Transcriptome analysis implicates involvement of long noncoding RNAs in cytoplasmic male sterility and fertility restoration in cotton

CURRENT STATUS: POSTED

Bingbing Zhang
CRICAAS

Xuexian Zhang
CRICAAS

Meng Zhang
CRICAAS

Liping Guo
CRICAAS

Tingxiang Qi
CRICAAS

Hailin Wang
CRICAAS

Huini Tang
CRICAAS

Xiuqin Qiao
CRICAAS

Kashif Shahzad
CRICAAS

Chaozhu Xing
CRICAAS

Jianyong Wu dr.wujianyong@live.cn
Chinese Academy of Agricultural Sciences Cotton Research Institute

Corresponding Author

ORCiD: 0000-0003-1392-4790

DOI:
10.21203/rs.2.11529/v1
SUBJECT AREAS

Plant Physiology and Morphology

KEYWORDS

long noncoding RNAs, anther development, CMS, fertility restoration, cotton
Abstract

Background

Hybrid cotton has greatly contributed to global increase in cotton productivity. The cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis because it is convenient for commercial hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported.

Results

Here, we performed transcriptome sequencing during anther development in Upland cotton carrying cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm. Totally 80,695 lncRNAs were identified, in which 43,347 and 44,739 lncRNAs were differentially expressed in A–B and A–R comparisons, respectively. These lncRNAs represent functional candidates involved in CMS and fertility restoration. Gene ontology enrichment analysis indicated that cellular hormone metabolic processes and oxidation-reduction reaction processes might be involved in CMS, and cellular component morphogenesis and small molecular biosynthetic processes might participate in fertility restoration. Analysis of the putative relationship between lncRNAs and miRNAs revealed that 63 lncRNAs were identified as putative precursors of 35 miRNAs, and qRT-PCR analysis showed a similar expression pattern to that of RNA-sequencing data. Furthermore, construction of lncRNA regulatory networks indicated that several miRNA–lncRNA–mRNA networks might be involved in CMS and fertility restoration.

Conclusion

Our findings provide systematic identification of lncRNAs during anther development and lays a solid foundation for future investigation of the regulatory molecular mechanisms.
and utilization in breeding of hybrid cotton.

Background

Previous studies have shown that large portions of the eukaryotic genomic sequences consist of noncoding RNAs (ncRNAs). The ncRNAs lack apparent coding potential and could be divided into microRNAs (miRNAs) of 20–30 nt in length, medium ncRNAs of 50–200 nt, and long noncoding RNAs (lncRNAs) with transcripts longer than 200 nt [1-4]. The lncRNAs are a vital regulatory component of gene expression during many biological developmental processes [3, 5, 6]. In recent years, numerous lncRNAs have been identified in many plant species using RNA sequencing (RNA-seq) data. For example, Jun et al. identified 6480 long intergenic noncoding RNAs (lincRNAs) in Arabidopsis by analyzing transcriptome data [7]. In maize, 20,163 lncRNAs were identified in the complete genome using RNA-seq data [8]. In rice, 1624 lincRNAs and 600 IncNATs involved in sexual reproduction were identified using whole transcriptome RNA-seq [9].

Although many lncRNAs have been identified in diverse plant species, the functions for only a small number of lncRNAs have been elucidated. In Arabidopsis, the lncRNAs COOLAIR and COLOAIR, derived from the FLOWERING LOCUS C (FLC), are important in vernalization-mediated FLC repression [5, 10, 11]. In rice, a lncRNA termed long-day-specific male-fertility-associated RNA (LDMAR) may regulate photoperiod-sensitive male sterility (PSMS). Furthermore, a SNP between 58N and 58S in this lncRNA causes epigenetic modifications, which reduces expression of this lncRNA, resulting in male sterility under long-day conditions [12].

Additionally, many lncRNAs perform critical roles with miRNAs by being their targets or precursors [13-15]. For example, lncRNAs in maize might act as precursors for miRNAs and function to regulate gene expression via a miRNA-dependent mechanism [13]. Cagirici et al. observed miRNA-related functions of lncRNAs and constructed miRNA-regulated networks between lncRNAs and mRNAs under drought stress in wheat [15]. Wang et al. analyzed the integrated expression of lncRNAs generating miR397 and their pivotal functions in regulating lignin metabolism in fibers of cotton [14]. In addition, target mimicry is a novel role for plant lncRNAs. For example, the lncRNA IPS1 acts as a target mimic for miR399, which targets PHO2 to control phosphate homeostasis in Arabidopsis [16-18]. Huang et al. predicted 15 lncRNAs as endogenous target mimics (eTMs) for 13 miRNAs in Brassica, of which two lncRNAs were shown to be functional eTMs for miR160 and to function in pollen development [19].

Cotton is one of the most important natural fibers utilized in the textile industry. In
cotton, many IncRNAs involved in fiber development have been identified. Wang et al. identified 50,566 lincRNAs and 5826 long noncoding natural antisense transcripts (IncNATs) in *Gossypium barbadense* and reported that a lncRNA (LINC02) was highly expressed in lint-fuzz/linted-fuzzless cotton compared with lintless-fuzzless cotton [14]. Zou et al. systematically identified IncRNAs in cotton fibers and leaves of *Gossypium arboreum* [20]. Hu et al. identified 35,802 IncRNAs at the cotton fiber initiation stage and provided evidence for the potential functions of IncRNAs in fiber development by transcriptome sequencing, of which 645 and 651 IncRNAs were preferentially expressed in the fiberless mutant Xu-142-fl and fiber-attached lines, respectively [21]. In addition, Lu et al. analyzed the characteristics and expression patterns of IncRNAs under drought stress in cotton, and concluded that IncRNAs may be involved in regulating plant hormone signaling pathways in response to drought stress [22]. Deng et al. developed a comprehensive catalogue of IncRNAs in Upland cotton under salt stress, of which 44 lincRNAs were differentially expressed under salt stress, and these lincRNAs may target mRNAs via cis-acting regulation [23]. However, IncRNAs involved in anther development in three-line hybrid cotton have not been identified, although transcriptomic analysis during anther development has been undertaken [24, 25]. Here, we present a detailed analysis of anther development-related IncRNAs and mRNAs and their specific interactions in three-line hybrid cotton carrying cytoplasmic male sterile *Gossypium harknessii* (CMS-D2) cytoplasm.

Methods

Plant materials and transcriptome sequence

The CMS-D2 three-line hybrid cotton system was developed at the Cotton Research Institute, Chinese Academy of Agricultural Science. In our previous study, the CMS line harboring CMS-D2 cytoplasm was crossed with the restorer line, and the maintainer line with normal fertile Upland cotton (AD1) cytoplasm as the recurrent male parent to backcross with the F1 plants to construct a BC8F1 population. From this segregating population, the sterile and fertile plants were selected as the CMS-D2 line (A) and restorer line (R), respectively [26]. The A line is homozygous for the recessive (i.e., nonfunctional) fertility restorer alleles (rf1rf1), whereas the maintainer line (B) harbors normal fertile Upland cotton cytoplasm and has the same nuclear allelic composition (rf1rf1). The R line is homozygous for dominant (i.e., functional) fertility restorer alleles (Rf1Rf1) to allow recovery of fertility in CMS-D2 cotton plants in the cross A × R. The three lines were grown under normal production conditions. For sample collection, as described in previous
studies [27, 28], each genotype was grown side-by-side in field, and floral buds approximately 3 mm in length (corresponding roughly to the stage of male meiosis) were collected from about 100 plants (one floral bud was collected per plant) and combined, with three independent biological replicates. All collected floral buds were cut above the ovaries, immediately frozen in liquid nitrogen, and stored at −80°C until use.

Total RNA was extracted using the Spectrum™ Plant Total RNA Kit in accordance with the manufacturer’s instructions. Equal amounts of RNA from the three biological replicates were used to construct transcriptome libraries (A1–3, B1–3, and R1–3) and small RNA libraries (A, B, and R) [25]. Both transcriptome and small RNA sequencing were performed on an Illumina HiSeq 2500/2000 platform. The raw sequence data for the transcriptome and small RNAs have been submitted to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession numbers SRX3421007 and SRX3422274, respectively.

Annotation of transcripts and identification of long noncoding RNAs

For the transcriptome data, after filtering of low-quality reads and trimming the adaptor sequences, a total of 887,090,420 clean reads were obtained to map to the Upland cotton ‘Texas Marker-1’ (TM-1) reference genome (http://www.cottongen.org) [29] using TopHat2 [30]. Transcripts assembly was accomplished using Cufflinks [31] based on the results of alignment to the TM-1 reference genome. All transcripts without strand information were discarded. The remaining transcripts were used to identify IncRNAs on the basis of the following rigorous criteria. First, single-exon transcripts located within 500 bp of other transcripts were excluded. Second, transcripts smaller than 200 bp in length were removed. Third, transcripts with a fragments per kilobase of transcript per million mapped reads (FPKM) score higher than 2 with a single exon or 0.5 with multiple exons in at least one sample were retained. Fourth, transcripts that overlapped with known genes and other non-mRNAs (rRNA, tRNA, snRNA, snoRNA, and pseudogenes) were excluded. Fifth, CPC [32] and Pfamscan [33] software were used to calculate the coding potential of the remaining transcripts. Only transcripts with CPC score < 0 and Pfamscan e-value < 0.001 were considered as putative IncRNAs for subsequent analysis.

Expression and target gene analysis of IncRNAs

Cuffdiff 2.1.1 software was used to estimate fragments per kilobase of exon per million fragments mapped (FPKM) of both IncRNAs and coding genes in each sample [34].

Based on the genome location of the IncRNAs and coding genes, we identified the target genes 10 kb upstream and downstream of IncRNAs and then analyzed their function. Gene ontology (GO) enrichment analysis was performed using the GOseq R package. The GO
terms with a corrected \(P \)-value less than 0.05 were considered to be significantly enriched [35].

Prediction of putative targets and endogenous target mimics for miRNAs

The miRNA targets of lncRNAs or mRNAs were predicted using the psRNATarget server (http://plantgrn.noble.org/psRNATarget/), for which less than three mismatches in targets and miRNA pairing regions were permitted. The eTMs for miRNAs were predicted by combing psRNATarget and application of the rules established by Wu et al. [18].

Construction of miRNA-lncRNA-mRNA regulatory networks

To understand the role of lncRNAs, miRNA-lncRNA-mRNA networks were constructed based on differentially expressed lncRNAs and miRNAs, and the target pairs of miRNAs-lncRNAs, miRNAs-mRNAs, and lncRNAs-mRNAs. The regulatory networks contained miRNAs, lncRNAs acting as miRNA targets, mRNAs acting as lncRNA targets, and mRNAs acting as miRNA targets. The miRNA-lncRNA-mRNA regulatory networks were visualized using Cytoscape 3.7.1 software [36].

Quantitative RT-PCR validation of lncRNAs, miRNAs, and mRNAs expression

To validate the relative expression of lncRNAs, miRNAs, and mRNAs, quantitative reverse transcription–PCR (qRT-PCR) was performed with specific primers as described previously [25]. Total RNAs and miRNAs were extracted from the same samples by RNA-seq and reverse-transcribed to cDNA using the TransScript® miRNA First-Strand cDNA Synthesis SuperMix kit (TransGen, Beijing, China) and PrimeScript™ RT reagent kit (Takara, Dalian, China) following the manufacturers’ guidelines. The qRT-PCR mixture contained 1 \(\mu \)L diluted cDNA, 10 \(\mu \)L 2× SYBR® Green Mix (Takara), 0.5 \(\mu \)M of each primer, and ddH\(_2\)O to make up the volume to 20 \(\mu \)L. All reactions were performed with three biological replicates. *Ubiquitin 6 (GhUBQ6)* was used as the reference gene, and relative expression levels were calculated using the \(2^{-\Delta\Delta Ct} \) method [37]. The qRT-PCR primers used are listed in Table S1.

Results

Genome-wide identification and characterization of lncRNAs during anther development of three-line hybrid cotton

To identify the lncRNAs involved in cytoplasmic male sterility (CMS) and restoration of fertility during anther development, high-throughput sequencing was performed for the CMS line (A), maintainer line (B), and fertility restoration line (R), each with three biological replicates. In total, 910 million clean reads (284 million in A, 315 million in B,
and 311 million in R) passed the quality filters and were retained for further analysis. Almost 86%, 87%, and 88% of the reads were aligned to the TM-1 reference genome for A, B, and R, respectively (Table 1). On the basis of the transcripts assembly, a total of 940,696 transcripts were identified. To identify putative lncRNAs, we first filtered out the single-exon transcripts located within 500 bp of other transcripts, then excluded short transcripts (length < 200 bp), and screened the transcripts based on expression level (FPKM ≥ 0.5 for multi-exon transcripts, or FPKM ≥ 2 for single-exon transcripts), and finally filtered out the known non-lncRNAs. After these basic filtering processes, 93,546 transcripts were retained as lncRNA candidates. We evaluated the coding potential of the remaining transcripts by means of CPC (coding potential calculator) and Pfam protein domain analyses (Fig. 1a). After the five-step filter process, 80,695 lncRNAs were identified during anther development (Table S2).

To describe explicitly the characteristics of lncRNAs, we compared the characteristics of lncRNAs and mRNAs in the following aspects (Fig. 1b). In transcript length, the lncRNAs length ranged from 200 to 18,412 bp, and more than 97% of the lncRNAs were smaller than 2000 bp in length, whereas the length of mRNAs ranged from 150 to 21,501 bp, but almost 85% of mRNAs were between 150 and 2000 bp in length. In exon number, lncRNAs had fewer exons than mRNAs on average, almost 83% of the lncRNAs contained one exon and 17% had multiple exons, whereas almost 26% of the mRNAs contained one exon and 74% had multiple exons. The overall open reading frame (ORF) length of lncRNAs was typically smaller than that of mRNAs. Comparison of FPKM distribution between lncRNAs and mRNAs showed that the FPKM of lncRNAs was lower than that of mRNAs during anther development (Table S2).

Identification and functional analysis of differentially expressed lncRNAs in A, B, and R lines

The following three comparisons of lncRNA expression levels were performed: A–B, which had the isogenic nuclear genomes (containing the recessive non-functional rf1 allele) but different cytoplasm and fertility; A–R, both of which had the same CMS-D2 cytoplasm but differed in fertility and Rf1 alleles; and B–R, both of which were isogenic and fertile but differed in cytoplasm and Rf1 alleles. A total of 18,755, 20,837, and 21,346 unique lncRNAs were specifically expressed in the A, B, and R lines, respectively, and 15,692 lncRNAs were expressed in common among the A, B, and R lines (Fig. 2a). On the basis of the expression level, lncRNAs with a greater than 2-fold change and p-value < 0.01 were considered to be differentially expressed in different samples. A total of 43,347, 44,739, and 46,431 differentially expressed lncRNAs were identified in the A–B, A–R, and
B–R comparisons, respectively, and 1713 IncRNAs were differentially expressed in common among the A–B, A–R, and B–R comparisons (Fig. 2b) (Table S3). The differentially expressed IncRNAs represented a total of 67,021 non-redundant IncRNAs that were distributed among the 26 chromosomes of G. hirsutum, of which 33,142, 29,689, and 4190 differentially expressed IncRNAs were located in the A and D subgenomes and different scaffolds, respectively (Table S3). The distribution of differentially expressed IncRNAs for the three comparisons is shown in Fig. 2c.

Previous studies indicate that the Rf1 gene is located on chromosome Gh_D05, and the nearest flanking simple sequence repeat (SSR) markers to Rf1 are BNL3535 at a genetic distance of 0.049 cM and NAU3652 with a genetic distance of 0.078 cM [26, 38]. In the present study, a total of 2452 differentially expressed IncRNAs were identified on chromosome Gh_D05, of which 806 IncRNAs were differentially expressed in the A–R group. Furthermore, 86 IncRNAs were identified in the Rf1 region flanked by the two SSR markers, of which 65 IncRNAs were down-regulated and 21 IncRNAs were up-regulated in the R line compared with the A and B lines. For example, the RNA-seq data showed that TCONS_00779116, TCONS_00797453, TCONS_00796983, and TCONS_00797056 were up-regulated in the fertile R line, compared with the A and B lines, and the qRT-PCR results were approximately consistent (Fig. 2d).

It has been shown that IncRNAs are preferentially located close to genes that they regulate, and that IncRNAs might overlap with the promoter region and may regulate the expression profile of their target genes at the transcriptional or post-transcriptional level [6, 17, 39-41]. In the present study, to evaluate the function of these differentially expressed IncRNAs, we selected the genes located less than 10 kb from the differentially expressed IncRNAs as corresponding target genes and performed GO analyses among the A–B, A–R, and B–R comparisons (Fig. 3a) (Table S4). The GO terms oxidation–reduction process, regulation of hormone levels, and hormone metabolic process were the three most highly enriched terms in the A–B comparisons, whereas cell morphogenesis, cellular component morphogenesis, and oxidation–reduction process were the three most enriched terms in the A–R comparisons. Similarly, in B–R comparisons, the three most enriched terms were cell morphogenesis, cellular component morphogenesis, and single-organism biosynthetic process.

To identify IncRNAs associated with CMS or fertility restoration, differentially expressed IncRNAs between A–B and A–R comparisons were analyzed. In total, 43,347 and 44,739 differentially expressed IncRNAs were identified in the A–B and A–R comparison groups, respectively. Of these differentially expressed IncRNAs, 328 and 431 were unique in the A–
B and A–R comparisons and thus might be involved in CMS or fertility restoration during anther development of cotton. In addition, we detected significant enrichment of GO terms involved in CMS or fertility restoration \((p < 0.05)\). In the A–B comparison, we observed GO term enrichment for biological processes, including oxidation–reduction process \((\text{GO: 0055114})\), photosynthetic electron transport chain \((\text{GO: 0009767})\), regulation of hormone levels \((\text{GO: 0010817})\), cellular hormone metabolic process \((\text{GO: 0034754})\), and cytokinin metabolic process \((\text{GO: 0009690})\) (Fig. 3b). These results showed that the greatest difference between normal Upland cotton cytoplasm and sterile cytoplasm was enrichment in the cellular hormone metabolic process and oxidation–reduction reaction process. In the A–R comparison, the most significantly enriched GO terms among biological processes were cellular component morphogenesis \((\text{GO: 0032989})\) and small molecular biosynthetic process \((\text{GO: 0044283})\), of which cellular amino acid biosynthetic process \((\text{GO: 0008652})\) and tricarboxylic acid biosynthetic process showed significant enrichment \((\text{GO: 0072351})\) (Fig. 3c) (Table S4). These results indicated that differentially expressed IncRNAs may regulate functional genes involved in cellular component morphogenesis for fertility restoration in cotton.

Predicted interactions between IncRNAs and miRNAs during anther development

MiRNAs regulate gene expression at the post-transcriptional level by interacting with the complementary binding sites on target sequences, resulting in mRNA cleavage, decoy activity, and translation repression \([15, 42]\). A previous study indicated that IncRNAs may act as targets or eTMs by binding with miRNAs and thus inhibit the interaction between miRNAs and the target genes \([18]\). In the current study, we predicted the potential of IncRNAs as miRNA eTMs by integration of previous miRNA sequence data during anther development \([25]\). In total, two IncRNAs \((\text{TCONS_00342368} \text{ and } \text{TCONS_00148576})\) were predicted to be potential eTMs for five miRNAs, of which \text{TCONS_00342368} was a putative eTM for ath-miR171c-5p, osa-miR171c-5p, and stu-miR171d-5p, and \text{TCONS_00148576} was a putative eTM for ath-miR399b and cme-miR399d (Fig. 4a). The predicted miRNA binding sites and the bulge region in IncRNAs were identical among the different miRNAs in the same miRNA family. To analyze the sequence evolutionary conservation of these eTM IncRNAs, we aligned the sequences of the predicted eTM-binding sites for miR171 and miR399 from Arabidopsis and rice (Fig. 4b). The miRNA binding sequences were well conserved and the bulge region frequently varied among different species, consistent with previous studies of Arabidopsis and rice \([18]\) and \textit{Brassica} \([19]\). Further analysis is necessary to understand the role of the two IncRNAs predicted to be eTMs.

In addition, IncRNAs might have functions associated with a role as miRNA precursors
Those IncRNAs that act as precursors of miRNAs might perform an indirect regulatory function through corresponding miRNAs. Moreover, differential expression of IncRNAs might result in the differential expression of corresponding mature miRNAs [15, 43]. In the present study, 63 IncRNAs were predicted to be putative precursors of 35 miRNAs belonging to 26 miRNA families (Table S5). Of these IncRNAs, 13 IncRNAs were identified as the putative precursor of multiple miRNAs, with 1 or 2 nt difference in the mature miRNA sequence. Interestingly, 19 of the precursor IncRNAs showed differential expression among the A, B, and R lines, of which five IncRNAs (TCONS_00600850, TCONS_00807084, TCONS_01123999, TCONS_01109996, and TCONS_01148734) showed a consistent expression pattern with the corresponding mature miRNA (gra-miR8753, gma-miR160b, ghr-miR7506, ghr-miR7511, and gra-miR8638). The results of qRT-PCR analysis showed that two IncRNAs (TCONS_00807084 and TCONS_01148734) and the corresponding miRNAs (gma-miR160b and gra-miR8638) showed a similar expression pattern in three-line hybrid cotton (Fig. 5a). Interestingly, gma-miR160b, which is derived from TCONS_00807084, was up-regulated in the A and B lines compared with the R line and may regulate an auxin response factor GhARF17 (Gh_D06G0360) (Fig. 5b). Thus, TCONS_00807084 and gma-miR160b might play critical roles in anther development by influencing the auxin regulatory pathway. These findings indicate the complex regulatory mechanisms by which IncRNAs and the corresponding mature miRNAs function during anther development, although the underlying regulatory network remains unclear.

The IncRNA–miRNA–mRNA regulatory networks between A, B, and R lines

To explore the regulatory networks of IncRNAs involved in CMS and fertility restoration, we selected the target genes of the differentially expressed IncRNAs and miRNAs based on the RNA-seq data and constructed a putative IncRNA–miRNA–mRNA regulatory network using Cytoscape software (Fig. 6) (Table S6). The networks were composed of 66 miRNAs, 161 IncRNAs, and 658 mRNAs (mRNAs regulated by miRNAs and IncRNAs), of which 58 IncRNAs regulated by 15 miRNAs and 77 IncRNAs regulated by 35 miRNAs were specifically differentially expressed in the A–B and A–R comparisons, respectively; in addition, 26 IncRNAs regulated by 16 miRNAs were in common among the A–B and A–R comparisons. These predicted target genes regulated by miRNAs and IncRNAs were divided into multiple groups. First, several genes showed critical roles in oxidation–reduction processes, of which a glutamyl-tRNA reductase (Gh_A08G0634), cupredoxin superfamily protein (Gh_D03G0412), and cinnamyl alcohol dehydrogenase (Gh_D11G3399) show oxidoreductase activity during anther development. Second, several genes were transcription factors and involved in cellular hormone response and metabolic processes.
For example, bZIP (Gh_A01G1768), ARF (Gh_D06G0360), and SPL (Gh_A11G0706) transcription factors and SAUR-like auxin-responsive protein (Gh_A12G2237) and a gibberellin-regulated family protein (Gh_D02G0666) were regulated by miRNAs and lncRNAs involved in hormone response and metabolic processes. Third, several genes were functional proteins, including an ABORTED MICROSPORES (AMS) protein (Gh_D12G0328), nucleotide/sugar transporter family protein (Gh_A04G0407), and NB-ARC domain-containing disease resistance protein (Gh_A08G1378). Several functionally unknown genes regulated by miRNAs and lncRNAs were differentially expressed in the A, B, and R lines. These above-mentioned genes may play critical roles in CMS and fertility restoration in cotton.

The expression levels of several lncRNA–miRNA–mRNA regulatory networks were validated by qRT-PCR and were concordant with the transcriptome data (Fig. 7). For example, a bHLH transcription factor, ABORTED MICROSPORES (AMS) gene (Gh_D12G0328), was a specific phytochrome-interacting factor regulated by ath-miR414 and TCONS_01118841. The gene Gh_A06G1391, which was regulated by ghr-miR2950 and TCONS_00233548, shows oxidoreductase activity and may participate in fatty acid biosynthesis. The qRT-PCR results showed that both genes were down-regulated in the A line compared with the B line. These genes might be involved in CMS during anther development. In the A–R comparison, a glutamyl-tRNA reductase (Gh_A08G0634) functions in oxidation-reduction processes, as the target gene of gra-miR166d and TCONS_00327889, and was down-regulated in the A line compared with the R line. The gene Gh_D11G3015, which encodes a calcium-dependent lipid-binding (CaLB domain) protein and was the target gene of zma-miR171b-3p and TCONS_01086083, may participate in the calcium signaling pathway and was down-regulated in the A line compared with the R line. These genes might be involved in pollen development and fertility restoration during anther development. In addition, in our previous study, the PPR (Gh_D05G3392) gene located near the region of Rf1 was regulated by gra-miR7505b [25]. Interestingly, we detected the lncRNA TCONS_00797453 located in the promoter region of the Gh_D05G3392 gene and may strongly regulate the expression of that gene in the R line. This result showed that PPR (Gh_D05G3392) may be regulated by both gra-miR7505b and TCONS_00797453 to participate in fertility restoration.

Discussion

Although an increasing number of lncRNAs have been identified in cotton, including those involved in fiber development [14, 20, 21], response to drought and salt stress [22, 23],
and disease resistance [44], no lncRNAs have been previously identified during anther development in three-line hybrid cotton. In the present study, transcriptome sequencing was performed during anther development (at the stage of male meiosis) in Upland cotton harboring the CMS-D2 cytoplasm to systematically identify lncRNAs involved in CMS and fertility restoration. The differences between the CMS line (A), maintainer line (B), and fertility restoration line (R) are as follows: A vs B, both have different cytoplasm and fertility; A vs R, both harbor different Rf1 alleles and fertility; and B vs R, both differ in cytoplasm and Rf1 alleles. Thus, three-line hybrid cotton represents suitable material to explore the molecular mechanism of nucleo-cytoplasmic interaction. In our previous studies, differentially expressed genes and miRNAs were analyzed during anther development in three-line hybrid cotton, and many candidate genes and miRNAs were discovered [24, 25]. In the current study, identification of lncRNAs differentially expressed between the A, B, and R lines provides a novel perspective for understanding the molecular mechanism of CMS and fertility restoration in Upland cotton.

Overview of lncRNAs identification and function in anther development

In the present study, 80,695 lncRNAs were identified by analyzing almost 910 million clean reads, of which 18,755, 20,837, and 21,346 unique lncRNAs were specifically expressed in the A, B, and R lines, respectively. As previously reported [14], we observed that the number of identified lncRNAs during anther development is larger than the numbers identified in Arabidopsis, maize, and Gossypium arboreum [7, 8, 20] but similar to the numbers identified in wheat [15], Brassica rapa [19], and cotton in response to drought stress [22]. Thus, we suspect that the size and complexity of the genome and strict screening criteria may have led to an increase in the number of lncRNAs identified. In addition, comparison of the characteristics of lncRNAs and mRNAs revealed that lncRNAs share many common characteristics, such as fewer exons, typically smaller length, and lower expression level than mRNAs during anther development.

 Few studies have investigated the involvement of lncRNAs in plant reproductive development. In rice, Zhang et al. identified and verified a set of lncRNAs involved in sexual reproduction [9]. Huang et al. identified lncRNAs during pollen development and fertilization in Brassica. And the GO enrichment analysis indicated that genes that show transcription regulator activity (GO: 0030528) and involved in morphogenesis (GO: 0010927) might perform critical roles in pollen exine formation [19]. In the current study, 43,347 and 44,739 lncRNAs were differentially expressed in the A-B and A-R comparisons, respectively. Previous studies indicate that Rf1 is located on chromosome Gh_D05 and is flanked by the BNL3535 and NAU3652 SSR markers [26, 38]. In the present study, 21
IncRNAs in the Rf1 region flanked by these two markers were up-regulated in the R line compared with the A and B lines, and the results of qRT-PCR analysis were approximately consistent with the RNA-seq data.

To explore the function of the differentially expressed IncRNAs, we performed a GO enrichment analysis. In the A–B comparison, enrichment was observed in the GO terms oxidation-reduction process, photosynthetic electron transport chain, and cellular hormone regulation and metabolic process. These results indicated that the differences between the normal Upland cotton cytoplasm and sterile cytoplasm may influence cellular hormone and metabolic processes and oxidation-reduction reaction processes. Energy supply and cellular hormone content and metabolism during anther development might be involved in CMS. In the A–R comparison, the most significantly enriched GO terms were cellular amino acid biosynthetic process and tricarboxylic acid biosynthetic process. These results indicated that differentially expressed IncRNAs may participate in cellular component morphogenesis and small molecular biosynthetic processes for fertility restoration in cotton. These IncRNAs represent functional candidates for CMS and fertility restoration for further investigation.

Relationship between IncRNAs and miRNAs in anther development of cotton

Previous studies indicate that IncRNAs may act as eTMs to prevent interaction between miRNAs and the target genes by competitively binding with the corresponding miRNAs [16, 18, 19]. For example, the IncRNA IPS1 in Arabidopsis acts as an eTM of ath-miR399 to regulate PHOS2 and a 3 nt bulge is present in the 10th and 11th nt positions of the miRNA [16]. In Brassica, two IncRNAs are eTMs of miR160 and function in pollen formation and male fertility [19]. In tomato, a IncRNA acts as an eTM of miR166 and may regulate Tomato yellow leaf curl virus resistance [45]. In the present study, two IncRNAs (TCONS_00342368 and TCONS_00148576) were predicted to be potential eTMs for five miRNAs, of which TCONS_00342368 was a putative eTM for ath-miR171c-5p, osa-miR171c-5p, and stu-miR171d-5p, and TCONS_00148576 was a putative eTM for ath-miR399b and cme-miR399d. The predicted miRNA binding sites and the bulge region are conserved among different miRNAs and the same miRNAs in different plant species [18, 19, 46]. We observed that the sequence of the eTMs of miR171 and miR399 were well conserved and the bulge region frequently varied among different species, which is consistent with previous studies [18, 19, 46]. Therefore, we hypothesize that certain interactions between these IncRNAs and miRNAs may play a fundamental role in anther development of cotton.

In addition to functioning as eTMs of miRNAs, IncRNAs are also predicted to be precursors of miRNAs and differential expression of IncRNAs might result in the
differential expression of the corresponding mature miRNAs [13-15]. For instance, Wang et al. systematically analyzed the expression of a lncRNA that generates miR397 during fiber development of cotton [14]. Cagirici et al. reported that a stress-responsive lncRNA was the precursor of miR1117 and miR1127a [15]. In the present study, 63 lncRNAs were identified as putative precursors of 35 miRNAs, of which five miRNAs (gra-miR8753, gma-miR160b, ghr-miR7506, ghr-miR7511, and gra-miR8638) showed a expression level consistent with that of the precursor lncRNAs. For example, gma-miR160b, derived from TCONS_00807084, was up-regulated in the A and B lines compared with the R line. While miRNA gma-miR160b regulates an auxin response factor, GhARF17 (Gh_D06G0360), was down-regulated in the A line compared with the B and R lines. Several studies indicate that miR160 and ARF17 perform critical roles during pollen development. For example, overexpress miR160-resistant ARF17 show male sterility in Arabidopsis [47]. Jun et al. observed that ARF17 is essential for primexine formation and that primexine was defective in the arf17 mutant, which caused pollen wall-patterning defects and pollen degradation in Arabidopsis [48]. Ding et al. overexpressed miR160 in cotton, which leads to anther indehiscence, suppression of ARF10 and ARF17 expression, and thus increased cotton sensitivity to high temperature stress by activation of the auxin response [49]. Huang et al. increased ARF17 expression levels by overexpressing the lncRNA bra-eTM160 for inhibition of bra-miR160 and caused male sterility in Brassica, and observed that potential dosage-dependent regulation may render lncRNAs as an endogenous modulator for miRNA functions [19]. The above-mentioned results indicate that the lncRNAs–miR160–ARF17 regulatory network might participate in pollen development through involvement in auxin regulation, although the underlying regulatory mechanisms are incompletely understood.

Several studies indicate that lncRNAs and miRNAs are involved in complex regulatory pathways during plant development processes [15, 46, 50, 51]. For example, Reina et al. observed that more than 700 lncRNAs in rice were cleaved by miR2118 and processed by the DCL4 protein, resulting in production of phasiRNAs [50]. Furthermore, the lncRNA PMS1T is targeted by miR2118 to produce phasiRNAs that preferentially accumulate in a photoperiod-sensitive male sterility line under long-day conditions, and the elevated phasiRNAs eventually cause male sterility in rice through an unknown regulatory network [52]. Liu et al. reported a regulatory network of miR3954–lncRNA–phasiRNAs–NAC, which causes early flowering in citrus. Overexpression of miR3954 causes down-regulation of the corresponding lncRNAs (Cs1g09600 and Cs1g09635), up-regulation of phasiRNAs, and a reduced expression level of NAC genes [53]. These results indicate that miRNA regulation
of IncRNAs may function as part of a complex regulatory pathway during plant development. Thus, in the present study, we constructed several putative miRNAs–IncRNAs–mRNAs regulatory networks involved in CMS and fertility restoration. Fifty-eight IncRNAs regulated by 15 miRNAs and 77 IncRNAs regulated by 35 miRNAs were specifically differentially expressed in the A–B and A–R comparisons, respectively. Several miRNA–IncRNA–mRNAs regulatory networks were validated by qRT-PCR analysis. For example, in the A–B comparison, a transcription factor AMS gene (Gh_D12G0328) and a fatty acid biosynthesis-related gene (Gh_A06G1391), regulated by the corresponding miRNAs and IncRNAs, were down-regulated in the A line compared with the B line. These genes might be involved in CMS during anther development. In the A–R comparison, a glutamyl-tRNA reductase (Gh_A08G0634) and a calcium-dependent lipid-binding (CaLB domain) protein (Gh_D11G3015), regulated by the corresponding miRNAs and IncRNAs, function in oxidation-reduction processes and the calcium signaling pathway, respectively. An additional regulatory network, in which PPR (Gh_D05G3392) located near the Rf1 gene mapping region is regulated by gra-miR7505b and TCONS_00797453, might play a critical role in fertility restoration. However, these regulatory networks require validation in the future.

In this study, systematic transcriptome sequencing was performed during anther development of Upland cotton harboring the cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm. In total, 80,695 IncRNAs were identified, of which 43,347 and 44,739 IncRNAs were differentially expressed in the A–B and A–R comparisons, respectively. These IncRNAs represent functional candidates involved in CMS and fertility restoration. We analyzed the putative relationship between IncRNAs and miRNAs, and observed that IncRNAs may act as miRNA precursors, miRNA targets, and miRNA eTMs. Sixty-three IncRNAs were identified as putative precursors of 35 miRNAs, and qRT-PCR results showed a similar expression level to that of RNA-seq data. To explore the functions of IncRNAs, we constructed putative IncRNA–miRNA–mRNA regulatory networks involved in CMS and fertility restoration. However, further functional analyses are needed to elucidate the regulatory networks. This study lays a solid foundation for exploration of the functions and regulatory mechanisms of IncRNAs in anther development of cotton.

Abbreviations

CMS: Cytoplasmic male sterility
Rf gene: Restorer-of-fertility gene
LncRNAs: Long noncoding RNAs
A: CMS line
B: Maintainer line
R: Restorer-of-fertility line
GO: Gene Ontology
FPKM: fragments per kilobase of exon per million fragments

Declarations

Ethics approval and consent to participate
Not applicable

Consent to publish
Not applicable

Availability of data and materials
The raw sequence data of transcriptome and small RNA during this study could be found in the National Center for Biotechnology Information (NCBI) under accession number SRX3421007 and SRX3422274, respectively.

Competing interests
The authors declare that they have no competing interests.

Funding
This research was financed by National Key Research and Development program of China (2016YFD0101400) and National Natural Science Foundation of China (31621005).

Authors' Contributions
Conceptualization: CX, JW.
Formal analysis: BZ, XZ.
Funding acquisition: CX, JW.
Investigation: BZ, XZ, MZ, LG, KS.
Methodology: CX, JW, TQ, HW.
Project administration: CX, JW, LG.
Resources: LG, XZ, HW, HT, XQ, KS.
Supervision: LG, TQ, XZ.
Visualization: BZ, JW.
Writing - original draft: BZ, JW.
Writing - review & editing: BZ, JW.
Conflict of Interest Statement
The authors declare that they have no competing interests.

Acknowledgements
The authors are grateful for Professor Fuguang Li’s funding support (National Natural Science Foundation of China (31621005)) and the whole group of Professor Jiwen Yu for analyzing the sequence data, figure and helpful comments on the manuscript.

References
1. Costa FF: Non-coding RNAs: New players in eukaryotic biology. *Gene* 2005, 357(2):83-94.
2. Eun-Deok K, Sibum S: Long noncoding RNA: unveiling hidden layer of gene regulatory networks. *Trends in Plant Science* 2012, 17(1):16-21.
3. Hangauer MJ, Vaughn IW, Mcmanus MT: Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. *Plos Genetics* 2013, 9(6):e1003569.
4. Liu TT, Zhu D, Chen W, Deng W, He H, He G, Bai B, Qi Y, Chen R, Deng XW: A Global Identification and Analysis of Small Nucleolar RNAs and Possible Intermediate-Sized Non-Coding RNAs in Oryza sativa. *Molecular Plant* 2013, 6(3):830-846.
5. Mitchell G, Julie D, Carey BW, Manuel G, Grenier JK, Glen M, Geneva Y, Anne Bergstrom L, Robert A, Laurakay B: lincRNAs act in the circuitry controlling pluripotency and differentiation. *Nature* 2011, 477(7364):295.
6. Guil S, Esteller M: Cis-acting noncoding RNAs: friends and foes. *Nature Structural & Molecular Biology* 2012, 19(11):1068.
7. Jun L, Choonkyun J, Jun X, Huan W, Shulin D, Lucia B, Catalina AH, Nam-Hai C:
 Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. *Plant Cell* 2012, **24**(11):4333-4345.

8. Lin L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wei W, Chettoor AM, Givan SA, Cole RA, Fowler JE: Genome-wide discovery and characterization of maize long non-coding RNAs. *Genome Biology* 2014, **15**(2):R40.

9. Zhang Y-C, Liao J-Y, Li Z-Y, Yu Y, Zhang J-P, Li Q-F, Qu L-H, Shu W-S, Chen Y-Q:
 Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. *Genome Biology* 2014, **15**(12):512.

10. Fuquan L, Sebastian M, Clare L, Szymon S, Caroline D: Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. *Science* 2010, **327**(5961):94-97.

11. Jae Bok H, Sibum S: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. *Science* 2011, **331**(6013):76-79.

12. Jihua D, Qing L, Yidan O, Hailiang M, Pingbo Z, Jialing Y, Caiguo X, Xianghua L, Jinghua X, Qifa Z: A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. *Proceedings of the National Academy of Sciences of the United States of America* 2012, **109**(7):2654-2659.

13. Susan Boerner KMM: Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays. *Plos One* 2012, **7**(8):e43047.

14. Wang M, Daojun Y, Lili T, Wenhui G, Yonghui H, Haiyan H, Pengcheng W, Nian L, Keith L, Xianlong Z: Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). *New Phytologist* 2015, **207**(4):1181-1197.
15. Cagirici HB, Alptekin B, Budak H: RNA Sequencing and Co-expressed Long Non-coding RNA in Modern and Wild Wheats. *Scientific Reports* 2017, **7**(1):10670.

16. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J: Target mimicry provides a new mechanism for regulation of microRNA activity. *Nature Genetics* 2007, **39**(8):1033-1037.

17. Rinn JL, Chang HY: Genome regulation by long noncoding RNAs. *Annual Review of Biochemistry* 2012, **81**(1):145-166.

18. Wu H-J, Zhi-Min W, Meng W, Xiu-Jie W: Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. *Plant Physiology* 2013, **161**(4):1875-1884.

19. Huang L, Dong H, Zhou D, Li M, Cao J: Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa. *The Plant Journal* 2018.

20. Zou C, Wang Q, Lu C, Yang W, Zhang Y, Cheng H, Feng X, Prosper MA, Song G: Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (*Gossypium arboreum*). *Science China(Life Sciences)* 2016, **59**(2):164-171.

21. Hu H, Wang M, Ding Y, Zhu S, Zhao G, Tu L, Zhang X: Transcriptomic repertoires depict the initiation of lint and fuzz fibers in cotton (*Gossypium hirsutum* L.). *Plant Biotechnology Journal* 2017, **16**(5).

22. Lu X, Chen X, Mu M, Wang J, Wang X, Wang D, Yin Z, Fan W, Wang S, Guo L: Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (*Gossypium hirsutum* L.). *Plos One* 2016, **11**(6):e0156723.

23. Deng F, Zhang X, Wang W, Yuan R, Shen F: Identification of *Gossypium hirsutum*
long non-coding RNAs (lncRNAs) under salt stress. *Bmc Plant Biology* 2018, 18(1):23.

24. Wu J, Zhang M, Zhang B, Zhang X, Guo L, Qi T, Wang H, Zhang J, Xing C: Genomewide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. *Bmc Genomics* 2017, 18(1):454.

25. Zhang B, Zhang X, Liu G, Guo L, Qi T, Zhang M, Li X, Wang H, Tang H, Qiao X: A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during anther development of Upland cotton carrying cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm. *BMC Plant Biology* 2018.

26. Wu J, Cao X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C: Development of a candidate gene marker for Rf 1 based on a PPR gene in cytoplasmic male sterile CMS-D2 Upland cotton. *Molecular Breeding* 2014, 34(1):231-240.

27. Hideaki S, Laura RU, Jiannong X, Jinf a Z: Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton. *Plant Cell Reports* 2013, 32(10):1531-1542.

28. Wu J, Gong Y, Cui M, Qi T, Guo L, Zhang J, Xing C: Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. *Euphytica* 2011, 181(1):17-29.

29. Zhang T, Yan H, Wenkai J, Lei F, Xueying G, Jiedan C, Jinbo Z, Saski CA, Scheffler BE, Stelly DM: Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. *Nature Biotechnology* 2015, 33(5):531-537.

30. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: *TopHat2*: accurate alignment of transcriptomes in the presence of insertions, deletions and
gene fusions. Genome Biology 2013, 14(4):R36.

31. Cole T, Adam R, Loyal G, Geo P, Daehwan K, Kelley DR, Harold P, Salzberg SL, Rinn JL, Lior P: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. NATURE PROTOCOLS 2012, 7(3):562-578.

32. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 2007, 35(suppl_2):W345-W349.

33. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J: Pfam: the protein families database. Nucleic Acids Research 2014, 42(Database issue):222-230.

34. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 2010, 28:511.

35. Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 2010, 11(2):R14-R14.

36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504.

37. Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −△△C T Method. Methods 2001.

38. Wang F, Stewart JM, Zhang J: Molecular markers linked to the Rf2 fertility restorer gene in cotton. 2007.

39. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A: Systematic identification of long noncoding RNAs expressed
during zebrafish embryogenesis. *Genome Res* 2012, **22**(3):577-591.

40. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, Wu B, Xu R, Liu W, Yan P: **Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells.** *Cell Stem Cell* 2016, **18**(5):637-652.

41. Wang Y, Luo X, Sun F, Hu J, Zha X, Su W, Yang J: **Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice.** *Nature Communications* 2018, **9**(1):3516.

42. Akpinar BA, Kantar M, Budak H: **Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress.** *Functional & Integrative Genomics* 2015, **15**(5):587-598.

43. Chekanova JA: **Long non-coding RNAs and their functions in plants.** *Current Opinion in Plant Biology* 2015, **27**:207-216.

44. Zhang L, Wang M, Li N, Wang H, Qiu P, Pei L, Xu Z, Wang T, Gao E, Liu J: **Long non-coding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton.** *Plant Biotechnology Journal* 2018, **16**(6).

45. Wang J, Yu W, Yang Y, Li X, Chen T, Liu T, Ma N, Yang X, Liu R, Zhang B: **Corrigendum: Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection.** *Sci Rep* 2015, **5**(16946):16946.

46. Fan C, Hao Z, Yan J, Li G: **Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize.** *Bmc Genomics* 2015, **16**(1):793.

47. Mallory A, Bartel D, Bartel B: **MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes.** *Plant Cell* 2005,
17(5):1360-1375.

48. Jun Y, Lei T, Ming-Xi S, Xue-Yong H, Jun Z, Yue-Feng G, Qi-Shi J, Zhong-Nan Y: **AUXIN RESPONSE FACTOR17** is essential for pollen wall pattern formation in *Arabidopsis*. *Plant Physiology* 2013, **162**(2):720-731.

49. Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L: **microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (*Gossypium hirsutum)*. *Plant Journal for Cell & Molecular Biology* 2017, **91**(6):977.

50. Reina K, Hajime O, Mitsuru N, Toshiaki W, Mutsuko N, Nori K, Ken-Ichi N: **Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs.** *Plant Journal for Cell & Molecular Biology* 2014, **78**(3):385-397.

51. Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W: **Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa.** *Journal of Experimental Botany* 2014, **65**(17):4975-4983.

52. Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C: **PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice.** *Proceedings of the National Academy of Sciences of the United States of America* 2016, **113**(52):15144.

53. Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q: **miR3954 is a trigger of phasiRNAs that affects flowering time in citrus.** *Plant Journal* 2017, **92**(2).

Table

Table 1: Summary of the data of transcriptome in A, B, and R lines.
	A1	A2	A3	B1	B2	B3	R1	R2	R3
Raw reads	819378	911680	121573	110284	100663	104176	100740	105585	104618
Clean reads	789963	879419	116946	106115	968995	100304	971497	101878	100858
Total mapped reads	690875	762759	101026	925358	847314	877788	858625	907257	895364
Mapped Unique Reads	621215	679536	898952	820877	750652	777552	762929	810605	799623
Overall mapping	87.46%	86.73%	86.39%	87.20%	87.44%	87.51%	88.38%	89.05%	88.77%
Reads Mapped to mRNA	214903	243210	318399	293015	270500	275489	274053	291151	280124
Total lncRNA	80695								

Figures
Figure 1

Identification and characterization of long noncoding RNAs (IncRNAs) in Gossypium hirsutum. a: The pipeline for the identification of IncRNAs in Gossypium hirsutum; b: Compare the characteristics of IncRNAs and mRNAs in Gossypium hirsutum.
Venn diagram showing the common and distinct lncRNAs expression in A, B, and R lines. a: The common and distinct lncRNAs identified in A, B, and R lines; b: The common and distinct differentially expressed lncRNAs identified in A-B, A-R, and B-R comparison. c: The distribution of differentially expressed lncRNAs among the A and D subgenome of G. hirsutum. d: The analysis of qRT-PCR with differentially expressed lncRNAs identified in the Rf1 region of Gh_D05 chromosome.
Figure 3

Functional analysis of differentially expressed IncRNAs in A, B and R lines. a: Gene Ontology analysis of genes regulated by differentially expressed IncRNAs in A, B and R lines; b: GO enrichment analysis of genes regulated by differentially expressed IncRNAs in A-B comparison; c: GO enrichment analysis of genes regulated by differentially expressed IncRNAs in A-R comparison.
Figure 4

LncRNAs acting as endogenous target mimics (eTMs) of miRNAs in anther development of cotton. a: The prediction LncRNAs as eTMs of ath-miR171c-5p and ath-miR399b in cotton; b: Sequence alignment of eTMs for ath-miR171c-5p and ath-miR399b in cotton, Arabidopsis and rice.
Figure 5

Expression and functional prediction of lncRNAs generating corresponding miRNAs. a: RNA-seq and qRT-PCR validate the expression level of miRNAs precursor lncRNAs; b: The module of lncRNAs generating corresponding gma-miR160b to regulate target gene. The red line in exon 2 are miR160 precursor. The green line are the mature sequence of miR160.
Figure 6

The representative miRNAs-IncRNAs-mRNAs regulatory networks in anther development of cotton. Red nodes: miRNAs; Blue nodes: IncRNAs; Yellow nodes: mRNAs; Arrow direction means regulator to targets.
Figure 7

The putative regulation mechanism and expression pattern analysis in miRNAs-IncRNAs-mRNAs networks during anther development. a: Regulation mechanism...
b: The qRT-PCR validate 4 miRNAs-IncRNAs-mRNAs regulatory networks in anther development of cotton.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table S3.xlsx
Table S4.xlsx
Table S5.xlsx
Table S6.xlsx
Table S2.xlsx
Table S1.xlsx