NtCIPK9: A Calcineurin B-Like Protein-Interacting Protein Kinase From the Halophyte Nitraria tangutorum, Enhances Arabidopsis Salt Tolerance

Lu Lu†, Xinying Chen†, Liming Zhu†, Mengjuan Li†, Jingbo Zhang‡, Xiuyan Yang‡, Pengkai Wang‡, Ye Lu†, Tielong Cheng†, Jisen Shi†, Yin Yi§,# and Jinhui Chen*†

1 Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China, 2 Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dangkou, China, 3 Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, China Academy of Forestry, Beijing, China, 4 State Forestry Administration Key Laboratory of Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, China, 5 Guizhou Provincial Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, China

Calcineurin B-like protein-interacting protein kinases (CIPKs) play essential roles in plant abiotic stress response. In order to better understand salt tolerance, we cloned and analyzed the NtCIPK9 gene from the halophyte Nitraria tangutorum. Phylogenetic analysis shows that NtCIPK9 belongs to a sister clade with the Arabidopsis AtCIPK9 gene and is thought to localize to the plasma membrane. NtCIPK9 shows the highest expression level in the Nitraria tangutorum root under normal growth conditions, whereas after NaCl treatment, the highest expression was found in the blade. NtCIPK9-overexpressing Arabidopsis plants have a higher seed germination rate, longer root length, and displayed higher salt tolerance than wild type seedlings under salt stress conditions. Furthermore, NtCIPK9 overexpression might enhance the expression of genes related to K⁺ transportation after NaCl treatment. Thus, we conclude that NtCIPK9 increases transgenic plant salt tolerance and reduces damage associated with salt stress conditions. Our results suggest that NtCIPK9 could serve as an ideal candidate gene to genetically engineer salt-tolerant plants.

Keywords: halophyte, Nitraria tangutorum, CIPK9, ion homeostasis, salt tolerance

INTRODUCTION

Soil salinity gradually accumulates along with global environmental degradation and limits the quality and productivity of most important agricultural crops and trees worldwide (Mahajan and Tuteja, 2005; Zhou et al., 2014; Guo et al., 2018). Currently, soil salinization is estimated to result in one-third of the world’s limited arable land loss, and will increase to 50% by the middle of 21st century (Zhu et al., 1998; Wang et al., 2003). Thus, improving the adaptability of plants to salinized
soil is crucial not only for plant survival, but also for effective soil utilization. Genetic engineering to improve the salt tolerance of crops has been actively investigated by plant scientists worldwide (Wang et al., 2003; Hu et al., 2005; Ashraf and Akram, 2009).

Calcineurin B-like proteins (CBLs) and their targets CBL-interacting protein kinases (CIPKS) are involved in the Ca²⁺ signal pathway that functions during stress response (Kudla et al., 1999; Shi et al., 1999; Kim et al., 2000); they play important roles in maintaining cytoplasm ion homeostasis and improving salt tolerance. CIPKS contain a typical protein kinase domain with a putative activation loop and a unique C-terminal regulatory region with a conserved NAF/FISL motif, both of which are necessary and sufficient for the function of these genes (Shi et al., 1999; Albrecht et al., 2001; Guo et al., 2001). CIPKS have been identified in many plant species (Albrecht et al., 2001; Kolukisaoglu et al., 2004; Lyzena et al., 2013; Zhang et al., 2014), and remarkable progress has been made in exploring the functions of CIPKS (Zhu et al., 1998; Halfier et al., 2000; Shi et al., 2000; Qiu et al., 2002; Cheong et al., 2003; Chinnusamy et al., 2004; Sanchez-Barrena et al., 2005; Luan, 2009). In Arabidopsis, CIPKS affect cellular ion homeostasis under saline conditions by regulating ion transporters, such as HKT1 (HIGH-AFFINITY K⁺ TRANSPORTER1). HKT1 improves salinity tolerance by removing Na⁺ from the transpiration stream and promoting the absorption of K⁺ in Arabidopsis (Kato et al., 2001; Cheong et al., 2003; Li et al., 2006; Xu et al., 2006; Grefen and Blatt, 2012). In addition, CIPKS also regulate the expression of stress-responsive genes mediated by the abscisic acid pathway during seed germination and at the seedling stage (Kim et al., 2003; Pandey et al., 2008a; Piao et al., 2010). CIPK function is highly conserved across plant families, shown by studies in apple and tomato (Hu et al., 2016), Cicer arietinum (Tripathi et al., 2009), Hordeum brevisubulatum (Li et al., 2012), and Nitraria tangutorum (Himabindu et al., 2016). However, most studies have been performed in salinity sensitive plants (glycophytes), such as Arabidopsis, rice, and maize (Kolukisaoglu et al., 2004; Zhao et al., 2009; Rigó et al., 2016), limiting our understanding of how plants may adapt to saline environments. Therefore, studying how halophyte CIPKs homologs function might provide crucial perspective in addressing this question, as these genes could be functionally more efficient than their glycophyte counterparts (Himabindu et al., 2016).

Nitraria tangutorum Bobr. (a halophyte), is a shrub that belongs to the family Nitrariaceae Nitraria in Sapindales (Zhao et al., 2002; Chase and Reveal, 2009; Group, 2016; Lu et al., 2018), and is widely distributed in China’s northwestern region (Wang et al., 2014). This typical plant has a strong adaptability to high salinity, arid or semi-arid environments. It can efficiently alleviate the degree of soil salinity–alkalinity, which could improve the utilization of saline areas and prevent soil desertification (Zhao et al., 2002; Yang et al., 2010a; Jie et al., 2011). Due to its ecological effect, studies on *Nitraria tangutorum* have mainly focused on the physiological and biochemical aspects of its adaptive mechanisms to abiotic stresses (Yang et al., 2010a; Yang et al., 2010b; Yang et al., 2012; Yang et al., 2013). Although *NtCIPK2* and *NtPS5* from *Nitraria tangutorum* have been cloned and analyzed to a certain extent (Zheng L. et al., 2014; Zheng L. L. et al., 2014), there is a current lack of knowledge on how *Nitraria tangutorum* responds molecularly to salt stress. In order to reveal the functional genes supporting *Nitraria tangutorum* to deal with high salinity and promote the application of these functional genes from halophyte to glycophyte, in our study, we used rapid amplification of cDNA end (RACE) cloning to identify a novel *Nitraria tangutorum* CIPK gene, which shows significant homology to Arabidopsis CIPK9. Therefore, we named it *NtCIPK9* (*Nitraria tangutorum* CIPK9). Quantitative PCR analysis showed that *NtCIPK9* positively responds to 500 mM NaCl treatment in both the root and leaf of *Nitraria tangutorum*. We overexpressed *NtCIPK9* in Arabidopsis and compared the different abilities of salt resistance between transgenic plants and wild type plants. *NtCIPK9* overexpressing-plants displayed a higher germination efficiency, longer root length, more leaves, and a lower death rate than the wild type under salt stresses. The high K⁺ content and AtHKT1 expression level in transgenic seedlings suggest that *NtCIPK9* enhanced salt tolerance by regulating expression of genes controlling ion homeostasis.
seeds have been sown in the pots. After four weeks, seedlings in pots were watered by 200 mM NaCl for 4 days. Three biological replicates and four experimental repeats have been conducted.

Gene Cloning

Total RNA was extracted from *Nitraria tangutorum* leaves using a Total RNA Purification Kit (NORGEN, Thorold, ON, Canada), followed by removal of genomic DNA contamination using DNasel (TaKaRa, Japan). Total RNA concentration and integrity were quantified by ultraviolet spectrophotometry and electrophoresis, respectively. First-strand cDNA was synthesized using reverse transcriptase (Invitrogen, Carlsbad, USA). Degenerate primers to amplify the homeodomain of CIPK were designed based on the genomic region of *NtCIPK9* (from Nanjing, China). After assembly, the complete gene sequence was amplified from cDNA using reverse transcriptase and SMARTer™ RACE cDNA Amplification Kit User manual (BD Bioscience Clontech, USA). Primers for RACE are listed in Supplementary Table 2. The amplified PCR product was purified and cloned into pMD19-T (TaKaRa, Japan) and sequenced (GenScript, USA). Primers for RACE are listed in Supplementary Table 2. The amplified PCR product was purified and cloned into pMD19-T (TaKaRa, Japan) and sequenced (GenScript, Nanjing, China). After assembly, the complete *NtCIPK9* sequence was amplified from cDNA using the primers mentioned in Supplementary Table 3. To confirm whether the *NtCIPK9* genomic region also contains introns, we amplified *NtCIPK9* from *Nitraria tangutorum* genomic DNA using the same primers (Supplementary Table 3).

Bioinformatics Analysis

The *NtCIPK9* homolog was identified by using NCBI blastp. Multisequence alignment was performed using DNAMAN 6.0 software (Lynnon Biosoft, Quebec, Canada). Conserved domains of *NtCIPK9* were predicted using InterProScan online software (http://www.ebi.ac.uk/InterProScan/). Phylogenetic trees were constructed with amino acid sequences of *NtCIPK9* and 26 Arabidopsis CIPK proteins using the Neighbor-joining method with 1,000 bootstrap replications and the Jones-Taylor-Thornton model in Mega 6 software. Sequence accession numbers are listed in Supplementary Table 4. Hydrophobic analysis and transmembrane domain prediction of the *NtCIPK9* protein were performed using ProtScale (http://ca.expasy.org/tools/protscale.html) and the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/).

56 protein-coding genes from 46 chloroplast genomes (Supplementary Table 5) were selected for phylogenetic analysis of *Nitraria tangutorum*, *Vitis vinifera* as outgroup. Sequences alignment was performed using ClustalW. Each orthologous gene was trimmed with trimAl version 1.2 (Capella-Gutierrez et al., 2009). The trimmed alignments were concatenated using SequenceMatrix version 1.7.8 (Vaidya et al., 2011). A nucleotide matrix of 44780 sites was then constituted for Maximum parsimony analysis by PAUP 4.0 (Swofford, 2002).

Subcellular Localization Assay

The full-length coding region of *NtCIPK9* was cloned into vector pJIT166::GFP for subcellular localization analysis. The recombinant plasmids were bombarded into onion epidermal cells according to a previously described method (Yokoi et al., 2002) and followed by fluorescence detection using a ZEISS X-Cite 120Q fluorescence microscope (ZEISS, Germany). Three technical replicates have been performed. The primers for construction of GFP tagged *NtCIPK9* are listed in Supplementary Table 6.

Quantitative Real-Time PCR Analysis

Total RNA isolation and reverse transcription were performed as mentioned above. Quantitative real-time PCR was performed using a SYBR-Green PCR Mastermix on a LightCycler®480 real-time PCR detection system (Roche, Basel, Switzerland) according to the manufacturer’s instruction. Expression levels of target genes were normalized using the housekeeping gene actin in *Nitraria tangutorum* (Wang et al., 2012) and ubiquitin10 (UBQ10) in *Arabidopsis* (Geldner et al., 2009). Three technical replicates for three independent transgenic lines were carried out for real-time PCR. Sequence-specific primers were designed using Primer 3.0 and Oligo 7 and are listed in Supplementary Table 7.

Cation Content Measurements

Twenty-day-old seedlings grown on ½MS with 0, 100, and 150 mM NaCl were collected, respectively, and washed three times with ddH2O, then dried at 80°C for 3 day. Harvested samples were digested with the HNO3-HClO4 method (Zhao et al., 1994). After acid digestion, samples were diluted to a total volume of 50 mL with ddH2O and kept in new tubes before analysis using flame atomic absorption spectrophotometry (FAAS) (Karpinski et al., 2016). Three biological replicates were performed for each ion content test experiment. Three technical replicates were repeated for each biological replicate.

RESULTS

Conserved Domain of NtCIPK9

To start, we analyzed the basic properties of *NtCIPK9* sequence. Full length *NtCIPK9* is 1735 bp with a predicted open reading frame of 1332 bp nucleotides, a 5’UTR of 239 bp and a 3’UTR of 164 bp in length, encoding 443 amino acids with an estimated molecular weight 50.52 kDa. The acquired coding sequence shares high similarity with CIPKs from different plant species. The deduced *NtCIPK9* protein sequence showed 82.18% identity with *Theobroma cacao* CIPK9 (TcCIPK9), 80% identity with *Populus trichocarpa* CIPK9 (PtCIPK9) and 77.78% identity with *Arabidopsis thaliana* CIPK9 (AtCIPK9) (Figure 1A). Consistent with other CIPKs, *NtCIPK9* possesses an N-terminal SNF-1-related serine/threonine protein kinase domain (14–268 aa) and a C-terminal regulatory domain (305–421 aa) with a CBL-interacting NAF/FIGS module (Figure 1B). Thus, this gene was designated as *NtCIPK9*, a novel member of the plant CIPK gene family.

Phylogenetic comparison of *NtCIPK9* with the Arabidopsis CIPK family clustered *NtCIPK9* as a sister branch of *AtCIPK9* to...
the intron-rich subgroup (Yu et al., 2007) (Figure 2). To analyze whether the NtCIPK9 gene contains introns, we amplified the genomic NtCIPK9 sequence from genomic DNA. The result show genomic NtCIPK9 harbors introns by DNA electrophoresis and sequencing (Supplementary Figure 1A), which is consistent with the results of our phylogenetic analysis. Besides, evolutionary study showed the Nitraria tangutorum was claded with Sapindus mukorossi, Azadirachta indica, Zanthoxylum piperitum, and Citrus sinensis in Sapindales (Supplementary Figure 2). Citrus sinensis is one of most important commercial fruit crops (Bausher et al., 2006).

Subcellular Location of NtCIPK9
A hydrophobicity blot indicated that the most hydrophobic segment of NtCIPK9 was located between amino acid residues 196 to 211 (Figure 3A), corresponding to the transmembrane domain predicted by the TMHMM Server 2.0 (Figure 3B). To further confirm the subcellular localization of NtCIPK9 in plant
FIGURE 2 | Phylogenetic analysis of NtCIPK9 with Arabidopsis CIPKs. The pink branch represents the subgroup of CIPKs with introns. The blue branch represents the clusters without intron.

FIGURE 3 | Structure analysis and subcellular localization of NtCIPK9. (A) Hydrophobicity plot of NtCIPK9. (B) The predicted transmembrane helix domain of NtCIPK9. (C) Schematic of the vectors used for analysis of NtCIPK9 subcellular localization. (D–G) NtCIPK9 subcellular localization. p35S::GFP serves as the control. (H) Relative expression level of NtCIPK9 in different tissues of Nitraria tangutorum. Data represent means ± SD from three biological replicates.
cells, a 35S:NtCIPK9-GFP translational fusion was constructed with GFP tagged to the C-terminus of NtCIPK9 and 35S:GFP was used as control (Figure 3C). The two vectors were bombarded into onion epidermal cells and transient expression of NtCIPK9-GFP was detected by epi-fluorescence. 35S:GFP fluorescence was detected in the membrane and cytoplasm (Figures 3D, E), similar to the localization of NtCIPK9-GFP (Figures 3F, G). The hydrophobicity and subcellular location analysis suggest that NtCIPK9 might be one of membrane-bound proteins.

NtCIPK9 Responds to Salt Treatment in Nitraria tangutorum

To assess the expression of NtCIPK9 in Nitraria tangutorum under salt stress conditions, we isolated total mRNA from different tissues (including root, stem, and leaf) after 2 h 500 mM NaCl treatment. qPCR results revealed that NtCIPK9 showed relatively higher expression levels in the root than in the leaf and stem before salt treatment (Figure 3H). However, NtCIPK9 transcription was upregulated in leaves after a 500 mM NaCl treatment (Figure 3H). Besides, the expression patterns in whole plants also showed the positive response of NtCIPK9 to salt stress (Supplementary Figure 1B and Supplementary Figure 3A).

Ectopic Expression of NtCIPK9 in Arabidopsis Promotes Seed Germination Under Salt Stress

To further investigate how NtCIPK9 affects salt tolerance, we overexpressed (35S:NtCIPK9) it in Arabidopsis. Seeds from three

![Image](https://example.com/image.png)
individual homozygous lines and WT were sown on ½ MS-agar plates to test their germination rate. On ½ MS without added NaCl, wild type and transgenic seeds showed no difference; yet on ½ MS with 100 and 150 mM added NaCl, 98.18% and 65.91% of 35S:NtCIPK9 seeds germinated, respectively, while only 54.39% and 7.42% of WT seeds germinated under the same conditions (Figures 4A–L). Therefore, we conclude that NtCIPK9 significantly promotes seed germination under salt stress conditions (Figure 4M).

Ectopic Expressing NtCIPK9 Enhances Salt Tolerance in Arabidopsis
To address whether ectopic expression of NtCIPK9 could influence salt tolerance of plants, we grew 35S:NtCIPK9 and WT seeds on salt-rich media with 100 and 150 mM NaCl. 35S:NtCIPK9 seedlings showed better growth with more leaves and longer primary root on both media compared to WT plants, 20 days after germination (Figures 5A–C). This effect is more clear when plants grew on medium with a higher salt concentration (Figures 5B, C). To further assess salt-tolerance of the transgenic plants, 10-day-old seedlings were treated with 150 mM NaCl. 10 days after treatment, plants grown on medium without salt (Figure 6A) displayed no different phenotype. However, the number of whitening leaves and the mortality rate in WT were significantly higher than that of three transgenic lines grown on media with 150 mM NaCl (Figures 6B, C). In addition, enhanced tolerance to salt was also observed in plants grown in pots. Four weeks-old plants of WT and T2 heterozygous transgenic lines, four in a pot in duplicate, were irrigated with 200 mM NaCl for 4 days. All plants displayed withering blades from first day after salt treatment (Figures 7A–D). But the plants overexpressing NtCIPK9 showed a lower percentage of withering leaves than WT under salt stress (Figure 7E). Similarly, four-week-old T3 homozygous transgenic plants in pots also showed a higher salt tolerance than WT under 200 mM NaCl treatment for 4 days (Figures 8A, B).

Ectopic Expression of NtCIPK9 in Arabidopsis Elevates K+ Accumulation
To investigate how ectopic expression of NtCIPK9 causes increased salt tolerance, we measured the Na⁺ and K⁺ content of 35S:NtCIPK9 transgenic plants under salt stress. Under normal conditions, the ion content of these transgenic lines has no difference with WT. By contrast, although salt stress increased the Na⁺ content of both WT
FIGURE 6 | 35S:NtCIPK9 transgenic plants show a lower mortality rate than WT. (A) WT and transgenic plants grown on media without added NaCl for 20 days. (B) The phenotypes of WT and transgenic plants grown on media supplemented with 150 mM NaCl for 10 days. (C) The percentage of chlorotic leaves and mortality of plants. 18 plants were used for statistics by ANOVA, three biological replicates for each experiment. ANOVA test was used for statistical analysis. **P < 0.01; *P < 0.05.

FIGURE 7 | Improved salinity tolerance in heterozygous plants with NtCIPK9 overexpression. (A–D) 200 mM NaCl treated 4-week-old T2 transgenic plants and WT in pots for four days respectively. (E) Percentage of withering leaves during salt treatment in pots. ANOVA test was used for statistical analysis. ***P < 0.001; **P < 0.01; *P < 0.05. Four experimental repeats have been used in three independent replicates.
and transgenic plants, transgenic plants do show a slightly lower Na⁺ content than WT (Figure 5D). More importantly, salt treatment reduced the K⁺ content of transgenic plants to a lesser extent than that of WT (Figure 5E).

To figure out what might be causing the difference in Na⁺ and K⁺ content, we analyzed five genes which are known to be involved in Na⁺ or/and K⁺ transportation. We found that AtHKT1 was around 2-fold upregulated in at least two NtCIPK9 transgenic plants, compared to wildtype plants treated in pots (Figure 8C). Similarly, the AtHKT1 expression level was also significantly upregulated in the transgenic plants treated on petri dishes (Figure 9A). Besides, the expression level of the other four genes (AtNHX1, AtNHX7, AtTRH1, and AtAKT2) was higher in the transgenic plants than in WT seedlings under salt stress (Figures 9B–E). To further ensure the function of CIPKs in salt stress, we checked the transcription of other known CIPKs in Nitraria tangutorum (NtCIPK2) (Zheng L. L. et al., 2014). The results showed that the CIPKs were also positively response to salt stress in both Nitraria tangutorum and Arabidopsis thaliana (Supplementary Figure 3).

DISCUSSION

Salinization of arable land is a serious threat to agricultural and ecological stability. Therefore, halophytes have become promising candidates for further management of salinized areas. In order to adapt to their stressful environment, these plants developed a series of regulatory mechanisms during evolution. At the same time, genetic engineering of glycophytes by transforming genes from halophytes has been widely used to improve their salt resistance (Himabindu et al., 2016). In our study, we found that overexpression of NtCIPK9 from Nitraria tangutorum in Arabidopsis increased seed germination rate under salt stress. There’s one possible reason that could cause the higher seed germination of transgenic plants. AtCIPK3 from Arabidopsis has
been reported to be involved in the phytohormone abscisic acid (ABA) response, which plays a vital role in seed maturation, dormancy, and seed germination (Finkelstein et al., 2002; Pandey et al., 2008b). Therefore, we thought that increasing seed germination rate could also be related with plant endogenous ABA. On the media without NaCl, we found the WT has a high germination rate as the NtCIPK9-overexpressing seeds. NtCIPK9 here didn’t show a positive function on seed germination because the germination rate of WT was close to 100% at normal condition. However, NtCIPK9 effectively enhanced the seed germination under salt treatment, that reflected the function of NtCIPK9 on coping with salt stress.

BnCIPK9 from Brassica napus L. was reported to regulate seed oil content, a different function than was reported for Arabidopsis AtCIPK9 (Guo et al., 2018), suggesting that CIPK orthologs from different species can also have roles other than only being involved in ABA. On the media without NaCl, we found the WT has a high germination rate as the NtCIPK9-overexpressing seeds. NtCIPK9 here didn’t show a positive function on seed germination because the germination rate of WT was close to 100% at normal condition. However, NtCIPK9 effectively enhanced the seed germination under salt treatment, that reflected the function of NtCIPK9 on coping with salt stress.

CONCLUSION

In our research, we identified a novel CIPK gene, NtCIPK9, which positively responds to salt stress in Nitraria tangutorum. Overexpression of NtCIPK9 in Arabidopsis plants increases seed
germination rate, root length, leaf number, and reduces mortality rate under salt stress. Furthermore, NiCIPK9 may enhance the tolerance of transgenic plants to salinity by increasing the expression level of genes in balancing ion homeostasis after the salt treatment. Altogether, our study revealed that NiCIPK9 from the halophyte Nitraria tangutorum could improve the salt tolerance of Arabidopsis, which would further contribute to the genetic engineering of other glycophytes for stronger salt resistance and sheds light on the molecular mechanism causing the enhanced resistance. However, more practical application of halophytes facing various degree of stresses need to be further investigated.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly available. This data can be found here: https://www.ncbi.nlm.nih.gov/nuccore/MN852853.

AUTHOR CONTRIBUTIONS

JC and JS contributed conception and design of the study. LZ, ML, JZ, XY, PW, YL, TC, and YY performed the experiments and carried out the statistical analysis. LL and XC wrote sections of the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

Albrecht, V., Rita, O., Linder, S., Harter, K., and Kudla, J. (2001). The NAF domain defines a novel protein–protein interaction module conserved in Ca2+–regulated kinases. EMBO J. 20, 1051–1063. doi: 10.1093/emboj/20.5.1051
Ashraf, M., and Akram, N. A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv. 27, 744–752. doi: 10.1016/j.biotechadv.2009.05.026
Bausher, M. G., Singh, N. D., Lee, S.-B., Jansen, R. K., and Daniell, H. (2006). The Nitraria tangutorum could improve the salt tolerance of glycophytes. Plant J. 44, 214–225. doi: 10.1111/j.1365-311X.2006.02958.x
Cholak, I., et al. (2016). Qualitative and quantitative content determination of anthocyanins composition and antioxidant activity of two major wild Nitraria tangutorum variations from Qinghai–Tibet Plateau. Food Res. Int. 84, 2041–2046. doi: 10.1016/j.foodres.2015.07.008
Cheong, Y. H., Kim, K.-N., Pandey, G. K., Gupta, R., Grant, J. J., and Luan, S. (2003). Pineapple: organization and phylogenetic relationships to other angiosperms. Proc. Natl. Acad. Sci. 100, 1281–1286. doi: 10.1073/pnas.0502042100
Chinnusamy, V., Schumaker, K., and Zhu, J. K. (2004). Molecular genetic engineering of other glycophytes for stronger salt resistance and various degree of stresses need to be further investigated.

FUNDING

This research was supported by Key research and development plan of Jiangsu Province (BE2017376), Foundation of Jiangsu forestry bureau (LYKJ[2017]42), the Nature Science Foundation of China (31770715), the Qinglan project of Jiangsu province, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Insitutions (PAPD), Natural Science Foundation of Jiangsu Province (BK20181176) and the Joint Fund of the Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province (Grant No. U1812401).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.01112/full#supplementary-material

Grefen, C., and Blatt, M. R. (2012). Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1? Lessons learned from a menace a trio. Plant Physiol. 159, 915–919. doi: 10.1104/pp.112.198051
Group, T. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 161, 105–121. doi: 10.1111/bol.12385
Guo, Y., Haltfer, U., Ishitani, M., and Zhu, J.-K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13, 1383–1400. doi: 10.1105/tpc.010021
Guo, Y., Huang, Y., Gao, J., Pu, Y., Wang, N., Shen, W., et al. (2018). CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnol. Biofuels 11, 124. doi: 10.1186/s13068-018-1122-z
Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., and Chandrasekhar, T. (2016). Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot. 124, 39–63. doi: 10.1016/j.envexpbot.2015.11.010
Hu, L., Lu, H., Liu, Q., Chen, X., and Jiang, X. (2005). Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 23, 1273–1281. doi: 10.1093/treephys/25.10.1273
Hu, D. G., Ma, Q. J., Sun, C. H., Sun, M. H., You, C. X., and Hao, Y. J. (2016). The NtCIPK9 Enhances Arabidopsis Salt Tolerance. Biotechnol. Biofuels 9, 252. doi: 10.1186/s13068-018-1122-z
Jie, Z., Hui, L., Ding, C. X., Suo, Y. R., Wang, L. S., and Wang, H. L. (2011). Anthocyanins composition and antioxidant activity of two major wild Nitraria tangutorum Bobr. varieties from Qinghai–Tibet Plateau. Food Res. Int. 44, 2041–2046. doi: 10.1016/j.foodres.2010.07.008
Karpiuk, U. V., Azzam, K. M. A., Abudayeh, Z. H. M., Kislichenko, V., Naddaf, A., Cholak, O., et al. (2016). Qualitative and quantitative content determination of
Shi, J., Kim, K.-N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., et al. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11, 2293–2305. doi: 10.1105/tpc.11.12.2393

Shi, H., Ishitani, M., Kim, C., and Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SSO1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. 97, 6896–6901. doi: 10.1073/pnas.100170197

Swofford, D. L. (2002). “PAUP: phylogenetic analysis using parsimony, version 4 b10” (Sunderland, MA: Sinauer Associates).

Tripathi, V., Parasuraman, B., Laxmi, A., and Chattopadhyay, D. (2018). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. J. Plant Physiol. 185, 778–790. doi: 10.1016/j.jplph.2017.03.027

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. doi: 10.1111/j.1096-3087.2010.00329.x

Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14. doi: 10.1007/s00425-003-1105-5

Wang, L., Fei-Feng, L. I., Zhang, W. B., Chen, G. L., and Lin, X. F. (2012). Isolation and characterization of Nitraria sibirica actin gene. Acta Pratuculturae Sin. 21, 15–18.

Wang, N., Gao, J., Zhang, S. Q., and Wang, G. X. (2014). Variations in leaf and root stomaticiometry of Nitraria tangutorum along aridity gradients in the Heti Corridor, northwest China. Contemp. Prob. Ecol. 7, 308–314. doi: 10.1134/S1992455110030123

Wu, J., Li, H., Li, L., Qian, L., Wang, Y., Liu, J., et al. (2012). HcBIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisulmatum, confers salt and osmotic stress tolerance. Plant Cell Environ. 35, 1582–1600. doi: 10.1111/j.1365-3040.2012.02511.x

Wu, J., Li, H., Shi, C., Wei, X., and Wei, H. (2015). A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor-interacting protein Kinase required for low-potassium response. Curr. Genet. 60, 225–236. doi: 10.1007/s00294-015-0898-2

Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., et al. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125, 1347–1360. doi: 10.1016/j.cell.2006.06.011

Yang, J., Shi, R., and Wei, X. (2010a). Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Boerb. Plant Cell Tissue Organ Cult. (PCTOC) 102, 387–395. doi: 10.1007/s11240-010-9745-1

Yang, Y., Wei, X., Shi, R., and Fan, Q. (2010b). Salinity-induced physiological modification in the callus from Halophyte nitraria tangutorum Boerb. J. Plant Growth Regul. 29, 465–476. doi: 10.1007/s10534-010-9158-8

Yang, Y. L., Zhang, Y. Y., Lu, J., Zhang, H., Liu, Y., Jiang, Y., et al. (2012). Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus. Biol. Plant. 56, 330–336. doi: 10.1007/s10535-012-0094-2

Yang, Y., Yang, F., and Li, X. (2013). Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Boerb. grown under salinity stress. Plant Cell Tissue Organ Cult. (PCTOC) 112, 33–42. doi: 10.1007/s11240-012-0209-7

Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., et al. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30, 529–539. doi: 10.1046/j.1365-313X.2002.01309.x

Yuan, L., Li, Z., Zhang, H., Zhu, H., and Zhang, H. (2007). Comparative genomics and characterization of Nitraria sibirica actin gene. Adv. Pharm. Bull. 755, 1264. doi: 10.1016/j.ajps.2004.11.025

Zheng, L. L., Gao, Z., Wang, J., Zhang, H. R., and Wang, Y. C. (2014). Molecular and characterization of Nitraria tangutorum Bobrb. 32, 407–418. doi: 10.1003/s101629403969047

Zhao, K., Bai, F., and Ungar, I. A. (2002). Survey of halophyte species in China. Plant Sci. 163, 491–498. doi: 10.1016/S0168-9452(02)00150-7

Zhao, J., Sun, Z., Zheng, J., Guo, X., Dong, Z., Huai, J., et al. (2009). Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69, 661–674. doi: 10.1007/s11103-008-9455-y

Zheng, Z., Yang, H., Liu, W.-Z., Li, H., Wang, L., Wang, B., et al. (2014). Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol. 14, 1. doi: 10.1186/1471-2229-14-8

Zhou, J., Hou, X., and Zou, P. (2016). Molecular cloning and characterization of a new CBL-interacting protein kinase from Nitraria tangutorum. Gene 581, 102–108. doi: 10.1016/j.gene.2016.03.012

Zhou, J., Wang, J., Bi, Y., Wang, L., Tang, L., Yu, X., et al. (2014). Overexpression of PISOS2 enhances salt tolerance in transgenic poplars. Plant Mol. Biol. Rep. 32, 185–197. doi: 10.1007/s11105-013-0640-x
Zhu, J.-K., Liu, J., and Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10, 1181–1191. doi: 10.1105/tpc.10.7.1181

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Lu, Chen, Zhu, Li, Zhang, Yang, Wang, Lu, Cheng, Shi, Yi and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.