A bicommutant theorem for dual Banach algebras

Matthew Daws

January 7, 2010

Abstract

A dual Banach algebra is a Banach algebra which is a dual space, with the multiplication being separately weak*-continuous. We show that given a unital dual Banach algebra A, we can find a reflexive Banach space E, and an isometric, weak*-weak*-continuous homomorphism $\pi : A \to B(E)$ such that $\pi(A)$ equals its own bicommutant.

Keywords: dual Banach algebra, bicommutant, reflexive Banach space.

2000/2010 Mathematical Subject Classification: 46H05, 46H15, 47L10 (primary), 46A32, 46B10

1 Introduction

Given a Banach space E, we write $B(E)$ for the Banach algebra of operators on E. Given a subset $X \subseteq B(E)$, we write X' for the commutant of X,

$$X' = \{ T \in B(E) : TS = ST \ (S \in X) \}.$$

The von Neumann bicommutant theorem tells us that if E is a Hilbert space, and X is a \ast-closed, unital subalgebra, then X'' is the strong operator topology closure of X in $B(E)$. If X is not \ast-closed, then this result may fail (consider strictly upper-triangular two-by-two matrices). However, a result of Blecher and Solel, [2], shows, in particular, that if X is weak*-closed, that we can find another Hilbert space K, and a completely isometric, weak*-weak*-continuous homomorphism $\pi : X \to B(K)$, such that $\pi(X) = \pi(X)''$. That is, if we change the Hilbert space which our algebra acts on, we do have a bicommutant theorem.

A dual Banach algebra is a Banach algebra which is a dual space, such that the multiplication is weak*-continuous. Building on work of Young and Kaiser, the author showed in [5] that given a dual Banach algebra A, we can find a reflexive Banach space E and an isometric, weak*-weak*-continuous homomorphism $\pi : A \to B(E)$. In this paper, we show that when A is unital, we can choose E and π such that $\pi(A) = \pi(A)''$. The method is similar to that used in [2] (although we follow the presentation of [1]) combined with an idea adapted from [5, Section 6].

1.1 Acknowledgments

The author wishes to thank Stuart White and Allan Sinclair for suggesting this problem, and to thank David Blecher for bringing [2] to his attention.

2 Notation and preliminary results

Given a Banach space E, let E^* be the dual space to E. For $\mu \in E^*$ and $x \in E$, we write $\langle \mu, x \rangle = \mu(x)$. For $X \subseteq E$, let

$$X^\perp = \{ \mu \in E^* : \langle \mu, x \rangle = 0 \ (x \in X) \}.$$
For $Y \subseteq E^*$, let
\[\dual{Y} = \{ \mu \in E : \langle \mu, x \rangle = 0 \ (\mu \in Y) \}. \]
Then \dual{X} is the closure of the linear span of X, while (\dual{Y}) is the weak*-closure of the linear span of Y. We may canonically identify X^* with E/X^*, and $(E/X)^*$ with X^*. In particular, Y is weak*-closed if and only if $Y = (\dual{Y})$, and in this case, the canonical predual of Y is E^*/\dual{Y}.

We write $E^* \hat{\otimes} E$ for the projective tensor product of E^* with E. This is the completion of the algebraic tensor product $E^* \otimes E$ with respect to the norm
\[\|\tau\|_{\pi} = \inf \left\{ \sum_{k=1}^{n} \|\mu_k\| \|x_k\| : \tau = \sum_{k=1}^{n} \mu_k \otimes x_k \right\}. \]
Any element of $E^* \hat{\otimes} E$ can be written as $\sum_k \mu_k \otimes x_k$ with $\sum_k \|\mu_k\| \|x_k\| < \infty$. For further details, see [3] or [6], for example.

The Banach algebra $\mathcal{B}(E)$ is a dual Banach algebra with respect to the predual $E^* \hat{\otimes} E$, the dual pairing being given by
\[\langle T, \mu \otimes x \rangle = \langle \mu, T(x) \rangle \quad (T \in \mathcal{B}(E), \mu \otimes x \in E^* \hat{\otimes} E), \]
and linearity and continuity. Indeed, under many circumstances, this is the unique predual for $\mathcal{B}(E)$, see [5] Theorem 4.4.

It follows that any weak*-closed subalgebra of $\mathcal{B}(E)$ is also a dual Banach algebra: then [5] Corollary 3.8] shows that every dual Banach algebra arises in this way. If $X \subseteq \mathcal{B}(E)$, then X' is a closed subalgebra of $\mathcal{B}(E)$. Notice that $T \in X'$ if and only if T annihilates all $\tau \in E^* \hat{\otimes} E$ of the form
\[\tau = \mu \otimes S(x) - S^*(\mu) \otimes x \quad (S \in X, \mu \in E^*, x \in E). \]
Hence $X' = Y^* = (E^* \hat{\otimes} E/Y)^*$ is weak*-closed, where Y is the closed linear span of such τ. In particular, X'' is a weak*-closed subalgebra of $\mathcal{B}(E)$ containing X, and so X'' contains the weak*-closed algebra generated by X.

We shall follow the ideas of [1, Theorem 3.2.14]; see [2] for a fuller treatment. We first establish some preliminary results. Given a Banach space E, we write $\ell^2(E)$ for the Banach space consisting of sequences (x_n) in E with norm $\| (x_n) \|_2 = \left(\sum_n \|x_n\|^2 \right)^{1/2}$. Throughout, we could instead work with $\ell^p(E)$ for $1 < p < \infty$, if we so wished. Then $\ell^2(E)^* = \ell^2(E^*)$, and $\ell^2(E)$ is reflexive if E is. For each n, let $\tau_n : E \to \ell^2(E)$ be the injection onto the nth co-ordinate, and let $P_n : \ell^2(E) \to E$ be the projection onto the nth co-ordinate. For $T \in \mathcal{B}(E)$, let $T^{(\infty)} \in \mathcal{B}(\ell^2(E))$ be the operator given by applying T to each co-ordinate. Notice that $T^{(\infty)} = T_{n}T$ and $P_nT^{(\infty)} = TP_n$, for each n.

For $X \subseteq \mathcal{B}(E)$, let $X^{(\infty)} = \{ T^{(\infty)} : T \in X \}$. Given a homomorphism $\pi : \mathcal{A} \to \mathcal{B}(E)$, let $\pi^{(\infty)} : \mathcal{A} \to \mathcal{B}(\ell^2(E))$ by the homomorphism given by $\pi^{(\infty)}(a) = \pi(a)^{(\infty)}$ for each $a \in \mathcal{A}$.

Lemma 2.1. For a Banach space E, and $X \subseteq \mathcal{B}(E)$, we have that $(X^{(\infty)})'' = (X'')^{(\infty)}$.

Proof. Let $Q \in (X^{(\infty)})'$. For $n, m \in \mathbb{N}$ and $S \in X$, we have that $P_nQ_{\ell m}S = P_nQS_{\ell m} = P_nS_{\ell m}Q_{\ell m} = SP_nQ_{\ell m}$. Thus $P_nQ_{\ell m} \in X'$, for each n, m. Similarly, one can show that for $Q \in \mathcal{B}(\ell^2(E))$, if $P_nQ_{\ell m} \in X'$ for all n, m, then $Q \in (X^{(\infty)})'$. So, given $T \in X''$ and $Q \in (X^{(\infty)})'$, we have that $TP_nQ_{\ell m} = P_nQ_{\ell m}T$ for all n, m. Thus, for all n, m, it follows that $P_nT^{(\infty)}Q_{\ell m} = P_nQT^{(\infty)}_{\ell m}$, from which it follows that $T^{(\infty)}Q = QT^{(\infty)}$. Thus $(X'')^{(\infty)} \subseteq (X^{(\infty)})''$.

For the converse, let $T \in (X^{(\infty)})''$. For each n, m, notice that $\tau_nP_m \in (X^{(\infty)})'$, so that $T\tau_nP_m = \tau_nP_mT$. Let $r \in \mathbb{N}$, so that
\[T\tau_n\delta_{m,r} = T\tau_nP_{m,r} = \tau_nP_{m,r}. \]
It follows that $T_{t_r} = t_r R$ for some $R \in \mathcal{B}(E)$, and that R does not depend upon r. Thus there must exist $R \in \mathcal{B}(E)$ with $T = R^{(\infty)}$. Now let $S \in X'$, so that $S^{(\infty)} \in (X^{(\infty)})'$, and hence
\[
(RS)^{(\infty)} = TS^{(\infty)} = S^{(\infty)}T = (SR)^{(\infty)}.
\]
It follows that $R \in X''$, and hence that $(X^{(\infty)})'' \subseteq (X'')^{(\infty)}$. □

Lemma 2.2. Let E be a reflexive Banach space, and let $X \subseteq \mathcal{B}(E)$ be a subalgebra. Let X_w be the weak∗-closure of X in $\mathcal{B}(E)$, with respect to the predual $E^* \otimes E$. Then $(X_w)^{(\infty)} = (X^{(\infty)})_w$.

Proof. Let $T \in (X^{(\infty)})_w$. For $x \in E, \mu \in E^*$ and $n \neq m$, certainly $\langle t_n(\mu) \otimes t_m(x) \rangle \in \downarrow (X^{(\infty)})$, and so
\[
0 = \langle t_n(\mu), Tt_m(x) \rangle = \langle \mu, P_n Tt_m(x) \rangle.
\]
Thus $P_n Tt_m = 0$ whenever $n \neq m$. For any x, μ, n and m, we also have that
\[
\langle t_n(\mu) \otimes t_n(x), t_m(\mu) \otimes t_m(x) \rangle \in \downarrow (X^{(\infty)}).
\]
It follows that $P_n Tt_n = P_m Tt_m$. Combining these results, we conclude that $T = S^{(\infty)}$ for some $S \in \mathcal{B}(E)$.

Let $\tau \in \downarrow X \subseteq E^* \otimes E$, say $\tau = \sum_k \mu_k \otimes x_k$. For $R \in X$ and each n, we have that
\[
\langle R^{(\infty)}, \sum_k t_n(\mu_k) \otimes t_n(x_k) \rangle = 0,
\]
so that $\sigma = \sum_k t_n(\mu_k) \otimes t_n(x_k) \in \downarrow (X^{(\infty)})$. So
\[
0 = \langle T, \sigma \rangle = \langle S^{(\infty)}, \sigma \rangle = \langle S, \tau \rangle,
\]
from which it follows that $S \in X_w$. So $(X^{(\infty)})_w \subseteq (X_w)^{(\infty)}$.

For the converse, let $T \in X_w$, and let $\tau \in \downarrow (X^{(\infty)})$, say $\tau = \sum_n \mu_n \otimes x_n$. By rescaling, we may suppose that $\sum_n \|\mu_n\|^2 = \sum_n \|x_n\|^2 < \infty$. For each n, we have that $\mu_n = (\mu^{(n)}_k)$, say, where $\|\mu_n\|^2 = \sum_k \|\mu^{(n)}_k\|^2$. Thus $\sum_n \|\mu^{(n)}_k\|^2 < \infty$. Similarly, each $x_n = (x^{(n)}_k)$, and $\sum_n \|x^{(n)}_k\|^2 < \infty$. We can now compute that, for $S \in X$,
\[
0 = \langle S^{(\infty)}, \tau \rangle = \sum_n \langle \mu_n, S^{(\infty)}(x_n) \rangle = \sum_n \langle \mu^{(n)}_k, S(x^{(n)}_k) \rangle,
\]
so that $\sigma = \sum_n \mu^{(n)}_k \otimes x^{(n)}_k \in \downarrow X$ (where this sum converges absolutely by an application of the Cauchy-Schwarz inequality). Then $0 = \langle T, \sigma \rangle = \langle T^{(\infty)}, \tau \rangle$, from which it follows that $T^{(\infty)} \in (X^{(\infty)})_w$. So $(X_w)^{(\infty)} \subseteq (X^{(\infty)})_w$. □

The following lemma is usually stated in terms of “reflexivity” of a subspace of $\mathcal{B}(E)$, but this is a different meaning to that of a reflexive Banach space, so we avoid this terminology.

Lemma 2.3. Let E be a reflexive Banach space, and let $X \subseteq \mathcal{B}(E)$ be a weak∗-closed subspace. If $T \in \mathcal{B}(\ell^2(E))$ is such that, for each $x \in \ell^2(E)$, we have that $T(x)$ is in the closure of $\{S^{(\infty)}(x) : S \in X\}$, then actually $T \in X^{(\infty)}$.

Proof. Let T be as stated, so for each n, we have that the image of Tt_n is a subset of the image of t_n. By considering what T maps $(t_1 + \cdots + t_n)(x)$ to, for any $x \in E$, we may conclude that $T = R^{(\infty)}$ for some $R \in \mathcal{B}(E)$.

Let $\tau \in \downarrow X$, say $\tau = \sum_n \mu_n \otimes x_n$, where we may suppose that $\sum_n \|\mu_n\|^2 = \sum_n \|x_n\|^2 < \infty$. Let $\mu = (\mu_n) \in \ell^2(E^*)$ and $x = (x_n) \in \ell^2(E)$, so that
\[
\langle R, \tau \rangle = \langle \mu, R^{(\infty)}(x) \rangle = \langle \mu, T(x) \rangle.
\]
However, notice that $\langle \mu, S^{(\infty)}(x) \rangle = \langle S, \tau \rangle = 0$ for each $S \in X$, so by the assumption on T, it follows also that $\langle \mu, T(x) \rangle = 0$, so $\langle R, \tau \rangle = 0$. So $R \in (\downarrow X)^\perp = X$, that is, $T \in X^{(\infty)}$. □
3 The main result

Let us introduce some temporary terminology, motivated by [1]. Let \mathcal{A} be a Banach algebra, and E be a left \mathcal{A}-module (which we assume to be a Banach space with contractive actions). In this section, we shall always suppose that E is essential, that is, the linear span of $\{a \cdot x : a \in \mathcal{A}, x \in E\}$ is dense in E.

We say that E is cyclic if there exists $x \in E$ with $\mathcal{A} \cdot x = \{a \cdot x : a \in \mathcal{A}\}$ being dense in E. We say that E is self-generating if, for each closed cyclic submodule $K \subseteq E$, the linear span of $\{T(E) : T : E \to K$ is an \mathcal{A}-module homomorphism} is dense in K.

The following is very similar to the presentation in [1], but we check that the details still work for reflexive Banach spaces, and not just Hilbert spaces.

Theorem 3.1. Let \mathcal{A} be a unital Banach algebra, and let E be a reflexive Banach space with a bounded homomorphism $\pi : \mathcal{A} \to \mathcal{B}(E)$. Use π to turn E into a left \mathcal{A}-module, and suppose that $\ell^2(E)$ is self-generating. Then $\pi(\mathcal{A})''$ agrees with the weak*-closure of $\pi(\mathcal{A})$ in $\mathcal{B}(E)$.

Proof. Let \mathcal{B} be the closure of $\pi(\mathcal{A})$ in $\mathcal{B}(E)$, and let \mathcal{B}_w be the weak*-closure of \mathcal{B}. We wish to show that $\mathcal{B}_w = \mathcal{B}''$.

Let $T \in (\mathcal{B}'')'(\infty) \subseteq \mathcal{B}(\ell^2(E))$, let $x \in \ell^2(E)$ be non-zero, and let K be the closure of $\mathcal{B}''(\infty)(x)$. As E is essential, it follows that the unit of \mathcal{A} acts as the identity on E, and hence also as the identity on $\ell^2(E)$, under $\pi(\infty)$. Thus $x \in K$. We shall show that $T(K) \subseteq K$.

Let $V : \ell^2(E) \to K$ be an \mathcal{A}-module homomorphism, and let $\iota : K \to \ell^2(E)$ be the inclusion map. By continuity, and the density of \mathcal{A} in \mathcal{B}, we see that $\iota V \in (\mathcal{B}'')(\infty)'$. Hence $T \iota V = \iota T V$, from which it follows that $TV(\ell^2(E)) = V T(\ell^2(E)) \subseteq K$. Let W be the linear span of the images of all such V. As $\ell^2(E)$ is self-generating, it follows that W is dense in K. However, $T(W) \subseteq K$, and so by continuity, $T(K) \subseteq K$, as required.

So we have shown that for each $x \in \ell^2(E)$, we have that $T(x)$ is in the closed linear span of $\mathcal{B}''(\infty)(x) \subseteq \mathcal{B}_w'(\infty)(x)$. By Lemma 2.3, we conclude that $T \in (\mathcal{B}_w'')'(\infty) \subseteq (\mathcal{B}'')(\infty)$. By Lemma 2.1 and Lemma 2.2, this shows that $(\mathcal{B}'')(\infty)' \subseteq (\mathcal{B}_w'')'(\infty)$. Hence also $(\mathcal{B}_w'(\infty))'' = (\mathcal{B}'')'(\infty)$, from which it follows immediately that $\mathcal{B}_w = \mathcal{B}''$, as required. \[\square\]

By using the Cohen Factorisation theorem, see [3, Corollary 2.9.25], a slightly more subtle argument would show that this theorem also holds for Banach algebras with a bounded approximate identity.

The previous result is only useful if we have a good supply of self-generating modules. The following is similar to an idea we used in [5, Lemma 6.10].

Proposition 3.2. Let \mathcal{A} be a Banach algebra, and let E be a reflexive Banach space which is a left \mathcal{A}-module. There exists a reflexive left \mathcal{A}-module F such that:

1. E is isomorphic to a one-complemented submodule of F;
2. each closed, cyclic submodule of $\ell^2(F)$ is isomorphic to a one-complemented submodule of F;

In particular, $\ell^2(F)$ is self-generating.

Proof. Let $\mathcal{E}_0 = \{E\}$. We use transfinite induction to define \mathcal{E}_α to be a set of reflexive left \mathcal{A}-modules, for each ordinal $\alpha \leq \aleph_1$. If α is a limit ordinal, we simply define $\mathcal{E}_\alpha = \bigcup_{\beta < \alpha} \mathcal{E}_\beta$.

Otherwise, we let E_α to be the ℓ^2 direct sum of each module in \mathcal{E}_α, so that E_α is a reflexive left \mathcal{A}-module in the obvious way. Let $\mathcal{E}_{\alpha+1}$ be \mathcal{E}_α unioned with the set of all closed cyclic submodules of $\ell^2(E_\alpha)$.
Let \(F \) be the \(\ell^2 \) direct sum of all the modules in \(\mathcal{E}_{\mathcal{R}_1} \). As \(\{E\} = \mathcal{E}_0 \subseteq \mathcal{E}_{\mathcal{R}_1} \), condition (1) follows. Let \(K \) be a closed, cyclic submodule of \(\ell^2(F) \), say \(K \) is the closure of \(A \cdot x \). Thus

\[
x \in \ell^2(F) \cong \ell^2 - \bigoplus_{G \in \mathcal{E}_{\mathcal{R}_1}} \ell^2(G).
\]

Say \(x = (x_G)_{G \in \mathcal{E}_{\mathcal{R}_1}} \), where each \(x_G \in \ell^2(G) \). As \(\|x\|^2 = \sum_G \|x_G\|^2 < \infty \), it follows that \(x_G \neq 0 \) for at most countably many \(G \). As \(\aleph_1 \) is uncountable, we must actually have that there exists \(\alpha < \aleph_1 \) with \(x \in \ell^2 - \bigoplus_{G \in \mathcal{E}_{\alpha}} \ell^2(G) \cong \ell^2(E_\alpha) \). Then, by construction, \(K \subseteq \mathcal{E}_{\alpha+1} \), and so \(K \) is a one-complemented submodule of \(F \).

Let \(\mathcal{A} \) be a Banach algebra. Recall, for example from [5], that \(\text{WAP}(\mathcal{A}^*) \) is the closed submodule of \(\mathcal{A}^* \) consisting of those functionals \(\phi \in \mathcal{A}^* \) such that

\[
\mathcal{A} \rightarrow \mathcal{A}^*; \quad a \mapsto a \cdot \phi
\]

is weakly-compact. Young’s result, [5], shows that for each \(\phi \in \text{WAP}(\mathcal{A}^*) \), there exists a reflexive Banach space \(E \), a contractive homomorphism \(\pi : \mathcal{A} \rightarrow \mathcal{B}(E) \), and \(x \in E, \mu \in E^* \) with \(\|\phi\| = \|x\|\|\mu\| \) and such that

\[
\langle \phi, a \rangle = \langle \mu, \pi(a)(x) \rangle \quad (a \in \mathcal{A}).
\]

Let \(\mathcal{A} \) be a dual Banach algebra with predual \(\mathcal{A}_* \). It is easy to show (see [5] for example) that \(\mathcal{A}_* \subseteq \text{WAP}(\mathcal{A}^*) \). We showed in [5, Section 3] that Young’s result holds for \(\phi \in \mathcal{A}_* \), with the additional condition that for any \(\lambda \in E^* \) and \(y \in E \), the functional \(\pi^*(\lambda \otimes y) \) is in \(\mathcal{A}_* \), where

\[
\langle \pi^*(\lambda \otimes y), a \rangle = \langle \lambda, \pi(a)(y) \rangle \quad (a \in \mathcal{A}).
\]

Note that, a priori, Young’s result only shows that \(\pi^*(\lambda \otimes y) \in \text{WAP}(\mathcal{A}^*) \).

Proposition 3.3. With the notation of Proposition 3.2, we have that \(\pi^*(F^* \hat{\otimes} F) \) is a subset of the closed submodule generated by \(\pi^*(E^* \hat{\otimes} E) \).

Proof. The module \(F \) is generated from \(E \) by two constructions: (i) taking submodules; and (ii) taking \(\ell^2 \)-direct sums. For (i), let \(K \) be a submodule of \(E \). The Hahn-Banach theorem shows that \(\pi^*(K^* \hat{\otimes} K) \subseteq \pi^*(E^* \hat{\otimes} E) \). For (ii), let \((K_i) \) be a family of submodules of \(E \) with \(\pi^*(K_i^* \hat{\otimes} K_i) \subseteq \pi^*(E^* \hat{\otimes} E) \) for each \(i \), and let \(F = \ell^2 - \bigoplus_i K_i \). Let \(\sum_n \mu_n \otimes x_n \in F^* \hat{\otimes} F \), with, say, \(\sum_n \|\mu_n\|^2 = \sum_n \|x_n\|^2 < \infty \). For each \(n \), we have \(\mu_n = (\mu_i^{(n)}) \) with \(\|\mu_n\|^2 = \sum_i \|\mu_i^{(n)}\|^2 \), and \(x_n = (x_i^{(n)}) \) with \(\|x_n\|^2 = \sum_i \|x_i^{(n)}\|^2 \). Then

\[
\sum_n \langle \mu_n, a \cdot x_n \rangle = \sum_{n,i} \langle \mu_i^{(n)}, a \cdot x_i^{(n)} \rangle \quad (a \in \mathcal{A}).
\]

Hence

\[
\pi^* \left(\sum_n \mu_n \otimes x_n \right) = \pi^* \left(\sum_{n,i} \mu_i^{(n)} \otimes x_i^{(n)} \right) \subseteq \pi^*(E^* \otimes E).
\]

Again, the Cauchy-Schwarz inequality shows that the sum on the right converges. \(\square \)

Theorem 3.4. Let \(\mathcal{A} \) be a unital dual Banach algebra. There exists a reflexive Banach space \(E \) and an isometric, weak*-weak*-continuous homomorphism \(\pi : \mathcal{A} \rightarrow \mathcal{B}(E) \) such that \(\pi(\mathcal{A})'' = \pi(\mathcal{A}) \).

Proof. By [5, Corollary 3.8], we may suppose that \(\mathcal{A} \subseteq \mathcal{B}(E_0) \), for some reflexive Banach space \(E_0 \). By Proposition 3.2, we can find a self-generating, reflexive Banach space \(E \) and a contractive representation \(\pi : \mathcal{A} \rightarrow \mathcal{B}(E) \). As \(E_0 \subseteq E \), it follows that \(\pi \) is an isometry. By Proposition 3.3, \(\pi \) is weak*-weak*-continuous. The result now follows from Theorem 3.1. \(\square \)
It is well-known that for any Banach algebra \mathcal{A}, we have that $\text{WAP}(\mathcal{A}^\ast)^\ast$ is a dual Banach algebra (see, for example, [5, Proposition 2.4]). When \mathcal{A} has a bounded approximate identity, a weak*-limit point in $\text{WAP}(\mathcal{A}^\ast)^\ast$ will be a unit for $\text{WAP}(\mathcal{A}^\ast)^\ast$.

Corollary 3.5. Let \mathcal{A} be a Banach algebra with a bounded approximate identity. There exists a reflexive Banach space E and a contractive homomorphism $\pi : \mathcal{A} \to \mathcal{B}(E)$ such that $\pi(\mathcal{A})''$ is isometrically, weak*-weak*-continuously isomorphic to $\text{WAP}(\mathcal{A}^\ast)^\ast$.

Finally, we remark that Uygul showed in [7] that given a dual, completely contractive Banach algebra \mathcal{A}, we can find a reflexive operator space and a completely isometric, weak*-weak*-continuous homomorphism $\pi : \mathcal{A} \to \mathcal{B}(E)$. Using this result, we can easily prove a version of Theorem 3.4 for completely contractive Banach algebras. Indeed, the only thing to do is to equip ℓ^2 direct sums with an Operator Space structure such that the inclusion and projection maps are complete contractions. This is worked out in detail in [8] (see also [7]).

Finally, we remark that the space constructed in Theorem 3.4 is very abstract. For a group measure space convolution algebra $M(G)$, Young showed in [9] that $M(G)$ can be weak*-represented on a direct sum of $L^p(G)$ spaces; the analogous result for the Fourier algebra was shown by the author in [4]. For such concrete Banach algebras \mathcal{A}, it would be interesting to know if “nice” reflexive Banach spaces E could be found with $\pi : \mathcal{A} \to \mathcal{B}(E)$ such that $\pi(\mathcal{A})'' = \pi(\mathcal{A})$.

References

[1] D. Blecher, C. Le Merdy, *Operator Algebras and Their Modules: An Operator Space Approach*, (Clarendon Press, Oxford, 2004).

[2] D. Blecher, B. Solel, ‘A double commutant theorem for operator algebras’, *J. Operator Theory* 51 (2004) 435–453.

[3] H. G. Dales, *Banach algebras and automatic continuity*, (Clarendon Press, Oxford, 2000).

[4] M. Daws, ‘Representing multipliers of the Fourier algebra on non-commutative L^p spaces’, preprint. See [arXiv:0906.5128v2 [math.FA]]

[5] M. Daws, ‘Dual Banach algebras: representations and injectivity’, *Studia Math*. 178 (2007) 231–275.

[6] T. W. Palmer, *Banach algebras and the general theory of \ast-algebras, Vol 1*, (Cambridge University Press, Cambridge, 1994).

[7] F. Uygul, ‘A representation theorem for completely contractive dual banach algebras’, *J. Operator Theory* 62 (2009) 327–340.

[8] Q. Xu, ‘Interpolation of operator spaces’, *J. Funct. Anal*. 139 (1996) 500–539.

[9] N. J. Young, ‘Periodicity of functionals and representations of normed algebras on reflexive spaces.’, *Proc. Edinburgh Math. Soc. (2)* 20 (1976/77) 99–120.

Author’s Address: School of Mathematics, University of Leeds Leeds LS2 9JT.

Email: matt.daws@cantab.net