Interpocket polarization model for magnetic structures in rare-earth hexaborides

Yoshio Kuramoto* and Katsunori Kubo†

Department of Physics, Tohoku University, Sendai 980-8578

(Received)

The origin of peculiar magnetic structures in cubic rare-earth (R) hexaborides RB$_6$ comes mainly from the rich structure in their ordered phases. The best studied example is CeB$_6$ which undergoes a quadrupole (orbital) order at 3.3 K and then a magnetic order at 2.4 K.1 The magnetic ground state is characterized by double-k structure with wave vectors (1/4, ±1/4, 1/2) in units of the reciprocal lattice parameter 2π/a. Since the orbital order is superimposed on the magnetic order, it has been suspected that the orbital degeneracy in the crystalline electric field (CEF) ground state Γ_8 plays an important role.2 Recently, however, neutron scattering experiment on GdB$_6$ has detected an equivalent wave vector in the ordered phase below 15 K.3 Since the trivalent Gd ion has a half-filled 4f shell without orbital degrees of freedom, the order at $k = (1/4, 1/4, 1/2)$ should have an origin which does not depend so much on the particular configuration of 4f electrons. It is known that PrB$_6$ also has the same wave number in the magnetically ordered ground state below 4.2 K, but the intermediate phase between 4.2 K and 6.9 K has an incommensurate structure.4 On the other hand, the ground state of NdB$_6$ has a simple antiferromagnetic structure called the type I (or A-type) with alternating plane polarized along and against (0,0,1).5,6

In this paper we propose a simple model to understand the origin of these structures from a unified point of view. The basic observation is that the Fermi surface of RB$_6$ consists of three nearly spherical pieces centered on the X points $X_x = (1/2, 0, 0)$, $X_y = (0, 1/2, 0)$, $X_z = (0, 0, 1/2)$ in the Brillouin zone. The RKKY interaction involves interpocket polarization, which has a new characteristic wave vector $K_3 = (1/2, 1/2, 0)$ which connects X_x and X_y, and equivalent ones. Just like the ordinary RKKY interaction can bring about the antiferromagnetic ordering by halving the reciprocal lattice vector, the halving of the characteristic wave vector $(1/2, 1/2, 0)$ can bring about the ordering at (1/4, 1/4, 1/2).

Let us consider the case of GdB$_6$ where the 4f electrons have only the spin degrees of freedom. The exchange interaction between a 4f-spin S_i at R_i and conduction electrons is taken to be

$$H_{df} = \frac{J}{N} \sum_{k,p} \sum_i W_{k,p} \epsilon^{(p-k)}(R_i) S_i \cdot \sigma_{\alpha\beta} c^\dagger_{k\alpha} c_{p\beta}, \quad (1)$$

where N is the number of lattice sites, and $JW_{k,p}$ is determined by the exchange integral involving 4f wave functions and the conduction states. We follow the previous argument7 to derive $JW_{k,p}$. In analogy with the APW method we consider a muffin-tin sphere centered at the origin. The Bloch function $\psi_k(r)$ of the conduction band is expanded inside the sphere as

$$\psi_k(r) = \frac{1}{\sqrt{N}} \sum_\lambda R_{k\lambda}(r) \sum_\Gamma Y^{(\lambda)}_{\Gamma\gamma}(\hat{r}), \quad (2)$$

where $R_{k\lambda}(r)$ describes the radial part with orbital index λ and $Y^{(\lambda)}_{\Gamma\gamma}(\hat{r})$ is the cubic harmonics for the point-group representation Γ and its component γ. We neglect the k-dependence of $R_{k\lambda}(r)$ since the extent of 4f electrons is smaller than that of 5d electrons which contribute dominantly to the exchange. Because the orbital angular momentum is zero in Gd$^{3+}$, the exchange integral becomes diagonal with respect to the azimuthal quantum number of 4f states, and to (Γ, γ). Thus the exchange interaction becomes isotropic with a factor

$$W_{k,p} = \sum_{\Gamma\gamma} d^{(5d)}_{\Gamma\gamma}(k) d^{(5d)}_{\Gamma\gamma}(p). \quad (3)$$

The RKKY interaction $I(q)$ is given by

$$I(q) = \frac{2J^2}{N} \sum_k |W_{k,k+q}|^2 \left(\frac{f(\epsilon_{k+q}) - f(\epsilon_k)}{\epsilon_k - \epsilon_{k+q}} \right)$$

with $f(\epsilon)$ being the Fermi function. The intrapocket contribution to $I(q)$ comes from such k and $k + q$ that belong to the same pocket of the conduction band. In addition, there arises the interpocket contribution explained earlier. Let us take the free-electron-like dispersion and set $|W_{k,k+q}|^2$ constant in order to see the consequence of the interpocket contribution in the simplest manner.
In order to keep the lattice periodicity, we take summation over the reciprocal lattice vectors G rather than restricting the k-summation within the Brillouin zone. The G-summation corresponds to inclusion of higher energy bands. Namely we introduce

$$\hat{\Pi}(q) = \sum_G F(q + G)\Pi(q + G),$$

where $F(q + G)$ is a form factor to be specified later, and $\Pi(q)$ is the Lindhard function multiplied by the partial density of states at the Fermi level. The Fermi wave number k_F is given by $k_F a / \pi = 0.9656 / \sqrt{2}$, which means that the three spherical Fermi surfaces barely touch with one another. In the real RB$_6$ system, the Fermi surface also contains a fine structure along $(1, 1, 0)$ and equivalent directions $^8, ^9$

Adding both intrapocket and interpocket contributions we obtain for $q \in$ Brillouin zone:

$$I(q) = J^2 \left[3\hat{\Pi}(q) + 2 \sum_{i=1}^{3} \hat{\Pi}(q - K_i) \right] \equiv J^2 \chi(q),$$

where $3\hat{\Pi}(q)$ accounts for the three equivalent pockets, and $\hat{\Pi}(q - K_i)$ describes the interpocket polarization. The K_i‘s are given by $K_1 = (0, 1/2, 1/2), K_2 = (1/2, 0, 1/2), K_3 = (1/2, 1/2, 0)$ in units of $2\pi / a$. The factor 2 for the interpocket term enters because each pocket can be both starting and ending states of the transition. For simplicity we take the form factor such that $F(k) = 1$ if $|k_\alpha| < 6\pi / a$ for all components $\alpha = x, y, z$ and zero otherwise. The choice of the cut-off in the form factor hardly influences the q-dependence of the RKKY interaction, although it does influence the absolute value. Specifically with $F(q + G) = 1$ for all G, $\hat{\Pi}(q)$ diverges logarithmically by summation over G.

Figure 1 shows $\chi(q)$ in the X-M-R plane of the Brillouin zone with $X = (0, 0, 1/2), M = (1/2, 0, 1/2)$ and $R = (1/2, 1/2, 1/2)$. The unit of ordinate is such that $\Pi(0) = 1$, and the large numerical value of $\chi(q)$ comes from summation over G. For the intersite interaction, only the variation in the q-space is relevant since the average of $\chi(q)$ represents the intra-site contribution.

We have also made a scan of $\chi(q)$ along $(1/4, 1/4, q_z)$ and found that the peak indeed occurs at $q_z = 1/2$. It is apparent that the interaction favors the magnetic order near the center of the X-M-R plane, namely around $(1/4, 1/4, 1/2)$. Since the ridge extends more toward M rather than R, an incommensurate structure with $q_z \neq q_x$ can be realized by slight change of the system parameters.

We now analyze in more detail the character of the conduction band, which consists mainly of t_{2u} molecular orbitals of 2p electrons in B$_6$ clusters hybridized with e_g orbitals of 5d electrons. One of the t_{2u} orbitals has the angular dependence $z(x^2 - y^2)$ if seen from the center of the B$_6$ cluster, and hybridizes best with the 5d $x^2 - y^2$ orbital at neighboring rare-earth sites. Since $z(x^2 - y^2)$ changes sign below and above the B_4 plane, the wave number $(0, 0, 1/2)$ gains the bonding energy optimally. Therefore the bottom of the conduction band goes to X_z and equivalent points. For $\Gamma = e_g$ we use a simplified notation $(\gamma | k) = \Delta^{(5d)}_\gamma (k)$ with γ being either the state $x^2 - y^2$ or $3z^2 - r^2$. Then we have a large amplitude $(x^2 - y^2|X_z)$, while $(3z^2 - r^2|X_z)$ is negligible. At another point $X_x = (1/2, 0, 0)$, the wave function has the character of $y^2 - z^2$ which can also be represented by

$$|y^2 - z^2| = -\frac{1}{2}(x^2 - y^2) - \sqrt{3}/2(3z^2 - r^2),$$

with use of the basis set at X_z. Thus the orbital flip from $|x^2 - y^2| \rightarrow |y^2 - z^2|$ can take place even with the cubic symmetry. We note that the finite overlap does not contradict with the orthogonality of Bloch functions with different k.

The relative weight of the interpocket polarization against the intrapocket one should influence the detailed behavior of $I(q)$. We estimate from the above argument the weight factor $W_{k,p}$ for $k = X_z$ and $p = X_x$ relative to $W_{k,k}$ as

$$W_{k,p}/W_{k,k} \sim -1/2.$$

These points X_z and X_x, however, are not on the Fermi surface. In the region where two pieces of the Fermi sur-
face almost touch with each other, the interpocket con-
tribution connecting the nearby \(k \) states should have a
larger weight factor than the intrapocket one with remote
\(k \) and \(p \). We have made a tight-binding calculation tak-
ing the \(e_g \) and \(t_{2g} \) orbitals, and examined the character
of the wave functions at various points in the Brillouin
zone. It is found that 2p-electron weight is larger than the
5d-electron weight in general, and the latter changes gradu-
ally from \(|x^2 - y^2| \) to \(|y^2 - z^2| \) as \(k \) moves from
\(X_2 \) to \(X_3 \). In a future work, we shall evaluate \(W_{k,p} \) by
using realistic wave functions.

The presence of orbital degeneracy in rare-earth ions
other than Gd makes it necessary to consider more com-
plicated form of \(H_{df} \). Namely not only the spin exchange
interaction but multipole interactions also enter.\(^7,10,11\)
As long as the conduction band consists purely of \(e_g \)
for the 5d electron part, the wave-number dependence of the
multipole intersite interactions is the same as that of the
exchange interaction. Actually, however, \(t_{2g}(= \Gamma_5) \) also
enters into eq.(2). In the presence of orbital degener-
cy, \(W_{k,p} \) is no longer given by eq.(3) but with different
weights for each \(\Gamma_i \).\(^7\) Moreover, hybridization between 4f
electrons and boron 2p electrons may become important
in the open-shell case. The hybridization constitutes an-
other mechanism of the intersite interaction.

With these complications in mind we proceed to anal-
ysis of the exchange interaction in NdB\(_6\) where the spin-
wave spectrum has been measured. The dipole part of
\(H_{df} \) can be taken in the same form as eq.(1) except that
\(S_i^z \) is replaced by the angular momentum operator \(J_i \)
with \(J = 9/2 \). With only the magnetic intersite inter-
action, the easy axis of the magnetic moment should be
along \((1,1,1)\).\(^12\) Actually the moment is parallel or an-
tiparallel to \((0,0,1)\), which has been explained in terms of
ferroquadrupolar interaction.\(^13,14\) With inclusion of the
magnetic and \(\Gamma_3 \)-type quadrupolar interactions, we
consider the following model:

\[
H = - \sum_{i,j} I_{ij} J_i \cdot J_j - g_0^3 \sum_i \left((O_2^0)^2 O_2^{0i} + 3(O_2^0 O_2^{0i}) \right),
\]

where we assume that the average of the quadrupole
moment does not depend on a site. Other interactions such
as the \(\Gamma_5 \)-type quadrupolar interaction\(^15\) are neglected
since they do not affect the spin-wave spectrum.

The CEF ground state is \(\Gamma_8^{(2)} \), which is four-fold de-
generate, and the first excited state lies 132-135 K
above.\(^13,16\) We introduce the Pauli matrix \(\sigma^\alpha (\alpha = \sigma \)
\(x, y, z \)) to describe the Kramers pair, and another Pauli
matrix \(\tau^\alpha \) to describe the orbital pair in the \(\Gamma_8^{(2)} \)
quarter. Then the angular momentum operator \(J^\alpha \) within the
\(\Gamma_8^{(2)} \) subspace is written as

\[
J^\alpha = \frac{1}{2} (\xi + \eta T^\alpha) \sigma^\alpha ,
\]

where \(\xi = -0.883 \) and \(\eta = -4.712 \) are numerical con-
stants corresponding to the Lea-Leask-Wölfli\(^7\) parametrizer
\(x = -0.82 \).\(^13\) The orbital effect on the magnetic
moment is described by \(T^\alpha \) with \(T^2 = \tau^2 \) and

\[
T^{x,y} = -\tau^2/2 \pm \sqrt{3}\tau^2/2.
\]

In the Néel state the \(\Gamma_8^{(2)} \) quartet undergoes a Zeeman
splitting by the molecular field. This splitting induces a
finite quadrupole moment which is enhanced by
positive \(g_0^3 \). Then the lowest level is characterized by

\[
(+:\sigma^+) \rightarrow (\pm, -\sigma),
\]

with intensities \(I_+ \). Here \(\sigma = \uparrow, \downarrow \) in the A- and
B-sublayers, respectively. The intensity ratio \(I_+/I_- \) is
given by

\[
I_+/I_- = (2\xi/\eta - 1)^2/3 \sim 0.13.
\]

Thus we identify the observed branch as the inter-orbital
transition \((+,\sigma) \rightarrow (-, -\sigma)\), and assume that intra-
orbital branch was not detected because of the small
intensity.

By neglecting the small matrix elements for intra-
orbital magnetic excitations, we obtain a reduced model
which keeps only the two levels leading to \(I_+ \). Assuming
the A-type antiferromagnetic structure with \(Q = (0,0,1) \),
we obtain the excitation spectrum by the standard
spin-wave theory as

\[
\omega^2_q = [J(q) - \Delta] [J(q + Q) - \Delta],
\]

where \(J(q) \) is the Fourier transform of \(J_{ij} = (3\eta^2/16) I_{ij} \),
and

\[
\Delta = \frac{8\xi(\xi + \eta)}{3\eta^2} J(Q) + \frac{9}{2} \xi - \eta - 9)^2 g_0^3.
\]

The spectrum given by eq.(5) was also postulated in the
previous work, where \(\omega_q \) experimentally measured was
fitted by intersite interactions up to third neighbors. The
authors of ref.6 noted that the calculated Néel tempera-
ture was about half of the experimental one, \(8-9 \) K. We
point out further that the substantial softening around
\((1/4,1/4,0)\) was not reproducible by the previous fit.

In view of the fact that the RKKY interaction has a
long range, we have included a sufficient number \((= 34)\)
of intersite interactions \(J_{ij} \). The comparison between
theory and experiment is shown in Fig.2. The experi-
mental spectrum is well reproduced by our fit. The fit
gives \(J(Q) = 1.16 \) meV and \(\Delta = 1.47 \) meV. Then we ob-
tain \(g_0^3 = 108 \) mK from eq.(6). This value is in excellent
agreement with experimental one, \(g_0^3 \sim 100 \) mK, deduced
from elastic constant.\(^13\) In the mean-field approxima-
tion the Néel temperature is not influenced by \(g_0^3 \), and is
given by

\[
T_N^{MF} = \frac{4\xi^2 + \eta^2}{3\eta^2} J(Q),
\]

which is 9.3 K with the fitted value of \(J(Q) \).

Figure 3 shows \(J(q) \) in the X-M-R plane. The maxi-
mum of \(J(q) \) occurs at \((0,0,1/2)\) in consistency with the
A-type order. In addition, there appears a local maxi-
mum near \((1/4,1/4,1/2)\). The latter indicates a ten-
dency toward the ordering with \(q = (1/4,1/4,1/2) \), and
brings about the softening of \(\omega_q \) near this wave num-
ber. We note that the overall behavior of \(J(q) \), and thus
\(I(q) = (16/3\eta)^2 J(q)\), is similar to the result of the inter-pocket polarization model shown in Fig. 1. This similarity supports relevance of the model to real RB₆ systems. The difference should mainly come from our simplification for \(W_{k,p}\) and \(\epsilon_k\), and partly from the presence of orbital degeneracy, hybridization, and correlation effect among conduction electrons.

In this paper we have concentrated on the \(q\)-dependence of the intersite interaction \(I(q)\). As the magnetization grows, the associated nonlinearity favors a commensurate structure in general. Then the maximum of \(I(q)\) does not necessarily give the ordering wave number at the ground state. We suggest that the incommensurate-commensurate transition in PrB₆ may be interpreted along this line. It should be worth investigating detailed features which depend on 4f-electron configurations of each rare-earth species.

Another feature to be addressed with finite order parameters is the direction of magnetic moment at each site. Even with the same \(q = (1/4,1/4,1/2)\), the moment patterns are rather different between CeB₆ and DyB₆. While in CeB₆ the nearest-neighbor moments are orthogonal to each other and within the (001) plane, the moments in DyB₆ point to \((1/2,1/2,1/2)\). The latter is consistent with the magnetic anisotropy in the paramagnetic region. In this connection it is interesting to inquire into the spin patterns of GdB₆ at low temperature, since the magnetic anisotropy in the paramagnetic region is extremely small.

Acknowledgements

This work has been supported partly by Special Coordination Funds for Promoting Science and Technology, by a Grant-in-Aid for Scientific Research on Priority Areas (B) from MEXT Japan, and by the NEDO international collaboration program “New boride materials”.

1. J. M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii and T. Kasuya: J. Magn. Magn. Mater. 47-48 (1985) 145.
2. H. Kusunose and Y. Kuramoto: J. Phys. Soc. Jpn. 70 (2001) 1751.
3. K. Kuwahara et al.: Applied Physics A (to be published).
4. P. Burlet, J. M. Effantin, J. Rossat-Mignod, S. Kunii and T. Kasuya: J. Phys. (Paris) C8 (1988) 459.
5. C. M. McCarthy and C. W. Tompson: J. Phys. Chem. Solids 41 (1980) 1319.
6. W. A. C. Erkelens, L. P. Regnault, J. Rossat-Mignod, M. Gordon, S. Kunii, T. Kasuya and C. Vettier: J. Phys. (Paris) C8 (1988) 457.
7. D. Schmitt and P. M. Levy: J. Magn. Mag. Mater. 49 (1985) 15.
8. Y. Onuki, T. Komatsubara, P. H. P. Reinders and M. Springford: J. Phys. Soc. Jpn. 58 (1989) 3698.
9. H. Harima, O. Sakai, T. Kasuya and A. Yanase: Solid State Commun. 66 (1988) 603, and private communication.
10. T. Kasuya and D. H. Lyons: J. Phys. Soc. Jpn. 21 (1965) 287.
11. H. H. Teitelbaum and P. M. Levy: Phys. Rev. B14 (1976) 3058.
12. G. Uimin and W. Brenig: Phys. Rev. B61 (2000) 60.
13. G. Pofahl, E. Zörnigeb, S. Blumenröder, H. Brenten, G. Güntherodt and K. Winzer: Z. Phys. B66 (1987) 339.
14. M. Sera, S. Itabashi and S. Kunii: J. Phys. Soc. Jpn. 66 (1997) 548.
15) S. Nakamura, T. Goto, S. Kunii, K. Iwashita and A. Tamaki: J. Phys. Soc. Jpn. 63 (1994) 623.
16) M. Loewenhaupt and M. Prager: Z. Phys. B62 (1986) 195.
17) K. R. Lea, M. J. M. Leask and W. P. Wolf: J. Phys. Chem. Solids 23 (1962) 1382.
18) K. Takahashi, H. Nojiri, K. Ohoyama, M. Ohashi, Y. Yamaguchi, S. Kunii and M. Motokawa: Physica 241-243 (1998) 696; K. Takahashi: PhD thesis (Tohoku University, 2002).
19) R. M. Galera, P. Morin, S. Kunii and T. Kasuya: J. Mag. Mag. Mater. 104-107 (1992) 1336.