The First Terrestrial Electron Beam Observed by The Atmosphere-Space Interactions Monitor (ASIM)

David Sarria (1),
P. Kochkin(1), N. Østgaard(1), B. E. Carlson(2), A. Mezentsev(1), N. Lehtinen(1), M. Marisaldi(1),
C. Maiorana(1), K. Albrechtsen(1), T. Neubert(3), V. Reglero(4), K. Ullaland(1), S. Yang(1), G. Genov(1),
B. H. Qureshi(1), C. Budtz-Jørgensen(3), I. Kuvvetli(3), F. Christiansen(3), O. Chanrion(3),
M. Heumesser(3), K. Dimitriadou (3) , J. Navarro-Gonzales(4), P. Connel(4), C. Eyles(4)
and the ASIM Collaboration

(1) Birkeland Centre for Space Science, University of Bergen, Norway
(2) Carthage College, Kenosha, WI, United States
(3) National Space Institute, Technical University of Denmark, Denmark
(4) University of Valencia, Spain

Contact: david.sarria@uib.no
Introduction
Introduction: Terrestrial Electron Beam

- **Terrestrial Gamma-ray Flashes (TGF)**
 - Discovered from space observations in early 90's *(Fishman et al., 1994)*
 - Correlated to thunderstorms
 - Duration of 20 us to 2 ms
 - Energies up to 30-40 MeV
 - Production altitude of 10 to 15 km

- Less than 2% of initial photon content can reach space

- Production of large amounts of
 - Electrons (Compton scattering + pair production)
 - Positrons (pair production)

- A small fraction can reach space: propagation in ionosphere, magnetosphere
 - "beamed" by Earth's magnetic field
 - First report using BATSE data *(Dwyer et al., 2008)*
 - Then detected by Fermi, and BeppoSAX

![Production rate altitude profile](chart.png)
• 400 km altitude: Electrons/positrons are spread inside an ellipse, that is \(\sim 88 \times \sim 54 \) km for this event (95% content)

• much longer than TGFs (\(~2\) to \(~20\) times)

• TEB time duration is affected by the distribution of electrons' pitch angles when escaping the atmosphere
The observation
- ASIM event of September 16th, 2018, at 13:14:44.733601 (UTC)
- Duration ~ 4 ms
- WWLLN: network of VLF receivers that records time and position of lightning discharges
- Best WWLLN match:
 - ~5 ms after event
 - (MXGS absolute timing uncertainty ~ 20 ms)
 - (WWLLN uncertainty +/- 50 us)
- No lightning activity below the ISS
- Lightning activity close to the north magnetic field line footpoint!
- No lightning activity close to the south magnetic field line footpoint
- ISS to North Magnetic Foot Point distance ~ 650 km
- Image from GOES-16 (geostationary imager), 45 seconds after the event
Image from GOES-16 (geostationary imager), 45 seconds after the event
TEB event: map

- Best WWLLN match:
 - ~12 km away (Lat = 11.08°, Lon = -95.29°) (WWLLN localization uncertainty +/-15 km)
 - ~5 ms after event (MXGS absolute timing uncertainty ~ 20 ms)

-> TGF/TEB's parent lightning discharge discharge

Image from GOES-16

magnetic foot point at 40 km altitude

magnetic foot point at 50 km altitude

WWLLN (+/- 6 ms)
Monte-Carlo Simulations
Simulation strategy

- **2 stages:**
 -> 1. **Propagation** from 15 km altitude to satellite (~400 km)
 - Two models were used, based on Monte-Carlo methods:
 - MC-PEPTITA (*Sarria et al., 2015*)
 - A new Geant4-based model (*made available, see end of talk*)
 - Both gave similar results for this case

- Include atmosphere (NRL-MSISE00) and magnetic field (IGRF-12)

- **All relevant processes:**
 - **photons**: Compton scattering, pair production, rayleigh scattering, photo-electric absorption
 - **electrons**: inelastic and elastic scatterings, bremsstrahlung
 - **positions**: electrons' processes + annihilation

-> 2. **Detector response**
 - i.e. propagation to HED's BGO crystals. See next.
Models used

1. ASIM + Columbus Mass model (courtesy B.E. Carlson)
- **TEB are long event, with ~10 times lower flux (counts/time) than TGF:** no instrumental effect that could make the spectrum unreliable

Critical value $\chi^2_{red,c} = 2.0$

- TGF photon spectrum is incompatible
- TEB spectrum is compatible

Scaled to minimize χ^2_{red}

$\chi^2_{red} = 6.25$

$\chi^2_{red} = 0.95$
Lightcurve simulation

- Travel time from production (15 km) to satellite (400 km): ~ 2.2 ms
- TEB response *gives a better explanation*, but
 - MXGS probably detected some of the parent TGF
 - TEB about 30 times greater flux
- Photon/electron ratio strongly dependent on TGF angular distribution
Lightcurve fitting

- Recorded photon quantity changed by adjusting the TGF beaming parameters
- Best fit for $20° < \sigma_\theta < 30°$ -> consistent with previous works (e.g. Hazelton et al., 2009)
- Parent TGF photons is ~ 5 to 10 % of detected counts
log10(number of photons required at source)

- $10^{17.3}$ to $10^{18.8}$ required at source, in agreement with previous studies (e.g. Dwyer & Smith, 2005; Dwyer et al., 2012; Cummer et al., 2014; Gjesteland et al., 2015)
Conclusions / future work

- ASIM detected an unusually long TGF: > 4 ms
- **No lightning activity closeby**, but near the northern magnetic foot point
- Good WWLLN match around northern magnetic foot print (point)
- Parent TGF was produced in the vicinity of an overshooting top of a thunderstorm
- Monte-Carlo simulations results:
 - *Lightcurve* and *spectrum* are explained by TEB rather than TGF
 - **Angular distribution**: $20^\circ < \sigma_\theta < 30^\circ$
 - **TGF source intensity**: between $\sim 10^{17}$ and $\sim 10^{19}$ photons

Future:
- TEB events with **better instrumental coverage**? (here, LED and MMIA were off)
 - **ASIM's LED ~ twice more sensitive than ASIM's HED**
 - low energy part of the spectrum (20 keV to 400 keV)
 - ASIM's MMIA instrument (optical camera + photometers)
 - optical emissions?
References

Thank you for your attention

References:

● Dwyer, J. R., Grefenstette, B. W., and Smith, D. M. (2008)
 High-energy electron beams launched into space by thunderstorms. Geophys. Res. Lett.
 - doi: 10.1029/2007GL032430

● Briggs, M. S., Connaughton, V., Wilson-Hodge, C., Preece, R. D., et al. (2011)
 Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys. Res. Lett.
 - doi: 10.1029/2010GL046259

● Sarria, D., Blelly, P.-L., and Forme, F. (2015)
 MC-PEPTITA: A Monte Carlo model for Photon, Electron and Positron Tracking In Terrestrial
 Atmosphere. Application for a terrestrial gamma ray Flash. JGR (Space Physics)
 - doi: 10.1002/2014JA020695

● Hazelton, B. J., Grefenstette, B. W., Smith, D. M., Dwyer, et al. (2009)
 Spectral dependence of terrestrial gamma-ray Flashes on source distance. Geophys. Res. Lett.
 - doi: 10.1029/2008GL035906

● The Geant4-based Monte-Carlo code used to propagate TGF and secondary particles in the
 atmosphere is freely available in one of the following repositories:
 ○ https://doi.org/10.5281/zenodo.25970390
 ○ https://github.com/DavidSarria89/TGF-TEB-Propagation-Geant4
e-/e+ motion above 100 km altitude

The magnetic moment μ:

- a.k.a. "the first adiabatic invariant"
- is conserved
- Implies that some electrons can mirror, or get trapped
 -> "magnetic bottle"
e⁻/e⁺ motion above 100 km altitude
e⁻/e⁺ motion above 100 km altitude

ISOTROPIC

\[\theta = \text{half cone angle} \]
Lightcurve simulation

- Here, it is assumed:
 - instantaneous TGF source
 - typical bremsstrahlung spectrum
 - production altitude of 15 km (*tested later*)
 - opening angle gaussian with standard deviation of 30 degrees (*tested later*)

- Travel time from production (15 km) to satellite: ~ 2.2 ms
- **TEB response gives a better explanation**, but
 - MXGS probably detected both TEB and parent TGF
 - TEB about 30 times greater flux
 - No mirror pulse

! : photons and electrons are arbitrarily scaled to the same maximum
Introduction: Terrestrial Electron Beam

Photons in red, electrons in blue

courtesy J. R. Dwyer

Altitude (km)

- **below 50 km altitude**: collisions dominate, Earth's magnetic field's effect negligible
- **above 100 km altitude**: effect of Earth's magnetic field **must** be included

e- : - Competition between collision with the atmosphere and magnetic field

- **below 50 km altitude**: collisions dominate, Earth's magnetic field's effect negligible
- **above 100 km altitude**: effect of Earth's magnetic field **must** be included