Reference Gene Selection for Quantitative Real-Time PCR Normalization in *Reaumuria soongorica*

Xia Yan¹,²*, Xicun Dong³*, Wen Zhang³, Hengxia Yin², Hongleng Xiao¹, Peng Chen⁴, Xiao-Fei Ma²*

¹ Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China, ² Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China, ³ Department of Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, P. R. China, ⁴ Faculty of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China

Abstract

Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. *Reaumuria soongorica* is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation of stable reference genes should be performed prior to such analyses. In this study, the stabilities of 10 candidate reference genes were analyzed under 4 kinds of abiotic stresses (drought, salt, dark, and heat) within 4 accessions (HG010, HG020, XG0030, and XG0040) from 2 different habitats using 3 algorithms (geNorm, NormFinder, and BestKeeper). After validation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large unite (*rbcL*) expression pattern, our data suggested that histone H2A (*H2A*) and eukaryotic initiation factor 4A-2 (*EIF4A2*) were the most stable reference genes, cyclophilin (*CYCL*) was moderate, and elongation factor 1a (*EF1a*) was the worst choice. This first systematic analysis for stably expressed genes will facilitate future functional analyses and deep mining of genetic resources in *R. soongorica* and other species of the *Reaumuria* genus.

Introduction

Gene expression analysis is increasingly important in many fields of biological research. Understanding gene expression patterns is expected to provide insight into complex regulatory networks and will help to identify which genes are relevant to new biological processes. Recently developed methods to measure transcript abundance have been frequently applied in many model biological systems; however, these approaches require the same normalization procedures as traditional mRNA quantification methods. Real-time quantitative polymerase chain reaction (qPCR) is one of the most common technologies used for gene expression and transcriptome analysis and is characterized by high sensitivity and specificity, good reproducibility, a widely dynamic quantification range, and high-throughput capacity for a limited number of target genes [1–3]. Despite its superiority over other methods available for evaluating gene expression, qPCR remains underused due in part to conflicting results and weak repeatability. Traditional reference genes, such as actin (*ACT*), ubiquitin (*UBQ*), alpha-tubulin (*TUA*), eukaryotic initiation factor 4A-2 (*EIF4A2*), 60S ribosomal protein L2 (*L2*), TIP41-like protein (*TIP41*), elongation factor 1-alpha (*EF1a*), cyclophilin (*CYCL*), histone H2A (*H2A*) and DNAJ-like protein (*DNAJ*), are mostly used in model plants and crops [4–6] and do not always maintain stable expression levels among different tissues, experimental conditions [7–12], or species [7,11–16]. Systematic validations of reference genes have mainly focused on models and important crop species, such as Arabidopsis [17], rice [6], poplar [18], soybean [19], wheat [14], barley [20], tomato [21], grape [22], and potato [5]. However, with the increasing importance of agronomy and ecology, greater numbers of non-model plants are being assessed with molecular functional analyses, and it is crucial to identify proper reference genes for new species. To date, reference gene selection has been performed for some non-model plants like bamboo [23], peach [15], Caragana intermedia [12], and eggplant [24], but seldom in desert plants.

Reaumuria (Tamaricaceae) plants are perennial xeric shrubs widely distributed in arid regions in North Africa, Asia, and southern Europe. *R. soongorica* (*2n = 22, 778 Mb genome size*) [25] is a constructive and dominant species of desert ecosystems in central Asia [26]. It has evolved typical phenotypes of desert plants, such as an extremely thick cuticle; hollow stomata; specialized leaf shape; and a root system that reduces the transpiration rate, increases water use efficiency, and maintains stem vigor to survive desiccation [27,28]. Thus, *R. soongorica* is a good species to study the molecular mechanisms of drought adaptation. Many studies have attempted to elucidate the mechanisms of the adaptation and tolerance of *R. soongorica*...
under the extreme drought conditions [29–33], which suggested its more and more importance of ecology. It is in urgent to systematically identify appropriate references genes for *R. soongorica*, for better understanding of the processes and molecular functions of its potential gene resources since its transcriptome analysis had been released [34].

Three statistical algorithms packages have been developed to assess reference gene stability: geNorm [35], NormFinder [11], and BestKeeper [36]. In this study, the stability of 10 candidate reference genes used in many plants (ACT, UBQ, TIP41, CYCL, EF1α, EIF4A, H2A, L2, DNAJ, and TUA) were assessed based on their expression abundance in two contrasting populations under four stress conditions. To validate the best candidate reference genes, the expression levels of the ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) homolog were analyzed in comparison to 10 reference genes. This work will facilitate future studies on *R. soongorica* gene expression, speed up functional analyses of special genetic resources, and improve our understanding of the molecular mechanisms of drought adaptation.

Materials and Methods

Ethics Statement

R. soongorica is a species widely distributed in Shashichang, Jingtai County, Gansu province and other arid regions, and it is not included on any list of endangered or protected species. Before the selection of seeds, oral permission was obtained from the local management of forestry after sending introduction letters from the CAREERI (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences).

Plant Materials and Treatments

Seeds of four accessions (HG010, HG020, XGG030, and XGG040) were collected from two different habitats (Honggu [HG] N36°15′20″16″, E103°1′29″82″, annual precipitation [AP] ~400 mm based on WorldClim database 1950–2000; Xiaogangou [XGG] N36°54′21″60″, E103°53′31″44″, AP ~150 mm) were sampled in the year 2011. After 2 years in frozen storage at ~20°C to completely break physiological dormancy, the seeds were surface sterilized with 0.1% sodium hypochlorite and rinsed with distilled water. The sterilized seeds were then grown in MS-medium with photosynthetically active radiation under long day condition (16/8-hour light-dark cycles); the relative humidity was 75%, and the temperatures were 25°C in the light and 22°C in the dark. After 2 weeks, 10 seedlings from each accession were collected for RNA extraction. For drought stress, seedlings were subjected to 15% PEG (polyethylene glycol) for 1 hour. Heat stress treatment was performed at 38°C. For salt stress, plants were treated with 100 mM NaCl for 3 hours. For dark stress, plants were kept at 25°C during light hours on MS-medium.

Total RNA Isolation and cDNA Synthesis

Total RNA was extracted using an E.Z.N.A. plant RNA kit (Omega Bio-tek), and the remaining DNA was removed by RNase-free DNase (Omega Bio-tek) according to the instruction manual. Total RNA concentration and purity were determined with ratio optical density (OD) 260/280 by NanoDrop1000 (Thermo Scientific). All the samples passed QC with the ratio OD260/280 between 1.9 and 2.2 and ratio OD260/230 <2.0. RNA integrity was verified by 1.5% agarose gel electrophoresis with two clear bands of 28S/18S ribosomal RNA. In each treatment and control, three biological replicates of RNA samples were extracted from at least 10 seedlings of each genotype first, and then mixed equally as genotype representative sample. For each representative sample, 1 μg total RNA was reverse transcribed in a 20-μl volume reaction with oligo dT primers by the RevertAidTM First Strand cDNA Synthesis Kit (Fermentas). In total, we got 20 cDNA samples (four genotypes with four treatments and one control) to be analyzed in this study. The cDNAs were diluted 1:10 with nuclease-free water prior to the qPCR analyses.

Selection and Validation of Candidate Genes

Candidate reference genes were screened based on the transcriptome *de novo* assembly sequences [34] with lengths >1 kb and transcription abundance FPKM (fragments per kilobase of exon per million fragments mapped) values >5. Unigenes were annotated by National Center for Biotechnology Information (NCBI) non-redundant protein (Nr) database with E-values less than 1e-30. A reciprocal BLAST hits approach was then conducted against Arabidopsis with a permissive E-value cutoff of 10^-3 to obtain hits to confirm the gene homologs in *R. soongorica*. The final list of 10 candidate reference genes included ACT, EF1α, TUA, TIP41, DNAJ, UBQ, CYCL, EIF4A2, H2A, and L2, which were assessed in later expression analyses (Table 1).

qPCR Primer Design and Verification of Amplification

Primers of each reference gene were designed by the platform OligoPerfect Designer (Invitrogen), with optimal melting temperatures 60°C, optimal GC content 50%, optimal primer size 20 bp, and product size was between 100 and 300 bp (Table 1, and Figure S1). Each primer showed good specificity and efficiency (File S1 and S2). PCR efficiencies per amplicon were calculated by LinRegPCR [37–39], and the mean PCR efficiency between 1.8 and 2.0 from three technology replicates was regarded as the efficiency of one sample. The final primer efficiency was obtained from the average of all sample amplified with each pair of primer.

qPCR amplification products of the 10 candidate reference from one genotype (XGG030) were sequenced with ABI 3730 automated DNA Sequencer. Both the product sizes and sequences of amplification product were consistent with the unigenes from *de novo* sequencing (File S4).

qPCR

qPCR experiments were conducted in the Stratagene Mx3000P QPCR system (Agilent Technologies), in which combined gene amplification, detection and data analysis steps with FAM, HEX, ROX, and TET filters. A 20-μl reaction system volume was used for amplification. Each reaction contained 10 μl DyNAmo Flash SYBR Green qPCR Kit Master Mix (Thermo Scientific), 0.5 μl each of forward and reverse primer, 0.2 μl F-402 buffer, 2 μl cDNA synthesized from total RNA. The PCR program contained
Table 1. Candidate reference gene descriptions.

Gene Symbol	Length (bp)	Tm (°C)	Efficiency	Material Type	Annotation
ACT	145	80.57	1.834	CD320	Actin
CYCL	287	83.56	1.946	Unigene10547	Cyclophilin
DNAJ	141	81.91	1.911	Unigene4692	DnaJ-like protein
EIF4A2	164	81.54	1.875	CL9675.Contig2	Histone H2A
H2A	280	82.93	1.855	CL8967.Contig2	60S ribosomal protein
TIP41	264	82.82	1.849	CL12940.Contig1	alpha-tubulin
UBQ	185	80.93	1.892	CL3310.Contig1	Ubiquitin

Notes: * used for normalization validation under stress conditions in four accessions.

doi:10.1371/journal.pone.0104124.t001

gene expression variation (CV of 1.42%, 2.32%, and 3.01% for three different types of Microsoft Excel-based software – geNorm, NormFinder, and BestKeeper – were used to rank the expression stabilities of reference genes across all of the experimental sets. The candidate reference genes were ranked by geNorm based on the expression stability value M, which was calculated for all genes investigated (the lower the M value, the higher the gene’s expression stability) [35]. NormFinder program is a Visual Basic application tool for Microsoft Excel used to determine the expression stabilities of reference genes that ranks all reference gene candidates based on intra- and inter-group variations and combines both results into a stability value for each candidate reference gene [11]. BestKeeper identifies the most stably expressed genes based on the coefficient of correlation to the BestKeeper Index, which is the geometric mean of the candidate reference gene Cq values. BestKeeper also calculates the standard deviation (SD) and the coefficient of variation (CV) based on the Cq values of all candidate reference genes [36]. Genes with SD >1 are considered unacceptable [10]. Thus, with BestKeeper package the best reference genes should be the most stable ones, which should exhibit the lowest CV ± SD [40]. This analysis was done using the Cq values after efficiency correction. Following qPCR data collection, Cq values corrected after efficiency correction by LinRegPCR were converted to relative quantities using the formula: $2^{-ΔΔCq}$, in which $ΔΔCq$ equals each corresponding Cq value minus the minimum Cq value. The sample with the maximum expression level (the minimum Cq value) was used as a calibrator and was set to a value of 1. Relative quantities were used for geNorm and NormFinder, while BestKeeper analysis was based on untransformed Cq values.

Statistical Analysis

Expression levels of candidate reference genes across all samples

A total of 10 candidate reference genes of *R. soongorica* were chosen based on pBLAST similarity against the nr database (Table 1), and their transcript levels were quantified under different stress conditions. The relative expression levels of the candidate reference genes were determined as Cq values, and the expression stabilities of these genes showed different levels of abundance in pooled samples (as Total), and each subset of treatments in all four genotypes (PEG, Heat, Dark, and Salt) (Figure 1). The mean Cq values of the genes ranged from 22–40, with most between 28 and 31 across all tested samples. Among all the candidate genes, TUA had the lowest Cq value (24.8), indicating its highest level of expression; EIF4A2, H2A, and L2 were moderately expressed; and ACT was expressed at the lowest level (35.1 of Cq value). Stability was regarded as the most important characteristic for reference genes, and ACT, EIF4A2 and H2A showed the lowest gene expression variation (CV of 1.42%, 2.32% and 3.01%
Expression Stability of Candidate Reference Genes under different treatments geNorm analysis

The expression stabilities of the 10 reference genes were assessed using the geNorm software [35] in the pooled and separate treatments (PEG, heat, dark, and salt) across four accessions from two contrasting habitats. Figure 2 shows the ranking of the tested genes on the basis of their expression stability (M). From the pooled data, the order from the most stable gene to the least was: H2A/EIF4A2, DNAJ, TIP41, CYCL, ACT, UBQ, TUA, L2, and EF1x (Figure 2A). Their calculated “M” values were 0.82, 0.94, 1.03, 1.14, 1.34, 1.48, 1.55, 1.65, and 1.71, respectively. Successive elimination of the least stable genes led to the identification of H2A and EIF4A2 as the most stable genes. However, we found that CYCL and DNAJ were the most stable genes in PEG treatment (Figure 2B), EF1x and DNAJ in heat (Figure 2C), H2A and EIF4A2 in dark (Figure 2D), and TIP41 and UBQ in salt treatment (Figure 2E). EIF4A2 was the moderate stable gene in individual PEG, heat, and salt treatments, which is inconsistent with the CV analysis of the pooled data.

geNorm also performs stepwise calculations of the pair-wise variation (Vn/Vn+1) between sequential normalization factors (NFn and NFn+1) to determine the optimal number of reference genes required for accurate normalization. A large variation means that the added gene had a significant effect and should preferably be included to calculate a reliable normalization factor [35]. The cut-off value of 0.15 was proposed by the geNorm program [35]; below this cut-off value there is no need of inclusion of an additional control gene. As shown in Figure 3, when all the samples were taken into account, the pairwise variation V2/3 was 0.311, higher than 0.15, indicating that the addition of the third reference gene was necessary to normalize gene expression. H2A and EIF4A2 were recommended as the best reference genes based on their M value (Figure 2A). However, for individual treatments, V2/3 values were 0.82, 0.94, 1.03, 1.14, 1.34, 1.48, 1.55, 1.65, and 1.71, respectively. Successive elimination of the least stable genes led to the identification of H2A and EIF4A2 as the most stable genes. However, for individual treatments, all the samples pooled together. However, the stability ranking of genes in individual treatments were significantly different; for example, the best reference genes were found as UBQ in PEG, EF1x and DNAJ in Heat, DNAJ in Dark, and UBQ and CYCL in Salt, and all the genes harbored the stable values <0.1. Interestingly, according to NormFinder analysis, ACT was suggested as a good reference gene among the four treatments, which is inconsistent with the conclusion from the geNorm analysis. However, the results from the NormFinder and geNorm analyses are consistent, suggesting that EIF4A2 and H2A are stable reference genes.

NormFinder analysis

NormFinder analysis results (shown in Table 2) revealed that the expression of three candidate reference genes, EIF4A2, ACT, and H2A had lower stability values (the lower, the better) across all the samples pooled together. However, the stability ranking of genes in individual treatments were significantly different; for example, the best reference genes were found as UBQ in PEG, EF1x and DNAJ in Heat, DNAJ in Dark, and UBQ and CYCL in Salt, and all the genes harbored the stable values <0.1. Interestingly, according to NormFinder analysis, ACT was suggested as a good reference gene among the four treatments, which is inconsistent with the conclusion from the geNorm analysis. However, the results from the NormFinder and geNorm analyses are consistent, suggesting that EIF4A2 and H2A are stable reference genes.

BestKeeper analysis

The results of the BestKeeper analysis are shown in Table 3. Four candidate reference genes (EIF4A2, ACT, H2A, and DNAJ) in the Total group showed an SD value <1, which qualified as reference genes. When taking into account the separate treatments, all the candidate genes showed SD values <1 in individual groups. Here, only the top two genes were listed, as UBQ and CYCL in PEG treatment, EF1x and DNAJ in heat treatment, DNAJ and TIP41 in dark treatment, and UBQ, CYCL in salt treatment. Further data processing using Pearson correlation...
coefficient and regression analysis (r) showed that ACT exhibited the lowest correlation with other candidate genes (data not shown, $r = 0.676$, p-value = 0.001), suggesting its higher independence. $DNAJ$ was the most correlated to the other nine genes in pool ($r = 0.68$, p-value = 0.001). Pairwise correlation revealed that $TIP41$ and TUA ($r = 0.804$, p-value = 0.001) were highly correlated. As these two genes were not stable in pooled data, we did not take these two genes as good reference. Although $EIF4A2$ and $H2A$ was the second most correlated gene pair ($r = 0.773$, p-value = 0.001), considering their higher scores in geNorm and NormFinder, $EIF4A2$ and $H2A$ could be selected as two likely reference genes with good correlation.

Reference Gene Validation

To validate candidate reference gene selection, the expression pattern of $rbcL$ was analyzed against all 10 candidate reference genes (Figure 5). RuBisCO is an enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants to energy-rich molecules, such as glucose. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-bisphosphate (also known as RuBP). It is probably the most abundant protein on Earth [41,42]. It was obviously down-regulated due to its light-dependent characteristic, and $rbcL$ has also been shown to be down-regulated in soybean under stress [43,44]. In our results, $rbcL$ was down-regulated against all genes.
except PEG treatments in three accessions (HG010, XGG030, and XGG040). However, in PEG treatments, \textit{rbcL} was slightly down-regulated against \textit{EF1a}, \textit{CYCL}, \textit{H2A}, \textit{DNAJ}, and \textit{UBQ}, which were the most stable genes in PEG. It was strongly up-regulated compared to \textit{TUA}, \textit{ACT}, \textit{EIF4A2}, and \textit{L2}, which were the most unstable genes in PEG treatment. In accession HG020, it was obvious that its expression level was down-regulated against most candidate reference genes, except in PEG and salt treatments. This could be due to the divergent genetic backgrounds between this genotype and the other three genotypes. Actually, the huge genetic differentiation within populations was supported by a phylogeography study based on chloroplast genes (unpublished data), and different genotypes may exhibit different physiological responses under drought conditions. Thus, the high expression level of \textit{rbcL} in HG020 accession may be related to local environment adaptation. Except this, the validation results against the most stable genes were all consistent with the results from soybean [43,44], suggesting that the \textit{DNAJ} and \textit{H2A} genes could be used as practical reference genes in multiple treatments.

Discussion

qPCR has significantly improved the detection and quantification of expression profiles of genes in distinct biological samples. The main advantages of this technique are based on its high sensitivity, high specificity, and broad quantification range [45] [46]. For these reasons, qPCR is the first choice for detecting and quantifying gene expression profiles. An appropriate internal control gene is required for valid qPCR analyses. The ideal control gene should have relatively stable expression in distinct biological samples, which can be from different cell types, developmental stages, and samples exposed to different experimental conditions, even for different genotypes.

\textit{R. soongorica} is regarded as a plant that is tolerant to extremely drought conditions [26–28]. Moreover, \textit{R. soongorica} is a typical recrétalophyte, and its molecular mechanism of salt resistance remains unclear [47]. Only a few studies have focused on the molecular mechanisms of adaption to extreme environments [27]. Since his shrub species is prevalent in ecological engineering and restoration to mitigate further desertification of the arid land in northwest China, with its numerous novel genetic resources (around 40% of genes were newly found in its transcriptome sequences [34]), it is convenient and feasible to focus on molecular functional analyses of the expression of unique genes. However, it is first necessary to identify stable reference genes.

In this study, the four stresses of drought, salt, dark, and heat were investigated in different \textit{R. soongorica} genotypes to identify stable reference genes. Three different statistical approaches (geNorm, NormFinder, and BestKeeper) were used to evaluate the stability of the 10 most commonly used candidate reference genes. The most prominent observation was that each type of software produced a different set of top-ranked reference genes. This is not unexpected because the three programs employed different algorithms and analytical procedures. The top three
Table 2. Expression stability of the reference genes calculated by NormFinder software.

Total	SV	PEG	SV	Heat	SV	Dark	SV	Salt	SV
EIF4A2	0.368	UBQ	0.073	EIF1α	0.053	DNAJ	0.093	UBQ	0.043
ACT	0.4	CYCL	0.144	DNAJ	0.062	TIP41	0.147	CYCL	0.063
H2A	0.573	DNAJ	0.186	ACT	0.203	ACT	0.173	TIP41	0.11
DNAJ	0.677	H2A	0.19	TUA	0.216	EIF4A2	0.198	TUA	0.203
CYCL	0.874	TIP41	0.212	UBQ	0.238	CYCL	0.215	L2	0.209
TUA	1.017	EIF1α	0.212	CYCL	0.244	UBQ	0.254	EIF1α	0.21
UBQ	1.046	ACT	0.231	H2A	0.253	TUA	0.302	ACT	0.235
TIP41	1.119	EIF4A2	0.234	EIF4A2	0.382	H2A	0.311	H2A	0.32
L2	1.157	TUA	0.287	L2	0.451	L2	0.515	EIF4A2	0.329
EIF1α	1.185	L2	0.291	TIP41	0.632	EIF1α	0.628	DNAJ	0.978

Note: SV, stability value.
doi:10.1371/journal.pone.0104124.t002

Table 3. Expression stability of the reference genes calculated by BestKeeper software.

Total	SD	CV	PEG	SD	CV	Heat	SD	CV	Dark	SD	CV	Salt	SD	CV
ACT	0.43	1.22	ACT	0.09	0.26	EIF1α	0.12	0.39	ACT	0.19	0.54	L2	0.08	0.26
EIF4A2	0.49	1.75	H2A	0.12	0.4	DNAJ	0.12	0.39	DNAJ	0.2	0.63	UBQ	0.12	0.4
H2A	0.74	2.47	UBQ	0.19	0.69	ACT	0.18	0.51	TIP41	0.23	0.76	EIF1α	0.14	0.45
DNAJ	0.98	3.07	EIF1α	0.2	0.73	H2A	0.21	0.71	TUA	0.23	0.94	TIP41	0.16	0.48
TUA	1.07	3.32	TIP41	0.28	0.8	UBQ	0.24	0.78	CYCL	0.25	0.73	ACT	0.22	0.62
CYCL	1.08	3.33	CYCL	0.33	1.05	TUA	0.25	1.01	H2A	0.34	1.11	EIF4A2	0.3	1.08
EIF1α	1.16	3.78	DNAJ	0.37	1.22	EIF4A2	0.38	1.39	UBQ	0.35	1.27	H2A	0.39	1.28
UBQ	1.26	4.33	EIF4A2	0.51	1.79	L2	0.45	1.62	EIF1α	0.56	1.79	TUA	0.4	1.61
L2	1.33	4.5	TUA	0.58	2.13	TIP41	0.74	2.32	L2	0.69	2.44	DNAJ	1.24	3.86

Note: Reference genes were identified as the most stable genes, i.e. those with the lowest coefficient of variance (CV) with standard deviation (SD).
doi:10.1371/journal.pone.0104124.t003
stable reference genes were \textit{EF1A2}, \textit{H2A}, and \textit{DNAJ} using geNorm. \textit{EF1A2}, \textit{ACT}, and \textit{H2A} had lower stability values across all samples using NormFinder, which was consistent with the BestKeeper results. We used a previously described method [48] to determine the best reference gene based on all three algorithms (Table S2). According to the frequencies of the reference genes in the rank crossing the difference treatments (PEG, Salt, Dark, Heat and Total), \textit{H2A} and \textit{EF1A2} were the best reference genes, \textit{CYCL} was moderate stable, and \textit{EF1A} was the fourth choice. This was supported in the subsequent validation analysis with \textit{rbcL} (File S4). All the 10 genes are normally expressed under all the treatments in the 4 genotypes (Figure S2), indicating that normalization of total RNA was sufficient. In PEG treatments, \textit{rbcL} was slightly or down-regulated against \textit{EF1A}, \textit{CYCL}, \textit{H2A}, \textit{DNAJ}, and \textit{UBQ}, which were the most stable genes in accordance with results in Soybean [43,44]. Once we identify practical internal reference gene, it is easy to characterize the true expression level for a candidate gene.

\textit{ACT} has been considered as one of the best reference genes for assessing gene expression in many plant tissues and under different experimental conditions [49–51]. In present study, GeNorm, NormFinder, and Bestkeeper analyses demonstrated that \textit{ACT} was not that stable and exhibited a lower expression level compared to other good reference genes, which suggested that it is not a good reference gene for \textit{R. soongorica} under such conditions. Actually, the instability of \textit{ACT} homolog genes was also confirmed in two other plant species [12,15]. The \textit{ACT} homolog gene exhibited similar low expression levels in \textit{Caragana intermedia} and \textit{R. soongorica}, which are widely spread throughout the arid zone in China. Even though \textit{C. intermedia} and \textit{R. soongorica} belong to different families, it is likely that both of them harbor similar pathways involved in strong drought- and salt-resistance ability.

The other two most commonly used reference genes are \textit{UBQ} and \textit{TUA}. \textit{UBQ} showed highly stable expression in Arabidopsis [52] and tomato [9], but the \textit{UBQ} gene was ranked differently across different treatments in the present study. It was listed on the top under PEG with NormFinder; however, it was in a moderate stable position with geNorm and BestKeeper under other experimental conditions. It was suggested to be an inappropriate internal control for qPCR studies at different developmental stages in rice [53] and soybean [54]. \textit{TUA} has also been widely used as a reference gene in studies in water lily and soybean [16,19]. However, some studies revealed that \textit{TUA} did not satisfy certain basic requirements for use as an internal control [18]. In our results in \textit{R. soongorica}, \textit{TUA} was once of the least stable genes according to geNorm, BestKeeper, and NormFinder analyses together with \textit{rbcL} expression level. Consequently, \textit{ACT}, \textit{UBQ}, and \textit{TUA} should be used with caution as an internal control in \textit{R. soongorica}.

Conclusions

To our knowledge, this study is the first to systematically analyze reference genes for qPCR in \textit{R. soongorica} under different abiotic stress conditions (drought, salt, dark, and heat) among four accessions. Analysis of expression stability using geNorm, NormFinder, and BestKeeper revealed that \textit{EF1A2} and \textit{H2A} were appropriate reference genes under different abiotic stress conditions, whereas \textit{EF1A} showed relatively low expression stability. In contrast, the most commonly used reference genes \textit{ACT}, \textit{UBQ}, and \textit{TUA} were inappropriate. This work will benefit future gene expression studies assessing different abiotic stress conditions in \textit{R. soongorica} and other \textit{Reaumuria} species.

Supporting Information

Figure S1 Agarose gel electrophoresis for PCR products of 10 candidate reference genes and \textit{rbcL}. (TIFF)

Figure S2 Expression levels of candidate reference genes across all the four accessions. (TIFF)

Table S1 Annotation information of 10 reference genes and the one validation gene from the \textit{de novo} transcriptome sequences. (XLS)

Table S2 Ranking of the best reference gene based on the all three algorithms. (DOC)

File S1 Contains 11 figures from Figure S3 to S13 representing the qPCR amplification curves of 10 candidate reference genes (\textit{ACT}, \textit{CYCL}, \textit{DNAJ}, \textit{EF1}, \textit{EF1A2}, \textit{H2A}, \textit{L2}, \textit{TIP41}, \textit{TUA} and \textit{UBQ}) and one validation gene \textit{rbcL}, respectively. (ZIP)

File S2 Contains 11 figures from Figure S14 to S24 representing the melting curves of qPCR products of the 10 candidate reference genes (\textit{ACT}, \textit{CYCL}, \textit{DNAJ}, \textit{EF1}, \textit{EF1A2}, \textit{H2A}, \textit{L2}, \textit{TIP41}, \textit{TUA} and \textit{UBQ}) and one validation gene \textit{rbcL}, respectively. (ZIP)
References

1. Fink L, Seeger W, Ermert L, Hanze J, Stahl U, et al. (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333.
2. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6: 986–994.
3. Higuchi R, Fodder C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11: 1026–1030.
4. Hoesmer AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4: 14.
5. Nicot N, Hausman J, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914.
6. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646–651.
7. Die J, Roman B, Nadal S, Gonzalez-Verdejo C (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145–153.
8. Gimenez C, Mitchell VJ, Lavodor DW (1992) Regulation of photosynthetic rate of sunflower hybrids under water-stress. Plant Physiol 98:516–524.
9. Lovdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242.
10. Mravec M, Paperník J (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breeding 28:343–357.
11. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, et al. (2011) Selection of reliable reference genes for quantitative real-time PCR by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653.
12. Zhu J, Zhang L, Li W, Han S, Yang W, et al. (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. Plos one 8:2.
13. Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M, et al. (2008) Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). J Jpn Soc Hort Sci 77:61–68.
14. Maoz M, Paperník J (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breeding 28:343–357.
15. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, et al. (2011) Selection of reliable reference genes for quantitative real-time PCR by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653.
16. Zhu J, Zhang L, Li W, Han S, Yang W, et al. (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. Plos one 8:2.
17. Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M, et al. (2008) Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). J Jpn Soc Hort Sci 77:61–68.
18. Maoz M, Paperník J (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breeding 28:343–357.
19. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, et al. (2011) Selection of reliable reference genes for quantitative real-time PCR by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653.
20. Zhu J, Zhang L, Li W, Han S, Yang W, et al. (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. Plos one 8:2.
21. Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M, et al. (2008) Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). J Jpn Soc Hort Sci 77:61–68.
22. Maoz M, Paperník J (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breeding 28:343–357.
23. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, et al. (2011) Selection of reliable reference genes for quantitative real-time PCR by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653.
24. Gantasala NP, Papolu PK, Thakur PK, Kamaraju D, Sreevathsan R, et al. (2013) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L.). BMC Res Notes 6:312.
25. Wang X, Zhang T, Wen Z, Xiao H, Yang Z, et al. (2011) The chromosome number, karyotype and genome size of the desert plant plant Reaumuria soongorica (Pall.) Maxim. Plant Cell Rep 30:955–964.
26. Qian Z-Q, Xu L, Wang Y-L, Yang J, Zhao G-F (2008) Ecological genetics of Reaumuria soongorica (Pall.) Maxim. population in the oasis-desert ecotone in Fukang, Xinjiang, and its implications for molecular evolution. Biochemical Systematics and Ecology 36:593–601.
27. Liu Y, Zhang T, Li X, Wang G (2007) Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem. Sci China C Life Sci 50:15–21.
28. Liu JQ, Qiu MX, Pu JC, Lu ZM (1982) The typical extreme xerophyte- Reaumuria soongorica in the desert of China. Acta bot sinica 24:485–488.
29. Bai J, Gong CM, Chen K, Kang HM, Wang G (2009) Examination of antioxidative system’s responses in the different phases of drought stress and during recovery in desert plant Reaumuria soongorica (Pall.) Maxim. Journal of Plant Biology 52:417–425.
30. Liu YB, Wang G, Liu J, Zhao X, Tan HJ, et al. (2007) Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration. Journal of Arid Environments 70:183–194.
31. Liu Y, Zhang T, Li X, Wang G (2007) Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem. Sci China C Life Sci 50:15–21.
32. Ma J, Chen F, Zhang H, Xia D (2007) Spatial distribution characteristics of stable carbon isotope compositions in desert plant Reaumuria soongorica (Pall.) Maxim. Frontiers of Earth Science in China 1: 150–156.
33. Qian Z-Q, Xu L, Wang Y-L, Yang J, Zhao G-F (2008) Ecological genetics of Reaumuria soongorica (Pall.) Maxim. population in the oasis-desert ecotone in Fukang, Xinjiang, and its implications for molecular evolution. Biochemical Systematics and Ecology 36:593–601.
34. Shi Y, Yan X, Zhao P, Yin H, Zhao X, et al. (2013) Transcriptomic Analysis of a Tertiary Relict Plant, Extreme Xerophyte Reaumuria soongorica to Identify Genes Related to Drought Adaptation. PLoS ONE 8(6):e63993.
35. Vandescoppele J, De Peter K, Pasyn F, Poppe B, VanRoy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3:RESEARCH0034.
36. Pfäffl MW, Tichopad A, Piyogt M, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Eexcel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515.
37. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience letters 339:62–66.
38. Ruijter JM, Ramakers C, Hoogsaars WM, Karlen Y, Bakker O, et al. (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:63–65.
39. Khodadadi A, Hamidim Nia M, Ghaforian M, Mohammad-Ali J (2012) Evaluation of real-time PCR efficiency by the use of two strategies: standard curve and linear regression. Jundishapur Sci Med J 11(1):95–95.
40. Chiang E, Shi S, Liu J, Cheng T, Xue L, et al. (2012) Selection of reference genes for quantitative gene expression studies in Populus trichocarpa. Plant Physiol 159:81–92.
41. Dhingra A, Portis AR Jr, Daniell H (2004) Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101:6315–6320.
42. Salvucci ME, Portis AR, Ogren WL (1986) Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves. Plant Physiol 80:655–659.
43. Vu JC, Allen LH, Bowes G (1987) Drought stress and elevated CO2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiol 83:573–578.

Author Contributions

Conceived and designed the experiments: XY XD X-FM. Performed the experiments: XY WZ HY. Analyzed the data: XY PC X-FM. Contributed reagents/materials/analysis tools: HG X-SM. Wrote the paper: XY XD X-FM.

Acknowledgments

We thank for the instructions on the data analysis from Jianfeng Zhu, and appreciate the constructive and helpful suggestions from Dr. Jianping Li and the two anonymous reviewers.
44. Carmo-Silva AE, Keys AJ, Andralojc PJ, Powern SJ, Arrabaca MC, et al. (2010) rbcL activities, properties, and regulation in three different C4 grasses under drought. J Exp Bot 61:2355–2366.
45. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Experimental hematology 30:503–512.
46. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR: a perspective. Journal of Molecular Endocrinology 34:597–601.
47. Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, et al. (2013) Transcriptomic profiling of the salt-stress response in the wild recrcthalophyte Reaumuria trigyna. BMC Genomics 14:518.
48. Klie M, Debener T (2011) Identification of superior reference genes for data normalization of expression studies via quantitative PCR in hybrid roses (Rosa hybrida). BMC Research Notes 4:518.
49. Rai V, Dey N (2012) Identification of programmed cell death related genes in bamboo. Gene 497:243–248.
50. Rai V, Ghosh JS, Pal A, Dey N (2011) Identification of genes involved in bamboo fiber development. Gene 478:19–27.
51. Xu H, Chen LJ, Qi LJ, Gu HY, Li DZ (2010) Functional conservation of the plant embryonic flower2 gene between bamboo and Arabidopsis. Biotechnol Lett 32:1961–1968.
52. Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17.
53. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646–651.
54. Jian B, Liu B, Bi Y, Hou W, Wu C, et al. (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:50.