Search for a light extra gauge boson in Littlest Higgs model at a linear collider

Gi-Chol Cho
Department of Physics, Ochanomizu University,
Tokyo, 112-8610, Japan

Aya Omote
Graduate School of Humanities and Sciences,
Ochanomizu University, Tokyo, 112-8610, Japan

Littlest Higgs model predicts some extra particles beyond the Standard Model. Among them, an extra neutral gauge boson A_H is lightest and its mass could be a few hundred GeV. We study production and decay of A_H at future e^+e^- linear collider and compare them with those of Z' bosons in supersymmetric (SUSY) E_6 models. We find that, if the extra gauge boson mass is smaller than \sqrt{s} of the linear collider, the forward-backward asymmetries of b- and c-quarks at the A_H pole differ significantly from those given by the Z' bosons, and are useful to test the littlest Higgs model and SUSY E_6 models.

Since such an experimental signature of the A_H boson is quite similar to a Z' boson in models which have an extra $U(1)$ gauge symmetry, it is very important to identify the models if an extra neutral gauge boson is discovered in hadron collider experiments such as Tevatron Run-II or LHC. The discovery limit of the Z' boson at the LHC experiment is expected to be roughly 3 TeV \sqrt{s}. However, it is hard to test the Z' models at the hadron colliders. On the other hand, an e^+e^- linear collider can play a complementary role for such purpose. In this paper, we would like to study production and decay of A_H in the littlest Higgs model at a future e^+e^- linear collider. In particular, we compare the experimental signatures of A_H and those of Z' boson in supersymmetric E_6 models, and examine a possibility to distinguish these models in the linear collider experiments. In our study, we assume that Tevatron or LHC discovers a certain Z' boson whose mass is smaller than \sqrt{s} of the linear collider. Then we can study the Z' boson at the linear collider by tuning the e^+e^- beam energy at the peak of Z' resonance. We will show that the forward-backward asymmetry of c-quark is useful to test if the Z' boson is A_H in the littlest Higgs model or one of the SUSY E_6 models.

Since the littlest Higgs model has the gauge symmetry $[SU(2) \times U(1)]^2$ at high energy scale, there are two $SU(2)$ gauge bosons W_1, W_2 and $U(1)$ gauge bosons B_1, B_2. The global $SU(5)$ symmetry breaking at the scale Λ induces the following mixing among them:

\[
\begin{pmatrix}
W^a
\hline
W'^a
\end{pmatrix} = \begin{pmatrix}
s_\theta & c_\theta \\
-c_\theta & s_\theta
\end{pmatrix} \begin{pmatrix}
W_{1a} \\
W'_{2a}
\end{pmatrix},
\]

\[
\begin{pmatrix}
B
\hline
B'
\end{pmatrix} = \begin{pmatrix}
s_{\theta'} & c_{\theta'} \\
-c_{\theta'} & s_{\theta'}
\end{pmatrix} \begin{pmatrix}
B_1 \\
B_2
\end{pmatrix},
\]

where W^a and B are $SU(2)_L$ and $U(1)_Y$ gauge bosons in the SM, respectively. They are massless at this stage while W'^a and B' are massive. Note that we use the shorthand notation $s_\theta \equiv \sin \theta$, $c_\theta \equiv \cos \theta$, $s_{\theta'} \equiv \sin \theta'$, $c_{\theta'} \equiv \cos \theta'$. After the electroweak symmetry is broken, the massless gauge bosons will acquire masses and...
be mixed with W'^a and B'. The mass eigenstates for charged and neutral gauge bosons are obtained by introducing unitary matrices U_W and U_N as:

$$
\begin{pmatrix}
W_L \\
W_H
\end{pmatrix} = U_W \begin{pmatrix}
W \\
W'
\end{pmatrix}, \quad (A_L, Z_L, A_H, Z_H)^T = U_N (B, W^3, B', W'^3)^T
$$

The explicit expressions of the unitary matrices U_W, U_N and the mass eigenvalues of gauge bosons can be found in ref. [5].

The interaction of A_H to a fermion f in the SM is described by the following Lagrangian [5]:

$$
\mathcal{L} = -\frac{g_Y}{2s_Yc_Y} Q_{f\alpha}^{A_H} T^{\alpha\gamma\mu}_f A_H \gamma^\mu f_\alpha A_H, \quad (5)
$$

where $\alpha(L, R)$ denotes the chirality of fermion f.

We summarize the charge $Q_{f\alpha}^{A_H}$ for the fermion f_α in Table II which is obtained by taking account of the $[SU(2) \times U(1)]^Z$ anomaly cancellation without introducing any chiral fermions beyond the SM.

Next let us briefly review the supersymmetric E_6 models to fix our notation [4]. Since the rank of E_6 is six, it has two $U(1)$ factors besides the SM gauge group which arise from the following decompositions:

$$
E_6 \supset SO(10) \times U(1)_\psi \supset SU(5) \times U(1)_X \times U(1)_{\psi}. \quad (6)
$$

An additional Z' boson in the electroweak scale can be parametrized as a linear combination of the $U(1)_\psi$ gauge boson Z_ψ and the $U(1)_X$ gauge boson Z_X as:

$$
Z' = Z_\psi \cos \beta_E + Z_X \sin \beta_E. \quad (7)
$$

There are four Z' models, which are called χ, ψ, η and ν models, corresponding to the different value of the mixing angle β_E. The interaction of Z' boson with the fermion f is described as:

$$
\mathcal{L} = -\frac{g_E}{\sqrt{2}} Q_{f\alpha}^{Z'} f_\alpha A_H \gamma^\mu f_\alpha A_H \gamma^\mu f_\alpha A_H \gamma^\mu \quad (8)
$$

where g_E denotes the extra $U(1)$ gauge coupling constant.

The extra $U(1)$ charge $Q_{f\alpha}^{Z'}$ for the SM quarks and leptons in four Z' models are summarized in Table III.

It should be noted that not only in the littlest Higgs model but also in the SUSY E_6 models, the extra neutral gauge boson can mix with the SM Z boson after the electroweak symmetry breaking. Such mixing is, however, severely constrained from the experimental data of the electroweak precision measurements at the Z-pole [10], and we assume that the mixing is small enough to neglect in our study.

![FIG. 1: The peak cross section of $e^+e^-\rightarrow \mu^+\mu^-$ at the A_H or Z' pole in the littlest Higgs model (solid line) and SUSY E_6 models as functions of A_H (or Z') mass. The mixing angle θ' in the littlest Higgs model is fixed by $\tan \theta' = 0.5$.](image)

![TABLE II: The hypercharge Y and the extra U(1) charge Q_E of SM quarks and leptons in SUSY E_6 models. The value of extra U(1) charge follows the hypercharge normalization.](table2)

Field	Y	Q	Q_E
u_R	$2/3$	1	-1
e_R	-1	1	-1
L	-1/2	3	1
d_R	-1/3	-3	1

![TABLE I: Charge $Q_{f\alpha}^{E_6}$ for quarks and leptons. L and Q denote the SU(2)$_L$ doublet lepton and quark, respectively. The charges are determined to satisfy the [SU(2) x U(1)]Z anomaly free condition without introducing any chiral fermions beyond the SM.](table1)

Field	Charge	L	Q	$Q_{f\alpha}^{E_6}$
u_R	$2/3$	1	-1	
e_R	-1	1	-1	
L	-1/2	3	1	
d_R	-1/3	-3	1	

![FIG. 1: The peak cross section of $e^+e^-\rightarrow \mu^+\mu^-$ at the A_H or Z' pole in the littlest Higgs model (solid line) and SUSY E_6 models as functions of A_H (or Z') mass. The mixing angle θ' in the littlest Higgs model is fixed by $\tan \theta' = 0.5$.](image)

![FIG. 1: The peak cross section of $e^+e^-\rightarrow \mu^+\mu^-$ at the A_H or Z' pole in the littlest Higgs model (solid line) and SUSY E_6 models as functions of A_H (or Z') mass. The mixing angle θ' in the littlest Higgs model is fixed by $\tan \theta' = 0.5$.](image)

![FIG. 1: The peak cross section of $e^+e^-\rightarrow \mu^+\mu^-$ at the A_H or Z' pole in the littlest Higgs model (solid line) and SUSY E_6 models as functions of A_H (or Z') mass. The mixing angle θ' in the littlest Higgs model is fixed by $\tan \theta' = 0.5$.](image)
where Γ_ℓ is the partial decay width of $V \to f \bar{f}$ and Γ_V is the total decay width of V. The coupling $g_\alpha^f(\alpha = L, R)$ in (10) follows the normalization

$$L = -g_\alpha^f \frac{\Gamma_\alpha^f}{\Gamma_V} f_\alpha V_\mu.$$

We note that σ_{peak}^f does not depend on the gauge coupling (g_Y in the littlest Higgs model, g_E in SUSY E_6 models) because it is canceled in (11). In Fig. 1 we show the peak cross section of $e^+e^- \to \mu^+\mu^-$ in the littlest Higgs model and SUSY E_6 models as a function of extra gauge boson mass $m_{A_H}(m_{Z'})$. The prediction of the littlest Higgs model is shown for $\tan \theta' = 0.5$ as an example. The peak cross section in the littlest Higgs model is roughly a few hundred pb, which is a few times larger than those in SUSY E_6 models, so the cross section measurement seems to be useful to test the models at the linear collider with $100 fb^{-1}$ integrated luminosity.

![Graph showing peak cross section of $e^+e^- \to \mu^+\mu^-$](image)

FIG. 2: The peak cross section of $e^+e^- \to \mu^+\mu^-$ in the littlest Higgs model (solid line) and SUSY E_6 models as functions of the mixing angle θ'. The mass of A_H (or Z') is fixed at 750 GeV.

Next we show the peak cross section of $e^+e^- \to \mu^+\mu^-$ in the littlest Higgs model as a function of the mixing angle θ' in Fig. 2. The mass of A_H is fixed at 750 GeV as an example. For comparison, we depict the predictions of SUSY E_6 models in the same figure. We can see in the figure that the peak cross section in the littlest Higgs model rapidly decreases around $\tan \theta' = 1.2$. This is because that the left- and right-handed electron couplings to A_H are given by (see Table I)

$$Q_{eL}^A = \frac{1}{2} Q_{eR}^A = \frac{1}{2 s_{\theta'} c_{\theta'}} \left(-\frac{2}{5} + c_{\theta'}^2 \right),$$

and they diminish for $c_{\theta'}^2 \sim 2/5$, which corresponds to $\tan \theta' \sim 1.2$. Therefore, even if the result of peak cross section measurement is consistent with one of SUSY E_6 models, there is still a possibility of the littlest Higgs model, and we should find another observable to test the models.

The forward-backward (FB) asymmetry of the $e^+e^- \to f\bar{f}$ process does not have the θ' dependence. Using the couplings defined in (11), the FB asymmetry at the pole of $A_H(Z')$ can be expressed as

$$A_{\text{FB}}^f = \frac{3}{4} A^e A^f,$$

$$A^f = \frac{(g_{1f}^f)^2 - (g_{3f}^f)^2}{(g_{1f}^f)^2 + (g_{3f}^f)^2}.$$ (14)

When we write the right-handed coupling g_R^f as

$$g_{1f}^f = r_f g_{1L}^f,$$ (15)

the asymmetry parameter A^f is expressed as follows

$$A^f = \frac{1 - r_f^2}{1 + r_f^2}.$$ (16)

In the littlest Higgs model, the coupling g_{1L}^f is replaced by $g_Y Q_{eL}^A (m_{Z'})/(2 s_{\theta'} c_{\theta'})$ (see eq. (13)), so the parameter r_f for $f = \mu, \mu$ is independent of θ';

$$r_f = (r_e, r_\mu, r_d) = (2, 4, -2).$$ (17)

The FB asymmetry, therefore, is a good observable to compare the littlest Higgs model and the SUSY E_6 models. We show the FB asymmetry for the muon, c-quark and b-quark in the littlest Higgs model and the SUSY E_6 models in Fig. 3. The numbers of the asymmetries in each model are summarized in Table II. It is remarkable that the asymmetries in the ψ model are zero because the extra U(1) charge assignments on the SM fermions are parity invariant. Beside on the ψ-model, the difference of predictions between the littlest Higgs model and the SUSY E_6 models are very clear in the b- and c-quark asymmetries. In the b-quark FB asymmetry, the littlest Higgs model predicts a positive value while the SUSY E_6 model is negative one. Especially, it is noticeable that there is no c-quark asymmetry in the SUSY E_6 models though the littlest Higgs model gives a 40% asymmetry. The reason why the FB asymmetry of c-quark vanishes in SUSY E_6 models is as follows. As shown in eq. (11), the FB asymmetry is given by the difference of the couplings between the left- and right-handed fermions to the Z' boson. In SUSY E_6 models, both left- and right-handed c-quarks are embedded in the same multiplet, 10 representation in SU(5), so that they have a common coupling which leads to no asymmetry. Fig. 3 tells us that the measurements of b- and c-quark asymmetries in a few % accuracy is enough to test if a Z' boson is A_H in the littlest Higgs model or one of the SUSY E_6 models.

In summary, we have studied a possibility to test the littlest Higgs model and the SUSY E_6 models through...
FIG. 3: The forward-backward asymmetry of muon (top), b-quark (middle) and c-quark (bottom) at the Z' pole in the littlest Higgs model and SUSY E_6 models. The predictions of littlest Higgs model is shown by solid circles, while those of SUSY E_6 models are given by squares (χ-model), diamonds (ψ-model), upward triangles (η-model) and downward triangles (ν-model).

have same couplings to the Z' boson due to the SU(5) GUT symmetry. The measurements of FB-asymmetries for heavy quarks are, therefore, very useful to test if the Z' boson is A_H in the littlest Higgs model or one of the SUSY E_6 models.

If the measurements of FB-asymmetries are consistent with the prediction of the littlest Higgs model, one should determine the couplings of fermion pairs to the A_H boson for completeness. We briefly comment on this possibility before close our paper. From the data of $A_{FB}^{\mu}, A_{FB}^{b}, A_{FB}^{c}$, we can obtain the parameter r_{e}, r_{u}, r_{d}, respectively, where we assume that the couplings are universal for each generation. Taking account of the r_f-parameters, the absolute values of the left- and right-handed couplings can be extracted from the partial decay width of $A_H \rightarrow f\bar{f}$ (10). In order to fix the sign of the couplings, the interference effect between A_H and the SM Z boson in the cross section of $e^+e^- \rightarrow f\bar{f}$ at the off-resonance of A_H should be measured very precisely.

Acknowledgments

The work of G.C.C is supported in part by the Grant-in-Aid for Science Research, Ministry of Education, Science and Culture, Japan (No.13740149).
[1] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513, 232 (2001).
[2] N. Arkani-Hamed, A. G. Cohen, T. Gregoire and J. G. Wacker, JHEP 0208, 020 (2002).
[3] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and J. G. Wacker, JHEP 0208, 021 (2002).
[4] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207, 034 (2002).
[5] T. Han, H. E. Logan, B. McElrath and L. T. Wang, Phys. Rev. D 67, 095004 (2003).
[6] J. L. Hewett, F. J. Petriello and T. G. Rizzo, JHEP 0310, 062 (2003).
[7] I. Golutvin, P. Moissenz, V. Palichik, M. Savina and S. Shmatov, hep-ph/0310336.
[8] J. A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], “TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider,” hep-ph/0106315.
[9] For reviews, see, J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989); G. C. Cho, Mod. Phys. Lett. A 15, 311 (2000).
[10] G. C. Cho, K. Hagiwara and Y. Umeda, Nucl. Phys. B 531, 65 (1998) [Erratum-ibid. B 555, 651 (1999)].