Photodynamic therapy for the treatment of trichodysplasia spinulosa in an Asian renal transplant recipient: A case report and review of literature

Yasmin Chia Chia Liew, MBChB, MRCP,a Terence Yi Shern Kee, MBBS, MRCP, FAMS, FRCP, FASN,b Jia Liang Kwek, MBBS, MRCP, FAMS,b Po Yin Tang, MBBS, BMedSc, FRCPA, FRCPath,c and Choon Chiat Oh, MBBS, MSc, FRCP, FAMSa

Singapore, Singapore

Key words: immunosuppression; photodynamic therapy; polyomavirus; trichodysplasia spinulosa.

INTRODUCTION

Trichodysplasia spinulosa (TS) has been reported in immunocompromised patients and is characterized by folliculocentric papules and keratin spicules. TS has been reported to be associated with TS-associated polyomavirus, although the exact causal mechanism remains unclear. Few reports exist in the current literature, with limited evidence for treatment options. We report a case of TS in a 42-year-old Chinese woman after a renal transplant, with a good response to topical methyl aminolevulinate daylight photodynamic therapy (PDT).

CASE REPORT

A 42-year-old Chinese woman with a history of end-stage renal disease secondary to chronic glomerulonephritis underwent a deceased-donor renal transplant and subsequently received prednisolone 5 mg once daily, mycophenolate mofetil 500 mg twice daily, and tacrolimus 11 mg daily as long-term immunosuppressants. She presented to the outpatient dermatology clinic with multiple skin-colored spiculated papules (Fig 1) clustered on her face, neck, and upper portion of the trunk 7 months post the transplant. Fine white hair was seen embedded among these papules. She also reported eyebrow alopecia.

Dermoscopy (third-generation DermLite 4) showed clusters of homogenous pink circles and fine white hair shafts (Fig 2). Skin biopsy of a papule on the right side of the philtrum showed markedly distended follicles (Fig 3). There were a few layers of small basophilic oval germinative cells at the base of the follicles, with overlying sheets of larger eosinophilic cells containing large purplish granules, resembling inner root sheath cells. Simian virus 40 immunostaining showed nuclear positivity in some of the inner root sheath-like cells (Fig 4). The clinical-pathologic findings supported our diagnosis of TS.

The patient was started on oral valganciclovir 450 mg daily, followed by tapering of tacrolimus to 2.5 mg daily. Mycophenolate mofetil was switched to mycophenolic acid 180 mg twice daily, with no improvement. Topical tretinoin gel (adalapene) and imiquimod gel 5% applied over few weeks did not result in any response. She was subsequently prescribed topical methyl aminolevulinate daylight PDT for the lesions on her face. After 2 sessions of daylight PDT (1 week apart), there was a significant reduction of the erythematous papules and keratotic white spicules on her face (Fig 5).

Abbreviations used:
PDT: photodynamic therapy
sOTR: solid organ transplant recipients
TS: trichodysplasia spinulosa
DISCUSSION

TS was first described by Haycox et al in 1999 as being characterized by papules that are spiculated and folliculocentric. These lesions are usually found on the face but can sometimes involve the trunk and extremities. As TS usually occurs in immunocompromised individuals, it is postulated to be related to immunosuppression, which is used in solid organ transplant recipients (sOTR). TS diagnosis is confirmed by typical skin findings, like those observed in our patient, as well as histologic features of enlarged trichohyalin granules and follicular inner root sheath cell proliferation. TS is postulated to be viral in etiology (typically polyomavirus), and the virus was named TS-associated polyomavirus.

The absence of cases in immunocompetent individuals suggests that a robust immune system prevents TS formation. Furthermore, some patients experience improvement in TS lesions after cessation of chemotherapy.

We have summarized 30 cases reported in the literature (Table I), majority of which were described in patients undergoing sOTR, especially renal transplant recipients. The mean age of patients reported in the literature was 26 years, with an age range of 5-70 years. Majority of the TS cases reported in the literature predominantly involved the face, with a predilection for the nose and nasolabial region. The exact mechanism of the development of TS in the immunosuppressed population remains unknown. Immunosuppressive medication (mycophenolate mofetil, tacrolimus, and systemic steroids) associated with TS development are rarely seen in conditions other than sOTR or hematologic malignancies.

Various treatments reported notably with topical cidofovir and oral valganciclovir have shown promising results. The treatments that have been tried include retinoids, imiquimod, antibacterials, as well as steroids. Among the treatments listed above, only topical retinoids have been reported to be effective in some patients. The exact mechanism of retinoids in TS remains unknown.

Topical methyl aminolevulinate PDT is effective for the treatment of acne vulgaris and viral warts and is safe for use in sOTR. We postulated that the effect of PDT in TS depends on preferential uptake of photosensitive porphyrins by sebaceous glands and

![Fig 1. Facial profile showing spiculated follicular papules before PDT treatment. PDT, Photodynamic therapy.](image1)

![Fig 2. Dermoscopy showed clusters of homogenous pink circles and fine white hair shafts.](image2)

![Fig 3. Facial profile showing reduction in spiculated follicular papules after PDT treatment. PDT, Photodynamic therapy.](image3)
their subsequent destruction, similar to that in acne vulgaris. We chose daylight PDT instead of conventional PDT because it is less painful, and our patient had extensive lesions on her face, neck, and limbs.

Fig 4. Histology showed a few layers of small basophilic oval germinative cells at the base of the distended hair follicles, with overlying sheets of eosinophilic cells containing large purplish granules, resembling inner root sheath cells. (Hematoxylin-eosin stain; original magnification: ×10)

Fig 5. SV40 immunostain showed nuclear positivity in some of the inner root sheath-like cells (TSV stain; original magnification: ×20). SV40, Simian virus 40; TSV, trichodysplasia spinulosa-associated polyomavirus.

Table I. Summary of cases reported in the literature

Case	Patient demographics	Medical history	Immunosuppressive agents	Duration of immunosuppression (months)	Location of rash	Viral testing	Treatment
Benoit et al	5-year-old boy, Caucasian	Cardiac transplant	Cyclosporine, tacrolimus, prednisone	12	Trunk, central portion of the face and proximal aspect of the thighs	Done (viral cytopathic effect on histology)	No improvement with cidofovir cream 3%, but significant improvement with systemic valganciclovir
Authors	Age/Gender/Race	Transplant Type	Immunosuppressive Regimen	Duration	Lesions	Diagnostic Procedures/Therapy	
--------------------	----------------	----------------------------------	---------------------------	----------	---	---	
Borgogna et al	7-year-old boy	Renal transplant x2	MMF, tacrolimus, prednisolone	24	Face, neck, back, and extremities	Done (viral DNA)	
	Italian/Moroccan					Tailing of immunosuppressants for viremia, unsure of the effect on skin	
Coogle et al	11-year-old boy	Renal transplant	MMF, tacrolimus, prednisolone	14	Face, arms, and upper portion of the legs	Urine screen for BK PCR positive	
	Caucasian					Cidofovir cream 1% for 1 month and tailing of immunosuppression, with improvement and complete resolution in 7 months	
Decrescenzo et al	35-year-old man	Renal transplant	Tacrolimus, MMF	6	Face, trunk, arms, and ears. Alopecia of the eyebrows and eyelashes	Not done	
	race not mentioned					Slow taper of immunosuppression, with marked improvement and complete regrowth at 2 years	
Haycox et al	44-year-old man	Renal-pancreatic transplant	Tacrolimus, azathioprine, prednisone	29	Nose, ears, and forehead. Alopecia of the eyebrow, eyelash, and scalp	(EMPCR, Papovaviridae family virus)	
	Caucasian					NA	
Kirchhof et al	Woman, Caucasian	Renal transplant	Prednisone, tacrolimus, and mycophenolate mofetil	11	Face, ears, arms, legs, thighs, and back, sparing the lips. Diffuse hair loss/scalp thinning	Not done	
						Oral valganciclovir 900 mg BID, with 90% resolution	

Continued
Case	Patient demographics	Medical history	Immunosuppressive agents	Duration of immunosuppression before onset of eruption (months)	Location of rash	Viral testing	Treatment	
Laroche et al¹¹	42-year-old woman, Renal transplant Caucasian		Prednisone, tacrolimus, and mycophenolate mofetil	8	Face, ears, and madarosis of the eyebrows	Done but absent	No response to topical acyclovir. Satisfying response to topical retinoids	
Lee et al¹²	49-year-old woman, Renal transplant Caucasian		Tacrolimus, mycophenolate mofetil, and prednisolone	11	Nasofacial sulcus involving the nose, forehead, cheeks, and chin	Done (PCR from biopsy-positive TSV for VP1, VP2, and VP3)	0.05% tretinoin and marked improvement with oral valganciclovir at 900 mg (given for 20 weeks)	
Matthew et al¹³	7-year-old girl, Hispanic	Pre-B ALL	Chemotherapy regime not mentioned	Not mentioned	Central portion of the face, ears, extremities, and trunk	Done (EM showed viral particles)	Topical steroids for symptomatic relief, child expired after 1 month	
Osswald et al¹⁴	68-year-old man, Caucasian	Recurrent NHL	Fludarabine, rituximab	Not mentioned	Eyebrows, glabella, nose, chin, and ears. Progressive alopecia of these areas	Done (EM showed viral particles)	Marked improvement with cidofovir cream 1%	
Sadler et al¹⁵	6-year-old boy, Caucasian	ALL (T-cell)	Cyclophosphamide, vincristine, and prednisolone	24	Trunk, face, and limbs. Alopecia over the eyebrows	Done (EM showed viral particles)	No effect with topical salicylic acid, ammonium lactate, tretinoin, and oral acitretin. Regressed with completion of chemotherapy	
Reference	Age/Details	Diagnosis	Treatment	Duration	Clinical Features	Diagnosis/Result		
----------------	---------------------------------------	-----------	---	----------	--	--		
Sadler et al15	8-year-old boy, Caucasian	ALL (T-cell)	Vincristine, mercaptopurine, and methotrexate	24	Face, trunk, and limbs. Mild alopecia over the eyebrows	Done (EM did not identify viral particles)	Resolved spontaneously	
Sperling et al16	13-year-old girl, race not mentioned	Renal transplant	Mycophenolate mofetil, prednisone, and tacrolimus	9	Nose, malar region, glabella, and chin. Almost total hair loss over the eyebrows and eyelashes, sparing scalp	Done (EM showed viral particles)	Minimal improvement with topical imiquimod, slow improvement with 3% topical cidofovir	
van der Meijden et al15	15-year-old boy, Caucasian	Heart transplant	Tacrolimus, mycophenolate mofetil, and methylprednisolone	12	Eyebrows, nose, ears, malar region, and forehead. Loss of eyebrow hair and eyelashes	Done (TSV polyomavirus amplification)	Topical cidofovir BID, with gradual improvement	
Wanat et al17	57-year old woman, Caucasian	CLL	Rituximab, cyclophosphamide, and cytarabine	6	Nose, forehead, cheeks, chin, arms, thighs, chest, neck, and ears. Nonscarring alopecia and madarosis of the eyebrows	Done (Immuno-histochemical analysis of polyomavirus)	Topical cimetidine, imiquimod, salicylic acid, and hydrocortisone, with limited benefit	
Campbell et al18	Not mentioned	Renal transplant	Not mentioned	Not mentioned	Not mentioned	Not done	No effect with tretinoin cream. Tazarotene gel 0.5% resulted in significant improvement	
Table 1. Cont’d

Case	Patient demographics	Medical history	Immunosuppressive agents	Duration of immuno-suppression before onset of eruption (months)	Location of rash	Viral testing	Treatment		
Lee et al19	70-year-old man, Caucasian	CLL	Cyclophosphamide, fludarabine, and rituximab	48	Nose, malar area, forehead, eyelids, eyebrows, ears, trunk, thighs, legs, and arms. Scalp and eyebrow alopecia	Done (immunoperoxidase stain for HPV negative)	No improvement with oral minocycline, 10% topical urea, or lactic acid cream 5%		
Schwieger-Briel et al20	5-year-old girl, Caucasian	Cardiac transplant	Tacrolimus, MMF	9	Face (chin and nose), arms, and trunk. Eyebrow alopecia	Done (EM revealed no viral particles)	Mild improvement with topical retinoin, but systemic isotretinoin resulted in marked improvement. Patient was also started on oral valganciclovir		
Wyatt et al6	8-year-old boy, race not mentioned	Renal transplant	Tacrolimus, mycophenolate mofetil, and prednisone	8	Facial papules	Done (LM showed viral particles)	Severe persistent eruption		
Wyatt et al6	6-year-old boy, race not mentioned	ALL (B cell)	Cyclophosphamide, vincristine, prednisolone, and intrathecal methotrexate	22	Facial eruption and alopecia	Done (LM showed viral particles)	Chemotherapy was completed 3 months after the onset of eruption		
Last Name et al	Age	Gender	Race	Transplant Type	Immunosuppressants	Lesions	Diagnosis	Treatment	Resolution
----------------	-----	--------	------	-----------------	-------------------	---------	-----------	-----------	-----------
Holzer et al	37	Woman	Caucasian	Cardiac transplant	Cyclosporine, mycophenolate mofetil, and prednisone	8	Face, upper portion of the trunk, arms, and legs. Alopecia of the face, trunk, upper extremities. Partial madarosis of the face, trunk, upper extremities.	Done (EM negative for viral particles)	Improvement after 5 months of systemic valganciclovir, with complete resolution at 1 year
Ali et al	42	Woman	Caucasian	Renal transplant	MMF, tacrolimus	Not mentioned	Cheeks, forehead, and nose	Done	Improvement with reduction of immunosuppressants and topical imiquimod
Heaphy et al	34	Woman	Race not mentioned	Renal transplant and systemic lupus erythematosus	Cyclosporine, mycophenolate mofetil, prednisone, and tacrolimus	Not mentioned	Face (nose, eyebrows, eyelashes, chin, and upper lip), ears, and body. Alopecia over the eyebrows, eyelashes, and body (except scalp)	Not mentioned	Not mentioned
Izakovic et al	31	Man	Race not mentioned	Renal transplant	Cyclosporine and prednisone	Not mentioned	Face and extremities	Not mentioned	Not mentioned
Berk et al	14	Girl	Caucasian	Lung transplant	Cyclosporine, muromonab-CD3, mycophenolate mofetil, methotrexate, prednisone, and tobramycin	36	Central portion of the face. Skin thickening and alopecia of eyebrows	Nucleated cells with cytoplasmic inclusions/granules on histology	Cryotherapy had no effect. Improvement with changing of cyclosporin to tacrolimus
Moktefi et al	20	Woman	Race not mentioned	Systemic lupus erythematosus	Corticosteroids, rituximab, and cyclophosphamide bolus. Then MMF replaced by azathioprine	50 since the diagnosis of systemic lupus erythematosus	Midfacial area, ears, and hands without alopecia	(TSPyV) DNA detected on lesional skin biopsy	No treatment. Patient died of cardiac arrest/pulmonary edema

Continued
Case	Patient demographics	Medical history	Immunosuppressive agents	Duration of immuno-suppression before onset of eruption (months)	Location of rash	Viral testing	Treatment
Fischer et al³	48-year-old man, African American	Renal transplant	Mycophenolic acid and tacrolimus	2-3	Central portion of the face and ears. Patchy alopecia of the eyebrows	TSPyV via PCR and sequencing in lesional skin. Also confirmed via EM	None
Chastain et al²⁷	13-year-old woman, Caucasian	Lung transplant	Cyclosporin, mycophenolate mofetil, prednisone, methotrexate, and trimethoprim/ sulfamethoxazole	36	Nose, ears, face, and proximal extremities	Attempts to detect HPV via PCR unsuccessful	Not mentioned
Burns et al²⁸	9-year-old woman, race not mentioned	Pre-B—cell acute lymphoblastic leukemia	Mercaptopurine, methotrexate, vincristine, and dexamethasone	Not mentioned	Face, shoulders, arms, and legs, with prominent eyebrow involvement. Eyebrow alopecia	Not mentioned	Not mentioned
Shah et al²⁹	25-year-old female, race not mentioned	Renal transplant	Mycophenolic acid, everolimus, and prednisone	Not mentioned	Nose extending onto the glabella, cheeks, and eyelids, as well as the tragi and helices of ears	Immunohistochemical staining for TS-associated polyomavirus was negative DNA PCR not done as histopathology was pathognomonic	Successfully treated with adapalene gel 0.1% and oral valganciclovir

ALL, Acute lymphoblastic leukemia; BID, twice daily; BK PCR, BK virus polymerase chain reaction; CLL, chronic lymphocytic leukemia; EM PCR, erythema multiforme polymerase chain reaction; HPV, human papilloma virus; LM, light microscopy; MMF, mycophenolate mofetil; NA, not available; NHL, non Hodgkins lymphoma; PCR, polymerase chain reaction; SV40, simian virus 40; TSPyV, trichodysplasia spinulosa polyomavirus; TSV, trichodysplasia spinulosa-associated polyomavirus; VP1, VP2, VP3, major capsid proteins.
In conclusion, we present the case of a 43-year-old Chinese woman, a renal transplant patient, with TS, who showed a good response to topical daylight PDT, which should be considered as an additional treatment option for this rare and potentially disfiguring skin condition.

REFERENCES

1. DeCrescenzo AJ, Philips RC, Wilkerson MG. Trichodysplasia spinulosa: a rare complication of immunosuppression. JAAD Case Rep. 2016;2(4):307-309.

2. Haycox CL, Kim S, Fleckman P, et al. Trichodysplasia spinulosa—a newly described folliculocentric viral infection in an immunocompromised host. J Investig Dermatol Symp Proc. 1999;4(2):268-271.

3. Fischer MK, Kao GF, Nguyen HP, et al. Specific detection of trichodysplasia spinulosa-associated polyomavirus DNA in skin and renal allograft tissues in a patient with trichodysplasia spinulosa. Arch Dermatol. 2012;148(6):726-733.

4. van der Meijden E, Janssens RWA, Lauber C, Bavinck JN, Gorbalenya AE, Feltkamp MC. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromised patient. PLoS Pathog. 2010;6(7):e1001024.

5. van der Meijden E, Kazem S, Burgers MM, et al. Seroprevalence of trichodysplasia spinulosa-associated polyomavirus. Emerg Infect Dis. 2011;17(8):1355-1363.

6. Wyatt AJ, Sachs DL, Shia J, Delgado R, Busam KJ. Virus-associated trichodysplasia spinulosa. Am J Surg Pathol. 2005;29(2):241-246.

7. Benoit T, Bacelieri R, Morrell DS, Metcalf J. Viral associated trichodysplasia of immunosuppression: report of a pediatric patient with response to oral valganciclovir. Arch Dermatol. 2010;146(8):871-874.

8. Borgogna C, Albertini S, Zavattaro E, et al. Primary trichodysplasia spinulosa polyomavirus infection in a kidney transplant child displaying virus-infected decoy cells in the urine. J Med Virol. 2019;91(10):1896-1900.

9. Coogler LP, Holland KE, Pan C, Van Why SK. Complete resolution of trichodysplasia spinulosa in a pediatric renal transplant patient: case report and literature review. Pediatr Transplant. 2017;21(2):e12849.

10. Kirchhof MG, Shojainia K, Hull MW, Crawford RI, Au S. Trichodysplasia spinulosa: Rare presentation of polyomavirus infection in immunocompromised patients. J Cutan Med Surg. 2014;18(6):430-435.

11. Laroche A, Allard C, Chababi-Atallah M, Masse M, Bertrand J. Trichodysplasia spinulosa in a renal transplant patient. J Cutan Med Surg. 2015;19(1):66-68.

12. Lee YY, Tucker SC, Prow NA, Setoh YX, Banney LA. Trichodysplasia spinulosa: a benign adnexal proliferation with follicular differentiation associated with polyomavirus. Australas J Dermatol. 2014;55(2):e33-e36.

13. Matthews MR, Wang RC, Reddick RL, Saldivar VA, Browning JC. Viral-associated trichodysplasia spinulosa: a case with electron microscopic and molecular detection of the trichodysplasia spinulosa-associated human polyomavirus. J Cutan Pathol. 2011;38(5):420-431.

14. Osswald SS, Kulick KB, Tomaszewski MM, Sperling LC. Viral-associated trichodysplasia in a patient with lymphoma: a case report and review. J Cutan Pathol. 2007;34(9):721-725.

15. Sadler GM, Halbert AR, Smith N, Rogers M. Trichodysplasia spinulosa associated with chemotherapy for acute lymphocytic leukaemia. Australas J Dermatol. 2007;48(2):110-114.

16. Sperling CL, Tomaszewski MM, Thomas DA. Viral-associated trichodysplasia in patients who are immunocompromised. J Am Acad Dermatol. 2004;50(2):318-322.

17. Wanat KA, Holler PD, Dentchev T, et al. Viral-associated trichodysplasia: characterization of a novel polyomavirus infection with therapeutic insights. Arch Dermatol. 2012;148(2):219-223.

18. Campbell RM, Nye A, Gohh R, Robinson-Bostom L. Spiny hyperkeratotic projections on the face and extremities of a kidney transplant recipient. Arch Dermatol. 2006;142(12):1643-1648.

19. Lee JSS, Frederiksen P, Kossard S. Progressive trichodysplasia spinulosa in a patient with chronic lymphocytic leukaemia in remission. Australas J Dermatol. 2008;49(1):57-60.

20. Schwieger-Briel A, Balma-Mena A, Ngan B, Dipchand A, Pope E. Trichodysplasia spinulosa—a rare complication in immunosuppressed patients. Pediatr Dermatol. 2010;27(5):509-513.

21. Holzer AM, Hughey LC. Trichodysplasia of immunosuppression treated with oral valganciclovir. J Am Acad Dermatol. 2009;60(1):169-172.

22. Ali FR, Aslam A, Motta L, Lear JT. Facial spicules and pink papules in a renal transplant recipient. Clin Exp Dermatol. 2015;40(7):816-818.

23. Heaphy MR Jr, Shamma HN, Hickmann M, White MJ. Cyclosporine-induced folliculodystrophy. J Am Acad Dermatol. 2004;50(2):310-315.

24. Izakovj M, Büchner SA, Düggelin M, Guggenheim R, Itin PH. Spiny hyperkeratosis in a renal transplant recipient. A novel side effect of cyclosporine A. Hautarzt. 1995;46(12):841-846.

25. Berk DR, Lu D, Bayliss SJ. Trichodysplasia spinulosa in an adolescent with cystic fibrosis and lung transplantation. Int J Dermatol. 2013;52(12):1586-1588.

26. Moktefi A, Laude H, Gulpeh LB, et al. Trichodysplasia spinulosa associated with lupus. Am J Dermatopathol. 2014;36(3):e70-e74.

27. Chastain MA, Millikan LE. Pilomatrix dysplasia in an immunosuppressed patient. J Am Acad Dermatol. 2000;43(1):118-122.

28. Burns A, Amason T, Fraser R, Murray S, Walsh N. Keratotic “spiny” papules in an immunosuppressed child. Trichodysplasia spinulosa (TS). Arch Dermatol. 2011;147(10):1215-1220.

29. Shah PR, Essa FS, Gupta P, Mercurio MG. Trichodysplasia spinulosa successfully treated with adapalene 0.1% gel and oral valganciclovir in a renal transplant recipient. JAAD Case Rep. 2019;6(1):23-25.

30. Radakovic S, Silic K, Tanew A. Complete resolution of disseminated cutaneous warts after repetitive partial treatment with ALA PDT - indication of a PDT-induced systemic immune response. J Dtsch Dermatol Ges. 2020;18(5):490-492.

31. Liew YCC, De Souza NNA, Sultana RG, Oh CC. Photodynamic therapy for the prevention and treatment of actinic keratoses/squamous cell carcinoma in solid organ transplant recipients: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2020;34(2):251-259.

32. Perrett CM, McGregor J, Barlow RJ, Karren P, Proby C, Harwood CA. Topical photodynamic therapy with methyl aminolevulinate to treat sebaceous hyperplasia in an organ transplant recipient. Arch Dermatol. 2006;142(6):781-782.