Familial inheritance of the 3q29 microdeletion syndrome: case report and review

Wahab A. Khan1,2, Ninette Cohen3, Stuart A. Scott1,2* and Elaine M. Pereira4*

Abstract

Background: The chromosome 3q29 microdeletion syndrome is characterized by a clinical phenotype that includes behavioral features consistent with autism and attention deficit hyperactivity disorder, mild to moderate developmental delay, language-based learning disabilities, and/or dysmorphic features. In addition, recent data suggest that adults with chromosome 3q29 microdeletions have a significantly increased risk for psychosis and neuropsychiatric phenotypes.

Case presentation: We report a 3-year-old male with global developmental delay, anemia, and mild dysmorphic facial features. Clinical chromosomal microarray (CMA) testing of the proband detected a heterozygous 1.21 Mb deletion at chromosome 3q29, consistent with a diagnosis of the 3q29 microdeletion syndrome. Interestingly, subsequent parental testing determined that the pathogenic deletion was inherited from his otherwise healthy mother who had a history of learning disabilities. The chromosome 3q29 microdeletion was not detected in the healthy older sibling of the proband by CMA testing, nor was it prenatally detected in a subsequent maternal pregnancy.

Conclusion: Our report highlights the 3q29 microdeletion syndrome as an illustrative example of the importance of a molecular diagnosis for families that harbor pathogenic copy number aberrations with variable expressivity, in particular those that also impart an increased risk for adult onset neuropsychiatric phenotypes.

Keywords: 3q29 microdeletion, Developmental disabilities, Neuropsychiatric phenotypes familial inheritance, Copy number variation
independent families, including this index case (Table 1) [11, 14, 17–20]. This variable expression suggests that the incidence of the 3q29 microdeletion syndrome may potentially be higher than previously estimated (1 in 30,000–40,000) [21], as the constellation of features among certain families may not be clinically overt. Importantly, the 3q29 microdeletion is also one of the largest known risk factors for schizophrenia (~ 40 fold), surpassing even the recurrent 22q11.2 microdeletion syndrome [16]. As such, accurate detection and molecular diagnosis of the 3q29 microdeletion syndrome is critical for proper genetic counseling and when providing neuropsychiatric risk information to affected family members. Herein, we report a child with global developmental delay and a chromosome 3q29 microdeletion, which subsequently was found to be inherited from his otherwise healthy mother who had a history of learning disabilities. This informative case underscores the utility of CMA testing for non-specific neurodevelopmental pediatric indications and highlights the 3q29 microdeletion syndrome as an illustrative example of the importance of a molecular diagnosis for pathogenic copy number aberrations with variable expressivity.

Case presentation

The 3-year-old male proband was referred to Clinical Genetics for evaluation of a history of developmental delay. He was the second child of non-consanguineous parents of Mexican descent, and his pedigree was remarkable for a mother and maternal male first cousin who required special education mainly for learning disabilities. The prenatal history included a maternal chlamydia infection at 3 months gestational age (treated with antibiotics) and intrauterine growth restriction. He was born vaginally at 37 weeks gestational age, weighing 1.98 kg, and spent a total of 23 days in the NICU requiring nasogastric feeds and phototherapy. He walked and began to speak at 14 months of age and was subsequently diagnosed with global developmental delay by a behavioral pediatrician. He began early intervention services at the age of 2 years, receiving occupational, physical and speech therapy. At 3 years of age he was placed in special education classes getting speech and occupational therapies. At the time of his initial genetics evaluation, the patient could understand directions and point to body parts. He did not know the alphabet, colors, or numbers. In addition to these developmental delays, the proband has a history of anemia that is

Inheritance	Current study	Monfort et al. 2008 [18]	Ballif et al. 2008 [17]	Li et al. 2009 [14]	Digilio et al. 2009 [19]	Digilio et al. 2009 [19]	Clayton-Smith et al. 2010 [11]	Petrin et al. 2011 [20]								
GRCh37/hg19 Position (Mb)	195.8–197.0	not provided	recurrent deletion	195.9–197.3	195.7–197.3	195.7–197.3	recurrent deletion	195.7–197.3								
Clinical features	P1	PAR	P2	PAR	P3/4	PAR	P5	PAR	P6	PAR	P7	PAR	P8/9*	PAR	P10	PAR
Autistic features	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Broad or high nasal root	+	+	+	+	–	–	–	–	–	–	–	–	+	+	+	+
Cardiac anomaly	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Chest wall deformity	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Cleft lip w/ or w/o cleft palate	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Cognitive deficit	+	+	+(mild)	+	–	–	–	–	–	–	–	–	–	–	–	–
Developmental Delay	+	+	+	+	+	+(mild)	+	–	–	–	–	–	–	–	–	–
Delayed language/learning	+	+	+	+	+	+	+	+	+	+(mild)	+	+	+	+	+	+
Palpebral fissure defects	+	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Ear anomalies	+	+	+	+	+	–	–	–	–	–	–	–	–	–	–	–
Feeding difficulties	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
GI problems	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Microcephaly	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–

+, present; –, not mentioned/evaluated; P, patient; PAR parent
* patients 3/4 specific clinical features were not provided; clinical features tabulated here for patients 3/4 were reported as common findings in Ballif et al. 3q29 microdeletion cohort

**Table 1 Clinical features of inherited 3q29 microdeletion syndrome cases identified through affected probands

* noted as the 11th case of parental transmission in a multi-generation family

**reported as a mosaic loss in nonaffected father of proband

Coordinates of the recurrent deletion are approximately chr3:195,756,054-197,344,662 (GRCh37/hg19; ISCA region-37,443)
followed by his pediatrician. On physical exam, the patient was found to have a low anterior hair line. His palpebral fissures were slightly downward slanting, and infraorbital puffiness was noted. He has overfolded helices bilaterally, a broad nasal bridge, a wide grin and thin upper lip, which generally resembled the facial features of his mother (Fig. 1).

Clinical Fragile X testing on DNA isolated from the proband was normal with 29 CGG repeats; however, CMA testing using the SurePrint G3 ISCA CGH + SNP 4 × 180 microarray (Agilent Technologies, Santa Clara, CA) [22, 23] detected a heterozygous 1.21 Mb deletion of chromosome 3q29 (reported as arr[GRCh37] 3q29(195804728_197016624)×1) (Fig. 2). This microdeletion is smaller than the 1.6 Mb recurrent 3q29 microdeletion defined above, but still nested within its segmental duplication boundaries (Fig. 2). It included 28 genes and transcripts, and had only minimal overlap with copy number variants (CNVs) reported among healthy individuals in the Database of Genomic Variants (DGV; http://dgv.tcag.ca) [24]. The interstitial chromosome 3q29 microdeletion was confirmed using the higher resolution CytoScan® HD platform (Affymetrix, Santa Clara, CA) and metaphase fluorescent in situ hybridization (FISH) using subtelomeric DNA probes (Fig. 2). Notably, familial CMA testing determined that the pathogenic chromosome 3q29 microdeletion was maternally inherited and not present in the healthy older sibling (Fig. 2), nor was it prenatally detected in a subsequent maternal pregnancy.

Discussion and conclusions

The significance of structural variation in human disease and phenotypic diversity has increasingly become recognized, and several genomic studies have generated catalogs of CNVs to facilitate a better understanding of their clinical relevance [3, 25, 26]. It is estimated that up to 60% of the human genome may contain structural variants in the form of CNVs in the general population, which typically range in size from 100 bp to 50 kb [27], and clinical interpretation of these aberrations when identified by CMA testing is enabled by medical genetics practice guidelines [28]. Larger copy number aberrations are more likely to be pathogenic, as are de novo variants; however, large-scale genomic studies on clinically relevant sequence variants and CNVs are increasingly underscoring the importance and interpretation challenges of incomplete penetrance and variable expressivity [3, 29–31]. We report a case of the 3q29 microdeletion syndrome in a 3-year-old male with developmental delay, which was found to be inherited from an otherwise healthy parent with a history of learning disabilities (Table 1). This educational case is an illustrative example of the importance of a molecular diagnosis for children with non-specific neurodevelopmental indications, particularly for families that harbor pathogenic copy number aberrations with variable expressivity.

As indicated above, the recurrent 3q29 microdeletion syndrome has a heterogeneous clinical phenotype, and is enriched among young adults with psychiatric disorders and children with developmental delay [3, 32]. In particular, mild to moderate cognitive deficits, speech delay, low birth weight, a high nasal root, and ocular abnormalities are common findings (Table 1). Other less frequent features that can present with greater variability include facial asymmetry, frontal bossing, large protuberant ears, upslanting palpebral fissures, broad nostrils, and cleft lip/palate [11–15].

The 1.21 Mb deletion identified in our proband is nested within the recurrent ~1.6 Mb deletion and is one of the smallest 3q29 microdeletions reported to date using a high-resolution CMA platform; however, it
Fig. 2 (See legend on next page.)
particular BHD1 (Fig. 2). Haploinsufficiency of these genes, in
DLG1 the recurrent larger deletions extend past
telomeric region commonly includes
and focally deleted in the recurrent deletion (Fig. 2). The
which is also disrupted by the deletion in our proband
centromeric region of all deletions share the
TFRC
PAK2
and the more common recurrent 1.6 Mb deletions
oligonucleotide microarray platform [12, 13, 17, 33]. A
deletions at this locus [21]. Additional 3q29 deletions
directly overlaps with previously described pathogenic
deletions at this locus [21]. Additional 3q29 deletions
nested within the recurrent microdeletion have also been
described, either with a BAC or low resolution
oligonucleotide microarray platform [12, 13, 17, 33]. A
common pattern of moderate learning problems, speech
delay, psychiatric disorder, and autistic features constitutes
the primary phenotypic overlap in this cohort of
smaller 3q29 deletions. A comparison of the genomic
intervals between the 1.21 Mb deletion in our proband,
the previously reported smaller deletions [12, 13, 17, 33],
and the more common recurrent 1.6 Mb deletions
indicates that all include the PAK2 candidate gene. The
centromeric region of all deletions share the TFRC
gene, which is also disrupted by the deletion in our proband
and focally deleted in the recurrent deletion (Fig. 2). The
telomeric region commonly includes DLG1; however,
the recurrent larger deletions extend past DLG1 and into
BHDI (Fig. 2). Haploinsufficiency of these genes, in
particular DLG1, has been implicated in some forms of
schizophrenia and the behavioral characteristics of the
3q29 microdeletion syndrome [16, 17, 34].

In conclusion, our case presents a set of phenotypic
features that add to the heterogeneous expression of the
3q29 microdeletion syndrome. In particular, the finding of
anemia in our proband is uncommon among reported
3q29 microdeletion syndrome cohorts; however, given
that the co-occurrence of anemia may be coincidental,
additional patients are needed to confirm whether this is
a rare feature of the 3q29 microdeletion. The familial
inherithance of this pathogenic deletion and the phenotype
of the transmitting parent is summarized with other re-
ported familial 3q29 microdeletion syndrome cases in
Table 1. Consistent among these families is a milder
phenotype in the transmitting parent, often restricted to
mild dysmorphic features and/or a history of learning/
language delays. As the landscape of genomic variation in
different populations continues to be defined, the
importance of incomplete penetrance and variable expres-
sivity are increasingly emerging. As such, the familial
inheritance of this pathogenic deletion highlights both
the clinical relevance of variable expressivity in genetic
disease and the importance of clinician awareness, par-
ticularly for inherited aberrations that also impart an in-
creased risk for adult onset neuropsychiatric phenotypes.

Abbreviations
CMA: chromosomal microarray; CNV: copy number variant; DGV: Database of
Genomic Variants; FISH: fluorescence in situ hybridization

Acknowledgements
The authors would like to thank the proband and family for supporting
publication of this case report.

Funding
None.

Availability of data and materials
The datasets generated during and/or analysed during the current study are
not publicly available due to these data being derived from clinical genetic
testing; however, deidentified data may be available from the corresponding
author on reasonable request.

Authors’ contributions
WAK performed, analyzed, and interpreted the CMA and FISH testing;
drafted and revised the manuscript. NC analyzed and interpreted the data
and revised the manuscript. SAS interpreted the data, drafted and revised
the manuscript, and oversaw the case report. EP performed the clinical
evaluations, interpreted the data, drafted and revised the manuscript, and
oversaw the case report. All authors approved the final manuscript as
submitted and agree to be accountable for all aspects of the work.

Ethics approval and consent to participate
The family provided written informed consent for the clinical genetic testing
performed in this study through the Pediatric Genetics Clinic at Jacobi
Medical Center.

Consent for publication
Informed written consent was obtained for publication (including images)
from all family members involved in this study. A copy of the written
consent is available for review by the editor of this Journal.

Competing interests
WAK and SAS are paid employees of Mount Sinai Genomics Inc. (DBA Sema4).
All authors declare no competing interest.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
Author details
1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 2Sernak, a Mount Sinai venture, Stamford, CT 06902, USA. 3Division of Cytogenetics and Molecular Pathology, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Northwell Health Laboratories, Lake Success, New York City, NY 11020, USA. 4Department of Pediatrics, Division of Clinical Genetics, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY 10032, USA.

Received: 23 July 2018 Accepted: 6 March 2019 Published online: 18 March 2019

References
1. Kearney HM, South ST, Wolff DJ, Lamb A, Hamosh A, Rao KW, et al. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities. Genet Med. 2011;13(7):676–9.
2. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.
3. Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46(10):1063–71.
4. Edelmann L, Hirschhorn K. Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci. 2009;1151:157–66.
5. Salpietro V, Manole A, Efthymiou S, Houlden H. A review of copy number variants in inherited neuropathies. Current genetics. 2018;19(6):412–9.
6. Pfund R, Del Rosario M, Vissers LE, Kwint MP, Janssen IM, De Leeuw N, et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genetics in Medicine. 2017;19(6):667–8.
7. Zare F, Dow M, Monteleone N, Hosny A, S N. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data. BMC Bioinformatics. 2017;18(1):286.
8. Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D, et al. 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet. 2005;77(1):154–60.
9. Cogg W, Anderson A, Turner C, Hoffman RD, Schonberg S, Levin SW. 1.3 Mb de novo deletion in chromosome band 3q29 associated with normal intelligence in a child. Eur J Med Genet. 2010;53(5):415–8.
10. Quintero-Rivera F, Shariﬁ-Hannauer P, Martinez-Agosto JA. Autistic and psychiatric ﬁndings associated with the 3p29 microdeletion syndrome case report and review. Am J Med Genet A. 2015;135A(10):2459–67.
11. Clayton-Smith J, Giblin C, Smith RA, Dunn C, Willatt L, Familiar 3q29 microdeletion syndrome providing further evidence of involvement of the 3q29 region in bipolar disorder. Clin Dysmorphol. 2010;19(3):128–32.
12. Cox DM, Butler MG. A clinical case report and literature review of the 3q29 microdeletion syndrome. Clin Dysmorphol. 2015;24(3):89–94.
13. Dasouki MJ, Lushington GN, Hovanes K, Casey J, Gone M. The 3q29 microdeletion syndrome: report of three new unrelated patients and in silico "RNA binding" analysis of the 3q29 region. Am J Med Genet A. 2011;155A(7):1654–60.
14. Li F, Lisi EC, Wohler ES, Hamosh A, Batista DA. 3q29 interstitial microdeletion syndrome: an inherited case associated with cardiac defect and normal cognition. Eur J Med Genet. 2009;52(1):349–52.
15. Wang JC, Naik H, Khan A, Nowaczyk MJ. An uncommon 3.4-Mb interstitial deletion at 3q29. Clin Dysmorphol. 2010;19(3):133–6.
16. Mulle JG. The 3q29 deletion confers >40-fold increase in risk for schizophrenia. Mol Psychiatry. 2015;20(9):1028–9.
17. Ballif BC, Theisen A, Coppingter J, Cowans GC, Hersh JH, Madan-Ketiparal S, et al. Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication. Mol Genet Cytogenet. 2008;18:18.
18. Monfort S, Rosello M, Oreliana C, Oltra S, Blesa D, Kok K, et al. Detection of known and novel genomic rearrangements by array based comparative genomic hybridisation: deletion of ZNF533 and duplication of CHARGE syndrome genes. J Med Genet. 2008;45(7):432–7.
19. Dgilio MC, Bernardini L, Mingarelli R, Capolino R, Capalbo A, Giuffrida MG, et al. 3q29 Microdeletion: a mental retardation disorder associated with a recognizable phenotype in two mother–daughter pairs. Am J Med Genet Part A. 2009;149B(18):1777–81.
20. Petrin AL, Daeck-Hirsch S, L’heureux J, Murray J. A case of 3q29 microdeletion syndrome involving oral cleft inherited from a nonaffected mosaic parent: molecular analysis and ethical implications. Cleft Palate Craniofac J. 2011;48(2):222–30.
21. Glassford MR, Rosenfeld JA, Freedman AA, Zwick ME, Mulle JG. Unique rare chromosome disorder support G. Novel features of 3q29 deletion syndrome: results from the 3q29 registry. Am J Med Genet A. 2016;170A(4):999–1006.
22. Scott SA, Cohen N, Brandt T, Toruner G, Desnick RJ, Edelmann L. Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med. 2010;12(2):85–92.
23. Reiner J, Karger L, Cohen N, Mehta L, Edelmann L, Scott SA. Chromosomal microarray detection of constitutional copy number variation using saliva DNA. J Mol Diagn. 2017;19(3):407–403.
24. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986–992.
25. Johansson AC, Feuk L. Characterization of copy number stable regions in the human genome. Hum Mutat. 2011;32(8):947–55.
26. Sudmant PH, Rausch T, Gardner ED, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.
27. Escaramis G, Docampo E, Rabinot R. A decade of structural variants: description, history and methods to detect structural variation. Brief Funct Genomics. 2015;14(5):305–14.
28. South ST, Lee C, Lamb AN, Higgins AW, Kearney HM, Working Group for the American College of Medical Genetics, et al. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet Med. 2013;15(11):901–9.
29. Van Driest SL, Wells QS, Stallings S, Bush WS, Gordon A, Nickerson DA, et al. Association of Arrhythmia-Related Genetic Variants with Phenotypes Documented in electronic medical records. JAMA. 2016;315(1):47–57.
30. Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet. 2017;58(4):449–57.
31. Brabbing-Goldstein D, Reches A, Svinoky R, Bar-Shira A, Yaron Y. Dilemmas in genetic counseling for low-penetration neuro-susceptibility loci detected on prenatal chromosomal microarray analysis. Am J Obstet Gynecol. 2018;218(2):e1–e12.
32. Kirov G, Rees E, Walters JT, Escott-Price V, Georgieva L, Richards AL, et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75(5):378–85.
33. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 2010;87(2):229–36.
34. Carroll LS, Williams HJ, Walters J, Kirov G, O'Donovan MC, Owen MJ. Mutation screening of the 3q29 microdeletion syndrome candidate genes DLG1 and PAK2 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(7):844–9.