Activity of Benzimidazole Derivatives and their N-Heterocyclic Carbene Silver Complexes Against Leishmania major Promastigotes and Amastigotes

Tariq A. Khan 1, Aziza Mnasri 2, Ibrahim S. Al Nasr 3,4, Ismail Özdemir 5, Nevin Gürbüzd 5, Naceur Hamdi 2,6, Bernhard Biersack 7, Waleed S. Koko 4,* 1

1 Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass, Saudi Arabia
2 Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
3 Department of Biology, College of Science and Arts, Qassim University, Unaizah, Saudi Arabia
4 Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
5 İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya, Turkey
6 Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
7 Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
* Correspondence: wasyko2002@yahoo.com (W.S.K.);

Received: 25.12.2021; Accepted: 31.01.2022; Published: 25.03.2022

Abstract: Little progress was conducted concerning discovering new efficient antileishmanial drugs for many years. Hence, the disease has become a global health problem meanwhile. Benzimidazole derivatives and heavy metal complexes have shown potent antiparasitic activities. The present work is intended to evaluate fourteen synthetic benzimidazolium salts and N-heterocyclic silver carbene complexes against Leishmania major. Promastigotes and amastigotes of L. major were cultured in vitro to evaluate compound-induced inhibitory effects, and isolated mouse macrophages were used for cytotoxicity evaluation. Reactive oxygen species (ROS) formation was detected for all compounds as a possible mode of action. The silver complexes 3d and 3e revealed significant activity against L. major promastigotes with IC\textsubscript{50} values of 6.4 and 5.5 µg mL\textsuperscript{-1}, and SI of 1.77 and 2.02, respectively. Both complexes showed higher ROS production in promastigotes than in macrophages. Further in vivo and enzyme inhibition studies are recommended to evaluate the potential of these compounds as new antileishmanial.

Keywords: Leishmania major; N-heterocyclic carbene; silver complexes; ROS production.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Leishmaniasis is a serious parasitic protozoal insect-borne disease with severe morbidity and mortality and commonly occurs in tropical and subtropical countries [1]. The causative agents are flagellated protozoans from the genus Leishmania comprising more than twenty species [2]. Two clinical forms dominate leishmaniasis diseases. The one form is cutaneous leishmaniasis (CL), the most common form. It has appeared as a serious international health problem based on its devastating skin effects, which affect the daily life of many patients.

Furthermore, a distinct morbidity increase becomes evident because of malnutrition, infections, and chronic stress. CL has globally reached endemic proportions in about 90
countries of five continents, with more than 700,000 reported cases annually [3, 4]. Skin ulcers are major disease lesions, which often lead to marked disfigurement. More than 90% of all CL cases are reported from eight countries: Saudi Arabia, Afghanistan, Pakistan, Syria, Peru, Iran, Algeria, and Sudan [5]. The absence of a vaccine aggravated the situation [6, 7]. Visceral leishmaniasis (VL) is the second form of leishmaniasis dominant in rural areas of India, Bangladesh, Brazil, Sudan, and Nepal [8].

*L. major* and *L. tropica* are the species that are responsible for the most CL cases worldwide. The majority of cases based on the infection with *L. major* in the arid regions of Saudi Arabia and other Arabian countries can be attributed to the presence of the sand fly *Phlebotomus papatasii* in these regions [9-11]. The estimated annual incidence in Saudi Arabia is higher than 4,000, and the zoontic form of CL has emerged due to the spread of leishmaniasis during the 20th century [10, 11]. Because of the wide distribution of desert rodents (reservoir animals) and sand flies (vector of leishmaniasis), CL is endemic in many provinces of Saudi Arabia [12-14]. A recent evaluation of the prevalence of leishmaniasis in the Qassim province in Central Saudi Arabia showed that 50% of the cases were based on infection with *L. major*, 29% with *L. tropica*, and only 4% with the minor species *L. infantum/donovani* [2].

Since the 1960s, pentavalent antimonials have been the basic treatment regime for all forms of leishmaniasis. Meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are commonly applied drugs. These drugs are injected intravenously or via the intramuscular route. Still, many severe side effects were observed, such as accumulation of antimony in the pancreas, serum aminotransferase elevations, and electrocardiographic disorders [15]. However, the treatment with antimonials is not sufficient anymore because of the emergence of antimony resistance [16, 17]. Amphotericin B (AmB), its desoxycholate (Fungizone®), and its liposomal formulation (AmBisome®) can be applied as second-line therapy for VL patients [18]. Amphotericin B application is recommended for patients who do not respond to antimonial therapy anymore. Still, there are considerable side effects such as pain in the bones, fever, and renal toxicity. Moreover, the high cost of amphotericin B therapy limited its uses. Therefore, there is an urgent demand to discover and introduce new drugs for the safe and efficient treatment of leishmaniasis.

Metal-based drugs are very efficient in treating many human clinical disorders, including cancer and infectious diseases [19]. Among the transition metal NHC (N-heterocyclic carbene) complexes, NHC-silver complexes have been widely studied for various medicinal applications due to their simple synthesis, high air and moisture stability, and biological properties. Their properties comprise antibacterial, anticancer, anti-inflammatory, and antiseptic activities [20]. NHC-silver complexes with significant antimicrobial and anticancer properties were disclosed, which were more effective than compounds of other transition metals while showing only low toxicity for humans. Silver-NHCs were also able to overcome drug resistance and tackle antibiotic-resistant bacteria, fungi, and parasites [21, 22]. Sporadic studies of the cellular toxicity mechanisms of silver(I) compounds suggest that Ag+ ions kill organisms by various mechanisms [23-25].

In the present work, 14 benzimidazolium salts and their NHC-silver complexes were investigated for their *in vitro* antileishmanial activities against *L. major* amastigotes and promastigotes. They were also evaluated for their toxicity against mice macrophages *in vitro* as well as for their ability to induce reactive oxygen species (ROS) production in *L. major* promastigotes.
2. Materials and Methods

2.1. Preparation of chemical compounds.

The synthesis of the test compounds 2a–g and 3a–g was published before, and the enumeration of these compounds was taken from this reference (Scheme 1) [26].

![Chemical structures of compounds 2a–g and 3a–g](https://biointerfaceresearch.com/)

Scheme 1. Synthesis of benzimidazoles salts 2a–g and Ag(I)-NHC complexes 3a–g.

2.2. *L. major* parasite maintenance and bioassays.

*L. major* samples were collected from a male patient (February 2016) and cryopreserved in liquid nitrogen. The study was conducted according to the National
Committee of Bioethics guidelines and approved by the Committee of Research Ethics, Deanship of Scientific Research, Qassim University, Saudi Arabia (20-03-02/30, September 2020). The method described by Osorio et al. [27] was used to maintain the parasite virulence by injection of 1 x 10^6 promastigotes of the stationary-phase to the hind footpads of BALB/c mice (passing maintenance). Eight weeks after inoculation, L. major amastigotes were collected. For the transformation of amastigotes to promastigotes, Schneider's medium supplemented with fetal bovine serum (FBS) 10% and antibiotics were used to incubate the parasites in culture flasks at 26°C. Amastigote-derived promastigotes of less than three passages were used for infection [28].

2.3. Activity of compounds against L. major promastigotes.

Logarithmic-phase promastigotes were cultured in a complete RPMI 1640 medium (Invitrogen, USA) supplied with FBS of a concentration of 10%. Parasites after dispatching were placed at concentrations of 10^6 cells mL\(^{-1}\) into 96-wells plates (the final volume was completed to 200 µL/well). The test compounds were tested at different concentrations (25, 8.3, 2.9, and 0.93 µg mL\(^{-1}\)). Amphotericin B (reference compound) at concentrations of 25, 8.3, 2.9, and 0.93 µg mL\(^{-1}\) was used as a positive control. Plates were incubated for 3 days at 26°C for the evaluation of the antiproliferative effects. Spectrophotometric techniques by applying the MTT (tetrazolium salt of (3-(4,5-dimethylthiazole–2–yl)–2,5–diphenyl tetrazolium bromide) assay were used for assessing the number of viable promastigotes. Result data was generated with an ELISA reader (spectrophotometer) at 570 nm. Three data sets were obtained from three independent experiments. The results were expressed as IC\(_{50}\) values (inhibitory concentration killing 50% of the parasites) [28].

2.4. Activity of compounds against L. major intramacrophage amastigotes.

Drug evaluation against L. major intramacrophage amastigotes was carried out according to the method described previously by Calvo-Álvarez et al. [29]. Briefly, peritoneal macrophages were obtained as previously mentioned by Dos Santos et al. [30]. Then, 96-wells ELISA plates were used for harvesting 5 x 10^4 cells/well with phenol red-free RPMI 1640 medium supplied by 10% FBS, and kept for 4 h at 37°C and 4% CO\(_2\). Thereupon, a pipette was used for media discarding and washing with PBS 150 µL. Then, L. major promastigotes were added to each well (at a ratio of 1 macrophage in phenol red-free RPMI 1640 medium with 10% FBS per 10 promastigotes). The plates were incubated for 24 h at 37°C in humidified 5% CO\(_2\) atmosphere to increase the rate of amastigote infection and differentiation, followed by washing with PBS three times in order to remove free promastigotes. The cells were overlaid with free phenol red RPMI 1640 medium with or without test compound, which was added at concentrations of 25, 8.3, 2.9, and 0.93 µg mL\(^{-1}\), and the cells were incubated at 37°C in humidified 5% CO\(_2\) atmosphere for 72 h. Amphotericin B was used as a positive control at concentrations of 25, 8.3, 2.9, and 0.93 µg mL\(^{-1}\). In order to evaluate the infected macrophage percentage, microscopy was used after removing the medium and washing, fixation, and staining of the cells with Giemsa dye. The assay was performed three times. The results were expressed as IC\(_{50}\) values [31].
2.5. Toxicological evaluation of compounds by MTT assay.

Macrophages were collected peritoneally from mice, as previously reported by Dos Santos et al. [30]. Complete phenol red-free RPMI 1640 medium supplied with 10% FBS was used for the cultures incubated at 37°C in 5% humidified CO₂. The test compounds were added at different concentrations (25, 8.3, 2.9, and 0.93 µg mL⁻¹) to 96-well plates containing viable macrophages at a concentration of 5×10³ cells/well. After 72 h incubation, the cultures were washed with PBS, then 100 µL MTT was added to each well at a concentration of 1 mg mL⁻¹. The cells were incubated for 4 h whereupon the supernatant was removed, and 150 µL DMSO was added to each well. A spectrophotometer was used for the colorimetric evaluation of the cells at 540 nm. DMSO (1%) without compounds was applied as a negative control. The results were visualized as the concentration of the test compound that caused 50% cell growth inhibition (CC₅₀) [31].

2.6. ROS formation assay.

Reactive oxygen species (ROS) were evaluated spectrophotometrically using the nitroblue tetrazolium (NBT) dye. The slightly modified method previously described by Pramanik et al. was used for the test with the intracellular amastigotes [32]. After incubation of infected and non-infected macrophages with test compounds (concentrations of 8.3 and 2.9 µg mL⁻¹) for 2 days in 96-well plates, the cells were washed with PBS. Then 100 µL of NBT (0.5 µg mL⁻¹) was added to each well and incubated for 20 min in a CO₂ incubator. Thereupon, 2M KOH (120 µL) was added to each well, followed by incubation for 5 min. Then, DMSO (140 µL) was added to each well, and the plates were put in a shaker for 10 min. Finally, the optical density was read at 620 nm using a spectrophotometer. Lipopolysaccharide (LPS) of a concentration of 1 µg/mL was used as a positive control. For the evaluation of ROS in L. major promastigotes, the procedure of Tunc et al. was applied with slight modifications [33]. Promastigotes were cultured in a complete RPMI 1640 medium (Invitrogen, USA) supplied with 10% FBS. Dispatched parasites were used at a concentration of 10⁶ cells mL⁻¹ in 96-wells plates. Test compounds were added at concentrations of 8.3 and 2.9 µg mL⁻¹, while NBT was added at a concentration of 0.5 µg mL⁻¹, followed by incubation at 26 °C for 24 h. 2M KOH (120 µL) was added to each well followed by incubation for 5 min. Then, DMSO (140 µL) was added to each well. After that, the plates were put in a shaker for 10 min. Finally, the optical density was read at 620 nm by a spectrophotometer. Lipopolysaccharide (LPS, 1 µg/mL) was used as a positive control.

2.7. Statistical analysis.

The average from three experiments was mentioned as mean ± SD (standard deviation). Mean differences were calculated with ANOVA, and significant difference levels between the groups were analyzed by LSD. Significant different level values were considered at p ≤ 0.05 and p ≤ 0.001. SPSS 21.0 computer software was used to perform the above methods. IC₅₀ and CC₅₀ values were calculated by Boltzmann’s dose-response analysis employing Sigmoidal Curve Fit, using Origin 8.1 computer software. SI (selectivity index) was calculated by dividing CC₅₀ over IC₅₀.
3. Results and Discussion

3.1. Antileishmanial activity.

Compounds 2a–g and 3a–g were initially tested for their activity against *L. major* promastigotes. Four compounds (2d, 2e, 3d, and 3e) revealed activity at doses of 25 µg mL\(^{-1}\) with EC\(_{50}\) values of 25 (2d), 22 (2e), 6.4 (3d) and 5.5 µg mL\(^{-1}\) (3e), respectively (Figure 1, Table 1). The other compounds were inactive against *L. major* promastigotes. The methyl groups of the benzimidazolium scaffold and the diisopropylamine side chain of compounds 2d and 2e seem to exert improved activities against promastigotes compared with the benzimidazolium systems of the other derivatives of the compound 2 series. In addition, a significant increase of the intrinsic activity of 2d and 2e against promastigotes was achieved by conversion of these benzimidazolium compounds into the corresponding chloride-Ag(I)-NHC complexes 3d and 3e.

Unlike the results from the experiments with *L. major* promastigotes, all test compounds 2a–g and 3a–g showed moderate activities against *L. major* amastigotes with EC\(_{50}\) values in the range of 13.7 to 17.8 µg mL\(^{-1}\) (Figure 2, Table 1). There was no significant activity difference between the benzimidazolium compounds 2 and the silver complexes 3. Indeed, the benzimidazolium derivative 2a was the most active compound against the *L. major* amastigotes. Except for the silver complexes 3d and 3e, all test compounds were more active against amastigotes than against promastigotes. This is an interesting discovery since effects on amastigotes are considered to be more relevant for antileishmanial drug design than effects on promastigotes [3].

Table 1. In vitro activity of compounds 2a–g and 3a–g against *L. major* promastigotes and amastigotes, against macrophages, and the resulting SI values.

| Compound | EC\(_{50}\) against *L. major* promastigotes | EC\(_{50}\) against *L. major* amastigotes | CC\(_{50}\) against macrophages | SI for promastigotes | SI for amastigotes |
|----------|------------------------------------------|------------------------------------------|-------------------------------|------------------|------------------|
| 2a       | >25                                      | 13.7 ± 3.4                               | 12.4 ± 2.1                    | -                | 0.91             |
| 2b       | >25                                      | 14.9 ± 3.1                               | 14.2 ± 2.4                    | -                | 0.95             |
| 2c       | >25                                      | 16.1 ± 2.9                               | 13.3 ± 2.5                    | -                | 0.83             |
| 2d       | 25 ± 4.2*                                | 14.4 ± 2.7                               | 11.1 ± 1.9                    | 0.44             | 0.77             |
| 2e       | 22 ± 3.9*                                | 17.8 ± 3.5                               | 14.1 ± 2.6                    | 0.64             | 0.79             |
| 2f       | >25                                      | 16.4 ± 2.8                               | 14.3 ± 2.4                    | -                | 0.87             |
| 2g       | >25                                      | 16.2 ± 3.3                               | 10.0 ± 1.8                    | -                | 0.62             |
| 3a       | >25                                      | 15.3 ± 3.4                               | 7.5 ± 1.8                     | -                | 0.49             |
| 3b       | >25                                      | 16.8 ± 3.0                               | 14.9 ± 2.3                    | -                | 0.89             |
| 3c       | >25                                      | 17.4 ± 3.3                               | 12.3 ± 2.0                    | -                | 0.71             |
| 3d       | 6.4 ± 1.1**                              | 16.8 ± 3.6                               | 11.3 ± 2.2                    | 1.77             | 0.67             |
| 3e       | 5.5 ± 0.9**                              | 14.7 ± 2.8                               | 11.1 ± 1.8                    | 2.02             | 0.76             |
| 3f       | >25                                      | 17.2 ± 3.4                               | 10.9 ± 1.9                    | -                | 0.63             |
| 3g       | >25                                      | 14.2 ± 2.9                               | 12.3 ± 2.2                    | -                | 0.87             |
| AmB      | 1.6 ± 0.3                                | 0.93 ± 0.2                               | 16.5 ± 2.8                    | 10.3             | 17.7             |

* P < 0.05, ** P < 0.01, amphotericin B (AmB) was used as positive control.

3.2. Cytotoxic activity against macrophages.

Next, all test compounds were investigated for their antiproliferative activity against macrophages to determine whether there is a reasonable selectivity of the test compounds for the parasite cells. All compounds possess a dose-dependent cytotoxic activity against the isolated macrophages (Table 1).
Figure 1. Activity of selected compounds against *L. major* promastigotes by using four different concentrations.

Figure 2. Activity of selected compounds against *L. major* amastigotes by using four different concentrations.

Figure 3. The activity of selected compounds against isolated macrophages by using four different concentrations.
The CC50 values of all test compounds are in the range of 7.5 to 14.9 µg mL⁻¹, which are in the activity range of the reference drug AmB (Figure 3, Table 1). Silver complex 3a was the most toxic compound (CC50 = 7.5 µg mL⁻¹), while its close silver analog 3b was the least toxic one (CC50 = 14.9 µg mL⁻¹). Both compounds differ only by one methyl substituent at the N-benzyl moiety. Thus, already slight modifications of this moiety have the potential to modulate the toxicity to macrophages distinctly. The SI values of all test compounds for the amastigotes were less than 1, indicating no selectivity here. In the case of the promastigotes, silver complexes 3d and 3e displayed a slight selectivity with SI values of 1.8 and 2.0, respectively (Table 1).

3.3. ROS production.

Leishmania parasites causing cutaneous leishmaniasis can be especially sensitive for ROS, and, thus, the design of new compounds, which induce ROS formation in parasite cells and infected macrophages, is a promising strategy to obtain new antileishmanial drug candidates [35]. Hence, compounds 2a–g and 3a–g were evaluated for their ability to induce ROS formation in L. major promastigotes and macrophages. All test compounds showed dose-dependent ROS formation. The compounds 2d, 3d, and 3e exhibited significantly increased ROS production (p < 0.01) in promastigotes at a concentration of 8.3 µg mL⁻¹, which is in line with their inhibitory effects on promastigotes shown in Table 1 (Figure 4a). ROS formation by 3d and 3e reached or exceeded the ROS induction by the positive control LPS. Hence, 3d and 3e can be considered as potent ROS inducers in L. major promastigotes. In infected macrophages, only the silver complexes 3d and 3e showed significant ROS increase at a concentration of 8.3 µg mL⁻¹ (Figure 4b). Similar results were observed for non-infected macrophages (Figure 4c). Thus, there is no difference between infected and non-infected macrophages in terms of compound-induced ROS formation. However, ROS formation by 3d and 3e in macrophages was lower than in promastigotes and lower than ROS formation by LPS in macrophages. The differing ROS-inducing activities of 3d and 3e depending on the cell line can explain the higher inhibitory activities of both complexes against promastigotes when compared to their activities against macrophages (Table 1). A number of antileishmanial drugs showed ROS-inducing properties in promastigotes correlated with parasite cell death, and the 8-aminoquinoline derivative sitamaquine caused oxidative stress in L. donovani promastigotes by targeting succinate dehydrogenase [36]. In terms of silver compounds, silver nanoparticles induced ROS formation in L. tropica promastigotes and amastigotes, which was increased distinctly upon irradiation with UV light [37].

![Figure 4a. ROS production in L. major promastigotes treated with 2a–g and 3a–g.](https://biointerfaceresearch.com/)
Figure 4b. ROS production in \textit{L. major}-infected macrophages treated with 2a–g and 3a–g.

Figure 4c. ROS production in non-infected macrophages treated with 2a–g and 3a–g.

4. Conclusions

The antileishmanial activities of the compounds presented in this study deserve further research efforts based on two reasons. On the one hand, the high activity of the silver carbene complexes 3d and 3e against promastigotes depends strictly on the silver atom and the benzimidazolylidene ligands. The distinct increase of ROS levels in promastigotes treated with 3d and 3e provides evidence for an efficient parasite-eliminating mechanism of these complexes. Further \textit{in vivo} studies with compounds 3d and 3e as prophylaxis for \textit{L. major} infection seem to be promising and studies concerning structure-activity relations and inhibition of parasite enzymes.

On the other hand, the general activities of the test compounds 2a–g and 3a–g against \textit{L. major} amastigotes, which are independent of the presence of silver and from benzimidazolium modifications, suggest a different mode of action in these intramacophage cells. Except for 3d and 3e, all compounds of the tested series showed higher activity against amastigotes than against promastigotes. Hence, based on the lead structures of the described compounds, the design of further new drug candidates with improved and selective activity against intracellular amastigotes appears to be possible in the future.
Funding

This research is funded by the Deanship of Scientific Research, Qassim University, Saudi Arabia.

Acknowledgments

The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, for the financial support for this research under the number (10124-cosao-2020-1-3-I) during the academic year 1441 AH / 2020 AD.

Conflicts of Interest

We declare no conflict of interest.

References

1. Oliveira, S.; Ferreira, C.; Branquinha, M.; Santos, A.L.S.; Chaud, M.V.; Jain, S.; Cardoso, J.C.; Kovacevic, A.B.; Souto, E.B.; Severino, P. Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J Chem Technol Biotechnol 2021, 96, 2123-2140, https://doi.org/10.1002/jctb.6633.
2. Rasheed, Z.; Ahmed, A.A.; Salem, T.; Al-Dhubaibi, M.S.; Al Robae, A.A.; Alzolibani, A.A. Prevalence of Leishmania species among patients with cutaneous leishmaniasis in Qassim province of Saudi Arabia. BMC Public Health 2019, 19, 384, https://doi.org/10.1186/s12889-019-6710-8.
3. Koko, W.; Al Nasr, I.; Khan, T.; Schobert, R.; Biersack, B. An update on natural antileishmanial treatment options from plants, fungi and algae. Chem. Biodiversity 2021, 18, e202100542, https://doi.org/10.1002/cbdv.202100542.
4. Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from Al Qassim, Saudi Arabia. Acta Parasitolog 2020, 65, 696-703, https://doi.org/10.2478/s11686-020-00205-2.
5. Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials 2019, 9, 1749, https://doi.org/10.3390/nano9121749.
6. Goswami, R.P.; Rahman, M.; Das, S.; Tripathi, S.K.; Goswami, R. Combination therapy against Indian visceral leishmaniasis with liposomal amphothericin B (FungisomeTM) and short-course miltefosine in comparison to miltefosine monotherapy. Am. J. Trop Med Hygiene 2020, 103, 308-314, https://doi.org/10.4269/ajtmh.19-0931.
7. Carrión, J.; Folgueira, C.; Alonso, C. Immunization strategies against visceral leishmaniosis with the nucleosomal histones of Leishmania infantum encoded in DNA vaccine or pulsed in dendritic cells. Vaccine 2008, 26, 2537-2544, https://doi.org/10.1016/j.vaccine.2008.03.003.
8. Singh, O.P.; Tiwary, P.; Kushwaha, A.K.; Singh, S.K.; Singh, D.K.; Lawyer, P.; Rowton, E.; Chaubey, R.; Singh, A.K.; Rai, T.K.; Fay, M.P.; Chakravarty, J.; Sacks, D.; Sundar, S. Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: a transmission-dynamics study. Lancet Microbe 2021, 2, e23-e31, https://doi.org/10.1016/S2666-5247(20)30166-X.
9. González, E.; Molina, R.; Iriso, A.; Ruiz, S.; Aldea, I.; Tello, A.; Fernández, D.; Jiménez, M. Opportunistic feeding behaviour and Leishmania infantum detection in Phlebotomus perniciosus females collected in the human leishmaniasis focus of Madrid, Spain (2012-2018). PLoS Negl Trop Dis 2021, 15, e0009240, https://doi.org/10.1371/journal.pntd.0009240.
10. Khan, M.; Faisal, K.; Chowdhury, R.; Nath, R.; Ghosh, P.; Ghosh, D.; Hossain, F.; El Wahed, A.A.; Mondal, D. Evaluation of molecular assays to detect Leishmania donovani in Phlebotomus argentipes fed on post-kala-azar dermal leishmaniasis patients. Parasites Vectors 2021, 14, 465, https://doi.org/10.1186/s13071-021-04961-6.
11. Ghatee, M.; Taylor, W.; Karamian, M. The geographical distribution of cutaneous leishmaniasis causative agents in Iran and its neighboring countries, a review. Front. Public Health 2020, 8, 11, https://doi.org/10.3389/fpubh.2020.00011.
12. Alanazi, A.; Alouffı, A.; Alyousif, M. et al. Molecular characterization of Leishmania species from stray dogs and human patients in Saudi Arabia. Parasitology Research 2021, 120, 4241–4246, https://doi.org/10.1007/s00436-021-07166-z.

13. Khan, T.A.; Al Nasr, I.S.; Mujawah, A.H.; Koko, W.S. Assessment of Euphorbia retusa and Pulicaria undulata activity against Leishmania major and Toxoplasma gondii. Tropical Biomedicine 2021, 38, 135-141, https://doi.org/10.47665/tb.38.1.023.

14. Abuazid, A.; Aldahan, M.; Al Helal, M.; Asiri, A. Visceral leishmaniasis in Saudi Arabia: From hundreds of cases to zero. Acta Tropica 2020, 18, 105707, https://doi.org/10.1016/j.actatropica.2020.105707.

15. An, I.; Harman, M.; Esen, M.; Çelik, H. The effect of pentavalent antimoniol compounds used in the treatment of cutaneous leishmaniasis on hemogram and biochemical parameters. Cutan Ocular Toxicol 2019, 38, 294-297, https://doi.org/10.1080/15569527.2019.1610887.

16. Croft, S.; Coombs, G. Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003, 19, 502-508, https://doi.org/10.1016/j.pt.2003.09.008.

17. Toeppe, A.; Larson, M.; Grinnage-Pulley, T.; Bennett, C.; Anderson, M.; Parrish, M.; Fowler, H.; Wilson, G.; Gibson-Corey, K.; Gharpure, R.; Cotter, C.; Petersen, C. Safety analysis of Leishmania vaccine used in a randomized canine vaccine/immunotherapy trial. Am J Trop. Med Hygiene 2018, 98, 1332-1338, https://doi.org/10.4269/ajtmh.17-0888.

18. Lanza, J.; Pomel, S.; Loiseau, P.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniasis. Exp. Opinion Drug Delivery 2019, 16, 1063-1079, https://doi.org/10.1080/17425247.2019.1659243.

19. Allardyce, C.S.; Dyson, P.J. Metal-based drugs that break the rules. Dalton Trans 2016, 45, 3201-3209, https://doi.org/10.1039/C5DT03919C.

20. Medici, S.; Peana, M.; Crisponi, G.; Nurchi, A.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: a new horizon in medicine. Coord Chem Rev 2016, 349, 327-328, https://doi.org/10.1016/j.ccr.2016.05.015.

21. Liu, W.; Gust, R. Metal N-heterocyclic carbene complexes as potential antitumor metallo drugs. Chem Soc Rev 2013, 42, 755-773, https://doi.org/10.1039/C2CS35314H.

22. Lansdown, A. Silver I: its antibacterial properties and mechanism of action. J Wound Care 2014, 11, 125-130, https://doi.org/10.12968/jowc.2002.11.4.26389.

23. Melaieye, A.; Simons, R.; Milsted, A.; Pingitore, F.; Wesdemiotis, C.; Tessier, C.A.; Youngs, W.J. Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J Med Chem 2004, 47, 973-977, https://doi.org/10.1021/jm030262m.

24. Hindi, K.; Panzner, M.; Tessier, C.; Cannon, C.; Youngs, W. The medicinal applications of imidazolium carbene-metal complexes. Chem Rev 2009, 109, 3859-3884, https://doi.org/10.1021/cr800500u.

25. Aziza, M.; Abdullah, S.; Özdemir, I.; Gürbüz, N.; Hamdi, N. A new PEPPSI type N-heterocyclic carbene palladium(II) complexes and its efficiency as a catalyst for Mizoroki-Heck coupling reactions in water: Synthesis, Characterization and their antimicrobial and Cytotoxic activities. J Mol Structure 2021, 1234, 130204, https://doi.org/10.1016/j.molstruc.2021.130204.

26. Hamdi, N.; Mnasri, A.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Özdemir, I.; Gürbüz, N. Highly efficient single A1-coupling (aldehyde-amine-alkyne) reaction catalyzed by air stable silver-(N-heterocyclic carbene) complexes: synthesis and characterization. Polycycl Aromat Compd 2022, https://doi.org/10.1080/10406638.2021.2019064.

27. Osorio, Y.; Travi, B.; Renso, A.; Peniche, A.; Melby, P. Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system. PLoS Negl Trop Dis 2011, 5, 962, https://doi.org/10.1371/journal.pntd.0000962.

28. Al Nasr, I.; Hanachi, R.; Said, R.; Rahali, S.; Tangour, B.; Abdelwahab, S.I.; Farasani, A.; Taha, M.M.E.; Bidwai, A.; Koko, W.S.; Khan, T.A.; Schobert, R.; Biersack, B. p-Trifluoromethyl- and p-pentafluorothio-substituted curcuminid of the 2,6-di[(E)-benzylidene]cycloalkanone type: Syntheses and activities against Leishmania major and Toxoplasma gondii parasites. Bioorg Chem 2021, 114, 105099, https://doi.org/10.1016/j.bioorg.2021.105099.

29. Calvo-Álvarez, E.; Guerrero, N.; Álvarez-Velilla, R.; Prada, C.F.; Requena, J.M.; Punzon, C.; Llamos, M.A.; Arevalo, F.J.; Rivas, L.; Fresno, M.; Perez-Pertejo, Y.; Balana-Fouca1, R.; Segura, R.M. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 2012, 6, 1927, https://doi.org/10.1371/journal.pntd.0001927.
30. Dos Santos, A.; Veiga-Santos, P.; Ueda-Nakamura, T.; Filho, B.P.D.; Sudatti, D.B.; Bianco, É.M.; Pereira, R.C.; Nakamura, C.V. Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 2010, 8, 2733-2743, https://doi.org/10.3390/md8112733.
31. Jentzsch, J.; Koko, W.; Al Nasr, I.; Khan, T.; Schobert, R.; Ersfeld, K.; Biersack, B. New anti-parasitic bis-naphthoquinone derivatives. Chem. Biodiversity 2020, 17, 1900597, https://doi.org/10.1002/cbdv.201900597.
32. Pramanik, A.; Paik, D.; Naskar, K.; Chakraborti. T. Coccinia grandis (L.) Voigt leaf extract exhibits antileishmanial effect through pro-inflammatory response: an in vitro study. Curr Microbiol 2017, 74, 59-67, https://doi.org/10.1007/s00284-016-1151-4.
33. Tunc, O.; Thompson, J.; Tremellen, K. Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl 2010, 33, 13-21, https://doi.org/10.1111/j.1365-2605.2008.00941.x.
34. Rochael, N.; Guimarães-Costa, A.; Nascimento, M.T.C.; DeSouza-Vieira, T.S.; Oliveira, M.P.; Garcia e Souza, L.F.; Oliveira, M.F.; Saraiva, E.M. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Sci Rep 2016, 5, 18302, https://doi.org/10.1038/srep18302.
35. Horta, M.F.; Mendes, B.P.; Roma, E.H.; Noronha, F.S.M.; Macedo, J.P.; Oliveira, L.S.; Duarte, M.M.; Vieira, L.Q. Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J. Parasitol Res 2012, 2012, 203818, https://doi.org/10.1155/2012/203818.
36. Carvalho, L.; Luque-Ortega, J.R.; López-Martín, C.; Castany, S.; Rivas, L.; Gamarro, F. The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob Agents Chemother 2011, 55, 4204-4210, https://doi.org/10.1128/AAC.00520-11.
37. Allahverdiyev, A.M.; Abanor, E.S.; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomed 2011, 6, 2705-2714, https://doi.org/10.2147/IJN.S23883.