Pleural involvement in cryptococcal infection

Vasiliki E Georgakopoulou, Christos Damaskos, Pagona Sklapani, Nikolaos Trakas, Aikaterini Gkoufa

Specialty type: Infectious diseases
Provenance and peer review: Invited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): C
Grade D (Fair): D
Grade E (Poor): 0
P-Reviewer: Gedik IE, Turkey; Lim SC, South Korea; Liu C, China; Wei S, China

Corresponding author: Vasiliki E Georgakopoulou, MD, MSc, Doctor, Department of Infectious Diseases, Laiko General Hospital, 17 Agiou Thoma Street, Athens 11527, Greece. vaso_georgakopoulou@hotmail.com

Abstract

Pleural involvement of cryptococcal infection is uncommon and is more commonly observed in immunocompromised hosts than in immunocompetent ones. Pleural involvement in cryptococcal infections can manifest with or without pleural effusion. The presence of Cryptococcus spp. in the effusion or pleura is required for the diagnosis of cryptococcal pleural infection, which is commonly determined by pleural biopsy, fluid culture, and/or detection of cryptococcal antigen in the pleura or pleural fluid.

Key Words: Cryptococcosis; Pleural effusion; Pleural diseases; Fungal lung diseases; Pleural Cavity; Cryptococcus neoformans

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The importance of pleural involvement in cryptococcal infections is often overlooked. When biopsy results are inconclusive, further testing for invasive granulomatous infections, such as pulmonary cryptococcosis, should be done. When indicated, a sensitive cryptococcal antigen assay and fungal culture should be used to evaluate pleural effusion specimens. Even if the cryptococcal antigen test is negative, clinicians should investigate pleural cryptococcosis in cases of pleural nodules without pleural effusion, especially in the context of immunosuppression.
TO THE EDITOR

We read with interest a case report by Wu et al.[1], who described a case of a 29-year-old male, immunocompetent host with cryptococcal pneumonia accompanied by pleural effusion. In that case, chest imaging showed scattered numerous cavities in the superior segment of the left lower lobe with a rough cavity wall and a cavity and pleural effusion in the anterior segment of the left lower lobe[1].

Cryptococcus is an invasive fungus that causes cryptococcosis, a disease that is common in immunocompromised people and rare in healthy individuals. Cryptococcus neoformans and Cryptococcus gatti are the two Cryptococcus species most frequently associated with human cryptococcal infections. The organism is found globally. The most common kind of exposure involves a history of contact with soil contaminated with bird droppings. The fungus capsule contains the polysaccharides glucuronoxylomanan and glucuronoxylomannogalactan, which are the major components that contribute to the fungus’s virulence[2]. Immune suppression is the most important underlying mechanism in the development of cryptococcal infection. Disorders like acquired immune deficiency syndrome (AIDS), diabetes mellitus, and chronic liver and renal disease, prolonged administration of steroids, use of immunosuppressive agents, such as monoclonal antibodies, and solid organ transplantation are commonly associated with the development of cryptococcal disease[3].

Cryptococcus species spread by inhalation, and despite the fact that the virus most commonly enters the body through the lungs, meningoencephalitis is the most prevalent clinical manifestation of the infection[4]. According to several studies, in pulmonary cryptococcosis, pulmonary nodules are the most prevalent computed tomography findings of pulmonary cryptococcosis in immunocompetent hosts, with multiple nodules being more common than solitary lesions. The majority of them are poorly defined and inhomogeneous, with air-bubble signs seen. Consolidation, ground glass opacities, and masses are also described. The halo, air bronchogram, and cavity signs can also be seen. In these individuals, the pulmonary lesions are mostly seen in the lower lung lobes and the lung periphery[5,6]. In immunocompromised patients, the most common imaging findings are multiple nodules, which are usually larger than those in normal hosts, pulmonary cavitations, and single or multiple consolidations. Adenopathy and pleural effusions, which are sometimes small and unilateral, are usually observed in cases of extensive lung infection[7].

Pleural involvement of cryptococcal infection is rarely observed and is more commonly seen in immunocompromised hosts than in immunocompetent ones[8]. Pleural effusion associated with cryptococcal infection in an immunocompetent host was described for the first time in 1941[9]. Since then, approximately 50 cases of pleural effusion related to cryptococcal infection due to Cryptococcus neoformans, in the context of both lung and disseminated disease, have been described[10]. A total of 32 cases out of 50 had only pulmonary cryptococcosis, and 18 out of 50 patients were related to disseminated disease. Eight patients experienced severe pulmonary cryptococcosis, requiring, in some cases, surgical management with decortication and lobectomy. The immunosuppressive risk factors identified in these 50 cases were solid organ transplantation, AIDS, hematological malignancies, administration of corticosteroids, diabetes mellitus, chronic obstructive pulmonary disease, bronchial asthma, liver cirrhosis, and end-stage renal disease. Interestingly, 14 patients were immunocompetent. The majority of pulmonary nodules were observed in the lower lobes and in a subpleural distribution. Of note, 26 patients had only pleural effusion on computed tomography imaging[11,12].

The diagnosis of cryptococcal pleural infection requires proof of the presence of Cryptococcus spp. in the effusion or pleura and is typically established by examination of pleural biopsy, fluid culture, and/or detection of cryptococcal antigen (CrAg) in the pleura or pleural fluid[13]. Detecting Cryptococcus neoformans by histopathological examination is the gold standard for confirming the diagnosis. The detection rates of Cryptococcus neoformans with Gomori-methenamine silver stain and periodic acid-Schiff stain are 100%. The morphology present in tissue with Cryptococcus neoformans infection using Gomori-methenamine silver and periodic acid-Schiff (PAS) staining reveals arrow-based budding yeasts (4-10 μm) with a thick capsule, while the morphology present in tissue with histoplasmosis reveals small yeasts (2-4 μm) with narrow-based budding grouped in clusters inside macrophages[14].

The classic approach for diagnosing Cryptococcus neoformans is Indian ink staining, in which the refractile mucinous capsule around the pathogen is delineated, resulting in a distinctive "starry night" appearance. The sensitivity and specificity of India ink stains, on the other hand, are very heterogeneous and usually operator-dependent[15]. Polymerase chain reaction (PCR) analysis of pleura tissue has also been used for the identification of Cryptococcus neoformans in cryptococcal pleuritis[16].

Pleural fluid cultures for Cryptococcus neoformans are frequently negative, most likely due to the small number of fungi present[11]. CrAg test is considered an effective non-invasive diagnostic tool, with its role in serum and cerebrospinal fluid being well accepted with high sensitivity and specificity[12]. Additionally, this test has a low incidence of false-positive reactions, making it valuable in diagnosing cryptococcosis when cultures of pleural fluid are negative[11]. Moreover, it has been reported that pleural effusion CrAg has higher sensitivity than serum CrAg test in patients with pleural effusion as the only clinical presentation of cryptococcal infection[17]. However, the diagnosis of cryptococcal pleural effusion in the case by Wu et al.[1] was made by positive serum CrAg, positive India ink staining of bronchoalveolar lavage fluid, and positive PAS staining for Cryptococcus of lung tissue obtained by percutaneous lung biopsy, while neither pleural aspiration nor pleural biopsy was reported[1].
In recent years, molecular identification and strain typing methods have been used to analyze *Cryptococcus*. The identification methods include DNA-DNA hybridization and nested, multiplex and real-time PCR. Regarding *Cryptococcus* typing, the following techniques have demonstrated the best ability to differentiate between fungal serotypes and molecular types: Serotyping, random amplified polymorphic DNA, multilocus enzyme electrophoresis, restriction fragment length polymorphism, electrophoretic karyotyping, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. These typing methods have contributed in revealing the phylogenetic pattern, the origin of numerous lineages and their scattering patterns, the distribution of genetic variation among geographic regions and ecosystems, and precise mutations during infections[18,19]. In addition, the cloning of *URA5* gene, *TRP1* gene, and recombinant DNA is helpful to study the taxonomic status, phylogenetic origin, and epidemiological investigation of *Cryptococcus neoformans*[20-22].

The patient in case by Wo et al[1] was initially treated with a daily dose of 400 mg of fluconazole, but he had not a satisfactory clinical outcome a week later and the therapy was modified to voriconazole 200 mg twice daily. Complete resolution of the lesions was observed after 8 wk of therapy. In non-immunocompromised patients with pulmonary cryptococcal infection, it is recommended the administration of fluconazole 400 mg daily and switching to itraconazole (200 mg twice per day orally), voriconazole (200 mg twice per day orally), or posaconazole (400 mg twice per day orally) in cases with no clinical improvement, no fluconazole availability, or contraindication[23].

Cryptococcal pleural effusions are usually located in the right hemithorax. They vary in size from minimal to massive and are almost always related to parenchymal lesions ranging from subpleural nodules to interstitial infiltrates or pulmonary lesions. The character of the fluid is usually bloody or serosanguineous[13]. Pleural fluid total cell counts range from 169/mm³ to 1200/mm³, with lymphocytes predominating in most cases, but neutrophils and eosinophils have also been reported[16]. The fluid is traditionally exudative; however, cases of transudative fluid have also been described, bringing awareness of this diagnosis in immunocompromised patients regardless of the transudative pleural effusion[24].

It is worth-mentioning that cryptococcal pleural effusion may have high levels of adenosine deaminase (ADA), making the discrimination between this fungal infection and tuberculosis difficult. Yoshino et al[25] described a case of cryptococcal pleuritis, diagnosed by the isolation of *Cryptococcus neoformans* in the culture of the pleural effusion, containing a high level of ADA in a patient with AIDS. Wee et al[10] also reported a case of a patient with acute myeloid leukemia and a cryptococcal pleural effusion with increased pleural fluid ADA level[4]. Previous research has shown that ADA levels in the pleural fluid > 40 IU/L demonstrate a high sensitivity (81%-100%) and a high specificity (83%-100%) for diagnosing tuberculosis pleuritis[26]. ADA is an enzyme present in most cells, notably lymphocytes, that catalyzes the conversion of adenosine to inosine. As a result, it is hypothesized that ADA levels would be higher in lymphocyte-rich pleural effusions, such as those seen in cryptococcal infections[25]. Some studies found that an increased level of ADA was rarely observed in nontuberculous lymphocytic pleural effusions and that a level of ADA greater than 40 IU/L ruled out tuberculosis; however, cases of cryptococcosis were not included in these studies[27]. ADA test has high negative predictive value and is an excellent test to rule out tuberculosis[28]. Some studies demonstrate that an ADA level > 45 to 60 units/L has a sensitivity of 100% and a specificity up to 97% for tuberculous pleural effusion[29,30].

In addition, pleural involvement in cryptococcal infections includes pleural infection without pleural effusion. Of interest, pleural cryptococcosis without pleural effusion has been described only in one case[24]. The authors described this extremely uncommon entity in a patient suffering from rectal carcinoma under chemotherapy and mentioned as a possible explanation for this finding that lung cryptococcosis, developed in the peripheral lung parenchyma during chemotherapy, had a rupture into the pleural cavity space[31].

Pleural involvement in cryptococcal infections is under-appreciated. When biopsy results are inconclusive, further testing for invasive granulomatous infections, such as pulmonary cryptococcosis, should be conducted. Where needed, pleural effusion should be evaluated using a sensitive CrAg assay as well as fungal culture. Furthermore, clinicians should consider pleural cryptococcosis in cases of pleural nodules without pleural effusion, especially in the context of immunosuppression, even if the CrAg test is negative.

FOOTNOTES

Author contributions: Damaskos C and Sklapani P designed research; Trakas N performed research; Georgakopoulou VE wrote the letter; Gkoufa A revised the letter.

Conflict-of-interest statement: The authors have no conflict of interest to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Greece

ORCID number: Vasiliki E Georgakopoulou 0000-0003-0772-811X; Christos Damaskos 0000-0002-5454-2564; Pagona Sklapani 0000-0001-7347-8433; Nikolaos Trakas 0000-0001-8157-1304; Aikaterini Gkoufa 0000-0001-5644-8208.

S-Editor: Liu JH

L-Editor: Filipodia

P-Editor: Liu JH

REFERENCES

1. Wu HH, Chen YX, Fang SY. Pleural effusion in an immunocompetent host with cryptococcal pneumonia: A case report. *World J Clin Cases* 2020; 8: 1295-1300 [PMID: 32337205 DOI: 10.12989/wjcc.v8i17.1295]

2. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. *AIDS* 2009; 23: 525-530 [PMID: 19182676 DOI: 10.1097/QAD.0b013e3282f2fac]

3. Lin YL, Shau S, Fang CT. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. *PLoS One* 2015; 10: e019090 [PMID: 25747471 DOI: 10.1371/journal.pone.019090]

4. Eisenman HC, Casadevall A, McClelland EE. New insights on the pathogenesis of invasive Cryptococcus neoformans infection. *Curr Infect Dis Rep* 2007; 9: 457-464 [PMID: 17999881 DOI: 10.1007/s11908-007-0070-8]

5. Lindell RM, Hartman TE, Nadrous HF, Ryu JH. Pulmonary cryptococcosis: CT findings in immunocompetent patients. *Radiology* 2005; 236: 326-331 [PMID: 15987984 DOI: 10.1148/radiol.2361040460]

6. Yang R, Yan Y, Wang Y, Liu X, Su X. Plain and contrast-enhanced chest computed tomography scan findings of pulmonary cryptococcosis in immunocompetent patients. *Exp Ther Med* 2017; 14: 4417-4424 [PMID: 29104652 DOI: 10.3892/etm.2017.9096]

7. Khoury MB, Godwin JD, Ravin CE, Gallis HA, Halvorsen RA, Putman CE. Thoracic cryptococcosis: immunologic competence and radiologic appearance. *A JR Am J Roentgenol* 1984; 142: 893-896 [PMID: 6609567 DOI: 10.2214/ajr.142.5.899]

8. Chang WC, Tzao C, Hsu HH, Lee SC, Huang KL, Tung HJ, Chen CY. Pulmonary cryptococcosis: comparison of clinical and radiographic characteristics in immunocompetent and immunocompromised patients. *Chest* 2006; 129: 333-340 [PMID: 16478849 DOI: 10.1378/chest.129.2.333]

9. Reeves DL, Butt EM, Hamack RW. Torula infection of the lungs and central nervous system: report of six cases with three autopsies. *Arch Intern Med (Chic)* 1941; 68: 57-79 [DOI: 10.1001/archinte.1941.00090700670094]

10. Wee ACR, Seet JE, Venkatachalam J, Tan SK. Cryptococcal pleural infection in a recurrent pleural effusion: a case report. *Respirol Case Rep* 2018; 6: e00294 [PMID: 29796274 DOI: 10.1002/rcr2.294]

11. Young EJ, Hirsh DD, Fainstein V, Williams TW. Pleural effusions due to Cryptococcus neoformans: a review of the literature and report of two cases with cryptococcal antigen determinations. *Am Rev Respir Dis* 1980; 121: 747-747 [PMID: 6992663 DOI: 10.1182/arrd.1980.121.4.743]

12. Zhang Y, Zhang SX, Trivedi J, Toll AD, Brahm J, Hales R, Bonerigo S, Zeng M, Li H, Yung RC. Pleural fluid secondary to pulmonary cryptococcal infection: a case report and review of the literature. *BM C Infect Dis* 2019; 19: 710 [PMID: 31405376 DOI: 10.1186/s12879-019-4343-2]

13. Wong CM, Lim KH, Lian CK. Massive pleural effusions in cryptococcal meningitis. *Postgrad Med J* 1999; 75: 297-298 [PMID: 10533638 DOI: 10.1136/pgmj.75.883.297]

14. Guarnier J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. *Clin Microbiol Rev* 2011; 24: 247-280 [PMID: 21482725 DOI: 10.1128/CMR.00053-10]

15. Chen M, Wang X, Yu X, Dai C, Chen D, Yu C, Xu X, Yao D, Yang L, Li Y, Wang L, Huang X. Pleural effusion as the initial clinical presentation in disseminated cryptococcosis and fungaemia: an unusual manifestation and a literature review. *Medicine (Baltimore)* 2015; 94: 595-599 [PMID: 25992080 DOI: 10.1080/08913945.2015.1155231]

16. Izumikawa K, Zhao Y, Motoshima K, Takazono T, Saito T, Kurihara S, Nakamura S, Miyazaki T, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Hayashi T, Kohno S. A case of pulmonary cryptococcosis followed by pleuritis in an apparently immunocompetent patient during fluconazole treatment. *Med Mycol* 2008; 46: 593-599 [PMID: 19180728 DOI: 10.1080/00266670801944949]

17. Wang J, Hong JJ, Zhang PP, Yang MF, Yang Q, Qu TT. Cryptococcal pleuritis with pleural effusion as the only clinical presentation in a patient with hepatic cirrhosis: A case report and literature review. *Medicine (Baltimore)* 2019; 98: e16354 [PMID: 31054277 DOI: 10.1097/MD.0000000000016354]

18. Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. *Front Cell Infect Microbiol* 2021; 11: 683670 [PMID: 34026667 DOI: 10.3389/fcimb.2021.683670]

19. Sidrim JJ, Costa AK, Cordeiro RA, Bhirante RS, Moura FE, Castelo-Branco DS, Neto MP, Rocha MF. Molecular methods for the diagnosis and characterization of Cryptococcus: a review. *Can J Microbiol* 2010; 56: 445-458 [PMID: 20657615 DOI: 10.1139/w10-030]

20. Edman JC, Kwon-Chung KJ. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a
selective marker for transformation. Mol Cell Biol 1990; 10: 4538-4544 [PMID: 2201894 DOI: 10.1128/mcb.10.9.4538-4544.1990]

21 Perfect JR, Rude TH, Penning LM, Johnson SA. Cloning the Cryptococcus neoformans TRP1 gene by complementation in Saccharomyces cerevisiae. Gene 1992; 122: 213-217 [PMID: 1452032 DOI: 10.1016/0378-1119(92)90053-r]

22 Restrepo BI, Barbour AG. Cloning of 18S and 25S rDNAs from the pathogenic fungus Cryptococcus neoformans. J Bacteriol 1989; 171: 5596-5600 [PMID: 2676981 DOI: 10.1128/jb.171.10.5596-5600.1989]

23 Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Papas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 2010; 50: 291-322 [PMID: 20047840 DOI: 10.1086/649858]

24 Murali S, Schweid K, Chebaya P, Rao S, Ruffa E. Transudative pleural effusion as an initial presentation of a disseminated cryptococcosis infection in a HIV-negative patient with cirrhosis. Med Mycol Case Rep 2021; 34: 18-21 [PMID: 34557378 DOI: 10.1016/j.mmcr.2021.08.007]

25 Yoshino Y, Kitazawa T, Tatsuno K, Ota Y, Koike K. Cryptococcal pleuritis containing a high level of adenosine deaminase in a patient with AIDS: a case report. Respiration 2010; 79: 153-156 [PMID: 19407434 DOI: 10.1159/000216831]

26 Gopi A, Madhavan SM, Sharma SK, Sahn SA. Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest 2007; 131: 880-889 [PMID: 17356108 DOI: 10.1378/chest.06-2063]

27 Lee YC, Rogers JT, Rodriguez RM, Miller KD, Light RW. Adenosine deaminase levels in nontuberculous lymphocytic pleural effusions. Chest 2001; 120: 356-361 [PMID: 11502629 DOI: 10.1378/chest.120.2.356]

28 Jiménez Castro D, Díaz Nuevo G, Pérez-Rodriguez E, Light RW. Diagnostic value of adenosine deaminase in nontuberculous lymphocytic pleural effusions. Eur Respir J 2003; 21: 220-224 [PMID: 12608433 DOI: 10.1183/09031936.03.00051603]

29 Valdés L, Alvarez D, San José E, Pesela P, Valle JM, García-Pazos JM, Suárez J, Pose A. Tuberculous pleurisy: a study of 254 patients. Arch Intern Med 1998; 158: 2017-2021 [PMID: 9778201 DOI: 10.1001/archinte.158.18.2017]

30 Riantawan P, Chaowalit P, Wongsangien M, Rojanaraweewong P. Diagnostic value of pleural fluid adenosine deaminase in tuberculosis pleuritis with reference to HIV coinfection and a Bayesian analysis. Chest 1999; 116: 97-103 [PMID: 10424510 DOI: 10.1378/chest.116.1.97]

31 Tanaka T, Takahashi A, Tao H, Hayashi T, Yoshiyama K, Furukawa M, Yoshida K, Murakami T, Okabe K. A case of multiple pleural cryptococcosis without pleural effusion. J Thorac Dis 2015; 7: E361-E364 [PMID: 26623138 DOI: 10.3978/j.issn.2072-1439.2015.09.15]
