Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

A A N G Sapteka1, A A N M Narottama1, A Winarta2,3, K Amerta Yasa1, P S Priambodo4, and N Putra3

1Electrical Engineering, Politeknik Negeri Bali, Jimbaran, Bali, 80361, Indonesia
2Mechanical Engineering, Politeknik Negeri Bali, Jimbaran, Bali, 80361, Indonesia
3Mechanical Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
4Electrical Engineering, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia

E-mail: sapteka@pnb.ac.id

Abstract. Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

1. Introduction
Research on current and voltage modelling on solar cells was carried out by Eckstein in 1990 at The University of Wisconsin - Madison. Eckstein wrote about the Effect of temperature and irradiance on I-V characteristics in the Solarex MSX-30 module [1]. Soto W D, Klen S A and Beckman W A studied about ideality factor parameters, reverse saturation current, light current, shunt resistance, and series resistance of diode at irradiance level of 1000 W/m² and the cell temperature is 25°C [2]. Chenni R, Makhlouf M, Kerbache T and Bouzid A examined series resistance modelling of solar cells and the effect of mounting photovoltaic cells in series and parallel [3]. Dzimano wrote about neural network modelling using single diode as a model of solar cell structure [4]. Villalva M G, Gazoli J R and Filho E R investigated current modelling that consists of solar cell current, saturation current and incorporating thermal voltage parameter [5]. Priambodo P S, Poespawati N R and Hartanto D wrote about open circuit voltage of solar cell output. This voltage is determined by photogenerated current, diode saturation current at reverse bias condition and temperature. The diode saturation current depends on the structure design and the choice of materials for solar cell diode, while photogenerated
current depends on the illumination intensity as well [6]. Our group research at Universitas Indonesia also examined the utilization of heat pipe on cold surface of thermoelectric with low-temperature heatsink from a solar cell simulated with combination of a bulb and a collector plate [7]. Bellia H, Youcef R and Fatima M studied about a detail modelling of the effect of irradiance and temperature on the parameters of Photovoltaic module. The chosen model was a single diode model with both series and parallel resistors for greater accuracy [8]. Humada A M, Hojabri M, Mekhilef S and Hamada H M examined techniques based on single diode and double diode models. The main parameters of interest was photocurrent, reverse diode saturation current, ideality factor of diode, series resistance, and shunt resistance [9].

In this paper, the current and voltage characteristics are modelled using Boltzmann sigmoid function with good fit. According to our knowledge, the use of Boltzmann sigmoid function to model the electric characteristics of solar panel has not been studied yet. This paper is written preliminary research of thermal management on solar cell to improve its efficiency. As stated by other researchers, the efficiency of solar panels decreases as the panels’ temperature increases [10-19]. Therefore, it is important to study about thermal management on solar panel.

2. Methodology
This research was conducted in Denpasar City located at 8°35'31" to 8°44'49" south latitude and 115°00'23" to 115°16'27" east longitude in June 2017. Current and voltage data was collected using 150-Watt peak solar panel at various temperatures and irradiance levels. Temperature data was taken at front and back panel. Temperature data collection was done using TMP36 temperature sensor which has ±2 °C accuracy with 0.5 °C linearity. The average temperature (T_M) was processed based on the front panel temperature (FPT) and back panel temperature (BPT) of solar panel. Irradiance (Irr) data collection was done using Lutron Solar Power Meter SPM-1116SD with 10 W/m² accuracy and 0.1 W/m² resolutions for irradiance<1000 W/m² and resolution of 1 W/m² for irradiance≥1000 W/m². Further data was processed with Origin software for fitting process. The results obtained from the fitting process indicate that parameters in Boltzmann Sigmoid Function (BSF) in Equation (1) have adjusted R² values close to 1 with current-voltage curve of 150-Watt peak solar panel.

\[
y = A_2 + \frac{A_1 - A_2}{1 + e^{\left(\frac{x-x_0}{a}\right)}}
\]

These parameters are then used to determine the current-voltage characteristics of 150-Watt peak solar panel at different irradiance and temperature levels.

3. Result and Discussion
3.1. Data Observation
The observation was conducted using 150-Watt peak polycrystalline solar panel. It yields irradiance (Irr), front panel temperature (FPT), back panel temperature (BPT), current and voltage data as shown in Table 1. During the observation, short circuit current (I_{SC}) and open circuit voltage (V_{OC}) and 5 (five) current and voltage pairs (I_1-V_1 to I_5-V_5) data was collected.

Irradiance (W/m²)	FPT (°C)	BPT (°C)	I_{SC} (A)	V_{OC} (V)	V_1 (V)	I_1 (A)	V_2 (V)	I_2 (A)	V_3 (V)	I_3 (A)	V_4 (V)	I_4 (A)	V_5 (V)	I_5 (A)
103-105	30.44	30.69	0.83	18.5	6.1	0.82	10.6	0.81	14.8	0.78	16.2	0.7	17.9	0.32
241-258	38.19	39.88	2.08	18.4	6.9	2.03	10	2	14.4	1.91	15.9	1.65	--	--
304-308	35	34	2.39	19.4	5.9	2.39	10.6	2.37	14.9	2.33	16.7	2.04	18.1	1.33
382-390	38.38	37.44	3.08	19.5	6.3	3.05	10.9	3.01	15	2.94	16.5	2.61	18	1.76
448-454	41.25	38.44	3.55	19.5	6	3.4	10.2	3.4	14.2	3.3	16.7	2.8	18.3	1.5
546-556	41.63	39.13	4.35	19.7	6.5	4.2	10	4.1	14.4	4.1	16.6	3.5	18.3	2.03
Table 2. Irradiance, temperature, current and voltage data of 150 Watt-peak solar panel (cont’d)

Irradiance (W/m²)	FPT (°C)	BPT (°C)	ISC (A)	V_OC (V)	I₁ (A)	V₁ (V)	I₂ (A)	V₂ (V)	I₃ (A)	V₃ (V)	I₄ (A)	V₄ (V)	I₅ (A)	V₅ (V)	I₆ (A)
650	46.19	42.75	5.21	5.09	4.93	19.6	5.21	6.4	5.09	14.9	5.21	19.6	5.21	4.93	19.6
820-830	49.5	46.81	6.56	9.7	7.62	19.5	6.56	6.7	9.7	14.4	6.56	19.5	6.56	7.62	19.5
900	55.69	52.81	7.2	10.6	8.8	19.1	7.2	6.9	10.6	14.3	6.9	19.1	7.2	8.8	19.1
995-998	54.81	50.63	7.95	10.1	7.6	19.5	7.95	6.1	10.1	14.3	6.1	19.5	7.95	7.6	19.5
998-1006	52.5	48.09	7.98	10.5	7.7	19.1	7.98	6.3	10.5	14.4	6.3	19.1	7.98	7.7	19.1
983-1000	57.31	55.19	7.88	10.6	7.6	19.5	7.88	6.2	10.6	14.5	6.2	19.5	7.88	7.6	19.5
1020-1040	57.19	54.48	8.2	10.3	7.8	14.6	8.2	6.1	10.3	14.6	6.1	19.5	7.8	6.1	19.5
1020-1060	51.56	40.25	8.09	10.2	7.8	14.9	8.09	6.6	10.2	14.9	6.6	16.9	7.8	6.6	19.5
1150-1170	49.31	49.13	9.15	10.8	8.97	14.5	9.15	6.1	10.8	14.5	6.1	16.9	8.97	6.1	19.5

3.2. Data Exploration
The obtained data is then processed using Origin software. The results of data exploration are shown in Figure 1 for current-voltage relation at different irradiance levels, whereas in Figures 2 and 3 for current-voltage relations with different temperature means (T_M) at particular irradiance.

Figure 1. Current-voltage characteristics on 150-watt peak solar panels.

remark
L1 : Irradiance = 103-105 W/m², T_M = 30.56 °C.
L2 : Irradiance = 241-258 W/m², T_M = 39.03 °C.
L3 : Irradiance = 304-308 W/m², T_M = 34.5 °C.
L4 : Irradiance = 382-390 W/m², T_M = 37.91 °C.
L5 : Irradiance = 448-454 W/m², T_M = 39.84 °C.
L6 : Irradiance = 546-556 W/m², T_M = 40.38 °C.
L7 : Irradiance = 650 W/m², T_M = 44.47 °C.
L8 : Irradiance = 820-830 W/m², T_M = 48.15 °C.
L9 : Irradiance = 900 W/m², T_M = 54.25 °C.
L10 : Irradiance = 995-998 W/m², T_M = 52.72 °C.
L11 : Irradiance = 1150-1170 W/m², T_M = 49.22 °C.
Figure 2. Current-voltage characteristics with temperature difference at Irr ≈ 1030 W/m².

Figure 3. Current-voltage characteristics with temperature difference at Irr ≈ 1000 W/m².

3.3. Data Fitting

Based on the data obtained in Table 1 and the curves shown in Figures 1-3, fitting process is used to obtain current-voltage characteristic equations for 150 Watt-peak polycrystalline type solar panel. The fitting process shows that BSF gives results with a reduced chi-square statistic value near 0 and adjusted R² approaching 1. The result of data fitting using BSF is shown in Table 2.
Table 3. Irradiance, temperature, BSF parameters and statistics of 150-Watt peak solar panel.

Irradiance (W/m²)	Tₑ (°C)	Boltzmann Sigmoid Function Parameters	Statistics				
		A₁	A₂	x₀	dx	Reduced Chi-square	Adj R-square
103-105	30.565	0.82016	-71.77800	23.86800	1.20043	6.19279×10⁻⁵	0.99941
241-258	39.035	2.04103	-23.51702	21.93816	1.44755	0.00144	0.99778
304-308	34.50	2.38612	-2.77884	19.56473	1.07986	1.42928×10⁻⁴	0.99982
382-390	37.91	3.05141	-3.69267	19.72963	1.20282	8.81763×10⁻⁴	0.99932
448-454	39.84	3.44124	-3.04574	19.34902	1.22187	0.00595	0.99666
546-556	40.38	4.22192	-3.50454	19.46560	1.25871	0.01031	0.99604
650	44.47	5.08239	-3.56772	19.13747	1.31445	0.0106	0.99737
820-830	48.15	6.40337	-2.51055	18.41101	1.16759	0.01733	0.99756
900	54.25	6.94410	-2.11574	18.08592	1.18958	0.03418	0.9961
995-998	52.72	7.79526	-5.21083	18.69723	1.56387	0.03334	0.99686
998-1006	50.25	7.80523	-5.85533	18.96515	1.4874	0.01594	0.99861
983-1000	56.25	7.76106	-3.21984	18.09081	1.54328	0.04181	0.99589
1020-1040	55.83	7.99027	0.17302	15.92966	0.83264	0.10617	0.99127
1020-1060	45.90	7.94694	-5.49052	18.86610	1.66215	0.01217	0.99882
1150-1170	49.22	9.08778	-2.68868	18.27200	1.42616	0.01519	0.99875

Figure 4. Relation between irradiance and $A₁$.

Table 4. Linear statistics for relation between irradiance and $A₁$.

Intercept	Slope	Statistics		
Value	Std err	Value	Std err	Adj R-square
0.01156	0.03702	0.00777	5.44987×10⁻⁵	0.99951

From Figure 4 and Table 4, it can be stated that the relation between irradiance and $A₁$ follows Equation (2).

$$A₁ = 0.00777 \times Irr + 0.01156$$ (2)
Meanwhile the relation between irradiance and A_2 is shown in Fig. 5 and Table 4. This relationship indicates an exponential relationship.

![Figure 5. Relation between irradiance and A_2.](image)

Table 5. Exponential statistics for relation between and irradiance and A_2.

y₀	A	R_0	Statistics				
Value	Std err	Value	Std err	Value	Std err	Reduced Chi-square	Adj R-square
-2.42692	1.50446	-215.36358	38.53096	-0.01084	0.00164	14.32301	0.96744

From Figure 5 and Table 5, it can be stated that the relation between irradiance and A_2 follows Equation (3).

$$A_2 = -2.42692 + -215.36358 e^{-0.01084 \times irr}$$

The relation between irradiance and x_0 is shown in Figures 6 and Table 5. This relation indicates an exponential decay relationship.

Table 6. Exponential decay statistics for relation between irradiance and x_0.

y₀	A	t_1	Statistics				
Value	Std err	Value	Std err	Value	Std err	Reduced Chi-square	Adj R-square
18.34933	0.29824	9.07315	1.28965	213.09862	44.25401	0.26048	0.91376
From Figure 6 and Table 6, it can be stated that the exponential decay relationship between irradiance and parameter x_0 follows Equation (4).

$$x_0 = 18.34933 + 9.07315 e^{-\frac{I_{rr}}{13.9655}}$$

(4)

Meanwhile the relation between irradiance level and dx parameter is shown in Fig. 7 and Table 6. This relation indicates an irregular relationship.

Table 7. Descriptive statistics of dx.

Mean	Std dev	Min	Median	Max
1.27935	0.14429	1.07986	1.22187	1.56387
From Figure 7 and Table 7, it can be stated that the relation between irradiance and dx is represented by Equation (5).

$$dx \approx 1.27935$$ \hspace{1cm} (5)

Modelling results using BSF with parameter values determined by Equation (1-5) for 150-Watt peak polycrystalline solar panel for irradiance level of 650 W/m2, 820-830 W/m2 and 995-998 W/m2 are shown in Figure 8.

![Figure 8. Modelling of electric characteristics using BSF of various irradiance.](image)

Table 8. Paired sample t test result of BSF and various irradiance level.

| Irradiance (W/m^2) | t statistic | Prob>|t| |
|----------------------|-------------|----------------|
| 650 | -2.0038 | 0.09194 |
| 820-830 | -2.3785 | 0.05488 |
| 995-998 | -2.3916 | 0.05391 |

Remark

All rows at the 0.05 level, the difference of the population means is NOT significantly different from the test difference (0).
The result of modelling using BSF using Equation (1-5) for 150-Watt peak type polycrystalline solar panel for specific level irradiance with temperature difference are shown in Figures 9 and 10.

Figure 9. Modelling of electric characteristics using BSF of Irr ≈ 1000 W/m².

- **remark**
 - L1 : Irradiance ≈ 1000 W/m², T_M = 56.25 °C.
 - BSF L1 : Result of L1 using BSF
 - L2 : Irradiance ≈ 1030 W/m², T_M = 50.25 °C.
 - BSF L2 : Result of L2 using BSF

Figure 10. Modelling of electric characteristics using BSF of Irr ≈ 1030 W/m².

- **remark**
 - L1 : Irradiance ≈ 1030 W/m², T_M = 55.83 °C.
 - BSF L1 : Result of L1 using BSF
 - L2 : Irradiance ≈ 1030 W/m², T_M = 45.90 °C.
 - BSF L2 : Result of L2 using BSF
The difference test between measurement data on a particular irradiance (with temperature difference) with BSF result is done by paired sample t-test method. Test results in Table 9 show that at 0.03 level, there is no significant difference between measurement data and BSF result.

Table 9. Paired sample t test result of BSF and various temperature.

| Irradiance (W/m^2) | T_M (°C) | t statistic | Prob>|t| |
|----------------------|-----------|-------------|-------|
| ≈ 1000 | 56.25 | -2.61653 | 0.03977 |
| ≈ 1000 | 50.25 | -2.45506 | 0.04945 |
| ≈ 1030 | 55.83 | -1.86680 | 0.11117 |
| ≈ 1030 | 45.90 | -2.05055 | 0.08618 |

Remark
All rows at the 0.03 level, the difference of the population means is NOT significantly different from the test difference (0).

4. Conclusion
BSF can be used to determine the electric characteristics of 150-Watt peak polycrystalline-type solar panels at various irradiance and temperature levels. The BSF parameter values for solar panels are determined in Equation (1-5). Statistics show that at the 0.05 level, there is no significant difference between the measurement data of various irradiance levels with BSF results and at the 0.03 level, there is no significant difference between the measurement data of various level temperatures at a certain level irradiance with BSF results.

5. Acknowledgment
Our gratitude goes to the Directorate of Research and Community Service (DRPM), Ministry of Research and Higher Education, Republic of Indonesia, and the Centre for Research and Community Service (P3M) of Politeknik Negeri Bali for the financial support given in this Post-Doctoral Research.

6. References
[1] Eckstein J H 1990 *Detailed Modelling of Photovoltaic System Components* (Madison: University of Wisconsin) pp 28-32
[2] Soto W D, Klen S A and Beckman W A 2006 *Solar Energy* 80 78-88
[3] Chenni R, Makhlof M, Kerbache T and Bouzid A 2007 *Energy* 32 1724-30
[4] Dzimano G 2008 *Modelling of Photovoltaic Systems* (Ohio: The Ohio State University) pp 35-40
[5] Villalva M G, Gazoli J R and Filho E R 2009 *10th Brazilian Power Elec. Conf.*
[6] Priambo P S, Poespawati N R and Hartanto D 2011 *Solar Cell, Silicon Based – Wafer Technologies* ed L A Kosyachenko pp 1-27
[7] Dijfar Z, Putra N and Koestoer R A 2013 *App. Mechanics and Materials* 302 410-415
[8] Bellia H, Youcef R and Fatima M 2014 *NRIAG J. of Astronomy and Geophysics* 3 53-51
[9] Humada A M, Hojabri M, Mekhilef S and Hamada H M 2016 *Renewable and Sustainable Energy Rev.* 56 494-509
[10] Teo H G, Lee P S and Hawlader M N A 2012 *Applied Energy* 90 309-315
[11] Du B, Hu E and Kolhe M 2012 *Renewable and Sustainable Energy Rev.* 16 6713-6732
[12] Tarabsheh A A, Voutetakis S, Papadopoulos A I, Seferlis P, Etier I and Saraereh O 2013 *Chemical Eng. Trans.* 35 1387-1392.
[13] Moharram K A, Abd-Elhady M S, Kandil H A and El-Sherif H 2013 *Ain Shams Eng. J.* 4 869-877
[14] Chinamhora T, Cheng G, Tham Y and Irshad W 2013 Proc. Inter. Conf. on Energy and Sustainability pp. 20-23
[15] Wu S and Xiong C 2014 Inter. J. of Low-Carbon Tech. 0 1-9
[16] Koundinya S and Krishnan A S 2014 Inter. J. of Mechanical Eng. and Tech. 5 216-223
[17] Abdulgafar S A, Omar O S and Yousif K M 2014 Inter. J. of Innovative Research in Science, Eng. and Tech. 3 8127-8231
[18] Gotmare J A, Borkar D S and Hatwar P R 2015 Inter. J. of Advanced Tech. in Eng. and Science 03 447-454
[19] Du Y, Fell C J, Duck B, Chen D, Liffman K, Zhang Y, Gu M, and Zhu Y 2016 Energy Conversion and Management 108 60-67