Massive ODE/IM correspondence and nonlinear integral equations for \(A_r^{(1)}\)-type modified affine Toda field equations

Katsushi Ito and Hongfei Shu

Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

E-mail: h.shu@th.phys.titech.ac.jp

Received 25 May 2018, revised 23 July 2018
Accepted for publication 27 July 2018
Published 13 August 2018

Abstract

The massive ordinary differential equation/integrable model (ODE/IM) correspondence is a relation between the linear problem associated with modified affine Toda field equations and 2D massive integrable models. We study the massive ODE/IM correspondence for the \(A_r^{(1)}\)-type modified affine Toda field equations. Based on the \(\psi\)-system satisfied by the solutions of the linear problem, we derive the Bethe ansatz equations and determine the asymptotic behavior of the \(Q\)-functions for large values of the spectral parameter. We derive the non-linear integral equations for the \(Q\)-functions from the Bethe ansatz equations. We compute the effective central charge in the UV limit, which is identified by one of the non-unitary \(W\) minimal models when the solution has trivial monodromy around the origin of the complex plane.

Keywords: ODE/IM correspondence, affine Toda field equation, Bethe ansatz equation, non-linear integral equation, \(W\) algebra, \(T-Q\) relation

1. Introduction

The ordinary differential equation/integrable model (ODE/IM) correspondence proposed in [1, 2] describes a relation between the spectral analysis of an ODE, and the ‘functional relations’ approach to a 2D quantum IM. This correspondence provides an example of the non-trivial relations between classical and quantum IMs, which plays an important role in studying the strong coupling physics of supersymmetric gauge theories [3–13]. In order to understand this non-trivial correspondence, it is important to identify the IMs from the ODEs.

A basic strategy for identifying a quantum IM is to obtain the functional relations from the ODE, from which we can study the energy spectrum of the IM. In particular, starting from the solutions to the ODE, one can derive the functional relations, such as the \(T-Q\) relations, the Bethe ansatz equations and the \(T-/Y\)-systems (see [14] for a review). Furthermore, the
functional relations are converted to non-linear integral equations. In the UV and IR limit, one obtains the effective central charge of the quantum IM.

From the ODEs, one obtains the massless IMs or conformal field theories [15–30]. Recently, the ODE/IM correspondence has been generalized to the case of massive IMs [31–37]. In this massive ODE/IM correspondence, the ODE is replaced with the linear problem associated with the modified affine Toda field equation based on the Langlands dual of an affine Lie algebra \(\hat{\mathfrak{g}} \). Taking the light-cone limit, the linear problem reduces to the ODE, from which one obtains the Bethe ansatz equations associated with the affine Lie algebra \(\mathfrak{g} \).

A powerful method to study the Bethe ansatz equations on a space of finite length is the non-linear integral equation (NLIE) [47–49], which is easier to evaluate and can be solved numerically. The NLIE for the quantum sine-Gordon model was studied in [49–53]. It has been generalized to the complex affine Toda models associated with simply laced algebras [54]. In [17], the NLIEs for the \(A_r \)-type have been derived from the \((r+1)\)th order ODE, where the NLIEs are the massless limit of those in [54]. More recently, the massive NLIE of the quantum sine-Gordon model has been directly derived from the \(A_r^{(1)} \)-type modified Toda field equation. The purpose of this paper is to construct the massive NLIEs for modified affine Toda field equations and to identify the quantum IMs in the UV limit. In the present work, we will discuss the \(A_r^{(1)} \)-type modified affine Toda field equations as a non-trivial generalization.

This paper is organized as follows. In section 2, we discuss the \(A_r^{(1)} \)-type modified affine Toda field equations and their associated linear problem. We study the asymptotics of the solution to the linear problem, and introduce the \(Q \)-functions. In section 3, we derive the Bethe ansatz equations for \(Q \)-functions from the \(\psi \)-system satisfied by the solutions to the linear problems. In section 4, we study the analytic properties of the \(Q \)-functions by taking the light-cone limit of the linear problem. In section 5, we derive the non-linear integral equations from the Bethe ansatz equations of \(Q \)-functions. We then study the UV limit of the associated massive IM, and obtain the effective central charge. Section 6 contains conclusions and discussions. In the appendix, the detailed form of the NLIEs for the \(A_r \)-type complex affine Toda model is presented.

2. Modified affine Toda field equation and \(Q \)-function

In this section, we introduce the linear problem associated with the \(A_r^{(1)} \)-type modified affine Toda field equations and study the asymptotic behavior of the solutions [33, 35].

2.1. Lie algebra \(A_r \)

We begin with some definitions of the Lie algebra \(\mathfrak{g} = A_r \) with rank \(r \). The generators are denoted by \(\{ H^a, E_{\alpha} \} (a = 1, \cdots, r, \alpha \in \Delta) \). Here, \(\Delta \) is a set of roots, normalized such that the squared length is 2. The simple root \(\alpha_a \) and the fundamental weights \(\omega_{\alpha} \) \((a = 1, \cdots, r)\) of \(\mathfrak{g} \) satisfy \(\alpha_a \cdot \alpha_b = C_{ab}, \alpha_a \cdot \omega_b = \delta_{ab} \). Here \(C_{ab} = 2\delta_{ab} - \delta_{a,b+1} - \delta_{a,b-1} \) is the Cartan matrix of \(A_r \). The affine Lie algebra \(\hat{\mathfrak{g}} = A_r^{(1)} \) is given by adding the root \(\alpha_0 = -\theta \) to \(\mathfrak{g} \), where \(\theta := \alpha_1 + \cdots + \alpha_r \) is the highest root. The Weyl vector \(\rho \) is defined by \(\rho = \omega_1 + \cdots + \omega_r \).

Let \(V^{(a)} \) be the basic \(\mathfrak{g} \)-module associated with the highest weight \(\omega_0 \). We denote the orthonormal basis of \(V^{(a)} \) as \(\epsilon_j^{(a)} \) \((j = 1, \cdots, \dim V^{(a)})\), which are the eigenvectors of the Cartan

[1] See [38–46] for the correspondence to the integrable non-linear sigma models and the affine Gaudin models.
generator H^b with eigenvalue $(h_l^a)^b$. h_l^a is the weight vector of $V^{(a)}$. For example, $V^{(1)}$ is the $(r + 1)$-dimensional fundamental representation with the highest weight ω_1, whose matrix representation is given by

$$E_{\alpha_0} = e_{r+1,1}, \quad E_{\alpha_a} = e_{a,a+1}, \quad a = 1, \cdots, r$$

(1)

where $e_{a,b}$ denotes the matrix with non-zero components $(e_{a,b})_{cd} = \delta_{ac}\delta_{bd}$, $E_{-\omega_a}$, $E_{-\omega_0}$ and $H^a (a = 1, \ldots, r)$ are defined by $E_{-\omega_0} = E_{\omega_0}^\top$ and $E_{-\omega_a} = E_{\omega_a}^\top$ and $\alpha_a \cdot H = [E_{\omega_a}, E_{-\omega_a}]$. The weight vectors $h_1^{(1)}, \cdots, h_{r+1}^{(1)}$ of $V^{(1)}$ satisfy $h_1^{(1)} = \omega_1$ and

$$h_a^{(1)} - h_{a+1}^{(1)} = \alpha_a, \quad \sum_{a=1}^{r+1} h_a^{(1)} = 0.$$

(2)

2.2. $A_r^{(1)}$-type modified affine Toda field equation

Let $\phi = \{\phi_1, \phi_2, \cdots, \phi_r\}$ be the r-component scalar field on the (z, \bar{z}) complex plane. The $A_r^{(1)}$-type modified affine Toda field equations are defined by

$$\partial_z \partial_{\bar{z}} \phi - \frac{m^2}{\beta} \sum_{a=1}^{r} \alpha_a \exp[\beta \alpha_a \cdot \phi] + p(z)\bar{p}(\bar{z})\alpha_0 \exp[\beta \alpha_0 \cdot \phi]] = 0$$

(3)

where β is a dimensionless coupling parameter and m is a mass parameter. $p(z)$ and $\bar{p}(\bar{z})$ in (3) are defined by

$$p(z) = z^{hM} - s^M, \quad \bar{p}(\bar{z}) = \bar{z}^{hM} - s^M$$

(4)

for a complex parameter s and a positive real number $M > \frac{1}{r+1}$. Here, $h = r + 1$ is the Coxeter number of A_r. Equation (3) is regarded as the compatibility condition of the linear problem

$$(\partial_z + A_z)\Psi = 0, \quad (\partial_{\bar{z}} + A_{\bar{z}})\Psi = 0,$$

(5)

where A_z and $A_{\bar{z}}$ are defined by

$$A_z = \frac{\beta}{2} \partial_z \phi \cdot H + mc^\lambda \left\{ \sum_{a=1}^{r} E_{\alpha_a} \exp(\frac{\beta}{2} \alpha_a \cdot \phi) + p(z)E_{-\omega_a} \exp(\frac{\beta}{2} \alpha_0 \cdot \phi) \right\}$$

$$A_{\bar{z}} = -\frac{\beta}{2} \partial_{\bar{z}} \phi \cdot H + mc^{-\lambda} \left\{ \sum_{a=1}^{r} E_{-\omega_a} \exp(\frac{\beta}{2} \alpha_a \cdot \phi) + \bar{p}(\bar{z})E_{\omega_a} \exp(\frac{\beta}{2} \alpha_0 \cdot \phi) \right\}.$$

(6)

Here we have introduced a spectral parameter λ.

2.3. Asymptotic behaviors and symmetries

We study a class of solutions $\phi(z, \bar{z})$ of equation (3) satisfying the periodic condition $\phi(z, \theta + \frac{2\pi}{3M}) = \phi(z, \theta)$ where we have introduced the polar coordinate $z = |z| e^{i\theta}$. They are also required to satisfy the boundary conditions at $|z| = \infty$ and 0, which are given by

$$\phi(z, \bar{z}) = \frac{M^\rho}{\beta} \log(z\bar{z}) + \cdots (|z| \to \infty).$$

(7)
\[\phi(z, \bar{z}) = g \log(z \bar{z}) + \phi^{(0)}(g) + \gamma(z, \bar{z}, g) + \sum_{a=0}^{r} \frac{C_a(g)}{c_a(g) + 1} (z \bar{z})^{|a|+1} + \cdots \quad (|z| \to 0), \]

where \(g \) is an \(r \)-component vector satisfying \(\beta \alpha_m \cdot g + 1 > 0 \) for \(m = 0, 1, \cdots, r \). \(\phi^{(0)}(g) \) is a constant vector. \(\gamma(z, \bar{z}, g) \) is given by

\[\gamma(z, \bar{z}, g) = \sum_{k=1}^{\infty} \gamma_k(g) (\zeta^{\beta k} + \zeta^{\beta k}) \]

with some coefficients \(\gamma_k(g) \). Other coefficients are given by \(c_a = \beta \alpha_a \cdot g \), \(C_a = -\frac{m^2}{\pi} \alpha_a e^{\beta \alpha_a \cdot \phi^{(0)}(g)} \text{ and } C_0 = \frac{m^2}{\pi} (s \bar{s})^{\beta k} \alpha_0 e^{\beta \alpha_0 \cdot \phi^{(0)}(g)} \).

In the following, we regard \(z \) and \(\bar{z} \) as independent variables. The linear problem (5) is invariant under the Symanzik rotation \(\hat{\Omega}_k \) with integer \(k \), which is defined by

\[\hat{\Omega}_k = \begin{cases}
 z &\to z e^{\frac{2\pi i k}{M}} \\
 s &\to s e^{\frac{2\pi i k}{M}} \\
 \lambda &\to \lambda - \frac{2\pi i k}{M}
\end{cases} \]

which acts on the function with arguments \(z, \bar{z} \) and \(\lambda \). It is also invariant under the transformation \(\hat{\Pi} \) defined by

\[\hat{\Pi} : (\Lambda, A) \to S(\Lambda, A) S^{-1} \quad S = \exp \left(\frac{2\pi i}{h} \rho \cdot H \right). \]

2.4. Asymptotic behaviors of solutions to the linear problem

We now study the solution \(\Psi \) to the linear problem (5). In the large \(|z| \) region, we obtain the asymptotic solution of the linear problem by using WKB analysis [35]. In the module \(V^{(a)} \), the fastest decaying asymptotic solution along the positive part of the real axis for large \(|z| \) is

\[\Xi^{(a)}(|z|, \theta) \sim C^{(a)} e^{i \rho \cdot H} \exp \left(-\mu^{(a)} \frac{|z|^{|M|+1}}{M+1} \cosh[\lambda + i \theta(M+1)] \right) e^{-i \rho \cdot H} \hat{\mu}^{(a)} \]

where \(C^{(a)} \) is a constant. \(\hat{\mu}^{(a)} \) is the eigenvector of \(\Lambda = E_{\alpha_0} + \sum_{b=1}^{r} E_{\alpha_b} \) with the largest real eigenvalue \(\mu^{(a)} \) in \(V^{(a)} \). This WKB solution is valid in the range of \(\frac{\pi}{h(M+1)} \), and is the subdominant one in the Stokes sector \(S_0 \) where the sector \(S_k \) \((k \in \mathbb{Z})\) is defined by

\[S_k : |\theta - \frac{2\pi k}{h(M+1)}| < \frac{\pi}{h(M+1)}. \]

There are \(r+1 \) independent solutions in each Stokes sector. We denote the subdominant solution in \(S_0 \) as \(s_0^{(a)} \), which is uniquely defined. The asymptotic behavior for large \(|z| \) of \(s_0^{(a)} \) is given by \(\Xi^{(a)} \). We introduce the subdominant solution in \(S_k \) as \(s_k^{(a)} \), which is obtained from \(s_0^{(a)} \) by the Symanzik rotation

\[s_k^{(a)} = \hat{\Omega}_k s_0^{(a)}. \]

The asymptotics of \(s_k^{(a)} \) is determined by \(\hat{\Omega}_k \Xi^{(a)} \).
In the small $|z|$ region, the asymptotic solution is given by
\[X_i^{(a)} = B_i^{(a)}(g)e^{-(\lambda+ig)z}e^{h_i^{(a)}} + O(|z|), \quad i = 1, \ldots, \dim V^{(a)}, \] \tag{15}
where $B_i^{(a)}(g)$ is a constant. $X_i^{(a)}$ form an orthonormal basis of the solution to the linear problem. They are invariant under the Symanzik rotation.

We expand $s_0^{(a)}$ in terms of the basis $X_i^{(a)}$
\[s_0^{(a)}(z, \lambda) = \sum_{i=1}^{\dim V^{(a)}} Q_i^{(a)}(\lambda)X_i^{(a)}(z). \] \tag{16}
As we will see later, the coefficients become the Q-functions of the IM. From $\tilde{\Omega}_{-1}\tilde{\Pi}s_0 = s_0$, one finds a quasi-periodic condition
\[Q_i^{(a)}(\lambda - \frac{2\pi i}{hM}(M+1)) = \exp \left(-\frac{2\pi i}{h}(\rho^\nu + \beta g) \cdot h_i^{(a)}\right) Q_i^{(a)}(\lambda). \tag{17} \]

3. Bethe ansatz equations

In this section, we derive the Bethe ansatz equations for $Q_i^{(a)}(\lambda)$ by using the ψ-system [22, 25, 28, 35]. We also derive the T-Q relations, which are obtained from the relations among the determinants of the Q-functions. We then discuss their relations to the Bethe ansatz equations.

3.1. ψ-system and Bethe ansatz equations

The subdominant solutions $\Psi^{(a)}$ to the linear problem in a different module $V^{(a)}$ are not independent of each other. They obey the relations called the ψ-system, which is defined by the inclusion maps ι from the antisymmetric representation $V^{(a)} \wedge V^{(a)}$ to the representation $V^{(a-1)} \otimes V^{(a+1)}$ [25]:
\[\iota \left(V^{(a)} \wedge V^{(a)} \right) = V^{(a-1)} \otimes V^{(a+1)}, \quad a = 1, \ldots, r, \tag{18} \]
where $V^{(0)} = V^{(r+1)} = \mathbb{C}$. By comparing the asymptotic behaviors of the solutions of the linear problem for large $|z|$, one finds
\[\iota \left(\Psi^{(a)} \mid \Psi^{(a)} \right) = \Psi^{(a-1)} \otimes \Psi^{(a+1)}, \tag{19} \]
where $\Psi^{(0)} = 1 = \Psi^{(r+1)}$. The subscript $[k]$ implies that $f_{[k]}(z, \lambda) := \hat{\Omega}_{[k]}f(z, \lambda)$ ($k \in \mathbb{Z}$ or $\mathbb{Z} + \frac{1}{2}$). Substituting (16) to the ψ-system (19) and comparing the top components in both sides, we obtain
\[Q_{1,1}^{(a-1)}Q_{2,1}^{(a)} - Q_{1,1}^{(a)}Q_{2,1}^{(a-1)} = Q_1^{(a-1)}Q_1^{(a+1)}, \tag{20} \]
where $Q_{1,2}^{(0)} = Q_{1,1}^{(r+1)} = 1$. Letting the zeros of $Q_1^{(a)}(\lambda)$ be $\lambda_j^{(a)} (j \in \mathbb{Z})$, one obtains the equations
\[-1 = \prod_{j=1}^{r} \frac{Q_j^{(b)}(\lambda_j^{(a)} + C_{ab} \hat{\pi}_1)}{Q_j^{(b)}(\lambda_j^{(a)} - C_{ab} \hat{\pi}_1)}, \tag{21} \]
where C_{ab} is the Cartan matrix of \mathfrak{g}. This set of equations (21) provides the Bethe ansatz equations for the massive IMs [34, 35]. In section 5, we will study the analytic properties of $Q_i^{(a)}(\lambda)$.

3.2. T–Q relations and Bethe ansatz equations

We consider the solutions of the linear problem in the whole complex plane. We introduce a skew-symmetric product of the solutions $s_i^{(1)}$ in the fundamental $(r + 1)$-matrix representation $V^{(1)}$, which is defined by

\[\langle s_i^{(1)}, s_{i+1}^{(1)}, \cdots, s_{i+r}^{(1)} \rangle \equiv \det \left(s_i^{(1)}, s_{i+1}^{(1)}, \cdots, s_{i+r}^{(1)} \right). \]

(22)

This is independent of z. Using the asymptotic behaviors of $s_i^{(1)}$, one can compute this product explicitly. The normalization constant $C^{(1)}$ in (12) is determined to satisfy

\[\langle s_i^{(1)}, s_{i+1}^{(1)}, \cdots, s_{i+r}^{(1)} \rangle = 1. \]

(23)

Note that $V^{(p)}$ for $p = 1, \ldots, r + 1$ is obtained as the exterior product of $V^{(1)}$, i.e. $\bigwedge^p V^{(1)}$. In the exterior product $s_i^{(1)} \wedge s_j^{(1)} \wedge \cdots \wedge s_k^{(1)} \in \bigwedge^p V^{(1)}$, the coefficient of the highest weight vector $\mathcal{A}_1^{(1)} \wedge \mathcal{A}_2^{(1)} \wedge \cdots \wedge \mathcal{A}_p^{(1)}$ is expressed as the determinant of the $p \times p$ matrix, whose (k, ℓ) element is given by $Q_{k[i]}^{(1)}(\lambda)$. We define

\[W_{i_1, i_2, \ldots, i_p}^{(p)}(\lambda) \equiv \det Q_{k[i]}^{(1)}(\lambda). \]

(24)

For $p = 1$, we have $W_{i_1}^{(1)}(\lambda) = Q_1^{(1)}(\lambda + i \frac{2\pi}{m_i})$. For $p = 2$ with $i_1 = \frac{1}{2}$ and $i_2 = -\frac{1}{2}$, $W_{-\frac{1}{2}, \frac{1}{2}}^{(2)}(\lambda) = Q_1^{(2)}(\lambda)$, where we used (20). In general, for $p = 1, \ldots, r$, we express $Q_i^{(p)}(\lambda)$ as

\[Q_i^{(p)}(\lambda) = W_{-\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}}^{(p)}(\lambda). \]

(25)

For $p = r + 1$, using the normalization condition (23), we find

\[W_{i_1, i_2, \ldots, i_{r+1}}^{(r+1)} = \left[\det \left(\mathcal{A}_1^{(1)}, \ldots, \mathcal{A}_{r+1}^{(1)} \right) \right]^{-1}, \]

(26)

which imposes the constraints for the Q-functions.

Note that the determinants (24) satisfy the Plücker relations

\[W_{i_0, i_1, \ldots, i_{p-1}}^{(p-1)} W_{i_0, i_1, \ldots, i_p}^{(p)} - W_{i_1, i_2, \ldots, i_{p-1}}^{(p-1)} W_{i_0, i_2, \ldots, i_p}^{(p)} + W_{i_0, i_2, \ldots, i_{p-1}}^{(p-1)} W_{i_0, i_1, \ldots, i_p}^{(p)} = 0. \]

(27)

For $(i_0, i_1, \ldots, i_{p-1}, i_p) = (0, 1, \ldots, p - 1, p)$, (27) leads to

\[\frac{W_{0, 2, \ldots, p}^{(p)}}{W_{0}^{(1)}} = \sum_{m=0}^{p-1} \frac{W_{2, \ldots, m+1}^{(m+1)}}{W_{0, \ldots, m}^{(m+1)}} \]

(28)

where $W_{0}^{(0)} = 1$ for any k. Setting $p = r + 1$ and shifting the spectral parameter by $\lambda \rightarrow \lambda - \frac{2\pi i}{2m}$, (28) leads to

\[W_{0, 2, \ldots, r}^{(r+1)} \prod_{j=0}^{r} W_{0, j-1}^{(j)} = \sum_{m=0}^{r-1} \left(\prod_{j=0}^{m-1} \frac{W_{0, j-1}^{(j)}}{W_{0, j}^{(j)}} \right) W_{2, \ldots, m+1}^{(m+1)} \frac{W_{0, m+2}^{(m+1)}}{W_{0, \ldots, m}^{(m+1)}} \left(\prod_{j=m+2}^{r+1} W_{0, j-1}^{(j)} \right). \]

(29)
This is the T–Q relation in [17], where $W_{0,1,\cdots,r}^{(r+1)}(\lambda)$ is regarded as the T-function.

Let $\lambda_j^{(a)} (j \in \mathbb{Z})$ be the zeros of $W_{0,1,\cdots,a-1}^{(a)}(\lambda)$, (29) leads to

$$-1 = \frac{W_{0,\cdots,a-2}^{(a-1)}(\lambda) W_{1,\cdots,a}^{(a)}(\lambda) - W_{0,\cdots,a-1}^{(a)}(\lambda) W_{1,\cdots,a-2}^{(a)}(\lambda)}{W_{0,\cdots,a-1}^{(a)}(\lambda) W_{1,\cdots,a-2}^{(a)}(\lambda)}, \ a = 1, \cdots, r. \quad (30)$$

From (25) and identifying $\lambda_j^{(a)} = \lambda_j^{(a)} + \frac{2\pi i}{2} \frac{a}{M}$, (30) becomes the Bethe ansatz equation (21).

As shown in (25), $Q_2^{(a)}(\lambda)$ is expressed as the Wronskian of $Q_1^{(i)}(\lambda)$. One finds a similar Wronskian representation for $Q_2^{(a)}(\lambda)$. This follows by the identity between the determinants

$$\Delta^{(a+1)} \Delta^{(a-1)} [a, a+1, a+1] = \Delta^{(a)} [a+1, a+1, \Delta^{(a)} a] - \Delta^{(a)} [a+1, a] \Delta^{(a)} [a, a+1].$$

Here, $\Delta^{(a+1)}$ is the determinant of an $(a+1) \times (a+1)$-matrix. $\Delta^{(a)} [p_1, q_1]$ is the determinant of the $a \times a$ matrix with the p_1 row and q_1 column removed from the matrix of $\Delta^{(a+1)}$. $\Delta^{(a-1)} [p_1, q_1, q_2]$ is the determinant of the $(a-1) \times (a-1)$ matrix obtained by removing $p_{1,2}$ rows and $q_{1,2}$ columns of the matrix of $\Delta^{(a+1)}$. Using (31), we find

$$Q_2^{(a)}(\lambda) = \frac{W_{0,\cdots,a-1, a+1}^{(a+1)}(\lambda)}{W_{0,\cdots,a-1, a+1}^{(a)}(\lambda)}. \quad (32)$$

We have mentioned that in (29), the determinant $W_{-1,1,\cdots,r}^{(r+1)}$ is the T-function. Here we present the relation to the T-function more precisely. Choosing the basis of the solutions to the linear problem in $V^{(1)}$ as \{s_{r+1}^{(1)}, s_{r+2}^{(1)}, \cdots, s_{j}^{(1)}, \cdots, s_{0}^{(1)}, s_{1}^{(1)}\}, we expand $s_{k}^{(1)}$ as

$$s_{k}^{(1)} = (-1)^{j} T_{jk-1}^{[k]} s_{j-1}^{(1)} + \sum_{j=1}^{r} (-1)^{j-1} T_{jk-1}^{[k]} s_{j+2}^{(1)} \quad (33)$$

where

$$T_{jk-1}^{[k]} = \left\langle s_{j-1}^{(1)}, s_{j}^{(1)}, \cdots, s_{0}^{(1)}, s_{m+1}^{(1)} \right\rangle \quad (34)$$

$$T_{jm} = \left\langle s_{j}^{(1)}, s_{j+1}^{(1)}, \cdots, s_{j+2}^{(1)}, \cdots, s_{j+1}^{(1)}, s_{m+1}^{(1)} \right\rangle, \ j = 2, \cdots, r. \quad (35)$$

Here the superscript $[k]$ means the shift of spectral parameter λ, $f^{\ell}([\lambda]) := f(\lambda + \frac{\ell \pi i}{2} \frac{a}{M})$. We find that $W_{-1,1,\cdots,r}^{(r+1)}$ in (29) can be written as

$$W_{-1,1,\cdots,r}^{(r+1)} \det(\lambda_{1}^{(1)}, \cdots, \lambda_{r}^{(1)}) = (-1)^{r} T_{[j-1]}^{[r+2]} \quad (36)$$

For the $A_{1}^{(1)}$ case with $g = 0$, $T_{m}^{[-1]}(\lambda)$ satisfies the (A_{1}, A_{2M-1})-type T-system. For $g \neq 0$, the T-system changes from the (A_{1}, A_{2M-1})-type due to the monodromy of the solutions around the origin [31]. Here we have considered the case of M being an integer or half-integer. For generic non-rational M, the T-system becomes semi-infinite (A_{1}, A_{∞}).

For the $A_{r}^{(1)}$ case with $g \neq 0$, we can define the T-functions from $T_{m}^{[-1]} (a = 1, \cdots, r)$. For generic non-rational M, the T-system is of the type (A_{r}, A_{∞}). For the case with hM being an integer, the T-system truncates to the (A_{r}, A_{3M-1})-type. For the $g = 0$ case, the T-system becomes more complicated due to the monodromy, where we have studied a similar problem for the $B_{1}^{(1)}$ case [55]. We note that for $A_{1}^{(1)}$, it includes the constant solution of [56].

Choosing other pairs of $(i_{0}, i_{1}, \cdots, i_{p-1}, i_{p})$ in the Plücker relations, we can obtain various T–Q relations. Taking the conformal limit, which will be discussed in the next section, we can
obtain the T–Q relations which were found in \[57\] for the W_3 algebra. Substituting (14) and (16) into (33), and taking the conformal limit, we obtain the Baxter T–Q relations in \[58\] for the W_{r+1} algebra.

4. Light-cone limit of Bethe ansatz equations

To clarify the analytical properties of $Q^{(a)}(\lambda)$, we study the light-cone limit of the linear problem. In this limit, the massive ODE/IM correspondence reduces to the ‘massless’ ODE/IM correspondence. In the representation $V^{(1)}$, we express the solution of the first order holomorphic equation of the linear problem (5) in terms of the top component of Ψ as

$$
\Psi = \begin{pmatrix}
 e^{\frac{\beta M}{y}} \phi \tilde{\psi}_1 \\
 -\frac{1}{m} e^{\frac{\beta h_1}{y}} \cdot D(h_1^{(1)}) \tilde{\psi}_1 \\
 \vdots \\
 (-\frac{1}{m})^r e^{\frac{\beta h_{r+1}}{y}} \cdot D(h_{r+1}^{(1)}) \tilde{\psi}_1
\end{pmatrix},
$$

(37)

where $D(a) := \partial_z + \beta a \cdot \partial_x \phi$ \[33\]. The linear problem then reduces to the $(r+1)$th order differential equation for $\tilde{\psi}_1$

$$
D(h_1^{(1)}) \cdots D(h_{r+1}^{(1)}) \tilde{\psi}_1 = (-me^y)^{r+1} p(z) \tilde{\psi}_1.
$$

(38)

We now consider the holomorphic light-cone limit. We first take the limit $\tilde{z} \to 0$, and then $z \to \infty$, with fixed

$$
y = (me^y)^{\frac{M}{2r}}, \quad E = \lambda^M (me^y)^{\frac{M}{2r}}.
$$

(39)

In this limit, (38) reduces to

$$
(-1)^{h+1} \left(\partial_z + \frac{\beta h_{r+1}}{y} \cdot \frac{y}{\partial_z} \right) \cdots \left(\partial_z + \frac{\beta h_1}{y} \cdot \frac{y}{\partial_z} \right) \tilde{\psi}_1(y) + (\lambda^M - E) \tilde{\psi}_1(y) = 0.
$$

(40)

From a solution $\tilde{\psi}_1(y)$ of (38), one finds the solution Ψ of the holomorphic linear problem by (37). As $y \to \infty$, the fastest decaying solution along the positive part of the real axis behaves as

$$
\tilde{\psi}_1(y) \sim y^{-rM/2} \exp\left(-\frac{y^{M+1}}{M+1}\right) \quad (y \to \infty),
$$

(41)

for $M > \frac{1}{2r}$. As $y \to 0$, one obtains a set of the basis $\chi_i^{(1)}(y) = y^{-\beta h_i^{(1)} y^{i+1} + \cdots} (i = 1, 2, \cdots, r+1)$, where we have chosen $\chi_i^{(1)}$ such that it corresponds to $X_i^{(1)}$ in the holomorphic light-cone limit. In fact, we can choose $\tilde{\psi}_1$ such that $\tilde{\psi}_1 = a_i(g, m) e^{\frac{\beta h_i^{(1)} y^{i+1}}{2r}}$ gives $\Psi = X_i^{(1)}$ for some non-zero coefficients $a_i(g, m)$. We then expand the solution (41) in terms of the basis $\chi_i^{(1)}(y)$

$$
\tilde{\psi}_1(y, E) = \sum_{i=1}^{r+1} D_i(E) \chi_i^{(1)}(y).
$$

(42)

Note that $D_i(E)$ is a function of $E = s^M (me^y)^{\frac{M}{2r}}$. Since the solution (42) corresponds to $s_0^{(1)}$ in (16), we find
\[Q^{(1)}_1(\lambda) = \frac{1}{a_i(g, m) e^{\pi a - i(\beta h^{(1)}_1 g + i - 1)}} D(E). \] (43)

Then, \(Q^{(1)}_{1,j}(\lambda) \) is represented as

\[Q^{(1)}_{1,j}(\lambda) = \frac{\omega^{-\frac{i}{2}}}{a_i(g, m) e^{\pi a - i(\beta h^{(1)}_1 g + i - 1)}} D_{1,j}(E), \] (44)

where \(\omega = e^{\frac{2\pi i}{\beta h_1}} \), and

\[D_{1,j}(E) = \omega^{i(-\beta h^{(1)}_1 g + i - 1)} + \beta E^i. \] (45)

Substituting (43) into (24), \(W^{(p)}_{1,2,...,p}(\lambda) \) is proportional to the determinant of the \(a \times a \) matrix, where \((i, j)-\)element is \(D_{1,i,j}(E) \)

\[D^{(a)}_{0,1,...,a-1}(E) = \text{det} D_{0,1,...,a-1}(E), \] (46)

which has been introduced in [17] from the Wronskians of the solutions to the ODE. In particular, we find that in the holomorphic light-cone limit

\[W^{(a)}_{0,1,...,a-1}(\lambda) = \left(\prod_{b=1}^{a-1} a_i^{-1} \omega^{-\frac{i}{2}} \right) D^{(a)}_{0,1,...,a-1}(E) \] (47)

where \(\beta_a = \sum_{j=0}^{a-1} (-\beta h_1^{(1)} g + j) - a \frac{\pi}{\beta} \). Note that the pre-factor of the r.h.s. of (47) does not effect the zeros of both sides in (47). For a zero \(\Lambda_j^{(a)} (j \geq 0) \) of \(W^{(a)}_{0,1,...,a-1}(\lambda) \), we introduce the corresponding zero of \(D^{(a)}_{0,1,...,a-1}(E) \) as \(F_j^{(a)} = \beta^\frac{\pi}{\beta} (mc h_j^{(a)}) \). Since the zeros of the Wronskian are classified by those corresponding to the two light-cone limits, we label \(j \geq 0 \) for the zeros in the holomorphic light-cone limit and \(j \leq -1 \) for those in the anti-holomorphic light-cone limit.

We define \(A^{(a)}(\omega^{\frac{\pi}{\beta} E}) \equiv D^{(a)}_{0,1,...,a-1}(E) \). Then (30) leads to the Bethe ansatz equations in the holomorphic light-cone limit

\[\prod_{b=1}^{r} \omega^{C_{ah}^j} A^{(b)}(\omega^{\frac{\beta a}{2} E_j^{(a)}}) = -1, \] (48)

where

\[E_j^{(a)} = \omega^{\frac{\pi}{2\beta}} F_j^{(a)} \]

are the zeros of \(A^{(a)}(E) \). The Bethe ansatz equation (48) can be solved by using the massless NLIEs [17], from which one obtains the asymptotic value of the zeros \(E_j^{(a)} \).

We next consider the solution of the anti-holomorphic part of the linear problem, which is expressed in terms of the bottom component of \(\Psi \) as [33]

\[\Psi = \begin{pmatrix} e^{\frac{\beta h^{(1)}_1}{\pi}} \phi D(-h^{(1)}_{1,\psi}) \cdot \cdots \cdot D(-h^{(1)}_{r+1,\psi}) \psi_{r+1} \\ \vdots \\ e^{\frac{\beta h^{(1)}_1}{\pi}} \phi D(-h^{(1)}_{r+1,\psi}) \psi_{r+1} \\ e^{\beta h^{(1)}_1, \phi} \psi_{r+1} \end{pmatrix}. \] (49)
Then the linear problem reduces to the \((r+1)\)th order ODE with respect to \(\bar{z}\):
\[
\bar{D}(\bar{h}^{(1)}_1) \cdot \ldots \cdot \bar{D}(\bar{h}^{(1)}_r)\bar{\psi}_{r+1} = (-m e^{-\lambda}) \bar{h} \bar{\psi}_{r+1}
\]
(50)
with \(\bar{D}(a) = \partial \bar{a} + \beta a \cdot \partial \bar{a} \phi\). We consider the anti-holomorphic light-cone limit. We first take \(z \to 0\), and then we consider the limit \(\bar{z} \sim s \to 0, \lambda \to -\infty\) keeping
\[
\bar{y} = (me^{-\lambda})^{1/\pi} \bar{z}, \quad \bar{E} = s^{\frac{M}{2}}(me^{-\lambda})^{\frac{M+1}{2}}
\]
(51)
fixed. In this limit, (50) becomes
\[
(-1)^{h+1} (\partial \bar{y} + \beta \bar{h}^{(1)}_1 \cdot \bar{g}) \cdot \ldots \cdot (\partial \bar{y} + \beta \bar{h}^{(1)}_r \cdot \bar{g}) \bar{\psi}_{r+1}(\bar{y}) + (\bar{y}^{M+1} - \bar{E})\bar{\psi}_{r+1}(\bar{y}) = 0.
\]
(52)
From a solution \(\bar{\psi}_{r+1}(\bar{y})\) of (52), one finds the solution \(\bar{\Psi}\) of the anti-holomorphic linear problem by (49). As \(\bar{y} \to \infty\), the fastest decaying solution along the positive part of the real axis behaves as
\[
\bar{\psi}_{r+1}(\bar{y}, E) \sim \bar{y}^{-M/2} \exp \left(-\frac{\bar{y}^{M+1}}{M+1} \right) \quad (\bar{y} \to 0).
\]
(53)
As \(\bar{y} \to 0\), one obtains a set of basis \(\bar{\chi}^{(1)}_i = \bar{z}^{\beta \bar{h}^{(1)}_i} \bar{g}^{h-i} + \cdots \) \((i = 1, 2, \ldots, r+1)\). \(\bar{\psi}_{r+1} = \bar{\alpha}_i(g, m) e^{\lambda \bar{M} / \pi} (\beta \bar{h}^{(1)}_i \bar{g}^{h-i}) \bar{\chi}^{(1)}_i\) corresponds to \(\bar{\Psi} = \bar{\chi}^{(1)}_i\) for some coefficients \(\bar{\alpha}_i(g, m)\).

We then expand the solution (53) in terms of the basis \(\bar{\chi}^{(1)}_i(\bar{y})\)
\[
\bar{\psi}_{r+1}(\bar{y}, \bar{E}) = \sum_i^{h} \bar{D}_i(\bar{E}) \bar{\chi}^{(1)}_i(\bar{y}).
\]
(54)
Since (54) corresponds to \(s_0^{(1)}\) in (16), we find
\[
\bar{Q}_i^{(1)}(\lambda) = \frac{1}{\bar{\alpha}_i(g, m) e^{-\lambda \bar{M} / \pi} (\beta \bar{h}^{(1)}_i \bar{g}^{h-i})} \bar{D}_i(\bar{E}).
\]
(55)
Then \(\bar{Q}_{i-j}^{(1)}(\lambda)\) is represented as
\[
\bar{Q}_{i-j}^{(1)}(\lambda) = \frac{\omega^\bar{y}}{\bar{\alpha}_i(g, m) e^{-\lambda \bar{M} / \pi} (\beta \bar{h}^{(1)}_i \bar{g}^{h-i})} \bar{D}_i(\bar{E}) \bar{D}_j(\bar{E}^{-h} \bar{E}).
\]
(56)
where
\[
\bar{D}_{i-j}(\bar{E}) \equiv \omega^{-j(\beta \bar{h}^{(1)}_i \bar{g}^{h-i}) - \bar{y}} \bar{D}_i(\omega^{-h} \bar{E}).
\]
(57)
Substituting (55) into (24), \(\bar{W}^{(p)}_{n_2, \ldots, n_r}(\lambda)\) is proportional to the determinant
\[
\bar{D}_{\{0,1,\ldots,a-1\}}(\bar{E}) \equiv \det \bar{D}_{\{1,2,\ldots,a\}}(\bar{E}).
\]
(58)
We find that in the anti-holomorphic light-cone limit
\[
\bar{W}_{0,1,\ldots,a-1}^{(a)}(\lambda) \equiv \left(\frac{\prod_{i=1}^{a} \bar{\alpha}_i^{-1} \omega^\bar{y}}{e^{-\lambda \bar{M} / \pi} [\bar{M}_a + \bar{z}]} \right) \bar{D}_{\{0,1,\ldots,a-1\}}(\bar{E}),
\]
(59)
where \(\tilde{\gamma}_a = \sum_{j=0}^{n-1} (\delta \eta_{j+1}^{(1)} \cdot g + h - j - 1) - a \tilde{\gamma}_a \). Note that the pre-factor of the r.h.s. of (59) does not affect the zeros of the two sides in (59). For a zero \(\Lambda_{j}^{(a)} (j \leq -1) \) of \(\psi_{0,1,\cdots,a-1}^{(a)} (\lambda) \), we introduce the zero of \(\tilde{D}_{[0,1,\cdots,a-1]}^{(a)} (E) \) as \(\tilde{F}_j^{(a)} = e^{\delta M} (me^{-\Lambda_{j}^{(a)}})^{\frac{M}{4\pi}} \).

We introduce \(\tilde{A}^{(a)} (\omega^{-\frac{h}{2}} E) = \tilde{D}_{[0,1,\cdots,a-1]}^{(a)} (E) \). Then (30) thus leads to the Bethe ansatz equations for the anti-holomorphic light-cone limit

\[
\prod_{b=1}^{r} \omega^{-\frac{\beta_{m}}{2}} \tilde{A}^{(b)} (\omega^{-\frac{\beta_{m}}{2}} \tilde{E}_{j}^{(a)}) \tilde{E}_{j}^{(a)} = -1, \tag{60}
\]

where

\[
\tilde{E}_{j}^{(a)} = \omega^{-\frac{\beta_{m}}{2}} \tilde{F}_{j}^{(a)}
\]

are the zeros of \(\tilde{A}^{(a)} (\tilde{E}) \). Note that the Bethe ansatz equation (60) and the zeros \(\tilde{E}_{j}^{(a)} \) can be obtained from the Bethe ansatz equation (48) and the zeros \(E_{j}^{(a)} \) respectively by replacing \(E \rightarrow \tilde{E} \) and \(\beta_{m} \rightarrow \tilde{\beta}_{m} \).

We can also introduce \(\tilde{D}^{(a)}_{[0,1,\cdots,a-1]} (E) \) and \(\tilde{D}_{[0,1,\cdots,a-1]}^{(a)} (E) \) from the Wronskian of \(\tilde{v}_{1} (y) \) and \(\tilde{v}_{r+1} (y) \) respectively. Using the Plücker relation of the Wronskians, the Bethe ansatz equations (48) and (60) are obtained.

In summary, the zeros of the \(Q \)-functions come from the \(D \)-function obtained in the two light-cone limits of the linear problems. In the next section we will determine the analytical structure of the \(Q \)-functions using the structure of zeros.

5. Non-linear integral equations

In this section, we derive the non-linear integral equations from the Bethe ansatz equation (21). First we discuss the analytic properties of the \(Q \)-function, which are determined by their asymptotic properties and zeros. Then we introduce the counting functions and derive the non-linear integral equations satisfied by the counting functions. These equations provide a basic tool to investigate the massive ODE/IM correspondence.

5.1. Asymptotic behavior of \(Q_{1}^{(a)} (\lambda) \) at large \(| \lambda | \)

We study the asymptotic behavior of \(Q_{1}^{(a)} (\lambda) \) at large \(| \lambda | \). Since \(Q_{1}^{(a)} (\lambda) \) do not depend on the coordinates \(z, \bar{z} \), one can use the solutions of the linear problem around \(z = 0 \) to evaluate them. In particular, \(Q_{1}^{(1)} (\lambda) \) is evaluated as

\[
Q_{1}^{(1)} (\lambda) = \langle x_{0}^{(1)}, \chi_{2}^{(1)}, \cdots, \chi_{r+1}^{(1)} \rangle = \lim_{|z| \rightarrow 0} \psi_{1} e^{\hat{A}(\lambda+i\theta) e^{-\frac{1}{2} \hat{h}_{1}^{(1)}}}, \tag{61}
\]

where \(\psi_{1} \) is the first component of \(x_{0}^{(1)} \).

The asymptotic behavior of the solution \(\tilde{v}_{1} \) to (38) at \(\text{Re}(\lambda) \rightarrow \infty \) can be obtained by the WKB method. The result is

\[
\tilde{v}_{1} \sim e^{\exp \left[me^{\lambda} \int_{\log z}^{\infty} dx' \left(e^{\delta M x'} - e^{\delta M (r+1)x'} \right) \right]}, \quad \text{Re}(\lambda) \rightarrow \infty. \tag{62}
\]
Then substituting (62) to (61), and taking the limit \(\log z \to -\infty \), we obtain
\[
\log Q_1^{(1)}(\lambda) \to (-E)^{\frac{M+1}{hM}} \kappa(hM, h) \quad \text{for} \quad \text{Re}(\lambda) \to \infty, \quad |\arg(-E)| < \pi,
\]
where \(E \) is defined in (39). \(\kappa(a, b) \) is
\[
\kappa(a, b) = \int_0^\infty dx[(x^a + 1)^{1/b} - x^{a/b}] = \frac{\Gamma(1 + \frac{1}{b})\Gamma(1 + \frac{1}{a})\sin\left(\frac{\pi}{b}\right)}{\Gamma(1 + \frac{1}{a} + \frac{1}{b})\sin\left(\frac{\pi}{a} + \frac{\pi}{b}\right)}.
\]

For \(\text{Re}(\lambda) \to -\infty \), from the WKB solution \(\tilde{\psi}_{j+1} \) to the anti-holomorphic ODE (50), we calculate the behavior of the first component of (49). The asymptotic behavior \(Q_1^{(1)}(\lambda) \) at \(\text{Re}(\lambda) \to -\infty \) is then evaluated by using (61) as
\[
\log Q_1^{(1)}(\lambda) \to (-\tilde{E})^{\frac{M+1}{hM}} \kappa(hM, h), \quad \text{Re}(\lambda) \to -\infty, \quad |\arg(-\tilde{E})| < \pi
\]
where \(\tilde{E} \) is defined in (51). \(Q_j^{(1)}(\lambda) \) at \(\text{Re}(\lambda) \to \infty \) and \(\text{Re}(\lambda) \to -\infty \) are the same as (63) and (65) respectively at the leading order.

Using the \(\psi \)-system (20), the Wronskian of \(Q_1^{(a)}(\lambda) \) (25) and (32), we determine the asymptotics of \(Q_1^{(a)}(\lambda) \) as
\[
\log Q_1^{(a)}(\lambda) \to \frac{\sin(a\pi)}{\sin(\frac{\pi}{b})} (-E)^{\frac{M+1}{hM}} \kappa(hM, h), \quad \text{Re}(\lambda) \to \infty, \quad |\arg(-E)| < \pi,
\]
\[
\log Q_1^{(a)}(\lambda) \to \frac{\sin(a\pi)}{\sin(\frac{\pi}{b})} (-\tilde{E})^{\frac{M+1}{hM}} \kappa(hM, h), \quad \text{Re}(\lambda) \to -\infty, \quad |\arg(-\tilde{E})| < \pi.
\]

5.2. Zeros of \(Q_1^{(a)}(\lambda) \)

In the previous section, we studied the zeros of \(Q_1^{(a)}(\lambda) \). We considered the holomorphic light-cone limit, in which case \(Q_1^{(a)}(\lambda) \) reduces to \(A^{(a)}(E) \), whose zeros are \(E_j^{(a)} = s h M (m e)^{\lambda_j^{(a)}} \). As observed in the previous section, \(Q_j^{(a)}(\lambda) \) and \(A^{(a)}(E) \) have the same asymptotic value of zeros, i.e. \(\lambda_j^{(a)} \to \lambda_j^{(a)} \) in the holomorphic light-cone limit. For large \(E \), the asymptotic value of \(E_j^{(a)} \) tends to \(\mathcal{E}_j^{(a)} \), which is defined by [17]:
\[
E_j^{(a)} \to \mathcal{E}_j^{(a)} \equiv \left\{ \frac{\sin\left(\frac{\pi}{b}\right)}{\sin(\frac{\pi}{b})} \frac{\pi}{b_0 M_a} [j + 1 + \hat{a}_a(g)] \right\}^{\frac{hM}{\pi^2}} \quad j \to \infty,
\]
where
\[
b_0 = 2 \sin\left(\frac{\pi}{b} \left[\frac{M+1}{hM} \right] \right) \kappa(hM, h), \quad M_a = m s^{M+1} \frac{\sin(\frac{a\pi}{b})}{\sin(\frac{\pi}{b})}.
\]

The parameter \(\hat{a}_a(g) \) is defined as
\[
\hat{a}_a(g) = -\frac{2}{h} \beta_a.
\]

\(^2\)We have assumed that \(s \) is real.
We consider the anti-holomorphic light-cone limit, in which case \(Q_1^{(a)}(\lambda) \) reduces to \(\tilde{\lambda}^{(a)}(\tilde{E}) \), whose zeros are labeled by \(\tilde{E}_j^{(a)} = \text{sh} M \left(m e^{-\delta_j^{(a)}} \right) \). \(Q_1^{(a)}(\lambda) \) and \(\tilde{\lambda}^{(a)}(\tilde{E}) \) have the same asymptotic value of zeros, i.e. \(\lambda_j^{(a)} \to \tilde{\lambda}_j^{(a)} \) in this limit. At large \(\tilde{E}, \tilde{E}_j^{(a)} \) tends to \(\tilde{\lambda}_j^{(a)} \) [17], where

\[
\tilde{E}_j^{(a)} \to \tilde{\lambda}_j^{(a)} = \left\{ \sin \left(\frac{\pi}{b_0} \right) \frac{\pi}{b_0} \left[2(-j - 1) + 1 - \alpha_a(g) \right] \right\}^{\frac{1}{2\pi}} , \quad j \to -\infty. \tag{71}
\]

Thus we can read off the zeros of \(Q_1^{(a)}(\lambda) \) by using the ones of \(\lambda^{(a)}(\tilde{E}) \) or \(\tilde{\lambda}^{(a)}(\tilde{E}) \), which are obtained in the light-cone limit. This limit means the parameter \(s \) should be small, where \(\lambda_j^{(a)} \to \tilde{\lambda}_j^{(a)} \) in the light-cone limit. As the value of zeros \(\lambda_j^{(a)} \) changes with increasing \(s \), no additional zeros can be generated because the asymptotic formulas (66) and (67) are valid for any \(s \).

For \(M > \frac{1}{M+1} \), the order \(\frac{M+1}{M} \) of the functions \(Q_1^{(a)}(\lambda) \) in (66) and (67) is less than one. The Hadamard factorization theorem leads to

\[
Q_1^{(a)}(\lambda) = G_1^{(a)}(g) e^{\frac{\pi M}{\pi M + 1} \tilde{\alpha}_a} \prod_{j=0}^{\infty} \left(1 - e^{\frac{2\pi}{\pi M + 1}(\lambda - \lambda_j^{(a)})} \right) \prod_{j=-\infty}^{-1} \left(1 - e^{\frac{-2\pi}{\pi M + 1}(\lambda - \lambda_j^{(a)})} \right), \tag{72}
\]

where \(G_1^{(a)}(g) \) is a constant.

5.3. Non-linear integral equations

Let us introduce the counting function \(a^{(a)}(\lambda) \)

\[
a^{(a)}(\lambda) = \prod_{b=1}^{r} \frac{Q_1^{(b)}(\lambda + \frac{\pi i M}{M + 1} C_{ab})}{Q_1^{(b)}(\lambda - \frac{\pi i M}{M + 1} C_{ab})} , \quad a = 1, 2, \cdots, r. \tag{73}
\]

The function satisfies \(a^{(a)}(\lambda^{(a)}) = -1 \) for zeros \(\lambda_j^{(a)} \) of \(Q_1^{(a)}(\lambda) \). Then we use (72) and the procedure in [49, 50] to rewrite (73) as

\[
\log a^{(a)}(\lambda) = \sum_{b=1}^{r} \frac{\pi i}{M + 1} C_{ab} \delta_b(g) + \sum_{b=1}^{r} \int_C d\lambda' F_{ab}(\lambda - \lambda') \partial_{\lambda'} \log(1 + a^{(b)}(\lambda')) , \tag{74}
\]

where the integral contour \(C \) encircles all the zeros anti-clockwise, and the kernel \(F_{ab}(\lambda) \) is defined by

\[
F_{ab}(\lambda) = \log \left[\frac{\sinh\left(\frac{\pi i M}{M + 1} \lambda - \frac{\pi i M}{M + 1} C_{ab} \right)}{\sinh\left(\frac{\pi i M}{M + 1} \lambda + \frac{\pi i M}{M + 1} C_{ab} \right)} \right]. \tag{75}
\]

Here we assume all the zeros of \(Q_1^{(a)}(\lambda) \) are real as observed in the analysis of the ODE, which corresponds to the ground state of the Bethe ansatz equations [17]. Then the definition of \(a^{(a)}(\lambda) \) leads to \((a^{(a)}(\lambda))^* = (a^{(a)}(\lambda^*))^{-1} \). Then integrating by parts and taking the Fourier transformation \(\mathcal{F}[f](k) = \int_{-\infty}^{\infty} f(\lambda) e^{-i\lambda k} d\lambda \), we obtain

\[
\sum_{b=1}^{r} \left(\delta_{ab} - \mathcal{F}[R_{ab}] \right) \mathcal{F}[\log a^{(b)}] = \left[\sum_{b=1}^{r} \frac{\pi i}{M + 1} C_{ab} \delta_b(g) \right] 2\pi \delta(k) - \sum_{b=1}^{r} \mathcal{F}[R_{ab}] \mathcal{F} [\text{Im} \log(1 + a^{(b)})] . \tag{76}
\]
where $R_{ab}(\lambda - \lambda') = \frac{1}{\pi i} \partial_{\lambda - \lambda'} F_{ab}(\lambda - \lambda')$. Applying the inverse matrix of $(I - F[R])$ to this equation and taking the inverse Fourier transformation, we obtain the NLIEs:

$$
\log a(\lambda) = -2ib_0 M_a \sinh \lambda + i\pi \gamma_a + \sum_{b=1}^{r} \int_{C_1} d\lambda' \varphi_{ab}(\lambda - \lambda') \log [1 + a(\lambda')](\lambda')
$$

$$
- \sum_{b=1}^{r} \int_{C_1} d\lambda' \varphi_{ab}(\lambda - \lambda') \log \left[1 + \frac{1}{a(\lambda')} \right],
$$

(77)

where C_1 (C_2) runs from $-\infty - i0$ to $\infty - i0$ and $\varphi_{ab}(\lambda) = F^{-1} \left[1 - (1 - F[R])^{-1}_{ab} \right] = -F^{-1} \left[(1 - F[R])^{-1}_{ac} F[R_{cb}] \right]

(78)

$$
i\pi \gamma_a = \sum_{c,b} F^{-1} \left[(\delta_{ac} - F[R_{ac}])^{-1} \frac{\pi i}{(M + 1)} C_{cb} \delta_{a} \delta(k) \right].
$$

(79)

The driving term $-2ib_0 M_a \sinh \lambda$ is due to the zeros modes of $(I - F[R](k))^{-1}$ at $k = i$; b_0 and M_m are defined in (69). From (75), we obtain the non-vanishing $F[R_{ab}](k)$

$$
F[R_{ab}](k) = \frac{\sinh \left[\frac{\pi k}{M} \right] ((M - 1) \delta_{ab} + \delta_{a,b+1} + \delta_{a,b-1})}{\sinh \left[\frac{\pi k}{M} \right]}.
$$

(80)

Then it is easy to find $\gamma_a = \tilde{\alpha}_a$. To evaluate $\varphi_{ab}(\lambda)$, we introduce the generalized Cartan matrix [54]

$$
C_{ab}(k) = 2\delta_{ab} - \frac{1}{\cosh \left[\frac{\pi k}{M} \right]} (\delta_{a,b-1} + \delta_{a,b+1})
$$

(81)

$$
C^{-1}_{ab}(k) = C_{ba}^{-1}(k) = \frac{\coth \left(\frac{\pi k}{M} \right) \sinh \left[\frac{\pi k}{M} \right] (1 + \delta_{a,b})}{\sinh \left(\frac{\pi k}{M} \right)} (a \geq b).
$$

(82)

Then (78) can be written as

$$
\varphi_{ab}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik\lambda} \left[2\delta_{ab} - \frac{\sinh \left[\frac{\pi k}{M} \right] (1 + \xi) \delta_{a,b}}{\cosh \left(\frac{\pi k}{M} \right) \sinh \left(\frac{\pi k}{M} \right)} C_{ab}^{-1}(k) \right].
$$

(83)

In the appendix, the NLIEs (77) are shown to be equivalent to those in [54].

5.4. UV limit

For convenience, we introduce other counting functions $Z_a(\lambda)$ and $\tilde{Q}_a(\lambda)$ ($a = 1, 2, \ldots, r$) as

$$
e^{-iZ_a(\lambda)} \equiv q^{(a)}(\lambda), \quad \tilde{Q}_a(\lambda) \equiv \frac{1}{i} \log \frac{1 + e^{i\pi Z_a(\lambda + i0)}}{1 + e^{-i\pi Z_a(\lambda - i0)}}.
$$

(84)

The NLIEs (77) are written in terms of $Z_a(\lambda)$ and $\tilde{Q}_a(\lambda)$ as (A.3) in the appendix. In the UV limit $2ib_0 M_1 \to 0$, the corresponding massive IM flows to its UV fixed point. In this limit, the NLIEs split into three types of equations corresponding to two asymptotic regions and one intermediate region, where two asymptotic regions are separated by the distance $\log \frac{1}{M M_1}$. In the intermediate region, $Z_a(\lambda)$ is flat. In the two asymptotic regions which are in both sides, the two decoupled counting functions
are defined. Then the NLIEs become

$$Z_{\alpha}^\pm(\lambda) = -\pi \alpha_{\alpha}^\pm \frac{M_{\alpha}}{M_1} + \sum_{b=1}^{r} X_{\alpha b} \ast \tilde{Q}_{\beta}^\pm(\lambda).$$

(86)

The asymptotic behaviors of $Z_{\alpha}^\pm(\lambda)$ and $\tilde{Q}_{\alpha}^\pm(\lambda)$ for $\lambda = \pm \infty$ are

$$Z_{\alpha}^\pm(\pm \infty) = \pm \infty, \quad \tilde{Q}_{\alpha}^\pm(\pm \infty) = 0.$$

(87)

At $\lambda = \mp \infty$, (86) leads to the constraints on $Z_{\alpha}^\pm(\mp \infty)$

$$Z_{\alpha}^\pm(\mp \infty) = -\pi \alpha_{\alpha}^\pm + \sum_{b=1}^{r} [X_{\alpha b} \ast \tilde{Q}_{\beta}^\pm](\mp \infty) = -\pi \alpha_{\alpha}^\pm + \sum_{t=1}^{r} \tilde{Q}_{b}(\mp \infty) \chi_{\alpha b}(\infty),$$

(88)

where $\chi_{\alpha b}(\infty) = \int_{-\infty}^{\infty} d\lambda X_{\alpha b}(\lambda) = \delta_{\alpha b} - (M + 1)C_{\alpha b}^{-1}(k = 0)$. Solving these constraints, we obtain the constant solution of $\tilde{Q}_{\alpha}^\pm(\mp \infty)$

$$\tilde{Q}_{\alpha}^\pm(\mp \infty) = -\frac{\pi}{M + 1} \sum_{b=1}^{r} C_{\alpha b} \alpha_b = -\frac{2\pi}{\hbar(M + 1)}(1 + \beta g \cdot \alpha_a),$$

(89)

where $C_{\alpha b}$ is the Cartan matrix and α_a is the simple root.

The effective central charge is given as

$$c_{\text{eff}}(2\beta_0 M_1) = -\frac{6}{\pi^2} 2\beta_0 \sum_{a=1}^{r} M_{a} \left[\int_{\mathcal{C}} d\lambda \sinh \lambda \Im \log(1 + a(\alpha)(\lambda)) \right].$$

(90)

In the UV limit, the effective central charge becomes

$$c_{\text{eff}}(0) = \frac{3}{\pi^2} \sum_{a=1}^{r} \frac{M_a}{M_1} \left[\int_{-\infty}^{\infty} d\lambda \frac{d\alpha}{d\lambda} \tilde{Q}_{\alpha}^+(\lambda) - \int_{-\infty}^{\infty} d\lambda \frac{d(-e^{-\lambda})}{d\lambda} \tilde{Q}_{\alpha}^-(\lambda) \right].$$

(91)

Using the multi-component generalization [54] of the lemma in section VIII of [51] and the constant $\tilde{Q}_{\alpha}^\pm(\mp \infty)$ in (89), we obtain

$$c_{\text{eff}}(0) = r - \frac{3}{M + 1} \sum_{a,b=1}^{r} (C\alpha)_a C_{\alpha b}^{-1}(C\alpha)_b$$

$$= r - \frac{12}{\hbar^2(1 + M)} \sum_{a,b=1}^{r} (1_a + \beta g \cdot \alpha_a) C_{\alpha b}^{-1}(1_b + \beta g \cdot \alpha_b),$$

(92)

where $1_a = 1$. (92) is simplified to

$$c_{\text{eff}}(0) = r - \frac{12}{\hbar^2(1 + M)} (\rho^\vee + \beta g)^2,$$

(93)

where ρ^\vee is the co-Weyl vector of the A_r algebra. For $g = 0$, we find

$$c_{\text{eff}}(0) = r - \frac{3}{M + 1} \frac{r(r + 2)}{3(r + 1)} = (h - 1) \left(1 - \frac{(h + 1)\hbar}{pq} \right).$$

(94)
which coincides with the effective central charge of non-unitary CFT \(W_{A}^{(p,q)} \) with \(p = r + 1 = h \) and \(q = h(M + 1) \) [59–61].

Let us comment on the thermodynamic Bethe ansatz (TBA) equations from the modified affine Toda field equation for \(g \neq 0 \). For the simplest case, i.e. the \(A_1^{(1)} \)-type modified affine Toda field equation, one obtains a D-type \(Y \)-system [31] for an integer \(2M \). We find the periodic condition of the \(Y \)-function from the quasi-periodic condition of \(Q_{A}^{(1)}(\lambda) \). Especially for the case where \(M \) is an integer, the periodic condition and the shift of the spectral parameter of \(Y \)-functions coincide with those of the \(D_{M+1} \)-type \(Y \)-system [62, 63]. We can derive the TBA equations from the \(Y \)-system and compute the effective central charge in the UV limit. This effective central charge coincides with the one obtained from the NLIE approach. For a half integer \(M \), both the shift of the spectral parameter in the \(Y \)-function and the periodic condition do not coincide with those of the usual D-type \(Y \)-system. It is interesting to derive the TBA equation in this case.

6. Conclusions and discussions

In this paper, we have studied the massive ODE/IM correspondence between the \(A_1^{(1)} \)-type modified affine Toda field equations and the 2D massive IMs. The \(Q \)-functions are introduced from the solutions of the linear problems associated with the modified affine Toda field equations. The \(\psi \)-system satisfied by the solutions leads to the Bethe ansatz equations. The asymptotics of the \(Q \)-functions for large \(\lambda \), the spectral parameter, is obtained by the WKB solutions and with the help of the \(\psi \)-system. We then have derived the Bethe ansatz equations of the massive IMs. In the light-cone limit, we found that the correspondence reduces to the relation between the ODE and the massless IM, where the \(Q \)-functions are represented as the Wronskians of the basic \(Q \)-functions. From the Bethe ansatz equations and the asymptotics of the \(Q \)-functions, we have derived the non-linear integral equations of \(A_1^{(1)} \)-type, which agree with the ones obtained in [54]. Based on the NLIEs, we derived the effective central charge in the UV limit, which depends on the monodromy parameter \(g \) of the solutions of the linear problem around the origin. At \(g = 0 \), the effective central charge at the UV limit coincides with the effective central charge of non-unitary CFT \(W_{A}^{(p,q)} \) with \(p = r + 1 = h \) and \(q = h(M + 1) \).

In the present paper, we have discussed \(A_1^{(1)} \)-type affine Toda field equations as typical examples of affine Lie algebras. It would be possible to generalize to the affine Lie algebra of \(\hat{g} \), from which we obtain the Bethe ansatz equations associated with the affine Lie algebra \(\hat{g} \) [35] and the non-unitary \(W_{\hat{g}} \)-minimal model in the UV-limit. These will be presented in a separate paper.

These \(W_{g} \)-models also appear in the context of the correspondence between the Argyres–Douglas theories of \((A_1, g) \)-type and 2D conformal field theories, which are observed in [64–66]. In a previous paper [13], we have observed this 2D/4D-correspondence from the viewpoint of the quantum Seiberg–Witten curve of the Argyres–Douglas theories. It would be interesting to study the relation between the quantum IMs and superconformal field theories in four dimensions.

It is also interesting to derive the \(T/Y \)-system and the TBA equations for the \(A_1^{(1)} \)-type modified affine Toda field equations. The monodromy parameter \(g \) leads to the non-trivial boundary conditions as observed in [6, 31, 55, 56, 67]. From the TBA equations, one can also obtain the effective central charge at the UV limit, which should coincide with the one derived.
from the NLIEs. For the $A_1^{(1)}$ case with M being a positive integer, we can confirm that both calculations agree with each other. But for the higher rank case, it is a non-trivial problem which should be investigated.

Acknowledgments

We would like to thank S L Lukyanov, J Suzuki and R Tateo for useful discussions. The work of HS is supported in part by the JSPS Research Fellowship for Young Scientists, from the Japan Ministry of Education, Culture, Sports, Science and Technology. The work of KI is supported in part by a Grant-in-Aid for Scientific Research 15K05043, 18K03643 and 16F16735 from the Japan Society for the Promotion of Science (JSPS).

Appendix. Connection with the NLIEs of the A_r-type complex affine Toda model

In section 5, we derived the NLIEs from the Bethe ansatz equations. In this appendix, we rewrite these equations and show their relations with the ones obtained in [54]. Under the identifies
\[
e^{-iZ_a(\lambda)} \leftrightarrow a^{(i)}(\lambda), \quad m_aL \leftrightarrow 2h_0M_a,
\]
\[
\kappa \leftrightarrow \frac{\pi}{\hbar} k, \quad \gamma = \frac{M \pi}{1 + M},
\]
(77) becomes
\[
Z_a = m_aL \sinh \lambda - \pi \hat{\alpha}_a + \sum_{b=1}^{n} X_{ab} \ast \tilde{Q}_b
\]
where
\[
\int d\lambda e^{ih\lambda/\pi} X_{ab}(\lambda) = \delta_{ab} - \frac{\sinh \frac{\pi \kappa}{\gamma}}{\sinh \frac{\kappa}{\gamma} - 1} \cosh \kappa \tilde{C}_{ab}^{-1}(\kappa)
\]
\[
\tilde{C}_{ab}^{-1}(\kappa) = \coth \kappa \frac{\sinh ((n + 1 - a)\kappa) \sinh (bc\kappa)}{\sinh ((n + 1)\kappa)} = C_{ab}^{-1}(k)
\]
\[
\tilde{Q}_b(x) = \frac{1}{i} \log \frac{1 + e^{iZ_b(x+i0)}}{1 + e^{-iZ_b(x-i0)}}.
\]

It is easy to check $X_{ab}(\lambda) = \varphi_{ab}(\lambda)$. (A.3) is the twisted NLIE studied in [54] without a hole, special root or complex root. Note that (A.3) is derived for a class of IMs associated with the quantum group $U_q(\hat{g})$. More precisely, (A.3) is the NLIE for A_r-type complex affine Toda models.

ORCID iDs

Katsushi Ito https://orcid.org/0000-0002-0997-3074
Hongfei Shu https://orcid.org/0000-0003-1890-7762
References

[1] Dorey P and Tateo R 1999 J. Phys. A: Math. Gen. 32 L419
[2] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 2001 J. Stat. Phys. 102 567
[3] Alday L F, Gaiotto D and Maldacena J 2011 J. High Energy Phys. JHEP09(2011)032
[4] Alday L F, Maldacena J, Sever A and Vieira P 2010 J. Phys. A: Math. Theor. 43 485401
[5] Hutsuda Y, Ito K, Sakai K and Satoh Y 2010 J. High Energy Phys. JHEP04(2010)108
[6] Maldacena J and Zhiboedov A 2010 J. High Energy Phys. JHEP11(2010)104
[7] Hutsuda Y, Ito K, Sakai K and Satoh Y 2010 J. High Energy Phys. JHEP09(2010)064
[8] Hutsuda Y, Ito K, Sakai K and Satoh Y 2011 J. High Energy Phys. JHEP04(2011)100
[9] Hutsuda Y, Ito K and Satoh Y 2012 J. High Energy Phys. JHEP02(2012)003
[10] Hutsuda Y, Ito K and Satoh Y 2013 J. High Energy Phys. JHEP02(2013)067
[11] Hutsuda Y, Ito K, Satoh Y and Suzuki J 2014 J. High Energy Phys. JHEP08(2014)162
[12] Gaiotto D 2014 Opers and TBA (arXiv:1403.6137 [hep-th])
[13] Ito K and Shu H 2017 J. High Energy Phys. JHEP08(2017)071
[14] Kumiba A, Nakamishi T and Suzuki J 2011 J. Phys. A: Math. Theor. 44 103001
[15] Dorey P and Tateo R 2000 Nucl. Phys. B 571 583
Dorey P and Tateo R 2001 Nucl. Phys. B 603 582 (erratum)
[16] Suzuki J 2000 J. Phys. A: Math. Gen. 33 3507
[17] Dorey P, Dunning C and Tateo R 2000 J. Phys. A: Math. Gen. 33 8427
[18] Suzuki J 2001 J. Stat. Phys. 102 1029
[19] Suzuki J 2001 RIMS Kokyuroku 1221 21 (arXiv:nlin/0009006[nlin-si])
[20] Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 34 5679
[21] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 2003 Adv. Theor. Math. Phys. 7 711
[22] Dorey P, Dunning C, Masoero D, Suzuki J and Tateo R 2007 Nucl. Phys. B 772 249
[23] Dorey P, Dunning C and Tateo R 2007 J. Phys. A: Math. Theor. 40 R205
[24] Feigin B and Frenkel E 2011 Adv. Stud. Pure Math. 61 185–274
[25] Sun J 2012 SIGMA 8 028 (arXiv:1201.1614[math.QA])
[26] Masoero D 2010 Lett. Math. Phys. 94 151
[27] Suzuki J 2015 J. Phys. A: Math. Theor. 48 205204
[28] Masoero D, Raimondo A and Valeri D 2016 Commun. Math. Phys. 344 719
[29] Masoero D, Raimondo A and Valeri D 2017 Commun. Math. Phys. 349 1063
[30] Negro S 2017 ODE/IM Correspondence in Toda field theories and fermionic basis in sinh-Gordon model (arXiv:1702.06657 [hep-th])
[31] Lukyanov S L and Zamolodchikov A B 2010 J. High Energy Phys. JHEP07(2010)008
[32] Dorey P, Faldella S, Negro S and Tateo R 2013 Phil. Trans. R. Soc. A 371 20120052
[33] Ito K and Locke C 2014 Nucl. Phys. B 885 600
[34] Adamopoulou P and Dunning C 2014 J. Phys. A: Math. Theor. 47 205205
[35] Ito K and Locke C 2015 Nucl. Phys. B 896 763
[36] Locke C 2015 Doctoral Thesis Tokyo Institute of Technology
[37] Negro S 2016 J. Phys. A: Math. Theor. 49 323006
[38] Lukyanov S L 2011 Nucl. Phys. B 853 475
[39] Lukyanov S L and Zamolodchikov A B 2013 Nucl. Phys. B 873 585
[40] Lukyanov S L 2013 J. High Energy Phys. JHEP12(2013)012
[41] Bazhanov V V and Lukyanov S L 2014 J. High Energy Phys. JHEP09(2014)147
[42] Bazhanov V V and Lukyanov S L 2014 J. Phys. A: Math. Theor. 47 462002
[43] Bazhanov V V, Kotousov G A and Lukyanov S L 2014 Nucl. Phys. B 889 817
[44] Bazhanov V V, Lukyanov S L and Runov B A 2016 Nucl. Phys. B 911 863
[45] Vicedo B 2017 On integrable field theories as dihedral affine Gaudin models (arXiv:1701.04856 [hep-th])
[46] Bazhanov V V, Lukyanov S L and Runov B A 2018 Nucl. Phys. B 927 468
[47] Klümper A, Batchelor M T and Pearce P A 1991 J. Phys. A: Math. Gen. 24 5111
[48] Klümper A and Pearce P A 1991 J. Stat. Phys. 64 13–76
[49] Destri C and De Vega H J 1992 Phys. Rev. Lett. 69 2313
[50] Destri C and De Vega H J 1995 Nucl. Phys. B 438 413
[51] Destri C and De Vega H J 1997 Nucl. Phys. B 504 621
[52] Feverati G, Ravanini F and Takacs G 1999 Nucl. Phys. B 540 543
[53] Feverati G, Ravanini F and Takacs G 2000 Nucl. Phys. B 570 615
[54] Zinn-Justin P 1998 J. Phys. A: Math. Gen. 31 6747
[55] Ito K and Shu H 2017 Nucl. Phys. B 916 414
[56] Saleur H and Wehefritz-Kaufmann B 2000 Phys. Lett. B 481 419
[57] Bazhanov V V, Hibberd A N and Khoroshkin S M 2002 Nucl. Phys. B 622 475
[58] Kojima T 2008 J. Phys. A: Math. Theor. 41 355206
[59] Fateev V A and Lukyanov S L 1988 Int. J. Mod. Phys. A 3 507
[60] Fateev V and Lukyanov S 1990 Sov. Sci. Rev. A 15 1–117
[61] Dunning C 2002 Phys. Lett. B 537 297
[62] Zamolodchikov A B 1991 Phys. Lett. B 253 391
[63] Ravanini F, Tateo R and Valleriani A 1993 Int. J. Mod. Phys. A 8 1707
[64] Beem C, Lemos M, Liendo P, Peelaers W, Rastelli L and van Rees B C 2015 Commun. Math. Phys. 336 1359
[65] Cordova C and Shao S H 2016 J. High Energy Phys. JHEP01(2016)040
[66] Xie D, Yan W and Yau S T 2016 Chiral algebra of Argyres-Douglas theory from M5 brane (arXiv:1604.02155 [hep-th])
[67] Gao Z and Yang G 2013 J. High Energy Phys. JHEP06(2013)105