Rong, Xiaochun; Wang, Yusheng

The soul conjecture in Alexandrov geometry in dimension 4. (English) Zbl 07537684
Adv. Math. 404, Part A, Article ID 108386, 41 p. (2022)

Summary: In this paper, we prove the Soul Conjecture in Alexandrov geometry in dimension 4, i.e. if X is a complete non-compact 4-dimensional Alexandrov space of non-negative curvature and positive curvature around one point, then a soul of X is a point.

MSC:
53C20 Global Riemannian geometry, including pinching
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
51F99 Metric geometry

Keywords:
soul conjecture; Alexandrov geometry; Sharafutdinov retraction; submetry; finite quotient of join

Full Text: DOI

References:
[1] Burago, Yu.; Gromov, M.; Perel’man, G., A.D. Alexandrov spaces with curvature bounded below, Usp. Mat. Nauk, 47, 2, 3-51 (1992)
[2] Cheeger, J.; Gromoll, D., On the structure of complete manifolds of nonnegative curvature, Ann. Math., 96, 413-443 (1972)
[3] Cao, J.; Shaw, M., The smoothness of Riemannian submersions with nonnegative sectional curvature, Commun. Contemp. Math., 7, 137-144 (2005)
[4] Gromoll, D.; Meyer, W. T., On complete open manifolds of positive curvature, Ann. Math., 90, 75-90 (1969)
[5] Grove, K.; Markvorsen, S., New extremal problems for the Riemannian recognition program via Alexandrov geometry, J. Am. Math. Soc., 8, 1, 1-28 (1995)
[6] Grove, K.; Wilhelm, F., Hard and soft packing radius theorems, Ann. Math., 142, 213-237 (1995)
[7] Harvey, J.; Searle, C., Orientation and symmetries of Alexandrov spaces with applications in positive curvature, J. Geom. Anal., 27, 2, 1636-1666 (2017)
[8] Kapovitch, V., Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal., 12, 121-137 (2002)
[9] Li, X., Nonnegatively curved Alexandrov spaces with souls of codimension two, Trans. Am. Math. Soc., 367, 3901-3928 (2015)
[10] Machigashira, Y., The Gaussian curvature of Alexandrov surfaces, J. Math. Soc. Jpn., 50, 4, 859-878 (1998)
[11] Otsu, Y.; Shiota, T., The Riemannian structure of Alexandrov surfaces, J. Differ. Geom., 39, 629-658 (1994)
[12] Perel’man, G., Proof of the soul conjecture of Cheeger and Gromoll, J. Differ. Geom., 40, 1, 209-212 (1994)
[13] G. Perel’man, Alexandrov’s spaces with curvature bounded from below II, 1991.
[14] Petrunin, A., Semiconcave functions in Alexandrov geometry, (Surveys in Differential Geometry: Metric and Comparison Geometry XI (2007)), 137-201
[15] Petrunin, A., Parallel transportation for Alexandrov spaces with curvature bounded below, Geom. Funct. Anal., 8, 123-148 (1998)
[16] Rong, X.; Wang, Y., A finite quotient of join in Alexandrov geometry, Trans. Am. Math. Soc., 374, 2, 1095-1124 (2021)
[17] Sharafutdinov, V., Pogorelov-Klingenberg theorem for manifolds homeomorphic to \mathbb{R}^n, Sib. Mat. Zh., 18, 915-925 (1977)
[18] Shiota, T.; Yamaguchi, T., Collapsing three manifolds under a lower curvature bound, J. Differ. Geom., 56, 1-66 (2000)
[19] Wilking, B., A duality theorem for Riemannian foliations in nonnegative sectional curvature, Geom. Funct. Anal., 4, 1297-1320 (2007)
[20] Yamaguchi, T., Collapsing 4-manifolds under a lower curvature bound

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.