Abstract We examine how the signature of the strange-dibaryon resonances in the $\bar{K}NN - \pi\Sigma N$ system shows up in the scattering amplitude on the physical real energy axis within the framework of Alt-Grassberger-Sandhas (AGS) equations. The so-called point method is applied to handle the three-body unitarity cut in the amplitudes. We also discuss the possibility that the strange-dibaryon production reactions can be used for discriminating between existing models of the two-body $\bar{K}N - \pi\Sigma$ system with $\Lambda(1405)$.

Keywords strange dibaryon · AGS equations · point method

1 Introduction

The structure of $\Lambda(1405)$ with spin-parity $J^P = 1/2^-$ and strangeness $S = -1$ has been studied for a long time. In the constituent quark model, $\Lambda(1405)$ might be considered as p-wave excited state with uds quarks. However, since the mass of $\Lambda(1405)$ is about 30 MeV below the $\bar{K}N$ threshold, it has also been suggested that $\Lambda(1405)$ is the s-wave $\bar{K}N$ quasi bound state due to the strongly attractive s-wave interaction of the $\bar{K}N$ system with $I = 0$ [1]. Akaishi and Yamazaki suggested that this strong attraction will produce a new type of nuclei, the deeply bound kaonic nuclei [2]. The simplest deeply bound kaonic nuclei are the strange dibaryon, which are the resonances in the $\bar{K}NN - \pi\Sigma N$ system. The strange-dibaryons will give a baseline for the systematic investigation of such deeply bound kaonic nuclei, because the many body dynamics can be treated accurately.

The strange dibaryon resonances have been studied with the Alt-Grassberger-Sandhas (AGS) equations [3, 4] and with the variational method [5, 6, 7] using the phenomenological meson-baryon interactions [3, 5, 6] or interactions based on the effective chiral Lagrangian [4, 7]. All the analyses suggest the existence of the strange-dibaryon resonances.

The strange dibaryon resonances can be produced by photon- or kaon-induced reactions on light nuclei such as d and 3He, and the signal of the resonances may be observed in the invariant mass and/or missing mass distributions of the decay products. Theoretical studies of the kaon-induced reactions have been done by Koike-Harada and Yamagata et al. within the optical potential approach [8, 9].

In this contribution, we present how the signature of the strange-dibaryon resonances in the $\bar{K}NN - \pi\Sigma N$ system shows up in the three-body scattering amplitude obtained by solving AGS equations on the physical real energy axis, which is the basic ingredient to calculate the cross sections for strange-dibaryon production reactions measured in the experimental facilities such as J-PARC.
The coupled channel equation for the \bar{Z}NN = $\pi\Sigma N$ coupled channel system is given by the AGS equation

$$X_{ij}(p_i, p_j, W) = (1 - \delta_{ij})Z_{ij}(p_i, p_j, W) + \sum_{n \neq j} \int d\mathbf{p}_n Z_{i,n}(\mathbf{p}_i, \mathbf{p}_n, W) \tau_n(W - E_n)X_{n,j}(\mathbf{p}_n, \mathbf{p}_j, W),$$

with the separable approximation for the interaction V

$$V(q', q) = \lambda g(q')g(q).$$

Here $X_{ij}(p_i, p_j, W)$ is the quasi two-body amplitudes with the particle i (j) as the spectator in the final (initial) state; the energy W contains the infinitesimal positive imaginary part, $W = W' + i\epsilon$ with a real W' and a infinitesimal positive ϵ, resulting from the boundary condition of the scattering problem. The driving term $Z_{ij}(p_i, p_j, W)$ for the s-wave depicted in Fig.1 is the particle-exchange interaction given by

$$Z_{ij}(p_i, p_j, W) = 2\pi \int_{-1}^{1} d(cos \theta) \frac{g(q_j)g(q_i)}{W - p_i^2/2m_j - p_j^2/2m_j - p_i^2/2m_j + 2p_ip_j \cos \theta},$$

where $\cos \theta = \hat{p}_i \cdot \hat{p}_j$. Because of the three-body propagator in the integrand of this equation, the interaction $Z_{ij}(p_i, p_j, W)$ has logarithmic singularities in (p_i, p_j) plane known as the moon-shape singularities shown in Fig.2. Methods to handle these singularities are well studied, for example, with the spline method [10] or the point method [11, 12]. In this work, we employ the point method.

2.1 AGS equations

The point method has been proposed by Schlessinger [11] and developed by Kamada et al. [12]. In this work, we employ the point method.

2.2 Point method

The point method has been proposed by Schlessinger [11] and developed by Kamada et al. [12]. We evaluate the amplitudes $X_{ij}(p_i, p_j, W)$ in Eq (1) at $W = W' + i\epsilon_i$ with a real W' and a finite positive ϵ_i ($i = 1, 2, \ldots$). With finite ϵ_i, the logarithmic singularities in $Z_{ij}(p_i, p_j, W)$ become mild and numerical calculations can be performed safely. Then, we use the following continued fraction formula to extrapolate the amplitudes to the energy at $W = W' + i\epsilon$ with the infinitesimal positive ϵ:

$$X(W' + i\epsilon) = \frac{X(W' + i\epsilon_1)}{1 + a_1(\epsilon - \epsilon_1)} = \frac{X(W' + i\epsilon_1) a_1(\epsilon - \epsilon_1) a_2(\epsilon - \epsilon_2) \ldots}{1 + a_2(\epsilon - \epsilon_2) \ldots},$$

with

$$a_i = \frac{1}{\epsilon_i - \epsilon_{i+1}} \left(1 + \frac{a_{i-1}(\epsilon_{i-1} - \epsilon_{i-2}) a_{i-2}(\epsilon_{i-2} - \epsilon_{i-3}) \ldots}{1 + \frac{a_{i-2}(\epsilon_{i-2} - \epsilon_{i-3}) \ldots}{1 + \frac{a_{i-3}(\epsilon_{i-3} - \epsilon_{i-4}) \ldots}{1 + \frac{a_{i-4}(\epsilon_{i-4} - \epsilon_{i-5}) \ldots}{1 + a_{i-5}(\epsilon_{i-5} - \epsilon_{i-6}) \ldots}}}
ight).$$
Table 1 Cutoff parameters of $\bar{K}N - \pi\Sigma$ interaction.

	$A_{I=0}^{L=0\Lambda}(\text{MeV})$	$A_{I=0}^{L=0\Lambda}(\text{MeV})$	$A_{I=1}^{L=0\Lambda}(\text{MeV})$	$A_{I=1}^{L=1\Lambda}(\text{MeV})$
E-indep.	1000	700	920	960
E-dep.	1000	700	725	725

Fig. 3 The $S = -1, J^{\pi} = 1/2^-$ $\bar{K}N$ s-wave amplitude on complex energy plane in (a) the E-indep. model and (b) the E-dep. model.

3 Model of Two-body Interaction

We employ the two models for the meson-baryon interaction of the $\bar{K}NN - \pi\Sigma N$ system. One is the model with the energy independent (E-indep.) separable potentials employed in [4]

$$V_{\alpha\beta}(q', q) = -\lambda_{\alpha\beta} \frac{1}{32\pi^2 F_\pi^2} \frac{m_\alpha + m_\beta}{\sqrt{m_\alpha m_\beta}} \left(\frac{\Lambda_\alpha^2}{q'^2 + \Lambda_\alpha^2} \right) \left(\frac{\Lambda_\beta^2}{q^2 + \Lambda_\beta^2} \right),$$

and another is the model with the energy dependent (E-dep.) potentials employed in [13]

$$V_{\alpha\beta}(q', q; E) = -\lambda_{\alpha\beta} \frac{1}{32\pi^2 F_\pi^2} \left(\frac{2E - M_\alpha - M_\beta}{\sqrt{m_\alpha m_\beta}} \right) \left(\frac{\Lambda_\alpha^2}{q'^2 + \Lambda_\alpha^2} \right) \left(\frac{\Lambda_\beta^2}{q^2 + \Lambda_\beta^2} \right).$$

Here, α and β specify the meson-baryon channels, m_α (M_α) is the meson (baryon) mass of the channel α; q and q' are the relative momenta of the channels α and β in the center of mass system, respectively; F_π is the pion decay constant; E is the total scattering energy of the meson-baryon system, which is determined by $W - p^2/2\eta$ with η being the reduced mass between spectator particle and meson-baryon pair in the three-body system; $\lambda_{\alpha\beta}$ is determined by the flavor SU(3) structure of the Weinberg-Tomozawa term, assuming the different off-shell behavior with non-relativistic kinematics. Also, we have introduced the cutoff parameter Λ_α. These parameters are determined by fitting the $\bar{K}N$ cross sections (The resulting values of the parameters are listed in Table 1). Here we take “non-relativistic kinematics” in this report.

We find that the above two models have a quite different analytic structure of the $\bar{K}N$ s-wave amplitude in the complex energy plane below the $\bar{K}N$ and above the $\pi\Sigma$ threshold energies: the E-indep. model has a pole corresponding to $\Lambda(1405)$ in the $\bar{K}N$ physical and $\pi\Sigma$ unphysical sheet (Fig 3(a)), while the E-dep. model has two poles in the same sheet (Fig 3(b)). The analytic structure of the E-dep. model is similar to that of the chiral unitary model [14]. It will be then interesting to examine how this difference between the models of the two-body interaction emerges in the strange-dibaryon production reactions.

4 Results and Discussion

In this report, we presents the quasi two-body amplitudes by using the most important interactions. For three-body Z, we include \bar{K}-exchange mechanism but not π or baryon exchange mechanism. For two-body interac-

1 In deriving the potentials from the Weinberg-Tomozawa term, we have also assumed $E_\alpha/M_\alpha \sim 1$ for baryons.
tion, we include $\bar{K}N - \pi\Sigma$ interaction. In Fig. 4 we show $|X_{\bar{K}N\Sigma_i\Sigma_j}(p_i, p_j, W)|^2$ on the real energy axis for the E-indep. (thick curves) and E-dep. (thin curves). We observe a peak around $W \sim 2310$ MeV for the E-indep. model and a bump around $W \sim 2350$ MeV for the E-dep. model. These peak and bump appear near the calculated resonance energy of the strange-dibaryons ($W_R = 2329.5 - i23.3$ MeV for the E-indep. model and $W_R = 2352.0 - i22.5$ MeV for the E-dep. model). This result suggests that the signal of the strange-dibaryons can emerge as a clear peak or a bump of the cross sections, which can be calculated from the amplitude-square $|X|^2$ on the real energy axis. The peak structure is pronounced in the E-indep. model, while in the E-dep. model it is rather small and may not be possible to separate from the background contributions. This difference of the three-body amplitudes due to the model dependence of the two-body subsystem suggests that the strange-dibaryon production reactions could provide also the useful information on the $\bar{K}N - \pi\Sigma$ system.

In summary, by making use of the point method, we have calculated the quasi two-body amplitude $X_{i,j}(p_i, p_j, W)$ on the real energy axis. We then have found the bump structure in the amplitude in the energy region where the strange-dibaryons are expected to exist, implying that the signal of the strange-dibaryon resonances is possible to be observed in the physical cross sections. We have also shown that the strange-dibaryon production reactions could also be useful for judging existing dynamical models of $\bar{K}N - \pi\Sigma$ system with $\Lambda(1405)$. In the current work, however, we have not taken account of several reaction mechanisms such as π-exchanges. The further improvement of the current model and the calculation of the actual cross sections are under investigation.

References

1. R. H. Dalitz, T. C. Tong, and G. Rajasekaran, Phys. Rev. 153, 1617 (1967).
2. Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002).
3. N. V. Shevchenko, A. Gal, and J. Mareš, Phys. Rev. Lett. 98, 082301 (2007).
4. Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007).
5. T. Yamazaki and Y. Akaishi, Phys. Lett. B535, 70 (2002).
6. S. Wycech and A. M. Green, Phys. Rev. C 79, 014001 (2009).
7. A. Dote, T. Hyodo, and W. Weise, Nucl. Phys. A804, 197 (2008).
8. T. Koike and T. Harada, Phys. Rev. C 80, 055208 (2009).
9. J. Yamagata-Seki, D. Jido, H. Nagahiro, and S. Hirenzaki, Phys. Rev. C 80, 045204 (2009).
10. A. Matsuyama, T. Sato, and T.-S. H. Lee, Phys. Rev. C 80, 045204 (2009).
11. L. Schlossinger, Phys. Rev. 167, 1411 (1968).
12. H. Kamada, Y. Koike, and W. Glöckle, Prog. Theor. Phys. 109, 869 (2003).
13. Y. Iida, H. Kamano and T. Sato, Prog. Theor. Phys. 124, 533 (2010).
14. D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meißner, Nucl. Phys. A725, 181 (2003).