatments that quickly eradicate active infection while preventing emergence of additional resistance, which otherwise causes treatment failure and death.

Accurate diagnosis is also a cornerstone of TB control. Active TB diagnosis is based on the detection of Mtb in sputum, which depends on the presence of necrotic infection foci in proximity to the airways. The diagnosis then is based on sputum smear and culture,9–12 and more recently positive GeneXpert MTB/RIF tests.13 Microscopy is largely available and highly specific, but lacks sensitivity, missing the diagnosis in over one third of patients seeking care.14–16 Mycobacterial culture remains the gold standard for TB diagnosis, but provides results only after considerable delay (3–4 weeks). All these diagnostic tests require a Mtb-positive sputum while many active TB patients, including HIV-coinfected individuals, diabetes patients, and children, often do not present with Mtb positive sputum.15,16 In pulmonary TB a positive microbiological diagnosis inevitably means the presence of Mtb in the airway secretions, such that in all likelihood Mtb has been already transmitted to others. By definition, sputum diagnostics are not useful in extra-pulmonary disease, the diagnosis of which relies on samples (tissue or biological fluids as pleural-, cerebral-, synovial-fluids) collected by invasive procedures. For all of these reasons, there is need for the development of highly sensitive and specific diagnostic tests for TB to rapidly identify – or rule out – the presence of active disease. These tests need to perform in endemic settings with limited laboratory facilities, at low cost, using easily accessible non-sputum based samples such as blood, urine, or breath. These are the four high priority target product profiles (TPPs) recently published by the WHO as a result of a consensus meeting on new TB diagnostics.17

Therefore the urgent need to search for bio-

[page 24] [Infectious Disease Reports 2016; 8:6568]
markers (defined as measurable characteristics that indicate normal or pathogenic biological processes, or pharmacological responses to therapeutic intervention) needs to be highlighted: biomarkers can serve as surrogate endpoints in clinical trials, and can be used to improve treatment outcome by informing therapeutic decisions for individual patients. Sputum culture conversion using solid medium is the best-characterized TB biomarker for successful treatment, having been examined in many studies either as a simple measure (e.g. month 2 culture status) or in more complex forms requiring subsequent negative cultures (e.g. stable culture conversion). However, as reported above, in the REMoxTB trial patients developed recurrent TB despite negative sputum cultures at month 2. Thus better biomarkers predictive of TB treatment outcome are needed. This is a priority for the TB research field and has the potential to impact not only research but also clinical practice globally.

In this paper we will review most of the recent advances in research into TB biomarkers for the diagnosis of active TB, latent TB infection (LTBI) and prevention of TB disease.

Biomarkers for diagnosing active tuberculosis

We may distinguish biomarkers related to the pathogen and to the host (Figure 1). From the pathogen perspective, Mtb products could be detected directly in blood, sputum or urine. Mtb DNA can be detected in blood and urine of pulmonary TB patients with a better sensitivity than Mtb culture from the same biological fluid. The Mtb cell wall component lipoarabinomannan (LAM) has been proposed as TB biomarker; however the available commercial test on urine has a poor sensitivity. This can be partly enhanced by other LAM assays. Although unsatisfactory as yet, in HIV-infected patients the Mtb DNA and LAM detection in urine may be an important tool to consider especially for those advanced cases with low CD4 T-cell counts. The Mtb Ag85 complex is a 30-32kD family of three proteins (Ag85A, Ag85B, and Ag85C) with enzymatic mycolyl transferase activity involved in the coupling of mycolic acids to the arabinogalactan of the cell wall and in the biogenesis of the cord factor. The detection of Ag85 in blood and urine, however, shows highly variable performance in different studies.

Among the host biomarkers, there are various non-sputum based-assays for active TB diagnosis, relying on serum, plasma, urine or stimulated or unstimulated blood. Considering serum or plasma products, Mtb specific antibody detection is not a promising diagnostic approach due to heterogeneity of the response to Mtb. Moreover WHO negatively advised on the use of such tests for diagnosing active TB disease. The evaluation of serum microRNAs has shown different levels of accuracy for diagnosing active TB in drug-sensitive and drug resistant TB.

A broad range of potential transcriptional TB biomarkers has been reported. Modular and pathway analysis revealed that the neutrophil driven interferon (IFN)-inducible gene profile, consisting of both Type 2 (IFNγ) and Type 1 (IFNα/β) IFN signaling represented a significant TB signature detectable in the peripheral blood from pulmonary TB patients. These findings have been also validated in other populations and in several studies could differentiate TB from other respiratory infections and inflammatory diseases. Moreover it has been shown that disease activity increased the signature whereas treatment decreased it. Integrated analysis of gene expression signatures obtained in eight independent studies revealed additional pathways that are likely to contribute to discrimination of TB disease from other diseases. Diagnostic signatures to distinguish TB from other diseases and from LTBI were also found in children from South Africa, Malawi and Kenya. However one of the major challenges in the evaluation of new childhood TB diagnostic is the lack of a reference, due to the difficulty of microbiological diagnosis of active disease. Taking all these studies together it is important to mention that the minimum TPP requirements are not yet satisfied in terms of sensitivity and specificity. The complexity of the analysis and the expensive molecular techniques related to the transcriptional profiles make it currently difficult to be used as routine diagnostic tests unless easier technologies are developed. However, all studies reported above are important for our comprehension of TB pathogenesis.

The interferon (IFNγ) inducible protein 10 (IP10) was found to be increased in the unstimulated plasma of children and adults with active TB, and has been evaluated by different methodologies including also innovative technologies based on lateral flow assays using the interference-free, fluorescent up converting phosphor (UCP) labels in multicenter studies conducted in Africa.

Interestingly, IP10 can be also detected in the urine of adult patients, Ugandan children with active TB, and IP10 levels decreased after efficacious therapy. In comparison with blood, urine biomarkers offer the advantage of non-invasive sample collection, especially in children, and also pose lower bio safety risks for health care workers.

Flow-cytometry has been proposed as a potential tool to help improving TB diagnosis. Advancement in multiparametric flow cytometry allows the simultaneous evaluation of several immune functions in single cells such as cytokine production and memory status. Polyfunctional T-cells, cells able to produce more than one cytokine simultaneously, have been described as part of immune response to different pathogens such as viruses, bacteria and worms. Moreover T-cells coproducing...
IFNγ, TNFα and IL2 have been associated with protective T-cell immune responses in HIV non-progressors subjects.64 Studies evaluating the role of polyfunctional T-cells in TB did not show consistent results. Active TB has been associated with either monofunctional TNFα+CD4+ T-cells,63 or double functional IFNγ+TNFα+CD4+ T-cells,74-76 or triple functional IFNγ+TNFα+IL2+CD4+ T-cells.75 By contrast, studies on activation and memory status of Mtb-specific T-cells seem to be more consistent, even when comparing patient populations enrolled at different sites or using different experimental settings. Effector T-cells expand during active Mtb replication, whereas memory cells associate with control and eradication of Mtb infection.71,72,75-78 In particular, it has been shown that active TB is associated with a decrease in CD27 surface expression on T-cells.70,77,79-81 Recently, a novel T-cell activation marker-TB (TAM-TB) assay was described for the discrimination of Mtb infection.71,72,75-78 In particular, it has been tested in an adult population from a low TB endemic country and confirmed discrimination between Maf- and Mtb-infected patients pre-treatment, and after anti-TB therapy to access the differences when comparing TB patients and healthy subjects. Analysis of sera for host markers showed that transthyretin, C-reactive protein and neopterin might discriminate TB patients from subjects with other infectious and inflammatory conditions with high accuracy.45 Similarly, sputum may also be used to analyze proteomic profiles, as data on smear-negative vs. smear-positive TB patients were significantly different from those found in control subjects.56

Volatile organic compounds (VOCs) in breath may contain biomarkers of active pulmonary TB derived directly from the infectious organism (e.g. metabolites of Mtb) and/or from the infected host (e.g. products of oxidative stress). A breath test based on the detection and quantification of VOCs identified potential biomarkers of active pulmonary TB with 85% accuracy in symptomatic high-risk subjects.67 However, detection of VOCs is technically difficult because most breath VOCs is excreted in picomolar concentrations (parts per trillion), and most analytical instruments currently used cannot detect VOCs at such low concentrations.

Biomarkers to monitor tuberculosis therapy efficacy

The absence of satisfactory tools for monitoring TB therapy efficacy impedes optimal clinical management of patients, especially for extra-pulmonary TB where it is not possible to detect Mtb in sputum.86,87 precluding the possibility to make a link between sputum culture and clinical outcome. The majority of publications investigating treatment response biomarkers failed to articulate the intended use and underlying TPP. Furthermore, most studies compared changes in proposed biomarkers over time during treatment without testing, or being powered to test, the correlation with patient outcome, i.e., relapse-free cure (Figure 2). Study comparisons of Xpert MTB/RIF, smear microscopy and culture using both solid and liquid media have shown that the Xpert MTB/RIF assay has high sensitivity (97%) but poor specificity (49%) to identify culture positive specimens when Xpert is used as a binary readout. The quantitative measurement from the Xpert MTB/RIF assay, showed that the change in quantitative sputum bacterial load correlated with smear grades, solid culture grades, and time to liquid culture positivity.98

Figure 2. Flow chart of the biomarkers to monitor TB therapy efficacy. TB: tuberculosis; Ag: antigen; LAM: lipoarabinomannan; VEGF: vascular endothelial growth factor; BAL: broncholavage; IP: Interferon-γ inducible protein; FACS: Fluorescence-activated cell sorting; IL: interleukin; PSME1: proteasome activator complex subunit 1; SAA: serum amyloid A; PET/CT: positron emission tomography/computed tomography.
This quantitative data may be used in the future to predict clinical outcome of patients. Considering that the Xpert MTB/RIF test detects DNA from dead as well as live Mtb, a recent study proposed to perform the quenching of DNA detection from dead mycobacteria by adding propidium monoazide (which quenches PCR-mediated detection of DNA from dead mycobacteria) to specifically detect only viable bacilli. High-resolution 3-dimensional imaging helps evaluating the pulmonary TB burden during therapy. In the lungs, a quantitative volumetric change in the uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) after 2 and 6 months of TB therapy has been detected by positron emission tomography/computed tomography (PET/CT) quantification and this modulation could be correlated with treatment outcome. However, due to machine equipment, complexity, cost and radiation exposure, the use of PET/CT approach is still restricted to clinical trials. As reported above modulation of CD27 evaluated by flow cytometric studies may be a novel marker not only for active TB diagnosis but also therapy monitoring. The same may hold true for the modulation of CD38, HLA-DR and proliferation marker Ki-67.

In analogy to cancer, an expansion of myeloid derived suppressor cells (MDSCs), which have a remarkable ability to suppress T-cell responses, has been observed in the lung and blood of patients with active TB whereas a contraction is reported after efficacious anti-TB therapy.

TB therapy significantly decreased the in vitro IFNγ response induced by peptides selected from ESAT-6 and CFP-10 in patients with active TB in studies conducted in Europe, Uganda, and India, suggesting that this response can be a tool to monitor anti-TB treatment efficacy. The results have been confirmed using IP10 instead of IFNγ.

Biomarkers for latent tuberculosis infection identification

Using a clinically pragmatic approach, LTBI is defined by the presence of a specific immune response detected by an IFNγ release assay (IGRA) or the tuberculin skin test (TST) (Figure 3) in the absence of lung lesions of active TB in X-ray images, in individuals from whom it is not possible to isolate Mtb. IGRA (QuantiFERON TB Gold in tubes (Qiagen, Venio, the Netherlands; QFT-GIT) and T-SPOT.TB (Oxford Immunotec, Marlborough, MA, USA)) measure in vitro IFNγ production by whole blood ELISA or an enzyme-linked immunospot (ELISPOT) assay on peripheral blood mononuclear cells (PBMC), respectively. Blood is stimulated with Mtb-specific antigens, which are deleted from the genome of M. bovis BCG and are not present in most environmental mycobacteria. TST is based on skin infiltration caused by intradermal injection of purified protein derivative (PPD), which is a crude mixture of antigens many of which are shared by Mtb, M. bovis, BCG and several species of environmental mycobacteria. A particular benefit of in vitro testing is that there is a laboratory test with negative and positive controls, and that one visit suffices. In contrast to the TST, these in vitro tests may discriminate true negative responses from energy.

Results from ongoing studies will show if the test has a better accuracy compared to the old TST. It should be noted that both TST and IGRA share limitations: a low accuracy in immune-compromised patients, impossibility to distinguish between LTBI and active disease, which is a major issue in TB endemic areas, and low predicting values for active TB disease.

Several efforts have been undertaken to distinguish LTBI from active TB, with no clear success probably due to the fact that LTBI is characterized by a high heterogeneity of TB lesions that may depict as a broad spectrum of conditions that overlap in part with those seen in active disease. Some subjects show only the remnant of a waning infection, while others show a slowly progressing form of disease,
or a chronic non-progressing infection.120

In the QFT-GIT format the chemokine IP10 has been suggested as an alternative marker for IFNg139,140,141,142 with high accuracy in the HIV-infected patients.122,123,124

Besides IGRA, several approaches for LTBI identification have been proposed: evaluation of plasma concentrations of epidermal growth factor fractalkine, IFNg, IL4, monococyte chemotactic protein (MCP3, IP10);126 evaluation of serum pro-inflammatory cytokines IL6, IP10, MCP1;127 detection of plasma levels of markers involved in the Toll-like receptor 4 pathway, like soluble CD14 and myeloid differentiation-2.128 A recent study on LTBI subjects demonstrated that Mtb-specific CD4+ T-cells have a characteristic chemokine expression signature (CCR6-CXCR3-CCR4), and that the frequency of these cells is increased in LTBI subjects compared with healthy donors (129). This study suggested a possible role of specific subsets of CD4+ T-cells in the containment of Mtb and raises interesting questions on the possible role of these cells. In particular the transcriptional profile of CCR6-CXCR3-CCR4-CD4+ T revealed characteristics important for TB containment, since gene expression profiles correlated with TB susceptibility genes, enhanced T-cell activation, cell survival and cytotoxic response.123 Stimulation with the so called Mtb latency antigens, such as Rv1733c, Rv2092c, Rv2628 and HBHA130-134 seem promising tools to identify LTBI subjects and distinguish recent LTBI from remote LTBI.130,137,138

A recent study on LTBI subjects demonstrated that Mtb-specific CD4+ T-cells have a characteristic chemokine expression signature (CCR6-CXCR3-CCR4), and that the frequency of these cells is increased in LTBI subjects compared with healthy donors (129). This study suggested a possible role of specific subsets of CD4+ T-cells in the containment of Mtb and raises interesting questions on the possible role of these cells. In particular the transcriptional profile of CCR6-CXCR3-CCR4-CD4+ T revealed characteristics important for TB containment, since gene expression profiles correlated with TB susceptibility genes, enhanced T-cell activation, cell survival and cytotoxic response.123 Stimulation with the so called Mtb latency antigens, such as Rv1733c, Rv2092c, Rv2628 and HBHA130-134 seem promising tools to identify LTBI subjects and distinguish recent LTBI from remote LTBI.130,137,138 If confirmed in larger studies, these results may have important implications for risk stratification when deciding to initiate preventive therapy.130,138,139

Biomarkers for prevention: vaccine studies

As discussed above, among the T-cell based biomarkers, polyfunctional T-cells have been explored as potential biomarkers by multiparametric flow technology. In animal models, i.e. mice, vaccine-induced protection against Mtb infection strongly correlated with a high frequency of polyfunctional CD4+ T-cells.130,131 However the correlation of this polyfunctional cytokine profile with protective efficacy of BCG vaccination was absent in humans, as reported in a cohort of BCG-immunized infants monitored for 2 years.142 Similar results were obtained in a TB vaccine study based on MVA85A (modified vaccinia virus Ankara expressing antigen 85A).143 In addition, polyfunctional T-cells have been reported at increased frequencies in active TB.144 These studies suggest that polyfunctional T-cells play a role in vaccine induced protection against TB in animal models, but do not represent a corre-
24. Kaforou M, Wright VJ, Oni T, et al. Evaluation of QuantiFERON-TB gold in tube for TB diagnosis. PLoS One 2013;8:e73579.

11. Lagrange PH, Thangaraj SK, Dayal R, et al. A toolbox for tuberculosis (TB) diagnosis: an Indian multi-centric study (2006-2008); evaluation of serological assays based on PGL-Tb1 and ESAT-6/CFP10 antigens for TB diagnosis. PLoS One 2014;9:e96367.

12. Xia H, Wang X, Li F, et al. Diagnostic values of the QuantiFERON-TB Gold In-tube assay carried out in China for diagnosing pulmonary tuberculosis. PLoS One 2015;10:e0121021.

13. Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010;363:1005-15.

14. Davies PD, Pail M. The diagnosis and mis-diagnosis of tuberculosis. Int J Tuberc Lung Dis 2008;12:1226-34.

15. Bacakoglu F, Basoglu OK, Cok G, et al. Pulmonary tuberculosis in patients with diabetes mellitus. Respiration 2001;68:595-600.

16. Walzl G, Ronacher K, Hanekom W, et al. Immunological biomarkers of tuberculosis. Nat Rev Immunol 2011;11:343-54.

17. Denkinger CM, Kik SV, Cirillo DM, et al. Defining the needs for next generation assays for tuberculosis. J Infect Dis 2015;211:S29-38.

18. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89-95.

19. Wallis RS, Peppard T. Early Biomarkers for tuberculosis. J Infect Dis 2015;211:S160-3.

20. Ottenhoff TH. Overcoming the global crisis; yes, we can, but also for TB ...? Eur J Immunol 2009;39:2014-20.

21. Ottenhoff TH, Ellner JJ, Kaufmann SH. Ten challenges for TB biomarkers. Tuberculosis (Edinb) 2012;92:S17-20.

22. Cliff JM, Cho JE, Lee JS, et al. Excessive cytokytic responses predict tuberculosis relapse after apparently successful treatment. J Infect Dis 2016;213:485-95.

23. Joosten SA, Goeman JJ, Sutherland JS, et al. Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay. Genes Immun 2012;13:71-82.

24. Kafourou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med 2013;10:e1001538.

25. Cannas A, Goletti D, Girardi E, et al. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 2008;12:146-51.

26. da Cruz HI, de Albuquerque Montenegro R, de Araujo Lima JF, et al. Evaluation of a nested-PCR for mycobacterium tuberculosis detection in blood and urine samples. Braz J Microbiol 2011;42:321-9.

27. Theron G, Peter J, Calligaro G, et al. Determinants of PCR performance (Xpert MTRB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from different body compartments. Sci Rep 2014;4:6568.

28. Minion J, Leung E, Talbot E, et al. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J 2011;38:1398-405.

29. Mukundan H, Price DN, Goertz M, et al. Understanding the interaction of Lipoarabinomannan with membrane mimetic architectures. Tuberculosis (Edinb) 2012;92:38-47.

30. Chan CE, Gotze S, Seah GT, et al. The diagnostic targeting of a carbohydrate virulence factor from M. tuberculosis. Sci Rep 2015;5:10281.

31. Hamasur B, Bruchfeld J, van Helden P, et al. A sensitive urinary lipoarabinomannan test for tuberculosis. PLoS One 2015;10:e0123457.

32. Aceti A, Zanetti S, Mura MS, et al. Identification of HIV patients with active pulmonary tuberculosis using urine based polymerase chain reaction assay. Thorax 1999;54:145-6.

33. Nakiyangi L, Moody LM, Manabe YCet al. Diagnostic accuracy of a rapid urine lipoarabinomannan test for tuberculosis in HIV-infected adults. J Acquir Immune Defic Syndr 2014;66:270-9.

34. Lawn SD, Kerkhoff AD, Burton R, et al. Rapid microbiological screening for tuberculosis in HIV-positive patients on the first day of acute hospital admission by systematic testing of urine samples using Xpert MTB/RIF: a prospective cohort in South Africa. BMC Med 2015;13:192-015-0432-2.

35. Ronning DR, Klabunde T, Besra GS, et al. Dynamic antibody responses to antigen 85A and antigen 85B of Mycobacterium tuberculosis: a prospective cohort study. BMC Pulm Med 2015;78.

36. Kunnath-Velayudhan S, Salamon H, Wang HY, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci USA 2010;107:14703-8.

37. WHO. Commercial serodiagnostic tests for diagnosis of tuberculosis: policy statement. Available from: http://apps.who.int/iris/bitstream/10665/4652/1/9789241502054_eng.pdf

38. Kaushyap RS, Rajan AN, Ramteke SS, et al. Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of antigen 85 complex: a prospective cohort study. BMC Infect Dis 2007;7:74.

39. Kunnath-Velayudhan S, Salamon H, Wang HY, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci USA 2010;107:14703-8.

40. WHO. Commercial serodiagnostic tests for diagnosis of tuberculosis: policy statement. Available from: http://apps.who.int/iris/bitstream/10665/4652/1/9789241502054_eng.pdf

41. Huang J, Jiao J, Xu W, et al. Human gene expression profiles of patients with active pulmonary tuberculosis. PLoS One 2013;8:e80149.

42. Esterhuyse MM, Weiner J 3rd, Caron E, et al. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. MBio 2015;6:e01187-15.

43. Ren N, Gao G, Sun Y, et al. MicroRNA signatures from multidrug-resistant Mycobacterium tuberculosis. Mol Med Rep 2015;12:6561-7.

44. Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010;466:973-7.

45. Lesho E, Forestiero FJ, Hirata MH, et al. Transcriptional responses of host peripheral blood cells to tuberculosis infection. Tuberculosis (Edinb) 2011;91:390-9.

46. Maertzdorf J, Ota M, Repsilber D, et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One 2011;6:e26938.

47. Maertzdorf J, Repsilber D, Parida SK, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 2011;12:15-22.

48. Bloom CI, Graham CM, Berry MP, et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS One 2013;8:e70630.

49. Walter ND, Dolganov GM, Garcia BJ, et al. Transcriptional adaptation of drug-tolerant mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis 2015;212:990-8.

50. Maertzdorf J, Weiner J 3rd, Mollenkopf
Review

HJ, et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci USA 2012;109:7853-8.

52. Joosten SA, Fletcher HA, Ottenhoff TH. A helicopiler perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PLoS One 2013;8:e73230.

53. Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med 2014;370:1712-23.

54. Chegou NN, Detjen AK, Thiart L, et al. IP-10 detection in urine is associated with lung diseases. BMC Infect Dis 2010;10:333-2334-10-333.

55. Lighter J, Rigaud M, Huie M, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007;13:843-50.

56. Ciufrada D, Conte D, Cavassini M, et al. Polyfunctional HCV-specific T-cell responses are associated with effective control of HCV replication. Eur J Immunol 2008;38:2656-77.

57. Duvall MG, Precocio ML, Ambrozak DA, et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008;38:350-63.

58. Petrone L, Vanini V, Petruccioli E, et al. Functional response to echinococcus granulosis associates to the biological activity of the cysts. PLoS Negl Trop Dis 2015;9:e0004209.

59. Harari A, Rözi V, Belluti Enders F, et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 2011;17:372-6.

60. Petruccioli E, Petrone L, Vanini V, et al. IFNGamma/TNFalpha specific-cells and effector memory phenotype associate with active tuberculosis. J Infect 2013;66:475-86.

61. Pollock KM, Whitworth HS, Montamat-Sirociet DI, et al. T-cell immunophenotyping distinguishes active from latent tuberculosis. J Infect Dis 2013;208:952-68.

62. Chiacchio T, Petruccioli E, Vanini V, et al. Polyfunctional T-cells and effector memory phenotype are associated with active TB in HIV-infected patients. J Infect 2014;69:533-45.

63. Day CL, Abrahams DA, Lerumo L, et al. Polyfunctional HCV-specific T-cell responses are associated with effective control of HCV replication. Eur J Immunol 2008;38:2665-77.

64. Duvall MG, Precocio ML, Ambrozak DA, et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008;38:350-63.

65. Darrah PA, Patel DT, De Luca PM, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007;13:843-50.

66. Ciufrada D, Conte D, Cavassini M, et al. Polyfunctional HCV-specific T-cell responses are associated with effective control of HCV replication. Eur J Immunol 2008;38:2656-77.

67. Duvall MG, Precocio ML, Ambrozak DA, et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008;38:350-63.

68. Petrone L, Vanini V, Petruccioli E, et al. Polyfunctional specific response to echinococcus granulosis associates to the biological activity of the cysts. PLoS Negl Trop Dis 2015;9:e0004209.

69. Harari A, Rözi V, Belluti Enders F, et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med 2011;17:372-6.

70. Petruccioli E, Petrone L, Vanini V, et al. IFNGamma/TNFalpha specific-cells and effector memory phenotype associate with active tuberculosis. J Infect 2013;66:475-86.

71. Pollock KM, Whitworth HS, Montamat-Sirociet DI, et al. T-cell immunophenotyping distinguishes active from latent tuberculosis. J Infect Dis 2013;208:952-68.

72. Chiacchio T, Petruccioli E, Vanini V, et al. Polyfunctional T-cells and effector memory phenotype are associated with active TB in HIV-infected patients. J Infect 2014;69:533-45.

73. Day CL, Abrahams DA, Lerumo L, et al. Polyfunctional HCV-specific T-cell responses are associated with effective control of HCV replication. Eur J Immunol 2008;38:2665-77.

74. Duvall MG, Precocio ML, Ambrozak DA, et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008;38:350-63.
90. Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early spumus biomarker of response to tuberculosis treatment. Lancet Respir Med 2015;3:162-70.

91. Nikolayevsky V, Miotto P, Pimkina E, et al. Utility of propidium monoazide viability assay as a biomarker for a tuberculosis disease. Tuberculosis (Edinb) 2015;95:179-85.

92. Riou C, Perez Peixoto B, Roberts L, et al. Effect of standard tuberculosis treatment on plasma cytokine levels in patients with active pulmonary tuberculosis. PLoS One 2012;7:e36886.

93. Andrade BB, Pavan Kumar N, Mayer-Barber KD, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One 2015;8:e62618.

94. Andrade BB, Pavan Kumar N, Amaral EP, et al. Heme oxygenase-1 regulation of matrix metalloproteinase-1 expression underlies distinct disease profiles in tuberculosis. J Immunol 2015;195:2763-73.

95. Nahid P, Bliven-Sizemore E, Jarlsberg LG, et al. Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis (Edinb) 2014;94:187-96.

96. Tonby K, Ruhwald M, Kvale D, Dyrhol-Riise AM. IP-10 measured by dry plasma spots as biomarker for therapy responses in Mycobacterium tuberculosis infection. Scip Rep 2015;5:9223.

97. den Hertog AL, Montero-Martin M, Saunders RL, et al. Cytokine kinetics in the first week of tuberculosis therapy as a tool to confirm a clinical diagnosis and guide therapy. PLoS One 2015;10:e0129552.

98. Kriel M, Lotz JW, Kidd M, Walzl G. Evaluation of a radiological severity score tool to confirm a clinical diagnosis and cancer detection in HIV-infected persons. Diagn Microbiol Infect Dis 2014;80:127-33.

99. Rizzi EB, Schininà V, Cristofaro M, et al. Detection of pulmonary tuberculosis: comparing MR imaging with HRCT. BMC Infect Dis 2021;21:36.

100. Chen RY, Dodd LE, Lee M, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med 2014;6:265ra166.

101. du Plessis N, Loebenberg L, Kriel M, et al. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med 2013;187:242-32.

102. El Daker S, Sacchi A, Tempestilli M, et al. Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One 2015;10:e0123772.

103. Carrara S, Vincenti D, Petrosillo N, et al. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis 2004;38:754-6.

104. Latorre I, Alet N, de Souza-Galvao M, et al. Specific Mycobacterium tuberculosis T cell responses to RD1-selected peptides for the monitoring of anti-tuberculosis therapy. Scand J Infect Dis 2012;44:161-7.

105. Goletti D, Carrara S, Mayanja-Kizza H, et al. Response to M. tuberculosis selected RD1 peptides in Ugandan HIV-infected patients with smear positive pulmonary tuberculosis: a pilot study. BMC Infect Dis 2008;8:11-2334-8-11.

106. Kabeer BS, Raja A, Raman B, et al. IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy. BMC Infect Dis 2011;11:2334-11-135.

107. Kabeer BS, Sikhamani R, Aja. Comparison of interferon gamma-inducible protein-10 and interferon gamma-based QuantiFERON TB Gold assays with tuberculin skin test in HIV-infected subjects. Diagn Microbiol Infect Dis 2011;71:236-43.

108. Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med 2010;362:9-20.

109. Mori T, Sakatani M, Yamagishi F, et al. Multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 2006;6:95.

110. Andren SM, Andersen P, van Meijgaard KE, et al. Detection of active tuberculosis infection by T cell responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10. J Infect Dis 2000;181:1850-4.

111. Goletti D, Sanduzzi A, Delogu G. Performance of the tuberculin skin test and interferon-gamma release assays: an update on the accuracy, cutoff stratification, and new potential immune-based approaches. J Rheumatol Suppl 2014;91:24-31.

112. Barcellini L, Borroni E, Brown J, Brunetti E, Codecasa L, Cugnata F, et al. First independent examination of QuantiFERON-TB Plus performance. Eur Respir J 2016 Feb 11.

113. Sester M, van Leth F, Bruchfeld J, et al. Risk assessment of tuberculosis in immunocompromised patients. A TBNET study. Am J Respir Crit Care Med 2014;190:1168-76.

114. Dier R, Loddenkemper R, Nienhaus A. Predictive value of interferon-gamma release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest 2012;142:63-75.

115. Barry CE 3rd, Bosshoff HJ, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009;7:845-55.

116. Ruhwald M, Petersen J, Kofod K, et al. Improving T-cell assays for the diagnosis of latent TB infection: potential of a diagnostic test based on IP-10. PLoS One 2006;3:e2658.

117. Goletti D, Raja A, Syed Ahamed Kabeer B, et al. Is IP-10 an accurate marker for detecting M. tuberculosis-specific response in HIV-infected persons? PLoS One 2010;5:e12577.

118. Goletti D, Raja A, Ahamed Kabeer BS, et al. IFN-gamma, but not IP-10, MCP-3 or IL-2 response to RD1 selected peptides associates to active tuberculosis. J Infect 2010;61:133-43.

119. Vanini V, Petruccio E, Gioia C, et al. IP-10 is an additional marker for tuberculosis (TB) detection in HIV-infected persons in a low-TB endemic country. J Infect 2012;65:49-59.

120. Wergeland I, Pullar N, Assmus J, et al. IP-10 differentiates between active and latent tuberculosis irrespective of HIV status and declines during therapy. J Infect 2015;70:381-91.

121. Mihret A, Bekele Y, Boboska K, et al.
Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 2013;66:357-65.

127. Djboa Siawaya JF, Beyers N, van Helden P, Walzl G. Differential cytokine secretion and early treatment response in patients with pulmonary tuberculosis. Clin Exp Immunol 2009;156:69-77.

128. Feruglio SL, Troseid M, Damas JK, et al. Soluble markers of the Toll-like receptor 4 pathway differentiate between active and latent tuberculosis and are associated with treatment responses. PLoS One 2013;8:e69896.

129. Arlehamn CL, Seumois G, Gerasimova A, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol 2014;193:2931-40.

130. Goletti D, Butera O, Vanini V, et al. Response to Rv2628 latency antigen associates with cured tuberculosis and remote infection. Eur Respir J 2010;36:135-42.

131. Black GF, Thiel BA, Ota MO, et al. Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin Vaccine Immunol 2009;16:1203-12.

132. Leyten EM, Lin MY, Franken KL, et al. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect 2006;8:2052-60.

133. Chiachio T, Petruccioli E, Vanini V, et al. Higher frequency of T-cell response to M. tuberculosis latency antigen Rv2628 at the site of active tuberculosis disease than in peripheral blood. PLoS One 2011;6:e27539.

134. Schuck D, Mueller H, Kunitz F, et al. Identification of T-cell antigens specific for latent mycobacterium tuberculosis infection. PLoS One 2009;4:e5590.

135. Hougary JM, Schepers K, Place S, et al. Heparin-binding-hemagglutinin-induced IFN-gamma release as a diagnostic tool for latent tuberculosis. PLoS One 2007;2:e6926.

136. Delogu G, Chiachio T, Vanini V, et al. Methylated HBHA produced in M. smegmatis discriminates between active and non-active tuberculosis disease among RD1-responder. PLoS One 2011;6:e18315.

137. Corbiere V, Pottier G, Bonkain F, et al. Risk stratification of latent tuberculosis defined by combined interferon gamma release assays. PLoS One 2012;7:e32885.

138. Wyndham-Thomas C, Corbiere V, Dirix V, et al. Key role of effector memory CD4+ T lymphocytes in a short-incubation heparin-binding hemagglutinin gamma interferon release assay for the detection of latent tuberculosis. Clin Vaccine Immunol 2014;21:321-8.

139. Wyndham-Thomas C, Dirix V, Schepers K, et al. Contribution of a heparin-binding haemagglutinin interferon-gamma release assay to the detection of Mycobacterium tuberculosis infection in HIV-infected patients: comparison with the tuberculin skin test and the QuantiFERON-TB Gold in-tube. BMC Infect Dis 2015;15:59-015-0796-0.

140. Lindenstrom T, Agger EM, Korsholm KS, et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 2009;182:8407-55.

141. Derrick SC, Yabe IM, Yang A, Morris SL. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine 2011;29:2902-9.

142. Kagina BM, Abel B, Scriba TJ, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns. Am J Respir Crit Care Med 2010;182:1022-3.

143. Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013;381:1021-8.

144. Ottenhoff TH. New pathways of protective and pathological host defense to mycobacteria. Trends Microbiol 2012;20:419-28.

145. Wuthrich M, Gern B, Hung CY, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest 2011;121:554-68.

146. Chen K, McAleer JP, Lin Y, et al. Th17 cells mediate clade-specific, serotype-independent mucosal immunity. Immunity 2011;35:997-1009.

147. Carlson MJ, West ML, Coghill JM, et al. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood 2009;113:1365-74.

148. Muranski P, Borman ZA, Kerkar SP, et al. IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 2012;42:364-73.

149. Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007;8:369-77.

150. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009;457:557-61.

151. Godfrey DI, Uldrich AP, McCluskey J, et al. The burgeoning family of unconventional T cells. Nat Immunol 2015;16:1114-23.

152. Dieli F, Ivanyi J, Marsh P, et al. Characterization of lung gamma delta T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 2003;170:463-9.

153. Shen Y, Zhou D, Qiu L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 2002;295:2255-8.

154. Dieli F, Troye-Blomberg M, Ivanyi J, et al. Vgamma9Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 2000;30:1512-19.

155. Dieli F, Troye-Blomberg M, Ivanyi J, et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9Vdelta2 T lymphocytes. J Infect Dis 2001;184:1082-5.

156. Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 2012;8:e1002607.