Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
URINARY TRACT INFECTION WITH ATYPICAL MYCOBACTERIA

EVAN THOMAS, BRUCE J. HILLMAN*† AND THOMAS STANISIC

From the Departments of Diagnostic Radiology and Urology, University of Arizona College of Medicine, Tucson, Arizona

ABSTRACT

We present a case of disseminated atypical mycobacterial (Mycobacterium intracellularis) infection of the urinary tract. The patient had anhydrous ectodermal dysplasia and an unrelated defect in cell-mediated immunity. The infection resulted in a lengthy ureteral stricture with resultant hydronephrosis and diminished kidney function. A review of the literature revealed only 13 previous cases of atypical mycobacterial infection of the urinary tract. It is important to distinguish between simple colonization by these organisms and actual infection. Differentiation between atypical mycobacterial infection and urinary tuberculosis is important in determining the therapeutic regimen.

Although first described in 1918 it was not until Runyon's classification of atypical mycobacteria in 1959 that these organisms came under closer scrutiny. Runyon categorized the many varieties of atypical mycobacteria into 4 groups, based upon color and growth characteristics. Of these groups I and III (the photochromogens and the non-photochromogens, respectively) are those most pathogenic in humans. The vast majority of cases represent pulmonary involvement but systemic dissemination also is known to occur. Nonetheless, genitourinary tract infection has been reported only rarely, with only 13 cases reported previously in the literature, some of which were described incompletely.

Herein we describe a child with anhydrous ectodermal dysplasia in whom a ureteral stricture developed secondary to infection by Mycobacterium intracellularis (Battey's bacillus). We relate the features of our case to those previously reported.

CASE REPORT

A 14-year-old white boy was hospitalized with increasing pedal edema, ascites and diarrhea 5 days in duration. Bloody stools developed 3 days before presentation. There were no complaints referable to the urinary tract.

When the patient was 33 months old anhydrous ectodermal dysplasia was diagnosed. He had had numerous hospital admissions for soft tissue infections, including meningitis, pneumonia, otitis media and cellulitis. Immunologic testing revealed a defect in cell-mediated immunity. The infection resulted in a lengthy ureteral stricture with resultant hydronephrosis and diminished kidney function. A review of the literature revealed only 13 previous cases of atypical mycobacterial infection of the urinary tract. It is important to distinguish between simple colonization by these organisms and actual infection. Differentiation between atypical mycobacterial infection and urinary tuberculosis is important in determining the therapeutic regimen.

The patient was an afebrile, cachetic-appearing young boy, small for his age. The teeth were pointed and ridged with cavities, the hair was sparse and white, and the skin was dry and atrophic, with numerous scars and hypopigmented areas secondary to healed subcutaneous abscesses. The abdomen was more protuberant than usual and a fluid wave was believed to be present. Hepatosplenomegaly was palpably evident. There was a moderate amount of pitting pedal edema.

Laboratory values showed only a mild hepatic dysfunction unchanged from previous values. Electrolytes were normal except for slight hyponatremia. White cell count was 5,000 with 18 per cent bands. Creatinine was 0.4 mg./dl. and blood urea nitrogen was 11 mg./dl. Urinalysis was normal.

The diarrhea abated soon after hospitalization, although testing for occult blood remained intermittently positive. There was no gross melena. Coronavirus and M. intracellularis were cultured from the stool. An upper gastrointestinal barium examination revealed possible nodularity and thickening of the small bowel wall, as well as slow passage of barium. A gallium scan demonstrated abnormal uptake in the left upper quadrant and mid epigastrium, probably within the small bowel. These findings were interpreted as compatible with intestinal mycobacterial involvement.

During the third month of hospital stay hematuria, pyuria and an increase in serum creatinine to 0.8 to 0.9 mg./dl. occurred. Urine output remained normal. An abdominal ultrasound and a computerized tomographic body scan confirmed the presence of massive hepatosplenomegaly. The computerized tomographic scan also showed an unexpectedly large left kidney with hydronephrosis. A subsequent excretory urogram verified the left hydronephrosis and a normal right kidney, ureter and bladder. Retrograde pyelography revealed the source of the left pyelocaliectasis to be a 2.5 cm. long stricture of the left mid ureter (see figure). Cultures of urine taken from the left renal pelvis yielded a Pseudomonas species. Unfortunately, cultures for mycobacteria were not performed at this time.

The patient was treated for the Pseudomonas. Since then urine cultures for bacterial and mycobacterial growth had been negative. Serum creatinine remained at 0.8 mg./dl. and mild hematuria, pyuria and proteinuria persisted. Subsequently, the patient died. Postmortem pathologic examination revealed diffuse foci of atypical mycobacteria with poorly organized cellular reaction. Organisms were present in both kidneys and in the strictured region of the left ureter.

DISCUSSION

The table summarizes the findings in 14 cases, including our own, of atypical mycobacterial genitourinary involvement. As indicated in the table information concerning some of these
cases is scant. In others, such as those reported by Lester, and Lattimer and Boyes, culture of M. kansasii in the urine was not associated with evidence of urinary tract disease. This is significant in that mycobacterial colonization and infection appear not to be synonymous. In 1970 Klotz noted 306 cases of urinary colonization with atypical mycobacteria, none of which was reportedly associated with observable urinary tract disease. Thus, we believe that adequate documentation of atypical mycobacterial infection must include either positive culture of genitourinary tissue specimens and/or positive urine cultures in conjunction with some combination of radiologic, pathologic or laboratory evidence compatible with granulomatous genitourinary disease. In view of Klotz's study the occurrence of these combinations of findings would seem exceedingly rare.

Several facets of our case are uncommon with respect to those previously reported. The patient was only 14 years old. Lattimer and Boyes referred to 2 children in whom urine culture yielded group I atypical mycobacteria but no supporting evidence of genitourinary disease was found. In no other reported case was a patient <27 years old. In discussing the reasons for the rarity of urinary tuberculosis in children, Ehrlich and Lattimer have cited the usual lag between initial cortical dissemination and clinical or radiologic manifestations. Our patient possessed a defect in cellular immunity, which may have hastened the progression of the disease. While decreased immunocompetence appears to have a critical role in our case this is not generally true of others in the literature. Of the 13 cases reported only 2 had a recognized immune deficiency, which was an unexplained pancytopenia. Pancytopenia has been described in other instances of disseminated mycobacterial infection as well but it is not ascertained whether this represents cause or effect of this disease.

Finally, the radiographic manifestations of our case are typical of those usually associated with genitourinary tuberculosis. Although Pseudomonas superinfection was present it is not reasonable to expect that this was responsible for renal nonfunction and the exceedingly long left ureteral stricture. Rather, the length and irregularity of the stricture are characteristic of granulomatous infection and healing, while the renal non-function may be attributed to obstruction and/or the effects of diffuse renal parenchymal infection. The postmortem examination, revealing the presence of atypical mycobacteria in the kidneys and region of the ureteral stricture, supports this contention.

Although unusual, genitourinary infection by atypical mycobacteria is significant and potentially life-threatening. It is important to differentiate correctly this entity not only from pyogenic infections but from tuberculosis as well, because relative resistance of these organisms to conventional antituberculosis therapy may necessitate the institution of more heroic measures.

REFERENCES

1. Runyon, E. H.: Anonymous mycobacteria in pulmonary disease. Med. Clin. N. Amer., 43: 273, 1959.
2. Locks, M. O.: Atypical mycobacteria: what you should know about diagnosis and treatment. Consultant, 13: 45, Sept. 1973.
3. Wood, L. E., Buhler, V. B. and Pollak, A.: Human infection with the "yellow" acid-fast bacillus: report of 15 additional cases. Amer. Rev. Tuberc., 73: 917, 1956.
4. Kilbridge, T. M., Gonnella, J. S. and Bolan, J. T.: Pancytopenia and death. Disseminated anonymous mycobacterial infection. Arch. Intern. Med., 126: 38, 1967.

Summary of reported cases of genitourinary atypical mycobacterial infection

References	Age—Sex	Clinical Findings	Radiologic Findings	Organism/Source
Wood and associates¹	54—M	Orchitis, prostatitis, epididymitis	Bilat. hydronephrosis and nephroureterolithiasis	Photochromogen/sputum
Lattimer and Boyes⁴	2 children	—	—	—
Faber and associates⁴	27—F	Hematuria	Irregular, dilated calix	M. intracellularis/urine, sputum
Lester⁴	2 pts.	Fever, pancytopenia	—	—
Kilbridge and associates⁴	62—M	Testicular swelling, epididymitis	—	—
Merchant, J. J., Karlson, A. G. and Carr, D. T.: Mayo Clin. Proc., 38: 271, 1963	—	—	—	—
Newman, H.: J. Urol., 103: 403, 1970	52—F	Pyuria, dysuria	Ureteral obstruction	M. intracellularis/urine
Hepper, N. G., Karlson, A. G., Leary, F. J. and Carr, D. T.: Mayo Clin. Proc., 48: 387, 1971	64—M	Epididymitis	Prostatic calculi	M. kansasii/urine
62—M	Hematuria, pyuria	Calified, non-functioning lt. kidney, rt. ureteral stricture	—	M. intracellularis/urine
Peragament, M., Gonzalez, R. and Praley, E. J.: A.M.A., 229: 916, 1974	40—M	Hematuria, dysuria	—	—
Present case	14—M	Fever, decreased renal function	—	M. kansasii/kidney
Lester⁴	—	Hematuria, pyuria, decreased renal function	Ureteral stricture	M. intracellularis/urine, stool, cerebrospinal fluid, lymph nodes, liver, bone marrow, blood

Left retrograde pyelogram demonstrates 2.5 cm. long ureteral stricture adjacent to 4th lumbar vertebra. Contrast material flows proximal to stricture revealing moderate pyelocaliectasis.
5. Lowry, R. B., Robinson, G. C. and Miller, J. R.: Hereditary ectodermal dysplasia. Symptoms, inheritance patterns, differential diagnosis, management. Clin Ped., 5: 395, 1966.

6. Lester, W.: Unclassified mycobacterial diseases. Ann. Rev. Med., 17: 361, 1966.

7. Lattimer, J. K. and Boyes, T.: Renal tuberculosis in children. Pediatrics, 22: 1193, 1958.

8. Klotz, P. G.: Atypical acid-fast bacteria in urine. Canad. Med. Ass. J., 103: 283, 1970.

9. Faber, D. R., Lasky, I. I. and Goodwin, W. E.: Idiopathic unilateral renal hematuria associated with atypical acid-fast bacillus: Battery type. Cure by partial nephrectomy. J. Urol., 93: 435, 1965.

10. Ehrlich, R. M. and Lattimer, J. K.: Urogenital tuberculosis in children. J. Urol., 105: 461, 1971.

11. Listwan, W. J., Roth, D. A., Tsung, S. H. and Rose, H. D.: Disseminated Mycobacterium kansasii infection with pancytopenia and interstitial nephritis. Ann. Intern. Med., 83: 70, 1975.

12. Eastridge, P. F., Dewey, G. C. and Barrett, O. N., Jr.: Disseminated Mycobacterium kansasii infection: successful treatment of a patient with pancytopenia. Amer. J. Med., 52: 503, 1972.