Space Utilization and Transformable Architecture of Peri-Urban Co-Living Concept in Rancaekek, Bandung

A N Saputra 1, D G Lineker 1, H E Hibaturrahim 1, D K Nilla 1, RSobandi 2, AS Ekomadyo 3

1 Architecture Undergraduate Study Program; School of Architecture, Planning, and Policy Development; Bandung Institute of Technology; Jalan Ganesha no 10, Bandung; Indonesia
2 Tunas Nusa Educational Foundation, Bandung, Indonesia
3 Architectural Design Research Group, School of Architecture, Planning, and Policy Development; Bandung Institute of Technology; Jalan Ganesha no 10, Bandung; Indonesia

*Email: aliefianto03@gmail.com

Abstract. Peri-urban issues are generated by the problem of uncontrolled increase of settlement land-use that converts and decreases the agriculture and water absorption land-use. Development improvement is needed to support food protection and environment sustainability from urbanization pressure. Co-living Rancaekek in Bandung’s peri-urban area is a concept which aims to improve the effectiveness of land use by providing multifunctional living space and household food production through hybrid infrastructure. This residence consists of five families living together in a modular housing unit with an area of 21 m². Each unit supports families with different responsibilities: farming; food processing; capacity building; building and infrastructure management; and special units for external researchers. The analysis in this paper provides evidence that each responsibility requires specific spatial planning and multifunctional furniture that can support various activities, tools, and processes to enable adaptation in limited space. The solution to space utilization is determined through the proposed movement of furniture based on a review of transformable architecture, namely flexibility and functionality of the space being utilized, to maximize functions in a minimum size space. This research requires deeper research and/or experiments on materials, community acceptance, and a more in-depth review of furniture design in accordance with the concept of transformable architecture.

Keywords: peri-urban, co-living concept, transformable architecture

1. Introduction
Peri-urban areas can be described as the land between urban and rural areas that have mixed characteristics of both city and countryside. Therefore, urban and rural uses often clash and encourage conversion of many things such as land, profession, and infrastructure. Land conversion cannot be avoided while agricultural and water absorption land transformed into industrial and residential areas. It can be a threat for food production and groundwater availability. One of peri-urban concerns is how
to keep the agricultural land as a resource and how to keep environmental stability against urbanization pressures.

Peri-urban Co-living concept emerges as a concern to mediate agricultural rural living and industrial and service urban living. In Rancaekek, a peri-urban area of Bandung, co-living is designed to address water issues and food security by creating integrated housing with combined agricultural and service activities. This concept is aimed to reduce carbon footprint and contribute to environmental development by generating residents’ environmental awareness lifestyle. In this place, four families participate in co-living, work together to meet their needs, and share each duty. These four families inhabit identical houses which are built integrated in one common land.

However, the distinction in work roles among families poses an issue in similar occupancy, including the absence of adjustment for supporting needs that follows the duties of each family within the identical houses. The co-living design is considered flexible, where the spaces are designed to accommodate a variety of functions and are not fixated for one main function [7]. Based on these problems, the objectives in this paper is to find adjustments towards the occupancy of each family based on transformable architecture to support their lives to the fullest.

1.1 Study of Transformable Architecture
The movements in architecture can be interpreted in several perspectives to meet their purposes. The moving architecture defined in several definitions, including kinetic, responsive, transformable, and adaptable [6]. To address the limitation in space, one of the defined categories that can be utilized is transformable architecture. Transformable can be interpreted as the ability of an object to make changes to adjust to environmental conditions. So, in more detail, transformable architecture is a design that can vary according to different functions [7]. Referring to the classification made by [7], these transformations are regrouped into four objectives to address climate problems, space openness, flexibility, and functional transformability.

In the context of co-living, the concept of flexibility and functionality is chosen as an approach to solve space limitations and save extensive use of space. Flexibility is a concept of open space with the minimal partition for various functions. Meanwhile, the functional concept of transformability is a strategy to utilize space for more than one function, used at different times to save space. The difference between flexibility and functional transformability is that in a flexible space, users can use the free space for extensive functions, while in space with functional concepts of transformability, its function has been determined. However, the space can be replaced repeatedly or can be returned to their initial conditions.

1.2 Co-living Design Concept in Rancaekek Bandung
Co-living in Rancaekek is designed to attain resilience in Bandung peri-urban area. It accommodates the need for supported value, market, and ecological connectivity within the region to reach an integrated network of the social, economic, and physical for a peri-urban area. [1] The house used for this concept is located in an area of 165 m2 which can accommodate four housing units measuring 21 m2 with minimum border and still produce at least 66 kg of carbohydrates. The co-living house is designed to accommodate four families with shared rooms and private spaces for each family. The units of each family are arranged stacked with one another to form circulation and privacy for each unit, added with farming space to fulfill the minimum amount of carbohydrates.

The co-living experiment will be carried out by four families in four units under these hypotheses:
- Inhabiting the first floor with two units are farmer families and the family of the building management and infrastructure team.
- The second floor has two residential units which are occupied by the family who processes food and the family of capacity builder.
- The third floor has one residential unit which will be occupied by researchers.
Each family consists of four members; two adults (parents) and two children under 14 years of age. These four families have different responsibilities to maintain the sustainability of the co-living. The difference between co-living and co-housing lies in the responsibility of the family members. Families in co-housing only live together without sharing responsibilities, while families living in co-living share the responsibility to maintain the sustainability of co-living to be independent and self-sufficient. A brief description of the residents includes:

- The family of farmer has the role to plant and harvest food for consumption of the co-living families, through conventional farming, vertical farming, and roof gardening.
- The food processor family processing food from raw ingredients into consumable food to supply the five families’ nutrition.
- The family of building and infrastructure managers has the role to manage and provide the necessity needed in the infrastructure and ensure the functions running in the building and infrastructure.
- The capacity builder family has the role to improve the capacity level of soft skill and hard skill in the form of education for the families living in co-living.

The designs in this paper consist of four typical house blueprints that share similar specifications. To support the needs of its residents, on the first floor there are communal spaces, conventional gardens, car parking space and parking space for three-wheeled motorcycles. At the split level towards the second floor, there is a drying room for units on the first floor. On the second floor there are two communal spaces for joint activities while on the top floor there is a rooftop garden (fig.1).

Figure 1. Co-living building concept
(Source: Sobandi, 2017)

The similarity of each unit floor plan indicates flexibility of use and unspecified activities [9]. However, Rancaekek co-living concept has a specific errand for each family that promotes the needs of supporting spaces with different specifications and purposes. The complexity of requirements is the main reason for the need of variations and specification in design [13]. The specification-based design approach is often found in limited area housing design [13]. Limited area requires specific functions and reduces the possibility of space to the level that it is only provided by the designer.
Therefore, Rancaekek co-living concept design requires adjustments from a typical residential unit to a specific unit for each family, including the adjustment of furniture and layout.

2. Method
This research employs descriptive and qualitative research. Descriptive research is done by conducting simulations to obtain the idea of the setting and the activities that occur within the object of research. The description presented is a variable related to the events that occur within the object of research whereas qualitative research is concerned towards assessing and carrying out analysis based on perceptions and cognitive constructs on the object of research.

The data collection in this study is obtained through studies of archives and simulations. Literature studies are also used to understand the basic idea of the concept, starting from the background of co-living in peri-urban and its relation in a broader context, also the concept of multifunctional space. In this study, multifunctional space theory is elaborated in a discussion of the theory of transformation in architecture that examines the flexibility of space and its completeness.

Transformable architecture directs to design flexible space when users want a space not only for one function but can be easily used for other functions as well [7]. Simulation in the form of role-playing is conducted to identify the families’ daily routines in one week. Each role will further be processed into space needs that are related to flexible space theories. Functional transformability is classified again into four criteria for space saving solutions including movable functional walls, where functional components are placed in a field which can be moved indoors; function on the outside, functional components are placed in fields in the room (walls, roof or floor) to be moved manually for use; functions in the center, functional components that are stored centrally to be used by transferring to surrounding spaces; and movable walls, which divide the spaces for two functions carried out simultaneously. The four solutions are defined as ways to access various needs provided by furniture as complimentary in a space.

3. Results and Discussion
A role-playing simulation has been done as a method to collect data of all the families’ activities in a week based on their specific role and responsibility. This simulation is aimed to have an objective result from the setting and activities that occur in co-living. The result of the simulation is qualitative data that could describe the possible and suitable activity related to the families’ work function. These data are then used for the next analysis to differentiate particular spatial utilization from each family’s response to their role in co-living society.

Table 1. The schedule of daily activities for each family in one week, related to their respective responsibilities.

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
05:30	Morning workout		Morning workout				
06:00	Watering the plants and giving fertilizer		Fruits and vegetables harvest				
06:30	Checking the mushroom’s bag log, feeding the chickens and fishes						
07:00							
08:00							
09:00							
10:00							
11:00							
12:00							
13:00							
14:00							
15:00							
16:00							
17:00							
18:00							
19:00							
20:00							

Farmer family
Food processor family
Capacity builder family,
Building manager and infrastructure family
3.1 Farmer Family
The farmer family fulfils the needs of food for all residents by utilizing the occupied land owned in the building. From what has been provided, the farmer family can manage and fulfil the number of nutritional needs for all residents. To maintain this, the farmer family is responsible for the process of planting up to harvesting food. The process of managing the land is completed through conventional agriculture, vertical farming, and roof farming. To carry out this function, the farmer family is expected to have knowledge about types of food production. They must be able to plan and manage crop-planting time, and have insights on the types of food combinations.

Table 2. Farmer family activities in a week.

Activity	Time	Room Needed
Watering plants and giving compost	Every morning, one hour	Gardening equipment storage
Checking the mushroom’s bag log, feeding the chickens and fishes	morning, one hour	Mushroom bag log storage, Food storage
Making mushroom bag log, Breadfruit or sweet potato harvest	Thursday afternoon, two hours	Gardening equipment storage
Making compost, collecting wastes of dried leaves	Friday afternoon, one hour	Gardening equipment storage, waste and compost shelter
Fruits and vegetables harvest	Saturday morning, one hour	Harvesting equipment storage, harvest storage
Storing harvest	Sunday afternoon, one hour	Harvest storage

3.2 Food Processor Family
The food processor family is fulfilling the nutritional needs of all residents by adding value to the crop. To do so, the farming family is responsible for the number of processed foods for a year. To carry out this function, the food processor family is expected to have the ability to process food with the skill they have, they can plan food preparation schedule and easily manage the process. The ability to process food includes knowledge about simple recipes, the ability to use cooking utensils well, the ability to store good food, as well as processing leftovers. Before the food processing process, food processor families need to have insights regarding the nutrients needed in food. During this process, this family also needs to be innovative by developing a wide range of menu for processing foods.

Table 3. Food Processor Family activity in a week

Activity	Time	Room Needed
Processing and storing harvest	Monday afternoon, one hour	Food storage
Making snacks for one week	Tuesday afternoon, two hours	Kitchen
Processing food waste (Compost)	Friday night, one hour	Compost storage
Cooking meal for everyone	Saturday afternoon, one hour	Communal room
Storing harvest	Sunday afternoon, one hour	Harvest storage

3.3 Building and Infrastructure Manager Family
The building and infrastructure manager family has the role to provide the infrastructure needed by residents and ensure that the infrastructure and building system run well. This family has the
responsibility to control the building maintenance, including piping, electricity, building construction, and the use of hybrid technology needed for efficient and sustainable water and electricity. The technology used includes solar panels, drip irrigation systems, and rainwater harvesting. There are two types of control that must be done including preventive maintenance as a routine and preventive maintenance control; cleaning, inspecting, adjusting, updating, etc., and corrective maintenance, which is a repair, removal, replacement, or modification of damaged items or systems. This routine is done twice a week (corrective maintenance). Besides, this family has the chance to seek extra income as a handyman available for the community as well as construction and building consultant.

Table 4. Building and Infrastructure Manager Family’s Activity in a week

Family	Activity	Time	Room Needed
Building and Infrastructure	Preventive Maintenance #1	Monday morning, one	Tools storage
Manager Family		hour	
	Preventive Maintenance #2	Friday afternoon, one	Tools storage
		hour	
	Corrective Maintenance #1 and #2	Saturday afternoon,	Tools storage
		one hour	
	Watering plants by drip irrigation system	Everyday (automatically)	Tools storage
	Processing grey water and rain water	Everyday (automatically)	Gray water
	harvesting		storage tank

3.4 The Capacity Builder Family

This family is the initiator of the residents' communal activities to improve the quality of social relations between each family, children's education related to the importance of food security, and hard skill training to carry out necessary practices such as gardening, food production, treatment, and life skills that can be used daily. In addition, this family also has the role of conducting quality improvement education on health, soft skills, intrapersonal communication, and interpersonal communication. The form of activities that can be carried out for capacity building is in the form of training, courses and workshops and activities that actively involve all residents of co-living, such as exercising, watching movies together, and cooking. A health control system can be done by working together with local health clinic (posyandu).

Table 5. The Capacity Builder Family’s Activity in a week

Family	Activity	Time	Room Needed
Capacity	Morning Workout	Sunday morning	Communal room
Builder			
	Education on gardening for children and	Wednesday and Friday	Communal room
	parents	afternoon	
		Books Storage	
	Health Check	Sunday afternoon	Health equipment
			storage
	Assisting Karang Taruna	Sunday afternoon	Communal room
	Life-skill workshop	Saturday night	Workshop equipment
			storage
	Barbeque	Saturday night	Communal room
	Watching movies together	Saturday night	Projector storage
All results of the analysis of space requirements in each family are combined to obtain a space utilization solution that refers to the Reuter classification. Adapted to the needs of the activity, this classification provides furniture solutions with suggestions for the space needed and possibilities of furniture’s movement to save space. The wide range of the movement possibilities from one to another is needed to fulfill the space-saving requirements of furniture suitable for each family to do their activities.

Family	Room needed	Suggested area for storage	Space-saving solution	Possible movement
Gardening	Inside or outside the housing unit	Movable functional walls	Slide	
Mushroom bag	Yard or communal room	Functions on the outside	Swivel	
Food storage	Yard	Functions in the center	Slide	
Compost waste	garden, yard, communal room	Movable functional walls	Slide	
Harvest storage	Rooftop garden, garden	Functions on the outside	Flap	
Food storage	Kitchen	Movable functional walls	Fold	
Cooling equipment storage	Inside housing unit (kitchen or family room)	Functions on the outside	Fold	
Food Processor	Kitchen	Functions on the center	Slide	
Compost Storage	Conventional garden	Functions in the center	Slide	
Cooking meals	Communal room and garden	Movable walls	Fold	
Harvest room storage	Communal room	Movable functional walls	Slide	
Building and Infrastructure Manager	Communal room	Movable functional walls	Rotate	
Tools equipment storage	Outside housing unit, outdoor, children are unable to access	Movable walls	Fold	
Gray Water storage tank	Inside housing unit, outdoor	Movable walls	Fold	
Rainwater storage tank	Indoor communual room	Movable functions	Slide	
Communal room	Outside housing unit, outdoor	Movable walls	Fold	
Books storage	Indoor communual room	Movable functional walls	Slide	
Health equipment storage	Indoor communual room	Functions on the outside	Slide	
Workshop equipment storage	Communal room	Movable functional walls	Slide	
Projector storage	Indoor housing unit	Functions on the outside	Slide	

4. **Conclusion**

Based on the simulation that has been done, the design of a typical flexible space has not been able to accommodate the activities of Co-living occupants. The adjustment of Co-living’s residential in Rancaekek can be done with the concept of functional transformability, which is a concept of adapting the use of space for various functions. This concept requires a transformation of functional space into another required space that is further continued by analyzing its furniture needs. In the adaptation,
multifunctional space requires furniture with the criteria that suit best with transformable architecture solutions and the proposed transformation. The results of this study indicate that a typical unit plan on the Rancaekek co-living concept should be supported by furniture designs that fit the criteria of functional transformability. The design of furniture is made specifically for each type of family based on their work. Therefore, we recommend further research on furniture design that is suitable to the criteria required for Rancaekek's co-living stakeholders. In addition, experiments are also needed regarding furniture materials and community acceptance towards this concept.

Solution of transformable architecture’s flexibility and functionality for co-living design in Rancaekek Bandung is a part of social concern exercise into built environment design. The social puts-built environment design not only concern about form and technical matters, but also about how design becomes an effort to provide human right through involving and empowering the societies [10] [8], [4]. Social space produced by architectural design represents the human complex social desire for a better future (2010:29613). Here, architecture becomes relational, as mediator for social action programs by shaping, conditioning and facilitating the possible sociality [12].

Acknowledgements
We would like to thank. R Sobandi, Mrs. from Tunas Nusa Foundation, who provided insight to Peri-urban and Co-living concept from the actual social and environmental activity at Rancaekek, Bandung that inspired this research. We would also like to show our gratitude to A S Ekomadyo, Drs. for sharing his pearls of wisdom with us in the form of assistance, comments, and reference during the course of this research that greatly improved the manuscript of this research.

References
[1] Chang D 2017 Co-living in Bandung Basin Peri-Urban: An Interdisciplinary Model towards Sustainable Urbanization HABITechno International Seminar – Ecoregion as a Verb of Settlement Technology and Development.
[2] De Paris S R and Lopes C N L 2018 Housing flexibility problem: Review of recent limitations and solutions Frontiers of Architectural Research, 7(1), p 80-91. doi:https://doi.org/10.1016/j.foar.2017.11.00
[3] Dovey K 2010 Becoming Places: Urbanism/ Architecture/ Identity/ Power London: Routledge
[4] EkomadyoAS and YuliarS2014 Social Reassembling as Design Strategies’. 5th Arte Polis International Conference and Workshop Reflections on Creativity: Public Engagement and The Making of Place Arte-Polis 5, 8-9 August 2014, Bandung, Indonesia. Science Direct - Procedia - Social and Behavioral Sciences 184(2015) 152–160, 1877-0428 © 2015, doi: 10.1016/j.sbspro.2015.05.075
[5] Kronenburg R 2007 Flexible: Architecture that Responds to Change London: Laurence King.
[6] Lee J D 2012 Adaptable, kinetic, responsive, and transformable architecture: an alternative approach to sustainable design (Doctoral dissertation). University of Texas.
[7] Reuter R 2017 Space-saving Techniques by the Use of Transformable Architecture.
[8] Sanoff H 2000 Community participation methods in design and planningNew York: John Wiley and Sons.
[9] Schneider T and Till J 2005 Flexible housing: opportunities and limits ARQ: Architectural Research Quarterly, 9(2), p 157-166.
[10] Sommer R 1983 Social design: creating buildings with people in mind New Jersey: Prentice Hall Inc.
[11] Thogersen N2017 Small spaces needs smart solutions: Designing furnitures for small spaces, in connection with human wellbeing
[12] Yeneva A 2009 Making the Social Hold: Towards an Actor-Network Theory of Design. Design and Culture1(3), p273-288, doi: 10.1080/17547075.2009.11643291
[13] Živković M, Keković A, Kondić S 2014 The Motives for Application of The Flexible Elements in the Housing Interior Facta Universitatis, 12(1), Architecture and civil engineering, p 41-51. doi 10.2298/FUACE1401041Z