Achalasia after bariatric Roux-en-Y gastric bypass surgery reversal

Mouhanna Abu Ghanimeh
Henry Ford Health System, mabugh1@hfhs.org

Ayman Qasrawi

Omar Abughanimeh

Sakher Albadarin

Wendell Clarkston

Follow this and additional works at: https://scholarlycommons.henryford.com/gastroenterology_articles

Recommended Citation

World J Gastroenterol 2017; 23(37):6902-6906.

This Article is brought to you for free and open access by the Gastroenterology at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Gastroenterology Articles by an authorized administrator of Henry Ford Health System Scholarly Commons.
Achalasia after bariatric Roux-en-Y gastric bypass surgery reversal

Mouhanna Abu Ghanimeh, Ayman Qasrawi, Omar Abughanimeh, Sakher Albadarin, Wendell Clarkston

Mouhanna Abu Ghanimeh, Division of Gastroenterology, Henry Ford Hospital, Detroit, MI 48202, United States
Ayman Qasrawi, Omar Abughanimeh, Wendell Clarkston, Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, United States
Sakher Albadarin, Wendell Clarkston, Division of Gastroenterology, Saint Luke’s Hospital of Kansas City, Kansas City, MO 64111, United States

Author contributions: All authors contributed to the manuscript; Abu Ghanimeh M, Qasrawi A and Abughanimeh O wrote the manuscript; Albadarin S edited the initial manuscript draft and provided the images; Clarkston W reviewed, edited and approved the final manuscript.

Institutional review board statement: This is a case report and IRB approval is not required.

Informed consent statement: The patient has provided permission to publish these features of his case, and the identity of the patient has been protected.

Conflict-of-interest statement: No conflict-of-interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Mouhanna Abu Ghanimeh, MD, Gastroenterology fellow, Henry Ford Health System, 2799 W Grand Blvd, Gastroenterology K-7 Room E-744, Detroit, MI 48202, United States. mabugh1@hfhs.org
Telephone: +1-816-328-4088
Fax: +1-313-9166413

Received: June 15, 2017
Peer-review started: June 16, 2017
First decision: July 13, 2017
Revised: August 4, 2017
Accepted: August 15, 2017
Article in press: August 15, 2017
Published online: October 7, 2017

Abstract
Achalasia is a rare esophageal motility disorder that is characterized by a loss of peristalsis in the distal esophagus and failure of lower esophageal sphincter relaxation. The risk of developing esophageal motility disorders, including achalasia, following bariatric surgery is controversial and differs based on the type of surgery. Most of the reported cases occurred with laparoscopic adjustable gastric banding. To our knowledge, there are only three reported cases of achalasia after Roux-en-Y gastric bypass and no reported cases after revision of the surgery. We present a case of a 70-year-old female who had a previous history of Roux-en-Y gastric bypass with revision. She presented with persistent nausea and regurgitation for one month. Esophagogastroduodenoscopy showed a dilated esophagus without strictures or stenosis. A barium study was performed after the endoscopy and was suggestive of achalasia. Those findings were confirmed by a manometry. The patient was referred for laparoscopic Heller’s myotomy.

Key words: Esophagus; Bariatric; Gastric band; Bypass surgery; Achalasia; Esophagogastroduodenoscopy; Heller’s myotomy; Motility disorder

© The Author(s) 2017. Published by Baishideng Publishing
A 70-year-old female with a past medical history of achalasia was referred for laparoscopic Heller’s myotomy. Her symptoms were mostly post-prandial. She also described mild dysphagia to both solids and liquids, so she started to drink in small sips. She denied any change in her weight or appetite, abdominal pain or change in bowel habits. Her vital signs were unremarkable. Her abdomen was soft, without tenderness to palpation and with bowel sounds present. The wound from her recent surgery was clean, with no evidence of discharge or poor healing.

Initial laboratory workup showed alanine aminotransferase (ALT) 33 unit/L (normal 13-69 unit/L), aspartate aminotransferase (AST) 35 unit/L (normal 15-46 unit/L) and alkaline phosphatase (ALP) 123 unit/L (normal 42-140 unit/L). A CT scan of the abdomen and pelvis with contrast (Figure 1) showed enteric contrast within the dilated distal esophagus and was suspicious for a mild stricture at gastroesophageal sphincter (GES). There was no evidence of peri-gastric inflammatory changes. Her stool workup was negative for Clostridium difficile toxin, ova and parasites. She was started on IV hydration, given IV ondansetron 4 mg every 6 h as needed for nausea and admitted for further evaluation.

The next day, esophagogastroduodenoscopy (EGD) showed large amounts of thick secretions in the esophagus. The esophagus was tortuous, dilated and had a “sigmoid esophagus” appearance, but no strictures, stenosis or evidence of malignancy were noted. A Barium study (Figure 2) was performed after the EGD and showed persistent narrowing of the gastroesophageal junction with a moderately dilated, debris-filled esophagus proximally and some tertiary esophageal contractions. These findings were suggestive of achalasia.

The patient was discharged with outpatient follow-up with a manometry study. The manometry was performed 2 wk later and revealed high pressure in the LES with abnormal relaxation and high resting pressure, in addition to aperistalsis. These results were consistent with type II achalasia (Figure 3). She was referred to surgery for evaluation and laparoscopic Heller’s myotomy.

DISCUSSION
Achalasia is a rare esophageal motility disorder that is characterized by neurodegeneration, preferentially involving the inhibitory nitric oxide-producing neurons. It leads to a loss of peristalsis in the distal esophagus and failure of LES relaxation. It is derived from the
Greek term meaning “does not relax”. Achalasia occurs equally in males and females, with an annual incidence of approximately 1.6 cases per 100000 individuals2.

Dysphagia for solids and liquids and regurgitation of undigested food or saliva are the most common symptoms in patients with achalasia3. The etiology of primary achalasia is unknown, though autoimmune and viral infectious etiologies have been proposed4,5. In its secondary form or pseudoachalasia, there are many potential causes of esophageal motor abnormalities that are similar or identical to those of primary achalasia. Examples include infections such as Chagas disease, paraneoplastic syndromes and extrinsic compression of gastroesophageal junction by either benign or malignant processes6.

Bariatric surgeries are among the fastest growing operative procedures worldwide19-21. They are recommended for adults who have a BMI of at least 40 kg/m2 or 35 kg/m2 with other comorbidities22. RYGP remains the most commonly performed bariatric procedure in the United States19-21. The risk of developing esophageal motility disorders, including achalasia, following bariatric surgery is still controversial and differs with the type of surgery11-14,16-18. Pseudoachalasia after LAGB placement has been described, though there is evidence that the pseudoachalasia may be reversible after the band is removed11-14. It has been postulated that malpositioning of the band near the gastroesophageal junction creates a high-pressure area, causing clinical symptoms of pseudoachalasia11-14.

In contrast, the development esophageal motility disorders after RYGB is rare and has only been reported a few times in the literature (Table 1)15-18. To the best of our knowledge, there are only 3 reported cases of achalasia after RYGB16-18, and this is the first case described after revision of RYGB. Interestingly, several case reports have been published on the simultaneous treatment of achalasia and morbid obesity with laparoscopic esophageal myotomy and gastric bypass22-23. The exact pathophysiology of motility disorders that develop after RYGB in general, and achalasia specifically, is unknown. Surgical trauma is one potential explanation. Shah et al15 described a retrospective study of 64 patients with achalasia compared with a control group of 73 patients without achalasia evaluated by manometry and endoscopy. A significant association was found between achalasia and trauma to the upper gastrointestinal tract. Of the patients with operative trauma and achalasia, 2 had undergone gastric bypass. Finally, it is worth mentioning that another important consideration in similar cases is to rule out stenosis of the gastrojejunostomy, which we did in our patient.

Achalasia is a rare esophageal motility disorder that is characterized by neurodegeneration, of the inhibitory nitric oxide–producing neurons. It usually manifests with dysphagia to both solid and liquids and regurgitation. Obesity is a global epidemic and
electrolytes) and liver panel were unremarkable. Stool workup was negative for infection.

Imaging diagnosis
A computed tomography scan of the chest with contrast showed enteric contrast within the dilated distal esophagus and was suspicious for a mild stricture at gastroesophageal sphincter. A Barium study was showed persistent narrowing of the gastroesophageal junction with a moderately dilated, debris-filled esophagus proximally and some tertiary esophageal contractions. Manometry was performed 2 wk after discharge and revealed high pressure in the lower esophageal sphincter (LES) with abnormal relaxation and high resting pressure, in addition to aperistalsis. These results were consistent with type II achalasia.

Endoscopic diagnosis
Esophagogastroduodenoscopy showed a tortuous and dilated esophagus with large amounts of thick secretions in the esophagus. No strictures, stenosis or evidence of malignancy were noted.

Treatment
Supportive treatment while inpatient with intravenous fluids and anti-emetics. She was referred for evaluation and laparoscopic Heller’s myotomy after her

COMMENTS
Achalasia can be associated with esophageal motility disorders. Esophageal motility disorders, including achalasia, occur as a consequence of bariatric surgeries.

Table 1 Reported cases of achalasia after Roux-en-Y gastric bypass

Case	Age and gender	Pre-operative BMI (kg/m²)	Procedure	Presentation	Onset of symptoms postoperative	Upper GI series/Barium swallow	EGD	Esophageal manometry	Treatment
Ramos et al[16] 2009	44-yr-old female	47	Laparoscopic RYGB	Dysphagia to solids, and regurgitation	4 yr	Dilated normal gastroesophageal junction, a 4-cm gastric pouch without lesions, and a wide gastroesophageal stricture	Elevated resting LES pressure, aperistalsis, and hypotonia contractility of the esophagus	Laparoscopic Heller myotomy	
Torghabeh et al[17] 2015	48-yr-old female	44.75	Laparoscopic RYGB	Dysphagia to solid, regurgitation, and chest pain	5 yr	Dilated esophagus and stricture at the LES	Tortuous esophagus with retained food products and Candida plaques. Stricture was balloon dilated	Elevated resting LES pressure, aperistalsis, and failure of LES relaxation	Laparoscopic Heller myotomy
Chapman et al[18] 2013	53-yr-old female	NA	Open PYGB	Epigastric and LUQ pain and reflux symptoms	2 yr	Dilated thoracic esophagus with reduced primary peristalsis. Contrast was slow to pass through the gastroesophageal junction	Absence of LES relaxation and aperistalsis	Laparoscopic Heller myotomy	
Our case 2016	70-yr-old female	52	Laparoscopic RYGB	Regurgitation, mild dysphagia, nausea and occasional vomiting	2 yr	Persistent narrowing of the gastroesophageal junction with a dilated, debris filled esophagus. Some tertiary contractions	Dilated, tortuous esophagus that appeared as a “sigmoid esophagus” but no strictures or stenosis was noted	Elevated LES pressure with abnormal relaxation in addition to aperistalsis	Scheduled for laparoscopic Heller myotomy

LES: Lower esophageal sphincter.

Case characteristics
Persistent nausea, regurgitation and mild dysphagia to solids and liquids for one month. History of RYGB 2 yr ago with reversal 2 mo prior to presentation.

Clinical diagnosis
Hemodynamically stable with normal vital signs. Abdomen was soft, without tenderness to palpation and with bowel sounds present. The wound from her recent surgery was clean, with no evidence of discharge or poor healing.

Differential diagnosis
Distal esophageal stricture, Stenosis of the gastroesjestomomy, achalasia, tumor of the gastric cardia or distal esophagus, infectious gastroenteritis.

Laboratory diagnosis
Initial complete blood count, basic metabolic panel (kidney function and
Related reports

Table 1 summarize previous reported cases of achalasia in association with RYGB.

Term explanation

Achalasia is a rare esophageal motility disorder characterized by loss of peristalsis in the distal esophagus and failure of LES.

Experiences and lessons

Achalasia and other esophageal motility disorders may occur as a consequence of bariatric surgeries including RYGB.

Peer-review

A rare case report that achalasia after bariatric Roux-en-Y gastric bypass surgery was well described by the authors. Only 3 reported cases of achalasia after RYGB had been reported in the world, and this was the first case described after revision of RYGB. It's a worth case to be reported.

REFERENCES

1. Pandolfino JE, Kwiatek MA, Nealis T, Bulsiewicz W, Post J, Kahrilas PJ. Achalasia: a new clinically relevant classification by high-resolution manometry. *Gastroenterology* 2008; 135: 1526-1533 [PMID: 18722376 DOI: 10.1053/j.gastro.2008.07.022]

2. Sadowski DC, Ackah F, Jiang B, Svenson LW. Achalasia: incidence, prevalence and survival. A population-based study. *Neurolgastroenterol Motil* 2010; 22: e256-e261 [PMID: 20465592 DOI: 10.1111/j.1365-2982.2010.01511.x]

3. Fisichella PM, Raz D, Palazzo F, Nipomnick I, Patti MG. Clinical, radiological, and manometric profile in 145 patients with untreated achalasia. *World J Surg* 2008; 32: 1974-1979 [PMID: 18575930 DOI: 10.1007/s00268-008-9656-z]

4. Wong RK, Maydonovitch CL, Metz SJ, Baker JR Jr. Significant DQw1 association in achalasia. *Dig Dis Sci* 1989; 34: 349-352 [PMID: 2920639]

5. Niwamoto H, Okamoto E, Fujimoto J, Takeuchi M, Furuyama J, Yamamoto Y. Are human herpes viruses or measles virus associated with esophageal achalasia? *Dig Dis Sci* 1995; 40: 859-864 [PMID: 7720482]

6. Katska DA, Farrugia G, Arora AS. Achalasia secondary to neoplasia: a disease with a changing differential diagnosis. *Dis Esophagus* 2012; 25: 331-336 [PMID: 21967574 DOI: 10.1111/j.1442-2050.2011.01266.x]

7. Koppman JS, Poggi L, Szomstein S, Ukleja A, Botoman A, Rosenthal R. Esophageal motility disorders in the morbidly obese population. *Surg Endosc* 2007; 21: 761-764 [PMID: 17285388 DOI: 10.1007/s00464-006-9102-y]

8. Hong D, Khajaneeh YS, Pereira N, Lockhart B, Patterson EJ, Swanstrom LL. Manometric abnormalities and gastroesophageal reflux disease in the morbidly obese. *Obes Surg* 2004; 14: 744-749 [PMID: 15318976 DOI: 10.1381/0960892041590854]

9. Jaffin BW, Knoepflmacher P, Greenstein R. High prevalence of asymptomatic esophageal motility disorders among morbidly obese patients. *Obes Surg* 1999; 9: 390-395 [PMID: 10484299 DOI: 10.1381/096089299765552990]

10. Herberl FA, Matone J, Lourenço LG, Del Grande JC. Obesity and symptomatic achalasia. *Obes Surg* 2005; 15: 713-715 [PMID: 15946467 DOI: 10.1381/0960892053923005]

11. Cho M, Kaidar-Person O, Szomstein S, Rosenthal RJ. Achalasia after vertical banded gastroplasty for morbid obesity: A case report. *Surg Laparosc Endosc Percutan Tech* 2006; 16: 161-164 [PMID: 16680459]

12. Rubenstein RB. Laparoscopic adjustable gastric banding at a U.S. center with up to 3-year follow-up. *Obes Surg* 2002; 12: 380-384 [PMID: 12082892]

13. Khan A, Ren-Fielding C, Traube M. Potentially reversible pseudoachalasia after laparoscopic adjustable gastric banding. *J Clin Gastroenterol* 2011; 45: 775-779 [PMID: 21778895 DOI: 10.1097/MCG.0b013e3182126a14]

14. Naef M, Mouton WG, Naef U, van der Weg B, Maddran GJ, Wagner HE. Esophageal dysmotility disorders after laparoscopic gastric banding—an underestimated complication. *Ann Surg* 2011; 255: 285-290 [PMID: 21169806 DOI: 10.1097/SLA.0b013e318206843e]

15. Shah RN, Ignacz JL, Friedel DM, Axelrod P, Parkman HP, Fisher RS. Achalasia presenting after operative and nonoperative trauma. *Dig Dis Sci* 2004; 49: 1818-1821 [PMID: 15628710]

16. Ramos AC, Murakami A, Lanzarini EG, Neto MG, Galvão M. Achalasia and laparoscopic gastric bypass. *Surg Obes Relat Dis* 2009; 5: 132-134 [PMID: 18722821 DOI: 10.1016/j.soard.2008.05.004]

17. Torgahabeh MH, Afaneh C, Saif T, Dakin GF. Achalasia 5 years following Roux-en-y gastric bypass. *J Minim Access Surg* 2015; 11: 203-204 [PMID: 26195880 DOI: 10.4103/0972-9941.159854]

18. Chapman R, Rotundo A, Carter N, George J, Jenkinson A, Adamo M. Laparoscopic Heller’s myotomy for achalasia after gastric bypass: A case report. *Int J Surg Case Rep* 2013; 4: 396-398 [PMID: 23506742 DOI: 10.1016/j.ijscr.2013.01.014]

19. American Society for Metabolic and Bariatric Surgery (2009) Fact Sheet. Metabolic and Bariatric Surgery. Available from: URL: https://asbs.org/resources/metabolic-and-bariatric-surgery

20. Nguyen NT, Masoomi H, Magno CP, Nguyen XM, Laugener K, Lane T. Trends in use of bariatric surgery, 2003-2008. *J Am Coll Surg* 2011; 213: 261-266 [PMID: 21624841 DOI: 10.1016/j.jamco.2011.04.030]

21. NIH conference. Gastrointestinal surgery for severe obesity, Consensus Development Conference Panel. *Ann Intern Med* 1991; 115: 956-961 [PMID: 1952493]

22. O’Rourke RW, Jobe BA, Spight DH, Hunter JG. Simultaneous surgical management of achalasia and morbid obesity. *Obes Surg* 2007; 17: 547-549 [PMID: 17608270 DOI: 10.1007/s11695-007-9095-1]

23. Kaufman JA, Pellegriini CA, Oelschlager BK. Laparoscopic Heller myotomy and Roux-en-Y gastric bypass: a novel operation for the obese patient with achalasia. *J Laparoendosc Adv Surg Tech A* 2005; 15: 391-395 [PMID: 16108743 DOI: 10.1089/lap.2005.15.391]

P- Reviewer: Altarabshieh SE, Wang BM, Garcia-Olmo D
S- Editor: Qi Y L- Editor: A E- Editor: Huang Y
