The concept of time correlation functions is a very convenient theoretical tool in describing relaxation processes in multiparticle systems because, on one hand, correlation functions are directly related to experimentally measured quantities (for example, intensities in spectroscopic studies and kinetic coefficients via the Kubo-Green relation) and, on the other hand, the concept is also applicable beyond the equilibrium case. We show that the formalism of memory functions and the method of recurrence relations allow formulating a self-consistent approach for describing relaxation processes in classical multiparticle systems without needing a priori approximations of time correlation functions by model dependences and with the satisfaction of sum rules and other physical conditions guaranteed. We also demonstrate that the approach can be used to treat the simplest relaxation scenarios and to develop microscopic theories of transport phenomena in liquids, the propagation of density fluctuations in equilibrium simple liquids, and structure relaxation in supercooled liquids. This approach generalizes the mode-coupling approximation in the Götte-Leutheusser realization and the Yulmetyev-Shurygin correlation approximations.

Keywords: relaxation process, spatial–time correlation, self-consistent description, mode-coupling approximation, disordered system, projection operator, integro-differential equation, recurrence relation

Contents

1. Introduction 450
2. Projection operators and dynamical correlations .. 451
3. Method of recurrence relations 456
3.1. Basic recurrence relations 456
3.2. Continued fraction and integro-differential equations .. 457
4. Self-consistent approach 459
4.1. Finite set of dynamical variables 460
4.1.1. Case ν = 2 ... 460
4.1.2. Case ν = 3 ... 460
4.2. Infinite set of dynamical variables: Relation between time scales .. 461
4.2.1. Gaussian relaxation 461
4.2.2. Damped oscillating correlator 461
4.2.3. Kinetic coefficients: Self-diffusion and the density of vibrational states in an equilibrium simple liquid 462
4.2.4. Density fluctuations in equilibrium simple liquids 465
4.3. Scaling in relaxation 470
4.3.1. Structure relaxation in supercooled liquids: Mode-coupling approximation 470