U-FNO - an enhanced Fourier neural operator based-deep learning model for multiphase flow

Gege Wen¹, Zongyi Li², Kamyar Azizzadenesheli³, Anima Anandkumar², Sally M. Benson¹

¹Stanford University, ²California Institute of Technology, ³Purdue University
Numerical simulation of the **multiphase flow processes** are used throughout project planning, monitoring, optimization...

Challenges

- Highly nonlinear governing PDEs
- Multi-physics in the problems
- Multiscale heterogeneity
- Need for high grid resolution
- Inherent uncertainty in geology
Summary to ML approaches available for CO$_2$-water multiphase flow problem

Approach	Example	Method	Advantage	Problem
Neural-FEM	Physics-informed neural networks (Raissi et al, 2019; Fuks et al, 2020)	Formulate PDE/initial cond. in loss function	PDE-based	Expensive, convergence
Summary to ML approaches available for CO$_2$-water multiphase flow problem

Approach	Example	Method	Advantage	Problem
Neural-FEM	Physics-informed neural networks	Formulate PDE/initial cond. in loss function	PDE-based	Expensive, convergence
	(Raissi et al, 2019; Fuks et al, 2020)			
Data-driven CNN	CCSNet	Learn empirical input-output mapping	Very fast prediction	Lots of data
	(Wen et al, 2021)			
Neural-FEM
- **Example:** Physics-informed neural networks (Raissi et al, 2019; Fuks et al, 2020)
- **Method:** Formulate PDE/initial cond. in loss function
- **Advantage:** PDE-based
- **Problem:** Expensive, convergence

Data-driven CNN
- **Example:** CCSNet (Wen et al, 2021)
- **Method:** Learn empirical input-output mapping
- **Advantage:** Very fast prediction
- **Problem:** Lots of data

Neural operator
- **Example:** FNO (Li et al, 2021)
- **Method:** Learn infinite-dimensional integral operator with NN
- **Advantage:** Very fast prediction, data efficient
- **Problem:** To be investigated

Summary to ML approaches available for CO$_2$-water multiphase flow problem
Summarizing ML approaches available for CO$_2$-water multiphase flow problem:

Approach	Example	Method	Advantage	Problem
Neural-FEM	Physics-informed neural networks	Formulate PDE/initial cond. in loss function	PDE-based	Expensive, convergence
	(Raissi et al, 2019; Fuks et al, 2020)			
Data-driven CNN	CCSNet	Learn empirical input-output mapping		
	(Wen et al, 2021)			
Neural operator	FNO	Learn infinite-dimensional integral operator with NN	Very fast, data efficient	To be investigated
	(Li et al, 2021)			

U-FNO:

an enhanced FNO
Let's take a closer look at the model architecture of original Fourier Neural Operator (Li et al, 2021)
Closer look at the model architecture of Fourier Neural Operator (Li et al, 2021)
Closer look at the model architecture of Fourier Neural Operator (Li et al, 2021)

The transform is conducted utilizing Fast Fourier Transform (FFT).

After the transform, the discrete pixel data becomes **continuous function**.
Closer look at the model architecture of Fourier Neural Operator (Li et al, 2021)

\[(\mathcal{K}(\phi)v_t)(x) = \mathcal{F}^{-1} \left(R_{\phi} \cdot (\mathcal{F}v_t) \right)(x) \]

\[(\mathcal{F}f)_j(k) = \int_D f_j(x) e^{-2i\pi \langle x, k \rangle} dx \]
Closer look at the model architecture of Fourier Neural Operator (Li et al, 2021)

\[(\mathcal{F}f)_j(k) = \int_D f_j(x)e^{-2i\pi\langle x,k \rangle}dx\]

\[(\mathcal{F}^{-1}f)_j(x) = \int_D f_j(k)e^{2i\pi\langle x,k \rangle}dk\]
U-FNO instead of FNO to enhance the predictability of higher frequencies information
U-FNO instead of FNO to enhance the predictability of higher frequencies information

Note 1: CNN U-Net to enhance higher frequencies information
U-FNO instead of FNO to enhance the predictability of higher frequencies information

Note 2:
Fourier and U-Fourier layer split is a hyper-parameter that can be tuned for specific problem

Note 1:
CNN U-Net to enhance higher frequencies information
Training general-purposed numerical simulator alternative with data set contains 4,500 input/output mappings

Input: parameters covering nearly all realistic scenarios for CO₂ storage in saline aquifers

- Pressure: 100-300 bar
- Temperature: 35-170 °C
- Formation thickness: 15-200m
- Rel perm (S_wi): 0.1-0.3
- Capillary pressure (λ): 0.3-0.7
- Injection rate: 0.2-2 Mt/yr
- Perforation interval: 10-200m
- Permeability map
- Anisotropy map
- Porosity map

![Diagram of CO₂ storage in saline aquifers]
Training general-purposed numerical simulator alternative with data set contains 4,500 input/output mappings

Input: parameters covering nearly all realistic scenarios for CO$_2$ storage in saline aquifers

- Pressure: 100-300 bar
- Temperature: 35-170 C
- Formation thickness: 15-200m
- Rel perm (S_{wi}): 0.1-0.3
- Capillary pressure (λ): 0.3-0.7
- Injection rate: 0.2-2 Mt/yr
- Perforation interval: 10-200m
- Permeability map
- Anisotropy map
- Porosity map

Output: gas saturation and pressure buildup in *temporal-3d volumes*
Training general-purposed numerical simulator alternative with data set contains 4,500 input/output mappings

Input: parameters covering nearly all realistic scenarios for CO₂ storage in saline aquifers

- Pressure: 100-300 bar
- Temperature: 35-170°C
- Formation thickness: 15-200m
- Rel perm (S_{wi}): 0.1-0.3
- Capillary pressure (λ): 0.3-0.7
- Injection rate: 0.2-2 Mt/yr
- Perforation interval: 10-200m
- Permeability map
- Anisotropy map
- Porosity map

Output: gas saturation and pressure buildup in temporal-3d volumes
Result: CO$_2$ gas saturation plume prediction greatly improved with U-FNO comparing to CNN
Result: Pressure buildup prediction greatly improved with U-FNO comparing to CNN
Result: U-FNO is 46% more accurate in gas saturation, and 24% more accurate in pressure buildup.

A. Gas saturation

B. Pressure buildup
Remark: U-FNO is as much as 3.4 times more data efficient than CNN

Lower the test error we want to achieve, more CPU hours we can save.
Computational efficiency: prediction speed up is 60000x vs. numerical simulation; even faster than CNN

	# Parameter (-)	Training (s/epoch)	Testing		Speed-up vs. numerical simulation (times)
CNN	33,316,481	562	0.050	0.050	1×10^4
FNO	31,117,541	711	0.005	0.005	1×10^5
Conv-FNO	31,222,625	1,135	0.006	0.006	1×10^5
U-FNO	33,097,829	1,872	0.010	0.010	6×10^4
Thank you for listening!