Corrosion Resistance of Mild Steel in Hydrochloric Acid Solutions by *Clinopodium acinos* as a Green Inhibitor

Abd El-Aziz S. Fouda ¹ *, El-Sayed El-Gharkawy ¹, Heba Ramadan ¹, Ahmed El-Hossiany ¹,²

¹ Department of Chemistry, Faculty of Science, El-Mansoura University, Egypt
² Delta Fertilizers Company on Talkha, Egypt
* Correspondence: asfouda@hotmail.com

Abstract: Study of corrosion inhibition for mild steel in 1M HCl by *Clinopodium acinos* (CA) extract was evaluated by altered methods. These methods are WL, electrochemical tests (Electrochemical frequency modulation (EFM), potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS)) and surface examination performances (AFM, ATR-FTIR and XPS). The CA extract concentrations are (50, 100, 150, 200, 250, 300 ppm) at altered temperatures 25, 30, 35, 40, 45 °C. WL curves showed raising the inhibition efficiency of M-S by increasing CA concentration and lowering the temperature. PP curves explained that CA extract act as a mixed type inhibitor. The green inhibitor was utilized because of its lower price and not affect the environment.

Keywords: M-S; CA; Corrosion inhibition; HCl; WL; PP; EIS; EFM; AFM; ATR-FTIR; XPS.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Metal corrosion occurs as a result of oxidation-reduction reactions found in the environment surrounding the metal [1]. MS is one of the metals used in industrial applications. It is used for handling of alkaline, acids, and salt solutions [2]. Acidic solutions are the most commonly used in the industrial process as like pickling, cleaning, descaling [3]. Various types of inhibitors are utilized to protect the corrosion of MS in acidic solutions. Nowadays a plant extracts (a green inhibitor) are the most utilized due to it is not expensive and not damage the environment [4]. The molecules of the inhibitor were adsorbed on the metal surface and block the active site due to prevent anodic and cathodic reactions [5].

In this study, CA extracts were utilized to inhibit the corrosion of MS in 1M HCl. Many altered tests are utilized to study the protection efficiency of CA. In WL and electrochemical tests, the corrosion rate rises with the increase of the CA extract concentration. The surface of the metal is premeditated by AFM, ATR-FTIR, XPS.

2. Materials and Methods

2.1. Composition of M-S sample.

The chemical elements present in the S sample recorded in Table (1):

wt%	C	Si	Mn	S	Cu	P	Ni	Fe
M-S	0.17	0.24	0.7-0.9	0.04	0.036	0.006	0.025	the rest
2.2. Chemicals.

2.2.1. Inhibitor.

The leaves of “CA were collected and dried at room temperature then ground to a fine powder using an electrical mill. (200g) of this powder soaked in 800 ml methanol, and then the methanolic extract of the sample was concentrated to near dryness under vacuum by using the rotary evaporator at 45 °C and got a stock of methanolic extract. The investigated extract was liquefied in ethanol (1g/L) and conserve into the refrigerator. We use the solution (1000 ppm) to prepare different concentrations of CA extract (50, 100, 150, 200, 250, 300 ppm)” [6].

Known commonly as basil thyme and spring savory, is a species of plant of the genus Acinos. It is a perennial that usually grows about 8 inches (20 cm) high and spreads 12 inches (30 cm). It prefers to grow in strong sunlight. Acinos arvensis is recorded as a food plant for the larva of the moth Coleophora tricolor. This plant is classified by Rose (The Wildflower Key, revised 2006) as Clinopodium acinos (Scheme 1).

Botanical Name: Clinopodium acinos
Family: Lamiaceae
Part used: Leaves and flowers

![Image](https://biointerfaceresearch.com/)

Scheme 1. The plant used in this paper and its family.

![Scheme 2](https://biointerfaceresearch.com/)

Isopulegol
Limonene
Pulegone
Retronecine

Scheme 2. Main components in the used plant.

2.2.2. Solutions.

A corrosive solution of 1 M HCl was prepared to utilize double distilled water and standardized with Na₂CO₃. HCl solution prepared from a stock of HCl 37% (purchased from El-Nasr, Egypt) with water demineralized. The concentration of the extract used was (50, 100, 150, 200, 250, 300 ppm).

2.3. Techniques utilized for calculation of inhibition efficiency.

2.3.1. Weight loss technique (WL).

WL technique is a simple technique, which applied to calculate the inhibition efficiency of CA extract on MS in 1M HCl [7]. “Square pieces of C-S with size (2 cm x 2 cm x 0.2 cm) were used in this method. The MS pieces were prepared by using emery papers with a degree (600, 1000, 1200, 2000) then we use acetone to remove impurities from the surface. Inhibition of C-S corrosion was investigated under different temperatures (25, 30, 35, 40, 45) and various
concentrations of CA extract solution (50, 100, 150, 200, 250, 300 ppm). From this method, we can calculate corrosion rate (CR), surface coverage area (θ), and inhibition efficiency (% IE) as the next Eq. [8].

\[
\% \text{IE} = \theta \times 100 = [1 - (W/W^o)] \times 100
\]

Where, \(W^o \) and \(W \) are the MR, nonexistence, and existence, adding a deferent dose of investigating inhibitor continually.

2.3.2. Electrochemical techniques.

In Electrochemical studies, the % IE calculated by using three methods PP, EIS, EFM. These studies were achieved by using Gammy three-electrode cell at 25 °C. “The MS act as a working electrode, platinum electrode act as an auxiliary electrode, and a saturated calomel electrode act as a reference electrode. The working electrode was polisher with papers grit 1200 in size. Before tests, the electrode was inundation in HCl at potential natural for half hours. Until arrived at a steady-state”. All electrochemical measurements were performed utilizing a Gamry Instrument (PCI4/750) Potentiostat/ Galvanostat/ZRA.

2.3.2.1. PP technique.

In this method tafel curves obtained between 0.1 – 0.2 v with 1mVs\(^{-1}\) scan rate. All tests were done in freshly readying solutions at 25 °C. From the outcome data we can calculate % IE and θ as below [9]

\[
\% \text{IE} = 100 \times \theta = 100 \times [1 - (i_{corr(inh)} / i_{corr(free)})]
\]

\(i_{corr(inh)} \) and \(i_{corr(free)} \) are the current for corrosion in the nonexistence and existence of extract, continually.

2.3.2.2. EIS technique.

EIS tests carried out using AC signals of 5 mv at OCP in the frequency range (0.2Hz to 100 kHz). The diameters given of the capacitive loops improve in the existence of inhibitors and are led to the capacitive of the extent of inhibition of process corrosion, contrary to the lower of the \(C_{dl} \), which is given as:

\[
C_{dl} = 1/ (2 \pi f_{max} R_p)
\]

\(f_{max} \) = frequency maximum. The IE % and (θ) given from EIS analyses were obtained by the next relation:

\[
\% \text{IE} = 100 \times \theta = 100 \times [1 - (R_o^p/R_p)]
\]

\(R_o^p \) and \(R_p \) are the charge resistance in the nonexistence and existence of extract, respectively.

2.3.2.3. EFM technique.

The study of EFM was performed by using a signal with 10 mV amplitude with 2 single waves of 2 and 5 Hz [10]. The larger peaks were utilized to measure the (CF\(_2\) and CF\(_3\)) causality factors (\(\beta_c \) and \(\beta_a \)) and \((i_{corr}) \) [11]. The inhibition of efficiencies % IE\(_{EFM} \) was calculated as follows:

\[
\% \text{IE}_{EFM} = 100 \times [1 - (i_{corr.} / i_o^p_{corr.})]
\]

Where, \(i_o^p_{corr.} \) and \(i_{corr.} \) are current corrosion in the nonexistence and existence of CA extract.
2.4. Surface analysis.

2.4.1. Atomic force microscopy.

AFM spectroscopy gives a 3D image of the film formed on the metal surface. This was achieved by Thermo Fisher Nicolet IS10, USA spectral range of 400 – 4000 cm\(^{-1}\). The image appears roughness, which gives information about the inhibitor reaction.

2.4.2. ATR-FTIR.

(FT-IR) spectra were recorded using a Thermo Scientific Nicolet 6700 FT-IR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). This spectrum gives a peak corresponding to the function group and explains the type of reaction.

2.4.3. X-ray photoelectron spectroscopy analysis (XPS).

The surface of MS after it engages in 1 M HCl solution in the absence and attendance of 300 ppm CA for 24 h was characterized by XPS K-ALPHA (Thermo Fisher Scientific, USA).

3. Results and Discussion

3.1. Weight loss (WL) tests.

As showed in the Fig (1), the “WL-time curves ” were determined in the presence and absence of various concentrations of CA extract. The values of CR, Θ, and IE% are listed in the Table (2). From the Table we noted that CR decrease with increasing of CA extract doses due to increasing of Θ by adsorption of CA extract on the MS surface. The IE% increase with increasing of CA extract doses and by increasing of temperature” [12].

![Figure 1](https://biointerfaceresearch.com/)
Table 2. WL measurements for MS at temperatures (25-45) at 120 min in the presence and absence of different doses of CA extract.

Temp., °C	[inh], ppm	CR, mg cm⁻² min⁻¹	Θ	% IE
	Blank			
25	50	0.017	0.807	80.7
	100	0.016	0.822	82.2
	150	0.015	0.831	83.1
	200	0.012	0.866	86.6
	250	0.011	0.872	87.2
	300	0.011	0.879	87.9
30	Blank	0.119	---	---
	50	0.022	0.817	81.7
	100	0.020	0.833	83.3
	150	0.018	0.851	85.1
	200	0.013	0.889	88.9
	250	0.013	0.893	89.3
	300	0.012	0.899	89.9
35	Blank	0.184	---	---
	50	0.032	0.824	82.4
	100	0.024	0.870	87.0
	150	0.020	0.889	88.9
	200	0.018	0.902	90.2
	250	0.017	0.909	90.9
	300	0.016	0.913	91.3
40	Blank	0.211	---	---
	50	0.034	0.837	83.7
	100	0.021	0.899	89.9
	150	0.020	0.907	90.7
	200	0.017	0.918	91.8
	250	0.016	0.922	92.2
	300	0.015	0.928	92.8
45	Blank	0.277	---	---
	50	0.036	0.869	86.9
	100	0.027	0.902	90.2
	150	0.025	0.910	91.0
	200	0.022	0.921	92.1
	250	0.019	0.932	93.2
	300	0.018	0.934	93.4

Figure 2. Plot of Langmuir adsorption of M-S in 1M HCl in the absence and presence of different doses of CA extract.

3.1.1. Adsorption isotherms.

The information of the interaction between CA extract and the MS surface in 1M HCl is given by adsorption isotherms. “There are several adsorption isotherms like Langmuir,
Temkin, Freundlich, Bockris-Swinkless, and Flory-Huggins isotherms [13]. But the Langmuir adsorption isotherm is the best fit that gives information on the interaction between the adsorbed layers of the CA extract and the surface of MS in 1M HCl and is represented by (Eq. 6). The relationship is linear among (C) and C/Ө given in lines straight (Fig. 2)’. K_{ads} belong to ΔG_{ads}^{0} as in (Eq. 7) [14].

\[
\frac{C}{Ө} = \frac{1}{K_{ads}} + C
\]

(6)

\[
ΔG_{ads}^{0} = RT \ln (K_{ads} \times 55.5)
\]

(7)

where K_{ads} = constant equilibrium, R = Universal gas constant, T = temperature in Kelvin and C = dose of CA extract.

From Vant Hoff equation:

\[
\ln K_{ads} = -\frac{ΔH^{0}}{RT} + \text{constant}
\]

(8)

By plotting ln K_{ads} vs. 1/T (Fig.3), gives a straight line with slope equals to ΔH^{0} as seen in Table 3.

![Figure 3. Plot of log K_{ads} vs 1/T for the adsorption of CA extracts on MS in 1M HCl at (25-45°C).](https://biointerfaceresearch.com/)

Compound	T, K	k_{ads}x10^{-3}, M^{-1}	-ΔG_{ads}^{0}, kJ mol^{-1}	-ΔH_{ads}^{0}, kJ mol^{-1}	-ΔS_{ads}^{0}, J mol^{-1} K^{-1}
CA	298	103	21.5	21.6	144.6
	303	112	22.0	22.7	143.9
	308	129	22.7	23.6	144.0
	313	154	23.6	24.3	144.3
	318	176	24.3	25.0	144.4

The data listed in Table (3) indicate that: 1) K_{ads} values increase with an increase in temperature. 2) ΔG_{ads}^{0} negative sign indicates that the CA extract is adsorbed spontaneously on M-S surface [15]. 3) ΔG_{ads}^{0} data more than 20 kJ mol^{-1}, which gives is a mixed type and spontaneous. 4) ΔH_{ads}^{0} negative sign indicates that the adsorption of CA extract is an exothermic process. 5. ΔS_{ads}^{0} have a negative sign because CA molecules freely moving in the bulk solution were adsorbed in an orderly fashion on to MS, resulting in a decrease in entropy [16].
3.1.2. Thermodynamic corrosion parameter.

The activation parameters for the corrosion of MS in 1M HCl in the presence and absence of various doses of CA extract are calculated from Arrhenius and transition state equations (Eq. 9, 10)

\[k_{corr} = A e^{E_{a}^*/RT} \]
\[k_{corr} = \frac{RT}{Nh} e^{(\Delta S^*/R)} e^{(-\Delta H^*/RT)} \]

\(E_{a}^* \) = activation energy, As represented in (Figure 4) we plot log \(k_{corr} \) versus 1/T for MS in 1 M HCl in the presence and absence of various doses of CA extract than from the slope, the values of \(E_{a}^* \) were deliberate. In (Figure 5) we plot log \(k_{corr} / T \) versus 1/T, which gives a straight where the slope is \(\Delta H/2.303R \), and the intercepts are of log \(R/\text{Nh} + \Delta S^*/2.303 \) [17].

The obtained data are recorded in the (Table 4), and from it, we noted that:
1) \(E_{a}^* \) values in the presence of CA extract are higher than when CA is absent due to the adsorption of the CA on MS surface and formation of a barrier layer, which decreases CR. The values of \(E_{a}^* \) increase with increasing of CA dose. 2) \(\Delta S^* \) negative sign indicates that the activated complex at the rate-determining step favor an association rather than a dissociation [18].

![Figure 4. Plot of log \(k_{corr} \) vs 1/T for M-S in the presence and absence of CA extract in 1M HCl.](image1)

![Figure 5. Plot of log \(k_{corr} / T \) vs 1/T for MS in the presence and absence of CA extract in 1M HCl.](image2)
Table 4. Activation parameters for MS in presence and absence of CA extract in 1M HCl.

Conc., ppm	E^*, kJ mol$^{-1}$	ΔH^*, kJ mol$^{-1}$	$-\Delta S^*$, J mol$^{-1}$ K$^{-1}$
Blank	36.2	31.6	169
50	53.3	50.7	113
100	53.5	51.3	114
150	53.1	50.3	118
200	53.4	47.6	128
250	52.3	48.7	125
300	52.2	52.2	115

3.2. EFM measurements.

Figure 6 shows the current-frequency spectral chart obtained from EFM measurements in the absence and presence of various amounts of CA extract. From the chart, we can calculate Maximum peaks that were utilized to measure i_{corr}, β_a, β_c, and the causality factors (CF-2 and CF-3), which are listed in Table 5. The given data have shown that i_{corr} decreases with an increase in CA extract doses, and the % IE increases by increasing the extract doses. The β_a, β_c values indicate that the CA extract has not changed the corrosion mechanism. The values of CF-2 and CF-3 obtained from the chart are close to 2, and 3 of the theoretical values indicated that the obtained data are of good quality.

From Eq. 11, we can calculate % IE values, which rise by raising the CA extract doses [19].

\[
\%IE = 100 \times \left[1 - \left(\frac{i_{corr}}{i_{o, corr}}\right)^{\beta_c}\right]
\]

(11)

where $i_{o, corr}$ and i_{corr} are current in the absence and presence of CA extract, respectively.

Figure 6. EFM data for MS in the absence and presence of different doses of CA extracts.
Table 5. EFM data for the corrosion of MS at various doses of CA extract at 25 °C.

[inh.] ppm	i_{corr}, µAcm$^{-2}$	β_r, mVdec$^{-1}$	β_a, mVdec$^{-1}$	CF-2	CF-3	C.R., mpy	Θ	%IE
0.0	880	132.2	82.4	1.99	3.8	365.5	-	-
50	424.2	124.8	77.37	1.9	3.8	217.8	0.545	54.5
100	283.7	152.2	95.46	1.9	2.79	117.8	0.677	67.8
150	259.2	131.1	96.4	1.92	3.19	107.7	0.704	70.4
200	191.3	126.2	108	1.80	2.60	79.47	0.783	78.3
250	186.1	165.4	132.1	2.0	1.9	77.31	0.789	78.9
300	89.26	125.9	107.6	1.68	3.48	37.08	0.899	89.9

3.3. EIS method.

EIS is a useful method used to study the corrosion of MS in the absence and presence of various doses of CA extract in 1M HCl. Figs. (7, 8) show the Nyquist and Bode curves at the OCP at 25°C. Nyquist plots are characterized by semicircles loops at low frequencies. This method is represented simply in (Fig. 9) by Randle circuit. This circuit shows a parallel combination of which shows a parallel combination of a charge transfer resistance (R_{ct}) and the double-layer capacitance (C_{dl}), both in series with solution resistance (R_s)[20]. The corresponding R_{ct} was also utilized to calculate IE and CPE, which is used to describe the double-layer [21]:

$$C_{dl} = Y_0 (2\pi f_{\text{max}})^{-n-1}$$

With 0 ≤ n ≤ 1, j = √-1 and f_{max} is the frequency of the highest imaginary value, Y_0 is a frequency-independent constant, being defined as pure capacitance for n=1, resistance for n = 0, inductance for n = -1. The diffusion process is characterized by the value of n = 0.5. The value of (n) represents the deviation from the ideal behavior [40]. The values of n, Y_0, R_{ct} charge transfer resistance, C_{dl} double-layer capacitance, and the IE% were obtained and listed in (Table 6). The Nyquist plots obtained in the real system represent a general behavior where the double layer on the interface of MS/solution does not behave as an areal capacitor. The data obtained from the equivalent circuit are presented in Table 6. The data show that R_{ct} values were increased by adding the extract. This is due to the formation of an insulating protective film at the metal/solution interface. Alternatively, C_{dl} values were decreased due to a decrease in local dielectric constant and /or to an increase in the thickness of the electrical double layer, suggesting that the inhibitor molecules are adsorbed at the metal/solution interface” [22]. The adsorption of the CA molecules on the MS surface lowered the electrical capacity due to they displace the water molecules, and the CA are originally adsorbed on the surface.

Figure 7. The Nyquist plots for MS in nonexistence and existence of various doses of CA extract at 25°C.
Figure 8. The Bode plots for the dissolution MS in nonexistence and existence of various doses of CA extract in 1M HCl at 25°C.

Figure 9. Equivalent circuit utilized to fit the EIS results.

Table 6. EIS value of MS in nonexistence and existence of various doses of CA extract at 25°C.

[inh.] ppm	Y_s ($\mu \Omega^{-1} cm^{-2} \times 10^6$)	R_{ct}	n	C_{dl} ($\mu F cm^{-2}$)	θ	%IE
0.0	279.9	19.41	0.894	151	-	-
50	204.9	62.15	0.875	100	0.687	68.7
100	191.5	74.52	0.852	91	0.739	73.9
150	171.5	76.84	0.858	84	0.747	74.7
200	156.6	113.9	0.851	77	0.822	82.2
250	155.2	144.6	0.811	64	0.866	86.6
300	146.8	247.6	0.789	61	0.922	92.2

3.4. PP tests.

PP measurements were carried out to study the effect of CA extract on the anodic and cathodic reactions occurring in the system. Figure 10 demonstrates the potentiodynamic polarization curves for mild steel without and with various doses of CA extract at 25°C.

The outcome electrochemical parameters are cathodic (β_c) and anodic (β_a) Tafel slopes, corrosion potential (E_{corr}), and corrosion current density (i_{corr}), which acquired and recorded in Table 7 [23]. From the outcome data, we noted that (i_{corr}) decrease with increasing of CA extract doses, but the (β_a, β_c) are approximately constant, and parallelled to the retardation of the 2 reactions were influence without exchanging the liquefaction mechanism [24]. Figure 10 showed that both cathodic and anodic reactions are inhibited, which indicated that CA extract is a mixed type inhibitor [25]. The appending of CA extract are exchange the E_{corr} data in a negative direction. The (%IE) calculated from i_{corr} reveals that the presence of various
concentrations of CA extract decreases the anodic and cathodic current densities and the polarization resistance.

![Figure 1](https://doi.org/10.33263/BRIAC112.97869803)

Figure 10. PP plots for the dissolution of MS in the presence and absence of various doses of CA extract.

[inh.] ppm	-E_{corr}, (mV vs. SCE)	R_p, Ω	i_{corr}, μA cm⁻²	β_c, mV dec⁻¹	β_a, mV dec⁻¹	C.R, mpy	Θ	% IE
0	304	33	778	167	95	303	-	-
50	395	66	356	150	84	148	0.542	54.2
100	411	146	157	149	82	65	0.798	79.8
150	415	166	135	137	83	57	0.826	82.6
200	426	211	115	136	95	48	0.852	85.2
250	428	221	98	126	83	41	0.874	87.4
300	444	346	56	115	73	25	0.928	92.8

3.5. Surface characterization.

3.5.1. AFM study.

AFM is a useful method used to study the morphology of the MS surface. (Figs. 11-13) are 3D images for M-S polished surface in absence and presence of CA extract (300ppm) in 1M HCl for 24 hour at 25°C[26]. From the figures, we can see that: The surface is very clear for the free surface in the absence of CA extract and HCl, and the average roughness is 14.1 nm Figure (11); The surface more corroded in the absence of CA extract at 1M HCl, and the average roughness is 392.58nm Figure (12); The surface is less corroded in the presence of CA extract (300 ppm), and the average roughness is 212.9 nm Figure (13).

From the figures, we understand that: the roughness reduced in the presence of the inhibitor due to the formation of a protective film of CA extract on MS surface [27].

3.5.2. ATR-FTIR analysis.

In this method, we identify the adsorbed functional groups of CA extract adsorbed on the MS surface. “The mechanism of inhibition of corrosion of M-S by CA extract in HCl can be illustrated on the basis of molecular adsorption [28]. Chemical bonds in a molecule had been recognized by generating an infrared absorption spectrum. Functional groups and
characterizing covalent bonding information had been detected by FT-IR, which is an influential analytical device [29].

Figure 11. AFM 2D (a) and 3D (b) of MS free surface.

Figure 12. AFM 2D (a) and 3D (b) of MS electrodeposits in 1M HCl.

Figure 13. AFM images 2D (a) and 3D (b) of MS electrodeposits in the presence of CA extract.

Figure (14) signifies the ATR-IR spectrum of CA extract and the construction of the adsorbed film over the MS surface after immersion for 6 hr in 1 M HCl. FT-IR spectra of the CA extract stock (1000 ppm) and the spectra of MS surface after immersion in 1M HCl + 300 ppm of CA extract for 6 hours as compared to each other. From the compared spectra, we note that there are small shifts on the peak of some function groups, the absence of some functional
group, and some peaks not changed. These spectra are characteristic by OH group (3317 cm\(^{-1}\)– 3618 cm\(^{-1}\)) and carboxylate group at 1600cm\(^{-1}\). These shifts indicate that there is an interaction between MS and some of the inhibitor’s molecules”. The corrosion of MS inhibited after the addition of CA extract.

![Figure 14. ATR-FTIR spectra of CA stock solution (1000 ppm)(a) and adsorbed layer of CA on MS surface(b).](https://biointerfaceresearch.com/)

3.5.3. XPS.

X-ray photoelectron spectroscopy (XPS) analysis was performed to confirm the adsorption of the studied CA on the “MS surface and determine the chemical nature of the inhibitors/steel interface, and the results were discussed as below. The high-resolution XPS spectra survey obtained for M-S surface corroded in 0.1 M HCl solution in the presence of CA molecule is illustrated in Fig.15. All XPS spectra show complex forms, which were assigned to the corresponding species through a deconvolution fitting procedure. The binding energies (BE, eV) and the corresponding quantification (%) of each peak component are listed in Table 8. The high-resolution XPS spectra obtained for MS surface corroded in 0.1 M HCl composed of (Fe 2p, O 1s, Cl 2p, C 1s) as illustrated in Fig.16. While in the presence of the studied CA inhibitor, the XPS spectra consist of the same elements (Fe 2p, O 1s, Cl 2p, C 1s) in addition to N 1s core level, as shown in Fig.17. The XPS spectrum of Fe 2p shows six peaks. The high peak at lower binding energy (711.2 eV) corresponds to metallic iron [30]. The peak located at 714.6 eV is attributable to Fe 2p3/2, and the small peak at 719.40 eV corresponds to the satellite of Fe\(^{3+}\). In addition, the peaks at 724.3 eV and 727.9 eV can be attributed to Fe 2p1/2 due to the presence of iron in the form of Fe\(_2\)O\(_x\), \(\alpha\)-Fe\(_2\)O\(_3\), and FeOOH [31]. The last peak at 732.4 eV, which is related to the oxidation of the steel surface. The C 1s spectra of M-S in HCl alone and with the CA show two characteristic peaks at binding energy 284.6 eV and 286.2 eV assigned to a C–C bond and C=O bond, respectively, while in the case of CA only, there is more peak observed at 288.4 eV which is attributed to the sp\(^2\)-hybridized carbon, which comes from the inhibitor molecule. The XPS spectra of O 1s in blank solution shows three peaks, one of them at BE 530.0 eV, which is attributed to the Fe oxide (FeO and Fe\(_2\)O\(_3\)) [32]. The second one at a binding energy of 399.9 eV, this peak could be attributed to the neutral imine (-N=), and amine (-N-H) nitrogen atoms as previously reported [33]. According to the XPS results, the appearance peak of N in the protected sample surface spectra confirm adsorption of the studied CA inhibitor at the sample surface. Moreover, in the presence of the investigated
inhibitors”, it is clear that the O1s core level signal is significantly decreased, which is consistent with the adsorption of the CA on the M-S surface. All that confirms the adsorption of the investigated inhibitors on the MS surface in the HCl solution.

Figure 15. The XPS survey spectrum results of CA extract adsorbed on the MS in 1 M HCl at 25°C.

Table. 8. The binding energies (BE, eV) and the corresponding quantification (%) For CA extract.

CA extract	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %
O1s	531.32	3.61	236337	40.37
Fe2p	711.43	4.77	352512.4	12.18
C1s	285.11	3	90437.76	39.44
Cl2p	199.2	3.58	35415.26	6.49
N1s	401.05	3.34	5913.11	1.52

Figure 16. High-resolution X-ray photoelectron deconvoluted profiles of (a) C 1s, (b) O 1s, (c) Cl 2p, and (d) Fe 2p for MS in 1 M HCl.
3.6. Mechanism of corrosion inhibition.

According to weight loss and electrochemical measurements, “the additions of CA extract leads to decrease the corrosion of MS. The outcome data showed that the mechanism of inhibition depends on the blocking of active sites of the MS surface by adsorption of CA extract. The adsorption of CA extract is carried by the adsorption of heteroatoms of the inhibitor, which are in different constituents of extract besides the availability of π- electrons in the aromatic system [34]. By phytochemical analysis, we know that: the CA extract many organic compounds. Temperatures study results showed that mechanical adsorption happens through physical adsorption. The MS surface, with its positive charge, prefers the adsorption
of Cl\(^{-}\) to produce a negative charge surface”. These molecules (CA extract) will be existing in the protonated form, so it can adsorb directly on the negative surface of MS [35] in an acidic medium by electrostatic attraction, as shown below. Schematic representation of the mode of adsorption of extract molecules on MS surface is shown in Fig. 18.

![Schematic representation of the mechanism of inhibition.](https://doi.org/10.33263/BRIAC112.97869803)

Figure 18. Schematic representation of the mechanism of inhibition.

4. Conclusions

The conclusions below are given according to the above results: CA extract is a good inhibitor used to decrease the corrosion of MS in HCl solutions; The outcomes data explained that: the inhibition efficiency increase by increasing the concentration of CA extract; When the plant extract is added, the double-layer, capacitances reduce, and charge travel resistance rises regardless of the blank solution; The adsorption of CA extract follows Langmuir adsorption isotherm; The result explained that the CA extract acts as a mixed-kind inhibitor; Techniques that are used to detect the corrosion inhibition process are MR, PP, EFM, and EIS are in reasonably good agreement; There is good agreement between chemical and electrochemical techniques.

Funding

This research received no external funding.

Acknowledgments

All our gratitude to the anonymous referees for their careful reading of the manuscript and valuable comments which helped in shaping this paper to the present form. We thank all laboratory staff of corrosion chemistry from the University of Mansoura (Egypt) for their kind cooperation.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Verma, C.; Quraishi M.A.; Ebenso E.E. Microwave and ultrasound irradiations for the synthesis of environmentally sustainable corrosion inhibitors: An overview. *Sustainable Chemistry and Pharmacy* **2018**, *10*, 134–147, https://doi.org/10.1016/j.scp.2018.11.001.
2. Shetty, S.D.; Shetty, P.; Nayak, H.V.S. The inhibition action of N-(furfuryl)-N'-phenyl thiourea on the corrosion of mild steel in acid media. *J. Serb. Chem. Soc.* **2006**, *71*, 1073–1082, https://doi.org/10.1016/j.matlet.2006.09.009.
3. Aoun, S.B.; Messali, M. Microwave-assisted synthesis of green inhibitor for carbon steel acid corrosion. *Int. J. Electrochem. Sci.* 2018, 13, 3757–3776, https://doi.org/10.20964/2018.04.55.

4. Popoola, L.T. Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors. *Helion.* 2019, 5, https://doi.org/10.1016/j.helion.2019.e01143.

5. Verma, C.; Ebenso, E.E.; Bahadur, I.; Quraishi, M. An overview on plant extracts as environmentally sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. *J. Mol. Liq.* 2018b, 266, 577–590, https://doi.org/10.1016/j.molliq.2018.06.110.

6. Castillo, P.; Liu, K.; Rodrigues, A.I.; Feio, S.; Tomi, F.; Casanova, J. Composition and antimicrobial activity of the essential oil of *Clippodium ascendens* (Jordan) Sampaio from Madeira. *Flavour Fragr. J.* 2007, 22, 139–144, https://doi.org/10.1002/ffj.1771.

7. Bennacer, A.; Cherif, H.S. Contribution to the Ethnobotanical, Phytochemical, Antimicrobial and Antioxidant Study of the Leaves’ Aqueous Extract of the Common Walnut "Juglans regia L.". *International Journal of Pharmacology, Phytochemistry and Ethnomedicine* 2017, 7, 41-52, https://doi.org/10.18052/www.scipress.com/UPPE.7.41.

8. Fouda, A.S.; El-Awady, G.Y.; El Behairy, W.T. Proposip juliflora Plant Extract as Potential Corrosion Inhibitor for Low-Carbon Steel in 1 M HCl Solution. *Journal of Bio- and Tribo-Corrosion* 2017, 4, https://doi.org/10.1007/s40735-017-0124-x.

9. Shainy, K.M.; Rugmini Ammal, P.; Unni, K.N.; Benjamin, S.; Joseph, A. Surface Interaction and Corrosion Inhibition of Mild Steel in Hydrochloric Acid Using Pyoverdine, an Eco-Friendly Biomolecule. *Journal of Bio- and Tribo-Corrosion* 2016, 2, https://doi.org/10.3735/016-0050-3.

10. Elabbasy, H.M.; Zidan, S.M.; Fouda, A.S. Inhibitive behavior of ambrosia maritima extract as anec-friendly corrosion inhibitor for carbon steel in 1M HCl. *Zastita Materijala* 2019, 60, 129-146, https://doi.org/10.5937/zasmat1902129E.

11. Khadraoui, A.; Khelifa, A.; Hamitouche, H.; Melhoudi, R. Inhibitive effect by extract of Mentha rotundifolia leaves on the corrosion of steel in 1 M HCl solution. *Research on Chemical Intermediates* 2014, 40, 961-972, https://doi.org/10.1007/s11164-012-1014-y.

12. Fouda, A.S.; Abousalem, A.S.; El-Ewady, G.Y. Mitigation of corrosion of carbon steel in acidic solutions using an aqueous extract of Tilia cordata as green corrosion inhibitor. *International Journal of Industrial Chemistry* 2017, 8, 61-73, https://doi.org/10.1007/s40090-016-0102-z.

13. Okafor, P.C.; Ikpi, M.E.; Uwah, I.E.; Ebenso, E.E.; Ekpe, U.J.; Umoren, S.A. Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. *Corrosion Science* 2008, 50, 2310-2317, https://doi.org/10.1016/j.corsci.2008.05.009.

14. Raghavendra, N.; Hublikar, L.V.; Patil, S.M.; Ganiger, P.J.; Bhide, A.S. Efficiency of sapota leaf extract against aluminum corrosion in a 3 M sodium hydroxide hostile fluid atmosphere: a green and sustainable approach. *Bulletin of Materials Science* 2019, 42, https://doi.org/10.1007/s12034-019-1922-1.

15. Fouda, A.S.; Abd El-Maksoud, S.A.; El-Hossiany, A.; Ibrahim, A. Corrosion Protection of Stainless Steel 201 in Acidic Media using Novel Hazdrene Derivatives as Corrosion Inhibitors. *Int. J. Electrochem. Sci.* 2019, 14, 2187-2207, https://doi.org/10.20964/2019.03.15.

16. Boumbara, K.; Harhar, H.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.; Zarrouk, A. Corrosion Inhibition of Mild Steel in 0.5 M H2SO4 Solution by Artemisia herba-alba Oil. *Journal of Bio- and Tribo-Corrosion* 2018, 5, https://doi.org/10.1007/s40735-018-0202-8.

17. Fouda, A.S.; Rashwan, S.; Kamel, M.M.; Arman, N.M. Adsorption and Inhibition Behavior of Avicennia Marina for Zn Metal in Hydrochloric Acid Solution. *International Journal of Electrochemical Science* 2017, 12, 11789-11804, https://doi.org/10.20964/2017.12.95.

18. Fouda, A.S.; Abdel Azeem, M.; Mohamed, S.A., El-Hossiany, A.; El-Desouky, E. Corrosion Inhibition and Adsorption Behavior of Nerium Oleander Extract on Carbon Steel in Hydrochloric Acid Solution. *Int. J. Electrochem. Sci.* 2019, 14, 3932 – 3948, https://doi.org/10.20964/2019.04.44.

19. Fouda, A.S.; Rashwan, S.; El-Hossiany, A.; El-Morsy, F.E. Corrosion Inhibition of Zinc in Hydrochloric Acid Solution using some organic compounds as Eco-friendly Inhibitors. *JCBPS.* 2019, 9, 001-024, https://doi.org/10.24214/jcbps.A.9.1.00124.

20. Fouda, A.S.; Abd El-Maksoud, S.A.; El-Hossiany, A.; Ibrahim, A. Effectiveness of Some Organic Compounds as Corrosion Inhibitors for Stainless Steel 201 in 1M HCl: Experimental and Theoretical Studies. *Int. J. Electrochem. Sci.* 2018, 13, 9826 – 9846, https://doi.org/10.20964/2018.10.36.

21. Appa Rao, B.V.; Narshima Reddy, M. Formation, characterization and corrosion protection efficiency of self-assembled 1-octadecyl-1H-imidazole films on copper for corrosion protection. *Arabian Journal of Chemistry* 2017, 10, S3270-S3283, https://doi.org/10.1016/j.arabjc.2013.12.026.

22. Wasim, M.; Shoaib, S.; Mururak, N.M.; Inamuddin; Asiri, A.M. Factors influencing corrosion of metal pipes in soils. *Environmental Chemistry Letters* 2018, 16, 861-879, https://doi.org/10.1007/s10311-018-0731-x.

23. Soltani, N.; Tavakkoli, N.; Attaran, A.; Karimi, B.; Khayatkashani, M. Inhibitory effect of Pistacia khinjuk aerial part extract for carbon steel corrosion in sulfuric acid and hydrochloric acid solutions. *Chemical Papers* 2020, 74, 1799-1815, https://doi.org/10.1007/s11696-019-01026-y.
24. Fouda, A.S.; Abd El-Maksoud, S.A.; El-Hossiany, A.; Ibrahim, A. Evolution of the Corrosion-inhibiting Efficiency of Novel Hydrazine Derivatives against Corrosion of Stainless Steel 201 in Acidic Medium. *Int. J. Electrochem. Sci.* 2019, **14**, 6045–6064, https://doi.org/10.20964/2019.07.65.

25. Fouda, A.S.; Killa, H.M.; Farouk, A.; Salem, A.M. Calicotome Extract as a Friendly Corrosion Inhibitor for Carbon Steel in Polluted NaCl Solution: Chemical and Electrochemical Studies. *Egyptian Journal of Chemistry* 2019, **62**, 1879-1894, https://doi.org/10.21608/EJCHEM.2019.7656.1649.

26. Fouda, A.S.; Eissa, M.; El-Hossiany, A. Ciprofloxacin as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution. *Int. J. Electrochem. Sci.* 2018, **13**, 11096–11112, https://doi.org/10.20964/2018.11.86.

27. Fouda, A.S.; Abdel Haleem, E. Berry Leaves Extract as Green Effective Corrosion Inhibitor for Cu in Nitric Acid Solutions. *Surface Engineering and Applied Electrochemistry* 2018, **54**, 498-507, https://doi.org/10.3103/S1068375518050034.

28. Hsissou, R.; Abbout, S.; Berisha, A.; Berradi, M.; Assouag, M.; Hajjaji, N.; Elharfi, A. Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 carbon steel in 1.0 M HCl solution. *Journal of Molecular Structure* 2019, **1182**, 340–351, https://doi.org/10.1016/j.molstruc.2018.12.030.

29. Fouda, A.S.; El-Ewady, G.; Ali, A.H. Modazar as promising corrosion inhibitor of carbon steel in hydrochloric acid solution. *Green Chemistry Letters and Reviews* 2017, **10**, 88-100, https://doi.org/10.1080/17518253.2017.1299228.

30. Motawea, M. M.; El-Hossiany, A.; Fouda, A.S. Corrosion Control of Copper in Nitric Acid Solution using Chenopodium Extract. *Int. J. Electrochem. Sci.* 2019, **14**, 1372–1387, https://doi.org/10.20964/2019.02.29.

31. Fouda, A.S.; Zaki, E.G.; Khalifa, M.M.A. Some New Nonionic Surfactants Based on Propane Tricarboxylic Acid as Corrosion Inhibitors for Low Carbon Steel in Hydrochloric Acid Solutions. *Journal of Bio- and Tribo-Corrosion* 2019, **5**, https://doi.org/10.1007/s40735-019-0223-y.

32. Habibiyan, A.; Ramezanzadeh, B.; Mahdavian, M.; Kasaeian, M. Facile size and chemistry-controlled synthesis of mussel-inspired biopolymers based on Polydopamine Nanospheres: Application as eco-friendly corrosion inhibitors for mild steel against aqueous acidic solution. *Journal of Molecular Liquids* 2020, **298**, https://doi.org/10.1016/j.molliq.2019.111974.

33. Zhang, S.; Hou, L.; Du, H.; Wei, H.; Liu, B.; Wei, Y. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion. *Corrosion Science* 2020, **167**, https://doi.org/10.1016/j.corsci.2020.108531.

34. Baymou, Y.; Bidi, H.; Ebn Touhami, M.; Allam, M.; Rkayae, M.; Belakhmima, R.A. Corrosion Protection for Cast Iron in Sulfamic Acid Solutions and Studies of the Cooperative Effect Between Cationic Surfactant and Acid Counterions. *Journal of Bio- and Tribo-Corrosion* 2018, **4**, https://doi.org/10.1007/s40735-018-0127-2.

35. Fouda A.S., Rashwan S.M., Kamel M.M., Abdel Haleem E., Chemical, electrochemical and surface morphology investigation of Cichorium intybus extract (CIE) as beneficial inhibitor for Al in 2 M HCl acid, *Letters in Applied Nano Bio Science* 2020, **9**, 1064-1073.