Using Chronobiological Phenotypes to Address Heterogeneity in Bipolar Disorder

Robert Gonzalez, Suzanne D. Gonzalez, Michael J. McCarthy

Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Pharmacology, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, CA, USA

Keywords
Bipolar disorder · Circadian rhythm · Sleep · Genetics · Chronobiology

Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder characterized by recurrent episodes of mania and depression in addition to disruptions in sleep, energy, appetite, and cognitive functions-rhythmic behaviors that typically change on daily cycles. BD symptoms can also be provoked by seasonal changes, sleep, and/or circadian disruption, indicating that chronobiological factors linked to the circadian clock may be a common feature in the disorder. Research indicates that BD exists on a clinical spectrum, with distinct subtypes often intersecting with other psychiatric disorders. This heterogeneity has been a major challenge to BD research and contributes to problems in diagnostic stability and treatment outcomes. To address this heterogeneity, we propose that chronobiologically related biomarkers could be useful in classifying BD into objectively measurable phenotypes to establish better diagnoses, inform treatments, and perhaps lead to better clinical outcomes. Presently, we review the biological basis of circadian time keeping in humans, discuss the links of BD to the circadian clock, and present recent studies that evaluated chronobiological measures as a basis for establishing BD phenotypes. We conclude that chronobiology may inform future research using other novel techniques such as genomics, cell biology, and advanced behavioral analyses to establish new and more biologically based BD phenotypes.
Chronobiological Phenotypes in Bipolar Disorder

BD is defined primarily by recurrent manic and depressive episodes. Additional diagnostic criteria reveal underlying chronobiological disruptions in BD. BD is marked by fluctuations and disturbances in activity and energy, appetite, attention, subjective speeds of thought, and sleep— all processes that commonly show diurnal variation in healthy subjects. Additionally, some specific traits used to describe the illness, such as rapid cycling and seasonality, also suggest that rhythm disturbances are a core feature of the disorder [7]. Rhythm disruptions are a hallmark of BD [7, 8]. Variations in intrinsic circadian periods [9, 10], phase shifts [11–19], and less stable biological rhythms [20–25] have all been noted in association with the illness. Disturbances in lifestyle regularity [26–28], sleep disturbances [29–42], variations in melatonin secretion [17, 43], and disruptions in rhythmic locomotor activity [24, 25, 44, 45] have all been reported.

Among the challenges in studying and treating BD is the heterogeneity, defined as the variability in the clinical presentation, of the disorder. The illness is not fully characterized by existing diagnostic and classification systems, and many individuals with the same diagnosis show considerable differences in illness course and treatment response [46]. This heterogeneity in clinical presentation may reflect the presence of multiple, distinct pathophysiological mechanisms underlying the development and/or progression of BD [47]. While considerable progress has been made in understanding the biological mechanisms underlying BD, much remains to be known, and phenotypic heterogeneity is undoubtedly contributed to the challenges in identifying pathophysiological mechanisms associated with BD. One proposed method to address the issue of heterogeneity is to identify phenotypes, or observable traits and characteristics, for the illness [48]. A plausible phenotype should be supported by empirical evidence, be comprised of measurable characteristics, and be directly applicable to the disorder in question [48]. For BD, differences in the expression of chronobiological characteristics like circadian rhythm disturbances, sleep abnormalities, and seasonality among others may meet these criteria.

In this review we examine the heterogeneity of BD from a chronobiological perspective. We provide a background for the genetic and neurobiological foundations of the circadian clock system and evaluate evidence linking BD patients and chronobiological disturbances. Finally, the evidence supporting distinct chronobiological phenotypes in BD is reviewed, with discussion of the directions for future research in the field.

Structure and Function of the Circadian Timing System

Circadian rhythms play an essential role in life. They are self-sustained, ∼24-h rhythms that are present in nearly every organism, including humans. The circadian timing system directly or indirectly influences the timing of nearly all rhythmic physiological activity in humans, including sleep and activity cycles as well as seasonal rhythms [49]. Additional physiological functions under the regulation of the circadian timing system include temperature regulation, feeding and metabolism, hormone secretion, and inflammation. In mammals, the suprachiasmatic nucleus of the hypothalamus functions as the master pacemaker [49]. However, many brain regions besides the suprachiasmatic nucleus contain circadian clocks, including areas that have been implicated in mood regulation and mood disorders, such as the frontal cortex, hippocampus, amygdala, and striatum [50, 51]. Recent estimates in nonhuman primate sampling from 64 tissues across the body indicates that > 80% of the genome is rhythmically expressed in at least one tissue and that genes involved in critical cellular processes are typically rhythmic in the relevant tissue for that function [52]. Moreover, rhythms in the brain are widespread and show anatomicoanatomically distinct profiles comprised of distinct ensembles of rhythmic genes in different brain regions [52]. Accordingly, behaviors and neurophysiological processes affected by mood disorders, such as cognitive function, reward processing, motivation, and mood regulation, are under the regulation of the circadian clock [50, 51].

At the core of the circadian timing system are endogenous molecular clocks comprised of transcriptional/translational feedback loops made up of circadian genes [53, 54] (Fig. 1). The positive feedback loop consists of heterodimeric transcriptional activator complexes (CLOCK/NPAS2-ARNTL) that bind to CACGTG E-box or related E-box-like sequences to regulate transcription of core clock genes (PER1/2, CRY1/2, CIART, NR1D1/2, and DBP) [55, 56]. The CLOCK/NPAS2-ARNTL complex regulates the expression of its own transcriptional repressors PER1/2/3 and CRY1/2 that gradually inhibit their own expression over ∼24-h cycles to sustain a rhythmic circadian oscillator. Negative feedback is achieved upon accumulation of PER and CRY proteins in the cytoplasm, where they dimerize to form a PER-CRY repressor complex that translocate back to the nucleus upon phosphorylation by CSNK1D/E to negatively regulate their own transcription. CLOCK/NPAS2-ARNTL het-

DOI: 10.1159/000506636
erodimers also activate the expression of transcription factors NR1D1/2, CIART, and RORA/B, which form a second feedback loop and activate and repress ARNTL, NFIL3, and CRY1 transcription at ROR response elements containing a 5′-AGGTCA-3′ motif. D-box elements (5′-TTAYGTAA-3′) are activated and repressed by DBP and NFIL3, respectively, and regulate circadian transcriptional oscillations of PER1/2/3, NR1D1/2, and RORA/B. DBP and NFIL3 proteins are critical for determining the period length of the circadian oscillator [57] and have been implicated in phase resetting of the circadian clocks [58].

Virtually every cell in the body has an autonomous circadian clock [59, 60]. It is the expression of clock genes that results in the ability of cells to maintain time keeping rhythms in a cell-autonomous manner. In addition to governing molecular clock functions, clock genes also regulate the expression of clock-controlled output genes, i.e., genes that do not have a direct time keeping function but are involved in temporal regulation of tissue-specific, physiological processes in which timing plays an important role, including many implicated in mood regulation [61, 62]. The majority of rhythmically expressed genes in the body fall into this latter category of clock-controlled genes.

Effects of Circadian Misalignment on Health

One of the important functions of the circadian timing system is to coordinate physiological processes and behaviors across systems. It is believed that stable organization of biological rhythms is an indicator of good health and well-being [63]. Chronobiological disturbances are now widely recognized as a general health concern influencing a wide array of diseases [64–67], including psychiatric illnesses [68–73]. Circadian misalignment, or misalignment between the circadian pacemaker and behavioral or environmental cues, is associated with health problems [74] and with adverse physiological [75, 76] and mental sequelae [63, 76, 77].

Evidence has demonstrated that there is individual variability in the susceptibility towards temporal disorganization and the propensity to experience symptoms of
Circadian misalignment [78–80]. In BD, this includes abnormalities in circadian phase [16, 18, 81–83], low-amplitude rhythms/rhythm fragmentation [83–86], and sleep disturbances [87, 88]. It may, therefore, be the case that a subset of BD patients suffer to a greater degree from chronobiological disturbances. If this is the case, chronobiological phenotyping may play a significant role in identifying BD groups that are most vulnerable or resistant to the adverse health effects of circadian misalignment and/or desynchronization.

Impact of Chronotype on BD

Circadian rhythm disorders represent the extreme ends of a broader spectrum of morning versus evening preferences that extends into the healthy population. This circadian phenotype is commonly called chronotype [89]. Chronotype, or the diurnal preference for daily activities, is often used to obtain a measure of interindividual variations in circadian rhythms and appears to be a relatively stable trait [90] likely associated with genetic markers [90]. People with different chronotypes can differ dramatically in responses to shift work [91], homeostatic sleep regulation [92–94], activity phase [95, 96], responses to sleep fragmentation [97, 98], total sleep deprivation [99, 100], and circadian phase [101, 102]. Chronotype is estimated to be about 50% heritable [103] and varies across populations and developmental stage [104–107]. Resting on a continuum, chronotype is likely to be polygenic in origin [90, 108].

It has been suggested that in BD patients, chronotype is a stable trait characteristic [16, 109]. BD patients consistently exhibit a significantly higher preference for eveningness compared to control subjects [16, 81, 110–113]. Chronotypic traits may impact the clinical presentation and course of bipolar illness. A greater degree of eveningness has been associated with rapid mood swings [82], higher recurrence rates [82, 114], and an earlier age of illness onset [82] and lithium response [115]. Chronotype has also been associated with physiological parameters [116, 117], including variations in body temperature [101, 116, 118], catecholamine secretion [116, 119], sleep patterns [116, 120–122], subjective activation and arousal [116, 119, 123], and circadian rhythms of hormone secretion [118] in healthy controls that may be important to the underlying pathophysiology of BD and/or phenotypic expression.

Physiological markers have been associated with BD. For example, an evening chronotype has been associated with insomnia [124], longer sleep latency [113], a higher percentage of total body fat and obesity [125, 126], higher homocysteine levels [127], increased atherogenic index of plasma [128], and a higher level of triglycerides [128]. Chronotype may also have clinical implications in BD. For example, an evening chronotype has been associated with higher response rates to the antidepressant response of total sleep deprivation plus light therapy [129].

Genome-Wide Associations of Clock Genes with Chronotype and BD

While genome-wide association studies (GWAS) have not identified core clock gene associations with BD; the sample size of the most recent BD GWAS [130] is still relatively underpowered compared to chronobiologically related GWAS studies with samples sizes surpassing 100,000 individuals [108, 131–135]. Variants in the core clock genes ARNTL [131, 136], NPAS2 [131], PER2 [108, 131, 132, 135, 136], PER3 [135, 136], CRY1 [131, 132], and RORB [131] have all shown significant GWAS association with chronotype. Other clock genes including ARNTL [56], NFIL3 [137], and CRY2 [136] demonstrated weaker associations with BD and chronotype that did not reach the threshold for genome-wide significance. Other GWAS chronotype-associated genes – MEIS1/2 [131, 132] and VIP [131, 132, 136] – have previously well-established roles in regulating circadian rhythms [135, 136].

There is some indication that genetic markers of BD overlap with chronobiological phenotypes [138, 139]. For instance, a chronotype-associated locus lies in proximity to the clock gene CIART [56, 140] and overlaps with a newly reported risk locus (rs7544145) for BD [130]. Similarly, a variant in the clock gene ARNTL was among a small number of markers that differentiated polygenic risk for schizophrenia from BD [141]. Genetic variation in clock genes may not be limited to BD only. In addition to chronotype, differences in other chronobiological phenotypes also have a genetic basis [142]. Looking at related traits, CRY1, PER2, and PER3 variants are associated with ease of getting up in the morning [132]. Markers on the genes NFASC, SLC25A17, and MEIS with roles in regulating circadian rhythms are associated with lower relative amplitude in locomotor activity [143] and relative amplitude of rest-activity cycles [143]. RORB and MEIS1 variants are associated with insomnia [132–134, 144], and MEIS1 variants are also related to sleep duration [145] and other sleep-related traits [133]. These data indicate that many chronotype-associated markers identified by
GWAS are not well functionally characterized, and there are likely to be numerous pathways and genes that influence rhythmic behaviors both within and beyond the core circadian clock. It is not yet clear to what degree the genes identified may demonstrate pleiotropic effects on other systems or what the impact of these identified markers are on chronobiological aspects of BD. For instance, \(\text{NR1D2} \) variants exhibit robust GWAS associations with intelligence [146–149] and cognitive ability [150–152], traits that have been previously linked to BD [153–157].

Cellular Models of Circadian Clocks in BD

In recent years, novel techniques have been developed to assess the cellular function of molecular clocks in healthy human subjects. These studies have begun to establish that there are significant interindividual differences in the functioning of molecular clocks [158, 159] and that this variation is associated with differences in behavior, chronotype, and physiology [158–160]. Brown et al. [158] characterized the expression of molecular clocks in fibroblasts of 19 individuals. While the average period of the sample was similar within the normal range previously reported for humans, the investigators noted a greater than expected variability in circadian phase. These investigators also found that period and phase of cellular clocks were associated with the chronotypes of human cell donors [159]. These findings were partially replicated by Hida et al. [160], who found a relationship between the period of molecular clocks and chronotype. While these observations have been made in the general population, similar chronobiological heterogeneity may exist in BD.

While GWAS are well suited to capture information from relatively large population cohorts, they typically cannot inform researchers about the functional consequences of a genetic variant as it relates to a time keeping function. Therefore, a complementary approach is to assess molecular clock functioning and chronobiological phenotypes in cells from BD patients. Since circadian clocks are cell-autonomous and present throughout the body, peripheral cell types like fibroblasts may be one useful model. These cells have the advantage of being relatively accessible and easy to grow. In one early study by Yang et al. [161] the expression of 12 clock genes was examined using PCR and protein analyses in fibroblast cultures in a time series over 72 h. Lower amplitude expression rhythms for \(\text{BMAL1} (\text{ARNTL}), \text{REV-ERBa} (\text{NR1D1}) \), and \(\text{DBP} \) as well as decreased phosphorylation of GSK3B were found in the BD compared to the control cells. Later studies again studied fibroblasts, but this time using a bioluminescent reporter gene (\(\text{PER2-luc} \)), which allowed for more frequent sampling over longer times. In this study, cells from BD patients were found to have a longer circadian period and abnormal amplitude response to treatment of the cells with lithium [162]. In follow-up studies the same authors again studied fibroblast cultures, but this time from cells obtained in the course of a prospective, multicenter, clinical trial of lithium monotherapy [115]. In lithium responder samples, cells had a shorter period compared to samples from non-responders. Moreover, there were other rhythm characteristics that differed between groups, with a linear relationship between period and phase and a period shortening effect in lithium responders, but not in cells from non-responders. These cellular models have provided some important functional context to genetic studies. However, since fibroblasts lack key features of neurons (e.g., neurotransmitters, electrical activity, synaptic connections), there may be additional BD-related chronobiological functions that are better examined in neuronal cells.

Sleep Abnormalities and BD

The two-factor theory of sleep predicts that circadian rhythms have a major impact on sleep behavior [163]. The American Academy of Sleep Medicine currently recognizes four intrinsic circadian rhythm sleep-wake disorders (CRSWDs) [164]. These include advanced sleep phase disorder, delayed sleep phase disorder, irregular sleep-wake rhythm disorder, and non-24-h sleep-wake disorder, each disorder being marked by a particular characteristic. Advanced sleep phase disorder has been associated with shorter circadian acrophase and period (Fig. 2), while delayed sleep phase disorder has been associated with longer circadian acrophase and period. Irregular sleep-wake rhythm disorder is characterized by fragmented and pattern-lacking sleep-wake cycles. Non-24-h sleep-wake disorder presents with a progressive lengthening of circadian period.

Takaesu and colleagues [165–167] have conducted a series of studies examining the presence of CRSWD in BD. These investigators found that approximately one-third of bipolar patients met the criteria for a CRSWD [165, 166]. They further demonstrated that these comorbidities had clinical implications. BD patients with co-occurring CRSWD were associated with higher suicide rates [165], greater recurrence rates [166, 167], antide-
pressant-related manic switch [166], and higher rates of family history of psychiatric disorders [165].

Sleep characteristics may also prove to be important phenotypic signatures of BD and overlap with chronobiological mechanisms. Scott et al. [168] studied the relationship between sleep and BD in families. In this study, individuals with a family history of BD and subjects without a history of familial mood disorders were compared using actigraphy measures and Pittsburgh Sleep Quality Index scores. They found that the family history-positive group differed in mean nighttime sleep duration, variability in waking after sleep onset, sleep disturbances, and daytime dysfunction, indicating that sleep problems cosegregate with the genetic risk for BD in families. Studies also suggest that sleep phenotypes exist in BD. For example, short sleep duration has demonstrated association with more severe symptoms [42], while both short and long sleep duration have been associated with poor functioning and quality of life [42]. A worse course of illness [30, 169], increased symptom severity [30, 42, 169], and impairments in functioning and quality of life [30, 42, 169] have also been related to sleep disruption. Specific types of sleep disturbances may also be associated with specific mood states. Variability in sleep latency has been associated with depressive symptoms [169], and lower and more variable sleep efficiency has been associated with more lifetime depressive episodes [169]. Decreased sleep efficiency [169] and the duration of REM and slow-wave sleep [30] have also been associated with mania. Disturbances of sleep could potentially predispose a subset of BD patients towards disruptions in such circadian components as phase and acrophase, thus leading to a misalignment of circadian rhythms in BD.

Seasonal Rhythms and BD

Seasonality, including recurrent mood episodes and the level of functioning associated with seasonal changes, is another potential BD phenotype with chronobiological mechanisms. While seasonal rhythms occur over longer time intervals than the circadian rhythm (i.e., months versus hours), the suprachiasmatic nucleus and circadian clock genes are also critically involved in regulating these long cycles, in conjunction with melatonin and effects on thyroid hormones in the pars tuberalis of the anterior pituitary gland [170]. Therefore, circadian variation in BD patients may also be associated with seasonal mood changes [171]. A subpopulation of BD patients present with a seasonal pattern to their mood episodes [172–176]. For those with seasonal patterns, mania appears to peak in the early spring with a nadir in the late fall [172], mixed mania peaks in the late summer with a nadir in the late fall [172], and depression appears in the autumn to winter months [173].

Chronobiological Phenotypes and Clinical Features

The clinical characteristics of BD are heterogeneous, with differences in the course of illness, comorbidity of medical and psychiatric conditions, and treatment re-
sponses [177]. This variability is likely the result of biological and environmental variability across several etiological mechanisms [47]. Unfortunately, it is this heterogeneity that may have hindered discoveries of pathophysiological mechanisms associated with the illness. Better-defined BD phenotypes may unravel some of the diagnostic complexity and help to identify more coherent categorization schemes [48]. This in turn may yield better diagnostic approaches and improve treatment selection. Based on the work reviewed herein, we propose that variability in circadian and chronobiological measurements may be objective and quantifiable traits that could be used to more precisely organize BD patients into coherent phenotypes.

Humans show significant interindividual differences in a wide variety of chronobiological characteristics [90]. Individual differences in the free-running circadian period (tau) [178–180], circadian amplitude [102, 181], and circadian phase [101, 102, 179, 181] have all been reported. There is mounting evidence suggesting that chronobiological disturbances are not only associated with BD, but that specific clinical and physiological signatures point to circadian disruptions as potential chronobiological phenotypes in the illness. As with individuals intolerant to shift work [63], subsets of patients with BD may differ in susceptibility to the disruption of biological rhythms [182]. People who demonstrate an inability to adapt to shift work demonstrate alterations in sleep such as insomnia, short sleep duration, poor sleep quality, and mood alterations including irritability and mood lability [63, 183–188]. The question arises whether a similar mechanism may apply to BD and whether specific chronobiological phenotypes are present within the larger diagnostic category.

Pagani et al. [189] examined actigraphy-based phenotypes in 26 Costa Rican and Colombian pedigrees. The study included 136 euthymic BD individuals and 422 unaffected relatives. BD subjects expressed fragmented rhythms overall compared to unaffected controls (i.e., lower activity, longer sleep times, and low amplitude). Forty-nine activity-related phenotypes exhibited significant heritability, and 12 of these overlapped with heritability for BD. Using linkage analysis, the study identified a genome-wide significant locus on chromosome 12 for inter-daily stability of activity and suggestive linkage in the same region for the mean number of sleep bouts in the awake period and amplitude. Taken together, these studies indicate that a wide variety of rhythmic processes governing sleep and activity are altered in BD and that some of the factors underlying this variability may also overlap with the risk for BD.

Conclusion

In mammals, the circadian timing system keeps physiological rhythms synchronized with each other and the environment. Organism-wide coordination of rhythms influences multiple physiological systems, brain regions, and behaviors that are germane to both healthy mood regulation and mood disorders, including BD. Given the important and fundamental nature of the circadian clock, it is not surprising that rhythm disturbances are associated with detrimental mental health sequelae.

Humans show significant interindividual differences in a wide variety of chronobiological characteristics, suggesting that these traits lie on a continuum even in healthy subjects. As with many other human traits, this variability lends itself to potential dysfunction when located at extreme ends of the spectrum. It is now widely recognized that chronobiological disturbances predispose individuals experiencing them to health problems and disease states including psychiatric disorders. As in other complex trait disorders, individuals are not all prone to the development of adverse consequences related to chronobiological disruption. This may be particularly relevant in BD.

Rhythm disruptions are a hallmark of BD. While generally associated with the illness, chronobiological disturbances may be enriched in particular BD subgroups, suggesting they may be markers of certain illness chronobiological phenotypes, possibly with distinct etiological factors, illness course, and treatment response. Recent research has begun to support this notion. It is estimated that as many as one-third of bipolar patients may suffer from an independent CRSWD. These comorbid conditions may be related to a worse illness course. BD patients with significant chronobiological disturbances have been shown to have higher suicide rates, recurrence rates, and antidepressant-related manic switch rates. Another example is chronotype where a greater degree of eveningness has been associated with rapid mood swings, greater recurrence rates, and an earlier age of illness onset in the disorder, and less response to treatment with lithium.

The effects of chronobiology interacting with BD could arise in several different ways, none of which are mutually exclusive (Fig. 3). First, disruption of clock genes could be a primary factor that directly contributes to BD in some subjects. Next, inherited chronobiological disturbances could disturb rhythms in physiological processes that worsen BD through secondary effects on the illness (e.g., globally increased stress, decreased sleep). Finally, chronobiological disturbances could lead to unhealthy in-
Chronobiological Phenotypes in Bipolar Disorder

interactions with environmental factors (e.g., light, diet, social contacts) that provoke symptoms or negatively affect illness course. Given the widespread involvement of the circadian clock in multiple organ systems and physiological processes, multiple mechanisms may be involved in each individual. It will be of interest in the future to determine whether BD patients who differ in circadian disruption differ in outcomes to chronobiologically based treatments such as sunlight, diet, and socialization. These environmental factors interact with genetic and other biological substrates (including BD-specific risk alleles) to affect the course and progression of BD. It is unclear whether these environmental effects are mediators, modulators, or both. Of note, the three pathways outlined above are not mutually exclusive and could in principle run concurrently. BD, bipolar disorder.

Fig. 3. Pathways by which clock gene variation could affect the illness progression of BD. (1) Clock gene variants may be causally related to BD and directly lead to the emergence of symptoms and mediate some aspects of the illness. (2) Clock genes may act in a pleiotropic manner to alter rhythms in biological processes like neurotransmission, endocrine systems, immune response, and others that affect relevant physiology and modulate the course BD. (3) Chronobiological factors also affect behaviors that affect interactions with environmental cofactors such as sunlight, diet, and socialization. These environmental factors interact with genetic and other biological substrates (including BD-specific risk alleles) to affect the course and progression of BD. It is unclear whether these environmental effects are mediators, modulators, or both. Of note, the three pathways outlined above are not mutually exclusive and could in principle run concurrently. BD, bipolar disorder.

to further resolve the target populations. It will be important to determine the clinical, course of illness, physiological/cellular/molecular mechanisms, and genetic differences that distinguish these groups. Finally, it also will be of considerable interest to correlate molecular and genetic factors with rhythmic behaviors in human subjects and to identify clinical features of BD that may differ as a function of chronobiological features. It is of vital importance to understand how the molecular gears of the ticking clock interlock with other biological and clinical factors underlying BD. These exciting new avenues for chronobiologically based research will continue to bring us closer to a bridge from the bench to the bedside.

Most importantly, research in this important area marks a step toward personalized medicine. Further research on chronobiological profiles in BD may improve diagnostic and classification criteria, inform research of the underlying pathophysiology of the disorder, and clarify the relationships with other clinical characteristics of the illness. Moreover, chronobiological phenotypes may help to identify subgroups of BD patients with distinct etiological factors and/or responses to treatment which may aid in the development of novel and specifically directed interventions [48, 190]. As activity and sleep rhythms are increasingly measured reliably and passively with electronic devices, future research could develop methods for monitoring the illness, allowing patients and clinicians to more effectively intervene when necessary.
We firmly believe that the identification and characterization of chronobiological phenotypes will represent a large step toward improving the characterization, management, and treatment of this debilitating disorder.

Disclosure Statement

M.J. McCarthy has served as a consultant for Janssen Pharmaceuticals. The other authors have no relevant disclosures.

References

1. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011 Mar;68(3):241–51.
2. Pedersen CB, Mors O, Bertelsen A, Wolff BL, Agerbo E, McGrath JJ, et al. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry. 2014 May;71(5):573–81.
3. Kleinman L, Lowin A, Flood E, Gandhi G, Edgell E, Revicki D. Costs of bipolar disorder. Pharmacoeconomics. 2003;21(9):601–22.
4. Insel TR, Scollnick EM. Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry. 2006 Jan;11(1):11–7.
5. Tondo L, Hennen J, Baldessarini RJ. Lower suicide risk with long-term lithium treatment in major affective illness: a meta-analysis. Acta Psychiatr Scand. 2001 Sep;104(3):163–72.
6. Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007 May;64(5):543–52.
7. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Association; 2013.
8. Gonzalez R. The relationship between bipolar disorder and biological rhythms. J Clin Psychiatry. 2014 Apr;75(4):e323–31.
9. Wehr TA, Sack DA, Duncan WC, Mendelson WB, Rosenthal NE, Gillin JC, et al. Sleep and circadian rhythms in affective patients isolated from external time cues. Psychiatry Res. 1985 Aug;15(4):327–39.
10. Kripke DF, Mullaney DJ, Atkinson M, Wolf S. Circadian rhythm disorders in manic-depressives. Biol Psychiatry. 1978 Jun;13(3):335–51.
11. Wehr TA, Muscettola G, Goodwin FK. Urinary 3-methoxy-4-hydroxyphenylglycol circadian rhythm. Early timing (phase-advance) in manic-depressives compared with normal subjects. Arch Gen Psychiatry. 1980 Mar;37(3):257–63.
12. Salvatore P, Ghidini S, Zita G, De Panfilis C, Lambertino S, Maggini C, et al. Circadian activity rhythm abnormalities in ill and recovered bipolar hypertensive. Bipolar Disord. 2008 Mar;10(2):256–65.
13. Linkowski P, Mendlewicz J, Leclercq R, Brasseur M, Hubain P, Golstein J, et al. The 24-hour profile of adrenocorticotropic and cortisol in major depressive illness. J Clin Endocrinol Metab. 1985 Sep;61(3):429–38.
14. Linkowski P, Van Cauter E, Leclercq R, Desmedt D, Brasseeur M, Golstein J, et al. ACTH, cortisol and growth hormone 24-hour profiles in major depressive illness. Acta Psychiatri Belg. 1985 Sep–Oct;85(5):615–23.
15. Linkowski P, Kerkofs M, Van Onderbergen A, Hubain P, Copinschi G, L’Hermitte-Baleraux M, et al. The 24-hour profiles of cortisol, prolactin, and growth hormone secretion in mania. Arch Gen Psychiatry. 1994 Aug;51(8):616–24.
16. Wood J, Birmaher B, Axelson D, Ehmnn M, Kalas C, Monk K, et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res. 2009 Apr;166(2–3):201–9.
17. Nurnberger JI Jr, Adkins S, Lahiri DK, Mayeda A, Huk L, Lwey A, et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry. 2000 Jun;57(6):572–9.
18. Moon JH, Cho CH, Son GH, Geum D, Chung S, Kim H, et al. Advanced Circadian Phase in Mania and Delayed Circadian Phase in Mixed Mania and Depression Returned to Normal after Treatment of Bipolar Disorder. EBioMedicine. 2016 Sep;11:285–95.
19. Nováková M, Práško J, Latalová V, Sládek M, Sumová A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2015 May;17(3):303–14.
20. Pflug B, Martin W. Analysis of circadian temperature rhythm in endogenous depressive illness (author’s transl). Acta Psychiatr Nervenkr (1970). 1980;229(2):127–43. German.
21. Tsujimoto T, Yahama N, Shimoda K, Hanada K, Takahashi S. Circadian rhythms in depression: Part II; circadian rhythms in inpatients with various mental disorders. J Affect Disord. 1990 Mar;18(3):199–210.
22. Pflug B, Erikson R, Johnson A. Depression and daily temperature. A long-term study. Acta Psychiatr Scand. 1978 Oct;54(4):254–66.
23. Pflug B, Johnson A, Eske AT. Manic-depressive states and daily temperature. Some circadian studies. Acta Psychiatr Scand. 1981 Mar;63(3):277–89.
24. Jones SH, Dare DJ, Evershed K. Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar Disord. 2005 Apr;7(2):176–86.
25. Krane-Gartiser K, Henrikson TE, Morken G, Vaela A, Fasmer OB. Actigraphic assessment of motor activity in acutely admitted inpatients with bipolar disorder. PLoS One. 2014 Feb;9(2):e89574.
26. Ashman SB, Monk TH, Kuper DJ, Clark CH, Myers FS, Frank E, et al. Relationship between social rhythms and mood in patients with rapid cycling bipolar disorder. Psychiatr Res. 1999 Apr;86(1):1–6.
27. Malkoff-Schwartz S, Frank E, Anderson B, Sherrill JT, Siegel L, Patterson D, et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch Psychiay. 1998 Aug;55(8):702–7.
28. Malkoff-Schwartz S, Frank E, Anderson BP, Hlustala SA, Luther JP, Sherrill JT, et al. Social rhythm disruption and stressful life events in the onset of bipolar and unipolar episodes. Psychol Med. 2000 Sep;30(5):1005–16.
29. Hudson JI, Lipinski JF, Keck PE Jr, Azlyeg HY, Lukas SE, Rothschild AJ, et al. Polysomnographic characteristics of young manic patients. Comparison with unipolar depressed patients and normal control subjects. Arch Gen Psychiatry. 1992 May;49(5):378–83.
30. Eidelman P, Talbot LS, Gruber J, Hairson L, Harvey AG. Sleep architecture as correlate and predictor of symptoms and impairment in inter-episode bipolar disorder: taking on the challenge of medication effects. J Sleep Res. 2010 Dec;19(4):516–24.
31. Sitaram N, Gillin JC, Bunney WE Jr. The switch process in manic-depressive illness. Circadian variation in time of switch and sleep and manic ratings before and after switch. Acta Psychiatr Scand. 1978 Sep;58(3):267–78.

Funding Sources

M.J. McCarthy is funded by a Merit Award BX003431 from the US Department of Veterans Affairs.

Author Contributions

R. Gonzalez, S.D. Gonzalez, and M.J. McCarthy all contributed to the research and writing of the manuscript.
Chronobiological Phenotypes in Bipolar Disorder

Bunney W. The switch process in manic-depressive psychosis. Ann Intern Med. 1977 Sep;87(3):319–39.

Bunney WE Jr, Goodwin FK, Murphy DL, House KM, Gordon EK. The “switch process” in manic-depressive illness. II. Relationship to catecholamines, REM sleep, and drugs. Arch Gen Psychiatry. 1972 Sep;27(3):304–9.

Duffy A, Alda M, Hajek T, Sherry SB, Grof P. Early stages in the development of bipolar disorder. J Affect Disord. 2010 Feb;121(1–2):127–35.

Skjeldal DV, Malt UF, Holte A. Symptoms and signs of the initial prodrome of bipolar disorder: a systematic review. J Affect Disord. 2010 Oct;126(1–2):1–13.

Duffy A. The early course of bipolar disorder in youth at familial risk. J Can Acad Child Adolesc Psychiatry. 2009 Aug;18(3):200–5.

Faedda GL, Baldessarini RJ, Glovinsky IP, Hirschfeld RM, Lewis L, Vornik LA. Perceptual changes in manic-depressive psychosis. Ann Intern Med. 1977 Mar;87(3):381–6.

Gonzalez R, Tamminga CA, Tohen M, Suppes T. The relationship between affective state and the rhythmicity of activity in bipolar disorder. J Clin Psychiatry. 2014 Apr;75(4):e317–22.

Benvenuti A, Miniati M, Callari A, Giorgi Mariani M, Mauri M, Dell’Osso L. Mood Spectrum Model: evidence reconsidered in the light of DSM-5. World J Psychiatry. 2015 Mar;5(1):126–37.

Crockett MD, Sklar P. Genes of bipolar disorder. Lancet. 2013 May;381(9878):1654–62.

Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry. 2006 Jul;60(2):93–105.

Saper CB, Lu J, Choufani S, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005 Mar;28(3):152–7.

Li JZ, Bunney BF, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA. 2013 Jun;110(24):9950–5.

Fernandez DC, Fogerson PM, Lazzarini Osprì L, Thomsen MB, Layne RM, Severin D, et al. Light affects mood and learning through distinct retina-brain pathways. Cell. 2018 Sep;175(1):71–84.e18.

Mure LS, De HD, Benegiamo G, Chang MW, Chou H, Boland EM, Ross RJ. Recent Advances in the Neurobiology and chronotherapeutics. J Neural Sci. 2007;24(4):553–68.

Hirota T, Fukada Y. Resetting mechanism of peripheral tissues. Science. 2018 Mar;359(6381):539–46.

Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000 Aug;2(3–4):59–74.

Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002 Aug;418(6901):395–41.

Ripperger JA, Shearman IP, Reppert SM, Schibler U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 2000 Mar;14(6):679–89.

Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, et al. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 2014 Apr;12(4):e1001839.

Yamajuku D, Shibata Y, Kitazawa M, Takakura T, Uraha H, Kojima T, et al. Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator. FEBS Lett. 2011 Jul;585(14):2217–22.

Yoshitane H, Asano Y, Sagami A, Sakai S, Suzuki Y, Okamura H, et al. Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol. 2019 Aug;2(1):300.

Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EJ, Mcclung CA. Mood-related central and peripheral clocks. Eur J Neurosci. 2020 Jan;51(1):326–45.

Ketcheson KD, Becker-Krnel D, Mcclung CA. Mood-related central and peripheral clocks. Eur J Neurosci. 2020 Jan;51(1):326–45.
82 Mansour HA, Wood J, Chowdari KV, Dayal
85 McGowan NM, Goodwin GM, Bilderbeck
77 Burke TM, Scheer FA, Ronda JM, Czeisler
392–402.

99 Taillard J, Philip P, Clanestin B, Capelli A, Coste O, Chaumet G, et al. Time course of
daytime vigilance in chronotypes: diurnal
differences and effects of behavioral sleep
tripping types. Sleep. 2007 Jun; 30(6): 773–80.

89 Van Dongen HP (Scharf A, editor). Molecular
Biology of Circadian Rhythms. New York,
NY: John Wiley & Sons; 2004. p. 255–69.

91 Judia M, Vetter C, Roenneberg T. Chrono-
type modulates sleep duration, sleep quality,
and social jet lag in shift-workers. J Biol
Rhythms. 2013 Apr;28(2):141–51.

59 Geel N, Basner M, Bau H, Dinges DF. Circa-
dian rhythms, sleep deprivation, and human
performance. Prog Mol Biol Trans Sci.
2013;119:155–90.

76 Scheer FA, Hilton MF, Mantzoros CS, Shea
SA. Adverse metabolic and cardiovascular
consequences of circadian misalignment.
Proc Natl Acad Sci USA. 2009 Mar;106(11):
4453–8.

79 Reinberg A, Ashkenazi I. Concepts in human
biological rhythms. Dialogues Clin Neurosci.
2003 Dec;4(4):327–42.

41 Bradley AF, Webb-Mitchell R, Hauz A, Slater
N, Middleton B, Gallagher P, et al. Sleep and
circadian rhythm disturbance in bipolar disor-
der. Psychol Med. 2017 Jul;47(9):1678–89.

114 Subramanian K, Sarkar S, Kattimani S. Bipolar
disorder in Asia: illness course and con-
tributing factors. Asian J Psychiatr. 2017
Feb;10(2):155–68.

107 Klei L, Reitz P, Miller M, Wood J, Maendel
109 Boudebesse C, Lajme N, Geoffroy PA, Bel-
livier F, Nieto I, Gard S, et al.; French Aca-
emic Centres of Expertise for Bipolar Disor-
ders (FACE-BD) Collaborators. Chrono-
types of bipolar patients in remission: valid-
ation of the French version of the circadi-
ian type inventory in the FACE-BD sam-
ple. Chronobiol Int. 2013 Oct;30(8):1042–9.

110 Boudebesse C, Lajme N, Geoffroy PA, Bel-
livier F, Nieto I, Gard S, et al.; French Aca-
emic Centres of Expertise for Bipolar Disor-
ders (FACE-BD) Collaborators. Chrono-
types of bipolar patients in remission: valid-
ation of the French version of the circadi-
ian type inventory in the FACE-BD sam-
ple. Chronobiol Int. 2013 Oct;30(8):1042–9.

108 Jones SE, Tyrrell J, Wood AR, Beaumont
RN, Ruth KS, Tuke MA, et al. Genome-Wide
Association Analyses in 128,266 Individu-
als Identifies New Morningness and Sleep
Duration Loci. PLoS Genet. 2016 Aug;
12(8):e1006125.

111 Giglio LM, Magalhães PV, Andersen ML,
100 Killgore WD. Effects of sleep deprivation and
circadian rhythms, sleep deprivation, and human
performance. Prog Mol Biol Trans Sci.
2013:119:155–90.

90 Roenneberg T, Kuehne T, Pramstaller PP, Pram-
staller PP, Guth A, et al. A marker for the
end of adolescence. Curr Biol. 2004 Dec;
14(24):R1038–9.

92 Mongrain V, Dumont E, Dumont M. Morning
and evening-type differences in slow waves
during NREM sleep reveal both trait and state-
dependent phenotypes. PLoS One. 2011;
6(8):e22679.

95 Roenneberg T, Kuehnle T, Pramstaller PP,
101 Barclay NL, Gregory AM. Quantitative genet-
ics in the context of a large comparative effective-
iveness trial. J Affect Disord. 2018 Jan;225:563–8.

87 Sylvia LG, Chang WC, Kamali M, Tohen M,
Kinrys G, Deckersbach T, et al. Sleep distur-
bance may impact treatment outcome in bipo-
lar disorder: A preliminary investigation in the
context of a large comparative effective-
iveness trial. J Affect Disord. 2018 Jan;225:563–8.

86 Banks FD, Lobban F, Fanshawe TR, Jones SH.
Associations between circadian rhythm insta-
Biology of Circadian Rhythms. New York,
NY: John Wiley & Sons; 2004. p. 255–69.

60 Goel N, Basner M, Bau H, Dinges DF. Circa-
dian rhythms, sleep deprivation, and human
performance. Prog Mol Biol Trans Sci.
2013;119:155–90.

102 Baehr EK, Revelle W, Eastman CI. Individ-
ual differences in the phase and amplitude of
daytime vigilance in chronotypes: diur-
nal variations and effects of behavioral sleep
fragmentation. Behav Brain Res. 2008 Jun;
190(1):105–11.

103 Barclay NL, Gregory AM. Quantitative genet-
ics in the context of a large comparative effective-
iveness trial. J Affect Disord. 2018 Jan;225:563–8.

80 Coste O, Chaumet G, et al. Time course of
wakefulness in morning- and evening-type
healthy sleepers. Chronobiol Int. 2011 Jul;
28(6):520–7.

104 Killgore WD. Effects of sleep deprivation and
morningness-eveningness traits on risk-tak-
ing. Psychol Rep. 2007 Apr;100(2):613–26.

81 Romijn HA, Miltenburg AM, Holsboer FC,
et al. The longitudinal course of sleep timing and
circadian preferences in adults with bipolar
disorder. Bipolar Disord. 2015 Jun;17(4):
392–402.

105 Klei L, Reitz P, Miller M, Wood J, Maendel
83, Gross D, et al. Heritability of morning-
ness–eveningness and self-report sleep mea-
sures in a family-based sample of 521 Hutt-
eishes. Chronobiol Int. 2005;22(6):1041–54.

88 Towler DA, Wood AR, Beaumont RN, Kau-
kenen T, Allebrandt K, Gordijn M, et al. Ep-
idemiology of the human circadian clock.
Sleep Med Rev. 2007 Dec;11(6):429–38.

112 Baek JH, Kim JS, Kim MJ, Ryu S, Lee K, Ha
et al. Differences in slow waves during
morningness–eveningness among individuals.
Sleep Med Rev. 2019 May;52:103–11.

113 Giglio LM, Magalhães PV, Andersen ML,
106 Barclay NL, Eley TC, Parsons MJ, Willis TA,
30(8): 1042–9.

107 Klei L, Reitz P, Miller M, Wood J, Maendel
83, Gross D, et al. Heritability of morning-
ness–eveningness and self-report sleep mea-
sures in a family-based sample of 521 Hutt-
eishes. Chronobiol Int. 2005;22(6):1041–54.

84 McCarty MJ, Wei H, Nievergelt CM, Staut-
lund A, Maiohofer AX, Welsh DK, et al. Circa-
dian rhythm and cellular circadian rhythms
predict the clinical response to lithium mainte-
nance treatment in patients with bipolar
disorder. Neurropsychopharmacol. 2019
Feb;44(3):620–8.
Chronobiological Phenotypes in Bipolar Disorder

Kudielka BM, Federenko IS, Hellhammer DH, Wüst S. Morningness and eveningness: the free cortisol rise after awakening in "evening birds" and "night owls." *Biol Psychol.* 2006 May;72(2):141–6.

Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase. *Behav Neurosci.* 2001 Aug;115(4):895–9.

Bailey SL, Heitkemper MM. Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. *Chronobiol Int.* 2001 Mar;18(2):249–61.

Akerstedt T, Fröberg JE. Intercindividual differences in circadian patterns of catecholamine excretion, body temperature, performance, and subjective arousal. *Biol Psychol.* 1976 Dec;4(4):277–92.

Carroll J, Monk TH, Buysse DJ, Kupfer DJ. Sleep and morningness-eveningness in the "middle" years of life (20–59 y). *J Sleep Res.* 1997 Dec;6(4):230–7.

Ishihara K, Miyasita A, Inugami M, Fukuda K, Miyata Y. Differences in sleep-wake habits and EEG sleep variables between active morning and evening subjects. *Sleep.* 1987 Aug;10(4):330–42.

Rosenthal L, Day R, Gerhardtstein R, Meixner R, Roth T, Guido P, et al. Sleepiness/alertness among healthy evening and morning type individuals. *Sleep Med.* 2001 May;2(3):243–8.

Adan A, Guárdia J. Circadian variations of self-reported activation: a multidimensional approach. *Chronobiologia.* 1993 Jul–Dec;20(3–4):233–44.

Kanagarajan K, Gou K, Antinora C, Buyukkurt A, Cresceni O, Beaulieu S, et al. Morningness-Eveningness questionnaire in bipolar disorder. *Psychiatry Res.* 2018 Apr;262:102–7.

Sorea C, Fagioliini A, Frank E, Goodpaster BH, Kupfer DJ. Chronotype and body composition in bipolar disorder. *Chronobiol Int.* 2009 May;26(4):780–8.

Melo MC, Garcia RF, Araújo CF, Luz JH, Bruni PF, Bruni VM. Chronotype in bipolar disorder: an 18-month prospective study. *Br J Psychiatry.* 2020 Jan–Feb;206(1):68–71.

Ozdogan MG, Aydin EF, Ustundag MF, Ceyhun HA, Oral E, Bakan E. Homocysteine, chronotype and clinical course in bipolar disorder patients. *Nord J Psychiatry.* 2020 Jan;1–6.

Godin O, Henry C, Leboyer M, Azorin JM, Aubin V, Bellivier F, et al. Sleep quality, chronotype and metabolic syndrome components in bipolar disorders during the remission period: results from the FACE-BD cohort. *Chronobiol Int.* 2017;34(8):1114–24.

Dallasega S, Suzuki M, Clara L, Colombo C, Benedetti F. Chronotype influences response to antidepressant chronotherapeutics in bipolar patients. *Chronobiol Int.* 2018 Sep;35(9):1319–25.

Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al.; eQTLGen Consortium; BFOs Consortium; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association study identifies 30 loci associated with bipolar disorder. *Nat Genet.* 2019 May;51(5):793–803.

Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. *Nat Commun.* 2019 Jan;10(1):343.

Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerslag AR, et al.; 23andMe Research Team. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. *Nat Genet.* 2019 Mar;51(3):394–403.

Lane JM, Lindh J, Vlasci I, Anderson SG, Bechtold DA, Beelen R, et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. *Nat Genet.* 2017 Feb;49(2):274–81.

Lane JM, Jones SE, Dashii HS, Wood AR, Aragam KG, van Hees VT, et al.; HUNT All In Sleep. Biological and clinical insights from genetics of insomnia symptoms. *Nat Genet.* 2019 Mar;51(3):387–93.

Lane JM, Vlasci I, Anderson SG, Kyle SD, Dixon WG, Bechtold DA, et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. *Nat Commun.* 2016 Mar;7(1):10889.

Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY, Hinds DA. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. *Nat Commun.* 2016 Feb;7(1):10448.

Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, et al. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. *PLoS One.* 2015 Mar;10(3):e0116696.

Buniello A, MacArthur JA, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. *Nucleic Acids Res.* 2019 Jan;47(D1):D1005–12.

McCarthy MF. Missing a beat: assessment of circadian rhythm abnormalities in bipolar disorder in the genomic era. *Psychiatr Genet.* 2019 Apr;29(2):29–36.

Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, Kavakli IH, et al. Machine learning helps identify CHRONO as a circadian clock component. *PLoS Biol.* 2014 Apr;12(4):e1001840.

Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 sub-phenotypes. *Cell.* 2018 Jun;173(7):1705–15. e16.

Zho H, Jía Pátek IJ, Lu YH. Diversity of human clock genotypes and consequences. *Prog Mol Biol Transl Sci.* 2013;119:51–81.

Ferguson A, Lyyla LM, Ward J, Strawbridge RJ, Cullen B, Graham N, et al. Genome-Wide Association Study of Circadian Rhythmicity in 71,500 UK Biobank Participants and Polygenic Association with Mood Instability. *Ebiomedicine.* 2018 Sep;35:279–87.

Hammerslag AR, Stringer S, de Leeuw CA, Snickers T, Taskesen E, Watanabe K, et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. *Nat Genet.* 2017 Nov;49(11):1584–92.

Doherty A, Smith-Byrne K, Ferreira T, Holmes MV, Holmes C, Pulit SL, et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. *Nat Commun.* 2018 Dec;9(1):5257.

Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. *Nat Genet.* 2018 Jul;50(7):912–9.

Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagaenars SA, McIntosh AM, et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. *Mol Psychiatry.* 2019 Feb;24(2):169–81.

Coleman JR, Bryois J, Gaspar HA, Jansen PR, Savage JE, Skene N, et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. *Mol Psychiatry.* 2019 Feb;24(2):182–97.

Snickers S, Stringer S, Watanabe K, Jansen PR, Coleman JR, Krapohl E, et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. *Nat Genet.* 2017 Jul;49(7):1107–12.

Lee JJ, Wedow R, Okbay A, Kong E, Maghazian O, Zacher M, et al.; 23andMe Research Team; COGENT (Cognitive Genomics Consortium); Social Science Genetic Association Consortium. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. *Nat Genet.* 2017 Mar;49(3):234–42.

Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. *Nat Commun.* 2018 May;9(1):2098.

Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liwold DC, et al. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. *Cell Rep.* 2017 Nov;21(9):2597–613.
155 Castaño Ramírez OM, Gómez Montoya SM, Brown SA, Kunz D, Dumas A, Westermark Porter RJ, Inder M, Douglas KM, Moor S, DOI: 10.1159/000506636
153 Smeland OB, Bahrami S, Frei O, Shadrin A, Gonzalez/Gonzalez/McCarthy Mol Neuropsychiatry 2019;5(suppl 1):72–84
156 Brown SA, Fleury-Olela F, Nagoshi E, Hau-chiatry. 2013 Oct; 3(10):e318.
154 Porter RJ, McPhie DL, Cohen BM, et al. Genetic analysis reveals extensive genetic overlap be-
157 between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry. doi: 10.1038/s41380-018-0332-x.
158 between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry. doi: 10.1038/s41380-018-0332-x.
159 Brown SA, Frampton CM, et al. Improvement in cognitive function in young people with bipolar disorder: results from partic-
160 ipants in an 18-month randomised controlled trial of adjunctive psychotherapy. Aust NZ J Psychiatry, 2020 Mar;54(3):272–81.
176 Tournier BB, Dardente H, Simonneaux V, Hakkarainen R, Johansson C, Kieseppä T, Thompson C, Stinson D, Fernandez M, Fine
177 Reinberg A, Andlaunder P, De Prins J, Malbecq W, Vrees E, Salvati E, Belougu JL, Pringuey D, Candido M, Krebs B, et al. Circadian rhythm in depression and recovery: evidence for blunted amplitude as the main chronobio-
178 Reinberg A, Andlaunder P, De Prins J, Malbecq W, Vrees E, Salvati E, Belougu JL, Pringuey D, Candido M, Krebs B, et al. Circadian rhythm in depression and recovery: evidence for blunted amplitude as the main chronobio-
179 Smith MR, Burgess HJ, Fogg LF, Eastman CI. Racial differences in the human endog-
180 enous circadian period. PLoS One. 2009 Jun; 4(6):e6014.
181 Hasan S, Santhi N, Lazar AS, Slak A, Lo J, von Schantz M, et al. Assessment of circadia-
182 nian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin. FASEB J. 2012 Jun;26(6):
183 2414–23.
184 Burgess HJ, Fogg LF. Individual differences in the amount and timing of salivary melatoni-
185 nor circadian rhythm and intolerance to shift work. Nature. 1984 Mar;308(5956):272–4.
186 Reinberg A, Motohashi Y, Bourdeau P, Andlaunder P, Levi F, Bicakova-Rocher A. Al-
187 teration of period and amplitude of circadi-
188 Reinberg A, Andlaunder P, De Prins J, Malbecq W, Vrees E, Salvati E, Belougu JL, Pringuey D, Candido M, Krebs B, et al. Circadian rhythm in depression and recovery: evidence for blunted amplitude as the main chronobio-
189 Motohashi Y. Alteration of circadian rhythm in shift-working ambulance personnel. Monitoring of salivary cortisol rhythm. Er-
190 gonomics. 1992 Nov;35(11):1331–40.
191 Reinberg A, Andlaunder P, Guillet P, Nicolai A, Vieux N, Laporte A. Oral temperature, circadian rhythm amplitude, ageing and tol-
192 erance to shift-work. Ergonomics. 1980 Jan;23(1):55–64.
193 Andlaunder P, Reinberg A, Fournel L, Battle W, Duverneuil G. Amplitude of the oral tem-
194 perature circadian rhythm and the tolerance to shift-work. J Physiol (Paris). 1979;16(1):21–34.
195 Motohashi Y. Alteration of circadian rhythm in shift-working ambulance personnel. Monitoring of salivary cortisol rhythm. Er-
196 gonomics. 1992 Nov;35(11):1331–40.
197 Reinberg A, Andlaunder P, Guillet P, Nicolai A, Vieux N, Laporte A. Oral temperature, circadian rhythm amplitude, ageing and tol-
198 erance to shift-work. Ergonomics. 1980 Jan;23(1):55–64.
199 Pagani L, St Clair PA, Teshiba TM, Service SK, Fears SC, Araya C, et al. Genetic contri-
200 butions to circadian activity rhythm and sleep pattern phenotypes in pedigrees seg-
201 regating for severe bipolar disorder. Proc Natl Acad Sci USA. 2016 Feb;113(6):E754–61.
202 First MB, Pincus HA, Levine JB, Williams JB, Ustun B, Pelle R. Clinical utility as a cri-
203 terion for revising psychiatric diagnoses. Am J Psychiatry, 2004 Jun;161(6):946–54.