Primary patient-derived lung adenocarcinoma cell culture challenges the association of cancer stem cells with epithelial-to-mesenchymal transition.

Verena Tiran¹, Joerg Lindenmann², Luka Brcic³, Ellen Heitzer⁴, Stefanie Stanzer¹, Nassim Ghaffari Tabrizi-Wizsy⁵, Elvira Stacher³,⁶, Herbert Stoeger¹, Helmut H. Popper³, Marija Balic¹,⁷# and Nadia Dandachi¹,⁸#

¹Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria
²Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, A-8036 Graz Austria
³Institute of Pathology, Medical University of Graz, A-8036 Graz Austria
⁴Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
⁵SFL Chicken CAM Lab, Institute of Pathophysiology and Immunology, Medical University of Graz, A-8010 Graz, Austria
⁶Ludwig Boltzmann Institute for Lung Vascular Research, A-8010 Graz
⁷Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, A-8036 Graz, Austria.
⁸Research Unit Epigenetic and Genetic Cancer Biomarkers, Medical University of Graz, A-8036 Graz, Austria

These authors shared senior authorship of this work
Supplementary Figure S1. Representative images of H&E and IHC staining of LT22s (A) and LT22a (B) xenografts. Scale bars between 20 and 300µm (insets).
Supplementary methods

Tumor cell isolation in detail

Tumor tissues were cut into small (3-5 mm) pieces and collected in gentleMACS C-tubes (Miltenyi Biotec) containing PBS and Collagenase B 2 mg/mL (Roche). C-tubes were then connected to the gentleMACS dissociator and tumor dissociation was run with the program for human tumor number 1. Minced tumors were incubated in the C-tubes using a MACSmix Tube Rotator (Miltenyi Biotec) under continuous rotation for one hour at 37°C. Following incubation, a second dissociation step was performed on the gentleMACS using the human tumor program number 2. The resulting single cell suspension was then filtered through a 70 µm cell strainer and centrifuged at 300g for 5 min. Red blood cells were lysed using ammonium chloride solution (Stemcell Technologies) and cells were then transferred to ultra-low attachment flasks (Corning, Acton, MA, USA) with CSC media.

Immunohistochemistry (IHC)

After deparaffinization and rehydration, sections were pretreated with low pH retrieval solution (Dako, Vienna, Austria) for 10 min in the microwave. For the immunostaining the Ultravision LP Detection System based on horse radish peroxidase (HRP) Polymer and 3,3'-Diaminobenzidine (DAB) Plus Chromogen (Thermo Scientific, Waltham, MA USA) was used according to manufacturer’s protocol. Briefly, after blocking with ultra V block for 5 min, sections were incubated with the antibody of interest. The signal was enhanced with the incubation of a primary antibody enhancer. Sections were first incubated with HRP polymer and then with DAB plus solution. The sections were counterstained with an attenuated HE staining and mounted with Aquatex (Merck, Darmstadt, Germany).
Quantitative real time polymerase chain reaction (qRT-PCR)
mRNA was isolated from 5×10^5-1×10^6 cells with the RNeasy Mini Kit (Qiagen, Hiden, Germany) according to the manufacturer’s protocol. The isolated RNA was eluted in 30 µL RNase-free water. Reverse transcription of 1 µg of RNA into cDNA was done with the QuantiTect reverse transcription kit (Qiagen) according to the manufacturer’s instructions. mRNA expression was investigated by qRT-PCR with SYBR Green assay (Roche, Vienna, Austria) on a Light Cycler 480 (Roche) using 96 well plates. Reactions were performed in a total volume of 20 µL containing 1x Mastermix SYBR green I (Roche), 25 µM of each primer and 20 ng cDNA. A PCR program was run for 45 cycles starting with the denaturation step at 95°C for 10 sec, then 60°C for 20 sec, and an elongation step at 72°C for 15 sec. For quality control, it ended with a melting step of the product. A non-amplification control and a non-target control were included in each plate as technical controls. qRT-PCR reactions were performed in duplicates and cycle threshold values were averaged. Calculation of expression values was done using the qBase$^\text{plus}$ software (Biogazelle, Gent, Belgium)1. Glycerinaldehyde-3-phosphat-Dehydrogenase (GAPDH) and TATA-Box Binding Protein (TBP) were determined as appropriate reference genes using the geNorm module in qBase$^\text{plus}$ and were used to normalize gene expression levels. The gene expression levels in spheres were compared to expression in adherent cells. Primers are summarized in the Supplementary Table S3.

Copy number profiling in detail

Depending on the DNA concentrations, 50-100 ng of DNA from sorted cell fractions and 1-2 µg of DNA from tumor samples were fragmented in 130 µL using the Covaris System (Covaris, Woburn, MA, USA). After concentrating the volume to 50 µL end repair, A-tailing and adapter ligation were performed following the manufacturer’s instructions. For selective amplification of the library fragments that have adapter
molecules on both ends, we used 8-15 PCR cycles. Libraries were quality checked on an Agilent Bioanalyzer using a DNA 7500 Chip (Agilent Technologies, Santa Clara, CA, USA) and quantified using qPCR with a commercially available PhiX library (Illumina) as a standard. Six libraries were pooled equimolarily and sequenced on an Illumina MiSeq in a 150bp single read run. On the completion of the run, data were base-called, demultiplexed on the instrument (provided as Illumina FASTQ 1.8 files, Phred+33 encoding), and FASTQ format files in Illumina 1.8 format were used for downstream analysis. Copy number analysis was performed as previously described\(^2\). Briefly, low-coverage whole-genome sequencing reads were mapped to the pseudo-autosomal-region (PAR)-masked genome and reads in different windows were counted and normalized by the total number of reads. The read counts were further normalized according to the GC-content using LOWESS-statistics. In order to avoid position effects, the sequencing data were normalized with GC-normalized read counts of a set of 30 non-malignant control samples\(^2\). Subsequently, segments of similar copy-number values were generated by applying circular binary segmentation and gain and loss analysis of DNA. For each segment, a z-score was calculated, that compared GC-corrected read counts for samples and controls\(^2\).

Authentication of cell populations
In order to verify the same origin of different cell populations, passages and tumor samples, STR profiling and analysis of mitochondrial DNA (mtDNA) was performed. Mitochondrial genomic sequences were extracted from whole genome sequencing data obtain from the copy number profiling assay and haplotypes were compared for each sample. For STR analysis 0.7 ng of extracted DNA were amplified with the PowerPlex 16HS System (Promega, Mannheim, Germany) according to manufacturer’s instruction on a thermocycler MyCycler (Biorad, Vienna, Austria). In
this analysis 16 STR loci can be evaluated such as Penta E, D18S51, D21S11, TH01, D3S1358, FGA, TPOX, D8S1179, vWA, Amelogenin, Penta D, CSF1PO, D16S539, D7S820, D13S317 and D5S818. The amplified fragments were detected with a capillary electrophoresis on the 3730 Genetic Analyzer (Applied Biosystem, Vienna, Austria).

Supplementary Table S1: STR- analysis of LT22Leuko and LT22 primary tumor in FFPE compared to LT22s and LT22a DNA:

STR Locus	LT22 Leukos	LT22 FFPE	LT22s	LT22a
D3S1358	16, 17	16, 17	16	16
TH01	6, 7	6, 7	7	7
D21S11	32.2	32.2	32.2	32.2
D18S51	15, 17	15, 17	15, 17	15, 17
Penta E	13, 14	13, 14	13, 14	13, 14
D5S818	11	11	11	11
D13S317	12	12	12	12
D7S820	8	8	8	8
D16S539	12, 14	12, 14	12, 14	12, 13, 14
CSF1PO	12, 13	12, 13	13	13
Penta D	9, 11	9, 11	11	11
Amelogenin	X, Y	X, Y	X	X
vWA	16, 17	16, 17	16, 17	16, 17
D8S1179	11, 13	11, 13	13	13
TPOX	8, 9	8, 9	8	9
FGA	19, 22	19, 22	19, 22	19, 22
Supplementary Table S2: Antibodies used for IHC/IF and flow cytometry:

AB/Target	Clone	Company	Cat. No.	Dilution	Reactivity	Host
ALDH1	44/ALDH	BD	611195	1:100	human	mouse
aSMA	IA4	Sigma-Aldrich	A2547	1:800	human	mouse
CD133/1	AC133	Miltenyi Biotec	130-090-422	1:50	human	mouse
CK7	OV-TL 12/30	Dako	M7018	1:500	human	mouse
Snail	E-18	Santa Cruz	sc-10432	1:100	human	goat
TTF1	sp141	Ventana	790-4756	Ready to use	human	rabbit
EpCam	Ber-EP4	Dako	M0804	1:1000	human	mouse
Vimentin	3B4	Dako	M7020	1:100	human	mouse
Ki67	MIB-1	Dako	M7240	1:100	human	mouse
panCK	polyclonal	Dako	Z0622	1:300	cow	rabbit
E-Cadherin	HECD-1	Invitrogen	13-1700	1:200	human	mouse
Alexa Fluor 488	-	Life Technologies	A-11034	1:300	rabbit	goat
Alexa Fluor 594	-	Life Technologies	A-11005	1:300	mouse	goat

Flow cytometry and cell sorting

AB/Target	Method	Company	Cat. No.	Units	Host	
ALDH1	Enzyme reaction	Stemcell Techn.	01700	5µL for 1×10^5		
CD133- APC	AC133	Miltenyi Biotec	130-098-829	10µL for 10^5	human	mouse
EpCam- PE	HEA125	Miltenyi Biotec	130-098-115	3µL for 1×10^6	human	mouse
Supplementary Table S3: Primer for qRT-PCR

Genes	Forward primer (5’-3’)	Reverse primer (5’-3’)	Amplicon (bp)
HKG			
GAPDH	CCACCTCCTCACGTTGAC	ACCCTGTTGCTGTAGCC	102
TBP	CGGTTCGCTCGGTAATC	TCTGGACTGTCCTCCTCCTTG	108
Cancer stem cell markers			
ALDH1	AGAAGAGGATAAGGAGGAT	AATCAGCCAACCTGTATAATAG	125
CD133 (PROM 1)	AGAGCTTCACAAACAAAGTACAC	AAGCACAGAGGGTCACTGAGAGA	91
Stem cell markers			
OCT4	GACAAACATGAAAATCTTCAGGAG	CTGGGCGCCGGTTACAGAACC	216
SOX2	GCCATGAACGGCTGGAGCAACG	TGCTGCAGTAGGACATGCTGTAGG	207
NANOG	CAGCTGTGTGTAATGATAGATT	ACACCATTGCTTCTTCCGCGACCTTG	179
EMT markers			
E-Cadherin (CDH1)	TGAGGTTCGCCGGTTATCTTTC	CAGTACGCGCGCTTTCAGATT	87
Vimentin	CAACCTGGCGAGGACAT	ACGATGTGCAACATCCTGTCT	113
Fibronectin	CCGCGGAATGTAGGACAAAGA	TGCCACAGGATGACATGAAA	100
N-Cadherin	GACGTTGCGCCCTCCAGAC	TCGATTGCTTTGCGACCACGG	67
EMT transcription factors			
SNAIL	GCTGCAGGACTCTAAATCCAGGTT	GACAGAGTCCCCAGATGACATTG	130
SLUG	GCGATGGCCAGTCTAGAAAAA	GCAGTGAGGGCAAGAAAAG	203
TWIST	GGAGTCGGCAGTCTTACAGG	TCTGGAGGACCTGCTAGAGG	201
Zeb1	GCCAATAAGCAAAACGATTCTG	TTTGGCTGGATCACTTTCAAG	101
Zeb2	CCGCTGAGGACATATAATACG	TGTGATCCATGCTGGCTGAGT	192

bp: size of amplicon in basepairs

[a] http://www.ncbi.nlm.nih.gov/tools/primer-blast/

[b] http://www.rtprimerdb.org/

[c] Palafox M. et al. Cancer Research 2012
Supplementary Table S4: Conditions for mouse experiments

Subject	Conditions
Animal strain	Female NOD/SCID
Age	9-12 weeks
Body weight	21.4 to 24.1 g (mean 22.5 ± 1.1 g) at time of cell inoculation
Supplier	Taconic, Cologne, Germany
Environmental conditions	Strictly controlled and standardized barrier conditions, IVC System Tecniplast DCC (TECNIPLAST DEUTSCHLAND GMBH)
Caging	Macrolon Type-II wire-mesh bottom
Feed Type	Ssniff NM, Soest, Germany
Drinking water	Autoclaved tap water in water bottles (acidified to pH 4 with HCl)
Feeding and drinking time	Ad libitum 24 hours per day
Light period	Artificial; 12-hours dark/12 hours light rhythm (light 06.00 to 18.00 hours)
Health control	The health of the mice was examined at the start of the experiment and twice per day during the experiment
Identification	Ear mark and cage labels

Supplementary references

1. Hellemans, J., Mortier, G., Paepe, A. D., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biol.* 8 (2007).

2. Heitzer, E. *et al.* Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. *Genome Med.* 5 (2013).