RESEARCH ARTICLE

Etiologies of genital inflammation and ulceration in symptomatic Rwandan men and women responding to radio promotions of free screening and treatment services

Kristin M. Wall,1*, Julien Nyombayire2, Rachel Parker1, Rosine Ingabire2, Jean Bizimana2, Jeannine Mukamuyango2, Amelia Mazzei2, Matt A. Price3, Marie Aimee Unyuzimana,2 Amanda Tichacek1, Susan Allen1, Etienne Karita2

1 Rwanda Zambia HIV Research Group, Department of Pathology & Laboratory Medicine, School of Medicine and Hubert Department of Global Health and Department of Epidemiology, Rollins School of Public Health, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America, 2 Project San Francisco, Rwanda Zambia HIV Research Group, Kigali, Rwanda, 3 IAVI, NY, NY, University of California San Francisco, San Francisco, CA, United States of America

* kmwall@emory.edu

Abstract

Introduction

The longstanding inadequacies of syndromic management for genital ulceration and inflammation are well-described. The Rwanda National Guidelines for sexually transmitted infection (STI) syndromic management are not yet informed by the local prevalence and correlates of STI etiologies, a component World Health Organization guidelines stress as critical to optimize locally relevant algorithms.

Methods

Radio announcements and pharmacists recruited symptomatic patients to seek free STI services in Kigali. Clients who sought services were asked to refer sexual partners and symptomatic friends. Demographic, behavioral risk factor, medical history, and symptom data were collected. Genital exams were performed by trained research nurses and physicians. We conducted phlebotomy for rapid HIV and rapid plasma reagin (RPR) serologies and vaginal pool swab for microscopy of wet preparation to diagnose Trichomonas vaginalis (TV), bacterial vaginosis (BV), and vaginal Candida albicans (VCA). GeneXpert testing for Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) were conducted. Here we assess factors associated with diagnosis of NG and CT in men and women. We also explore factors associated with TV, BV and VCA in women. Finally, we describe genital ulcer and RPR results by HIV status, gender, and circumcision in men.

Results

Among 974 men (with 1013 visits), 20% were positive for CT and 74% were positive for NG. Among 569 women (with 579 visits), 17% were positive for CT and 27% were positive for NG. In multivariate analyses, factors associated with CT in men included younger age,
responding to radio advertisements, <17 days since suspected exposure, and not having dysuria. Factors associated with NG in men included not having higher education or full-time employment, <17 days since suspected exposure, not reporting a genital ulcer, and having urethral discharge on physical exam. Factors associated with CT in women included younger age and ≤10 days with symptoms. Factors associated with NG in women included younger age, lower education and lack of full-time employment, sometimes using condoms vs. never, using hormonal vs. non-hormonal contraception, not having genital ulcer or itching, having symptoms ≤10 days, HIV+ status, having BV, endocervical discharge noted on speculum exam, and negative vaginal wet mount for VCA. In multivariate analyses, only reporting >1 partner was associated with BV; being single and RPR+ was associated with TV; and having ≤1 partner in the last month, being pregnant, genital itching, discharge, and being HIV and RPR negative were associated with VCA. Genital ulcers and positive RPR were associated with being HIV+ and lack of circumcision among men. HIV+ women were more likely to be RPR+. In HIV+ men and women, ulcers were more likely to be herpetic rather than syphilitic compared with their HIV-counterparts.

Conclusions
Syndromic management guidelines in Rwanda can be improved with consideration of the prevalence of confirmed infections from this study of symptomatic men and women representative of those who would seek care at government health centers. Inclusion of demographic and risk factor measures shown to be predictive of STI and non-STI dysbioses may also increase diagnostic accuracy.

Introduction
Globally, over 1 million new sexually transmitted infections (STI) occur each day [1]. The prevalence of STI increased an estimated 59% in sub Saharan Africa between 1999 and 2005 and has continued to rise [2]. The World Health Organization (WHO) 2016–2021 Global Health Sector Strategy on Sexually Transmitted Infections aims to reduce STI 90% by 2030 using “[epidemiologic] information for focused action” [3].

The association between genital ulceration and inflammation (GUI) due to STI and non-STI etiologies and heterosexual HIV transmission and acquisition has been extensively studied in Africa [4–12]. Broadly, in observational studies GUI is associated with both transmitting and acquiring HIV in both men and women, and with transmission of more than one virion, an otherwise rare event, in cohabiting heterosexual discordant couples which comprise one of the largest HIV risk groups [6, 13–17].

Ulcerative STI that may facilitate HIV transmission include syphilis (Treponema pallidum, TP), Herpes simplex virus (HSV), and chancroid (Haemophilus ducreyi, HD) [18–20]. Inflammatory STI that increase HIV transmission include gonorrhea (Neisseria gonorrhoeae, NG), chlamydia (Chlamydia trachomatis, CT), and Trichomonas vaginalis (TV) [21–24]. Common non-STI dysbioses associated with genital inflammation include bacterial vaginosis (BV) and vaginal Candida albicans (VCA) [25–29].

Untreated TP, HD, HSV, NG, CT and TV can cause severe morbidity and, along with BV and VCA (which are troublesome but non-invasive), can contribute to HIV transmission. In our studies in African HIV discordant heterosexual couples, GUI contribute a substantial population attributable fraction of HIV transmission in both donor and recipient [15].
The longstanding inadequacies of syndromic management for GUI are well-described [30–37] but this approach remains the default in many resource-limited settings in Africa due to the high cost of molecular and culture-based diagnostics. The Rwanda National Guidelines for HIV and STI syndromic management were last updated in 2019 but these guidelines are not yet informed by the local prevalence and correlates of STI etiologies, a component WHO guidelines stress as critical to optimize locally relevant algorithms. We have previously published results of a survey of GUI among Female Sex Workers (FSW) in Kigali, but that study lacked molecular diagnostics for NG and CT [38].

Here we contribute to the epidemiologic data needed to inform improved diagnostic and treatment algorithms in Rwanda by exploring demographic, behavioral, medical history, symptom, genital exam, and laboratory factors associated with molecular diagnosis of NG and CT in men and women. We also explore factors associated with vaginal pathogens TV, BV and VCA in women. Finally, we describe genital ulcer and rapid plasma reagin (RPR) results stratified by gender, HIV status, and among men, by male circumcision status.

Methods

Ethics

This program was approved as non-research by the Rwandan National Ethics Committee. This program was determined to be non-research by the Emory Institutional Review Board criteria. Diagnostic and treatment were provided anonymously as free services.

Setting

Kigali, the capital of Rwanda, has a population of over 1 million people and an adult HIV prevalence of 4.3% [39]. Between January 2016 and August 2019, The Center for Family Health Research (CFHR), a research site established in Kigali in 1986 and affiliated with Emory University in Atlanta, GA, USA, implemented a program for diagnosis and treatment of symptomatic GUI residents of Kigali. CFHR has worked closely with the Rwanda Ministry of Health (MoH) on research for improved HIV and reproductive health care in government-run health centers for many years [25, 40–43].

Patient recruitment

Patients were residents of Kigali, Rwanda and were recruited in three ways: radio announcements, partner/friend referral, and pharmacist referral. Radio announcements were made in Kinyarwanda, Rwanda’s vernacular, encouraging men and women with symptoms suggestive of GUI (e.g., genital discharge, discomfort, ulcer) to seek free services at CFHR clinic and were broadcast throughout Kigali. Clients who sought services were then asked to refer sexual partners and symptomatic friends. Local pharmacists were alerted to the program and asked to refer individuals seeking treatments for suggestive symptoms. There were no inclusion/exclusion criteria applied to participant recruitment. Participants are representative of residents of Kigali with genital symptoms who self-selected to receive care.

Data collection and diagnostic procedures

Demographics, behavioral risk factors, medical histories, and symptoms were collected using a standard instrument (S1 Fig). This information was obtained during interviews conducted by nurses who recorded data on paper and entered it into MS Access. Similarly, findings from genital exams performed by trained physicians and nurses were recorded on paper and entered into MS Access. Samples for laboratory testing were taken from all patients and included
phlebotomy for rapid HIV and RPR serologies and vaginal pool swab for microscopy of wet preparation to diagnose TV, BV and VCA. GeneXpert testing for NG and CT (Cepheid, Sunnyvale USA) was conducted for all patients using endocervical swabs obtained from women and either urethral swabs (when discharge was reported or noted on physical exam) or urine samples from men. In collaboration with the MoH, CFHR developed a uniform alphanumeric identifier to allow anonymous data recording.

Data analysis
Analyses were conducted with Statistical Analysis Software (SAS, Cary, NC). Frequencies of single and multiple infections were stratified by gender and HIV status. Demographic, behavioral, medical history, physical exam, microscopy and serology results were tabulated by gender and by NG and CT results. Bivariate and multivariate analyses of factors associated with NG or CT are presented in tables. Multivariable logistic regression models included variables associated with each outcome at $p<0.05$ in bivariate analysis and then backward selection was applied. Prevalence odds ratios (crude and adjusted, cPOR and aPOR, respectively) and 95% confidence intervals (CIs) and 2-sided p-values are presented. Variable multi-collinearity was assessed. Repeated visits by STI clients with new complaints were accounted for using the GENMOD procedure.

Bivariate and multivariate factors associated with vaginal pathogens TV, BV and VCA in women were analyzed in analogous fashion with results summarized in text. Demographic, behavioral, medical history, and HIV and RPR serology results were considered for model inclusion. Finally, genital ulcer and RPR results were described by gender, HIV status, and among men, by male circumcision status.

Results
Unless specified in text, p-values are <0.05 for comparisons with details presented in Tables.

Summary of GUI diagnosed in men and women (Table 1)
GeneXpert for NG and CT were provided to men during 1013 visits (974 unique men) between March 2017 and February 2019. Men tested HIV+ during 5% of these visits. Prevalence of NG was 74% and prevalence of CT was 20%, with no differences by HIV status. In the 975 visits with RPR results, TP prevalence was significantly higher among HIV+ (13%) compared with HIV- (5%) men. Nineteen percent of visits were negative for all pathogens, and 17% of visits had more than one infection identified.

GeneXpert for NG and CT were provided to women during 579 visits (569 unique women) between March 2017 and February 2019. Women tested HIV+ during 13% of these visits. Prevalence of NG was 26% and prevalence of CT was 17%, with higher prevalence of NG among HIV+ women. The prevalence of TV (overall 13%) was higher in HIV+ women, whereas the prevalence of VCA (overall 21%) was higher in HIV- women. In the 568 visits with RPR results, TP prevalence was significantly higher among HIV+ (22%) compared with HIV- (6%) women and having multiple pathogens identified was more prevalent among HIV+ (36%) compared with HIV- (24%) women’s visits. Conversely, having no pathogen identified was more prevalent in HIV- (31%) versus HIV+ (18%) women’s visits.

Demographics and factors associated with CT and NG in men (Tables 2 and 3)
Men averaged 30.8 years of age, 77% were single, 64% had at least a secondary education, 55% were employed full time, 22% reported more than one partner in the last 30 days and 57% reported never using condoms in the past three months. The most common symptoms
reported were urethral discharge (89%) and dysuria (80%). Physical findings included urethral discharge in 91% and genital ulcer in 5% of men (Table 2).

Multivariate analyses (Table 3) showed younger age, responding to radio advertisements, <17 days since suspected exposure, and not having dysuria as independent factors associated with CT.

Multivariate analyses (Table 3) showed not having higher education or full-time employment, <17 days since suspected exposure, not reporting a genital ulcer, and urethral discharge on physical exam as independent factors associated with NG.

HIV, RPR serologic results, and circumcision status were not associated with either CT or NG.

Demographics and factors associated with CT and NG in women (Tables 4 and 5)

The mean age women was 28.7, they had 1.3 children and desired 1.4 more on average, 54% were single, 53% had a secondary education or more, 34% had full-time employment, 83% reported < = 1 partner in the last 30 days and 63% reported never using condoms in the past three months. Vaginal discharge was the most common presenting symptom (82%) and endocervical inflammation or discharge was noted on 49% of speculum exams. (Table 4)

Multivariate analyses (Table 5) showed younger age and having symptoms < = 10 days as independent factors associated with CT.
Table 2. Factors associated with CT or NG infection in men in Kigali, Rwanda (N = 1013).

Demographics	Total (N = 1013)	CT-infected (N = 204)	CT-uninfected (N = 809)	p-value	NG-infected (N = 751)	NG-uninfected (N = 262)	p-value
	n/mean	Col%/SD	n/mean	Row%/SD			
Age, continuous (years)	30.8 7.1	29.4 5.6	31.1 7.4	0.001	30.5 7.0	31.6 7.3	0.029
Referrer							
Radio Advert	688 68%	151 22%	537 78%	0.037	488 71%	200 29%	0.001
Friends/Walk-in/Pharmacy/Contact Partner/Internet	325 32%	53 16%	272 84%	0.011	263 81%	62 19%	0.006
Living and Marital Status							
Married and Cohabitating	232 23%	33 14%	199 86%	0.011	156 67%	76 33%	0.006
Single or Divorced/Separated/Widow	781 77%	171 22%	610 78%	0.011	595 76%	186 24%	0.011
Education Level							
None	25 2%	1 4%	24 96%	0.095	16 64%	9 36%	0.001
Primary	339 34%	66 19%	273 81%	0.095	267 79%	72 21%	0.001
Secondary	454 45%	89 20%	365 80%	0.095	343 76%	111 24%	0.001
Higher	193 19%	47 24%	146 76%	0.095	123 64%	70 36%	0.001
Employment Status							
Full-time employment	552 55%	122 22%	430 78%	0.095	392 71%	160 29%	0.015
Part-time/Student/Jobless	459 45%	82 18%	377 82%	0.095	357 78%	102 22%	0.015
Sexual behaviors							
Number of partners in last 30 days	704 78%	138 20%	566 80%	0.422	518 74%	186 26%	0.051
More than one partner	203 22%	45 22%	158 78%	0.422	163 80%	40 20%	0.051
Condom use during vaginal sex in the last three months	27 3%	4 15%	23 85%	0.555	14 52%	13 48%	0.015
Sometimes	363 40%	69 19%	294 81%	0.555	279 77%	84 23%	0.015
Never	517 57%	110 21%	407 79%	0.555	387 75%	130 25%	0.015
Number of days since sexual contact you suspect STI was acquired from							
< 8	331 35%	83 25%	248 75%	0.010	292 88%	39 12%	<0.0001
9–16	288 31%	58 20%	230 80%	0.010	235 82%	53 18%	<0.0001
> = 17	323 34%	50 15%	273 85%	0.010	177 55%	146 45%	<0.0001
Urethral discharge							
Yes	895 89%	188 21%	707 79%	0.081	717 80%	178 20%	<0.0001
No	114 11%	16 14%	98 86%	0.081	32 28%	82 72%	<0.0001
Dysuria							
Yes	810 80%	153 19%	657 81%	0.034	599 74%	211 26%	0.680
No	199 20%	51 26%	148 74%	0.034	150 75%	49 25%	0.680
Genital itching							
Yes	67 7%	14 21%	53 79%	0.864	39 58%	28 42%	0.001
No	854 93%	171 20%	683 80%	0.864	649 76%	205 24%	0.001
Genital ulcer							
Yes	41 4%	6 15%	35 85%	0.336	13 32%	28 68%	<0.0001
No	878 96%	183 21%	695 79%	0.336	681 78%	197 22%	<0.0001
Number of days with symptoms							
1–5	385 41%	100 26%	285 74%	0.004	332 86%	53 14%	<0.0001

(Continued)
Multivariate analyses (Table 5) showed younger age, lower education and lack of full-time employment, sometimes using condoms vs. never, using hormonal contraception vs. other or no contraception, not having a genital ulcer or itching, having symptoms for <10 days, HIV+ status, endocervical discharge noted on speculum exam, BV, and negative VCA as independent factors associated with NG.

Factors associated with of BV, TV and VCA in women (not tabled)

Only reporting >1 partner remained independently associated with BV in multivariate analyses (POR 2.21, p = 0.003). Factors associated with TV in multivariate analyses were being single and RPR+ (aPOR 2.05, p = 0.009 and aPOR 2.37, p = 0.023, respectively). Factors associated with VCA were having <1 partner in the last month (aPOR 4.26, p = 0.005), being pregnant (aPOR 3.05, p = 0.002), always using condoms or not having sex in the last three months vs. never using condoms (aPOR 2.42, p = 0.023), genital itching (aPOR 1.69, p = 0.034), genital discharge (aPOR 2.56, p = 0.011), and being HIV and RPR negative (aPOR 2.93, p = 0.025 and aPOR 4.94, p = 0.031, respectively).

Genital ulcers in men and women (not tabled)

Reported and/or observed genital ulcers were more common among HIV+ (20%) compared with HIV- (5%) men (p<0.001). Genital ulcers were noted during physical examination in

Table 2. (Continued)

Demographics	Total (N = 1013)	CT-infected (N = 204)	CT-uninfected (N = 809)	p-value	NG-infected (N = 751)	NG-uninfected (N = 262)	p-value
n / mean	n / mean	n / mean	n / mean		n / mean	n / mean	
6–10	254 27%	40 16%	214 84%	0.181	191 75%	63 25%	0.981
11–21	192 21%	33 17%	159 83%	0.354	43 83%	9 17%	0.136
>21	105 11%	17 16%	88 84%	0.199	56 53%	49 47%	<0.0001

Laboratory and physical exam

HIV Status

| Positive | 54 5% | 7 13% | 47 87% | 0.623 | 17 37% | 29 63% | <0.0001 |
| Negative | 958 95% | 196 20% | 762 80% | | 711 74% | 247 26% | |

RPR Result

| Positive | 52 5% | 13 25% | 39 75% | 0.196 | 41 82% | 9 17% | 0.136 |
| Negative | 923 95% | 182 20% | 741 80% | | 677 73% | 246 27% | |

Urethral discharge

| Yes | 858 91% | 178 21% | 680 79% | 0.058 | 416 79% | 108 21% | 0.192 |
| No | 87 9% | 13 15% | 74 85% | | 15 17% | 72 83% | |

Genital ulcer

| Yes | 46 5% | 8 17% | 38 83% | 0.623 | 17 37% | 29 63% | <0.0001 |
| No | 898 95% | 183 20% | 715 80% | | 686 76% | 212 24% | |

Circumcision status

| Circumcised | 524 67% | 122 23% | 402 77% | 0.058 | 416 79% | 108 21% | 0.192 |
| Uncircumcised | 259 33% | 45 17% | 214 83% | | 195 75% | 64 25% | |

Not significant not shown include: Self-reported symptoms dyspareunia, unpleasant odor, abdominal pain, anal discharge, anal ulcer, anal warts, and sore throat; genital exam results white accumulation, condyloma/warts, inguinal adenopathy >1 cm unilateral and bilateral, inflammation, and testicular mass/tenderness

RPR: Rapid plasma reagin; STI: Sexually transmitted disease; NG: Neisseria gonorrhoeae, CT: Chlamydia trachomatis

https://doi.org/10.1371/journal.pone.0250044.t002
Table 3. Univariate and multivariate analysis of factors associated with CT or NG infection in men in Kigali, Rwanda (N = 1013).

Demographics	CT infection	NG infection														
	cPOR	95% CI	p-value	aPOR	95% CI	p-value	aPOR	95% CI	p-value							
Age (per year increase)	0.96	0.94	0.99	0.001	0.96	0.94	0.98	0.001	0.98	0.96	1.00	0.029				
Referrer																
Radio Advert	1.44	1.02	2.04	0.038	1.44	1.01	2.07	0.046	ref	---	---	---				
Friends/Walk-in/Pharmacy/Contact	ref	ref			1.76	1.28	2.43	0.001								
Partner/Internet																
Living and Marital Status																
Married and Cohabiting	ref	ref														
Single or Divorced/Separated/Widow	1.69	1.13	2.54	0.011	1.56	1.14	2.15	0.006								
Education Level																
None/Primary/Secondary	ref	1.84	1.32	2.58	0.000	1.57	3.63	<0.0001								
Higher	1.37	0.95	1.99	0.092	ref	---	---	---	ref	---	---	---				
Employment Status																
Full-time employment	1.30	0.96	1.78	0.094	ref	---	---	---	ref	---	---	---				
Part-time/Student/Jobless	ref	1.45	1.09	1.92	0.011	1.51	1.05	2.17	0.028							
Sexual behaviors																
Number of partners in last 30 days																
None or one partner	ref	ref														
More than one partner	1.17	0.80	1.71	0.424	1.5	1.02	2.2	0.040								
Condom use during vaginal sex in the last 3 months																
No partners or always used condoms	0.64	0.22	1.90	0.426	0.37	0.17	0.8	0.012								
Sometimes	0.87	0.62	1.21	0.411	1.13	0.83	1.54	0.450								
Never	ref	ref														
Number of days since sexual contact you suspect STI was acquired from																
0–16	1.61	1.13	2.30	0.009	1.64	1.15	2.35	0.007	4.68	3.43	3.37	<0.0001	3.29	2.30	4.7	<0.0001
>= 17	ref	ref			ref	---	---	---	ref	---	---	---				
Self-reported symptoms																
Urethral discharge																
Yes	1.63	0.94	2.83	0.084	ref	---	---	---	ref	---	---	---				
No	ref	ref			ref	---	---	---	ref	---	---	---				
Dysuria																
Yes	ref	ref			ref	---	---	---	ref	---	---	---				
No	1.48	1.03	2.13	0.034	1.51	1.03	2.22	0.035	1.05	0.74	1.49	0.792				
Genital itching																
Yes	1.05	0.57	1.93	0.872	ref	---	---	---	ref	---	---	---				
No	ref	ref			ref	---	---	---	ref	---	---	---				
Genital ulcer																
Yes	ref	ref			ref	---	---	---	ref	---	---	---				
No	1.53	0.63	3.70	0.345	7.50	3.79	14.85	<0.0001	4.50	2.22	9.13	<0.0001				
Number of days with symptoms																
1–10	1.39	0.97	1.98	0.075	3.06	2.26	4.15	<0.0001								
> = 11	ref	ref			ref	---	---	---	ref	---	---	---				
Laboratory and physical exam																
HIV Status																
Positive	0.58	0.26	1.31	0.189	0.99	0.53	1.86	0.980								

(Continued)
19% of RPR+ and 4% of RPR- men and conversely 20% of men with ulcers were RPR+ compared to 4% of men without ulcers (p < 0.001). Among HIV+ men, none of the seven who were RPR+ had reported and/or observed ulcers while 23% of 43 HIV+ RPR- men had ulcers (p = 0.319). In contrast, among HIV- RPR+ men 21% had reported or observed ulcers compared to only 4% of HIV-RPR- men (p < 0.001). This suggests that ulcers among HIV+ men were more likely herpetic while among HIV- men at least one fifth were syphilitic.

Although HIV- men were more likely to be circumcised than HIV+ men (67% vs. 58%) in our program, this difference was not significant (p = 0.196). Among circumcised men, those who were HIV+ were more likely to have ulcers (13% vs. 4%, p = 0.074) and to be RPR+ (20% vs. 4%, p = 0.003). Among uncircumcised men, those who were HIV+ were also more likely to have ulcers (27% vs. 7%, p = 0.001) while the difference in RPR+ results was not significant (12% vs. 6%, p = 0.324).

Among women, the prevalence of reported or observed ulcers was not significantly different by HIV serostatus (20% in HIV+ vs. 14% p = 0.196). Genital ulcers were noted during physical examination for 28% of RPR+ women compared with 14% of RPR- women (p < 0.001). As with men, the association between RPR results and reported and/or observed ulcers differed in HIV+ and HIV- women: 25% of HIV+RPR+ vs. 20% of HIV+RPR- had ulcers, p = 0.729, compared with 37% of HIV-RPR+ vs. 13% of HIV-RPR- women having ulcers (p = 0.001).

Discussion

We found a high prevalence of NG and CT among symptomatic men and women in Kigali. Among men, urethral discharge was strongly associated with a diagnosis of NG while dysuria was not associated with either infection. Specific symptoms were less helpful in identifying NG and CT among women. Physical exam findings, demographic variables and reported risk behaviors were independently predictive of NG and/or CT in both men and women, as were vaginal wet mount findings and HIV serologies among women. Among women, TV and BV were associated with sexual risk behaviors but not with symptoms while VCA was associated with vaginal itching and discharge and with low-risk profiles. There were complex inter-

Table 3. (Continued)

Demographics	CT infection	NG infection										
	cPOR	95% CI	p-value	aPOR	95% CI	p-value	cPOR	95% CI	p-value	aPOR	95% CI	p-value
Negative	ref	ref	ref	---	---	---	---	---	---	---	---	---
RPR Result												
Positive	1.30	0.68	2.52	0.429	1.65	0.82	3.3	0.158				
Negative	ref	ref	ref	---	---	---	---	---	---	---	---	---
Urethral discharge												
Yes	1.49	0.81	2.75	0.204	19.94	11.12	35.76	<0.0001	16.38	7.28	36.89	<0.0001
No	ref	ref	ref	---	---	---	---	---	---	---	---	---
Genital ulcer												
Yes	0.82	0.38	1.80	0.626	ref	---	---	---	ref	---	---	---
No	ref	ref	ref	---	---	---	---	---	---	---	---	---

aPOR: Adjusted prevalence odds ratio; cPOR: Crude prevalence odds ratio; RPR: Rapid plasma reagin; CI: Confidence interval; STI: Sexually transmitted disease; NG: Neisseria gonorrhoeae, CT: Chlamydia trachomatis

Not significant not shown include: Self-reported symptoms dyspareunia, unpleasant odor, abdominal pain, anal discharge, anal ulcer, anal warts, and sore throat; genital exam results white accumulation, condyloma/warts, inguinal adenopathy >1cm

https://doi.org/10.1371/journal.pone.0250044.t003
Demographics	Total (N = 579)	CT-infected (N = 98)	CT-uninfected (N = 481)	p-value	NG-infected (N = 152)	NG-uninfected (N = 427)	p-value	
Age, continuous (years)		28.7 7.2	25.6 6.1	29.3 7.2	<0.0001	26.8 6.3	29.4 7.4	<0.0001
Referrer								
Radio Advert	284 49%	37 13%	247 87%	0.014	67 24%	217 76%	0.153	
Friends/Walk-in/Pharmacy/Contact Partner/Internet	295 51%	61 21%	234 79%	0.012	85 29%	210 71%		
Living and Marital Status								
Married and Cohabiting	268 46%	34 13%	234 87%	0.012	60 22%	208 78%	0.050	
Single or Divorced/Separated/Widow	311 54%	64 21%	247 79%	0.012	92 30%	219 70%		
Education Level								
None	25 4%	2 8%	23 92%	0.513	9 36%	16 64%	0.001	
Primary	242 42%	38 16%	204 84%	81 33%	161 67%			
Secondary	246 42%	46 19%	200 81%	54 22%	192 78%			
Higher	66 11%	12 18%	54 82%	8 12%	58 88%			
Employment Status								
Full-time employment	199 34%	30 15%	169 85%	0.012	39 20%	160 80%	0.008	
Part-time/Student/Jobless	379 66%	68 18%	311 82%	113 30%	266 70%			
Sexual behaviors								
Number of partners in last 30 days								
None or one partner	444 83%	70 16%	374 84%	0.112	95 21%	349 79%	<0.0001	
More than one partner	88 17%	20 23%	68 77%	43 49%	45 51%			
Condom use during vaginal sex in the last 3 months								
No partners or always used condoms	35 7%	6 17%	29 83%	0.259	4 11%	31 89%	<0.0001	
Sometimes	163 31%	34 21%	129 79%	66 40%	97 60%			
Never	334 63%	50 15%	284 85%	68 20%	266 80%			
Number of days since sexual contact you suspect STI was acquired from								
<= 8	46 9%	8 17%	38 83%	0.066	15 33%	31 67%	0.003	
9–16	78 15%	20 26%	58 74%	31 40%	47 60%			
> = 17	409 77%	61 15%	348 85%	92 22%	317 78%			
Number of children under 18, continuous	1.3 1.3	1.0 1.1	1.1 1.3	1.3 1.3	0.026	1.2 1.1	1.3 1.3	0.600
Number of additional children desired, continuous	1.4 1.1	1.6 1.1	1.1 1.4	1.2 1.0	0.040	1.3 1.0	1.4 1.2	0.279
Pregnant								
Yes	48 8%	8 17%	40 83%	0.947	14 23%	37 77%	0.569	
No	528 92%	90 17%	438 83%	141 27%	387 73%			
Want more children in next two years								
Yes	125 23%	20 16%	105 84%	0.666	33 27%	88 73%	0.821	
No	419 77%	74 18%	345 82%	106 26%	298 74%			
Family planning method among women not pregnant and do not want more children in next two years								
Non-Hormonal Method (IUD/Condom/Tube Ligation/Natural Method) or No Method	268 66%	47 18%	221 82%	0.498	56 21%	212 79%	0.001	
Hormonal Implant	50 12%	9 18%	41 82%	24 48%	26 52%			
Injectable	48 12%	5 10%	43 90%	16 33%	32 67%			

(Continued)
Demographics	Total (N = 579)	CT-infected (N = 98)	CT-uninfected (N = 481)	p-value	NG-infected (N = 152)	NG-uninfected (N = 427)	p-value					
Pills	n /mean	Col %/SD	n /mean	Row %/SD	n /mean	Row %/SD	n /mean	Row %/SD				
40	10%	9	23%	31	78%	12	30%	28	70%			
Family planning method and pregnancy composite												
Pregnant	48	8%	8	17%	40	83%	11	23%	37	77%	0.003	
Hormonal method (implant, injectable, pills)	139	24%	23	17%	116	83%	52	37%	87	63%		
Non-Hormonal (IUD/Condom/ Tubal Ligation/ Natural Method) or No Method	388	67%	67	17%	321	83%	89	23%	299	77%		
Self-reported symptoms												
Vaginal discharge												
Yes	475	82%	78	16%	397	84%	123	26%	352	74%	0.704	
No	101	18%	20	20%	81	80%	28	28%	73	72%		
Genital itching												
Yes	320	56%	52	16%	268	84%	57	18%	263	82%	<0.0001	
No	254	44%	44	17%	210	83%	92	36%	162	64%		
Dysuria												
Yes	266	46%	44	17%	222	83%	73	28%	191	72%	0.306	
No	311	54%	54	17%	257	83%	76	24%	235	76%		
Genital ulcer												
Yes	64	11%	9	14%	55	86%	9	14%	55	86%	0.020	
No	508	89%	89	18%	419	82%	140	28%	368	72%		
Number of days with symptoms												
1–5	72	13%	16	22%	56	78%	24	33%	48	67%	0.003	
6–10	77	14%	17	22%	60	78%	27	35%	50	65%		
11–21	131	24%	18	14%	113	86%	40	31%	91	69%		
>21	257	48%	37	14%	220	86%	48	19%	209	81%		
Laboratory and physical exam												
HIV Status												
Positive	75	13%	8	11%	67	89%	34	45%	41	55%	<0.0001	
Negative	504	87%	90	18%	414	82%	118	23%	386	77%		
RPR Result												
Positive	46	8%	10	22%	36	78%	401	46%	25	54%	0.002	
Negative	522	92%	88	17%	434	83%	128	25%	394	75%		
Trichomonas												
Positive	72	13%	18	25%	54	75%	18	25%	54	75%	0.818	
Negative	491	87%	75	15%	416	85%	129	26%	362	74%		
Candida												
Positive	118	21%	12	10%	106	90%	0.035	13%	110	89%	<0.0001	
Negative	437	79%	80	18%	357	82%	132	30%	305	70%		
Bacterial vaginosis												
Positive	113	21%	25	22%	88	78%	0.062	47	42%	66	58%	<0.0001
Negative	438	79%	65	15%	373	85%	96	22%	342	78%		
Vaginal Inflammation or Discharge												
Yes	469	87%	75	16%	394	84%	0.232	116	25%	353	75%	0.076
No	69	13%	15	22%	54	78%	24	35%	45	65%		
Endocervical Inflammation or Discharge												

(Continued)
relationships between HIV and RPR serologies and genital ulcers, and these were further influenced by circumcision status among men. These findings exemplify the locally relevant data that can inform approaches to diagnosis and treatment in Rwanda as called for by WHO. Our models had good discrimination and use of these data may offer improvement over the current algorithm recommended by the Rwandan National Guidelines.

As in other studies, syndromic management may perform better among men compared to women due to the ease of detecting abnormalities on external genitalia and the high likelihood of NG among men reporting urethral discharge [44]. Surprisingly, dysuria was as common as discharge in men but contrary to conventional wisdom we did not find an association between dysuria and NG or CT [45].

The most common presenting symptom among women was vaginal discharge which was only associated with VCA and not with NG, CT, BV or TV. Genital itching was reported by over half of patients and was also predictive of VCA. Itching was also useful in pointing away from NG, as was reported ulcer. Gynecologic exam, specifically endocervical discharge, was helpful in the diagnosis of NG. Interestingly, wet mount results were predictive NG (BV+, VCA-), suggesting that these inexpensive and simple tests should be included in any workup of symptomatic women. Despite extensive laboratory testing, we failed to find an etiology for a substantial proportion of women seeking care. This may reflect poor sensitivity of microscopy as well as non-infectious causes of symptoms. As has been noted elsewhere, factors associated with NG were more useful in predicting infections than those for CT [46, 47].

For both men and women, younger age was predictive of both NG and CT and lower education level and jobless or part-time employment status were predictive of NG. Interestingly, number of partners was not independently associated with CT or NG. Most men and women reported never using condoms and very few reported always using condoms. Women who sometimes used condoms were at higher risk of NG than those who never used them. This may be due to increased condom use in women with higher risk partners.

Genital ulcers were not a common presenting symptom and were not associated with RPR results among HIV+ patients. RPR provided a diagnosis for 20% of ulcers among HIV- men and 15% among HIV- women. As others in Africa have reported, HSV is the most likely diagnosis for RPR- ulcers which was more common among HIV+ patients [48]. Non-circumcision among men is associated with HIV acquisition and with increased prevalence and incidence of ulcerative STI [49–52]. We have previously shown a relationship between ulcers, smegma and HIV acquisition in uncircumcised men [15]. Among HIV- men, those who were uncircumcised were not more likely to report ulcers or to be RPR+ than their circumcised counterparts.
Table 5. Univariate and multivariate analysis of factors associated with CT or NG infection in women in Kigali, Rwanda (N = 579).

Demographics	CT infection		NG infection													
	cPOR	95% CI	p-value	aPOR	95% CI	p-value	cPOR	95% CI	p-value	aPOR	95% CI	p-value				
Age (per year increase)	0.91	0.88	0.95	<0.0001	0.90	0.86	0.94	<0.0001	0.95	0.92	0.97	<.001	0.93	0.89	0.97	<0.001
Referrer																
Radio Advert	ref															
Friends/Walk-in/Pharmacy/Contact Partner/Internet	1.74	1.11	2.72	0.015	1.31	0.91	1.90	0.150								
Living and Marital Status																
Married and Cohabitating	ref															
Other	1.78	1.13	2.80	0.012	1.46	1.00	2.13	0.048								
Education Level																
None/Primary	ref															
Secondary/Higher	1.30	0.83	2.01	0.248	ref			ref								
Employment Status																
Full-time employment	ref															
Part-time/Student/Jobless	1.23	0.77	1.96	0.383	1.76	1.16	2.66	0.008	1.95	1.12	3.39	0.019				
Sexual behaviors																
Number of partners in last 30 days																
None or one partner	ref															
More than one partner	1.56	0.89	2.75	0.119	3.53	2.19	5.69	<0.0001								
Condom use during vaginal sex in the last 3 months																
No partners or always used condoms	1.17	0.46	2.97	0.741	0.48	0.15	1.50	0.207	0.74	0.22	2.41	0.611				
Sometimes	1.49	0.92	2.42	0.107	2.75	1.81	4.18	<0.0001	1.79	1.07	2.98	0.025				
Never	ref															
Number of days since sexual contact you suspect STI was acquired from																
0–8	1.20	0.53	2.69	0.666	1.66	0.87	3.16	0.126								
9–16	1.96	1.1	3.49	0.022	2.29	1.36	3.87	0.002								
> = 17	ref															
Number of children under 18 (per child increase)	0.82	0.69	0.99	0.037	0.96	0.84	1.10	0.594								
Number of additional children desired per child increase	1.22	1.02	1.45	0.027	0.92	0.79	1.07	0.274								
Family planning method and pregnancy composite																
Pregnant	0.96	0.43	2.14	0.915	1.00	0.49	2.03	0.999	1.30	0.57	2.99	0.532				
Hormonal method (implant, injectable, pills)	0.95	0.56	1.59	0.837	2.01	1.32	3.05	0.001	1.73	1.02	2.94	0.040				
Non-Hormonal (IUD/Condom/Tubal Ligation/Natural Method) or No Method	ref															
Self-reported symptoms																
Vaginal discharge																
Yes	ref															
No	1.26	0.73	2.18	0.408	1.10	0.68	1.78	0.692								
Genital itching																
Yes	ref															
No	1.08	0.69	1.68	0.738	2.62	1.79	3.84	<0.0001	2.54	1.55	4.17	0.0002				

(Continued)
In contrast, among HIV+ men, those who were uncircumcised were more likely to have an ulcer and less likely to be RPR+ than circumcised men. Circumcision is widely promoted in Rwanda and available at no cost in most government health centers as part of HIV prevention services. Though the focus is on protecting HIV- men, our results here suggest that circumcision can benefit HIV+ men by reducing ulcer incidence [53].

It is likely that we missed other less common ulcer etiologies including HD, lymphogranuloma venereum (LGV), and granuloma inguinale (Klebsiella granulomatis) [54]. Our clinicians did suspect chancroid in a few cases, but the service program did not record detailed descriptions or photographs of ulcers and we lacked laboratory diagnostics. The most recent

Table 5.	CT infection	NG infection														
	cPOR	95% CI	p-value	aPOR	95% CI	p-value	aPOR	95% CI	p-value							
Yes	ref															
No	1.06	0.68	1.64	0.796	1.21	0.84	1.75	0.303								
Genital ulcer																
Yes	ref															
No	1.30	0.62	2.73	0.489	2.33	1.12	4.84	0.024	2.52	1.09	5.80	0.030				
Number of days with symptoms																
1–10	1.72	1.06	2.78	0.027	1.76	1.07	2.88	0.026	1.76	1.16	2.68	0.008	1.78	1.05	3.00	0.032
11 or more	ref															
	ref															
Laboratory and physical exam																
HIV Status																
Positive	ref															
Negative	1.83	0.85	3.96	0.124	2.73	1.66	4.47	<0.0001	2.05	1.10	3.83	0.024				
RPR Result																
Positive	1.37	0.66	2.88	0.401	2.58	1.41	4.7	0.002								
Negative	ref															
Trichomonas																
Positive	1.85	1.03	3.32	0.041	ref											
Negative	ref															
Candida																
Positive	ref															
Negative	1.98	1.04	3.77	0.038	3.56	1.89	6.69	<0.0001	2.20	1.11	4.36	0.024				
Bacterial vaginosis																
Positive	1.63	0.98	2.72	0.063	2.63	1.67	4.15	<0.0001	1.89	1.07	3.34	0.028				
Negative	ref															
Vaginal Inflammation OR Discharge																
Yes	ref															
No	1.47	0.79	2.75	0.2201	1.67	0.97	2.86	0.063								
Endocervical Inflammation or Discharge																
Yes	1.83	1.15	2.91	0.010	2.17	1.46	3.23	0.000	1.80	1.11	2.93	0.018				
No	ref															
Genital Ulcer																
Yes	1.19	0.56	2.56	0.649	ref											
No	ref															

IUD: intrauterine device; aPOR: Adjusted prevalence odds ratio; cPOR: Crude prevalence odds ratio; RPR: Rapid plasma reagin; CI: Confidence interval; STI: Sexually transmitted disease; NG: Neisseria gonorrhoeae, CT: Chlamydia trachomatis

https://doi.org/10.1371/journal.pone.0250044.t005
publication presenting confirmed chancroid diagnoses in Rwanda was based on data collected in 1992, which found 27% of ulcers in men and 20% in women had culture-confirmed HD [55–59]. For many years the prevalence of HD had been decreasing in much of Africa [48, 54], but recent publications indicate HD may be staging a comeback [21]. More investigations are needed in Rwanda.

Physical exam findings made important contributions in our program. Examination of male genitalia does not require specialized equipment, but speculum exam requires a skilled clinician, a gynecologic exam table and light which are in limited supply in low resource settings. While genital exams would not be feasible for all symptomatic patients, targeted genital exams in specific circumstances would be feasible and potentially very useful. Distinguishing between vaginal and endocervical discharges would greatly improve diagnostic accuracy and bi-manual exam would identify pelvic inflammatory disease. Similarly, in our setting where less than one in five ulcer patients are RPR+, assessing ulcer characteristics may be worthwhile. Visual exam has traditionally been viewed as unreliable as many ulcers do not have a paradigmatic presentation (e.g. painless ‘clean’ TP ulcer, painful ‘dirty’ HD with inguinal adenopathy, multiple chronic or recurrent shallow vesicular HSV lesions). However, a recent study in Jamaica compared clinical diagnosis with M-PCR and found visual diagnoses of TP, HSV, and HD were 67.7%, 53.8%, and 75% sensitive and 91.2%, 83.6%, and 75.4% specific, respectively [60].

The advent of point-of-care diagnostics for NG and CT has transformed STI diagnosis, but given relatively expensive equipment and reagents, this remains out of reach in many low resource settings. We have used pooling to reduce the per-patient cost in Zambia and this could be explored in other settings [61]. GeneXpert kits are also available for TV and they are more sensitive than microscopy. The US CDC has in-house multiplex PCR (M-PCR) for ulcer etiologies including syphilis, HSV and chancroid. A focused study would provide prevalence information that could inform the next update of national guidelines.

Our program has several limitations. Social desirability bias may have led to under-reporting of risky sexual behaviors. We focused on symptomatic men and women and thus missed the many people who are asymptotically infected [62, 63]. We did not screen for active viral hepatitis as recent unpublished surveys have shown a low prevalence of both hepatitis B and C (4% and 3%, respectively reported nationally, 4% and 5% among female sex workers tested in our laboratory). We did not have funding or resources to perform any direct method of detection for TP using ulcer material, and thus may have misclassified some recently infected people who were negative by RPR test. While we did treat TV in male partners referred by TV + women, we did not systematically test for TV in men. Microscopy for TV detection in men is extremely insensitive, and we did not have resources to conduct GeneXpert testing for TV. TV could therefore be the reason for a portion of the symptomatic men with unknown etiology. We did not include HSV serologies because adult seroprevalence is high [64]. Assessment of cervical intraepithelial neoplasia requires more resources than would be achievable on a large scale in Rwandan health centers so we did not address this important problem. Fortunately, 93% of Rwandan girls now receive the human papillomavirus vaccine and future generations will be protected [65]. Lastly, we and others have published an association between female genital schistosomiasis and HIV [66, 67], but this is most commonly seen with S.Haematobium while only S.Mansoni is endemic in Rwanda, thus we did not screen for genital schistosomiasis [68].

Conclusions
Syndromic management guidelines in Rwanda can be improved with consideration of the prevalence of confirmed infections from this program offering services to symptomatic men
and women representative of those who would seek care at government health centers. Our findings indicate that syndromic management performs better among men but is poor among women. Inclusion of demographic and risk factor measures shown to be predictive of STI and non-STI dysbioses may also increase diagnostic accuracy. In symptomatic women, wet mount results for BV and VCA may help diagnose NG and are inexpensive and could be offered for management of women. Targeted genital exams for women in specific circumstances (e.g., in women without genital itching) may also be useful to diagnose NG. More data is needed on how often local prevalence and epidemiology should be reassessed to maintain improved syndromic management.

Supporting information
S1 Fig. STI baseline clinical form.

(DoCX)

Author Contributions

Conceptualization: Julien Nyombayire, Rosine Ingabire, Susan Allen, Etienne Karita.

Data curation: Kristin M. Wall, Julien Nyombayire, Rachel Parker, Susan Allen.

Formal analysis: Kristin M. Wall, Rachel Parker.

Funding acquisition: Susan Allen.

Investigation: Julien Nyombayire, Rosine Ingabire, Jean Bizimana, Jeannine Mukamuyango, Amelia Mazzei, Matt A. Price, Marie Aimee Unyuzimana, Susan Allen, Etienne Karita.

Methodology: Kristin M. Wall, Jean Bizimana, Matt A. Price, Marie Aimee Unyuzimana, Amanda Tichacek, Susan Allen, Etienne Karita.

Project administration: Julien Nyombayire, Rosine Ingabire, Jean Bizimana, Jeannine Mukamuyango, Amelia Mazzei, Amanda Tichacek, Susan Allen, Etienne Karita.

Resources: Susan Allen, Etienne Karita.

Supervision: Julien Nyombayire, Rosine Ingabire, Jean Bizimana, Jeannine Mukamuyango, Amelia Mazzei, Marie Aimee Unyuzimana, Amanda Tichacek, Susan Allen, Etienne Karita.

Validation: Julien Nyombayire, Rachel Parker, Rosine Ingabire, Jeannine Mukamuyango, Amelia Mazzei, Matt A. Price, Marie Aimee Unyuzimana, Amanda Tichacek, Susan Allen.

Writing – original draft: Kristin M. Wall, Susan Allen.

Writing – review & editing: Julien Nyombayire, Rachel Parker, Rosine Ingabire, Jean Bizimana, Jeannine Mukamuyango, Amelia Mazzei, Matt A. Price, Marie Aimee Unyuzimana, Amanda Tichacek, Susan Allen, Etienne Karita.

References

1. World Health Organization. Sexually transmitted infections (STIs) Geneva: WHO; 2019 [updated 14 June 2019]. Available from: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis).

2. World Health Organization. Sexually Transmitted Infections Geneva: World Health Organization; 2019 [updated July 2019; cited 2020 Jan 30]. Available from: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis).
3. World Health Organization. Global health sector strategy on Sexually Transmitted Infections, 2016–2021: WHO; 2016 [updated July 2016]. Available from: http://www.who.int/reproductivehealth/publications/rtis/gssts-sts/en/.

4. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Cliabome DT, Prince J, et al. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science (New York, NY). 2014; 345 (6193):1254031. Epub 2014/07/12. https://doi.org/10.1126/science.1254031 PMID: 25013080; PubMed Central PMCID: PMC4289910.

5. Mujugira A, Magaret AS, Baeten JM, Celum C, Lingappa J. Risk Factors for HSV-2 Infection among Sexual Partners of HSV-2/HIV-1 Co-infected Persons. BMC Res Notes. 2011; 4:64. Epub 2011/03/17. https://doi.org/10.1186/1756-0500-4-64 PMID: 21406077; PubMed Central PMCID: PMC3064615.

6. Haaland RE, Hawkins PA, Salazar-Gonzalez J, Johnson A, Tichacek A, Karita E, et al. Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS pathogens. 2009; 5(1):e1000274. Epub 2009/01/24. https://doi.org/10.1371/journal.ppat.1000274 PMID: 19165325; PubMed Central PMCID: PMC2621345.

7. Auvert B, Buve A, Ferry B, Carael M, Morison L, Lagarde E, et al. Ecological and individual level analysis of risk factors for HIV infection in four urban populations in sub-Saharan Africa with different levels of HIV infection. AIDS. 2001; 15 Suppl 4:S15–30. Epub 2001/11/01. https://doi.org/10.1097/00002030-200108000-00003 PMID: 11686462.

8. Piot P. AIDS: the impact of other sexually transmitted diseases. Netw Res Triangle Park N C. 1988; 9 (2-4). Epub 1988/01/01. PMID: 22180952.

9. Dhana A, Luchters S, Moore L, Lafort Y, Roy A, Scorgie F, et al. Systematic review of facility-based sexual and reproductive health services for female sex workers in Africa. Global Health. 2014; 10:46. Epub 2014/06/12. https://doi.org/10.1186/1744-8603-10-46 PMID: 24916010; PubMed Central PMCID: PMC4070634.

10. Vandenhoudt HM, Langat L, Menten J, Odongo F, Oswago S, Luttah G, et al. Prevalence of HIV and other sexually transmitted infections among female sex workers in Kisumu, Western Kenya, 1997 and 2008. PLoS One. 2013; 8(1):e54953. Epub 2013/02/02. https://doi.org/10.1371/journal.pone.0054953 PMID: 23372801; PubMed Central PMCID: PMC3553007.

11. Vickerman P, Ndowa F, O’Farrell N, Steen R, Alary M, Delany-Moore L. Using mathematical modeling to estimate the impact of periodic presumptive treatment on the transmission of sexually transmitted infections and HIV among female sex workers. Sex Transm Infect. 2010; 86(3):163–8. Epub 2009/10/27. https://doi.org/10.1136/sti.2008.034678 PMID: 19854700.

12. Seck K, Samb N, Tempesta S, Mulanga-Kabeya C, Henzel D, Sow PS, et al. Prevalence and risk factors of cervicovaginal HIV shedding among HIV-1 and HIV-2 infected women in Dakar, Senegal. Sex Transm Infect. 2001; 77(3):190–3. Epub 2001/06/13. https://doi.org/10.1136/sti.77.3.190 PMID: 11402227; PubMed Central PMCID: PMC1744303.

13. Celum C, Wald A, Lingappa JR, Magaret AS, Wang RS, Mugo N, et al. Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. The New England journal of medicine. 2010; 362(5):427–39. Epub 2010/01/22. https://doi.org/10.1056/NEJMoa0904849 PMID: 20089951; PubMed Central PMCID: PMC2838503.

14. Daniels B, Ward H, Ramjee G, Team MDP. Prevalence of Herpes Simplex Virus 2 (HSV-2) infection and associated risk factors in a cohort of HIV negative women in Durban, South Africa. BMC Res Notes. 2016; 9(1):510. Epub 2016/12/14. https://doi.org/10.1186/s13104-016-2319-5 PMID: 27955706; PubMed Central PMCID: PMC5154041.

15. Wall KM, Kilembe W, Vwallka B, Haddad LB, Hunter E, Lakh S, et al. Risk of heterosexual HIV transmission attributable to sexually transmitted infections and non-genital inflammation in Zambian discordant couples, 1994–2012. Int J Epidemiol. 2017; 46(5):427–39. Epub 2017/04/13. https://doi.org/10.1093/ije/dyx045 PMID: 28042442; PubMed Central PMCID: PMC5837621.

16. Joseph Davey DL, Wall KM, Kilembe W, Naw HK, Brill I, Vwallka B, et al. HIV Incidence and Predictors of HIV Acquisition From an Outside Partner in Serodiscordant Couples in Lusaka, Zambia. J Acquir Immune Defic Syndr. 2017; 76(2):123–31. Epub 2017/07/25. https://doi.org/10.1097/QAI.0000000000001494 PMID: 28737591; PubMed Central PMCID: PMC5597474.

17. Boeras DI, Hraber PT, Hurlston M, Evans-Strickfaden T, Bhattacharya T, Giorgi EE, et al. Selection bias at the heterosexual HIV-1 transmission bottleneck. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(46):E156–63. Epub 2011/11/09. https://doi.org/10.1073/pnas.1103764108 PMID: 22065783; PubMed Central PMCID: PMC3219102.

18. Looker KJ, Welton NJ, Sabin KM, Dalal S, Vickerman P, Turner KME, et al. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data. Lancet Infect Dis. 2020; 20(2):240–9. Epub 2019/11/23. https://doi.org/10.1016/S1473-3099(19)30470-0 PMID: 31753763; PubMed Central PMCID: PMC6990396.
19. Rietmeijer CA, Mungati M, Kilmarx PH, Barr BT, Gonese E, Kularatne RS, et al. Serological Markers for Syphilis Among Persons Presenting With Syndromes Associated With Sexually Transmitted Infections: Results From the Zimbabwe STI Etiology Study. Sex Transm Dis. 2019; 46(9):579–83. Epub 2019/04/23. https://doi.org/10.1097/OLQ.0000000000001006 PMID: 31008842; PubMed Central PMCID: PMC6885999.

20. Hayes RJ, Schulz KF, Plummer FA. The cofactor effect of genital ulcers on the per-exposure risk of HIV transmission in sub-Saharan Africa. J Trop Med Hyg. 1995; 98(1):1–8. Epub 1995/02/01. PMID: 7861474.

21. Phiri S, Zadrozny S, Weiss HA, Martinson F, Nyirenda N, Chen CY, et al. Etiology of genital ulcer disease and association with HIV infection in Malawi. Sex Transm Dis. 2013; 40(12):923–8. Epub 2013/11/14. https://doi.org/10.1097/OLQ.0000000000000152 PMID: 24220352.

22. Takuva S, Mugungu O, Mutsvangwa J, Machiha A, Mupambo AC, Maseko V, et al. Etiology and antimicrobial susceptibility of pathogens responsible for urethral discharge among men in Harare, Zimbabwe. Sex Transm Dis. 2014; 41(12):713–7. Epub 2015/01/13. https://doi.org/10.1097/OLQ.0000000000000471 PMID: 25581806.

23. Sylverken AA, Owusu-Dabo E, Yar DD, Salifu SP, Awua-Boateng NY, Amuasi JH, et al. Bacterial etiology of sexually transmitted infections at a STI clinic in Ghana; use of multiplex real time PCR. Ghana Med J. 2016; 50(3):142–8. Epub 2016/10/19. PMID: 27752188; PubMed Central PMCID: PMC5044789.

24. Chirenje ZM, Dhibi N, Handsfield HH, Gonese E, Tippett Barr B, Gwanzura L, et al. The Etiology of Vaginal Discharge Syndrome in Zimbabwe: Results from the Zimbabwe STI Etiology Study. Sex Transm Dis. 2018; 45(6):422–8. Epub 2018/10/19. PMID: 29465674; PubMed Central PMCID: PMC6879447.

25. Barnabas SL, Dabee S, Passmore JS, Jaspan HB, Lewis DA, Jaumdally SZ, et al. Converging epidemics of sexually transmitted infections and bacterial vaginosis in southern African female adolescents at risk of HIV. Int J STD AIDS. 2018; 29(6):531–9. Epub 2017/12/05. https://doi.org/10.1177/0956462417740487 PMID: 29198180.

26. Masha SC, Cools P, Descheemaeker P, Reynders M, Sanders EJ, Vaneechoutte M. Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: a nested case-control study. BMC Infect Dis. 2018; 18(1):549. Epub 2018/11/08. https://doi.org/10.1186/s12879-018-3455-4 PMID: 30400890; PubMed Central PMCID: PMC6219184.

27. Kerubo E, Laserson KF, Otecko N, Odhiambo C, Mason L, Nyothach E, et al. Prevalence of reproductive tract infections and the predictive value of girls’ symptom-based reporting: findings from a cross-sectional survey in rural western Kenya. Sex Transm Infect. 2016; 92(4):251–6. Epub 2016/01/29. https://doi.org/10.1136/sextrans-2015-052371 PMID: 26819339; PubMed Central PMCID: PMC4893088.

28. Lewis DA, Marsh K, Radebe F, Maseko V, Hughes G. Trends and associations of Trichomonas vaginalis infection in men and women with genital discharge syndromes in Johannesburg, South Africa. Sex Transm Infect. 2013; 89(6):523–7. Epub 2013/04/23. https://doi.org/10.1136/sextrans-2013-051049 PMID: 23605850.

29. Morikawa E, Mudau M, Olivier D, de Vos L, Joseph Davey D, Price C, et al. Acceptability and Feasibility of Integrating Point-of-Care Diagnostic Testing of Sexually Transmitted Infections into a South African Antenatal Care Program for HIV-Infected Pregnant Women. Infect Dis Obstet Gynecol. 2018; 2018:3946862. Epub 2018/06/05. https://doi.org/10.1155/2018/3946862 PMID: 29861622; PubMed Central PMCID: PMC5971359.

30. Garrett NJ, Osman F, Maharaj B, Naicker N, Gibbs A, Norman E, et al. Beyond syndromic management: Opportunities for diagnosis-based treatment of sexually transmitted infections in low- and middle-income countries. PLoS One. 2018; 13(4):e0196209. https://doi.org/10.1371/journal.pone.0196209 PMID: 29689080; PubMed Central PMCID: PMC5918163.

31. Francis SC, Ao TT, Vanobbergen FM, Chilongani J, Hashim R, Andreason A, et al. Epidemiology of curable sexually transmitted infections among women at increased risk for HIV in northwestern Tanzania: inadequacy of syndromic management. PLoS One. 2014; 9(7):e101221. Epub 2014/07/16. https://doi.org/10.1371/journal.pone.0101221 PMID: 25025338; PubMed Central PMCID: PMC4099080.

32. Guimaraes H, Castro R, Tavora Tavira L, da LEF. Assessing therapeutic management of vaginal and urethral symptoms in an anonymous HIV testing centre in Luanda, Angola. J Infect Dev Ctries. 2013; 7(10):720–5. Epub 2013/10/17. https://doi.org/10.3855/jidc.2752 PMID: 24129624.
34. Marx G, John-Stewart G, Bosire R, Wamalwa D, Otieno P, Farquhar C. Diagnosis of sexually transmitted infections and bacterial vaginosis among HIV-1-infected pregnant women in Nairobi. Int J STD AIDS. 2010; 21(8):549–52. Epub 2010/10/27. https://doi.org/10.1258/ijssa.2010.010005 PMID: 20975086; PubMed Central PMCID: PMC3050991.

35. Black V, Magooa P, Radebe F, Myers M, Pillay C, Lewis DA. The detection of urethritis pathogens among patients with the male urethritis syndrome, genital ulcer syndrome and HIV voluntary counselling and testing clients: should South Africa’s syndromic management approach be revised? Sex Transm Infect. 2008; 84(4):254–9. Epub 2008/01/15. https://doi.org/10.1136/sti.2007.028464 PMID: 18192290.

36. Frohlich JA, Abdool Karim Q, Mashego MM, Sturm AW, Abdool Karim SS. Opportunities for treating sexually transmitted infections and reducing HIV risk in rural South Africa. J Adv Nurs. 2007; 60(4):377–83. Epub 2007/09/08. https://doi.org/10.1111/j.1365-2648.2007.04405.x PMID: 17822425.

37. Tann CJ, Mpairwe H, Morison L, Nassimuk K, Hughes P, Omara M, et al. Lack of effectiveness of syndromic management in targeting vaginal infections in pregnancy in Entebbe, Uganda. Sex Transm Infect. 2006; 82(4):285–9. Epub 2006/08/01. https://doi.org/10.1136/sti.2005.014845 PMID: 16877576; PubMed Central PMCID: PMC2564710.

38. Ingabire R, Parker R, Nyombayire J, Ko JE, Mukamuyango J, Bizimana J, et al. Female sex workers in Kigali, Rwanda: a key population at risk of HIV, sexually transmitted infections, and unplanned pregnancy. Int J STD AIDS. 2018; 30(6):557–68. Epub 2019/02/08. https://doi.org/10.1177/0956462418817050 PMID: 30727831; PubMed Central PMCID: PMC6512058.

39. RWANDA POPULATION-BASED HIV IMPACT ASSESSMENT RPHIA 2018–2019 [cited 2020 Nov 20]. Available from: https://phia.icap.columbia.edu/wp-content/uploads/2019/10/RPHIA-Summary_Sheet-Oct-2019.pdf.

40. Conkling M, Shutes EL, Karita E, Chomba E, Tichacek A, Sinkala M, et al. Couples’ voluntary counselling and testing and nevirapine use in antenatal clinics in two African capitals: a prospective cohort study. Journal of the International AIDS Society. 2010; 13:10. Epub 2010/03/17. https://doi.org/10.1186/1756-2662-13-10 PMID: 20230628; PubMed Central PMCID: PMC2851580.

41. Karita E, Nsanizimana S, Ndagije F, Wall KM, Mukamuyango J, Mugwaneza P, et al. Implementation and Operational Research: Evolution of Couples’ Voluntary Counselling and Testing for HIV in Rwanda: From Research to Public Health Practice. J Acquir Immune Defic Syndr. 2016; 73(3):e51–e8. Epub 2016/10/16. https://doi.org/10.1097/QAI.0000000000001138 PMID: 27741033; PubMed Central PMCID: PMC5367509.

42. Mazzei A, Ingabire R, Mukamuyango J, Nyombayire J, Sinabamene Ye, Rayingana R, et al. Community health worker promotions increase uptake of long-acting reversible contraception in Rwanda. Reprod Health. 2019; 16(1):75. Epub 2019/06/06. https://doi.org/10.1186/s12978-019-0739-0 PMID: 31164155; PubMed Central PMCID: PMC649304.

43. Ingabire R, Nyombayire J, Hoagland A, Da Costa V, Mazzei A, Haddad L, et al. Evaluation of a multi-level intervention to improve postpartum intrauterine device services in Rwanda. Gates Open Res. 2018; 2(38). Epub 2019/09/25. https://doi.org/10.12688/gatesopenres.12854.3 PMID: 30569036; PubMed Central PMCID: PMC626741.3.

44. Rietmeijer CA, Mungati M, Machiha A, Mugurungi O, Kupara V, Rodgers L, et al. The Etiology of Male Urethral Discharge in Zimbabwe: Results from the Zimbabwe STI Etiology Study. Sex Transm Dis. 2018; 45(1):56–60. Epub 2017/12/15. https://doi.org/10.1097/OLQ.0000000000000696 PMID: 29240635.

45. Gonorrhea—CDC Fact Sheet (Detailed Version): U.S. Centers for Disease Control; 2020 [cited 2020 6/29/2020]. Available from: https://www.cdc.gov/std/gonorrhea/stdfact-gonorrhea-detailed.htm.

46. Dela H, Attram N, Behene E, Kumordjie S, Addo KK, Nyarko EO, et al. Risk factors associated with gonorrhea and chlamydia transmission in selected health facilities in Ghana. BMC Infect Dis. 2019; 19(1):425. Epub 2019/05/18. https://doi.org/10.1186/s12879-019-4035-y PMID: 31096920; PubMed Central PMCID: PMC6524331.

47. Connolly S, Wall KM, Parker R, Kilembe W, Inambao M, Visoiu AM, et al. Sociodemographic factors and STIs associated with Chlamydia trachomatis and Neisseria gonorrhoeae infections in Zambian female sex workers and single mothers. Int J STD AIDS. 2020; 31(4):364–74. Epub 2020/03/05. https://doi.org/10.1177/0956462419894453 PMID: 32126947.

48. Mungati M, Machiha A, Mugurungi O, Tshimanga M, Kilmarx PH, Nyakura J, et al. The Etiology of Genital Ulcer Disease and Coinfections With Chlamydia trachomatis and Neisseria gonorrhoeae in Zambia: Results From the Zimbabwe STI Etiology Study. Sex Transm Dis. 2018; 45(1):61–8. Epub 2017/12/15. https://doi.org/10.1097/OLQ.0000000000000694 PMID: 29240636; PubMed Central PMCID: PMC5994235.

49. MacNeily AE. Editorial comment. J Urol. 2011; 185(6):2306–7. Epub 2011/04/23. https://doi.org/10.1016/j.juro.2011.02.2702 PMID: 21511302.
Etiologies of genital abnormalities in Rwandan men and women

50. Weiss HA, Thomas SL, Munabi SK, Hayes RJ. Male circumcision and risk of syphilis, chancroid, and genital herpes: a systematic review and meta-analysis. Sex Transm Infect. 2006; 82(2):101–9; discussion 10. Epub 2006/04/04. https://doi.org/10.1136/sti.2005.017442 PMID: 16581731; PubMed Central PMCID: PMC2653870.

51. Morris BJ, Hankins CA. Effect of male circumcision on risk of sexually transmitted infections and cervical cancer in women. Lancet Glob Health. 2017; 5(11):e1054–e5. Epub 2017/10/14. https://doi.org/10.1016/S2214-109X(17)30386-8 PMID: 29025620.

52. Davis S, Toledo C, Lewis L, Maughan-Brown B, Ayalew K, Kharsany ABM. Does voluntary medical male circumcision protect against sexually transmitted infections among men and women in real-world scale-up settings? Findings of a household survey in KwaZulu-Natal, South Africa. BMJ Glob Health. 2019; 4(3):e001389. Epub 2019/07/03. https://doi.org/10.1136/bmjgh-2019-001389 PMID: 31263584; PubMed Central PMCID: PMC6570991.

53. Mehta SD, Moses S, Parker CB, Agot K, Maclean I, Bailey RC. Circumcision status and incident herpes simplex virus type 2 infection, genital ulcer disease, and HIV infection. AIDS. 2012; 26(9):1141–9. Epub 2012/03/03. https://doi.org/10.1097/QAD.0b013e328352d116 PMID: 22362156; PubMed Central PMCID: PMC3668787.

54. Kularatne RS, Muller EE, Maseko DV, Kufa-Chakezha T, Lewis DA. Trends in the relative prevalence of genital ulcer disease pathogens and association with HIV infection in Johannesburg, South Africa, 2007–2015. PLoS One. 2018; 13(4):e0191425. Epub 2018/04/05. https://doi.org/10.1371/journal.pone.0191425 PMID: 29617372; PubMed Central PMCID: PMC5884493.

55. Bogaerts J, Kestens L, van Dyck E, Tello WM, Akingeneye J, Mukantabana V. Characteristics of HIV-1 discordant couples enrolled in a trial of HSV-2 suppression to reduce HIV-1 transmission: the partners study. PLoS One. 2019; 14(1):1–10. Epub 2019/01/09. https://doi.org/10.1371/journal.pone.0211487 PMID: 30600513; PubMed Central PMCID: PMC6315255.

56. Roggen EL, Hoofd G, Van Dyck E, Piot P. Enzyme immunoassays (EIAs) for the detection of anti-Haemophilus ducreyi serum IgA, IgG, and IgM antibodies. Sex Transm Dis. 1994; 21(1):36–42. Epub 1994/01/01. https://doi.org/10.1097/00007435-199401000-00008 PMID: 8140487.

57. Bogaerts J, Ricart CA, Van Dyck E, Piot P. The etiology of genital ulceration in Rwanda. Sex Transm Dis. 1989; 16(3):123–6. Epub 1989/07/01. https://doi.org/10.1097/00007435-198907000-00001 PMID: 2510325.

58. Behets FM, Brathwaite AR, Hylton-Kong T, Chen CY, Hoffman I, Weiss JB, et al. Genital ulcers: etiology, clinical diagnosis, and associated human immunodeficiency virus infection in Kingston, Jamaica. Clin Infect Dis. 1999; 28(5):1086–90. Epub 1999/08/19. https://doi.org/10.1086/514751 PMID: 10452639.

59. Connolly S, Kilembe W, Inambao M, Visoiu AM, Sharkey T, Parker R, et al. A population-specific optimized GeneXpert pooling algorithm for Chlamydia trachomatis and Neisseria gonorrhoeae to reduce cost of molecular STI screening in resource-limited settings. J Clin Microbiol. 2020. Epub 2020/06/12. https://doi.org/10.1128/JCM.00176-20 PMID: 32522828.

60. Johnson LF, Dorrington RE, Bradshaw D, Coetzee DJ. The effect of syndromic management interventions on the prevalence of sexually transmitted infections in South Africa. Sex Reprod Healthc. 2011; 2(1):13–20. Epub 2010/12/19. https://doi.org/10.1016/j.srhc.2010.08.006 PMID: 21147454.

61. Garrett N, Mitchev N, Osman F, Naiddo J, Dorward J, Singh R, et al. Diagnostic accuracy of the Xpert CT/NG and OSOM Trichomonas Rapid assays for point-of-care STI testing among young women in South Africa: a cross-sectional study. BMJ Open. 2019; 9(2):e026888. Epub 2019/02/21. https://doi.org/10.1136/bmjopen-2018-026888 PMID: 30782948; PubMed Central PMCID: PMC6367982.

62. Cousins S. How Rwanda could be the first country to wipe out cervical cancer: Mosaicscience.com; 2019 [updated 7May2019]. Available from: https://mosaicscience.com/story/rwanda-cervical-cancer-hpv-vaccine-gardasil-cervarix/.
66. Wall KM, Kilembe W, Vwalika B, Dinh C, Livingston P, Lee YM, et al. Schistosomiasis is associated with incident HIV transmission and death in Zambia. PLoS Negl Trop Dis. 2018; 12(12):e0006902. Epub 2018/12/14. https://doi.org/10.1371/journal.pntd.0006902 PMID: 30543654; PubMed Central PMCID: PMC6292564.

67. Secor WE. The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Current opinion in HIV and AIDS. 2012; 7(3):254–9. Epub 2012/02/14. https://doi.org/10.1097/COH.0b013e328351b9e3 PMID: 22327410.

68. Rujeni N, Morona D, Ruberanziza E, Mazigo HD. Schistosomiasis and soil-transmitted helminthiasis in Rwanda: an update on their epidemiology and control. Infect Dis Poverty. 2017; 6(1):8. Epub 2017/03/02. https://doi.org/10.1186/s40249-016-0212-z PMID: 28245883; PubMed Central PMCID: PMC5331630.