Decreased Diethylnitrosamine-induced Liver Preneoplastic Lesions by Estradiol-3-benzoate Treatment

Jin Seok Kang¹, Ki Dae Park², Byeongwoo Ahn³ and Beom Seok Han⁴

¹Department of Biomedical Laboratory Science, Namseoul University, Cheonan 330-707
²National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Chungbuk 363-951
³College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763
⁴Division of Toxicopathology, Hoseo Toxicology Research Center, Hoseo University, Asan 336-795, Korea

To clarify whether inhibitory effect of estrogen on liver tumor is associated with cell proliferation, we investigated its role in diethylnitrosamine (DEN)-induced rat preneoplastic lesions, with time sequenced manners. F344 male rats (n = 90) were divided into three groups at 5 weeks of age. The mini-osmotic pumps providing a continuous infusion of DEN was implanted into the abdominal cavity of each animal in group 1, 2 and 3 at 6 weeks of age. To see the effect of estrogen, pellet containing 1 or 10 µg of estradiol-3-benzoate (EB) was implanted subcutaneously in the animals of groups 2 or 3, respectively, one week prior to DEN treatment. Ten animals of each group were euthanized at 10, 14 and 18 weeks after DEN treatment. Liver tissues at each time point were fixed in 10% phosphate-buffered formalin and were processed and embedded in paraffin and 5 µm sections mounted on a silanized slide. Glutathione S-transferase placental form (GST-P) positive foci and 5-bromo-2-deoxyuridine (BrdU) labeling cells were detected at each time point. Area of GST-P positive foci in DEN+EB 1 or 10 µg group was significantly decreased compared to DEN alone at 14 weeks (p < 0.01 or p < 0.05, respectively) an at 18 weeks (p < 0.05 or p < 0.01, respectively). BrdU index in DEN+EB 1 or 10 µg groups was significantly decreased compared to DEN alone at 14 weeks and at 18 weeks (p < 0.01). Taken together, we conclude that EB treatment decrease the DEN-induced liver preneoplastic lesions and this may be associated with decrease of cellular proliferation.

Key words: Liver carcinogenesis, Diethylnitrosamine (DEN), Estradiol-3-benzoate (EB), Glutathione S-transferase placental form (GST-P) positive foci, 5-bromo-2-deoxyuridine (BrdU)

INTRODUCTION

It has been accepted men show higher incidence of liver tumor than women (Bosch et al., 1999), with men:women ratios usually averaging between 2 : 1 and 4 : 1 (El-Serag and Rudolph, 2007), probably associated with hormone imbalance and altered hormone metabolism (De Maria et al., 2002). In experimental animals, male also show higher incidence of liver tumors than female in carcinogen-induced tumors as well as spontaneous ones (Kemp and Drinkwater, 1989). These evidences suggest that there may be a sex-differentiated difference, associated with sex hormones.

Among sex hormones, estrogens were associated with decreased incidence of hepatocellular carcinoma (Lindhe et al., 1990; Nakatani et al., 2001). Actually, our previous study reported that estrogen treatment inhibited diethylnitrosamine (DEN)-induced hepatic tumors associated alteration of ERα loss (Kang et al., 2005). However, chronic use of estrogens was associated with an increased risk of developing liver tumors in humans and some synthetic estrogens might act as cancer promoting agents (Dragan et al., 1995; Dragan et al., 1991). And several human studies have reported an increased risk of developing malignant liver tumors as well as benign liver ones in women using oral contraceptives (El-Serag and Rudolph, 2007). For example, treatment of ethinyl estradiol induced promotion of hepatocarcinogenesis, possibly associated with liver cell turnover (Mayol et al., 1991). These data indicate that treatment of some kind of estrogens may promote liver carcinogenesis associated with the cellular proliferation. So, in this study, we tried to define whether the action of estrogen was inhibi-
Diethylnitrosamine (DEN), widely used as a carcinogen in experimental animal model systems (IARC, 1978), is activated by CYP2E1 (Kang et al., 2007; Yamazaki et al., 1992), induces glutathione S-transferase placental form (GST-P) positive foci in rodents (Ito et al., 1992). As it has been wildly considered that GST-P positive foci are preneoplastic lesions of the liver (Ito et al., 2000; Sato, 1988; Tsuda et al., 2003), we carried out to clarify the modifying effect of estrogen on rat DEN-induced GST-P positive foci and cell proliferation.

MATERIALS AND METHODS

Animals. Male F344 rats were supplied by the Department of Laboratory Animal Resources, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration. The animals were housed in polycarbonated cages with hardwood chips in a room with 12/12 h light/dark cycles and controlled humidity and temperature. They were allowed free access to normal water and pellet chow diets (CRF-1, Charles River Japan, Tokyo, Japan).

Experimental design and treatment. Rats (n = 90) were divided into three groups. To examine the role of estrogen on hepatocarcinogenesis, a tube containing 1 µg or 10 µg of estradiol-3-benzoate (EB) was implanted subcutaneously in all animals of groups 2 and 3, respectively, one week prior to DEN treatment under ether anesthesia. The tubes were replaced with new ones every 4 weeks. EB was pelleted in medical grade silastic tube (silicon medical tube no. 2, 100-2N; Kaneka Medix Corporation, Japan). The administration dose was prepared by mixing 0.132 or 1.32 mg of EB with 2 g of cholesterol, and 1.7 ml of olive oil. The total content of EB in each 1 cm tube was approximately estimated as 1 or 10 µg.

For the induction of liver tumors, mini-osmotic pumps (Alzet 2002; Durect, Cupertino, CA) providing a continuous infusion (0.5 µl/hour for 2 weeks) of DEN (Sigma, St Louis, MO) dissolved in dimethyl sulphoxide were used. The mini-osmotic pumps were inserted into the abdominal cavity of each animal to provide a total dose of 47.5 mg to each rat under ether anesthesia at 6 weeks of age.

Rats of group 1 were administered DEN alone, and animals of group 2 and 3 were received DEN and EB 1 µg or EB 10 µg, respectively. Ten animals of each group were sacrificed at 10, 14 and 18 weeks after DEN treatment, respectively. For examination of proliferation, BrdU (Sigma, St. Louis, MO) was injected at 1 h before sacrifice.

Body weights and organ weights. At necropsy, final body weights and organ weights of liver and testis were measured to observe the effects of EB treatment.

Statistical analysis. Statistical analysis of data for GST-P and BrdU were performed using Student’s t-test. All analyses were performed using JMP program (SAS Institute, Cary, NC). For all comparisons, p < 0.05 was considered to be statistically significant.

RESULTS

Body weight and organ weights. Comparing with DEN alone, the body weight in DEN+EB 1 or 10 µg group was significantly decreased compared to DEN alone at 10, 14 and 18 weeks (p < 0.05). The liver weight in DEN+EB 1 mg group was significantly increased compared to DEN alone at 10, 14 and 18 weeks (p < 0.05), however, the liver weight in DEN+EB 10 µg group was significantly decreased compared to DEN alone at 14 weeks (p < 0.05). The testis weight in DEN+EB 10 µg group was significantly decreased compared to DEN alone at 10, 14 and 18 weeks (p < 0.05). These were presented in Table 1.
Quantitative data for GST-P positive foci. Area of GST-P positive foci in DEN+EB 1 or 10 µg groups was not different from DEN alone group at 10 weeks after DEN treatment. However, Area of GST-P positive foci in DEN+EB 1 or 10 µg groups was significantly decreased compared to DEN alone at 14 weeks (p < 0.01 or p < 0.05, respectively) and at 18 weeks (p < 0.05 or p < 0.01, respectively) (Fig. 1).

Immunohistochemical examination and quantification of BrdU. BrdU index in DEN+EB 1 or 10 µg groups was not different from DEN alone group at 10 weeks after DEN treatment. However, BrdU index in DEN+EB 1 or 10 µg groups significantly decreased compared to DEN alone at 14 weeks (p < 0.01 or p < 0.05, respectively) and at 18 weeks (p < 0.05 or p < 0.01, respectively) (Fig. 2).

DISCUSSION

In this study, we used slow release model of DEN in rat for evaluating of EB effect on liver preneoplastic lesions. The slow release of a small amount of DEN through miniosmotic pump for 2 weeks could induce liver tumors, without the use of tumor promoter, within 26 weeks after DEN treatment (Kang et al., 2005). It suggested that DEN treatment induced mutated cells, which might not differentiate normal cells and proliferate in clonal expansion, resulting in tumors (Pitot et al., 1996). The model we used in this study did not need promoters, therefore has an advantage to screening material having promotion potential, mainly focus on EB effect as tumor inhibitor or promoter. Area of GST-P positive foci in DEN+EB 1 or 10 µg groups was significantly decreased at 14 weeks and at 18 weeks (p < 0.01) (Fig. 2).
cidated with time points of inhibition of GST-P. So, our study strongly suggested that inhibition of GST-P was associated with inhibited of hepatocytes proliferation by EB treatment.

In some cases, treatment of some kind of estrogens may promote liver carcinogenesis. Firstly, it seems that this contrary effect may be related to types of estrogens. Treatment of ethynyl estradiol or tamoxifen induced hyperplastic nodules in liver (Shimomura et al., 1992) and tamoxifen treatment was associated with a progressive increase in the number of GST-P positive foci in the livers of animals (Styler et al., 2001). Secondary, this effect may be related to time points of estrogens treatment before or after carcinogen exposure. For example, indole-3-carbinol, one of phytoestrogens, showed inhibition of liver tumor when it was applied before or concurrent exposure of carcinogen (Dashwood et al., 1989), associated with pathways of cell cycle arrest (Cover et al., 1999; Cover et al., 1998). However, in the medium-term liver bioassay, it exerted a promoting effect on post-initiation stage (Kim et al., 1994). As EB treatment showed inhibition of GST-P positive foci at 14 and 18 weeks after carcinogen treatment in this study, we could not guarantee that EB treatment after carcinogen exposure may have same effect or not. Further studies will be required to investigate whether the post-initiation treatment of EB induce inhibition of preneoplastic lesions as well as liver tumors.

Comparing with DEN alone, the animals treated with estrogen had alterations of body weight and testis weight. The body weight and testis weight of animals treated with estrogen was decreased compared to DEN alone at each time point, implying that there might be hormonal modulation. Our previous report showed that there was a decrease of total testosterone and increase of estradiol in estrogen treatment groups (Kang et al., 2005). As the serum testosterone/estradiol ratio and testosterone levels were important predictors for hepatocellular carcinoma development (Tanaka et al., 2000), a decrease of testosterone and an increase of estradiol might be associated with liver preneoplastic lesions. Testis weight in animals treated with high dose EB was decreased compared to DEN alone at each time point. But, testis weight in animals treated with low dose EB was not different at each time point. Further studies will be required to investigate the relationship of GST-P with hormone modulation and testis weight. About liver weight, it was increased at low dose treatment of EB at all time points, and decreased at high dose treatment of EB at 14 weeks. As it did not show any dose or time dependency, it is thought that it had not biological meaning.

Taken together, we conclude that EB treatment has an inhibitory effect in DEN-induced hepatocarcinogenesis in F344 rats and this may be associated with decrease of cellular proliferation.

ACKNOWLEDGEMENTS

This work was supported by the Endocrine Disruptor Research Fund from Korea Food and Drug Administration.

REFERENCES

Bosch, F.X., Ribes, J. and Borras, J. (1999). Epidemiology of primary liver cancer. Semin. Liver. Dis., 19, 271-285.

Cover, C.M., Hsieh, S.J., Cram, E.J., Hong, C., Ribi, J.E., Bjeldanes, L.F. and Firestone, G.L. (1999). Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res., 59, 1244-1251.

Cover, C.M., Hsieh, S.J., Tran, S.H., Halden, G., Kim, G.S., Bjeldanes, L.F. and Firestone, G.L. (1996). Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J. Biol. Chem., 273, 3838-3847.

Dashwood, R.H., Arbogast, D.N., Fong, A.T., Pereira, C., Hendricks, J.D. and Bailey, G.S. (1989). Quantitative inter-relationships between aflatoxin B1, carcinogen dose, indole-3-carbinol anti-carcinogen dose, target organ DNA adduction and final tumor response. Carcinogenesis, 10, 175-181.

De Maria, N., Manno, M. and Villa, E. (2002). Sex hormones and liver cancer. Mol. Cell Endocrinol., 193, 59-63.

Dragan, V.P., Vaughan, J., Jordan, V.C. and Pitot, H.C. (1995). Comparison of the effects of tamoxifen and toremifene on liver and kidney tumor promotion in female rats. Carcinogenesis, 16, 2733-2741.

Dragan, V.P., Xu, Y.D. and Pitot, H.C. (1991). Tumor promotion as a target for estrogen/antiestrogen effects in rat hepatocarcinogenesis. Proc. Med., 20, 15-26.

El-Serag, H.B. and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 132, 2557-2576.

IARC. (1978). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: some N-nitroso compounds. IARC Monogr Eval Carcinog Risk Chem Man, 17, 1-349.

Ito, N., Imaida, K., Asamato, M. and Shirai, T. (2000). Early detection of carcinogenic substances and modifiers in rats. Mutat. Res., 462, 209-217.

Ito, N., Imaida, K., de Camargo, J.L., Takahashi, S., Asamato, M. and Tsuda, H. (1988). A new medium-term bioassay system for detection of environmental carcinogens using diethylnitrosamine-initiated rat liver followed by D-galactosamine treatment and partial hepatectomy. Jpn. J. Cancer Res., 79, 573-575.

Kang, J.S., Ahn, B., Kim, C.K., Han, B.S., Che, J.H., Kim, S., Jang, D.D. and Yang, K.H. (2005). Suppression of chemically-induced liver tumors by castration or estradiol-3-benzoate treatment in F344 rats. Oncol. Rep., 14, 377-382.

Kang, J.S., Wanibuchi, H., Morimura, K., Gonzalez, F.J. and Fukushima, S. (2007). Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res., 67, 11141-11146.

Kemp, C.J. and Drinkwater, N.R. (1989). Genetic variation in liver tumor susceptibility, plasma testosterone levels, and androgen...
receptor binding in six inbred strains of mice. Cancer Res., 49, 5044-5047.

Kim, D.J., Lee, K.K., Han, B.S., Ahn, B., Bae, J.H. and Jang, J.J. (1994). Biphasic modifying effect of indole-3-carbinol on diethylnitrosamine-induced preneoplastic glutathione S-transferase placental form-positive liver cell foci in Sprague-Dawley rats. Jpn. J. Cancer Res., 85, 578-583.

Lindh, B., Porsch-Hallstrom, I., Gustafsson, J.A. and Blanck, A. (1990). Effects of neonatal and adult castration and of testosterone substitution in male rats on growth of enzyme-altered hepatic foci in the resistant hepatocyte model. Cancer Res., 50, 2679-2682.

Mayol, X., Perez-Tomas, R., Cullere, X., Romero, A., Estadella, M.D. and Domingo, J. (1991). Cell proliferation and tumour promotion by ethinyl estradiol in rat hepatocarcinogenesis. Carcinogenesis, 12, 1133-1136.

Nakatani, T., Roy, G., Fujimoto, N., Asahara, T. and Ito, A. (2001). Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprelin. Jpn. J. Cancer Res., 92, 249-256.

Pitot, H.C., Dragan, Y.P., Teeguarden, J., Hsia, S. and Campbell, H. (1996). Quantitation of multistage carcinogenesis in rat liver. Toxicol. Pathol., 24, 119-128.

Sato, K. (1988). Glutathione S-transferases and hepatocarcinogenesis. Jpn. J. Cancer Res., 79, 556-572.

Shimomura, M., Higashi, S. and Mizumoto, R. (1992). 32P-postlabeling analysis of DNA adducts in rats during estrogen-induced hepatocarcinogenesis and effect of tamoxifen on DNA adduct level. Jpn. J. Cancer Res., 83, 438-444.

Styles, J.A., Davies, R., Fenwick, S., Walker, J., White, I.N. and Smith, L.L. (2001). Tamoxifen mutagenesis and carcinogenesis in livers of lambda/lacI transgenic rats: selective influence of phenobarbital promotion. Cancer Lett., 162, 117-122.

Tanaka, K., Sakai, H., Hashizume, M. and Hirohata, T. (2000). Serum testosterone:estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients. Cancer Res., 60, 5106-5110.

Tsudo, H., Fukushima, S., Wanibuchi, H., Morimura, K., Nakae, D., Imaida, K., Tatematsu, M., Hirose, M., Wakabayashi, K. and Moore, M.A. (2003). Value of GST-P positive preneoplastic hepatic foci in dose-response studies of hepatocarcinogenesis: evidence for practical thresholds with both genotoxic and nongenotoxic carcinogens. A review of recent work. Toxicol. Pathol., 31, 80-86.

Yamazaki, H., Oda, Y., Funae, Y., Imaoka, S., Inui, Y., Guengerich, F.P. and Shimada, T. (1992). Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodimethylamine and N-nitrosodiethylamine to products genotoxic in an acetyltransferase-overexpressing Salmonella typhimurium strain (NM2009). Carcinogenesis, 13, 979-985.