Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review

Anuja Bhargava & Atul Bansal

Received: 21 June 2020 / Revised: 23 October 2020 / Accepted: 10 February 2021 / Published online: 3 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

The universal transmission of pandemic COVID-19 (Coronavirus) causes an immediate need to commit in the fight across the whole human population. The emergencies for human health care are limited for this abrupt outbreak and abandoned environment. In this situation, inventive automation like computer vision (machine learning, deep learning, artificial intelligence), medical imaging (computed tomography, X-Ray) has developed an encouraging solution against COVID-19. In recent months, different techniques using image processing are done by various researchers. In this paper, a major review on image acquisition, segmentation, diagnosis, avoidance, and management are presented. An analytical comparison of the various proposed algorithm by researchers for coronavirus has been carried out. Also, challenges and motivation for research in the future to deal with coronavirus are indicated. The clinical impact and use of computer vision and deep learning were discussed and we hope that dermatologists may have better understanding of these areas from the study.

Keywords Computer vision · Computed tomography · Machine learning · Coronavirus · COVID-19

1 Introduction

The Novel Coronavirus (Covid-19) named coronavirus because of the electronic microscope appearance to cosmic corona that is identical to the crown [15]. It is a widespread toxic disease epidemic in late 2019 and is originated from the serious syndrome of respiratory (SARS-COV-2) [73] as shown in Fig. 1. It is a member of the “Coronaviridae family” that is non-
segmented, enveloped, and the sense viruses. SARS-COV-2 constitutes 14 bonded residues which precisely connect with “human angiotensin-converting enzyme 2”. The breezy respiratory infection in humans is identified as COVID-19 as far as SARS-COV-2 identification is done. A various field like industry, supply chain, production, insurance, transport, agriculture, and tourism affected by COVID-19 results in shock of the economy globally [60] and is at high risk around the world. According to OECD (Organization for Economic Cooperation and Development) due to COVID-19, the economy this year is the lowest [71].

The first infection is noted in Wuhan [China] on December 31, 2019, having symptoms like fever, dry cough, fatigue, nausea, shortness of breath, lung infiltrates, and dyspnoea. All the cases were associated with the seafood market, like fish and animal-like bats, snakes, poultry, and marmots [67]. The WHO (World Health Organization) claims the PHEIC (Public Health Emergency of International Concern) on January 30, 2020, and recognized it as pandemic on March 11, 2020 [109–111]. The virus infects 38,86,230 cases of COVID-19 [up to May 8, 2019] out of which 2,68,908 reports death and 13,31,014 reports recovered. The geographical spread and various stats about recovery and deaths case of COVID-19 are shown in Figs. 2 and 3 till Oct 18, 2020.

The rise in several infections to people, results in curfew and lock-downs by governments all over the world and restricts people’s movement, goods services and called for “work from home” to lower the virus spread rate. The governments are taking major steps to spread of virus globally. There is no vaccine claimed till now by any country for COVID-19.

Therefore, the researcher motivates to understand, explore, and treatments of COVID-19. The technologies such as computer vision and artificial intelligence could be best fitted in a crisis of COVID-19 [39, 69, 80]. The objective of this review paper is to give a comparative analysis of computer vision in COVID-19 and also to review various image acquisition, segmentation, and deep learning. This review is specified to US, Italy, Spain, Germany, Iran, France and India.

2 Classification of key area

This section presents different computer vision techniques used for COVID-19 briefly explained in subsequent sections, as depicted in Fig. 4. Also, the classification of positive and negative COVID-19 patients involves basic steps as shown in Fig. 5.
2.1 Image acquisition

“The judgment about the exact disease, especially after doctor examination is the diagnosis and expected development of the disease by a doctor is prognosis defined by Cambridge dictionary (https://dictionary.cambridge.org/). The COVID-19 currently diagnosis with RT-qPCR (Reverse Transcriptase Quantitative Polymerase Chain Reaction) [103]. Nonetheless, this manual test is time-consuming and shows some of the false reports [20].

2.1.1 Computed tomography (CT) scan

Alternatively, acquiring an image using a CT scan of the chest obtains a more detailed, enhanced form compared to a standard x-ray scan. The images formed incorporate fats, bones,
organs, and muscles that result in accurate diagnose by physicians. The spiral chest CT and high-resolution scan are the two categories of CT scan [3]. Inspiral chest CT scan (https://www.radiologyinfo.org/en/info.cfm?pg=chestct), the spiral lane is followed by an X-Ray tube, produces a 3D image of lungs. In a high-resolution scan, it produces an image from a single rotation by the X-Ray tube.

Crucial aspects of CT scan covers consolidation, ground-glass opacity, lesion distribution, nodules, and recitation of interlobular septa [16, 61, 65]. The radiologist’s experts identify the disease which is time-consuming, therefore, to imbrute the process computer vision is used. Various images acquired by distinct researchers using CT scans comprise of subsequent characteristics as shown in Table 1. Figure 6 shows some of the samples from the CT scan images.

2.1.2 X-ray image

The digital CXR (Chest X-Ray) radiography is preferred for imaging because it is easily available and cheaper. It is us for cancer [77], cardiac [4] and osteoporosis disease [94]. Due to low contrast, pre-processing is done by contrast enhancement [47] in X-Ray imagery. Various images acquired by distinct researchers using X-Ray comprise of subsequent characteristics as sown in Table 2. Figure 7 shows some of the samples from the X-Ray scan images.

Various images acquired by distinct researchers using different resources comprise of subsequent characteristic as shown in Table 3.
2.2 Image segmentation

After acquiring an image, the segmentation of the image is a crucial fundamental step in the analysis and processing of the estimation of COVID-19. It depicts the ROI (Region of Interest) like infected lesions, lobes, lung in the image. The segmented ROI is used to extract features for analysis and diagnosis purposes. The immense quality 3-dimensional image is provided by a CT scan for disclosing COVID-19. The most prominent method for ROI in CT scan incorporates U-Net, U-Net++, VB-Net. Presently, none of the methods is refined for X-Ray image segmentation. Despite bounded segmentation methods, several researchers consider segmentation as a fundamental process to investigate COVID-19. Table 4 illustrates the segmentation technique involved in COVID-19.

The convolutional neural network (CNN) to used to extract features from COVID-19 X-Ray images. In this process, a special type of CNN called a pre-trained model where the network is previously trained on the dataset, which contains millions of variety of images. So, transfer learning is applied by transferring weights that were already learned and reserved into the structure of the pre-trained model, such as Inception. The different types of features such as edges, texture, colors, and high-lighted patterns are extracted from the images.

2.3 Diagnosis for COVID-19

Artificial intelligence (AI) A dynamic tool for COVID-19 prediction and analysis is an Artificial Intelligence technique [108]. Presently, various researchers and their studies show AI has been widely utilized for COVID-19 issues using ML (Machine Learning) and DL.
Deep Learning. Generally, ML is used for précising the structure of the data which is handled by people [10]. ML methods train the input data and analyze the output data statistically. The application of ML includes the detection of infected persons and the temperature of the person [5, 12, 27].

DL has been designed for better performance of neural networks and a type of artificial neural network and has multilayers. The more layers are increased, the greater accuracy is achieved. In machine learning, Deep Belief Networks (DBN) is a productive graphical model or, alternatively, a class of deep neural networks consisting of multiple layers in hidden nodes. When trained on a series of unsupervised examples, the DBN can learn to reconfigure its entries as probabilistic. The layers then act as feature detectors. After this learning phase, a DBN can be trained with more control to make the classification. DBNs can be seen as a combination of simple, unsupervised networks, such as restricted Boltzmann machines (RBMs) or auto encoder, which serve as the hidden layer of each subnet, the visible layer of the next layer.

DL algorithms are used to detect solutions for COVID-19. The manifold neural network layers are used by connected weight vector [78, 92]. Various application of DL includes computer vision, object detection, speech recognition [42, 64, 68]. Several DL based solution for COVID-19 are established by AI methods [30]. Table 5 utilizes the literature related to the AI diagnosis of COVID-19.

The different companies utilized AI for adequate detection and disease diagnosis caused by a coronavirus. Table 6 shows some of the cases used by AI. The literature presents various AI-based solutions for COVID-19 detection using temperature detection of face [82, 98] and data analysis [83, 88].

![Chest radiography](image)

Fig. 7 Chest radiography **a** Day 0 **b** Day 4 **c** Day 7
2.4 Avoidance and management

Various guidelines [112] are granted by WHO for the prevention and control of COVID-19. Extensive strategies to restrain incorporates source control, early recognition, precautions, engineering, and control. To reduce the infection in the early stages, the utilization of vigilant equipment or mask is necessary. All over the world, some of the countries like India implement it as a jurisdiction strategy and was promoted by machine learning systems. The table utilizes the work related to the prevention and control of the disease (Table 7).

2.5 Learning lessons COVID-19

The coronavirus has been efficient and transparent, still, various points must be learned for the outbreak in the future utilized in Table 8.

2.6 Infection syndrome and medication

To date, there is no specific cure for infection originated by COVID-19. Yet, bountiful manifestation can be evaluated depending upon the condition of the patient. Currently, various researchers and teams are working on devise vaccination for the infection. Computer vision is

Table 3 Summary of the dataset available

Dataset	No. of Images	Link
COVID CT DATASET [123]	349	https://github.com/UCSD-AI4H/COVID-CT
RADIOGRAPHY [22]	2905	https://github.com/tawsifur/COVID-19-Chest-X-ray-Detection
IMAGE DATA [23]		https://github.com/ieee8023/covid-chestxray-dataset.
COVIDx Dataset [100]	16,756	https://github.com/ieee8023/covid-chestxray-dataset:
ChestX-ray8 [101]	90,000	https://nihcc.app.box.com/v/ChestXray-NIHCC).

Table 4 Utilization of image segmentation techniques for COVID-19

Authors	Segmentation Tech.	ROI	Utilization
Zheng et al. [124]	U Net	Lung	Examination
Cao et al. [13]	U Net	Lesion/ Lung	Evaluation
Huang et al. [40]	U Net	Lung lobes/ Lesion/ Lung	Evaluation
Qi et al. [79]	U Net	Lung lobes/ Lesion	Evaluation
Gozes et al. [35]	U Net	Lesion/ Lung	Examination
Li et al. [63]	U Net	Lesion	Examination
Chen et al. [18]	UNet++	Lesion	Examination
Jin et al. [45]	UNet++	Lesion /Lung	Examination
Shan et al. [86]	VB-Net	Lung lobes/ Lesion/ Lung	Evaluation
Tang et al. [96]	Commercial Software	Lesion /Lung	Evaluation
Shen et al. [89]	Threshold-based region growing	Lesion	Examination
the source of how helping to develop and support clinical management. The identification of crucial patients and their medical treatment is a major step in clinical management. A corona score (disease progression score) is suggested to adjust and classify the patient as shown in Fig. 8. “Corona score measures the progression of the patient over time. The corona score is computed by a volumetric summation of the network activation maps” [34]. Table 9 utilizes the work related to infected disease management and control.

2.7 Provocation and future work

In this paper, the challenges in research are highlighted first and then future directions are explored one by one.

2.7.1 Provocation

(i) Managerial Consideration- The use of computer vision (machine learning, deep learning) in the clinical sector like COVID-19 must be examined delicately.

Use case	Developed/Used by	Aim
Bluedot	Toronto-based Start-up	- Detects epidemics [11]
- Build a prediction model for virus detection
- Collect information by NLP and ML from social media
- Government documents
- Healthcare data |
| InfraVision | Tongji Hospital Wuhan | - Detect disease precisely [41]
- Early detection of patient |
| Alphafold | | - SARS-COV-2 prediction [24]
- Entrusted by DL and ML
- Not verified yet |
| NVIDIA | Zhongnan Hospital, Wuhan | - Primarily used for detecting cancer
- Identifies signs of COVID-19 [2]
- Used for fast treatment |
(ii) Person Privacy Security- The tracking application of COVID-19, individual privacy security is very necessary. The government benefits from tracking the person location using the data location of mobile but this explication depends on user privacy. The security and privacy issues must be taken care of by governments [25].

(iii) Lack of dataset- A crucial challenge in a dataset like infection, medical supply, and affected areas. Currently, the dataset is from the patient collection [23, 66], social media [19], not ample for computer vision.

2.7.2 Future work

Several attempts have been made for COVID-19 using computer vision (machine learning, deep learning, artificial intelligence), but these are not sufficient for the diagnosis of coronavirus.

(i) Image acquisition using artificial intelligence proves to be effective and efficient in scanning. For applications in clinics, the number of the dataset must be further improved.

Authors	Database	Method	Accuracy
Zhongyuan Wang et al. [105]	-	Deep learning (recognition of masked face)	95.00%
Joshua M. Pearce [74]	-	-open-source microcontrollers	-
W. Chiu et al. [21]	72327patient	- infrared thermography	-
Edouard A. Hay [37]	-	-CNN	90.00%

Table 7 Summary of avoidance and management for COVID-19

Current Response	Development	Issue	Learning Marks
Shortfall of clarity	Initially identified by clinics	Information delay of cases	Build betrayer for the global necessity
Travel Control	Initially scrambling for the outbreak at international borders	Traveling without screening through international airports	Earlier traveling from high-risk countries must be restricted.
Quarantine Control	Firstly, reported on Dec 31, 2019 in Wuhan	Spread of coronavirus nationally and internationally	The high-risk area must be quarantine
Misreported Public	Falsehood opinion, falsity spread among the public	False precautions, Segregation	To escape falsity, transparency must be maintained.
Emergency Notice delay	Delay of a month announcing for public emergency	Acerbity was not properly broadcasted	Development of framework timely.
Exploration and Evolution	Lack of funds for treatment and vaccine of coronavirus	Around 3, 00,000 patients died worldwide.	The requirement of more investment for efficient treatment

Table 8 Summary of lessons to be learned from COVID-19
XAI (Explainable Artificial Intelligence) [7, 29], CAM (Conventional Class Activation Mapping) are also prompted for practice in clinics.

Supervised Deep Learning [26, 72], deep learning transfer methods [95] are also incorporated for the investigation of COVID-19.

Despite limited solutions, a methodology based on machine learning [36, 57, 59, 114], medical imaging [102], fusion and oncology, Natural language processing [118], and different learning algorithms [14, 32, 48–56, 75, 76, 81, 87, 119–121, 125] could be used for measuring the coronavirus COVID-19 disease.

3 Conclusion

This paper presents comprehensive reviews of machine learning methods to encounter the COVID-19 (Coronavirus) epidemic. The methods are described in four categories. A

![CT scan images](image)

Fig. 8 Summary of Corona Score

(ii) XAI (Explainable Artificial Intelligence) [7, 29], CAM (Conventional Class Activation Mapping) are also prompted for practice in clinics.

(iii) Supervised Deep Learning [26, 72], deep learning transfer methods [95] are also incorporated for the investigation of COVID-19.

Authors	Method	Connotation
Daniel Wrapp et al. [113]	- Biophysical assays	- Trimeric Spike glycoprotein is used to bind virus
Optir Gozes et al. [34]	- Corona Score	- Based on CT scan images
Yumlu Wang et al. [107]	- Deep learning	- 191.5 cm³ is measured
Yoshihiro Uesawa et al. [99]	- Bidirectional Neural network	- Classification of abnormal respiratory

Authors	Method	Connotation

© Springer
A comprehensive summary of classical approaches that includes resources for development and research is presented. The article survey on various image processing methods with wide bibliography for coronavirus results in new research encouragement. Yet, this survey was favored as an early review for testing and controlling the COVID-19 pandemic. These attempts impact the outbreak and post coronavirus environment.

Funding This research is not having any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Declaration Not Applicable.

Conflict of interest Authors do not have any conflicts.

References

1. Abbas A, Abdelsamea MM, Gaber MM (2020) Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. arXiv preprint arXiv:2003.13815
2. Al Helps Doctors Diagnose the Coronavirus. (n.d.) [Online]. Available: https://news.developer.nvidia.com/ai-helps-doctors-diagnose-the-coronavirus/
3. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L (2020) Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 26: 200642
4. Al-antari MA, Al-masni MA, Choi MT, Han SM, Kim TS (2018) A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform 117:44–54
5. Amin SU, Hossain MS, Muhammad G, Alhussein M, Rahman MA (2019) Cognitive smart healthcare for pathology detection and monitoring. IEEE Access 7:10745–10753
6. Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Australas Phys Eng Sci Med 43:635–640
7. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A et al (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58:82–115
8. Asnaoui KE, Chawki Y, Idri A (2020) Automated Methods for Detection and Classification Pneumonia based on X-Ray Images Using Deep Learning. arXiv preprint arXiv:2003.14363
9. Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (COVID-19) Classification using CT Images by Machine Learning Methods. arXiv preprint arXiv:2003.09424
10. Bishop CM (2006) Pattern recognition and machine learning. Springer
11. BlueDot: Outbreak Risk Software. (n.d.) [Online]. Available: https://bluedot.global/
12. Can CCTV (n.d.) help contain the Coronavirus?. [Online]. Available: https://www.ifsecglobal.com/asia/can-cctv-help-contain-coronavirus/
13. Cao Y, Xu Z, Feng J, Jin C, Han X, Wu H et al (2020) Longitudinal assessment of COVID-19 using a deep learning-based quantitative CT pipeline: illustration of two cases. Radiol Cardiothorac Imaging 2:e200082
14. Chen Y, Xiong J, Xu W, Zuo J (2019) A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput 22(3):7435–7445
15. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92(4):418–423
16. Chen R, Chen J, Meng QT (2020) Chest computed tomography images of early coronavirus disease (COVID-19). Can J Anesth/J Can d'anesthésie 11:1–2
17. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, Hu S, Wang Y, Hu X, Zheng B, Zhang K (2020) Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv
18. Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y, et al. (2020) Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv
19. Chen E, Lerman K, Ferrara E (2020) Covid-19: The first public coronavirus twitter dataset,” arXiv preprint arXiv:2003.07372
20. Chen C, Gao G, Xu Y, Pu L, Wang Q, Wang L, Song Y, Chen M, Wang L, Yu F (n.d.) SARS-CoV–2–positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19. Ann Intern Med
21. Chiu WT, Lin PW, Chiou HY, Lee WS, Lee CN, Yang YG, Lee HM, Hsieh MS, Hu CI, Ho YS, Deng WP (2005) Infrared thermography to mass-screen suspected SARS patients with fever. Asia Pac J Public Health 17(1):26–28
22. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, Reaz MBI (2020) Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint
23. Cohen JP, Morrison P, Dao L (2020) COVID-19 image data collection. arXiv preprint arXiv:2003.11597
24. Computational predictions of protein structures associated with COVID-19. (n.d.) [Online]. Available: https://deepmind.com/research/opensource/computational-predictions-of-protein-structures-associated-with-COVID-19
25. Coronavirus-tracking smartphone apps don’t invade privacy says data watchdog. (n.d.) [Online]. Available: https://www.zdnet.com/article/coronavirus-tracking-mobile-apps-get-green-light-from-data-watchdog/
26. Doersch C, Gupta A, Efros AA (2015) Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430.
27. Erickson BJ, Koriatiis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515
28. Farooq M, Hafeez G, Rossi A, Mayberg HS, Ferrante M (2019) Explainable artificial intelligence for neuroscience: behaviourial neurostimulation. Front Neurosci 13:1346
29. Five Companies Using AI to Fight Coronavirus. (n.d.) [Online]. Available: https://spectrum.ieee.org/the-human-os/artificial-intelligence/medicalai/companies-ai-coronavirus
30. Gaál G, Maga B, Lukács A (2020) Attention U-Net Based Adversarial Architectures for Chest X-ray Lung Segmentation. arXiv preprint arXiv:2003.10304
31. Gadekallu TR, Rajput DS, Reddy MPK, Lakshmanana K, Bhattacharyya S, Singh S, Jolfaei A, Alazab M (2020) A novel PCA-whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. J Real-Time Image Process 1–14
32. Ghoshal B, Tucker A (2020) Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. arXiv preprint arXiv:2003.10769
33. Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid AI development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037
34. Hay EA, Parthasarathy R (2018) Performance of convolutional neural networks for identification of bacteria in 3D microscopy datasets. PLoS Comput Biol 14(12):e1006628
35. Hemdan EE, Shouman MA, Karar ME (2020) COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv preprint arXiv:2003.11055
36. Hölbl M, Kompara M, Kamišalić A, Zlatolas LN (2018) A systematic review of the use of blockchain in healthcare. Symmetry 10(10):470
37. Huang L, Han R, Ai T, Yu P, Kang H, Tao Q et al (2020) Serial quantitative chest CT assessment of COVID-19: deep-learning approach. Radiol Cardiothorac Imaging 2:e200075
38. Intervision in the Frontlines Against the Coronavirus. (n.d.) [Online]. Available: https://www.intervision.com/
39. Jin C, Chen W, Cao Y, Xu Z, Zhang X, Deng L, Zheng C, Zhou J, Shi H, Feng J (2020) Development and Evaluation of an AI System for COVID-19 Diagnosis. medRxiv
40. Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, Hou X, Ma W, Xu Z, Zheng Z, Sun W (2020) AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv
41. Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, et al. (2020) AI-assisted CT imaging analysis for COVID-19 screening: building and deploying a medical AI system in four weeks. MedRxiv
46. Jin C, Cheny W, Cao Y, Xu Z, Zhang X, Deng v, et al. (2020) Development and evaluation of an AI system for COVID-19 diagnosis. MedRxiv
47. Kanwal N, Girdhar A, Gupta S (2011) Region based adaptive contrast enhancement of medical X-ray images. In: 2011 5th international conference on bioinformatics and biomedical engineering 2011 May 10 (pp. 1-5). IEEE
48. Khan MA, Sharif M, Akram T, Bukhari SAC, Nayak RS (2019) Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2019.11.034.
49. Khan MA, Sharif M, Akram T, Yasmin M, Nayak RS (2019) Stomach deformities recognition using rank-based deep features selection. J Med Syst 43:329. https://doi.org/10.1007/s10916-019-1466-3
50. Khan MA, Rashid M, Sharif M, Javed K, Akram T (2019) Classification of gastrointestinal diseases of stomach from WCE using improved saliency-based method and discriminant features selection. Multimed Tools Appl 78:27743–27770. https://doi.org/10.1007/s11042-019-07875-9
51. Khan MA, Lali IU, Rehman A, Ishaq M, Sharif M, Saba T, Zahoor S, Akram T (2019) Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 909–922
52. Khan MA, Akram T, Sharif M, Saba T, Javed K, Lali IU, Tanik UJ, Rehman A (2019) Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 741–763
53. Khan SA, Nazir M, Khan MA, Saba T, Javed K, Rehman A, Akram T, Awais M (2019) Lungs nodule detection framework from computed tomography images using support vector machine. Microsc Tech 1256–1266
54. Khan MA, Akram T, Sharif M, Javed K, Rashid M, Bukhari SAC (2020) An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection. Neural Comput Appl 32:15929–15948. https://doi.org/10.1007/s00521-019-04514-0
55. Khana MA, Rubab S, Kashif A, Sharif MI, Muhammad N, Shahid JH, Zhanqe Y-D, Satapathy SC (2020) Lungs cancer classification from CT images: an integrated design of contrast based classical features fusion and selection. Pattern Recogn Lett 129:77–85
56. Khare N, Devan P, Chowdhary CL, Bhattacharya S, Singh G, Singh S, Yoon B (2020) SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection. Electronics 9(4):692
57. Kim DW, Lee SH, Kwon S, Nam W, Cha I, Kim HJ (2019) Deep learning-based survival prediction of oral cancer patients. Sci Rep 9:6994
58. Kopaczka M, Kolk R, Merhof D (2018) A fully annotated thermal face database and its application for thermal facial expression recognition. In: 2018 IEEE international instrumentation and measurement technology conference (I2MTC) 2018 May 14 (pp. 1-6). IEEE
59. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17
60. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R (2020) Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (covid-19): the epidemic and the challenges. Int J Antimicrob Agents 55(3):105924
61. Li Y, Xia L (2020) Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am J Roentgenol 211:7–1
62. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q, Cao K (2020) Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 200905
63. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. (2020) Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 200905
64. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sanchez, “A survey on deep learning in medical image analysis,” Med Image Anal, vol. 42, pp. 60–88, 2017.
65. Liu T, Huang P, Liu H, Huang L, Lei M, Xu W, Hu X, Chen J, Liu B (2020) Spectrum of chest CT findings in a familial cluster of COVID-19 infection. Radiol Cardiothorac Imaging 2(1):e200025
66. Liu W, Yen PT-W, Cheong SA (2020) Coronavirus disease 2019 (covid-19) outbreak in china, spatial temporal dataset,” arXiv preprint arXiv:2003.11716
67. Lu H, Stratton CW, Tang Y (2020) Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol 25678
68. Miotti R, Wang F, Wang S, Jiang X, Dudley JT (2018) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–1246
69. Monrat AA, Schelén O, Andersson K (2019) A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access 7:117134–117151

70. Narin A, Kaya C, Pamuk Z (2020) Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks. arXiv preprint arXiv:2003.10849

71. Nguyen DC, Ding M (2020) Blockchain and AI based solutions to combat coronavirus (COVID-19)-like Epidemics: A Survey. https://doi.org/10.36227/techxiv.12121962

72. Norozi M, Vinjimoor A, Favaro P, Pirsaviash H (2018) Boosting self-supervised learning via knowledge transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9359–9367.

73. Paules CI, Marston HD, Fauci AS (2020) Coronavirus infections—more than just the common cold. JAMA 323(8):707–708

74. Pearce JM (2020) A review of open source ventilators for COVID-19 and future pandemics. F1000Research 9(218):218

75. Peng F, Lei Y-z, Long M, Sun X-m (2011) A reversible watermarking scheme for two-dimensional CAD engineering graphics based on improved difference expansion. Comput Aided Des 43(8):1018–1024

76. Peng F, Liu Y, Long M (2014) Reversible watermarking for 2D CAD engineering graphics based on improved histogram shifting. Comput Aided Des 49:42–50

77. Pisani P, Renna MD, Conversano F, Cassiavo E, Muratore M, Quarta E, Di Paola M, Cassiavo S (2013) Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J Radiol 5(11):398–410

78. Pouyanfar S, Sadqi S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C, Iyengar S (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR) 51(5):1–36

79. Qi X, Jiang Z, Yu Q, Shao C, Zhang H, Yue H, et al. (2020) Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: a multicenter study. MedRxiv

80. Reddy S, Fox J, Purohit MP (2019) Artificial intelligence-enabled healthcare delivery. J R Soc Med 112(1):22–28

81. Saba T, Khan MA, Rehman A, Marie-Sainte SL (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43:289. https://doi.org/10.1007/s10916-019-1413-3

82. Sarker IH (2019) Context-aware rule learning from smartphone data: survey, challenges and future directions. J Big Data 6(1):95

83. Sarker IH, Kayes A, Watters P (2019) Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. J Big Data 6(1):57

84. Sethy PK, Behera SK (n.d.) Detection of Coronavirus disease (COVID-19) based on deep features

85. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D, Shi Y (2020) Lung Infection Quantification of COVID-19 in CT Images with Deep Learning. arXiv preprint arXiv:2003.04655

86. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. (2020) Lung infection quantification of COVID-19 in CT images with deep learning. arXiv:2003.04655

87. Sharif MI, Li JP, Khan MA, Saleem MA (2019) Active Deep neural Network Features Selection for Segmentation and Recognition of Brain Tumors using MRI Images. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2019.11.019

88. Shen J, Shafiq MO (2019) Learning mobile application usage-a deep learning approach. In: 2019 18th IEEE International Conference On Machine Learning and Applications (ICMLA). (pp. 287–292)

89. Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, et al. (2020) Quantitative computed tomography analysis for stratifying the severity of coronavirus disease 2019. J Pharm Anal

90. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis

91. Shi F, Xia L, Shan F, Wu D, Wei Y, Yuan H, et al. (2020) Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification. arXiv:2003.09860

92. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7: 53040–53065

93. Song Y, Zheng S, Li Z, Zhang X, Zhang X, Huang Z, Chen J, Zhao H, Jie Y, Wang R, Chong Y (2020) Deep learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT images. medRxiv

94. Speidel MA, Wilfley BP, Star-Lack JM, Heanue JA, Van Lysel MS (2006) Scanning-beam digital x-ray (SBDX) technology for interventional and diagnostic cardiac angiography. Med Phys 33(8):2714–2727

95. Tan C, Sun F, Keng T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International Conference on Artificial Neural Networks (pp. 270–279)

96. Tang L, Zhang X, Wang Y, Zeng X (2020) Severe COVID-19 pneumonia: assessing inflammation burden with volume-rendered chest CT. Radiol Cardiothorac Imaging 2:e200044
125. Zhou S, Tan B (2020) Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl Soft Comput 86:105778

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.