Differential expression of bovine major acute phase proteins, cytokines and metabolic indicator genes in clinical endometritis cows

AYYASAMY MANIMARAN1, ARUMUGAM KUMARESAN2, SOUVENDRA NATH SARKAR3, SANJANNA BOYA4, L SREELA5, P MOOVENTHAN6 and PRATIK R WANKHADE7

ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India

Received: 7 September 2018; Accepted: 8 October 2018

ABSTRACT

Among the uterine diseases, clinical endometritis (CE) is a major challenge to livestock farming as it causes sub- or infertility problems in dairy animals. The aim of this study was to evaluate the expression of cytokines (IL-1β, TNF-α, IL-6, and IL-8), acute phase proteins [APPs; haptoglobin (Hp), serum amyloid A (SAA) and alpha-1 acid glycoprotein (AGP)] and energy indicators [leptin and insulin-like growth factor (IGF)-1] genes in uterine tissue of CE affected cows. The uterine biopsy from CE cows (4) and non-endometritis cows (4) was processed for quantitative real-time PCR to study the mRNA expression of these innate immune molecules. We observed that mRNA expression of SAA, IL-1β, IL-8 and leptin genes were significantly up-regulated while, TNF-α and IGF-I genes were significantly down-regulated in CE cows. It can be concluded that bovine APPs, cytokines and energy indicators genes are differentially expressed in CE affected cows.

Key words: Acute phase proteins, Clinical endometritis, Cows, Energy indicators, Gene expression, Pro-inflammatory cytokines

Bacterial contamination of the uterine lumen is the common phenomenon during first week of postpartum in 90 to 100% of the dairy cattle (Williams et al. 2007, Sheldon et al. 2009). However, majority of the animals are effectively eliminating the bacteria and maintain optimal fertility, but 25 to 30% of animals still have persisted uterine infection which often leads to sub or infertile conditions (Gilbert et al. 1998, Sheldon et al. 2009). The bovine endometrium is well constructed with innate immune system to defense against invading bacteria after calving. The detector molecules such as Toll-like receptors at the endometrium recognize the microorganisms with help of pathogen-associated molecular patterns and subsequently alert the immune cells through mediators such as pro-inflammatory cytokines (Roach et al. 2002, Davies et al. 2008, Herath et al. 2006). Pro-inflammatory cytokines such as IL-6, TNF-α, and IL-8 stimulate the production of antimicrobial peptides by endometrial cells or accelerate the polymorphonuclear (PMN) cells infiltration into endometrium for elimination of pathogens. However, adequate stimulation of pro-inflammatory cytokines is critical for the healthy uterus as higher or lower expressions are often associated with greater inflammation or impaired chemotaxis, respectively during early postpartum period (Manimaran et al. 2016). Major bovine APPs (Hp and SAA) play an important role in the reproductive processes through intensification of the phagocytosis process against the uterine pathogens and reconstruction of the endometrium (Krakowski and Zdziebinska 2007). Therefore, efficient functions of detector, mediator and effectors molecules are important for elimination of uterine pathogens. Several researchers studied the level of APPs and cytokines mRNA transcription in endometrium and reported different results (Chapwanya et al. 2009, 2013; Lecchi et al. 2009, Gabler et al. 2010, Rahman et al. 2010).

Among the various factors, the energy status of the peripartum animals is one of the most important determinants for the development of uterine disease and negative energy balance (NEB)-mediated alterations of gene expression have an important role in uterine immunity. For instance, Beam and Butler (1998) reported that severe NEB had increased uterine pro-inflammatory cytokine gene expression at two weeks postpartum and Wathes et al. (2009) reported that NEB caused more expression of uterine inflammation-associated genes. Fischer et al. (2010) reported that the higher expression of IL-1β, IL-8 and TNF-
α mRNA transcript in clinical endometritis (CE) cows while there was no correlation with uterine health for IL-6 and Hp transcripts. Collectively it indicated that the expression profile of innate immune molecules is differentially altered in the inflamed uterus and it needs further investigation. Hence the aim of this study was to evaluate the endometrial expression profile of bovine major acute phase proteins, cytokines and metabolic indicator genes in clinical endometritis affected cows.

MATERIALS AND METHODS

Experimental animals: The present study was carried out on Karan Fries (Holstein × Tharparkar) cows maintained at the Livestock Research Centre of the institute. The experimental procedures were duly approved by Institute Animal Ethical Committee (IAEC). The experimental animals were maintained in a loose housing system under group management practice. The space in the paddock, feeding manger and watering trough was as per the Bureau of Indian Standards. The nutrient requirements of the animals were mostly met with ad lib. green fodder, dry fodder, silage and a measured amount of concentrate.

Diagnosis and uterine biopsy sampling: Cows with purulent or mucopurulent uterine discharge during 22–47 days postpartum, were considered as suffering from clinical endometritis (CE) while, animals with clear mucus discharge were considered as clinically normal (non endometritis) (Sheldon et al. 2006). The uterine biopsy samples collected from CE affected and clinically normal cows (n=4 from each category) were processed for expression studies. All biopsies were performed by the same operator (veterinarian) and forceps were sterilized with isopropyl alcohol (70% v/v) swab before each sampling. Briefly, after cleaning the perineum and external genitalia, the biopsy instrument in a protective sheath (M/s IMV Technologies, France) was introduced into the vulval opening. The forceps was guided into the cervix with the left hand of the operator per-rectally covered by sterile latex glove. Then the instrument alone was introduced into the uterus after rupturing the sheath at the external cervical orifice and guided into the uterus. To ensure reproducible tissue (30–50 mg) procurement, with due care, the tip of the biopsy instrument inside the uterus was identified using the left hand per rectum. Then the forceps jaws were opened, and, with the help of left hand in the rectum, the endometrial tissue was clipped off by closing jaws and withdrawing the instrument. Tissue was immediately collected in sterile eppendorf tube containing RNA later (M/s Qiagen, Austin, USA) as per manufacturer’s protocol. The isolated RNA was treated with DNase as a cleaning purpose. The agarose gel (1%) electrophoresis was run to check quality of RNA samples while; concentration and purity of RNA samples were determined using NanoDrop microvolume spectrophotometer (M/s Thermo Scientific, Wilmington, USA). The single-stranded cDNA was synthesized using an RT-PCR kit (M/s Thermo Scientific, USA) as per standard procedure.

Quantitative real-time PCR: For mRNA quantification, the selected primer sequence was taken from the published literature and procured from M/s Sigma (USA). The sequence of the primer used in the present study, annealing temperature (Tm) used for real-time PCR and resulting size of the PCR amplified products are given in Table 1.

The fold change (n-fold) in gene expression was calculated using the relative quantification method (2−ΔΔCt) having β-actin as the endogenous control and the average ΔCt for samples collected from healthy animal as the calibrator for each sample. ΔCt values from the Ct values were calculated by subtracting β-actin Ct values from the Ct values of a specific target gene for all cows (ΔCt normalized target gene= target gene Ct – β-actin Ct). Then, ΔΔCt values were calculated by subtracting the average ΔCt normalized for all healthy cows (calibrator) from ΔCt normalized target (ΔΔCt=ΔCt normalized target –ΔCt normalized calibrator), then, n-fold (2−ΔΔCt) calculated. Therefore, the n-fold represents the endometrial gene expression in all endometritis cows in relation to healthy cows, normalized to endogenous control (β-actin). Initially, for endogenous control, two genes, viz. GAPDH and β-actin were taken and β-actin was selected for endogenous control as its expression was similar for endometritis cows (21.2–22.6) and for control cows (21.3–23.8). In the present study, data are presented as the changes in threshold cycle (ΔCt) value relative to the house-keeping gene, β-actin.

RESULTS AND DISCUSSION

It is known that gene expression levels differ in various cell types and during various clinical conditions. However, how the gene expression is altered during various pathophysiological conditions is largely unknown. Although mRNA is not the ultimate product of a gene, transcription is the first step in gene regulation and therefore information at the transcription level is important for understanding gene regulation. In the present study, IL-1β and IL-8 expression were significantly (P<0.05) up-regulated about 3 and 2.5 folds respectively, in the CE cows. Fischer et al. (2010) found significantly higher expression of IL-1β and IL-8 mRNA in cows affected with subclinical or CE, compared with healthy cows. Ghasemi et al. (2012) found a higher mRNA expression of IL-8 level in subclinical endometritis cows and suggested that IL-8 gene expression may be useful to predict endometrial inflammation. Higher expression of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) was also reported by several researchers (Ishikawa et al. 2004, Fischer et al. 2010, Gabler et al. 2010, Loyi et al. 2013,
of TNF-α-affected with metritis and endometritis had lower expression in the present study, decreased TNF-α gene expression could also have facilitated the development of endometritis (Galvao et al. 2011). Further, the lesser expression of IL-6 may substantiate the absence of stronger stimulation and thus low expression of Hp (Muller-Doblies et al. 2004). The lesser expression of IL-6 may substantiate the absence of stronger stimulation and thus low expression of Hp (Muller-Doblies et al. 2004). Quantitative PCR and immunohistochemistry studies indicated minimal AGP expression in clinically healthy or infected bovine uterus (Lecchi et al. 2009), as observed in this study.

The altered immune response could be due to an intrinsic defect in endometrial cell function or extrinsic mechanisms affecting endometrial cell activity such as a negative energy balance (NEB). Beam and Butler (1998) reported that differences in cytokine gene expression between CE and healthy cows were more prominent under influence of NEB. Before development of CE in these cows, higher levels of non-esterified fatty acids (NEFA) and beta hydroxy butyric acid (BHBA) were observed during transition period (data not presented). It clearly indicated the presence of NEB preceding to CE development in these cows. Therefore, NEB during early postpartum might have compromised uterine immunity and thus facilitated the development of CE during late postpartum. In the present study, leptin mRNA expression was significantly (P<0.05) down-regulated (7.9 fold), while IGF-1 expression was significantly (P<0.05) down-regulated (4.28 fold) in the CE cows. We also found significantly (P<0.05) higher concentration of leptin during transition period in these cows before development of CE (data not presented). Kasimanickam et al. (2013) also reported higher leptin levels in the CE cows. During acute inflammation, increase in peripheral

Table 1. Primers used for gene-specific RT-PCR and real-time PCR

Primer name	Primer sequence	T_m	Size (bp)	Accession No.
Bov IL6-F	CCAGGAACGAAGAGAGC	60.7	115	NM_173923.2
Bov IL6-R	CAGAAGTACTACACGGAG	58.9		
Bov IL8-F	CAAGAGCAGAAGAAGTGGAC	64.5	222	NM_173925.2
Bov IL8-R	AGTGTGGCACCCTCAATAAC	66.9		
Bov TNFα-F	CTCCTCTGTCCTGCTGACCTTC	66.9	205	NM_173966.3
Bov TNFα-R	CATAAGGCGATGTCGCAATACG	71.6		
Bov IL-1β-F	AGCATCCTTCTATCTCATTGAAG	65.6	78	NM_174093.1
Bov IL-1β-R	GGGTCGTACACAGAAACT	67.4		
Bov GAPDH-F	GCCCTATCTGTCTTACGAG	64.0	217	NM_NM01034034.2
Bov GAPDH-R	GGCCATCCACAGCTCTCTG	67.4		
Bov Hp-F	TGGTCTCCACGCATAACTC	64.0	217	NM_001040470.2
Bov Hp-R	TTGATGAGCCCAATGTCTACC	63.8		
Bov AGP-F	ACTGACGAGAAGAAAGGATGCG	65.7	167	NM_001040502.2
Bov AGP-R	TTGAAGCAGGAAGGAGAAGACT	68.8		
Bov SAA3-F	GGTCCTGGGCTGCTA	65.2	62	NM_181016.3
Bov SAA3-R	TGTCTGATCCCTGGAATAGTCT	66.3		
Bov Leptin-F	GCCATCTGTCTTACGGGAG	63.7	113	NM_173928.2
Bov Leptin-R	GGAGCTGTTGTGAAGAAGATGT	68.8		
Bov IGF-1-F	GCCAAGCTCAGAAAGGAG	67.3	141	NM_001077828.1
Bov IGF-1-R	TACTGTGACAGGAGAAG	65.5		
Bov ACTB-F	AGGCATCCTAGACCTCAAGTGA	65.2	145	NM_173979.3
Bov ACTB-R	GCTCGTGTGACAGTCTGTG	63.5		
cytokines concentration is associated with increase in tissue cytokine expression (Kasimanickam et al. 2013). The influence of elevated leptin concentrations during transition period on endometrial expression of leptin gene during later postpartum period in relation to clinical endometritis in dairy cows cannot be ruled out. Similarly, CE affected cows had significantly down regulated IGF-I mRNA transcripts in bovine uterus along with lesser concentration of IGF-I during transition period. It was also suggested that NEB is an important determinant of IGF-I expression (Wathes et al. 2011). Therefore, the observed NEB during early postpartum in these cows may be related to lesser IGF-I transcripts levels in CE cows. Taken together, it is concluded that bovine acute phase proteins, inflammatory cytokines, and energy indicators genes are differentially expressed in clinical endometritis affected cows. The therapeutic use of this knowledge further needs to be investigated.

ACKNOWLEDGEMENTS

Authors are thankful to the Director, ICAR-NDRI for providing needful financial and laboratory facilities. The first author is thankful to Director, ICAR-IVRI for support. Authors are also thankful to veterinarians and staff of Livestock Research Centre for their help during research.

REFERENCES

Baumann H Z, Morella K K, Jahreis G P and Marinkovic S. 1990. Distinct regulation of the interleukin-1 and interleukin-6 response elements of the rat haptoglobin gene in rat and human hematoma cells. Molecular and Cellular Biology 10(11): 5967–76.

Beam S W and Butler W R. 1998. Energy balance, metabolic hormones, and early postpartum follicular development in dairy cows fed prilled lipid. Journal of Dairy Science 81(1): 121–31.

Chapwanya A, Meade K G, Doherty M L, Callanan J J and O’Farrelly C. 2013. Endometrial epithelial cells are potent producers of tracheal antimicrobial peptide and serum amyloid A3 gene expression in response to E. coli stimulation. Veterinary Immunology and Immunopathology 151(1–2): 157–62.

Chapwanya A, Meade K G, Doherty M L, Callanan J J, Mee J F and O’Farrelly C. 2009. Histopathological and molecular evaluation of Holstein-Friesian cows postpartum: toward an improved understanding of uterine innate immunity. Theriogenology 71(9): 1396–407.

Davies D, Meade K G, Herath S, Eckersall P D, Gonzalez D, White J O, Conlan R S, O’Farrelly C and Sheldon I M. 2008. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reproductive Biology and Endocrinology 6(1): 53.

Fischer C, Drillich M, Odau S, Heuwieser W, Einspanier R and Gabler C. 2010. Selected pro-inflammatory factor transcripts in bovine endometrial epithelial cells are regulated during the oestrous cycle and elevated in case of subclinical or clinical endometritis. Reproduction, Fertility and Development 22(5): 818–29.

Gabler C, Fischer C, Drillich M, Einspanier R and Heuwieser W. 2010. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum. Reproductive Biology and Endocrinology 8(1): 152.

Galvao K N, Felippe M J B, Brittin S B, Sper R, Fraga M, Galvao J S, Caixeta L, Guard C L, Ricci A and Gilbert R O. 2012. Evaluation of cytokine expression by blood monocytes of lactating Holstein cows with or without postpartum uterine disease. Theriogenology 77(2): 356–72.

Galvao K N, Santos N R, Galvao J S and Gilbert R O. 2011. Association between endometritis and endometrial cytokine expression in postpartum Holstein cows. Theriogenology 76: 290–99.

Ghasemi F, Gonzalez-Cano P, Griebel P J and Palmer C. 2012. Proinflammatory cytokine gene expression in endometrial cytobrush samples harvested from cows with and without subclinical endometritis. Theriogenology 78(7): 1538–47.

Gilbert R O, Shin S T, Guard C L and Erb H N. 1998. Incidence of endometritis and effects on reproductive performance of dairy cows. Theriogenology 1(49): 251.

Herath S, Fischer D P, Werling D, Williams E J, Lilly S T, Dobson H, Bryant C E and Sheldon I M. 2006. Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology 147(1): 562–70.

Ishikawa Y, Nakada K, Hagiwara K, Kirisawa R, Iwai H, Moriyoishi M and Sawamukai Y. 2004. Changes in interleukin-6 concentration in peripheral blood of pre-and post-partum dairy cattle and its relationship to postpartum reproductive diseases. Journal of Veterinary Medical Science 66(11): 1403–08.

Kasimanickam R K, Kasimanickam V R, Olsen J R, Jeffress E J, Moore D A and Kastelic J P. 2013. Associations among serum pro-and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows. Reproductive Biology and Endocrinology 11(1): 103.

Krakowski L and Zdzisinska B. 2007. Selected cytokines and acute phase proteins in heifers during the ovarian cycle course and in different pregnancy periods. Bulletin-Veterinary Institute in Pulawy 51(1): 31.

Lecchi C, Avallone G, Giurovich M, Roccabianca P and Cecchini F. 2009. Extra hepatic expression of the acute phase protein alpha 1-acid glycoprotein in normal bovine tissues. Veterinary Journal 180(2): 256–58.

Loyi T, Kumar H, Nandi S, Mathapati B S, Patra M K and Pattnaik B. 2013. Differential expression of pro-inflammatory cytokines in endometrial tissue of bufaloes with clinical and sub-clinical endometritis. Research in Veterinary Science 94(2): 336–40.

Manimaran A, Kumaresan A, Jeyakumar S, Mohanty T K, Sejian V, Kumar N, Sreela L, Prakash M A, Moovenhan P, Anantharaj A and Das D N. 2016. Potential of acute phase proteins as predictor of postpartum uterine infections during transition period and its regulatory mechanism in dairy cattle. Veterinary World 9(1): 91–100.

Muller-Doblies D, Arquant A, Schaller P, Heegaard P M, Hilbe M, Albini S, Abril C, Tobler K, Ehrensperger F, Peterhans E and Ackermann M. 2004. Innate immune responses of calves during transient infection with a noncytotoxic strain of bovine viral diarrhea virus. Clinical and Diagnostic Laboratory Immunology 11(2): 302–12.

Nino-Soto M I, Heriazon A, Quinton M, Miglior F, Thompson K and Mallard B A. 2008. Differential gene expression of high and low immune responder Canadian Holstein dairy cows. Animal Genomics for Animal Health 132: 315–20.

Okuda K and Sakamoto R. 2003. Multiple roles of TNF superfamily members in corpus luteum function. Reproductive
Biology and Endocrinology 1(1): 95.
Pajovic S, Jones V E, Prowse K R, Berger F G and Baumann H. 1994. Species-specific changes in regulatory elements of mouse haptoglobin genes. Journal of Biological Chemistry 269(3): 2215–24.
Rahman M M, Lecchi C, Avallone G, Roccabianca P, Sartorelli P and Ceciliani F. 2010. Lipopolysaccharide-binding protein: Local expression in bovine extrahepatic tissues. Veterinary Immunology and Immunopathology 137(1–2): 28–35.
Roach D R, Bean A G, Demangel C, France M P, Briscoe H and Britton W J. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Journal of Immunology 168(9): 4620–27.
Sheldon I M, Cronin J, Goetze L, Donofrio G and Schuberth H J. 2009. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biology of Reproduction 81(6): 1025–32.
Sheldon I M, Lewis G S, LeBlanc S and Gilbert R O. 2006. Defining postpartum uterine disease in cattle. Theriogenology 65(8): 1516–30.
Swangchan-Uthai T, Lavender C R, Cheng Z, Fouladi-Nashta A A and Wathes D C. 2012. Time course of defense mechanisms in bovine endometrium in response to lipopolysaccharide. Biology of Reproduction 87(6): 135.
Wathes D C, Cheng Z, Chowdhury W, Fenwick M A, Fitzpatrick R, Morris D G, Patton J and Murphy J J. 2009. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiological Genomics 39(1): 1–13.
Wathes D C, Cheng Z, Fenwick M A, Fitzpatrick R and Patton J. 2011. Influence of energy balance on the somatotrophic axis and matrix metalloproteinase expression in the endometrium of the postpartum dairy cow. Reproduction 141(2): 269–81.
Williams E J, Fischer D P, Noakes D E, England G C, Rycroft A, Dobson H and Sheldon I M. 2007. The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 68(4): 549–59.