Brine Volume Fraction as a Habitability Metric for Europa's Ice Shell

N. S. Wolfenbarger¹, M. G. Fox-Powell², J. J. Buffo³, K. M. Soderlund¹, and D. D. Blankenship¹

¹Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA, ²AstrobiologyOU, The Open University, Milton Keynes, UK, ³Dartmouth College, Hanover, NH, USA

Abstract Brine systems in Europa's ice shell have been hypothesized as potential habitats that could be more accessible than the sub-ice ocean. We model the distribution of sub-millimeter-scale brine pockets in Europa's ice shell. Through examination of three habitability metrics (water activity, ionic strength, and salinity), we determine that brine pockets are likely not geochemically prohibitive to life as we know it for the chloride and sulfate-dominated ocean compositions considered here. Brine volume fraction is introduced as a novel habitability metric to serve as a proxy for nutrient transport and recycling—because of its role in governing permeability—and used to define regions where nutrient-open, nutrient-closed, and relic habitats are stable. Whereas nutrient-closed habitats could exist wherever brine is stable, nutrient-open habitats are confined to meter-scale regions near the ice-ocean interface where freezing is occurring. This classification scheme can help guide future life-detection missions to ocean worlds.

Plain Language Summary Pockets of salty liquid water (brines) could exist in the ice shell of Jupiter's moon Europa. Because brines would be stable over long timescales within these pockets, they represent places that could be inhabited by microorganisms. We model where sub-millimeter-scale brine pockets might exist in Europa's ice shell and study the properties of the brine using a geochemical model. Our results demonstrate that the conditions of the brine do not fall beyond the limits of where life can exist on Earth, indicating that brine pockets may be suitable habitats in Europa's ice shell. We also model the amount of brine in the ice shell to see if organisms inhabiting these brine pockets could have access to ocean-sourced nutrients via their transport along brine networks in the ice. By considering these factors, we classify potential brine habitats in Europa's ice shell.

1. Introduction

Jupiter's icy moon Europa is a high-priority target for exploration in the search for habitable worlds beyond Earth. Although the global sub-ice ocean represents Europa's most compelling potential habitat, habitable niches could extend from the ocean into the ice shell interior. Brine systems within Europa's ice shell have been hypothesized to represent potential habitats; however studies focused on their distribution and characteristics have been relatively limited (e.g., J. Deming & Eicken, 2007; Kargel et al., 2000; Marion et al., 2003).

The distribution of brine in Europa's ice shell is governed by the shell's thermal profile as well as the composition and concentration of impurities within the ice (Wolfenbarger, Fox-Powell, et al., 2022). In Europa's ice shell, impurities are either incorporated through freezing of oceanic material at the base of the ice shell (e.g., Allu Peddinti & McNamara, 2015; Buffo et al., 2020; Wolfenbarger, Buffo, et al., 2022) or through geologic processes that transport surface impurities into the subsurface (e.g., Kattenhorn & Prockter, 2014).

Although impurities in an ice shell allow liquid water to be thermodynamically stable at temperatures below the pure ice pressure melting temperature (as brine), the presence of liquid water alone does not make an environment habitable. Chemical properties of the brine can be unfavorable—and even preventative—to supporting life, particularly conditions of low water activity (Stevenson et al., 2015), high ionic strength (Fox-Powell et al., 2016), and high salinity (Oren, 2011).

Organisms that inhabit analogous environments on Earth have developed strategies to endure the geochemical extremes that come with the reductions in temperature and increases in salinity associated with brine in equilibrium with ice (see J. W. Deming and Young (2017) for a thorough review). Examples of these strategies include...
the generation of extracellular polymeric substances (EPS), which protect cells from damage by encroaching ice crystals and increasing brine salinity (Aslam et al., 2012; Ewert & Deming, 2013; Krembs et al., 2002; Liu et al., 2013), and the accumulation of ions and/or synthesis of compatible solutes, which restores osmotic balance across the cell membrane (Ewert & Deming, 2013; Thomas & Dieckmann, 2002). Importantly, these strategies come at a cost to the organisms that employ them, requiring access to a supply of energy and nutrients, particularly those strategies that involve the synthesis of organic compounds (Aslam et al., 2012; Oren, 2011).

The significance of nutrient accessibility in governing the distribution of habitats in ice-brine environments is particularly pronounced in sea ice. Access to ocean-supplied nutrients is one of the key factors governing microbial growth in sea ice. Microalgae, for example, tend to concentrate within the more permeable sea ice base that can be replenished by oceanic material (Arrigo, 2014, 2017; Arrigo et al., 2014; Meiners & Michel, 2017). The observation that microalgae concentrate in the region of the ice furthest from their energy source (sunlight), emphasizes that access to ocean-supplied nutrients is important for sustaining in-ice habitats. During the polar winter (i.e., in the absence of sunlight), bacteria and archaea that inhabit sea ice are likely similarly dependent on oceanic nutrients (Collins et al., 2010; Cowie et al., 2011; Junge et al., 2004); however, these prokaryotes are relatively less studied than algae and thus the factors that control their growth are less understood (Bowman, 2015; Campbell et al., 2022). These studies of sea ice habitats motivate our decision to consider access to oceanic-nutrients as a factor governing the habitability of Europa's ice shell (Duarte et al., 2022).

Although sunlight is not expected to serve as an energy source to support life at Europa (i.e., organisms inhabiting the ice shell and/or ocean are likely not phototrophic), radiologically generated oxidants at the surface may represent an analogous energy source for chemotrophic organisms (Chyba, 2000). The oxidant flux from Europa's surface to the ocean is poorly constrained but could be punctuated or continuous depending on the transport mechanism (e.g., brine drainage from chaos terrain or complete overturning of the ice shell) (Hesse et al., 2022; Vance et al., 2016). Estimates assuming the ice shell fully over-turns on timescales equal to the age of the surface suggest Europa's ocean could be more oxygenated than Earth's ocean (Greenberg, 2010; Hand et al., 2007). For this work, we assume that the oxidant flux will govern the amount of sustainable biomass in Europa's subsurface, similar to how irradiance limits the extent of algae blooms in sea ice (Hancke et al., 2018), and that the oxidant flux is such that some non-zero biomass can be maintained at Europa, but that access to oceanic nutrients will govern whether this biomass can be sustained within the ice shell.

In our study of potential Europan sub-millimeter-scale brine pocket habitats (see Text S1 in Supporting Information S1), we first model and evaluate a series of traditional habitability metrics related to geochemical properties of the brine: water activity, ionic strength, and salinity (Sections 2 and 3). We introduce brine volume fraction as a novel habitability metric, and argue that because of its role in governing the permeability of ice, it can serve as a proxy for access to oceanic nutrients (Section 4). Finally, we use brine volume fraction as a habitability metric to define three classes of potential habitats: nutrient-open, nutrient-closed, and relict, and identify where they might exist in Europa's ice shell (Sections 5 and 6).

2. Traditional Habitability Metrics

Through modeling the brine volume fraction in Europa's ice shell, we can constrain the amount of thermodynamically stable water in equilibrium with ice for a given bulk salinity and composition (Wolfenbarger, Fox-Powell, et al., 2022). However, to examine the potential for brine systems to serve as an in-ice habitat for life as we know it, it is necessary to evaluate certain characteristics and chemical properties of the brine. We select three habitability metrics to consider in our evaluation: water activity, ionic strength, and salinity (see Text S2 in Supporting Information S1 for a discussion of chaotropicity). These habitability metrics can be extracted directly from the aqueous geochemistry program FREZCHEM (Marion & Kargel, 2007).

Salinity quantifies total concentration of aqueous species in the brine, expressed here in units of ppt (g/kg solution). Hypersaline environments on Earth have been the subject of significant study in constraining the limits of life (see Text S3 in Supporting Information S1). High salinity can impede the functioning of proteins by causing them to precipitate, whereas the high osmotic stress resulting from a high salinity differential between the cell interior and exterior can cause potential dehydration and reduction of the cell volume (Ewert & Deming, 2013; Ralph et al., 2007; Thomas & Dieckmann, 2002). Laboratory studies of hypersaline solutions have demonstrated microbial growth can occur up to the saturation point; however, these limits are composition dependent (Stevens
composition for habitability thus necessitates considering all three parameters independently. Exploring the implications of brine varies with composition. As we will demonstrate, brines at identical salinities can exhibit drastically different water pressure of ice to the water vapor pressure of pure liquid water, and as such is solely a function of temperature Kargel (2007). Where brine is in equilibrium with ice, water activity is equivalent to the ratio of water vapor pressure of ice to the water vapor pressure of pure liquid water, and as such is solely a function of temperature and not the composition or concentration of solutes (Koop, 2002). Although these three parameters are intimately linked (see Figure 15.5 in J. Deming and Eicken (2007)), they can of life (Bacteria, Archaea, and Eukarya) are capable of reproducing at water activities as low as ∼0.6 (Stevenson et al., 2015). In FREZCHEM, water activity is calculated using the Pitzer equations, as described in Marion and Kargel (2007). Where brine is in equilibrium with ice, water activity is equivalent to the ratio of water vapor pressure of ice to the water vapor pressure of pure liquid water, and as such is solely a function of temperature and not the composition or concentration of solutes (Koop, 2002).

Water activity represents the thermodynamic availability of water in an environment for metabolic processes (Fox-Powell et al., 2016; Grant, 2004; Stevenson et al., 2015), expressed as the ratio of the vapor pressure of solution to the vapor pressure of pure water (Grant, 2004) (pure water has a water activity of 1). A majority of microbes cannot multiply below a water activity of 0.9; however, extremophilic species across the three domains of life (Bacteria, Archaea, and Eukarya) are capable of reproducing at water activities as low as ∼0.6 (Stevenson et al., 2015). In FREZCHEM, water activity is calculated using the Pitzer equations, as described in Marion and Kargel (2007). Where brine is in equilibrium with ice, water activity is equivalent to the ratio of water vapor pressure of ice to the water vapor pressure of pure liquid water, and as such is solely a function of temperature and not the composition or concentration of solutes (Koop, 2002).

Although these three parameters are intimately linked (see Figure 15.5 in J. Deming and Eicken (2007)), they can vary with composition. As we will demonstrate, brines at identical salinities can exhibit drastically different water activities and ionic strengths if they differ in their major ionic composition. Exploring the implications of brine composition for habitability thus necessitates considering all three parameters independently.

3. Evaluation of Habitability Metrics in Europa's Ice Shell

In our evaluation of habitability metrics for Europa's ice shell, we assume the analog endmember ocean compositions of Wolfenbarger, Fox-Powell, et al. (2022). In their model, we considered only impurities sourced from the ocean and adopted two endmember ocean compositions: (a) a chloride-dominated composition, analogous to terrestrial seawater, and (b) a sulfate-dominated composition, analogous to the modeled Europa K1a ocean of Zolotov and Shock (2001). We similarly adopt their linear temperature profile, with a surface temperature of −173.15°C (100 K) and a basal temperature of 0°C (273.15 K), and assume a fixed pressure of 1 atm to represent an ice shell of arbitrary thickness. Note that neglecting the influence of overburden pressure affects the vertical brine extent (i.e., fraction of total conductive ice layer thickness where brine is thermodynamically stable) by less than 1% (Wolfenbarger, Fox-Powell, et al., 2022).

Figure 1 presents the water activity, ionic strength, and salinity extracted from FREZCHEM v15.1 for the analog endmember ocean compositions, as well as two binary endmember compositions (NaCl, MgSO4) for reference. By examining these habitability metrics as a function of brine volume fraction, in addition to temperature, we can study the influence of composition on the characteristics of habitats where the same amount of water is present.

Figure 1a illustrates that for brine in equilibrium with ice, the water activity is a function of temperature alone (Koop, 2002). However, because the composition of solutes governs the eutectic temperature, this determines the minimum water activity where brine is in equilibrium with ice. At the ice-ocean interface, the maximum water activity is governed by the ocean salinity. Importantly, for the endmember compositions assumed here, the water activity does not fall below the current empirical limit of approximately 0.6 (Figure 1a). Extrapolating the curve in Figure 1a suggests that water activity could fall below 0.6 for an ice shell composition where the eutectic temperature is below −50.6°C (222.5 K), in agreement with Marion (2002). In the absence of low-eutectic impurities (e.g., sulfuric acid, perchlorates, or ammonia), it is unlikely water activity will be the limiting factor governing the habitability of in-ice brine systems.

Figure 1b illustrates that ionic strength increases as temperature decreases, although following precipitation of meridianiite at $T = -5.7°C$ (267.45 K) in the sulfate-dominated case, the ionic strength decreases due to the sink
of divalent ions, whereas the ionic strength increases in the chloride-dominated after precipitation of hydrohalite at $T = -22.5^\circ C$ (250.65 K) due to a sink of monovalent ions. For both analog endmember compositions the ionic strength does not exceed the empirical limit of 10 mol/L.

Although water activity has been used as a measure of salinity (see Marion, 2002; Marion et al., 2003; Tosca et al., 2008), Figure 1c shows that brine salinity does not increase monotonically as water activity decreases for brine in equilibrium with ice. The precipitation of minerals as the solution freezes causes the salinity to decrease under continued cooling as minerals serve as a sink for dissolved ions. The brine salinity for each analog endmember composition closely follows the salinity of the related binary endmember composition up to the eutectic temperature of the binary composition. As such, the sulfate-dominated composition has a higher salinity than the chloride-dominated composition at higher temperatures and a lower salinity at lower temperatures. At the eutectic, $T_{\text{eut}} = -32.2^\circ C$ (240.95 K), these two cases share the same salinity.

For both compositions, the habitability metrics in Figure 1 suggest that these brine systems are not inherently prohibitive to life as we know it, although we note that microbial growth in ice on Earth has not been observed below $-20^\circ C$ (see Text S5 in Supporting Information S1), possibly due to the process of vitrification (glass transition) (Clarke, 2014). Although not geochemically prohibitive to life as we know it, these brines are certainly not considered favorable to most life on Earth, and in general become more extreme as temperatures decrease. Even for a water activity higher than 0.9, which is considered a lower bound water activity for most microbes on Earth (Stevenson et al., 2015), the brine salinity and ionic strength are consistent with those expected of hypersaline environments. Organisms that inhabit analogous environments on Earth are classified as halophiles and/or...
and (c) potential habitats, characterized by an absence of viable microorganisms. On Earth, nutrient availability has been used to identify three distinct groupings of metabolic activity of in-ice organisms (Price, 2000, 2007). Access to such nutrients is essential for organisms to grow, reproduce, and survive. On Earth, nutrient availability has been used to identify three distinct groupings of metabolic activity in microbial communities (Price & Sowers, 2004), where a “growth” metabolism implies unlimited access to nutrients, a “maintenance” metabolism implies nutrient levels are too low for growth, and a “survival” metabolism implies nutrient levels can only support repairing damage (Price, 2009). Inspired by these groupings, we define three classes of potential habitats: (a) nutrient-open, (b) nutrient-closed, and (c) relict potential habitats, characterized by “maintenance” and “survival,” respectively.

4. Brine Volume Fraction as a Habitability Metric

Fundamentally, brine volume fraction represents a quantification of the potentially habitable space in ice (Thomas et al., 2017). In fact, a study of artificial sea ice revealed that 95% of cells trapped within the ice were contained within brine inclusions (Junge et al., 2001). Retaining brine represents an important survival strategy for organisms inhabiting ice, as evidenced by studies of EPS (Ewert & Deming, 2011; Krembs et al., 2011). For example, the net effect of EPS on sea ice is to increase the brine volume fraction (Krembs et al., 2011). Ice-binding proteins, glycoproteins, and/or polysaccharides increase the tortuosity of the ice, which in turn retains salt and thus increases the brine volume fraction (Ewert & Deming, 2011; Krembs et al., 2011). Studies of natural saline ice that include both brine volume fraction and cell density profiles illustrate a correlation between these two quantities (Buffo et al., 2022; Uhlig et al., 2018), although further dedicated studies are needed.

Because the brine volume fraction of ice represents the governing variable in permeability models for columnar sea ice (Golden et al., 2007; Petrich et al., 2006), it also represents an important control on nutrient transport (Meiners & Michel, 2017). Even in glacial ice, where the brine volume fraction can be orders of magnitude lower than sea ice, nutrient transport through liquid veins at grain boundaries is essential for supporting the metabolic activity of in-ice organisms (Price, 2000, 2007). Access to such nutrients is essential for organisms to grow, reproduce, and survive. On Earth, nutrient availability has been used to identify three distinct groupings of metabolic activity in microbial communities (Price & Sowers, 2004), where a “growth” metabolism implies unlimited access to nutrients, a “maintenance” metabolism implies nutrient levels are too low for growth, and a “survival” metabolism implies nutrient levels can only support repairing damage (Price, 2009). Inspired by these groupings based on nutrient accessibility, we define three classes of potential habitats: (a) nutrient-open potential habitats characterized by “growth,” (b) nutrient-closed potential habitats, characterized by “maintenance” and “survival,” and (c) relict potential habitats, characterized by an absence of viable microorganisms.

5. Classification of Brine Pocket Habitats

In our model of Europa’s ice shell, we assume that the ice shell retains the columnar crystal structure originating from directional freezing of the ocean (Figure 3d). This simplifying assumption is validated by studies of the microstructure of sea ice which suggest that in the absence of warming, ice can retain its original grain boundaries (Maus, 2020; Zotikov et al., 1980). Because the ice forms with a columnar texture, it is subject to a percolation threshold at some critical porosity, ϕ_c (Maus et al., 2021). Where the brine volume fraction is higher than this critical porosity, convective overturning of brine can occur within the ice and transport oceanic material, including nutrients, into the icy interior (Meiners & Michel, 2017). To define the region where nutrient replenishment can operate efficiently and support nutrient-open potential habitats, we adopt $\phi_c = 0.06$. This value corresponds to the effective critical porosity derived by Wolfenbarger, Fox-Powell, et al. (2022) from ice which formed at the base of the Ross Ice Shelf (Zotikov et al., 1980), under growth conditions that could approach those expected at Europa (Wolfenbarger, Buffo, et al., 2022).
Nutrient transport could still operate at brine volume fractions below this effective critical porosity—albeit less efficiently—since the ice may not be completely impermeable. Measurements of the dihedral angles for partially molten ice binary systems have shown that, in general, values are below 60°, indicating that melt is not confined to triple junctions and should be mobile along ice grain boundaries (McCarthy et al., 2019). These measurements suggest that ice in textural equilibrium should be permeable even at very low brine volume fractions and nutrient transport could be permissible at temperatures down to the eutectic. This property has been used previously to justify the transport of oxidants through Europa’s ice shell via porosity waves (Hesse et al., 2022); however, we note that sea ice does not possess an equilibrium texture (e.g., Junge et al., 2001, 2004; Moore et al., 1994). We thus designate the region of the ice shell where the brine volume fraction is less than 0.06 but water is still stable as nutrient-closed potential habitats. Here, metabolic activity is still possible, but organisms are nutrient-limited and thus have limited potential to grow and reproduce.

In contrast, given that by our definition the entire ice shell was once innately nutrient-open (i.e., froze from an ocean and thus evolved from a brine volume fraction of unity to zero), we designate the region of the ice shell where the brine volume fraction is zero as relict potential habitats. Where liquid water is no longer stable within the ice shell, we consider organisms that were once inhabiting the interstices of ice crystals to be in a nonviable state (i.e., unable to metabolize). However, premelting (the formation of quasi-liquid layers, see Slater and Michaelides (2019) for a review), and/or supercooling (see Primm et al., 2017; Toner et al., 2014) could extend the vertical extent of nutrient-closed potential habitats to temperatures below the eutectic. EPS, if present, could depress the eutectic temperature by inhibiting salt and ice crystallization (Izutsu et al., 1995). Rohde and Price (2007) demonstrated that diffusion of nutrients through the ice crystal structure itself could occur; however, the absence of liquid water could prevent uptake of those nutrients by a cell membrane, assuming the membrane is intact and still fluid enough to enable transport (Clarke, 2014).

6. Potential Habitats in Europa’s Ice Shell

Figure 2 shows the brine volume fraction, V_b/V, for Europa’s ice shell considering a range of bulk salinities up to 100 ppt, adapted from Wolfenbarger, Fox-Powell, et al. (2022) (see Section 3 for model assumptions). Our proposed classification indicates that ~80% of the ice shell corresponds to relict potential habitats, since brine is not thermodynamically stable for temperatures below the shared eutectic of $T = -32.2°C$ (240.95 K). To establish where nutrient-open and nutrient-closed potential habitats could be stable, we must identify where the brine volume fraction exceeds our effective critical porosity of 0.06.
6.1. Maximum Vertical Extent of Nutrient-Open Potential Habitats

The contours in Figure 2 represent the lowest temperature where the brine volume fraction is greater than the effective critical porosity, ϕ_c, of 0.06 for a given bulk ice salinity, and thus define the upper boundary where nutrient-open potential habitats are stable in a conductive ice shell. The thick black curves in Figure 2 represent the freezing temperature as a function of ocean salinity (i.e., the temperature at the ice-ocean interface), and thus define the lower boundary of the vertical region where nutrient-open potential habitats within the ice are stable. Defining this curve as the lower boundary ensures that the bulk salinity of the ice shell does not exceed that of the underlying ocean. Consequently, the region bounded by the two curves in Figure 2 represents the extreme case where bulk ice shell salinity is equal to the underlying ocean salinity and thus represents a maximum estimate for the vertical extent of nutrient-open potential habitats (Figure S1 in Supporting Information S1). For both compositions considered, the maximum vertical extent of nutrient-open potential habitats generally increases with salinity.

The chloride-dominated ice shell is capable of supporting a much larger vertical extent of nutrient-open potential habitats, due to having a higher volume fraction of brine stable for a given bulk ice salinity and temperature than the sulfate-dominated ice shell.

6.2. Limitations on the Vertical Extent of Nutrient-Open Habitats Due To Brine Drainage

An important consequence of designating nutrient-open habitats as locations where the brine volume fraction exceeds a percolation threshold is that they are only stable if brine is actively draining. For Europa’s ice shell, this corresponds to locations of active freezing (i.e., where the ice shell is in the processes of desalinizing).
that the region bounded by the curves in Figure 2 specifically represents the case where the bulk ice shell salinity is equivalent to the underlying ocean salinity. Practically, this assumption is not realistic because the ice will be in a state of progressive desalination due to the unstable brine density gradient in the region where nutrient-open habitats are present. Ultimately, this process will limit the stable bulk ice shell salinity to a fraction of the underlying ocean salinity (Wolfenbarger, Buffo et al., 2022; Wolfenbarger, Fox-Powell et al., 2022). Thus, the true vertical distribution of nutrient-open habitats in a conductive ice shell is governed by the fraction that is in an active state of desalination, where brine convection is occurring within the ice (i.e., the equilibrium mushy layer of Buffo et al. (2021)).

Estimates of equilibrium mushy layer thickness applied to Europa, assuming a range of ice shell thicknesses and ocean salinities (see Buffo et al. (2021) and Text S6/Figure S2 in Supporting Information S1, respectively), imply that nutrient-open habitats in Europa’s ice shell are likely at most only meters thick when accounting for the role of brine drainage in governing the stable bulk ice shell salinity. As such the majority of the ice shell where brine is thermodynamically stable will likely be characterized by nutrient-closed habitats. We note that the model of Buffo et al. (2021) represents the case of natural convection. Forced convection, driven by tides or sub-ice currents (see Soderlund et al., 2020, for a review), might increase the vertical extent of nutrient-open habitats, similar to sea ice on Earth (Arrigo & Thomas, 2004).

6.3. Extensions on the Vertical Extent of Nutrient-Open Habitats

Recall that our classification scheme assumes that brine convection represents the only mechanism of nutrient transport that could support nutrient-open habitats. If other transport processes are found to be capable of supplying a sufficient flux of nutrients to support growth and reproduction of organisms trapped in the ice, many of the regions classified as nutrient-closed habitats could be reclassified as nutrient-open habitats. Hypothesized exchange processes that could transport oceanic nutrients include ocean-injection of sills via fracturing (Michaut & Manga, 2014), diapirism (R. T. Pappalardo & Barr, 2004), and ice shell solid-state convection (Allu Peddinti & McNamara, 2015).

Although our analysis excludes the potential existence of a convective ice layer, extrapolation of our results suggests that this layer could represent the most extensive potential habitat. Numerical simulations of ice shell convection have shown that temperatures in the convective ice layer thickness can exceed the eutectic temperatures considered here (Kalousova et al., 2017). The efficiency of nutrient exchange will govern whether these are nutrient-open or nutrient-closed potential habitats. To rigorously quantify the distribution of potential nutrient-open habitats in a convective layer requires the following: (a) a convection model which incorporates two-phase flow, (b) a permeability-porosity relationship compatible with the expected ice texture (grain size, shape, etc.), and (c) a parameterization of bulk ice thermophysical properties based on brine volume fraction.

6.4. Significance of Nutrient-Closed and Relict Potential Habitats for Biosignatures

Although nutrient-open habitats are compelling targets in the search for life beyond Earth, nutrient-closed and relict habitats represent more extensive, more accessible, and more feasible targets for biosignature detection. On Earth, viable microorganisms have been found in brine inclusions in halite evaporites that are older than the estimated age of Europa’s surface (Bierhaus et al., 2009; Jaakkola et al., 2016). Because brine inclusions would not be thermodynamically stable anywhere below the eutectic temperature, this is a more relevant analog for nutrient-closed potential habitats within the ice shell interior, where brine inclusions are trapped in the ice, than relict potential habitats, like salt deposits at the surface. Another analog relevant to nutrient-closed and relict potential habitats at Europa is ancient glacial ice on Earth. Glacial ice samples (some estimated to be up to 8 Myr old) have been discovered to harbor both viable and nonviable microorganisms, frozen into the ice at the time of formation (Bidle et al., 2007; Christner et al., 2003; Knowlton et al., 2013; Ma et al., 1999). Although neither environment discussed here is a perfect analog for potential habitats at Europa, organisms are clearly capable of prolonged survival in environments analogous to brine pockets in an ice shell (Bradley et al., 2019). Beyond survival, the ubiquity of ancient biologic material in terrestrial ice bodes well for biosignature preservation in relict potential habitats at Europa (Castello & Rogers, 2005).
7. Conclusions

Three habitability metrics (water activity, ionic strength, and brine salinity) were chosen to evaluate ice shell brine pockets as potential habitats for two ocean analog endmember compositions. It was found that for ice shell impurities considered here, brine pockets were not geochemically prohibitive to life as we know it. This suggests that anywhere liquid water is detected within Europa's ice shell could represent a potential habitat. Note that our study ignores the potential contribution of low eutectic impurities that could be generated at the surface (e.g., sulfuric acid and perchlorates) (Ligier et al., 2016), which would reduce the water activity and thus habitability of cold, low brine volume fraction environments.

Motivated by examination of analog habitats, we argue that brine volume fraction should be used as a habitability metric to classify potential habitats within Europa's ice shell because it serves as a measure of potentially habitable space and governs the efficiency of nutrient transport (Meiners & Michel, 2017; Thomas et al., 2017). Using brine volume fraction as a proxy for nutrient transport, we defined three classes of potential in-ice brine habitats: (a) nutrient-open, (b) nutrient-closed, and (c) relict.

We found that ~80% of a conductive European ice shell is characterized by relict potential habitats, ~20% is characterized by nutrient-closed potential habitats, and nutrient-open potential habitats are confined to a few meters of an ice-ocean interface, where the ice shell is actively freezing (Figure 3). Extending our results to an ice shell where solid state convection is occurring, we argue that a convective ice layer—shown by Kalousová et al. (2017) to be on the order of half the total ice shell thickness—could represent the most extensive potential habitat in Europa's ice shell, where efficiency of nutrient exchange will govern whether brine pockets are nutrient-open or nutrient-closed potential habitats.

Identifying where nutrient-open, nutrient-closed, and relict potential habitats could exist in Europa's ice shell can guide future life-detection missions, such as a Europa lander (R. Pappalardo et al., 2013). Our study demonstrates that relict potential habitats represent the most accessible targets for future missions to sample biosignatures at Europa. For missions where the goal is to detect potentially viable microorganisms in situ, a cryobot would be necessary to access depths where nutrient-closed potential habitats are stable (Zimmerman et al., 2001). Notably, this would not require penetrating the full ice shell thickness to access the ice-ocean interface. However, for the impurity compositions and thermal profile considered here, accessing these depths for a 10 km ice shell would require penetrating ~8 km of ice—almost double the thickest ice on Earth (Fretwell et al., 2013). In the case of a convective ice shell, descending through half the total ice shell thickness could be sufficient to reach nutrient-closed potential habitats (Kalousová et al., 2017). Beyond Europa, this classification scheme could be invaluable for guiding future life-detection missions to other icy ocean worlds such as Enceladus or Titan.

Data Availability Statement

The code base used to generate Figures 1, 2 and Figure S2 in Supporting Information S1 is preserved at nwolfenb (2022) and licensed under the GNU General Public License v3.0.

Acknowledgments

The authors are grateful for the constructive feedback from two anonymous reviewers whose perspectives represented an invaluable contribution to this manuscript. NSW was supported by a UTIG Graduate Student Fellowship and the G. Unger Vetlesen Foundation. MFP was supported by the NASA Solar System Workings (Grant 80NSSC21K1804) and NASA EPSCoR (Grant 80NSSC21M0329). KMS was supported by the NASA Network for Life Detection Project Oceans Across Space and Time (Grant 80NSSC18K1301). DDB was supported by the G. Unger Vetlesen Foundation.

References

Allu Peddinti, D., & McNamara, A. K. (2015). Material transport across Europa’s ice shell. Geophysical Research Letters, 42(11), 4288–4293. https://doi.org/10.1002/2015gl063950

Arrigo, K. R. (2014). Sea ice ecosystems. Annual Review of Marine Science, 6(1), 439–467. https://doi.org/10.1146/annurev-marine-010213-135103

Arrigo, K. R. (2017). Sea ice as a habitat for primary producers. Sea Ice, 352–369. https://doi.org/10.1002/9781118778371.ch14

Arrigo, K. R., Brown, Z. W., & Mills, M. M. (2014). Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica: Ice algal biomass and physiology in Amundsen Sea. Elements: Science of the Anthropocene, 2, 000028. https://doi.org/10.1525/journal.elementa.000028

Arrigo, K. R., & Thomas, D. N. (2004). Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science, 16(4), 471–486. https://doi.org/10.1017/s0954102004002263

Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N., & Underwood, G. J. (2012). Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. Journal of Phycology, 48(6), 1494–1509. https://doi.org/10.1111/jph.12004

Bidle, K. D., Lee, S., Marchant, D. R., & Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences, 104(33), 13455–13460. https://doi.org/10.1073/pnas.0702196104

Bierhaus, E. B., Zahnle, K., Chapman, C. R., Pappalardo, R., McKinnon, W., & Khurana, K. (2009). Europa’s crater distributions and surface ages. In Europa (pp. 161). University of Arizona Press.

Bowman, J. S. (2015). The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and unknowns. Elements: Science of the Anthropocene, 3, 000072. https://doi.org/10.12952/journal.elementa.000072
References From the Supporting Information

Abbond, R., Popa, R., Souza-Egipsy, V., Giometti, C. S., Tollefsen, K. S., Mosher, J. J., et al. (2005). Low-temperature growth of Shewanella onceansis MR-1. *Applied and Environmental Microbiology*, 71(2), 811–816. https://doi.org/10.1128/aem.71.2.811-816.2005

Bakermans, C. I., Souza-Egipsy, V., Gilichinsky, D. A., & Nealson, K. H. (2003). Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. *Environmental Microbiology*, 5(4), 321–326. https://doi.org/10.1046/j.1462-2920.2003.00419.x

Chin, J. P., Megaw, J., Magill, C. L., Nowotarski, K., Williams, J. P., Bhaganna, P., et al. (2010). Solutes determine the temperature windows for microbial survival and growth. *Proceedings of the National Academy of Sciences*, 107(17), 7835–7840. https://doi.org/10.1073/pnas.1000557107

Cooper, Z. S., Rapp, J. Z., Carpenter, S. D., Iwahana, G., Eicken, H., & Deming, J. W. (2019). Distinctive microbial communities in subzero hyperbrine environments: Chaotropicity defines the window. *Environmental Microbiology*, 9(3), 801–813. https://doi.org/10.1111/j.1462-2920.2006.01212.x

Lee, C. J., McMullan, P. E., O’Kane, C. J., Stevenson, A., Santos, I. C., Roy, C., et al. (2018). NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. *FEMS Microbiology Reviews*, 42(5), 672–693. https://doi.org/10.1093/femsre/fuy026

Mykytczuk, N., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at −15°C; molecular insights into the microbiology of the chaotropic brines of Salar de Atacama, Chile. *Frontiers in Microbiology*, 10, 1611. https://doi.org/10.3389/fmicb.2019.01611

Hallsworth, J. E., Heim, S., & Timmis, K. N. (2003). Chaotropic solutes cause water stress in *Pseudomonas putida*. *Environmental Microbiology*, 5(12), 1270–1280. https://doi.org/10.1042/0962-2920-2003.00478.x

Hallsworth, J. E., Yakimov, M. M., Golyshin, P. N., Gillion, J. L., D’Auria, G., de Lima Alves, F., et al. (2007). Limits of life in *MgCl2*-containing environments: Chaotropicity defines the window. *Environmental Microbiology*, 9(3), 801–813. https://doi.org/10.1111/j.1462-2920.2006.01212.x

Lee, C. J., McMullan, P. E., O’Kane, C. J., Stevenson, A., Santos, I. C., Roy, C., et al. (2018). NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. *FEMS Microbiology Reviews*, 42(5), 672–693. https://doi.org/10.1093/femsre/fuy026

Mykytczuk, N., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., & Whyte, L. G. (2013). Bacterial growth at −15°C; molecular insights from the permafrost bacterium *Planococcus halocryophilus* OR1. *The ISME Journal*, 7(6), 1211–1226. https://doi.org/10.1038/ismej.2013.8

Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. *Environmental Microbiology*, 13(8), 1908–1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x

Panikov, N., Planagan, P., Oechel, W., Masterpanov, M., & Christensen, T. (2006). Microbial activity in soils frozen to below −39°C. *Soil Biology and Biochemistry*, 38(4), 785–794. https://doi.org/10.1016/j.soilbio.2005.07.004

Panikov, N. S., & Sizova, M. V. (2007). Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. *FEMS Microbiology Ecology*, 59(2), 500–512. https://doi.org/10.1111/j.1574-6941.2006.00210.x

Petrich, C., & Eicken, H. (2017). Overview of sea ice growth and properties. *Sea Ice*, 1–41. https://doi.org/10.1002/2017GL077437

Pontefract, A., Zhu, T. F., Walker, V. K., Hepburn, H., Lui, C., Zuber, M. T., et al. (2017). Microbial diversity in a hypersaline sulfate lake: A terrestrial analog of ancient Mars. *Frontiers in Microbiology*, 8, 1819. https://doi.org/10.3389/fmicb.2017.01819

Yakimov, M. M., La Cono, V., Spada, G. L., Bortoluzzi, G., Messina, E., Smédiel, P., et al. (2015). Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. *Environmental Microbiology*, 17(2), 364–382. https://doi.org/10.1111/1462-2920.12587