Current status of alert alien species management for the establishment of proactive management systems in Korea

Seung Hun Son, A-Ram Jo and Dong Eon Kim *

Abstract
Background: Some of the introduced alien species introduced settle, multiply, and spread to become invasive alien species (IAS) that threaten biodiversity. To prevent this, Korea and other countries legally designate and manage alien species that pose a risk to the environment. Moreover, 2160 alien species have been introduced in South Korea, of which 1826 animals and 334 plants are designated. The inflow of IAS can have negative effects such as ecosystem disturbance, habitat destruction, economic damage, and health damage to humans. To prevent damage caused by the inflow of IAS in advance, species that could potentially pose a risk to the environment if introduced in South Korea were designated as alert alien species (AAS).

Results: The designation criteria were in accordance with the "Act on the Conservation and Use of Biological Diversity" and the "Regulations on the Ecological Risk Assessment of AAS and IAS" by the National Institute of Ecology. The analysis result of risk and damage cases indicated that mammals affect predation, competition, human economic activity, virus infection, and parasite infection. Birds have been demonstrated to affect predation, competition, human economic activity, and health. It was indicated that plants intrude on the ecosystem by competing with native species with their high-population density and capacity to multiply and cause allergic inducement. Interestingly, 300 species, including 25 mammals, 7 birds, 84 fishes, 28 amphibians, 22 reptiles, 1 insect, 32 spiders, 1 mollusk, 1 arthropod, and 99 plants, are included in the list of AAS.

Conclusions: AAS designation plays a role in preventing the reduction of biodiversity by IAS in South Korea and preserving native species. Moreover, it is determined to provide considerable economic benefits by preventing socio-economic losses and ecological damage.

Keywords: Alert alien species, Biodiversity, Conservation, Invasive alien species, Risk assessment

Introduction
Alien species are introduced either intentionally or unintentionally around the world by human activities. Human activities have escalated due to the vitalization of overseas travel based on the increase in trade and transportation development between countries, etc., and this led to the increased spread of alien species (SCBD, 2014). The inflow of alien species in natural and semi-natural ecosystems has a negative effect on the economy and social facilities (Bomford, 2008). Such influence will gradually accelerate, and the inflow of alien species will increase up to 20 times in 30 years, thus increasing the damage (Sardain et al., 2019). Furthermore, environmental problems caused by the indiscriminate use of resources by humans affect habitat fragmentation and climate change. These environmental problems disturb the ecosystem and affect the settlement and multiplication of alien species when they enter the native ecosystem (Sharp et al., 2011). The inflow of invasive alien species (IAS) makes the ecosystem more vulnerable and
unhealthy, leading to a reduction of biodiversity (IUCN, 2000).

Although the damage caused by IAS among the developed and developing countries differs, all the countries signed the Convention on Biological Diversity to enhance the understanding of biodiversity due to the importance of public awareness in the matter. Moreover, Aichi Biodiversity Targets were selected for global biodiversity conservation from 2011 to 2020 (Junior et al., 2018). The management of alien species is one of the 20 detailed targets. It was reported that inflow pathways should be identified, and alien species that flow in shall be managed and controlled to prevent the inflow and settlement of alien species (SCBD, 2014). For this purpose, the International Union for Conservation of Nature (IUCN), an international organization, has published a list of representative IAS. However, it is difficult to manage the inflow of all alien species around the world through an international cooperation organization. Therefore, a list of alien species has been designated and managed on the national level by assessing the impact of alien species on the ecosystem or selecting the species that threaten the ecosystem (Koh et al., 2002; Cal-IPC., 2006; Gederaas et al., 2012).

In 2005, Japan began to designate IAS with the introduction of the “Invasive Alien Species Act (IAS Act).” In 2019, 145 species were designated as IAS, whereas others were designated and managed as Uncategorized Alien Species (UAS) or Living Organisms Required to have a Certificate Attached (LORCA) by their types (Kil et al., 2015). China manages 734 species through the “Chinese Biodiversity Conservation Action Plan” (Xu et al., 2012). The UK enacted the “Wildlife and Countryside Act” in 1981 to prevent the inflow of IAS. The “Great Britain Invasive Non-Native Species Strategy (GBNNSS)” was established in 2013 based on the “Strategy for Controlling Invasive Species” developed by Great Britain Non-Native Species Secretariat in 2008. Based on this, 142 species are legally prohibited from entering the UK (GBNNSS, 2016). The damage inflicted upon indigenous species by alien species is more critical in New Zealand compared with the continent as it comprises many islands. Therefore, New Zealand has been blocking the inflow of alien species as a precautionary measure (Department of Conservation, 1996; Brenton-Rule et al., 2016). Furthermore, the Biosecurity Act enacted in 1993 defines unwanted organisms to prevent the inflow of 969 species that are not on the Clean List (Ministry for primary industries n.d., 2016). The USA manages alien species with Clean List and Dirty List. In particular, the Dirty List prevents the inflow of alien species under the Lacey Act and the Federal Noxious Weed Act (Congress U. S., 1993) and promotes integrated management of 2873 species designated by each state (US department of agriculture, 2010). The IUCN has announced 100 of the world’s worst IAS as targets for global management. Europe designated 503 species, NOBANIS designated 496 species, and Australia designated 563 species as IAS to prevent and manage the inflow by law (Table 1). Furthermore, 1109 alien species introduced in South Korea in 2011 doubled to 2160 in 2013 (Kil and Kim, 2014). IAS comprises various classifications, including mammals, birds, fish, amphibians, reptiles, insects, plants, and invertebrates (Ministry of Environment notification, 2017). The designation and management of alert alien species (AAS) were added to the Act on the Conservation and the Use of Biological diversity in 2019 to prevent the increasing inflow of alien species and reduce the damage caused by it. AAS are alien species that may cause disruption in the native ecosystem if introduced, and 300 species have been designated and announced currently.

This study introduces the status of laws and designations of IAS in Korea and highlights the “Act on the Conservation and the Use of Biological Diversity,” which manages AAS. We focused on analysis on (1) criteria of designating AAS and (2) impact of AAS on the ecosystem, socio-economy, and human health.

Material and methods

The Act on the Conservation and the Use of Biological Diversity of South Korea

The Act on the Conservation and the Use of Biological Diversity was first enacted in 2013 and amended in 2019. Article 2 (Definition) defines alien species as organisms that exist outside their place of origin or habitat after being artificially or naturally introduced from foreign countries. In addition, AAS is defined as a species, among alien species, that disturb or are likely to disturb the balance of the ecosystem. AAS are designated and managed under risk evaluation (Article 21-2), approval for Importation and Inbound transfer of Species of concern for Domestic Inflow (Article 22), and management of Species of Concern for Domestic Inflow (Article 22-2).

Procedure of designations related to Alien Species in South Korea

AAS are species that are judged to be harmful when alien species are introduced into the domestic ecosystem. To designate AAS, a list of alien species was made that have not been introduced into Korea. Alien species data was collected by ecological
characteristics, physiological characteristics, and harmful cases on the ecosystem, socio-economy, and human health. The committee evaluated the data collected according to AAS designation criteria. The AAS designation criteria are divided into four categories and the specific details (Table 2).

Results

Status of AAS designation

Three hundred species are designated and announced as AAS in South Korea. These include 25 mammals, 7 birds, 84 fish, 28 amphibians, 22 reptiles, 1 insect, 99 plants, and 34 invertebrates. Moreover, 15 species from the World’s Worst 100 IAS by IUCN are included, which comprises 4 mammals (*Herpestes auropunctatus*, *Herpestes javanicus*, *Sciurus carolinensis*, and *Mustela erminea*), 2 fish (*Gambusia affinis* and *Lates niloticus*), 1 amphibian (*Rhinella (=Bufo) marinus*), 1 reptile (*Boiga irregularis*), 1 invertebrate (*Anoplolepis gracilipes*), and 6 plants (*Chromolaena odorata*, *Mikania micrantha*, *Sphagneticola trilobata*, *Prosopis glandulosa*, *Acacia mearnsii*, and *Ardisia elliptica*). Furthermore, 238 of the 300 AAS were indicated as species for legal management by foreign countries (Appendix 1).

Origin of AAS regional distribution

Nine regions were marked as the origin of 300 AAS using the world geographic scheme for recording plant distributions. The nine regions are Europe, Africa, Asia-Temperate, Asia-tropical, Australasia, Pacific, Northern America, Southern America, and Antarctic (Brummitt, 2001). The Asia-Temperate region reported for the largest proportion of the 300 species designated as AAS with 28%, followed by Europe with 17% and North America with 16%. Africa and South America were 12% each and Asia-tropical was 8% (Fig. 1).

Table 1 Status of invasive alien species to be prevented and managed by law

	IUCN	Japan	China	EU	NOBANIS	UK	Australia	New Zealand	USA
Mammals	14	25	10	43	26	7	75	52	29
Birds	8	24	35	45	46	35	8	15	119
Fishes	3	7	8	43	13	12	53	35	33
Amphibian	3	21	5	12	5	5	4	19	31
Reptile	2	14	3	18	9	2	12	3	69
Insect	17	21	252	15	102	30	4	133	489
Spider	0	7	0	0	0	0	0	6	0
Mollusca	4	4	25	36	22	3	0	37	31
Arthropod	3	5	16	21	46	7	0	11	25
Plant	37	16	337	264	113	28	407	658	2047
Others	9	1	63	6	114	13	0	0	4
Total	100	145	734	503	496	142	563	969	2877

Table 2 Four categories and their specific details for designating AAS in South Korea

4 criteria of designating AAS	Specific details
Alien species that are globally recognized for their risks	Promotion of the designation of species recognized as harmful by international organizations such as IUCN’s World’s Worst IAS comprising 100 species
Species that have caused social or ecological damage	Specify species for legal management by neighboring countries (such as China and Japan) and major trading partners (such as US and EU); prior review of species prohibited to import from other countries
Species with genetic and ecological characteristics similar to existing IAS	Promotion of the designation of species that caused social damage such as human diseases and industrial damage
Species with a high probability of settlement due to habitat conditions	Promotion of the designation of species that caused ecological harm through predation, hybridization, etc., of indigenous species
Species with a high probability of settlement due to habitat conditions	Promotion of the IAS designation of similar species expected to have increased demand due to the ballooning effects of IAS designation
Species with a high probability of settlement due to habitat conditions	Promotion of the prioritization of species that are highly likely to spread due to their high fertility rate
Species with a high probability of settlement due to habitat conditions	Promotion of the designation of a genus if there are several allied species with similar attributes
Species with a high probability of settlement due to habitat conditions	Promotion of the prioritization of species that are highly likely to spread due to their high fertility rate
Species with a high probability of settlement due to habitat conditions	Promotion of the prioritization of species that are highly likely to spread due to their high fertility rate
Analysis of AAS effect
The experts of each classification group assessed AAS in accordance with the “Ecological Risk Assessment of Invasive Alien Species and Designation of Alert Alien Species” from 2013 to 2019. The assessment was determined by combining scores and opinions on the impact of each species on the ecosystem, socio-economy, and human health. Species designated as AAS by the assessment were analyzed for their influence in each classification. The 5 categories of biodiversity, ecosystem function, invasiveness, human health, and human well-being were classified into detailed items. Biodiversity was classified into predation/competition, hybridization, disease transmission, and toxicity/disease. Ecosystem function was classified into nutrient cycle change, physical modification of habitat, disruption of ecosystem structure, destruction of important and/or protected habitat, and the increasing possibility of fire. Invasiveness was classified into high-population density, adaptability, easy spread, possibility of introduction, and difficulty of control, etc. Human health was classified into disease transmission and poisoning/toxicity/injury. Human well-being comprises nuisance and economic loss (Table 3). Among the five categories, mammals appear to have considerable influence on biodiversity and human well-being. In biodiversity, it was analyzed to have an influence on the relations of disease and prediction/competition. Moreover, it had a strong impact on economic loss for human well-being (Fig. 2). It is believed that mammals adversely affect social and economic activities because they are prone to disease and spread diseases as a medium for zoonosis. Birds appear to have considerable influence on biodiversity, human well-being, and invasiveness, which affect prediction/competition in biodiversity. Human well-being affects economic loss. Invasiveness was analyzed to affect high-population

Table 3 Effect of alert alien species on five categories and specific impacts

Category impacts	Biodiversity	Ecosystem function	Invasiveness	Human health	Human wellbeing
Specific impacts	Predation/Competition	Nutrient cycle change	High population density	Disease transmission	Nuisance
	Hybridization	Physical modification of the habitat	Adaptation	Poisoning/Toxicity/Injury	Economic loss
	Disease transmission	Disruption of ecosystem structure	Easily spreading		
	Toxicity/Disease	Destruction of important, protected habitat	Possibility of introduction		
		Increasing possibility of fire	Difficulty of control		
density and easy spread (Fig. 3). Efforts and expenses are required to control the inflow of birds due to their high proliferation and ability to easily spread infectious diseases. Fish and reptiles had considerable influence on biodiversity. In the detailed items of biodiversity, fish were explained to affect predation/competition, hybridization, and toxicity/disease. Reptiles were reported to have a significant impact on the relations of predation/competition (Figs. 4 and 5). It has been found that the inflow of fish causes
hybridization with native species and damage, leading to the reduction of native species and biodiversity. Amphibians have been demonstrated to have a considerable impact on biodiversity and invasiveness. They were analyzed to considerably impact predation/competition in biodiversity and on easy spread and adaptability in invasiveness (Fig. 6). Plants were reported to have considerable influence on biodiversity. It was analyzed to have a strong effect on invasiveness compared with other

Fig. 3 Ratio of bird species with specific impacts. **a** Since the effects of alien species are diverse, the categories affected by each alien species were calculated cumulatively. **b, c, d** The specific impact on the categories that have been greatly affected by alien species is calculated as a percentage.
classifications and on human well-being. In biodiversity, plants have been demonstrated to affect predation/competition and toxicity/disease. They affected high-population density and easy spread of invasiveness and economic loss in human well-being (Fig. 7). When plants are flowed in, they form flora and rapidly spread to compete with native species. It is known that alien plants that win against native plants destroy the habitat environment and affect other species living in their habitats. All classifications were identified to influence the relations of predation/competition in the biodiversity category. Predation affects the population sizes of alien and native species, and competition is caused due to the utilization of resources such as habitat and food.

Discussion

If alien species are flowed in, multiply, and settle, expenses and effort are required for control and management. Luque (2014) reported that the total cost borne by each country to effectively prevent the inflow of alien species from around the world is >$300 billion per year. In Australia, the European fox (*Vulpes vulpes*) has affected native plants, thus causing damage amounting to ~$190 million a year (McLeod, 2004). The European carp (*Cyprinus carpio*) affected the ecosystem, thus reducing the biodiversity of native fish, plants, and invertebrates; the damage amount was reported to be ~$11.8 million a year (McLeod, 2004). It is reported that the damage in EU was ~€12 billion a year (European Commission, 2014; Kettunen et al., 2008), that in the USA was $8.7 billion from 2010 to 2013, and that in Japan was >¥1 billion from 2007 to 2012 (Ministry of Environment, 2014). To efficiently reduce the cost of preventing and managing alien species, it is necessary to designate AAS and block the species in advance. Moreover, the inclusion of AAS in the quarantine system for export and import trade goods at airports and ports will strictly prevent the inflow of AAS. Moreover, if relevant ministries cooperate to preemptively prevent AAS from the customs’ entry in the face of a steady increase in the inflow of alien species into the country, it is believed to effectively reduce control
and management costs related to alien species. By comparing the origin and distribution status of AAS with the foreign trade bureau (import), the government can draw up a list of countries that require more thorough quarantine during the importing process. This is believed to rigorously prevent the inflow of AAS. In South Korea, AAS has been designated and officially announced since 2019 with the revision of the Act on the Conservation and the Use of Biological Diversity. To add and facilitate the list of AAS in the future, the AAS designation process needs to be more systematized. In particular, to enhance the system for preventing alien species, the pathway of alien species should be identified to block the intentional inflow and reduce the unintentional inflow. Furthermore, it is important to identify species that can adapt to the current climate zone. Since habitable species easily settle and multiply if they flow in, the process of collecting information on characteristics of alien species by climate group shall be strengthened.

Conclusion

This study was conducted to analyze the effects of AAS on the environment, economy, and human. The designation of AAS has an influence on preventing the reduction of biodiversity and preserving native species. In addition, it provided considerable economic benefits by preventing socio-economic losses and ecological damage. However, the AAS assessment system currently used in South Korea is slightly different from the revised law. Hence, the assessment system shall be supplemented in accordance with the law by assessing the AAS that have been enlisted to date. It seems necessary to supplement the AAS assessment system with a scientific and systematic assessment system by actively accepting various foreign assessment systems such as AquaNIS, EFSA, ENSARS, EPPO, FISK, GABLIS, GB NNRA, GISS, EICAT, and NORWAY SCHEME. Furthermore, to prevent damage by IAS that have been identified globally, a system should be placed into practice to prevent the inflow of suspected species by broadly designating AAS as a precautionary measure and aim for early detection.
Fig. 6 Ratio of amphibian species with specific impacts.

a Since the effects of alien species are diverse, the categories affected by each alien species were calculated cumulatively.

b, c The specific impact on the categories that have been greatly affected by alien species is calculated as a percentage.
Fig. 7 Ratio of plant species with specific impacts. a Since the effects of alien species are diverse, the categories affected by each alien species were calculated cumulatively. b, c, d The specific impact on the categories that have been greatly affected by alien species is calculated as a percentage.
Table 4 List of alert alien species in Republic of Korea

No.	Group	Scientific name	Listed in
1	Mammal	*Rattus exulans*	Australia
2		*Peromyscus maniculatus*	
3		*Callosciurus finlaysonii*	Japan, Europe
4		*Herpestes auropunctatus*	IUCN, Japan
5		*Sciurus aureogaster*	Japan, USA
6		*Glis glis*	UK
7		*Castor fiber*	
8		*Odocoileus virginianus*	New Zealand
9		*Sus scrofa vittatus*	Europe
10		*Lepus californicus*	USA
11		*Herpestes javanicus*	IUCN, Japan, Europe
12		*Sciurus carolinensis*	IUCN, Japan, Europe
13		*Mustela erminea*	IUCN, New Zealand
14		*Dasypus novemcinctus*	
15		*Mustela vison*	Japan, Europe, UK
16		*Atelerix albiventris*	Japan
17		*Chlorocebus aethiops*	
18		*Dasypodica leporina*	USA
19		*Desmodus rotundus*	
20		*Eliomys quercinus*	
21		*Epomops franqueti*	
22		*Hypsignathus monstrosus*	
23		*Ovis orientalis*	
24		*Puma yagouroundi*	USA
25		*Callosciurus erythroaesus*	Japan, Europe
26	Bird	*Acridotheres tristis*	IUCN, USA, Australia, New Zealand, Europe
27		*Passer domesticus*	Australia, New Zealand, USA
28		*Phasianus versicolor*	
29		*Pyconotus jacocus*	Japan, Australia, USA
30		*Streptopelia chinensis*	Australia
31		*Carpodacus mexicanus*	USA
32		*Corvus splendens*	Europe, UK, Australia, USA
33	Fish	*Micropterus dolomieu*	Japan
34		*Siniperca chuatsi*	Japan
35		*Gambusia affinis*	IUCN, Japan, China, Europe, New Zealand, USA
36		*Esox lucius*	Japan
37		*Channa striata*	USA
38		*Neogobius melanostomus*	Japan, Europe, USA
39		*Perca fluviatilis*	Japan, China, New Zealand, USA
40		*Clarias gariepinus*	China, Europe
41		*Piaractus brachypomus*	China, USA
42		*Pygocentrus nattereri*	China, USA
43		*Atractosteus spatula*	Japan
No.	Group	Scientific name	Listed in
-----	-------	--------------------------	----------------------------
44		Phractocephalus hemioliopterus	
45		Maccullochella peelii	Japan
46		Alosa sapidissima	
47		Alosa pseudoharengus	USA
48		Amia calva	USA
49		Sander lucioperca	Japan, Europe, USA
50		Ictiobus cyprinellus	China
51		Ictiobus niger	Europe
52		Labeo rohita	China
53		Lepomis cyanellus	Japan, USA
54		Lepomis megalotis	Japan
55		Micropterus punctulatus	Japan, USA
56		Misgurnus fossilis	
57		Mylopharyngodon piceus	China
58		Paramisgurnus dabryanus	
59		Percottus gleii	Europe, USA
60		Petromyzon marinus	
61		Pylocotis olivaris	Japan, Europe, USA
62		Salmo salar	China, Europe
63		Silurus glanis	Japan, USA
64		Ameiurus nebulosus	Japan, Europe, New Zealand
65		Ameiurus melas	Japan, Europe
66		Morone americana	Japan, USA
67		Morone chrysops	Japan, USA
68		Scardinius erythrophthalmus	New Zealand, USA
69		Acheilognathus tabira erythrophthalmus	Japan
70		Aspius aspius	
71		Biwia zezera	
72		Gnathopogon elongatus elongatus	
73		Ischikauia steenackeri	
74		Ictiobus bubalus	
75		Esox niger	Japan
76		Gasterosteus microcephalus	
77		Oncorhynchus masou rhodurus	
78		Oncorhynchus clarkii	
79		Catostomus Catostomus	
80		Cobitis biwae	
81		Acheilognathus asmussii	Japan
82		Carassius gibelio	USA
83		Squalius cephalus	
84		Leuciscus leuciscus	
85		Sarcocheilichthys variegatus microaculus	
86		Lepomis humilis	Japan, USA
87		Channa panaw	
No.	Group	Scientific name	Listed in
-----	-------	-----------------	-----------
88		Sander volgensis	Japan
89		Liobagrus reini	
90		Lates niloticus	
91		Morone saxatilis	Japan, China
92		Gymnocephalus cernua	Japan, USA
93		Leuciscus idus	New Zealand, USA
94		Alburnus alburnus	USA
95		Alburnus chalcoides	
96		Coregonus albula	USA
97		Coregonus lavaretus	USA
98		Coregonus maraena	USA
99		Coregonus peled	USA
100		Gambusia holbrooki	Japan, Europe, Australia, USA
101		Ictalurus furcatus	USA, Japan
102		Pterygoplichthys disjunctivus	USA
103		Pterygoplichthys multiradiatus	
104		Rutilus rutilus	USA
105		Cyprinus carpio var. specularis	
106		Parachondrostoma toxostoma	Europe
107		Amphilophus citrinellus	USA
108		Clupeonella tscharchalensis	Europe
109		Cobitis bilineata	Europe
110		Knipowitschia longicaudata	Europe
111		Neogobius eurycephalus	Japan, Europe
112		Neogobius fluviatilis	Japan, Europe
113		Neogobius gowap	Japan, Europe
114		Neogobius pallasi	Japan, Europe
115		Odontesthes bonariensis	USA
116		Siganus rivulatus	Europe
117	Mollusca	Perna viridis	USA
118	Arthropoda	Procambarus fallax	Japan, Europe, USA
119	Amphibian	Osteopilus septentrionalis	Japan, USA
120		Xenopus laevis	Europe, UK, USA
121		Rana ridibundus	Europe, UK
122		Rana lessonae	
123		Bufo japonicus formosus	Japan
124		Bufo japonicus japonicus	Japan
125		Fejervarya kawamurai	
126		Fejervarya sakishimensis	
127		Rana japonica	
128		Pelophylax porosus	
129		Epidalea calamita	Japan
130		Sclerophrys mauritanica	
131		Rhinella marinus	IUCN, Japan, Europe, Australia, USA
Table 4 List of alert alien species in Republic of Korea (Continued)

No.	Group	Scientific name	Listed in
132		Pelophylax esculentus	
133		Pelophylax kurtmuehleri	
134		Anaxyrus cognatus	Japan
135		Anaxyrus punctatus	Japan
136		Cryptobranchus alleganiensis	
137		Duttaphrynus melanostictus	Japan, USA
138		Rana grylio	Japan, China
139		Rana heedsleri	Japan, China
140		Rana pipiens	
141	Reptile	Hylorana erythraea	
142		Hoplobatrachus tigrinus	
143		Hoplobatrachus rugulosus	
144		Litoria dentata	Australia
145		Litoria ewingii	New Zealand
146		Litoria raniformis	New Zealand
147	Reptile	Boiga irregularis	IUCN, Japan, Europe, USA
148		Graptemys pseudogeographica	Europe, USA
149		Vipera aspis	
150		Mauremys mutica	Japan
151		Graptemys geographica	
152		Mauremys caspica	Japan
153		Pelomedusa subrufa	
154		Darevskia armeniaca	
155		Eutropis multifasciata	
156		Calotes mystaceus	USA
157		Calotes versicolor	USA
158		Protobothrops mucrosquamatus	Japan
159		Boiga cyanea	Japan
160		Rhabdophis subminiatus	
161		Boiga cynodon	Japan
162		Boiga nigriceps	Japan
163		Notechis scutatus	Australia
164		Epicrates maurus	USA
165		Ctenotus lancelini	Australia
166		Lampropholis delicata	New Zealand
167		Mauremys sinensis × Mauremys reevesii	Japan
168		Mauremys japonica × Mauremys reevesii	Japan
169	Insect	Anoplolepis gracilipes	IUCN, New Zealand
170	Spider	Atrax robustus	Japan
171		Latrodectus antheratus	Japan
172		Latrodectus apicalis	Japan
173		Latrodectus bishopi	Japan
174		Latrodectus cinctus	Japan
175		Latrodectus corallinus	Japan
No.	Group	Scientific name	Listed in
-----	-------	------------------------------	-------------------------------------
176		*Latrodectus curacaviensis*	Japan
177		*Latrodectus dahli*	Japan
178		*Latrodectus diaquila*	Japan
179		*Latrodectus elegans*	Japan
180		*Latrodectus erythromelas*	Japan
181		*Latrodectus geometricus*	Japan
182		*Latrodectus hasselti*	Japan
183		*Latrodectus hesperus*	Japan
184		*Latrodectus hystrix*	Japan
185		*Latrodectus indistinctus*	Japan
186		*Latrodectus karrooensis*	Japan
187		*Latrodectus katipo*	Japan
188		*Latrodectus lilianae*	Japan
189		*Latrodectus mactans*	Japan
190		*Latrodectus menavodi*	Japan
191		*Latrodectus mirabilis*	Japan
192		*Latrodectus obscurior*	Japan
193		*Latrodectus pallidus*	Japan
194		*Latrodectus quartus*	Japan
195		*Latrodectus renivulvatus*	Japan
196		*Latrodectus revivensis*	Japan
197		*Latrodectus rhodesiensis*	Japan
198		*Latrodectus thoracicus*	Japan
199		*Latrodectus tredecimguttatus*	Japan
200		*Latrodectus variegatus*	Japan
201		*Latrodectus*	Japan
202	Plant	*Vincetoxicum rassicum*	
203		*Carduus acanthoides*	USA
204		*Carduus tenuiflorus*	USA, Australia
205		*Chromolaena odorata*	IUCN, China, Europe, Australia, USA
206		*Mikania micrantha*	IUCN, Japan, Australia, China, USA
207		*Senecio madagascariensis*	Japan, USA, Australia
208		*Sphagneticola trilobata*	IUCN, USA, China
209		*Cenchrus echinatus*	China, Australia, USA
210		*Neyraudia reynaudiana*	USA
211		*Brachiaria mutica*	China
212		*Vulpia bromoides*	USA
213		*Fallopia baldschuanica*	USA, UK
214		*Heracleum sosnowskyi*	Europe
215		*Hydrocotyle ranunculoides*	Japan, Europe, UK, Australia
216		*Asparagus asparagoides*	USA, Australia, New Zealand
217		*Landolphia punctata*	USA
218		*Elodea nuttallii*	Europe, UK
219		*Andropogon gayanus*	Australia
No.	Group	Scientific name	Listed in
-----	-------	-----------------	-----------
220		Oenanthe pimpinellioide	Australia
221		Ageratina riparia	USA, Australia, New Zealand
222		Onopordum acanthium	USA
223		Bunias orientalis	Europe, USA
224		Alternanthera pungens	Japan, China, Australia
225		Prosopis glandulosa	IUCN, Europe
226		Salpichroa origanifolia	Australia
227		Myriophyllum heterophyllum	Japan, Europe, USA
228		Salvinia minima	USA
229		Sagittaria graminea	USA, Europe
230		Centaurea diffusa	USA
231		Ehrharta erecta	China, New Zealand, USA
232		Lolium perisicum	China, Canada
233		Paspalum conjugatum	China, USA
234		Hydrocharis morsus-ranae	USA
235		Stratiotes aloides	USA, Australia
236		Eichhornia azurea	USA, Australia
237		Monochoria hastata	USA
238		Aegilops tauschii	China
239		Setaria palmifolia	New Zealand, USA
240		Echinochystis lobata	Europe, USA
241		Lycium ferocissimum	Australia, New Zealand, USA
242		Paspalum fimbriatum	China, USA
243		Berteroa incana	USA
244		Lepidium appelianum	USA
245		Heteropogon contortus	USA
246		Spartina densiflora	Japan, USA
247		Centaurea stoeb subsp. micranthos	Australia, USA
248		Rhipopticum repens	Australia, USA
249		Myriophyllum alterniflorum	Japan, USA
250		Passiflora foetida	China, USA
251		Spartina patens	Japan, USA
252		Acacia paradoxa	Australia, New Zealand, USA
253		Alhagi maurorum	Australia, USA, South Africa
254		Arctotheca calendula	New Zealand, USA
255		Asparagus scandens	Australia, New Zealand
256		Buddleja madagascariensis	New Zealand, USA, South Africa
257		Carpobrotus chilensis	New Zealand, USA
258		Cenchrus spinifex	Australia, USA
259		Crupina vulgaris	Australia, USA, Canada
260		Dolichandra unguis-cati	China, Europe, Australia, South Africa
261		Echium vulgare	USA, Australia, New Zealand
262		Ehrharta longiflora	New Zealand, USA
263		Erica lusitanica	Australia, New Zealand, Pacific islands
Abbreviations
IAS: Invasive Alien Species; AAS: Alert Alien Species; IUCN: International Union for Conservation of Nature; IAS Act: Invasive Alien Species Act; UAS: Uncategorized Alien Species; LORCA: Living Organisms Required to Have a Certificate Attached; GBNNSS: Great Britain Invasive Non-Native Species Strategy

Acknowledgements
Not applicable.

Authors’ contributions
SHS and DEK designed the study and wrote the manuscript. SHS and ARJ performed data collect and analyzed the data. The authors read and approved the final manuscript.

Funding
This work was supported by a grant from the National Institute of Ecology (NIE-D-2019-09) and (NIE-A-2021-12) and funded by the Ministry of Environment (MOE) of the Republic of Korea.

Table 4 List of alert alien species in Republic of Korea (Continued)

No.	Group	Scientific name	Listed in
264		Erechtites valerianifolius	China, USA, Pacific islands
265		Euphorbia cyathophora	USA, Pacific islands
266		Flaveria bidentis	China, South Africa
267		Genista linifolia	Australia, USA
268		Genista monspessulana	Australia, USA, Pacific islands, Hawaii
269		Heliotropium europaeum	Australia, China
270		Hordeum bulbosum	China, Australia
271		Hyptis brevipes	China, Australia
272		Hyptis suaveolens	China, Australia, Hawaii, Guam, Papua New Guinea, Philippines, Singapore, Taiwan
273		Ipomoea alba	USA
274		Iva axillaris	Australia, USA
275		Jatropha curcas	China, Australia
276		Lantana montevidensis	China, Australia, New Zealand, USA, Hawaii
277		Megathyrsus maximus	USA
278		Morella faya	Europe, Australia, Hawaii
279		Pittosporum undulatum	Australia, Europe, USA
280		Rosa bracteata	Europe, USA
281		Senecio angulatus	Japan, New Zealand
282		Toxicodendron radicans	Europe, Australia, USA
283		Acacia auriculiformis	USA, Singapore, Hawaii
284		Acacia confusa	China
285		Acacia farnesiana	IUCN, New Zealand, South Africa, Hawaii
286		Acacia meamsii	IUCN, New Zealand, South Africa, Hawaii
287		Agropyron desertorum	
288		Ardisia elliptica	IUCN, Europe, Hawaii
289		Amelanchier spicata	Europe
290		Bassia hyssopifolia	
291		Bromus rubens	
292		Centaurea melitensis	
293		Chrysanthemoides monilifera	New Zealand
294		Cortaderia jubata	Europe, New Zealand, Hawaii, South Africa
295		Cyrtis striatus	
296		Delairea odorata	Australia
297		Dioscorea oppositifolia	
298		Dittrichia graveolens	Australia
299		Galeopsis tetrahit	Alaska
300		Emex spinosa	Australia, USA
Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 September 2021 Accepted: 2 November 2021

Published online: 26 November 2021

References
Bomford M. Risk assessment models for establishment of exotic vertebrates in Australia and New Zealand. Canberra: Invasive Animals Cooperative Research Centre; 2008.
Brenton-Rule E, Frankel S, Lester P. Improving management of invasive species: new Zealand’s approach to pre-and post-border pests. Policy Quarterly. 2016;12(1):17–25.
Brummitt RK. World geographical scheme for recording plant distributions. 2nd ed; 2001. International Working Group on Taxonomic Databases for Plant Sciences (TDWG). Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh.
Cal-IPC (California invasive plant council) (2006) California invasive plant inventory. Cal-IPC Publication 2006-02. California Invasive Plant Council: Berkeley, CA, USA.
Congress, U. S. OTA. Harmful non-indigenous species in the United States. Washington DC: US Government Printing Office; 1993.
Department of Conservation (1996) Visitor strategy.
European Commission (2014) Invasive alien species. http://ec.europa.eu/environment/nature/invasivealien/. Accessed 23 Aug 2016.
GB Non-Native Species Secretariat (2016) GB non-native species information portal. http://www.nonnativespecies.org/factsheet/index. Accessed 2 May 2016.
Gederaas L, Moen TL, Skjelseth S, Larsen LK. Alien species in Norway - with the Norwegian Black List 2012. Norway: The Norwegian Biodiversity Information Centre; 2012.
IUCN. IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species, IUCN–The World Conservation Union. Switzerland: Gland; 2000.
Junior DPL, Magalhães ALB, Pelicice FM, Vitule JRS, Azevedo-Santos VM, Orsi ML, et al. Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets. Ambio. 2018;47(4):427–409.
Kettunen M, Genovesi P, Gollasch S, Pagad S, Starfinger U, ten Brink P, et al. Technical support to EU strategy on invasive species (IAS) - assessment of the impacts of IAS in Europe and the EU (final module report for the European Commission). Brussels, Belgium: Institute for European Environmental Policy (IEEP); 2008. p. 44. + Annexes.
Kil JH, Kim CG. Overview of preventive measures against invasive alien species in Korea and suggestions for their improvement. Korean J Ecol Environ. 2014;47(2):239–46.
Kil JH, Mun S, Kim CG. Risk assessment tools for invasive alien species in Japan and Europe. Ecol Resilient Infrastructure. 2015;2(3):191–7.
Koh KS, Suh MH, Kil JH, Ku YB, Oh HK, Lee DG. Research on the effect of alien plants on ecosystem and their management (III). Incheon, Korea: National Institute of Environmental Research; 2002.
Luque GM, Bellard C, Bertelmeier C, Bonnada E, Genovesi P, Simberloff D, et al. The 100th of the world’s worst invasive alien species. Biological Invasions. 2014;16:981–5.
McLeod R. Counting the cost: impact of invasive animals in Australia. Canberra: Cooperative Research Centre for Pest Animal Control; 2004.
Ministry for Primary Industries n.d. Unwanted organisms database. Wellington: Ministry of Agriculture and Forestry. 2016. Accessed 11 Jan 2016.
Ministry of Environment (2014) Long-term management plan of alien species. Ministry of Environment notification. Designation and notification of alert species; 2017. p. 160.
Sardain A, Sardain E, Leung B. Global forecasts of shipping traffic and biological invasions to 2050. Nature Sustainability. 2019;2(6):274–82.
SCBD (Secretariat of the Convention on Biological Diversity) (2014) Global biodiversity outlook 4. Montréal, Canada.
Sharp RL, Larson LR, Green GT. Factors influencing public preferences for invasive alien species management. Biol Conserv. 2011;144(8):2097–104.
US Department of Agriculture (2010) Federal noxious weed list, United States Department of Agriculture. Accessed 1 Oct 2015.
Xu H, Qiang S, Genovesi P, Ding H, Wu J, Meng L, et al. An inventory of invasive alien species in China. NeoBiotica. 2012;15:1–26.