LINN: Lifting Inspired Invertible Neural Network for Image Denoising

Junjie Huang and Pier Luigi Dragotti
Electrical and Electronic Engineering Department, Imperial College London
Background — Image Denoising

- The objective is to recover a clean image from the observed noisy image:
Background — Image Denoising

Model-based methods

• Based on well-defined image priors or noise statistics
• White-box systems with good interpretability and strong generalization ability

Learning-based methods

• Learning from noisy-clean image pairs
• Black-box system and restricted generalization ability
Motivation and Idea

- **Motivation**: whether it is possible to learn a non-linear wavelet transform for image denoising and other image restoration tasks?

- **Idea**: propose an image denoising invertible neural network based on the principle of transform-based denoising
 - ✓ A lifting inspired invertible neural network
 - ✓ Sparsity-driven denoising network
DnINN: Image Denoising Invertible Neural Network

Noisy image \Leftrightarrow Denoising Network \Leftrightarrow Denoised image

$\text{DnINN: Image Denoising Invertible Neural Network}$
Lifting Scheme

Splitting and merging operator
- Split \(x \) into odd part \(x_o \) and even part \(x_e \)
- Combine \(x_o \) and \(x_e \) into \(x \)

Predictor and updater
- A predictor is used to predict \(x_o \) from \(x_e \)
- The updater adjusts \(x_e \) based on the prediction error of \(x_o \)
Lifting inspired Invertible Neural Network

- Forward pass

Diagram: Image to representation, showing a flow from input image to representation through Predictor and Updater modules, with separate channels for Detail part and Coarse part.
Lifting inspired Invertible Neural Network

- **Forward pass**

 - Image to representation

- **Backward pass**

 - Representation to image

When no operation is applied on the representation, perfect reconstruction can be achieved using the backward pass.
LINN — Splitting/Merging Operator

- **Forward pass**
 - The splitting operator is the **Undecimated Haar Wavelet Transform**

- **Backward pass**
 - The merging operator is the **Inverse Undecimated Haar Wavelet Transform**
LINN — Predictor/Updater Networks

- **Forward pass**
- **Backward pass**
LINN — Predictor/Updater Networks

• Forward pass
 – There are I pairs of P-Net and U-Net to sequentially update the detail and the coarse part

\[
\begin{align*}
 Z_d^{(i)} &= Z_d^{(i-1)} - P_i \left(Z_c^{(i-1)} \right) \\
 Z_c^{(i)} &= Z_c^{(i-1)} + U_i \left(Z_d^{(i)} \right)
\end{align*}
\]

• Backward pass
 – The same I pairs of P-Net and U-Net are used for reconstruction

\[
\begin{align*}
 Z_c^{(i-1)} &= Z_c^{(i)} - U_i \left(Z_d^{(i)} \right) \\
 Z_d^{(i-1)} &= Z_d^{(i)} + P_i \left(Z_c^{(i-1)} \right)
\end{align*}
\]
LINN — Predictor/Updater Networks

- Convolutional networks with soft-thresholding non-linearity

\[S_\lambda (x) \]

\(\lambda \) soft-threshold
Denoising Network

• Non-invertible component
• The denoising network enforces the detail part to be sparse
• A well-understood denoising network can lead to enhanced interpretability
Denoising Network

- l_1-norm minimization problem:

$$g = \arg\min_g \frac{1}{2\sigma^2} \| z_d^l - g \|^2_2 + \lambda \| g \|_1$$

- Closed-form solution:

$$g = S_{\sigma^2\lambda}(z_d^l)$$

Noise adaptive soft-threshold
Denoising Network

• Over-parameterized l_1-norm minimization problem:

$$g = \arg\min_g \frac{1}{2\sigma^2} \|z_d^I - D \ast g\|_2^2 + \lambda \|g\|_1$$

 – Learned Iterative Shrinkage Thresholding Algorithm (ISTA):

$$g_{t+1} = S_{\lambda/\mu} \left(\left(I - \frac{1}{\mu} D^T \ast D \right) \ast g_t + \frac{1}{\mu} D^T \ast z_d^I \right)$$
Simulation Results

- Training loss:
 - Mean squared error between restored image and clean image
- Optimizer:
 - ADAM with learning rate 1×10^{-3}
- Training data:
 - BSD dataset: 400 images of size 180×180
| Methods | Model Size | $\sigma_N = 15$ | $\sigma_N = 25$ | $\sigma_N = 50$ |
|---------------|---------------|-----------------|-----------------|-----------------|
| BM3D [9] | - | 31.07 | 28.57 | 25.63 |
| WNNM [10] | - | 31.37 | 28.83 | 25.87 |
| EPLL [24] | - | 31.21 | 28.68 | 25.67 |
| TNRD [12] | 26.6×10^3 | 31.42 | 28.92 | 25.97 |
| DnCNN [13] | 556.0×10^3 | 31.70 | 29.19 | 26.20 |
| DnINN$_{ST}$ | 134.7×10^3 | 31.58 | 29.08 | 26.14 |
| DnINN$_{LISTA}$ | 135.2×10^3 | 31.59 | 29.09 | 26.14 |
| DnINN$_{ST}$ (2-scale) | 269.3×10^3 | 31.62 | 29.14 | 26.19 |
| DnINN$_{LISTA}$ (2-scale) | 270.3×10^3 | 31.63 | 29.14 | 26.20 |

TABLE 1

The model size and PSNR (dB) results of different methods on BSD68 dataset on noise level $\sigma_N = 15, 25, 50$.
Simulation Results

Detail channels output from the lifting scheme neural network

LISTA-Net

Detail channels after denoising
Simulation Results

![Graph showing PSNR (dB) vs Testing Noise Level for DnINN-50 and DnCNN-50 models, with a green vertical line indicating the training noise level.](image-url)
Conclusions

• We proposed a image denoising invertible neural network (DnINN) method based on the principles of transform-based denoising
 – LINN implements the non-linear transform with perfect reconstruction capability
 – Simple denoising networks can remove the noise in the transform coefficients

• Simulation results show that DnINN method achieves comparable results as the DnCNN method while using $\frac{1}{4}$ learnable parameters