Desulfovulcanus ferrireducens gen. nov., sp. nov., a thermophilic autotrophic iron and sulfate-reducing bacterium from subseafloor basalt that grows on akaganéite and lepidocrocite minerals

Srishti Kashyap1,3 · Masroque Musa1 · Kaylee A. Neat2 · Deborah A. Leopo1 · James F. Holden1

Received: 12 January 2022 / Accepted: 10 February 2022 / Published online: 21 February 2022
© The Author(s) 2022

Abstract
A deep-sea thermophilic bacterium, strain Ax17T, was isolated from 25 °C hydrothermal fluid at Axial Seamount. It was obligately anaerobic and autotrophic, oxidized molecular hydrogen and formate, and reduced synthetic nanophase Fe(III) (oxyhydr)oxide minerals, sulfate, sulfite, thiosulfate, and elemental sulfur for growth. It produced up to 20 mM Fe2+ when grown on ferrihydrite but < 5 mM Fe2+ when grown on akaganéite, lepidocrocite, hematite, and goethite. It was a straight to curved rod that grew at temperatures ranging from 35 to 70 °C (optimum 65 °C) and a minimum doubling time of 7.1 h, in the presence of 1.5–6% NaCl (optimum 3%) and pH 5–9 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was 90–92% identical to other genera of the family Desulfonauticaceae in the phylum Pseudomonadota. The genome of Ax17T was sequenced, which yielded 2,585,834 bp and contained 2407 protein-coding sequences. Based on overall genome relatedness index analyses and its unique phenotypic characteristics, strain Ax17T is suggested to represent a novel genus and species, for which the name Desulfovulcanus ferrireducens is proposed. The type strain is Ax17T (= DSM 111878T = ATCC TSD-233T).

Keywords Deep sea thermophiles · Anaerobic bacteria · Autotroph · Iron reducer · Sulfate reducer · Hydrothermal vent

Introduction
Most thermophilic chemoautotrophs studied from deep-sea hydrothermal vents are methanogens and other microbes that oxidize molecular hydrogen (H₂) and reduce sulfur compounds and nitrate (Sievert and Vetriani 2012). Less is known about thermophilic iron reducers that use molecular hydrogen as an electron donor and Fe(III) (oxyhydr)oxide minerals as terminal electron acceptors. These include the facultatively autotrophic bacteria Deferribacter abyssi and Deferribacter autotrophicus with optimal growth at 60 °C (Miroshnichenko et al. 2003; Slobodkina et al. 2009a), the facultatively autotrophic archaea Geoglobus ahangari and Geoglobus acetivorans with optimal growth at 81–88 °C (Kashefi et al. 2002; Slobodkina et al. 2009b), and the chemolithoheterotrophic archaean Pyrodictium delaneyi Su06T with optimal growth at 90–92 °C (Lin et al. 2014, 2016; Kashyap and Holden 2021).

Ferrihydrite (Fe₂O₃∙0.5H₂O) is the most common Fe(III) (oxyhydr)oxide mineral used for the growth of iron-reducing bacteria and archaea. It is the least crystalline iron oxide in a gradient that includes (from least to most crystalline) lepidocrocite (γ-FeOOH), akaganéite (β-FeOOH), maghemite (γ-Fe₂O₃), goethite (α-FeOOH), and hematite (α-Fe₂O₃), which makes ferrihydrite a more favorable electron acceptor (Cornell and Schwertmann 2003). Furthermore, nanophase iron oxide minerals (< 100 nm in at least one dimension) are also more reactive than their macroparticulate counterparts.
due to an increase in reactive surface area (Braunschweig et al. 2013). When tested on various synthetic nanophase Fe(III) (oxyhydr)oxides, P. delaneyi grew best and produced the most acid soluble Fe$^{2+}$ on ferrihydrite and showed modest growth and Fe$^{2+}$ production on lepidocrocite and akaganeite with poor growth and Fe$^{2+}$ production on goethite and hematite (Kashyap et al. 2018). It reduced ferrihydrite to magnetite (Fe$_3$O$_4$) (Lin et al. 2014; Kashyap et al. 2018), lepidocrocite to a ferrous carbonate mineral, and akaganeite to a ferrous phosphate mineral and magnetite (S. Kashyap and J. Holden, unpubl. results).

This study sought to isolate and characterize a thermophilic, obligate autotroph that uses synthetic nanophase akaganeite and lepidocrocite as terminal electron acceptors from low-temperature hydrothermal fluid flowing from a basalt outcrop at Axial Seamount. The goal was to determine if there are chemosynthetic bacteria that are better adapted for growth on either nanophase akaganeite or lepidocrocite rather than nanophase ferrihydrite. A novel genus and species, Desulfuvalculus ferrireducens Ax17T, in the family Desulfuromonadaceae (Waite et al. 2020) that grew as well or better on akaganeite and lepidocrocite relative to ferrihydrite was isolated and characterized and its whole genome was sequenced to determine its novelty and metabolic potential.

Materials and methods

Isolation of new thermophile strains

Hydrothermal vent samples were collected in July 2017 from Axial Seamount in the northeastern Pacific Ocean (45.9° N, 130.0° W) on board the R/V Roger Revelle using the remotely operated submarine ROV Jason II at a depth of 1513 m. Low-temperature (25°C) hydrothermal vent fluid was collected from Marker 33 vent using the NOAA Hydrothermal Fluid and Particle Sampler (Butterfield et al. 2004). The hydrothermal fluid was used to inoculate growth media (see below) that separately contained akaganeite and lepidocrocite as terminal electron acceptors and 80% (v/v) H$_2$ and 20% (v/v) CO$_2$ at 2 atm in the headspace as the carbon source and electron donor. The enrichments were incubated at sea at 55°C in a forced-air incubator for up to 7 days.

Enrichments were screened for cell growth using epifluorescence microscopy, Fe$^{2+}$ production using a spectrophotometer (see below), and CH$_4$ production in the headspace using a gas chromatograph. Enrichments that showed cell growth and evidence of iron reduction without production of CH$_4$ were transferred at least three additional times to confirm growth. Two enrichments from Marker 33 hydrothermal vent fluid that grew at 55°C using akaganeite and lepidocrocite as electron acceptors were separately isolated on their respective iron oxides using at least three sequential dilution-to-extinction incubations where the most dilute sample in the series to show growth was used to inoculate the next dilution series or, for the final dilution series, was used as the purified strain. 16S rRNA gene sequence analysis of the two isolates showed that they had identical sequences. Therefore, only the akaganeite-grown strain was used for further characterization and was named Ax17T.

Growth conditions

The growth medium for all laboratory experiments, except where amended (see below) was based on DSM Medium 981 (Kashefi et al. 2002) that contained (per liter) 19.0 g of NaCl, 9.0 g of MgCl$_2$•6H$_2$O, 0.30 g of CaCl$_2$•2H$_2$O, 0.50 g of KCl, 0.42 g of KH$_2$PO$_4$, 0.05 g of NaBr, 0.02 g of SrCl$_2$•6H$_2$O, 0.15 g of MgSO$_4$•7H$_2$O, 0.1 g of (NH$_4$)$_2$SO$_4$, 1.0 g of NaHCO$_3$, 0.16 g of FeCl$_2$ (for iron grown cultures), 10 ml of DSM Medium 141 trace element solution, and 10 ml of DSM Medium 141 vitamin solution. In the absence of iron as a terminal electron acceptor (see below), 50 μl of a 0.5% (w/v) resazurin solution was added as a redox indicator. The medium was pH balanced to 6.80 ± 0.05 (room temperature) and 0.5 mM cysteine-HCl was added prior to inoculation as the reducing agent. Cultures were grown in sealed Balch tubes and serum bottles sealed with butyl rubber stoppers and 80% (v/v) H$_2$ and 20% (v/v) CO$_2$ at 2 atm in the headspace in a forced-air incubator. Strain Ax17T was incubated at 55°C unless otherwise stated.

Nanophase akaganeïte, lepidocrocite, ferrihydrite, goethite, and hematite (each 100 mmol Fe(III) (oxyhydr)oxide per liter) were separately tested as terminal electron acceptors. They were synthesized and kept at 4°C in concentrated aqueous solutions as previously described (Sklute et al. 2018). Other terminal electron acceptors tested were 20 mM Fe(III)-citrate, 7.0 mM sodium sulfate, 7.9 mM sodium sulfite, 6.3 mM sodium thiosulfate, 1% (w/v) elemental sulfur (equivalent to 313 mmol total sulfur per liter or 40 mmol cyclooctasulfur per liter), 9.9 mM potassium sodium sulfite, 6.3 mM sodium thiosulfite, 1% (w/v) elemental sulfur (equivalent to 313 mmol total sulfur per liter or 40 mmol cyclooctasulfur per liter), 9.9 mM potassium nitrate, 40% (v/v) H$_2$ and 10% (v/v) CO$_2$ in air at 2 atm, and 100% air at 2 atm. 80% (v/v) H$_2$ and 20% (v/v) CO$_2$ at 2 atm, 10 mM each of D-glucose, D-maltose, L-alanine, ethanol, glycerol, and sodium salts of formate, acetate, pyruvate, citrate, and succinate; 0.5% (w/v) tryptone (pancreatic digest of casein, Oxoid Ltd.); and 0.02% (w/v) Bacto yeast extract (Becton, Dickinson and Company) were tested separately as carbon and electron donors using 80% (v/v) N$_2$ and 20% (v/v) CO$_2$ at 2 atm in the headspace (except for the H$_2$CO$_2$ condition).

For kinetic experiments, strain Ax17T was grown in triplicate on ferrihydrite at temperatures ranging from 30 to 75°C; at pH 4 (no buffer), pH 5 and 6 (5 mM MES buffer) pH 7 and 8 (20 mM PIPES buffer), and pH 8 and 9 (100 mM EPPS buffer); and 0.11 M to 1.26 M chloride to determine
their effect on growth. A pH above pH 9 was not sustain-
able with incubation, and therefore not tested. Strain Ax17T
was also grown in duplicate on akaganéite, lepidocrocite, ferrihydrite, goethite, hematite, sodium sulfate, elemental
sulfur, and control medium without an added electron accept-
or. Each of these was matched with an uninoculated con-
trol. At various time points, an aliquot from each bottle was
preserved with 2% formaldehyde (v/v) and mixed 1:1 in a
filter-sterilized anoxic oxalate solution (0.23 M ammonium
oxalate-0.17 M oxalic acid, Phillips and Lovley 1987) to
dissolve the iron oxide minerals (when present). The con-
centration of cells in each bottle was determined by epif-
luorescence microscopy (Hobbie et al. 1977). Cells were
filtered onto a 0.2-µm-pore-size membrane filter pre-stained
with Irgalan black (Whatman), stained with 0.1% (w/v) acrid-
dine orange for 2 min, and counted with a Nikon Eclipse
E400 microscope. The specific growth rate of the culture
was determined by a best-fit curve to the logarithmic portion
of the growth data. Total oxalate fixed ferrous iron and Zn
fixed sulfide concentrations were determined spectropho-
tometrically using the ferrozone assay (Phillips and Lovley
1987) and the methylene blue assay (Chen and Mortenson
1977), respectively. Confidence intervals (95%) were cal-
culated for all specific growth rates and an ANCOVA and
Tukey tests (α = 0.05) were run on specific growth rates for
the varying terminal electron acceptors as described previ-
ously (Zar 1996).

Electron microscopy

For negative staining of whole mounted cells, 10 ml of cul-
ture within a sealed Balch tube were fixed by adding 0.2 ml
of 50% (v/v) electron microscopy-grade glutaraldehyde with
gentle mixing and incubating at room temperature for 1 h.
An aliquot (3 ml) of the fixed culture was then removed
from the sealed Balch tube and applied to plasma-treated
carbon films (ca. 0.5 nm thickness) on 400 mesh copper
grids. The grids were stained with 3% (w/v) NH₄OH and 2%
(w/v) aqueous uranyl acetate and viewed with a JEOL-100S
transmission electron microscope.

16S rRNA gene and genome sequence analyses

The genomic DNA of strain Ax17T was extracted and puri-
fied using a Wizard genomic DNA purification kit (Promega,
USA) per the manufacturer’s protocol. The 16S rRNA gene
was amplified using the polymerase chain reaction (PCR)
and sequenced. The bacterial primers used were 27f-CM
(5′-AGAGTTTGATCMTGGCTCAG-3′, Frank et al. 2008)
and 1492r (5′-GGTTACCTTGTTCAGACTT-3′, Wilson et al. 1990) as one PCR pair and 338f (5′-ACTCCTAG
GGAGGCAGC-3′, Whitely and Bailey 2000) and 1391r
(5′-GACGCGCRGTGWRCA-3′, Brunk and Eis 1998)
as another pair (Integrated DNA Technologies). Each PCR
reaction contained 21.5 µl of nuclease-free water (Fisher
BioReagents), 3 µl of 10 x Omni Klentaq mutant reaction buffer (DNA Polymerase Technology), 2.4 µl of 2.5 µM
dNTPs (Promega), 1 µl each of 10 µM forward and reverse
primers, 0.1 µl of Omni Klentaq DNA polymerase (DNA
Polymerase Technology, Inc.), and 1 µl of DNA template.
The PCR consisted of 96 °C for 5 min followed by 30 cycles
of 95° for 30 s, 54 °C for 30 s, and 68 °C for 30 s, then 68 °C
for 5 min followed by 25 °C for 1 min. The PCR products
were cleaned using a DNA Clean & Concentrator Kit (Zymo
Research) and sequenced using Sanger sequencing in the
forward and reverse directions (Genewiz, Inc.). A consen-
sus sequence was derived from the combined sequences.
Phylogenetic trees were constructed using 16S rRNA gene
sequences from NCBI using the Maximum Likelihood
method and Tamura-Nei model (Tamura and Nei 1993).
Evolutionary analyses were conducted in MEGA X (Kumar
et al. 2018). The 16S rRNA gene sequence for Ax17T
was deposited at DDBJ/ENA/GenBank under the accession num-
ber MZ048018.

Following genomic DNA extraction as described above,
library construction for whole genome sequencing was per-
fomed using a NexteraXT DNA library prep kit (Illumi-
na, USA) per the manufacturer’s protocol. Both library
construction and sequencing were performed by Genewiz,
Inc. (South Plainfield, NJ, USA). The DNA was sequenced
using a MiSeq instrument (Illumina, USA) with 2 x 150-
bp chemistry. Default parameters were used for all software
analyses. Trimmomatic version 0.36 (Bolger et al. 2014)
was used to trim the last 8 bp of each sequence and regions
with low-quality Q scores (Q < 30). The resulting paired-
end sequences were then assembled using SPAdes genome
assembler version 3.10 (Nurk et al. 2013). The complete-
ness of the genome sequence was determined using CheckM
(Park et al. 2015). Open reading frames (ORFs) were identi-
fied using EMBOSS tools (Rice et al. 2000) and annotated
using Diamond BLASTp (Buchfink et al. 2015). Hydro-
genases were classified using HydDB (Søndergaard et al.
2016) and Type IV pili proteins were identified using PilFind
version 1.0 (Imam et al. 2011). rRNA genes were identi-
fied using RNAmmer version 1.2 (Lagesen et al. 2007)
and tRNA genes were identified using tRNAscan-SE version
2.0 (Lowe and Chan 2016). This whole genome shotgun
sequencing project was deposited at DDBJ/ENA/GenBank
under the accession number PRJNA688464.

For overall genome relatedness index (OGRI) analyses,
the BLAST-based average nucleotide identity (ANI) and
Alignment Fraction (AF) scores were calculated using the

 Springer
Results and discussion

Phenotypic characteristics

Strain Ax17T is an obligately anaerobic, thermophilic autotroph. Electron microscopy revealed straight to curved rods, 1.5 µm by 0.4 µm, with monopolar flagellation (Fig. 1). It grew on akaganéite, lepidocrocite, ferrihydrite, hematite, goethite, sulfate, sulfite, thiosulfate, and elemental sulfur as terminal electron acceptors (Table 1). At its optimal growth temperature, the specific growth rate of strain Ax17T was highest when grown on akaganéite (0.079 h⁻¹ ± 0.013 h⁻¹, 95% confidence interval) followed by growth on lepidocrocite (0.073 h⁻¹ ± 0.017 h⁻¹) and ferrihydrite (0.072 h⁻¹ ± 0.013 h⁻¹), which were not significantly different (Fig. 2). Specific growth rates were lower when hematite (0.045 h⁻¹ ± 0.010 h⁻¹), goethite (0.033 h⁻¹ ± 0.004 h⁻¹), sulfate (0.053 h⁻¹ ± 0.005 h⁻¹), and elemental sulfur (0.029 h⁻¹ ± 0.003 h⁻¹) were used as terminal electron acceptors (Fig. 2). Strain Ax17T produced up to 20 mM Fe²⁺ when grown on ferrihydrite but <5 mM Fe²⁺ when grown on akaganéite, lepidocrocite, hematite, and goethite. Strain Ax17T did not grow when Fe(III)-citrate, nitrate, or oxygen was supplied as the electron acceptor nor in the absence of an added electron acceptor.

Strain Ax17T only used molecular hydrogen and formate separately as electron donors and did not utilize acetate, glucose, tryptone, pyruvate, citrate, succinate, ethanol, glycerol, or yeast extract as an alternative source of carbon and electrons (Table 1). Growth was observed on molecular hydrogen and ferrihydrite between 35 and 70 ºC with an optimum of 65 ºC (Fig. 3a), between pH 5.0 and 9.0 with an optimum of pH 8.0 (Fig. 3b), and between 0.21 M and 0.84 M Cl⁻ with an optimum of 0.42 M Cl⁻ (Fig. 3c). Its minimum doubling time was 7.1 h.

16S rRNA phylogenetic analysis

The 16S rRNA sequence obtained from the whole genome sequence was nearly identical (1427 of 1429 nucleotides) to the consensus sequence obtained by PCR and was used as the final 16S rRNA sequence for the organism. Based on its 16S rRNA gene sequence, strain Ax17T was most closely related to members of the family Desulfonauticaceae (Waite et al. 2020) in the phylum Pseudomonadota (Oren and Garrity 2021). It showed highest sequence identities to Desulfonauticus autotrophicus TeStT (90.68%), Desulfonauticus submarinus 6NT (90.61%), Desulfonatronovibrio hydrogenovorans Z-7935T (90.95%), and Desulfonatronospira thiodismutans ASO3-1T (86.69%) (Table 1). Each of these sequence identities were below the 98.7% identity demarcation for a novel species (Chun et al. 2018), the 94.5% identity demarcation for a novel genus (Yarza et al. 2014), and the 92.25% identity for family but above the order demarcation (89.20% identity) using the ‘Yarza medians’ (Boden et al. 2017).
Table 1 Differential characteristics of Ax17\(^T\) and members of the families *Desulfonauticaceae* and *Desulfonatronovibrionaceae*

Characteristics\(^a\)	Ax17\(^T\)	*Desulfonauticus submarinus* 6N\(^T\)	*Desulfonauticus autotrophicus* TeSt\(^T\)	*Desulfonatronovibrio hydrogenovorans* Z-7935\(^T\)	*Desulfonatronospira thiodismutans* ASO3-1\(^T\)
Habitat	Hydrothermal vent, Axial Seamount, Pacific Ocean	Hydrothermal vent, 13° N East Pacific Rise, Pacific Ocean	Oil reservoir, Hamburg, Germany	Lake Magadi, Kenya	Kulanda Steppe, Russia
16S rRNA gene identity (%)	100	90.61	90.68	90.95	86.69
OGRI analyses					
ANI (%)	100	67.22	ND	66.66	65.93
AF	100	0.2943	ND	0.2922	0.2480
GGDC (%)	100	21.0	ND	19.6	23.2
SpecI (%)	100	77.4	ND	76.2	74.2
rMLST (%)	100	77.7	ND	75.6	ND
Morphology					
Cell shape	Straight to curved rods	Curved rods	Straight to curved rods	Vibrio	Vibrio to spirillum
Length (μm)	1.5	5–6	1.2–4	1.5–2	2–30
Width (μm)	0.4	0.4–0.5	0.6	0.5	0.6–0.8
Flagellation	Monopolar	Monopolar	Monopolar	Monopolar	Monopolar
Temperature range of growth and (optimum) (°C)	35–70 (65)	30–60 (45)	40–64 (58)	22–40 (37)	up to 43
pH range of growth and (optimum)	5.0–9.0 (8.0)	(7.0)	(7.0)	8–10.2 (9.5–9.7)	8.3–10.5 (10)
NaCl range of growth and (optimum) (%)	1.5–6 (3)	0–5 (2)	1–6 (3)	1–12 (3)	8.7–23.2
Minimum doubling time	7.1 h	ND	80 min	ND	ND
Electron donors					
\(\text{H}_2\)	+	+\(^b\)	+\(^b\)	+\(^bc\)	+
Formate	+	+\(^b\)	+\(^b\)	+\(^bc\)	+
Acetate	–	–	–	–	+
Pyruvate	–	ND	–	–	+
Glucose	–	–	–	–	ND
Electron acceptors					
Fe(III) oxides\(^d\)	+	ND	ND	ND	ND
Fe(III) citrate	–	ND	–	ND	ND
Sulfate	+	+	+	+	+
Sulfite	+	+	+	+	+
Thiosulfate	+	+	+	+	+
Elemental sulfur	+	+	+	–	–
Nitrate	–	–	–	–	ND
Oxygen	–	–	–	–	–

\(^{a}\)Data from Zhilina et al. 1997; Audiffin et al. 2003; Sorokin et al. 2008; Mayilraj et al. 2009

\(^{b}\)Growth on \(\text{H}_2\) + acetate or formate + acetate

\(^{c}\)Yeast extract requirement for growth

\(^{d}\)Ferricydrite, lepidocrocite, akageneite, goethite, and hematite, each tested separately
Whole genome sequencing using a MiSeq instrument generated a total of 18,566,594 raw paired-end reads and 5,570 Mb of sequenced bases. Genome assembly resulted in 60 high-quality contigs, with an \(N_{50} \) value of 77,684 bp and a maximum contig length of 262,489 bp. The assembled Ax17\(^T\) genome was 2,585,834 bp long and 98.2% complete with > 2,000-fold average coverage resulting in 2,407 protein-coding genes and a G + C content of 42.5%. One copy each of the 5S, 16S, and 23S rRNA genes, and 60 tRNA genes were identified.

OGRI analyses also showed that strain Ax17\(^T\) was generally most closely related to \textit{D. submarinus} 6NT (Table 1). The ANI and AF scores for strain comparisons between Ax17\(^T\) and \textit{D. submarinus} ASO3-1\(^T\) were 67.2% and 0.2943, between Ax17\(^T\) and \textit{D. hydrogenovorans} Z-7935\(^T\) were 66.7% and 0.2922, and between Ax17\(^T\) and \textit{D. thiodismutans} ASO3-1\(^T\) were 65.9% and 0.2480, which were all below the ANI 96% cut-off and 0.6 AF values for species determination (Chun et al. 2018) and the ANI 73.1–74.0% cut-off value for genus determination (Barco et al. 2020) by this approach. The GGDC scores for strain comparisons between Ax17\(^T\) and \textit{D. submarinus} 6NT was 66.7%, between Ax17\(^T\) and \textit{D. hydrogenovorans} Z-7935\(^T\) was 19.6% (Table 1), which were all below the 70% cut-off for delineating species by this approach (Chun et al. 2018). The SpecI-type protein analysis for strain Ax17\(^T\) gave values of 77.4% for \textit{D. submarinus} 6NT, 76.2% for \textit{D. hydrogenovorans} Z-7935\(^T\), and 74.2% for \textit{D. thiodismutans} ASO3-1\(^T\) (Table 1), which are all below the 70% cut-off for delineating species by this approach (Mende et al. 2013). Therefore, all three OGRI analyses indicated that strain Ax17\(^T\) represents a novel genus and species. The rMLST phylogenetic tree confirmed that Ax17\(^T\) was most closely related to \textit{D. submarinus} 6NT (Fig. 5).

Like strain Ax17\(^T\), \textit{D. submarinus}, \textit{D. autotrophicus}, and \textit{D. hydrogenovorans} only use molecular hydrogen and formate as electron donors, although the latter organisms must simultaneously use acetate as a carbon source and \textit{D. hydrogenovorans} requires yeast extract for growth (Table 1) (Zhilina et al. 1997; Audiffin et al. 2003; Mayilraj et al. 2009). Only strain Ax17\(^T\) grew only on \(H_2 \) and \(CO_2 \) alone. Strain Ax17\(^T\) is also phenotypically similar to \textit{D. submarinus} and \textit{D. autotrophicus} based on its thermophilic optimal growth temperature and its ability to use sulfate, sulfite, thiosulfate, and elemental sulfur as electron acceptors (Table 1).

The Ax17\(^T\) draft genome contains putative genes that encode for a periplasmic [NiFe] cytochrome \(c \) hydrogenase (Group 1b, EC 1.12.2.1), a periplasmic [FeFe] cytochrome \(c \) hydrogenase (Group A1, EC 1.12.2.1), a cytoplasmic NAD(P)-reducing hydrogenase (Group A, EC 1.12.1.5), a cytoplasmic \(H_2:CoB-CoM \) heterodisulfide and ferredoxin reductase (Group 3c, EC 1.8.98.5), and a cytoplasmic [FeFe] ferredoxin-reducing hydrogenase (Group B, EC 1.12.7.2) using the classification system of Greening et al. (2016). It has putative genes for two periplasmic formate:cytochrome \(c \) dehydrogenases (EC 1.17.2.3) that provide the organism with electrons and contributes to a proton motive force, a membrane-bound menaquinone
reductase (QrcABCD, EC 7.1.1.8) that further contributes to a proton motive force, and a membrane-bound F-type ATP synthase (EC 7.1.2.2) that likely use the proton motive force for oxidative phosphorylation (Fig. 6).

The draft genome also contains putative genes that based on sequence identity at the amino acid level encodes for 9 monoheme c-type cytochromes and 10 c-type cytochromes with two or more hemes, based on the presence of CXXCH.
motifs and a signal peptide sequence (Gomi et al. 2004). The genome contains 12 type IV pilin-like signal peptides and their prepilin peptidase cleavage sites. One of these contains $\geq 9.8\%$ aromatic amino acids with aromatic gaps of 23 amino acids or less, which suggests it is an electrically conductive pilin (Walker et al. 2018; Bray et al. 2020), and another that shared 58% sequence identity with the type IV conductive pili from Geobacter sulfurreducens (ODP) Hole 1026B on the ridge flank of the Juan de Fuca Ridge (Nakagawa et al. 2006). Strain Ax17T was also closely related to environmental 16S rRNA gene clones 1026B15 and 1.7–1.9% of the reads of Marker 113 fluids (Fortunato et al. 2019). Metagenomic analyses of vent fluids collected at these two sites showed that Desulfonauticaceae comprised 0.6–0.9% of the metagenomic reads of Marker 33 fluids and 1.7–1.9% of the reads of Marker 113 fluids (Fortunato et al. 2018). Strain Ax17T showed 100% 16S rRNA gene sequence similarity with environmental isolate Spi55 from Ocean Drilling Program borehole 1026B (Fig. 4). Spi55 was a sulfate-reducing bacterium isolated from black rust removed from the borehole seal on Ocean Drilling Program (ODP) Hole 1026B on the ridge flank of the Juan de Fuca Ridge (Nakagawa et al. 2006). Strain Ax17T was also closely related to environmental 16S rRNA gene clones 1026B15 and 1026B_19 from fluid pumped from within the sealed borehole at ODP Hole 1026B (Cowen et al. 2003; Jungbluth et al. 2014). These clones comprised 31% and 5% of the total clones isolated from this site. A similar clone (Dan60_14E) was found in 2 of 40 clones sequenced from
production water from a high-temperature oil reservoir in the North Sea (Gittel et al. 2009). The results demonstrate the importance of metabolic versatility of thermophilic autotrophs, including Fe(III) (oxyhydr)oxide mineral reduction, that should be considered when studying CO₂ fixation in various hot subseaﬂoor environments. Furthermore, the isolation of strain Ax17T using akaganéite and lepidocrocite provides an example of how alternative Fe(III) (oxyhydr) oxide minerals could aid in future efforts to identify other novel iron-reducing strains.

Description of Desulfovulcanus gen. nov

Desulfovulcanus (De.sul.fo.vul.ca’nu s L. pref. de, from; L. neut. n. sulfur, sulfur; L. masc. n. vulcanus, god of ﬁre; N.L. neut. n. Desulfovulcanus, sulfate reducer from a volcano).

Cells are curved to straight rods. Strictly anaerobic. Chemolithoautotrophic. Able to utilize molecular hydrogen and formate as electron donors and Fe(III) (oxyhydr)oxide minerals, sulfate, sulfite, thiosulfate, and elemental sulfur as electron acceptors. Sodium chloride (NaCl) is absolutely required for growth. Phylogenetically, the genus Desulfovulcanus belongs to the family Desulfoauticaceae. The type species is Desulfovulcanus ferrireducens.

Description of Desulfovulcanus ferrireducens sp. nov

Desulfovulcanus ferrireducens (fer.ri.re.du’cens L. neut. n. ferrum, iron; L. pres. part. reducens bringing back, leading back; N.L. part. adj. ferrireducens, iron-reducing).

Cells are Gram negative, curved to straight rods with monopolar flagellation, and approximately 1.5 μm in length and 0.4 μm in width. Growth occurs between 35 and 70 °C, pH 5.0 and 9.0, and 1.5 and 6.0% NaCl. Strictly anaerobic. Chemolithoautotrophic growth occurs with hydrogen and formate as the electron donor and nanoplate Fe(III) (oxyhydr)oxide (akaganéite, lepidocrocite, ferrihydrite, hematite, goethite), sulfate, sulfite, thiosulfate, and elemental sulfur as the electron acceptor. No growth is observed when acetate, glucose, tryptone, pyruvate, citrate, succinate, ethanol, glyc erol, or yeast extract is used as the electron donor and carbon source. No growth on Fe(III)-citrate, nitrate, or oxygen or purely by fermentation. The genomic DNA G+C content of the type strain is 42.5% based on total genome calculations.

The type strain, Ax17T (= DSM 111878T = ATCC TSD-233T) was isolated from low-temperature hydrothermal vent ﬂuid at Axial Seamount, Juan de Fuca Ridge, in the northeastern Paciﬁc Ocean. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and draft genome sequence of the type strain are MZ048018 and JAGUQP000000000, respectively.

Acknowledgements Special thanks to the pilots and crew of HOV Jason II and R/V Roger Revelle for sample acquisition, Dr. William W. Chadwick, Jr. of Oregon State University for access to the sample site, Dr. David A. Butterﬁeld of the University of Washington for hydrothermal ﬂuid samples, the electron microscopy facility at Mount Holyoke College for providing the electron micrograph, and Dr. Julie A. Huber of the Woods Hole Oceanographic Institution and Dr. Caroline S. Fortunato of Widener University for providing metagenomic data for Marker 33 and Marker 113 vents at Axial Seamount.

Funding This work was financially supported by NASA Exobiology grant 80NSSC18K1296 to JFH, NASA Earth and Space Science Fellowship grant 80NSSC18K1243 to SK and JFH, and by a Zonta International Amelia Earhart Fellowship to SK.

Declarations

Conflict of interest The authors declare that there are no conﬂicts of interest.

Ethical approval The article does not contain any studies related to human participants or animals.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Audïffrin C, Cayol JL, Joulion C, Casalot L, Thomas P, Garcia JL, Ollivier B (2003) *Desulfonauticus submarinus* gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590. https://doi.org/10.1099/ijs.0.02551-0

Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D (2020) A genus definition for *Bacteria* and *Archaea* based on standard genome relatedness index. Mbio 11:e02475-e2519. https://doi.org/10.1128/mBio.02475-19

Boden R, Hutt LP, Rae AW (2017) Reclassification of *Thiobacillus aquaesulis* (Wood & Kelly, 1995) as *Aphanooaqua aquaesulis* gen. nov., comb. nov., transfer of *Thiobacillus* (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of *Hydrogenophilaceae* class. nov. within the ’Proteobacteria’, and four new families within the orders *Nitrosomonadales* and *Rhodocyclales*. Int J Syst Evol Microbiol 67:1191–1205. https://doi.org/10.1099/ijsem.0.02551-0

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2144–2120. https://doi.org/10.1093/bioinformatics/btu170

Braunschweig J, Bosch J, Meckenstock RU (2013) Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to...
