Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation

Zhiguo Wang, Peng Ying, Peiying Li, Dan Zhang, Heqing Huang, Hao Tian & Yanpeng Zhang

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China.

The conversion between enhancement and suppression in six-wave mixing (SWM) and fluorescence signals by phase modulation has demonstrated for the first time. It is observed in our experiment the suppression of SWM and fluorescence is transformed into enhancement in company with the switch from electromagnetically induced absorption (EIA) in the transmitted probe with the relative phase changed from 0 to π/2. Our research could be potentially applied in optical communication and quantum information processing.

Lots of studies focus on the electromagnetically induced transparency (EIT) and the higher-order nonlinear optical process comprising four-wave mixing (FWM) and six-wave mixing (SWM) under EIT condition. In the meantime, the fluorescence owing to spontaneous emission is also observed. Moreover, the enhancement and suppression of FWM (SWM) and fluorescence corresponding to electromagnetically induced absorption (EIA) and EIT has aroused much interest. The switch between bright state (EIA in the transmitted probe signal and enhancement in FWM and fluorescence signals) and dark state (EIT in the transmitted probe signal and suppression in FWM and fluorescence signals) can be realized by controlling phase difference between the two circularly polarized components of a single coherent field. In addition, the switch can also be obtained by manipulating the dressing field power and the probe detuning.

In this paper, we experimentally demonstrate the phase-modulated switch between enhancement and suppression of SWM and fluorescence signals for the first time. First, the phase modulated switch between bright and dark states is realized under self-dressing condition. Second, we study the phase modulated switch under multisdressing condition including the external-dressing. At last, we observe the dependence of the measured signals on relative phase.

Results

Our experiment is carried out in a 85Rb vapor cell. The energy levels 5S1/2(F = 3), 5S1/2(F = 2), 5P3/2, 5D3/2, and 5D5/2 constitute a five-level atomic system (Fig. 1(a)). The transition 5S1/2(F = 3) (|0⟩) - 5P3/2 (|1⟩) is probed by the laser beam E1 (frequency ω1, wave vector k1 and Rabi frequency G1). The transition 5P3/2 - 5S1/2(F = 2) (|3⟩) is driven by two coupling beams E2 (ω2, k3 and G3) and E5 (ω5, k5 and G5). Two dressing beams E2 (ω2, k2 and G2) and E4 (ω4, k4 and G4) respectively drive the upper transitions 5P3/2 - 5D5/2 (|2⟩) and 5P3/2 - 5D3/2 (|4⟩). In normal experiment, the five beams are placed in a square-box pattern (Fig. 1(b)). The beams E2, E4, E5 and E3 propagate through the cell in the same direction with tiny angles about 0.3° between any two. In the opposite direction of E2 there is the probe beam E1. However, in our experiment, the normal experimental configuration should be modified since we study the phase-controlled switch. The coupling beam E2 (E4) is deviated with an angle ± (β) from the normal position (Fig. 1(c) and 1(d)). In the experimental system, we use E3 and E5 to represent the SWM signals generated by E1, E2, E3 and E5 and by E1, E3, E5 and E3 respectively. Besides, the single-photon fluorescence caused by the photon decay from the level |1⟩ is called R0. The sign R1 (R2) denotes the fluorescence due to the photon decay from the level |2⟩ (|4⟩).

Generally, we can obtain the density matrix elements ρ(0) i, j (related with EIT), ρ(4) i, j (related with SWM signal), and ρ(1) i, j , ρ(2) i, j and ρ(3) i, j (related with fluorescence R0, R1 and R2) by solving the density-matrix equations. With Liouville pathway ρ(j) 00 → ρ(j) 11 and E4 blocked, we can obtain...
½

SCIENTIFIC relaxation rate between states

\[|G_1|^2 \sigma \Delta \Phi / d_2 \]

is the self-dressing term and external dressing (the external-dressing effect refer to that the field will dresses the involved energy levels to modify the signals, while it is not the participated field for the generation of these signals, for example, the term \(|G_2|^2 \sigma \Delta \Phi / d_2\) is the external dressing term) condition, respectively. For the fluorescence signals, via the Liouville pathway \(\rho_{10}^{(0)} \to \rho_{10}^{(1)} \to \rho_{11}^{(2)}\), one can obtain

\[\rho_{11}^{(2)} = -|G_2|^2/|\Gamma_{11}|(d_1 + |G_2|^2 \sigma \Delta \Phi / d_2) \]

or

\[\rho_{11}^{(2)} = -|G_2|^2/|\Gamma_{11}|(d_1 + |G_2|^2 \sigma \Delta \Phi / d_2 + |G_4|^2 \sigma \Delta \Phi / d_3) \]

(7)

(8)

to describe the profile of fluorescence \(R_0\) under single-dressing or double-dressing case, respectively. With the pathway \(\rho_{33}^{(0)} \to \rho_{13}^{(1)} \to \rho_{11}^{(2)}\), one can acquire

\[\rho_{11}^{(4)} = -|G_2|^2/|\Gamma_{11}|(d_1 + |G_2|^2 \sigma \Delta \Phi / d_2 + |G_4|^2 \sigma \Delta \Phi / d_3) \]

(9)

to describe the DC background of \(R_0\). Consequently, the fluorescence \(R_0\) is proportional to \(\rho_{10}^{(1)} + \rho_{12}^{(2)}\). For two-photon fluorescence \(R_1\), via \(\rho_{20}^{(0)} \to \rho_{10}^{(1)} \to \rho_{21}^{(2)} \to \rho_{21}^{(4)} \to \rho_{22}^{(4)}\), we have

\[\rho_{22}^{(4)} = |G_2|^2 |G_2|^2/|\Gamma_{22}|d_1d_1(d_2 + |G_2|^2 \sigma \Delta \Phi / d_1) \]

(10)

with \(d_0 = \Gamma_{21} + i\Delta_2\). Similarly, the other two-photon fluorescence \(R_2\) is described as

\[\rho_{44}^{(4)} = |G_1|^2 |G_4|^2/|\Gamma_{44}|d_1d_1(d_2 + |G_2|^2 \sigma \Delta \Phi / d_1) \]

(11)

with \(d_0 = \Gamma_{41} + i\Delta_4\).

First, we consider the phase-modulated switch of self-dressed signals as shown in Fig. 2. In the experiment, we turn on \(E_1, E_2, E_3, E_4\) and block \(E_3\) and the signals are obtained by scanning \(\Delta_1\) at different discrete designated \(\Delta_1\) with \(\Delta \Phi_1 = 0\) (Fig. 2(a), viewed as the reference point at the normal configuration), \(\Delta \Phi_1 = -\pi/5\) (Fig. 2(b)) and \(\Delta \Phi_1 = \pi/5\) (Fig. 2(c)). In Fig. 2(a1), the EIT caused by \(E_2\), meeting \(\Delta_1 + \Delta_2 = 0\), emerges in the larger range of the probe detuning. The EIA, satisfying \(\Delta_1 + \Delta_2 = |G_2|^2/\Delta_3\), only appears at the large probe detuning, such as \(\Delta_1 = \pm 400\) MHz. In Fig. 2(b1), we can find the probe transmission signals present as EIT at negative detunings \(\Delta_1\) while change from strong EIT to partial-EIT-partial-EIT and lastly to weak EIA with \(\Delta_1\) increasing at positive detunings \(\Delta_1\). In Fig. 2(c1), with the probe detuning transformed from negative to positive, the signals turn from EIA to partial-EIT-partial-EIT and lastly to EIT. Obviously, the variations of the probe transmission signals are quite the contrary in above three figures. This is caused by the modulation of the relative phase \(\Delta \Phi_1\) in the dressing term \(|G_2|^2 \sigma \Delta \Phi / d_2\) in \(\rho_{10}^{(1)}\). Thus, at a certain detuning \(\Delta_1\), we can switch EIT and EIA by adjusting the relative phase \(\Delta \Phi_1\). Similarly, the dressing effect on the SWM signal caused by \(|G_2|^2 \sigma \Delta \Phi / d_2\) is also regulated by \(\Delta \Phi_1\). According to \(\rho_{31}^{(0)}\), the intensity of SWM has inverse correlation with \(\cos(\Delta \Phi_1 - \theta)\) where \(\theta = \arctan(\Delta_1/\Gamma_{10})\).

In the SWM signals, with the relative phase \(\Delta \Phi_1\) changed from 0 (Fig. 2(a2)) to \(-\pi/5\) (Fig. 2(b2)), the intensity of SWM is obviously enhanced at \(\Delta_1 \approx 0\) since \(\cos(-\pi/5 - \theta) < \cos(0 - \theta)\) in the region while is suppressed at \(\Delta_1 < 0\) for \(\cos(-\pi/5 - \theta) > \cos(0 - \theta)\) here. One can also see the difference between the SWM signals with \(\Delta \Phi_1 = 0\) (Fig. 2(a2)) and those with \(\Delta \Phi_1 = \pi/5\) (Fig. 2(c2)). Compared with the SWM in Fig. 2(a2), the SWM signal in Fig. 2(c2) is suppressed in
Figure 2 | In each sub-curve, measured probe transmission signals (a1), (b1) and (c1)), SWM signals ((a2), (b2) and (c2)) and fluorescence signals (a3), (b3) and (c3)) versus Δ_2. Δ_2 is scanned around $-\Delta_1$ from -90 MHz to 90 MHz with E_2 blocked. Each sub-curve corresponds to different fixed Δ_1. For (a1)–(a3) $\Delta p_1 = 0$, for (b1)–(b3) $\Delta p_1 = -\pi/5$ and for (c1)–(c3) $\Delta p_1 = 3\pi/5$. The other parameters are $\Delta_2 = 0$, $G_1 = 10.85$ MHz, $G_3 = 19.46$ MHz, $G_5 = 16.66$ MHz and $G_7 = 14.4$ MHz. (d) Theoretical calculations for probe, SWM and fluorescence signals versus Δp_1 by scanning Δ_2 at three typical detunings Δ_1.

Figure 3 | In each sub-curve, measured probe transmission signals (a), fluorescence signals (b), and SWM signals (c)–(d) versus Δ_2 (Δ_2 is scanned around $-\Delta_1$ from -90 MHz to 90 MHz) with the fixed Δ_1. Each sub-curve corresponds to different discrete fixed Δ_1, (a1), (b1) and (c) Signals obtained with $\Delta p_2 = 0$, (a2), (b2) and (d) Signals obtained with $\Delta p_2 = \pi/2$. (a), (b), (c) and (d) Signals obtained with all beams turned on. (c2) and (d2) Signals obtained with E_2 blocked. (c3) Signals obtained by subtracting the signals in (c2) from the signals in (c1). (d3) Signals obtained by subtracting the signals in (d2) from the signals in (d1). Other parameters are $\Delta_1 = 100$ MHz, $\Delta_3 = 0$, $\Delta p_1 = 0$, $G_1 = 10.72$ MHz, $G_5 = 21.16$ MHz, $G_3 = 18.87$ MHz, $G_7 = 14.4$ MHz and $G_4 = 14.16$ MHz.

caused by the dressing field E_2 and the peak in each dip represents the two-photon fluorescence R_2. The profile dip consisting of baselines reveals R_0 suppressed by E_2 owing to the dressing term $|G_2|^2/d_2$ in $\rho_2^{(2)}$, and the profile peak represents the two-photon fluorescence R_1. With Δp_2 changed from 0 (Fig. 3(b1)) to $\pi/2$ (Fig. 3(b2)), the height of the peak in each sub-curve gets much high because the dressing term $|G_2|^2e^{i\Delta p_2}/d_2$ in $\rho_2^{(2)}$ has generated the enhancement effect on R_0 at $\Delta p_2 = \pi/2$. In this process, the dip in each sub-curve becomes shallow due to the weakened dressing effect of E_2 on R_0 caused by the modulation of Δp_2.

In Fig. 3(c1), the global profile (dashed curve) consisting of all baselines reveals the SWM signal E_{S1}. In the E_{S2} signal, one can find the AT splitting which is because the self-dressing term $|G_1|^2/d_2$ acts on the two-photon term d_2 in $\rho_2^{(2)}$. The sub-curve at any Δ_1 means the compound signal which includes two components: I_{D1} and I_{D2}. I_{D1} denotes the enhancement or suppression intensity of E_{S1} (arising from the external-dressing field E_2 according to $\rho_2^{(2)}$) and I_{D2} signifies the SWM E_{S2} intensity with the suppression of E_2. Figure 3(c2) shows the SWM E_{S2} intensity without the suppression of E_2 which is denoted by I_{S2}. The signals in Fig. 3(c3) are obtained by subtracting the signals (I_{S2}) in Fig. 3(c2) from the signals ($I_{D1} + I_{D2}$) in Fig. 3(c1). Therefore, the signals in Fig. 3(c3) represent two dressing results at different Δ_1: one is I_{D1}, the other is $I_{D2} - I_{S2}$ which is the suppressed intensity caused by E_2 with regard to the SWM E_{S2}. When we alter the relative phase Δp_2, the experiment results similar to Fig. 3(c) are obtained, as shown in Fig. 3(d1)–3(d3). The modulation of signals caused by relative phase can be observed clearly, as shown in Fig. 3(c3) and Fig. 3(d3). For instance, with the relative phase switched from 0 to $\pi/2$, the original suppression signals (at $\Delta_1 + \Delta_2 = -45, -30$ and -15 MHz) transform into partial-suppression-partial-enhancement signals and the intensities of original partial-suppression-partial-enhancement signals (at $\Delta_1 + \Delta_2 = 0, 15, 30, 45$ and 60 MHz) are strengthened significantly in correspondence with

Further, we turn on all five laser beams including E_2 and observe the phase controlled switch of the multi-dressed (the multi-dressing effect is the case where two or more fields including self- and external-dressing fields dress the energy levels to modify the signals) signals by scanning Δ_2 at different discrete fixed Δ_1. The global profile generated from all baselines means the EIT induced by E_2. The global profile from all baselines means the EIT induced by E_2, meeting the condition $\Delta_1 + \Delta_2 = 0$. When we change the related phase Δp_2 from 0 (Fig. 3(a1)) to $\pi/2$ (Fig. 3(a2)), the original EITs are mostly switched to EIA. In Fig. 3(b1), the dip in each sub-curve shows the suppression on R_0.
the EIT-EIA switch in Fig. 3(a). It is worth mentioning that the
dressing result of E_2 is basically invariable since the relative phase
$\Delta \Phi_2$ is only related to the dressing effect of E_2.

Discussion
In order to clearly compare the variations of signals with the relative
phase, we discuss the relative phase dependence of the measured
signals by scanning $\Delta \alpha$ at the fixed detuning $\Delta \nu$ under the above
mentioned two cases of self-dressing and multi-dressing effects.
First, with E_2 blocked (Fig. 4(a), the self-dressing case), EIT in
Fig. 4(a1) can be switched to EIA along with the change of $\Delta \Phi_2$ from
bottom to top. During this process, the strongest EIT and EIA sepa-
rately appear at $\Delta \Phi_2 = -\pi/6$ and $\Delta \Phi_2 = 3\pi/4$. Depending on
whether $\Delta \Phi_2$ is greater than or less than $\pi/4$, the transmitted probe
signal behaves mainly EIA or EIT. In the phase matching range
where $\Delta \Phi_2$ is altered from $-\pi/6$ to $\pi/2$, compared with the signals
at the reference phase $\Delta \Phi_2 = 0$, the SWM signal E_{S2} (Fig. 4(a2))
and fluorescence signal R_2 (peaks in Fig. 4(a3)) get large when $\Delta \Phi_2 > 0$
and become small while $\Delta \Phi_2 < 0$ due to the switch of the dressing
effect of E_2 induced by $\Delta \Phi_2$. The largest intensities of the SWM and
fluorescence signals appear at partial-EIT-partial-EIA ($\Delta \Phi_2 = \pi/4$)
and EIA ($\Delta \Phi_2 = \pi/2$), respectively. Along with continuing to
increase $\Delta \Phi_2$ from $\pi/2$ to π or to decrease $\Delta \Phi_2$ from $-\pi/6$ to $-\pi/3$,
which correspond to increasing the deflection angle β under the
abnormal configuration (Fig. 1(d)), the SWM and fluorescence signal
intensities decrease. This results from the classical effect with the

Figure 4 | The transmitted probe ((a1), (b1)), SWM ((a2), (b2)) and
fluorescence ((a3), (b3)) versus $\Delta \alpha$ at different relative phase $\Delta \Phi_2 = -\pi/3$, $-\pi/6$, 0, $\pi/4$, $\pi/2$, $3\pi/4$, and π from the bottom to top.(a1),(a2) and (a3)
Signals obtained with E_2 blocked. (b1),(b2) and (b3) Signals obtained with
all beams turned on. (a4) and (b4) the relative phase dependences of the
fluorescence peak (dash line with circles) and the fluorescence dip (solid
line with squares) in (a3) and (b3), respectively. The other parameters are
$\Delta \nu_1 = 0$, $\Delta \nu_2 = -120$ MHz, $\Delta \nu_3 = 150$ MHz, $\Delta \nu_4 = 0$, $G_1 = 11.84$ MHz, G_2 = 18.34 MHz, G_3 = 17 MHz, G_4 = 26.11 MHz and G_4 = 18 MHz.

1. Wielandy, S. & Gaeta, A. Investigation of electromagnetically induced
transparency in the strong probe regime. Phys. Rev. A 58, 2500–2505 (1998).
2. Kash, M. et al. Ultrafast pulse group velocity and enhanced nonlinear optical effects in
a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999).
3. Ham, B. S., Shahriar, M. S. & Hemmer, P. R. Enhanced nondegenerate four-wave
mixing owing to electromagnetically induced transparency in a spectral hole-
burning crystal. Opt. Lett. 22, 1138–1140 (1997).
4. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).
5. Qi, J. et al. Autler-Townes splitting in molecular lithium: Prospects for all-optical
alignment of nonpolar molecules. Phys. Rev. Lett. 83, 288–291 (1999).
6. Qi, J. & Lyra, A. M. Electromagnetically induced transparency and dark
fluorescence in a cascade three-level diatomic lithium system. Phys. Rev. A 73, 043810 (2006).
7. Akulshin, A. M., Barreiro, S. & Lezama, A. Electromagnetically induced absorption
and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A 57, 2996–3002 (1998).
8. Li, N. et al. Observation of dressed odd-order multi-wave mixing in five-level atomic medium. Opt. Exp. 20, 1912–1929 (2012).
9. Khadka, U., Zhang, Y. P. & Xiao, M. Control of multitransparency windows via dark-state phase manipulation. Phys. Rev. A, 81, 023830 (2010).
10. Li, C. et al. Observation of enhancement and suppression in four-wave mixing processes. Appl. Phys. Lett. 95, 041103 (2009).
11. Wang, Z. et al. Switching enhancement and suppression of four-wave mixing via a dressing field. J. Mod. Opt. 58, 802–809 (2011).
12. Hahn, K. H., King, D. A. & Harris, S. E. Nonlinear generation of 104.8-nm radiation within an absorption window in zinc. Phys. Rev. Lett. 65, 2777–2779 (1990).

Acknowledgments
This work was supported by the 973 Program (2012CB921804), NSFC (61078002, 61078020, 11104214, 61108017, 11104216, 61205112), RFDP (20110201110006, 20110201120065, 20100201120031), FRFCU (2012jdhz05, 2011jdhz07, xjj2011083, xjj2011084, xjj2012080, xjj2013089), and CPSF (2012M521773).

Author contributions
Z.G.W. and Y.P.Z. provided the idea and main contributions to the theoretical and experimental analysis of this work. P.Y., P.Y.L., D.Z., H.Q.H. and H.T. contributed to the presentation and execution of the work. All authors discussed the results and contributed to writing the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, Z. G. et al. Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation. Sci. Rep. 3, 3417; DOI:10.1038/srep03417 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0