EQUIVARIANT VECTOR BUNDLES ON COMPLETE SYMMETRIC VARIETIES OF MINIMAL RANK

INDRANIL BISWAS, S. SENTHAMARAI KANNAN, AND D. S. NAGARAJ

ABSTRACT. Let X be the wonderful compactification of a complex symmetric space G/H of minimal rank. For a point $x \in G$, denote by Z the closure of BxH/H in X, where B is a Borel subgroup of G. The universal cover of G is denoted by \tilde{G}. Given a \tilde{G} equivariant vector bundle E on X, we prove that E is nef (respectively, ample) if and only if its restriction to Z is nef (respectively, ample). Similarly, E is trivial if and only if its restriction to Z is so.

1. Introduction

Let σ be an involution of a semisimple adjoint type algebraic group G over \mathbb{C}, and let $H = G^\sigma$ be the corresponding fixed point locus. De Concini and Procesi constructed a smooth projective variety $X = \overline{G/H}$ equipped with an action of G, that contains an open dense G–orbit G/H [DP]. This X is known as the wonderful compactification of the symmetric space G/H.

Richardson and Springer described the B–orbits in G/H in terms of the combinatorics of the Weyl group W, where B is a Borel subgroup of G (see [RS]). The rank of G/H is defined by Panyushev [Pa] and Knop [Kn1]. The minimal rank symmetric spaces were introduced by Brion [Br]. Brion and Joshua have studied the geometry of the closures in X of the B–orbits in G/H, whenever G/H is of minimal rank [BJ]. Tchoudjem has also studied the closures in X of the B–orbits in G/H, whenever G/H is of minimal rank [TC].

This paper deals with the restriction of equivariant vector bundles on X to some natural class of subvarieties of X, like B–orbit closures.

Let \tilde{G} be the simply connected covering of G. The action of G on X produces an action of \tilde{G} on X using the natural projection $\tilde{G} \to G$. Given an algebraic vector bundle E on X, we can get a class of vector bundles on X by pulling back E using the automorphisms of X given by the action of G. It can be shown that the isomorphism classes of these pullbacks remain constant if and only if E admits a \tilde{G}–equivariant structure (meaning the action of \tilde{G} on X admits a lift to an action on E).

We prove the following (see Theorem 3.5):

1991 Mathematics Subject Classification. 14F17.

Key words and phrases. Wonderful compactification, minimal rank, equivariant bundles, nefness.
Theorem 1.1. Assume that G/H is of minimal rank. Fix a point $x \in G$. Let Z be the closure of BxH/H in X. Let E be a \tilde{G} equivariant vector bundle on X. Then, E is nef (respectively, ample) if and only if the restriction of E to Z is nef (respectively, ample). Similarly, E is trivial if and only if its restriction to Z is trivial.

In [HMP], a similar result is proved for vector bundles on toric varieties.

Before stating the next result, we recall that for the conjugation action of \tilde{G} on itself, Steinberg proved that for a maximal torus T of G, the restriction homomorphism

$$\mathbb{C}[\tilde{G}] \longrightarrow \mathbb{C}[\tilde{T}]^{W(G,T)}$$

is an isomorphism, where \tilde{T} is the inverse image of T in \tilde{G} and $W(G,T)$ is the Weyl group of G with respect to T [St1]. Hence, we have the Steinberg map

$$\tau : \tilde{G} \longrightarrow \tilde{T}/W(G,T) = \mathbb{A}^n.$$

Let c be a Coxeter element in the Weyl group $W(G,T)$, and let F be the fiber of the Steinberg map τ containing a representative n_c of c in $N_G(\tilde{T})$. Let F' be the image of F in G. Set $Z = Z_1 \cup Z_2$, where Z_1 is the closure of F' in the wonderful compactification \tilde{G} of G, and Z_2 is the unique closed $G \times G$ orbit in \tilde{G} [DP].

The group $\tilde{G} \times \tilde{G}$ acts on \tilde{G} which factors through the action of $G \times G$ on \tilde{G}. Given an algebraic vector bundle E on \tilde{G}, the isomorphism classes of its translates by the elements of $G \times G$ remain constant if and only if E admits a $\tilde{G} \times \tilde{G}$-equivariant structure.

We also prove the following (see Theorem 1.2):

Theorem 1.2. Let E be a $\tilde{G} \times \tilde{G}$ equivariant vector bundle on \tilde{G}. Then, E is nef (respectively, ample) if and only if the restriction of E to Z is nef (respectively, ample). Similarly, E is trivial if and only if $E|_Z$ is trivial.

2. Preliminaries

2.1. Lie algebras and Algebraic groups. In this subsection we recall some basic facts and notation on Lie algebras and algebraic groups (see [Hu], [Hu1] for details). Throughout G denotes a semisimple adjoint-type algebraic group over the field \mathbb{C} of complex numbers. In particular, the center of G is trivial. For a maximal torus T of G, the group of all characters of T will be denoted by $X(T)$. The normalizer of T in G will be denoted by $N_G(T)$, while

$$W(G,T) := N_G(T)/T$$

is the Weyl group of G with respect to T. Let $R \subset X(T)$ be the root system of G with respect to T. For a Borel subgroup B of G containing T, let $R^+(B)$ denote the set of positive roots determined by T and B. Further,

$$S = \{\alpha_1, \ldots, \alpha_n\}$$
denotes the set of simple roots in \(R^+(B) \). For \(\alpha \in R^+(B) \), let \(s_\alpha \in W(G, T) \) be the reflection corresponding to \(\alpha \). The Lie algebras of \(G, T \) and \(B \) will be denoted by \(\mathfrak{g}, \mathfrak{t} \) and \(\mathfrak{b} \) respectively. The dual of the real form \(\mathfrak{t}_R \) of \(\mathfrak{t} \) is \(X(T) \otimes \mathbb{R} = \text{Hom}_\mathbb{R}(\mathfrak{t}_R, \mathbb{R}) \).

The positive definite \(W(G, T) \)-invariant form on \(\text{Hom}_\mathbb{R}(\mathfrak{t}_R, \mathbb{R}) \) induced by the Killing form on \(\mathfrak{g} \) is denoted by \((\cdot, \cdot) \). We use the notation

\[
\langle \nu, \alpha \rangle := \frac{2(\nu, \alpha)}{\alpha, \alpha}.
\]

In this setting one has the Chevalley basis

\[
\{x_\alpha, h_\beta \mid \alpha \in R, \beta \in S\}
\]

of \(\mathfrak{g} \) determined by \(T \). For a root \(\alpha \), we denote by \(U_\alpha \) (respectively, \(\mathfrak{g}_\alpha \)) the one–dimensional \(T \)-stable root subgroup of \(G \) (respectively, the subspace of \(\mathfrak{g} \)) on which \(T \) acts through the character \(\alpha \).

Let \(\sigma \) be an algebraic automorphism of \(G \) of order two. Let \(H = G^\sigma \) be the subgroup consisting of all fixed points of \(\sigma \) in \(G \). The connected component of \(H \) containing the identity element will be denoted by \(H^0 \). We refer to \([R]\) and \([RS]\) for following facts.

A torus \(T' \) of \(G \) is said to be \(\sigma \)-anisotropic if \(\sigma(t) = t^{-1} \) for every \(t \in T' \). Recall that the rank of \(G/H \) is defined to be the dimension of a maximal dimensional anisotropic torus.

If \(T \) is a \(\sigma \)-stable maximal torus of \(G \), then \(\sigma \) induces an automorphism of \(X(T) \) of order two. Note that we have \(\sigma(R) = R \). Further, one has \(T = T_1T_2 \), where \(T_1 \) is a torus such that \(\sigma(t) = t \) for every \(t \in T_1 \), and \(T_2 \) is a \(\sigma \)-anisotropic torus. Clearly \(T_1 \cap T_2 \) is finite. Hence, we have \(\text{rank}(G/H) \geq \text{rank}(G) - \text{rank}(H) \).

Throughout, we assume that \(G/H \) is of minimal rank, or in other words

\[
\text{rank}(G/H) = \text{rank}(G) - \text{rank}(H) .
\]

We refer to \([Br]\) and \([Kn2]\) for facts about minimal rank.

The following lemma may be known, but for the sake of completeness we provide a proof here.

Lemma 2.2.

1. Any two \(\sigma \)-stable maximal tori of \(G \) are conjugate by an element of the connected component \(H^0 \) of \(H \) containing the identity element.

2. Any maximal torus \(S \) of \(H^0 \) is contained in a unique maximal torus \(T \) of \(G \). Further, \(T \) is \(\sigma \)-stable.

3. Any Borel subgroup \(Q \) of \(H^0 \) is contained in a \(\sigma \)-stable Borel subgroup \(B \) of \(G \). Further, the Borel subgroup of \(G \) containing \(Q \) is unique.

Proof. Proof of (1). Let \(T_1 \) and \(T_2 \) be two \(\sigma \)-stable maximal tori in \(G \). Define

\[
S_i := (T_i \cap H)^0,
\]
$i = 1, 2$. Since G/H is of minimal rank, S_1 and S_2 are maximal tori in H^0. Hence, there is an element $h \in H^0$ such that $hS_1h^{-1} = S_2$. Also, $T_i = C_G(S_i)$ (see [Ri p. 295, Lemma 5.3 and Lemma 5.4]).

Proof of (2). Take $T = C_G(S)$. Proof of (3). We will first prove the existence of a stable Borel subgroup containing Q.

By [St2 p. 51, Lemma 7.5], there is a σ stable Borel subgroup B' of G. By [Ri p. 295, Lemma 5.1], the intersection $(B' \cap H)^0$ is a Borel subgroup of H^0. Hence, there is a $h \in H^0$ such that $Q = h(B' \cap H)^0h^{-1}$. Now take $B = hB'h^{-1}$.

To prove the uniqueness of B, let B_1 be a Borel subgroup of G containing Q. As shown above, there is a σ stable Borel subgroup B of G containing Q. Choose a maximal torus S of H^0 lying in Q. From part (2) of the lemma we know that $T = C_G(S)$ is the unique maximal torus of G containing S. Hence, T is contained in both B_1 and B. Thus, there is a $w \in W(G, T)$ such that $wBw^{-1} = B_1$.

We now prove that $R^+(B_1) = R^+(B)$. Let $\alpha \in R^+(B) \setminus R^+(B)^\sigma$. Then the σ invariant vector $x_\alpha + \sigma(x_\alpha)$ is in the Lie algebra of Q. Hence, $x_\alpha + \sigma(x_\alpha)$ is in the Lie algebra of B_1. Thus, both α and $\sigma(\alpha)$ are in $R^+(B_1) \setminus R^+(B_1)^\sigma$. Hence, we have

$$R^+(B) \setminus R^+(B)^\sigma = R^+(B_1) \setminus R^+(B_1)^\sigma.$$

Now, let $\alpha \in R^+(B)^\sigma$. We will show that σ acts trivially on U_α. Let $T_\alpha \subset T$ be the connected component, containing the identity element, of the kernel of α. Consider the restriction of σ to $C_G(T_\alpha)$. Let C' be the commutator subgroup of $C_G(T_\alpha)$. If the action of σ on U_α is not trivial, then there is a one-dimensional σ stable anisotropic torus S' in C'. Let $T_1 = S'T_\alpha$. Then we have $T_1^\sigma = T_\alpha^\sigma$. Hence by [Ri, Lemma 5.4] we have $T_1 = C_G(T_\alpha^\sigma)$. But this contradicts the fact that T_α^σ is a singular torus. Hence we have $U_\alpha \subset (B)^\sigma = Q \subset B_1$.

Thus, we have shown that $R^+(B) = R^+(B_1)$. Hence, we have $B = B_1$. This completes proof. \qed

2.3. Nef vector bundle.

Let E be an algebraic vector bundle over a complex projective variety Y. Let $\mathbb{P}(E)$ denote the associated projective bundle over Y whose fiber over any point $y \in Y$ is the space of all one-dimensional quotients of the fiber E_y of E over y. The line bundle over $\mathbb{P}(E)$ whose fiber over any one-dimensional quotient is the one-dimensional quotient itself, will be denoted by $\mathcal{O}_{\mathbb{P}(E)}(1)$.

A line bundle L over Y is called nef if for every pair (C, φ), where C is an irreducible smooth complex projective curve and $\varphi : C \to Y$ is a morphism, the degree of the pullback φ^*L is nonnegative. A vector bundle $E \to Y$ is called nef if the above line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ over $\mathbb{P}(E)$ is nef.
3. Restriction of equivariant vector bundles to B-orbit closure

Let T be a σ stable maximal torus of G. Let B be a Borel subgroup of G containing T such that for any root $\alpha \in R^+(B)$, either $\sigma(\alpha) = \alpha$ or $\sigma(\alpha) \in -R^+(B)$.

Let

$$X := \frac{G}{H}$$

be the wonderful compactification of the symmetric space G/H constructed in [DP]. Let Z be the closure in X of the B–orbit of a point in G/H.

Let P be the parabolic subgroup of G containing B such that the G/P is the unique closed G orbit in X (see [DP]). In this case, $\sigma(P)$ is opposite to P and $P \cap \sigma(P)$ is the Levi subgroup L of P. Let $R(L)$ denote the roots of L with respect to T.

The following lemma is about a B–orbit in G/H. We refer to [RS] for information on B–orbit closures in G/H. For any algebraic group acting on variety, it is well known that there is always a closed orbit. For instance, any orbit of minimal dimension is closed (see, [Hu] p. 60. Proposition)).

Lemma 3.1. Let $x \in G$ be such that $B \cdot xH/H$ is closed in G/H. Then, $x^{-1}Bx$ is σ stable and there is a $w \in W(G,T)$ such that $B \cdot xH/H = B \cdot wH/H$.

Proof. Let $Q := (x^{-1}Bx \cap H)^0$. Since $B \cdot xH/H$ is closed in G/H, this Q is a Borel subgroup of H^0. Further, we have $Q \subset x^{-1}Bx$. Hence, by Lemma 2.2, $x^{-1}Bx$ is σ stable.

Now, let $S = (T \cap H)^0$. Since G/H is of minimal rank, this S is a maximal torus in H^0, and hence we choose a Borel subgroup Q' of H^0 containing S. Thus, there is a $h \in H^0$ such that $hQh^{-1} = Q'$. Consequently, $hx^{-1}Bxh^{-1}$ is a Borel subgroup of G containing S. Thus, there is a $w \in W(G,T)$ and a $b \in B$ such that $xh^{-1} = bw$, and we have $B \cdot xH/H = B \cdot wH/H$. \hfill \square

An interesting fact in case of minimal rank is the following uniqueness of the closed B–orbit (see, [Re] p. 1788, Proposition 2.2)).

Lemma 3.2. There is a unique closed B–orbit in G/H.

Proof. Clearly, there is a minimal dimensional B–orbit in G/H and it is closed. For its uniqueness, let Bx_1H/H and let Bx_2H/H be two closed B–orbits in G/H. Then, by Lemma 3.1 there are w_1 and w_2 in W such that $B \cdot x_iH/H = B \cdot w_iH/H$ for $i = 1, 2$.

Let $S = (T \cap H)^0$. Set $B_i := w_i^{-1}Bw_i$, and $Q_i = (B_i \cap H)^0$ for $i = 1, 2$. Both Q_1 and Q_2 are Borel subgroups of H^0 containing S. Therefore, there is a $\phi \in W(H^0, S)$ such that $\phi Q_1 \phi^{-1} = Q_2$. Hence both $\phi B_1 \phi^{-1}$ and B_2 are Borel subgroups of G containing Q_2. By Lemma 2.2 we have $\phi B_1 \phi^{-1} = B_2$, and hence $w_1 = w_2 \phi$. Thus $Bx_1H/H = Bx_2H/H$. \hfill \square

We now recall from [BJ] a result of Brion and Joshua.
Lemma 3.3 ([BJ] p. 482, Lemma 2.1.1). Let Y be the closure of $T H/H$ in X, and let z denote the unique B-fixed point in X. Then, every T stable curve in X is one of the following:

1. There is a positive root $\alpha \in R^+(B) \setminus \overline{R(L)}$ and an element $\phi \in W(G,T)$ such that $\phi(C) = C_\alpha = U_\alpha s_\alpha z$. In this case α and $\sigma(\alpha)$ are orthogonal, and $s_\alpha s_{\sigma(\alpha)}$ is in $W(H^0, (T \cap H)^0)$.

(2) There is a restricted root $\gamma = \alpha - \sigma(\alpha)$ and an element $\phi \in W(G,T)$ such that $\phi(C) = C_{z,\gamma}$, where $C_{z,\gamma}$ is the unique T-stable curve containing z and on which T acts through the character γ. Moreover, the curve $C_{z,\gamma}$ lies in Y.

Lemma 3.4. Take $x \in G$, and let Z be the closure of $B x H/H$ in X. Then every irreducible T stable curve in X lies in $W(G,T) \cdot Z$.

Proof. Note that the closure of $B \cdot x H/H$ in G/H contains a closed B orbit. Therefore we assume that $B \cdot x H/H$ is the unique closed B orbit in G/H.

By Lemma 3.3, there is an element $w \in W(G,T)$ such that $B \cdot x H/H = B \cdot w H/H$. Let C be an irreducible T stable curve in X. By Lemma 3.3,

- either there is a positive root $\alpha \in R^+(B) \setminus \overline{R(L)}$ and a $\phi \in W(G,T)$ such that $\phi(C) = C_\alpha = U_\alpha s_\alpha z$,
- or there is a restricted root γ and a $\phi \in W(G,T)$ such that $\phi(C) = C_{z,\gamma}$.

Recall that $Y = \overline{TH/H}$ and $S = (T \cap H)^0$. Now, since $s_\alpha s_{\sigma(\alpha)} \in W(H^0, S)$, and $z \in Y$ (see, Lemma 3.3 (2)), we have

$$s_\alpha s_{\sigma(\alpha)} \cdot z \in Y.$$

Hence, $w s_\alpha s_{\sigma(\alpha)} \cdot z \in w \cdot Y = \overline{TwH/H}$. Since α and $\sigma(\alpha)$ are orthogonal, $s_\alpha s_{\sigma(\alpha)}(\alpha) = -\alpha$. Hence, either $w(\alpha)$ is positive or $w s_\alpha s_{\sigma(\alpha)}(\alpha) = w(-\alpha)$ is positive. Further, $s_\alpha s_{\sigma(\alpha)} \in W(H^0, S)$. Hence $B w H/H = B w s_\alpha s_{\sigma(\alpha)} H/H$.

Now, if $w(\alpha)$ is positive, then $U_{w(\alpha)} w s_\alpha s_{\sigma(\alpha)} \cdot z$ is contained in $\overline{BwH/H}$. Hence,

$$w s_{\sigma(\alpha)} (C_\alpha) = w s_{\sigma(\alpha)} U_\alpha s_\alpha \cdot z = U_{w(\alpha)} w s_\alpha s_{\sigma(\alpha)} \cdot z$$

is contained in $\overline{BwH/H}$.

If $w s_{\sigma(\alpha)}(\alpha) = w(-\alpha)$ is positive, then $w s_\alpha (C_\alpha) = U_{w(-\alpha)} w \cdot z$ is contained in $\overline{BwH/H}$.

Thus, in either case, the curve C_α lies in $W(G,T) \cdot Z$.

Since $C_{z,\gamma} \subset Y$, we have $w(C_{z,\gamma}) \subset \overline{TwH/H}$. Hence, both type of curves in Lemma 3.3 lie in the union of the $W(G,T)$ translates of $\overline{BwH/H} = B x H/H$. This completes the proof. \(\square\)
Notation: Let G be a semi-simple adjoint group over the field \mathbb{C} of complex numbers as above, and let \tilde{G} be its universal cover. For a maximal torus T in G, we denote its inverse image in \tilde{G} by \tilde{T}.

Note that \tilde{G} acts on X and hence we can consider \tilde{G} equivariant vector bundles on X.

Theorem 3.5. Fix a point $x \in G$. Let Z be the closure of BxH/H in X, where B is a σ stable Borel subgroup of G. Let E be a \tilde{G} equivariant vector bundle on X. Then, E is nef (respectively, ample) if and only if the restriction of E to Z is nef (respectively, ample). Similarly, E is trivial if and only if its restriction to Z is trivial.

Proof. Since the restriction of a nef or ample or trivial vector bundle to a subvariety is nef or ample or trivial respectively, we have only to prove the “if” part of the theorem.

First assume that the restriction $E|_Z$ is nef. We need to show that for any irreducible closed curve C in $\mathbb{P}(E)$, the degree of the line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)|_C$ is nonnegative, where $\mathcal{O}_{\mathbb{P}(E)}(1) \rightarrow \mathbb{P}(E)$ is the line bundle defined in Section 2.3.

Let $Y(\tilde{T})$ denote the group of all one-parameter subgroups of \tilde{T}, where \tilde{T}, as before, is the inverse image in \tilde{G} of a σ stable maximal torus T of G lying in B. Choose a \mathbb{Z}-basis $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of $Y(\tilde{T})$.

Let \tilde{C} be an irreducible closed curve in the projective bundle $\mathbb{P}(E)$ over X. If the image of C in X is a point, then the degree of $\mathcal{O}_{\mathbb{P}(E)}(1)$ restricted to \tilde{C} is positive, because $\mathcal{O}_{\mathbb{P}(E)}(1)$ is relatively ample. Hence we can assume that image of \tilde{C} in X is a curve C. Let \tilde{C}_1 be the flat limit of $\lambda_1(t)\tilde{C}$ as t goes to zero (i.e., the one dimensional cycle corresponding to the limit point in the Hilbert Scheme of $\mathbb{P}(E)$). Then \tilde{C}_1 is a 1-dimensional cycle in $\mathbb{P}(E)$ linearly equivalent to \tilde{C}, and the image C_1 of \tilde{C}_1 in X is invariant under λ_1. Inductively, define \tilde{C}_i to be the flat limit of $\lambda_i(t)\tilde{C}_{i-1}$ as t tends to zero, where $2 \leq i \leq n$. Then \tilde{C}_i is linearly equivalent to \tilde{C}, and the image C_i of \tilde{C}_i in X is invariant under the action on X of the sub-torus of T generated by the images of $\{\lambda_1, \lambda_2, \ldots, \lambda_i\}$.

In particular, \tilde{C}_n is linearly equivalent to \tilde{C}, and every irreducible component of \tilde{C}_n lies in the preimage of the T invariant curve $C_n \subset X$. But C_n can be conjugated to a curve in Z (see Lemma 3.4), hence, by our assumption, $E|_{C_n}$ is nef. Therefore, the degree of the line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)|_{\tilde{C}_n}$ is nonnegative (recall that degree$(\mathcal{O}_{\mathbb{P}(E)}(1)|_{\tilde{C}}) = \text{degree}(\mathcal{O}_{\mathbb{P}(E)}(1)|_{\tilde{C}_n})$). This proves that E is nef.

Next assume that $E|_Z$ is ample.

For any positive integer n, let Sym$^n(E)$ denote the n-th symmetric power of the equivariant vector bundle E. To prove that E is ample, we first note that there are only finitely many T stable curves in X, and all of them lie in $W(G,T) \cdot Z$ (see Lemma 3.4). Thus the assumption implies that Sym$^n(E)|_C$ is ample for any T stable curve C in X and for any $n \geq 1$.

Since line bundles on X are equivariant for the \tilde{G} action on X, the vector bundles Sym$^n(E) \otimes L$ are all \tilde{G} equivariant vector bundles on X, where L is any line bundle on
X. Fix an ample line bundle L on X, and let n be an integer such that $n > \text{degree}(L|_C)$ for every T invariant curve C in X. Then it follows from the argument in the first part of the proof of the theorem that $\text{Sym}^n(E) \otimes L^{-1}|_Z$ is nef, and hence $\text{Sym}^n(E) \otimes L^{-1}$ is nef. This implies $\text{Sym}^n(E)$ is ample and hence E is ample (see, [Ha, p. 67, Proposition 2.4]).

Finally assume that $E|_Z$ is trivial.

Since $E|_Z$ is trivial, the dual $(E|_Z)^* = E^*|_Z$ is also trivial. Note that a trivial vector bundle is nef. Therefore, from the first part of the theorem we conclude that both E and its dual E^* are nef. Therefore, by [DPS, p. 311, Theorem 1.18] the vector bundle E admits a filtration of holomorphic subbundles

$$0 = E_0 \subset E_1 \subset \cdots \subset E_{\ell-1} \subset E_\ell = E$$

such that each successive quotient E_i/E_{i-1}, $1 \leq i \leq \ell$, admits a unitary flat connection. This implies that E is semistable and $c_j(E) = 0$ for all $j \geq 1$, where c_j is the rational Chern class. Now, by [Si, p. 40, Corollary 3.10] the vector bundle E admits a flat holomorphic connection.

The variety X is simply connected, because it is unirational (see, [Se, p. 483, Proposition 1]). Therefore, any holomorphic vector bundle on X admitting a flat holomorphic connection is a holomorphically trivial vector bundle. In particular, the vector bundle E is trivial. \hfill \Box

The proof of first two parts of the above theorem closely follows that of [HMP, p.610, Theorem 2.1].

4. A special Steinberg fiber

As before, G be a semisimple adjoint group. Let T be a maximal torus of G, $W(G, T)$ the Weyl group of G with respect to T and B a Borel subgroup of G containing T. Let \tilde{G} be the simply connected covering of G, and let \tilde{T} (respectively, \tilde{B}) be the inverse image of T (respectively, B) in \tilde{G}. Let c be a Coxeter element in W. We fix a representative n_c of c in $N_{\tilde{G}}(\tilde{T})$.

Lemma 4.1. The homomorphism $\phi_c : \tilde{T} \longrightarrow \tilde{T}$ given by $\phi_c(t) = t n_c t^{-1} n_c^{-1}$ is surjective.

Proof. It is enough to prove that the kernel of ϕ_c is finite. We can choose a reduced expression $c = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_n}$ for c such that $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ is the set of simple roots labeled in some ordering. Let $\beta_i = s_{\alpha_1} \cdots s_{\alpha_{i-1}}(\alpha_i)$. Then, the set $\{\beta_1, \beta_2, \cdots, \beta_n\}$ is the set of positive roots which are made negative by c^{-1}.

By [YZ, p. 862, Lemma 2.1], we have $\omega_i - c(\omega_i) = \beta_i$. Now, let t be an element of the kernel of ϕ_c. Then, $\beta_i(t) = 1$ for every $i = 1, 2, \cdots, n$. Hence,

$$\ker(\phi_c) \subset \bigcap_{i=1}^{n} \ker(\beta_i).$$
Since \(\{ \beta_1, \beta_2, \cdots, \beta_n \} \) is a basis of the root lattice of \(\tilde{G} \) with respect to \(\tilde{T} \), the kernel of \(\phi_c \) lies in the center of \(\tilde{G} \). Thus, it is finite.

Now, let \(\sigma \) be the involution of \(G \times G \) defined by \(\sigma(x, y) = (y, x) \). Note that the diagonal subgroup \(\Delta(G) \) of \(G \times G \) is the subgroup of fixed points, \(T \times T \) is a \(\sigma \)-stable maximal torus of \(G \times G \) and \(B \times B^- \) is a Borel subgroup having the property that \(\sigma(\alpha) \in -R^+(B \times B^-) \) for every \(\alpha \in R^+(B \times B^-) \).

Let \(\overline{G} \) denote the wonderful compactification of the group \(G \), where \(G \) is identified with the symmetric space \((G \times G)/\Delta(G) \).

Now, consider the action of \(\tilde{G} \) on \(\tilde{G} \) by conjugation. We note that \(\tilde{T} \) is stable under the action of \(N_{\tilde{G}}(\tilde{T}) \).

It is proved in [SL[1] that the restriction
\[
\mathbb{C}[\tilde{G}] \to \mathbb{C}[\tilde{T}]^{W(G, T)}
\]
is an isomorphism, and the latter is a polynomial ring. Hence we have the Steinberg map
\[
\tau : \tilde{G} \to \tilde{T}/W(G, T) = \mathbb{A}^n.
\]

Let \(F \) be the fiber of the Steinberg map \(\tau \) containing a representative \(n_c \) of \(c \) in \(N_{\tilde{G}}(\tilde{T}) \). By an abuse of notation, we denote by \(n_c \) the image of \(n_c \) in \(N_G(T) \). Let \(F' \) be the image of \(F \) in \(G \), and let \(Z = Z_1 \cup Z_2 \), where \(Z_1 \) is the closure of \(F' \) in \(\overline{G} \) and \(Z_2 \) is the unique closed \(G \times G \) orbit in \(\overline{G} \).

Theorem 4.2. Let \(E \) be a \(\tilde{G} \times \tilde{G} \)-equivariant vector bundle on \(\overline{G} \). Then, \(E \) is nef (respectively, ample) if and only if the restriction of \(E \) to \(Z \) is nef (respectively, ample).

Similarly, \(E \) is trivial if and only if its restriction to \(Z \) is so.

Proof. Set \(W = W(G, T) \). By the proof of Theorem 3.5, it is sufficient to prove that every \(T \times T \) stable curve in \(\overline{G} \) lies in \((W \times W) \cdot Z \). It is easy to see that, for every root \(\alpha \in R^+(B) \), the \(T \times T \) stable curve \((\{1\} \times U_{-\alpha}) \cdot (1, s_\alpha) \cdot z \) lies in \(Z_2 \). Similarly, \((U_\alpha \times \{1\}) \cdot (s_\alpha, 1) \cdot z \) lies in \(Z_2 \) for every \(\alpha \in R^+(B) \). Thus, every \(T \times T \) stable curve of type 1 in Lemma 3.3 lies in \((W \times W) \cdot Z \).

On the other hand, by Lemma 4.1, the homomorphism \(\phi_c \) is onto and hence, the closure of \(Tn_c = \{tn_c t^{-1} | t \in T \} \) in \(\overline{G} \) is contained in \(Z_1 \). Therefore every \(T \times T \) stable curve of type 2 in Lemma 3.3 as well lies in \((W \times W) \cdot Z \). This completes the proof of the theorem. \(\square \)

Acknowledgements

We thank the referee for helpful comments. The first–named author thanks the Institute of Mathematical Sciences for hospitality while this work was carried out. He also acknowledges the support of the J. C. Bose Fellowship. The second–named author would like to thank the Infosys Foundation for the partial support.
References

[Br] M. Brion, Construction of equivariant vector bundles, *Algebraic groups and homogeneous spaces*, 83–111, Tata Inst. Fund. Res., Mumbai, 2007.

[BJ] M. Brion and R. Joshua, Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank, *Transform. Groups* 13 (2008), 471–493.

[DP] C. De Concini and C. Procesi, Complete symmetric varieties, *Invariant theory* Montecatini, 1982, 1–44, Lecture Notes in Math., 996, Springer, Berlin, 1983.

[DPS] J.-P. Demailly, T. Peternell and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, *Jour. Alg. Geom.* 3 (1994), 295–345.

[Ha] R. Hartshorne, Ample vector bundles, *Inst. Hautes Études Sci. Publ. Math.* 29 (1966), 63–94.

[HMP] M. Hering, M. Mustata and S. Payne, Positivity properties of toric vector bundles, *Ann. Inst. Fourier* 60 (2010), 607–640.

[Hu] J. E. Humphreys, *Introduction to Lie algebras and Representation theory*, Springer-Verlag, Berlin Heidelberg, New York, 1972.

[Hu1] J. E. Humphreys, *Linear Algebraic Groups Representation theory*, GTM 21, Springer-Verlag, Berlin Heidelberg, New York, 1975.

[Kn1] F. Knop, Weylgruppe und Momentabbildung, *Invent. Math.* 99 (1990), 1–23.

[Kn2] F. Knop, On the set of orbits for a Borel subgroup, *Comment. Math. Helv.* 70 (1995), 285–309.

[Pa] D.I. Panyushev, Complexity and rank of homogeneous spaces, *Dokl. Akad. Nauk SSSR* 307 (1989), 276–279.

[Re] N. Ressayre, Spherical homogeneous spaces of minimal rank, *Adv. Math.* 224 (2010), 1784–1800.

[Ri] R. W. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, *Invent. Math.* 66 (1982), 287–312.

[RS] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, *Geom. Dedicata* 35 (1990), 389–436.

[Se] J.-P. Serre, On the fundamental group of a unirational variety, *Jour. Lond. Math. Soc.* 34 (1959), 481–484.

[Si] C. T. Simpson, Higgs bundles and local systems, *Inst. Hautes Études Sci. Publ. Math.* 75 (1992), 5–95.

[St1] R. Steinberg, Regular elements of semisimple algebraic groups, *Inst. Hautes Études Sci. Publ. Math.* 25 (1965), 49–80.

[St2] R. Steinberg, Endomorphisms of linear algebraic groups, *Memoirs of the American Mathematical Society*, No. 80, 1968.

[Tc] A. Tchoudjem, Cohomologie des fibrés en droites sur les variétés magnifiques de rang minimal, *Bull. Soc. Math. Fr.* 135 (2007), 171–214.

[YZ] S. W. Yang and A. Zelevinsky, Cluster algebras of finite type via Coxeter elements and principal minors, *Transform. Groups* 13 (2008), 855–895.

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 500004, India

E-mail address: indranil@math.tifr.res.in

Chennai Mathematical Institute, Plot H1, Sipcot IT Park, Siruseri, Kelambakam, Chennai 603103, India

E-mail address: kannan@cmi.ac.in

Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India

E-mail address: dsn@imsc.res.in