Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments

P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth, G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. H. Cheng, Y. Cheng, Z. K. Cheng, J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, D. Se Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, M. C. Goodman, P. Gouffi, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussein, J. Hylen, J. J. Irvin, Z. Isvan, E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. J. Ji, R. A. Johnson, J. K. de Jong, J. J. Joshua, T. Kalfa, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Kozium, M. Kordosky, M. Kramer, A. Kreymer, K. K. Kwak, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, M. J. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, SC. Li, S. C. Li, 54, 7, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, J. C. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, M. J. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lukas, K. B. Luk, D. Z. Lv, Q. M. Ma, X. B. Ma, Y. X. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshall, D. A. Martinez, Cai, N. Mayer, K. T. McDonald, C. McGovern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, Y. Nakajima, D. Napolitano, J. Napolitano, J. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, J. A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, Oshlevskyi, M. Orchanian, R. B. Pahlkia, J. Paley, H. R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfitzenmaier, D. D. Phan, S. Phan-Budd, L. Pinsky, R. Plunkett, N. Poonthottamith, C. J. Pun, F. Z. Qi, X. Qian, X. Qiu, A. Radovice, N. Raper, B. Rebe, C. Rosenfeld, R. Rosero, B. Roskovec, C. Xu, C. Ruan, H. A. Rubini, S. Pail, M. C. Sanchez, J. Schnepper, R. Schreiner, R. Sharma, S. Moed Shert, A. Sosutai, M. Heiner, G. X. Sun, J. L. Sun, N. Tagh, R. L. Talagat, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian, D. Timmons, T. Todd, S. C. Tognin, R. Tonner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobov, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, H. Weber, H. Y. Wei, J. Wen, K. Whisnant, C. White, L. Whitehead, T. Wise, S. G. Wojcicki, H. H. L. Wong, S. C. F. Wong, E. Worcester, C. H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. X. Xing, J. L. Xu, Y. Xu, X. Xu, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Ye, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, J. Z. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

(*)Daya Bay Collaboration

(1)MINOS Collaboration

1 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2 Institute of Modern Physics, East China University of Science and Technology, Shanghai
3 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 USA
4 Argonne National Laboratory, Argonne, Illinois 60439, USA
5 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
Physics Department, University of Wisconsin, Madison, Wisconsin 53706, USA
7 Department of Physics, Yale University, New Haven, Connecticut 06520, USA
8 Subdepartment of Particle Physics, University of Oxford, Oxford OX1 3RH, United Kingdom
9 Brookhaven National Laboratory, Upton, New York 11973, USA
10 Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
11 Lancaster University, Lancaster, LA1 4YB, UK
12 Department of Physics, National Taiwan University, Taipei
13 National United University, Miao-Li
14 Nanjing University, Nanjing
15 Institute of High Energy Physics, Beijing
16 Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
17 Instituto de Física, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
18 Chinese University of Hong Kong, Hong Kong
19 Institute of Physics, National Chiao-Tung University, Hsinchu
20 Shandong University, Jinan
21 School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
22 Department of Engineering Physics, Tsinghua University, Beijing
23 Shenzhen University, Shenzhen
24 North China Electric Power University, Beijing
25 Sun Yat-Sen (Zhongshan) University, Guangzhou
26 Joint Institute for Nuclear Research, Dubna, Moscow Region
27 Physics Department, Tufts University, Medford, Massachusetts 02155, USA
28 Indiana University, Bloomington, Indiana 47405, USA
29 University of Minnesota, Minneapolis, Minnesota 55455, USA
30 Siena College, Loudonville, New York 12211, USA
31 Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
32 Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
33 Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
34 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
35 Lawrence Berkeley National Laboratory, Berkeley, California, 94720 USA
36 Universidad Estadual de Campinas, IFGW, CP 6165, 13083-970, Campinas, SP, Brazil
37 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
38 Holy Cross College, Notre Dame, Indiana 46556, USA
39 Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
40 Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, SP, Brazil
41 Department of Physics and Astronomy, University of Pittsburgh, Pennsylvania 15260, USA
42 Department of Physics, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
43 Department of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
44 Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
45 Beijing Normal University, Beijing
46 Department of Physics, University of Houston, Houston, Texas 77204, USA
47 Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
48 China Institute of Atomic Energy, Beijing
49 University of Science and Technology of China, Hefei
50 Department of Physics, Stanford University, Stanford, California 94305, USA
51 School of Physics, Nankai University, Tianjin
52 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
53 Dongguan University of Technology, Dongguan
54 Department of Physics, University of California, Berkeley, California 94720, USA
55 Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
56 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
57 Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, United Kingdom
58 Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
59 Xi’an Jiaotong University, Xi’an
60 Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
61 Lauritsen Laboratory, California Institute of Technology, Pasadena, California 91125, USA
62 Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
63 Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
64 Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
65 China General Nuclear Power Group
66 Otterbein University, Westerville, Ohio 43081, USA
67 Department of Physics, University of Athens, GR-15771 Athens, Greece
68 College of Electronic Science and Engineering, National University of Defense Technology, Changsha
69 Physics Department, Texas A&M University, College Station, Texas 77843, USA
Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on $\sin^2 2\theta_{\mu e}$ are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^2. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for $\Delta m_{41}^2 < 0.8 \text{ eV}^2$ at 95% CLs.

PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g

Keywords: light sterile neutrino, MINOS, Daya Bay

The discovery of neutrino flavor oscillations [1] marked a crucial milestone in the history of particle physics. It indicates neutrinos undergo mixing between flavor and mass eigenstates and hence carry nonzero mass. It also represents the first evidence of physics beyond the standard model of particle physics. Since then, neutrino oscillations have been confirmed and precisely measured with data from natural (atmospheric and solar) and man-made (reactor and accelerator) neutrino sources.

The majority of neutrino oscillation data available can be well described by a three-flavor neutrino model [3–5] in agreement with precision electroweak measurements from collider experiments [6,7]. A few experimental results, however, including those from the Liquid Scintillator Neutrino Detector (LSND) [8] and MiniBooNE [9] experiments, cannot be explained by three-neutrino mixing. Both experiments observed an electron antineutrino excess in a muon antineutrino beam over short baselines, suggesting mixing with a new neutrino state with mass-squared splitting $\Delta m_{41}^2 \gg |\Delta m_{32}^2|$, where $\Delta m_{ji}^2 = m_j^2 - m_i^2$, and m_j is the mass of the jth mass eigenstate. Precision electroweak measurements exclude standard couplings of this additional neutrino state for masses up to half the Z-boson mass, so that states beyond the known three active states are referred to as sterile. New light neutrino states would open a new sector in particle physics; thus, confirming or refuting these results is at the forefront of neutrino physics research.

Mixing between one or more light sterile neutrinos and the active neutrino flavors would have discernible effects on neutrino oscillation measurements. Oscillations from muon to electron (anti)neutrinos driven by a sterile neutrino require electron and muon neutrino flavors to couple to the additional neutrino mass eigenstates. Consequently, oscillations between active and sterile states will also necessarily result in the disappearance of muon (anti)neutrinos, as well as of electron (anti)neutrinos [10,11], independently of the sterile neutrino model considered [12,13].

In this Letter, we report results from a joint analysis developed in parallel to the independent sterile neutrino searches from the Daya Bay [14] and the MINOS [15] experiments. In this analysis, the measurement of muon (anti)neutrino disappearance by the MINOS experiment is combined with electron antineutrino disappearance measurements from the Daya Bay and Bugey-3 [16] experiments using the signal confidence level (CL$_s$) method [17][18]. The combined results are analyzed in light of the muon (anti)neutrino to electron (anti)neutrino appearance indications from the LSND [8] and MiniBooNE [9] experiments. The independent MINOS, Daya Bay, and Bugey-3 results are all obtained from disappearance measurements and therefore are insensitive to CP-violating effects due to mixing between the three active flavors. Under the assumption of CPT invariance, the combined results shown constrain both neutrino and antineutrino appearance.

The results reported here required several novel improvements developed independently from the Daya Bay-only [14] and MINOS-only [15] analyses, specifically: a full reanalysis of the MINOS data to search for sterile neutrino mixing, based on the CL$_s$ method, a CL$_s$-based analysis of the Bugey-3 results taking into account new reactor flux calculations and the Daya Bay experiment’s reactor flux measurement, the combination of the Daya Bay results with the Bugey-3 results taking into account correlated systematics between the experiments, and, finally, the combination of the Daya Bay + Bugey-3 and MINOS results to place stringent constraints on electron neutrino and antineutrino appearance driven by sterile neutrino oscillations.

We adopt a minimal extension of the three-flavor neutrino model by including one sterile flavor and one additional mass eigenstate. This 3+1 sterile neutrino scenario is referred to as the four-flavor model in the text. In this model, the muon to electron neutrino appearance probability $P_{\nu_{\mu} \to \nu_e} (L/E)$ as a function of the propagation length L, divided by the neutrino energy E, can be expressed using a 4×4 unitary mixing matrix, U, by

$$P_{\nu_{\mu} \to \nu_e} (L/E) = \left| \sum_i U_{\mu i} U_{e i}^* e^{-i(m_i^2/2E)L} \right|^2 \tag{1}$$

In the region where $\Delta m_{41}^2 \gg |\Delta m_{32}^2|$ and for short baselines ($\left((\Delta m_{32}^2 L/4E) \sim 0 \right)$, Eq. (1) can be simplified to
The four-flavor hypothesis can be excluded, we construct the alternate four-flavor hypothesis (labeled 4ν) in neutrino flux would be seen.\[4\nu\rightarrow\bar{\nu}_e(L/E)\]

\begin{equation}
P_{\nu_e \rightarrow \nu_v}(L/E) = 1 - 4 \sum_{k>j} \left| U_{ek} \right|^2 \left| U_{ej} \right|^2 \sin^2 \left(\frac{\Delta m^2_{kj}L}{4E} \right),
\end{equation}

\begin{equation}
P_{\nu_{\mu} \rightarrow \nu_{\mu}}(L/E) = 1 - 4 \sum_{k>j} \left| U_{\mu k} \right|^2 \left| U_{\mu j} \right|^2 \sin^2 \left(\frac{\Delta m^2_{kj}L}{4E} \right).
\end{equation}

The mixing matrix augmented with one sterile state can be parametrized by $U = R_{34}R_{24}R_{14}R_{23}R_{13}R_{12}$, where R_{ij} is the rotational matrix for the mixing angle θ_{ij}, yielding

\begin{equation}
\left| U_{ek} \right|^2 = \sin^2 \theta_{14},
\end{equation}

\begin{equation}
\left| U_{\mu k} \right|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14},
\end{equation}

\begin{equation}
4\left| U_{ek} \right|^2 \left| U_{\mu k} \right|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{\mu e}.
\end{equation}

The MINOS experiment [22] operates two functionally equivalent detectors separated by 734 km. The detectors sample the NuMI neutrino beam [23], which yields events with an energy spectrum that peaks at about 3 GeV. Both detectors are magnetized steel and scintillator calorimeters, with the 1 kton Near Detector (ND) situated 1 km downstream of the NuMI production target, and the 5.4 kton Far Detector (FD) located at the Soudan Underground Laboratory [22]. The analysis reported here uses data from an exposure of 10.56×10^{20} protons on target, for which the neutrino beam composition is 91.8% ν_μ, 6.9% $\bar{\nu}_\mu$, and 1.3% $\nu_e + \bar{\nu}_e$. To look for sterile neutrino mixing, the MINOS experiment uses the reconstructed energy spectra in the ND and FD of both charged-current (CC) and neutral-current (NC) neutrino interactions. The sterile mixing signature differs depending on the range of Δm^2_{41} values considered. For $\Delta m^2_{41} \in (0.005, 0.05)$ eV2, the muon neutrino CC spectrum in the FD would display deviations from three-flavor oscillations. For rapid oscillations driven by $\Delta m^2_{41} \in (0.05, 0.5)$ eV2, the combination of finite detector energy resolution and rapid oscillations at the FD location would result in an apparent event rate depletion between the ND and FD. For larger sterile neutrino masses, corresponding to $\Delta m^2_{41} > 0.5$ eV2, oscillations into sterile neutrinos would distort the ND CC energy spectrum. Additional sensitivity is obtained by analyzing the reconstructed energy spectrum for NC candidates. The NC cross sections and interaction topologies are identical for all three active neutrino flavors, rendering the NC spectrum insensitive to standard oscillations, but mixing with a sterile
neutrino state would deplete the NC energy spectrum at the FD, as the sterile neutrino would not interact in the detector. For large sterile neutrino masses, such depletion would also be measurable at the ND.

The simulated FD-to-ND ratios of the reconstructed energy spectra for ν_e CC and NC selected events, including four-flavor oscillations for both the ND and FD, are fit to the equivalent FD-to-ND ratios obtained from data [15]. Current and previous results of the MINOS sterile neutrino searches, along with further analysis details, are described in Refs. [15, 24–26]. The MINOS experiment employs the Feldman-Cousins ordering principle [27] in obtaining exclusion limits in the four-flavor parameter space. However, this approach requires a computationally impractical joint fit to be consistent, since it requires minimizing χ^2 over Δm^2_{41}, a shared parameter between the MINOS and Daya Bay + Bugey-3 experiments. Thus, the CL$_s$ method described above is used.

While the MINOS experiment does not have any sensitivity to $\sin^2\theta_{14}$, there is a small sensitivity to $\sin^2\theta_{12}$ due to the inclusion of the NC channel. During the fit, $\sin^2\theta_{34}$ is allowed to vary freely in addition to Δm^2_{32} and $\sin^2\theta_{23}$, while $\sin^2\theta_{24}$ and Δm^2_{41} are held fixed to define the particular four-flavor hypothesis that is being tested. Since the constraint on $\sin^2\theta_{34}$ is relatively weak, the distribution of $\Delta \chi^2$ deviates from the normal distribution and the Gaussian CL$_s$ method cannot be used. The $\Delta \chi^2_{34}$ and $\Delta \chi^2_{41}$ distributions are constructed by fitting pseudoexperiments.

In the three-flavor case, pseudoexperiments are simulated using the same parameters listed in Ref. [15], i.e. $\sin^2\theta_{12} = 0.307$, $\Delta m^2_{21} = 7.54 \times 10^{-5} \text{eV}^2$ based on a global fit to neutrino data [28], and $\sin^2\theta_{13} = 0.022$ based on a weighted average of results from reactor experiments [29–31]. For the atmospheric oscillation parameters, equal numbers of pseudoexperiments are simulated in the upper and lower octant ($\sin^2\theta_{23} = 0.61$ and $\sin^2\theta_{23} = 0.41$, respectively), with $|\Delta m^2_{32}| = 2.37 \times 10^{-3} \text{eV}^2$, based on the most recent MINOS results [32]. The uncertainties on solar oscillation parameters have negligible effect on the analysis, so fixed values are used.

In the four-flavor case, $\Delta m^2_{41}, \sin^2\theta_{23}, \text{and} \sin^2\theta_{34}$ are taken from fits to data at each ($\sin^2\theta_{24}, \Delta m^2_{41}$) grid point. In both the three- and four-flavor cases, half of the pseudoexperiments are generated in each mass hierarchy. A comparison of MINOS exclusion contours obtained using the Feldman-Cousins procedure [15] with those obtained using the CL$_s$ method is shown in Fig. 1. Note that if $\Delta m^2_{41} = 2\Delta m^2_{31}$ or $\Delta m^2_{41} \ll \Delta m^2_{31}$ and $\sin^2\theta_{23} = \sin^2\theta_{34} = 1$, θ_{23} can take on the role normally played by θ_{24}. In these cases, the four-flavor model is degenerate with the three-flavor model, leading to regions of parameter space that cannot be excluded.

The Daya Bay experiment measures electron antineutrinos via inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$. The antineutrinos are produced by six reactor cores and detected in eight identical Gd-doped liquid-scintillator antineutrino detectors (ADs) [33] in three underground experimental halls (EHs). The flux-averaged baselines for EH1, EH2, and EH3 are 520, 570, and 1590 m, respectively. The target mass in each of the two near EHs is 40 tons, and that in the far EH is 80 tons. Details of the IBD event selection, background estimates, and assessment of systematic uncertainties can be found in Refs. [29, 33]. By searching for distortions in the $\bar{\nu}_e$ energy spectra, the experiment is sensitive to $\sin^2 2\theta_{14}$ for a mass-squared splitting $\Delta m^2_{41} \in (0.0003, 0.2) \text{eV}^2$. For $\Delta m^2_{41} > 0.2 \text{eV}^2$, spectral distortions cannot be resolved by the detector. Instead, the measured antineutrino flux can be compared with the predicted flux to constrain the sterile neutrino parameter space. Recently, the Daya Bay Collaboration published its measurement of the overall antineutrino flux [35]. The result is consistent with previous measurements at short baselines, which prefer 5% lower values than the latest calculations [36, 37], a deficit commonly referred to as the reactor antineutrino anomaly [38]. However, the reactor spectrum measurement from the Daya Bay Collaboration [35] (and from the RENO Collaboration [30] and the Double Chooz Collaboration [31]) shows clear discrepancies with the latest calculations, which indicates an underestimation of their uncertainties. The uncertainties on the antineutrino flux models for this analysis are increased to 5% from the original 2% as suggested by Refs. [39, 40]. The Daya Bay Collaboration has recently updated the sterile neutrino search result in Ref. [14] with limits on $\sin^2 2\theta_{14}$ improved by about a factor of two with respect to previous results [41]. This data set is used in producing the combined results presented here.

Two independent sterile neutrino search analyses are conducted by Daya Bay. The first analysis uses the predicted $\bar{\nu}_e$ spectrum to generate the predicted prompt spectrum for each antineutrino detector simultaneously, taking into account de-
tector effects such as energy resolution, nonlinearity, detector efficiency, and oscillation parameters described in [29]. A log-likelihood function is constructed with nuisance parameters to include the detector-related uncertainties and a covariance matrix to incorporate the uncertainties on reactor antineutrino flux prediction. The Gaussian χ^2 method is used to calculate the excluded region. The second analysis uses the observed spectra at the near sites to predict the far site spectra to further reduce the dependency on reactor antineutrino flux models. Both analyses yield consistent results [14].

The Bugey-3 experiment was performed in the early 1990s and its main goal was to search for neutrino oscillations using reactor antineutrinos. In this experiment, two 6Li-doped liquid scintillator detectors measured ν_e generated from two reactors at three different baselines (15, 40 and 95 m) [16]. The Bugey-3 experiment detected IBD interactions with the recoil neutron capturing on 6Li ($n + ^{6}\text{Li} \rightarrow ^{4}\text{He} + ^{3}\text{H} + 4.8 \text{MeV}$). Probing shorter baselines than the Daya Bay experiment, the Bugey-3 experiment is sensitive to regions of parameter space with larger Δm_{31}^2 values.

The original Bugey-3 results obtained using the raster scan technique are first reproduced employing a χ^2 definition used in the original Bugey-3 analysis [16]:

$$\chi^2 = \sum_{i}^{3} \sum_{j}^{N} \left\{ \frac{(Aa_i + b(E_j - 1.0)) R_{i,j}}{\sigma_{i,j}} - R_{o,i,j} \right\}^2$$

where A is the overall normalization, a_i is the relative detection efficiency, b is an empirical factor to include the uncertainties of the energy scale, i represents the data from three baselines, and j sums over the N_i bins at each baseline. The values of σ_{a_i} and σ_b are set at 0.014 MeV$^{-1}$ and 0.020 MeV$^{-1}$, respectively, according to the reported values in Ref. [16]. The $\sigma_{i,j}$ are the statistical uncertainties. The uncertainty on the overall normalization σ_A is set to 5% to be consistent with the constraint employed in the Daya Bay analysis [14]. The ratio of the observed spectrum to the predicted unoscillated spectrum is denoted by $R_{o,i,j}$, while $R_{i,j}^{\text{pre}}$ is the predicted ratio of the spectrum including oscillations to the one without oscillations. To predict the energy spectra, the average fission fractions are used [42], and the energy resolution is set to 5% at 4.2 MeV [16] with a functional form similar to the Daya Bay experiment’s. The predicted energy spectra are validated against the published Bugey-3 spectra [16].

In the Bugey-3 experiment, the change in the oscillation probability over the baselines of the detectors and the reactors is studied with MC simulations assuming that antineutrinos are uniformly generated in the reactor cores and uniformly measured in the detectors, and approximated by treating the baselines as normal distributions. To achieve the combination with the Daya Bay experiment, two changes are made in the reproduced Bugey-3 analysis: the change in the cross section of the IBD process due to the updated neutron decay time [6] is applied, and the antineutrino flux is adjusted from the ILL+Vogel model [43, 44] to that of Huber [36] and Mueller [37], for consistency with the prediction used by the Daya Bay experiment. These adjustments change the reproduced contour with respect to the original Bugey-3 one, in particular by reducing the sensitivity to regions with $\Delta m_{31}^2 > 3 \text{eV}^2$, with less noticeable effects for smaller Δm_{31}^2 values. The reproduced Bugey-3 limit on the sterile neutrino mixing, and the limit obtained by combining the Bugey-3 with the Daya Bay results through a χ^2 fit, with common overall normalization and oscillation parameters, are shown in Fig. 2.

Individually, the MINOS and Bugey-3 experiments are both sensitive to regions of parameter space allowed by the LSND measurement through constraints on θ_{24} and θ_{14}, shown in Figs. 1 and 2 respectively. We illustrate this sensitivity in Fig. 5, which displays a comparison of the energy spectra for Bugey-3 and MINOS data to four-flavor (4ν) predictions produced at the LSND best-fit point [8] as an example. For Bugey-3, a $\Delta \chi^2$ value of 48.2 is found between the data and the four-flavor prediction. Taking equal priors between these two models, the posterior likelihood for 3ν vs 4ν is 1 vs 3.4×10^{-11} in the Bayesian framework. For the MINOS experiment, a $\Delta \chi^2$ value of 38.0 is obtained between the data and the prediction. The posterior likelihood for 3ν vs 4ν is 1 vs 5.6×10^{-9}.

In our combined analysis, we obtain $\Delta \chi^2_{\text{obs}}$ as well as $\Delta \chi^2_{3\nu}$ and $\Delta \chi^2_{4\nu}$ distributions for each $(\sin^2 \theta_{14}, \Delta m_{14}^2)$ grid point of the Daya Bay and Bugey-3 combination, and for each $(\sin^2 \theta_{24}, \Delta m_{31}^2)$ grid point from the MINOS experiment. We then combine pairs of grid points from the MINOS and the
Daya Bay and Bugey-3 results at fixed values of Δm_{41}^2 to obtain constraints on electron neutrino or antineutrino appearance due to oscillations into sterile neutrinos. Since the systematic uncertainties of accelerator and reactor experiments are largely uncorrelated, for each $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24}, \Delta m_{41}^2)$ grid point, a combined $\Delta \chi^2_{\text{obs}}$ is constructed from the sum of the corresponding MINOS and Daya Bay/Bugey-3 $\Delta \chi_{24}^2$ values. Similarly, the combined $\Delta \chi_{34}^2$ and $\Delta \chi_{41}^2$ distributions are constructed by adding random samples drawn from the corresponding MINOS and Daya Bay/Bugey-3 distributions. Finally, the CL_s value at every $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24})$ point is calculated using Eq. (6), while the Δm_{41}^2 value is fixed. While CL_s is single valued at every $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24})$ point for a given value of Δm_{41}^2, it is multivalued as a function of $\sin^2 2\theta_{14}$ (cf. Eq. (5)). To obtain a single-valued function, we make the conservative choice of selecting the largest CL_s value for any given $\sin^2 2\theta_{14}$. The 90% CL$_s$ exclusion contour resulting from this procedure is shown in Fig. 4. Under the assumption of CPT conservation, the combined constraints are equally valid in constraining electron neutrino or antineutrino appearance. The combined results of the Daya Bay + Bugey-3 and the MINOS experiments constrain $\sin^2 2\theta_{14} < [3.0 \times 10^{-4} (90\% \text{ CL}_{s}), 4.5 \times 10^{-4} (95\% \text{ CL}_{s})]$ for $\Delta m_{41}^2 = 1.2 \text{ eV}^2$.

In conclusion, we have combined constraints on $\sin^2 2\theta_{14}$ derived from a search for electron antineutrino disappearance at the Daya Bay and Bugey-3 reactor experiments with constraints on $\sin^2 2\theta_{24}$ derived from a search for muon (anti)neutrino disappearance in the NuMI beam at the MINOS experiment. Assuming a four-flavor model of active-sterile oscillations, we constrain $\sin^2 2\theta_{14}$, the parameter controlling electron (anti)neutrino appearance at short-baseline experiments, over 6 orders of magnitude in Δm_{41}^2. We set the strongest constraint to date and exclude the sterile neutrino mixing phase space allowed by the LSND and MiniBooNE experiments for $\Delta m_{41}^2 < 0.8 \text{ eV}^2$ at a 95% CL$_s$. Our results are in good agreement with results from global fits (see Refs. [13, 47] and references therein) at specific parameter choices; however, they differ in detail over the range of parameter space. The results explicitly show the strong tension between null results from disappearance searches and appearance-based indications for the existence of light sterile neutrinos.

The MINOS experiment is supported by the U.S. Department of Energy, the United Kingdom Science and Technology Facilities Council, the U.S. National Science Foundation, the State and University of Minnesota, and Brazil’s FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). We are grateful to the Minnesota Department of Natural Resources and the personnel of the Soudan Laboratory and Fermilab. We thank the Texas Advanced Computing Center at The University of Texas at...
Austin for the provision of computing resources.

The Daya Bay experiment is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the Ministry of Education in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, and the National Commission for Scientific and Technological Research of Chile. We acknowledge Yellow River Engineering Consulting Co., Ltd. and China Railway 15th Bureau Group Co., Ltd. for building the underground laboratory. We are grateful for the ongoing cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company.

Note Added.—Recently, a paper appeared by the IceCube Collaboration that sets limits using sterile-driven disappearance of muon neutrinos [45]. The results place strong constraints on $\sin^2 2\theta_{34}$ for $\Delta m^2_{34} \in (0.1, 10) \text{ eV}^2$. Further, a paper that reanalyses the same IceCube data in a model including nonstandard neutrino interactions also appeared [49].

* Deceased.

† Now at Department of Chemistry and Chemical Technology, Bronx Community College, Bronx, New York 10453, USA

[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998)
[2] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001)
[3] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).
[4] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968).
[5] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[6] K. Olive et al. (Particle Data Group), Chinese Phys. C 38, 090001 (2014).
[7] S. Schael et al. (ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rep. 427, 257 (2006).
[8] A. Aguilar et al. (LSND Collaboration), Phys. Rev. D 64, 112007 (2001).
[9] A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 110, 161801 (2013).
[10] N. Okada and O. Yasuda, Int. J. Mod. Phys. A 12, 3669 (1997).
[11] S. M. Bilenky, C. Giunti, and W. Grimus, Eur. Phys. J. C 1, 247 (1998).
[12] C. Giunti and E. M. Zavaino, Mod. Phys. Lett. A 31, 1650003 (2015).
[13] J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz, J. High Energy Phys. 05, 050 (2013).
[14] F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 117, 151802 (2016).
[15] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 117, 151803 (2016).
[16] B. Achkar et al. (Bugey-3 Collaboration), Nucl. Phys. B 434, 503 (1995).
[17] A. L. Read, J. Phys. G 28, 2693 (2002).
[18] T. Junk, Nucl. Instrum. Methods Phys. Res. Sect. A 434, 435 (1999).
[19] H. Harari and M. Leurer, Phys. Lett. B 181, 123 (1986).
[20] X. Qian, A. Tan, J. J. Ling, Y. Nakajima, and C. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. A 827, 63 (2016).
[21] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71, 1554 (2011) erratum: 73, 2501 (2013).
[22] D. G. Michael et al. (MINOS Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 596, 190 (2008).
[23] P. Adamson et al. (MINOS Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 806, 279 (2016).
[24] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 011802 (2011).
[25] P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 81, 052004 (2010).
[26] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 101, 221804 (2008).
[27] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[28] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, Phys. Rev. D 86, 013012 (2012).
[29] F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 115, 111802 (2015).
[30] J. H. Choi et al. (RENO Collaboration), Phys. Rev. Lett. 116, 211801 (2016).
[31] Y. Abe et al. (Double Chooz Collaboration), J. High Energy Phys. 10, 086 (2014) erratum: 02, 074 (2015).
[32] P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 112, 191801 (2014).
[33] F. P. An et al. (Daya Bay Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 811, 133 (2016).
[34] F. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 112, 061801 (2014).
[35] F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 116, 061801 (2016).
[36] P. Huber, Phys. Rev. C 84, 024617 (2011) erratum: 85, 029901 (2012).
[37] T. A. Mueller et al., Phys. Rev. C 83, 054615 (2011).
[38] G. Mention et al., Phys. Rev. D 83, 073006 (2011).
[39] A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman, and G. Jonkmans, Phys. Rev. Lett. 112, 202501 (2014).
[40] P. Vogel (2016) arXiv:1603.08990 [hep-ph].
[41] F. An et al. (Daya Bay Collaboration), Phys. Rev. Lett. 113, 141802 (2014).
[42] Y. Declaix et al., Phys. Lett. B 338, 383 (1994).
[43] K. Schreckenbach et al., Phys. Lett. B 160, 325 (1985).
[44] P. Vogel, Phys. Rev. D 29, 1918 (1984).
[45] B. Armbruster et al. (KARMEN Collaboration), Phys. Rev. D 65, 112001 (2002).
[46] P. Astier et al. (NOMAD Collaboration), Phys. Lett. B 570, 19 (2003).
[47] S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavaino, J. Phys. G 43, 033001 (2016).
[48] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev. Lett. 117, 071801 (2016).
[49] J. Liao and D. Marfia, Phys. Rev. Lett. 117, 071802 (2016).