PRE-LIE ALGEBRAS AND INCIDENCE CATEGORIES OF
COLORED ROOTED TREES

MATT SZCZESNY

Abstract. The incidence category C_F of a family F of colored posets closed under disjoint unions and the operation of taking convex sub-posets was introduced by the author in [12], where the Ringel-Hall algebra H_F of C_F was also defined. We show that if the Hasse diagrams underlying F are rooted trees, then the subspace n_F of primitive elements of H_F carries a pre-Lie structure, defined over \mathbb{Z}, and with positive structure constants. We give several examples of n_F, including the nilpotent subalgebras of \mathfrak{sl}_n, \mathfrak{gl}_n, and several others.

1. Introduction

A left pre-Lie algebra is a k–vector space A endowed with a binary bilinear operation \triangleright satisfying the identity

$$((a \triangleright b) \triangleright c) - a \triangleright (b \triangleright c) = (b \triangleright a) \triangleright c - b \triangleright (a \triangleright c)$$

It follows easily from 1.1 that anti-symmetrizing \triangleright yields a Lie bracket

$$[a, b] = a \triangleright b - b \triangleright a$$
on A. However, not every Lie algebra arises from a pre-Lie algebra. Pre-Lie algebras first appeared in the works of E.B. Vinberg [13] and M. Gerstenhaber [3], and have since found applications in several areas. One prominent example is perturbative quantum field theory [4], where insertion of Feynman graphs into each other equips them with a pre-Lie structure which controls the combinatorics of the renormalization procedure.

In this paper, we show that pre-Lie algebras arise naturally from incidence categories introduced by that author in [12]. An incidence category is built from a collection F of colored posets, which is closed under the operations of disjoint union and convex subposet - we will denote it by C_F. The objects of C_F are the posets in F, and for $P_1, P_2 \in F$

$$\text{Hom}(P_1, P_2) := \{(I_1, I_2, f)|I_j \text{ is an order ideal in } P_j, f : P_1 \setminus I_1 \to I_2 \text{ an isomorphism}\}$$

Here, the poset I_1 should be viewed as the kernel of the morphism, and I_2 as the image. All morphisms in C_F have kernels and cokernels, and so the notion of exact sequence makes sense. In [12], the Ringel-Hall algebra H_{C_F} of C_F was defined.

The author is supported by an NSA grant.
H_{C_F} is the \mathbb{Q}–vector space of finitely supported functions on isomorphism classes of C_F:

$$H_{C_F} := \{ f : \text{Iso}(C_F) \to \mathbb{Q} | \text{supp}(f) | < \infty \}$$

with product given by convolution:

$$f \ast g(M) = \sum_{A \subset M} f(A)g(M/A).$$

H_{C_F} possesses a co-commutative co-product given by

$$\Delta(f)(M, N) = f(M \oplus N)$$

(where $M \oplus N$ denotes the disjoint union of M and N) as well as an antipode, making it a Hopf algebra. H_{C_F} is graded, connected, and co-commutative, and so by the Milnor-Moore theorem isomorphic to $U(n_F)$, where n_F is the Lie algebra of its primitive elements. It follows from 1.3 that

$$n_F = \text{span}\{\delta_P | P \in F, P \text{ connected} \}$$

We show that if F consists of posets whose Hasse diagrams are rooted trees, then n_F carries a pre-Lie structure \triangleright, with

$$\delta_{P_1} \triangleright \delta_{P_2} := \delta_{P_1} \ast \delta_{P_2} - \delta_{P_1 \oplus P_2}.$$

A more concrete description of \triangleright is the following: $\delta_{P_1} \triangleright \delta_{P_2}$ is a sum of delta-functions supported on connected posets $P \in F$ whose Hasse diagram is obtained by grafting the root of P_1 onto a vertex of P_2. It follows from the definition of \triangleright that the structure constants are non-negative integers.

The paper is organized as follows. Section 2 recalls the definition of pre-Lie algebra and introduces the universal example, namely the pre-Lie algebra of colored rooted trees. In section 3 we recall the construction of the incidence category C_F as well as its main properties. The Ringel-Hall algebra of C_F is introduced in section 4. In section 5 we define the pre-Lie structure \triangleright on n_F and verify that it satisfies the identity 1.1. Finally, section 6 is devoted to examples - among these are pre-Lie structures on nilpotent Lie subalgebras of \mathfrak{sl}_n and $L\mathfrak{gl}_n$.

Acknowledgements: The author is very grateful to Pavel Etingof for valuable discussions and suggestions.

2. PRE-LIE ALGEBRAS

In this section, we recall the definition and some examples of (left) pre-Lie algebras. Let k be a field.

Definition 1. A left pre-Lie algebra is a k–vector space A endowed with a binary bilinear operation \triangleright satisfying the left pre-Lie identity

$$(a \triangleright b) \triangleright c - a \triangleright (b \triangleright c) = (b \triangleright a) \triangleright c - b \triangleright (a \triangleright c)$$

for $a, b, c \in A$.

One checks easily that antisymmetrizing the operation
\[[a, b] = a \triangleright b - b \triangleright a \]
gives \(A \) the structure of a Lie algebra.

Example 1. Any associative \(k \)-algebra \(A \) is a pre-Lie algebra with the pre-Lie structure given by
\[a \triangleright b := ab, \]
where the right hand side refers to the associative multiplication in \(A \).

Example 2. One of the most important examples of pre-Lie algebras is given by colored rooted trees. Recall that a tree is a graph with no cycles. We denote by \(E(t), V(t) \) the edge and vertex sets of \(t \) respectively. Let \(S \) be a finite set. By a **rooted tree colored by** \(S \), we mean a tree with a distinguished vertex \(r(t) \in V(t) \) called the **root**, and an assignment of an element of \(S \) to each \(v \in V(t) \). We adopt the convention that rooted trees are always drawn with the root on top. For example, if \(S = \{a, b\} \), then the following are rooted trees colored by \(S \):

Let \(\mathbb{T}_S \) denote the set of rooted trees whose vertices are colored by \(S \). Given \(t \in \mathbb{T}_S \), and \(e \in E(t) \), removing \(e \) disconnects \(t \) into two colored rooted trees: \(R_e(t) \) containing \(r(t) \) and \(P_e(t) \), whose root is the end of \(e \). Let \(\mathcal{T}_S \) be the \(k \)-vector space spanned by \(\mathbb{T}_S \). We have
\[\mathcal{T}_S = \bigoplus_{n=0}^{\infty} \mathcal{T}_S[n] \]
where \(\mathcal{T}_S[n] \) is the subspace of \(\mathcal{T}_S \) spanned by trees with \(n \) vertices. For colored rooted trees \(t_1, t_2 \in \mathbb{T}_S \), let
\[t_1 \triangleright t_2 := \sum_{s \in \mathbb{T}_S} n(t_1, t_2, s)s \]
where
\[n(t_1, t_2, s) = \#\{e \in E(s)|P_e(s) = t_1, R_e(s) = t_2\}. \]
For example, we have

\[b \triangleright a = 2 \quad b \triangleright a = 2 \quad a \triangleright b = 1 \quad a \triangleright b = 1 \]

It is well-known (see for instance [2]) that \(\triangleright \) defines a pre-Lie structure on \(\mathcal{T}_S \). The following theorem is proven in [2]

Theorem 1. \(\mathcal{T}_S \) is the free pre-Lie algebra on \(|S| \) generators.

Remark 1. In what follows, unless stated otherwise, \(k = \mathbb{Q} \).
3. Incidence categories

3.1. Recollections on posets. We begin by recalling some basic notions and terminology pertaining to posets (partially ordered sets) following [10, 11].

(1) An interval is a poset having unique minimal and maximal elements. For x, y in a poset P, we denote by $[x, y]$ the interval

$$[x, y] := \{z \in P : x \leq z \leq y\}$$

If P is an interval, we will often denote by 0_P and 1_P the minimal and maximal elements.

(2) An order ideal in a poset P is a subset $L \subseteq P$ such that whenever $y \in L$ and $x \leq y$ in P, then $x \in L$.

(3) A sub-poset Q of P is convex if, whenever $x \leq y$ in Q and $z \in P$ satisfies $x \leq z \leq y$, then $z \in Q$. Equivalently, Q is convex if $Q = L \setminus I$ for order ideals $I \subset L$ in P.

(4) Given two posets P_1, P_2, their disjoint union is naturally a poset, which we denote by $P_1 + P_2$. In $P_1 + P_2$, $x \leq y$ if both lie in either P_1 or P_2, and $x \leq y$ there.

(5) A poset which is not the union of two non-empty posets is said to be connected.

(6) The cartesian product $P_1 \times P_2$ is a poset where $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

(7) A distributive lattice is a poset P equipped with two operations \land, \lor that satisfy the following properties:

 (a) \land, \lor are commutative and associative
 (b) \land, \lor are idempotent - i.e. $x \land x = x$, $x \lor x = x$
 (c) $x \land (x \lor y) = x = x \lor (x \land y)$
 (d) $x \land y = x \iff x \lor y = y \iff x \leq y$
 (e) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
 (f) $x \land (y \lor z) = (x \land y) \lor (x \land z)$

(8) For a poset P, denote by J_P the poset of order ideals of P, ordered by inclusion. J_P forms a distributive lattice with $I_1 \lor I_2 := I_1 \cup I_2$ and $I_1 \land I_2 := I_1 \cap I_2$ for $I_1, I_2 \in J_P$. If P_1, P_2 are posets, we have $J_{P_1 + P_2} = J_{P_1} \times J_{P_2}$, and if $I, L \in J_P$, and $I \subseteq L$, then $[I, L]$ is naturally isomorphic to the lattice of order ideals $J_{L \setminus I}$.

Remark 2. Suppose that the Hasse diagram of a poset P is a rooted tree - that is, P has a unique maximal element $r(P)$, and the Hasse diagram contains no cycles. It is then easy to see that order ideals $I \subseteq P$ correspond to admissible cuts of P, where the latter is a collection of edges $C \subseteq E(P)$, having the property that at most one edge of C is encountered along any path from root to leaf. For
instance, the dotted edges of the poset T below yield an admissible cut:

Each admissible cut $C \subset E(P)$ divides the tree into a rooted connected tree $R_C(P)$ containing $r(P)$, and a rooted forest (a disjoint union of rooted trees) $P_C(P)$. The notation is clearly an extension of that used in example 2. In the last example, we have

$$R_C(T) = \begin{array}{c} b \\ \bullet \\ b \end{array} \quad \quad P_C(T) = \begin{array}{c} b \\ \bullet \\ b \end{array}$$

3.2. From posets to categories. Let \mathcal{F} be a family of colored posets which is closed under the formation of disjoint unions and the operation of taking convex subposets, and let $\mathcal{P}(\mathcal{F}) = \{J_P : P \in \mathcal{F}\}$ be the corresponding family of distributive lattices of order ideals. For each pair $P_1, P_2 \in \mathcal{F}$, let $M(P_1, P_2)$ denote the set of colored poset isomorphisms $P_1 \to P_2$. It follows that $M(P, P)$ forms a group, which we denote $\text{Aut}_M(P)$.

3.2.1. The category $\mathcal{C}_\mathcal{F}$. We proceed to define a category $\mathcal{C}_\mathcal{F}$, called the incidence category of \mathcal{F} as follows. Let

$$\text{Ob}(\mathcal{C}_\mathcal{F}) := \mathcal{F} = \{P \in \mathcal{F}\}$$

and

$$\text{Hom}(P_1, P_2) := \{(I_1, I_2, f) : I_1 \in J_{P_1}, f \in M(P_1 \setminus I_1, I_2)\} \quad i = 1, 2$$

We need to define the composition of morphisms

$$\text{Hom}(P_1, P_2) \times \text{Hom}(P_2, P_3) \to \text{Hom}(P_1, P_3)$$

Suppose that $(I_1, I_2, f) \in \text{Hom}(P_1, P_2)$ and $(I_2', I_3', g) \in \text{Hom}(P_2, P_3)$. Their composition is the morphism (K_1, K_3, h) defined as follows.

- We have $I_2' \subset I_2$, and since $f : P_1 \setminus I_1 \to I_2$ is an isomorphism, $f^{-1}(I_2 \setminus I_2')$ is an order ideal of $P_1 \setminus I_1$. Since in J_{P_1}, $[I_1, P] \simeq J_{P_1 \setminus I_1}$, we have that $f^{-1}(I_2 \setminus I_2')$ corresponds to an order ideal $K_1 \in J_{P_1}$ such that $I_1 \subset K_1$.
- We have $I_2' \subset I_2 \vee I_2'$, and since $[I_2', P_2] \simeq J_{P_2 \setminus I_2'}$, $I_2 \vee I_2'$ corresponds to an order ideal $L_2 \in J_{P_2 \setminus I_2'}$. Since $g : P_2 \setminus I_2' \to I_3'$ is an isomorphism, $g(L_2) \subset J_{P_3}$, and since $J_{P_3} \subset J_{P_3}$, $g(L_2)$ corresponds to an order ideal $K_3 \in J_{P_3}$ contained in I_3'.
- The isomorphism $f : P_1 \setminus I_1 \to I_2$ restricts to an isomorphism $\tilde{f} : P_1 \setminus K_1 \to I_2 \setminus I_2' = I_2 \setminus I_2'$, and the isomorphism $g : P_2 \setminus I_2'$ restricts to an isomorphism $\tilde{g} : I_2 \vee I_2' \setminus I_2' = I_2 \setminus I_2' \to K_3$. Thus, $g \circ f : P_1 \setminus K_1 \to K_3$ is an isomorphism and $g \circ f \in M(P_1 \setminus K_1, K_3)$ by the property (4) above.
As shown in [12], the composition of morphisms is associative.

Remark 3.
- We refer to I_2 as the *image* of the morphism $(I_1, I_2, f) : P_1 \to P_2$.
- We denote by $\text{Iso}(C_F)$ the collection of isomorphism classes of objects in C_F, and by $[P]$ the isomorphism class of $P \in C_F$.

3.3. Properties of the categories C_F.
We now enumerate some of the properties of the categories C_F.

1. The empty poset \emptyset is an initial, terminal, and therefore null object. We will sometimes denote it by \emptyset.

2. We can equip C_F with a symmetric monoidal structure by defining $P_1 \oplus P_2 := P_1 + P_2$.

3. The indecomposable objects of C_F are the P with P a connected poset in \mathcal{F}.

4. The simple objects of C_F are the P where P is a one-element poset.

5. Every morphism
 \[(I_1, I_2, f) : P_1 \to P_2\]
 has a kernel
 \[(\emptyset, I_1, \text{id}) : I_1 \to P_1\]

6. Similarly, every morphism 3.1 possesses a cokernel
 \[(I_2, P_2 \setminus I_2, \text{id}) : P_2 \to P_2 \setminus I_2\]
 We will use the notation P_2/P_1 for $\text{coker}((I_1, I_2, f))$.

Note: Properties 5 and 6 imply that the notion of exact sequence makes sense in C_F.

7. All monomorphisms are of the form
 \[(\emptyset, I, f) : Q \to P\]
 where $I \in J_P$, and $f : Q \to I \in M(Q, I)$. Monomorphisms $Q \to P$ with a fixed image I form a torsor over $\text{Aut}_M(I)$. All epimorphisms are of the form
 \[(I, \emptyset, g) : P \to Q\]
where \(I \in J_P \) and \(g : P \setminus I \to Q \in M(P \setminus I, Q) \). Epimorphisms with fixed kernel \(I \) form a torsor over \(\text{Aut}_M(P \setminus I) \).

(8) Sequences of the form
\[
\emptyset \xrightarrow{(0,0,\text{id})} I \xrightarrow{(0,1,\text{id})} P \xrightarrow{(I,0,\text{id})} P \setminus I \xrightarrow{(P \setminus I,0,\text{id})} \emptyset
\]
with \(I \in J_P \) are short exact, and all other short exact sequences with \(P \) in the middle arise by composing with isomorphisms \(I \to I' \) and \(P \setminus I \to Q \) on the left and right.

(9) Given an object \(P \) and a subobject \(I, I \in J_P \), the isomorphism \(J_{P \setminus I} \simeq [I, P] \) translates into the statement that there is a bijection between subobjects of \(P/I \) and order ideals \(J \in J_P \) such that \(I \subset J \subset P \). The bijection is compatible with quotients, in the sense that \((P/I)/(J/I) \simeq J/I \).

(10) Since the posets in \(\mathcal{F} \) are finite, \(\text{Hom}(P_1, P_2) \) is a finite set.

(11) We may define Yoneda \(\text{Ext}^n(P_1, P_2) \) as the equivalence class of \(n \)-step exact sequences with \(P_1, P_2 \) on the right and left respectively. \(\text{Ext}^n(P_1, P_2) \) is a finite set. Concatenation of exact sequences makes
\[
\mathbb{E}xt^* := \bigcup_{A,B \in I(\mathcal{C}_\mathcal{F}), n} \text{Ext}^n(A, B)
\]
into a monoid.

(12) We may define the Grothendieck group of \(\mathcal{C}_\mathcal{F} \), \(K_0(\mathcal{C}_\mathcal{F}) \), as
\[
K(\mathcal{C}_\mathcal{F}) = \bigoplus_{A \in \mathcal{C}_\mathcal{F}} \mathbb{Z}[A]/\sim
\]
where \(\sim \) is generated by \(A + B - C \) for short exact sequences
\[
\emptyset \to A \to C \to B \to \emptyset
\]
We denote by \(k(A) \) the class of an object in \(K_0(\mathcal{C}_\mathcal{F}) \).

4. Ringel-Hall algebras

For an introduction to Ringel-Hall algebras in the context of abelian categories, see [8]. We define the Ringel-Hall algebra of \(\mathcal{C}_\mathcal{F} \), denoted \(\mathcal{H}_{\mathcal{C}_\mathcal{F}} \), to be the \(\mathbb{Q} \)-vector space of finitely supported functions on isomorphism classes of \(\mathcal{C}_\mathcal{F} \). I.e.
\[
\mathcal{H}_{\mathcal{C}_\mathcal{F}} := \{ f : \text{Iso}(\mathcal{C}_\mathcal{F}) \to \mathbb{Q} || \text{supp}(f) || < \infty \}
\]
As a \(\mathbb{Q} \)-vector space it is spanned by the delta functions \(\delta_A, A \in \text{Iso}(\mathcal{C}_\mathcal{F}) \). The algebra structure on \(\mathcal{H}_{\mathcal{C}_\mathcal{F}} \) is given by the convolution product:
\[
f \ast g(M) = \sum_{A \subset M} f(A)g(M/A)
\]
for \(M \in \text{Iso}(\mathcal{C}_F) \). In what follows, it will be conceptually useful to choose a representative in each isomorphism class. For \(M, N, Q \in \text{Iso}(\mathcal{C}_F) \), let \(F^Q_{M,N} \) be the number of exact sequences

\[
\emptyset \to M \overset{i}{\to} Q \overset{\pi}{\to} N \to \emptyset
\]

where \((i, \pi)\) and \((i', \pi')\) are considered equivalent iff \(i = i' \) and \(\pi = \pi' \) (this makes sense, since we have fixed a representative in each isomorphism class). It follows from the definition 4.1 that

\[
\delta_M \times \delta_N = \sum_{Q \in \text{Iso}(\mathcal{C}_F)} \frac{F^Q_{M,N}}{|\text{Aut}(M)||\text{Aut}(N)|} \delta_Q,
\]

from which it is apparent that \(H_{\mathcal{C}_F} \) encodes the structure of extensions in \(\mathcal{C}_F \).

\(H_{\mathcal{C}_F} \) possesses a co-commutative co-product given by

\[
(4.2) \quad \Delta(f)(M, N) = f(M \oplus N)
\]

as well as a natural \(K_0^+(\mathcal{C}_F) \)-grading in which \(\delta_A \) has degree \(k(A) \in K_0^+(\mathcal{C}_F) \). If \(\mathcal{F} \) is colored by the set \(S \), it is easy to see that \(K_0^+(\mathcal{C}_F) \simeq \mathbb{N}^{[S]} \).

The subobjects of \(P \in \mathcal{C}_F \) are exactly \(I \in J_P \), and the product 4.1 becomes

\[
f \ast g([P]) = \sum_{I \in J_P} f([I])g([P \setminus I]).
\]

It is shown in [8] that the product is associative, the co-product co-associative and co-commutative, and that the two are compatible, making \(H_{\mathcal{C}_F} \) into a co-commutative bialgebra. Recall that a bialgebra \(A \) over a field \(k \) is connected if it possesses a \(\mathbb{Z}_{\geq 0} \)-grading such that \(A_0 = k \). In addition to the \(K_0^+(\mathcal{C}_F) \)-grading, \(H_{\mathcal{C}_F} \) possesses a grading by the order of the poset - i.e. we may assign \(\deg(\delta_P) = |P| \). This gives it the structure of graded connected bialgebra, and hence Hopf algebra. The Milnor-Moore theorem implies that \(H_{\mathcal{C}_F} \) is the enveloping algebra of the Lie algebra of its primitive elements, which we denote by \(n_{\mathcal{F}} \) - i.e. \(H_{\mathcal{C}_F} \simeq U(n_{\mathcal{F}}) \). It follows from 4.2 that \(f \in n_{\mathcal{F}} \) is primitive if it is supported on the isomorphism classes of connected posets. Thus, we have that

\[
n_{\mathcal{F}} = \text{span}\{\delta_P|P \in \mathcal{F}, P \text{ connected} \}
\]

We will use the notation \(\mathcal{F}^{\text{conn}} \subset \mathcal{F} \) to denote the sub-collection of \(\mathcal{F} \) consisting of connected posets. We have thus established the following:

Theorem 2. The Ringel-Hall algebra of the category \(\mathcal{C}_F \) is a co-commutative graded connected Hopf algebra, isomorphic to \(U(n_{\mathcal{F}}) \), where \(n_{\mathcal{F}} \) denotes the graded Lie algebra of its primitive elements. \(n_{\mathcal{F}} = \text{span}\{\delta_P|P \in \mathcal{F}^{\text{conn}}\} \).

Remark 4. \(H_{\mathcal{C}_F} \) is a special case of an incidence Hopf algebra introduced by Schmitt in [10, 9].
5. A Pre-Lie structure on n_F

We assume now that the collection \mathcal{F} consists of colored posets whose underlying Hasse diagrams are rooted trees. Recall that \mathcal{F} was assumed to be:
- closed under the operation of taking convex sub-posets
- closed under disjoint unions

It is immediate that to produce an \mathcal{F} satisfying these two requirements, one may start with an arbitrary collection \mathcal{F}' of colored posets, and close it with respect to each operation - i.e. adjoin to \mathcal{F}' all convex sub-posets and all disjoint unions of these. If \mathcal{F} arises in this way as the closure of \mathcal{F}', we will write $\mathcal{F} = \overline{\mathcal{F}'}$.

Example 3. Suppose that \mathcal{F}' consists of a single poset, whose Hasse diagram is an n-vertex ladder colored by the set $S = \{1, \ldots, n\}$.

```
  1
 / \  \
 2   3
 /   / \
\cdot   \cdot   \cdot
/  \  / \
/   / / \
/   / / /
\cdot   3  2
```

Let us adopt the notation $L(a_1, a_2, \ldots, a_k)$ for a k-vertex ladder Hasse diagram labeled by a_1, a_2, \ldots, a_k root-to-leaf (\mathcal{F}' thus consisting of $L(1, 2, \ldots, n)$). To close \mathcal{F}' with respect to convex subsets, we must adjoin to it $L(r, r+1, r+2, \ldots, r+m)$, where $1 \leq r \leq r + m \leq n$.

```
  1 \cdots n
 /  /  /  /  \
2  n 2  n-1 2
 /  /  /  /  / \
3  n 3  n-1 3
 /  /  /  / \
\cdot  2  3  2
```

Finally, closing with respect to disjoint unions, we can identify elements of $\mathcal{F} = \overline{\mathcal{F}'}$ with Young diagrams having at most n rows, each of whose columns is labeled by $k, k+1, \ldots, k+m$. For instance

```
2 1 3 4
3 2
4 3
5
```
is identified with the poset
\[L(2, 3, 4, 5) + L(1, 2, 3) + L(3) + L(4). \]

We proceed to equip \(n_F \) with a pre-Lie structure. For \(a, b \in F_{\text{conn}} \), we define
\[(5.1) \quad \delta_a \triangleright \delta_b = \delta_a \centerdot \delta_b - \delta_{a \oplus b} \]
and extend the product \(\triangleright \) to all of \(n_F \) by linearity. The subtraction of the term \(\delta_{a \oplus b} \) in 5.1 has the effect of removing the delta-function supported on the one split extension of \(b \) by \(a \), and so the right-hand side of 5.1 does indeed lie in \(n_F \).

It follows easily that we may re-write the definition 5.1 as:
\[(5.2) \quad \delta_a \triangleright \delta_b = \sum_{t \in F} n(a, b, t) \delta_t \]
where \(n(a, b, t) \) is defined as in example 2.

Theorem 3. Let \(\mathcal{F} \) be a collection of colored posets closed with respect to taking convex sub-posets and disjoint unions. If the Hasse diagrams of posets in \(\mathcal{F} \) are rooted trees, then \(\triangleright \) equips \(n_{\mathcal{F}} \) with the structure of a pre-Lie algebra.

Proof. A two-sided pre-Lie ideal in a pre-Lie algebra \(A \) is a subspace \(I \subset A \) such that if \(x \in I \), then \(a \triangleright x \in I \) and \(x \triangleright a \in I \) \(\forall a \in A \). One checks easily that the quotient \(A/I \) inherits a pre-Lie structure. Let \(\mathcal{F} \) be a collection of colored rooted forests colored by \(S \), closed under the operations of disjoint union and convex sub-poset, and \(\mathcal{F}_{\text{conn}} \subset \mathcal{F} \) the connected ones (i.e. the rooted trees). \(\mathcal{F}_{\text{conn}} \) is closed under taking convex sub-posets. I claim that \(J = T_S \setminus \mathcal{F}_{\text{conn}} \) is a two-sided pre-Lie ideal in \(T_S \). Let \(u \in T_S \) and \(s \in J \). We have
\[\delta_u \triangleright \delta_s = \sum_{t \in T_S} n(u, s, t) \delta_t \]
Suppose that \(n(u, s, t) \neq 0 \) and \(t \in T_S \setminus J = \mathcal{F}_{\text{conn}} \). \(t \) has an edge \(e \) such that \(P_e(t) = u \) and \(R_e(t) = s \), and since both are convex sub-posets of the poset \(t \in \mathcal{F}_{\text{conn}}, u, s \in \mathcal{F}_{\text{conn}}, \) contradicting the fact that \(s \in J \). It follows that \(\delta_u \triangleright \delta_s \in J \). The same argument shows that \(\delta_s \triangleright \delta_u \in J \). The quotient \(T_S/J \) is canonically identified with \(n_{\mathcal{F}} \) with the bracket 5.2. \(\square \)

We give a second proof, very close to the one for \(\mathcal{F} = T_S \) given in [2].

Proof. We need to verify the identity 2.1. It follows from 5.2 that for \(a, b, c \in \mathcal{F}_{\text{conn}} \),
Because F is closed under taking convex sub-posets, $P_c(t) \in \mathcal{F}^{\text{conn}}$ and $R_s(t) \in \mathcal{F}^{\text{conn}}$, $\forall t \in \mathcal{F}^{\text{conn}}$. The sum $\sum_{t \in \mathcal{F}^{\text{conn}}} n(a, b, t)n(t, c, s)$ may be identified with the number of pairs of edges $\pi = \{e_1, e_2\} \subset E(s)$, such that the resulting cut is NOT admissible (i.e. both edges lie along a single path from root to leaf in s), and the three connected components when π is removed, are, top-to-bottom, c, b and a. Similarly, the sum $\sum_{t \in \mathcal{F}^{\text{conn}}} n(b, c, t)n(a, t, s)$ may identified with the number of pairs $\pi' = \{e_1, e_2\} \subset E(s)$ such that the corresponding cut of s results in three components a, b, c, with $r(s) \in c$, and no element of a greater than an element of b. The coefficient of δ_s in

$$\delta_a \triangleright (\delta_b \triangleright \delta_c) = \sum_{s, t \in \mathcal{F}^{\text{conn}}} a \triangleright (\sum_{t \in \mathcal{F}^{\text{conn}}} n(b, c, t)\triangleright n(a, t, s)$$

therefore counts the number of admissible two-edge cuts of s such that the connected component containing $r(s)$ is isomorphic to c, and the remaining two to a, b respectively.

Applying the same analysis to the right-hand-side of 2.1 proves the equality. \hfill \Box

Remark 5. It follows from 5.2 that n_F is defined over \mathbb{Z}, and that the structure constants are non-negative.

6. Examples

In this section, we consider different examples of families \mathcal{F}, and the resulting pre-Lie algebras n_F. Recall that since n_F is graded by \mathbb{N}, the Lie algebra n_F is pro-nilpotent (nilpotent if n_F is finite-dimensional).

Example 4. Let S be a finite set, and $\mathcal{F} = \overline{T}_S$, the set of rooted forests colored by S. We then obtain the pre-Lie algebra structure on S-labeled rooted trees described in example 2.
Example 5. Suppose S consists of a single element, and let $\mathcal{F} = \mathcal{F}'$, where \mathcal{F}' is the collection of all ladders:

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (0,1);
\draw (0,1) -- (0,2);
\draw (0,2) -- (0,3);
\draw (0,3) -- (0,4);
\end{tikzpicture}
\end{center}

(since there is only one color, we suppress the labeling). Denote by L_n the n-vertex ladder. We have

$$\delta_{L_n} \triangleright \delta_{L_m} = \delta_{L_{m+n}}.$$

so the Lie algebra \mathfrak{n}_F is abelian. In the Ringel-Hall algebra $H_{\mathcal{C}_F}$ we have

$$\delta_{L_n} \triangleright \delta_{L_m} = \delta_{L_{m+n}} + \delta_{L_m \otimes L_n}$$

and

$$\Delta(L_m) = L_m \otimes 1 + 1 \otimes L_m.$$

It is well-known (see eg. [6]) that the Hopf algebra $H_{\mathcal{C}_F}$ is isomorphic to the Hopf algebra of symmetric functions, with L_m corresponding to the mth power sum.

Example 6. Let $S = \{1, 2, \cdots, n\}$, and let $\mathcal{F} = \mathcal{F}'$, where \mathcal{F}' consists of singleton vertices colored by S. \mathcal{F} is thus the collection of all finite sets colored by S, with trivial partial order. Denote by $X(m_1, m_2, \cdots, m_n)$ the set of $m_1 + m_2 + \cdots + m_n$ elements, with m_i colored i, $1 \leq i \leq n$. \mathfrak{n}_F is therefore spanned by the $\delta_{X(0, \cdots, 1, \cdots, 0)}$. The operation \triangleright is identically 0, so the Lie algebra \mathfrak{n}_F is abelian. In $H_{\mathcal{C}_F}$ we have

$$\delta_{X(m_1, \cdots, m_n)} \triangleright \delta_{X(m_1', \cdots, m_n')} = \left(\prod_{i=1}^{n} \binom{m_i + m_i'}{m_i}\right) \delta_{(m_1 + m_1', \cdots, m_n + m_n')}.$$

Example 7. Let $S = \{1, 2, \cdots, n\}$, and let $\mathcal{F} = \mathcal{F}'$, where \mathcal{F}' consists of all S–colored ladder trees

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (0,1);
\draw (0,1) -- (0,2);
\draw (0,2) -- (0,3);
\draw (0,3) -- (0,4);
\end{tikzpicture}
\end{center}
Denote by \(L(a_1, \cdots, a_k) \) the \(k \)-vertex ladder whose \(i \)th vertex counting from the leaf is colored \(a_i \). We have
\[
\delta_{L(a_1, \cdots, a_n)} \triangleright \delta_{L(b_1, \cdots, b_m)} = \delta_{L(a_1, \cdots, a_n, b_1, \cdots, b_m)}
\]
Let \(\mathbb{Q} < X_1, \cdots, X_s > \) denote the free associative algebra on \(S \) viewed as a Lie algebra. There is a linear isomorphism
\[
\rho : n_{\mathcal{F}} \to \mathbb{Q} < X_1, \cdots, X_s >
\]
\[
\rho(L(a_1, \cdots, a_k)) = X_{a_1} X_{a_2} \cdots X_{a_k}
\]
It follows from 6.1 that \(\rho \) is a Lie algebra isomorphism.

Example 8. Consider the collection \(\mathcal{F} \) from example 3, where \(\mathcal{F} = \overline{L(1, 2, \cdots, n)} \).
Here \(n_{\mathcal{F}} = \text{span}\{\delta_{L(k, \cdots, k+m)}\} \), \(1 \leq k \leq k + m \leq n \). We have
\[
\delta_{L(p, \cdots, p+r)} \triangleright \delta_{L(k, \cdots, k+m)} = \begin{cases}
\delta_{L(k, \cdots, p+r)} & \text{if } k + m + 1 = p \\
0 & \text{otherwise}
\end{cases}
\]
so that in the Lie algebra \(n_{\mathcal{F}} \),
\[
[\delta_{L(p, \cdots, p+r)}, \delta_{L(k, \cdots, k+m)}] = \begin{cases}
\delta_{L(k, \cdots, p+r)} & \text{if } k + m + 1 = p \\
0 & \text{otherwise}
\end{cases}
\]
Let \(E_{i,j} \) denote the \((n+1) \times (n+1)\) matrix with a 1 in entry \((i,j)\) and zeros everywhere else. Then the commutation relations 6.2 imply that the map
\[
\phi : n_{\mathcal{F}} \to \text{Mat}_{n+1}
\]
\[
\phi(\delta_{L(k, \cdots, k+m)}) = -E_{k,k+m+1}
\]
is an isomorphism of \(n_{\mathcal{F}} \) onto the Lie algebra of upper-triangular \((n+1) \times (n+1)\) matrices.

Example 9. Let \(S = \{1, 2\} \), and let \(\mathcal{F} = \overline{\mathcal{F}'} \), where \(\mathcal{F}' \) consists of all \(S \)-colored ladders where the colors alternate. Let us denote by \(L(i, n) \), \(i \in S, n \geq 1 \) the alternating ladder with \(n \) vertices, whose root is colored \(i \). Then \(n_{\mathcal{F}} = \text{span}\{L(i, n)\}, i \in S, n \geq 1 \). We have
\[
\delta_{L(i, n)} \triangleright \delta_{L(i, m)} = \begin{cases}
\delta_{L(i, n+m)} & \text{if } m \equiv 0 \ mod \ 2, \ i \in S \\
0 & \text{otherwise}
\end{cases}
\]
\[
\delta_{L(i, n)} \triangleright \delta_{L(j, m)} = \begin{cases}
\delta_{L(j, n+m)} & \text{if } m \equiv 1 \ mod \ 2, \ i \neq j \in S \\
0 & \text{otherwise}
\end{cases}
\]
It follows that

\[
\delta_{L_i,2k}, \delta_{L_j,2l}] = 0
\]

\[
\delta_{L_i,2k}, \delta_{L_j,2l+1}] = \begin{cases} -\delta_{L_j,2(k+l+1)} & \text{if } i = j \\ \delta_{L_j,2(k+l+1)} & \text{if } i \neq j \end{cases}
\]

\[
\delta_{L_i,2k+1}, \delta_{L_j,2l+1}] = \delta_{L_j,2(k+l+1)} - \delta_{L_i,2(k+l+1)}
\]

Recall that \(gl_2 = Mat_2 = n_- \oplus h \oplus n_+\), where

\[
n_- = \text{span}\{f\}, \quad n_+ = \text{span}\{e\}, \quad h = \text{span}\{h_1, h_2\}
\]

and

\[
f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad h_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad h_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

Let \(Lgl_2 = gl_2 \otimes \mathbb{Q}[t, t^{-1}]\) be the loop algebra of \(gl_2\), with bracket

\[
[X \otimes t^m, Y \otimes t^n] = [X, Y] \otimes t^{m+n}
\]

\(Lgl_2\) also has a triangular decomposition \(Lgl_2 = Lgl_2^+ \oplus h \oplus Lgl_2^-\), where

\[
Lgl_2^+ = n_+ \oplus gl_2 \otimes t\mathbb{Q}[t] \quad Lgl_2^- = n_- \oplus gl_2 \otimes t^{-1}\mathbb{Q}[t^{-1}]
\]

Let

\[
\phi : n_F \rightarrow Lgl_2^+
\]

\[
\phi(\delta_{L_i,2k+1}) = e \otimes t^k
\]

\[
\phi(\delta_{L_2,2k+1}) = f \otimes t^{k+1}
\]

\[
\phi(\delta_{L_i,2k}) = -h_1 \otimes t^k
\]

\[
\phi(\delta_{L_2,2k}) = -h_2 \otimes t^k
\]

It follows from 6.3 that \(\phi\) is an isomorphism. It follows that \(U(Lgl_2^+)\) has an integral basis which may be identified with Young diagrams whose columns are colored by alternating strings of 1’s and 2’s.

Example 10. A straightforward generalization of the previous example, with \(S = \{1, \ldots, n\}\) and \(F'\) consisting of ladders periodically colored by 1, \ldots, \(n\) yields \(n_F \simeq Lgl_n^+\).
Example 11. Let $S = \{1, 2\}$, and let $\mathcal{F} = \mathcal{F}'$, where \mathcal{F}' is the set of all ladders colored by a sequence of 1’s followed by a sequence of 2’s.

Denote by $L(i, j)$ the ladder with i 1’s followed by j 2’s. We have

\[
\begin{align*}
\delta_{L(i,j)} & \triangleright \delta_{L(m,n)} = 0 \text{ if } ij > 0 \text{ and } mn > 0 \\
\delta_{L(i,0)} & \triangleright \delta_{L(m,n)} = \begin{cases}
\delta_{L(i+m,0)} & \text{if } n = 0 \\
0 & \text{otherwise}
\end{cases} \\
\delta_{L(0,j)} & \triangleright \delta_{L(m,n)} = \delta_{L(m,n+j)} \\
\delta_{L(i,j)} & \triangleright \delta_{L(m,0)} = \delta_{L(i+m,j)} \\
\delta_{L(i,j)} & \triangleright \delta_{L(0,n)} = \begin{cases}
\delta_{L(0,j+n)} & \text{if } i = 0 \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

so that we obtain the following non-zero commutation relations (i.e. all other commutators are 0):

\[
\begin{align*}
[\delta_{L(i,0)}, \delta_{L(0,n)}] &= -\delta_{L(i,n)} \\
[\delta_{L(i,0)}, \delta_{L(m,n)}] &= -\delta_{L(m+i,n)} \text{ if } n > 0 \\
[\delta_{L(0,j)}, \delta_{L(m,n)}] &= \delta_{L(m,n+j)} \text{ if } m > 0
\end{align*}
\]

Example 12. Let $S = \{1, 2, \ldots, n\}$, and let $\mathcal{F} = \mathcal{F}'$, where \mathcal{F}' consists of all S–colored corollas (rooted trees where all leaves are connected directly to the root)

Closing \mathcal{F}' with respect to convex sub-posets means adjoining singleton colored trees. Denote by $X(i)$ the singleton tree colored by $1 \leq i \leq n$, and by $Y(i, a_1, \ldots, a_n)$ the corolla whose root is colored i and which has $a_1 + a_2 + \cdots + a_n$
leaves, with a_1 colored 1, a_2 colored 2 etc. In \mathfrak{n}_F we have

\[
\delta X(i) \triangleright \delta X(j) = \delta Y(j,0,\ldots,1,\ldots,0)
\]

\[
\delta X(i) \triangleright \delta Y(j,a_1,\ldots,a_n) = \delta Y(j,a_1,\ldots,a_i+1,\ldots,a_n)
\]

\[
\delta Y(j,a_1,\ldots,a_n) \triangleright \delta X(i) = 0
\]

\[
\delta Y(j,a_1,\ldots,a_n) \triangleright \delta Y(j,b_1,\ldots,b_n) = 0
\]

which leads to the following commutation relations:

\[
[\delta X(i), \delta X(j)] = \delta Y(j,0,\ldots,1,\ldots,0) - \delta Y(i,0,\ldots,1,\ldots,0)
\]

\[
[\delta X(i), \delta Y(j,a_1,\ldots,a_n)] = \delta Y(j,a_1,\ldots,a_i+1,\ldots,a_n)
\]

\[
[\delta Y(j,a_1,\ldots,a_n), \delta Y(j,b_1,\ldots,b_n)] = 0
\]
References

[1] Cartier, P. A primer of Hopf algebras. Frontiers in number theory, physics, and geometry. II, 537–615, Springer, Berlin, 2007.
[2] Chapoton, F.; Livernet, M. Pre-Lie algebras and the rooted trees operad. Internat. Math. Res. Notices 2001, no. 8, 395–408.
[3] Gerstenhaber, M. The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267288.
[4] Kreimer, D. On the Hopf algebra structure of perturbative quantum field theory. Adv. Theor. Math. Phys. 2 303-334 (1998).
[5] Kremonizer K. and Szczesny M. Feynman graphs, rooted trees, and Ringel-Hall algebras. Comm. Math. Phys. 289 (2009), no. 2 561–577.
[6] Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.
[7] Rota, G-C. On the Foundations of Combinatorial Theory I: Theory of Mbius Functions”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2: 340368, (1964).
[8] Schiffmann, O. Lectures on Hall algebras. Preprint math.RT/0611617.
[9] Schmitt, W. R. Antipodes and Incidence Coalgebras. Journal of Comb. Theory. A 46 (1987), 264-290.
[10] Schmitt, W. R. Incidence Hopf algebras. J. Pure Appl. Algebra 96 (1994), no. 3, 299–330.
[11] Stanley, R. Enumerative combinatorics Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
[12] Szczesny, M. Incidence categories. J. Pure and Appl. Algebra, in press.
[13] Vinberg, E.B. The theory of homogeneous convex cones, Transl. Moscow Math. Soc. 12 (1963), 340403.

Department of Mathematics and Statistics, Boston University, Boston MA, USA
E-mail address: szczesny@math.bu.edu