HeBERT & HebEMO: a Hebrew BERT Model and a Tool for Polarity Analysis and Emotion Recognition

Avihay Chriqui, Inbal Yahav

Abstract

Sentiment analysis of user-generated content (UGC) can provide valuable information across numerous domains, including marketing, psychology, and public health. Currently, there are very few Hebrew models for natural language processing in general, and for sentiment analysis in particular; indeed, it is not straightforward to develop such models because Hebrew is a Morphologically Rich Language (MRL) with challenging characteristics. Moreover, the only available Hebrew sentiment analysis model, based on a recurrent neural network, was developed for polarity analysis (classifying text as “positive”, “negative”, or neutral) and was not used for detection of finer-grained emotions (e.g., anger, fear, joy). To address these gaps, this paper introduces HeBERT and HebEMO. HeBERT is a Transformer-based model for modern Hebrew text, which relies on a BERT (Bidirectional Encoder Representations for Transformers) architecture. BERT has been shown to outperform alternative architectures in sentiment analysis, and is suggested to be particularly appropriate for MRLs. Analyzing multiple BERT specifications, we find that while model complexity correlates with high performance on language tasks that aim to understand terms in a sentence, a more-parsimonious model better captures the sentiment of an entire sentence. Notably, regardless of the complexity of the BERT specification, our BERT-based language model outperforms all existing Hebrew alternatives on all common language tasks. HebEMO is a tool that uses HeBERT to detect polarity and extract emotions from Hebrew UGC. HebEMO is trained on a unique Covid-19-related UGC dataset that we collected and annotated for this study. Data collection and annotation followed an active learning procedure that aimed to maximize predictability. We show that HebEMO yields a high F1-score of 0.96 for polarity classification. Emotion detection reaches F1-scores of 0.78-0.97 for various target emotions, with the exception of surprise, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even among English-language models of emotion detection.
1. Introduction

Sentiment analysis, also referred to as opinion mining or subjectivity analysis (Liu and Zhang 2012), is probably one of the most common tasks in natural language processing (NLP) (Liu 2012, Zhang et al. 2018). The goal of sentiment analysis is to systematically extract, from written text, what people think or feel toward entities such as products, services, individuals, events, news articles, and topics.

Sentiment analysis includes multiple types of tasks, one of the most common being polarity classification: the binning of overall sentiment into the three categories of positive, neutral, or negative. Another prominent sentiment analysis task is emotion detection - a process for extracting finer-grained emotions such as happiness, anger, and fear from human language. These emotions, in turn, can shed light on individuals’ beliefs, behaviors, or mental states. Both polarity classification and emotion detection have proven to yield valuable information in diverse applications. Research in marketing, for example, has shown that emotions that users express in online product reviews affect products’ virality and profitability (Chitturi et al. 2007, Ullah et al. 2016, Adamopoulos et al. 2018). In finance, Bellstam et al. (2020) extracted sentiments from financial analysts’ textual descriptions of firm activities, and used those sentiments to measure corporate innovation. In psychology, sentiment analysis has been used to detect distress in psychotherapy patients (Shapira et al. 2020), and to identify specific emotions that might be indicative of suicidal intentions (Desmet and Hoste 2013). Notably, recent studies suggest that the capacity to identify certain emotions (e.g., fear or distress) can contribute towards the understanding of individuals’ behaviors and mental health in the Covid-19 pandemic (Ahorsu et al. 2020, Pfefferbaum and North 2020).

The literature offers a considerable number of methods and models for sentiment analysis, with a strong bias towards polarity detection. Models for emotion detection, though less common, are also accessible to the research community in multiple languages. As yet, however, emotion detection models do not support the Hebrew language. In fact, to our knowledge, only one study thus far has developed a Hebrew-language model for sentiment analysis of any kind (specifically, polarity classification; Amram et al. (2018)). Notably, existing sentiment analysis methods developed for other languages are not easily adjustable to Hebrew, due to unique linguistic and cultural
features of this language. A key challenge in the development of Hebrew-language sentiment analysis tools relates to the fact that Hebrew is a Morphologically Rich Language (MRL), defined as a language “in which significant information concerning syntactic units and relations is expressed at word-level” (Tsarfaty et al. 2010). In Hebrew, as in other MRLs (e.g., Arabic), grammatical relations between words are expressed via the addition of affixes (suffixes, prefixes), instead of the addition of particles. Moreover, the word order in Hebrew sentences is rather flexible. Many words have multiple meanings, which change depending on context. Further, written Hebrew contains vocalization diacritics, known as Niqqud (“dots”), which are missing in non-formal scripts; other Hebrew characters represent some, but not all of the vowels. Thus, it is common for words that are pronounced differently to be written in the same way. These unique characteristics of Hebrew pose a challenge in developing appropriate Hebrew NLP models. Architectural choices should be made with care, to ensure that the features of the language are well represented. The current best practice for Hebrew NLP is the use of the multilingual BERT model (mBERT, based on the BERT [Bidirectional Encoder Representations from Transformers] architecture, discussed further below; Devlin et al. 2018), which was trained on a small size Hebrew dictionary. When tested on Arabic (the closest language to Hebrew), mBERT was shown to have significantly lower performance than a language-specific BERT model on multiple language tasks (Antoun et al. 2020).

This paper achieves two main goals related to the development of Hebrew-language sentiment analysis capabilities. First, we pre-train a language model for modern Hebrew, called HeBERT, which can be implemented in diverse NLP tasks, and is expected to be particularly appropriate for sentiment analysis (as compared with alternative model architectures). HeBERT is based on the well-established BERT architecture (Devlin et al. 2018); the latter was originally trained for the unsupervised fill-in-the-blank task (known as Masked Language Modeling - MLM (Fedus et al. 2018)). We train HeBERT on two large-scale Hebrew corpuses – Hebrew Wikipedia and OSCAR (Open Super-large Crawled ALMAnaCH corpus, a huge multilingual corpus based on open web crawl data, (Ortiz Suárez et al. 2020). We then evaluate HeBERT’s performance on five key NLP tasks, namely, fill-in-the-blank, out-of-vocabulary (OOV), Name Entity Recognition (NER), Part of Speech (POS), and sentiment (polarity) analysis. We examine several architectural choices for our model and put forward and test hypotheses regarding their relative performance, ultimately selecting the best-performing option. Specifically, we show that while model complexity correlates
with high performance on language tasks that aim to understand terms in a sentence, a more-parsimonious model better captures the sentiment of an entire sentence.

Second, we develop a tool to detect sentiments – specifically, polarity and emotions – from user-generated content (UGC). Our sentiment detector, called HebEMO, is based on HeBERT and operates on a document level. We apply HebEMO to user-generated comments, from three major news sites in Israel, that were posted in response to Covid-19-related articles during 2020. We chose this dataset on the basis of findings that the Covid-19 pandemic intensified emotions in multiple communities (Pedrosa et al. 2020), suggesting that online discourse regarding the pandemic is likely to be highly emotional. Comments were selected for annotation following an innovative semi-supervised iterative labeling approach that aimed to maximize predictability.

We show that HebEMO achieves a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reaches F1-scores of 0.8-0.97 for the various target emotions, with the exception of surprise, which the model failed to capture (F1 = 0.41). These results are better than the best reported performance, even when compared to English-language models for emotion detection (Ghanbari-Adivi and Mosleh 2019, Mohammad et al. 2018).

The remainder of this paper is organized as follows. In the next section, we provide a brief overview of the state of the art in sentiment analysis in general and emotion recognition in particular; we also briefly discuss considerations that must be taken into account when developing pre-trained language models for sentiment analysis. Next, we present HeBERT, our language model, elaborating on how we address some of the unique challenges associated with the Hebrew language. We subsequently describe HebEMO and evaluate its performance on our UGC data.

2. Background

2.1. Language Specificity in Emotional Expression

Psychologists and psychoanalysts have long known that, despite the importance of non-verbal behavior, words are the most natural way to externally express an inner emotional world (Ortony et al. 1987). In line with this premise, theories of emotions stress that emotional experience and its intensity can be inferred from spoken or written language (Argaman 2010). Yet, emotions vary across cultures (Rosaldo et al. 1984), and, consequently, languages differ in the degree of emotionality they convey and in the ways in which emotions are expressed in words (Wierzbicka 1987).
In particular, as noted by Kövecses (2003), the verbalization of emotions commonly relies on the use of metaphorical and metonymic expressions, which may differ across languages. Religion is another source of variation in emotional experience and its associated expression Kim-Prieto and Diener (2009). One study showed how the moral system of a culture - and specifically, a Middle Eastern culture - can be linked to certain types of emotions, and suggested that differences in culturally dominant emotions can play a decisive role in cultural clashes (Fattah and Fierke 2009).

The above discussion implies that emotion detection tools that are implemented in one language might not be easily transferable to other languages, particularly languages that are culturally distant. Accordingly, sentiment analysis tools must be tailored to specific language models in order to provide informative results. The current paper proposes such a tool for the Hebrew language – one that takes into account specific linguistic challenges associated with Hebrew, elaborated in subsequent sections.

2.2. Overview of Sentiment Analysis Approaches

Many studies offer comprehensive overviews of common sentiment analysis methods (e.g., Liu et al. 2019, Hemmatian and Sohrabi 2019, Yue et al. 2019, Yadav and Vishwakarma 2020). We present here the main points, with an emphasis on models that form the basis of this study. Most of the models described below were developed primarily for polarity analysis; however, as noted in the following subsection, the architectures are applicable to other sentiment analysis tasks such as emotion detection.

Current reviews on sentiment analysis tend to categorize the various approaches according to the granularity level of text that they accommodate (Liu et al. 2019): document level, that is, evaluating whether an entire document expresses a particular type of sentiment (e.g., positive or negative); sentence level – assigning a sentiment to each sentence in the document separately; and aspect level, that is, assigning sentiment to each “aspect” discussed in the text. The latter requires a pre-processing step to extract aspects from a written text. In this paper we follow a document-level approach, elaborated further below.

Sentiment classification approaches can further be categorized according to their underlying methodologies. The first, and perhaps the most popular, methodology is the lexicon-based approach. Based on the theory of emotions, this approach uses sentiment terms to score emotions in
Linguistic inquiry and word count (LIWC), for example, is a popular software program that was developed to assess (among other features) emotions in text, using a psychometrically validated internal dictionary (Pennebaker et al. 2001). The main advantage of the lexicon-based approach is that it is unsupervised, meaning that it can be applied without any training or labeled data (Yue et al. 2019). The main limitation of this approach is that it does not account for the context of terms in the lexicon, and thus overlooks complex linguistic features such as sarcasm, ambiguity, and idioms (Liu 2012). Accordingly, its accuracy is fairly low compared with the alternative approaches.

The second sentiment classification approach is Deep Learning (DL)-based. DL approaches are supervised methods that are based on multiple-layer neural networks. DL-based sentiment classification models differ by their network architecture. Common architectures include the following: (1) Convolutional Neural Networks (CNNs), which transform a structured input layer (e.g., sentences or documents represented as bag-of-words or word-embedding vectors), via convolutional layers, into a sentiment class (Kim 2014); (2) Recursive or Recurrent Neural Networks (RNNs), which handle unstructured sequential data, such as textual sentences, and learn the relations between the sequential elements (Dong et al. 2014); and (3) Long Short-Term Memory (LSTM), a popular variant of RNN, which can catch long-term dependencies between data segments, in one direction (e.g., left to right) or in both (denoted bidirectional LSTM, or BiLSTM architecture) (Hochreiter and Schmidhuber 1997).

In a recent paper, Amram et al. (2018) raised the question of the relationship between the characteristics of a language and the DL architectural choices of a sentiment classifier. They analyzed this question for the morphologically rich Hebrew language. Specifically, they compared the performance of CNN and BiLSTM architectures on a polarity classification task. They assumed that the latter method would implicitly capture main morphological signatures, and thus outperform the former. Interestingly, and in contrast to findings in English sentiment analysis (Yin et al. 2017, Acheampong et al. 2020), they found that CNN yielded overall better performance (accuracy = 0.89) than BiLSTM, even when the latter was trained on morphologically segmented inputs. As far as we know, this is the only paper that developed and evaluated a sentiment analysis model for the Hebrew language.

The last sentiment classification method, which we adopt in this paper, is the transfer learning-
based approach. Transfer learning is the act of carrying knowledge gained from one problem and applying it to another, similar problem (Pan and Yang 2009). In NLP, transfer learning is implemented via Transformers (Tay et al. 2020). Similarly to RNN, transformers use a DL approach to process sequential data. The primary advantage of the Transformer is its unique attention mechanism, which eliminates the need to process data in order, and allows for parallelization (Vaswani et al. 2017). With Transformers, a target language is first algorithmically learned, irrespective of the target language task (e.g., sentiment analysis task). To this end, a language model is trained on a pre-selected unsupervised NLP task (see section 3 for details). Then the language model is transferred to the target task. This process is called fine-tuning.

Various pre-trained language models have been used in transfer learning for NLP; these include fastText (Joulin et al. 2016), ELMo (Embeddings from Language Models, based on forward and backward LSTMs) (Peters et al. 2018), GPT (Generative Pre-trained Transformer) (Radford et al. 2018), and BERT (Devlin et al. 2018). Of these, BERT is one of the most common Transformer models for NLP. For sentiment analysis tasks, BERT models - and Transformer models in general - are widely used and produce the best results compared with alternatives (Zampieri et al. 2019, Patwa et al. 2020). For the Hebrew language, the only BERT model available is mBERT (Devlin et al. 2018), which was trained on a small-sized Hebrew dictionary (about 2000 tokens). Notably, for the Arabic language, which is the closest MRL to Hebrew, Antoun et al. (2020) showed that a pre-trained Arabic BERT model achieved better performance on polarity analysis than did any other architecture (improvement of 1% to 6% in accuracy). The Arabic-specific model also achieved better performance compared with mBERT.

2.3. Emotion Recognition

Emotion recognition is a sub-task in sentiment analysis that offers a finer granularity sentiment level compared with polarity analysis. Two definitions of human emotions dominate the NLP literature, with no clear preference between them (Kratzwald et al. 2018). The first definition, based on a theory developed by Ekman (1999), considers emotions as distinct categories, meaning that each emotion differs from the others in important ways rather than simply their intensity. Ekman (1999) identified six basic emotions, consistent across cultures, that fit facial expressions: anger, disgust, fear, happiness, sadness and surprise. The second definition is based on a theory by Plutchik (1980), who stressed that emotions can be treated as dimensional constructs, and that there are
relations between occurrences and intensities of basic emotions. In particular, Plutchik (1980) defined a “wheel” comprising four polar-pairs of basic emotions: joy–sadness, anger–fear, trust–disgust, and surprise–anticipation. Combinations of dyads or triads of emotions define another set of 56 emotions. For example, envy is a combination of sadness and anger. This wheel serves as the theoretical basis of common automated emotion detection algorithms (Medhat et al. 2014). Notably, for the purpose of emotion detection, the two conceptualizations of emotion are generally compatible with each other, as they agree on the set of emotions defined as “basic” emotions.

Though common, emotion recognition is not as widespread as polarity analysis, and it is considered more challenging (Acheampong et al. 2020). A key challenge is that, whereas any text can be classified according to its polarity, not all texts contain emotions, and thus it is harder to infer emotions via a lexicon-based approach. This challenge is further compounded by the fact that labeled data are commonly not available. Further, existing datasets are rather imbalanced. Naturally, the lack of data availability is more severe in non-English languages (Ahmad et al. 2020).

In general, the emotion detection task is treated as a multi-label classification task, and models for emotion recognition are similar in architecture to polarity detection models. Recent research has shown that, in emotion detection tasks, pre-trained BiLSTM architectures provide advantages over CNN and unidirectional RNN models (Acheampong et al. 2020), and that Transformers are preferable to other DL approaches (Chatterjee et al. 2019, Zhong et al. 2019). For example, in a recent SemEval competition (Chatterjee et al. 2019) that included an emotion detection task for three emotions (angry, happy, sad), Transformer-based models were shown to give the best performance (performance ranges: F1-Score = 0.75 - 0.8; precision = 0.78 - 0.85; recall = 0.78 - 0.85).

2.4. Training Language Models for Transfer Learning

As noted above, transfer learning for polarity analysis and/or emotion recognition requires a pre-trained language model. To develop and train a language model, one needs to make the following three basic decisions:

1. Input representation (tokenization): What is the granularity of the tokens that are fed to the model? Common granularity levels include characters, n-gram-based sub-words (using WordPiece algorithm (Schuster and Nakajima 2012)), morpheme-based sub-words, and full
2. Architectural choices: What is the exact architecture and specification of the neural network?
3. Output: What is the (unsupervised) task that the model is trained on?

All the unit’s workers are unemployed while the pandemic

regarding input representation, the choice of representation affects the features that the language model is able to capture, and the training complexity. Character-based representation is better for learning word-morphology, especially for low-frequency words and MRLs (Belinkov et al. 2017, Vania et al. 2018), but it comes with longer training time and a deeper architecture, compared with other representations (Bojanowski et al. 2015). Word-based representation, in turn, treats each word as a separate token, and thus is considered better for understanding semantics (Pota et al. 2019). With this representation, however, words that differ by prefix or suffix are considered different, necessitating storage of a very large vocabulary. Moreover, out-of-vocabulary (OOV) tokens are not represented. The intermediate option is to use a sub-word representation, which provides some balance between the character- and word-based representations; moreover, it overcomes the OOV problem associated with the word-based representation, and its vocabulary requirements are more manageable (Wu et al. 2016). With sub-words, words can be broken into
either n-gram characters, or according to morphemes that have lingual meaning (but also higher computational costs). Previous literature has produced mixed results regarding to the extent to which using a morpheme-based approach can improve upon the n-gram-based approach (Bareket and Tsarfaty 2020). Recently, Klein and Tsarfaty (2020) showed that sub-word splitting in the multilingual BERT model (mBERT, Devlin et al. 2018) is sub-optimal for capturing morphological information.

For the question of **architecture selection**, Devlin et al. (2018) and Radford et al. (2019) showed that for **similar model size**, BERT outperforms other architectures such as GPT and ELMo on sentiment tasks.

With respect to the **model output**, there are two tasks on which a model can be trained. The first is **predict-the-future**, meaning that the model is trained to predict the last token of a sentence. This task accounts for uni-directional contexts only. The second is the **fill-in-the-blank** task, where the model is trained to fill in a missing token within a sentence. This task takes into account the full (bi-directional) sentence context, and is able to better capture the meanings of tokens, both syntactically and semantically (Devlin et al. 2018). Recently, Levine et al. (2020) offered a method to optimize these tasks, called **Pointwise Mutual Information (PMI) masking**. The authors suggested that instead of filling in a single random token, the model should be trained to fill in a set of tokens that carry mutual information.

3. HeBERT: Language Model

In this section we develop an unsupervised Hebrew BERT model, which we will later fine-tune for the tasks of polarity analysis and emotion recognition.

3.1. Tokenization, Architecture, and Output

We begin by addressing the three key modeling decisions outlined in the previous section - input representation (tokenization), architecture, and output - in the context of the Hebrew language.

Recall that, as discussed in the introduction, Hebrew is an MRL with the following important characteristics: (i) grammatical relations in Hebrew are expressed via the addition of affixes; (ii) Hebrew sentences are nearly order-free; (iii) many Hebrew words have multiple meanings, which change depending on context; (iv) Hebrew contains vocalization diacritics that are missing in non-
formal scripts, implying that words that are pronounced differently can be written in the same way.

Bearing these features in mind, we first address the last two questions, of architectural choice and model output. As discussed in previous sections, BERT has been shown to outperform alternative architectures in sentiment analysis tasks (Radford et al. 2019); moreover, the literature offers evidence that BERT networks effectively capture linguistic information and phrase-level information (Jawahar et al. 2019), a necessary requirement for MRLs (Tsarfaty et al. 2020). Accordingly, we decided to use BERT as our base model, with the default architecture. For the output task, we used BERT’s default fill-in-the-blank task. Fill-in-the-blank has the advantage of understanding bi-directional context, which corresponds to the order-free property of Hebrew sentences.

With respect to the input - the granularity of the tokens - the literature on MRLs, and Hebrew specifically, is inconclusive. Belinkov et al. (2017) and Vania et al. (2018) showed that character-based representation, which is becoming increasingly popular, is better than word-based representation for learning Hebrew morphology, especially for low-frequency words. For sentiment tasks, however, Amram et al. (2018) and Tsarfaty et al. (2020) showed that a word-based representation yields better predictions than a char-based representation. With regard to sub-word representations, Klein and Tsarfaty (2020) suggested (but did not verify) that, for BERT for Hebrew, morpheme-based sub-words are likely to be preferable to n-gram-based sub-words. A similar argument was made for Arabic, which is the closest MRL language to Hebrew (Antoun et al. 2020).

To understand what causes differences in findings between different researchers, consider the following three examples:

1. First, is the word NA’AL. NA’AL can be translated as either locked (e.g., he locked the door), a shoe, or the past, singular, tense of the verb wearing (a shoe). It is also often used as a slang term for stupid. The actual semantic meaning of NA’AL in a sentence is derived from the context. In that respect, a high-level text granularity (such as a word-based representation) might be the preferable choice for representing Hebrew, as it is better in capturing semantic meanings in context (Pota et al. 2019).

2. Next, is the word NA’ALO, which is an inflection of the word NA’AL with the suffix ”O”. NA’ALO can refer to either “his shoe” or “locked it”. In that respect, a finer text granu-
larity, such as char-based, which is better at learning morphology, might be preferred.

3. Finally, consider the splitting of the word NA’ALO. Here, a meaningful splitting would be NA’AL-O. However, such a splitting can only be achieved with morpheme-based sub-words, using a tool such as YAP (Yet Another Parser, by More et al. (2019)). The alternative, n-gram-based sub-words, will result in additional splitting, which might have lower semantic meaning than morpheme-based sub-words, yet higher robustness to OOV.

Given the above discussion, we hypothesize that sub-word representations (n-gram- or morpheme-based representation), which balance semantic meaning with morphology, will best capture the features of the Hebrew language, and will yield better performance for various language tasks, as compared with character-based and word-based representations. Comparing n-gram-based sub-words with morpheme-based sub-words, we expect the latter to have an advantage on token-level tasks that require a good “understanding” of the language features; yet, a morpheme-based representation might not have such an advantage in document-level downstream tasks.

To examine our hypothesis, we first train and evaluate multiple small-size BERT models that differ by the granularity of the input. We then choose the best-performing architecture, and re-train the model on a much larger corpus.

3.2. Comparison Analysis of Tokenization Approaches

We examine five alternative text representations: char-based; two n-gram-based sub-word representations, which differ in the total vocabulary size (30K tokens vs. 50K tokens); a morpheme-based sub-word representation; and a word-based representation, which considers all words in the corpus, after trimming terms in the lowest 5th quantile according to their term frequency (vocabulary size of over 53K tokens).

To compare between the input alternatives, we first train small-sized base-BERTs on a Hebrew Wikipedia dump. Our working assumption is that the performance of a small-sized BERT is monotonic with the model’s performance when trained on a larger corpus with the same parameters, yet requires significantly fewer resources. We evaluate the models’ performances on two common unsupervised language tasks and on three downstream tasks:

\[^{1}\text{As of September 2013; retrieved from https://u.cs.biu.ac.il/ yogo/hebwiki/}. \text{The dataset includes over 63 million words and 3.8 million sentences.}\]
1. Unsupervised language tasks:

(a) Fill-in-the-blank - the ability to fill in a missing token; tested on a newspaper article\(^2\) and a fairy-tale dataset\(^3\). Performance was measured with sequence perplexity \((PP(W))\) - a common measure to examine the ability of a language model to evaluate the correctness of sentences in a sample set. Perplexity of a sequence \(W\) with \(N\) tokens \((W = \{w_1, w_2, ..., w_n\})\) is calculated as the exponential average log-likelihood of the sequence \((PP(W) = \exp\left\{-\frac{1}{N} \sum_{i}^{N} \log p_\theta(w_i | w_{<i})\right\})\), where \(\log p_\theta(w_i | w_{<i})\) is the log-likelihood of the \(i^{th}\) token conditioned on the preceding tokens, according to the language model).

(b) Generalizability to OOV - the ability of the language model to generalize beyond the trained corpus (Wikipedia vocabulary), as measured by the percentage of tokens in a testing set for which the language model could not predict the term embedding. As a testing set, we used the corpus reported in Amram et al. (2018).

2. Downstream classification tasks:

(a) Named-entity recognition (NER) - the ability of the model to classify named entities in text, such as persons’ names, organizations, and locations; tested on a labeled dataset from Mordecai and Elhadad (2005), and evaluated with F1-score \((2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}})\).

(b) Part of speech (POS) - the ability of the model to classify the grammatical role that a word or phrase plays in a sentence (e.g., noun, pronoun, verb); tested on a labeled Israeli newspaper dataset from Sima’an et al. (2001), and evaluated with F1-score (See appendix A for detailed explanation of how we compared the performance of the models).

(c) Polarity analysis - tested on the polarity data that were collected and labeled by Amram et al. (2018) and evaluated with F1-score.

The results of this comparison are shown in Table 1.

For the unsupervised tasks (fill-in-the-blank and OOV), the sub-word representations (n-gram-based and morpheme-based) performed similarly well, and substantially outperformed the word-based representation. Specifically, all sub-word methods were able to capture OOV tokens, with the

\(^2\)Retrieved from: https://www.haaretz.co.il

\(^3\)Retrieved from https://benyehuda.org/ - a volunteer-based free digital library expanding access to Hebrew literature.
Table 1: Comparison of task performance for different input alternatives. The best results for each task are in bold.

Metric	Fill-the-blank (Perplexity)	OOV (%)	NER (F-1 score)	POS (F-1 score)	Polarity analysis (F-1 score)
chars (1k)	1.17	~0	0.74	0.92	0.69
n-gram (30k)	4.4	~0	0.79	0.90	0.79
n-gram (50k)	5.7	~0	0.79	0.92	0.71
morpheme-based	8.9	0.75	**0.92**	**0.95**	0.65
word-based	209830	50	0.86	N/A*	0.43

* POS cannot be computed due to the high OOV percentage.

except the exception of special emojis. The performance for the fill-in-the-blank task is monotonic with respect to the dictionary size. Char-based representation outperformed the sub-word representations on the fill-in-the-blank task and performed equally well on the OOV task. This is not surprising, as smaller-sized dictionaries leave less room for mistakes.

For each of the downstream tasks, in line with our hypothesis, the top-performing tokenization was a sub-word representation. Specifically, n-gram-based tokenization performed best on the POS task, whereas morpheme-based tokenization achieved the best performance on NER. For polarity analysis, the n-gram-based approach with the smaller dictionary (30K) performed significantly better than all other approaches.

These results suggest that (1) there is no single representation that is optimal for the entire set of tasks, (2) for each task, there is at least one sub-word representation that outperforms both the char- and word-based representations, and (3) for a sentiment analysis task, which is the focus of this work, an n-gram-based sub-word representation with a smaller dictionary yielded the highest performance. On the basis of these results, we selected the latter tokenization for our model.

3.3. Final Model

In line with the specifications outlined above, we trained a large-size BERT on both the Wikipedia corpus and an OSCAR corpus (Ortiz Suárez et al. [2020]), with a small-size n-gram-based sub-word dictionary. For the Hebrew language, OSCAR contains a corpus of size 9.8 GB, including 1 billion words and over 20.8 million sentences (after de-duplicating the original data). We used a Pytorch implementation of Transformers in Python (Wolf et al. [2020]) to train a base-BERT network for 4 epochs, with learning rate = 5e-5, using the Adam optimizer in batches of 128 sentences each.
The performance of the final model is reported in Table 2 and compared to the performance of (i) the (non-BERT) model reported in Amram et al. (2018) and More et al. (2019) and Bareket and Tsarfaty (2020), the only other model developed for NLP tasks in Hebrew (denoted SOTA, or “state of the art”); and (ii) mBERT. The best results for each task are in bold.

Task	Fill-in-the-blank	OOV (%)	NER (F-1 score)	POS (F-1 score)	Polarity analysis (F-1 score)
HeBERT	3.24	~0	0.85	0.92	0.93
Current SOTA	(Not reported)	8%	0.84	0.97	0.89
mBERT	1	0	0.74	0.94	0.88

Table 2: HeBERT performance, compared to alternative models. Best results for each task are in bold.

The results show that while mBERT outperformed HeBERT in an unsupervised task (fill-in-the-blank), HeBERT performed better on supervised tasks, even when compared to the current SOTA. Of note, mBERT contains only 2,000 tokens in Hebrew (compared to 30K in HeBERT). HeBERT’s higher performance in supervised tasks is thus not surprising.

4. HebEMO: A Model for Polarity Analysis and Emotion Recognition

In this section we develop HebEMO - a model for sentiment analysis, including polarity analysis and emotion recognition. HebEMO, which is based on HeBERT, predicts sentiments at a document level; as elaborated in what follows, in our case a “document” is a single user-generated comment on a news website. The development of the model is based on three main elements: (i) data collection; (ii) data annotation; and (iii) fine-tuning of HeBERT.

4.1. Data Collection and Annotation

The data collected for this study were compiled from user comments that were posted to Israeli news websites in response to Covid-19-related articles, during the Covid-19 pandemic (Jan-Dec, 2020) - a highly emotional period (Pedrosa et al. 2020).

Our selection of news sites was inspired by a 2016 statement by Israel’s president, Reuven (Rubi) Rivlin, according to which Israeli society is composed of four equal-sized “tribes” which are culturally different (and hence might express emotions slightly differently); of these, three comprise Hebrew-speaking Jews - namely, secular, national-religious, and ultra-Orthodox (“Haredi”) - and
the fourth “tribe” is Israel’s Arab population (Steiner 2016). Each group is represented in both politics and the media.

Accordingly, we collected data from three popular Israeli news sites that, respectively, represent the three Hebrew-speaking “tribes”. Specifically, our dataset contained all Covid-19-related articles from Ynet⁴, which is identified with the secular “tribe” (with a slight left-wing political leaning); Israel Hayom⁵ (translation: “Israel Today”), which is identified with the national-religious “tribe” (with a slight right-wing political leaning), and Be-Hadre Haredim⁶ (translation: “In Haredis’ Rooms”), which represents the ultra-Orthodox group.

For each article, we collected the article’s text, its date of publication, the section in the news site in which it was published (e.g., news, health, sports), the author, and the comments section. We excluded from the dataset comments that did not contain Hebrew words, and comments with fewer than 3 words. We further merged repeated consecutive characters (e.g., three or more identical punctuation symbols) and removed links and double spaces. The compiled corpus, summarized in Table 3, contained over half a million comments on 10,794 titles in various sections.

source	section	#titles	#comments
Ynet	activism	3	80
	article	500	30053
	articles	4506	156174
	dating	34	793
	digital	124	2067
	economy	1486	55521
	entertainment	153	7000
	food	41	4064
	health	271	8112
	judaism	63	4321
	news	138	8214
	sport	71	363
	vacation	181	10467
	wheels	32	964
Israel Hayom	article	2651	71372
	opinion	36	392
Be-Hadre Haredim	news	191	805

Table 3: Description of the collected data

⁴https://www.ynet.co.il/
⁵https://www.israelhayom.co.il/
⁶https://www.bhol.co.il/
4.2. Data Annotation

We annotated a total of 4,000 comments. Comments were selected for annotation following active learning principles (Li et al. 2012) to minimize the well-known imbalance problem in the emotion recognition literature (Acheampong et al. 2020). The annotation process we used is described below and illustrated in Figure 2.

Our iterative process was initialized in step 1 with a naive unsupervised lexicon-based approach. For this step, we Google-translated EmoLex: a freely-available English-language polarity and emotion dictionary (Mohammad and Turney 2013). EmoLex contains a list of manually collected (via crowdsourcing) English words classified according to one or more of the eight basic emotions and two polarity values (positive and negative). We then used the translated dictionaries to score the entire set of lemmatized comments in our dataset. Lemmatization was achieved with UDPipe (Straka et al. 2016).

In step 2, given the initial sentiment scores generated in step 1, we selected a set of 150 comments, of which 75 comments had received the highest positive polarity scores, and 75 had received the highest negative polarity scores. Similarly, for each of the eight emotions, we selected a set of 75 comments in which the emotion was highly expressed, and another 75 comments in which the emotion was not expressed. The resulting set, after removing duplicate comments, comprised a total of 1,500 initially labeled comments.
We then turned to Prolific\footnote{https://www.prolific.co/}, a trusted online labor and research platform, to manually re-annotate the 1,500 comments. Each comment was annotated by at least three distinct native Hebrew-speaking Prolific workers. Specifically, annotators were asked to rate individual comments’ polarity on a symmetric 5-point scale of \{strongly negative, negative, neutral, positive, strongly positive\}, and to rate the expression of each emotion in the comment on a polar 3-point scale of \{not expressed (in the comment), expressed, strongly expressed\}. The participants were given the context of the comment (i.e., the title of the news article on which the comment was posted). Each participant annotated 20 randomly selected comments.

The reliability levels of workers’ annotations were then computed with Krippendorff’s alpha \cite{Krippendorff1970}, a measure of inter-rater agreement. We measured reliability independently for each sentiment in a comment, using coarser sentiment scales of polarity = \{positive, neutral, negative\} and emotion = \{expressed, not expressed\}. For example, if two raters, \(i\) and \(j\), rated the emotion “anger” in a comment \(c\) as \(L^i_{c,\text{anger}} = \text{“expressed”}\) and \(L^j_{c,\text{anger}} = \text{“strongly expressed”}\), we computed their mutual response as “agreement” (formally, the observed agreement between the raters was \(\delta(L^i_{c,\text{anger}}, L^j_{c,\text{anger}}) = 0\)). If the ratings were \(L^i_{c,\text{anger}} = \text{“expressed”}\) (or “strongly expressed”) and \(L^j_{c,\text{anger}} = \text{“not expressed”}\), we computed the raters’ mutual response as “disagreement” \(\delta(L^i_{c,\text{anger}}, L^j_{c,\text{anger}}) = 1\)). We then excluded comments’ sentiment annotation with Krippendorff’s alpha lower than 0.75.

In step 3, we trained an initial HeBERT-based sentiment (supervised) classifier (see details in Section 4.3) on the crowd-annotated data, and predicted polarity and emotion scores for the remainder of the corpus. We then repeated steps 2 and 3 until the performance of our classifier converged. Convergence occurred after three iterations, and a total of 4,000 partially labeled comments (partially means that the raters agreed on at least one sentiment). Tables 4 and 5 summarize the number of comments for each sentiment (polarity and emotion, respectively) for which there was high agreement among raters, and the percentage of the comments that express this sentiment. For example, the expression/non-expression of the emotion “anger” was labelled in 1,979 distinct comments; among these, “anger” was expressed in 78% of the comments, and in 22% it was not expressed.
Table 4: Summary of the polarity data

Polarity	# labeled comments	% comments
Positive	253	13.8%
Neutral	55	3%
Negative	1525	83.2%

Table 5: Summary of the emotion data

Emotion	# labeled comments	% comments
Anger	1979	78%
Disgust	2115	83%
Anticipation	681	58%
Fear	1041	45%
Joy	2342	12%
Sadness	998	59%
Surprise	698	17%
Trust	1956	11%

Interestingly, though we attempted to balance the expression and non-expression of each sentiment in our labelled data, our raters had significantly lower agreement on positive sentiments - specifically, positive polarity, expression of happiness, surprise, and trust, and non-expression of anger and disgust. In line with the theory of Plutchik (1980), we observed high negative correlation between emotions that are located opposite each other in Plutchik’s wheel of emotion, and positive correlation between closely related emotions (see Table 6). The final classification model was denoted HebEMO.
4.3. Fine-Tuning of HeBERT: The Classification Model

We modeled our classification algorithm by fine-tuning HeBERT for a document-level classification task. Prediction probabilities were computed with a softmax activation function. We treated the polarity task as a multinomial problem with three classes (positive, neutral, negative); emotions were modeled as independent dichotomous classification tasks (expressed, not expressed), as multiple emotions can co-exist in a single comment. Attempts to merge emotion pairs (e.g., joy-sad) into a single classification category yielded lower performance. To train and evaluate our model, we randomly partitioned the corpus into training (70%), validation (15%), and test (15%) sets. In order to avoid data leakage, the tokenization process (in HeBERT) was not trained on the UGC dataset. We repeated the training and evaluation process following a bootstrap approach with 50 samples (each generated a different data partition) and examined the stability of our results.

5. Results

We applied HebEMO to our annotated dataset and examined its performance, as measured by precision, recall, F1-score and overall accuracy of the expressed sentiment. Table 7 presents the performance of our model on the polarity task, and Table 8 presents the performance for emotion recognition. The weighted average performance across all sentiments is F1-score = 0.931, and overall accuracy = 0.91. With the exception of the emotion “surprise”, the performance of the model ranges between F1-score and accuracy of 0.78-0.97. These performance levels, as far as we know, exceed those of state-of-the-art English-language models for UGC emotion recognition (Ghanbari-Adivi and Mosleh 2019; Mohammad et al. 2018).

The emotion “surprise” is known to be hard to detect. As mentioned in Zhou et al. (2020), the best reported F1-score for this emotion in English was found to be as low as 0.19 (Mohammad et al. 2018). In our dataset, the amount of labeled data for “surprise” - as well as for its opposing counterpart on the wheel of emotion, “anticipation” (Plutchik 1980) - was also the lowest among all emotions (see Table 5), implying that this pair is a challenging labeling task even for human annotators.

Next, we re-trained HebEMO on the polarity data reported by Amram et al. (2018). Amram et al. (2018) collected comments that were written in response to official tweets posted by the Israeli president, Mr. Reuven Rivlin, between June and August, 2014 (a total of 12,804 Hebrew
Table 7: HebEMO performance on polarity task in the UGC data

	Precision	Recall	F1-score
Positive	0.96	0.92	0.94
Neutral	0.83	0.56	0.67
Negative	0.97	0.99	0.98
Accuracy			0.97

Table 8: HebEMO performance on emotion detection task in the UGC data

	F1	Precision	Recall	Accuracy
Anger	0.97	0.97	0.97	0.95
Disgust	0.96	0.97	0.95	0.93
Anticipation	0.85	0.83	0.87	0.84
Fear	0.80	0.84	0.77	0.80
Joy	0.88	0.89	0.87	0.97
Sadness	0.84	0.83	0.84	0.79
Surprise	0.41	0.47	0.37	0.78
Trust	0.78	0.88	0.70	0.95

The authors manually annotated the comments with the following labels - supportive (positive), criticizing (negative), or off-topic (neutral) comments - and published a partitioned dataset (training and validation) for the benefit of comparisons between language models. The performance of our model is presented in Table 9, along with the improvement/deterioration in performance as compared with the SOTA model reported in Amram et al. (2018). The results show that, in most aspects, with the exception of off-topic precision, our model’s performance exceeds that of the SOTA model. The improvement is significant at the 95% confidence level.

Table 9: The performance of HebEMO when trained on the polarity corpus reported by Amram et al. (2018)

	Precision	Recall	F1-score
Positive	0.95	0.96	0.95
	(+.03)	(+.01)	(+.01)
Negative	0.89	0.89	0.89
	(+.05)	(+.02)	(+.04)
Off-topic	0.70	0.56	0.62
	(-.3)	(+.55)	(+.03)
Accuracy			0.93
			(+.03)
6. Summary and Discussion

This paper presented two new tools that contribute to the development of Hebrew-language sentiment analysis capabilities: (i) **HeBERT** - the first Hebrew BERT model, and a new state-of-the-art model for multiple Hebrew NLP tasks; and (ii) **HebEMO** - a tool for polarity analysis and emotion recognition from Hebrew UGC.

Although HeBERT was developed for the purpose of optimizing sentiment analysis, we showed that it outperforms mBERT in a variety of supervised language tasks. This finding is consistent with the literature that proposes that language-specific models are better than multilingual model. HeBERT also showed better performance than the current (non-BERT) SOTA Hebrew-language model.

For the task of extracting sentiments from UGC, we showed that a morpheme-based model, which aims to “understand” features of the language, performed less well than a model that did not address the language features (ngram-based sub-words). For the latter input representation, a smaller-size dictionary was better than the larger-size dictionary. A plausible explanation for these results is that UGC contains unofficial language, which includes non-lexical words such as slang words and typos. Over-fitting a model to a language in this case may overlook the unique characteristics of the unofficial language. In future work we plan to examine the performance of HebEMO when HeBERT is trained on a PMI masking task, rather than fill-in-the-blank.
References

Acheampong FA, Wenyu C, Nunoo-Mensah H (2020) Text-based emotion detection: Advances, challenges, and opportunities. *Engineering Reports* e12189.

Adamopoulos P, Ghose A, Todri V (2018) The impact of user personality traits on word of mouth: Text-mining social media platforms. *Information Systems Research* 29(3):612–640.

Ahmad Z, Jindal R, Ekbal A, Bhattachharyya P (2020) Borrow from rich cousin: transfer learning for emotion detection using cross lingual embedding. *Expert Systems with Applications* 139:112851.

Ahorsu DK, Lin CY, Imani V, Saffari M, Griffiths MD, Pakpour AH (2020) The fear of covid-19 scale: development and initial validation. *International journal of mental health and addiction*.

Amram A, David AB, Tsarfaty R (2018) Representations and architectures in neural sentiment analysis for morphologically rich languages: A case study from modern hebrew. *Proceedings of the 27th International Conference on Computational Linguistics*, 2242–2252.

Antoun W, Baly F, Haji H (2020) Arabert: Transformer-based model for arabic language understanding. *arXiv preprint arXiv:2003.00104*.

Argaman O (2010) Linguistic markers and emotional intensity. *Journal of psycholinguistic research* 39(2):89–99.

Bareket D, Tsarfaty R (2020) Neural modeling for named entities and morphology (nemo−2). *arXiv preprint arXiv:2007.15620*.

Belinkov Y, Durrani N, Dalvi F, Sajjad H, Glass J (2017) What do neural machine translation models learn about morphology? *arXiv preprint arXiv:1704.03471*.

Bellstam G, Bhagat S, Cookson JA (2020) A text-based analysis of corporate innovation. *Management Science*.

Bojanowski P, Joulin A, Mikolov T (2015) Alternative structures for character-level rnns. *arXiv preprint arXiv:1511.06303*.

Chatterjee A, Narahari KN, Joshi M, Agrawal P (2019) Semeval-2019 task 3: Emocontext contextual emotion detection in text. *Proceedings of the 13th International Workshop on Semantic Evaluation*, 39–48.

Chitturi R, Raghunathan R, Mahajan V (2007) Form versus function: How the intensities of specific emotions evoked in functional versus hedonic trade-offs mediate product preferences. *Journal of marketing research* 44(4):702–714.

Desmet B, Hoste V (2013) Emotion detection in suicide notes. *Expert Systems with Applications* 40(16):6351–6358.

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive recursive neural network for target-dependent twitter sentiment classification. *Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: Short papers)*, 49–54.

Ekman P (1999) Basic emotions. *Handbook of cognition and emotion* 98(45-60):16.

Fattah K, Fierke KM (2009) A clash of emotions: The politics of humiliation and political violence in the middle east. *European journal of international relations* 15(1):67–93.

Fedus W, Goodfellow I, Dai AM (2018) Maskgan: Better text generation via filling in the_. *arXiv preprint arXiv:1801.07736*.

Ghanbari-Adivi F, Mosleh M (2019) Text emotion detection in social networks using a novel ensemble classifier based on parzen tree estimator (tpe). *Neural Computing and Applications* 31(12):8971–8983.

Hemmatian F, Sohrabi MK (2019) A survey on classification techniques for opinion mining and sentiment analysis. *Artificial Intelligence Review* 1–51.

Hochreiter S, Schmidhuber J (1997) Long short-term memory. *Neural computation* 9(8):1735–1780.

Jawahar G, Sagot B, Seddah D (2019) What does bert learn about the structure of language?
Joulin A, Grave E, Bojanowski P, Douze M, Jégou H, Mikolov T (2016) Fasttext.zip: Compressing text classification models. *arXiv preprint arXiv:1612.03651*.

Kim Y (2014) Convolutional neural networks for sentence classification. *arXiv preprint arXiv:1408.5882*.

Kim-Prieto C, Diener E (2009) Religion as a source of variation in the experience of positive and negative emotions. *The Journal of Positive Psychology* 4(6):447–460.

Klein S, Tsarfaty R (2020) Getting the life out of living: How adequate are word-pieces for modelling complex morphology? *Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology*, 204–209.

Kövecses Z (2003) *Metaphor and emotion: Language, culture, and body in human feeling* (Cambridge University Press).

Kratzwald B, Ilić S, Kraus M, Feuerriegel S, Prendinger H (2018) Deep learning for affective computing: Text-based emotion recognition in decision support. *Decision Support Systems* 115:24–35.

Krippendorff K (1970) Estimating the reliability, systematic error and random error of interval data. *Educational and Psychological Measurement* 30(1):61–70.

Levine Y, Lenz B, Lieber O, Abend O, Leyton-Brown K, Tennenholtz M, Shoham Y (2020) Pmi-masking: Principled masking of correlated spans. *arXiv preprint arXiv:2010.01825*.

Li S, Ju S, Zhou G, Lin X (2012) Active learning for imbalanced sentiment classification. *Proceedings of the 2012 Joint conference on empirical methods in natural language processing and computational natural language learning*, 139–148.

Liu B (2012) Sentiment analysis and opinion mining. *Synthesis lectures on human language technologies* 5(1):1–167.

Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. *Mining text data*, 415–463 (Springer).

Liu R, Shi Y, Ji C, Jia M (2019) A survey of sentiment analysis based on transfer learning. *IEEE Access* 7:85401–85412.

Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: A survey. *Ain Shams engineering journal* 5(4):1093–1113.

Mohammad S, Bravo-Marquez F, Salameh M, Kiritchenko S (2018) Semeval-2018 task 1: Affect in tweets. *Proceedings of the 12th international workshop on semantic evaluation*, 1–17.

Mohammad SM, Turney PD (2013) Crowdsourcing a word-emotion association lexicon 29(3):436–465.

Mordecai NB, Elhadad M (2005) Hebrew named entity recognition. *MONEY* 81(83.93):82–49.

More A, Seker A, Basmove V, Tsarfaty R (2019) Joint transition-based models for morpho-syntactic parsing: Parsing strategies for mrls and a case study from modern hebrew. *Transactions of the Association for Computational Linguistics* 7:33–48.

Ortiz Suárez PJ, Romary L, Sagot B (2020) A monolingual approach to contextualized word embeddings for mid-resource languages. *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, 1703–1714 (Online: Association for Computational Linguistics), URL https://www.aclweb.org/anthology/2020.acl-main.156.

Ortony A, Clore GL, Foss MA (1987) The referential structure of the affective lexicon. *Cognitive science* 11(3):341–364.

Pan SJ, Yang Q (2009) A survey on transfer learning. *IEEE Transactions on knowledge and data engineering* 22(10):1345–1359.

Patwa P, Aguilar G, Kar S, Pandey S, PYKL S, Gambäck B, Chakraborty T, Solorio T, Das A (2020) Semeval-2020 task 9: Overview of sentiment analysis of code-mixed tweets. *arXiv e-prints arXiv–2008.*

Pedrosa AL, Bitencourt L, Fróes ACF, Cazumbá MLB, Campos RGB, de Brito SBSC, e Silva ACS (2020) Emotional, behavioral, and psychological impact of the covid-19 pandemic. *Frontiers in psychology* 11.

Pennebaker JW, Francis ME, Booth RJ (2001) Linguistic inquiry and word count: Liwc 2001. *Mahway: Lawrence Erlbaum Associates* 71(2001):201.
Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Pfefferbaum B, North CS (2020) Mental health and the covid-19 pandemic. New England Journal of Medicine.

Plutchik R (1980) A general psychoevolutionary theory of emotion. Theories of emotion, 3–33 (Elsevier).

Pota M, Marulli F, Esposito M, De Pietro G, Fujita H (2019) Multilingual pos tagging by a composite deep architecture based on character-level features and on-the-fly enriched word embeddings. Knowledge-Based Systems 164:309–323.

Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI blog 1(8):9.

Rosaldo MZ, Shweder RA, Levine RA (1984) Culture theory: essays on mind, self, and emotion.

Schuster M, Nakajima K (2012) Japanese and korean voice search. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5149–5152 (IEEE).

Shapira N, Lazarus G, Goldberg Y, Gilboa-Schechtman E, Tuval-Mashiach R, Juravski D, Atzil-Slonim D (2020) Using computerized text analysis to examine associations between linguistic features and clients’ distress during psychotherapy. Journal of counseling psychology.

Sima’an K, Itai A, Winter Y, Altman A, Nativ N (2001) Building a tree-bank of modern hebrew text. Traitement Automatique des Langues 42(2):247–380.

Steiner T (2016) President rivlin’s “four tribes” initiative: The foreign policy implications of a democratic & inclusive process to address israel’s socio-demographic transformation.

Straka M, Hajic J, Strakova J (2016) Udpipe: trainable pipeline for processing conll-u files performing tokenization, morphological analysis, pos tagging and parsing. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 4290–4297.

Tay Y, Delghani M, Bahri D, Metzler D (2020) Efficient transformers: A survey. arXiv preprint arXiv:2009.06732.

Tsarfaty R, Bareket D, Klein S, Seker A (2020) From spmrl to nmrl: What did we learn (and unlearn) in a decade of parsing morphologically-rich languages (mrls)? arXiv preprint arXiv:2005.01390.

Tsarfaty R, Seddah D, Goldberg Y, Kübler S, Versley Y, Candito M, Foster J, Rehbein I, Tounsi I (2010) Statistical parsing of morphologically rich languages (spmrlnat) what, how and whither. Proceedings of the NAAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, 1–12.

Ullah R, Amblee N, Kim W, Lee H (2016) From valence to emotions: Exploring the distribution of emotions in online product reviews. Decision Support Systems 81:41–53.

Vania C, Grivas A, Lopez A (2018) What do character-level models learn about morphology? the case of dependency parsing. arXiv preprint arXiv:1808.09180.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in neural information processing systems, 5998–6008.

Wierzbicka A (1994) Emotion, language, and cultural scripts.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Scao TL, Gugger S, Drame M, Lhoest Q, Rush AM (2020) Transformers: State-of-the-art natural language processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45 (Online: Association for Computational Linguistics), URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, et al. (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Yadav A, Vishwakarma DK (2020) Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review 53(6):4335–4385.
Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of cnn and rnn for natural language processing. *arXiv preprint arXiv:1702.01923*.

Yue L, Chen W, Li X, Zuo W, Yin M (2019) A survey of sentiment analysis in social media. *Knowledge and Information Systems* 1–47.

Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R (2019) Semeval-2019 task 6: Identifying and categorizing offensive language in social media (offenseval). *arXiv preprint arXiv:1903.08983*.

Zhang L, Wang S, Liu B (2018) Deep learning for sentiment analysis: A survey. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery* 8(4):e1253.

Zhong P, Wang D, Miao C (2019) Knowledge-enriched transformer for emotion detection in textual conversations. *arXiv preprint arXiv:1909.10681*.

Zhou D, Wu S, Wang Q, Xie J, Tu Z, Li M (2020) Emotion classification by jointly learning to lexiconize and classify. *Proceedings of the 28th International Conference on Computational Linguistics*, 3235–3245.