Schmidt, Amand F; Swerdlow, Daniel I; Holmes, Michael V; Patel, Riyaz S; Fairhurst-Hunter, Zammy; Lyall, Donald M; Hartwig, Fernando Pires; Horta, Bernardo Lessa; Hyppönen, Elina; Power, Christine; +125 more... Moldovan, Max; van Iperen, Erik; Hovingh, G Kees; Demuth, Ilja; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Juri; Bertram, Lars; Liu, Tian; Coassin, Stefan; Willeit, Johann; Kiechl, Stefan; Willeit, Karin; Mason, Dan; Wright, John; Morris, Richard; Wananethee, Goya; Whincup, Peter; Ben-Shlomo, Yoav; McLachlan, Stela; Price, Jackie F; Kivimaki, Mika; Welch, Catherine; Sanchez-Galvez, Adelaida; Marques-Vidal, Pedro; Nicolaides, Andrew; Panayiotou, Andrie G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Matullo, Giuseppe; Fiorito, Giovanni; Guarrera, Simonetta; Sacerdote, Carlotta; Wareham, Nicholas J; Langenberg, Claudia; Scott, Robert; Luan, Jian’an; Bobak, Martin; Malyutina, Sofia; Pajak, Andrzej; Kubinova, Ruzena; Tamosiunas, Abdonas; Pikhart, Hynek; Husemoen, Lise Lotte Nystrup; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Simonsen, Kenneth Starup; Cooper, Jackie; Humphries, Steve E; Brilliant, Murray; Kitchner, Terrie; Hakonarson, Hakon; Carrell, David S; McCarty, Catherine A; Kirchner, H Lester; Larson, Eric B; Crosslin, David R; de Andrade, Mariza; Roden, Dan M; Denny, Joshua C; Carty, Cara; Hancock, Stephen; Attia, John; Holliday, Elizabeth; O’Donnell, Martin; Yusuf, Salim; Chong, Michael; Pare, Guillaume; van der Harst, Pim; Said, M Abdulllah; Eppinga, Ruben N; Verweij, Niek; Snieker, Harold; LifeLines Cohort study group; Christen, Tim; Mook-Kanamori, Dennis O; Gustafsson, Stefan; Lind, Lars; Ingelsson, Erik; Pazoki, Raha; Franco, Oscar; Hofman, Albert; Uitterlinden, Andre; Dehghan, Abbas; Teumer, Alexander; Baumeister, Sebastian; Dörr, Marcus; Lerch, Markus M; Völker, Uwe; Völzke, Henry; Ward, Joey; Pell, Jill P; Smith, Daniel J; Meade, Tom; Maitland-van der Zee, Anke H; Baranova, Ekaterina V; Young, Robin; Ford, Ian; Campbell, Archie; Padmanabhan, Sandosh; Bots, Michiel L; Grobbbee, Diederick E; Frooguel, Philippe; Thuiller, Dorothée; Balkau, Beverley; Bonnefond, Amélie; Cariou, Bertrand; Smart, Melissa; Bao, Yan Chun; Kumari, Meena; Mahajan, Anubha; Ridker, Paul M; Chasman, Daniel I; Reiner, Alex P; Lange, Leslie A; Ritchie, Marylyn D; Asselbergs, Folkert W; Casas, Juan-Pablo; Keating, Brendan J; Preiss, David; Hingorani, Aroon D; UCLEB consortium; Sattar, Naveed; (2016) PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. The lancet Diabetes & endocrinology, 5 (2). pp. 97-105. ISSN 2213-8587 DOI: https://doi.org/10.1016/S2213-8587(16)30396-5

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/3176742/

DOI: https://doi.org/10.1016/S2213-8587(16)30396-5
Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study

Amand F Schmidt*, Daniel I Swerdlow*, Michael V Holmes*, Riyaz S Patel, Zammy Fairhurst-Hunter, Donald M Lyall, Fernando Pires Hartwig, Bernardo Lessa Horta, Elina Hyypönen, Christine Power, Max Moldovan, Erik van Iperen, G Rees Hovingh, Ilja Demuth, Kristina Norman, Elisabeth Steinhagen-Thiessen, Juri Demuth, Lars Bertram, Tian Liu, Stefan Coassin, Johann Willeit, Stefan Kiechle, Karin Willeit, Dan Mason, John Wright, Richard Morris, Goya Wanamethee, Peter Whincup, Yoav Ben-Shlomo, Stella McLachlan, Jackie F Price, Mika Kiwimaki, Catherine Welch, Adalaida Sanchez-Galvez, Pedro Marques-Vidal, Andrew Nicolaides, Andrie G Panayiotou, N Charlotte Onland-Moret, Yvonne T van der Schouw, Giuseppe Matallo, Giovanni Fiorito, Simonetta Guarrera, Carlotta Sacerdote, Nicholas J Wareham, Claudia Langenberg, Robert Scott, Jian’an Luan, Martin Bobak, Sofia Malyutina, Andrzej Pajak, Ruzena Kubinova, Abdonas Tamasiunas, Hynek Pikhart, Lise Lotte Nystrup Husemoen, Niels Grarup, Oluf Pedersen, Torben Hansen, Allan Linneberg, Kenneth Starup Simonsen, Jackie Cooper, Steve E Humphries, Murray Brilliant, Terrie Kitchener, Hakon Hakonarson, David S Carrell, Catherine A McCarty, H Lester Kirchner, Eric B Larson, David R Crosslin, Mariza de Andrade, Dan M Roden, Joshua C Denny, Cara Carty, Stephen Hancock, John Attia, Elizabeth Holliday, Martin O’Donnell, Salim Yusuf, Michael Chong, Guillaume Pare, Pim van der Harst, M Abdullah Said, Ruben N Eppinga, Niek Verweij, Harold Snieder for the LifeLines Cohort study group†, Tim Christen, Dennis O Mook-Kamani, Stefano Gustafsson, Lars Lind, Erik Ingelsson, Raha Pazoki, Oscar Franco, Albert Hofman, Andre Uitterlinden, Abbas Dehghan, Alexander Teumer, Sebastian Baumeister, Marcus Doir, Markus M Leer, Ulle Volker, Henry Völzke, Joey Ward, Jill P Pell, Daniel J Smith, Tom Meade, Anke H Maitland-van der Zee, Ekaterina V Baranova, Robin Young, Ian Ford, Archie Campbell, Sandosh Padmanabhan, Michel L Bots, Diederick E Grobbee, Philippe Frugel, Dorothée Thuillier, Beverley Balkau, Amélie Bonnefond, Bertrand Cariou, Melissa Smart, Yanchun Bao, Meena Kumari, Anubha Mahajan, Paul M Ridker, Daniel I Chasman, Alex P Reiner, Leslie A Lange, Marylyn D Ritchie, Folkert W Asselbergs, Juan-Pablo Casas, Brendan J Keating†, David Preiss‡, Aroon D Hingorani‡, UCLEB consortium†, Naveed Sattar‡.

Summary

Background Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk.

Methods In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores.

Findings Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs13591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores.

Interpretation PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins.

Funding British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.
Research in context

Evidence before this study

We searched PubMed for “PCSK9” (All Fields) AND (“antagonists and inhibitors” [Subheading] OR (“antagonists” [All Fields] AND “inhibitors” [All Fields]) OR “antagonists and inhibitors” [All Fields] OR “inhibitors” [All Fields]) AND (“diabetes mellitus” [MeSH Terms] OR (“diabetes” [All Fields] AND “mellitus” [All Fields]) OR “diabetes mellitus” [All Fields]) for articles published up to Oct 8, 2016, to identify studies that assessed treatment with PCSK9 inhibitors or carriage of genetic variants in PCSK9 in relation to diabetes. This search identified 17 studies, two of which presented novel, yet contrasting findings in relation to genetic variants in PCSK9 and glycaemic status.

Randomised trials of treatment with statins and carriage of corresponding genetic variants in HMGCRT that lower LDL cholesterol both show and increase in the risk of type 2 diabetes. More recently, genetic predisposition to lower LDL cholesterol concentrations has been linked to an increased risk of diabetes, suggesting that dysglycaemia might be a consequence of lowering LDL cholesterol in general. Whether lowering of LDL cholesterol by PCSK9 inhibitors results in increased risk of diabetes is currently unknown. Clinical trials of PCSK9 inhibitors to assess their effect on cardiovascular outcomes are ongoing, but reliable evidence for a possible association between PCSK9 inhibition and risk of diabetes could take longer to accrue.

Added value of this study

Mendelian randomisation is an established approach that uses randomly allocated variants in the encoding gene to infer mechanism-based efficacy and safety outcomes from pharmacological perturbation of a drug target. We used four genetic variants in PCSK9 in more than 55 000 individuals (including about 50 000 diabetes cases) and showed that PCSK9 genetic variants associated with lower LDL cholesterol concentrations were associated with increased concentration of fasting glucose, bodyweight, and risk of diabetes. This finding adds robust new evidence to previous research that identified weak associations of PCSK9 with risk of diabetes.

Implications of all the available evidence

Similar to statin therapy, treatment with PCSK9 inhibitors is likely to increase the risk of diabetes. Patients treated with PCSK9 inhibitors should be carefully monitored for dysglycaemia, including within ongoing and future clinical trials.

Methods

Genetic variant selection

We selected four SNPs in or near PCSK9 on the basis of a strong association with LDL cholesterol, as reported by the Global Lipids Genetics Consortium (GLGC); low pairwise linkage disequilibrium (r²<0·30) with SNPs within the same and adjacent genes (1000 Genomes CEU data); high prior probability of being a functional variant based on the combined annotation dependent depletion (CADD) score, or the SNP being non-synonymous, or both; or previous reported associations with CHD. On the basis of these criteria, we selected the SNPs rs11583680 (minor allele frequency 0·14), rs11591147 (0·01), rs2479409 (0·36), and rs11206510 (0·17; appendix).

Individual participant-level and summary-level data

Data were analysed from two sources. Participating studies executed a common analysis script on their own data, submitting summary estimates to a central analysis centre at University College London, London, UK. Main
SNP tests (depending on the degree of heterogeneity). Our aim was to estimate the effect of the PCSK9 locus as a whole, but SNP-specific estimates are also reported. Other important assumptions of the GS approach are (approximate) independence of the included SNPs (assessed by pairwise linkage disequilibrium (r²) and use of multivariable regression models) and the additivity of allele effects. We also investigated whether the association of individual SNPs with diabetes risk was in proportion to the association with LDL cholesterol lowering.

Estimates are presented as mean differences or odds ratios (ORs) with 95% CIs, presented either per LDL-cholesterol-decreasing allele or, in the case of GS, per 1 mmol/L (38·67 mg/dL) lower LDL cholesterol. The per 1 mmol/L GS effect estimates were derived by multiplying point estimates and their variances by the multiplicative inverse of the estimated SNP-LDL cholesterol effects. Similar to most genetic studies, missing data were excluded in an available case manner, assuming a missing-completely-at-random mechanism. To avoid potential bias due to population stratification and non-modelled ancestry interactions, analyses excluded individuals of non-European ancestry. Differences in ancestry can be a potential source of confounding bias (ie, population stratification bias) when environment is related to both the genes and the outcome of interest. Analyses were done with the statistical programme R (version 3.3.0).

Sensitivity analyses

We assumed that the allele effects were additive, which we assessed in available individual participant data by comparing an additive model to a non-additive model (allowing for dominance or recessiveness) using a likelihood ratio test (meta-analysed by Fisher’s method). Because measurement error might be larger in prevalent cases (ascertained, for example, from hospital records) we did a further sensitivity analysis in which we separately analysed incident and prevalent type 2 diabetes. This sensitivity analysis was done not because we expect the true associations of PCSK9 to be different with respect to prevalent and incident case status, but merely reflected a quality-control check. Although SNPs were selected to be independent, there was some degree of residual dependency (appendix; maximum r² 0·26). To explore the effect of this residual correlation between the four study SNPs (appendix), we compared results from a multivariable analysis (including the four SNPs in the same model) in studies with individual participant data (correcting for this correlation) to pairwise results (ignoring any between-SNP correlation) based on the same data.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author (AFS) had full access
to all the data in the study and shared final responsibility for the decision to submit for publication with all authors.

Results
50 studies shared participant-level data from up to 245,942 individuals, which was supplemented by summary effect estimates from data repositories, resulting in a maximum available sample size of 568,448 individuals, including 51,623 cases of incident or prevalent type 2 diabetes. Individual studies were similar with respect to the distribution of biochemical measures (assessed by the median of study-specific means): LDL cholesterol 3.41 mmol/L (IQR 0.39), fasting glucose 5.38 mmol/L (0.58), and HbA1c 5.50% (appendix).

Pooled pairwise linkage disequilibrium estimates for the four PCSK9 SNPs all had r² values less than 0.30 (appendix), confirming that the selected SNPs were in low correlation in the collected data. The four PCSK9 SNPs were associated with reductions in LDL cholesterol ranging from −0.02 mmol/L (95% CI −0.03 to −0.02) for rs11583680 to −0.34 mmol/L (−0.36 to −0.32) for rs11591147 per LDL cholesterol-decreasing allele (figure 1).

Figure 2 depicts the associations of the four PCSK9 SNPs after scaling the SNP effect to 1 mmol/L lower LDL cholesterol. Results of the PCSK9 GS analysis show that a 1 mmol/L lower LDL cholesterol was associated with an increase in bodyweight of 1.03 kg (95% CI −0.24 to 1.82; and an increase of 0.006 (0.003 to 0.010) in waist-to-hip ratio, but we observed a potentially neutral association with BMI (0.11 kg/m², −0.09 to 0.30). Associations of the PCSK9 GS with glycaemia measures were 0.09 mmol/L (−0.02 to 0.15) higher fasting plasma glucose, HbA1c, of 0.03% (−0.01 to 0.08); and for fasting insulin 0.00% (−0.06 to 0.07). SNP-specific forest plots are presented in the appendix. The estimates were similar when corrected for linkage disequilibrium (appendix), and no systematic deviations from an additive model were identified (appendix). Finally, we noted an unanticipated effect on height (mean difference −0.008 m, −0.008 to 0.015; appendix).

Figure 3 shows the associations of individual PCSK9 variants and the GS with risk of type 2 diabetes. Using the PCSK9 GS, 1 mmol/L lower LDL cholesterol was associated with an increased risk of type 2 diabetes (OR 1.29, 95% CI 1.11 to 1.50). Exploring the PCSK9 associations with incident (appendix) or prevalent (appendix) type 2 diabetes separately showed directional concordance of this effect (incident type 2 diabetes OR 1.15, 0.76 to 1.72; prevalent type 2 diabetes OR 1.26, 0.88 to 1.80). Associations of individual SNPs with LDL cholesterol and risk of type 2 diabetes showed a dose-response relation (figure 4).

Discussion
In this mendelian randomisation study, genetic variants in PCSK9, used as a proxy for pharmacological inhibition of PCSK9, were associated with lower LDL cholesterol concentration and increased risk of type 2 diabetes. The same variants were also associated with higher fasting glucose, bodyweight, and waist-to-hip ratio, and with directionally consistent but non-significant associations for BMI and HbA1c, and a seemingly neutral association for fasting insulin. These results are in agreement with previous findings for variants in the HMGCR gene encoding the target of statin drugs, with statins modestly increasing bodyweight and the risk of type 2 diabetes.

When scaled to 1 mmol/L lower LDL cholesterol, the risk for type 2 diabetes based on HMGCR variants was an OR of 1.39 (95% CI 1.12 to 1.73), similar to the corresponding scaled estimate for this PCSK9 GS (1.29, 1.11 to 1.50), and similar to an estimate based on SNPs affecting LDL cholesterol selected from throughout the genome (1.27, 1.14 to 1.41). However, effect estimates obtained from mendelian randomisation studies proxy lifetime exposure to natural genetic variation, and might therefore not directly translate to the size of effect of any corresponding pharmacological treatment introduced much later in life and thus for a shorter duration of time. For example, in a meta-analysis of randomised controlled trials of statin treatment, the OR for type 2 diabetes was 1.12 (95% CI 1.06 to 1.18).

In the case of statins, the treatment benefit in terms of CHD risk reduction greatly outweighs any potential adverse effect on risk of type 2 diabetes, partly because the size of the risk reduction in CHD is greater than the risk increase in type 2 diabetes, and partly because the absolute risk of CHD in primary prevention populations eligible for statin treatment is greater than the absolute risk of type 2 diabetes. A similar precise risk assessment for PCSK9 inhibitors awaits results from longer and larger-term randomised trials. In a recent pooled analysis, researchers reported that treatment with alirocumab was associated with an OR for type 2 diabetes of 0.89 (95% CI 0.62 to 1.28) compared with placebo, based on 133 type 2 diabetes events. Variants that affect circulating LDL cholesterol have been reported previously to affect the probability of being

Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus (A G Panayiotou PhD); Julius Center for Health Sciences and Primary Care (N C Orland-Moore PhD); Prof Y T van der Schouw PhD; F W Asselbergs, Prof M L Bots MD, Prof D E Grobbee PhD; Department of Cardiology, Division Heart and Lungs (F W Asselbergs), University Medical Center Utrecht, Utrecht, Netherlands; Human Genetics Foundation, Hoëvelf, Turin, Italy (G Matullo PhD, G Fiatto PhD, S Guarerra MSc); Department of Medical Sciences, University of Turin, Turin, Italy (G Matullo, G Fiatto, S Guarerra); Cancer Epidemiology Unit, San Giovanni Battista Hospital, Turin, Italy; Centre for Oncology Prevention, University of Health Sciences, National Institute of Public Health, Prague, Czech Republic (C Langenberg PhD, R Scott PhD, J Lunan PhD); Novosibirsk State Medical University, Novosibirsk, Russia (Prof S Malyutina PhD); Institute of Internal and Preventive Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia (S Malyutina); Jagiellonian University Collegium Medicum, Krakow, Poland (A Pagie PhD); National Institute of Public Health, Prague, Czech Republic (R Kubinova PhD); Lithuanian University of Health Sciences, Kaunas, Lithuania (Prof A Tamromunas PhD); Research Centre for Prevention and Health, Capital Region of Denmark, Denmark (L LN Husemoen PhD, K S Simonsen PhD, Prof A Linneberg PhD); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (N Gausp PhD, O Pedersen PhD, T Hansen PhD); Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark (A Lennberg); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
prescribed a lipid-lowering drug.\(^4\) We were unable to account for this effect in the analysis because prescription data for these treatments were often not available, and when they were recorded they were only available for a single follow-up point. For lipid-lowering treatments, one record of treatment does not properly reflect the single follow-up point. For lipid-lowering treatments, data for these treatments were often not available, and we were unable to correct for this treatment might seem advisable; treatments are much less variable over time and controlled trials could differ from the genetic associations seen in clinical trials. Hence, in the presence of off-target effects, results from ongoing randomised controlled trials could differ from the genetic associations reported here.

Our main findings are based on four PCSK9 SNPs in combination and scaled to 1 mmol/L lower LDL-cholesterol. This approach assumes additive effects across the SNPs, an assumption that held well in sensitivity analyses. A potentially unobserved non-additive effect might explain why we identified a genetic association with fasting glucose and a concordant (although non-significant) association with HbA\(_1c\), whereas fasting glucose was not associated with BMI.

An important aspect of our study is that the associations identified for lipid-lowering drugs, any correction for the latter would be inappropriate because of the strong correlation between the drug also binding to an unintended target (in this case, any target other than PCSK9). Although monoclonal antibody therapeutics are often highly specific, perhaps more so than small molecule therapeutics, they retain the potential for off-target effects. Hence, in the presence of off-target effects, results from ongoing randomised controlled trials could differ from the genetic associations reported here.

We have previously reported examples of common variants in genes encoding a protein drug target mimicking the on-target effects of pharmacological interventions on biomarkers and disease outcomes in type, direction, and relative size.\(^1,3,6,17\) However, such analyses cannot predict off-target effects of treatments. We refer to on-target effects as those that are due to a drug effect on the intended target (in this case PCSK9) and off-target effects as those that might occur because of the drug also binding to an unintended target (in this case, any target other than PCSK9). Although monoclonal antibody therapeutics are often highly specific, perhaps more so than small molecule therapeutics, they retain the potential for off-target effects. Hence, in the presence of off-target effects, results from ongoing randomised controlled trials could differ from the genetic associations reported here.

Our main findings are based on four PCSK9 SNPs in combination and scaled to 1 mmol/L lower LDL-cholesterol. This approach assumes additive effects across the SNPs, an assumption that held well in sensitivity analyses. A potentially unobserved non-additive effect might explain why we identified a genetic association with fasting glucose and a concordant (although non-significant) association with HbA\(_1c\), whereas fasting glucose was not associated with BMI.

Figure 2: Association of genetic variants in PCSK9 with glycaemic and anthropometric biomarkers

Effect estimates are presented as mean difference with 95% CIs. Associations were scaled to a 1 mmol/L reduction in LDL cholesterol. SNP-specific results are pooled by use of a fixed-effect model; weighted gene-centric score (GS) models combining all four SNP-specific estimates are presented as fixed-effect and random-effects estimates. The size of the black dots representing the point estimates is proportional to the inverse of the variance. Between-SNP heterogeneity was measured as a two-sided Q-test (\(\chi^2\)) and an \(I^2\) value (97.5% CI). Note that results from individual participant data are supplemented by repository data from the Global Lipids Genetics Consortium, the Meta-Analyses of Glucose and Insulin-related traits Consortium, and the Genetic Investigation of Anthropometric Traits consortium.

Table 1: Sample size and mean difference for glycemic and anthropometric biomarkers

Biomarker	Sample size	Mean difference
Fasting insulin	n12153680	-0.020 (-0.010 to 0.000)
	n12100510	0.09 (-0.04 to 0.22)
	n121591147	-0.11 (-0.24 to 0.06)
	n121581680	0.02 (-0.06 to 0.11)
	n121591147	0.00 (-0.06 to 0.07)

Table 2: Sample size and mean difference for LDL-cholesterol

Biomarker	Sample size	Mean difference
LDL-cholesterol	n12153680	-0.01 (-0.005 to 0.047)
	n12100510	0.04 (-0.004 to 0.012)
	n121591147	0.09 (0.004 to 0.031)
	n121581680	0.06 (0.003 to 0.010)

Table 3: Sample size and mean difference for BMI

Biomarker	Sample size	Mean difference
BM	n12153680	-0.088 (-0.194 to 0.018)
	n12100510	0.079 (-0.014 to 0.173)
	n121591147	0.051 (-0.005 to 0.107)
	n121581680	0.032 (-0.011 to 0.075)

Table 4: Sample size and mean difference for HbA\(_1c\)

Biomarker	Sample size	Mean difference
HbA\(_1c\)	n12153680	-0.161 (-0.568 to 0.247)
	n12100510	0.011 (-0.330 to 0.352)
	n121591147	0.248 (0.000 to 0.496)
	n121581680	0.105 (0.087 to 0.297)

References omitted for brevity.
Articles

Pharmacology

(Prof D M Roden MD) and Department of Biomedical Informatics (J C Denny MD), Vanderbilt University School of Medicine, Nashville, TN, USA; George Washington University, Washington, DC, USA; (E Carty PhD) University of Newcastle, Newcastle, NSW, Australia; (S Hancock MSc, J Atta PhD, E Holliday PhD) Population Health Research Institute, Hamilton, ON, Canada; (O M Dörr MD) Department of Cardiology (P van der Harst, M A Sad BSc, R N Eppenga PhD), N Verveij PhD, Department of Genetics (P van der Harst), and Department of Epidemiology (Prof H Sveder PhD), University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands; (T Christen MSc, D O Moek Kavanori PhD) Molecular Epidemiology (S Gustafson PhD), Prof L Lind PhD, Prof E Ingelsson PhD) and Science for Life Laboratory (E Ingelsson), Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; (E Ingelsson) Department of Epidemiology (R Patsios PhD, O Franco PhD, Prof A Hofman PhD, A Dehghan), and Department of Internal Medicine (A Uitterlinden PhD), Erasmus University Medical Center, Rotterdam, Netherlands; Institute for Community Medicine (A Teumer PhD), Prof H Volke MD, S Baumeister PhD, Department of Internal Medicine (Prof M Dor M D), Department of Medicine A (Prof M M Lerch MD), and Infrascience Institute of Genetics and Functional Genomics (Prof U Volker PhD), University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Greifswald, Germany (A Teumer, H Volke, M Dor, U Volker), Department of Epidemiology and Preventive Medicine.

Figure 3: Association of genetic variants in PCSK9 with risk of type 2 diabetes, individually (A) and as weighted gene-centric score (B).

Effect estimates are presented as odds ratios (ORs) for the incidence or prevalence of type 2 diabetes, with 95% CIs. Associations were scaled to a 1 mmol/L reduction with risk of type 2 diabetes, individually (A) and as weighted gene-centric score (B).

rs12206510	rs11591147
1952 BC	1952 BC
BASE II	BASE II
BVMHS	BVMHS
CAPS	CAPS
Cyp2a	Cyp2a
β2m	β2m
ELSA	ELSA
EPIC NL	EPIC NL
Generation Scotland	Generation Scotland
HART	HART
HFMECH	HFMECH
Shanghai Community Study	Shanghai Community Study
Lifelines	Lifelines
PROVENC	PROVENC
SHIP	SHIP
SHIP-TREND	SHIP-TREND
UCP	UCP
WHI	WHI
WOSCOPS	WOSCOPS
UK Biobank	UK Biobank
DIAGRAM	DIAGRAM

Fixed effect Random effects

\[\chi^2 = 25.29, p = 0.28, \ I^2 = 4.21 (97.5\% CI 0–16.9) \]

Fixed effect Random effects

\[\chi^2 = 15.1, p = 0.94, \ I^2 = 1.45 (97.5\% CI 0–1.5) \]

Fixed effect Random effects

\[\chi^2 = 25.29, p = 0.28, \ I^2 = 4.21 (97.5\% CI 0–16.9) \]

Fixed effect Random effects

\[\chi^2 = 15.1, p = 0.94, \ I^2 = 1.45 (97.5\% CI 0–1.5) \]

Table A

rs11206510	OR per LDL cholesterol-lowering allele
rs11206510	1.10 (0.94–1.22)
rs11206510	0.99 (0.92–1.07)
rs11206510	1.08 (0.99–1.22)
rs11206510	1.03 (0.95–1.22)
rs11206510	0.88 (0.69–1.13)
rs11206510	1.01 (0.99–1.03)
rs11206510	1.01 (0.99–1.03)
rs11206510	1.02 (0.99–1.05)
rs11206510	1.00 (0.98–1.02)
rs11206510	1.00 (0.97–1.03)

Table B

Events/total	OR, scaled per 1 mmol/L decrease in LDL cholesterol
n11591147	0.82 (0.69–0.98)
n11591147	0.90 (0.92–1.08)
n11591147	0.99 (0.93–1.06)
n11591147	1.00 (0.99–1.01)
n11591147	1.00 (0.99–1.02)
n11591147	1.00 (0.99–1.03)
n11591147	1.00 (0.99–1.04)
n11591147	1.00 (0.99–1.05)
n11591147	1.00 (0.99–1.06)
n11591147	1.00 (0.99–1.07)

Figure 3: Association of genetic variants in PCSK9 with risk of type 2 diabetes, individually (A) and as weighted gene-centric score (B).
insulin seemed unaffected. Conflicting evidence exists about a possible role of PCSK9 and PCSK9 monoclonal antibodies in disruption of pancreatic islet function.8,41 Although concordant with fasting glucose, the HbA1c association was non-significant in the collected data, which might be related to the large amount of heterogeneity between the four SNPs (upper-bound P 72%). Interestingly, the association of the PCSK9 GS with BMI was smaller than that with bodyweight, which (partially) explains the slight discrepancy between the BMI and bodyweight associations could be the greater heterogeneity in the associations of PCSK9 SNPs with BMI than with weight. Notably, the GS effect estimates were often driven by a large effect of SNP rs11591147; as our dose-response analysis shows (figure 4), the larger influence of this SNP appropriately reflects the proportionally larger LDL cholesterol effect of this SNP. Finally, we did not have access to measures of PCSK9 concentration in this analysis, but others42 have shown associations between common and rare PCSK9 alleles (including some of the same SNPs used here) and circulating PCSK9 concentrations.

Setting aside associations with glycaemia and weight, risk of type 2 diabetes could also be increased because lifelong exposure to genetic variation in PCSK9 might reduce mortality, making it conceivable that individuals with these variants survive longer and hence have more time to develop type 2 diabetes. However, whether PCSK9 genotype reduces mortality has not be conclusively shown.43 Irrespective of the nature of the PCSK9 association with type 2 diabetes, large randomised trials should determine whether this relation also holds for PCSK9 monoclonal antibodies.

In a recent study,13 investigators used a single SNP in PCSK9 and also reported evidence of an association with type 2 diabetes (OR 1·19, 95% CI 1·02 to 1·38; per 1 mmol/L reduction in LDL cholesterol). In the present study, we incorporated data from four SNPs, instead of a single SNP, in a PCSK9 gene score with participant data from 50 studies supplemented by large genetic consortia and are able to confirm their results, and also show this increase in type 2 diabetes risk is likely to be related to PCSK9-related increases in bodyweight and glucose. Previous studies of LDL cholesterol lowering HMGCR and NPC1L1 variants (encoding pharmacological targets of statins and ezetimibe, respectively) and more widely on LDL cholesterol-lowering variants from multiple GWAS-associated loci,1 as well as analyses of patients with monogenic hypercholesterolaemia,1 have provided evidence of a link between LDL cholesterol and type 2 diabetes, compatible with the findings from the present study. However, it is far from certain that all LDL cholesterol-lowering interventions will increase risk of type 2 diabetes, as not all share the same mechanism of action. The major site of both statins and PCSK9 inhibitors is thought to be the liver, through increased cellular membrane expression of the LDL receptor. The liver is also the site of action of the investigational apolipoprotein B antisense oligonucleotide mipomersen, whereas ezetimibe, the other licensed LDL cholesterol lowering drug, acts in the intestine to limit LDL cholesterol absorption. A potential unifying mechanism might be pancreatic β cell LDL receptor upregulation, increased lipid accumulation, and β cell dysfunction,4 but this suggestion will need to be tested experimentally.

In conclusion, genetic variants in PCSK9 that associate with lower concentrations of LDL cholesterol are also associated with a modestly higher risk of type 2 diabetes and with associated differences in measures of glycaemia and bodyweight. Investigators of ongoing and future randomised controlled trials of PCSK9 inhibitors should carefully monitor changes in metabolic markers, including bodyweight and glycaemia, and the incidence of type 2 diabetes in study participants. Genetic studies of the type used here could be more widely used to interrogate the safety and efficacy of novel drug targets.

Contributors

AFS, DIS, MVH, RHP, FWA, J-PC, BJK, ADH, DP, and NS contributed to the conception and design of the study. AFS, DIS, and MVH designed the analysis scripts shared with individual centres. AFS did the meta-analysis and had access to all the data. AFS, DIS, and MVH drafted the report. RSP, ZF-H, DML, FPH1, BLH, EHY, CP, MM, Evl, GKH, ID, KN, ES-T, JD, LB, TL, SC, JW1, SK, KW, DM, JW, RM, GW, PB, YB-S, Smc, JFP, MKI, CW, AS-G, PM-V, AN, AGP, NCO-M, YTVdS, GM, GF, SGuA, CS, NJW, CL, RS, JL, MBo, SmA, AP, RR, ATa, HP, LLNH, NG, OP, TH, AL, KSS, JC, SEH, MBr, TK, HH, DSC, CAM, Medicine, University of Regensburg, Regensburg, Germany (SA Baumiester); Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK (T Meade FRS); Division of Pharmacogendemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands (AH Maitland-van der Zee, EV Baranova MSc); CNRS UMR B199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France (IP Foguel, D Thullier MSc, A Bonnefond); Renal and Cardiovascular Epidemiology, Centre de Recherche en Épidémiologie et Santé des Populations (CESEP), INSERM U1018, Villejuif, France (BB Balkau PhD), Fonds de la Recherche du Centre de Thorax, INSERM, CNRS, University of Nantes, CHU de Nantes, Nantes, France (Prof B Caron MD); Institute for Social and Economic Research, University of Essex, Colchester, Essex, UK (M Smart PhD, Y Yao PhD, Prof M Kumari PhD); Harvard Medical School Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Boston, MA, USA (Prof FM Ridker MD, DICharmain PhD); Department of Epidemiology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA (AP Reiner MD); Anschtz Medical Campus, University of Colorado Denver, Denver, CO, USA (Prof A Lange PhD); Biomedical and Translational Informatics, Geisinger Health System, Danville, PA, USA (MD Ritchie PhD); Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA (MD Ritchie); and Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA (BJ Keating PhD)

Correspondence to: Dr Amanda S Schmidt, Institute of Cardiovascular Science, University College London, London NW1 2DA, UK amand.schmidt@ucl.ac.uk

Figure 4: Correlation between PCSK9 associations with LDL cholesterol concentration and type 2 diabetes

Effect estimates are presented as mean difference in LDL cholesterol concentration (mmol/L) and odds ratios (ORs) for the incidence or prevalence of type 2 diabetes, with 95% Cls. Associations are presented per LDL cholesterol-decreasing allele. The Pearson correlation coefficient, regression line (grey), and its 95% CI (red) were calculated by weighting the SNPs for the inverse of the variance in the type 2 diabetes association. Excluding the SNP with the largest effect on LDL cholesterol (rs11591147) resulted in a correlation coefficient of 0·993 and a p value of 0·437.
1 Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375: 735–42.

2 Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354: 1264–72.

3 Swerdlow DI, Preiss D, et al. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 2015; 313: 1029–36.

4 Ahfeldt M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154–56.

5 Colien JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354: 1264–72.

6 Navarese EP, Kolodziejczak M, Schulze V, et al. Effects of prropionate convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med 2015; 163: 40–51.

7 Stein EA, Meliss S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 2012; 366: 1108–18.

8 Ghringori A, Humphries S. Nature’s randomised trials. Lancet 2005; 366: 1906–08.

9 Sofat R, Hingorani AD, Smethoff L, et al. Separating the mechanism-based and off-target actions of cholesterol ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 2010; 122: 52–62.

10 Lotta LA, Curp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 2016; 316: 1183–91.

11 Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 45: 1274–83.

12 Kircher M, Witten DM, Jain P, O’Roak BJ, Goeger GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–15.

13 CARDiogramPlusC4D Consortium, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45: 25–33.

14 Scott RA, Lagou V, Welch RP, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44: 991–1005.

15 Soranzo N, Sanna S, Wheeler E, et al. Common variants at 10 genomic loci influence hemoglobin A1c levels via glycemic and nonglycemic pathways. Diabetes 2010; 59: 3229–39.

16 Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42: 105–16.

17 Randall JC, Winkler TW, Kutikov Z, et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet 2013; 9: e1003500.

18 Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518: 197–206.

19 Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44: 981–90.

20 Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature 2016; 536: 41–47.

21 Sudlow C, Gallagher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12: e1001779.

22 Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.

23 Johnson T. Efficient calculation for multi-SNP genetic risk scores. American Society of Human Genetics Annual Meeting; San Francisco, CA; Nov 6–10, 2012.

24 Groenewold RH, Donders AR, Roes KC, Harrell FE Jr, Moons KG. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol 2012; 175: 210–17.

25 Little RAJ, Rubin DB. Statistical analysis with missing data, 2nd edn. Hoboken: John Wiley & Sons, 2002.

26 Fisher R. Statistical methods for research workers. Edinburgh: Oliver and Boyd, 1934.

27 Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 2012; 345: e7125.

28 Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013; 1: CD004816.

29 Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet 2012; 380: 565–71.

30 Colhoun HM, Ginsberg HN, Robinson JG, et al. No eff ect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY phase 3 studies. Eur Heart J 2016; 37: 2981–90.

31 Shah S, Casas JP, Gaunt TR, et al. Infl uence of common genetic variants on blood lipids, diabetes, and cardiovascul ar risk. Heart 2013; 99: 972–81.

32 Rohins JM, Herman MA, Brumbach B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11: 550–60.
36 Holmes MV, Simon T, Exeter HJ, et al. Secretory phospholipase A, II A and cardiovascular disease: a mendelian randomization study. J Am Coll Cardiol 2013; 62: 1966–76.

37 Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012; 379: 1214–24.

38 Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett 2010; 584: 701–06.

39 Langhi C, Le May C, Gnyr V, et al. PCSK9 is expressed in pancreatic delta-cells and does not alter insulin secretion. Biochem Biophys Res Commun 2009; 390: 1288–93.

40 Chernogubova E, Strawbridge R, Mahdessian H, et al. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 2012; 32: 1526–34.

41 Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 2010; 55: 2833–42.