Parallel Quantum Algorithm for Hamiltonian Simulation

Zhicheng Zhang∗ Qisheng Wang† Mingsheng Ying‡

Abstract

We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Hamiltonians of practical interest like local Hamiltonians and Pauli sums. Given the oracle access to the target sparse Hamiltonian, in both query and gate complexity, the running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence polylog log(1/ǫ) on the simulation precision ǫ. This presents an exponential improvement over the dependence polylog(1/ǫ) of previous optimal sparse Hamiltonian simulation algorithm without parallelism. To obtain this result, we introduce a novel notion of parallel quantum walk, based on Childs’ quantum walk. The target evolution unitary is approximated by a truncated Taylor series, which is obtained by combining these quantum walks in a parallel way. A lower bound Ω(log log(1/ǫ)) is established, showing that the ǫ-dependence of the gate depth achieved in this work cannot be significantly improved.

Our algorithm is applied to simulating three physical models: the Heisenberg model, the Sachdev-Ye-Kitaev model and a quantum chemistry model in second quantization. By explicitly calculating the gate complexity for implementing the oracles, we show that on all these models, the total gate depth of our algorithm has a polylog log(1/ǫ) dependence in the parallel setting.

∗University of Chinese Academy of Sciences, China. iszczzhang@gmail.com
†Department of Computer Science and Technology, Tsinghua University, China. wqs17@mails.tsinghua.edu.cn
‡Centre for Quantum Software and Information, University of Technology Sydney, Australia; State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China; Department of Computer Science and Technology, Tsinghua University, China. Mingsheng.Ying@uts.edu.au
Contents

1 Introduction 3
 1.1 Main Results ... 4
 1.2 High-level Overview of the Algorithm 6
 1.3 Related Works ... 8
 1.4 Structure of the Paper 8

2 Preliminaries and Notations 9
 2.1 Basic Terminologies 9
 2.2 Parallel Quantum Circuit 10
 2.3 Block-encoding .. 13

3 Parallel Quantum Walk 13
 3.1 A Quantum Walk for Hamiltonians 14
 3.2 Parallelization .. 16
 3.2.1 Pre-walk and Uniform-structured Hamiltonians 18
 3.2.2 Re-weight ... 24
 3.3 Extension: A Parallel Quantum Walk for a Sum of Hamiltonians 25

4 Parallel LCU for Hamiltonian Series 28

5 Parallel Hamiltonian Simulation 31

6 Lower Bounds 33

7 Applications 34
 7.1 Simulation of the Heisenberg Model 34
 7.2 Simulation of the Sachdev-Ye-Kitaev Model 36
 7.3 Simulation of Quantum Chemistry in Second Quantization 37

8 Discussion 39

A Details Omitted in Section 3.3 46
 A.1 Proof of Theorem 3.30 47

B Definition of State Preparation 49
1 Introduction

Simulating the quantum Hamiltonian dynamics is a fundamental problem in computational physics. Despite its ubiquity and importance, the problem is believed to be intractable for classical computers. Quantum computers were originally proposed to efficiently solve this problem \[48\]. The first algorithm for solving this problem was given by Lloyd for local Hamiltonians \[71\], and has been followed by many remarkable results over the past twenty years. Moreover, these results have found diverse applications in other quantum algorithms (e.g., \[37, 6, 46, 32\]) beyond quantum simulation.

While the state-of-the-art has achieved an optimal quantum algorithmic solution to simulating a large class of Hamiltonians \[73\], it remains open whether the quantum simulation algorithms can be parallelized in order to provide further speed-up. In this work, we identify a class of Hamiltonians that can be more efficiently simulated in parallel, called uniform-structured Hamiltonians. Then we introduce the notion of parallel quantum walk within Childs’ framework \[35, 19, 22, 37\]. Based on it, we propose a parallel quantum simulation algorithm for uniform-structured Hamiltonians.

Hamiltonian simulation Simulating the time evolution of a quantum system governed by a time-independent Hamiltonian H for a time t is essentially approximating the unitary e^{-iHt} to some precision ϵ, according to the Schrödinger’s equation. In this paper, we focus on the digital quantum simulation (rather than the analog quantum simulation \[69\]), that is, simulating the Hamiltonian with a fault-tolerant universal quantum computer, given some oracle access to the Hamiltonian H. The performance of a quantum simulation algorithm depends on several factors: the simulation time t, the precision ϵ, the number of queries to oracles, and other parameters of the target Hamiltonian (e.g., size, matrix norm, and sparsity of H).

In the literature, there are basically three approaches to simulate a Hamiltonian:

- **The product formula approach** is conceptually the simplest without introducing ancilla qubits. Early works \[71, 3, 18, 97, 36, 41\] on product-formula-based algorithms often had a poor complexity dependence on the precision ϵ, which was later improved \[75\] by techniques borrowed from other simulation approaches. This approach has regained attentions in recent years due to a number of new results \[40, 75, 30, 39, 33, 45\] and its potential to be implemented in the near term.

- **The quantum walk approach** \[35, 19, 68\] spawned the groundbreaking work \[20, 21\] that improves the complexity dependence on ϵ from $\text{poly}(1/\epsilon)$ to $\text{polylog}(1/\epsilon)$. This approach mainly applies to simulating a d-sparse Hamiltonian H, which is an Hermitian matrix with at most d nonzero entries in each row. The Hamiltonian H is accessed by two oracles: an oracle O_H giving the entry H_{jk} according to the index pair (j, k), and an oracle O_L giving the column index of the t^{th} nonzero entry in row j according to t and j. By approximating e^{-iHt} with a linear combination of Childs’ quantum walk operators \[22\] (commonly known as the Linear-Combination-of-Unitaries, i.e., LCU algorithm \[41\]), the quantum walk approach achieves a nearly optimal \[22\] query complexity for simulating sparse Hamiltonians accessed by O_H and O_L. This technique has also been applied to solving the quantum linear systems problem \[60\], which was originally solved in \[37\] by phase estimation.

- **The lower bound of query complexity for sparse Hamiltonian simulation** was finally reached by the quantum signal processing approach \[77, 74, 73\], which provides a new way to transform the eigenvalue of a unitary by manipulating a single ancilla qubit without performing phase estimation. The input model was also generalized beyond sparse matrices by subsequent works on qubitization and block-encoding \[73, 32, 50\].

Later works [74, 59, 76, 72] make further improvements on the complexity dependence on other parameters. We particularly note that all of the above approaches for Hamiltonian simulation are sequential.

Parallel quantum computation The aim of this paper is to study parallel quantum simulation of Hamiltonians. The computational model that we adopt is the quantum circuit model where the running time of a quantum algorithm is measured by the depth of its circuit implementation, with both gates and oracle queries being allowed to be performed in parallel.

A pioneering work in this direction is Cleve and Watrous’ $O(\log n)$-depth parallel quantum circuit for n-qubit quantum Fourier transform [43], which can be used to parallelize Shor’s factoring algorithm [91] with poly-time classical pre- and post-processing. Following works on parallel Shor’s algorithm include factoring on a 2D quantum architecture [85] and discrete logarithm on elliptic curves [89]. The limits on parallelizing Grover’s search algorithm [55] was first considered by Zalka [102]. This inspires a line of studies [51, 56, 62, 29, 52] on parallel quantum query algorithms and complexity bounds. The low-depth (parallel) quantum circuit classes are also studied (see e.g., [54, 81, 53, 95, 47, 61, 17, 94, 44, 34, 63]), amongst which one surprising result is a quantum advantage established by constant-depth quantum circuits over their classical counterparts [25, 96, 70, 26].

The research on parallel quantum computation is not restricted to the circuit model. For example, in measurement-based quantum computing, it was observed that parallelism can provide more benefits than in the circuit model [64, 27, 28]. Another parallel model closer to the current quantum hardware is distributed quantum computing, which can efficiently simulate the quantum circuit model with low depth overhead [15]. Parallelism is also studied at more abstract levels like quantum programming [99, 100].

1.1 Main Results

Our main result is a parallel quantum simulation algorithm for uniform-structured Hamiltonians, which will be formally defined in Sections 3.2 and 3.3. These Hamiltonians include local Hamiltonians, Pauli sums and other Hamiltonians of interest. Roughly speaking, a uniform-structured Hamiltonian H has the form $H = \sum_{w \in [m]} H_w$ \footnote{In this paper, $[m]$ denotes the set $\{0, 1, \ldots, m - 1\}$ for all $m \in \mathbb{N}$.}, where for each w, H_w is a sparse Hamiltonian specified by a parameter s_w. We adopt the sparse matrix input model for these Hamiltonians, that is, a target Hamiltonian H is accessed by two oracles: an oracle O_H giving an entry H_{jk} by the mapping $| j, k, 0 \rangle \mapsto | j, k, H_{jk} \rangle$, and an oracle O_P giving the parameter s_w by the mapping $| w, 0 \rangle \mapsto | w, s_w \rangle$. Here, O_P might be different for various types of Hamiltonians. Formal details of the input model will be described in Section 2.

Throughout this paper we assume the target Hamiltonian H is normalized such that $\|H\|_{max} = 1$, where $\|H\|_{max} := \max_{jk} |H_{jk}|$. Then our main result can be stated as the following:

Theorem 1.1 (Informal version of Theorem 5.5). Any uniform-structured Hamiltonian $H = \sum_{w \in [m]} H_w$ acting on n qubits with each H_w being d-sparse, can be simulated for time t to precision ϵ by a quantum circuit of depth $\text{poly}(\log \log (1/\epsilon), \log n, m, d, t)$ and size $\text{poly}(\log (1/\epsilon), n, m, d, t)$.

Here, the running time of our algorithm, i.e., the quantum circuit depth, has a doubly (poly-)logarithmic dependence on the precision ϵ. To the best of our knowledge, this is the first Hamiltonian simulation algorithm that achieves such dependence on ϵ.

Applying this theorem to simulating local Hamiltonians, we have:
Corollary 1.2 (Parallel simulation of local Hamiltonians). Let \(H = \sum_{w \in [m]} H_w \) be an \(l \)-local Hamiltonian acting on \(n \) qubits, where each \(H_w \) acts on a subsystem of \(l \) qubits whose positions are indicated by bit 1 in an \(n \)-bit string \(s_w \). Suppose the oracle \(\mathcal{O}_P \) has access to \(s_w \) such that \(\mathcal{O}_P (w, 0) = (w, s_w) \). Then \(H \) can be simulated for time \(t \) to precision \(\epsilon \) by a quantum circuit with

- \(O(\tau \log \gamma) \)-depth and \(O(\tau \gamma) \)-size of queries to \(\mathcal{O}_H \),
- \(O(\tau \log \gamma) \)-depth and \(O(m \tau \gamma) \)-size of queries to \(\mathcal{O}_P \), and
- \(O(\tau (\log^2 \gamma \cdot \log^2 n + \log^3 \gamma)) \)-depth and \(O(\tau \gamma^2 \cdot (mn^4 + \gamma^3)) \)-size of gates.

where \(\tau := m^{2^l} \cdot t \), \(\gamma := \log(\tau/\epsilon) \), and the gate refers to one- or two-qubit gate.

The best known algorithm for this task is by applying the optimal sparse Hamiltonian simulation of \([74, 73]\) (note that \(H \) in Corollary 1.2 is \((m^{2^l})\)-sparse), which requires a query complexity \(O\left(\tau + \frac{\gamma}{\log \gamma}\right) \) and a gate complexity \(O(n + \gamma \log \log \gamma) \). By introducing parallelism, our algorithm exponentially improves the dependence on \(\epsilon \) and \(n \), in the depth of both queries and gates.

It is worth noting the difference between the oracle \(\mathcal{O}_P \) used in Corollary 1.2 for local Hamiltonians and the oracle \(\mathcal{O}_L \) in previous works \([3, 35, 19, 22, 74]\) for generic sparse Hamiltonians. Oracle \(\mathcal{O}_L \) computes a function \(L(j, t) \) denoting the column index of the \(t \)-th non-zero entry in row \(j \) of \(H \). In practice, oracle \(\mathcal{O}_P \) is a more natural choice than \(\mathcal{O}_L \), because if one wants to exploit the local structure of the Hamiltonian to be simulated, knowing the locality parameter \(s_w \) given by \(\mathcal{O}_P \) is intuitively the minimal requirement. As an evidence, when we apply our algorithm to the Heisenberg model in Section 7.1, the gate complexity for implementing the oracle \(\mathcal{O}_P \) is efficient. Note that in the local Hamiltonian case, a query to the oracle \(\mathcal{O}_L \) can be achieved by at most \(m^{2^l} \) queries to \(\mathcal{O}_P \).

Lower bounds. It was shown in \([74, 73]\) that sparse Hamiltonian simulation requires \(\Omega\left(\frac{\log(1/\epsilon)}{\log \log (1/\epsilon)}\right) \)-size of queries and gates. We are able to further prove a lower bound of the gate depth for the Hamiltonian simulation:

Theorem 1.3 (\(\epsilon \)-dependence depth lower bound for Hamiltonian simulation). Any quantum algorithm for sparse Hamiltonian simulation to precision \(\epsilon \) requires \(\Omega(\log \log (1/\epsilon)) \)-depth of gates. The same holds even for uniform-structured Hamiltonian simulation.

This theorem implies that our parallel quantum algorithm given in Theorem 1.1 for simulating uniform-structured Hamiltonians cannot be significantly improved in the \(\epsilon \)-dependence.

Applications. Our algorithm is applied in Section 7 to simulating three quantum dynamical models in physics and chemistry of practical interest:

- The Heisenberg model for studying the self-thermalization and many-body localization \([82, 78, 38]\);
- The Sachdev-Ye-Kitaev (SYK) model for studying the simplest AdS/CFT duality \([90, 66, 80, 49]\); and
- A second-quantized molecular model for studying the electronic structure of a molecule \([101, 14, 9]\).

We explicitly calculate the gate cost for implementing the oracles mentioned above and the total gate complexity for the simulation. Table 1 shows a comparison of our algorithm with previous best known algorithms on the same tasks. From it, one can see that by introducing parallelism, our algorithm achieves an exponential speed-up on the \(\epsilon \) dependence for simulating all these models.
Model	Algorithms	Gate depth \((n,t)\)	Gate depth \((\epsilon)\)
Heisenberg model	Childs et al. [42]	\(\tilde{O}(n^3)\)	\(O\left(\frac{\log(1/\epsilon)}{\log(\log(1/\epsilon))}\right)\)
	Haah et al. [59]	\(\tilde{O}(n)\)	polylog(1/\epsilon)
	Our algorithm	\(\tilde{O}(n^3)\)	\(O\left(\log^3 \log(1/\epsilon)\right)\)
SYK model	Babbush et al. [11]	\(\tilde{O}(n^{3.5}t)\)	polylog(1/\epsilon)
	Our algorithm	\(\tilde{O}(n^{6.5}t)\)	\(O\left(\log^3 \log(1/\epsilon)\right)\)
Molecular model	Babbush et al. [9]	\(\tilde{O}(n^8t)\)	\(O\left(\frac{\log(1/\epsilon)}{\log(\log(1/\epsilon))}\right)\)
	Later improvements	poly(n, t)	polylog(1/\epsilon)
	(e.g. [12, 13, 67, 10, 23])		
	Our algorithm	\(\tilde{O}(n^8t)\)	\(O\left(\log^3 \log(1/\epsilon)\right)\)

Table 1: A comparison of our algorithm (Theorem 5.5) with previous best algorithms in simulating three physical models. Here, parameter \(n\) is the size of the system to be simulated, \(t\) is the simulation time, and \(\epsilon\) is the precision of simulation. The complexity of an algorithm is measured by the depth of gates, where for readability the dependence on different parameters are split. The notation \(\tilde{O}(\cdot)\) denotes an asymptotic upper bound suppressing poly-logarithmic factors. For Heisenberg model, we follow the convention of taking \(t = n\).

1.2 High-level Overview of the Algorithm

Our algorithm is based on the quantum walk approach to Hamiltonian simulation [35, 19, 68, 22]. The basic idea of this approach is to approximate the target unitary \(e^{-iHt}\) by expressing it as a Chebyshev series \(e^{-iHt} \approx \sum_r \alpha_r T_r(H)\), where for each \(r\), \(\alpha_r \in \mathbb{C}\) is some appropriate coefficient, and \(T_r(x)\) is the degree-\(r\) Chebyshev polynomial. Each \(T_r(H)\) can be obtained by \(r\) steps of Childs’ quantum walk [35, 19]. Then a linear combination of these quantum walks is performed by the Linear-Combination-of-Unitaries (LCU) technique [41, 68, 22]. Essentially, this approach is sequential due to the fact that \(r\) steps of quantum walk require \(r\) sequential queries, and to achieve a total precision \(\epsilon\) of the simulation, \(r\) should be as large as \(\Theta(\log(1/\epsilon))\), inducing a logarithmic precision dependence.

In this work, we introduce a parallel quantum walk which is implementable with only a constant depth of parallel queries, for a large class of Hamiltonians pertaining good sparse structures — uniform-structured Hamiltonians. The parallel quantum walk is not a direct parallelization of Childs’ quantum walk, instead it implements a monomial of \(H\). We express the unitary \(e^{-iHt}\) as a Taylor series \(e^{-iHt} \approx \sum_r \beta_r H^r\) (like in the previous work [20]), where each degree-\(r\) monomial \(H^r\) can be obtained (with a proper scaling factor) by an \(r\)-parallel quantum walk. These parallel quantum walks are then linearly combined in parallel by a technique described in Section 4, which exploits parallelism in the LCU algorithm to combine \(R\) terms with polylog(\(R\)) depth. Since there are about \(O(\log(1/\epsilon))\) terms in the LCU to achieve a total precision \(\epsilon\) of the simulation, the query depth of our parallel algorithm is roughly polylog log(1/\epsilon), achieving a doubly (poly-)logarithmic precision dependence.

2 More specifically, \(n\) has different meanings in different models: for the Heisenberg model, it is the exact number of qubits on the spin chain; for the SYK model, it is a half of the number of Majorana fermions; and for the second-quantized molecular model, it is the number of spin orbitals.
Parallel quantum walk The main ingredient in our parallel simulation algorithm is the parallel quantum walk. For an intuition of the algorithm, let us consider a very special case of uniform-structured Hamiltonians for example, a tensor product of Pauli matrices; that is, $H = \bigotimes_{l \in [n]} \sigma_l$ for $\sigma_l \in \{1, X, Y, Z\}$ being Pauli matrices. Although H is a simple 1-sparse Hamiltonian, it suffices for an illustration of the main idea in our algorithm. To begin with, one can think of H as a weighted adjacency matrix of a 1-sparse graph H, then a step of Childs’ quantum walk without parallelism is a “superposition version” of a classical random walk: it performs $|j\rangle \mapsto H_{jk} |k\rangle$ for all vertex j in H, where in this special case k is the unique neighbor of vertex j, and $H_{jk} \in \{1, i, -1, i\}$. This step requires $O(1)$ queries to determine j’s neighbor and the entry value H_{jk}.

The parallelism comes from observing the special structure of the graph H: it is a 1-sparse graph consisting of 2^{n-1} pairs of vertices. Furthermore, for every vertex j, there is a “uniform” way to determine its pairing neighbor k. More precisely, consider an n-bit string s, which has its lth bit being 0 if $\sigma_l \in \{1, Z\}$ is a diagonal Pauli matrix, and being 1 if $\sigma_l \in \{X, Y\}$ is an off-diagonal Pauli matrix. Then it is easy to see that j, k are neighbors in H if and only if $j \oplus k = s$ with \oplus the bit-wise XOR operator. Assume s is given by an oracle O_P, a step of Childs’ quantum walk $|j\rangle \mapsto H_{jk} |k\rangle$ can be performed by first querying O_P to calculate $k = j \oplus s$, and then querying O_H to add the phase H_{jk}. Now r steps of such a walk are essentially the mapping $|j\rangle \mapsto (H_{jk})^r |j \oplus s^{\oplus r}\rangle$, where $(H_{jk})^r$ and $s^{\oplus r}$ can be computed in parallel by first querying r oracles O_P (and O_H) simultaneously to compute r copies of s (and H_{jk}), and then classically computing $s^{\oplus r}$ (and $(H_{jk})^r$) in a binary tree of depth $O(\log r)$, using the associativity of XOR (and multiplication). By a standard technique in reversible computation [16], the above parallel classical computation can be easily converted to parallel quantum computation, inducing the $O(1)$-depth of queries and $O(\log r)$-depth of gates.

The above special example captures the idea of parallelism in our algorithm. More generally, denote H the Hamiltonian to be simulated and H its corresponding graph. Then an r-parallel quantum walk consist of two stages. The first stage is called pre-walk which, roughly speaking, prepares a superposition over all paths of length r generated from r steps of unweighted random walk on the graph H. This stage can be done efficiently in parallel, with only a constant depth of queries to O_P, provided that the Hamiltonian H is uniform-structured. The second stage is called re-weight, which adjusts the weights (i.e., the quantum amplitudes) of the state prepared by pre-walk, according to the entry values H_{jk} given by the oracle O_H. This stage does not depend on the structure of H, and can be done efficiently in parallel with a constant depth of queries to O_H. Thus combined with other techniques as in Childs’ quantum walk, we can implement the monomial operator H^r (with a proper scaling factor, see Section 3 for details).

Parallel LCU for Hamiltonian series To approximate the evolution unitary e^{-iHt} by a truncated Taylor series, the final step of our algorithm is to linearly combine the monomials H^r obtained from the parallel quantum walks discussed above. The ordinary LCU algorithm [22, 37] implementing a linear combination of R unitaries requires depth $\Theta(R)$. As pointed out in [37], if these unitaries are powers of a single unitary, then the LCU can be done in a parallel way analogous to the phase estimation [83] with depth $O(\log R)$. We slightly generalize this result to implementing a linear combination of block-encoded (see Definition 2.8) powers of a Hamiltonian (called a Hamiltonian power series) in parallel. Since the LCU requires a state corresponding to the coefficients in the linear combination, we also present a parallel quantum algorithm for this state-preparation procedure, based on standard results in quantum sampling [57].

To summarize, the whole algorithm is visualized in Figure 1.
Parallel quantum walk $Q^{(r)}$

1. Pre-walk (Sec. 3.2.1)
2. Re-weight (Sec. 3.2.2)

A parallel implementation of H^r (with a proper factor; Sec. 3.2)

$O(1)$-depth of queries to O_P

sparse structure

A uniform-structured Hamiltonian H

(Sec. 3.2.1 & Sec. 3.3)

entry value

$O(1)$-depth of queries to O_H

Parallel LCU (Sec. 4)

$r = 1, 2, \ldots, R = \lceil 1/\epsilon \rceil$

polylog(R)-depth

Target unitary e^{-iHt}

(with small t; Sec. 5)

Figure 1: An outline of the parallel quantum algorithm for Hamiltonian simulation.

1.3 Related Works

Parallelism is employed in our Hamiltonian simulation algorithm to reduce the complexity dependence on the precision ϵ from $\text{polylog}(1/\epsilon)$ to $\text{polylog log}(1/\epsilon)$. Is it possible to reduce the dependence on other parameters like the simulation time t by parallelization? Atia and Aharonov [8] studied the fast-forwarding of Hamiltonians (which is further explored in a recent work [58]) — the ability to simulate a Hamiltonian by a quantum circuit with depth significantly less than the simulation time t (e.g. $\text{polylog}(t)$), which is essentially the possibility to reduce the complexity dependence on t in the parallel setting. They show that the fast-forwarding of generic Hamiltonians is impossible unless $\text{BQP} = \text{PSPACE}$ \footnote{Note that this differs from the well-known “no-fast-forwarding theorem” in [18] stating that no sparse Hamiltonian can be simulated for time t with sub-linear query complexity in t. Atia and Aharonov’s result [8] is not restricted to the query model, thus implies that even parallel queries are allowed, the complexity dependence on t cannot be reduced to $\text{polylog}(t)$ for simulating a generic Hamiltonian (unless $\text{BQP} = \text{PSPACE}$).}. Nevertheless, they provided three examples of fast-forwardable Hamiltonians: Hamiltonians constructed from the modular exponentiation unitary in Shor’s algorithm, commuting local Hamiltonians, and quadratic Hamiltonians. Interestingly, although these examples belong to the class of uniform-structured Hamiltonians defined in this paper (by properly setting the oracle O_H and O_P), we are not aware of a direct way to extend our results to reduce the dependence on t.

Jeffery, Magniez and de Wolf [62] studied the parallel query complexity of element-distinctness and k-sum problems. The upper bounds in their results are obtained by what they called “parallelized quantum walk algorithms”. But it should be noted that their algorithm is developed in the framework of finding marked elements via quantum walks [79], in particular, a modified quantum walk on multiple copies of Johnson graphs corresponding to a specific function (element-distinctness or k-sum), with parallel queries to that function. In contrast, our parallel quantum walk is defined in the framework of quantum walks for Hamiltonians [35, 19, 22, 37], in particular, a quantum walk that implements a monomial H^r (with a proper scaling factor) by r parallel queries to the oracles accessing a Hamiltonian H.

1.4 Structure of the Paper

For convenience of the reader, some preliminaries are presented in Section 2. In Section 3, we introduce a parallel quantum walk for Hamiltonians. More concretely, we revisit the framework
of Childs’ quantum walk in Section 3.1, give a parallelization of it and show how to implement this parallel quantum walk in Section 3.2, and analyze the complexity in Sections 3.2.1 and 3.2.2. Specifically in Section 3.2.1, we define uniform-structured Hamiltonians, for which the parallel quantum walk can be performed efficiently. In Section 3.3 we present an extension of the parallel quantum walk to the case of a sum of sparse Hamiltonians, where we also extend the class of uniform-structured Hamiltonians to include more Hamiltonians of interest. In Section 4, we show how to implement a parallel LCU for a Hamiltonian power series. Section 5 assembles the above results to simulate a Hamiltonian by combining parallel quantum walks. In Section 6, we prove an ϵ-dependence lower bound on the gate depth for Hamiltonian simulation. In Section 7, we apply our algorithm to simulate three concrete physical models.

2 Preliminaries and Notations

2.1 Basic Terminologies

Sparse matrix input model Let H be a d-sparse $N \times N$ Hamiltonian acting on n qubits with $\|H\|_{\max} = 1$. H is accessed by:

- An entry oracle O_H^b that gives an entry of H with b-bit precision such that

 $$O_H^b |j, k, z\rangle = |j, k, z \oplus H_{jk}\rangle,$$

 for $j, k \in [N]$ and $z, H_{jk} \in [2^b]$, where the complex number H_{jk} is stored in a b-bit string that contains its real part and imaginary part (each with $b/2$ bits assuming b is even), and b will be determined by the precision ϵ of the algorithm. When we are just referring to the oracle we may omit the superscript b.

- A sparse structure oracle O_P that gives parameters about the sparse structure of H such that

 $$O_P |x, y\rangle = |x, P(x, y)\rangle,$$

 for $x \in X, y \in Y$, where X, Y are sets of integers, and $P : X \times Y \rightarrow Y$ is a function determined by the sparse structure of H such that for all $x \in X$, $P(x, \cdot)$ is a bijection for $y \in Y$.

In many previous works [3, 35, 19, 22, 37] on sparse Hamiltonians, instead of O_P, an oracle O_L is given such that $O_L |j, t\rangle = |j, L(j, t)\rangle$, where $L(j, t) \in [N]$ gives the column index of the t^{th} nonzero entry in row j of H for $t \in [d]$ and gives 0 for $t \notin [d]$. We note that O_L can be expressed as a special case of O_P by taking $X = Y = [N]$ and $P = L$. However, compared to these work, we adopt a more general oracle O_P because Hamiltonians investigated in this paper pertain different sparse structures, which can be better exploited by different concrete forms of O_P. Moreover, the implementations of these O_P’s turn out to be very efficient, compared to much costlier implementations of the oracle O_H, as shown in Section 7 when we calculate the total gate complexity of our algorithm in simulating practical physical models.

As in previous works, we allow using controlled versions of these oracles, and will not explicitly distinguish between the controlled and uncontrolled versions.

Complexity model In this paper, we will consider both query complexity and gate complexity, where the gate refers to one- or two-qubit gate. For a parallel quantum algorithm represented by a quantum circuit, we will measure its cost by its depth and size. When considering the gate complexity, each oracle query is temporarily counted as one gate. The depth of gates in a quantum
A pure state $|\psi\rangle$ is said to be approximated by $|\tilde{\psi}\rangle$ to precision ϵ, if they are close in the l_2-norm such that $\| |\psi\rangle - |\tilde{\psi}\rangle \| \leq \epsilon$. A unitary U is said to be implemented to precision ϵ, if a unitary \tilde{U} is actually implemented such that $\| U - \tilde{U} \| \leq \epsilon$, where the norm is the spectral norm. The terms “ϵ-approximation” and “ϵ-close” will also be used interchangeably.

2.2 Parallel Quantum Circuit

Now we review some basic techniques for constructing parallel quantum circuits. Although the results are known in the previous literature, we provide their proofs in order to illustrate basic ideas in designing parallel quantum circuits.

Lemma 2.1 (Parallel copying [43, 81]). Let COPY_b be a unitary that creates b copies of a bit (including the original copy); that is,

$$\text{COPY}_b |x\rangle \otimes |0\rangle^{\otimes b-1} = |x\rangle^{\otimes b}$$

for all $x \in \{0,1\}$. There is an $O(\log b)$-depth and $O(b)$-size quantum circuit that implements COPY_b.

Proof. Suppose b is a power of two w.l.o.g. Then as shown in Figure 2, the gate COPY_b can be inductively constructed from $\text{COPY}_{b/2}$, with COPY_1 being the identity operator. It is easy to check the depth and size of this quantum circuit by induction. \hfill \square

Lemma 2.1 can be easily extended from copying a single bit to copying an m-bit string, with the circuit depth and size multiplied by m. We use COPY_b^m to denote such a circuit. For the case $b = 2$, we will omit the subscript and write COPY^m.

Lemma 2.2 (Parallel controlled rotations [43, 81]). Let $C_b \cdot R_Z$ be a unitary that performs a phase shift on a single qubit controlled by b qubits; that is,

$$C_b \cdot R_Z |\gamma\rangle |\psi\rangle = |\gamma\rangle R_Z(2\pi \gamma \cdot 2^{-b}) |\psi\rangle$$

(1)

for all $\gamma \in [2^b]$ and $|\psi\rangle \in \mathbb{C}^2$, where $R_Z(\theta) = e^{-i\theta Z/2}$. Then $C_b \cdot R_Z$ can be implemented by an $O(\log b)$-depth and $O(b)$-size quantum circuit.

The same conclusion holds for $C_b \cdot R_X$ and $C_b \cdot R_Y$ defined by replacing $R_Z(\theta)$ in (1) with $R_X(\theta) = e^{-i\theta X/2}$ and $R_Y(\theta) = e^{-i\theta Y/2}$, respectively.

Proof. Let γ_j represent the j^{th} bit of γ for $j \in [b]$. A parallel quantum circuit for $C_b \cdot R_Z$ is shown in Figure 3. To see its correctness, suppose $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, then $\text{COPY}_b |\psi\rangle |0\rangle^{\otimes b-1} = \alpha |0\rangle^{\otimes b} + \beta |1\rangle^{\otimes b}$ is an entangled state. Since applying R_Z to any of the b entangled qubits will add to the relative phase, the whole state becomes $|\gamma\rangle \left(\alpha |0\rangle^{\otimes b} + e^{i2\pi \gamma \cdot 2^{-b}} \beta |1\rangle^{\otimes b}\right)$ after applying $C \cdot R_Z$ in parallel. The final state is obtained by reverse computation with COPY^\dagger_b. It is easy to check the depth and size of the quantum circuit by Lemma 2.1.

The cases of X and Y-rotations can be easily proved by combining the above proof and the identities $R_X(\theta) = \text{Had} R_Z(\theta) \text{Had}$ and $R_Y(\theta) = R_Z(\pi/2) R_X(\theta) R_Z(\pi/2)$, where Had stands for the Hadamard gate. \hfill \Box

The following lemma accommodates a classical parallel computing technique into the quantum setting.
Lemma 2.3 (Sequence of associative operators). Let \circ be an associative operator. Given a unitary U_0 that performs $|x, y, z\rangle \mapsto |x, y, z \oplus (x \circ y)\rangle$ and its inverse U_0^\dagger. Then for all $m \in \mathbb{N}$, the mapping

$$|x_1, \ldots, x_m\rangle \mapsto |x_1, \ldots, x_m\rangle \oplus (x_1 \circ \ldots \circ x_m)$$

can be implemented by a quantum circuit with $O(\log m)$-depth and $O(m)$-size of U_0 and its inverse, where the additional gate complexity is often negligible compared to U_0 and thus omitted.

Proof. Denote the partial sum $S_0(l, r) := x_1 \circ \ldots \circ x_r$, our goal is to compute $S_0(1, m) = x_1 \circ \ldots \circ x_m$. We can compute $S_0(l, r)$ inductively by

$$S_0(l, r) = S_0(l, p) \circ S_0(p + 1, r),$$

where $p = (l + r - 1)/2$. Assuming m is a power of two w.l.o.g., then the computation of $S_0(1, m)$ forms a tree with $O(\log m)$-depth and $O(m)$-size of U_0, where the root is $S_0(1, m)$ and the leaves are $S_0(i, i) = x_i$ for $i \in [m]$. Once $S_0(1, m)$ is computed into an ancilla space, apply COPY gate to copy the result into $|z\rangle$, then clean all the garbage partial sums by reverse computation with U_0^\dagger. \hfill \Box

Corollary 2.4 (Parallel addition of a sequence [43]). The addition of a sequence, i.e., the mapping

$$|x_1, \ldots, x_m\rangle \mapsto |x_1, \ldots, x_m\rangle \oplus (x_1 + \ldots + x_m)$$

for all $x_1, \ldots, x_m, z \in [2^b]$, can be implemented by an $O(\log m + \log b)$-depth and $O(mb)$-size quantum circuit, where the addition is in \mathbb{Z}_{2^b}.

Proof. By Lemma 2.3, combined with classical techniques of three-two adder, pairwise representation and carry-lookahead adder. A detailed proof can be found in [43]. \hfill \Box

Corollary 2.5 (Parallel controlled Z gate). Let $C_{b\cdot Z}$ be a unitary that perform Z gate on a single qubit controlled by b qubits; that is,

$$C_{b\cdot Z} |x\rangle \mid \psi\rangle = \begin{cases} |x\rangle \mid Z\rangle \mid \psi\rangle & x = 2^b - 1 \\ |x\rangle \mid \psi\rangle & \text{o.w.} \end{cases}$$

for all $x \in [2^b]$ and $|\psi\rangle \in \mathbb{C}^2$, then $C_{b\cdot Z}$ can be implemented by an $O(\log b)$-depth and $O(b)$-size quantum circuit.

Proof. Write x as a bit string $x = x_0 \ldots x_{b-1}$, the $C_{b\cdot Z}$ gate can be implemented in the following ways. First take \circ to be OR gate in Lemma 2.3 to compute $x_0 \lor \ldots \lor x_{b-1}$ in the ancilla space by $O(\log b)$-depth and $O(b)$-size of gates, then conditioned on which apply a C-Z gate to $|\psi\rangle$, finally clean the garbage by reverse computation. \hfill \Box

The following lemma translates the parallel classical results of computing elementary arithmetic functions [87] to the quantum case using the technique of reversible computing [16].

Lemma 2.6 (Parallel quantum circuit for elementary arithmetics [87]). Let f be one of the following elementary arithmetic functions: addition, subtraction, multiplication, division, cosine, sine, arctangent, exponentiation, logarithm, maximum, minimum, factorial. Then the unitary that performs

$$|\tilde{x}\rangle \mid \tilde{y}\rangle \mid z\rangle \mapsto |\tilde{x}\rangle \mid \tilde{y}\rangle \mid z \oplus \tilde{f}(\tilde{x}, \tilde{y})\rangle$$

\footnote{In particular, for factorial, x is required to be $O(b^2)$.}
for all \(\tilde{x}, \tilde{y}, z \in [2^b] \) can be implemented by an \(O(\log^2 b) \)-depth and \(O(b^4) \)-size quantum circuit \(^5\), where \(\tilde{x}, \tilde{y} \) are floating number representation of \(x, y \) on suitable intervals, and \(\tilde{f}(\tilde{x}, \tilde{y}) \) is \(2^{-b} \)-close to \(f(x, y) \). (For unary function the second operand \(y \) is omitted, e.g., \(f(x, y) = \cos(x) \).) In particular, for \(f \) being addition, subtraction or multiplication, the depth can be \(O(\log b) \).

In the remainder of this paper, the name “elementary arithmetic function” may also refer to a composition of a constant number of the arithmetic functions in Lemma 2.6. As elementary arithmetic operations are frequently used in this paper, in some cases we will measure the efficiency of computation with respect to these building blocks. More specifically we have the following definition for arithmetic-depth-efficient computation \(^6\).

Definition 2.7 (Arithmetic-depth-efficient computation). A quantum circuit on \(b \) qubits is called arithmetic-depth-efficient if it is \(O(\log^2 b) \)-depth and \(O(b^4) \)-size. A function \(f \) is arithmetic-depth-efficiently computable if the mapping \(|x\rangle |z\rangle \mapsto |x\rangle |z \oplus f(x)\rangle \) for all \(x, z \in [2^b] \) \(^7\) can be implemented by an arithmetic-depth-efficient quantum circuit.

2.3 Block-encoding

Block-encoding is a recently introduced fundamental tool for arithmetic operations on matrices represented as a block of a unitary. It has been developed through a line of research in quantum algorithms [60, 22, 37, 73, 6, 32, 50].

Definition 2.8 (Block-encoding). A \((s + a) \)-qubit unitary \(U \) is an \((\alpha, a, \epsilon) \)-block-encoding of a \(s \)-qubit operator \(A \) if

\[
\| A - \alpha (|0\rangle^a \otimes 1) U (|0\rangle^a \otimes 1) \| \leq \epsilon.
\]

Intuitively, this implies the \(2^s \times 2^a \) upper-left block of \(U \) is \(\epsilon \)-close to \(A/\alpha \); that is,

\[
U = \begin{pmatrix} B & * \\ * & * \end{pmatrix} \quad \text{and} \quad \| B - A/\alpha \| \leq \epsilon.
\]

In this paper, we will slightly abuse the terminology in such a way that if the condition is

\[
\| A - \alpha (1 \otimes |0\rangle^a) U (1 \otimes |0\rangle^a) \| \leq \epsilon,
\]

then for simplicity \(U \) is also called an \((\alpha, a, \epsilon) \)-block-encoding of \(A \).

3 Parallel Quantum Walk

In this section, we define a parallel quantum walk within the framework of Childs’ quantum walks [35, 19, 22, 37]. In Section 3.1, we revisit Childs’ quantum walk. Then we propose a parallelization of it in Section 3.2 and show how to implement the parallel quantum walk in two stages: pre-walk and re-weight, whose complexities are analyzed in Section 3.2.1 and Section 3.2.2 respectively. In particular, in Section 3.2.1 we define uniform-structured Hamiltonians for which the parallel quantum walk can be implemented efficiently. The Hamiltonians considered in Section 3.2 are \(d \)-sparse. In Section 3.3, we further consider a sum of \(d \)-sparse Hamiltonians and extend the parallel quantum walk and the class of uniform-structured Hamiltonians.

\(^5\)The complexity in [87] is more refined and complicated. Here we take a simple upper bound.

\(^6\)Note that this differs from the notion depth-efficient computation, which often refers to a poly-logarithmic depth computation. As an analog of the classical depth-efficient class \(\text{NC} \), [81] introduced the quantum depth-efficient class \(\text{QNC} \).

\(^7\)Functions (or arithmetic operators) with multiple inputs and outputs can be easily converted to this form.
3.1 A Quantum Walk for Hamiltonians

Let H be a d-sparse $N \times N$ Hamiltonian acting on n qubits. By analogy with the classical Markov chain, the Hermitian H can be seen as a transition matrix with “complex probability” on a d-sparse undirected graph whose adjacency matrix is given by replacing each nonzero entry in H with 1. Following [36], this graph is called the graph of the Hamiltonian, which we will often denote as H in the serif font throughout this paper. We write $(j,k) \in H$ if an undirected edge (j,k) exists in the graph H. Following Childs’ extension [35, 19, 68, 22, 37] of Szegedy’s quantum walk [93], we define for all $j \in [N]$ the post-transition state of $|j\rangle$:

$$|\psi_j\rangle := \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} \left(\sqrt{H_{jk}^*} |k\rangle + \sqrt{1 - |H_{jk}|} |k + N\rangle \right),$$

(2)

as a generalization of the classical random walk, where the square root $\sqrt{H_{jk}^*}$ is chosen such that $\sqrt{H_{jk}^*}(\sqrt{H_{jk}})^* = H_{jk}$. Note that $|\psi_j\rangle \in \mathbb{C}^{2N}$ because $N + 1 \leq k + N \leq 2N$ for $k \in [N]$. The factor $1/\sqrt{d}$ and the garbage states $|k + N\rangle$ are introduced to keep $|\psi_j\rangle$ a normalized state. Now we are ready to define the quantum walk, a unitary acting on the extended space $\mathbb{C}^{2N} \otimes \mathbb{C}^{2N}$ for the $N \times N$ Hamiltonian H.

Definition 3.1 (Quantum walk for Hamiltonians). Given Hamiltonian H as above. Let $\mathcal{H} = \mathbb{C}^{2N} \otimes \mathbb{C}^{2N}$ be the state space. For each $j \in [N]$, define

$$|\Psi_j\rangle := |j\rangle \otimes |\psi_j\rangle = \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} |j\rangle \left(\sqrt{H_{jk}^*} |k\rangle + \sqrt{1 - |H_{jk}|} |k + N\rangle \right),$$

(3)

where $|\psi_j\rangle$ is defined in (2). Let $T : \mathcal{H} \to \mathcal{H}$ be any unitary such that

$$T(|j\rangle \otimes |z\rangle) = \begin{cases} |\Psi_j\rangle & \text{if } j \in [N] \text{ and } z = 0 \\ \text{any state} & \text{o.w.} \end{cases}$$

(4)

for all $j, z \in [2N]$. Let $S : \mathcal{H} \to \mathcal{H}$ be the SWAP operator such that $S |a,b\rangle = |b,a\rangle$ for all $a, b \in [2N]$. Then a step of quantum walk for H is defined as $Q := S(2TT^* - 1)$.

The following lemma from [37] shows that we can implement a polynomial of H by multiple steps of quantum walk. More precisely, r iterations of Q block-encodes a degree-r Chebyshev polynomial of H.

Lemma 3.2. T^IQ^rT is a $(1,n+2,0)$-block-encoding of $T_r(H/d)$, if T in (4) is performed precisely, where $T_r(x)$ is the degree-r Chebyshev polynomial (of the first kind).

The proof of Lemma 3.2 involves some interesting techniques, which were later used in [73] to develop qubitization. Here we only give a proof for the special case when $r = 1$ (thus $T^IQ = T^*ST$), which provides a basis for our generalization to parallel quantum walks in Section 3.2.

Corollary 3.3. T^*ST is a $(1,n+2,0)$-block-encoding of H/d, if T in (4) is performed precisely.

Proof. To see

$$(1 \otimes |0\rangle^{\otimes n+2})T^*ST\left(1 \otimes |0\rangle^{\otimes n+2}\right) = H/d,$$
it suffices to prove
\[
\left(|j\rangle \otimes |0\rangle^{\otimes n+2} \right) T^\dagger S T \left(|l\rangle \otimes |0\rangle^{\otimes n+2} \right) = H_{jl}/d.
\] (5)

We first write the state $|\Psi_j\rangle$ in (3) into two parts $|\Psi_j\rangle = |\Phi_j\rangle + |\Phi_j^\perp\rangle$, where the subnormalized states
\[
|\Phi_j\rangle := \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} |j\rangle \sqrt{H_{jk}^*} |k\rangle \quad \text{and} \quad |\Phi_j^\perp\rangle := \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} |j\rangle \sqrt{1 - |H_{jk}|} |k + N\rangle
\]
with $|j\rangle, |k\rangle \in \mathbb{C}^{2N}$. It is easy to verify that
\[
\langle \Phi_j | S | \Phi_l \rangle = H_{jl}/d
\]
\[
\langle \Phi_j | S | \Phi_l^\perp \rangle = \langle \Phi_j^\perp | S | \Phi_l \rangle = \langle \Phi_j^\perp | S | \Phi_l^\perp \rangle = 0
\]
for all $j, l \in [N]$. Thus the LHS of (5) is $\langle \Psi_j | S | \Psi_l \rangle = H_{jl}/d$. \qed

Now we briefly illustrate how to implement one step of quantum walk by a quantum circuit. For the sake of simplicity we only consider query complexity, and assume each step is performed precisely. It suffices to show how to implement the unitary T (and thus T^\dagger), because in $Q = S(2T T^\dagger - 1) = S T (2 |0\rangle \langle 0| - 1) T^\dagger$ only the operator T requires oracle queries. As the ordinary quantum walk does not assume any sparse structure of H, we take $O_P = O_L$ here.

Lemma 3.4. The unitary T can be implemented by a quantum circuit with $O(1)$ queries to O_H and O_L.

Proof. Let $\mathcal{H}^A \otimes \mathcal{H}^B$ be the state space with $\mathcal{H}^A = \mathcal{H}^B = \mathbb{C}^{2N}$. As in the definition (4) of T, we only consider its action on the initial state $|j\rangle \otimes |0\rangle$ for $j \in [N]$, with $|j\rangle, |0\rangle \in \mathbb{C}^{2N}$. Then T can be implemented in the following way:

1. Prepare a superposition over computational basis states of size d in \mathcal{H}^B.
2. Query the oracle O_L to obtain in \mathcal{H}^B a superposition over nonzero entries in row j.
3. Query the oracle O_H to compute H_{jk} in an ancilla space, conditioned on which rotates the state in \mathcal{H}^B, then uncompute H_{jk} by reverse computation.

That is,
\[
|j\rangle |0\rangle \xrightarrow{1} |j\rangle \frac{1}{\sqrt{d}} \sum_{t \in [d]} |t\rangle
\]
\[
xrightarrow{2} |j\rangle \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} |k\rangle
\]
\[
xrightarrow{3} |j\rangle \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} |k\rangle H_{jk}
\]
\[
xrightarrow{3} |j\rangle \frac{1}{\sqrt{d}} \sum_{(j,k) \in H} \left(\sqrt{H_{jk}^*} |k\rangle + \sqrt{1 - |H_{jk}|} |k + N\rangle \right) H_{jk}
\]
\[
xrightarrow{3} |j\rangle |\psi_j\rangle.
\]
\qed
3.2 Parallelization

The algorithm for the quantum walk described in Section 3.1 is highly sequential, because \(r \) steps of quantum walk need \(r \) iterations of \(Q \), which in total requires \(\Theta(r) \) sequential queries to \(\mathcal{O}_H \) and \(\mathcal{O}_L \). Now we define a parallel quantum walk, which can be implemented with only a constant depth of parallel queries for uniform-structured Hamiltonians (to be defined in Section 3.2.1). Slightly abusing the notation, we denote \(j \in \mathbb{H}^r \) if a path \(j = (j_0, \ldots, j_r) \)\(^8\) of length \(r + 1 \) exists in the graph \(\mathcal{H} \).

Definition 3.5 \((r\text{-parallel quantum walk for Hamiltonians})\). Given Hamiltonian \(H \) as above. Let \(\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \) be the state space, where \(\mathcal{H}^A = \mathcal{H}^B = (\mathbb{C}^{2N})^{\otimes (r+1)} \). For each \(j_0 \in [N] \), define

\[
|\Psi_{j_0}^{(r)}\rangle := \frac{1}{\sqrt{d^r}} \sum_{j \in \mathbb{H}^r} |j\rangle \otimes |j_0\rangle \otimes \bigotimes_{s \in [r]} \left(\sqrt{H^s_{j_0,j_{s+1}}}|j_{s+1}\rangle + \sqrt{1 - |H_{j_0,j_{s+1}}|} |j_{s+1} + N\rangle \right)
\]

(6)

where \(|j\rangle = |j_0\rangle \ldots |j_r\rangle \in \mathcal{H}^A \). Let:

- \(T^{(r)} : \mathcal{H} \to \mathcal{H} \) be any unitary operator such that
 \[
 T^{(r)}(|j\rangle |z_1\rangle \ldots |z_{2r+1}\rangle) = \begin{cases} |\Psi_{j}^{(r)}\rangle & j \in [N], z_1 = \ldots = z_{2r+1} = 0 \\ \text{any state} & \text{o.w.} \end{cases}
 \]
 (7)

for all \(j, z_1, \ldots, z_{2r+1} \in [2N] \);

- \(S^{(r)} : \mathcal{H} \to \mathcal{H} \) be the reverse order operator such that \(S^{(r)} |a_0, \ldots, a_{2r+1}\rangle = |a_{2r+1}, \ldots, a_0\rangle \) for all \(a_s \in [2N], s \in [2r + 2] \).

Then a step of \(r \)-parallel quantum walk for \(H \) is defined as \(Q^{(r)} := T^{(r)\dagger}S^{(r)}T^{(r)} \).

The parallel quantum walk defined above naturally generalizes the original quantum walk in Definition 3.1. The key idea is that we extend the state \(|\Psi_j\rangle \) in (3) which is a superposition of one step of walk \((j, k) \in \mathcal{H})\), to the state \(|\Psi_{j_0}^{(r)}\rangle \) in (6) which is a superposition of \(r \) steps of walk (i.e., a path) \(j \in \mathbb{H}^r \). (For technical reasons, the state space is enlarged to \((\mathbb{C}^{2N})^{\otimes 2r+2}\) instead of \((\mathbb{C}^{2N})^{\otimes r+1}\); and the walk operator \(Q^{(r)} \) is an extension of \(T^{\dagger}QT \) instead of \(Q \).) As shown later in Lemma 3.8, the walk operator \(Q^{(r)} \) becomes a block-encoding of the monomial \((H/d)^r\), a generalization of the \(H/d \) obtained from the original quantum walk. It should be emphasized that an \(r \)-parallel quantum walk is not equivalent to \(r \) sequential steps of the original quantum walk, which instead block-encodes a Chebyshev polynomial \(T_r(H/d) \).

Remark 3.6. The term of parallel quantum walk comes from the fact that, as proved later, the walk operator \(Q^{(r)} \) can be performed by a parallel quantum circuit with a constant query depth if the Hamiltonian \(H \) is uniform-structured (see Definition 3.10 in Section 3.2.1). This result is non-trivial, because the state \(|\Psi_{j_0}^{(r)}\rangle \) in Definition 3.5 contains a dependence chain (which has a sequential nature) induced by the path \(j \in \mathbb{H}^r \), where \(j_{l+1} \) depends on \(j_l \) for all \(l \in [r] \). This difficulty is resolved by observing that queries to oracle \(\mathcal{O}_H \) can be actually separated from the dependence chain (see Section 3.2.2), while queries to oracle \(\mathcal{O}_P \) can be parallelized if the graph \(\mathcal{H} \) has a good structure (see Section 3.2.1).

\(^8\)In this paper, a vector is written in a bold font. The coordinates will be indexed from 0, for example, \(a = (a_0, \ldots, a_{k-1}) \), where the dimension \(k \) is indicated by the context.
Proof. We prove the two cases separately.

Lemma 3.7. For all \(j, k \in [N] \), we have:

1. \(\langle \Phi_j^{(r)} | S^{(r)} | \Phi_k^{(r)} \rangle = ((H/d)^r)_{jk} \).

2. \(\langle \Phi_j^{(r)} | S^{(r)} | \Phi_k^{(r)\perp} \rangle = 0 \).

Proof. We prove the two cases separately.

1. Let \(j_0 := j \) and \(k_0 := k \). By straightforward calculation we have:

\[
S^{(r)} | \Phi_k^{(r)} \rangle = \frac{1}{\sqrt{d^r}} \sum_{k \in \mathcal{H}^r} \sqrt{H_{k_0k_1} \cdots H_{k_{r-1}k_r}} | k_r \ldots k_0 \rangle | k_r \ldots k_0 \rangle
\]

\[
\langle \Phi_j^{(r)} | = \frac{1}{\sqrt{d^r}} \sum_{j \in \mathcal{H}^r} \sqrt{H_{j_0j_1} \cdots H_{j_{r-1}j_r}} \langle j_0 \ldots j_r | j_0 \ldots j_r \rangle.
\]

Then using the self-adjointness of \(H \) we obtain:

\[
\langle \Phi_j^{(r)} | S^{(r)} | \Phi_k^{(r)} \rangle = \frac{1}{d^r} \sum_{j \in \mathcal{H}^r} H_{j_0j_1} \cdots H_{j_{r-1}j_r} = \left(\frac{H^r}{d^r} \right)_{jk}.
\]

2. Recall that our state space is \(\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B \) with \(\mathcal{H}^A = \mathcal{H}^B = (\mathbb{C}^{2N})^\otimes r+1 \). Let us focus on the space \(\mathcal{H}^A \). Since \(S^{(r)} \) is the reverse order operator, every computational basis component of the state \(S^{(r)} | \Phi_k^{(r)\perp} \rangle \) has at least one subsystem \(s \in [r+1] \) of the form \(|k_s + N \rangle \in \mathbb{C}^{2N} \), while every computational basis component of \(|\Phi_j^{(r)} \rangle \) or \(|\Phi_j^{(r)\perp} \rangle \) has all subsystems of the form \(|j_t \rangle \) for \(t \in [r + 1] \). The orthogonality statement immediately follows from \(\langle j_t | k_s + N \rangle = 0 \) for any \(j_t, k_s \in [N] \).

Lemma 3.8. \(Q^{(r)} = T^{(r)\dagger} S^{(r)} T^{(r)} \) is a \((1, 2rn + 2r + n + 2, \epsilon)\)-block-encoding of \((H/d)^r\), if \(T^{(r)} \) is implemented to precision \(\epsilon/2 \).

Proof. We first show

\[
(1 \otimes |0\rangle^{\otimes 2rn + 2r + n + 2}) T^{(r)\dagger} S^{(r)} T^{(r)} (1 \otimes |0\rangle^{\otimes 2rn + 2r + n + 2}) = (H/d)^r
\]

for precise \(T^{(r)} \). This part is similar to the proof of Lemma 3.3, and it suffices to show

\[
\langle \Psi_j^{(r)} | S^{(r)} | \Psi_l^{(r)} \rangle = \langle j | (H/d)^r | l \rangle
\]

for all \(j, l \in [N] \), where \(|\Psi_j^{(r)} \rangle \) is defined as above. Equation (10) can be obtained by splitting \(|\Psi_j^{(r)} \rangle = |\Phi_j^{(r)} \rangle + |\Phi_j^{(r)\perp} \rangle \) and then applying Lemma 3.7.

For approximated \(T^{(r)} \) with precision \(\epsilon/2 \), by linearity of error bound propagation, the LHS of (9) is approximated to precision \(\epsilon \).
In order to implement an r-parallel quantum walk $Q^{(r)}$, we only need to focus on the $T^{(r)}$ part, since $S^{(r)}$ can be trivially implemented by a constant depth of SWAP gates. The outline of an implementation of $T^{(r)}$ is presented in Figure 4. Note that the implementation consists of two stages: pre-walk and re-weight, where the two oracles O_H and O_P are queried separately — O_P is only queried in the pre-walk stage, while O_H is only queried in the re-weight stage.

3.2.1 Pre-walk and Uniform-structured Hamiltonians

Now we give a detailed description of pre-walk. At the same time, we introduce a class of Hamiltonians — uniform-structured Hamiltonians, for which the pre-walk can be conducted in a parallel fashion. The state $|p^{(r)}_{j_0}\rangle = \frac{1}{\sqrt{d^r}} \sum_{j \in H^r} |j\rangle$ in (11) earns the name “pre-walk state” because it is a superposition of all paths generated by r steps of unweighted random walk on the graph H starting from the vertex j_0. We call the process of generating $|p^{(r)}_{j_0}\rangle$ an r-pre-walk. For simplicity, we assume $|p^{(r)}_{j_0}\rangle \in (\mathbb{C}^N)^{\otimes r+1}$, that is, $|j_s\rangle \in \mathbb{C}^N$ for all $|j_s\rangle$.

For the pre-walk, we only need to focus on the graph H and the oracle O_P that characterizes its sparse structure, as $|p^{(r)}_{j_0}\rangle$ does not involve any weight H_{jk}. One remaining question is what kind of oracle O_P to be used in our algorithm. Since the complexities that we consider are measured in terms of the query complexity of O_P and gate complexity, for practical reasons, O_P should be reasonably efficiently implementable. Conversely, if O_P is powerful enough (thus hard to implement),
then intuitively the pre-walk can be done with only a few queries to O_P. For instance, given an oracle $O_P = O_{path}$ that directly gives the path generated from walks according to a sequence of choices, as shown in the following lemma, then the query complexity is $O(1)$. Recall that $L(j, t)$ denotes the column index of the t^{th} nonzero entry in row j of H, i.e., the t^{th} neighbor of vertex j in the graph H.

Lemma 3.9 (Pre-walk with a strong path oracle O_{path}). Let $O_P = O_{path}$ give a path generated by r steps of walk starting from j_0, according to the sequence of choices $t \in [d]^r$; that is, take $X = [N], Y = [N]^r$, and $P(j_0, t) = (j_1, \ldots, j_r)$ with $j_{s+1} := L(j_s, t_s)$ for $s \in [r]$. Then the r-pre-walk can be implemented by a quantum circuit with

- $O(1)$ queries to O_P, and
- $O(1)$-depth and $O(r \log d)$-size of gates.

Proof. Assume d is a power of two w.l.o.g. Starting from the initial state $|j_0\rangle |0\rangle^\otimes r$, the pre-walk can be implemented in the following way. First prepare a superposition $\frac{1}{\sqrt{d^r}} \sum_{t \in [d]^r} |t\rangle$ in the second register by $O(1)$-depth and $O(r \log d)$-size of Hadamard gates, then query O_P to compute $P(j_0, t) = (j_1, \ldots, j_r)$ and thus obtain the goal state $|P(j_0)\rangle$. \qed

In general, it might be expensive to implement O_{path}. For example, given the oracle O_L that computes the function L, the straightforward way to implement the strong oracle O_{path} requires r sequential queries to O_L. However, for a special class of Hamiltonians, generating a path according to a sequence of choices can be done more efficiently by exploiting parallelism in computing compositions of the function L. This forms the basic idea of uniform-structured Hamiltonians. Let function $L^{(r)} : [N] \times [d]^r \to [N]$ be inductively defined as

$$L^{(r)}(j, t_0, \ldots, t_{r-1}) := L(L^{(r-1)}(j, t_0, \ldots, t_{r-2}), t_{r-1})$$

for $j \in [N], t \in [d]^r$, with $L^{(1)} := L$. Note that $L^{(r)}$ gives the destination of r steps of walk according to a sequence of choices. Uniform-structured Hamiltonians are those Hamiltonians for which the function $L^{(r)}$ can be computed efficiently in parallel.

Definition 3.10 (Uniform-structured Hamiltonian). A d-sparse Hamiltonian H with the associated oracle O_P is uniform-structured if:

- For all $r \in \mathbb{N}$, the corresponding $L^{(r)}$ can be expressed as

 $$L^{(r)}(j, t) = f(j, g(t_0) \circ \ldots \circ g(t_{r-1}))$$ (12)

 where the function f, g and the operator \circ with input/output lengths $O(n)$ satisfy that:

 - f, \circ and the mapping $|0\rangle \mapsto \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(t)\rangle$ are arithmetic-depth-efficiently computable (see Definition 2.7) with $O(1)$ queries to O_P;

 - \circ is associative.

- There exists an “inverse” function L^{-1} such that $L^{-1}(j, L(j, t)) = g(t)$ for all $j \in [N], t \in [d]$, and L^{-1} is arithmetic-depth-efficiently computable with $O(1)$ queries to O_P.

Remark 3.11. One might notice that the expression \(g(t_0) \circ \ldots \circ g(t_{r-1}) \) is ready to be computed in parallel by Lemma 2.3. This point is in fact the key ingredient to implement a parallel pre-walk. We also point out that if the function \(g \) and its inverse are both arithmetic-depth-efficiently computable, then the mapping \(|0\rangle \mapsto \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(t)\rangle \) is also arithmetic-depth-efficiently computable by evaluating \(g \) in place on the state \(\frac{1}{\sqrt{d}} \sum_{t \in [d]} |t\rangle \), which can be prepared by applying Hadamard gates in parallel.

For a better understanding of the quite involved Definition 3.10, we show three examples of uniform-structured Hamiltonians. The first example is a band Hamiltonian, which has its nonzero entries concentrated within a band around the diagonal.

Lemma 3.12 (Band Hamiltonian). Assume \(d \in [N] \) is odd. Let \(H \) be a \(d \)-band Hamiltonian, i.e., \(H_{jk} = 0 \) if \(k \notin B^d_j \), where \(B^d_j := \{j + t - (d - 1)/2 : t \in [d]\} \) with the addition and subtraction in \(\mathbb{Z}_N^\mathbb{N} \). Let \(O_P \) be an empty oracle, that is, take \(X = Y = \emptyset \) and \(P \) to be undefined. Then \(H \) is uniform-structured.

Example 3.13. The \(4 \times 4 \) Hamiltonian \(H \) with matrix form

\[
H := \begin{bmatrix}
1 & i & 0 & 0 \\
-i & 2 & 3 & 0 \\
0 & 3 & -1 & -i \\
0 & 0 & i & 1
\end{bmatrix}
\]

is 3-band.

Proof of Lemma 3.12. Note that for band Hamiltonians we do not need to query \(O_P \). The lemma is proved by verifying the conditions in Definition 3.10. Note that \(L(j, t) = j + t - (d - 1)/2 \), where the addition and subtraction are in \(\mathbb{Z}_N^\mathbb{N} \) (although in this case the nonzero entries is not necessarily ordered, the correctness of the algorithm is unaffected).

- We have
 \[
 L^r(j, t) = j + (t_0 - (d - 1)/2) + \ldots + (t_{r-1} - (d - 1)/2);
 \]
 that is, take \(f(j, k) = j + k \), \(g(t) = t - (d - 1)/2 \), and \(\circ \) to be addition in (12).
 - By Lemma 2.6, these functions and operators are arithmetic-depth-efficiently computable. As in Remark 3.11, the mapping \(|0\rangle \mapsto \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(t)\rangle \) is arithmetic-depth-efficiently computable too.
 - The addition is obviously associative.

- Take the inverse function to be \(L^{-1}(j, k) = k - j \), which is arithmetic-depth-efficiently computable by Lemma 2.6.

The second example is a tensor product of Pauli matrices. Recall that any Hamiltonian can be expressed as a sum of (scaled) tensor products of Pauli matrices, which form a basis for the Hermitian space. In Section 3.3, we will further show that this Pauli sum is also uniform-structured (according to the extended definition).

\[9\text{This allows a slightly more general definition than the usual band Hamiltonian, because in } \mathbb{Z}_N \text{ when the band has its center close to 0 it will wrap back from the } N - 1 \text{ side. For instance, taking } H_{03} = H_{30} = 1 \text{ in Example 3.13 } H \text{ is still } 3\text{-band.}\]
Lemma 3.14 (Tensor product of Pauli matrices). Let H be a (scaled) tensor product of Pauli matrices, that is, $H = \alpha \bigotimes_{k \in [n]} \sigma_k$ with $\sigma_k \in \{X, Y, Z\}$ and α a constant. Let O_P give an n-bit string s characterizing the Pauli string $\langle \sigma_k \rangle_{k \in [n]}$, in particular, take $X = [1]$, $Y = [N]$ and $P(x, y) = y \oplus s$, where the kth bit of s is defined as

$$s_k := \begin{cases} 0 & \sigma_k = 1 \text{ or } \sigma_k = Z \\ 1 & \sigma_k = X \text{ or } \sigma_k = Y \end{cases}.$$

Then H is uniform-structured.

Proof. Note that the sparsity $d = 1$ for H, because all Pauli matrices are 1-sparse. The lemma is proved by verifying the conditions in Definition 3.10. It holds that $L(j, t) = j \oplus s$ where \oplus is the bit-wise XOR operator.

- We have $L^{(r)}(j, t) = j \oplus s \oplus \ldots \oplus s$; that is, take $f(j, k) := j \oplus k$, $g(t) := s$, and \circ to be \oplus in (12).
 - These functions and operators are obviously arithmetic-depth-efficiently computable, while the mapping $|0\rangle \mapsto \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(t)\rangle$ is trivial to perform with a single query to O_P because $d = 1$.
 - The XOR \oplus is associative.
- Take the inverse function to be $L^{-1}(j, k) = s$, which can be computed by a single query to O_P.

\[\square\]

The third example is a local Hamiltonian clause, which acts non-trivially on a subsystem of l qubits, whose positions are indicated by the l bits of 1 in an n-bit string s. The sum of many local Hamiltonian clauses is a local Hamiltonian, which will be investigated in Section 3.3 as a uniform-structured Hamiltonian (according to the extended definition).

Lemma 3.15 (Local Hamiltonian clause). Let H be an l-local Hamiltonian clause; that is, $H = H_s \otimes 1$, where H_s is a Hamiltonian acting on the subsystem of l qubits whose positions are indicated by bit 1 in the n-bit string s, and 1 is the identity operator on the subsystem of the rest $n-l$ qubits. Let O_P give the parameter s, in particular set $X = [1]$, $Y = [N]$ and $P(x, y) = y \oplus s$. Then H is uniform-structured.

Example 3.16. Let $H := A \otimes 1 \otimes B \otimes 1$ be a 16×16 Hamiltonian with A and B being 2×2 Hamiltonians, and 1 being 2×2 identity matrix. Then H is a 2-local Hamiltonian clause $H_s \otimes 1$, with $H_s = A \otimes B$ and $s = 1010$.

Proof of Lemma 3.15. The lemma is proved by verifying the conditions in Definition 3.10. We use the superscript i to denote the ith bit of a number. Note that the sparsity $d = 2^i$, $L(j, t) = j \langle s_i (t) \rangle$, where the operator $|s_i : [d] \rightarrow [N]$ lifts an l-bit string to an n-bit string according to s, defined as

$$\langle b | s_i \rangle^i := s^i \cdot b^0 \ldots + s^i,$$

and the operator $\langle s_i : [N] \times [N] \rightarrow [N]$ overwrites an n-bit string by another according to s, defined as

$$\langle a \langle s_i \rangle b \rangle^i := a^i (1 - s^i) + b^i s^i$$

for all $a, b \in [N], i \in [n]$. For instance, $1011_{\langle 01011 \rangle} = 01001$ and $10011 \langle 01011 \rangle 01001 = 11001$.

\[21\]
• We have

\[L^{(r)}(j, t) = j \triangleleft (t_0 |_s) \triangleleft ... \triangleleft (t_{r-1} |_s); \]

that is, take \(f(j, k) = j \triangleleft_k k \), \(g(t) = t |_s \), and \(\circ \) to be \(\triangleleft_s \) in (12).

– To compute \(f \) and \(\circ \), it suffices to compute the operator \(\triangleleft_s \), which can be computed by elementary gates according to (13) bit by bit, thus is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \).

The mapping \(|0\rangle \mapsto \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(t)\rangle \) can be performed by first querying \(\mathcal{O}_P \) to obtain \(|s\rangle \) in an ancilla space, then conditioned on it performing \(n \) controlled Hadamard gates in parallel followed by garbage cleaning, assuming \(d \) is a power of two w.l.o.g. This is arithmetic-depth-efficient with \(O(1) \) queries.

– The associativity of \(\triangleleft_s \) is easy to verify.

• Take the inverse function to be \(L^{-1}(j, k) = k \wedge s \), where \(\wedge \) is the bit-wise AND operator. This is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \).

Now we are ready to present the parallel pre-walk subroutine for uniform-structured Hamiltonians. As aforementioned, the parallelism relies on the structure of \(L^{(r)} \), which will be shown to be computable by a logarithmic depth quantum circuit with respect to \(r \). The goal is achieved through several lemmas and corollaries.

Lemma 3.17. For a uniform-structured Hamiltonian \(H \), the mapping

\[|j\rangle |g(t)\rangle |z\rangle \mapsto |j\rangle |g(t)\rangle |z \oplus L^{(r)}(j, t)\rangle \]

for all \(j, z \in [N], t \in [d]^r \) with \(g(t) = (g(t_0), \ldots, g(t_{r-1})) \), can be implemented by a quantum circuit with

• \(O(1) \) queries to \(\mathcal{O}_P \), and

• \(O(\log r \cdot \log^2 n) \)-depth and \(O(\log^4 n) \)-size of gates.

Proof. Since \(\circ \) is associative and arithmetic-depth-efficiently computable, by Lemma 2.3 we can first evaluate \(g(t_0) \circ \ldots \circ g(t_{r-1}) \) by \(O(\log r \cdot \log^2 n) \)-depth and \(O(\log^4 n) \)-size of gates. Also \(f \) is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \), thus \(L^{(r)}(j, t) = f(j, g(t_0) \circ \ldots \circ g(t_{r-1})) \) can be computed by additional \(O(\log n) \)-depth and \(O(n) \)-size of gates with \(O(1) \) queries. Finally apply COPY\(^n\) to copy the result into \(|z\rangle \), followed by garbage cleaning using reverse computation. The total complexity follows from summing these complexities up. \(\Box \)

Note that for different \(s \in [r+1] \), the function \(L^{(s)} \) can be computed in parallel, then we obtain the following corollary.

Corollary 3.18. For a uniform-structured Hamiltonian \(H \), the mapping

\[|j\rangle |g(t)\rangle |z\rangle \mapsto |j\rangle |g(t)\rangle \bigoplus_{s=1}^{r} |z_{s-1} \oplus L^{(s)}(j, t_0, \ldots, t_{s-1})\rangle \]

(14)

for all \(j \in [N], t \in [d]^r, z \in [N]^r \), can be implemented by a quantum circuit with
• $O(1)$-depth and $O(r)$-size of queries to \mathcal{O}_P, and

• $O(\log r \cdot \log^2 n)$-depth and $O(r^2n^4)$-size of gates.

Proof. First make r copies of $|j\rangle |g(t)\rangle$ by applying parallel COPY$^r_{O(n)}$ in Lemma 2.1, which has $O(\log r)$-depth and $O(r^2n^4)$-size. Then apply Lemma 3.17 to each of the r copies, for the sth copy taking the input $(j, g(t_0), \ldots, g(t_{s-1}))$ to compute $L^r_s(j, t_0, \ldots, t_{s-1})$, which can be done in parallel for $s = 1$ to r. Finally apply COPYn in parallel to store the result, followed by garbage cleaning using reverse computation. The final complexity comes from summing up these complexities. □

With the help of the inverse function L^{-1}, we can generate a path state $|j\rangle$ from the state $|j_0, g(t)\rangle$ by erasing the redundant information $|g(t)\rangle$ in (14), as shown in the following corollary.

Corollary 3.19. For a uniform-structured Hamiltonian H, the mapping

$|j_0, g(t)\rangle \mapsto |j\rangle$

for all $j_0 \in [N], t \in [d]^r$, where $j \in H^r$ has $j_s+1 := L(j_s, t_s)$ for $s \in [r]$, can be implemented by a quantum circuit with

• $O(1)$-depth and $O(r)$-size of queries to \mathcal{O}_P, and

• $O(\log r \cdot \log^2 n)$-depth and $O(r^2n^4)$-size of gates.

Proof. Since $j_s = L^r_s(j_0, t_0, \ldots, t_{s-1})$ for $s = 1$ to r, to perform the required mapping we only need to clean the $|g(t)\rangle$ in (14) after applying Corollary 3.18 to $|j_0, g(t)\rangle |0\rangle^r$. Recall that $L^{-1}(j_s, j_{s+1}) = g(t_s)$ for $s \in [r]$, so we can compute L^{-1} by taking inputs $|j_s, j_{s+1}\rangle$ to clean $g(t_s)$ first on odd s then on even s, thereby for different s the computation can be done in parallel. Since L^{-1} is arithmetic-depth-efficiently computable with $O(1)$ queries to \mathcal{O}_P, the cleaning process can be done by $O(\log^2 n)$-depth and $O(rn^4)$-size of gates with $O(1)$ queries. The final complexity follows from summing these complexities up. □

A combination of the above results gives a parallel pre-walk algorithm for uniform-structured Hamiltonians.

Lemma 3.20 (Pre-walk on uniform-structured Hamiltonians). Let H be a uniform-structured Hamiltonian, then an r-pre-walk on its graph H, i.e., preparing the state $|p^{(r)}_{j_0}\rangle$, can be implemented by a quantum circuit with

• $O(1)$-depth and $O(r)$-size of queries to \mathcal{O}_P, and

• $O(\log r \cdot \log^2 n)$-depth and $O(r^2n^4)$-size of gates.

Proof. Let $\bigotimes_{s \in [r+1]} \mathcal{H}_s$ be the state space with $\mathcal{H}_s = \mathbb{C}^N$. The process of preparing $|p^{(r)}_{j_0}\rangle$ is shown below, starting from the initial state $|j_0\rangle |0\rangle^r$ with $|j_0\rangle, |0\rangle \in \mathbb{C}^N$.

1. Perform the mapping $|0\rangle \mapsto \frac{1}{\sqrt{d^r}} \sum_{t \in [d]} |g(t)\rangle$ in each \mathcal{H}_s for $s = 1$ to r, to obtain the state

$\frac{1}{\sqrt{d^r}} |j_0\rangle \sum_{t \in [d]^r} |g(t)\rangle$.

2. Apply Corollary 3.19 we obtain the goal state $|p^{(r)}_{j_0}\rangle = \frac{1}{\sqrt{d^r}} \sum_{j \in H^r} |j\rangle$.

Each mapping $|0\rangle \mapsto \frac{1}{\sqrt{d^r}} \sum_{t \in [d]} |g(t)\rangle$ in Step 1 is arithmetic-depth-efficient with $O(1)$ queries to \mathcal{O}_P, due to the definition of uniform-structured Hamiltonians. Combined with Corollary 3.19 the final complexity is obtained. □
3.2.2 Re-weight

Intuitively, the re-weight procedure in the implementation of $T^{(r)}$ in Figure 4 adjusts the “weight” of each path $|j\rangle$ in the pre-walk state $|p^{(r)}_{j_0}\rangle$ according to entries in H, given by the oracle O_H. As we will see in the following, the re-weight analysis is in fact simpler than the pre-walk because there is no requirement on the sparse structure of H.

Lemma 3.21 (Re-weight). Re-weight of $|p^{(r)}_{j_0}\rangle$, i.e., performing the mapping $|p^{(r)}_{j_0}\rangle \mapsto |\psi^{(r)}_{j_0}\rangle$, where $|\psi^{(r)}_{j_0}\rangle$ is defined in (6), can be implemented to precision ϵ by a quantum circuit with

- $O(1)$-depth and $O(r)$-size of queries to O_H^b with $b = O(\log(1/\epsilon))$, and
- $O(\log^2(1/\epsilon))$-depth and $O\left(r\left[n + \log^4(1/\epsilon)\right]\right)$-size of gates.

for $r = \text{polylog}(1/\epsilon)$.

Proof. We analyze separately the query complexity and gate complexity of the re-weight stage, including Step 2 and Step 3 in Figure 4.

- For query complexity, only Step 3 involves queries to O_H. As $H^A_s \otimes H^B_{s+1}$ are disjoint for $s \in [r]$, these r queries are independent, and thus can be done in parallel with $O(1)$-depth and $O(r)$-size. The precision b of oracle O_H^b will be determined in the gate complexity analysis below.

- For gate complexity, in Step 2 the $\text{COPY}^{(r+1)-(n+1)}$ gate can be performed by $O(1)$-depth and $O(rn)$-size of gates. In Step 3, one needs to apply r controlled rotations conditioned on some H_{jk}; that is, perform the mapping

$$ |0\rangle |H_{jk}\rangle \mapsto \left(\sqrt{H_{jk}^*|0\rangle} + \sqrt{1-|H_{jk}|}|1\rangle\right) |H_{jk}\rangle. \quad (15) $$

To achieve a total precision ϵ of $T^{(r)}$, each rotation in (15) needs to be $O(\epsilon/r)$-precise, which requires H_{jk} given by the oracle O_H^b to have $b = O(\log(r/\epsilon)) = O(\log(1/\epsilon))$ bits of precision. To perform the rotation, first compute $\sqrt{1 - |H_{jk}|}/H_{jk}^*$ and its arctangent arithmetic-depth-efficiently by Lemma 2.6, then apply $C_{b'} \cdot Y$ in Corollary 2.2.

Following [19], to satisfy the condition $\sqrt{H_{jk}^*} \left(\sqrt{H_{jk}}\right)^* = H_{jk}^*$ one should be careful in choosing the sign of $\sqrt{H_{jk}^*}$ for $H_{jk} < 0$. This problem is addressed by adding an $O\left(2^{-b}\right)$ disturbance on the imaginary part of H_{jk} to force it to be nonzero (thereby forcing H_{jk} to be complex) for those $H_{jk} < 0$, with the total precision unchanged up to a constant factor. Now for $H_{jk} = re^{i\theta}$, let $\sqrt{H_{jk}^*} := \sqrt{re^{i\theta}/2}$, which is also arithmetic-depth-efficiently computable by Lemma 2.6. From Corollary 2.2, a $C_{b'} \cdot Y$ gate can be implemented by an $O(\log b)$-depth and $O(b)$-size quantum circuit. The total complexity follows by summing up the complexities of r rotations.

\[\text{In [19], to avoid this sign ambiguity, they assign different signs to } \sqrt{H_{jk}^*} \text{ for } H_{jk} \text{ above and blow the diagonal, and replace } H \text{ with } H + \|H\|_{\text{max}} \text{ to force the diagonal elements to be non-negative. For Hamiltonian simulation problem, this modification works well by only introducing a global phase. Here we provide an alternative solution that is not restricted to the Hamiltonian simulation task.}\]
Finally, combining the pre-walk complexity (Lemma 3.20 in Section 3.2.1), the re-weight complexity (Lemma 3.21 in the above), and the negligible complexity of implementing \(S^{(r)} \) gives the total complexity of the parallel quantum walk for uniform-structured Hamiltonians.

Theorem 3.22 (Parallel quantum walks for uniform-structured Hamiltonians). For a uniform-structured Hamiltonian \(H \), the \(r \)-parallel quantum walk \(Q^{(r)} \) can be performed to precision \(\epsilon \) by a quantum circuit with

- \(O(1) \)-depth and \(O(r) \)-size of queries to \(\mathcal{O}_H^b \) with \(b = O(\log(1/\epsilon)) \),
- \(O(1) \)-depth and \(O(r) \)-size of queries to \(\mathcal{O}_P \), and
- \(O(\log r \cdot \log^2 n + \log^2(1/\epsilon)) \)-depth and \(O(r^2n^4 + r\log^4(1/\epsilon)) \)-size of gates.

for \(r = \text{polylog}(1/\epsilon) \).

3.3 Extension: A Parallel Quantum Walk for a Sum of Hamiltonians

As shown in the previous section, the parallel quantum walk can be efficiently implemented in parallel for the class of uniform-structured Hamiltonians, which are however somewhat restricted in applications. Now we extend the framework in Section 3.2 to a parallel quantum walk for a sum of Hamiltonians, that is, a Hamiltonian of the form

\[
H = \sum_{w \in [m]} H_w,
\]

where \(H_w \) are \(d \)-sparse Hamiltonians and \(m = \text{poly}(n) \). In this extended framework, we generalize the class of uniform-structured Hamiltonians to include more Hamiltonians of practical interest, like Pauli sums and local Hamiltonians.

Recall that in Section 3.2 the good sparse structure of a Hamiltonian \(H \) is a key to efficiently implement the parallel quantum walk. The intuition behind the extended framework in this section is then: if some Hamiltonians has the same type of good sparse structures, then a sum of them is still structured well enough for exploiting parallelism. The organization of this section is similar to Section 3.2. For readability, we only provide the essential definitions and lemmas here, and leave more details to Appendix A.

Let us first define the extended parallel quantum walk for a sum of Hamiltonians. Recall that the state \(|\tilde{\Psi}_{j_0}^{(r)}\rangle \) in (6), which is a superposition of paths \(j = (j_0, \ldots, j_{r-1}) \) in the graph \(H \), is a key ingredient in the parallel quantum walk in the previous section. Now in the case of a sum Hamiltonian \(H = \sum_w H_w \), the graph \(H \) can be “decomposed” into a sum of subgraphs \(H_w \), so in a path \(j \in H \) each edge \((j_s, j_{s+1}) \) belongs to at least one subgraph. Thus, we can define an extended state \(|\tilde{\Psi}_{j_0}^{(r,m)}\rangle \), which is still a superposition of paths \(j \in H \), but each tensored with a corresponding string \(w \), such that \((j_s, j_{s+1}) \in H_w \) for all \(s \in [r] \). In this way, the extended parallel quantum walk can better exploit the sum structure of the Hamiltonian \(H = \sum_{w \in [m]} H_w \), as shown later.

Definition 3.23 \((r, m)\)-parallel quantum walk. Given the Hamiltonian \(H \) as above. Let \(\mathcal{H} = \mathcal{H}^W \otimes \mathcal{H}^A \otimes \mathcal{H}^B \) be the walk space, where \(\mathcal{H}^W = (\mathbb{C}^m)^{\otimes r} \) and \(\mathcal{H}^A = \mathcal{H}^B = (\mathbb{C}^2N)^{\otimes r+1} \). For each \(j_0 \in [N] \), define

\[
|\tilde{\Psi}_{j_0}^{(r,m)}\rangle := \frac{1}{\sqrt{(md)^r}} \sum_{w \in [m]^r} \sum_{j \in H^W} |w\rangle \otimes |j\rangle \otimes |j_0\rangle \otimes \prod_{s \in [r]} \left(\sqrt{\tilde{H}_{j_s j_{s+1}}^w} |j_{s+1}\rangle + \sqrt{1 - \tilde{H}_{j_s j_{s+1}}^w} |j_{s+1} + N\rangle \right)
\]

(16)

where \(j \in H^w \) denotes \((j_s, j_{s+1}) \in H_w \) for all \(s \in [r] \), and \(\tilde{H}_{jk} := H_{jk}/c(j, k) \) with \(c(j, k) := \sum_{w \in [m]} [(j, k) \in H^w] \) the number of subgraphs containing the edge \((j, k) \in H \). Let

\[\text{Here } [\cdot] \text{ stands for the Iverson bracket; that is, } [p] = 1 \text{ if } p \text{ is true and } [p] = 0 \text{ if } p \text{ is false.}\]
Definition 3.26. For Lemma 3.25.

Note that in \((L)\), the numbers are shown in the following lemma. Then a step of \((r, m)\)-parallel quantum walk for \(H\) is defined as \(Q^{(r,m)} := T^{(r,m)*}S^{(r,m)}T^{(r,m)}\).

Remark 3.24. Note that in (16), the amplitudes are determined by a new Hamiltonian \(\tilde{H}\), which is entry-wise rescaled from \(H\). The rescaling factor for each entry \(H_{jk}\) is \(c(j, k)\), i.e., the number of overlapping subgraphs \(H_w\) on the edge \((j, k)\) \(\in\) \(H\). For later implementation of the extended parallel quantum walk, we will consider a new oracle \(O\tilde{H}\) giving an entry of \(\tilde{H}\) such that \(O\tilde{H}\ |j, k, z\rangle = |j, k, z \oplus \tilde{H}_{jk}\rangle\). Note that if \(c(j, k)\) can be efficiently computed, \(O\tilde{H}\) can be easily constructed from \(O_H\), with the total precision scaled by at most \(m\) for the construction, as \(c(j, k) = \sum_{w \in [m]} \lfloor |j, k| \in H_w \rfloor \leq m\). The overhead caused by this precision scaling will be shown to be negligible later.

The extended parallel quantum walk defined above also block-encodes a monomial of \(H\), as shown in the following lemma.

Lemma 3.25. \(Q^{(r,m)} = T^{(r,m)*}S^{(r,m)}T^{(r,m)}\) is a \((1, r \lfloor \log m \rfloor + 2rn + 2r + n + 2, \epsilon)\)-block-encoding of \((\frac{m}{2^r})\), if \(T^{(r,m)}\) is implemented to precision \(\epsilon/2\).

Proof. Postponed to Appendix A.

As a straightforward generalization of the implementation of \(T^{(r)}\) in Figure 4, an implementation of \(T^{(r,m)}\) is shown in Figure 5. We call the procedure of preparing the (extended) pre-walk state \(|\tilde{p}_{\tilde{n}}\rangle\) in (17) an \((r, m)\)-pre-walk. Now we will introduce the notion of \(m\)-uniform-structured Hamiltonians as an extension of the uniform-structured Hamiltonians in Section 3.2. We first redefine the function \(L : [m] \times [N] \times [d] \rightarrow [N]\) such that \(L(w, j, t)\) is the \(t^\text{th}\) neighbor of vertex \(j\) in subgraph \(H_w\), and let \(L^{(r)} : [m]^r \times [N] \times [d]^r \rightarrow [N]\) be inductively defined as

\[
L^{(r)}(w, j, t) := L\left(w_{r-1}, L^{(r-1)}(w_0, \ldots, w_{r-2}, j, t_0, \ldots, t_{r-2}), t_{r-1}\right)
\]

for \(w \in [m]^r\), \(j \in [N]\), \(t \in [d]^r\), with \(L^{(1)} := L\).

Definition 3.26 \((m\text{-uniform-structured Hamiltonian})\). A sum Hamiltonian \(H = \sum_{w \in [m]} H_w\) with the associated oracle \(O_P\) is \(m\)-uniform-structured if:

- For all \(r \in \mathbb{N}\), its corresponding \(L^{(r)}\) can be expressed as

\[
L^{(r)}(w, j, t) = f(j, g(w_0, t_0) \circ \ldots \circ g(w_{r-1}, t_{r-1}))
\]

where the function \(f, g\) and the operator \(\circ\) with input/output lengths \(O(n)\) satisfy that:

- \(f, \circ\) and the mapping \(|w\rangle \langle 0| \mapsto |w\rangle \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(w, t)\rangle\) are arithmetic-depth-efficiently computable with \(O(1)\) queries to \(O_P\) for all \(w \in [m]\);

- \(\circ\) is associative.
State space \(\mathcal{H} = \bigotimes_{s \in [r]} \mathcal{H}_s^W \otimes \bigotimes_{s \in [r+1]} \mathcal{H}_s^A \otimes \bigotimes_{s \in [r+1]} \mathcal{H}_s^B \) with \(\mathcal{H}_s^W = \mathbb{C}^m \) and \(\mathcal{H}_s^A = \mathcal{H}_s^B = \mathbb{C}^{2N} \) for all \(s \).

Input Any state \(|0\rangle^{mr} |j_0\rangle |0\rangle \otimes |0\rangle^{2N(2r+1)} \) for \(j_0 \in [N] \), with \(|j_0\rangle \in \mathbb{C}^{2N} \), \(|0\rangle \in \mathbb{C}^2 \).

Output The state \(|\Psi_{j_0}^{(r,m)}\rangle \) defined in (16).

\(T^{(r,m)} \) can be implemented in the following ways.

Pre-walk
1. Prepare in the subspace \(\mathcal{H}_s^W \otimes \mathcal{H}_s^A \) a pre-walk state
 \[
 |p_{j_0}^{(r,m)}\rangle := \frac{1}{\sqrt{(md)}} \sum_{w \in [m]^r} \sum_{j \in \mathcal{H}_w} |w\rangle |j\rangle \in \mathcal{H}_s^W \otimes \mathcal{H}_s^A. \tag{17}
 \]

Re-weight
2. Copy the computational basis states in \(\mathcal{H}_s^A \) to \(\mathcal{H}_s^B \); that is, apply COPY\((r+1)\cdot(n+1)\) to obtained the state
 \[
 \frac{1}{\sqrt{(md)}} \sum_{w \in [m]^r} \sum_{j \in \mathcal{H}_w} |w\rangle |j\rangle \otimes |j\rangle \in \mathcal{H}.
 \]

3. Query \(r \) copies of the modified oracle \(\mathcal{O}_H \) in parallel, each in the subspace \(\mathcal{H}_s^A \otimes \mathcal{H}_{s+1}^B \) for \(s \in [r] \). For each query we compute \(\tilde{H}_{js,js+1} \) in a temporary ancilla space, conditioned on which rotates the state in \(\mathcal{H}_{s+1}^B \), then uncompute \(\tilde{H}_{js,js+1} \) with another query. Finally we obtain the goal state \(|\Psi_{j_0}^{(r,m)}\rangle \).

Figure 5: Implementation of \(T^{(r,m)} \)

- There exists an inverse function \(L^{-1} \) such that \(L^{-1}(w, j, L(w, j, t)) = g(w, t) \) for all \(w \in [m], j \in [N], t \in [d] \), and \(L^{-1} \) is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \).

- The function \([\langle j, k \rangle \in \mathcal{H}_w]\) can be arithmetic-depth-efficiently computed with \(O(1) \) queries to \(\mathcal{O}_P \), given \(j, k \in [N], w \in [m] \) as inputs.

Note that the first two conditions in Definition 3.26 are naturally generalized from Definition 3.10, while the third condition is set to guarantee the efficiency of computing \(c(j, k) = \sum_{w \in [m]} \langle (j, k) \in \mathcal{H}_w \rangle \), which is used in the construction of the oracle \(\mathcal{O}_H \) from \(\mathcal{O}_P \), as mentioned in Remark 3.24.

Now we present two important examples of \(m \)-uniform-structured Hamiltonians: Pauli sums and local Hamiltonians, which are generalizations of tensor products of Pauli matrices and local Hamiltonian clauses respectively.

Lemma 3.27 (Pauli sum). Let \(H \) be a Pauli sum, that is, \(H = \sum_{w \in [m]} H_w \) where \(H_w \) are (scaled) tensor products of Pauli matrices defined in Lemma 3.14. Let \(\mathcal{O}_P \) give an \(n \)-bit string \(s(w) \) characterizing the Pauli string of \(H_w \) for each \(w \), in particular, take \(\mathcal{X} = [m], \mathcal{Y} = [N] \) and

27
\[P(w, y) = y \oplus s(w), \text{ where the } k^{th} \text{ bit of } s(w) \text{ is defined as} \]

\[
s(w)^k := \begin{cases}
0 & \sigma_w^k = 1 \text{ or } \sigma_w^k = Z \\
1 & \sigma_w^k = X \text{ or } \sigma_w^k = Y
\end{cases}
\]

for \(H_w = \alpha_w \bigotimes_{k \in [n]} \sigma_w^k \) with \(\sigma_w^k \in \{1, X, Y, Z\} \) and constant \(\alpha_w \). Then \(H \) is \(m \)-uniform-structured.

Proof. Postponed to Appendix A.

Lemma 3.28 (Local Hamiltonian). Let \(H \) be an \((l, m)\)-local Hamiltonian, that is, \(H = \sum_{w \in [m]} H_w \) where \(H_w \) are \(l \)-local Hamiltonian clauses defined in Lemma 3.28. Let \(O_P \) give an \(n \)-bit string \(s(w) \) characterizing the locality of \(H_w \), i.e., the positions of the \(l \) qubits \(H_w \) acts on, for each \(w \). In particular, set \(X = [m] \), \(Y = [N] \) and \(P(w, y) = y \oplus s(w) \). Then \(H \) is \(m \)-uniform-structured.

Proof. Postponed to Appendix A.

Remark 3.29. Although any Hamiltonian can be represented as a Pauli sum due to the fact that tensor products of Pauli matrices form a basis for the Hermitian space, the number of summands \(m \) can be large. Since the complexity of the algorithm depends on \(m \), only those Pauli sums with small \(m \) are of practical interest. The same difficulty exists when one tries to represent any Hamiltonian as a local Hamiltonian, because the parameter \(l \) can be large.

Following the same line of analysis as in Section 3.2, we have the following theorem that the (extended) parallel quantum walk for uniform-structured Hamiltonians in Definition 3.26 can be efficiently implemented in parallel.

Theorem 3.30 (Parallel quantum walks for \(m \)-uniform-structured Hamiltonians). For an \(m \)-uniform-structured Hamiltonian, the \((r, m)\)-parallel quantum walk \(Q^{(r, m)} \) can be performed to precision \(\epsilon \) by a quantum circuit with

- \(O(1) \)-depth and \(O(r) \)-size of queries to \(O_P^b \) with \(b = O(\log(m/\epsilon)) \),
- \(O(1) \)-depth and \(O(rm) \)-size of queries to \(O_P \), and
- \(O(\log r \cdot \log^2 n + \log^2 \log(m/\epsilon)) \)-depth and \(O(mr^2n^4 + r\log^4(m/\epsilon)) \)-size of gates.

for \(r = \text{polylog}(1/\epsilon) \).

Note that when \(m = 1 \), the above theorem reduces to Theorem 3.22. For readability, the proof of this theorem is postponed to Appendix A.

4 Parallel LCU for Hamiltonian Series

In this section, we show how to implement a linear combination of block-encoded powers of a Hamiltonian (i.e., a Hamiltonian power series) by a parallel quantum circuit. The method is based on the Linear-Combination-of-Unitaries (LCU) algorithm developed through [92, 41, 68, 21, 22, 37, 50]. Here we adopt the block-encoding version of LCU in [50]. The results in this section will be used to implement a linear combination of parallel quantum walks to approximate the evolution unitary \(e^{-iHt} \) in Section 5.

We first recall two technical lemmas from [50]. Although they apply to more general matrices, here for our purpose we restrict them to the Hamiltonians.
Lemma 4.1 (Product of block-encoded Hamiltonian powers [50]). Let K be any Hamiltonian. For $n, m \in \mathbb{N}$, if U is an (α, a, δ)-block-encoding of K^n and V a (β, b, ϵ)-block-encoding of K^m, then $(1_a \otimes V)(1_b \otimes U)$ is an $(\alpha \beta, a + b, \alpha \delta + \beta \epsilon)$-block-encoding of K^{n+m}, where 1_s is the identity operator acting on the proper subsystem composed of the s qubits.

Definition 4.2 (State preparation unitary). Let $a \in \mathbb{C}^R$ and $\alpha := ||a||_1$, where $||\cdot||_1$ is the l_1 norm. A unitary V is called an (α, ϵ)-state-preparation-unitary of a, if the state $V|0\rangle$ is ϵ-close\footnote{Here, for simplicity of later proofs, the precision is measured by l_2-norm, which is different from the one in [50]. See Appendix B for more details.} to $\frac{1}{\sqrt{\alpha}} \sum_{r \in [R]} \sqrt{a_r} |r\rangle$ with $|0\rangle \in \mathbb{C}^R$, where a_r is the rth entry of a.

This definition is a special case of state preparation pair in [50], as shown in Appendix B.

Lemma 4.3 (LCU for Hamiltonian series [50]). Let $a \in \mathbb{C}^R$ be an R-dimensional vector, K be a Hamiltonian, and

- $A := \sum_{r \in [R]} a_r K^r$ be a power series of K;
- V be an (α, δ)-state-preparation-unitary of a;
- U_r be an (β, b, ϵ)-block-encoding of K^r.

If $U := \sum_{r \in [R]} |r\rangle \langle r| \otimes U_r$, then $(V^\dagger \otimes 1) U (V \otimes 1)$ is an $(\alpha \beta, s + b, \alpha \beta \delta + \alpha \beta \epsilon)$-block-encoding of A with $s := \lfloor \log R \rfloor$.

Combining Lemma 4.1 and Lemma 4.3, we can obtain the following:

Corollary 4.4. Let $a \in \mathbb{C}^R$ be an R-dimensional vector, K be a Hamiltonian, $s := \lfloor \log R \rfloor$, and

- $A := \sum_{r \in [R]} a_r K^r$ be a power series of K;
- V be an (α, δ)-state-preparation-unitary of a;
- W_r be a $(1, b_r, \epsilon)$-block-encoding of K^r, and

$$W := \sum_{r \in [R]} |r\rangle \langle r| \otimes \prod_{j \in [s]} (1_{b_j} \otimes W_{2^j})^{r_j} \quad \tag{19}$$

where $b := \sum_{j \in [s]} b_{2^j}$ and r_j is the jth bit of r.

Then $(V^\dagger \otimes 1) W (V \otimes 1)$ is an $(\alpha, s + b, \alpha R \delta + \alpha s \epsilon)$-block-encoding of A.

Proof. Since W_{2^j} is a $(1, b_{2^j}, \epsilon)$-block-encoding of K^{2^j}, by Lemma 4.1, $U_r := \prod_{j \in [s]} \left(1_{b_j} \otimes W_{2^j}\right)^{r_j}$ is a $(1, b, s \epsilon)$-block-encoding of K^r. Then by Lemma 4.3 we reach the conclusion. \qed

Now we present two lemmas showing how to implement V and W in Corollary 4.4 by parallel quantum circuits. The idea of Lemma 4.5 is similar to a data structure for matrix sampling in [65], but here we consider complex amplitudes (rather than real amplitudes in [65]) and explicitly compute the gate complexity. This lemma is based on previous works on quantum sampling [57].

Lemma 4.5 (Parallel state preparation). Let $a \in \mathbb{C}^R$ be an R-dimensional vector such that for each $r \in [R]$, a_r is arithmetic-depth-efficiently computable given r as input, and let $\alpha := ||a||_1$. An (α, ϵ)-state-preparation-unitary V of a can be implemented by an $O(\log^3 \log(1/\epsilon))$-depth and $O(\log^3(1/\epsilon))$-size quantum circuit for $R = O(\log(1/\epsilon))$. \hfill \qed
Proof. Assume $R = 2^s$ w.l.o.g., because one can enlarge the dimension of a by appending enough 0 entries. Let $a_r = e^{i\theta_r}|a_r|$ and partial sum $S(j,l) := \sum_{r=1}^{l-j} |a_r|$. Recall that our goal is to perform the mapping $|0\rangle^\otimes s \mapsto \frac{1}{\sqrt{\delta}} \sum_{r \in [R]} \sqrt{a_r} |r\rangle$. The state preparation V consists of s steps, and in the kth step we perform the mapping

$$|x\rangle |0\rangle^\otimes s - k \mapsto |x\rangle \left(\sqrt{\gamma_x} |0\rangle + e^{i\beta_x} \sqrt{1 - \gamma_x} |1\rangle \right) |0\rangle^\otimes s - k - 1$$

(20)

for all $x \in [2^{k-1}]$ and $k \in [s]$, where we define

$$\gamma_x := \frac{S(u,w)}{S(u,v)}, \quad \beta_x := \theta_w - \theta_u,$$

with $u := 2^{s-k}x, v := 2^{s-k}x + 2^{s-k}$ and $w := (u + v)/2$. A proof of the correctness of this procedure can be found in [65] and [57], except that here we have an additional accumulative phase β_x to handle the complex amplitudes.

Let us compute the gate complexity. To achieve a total precision ϵ, each step of (20) needs to be (ϵ/s)-precise. Each step of (20) consists of two controlled rotations, $C_b R_Y$ and $C_b R_Z$, which are conditioned on elementary arithmetic functions of γ_x and β_x respectively, where $b = O(\log(s/\epsilon)) = O(\log(1/\epsilon))$ is the number of bits for the required precision. While β_x can be easily computed by an arithmetic-depth-efficient quantum circuit, as it is an elementary arithmetic function of a_u and a_v, which are arithmetic-depth-efficiently computable from x; γ_x needs to be computed from the s-size of gates, while the inductive summation procedure requires $O(s \log^2 (b + s))$-depth and $O(R(b + s)^4)$-size of gates by Lemma 2.6, Lemma 2.1 and the proof of Lemma 2.3. Thus all $S(j,l)$ required can be computed by an $O(\log^2 \log(1/\epsilon))$-depth and $O(\log^5 (1/\epsilon))$-size quantum circuit.

By Lemma 2.2 the controlled rotations in each step of (20) can be implemented by an $O(\log b)$-depth and $O(b)$-size quantum circuit, once the rotation angles, some elementary arithmetic functions of γ_x, β_x are computed by an $O(\log^2 b)$-depth and $O(b^4)$-size quantum circuit. Summing up the s steps gives the final complexity.

Note that one can compute all $S(j,l)$ required at once in an ancilla space. This is done by

- first computing $(2^{-b}/R)$-precise a_r for all r by arithmetic-depth-efficient circuits on the input $|0,1,\ldots,R-1\rangle$, due to the assumption that a_r is arithmetic-depth-efficiently computable;
- then computing $S(j,l)$ in an inductive way analogous to the proof of Lemma 2.3, except that one needs to create a constant number of copies of each $S(j,l)$ by COPY$b+s$ for future computation.

The input state $|0,1,\ldots,R-1\rangle$ can be prepared by $O(1)$-depth and $O(Rs)$-size of gates, while the inductive summation procedure requires $O(s \log^2 (b + s))$-depth and $O(R(b + s)^4)$-size of gates by Lemma 2.6, Lemma 2.1 and the proof of Lemma 2.3. Thus all $S(j,l)$ required can be computed by an $O(\log^2 \log(1/\epsilon))$-depth and $O(\log^5 (1/\epsilon))$-size quantum circuit.

The next lemma generalizes Lemma 8 in [37] to the block-encoding case.

Lemma 4.6 (Parallel implementation of W). The unitary W in (19) can be implemented by a quantum circuit with $\sum_{j \in [s]} \text{Dep}(W_{2^j})$-depth and $\sum_{j \in [s]} \text{Siz}(W_{2^j})$-size, where Dep and Siz refer to the depth and size cost of a subroutine.

Proof. A parallel quantum circuit implementation of W is shown in Figure 6, where we omit the identity operator 1_{b-b^j} on the ancilla space for simplicity of notations. Since the controlled version of W_{2^j} has the same complexity as W_{2^j} up to a constant factor, the final complexity then follows easily.

30
5 Parallel Hamiltonian Simulation

Now we are ready to present a parallel quantum simulation algorithm for uniform-structured Hamiltonians by assembling the techniques developed in the previous sections. Following [22, 21, 37], we simulate the evolution unitary \(e^{-iHt} \) by first splitting the time interval \(t \) into small segments each of length \(\Delta t \), then approximating the evolution within each segment by the truncated Taylor series

\[
e^{-iH\Delta t} \approx \sum_{r=0}^{R-1} \frac{(-iH\Delta t)^r}{r!}.
\]

In our setting, \(\Delta t \) should be chosen such that the monomial \((H\Delta t)^r \) can be obtained from the parallel quantum walk in Section 3. Using the results of Section 4 to combine these walk operators, we get a block-encoding of \(e^{-iH\Delta t} \), then we apply these \(e^{-iH\Delta t} \) sequentially on the initial state. In this way we are able to simulate \(e^{-iHt} \). To guarantee a constant success amplitude after each application of \(e^{-iH\Delta t} \), a technique introduced in [20, 21, 22] called robust oblivious amplitude amplification will be used.

Recall that we assume \(\|H\|_{\text{max}} = 1 \). Since the monomial \((H\Delta t)^r \) can be obtained from a parallel quantum walk for \(m \)-uniform-structured Hamiltonians, we choose \(\Delta t := \frac{1}{md} \). By rescaling \(H \) with a constant factor \(1/2 \), the eigenvalue of \(H\Delta t \) lies in the interval \([-1/2, 1/2]\]. The following lemma shows that to achieve an \(\epsilon \)-precision in (21) it suffices to choose \(R = \lceil \log(1/\epsilon) \rceil \), by taking \(z = -iH\Delta t \).

Lemma 5.1. Assume \(R := \lceil \log(1/\epsilon) \rceil \geq 4 \) w.l.o.g., we have

\[
\left| e^z - \sum_{r=0}^{R-1} \frac{z^r}{r!} \right| \leq \epsilon
\]

for \(z \in \mathbb{C} \) with \(|z| \leq 1/2 \).

Proof. Since \(\sum_{r=R}^{\infty} \frac{z^r}{r!} \) is absolutely convergent, we have \(\left| \sum_{r=R}^{\infty} \frac{z^r}{r!} \right| \leq \sum_{r=R}^{\infty} \frac{|z|^r}{r!} \). The RHS of the above equation can be bounded by the Taylor remainder \(\frac{\epsilon|z|^R}{R!} \leq \frac{1}{2R} \leq \epsilon \), where \(0 \leq \xi \leq |z| \leq 1/2 \).

Let us analyze the complexity of implementing a block-encoding of \(e^{-iH\Delta t} \).

Lemma 5.2. For any \(m \)-uniform-structured Hamiltonian \(H \), there exists a unitary \(U_{\Delta t} \) that forms an \((\alpha, R(2[\log m] + 4n), \epsilon) \)-block-encoding of \(e^{-iH\Delta t} \), and can be implemented by a quantum circuit with

Figure 6: A parallel quantum circuit for \(W \).
- $O(\log R)$-depth and $O(R)$-size of queries to O_H^b with $b = O(R + \log m)$,
- $O(\log R)$-depth and $O(mR)$-size of queries to O_P, and
- $O(\log^2 R \cdot \log^2 n + \log^3 R)$-depth and $O(mR^2n^4 + R(R + \log m)^4)$-size of gates.

where $\Delta t := \frac{1}{mn}$, $\alpha < e$ is a constant, and $R = \lceil \log(1/\epsilon) \rceil \geq 4$.

Proof. In Corollary 4.4, take $R = \lceil \log(1/\epsilon) \rceil$, $\alpha_r = \frac{(-1)^r}{r}$, $K = \frac{H}{m^2}$ and $W_r = Q^{(r,m)}$. Then $\alpha = \sum_{r \in [R]} |a_r| < e$ is a constant, where each a_r is arithmetic-depth-efficiently computable by Lemma 2.6. Assume $R = 2^s$ w.l.o.g. To achieve a total ϵ-precision of $U_{\Delta t}$, in Corollary 4.4, take the precision of V to be $\epsilon/(2\alpha R)$, and the precision of each W_r (i.e., the precision of $Q^{(r,m)}$ in Theorem 3.30) to be $\epsilon/(2\alpha s)$. By Lemma 4.5, the state preparation unitary V requires $O(\log^3 \log(1/\epsilon))$-depth and $O(\log^6(1/\epsilon))$-size of gates. Combining Lemma 4.6 and Theorem 3.30, the implementation of W requires

- $O(s)$-depth and $O(R)$-size of queries to O_H^b with $b = O(\log(sm/\epsilon))$,
- $O(s)$-depth and $O(mR)$-size of queries to O_P, and
- $O(s[\log R \cdot \log^2 n + \log^2 \log(sm/\epsilon)])$-depth and $O(mR^2n^4 + R\log^4(sm/\epsilon))$-size of gates.

The final complexity follows from summing up these complexities and the assumption $m = \text{poly } n$. Note that the number of ancilla qubits required for the block-encoding is not a tight upper bound. \qed

To achieve a constant success amplitude after a sequence of $e^{-iH\Delta t}$, we need to amplify the success amplitude to a constant after each application of $e^{-iH\Delta t}$ with robust oblivious amplitude amplification. The following lemma is a special case of Lemma 6 in [22].

Lemma 5.3 (Robust oblivious amplitude amplification). Given a unitary U that (α, s, ϵ)-block-encodes a unitary V, where $\alpha = \arcsin\left(\frac{\pi}{2^{s+1}}\right)$ for some $l \in \mathbb{N}$, one can construct an $(1, s, O(\epsilon))$-block-encoding of V with $O(l)$ uses of U, U^\dag and $1 - 2\Pi_s$, where $\Pi_s := |0\rangle\langle 0|_s$ is a projector on the ancilla space of s qubits.

Corollary 5.4. Given a unitary U that (β, s, ϵ)-block-encodes a unitary V, where $\beta = O(1)$ is a known constant, one can construct a $(1, s + 1, O(\epsilon))$-block-encoding of V with

- $O(1)$ uses of U and U^\dag, and
- $O(\log s + \log^2 \log(1/\epsilon))$-depth and $O(s + \log^4(1/\epsilon))$-size of gates.

Proof. By the assumption, $\|V - \beta(|0\rangle^\otimes s \otimes 1)U(|0\rangle^\otimes s \otimes 1)\| \leq \epsilon$. Pick the minimum l such that $\alpha := \arcsin\left(\frac{\pi}{2^{s+1}}\right) \geq \beta$. Let W be a unitary such that $W|0\rangle = \frac{1}{\sqrt{\alpha}}\left(\sqrt{3}|0\rangle + \sqrt{\alpha^2 - \beta^2}|1\rangle\right)$, and let $\tilde{U} := (W^\dag \otimes 1)(1 \otimes U)(W \otimes 1)$, then we have $\|V - \alpha(|0\rangle^\otimes s+1 \otimes 1)\tilde{U}(|0\rangle^\otimes s+1 \otimes 1)\| \leq \epsilon$. Note that $\alpha = O(1)$, by Lemma 5.3 we can construct a $(1, s + 1, O(\epsilon))$-block-encoding of V with $O(1)$ uses of \tilde{U}, \tilde{U}^\dag and $1 - 2\Pi_{s+1}$. To achieve an $O(\epsilon)$-precision, implementing the rotation W requires $O(\log^2 \log(1/\epsilon))$-depth and $O(\log^4(1/\epsilon))$-size of gates by Lemma 2.2 and Lemma 2.6. The reflection $1 - 2\Pi_{s+1}$ can be performed by a C_{s+1}-Z gate with an ancilla qubit, which requires $O(\log s)$-depth and $O(s)$-size of gates by Corollary 2.5. The final complexity follows from summing up these complexities. \qed
Now we can give a precise statement of the main result of this paper. An informal version of this theorem was presented as Theorem 1.1.

Theorem 5.5 (Parallel simulation of uniform-structured Hamiltonians). An m-uniform-structured Hamiltonian \(H = \sum_{w \in [m]} H_w \) with each \(H_w \) being d-sparse, can be simulated for time \(t \) to precision \(\epsilon (\epsilon \leq 0.05) \) by a quantum circuit with

- \(O(\tau \log \gamma) \)-depth and \(O(\tau \gamma) \)-size of queries to \(O^b_H \) with \(b = O(\gamma) \),
- \(O(\tau \log \gamma) \)-depth and \(O(m \tau \gamma) \)-size of queries to \(O_P \), and
- \(O(\tau (\log^2 \gamma \cdot \log^2 n + \log^3 \gamma)) \)-depth and \(O(\tau \gamma^2 \cdot (mn^4 + \gamma^3)) \)-size of gates.

where \(\tau := mdt \), \(\gamma := \log(\tau/\epsilon) \).

Proof. Let \(\Delta t := 1/(md) \). First consider the case when \(\tau = t/\Delta t \) is an integer. To achieve a total precision \(\epsilon \), applying Lemma 5.2 followed by Corollary 5.4 with precision \(\epsilon/\tau \) gives a \((1, O(\tau(n + \log m)), O(\epsilon/\tau)) \)-block-encoding of \(e^{-iHt/\tau} \). Repeat the above procedure \(\tau \) times; that is, using Lemma 4.1 to multiply these block-encoded \(e^{-iHt/\tau} \) we obtain a \((1, O(\tau\gamma(n + \log m)), O(\epsilon)) \)-block-encoding of \(e^{-iHt} \). By properly scaling the precision \(\epsilon \) we can remove the constant factor in \(O(\epsilon) \) and implement \(e^{-iHt} \) to precision \(\epsilon \) with the same overhead up to a constant factor. The final complexity follows from summing up these complexities.

For the case when \(\tau \) is not an integer, that is, \(\bar{\tau} := t - [t/\Delta t] \neq 0 \), we can independently simulate the last segment for time \(\bar{\tau} \). This can be done through simulating \(\bar{\tau} := \tau \Delta t/\bar{\tau} \) instead for time \(\Delta t \), where the oracle \(O_{\bar{H}} \) for \(\bar{H} \) is easy to construct from \(O_H \), with at most \(O(\log^2 \gamma) \)-depth and \(O(\gamma^4) \)-size of overhead for the required precision by Lemma 2.6. The final complexity is unchanged. \(\square \)

6 Lower Bounds

In this section, we prove Theorem 1.3 in Section 1.1, which gives a lower bound on the gate depth of simulating a uniform-structured Hamiltonian and implies that the polylog log(1/\(\epsilon \)) factor in the gate depth in Theorem 5.5 cannot be significantly improved to \(o(\log \log(1/\epsilon)) \). Our proof is based on the proof of Theorem 1.2 in [20], which gives a lower bound that simulating any sparse Hamiltonian to precision \(\epsilon \) requires \(\Omega\left(\frac{\log(1/\epsilon)}{\log \log(1/\epsilon)}\right) \)-size of queries, as an extension of the "no-fast-forwarding theorem" in [18]. Their proof basically reduces the problem of computing the parity of \(N \) bits (with unbounded error, i.e., with success probability strictly greater than \(1/2 \)), to simulating a 2-sparse \(2N \times 2N \) Hamiltonian (to a high precision). Our lower bound is achieved by two simple observations: the Hamiltonian used there is 6-band, which is actually uniform-structured as shown in Lemma 3.12; and computing the parity of \(N \) bits with unbounded error requires \(\Omega(\log N) \)-depth of gates.

Proof of Theorem 1.3. We will show that there exists a uniform-structured Hamiltonian \(H \) such that simulating \(H \) to precision \(\epsilon \) requires \(\Omega(\log \log(1/\epsilon)) \)-depth of gates. Following [20], consider a \(2N \times 2N \) Hamiltonian \(H \) determined by an \(N \)-bit string \(x = x_0 \ldots x_{N-1} \), such that

\[
\langle j, k | H | j - 1, k \oplus x_j \rangle = \langle j - 1, k \oplus x_j | H | j, k \rangle = \frac{\sqrt{(N - j + 1)j}}{N}
\]

for all \(j \in [N] \) and \(k \in [2] \), where \(\oplus \) stands for the XOR operator. Note that here \(H \) is 6-band, thus is uniform-structured by Lemma 3.12. Also we have \(\|H\|_{\text{max}} \leq 1 \), which can be normalized to 1 with a constant overhead. In [20] it is shown that:
1. \(|\langle N, \text{PARITY}(x) | e^{-iHt} |0,0\rangle| = |\sin(t/N)^N| \), where \(\text{PARITY}(x) = x_0 \oplus \ldots \oplus x_{N-1} \) is the parity of \(x \);

2. if \(N = \Theta \left(\frac{\log(1/\epsilon)}{\log \log(1/\epsilon)} \right) \), then there is an unbounded-error algorithm to compute \(\text{PARITY}(x) \), by simulating \(H \) for a constant time \(t \) to precision \(\epsilon \) on the input \(|0,0\rangle \), followed by a computational basis measurement.

Take \(N = \Theta \left(\frac{\log(1/\epsilon)}{\log \log(1/\epsilon)} \right) \). To finish the proof, it suffices to show that computing \(\text{PARITY}(x) \) with unbounded error requires \(\Omega(\log N) = \Omega(\log \log(1/\epsilon)) \) depth of gates. This is trivial because \(\text{PARITY}(x) \) depends on all \(x_j \) for \(j \in [N] \), while \(o(\log N) \)-depth of gates only cover \(o(N) \) input qubits. More precisely, for the sake of contradiction, suppose there exists an \(o(\log N) \)-depth quantum circuit that takes an input \(|x\rangle \) and outputs \(\text{PARITY}(x) \) by a measurement on the first output qubit with success probability \(> 1/2 \), then there must be an input qubit holding \(|x_k\rangle \) for some \(k \in [N] \) that is not connected to the output qubit by a path of gates and wires. However, \(x_k = 0 \) and \(x_k = 1 \) yield different values of \(\text{PARITY}(x) \). This gives a contradiction.

7 Applications

It seems that the parallel quantum algorithm for Hamiltonian simulation developed above can be applied to a wide range of simulation tasks in physics and chemistry. As a concrete illustration, three examples of physical interest are presented in this section. For each example, we explicitly calculate the total gate complexity of the parallel quantum simulation algorithm for it and compare with the prior art. In particular, we calculate the gate cost for implementing the oracle \(\mathcal{O}_H \) and \(\mathcal{O}_P \) in the algorithm. Since our choices of \(\mathcal{O}_P \) turn out to be efficiently implementable by quantum gates in these examples, compared to the commonly chosen oracle \(\mathcal{O}_L \), we believe that our definition of the oracle \(\mathcal{O}_P \) is more reasonable in these applications. The results in this section were already summarized in Subsection 1.1 as Table 1.

7.1 Simulation of the Heisenberg Model

Many body localization (MBL) is an intriguing phenomenon in the long-time behaviour of a closed quantum system with disorders and interactions [82, 2, 4]. In contrary to the conventional assumption in quantum statistical mechanics that a system coupling to a bath (i.e., a large environment) after a long time will achieve a thermal equilibrium which erases the initial condition, the MBL system as an isolated many-body quantum system resists such thermalization — in a local subsystem the information of the initial state is remembered forever. While a theoretical understanding of MBL still remains challenging since its introduction by Anderson in 1958 [5], tremendous numerical works on various systems have been conducted through recent years (for example, see [82, 4, 1] for reviews). A typical example for numeric studies of MBL is one-dimensional Heisenberg model [82, 78, 38]. Due to the difficulty of simulating many-body dynamics classically, quantum simulations can investigate properties of MBL in larger systems intractable for classical computers.

Following [38], we consider the problem of simulating the one-dimensional nearest-neighbor Heisenberg model with a random magnetic field in the \(z \) direction. More concretely, we will simulate an \(n \)-qubit Hamiltonian

\[
H = \sum_{w \in [n]} (X_w X_{w+1} + Y_w Y_{w+1} + Z_w Z_{w+1} + h_w Z_w),
\]

(22)
where \(h_w \in [-1, 1] \) is chosen uniformly at random, the subscript \(w \) indicates the qubit \(w \) that the Pauli matrix acts on, and \(w = n \) is equivalent to \(w = 0 \) by assuming the periodic boundary conditions.

First observe that \(H \) is a \((2, n)\)-local Hamiltonian with local clause \(H_w := X_w X_{w+1} + Y_w Y_{w+1} + Z_w Z_{w+1} + h_w Z_w \) for \(w \in [n] \). The locality of \(H_w \) is indicated by an \(n \)-bit string \(s(w) \) with the \(u \)-th bit defined as

\[
s(w)_u := [w = u \lor w + 1 = u]
\]

for all \(u \in [n] \), given by the oracle \(\mathcal{O}_P \) as in Lemma 3.28. Then by Lemma 3.28, \(H \) is \(m \)-uniform-structured with \(m = n \), thus we can apply Theorem 5.5 to simulate \(H \). For comparison, take the simulation time \(t = n \) as in [38]. Since \(\|H\|_{\text{max}} \leq \sum_{w \in [n]} \|H_w\|_{\text{max}} = O(n) \), to simulate \(H \) for time \(t \), it is equivalent to simulate a normalized \(H \) with max norm \(\leq 1 \) for a rescaled time \(\tilde{t} := \|H\|_{\text{max}} t = O(n^2) \). Thus we can determine the parameters in Theorem 5.5: \(\tau = O(n^3) \), \(\gamma = O(\log(n/\epsilon)) \) and \(b = O(\log(n/\epsilon)) \).

For the total complexity of the algorithm, one should also compute the gate complexities for implementing the oracle \(\mathcal{O}_H^b \) and \(\mathcal{O}_P \).

- To implement \(\mathcal{O}_P \), that is, to perform the mapping \(\ket{w} \ket{0} \mapsto \ket{w} \ket{s(w)} \), one can first prepare the state \(\ket{0, \ldots, n-1} \) in the second register, then make \(n \) copies of \(\ket{w} \) by applying \(\text{COPY}_{\log n}^n \), and finally calculate each Boolean function \(s(w)_u \) for \(u \in [n] \) in parallel followed by garbage cleaning. Together with Lemma 2.6, this can be done by \(O(\log n) \)-depth and \(O(n \log n) \)-size of gates.

- To implement \(\mathcal{O}_H^b \), one needs to first generate \(n \) uniform random \(h_w \in [-1, 1] \) to \(b \)-bit precision in the preprocessing. This can be done by \(O(1) \)-depth and \(O(nb) \)-size of Hadamard gates followed by single-qubit measurements. The preprocessing only needs to be done once. Later when a \(h_w \) is required each time we can apply a \(\text{COPY}^b \) gate to prepare a new copy of it.

To perform the mapping \(\ket{j, k, 0} \mapsto \ket{j, k, H_{jk}} \), one can calculate an entry \(H_{jk} \) by summing up those \((H_w)_{jk} \) with \((j, k) \in H_w \). Recall that \(\|\{(j,k) \in H_w\}\| \) is arithmetic-depth-efficiently computable for uniform-structured \(H \), and \((H_w)_{jk} \) is easy to determine given a copy of \(h_w \), therefore the above procedure can be implemented by an \(O(\log^2 n + \log b) \)-depth and \(O(n^5 + nb) \)-size quantum circuit (in a way analogous to computing \(c(j,k) \) in the proof of Lemma A.3).

Thus, we obtain the following:

Corollary 7.1 (Parallel simulation of the Heisenberg model). The Heisenberg Hamiltonian defined in (22) can be simulated for time \(t = n \) to precision \(\epsilon \) by \(O(n^3 \log^3 n \cdot \log^3 \log(1/\epsilon)) \)-depth and \(O(n^8 \log^5 (n/\epsilon)) \)-size of quantum gates.

In [38] the performance of different quantum simulation algorithms on this task are compared, amongst which the asymptotically best one is based on quantum signal processing [74, 73], which achieves a gate complexity \(O\left(n^3 \log n + \frac{\log(1/\epsilon)}{\log \log(1/\epsilon)} \cdot n \log n\right) \). Later a quantum algorithm to simulate lattice Hamiltonians [59] shows a better dependence on \(n \) in the gate complexity, consisting of \(O(n \log \log(n/\epsilon)) \)-depth and \(O(n^2 \log \log(n/\epsilon)) \)-size of gates. We note that in the gate depth all these works have a \(\log(1/\epsilon) \) dependence, while Corollary 7.1 only contains a \(\log \log(1/\epsilon) \) factor.
7.2 Simulation of the Sachdev-Ye-Kitaev Model

The Sachdev-Ye-Kitaev (SYK) model [90, 66], a simple but important exactly solvable many-body system, has drawn an increasing interest in the condensed matter physics and high energy physics communities due to its many striking properties [90, 66, 80, 86, 88] and its potential to have an interesting holographic dual [66, 80]. Like the MBL problem in Section 7.1, numeric studies of a larger SYK model enabled by quantum simulation could extend our understandings about its features and dual interpretation.

Following [49, 11], we consider the problem of simulating the SYK model evolving under a Hamiltonian

\[H = \frac{1}{4 \cdot 4!} \sum_{p,q,r,s=0}^{2n-1} \gamma_p \gamma_q \gamma_r \gamma_s, \]

(23)

where each \(J_{pqrs} \sim \mathcal{N}(0, \sigma^2) \) is chosen randomly from a normal distribution with variance \(\sigma^2 = \frac{31}{(2n)!} \) (\(J \) is assumed to be a constant), and \(\gamma_p \) are Majorana fermion operators such that \(\{ \gamma_p, \gamma_q \} = 2[p = q] \mathbb{1} \). The Majorana operator can be expressed as a tensor product of Pauli matrices by the Jordan-Wigner transformation

\[\gamma_p \mapsto \begin{cases} Z_0 \cdots Z_{p/2-1} X_{p/2} & p \text{ is even} \\ Z_0 \cdots Z_{(p-3)/2} Y_{(p-1)/2} & p \text{ is odd} \end{cases} \]

(24)

for \(p \in [2n] \) (unlike in [49], our index starts from 0), where as usual the subscript of a Pauli matrix indicates the qubit it acts on. Now \(H \) can be expressed as a Pauli sum on \(n \) qubits:

\[H = \alpha \sum_{w \in [2n]^4} J_w H_w \]

(25)

where \(\alpha \) is a constant, \(J_w \) is chosen randomly from a normal distribution, and each \(H_w \) is a tensor product of Pauli matrices.

It can be seen by Lemma 3.27 that the SYK Hamiltonian in (25) is \(m \)-uniform-structured with \(m = (2n)^4 \), thus we can apply Theorem 5.5 to simulate it. Note that

\[\|H\|_{\max} \leq \sum_{w \in [2n]^4} \alpha \|J_w H_w\|_{\max} \leq \sum_{w \in [2n]^4} \alpha \mathbb{E}[|J_w|] = \alpha (2n)^4 \cdot \frac{\sqrt{2}\sigma}{\sqrt{n}} = O(n^{2.5}) \]

where we use \(J_w \sim \mathcal{N}(0, \sigma^2) \) with \(\sigma^2 = O(1/n^3) \). Thus, to simulate \(H \) for time \(t \), it is equivalent to simulate its normalized Hamiltonian with max norm \(\leq 1 \) for a rescaled time \(\hat{t} := \|H\|_{\max} t = O(n^{2.5} t) \). We can determine the parameters in Theorem 5.5: \(\tau = O(n^{6.5} t) \), \(\gamma = O(\log(nt/\epsilon)) \) and \(b = O(\log(nt/\epsilon)) \).

For the total complexity of the algorithm, we starts from defining \(\mathcal{P} : [2n]^4 \to \{1, i, -1, -i\} \times \{1, X, Y, Z\}^n \simeq [4]^{n+1} \) to be a function that maps \(w \in [m] \) to the Pauli string (with a global phase) of \(H_w \). For example, if \(H_w = -i X \otimes Z \otimes Z \) then \(\mathcal{P}(w) = (-i, X, Z, Z) \). One can also write the Jordan-Wigner transformation in (24) as a function \(\mathcal{J} : [2n] \to \{1, X, Y, Z\}^n \simeq [4]^n \), which can be computed by an \(O(\log n) \)-depth and \(O(n \log n) \)-size quantum circuit. To see this, that is, to perform the mapping \(|p\rangle |0\rangle \mapsto |p\rangle |\mathcal{J}(p)\rangle \), we can first prepare the state \(|0, \ldots, n-1\rangle \) in the second register, then make \(n \) copies of \(|p\rangle \), and finally compute the \(q^{th} \) bit of \(\mathcal{J}(p) \):

\[\mathcal{J}(p)_q := \begin{cases} 3[q < p/2] + [q = p/2] & p \text{ is even} \\ 3[q < (p-1)/2] + 2[q = (p-1)/2] & p \text{ is odd} \end{cases} \in [4] \]
for all \(q \in [n] \) in parallel followed by garbage cleaning. By Lemma 2.6, this can be done by \(O(\log n) \)-depth and \(O(n \log n) \)-size of gates. Since for all \((p, q, r, s) \in [2n]^4\), the function \(P(p, q, r, s) \) can be computed from \(J(p), J(q), J(r), J(s) \) by calculating Pauli algebra on each entry of these \(n \)-tuples and gathering up the global phases, \(P(w) \) can be computed by an \(O(\log n) \)-depth and \(O(n \log n) \)-size quantum circuit.

Now we will determine the gate complexities for implementing the oracle \(O_H^b \) and \(O_P \):

- To implement \(O_P \), note that \(s(w) \) in Lemma 3.27 is easily computable from \(P(w) \) by function restriction, thus \(O_P \) can be implemented by \(O(\log n) \)-depth and \(O(n \log n) \)-size of gates.

- To implement \(O_H^b \), one needs to first generate \(m \) independent \(J_w \in \mathcal{N}(0, \sigma^2) \) to \(b \)-bit precision in the preprocessing. This can be done by the Box-Muller transform [24], which derives two independent standard normally distributed variables from two independent uniformly distributed variables in \([0, 1]\) by elementary arithmetics. Thus it suffices to generate \(m \) uniformly random variables in \([0, 1]\) to \(b \)-bit precision by \(O(1) \)-depth and \(O(n^4b) \)-size of Hadamard gates followed by single-qubit measurements, and then use Lemma 2.6 to perform the Box-Muller transform with a scaling \(\sigma \) by an \(O(\log^2 b) \)-depth and \(O(n^4b) \)-size quantum circuit. The preprocessing only needs to be done once. Later when a \(J_w \) is required each time we can apply a \(\text{COPY}^b \) gate to make a new copy of it.

We perform the mapping \(|j, k, 0 \rangle \mapsto |j, k, H_{jk} \rangle \) in a way similar to the one in Section 7.1; that is, sum up those \((H_w)_{jk} \) with \((j, k) \in \mathcal{H}_w\). Recall that each \(\{(j, k) \in \mathcal{H}_w\} \) is arithmetic-depth-efficiently computable for uniform-structured \(H \), and \((H_w)_{jk} \) is easy to compute from the function \(P(w) \) and a copy of \(J_w \). Therefore, the above procedure can be implemented by an \(O(\log^2 n + \log b) \)-depth and \(O(n^8 + n^4b) \) quantum circuit (in a way analogous to the proof of Lemma A.3).

Applying Theorem 5.5, we obtain the following:

Corollary 7.2 (Parallel simulation of the SYK model). The SYK model defined in (23) can be simulated for time \(t \) to precision \(\epsilon \) by \(O(n^{6.5} \log^3 n \cdot t \log^3 \log(t/\epsilon)) \)-depth and \(O(n^{14.5} t \log^5 (nt/\epsilon)) \)-size of quantum gates.

The prior best algorithm based on asymmetric qubitization [11] for this task has gate complexity \(O(n^{3.5} t + n^{5} \log(n/\epsilon)) \), which improves the product-formula-based algorithm [49] with gate complexity \(O(n^{10/2} t/\epsilon) \). Later work [98] proposes a sparse SYK model also of physical interest and gives a simulation algorithm based on qubitization with a \(\text{polylog}(1/\epsilon) \) dependence in the gate complexity. Compared to these works, by introducing parallelism Corollary 7.2 only has a \(\text{polylog} \log(1/\epsilon) \) dependence in the gate depth.

7.3 Simulation of Quantum Chemistry in Second Quantization

One of the most attractive prospects of quantum simulation is in quantum chemistry to study the static and dynamic properties of chemicals [101, 31, 14]. Prior works on quantum simulation algorithm for chemistry mainly focus on exploiting the special structure of molecular Hamiltonians (e.g. based on first or second quantization, using Gaussian orbital bases or plane wave bases, etc.) to obtain better complexities (see [14] for a review). Compared to these fault-tolerant quantum algorithms, diverse variational quantum algorithms to circumvent a direct simulation (e.g. variational quantum eigensolver [84]) also have been explored in recent years due to their potential for immediate applications in the NISQ era [7].
Following [9] we consider the problem of simulating a molecular electronic structure Hamiltonian in the second-quantized form. In this form, we will simulate a Hamiltonian

\[H = \sum_{p,q \in [n]} h_{pq} a_p^\dagger a_q + \frac{1}{2} \sum_{p,q,r,s \in [n]} h_{pqrs} a_p^\dagger a_q a_r a_s \] \tag{26}

where \(n \) represents the number of spin orbitals, \(h_{pq}, h_{pqrs} \) are one-electron and two-electron integrals, and \(a_p^\dagger, a_p \) are fermionic creation and annihilation operators satisfying the relations

\[\{a_p^\dagger, a_q\} = [p=q] 1, \quad \{a_p^\dagger, a_q^\dagger\} = \{a_p, a_q\} = 0. \]

As in the “database” algorithm [9], we assume that these \(b \)-bit precise \(h_{pq} \) and \(h_{pqrs} \) are precomputed and stored in a database; for example, an \(O(4^n) \)-size quantum-read/classical-write RAM (QCRAM), to which one quantum access can be performed by \(O(\log(n)) \)-depth and \(O((nb)^4) \)-size of gates.

One can apply Jordan-Wigner transformation to the creation and annihilation operators \(a_p^\dagger, a_p \) to obtain Hamiltonians acting on qubits:

\[a_p^\dagger \mapsto \frac{1}{2} Z_0 \ldots Z_{p-2}(X_{p-1} - iY_{p-1}) \] \tag{27}

\[a_p \mapsto \frac{1}{2} Z_0 \ldots Z_{p-2}(X_{p-1} + iY_{p-1}) \] \tag{28}

for \(p \in [n] \), where as usual the subscript of a Pauli matrix indicates the qubit it acts on. Note that each resulting qubit Hamiltonian in (27) and (28) is a sum of two tensor products of Pauli matrices, hence by splitting them and applying the transformation to (26) we obtain \(H \) as a Pauli sum on \(n \) qubits:

\[H = \sum_{w \in [n]} h_w H_w, \] \tag{29}

where \(m = O(n^4) \), each \(h_w \) is some \(h_{pq} \) or \(h_{pqrs} \) in (26) (up to a constant factor), and each \(H_w \) is a tensor product of Pauli matrices. Here we omit the explicit mapping from the indices \(p, q, r, s \) in (26) to the index \(w \) in (29), but mention that the mapping can be efficiently performed by \(O(1) \)-size of gates.

Similar to the SYK model, we see by Lemma 3.27 that the molecular Hamiltonian \(H \) in (29) is \(m \)-uniform-structured with \(m = O(n^4) \). According to [9], we have \(\sum_{w \in [m]} |h_w| = O(n^4) \). Thus the max norm of \(H \) is bounded by \(\|H\|_{\max} \leq \sum_{w \in [m]} \|h_w H_w\|_{\max} \leq \sum_{w \in [m]} |h_w| = O(n^4) \). To simulate \(H \) for time \(t \) it is equivalent to simulate its normalized Hamiltonian for a rescaled time \(\tilde{t} := \|H\|_{\max} t = O(n^4 t) \). The parameters in Theorem 5.5 can be determined as follows: \(\tau = O(n^4 t) \), \(\gamma = O(\log(nt/\epsilon)) \) and \(b = O(\log(nt/\epsilon)) \).

Now let us compute the gate complexities for implementing the oracle \(O_H^b \) and \(O_P^b \):

- The construction of \(O_P^b \) is similar to the one in Section 7.2. Here we will omit the details and claim that it can be implemented by an \(O(\log n) \)-depth and \(O(n \log n) \)-size quantum circuit.

- To implement \(O_H^b \), that is, to perform the mapping \(|j,k,0\rangle \mapsto |j,k,H_{jk}\rangle \), we sum up those \((H_w)_{jk} \) with \((j,k) \in H_w \) to obtain \(H_{jk} \). Recall that \([j,k] \in H_w \) is arithmetic-depth-efficiently computable for uniform-structured \(H \). Also \((H_w)_{jk} \) is easy to compute given: a copy of \(h_w \) which can be read out from the database by \(O(\log(nb)) \)-depth and \(O((nb)^4) \)-size of gates; together with a string characterizing the Pauli string of \(H_w \) (like the function \(P(w) \) for
the SYK model) computable by $O(\log n)$-depth and $O(n \log n)$-size of gates. Therefore the above procedure can be implemented by an $O(\log^2 n + \log b)$-depth and $O(n^8 b^4)$-size quantum circuit (in a way analogous to the proof of Lemma A.3).

As an application of Theorem 5.5, we have the following:

Corollary 7.3 (Parallel simulation of molecular Hamiltonians). The molecular Hamiltonian defined in (26) can be simulated for time t to precision ϵ by $O(n^8 \log^3 n \cdot t \log^3 \log(t/\epsilon))$-depth and $O(n^{16} t \log^5 (nt/\epsilon))$-size of gates.

Prior work [9] gives a quantum simulation algorithm for molecular Hamiltonians with gate complexity $O\left(\frac{n^8 t \log(nt/\epsilon)}{\log \log(nt/\epsilon)}\right)$. Later algorithmic improvements (e.g. [12, 13, 67, 10, 23]) focus on parameters other than the precision ϵ, and all these works have a poly-logarithmic dependence on ϵ as the Hamiltonian simulation subroutines used there have such dependence. By allowing parallelism, Corollary 7.3 exponentially improves the dependence to polylog log(1/\epsilon) with respect to the depth.

8 Discussion

In this paper, we proposed a parallel quantum algorithms for Hamiltonian simulation that achieves a doubly (poly-)logarithmic precision dependence in the depth complexity. Thus, for the first time it is shown that parallelism can provide a significant speed-up in the Hamiltonian simulation problem. This result is achieved by introducing a novel notion of parallel quantum walk and identifying a class of Hamiltonians, called uniform-structured Hamiltonians, for which the simulation can be executed efficiently in parallel. We believe that the techniques developed in this paper can be applied to design other parallel quantum algorithms.

In our work, the dependence on the simulation precision ϵ is improved from polylog(1/\epsilon) to polylog log(1/\epsilon) by parallelization. One open question, as mentioned in Section 1.3, is whether parallelization can improve the dependence on the simulation time t; more precisely, what kind of Hamiltonians can be simulated for time t by a quantum circuit with depth polylog(t), by allowing parallel queries?

Intuitively, the power of parallelism is provided by the use of ancilla qubits. We have not explicitly counted the number of ancillae used in our parallel quantum algorithm, but it obviously depends on the precision ϵ. Therefore, another question for future research is how many ancillae are required for a significant parallel speed-up? More generally, the trade-off between the circuit depth and the number of ancillae will be an interesting issue in the studies of more parallel quantum algorithms.
References

[1] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. “Colloquium: Many-body localization, thermalization, and entanglement”. In: Reviews of Modern Physics 91 (2 2019), p. 021001.

[2] Dmitry A. Abanin and Zlatko Papić. “Recent progress in many-body localization”. In: Annalen der Physik 529.7 (2017), p. 1700169.

[3] Dorit Aharonov and Amnon Ta-Shma. “Adiabatic quantum state generation and statistical zero knowledge”. In: Proceedings of the 35th Annual ACM SIGACT Symposium on Theory of Computing. STOC ’03. 2003, pp. 20–29.

[4] Fabien Alet and Nicolas Laflorencie. “Many-body localization: An introduction and selected topics”. In: Comptes Rendus Physique 19.6 (2018), pp. 498–525.

[5] Philip W. Anderson. “Absence of diffusion in certain random lattices”. In: Physical Review 109.5 (1958), pp. 1492–1505.

[6] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. “Quantum SDP-solvers: Better upper and lower bounds”. In: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’17. 2017, pp. 403–414.

[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, et al. “Hartree-Fock on a superconducting qubit quantum computer”. In: Science 369.6507 (2020), pp. 1084–1089.

[8] Yosi Atia and Dorit Aharonov. “Fast-forwarding of Hamiltonians and exponentially precise measurements”. In: Nature Communications 8.1572 (2017).

[9] Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J. Love, and Alán Aspuru-Guzik. “Exponentially more precise quantum simulation of fermions in second quantization”. In: New Journal of Physics 18 (2016), p. 033032.

[10] Ryan Babbush, Dominic W. Berry, Jarrod R. McClean, and Hartmut Neven. “Quantum simulation of chemistry with sublinear scaling in basis size”. In: npj Quantum Information 5.92 (2019).

[11] Ryan Babbush, Dominic W. Berry, and Hartmut Neven. “Quantum simulation of the Sachdev-Ye-Kitaev model by asymmetric qubitization”. In: Physical Review A 99 (4 2019), p. 040301.

[12] Ryan Babbush, Dominic W. Berry, Yuval R. Sanders, Ian D. Kivlichan, Artur Scherer, et al. “Exponentially more precise quantum simulation of fermions in the configuration interaction representation”. In: Quantum Science and Technology 3.1 (2017), p. 015006.

[13] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McLain, Hartmut Neven, and Garnet Kin-Lic Chan. “Low-depth quantum simulation of materials”. In: Physic Review X 8 (1 2018), p. 011044.

[14] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. “Quantum algorithms for quantum chemistry and quantum materials science”. In: Chemical Reviews 120.22 (2020), pp. 12685–12717.

[15] Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin, et al. “Efficient distributed quantum computing”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469.2153 (2013), p. 20120686.

[16] Charles H. Bennett. “Logical reversibility of computation”. In: IBM Journal of Research and Development 17.6 (1973), pp. 525–532.
[17] Debajyoti Bera, Frederic Green, and Steven Homer. “Small depth quantum circuits”. In: *SIGACT News* 38.2 (2007), pp. 35–50.

[18] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. “Efficient quantum algorithms for simulating sparse Hamiltonians”. In: *Communications in Mathematical Physics* 270.2 (2006), pp. 359–371.

[19] Dominic W. Berry and Andrew M. Childs. “Black-box Hamiltonian simulation and unitary implementation”. In: *Quantum Information & Computation* 12.1–2 (2012), pp. 29–62.

[20] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. “Exponential improvement in precision for simulating sparse Hamiltonians”. In: *Proceedings of the 46th Annual ACM SIGACT Symposium on Theory of Computing. STOC ’14*. 2014, pp. 283–292.

[21] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. “Simulating Hamiltonian dynamics with a truncated Taylor series”. In: *Physical Review Letters* 114 (9 2015), p. 090502.

[22] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian simulation with nearly optimal dependence on all parameters”. In: *Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’15*. 2015, pp. 792–809.

[23] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush. “Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization”. In: *Quantum* 3 (2019), p. 208.

[24] George E. P. Box and Mervin E. Muller. “A note on the generation of random normal deviates”. In: *The Annals of Mathematical Statistics* 29.2 (1958), pp. 610–611.

[25] Sergey Bravyi, David Gosset, and Robert König. “Quantum advantage with shallow circuits”. In: *Science* 362.6412 (2018), pp. 308–311.

[26] Sergey Bravyi, David Gosset, Robert König, and Marco Tomamichel. “Quantum advantage with noisy shallow circuits”. In: *Nature Physics* 16.10 (2020), pp. 1040–1045.

[27] Anne Broadbent and Elham Kashefi. “Parallelizing quantum circuits”. In: *Theoretical Computer Science* 410.26 (2009), pp. 2489–2510.

[28] Dan Browne, Elham Kashefi, and Simon Perdrix. “Computational depth complexity of measurement-based quantum computation”. In: *Theory of Quantum Computation, Communication, and Cryptography*. Vol. 6519. 2011, pp. 35–46.

[29] Paul Burchard. *Lower bounds for parallel quantum counting*. 2019. arXiv: 1910.04555 [quant-ph].

[30] Earl Campbell. “Random compiler for fast Hamiltonian simulation”. In: *Physical Review Letters* 123 (7 2019), p. 070503.

[31] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, et al. “Quantum chemistry in the age of quantum computing”. In: *Chemical Reviews* 119.19 (2019), pp. 10856–10915.

[32] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. “The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation”. In: *Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)*. Vol. 132. 2019, 33:1–33:14.
[33] Chi-Fang Chen, Hsin-Yuan Huang, Richard Kueng, and Joel A. Tropp. *Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees*. 2020. arXiv: 2008.11751 [quant-ph].

[34] Nai-Hui Chia, Kai-Min Chung, and Ching-Yi Lai. “On the need for large quantum depth”. In: *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*. STOC ’20. 2020, pp. 902–915.

[35] Andrew M. Childs. “On the relationship between continuous- and discrete-time quantum walk”. In: *Communications in Mathematical Physics* 294.2 (2009), pp. 581–603.

[36] Andrew M. Childs and Robin Kothari. “Simulating sparse Hamiltonians with star decompositions”. In: *Theory of Quantum Computation, Communication, and Cryptography*. Springer Berlin Heidelberg, 2011, pp. 94–103.

[37] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision”. In: *SIAM Journal on Computing* 46.6 (2017), pp. 1920–1950.

[38] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. “Toward the first quantum simulation with quantum speedup”. In: *Proceedings of the National Academy of Sciences* 115.38 (2018), pp. 9456–9461.

[39] Andrew M. Childs, Aaron Ostrander, and Yuan Su. “Faster quantum simulation by randomization”. In: *Quantum* 3 (2019), p. 182.

[40] Andrew M. Childs and Yuan Su. “Nearly optimal lattice simulation by product formulas”. In: *Physical Review Letters* 123 (5 2019), p. 050503.

[41] Andrew M. Childs and Nathan Wiebe. “Hamiltonian simulation using linear combinations of unitary operations”. In: *Quantum Information & Computation* 12.11–12 (2012), pp. 901–924.

[42] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, et al. “Quantum machine learning: a classical perspective”. In: *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 474.2209 (2018), p. 20170551.

[43] Richard Cleve and John Watrous. “Fast parallel circuits for the quantum Fourier transform”. In: *Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science*. FOCS ’00. 2000, pp. 526–536.

[44] Matthew Coudron and Sanketh Menda. “Computations with greater quantum depth are strictly more powerful (relative to an oracle)”. In: *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*. STOC ’20. 2020, pp. 889–901.

[45] Paul K. Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eisert. *Randomizing multi-product formulas for improved Hamiltonian simulation*. 2021. arXiv: 2101.07808 [quant-ph].

[46] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. *A Quantum Approximate Optimization Algorithm*. 2014. arXiv: 1411.4028 [quant-ph].

[47] Stephen Fenner, Frederic Green, Steven Homer, and Yong Zhang. “Bounds on the power of constant-depth quantum circuits”. In: *Proceedings of the 15th International Conference on Fundamentals of Computation Theory*. FCT ’05. 2005, pp. 44–55.
Richard P. Feynman. “Simulating physics with computers”. In: International Journal of Theoretical Physics 21.6–7 (1982), pp. 467–488.

Laura García-Álvarez, Íñigo Luis Egusquiza, Lucas Lamata, Adolfo del Campo, Julian Sonner, and Enrique Solano. “Digital quantum simulation of minimal AdS/CFT”. In: Physical Review Letters 119 (4 2017), p. 040501.

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC ’19. 2019, pp. 193–204.

Robert M. Gingrich, Colin P. Williams, and Nicolas J. Cerf. “Generalized quantum search with parallelism”. In: Physical Review A 61 (5 2000), p. 052313.

Tudor Giurgica-Tiron, Iordanis Kerenidis, Farrokh Labib, Anupam Prakash, and William Zeng. Low depth algorithms for quantum amplitude estimation. 2020. arXiv: 2012.03348 [quant-ph].

Frederic Green, Steven Homer, Cristopher Moore, and Christopher Pollett. “Counting, fanout and the complexity of quantum ACC”. In: Quantum Information & Computation 2.1 (2002), pp. 35–65.

Frederic Green, Steven Homer, and Christopher Pollett. “On the complexity of quantum ACC”. In: Proceedings 15th Annual IEEE Conference on Computational Complexity. 2000, pp. 250–262.

Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In: Proceedings of the 28th Annual ACM SIGACT Symposium on Theory of Computing. STOC ’96. 1996, pp. 212–219.

Lov K. Grover and Jaikumar Radhakrishnan. Quantum search for multiple items using parallel queries. 2004. arXiv: quant-ph/0407217 [quant-ph].

Lov K. Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable probability distributions. 2002. arXiv: quant-ph/0208112 [quant-ph].

Shouzhen Gu, Rolando D. Somma, and Burak Şahinoğlu. Fast-forwarding quantum evolution. 2021. arXiv: 2105.07304 [quant-ph].

Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. “Quantum algorithm for simulating real time evolution of lattice Hamiltonians”. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’18. 2018, pp. 350–360.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear systems of equations”. In: Physical Review Letters 103.15 (2009), p. 150502.

Peter Høyer and Robert Špalek. “Quantum fan-out is powerful”. In: Theory of Computing 1.5 (2005), pp. 81–103.

Stacey Jeffery, Frédéric Magniez, and Ronald de Wolf. “Optimal parallel quantum query algorithms”. In: Algorithmica 79.2 (2017), pp. 509–529.

Jiaqing Jiang, Xiaoming Sun, Shang-Hua Teng, Bujiao Wu, Kewen Wu, and Jialin Zhang. “Optimal space-depth trade-off of CNOT circuits in quantum logic synthesis”. In: Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’20. 2020, pp. 213–229.
Richard Jozsa. *An introduction to measurement based quantum computation*. 2005. arXiv: quant-ph/0508124 [quant-ph].

Iordanis Kerenidis and Anupam Prakash. “Quantum recommendation systems”. In: *8th Innovations in Theoretical Computer Science Conference (ITCS 2017)*. Vol. 67. 2017, 49:1–49:21.

Alexei Y. Kitaev. *A simple model of quantum holography*. Talks at KITP, April 7, 2015 and May 27, 2015. [URL](http://online.kitp.ucsb.edu/online/entangled15/kitaev/).

Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, et al. “Quantum simulation of electronic structure with linear depth and connectivity”. In: *Physical Review Letters* 120 (11 2018), p. 110501.

Robin Kothari. “Efficient algorithms in quantum query complexity”. PhD thesis. University of Waterloo, 2014.

Lucas Lamata, Adrian Parra-Rodriguez, Mikel Sanz, and Enrique Solano. “Digital-analog quantum simulations with superconducting circuits”. In: *Advances in Physics: X* 3.1 (2018), p. 1457981.

François Le Gall. “Average-case quantum advantage with shallow circuits”. In: *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*. STOC ’19. 2019, pp. 1–20.

Seth Lloyd. “Universal quantum simulators”. In: *Science* 273.5278 (1996), pp. 1073–1078.

Guang Hao Low. “Hamiltonian simulation with nearly optimal dependence on spectral norm”. In: *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*. STOC ’19. 2019, pp. 491–502.

Guang Hao Low and Isaac L. Chuang. “Hamiltonian simulation by qubitization”. In: *Quantum* 3 (2019), p. 163.

Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian simulation by quantum signal processing”. In: *Physical Review Letters* 118 (1 2017), p. 010501.

Guang Hao Low, Vadym Kliuchnikov, and Nathan Wiebe. *Well-conditioned multiproduct Hamiltonian simulation*. 2019. arXiv: 1907.11679 [quant-ph].

Guang Hao Low and Nathan Wiebe. *Hamiltonian simulation in the interaction picture*. 2019. arXiv: 1805.00675 [quant-ph].

Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. “Methodology of resonant equiangular composite quantum gates”. In: *Physical Review X* 6 (4 2016), p. 041067.

David J. Luitz, Nicolas Laflorencie, and Fabien Alet. “Many-body localization edge in the random-field Heisenberg chain”. In: *Physical Review B* 91 (8 2015), p. 081103.

Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. “Search via quantum walk”. In: *SIAM Journal on Computing* 40.1 (2011), pp. 142–164.

Juan Maldacena and Douglas Stanford. “Remarks on the Sachdev-Ye-Kitaev model”. In: *Physical Review D* 94 (10 2016), p. 106002.

Cristopher Moore and Martin Nilsson. “Parallel quantum computation and quantum codes”. In: *SIAM Journal on Computing* 31.3 (2002), pp. 799–815.

Rahul Nandkishore and David A. Huse. “Many-body localization and thermalization in quantum statistical mechanics”. In: *Annual Review of Condensed Matter Physics* 6.1 (2015), pp. 15–38.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, et al. “A variational eigenvalue solver on a photonic quantum processor”. In: *Nature Communications* 5.1 (2014).

Paul Pham and Krysta M. Svore. “A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth”. In: *Quantum Information & Computation* 13.11–12 (2013), pp. 937–962.

Joseph Polchinski and Vladimir Rosenhaus. “The spectrum in the Sachdev-Ye-Kitaev model”. In: *Journal of High Energy Physics* 2016.4 (2016), pp. 1–25.

John H. Reif. “Logarithmic depth circuits for algebraic functions”. In: *SIAM Journal on Computing* 15.1 (1986), pp. 231–242.

Vladimir Rosenhaus. “An introduction to the SYK model”. In: *Journal of Physics A: Mathematical and Theoretical* 52.32 (2019), p. 323001.

Martin Rötteler and Rainer Steinwandt. “A quantum circuit to find discrete logarithms on ordinary binary elliptic curves in depth O(log^2 n)”. In: *Quantum Information & Computation* 14.9–10 (2014), pp. 888–900.

Subir Sachdev and Jinwu Ye. “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”. In: *Physical Review Letters* 70 (21 1993), pp. 3339–3342.

Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: *Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science*. FOCS ’94. 1994, pp. 124–134.

Rolando D. Somma, Gerardo Ortiz, James E. Gubernatis, Emanuel Knill, and Raymond Laflamme. “Simulating physical phenomena by quantum networks”. In: *Physical Review A* 65 (4 2002), p. 042323.

Mario Szegedy. “Quantum speed-up of Markov chain based algorithms”. In: *Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science*. FOCS ’04. 2004, pp. 32–41.

Yasuhiro Takahashi and Seiichiro Tani. “Collapse of the hierarchy of constant-depth exact quantum circuits”. In: *Proceedings of the 28th IEEE Conference on Computational Complexity*. 2013, pp. 168–178.

Barbara M. Terhal and David P. DiVincenzo. “Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games”. In: *Quantum Information & Computation* 4.2 (2004), pp. 134–145.

Adam Bene Watts, Robin Kothari, Luke Schaeffer, and Avishay Tal. “Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits”. In: *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*. STOC ’19. 2019, pp. 515–526.

Nathan Wiebe, Dominic W. Berry, Peter Høyer, and Barry C. Sanders. “Higher order decompositions of ordered operator exponentials”. In: *Journal of Physics A: Mathematical and Theoretical* 43.6 (2010), p. 065203.

Shenglong Xu, Leonard Susskind, Yuan Su, and Brian Swingle. *A sparse model of quantum holography*. 2020. arXiv: 2008.02303 [cond-mat.str-el].
A Details Omitted in Section 3.3

In this appendix we provide details of Section 3.3.

Proof of Lemma 3.25. Similar to the proof of Lemma 3.8, we can write $|\psi_{j_0}^{(r,m)}\rangle = |\phi_{j_0}^{(r,m)}\rangle + |\phi_{j_0}^{(r,m)\perp}\rangle$, where the subnormalized state

$$|\phi_{j_0}^{(r,m)}\rangle := \frac{1}{\sqrt{(md)^r}} \sum_{w \in [m]^r} \sum_{j \in H_w} |w\rangle |j\rangle \otimes \sqrt{H_{j_0j_1}^* \cdots H_{j_rj_r}^*} |j\rangle$$

These subnormalized states also satisfy some orthogonal relations analogous to Lemma 3.7: for all $j, k \in [N]$,

1. $\langle \phi_j^{(r,m)} | S^{(r,m)} | \phi_k^{(r,m)} \rangle = \left(\frac{H_{\text{mod}}}{md}\right)^{jk}$

2. $\langle \phi_j^{(r,m)} | S^{(r,m)} | \phi_k^{(r,m)\perp} \rangle = \langle \phi_j^{(r,m)\perp} | S^{(r,m)} | \phi_k^{(r,m)\perp} \rangle = 0$.

We omit the proof details here, but mention that this can be done by the same techniques as in the proof of Lemma 3.7, combined with the fact that $\sum_{w \in [m]} \tilde{H}_{j_sj_{s+1}} = H_{j_sj_{s+1}}$. Using the orthogonal relations the conclusion is easy to obtain as in the proof of Lemma 3.8. \qed

Proof of Lemma 3.27. The proof is similar to the proof of Lemma 3.14. We verify the conditions in Definition 3.26. Observe that $L(w, j, t) = j \oplus x(w)$ where \oplus is the bit-wise XOR operator.

- We have
 $$L^{(r)}(w, j, t) = j \oplus s(w_0) \oplus \ldots \oplus s(w_{r-1});$$
 that is, take $f(j, k) = j \oplus k$, $g(w, t) = s(w)$ and \circ to be \oplus in (18).
 - These functions and operators are arithmetic-depth-efficiently computable, where computing $g(w, t)$ requires $O(1)$ queries to O_P.
 - The XOR \oplus is associative.
- Take the inverse function to be $L^{-1}(w, j, k) = s(w)$, which can be computed by a single query to O_P.
- Observe that $(j, k) \in H_w$ if and only if $j \oplus k = x(w)$; that is, $[(j, k) \in H_w] = [j \oplus k = x(w)]$, which is obviously arithmetic-depth-efficiently computable with $O(1)$ queries to O_P.

46
Proof of Lemma 3.28. In this proof we use superscript \(i \) to denote the \(i \)th bit of a number. We verify the conditions in Definition 3.26. Observe that \(L(w,j,t) = j <_{s(w)} (t|_{s(w)}) \), with \(<_{s} \) and \(|_{s} \) defined in the proof of Lemma 3.15.

- We have

 \[
 L^{(w,j,t)}(w,j,t) = j < (t_0|_{s(w_0)}, s(w_0)) <^\lor \cdots <^\lor (t_{r-1}|_{s(w_{r-1})}, s(w_{r-1}));
 \]

 that is, take \(f(j,(k,x)) = j < (k,x), g(w,t) = (t|_{s(w)}, s(w)) \), and \(\circ \) to be \(<^\lor \), where \(<: [N] \times [N]^2 \to [N] \) and \(<^\lor: [N]^2 \times [N]^2 \to [N]^2 \) are defined as

 \[
 a < (b, x) := a <_{x} b, \quad (a, x) <^\lor (b, y) := (a <_{y} b, x \lor y)
 \]

 for all \(a, b, x, y \in [N], i \in [n] \), with \(\lor \) the bit-wise OR operator.

 - As shown in the proof of Lemma 3.15, the operator \(<_{x} \) is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \), also \(\lor \) is obviously arithmetic-depth-efficiently computable, thus \(<, <^\lor \) and \(f \) are arithmetic-depth-efficiently computable with \(O(1) \) queries.

 The mapping \(|w \rangle |0 \rangle \mapsto |w \rangle \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(w,t) \rangle \) can be performed by first querying \(\mathcal{O}_P \) to obtain \(|s(w) \rangle \) in an ancilla space, then conditioned on which performing \(n \) controlled Hadamard gates in parallel, assuming \(d \) is a power of two w.l.o.g. This is arithmetic-depth-efficient with \(O(1) \) queries.

 - To see that \(<^\lor \) is associative, note that \(a <_{x} b <_{y} c = a <_{y} (b <_{y} c) \) for all \(a, b, c, x, y \in [N] \). Together with the obvious associativity of \(\lor \) we have the associativity of \(<^\lor \).

- Take the inverse function to be \(L^{-1}(w,j,k) = (k \land s(w), s(w)) \) with \(\land \) the bit-wise AND operator. This is arithmetic-depth-efficiently computable with \(O(1) \) queries to \(\mathcal{O}_P \).

- Observe that \((j,k) \in H_w\) if and only if \(j^i = k^i \) for all \(i \) with \(s(w)^i = 0 \); that is,

 \[
 \{(j,k) \in H_w\} = \bigwedge_{i \in [n]} ((j^i k^i + (1 - j^i)(1 - k^i)) \cdot (1 - s(w)^i))
 \]

 which is arithmetic-depth-efficiently computable by an \(O(\log n) \)-depth and \(O(n) \)-size quantum circuit by taking \(\circ \) to be AND gate in Lemma 2.3, with additional \(O(1) \) queries to \(\mathcal{O}_P \) to compute \(s(w) \).

\[\square\]

A.1 Proof of Theorem 3.30

Recall that the Hamiltonians considered in Section 3.3 has the form \(H = \sum_{w \in [m]} H_w \). To prove Theorem 3.30, following the same line of analysis as in Section 3.2, we will show that:

1. for \(m \)-uniform-structured Hamiltonians, the pre-walk, i.e., preparing the pre-walk state \(|p_{j0}^{(r,m)} \rangle \) in (17), can be implemented by a parallel quantum circuit;

2. the re-weight can be efficiently implemented in parallel;
3. the (extended) parallel quantum walk for uniform-structured Hamiltonians can be efficiently implemented in parallel.

Firstly we have the following lemma as a generalization of Corollary 3.19.

Lemma A.1. For an m-uniform-structured Hamiltonian H, the mapping

$$|w, j_0, g(w, t)⟩ \mapsto |w⟩ |j⟩$$

for all $j_0 \in [N], w \in [m]^r, t \in [d]^r$, where $g(w, t) := (g(w_0, t_0), \ldots, g(w_{r-1}, t_{r-1}))$ and $j \in H^r$ satisfies $j_{s+1} = L(w_s, j_s, t_s)$ for $s \in [r]$, can be implemented by a quantum circuit with

- $O(1)$-depth and $O(r)$-size of queries to O_P, and
- $O(\log r \cdot \log^2 n)$-depth and $O(r^2 n^4)$-size of gates.

Proof. The lemma can be proved along the same line as Lemma 3.17, Corollary 3.18 and Corollary 3.19. Recall that $m = \text{poly} n$. We omit the proof details here, but mention that only the first two conditions of Definition 3.26 are needed. □

Then the following lemma shows that an (r, m)-pre-walk can be implemented by a parallel quantum circuit, as a generalization of Lemma 3.20.

Lemma A.2 (Pre-walk on m-uniform-structured Hamiltonians). An (r, m)-pre-walk on an m-uniform-structured Hamiltonian H, i.e., preparing the state $|p_{j_0}^{(r,m)}⟩$, can be implemented by a quantum circuit with

- $O(1)$-depth and $O(r)$-size of queries to O_P, and
- $O(\log r \cdot \log^2 n)$-depth and $O(r^2 n^4)$-size of gates.

Proof. Let $H^W \otimes H^J = \bigotimes_{s \in [r]} H^W_s \otimes \bigotimes_{s \in [r+1]} H^J_s$ be the state space with $H^W_s = \mathbb{C}^m$ and $H^J_s = \mathbb{C}^N$. The process of preparing $|p_{j_0}^{(r,m)}⟩$ is presented below, starting from the initial state $|0⟩^\otimes m^r |j_0⟩ |0⟩^\otimes N^r$ with $|j_0⟩ \in \mathbb{C}^N, |0⟩ \in \mathbb{C}$.

1. Prepare a superposition over computational basis states of size m^r in the subspace H^W:

$$\frac{1}{\sqrt{m^r}} \sum_{w \in [m]^r} |w⟩ |j_0⟩ |0⟩^\otimes N^r.$$

2. For each $s \in [r]$, perform in parallel the mapping $|w_s⟩ |0⟩ \mapsto |w_s⟩ \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(w_s, t_s)⟩$ in the subspace $H^W_s \otimes H^J_{s+1}$, to obtain the state

$$\frac{1}{\sqrt{(md)^r}} \sum_{w \in [m]^r} \sum_{t \in [d]^r} |w⟩ |j_0⟩ |g(w, t)⟩.$$

3. Apply Lemma A.1 to obtain the goal state $|p_{j_0}^{(r,m)}⟩ = \frac{1}{\sqrt{(md)^r}} \sum_{w \in [m]^r} \sum_{j \in H^w} |w⟩ |j⟩$.

Step 1 can be done by applying Hadamard gates of $O(1)$-depth and $O(r \log m)$-size in parallel, assuming m is a power of two w.l.o.g. Each mapping $|w⟩ |0⟩ \mapsto |w⟩ \frac{1}{\sqrt{d}} \sum_{t \in [d]} |g(w, t)⟩$ in Step 2 is arithmetic-depth-efficient with $O(1)$-queries to O_P due to Definition 3.26. Recall that $m = \text{poly} n$, the final complexity follows from summing up these complexities combined with Lemma A.1. □
Now we move to the re-weight analysis.

Lemma A.3. Re-weight of $|p_{j_0}^{(r,m)}⟩$, i.e., performing the mapping $|p_{j_0}^{(r,m)}⟩ \mapsto |\Psi_{j_0}^{(r,m)}⟩$, where $|\Psi_{j_0}^{(r,m)}⟩$ is defined in (16), can be implemented to precision ε by a quantum circuit with

- $O(1)$-depth and $O(r)$-size of queries to O_b^H with $b = O(\log(m/\varepsilon))$,
- $O(1)$-depth and $O(rm)$-size of queries to O_P, and
- $O(\log^2 n + \log^2(m/\varepsilon))$-depth and $O(r[mn^4 + \log^4(m/\varepsilon)])$-size of gates.

for $r = \text{polylog}(1/\varepsilon)$.

Proof. The analysis is exactly the same as in Lemma 3.21, with additional complexities of:

1. Computing $c(j,k) = \sum_{w \in [m]} [(j,k) \in H_w] \in r$ subspaces, each of which can be implemented by a quantum circuit with
 - $O(1)$-depth and $O(m)$-size of queries to O_P, and
 - $O(\log^2 n)$-depth and $O(mn^4)$-size of gates.

To see this, note that for each subspace, one can first creates m copies of (j,k) by COPY^{2n}_m, then compute each $[(j,k) \in H_w]$ arithmetic-depth-efficiently with $O(1)$ queries to O_P for $w \in [m]$ in parallel, due to the third condition in Definition 3.26. Finally apply Corollary 2.4 to compute $c(j,k)$ in each subspace, followed by garbage cleaning by reverse computation. The final complexity follows from the assumption $m = \text{poly} n$.

2. Scaled total precision $\tilde{\varepsilon} = \varepsilon/m$ for the aforementioned construction of the oracle $O_{\tilde{H}}$.

3. Arithmetic-depth-efficient circuits for the division $\tilde{H}_{jk} = H_{jk}/c(j,k)$ by Lemma 2.6.

Finally, combining Lemma A.2, Lemma A.3 and the negligible complexity of implementing $S^{(r,m)}$ gives the complexity of the (r,m)-parallel quantum walk $Q^{(r,m)}$ for m-uniform-structured Hamiltonians in Theorem 3.30.

B Definition of State Preparation

In this appendix we show that the state preparation unitary in Definition 4.2 is a special case of Definition 51 in [50]:

Definition B.1 (State preparation pair [50]). Let $a \in \mathbb{C}^R$ and $\|a\|_1 \leq \alpha$, the pair of unitaries (V_C, V_D) is called an (α, b, ε)-state-preparation-pair of a if $V_C |0⟩ = \sum_{r \in [2^b]} c_r |r⟩$ and $V_D |0⟩ = \sum_{r \in [2^b]} d_r |r⟩$ with $|0⟩ \in \mathbb{C}^{2^b}$, such that $\sum_{r \in [R]} |\alpha(c_r^* d_r) - a_r| \leq \varepsilon$ and for all $r \in R, \ldots, 2^b - 1$ we have $c_r^* d_r = 0$.

This is shown more precisely in the following lemma.

Lemma B.2. Let $a \in \mathbb{C}^R$ and $\alpha := \|a\|_1$, where we assume $R = 2^s \geq 4$ w.l.o.g. Let V be an (α, ε)-state-preparation-unitary of a, then (V^T, V) is an $(\alpha, s, \alpha \text{Re})$-state-preparation-pair of a.

49
Proof. Let $V |0\rangle = \sum_{r \in [R]} \sqrt{v_r} |r\rangle$. By Definition 4.2, we have
\[
\sqrt{\sum_{r \in [R]} \left| \sqrt{v_r} - \frac{a_r}{\alpha} \right|^2} \leq \epsilon. \tag{30}
\]

Note that
\[
\sum_{r \in [R]} \left| v_r - \frac{a_r}{\alpha} \right| \leq \sum_{r \in [R]} \sqrt{v_r} - \frac{a_r}{\alpha} \cdot \sqrt{v_r} + \frac{a_r}{\alpha} \leq 2 \sum_{r \in [R]} \sqrt{v_r} - \frac{a_r}{\alpha}. \tag{31}
\]

By the well-known inequality between l_1-norm and l_2-norm: $\|x\|_1 \leq \sqrt{R} \cdot \|x\|_2$ for $x \in \mathbb{C}^R$, the RHS of (31) is upper bounded by
\[
2\sqrt{R} \cdot \sqrt{\sum_{r \in [R]} \left| \sqrt{v_r} - \frac{a_r}{\alpha} \right|^2} \leq 2\sqrt{R} \epsilon \leq R \epsilon,
\]
where the first inequality comes from (30), and the second inequality uses the assumption $R \geq 4$. Thus we have $\sum_{r \in [R]} |v_r - \frac{a_r}{\alpha}| \leq R \epsilon$. Now take $b = s$, $V_C = V^\dagger$ and $V_D = V$ in Definition B.1, it immediately follows that $\sum_{r \in [R]} |\alpha(\epsilon^*_r d_r) - a_r| = \alpha \sum_{r \in [R]} |v_r - \frac{a_r}{\alpha}| \leq \alpha R \epsilon$, which implies that (V^\dagger, V) is an $(\alpha, s, \alpha R \epsilon)$-state-preparation-pair of a. \qed

We note that in the above lemma, the upper bound $\alpha R \epsilon$ on the precision of the state preparation pair is very loose, which is for simplicity of the proofs in Section 4 with the final results unchanged.