ASPECTS ON WEAK, s-CS AND ALMOST INJECTIVE RINGS

NASR. A. ZEYADA AND AMR K. AMIN

Abstract. It is not known whether right CF-rings (FGF-rings) are right artinian (quasi-Frobenius). This paper gives a positive answer of this question in the case of weak CS (s-CS) and GC^2 rings. Also we get some new results on almost injective rings.

1. Introduction

A module M is said to satisfy $C1$-condition or called CS-module if every submodule of M is essential in a direct summand of M. Patrick F. Smith [20] introduced weak CS modules. A right R-module M is called weak CS if every semisimple submodule of M is essential in a summand of M. I. Amin, M. Younis and N. Zeyada [11] introduced soc-injective and strongly soc-injective modules, for any two modules M and N, M is soc-N-injective if any R-homomorphism $f : soc(N) \to M$ extends to N. R is called right (self-) soc-injective, if the right R-module R_R is soc-injective. M is strongly soc-injective if M is soc-N-injective for any module N. They proved that every strongly soc-injective module is weak CS.

N. Zeyada [24] introduced the notion of s-CS, for any right R-module M, M is called s-CS if every semisimple submodule of M is essential in a summand of M.

A ring R is called a right CF ring if every cyclic right R-module can be embedded in a free module. A ring R is called a right FGF ring if every finitely generated right R-module can be embedded in a free right R-module. In section 2, we show that the right CF, weak CS (s-CS) and GC^2 rings are artinian.

Zeyada, Hussein and Amin introduced the notions of almost and rad-injectivity [23]. In the third section we make a correction to the result [23, Theorem 2.12] and we get a new results using these notions.

Throughout this paper R is an associative ring with identity and all modules are unitary R-modules. For a right R-module M, we denote the socle of M by $soc(M)$. S_r and S_l are used to indicate the right socle and the left socle of R, respectively. For a submodule N of M, the notations $N \subseteq^{\text{ess}} M$ and $N \subseteq^{\oplus} M$ mean that N is essential and direct summand, respectively. We refer to [2], [5], [7], [12] and [14] for all undefined notions in this paper.

2. Generalizations of CS-modules and rings

Lemma 1. For a right R-module M, the following statements are equivalent:

1. M is weak CS.
2. $M = E \oplus T$ where E is CS with $soc(M) \subseteq^{\text{ess}} E$.

Key words and phrases. CS, weak-CS, S-CS, rad-injective rings, almost injective rings, Kasch rings, Quasi-Frobenius rings.
(3) For every semisimple submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \subseteq M_1 \) and \(M_2 \) is a complement of \(A \) in \(M \).

Proof. (1) \(\implies \) (2). Let \(M \) be a weak \(CS \). Then \(\text{soc}(M) \) is essential in a summand, so \(M = E \oplus T \) with \(\text{soc}(M) \subseteq_{\text{ess}} E \). Now if \(K \) is a submodule of \(E \), then \(\text{soc}(K) \subseteq_{\text{ess}} L \) where \(L \) is a summand of \(M \) and \(L \subseteq_{\text{ess}} (K + L) \). But \(L \) is closed, so \(K \subseteq L \). Since \(E \subseteq_{\text{ess}} (L + E) \) and \(E \) is closed in \(M \), so \(L \subseteq E \) and \(E \) is \(CS \).

(2) \(\implies \) (1). If \(E \) is \(CS \) and a summand of \(M \) with \(\text{soc}(M) \subseteq_{\text{ess}} E \), then every submodule of \(\text{soc}(M) \) is a summand of \(E \) and a summand of \(M \).

(1 \(\implies \) 3). Let \(A \) be a submodule of \(\text{soc}(M) \). By (1), there exists \(M_1 \subseteq M \) such that \(A \subseteq_{\text{ess}} M_1 \). Write \(M = M_1 \oplus M_2 \) for some \(M_2 \subseteq M \). Since \(M_2 \) is a complement of \(M_1 \) in \(M \) and \(A \) is essential in \(M_1 \), then \(M_2 \) is a complement of \(A \) in \(M \).

(3 \(\implies \) 1). Let \(A \) be a submodule of \(\text{soc}(M) \). By (2), there exists a decomposition \(M = M_1 \oplus M_2 \) such that \(A \subseteq M_1 \) and \(M_2 \) is a complement of \(A \) in \(M \). Then \((A \oplus M_2) \subseteq_{\text{ess}} M = M_1 \oplus M_2 \) and \(A \subseteq M_1 \) then \(A \subseteq_{\text{ess}} M_1 \). Hence \(M \) is weak \(CS \) module. \(\square \)

Recall that, a right \(R \)-module \(M \) is \(s-CS \) if every singular submodule of \(M \) is essential in a summand [24].

Proposition 1. If \(M \) is a right \(R \)-module, then the following statements are equivalent:

(1) \(M \) is \(s-CS \).

(2) The second singular submodule \(Z_2(M) \) is \(CS \) and a summand of \(M \).

(3) For every singular submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \subseteq M_1 \) and \(M_2 \) is a complement of \(A \) in \(M \).

Proof. (1) \(\iff \) (2). [24] Proposition 14].

(1) \(\iff \) (3). Similar argument of the proof of the above Lemma. \(\square \)

Given a right \(R \)-module \(M \) we will denote by \(\Omega(M) \) [respectively \(C(M) \)] a set of representatives of the isomorphism classes of the simple quotient modules (respectively simple submodules) of \(M \). In particular, when \(M = R_R \), then \(\Omega(R) \) is a set of representatives of the isomorphism classes of simple right \(R \)-modules.

Lemma 2. Let \(R \) be a ring, and let \(P_R \) be a finitely generated quasi-projective \(CS \)-module, such that \(|\Omega(P)| \leq |C(P)| \). Then \(|\Omega(P)| = |C(P)| \), and \(P_R \) has finitely generated essential socle.

Proof. See [17] Lemma 7.28]. \(\square \)

Proposition 2. Let \(R \) be a ring. Then \(R \) is a right \(PF \)-ring if and only if \(R_R \) is a cogenerator and \(R \) is weak \(CS \).

Proof. Every right \(PF \)-ring is right self-injective and is a right cogenerator by [17] Theorem 1.56]. Conversely, if \(R \) is weak \(CS \) and \(R \) is cogenerator then \(R = E \oplus T \) where \(E \) is \(CS \) with \(S_r \subseteq_{\text{ess}} E \). By the above Lemma, \(E \) has a finitely generated, essential right socle. Since \(E \) is right finite dimensional and \(R_R \) is a cogenerator, let \(S_r = S_1 \oplus S_2 \oplus \ldots \oplus S_m \) and \(I_i = I(S_i) \) be the injective hull of \(S_i \), then there exists an embedding \(\sigma : I_i \rightarrow R^I \) for some set \(I \). Then \(\pi \circ \sigma \neq 0 \) for some projection \(\pi : R^I \rightarrow R \), so \((\pi \circ \sigma)|S_i \neq 0 \) and hence is monic. Thus \(\pi \circ \sigma : I_i \rightarrow R \) is monic, and so \(R = E_1 \oplus \ldots \oplus E_m \oplus T \) where \(\text{soc}(T) = 0 \). So \(R \) is a right \(PF \)-ring. \(\square \)
Proposition 3. [24] Proposition 16] Let R be a ring. Then R is a right PF-ring if and only if R_R is a cogenerator and $(Z^2_R)_R$ is CS.

Proposition 4. The following statements are equivalent:

1. Every right R-module is weak CS.
2. Every right R-module with essential socle is CS.
3. For every right R-module M, $M = E \oplus K$ where E is CS with $\text{soc}(M) \subseteq \text{ess}\text{-soc} E$.

Proposition 5. The following statements are equivalent:

1. Every right R-module is s-CS.
2. Every Goldie torsion right R-module is CS.
3. For every right R-module M, $M = Z_2(M) \oplus K$ where $Z_2(M)$ is CS.

Dinh Van Huynh, S. K. Jain and S. R. López-Permouth [?] proved that if R is simple such that every cyclic singular right R-module is CS, then R is right noetherian.

Corollary 1. If R is simple such that every cyclic right R-module is s-CS, then R is right noetherian.

Proposition 6. If R is a weak CS and GC2, and right Kasch, then R is semiperfect.

Proof. Since R is a weak CS, so E is CS by Lemma [1] and $R = E \oplus K$ for some right ideal K of R and so E is a finitely generated projective module. By Lemma [2] E has a finitely generated essential socle. Then, by hypothesis, there exist simple submodules S_1, \cdots, S_n of E such that $\{S_1, \cdots, S_n\}$ is a complete set of representatives of the isomorphism classes of simple right R-modules. Since E is CS, there exist submodules Q_1, \cdots, Q_n of E such that Q_1, \cdots, Q_n is an direct summands of E and $(S_i)_R \subseteq \text{ess}\text{-soc} (Q_i)_R$ for $i = 1, \cdots, n$. Since Q_i is an indecomposable projective and GC2 R-module, it has a local endomorphism ring; and since Q_i is projective, $J(Q_i)$ is maximal and small in Q_i. Then Q_i is a projective cover of the simple module $Q_i/J(Q_i)$. Note that $Q_i \cong Q_j$ clearly implies $Q_i/J(Q_i) \cong Q_j/J(Q_j)$; and the converse also holds because every module has at most one projective cover up to isomorphism. It is clear that $Q_i \cong Q_j$ if and only if $S_i \cong S_j$ if and only if $i = j$. Thus, $\{Q_1/J(Q_1), \cdots, Q_n/J(Q_n)\}$ is a complete set of representatives of the isomorphism classes of simple right R-modules. Hence every simple right R-module has a projective cover. Therefore R is semiperfect. \qed

The following example show that the proof of [24] Proposition 13 is not true, since the endomorphism ring of an indecomposable projective module which is an essential extension of a simple module may be not a local ring. So we add an extra condition that R is right GC2 to prove the Proposition.

Example 1. Let R be the ring of triangular matrices, $R = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a \in \mathbb{Z}, b, c \in Q \right\}$.

Take $P_1 = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a \in \mathbb{Z}, b \in Q \right\}$ and $P_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} : c \in Q \right\}$, we see that P_1 is indecomposable projective module with simple essential socle and P_2 is projective simple module. The socle of P_1 is isomorphic to P_2 and its endomorphism ring is isomorphic to Z which is not local.
Proposition 7. If R is right s-CS and $GC2$, and right Kasch, then R is semiperfect.

Proof. Since R is a weak CS, so E is CS by Lemma 1 and $R = E \oplus K$ for some right ideal K of R and so E is a finitely generated projective module. By Lemma 2, E has a finitely generated essential socle. Then, by hypothesis, there exist simple submodules S_1, \ldots, S_n of E such that $\{S_1, \ldots, S_n\}$ is a complete set of representatives of the isomorphism classes of simple right R-modules. Since E is CS, there exist submodules Q_1, \ldots, Q_n of E such that Q_1, \ldots, Q_n is an direct summands of E and $(S_i)_R \subseteq_{\text{ess}} (Q_i)_R$ for $i = 1, \ldots, n$. Since Q_i is an indecomposable projective and $GC2$ R-module, it has a local endomorphism ring; and since Q_i is projective, $J(Q_i)$ is maximal and small in Q_i. Then, Q_i is a projective cover of the simple module $Q_i/J(Q_i)$. Note that $Q_i \cong Q_j$ clearly implies $Q_i/J(Q_i) \cong Q_j/J(Q_j)$; and the converse also holds because every module has at most one projective cover up to isomorphism. It is clear that $Q_i \cong Q_j$ if and only if $Q_i \cong Q_j$ if and only if $i = j$. Thus, $\{Q_1/J(Q_1), \ldots, Q_n/J(Q_n)\}$ is a complete set of representatives of the isomorphism classes of simple right R-modules. Hence every simple right R-module has a projective cover. Therefore R is semiperfect. □

Lemma 3. Let R be a semiperfect, left Kasch, left min-CS ring. Then the following hold:

(1) $S_i \subseteq_{\text{ess}} R$ and $soc(Re)$ is simple and essential in Re for all local idempotents $e \in R$.

(2) R is right Kasch if and only if $S_i \subseteq S_r$.

(3) If $\{e_1, \ldots, e_n\}$ are basic local idempotents in R then $\{soc(Re_1), \ldots, soc(Re_n)\}$ is a complete set of distinct representatives of the simple left R-modules.

Proof. See [17, Lemma 4.5]. □

Recall that a ring R is right minfull if it is semiperfect, right mininjective, and $soc(eR) \neq 0$ for each local idempotent $e \in R$.

Corollary 2. If R is commutative s-CS (weak CS) and Kasch, then R is minfull.

Proof. Since every Kasch ring is $C2$, so R is semiperfect by Proposition 6 (Proposition 7). Thus using the above Lemma and [17, Proposition 4.3] R is minfull. □

Theorem 1. If R is right weak CS (s-CS), GC2 and every cyclic right R-module can be embedded in a free module (right CF ring) then R is right artinian.

Proof. If R is right weak CS (s-CS) right CF, then by Lemma 1 (Lemma 1) $R = E \oplus K$ where E is CS and $soc(K) = 0$ ($Z(K) = 0$). Thus by Proposition 6 (Proposition 7), R is semiperfect. The above Lemma gives $S_i \subseteq_{\text{ess}} R_R$, so $K = 0$. Hence R is CS and R is right artinian by [9, Corollary 2.9]. □

Proposition 8. Let R be a right FGF, right weak CS (s-CS) and right $GC2$ ring. Then R is QF.

Proof. It clear by Proposition 6 (Proposition 7), and [8, Theorem 3.7]. □
3. Almost injective Modules

Definition 1. A right R-module M is called almost injective, if $M = E \oplus K$ where E is injective and K has zero radical. A ring R is called right almost injective, if RR is almost injective.

In [23], the statement of Theorem 2.12 is not true, so the proof of (3) \implies (1). The following Proposition is the true version of [23, Theorem 2.12]. Then we rewrite the related results.

Proposition 9. For a ring R the following are true:

1. R is semisimple if and only if every almost-injective right R-module is injective.
2. If R is semilocal, then every rad-injective right R-module is injective.

Proof. (1). Assume that every almost-injective right R-module is injective, then every right R-module with zero radical is injective. Thus every semisimple right R-module is injective and R is right V-ring. Hence, every right R-module has a zero radical. Therefore, every right R-module is injective and R is semisimple. The converse is clear.

(2). Let R be a semilocal ring and M be a rad-injective right R-module. Consider a homomorphism $f : K \rightarrow M$ where K is a right ideal of R. Since R is semilocal, there exists a right ideal L of R such that $K + L = R$ and $K \cap L \subseteq J$ [13]. Then there exists a R-homomorphism $g : R \rightarrow M$ such that $g(x) = f(x)$ for every $x \in K \cap L$. Define $F : R \rightarrow M$ by $F(x) = f(k) + g(l)$ for any $x = k + l$ where $k \in K$ and $l \in L$. It is clear that F is a well-defined R-homomorphism such that $F|_K = f$, i.e. F extends f. Therefore M is injective. □

A ring R is called quasi-Frobenius (QF) if R is right (or left) artinian and right (or left) self-injective. Also, R is QF if and only if every injective right R-module is projective.

Theorem 2. R is a quasi-Frobenius ring if and only if every rad-injective right R-module is projective.

Proof. If R is quasi-Frobenius, then R is right artinian, and by Proposition 9(2), every rad-injective right R-module is injective. Hence, every rad-injective right R-module is projective. Conversely, if every rad-injective right R-module is projective, then every injective right R-module is projective. Thus, R is quasi-Frobenius. □

Recall that a ring R is called a right pseudo-Frobenius ring (right PF-ring) if the right R-module RR is an injective cogenerator.

Proposition 10. The following are equivalent:

1. R is a right PF-ring.
2. R is a semiperfect right self-injective ring with essential right socle.
3. R is a right finitely cogenerated right self-injective ring.
4. R is a right Kasch right self-injective ring.

Theorem 3. If R is right Kasch right almost-injective, then R is semiperfect.

Proof. Let R be right Kasch and $RR = E \oplus T$, where E is injective and T has zero radical. If $J = 0$, then every simple right ideal of R is projective and R is semiperfect (for R is right Kasch). Now suppose that $J \neq 0$. Clearly, every
Proposition 11. The following are equivalent:

1. R is a right PF-ring.
2. R is a semiperfect right rad-injective ring with $\text{soc}(eR) \neq 0$ for each local idempotent e of R.
3. R is a right finitely cogenerated right rad-injective ring.
4. R is a right Kasch right rad-injective ring.
5. R is a right rad-injective ring and the dual of every simple left R-module is simple.

Proof. (1) \iff (2) By Proposition 9 (2).
(1) \Rightarrow (3) Clear.
(3) \Rightarrow (1) Since R is a right rad-injective ring, it follows from [23] Proposition 2.5 that $R = E \oplus K$, where E is injective and K has zero radical. Since R is a right finitely cogenerated ring, K is a finitely cogenerated right R-module with zero radical. Hence, K is semisimple. Therefore, by [22] Corollary 8, R is a right PF-ring.
(1) \Rightarrow (4) Clear.
(4) \Rightarrow (1) If R is right Kasch right rad-injective, then R is right almost-injective ([23] Proposition 2.5). Thus R is semiperfect (9). Hence R is injective by Proposition 9 (2). Therefore, R is right PF.
(1) \Rightarrow (5) Since every right PF-ring is left Kasch and left mininjective, the dual of every simple left R-module is simple by [16] Proposition 2.2.
(5) \Rightarrow (1) By [23] Proposition 2.10, R is a right min-\textit{CS} ring (i.e., every minimal right ideal of R is essential in a summand). Thus, by [10] Theorem 2.1, R is semiperfect with essential right socle. Proposition 9 (2) entails that R is right self-injective, and hence right PF by Proposition 11.
(1) \iff (4) and (1) \iff (5) are direct consequences of [23] Proposition 2.5. \qed

A result of Osowsky [13] Proposition 2.2] asserts that a ring R is QF if and only if R is a left perfect, left and right self-injective ring. This result remains true for rad-injective rings.
Proposition 12. The following are equivalent:

(1) R is a quasi-Frobenius ring.
(2) R is a left perfect, left and right rad-injective ring.

Proof. (1) \Rightarrow (2) It is well known.
(2) \Rightarrow (1) By hypothesis, R is a semiperfect right and left rad-injective ring. By Proposition 9, R is quasi-Frobenius.

Note that the ring of integers \mathbb{Z} is an example of a commutative noetherian almost-injective ring which is not quasi-Frobenius.

Definition 2. A ring R is called right CF-ring (FGF-ring) if every cyclic (finitely generated) right R-module embeds in a free module. It is not known whether right CF-rings (FGF-rings) are right artinian (quasi-Frobenius rings). In the next result, a positive answer is given if we assume in addition that the ring R is right rad-injective.

Proposition 13. The following are equivalent:

(1) R is quasi-Frobenius.
(2) R is right CF and right rad-injective.

Proof. (1) \Rightarrow (2) It is well known.
(2) \Rightarrow (1) Since every simple right R-module embeds in R, R is a right Kasch ring. By Proposition 11, R is right self-injective with finitely generated essential right socle. Thus, every cyclic right R-module has a finitely generated essential socle, and by [21, Proposition 2.2], R is right artinian, hence quasi-Frobenius.

REFERENCES

[1] I. Amin, M. Yousif, N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33 (2005) 4229–4250.
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.
[3] J. E. Bjork, Rings satisfying certain chain conditions, J. Reine Angew. Math.245 (1970) 63–73.
[4] V. Camillo, W.K. Nicholson, M.F. Yousif, Ikeda-Nakayama rings, J. Algebra 226 (2000) 1001–1010.
[5] N. V. Dung, V. D. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman Research Notes in Math. Longman, 1994.
[6] C. Faith, Rings with ascending chain conditions on annihilators, Nagoya Math. J.27 (1966) 179–191.
[7] C. Faith, Algebra II, Ring Theory, Springer-Verlag, Berlin-New York, 1976.
[8] J. L. G´omez Pardo, P. A. Guıl Asensio, Essential embedding of cyclic modules in projectives, Trans. Amer. Math. Soc.349 (1997) 4343–4353.
[9] J. L. Gómez Pardo, P. A. Guıl Asensio, Rings with finite essential socle, Proc. Amer. Math. Soc. 125 (1997) 971-977.
[10] J. L. Gómez Pardo, M. F. Yousif, Semiperfect min-CS rings, Glasg. Math.J.41(1999) 231–238.
[11] Dinh Van Huynh, S. K. Jain, and S. R. Lopez-Permoutth, When cyclic singular modules over a simple ring are injective, J. Algebra 263 (2003) 188-192.
[12] F. Kasch, Modules and Rings, Academic Press, New York, 1982.
[13] C. Lomp, On semilocal modules and rings, Comm. Algebra 27 (4) (1999) 1921–1935.
[14] G. O. Michler, O.E. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973) 185–201.
[15] S. H. Mohamed, B. J. Muller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.
[16] W. K. Nicholson, M.F. Yousif, *Mininjective rings*, J. Algebra 187 (1997) 548–578.
[17] W. K. Nicholson, M.F. Yousif, *Quasi-Frobenius Rings*, Cambridge Tracts in Math., 158, Cambridge University Press, Cambridge, 2003.
[18] B. L. Osofsky, *A generalization of quasi-Frobenius rings*, J. Algebra 4 (1966) 373–387.
[19] Liang Shen, Jianlong Chen, *New characterizations of quasi-Frobenius rings*, Comm. Algebra 34 (2006) 2157–2165.
[20] P. F. Smith, *CS-modules and weak CS-modules*, *Noncommutative Ring Theory*, Springer LNM 1448 (1990) 99-115.
[21] P. Vamos, *The dual of the notion of ‘finitely generated’*, J. London Math. Soc. 43 (1968) 186–209.
[22] M. F. Yousif, Y. Zhou, N. Zeyada, *On pseudo-Frobenius rings*, Canad. Math. Bull. 48 (2) (2005) 317–320.
[23] N. Zeyada, S. Hussein, A. Amin, *Rad-injective and Almost-injective Modules and Rings*, algebra colq. Volume: 18, 3(2011), 411-418.
[24] N. Zeyada, N. Jarboui, *s-CS Modules and Rings*, Int. J. of Algebra Vol. 7, 2013, no. 2, 49 - 62.

Cairo University, Faculty of Science, Department of Mathematics, Egypt
Current address: University of Jeddah, Faculty of Science, Department of Mathematics, Saudi Arabia
E-mail address: nasmz@yahoo.com

Current address: Umm Al-Qura University, University college, Department of Mathematics, Saudi Arabia

Beni-Suef University, Faculty of Science, Department of Mathematics, Egypt
E-mail address: althan72@yahoo.com