FORMATION OF NEUTRAL DISK-LIKE ZONE AROUND THE ACTIVE HOT STARS IN SYMBIOTIC BINARIES

Zuzana Cariková and Augustin Skopal

Astronomical Institute, Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovakia

Received: 2011; accepted: 2011

Abstract. In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result a neutral disk-like zone around the active hot star near the orbital plane is created. We modelled the compression of the wind using the wind compression model. Further, we calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. The presence of such neutral disk-like zones was also suggested on the basis of the modelling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. We found that the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with quantities derived from observations during active phases. The presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created, because of insufficient mass loss rate of the hot star.

Key words: Stars: binaries: symbiotic, stars: winds: outflows

1. INTRODUCTION

Symbiotic stars are long-period interacting binary systems, which comprise a late type giant and a hot compact star (most frequently a white dwarf). During quiescent phases part of the material from the wind from the cool giant is accreted by the hot compact star. Accretion process makes the surface of the hot star to be very hot ($\sim 10^5$ K) and luminous ($\sim 10^2 - 10^4$ L$_{\odot}$) and so capable of ionizing the neutral surrounding material. It gives rise to a strong nebular radiation (e.g. Seaquist, Taylor & Button 1984). Therefore, we have three basic sources of the radiation: the cool giant, the hot star and the nebula.

Modelling the spectral energy distribution of symbiotic binaries during active phases showed two different cases. In binaries with high orbital inclination the temperature of the hot star rapidly decreases to $\sim 22\,000$ K, while in systems with low orbital inclination the temperature of the hot star increases to $\sim 165\,000$ K.
This inclination dependent behaviour can be explained by the presence of the optically thick disk-like structure created during active phases around the hot star near the orbital plane of the symbiotic binary (Skopal 2005). Modelling the broad Hα wings showed that during active phases the stellar wind from the hot star is significantly enhanced to a few \(10^{-7} - 10^{-6} \) M⊙yr\(^{-1}\) (Skopal 2006).

In our work we decided to test the idea if this enhanced wind from the hot star can be responsible for creation of the shielding disk-like structure around the hot star during active phases. Further, we calculated the column density of the neutral hydrogen atoms throughout the whole disk in direction of the central star and the emission measure of the ionized wind from the hot star and compared our results with quantities derived from observations during active phases. We found a good agreement.

2. WIND COMPRESSION MODEL

Wind compression model was developed by Bjorkman & Cassinelli (1993). This model describes the compression of the radiation driven wind from the rotating hot star towards the equatorial regions. The outflowing material is bent towards the equatorial plane due to the conservation of the angular momentum. If the streamlines of gas do not cross the equatorial plane, then we are talking about the wind compressed zone (WCZ) model, which was described by Ignace, Cassinelli and Bjorkman (1996). We applied this model to the stellar wind from the hot star in symbiotic binaries during active phases.

Density in the compressed wind follows from the mass continuity equation as

\[
N_\text{H}(r, \theta) = \frac{\dot{M}}{4\pi r^2 \mu_n m_\text{H} v_r(r)} \left(\frac{d\mu}{d\mu_0} \right)^{-1},
\]

where \(\dot{M}\) is the mass loss rate of the hot star and the compression of the wind is given by the geometrical factor \(d\mu/d\mu_0\). This factor depends on the rotational velocity of the hot star as well as on the parameters of the wind. For the wind velocity \(v_r(r)\) we adopted \(\beta\)-law. More details about the wind compression model can be found in Lamers & Cassinelli (1999).

3. IONIZATION STRUCTURE IN THE WIND

The ionization boundary is defined by the locus of points at which ionizing photons are completely consumed along path outward from the ionizing star. We calculated the ionization boundary in the wind from the hot star using the equation of the photoionization equilibrium. This equation equals the number of ionizations per second with the number of recombinations per second. For the simplicity, we assumed that the wind from the hot star contains only hydrogen atoms. We derived an equation for determining the ionization radius (i.e. the ionization boundary in the direction given by the polar angle \(\theta\)), which can formally be written as

\[
X = f(u, \theta, a, v_\infty, \beta, v_\text{rot}),
\]

where \(u, \theta\) are polar coordinates (\(\theta = 0\) at the rotational axis), \(a, v_\infty, \beta\) are parameters of the wind, \(v_\text{rot}\) is the rotational velocity of the hot star, and the
Formation of neutral disk-like zone around the hot star during active phases

Parameter X is given by

$$X = \frac{8\pi \mu m_\text{H}^2}{\alpha_B} R_\ast \left(\frac{v_\infty}{M}\right)^2,$$

(3)

where L_H is the rate of photons from the hot star, capable of ionizing hydrogen (it is given by the temperature T_h and luminosity L_h of the ionizing source) and α_B is the total hydrogenic recombination coefficient in case B. Most of the parameters of the hot star and its wind can be determined from observations. However, the rotational velocities of the hot stars in symbiotic binaries are not commonly known. We calculated models for different rotational velocities from 100 to 350 km s$^{-1}$. Figure 1 shows some examples of the calculated ionization boundaries for two different rotational velocities of the hot star, i.e. 200 and 300 km s$^{-1}$, respectively.

There is only a certain range of values of the parameter X, for which the neutral disk-like structure can be created near to the equatorial plane of the hot star. For higher rotational velocities of the hot star (i.e. higher compression of the stellar wind towards the equatorial plane) this range is wider. For a given rotational velocity, small values of the parameter X (~ 200) correspond to ionization boundaries, which are enclosed in the vicinity of the hot star. On the other hand, increasing value of X corresponds to moving the ionization boundary away from the vicinity of the hot star, as well as to decreasing the opening angle of the neutral disk-like zone until it disappears for very high values of X. However, particular values depend also on the parameters of the wind from the hot star.
Fig. 2. The value of the parameter X as a function of the mass loss rate M, of the hot star for two different combinations of the temperature T_h and luminosity L_h, derived by Sokoloski et al. (2006) for the hot component in Z And during its 2000-03 outburst. The shadow belt corresponds to $X = 300 - 500$ from Fig. 1, which lead to creation of the neutral disk-like zone.

4. DISCUSSION

4.1. Quiescent phase versus active phase

According to Eq. (3), the parameter X strongly depends on the mass loss rate of the hot star \dot{M} as

$$X \propto \frac{1}{\dot{M}^2}. \quad (4)$$

Other parameters in Eq. (3) do not change significantly between quiescent and active phase.

Typical mass loss rate of the hot star during active phase is $\sim (10^{-7} - 10^{-6}) \, M_\odot \, yr^{-1}$, while during quiescent phase it decreases to a few $\times (10^{-8}) \, M_\odot \, yr^{-1}$ (Skopal 2006). Figure 2 shows the dependence of the parameter X on the mass loss rate of the hot star (all other parameters were fixed to typical values during the active phase, e.g. $v_\infty = 2000 \, km \, s^{-1}$). We used two different combinations of temperature T_h and luminosity L_h of the hot star during active phase, which were derived by Sokoloski et al. (2006) for Z And during its 2000-03 outburst.

Our calculations (Fig. 1) showed that creation of the neutral disk-like structure requires values of the parameter X to be of the order of hundreds. According to Fig. 2, such the quantity of the parameter X corresponds to mass loss rates of a few $\times (10^{-7} - 10^{-6}) \, M_\odot \, yr^{-1}$, which are consistent with those derived independently from the broad Hα wings during active phase. Thus the neutral disk-like zone can be created during active phases as a result of the enhanced wind from the hot star. In contrast, during quiescent phases, the measured quantities $\times (10^{-8} - 10^{-7}) \, M_\odot \, yr^{-1}$, correspond to $X \sim 10^4 - 10^6$, which are far beyond any possibility to
Formation of neutral disk-like zone around the hot star during active phases

Fig. 3. An example of the ionization structure in the enhanced wind from the hot star during active phase calculated for $v_{\text{rot}} = 200$ km s$^{-1}$ and $X = 400$. The hot star is denoted by the black filled circle and the neutral zone (H I) is drawn in grey. Its shape resembles a flared disk. The optically thick part of this neutral zone is drawn in dark grey. The boundary between the grey and dark grey region mimics the false photosphere. In the symbiotic binaries with high orbital inclination we are looking at this false photosphere, which radiates at significantly lower temperature than the central hot star. The ionized zone (H II) is located above and below the neutral disk-like structure and can be associated with the hot star wind (black arrows).

form a neutral disk-like zone around the hot star.

4.2. Model versus observations

Figure 3 shows an example of the ionization structure around the hot star during active phases calculated for the density distribution in the wind according the WCZ model (Section 2). It is similar to the schematic model proposed on the basis of multiwavelength modelling the spectral energy distribution of symbiotic binaries (see Fig. 27 of Skopal 2005).

In this section we compare the column density of neutral hydrogen atoms and the emission measure of the wind of our theoretical model with those derived from observations during active phases.

Modelling the spectral energy distribution of symbiotic binaries showed that there is a large amount of the neutral hydrogen near to the orbital plane of the binary. Column densities of the neutral hydrogen atoms derived directly from the ultraviolet spectra, run between $\sim 10^{21}$ and a few $\times 10^{23}$ cm$^{-2}$ (Skopal 2005). This large amount of the neutral material can be detected during active phases even near the orbital phase $\phi \sim 0.5$ (i.e. when the hot star is in front of the cool giant).

Further, this modelling the spectral energy distribution showed that the emission measure of the enhanced wind from the hot star during active phases runs between a few $\times 10^{58}$ and a few $\times 10^{60}$ cm$^{-3}$ (Skopal 2005).

Theoretical column density of the neutral hydrogen $N(\theta)$ in the direction θ
Fig. 4. Examples of the calculated column densities $N(\theta)$ of the neutral hydrogen atoms as a function of the radial distance from the centre of the hot star for two different rotational velocities, 200 and 300 km s$^{-1}$. The angle between the polar axes of the hot star and the line of sight was $\theta = \pi/2$ (equatorial plane) for the left panel and $\theta = \pi/3$ for the right one. For this calculations we assumed that the mass loss rate of the hot star is $10^{-6} M_\odot$ yr$^{-1}$ and the radius of the hot star is 0.18 R_\odot.

Fig. 5. Two examples of the calculated emission measures EM of the wind from the hot star as a function of the radial distance from the centre of the hot star. The emission measures were calculated for the hot star with the mass loss rate $10^{-6} M_\odot$ yr$^{-1}$. Further, we assumed that the radius of the hot star is 0.18 R_\odot and the boundary between neutral and ionized zone is given by the polar angle $\theta = \pi/3$.
Throughout the neutral zone was calculated as

\[N(\theta) = \int_{r} N_{\text{H}}(r, \theta) \, dr, \]

(5)

where \(N_{\text{H}}(r, \theta) \) is the density of the neutral hydrogen given by Eq. (1). Figure 4 shows examples of the calculated column densities of the neutral hydrogen as a function of the radial distance from the centre of the hot star for two different rotational velocities of the hot star, 200 and 300 km s\(^{-1}\). Since the radius of the false photosphere can be in the order of tenths of solar radii, we can easily see that the calculated values of the column densities of the neutral hydrogen are in a good agreement with those derived from observations.

Theoretical emission measure \(EM \) of the ionized wind from the active hot star was calculated throughout the ionized zone as

\[EM = \int_{V} N_{\text{H}}^{2}(r, \theta) \, dV, \]

(6)

where \(N_{\text{H}}(r, \theta) \) is the density of the ionized hydrogen given by Eq. (1). In spherical coordinates the volume element \(dV \) is

\[dV = r^{2} \sin \theta \, dr \, d\theta \, d\phi. \]

(7)

The density distribution in the WCZ model is azimuthally symmetric. Therefore Eq. (6) can be simplified to

\[EM = 2\pi \int_{r} \int_{\theta} N_{\text{H}}^{2}(r, \theta) \, r^{2} \sin \theta \, dr \, d\theta. \]

(8)

Figure 5 shows two examples of the calculated emission measures as a function of the radial distance from the centre of the hot star for two different rotational velocities, 200 and 300 km s\(^{-1}\). From Fig. 5 we can see that the calculated values of the emission measure of the ionized wind from the hot star are in a good agreement with the observed quantities.

5. CONCLUSION

We found that the compression of the enhanced stellar wind in active phases from the rotating hot star towards equatorial regions can lead to the creation of the neutral disk-like structure around the hot star near the orbital plane. Figure 1 shows some examples of ionization boundaries in the wind from the active hot star in symbiotic binaries calculated for the density distribution within the WCZ model. In symbiotic binaries with high orbital inclination we are viewing through this neutral disk-like zone.

Theoretical ionization structure (e.g. Fig. 3), which we calculated using the WCZ model, is consistent with that derived on the basis of the multiwavelength modelling the spectral energy distribution of symbiotic binaries during active phases (see Fig. 27 of Skopal 2005). Also the calculated column density of the neutral hydrogen atoms throughout the neutral zone and the emission measure of the ionized region are in a good agreement with the quantities derived from observations during active phase. The large value of the mass loss rate of the hot
star during active phases, a few \(\times (10^{-7} - 10^{-6})\) M\(_{\odot}\) yr\(^{-1}\), derived from the broad H\(_{\alpha}\) wings (Skopal 2006) support the plausibility of the used model.

We explained that due to a low mass loss rate from the hot star, no neutral disk-like structure can be created during quiescent phases.

ACKNOWLEDGMENTS. This research was supported by a grant of the Slovak Academy of Sciences, VEGA No. 2/0038/10.

REFERENCES
Bjorkman, J. E., Cassinelli, J. P. 1993, ApJ, 409, 429
Ignace, R., Cassinelli, J. P., Bjorkman, J. E. 1996, ApJ, 459, 671
Lamers, H. J. G. L. M., Cassinelli, J. P. 1999, Introduction to stellar winds, Cambridge University Press
Seaquist, E. R., Taylor, A. R., & Button, S. 1984, ApJ, 284, 202
Skopal, A. 2005, A&A, 440, 995
Skopal, A. 2006, A&A, 457, 1003
Sokoloski, J. L., Kenyon, S. J., Espey, B. R. et al. 2006, ApJ, 636, 1002