Distinct Expression Profiles of IncRNAs Between Regressive and Mature Scars

Jingyun Li¹, Wei Longb, Qian Lia, Qing Zhouc, Yu Wanga, Bei Zhoua, Jun Li¹

¹State key Laboratory of Reproductive Medicine, Department of Plastic & Cosmetic Surgery, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, ²Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, ³Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, ⁴Institute of Criminal Sciences, Zhenjiang Public Security Bureau, Zhenjiang, China

Key Words
IncRNAs • Expression profiles • Regressive scar • Mature scar

Abstract
Background: Recent studies suggest that long non-coding RNAs (IncRNAs) play crucial roles in human diseases. The function of IncRNAs in abnormal scar pathogenesis remains poorly understood. Methods: In this study, we examined the IncRNAs expression profiles among regressive and mature scars following caesarean sections. A total of 30,586 IncRNAs and 26,109 mRNAs were analyzed by microarrays (Human LncRNA Array v3.0, Arraystar, Inc.). Results: In total, we identified 1,871 IncRNAs and 817 mRNAs with differential expression between regressive and mature scar individuals (fold change ≥3, p≤0.001). A set of differentially expressed IncRNA transcripts, in particular, IncRNA8975-1, AC097662.2 and RP11-586K2.1, were confirmed using qRT-PCR. Gene ontology and pathway analysis revealed that compared to mature scars, many processes over-represented in regressive scars are related to the immune system. Conclusion: Our results show significantly altered expression profiles of IncRNAs and mRNAs between regressive and mature scars. These transcripts are potential molecular targets for inhibiting abnormal scar formation following caesarean sections.

J. Li, W. Long and Q. Li contributed equally to this work.

Jun Li, Ph.D.
State key Laboratory of Reproductive Medicine, Department of Plastic & Cosmetic Surgery, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, 123rd Tianfei Street, Mochou Road, Nanjing 210004 (China)
Tel. +86 025-52226162, Fax +86 025-84726922, E-Mail drljun123@163.com
Introduction

Female patients receiving caesarean sections (CSs) suffer from abnormal scarring in wound healing [1]. Abnormal scars, including hypertrophic scars and keloids, cause functional and cosmetic issues, are characterized by excessive collagen deposition and exhibit increased extracellular matrix production [2, 3]. Numerous factors have been reported to participate in the wound healing process, such as transforming growth factor beta (TGF-β), interleukin-6, homeobox B13 and platelet-derived growth factor [4]. However, the etiology and mechanism of abnormal scar formation are still poorly understood. In terms of their clinical appearance, hypertrophic scars are classified as early (1 to 2 months), proliferative (3 to 6 months), regressive (approximately 2 years), and mature (at least 4 years) during wound healing [5]. This classification is helpful in revealing the biological changes and mechanisms underlying scar formation and regression.

Emerging evidence shows that noncoding RNAs (ncRNAs) play crucial roles in the development of skin fibrosis [6]. Multiple miRNAs contribute to the scar wound healing etiology [7-10]. LncRNAs (Long non-coding RNAs), are defined as longer than 200 nucleotides, transcribed by RNA polymerase II (RNA PII), but lack an open reading frame [11]. They were found to regulate protein-coding (pc) gene expression at both the transcriptional and post-transcriptional levels [12]. Recently, IncRNAs were found to be associated with fibrosis and TGF-β [13-15], though their roles in abnormal scar wound healing remain largely unknown.

Previously, several studies investigated the differences among patients with abnormal scars and normal individuals [8, 10, 16, 17]. The aim of the present study was to examine distinct expression profiles of IncRNAs between regressive scars and mature scars using third-generation IncRNA microarray techniques. Altogether, 1275 and 596 IncRNAs were upregulated and downregulated (fold-change≥3.0), respectively. We report that IncRNA9875-1, AC097662.2 and RP11-586K2.1 are respectively associated with collagen type I alpha 2 (COL1A2), collagen type IV alpha 3 (COL4A3) and matrix metalloproteinase 16 (MMP16) genes, which may affect collagen synthesis or degradation. This study will be helpful in exploring the differences between regressive scars and mature scars from the perspective of lncRNAs during scar progression.

Materials and Methods

Preparation of tissues

Abdominal skins were obtained from female patients receiving second caesarean sections (CSs) at the Nanjing Maternity and Child Health Care Hospital following informed consent and written permission. The cesarean scar on patients received no drug treatment before the surgical procedure. All specimens were immediately frozen in liquid nitrogen, followed by storage at -80 °C. Diagnosis of a regressive scar or mature scar was confirmed by histology tests. Patients’ information was listed in Table 1.

Ethics statement

This study was approved by the Medical Ethics Committee of Nanjing Maternity and Child Health Care Hospital (No. [2012] 58). Women attending our hospital for caesarean sections read information about the purpose of the study, and written informed consent was obtained from each participant.

Hematoxylin & eosin staining and masson’s trichrome

Hematoxylin & eosin staining was performed as previously described [5]. Briefly, tissue samples were fixed for 2 hours in 4% paraformaldehyde in phosphate buffered saline (PBS), stored overnight in 10% formalin, and paraffin-embedded. Cross-sections (5 μm) were cut and used for staining with hematoxylin and eosin. Masson’s trichrome method was used to examine collagen deposition as previously reported [15]. Skin tissues were fixed in 4% paraformaldehyde overnight, dehydrated in 70% ethanol, cleared in xylene and embedded in paraffin wax. Sections (4 μm) were prepared and stained with Masson’s trichrome. Images were taken using a Zeiss AX10 microscope equipped with an AxioCam HRc camera and processed with Axiovision software (Zeiss, Oberkochen, Germany).
RNA isolation and quality control

Total RNA was isolated from each tissue using a homogenizer (IKA, Germany) with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and purified with an RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the manufacturer’s protocol. The NanoDrop ND-1000 was used to measure RNA quantity. RNA Quality was tested with the Agilent 2100 Bioanalyzer (Agilent Technologies).

Microarray analysis

Arraystar Human LncRNA Microarray V3.0 is designed for the global profiling of human LncRNAs and protein-coding transcripts (Kancheng, Shanghai, China). Approximately 30,586 LncRNAs and 26,109 coding transcripts can be detected using the third-generation LncRNA microarray. The LncRNAs are carefully constructed using the quality-controlled, public transcriptome databases (Refseq, UCSC knowngenes, Gencode, etc.), as well as landmark publications. Each transcript is represented by a specific exon or splice junction probe, which can identify individual transcript accurately. Positive probes for housekeeping genes and negative probes are also printed onto the array for hybridization quality control.

Sample preparation and microarray hybridization were performed based on the manufacturer’s standard protocols with minor modifications. Briefly, mRNA was purified from total RNA after removal of rRNA (mRNA-ONLY™ Eukaryotic mRNA Isolation Kit, Epicentre). Each sample was amplified and transcribed into fluorescent cRNA along the entire length of the transcripts without 3’ bias utilizing a random priming method (Arraystar Flash RNA Labeling Kit, Arraystar). The labeled cRNAs were hybridized onto the Human LncRNA Array v3.0 (8 x 60K, Arraystar). After washing the slides, the arrays were scanned by the Agilent Scanner G2505C.

The Agilent Feature Extraction software (version 11.0.1.1) was used to analyze acquired array images. Quantile normalization and subsequent data processing were performed using the GeneSpring GX v11.5.1 software package (Agilent Technologies). After quantile normalization of the raw data, LncRNAs and mRNAs that had flags in at least 1 or 2 samples as “Present” or “Marginal” (“All Targets Value”) were chosen for further data analysis. Differentially expressed LncRNAs and mRNAs between the two samples were identified through fold change filtering. Pathway and GO analyses were applied to determine the roles these differentially expressed mRNAs played in these biological pathways or GO terms. Finally, hierarchical clustering was performed to show the distinguishable LncRNAs and mRNAs expression patterns among samples.

Validation of microarray data and examination of COL1A2 expression by quantitative reverse transcription-polymerase chain reaction

To confirm the microarray data and examine COL1A2 expression, expressions of selected LncRNAs and COL1A2 were tested using quantitative real-time polymerase chain reactions (qRT-PCR) with the SYBR green method on an Applied Biosystems Viia™ 7 Dx (Life Technologies, USA). The sequences of PCR primer sets used for the qRT-PCR are listed in Table 2. COL1A2 expression levels were normalized to internal
control gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), using the 2^(-ΔΔCt) method [18]. lncRNAs expression levels were normalized to internal control gene, 18S rRNA, using the double standard curves method [19].

Statistical analysis

Data were analyzed using the SPSS 20.0 software package (SPSS, Chicago, IL, USA) with an independent-samples T test between two groups. All values were represented as mean ± standard deviation (SD) from at least three independent experiments. Statistical significance was defined as P < 0.05.

Results

Clinical characteristics of the patients and histology of skin samples

Cesarean scar skin samples were collected from 12 patients in the study. According to the hypertrophic scar classification system, in terms of their clinical appearance and duration, a regressive scar was present for approximately 2 years, and the mature scar was present for at least 4 years during wound healing. As shown in Table 1, the mean (SD) age
revealed that more collagen existed in the regressive scar compared to mature scar (Fig. 1C-D). Furthermore, qRT-PCR results demonstrated that COL1A2 expression in the regressive scars was 1.53-fold higher than in the mature scar (Fig. 1E).

To examine the potential biological functions of lncRNAs in scar progression, we collected lncRNAs from quality-controlled databases such as Gencode, RefSeq, UCSC Knowngene and two landmark publications (Fig. 2A). Scatter plot visualization and hierarchical clustering show lncRNA expression variations and patterns between the two groups of regressive and mature scars (Fig. 2B-C). Up to 1871 lncRNAs were differentially expressed in the regressive scar samples compared with the mature scar.

lncRNA microarray profiling

To examine the potential biological functions of lncRNAs in scar progression, we determined the lncRNA and mRNA expression profiles between regressive scars and mature scars through microarray analysis (Fig. 2). lncRNAs are collected from quality-controlled databases such as Gencode, RefSeq, UCSC Knowngene and two landmark publications (Fig. 2A). Scatter plot visualization and hierarchical clustering show lncRNA expression variations and patterns between the two groups of regressive and mature scars (Fig. 2B-C). Up to 1871 lncRNAs were differentially expressed in the regressive scar samples compared with the mature scar.
In total, 817 mRNAs were differentially expressed between regressive and mature scar samples as revealed by scatter-plot visualization and hierarchical clustering (Fig. 2D-E). Among these mRNAs, 519 were upregulated, whereas 298 were downregulated in regressive scars compared to mature scars using the fold-change threshold of 3.0.

Real-time quantitative PCR validation

To validate the microarray profiling expression data, we selected 8 differentially expressed lncRNAs according to their associated mRNAs (Table 5). Real-time quantitative
PCR (qRT-PCR) analysis was performed on additional independent regressive scar and mature scar samples from women receiving caesarean sections (Table 1). The results...
revealed that similar up-regulation or down-regulation was observed in both microarray and qRT-PCR samples for the 8 lncRNA transcripts (Fig. 3). Therefore, our microarray data were reliable and stable. Among the 8 lncRNA transcripts, lncRNA8975-1 and AC097662.2 expression in regressive scars was 1.55 and 1.95-fold higher, respectively, than in the mature scars. In contrast, RP11-586K2.1 expression in mature scars was 7.29-fold greater than in regressive scars.
Expression signatures of dysregulated lncRNAs between regressive scar and mature scar

To examine the dysregulated lncRNA expression signatures, we analyzed up-regulated or down-regulated lncRNAs according to classification, length distribution and chromosome distribution (Fig. 4). In this study, the majority of lncRNAs with differential expression were intergenic (~47%), within introns of protein coding genes (~19%), natural antisense to protein coding loci (~16%), or bidirectional (~5%), and the remainder representing overlapping transcripts from exons or introns in both sense and antisense directions (Fig. 4A). The lncRNAs are mainly between 400 and 2400 bp in length (Fig. 4B). Up and down regulated lncRNAs were shown in different chromosomes (Fig. 4C-D).

mRNA profiling by microarray

Differentially expressed mRNAs were also detected between regressive and mature scar samples (Fig. 2D; fold change≥2, p≤0.001; lists of differentially expressed mRNAs were constructed (see Table 6-7)). Gene ontology (GO) analysis revealed that numerous biological processes were involved. Many of these processes that are up-regulated in regressive scars are related to immune system processes and cellular developmental processes (Fig. 5A). In contrast, many of these processes that are down-regulated in regressive scars are involved in ion transport and multicellular organismal processes (Fig. 5B). Pathway analysis indicated that the chemokine and TNF signaling pathways, as well as insulin secretion, are mostly found in both regressive scars and mature scars during progression (Fig. 5C-D).

Discussion

Hypertrophic scar formation is an abnormal sign of wound healing following caesarean section. However, after long periods, scar hyperplasia automatically regresses without

KARGER
between regressive and mature scars. Using a third-generation lncRNA microarray, we detected 1275 upregulated and 596 downregulated lncRNAs in regressive scars compared to mature scars. In addition, we confirmed 8 differentially expressed transcripts by qRT-PCR. Our study provides a comprehensive profile of the lncRNAs and coding transcripts expression between regressive and mature scars.

During scar regression, most cells undergo apoptosis, and collagen gradually degrades. Type I, IV collagen is important in wound healing [20, 21]. Type I collagenolysis is mediated by secreted, as well as membrane-anchored members of the matrix metalloproteinase (MMP) gene family during fibroblast-mediated matrix remodeling [22]. MMP16 is part of

Gene Symbol	Fold Change (RS/MS)	RNA length	chrom	strand	txStart
CHRDL2	7.42174534	1699	chr11	-	74407473
COQ6	24.3273959	1615	chr14	+	74416954
HLA-DRB5	23.02169073	1171	chr6	+	32485153
SERPINB4	21.28794013	1736	chr18	-	61304429
LAMP5	19.52651955	2059	chr20	+	94950044
NOX4	18.68373485	4270	chr11	-	89057521
MBLN1	18.27651316	5390	chr3	+	152017193
IFNG	16.41087364	1240	chr12	-	68548549
COL12A1	16.31602217	1157	chr9	-	75794041
POS	15.50995782	2158	chr14	+	75745480
LOC839831	14.87226313	2430	chr7, g000195, random	-	49237
PLCH1	13.82471138	6128	chr3	-	155197670
TIMD4	13.74991164	1290	chr5	-	156346292
CCL3 L1	12.44581843	804	chr17	-	34628384
KRT13	12.31187118	1693	chr1	-	39657232
VHL	12.10775881	1014	chr1	-	156268414
JAK1M1	11.96346603	2593	chr4	-	6055481
AKR1B14	11.86314878	1625	chr7	+	134233484
FOXE1	11.56048016	3473	chr9	+	100615336
IFT12	10.43020245	3505	chr10	+	91061705
DPT	10.38908733	1749	chr4	-	168664964
PRT5S23	10.34651872	3806	chr11	+	86514490
DHC1H14	10.12034241	1997	chr1	+	225117355
RGRIP1L1	10.06476758	5959	chr16	-	53633817
KMO	8.9243389832	5266	chr1	-	24195458
LAX1	9.047495262	3027	chr14	-	23503288
MKK	9.717478372	3658	chr10	-	27961802
MATN3	9.525754666	2600	chr2	+	20191812
CCL4	9.349831099	667	chr17	+	34431291
REIL1	9.28531872	3622	chr4	+	37612255
KRT13	9.275451271	1719	chr17	-	39657232
JUN	9.247801066	3348	chr11	-	59246642
CHRNA3	9.16398848	3318	chr15	-	78887664
SPANKXN1	8.789518579	613	chrX	+	144329910
EDN3	8.78372317	2617	chr20	+	57675498
MAPRE2	8.646008655	4337	chr18	+	32558207
CYR61	8.47787234	2295	chr11	+	86046444
SCT	8.42308996	514	chr11	-	626312
COL6A3	8.38543952	4088	chr2	-	238290259
SULTE1	8.204452802	1780	chr4	-	70706929
PCSK5	8.18542943	3369	chr9	-	78905559
CD69	8.028874099	1762	chr12	-	9905081
FCGR3A	7.987724643	2406	chr1	-	161511590
ASPN	7.941867342	2541	chr9	-	95218488
PRMT7	7.708755371	2665	chr18	+	107599266
CHRNA5	7.65348355	2040	chr15	-	78885394
LYSMD4	7.509854151	2929	chr15	-	100267611
NLRP5	7.44690745	3805	chr19	+	56511091
ASPN	7.43259779	2308	chr19	+	95218488
TCN1	7.426527358	1577	chr11	-	59620280
Table 7. The top 50 down-regulated mRNAs in the RS compared with the MS filtered by a fold-change >3.0.

Gene Symbol	Fold Change (RS/MS)	RNA length	chrom	strand	txStart
ILLRN	-666.433249	1865	chr2	+	113975469
ITHH	-424.5070825	3198	chr10	+	7742535
MYOCD	-156.6695757	6806	chr17	-	12569206
GABARAPL1	-133.6320038	1905	chr12	+	103755400
F8	-97.62918625	9048	chrX	-	154064063
AGR3	-86.35827264	763	chr7	-	16899029
FMN2	-52.23887089	6440	chr1	+	240255184
CRABP1	-44.2791443	772	chr15	+	78632665
TP53	-14.1312515	1703	chr4	-	65444403
WIF1	-44.03518153	2240	chr5	+	240255184
SYNE1	-43.21885832	27439	chr6	-	152442818
FSG4	-38.81927839	1780	chr9	-	43696853
HBG1	-36.37460294	584	chr11	-	52695018
SLC26A6	-35.46589134	2629	chr3	-	48663155
NOS1	-35.42739423	12189	chr12	-	117645946
HBG2	-28.75656973	583	chr11	-	5274420
DNA2	-25.22823226	4287	chr10	+	70173282
KIAA15499L	-24.90704411	11640	chr11	+	33563876
ZNF668	-21.53918151	2510	chr16	-	31072163
PITPNM2	-21.12472002	6736	chr12	-	124368025
CTAG2	-20.29942803	773	chrX	+	153808245
ENPP6	-19.0462539	3936	chr4	-	180598958
PIP	-18.23022574	591	chr7	-	142829173
OSBPL1A	-18.19652782	4224	chr18	-	21742109
HBB	-17.6202494	6526	chr11	-	52466956
HBA1	-16.26035538	576	chr16	-	2266787
FSG7	-15.44929233	2046	chr19	-	43428283
HRB	-15.0091926	774	chr11	-	5254058
CTG2	-14.24363942	993	chrX	-	153989045
LEPR	-14.22318831	5135	chr1	-	65886363
ECEL1	-13.96150591	2872	chr12	-	23343456
SPRR2E	-13.48079771	678	chr7	-	153065510
PAPPA	-13.40979995	11205	chr9	-	116916070
FSG1	-12.96023223	2071	chr19	-	43370612
SPRR2B	-12.72390612	662	chr1	-	153042717
TPS3BP2	-12.44566684	4670	chr1	-	223967594
SCEL	-11.02071406	3114	chr13	-	78109908
GPR132	-10.74009223	3652	chr14	-	10551570
ODZ2	-10.65268073	9645	chr5	-	16671842
AHS2	-10.55450166	518	chr16	-	31592020
MBN1L3	-10.00951095	11502	chrX	-	131503342
PRKRA	-9.552698767	587	chr12	-	10998645
FOXC2	-9.30216853	1683	chr16	-	86600856
ADAM22	-8.266182666	9226	chr7	-	87565365
FADS2	-8.084434808	3149	chr19	-	61595712
TDRD12	-7.934117093	1617	chr19	-	33216678
KRT7	-7.98266294	1752	chr1	-	22626953
SH3GL2	-7.772251977	2745	chr6	-	17578952
KCNQ5	-7.69697757	6625	chr6	-	7331570
FOXD2	-7.62304203	4675	chr1	-	47901668

the matrix metalloproteinase (MMP) gene family that is directly relevant to fibrosis [23]. Previous reports demonstrated that severe hypoxia existed in regressive scars, and oxygen levels return to normal in mature scars, findings that are consistent with dynamic changes in microvessel density [5]. Our results revealed that IncRNA8975-1 and AC097662.2 expression were decreased, whereas RP11-586K2.1 expression was increased during regression from a regressive scar to mature scar. Those IncRNAs were associated with collagen synthesis or degradation genes (COL1A2, COL4A3 and MMP16, Table 5).

IncRNAs play crucial roles in multiple developmental processes and diseases at almost every gene expression regulation level [24-27]. Antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci [28]. A recent study reported that IncRNAs contributed to reduced expression of collagen and increased expression of matrix-degrading enzymes [29]. The functional interactions of IncRNAs, miRNAs and mRNAs could lead to a new explanation for...
the pathogenesis and treatment of pulmonary fibrosis [30]. In our study, the relationship between lncRNAs (lncRNA8975-1, AC097662.2) and mRNAs (COL1A2, COL4A3) was natural antisense; furthermore, RP11-586K2.1 was intronic antisense with MMP16. These results suggest that AC097662.2 may correlate directly with COL4A3 expression and RP11-586K2.1 may correlate directly with MMP16 expression through epigenetic regulations, consistent with decreased collagen synthesis and increased collagen degradation during scar regression. In addition, lncRNA8975-1 expression correlates directly with the mRNA level of type I collagen (COL1A2) (Fig. 1E and Fig. 3).

The immune system is active during cutaneous wound repair [31]. Additional damage caused by the immune system can lead to delayed healing and excessive scar formation [31]. Here, we used a Gene Ontology analysis to prove that the main biological process involved was the immune system process, emphasizing the crucial roles of the immune system during scar regression.

Significant molecular networks, including chemokines and the TNF signaling pathway, participate in cutaneous scar formation and growth [32, 33]. In this study, pathway analysis showed that associated genes of dysregulated lncRNAs are primarily involved with chemokines and the TNF signaling pathway.

For the first time, we report the differentially expressed lncRNA profiles between regressive and mature scars. Studying differential lncRNA expression between regressive and mature scars is helpful in revealing the biological changes underlying scar regression, and potentially providing useful information for scar evaluation.

Acknowledgments

This study was supported by grants from the Natural Science Foundation of the Jiangsu Province of China (BK20140083, BK20140082), Nanjing Medical Science and Technique Development Foundation (QRX11037) and the Science and Technology Development Foundation of Nanjing Medical University (2013NJMU137).

References

1. Gao J, Chen Y, Liao N, Zhao W, Zeng W, Li Y, Wang S, Lu F: Relationship between gene codon-72 polymorphisms and hypertrophic scar formation following caesarean section. Exp Ther Med 2014;7:1243-1246.
2. Rabello F-B, Souza CD, Farina Jr JA: Update on hypertrophic scar treatment. Clinics 2014;69:565-573.
3. Zhu Z, Ding J, Shankovsky HA, Tredget EE: The molecular mechanism of hypertrophic scar. J Cell Commun Signal 2013;7:239-252.
4. Profyris C, Tziotzios C, Do Vale I: Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics part I. The molecular basis of scar formation. J Am Acad Dermatol 2012;66:1-10.
5. Zheng J, Song F, Lu SL, Wang XQ: Dynamic hypoxia in scar tissue during human hypertrophic scar progression. Dermatol Surg 2014;40:511-518.
6. Babalola O, Mamalis A, Lev-Tov H, Jagdeo J: The role of miRNAs in skin fibrosis. Arch Dermatol Res 2013;305:763-776.
7. Zhu HY, Li C, Bai WD, Su LL, Liu JQ, Li Y, Shi JH, Cai WX, Bai XZ, Jia YH, Zhao B, Wu X, Li J, Hu DH: Microrna-21 regulates htertyp via pten in hypertrophic scar fibroblasts. PLoS One 2014;9:e97114.
8. Li C, Bai Y, Liu H, Zuo X, Yao H, Xu Y, Cao M: Comparative study of microrna profiling in keloid fibroblast and annotation of differential expressed micrornas. Acta Biochim Biophys Sin 2013;45:692-699.
9. Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utsani A, Hirano A, Yamashita S: Mir-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol 2012;132:1597-1604.
10. Liang P, Lv C, Jiang B, Long X, Zhang P, Zhang M, Xie T, Huang X: Microrna profiling in denatured dermis of deep burn patients. Burns 2012;38:534-540.
Li et al.: lncRNAs Expression During Scar Progression

11 Batista P-J, Chang HY: Long noncoding rnas: Cellular address codes in development and disease. Cell 2013;152:1298-1307.

12 Kornienko A-E, Guenzl PM, Barlow DP, Pauler FM: Gene regulation by the act of long non-coding rna transcription. BMC Biol 2013;11:59.

13 Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY: Identification of novel long noncoding rnas associated with tgf-beta/smad3-mediated renal inflammation and fibrosis by rna sequencing. Am J Pathol 2014;184:409-417.

14 McKiernan PJ, Molloy K, Cryan SA, McElvaney NG, Greene CM: Long noncoding rna are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int J Biochem Cell Biol 2014;52:184-191.

15 Cao G, Zhang J, Wang M, Song X, Liu W, Mao C, Lv C: Differential expression of long non-coding rnas in bleomycin-induced lung fibrosis. Int J Mol Med 2013;32:355-364.

16 Ray S, Ju X, Sun H, Finnerty CC, Herndon DN, Brasier AR: The il-6 trans-signaling-stat3 pathway mediates ecm and cellular proliferation in fibroblasts from hypertrophic scar. J Invest Dermatol 2013;133:1212-1220.

17 Zhang Z, Finnerty CC, He J, Herndon DN: Smad ubiquitination regulatory factor 2 expression is enhanced in hypertrophic scar fibroblasts from burned children. Burns 2012;38:236-246.

18 Livak K-J, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001;25:402-408.

19 Schmittgen T-D, Livak KJ: Analyzing real-time pcr data by the comparative c(t) method. Nat Protoc 2008;3:1101-1108.

20 Abreu-Vélez A-M, Howard MS: Collagen iv in normal skin and in pathological processes. N Am J Med Sci 2012;4:1-8.

21 Hopkinson I, Evans W, Chant D, Hiscox S, Berry D, Harding K: Reverse transcriptions-polymerase chain reaction detection of collagen transcripts in healing human wounds. Eur J Clin Invest 1995;25:539-542.

22 Sabeh F, Li XY, Saunders TL, Rowe RG, Weiss SJ: Secreted versus membrane-anchored collagenases: Relative roles in fibroblast-dependent collagenolysis and invasion. J Biol Chem 2009;284:23001-23011.

23 Forrester H-B, Temple-Smith P, Ham S, de Kretser D, Southwick G, Sprung CN: Genome-wide analysis using exon arrays demonstrates an important role for expression of extra-cellular matrix, fibrotic control and tissue remodelling genes in dupuytren's disease. PLoS One 2013;8:e59056.

24 Iyengar B-R, Choudhary A, Sarangdhar MA, Venkatesh KV, Gadgil CJ, Pillai B: Non-coding rna interact to regulate neuronal development and function. Front Cell Neurosci 2014;8:47.

25 Papaï¿½ R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G: Long noncoding rna: A new player of heart failure? J Cardiovasc Tramsl Res 2013;6:876-883.

26 Takahashi K, Yan I, Haga H, Patel T: Long noncoding rna in liver diseases. Hepatology 2014;60:744-753.

27 Fatica A, Bozzi I: Long non-coding rnas: New players in cell differentiation and development. Nat Rev Genet 2014;15:7-21.

28 Magistri M, Faghhi MA, St Laurent G, 3rd, Wahlestedt C: Regulation of chromatin structure by long noncoding rnas: Focus on natural antisense transcripts. Trends Genet 2012;28:389-396.

29 Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L, Zhou C, Ao Y: Long noncoding rna related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheumatol 2014;66:969-978.

30 Song X, Cao G, Jing L, Lin S, Wang X, Zhang J, Wang M, Liu W, Lv C: Analysing the relationship between Incrna and protein-coding gene and the role of Incrna as cerna in pulmonary fibrosis. J Cell Mol Med 2014;18:991-1003.

31 Wügus T-A, Roy S, McDaniel JC: Neutrophils and wound repair: Positive actions and negative reactions. Adv Wound Care 2013;2:379-388.

32 Greaves N-S, Ashcroft KJ, Bagnud M, Bayat A: Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013;72:206-217.

33 Huang C, Akaishi S, Ogawa R: Mechanosomal pathways in cutaneous scarring. Arch Dermatol Res 2012;304:509-597.