Oligomerisation of *C. elegans* Olfactory Receptors, ODR-10 and STR-112, in Yeast

Muhammad Tehseen1,2, Chunyan Liao1, Helen Dacres1, Mira Dumancic1, Stephen Trowell1, Alisha Anderson1*

1 CSIRO Food Futures National Research Flagship & CSIRO Ecosystem Sciences, Australia, Canberra, ACT, Australia, 2 Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

Abstract

It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or heterodimers or higher-order oligomers. The *C. elegans* genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

Introduction

G-protein coupled receptors (GPCRs) are the largest and most diverse superfamly of proteins and are present in every eukaryotic cell [1]. They are involved in the senses of vision, smell, taste, pain, cell recognition and communication processes. GPCRs are characterised structurally by an amino-terminal extracellular domain, a carboxyl-terminal intracellular domain and seven hydrophobic transmembrane domains. They are activated by a wide variety of ligands, including peptide and non-peptide neurotransmitters, hormones, growth factors and odorant molecules and are encoded by the largest gene family in most animal genomes. For example, 1% of the total genes in *Drosophila*, ∼4% of all genes in the human genome and >5% of all genes in *Caenorhabditis elegans* encode GPCRs [2].

GPCRs were once thought to act as monomers but in the last decade evidence has emerged that the primary signalling unit consists of homo- or heterodimers [3–6]. GPCR oligomerisation is also important for receptor maturation, trafficking, agonist specificity and signalling [7,8]. The potential diversity of GPCR heterodimers can increase the repertoire of GPCR recognition and signalling via allosteric mechanisms [9,10]. For example, surface expression of α2C- and α1D-adrenergic receptors is greatly enhanced by co-expression of α2B-adrenergic receptors [11–13], while the GABA_B receptor subunits R1 and R2 associate, through their cytoplasmic tails, in the endoplasmic reticulum and are targeted to the plasma membrane as a preformed dimer, independent of agonist regulation [14]. It has been shown that hetero-oligomerisation can either inhibit or facilitate endocytosis and affect receptor signalling [15,16]. For example, hetero-oligomerisation between the beta-1 adrenergic receptor (β1-AR), which is poorly internalised, and the β2-AR, which is strongly internalised, results in inhibition of agonist-promoted internalisation of the latter.

Although evidence for GPCR hetero-oligomerisation is mostly drawn from studies on a few, well-characterised vertebrate receptors for hormones and neurotransmitters, the largest families of GPCRs are involved in chemoreception. Vertebrate olfaction and taste perception (sweet, bitter and umami) [17] depend on GPCRs, as does chemosensation in nematodes. Vertebrate olfactory receptors generally conform to the one receptor type per Olfactory Sensory Neuron model [18,19]. Mammalian sweet and umami taste receptors function as heterodimers [20,21]. Nematode olfactory receptors pose an interesting dilemma because the genome of the free-living nematode, *C. elegans*, encodes >1300 GPCRs, many of which are believed to be chemoreceptors [22]. These receptors respond to many volatile odorants, but despite the large number of receptors, the nematode has only three pairs of olfactory neurons and only 32 pairs of chemosensory neurons in total [17,23]. This inevitably requires that multiple types of chemoreceptor pairs are co-expressed in individual neurons [24,25]. The question arises as to whether homo- or hetero-oligomerisation of nematode chemoreceptors can occur and if it does, whether it has any functional relevance in relation to chemoreceptor function, including ligand specificity.

So far, in *C. elegans*, only one GPCR, ODR-10, has been experimentally linked to olfaction. ODR-10 is a member of the *str* family of GPCRs, and is expressed predominantly in the AWA.
neuron pair [26,27]. ODR-10 mediates chemotaxis towards diacetyl, a volatile ligand [27,28]. We set out to investigate whether ODR-10 can form homo-oligomers or hetero-oligomers with other putative chemosensory GPCRs.

GPCR homo- and hetero-oligomers have previously been identified using various techniques such as bioluminescence resonance energy transfer (BRET), fluorescence resonance energy transfer (FRET), cross linking-studies and co-immunoprecipitation [29–32]. In this study we use the split-ubiquitin yeast two-hybrid system as well as BRET and co-immunoprecipitation to investigate potential homo- and hetero-oligomerisation of the *C. elegans* odorant receptor, ODR-10. We provide the first direct evidence that a nematode chemoreceptor (ODR-10) homo-oligomeries and can also form hetero-oligomers with STR-112, a nematode GPCR closely related by sequence, and the rat I7 odorant receptor, but not with the human somatostatin receptor 5 (SSTR5) promoter.

Materials and Methods

Confocal microscopy

Yeast transformants expressing ODR-10-GFP² were grown in selective dropout (SD) medium without histidine at 30°C overnight and the cells were inoculated into 10 ml of the same medium to give an initial absorbance at 600 nm (Abs₆₀₀) = 0.025. The cells and the cells were inoculated into 10 ml of the same medium to confirm the presence of transgenes.

Plasmid construction and transformation for immunoprecipitation and BRET

Odr-10 was amplified by PCR from *C. elegans* cDNA prepared by standard techniques. Rat I7 receptor was amplified by PCR from the plasmid pCA4-I7-RES-GFP, kindly provided by Prof S. Firestein [33]. SSTR5 receptor was amplified by PCR from the plasmid pGK-SSTR5-HA, kindly provided by Dr Jun Ishii [34]. The BRET tags Rluc and GFP² were sourced from the plasmid pDONR201 (Invitrogen) using attB sites introduced by PCR.

BRET-labelled odorant receptors were transferred into pYES-DEST52 (Invitrogen) or pDEST ESC-TRP by Gateway (Invitrogen) recombination for expression in *S. cerevisiae*. The vector pDEST ESC-TRP was constructed by introducing a 1.4 kb Gateway attR1-ecdB-attR2 cassette (Invitrogen) into the *XhoI* site of pESC-TRP (Stratagene), downstream of the *GAL1* promoter, using standard techniques. The plasmid pYES-DEST32 confers uracil selection in *S. cerevisiae* and pDEST ESC-TRP confers tryptophan selection. The two plasmids were transformed into *S. cerevisiae* strain InvSc1 (Invitrogen) either individually or in combination. Transformed yeast colonies were screened by PCR to confirm the presence of transgenes.

Transformants culture and tagged-gene induction conditions

Yeast strains were transformed using the lithium acetate method [36]. Yeast was grown in a YPD medium containing 1% yeast extract, 2% peptone and 2% glucose or an SD medium containing 0.67% yeast nitrogen base without amino acids and 2% glucose. The SD medium was supplemented with appropriate amino acids depending on the selectable marker used. For solid media, 2% agar was added to the liquid media described above. In order to induce expression from the *GAL1* promoter, glucose was replaced with 1% raffinose and 2% galactose.

After overnight culture at 28°C, Abs₆₀₀nm was determined and cells were resuspended in induction medium to a final Abs₆₀₀nm of 0.4. This culture was incubated for varying times, with shaking at 15°C, to induce expression of receptor fusions. To test whether interactions between tagged receptors were specific or simply due to collisional interactions at high receptor density, Rluc and GFP² labelled receptors were co-expressed in InvSc1 and induced for different times (0, 4, 8, 16, 24, 48 and 72 hrs) in order to generate total fluorescence levels up to 12-fold higher than untransformed cells. Total cell fluorescence was measured at different induction times in 100 μl [12.5 fold concentrate of cell sample with Abs₆₀₀nm = 0.4]. Induction was stopped once the total fluorescence of the cells reached 1.2–2 fold higher than untransformed cells. Induced samples were pelleted and washed twice with cold phosphate-buffered saline (PBS). Induced cell suspensions were frozen as 12.5 fold concentrates in PBS, stored at −80°C and thawed in ice before assays.

Immunoprecipitation assay

Cell lysates were prepared as described previously [35] using a French Press (~18000 psi) in buffer B [75 mM tris-HCl, pH7.4, 12 mM MgCl₂ and 2 mM EDTA, protease inhibitor cocktail EASYpack (Roche Applied Science)]. Cellular debris was removed by centrifugation at 15,000 rpm for 15 mins at 4°C and membranes were collected by ultracentrifugation of the supernatant at 40,000 rpm for 60 min at 4°C. Pellets containing membranes were re-suspended in ice-cold buffer B and left at 4°C overnight to resuspend completely. Membrane suspensions were solubilised using 1% digitonin in buffer B with a detergent/protein ratio of approximately 1:1. The mixture was mixed gently for 3 hrs at 4°C and then centrifuged at 18,000 g for 30 mins at 4°C to remove insoluble material. The digitonin concentration was adjusted to 0.2%, an equivalent number of cells were processed for all immunoprecipitation reactions.

Immunoprecipitation procedures were modified from [37]. The luciferase activity of each sample was measured and reactions were standardised to equal luciferase activity. Polyclonal anti-green fluorescence protein antibody from rabbit (Sapphire Bioscience) was added to a final concentration of 0.001% (v/v) of serum. Immune complex formation was allowed to proceed overnight at 4°C with gentle agitation. Protein A-agarose (10% (w/v) Sigma) was added prior to a further 6 hr incubation. The agarose beads were pelleted and centrifuged at 18,000 g for 3 mins at 4°C and were washed four times with ice-cold buffer B containing 0.2% digitonin. The luciferase activity of the beads was assessed using 5 μM coelenterazine H as substrate and an emission filter of 475±30 nm. Three independent yeast transformants were picked and each was processed and measured in triplicate. Data are presented as the mean percentage of maximal luciferase activity across all nine measurements.

Quantification of yeast cells for BRET² assay

All yeast cultures were adjusted to the same density [100 μl/well of Abs₆₀₀nm = 0.4, typically requiring 25 ml of culture resuspended in 2 ml of PBS buffer]. All yeast strains expressing either receptor-GFP², or receptor-Rluc and receptor-GFP², fusion proteins were quantified by measuring the GFP² fluorescence of 100 μl of

Nematode GPCRs Oligomerisation
Ab_{600nm} = 0.4. GFP² fluorescence was measured in a SpectraMax M2 spectrofluorometer (Molecular Devices), with excitation centred at 420 nm and an emission filter of 510 nm, in a 96-well white Optiplate (Perkin Elmer). Fluorescence was expressed relative to the background determined in wells containing the same number of untransformed cells. Luminescence was measured by adding Coelenterazine H to a final concentration of 5 μM, using an emission filter of 475 nm in a lumino/fluorometer microplate reader (Polarstar Optima, BMG Labtech).

Microplate BRET² cell based assay

The assay, modified from Issad and Jockers [38], was conducted in duplicate in a 96-well white Optiplate in a total volume of 100 μl. Three independent transformants were processed and the data were pooled. Coelenterazine (DeepBlueC, Biosynth AG) was added to a final concentration of 10 μM, and readings were performed using a Polarstar Optima (BMG Labtech). Negative controls were: the host strain expressing ODR-10-Rluc/SSTR5-GFP²; the host strain expressing Rluc/GFP²; a mixture of the strain expressing ODR-10-Rluc only and the strain expressing ODR-10-GFP² only. Rluc light emission was measured at 410±30 nm and GFP² light emission at 515±30 nm. The BRET² ratio is defined as the ratio of the emission intensities at 515 nm and 410 nm. Subtraction of the auto-fluorescence from all tested samples was undertaken before BRET ratio values were calculated.

Results and Discussion

Protein-protein interaction assays using split-ubiquitin membrane yeast two-hybrid system

The split-ubiquitin system [39] was used to investigate the interactions among ODR-10, I7, SSTR5 and STR-112 GPCRs. Vectors and yeast strain were as supplied in the DUALMembrane pairwise interaction kit (Dualsystems Biotech, Zürich, Switzerland). Full-length cDNAs of ODR-10, I7 and STR-112 were cloned into the pBT3-STE plasmid encoding the C-terminal half of ubiquitin (Cub) such that it was fused to the C-terminus of the GPCR and pPR3-STE encoding the mutated N-terminal half of ubiquitin (NubG) such that it was fused to the C-terminus of the GPCR. All cDNAs were cloned into SfiI restriction sites. cDNA sequences were confirmed by DNA sequencing. Cub and NubG fusion constructs were co-transformed into the yeast strain NMY51. Interaction was determined by assessing the growth of yeast transformants on medium lacking histidine and confirmed by β-galactosidase assay (HTX Kit: Dualsystems Biotech, Zürich, Switzerland).

Figure 1. Yeast cells expressing ODR-10-GFP². Arrows indicate the plasma membrane and cytoplasmic localisation. Bar: 11.9 μm. Image was obtained with a Leica SP2 confocal laser scanning microscope using excitation at 488 nm. doi:10.1371/journal.pone.0108680.g001

mammalian olfactory receptors are functional whether they are localised to yeast ER, Golgi or plasma membrane when tested in vitro [34,43,44]. Based on these previous reports, we believe it is reasonable to infer that ODR-10 is correctly folded whether it is located in the plasma or intracellular membranes [35].

ODR-10 forms homo-oligomers

We tested for homo-oligomerisation of ODR-10 using three different methods; co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and the split-ubiquitin yeast two-hybrid system. Co-immunoprecipitation has been used extensively as a biochemical test for GPCR oligomerisation [45–50]. We co-expressed an Rluc-tagged receptor (ODR-10-Rluc) and a GFP²-tagged receptor (ODR-10-GFP²). Rluc-labelled ODR-10, co-expressed with GFP²-labelled ODR-10 was pulled down by anti-GFP antibody, as evidenced by a high level of co-immunoprecipitated luciferase activity (Figure 2A). Control immunoprecipitates containing untransformed yeast cells, Rluc co-expressed with GFP², or a mixture of separately expressed ODR-10-GFP² and ODR-10-Rluc, all showed about 20% of the total luminescence of the co-expressed receptor pairs (Figure 2A). We also co-expressed ODR-10-Rluc with SSTR5-GFP², as a negative control, and this also showed approximately 20% of the total luminescence of the co-expressed receptor pairs (Figure 2B). This is the first evidence that ODR-10 or any nematode GPCR can form homo-oligomers.

To determine whether receptor oligomerisation also occurs in intact yeast cells, we used bioluminescence resonance energy transfer (BRET). BRET has previously been used to investigate GPCR oligomerisation in living cells. BRET² gives a clearer separation than standard BRET between the emission spectra of Renilla luciferase (Rluc) and the green fluorescent protein (GFP²).
resulting in much improved signal to noise ratio at the expense of a lower quantum efficiency [35, 51, 52]. To compensate for the lower luminescence, we used high-copy number plasmids to express tagged ODR-10 variants under the\textit{GAL1} inducible promoter. By monitoring GFP intensity of the transformed cells, we generated a series of samples in which GFP expression levels sequentially increased over background with increasing induction times. BRET2 experiments were conducted at GFP2 levels no more than twofold greater than background, in order to minimise BRET2 due to possible non-specific interactions between ODR-10-Rluc and ODR-10-GFP2, so called "bystander BRET", due to overexpression (Figure S1).

BRET2 results supported our co-immunoprecipitation conclusions and show that ODR-10 fusion proteins can form homo-oligomers in living yeast cells (Figure 2C). The BRET2 ratio was 0.750 \(\pm \) 0.038 in yeast cells co-expressing ODR-10-Rluc and ODR-10-GFP2, which was statistically significantly different (\(P < 0.001 \)) from samples, co-expressing ODR-10-Rluc/SSTR5-GFP2 (BRET2 signal, 0.209 \(\pm \) 0.012) and the mixture of cells separately expressing ODR-10-Rluc and ODR-10-GFP2 (BRET2 ratio 0.193 \(\pm \) 0.007). Cells expressing neither GFP2 nor Rluc had no measurable BRET2 ratio. The Forster distance of the BRET2 system is approximately 7.5 nm [53], which means that interacting proteins have to bring the RLuc and GFP2 tags within about

Figure 2. Three lines of evidence for formation of ODR-10 homo-oligomers. A. Co-immunoprecipitation of a pair of tagged chemoreceptor subunits. B. ODR-10-Rluc co-expressed with SSTR5-GFP2 as a negative control. Following membrane extraction with digitonin and immunoprecipitation with an anti-GFP2 antibody, as described in Materials and Methods, luciferase activity was measured using 5 \(\mu M \) Coelenterazine H with an emission filter of 475 \(\pm \) 30 nm. Values represent means \(\pm \) SD of experiments performed on three independent transformants (**denotes significance at \(P < 0.001 \)), "b" is significantly different from "a". C. BRET2 ratios measured to test for homo-dimerisation of ODR-10 in intact yeast cells. Values represent means \(\pm \) SD (\(n = 3 \)) (**denotes significance at \(P < 0.001 \)), "b" is significantly different from "a". Indicated constructs in both A and C were expressed separately, or mixed (\(+ \)), or co-expressed (\(/ \)). D. ODR-10 homo-oligomerises in the split-ubiquitin yeast two-hybrid system. The C-terminal half of ubiquitin (Cub) was fused to the C-terminus of the full-length cDNA of odr-10 (ODR-10::Cub). The N-terminal half of ubiquitin (NubG) was fused to the N-termini of full-length cDNA of odr-10 (ODR-10::NubG). The interaction of ODR-10sCub with pOST1:NubI served as a positive control to ensure the correct topology of the fusion protein. The interaction of ODR-10:Cub with the empty vector (pYT3-STE) served as a negative control. Yeast transformants containing both a Cub fusion and a NubG fusion construct were grown on drop out media (SD -Leu and -Trp) (Figure S2A) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). \(\beta \)-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1. E. ODR-10 does not hetero-oligomerise with SSTR5 in the split-ubiquitin yeast two-hybrid system. Growth and \(\beta \)-galactosidase activity of yeast cells expressing ODR-10:Cub and SSTR5:NubG fusions. The interaction of SSTR5::NubG with the empty vector (pBT3-STE) served as a negative control. Yeast transformants containing both a Cub fusion and a NubG fusion constructs were grown on drop out media (SD -Leu and -Trp) (Figure S2E) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). \(\beta \)-Galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1.

doi:10.1371/journal.pone.0108680.g002
10 nm of each other and be suitably aligned to see an appreciable change in the signal.

As a third, independent, test for the homo-oligomerisation of ODR-10, we used a split-ubiquitin yeast two-hybrid system, which has been developed to assess interactions between membrane proteins [39,54–56]. In this system, proteins of interest are fused to either the N- or C-terminal moiety of a mutated ubiquitin (Figure 3). The N-terminus of split-ubiquitin includes an Ile to Gly mutation (NubG), which abolishes NubG's affinity for Cub when expressed in the same cells. The C-terminal moiety of the split-ubiquitin includes an artificial transcription factor domain (Cub-LexA-VP16). Upon in vivo interaction of their respective protein fusion partners, NubG and Cub are forced into close proximity and the interaction can be detected by the release of LexA-VP16 transcription factor, inducing transcriptional activation of growth and colorimetric reporter genes (HIS3, ADE2, and lacZ). We used this system to test for oligomerisation of nematode ORs.

The SignalP 3.0 algorithm predicts that odr-10 does not contain a cleavable N-terminal sequence [59]. Therefore, we fused full-length odr-10 to the C-terminus of ubiquitin in pBT3-STE (ODR-10:Cub) and also to the N-terminus of ubiquitin in pPR3-STE (ODR-10:NubG). The STE2 sequence improves translation of bait and prey sequences. In order to test the homo-oligomerisation of ODR-10, both constructs were co-transformed into the reporter yeast strain (NMY51). In the presence of 35 mM 3-Amino-1,2,4-triazole (3-AT), which is required to establish an appropriate level of stringency, ODR-10-Cub interacted with ODR-10-NubG, shown by the growth of this pair on drop out media lacking His and confirmed by β-galactosidase assay (Figure 2D). A negative control expressing ODR-10-Cub with NubG alone (pPR3-STE) showed no growth (Figure 2D). Co-expression of ODR-10-Cub with wild-type Nub I (Ostl-NubI) served as a positive control, which resulted in growth on His-deficient medium and expression of the lacZ reporter as shown in Figure 2D. Growth of yeast expressing ODR-10-Cub and the Ostl-NubI control also confirms that ODR-10 is functional in this yeast system. The bait pTSU2-APP, expressing the type I integral membrane protein amyloid A4 precursor protein (APP) and the prey pNubG-Fe65 expressing the cytosolic protein amyloid beta A4 precursor protein-binding family B member 1 (Fe65) were used as positive controls (Figure 2D). These results, obtained using three independent approaches, provide the first evidence that a nematode chemoreceptor can form homo-oligomers.

ODR-10 can form hetero-oligomers with other olfactory receptors but not with SSTR5

To investigate whether ODR-10 can form hetero-oligomers with other GPCRs, we probed the interaction of ODR-10 with a second C. elegans chemoreceptor, STR-112 and two mammalian receptors, the rat I7 chemoreceptor [33,60] and the human somatostatin receptor subtype 5 (SSTR5) [34,61]. STR-112 is the closest homologue of ODR-10, having 79.6% amino acid identity with it. We used the split-ubiquitin yeast two-hybrid system to test for hetero-oligomerisation of ODR-10 with STR-112. Thus, full-length str-112 was fused to the C-terminus of ubiquitin in pBT3-STE (STR-112:Cub) and also to the N-terminus of ubiquitin in pPR3-STE (STR-112:NubG) as shown in Figure 3. Pairwise interaction was tested, in both ODR-10-Cub/STR-112-NubG and STR-112-Cub/ODR-10-NubG combinations. As shown in Figure 4, ODR-10 interacted with STR-112, demonstrated by growth on drop out medium lacking His as well as by a β-galactosidase induction assay. No growth was observed in negative controls, under the same conditions (Figure 4).

Immunoprecipitation experiments also showed that rat I7 can form heterodimers with ODR-10 (Figure 5A). We confirmed hetero-oligomerisation between ODR-10 and I7 using two other, independent, techniques. Co-expression of ODR-10-Rluc with I7-GFP2 or ODR-10-GFP2 with I7-Rluc gave BRET2 ratios of 0.39±0.12 and 0.40±0.004 respectively, compared with a BRET2 ratio of 0.15±0.004 for ODR-10-Rluc alone, indicating that ODR-10 heterodimerises with I7 (Figure 5B). Furthermore, split-ubiquitin yeast two-hybrid experiments confirmed hetero-oligomerisation of ODR-10 and I7. Pairwise interaction was performed using ODR-10-Cub and I7-NubG combination. As shown in Figure 5C, ODR-10 interacted with I7, observed by the growth on drop out medium lacking His as well as β-galactosidase assay. Immunoprecipitation experiments showed that I7 itself can form homo-oligomers (Figure 6A). Co-expression of I7-Rluc with I7-GFP2 gave a BRET2 ratio of 0.50±0.04 compared with 0.016±0.006 for a post-expression mixture (Figure 6B), which is statistically significant (P<0.01). Furthermore, rat I7 scored positive for homo-oligomerisation in the split-ubiquitin yeast two-hybrid assay (Figure 6C) both by growth on drop out media lacking His, and by β-galactosidase assay. This is consistent with the finding of Wade et al [62], that hOR1740, a human helical receptor, can form functional homodimers.

Given the evolutionary distance separating nematodes and mammals and their odorant receptors [63], we were somewhat
Figure 4. ODR-10 hetero-oligomerises with STR-112 in the split-ubiquitin yeast two-hybrid system. Growth and β-Galactosidase activity of yeast cells expressing various combinations of Cub and NubG fusions. The control plasmids were pPR3-STE and pBT3-STE. Yeast transformants containing both Cub fusion and NubG fusion constructs were grown on drop out media (SD-Leu and -Trp) (Figure S2B) and selective medium lacking histidine (SD-Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Ab600nm = 1.

Figure 5. ODR-10 hetero-oligomerises with I7. A. Co-immunoprecipitation of pairs of tagged chemoreceptor subunits. Values represent means ± SD of experiments performed in triplicate with three independent transformants for each condition (**denotes significance at P≤0.001), “b” is significantly different from “a”. B. BRET2 ratios measured to test for hetero-dimerisation of ODR-10 and I7 in intact yeast cells. Values represent means ± SD (n = 3) (**denotes significance at P≤0.002), “b” is significantly different from “a”. Indicated constructs in both A and B were expressed separately, or mixed (+), or co-expressed (/). C. ODR-10 hetero-oligomerises with I7 in the split-ubiquitin yeast two-hybrid system. Growth and β-galactosidase activity of yeast cells expressing ODR-10:Cub and I7:NubG fusions. Yeast transformants containing both Cub fusion and NubG fusion constructs were grown on drop out media (SD-Leu and -Trp) (Figure S2C) and selective medium lacking histidine (SD-Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Ab600nm = 1.

doi:10.1371/journal.pone.0108680.g004
doi:10.1371/journal.pone.0108680.g005
The C. elegans olfactory receptor ODR-10 forms homo-oligomers. Homo-oligomerisation has been previously described for mammalian olfactory receptors [62]. ODR-10 can also oligomerise with a closely related C. elegans chemosensory receptor, and even with a mammalian olfactory receptor. In contrast, we saw no evidence for hetero-oligomerisation between ODR-10 and the human peptide receptor SSTR5. However, we cannot rule out the possibility that ODR-10 might interact with some non-chemosensory GPCRs. One previous study found that a single mammalian olfactory receptor, screened indirectly for interactions with 42 distinct GPCR subtypes, occur at the receptor concentrations achieved in the heterologous yeast system. It remains to be seen whether such interactions can be observed in the natural environment of a nematode OSN.

Conclusion

Three independent lines of evidence show that, in the heterologous yeast system, the C. elegans olfactory receptor ODR-10 forms homo-oligomers. Homo-oligomerisation has been previously described for mammalian olfactory receptors [62]. ODR-10 can also oligomerise with a closely related C. elegans chemosensory receptor, and even with a mammalian olfactory receptor. In contrast, we saw no evidence for hetero-oligomerisation between ODR-10 and the human peptide receptor SSTR5. However, we cannot rule out the possibility that ODR-10 might interact with some non-chemosensory GPCRs. One previous study found that a single mammalian olfactory receptor, screened indirectly for interactions with 42 distinct GPCR subtypes,
interacted with only three purinergic receptors [64]. These interactions appeared to be receptor specific, as other oligo-
tary receptors tested did not interact with the purinergic receptors. Vertebrate oligoary neurons typically express only one or two receptors per neuron [18,19]. In these systems, perception of odours is processed in higher order brain centres by simulta-
neously analysing the inputs of thousands of neurons [65]. C. elegans has hundreds of chemoreceptor genes, but only 32
chemosensory neurons, implying that a single neuron expresses many different chemoreceptor genes [24,66]. Our observations raise the possibility that C. elegans chemosensory receptors expressed in the same sensory neuron in vivo could form heterodimers, which would have the potential to increase the functional repertoire of individual OSNs. However, we emphasise that we have no evidence that such interactions occur in vivo, nor that they are functional even in the yeast system used here. It would be interesting to search for hetero-oligomerisation in vivo, by transforming C. elegans with neuronally-targeted pairs of BRET-tagged odorant receptors.

Supporting Information

Figure S1 BRET results showed that specific signals obtained from a series of low level expression of tagged ODR-10 samples showed that interactions between ODR-10 were specific and not collateral interactions due to over-expression. Tested yeast cells were induced for expressing tagged ODR-10 proteins for different times (between 0 to 72 hours) at 15°C in order to achieve different levels of ODR-10 expression as indicated by tagged GFP levels from 1 to 12-fold over the untransformed cells. Only samples with GFP levels>5 fold greater than controlled cells (to the left of the vertical line) were used for oligomerisation studies. Energy transfer measurements were performed in living cells by adding 3 μM DeepBlueC and measured light emissions in a dual wavelength microplate reader with Rluc and GFP filter settings as described in the Methods. Values represent means ± SD of two independent experiments.

(TIF)

Figure S2 Positive controls for Figures 2, 4, 5 and 6. Yeast transformants containing both a Cub fusion and a NubG fusion construct were grown on drop out media (SD -Leu and -Trp) to test the presence of both constructs in yeast cells. Cells were spotted as one-tenth dilutions starting at ABs000000 = 1.

(TIF)

Acknowledgments

The authors gratefully acknowledge Dr Kevin Pfleger and Dr Peter East for advice and critical review of the manuscript.

Author Contributions

Conceived and designed the experiments: MT CL MD ST HD AA. Performed the experiments: MT CL MD. Analyzed the data: MT CL. Contributed reagents/materials/analysis tools: MT CL. Wrote the paper: MT ST AA.

References

1. Gurevich VV, Gurevich EV (2008) How and why do GPCRs dimerize? Trends in Pharmacological Sciences 29: 234–240.
2. Marinissen MJ, Gukind JS (2001) G-protein coupled receptors and signaling networks: emerging paradigms. Trends in Pharmacological Sciences 22: 368–376.
3. Jordan BA, Trapazide N, Gomes I, Nivarhli R, Devi LA (2001) Oligomerisation of opioid receptors with beta-2 adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Prot Natl Acad Sci USA 98: 343–346.
4. George SR, O'Dowd BF, Lee SP (2002) G-protein coupled receptor oligomerisation and its potential for drug discovery. Nat Rev Drug Discov 1: 808–820.
5. Kroeger KM, Pfleger KD, Eide KA (2003) G-protein coupled receptor oligomerisation in neuroendocrine pathways. Front Neuroendocrinol 24: 254–278.
6. Milligan G (2004) G-protein coupled receptor dimerisation: function and ligand pharmacol. Pharmacol 66: 1–7.
7. Bulenger S, Marrullo S, Bouvier M (2005) Emerging role of homo- and heterodimerisation in G-protein coupled receptor biosynthesis and maturation. Trends in Pharmacological Sciences 26: 131–137.
8. Milligan G (2006) A day in the life of a G-protein coupled receptor: the contribution to function of G-protein coupled receptor dimerisation. Br J Pharmacol 153 Suppl 1: S216–S229.
9. Fuxe K, Ferre S, Canals M, Torvinen M, Terasmaa A, et al. (2005) Adenosine A(2A) and dopamine D-2 heteroreceptor complexes and their function. Journal of Molecular Neuroscience 26: 209–219.
10. del Burgo LS, Milligan G (2010) Heterodimerisation of G-protein coupled receptors: implications for drug design and ligand screening. Expert Opinion on Drug Discovery 3: 461–474.
11. Prunier SC, Holmqvist TG, Hall RA (2006) alpha(2C)-Adrenergic receptors exhibit enhanced surface expression and signaling upon association with beta(2)-adrenergic receptors. Journal of Pharmacology and Experimental Therapeutics 318: 974–981.
12. Uberti MA, Hauge G, Oller H, Mannanen KP, Hall RA (2005) Heterodimerisation with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther 313: 16–23.
13. Ranaide SV, Eron B, Favre H, Cheung CC, Rosenhal SM, et al. (2009) Identification, characterisation and rescue of a novel vasopressin-2 receptor mutation causing nephrogenic diabetes insipidus. Clin Endocrinol (Oxf) 71: 381–383.
14. Marshall FH, Jones KA, Kaupsann K, Better B (1999) GABAB receptors – the first 7TM heterodimers. Trends Pharmacol Sci 20: 396–399.
15. Lavoie C, Mercier JF, Salabour A, Umapathy D, Breit A, et al. (2002) Beta 1/ beta 2-adrenergic receptor heterodimerisation regulates beta 2-adrenergic receptor internalisation and ERK signaling efficacy. J Biol Chem 277: 35402–35410.
16. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghuni M, et al. (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gs/11 in the striatum. Proc Natl Acad Sci USA 104: 654–659.
17. Bargmann CI (2006) Comparative chemosensomisation from receptors to ecology. Nature 444: 295–301.
18. Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74: 309–318.
19. Goldman AL, van Naters WV, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45: 661–666.
20. Van Delft CW, Boudreau A, Ding Y, Yang ZF, Ryba NJP, et al. (2000) Mammalian sweet taste receptors. Cell 106: 381–390.
21. Li XD (2009) T1R receptors mediate mammalian sweet and umami taste. American Journal of Clinical Nutrition 90: 733s–734s.
22. Robertson JM, Thomas JH (2006) The putative chemoreceptor families of C. elegans. WormBook: 1–12.
23. Bargmann CI (1993) Genetic and cellular analysis of behavior in C. elegans. Annual Review of Neuroscience 16: 47–71.
24. Troubetzkoy ER, Chu JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemoreceptor receptors in C. elegans. Cell 83: 207–218.
25. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, et al. (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430: 317–322.
26. Sengupta P, Chu JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84: 899–909.
27. Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K (1997) The Caeorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci USA 94: 12162–12167.
28. Reasgug K, Crump JG, Sagasti A, Bargmann CI (1998) The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20: 55–67.
29. Corbet M, Faklaris O, Maurel D, Scholler P, Doumazane E, et al. (2012) BRET and Time-resolved FRETS strategy to study GPCR oligomisation: from cell lines toward native tissues. Front Endocrinol (Lausanne) 3: 52.
30. Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein coupled receptor dimerisation: modulation of receptor function. Pharmacol Ther 92: 71–87.
47. Devi LA (2001) Heterodimerization of G-protein-coupled receptors: pharma-
46. Zeng FY, Wess J (1999) Identification and molecular characterization of m3
45. Gines S, Hillion J, Torvinen M, Casado V, Itazawa K, et al. (2010) Control of
44. Sanz G, Persuy MA, Vidic J, Wafe F, Longin C, et al. (2009) European
43. Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, et al. (2007)
40. Mentesana PE, Dosil M, Konopka JB (2002) Functional assays for mammalian
38. Issad T, Jockers R (2006) Bioluminescence resonance energy transfer to monitor
35. Dacres H, Wang J, Dumancic MM, Trowell SC (2010) Experimental
determination of the forster distance for two commonly used bioluminescence resonant
energy transfer pairs. Analytical Chemistry 82: 432–435.
34. Johnson N, Varshavsky A (1994) Split Ubiquitin as a Sensor of Protein
Interactions in-Vivo. Proc Natl Acad Sci USA 91: 10349–10354.
33. Zhao HQ, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, et al. (1998)
32. Szidonya L, Cserzo M, Hunyady L (2008) Dimerisation and oligomerisation of
31. Angers S, Salahpour A, Bouvier M (2002) Dimerisation: an emerging concept
30. Dacres H, Wang J, Leitch V, Horne I, Anderson AR, et al. (2011) Greatly
enhanced detection of a volatile ligand at femtomolar levels using biolumines-
cence resonance energy transfer (BRET). Biosenss & Bioelectronics 29: 119–
124.
29. Gietz D, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high
efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1452.
28. Ayoub MA, Couturier G, Lucas-Meunier E, Angers S, Fossier P, et al. (2002)
Monitoring of ligand-independent dimerisation and ligand-induced conformational
changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277: 21525–21528.
27. Issad T, Jockers R (2006) Bioluminescence resonance energy transfer to monitor
protein-protein interactions. Methods Mol Biol 332: 195–209.
26. Iyer K, Barkle L, Auerbach D, Thaminy S, Dinkel M, et al. (2005) Utilizing the
split-ubiquitin membrane yeast two-hybrid system to identify protein-protein
interactions of integral membrane proteins. Science’s STKE : signal transduc-
tion knowledge environment 2005: p. pl3.
25. Mentesana PE, Dosil M, Konopka JB (2002) Functional assays for mammalian
G-protein coupled receptors in yeast. G Protein Pathways Part B: G Proteins
and Their Regulators 344: 92–111.
24. Dowell SJ, Brown AJ (2002) Yeast assays for G-protein coupled receptors.
Receptors & Channels 8: 343–352.
23. Sasaki Y, Ishii J, Noguchi K, Kondo A, Yohda M (2012) An improved
bioluminescence-based signaling assay for odor sensing with a yeast expressing a
chimeric olfactory receptor. Biotechnology and Bioengineering 109: 3143–3151.
22. Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, et al. (2007)
Chemical sensing of DNT by engineered olfactory yeast strain. Nature Chemical
Biology 3: 325–330.
21. Sanz G, Persuy MA, Vidic J, Wafe F, Longin C, et al. (2009) European
Chemoreception Research Organization XIX Congress Villasimius, Italy.
20. Gines S, Hillion J, Torvinen M, Le Cron S, Casado V, et al. (2008) Dopamine
D1 and adenosine A1 receptors form functionally interacting heteromeric
complexes. Proc Natl Acad Sci USA 97: 8606–8611.
19. Zeng FY, Wess J (1999) Identification and molecular characterization of m3
muscarinic receptor dimers. Journal of Biological Chemistry 274: 19487–19497.
18. Devi LA (2001) Heterodimerization of G-protein-coupled receptors: pharma-
cology, signaling and trafficking. Trends in Pharmacological Sciences 22: 532–
537.
17. Yoshiba K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-
like adenosine receptor. Proc Natl Acad Sci USA 98: 7617–7622.
16. Zeng FY, Wess J (1999) Identification and molecular characterization of m3
muscarinic receptor dimers. Journal of Biological Chemistry 274: 19487–19497.
15. Devi LA (2001) Heterodimerization of G-protein-coupled receptors: pharma-
cology, signaling and trafficking. Trends in Pharmacological Sciences 22: 532–
537.