Local adipocytes enable estrogen-dependent breast cancer growth
Role of leptin and aromatase

Enbo Liu, Fahumiya Samad, and Barbara M Mueller*
Torrey Pines Institute for Molecular Studies; San Diego, CA USA

Keywords: tumor microenvironment, adipocytes, leptin, aromatase, hormone-dependent breast cancer, mouse models

The importance of the microenvironment in breast cancer growth and progression is becoming increasingly clear. Adipocytes are abundant in the mammary microenvironment, and recent studies show that adipocytes produce endocrine, inflammatory, and angiogenic factors that have tremendous potential to affect adjacent breast cancer cells. Yet, the extent to which local adipocyte function contributes to the pathogenesis of breast cancer is largely unexplored. Here we describe a unique animal model to study interactions between adipocytes and breast cancer cells in the tumor microenvironment. Our results suggest that local interactions between adipocytes and tumor cells are sufficient to promote the growth of hormone-dependent breast cancer. We also demonstrate that leptin signaling in adipocytes induces aromatase expression, expected to result in higher estrogen in the microenvironment thus enabling mammary tumorigenesis.

Adipocytes are abundant in the mammary microenvironment, and produce multiple endocrine, inflammatory, and angiogenic factors, which can potentially increase adjacent breast cancer growth.1-3 While the importance of the local microenvironment in breast cancer growth and progression is clear4-6, the extent to which local adipocytes contribute to the pathogenesis of breast cancer is largely unexplored. We set out to establish an animal model to uncover mechanistic insights into interactions between local adipocytes and human breast cancer cells. Murine 3T3-F442A pre-adipocytes injected subcutaneously (sc) into immuno-deficient mice differentiate into mature adipocytes, form well-vascularized fat pads7,8 and express leptin and other adipose markers at levels similar to adipose tissue.9 We determined whether the in vivo F442A fat pad model could be used to study the effects of local adipocytes on hormone-dependent breast cancer using the estrogen receptor-positive, hormone-dependent human breast cancer cells. Murine 3T3-F442A pre-adipocytes injected subcutaneously (sc) into immuno-deficient mice differentiated into mature adipocytes, form well-vascularized fat pads7,8 and express leptin and other adipose markers at levels similar to adipose tissue.9 We determined whether the in vivo F442A fat pad model could be used to study the effects of local adipocytes on hormone-dependent breast cancer using the estrogen receptor-positive, hormone-dependent human breast cancer cell line MCF-7. It is well known that endogenous estrogen levels in immune-deficient mice are insufficient to support the growth of MCF-7 tumors and that mice need to be implanted with estrogen pellets to enable tumor growth.10 We tested whether F442A fat pads can support MCF-7 tumor growth in the absence of exogenous estrogen supplementation. Eight-week-old female SCID mice were injected subcutaneously (sc) with a mixture of F442A cells (2.5 × 10⁷ per mouse) and MCF-7 cells (5 × 10⁶ per mouse). Control mice were injected only with 5 × 10⁶ MCF-7 cells. While no tumors grew in mice injected with MCF-7 cells alone (Fig. 1A and B), the observed latent period is consistent with the 3 weeks required for F442A pre-adipocytes to differentiate into mature adipocytes in vivo.8 Seven weeks after injection, mice were killed and tumors were harvested to assess histology. Tumors consisted of large clusters of breast cancer cells in contact with mature, differentiated adipocytes (Fig. 1C). To determine if enhanced tumor growth required proximity of adipocytes to tumor cells, we compared co-injection of F442A and MCF-7 cells with injections of F442A cells into the right flank and MCF-7 cells into the left flank. Whereas co injection resulted in progressive tumor growth, contra lateral injection resulted in well-differentiated fat pads, but no tumor growth (Fig. 1D). Similarly, F442A adipocytes also supported the growth of hormone-dependent human T47D breast cancer cells (data not shown), suggesting that the adipocyte-mediated effect was not specific to MCF-7 cells alone. Together these results indicate that close proximity between adipocytes and breast cancer cells in the tumor microenvironment is required for tumor growth.

Adipocytes secrete many growth factors, hormones, and other bioactive molecules that can directly support tumorigenesis.1-3 Since proliferation, growth, and progression of hormone-responsive breast cancer are driven by estrogen, we reasoned that F442A adipocytes may enable growth of hormone-dependent breast cancer by providing local estrogen. In postmenopausal women estrogen is derived from the activity of aromatase, an enzyme of the cytochrome p450 superfamily. Aromatase converts androgens into estrogens and preferentially mediates conversion...
first line treatment in postmenopausal women with advanced cancer. However, the extent to which plasma estrogen levels are sufficient to support hormone-dependent breast cancer is unclear. In postmenopausal women, local estrogen levels in breast cancer tissue are 10-fold higher than in plasma, suggesting increased local estrogen production. Indeed, breast cancer tissues have considerable aromatase activity and express aromatase in different cell types including tumor, stromal, endothelial cells, and adipocytes. Interestingly, tissue-specific promoters and different transcription factors control aromatase expression in different cell types including tumor cells and adipocytes. In mouse models, overexpression of aromatase in mouse mammary epithelia leads to hyperplasia in the absence of circulating estrogen and modulates tumor development in HER2/neu transgenic mice. Overexpression of aromatase in the human breast cancer cell line MCF-7 enables breast cancer growth in nude mice, which can be blocked by aromatase inhibitor. While these observations argue for a role of local aromatase activity in breast cancer, the contribution and regulation of adipocyte-produced aromatase in the tumor microenvironment and the extent to which adipocyte aromatase contributes to cancer pathogenesis is not known. We determined aromatase expression in vitro in undifferentiated F442A pre-adipocytes and in F442A adipocytes differentiated using a cocktail of 1 μM dexamethasone and 1 μg/ml insulin. Western blot analysis showed that undifferentiated F442A pre-adipocytes express very low levels of aromatase whereas high levels of aromatase was observed in fully differentiated F442A adipocytes (Fig. 2A). Leptin, an approximately 16 kD, secreted polypeptide, is a member of the type I helical cytokine family and related to growth hormone, prolactin and interleukins. In addition to its roles in the regulation of appetite and metabolism, leptin also...
has important roles in developmental and physiological processes in promotion of linear growth, onset of puberty, neural development, bone development, lung development and immune and thyroid function. Leptin acts through the cell surface leptin receptor (LepR), which exists in several splice variants, only one of which, referred to as LepR-1 or LepRb, has a 300 amino acid cytoplasmic domain that mediates intracellular signaling. LepR is expressed in the brain and also in lung, kidney and adipose tissue. Expression of leptin and LepR has been described in breast cancer tissues but not in normal breast epithelium or benign tumors, and a number of studies have described contributions of leptin to cancer growth. Thus, in breast cancer cell lines, leptin functions as a mitogen and increases expression of genes associated with angiogenesis, cell proliferation, and breast cancer growth including aromatase. Blocking leptin signaling with a peptide antagonist inhibits breast cancer-associated angiogenesis, cell proliferation, and breast cancer growth including aromatase. While these studies clearly suggest that leptin signaling in the adipose tissues increases aromatase expression, but also suggest that leptin and aromatase may not play a role in breast cancer development, recurrence and death and obesity has also been found to hinder breast cancer treatment. To address the issue of aromatase expression in obesity we compared aromatase expression in the adipose tissue of lean and obese mice in a model of diet-induced obesity (DIO). Lean six-week-old female C57BL/6J mice were placed for 16 weeks on either a high fat diet (HFD; D12492; Research Diets) in which 60% of the total calories were derived from fat or a control low fat diet (LFD; D12450B) in which 10% of the total calories were derived from fat. The HFD induced obesity whereas LFD resulted in moderate age-appropriate weight gain. After 16 weeks para-uterine adipose tissues were removed, RNA was prepared and aromatase mRNA determined by real-time PCR. Aromatase mRNA was increased more than 45 fold in adipose tissues of HFD induced obese mice compared with LFD fed lean mice. To further test this hypothesis, we injected mice with recombinant mouse leptin (Peprotech) but not with leptin-triple mutant antagonist (leptin TA, Prospec) as shown in Figure 2A. Autocrine leptin signaling in F442A cells is supported by expression of the signaling long form of LepR (LepR-1) in differentiated F442A adipocytes but not in undifferentiated F442A pre-adipocytes (Fig. 2B). We also determined the effect of leptin on aromatase expression in F442A fat pads. To generate fat pads, F442A pre-adipocytes were expanded in vitro and injected sc into the flank of 6–8-week-old SCID mice (3 × 10⁷ cells per mouse). After 21 d when fully differentiated and vascularized fat pads are established, groups of mice were injected sc in the proximity of the F442A fat pad with 10 μg leptin or with vehicle. Total RNA was extracted from F442A fat pads 3 h later and analyzed by real-time PCR for aromatase expression as described. As shown in Figure 3A, leptin injection resulted in a 6-fold increase of aromatase in F442A fat pads.

Obese women have a higher risk for hormone-dependent breast cancer development, recurrence and death and obesity has also been found to hinder breast cancer treatment. To address the issue of aromatase expression in obesity we compared aromatase expression in the adipose tissue of lean and obese mice in a model of diet-induced obesity (DIO). Lean six-week-old female C57BL/6J mice were placed for 16 weeks on either a high fat diet (HFD; D12492; Research Diets) in which 60% of the total calories were derived from fat or a control low fat diet (LFD; D12450B) in which 10% of the total calories were derived from fat. The HFD induced obesity whereas LFD resulted in moderate age-appropriate weight gain. After 16 weeks para-uterine adipose tissues were removed, RNA was prepared and aromatase mRNA determined by real-time PCR. Aromatase mRNA was increased more than 45 fold in adipose tissues of HFD induced obese mice compared with LFD fed lean mice (Fig. 3B). HFD-induced obesity is a model that closely resembles human obesity including a marked increase in circulating leptin. Therefore the increase in aromatase expression in HFD mice could potentially be due to higher leptin levels. To address this question further we tested aromatase expression in leptin-deficient genetically obese ob/ob mice. Aromatase mRNA in the para-uterine adipose tissue of adult obese C57BL/6J ob/ob mice was significantly lower than in matched lean wild-type control mice (Fig. 3C), suggesting that leptin drives aromatase gene expression in adipose tissue. To further test this hypothesis, we injected mice with recombinant leptin and found that leptin increased aromatase expression in the adipose tissue of leptin-deficient ob/ob mice and also in the adipose tissue of lean mice (Fig. 4). Together our results not only demonstrate that leptin signaling in the adipose tissues increases aromatase expression, but also suggest that leptin and aromatase in the local tumor microenvironment play a crucial role in development and growth of hormone-dependent breast cancer. These

![Figure 3](image-url)

**Figure 3.** Aromatase gene expression in vivo. (A) Aromatase mRNA in F442A fat pads in vivo. Mice were injected sc in the proximity of the F442A fat pad with 10 μg leptin or with vehicle and sacrificed 3 h later. Gene expression was measured using real-time quantitative PCR, n = 4, mean ± SD; ***P < 0.001. Changes in aromatase mRNA levels in para-uterine fat pads from female C57BL/6J mice fed either a HFD or LFD for 16 weeks (B), and in 8- to 10-week-old female lean and genetically obese ob/ob mice (C). (B and C) n = 6, mean ± SD; **P < 0.01.
findings provide a foundation to understanding the regulation of aromatase in adipose tissues in general and in the tumor microenvironment specifically and can provide a rationale for targeting the adipocyte leptin-aromatase axis in the prevention and/or treatment of hormone-dependent breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments

The authors would like to thank Ms Katherine Scott for excellent technical assistance. This work was supported in part by a grant from the California Breast Cancer Research Program (CBCRP 161B-0032 to BMM) and a grant from the Congressional Directed Medical Research Program Breast Cancer Research Program (W81XWH-05-1-0497 to FS).

Figure 4. Induction of aromatase expression by leptin. Aromatase mRNA expression in para-uterine fat pads from ob/ob (A) and wild-type C57BL/6 mice (B) 3 h after ip injection with saline (control), or leptin (10 μg; R&D Systems). (A and B) n = 6, mean ± SD; *P < 0.05 **P < 0.01. Gene expression was measured using real-time quantitative PCR.
31. Ray A, Nkhata KJ, Cleary MP. Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int J Oncol 2007; 30:1499-509; PMID:17487172.

32. Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Stryer AK, et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem 2006; 281:26320-8; PMID:16825198; http://dx.doi.org/10.1074/jbc.M601991200

33. Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panino ML, et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem 2003; 278:28668-76; PMID:12734209; http://dx.doi.org/10.1074/jbc.M301695200

34. Rene Gonzalez R, Watters A, Xu Y, Singh UP, Mann DR, Rueda BR, et al. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res 2009; 11:R36; PMID:19531256; http://dx.doi.org/10.1186/bcr2321

35. Cleary MP, Phillips FC, Getzin SC, Jacobson TL, Jacobson MK, Christensen TA, et al. Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat 2003; 77:205-15; PMID:12602920; http://dx.doi.org/10.1023/A:1021891825399

36. Cleary MP, Juneja SC, Phillips FC, Hu X, Grande JP, Maible NJ. Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med (Maywood) 2004; 229:182-93; PMID:14734797.

37. Samad F, Pandey M, Loskutoff DJ. Regulation of tissue factor gene expression in obesity. Blood 2001; 98:3353-8; PMID:11719374; http://dx.doi.org/10.1182/blood.V98.12.3353

38. Rose DP, Vona-Davis L. Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 2010; 66:33-8; PMID:20181446; http://dx.doi.org/10.1016/j.maturitas.2010.01.019

39. Sparano JA, Wang M, Zhao F, Stearns V, Martino S, Ligibel JA, et al. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer 2012; 118:5937-46; PMID:22926690; http://dx.doi.org/10.1002/cncr.27527

40. Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol 2012; 30:2977-80; PMID:22802308; http://dx.doi.org/10.1200/JCO.2012.42.0273