LIPSCHITZ FREE p-SPACES FOR $0 < p < 1$

BY

FERNANDO ALBIAC
Mathematics Department–InaMat, Universidad Pública de Navarra
Campus de Arrosadía, Pamplona 31006, Spain
e-mail: fernando.albiac@unavarra.es

AND

JOSÉ L. ANSORENA
Department of Mathematics and Computer Sciences, Universidad de La Rioja
Logroño 26004, Spain
e-mail: joseluis.ansorena@unirioja.es

AND

MAREK CÚTH
Faculty of Mathematics and Physics, Department of Mathematical Analysis
Charles University, 186 75 Praha 8, Czech Republic
e-mail: cuth@karlin.mff.cuni.cz

AND

MICHAL DOUCHA
Institute of Mathematics, Czech Academy of Sciences
115 67 Praha 1, Czech Republic
e-mail: doucha@math.cas.cz

* F. Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity Grants MTM2014-53009-P for Análisis Vectorial, Multilineal y Aplicaciones, and MTM2016-76808-P for Operators, lattices, and structure of Banach spaces as well as the Spanish Ministry for Science and Innovation under Grant PID2019-1077701GB-I00.

** J. L. Ansorena acknowledges the support of the Spanish Ministry for Economy and Competitivity Grant MTM2014-53009-P for Análisis Vectorial, Multilineal y Aplicaciones.

† M. Cúth has been supported by Charles University Research program No. UNCE/SCI/023 and by the Research grant GAČR 17-04197Y.

†† M. Doucha was supported by the GAČR project 16-34860L and RVO: 67985840.

Received March 18, 2019 and in revised form April 15, 2019
This paper initiates the study of the structure of a new class of \(p \)-Banach spaces, \(0 < p < 1 \), namely the Lipschitz free \(p \)-spaces (alternatively called Arens–Eells \(p \)-spaces) \(F_p(\mathcal{M}) \) over \(p \)-metric spaces. We systematically develop the theory and show that some results hold as in the case of \(p = 1 \), while some new interesting phenomena appear in the case \(0 < p < 1 \) which have no analogue in the classical setting. For the former, we, e.g., show that the Lipschitz free \(p \)-space over a separable ultrametric space is isomorphic to \(\ell_p \) for all \(0 < p \leq 1 \). On the other hand, solving a problem by the first author and N. Kalton, there are metric spaces \(\mathcal{N} \subset \mathcal{M} \) such that the natural embedding from \(F_p(\mathcal{N}) \) to \(F_p(\mathcal{M}) \) is not an isometry.

1. Introduction

It is safe to say that most of the research in functional analysis is done in the framework of Banach spaces. While the theory of the geometry of these spaces has evolved very rapidly over the past sixty years, by contrast, the study of the more general case of quasi-Banach spaces has lagged far behind despite the fact that the first papers in the subject appeared in the early 1940’s ([4, 7]). The neglect of non-locally convex spaces within functional analysis is easily understood. Even when they are complete and metrizable, working with them requires doing without one of the most powerful tools in Banach spaces: the Hahn–Banach theorem and the duality techniques that rely on it. This difficulty in even making the simplest initial steps has led some to regard quasi-Banach spaces as too challenging and consequently they have been assigned a secondary role in the theory. However, these challenges have been accepted by some researchers and the number of fresh techniques available in this general setting is now increasing (see a summary in [13]). We emphasize that proving new results in \(p \)-Banach spaces for \(0 < p < 1 \) often provides an alternative proof even for the limit case \(p = 1 \). Hence, quasi-Banach spaces help us appreciate better and also shed new light on regular Banach spaces. Taking into account that more analysts find that quasi-Banach spaces have uses in their research, the task to know more about their structure seems to be urgent and important.

Every family of classical Banach spaces, like the sequence spaces \(\ell_p \), the function spaces \(L_p \), the Hardy spaces \(H_p \), and the Lorentz sequence spaces \(d(w, p) \), have a non-locally convex counterpart corresponding to the values of \(0 < p < 1 \). In this paper we study Lipschitz free \(p \)-spaces over quasimetric spaces. This new
class of \(p \)-Banach spaces, denoted by \(\mathcal{F}_p(\mathcal{M}) \), is an analogy of the Lipschitz free spaces \(\mathcal{F}(\mathcal{M}) \), whose study has become a very active research field within Banach space theory since the appearance in 1999 of the important book [22] by Weaver (here we cite the updated second edition) and, more notably, after the seminal paper [10] by Godefroy and Kalton in 2003.

Lipschitz free \(p \)-spaces were introduced in [2] with the sole instrumental purpose to build examples for each \(0 < p < 1 \) of two separable \(p \)-Banach spaces which are Lipschitz-isomorphic but fail to be linearly isomorphic. Whether this is possible or not for \(p = 1 \) remains as of today the single most important open problem in the theory of non-linear classification of Banach spaces. However, even though Lipschitz free \(p \)-spaces were proved to be of substantial utility in functional analysis, the structure of those spaces has not been investigated ever since. Our goal in this paper is to fill this gap in the theory, to encourage further research in this direction, and help those who want to contribute to this widely unexplored topic.

To that end, after the preliminary Section 2 on the basics in quasimetric and quasi-Banach spaces, in Section 3 we introduce the notion of metric envelope of a quasimetric space \(\mathcal{M} \) and relate it to the existence of non-constant Lipschitz maps on \(\mathcal{M} \) as well as to the Banach envelope when \(\mathcal{M} \) is a quasi-Banach space. In Section 4 we recall the definition of Lipschitz free \(p \)-space and bring up to light the main differences and setbacks of this theory with respect to the case \(p = 1 \). We also settle a question that was raised in [2] and use molecules and atoms in order to give an alternative equivalent definition of Lipschitz free \(p \)-spaces which will be very useful in order to provide examples of Lipschitz free \(p \)-spaces isometrically isomorphic to \(\ell_p \) and \(L_p \) for \(0 < p < 1 \). In Section 5 we completely characterize Lipschitz free \(p \)-spaces over separable ultrametric spaces, showing that for \(p \leq 1 \) they are isomorphic to \(\ell_p \).

The most important results are perhaps those in Section 6, where we study the relation between the subset structure of a quasimetric space \(\mathcal{M} \) and the subspace structure of \(\mathcal{F}_p(\mathcal{M}) \). To be precise, for each \(p < 1 \) and each \(p < q \leq 1 \) we provide an example of a subset \(\mathcal{N} \) of a \(q \)-metric space \(\mathcal{M} \) such that \(\mathcal{F}_p(\mathcal{N}) \) is not naturally a subspace of \(\mathcal{F}_p(\mathcal{M}) \). This fact evinces a very important dissimilarity with respect to the case \(p = 1 \) and solves another problem raised in [2].
Throughout this note we use standard terminology and notation in Banach space theory as can be found in [3]. We refer the reader to [22] for basic facts on Lipschitz free spaces and some of their uses, and to [15] for background on quasi-Banach spaces.

2. Preliminaries

There are two main goals in this preliminary section. First we review the notion of quasimetric space along with the related notion of quasi-Banach space and their main topological features. Second, we lay out the notation and terminology used in this article.

2.1. Quasimetric spaces and Lipschitz maps. Given an arbitrary nonempty set \mathcal{M}, a quasimetric on \mathcal{M} is a symmetric map $\rho: \mathcal{M} \times \mathcal{M} \to [0, \infty)$ such that $\rho(x, y) = 0$ if and only if $x = y$, and for some constant $\kappa \geq 1$, ρ satisfies the quasi-triangle inequality

$$\rho(x, z) \leq \kappa(\rho(x, y) + \rho(y, z)), \quad x, y, z \in \mathcal{M}. \tag{2.1}$$

The space (\mathcal{M}, ρ) is then called a quasimetric space (see [12, p. 109]). A quasimetric ρ on a set \mathcal{M} is said to be a p-metric, $0 < p \leq 1$, if ρ^p is a metric, i.e.,

$$\rho^p(x, y) \leq \rho^p(x, z) + \rho^p(z, y), \quad x, y, z \in \mathcal{M},$$

in which case we call (\mathcal{M}, ρ) a p-metric space. An analogue of the Aoki–Rolewicz theorem holds in this context (see [12, Proposition 14.5]): every quasimetric space can be endowed with an equivalent p-metric τ for some $0 < p \leq 1$, i.e., there is a constant $C = C(\kappa) \geq 1$ such that

$$C^{-1}\tau(x, y) \leq \rho(x, y) \leq C\tau(x, y), \quad x, y \in \mathcal{M}.$$

If (\mathcal{M}, ρ) and (\mathcal{N}, τ) are quasimetric spaces we shall say that a map $f: \mathcal{M} \to \mathcal{N}$ is Lipschitz if there exists a constant $C \geq 0$ so that

$$\tau(f(x), f(y)) \leq C\rho(x, y), \quad x, y \in \mathcal{M}. \tag{2.2}$$

We denote by $\text{Lip}(f)$ the smallest constant which can play the role of C in the last inequality (2.2), i.e.,

$$\text{Lip}(f) = \sup \left\{ \frac{\tau(f(x), f(y))}{\rho(x, y)} : x, y \in \mathcal{M}, x \neq y \right\} \in [0, \infty).$$
If f is injective, and both f and f^{-1} are Lipschitz, then we say that f is bi-Lipschitz and that \mathcal{M} Lipschitz-embeds into \mathcal{N}. If there is a bi-Lipschitz map from \mathcal{M} onto \mathcal{N}, the spaces \mathcal{M} and \mathcal{N} are said to be Lipschitz isomorphic.

A map f from a quasimetric space (\mathcal{M}, ρ) into a quasimetric space (\mathcal{N}, τ) is an isometry if

$$
\tau(f(x), f(y)) = \rho(x, y), \quad x, y \in \mathcal{M}.
$$

We shall say that (\mathcal{M}, ρ) is a pointed quasimetric space (or a pointed p-metric space, or a pointed metric space), if it has a distinguished point that we call the origin and denote 0. The assumption of an origin is convenient to normalize Lipschitz functions.

The Lipschitz dual of a quasimetric space (\mathcal{M}, ρ), denoted $\text{Lip}_0(\mathcal{M})$, is the (possibly trivial) vector space of all real-valued Lipschitz functions f defined on \mathcal{M} such that $f(0) = 0$, endowed with the Lipschitz norm

$$
\|f\|_{\text{Lip}} = \sup \left\{ \frac{|f(x) - f(y)|}{\rho(x, y)} : x, y \in \mathcal{M}, x \neq y \right\}.
$$

It can be readily checked that $(\text{Lip}_0(\mathcal{M}), \| \cdot \|_{\text{Lip}})$ is a Banach space.

2.2. Quasi-normed spaces and their Banach envelopes. Recall that a quasi-normed space is a (real) vector space X equipped with a map $\| \cdot \|_X : X \to [0, \infty)$ with the properties:

- (i) $\|x\|_X > 0$ for all $x \neq 0$,
- (ii) $\|\alpha x\|_X = |\alpha|\|x\|_X$ for all $\alpha \in \mathbb{R}$ and all $x \in X$,
- (iii) there is a constant $\kappa \geq 1$ so that for all x and $y \in X$ we have

$$(2.3) \quad \|x + y\|_X \leq \kappa(\|x\|_X + \|y\|_X).$$

A quasi-norm $\| \cdot \|_X$ induces a linear metric topology; X is called a quasi-Banach space if X is complete for this metric. Given $0 < p \leq 1$, X is said to be a p-normed space if the quasi-norm $\| \cdot \|_X$ verifies (i), (ii) and it is p-subadditive, i.e.,

- (iv) $\|x + y\|_X^p \leq \|x\|_X^p + \|y\|_X^p$ for all $x, y \in X$.

Of course, (iv) implies (iii), and, by the Aoki–Rolewicz theorem (see [15]), we also have that (iii) implies (iv). In the case when X is p-normed, a metric inducing the topology can be defined by $d(x, y) = \|x - y\|_X^p$. A quasi-Banach space with an associated p-norm is also called a p-Banach space.
A map $\| \cdot \|_X : X \to [0, \infty)$ that verifies properties (ii) and (iv) is called a p-seminorm on X. Given a p-seminorm $\| \cdot \|_X$ on a vector space X it is standard to construct a p-Banach space from the pair $(X, \| \cdot \|_X)$ following the so-called completion method. For that we consider the vector subset

$$N = \{ x \in X : \| x \|_X = 0 \}$$

and form the quotient space X/N, which is p-normed when endowed with $\| \cdot \|_X$. Now we just need to complete $(X/N, \| \cdot \|_X)$. The reader should be acquainted with the fact that completeness and completion for quasimetric spaces are completely analogous to such notions for metric spaces.

Given $0 < p \leq 1$, a subset C of a vector space V is said to be absolutely p-convex if for any x and $y \in C$ and any scalars λ and μ with $|\lambda|^p + |\mu|^p \leq 1$ we have $\lambda x + \mu y \in C$. The Minkowski functional $\| \cdot \|_C$ of an absolutely p-convex set C, given by

$$\| x \|_C = \inf \{ \lambda > 0 : \lambda^{-1} x \in C \},$$

defines a p-seminorm on $\text{span}(C)$.

Given a nonempty subset Z of a vector space V there is a method for building a p-Banach space from it. Let $\text{co}_p(Z)$ denote the p-convex hull of Z, i.e., the smallest absolutely p-convex set containing Z. If

$$N = \{ x \in \text{span}(Z) : \| x \|_{\text{co}_p(Z)} = 0 \},$$

then the quotient space $\text{span}(Z)/N$ equipped with $\| \cdot \|_{\text{co}_p(Z)}$ is a p-normed linear space. In the case when $\text{span}(Z)^*$ separates the points of $\text{span}(Z)$, we have that $\| \cdot \|_{\text{co}_p(Z)}$ is a p-norm.

Definition 2.1: The completion of $(\text{span}(Z)/N, \| \cdot \|_{\text{co}_p(Z)})$ will be called the p-Banach space constructed from Z by the p-convexification method and will be denoted by $(X_{p,Z}, \| \cdot \|_{p,Z})$.

Notice that it is possible to give an explicit expression for $\| \cdot \|_{p,Z}$. As a matter of fact, for $x \in X_{p,Z}$ we have

$$(2.4) \quad \| x \|_{p,Z} = \inf \left\{ \left(\sum_{j=1}^{\infty} |a_j|^p \right)^{1/p} : x = \sum_{j=1}^{\infty} a_j x_i, \quad x_i \in Z \right\}.$$

When dealing with a quasi-Banach space X it is often convenient to know which is the “smallest” Banach space containing X or, more generally, given $0 < q \leq 1$, the smallest q-Banach space containing X.
Definition 2.2: Given a quasi-Banach space X and $0 < q \leq 1$, the q-Banach envelope of X (resp. Banach envelope for $q = 1$), denoted $(\hat{X}^q, \| \cdot \|_{c,q})$ (resp. $(\hat{X}, \| \cdot \|_c)$ for $q = 1$), is the q-Banach space obtained by applying to the unit ball B_X of X the q-convexification method.

Obviously $\|x\|_{c,q} \leq \|x\|$ for all $x \in X$, so that the identity map on X induces a (not necessarily one-to-one) bounded linear map $i_{X,q} : X \to \hat{X}^q$ whose range is dense in \hat{X}^q. This map possesses the following universal property: if $T : X \to Y$ is a bounded linear map and Y is an arbitrary q-Banach space then T factors through $i_{X,q}$,

and the unique “extension” $\tilde{T} : \hat{X}^q \to Y$ has the same norm as T. In particular, X and \hat{X}^q have the same dual space.

For instance, the q-Banach envelope of ℓ_p for $0 < p < q \leq 1$ is ℓ_q.

The following formula for the q-Banach envelope quasi-norm will be very useful. The case $q = 1$ was shown by Peetre in [18].

Lemma 2.3: Let X be a quasi-Banach space and $0 < q \leq 1$. Then for $x \in X$,

\begin{equation}
\|x\|_{c,q} = \inf \left\{ \left(\sum_{i=1}^{n} \|x_i\|^q \right)^{1/q} : \sum_{i=1}^{n} x_i = x, \, x_i \in X, \, n \in \mathbb{N} \right\}.
\end{equation}

Proof. Let $\| \cdot \|_0$ be the q-seminorm on X defined by the expression in (2.5) and X_0 be the q-Banach space obtained from $(X, \| \cdot \|_0)$ by the completion method. If $T : X \to Y$ is a bounded linear map and Y is q-Banach, then $\|T(x)\| \leq \|T\|\|x\|_0$. Consequently, X_0 has the same universal property as \hat{X}^q, thus X_0 and \hat{X}^q are isometric. \qed

2.3. p-norming sets in quasi-Banach spaces.

Definition 2.4: Given a quasi-Banach space X and $0 < p \leq 1$, we say that a subset Z of X is a p-norming set with constants C and D if

$$\frac{1}{C^{\text{co}_p(Z)}} \subseteq B_X \subseteq D^{\text{co}_p(Z)}.$$

In the case when $C = D = 1$ we say that Z is isometrically p-norming.
Note that Z is a p-norming set of X if and only if $\| \cdot \|_{P,Z}$ defines an equivalent quasi-norm on X. Hence, if X admits a p-norming set then X is isomorphic to a p-Banach space. Conversely, if X is a p-Banach space, then a set $Z \subseteq X$ is p-norming with constants C and D if and only if

\[(2.6) \quad \frac{1}{C} Z \subseteq B_X \subseteq D \operatorname{co}_p(Z).\]

Adopting the terminology from harmonic analysis it can be said that a set Z is p-norming in X if and only if (Z, ℓ_p) is an atomic decomposition of X. Recall that a pair $(\mathcal{A}, \mathcal{S})$, where \mathcal{A} is a subset of X and \mathcal{S} is a symmetric sequence space, is said to be an atomic decomposition of X if there are constants $0 < C, D < \infty$ such that:

(i) Given $f = (a_n)_{n=1}^{\infty} \in \mathcal{S}$ and $(\alpha_n)_{n=1}^{\infty} \subseteq \mathcal{A}$ then \(\sum_{n=1}^{\infty} a_n \alpha_n\) converges in X to a vector x verifying $\|x\| \leq C \|f\|_{\mathcal{S}}$, and

(ii) for any $x \in X$ there are $f = (a_n)_{n=1}^{\infty} \in \mathcal{S}$ and $(\alpha_n)_{n=1}^{\infty} \subseteq \mathcal{A}$ such that $x = \sum_{n=1}^{\infty} a_n \alpha_n$ and $\|f\|_{\mathcal{S}} \leq D \|x\|$.

We conclude this preliminary section enunciating for future reference a few straightforward auxiliary results on p-norming sets.

Lemma 2.5: Suppose Z_1 and Z_2 are subsets of a quasi-Banach X such that $Z_1 \subseteq Z_2$, Z_1 is dense in Z_2, and Z_2 is p-norming in X. Then Z_1 is a p-norming set in X with the same constants as Z_2.

Lemma 2.6: Suppose that Z_1 and Z_2 are p-norming sets for quasi-Banach spaces X_1 and X_2, respectively. Let T be a one-to-one linear map from $\text{span}(Z_1)$ into X_2 such that $T(Z_1) = Z_2$. Then T extends to an onto isomorphism $\tilde{T}: X_1 \rightarrow X_2$. Moreover, in the case when Z_1 and Z_2 are both isometrically p-norming sets, \tilde{T} is an isometry.

Lemma 2.7: Suppose that Z is a p-norming set for a quasi-Banach space X with constants C_1 and C_2 and that $Z_0 \subseteq Z$. If there is a constant C such that every $x \in Z$ can be written as $x = \sum_{n=1}^{\infty} a_n x_n$ for some $f = (a_n)_{n=1}^{\infty} \in \ell_p$ with $\|f\|_p \leq C$ and $(x_n)_{n=1}^{\infty}$ in Z_0, then Z_0 is a p-norming set for X with constants C_1 and $C C_2$.

Proof. By hypothesis $Z \subseteq C \operatorname{co}_p(Z_0)$. Therefore $\operatorname{co}_p(Z) \subseteq C \operatorname{co}_p(Z_0)$, and so

\[
\frac{1}{C_1} \operatorname{co}_p(Z_0) \subseteq \frac{1}{C_1} \operatorname{co}_p(Z) \subseteq B_X \subseteq C_2 \operatorname{co}_p(Z) \subseteq CC_2 \operatorname{co}_p(Z_0). \]

\blacksquare
3. The metric envelope of a quasimetric space

Suppose \((M, \rho)\) is a pointed quasimetric space. By analogy with the universal extension property of the Banach envelope of a quasi-Banach space, we are interested in the question of how to construct a metric space \((\tilde{M}, \tilde{\rho})\), and a map \(Q: M \to \tilde{M}\) with \(\text{Lip}(Q) \leq 1\) such that whenever \((M, d)\) is a metric space and \(f: M \to M\) verifies the Lipschitz condition

\[
d(f(x), f(y)) \leq C\rho(x, y), \quad x, y \in M,
\]

then \(f\) induces a Lipschitz map \(\tilde{f}: \tilde{M} \to M\) with \(f = \tilde{f} \circ Q\) and

\[
d(\tilde{f}(x), \tilde{f}(y)) \leq C\tilde{\rho}(x, y)
\]

for all \(x, y \in \tilde{M}\).

Note that if \(f\) verifies (3.7), then we will have

\[
d(f(x), f(y)) \leq C\sum_{i=0}^{n} \rho(x_i, x_{i+1}),
\]

for any finite sequence \(x = x_0, x_1, \ldots, x_{n+1} = y\) of (possibly repeated) points in \(M\). Therefore, in all fairness we define, for \(x, y \in M\),

\[
\tilde{\rho}(x, y) = \inf \sum_{i=0}^{n} \rho(x_i, x_{i+1}),
\]

where the infimum is taken over all sequences \(x = x_0, x_1, \ldots, x_{n+1} = y\) of finitely-many points in \(M\). Clearly, \(\tilde{\rho}\) is symmetric, satisfies the triangle inequality, and does not exceed \(\rho\). Before going on, let us point out that \(\tilde{\rho}(x, y)\) can be zero for different points \(x, y\) in \(M\).

Example 3.1: A metric space \((M, d)\) is metrically convex (see [5]) if for every \(x, y \in M\) and any \(0 < \lambda < 1\) there exists \(z_\lambda \in M\) with

\[
d(x, z_\lambda) = \lambda d(x, y) \quad \text{and} \quad d(y, z_\lambda) = (1 - \lambda)d(x, y).
\]

Let \((M, d)\) be a metrically convex space and, for \(0 < p < 1\), consider the \(p\)-metric \(\rho = d^{1/p}\) on \(M\). Then \(\tilde{\rho}(x, y) = 0\) for any \(x, y \in M\). Indeed, given \(x \neq y\) in \(M\), by the metric convexity of \(M\) for every \(n \in \mathbb{N}\) we can find a chain of points \(\{x_0, x_1, \ldots, x_n\}\) where \(x_0 = x, x_n = y,\) and \(d(x_{j-1}, x_j) = d(x, y)/n\) for each \(j = 1, 2, \ldots, n\). By the definition we then have

\[
\tilde{\rho}(x, y) \leq \left(\frac{d(x, y)}{n}\right)^{1/p} n = \frac{d(x, y)}{n^{1/p-1}} \to 0.
\]

Thus, \(\tilde{\rho}(x, y) = 0\).
In view of that, we shall identify points in \mathcal{M} that are at a zero $\tilde{\rho}$-distance, which leads to the following definition.

Definition 3.2: Let (\mathcal{M}, ρ) be a quasimetric space and $\tilde{\rho}$ as in (3.8). We consider the equivalence relation

$$x \sim y \iff \tilde{\rho}(x, y) = 0,$$

and define $\tilde{\mathcal{M}}$ to be the quotient space \mathcal{M}/\sim. If \tilde{x} and \tilde{y} denote the respective equivalence classes of x and y, we put

$$\tilde{\rho}(\tilde{x}, \tilde{y}) = \tilde{\rho}(x, y).$$

The metric space $(\tilde{\mathcal{M}}, \tilde{\rho})$, together with the quotient map $Q: \mathcal{M} \rightarrow \tilde{\mathcal{M}}$ will be called the **metric envelope** of (\mathcal{M}, ρ).

Our discussion yields that the metric envelope of a quasimetric space is characterized by the following universal property.

Theorem 3.3: Suppose $(\tilde{\mathcal{M}}, \tilde{\rho}, Q)$ is the metric envelope of a quasimetric space (\mathcal{M}, ρ). Then:

(i) $\text{Lip}(Q) = 1$, and

(ii) whenever (M, d) is a metric space and $f: (\mathcal{M}, \rho) \rightarrow (M, d)$ is C-Lipschitz, there is a unique map $\tilde{f}: (\tilde{\mathcal{M}}, \tilde{\rho}) \rightarrow (M, d)$ such that $f = \tilde{f} \circ Q$ is C-Lipschitz. Pictorially,

\[
\begin{array}{ccc}
(M, \rho) & \xrightarrow{f} & (M, d) \\
\downarrow Q & & \uparrow \tilde{f} \\
(\tilde{\mathcal{M}}, \tilde{\rho}) & &
\end{array}
\]

Remark 3.4: Theorem 3.3 can be rephrased as saying that for every metric space (M, d) the mapping $g \mapsto Q \circ g$ defines an isometry from $\text{Lip}_0(\tilde{\mathcal{M}}, M)$ onto $\text{Lip}_0(\mathcal{M}, M)$, and so these two spaces can be naturally identified.

Note that, in this language, Example 3.1 yields that for $0 < p < 1$, the metric envelope of \mathbb{R} equipped with the p-metric $\rho(x, y) = |x - y|^{1/p}$ is trivial. On the other hand, by [1, Lemma 2.7], $\text{Lip}_0(\mathbb{R}, \rho) = \{0\}$. Next we see that this is not a coincidence.
Proposition 3.5: Given a quasimetric space \((\mathcal{M}, \rho)\) the following are equivalent:

- \((\widetilde{\mathcal{M}}, \widetilde{\rho})\) is trivial.
- \(\text{Lip}_0(\mathcal{M}, M) = \{0\}\) for any metric space \((M, d)\).
- \(\text{Lip}_0(\mathcal{M}) = \{0\}\).

Proof. If \((\widetilde{\mathcal{M}}, \widetilde{\rho})\) is trivial it is clear that \(\text{Lip}_0(\widetilde{\mathcal{M}}, M) = \{0\}\) for any metric space \(M\). Using Remark 3.4 we get \(\text{Lip}_0(\mathcal{M}, M) = \{0\}\).

If \(\text{Lip}_0(\mathcal{M}, M) = \{0\}\) for any metric space \(M\), in particular it holds for \(M = \mathbb{R}\), i.e., \(\text{Lip}_0(\mathcal{M}) = \{0\}\).

Finally, if \((\widetilde{\mathcal{M}}, \widetilde{\rho})\) is non-trivial then clearly \(\text{Lip}_0(\widetilde{\mathcal{M}})\) is non-trivial and so by Remark 3.4 we get \(\text{Lip}_0(\mathcal{M}) \neq \{0\}\).

Example 3.6: Let \(0 < p < 1\). We know that the \(p\)-metric space \(L_p[0, 1]\) equipped with the usual \(p\)-metric induced by the \(p\)-norm, given by

\[
\rho(f, g) = \|f - g\|_p, \quad f, g \in L_p[0, 1],
\]

has \(\text{Lip}_0(L_p[0, 1]) = \{0\}\) (see [1, Proposition 2.8]). Then, by Proposition 3.5 we infer that its metric envelope is trivial.

Let us next show that the fact \(\widetilde{L_p[0, 1]} = \{0\}\) is related to the well-known property that the Banach envelope of the \(p\)-Banach space \(L_p[0, 1]\) for \(0 < p < 1\) is trivial. In fact, metric and Banach envelopes are related by the following result.

Proposition 3.7: Let \((X, \| \cdot \|)\) be a \(p\)-normed space. Consider on \(X\) the \(p\)-metric \(\rho\) given by \(\rho(x, y) = \|x - y\|\) and let 0 be the distinguished point of \(X\). Then \(\tilde{\rho}(x, y) = \|x - y\|_c\) for all \(x, y \in X\), where \(\| \cdot \|_c\) is the norm introduced in Definition 2.2.

Proof. The set of all tuples \((y_j)_{j=0}^n\) with \(y_0 = x\) and \(y_n = y\) coincides with the set of all tuples of the form \((x + \sum_{k=0}^nx_k)_{j=0}^n\), where \(x_0 = 0\) and \(\sum_{j=1}^nx_j = y - x\). Hence,

\[
\tilde{\rho}(x, y) = \inf \left\{ \sum_{j=1}^n \rho \left(x + \sum_{k=1}^j x_k, x + \sum_{k=1}^{j-1} x_k \right) : \sum_{j=1}^n x_j = y - x \right\}
\]

\[
= \inf \left\{ \|x_j\| : \sum_{j=1}^n x_j = y - x \right\} = \|y - x\|_c. \quad \blacksquare
\]
Remark 3.8: Note that it is possible to extend Definition 3.2 and Theorem 3.3 to the case when $0 < q < 1$. Indeed, given a pointed quasimetric space (M, ρ) we define its \textbf{q-metric envelope} $(\tilde{M}^q, \tilde{\rho}_q)$ following the same steps as in the construction of its metric envelope. The q-metric $\tilde{\rho}_q$ is given by

$$\tilde{\rho}_q(x, y) = \inf \left(\sum_{i=0}^{n} \rho^q(x_i, x_{i+1}) \right)^{1/q}, \quad x, y \in M,$$

the infimum being taken over all finite sequences $x = x_0, x_1, \ldots, x_{n+1} = y$ of points in M, and \tilde{M}^q is the quotient space M/\sim_q. The equivalence relation here is the expected one, i.e.,

$$x \sim_q y \iff \tilde{\rho}_q(x, y) = 0.$$

Thus $(\tilde{M}^q, \tilde{\rho}_q)$ is the pointed q-metric space (having as a distinguished point the equivalence class of 0) characterized by the following universal property: whenever (M, d) is a q-metric space and $f: (M, \rho) \to (M, d)$ is C-Lipschitz, then the map $\tilde{f}: (\tilde{M}^q, \tilde{\rho}_q) \to (M, d)$ such that $f = \tilde{f} \circ Q$ is C-Lipschitz, where $Q: M \to \tilde{M}^q$ denotes the canonical quotient map:

$$\begin{array}{ccc}
(M, \rho) & \xrightarrow{f} & (M, d) \\
Q \downarrow & & \downarrow \tilde{f} \\
(\tilde{M}^q, \tilde{\rho}_q) & & \\
\end{array}$$

Notice also that if we regard a p-Banach space $(X, \| \cdot \|_X)$ as a pointed p-metric space in the obvious way (i.e., by taking 0 as the origin of the vector space X equipped with the p-metric $\rho(x, y) = \|x - y\|_X$), Proposition 3.7 can be generalized as well, and we can come to the conclusion that the q-Banach envelope of X is the completion of its q-metric envelope. We leave for the reader to check the straightforward details.

4. \textbf{Lipschitz free p-spaces over quasimetric spaces}

Every metric space embeds isometrically into a Banach space. Similarly, the natural environment to isometrically embed quasimetric spaces will be p-Banach spaces. Notice that for $0 < p < 1$, every pointed p-metric space \mathcal{M} embeds isometrically into a “huge” p-Banach space, namely the space $Y = \ell_\infty(\mathcal{M}; L_p(0, \infty))$
of bounded functions from \mathcal{M} into the real space $(L_p(0, \infty), \| \cdot \|_p)$ endowed with the p-norm

$$\|f\|_Y = \sup_{x \in \mathcal{M}} \|f(x)\|_p.$$

Indeed, with the convention that

$$\chi(a,b) = -\chi(b,a) \quad \text{if} \ a > b,$$

the map $\Psi: \mathcal{M} \rightarrow \ell_\infty(\mathcal{M}; L_p(0, \infty))$ given by $\Psi(x) = (\chi(\rho^p(0,y), \rho^p(x,y)))_{y \in \mathcal{M}}$ does the job (see [2, Proposition 3.3]). Of course, depending on the p-metric space we can find simpler (isometric) embeddings, like the map

$$\Phi: (\mathbb{R}, |\cdot|^{1/p}) \rightarrow L_p(\mathbb{R}), \quad \Phi(x) = \chi_{(0,x]}.$$

Once we have accomplished the task to embed a p-metric space \mathcal{M} into a p-Banach space, it seems natural to look for an “optimal” way to do it, in the sense that every Lipschitz map from \mathcal{M} into a p-Banach space factors through it. The following construction from [2] attains this goal.

Let $\mathbb{R}^\mathcal{M}_0$ be the space of all (not necessarily continuous) maps $f: \mathcal{M} \rightarrow \mathbb{R}$ so that $f(0) = 0$ and let $\mathcal{P}(\mathcal{M})$ be the linear span in the linear dual $(\mathbb{R}^\mathcal{M}_0)^\#$ of the evaluations $\delta(x)$, where x runs through \mathcal{M}, defined by

$$\langle \delta(x), f \rangle = f(x), \quad f \in \mathbb{R}^\mathcal{M}_0.$$

Note that $\delta(0) = 0$.

If $\mu = \sum_{j=1}^N a_j \delta(x_j) \in \mathcal{P}(\mathcal{M})$, put

$$\|\mu\|_{\mathcal{P}(\mathcal{M})} = \sup \left\| \sum_{j=1}^N a_j f(x_j) \right\|_Y,$$

the supremum being taken over all p-normed spaces $(Y, \| \cdot \|_Y)$ and all 1-Lipschitz maps $f: \mathcal{M} \rightarrow Y$ with $f(0) = 0$. It is straightforward to check that formula (4.11) defines a p-seminorm on $\mathcal{P}(\mathcal{M})$. In fact, the following proposition shows that $\| \cdot \|_{\mathcal{P}(\mathcal{M})}$ is a p-norm, thus settling a question posed in [2].

Proposition 4.1: Let (\mathcal{M}, ρ) be a pointed p-metric space, $0 < p \leq 1$. Then $(\mathcal{P}(\mathcal{M}), \| \cdot \|_{\mathcal{P}(\mathcal{M})})$ is a p-normed space.

Proof. Suppose that $\| \sum_{j=1}^N a_j \delta(x_j) \|_{\mathcal{P}(\mathcal{M})} = 0$ for some $(a_j)_{j=1}^N$ scalars and some $(x_j)_{j=1}^N$ in $\mathcal{M} \setminus \{0\}$. Then $\sum_{j=1}^N a_j f(x_j) = 0$ for every p-Banach space X and every Lipschitz map $f: \mathcal{M} \rightarrow X$ with $f(0) = 0$.
Pick \(i \in \{1, \ldots, N \} \) and for the sake of convenience denote the distinguished point of \(\mathcal{M} \) by \(x_0 \). Since the set \(\mathcal{N} = \{x_j : 0 \leq j \leq N \} \) is finite, the map from the metric space \((\mathcal{N}, \rho^p)\) into \((\mathbb{R}, |\cdot|)\) given by \(x_i \mapsto 1 \) and \(x_j \mapsto 0 \) for \(j \neq i \) is Lipschitz. By McShane’s theorem (see [16]), it extends to a Lipschitz map \(g \) from \((\mathcal{M}, \rho^p)\) into \((\mathbb{R}, |\cdot|)\). In other words, the map \(g \) is Lipschitz from \((\mathcal{M}, \rho)\) into \((\mathbb{R}, |\cdot|^{1/p})\). If \(\Phi \) is as in (4.9), then

\[
f := \Phi \circ g : \mathcal{M} \to L_p(\mathbb{R})
\]

is Lipschitz as well. Since \(f(0) = 0 \), we infer that

\[
a_i \chi_{(0,1]} = \sum_{j=1}^{N} a_j f(x_j) = 0.
\]

Hence, \(a_i = 0 \).

Definition 4.2 (cf. [2]): Given a \(p \)-metric space \(\mathcal{M} \), the **Lipschitz free \(p \)-space** over \(\mathcal{M} \), denoted by \(\mathcal{F}_p(\mathcal{M}) \), is the \(p \)-Banach space resulting from the completion of the \(p \)-normed space \((\mathcal{P}(\mathcal{M}), \|\cdot\|_{\mathcal{F}_p(\mathcal{M})})\). We will refer to the map \(\delta_\mathcal{M} : \mathcal{M} \to \mathcal{F}_p(\mathcal{M}) \) given by

\[
\delta_\mathcal{M}(x) = \delta(x)
\]

as the natural embedding of \(\mathcal{M} \) into \(\mathcal{F}_p(\mathcal{M}) \).

In [14], Kalton uses the symbol \(\mathcal{F}_\omega(\mathcal{M}) \) to denote Lipschitz-free Banach spaces associated with metric spaces equipped with distances \(\omega \circ d \) that arise after snowflaking, where \(\omega \) is a gauge. This is of course different from what is considered in the present work, but we want the reader to be warned to avoid possible confusions. Note that our considerations are also independent of the work of Petitjean in [19], where he studies Lipschitz-free spaces over metric spaces induced by \(p \)-norms.

Remark 4.3: The choice of a base point in \(\mathcal{M} \) is not relevant in the definition of \(\mathcal{F}_p(\mathcal{M}) \). Indeed, if we change the origin in \(\mathcal{M} \) and apply the construction, we have a natural linear isometry between the resulting Lipschitz free \(p \)-spaces.

For expositional ease and further reference, let us point out the following easy consequence of the proof of Proposition 4.1.

Lemma 4.4: Let \((\mathcal{M}, \rho)\) be an infinite \(p \)-metric space, \(0 < p \leq 1 \). Then \(\mathcal{F}_p(\mathcal{M}) \) is infinite dimensional.
Similarly to Lipschitz free Banach spaces over metric spaces, the spaces $F_p(M)$ for $0 < p < 1$ are uniquely characterized by the universal property included in the following result from [2].

Theorem 4.5: Let (M, ρ) be a pointed p-metric space. Then:

(a) δ_M is an isometric embedding.

(b) The linear span of $\{\delta_M(x) : x \in M\}$ is dense in $F_p(M)$.

(c) $F_p(M)$ is the unique (up to isometric isomorphism) p-Banach space such that for every p-Banach space X and every Lipschitz map $f : M \to X$ with $f(0) = 0$ there exists a unique linear map $T_f : F_p(M) \to X$ with $T_f \circ \delta_M = f$. Moreover $\|T_f\| = \text{Lip}(f)$. Pictorially,

$$
\begin{array}{ccc}
M & \xrightarrow{f} & X \\
\downarrow{\delta_M} & & \downarrow{T_f} \\
F_p(M) & & \\
\end{array}
$$

Corollary 4.6: The space $F_p(M)$ is separable whenever M is.

Proof. Note that the map $\delta : M \to F_p(M)$ is an isometric embedding and that $F_p(M)$ is the closed linear span of $\delta(M)$.

Remark 4.7: If $p = 1$ (so that ρ is a metric), then it follows from the Hahn–Banach theorem that $F_1(M)$ is the space denoted by $F(M)$ in [10, 14] and the norm of $\mu = \sum_{j=1}^{N} a_j x_j \in \mathcal{P}(M)$ can be computed as

$$
\|\mu\|_{F_1(M)} = \sup \left| \sum_{j=1}^{N} a_j f(x_j) \right|,
$$

the supremum being taken over all 1-Lipschitz maps $f : M \to \mathbb{R}$ with $f(0) = 0$. Moreover, it is known (see, e.g., [22]) that $F_1(M)^* = \text{Lip}_0(M)$. We advance that the corresponding result also holds for $p < 1$, i.e., $F_p(M)^* = \text{Lip}_0(M)$. We will prove this in Corollary 4.23.

Lipschitz free p-spaces provide a canonical linearization process of Lipschitz maps between p-metric spaces: if we identify (through the map δ_M) a p-metric space M with a subset of $F_p(M)$, then any Lipschitz map from a p-metric space M_1 to a p-metric space M_2 which maps 0 to 0 extends to a continuous linear map from $F_p(M_1)$ to $F_p(M_2)$. That is:
Lemma 4.8 (cf. [10, Lemma 2.2]): Let \mathcal{M}_1 and \mathcal{M}_2 be pointed p-metric spaces ($0 < p \leq 1$) and suppose $f : \mathcal{M}_1 \to \mathcal{M}_2$ is a Lipschitz map such that $f(0) = 0$. Then there exists a unique linear operator $L_f : \mathcal{F}_p(\mathcal{M}_1) \to \mathcal{F}_p(\mathcal{M}_2)$ such that $L_f \delta_{\mathcal{M}_1} = \delta_{\mathcal{M}_2} f$, i.e., the following diagram commutes:

\[
\begin{array}{ccc}
\mathcal{M}_1 & \xrightarrow{f} & \mathcal{M}_2 \\
\downarrow{\delta_{\mathcal{M}_1}} & & \downarrow{\delta_{\mathcal{M}_2}} \\
\mathcal{F}_p(\mathcal{M}_1) & \xrightarrow{L_f} & \mathcal{F}_p(\mathcal{M}_2)
\end{array}
\]

and $\|L_f\| = \text{Lip}(f)$. In particular, if f is a bi-Lipschitz bijection then L_f is an isomorphism.

Proof. Since $\delta_{\mathcal{M}_2}$ is an isometric embedding, the map $g := \delta_{\mathcal{M}_2} \circ f$ is Lipschitz with $g(0) = 0$ and $\text{Lip}(g) = \text{Lip}(f)$. Now the result follows from Theorem 4.5.

4.1. Molecules and Atomic Decompositions. Given a set \mathcal{M} and $x \in \mathcal{M}$, let χ_x denote the indicator function of the singleton set $\{x\}$. Now, for x and $y \in \mathcal{M}$ we put

$$m_{x,y} := \chi_x - \chi_y.$$

Let (\mathcal{M}, ρ) be a p-metric space for some $0 < p \leq 1$. A molecule of \mathcal{M} is a function $m : \mathcal{M} \to \mathbb{R}$ that is supported on a finite subset of \mathcal{M} and that satisfies $\sum_{x \in \mathcal{M}} m(x) = 0$. The vector space of all molecules of a metric space \mathcal{M} will be denoted by $\text{Mol}(\mathcal{M})$.

A simple induction argument shows that every molecule has at least one expression as a linear combination of molecules of the form $m_{x,y}$, so that $\text{Mol}(\mathcal{M})$ coincides with the linear span of the family of molecules

$$\mathcal{A}'(\mathcal{M}) = \left\{ \frac{m_{x,y}}{\rho(x,y)} : x, y \in \mathcal{M}, x \neq y \right\} \subseteq \mathbb{R}^\mathcal{M}.$$

Definition 4.9: We define the Arens–Eells p-space over \mathcal{M}, denoted $\mathcal{AE}_p(\mathcal{M})$, as the p-Banach space constructed from the set $\mathcal{A}'(\mathcal{M})$ using the p-convexification method (see Definition 2.1).

This way, if we give $\text{Mol}(\mathcal{M})$ the p-seminorm

$$\|m\|_{\mathcal{AE}_p} = \inf \left\{ \left(\sum_{i=1}^{N} |a_i|^p \right)^{1/p} : m = \sum_{i=1}^{N} a_i m_{x_i,y_i}, N \in \mathbb{N} \right\},$$

(4.12)
we have that $\mathcal{A}_p(M)$ is the completion of $\text{Mol}(M)$ (a priori, modulo the set of molecules with zero p-seminorm) with respect to $\| \cdot \|_{\mathcal{A}_p}$. However, as we will see below, formula (4.12) defines in fact a p-norm on $\text{Mol}(M)$.

The following result establishes that the Arens–Eells p-space over \mathcal{M} can be identified with the Lipschitz free p-space over \mathcal{M}.

Theorem 4.10: Let $0 < p \leq 1$ and (\mathcal{M}, ρ) be a pointed p-metric space. Then $\mathcal{F}_p(M)$ and $\mathcal{A}_p(M)$ are isometrically isomorphic. In fact, there is a linear onto isometry $T: \mathcal{F}_p(M) \to \mathcal{A}_p(M)$ such that $T(\delta(x)) = \chi_x - \chi_0 = m_{x,0}$ for all $x \in \mathcal{M}$.

Proof. Consider the map $f: \mathcal{M} \to \mathcal{A}_p(M)$ given by $f(x) = m_{x,0}$ for $x \in \mathcal{M}$. Clearly, $f(0) = 0$ and $f(x) - f(y) = m_{x,y}$ for all $x, y \in \mathcal{M}$. Since f is 1-Lipschitz, Theorem 4.5 yields a norm-one linear map $T_f: \mathcal{F}_p(M) \to \mathcal{A}_p(M)$ such that $T_f(\delta(x)) = m_{x,0}$.

Since $(\chi_x)_{x \in \mathcal{M}}$ is a linearly independent family in $\mathbb{R}^\mathcal{M}$, there is a linear map from $\text{span}\{\chi_x: x \in \mathcal{M}\}$ into $\mathcal{P}(\mathcal{M})$ that takes χ_x to $\delta(x)$ for every $x \in \mathcal{M}$. Let S_1 be its restriction to $\text{Mol}(\mathcal{M})$. For $x, y \in \mathcal{M}$ with $x \neq y$ we have

$$S_1\left(\frac{m_{x,y}}{\rho(x,y)}\right) = \frac{\delta(x) - \delta(y)}{\rho(x,y)},$$

and

$$\left\| \frac{\delta(x) - \delta(y)}{\rho(x,y)} \right\|_{\mathcal{F}_p(M)} \leq 1,$$

so by density S_1 extends to a norm-one operator S from $\mathcal{A}_p(M)$ into $\mathcal{F}_p(M)$. Since $T(S(m)) = m$ for every molecule m, and $S(T(\mu)) = \mu$ for every $\mu \in \mathcal{P}(\mathcal{M})$, by continuity and density it follows that $T \circ S = \text{Id}_{\mathcal{A}_p(M)}$ and $S \circ T = \text{Id}_{\mathcal{F}_p(M)}$. ■

The following two results are re-formulations of Theorem 4.10. While the expression of the norm in (4.11) relies on extraneous ingredients, Corollary 4.12 provides an intrinsic formula for the p-norm on $\mathcal{F}_p(M)$, i.e., an expression that relies only on the quasimetric on the space \mathcal{M}.

Corollary 4.11: Let (\mathcal{M}, ρ) be a pointed p-metric space, $0 < p \leq 1$. The subset of $\mathcal{P}(\mathcal{M})$ given by

$$\mathcal{A}(\mathcal{M}) = \left\{ \frac{\delta(y) - \delta(x)}{\rho(x,y)} : x, y \in \mathcal{M}, x \neq y \right\}$$

is isometrically p-norming for $\mathcal{F}_p(M)$.
Corollary 4.12: Let \((\mathcal{M}, \rho)\) be a pointed \(p\)-metric space, \(0 < p \leq 1\). For \(\mu \in \mathcal{F}_p(\mathcal{M})\) we have
\[
\|\mu\|_{\mathcal{F}_p(\mathcal{M})} = \inf \left\{ \left(\sum_{k=1}^{\infty} |a_k|^p \right)^{1/p} : \mu = \sum_{k=1}^{\infty} a_k \frac{\delta(x_k) - \delta(y_k)}{\rho(x_k, y_k)} \right\}.
\]

4.2. Applications: early examples and results. Next we use Corollary 4.11 to identify the first examples of Lipschitz-free \(p\)-spaces over quasimetric spaces for \(0 < p < 1\). The informed reader will see a relation between the map considered in (4.13) and the (quite forgotten) theory of flat spaces, developed by J. J. Schäffer and others in the 1970’s (see, e.g., [20, 11]).

Theorem 4.13: Let \(0 < p \leq 1\). Let \(I\) be an interval of \(\mathbb{R}\) equipped with the \(p\)-metric \(\rho(x, y) = |x - y|^{1/p}\) for \(x, y \in I\). Then \(\mathcal{F}_p(I) \approx L_p(I)\) isometrically. To be precise, if \(a\) is the base point of \(I\), the map
\[
\mathcal{F}_p(I) \to L_p(I), \quad \delta_f(x) \mapsto \chi_{(a,x]}
\]
(4.13)
extends to a linear isometry.

Proof. Choose an arbitrary \(a \in I\) as the base point of \((I, |\cdot|^{1/p})\). Set
\[
\mathcal{A}_{p,I} = \left\{ \frac{\chi_{(x,y]}}{|y - x|^{1/p}} : x, y \in I, x < y \right\},
\]
and let \(T: \mathcal{P}(I) \to \mathbb{R}^I\) be the linear map determined by \(\delta(x) \mapsto \chi_{(a,x]}\) for \(x \in I \setminus \{a\}\). Using the notation of Corollary 4.11, we put
\[
\mathcal{A}(I) = \left\{ \frac{\delta(x) - \delta(y)}{|x - y|^{1/p}} : x, y \in I, x \neq y \right\}.
\]
Since \(T(\mathcal{A}(I)) = \{\pm f : f \in \mathcal{A}_{p,I}\}\), taking into account Corollary 4.11 and Lemma 2.6, it suffices to show that \(\mathcal{A}_{p,I}\) is an isometric \(p\)-norming set for \(L_p(I)\).

To that end we need to verify that \(f \in \overline{co}_p(\mathcal{A}_{p,I})\) for every \(f \in L_p(I)\) with \(\|f\|_p \leq 1\). By density it is sufficient to prove it for step functions. Let \(f: I \to \mathbb{R}\) be a step function, i.e.,
\[
f = \sum_{j=1}^{N} a_j \chi_{(x_{j-1}, x_j]},
\]
for some $x_0 < x_1 < \cdots < x_{j-1} < x_j < \cdots < x_N$ in I and some scalars $(a_j)_{j=1}^N$. Then, if $b_j = (x_j - x_{j-1})^{1/p} a_j$, we have $f = \sum_{j=1}^N b_j f_j$ with $f_j \in A_{p,I}$ and
\[
\sum_{n=1}^N |b_j|^p = \sum_{j=1}^N |a_j|^p (x_j - x_{j-1}) = \|f\|_p^p.
\]

Recall that a quasimetric space \mathcal{M} is uniformly separated if
\[
\inf\{\rho(x,y) : x,y \in \mathcal{M}, x \neq y\} > 0.
\]
Let us note that each bounded and uniformly separated quasimetric space is Lipschitz isomorphic to the $\{0,1\}$-metric space, i.e., the metric space whose distance attains only the values 0 and 1.

Theorem 4.14: Let \mathcal{M} be a bounded and uniformly separated quasimetric space. For $0 < p \leq 1$ we have $\mathcal{F}_p(\mathcal{M}) \approx \ell_p(\mathcal{M} \setminus \{0\})$. To be precise, the map
\[
\mathcal{F}_p(\mathcal{M}) \to \ell_p(\mathcal{M} \setminus \{0\}), \quad \delta_{\mathcal{M}}(x) \mapsto e_x,
\]
where e_x denotes the indicator function of the singleton $\{x\}$, extends to a linear isomorphism.

Proof. Without loss of generality we can assume that (\mathcal{M}, ρ) is the $\{0,1\}$-metric space. If x and y are two different points in $\mathcal{M} \setminus \{0\}$ we can write
\[
\frac{\delta(y) - \delta(x)}{\rho(x,y)} = a_{xy} \frac{\delta(x)}{\rho(0,x)} + b_{x,y} \frac{\delta(y)}{\rho(0,y)},
\]
where $a_{x,y} = -1$ and $b_{x,y} = 1$. Since $|a_{x,y}|^p + |b_{x,y}|^p = 2$, by Corollary 4.11 and Lemma 2.7, the set
\[
\mathcal{A} = \left\{ \frac{\delta(x)}{\rho(0,x)} : x \in \mathcal{M} \setminus \{0\} \right\} = \{\delta(x) : x \in \mathcal{M} \setminus \{0\}\}
\]
is p-norming for $\mathcal{F}_p(\mathcal{M})$ with constants 1 and $2^{1/p}$. Consider the linear map $T : \mathcal{P}(\mathcal{M}) \to \mathbb{R}^{\mathcal{M} \setminus \{0\}}$ given by $\delta(x) \mapsto e_x$. We have that
\[
T(\mathcal{A}) = \mathcal{A}(\mathcal{M} \setminus \{0\}) := \{e_x : x \in \mathcal{M} \setminus \{0\}\}.
\]
Since $\mathcal{A}(\mathcal{M} \setminus \{0\})$ is an isometrically p-norming set for $\ell_p(\mathcal{M} \setminus \{0\})$, Lemma 2.6 finishes the proof. \qed
Notice that, quantitatively, the proof of Theorem 4.14 gives that if \mathcal{M} is equipped with the $\{0,1\}$-metric, then
\[
2^{-1/p} \left(\sum_{x \in \mathcal{M} \setminus \{0\}} |a_x|^p \right)^{1/p} \leq \left\| \sum_{x \in \mathcal{M} \setminus \{0\}} a_x \delta(x) \right\|_{\mathcal{F}_p(\mathcal{M})} \leq \left(\sum_{x \in \mathcal{M} \setminus \{0\}} |a_x|^p \right)^{1/p}
\]
for all scalars $(a_x)_{x \in \mathcal{M} \setminus \{0\}}$ eventually null. Going further we are going to be able to compute the quasi-norms $\| \sum_{x \in \mathcal{M} \setminus \{0\}} a_x \delta(x) \|_{\mathcal{F}_p(\mathcal{M})}$ in the case when $a_x \geq 0$. Our argument relies on the construction of a suitable d-dimensional absolutely p-convex body for every $d \in \mathbb{N}$.

Proposition 4.15: For every $d \in \mathbb{N}$ and every $0 < p \leq 1$, there is a p-norm $\| \cdot \|_p$ on \mathbb{R}^d such that:

(a) $\| (x_j)_{j=1}^n \|_p = (\sum_{j=1}^d x_j^p)^{1/p}$ if $x_j \geq 0$ for $j \in \{1, \ldots, d\}$, and

(b) $\| e_i - e_j \|_p \leq 1$ for all $i, j \in \{1, \ldots, d\}$.

Proof. Given a vector space V and $Z \subseteq V$, set $\text{co}^+_p(Z) = \left\{ \sum_{j=1}^k \lambda_j v_j : k \in \mathbb{N}, \lambda_j \geq 0, \sum_{j=1}^k \lambda_j^p \leq 1, v_j \in Z \right\}$. For $d \in \mathbb{N}$, put $\mathbb{N}[d] = \{1, \ldots, d\}$. Given $s = (s_j)_{j=1}^d \in \mathbb{R}^d$, we let M_s be the endomorphism of \mathbb{R}^d given by

\[
M_s((x_j)_{j=1}^d) = (s_j x_j)_{j=1}^d.
\]

Given $A \subseteq \mathbb{N}[d]$, we put $M_A = M_s$ where $s = (s_j)_{j=1}^n$ is defined by $s_j = 1$ for $j \in \mathbb{N}[d] \setminus A$, and $s_j = -1$ for $j \in A$; that is, M_A is the symmetry with respect to the subspace $\{(x_j)_{j=1}^d \in \mathbb{R}^d : x_j = 0$ for all $j \in A\}$. Denote

\[
\mathbb{R}_+^d = \{(x_j)_{j=1}^d \in \mathbb{R}^d : x_j \geq 0$ for all $j \in \mathbb{N}[d]\},
\]

\[
B_p = \left\{ (x_j)_{j=1}^d \in \mathbb{R}^d : \sum_{j=1}^d |x_j|^p \leq 1 \right\},
\]

\[
B_\infty = \{(x_j)_{j=1}^d \in \mathbb{R}^d : |x_j| \leq 1$ for all $j \in \mathbb{N}[d]\}.
\]

Given $i, j \in \mathbb{N}[d]$ with $i \neq j$, we define $Z_{i,j} \subseteq \mathbb{R}_+^d$ by

\[
Z_{i,j} = \{ a e_i + b e_j : 0 \leq a, b \leq 1 \}.
\]
Given disjoint sets \(A, B \subseteq \mathbb{N}[d] \) we define \(T_{A,B} \subseteq \mathbb{R}^d_+ \) by

\[
T_{A,B} = \begin{cases}
\{0\} & \text{if } A = B = \emptyset, \\
\co_p^+(\{e_i : i \in A\}) & \text{if } A \neq \emptyset \text{ and } B = \emptyset, \\
\co_p^+(\{e_j : j \in B\}) & \text{if } A = \emptyset \text{ and } B \neq \emptyset, \\
\co_p^+(\cup_{(i,j) \in A \times B} Z_{i,j}) & \text{otherwise}.
\end{cases}
\]

It is routine to prove that the family of bodies \((T_{A,B})\) enjoys the following properties:

(a1) If \(\lambda, \mu \geq 0 \) are such that \(\lambda p + \mu p \leq 1 \), then \(\lambda T_{A,B} + \mu T_{A,B} \subseteq T_{A,B} \) for all disjoint \(A, B \subseteq \mathbb{N}[d] \).

(a2) \(B_p \cap \mathbb{R}^d_+ \subseteq T_{[\mathbb{N}[d] \setminus A], A} \subseteq B_\infty \), for all \(A \subseteq \mathbb{N}[d] \).

(a3) \(B_p \cap \mathbb{R}^d_+ = T_{[\mathbb{N}[d], \emptyset]} \).

(a4) If \(A \subseteq A_1 \) and \(B \subseteq B_1 \), then \(T_{A,B} \subseteq T_{A_1,B_1} \).

(a5) If \(\mathbf{x} = (x_j)_{j=1}^d \in T_{A,B} \) and \(x_j = 0 \) for every \(j \notin D \), where \(D \subseteq \mathbb{N}[d] \), then \(\mathbf{x} \in T_{A \cap D, B \cap D} \).

(a6) If \(0 \leq x_j \leq y_j \) for every \(j \in \mathbb{N}[d] \) and \((y_j)_{j=1}^d \in T_{A,B} \), for \(A, B \subseteq \mathbb{N}[d] \) disjoint, then \((x_j)_{j=1}^d \in T_{A,B} \).

Given \(A \subseteq \mathbb{N}[d] \), put \(C_A = M_A(T_{[\mathbb{N}[d] \setminus A], A}) \). By definition,

\(-C_A = C_{[\mathbb{N}[d] \setminus A]} \).

We infer from (a1), (a2), (a3) and (a6), respectively, that

(b2) if \(\lambda, \mu \geq 0 \) are such that \(\lambda p + \mu p \leq 1 \), then \(\lambda C_A + \mu C_A \subseteq C_A \),

(b3) \(\{ (x_j)_{j=1}^d \in B_p : \{j : x_j < 0\} = A\} \subseteq C_A \subseteq B_\infty \),

(b4) \(C_\emptyset = B_p \cap \mathbb{R}^d_+ \), and

(b5) if \(s \in [0,1]^d \) and \(\mathbf{x} \in C_A \), then \(M_s(\mathbf{x}) \in C_A \).

Consider the \(d \)-dimensional body \(C_{(p)} = \bigcup_{A \subseteq \mathbb{N}[d]} C_A \). Properties (b2), (b3) and (b5) give, respectively,

(c1) \(-C_{(p)} = C_{(p)} \),

(c2) \(B_p \subseteq C_{(p)} \subseteq B_\infty \), and that

(c3) if \(\mathbf{x} \in C_{(p)} \) and \(s \in [0,1]^d \), then \(M_s(\mathbf{x}) \in C_{(p)} \).

We infer from (a4) and (a5) that

(c4) if \(\mathbf{x} = (x_j)_{j=1}^d \in C_{(p)} \) and

\[\{ j \in \mathbb{N}[d] : x_j < 0 \} \subseteq B \subseteq \{ j \in \mathbb{N}[d] : x_j \leq 0 \}, \]

then \(\mathbf{x} \in C_B \).
Combining (c4) with (b4) we obtain
\[(c5) \quad C(\rho) \cap \mathbb{R}^d_+ = B_\rho \cap \mathbb{R}^d_+. \]
Let us prove that $C(\rho)$ is absolutely p-convex. Let $x = (x_j)_{j=1}^d$, $y = (y_j)_{j=1}^d \in C(\rho)$ and $\lambda, \mu \in \mathbb{R}$ with $|\lambda|^p + |\mu|^p \leq 1$. By (c1) we can assume that $\lambda, \mu \geq 0$. Let
\[A = \{ j \in \mathbb{N}[d] : \text{sgn}(x_j) \text{sgn}(y_j) \neq -1 \}, \]
\[D = \{ j \in \mathbb{N}[d] \setminus A : \text{sgn}(\lambda x_j + \mu y_j) = 0 \}, \]
\[E = \{ j \in \mathbb{N}[d] \setminus A : \text{sgn}(\lambda x_j + \mu y_j) = \text{sgn}(x_j) \}, \]
and
\[F = \{ j \in \mathbb{N}[d] \setminus A : \text{sgn}(\lambda x_j + \mu y_j) = \text{sgn}(y_j) \}. \]
By construction, (A, D, E, F) is a partition of $\mathbb{N}[d]$. Note that $\lambda > 0$ if $E \neq \emptyset$ and $\mu > 0$ if $F \neq \emptyset$. We define $\tilde{x} = (x_j)_{j=1}^d$, $\tilde{y} = (y_j)_{j=1}^d$ and $s = (s_j)_{j=1}^d$ by
\[
(\tilde{x}_j, \tilde{y}_j, s_j) = \begin{cases}
(x_j, y_j, 1) & \text{if } j \in A, \\
(0, 0, 0) & \text{if } j \in D, \\
(x_j, 0, (\lambda x_j)^{-1}(\lambda x_j + \mu y_j)) & \text{if } j \in E, \\
(0, y_j, (\mu y_j)^{-1}(\lambda x_j + \mu y_j)) & \text{if } j \in F.
\end{cases}
\]
By construction, $s \in [0, 1]^d$ and $\lambda \tilde{x} + \mu \tilde{y} = M_s(\lambda \tilde{x} + \mu \tilde{y})$. Hence, taking into account (c3), it suffices to prove that $\lambda \tilde{x} + \mu \tilde{y} \in C(\rho)$. Note that, by construction, $\text{sgn}(\tilde{x}_j) \text{sgn}(\tilde{y}_j) \neq -1$ for every $j \in \mathbb{N}[d]$. Therefore, the set
\[
\{ j \in \mathbb{N}[d] : \tilde{x}_j < 0 \} \cup \{ j \in \mathbb{N}[d] : \tilde{y}_j < 0 \}
\]
is contained in
\[
B := \{ j \in \mathbb{N}[d] : \tilde{x}_j \leq 0 \} \cap \{ j \in \mathbb{N}[d] : \tilde{y}_j \leq 0 \}.
\]
Since, by (c3), $\tilde{x}, \tilde{y} \in C(\rho)$, we infer from (c4) that $\tilde{x}, \tilde{y} \in C_B$. Then, by (b2), $\lambda \tilde{x} + \mu \tilde{y} \in C_B \subseteq C(\rho)$.

Let $\| \cdot \|_{(p)}$ be the Minkowski functional associated to $C(\rho)$. Taking into account (c2) we infer that $\| \cdot \|_{(p)}$ is a p-norm on \mathbb{R}^d. By (c5), $\| x \|_{(p)} = \| x \|_p$ for every $x \in \mathbb{R}^d_+$.

Proposition 4.16: Let \mathcal{M} be the $\{0, 1\}$-metric space and $(a_x)_{x \in \mathcal{M} \setminus \{0\}}$ be an eventually null family of scalars. Then
\[
\left\| \sum_{x \in \mathcal{M} \setminus \{0\}} a_x \delta(x) \right\|_{\mathcal{F}(\mathcal{M})} \geq \left(\sum_{x \in \mathcal{M} \setminus \{0\}} a_x^p \right)^{1/p}.
\]
Proof. Let \((a_x)_{x \in \mathcal{M} \setminus \{0\}} \in [0, \infty)^{\mathcal{M} \setminus \{0\}}\) be eventually null. Pick \(d \in \mathbb{N}\) and a one-to-one map \(\phi: \mathbb{N}[d] \to \mathcal{M} \setminus \{0\}\) such that
\[
\{x \in \mathcal{M} \setminus \{0\}: a_x > 0\} \subseteq \phi(\mathbb{N}[d]) \subseteq \{x \in \mathcal{M} \setminus \{0\}: a_x \geq 0\}.
\]
Let \(\|\cdot\|_p\) be as in Proposition 4.15 and consider the mapping \(f: \mathcal{M} \to (\mathbb{R}^d, \|\cdot\|_p)\) given by \(\phi(k) \mapsto e_k\) for all \(k \in \mathbb{N}[d]\) and \(x \mapsto 0\) if \(x \notin \phi(\mathbb{N}[d])\). Since
\[
\|e_i\|_p, \|e_i - e_j\|_p \leq 1
\]
for every \(i, j \in \mathbb{N}[d]\), \(f\) is 1-Lipschitz. Therefore
\[
\left\| \sum_{x \in \mathcal{M} \setminus \{0\}} a_x \delta(x) \right\|_{\mathcal{F}_p(\mathcal{M})} \geq \left\| \sum_{x \in \mathcal{M} \setminus \{0\}} a_x f(x) \right\|_p = \left(\sum_{k=1}^d a_{\phi(k)}^p \right)^{1/p} = \left(\sum_{x \in \mathcal{M} \setminus \{0\}, a_x \geq 0} a_x^p \right)^{1/p}.
\]

On occasion it will be convenient to know that the Lipschitz free \(p\)-space over a quasimetric space and the Lipschitz free \(p\)-space over its completion are the same. Let us state this basic fact for reference and provide a proof using the tools that we introduced before.

PROPOSITION 4.17: Let \(\mathcal{M}\) be a \(p\)-metric space for some \(0 < p \leq 1\) and let \(\mathcal{N}\) be a dense subset of \(\mathcal{M}\) equipped with the same quasimetric. Then
\[
\mathcal{F}_p(\mathcal{N}) \approx \mathcal{F}_p(\mathcal{M})
\]
isometrically. In fact, the canonical linear map is an isometry.

Proof. The canonical linear map \(L_j: \mathcal{P}(\mathcal{N}) \to \mathcal{P}(\mathcal{M})\) induced by the inclusion \(j\) from \(\mathcal{N}\) into \(\mathcal{M}\) is one-to-one on \(\mathcal{P}(\mathcal{N})\). By density, the set of molecules of \(\mathcal{M}\) of the form
\[
L_j(\mathcal{A}(\mathcal{N})) = \left\{ \frac{\delta_{\mathcal{M}}(y) - \delta_{\mathcal{M}}(x)}{\rho(x, y)}: x, y \in \mathcal{N}, x \neq y \right\}
\]
is an isometrically \(p\)-norming set in \(\mathcal{F}_p(\mathcal{M})\). Lemma 2.6 and Corollary 4.11 yield that \(L_j\) extends to a linear isometry from \(\mathcal{F}_p(\mathcal{N})\) onto \(\mathcal{F}_p(\mathcal{M})\).

We will study in detail some properties of the canonical map \(L_j\) in Section 6. For the time being, to finish this section we provide a sufficient condition for \(L_j\) to be an isomorphic embedding.
Definition 4.18: Let \mathcal{M} be a p-metric space, $0 < p \leq 1$, and let \mathcal{N} be a subset of \mathcal{M}. A Lipschitz map $r: \mathcal{M} \to \mathcal{N}$ is called a **Lipschitz retraction** if it is the identity on \mathcal{N}. When such a Lipschitz retraction exists we say that \mathcal{N} is a **Lipschitz retract** of \mathcal{M}.

Lemma 4.19 (cf. [10, Lemma 2.2]): Let \mathcal{M} be a pointed p-metric space $(0 < p \leq 1)$ and \mathcal{N} be a Lipschitz retract of \mathcal{M}. Then the inclusion map $j: \mathcal{N} \to \mathcal{M}$ induces an isomorphic embedding $L_j: \mathcal{F}_p(\mathcal{N}) \to \mathcal{F}_p(\mathcal{M})$ onto a complemented subspace of $\mathcal{F}_p(\mathcal{M})$.

Proof. Without loss of generality we may and do assume that $0 \in \mathcal{N}$. Let $j: \mathcal{N} \to \mathcal{M}$ be the inclusion map and let $r: \mathcal{M} \to \mathcal{N}$ be a Lipschitz retraction. Lemma 4.8 yields $L_r \circ L_j = \text{Id}_{\mathcal{F}_p(\mathcal{N})}$, i.e., $L_j \circ L_r$ is a linear projection from $\mathcal{F}_p(\mathcal{M})$ onto the linear subspace $L_j(\mathcal{F}_p(\mathcal{N}))$ of $\mathcal{F}_p(\mathcal{M})$ and L_j is an isomorphism.

4.3. **Envelopes and duality.**

Proposition 4.20: Suppose \mathcal{M} is a pointed p-metric envelope $\tilde{\mathcal{M}}^q$, where $0 < p < q \leq 1$. Then:

(a) The q-Banach envelope of $\mathcal{F}_p(\mathcal{M})$ is $\mathcal{F}_q(\tilde{\mathcal{M}}^q)$.

(b) In the particular case that \mathcal{M} is a p-Banach space X with q-Banach envelope \hat{X}^q, the q-Banach envelope of $\mathcal{F}_p(X)$ is $\mathcal{F}_q(\hat{X}^q)$.

Proof. The universal properties of q-metric envelopes and q-Banach envelopes yield the commutative diagram

\[
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{Q} & \tilde{\mathcal{M}}^q \\
\downarrow{\delta} & & \downarrow{\delta} \\
\mathcal{F}_p(\mathcal{M}) & \xrightarrow{L_Q} & \mathcal{F}_q(\tilde{\mathcal{M}}^q) \\
\downarrow{i} & & \downarrow{\hat{L}_Q} \\
\mathcal{F}_p(\mathcal{M})^q & & \\
\end{array}
\]

Since $\text{co}_p(\mathcal{A}(\mathcal{M}))$ is dense in the unit ball B of $\mathcal{F}_p(\mathcal{M})$ and $i(\text{co}_q(B))$ is dense in the unit ball of $X := \mathcal{F}_p(\mathcal{M})^q$, we infer that $\text{co}_q(i(\mathcal{A}(\mathcal{M})))$ is dense in the unit ball of X. Therefore, by Lemma 2.5, $A := i(\mathcal{A}(\mathcal{M}))$ is an isometrically q-norming
set for X. Moreover, \widetilde{L}_Q is a bijection from $i(\mathcal{P}(M))$ onto $\mathcal{P}(\widetilde{M^q}) = \mathcal{P}(Q(M))$ and $\widetilde{L}_Q(A) = A(\widetilde{M^q}) = A(Q(M))$. We deduce from Lemma 2.6 that \widetilde{L}_Q is an isometric isomorphism.

Remark 4.21: The previous proposition implies, for example, that $\mathcal{F}_p(\mathbb{R})$ is not isomorphic to L_p for $p < 1$. Indeed, its Banach envelope is L_1, while the Banach envelope of L_p is trivial, and if two p-spaces are isomorphic, their envelopes are also isomorphic.

Remark 4.22: Roughly speaking, it could be argued that given a r-metric space \mathcal{M}, $0 < r \leq 1$, the family $(\mathcal{F}_p(\mathcal{M}^p))_{0 < p \leq 1}$, where

$$\mathcal{F}_p(\mathcal{M}^p) = \mathcal{F}_p(\mathcal{M})$$

if $p \leq r$, forms a scale of quasi-Banach spaces in the same way as the family $(\ell_p)_{0 < p \leq 1}$ does. Indeed, given $p \leq q < 1$, Proposition 4.20 provides a canonical range-dense linear map $L_{q,p}: \mathcal{F}_p(\mathcal{M}^p) \to \mathcal{F}_q(\mathcal{M}^q)$ with $\|L_{q,p}\| \leq 1$ and, if $q < s \leq 1$, we have

$$L_{s,p} = L_{s,q} \circ L_{q,p}.$$

Let us restrict our attention to the case when $p < r$. Then

$$L_{r,p}: \mathcal{F}_p(\mathcal{M}) \to \mathcal{F}_r(\mathcal{M})$$

is the identity map on $\mathcal{P}(\mathcal{M})$ and, hence, it is one-to-one on a dense subspace. However, we do not know if this map is always injective. In the case when $r = 1$ we would like to point out that the map $L_{1,p}: \mathcal{F}_p(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$ is one-to-one if and only if $\mathcal{F}_p(\mathcal{M})^*$ separates the points of $\mathcal{F}_p(\mathcal{M})$.

Corollary 4.23: Let \mathcal{M} be a pointed p-metric space, $0 < p \leq 1$. Then

$$\mathcal{F}_p(\mathcal{M})^* = \text{Lip}_0(\mathcal{M}),$$

i.e., given $\phi \in \mathcal{F}_p(\mathcal{M})^*$ there is a unique $f \in \text{Lip}_0(\mathcal{M})$ so that

$$\phi \left(\sum a_i \delta(x_i) \right) = \sum a_i f(x_i)$$

for every $\sum a_i \delta(x_i) \in \mathcal{F}_p(\mathcal{M})$, and the map $\phi \mapsto f$ is a linear isometry of $\mathcal{F}_p(\mathcal{M})^*$ onto $\text{Lip}_0(\mathcal{M})$. In particular,

$$\mathcal{F}_p(\mathcal{M})^* = \{0\}$$

if $\text{Lip}_0(\mathcal{M}) = \{0\}$.
Proof. By identifying \mathcal{M} with $\delta(\mathcal{M}) \subseteq \mathcal{F}_p(\mathcal{M})$ we get that the restriction of any $\phi \in \mathcal{F}_p(\mathcal{M})^*$ to \mathcal{M} belongs to $\text{Lip}_0(\mathcal{M})$. And conversely, any $f \in \text{Lip}_0(\mathcal{M})$ uniquely extends by the universal property to an element of $\mathcal{F}_p(\mathcal{M})^*$. This correspondence is a linear isometry.

Corollary 4.24: Let \mathcal{M} and \mathcal{N} be pointed metric spaces and suppose $0 < p < 1$. If $\mathcal{F}_p(\mathcal{M}) \approx \mathcal{F}_p(\mathcal{N})$ then $\mathcal{F}(\mathcal{M}) \approx \mathcal{F}(\mathcal{N})$.

Proof. Just take Banach envelopes in Proposition 4.20 (a).

The last theorem of this section extends to the case when $0 < p < 1$, a result of Naor and Schechtman [17].

Theorem 4.25: For any $0 < p \leq 1$, the p-Banach spaces $\mathcal{F}_p(\mathbb{R})$ and $\mathcal{F}_p(\mathbb{R}^2)$ are not isomorphic.

Proof. The case $p = 1$ was proved in [17]. The case $0 < p < 1$ is taken care of by Corollary 4.24.

5. Lipschitz free p-spaces over ultrametric spaces

The spaces $\mathcal{F}_p(\mathcal{M})$ over quasimetric (or even metric) spaces provide a new class of quasi-Banach spaces that in general are difficult to identify. The point of this section is to see that by imposing a stronger condition on \mathcal{M}, namely being ultrametric, we can recognize the Lipschitz free p-space over \mathcal{M}.

Recall that a distance d on a set \mathcal{M} is called an ultrametric provided that in place of the triangle inequality, d satisfies the stronger condition

$$d(x, z) \leq \max\{d(x, y), d(y, z)\}, \quad x, y, z \in \mathcal{M}.$$

Note that ultrametrics can be characterized as metrics d such that d^p is a metric for every $p > 0$. Indeed, if (\mathcal{M}, d^p) is a metric space for $p \in A$, and the set $A \subseteq \mathbb{R}$ is unbounded, then

$$d(x, z) \leq (d^p(x, y) + d^p(y, z))^{1/p}, \quad x, y, z \in \mathcal{M}, \quad p \in A.$$

Letting p tend to infinity we get $d(x, z) \leq \max\{d(x, y), d(y, z)\}$. The converse implication is clear.
Before proceeding, let us digress a bit with the help of an example. Let \((\mathcal{M}, \leq)\) be a totally ordered set and \(\lambda = (\lambda_x)_{x \in \mathcal{M}}\) a non-decreasing family of positive numbers (it could also be non-increasing, in which case we would consider the reverse order on \(\mathcal{M}\)). Equipped with \(d_\lambda : \mathcal{M} \times \mathcal{M} \to [0, \infty)\) defined by

\[
d_\lambda(x, y) = \begin{cases}
\lambda_{\max\{x, y\}} & \text{if } x \neq y, \\
0 & \text{if } x = y,
\end{cases}
\]

\(\mathcal{M}\) is an ultrametric space. Since every set can be equipped with a total order, if we put \(\lambda_x = 1\) for all \(x \in \mathcal{M}\), we infer that the \(\{0, 1\}\)-metric on \(\mathcal{M}\) and the ultrametric \(d_\lambda\) coincide. Thus the following theorem, which extends to the case \(p < 1\) a result from [6], also extends Theorem 4.14 in the separable case.

Theorem 5.1: Let \((\mathcal{M}, d)\) be an infinite separable pointed ultrametric space. Then \(\mathcal{F}_p(\mathcal{M}, d) \approx \ell_p\) for every \(0 < p \leq 1\).

The techniques we use to prove this theorem rely on the concepts of \(\mathbb{R}\)-tree and length measure. For the convenience of the reader we include these definitions, which we borrow from [9, Section 2]. For more details concerning \(\mathbb{R}\)-trees see for instance [8, Chapter 3].

Definition 5.2: An \(\mathbb{R}\)-tree is a metric space \((\mathcal{T}, d)\) satisfying:

(i) For any points \(a\) and \(b\) in \(\mathcal{T}\), there exists a unique isometry \(\phi\) from the closed interval \([0, d(a, b)]\) into \(\mathcal{T}\) such that

\[
\phi(0) = a \quad \text{and} \quad \phi(d(a, b)) = b.
\]

(ii) Any one-to-one continuous mapping \(\varphi : [0, 1] \to \mathcal{T}\) has the same range as the isometry \(\phi\) associated to the points

\[
a = \varphi(0) \quad \text{and} \quad b = \varphi(1).
\]

If \(\mathcal{T}\) is an \(\mathbb{R}\)-tree, given any \(x\) and \(y\) in \(\mathcal{T}\) we denote by \(\phi_{xy}\) the unique isometry associated to \(x\) and \(y\) as in Definition 5.2, and write \([x, y]\) for the range of \(\phi_{xy}\). Such subsets of \(\mathcal{T}\) are called segments. Moreover, we say that \(v \in \mathcal{T}\) is a branching point of \(\mathcal{T}\) if there are three points \(x_1, x_2, x_3 \in \mathcal{T} \setminus \{v\}\) such that \([x_i, v] \cap [x_j, v] = \{v\}\) whenever \(i, j \in \{1, 2, 3\}, i \neq j\). We say that a subset \(A\) of \(\mathcal{T}\) is measurable whenever \(\phi_{xy}^{-1}(A)\) is Lebesgue-measurable for any \(x\) and \(y\) in \(\mathcal{T}\). If \(A\) is measurable and \(S\) is a segment \([x, y]\), we write \(\lambda_S(A)\) for \(\lambda(\phi_{xy}^{-1}(A))\), where \(\lambda\) is the Lebesgue measure on \(\mathbb{R}\). We denote by \(\mathcal{R}\) the set of
all subsets of \mathcal{T} that can be written as a finite union of disjoint segments. For $R = \bigcup_{k=1}^{n} S_k$ (with disjoint S_k) in \mathcal{R}, we put

$$\lambda_R(A) = \sum_{k=1}^{n} \lambda_{S_k}(A).$$

Now,

$$\lambda_T(A) = \sup_{R \in \mathcal{R}} \lambda_R(A)$$

defines a measure on the σ-algebra of T-measurable sets called the **length measure**. Note that this is nothing but the 1-dimensional Hausdorff measure (multiplied by the constant 2).

Suppose (S, d) is a closed subset of an \mathbb{R}-tree \mathcal{T} with a base point $0 \in S$. For $s \in S$ we put

$$L_S(s) := \inf_{x \in [0, s] \cap S} d(s, x).$$

If $L_S(s) > 0$, we denote by $\sigma_S(s)$ the unique point from $[0, s) \cap S$ with

$$d(s, \sigma_S(s)) = L(s).$$

Finally, we put

$$S_+ := \{ s \in S : L_S(s) > 0 \}.$$

Lemma 5.3: Let (S, d) be a closed subset of an \mathbb{R}-tree \mathcal{T} with a distinguished point $0 \in S$. Let S have length measure zero. Then for all $y \in S$ and all $x \in [0, y] \cap S$,

$$d(x, y) = \sum_{z \in (x, y] \cap S_+} L_S(z).$$

Proof. Using the transformation $\phi_{0,y}$, we can assume without loss of generality that $x, y \in \mathbb{R}$, $0 \leq x \leq y$ and $S \subseteq [0, y]$. Then, the subset $(x, y) \setminus S$ of \mathbb{R} is open and, so, it can be expressed as $\bigcup_{i \in I} (a_i, b_i)$, where the intervals are disjoint. Since S has measure zero, we have

$$y - x = \sum_{i \in I} (b_i - a_i).$$

It is clear that $b_i \in S_+$ and $\sigma_S(b_i) = a_i$ for every $i \in I$. Thus, it suffices to see that the map $b : I \to S_+$, $i \mapsto b_i$ is onto. Given $s \in S_+$, since $(\sigma_S(s), s) \cap S = \emptyset$, there exists $i \in I$ such that $(\sigma_S(s), s) \subseteq (a_i, b_i)$. Taking into account that neither $\sigma_S(s)$ nor s belong to (a_i, b_i), we infer that $a_i = \sigma_S(s)$ and $b_i = s$. \qed
In the case when \(p = 1 \) the following result was proved by Godard (see [9, Proposition 2.3]). Below we give an alternative proof which works for every \(0 < p \leq 1 \) and for not necessarily separable \(\mathbb{R} \)-trees \(T \).

Proposition 5.4: Let \((S,d)\) be a closed subset of an \(\mathbb{R} \)-tree \(T \) such that \(S \) contains all the branching points of \(T \) and has length measure zero. Then \(\mathcal{F}_p(S, d^{1/p}) \approx \ell_p(S_+) \) isometrically. To be precise, the map

\[
T(\delta(s)) := \sum_{x \in (0,s] \cap S_+} (L_S(x))^{1/p} e_x, \quad s \in S,
\]

extends to a linear isometry between \(\mathcal{F}_p(S, d^{1/p}) \) and \(\ell_p(S_+) \).

Proof. Without loss of generality we assume that \(0 \in S \), and for simplicity, for each \(s \in S_+ \) we denote \(\sigma_S(s) \) by \(s# \). For every \(y \in S \) and \(x \in [0,y] \cap S \) we have

\[
(5.14) \quad \delta(y) - \delta(x) = \sum_{z \in (x,y) \cap S_+} (\delta(z) - \delta(z#)).
\]

To see this, if we consider in \([x,y]\) the total order induced by the isometry \(\phi_{x,y} \), by Lemma 5.3 for any \(\varepsilon > 0 \) we can get \(z_1 < z_2 < \cdots < z_n \in (x,y) \cap S_+ \) with

\[
D := |\sum_{i=1}^n d(z_i, z_i#) - d(x,y)| \leq \varepsilon.
\]

With the convention that \(z_0 = x \),

\[
\left\| \delta(y) - \delta(x) - \sum_{i=1}^n (\delta(z_i) - \delta(z_i#)) \right\|^p \\
\leq \left\| \delta(y) - \delta(z_n) \right\|^p + \sum_{i=1}^n \left\| \delta(z_i#) - \delta(z_{i-1}) \right\|^p \\
\leq d(y,z_n) + \sum_{i=1}^n d(z_i#, z_{i-1}) = D \leq \varepsilon,
\]

where, in the last equality, we used the fact that \(z_{i-1} \leq z_i# \) for every \(i = 1, \ldots, n \). For \(s \in S_+ \), put

\[
a_s := \frac{\delta(s) - \delta(s#)}{d^{1/p}(s, s#)},
\]

and set \(A := \overline{\text{co}} \{a_s: s \in S_+\} \). Note that \(T(a_s) = e_s \) since \((s#, s) \cap S = \emptyset \). By Lemma 2.6, in order to show that \(T \) extends to a surjective isometry it suffices to show that for all \(x, y \in S \),

\[
(5.15) \quad a_{x,y} := \frac{\delta(x) - \delta(y)}{d^{1/p}(x, y)} \in A.
\]

To that end, given \(x, y \in S \) there are three cases to be taken into account:
Case 1: If \(x \in [0, y] \), then by the identity (5.14),
\[
a_{x,y} = \sum_{z \in (x,y] \cap S_+} \frac{(L_S(z))^{1/p}}{d^{1/p}(x,y)} a_z,
\]
which, by Lemma 5.3, is a \(p \)-convex combination of \(a_z \), and so \(a_{x,y} \in A \).

Case 2: If \(y \in [0, x] \), switching the roles of \(x \) and \(y \) in the previous case we easily get \(a_{x,y} \in A \).

Case 3: If neither Case 1 nor Case 2 occurs, there exists a branching point \(c \in [x,y] \) with \([0,x] \cap [0,y] = [0,c] \). Then we can write
\[
a_{x,y} = \lambda a_{y,c} + \mu a_{c,x}, \quad \lambda = \frac{d^{1/p}(y,c)}{d^{1/p}(x,y)}, \quad \mu = \frac{d^{1/p}(c,x)}{d^{1/p}(x,y)}.
\]
From the two previous cases we have \(a_{c,y}, a_{c,x} \in A \), and since
\[
\lambda^p + \mu^p = \frac{d(x,c) + d(c,y)}{d(x,y)} = 1,
\]
we conclude that \(a_{x,y} \in A \). Hence, (5.15) is fulfilled.

Since the real line is a trivial example of an \(\mathbb{R} \)-tree we obtain:

Corollary 5.5: Let \(M \) be an infinite subset of \(\mathbb{R} \) and \(0 < p \leq 1 \). If the closure of \(M \) has measure zero then \(F_p(M, |·|^{1/p}) \approx \ell_p \) isometrically. In particular, the result holds if \(M \) is the range of a monotone sequence of real numbers.

Proof of Theorem 5.1. Since \(d^p \) is also an ultrametric whenever \(d \) is, we need only show that \(F_p(M, d^{1/p}) \approx \ell_p \). By [6, Proposition 12], there exists a closed subset \(S \) of a separable \(\mathbb{R} \)-tree \(T \) containing all its branching points in such a way that \(S \) has length measure zero and \((M,d)\) is bi-Lipschitz isomorphic to a Lipschitz retract of \(S \). Denoting the metric on \(S \) by \(\eta \), we have that \((M,d^{1/p})\) is bi-Lipschitz isomorphic to a Lipschitz retract of \((S,\eta^{1/p})\). By Proposition 5.4, Lemma 4.4, and Corollary 4.6, \(F_p(S, \eta^{1/p}) \approx \ell_p \), hence, by Lemma 4.4 and Lemma 4.19, \(F_p(M, d^{1/p}) \) is isomorphic to an infinite-dimensional complemented subspace of \(\ell_p \). Since every infinite-dimensional complemented subspace of \(\ell_p \) is isomorphic to \(\ell_p \) by a classical result of Stiles [21], we infer that
\[
F_p((M, d^{1/p})) \approx \ell_p,
\]
and the proof is complete. \(\blacksquare \)
Theorem 4.13 and Corollary 5.5 allow us to identify the free p-spaces over some subsets of the real line equipped with the “anti-snowflaking” quasimetric $|\cdot|^1/p$. However, identifying the free p-space over subsets of \mathbb{R} equipped with the Euclidean distance seems to be a more challenging task. For the time being, let us just mention that since the Banach envelope of $\mathcal{F}_p(I)$ is $L_1(I)$ for any interval I with the Euclidean distance (to see this, apply Proposition 4.20(b) and Theorem 4.13 for $p = 1$), the spaces $\mathcal{F}_p(I)$ constitute a new class of p-Banach spaces.

6. Linearizations of Lipschitz embeddings

Lipschitz free p-spaces over quasimetric spaces constitute a nice family of new p-Banach spaces which are easy to define but whose geometry seems to be difficult to understand. To carry out this task successfully one hopes to be able to count on “natural” structural results involving free p-spaces over subsets of \mathcal{M}. In this section we analyse this premise and confirm an unfortunate recurrent pattern in quasi-Banach spaces: the lack of tools can be an important stumbling block in the development of the non-linear theory. However, as we will also see, not everything is lost and we still can develop specific methods that permit to shed light onto the structure of $\mathcal{F}_p(\mathcal{M})$.

If \mathcal{M} is a pointed p-metric space and \mathcal{N} is a subset of \mathcal{M} containing 0, the linearization process of Lemma 4.8 applies in particular to the canonical injection $j: \mathcal{N} \to \mathcal{M}$. If $p = 1$, McShane’s theorem [16] ensures that $L_j: \mathcal{F}(\mathcal{N}) \to \mathcal{F}(\mathcal{M})$ is an isometric embedding. Thus $\mathcal{F}(\mathcal{N})$ can be naturally identified with a subspace of $\mathcal{F}(\mathcal{M})$. However, if $p < 1$ this argument crashes. In the case when $p = 1$, $\mathcal{F}(\mathcal{N})$ is isometric to a subspace of $\mathcal{F}(\mathcal{M})$ and so the study of Lipschitz free spaces over subsets is a powerful tool. We start by exhibiting that this argument breaks down when $p < 1$, settling a problem raised in [2].

Theorem 6.1: For each $0 < p < 1$ and $p \leq q \leq 1$ there is a q-metric space (\mathcal{M}, ρ) and a subset $\mathcal{N} \subseteq \mathcal{M}$ such that the inclusion map $j: \mathcal{N} \to \mathcal{M}$ induces a non-isometric isomorphic embedding $L_j: \mathcal{F}_p(\mathcal{N}) \to \mathcal{F}_p(\mathcal{M})$ with $\|L_j^{-1}\| \geq 2^{1/q}$.

Proof. Let $\mathcal{N} = \{0\} \cup \mathbb{N}$ and $\mathcal{M} = \{0, z\} \cup \mathbb{N}$, where $z \notin \mathcal{N}$. Define $\rho: \mathcal{M} \times \mathcal{M} \to [0, \infty)$ by $\rho(x, x) = 0$ for all $x \in \mathcal{M}$, $\rho(j, z) = \rho(z, j) = 2^{1/q}$ for all $j \in \mathbb{N}$, and $\rho(x, y) = 1$ otherwise. It is clear that (\mathcal{M}, ρ) is a bounded and uniformly separated q-metric space. Then, by Theorem 4.14, L_j is an isomorphism.
Given $\epsilon > 0$, there is $k \in \mathbb{N}$ and a k-tuple $(a_j)_{j=1}^k$ such that $a_j \geq 0$ for every $j = 1, \ldots, k$, $\sum_{j=1}^k a_j^p = 1$, and $\sum_{j=1}^k a_j \leq \epsilon$. Indeed, it suffices to choose $k \geq \frac{\epsilon^p}{p/(p-1)}$ and put $a_j = k^{-1/p}$ for $1 \leq j \leq k$. On the one hand, since ρ is the $\{0, 1\}$-metric on \mathcal{N}, by Proposition 4.16,

$$\left\| \sum_{j=1}^k a_j \delta(j) \right\|_{\mathcal{F}_p(\mathcal{N})} = 1.$$

On the other hand, considering the decomposition

$$\sum_{j=1}^k a_j \delta(j) = \left(\sum_{j=1}^k a_j \right) \delta(z) + \sum_{j=1}^k \frac{a_j}{2^{1/q}} \frac{\delta(j) - \delta(z)}{2^{-1/q}}$$

and using Corollary 4.12, we have

$$\left\| \sum_{j=1}^k a_j \delta(j) \right\|_{\mathcal{F}_p(\mathcal{M})}^p \leq \left(\sum_{j=1}^k a_j \right)^p + \sum_{j=1}^k \left(2^{-1/q} a_j \right)^p \leq \epsilon^p + 2^{-p/q}.$$

Hence,

$$\| L_j^{-1} \| \geq \sup_{\epsilon > 0} \frac{1}{(\epsilon^p + 2^{-p/q})^{1/p}} = 2^{1/q}. \quad \Box$$

The following problem seems to be open.

Question 6.2: Let $0 < p < 1$ and $\mathcal{N} \subseteq \mathcal{M}$ be two p-metric (or metric) spaces in inclusion. Is the canonical linear map of $\mathcal{F}_p(\mathcal{N})$ into $\mathcal{F}_p(\mathcal{M})$ an isomorphic embedding?

The answer to Question 6.2 is positive in some special cases.

Proposition 6.3: If \mathcal{M} is a $\{0, 1\}$-metric space, then the canonical map of $\mathcal{F}_p(\mathcal{N})$ into $\mathcal{F}_p(\mathcal{M})$ is isometric for every $\mathcal{N} \subseteq \mathcal{M}$.

Proof. Notice that a map f from a $\{0, 1\}$-metric space \mathcal{M} into a quasi-Banach space X is 1-Lipschitz if and only if $\|f(x) - f(y)\| \leq 1$ for every $x, y \in \mathcal{M}$. Then, a 1-Lipschitz map $f : \mathcal{N} \to X$ with $f(0) = 0$ extends by $f(x) = 0$ for $x \in \mathcal{M} \setminus \mathcal{N}$ to a 1-Lipschitz map from \mathcal{M} into X. This gives $\| L_j(\mu) \|_{\mathcal{F}_p(\mathcal{M})} \geq \| \mu \|_{\mathcal{F}_p(\mathcal{N})}$ for every $\mu \in \mathcal{P}(\mathcal{N})$. \hfill \Box

Proposition 6.4: Let \mathcal{M} be a subset of \mathbb{R} equipped with the quasimetric $\rho(x, y) = |x - y|^{1/p}$ for $0 < p \leq 1$. If the closure of \mathcal{M} has measure zero and $\mathcal{N} \subseteq \mathcal{M}$, then the canonical mapping $L_j : \mathcal{F}_p(\mathcal{N}) \to \mathcal{F}_p(\mathcal{M})$ is an isometry.
Proof. By Proposition 4.17 we can assume that both \mathcal{N} and \mathcal{M} are closed. Let $T_M : F_p(\mathcal{M}) \to \ell_p(\mathcal{M}_+)$ and $T_N : F_p(\mathcal{N}) \to \ell_p(\mathcal{N}_+)$ be the isomotries provided by Proposition 5.4. If $U = T_M \circ L_j \circ T_N^{-1}$, where $j : \mathcal{N} \to \mathcal{M}$ is the inclusion map, we have

$$U(e_s) = \frac{1}{|s - \sigma_N(s)|^{1/p}} \sum_{z \in (\sigma_N(s), s] \cap \mathcal{M}_+} L_{\mathcal{M}}^{1/p}(z)e_z, \quad s \in \mathcal{N}_+.$$

By Lemma 5.3, $\|U(e_s)\|_p = 1$ for every $s \in \mathcal{N}_+$. Pick $s, t \in \mathcal{N}_+$ with $s < t$. Since $(\sigma_N(s), s] \cap \mathcal{N} = \emptyset$, we have $s \leq \sigma_N(t)$. Then, $(\sigma_N(s), s] \cap (\sigma_N(t), t] = \emptyset$ and so $(U(e_s))_{s \in \mathcal{N}_+}$ is a disjointly supported family in $\ell_p(\mathcal{M}_+)$. Hence $(U(e_s))_{s \in \mathcal{N}_+}$ is isometrically equivalent to the unit vector basis of $\ell_p(\mathcal{M}_+)$, i.e., U is an isometric embedding.

Question 6.5: Let $0 < p < 1$. Can we identify the p-metric spaces \mathcal{M} for which the canonical linear map from $F_p(\mathcal{N})$ into $F_p(\mathcal{M})$ is an isometry for every $\mathcal{N} \subseteq \mathcal{M}$?

Acknowledgment. F. Albiac and J. L. Ansorena would like to thank the Faculty of Mathematics and Physics at Charles University in Prague for their hospitality and generosity during their visit in September 2018, when most of the work on this paper was undertaken.

References

[1] F. Albiac, Nonlinear structure of some classical quasi-Banach spaces and Ff-spaces, Journal of Mathematical Analysis and Applications 340 (2008), 1312–1325.
[2] F. Albiac and N. J. Kalton, Lipschitz structure of quasi-Banach spaces, Israel Journal of Mathematics 170 (2009), 317–335.
[3] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, Vol. 233, Springer, Cham, 2016.
[4] T. Aoki, Locally bounded linear topological spaces, Proceedings of the Imperial Academy. Tokyo 18 (1942), 588–594.
[5] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 2000.
[6] M. Cúth and M. Doucha, Lipschitz-free spaces over ultrametric spaces, Mediterranean Journal of Mathematics 13 (2016), 1893–1906.
[7] M. M. Day, The spaces l^p with $0 < p < 1$, Bulletin of the American Mathematical Society 46 (1940), 816–823.
[8] S. N. Evans, Probability and Real Trees, Lecture Notes in Mathematics, Vol. 1920, Springer, Berlin, 2008.
[9] A. Godard, Tree metrics and their Lipschitz-free spaces, Proceedings of the American Mathematical Society 138 (2010), 4311–4320.
[10] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Mathematica 159 (2003), 121–141.
[11] R. E. Harrell and L. A. Karlovitz, Girths and flat Banach spaces, Bulletin of the American Mathematical Society 76 (1970), 1288–1291.
[12] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer, New York, 2001.
[13] N. Kalton, Quasi-banach spaces, in Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1099–1130.
[14] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collectanea Mathematica 55 (2004), 171–217.
[15] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Mathematical Society Lecture Note Series, Vol. 89, Cambridge University Press, Cambridge, 1984.
[16] E. J. McShane, Extension of range of functions, Bulletin of the American Mathematical Society 40 (1934), 837–842.
[17] A. Naor and G. Schechtman, Planar earthmover is not in L_1, SIAM Journal on Computing 37 (2007), 804–826.
[18] J. Peetre, Remark on the dual of an interpolation space, Mathematica Scandinavica 34 (1974), 124–128.
[19] C. Petitjean, Lipschitz-free spaces and Schur properties, Journal of Mathematical Analysis and Applications 453 (2017), 894–907.
[20] J. J. Schäffer, Inner diameter, perimeter, and girth of spheres, Mathematische Annalen 173 (1967), 59–79; addendum, ibid. 173 (1967), 79–82.
[21] W. J. Stiles, Some properties of l_p, $0 < p < 1$, Studia Mathematica 42 (1972), 109–119.
[22] N. Weaver, Lipschitz Algebras, World Scientific Publishing, Hackensack, NJ, 2018.