Synthesis and crystal structure of (E)-2-benzyl-1,3-diphenylsulfoxonium iodide

Sungmin Kang,a Taek Hyeon Kima‡ and Chee-Hun Kwakb*

a School of Chemical Engineering, College of Engineering, Chonnam National University, Gwangju, 61186, South Korea, and b Department of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea.

*Correspondence e-mail: chkwak@sunchon.ac.kr

In the title molecular salt, C_{20}H_{19}N_{2}S^{+}/I^{-}, prepared by the reaction of 1,3-diphenylthiourea and benzyl iodide, the C−S−C thioether bond angle is 101.66 (9)° and electrons are delocalized over the N′≡C−N skeleton. The dihedral angle between the aromatic rings attached to the N atoms is 40.60 (9)°. In the crystal, N−H⋯·I hydrogen bonds link the components into [100] chains.

1. Chemical context

Isothiouronium salts containing an R−S−C−(NH_{2})_{2}^{+} moiety have been investigated as their hydrogen–bonding motifs for molecular recognition of anions (Yeo & Hong, 1998; Kubo et al., 2000; Kato et al., 2004; Nguyen et al., 2009; Nguyen & Kim, 2010) and as organocatalysts (Nguyen & Kim, 2011, 2012; Lee et al., 2018; Kang et al., 2019). The isothiouronium group could enhance the acidity of their NH groups compared with thiourea and therefore be used as prospective alternative for thiourea. In addition, the chemical modification of the isothiouronium skeleton is readily performed using alkylation reactions of thiourea. As part of our work in this area, the synthesis and single-crystal structure of the title molecular salt, C_{20}H_{19}N_{2}S^{+}−I^{-} are reported herein.

2. Structural commentary

The title compound, C_{20}H_{19}N_{2}S^{+}−I^{-} (Fig. 1), is a molecular salt that arose from the reaction of 1,3-diphenylthiourea and benzyl iodide. There are three benzene rings, C1−C6 (I), C9−C14 (II) and C15−C20 (III) in the cation and the dihedral angles I/II, II/III and I/III are 50.36 (8), 40.60 (9) and
85.45 (9)°, respectively. In the cation, the \(N-[(phenylamino)methylene]benzenaminium\) and toluyl units are linked to the sulfur atom as a thioether. The C7—S1 and C8—S1 bond lengths are 1.823 (2) and 1.751 (2) Å, respectively, and the C—S—C bond angle is 101.66 (9)°. The conformation of C1 and C8 about the C7—S1 bond is gauche [\(\text{C1—C7—S1—C8} = 49.53 (16)°\)]. The C—S—C bond angle in the title compound is somewhat smaller than that for di-p-tolyl sulfide (109°; Blackmore & Abrahams, 1955) or the angle (107.8°) in oligomeric [ArCOArSArCOAr] (\(\text{Ar} = 1,4\)-phenylene; Colquhoun et al., 1999) in which the aromatic rings are nearly coplanar. Rather, it is closer to that seen in diethyl sulfide [99.05 (4)°; Iijima et al., 1977]. This result can be explained by the large dihedral angle between the benzene rings in the title compound. In the \(N-[(phenylamino)methylene]benzenaminium\) moiety of the title cation, the \(\pi\)-electrons of the iminium double bond are delocalized over the N1—C6—N2 skeleton [the C8—N1 and C8—N2 bond distances are 1.319 (2) and 1.332 (2) Å, respectively, and N1—C8—N2 = 124.53 (16)°].

Table 1

	\(D—\cdot—H—\cdot—A\)	\(D—H\)	\(H—\cdot—A\)	\(D—\cdot—H\)
N1—H11N—\cdot—H1'	0.80 (3)	2.69 (3)	3.4781 (17)	171 (2)
N2—H2N—\cdot—H2a	0.80 (3)	2.73 (3)	3.5242 (17)	169 (2)

Symmetry codes: (i) \(-x+1, -y+1, -z+1\); (ii) \(-x, -y+1, -z+1\).

3. Supramolecular features

In the crystal, the cations and anions are linked by almost linear \(N—H—\cdot—I\) hydrogen bonds (Fig. 2, Table 1), generating [100] chains of alternating cations and anions, with adjacent species in the chain related by simple translation. No significant aromatic \(\pi—\pi\) stacking interactions occur, the shortest centroid–centroid separation being greater than 4.7 Å.

4. Database survey

A search of the Cambridge Structural Database (CSD, via CCDC Access Structures, November 2021; Groom et al., 2016) resulted in 30 structures using isothiouronium as the keyword: 26 of them have a thioether skeleton. No results were found for 2-benzyl-1,3-diphenylisothiouronium or \(N-[(phenylamino)methylene]benzenaminium\) but the compound most similar to the title compound is \(S\)-benzylisothiouronium chloride (Barker & Powell, 1998). The bond angles of the thioether group in the \(S\)-benzylisothiouronium salts similar to...
the title compound are the range 102.6 to 104.8°, depending on the counter-ions (Hemalatha & Veeravazhuthi, 2008; Ishii et al., 2000; Pope & Boeyens, 1975).

5. Synthesis and crystallization

1,3-Diphenylthiourea (4.4 mmol) was added to a solution of benzyl iodide (13.2 mmol) in dry dichloromethane at room temperature. The reaction mixture was then stirred for 24 h and concentrated in vacuo. The residue was purified via flash chromatography (hexane:ethyl acetate = 8:2), to give a the title compound as a yellow solid (1.14 g, yield 58%). A solution of isothiouronium iodide in methanol was slowly evaporated at room temperature to give crystals of the title compound: m.p. 442–443 K;1H NMR (300 MHz, DMSO): δ 7.21–7.39 (m, 15 H), δ 4.45 (s, 2 H); HR TOF–MS for C20H18N2S+: calculated 318.1186, found 318.1185 (M+), found 318.1185 (M+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (C—H = 0.94–0.98 Å, N — H=0 . 8 0 Å) and refined using a riding model withUiso(H) = 1.2Ueq(carrier).

Acknowledgements

The X-ray data were obtained from the Western Seoul Center of Korea Basic Science Institute.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A3B07040876 and 2021R1I1A3A04037235).

Table 2

Table 2	Experimental details.
Crystal data	C20H18N2S+: calculated 318.1186, found 318.1185 (M+)
Chemical formula	C20H18N2S+
Mw	446.33
Crystal system, space group	Triclinic, Pτ
Temperature (K)	223
a, b, c (Å)	8.6382 (3), 9.8182 (3), 12.1922 (4)
α, β, γ (°)	77.2839 (12), 85.1708 (11), 74.7224 (10)
V (Å³)	972.66 (6)
Z	2
Radiation type	Mo Kα
μ (mm⁻¹)	1.76
Crystal size (mm)	0.27 × 0.21 × 0.15
Data collection	PHOTON 100 CMOS
Diffractometer	Multi-scan (SADABS; Bruker, 2016)
Absorption correction	Reflections
No. of measured, independent and observed [I > 2σ(I)] reflections	0.023
Rint	0.025, 0.063, 1.09
No. of reflections	4853
No. of parameters	225
H-atoms treatment	H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å⁻³)	1.43, −1.04

References

Barker, J. & Powell, H. R. (1998). Acta Cryst. CS4, 2019–2021.
Blackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 329–335.
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Colquhoun, H. M., Lewis, D. F. & Williams, D. J. (1999). Polymer, 40, 5415–5420.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hemalatha, P. & Veeravazhuthi, V. (2008). Acta Cryst. E64, o1805.
Iijima, T., Tsuchiya, S. & Kimura, M. (1977). Bull. Chem. Soc. Jpn, 50, 2564–2567.
Ishii, Y., Matsunaka, K. & Sakaguchi, S. (2000). J. Am. Chem. Soc. 122, 7390–7391.

Kang, S., Lee, H. & Kim, T. H. (2019). Synth. Commun. 49, 2460–2465.
Kato, R., Cui, Y.-Y., Nishizawa, S., Yokobori, T. & Teramae, N. (2004). Tetrahedron Lett. 45, 4273–4276.
Kubo, Y., Tsukahara, M., Ishihara, S. & Tokita, S. (2000). Chem. Commun. pp. 653–654.
Lee, H., Kang, S. & Kim, T. H. (2018). Bull. Korean Chem. Soc. 39, 575–578.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
Nguyen, Q. P. B., Kim, J. N. & Kim, T. H. (2009). Bull. Korean Chem. Soc. 30, 2093–2097.
Nguyen, Q. P. B. & Kim, T. H. (2010). Bull. Korean Chem. Soc. 31, 712–715.
Nguyen, Q. P. B. & Kim, T. H. (2011). Tetrahedron Lett. 52, 5004–5007.
Nguyen, Q. P. B. & Kim, T. H. (2012). Synthesis, 44, 1977–1982.
Pope, L. E. & Boeyens, J. C. A. (1975). J. Cryst. Mol. Struct. 5, 47–58.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Yeo, W. S. & Hong, J. I. (1998). Tetrahedron Lett. 39, 3769–3772.
Synthesis and crystal structure of (E)-2-benzyl-1,3-diphenylisothiouronium iodide

Sungmin Kang, Taek Hyeon Kim and Chee-Hun Kwak

Computing details
Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL ((Sheldrick, 2008)).

N-[(Benzylsulfanyl)(phenylamino)methylidene]anilinium iodide

Crystal data
\[\text{C}_{20}\text{H}_{19}\text{N}_{2}\text{S}^{+}\cdot\text{I}^{-}\]
\[M_r = 446.33\]
Triclinic, \(P\bar{1}\)
\(a = 8.6382\) (3) Å
\(b = 9.8182\) (3) Å
\(c = 12.1922\) (4) Å
\(\alpha = 77.2839\) (12)°
\(\beta = 85.1708\) (11)°
\(\gamma = 74.7224\) (10)°
\(V = 972.66\) (6) Å³

\(Z = 2\)
\(F(000) = 444\)
\(D_x = 1.524\) Mg m⁻³
Mo Kα radiation, \(\lambda = 0.71073\) Å
Cell parameters from 9837 reflections
\(\theta = 2.5–28.3°\)
\(\mu = 1.76\) mm⁻¹
\(T = 223\) K
Block, colourless
0.27 × 0.21 × 0.15 mm

Data collection
PHOTON 100 CMOS diffractometer
\(\varphi\) and \(\omega\) scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)
\(T_{\text{min}} = 0.649, T_{\text{max}} = 0.746\)
31969 measured reflections
4853 independent reflections
4594 reflections with \(|I| > 2\sigma(I)\)
\(R_{\text{int}} = 0.023\)
\(\theta_{\text{max}} = 28.3°, \theta_{\text{min}} = 2.2°\)
\(h = -11\rightarrow 11\)
\(k = -13\rightarrow 13\)
\(l = -16\rightarrow 16\)

Refinement
Refinement on \(F^2\)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.025\)
\(wR(F^2) = 0.063\)
\(S = 1.09\)
4853 reflections
225 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
\(H\) atoms treated by a mixture of independent and constrained refinement
\(w = 1/[\sigma(F_c^2) + (0.0253P)^2 + 0.8267P]\)
where \(P = (F_c^2 + 2F_s^2)/3\)
\((\Delta\sigma)_{\text{max}} = 0.001\)
\(\Delta\rho_{\text{max}} = 1.43\) e Å⁻³
\(\Delta\rho_{\text{min}} = -1.03\) e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Ueq/Isu*
I1	0.26986 (2)	0.34036 (2)	0.87755 (2)	0.04395 (6)
C1	0.3315 (2)	0.4161 (2)	0.28202 (17)	0.0316 (4)
C2	0.1753 (3)	0.4055 (3)	0.3116 (2)	0.0421 (5)
H2	0.1020	0.4181	0.2552	0.051*
C3	0.1274 (4)	0.3766 (3)	0.4237 (2)	0.0581 (7)
H3	0.0216	0.3697	0.4430	0.070*
C4	0.2340 (5)	0.3578 (3)	0.5072 (2)	0.0648 (8)
H4	0.2012	0.3380	0.5833	0.078*
C5	0.3880 (4)	0.3682 (3)	0.4786 (2)	0.0594 (7)
H5	0.4609	0.3550	0.5355	0.071*
C6	0.4373 (3)	0.3982 (2)	0.3666 (2)	0.0434 (5)
H6	0.5427	0.4064	0.3479	0.052*
C7	0.3883 (2)	0.4451 (2)	0.16100 (17)	0.0330 (4)
H7A	0.4058	0.3566	0.1320	0.040*
H7B	0.4917	0.4696	0.1574	0.040*
S1	0.24895 (6)	0.59022 (5)	0.07051 (4)	0.03231 (10)
C8	0.2092 (2)	0.72734 (19)	0.14740 (14)	0.0252 (3)
N1	0.32455 (19)	0.75297 (18)	0.19789 (14)	0.0278 (3)
H1N	0.415 (3)	0.724 (3)	0.177 (2)	0.036 (6)*
C9	0.3042 (2)	0.82793 (19)	0.28816 (15)	0.0267 (3)
C10	0.2028 (2)	0.7956 (2)	0.37864 (17)	0.0337 (4)
H10	0.1474	0.7243	0.3814	0.040*
C11	0.1841 (3)	0.8703 (3)	0.46533 (18)	0.0426 (5)
H11	0.1147	0.8502	0.5270	0.051*
C12	0.2668 (3)	0.9740 (3)	0.46136 (19)	0.0444 (5)
H12	0.2526	1.0250	0.5198	0.053*
C13	0.3700 (3)	1.0030 (2)	0.3723 (2)	0.0421 (5)
H13	0.4272	1.0727	0.3708	0.051*
C14	0.3903 (2)	0.9300 (2)	0.28442 (18)	0.0343 (4)
H14	0.4612	0.9493	0.2236	0.041*
N2	0.05644 (19)	0.80281 (17)	0.14673 (14)	0.0276 (3)
H2N	−0.010 (3)	0.765 (3)	0.134 (2)	0.034 (6)*
C15	−0.0057 (2)	0.94592 (19)	0.16504 (15)	0.0259 (3)
C16	0.0742 (2)	1.0527 (2)	0.12339 (16)	0.0310 (4)
H16	0.1723	1.0316	0.0832	0.037*
C17	0.0078 (3)	1.1909 (2)	0.14165 (18)	0.0380 (4)
H17	0.0622	1.2636	0.1148	0.046*
C18	−0.1379 (3)	1.2225 (2)	0.19912 (19)	0.0422 (5)
H18	−0.1816	1.3161	0.2122	0.051*
C19 -0.2187 (3) 1.1169 (2) 0.2371 (2) 0.0427 (5)
H19 -0.3192 1.1396 0.2743 0.051*
C20 -0.1536 (2) 0.9773 (2) 0.22119 (18) 0.0349 (4)
H20 -0.2086 0.9051 0.2479 0.042*

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U²²	U²³	U³³
I1	0.02782 (7)	0.04822 (9)	0.06798 (11)	-0.01720 (6)	0.01189 (6)	-0.03314 (7)
C1	0.0347 (10)	0.0226 (8)	0.0376 (10)	-0.0046 (7)	-0.0028 (8)	-0.0091 (7)
C2	0.0428 (12)	0.0421 (11)	0.0462 (12)	-0.0177 (9)	0.0024 (9)	-0.0122 (9)
C3	0.0661 (17)	0.0529 (15)	0.0582 (16)	-0.0274 (13)	0.0190 (13)	-0.0102 (12)
C4	0.099 (2)	0.0473 (15)	0.0396 (13)	-0.0139 (15)	0.0082 (14)	-0.0006 (11)
C5	0.079 (2)	0.0483 (14)	0.0424 (13)	0.0001 (13)	-0.0211 (13)	-0.0048 (11)
C6	0.0419 (12)	0.0377 (11)	0.0474 (12)	0.0009 (11)	-0.0127 (10)	-0.0102 (9)
C7	0.0294 (9)	0.0298 (9)	0.0393 (10)	-0.0018 (7)	-0.0002 (8)	-0.0136 (8)
S1	0.0365 (2)	0.0321 (2)	0.0301 (2)	-0.00373 (18)	-0.00340 (18)	-0.01509 (18)
C8	0.0254 (8)	0.0257 (8)	0.0253 (8)	-0.0059 (6)	0.0010 (6)	-0.0083 (6)
N1	0.0199 (7)	0.0326 (8)	0.0330 (8)	-0.0045 (6)	0.0014 (6)	-0.0146 (6)
C9	0.0231 (8)	0.0283 (8)	0.0294 (8)	-0.0030 (6)	-0.0050 (6)	-0.0104 (7)
C10	0.0331 (9)	0.0385 (10)	0.0329 (9)	-0.0115 (8)	-0.0011 (7)	-0.0117 (8)
C11	0.0459 (12)	0.0521 (13)	0.0331 (10)	-0.0119 (10)	0.0023 (9)	-0.0172 (9)
C12	0.0509 (13)	0.0452 (12)	0.0415 (11)	-0.0055 (10)	-0.0079 (10)	-0.0237 (10)
C13	0.0450 (12)	0.0372 (11)	0.0514 (13)	-0.0139 (9)	-0.0106 (10)	-0.0167 (9)
C14	0.0322 (9)	0.0348 (10)	0.0393 (10)	-0.0110 (8)	-0.0029 (8)	-0.0106 (8)
N2	0.0229 (7)	0.0292 (8)	0.0338 (8)	-0.0063 (6)	-0.0039 (6)	-0.0122 (6)
C15	0.0253 (8)	0.0262 (8)	0.0257 (8)	-0.0028 (6)	-0.0054 (6)	-0.0070 (6)
C16	0.0321 (9)	0.0324 (9)	0.0274 (8)	-0.0074 (7)	-0.0021 (7)	-0.0043 (7)
C17	0.0489 (12)	0.0300 (9)	0.0353 (10)	-0.0118 (9)	-0.0066 (9)	-0.0025 (8)
C18	0.0523 (13)	0.0287 (10)	0.0416 (11)	0.0008 (9)	-0.0057 (9)	-0.0108 (8)
C19	0.0368 (11)	0.0405 (11)	0.0460 (12)	0.0010 (9)	0.0052 (9)	-0.0143 (9)
C20	0.0300 (9)	0.0342 (10)	0.0406 (10)	-0.0071 (8)	0.0024 (8)	-0.0105 (8)

Geometric parameters (Å, °)

C1—C6	1.386 (3)	C10—C11	1.390 (3)				
C1—C2	1.392 (3)	C10—H10	0.9400				
C1—C7	1.505 (3)	C11—C12	1.381 (3)				
C2—C3	1.383 (4)	C11—H11	0.9400				
C2—H2	0.9400	C12—C13	1.374 (4)				
C3—C4	1.381 (5)	C12—H12	0.9400				
C3—H3	0.9400	C13—C14	1.391 (3)				
C4—C5	1.371 (5)	C13—H13	0.9400				
C4—H4	0.9400	C14—H14	0.9400				
C5—C6	1.388 (4)	N2—C15	1.426 (2)				
C5—H5	0.9400	N2—H2N	0.81 (3)				
C6—H6	0.9400	C15—C16	1.386 (3)				
C7—S1	1.823 (2)	C15—C20	1.391 (3)				
C7—H7A 0.9800 C16—C17 1.386 (3)
C7—H7B 0.9800 C16—H16 0.9400
S1—C8 1.7513 (18) C17—C18 1.383 (3)
C8—N1 1.319 (2) C17—H17 0.9400
C8—N2 1.332 (2) C18—C19 1.376 (4)
N1—C9 1.428 (2) C18—H18 0.9400
N1—H1N 0.80 (3) C19—C20 1.388 (3)
C9—C10 1.384 (3) C19—H19 0.9400
C9—C14 1.388 (3) C20—H20 0.9400

C6—C1—C2 118.9 (2) C9—C10—H10 120.5
C6—C1—C7 119.46 (19) C11—C10—H10 120.5
C2—C1—C7 121.67 (19) C12—C11—C10 120.3 (2)
C3—C2—C1 120.3 (2) C12—C11—H11 119.9
C3—C2—H2 119.8 C10—C11—H11 119.9
C1—C2—H2 119.8 C13—C12—C11 120.3 (2)
C4—C3—C2 120.4 (3) C13—C12—H12 119.9
C4—C3—H3 119.8 C11—C12—H12 119.9
C2—C3—H3 119.8 C12—C13—C14 120.5 (2)
C5—C4—C3 119.6 (3) C12—C13—H13 119.8
C5—C4—H4 120.2 C13—C14—C13 119.8
C3—C4—H4 120.2 C9—C14—C13 118.8 (2)
C4—C5—C6 120.6 (3) C9—C14—H14 120.6
C4—C5—H5 119.7 C13—C14—H14 120.6
C6—C5—H5 119.7 C8—N2—C15 127.80 (16)
C1—C6—C5 120.2 (2) C8—N2—H2N 117.4 (18)
C1—C6—H6 119.9 C15—N2—H2N 114.8 (18)
C5—C6—H6 119.9 C16—C15—C20 120.73 (17)
C1—C7—S1 113.83 (13) C16—C15—N2 121.30 (17)
C1—C7—H7A 108.8 C20—C15—N2 117.89 (17)
S1—C7—H7A 108.8 C17—C16—C15 119.28 (19)
C1—C7—H7B 108.8 C17—C16—H16 120.4
S1—C7—H7B 108.8 C15—C16—H16 120.4
H7A—C7—H7B 107.7 C18—C17—C16 120.3 (2)
C8—S1—C7 101.66 (9) C18—C17—H17 119.8
N1—C8—N2 124.53 (16) C16—C17—H17 119.8
N1—C8—S1 121.30 (14) C19—C18—C17 120.0 (2)
N2—C8—S1 114.14 (13) C19—C18—H18 120.0
C8—N1—C9 126.22 (16) C17—C18—H18 120.0
C8—N1—H1N 118.0 (19) C18—C19—C20 120.7 (2)
C9—N1—H1N 115.7 (19) C18—C19—H19 119.7
C10—C9—C14 121.18 (18) C20—C19—H19 119.7
C10—C9—N1 119.87 (17) C19—C20—C15 118.9 (2)
C14—C9—N1 118.93 (17) C19—C20—H20 120.5
C9—C10—C11 119.0 (2) C15—C20—H20 120.5

C6—C1—C2—C3 −0.5 (3) C9—C10—C11—C12 −0.6 (3)
C7—C1—C2—C3 179.0 (2) C10—C11—C12—C13 −0.8 (4)
C1—C2—C3—C4 0.0 (4) C11—C12—C13—C14 1.0 (4)
C2—C3—C4—C5 0.1 (4) C10—C9—C14—C13 −1.7 (3)
C3—C4—C5—C6 0.3 (4) N1—C9—C14—C13 179.86 (18)
C2—C1—C6—C5 0.9 (3) C12—C13—C14—C9 0.3 (3)
C7—C1—C6—C5 −178.6 (2) N1—C8—N2—C15 21.8 (3)
C4—C5—C6—C1 −0.8 (4) S1—C8—N2—C15 −156.34 (15)
C6—C1—C7—S1 −134.43 (17) C8—N2—C15—C16 38.5 (3)
C2—C1—C7—S1 46.1 (2) C8—N2—C15—C20 −144.78 (19)
C1—C7—S1—C8 49.53 (16) C20—C15—C16—C17 2.2 (3)
C7—S1—C8—N1 41.74 (18) N2—C15—C16—C17 178.92 (17)
C7—S1—C8—N2 −140.01 (15) C15—C16—C17—C18 −1.1 (3)
N2—C8—N1—C9 22.1 (3) C16—C17—C18—C19 −0.9 (3)
S1—C8—N1—C9 −159.85 (15) C17—C18—C19—C20 1.8 (4)
C8—N1—C9—C10 46.0 (3) C18—C19—C20—C15 −0.7 (3)
C8—N1—C9—C14 −135.6 (2) C16—C15—C20—C19 −1.4 (3)
C14—C9—C10—C11 1.9 (3) N2—C15—C20—C19 −178.16 (18)
N1—C9—C10—C11 −179.70 (19)

Hydrogen-bond geometry (Å, º)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1N···I1i	0.80 (3)	2.69 (3)	3.4781 (17)	171 (2)
N2—H2N···I1ii	0.80 (3)	2.73 (3)	3.5242 (17)	169 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.