Ontogenic Development and Tissue Distribution of Vγ1-expressing γ/δ T Lymphocytes in Normal Mice

By Pablo Pereira,* David Gerber,† ShuYing Huang,‡ and Susumu Tonegawa‡

From the *Unité d’Immunobiologie, Centre National de la Recherche Scientifique URA 1961, Institut Pasteur, 75724 Paris Cédex 15, France; and ‡Howard Hughes Medical Institute at Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Summary

A hamster monoclonal antibody (mAb) recognizing an epitope in the Vγ1-Jγ4-Cγ4 chain of the γ/δ T cell receptor has been generated. Using this mAb, we have quantitated the occurrence of Vγ1-bearing γ/δ T cells in the developing thymus and in the lymphoid organs and several epithelia of adult mice. The Vγ1-expressing cells constitute a minor γ/δ T cell subpopulation during fetal and early postnatal life, but they constitute a major population of γ/δ T cells in the thymus and in the peripheral lymphoid organs in adult mice. In addition, we found that Vγ1-bearing cells comprise a large proportion (15–60%) of the γ/δ T cells present in the intestinal epithelium (i-IEL) in all strains of mice tested. Vγ1+ i-IEL are present in athymic (nude) mice and in antigen-free mice, demonstrating that they can develop extrathymically and that their presence in the intestinal epithelium is independent of the antigenic load of the gut. Our results show that Vγ1-bearing lymphocytes account for the largest population of γ/δ T cells in the mouse. This population includes a thymus-dependent component that homes to the secondary lymphoid organs and a thymus-independent component that constitutes a major fraction of the γ/δ i-IELs.

T lymphocytes bearing the γ/δ TCR constitute a minor T cell subpopulation in the thymus and in the peripheral lymphoid organs but are often the major T cell type in epithelial tissues (1–9). γ/δ T cells comprise several different subsets as defined by such distinctive parameters as TCR repertoire, time of appearance during ontogeny, thymus dependence, and anatomical localization (for review, see reference 10). The physiological role of γ/δ T cells is still poorly understood, partially because of the lack of knowledge about γ/δ T cell ligands.

A large fraction of γ/δ T cell hybridomas expressing a TCR composed of Vγ1-Jγ4-Cγ4 and V86-Cδ chains is constitutively activated to secrete IL-2 (11). The role of a specific interaction involving the TCR in this activation has been suggested by the ability of mAbs against the TCR–CD3 complex to inhibit spontaneous IL-2 production and by the fact that transfection of the Vγ1/V86 cDNAs into a TCR− murine hybridoma confers the phenotype of constitutive activation onto the recipient cells (11, 12). In some cases, the reactivity of Vγ1/V86 TCR–expressing hybridomas to purified protein derivative (PPD)1 and to the 180–196 amino acid region of the mycobacterial heat shock protein (HSP) 60 has been demonstrated (13), although failures to detect such reactivities have also been reported (14, 15). Constitutively activated hybridomas expressing the Vγ1/V86 TCR have been isolated from newborn and adult thymus (11, 14, 16), adult spleen (16), liver (17), skin epidermis (18), and from the intestinal epithelium of weanling mice (15), suggesting that γ/δ T cells expressing the Vγ1 gene product are normally present in different lymphoid organs and epithelia. Nevertheless, neither quantification of Vγ1-bearing γ/δ T cells in different tissues nor studies on the origin of these cells has been performed, mainly because of the lack of mAbs specifically recognizing this population.

Here we describe a hamster mAb (named 2.11) specific for the mouse Vγ1-Cγ4 protein and the studies performed to analyze these issues. Our results show that Vγ1-bearing lymphocytes account for the largest population of γ/δ T cells in the mouse, including a thymus-dependent component that localizes to the secondary lymphoid organs and a thymus-independent component that comprises a significant fraction of the γ/δ intestinal intraepithelial lymphocytes (i-IEL).

Materials and Methods

Animals. C57BL/6 (B6), BALB/c, DBA/2, and C3H/HeJ (C3H) mice were obtained from The Jackson Laboratory (Bar

1Abbreviations used in this paper: AgF, antigen free; DEC, dendritic epidermal cells; HSP, heat shock protein; i-IEL, intestinal intraepithelial lymphocytes; PPD, purified protein derivative; SPF, specific pathogen free.
From PharMingen (San Diego, CA). Adult Armenian hamsters were obtained from Cytogen River Laboratories, Inc. (Wilmington, MA), and Ifa-Credo. All bred at the MIT facilities. BALB/c specific pathogen-free (SPF) Breeding and Research Center Ltd. (Bomholtvej, Denmark) and other mouse strains were purchased from The Jackson Laboratory, Adult Armenian hamsters were obtained from CytoGen (West Roxbury, MA).

Abs. For complement-mediated killing, we used anti-CD4 (RLL.174; reference 19) and anti-CD8 (HO 2.2; 20). Both mAbs were used as culture supernatants. Other mAbs used were H57-597, anti-CD8 (21); GK1.5, anti-CD4 (22), 53-6.7, anti-CD8 (23); RA3.6B2, anti-CD45R/B220 (24); M1/70 anti-Mac-1 (25) 3A10, anti-8 (2), and 536 anti-Vy45 (26). All of these mAbs were purified from culture supernatant either by ion exchange chromatography on DEAE-cellulose or by affinity chromatography on protein A-Sepharose (Pharmacia, Uppsala, Sweden) and biotinylated by standard procedures. Biotin-labeled goat anti-mouse IgM was purchased from Caltag Laboratories (San Francisco, CA); biotin-labeled anti-CD5 was from Becton Dickinson & Co. (Mountain View, CA); and FITC-labeled anti-CD8, FITC-labeled anti-Thy1, biotin-labeled anti-Vy64, and biotin-labeled anti-Vy4 were from Pharmingen (San Diego, CA).

Immunofluorescence Staining and Flow Cytometric Analysis. Cells (10^5-10^6) were incubated in staining buffer (PBS, 3% FCS, 0.1% NaN3) with the indicated labeled Abs for 30 min on ice. After two washes, the cells were incubated with streptavidin-PE (Southern View, CA); and FITC-labeled anti-CD8, FITC-labeled anti-Thy1, biotin-labeled anti-Vy64, and biotin-labeled anti-Vy4 were from Pharmingen (San Diego, CA).

Cell Purifications and Cultures. The preparation of dendritic epidermal cells (DEC) and -IIN has been previously described in detail (27, 28). The preparation of pT8 T cell blasts used to produce pT8 T cell hybridomas was as follows: Thymus and spleen cell suspensions were prepared according to standard procedures. Thymocytes were incubated with biotinylated anti-CD4 and anti-CD8 mAbs, and spleenocytes were incubated with biotinylated anti-TCR-p, anti-CD4, anti-CD8, anti-B220, and anti-MAC-1 mAbs for 30 min on ice. After washing the unbinding Abs, the cells were incubated with Tonsyl-activated magnetic beads (Dynal Inc., Great Neck, NY) that had been previously coupled to streptavidin according to the manufacturer's instructions. The incubation was performed for 60 min at 4°C with a slight rocking of the tubes. After separation of the beads, unbound cells were cultured in complete medium (DME supplemented with t-glutamine, sodium pyruvate, b-ME, nonessential amino acids, penicillin, and streptomycin, plus 10% fetal bovine serum) together with irradiated (1,000 rad) B6 spleen cells (2 X 10^8/ml) in the presence of 50 μg/ml of PPD and 10 U/ml of rIL-2. Alternatively, thymocytes were treated with anti-CD4 and anti-CD8 mAbs and complement for 45 min at 37°C. CD4^-CD8^- live cells were purified by density gradient centrifugation using Lymphocyte M (Cederlane Laboratories Ltd., Hornby, Ontario, Canada) and cultured (5 X 10^5/ml) in complete medium plus 10 U/ml of rIL-2, in plates previously coated with the 2.11 mAb (20 μg/ml).

Production of T Cell Hybridomas. 3-5 d after initiation of the cultures described above, growing blasts were fused to the TCR-p/β^- variant of the BW5147 thymoma cell line (29) at a 1:1 ratio in 0.5 ml of 50% polyethylene glycol as described (30). The cells were then distributed in 96-well flat-bottomed plates with either HAT or asparagine-lhypoxanthin medium. The hybridomas named T and S come from PPD-stimulated thymocytes and splenocytes, respectively. The hybridomas named BTC come from thymocytes activated with the 2.11 mAb.

Production of the 2.11 mAb. Armenian hamsters were immunized intraperitoneally three times at 3-wk intervals with 2 X 10^8^-10^9 irradiated, TCR-p/β^- T3.13.1 hybridoma cells resuspended in saline. The T3.13.1 hybridoma expresses a TCR, composed of Vy6 and V66.3 chains and constitutively secretes IL-2 when cultured in vitro. 3 d after the last injection, spleen cells were fused with the murine myeloma SP2/0 at a ratio of 10:1 (spleen cell/myeloma) in 1 ml of 50% polyethylene glycol as described (2). The cells were then distributed in 96-well flat-bottomed plates with HAT medium. Culture supernatants from growth-positive wells were tested for their ability to inhibit the constitutive IL-2 production of the immunizing hybridoma. IL-2 production was assayed by the growth of the HT-2 cells, scored by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-2H-tetrazolium bromide) assay as originally described (31). Cells from wells inhibiting >75% of the IL-2 secretion were subcloned several times by limiting dilution until stable Ab-secreting hybrids were obtained.

Cell Surface Labeling and Immunoprecipitation. 8 X 10^6 Vy1-expressing hybridoma cells were harvested by centrifugation, washed four times with PBS, and resuspended in 4 ml of PBS. Cells were split into nine glass test tubes coated with iodogen (Pierce, Rockford, IL), and 200 μCi Na212SI was added to each tube. After a 15-min incubation on ice with occasional mixing, cells were pooled and washed four times with PBS. The cell pellet was lysed in 1.5 ml ice cold lysis buffer (10 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% Triton X-100, 1 mM PMSF), vortexed for 20 s, and incubated on ice for 30 min. The lysate was clarified by centrifugation at 13,000 rpm at 4°C in a microfuge. 0.1 vol of normal hamster serum was added to the supernatant, followed by two rounds of preclaring with 0.1 vol protein A-Sepharose beads (Pharmacia). One quarter of the preclared lysate was immunoprecipitated with 10 μl of either 2.11- or 3A10-coated protein A-Sepharose beads. Immunoprecipitates were washed, resuspended in reduced sample buffer, and subjected to SDS-PAGE on a 10% gel, according to standard procedures. Radioactive bands were visualized using a Fuji BAS 2000 Bioimage Analyzer (Fugi, Fuji Medical Systems USA Inc., Stamford, CT).

PCR and Sequencing Analysis. The following primers were used: Vy1: 5' -CCGGCACAAAGCAGGGAT-3'; Jy4: 5' -GCAATATCTGACCCATGGA-3'; and pCys: 5'-TTATGAGATTTGTTTCAGC-3'.

Genomic DNA from hybridoma cells (T and S) was prepared by the proteinase K/phenol extraction/ethanol precipitation method. Sequences spanning the V-J junction were amplified by PCR using primers specific for the Vy1 and Jy4 genes. For each sample, two PCRs were performed in parallel, each one containing either one of the primers kinased. To produce single-stranded DNA after PCR amplification, the double-stranded product was digested with λ exonuclease as originally described (32). Both strands were then sequenced by the dideoxy chain termination method using the Sequenase enzyme (United States Biochemical Corporation, Cleveland, OH).

Total cellular RNA from hybridoma cells (BTC) was prepared by the guanidine isothiocyanate/acid phenol extraction method. cDNA was synthesized with oligo-dT using superscript reverse transcriptase (GIBCO BRL, Gaithersburg, MD) according to the manufacturer's instructions. Sequences spanning the V-J junction were amplified by PCR using primers specific for the Vy1 and all
four Cy genes. After amplification, 4 μl of each PCR reaction mixture was incubated with shrimp alkaline phosphatase and exonuclease I to remove the excess of primers and dNTPs and sequenced by the dideoxy chain termination method using the Sequenase enzyme as described in the Sequenase version 2.0 DNA polymerase for sequencing PCR products kit (Pharmacia-USB).

Results

Characterization of the 2.11 mAb. The mAb 2.11 was selected by its ability to block spontaneous IL-2 production by the Vy1/V86-expressing γ/δ T cell hybridoma that had been used for immunization. Initial studies showed that this mAb binds to and inhibits spontaneous IL-2 production by 10 of 10 Vy1/V86-expressing T cell hybridomas, but does not inhibit IL-2 production by α/β-bearing T cell hybridomas (not shown). Furthermore, the 2.11 mAb binds to the immunizing hybridoma cells but not to variants that have lost expression of the γ/δ TCR (not shown), suggesting that the 2.11 mAb recognizes some component of the γ/δ TCR. SDS-PAGE analysis of immunoprecipitates from lysate of 125I-surface-labeled Vy1 hybridoma cells revealed an apparently identical pattern of two bands for the 2.11 mAb and the pan-γ/δ-specific mAb, 3A10 (Fig. 1). This confirms that the 2.11 mAb is specific for TCR-γ/δ.

To characterize further the specificity of the 2.11 mAb, we stained several γ/δ T cell hybridomas known to express different Vy and Vδ gene products. The mAb 2.11 did not bind to previously characterized γ/δ T cell hybridomas that are known to express TCRs containing Vy4, Vy5, Vy6, or Vy7 chains (30, 33). In contrast, this mAb recognized 14 of 14 γ/δ T cell hybridomas that produce IL-2 spontaneously (not shown). Sequence analysis of rearranged γ genes in those 14 hybridomas showed that all contain a functionally rearranged Vy1 gene (Fig. 2 A). These data demonstrate that the 2.11 mAb recognizes the Vy1-Cy4 protein but do not allow us to exclude the possibility that it also recognizes the Vy2-Cy2 protein. However, three additional lines of evidence reinforce the conclusion that the 2.11 mAb is specific for the Vy1-Cy4 protein. (a) 2.11+ hybridomas obtained by fusion of BW5147 cells with CD4+CD8- thymocytes that had been activated in vitro with the 2.11 mAb all expressed a functionally rearranged Vy1-Cy4 mRNA (Fig. 2 B), whereas they each expressed one of five different Vδ genes (not shown). (b) Immunoprecipitation of the γ/δ TCR by the 2.11 mAb performed with four different γ/δ T cell hybridomas showed a 43-kD γ chain compatible with the Vy1 chain but incompatible with the Vy2 chain (1). (c) Expression of functionally rearranged Vy1-Cy4 mRNA, but not of Vy2-Cy2 mRNA, correlates with the 2.11+ phenotype in sorted 2.11+ and 2.11- γ/δ T cell populations (Pereira, P., D. Gerber, A. Regnault, V. Hermitte, A. Coutinho, and S. Tonegawa, manuscript submitted for publication). Taken together, these data strongly suggest that the 2.11 mAb recognizes only the product of the Vy1-Cy4 gene.

Ontogeny of γ/δ T Cells Expressing the Vy1-Cy4 Gene Product in the Thymus. Using the 2.11 mAb, we quantitated the number of Vy1-bearing γ/δ thymocytes in B6 mice as a function of age. For comparison, we also determined the number of γ/δ thymocytes expressing the Vy4 or the Vy5 chains using the respective antibodies that had previously been produced (1, 26). The results are summarized in Fig. 3. In agreement with previous results (26), Vy5-expressing thymocytes constituted the major γ/δ T cell population at day 15 of gestation, but their number decreased thereafter until the first week after birth, when they became nearly undetectable. Vy4-expressing thymocytes also appeared in fetal life, and their number increased until 1 wk of age, when they represented ~60% of all γ/δ thymocytes. Thereafter, the number of Vy4+ thymocytes decreased to adult levels.
A Thymus
(-45% of all γ/β thymocytes). Vy1-expressing cells constituted a very minor population during fetal and early postnatal life. Their number increased rapidly 1–3 wk after birth, concomitant with the decrease of Vy4-expressing thymocytes, and quickly reached the adult levels of around one-third of all γ/β thymocytes (Fig. 3 A).

In spite of the very low numbers of Vy1-expressing cells in the fetal thymus, these cells are detectable in the spleen at birth, constituting ~20% of all γ/β T cells in that organ. Here again, their numbers increased very rapidly, and by 1 wk of age they reached the adult level, which is ~40% of all γ/β splenic T cells in B6 mice (Fig. 3 B).

Tissue Distribution of Vγ1-Cγ4+ γ/β T Cells.
We then quantitated the proportion of Vγ1-bearing γ/β T cells in the peripheral lymphoid organs and in different epithelia in adult B6, BALB/c, and C3H mice. The results are summarized in Table 1. As can be seen, Vγ1-bearing cells represent 30–50% of all γ/β T cells in the spleen and lymph nodes of the three strains studied. Given that Vy4-bearing cells also represent around half of the γ/β T cells in the peripheral lymphoid organs in these mouse strains (1), these data show that Vγ1- and Vy4-bearing cells comprise most of the spleen and lymph node γ/β T cells.

Table 1. Expression of Vγ1-Cγ4+ γ/β T Cells in Different Tissues

Strain	C57BL/6	BALB/c	C3H/HeJ
Spleen	34.3 ± 5.3	40.4 ± 3.4	55.4 ± 5.2
LN	38.9 ± 4.4	32.3 ± 6.0	54 ± 5.4
i-IEL	24 ± 3.1	21.4 ± 4.9	36 ± 8.3
DEC	0.7	1.4	1.6

Cells were stained and analyzed as in Fig. 2. At least three determinations were performed except for DEC, for which the average of two experiments is given. A pool of two to five mice was used for each determination.

Figure 3. Differential expression of γ/δ chain on thymocytes and splenocytes of C57BL/6 mice of different ages. Cells were stained with FITC-labeled anti-CD8 mAb (3A10) and biotin-labeled anti-Vγ1 (2.11), anti-Vγ5/Vδ1 (536), and anti-Vγ4 (UC3-10A6) mAbs followed by streptavidin PE. 2,000–5,000 γ/δ cells per sample were analyzed with a FACScan. The percentages of 2.11+ (O), 536+ (□), and UC3-10A6+ (○) cells among 3A10+ cells are shown. Cell pools were always used for the analysis, and each point represents the mean of at least two independent determinations.

Although γ/δ T cell clones expressing a TCR composed of Vy1 and Vδ6 chains have been isolated from the skin epithelium (18), we found that no more than 2% of the γ/δ-bearing DEC cells express the Vγ1-Cγ4 γ/δ gene product in any of the three strains examined (B6, BALB/c, and C3H).

We also found that close to 30% of the γ/δ i-IEL in B6 mice were recognized by the 2.11 mAb and were thus likely to express the Vy1 gene product. This observation was surprising because previous reports analyzing mRNA expression of Vy genes in i-IEL had led to the belief that Vy1-bearing cells are at most a small minority of γ/δ i-IEL. Stainings of B6 i-IEL with the anti-pan γ/δ mAb 3A10 together with either the 2.11 mAb or an anti-Vδ4 mAb are shown in Fig. 4. The anti-Vδ4 mAb recognizes a fraction of the γ/δ i-IEL that is mainly included in the Vγ7+ population (35). In this particular experiment, the Vy1-bearing cells represent 28% of the γ/δ i-IEL population. It is worth noting that the level of TCR expression of Vy1 i-IEL is significantly lower than that of other γ/δ TCR+ i-IEL (compare gate A in both stainings). This has been consistently observed in many individual mice and in all three strains. We conclude that Vy1+ cells comprise a significant population of γ/δ i-IEL.

Vγ1-Cγ4+ expressing i-IEL Originate Outside the Thymus. γ/δ i-IEL, as is the case for many α/β i-IEL, have been shown to have a thymus-independent origin, as evidenced by their presence in normal numbers in athymic nude mice and in thymectomized, lethally irradiated, bone marrow-reconstituted chimeras (36–38). Furthermore, thymus-independent γ/δ cells are phenotypically different from thymus-dependent peripheral γ/δ T cells. Thus, whereas most peripheral γ/δ T cells do not express CD4 or CD8 molecules, most of the γ/δ i-IEL express the α but not the β chain of the CD8 molecule (39). Furthermore, although all peripheral γ/δ T cells express the Thy1 and CD5 molecules, only 30–50% of the γ/δ i-IEL express Thy1, and all of them are negative for the expression of the CD5 antigen (40–42). Given the possibility that the Vy1-bearing i-IEL population could arise from thymus-dependent peripheral Vy1 cells through migration to the intestinal epithelium, we quantitated the Vy1-expressing cells in i-IEL isolated from athymic nude mice and analyzed the phenotype of Vy1-bearing
cells in i-IEL preparations isolated from normal animals. The percentage of γδ i-IEL marked by the 2.11 mAb in normal and nude B6, BALB/c, and C3H mouse strains is shown in Table 2. As can be seen, the proportion of γδ i-IEL was very similar in normal and nude mice of all strains examined.

The expression of Thy1, CD5, CD8α, and CD8β among total γδ TCR + or 2.11+ i-IEL in B6 mice is shown in Table 3. In concordance with previous observations (39, 41, 42), virtually all the cells stained with the anti-δ mAb were negative for the expression of CD5 and CD8β, whereas 80–90% of them expressed the α chain of the CD8 molecule, and close to 40% of them expressed the Thy1 antigen. The 2.11+ population displayed a very similar phenotype with regard to these markers, with most of the cells being CD5−CD8α+β−. The only significant difference found between total γδ+ and 2.11+ i-IEL was the proportion of Thy1+ cells (38 and 50%, respectively). As Vγ1+ cells represented ~25% of the total γδ i-IEL in these experiments, these data imply that the Thy1 antigen is expressed in 50% of the Vγ1+ cells and in 20% of the Vγ1−γδ T cell population.

Normal i-IEL are constitutively cytolytic in a redirected lysis assay (6, 43). This assay uses an Fc receptor-expressing target cell and relies on the cross-linking of TCR on effector cells by mAbs against the TCR–CD3 complex that also bind to the Fc receptor to trigger lysis. B6 i-IEL lyse P815 target cells in the presence of the 2.11 mAb (data not shown), indicating that the Vγ1+ i-IEL population is constitutively cytolytic.

From these experiments we conclude that, similar to the Vγ7+ i-IEL population, Vγ1+ i-IEL also mature extrathympically, and that these γδ T cell populations are phenotypically and functionally similar.

The Proportion of Vγ1+ Cells among γδ i-IEL Is Independent of the Antigenic Load of the Intestine. The presence of Vγ1 mRNA in the i-IEL population of some individual mice or in mice infected with the parasite *Eimeria* has been reported (44, 45), leading to the suggestion that colonization of the gut could result in antigen-driven accumulation or expansion of a few incipient Vγ1+ cells. To study the effect of microbial colonization and/or food antigens on the extent of Vγ1-bearing cells among γδ i-IEL, we quantitated the proportion of Vγ1+ cells in i-IEL isolated from SPF and AgF BALB/c mice. The results of one such experiment are shown in Table 4. As can be seen, the proportion of Vγ1-bearing i-IEL was virtually identical in SPF and AgF BALB/c mice. These experiments demonstrate that the presence of the Vγ1-bearing population in the epithelium of the small intestine is independent of the antigenic load of the gut epithelium.

Expression of Vγ1-Cy4 i-IEL in Different Mouse Strains. We then quantitated the proportion of Vγ1-bearing lymphocytes in the i-IEL population of 12 different strains of mice, including some MHC-congenic strains in different backgrounds. The results are summarized in Fig. 5. Several conclusions can be drawn from this analysis. First, all strains

Table 2. Expression of Vγ1+ i-IEL in Euthymic and Athymic (nu/nu) Mice

Mouse	γδ+ cells (% of total γδ T cells)
BALB/c (nu/+)	26.1
BALB/c (nu/nu)	23.4
C57BL/6 (nu/+)	24.5
C57BL/6 (nu/nu)	29.2
C3H (nu/+)	46.1
C3H (nu/nu)	39.8

Cells were stained and analyzed as in Fig. 3. The average of two determinations is given. A pool of two to three mice was used for each determination.

Table 3. Phenotype of Vγ1+ i-IEL

i-IEL population	Thy1	CD8α	CD8β	CD5		
γδ+ (3A10+)	38.6	89.9	86.6	1.6	1.8	<1
Vγ1+ (2.11+)	50.8	79.0	81.9	1.0	1.4	<1

C57BL/6 IEL were stained with mAbs against the indicated antigen and counterstained with either anti-δ (3A10) or anti-Vγ1 (2.11) mAbs. Numbers represent the percentage of cells expressing the defined antigen among total γδ cells (upper) or 2.11+ cells (lower). Results from two independent experiments are shown.
Table 4. Expression of Vγ1+ i-IEL in SPF and AgF BALB/c mice

	2.11+ Cells (percentage of total γδ T cells)
BALB/c SPF	18.1
BALB/c AgF	19.2

Cells were stained and analyzed as in Fig. 3. The average of two determinations is given. Three mice were used for each determination.

tested contained a sizable proportion of Vγ1-bearing γδ i-IEL that ranged from 15 to 60% of all γδ-bearing i-IEL. Second, the representation of Vγ1-bearing lymphocytes among γδ i-IEL seems to be strain specific. It should be pointed out that some of the data presented were obtained using identical strains of mice that were acquired from different sources and housed in different places. The low standard deviation observed within a single strain suggests that genetic rather than environmental factors are responsible for the observed strain-to-strain differences in the proportion of Vγ1-bearing lymphocytes. Third, although differences in the percentage of γδ i-IEL expressing the Vγ1 gene product are found between MHC-congenic strains, these differences are relatively small when compared with those found between strains that differ genetically outside of the MHC locus. These data suggest that genes other than MHC genes are involved in the regulation of the number of Vγ1-bearing cells.

Discussion

In this report we describe a new mAb specific for the Vγ1-Cγ4 chain of the γδ TCR. The use of this mAb allowed us to quantitate and characterize Vγ1-expressing γδ T cells in the thymus of fetal and adult animals, as well as in the peripheral lymphoid organs and in several epithelia. Our data, while confirming some previously drawn conclusions, revealed a few new facts about the composition of various γδ T cell subsets in developing and adult mice.

Vγ1-bearing cells constitute a small minority of the γδ thymocytes throughout fetal life. Their number increases substantially during the first weeks of postnatal life, concomitant with a decrease in the number of Vγ4-bearing thymocytes. By 3 wk of age, the Vγ1 and Vγ4 subpopulations reach their adult values of ~30 and 50% of the total γδ thymocytes, respectively. At that time, Vγ5-bearing cells are virtually absent, and Vγ7-bearing thymocytes represent no more than 5% of total adult γδ thymocytes (46; Pereira, P., unpublished observations). Furthermore, although functional rearrangements of Vγ6 and Vγ2 genes have been described in the adult thymus (47), it is believed that γδ thymocytes expressing these γ chains constitute a small minority among the total γδ thymocytes. Although no other Vγ genes have been identified, a possibility that some minor populations of γδ T cells express hitherto unidentified TCR-γ chains cannot be excluded. Taken together, these data are consistent with the possibility that, at least in B6 mice, other Vγ genes could be expressed in the adult thymus.

In the spleen and lymph nodes, Vγ1- and Vγ4-bearing cells are also the major subpopulations of the γδ T cell population, constituting close to 90% of all γδ lymphocytes in these peripheral lymphoid organs. The actual proportion of Vγ1- and Vγ4-expressing cells varies in different strains of mice. Nevertheless, they constitute the large majority of the splenic and lymph node γδ T cells in most of the common laboratory strains (34; Pereira, P., unpublished observations). Thus, it appears that the proportions of the two γδ T cell subsets are coordinated; a decrease in the frequency of cells expressing one of these Vγ chains is accompanied by a corresponding increase in the frequency of cells expressing the other Vγ chain. A similar situation can be observed concerning the expression of Vγ1 and Vγ7 gene products within the γδ i-IEL population. Together, Vγ1- and Vγ7-bearing cells represent close to 90% of the γδ i-IEL population, and their relative frequencies in different strains of mice are also coordinated (Fig. 5; Pereira, P., unpublished observations). This is particularly important to consider in the context of positive and/or negative selection for γδ T cells. It has been proposed that the expansion or overrepresentation of T cells using a particular γδ receptor could be used as an indication that positive selection has occurred (34, 38). Although such increased representation of a specific γδ T cell type may suggest that cellular selection has occurred, the fact that the overrepresentation of T cells using a defined Vγ chain is concomitant to a similar underrepresentation of T cells using another Vγ chain precludes definition of the selection as either positive or negative or both.

Although Vγ1-bearing T cells have been isolated from the skin of C3H mice (18), our data show that Vγ1-bear-
ing cells constitute a minor population (0.5–2%) of total γ/δ
DEC in that strain as well as in the other strains tested. On
the other hand, it has been shown that the skin of nude
mice is colonized by thymus-independent Vy1-bearing γ/δ
T cells (48), demonstrating that these cells can home to the
epithelium of the skin. Furthermore, recent analysis of IL-7-
transgenic mice that spontaneously develop dermatitis (49)
has shown a massive infiltration or expansion of γ/δ T cells
other than Vy5-bearing cells in the skin. It is possible, there-
fore, that the representation of Vy1-bearing cells in the
skin epithelium is increased upon infection and could, there-
fore, vary in different mouse colonies.

The most striking finding concerning the tissue localization
of γ/δ T cells expressing the Vy1-Cy4 chain is that they
constitute a substantial proportion of γ/δ i-IEL in normal
mice. Vy1+ cells represent 15–60% of all γ/δ i-IEL in dif-
f erent strains of mice, and their presence is independent of
the thymus and of the antigenic load of the gut. The fact
that this population has been overlooked is not readily
understood, although some plausible explanations can be put
forward. To date, four different groups have analyzed TCR-γ
rearrangement or TCR-γ mRNA expression in i-IEL, reach-
ing the conclusion that the Vy1-bearing population is mi-
nor, if not absent, in the normal γ/δ i-IEL population. The
first group (50) did not analyze Vy1 rearrangements in i-IEL
because their previous work (7) had shown that the major
γ protein expressed in i-IEL had a relative molecular mass
of 34–35 kD, which is clearly different from the Vy1-Cy4
protein (Mr = 41–42 kD [1]). Besides the fact that the im-
umnoprecipitation technique is not very sensitive and is cer-
tainly not quantitative (because of the differential labeling
rates of different proteins and the specificity of the antisera
used), it should also be noted that the size of the Vy1-Cy4
chain is very similar to the size of most of the V8-Cδ pro-
tins. Thus, it is possible that the δ chain band in the gels
masked the Vy1-Cy4 protein.

Two other groups (51, 52) analyzed TCR-γ rearrange-
ments in i-IEL by PCR techniques using Vy- and Jy-spe-
cific primers. To analyze Vy1 and Vy2 rearrangements, they
used an identical set of primers. The Vy-specific primer cross-
hybridizes with Vy1 and Vy2 genes, whereas the Jy-specific
primer cross-hybridizes with all four Jy sequences. A closer
look at the primers used reveals that the Vy primer has a
sequence identical to the Vy2 gene but contains a single
mismatch with respect to the Vy1 sequence in the second
base at its 3' end. Similarly, the Jy primer has a sequence iden-
tical to the Jy1 and Jy2 segments but has two mismatches
with respect to the Jy4 segment, one of which is located in
the fourth base of its 3' end. The Vy2 gene appears to be
rearranged in almost all γ/δ T cells and in many α/β T cells
(Pereira, P., D. Gerber, A. Regnault, V. Hermite, A. Coutil
ho, and S. Tonegawa, manuscript submitted for publica-
tion), whereas, with the exception of a small number of
other γ/δ T cells, the Vy1 gene is almost exclusively re-
arranged in cells expressing the Vy1-Cy4 protein. Thus,
itis very likely that, in the PCR conditions used by these
authors, the Vy2-Jy2 rearrangements would be preferen-
tially amplified over the Vy1-Jy4 rearrangements. Finally,

the fourth group analyzed the expression of Vγ mRNA in
i-IEL by in situ hybridization using antisense probes but
failed to detect any cells expressing either Vy1 or Vy2
mRNA (53). Further experiments conducted by these au-
thors were limited by the preparation of cDNAs with a
Cy1-specific primer and subsequent amplification of the
cDNA with primers specific for the Vy4, Vy6, and Vy7
genes, thereby excluding Vy1-Cy4 and Vy2-Cy2 from the
analysis. As this report shows no positive control for the
hybridization of any of the Vγ-specific probes, it is possible
that their failure to detect Vy1 and Vy2 mRNA simply re-
lects the low sensitivity of the in situ hybridization tech-
nique.

We thus believe that the normal γ/δ i-IEL population
contains a relatively high frequency of cells expressing the
Vy1-Cy4 gene product. This frequency is comparable to
the frequency of cells expressing the Vy7-Cy1 chain. The
frequency of the Vy1+ i-IEL varies in different strains of
mice but appears to be quite constant among different indi-
viduals of the same strain, even when mice are housed in
different colonies. This suggests that genetic factors, rather
than environmental factors, are primarily responsible for
the determination of Vy1+ i-IEL frequency.

A striking characteristic of γ/δ T cell subsets is the rather
strict correlation among their onset of appearance in devel-

opment, the Vγ (and Vδ) genes used to encode the TCR,
and their homing to distinct peripheral sites. Thus, Vy5-
and Vy6-expressing cells are primarily, if not exclusively,
produced early in the fetal thymus, and home to the epi-

thelium of skin and of uterus, vagina, and tongue, respec-
tively (9, 26, 30, 54–57). Vy4-bearing cells appear later in
the fetal thymus, constituting the major γ/δ thymocyte
population at birth, and preferentially home to the periph-

eral lymphoid organs (1, 2, 33). Vy7-bearing cells, on the
other hand, develop from precursors that do not require a
thymus for maturation and home to the intestinal epithe-

lium (36–38, 50, 51, 53). Until this study, only a few ex-
ceptions to these rules were observed. Thus, ~2% of the
γ/δ thymocytes bear the Vγ7 protein (46), and ~5% of γ/δ

i-IEL express the Vγ4 chain in all mouse strains examined,
including athymic mice (Pereira, P., unpublished observa-
tions). In clear contrast to the other γ/δ T cell subsets, the
Vy1-bearing γ/δ T cells seem to develop and home in a
more diversified fashion. Thus, they can develop in the thy-

mus and migrate to the peripheral lymphoid organs, where,
together with the Vy4 subset, they represent the vast ma-

ajority of the γ/δ T cells. On the other hand, Vy1-bearing
cells can also develop extrathymically and constitute, togeth-
er with the Vy7 subset, the large majority of γ/δ i-IEL. Thus,
the ability to rearrange and express the Vy1 gene is not lim-
ited to a particular γ/δ T cell precursor, nor is the differen-
tiation of Vy1-bearing γ/δ T cells restricted to a defined mi-

lieu. Thymus-independent Vy1-bearing cells have also been
found in the skin of nude mice (48), and CD8α+γ/δ T cells,
which are believed to have a thymus-independent or-
igin, have been found in the liver of normal mice (58).

The presence of Vy1-bearing cells in lymphoid organs
and epithelia might be related to their specificity. A large

1927 Pereira et al.
fraction of Vγ1 cells appears to recognize an endogenous antigen expressed by lymphocytes (11). These cells can be further stimulated in the presence of PPD and HSP proteins or peptides (11, 13), which led to the suggestion that they might recognize autologous stress proteins (57, 59). In some instances, proliferation or accumulation of Vγ1-bearing cells has been shown to occur in vivo after infection of mice with different bacteria or parasites, suggesting a physiological role for those cells in the defense against pathogens (45, 60, 61). A similar reactivity has also been described for a subset of human γ/δ T cells that express the Vγ9 gene product. Cells of this type respond to mycobacterial extracts (45, 60, 61). A similar reactivity has also been described for a subset of human γ/δ T cells that express the Vγ9 gene product. Cells of this type respond to mycobacterial extracts (45, 60, 61). As in the case of Vγ1 cells in the mouse, Vγ9 cells in humans appear late in ontogeny, but compose a major γ/δ T cell population in adult individuals (75, 76). This parallelism suggests a precise and important function of these cells. A precise definition of the ligands recognized by these cells will certainly help us to understand their physiological role.

We thank C. Heusser for providing us with the antigen-free mice, Elly Basel, Pam Woronoff, Emily Rosie, and M. C. Vougny for excellent secretarial help, and A. Coutinho, W. Haas, and J. J. Lafaille for critical reading of the manuscript.

This work was supported by Yakult Honsha Co., Ltd., National Institutes of Health grants R37 and R35 to S. Tonegawa, and grant 6969 from the Association pour la Recherche sur le Cancer to P. Pereira. During part of this work, P. Pereira was a recipient of a fellowship from the Leukemia Society of America, and D. Gerber was a recipient of a National Science Foundation graduate research fellowship.

Address correspondence to Dr. Susumu Tonegawa, Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Building E17-353, 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

Received for publication 10 May 1995 and in revised form 18 July 1995.

References

1. Bluestone, J.A., R.Q. Cron, T.A. Barrett, B. Houlden, A.I. Sperling, A. Dent, S. Hedrick, B. Reilahan, and L.A. Matis. 1991. Repertoire development and ligand specificity of murine TCR γδ cells. *Immunol. Rev.* 120:5-33.

2. Itohara, S., N. Nakanishi, O. Kanagawa, R. Kubo, and S. Tonegawa. 1989. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in the peripheral lymphoid organs. *Proc. Natl. Acad. Sci. USA.* 86:5094-5098.

3. Koning, F., G. Stingl, W.M. Yokoyama, H. Yamada, W.L. Maloy, E. Tschachler, E.M. Shevach, and J.E. Coligan. 1987. Identification of a T3-associated γδ T cell receptor on Thy1+ dendritic epidermal cell lines. *Science (Wash. DC).* 236:834-837.

4. Kuziel, W.A., A. Takashima, M. Bonyhadi, P.R. Bergstresser, J.P. Allison, R.E. Tigelaar, and P.W. Tucker. 1987. Regulation of T-cell receptor γ-chain RNA expression in murine Thy1+ dendritic epidermal cell lines. *Nature (Lond.)* 328:263-266.

5. Stingl, G., F. Koning, H. Yamada, W.M. Yokoyama, E. Tschachler, J.A. Bluestone, G. Steiner, L.E. Samelson, A.M. Lew, J.E. Coligan, and E.M. Shevach. 1987. Thy1+ dendritic epidermal cells express T3 antigen and the T-cell receptor γ chain. *Proc. Natl. Acad. Sci. USA.* 84:4586-4590.

6. Goodman, T., and L. Lefrancois. 1988. Expression of the γδ T cell receptor on intestinal CDB+ intraepithelial lymphocytes. *Nature (Lond.)* 333:855-857.

7. Bonneville, M., C.A. Jareway, K. Ito, W. Haser, I. Ishida, N. Nakanishi, and S. Tonegawa. 1988. Intestinal intraepithelial lymphocytes are distinct set of γδ T cells. *Nature (Lond.)* 336:479-482.

8. Augustin, A.A., R.T. Kubo, and G. Sim. 1989. Resident pulmonary lymphocytes expressing the γδ T cell receptor. *Nature (Lond.)* 340:239-241.

9. Itohara, S., A.G. Farr, J.J. Lafaille, M. Bonneville, Y. Taka-gaki, W. Haas, and S. Tonegawa. 1990. Homing of a γδ thymocyte subset with homogeneous T cell receptors to mucosal epithelia. *Nature (Lond.)* 343:754-757.

10. Haas, W., P. Pereira, and S. Tonegawa. 1993. Gamma/delta cells. *Annu. Rev. Immunol.* 11:637-685.

11. O'Brien, R.L., M.P. Happ, A. Dallas, E. Palmer, R. Kubo, and W.K. Born. 1989. Stimulation of a major subset of lymphocytes expressing the T cell receptor γδ by an antigen derived from mycobacterium tuberculosis. *Cell.* 57:667-674.

12. Kikuchi, G.E., K. Roberts, E.M. Shevach, and J.E. Coligan. 1992. Gene transfer demonstrates that the Vγ1.1Cγ4Vδ6Cδ T cell receptor is essential for autoreactivity. *J. Immunol.* 148:1302-1307.

13. Born, W., L. Hall, A. Dallas, J. Boymcl, T. Shinnick, D. Young, P. Brennan, and R. O'Brien. 1990. Recognition of a peptide antigen by heat-shock-reactive γδ T lymphocytes. *Science (Wash. DC).* 249:67-69.

14. Wilde, D.B., K. Robert, K. Sturnmfoel, G. Kikuchi, J.E. Coligan, and E.M. Shevach. 1992. Mouse autoreactive gamma/delta T cells. I. Functional properties of autoreactive T cell hybridomas. *Eur. J. Immunol.* 22:483-489.

15. Nagler-Anderson, C., L.A. McNair, and A. Cradock. 1992. Self-reactive, T cell receptor-γδ, lymphocytes from the intes-
tinal epithelium of weanling mice. J. Immunol. 149:2315-2322.

16. O'Brien, R.L., Y.X. Fu, R. Cranfill, A. Dallas, C. Ellis, C. Reardon, J. Lang, S.R. Cardig, R. Kubo, and W. Born. 1992. Heat shock protein Hsp60-reactive γδ cells: a large diversified T lymphocyte subset with highly focused specificity. Proc. Natl. Acad. Sci. USA. 89:4348-4352.

17. Rojas, C.E., M.K. Vollmer, R.L. Cranfill, S.R. Cardig, W.K. Born and R.L. O'Brien. 1993. Liver γδ T cells: TCR junctional differences in HSP-60 reactive cells in liver and spleen. J. Immunol. 150:4867-4875.

18. Koning, F., W.M. Yokoyama, W.L. Maloy, G. Stingl, T.J. MacConnell, D.I. Cohen, E.M. Shevach, and J.E. Coligan. 1989. Twobetter cell lines for making hybridomas expressing specific T cell receptors. J. Immunol. 142:2112-2121.

19. Cooke, R.P., H. Terasaki, T. Yoshizaki, K. Nakamura, and A. Kobayashi. 1987. Expression of interleukin-2 receptors as a differentiation marker on thymic lymphoid cells. Nature (Lond.) 328:90-101.

20. Gottlieb, P.D., A. Marshak-Rothstein, K. Auditore-Har-geaves, D.B. Berkonov, D.B. August, R.M. Rosche, and J.D. Benedetto. 1983. Characterization and construction of mouse LYT-2 and LYT-3.1 monoclonal antibodies. Immunogenetics. 10:545-554.

21. Ledbetter, J.A., and L.A. Herzenberg. 1979. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47:63-90.

22. Coffman, R.L., and I.L. Weissman. 1981. A monoclonal antibody that recognizes B cells and B cell precursors in mice. J. Exp. Med. 153:269-279.

23. Springer, T.A., G. Galli, D.S. Secher, and C. Milstein. 1978. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur. J. Immunol. 8:539-551.

24. Havran, W.L., and J.P. Allison. 1988. Developmentally ordered appearance of thymocytes expressing different T cell antigen receptors. Nature (Lond.). 330:443-445.

25. Coffman, R.L., and I.L. Weissman. 1981. A monoclonal antibody that recognizes B cells and B cell precursors in mice. J. Exp. Med. 153:269-279.

26. Rojas, C.E., M.K. Vollmer, R.L. Cranfill, S.R. Cardig, W.K. Born and R.L. O'Brien. 1993. Liver γδ T cells: TCR junctional differences in HSP-60 reactive cells in liver and spleen. J. Immunol. 150:4867-4875.

27. Koning, F., W.M. Yokoyama, W.L. Maloy, G. Stingl, T.J. MacConnell, D.I. Cohen, E.M. Shevach, and J.E. Coligan. 1989. Two better cell lines for making hybridomas expressing specific T cell receptors. J. Immunol. 142:2112-2121.

28. White, J., M. Blackman, J. Bill, J. Kapper, P. Marrack, D. Gold, and W. Born. 1989. Two better cell lines for making hybridomas expressing specific T cell receptors. J. Immunol. 143:1822-1825.

29. Ito, K., M. Bonneville, Y. Takagaki, N. Nakanishi, O. Kana- gawa, E.G. Krecko, and S. Tonegawa. 1989. Different γδ T-cell receptors are expressed on thymocytes at different stages of development. Proc. Natl. Acad. Sci. USA. 86:631-635.

30. Mosmann, T.J. 1983. Rapid colorimetric assay for cellular growth and survival: a new method for 96-well plates. J. Immunol. Methods. 65:55-63.

31. Higuchi, R.G., and H. Ochman. 1989. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 17:5855-5856.

32. Takagaki, Y., N. Nakanishi, I. Ishida, O. Kanagawa, and S. Tonegawa. 1989. T cell receptor-γ and -δ genes preferentially utilized by adult thymocytes for the surface expression. J. Immunol. 142:2112-2121.

33. Greaves, D.B. Berkoven, D.B. August, R.M. Rosche, and J.A. Bluestone. 1985. Expression of interleukin-2 receptors as a differentiation marker on thymic stem cells. Nature (Lond.) 314:98-101.

34. Gottlieb, P.D., A. Marshak-Rothstein, K. Auditore-Hargeaves, D.B. Berkonov, D.B. August, R.M. Rosche, and J.D. Benedetto. 1983. Characterization and construction of mouse LYT-2 and LYT-3.1 monoclonal antibodies. Immunogenetics. 10:545-554.

35. Goodman, T., and L. Lefrancois. 1989. Intraepithelial lymphocytes: anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 170:1569-1581.

36. Bandeira, A., S. Itohara, M. Bonneville, O. Burlen-Defranoux, T. Mota-Santos, A. Coutinho, and S. Tonegawa. 1991. Extra-thymic origin of intestinal intraepithelial lymphocytes bearing T cell antigen receptor γδ. Proc. Natl. Acad. Sci. USA. 88:43-47.

37. Mosley, R.L., D. Syre, and J.R. Klein. 1990. Differentiation and functional maturation of bone marrow-derived epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J. Immunol. 145:1369-1375.

38. Lefrancois, L., R. LeCorre, J. Mayo, J.A. Bluestone, and T. Goodman. 1990. Extrathymic selection of TCR-γδ T cells by class II major histocompatibility complex molecules. Cell. 63:333-340.

39. Guy-Grand, D., N. Cerf-Bensussan, B. Malissen, M. Malassis-Seris, C. Briottet, and P. Vassalli. 1991. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for gut epithelium in T cell differentiation. J. Exp. Med. 173:471-481.

40. Cron, R.Q., T.F. Gajewsky, S.O. Sharrow, F.W. Fitch, L.A. Mats, and J.A. Bluestone. 1989. Phenotype and functional analysis of murine CD3+CD4+CD8+ TCR-γδ-expressing peripheral T cells. J. Immunol. 142:3754-3762.

41. Lefrancois, L., and T. Goodman. 1989. In vivo modulation of cytolytic activity and Thy-1 expression in TCR-γδ intraepithelial lymphocytes. Science (Wash. DC). 243:1716-1718.

42. Lefrancois, L. 1991. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147:1746-1751.

43. Viney, J.L., P.J. Kilshaw, and T.T. MacDonald. 1990. Cytotoxic αβ+ and γδ+ T cells in murine intestinal epithelium. Eur. J. Immunol. 20:1623-1626.

44. Kyes, S., and J.A. Bluestone. 1989. Intraepithelial lymphocytes: the small intestine. J. Immunol. 147:1746-1751.

45. Kyes, S., and J.A. Bluestone. 1989. Intraepithelial lymphocytes: the small intestine. J. Immunol. 147:1746-1751.

46. Kelly, K.A., M. Peare, L. Lefrancois, and R. Scollay. 1993. Emigration of selected subsets of γδ+ T cells from the adult murine thymus. Int. Immunol. 5:331-335.

47. Garman, R.D., P.J. Doherty, and D.H. Raulet. 1986. Diver-
Thymus-dependent and -independent Vγ1-bearing γδ T Cells

1989. Human γδ T cells respond to mycobacterial heat-shock protein. Nature (Lond.). 340:309–312.

50. Takagaki, Y., A. Decloux, M. Bonneville, and S. Tonegawa. 1989. Diversity of γδ T cell receptors on murine intestinal intraepithelial lymphocytes. Nature (Lond.). 339:712–714.

51. Asarnow, D.M., T. Goodman, L. Lefrançois, and J.P. Allison. 1989. Distinct antigen receptor repertoires of two classes of murine epithelium-associated T cells. Nature (Lond.). 341:60–62.

52. Whetsell, M., R.L. Mosley, L. Whetsell, F.V. Schaefer, K.S. Miller, and J.R. Klein. 1991. Rearrangement and junctional-site sequence analyses of γ-cell receptor γ genes in intestinal intraepithelial lymphocytes from murine athymic chimeras. Mol. Cell. Biol. 11:5902–5904.

53. Kyes, S., E. Carew, S.R. Cardig, J.C.A. Janeway, and A. Hayday. 1989. Diversity in T-cell receptor γ gene usage in intestinal intraepithelial lymphocytes from murine athymic chimeras. Proc. Natl. Acad. Sci. USA. 86:5527–5531.

54. Lafaille, J.J., A. DeCloux, M. Bonneville, Y. Takagaki, and S. Tonegawa. 1989. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of V-(D)-J joining. Cell. 59:859–870.

55. Ikuta, K., T. Kina, I. MacNeil, N. Uchida, B. Peault, Y.-H. Chien, and I.L. Weissman. 1990. Developmental switch in intraepithelial lymphocytes from murine athymic chimeras. Proc. Natl. Acad. Sci. USA. 86:5527–5531.

56. Havran, W.L., and J.R. Klein. 1991. Rearrangement and junctional-site sequence analyses of T-cell receptor γ genes in intestinal intraepithelial lymphocytes from murine athymic chimeras. Mol. Cell. Biol. 11:5902–5904.

57. Kyes, S., E. Carew, S.R. Cardig, J.C.A. Janeway, and A. Hayday. 1989. Diversity in T-cell receptor γ gene usage in intestinal intraepithelial lymphocytes from murine athymic chimeras. Proc. Natl. Acad. Sci. USA. 86:5527–5531.

58. Ohteki, T., T. Abo, S. Seki, T. Kobata, H. Yagita, K. Okumura, and K. Kumagai. 1991. Predominant appearance of γδ T cells infiltrating murine dermatitis in association with its 65-kD heat shock protein. J. Exp. Med. 171:667–679.

59. Janeway, C.A., B. Jones, and A. Hayday. 1989. Specificity, rearrangement, and expression of murine T cell γ genes. Cell. 5:1619–1627.

60. Inoue, T., Y. Kobata, M. Seki, H. Yagita, S. Shimada, Y.-Y. Huang, Y. Takagaki, and K. Okumura. 1992. Extrathymic origin of Vγ1/Vδ6 T cells in the skin. Eur. J. Immunol. 22:595–598.

61. Emoto, M., H. Danbara, and Y. Yoshikai. 1992. Induction of γδ T cells in IL-7 transgenic mice. Int. Immunol. 5:1763–1767.

62. Modlin, R.L., C. Pirmez, F.M. Hofman, V. Torigian, K. Uyemura, T.H. Rea, B.R. Bloom, and M.B. Brenner. 1989. Lymphocytes bearing antigen-specific γδ T cell receptors accumulate in human infectious disease lesions. Nature (Lond.). 338:544–548.