Electronic Supplementary Information for

Porous Nanographene Formation on γ-Alumina Nanoparticles via Transition-Metal-Free Methane Activation

Masanori Yamamoto, Qi Zhao, Shunsuke Goto, Yu Gu, Takaaki Toriyama, Tomokazu Yamamoto, Hirotomo Nishihara, Alex Aziz, Rachel Crespo-Otero, Devis Di Tommaso, Masazumi Tamura, Keiichi Tomishige, Takashi Kyotani and Kaoru Yamazaki

* Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2−1−1 Katahira, Aoba, Sendai 980−8577, Japan
1 Institute for Materials Research, Tohoku University, 2−1−1 Katahira, Aoba, Sendai 980−8577, Japan
3 Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
4 Graduate School of Engineering, Tohoku University, 6−6−07 Aramaki, Aoba, Sendai 980−8579, Japan
5 The Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi, Fukuoka 819−0395, Japan

† Present Address: RIKEN Center for Advanced Photonics, RIKEN, 2−1 Hirosawa, Wako, Saitama 351−0198, Japan

*To whom correspondence should be addressed:
Dr. Masanori Yamamoto: yamamoto@mol-chem.com;
Dr. Devis Di Tommaso: d.ditommaso@qmul.ac.uk;
Dr. Kaoru Yamazaki: kaoru.yamazaki@riken.jp;
Table of contents

S1. Materials and Methods
S2. Supplementary Figures, Tables, and Discussions
S3. Appendix. Optimized Structures in Quantum Chemistry Calculations

S1. Materials and Methods

S1.1 Sample
Methane (CH$_4$) was purchased from Sumitomo Seika Chemicals Co., Ltd. with Pure grade (>99.0%) and SEG grade (>99.99%). Deuterated methane (CD$_4$, 99%-d) was purchased from Cambridge Isotope Laboratories, Inc. (DLM-144-PK, Lot: l-23094/E10089963). High purity γ-alumina nanoparticles (ANPs, TH 80/170; γ-Al$_2$O$_3$, particle size: ~10 nm, specific surface area: 158 m2 g$^{-1}$) were donated from Sasol Limited. with Na (equivalent to Na$_2$O) = 20 ppm and Fe (equivalent to Fe$_2$O$_3$) = 50‒100 ppm. All the chemicals were used as received unless otherwise noted.

S1.2 Reaction Kinetics
Thermogravimetry was conducted on a thermogravimeter (Netzsch, STA 2500 Regulus) under a steady flow of He with various concentration of CH$_4$ at the total flow rate of 100 mL min$^{-1}$. The standard reactor volume was 50 mL. To suppress air contamination during the analysis, the thermogravimeter was surrounded by a chamber filled with Ar gas supplied at a flow rate of 1 L min$^{-1}$. Typically, 32 mg of γ-ANPs was used for the kinetic analysis of CH$_4$-CVD. The samples were loaded on the reactor of the thermogravimeter, and first heated from room temperature to a specified temperature (1128 – 1173 K) at 10 K min$^{-1}$ under a steady flow of He. This was followed by the constant-temperature heating at the specified temperature for 30 min under a steady flow of He. After the pretreatment, CH$_4$ was introduced to the reactor with a specified partial pressure to initiate CH$_4$-CVD. The rate of CH$_4$-CVD for the kinetic analysis of the first-layer deposition was determined at an inflection point. Formation of nanoporous graphene was confirmed by x-ray diffraction and Raman spectroscopy (Figure S1).

S1.3 Characterization of γ-Al$_2$O$_3$ Nanoparticles
High resolution annular dark-field scanning transmission electron microscopy (ADF-STEM) images were captured using JEM-ARM200-F (JEOL Ltd, Japan) at an accelerating voltage of 200kV.

In situ infrared (IR) spectra of the Al$_2$O$_3$ nanoparticles (ca. 18.0 mg) at the specified temperature were recorded on a Nicolet 6700 FT-IR spectrometer (ThermoScientific) with a diffuse reflectance infrared Fourier transform (DRIFT) method under a steady flow of Ar at 30 mL min$^{-1}$. The intensity was reported as the Kubelka-Munk function. In the temperature of the sample during the *in-situ* IR measurements was monitored by using an infrared thermometer (Keyence, FT-H40K) to ensure the temperature. We performed 120 scans.

Temperature programmed desorption (TPD) was measured on a gas chromatogram (GC, Varian 490-GC, GL Science). Approximately 1 g of γ-ANP was gently packed in a quartz reactor tube with stacked height of 3~4 cm using quartz wool (4-9 μm, Toso Company, Ltd.). The reactor tube was heated at the rate of 10 K min$^{-1}$ under a steady flow of He (200 mL min$^{-1}$), and the evolved H$_2$O was analyzed by GC. The sampling interval was approximately 2.5 min.
TPD of H_2O was immediately followed by TPD of NH_3 with the same configuration of experiment. All the processes are under a steady flow at a total flow rate of 200 mL min$^{-1}$. After cooling to r.t. under He, a mixture of 1.0% of NH_3 and 99% of He was introduced to the quartz reactor tube for 30 min. Then, the reactor tube was subjected to a steady flow of 100% He for 60 min to remove off the gas-phase NH_3. The reactor tube was then heated at the rate of 5 K min$^{-1}$ under a steady flow of He, and the desorbed NH_3 was analyzed by GC.

Magic-angle-spinning (MAS) ^{27}Al nuclear magnetic resonance (NMR) of solid samples were recorded on a JEOL ECA800 (208 MHz) spectrometer. Samples were spun at 25 kHz. The data acquisition employed short radiofrequency pulses (18° flip angle) with relaxation delays of 10 s. The chemical shifts have been reported in δ ppm units with reference to an external standard of a 1 M aqueous solution of aluminium nitrate ($\text{Al(NO}_3)_3$, 0.00 ppm).

S1.4 Quantum Chemistry Calculations

Density functional theory (DFT) calculations on $\gamma\text{-Al}_2\text{O}_3$ surfaces with methane were performed by using the “Vienna ab initio simulation package” (VASP, version 6.1.1).52 We performed geometry optimization of local minima (EQs) and transition states (TSs) with the Perdew–Burke–Ernzerhof (PBE) generalized-gradient approximation (GGA) for the exchange and correlation terms,53 together with the Grimme’s-D3 dispersion correction.54 A plane-wave basis set was employed within the framework of the projector augmented wave method.55,56 The plane-wave cutoff was 450 eV. K-point mesh ware sampled by the (3×3×1) Monkhorst-Pack k-point sampling scheme. We used the threshold of self-consistent field energy calculation of 1.0×10^{-6} eV atom$^{-1}$.

The surface of $\gamma\text{-Al}_2\text{O}_3$ was modeled using a supercell approach with periodic boundary conditions. To generate the surface models, we first optimized the internal coordinates and cell parameters of the bulk structure of $\gamma\text{-Al}_2\text{O}_3$. As a starting point, we used the coordinates of $\gamma\text{-Al}_2\text{O}_3$ (P2$_1$/m space group).59 The optimized lattice parameters of $\gamma\text{-Al}_2\text{O}_3$ were found to be $a = 5.538$ Å, $b = 8.347$ Å, $c = 8.024$ Å, $\beta = 90.60$ deg and $\alpha = \gamma = 90.00$ deg, in good agreement with previous DFT calculations using the dual-range local meta-GGA ML-11 functional and the meta non-separable gradient approximation MN12-L functionals.57 Starting from the optimized structure, we constructed a partially hydrated $\gamma\text{-Al}_2\text{O}_3$ (100) surface with an oxygen vacancy as a surface slab containing 96 atoms (corresponding to 4 atomic layers) with a thickness of 12 Å and a vacuum of 15 Å. The initial surface hydration was 7.1 μmol m$^{-2}$. During the structural optimization for $\gamma\text{-Al}_2\text{O}_3$, the all atoms were relaxed. The structure of the triclinic surface unit cell was $a = 8.071$ Å, $b = 8.404$ Å, $c = 26.383$ Å, and $\alpha = \beta = \gamma = 90.00$ deg.

TSs for the elementary reactions were located by using the climbing image nudged elastic band (CI-NEB) method.58,59 The convergence of forces for the geometry optimizations of both EQs and TSs were set to be 0.03 eV Å$^{-1}$. All optimized structures are collected in S3 according to the POSCAR format for VASP.

The VASPKIT was used to deal with the charge density and the spin density.510 Atomistic models of alumina surfaces were constructed according to the results of ADF-STEM, TPD, and IR analysis of γ-ANPs. Previous DFT calculations suggest that (100) and (110) surfaces are the most stable surface of $\gamma\text{-Al}_2\text{O}_3$,511 and indeed the high-resolution ADF-STEM of γ-ANPs (Figure 2) shows the presence of {100} surfaces. Significant desorption of water upon heating511,512 was confirmed by TPD (Figure 3b), while isolated hydroxyl groups at around 3701 cm$^{-1}$ were confirmed by IR (Figure 3a) to remain even after annealing at 900 ºC for 30
min. Indeed, introduction of hydroxyl groups on surface models gave both thermodynamically and kinetically favored process in CH$_4$ activation on surfaces of γ-Al$_2$O$_3$.312,13

S2. Supplementary Figures, Tables, and Discussions
S2.1 Characterization of Nano-Porous Graphene (NPG)

![Figure S1](image)

Figure S1. (a) XRD patterns and (b) Raman spectra of nano-porous carbon (NPC) and nano-porous graphene (NPG).

NPG was prepared and characterized by N$_2$ physisorption, XRD, and Raman spectroscopy. The specific surface area of NPC was determined by N$_2$ physisorption and the subsequent BET analysis to be 2.3×10^3 m2 g$^{-1}$, while NPG gave 1.8×10^3 m2 g$^{-1}$. These values are well approaching to an ideal value for 2-dimensional graphene (2627 m2 g$^{-1}$). Single-layered deposition by CH$_4$-CVD with a specified reaction time was also confirmed by TEM.314 Both XRD and Raman showed single-walled nature of NPG: The suppressed 002 peaks at $2\theta = 22^\circ$ for carbons indicates the fewer stacking of graphene layer, while sharp peaks for 10 at $2\theta = 43^\circ$ indicates the successful growth of hexagons (nanographene) developed in a 2D plane.314 Raman spectra of NPG showed an intensifed and red-shifted G’-band, supporting the growth of single-walled graphene structures$^{314-316}$ in NPG after annealing.
S2.2 Reductive treatment of ANP by H₂ before CH₄-CVD

Figure S2. Kinetic analysis of CH₄-CVD for porous nanographene with or without pre-treatment of H₂ gas before CH₄-CVD. For the control experiment, He was introduced instead of H₂ for the same period. (a) Weight changes during CH₄-CVD at 900°C as monitored by TG. CH₄ was introduced to the reactor at 0 min. (b) The rate of reaction for CH₄-CVD.
S2.3 Surface Characterization by STEM

Figure S3. High resolution STEM-ADF image of γ-ANPs. (a–e) [100] orientation, and (f) [110] orientation.
S2.4 Stability of Surface OH groups toward Surface Activation

In order to analyze the stability of the OH groups on the γ-ANP surface for the surface activation, we performed the in-situ IR experiments under a steady flow of CD$_4$. We find that almost all protons are labile in the presence of CD$_4$ at temperatures higher than 600 °C (Figures S4, S5) while the structure of bulk region remained almost unchanged during the CH$_4$-CVD according to the 27Al NMR spectra (Figure S9). The D-H exchange between CD$_4$ and isolated OH groups occurred on the γ-ANP surface above 600 °C, and the OH stretching band at $\nu_{OH} = 3701$ cm$^{-1}$ depressed with time constants of 1.2 min and the OD stretching band at $\nu_{OD} = 2730$ cm$^{-1}$ evolved as shown in Figure S4.

This isotope shift can be quantitively rationalized by the change of the reduced mass μ by the H-D exchange. The vibration frequency ν of the OH stretching mode is described in eq. (S1) under the harmonic approximation,

$$
\nu = \frac{1}{2\pi} k_f \mu = \frac{1}{2\pi} \left(\frac{k_f}{m_O m_H} \right),
$$

(S1)

where $m_O = 16$ amu, and $m_H = 1$ amu are the masses of oxygen and hydrogen atoms, respectively. The effect of isotope exchange on the vibrational force constant k_f is negligible and the frequency of the deuterated system ν_{OD} can be written as the rate between reduced mass of OD group μ_{OD} and that of OH μ_{OH}, and the frequency of the original system $\nu_{OH} = 3701$ cm$^{-1}$,

$$
\nu_{OD} = \sqrt{\frac{m_O m_D}{m_O + m_D}} \nu_{OH},
$$

(S2)

where $m_D = 2$ amu is the mass of deuterium. Resultant ν_{OD} is calculated to be 2693 cm$^{-1}$, which qualitatively agrees with the experimental value (2730 cm$^{-1}$).
Figure S4. Temporal profiles of the OH stretching bands in IR spectra of ANPs at 900 °C (a) in the presence of CH$_4$ (2 mL min$^{-1}$) and (b) in the presence of CD$_4$ (2 mL min$^{-1}$). Depletion at 2350 cm$^{-1}$ is due to CO$_2$.

![Kubelka-Munk Plot](image)

Figure S5. Time-course of IR spectra of γ-ANPs in the presence of CD$_4$ at the elevation rate of 16.7 K min$^{-1}$ from 600 °C to 850 °C. Depletion at 2350 cm$^{-1}$ is due to CO$_2$.

S2.5 Stability of Oxygen Vacancy Sites and Reactivity of CH$_4$ on Them

Table S1. Summary of H$_2$O/NH$_3$ TPDa and CH$_4$-CVD.

Conditions for pre-activationb	Evolved gas	Rate of reactionsd	
	H$_2$Oc	NH$_3$	
700 °C for 30 min	1.1 mmol g$^{-1}$	33 μmol g$^{-1}$	---
900 °C for 30 min	1.4 mmol g$^{-1}$	19 μmol g$^{-1}$	4.8 × 10$^{-9}$ mol s$^{-1}$
1000 °C for 30 min	1.5 mmol g$^{-1}$	21 μmol g$^{-1}$	3.6 × 10$^{-9}$ mol s$^{-1}$

a The details are shown in the section S1.3; b under a steady flow of He; c The amount of water desorbed at the temperatures higher than 300 °C; d The rate for the first-layer deposition under the standard CH$_4$-CVD condition at 900 °C with a steady flow of CH$_4$ (20 mL min$^{-1}$).
Figure S6. Black line: Energy profile for the formation of a CH$_4$ σ complex and the subsequent C–H bond cleavage on a γ-Al$_2$O$_3$ (100) surface. Red line: Conversion of CH$_4$ to CH$_3$OH on a γ-Al$_2$O$_3$ (100) surface. The reactive site is a 5-coordinated-Al.
Figure S7. (a) Geometry of a γ-Al$_2$O$_3$ (100) surface with an adsorbed CH$_4$ and (b) the same geometry without CH$_4$ for clarity. Red: oxygen, Blue: aluminum, gray: carbon, and white: hydrogen atoms. The reactive site is tetrahedrally-coordinated (4-coordinated) Al center, and the coordinate is the same for CH$_4^*$ in Figure 4a of the manuscript. The coordinates are shown in Section S3.
Table S2. Calculated Bader charges q (in units of $|e|$) of adsorbed CH$_4$* and CH$_3$* species on a γ-Al$_2$O$_3$ (100) surface associated with the CH$_4$ → CH$_3$ + H elementary step. The value in brackets indicates the formal oxidation state corresponding to the Bader charge.

Property	Initial State	Transition State (TS1)	Final State
q(CH$_4$*)	-0.005	---	---
q(CH$_3$*)	---	-0.65	-0.61
q(C)	-0.16	-0.77	-0.71
q(H3*des)	$+0.071$	$+0.66$	$+0.66$
q(Al7)	$+2.43 (+3)$	$+2.35 (+3)$	$+2.35 (+3)$
q(O23)	$-1.58 (-2)$	$-1.49 (-2)$	$-1.59 (-2)$

Table S3. Calculated Bader charges q (in units of $|e|$) of adsorbed CH$_3$* and CH$_2$* species on a γ-Al$_2$O$_3$ (100) surface associated with the CH$_3$ → CH$_2$ + H elementary step. The value in brackets indicates the formal oxidation state corresponding to the Bader charge.

Property	Initial State	Transition State (TS2)	Final State
q(CH$_3$*)	-0.61	---	---
q(CH$_2$*)	---	-0.71	-0.71
q(C)	-0.71	-0.89	-0.80
q(H5*des)	$+0.06$	$+0.64$	$+0.67$
q(Al7)	$+2.35 (+3)$	$+2.35 (+3)$	$+2.38 (+3)$
q(O45)	$-1.63 (-2)$	$-1.50 (-2)$	$-1.57 (-2)$
Figure S8. Energy profile for the formation of a CH$_4$ σ complex and the subsequent C–H bond cleavage on a γ-Al$_2$O$_3$(100) surface with no oxygen defect. The reactive site is an octahedrally-coordinated (6-coordinated) Al center, and the clouded surface gives radical mechanism rather than the Lewis acid-base mechanism for the bond cleavage reaction.
Figure S9. Normalized MAS 27Al NMR of γ-ANPs before and after CH$_4$-CVD. Relative intensity of the peak for octahedrally coordinated Al-center ($[6]$Al) in the up-field ($\delta = 9$ ppm)517 was enhanced as compared with that for tetrahedrally coordinated Al-center ($[4]$Al) in the down-field ($\delta = 68$ ppm)517 after CH$_4$-CVD.
Figure S10. XRD of γ-ANPs before (ANP) and after CH₄-CVD (C/ANP).
Curvature reflecting the difference in the rates of CH₄-CVD reactions was recognized at nearly single-layered deposition of carbon (Figs. 1a and 1b), but there was exception at higher partial pressure of CH₄ or at lower temperatures showing the curvature at the number of carbon layers > 1. We also noticed such exceptions for θ-ANP and α-ANP (Fig. S11). This could indicate that a mixture growth on the Al₂O₃ nanoparticles (first layer) and on carbon layer (second layer) was significant under these conditions. Thus, lower partial pressure of CH₄ and higher reaction temperatures as well as the use of γ-ANP would be important for single-layered carbon deposition.

Figure S11. Time-course of weight changes during CH₄-CVD on various crystal structures of Al₂O₃ at 900 ºC as monitored by TG.
References

S1. P. Kubelka, *Part. J. Opt. Soc. Am.* 1948, 38, 448.
S2. G. Kresse, J. Furthmüller, *Comput. Mater. Sci.* 1996, 6, 15–50.
S3. J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–3868.
S4. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104.
S5. P. E. Blöchl, *Phys. Rev. B* 1994, 50, 17953–17979.
S6. G. Kresse, D. Joubert, *Phys. Rev. B* 1999, 59, 1758–1775.
S7. G. Henkelman, H. Jónsson, *J. Chem. Phys.* 2000, 113, 9978–9985.
S8. G. Henkelman, B. P. Uberuaga, H. Jónsson, *J. Chem. Phys.* 2000, 113, 9901–9904.
S9. J. Gu, J. Wang, J. Leszczynski, *ACS Omega* 2018, 3, 1881–1888.
S10. V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code, arXiv:1908.08269
S11. a) M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulihoat, *J. Catal.* 2002, 211, 1–5; b) M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulihoat, *J. Catal.* 2004, 226, 54–68.
S12. R. Wischert, C. Copéret, F. Delbecq, P. Sautet, *Angew. Chem. Int. Ed.* 2011, 50, 3202–3205.
S13. R. Wischert, P. Laurent, C. Copéret, F. Delbecq, P. Sautet, *J. Am. Chem. Soc.* 2012, 134, 14430–14449.
S14. M. Yamamoto, S. Goto, R. Tang, Y. Hayasaka, Y. Yoshioka, M. Ito, M. Morooka, H. Nishihara, T. Kyotani, *ACS Appl. Mater. Interfaces* 2021, 13, 38613–38622.
S15. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, *Phys. Rev. Lett.* 2006, 97, 187401.
S16. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, *Nano Lett.* 2006, 6, 2667–2673.
S17. L. Samain, A. Jaworski, M. Edén, D. M. Ladd, D.-K. Seo, F. J. García-García, U. Häussermann, *J. Solid State Chem.* 2014, 217, 1–8.

Supporting Information
S3. Appendix: Optimized Structures and Energies in Quantum Chemistry Calculations

S3.1 Optimized Structures and Energies for Figure 4

Coordinate for a γ-Al₂O₃ (100) surface with CH₄ σ-complex with a surface proton density of 7.1 μmol m⁻² at a 4-coordinated Al site.

Spin Multiplicity <S²>: 0.006

Absolute Energy: −719.479682 eV.

cell_length_a 8.07075

cell_length_b 8.40443

cell_length_c 26.38316

cell_angle_alpha 90

cell_angle_beta 90

cell_angle_gamma 90

symmetry_space_group_name_H-M 'P 1'
symmetry_Int_Tables_number 1

Atom	x	y	z		
H	1.0	0.012525	0.411272	0.458504	H
H2	1.0	0.389156	0.758581	0.967927	H
H3	1.0	0.698026	0.308049	0.531916	H
H4	1.0	0.739746	0.514269	0.518631	H
H5	1.0	0.530180	0.443189	0.520374	H
H6	1.0	0.646493	0.458356	0.577451	H
H7	1.0	0.865656	0.323823	0.970992	H
H8	1.0	0.746757	0.853057	0.493596	H
C1	1.0	0.654231	0.430645	0.536903	C
O1	1.0	0.110810	0.590287	0.157363	O
O2	1.0	0.126991	0.579497	0.367156	O
O3	1.0	0.616791	0.907808	0.048522	O
O4	1.0	0.618926	0.917007	0.260722	O
O5	1.0	0.844216	0.414243	0.993966	O
O6	1.0	0.863210	0.412263	0.207681	O
O7	1.0	0.830444	0.416952	0.419161	O
O8	1.0	0.368215	0.102009	0.097134	O
O9	1.0	0.363299	0.085661	0.312928	O
O10	1.0	0.910452	0.097248	0.108539	O
O11	1.0	0.901999	0.110408	0.320372	O
O12	1.0	0.418851	0.425306	0.999761	O
O13	1.0	0.396402	0.420826	0.210593	O
O14	1.0	0.401961	0.441531	0.423833	O
O15	1.0	0.159017	0.913791	0.060543	O
O16	1.0	0.152386	0.907277	0.268392	O
O17	1.0	0.644021	0.580040	0.158151	O
O18	1.0	0.638591	0.601353	0.369087	O
O19	1.0	0.907293	0.404002	0.107473	O
O20	1.0	0.908088	0.411988	0.322313	O
O21	1.0	0.421249	0.085696	0.000782	O
O22	1.0	0.396766	0.084955	0.212754	O
O23	1.0	0.426853	0.132654	0.444146	O
O24	1.0	0.156904	0.597636	0.059375	O
O25	1.0	0.156913	0.596491	0.269328	O
O26	1.0	0.643976	0.920901	0.159718	O
O27	1.0	0.646395	0.916486	0.382605	O
O28	1.0	0.112524	0.911602	0.158270	O
O29	1.0	0.103110	0.923428	0.366921	O
O30	1.0	0.617146	0.603980	0.047211	O
O31	1.0	0.618472	0.589456	0.258414	O
O32	1.0	0.845170	0.118494	0.998522	O
O33	1.0	0.863477	0.097272	0.207279	O
O34	1.0	0.845781	0.093978	0.425296	O
					Al
---	---	---	---	---	---
O35	1.0	0.366314	0.408812	0.095626	O
O36	1.0	0.369713	0.412090	0.310746	O
O37	1.0	0.137828	0.253004	0.157850	O
O38	1.0	0.142084	0.251362	0.371803	O
O39	1.0	0.638516	0.258524	0.057742	O
O40	1.0	0.647124	0.253117	0.260716	O
O41	1.0	0.891289	0.752840	0.109178	O
O42	1.0	0.894881	0.740346	0.320221	O
O43	1.0	0.330572	0.756593	0.000109	O
O44	1.0	0.363575	0.752308	0.213126	O
O45	1.0	0.354565	0.755493	0.425107	O
O46	1.0	0.900661	0.757970	0.999763	O
O47	1.0	0.894859	0.730620	0.104142	O
O48	1.0	0.914227	0.753497	0.010442	O
O49	1.0	0.383665	0.753497	0.010442	O
O50	1.0	0.382431	0.755530	0.315846	O
O51	1.0	0.122889	0.256524	0.053850	O
O52	1.0	0.114393	0.256781	0.266551	O
O53	1.0	0.645985	0.251255	0.163526	O
O54	1.0	0.633220	0.260363	0.366448	O
O55	1.0	0.135368	0.417876	0.462171	O
O56	1.0	0.648143	0.919690	0.495631	O
Al1	1.0	0.394203	0.925716	0.056171	Al
Al2	1.0	0.388366	0.925054	0.268298	Al
Al3	1.0	0.137549	0.424010	0.111684	Al
Al4	1.0	0.141246	0.417788	0.321118	Al
Al5	1.0	0.637737	0.429274	0.013999	Al
Al6	1.0	0.622752	0.427441	0.213397	Al
Al7	1.0	0.608664	0.430060	0.405948	Al
Al8	1.0	0.870145	0.920810	0.162533	Al
Al9	1.0	0.887620	0.908823	0.392393	Al
Al10	1.0	0.643600	0.080089	0.013552	Al
Al11	1.0	0.625514	0.075905	0.214252	Al
Al12	1.0	0.616620	0.031576	0.440742	Al
Al13	1.0	0.869725	0.582574	0.161939	Al
Al14	1.0	0.870383	0.590931	0.376095	Al
Al15	1.0	0.392237	0.586595	0.055100	Al
Al16	1.0	0.392264	0.581774	0.269067	Al
Al17	1.0	0.141404	0.079642	0.113867	Al
Al18	1.0	0.132394	0.082742	0.323974	Al
Al19	1.0	0.896764	0.243816	0.053385	Al
Al20	1.0	0.880726	0.261485	0.272586	Al
Al21	1.0	0.506431	0.257764	0.115979	Al
Al22	1.0	0.502352	0.244985	0.315937	Al
Al23	1.0	0.883448	0.251325	0.161685	Al
Al24	1.0	0.864478	0.244070	0.377086	Al
Al25	1.0	0.102397	0.758243	0.015780	Al
Al26	1.0	0.130648	0.750868	0.221422	Al
Al27	1.0	0.233455	0.589466	0.428129	Al
Al28	1.0	0.514930	0.750651	0.164319	Al
Al29	1.0	0.500458	0.764329	0.377473	Al
Al30	1.0	0.139321	0.752232	0.113593	Al
Al31	1.0	0.130852	0.757320	0.325584	Al
Al32	1.0	0.769038	0.756627	0.052245	Al
Al33	1.0	0.753380	0.752164	0.270819	Al
Al34	1.0	0.325129	0.255271	0.029516	Al
Al35	1.0	0.266034	0.253710	0.218426	Al
Al36	1.0	0.275653	0.267166	0.429342	Al
Coordinate for a calculated transition state of the initial CH₄ activation on a γ-Al₂O₃ (100) surface (TS₁) in Figure 4.

Spin Multiplicity <S²>: 0.023
Absolute Energy: -718.02755056 eV.

cell_length_a 8.07075

cell_length_b 8.40443

cell_length_c 26.38316

cell_angle_alpha 90

cell_angle_beta 90

cell_angle_gamma 90

H1 1.0 0.999497 0.303556 0.474501 H
H2 1.0 0.391601 0.760793 0.967337 H
H3 1.0 0.464363 0.203673 0.481020 H
H4 1.0 0.712861 0.509912 0.506832 H
H5 1.0 0.497569 0.470945 0.516232 H
H6 1.0 0.648007 0.314327 0.518546 H
H7 1.0 0.867957 0.324562 0.970619 H
H8 1.0 0.748970 0.925398 0.510760 H
C1 1.0 0.612045 0.425223 0.498948 C
O1 1.0 0.113042 0.593115 0.156824 O
O2 1.0 0.619910 0.909381 0.048429 O
O3 1.0 0.113042 0.593115 0.156824 O
O4 1.0 0.619910 0.909381 0.048429 O
O5 1.0 0.846619 0.415135 0.993565 O
O6 1.0 0.854767 0.413679 0.207422 O
O7 1.0 0.851724 0.406386 0.417653 O
O8 1.0 0.370901 0.103750 0.097220 O
O9 1.0 0.368545 0.085289 0.314086 O
O10 1.0 0.913061 0.098563 0.108779 O
O11 1.0 0.901088 0.108167 0.319443 O
O12 1.0 0.421397 0.426836 0.999488 O
O13 1.0 0.399752 0.422687 0.209564 O
O14 1.0 0.349359 0.459011 0.423588 O
O15 1.0 0.161162 0.915648 0.060206 O
O16 1.0 0.155682 0.907326 0.267459 O
O17 1.0 0.646804 0.582088 0.158380 O
O18 1.0 0.638885 0.589620 0.379247 O
O19 1.0 0.909879 0.405888 0.107293 O
O20 1.0 0.906185 0.410968 0.319885 O
O21 1.0 0.423676 0.087517 0.000850 O
O22 1.0 0.399038 0.085276 0.213286 O
O23 1.0 0.433242 0.151370 0.448863 O
O24 1.0 0.158967 0.599496 0.058812 O
O25 1.0 0.158247 0.598853 0.266641 O
O26 1.0 0.646398 0.923337 0.159765 O
O27 1.0 0.656598 0.900214 0.386540 O
O28 1.0 0.115218 0.912400 0.158116 O
O29 1.0 0.107945 0.917818 0.364187 O
O30 1.0 0.619791 0.605317 0.047068 O
O31 1.0 0.621889 0.589424 0.259167 O
O32 1.0 0.848004 0.119304 0.998647 O
O33 1.0 0.865736 0.093410 0.207568 O
O34 1.0 0.860184 0.080717 0.423242 O
O35 1.0 0.368541 0.410650 0.095187 O
O36 1.0 0.371357 0.410520 0.309106 O
O37 1.0 0.140856 0.254879 0.157817 O
O38 1.0 0.141113 0.247560 0.369739 O
O39 1.0 0.641399 0.260330 0.057827 O
O40 1.0 0.647898 0.254125 0.262151 O
O41 1.0 0.893263 0.754927 0.109062 O
O42 1.0 0.886538 0.741288 0.323430 O
O43 1.0 0.332227 0.758422 0.999492 O
O44 1.0 0.368685 0.754016 0.212698 O
O45	1.0	0.349534	0.776355	0.424455	O
O46	1.0	0.902932	0.759458	0.999535	O
O47	1.0	0.897402	0.753153	0.210552	O
O48	1.0	0.964270	0.713645	0.425268	O
O49	1.0	0.385732	0.755260	0.103694	O
O50	1.0	0.389613	0.752501	0.315629	O
O51	1.0	0.125258	0.257644	0.053872	O
O52	1.0	0.116790	0.254067	0.266009	O
O53	1.0	0.640533	0.252371	0.163919	O
O54	1.0	0.624181	0.254044	0.374885	O
O55	1.0	0.117701	0.298000	0.481721	O
O56	1.0	0.644366	0.970071	0.499747	O
Al1	1.0	0.396595	0.927902	0.055970	Al
Al2	1.0	0.393809	0.925308	0.269246	Al
Al3	1.0	0.140103	0.425627	0.111445	Al
Al4	1.0	0.143285	0.412341	0.319894	Al
Al5	1.0	0.640387	0.430767	0.013662	Al
Al6	1.0	0.625883	0.428248	0.213944	Al
Al7	1.0	0.600066	0.427930	0.423068	Al
Al8	1.0	0.871843	0.923062	0.162576	Al
Al9	1.0	0.909049	0.894152	0.391853	Al
Al10	1.0	0.646109	0.081643	0.035449	Al
Al11	1.0	0.626771	0.077917	0.214738	Al
Al12	1.0	0.636791	0.539557	0.437749	Al
Al13	1.0	0.147849	0.584469	0.162040	Al
Al14	1.0	0.871069	0.572901	0.376016	Al
Al15	1.0	0.394550	0.588439	0.054525	Al
Al16	1.0	0.394471	0.581973	0.268389	Al
Al17	1.0	0.144107	0.081770	0.113767	Al
Al18	1.0	0.134109	0.080999	0.322633	Al
Al19	1.0	0.898979	0.245267	0.053265	Al
Al20	1.0	0.81748	0.258503	0.271649	Al
Al21	1.0	0.509082	0.260270	0.116128	Al
Al22	1.0	0.506438	0.248153	0.319780	Al
Al23	1.0	0.886093	0.253226	0.161517	Al
Al24	1.0	0.865835	0.239222	0.376911	Al
Al25	1.0	0.105029	0.760190	0.014987	Al
Al26	1.0	0.136600	0.753706	0.218841	Al
Al27	1.0	0.198504	0.632965	0.423595	Al
Al28	1.0	0.517792	0.752379	0.163589	Al
Al29	1.0	0.501539	0.754008	0.379385	Al
Al30	1.0	0.140113	0.754763	0.112582	Al
Al31	1.0	0.129084	0.754056	0.321303	Al
Al32	1.0	0.771397	0.758233	0.051973	Al
Al33	1.0	0.755889	0.753181	0.270756	Al
Al34	1.0	0.327714	0.257262	0.029553	Al
Al35	1.0	0.270742	0.255243	0.218564	Al
Al36	1.0	0.248800	0.273813	0.430931	Al
Coordinate for a γ-Al$_2$O$_3$ (100) surface with CH$_3$* and H* in Figure 4.
Spin Multiplicity $<S^2>$: 0.007
Absolute Energy: -719.813245 eV.

cell_length_a	8.07075
cell_length_b	8.40443
cell_length_c	26.38316
cell_angle_alpha	90
cell_angle_beta	90
cell_angle_gamma	90

| symmetry_space_group_name_H-M | 'P 1' |
| symmetry_Int_Tables_number | 1 |

H1	1.0	-0.004326	0.114684	0.471138	H
H2	1.0	0.396313	0.760229	0.967201	H
H3	1.0	0.340699	0.011573	0.438921	H
H4	1.0	0.678107	0.493944	0.515064	H
H5	1.0	0.461261	0.470217	0.501968	H
H6	1.0	0.590864	0.299604	0.511193	H
H7	1.0	0.875143	0.330013	0.970016	H
H8	1.0	0.726134	0.985651	0.505465	H
C1	1.0	0.584738	0.420596	0.495413	C
O1	1.0	0.116963	0.595673	0.156889	O
O2	1.0	0.127031	0.583988	0.361491	O
O3	1.0	0.623370	0.909859	0.047825	O
O4	1.0	0.625803	0.922371	0.260012	O
O5	1.0	0.852515	0.415672	0.994563	O
O6	1.0	0.868931	0.416026	0.207254	O
O7	1.0	0.872482	0.411024	0.415214	O
O8	1.0	0.374490	0.104932	0.096133	O
O9	1.0	0.371849	0.091680	0.312306	O
O10	1.0	0.916527	0.101232	0.108425	O
O11	1.0	0.904701	0.11076	0.316610	O
O12	1.0	0.424901	0.427211	0.999764	O
O13	1.0	0.402877	0.426410	0.212065	O
O14	1.0	0.229187	0.452750	0.450958	O
O15	1.0	0.164972	0.916449	0.059688	O
O16	1.0	0.160988	0.910541	0.266955	O
O17	1.0	0.650472	0.585679	0.158917	O
O18	1.0	0.641266	0.585017	0.379537	O
O19	1.0	0.913705	0.408118	0.107082	O
O20	1.0	0.907356	0.415113	0.318240	O
O21	1.0	0.427888	0.087161	0.999961	O
O22	1.0	0.402894	0.088393	0.211796	O
O23	1.0	0.391491	0.112797	0.427314	O
O24	1.0	0.163568	0.600402	0.058958	O
O25	1.0	0.163165	0.601261	0.266954	O
O26	1.0	0.650657	0.927176	0.159254	O
O27	1.0	0.650978	0.901542	0.382163	O
O28	1.0	0.118821	0.915450	0.157633	O
O29	1.0	0.108897	0.922304	0.363544	O
O30	1.0	0.624532	0.605315	0.047140	O
O31	1.0	0.626151	0.930900	0.259677	O
O32	1.0	0.853148	0.191933	0.998216	O
O33	1.0	0.869034	0.097899	0.207070	O
O34	1.0	0.857302	0.083186	0.418245	O
O35	1.0	0.373406	0.412702	0.096046	O
O36	1.0	0.376920	0.417662	0.313114	O
O37	1.0	0.145244	0.257361	0.157382	O
O38	1.0	0.132699	0.251776	0.368848	O
O39	1.0	0.645768	0.260115	0.057344	O
O40	1.0	0.650207	0.258155	0.262771	O
O41	1.0	0.897041	0.756852	0.108850	O
O42	1.0	0.888893	0.747190	0.322234	O
O43	1.0	0.337813	0.758303	0.999452	O
O44	1.0	0.372714	0.757188	0.212478	O
---	---	---	---	---	
O45	1.0	0.343279	0.758062	0.423731	O
O46	1.0	0.907298	0.758639	0.999254	O
O47	1.0	0.901589	0.756533	0.210252	O
O48	1.0	0.949849	0.721497	0.422927	O
O49	1.0	0.390133	0.757377	0.103506	O
O50	1.0	0.391773	0.755765	0.315568	O
O51	1.0	0.129501	0.259032	0.053685	O
O52	1.0	0.122325	0.260175	0.265663	O
O53	1.0	0.650225	0.257051	0.163843	O
O54	1.0	0.627870	0.252732	0.378451	O
O55	1.0	0.110388	0.136214	0.481041	O
O56	1.0	0.622031	0.019165	0.490685	O
Al1	1.0	0.400716	0.928118	0.055188	Al
Al2	1.0	0.398005	0.928747	0.268527	Al
Al3	1.0	0.144332	0.428055	0.111255	Al
Al4	1.0	0.147228	0.417449	0.320148	Al
Al5	1.0	0.644240	0.431057	0.013445	Al
Al6	1.0	0.628937	0.432042	0.214289	Al
Al7	1.0	0.653507	0.427700	0.425303	Al
Al8	1.0	0.875919	0.926438	0.162111	Al
Al9	1.0	0.892324	0.897468	0.387192	Al
Al10	1.0	0.650870	0.081580	0.012481	Al
Al11	1.0	0.629915	0.082712	0.214452	Al
Al12	1.0	0.621760	0.665672	0.426422	Al
Al13	1.0	0.875714	0.587463	0.161850	Al
Al14	1.0	0.877923	0.578601	0.371540	Al
Al15	1.0	0.399266	0.588814	0.054929	Al
Al16	1.0	0.398834	0.583147	0.269081	Al
Al17	1.0	0.147847	0.084120	0.113173	Al
Al18	1.0	0.138861	0.084000	0.321493	Al
Al19	1.0	0.903063	0.246714	0.052460	Al
Al20	1.0	0.886181	0.262611	0.269675	Al
Al21	1.0	0.513448	0.259784	0.115332	Al
Al22	1.0	0.509749	0.252317	0.321821	Al
Al23	1.0	0.888704	0.256622	0.160708	Al
Al24	1.0	0.889578	0.242327	0.374261	Al
Al25	1.0	0.109491	0.760927	0.014665	Al
Al26	1.0	0.141156	0.755348	0.218921	Al
Al27	1.0	0.168364	0.636762	0.428145	Al
Al28	1.0	0.521579	0.756624	0.163369	Al
Al29	1.0	0.500764	0.749241	0.380059	Al
Al30	1.0	0.144067	0.756419	0.112403	Al
Al31	1.0	0.140586	0.758313	0.321915	Al
Al32	1.0	0.775638	0.758745	0.051649	Al
Al33	1.0	0.758913	0.758292	0.269582	Al
Al34	1.0	0.331225	0.256146	0.028750	Al
Al35	1.0	0.274456	0.257429	0.217978	Al
Al36	1.0	0.216650	0.253043	0.437741	Al
Coordinate for a calculated transition state of PT from CH$_3^*$ on a γ-Al$_2$O$_3$ (100) surface (TS2) in Figure 4.

Spin Multiplicity $<S^2>$: 0.9998

Absolute Energy: -718.93307207 eV.

cell_length_a 8.07075

cell_length_b 8.40443

cell_length_c 26.38316

cell_angle_alpha 90

cell_angle_beta 90

cell_angle_gamma 90

symmetry_space_group_name_H-M	P 1
symmetry_Int_Tables_number	1

H1	1.0	0.009663	0.098484	0.472939	H
H2	1.0	0.396912	0.756187	0.967692	H
H3	1.0	0.355404	0.042160	0.458310	H
H4	1.0	0.569990	0.537756	0.513039	H
H5	1.0	0.406994	0.617345	0.449918	H
H6	1.0	0.485566	0.339893	0.503906	H
H7	1.0	0.915912	0.381922	0.973496	H
H8	1.0	0.729544	1.008597	0.508057	H
C1	1.0	0.547045	0.441050	0.486035	C
O1	1.0	0.120565	0.598794	0.158752	O
O2	1.0	0.125383	0.581729	0.361714	O
O3	1.0	0.628490	0.910692	0.405991	O
O4	1.0	0.628314	0.220444	0.261775	O
O5	1.0	0.874987	0.422266	0.005803	O
O6	1.0	0.876080	0.413376	0.209338	O
O7	1.0	0.872812	0.411366	0.414755	O
O8	1.0	0.380443	0.104325	0.096707	O
O9	1.0	0.375803	0.086628	0.314925	O
O10	1.0	0.918223	0.100509	0.111144	O
O11	1.0	0.910629	0.104167	0.318073	O
O12	1.0	0.406694	0.425967	0.003096	O
O13	1.0	0.405188	0.424012	0.215668	O
O14	1.0	0.208745	0.448376	0.456177	O
O15	1.0	0.168280	0.915592	0.600751	O
O16	1.0	0.163321	0.907638	0.267751	O
O17	1.0	0.652457	0.584320	0.160713	O
O18	1.0	0.648000	0.582467	0.376281	O
O19	1.0	0.918301	0.410038	0.111017	O
O20	1.0	0.910240	0.408566	0.318695	O
O21	1.0	0.424616	0.080839	0.999729	O
O22	1.0	0.404279	0.085175	0.214548	O
O23	1.0	0.394740	0.118196	0.432529	O
O24	1.0	0.165748	0.600441	0.060988	O
O25	1.0	0.164625	0.599654	0.267849	O
O26	1.0	0.652603	0.925691	0.160927	O
O27	1.0	0.646141	0.899344	0.384869	O
O28	1.0	0.121897	0.913822	0.158363	O
O29	1.0	0.117397	0.914956	0.365218	O
O30	1.0	0.625061	0.598315	0.042565	O
O31	1.0	0.629387	0.590772	0.261505	O
O32	1.0	0.868657	0.111268	0.001625	O
O33	1.0	0.870635	0.097596	0.209123	O
O34	1.0	0.859022	0.081272	0.417596	O
O35	1.0	0.379013	0.419829	0.101983	O
O36	1.0	0.379486	0.418772	0.315762	O
O37	1.0	0.148336	0.255353	0.159299	O
O38	1.0	0.139503	0.249948	0.370361	O
O39	1.0	0.651295	0.261489	0.056814	O
O40	1.0	0.652681	0.255029	0.264359	O
O41	1.0	0.895484	0.755261	0.108235	O
O42	1.0	0.889032	0.749246	0.321978	O
O43	1.0	0.338254	0.757043	0.997888	O
O44	1.0	0.377545	0.754988	0.214036	O
--------	-----	-----	-----	-----	------
O45	1.0	0.360350	0.706795	0.428420	O
O46	1.0	0.914182	0.756822	0.997505	O
O47	1.0	0.903685	0.755934	0.210312	O
O48	1.0	0.942266	0.720401	0.422287	O
O49	1.0	0.395821	0.757383	0.103689	O
O50	1.0	0.390590	0.753704	0.317220	O
O51	1.0	0.132650	0.255642	0.058170	O
O52	1.0	0.128094	0.255528	0.317220	O
O53	1.0	0.648411	0.255405	0.164884	O
O54	1.0	0.626325	0.250001	0.378802	O
O55	1.0	0.115258	0.122495	0.481851	O
O56	1.0	0.625826	0.038580	0.492180	O
Al1	1.0	0.407330	0.927410	0.054332	Al
Al2	1.0	0.400547	0.928424	0.112534	Al
Al3	1.0	0.151125	0.427717	0.112534	Al
Al4	1.0	0.150887	0.415117	0.319086	Al
Al5	1.0	0.644007	0.422818	0.003990	Al
Al6	1.0	0.632371	0.430670	0.214493	Al
Al7	1.0	0.654230	0.425111	0.421487	Al
Al8	1.0	0.878422	0.926549	0.160137	Al
Al9	1.0	0.893716	0.897774	0.384698	Al
Al10	1.0	0.656572	0.087745	0.008909	Al
Al11	1.0	0.631617	0.080199	0.214026	Al
Al12	1.0	0.624890	0.068868	0.426530	Al
Al13	1.0	0.878168	0.896947	0.160145	Al
Al14	1.0	0.876298	0.575699	0.367800	Al
Al15	1.0	0.403561	0.581084	0.055172	Al
Al16	1.0	0.401712	0.580068	0.268545	Al
Al17	1.0	0.151911	0.085074	0.112396	Al
Al18	1.0	0.145278	0.079746	0.322243	Al
Al19	1.0	0.902135	0.249431	0.052301	Al
Al20	1.0	0.888997	0.253901	0.268415	Al
Al21	1.0	0.521372	0.262485	0.112660	Al
Al22	1.0	0.511387	0.250749	0.320644	Al
Al23	1.0	0.891545	0.255763	0.161640	Al
Al24	1.0	0.895630	0.240816	0.373692	Al
Al25	1.0	0.113617	0.758940	0.015237	Al
Al26	1.0	0.143116	0.753350	0.217142	Al
Al27	1.0	0.143115	0.622432	0.428438	Al
Al28	1.0	0.522675	0.755080	0.162397	Al
Al29	1.0	0.505705	0.743315	0.376432	Al
Al30	1.0	0.147830	0.756266	0.112153	Al
Al31	1.0	0.141062	0.755724	0.320408	Al
Al32	1.0	0.775371	0.753500	0.048283	Al
Al33	1.0	0.762506	0.757479	0.267077	Al
Al34	1.0	0.324584	0.247461	0.026250	Al
Al35	1.0	0.275808	0.254662	0.217260	Al
Al36	1.0	0.209086	0.249486	0.438825	Al
Coordinate for a γ-Al₂O₃ (100) surface with CH₂* and 2H* in Figure 4.
Spin Multiplicity \(<S^2>: 1.000
Absolute Energy: −719.36810744 eV.

cell_length_a 8.07075
cell_length_b 8.40443
cell_length_c 26.38316
cell_angle_alpha 90
cell_angle_beta 90
cell_angle_gamma 90
symmetry_space_group_name_H-M 'P 1'
symmetry_Int_Tables_number 1

				H			
H1	1.0	0.079779	0.095029	0.474032	H		
H2	1.0	0.397238	0.758259	0.968677	H		
H3	1.0	0.357707	0.157557	0.472574	H		
H4	1.0	0.603288	0.320753	0.514956	H		
H5	1.0	0.427236	0.808728	0.454746	H		
H6	1.0	0.419664	0.409670	0.489593	H		
H7	1.0	0.916659	0.369523	0.973787	H		
H8	1.0	0.684742	0.826576	0.482903	H		
C1	1.0	0.531145	0.340427	0.480117	C		
O1	1.0	0.121353	0.600596	0.159491	O		
O2	1.0	0.123568	0.593266	0.363603	O		
O3	1.0	0.626054	0.915197	0.039483	O		
O4	1.0	0.627913	0.922997	0.262659	O		
O5	1.0	0.880715	0.415935	0.005880	O		
O6	1.0	0.870565	0.411351	0.211296	O		
O7	1.0	0.879607	0.409240	0.419945	O		
O8	1.0	0.384737	0.090903	0.103519	O		
O9	1.0	0.376251	0.087098	0.318723	O		
O10	1.0	0.920717	0.099535	0.113344	O		
O11	1.0	0.910493	0.099070	0.320589	O		
O12	1.0	0.395071	0.429703	0.001965	O		
O13	1.0	0.404050	0.422950	0.218525	O		
O14	1.0	0.178255	0.519761	0.462814	O		
O15	1.0	0.166705	0.914035	0.062202	O		
O16	1.0	0.163582	0.911087	0.268103	O		
O17	1.0	0.653450	0.586146	0.163009	O		
O18	1.0	0.646876	0.591286	0.383010	O		
O19	1.0	0.920165	0.411699	0.112884	O		
O20	1.0	0.903819	0.411520	0.321816	O		
O21	1.0	0.402242	0.079584	0.000606	O		
O22	1.0	0.403408	0.088154	0.218131	O		
O23	1.0	0.476024	0.181952	0.460761	O		
O24	1.0	0.165534	0.600134	0.061994	O		
O25	1.0	0.162087	0.600224	0.268844	O		
O26	1.0	0.653096	0.925128	0.162403	O		
O27	1.0	0.648280	0.916291	0.376687	O		
O28	1.0	0.122031	0.911006	0.159463	O		
O29	1.0	0.118320	0.917499	0.365632	O		
O30	1.0	0.625623	0.593553	0.039312	O		
O31	1.0	0.629333	0.587967	0.263685	O		
O32	1.0	0.879793	0.099433	0.004726	O		
O33	1.0	0.870219	0.099378	0.210961	O		
O34	1.0	0.859060	0.086542	0.420877	O		
O35	1.0	0.383189	0.423625	0.104382	O		
O36	1.0	0.377777	0.423218	0.318619	O		
O37	1.0	0.147189	0.255793	0.160798	O		
O38	1.0	0.124604	0.265577	0.373730	O		
O39	1.0	0.658713	0.259204	0.058293	O		
O40	1.0	0.653322	0.254561	0.265591	O		
O41	1.0	0.889930	0.755689	0.107561	O		
O42	1.0	0.886862	0.753173	0.320384	O		
O43	1.0	0.336950	0.756031	1.000531	O		
O44	1.0	0.378588	0.754679	0.214870	O		
Atom	X	Y	Z	Element			
------	-----	-----	-----	---------			
045	1.0	0.360321	0.770179	O			
046	1.0	0.917166	0.751242	O			
047	1.0	0.904146	0.755899	O			
048	1.0	0.929007	0.743496	O			
049	1.0	0.399276	0.756265	O			
050	1.0	0.389177	0.754057	O			
051	1.0	0.135567	0.255375	O			
052	1.0	0.127168	0.256458	O			
053	1.0	0.644221	0.255980	O			
054	1.0	0.637476	0.255373	O			
055	1.0	0.153410	0.185340	O			
056	1.0	0.596360	0.904684	O			
Al1	1.0	0.408178	0.934694	Al			
Al2	1.0	0.400732	0.930643	Al			
Al3	1.0	0.155411	0.427125	Al			
Al4	1.0	0.148791	0.423542	Al			
Al5	1.0	0.643209	0.409991	Al			
Al6	1.0	0.632123	0.430459	Al			
Al7	1.0	0.651572	0.419574	Al			
Al8	1.0	0.878671	0.925491	Al			
Al9	1.0	0.887641	0.915107	Al			
Al10	1.0	0.661471	0.097459	Al			
Al11	1.0	0.631218	0.080496	Al			
Al12	1.0	0.639194	0.047698	Al			
Al13	1.0	0.878810	0.585425	Al			
Al14	1.0	0.878338	0.588647	Al			
Al15	1.0	0.405746	0.578288	Al			
Al16	1.0	0.401535	0.580929	Al			
Al17	1.0	0.157388	0.084697	Al			
Al18	1.0	0.149922	0.087425	Al			
Al19	1.0	0.898938	0.244944	Al			
Al20	1.0	0.887232	0.253727	Al			
Al21	1.0	0.519482	0.257911	Al			
Al22	1.0	0.510186	0.253916	Al			
Al23	1.0	0.891926	0.256169	Al			
Al24	1.0	0.878552	0.243499	Al			
Al25	1.0	0.114313	0.759396	Al			
Al26	1.0	0.142446	0.755189	Al			
Al27	1.0	0.147274	0.686564	Al			
Al28	1.0	0.521598	0.755444	Al			
Al29	1.0	0.510662	0.755810	Al			
Al30	1.0	0.152382	0.755995	Al			
Al31	1.0	0.140528	0.760338	Al			
Al32	1.0	0.770914	0.755334	Al			
Al33	1.0	0.760781	0.756533	Al			
Al34	1.0	0.295973	0.251953	Al			
Al35	1.0	0.272525	0.255636	Al			
Al36	1.0	0.098190	0.345192	Al			
S3.2 Optimized Structures and Energies for Figure S6

Coordinate for a γ-Al₂O₃ (100) surface with CH₄ σ-complex at a 5-coordinated Al site.

Absolute Energy: -731.75658299 eV.

Coordinate	Value	Value	Value	Value	
cell_length_a	8.070750	cell_length_b	8.404430	cell_length_c	26.383160
cell_angle_alpha	90.000000	cell_angle_beta	90.000000	cell_angle_gamma	90.000000
cell_volume	1789.571263				
space_group_name_H-M_alt	'P 1'				
space_group_IT_number	1				

Atom	X	Y	Z	Value	Value
H1	1.0	0.917929	0.402544	0.444165	H
H2	1.0	0.430293	0.072259	0.963119	H
H3	1.0	0.698900	0.423558	0.558535	H
H4	1.0	0.730352	0.582663	0.514720	H
H5	1.0	0.525923	0.532422	0.535311	H
H6	1.0	0.666923	0.627423	0.578229	H
H7	1.0	0.122352	0.404754	0.500383	H
H8	1.0	0.381315	0.590496	0.154556	H
H9	1.0	0.828333	0.320928	0.952131	H
H10	1.0	0.683783	0.834203	0.495196	H
C1	1.0	0.655790	0.541785	0.547048	C
O1	1.0	0.604802	0.267201	0.546222	O
O2	1.0	0.109730	0.590496	0.154556	O
O3	1.0	0.118468	0.569548	0.362387	O
O4	1.0	0.623466	0.914940	0.035307	O
O5	1.0	0.615635	0.912945	0.257862	O
O6	1.0	0.768406	0.421576	0.956204	O
O7	1.0	0.857361	0.407709	0.206065	O
O8	1.0	0.844424	0.403586	0.414270	O
O9	1.0	0.374276	0.112646	0.087387	O
O10	1.0	0.358715	0.080144	0.311606	O
O11	1.0	0.904955	0.088489	0.108383	O
O12	1.0	0.896492	0.099626	0.314347	O
O13	1.0	0.396195	0.414241	-0.002523	O
O14	1.0	0.390885	0.419355	0.208524	O
O15	1.0	0.372114	0.429061	0.412812	O
O16	1.0	0.159240	0.915713	0.058801	O
O17	1.0	0.150537	0.899657	0.266537	O
O18	1.0	0.639829	0.575840	0.154991	O
O19	1.0	0.635591	0.585039	0.377484	O
O20	1.0	0.903535	0.402527	0.108172	O
O21	1.0	0.899693	0.403782	0.318544	O
O22	1.0	0.354199	0.072712	-0.007826	O
O23	1.0	0.390596	0.077464	0.210980	O
O24	1.0	0.394823	0.104127	0.438144	O
O25	1.0	0.146444	0.602103	0.055203	O
O26	1.0	0.153712	0.593946	0.266492	O
O27	1.0	0.639858	0.915177	0.156130	O
O28	1.0	0.652038	0.905160	0.391172	O
O29	1.0	0.111136	0.908170	0.155449	O
O30	1.0	0.095962	0.913099	0.364212	O
O31	1.0	0.608673	0.597327	0.037566	O
O32	1.0	0.615430	0.583986	0.256325	O
O33	1.0	0.882552	0.131634	-0.004844	O
O34	1.0	0.856913	0.086509	0.205219	O
O35	1.0	0.864681	0.089454	0.423095	O
O36	1.0	0.361784	0.415886	0.094312	O
O37	1.0	0.363630	0.403622	0.307228	O
O38	1.0	0.136280	0.246876	0.156200	O
O39	1.0	0.125258	0.242344	0.367612	O
-----	-----	-----	-----	-----	
O40	1.0	0.653850	0.276956	0.052860	O
O41	1.0	0.639738	0.247904	0.257526	O
O42	1.0	0.884933	0.748002	0.106051	O
O43	1.0	0.884514	0.729793	0.317959	O
O44	1.0	0.322869	0.751616	-0.005031	O
O45	1.0	0.361172	0.748195	0.210311	O
O46	1.0	0.347875	0.743636	0.426894	O
O47	1.0	0.890003	0.788142	-0.001557	O
O48	1.0	0.891849	0.746854	0.207378	O
O49	1.0	0.933763	0.707033	0.423979	O
O50	1.0	0.387970	0.755409	0.098207	O
O51	1.0	0.385257	0.748502	0.315627	O
O52	1.0	0.109821	0.258259	0.056550	O
O53	1.0	0.109794	0.259978	0.263153	O
O54	1.0	0.638194	0.246269	0.159947	O
O55	1.0	0.635417	0.252517	0.363681	O
O56	1.0	0.123261	0.405014	0.463552	O
O57	1.0	0.664476	0.945339	0.499832	O
A1	1.0	0.404301	0.930189	0.048975	Al
A2	1.0	0.387492	0.918819	0.267365	Al
A3	1.0	0.134695	0.419214	0.110633	Al
A4	1.0	0.135111	0.409157	0.316515	Al
A5	1.0	0.620626	0.417023	0.002354	Al
A6	1.0	0.616051	0.422591	0.210667	Al
A7	1.0	0.592059	0.402196	0.412065	Al
A8	1.0	0.866548	0.917168	0.159876	Al
A9	1.0	0.892460	0.895831	0.397868	Al
A10	1.0	0.759752	-0.029019	-0.019659	Al
A11	1.0	0.617312	0.071677	0.210614	Al
A12	1.0	0.624204	0.059495	0.443816	Al
A13	1.0	0.866364	0.576373	0.159069	Al
A14	1.0	0.863482	0.581133	0.371262	Al
A15	1.0	0.383929	0.581840	0.049298	Al
A16	1.0	0.389975	0.576565	0.267520	Al
A17	1.0	0.141190	0.078655	0.110946	Al
A18	1.0	0.125043	0.071328	0.319852	Al
A19	1.0	0.878344	0.225629	0.054976	Al
A20	1.0	0.874268	0.254232	0.268168	Al
A21	1.0	0.519161	0.270225	0.107086	Al
A22	1.0	0.499311	0.240240	0.314002	Al
A23	1.0	0.878954	0.247401	0.160352	Al
A24	1.0	0.865546	0.227228	0.370896	Al
A25	1.0	0.099310	0.767719	0.013284	Al
A26	1.0	0.129852	0.746273	0.217808	Al
A27	1.0	0.213769	0.586978	0.423923	Al
A28	1.0	0.509477	0.745884	0.160709	Al
A29	1.0	0.501723	0.755516	0.381262	Al
A30	1.0	0.140656	0.751019	0.110238	Al
A31	1.0	0.123964	0.748670	0.322216	Al
A32	1.0	0.750431	0.748250	0.052716	Al
A33	1.0	0.749996	0.748173	0.267106	Al
A34	1.0	0.304434	0.248574	0.027808	Al
A35	1.0	0.264936	0.249360	0.215914	Al
A36	1.0	0.256962	0.254941	0.423897	Al
Coordinate for a calculated transition state of the initial CH$_4$ activation on a γ-Al$_2$O$_3$ (100) surface (TS1) in Figure S6.
Absolute Energy: –731.15875929 eV.

cell_length_a	8.070750
cell_length_b	8.404430
cell_length_c	26.383160
cell_angle_alpha	90.000000
cell_angle_beta	90.000000
cell_angle_gamma	90.000000
cell_volume	1789.571263
space_group_name_H-M_alt	'P 1'
space_group_IT_number	1

H1	1.0	0.920240	0.400297	0.445216	H
H2	1.0	0.446076	0.056069	0.966456	H
H3	1.0	0.561919	0.045875	0.520166	H
H4	1.0	0.755645	0.658765	0.491000	H
H5	1.0	0.521510	0.642216	0.495072	H
H6	1.0	0.654002	0.584338	0.55936	H
H7	1.0	0.127609	0.406266	0.501422	H
H8	1.0	0.392015	0.762486	0.967252	H
H9	1.0	0.821895	0.302536	0.953363	H
H10	1.0	0.613689	0.868908	0.504787	H
C1	1.0	0.643463	0.633558	0.512911	C
O1	1.0	0.610577	0.276015	0.468214	O
O2	1.0	0.113988	0.596167	0.158018	O
O3	1.0	0.118020	0.571217	0.362424	O
O4	1.0	0.626232	0.911975	0.039562	O
O5	1.0	0.618653	0.917782	0.260709	O
O6	1.0	0.772178	0.407821	0.958558	O
O7	1.0	0.859057	0.408682	0.209112	O
O8	1.0	0.846876	0.404233	0.415123	O
O9	1.0	0.373672	0.114030	0.088357	O
O10	1.0	0.361968	0.081373	0.314132	O
O11	1.0	0.907286	0.090389	0.110455	O
O12	1.0	0.899208	0.102416	0.314982	O
O13	1.0	0.398394	0.408191	0.001087	O
O14	1.0	0.393592	0.423396	0.212612	O
O15	1.0	0.370005	0.441124	0.416136	O
O16	1.0	0.159311	0.915029	0.061107	O
O17	1.0	0.152807	0.901854	0.267916	O
O18	1.0	0.642895	0.580726	0.159124	O
O19	1.0	0.638874	0.587873	0.380216	O
O20	1.0	0.907042	0.411381	0.112283	O
O21	1.0	0.898203	0.404932	0.319865	O
O22	1.0	0.355829	0.063164	0.992858	O
O23	1.0	0.392555	0.080863	0.213547	O
O24	1.0	0.391845	0.111184	0.438487	O
O25	1.0	0.149614	0.601396	0.058658	O
O26	1.0	0.154973	0.595946	0.268258	O
O27	1.0	0.641762	0.919997	0.159435	O
O28	1.0	0.650073	0.900787	0.395952	O
O29	1.0	0.114311	0.910955	0.157936	O
O30	1.0	0.100048	0.915917	0.364996	O
O31	1.0	0.612412	0.592096	0.040479	O
O32	1.0	0.619561	0.585933	0.260068	O
O33	1.0	0.884407	0.109602	0.994427	O
O34	1.0	0.859028	0.093033	0.206950	O
O35	1.0	0.862193	0.087925	0.421755	O
O36	1.0	0.365508	0.419917	0.098834	O
O37	1.0	0.367960	0.407995	0.310923	O
O38	1.0	0.139875	0.249967	0.157440	O
O39	1.0	0.125166	0.246149	0.368439	O
O40	1.0	0.661563	0.272238	0.054814	O
O41	1.0	0.641205	0.250435	0.260303	O
O42	1.0	0.885766	0.751125	0.108905	O
O43	1.0	0.882053	0.738707	0.321977	O
O44	1.0	0.327203	0.746235	0.998405	O
O45	1.0	0.367114	0.751074	0.213673	O
O46	1.0	0.344930	0.747810	0.429936	O
O47	1.0	0.893103	0.774880	0.999668	O
O48	1.0	0.894479	0.751045	0.210349	O
O49	1.0	0.949767	0.706879	0.425416	O
O50	1.0	0.389301	0.756959	0.101557	O
O51	1.0	0.385043	0.750348	0.318190	O
O52	1.0	0.107422	0.258430	0.057218	O
O53	1.0	0.114563	0.253782	0.264832	O
O54	1.0	0.636685	0.251026	0.161815	O
O55	1.0	0.630414	0.243521	0.369417	O
O56	1.0	0.117073	0.407649	0.464748	O
O57	1.0	0.640459	0.983044	0.500351	O
Al1	1.0	0.408163	0.927698	0.050890	Al
Al2	1.0	0.390853	0.921653	0.268445	Al
Al3	1.0	0.136249	0.423987	0.111240	Al
Al4	1.0	0.138404	0.412362	0.316438	Al
Al5	1.0	0.623802	0.412822	0.004500	Al
Al6	1.0	0.119066	0.426970	0.212547	Al
Al7	1.0	0.589616	0.410655	0.415413	Al
Al8	1.0	0.868619	0.920402	0.161249	Al
Al9	1.0	0.894893	0.893784	0.395571	Al
Al10	1.0	0.742888	0.961881	0.975011	Al
Al11	1.0	0.619449	0.075289	0.212131	Al
Al12	1.0	0.622716	0.084181	0.432368	Al
Al13	1.0	0.869795	0.579683	0.160712	Al
Al14	1.0	0.866937	0.579032	0.371240	Al
Al15	1.0	0.387853	0.579404	0.051866	Al
Al16	1.0	0.393587	0.577947	0.268850	Al
Al17	1.0	0.144303	0.080666	0.112388	Al
Al18	1.0	0.128708	0.073601	0.319764	Al
Al19	1.0	0.878989	0.205986	0.052359	Al
Al20	1.0	0.876852	0.255260	0.267273	Al
Al21	1.0	0.520766	0.269963	0.107407	Al
Al22	1.0	0.501603	0.242285	0.315711	Al
Al23	1.0	0.878590	0.253156	0.160588	Al
Al24	1.0	0.873496	0.231605	0.370736	Al
Al25	1.0	0.101318	0.765943	0.014800	Al
Al26	1.0	0.133436	0.748095	0.217851	Al
Al27	1.0	0.193733	0.603274	0.425551	Al
Al28	1.0	0.511702	0.749897	0.162104	Al
Al29	1.0	0.496121	0.753721	0.382436	Al
Al30	1.0	0.142457	0.753596	0.111988	Al
Al31	1.0	0.128607	0.751714	0.322341	Al
Al32	1.0	0.755689	0.746584	0.053224	Al
Al33	1.0	0.752683	0.752398	0.268505	Al
Al34	1.0	0.298903	0.238997	0.025993	Al
Al35	1.0	0.266690	0.252792	0.216001	Al
Al36	1.0	0.257031	0.265115	0.423848	Al
Coordinate for a γ-Al₂O₃ (100) surface with CH₃* and H* in Figure S6. Absolute Energy: −735.4894316 eV.

cell_length_a 8.070750

cell_length_b 8.404430

cell_length_c 26.383160

cell_angle_alpha 90.000000

cell_angle_beta 90.000000

cell_angle_gamma 90.000000

cell_volume 1789.571263

mol	x	y	z	Coordination	
H1	1.0	0.920806	0.416708	0.445179	H
H2	1.0	0.454286	0.063327	0.966430	H
H3	1.0	0.319484	0.002360	0.433871	H
H4	1.0	0.610200	0.432055	0.533295	H
H5	1.0	0.429203	0.317138	0.519836	H
H6	1.0	0.607844	0.220170	0.544821	H
H7	1.0	0.131170	0.431022	0.968250	H
H8	1.0	0.823690	0.312047	0.51249	H
H9	1.0	0.568567	0.880729	0.50626	H
C1	1.0	0.566060	0.315602	0.519540	C
O1	1.0	0.629214	0.287386	0.469707	O
O2	1.0	0.129358	0.609141	0.158642	O
O3	1.0	0.123781	0.583731	0.362801	O
O4	1.0	0.635554	0.921791	0.040463	O
O5	1.0	0.624030	0.930817	0.261153	O
O6	1.0	0.775984	0.417061	0.958030	O
O7	1.0	0.864648	0.420422	0.209722	O
O8	1.0	0.850064	0.417351	0.414479	O
O9	1.0	0.379645	0.125096	0.088326	O
O10	1.0	0.365763	0.093327	0.314335	O
O11	1.0	0.913268	0.102080	0.110653	O
O12	1.0	0.902982	0.114064	0.315228	O
O13	1.0	0.404731	0.417364	0.001913	O
O14	1.0	0.398809	0.435425	0.215792	O
O15	1.0	0.383596	0.446087	0.420575	O
O16	1.0	0.165675	0.925754	0.061224	O
O17	1.0	0.157698	0.913849	0.268013	O
O18	1.0	0.648939	0.593536	0.160096	O
O19	1.0	0.642544	0.599670	0.380230	O
O20	1.0	0.913921	0.425834	0.113374	O
O21	1.0	0.901764	0.417868	0.319645	O
O22	1.0	0.363145	0.072478	0.993842	O
O23	1.0	0.397786	0.092710	0.213814	O
O24	1.0	0.367099	0.110529	0.437763	O
O25	1.0	0.156671	0.612322	0.059022	O
O26	1.0	0.159789	0.608008	0.268807	O
O27	1.0	0.647699	0.932317	0.160068	O
O28	1.0	0.652105	0.914421	0.392026	O
O29	1.0	0.120046	0.923033	0.158196	O
O30	1.0	0.105374	0.928505	0.364923	O
O31	1.0	0.619621	0.601400	0.040918	O
O32	1.0	0.625433	0.598184	0.260976	O
O33	1.0	0.890484	0.114251	0.993335	O
O34	1.0	0.864824	0.106006	0.207138	O
O35	1.0	0.868617	0.097643	0.422011	O
O36	1.0	0.372015	0.431685	0.099719	O
O37	1.0	0.372490	0.420273	0.312229	O
O38	1.0	0.146178	0.261689	0.157514	O
O39	1.0	0.126302	0.260623	0.368269	O
O40	1.0	0.670228	0.281948	0.054988	O
O41	1.0	0.645782	0.262523	0.260853	O
O42	1.0	0.891963	0.762955	0.109344	O

Supporting Information 30
Element	x	y	z	Charge
O43	1.0	0.885777	0.753487	0.322731
O44	1.0	0.335771	0.756578	0.998919
O45	1.0	0.373262	0.763733	0.214218
O46	1.0	0.341864	0.767765	0.428459
O47	1.0	0.901048	0.781583	-0.000281
O48	1.0	0.900288	0.763616	0.210822
O49	1.0	0.954323	0.721193	0.424718
O50	1.0	0.390533	0.768540	0.102068
O51	1.0	0.389108	0.762855	0.318387
O52	1.0	0.111845	0.268335	0.057096
O53	1.0	0.119944	0.265090	0.265232
O54	1.0	0.641680	0.263530	0.162095
O55	1.0	0.633988	0.255726	0.370235
O56	1.0	0.115711	0.433238	0.464435
O57	1.0	0.638776	0.972081	0.499111
Al1	1.0	0.415591	0.938032	0.051018
Al2	1.0	0.396086	0.934220	0.268303
Al3	1.0	0.142218	0.436055	0.111207
Al4	1.0	0.142748	0.425175	0.316518
Al5	1.0	0.630292	0.439721	0.212925
Al6	1.0	0.598674	0.419666	0.414565
Al7	1.0	0.874628	0.932628	0.161255
Al8	1.0	0.894226	0.905432	0.392905
Al9	1.0	0.744590	0.970201	0.973157
Al10	1.0	0.624848	0.087798	0.212247
Al11	1.0	0.640832	0.075552	0.444140
Al12	1.0	0.876165	0.592058	0.160951
Al13	1.0	0.869910	0.589373	0.369804
Al14	1.0	0.395006	0.590083	0.502282
Al15	1.0	0.399207	0.589429	0.269270
Al16	1.0	0.150830	0.092438	0.112353
Al17	1.0	0.132979	0.086488	0.319347
Al18	1.0	0.884415	0.209426	0.051011
Al19	1.0	0.881350	0.266949	0.266954
Al20	1.0	0.526935	0.280774	0.107071
Al21	1.0	0.505964	0.253918	0.316323
Al22	1.0	0.883750	0.265950	0.160372
Al23	1.0	0.873677	0.241921	0.370820
Al24	1.0	0.109101	0.776530	0.014627
Al25	1.0	0.139485	0.759947	0.217543
Al26	1.0	0.175511	0.635521	0.426826
Al27	1.0	0.517217	0.762452	0.162268
Al28	1.0	0.500324	0.764139	0.382083
Al29	1.0	0.148203	0.765356	0.112013
Al30	1.0	0.136194	0.764030	0.322135
Al31	1.0	0.763408	0.756533	0.052927
Al32	1.0	0.758065	0.765458	0.268358
Al33	1.0	0.303104	0.247893	0.025366
Al34	1.0	0.271816	0.264537	0.215925
Al35	1.0	0.252243	0.284856	0.423719
Supporting Information

Coordinate for a calculated transition state from CH$_3$* on a γ-Al$_2$O$_3$ (100) surface (TS3) in Figure S6.
Absolute Energy: –734.90592846 eV.

cell_length_a	8.070750			
cell_length_b	8.404430			
cell_length_c	26.383160			
cell_angle_alpha	90.000000			
cell_angle_beta	90.000000			
cell_angle_gamma	90.000000			
cell_volume	1789.571263			
space_group_name_H-M_alt	'P 1'			
space_group_IT_number	1			

| | | | | | |
|---|-----|-----|-----|-----|
| H1 | 1.0 | 0.878798 | 0.413373 | 0.449579 | H |
| H2 | 1.0 | 0.452120 | 0.055973 | 0.966720 | H |
| H3 | 1.0 | 0.316144 | 0.998889 | 0.431882 | H |
| H4 | 1.0 | 0.535542 | 0.543100 | 0.533514 | H |
| H5 | 1.0 | 0.479016 | 0.335993 | 0.529587 | H |
| H6 | 1.0 | 0.667816 | 0.392185 | 0.559001 | H |
| H7 | 1.0 | 0.174586 | 0.444668 | 0.498809 | H |
| H8 | 1.0 | 0.399931 | 0.766877 | 0.968159 | H |
| H9 | 1.0 | 0.824437 | 0.303567 | 0.952502 | H |
| H10 | 1.0 | 0.529432 | 1.014650 | 0.509586 | H |
| C1 | 1.0 | 0.583355 | 0.421278 | 0.527514 | C |
| O1 | 1.0 | 0.696856 | 0.409237 | 0.481470 | O |
| O2 | 1.0 | 0.118922 | 0.901528 | 0.158589 | O |
| O3 | 1.0 | 0.122411 | 0.578516 | 0.362271 | O |
| O4 | 1.0 | 0.631296 | 0.914454 | 0.040661 | O |
| O5 | 1.0 | 0.622810 | 0.923657 | 0.261260 | O |
| O6 | 1.0 | 0.777559 | 0.409065 | 0.959267 | O |
| O7 | 1.0 | 0.862922 | 0.412872 | 0.210034 | O |
| O8 | 1.0 | 0.860943 | 0.410207 | 0.412601 | O |
| O9 | 1.0 | 0.377788 | 0.117161 | 0.088756 | O |
| O10 | 1.0 | 0.367387 | 0.086839 | 0.314780 | O |
| O11 | 1.0 | 0.911337 | 0.094688 | 0.111065 | O |
| O12 | 1.0 | 0.902623 | 0.106943 | 0.315619 | O |
| O13 | 1.0 | 0.403408 | 0.409843 | 0.001996 | O |
| O14 | 1.0 | 0.398040 | 0.428328 | 0.215399 | O |
| O15 | 1.0 | 0.391747 | 0.433740 | 0.417281 | O |
| O16 | 1.0 | 0.163287 | 0.918036 | 0.061343 | O |
| O17 | 1.0 | 0.157471 | 0.908251 | 0.267418 | O |
| O18 | 1.0 | 0.647402 | 0.585604 | 0.160008 | O |
| O19 | 1.0 | 0.644326 | 0.592268 | 0.376634 | O |
| O20 | 1.0 | 0.912119 | 0.417707 | 0.113552 | O |
| O21 | 1.0 | 0.900452 | 0.410379 | 0.319534 | O |
| O22 | 1.0 | 0.360912 | 0.064984 | 0.993171 | O |
| O23 | 1.0 | 0.396753 | 0.085903 | 0.214060 | O |
| O24 | 1.0 | 0.365080 | 0.106808 | 0.435061 | O |
| O25 | 1.0 | 0.154560 | 0.604239 | 0.059083 | O |
| O26 | 1.0 | 0.158087 | 0.600886 | 0.267971 | O |
| O27 | 1.0 | 0.645607 | 0.925268 | 0.160234 | O |
| O28 | 1.0 | 0.647451 | 0.901646 | 0.387172 | O |
| O29 | 1.0 | 0.118332 | 0.915209 | 0.158248 | O |
| O30 | 1.0 | 0.107641 | 0.921699 | 0.364073 | O |
| O31 | 1.0 | 0.617721 | 0.593891 | 0.041129 | O |
| O32 | 1.0 | 0.624239 | 0.591678 | 0.260658 | O |
| O33 | 1.0 | 0.888785 | 0.106496 | 0.993923 | O |
| O34 | 1.0 | 0.862968 | 0.098772 | 0.207624 | O |
| O35 | 1.0 | 0.865528 | 0.085909 | 0.419529 | O |
| O36 | 1.0 | 0.370056 | 0.423646 | 0.099749 | O |
| O37 | 1.0 | 0.372204 | 0.414393 | 0.311614 | O |
| O38 | 1.0 | 0.144365 | 0.254120 | 0.157895 | O |
| O39 | 1.0 | 0.126692 | 0.254223 | 0.367873 | O |
| O40 | 1.0 | 0.667962 | 0.274343 | 0.055555 | O |
| O41 | 1.0 | 0.644325 | 0.255806 | 0.262739 | O |
| O42 | 1.0 | 0.889977 | 0.755460 | 0.109315 | O |
Atom	X Position	Y Position	Z Position	Element
O43	0.887045	0.749362	0.321828	O
O44	0.333178	0.748619	0.998977	O
O45	0.371977	0.756203	0.213879	O
O46	0.338046	0.758886	0.426954	O
O47	0.898593	0.773749	0.999710	O
O48	0.898611	0.756461	0.210598	O
O49	0.947432	0.718360	0.422907	O
O50	0.393158	0.760583	0.102026	O
O51	0.386234	0.754234	0.317219	O
O52	0.110337	0.266407	0.057483	O
O53	0.119167	0.258005	0.265454	O
O54	0.639892	0.256083	0.162776	O
O55	0.629883	0.242264	0.376539	O
O56	0.127497	0.439986	0.464820	O
O57	0.635859	0.035232	0.494013	O
Al1	0.413379	0.930428	0.051153	Al
Al2	0.395453	0.928106	0.268203	Al
Al3	0.140422	0.428367	0.111402	Al
Al4	0.142912	0.419303	0.316301	Al
Al5	0.629038	0.414635	0.005042	Al
Al6	0.623784	0.431925	0.213308	Al
Al7	0.605383	0.429000	0.418312	Al
Al8	0.872275	0.925268	0.161205	Al
Al9	0.892563	0.898062	0.388390	Al
Al10	0.742245	0.963489	0.973322	Al
Al11	0.623494	0.080991	0.212624	Al
Al12	0.630999	0.069319	0.429184	Al
Al13	0.874292	0.584561	0.160929	Al
Al14	0.870586	0.582597	0.368560	Al
Al15	0.393106	0.582370	0.052360	Al
Al16	0.397648	0.582274	0.268294	Al
Al17	0.149073	0.084927	0.112575	Al
Al18	0.134687	0.080473	0.318993	Al
Al19	0.882531	0.202754	0.051482	Al
Al20	0.879885	0.259388	0.267254	Al
Al21	0.525055	0.272929	0.107670	Al
Al22	0.505789	0.249104	0.319478	Al
Al23	0.882676	0.258400	0.160787	Al
Al24	0.882262	0.236028	0.371443	Al
Al25	0.106593	0.768630	0.014641	Al
Al26	0.138258	0.753806	0.217100	Al
Al27	0.163192	0.636842	0.426819	Al
Al28	0.515900	0.754681	0.162062	Al
Al29	0.495151	0.750105	0.380452	Al
Al30	0.146080	0.757648	0.111915	Al
Al31	0.137664	0.757421	0.321260	Al
Al32	0.761280	0.749215	0.052937	Al
Al33	0.756599	0.758637	0.267966	Al
Al34	0.301726	0.240482	0.025774	Al
Al35	0.271195	0.257790	0.216217	Al
Al36	0.251512	0.285227	0.423495	Al
Coordinate for a γ-Al₂O₃ (100) surface with CH₃OH* in Figure S6.

Absolute Energy: –735.56165834eV.

Coordinate	x	y	z	H
H1	1.0	0.878798	0.413373	0.449579
H2	1.0	0.452120	0.055973	0.966720
H3	1.0	0.316144	0.998889	0.431882
H4	1.0	0.535542	0.543100	0.533514
H5	1.0	0.479016	0.335993	0.529587
H6	1.0	0.667816	0.392185	0.559001
H7	1.0	0.174586	0.444668	0.498809
H8	1.0	0.399931	0.766877	0.968159
H9	1.0	0.824437	0.303567	0.952502
H10	1.0	0.529432	1.014650	0.509586
C1	1.0	0.583555	0.421278	0.527514
C2	1.0	0.699836	0.409237	0.481470
C3	1.0	0.118922	0.601528	0.158589
O1	1.0	0.631296	0.578516	0.362271
O2	1.0	0.122411	0.914454	0.406611
O3	1.0	0.622810	0.923657	0.261260
O4	1.0	0.777559	0.409065	0.959267
O5	1.0	0.862922	0.412872	0.210034
O6	1.0	0.860943	0.410207	0.412601
O7	1.0	0.377788	0.111761	0.088756
O8	1.0	0.367387	0.086839	0.314780
O9	1.0	0.911337	0.094688	0.111065
O10	1.0	0.902623	0.106943	0.315619
O11	1.0	0.403408	0.409843	0.001996
O12	1.0	0.398040	0.428328	0.213399
O13	1.0	0.391747	0.433740	0.417281
O14	1.0	0.163287	0.918036	0.061343
O15	1.0	0.157471	0.908251	0.267418
O16	1.0	0.647402	0.585604	0.160008
O17	1.0	0.644326	0.592268	0.376634
O18	1.0	0.912119	0.417707	0.113552
O19	1.0	0.900452	0.410379	0.319534
O20	1.0	0.916012	0.104984	0.993171
O21	1.0	0.396753	0.085903	0.214060
O22	1.0	0.365080	0.106808	0.435061
O23	1.0	0.154560	0.604239	0.059083
O24	1.0	0.158087	0.600886	0.267971
O25	1.0	0.645607	0.925268	0.160234
O26	1.0	0.647451	0.901646	0.387172
O27	1.0	0.118332	0.915209	0.158248
O28	1.0	0.107641	0.921669	0.364073
O29	1.0	0.617721	0.593891	0.041129
O30	1.0	0.624239	0.591678	0.260658
O31	1.0	0.888785	0.106469	0.993923
O32	1.0	0.862968	0.098772	0.207624
O33	1.0	0.865528	0.085909	0.419529
O34	1.0	0.370056	0.423646	0.099749
O35	1.0	0.372204	0.414393	0.311614
O36	1.0	0.144365	0.254120	0.157895
O37	1.0	0.126692	0.254223	0.367873
O38	1.0	0.667962	0.274343	0.055555
O39	1.0	0.644325	0.255806	0.262739
O40	1.0	0.889777	0.755460	0.109315

Supporting Information 34
| 043 | 1.0 | 0.887045 | 0.749362 | 0.321828 | O
| 044 | 1.0 | 0.333178 | 0.748619 | 0.999710 | O
| 045 | 1.0 | 0.371977 | 0.756203 | 0.122776 | O
| 046 | 1.0 | 0.338046 | 0.758886 | 0.426954 | O
| 047 | 1.0 | 0.898593 | 0.773749 | 0.999710 | O
| 048 | 1.0 | 0.898611 | 0.756461 | 0.210598 | O
| 049 | 1.0 | 0.947432 | 0.718360 | 0.422907 | O
| 050 | 1.0 | 0.393158 | 0.760583 | 0.102026 | O
| 051 | 1.0 | 0.362346 | 0.754234 | 0.317219 | O
| 052 | 1.0 | 0.110337 | 0.260407 | 0.057483 | O
| 053 | 1.0 | 0.119167 | 0.258005 | 0.265454 | O
| 054 | 1.0 | 0.639892 | 0.256083 | 0.162776 | O
| 055 | 1.0 | 0.629883 | 0.242264 | 0.376539 | O
| 056 | 1.0 | 0.127497 | 0.439986 | 0.464820 | O
| 057 | 1.0 | 0.635859 | 0.035232 | 0.494013 | O
| Al1 | 1.0 | 0.413379 | 0.930428 | 0.051153 | Al
| Al2 | 1.0 | 0.395453 | 0.928106 | 0.268203 | Al
| Al3 | 1.0 | 0.140422 | 0.428367 | 0.111402 | Al
| Al4 | 1.0 | 0.142912 | 0.419303 | 0.316301 | Al
| Al5 | 1.0 | 0.629038 | 0.414635 | 0.050542 | Al
| Al6 | 1.0 | 0.623784 | 0.431925 | 0.213308 | Al
| Al7 | 1.0 | 0.605383 | 0.429000 | 0.418312 | Al
| Al8 | 1.0 | 0.872275 | 0.925268 | 0.161205 | Al
| Al9 | 1.0 | 0.895263 | 0.898062 | 0.388390 | Al
| Al10 | 1.0 | 0.742245 | 0.963489 | 0.973322 | Al
| Al11 | 1.0 | 0.623494 | 0.080991 | 0.212824 | Al
| Al12 | 1.0 | 0.633099 | 0.069319 | 0.429184 | Al
| Al13 | 1.0 | 0.874292 | 0.584561 | 0.169029 | Al
| Al14 | 1.0 | 0.870586 | 0.582597 | 0.368560 | Al
| Al15 | 1.0 | 0.393106 | 0.582370 | 0.052360 | Al
| Al16 | 1.0 | 0.397648 | 0.582274 | 0.268294 | Al
| Al17 | 1.0 | 0.149073 | 0.084927 | 0.112575 | Al
| Al18 | 1.0 | 0.134687 | 0.080473 | 0.318993 | Al
| Al19 | 1.0 | 0.882531 | 0.202754 | 0.051482 | Al
| Al20 | 1.0 | 0.879885 | 0.259388 | 0.267254 | Al
| Al21 | 1.0 | 0.525055 | 0.272929 | 0.107670 | Al
| Al22 | 1.0 | 0.505789 | 0.249104 | 0.319478 | Al
| Al23 | 1.0 | 0.882676 | 0.258400 | 0.160787 | Al
| Al24 | 1.0 | 0.882262 | 0.236028 | 0.371443 | Al
| Al25 | 1.0 | 0.106593 | 0.768630 | 0.014641 | Al
| Al26 | 1.0 | 0.138258 | 0.753806 | 0.217100 | Al
| Al27 | 1.0 | 0.163192 | 0.636842 | 0.426819 | Al
| Al28 | 1.0 | 0.515900 | 0.754681 | 0.162062 | Al
| Al29 | 1.0 | 0.495151 | 0.750105 | 0.380452 | Al
| Al30 | 1.0 | 0.146080 | 0.757648 | 0.111915 | Al
| Al31 | 1.0 | 0.137664 | 0.757421 | 0.321260 | Al
| Al32 | 1.0 | 0.761280 | 0.749215 | 0.052937 | Al
| Al33 | 1.0 | 0.756599 | 0.758637 | 0.267966 | Al
| Al34 | 1.0 | 0.301726 | 0.240482 | 0.025774 | Al
| Al35 | 1.0 | 0.271195 | 0.257790 | 0.216217 | Al
| Al36 | 1.0 | 0.251512 | 0.285227 | 0.423495 | Al

Supporting Information
Optimized Structures and Energies for Figure S8

Coordinate for a γ-Al$_2$O$_3$ (100) surface with CH$_4$ σ-complex at a 6-coordinated Al site.

Absolute Energy: -751.20248905 eV.

cell_length_a = 8.070750

cell_length_b = 8.404430

cell_length_c = 26.383160

cell_angle_alpha = 90.000000

cell_angle_beta = 90.000000

cell_angle_gamma = 90.000000

cell_volume = 1789.571263

space_group_name_H-M_alt = 'P 1'

Atom	x	y	z	Element	
H	0.000647	0.431891	0.446116	H	
H	0.397608	0.758756	0.963031	H	
H	0.870488	0.312798	0.966527	H	
H	0.573832	0.796423	0.505100	H	
H	0.272796	0.835634	0.398556	H	
H	0.271406	0.002458	0.462014	H	
H	0.843184	0.145696	0.447270	H	
H	0.848942	0.716110	0.448037	H	
H	0.658037	0.556409	0.550341	H	
H	0.575993	0.516356	0.612460	H	
C	0.454986	0.477515	0.556797	H	
H	0.630540	0.355652	0.570290	H	
C	0.658774	0.227307	0.468866	O	
O	0.620666	0.599222	0.455137	O	
O	0.118417	0.581923	0.150846	O	
O	0.127608	0.583215	0.361494	O	
O	0.624612	0.903348	0.044615	O	
O	0.621451	0.918417	0.263303	O	
O	0.849375	0.407438	-0.012199	O	
O	0.868542	0.407173	0.203658	O	
O	0.858931	0.430101	0.411832	O	
O	0.376508	0.097723	0.095119	O	
O	0.373472	0.092954	0.312919	O	
O	0.914556	0.91267	0.105388	O	
O	0.905570	0.102053	0.320048	O	
O	0.426961	0.420271	0.994823	O	
O	0.399640	0.417798	0.205912	O	
O	0.397411	0.404877	0.415910	O	
O	0.166605	0.901026	0.055735	O	
O	0.155206	0.917205	0.264850	O	
O	0.651776	0.575618	0.154193	O	
O	0.657389	0.643572	0.354562	O	
O	0.912459	0.395732	0.102188	O	
O	0.909678	0.413748	0.31437	O	
O	0.429336	0.081886	0.996628	O	
O	0.402379	0.081175	0.211801	O	
O	0.336166	0.092580	0.448538	O	
O	0.164857	0.592937	0.053537	O	
O	0.150858	0.599089	0.263520	O	
O	0.649046	0.917548	0.159010	O	
O	0.660241	0.932165	0.405259	O	
O	0.124011	0.910491	0.153193	O	
O	0.128808	0.921816	0.364706	O	
O	0.625024	0.599693	0.042269	O	
O	0.616713	0.587665	0.253960	O	
O	0.852600	0.112314	0.994526	O	
O	0.868774	0.091329	0.205271	O	
O	0.929182	0.113219	0.421156	O	
O	0.372846	0.402912	0.090047	O	
---	---	---	---	---	
O38	1.0	0.369439	0.417061	0.305235	O
O39	1.0	0.144400	0.248091	0.258874	O
O40	1.0	0.137443	0.259692	0.362830	O
O41	1.0	0.140521	0.251663	0.153272	O
O42	1.0	0.902398	0.765765	0.320709	O
O43	1.0	0.396669	0.735357	0.995096	O
O44	1.0	0.137443	0.259692	0.362830	O
O45	1.0	0.646442	0.254074	0.053410	O
O46	1.0	0.651521	0.251663	0.258874	O
O47	1.0	0.899196	0.750876	0.103411	O
O48	1.0	0.336669	0.735357	0.995096	O
O49	1.0	0.902398	0.765765	0.320709	O
O50	1.0	0.925551	0.747324	0.420244	O
O51	1.0	0.396669	0.735357	0.995096	O
O52	1.0	0.378565	0.751382	0.307377	O
O53	1.0	0.129561	0.248455	0.049615	O
O54	1.0	0.117719	0.250326	0.262123	O
O55	1.0	0.648983	0.246209	0.160587	O
Al1	1.0	0.403861	0.921285	0.052225	Al
Al2	1.0	0.393965	0.930145	0.267270	Al
Al3	1.0	0.142309	0.419890	0.106183	Al
Al4	1.0	0.143593	0.422999	0.311547	Al
Al5	1.0	0.645422	0.424806	0.009250	Al
Al6	1.0	0.627990	0.425741	0.209596	Al
Al7	1.0	0.628495	0.398498	0.430223	Al
Al8	1.0	0.875979	0.916140	0.159125	Al
Al9	1.0	0.897715	0.929024	0.382263	Al
Al10	1.0	0.650718	0.075065	0.009500	Al
Al11	1.0	0.630716	0.068353	0.213099	Al
Al12	1.0	0.567775	0.045835	0.458439	Al
Al13	1.0	0.878867	0.583495	0.160017	Al
Al14	1.0	0.880217	0.590776	0.366740	Al
Al15	1.0	0.399561	0.582899	0.050109	Al
Al16	1.0	0.389785	0.583874	0.261335	Al
Al17	1.0	0.147760	0.075825	0.108720	Al
Al18	1.0	0.144175	0.084508	0.317994	Al
Al19	1.0	0.902547	0.227668	0.049149	Al
Al20	1.0	0.883356	0.249930	0.265298	Al
Al21	1.0	0.514640	0.254474	0.111582	Al
Al22	1.0	0.510793	0.259101	0.316501	Al
Al23	1.0	0.886213	0.248304	0.156924	Al
Al24	1.0	0.874555	0.261556	0.368724	Al
Al25	1.0	0.110109	0.754742	0.010838	Al
Al26	1.0	0.132613	0.761471	0.215760	Al
Al27	1.0	0.251242	0.563824	0.418507	Al
Al28	1.0	0.521506	0.745543	0.160587	Al
Al29	1.0	0.571231	0.737221	0.408888	Al
Al30	1.0	0.144454	0.747515	0.108852	Al
Al31	1.0	0.142493	0.759536	0.317597	Al
Al32	1.0	0.777551	0.751864	0.046971	Al
Al33	1.0	0.694025	0.749097	0.293842	Al
Al34	1.0	0.333444	0.251690	0.025708	Al
Al35	1.0	0.271245	0.249691	0.213155	Al
Al36	1.0	0.233931	0.263123	0.423719	Al
Coordinate for a calculated transition state of the CH$_4$ activation on a γ-Al$_2$O$_3$ (100) surface (TS1) in Figure S8.

Absolute Energy: –748.39713689 eV.

cell_length_a 8.070750
cell_length_b 8.404430
cell_length_c 26.383160
cell_angle_alpha 90.000000
cell_angle_beta 90.000000
cell_angle_gamma 90.000000
cell_volume 1789.571263

space_group_name_H-M_alt 'P 1'
space_group_IT_number 1

H1 1.0 0.026189 0.433421 0.450212 H
H2 1.0 0.398855 0.757379 0.963082 H
H3 1.0 0.894729 0.344723 0.967341 H
H4 1.0 0.598421 0.89456 0.534915 H
H5 1.0 0.257766 0.897019 0.417964 H
H6 1.0 0.274648 0.065829 0.486932 H
H7 1.0 0.954007 0.082717 0.447181 H
H8 1.0 0.812876 0.702044 0.439219 H
H9 1.0 0.633206 0.523465 0.544152 H
H10 1.0 0.623490 0.492217 0.611751 H
H11 1.0 0.441411 0.471270 0.573039 H
H12 1.0 0.603044 0.327710 0.568296 H
C1 1.0 0.576010 0.453975 0.574674 C
O1 1.0 0.482589 0.319493 0.456514 O
O2 1.0 0.471270 0.082717 0.544152 O
O3 1.0 0.471270 0.082717 0.544152 O
O4 1.0 0.471270 0.082717 0.544152 O
O5 1.0 0.471270 0.082717 0.544152 O
O6 1.0 0.471270 0.082717 0.544152 O
O7 1.0 0.471270 0.082717 0.544152 O
O8 1.0 0.471270 0.082717 0.544152 O
O9 1.0 0.471270 0.082717 0.544152 O
O10 1.0 0.471270 0.082717 0.544152 O
O11 1.0 0.471270 0.082717 0.544152 O
O12 1.0 0.471270 0.082717 0.544152 O
O13 1.0 0.471270 0.082717 0.544152 O
O14 1.0 0.471270 0.082717 0.544152 O
O15 1.0 0.471270 0.082717 0.544152 O
O16 1.0 0.471270 0.082717 0.544152 O
O17 1.0 0.471270 0.082717 0.544152 O
O18 1.0 0.471270 0.082717 0.544152 O
O19 1.0 0.471270 0.082717 0.544152 O
O20 1.0 0.471270 0.082717 0.544152 O
O21 1.0 0.471270 0.082717 0.544152 O
O22 1.0 0.471270 0.082717 0.544152 O
O23 1.0 0.471270 0.082717 0.544152 O
O24 1.0 0.471270 0.082717 0.544152 O
O25 1.0 0.471270 0.082717 0.544152 O
O26 1.0 0.471270 0.082717 0.544152 O
O27 1.0 0.471270 0.082717 0.544152 O
O28 1.0 0.471270 0.082717 0.544152 O
O29 1.0 0.471270 0.082717 0.544152 O
O30 1.0 0.471270 0.082717 0.544152 O
O31 1.0 0.471270 0.082717 0.544152 O
O32 1.0 0.471270 0.082717 0.544152 O
O33 1.0 0.471270 0.082717 0.544152 O
O34 1.0 0.471270 0.082717 0.544152 O
O35 1.0 0.471270 0.082717 0.544152 O
O36 1.0 0.471270 0.082717 0.544152 O
O37 1.0 0.471270 0.082717 0.544152 O
O38 1.0 0.471270 0.082717 0.544152 O
O39 1.0 0.471270 0.082717 0.544152 O
O40 1.0 0.471270 0.082717 0.544152 O

Supporting Information 38
O41	1.0	0.647871	0.257377	0.054727	O
O42	1.0	0.657716	0.249536	0.258774	O
O43	1.0	0.899771	0.750965	0.104078	O
O44	1.0	0.897721	0.761458	0.315313	O
O45	1.0	0.340002	0.753625	0.995223	O
O46	1.0	0.372257	0.747469	0.207205	O
O47	1.0	0.326936	0.804970	0.430118	O
O48	1.0	0.911185	0.757333	0.994372	O
O49	1.0	0.901561	0.748720	0.205271	O
O50	1.0	0.913932	0.733431	0.416469	O
O51	1.0	0.392965	0.756038	0.099307	O
O52	1.0	0.386940	0.747519	0.309279	O
O53	1.0	0.132347	0.250659	0.160507	O
O54	1.0	0.120649	0.242758	0.265068	O
O55	1.0	0.656409	0.844749	0.160507	O
O56	1.0	0.630428	0.265979	0.368422	O
O57	1.0	0.149447	0.453056	0.457008	O
O58	1.0	0.558335	0.954826	0.506033	O
Al1	1.0	0.404599	0.294666	0.052731	Al
Al2	1.0	0.396702	0.296194	0.265061	Al
Al3	1.0	0.147967	0.421061	0.108533	Al
Al4	1.0	0.154435	0.415781	0.317333	Al
Al5	1.0	0.647586	0.424493	0.009532	Al
Al6	1.0	0.634694	0.411106	0.208904	Al
Al7	1.0	0.605399	0.453066	0.420077	Al
Al8	1.0	0.877685	0.919518	0.157900	Al
Al9	1.0	0.873802	0.906942	0.375199	Al
Al10	1.0	0.653503	0.078451	0.009998	Al
Al11	1.0	0.633036	0.072738	0.211124	Al
Al12	1.0	0.555080	0.841396	0.451699	Al
Al13	1.0	0.877749	0.578853	0.156624	Al
Al14	1.0	0.882200	0.572409	0.365846	Al
Al15	1.0	0.400930	0.584638	0.490606	Al
Al16	1.0	0.395624	0.579225	0.259007	Al
Al17	1.0	0.151252	0.078551	0.110227	Al
Al18	1.0	0.154581	0.091275	0.327359	Al
Al19	1.0	0.905042	0.242535	0.050306	Al
Al20	1.0	0.889378	0.242958	0.270702	Al
Al21	1.0	0.515320	0.259253	0.113241	Al
Al22	1.0	0.511511	0.250713	0.315791	Al
Al23	1.0	0.895419	0.248722	0.158261	Al
Al24	1.0	0.846512	0.247320	0.376547	Al
Al25	1.0	0.112690	0.757479	0.010751	Al
Al26	1.0	0.139759	0.751755	0.213823	Al
Al27	1.0	0.222814	0.615121	0.419530	Al
Al28	1.0	0.524952	0.744980	0.158844	Al
Al29	1.0	0.514195	0.707386	0.364928	Al
Al30	1.0	0.146484	0.750076	0.108068	Al
Al31	1.0	0.135328	0.760623	0.315297	Al
Al32	1.0	0.778756	0.753624	0.046702	Al
Al33	1.0	0.758950	0.747739	0.264493	Al
Al34	1.0	0.334732	0.252989	0.026774	Al
Al35	1.0	0.275441	0.250879	0.216883	Al
Al36	1.0	0.284089	0.282759	0.434177	Al
Coordinate for a γ-Al$_2$O$_3$ (100) surface with CH$_3^*$ and H* in Figure S8.

Absolute Energy: -750.95318799 eV.

cell_length_a	8.070750
cell_length_b	8.404430
cell_length_c	26.383160
cell_angle_alpha	90.000000
cell_angle_beta	90.000000
cell_angle_gamma	90.000000
cell_volume	1789.571263
space_group_name_H-M_alt	'P 1'
space_group_IT_number	1

H1 | 1.0 | 0.018659 | 0.441341 | 0.456484 | H |
H2 | 1.0 | 0.396617 | 0.756631 | 0.965021 | H |
H3 | 1.0 | 0.913047 | 0.373586 | 0.970718 | H |
H4 | 1.0 | 0.610094 | 0.807523 | 0.487339 | H |
H5 | 1.0 | 0.259443 | 0.851052 | 0.403042 | H |
H6 | 1.0 | 0.172607 | 0.028528 | 0.477112 | H |
H7 | 1.0 | 0.699976 | 0.494704 | 0.509246 | H |
H8 | 1.0 | 0.826800 | 0.782912 | 0.444653 | H |
H9 | 1.0 | 0.609816 | 0.494704 | 0.509246 | H |
H10 | 1.0 | 0.668849 | 0.429763 | 0.598238 | H |
H11 | 1.0 | 0.441206 | 0.447640 | 0.583623 | H |
H12 | 1.0 | 0.557311 | 0.382484 | 0.580671 | C |
O1 | 1.0 | 0.439885 | 0.135680 | 0.443514 | O |
O2 | 1.0 | 0.608765 | 0.547465 | 0.476415 | O |
O3 | 1.0 | 0.119572 | 0.599833 | 0.155885 | O |
O4 | 1.0 | 0.121768 | 0.592975 | 0.363410 | O |
O5 | 1.0 | 0.627135 | 0.911220 | 0.041974 | O |
O6 | 1.0 | 0.627002 | 0.923190 | 0.258495 | O |
O7 | 1.0 | 0.874551 | 0.425052 | 0.002429 | O |
O8 | 1.0 | 0.870043 | 0.416423 | 0.206732 | O |
O9 | 1.0 | 0.858386 | 0.431637 | 0.415948 | O |
O10 | 1.0 | 0.379939 | 0.103152 | 0.095185 | O |
O11 | 1.0 | 0.376632 | 0.093406 | 0.312637 | O |
O12 | 1.0 | 0.917596 | 0.107170 | 0.108880 | O |
O13 | 1.0 | 0.908708 | 0.106270 | 0.320023 | O |
O14 | 1.0 | 0.406429 | 0.427847 | 0.999530 | O |
O15 | 1.0 | 0.409256 | 0.427771 | 0.210723 | O |
O16 | 1.0 | 0.393644 | 0.430909 | 0.411054 | O |
O17 | 1.0 | 0.167517 | 0.916115 | 0.058191 | O |
O18 | 1.0 | 0.160761 | 0.914427 | 0.265007 | O |
O19 | 1.0 | 0.651847 | 0.586313 | 0.157272 | O |
O20 | 1.0 | 0.644632 | 0.606122 | 0.370795 | O |
O21 | 1.0 | 0.917723 | 0.410806 | 0.108311 | O |
O22 | 1.0 | 0.912397 | 0.415169 | 0.317811 | O |
O23 | 1.0 | 0.422548 | 0.083041 | 0.997688 | O |
O24 | 1.0 | 0.403253 | 0.089844 | 0.212260 | O |
O25 | 1.0 | 0.118965 | 0.128333 | 0.468248 | O |
O26 | 1.0 | 0.165103 | 0.609099 | 0.058219 | O |
O27 | 1.0 | 0.159273 | 0.605512 | 0.265935 | O |
O28 | 1.0 | 0.650616 | 0.928006 | 0.157993 | O |
O29 | 1.0 | 0.644553 | 0.933446 | 0.372563 | O |
O30 | 1.0 | 0.120761 | 0.914754 | 0.155706 | O |
O31 | 1.0 | 0.121626 | 0.925044 | 0.363199 | O |
O32 | 1.0 | 0.625053 | 0.598836 | 0.039273 | O |
O33 | 1.0 | 0.626933 | 0.593122 | 0.257710 | O |
O34 | 1.0 | 0.866154 | 0.110763 | 0.999445 | O |
O35 | 1.0 | 0.869907 | 0.098680 | 0.207084 | O |
O36 | 1.0 | 0.856272 | 0.096967 | 0.419399 | O |
O37 | 1.0 | 0.378054 | 0.418458 | 0.098018 | O |
O38 | 1.0 | 0.372528 | 0.421724 | 0.308622 | O |
O39 | 1.0 | 0.146801 | 0.256840 | 0.157136 | O |
O40 | 1.0 | 0.138420 | 0.258409 | 0.369361 | O |
Atom	X	Y	Z	Element
O41	1.0	0.650324	0.261917	O
O42	1.0	0.652586	0.257939	O
O43	1.0	0.894606	0.756826	O
O44	1.0	0.894002	0.759586	O
O45	1.0	0.337574	0.757889	O
O46	1.0	0.374127	0.757712	O
O47	1.0	0.345146	0.770613	O
O48	1.0	0.913754	0.756619	O
O49	1.0	0.902060	0.757962	O
O50	1.0	0.906601	0.763497	O
O51	1.0	0.395535	0.757413	O
O52	1.0	0.387564	0.760003	O
O53	1.0	0.131864	0.255772	O
O54	1.0	0.122257	0.256447	O
O55	1.0	0.648912	0.256938	O
O56	1.0	0.645380	0.275047	O
O57	1.0	0.141894	0.446816	O
O58	1.0	0.680925	0.897137	O
Al1	1.0	0.406235	0.928963	Al
Al2	1.0	0.398017	0.934822	Al
Al3	1.0	0.150562	0.428572	Al
Al4	1.0	0.146215	0.423928	Al
Al5	1.0	0.643734	0.422636	Al
Al6	1.0	0.631146	0.432472	Al
Al7	1.0	0.618220	0.446998	Al
Al8	1.0	0.876516	0.928446	Al
Al9	1.0	0.881298	0.932924	Al
Al10	1.0	0.655377	0.088956	Al
Al11	1.0	0.631458	0.082842	Al
Al12	1.0	0.629114	0.042928	Al
Al13	1.0	0.877531	0.585657	Al
Al14	1.0	0.873272	0.595735	Al
Al15	1.0	0.403281	0.582318	Al
Al16	1.0	0.398286	0.584928	Al
Al17	1.0	0.151614	0.086111	Al
Al18	1.0	0.149257	0.092855	Al
Al19	1.0	0.901074	0.249687	Al
Al20	1.0	0.885393	0.257991	Al
Al21	1.0	0.520553	0.262018	Al
Al22	1.0	0.512509	0.268087	Al
Al23	1.0	0.892419	0.257243	Al
Al24	1.0	0.877104	0.263165	Al
Al25	1.0	0.112918	0.759456	Al
Al26	1.0	0.140009	0.759069	Al
Al27	1.0	0.245611	0.577827	Al
Al28	1.0	0.521713	0.756699	Al
Al29	1.0	0.514481	0.769730	Al
Al30	1.0	0.147397	0.756941	Al
Al31	1.0	0.138547	0.762609	Al
Al32	1.0	0.775033	0.754565	Al
Al33	1.0	0.761861	0.757790	Al
Al34	1.0	0.323506	0.259056	Al
Al35	1.0	0.273407	0.258909	Al
Al36	1.0	0.268238	0.268468	Al