Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem

Huizhen Chen1, Qi Zhao2,3, Qian Zhong1, Cheng Duan4, Jean Krutmann3, Jiucun Wang1,5, Jingjing Xia4

Received: 14 June 2022 / Revised: 6 August 2022 / Accepted: 11 August 2022 / Published online: 10 October 2022 © The Author(s) 2022

Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe–microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host–microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.

Keywords Skin microbiome · Metabolome · Phenome · Microbe–microbe interactions · Ecological niches

Introduction
The skin is considered a barrier organ against the entry of foreign physical, chemical, and biological insults, thereby maintaining the internal homeostasis of the human body. In the past decades, Human Microbiome Project (HMP) has expanded our perception of the skin as not only a piece of placid “soil” but a vast “ecosystem” that harbors a myriad of microbial inhabitants (Human Microbiome Project Consortium 2012). It has been believed that the colonization of diverse microbes resulted from millions of years of mutual adaptation and functional integration (Lousada et al. 2021), and thus the human body forms a complex, synergistic entity, termed a holobiont or meta-organism (Bosch and McFall-Ngai 2011; Rosenberg et al. 2007). The environmental and nutrient conditions define the unique microhabitats for skin microbes (Flowers and Grice 2020), and in turn, these microbes can influence their survival environment (host skin) by stabilizing, mutually beneficial host–microbe interactions (Postler and Ghosh 2017). In various disease conditions, the host–microbe interactions became imbalanced, termed “dysbiosis”, presenting various shifts in
microbiome from “healthy” to “diseased” states (Thomas and Jobin 2020).

Profiling the structure of skin microbial community is the first step to overview the ecosystem and to address host–microbe interactions. However, this system was proven to be highly individualized and extremely complex. Many factors were identified influencing the composition of the system, including race, gender, age, lifestyle (e.g., occupation, hygiene, skin product and medication usage, and diet) and environment (e.g., climate, geographical location, pollution, UV, and other radiation) (Wei et al. 2022; Grice and Segre 2011; Harris-Tryon and Grice 2022). Nevertheless, from the perspectives of classical ecology, most of these factors may only indirectly influence, but not drive the establishment and maintenance of the system. The primary selection pressures that form the driving forces for the ecosystem, include resource availability (presence of nutrients), environmental conditions (temperature, geographical access) and biological factors (predators and pathogens) (Williams 1996). In this review, we will sum-up related studies centered on these essential selection pressures, including the presence of different types of nutrients and favored micro-environment for dominant skin commensals, the occupation of the ecological niches through self-adaptation or microbe–microbe interactions, and eventually we will discuss how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes (Fig. 1).

Fig. 1 Skin microbiome, metabolome and skin phenome, from the perspective of skin as an ecosystem. From left to right: (Blue box) Diverse substances, derived from the host (stratum corneum, skin appendages, and plasma), environment (xenobiotics) and microbial metabolism, cover the skin surface, forming the micro-environment for skin microbiota; (Green box) occupation of ecological niches by self-adaptation and microbe–microbe interactions, promoting commensals or inhibiting pathogens; (Yellow box) the skin microbes, by their own structures or bioactive molecules, reshape the host skin phenotypes.
Micro-environment of the Human Skin Ecosystem

The host skin offers nutrients and shelters for microbial survival, competition, and cooperation (Roth and James 1988). Nutrient substances may directly affect microbial colonization, growth and metabolism either through nourishing (Brüggemann et al. 2004) or persecuting (Ferrer et al. 2017); on the other hand, these substances may also fine-tune the local microenvironment, such as pH or moisture state, and thus exert indirect impact on microbial survival. The microbial energy substances are mainly from the host skin and the outside environment. The host skin-derived nutrients consist of lipids embedded in the “brick and mortar” structure (Chen 2018), piles of dead enucleated corneocytes in the stratum corneum (SC) (Abhishek and Palamadai Krishnan 2016), and the secretions from skin appendages [hair follicles (HF) and glands]. The environment-derived nutrients include personal skincare products, medication, and other environmental xenobiotics. Here, we summarized the metabolites detected on the skin by various metabolome studies (Table 1).

It is known that individuals, even the same individual at different life stages, vary markedly in regards to the delicate structure or secretion function of the skin and appendages, which produce metabolites consistently and thus play an essential role in shaping diverse microenvironments with distinct pH, salt, moisture, sebum content, and extent of anaerobiosis (Grice and Segre 2011; Capone et al. 2011; Grice et al. 2009). Factors that influence systemic metabolomes, such as diet and gut microbiota, and hormone levels, can also significantly impact the skin’s local microhabitats (Prescott et al. 2017). Furthermore, one’s exposure, such as environmental pollution, UV levels, occupation environment, drug or skincare habits, is highly individualized (Khmaladze et al. 2020). These together form highly complex physical and chemical landscapes on the skin surface, likely to be the real biological explanation that underlies the substantial inter-individual variability in the skin microbiota. Indeed, our previous study showed two robust “cutotypes” of microbial networks on Chinese facial skin, C-cutotype and M-cutotype, possessed distinct patterns of skin properties (Li et al. 2021). The dominant two species, C. acnes and Moraxella osloensis, exhibited vastly varied nutrient-demand: whereas C. acnes was high nutrient demanding, M. osloensis was a non-fastidious bacterium that was able to grow in a mineral medium supplemented with a single organic carbon source (Juni 1974; Juni and Bøvre 2015). This species was shown to be incapable of utilizing any carbohydrates or possessing any saccharolytic activity, but strictly depend on other carbon sources such as acetic or lactic acid (Baumann et al. 1968; Juni 1974; Juni and Bøvre 2015; Moss et al. 1988).

Occupation of Ecological Niches by Self-adaptation and Microbe–Microbe Interactions

The skin surface formed diverse microhabitats, and many studies favored to divide them into four types (sebaceous, moist, dry, and foot) according to the physical properties of anatomical locations (Oh et al. 2014). Although such water/oil-based classification was not delicate enough, some prominent features for the growth and colonization of the microbiota were well identified. Other metabolites and physical properties were also identified in modulating microbial communities. Furthermore, microbe–microbe interactions are essential for shaping the skin ecosystem. In general, microbes deploy strategies to adapt to the living environment and compete for ecological niches via the following: (1) Self-adaptation to the specific environment conditions: skin microbiota changes their characteristic like metabolism pathways to adapt to the skin microenvironment. For example, Staphylococcus synthesized tensioactive agent to withstand the low pH and high salt content of sweat (Hentati et al. 2021, Scharschmidt and Fischbach 2013); (2) Competition for ecological niches through microbe–microbe interactions, for example, coagulase-negative Staphylococcus (CoNS) species can either directly kill or limit the virulence of Staphylococcus aureus through the secretion of different regulators (Flowers and Grice 2020). Here we will sum-up the findings of this part (Table 2).

Compared to the skin surface, HFs provide a more moisture and acidic environment with ultraviolet light protection, facilitating the colonization of multiple bacteria, fungi, and viruses. The most abundant bacteria in the HFs were P. acnes spp. (Lousada et al. 2021). M. restricta and M. globosa are the dominant fungi (Lousada et al. 2021). Meanwhile, the HF virome comprises dependoviruses, Propionibacterium phage P100D and 101A, papillomaviruses and adeno-associated viruses (Hall et al. 2018). In addition, the mite (Demodex folliculorum) groups are often found in the distal infundibulum, usually with their dorsal body oriented against the hair shaft (Elston and Elston 2014).

From Microbes to Host Skin: How Microbes Reshape the Skin Phenome

Skin microbiota leverage “nutrients” from the host skin and environment and produce a series of bioactive molecules with vital functions (Chen et al. 2018). For example, skin
Amino acid and its derivatives from SC and sweat glands

- histidine, threonine, glycine, -arginine, -methionine, -lysine, -isoleucine, -leucine, -valine, -phenylalanine, tryptophan, -alanine, -tyrosine, -serine, N-acetyl-/-serine, uric acid, uric acid, -prolinamide, pyroglutamatic acid, -proline, -carnitine, creatine, -asparagine, -glutamine, -tyrosine, -carnitine, -carnitine, and taurine (Harshman et al. 2018; Craig et al. 2010)

Peptides, proteins and their derivatives

Proteins from SC, viable epidermis and sweat gland
- Urea (Caspers et al. 2001); loricrin (Nithya et al. 2015); keratins (Jokura et al. 1995); filaggrin (Arezki et al. 2017); prolactin-inducible protein, clusterin, apolipoprotein D, PIP (Csősz et al. 2015; Myal et al. 1991); serum albumin, cytokeratin I, Zn-α2-glycoprotein, cystatin A; lipophilin B, CatD (Baechle et al. 2006); protease: several members of the major skin desquamatory family of KLKs (such as KLK1, KLK6-11, KLK13) and cathepsins B, D, Z, F, S, L2, β-chain, MMP8 (Baechle et al. 2006; Yu et al. 2017; Baker 2019)

Neuropeptides from sweat gland
- SP, CGRP (N'Diaye et al. 2017)

Antimicrobial peptides (AMPs) from sweat, sebocytes and keratinocytes (KCs)
- RNAses7, S100 proteins (S100A7, S100A8, S100A9, S100A12 and S100A15), hBD-1-3, cathelicidins (Buchau and Gallo 2007); active form of cathelicidin (NL-8, LR-10, KR-10, IK-14, LL-17, LL-23, KR-20, KS-27, KS-30, and LL-37) (Yamasaki et al. 2001; Murakami et al. 2002); DCD (Lousada et al. 2021; Reithmayer et al. 2009); DCD-1L and DCD-1L derived peptides (Schittek et al. 2001); cathelicidin hCAP-18 (Sørensen et al. 2001; Baechle et al. 2006); histone H4 (Lee et al. 2009); LF (Park et al. 2011); sIgA (Imayama et al. 1994); Lcn2 (Takahashi and Yamasaki 2021)

Table 1 Human skin metabolites: their primary source and functions

Substances	Functions
Metal and non-metal ions from SC and sweat	Formation of the high-salt environment (Chen et al. 2018) pH of sweat (Sato 1977; Sato and Sato 1990) Regulation of electrolyte homeostasis (Müller et al. 2019) Microbial growth factors (Constante et al. 2017) NMF: potassium, sodium, magnesium, and calcium (Jokura et al. 1995)
Amino acid and its derivatives from SC and sweat glands	NMF: -serine, Glicine, -alanine, histidine, ornithine, citrulline, arginine, and uric acid (Caspers et al. 2001; Burke et al. 1966) Skin barrier integrity and appearance (Solano 2020) Acid–base balance and water retention in SC: uric acid, serine, and taurine (Solano 2020; Kim et al. 2012, 2021b) Promote wound healing and restore impaired skin: serine, and arginine (Solano 2020; Badiu et al. 2010) UV protection: uric acid, phenylalanine, tyrosine, tryptophan, and taurine (Barresi et al. 2011; Wondrak et al. 2006; Kim et al. 2021b) Antioxidant: methionine, tryptophan (Solano 2020; Sardana and Garg 2010) Defense against pathogens: uric acid (Solano 2020) Inflammatory and allergic responses: taurine (Solano 2020; Kim et al. 2021b) Collagen synthesis: isoleucine, leucine, and valine (Yamane et al. 2018) Prevention of acne and cold sore: l-lysine (Solano 2020)
Peptides, proteins and their derivatives	NMF: filaggrin, urea (Caspers et al. 2001; Arezki et al. 2017) Protect skin from various stresses: keratins, filaggrin, urea, loricrin, apolipoprotein D, and serum albumin (Solano 2020; Nithya et al. 2015; Fluhr et al. 2008; Bajo-Grañeras et al. 2011; Tözsér and Berta 1998) Skin maintenance and protection via desquamation of horny layer, hydrolysis of debris in the ductal lumen, allergen inhibition: proteolytic enzymes (Yokozeki et al. 1991) Tissue regeneration: apolipoprotein D (Bajo-Grañeras et al. 2011) Transport, binding, antioxidant and catalytic activity role: serum albumin, protease (Yu et al. 2017; Gump et al. 2004) Immunological functions: Prolactin-inducible protein bind to IgG, IgG-Fc, CD4-T cell receptor (Autiero et al. 1991; Lee et al. 2002) and also to different species of bacteria such as streptococci (Nistor et al. 2009; Hassan et al. 2009) Chaperone, modulator of MMP9 activity: clusterin (Schenkels et al. 1997; Jeong et al. 2012)
Neuropeptides from sweat gland	Sense microbes and critical for skin homeostasis (N'Diaye et al. 2017) Modulator of skin microbiome virulence (N'Diaye et al. 2017) Anti-inflammation (Choi et al. 2018): low concentrations of SP

Springer
Table 1 (continued)

Substances	Functions
Cytokines/chemokines/antibodies from KCs and sweat	Prime and amplify epidermal innate immune signals with the dermal adaptive immune system (Takahashi and Yamasaki 2020; Li et al. 2018b; Xu et al. 2018) Defense against pathogens (Baker 2019; Li et al. 2018b)
IL-1α, 1β, 6, 8, 25, 31, 36, TNF-α, IFN-β and CXCL10, IgG, IgA (Takahashi and Yamasaki 2020; Dai et al. 2013; Baker 2019)	
IL-1α, 1β, 6, 8, 25, 31, 36, TNF-α, IFN-β and CXCL10, IgG, IgA (Takahashi and Yamasaki 2020; Dai et al. 2013; Baker 2019)	
Sugar from sweat, cosmetics and extracellular matrix	NMF: lactate (Caspers et al. 2001) The elevated glucose level promotes itching and delay the recovery of skin barrier (Ono et al. 2018) Anti-wrinkle, wound healing, antioxidant activity, anti-UV effect, and moisturizing effect: β-Glucans (Du et al. 2014) Epidermal barrier regulation: hyaluronic acid (Lew and Liong 2013)
Lactate (Caspers et al. 2001); glucose, fructose, mannose, and galactose (Roux et al. 2022); β-glucans (Du et al. 2014); hyaluronic acid (Lew and Liong 2013)	
Lipid and its metabolites	Extracellular stimuli response: lipid mediators (Murakami 2011) Antimicrobial, anti-inflammatory effect: lauric acid, oleic acid, and lactic acid (Drake et al. 2008; Fischer et al. 2012; Clayton et al. 2019; Lew and Liong 2013) NMF: lactic acid, pyrrolidone-5-carboxylic acid (McGrath 2008; Caspers et al. 2001)
Sweat-derived lipids	Barrier against the chemical, physical, and microorganism insults (Feingold 2009)
Over 150 lipid mediators, including prostanoids, alcohols, diols, epoxides, ketones, nitrolipsids, N-acylthanolamides, monoacylglycerols, and ceramides (Agrawal et al. 2018); lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1), and stearic acid (C18:0) (Nunome et al. 2010); lactic acid; pyrrolidone-5-carboxylic acid (Caspers et al. 2001); 5-aminopentanoic acid, and l-pipecolic acid (Harshman et al. 2018)	
Epidermal lipids	
Ceramides (Unique to epidermis) (Pappas 2009); FAs: saturated FFAs, monounsaturated FAs, polyunsaturated FAs (PUFAs), and hydroxyl FFAs (Ansari et al. 1970); cholesterol (Cui et al. 2016)	
Sebaceous lipids from sebum (sebaceous glands)	
TG and FAs (Greene et al. 1970); diglycerides, wax esters (Pappas 2009); squalene (Thiboutot 2004; Nicolaides 1974; Thody and Shuster 1989); cholesterol, cholesterol esters (Greene et al. 1970); sapienic acid (C16:1Δ6) (Pappas 2009; Nicolaides 1974); sebaleic acid (18:2Δ5, 8) (Picardo et al. 2009); oleic acid (18:1Δ9) (Lovászi et al. 2017)	
Plasma lipids	
Cholesterol, plant sterols, β-sitosterol, campesterol, and stigmasterol (Bhattacharyya et al. 1972); lathosterol and lanosterol (Bhattacharya et al. 1972); itaconic acid, crotonic acid and heptadecanoic acid, xanthine, α-ribose 5-phosphate, and uric acid (Chen et al. 2021)	
Lipids in cosmetic products/personal care products	
α-formylbenzoic acid, oleic acid, palmitic acid, and monoacylated glycerols monoolein and monopalmitin (Bouslimani et al. 2015); mineral oils and waxes (Petry et al. 2017)	
Vitamins mainly from sweat	
Niacin (Sargent et al. 1944); vitamin D (Cornbleet et al. 1936; Lugg and Ellis 1954; Dam 1978; van der Beek 1991); l-ascorbic acid (Vitamin C) (Harshman et al. 2018); vitamin E (Cornbleet et al. 1936; Lugg and Ellis 1954; Dam 1978; van der Beek 1991); niacinamide (Gehring 2004)	
Niacinamide (Gehring 2004) Anti-inflammatory, anti-aging effect: niacinamide, vitamin C, and vitamin E (Cornbleet et al. 1936; Lugg and Ellis 1954; Dam 1978; van der Beek 1991; Gehring 2004) UV protection: active vitamin D3, and vitamin C (Pullar et al. 2017; Bocheva et al. 2021)	
Maintenance of epidermal barrier and moisture: niacinamide (Gehring 2004) Anti-inflammatory, anti-aging effect: niacinamide, vitamin C, and vitamin E (Cornbleet et al. 1936; Lugg and Ellis 1954; Dam 1978; van der Beek 1991; Gehring 2004) UV protection: active vitamin D3, and vitamin C (Pullar et al. 2017; Bocheva et al. 2021)	
The microbiota can convert host proteins into amino acids by their protease (Holland et al. 1979; Byrd et al. 2018), ferment carbohydrates into lactic acids (Ong et al. 2020) or decompose sebum lipids such as triglycerides into free fatty acids (FFAs) (Traisaeng et al. 2019). In addition, skin microbiota produces AMPs, phenol-soluble modulins (PSMs), and antibiotics (Belkaid and Segre 2014; Gallo and Hooper 2012). These metabolism products may further act on the host or other microbes, exert biological effects and reshape the skin phenotype.

The most well-studied functions of skin commensals include the following: (1) pathogen colonization resistance by ecological niche blocking for the invasion of opportunistic or pathogenic microbiota, (2) immune education during early phases, and (3) regulation of immunity and inflammation. Given many comprehensive reviews already on these functions, we will take a particular focus on other functions that were usually missed, including the maintenance of skin physiology, such as pH and SC hydration, UV protection, odor production, and wound healing, which were also important functions in skin homeostasis.

Regulation of Immunity and Inflammation

The microbiota is a rich source of short-chain fatty acids (SCFAs) (Traisaeng et al. 2019). For example, *C. acnes* fermented carbohydrates into propionic acid (Traisaeng et al. 2019); *S. epidermidis* was able to ferment glycerol to butyric acid and acetic acid in vitro (Traisaeng et al. 2019; Keshari et al. 2019). SCFAs can regulate several immune cell functions, including the production of cytokines (TNF-α, IL-2, IL-6, and IL-10) (Traisaeng et al. 2019), activate resident skin regulatory T (Treg) cells, mitigate inflammatory skin reactions and thus contribute to the preservation of skin homeostasis in mice and human (Schwarz et al. 2017). Butyric acid significantly attenuated lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation and nitric oxide production in murine macrophage cell

Substances	Functions
Pheromones from sweat glands and sebaceous glands	Body odor (Baker 2019) Generate immediate, primarily behavioral responses: releaser pheromones (Preti et al. 2003) Generate slower physiological/endocrine/neuroendocrine responses: primer pheromones (Preti et al. 2003) Mood and multisensory inputs regulation: modulator pheromones (Jacob and McClintock 2000)
Other xenobiotics from the environment, i.e. pollutants or personal care products	Influence the function and structure of skin microbiome: PAHs (Leung et al. 2020) Promote premature skin aging, pigmentedy disorder, acne, and skin cancer: PAHs (Leung et al. 2020) Cause vitamin D deficiency: POPs (Bocheva et al. 2021) Antibiotics increased antibiotic resistance: drugs Modulation of dihydrotestosterone formation: isotretinoin (Tilles 2014) Cosmetics Provide nutrients and promote the growth of lipophilic bacteria such as *Staphylococcus* and *Propionibacterium*: moisturizers (Bouslimani et al. 2015; Unno et al. 2017; Holland et al. 2010) Preservatives exert antimicrobial effect in vitro (Pinto et al. 2021; Wang et al. 2019a; Murphy et al. 2021), such as inhibit the growth and biofilm formation of *S. aureus* or pathogenic *C. acnes* in vitro (Gannesen et al. 2019), but no influence on the skin microbiome in vivo (Murphy et al. 2021)

NMF natural moisturizing factor, *PIP* prolactin inducible protein, *CatD* cathepsin D, *KLKs* kallikrein-related peptidases, *MMP* matrix metalloproteinase, *SP* substance P, *CGRP* calcitonin gene-related peptide, *DCD* dermcidin, *hBD* human β-defensins, *LF* Lactoferrin, *slgA* Secretory form of immunoglobulin A, *S100A7* psoriasin, *S100A8* calgranulin A, *S100A9* calgranulin B, *S100A12* calgranulin C, *Lcn2* lipocalin-2, *IL* Interleukin, *TG* triglyceride, *TNF-α* interferon-β, *IFN-β* cathepsin D, *Matrix* natural moisturizing factor, *POPs* persistent organic pollutants, *PAHs* polycyclic aromatic hydrocarbons, *FFAs* free fatty acids, *PAHs* polycyclic aromatic hydrocarbons, *BPA* bisphenol-A
Table 2 Features of dominant skin commensals for the occupation of ecological niches

Favorable microenvironment	Biology basis for self-adaptation	Occupation of ecological niches by microbe–microbe interactions
Cutibacterium (gram-positive anaerobic bacilli)		
C. acnes, C. granulosum, and C. avidum		
HFIs with low oxygen content (Scharschmidt and Fischbach 2013)	*C. acnes* Utilize nutrients from SC, sebum, and sweat (Scharschmidt and Fischbach 2013) by secreting lipase (Brown and Shalita 1998; Brüggemann et al. 2004) and proteases (Holland et al. 1979)	*C. acnes* Secrete propionicin to defend against Gram-positive and Gram-negative anaerobes (Christensen and Brueggemann 2014) Secrete RoxP to facilitate the growth of aerobic bacteria (Allhorn et al. 2016) Produce FFAs to acidify the skin to inhibit colonization by other pathogenic microbes (*S. aureus* and *Streptococcus pyogenes*) (Youn et al. 2013) Produce coproporphyrin III to induce *S. aureus* aggregation and biofilm formation (Wollenberg et al. 2014) Produce CAMP factor to intensify the virulence of *S. aureus* (Lo et al. 2011) Produce a thiopeptide antibiotic, cutimycin, to limit *S. aureus* colonization (Claesen et al. 2020)
Sebum-rich areas, i.e. the face, scalp, chest, and back (Scharschmidt and Fischbach 2013; Brown and Shalita 1998)	Catabolize sebum to FFAs for better skin attachment (Brüggemann et al. 2004; Brown and Shalita 1998; Miskin et al. 1997; Gribbon et al. 1993) Secrete porphyrins to oxidize squalene and lower oxygen tension in HFIs (Tilles 2014; Holland et al. 1998)	
Moist areas: *C. avidum* (McGinley et al. 1978)		
Staphylococci (gram-positive cocci aerobes or facultative anaerobes)		
CoNS: *S. epidermidis*, *S. capitis*, *S. caprae*, *S. hominis*, *S. lugdunensis*, and *S. haemolyticus*	*Staphylococci* are able to utilize diverse nutrients from SC, sebum and sweat (Scharschmidt and Fischbach 2013) *Staphylococcus* can synthesize tensioactive agents to withstand the low pH and high salt content of sweat (Hentati et al. 2021; Scharschmidt and Fischbach 2013) *S. epidermidis* High-salt tolerance (Scharschmidt and Fischbach 2013) Possess various adhesins for colonization (Ginsburg 2002; Scharschmidt and Fischbach 2013; Flowers and Grice 2020) Produce enzymes for esterifying FAs that protect from abundant bactericidal lipids (Chamberlain and Brueggemann 1997)	*S. epidermidis*, *S. hominis* and *S. capitis* secrete lantibiotics, class II bacteriocins, PSMs or AMPs to inhibit MRSA, *Streptococcus pyogenes*, *S. aureus* and *C. acnes*, and synergize with the human AMP LL-37 to enhance skin defense (Nakatsuji et al. 2017; Bastos et al. 2009; Cogen et al. 2010; O’Neill et al. 2020; Janek et al. 2016) *S. epidermidis* secrete 6-HAP or SCFAs to inhibit GAS, MRSA and *S. aureus* growth (Nakatsuji et al. 2018; Wang et al. 2014; Keshari et al. 2019; Kao et al. 2017) *S. epidermidis* produce and release Esp to inhibit biofilm formation and disrupt the biofilm of *S. aureus* (Iwase et al. 2010) *S. lugdunensis* secrete lugdunin to inhibit *S. aureus* (Zipperer et al. 2016) *S. capitis* antagonize *S. aureus* through interference with the agr quorum sensing pathways, which are required for *S. aureus* virulence (Paharik et al. 2017; Williams et al. 2019)
S. epidermidis favors areas of high eccrine glands density, high moisture, temperature and pH (Scharschmidt and Fischbach 2013)		
Nasal: *S. lugdunensis* (Zipperer et al. 2016; Nakatsuji et al. 2017)		
S. aureus (coagulase-positive)	Moist skin sites (nasal, axillary, inguinal and rectal areas) (Kluytmans et al. 1997; Yang et al. 2010) Form biofilm (van Loosdrecht et al. 1990) Multi-drug resistance (Wang et al. 2019b)	Opportunistic pathogen Acquire ACME horizontally from *S. epidermidis* to optimize growth conditions for nutrients and survival (Diep et al. 2006; Scharschmidt and Fischbach 2013)
Table 2 (continued)

Favorable microenvironment	Biology basis for self-adaptation	Occupation of ecological niches by microbe–microbe interactions
Corynebacteria (gram-positive aerobes or facultative anaerobes belonging to the Phylum Actinobacteria)		
C. accolens, *C. jeikeium*, *C. urealyticum*, *C. amycolatum*, *C. minutissimum*, *C. striatum*, and *C. pseudodiphtheriticum*	Acquire nutrients from SC, sebum and sweat, depending on lipase (Scharschmidt and Fischbach 2013; Houpt 2005; Flowers and Grice 2020)	C. accolens produce FFAs to inhibit *S. pneumoniae* (Bomar et al. 2016)
Moist and sebaceous skin sites (Scharschmidt and Fischbach 2013)	Halotolerant (high-salt) (Scharschmidt and Fischbach 2013)	C. striatum modulate the Agr quorum-sensing system and expression of Agr-inducible virulence genes to limit *S. aureus* (Ramsey et al. 2016)
Occluded areas (Flowers and Grice 2020)	Generate mycolic acid layer to resist multiple stresses, such as detergents, antimicrobials, and lysozyme, allowing colonization across various conditions (Burkovski 2018; Tauch and Burkovski 2015)	C. pseudodiphtheriticum mediate bactericidal activity against *S. aureus* (Hardy et al. 2019)
Nasal cavity: *C. pseudodiphtheriticum*, *C. accolens* (Hardy et al. 2019)		
Fungi		
Malassezia: *M. dermatis*, *M. furfur*, *M. globosa*, *M. restricta*, and *M. sympodialis*	Malassezia enrich glycosyl hydrolases and genes involved in carbohydrate metabolism, concordant with adaptation to a carbohydrate-deficient and lipid-rich environment (Wu et al. 2015)	M. globosa secrete protease (MgSAPI) to degrade virulence protein of *S. aureus* and inhibit its biofilm formation (Li et al. 2018a; Ianiri et al. 2018)
Relatively stable at different sites (Bouslimani et al. 2019; Findley et al. 2013)	Malassezia acquired a catalase horizontally to protect Malassezia cells from their own secreted hydrogen peroxide generating proteins (Wu et al. 2015)	Malassezia produce VOCs to inhibit *S. aureus*, *Bacillus subtilis* and *Escherichia coli* (Al-Fatimi et al. 2016)
Malassezia favored lipid-rich areas, such as the face, scalp, back and outer ears (Kaneko et al. 2010)	Malassezia acquired flavohemoglobin horizontally from the bacterial genus *Corynebacterium*, increasing NO resistance (Ianiri et al. 2020; Wisecaver et al. 2016)	M. sympodialis, M. globosa, and M. slooffiae can form biofilms to be potential pathogens in community (Angiolella et al. 2020)
M. sympodialis (nares, antecubital crease, volar forearm, and hypothenar palm); *M. globosa* (back, occiput, and inguinal crease); *M. restricta* (external auditory canal, retroauricular crease, and glabella) (Findley et al. 2013); *M. obtuse* (groin, nasal vestibule) (Grice and Dawson 2017)		
Others		
Fungi: Aspergillus, Cryptococcus, Rhodotorula, Epicoccum, and others (Findley et al. 2013)		
Probiotics: *Enterococcus faecalis* SL-5, *Lactobacillus*, *Bifidobacteria*, and *Nitrosomonas europa* (Kang et al. 2009; Lew et al. 2013; Lee et al. 2018; Notay et al. 2020)		

Roxp Radical oxygenase of Propionibacterium acnes, *CAMP* Christie, Atkins, Munch Peterson, *PSMs* Phenol-soluble modulins, *6-HAP* 6-N-hydroxyaminopurine, *SCFAs* Short-chain fatty acids, *GAS* group A Streptococcus, *MRSA* Methicillin-resistant Staphylococcus aureus, *Esp* Serine protease, *ACME* Arginine catabolic mobile element, *Agr* Accessory gene regulator, *MgSAPI* Malassezia globosa Secreted Aspartyl Protease 1, *VOCs* volatile organic compounds
line (Chakravortty et al. 2000), reduced interferon-gamma (IFNγ)-induced proinflammatory IL-6 and TNF-α production in a macrophage cell line (Park et al. 2007) and mediated short-chain fatty acid receptor 2 (FFAR2) to modulate the production of proinflammatory cytokines induced by ultraviolet B (UVB) in mice (Keshari et al. 2019). Furthermore, the ability of immune cells to migrate to the foci of infection can be regulated by SCFAs (Vínolo et al. 2011). Given the potential anti-inflammatory of SCFAs, they are applied on psoriatic skin in vitro. This study found that decreased expression of G-protein-coupled receptors (GPR) GPR43 and GPR109a in psoriatic skin can be restored and expression of inflammatory factors can be inhibited by topical application of sodium butyrate (Krejner et al. 2018). However, SCFAs are not always anti-inflammatory. C. acnes-derived SCFAs inhibit histone deacetylase (HDAC) activity in skin keratinocytes (KC) and stimulate inflammation through Toll-like receptor (TLR) signaling (Sanford et al. 2016). SCFAs from C. acnes conferred a robust proinflammatory effect in human sebocytes (Sanford et al. 2019). Expression of a major component of the Corynebacterium accolens cell wall, mycolic acid, promotes inflammation in an IL-23-dependent manner under a high-fat diet condition in mice (Ridaura et al. 2018).

The essential amino acid tryptophan (Trp) can be metabolized by human skin microbiota into 5-hydroxytryptophan (5-HTP), indole-3-aldehyde (IAld) and other metabolites (Yu et al. 2019). IAld was able to suppress thymic stromal lymphopoietin (TSLP) and thereby inhibited calcipotriol (MC903)-induced AD-like dermatitis in mice (Yu et al. 2019). IAld can also activate aryl hydrocarbon receptor (AhR), producing indoleamine 2,3-dioxygenase (IDO) and IL-10 in Langerhans cells (LCs), and thus negatively regulate skin inflammation (Liu et al. 2020).

S. epidermidis and other Gram-positive bacteria release adhesion molecules upon bacteriolysis, such as lipoteichoic acid (LTA) (Ginsburg 2002). LTA from Staphylococcal species suppressed inflammation during tissue injury through a Toll-like receptor 2 (TLR2)-dependent mechanism to prevent excessive damage (Lai et al. 2009). Staphylococcal LTA may also have applications in the treatment of inflammatory disease. For example, in an acne model of C. acnes-induced skin inflammation, staphylococcal LTA application abrogated inflammatory effects via induction of a microRNA, miR-143, destabilizes the TLR2 mRNA and decreases protein production (Xia et al. 2016).

In addition, many commensal species contain virulence strains. One major virulence factor of the microorganism is a secretory lipase that acts on triglycerides to release FFAs (Holland et al. 2010). C. acnes exist both in release and patients, but C. acnes from acne patients harbored unique genomic elements encoding virulence factors, including camp5, gehA, sialidases, neuraminidases, endoglucoceraminidases, lipases, proteases and hemolysins that were rarely present in C. acnes genomes from healthy controls (Brüggemann 2005; Burkhart et al. 1999). Several commensals are opportunistic pathogens that encode virulence factors such as toxins, exoenzymes, and adhesins (Brown et al. 2012). Skin microbiota may directly or indirectly mediate inflammatory responses by releasing various virulence factors under unhealthy conditions. Malassezia spp. can be the causative agents in disease. Many Malassezia spp. secrete extracellular vesicles that signal KCs to secrete proinflammatory cytokines (Vallhoff et al. 2020; Watanabe et al. 2001; Zhang et al. 2019). Malassezia spp. metabolize sebum to different fatty acids such as phosphatidylcholine (PC) and phosphatidylserine (PS), which then act as irritants, causing flaking and irritation under dandruff, a frequent scalp issue and seborrheic dermatitis conditions (Celis Ramírez et al. 2020; DeAngelis et al. 2005; Han et al. 2019; Johansson et al. 2018).

Pathogen Colonization Resistance

Commensals compete for niches through microbe–microbe interactions, as mentioned above (Table 2). Direct induction of AMPs or cytokine expression in KCs is one of the main strategies used by skin commensals, such as Propionibacterium and S. epidermidis, in defending against pathogen invasion and shaping the skin microbiota community (Midorikawa et al. 2003; Wanke et al. 2011). In addition, commensals function as endogenous cofactors of the skin immune system to promote skin local immune response. Skin harbor considerable commensal-specific T-cell, e.g., Staphylococcus epidermidis-specific IL-17A+ CD8+ T cells (Naik et al. 2015). The activation of these cells can promote AMP production by keratinocytes, thereby promoting heterologous protection against pathogens infections (Braff et al. 2005). Staphylococcus epidermidis can also induce KC to express IL-1α, thus promoting skin αβ T cells to produce IL-17A and IFNγ in mice (Naik et al. 2012). IL-17A induces chemokines that recruit neutrophils and AMP production, thus protecting the host from pathogen infection. In adults, cutaneous mucosal-associated invariant T cells (MAIT cells) are a dominant population of IL-17A-producing lymphocytes (Constantinides et al. 2019). MAIT cells are absent in germ-free (GF) mice, and their development are controlled by microbial metabolites such as vitamin B2 (Treiner et al. 2003; Koay et al. 2016; Legoux et al. 2019). MAIT cells can respond to skin commensals or commensal-derived metabolites in an IL-1-, IL-18-, and antigen-dependent manner (Constantinides et al. 2019), thus enhancing inhibition of pathogen invasion.
Immunoglobulin Education

The commensals play an essential role in regulating the development, proliferation, maturation and activation of immune cells of innate immunity. A previous study found that GF mice contain mast cells (MCs) that are largely undifferentiated and express abnormally low amounts of stem cell factor (SCF). Commensal bacteria induce KC-produced SCF, promote skin MCs mature. The migration of MCs in the skin is fully dependent on high levels of SCF, as produced by KCs (Wang et al. 2017b). In addition, γδT cells, which play an essential role in recognizing lipids, one of the microbial metabolites (Belkaid and Tamoutounour 2016), significantly reduced IL-17 secretion capacity in GF mice (Naik et al. 2012). Varying from the immune responses to invasive pathogens, adaptive immune responses respond to commensals under noninflammatory conditions, which help build immune homeostasis (Naik et al. 2015).

The skin contains one of the highest frequencies of FOXP3+ Treg cells within the body in mice (Suffia et al. 2020), a series of SCFAs (Christensen and Brüggemann 2020). They also secrete lactic acid (Ong et al. 2008), aspartate, proteins and various FFAs (Pistone et al. 2021; and converts them into amino acids, such as glutamate and sebum components, and other wastes (Pistone et al. 2021; Timm et al. 2020). They also secrete lactic acid (Ong et al. 2020), a series of SCFAs (Christensen and Brüggemann 2014) and other organic acids (Garro et al. 2000; Wang et al. 2017a; Bengoa et al. 2019). These acidic metabolites can regulate skin surface pH and SC hydration level (Watabe et al. 2013; McGrath 2008; Caspers et al. 2001; Cui et al. 2016; Pappas 2009).

The skin surface pH is slightly acidic, ranging from 4.5 to 5.5 in human (Braun-Falco and Korting 1986). The pH of the SC is crucial for many vital epidermal functions, including permeability barrier homeostasis, desquamation of corneocytes, initiation of inflammation, processing of secreted lamellar body (LB) polar lipids and antimicrobial defense (Lee and Lee 2014). In addition, variation in pH also affects the SC thickness and pigmentation (Sandby-Møller et al. 2003). These results indicate that many skin traits may intertwine, such as pH, trans-epidermal water loss (TEWL), skin thickness, SC hydration and pigmentation, and thereby may be modulated by skin microbiota and their metabolites.

Our previous study also revealed that cutotypes of microbial networks on Chinese facial skin possess distinct skin traits: C-cutotype skin is more hydrated and more oily, and the levels of skin surface sebum and its microbial metabolite porphyrin are increased; In contrast, M-cutotype skin is dryer and often occurs in the elder (Li et al. 2021). A study on the skin microbiome of Koreans found that Lawsonella had a negative correlation with skin moisture and brown spots; Staphylococcus and Corynebacterium both had negative correlations with the number of UV spots and positive correlations with TEWL; Staphylococcus aureus had a negative correlation with skin moisture parameters (Kim et al. 2021a). Moreover, two studies found a linkage between the skin microbiome and skin metabolites (Howard et al. 2022; Roux et al. 2022). A recent study demonstrated that S. epidermidis can significantly increase skin ceramide levels and thereby prevent water loss of damaged skin dependent on its sphingomyelinase in mice (Zheng et al. 2022).

Skin aging is a dynamic process with a series of changes in the skin phenotype (Farage et al. 2008; Pochi et al. 1979; Cotterill et al. 1972; Howard et al. 2022) and skin metabolism, e.g., altered levels of natural moisturizing factors (NMFs), AMPs, vitamins and coenzyme Q10, and many other metabolites (Howard et al. 2022; MacLaughlin and Holick 1985; Kuehne et al. 2017). These changes may underlie the alterations in the microbiome. For example, age-related decrease in sebocyte area is positively correlated with Cutibacterium and negatively correlated with Streptococcus, Acinetobacter, Corynebacterium and Methylobacterium–Methylocrbrum abundance (Howard et al. 2022). Furthermore, anti-aging skincare products were reported able to persist on the skin for weeks and provide long-term contributions to the chemical environment (Bouslimani et al. 2019), thus shaping the specific skin microbial communities (Bouslimani et al. 2015). For example, lipid components of moisturizers could provide nutrients and promote the growth of lipophilic bacteria such as Staphylococcus and Propionibacterium (Bouslimani et al. 2015; Unno et al. 2017; Holland et al. 2010). More details regarding cosmetics can be found in Table 1.
UV Protection

Some skin commensals can protect skin from UV damage by secreting different metabolites (Souak et al. 2021). For example, *S. epidermidis* can produce 6-HAP to suppress UV-induced tumor in mice (Nakatsuji et al. 2018). Skin microflora produces cis-urocanic acid from l-histidine, affects UV-induced immune suppression and suppresses melanoma growth (Hug et al. 1999; Laihia et al. 2010). Some *Streptomyces*-derived compounds, such as amides exhibited UV-absorbing, antioxidant, and anti-inflammatory properties (Sánchez-Suárez et al. 2020). Propionic acid produced by *Cutibacterium acnes* fermentation ameliorates UVB-induced melanin synthesis (Kao et al. 2021). *Cyanobacteria* develop a diversity of defense mechanisms, including the biosynthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs), and enzymes, including superoxide dismutases (SOD), which counteract oxidative stress (Souak et al. 2021).

Ultraviolet radiation (UV-R) is well known to inhibit the cellular growth of *Malassezia furfur* (Wikler et al. 1990). On the other hand, *Malassezia furfur* can produce pityriacitrin, a UV-filtering compound believed to be protective (Machowinski et al. 2006). It is hypothesized that this fungus developed the UV-filter compound to reduce UV damage and compete for survival over other commensals (Machowinski et al. 2006). However, they did not find any adverse effect of pityriacitrin on commensals such as *S. aureus*, *S. epidermidis*, or *Candida albicans* (Machowinski et al. 2006).

Odor Production

The metabolic activities of some skin microbes produce special odors. For example, human body odor is believed to result from bacterial growth and decomposition of secretions from specialized glands in the axillary region (Lam et al. 2018; Decréau et al. 2003; Natsch et al. 2003). Microbes are present in specific scent glands or tissue in mammals and modulate specific odors (Ezenwa et al. 2012). Skin microbes metabolize host sweat and produce volatile metabolites, enhancing the attractiveness of human sweat for the malaria mosquito (Brouwer 1960; Takken and Kline 1989). A recent study specified acetophenone, a volatile from the skin microbiota, promoted mosquito attractiveness in flavivirus-infected hosts (Zhang et al. 2022).

Skin commensal *Moraxella osloensis* (Li et al. 2021), a species highly tolerant to desiccation and UV irradiation, existed in various living environments, particularly in the laundry. This species has the potential to generate 4-methyl-3-hexenoic acid (4M3H), which is often described as a “wet-and-dirty-dustcloth-like malodor” or an “acidic or sweaty odor” (Kubota et al. 2012). In addition to bacteria, fungi are important sources of many volatile organic compounds (VOCs), including alcohols, aldehydes, esters, FAs, and terpenes (Belinato et al. 2019). In malignant fungating wounds (MFWs), metabolites such as dimethyl trisulfide (DMTS), four fatty acid volatiles (acetic acid, isobutyric acid, butyric acid, and isovaleric acid) and putrescine are linked with components of malignant fungating wound odor (Vardhan et al. 2019).

Wound Healing

Wound healing is a complex but highly regulated process critical for skin barrier function (Han and Ceilley 2017). The presence and abundance of microbes in skin wounds depend on wound type (chronic/acute wound) (Johnson et al. 2018) and shifts over time (Loesche et al. 2017). Studies demonstrated that skin microbiota was also involved in wound healing in multifaceted ways. *S. epidermidis* promotes rapid KC progression via upregulation of TLR and downstream modulation of TNF-α in skin CD8+ T cells (Linehan et al. 2018; Naik et al. 2015). A study with a wound-induced hair follicle neogenesis (WHHN) mouse model revealed that skin microbiota promoted skin regeneration via IL-1β and KC-dependent IL-1R-MyD88 signaling (Wang et al. 2021). Metabolites from microbiota promote wound healing, e.g., lipoteichoic acid from *S. epidermidis* can decrease inflammation via TLR2 signaling (Lai et al. 2009). On the other hand, some potential pathogens do not promote cutaneous wound healing. For example, *S. aureus* (Kirker et al. 2009; den Reijer et al. 2016), *Acinetobacter baumannii* and *A. junii* (de Breij et al. 2012) form biofilms on the SC and have a detrimental effect on human dermal fibroblast migration and ultimately result in cellular apoptosis (Kirker et al. 2012). Microbial stability was believed to be essential for skin health; however, temporal stability in the chronic wound is associated with poor healing as instability in the microbiome reflects effective control of wound bacteria, which prevents any community structure from stabilizing (Loesche et al. 2017).

Conclusion

The present review centers on the current knowledge on skin microbiome from a perspective of skin as an ecosystem and tries to explore the fundamental driving force for the establishment and the balance of the highly personalized microbial feature. We believe that microenvironments that define the physical (e.g., pH, oxygen) and chemical (carbon sources and metabolites) conditions drive the microbiome composition. In turn, these microbes may reshape this environment via microbe–microbe or microbe–host interactions. Skin surface metabolome may be a critical
approach to address causative correlations between the skin microbiome and skin phenome; therefore, future skin microbiome research should leverage those multi-omics to reveal these strong correlations and then validate them with the principle of Koch’s postulates. Furthermore, considering the higher complexity of the system due to the host genome and exposome, the longitudinal time-series study should be taken more into consideration for the control of these variables and for addressing the direction of those networks. Based on solid causative correlations, we can develop accurate interventions targeting specific skin microbe(s) and eventually reshape the skin conditions.

Of note, recent studies revealed that microbiota at strain level varies in the local microenvironment (Conwill et al. 2022), suggesting studies on higher resolution should be emphasized, which means deeper sequencing until strain level and more refined sampling sites up to single pore level. However, the greatest challenge for these designs is biomass, including metabolites and metagenomic biomass. This strongly relies on the technology development and iterative update of detection instruments to improve the sensitivity.

The significance of the human skin microbiome is increasingly appreciated. The approach from metagenomic sequencing (profiling) was gradually shifted to isolation/culturomics and function validation (mechanisms). However, some significant issues still exist, such as the lack of ideal ex-vivo skin models (e.g., reconstructed human epidermis (RHEs) and skin explants) that can reliably simulate the complexity of the host–microbe interactions (Harris-Tryon and Grice 2022; Larson et al. 2021). Some recent studies performed the function experiments with three-dimensional (3D) human skin equivalents. For example, a study using 3D skin tissue cultures revealed that a model microbiome or a mixed community of skin microbiome representatives led to pronounced changes in epidermal thickness, epidermal cell proliferation, and filaggrin production (Loomis et al. 2021). Another study investigated the interaction between the skin microbiota and environmental pollutant benzo[a]pyrene (B[a]P), with a microbially competent 3D skin model and demonstrated that commensal metabolism of xenobiotics can influence host toxicity (Lemoine et al. 2021). However, the limitations of these ex-vivo skin models are apparent, i.e., the lack of the histological/physiological/immunological complexity of RHEs, the paucity of inter-donor variability of skin explants, as well as short lifespan and the relatively high costs (Larson et al. 2021). Nevertheless, this is a matter of time to address these issues and push forward the skin microbiota targeted new intervention based on solid experimental evidence.

Acknowledgements This work was supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-066), the 111 Project (B13016), and a startup grant from the Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University to JX.

Authors’ Contributions Original draft preparation: HC, JX and QZ; Review and editing: HC, JX, JW, QZ, CD; Scientific supervision: JX, JW, JK. All authors have read and agreed to this version of the manuscript.

Data Availability Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest The authors declare no conflict.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

References

Abhishek S, Palamadai Krishnan S (2016) Epidermal differentiation complex: a review on its epigenetic regulation and potential drug targets. Cell J 18:1–6. https://doi.org/10.22074/cellj.2016.3980
Agrawal K, Waller JD, Pedersen TL et al (2018) Effects of stimulation technique, anatomical region, and time on human sweat lipid mediator profiles. Prostaglandins Other Lipid Mediat 134:84–92. https://doi.org/10.1016/j.prostaglandins.2017.09.007
Al-Fatimi M, Wurster M, Lindequist U (2016) Chemical composition, antimicrobial and antioxidant activities of the volatile oil of Ganoderma pfeifferi Bres. Medicines. https://doi.org/10.3390/medicines3020010
Ali N, Zirak B, Rodriguez RS et al (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169:1119–29. e11. https://doi.org/10.1016/j.cell.2017.05.002
Allhorn M, Arve S, Brüggemann H et al (2016) A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes. Sci Rep 6:36412. https://doi.org/10.1038/srep36412
Angiolella L, Rojas F, Mussin J et al (2020) Biofilm formation, adherence, and hydrophobicity of M. symmodialis, M. globosa, and M. slooffiae from clinical isolates and normal skin virulence factors of M. symmodialis, M. globosa and M. slooffiae. Med Mycol 58:1162–1168. https://doi.org/10.1093/mmy/myaa017
Ansari MN, Nicolaides N, Fu HC (1970) Fatty acid composition of the living layer and stratum corneum lipids of human sole skin epidermis. Lipids 5:838–845. https://doi.org/10.1007/bf02531977

Arezki NR, Williams AC, Cobb AJ et al (2017) Design, synthesis and characterization of linear unnatural amino acids for skin moisturization. Int J Cosmet Sci 39:72–82. https://doi.org/10.1111/ics.12351

Autiero M, Abrescia P, Guardiola J (1991) Interaction of seminal plasma proteins with cell surface antigens: presence of a CD4-binding glycoprotein in human seminal plasma. Exp Cell Res 197:268–271. https://doi.org/10.1016/0014-4827(91)90432-t

Badiu DL, Luque R, Dumitrescu E et al (2010) Amino acids from Mytilus galloprovincialis (L.) and Rapania venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation. Protein J 29:81–92. https://doi.org/10.1007/s10930-009-9225-9

Baechele D, Flad T, Cansier A et al (2006) Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem 281:5406–5415. https://doi.org/10.1074/jbc.M504670200

Bajo-Grañeras R, Sanchez D, Gutierrez G et al (2011) Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cebellum. J Neurochem 117:949–960. https://doi.org/10.1111/j.1471-4159.2011.07266.x

Baker LB (2019) Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6:211–259. https://doi.org/10.1007/1023238904.2019.1632145

Barresi C, Streomnitzer C, Mlitz V et al (2011) Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J Investig Dermatol 131:188–194. https://doi.org/10.1038/jid.2010.231

Bastos MC, Cecotto H, Coelho ML et al (2009) Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr Pharm Biotechnol 10:38–61. https://doi.org/10.2174/13892010978048580

Baumann P, Doudoroff M, Stanier RY (1968) Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J Bacteriol 95:58–73. https://doi.org/10.1128/jb.95.1.58-73.1968

Belkaid Y, Tamoutounour S (2016) The influence of skin microbiota and metabolome on skin phenotype, from the perspective of skin as an ecosystem. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem

Bosch TC, Mcfall-Ngai MJ (2011) Metaorganisms as the new frontier. Zoology 114:185–190. https://doi.org/10.1016/j.zool.2011.04.001

Bouslimani A, Porto C, Rath CM et al (2015) Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci USA 112:E2120–E2129. https://doi.org/10.1073/pnas.1424409112

Bouslimani A, Da Silva R, Koscielak T et al (2019) The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol 17:47. https://doi.org/10.1186/s12915-019-0660-6

Boxberger M, Cenizo V, Cassir N et al (2021) Challenges in exploring and manipulating the human skin microbiome. Microbiome 9:125. https://doi.org/10.1186/s40168-021-01062-5

Braith MH, Zaiou M, Fierer J et al (2005) Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 73:6761–6781. https://doi.org/10.1128/iai.73.10.6771-6781.2005

Braun-Falco O, Korting HC (1986) Normal pH value of human skin. Hautarzt 37:126–129

Brouwer R (1960) The attraction of carbon dioxide excreted by the skin of the arm for malaria mosquitoes. Trop Geogr Med 12:62–66

Brown SK, Shalita AR (1998) Acne vulgaris. Lancet 351:1871–1876. https://doi.org/10.1016/s1470-2153(98)80464-0

Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336–342. https://doi.org/10.1016/j.tim.2012.04.005

Brüggemann H (2005) Insights in the pathogenic potential of Propionibacterium acnes from its complete genome. Semin Cutan Med Surg 24:67–72. https://doi.org/10.1016/j.sder.2005.03.001

Brüggemann H, Henne A, Hoser F et al (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673. https://doi.org/10.1126/science.1100330

Büchau AS, Gallo RL (2007) Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol 25:616–624. https://doi.org/10.1016/j.clindermatol.2007.08.016

Burke RC, Lee TH, Buettner-Janusch V (1966) Free amino acids and water soluble peptides in stratum corneum and skin surface film in human beings. Yale J Biol Med 38:355–373

Burkhardt CG, Burkhart CN, Lehnmann PF (1999) Acne: a review of immunologic and microbiologic factors. Postgrad Med 75:328–331. https://doi.org/10.1136/jid.10482-018-1036-6

Byrd AL, Belkaид Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155. https://doi.org/10.1038/nrmicro.2017.157

Capone KA, Dowd SE, Stamatas GN et al (2011) Diversity of the human skin microbiome early in life. J Investig Dermatol 131:2026–2032. https://doi.org/10.1038/jid.2011.168

Caspers PJ, Lucassen GW, Carter EA et al (2001) In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Investig Dermatol 116:434–442. https://doi.org/10.1046/j.1523-1747.2001.01258.x

Celis Ramirez AM, Amézquita A, Cardona Jaramillo JEC et al (2020) Analysis of malassezia lipidome disclosed differences among the species and reveals presence of unusual yeast lipids. Front Cell Infect Microbiol 10:338. https://doi.org/10.3389/fcimb.2020.00338

Chakravortty D, Koide N, Kato Y et al (2000) The inhibitory action of fungal strains isolated from human skin based on microbial immunologic and microbiologic factors. Postgrad Med J 75:328–348.

Chakravortty D, Koide N, Kato Y et al (2000) The inhibitory action of fungal strains isolated from human skin based on microbial immunologic and microbiologic factors. Postgrad Med J 75:328–348.
Chamberlain NR, Brueggermann SA (1997) Characterisation and expression of fatty acid modifying enzyme produced by *Staphylococcus epidermidis*. J Med Microbiol 46:693–697. https://doi.org/10.1099/00222615-46-8-693

Chen X (2018) Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev 127:85–105. https://doi.org/10.1016/j.addr.2017.12.014

Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbiota–host interactions. Nature 553:427–436. https://doi.org/10.1038/nature25177

Chen D, He J, Li J et al (2021) Microbiome and metabolome analyses reveal novel interplay between the skin microbiota and plasma metabolites in psoriasis. Front Microbiol 12:643449. https://doi.org/10.3389/fmicb.2021.643449

Choi H, Kim DJ, Nam S et al (2018) Substance P restores normal skin architecture and reduces epidermal infiltration of sensory nerve fiber in TNBC-induced atopic dermatitis-like lesions in NC/Nga mice. J Dermatol Sci 89:248–257. https://doi.org/10.1016/j.jdermsci.2017.11.013

Christensen GJM, Brüggemann H (2014) Bacterial skin commensals and their role as host guardians. Benef Microbes 5:201–215. https://doi.org/10.3920/bm2012.0062

Claesen J, Spagnolo JB, Ramos SF et al (2020) A Cutibacterium species endemic on psoriatic skin induces expression of fatty acid modifying enzyme produced by *Staphylococcus epidermidis*, a normal resident of the skin. J Investig Dermatol 130:192–200. https://doi.org/10.1016/j.jid.2009.243

Cohn JR, Emmett EA (1978) The excretion of trace metals in human sweat. Ann Clin Lab Sci 8:270–275

Consolazio CF, Matoush LO, Nelson RA et al (1962) The dermal excretion of minerals and its possible relation to mineral balance and requirements (Sodium, potassium, iron, magnesium and phosphorus). Rep US Army Med Res Nutr Lab Denver

Consolazio CF, Matoush LO, Nelson RA et al (1966) Comparisons of nitrogen, calcium and iodine excretion in arm and total body sweat. Am J Clin Nutr 18:443–448. https://doi.org/10.1093/ajcn/18.6.443

Constante M, Fragoso G, Lupien-Meilleur J et al (2017) Iron supplement modulates colon microbiota composition and potentiate the protective effects of probiotics in dextran sodium sulfate-induced colitis. Inflamm Bowel Dis 23:753–766. https://doi.org/10.1097/MIB.0000000000001089

Constantinides MG, Link VM, Tamoutounour S et al (2019) MAIT cell receptor repertoire expansion and remodeling of MAIT cell function. Biochem Pharmacol 134:114–126. https://doi.org/10.1016/j.bcp.2016.09.007

Corbière T, Klein R, Pace E (1936) Vitamin C content of sweat. Arch Derm Syphilol 34:253–254

Cotterill JA, Cunliffe WJ, Williamson B et al (1972) Age and sex variation in skin surface lipid composition and sebum excretion rate. Br J Dermatol 87:333–340. https://doi.org/10.1111/j.1365-2133.1972.tb07419.x

Craig SS, Craig SA, Ganio MS et al (2010) The betaine content of sweat from adolescent females. J Int Soc Sports Nutr 7:3. https://doi.org/10.1186/1550-2783-7-3

Csósz É, Emri G, Kalló G et al (2015) Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J Eur Acad Dermatol Venereol 29:2024–2031. https://doi.org/10.1111/jdv.13221

Cui L, Jia Y, Cheng ZW et al (2016) Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J Cosmet Dermatol 15:549–558. https://doi.org/10.1016/j.jocd.2016.01.008

Dai X, Okazaki H, Hanakawa Y et al (2013) Eccrine sweat contains IL-1alpha, IL-1beta and IL-31 and activates epidermal keratinocytes as a danger signal. PLoS ONE 8:e67666. https://doi.org/10.3389/fmicb.2021.006766

Dam B (1978) Vitamins and sport. Br J Sports Med 12:74–79

De Breij A, Haisma EM, Rietveld M et al (2012) Three-dimensional human skin equivalent as a tool to study *Acinetobacter baumannii* colonization. Antimicrob Agents Chemother 56:2459–2464. https://doi.org/10.1128/aac.05975-11

Deangelis YM, Gemmer CM, Kaczvinsky JR et al (2005) Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc 10:295–297. https://doi.org/10.1016/j.jid.2005.10.019.x

Decréau RA, Marson CM, Smith KE et al (2003) Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J Steroid Biochem Mol Biol 87:327–336. https://doi.org/10.1016/j.jsbmb.2003.09.005

Den Reijer PM, Haisma EM, Lembens-Deen Toom NA et al (2016) Detection of alpha-toxin and other virulence factors in biofilms of *Staphylococcus aureus* on polyurethane and a human epidermal model. PLoS ONE 11:e0145722. https://doi.org/10.1371/journal.pone.0145722

Diep BA, Gill SR, Chang RF et al (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant *Staphylococcus aureus*. Lancet 367:731–739. https://doi.org/10.1016/s1470-2648(06)68323-1

Drake DR, Brogden KA, Dawson DV et al (2008) Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11. https://doi.org/10.1194/jlr.R700016-JLR200

Du B, Bian Z, Xu B (2014) Skin health promotion effects of natural derris root extract on polystyrene and a human epidermal model. PLoS ONE 11:e0145722. https://doi.org/10.1371/journal.pone.0145722

Drake DR, Brogden KA, Dawson DV et al (2008) Functional and physiological characterististics of the aging skin. Aging Clin Exp Res 20:195–200. https://doi.org/10.1007/bf03324769

Feingold KR (2009) The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res 50(Suppl):S417–S422. https://doi.org/10.1194/jlr.R800039-JLR200

Ferrer M, Méndez-Garcia C, Rojo D et al (2017) Antibiotic use and microbiome function. Biochem Pharmacol 134:114–126. https://doi.org/10.1016/j.bcp.2016.09.007

Findlay K, Oh J, Yang J et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370. https://doi.org/10.1038/nature12171

Fischer CL, Drake DR, Dawson DV et al (2012) Antibacterial activity of sphingoid bases and fatty acids against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 56:1157–1161. https://doi.org/10.1128/aac.05151-11

H. Chen et al.
Flowers L, Grice EA (2020) The skin microbiota: balancing risk and reward. Cell Host Microbe 28:190–200. https://doi.org/10.1016/j.chom.2020.06.017
Flurh JW, Darlenski R, Surber C (2008) Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol 159:23–34. https://doi.org/10.1111/j.1365-2133.2008.08643.x
Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516. https://doi.org/10.1038/nri3228
Gannesen AV, Borrel V, Lefevre L et al (2019) Effect of two cosmetic compounds on the growth, biofilm formation activity, and surface properties of acnemic strains of Cutibacterium acnes and Staphylococcus aureus. Microbiologiyopen 8:e00659. https://doi.org/10.1002/mbo3.659
Gariboldi S, Palazzo M, Zanobbio L et al (2008) Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol 181:2103–2110. https://doi.org/10.4049/jimmunol.181.3.2103
Garrote GL, Abraham AG, De Antoni GL (2000) Inhibitory power of kefir: the role of organic acids. J Food Prot 63:364–369. https://doi.org/10.4315/0362-028x-63.3.364
Gehring W (2004) Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol 3:88–93. https://doi.org/10.1111/j.1473-2133.2004.00115.x
Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2:171–179. https://doi.org/10.1016/S1473-3099(02)00226-8
Gläser R, Harder J, Lange H et al (2005) Antimicrobial psoriasin in the amount and composition of human skin surface lipid. J Invest Dermatol 129:1745–1751. https://doi.org/10.1099/00221287-129-8-1745
Grice EA, Dawson TLJ (2017) Host–microbe interactions: Malassezia and human skin. Curr Opin Microbiol 40:81–87. https://doi.org/10.1016/j.mib.2017.10.024
Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:245–253. https://doi.org/10.1038/nrmicro2537
Glieder M, Harder J, Kimmel M et al (2003) Microbiology of conjunctival flora of rabbits. J Clin Microbiol 41:1085–1091. https://doi.org/10.1128/JCM.41.4.1085-1091.2003
Gribben EM, Swanson RA, Alano C et al (2004) Human serum albumin (HSA) produced in a lipid-free environment. Chin Med J 132:873–876. https://doi.org/10.1097/01.mcm.000010790.05859.da
Hall JB, Cong Z, Imamura-Kawasawa Y et al (2018) Colonization of the skin by Malassezia globosa promotes hyperplasia of the hair follicle without increased proliferation of keratinocytes. J Invest Dermatol 138:1026–1029. https://doi.org/10.1016/j.jid.2018.01.008
Harris-Tryon TA, Grice EA (2022) Microbiota and maintenance of skin barrier function. Science 376:940–945. https://doi.org/10.1126/science.abo0693
Harshman SW, Pitsch RL, Smith ZK et al (2018) The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE 13:e0203133. https://doi.org/10.1371/journal.pone.0203133
Hassan MI, Waheed A, Yadav S et al (2009) Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell Mol Life Sci 66:447–459. https://doi.org/10.1007/s00018-008-8463-x
Hentati D, Chethi M, Hadrich F et al (2021) Investigation of halotolerant marine Staphylococcus sp. CO100, as a promising hydrocarbon-degrading and biosurfactant-producing bacterium, under saline conditions. J Environ Manag 277:111480. https://doi.org/10.1016/j.jenvman.2020.111480
Hoiby N, Pers C, Johansen HK et al (2000) Excretion of beta-lactam antibiotics in sweat—a neglected mechanism for development of antibiotic resistance? Antimicrob Agents Chemother 44:2855–2857. https://doi.org/10.1128/aac.44.10.2855-2857.2000
Holland KT, Greenman J, Cunliffe WJ (1979) Growth of cutaneous propionibacteria on synthetic medium; growth yields and exoenzyme production. J Appl Bacteriol 47:383–394. https://doi.org/10.1111/j.1365-2672.1979.tb0198x
Holland KT, Aldana O, Bojar RA et al (1998) Propionibacterium acnes and acne. Dermatology 196:67–68. https://doi.org/10.1159/000017870
Holland C, Mak TN, Zimny-Arndt U et al (2010) Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiol 10:230. https://doi.org/10.1186/1471-2180-10-230
Houpert ER (2005) Microbial inhabitants of humans: their ecology and role in health and disease by Michael Wilson Cambridge, U.K.: Cambridge University Press, 2005. 476 pp., illustrated. $65.00 (cloth). Clin Infect Dis 41:768–868. https://doi.org/10.1086/432586
Howard B, Bascom CC, Hu P et al (2022) Aging-associated changes in the adult human skin microbiome and the host factors that affect skin microbiome composition. J Invest Dermatol 142:1934–46.e21. https://doi.org/10.1016/j.jid.2021.11.029
Hug DH, Dunkerson DD, Hunter JK (1999) The degradation of 1-histidine and trans- and cis-urocanic acid by bacteria from skin and the role of bacterial cis-urocanic acid isomerase. J Photochem Photobiol B 50:66–73. https://doi.org/10.1016/s1011-1344(99)00072-x
Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234
Ianiri G, Heitman J, Scheynius A (2018) The skin commensal yeast Malassezia globosa thrwarts bacterial biofilms to benefit the host. J Invest Dermatol 142:1026–1029. https://doi.org/10.1016/j.jid.2018.01.008
Ianiri G, Coelho MA, Ruchti F et al (2020) HGT in the human and skin commensal Malassezia: a bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proc Natl Acad Sci USA 117:15884–15894. https://doi.org/10.1073/pnas.2003473117
Imayama S, Shimozono Y, Hoashi M et al (1994) Reduced secretion of IgA to skin surface of patients with atopic dermatitis. J Allergy Clin Immunol 94:195–200. https://doi.org/10.1016/0022-1247(94)90040-x
Inoue S, Shimozono Y, Hoashi M et al (1994) Reduced secretion of IgA to skin surface of patients with atopic dermatitis. J Allergy Clin Immunol 94:195–200. https://doi.org/10.1016/0022-1247(94)90040-x
Iwase T, Uebara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349. https://doi.org/10.1038/nature09074

Springer
Legoux F, Bellet D, Daviaud C et al (2019) Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366:494–499. https://doi.org/10.1126/science.aaw2719

Lemoine L, Bayrambey D, Roloff A et al (2021) Commensal-related changes in the epidermal barrier function lead to alterations in the benzo[a]pyrene metabolite profile and its distribution in 3D skin. Mbio 12:e012231. https://doi.org/10.1128/mBio.01223-21

Leung MHY, Tong X, Bastien P et al (2020) Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome 8:100. https://doi.org/10.1186/s40168-020-00874-1

Lew LC, Liong MT (2013) Bioactive from probiotics for dermal health: functions and benefits. J Appl Microbiol 114:1241–1253. https://doi.org/10.1111/jam.12137

Lew L-C, Gan C-Y, Liong M-T (2013) Dermal bioactive from lactobacilli and bifidobacteria. Ann Microbiol 63:1047–1055. https://doi.org/10.1007/s13213-012-0561-1

Li H, Goh BN, Teh WK et al (2018a) Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J Invest Dermatol 138:1137–1145. https://doi.org/10.1016/j.jid.2017.11.034

Li H, Yao Q, Mariscal AG et al (2018b) Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun 9:1420. https://doi.org/10.1038/s41467-018-03704-z

Li Z, Xia J, Jiang L et al (2021) Characterization of the human skin resistome and identification of two microbiota cotypes. Microbiome 9:47. https://doi.org/10.1186/s40168-020-00995-7

Linehan JL, Harrison OJ, Han SJ et al (2020) Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172:784–796.e18. https://doi.org/10.1016/j.cell.2017.12.033

Liu X, Zhang X, Zhang J et al (2020) Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci 100:192–200. https://doi.org/10.1016/j.jdermsci.2020.10.004

Lo CW, Lai YK, Liu YT et al (2011) Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor. J Investig Dermatol 131:401–409.

Loesche M, Gardner SE, Kalan L et al (2017) Temporal stability in chronic wound microbiota is associated with poor healing. J Investig Dermatol 137:237–244. https://doi.org/10.1016/j.jid.2016.08.009

Loomis KH, Wu SK, Ernland A et al (2021) A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. Microbiome 9:22. https://doi.org/10.1186/s40168-020-00963-1

Lousada MB, Lachnit T, Edelkamp J et al (2021) Exploring the human skin microflora. Br J Dermatol 184:802–815. https://doi.org/10.1111/bjd.19461

Lovássy M, Szegedi A, Zouboulis CC et al (2017) Sebaceous-immunobiology is orchestrated by sebum lipids. Dermatoendocrinol 9:e1375636. https://doi.org/10.1080/19381980.2017.1375636

Lugg JW, Ellis FP (1954) Some water-soluble vitamins in the sweat of Staphylococcus aureus. Nature 173:379–379. https://doi.org/10.1038/173379a0

Lugo-Peralta AV, Kramer HI, Hort W et al (2006) Pityriacrin—a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses 49:388–392. https://doi.org/10.1111/j.1439-0507.2006.01265.x

Maclaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Investig 76:1536–1538. https://doi.org/10.1172/jci112134

Megrath JA (2008) Filaggrin and the great epidermal barrier grief. Australas J Dermatol 49:67–73. https://doi.org/10.1111/j.1440-0960.2008.00443.x (quiz 73-4)

Midorikawa K, Ouhara K, Komatsuzawa H et al (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71:3730–3739. https://doi.org/10.1128/iai.71.7.3730-3739.2003

Minshall C, Nadal J, Exley C (2014) Aluminium in human sweat. J Trace Elem Med Biol 28:87–88. https://doi.org/10.1016/j.jtemb.2013.10.002

Miskin JE, Farrell AM, Cunliffe WJ et al (1997) Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology 143(Pt 5):1745–1755. https://doi.org/10.1099/00221287-143-5-1745

Moss CW, Wallace PL, Hollis DG et al (1988) Cultural and chemical characterization of CDC groups E0-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobili. J Clin Microbiol 26:484–492. https://doi.org/10.1128/jcm.26.3.484-492.1988

Müller DN, Wölk N, Haase S et al (2019) Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol 19:243–254. https://doi.org/10.1038/s41577-018-0113-4

Murai K (2011) Lipid mediators in life science. Exp Anim 60:7–20. https://doi.org/10.1589/expanim.60.7

Murai K, Ohtake T, Dorschner RA et al (2002) Cathelicidin antimicrobial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095. https://doi.org/10.1046/j.1523-1747.2002.19507.x

Murphy B, Hoptroff M, Arnold D et al (2021) In vivo impact of common cosmetic preservative systems in full formulation on the skin microbiome. PLoS ONE 16:e0254172. https://doi.org/10.1371/journal.pone.0254172

Myal Y, Robinson DB, Iwasio B et al (1991) The prolactin-inducible protein (P/P/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol 80:165–175. https://doi.org/10.1016/0303-7207(89)90153-4

N‘diaye A, Ganesen A, Borrel V et al (2017) Substance P and calcitonin gene-related peptide: key regulators of cutaneous microbiota homeostasis. Front Endocrinol 8:15. https://doi.org/10.3389/fendo.2017.00015

Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. https://doi.org/10.1126/science.1225152

Naik S, Bouladoux N, Linehan JL et al (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104–108. https://doi.org/10.1038/nature14052

Nakatsuji T, Kao MC, Zhang L et al (2010) Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Investig Dermatol 130:985–994. https://doi.org/10.1038/jid.2009.384

Nakatsuji T, Chen TH, Narala S et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah4680

Nakatsuji T, Chen TH, Butcher AM et al (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaa4502. https://doi.org/10.1126/sciadv.aao4502
Nicolaides N (1974) Skin lipids: their biochemical uniqueness. Science
Nichols J, Miller AT Jr (1948) Excretion of adrenal corticoids in the
Nistor A, Bowden G, Blanchard A et al (2009) Influence of mouse
Nithya S, Radhika T, Jeddy N (2015) Loricrin—an overview. J Oral
Natsch A, Gfeller H, Gygax P et al (2003) A specific bacterial aminoac-
380 H. Chen et al.
Notay M, Saric-Bosanac S, Vaughn AR et al (2020) The use of topi-
Nunome Y, Tsuda T, Kitagawa K (2010) Determination of fatty acids in
Pappas A (2009) Epidermal surface lipids. Dermatoendocrinol 1:72–76. https://doi.org/10.4161/derm.1.2.8472
Pinto D, Ciardiello T, Franzoni M et al (2021) Effect of commonly used
cosmetic preservatives on skin resident microflora dynamics. Sci Rep 11:8695. https://doi.org/10.1038/s41598-021-88072-3
Pistone D, Meroni G, Panelli S et al (2021) A journey on the skin micro-
bio: pitfalls and opportunities. Int J Mol Sci. https://doi.org/10.3390/ijms22189846
Pochi PE, Strauss JS, Downing DT (1979) Age-related changes in seba-
ceous gland activity. J Invest Dermatol 73:108–111. https://doi.
organ J 1:399-302X.2009.08543.x
Nithya S, Radhika T, Jedy N (2015) Lorincrin—an overview. J Oral
Maxillofac Pathol 19:64–68. https://doi.org/10.4103/0973-029x.
157204
Nizet V, Ohtake T, Lauth X et al (2001) Innate antimicrobial pep-
tide protects the skin from invasive bacterial infection. Nature
414:454–457. https://doi.org/10.1038/35106587
Notay M, Saric-Bosanac S, Vaughn AR et al (2020) The use of topi-
cal Nitrilosomona eutropha for cosmetic improvement of facial
wrinkles. J Cosmet Dermatol 19:689–693. https://doi.org/10.
1111/j.1365-1306
Nunome Y, Tsuda T, Kitagawa K (2010) Determination of fatty acids in
human skin during fasting using GC/MS. Anal Sci 26:917–919. https://doi.org/10.2116/analsci.26.917
O’neill AM, Nakatsui T, Hayachi A et al (2020) Identification of a
human skin commensal bacterium that selectively kills cutibac-
terium acne. J Investig Dermatol 140:1619–28.e2. https://doi.
org/10.1016/j.jid.2019.12.026
Oh J, Byrd AL, Deming C et al (2014) Biogeography and individuality
shape function in the human skin metagenome. Nature 514:59–
64. https://doi.org/10.1038/nature13786
Ohsawa K, Watanabe T, Matsukawa R et al (2009) An antimicrobial
protein, lacto-
pullar JM, Carr AC, Vissers MCM (2017) The roles of vitamin C in skin
health. Nutrients. https://doi.org/10.3390/nutrients9080866
Ramsey MM, Freire MO, Gabrilska RA et al (2016) Staphylococcus
aureus shifts toward commensalism in response to Corynebacte-
terium species. Front Microbiol 7:1230. https://doi.org/10.3389/
fmicb.2016.01230
Reithmayer K, Meyer KC, Kleditzsch P et al (2009) Human hair follicle
epithelium has an antimicrobial defence system that includes the
inducible antimicrobial peptide psoriasin (S100A7) and RNase 7.
Br J Dermatol 161:78–89. https://doi.org/10.1111/j.1365-2133.
2009.09154.x
Ridaura VK, Bouladoux N, Claesen J et al (2018) Contextual control of
skin immunity and inflammation by Corynebacterium. J Exp Med 215:785–799. https://doi.org/10.1084/jem.20171079
Rosenberg E, Koren O, Reshef L et al (2007) The role of microorgan-
isms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. https://doi.org/10.1038/nrmicro1635
Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev
Microbiol 42:441–464. https://doi.org/10.1146/annurev.mi.42.
1990.002301
Roux PF, Oddos T, Stamatas G (2022) Deciphering the role of skin
surface microbiome in skin health: an integrative multomics
approach reveals three distinct metabolite-microbe clusters. J
Investig Dermatol 142:469–479.e5. https://doi.org/10.1016/j.jid.
2021.07.159
Salminen S, Collado MC, Endo A et al (2021) The International Sci-
fic Association of Probiotics and Prebiotics (ISAPP) con-
sensus statement on the definition and scope of probiotics. Nat
Rev Microbiol 19:649–667. https://doi.org/10.1038/s41575-
021-00440-6
Sanchez Rodriguez R, Pauli ML, Neuhaus IM et al (2014) Memory
regulatory T cells reside in human skin. J Clin Investig 124:1027–
1036. https://doi.org/10.1172/jcic72932
Sánchez-Suárez J, Coy-Barrema E, Villamil L et al (2020) Streptomyces-
derived metabolites with potential photoprotective properties—a
systematic literature review and meta-analysis on the reported
chemodiversity. Molecules. https://doi.org/10.3390/molecules2
5143221
Sandby-Moller J, Poulson T, Wulf HC (2003) Epidermal thickness at
different body sites: relationship to age, gender, pigmentation,
blood content, skin type and smoking habits. Acta Derm Venereol 83:410–413. https://doi.org/10.1080/00015550310015419
Sanford JA, Zhang LJ, Williams MR et al (2016) Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. https://doi.org/10.1126/sciimmunol.aab4609
Sanford JA, O’neill AM, Zouboulis CC et al (2019) Short-chain fatty acids from cutibacterium acnes activate both a canonical and epigenetic inflammatory response in human sebocytes. J Immunol 202:1767–1776. https://doi.org/10.4049/jimmunol.1800893
Sardana K, Garg VK (2010) An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol Ther 23:411–418. https://doi.org/10.1111/j.1529-8019.2010.01342.x
Sargent F, Robinson P, Johnson R (1944) Water-soluble vitamins in sweat. J Biol Chem 153:285–294
Sato K (1977) The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol 79:51–131. https://doi.org/10.1007/BF0037089
Sato K, Sato F (1990) Na⁺, K⁺, H⁺, Cl⁻, and Ca²⁺ concentrations in cystic fibrosis eccrine sweat in vivo and in vitro. J Lab Clin Med 115:504–511
Sato K, Kang WH, Saga K et al (1989a) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20:537–563. https://doi.org/10.1016/s0190-9622(89)70063-3
Sato K, Kang WH, Saga K et al (1989b) Biology of sweat glands and their disorders. II. Disorders of sweat gland function. J Am Acad Dermatol 20:713–726. https://doi.org/10.1016/s0190-9622(89)70081-5
Scharschmidt TC, Fischbach MA (2013) What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech. https://doi.org/10.1016/j.ddmecc.2012.12.003
Scharschmidt TC, Vasquez KS, Truong HA et al (2015) A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011–1021. https://doi.org/10.1016/j.immuni.2015.10.016
Scharschmidt TC, Vasquez KS, Pauli ML et al (2017) Commensal microbes and hair follicle morphogenesis coordinately drive Treg cell migration into neonatal skin. Cell Host Microbe 21:467–477.e5. https://doi.org/10.1016/j.chom.2017.03.001
Schenkels LC, Walgreen-Weterings E, Oomen LC et al (1997) In vivo binding of the salivary glycoprotein EP-GP (identical to GCDFP-15) to oral and non-oral bacteria detection and identification of EP-GP binding species. Biol Chem 378:83–88. https://doi.org/10.1515/bchm.1997.378.2.83
Schlichte B, Hipfel R, Sauer B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137. https://doi.org/10.1038/ni732
Schwarz A, Bruhs A, Schwarz T (2017) The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Investig Dermatol 137:855–864. https://doi.org/10.1016/j.jid.2016.11.014
Sears ME, Kerr KJ, Bray RI (2012) Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health 2012:184745. https://doi.org/10.1155/2012/184745
Serag A, Shakkour Z, Halboup AM et al (2021) Sweat metabolome and proteome: recent trends in analytical advances and potential biological functions. J Proteomics 246:104310. https://doi.org/10.1016/j.jprot.2021.104310
Solano F (2020) Metabolism and functions of amino acids in the skin. Adv Exp Med Biol 1265:187–199. https://doi.org/10.1007/978-3-030-45328-2_11
Størensø OE, Follin P, Johnsen AH et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959. https://doi.org/10.1182/blood.v97.12.3951
Soua D, Barreau M, Courtois A et al (2021) Challenging cosmetic innovation: the skin microbiota and probiotics protect the skin from UV-induced damage. Microorganisms. https://doi.org/10.3390/microorganisms9050936
Staudinger T, Pipal A, Redl B (2011) Molecular analysis of the prevalent microbiota of human male and female forehead skin compared to forearm skin and the influence of make-up. J Appl Microbiol 110:1381–1389. https://doi.org/10.1111/j.1365-2672.2011.04991.x
Suffia II, Reckling SK, Piccirillo CA et al (2006) Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203:777–788. https://doi.org/10.1084/jem.20052056
Takahashi T, Yamasaki K (2020) Psoriasis and antimicrobial peptides. Int J Mol Sci. https://doi.org/10.3390/ijms21186791
Takken W, Kline DL (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc 5:311–316
Tauch A, Burkowski A (2015) Molecular armory or niche factors: virulence determinants of Corynebacterium species. FEMS Microbiol Lett 362:fnv185. https://doi.org/10.1093/femsle/fnv185
Thiboutot D (2004) Regulation of human sebaceous glands. J Invest Dermatol 123:1–12. https://doi.org/10.1111/j.1365-2745.2004.0012.x
Thody AJ, Shuster S (1989) Control and function of sebaceous glands. Physiol Rev 69:383–416. https://doi.org/10.1152/physrev.1989.69.2.383
Thomas RM, Jobin C (2020) Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 17:53–64. https://doi.org/10.1038/s41575-019-0242-7
Tilles G (2014) Acne pathogenesis: history of concepts. Dermatology 229:1–46. https://doi.org/10.1159/000364860
Timm CM, Loomis K, Stone W et al (2020) Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome 8:58. https://doi.org/10.1186/s41575-020-00831-y
Tószér J, Berta A (1998) Lactate dehydrogenase activity in pathological human tears obtained with glass capillaries correlates with the albumin content. Int Ophthalmol 22:289–292. https://doi.org/10.1023/a:1006738613666
Traisang S, Herr DR, Kao HJ et al (2019) A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins. https://doi.org/10.3390/toxins11060311
Treiner E, Duban L, Bahram S et al (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169. https://doi.org/10.1038/nature01433
Unno M, Cho O, Sugita T (2017) Inhibition of Propionibacterium acnes lipase activity by the antiinflugal agent ketoconazole. Microbiol Immunol 61:42–44. https://doi.org/10.1111/j.1348-0421.12464
Vallhov H, Johansson C, Veerman RE et al (2020) Extracellular vesicles released from the skin commensal yeast Malassezia sympodialis activate human primary keratinocytes. Front Cell Infect Microbiol 10:6. https://doi.org/10.3389/fcimb.2020.00006
Van Der Beek El (1991) Vitamin supplementation and physical exercise performance. J Sports Sci 9:77–89
Van Loosdrecht MC, Lyklem J, Norde W et al (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87. https://doi.org/10.1128/mr.54.1.75-87.1990
Wang Y, Flaminio Z, Sapru S et al (2019) The microbiome, malignant fungating wounds, and palliative care. Front Cell Infect Microbiol 9:373. https://doi.org/10.3389/fcimb.2019.00373

Vinolo MA, Rodrigues HG, Nachbar RT et al (2011) Regulation of inflammation by short chain fatty acids. Nutrients. https://doi.org/10.3390/nu3100858

Wang Y, Kuo S, Shu M et al (2014) Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 98:411–424. https://doi.org/10.1007/s00253-013-5394-8

Wang Z, Mascarenhas N, Eckmann L et al (2017b) Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Allergy Clin Immunol 139:1205–1216. e6. https://doi.org/10.1016/j.jaci.2016.09.019

Wang Q, Cui S, Zhou L et al (2019a) Effect of cosmetic chemical preservatives on resident flora isolated from healthy facial skin. J Cosmet Dermatol 18:652–658. https://doi.org/10.1111/jocd.12822

Wang X, Zhou H, Chen D et al (2019b) Whole-genome sequencing reveals a prolonged and persistent intrahospital transmission of Corynebacterium striatum, an emerging multidrug-resistant pathogen. J Clin Microbiol. https://doi.org/10.1128/jcm.00683-19

Wang G, Sweren E, Liu H et al (2021) Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe 29:777–791.e6. https://doi.org/10.1016/j.chom.2021.03.003

Wanke I, Steffen H, Christ C et al (2011) Structure and function of nitric oxide detoxifying flavohemoglobins, a family of single-oxygen reductases. FEBS J 20:2068–2080. https://doi.org/10.1111/j.1742-4658.2011.08305.x

Williams GC (1996) Adaptation and natural selection. Princeton University Press, Princeton

Williams MR, Costa SK, Zaramela LS et al (2019) Qorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aat8329

Wiseacre JH, Alexander WG, King SB et al (2016) Dynamic evolution of nitric oxide detoxifying flavohemoglobin, a family of single-protein metabolic modules in bacteria and eukaryotes. Mol Biol Evol 33:1979–1987. https://doi.org/10.1093/molbev/msw073

Wollenberg MS, Claessen J, Escapa IF et al (2014) Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. Microbes. https://doi.org/10.10112/MBio.01286-14

Wondrak GT, Jacobson MK, Jacobson EL (2006) Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5:215–237. https://doi.org/10.1039/b504537h

Wu G, Zhao H, Li C et al (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet 11:e1005614. https://doi.org/10.1371/journal.pgen.1005614

Wu X, Li Z, Liu K et al (2016) Staphylococcal LTA-induced miR-143 inhibits propionibacterium acnes-mediated inflammatory response in skin. J Investig Dermatol 136:621–630. https://doi.org/10.1016/j.jid.2015.12.024

Xu M, Lu H, Lee YH et al (2018) An interleukin-25-mediated autoregulatory circuit in keratinocytes plays a pivotal role in psoriatic skin inflammation. Immunity 48:787–98.e4. https://doi.org/10.1016/j.immuni.2018.03.019

Yamane T, Moriya K, Kitaura Y et al (2018) Branched-chain amino acids regulate type I tropocollagen and type III tropocollagen syntheses via modulation of mTOR in the skin. Biosci Biotechnol Biochem 82:611–615. https://doi.org/10.1080/09168451.2017.1386084

Yamasaki K, Schauer J, Coda A et al (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068–2080. https://doi.org/10.1096/fj.06-6075com

Yang ES, Tan J, Eells S et al (2010) Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect 16:425–431. https://doi.org/10.1111/j.1469-0699.2009.02836.x

Yokozeki H, Hibino T, Takemura T et al (1991) Cysteine proteinase inhibitor in eccrine sweat is derived from sweat gland. Am J Physiol 260:R314–R320. https://doi.org/10.1152/ajpregu.1991.260.2.R314

Youn SH, Choi CW, Choi JW et al (2013) The skin surface pH and its different influence on the development of acne lesion according to gender and age. Skin Res Technol 19:131–136. https://doi.org/10.1111/srt.12023

Yu Y, Prassas I, Muytjens CM et al (2017) Proteomic and peptidomic analysis of human sweat with emphasis on protein expression. J Proteomics 155:40–48. https://doi.org/10.1016/j.jprot.2017.01.005

Yu J, Luo Y, Zhu Z et al (2019) A tryptophan metabolite of the skin microbiota attenuates inflammation in patients with atopic dermatitis through the aryl hydrocarbon receptor. J Allergy Clin Immunol 143:2108–19.e12. https://doi.org/10.1016/j.jaci.2018.11.036

Zhang YJ, Han Y, Sun YZ et al (2019) Extracellular vesicles derived from Propionibacterium acnes enhances keratinocyte migration via IL-1β signaling. Cell Host Microbe 29:777–791.e6. https://doi.org/10.1016/j.chom.2021.03.003

Zipperer A, Konnerth MC, Laux C et al (2016) Human commensals regulate TLR2 and TLR4 signaling pathways in keratinocytes and support skin microbial variability from different facial sites. Front Cell Infect Microbiol 9:373. https://doi.org/10.3389/fcimb.2019.00373