Review Article

Epstein–Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity

Kentaro Kikuchi, Harumi Inoue, Yuji Miyazaki, Fumio Ide, Masaru Kojima, Kaoru Kusama

Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan

Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan

Received 11 April 2016; received in revised form 28 December 2016; accepted 31 January 2017

KEYWORDS
Epstein–Barr virus (EBV); Oral squamous cell carcinoma (OSCC); MTX- and age-related EBV + B-cell LPD; Activation-induced cytidine deaminase (AID); Early growth transcription response-1 (Egr-1)

Summary
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of Japanese Association for Dental Science. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epstein–Barr virus (EBV) was first isolated by Epstein et al. [1] in 1964 from cultured cells of Burkitt’s lymphoma frequently found in children of equatorial Africa. EBV, human herpes virus-4 (HHV-4), is classified as one of the γ herpes subfamily of the HHVs [2]. It is a double-stranded DNA virus of about 170 kb, and encodes about 80 genes. EBV-determined nuclear antigen-1 (EBNA-1) is required for self-replication of the virus [3–5], and EBNA-2 and latent infection membrane protein-1 (LMP-1) are associated with immortalization of infectious cells in vitro [6–8]. EBV occurs almost universally, and about 90–95% of adults throughout the world become infected, usually in childhood or early adolescence [9,10]. The oral cavity and pharyngolarynx is the main portal through which environmental pathogens enter the human body. The oral cavity is located close to Waldeyer’s ring, which is rich in lymphoid tissue. Although EBV has been known to infect B cells of the pharyngeal tonsils via saliva, it has been shown that EBV also infects other cell types, including epithelial cells [2,11]. Despite the close association of EBV with a range of lymphoid and epithelial malignancies, the virus does not cause major symptoms in the majority of lifelong carriers with EBV-infected memory B lymphocytes [12,13]. The role of EBV in transformation in human malignancies remains unclear, particularly in epithelial cancer. EBV gene expression alters the biological properties of the infected cells in both latent and lytic infections, and may result in the development of cancer in humans [14]. EBV is associated with a variety of malignant lymphomas, such as Burkitt’s, Hodgkin’s and non-H Hodgkin’s lymphoma in immunodeficiency, and lymphoepitheloma-like carcinoma of the parotid gland, as well as epithelial malignancy of the thyroid, lung, nasopharynx, and stomach [10,15–18] (Fig. 1). Moreover, EBV-associated lymphoproliferative disorders (EBV-LPDs) are known to occur through EBV reactivation due to decreased immunity of the host in situations such as infectious diseases [19], organ transplantation [20], drug use [21] and aging [22]. In fact, we have previously reported EBV-associated B-cell LPDs arising in the oral cavity [23,24]. Various EBV-associated epithelial carcinomas such as those of the nasopharynx [25], stomach [26–32], salivary gland [33–35], breast [36–43], bladder [44], kidney [45], uterine cervix [46], colon [47], and lung [48] have been described. Most oral carcinomas are squamous cell carcinomas that originate from outgrowth of the mucosal epithelium. The reported rate of positivity for latent EBV genes in patients with oral squamous cell carcinoma (OSCC) has varied from 15% to 70% [49–59]. Although there have been many reports on the association of EBV with OSCCs or LPDs in the oral cavity, the role of EBV in carcinogenesis and cancer development remains unclear. The recently reported EBV-associated epithelial and non-epithelial malignancies, OSCCs and LPDs, are herein reviewed.

2. Interaction of EBV with host cell surface receptors and cell entry

Cell entry is a fundamental part of the infectivity process for any virus, and cell surface receptors are the critical molecules for target cell recognition determining cell tropism and species specificity [60–62] (Table 1). The EBV double-stranded linear DNA genome is packed inside a capsid which is surrounded by a tegument. This is further enclosed by a lipid envelope consisting of several conserved glycoproteins. These glycoproteins play important roles during initial attachment and subsequent viral entry through interaction with specific host cell surface receptors mediating micropinocytosis [62,63] and lipid raft-dependent endocytosis [62–64]. The initial phase of EBV attachment to the cell surface of B cells occur via the viral envelope glycoprotein gp350/gp220, which interacts with the cellular receptor CD21 [65], and also with CD35 as an alternative EBV attachment receptor in certain CD21-negative cells [66]. EBV glycoprotein gp350 (or gp220) binds to CD21 (or CD35) inducing endocytosis, and the EBV is then captured by the B
EBV-related human tumors and tumor-like lesions

![Diagram showing EBV-related tumors](image)

Figure 1 Human tumor associated EBV is related to a wide range of human epithelial and non-epithelial malignancies.

Table 1 EBV glycoproteins and host cell surface receptors.

Infected cell types of EBV	EBV glycoproteins [Gene name]	Role in virus entry	Attachment receptors/uptake or co-receptor	Uptake mechanism
B cells	gp350 [BLLF1]	Attachment to B-cell	CD21 (CR2)	Macropinocytosis and lipid raft-dependent endocytosis
	gp42 [BZLF1]		CD35(CR1)	
	gp25 (gL) [BKRF2]	Attachment to B-cell		
	gp110 (gB) [BALF4]	Membrane fusion	HLA class II	
	gp85 (gL) [BDLF3]	Chaperon for gH	Unknown	Lipid raft-dependent endocytosis
epithelial cells	BMRF2 (BMRF2)	Attachment to epithelial cells	Integrin β1, a5	
(oropharyngial)	gp25 (gL) [BKRF2]	Membrane fusion	Integrin αvβ6, αvβ8	
	gp110 (gB) [BALF4]	Chaperon for gH	Unknown	
		Membrane fusion	NRP1	

Cell [67]. Interaction with B lymphocyte virus glycoprotein gB and a 3-part complex of glycoproteins, gH/gL/gp42, and human leukocyte antigen class II (HLA class II) eventually triggers fusion of the virus with the endosomal membrane, allowing entry of the tegumented capsid into the cytoplasm [68]. On the other hand, in epithelial cells, direct interaction between EBV gH/gL and integrins αvβ6 and αvβ8 can provide the trigger for fusion of EBV with an epithelial cell [69]. In addition, the EBV transmembrane envelope glycoprotein BMRF2 has been shown to interact with integrins β1 and a5 on oral epithelial cells, but not on B cells [70,71]. Recently it has been reported that in nasopharyngeal epithelial cells, neuropilin 1 (NRP1) interacts with EBV gB and promotes EBV infection of epithelial cells by coordinating the receptor tyrosin kinase (RTK) signaling pathway and macropinocytic events [72].

3. Gene expression patterns in EBV latency

EBV shows primary tropism for B cells and epithelial cells, but can also infect NK, T and smooth muscle cells, with the ability to cause oncogenesis in all of these cell types [73]. EBV infection in epithelial cells exhibits an expression program distinct from that of B cells [74,75]. EBV
infection of primary B cells initiates a robust growth and proliferation program in which type III latency genes are expressed, including non-coding RNAs (EBV-encoded small RNA: EBERs), six nuclear proteins (EBNA1, 2, 3A, 3B, 3C and EBNA-LP) and three membrane proteins (LMP-1, 2A and 2B) [76]. In contrast, EBV infection dose not induce clonal expression in primary epithelial cells [77]. EBNA-LP, EBNA2 and EBNA3C, which play a crucial role in B cell immortalization and cell cycle progression, are not expressed in infected epithelial cells. A more restricted group of latent genes (type II latency) are expressed, including EBNA1, LMP1, LMP2A and EBERs [12,77–79]. Notably, high level of BamHI A rightward transcripts (BARTs) are expressed in both nasopharyngeal carcinoma and gastric cancer, suggesting their involvement in epithelial malignancies [79–81]. EBV has a biphasic life cycle with two stages. The lytic cycle allows EBV to productively infect new cells and new hosts, whereas the latency cycle is vital to allow persistence of the virus within infected cells. Latency can be further divided into four types (Table 2) with restricted viral gene expression to avoid immune surveillance. Viral gene expression changes when EBV enters the lytic cycle [74–76].

4. Roles of EBV-encoded latent genes in carcinogenesis

The oncogenic capacity and properties of EBV are recognized through its in vitro transforming effects. Following infection of primary human B cells in vitro, EBV induces their proliferation resulting in the development of lymphoblastoid cell lines (LCLs). The genes of six EBV nuclear antigens (EBNA1, 2, 3A, 3B, 3C and EBNA-LP) as well as three latent membrane proteins (LMP-1, 2A and 2B) are expressed in these cells. Likewise, these proteins are expressed in the early phases of natural infection [82,83]. EBNA2 is regarded as the central transcription factor for both viral and cellular gene expression. It is responsible for B cell proliferation and expressed in LCLs [84]. LMP-1 expression, in turn, is regulated by EBNA2 and serves as an active receptor for tumor necrosis factor (TNF-α), which is essential for apoptosis [85]. LMP-1 has also been reported to signal in the B cell similarly to CD40-CD40 ligand interaction, showing functional properties similar to those of activated CD40 [86]. However, in the absence of EBNA2 in EBV-proliferating B lymphocytes, CD40 activation and LMP1 expression confer a similar phenotypic characteristic, i.e. the continuous survival of the cell [87]. Interestingly, however, both CD40 activation and LMP1 expression also prevent apoptosis of B cells [88,89]. Additionally, experiments with transgenic mice have revealed that LMP1 mimics CD40 signaling for B-cell differentiation during natural infection [90]. The roles of different EBV-encoded latent genes in tumor formation have been confirmed [91,92] and these are summarized in Table 3.
Table 3 Roles of EBV-encoded latent genes in oncogenesis [91,92].

Latent genes	Role of latent genes
EBNA-1	Transactivator of viral latent genes and host genes; responsible for episome replication, segregation and persistence of viral genome; involved in p53 degradation and oncogenesis.
EBNA-LP	Transcriptional co-activator of EBNA-2-dependent viral and cellular gene transcription; it is essential for EBV-mediated B-cell transformation.
EBNA-2	Activates viral and cellular gene transcription for transformation. It is critical for EBV-mediated B-cell transformation.
EBNA-3A	A co-activator of EBNA-2; downregulate c-Myc transcription and block EBNA-2 activation effects; and induce CDKN2 and chemokines. It is essential for EBV-mediated B-cell transformation.
EBNA-3B	A co-activator of EBNA-2; dispensable for B-cell transformation; viral tumor suppressor; and up regulates CXCL10. EBNA-3B-knockout induces DLBCL-like tumors.
EBNA-3C	Co-activators with EBNA-2 host CXCR4 and CXCL12; overcomes EBV-infection-mediated DNA damage response; promotes cell proliferation; induces G1 arrest; it is essential for EBV-mediated B-cell transformation.
LMP-1	Mimics the consistutively active form of CD40, activates NF-κB, JNK and p38 pathways; is critical for EBV-mediated B-cell transformation, a major EBV-encoded oncogene; activates NF-κB, JNK and p38 pathways; and induces EMT of NPC and acquisition of cancer stem cell-like properties.
LMP-2A	Mimics constitutively active, antigen-independent BCR signaling through constitutive activation of the ERK/MAPK pathway224; blocks antigen-dependent BCR signaling; induces B-cell lymphoma in transgenic condition; it is important but not essential for in vitro primary B-lymphocyte growth transformation; rescues the LMP-1-generated impairment in germinal center in the response to antigen in animals; confers resting B cells sensitive to NF-κB inhibition and apoptosis; suppresses differentiation and promotes epithelial cell spreading and motility in epithelial cells; and enriches cancer stem cell-like population.
EBER	Most abundant EBV-encoded non-coding RNAs; augments colony formation and induces growth; confers cells resistance to PKR-dependent apoptosis; induces cytokines and modulates innate immune response; binds to La, PKR, L22, PRR and RIG-I; and EBER-mediated RIG-I activation likely contributes to EBV oncogenesis. EBER blockades of PKR-mediated phosphorylation of eIF2α results in blockage of eIF2α-mediated inhibition of protein synthesis and resistance to IFN-α-induced apoptosis.

5. Detection of EBV gene and latent infection gene expression in normal epithelia, epithelial dysplasia, and OSCC of the oral cavity

5.1. Detection of EBV genes by PCR

Previous reports have indicated that the average rate of detection of EBNA-2 in OSCC tissue by PCR is about 42.8% [49–52]. This is similar to the rate (52.0%) we found in 150 cases of OSCC (Fig. 2), but the rate of LMP-1 detection by PCR was low. The rate of detection of EBV genes in OSCC (EBNA-2: 52.0%, LMP-1: 10.7%) tends to be low in comparison with NPC (EBNA-2: 66.7%, LMP-1: 33.3%) [93]. It has been reported that the positivity rate for EBNA-2 and LMP-1 in Japan is 70% in Okinawa (in the south) and 30% in Hokkaido (in the north) [52,53]. Some authors have reported that LMP-1 is detectable by PCR in 95.6% of NPC tissues, whereas it was not detectable in OSCC, pharyngeal carcinoma or tonsil tissue [94]. Moreover, Horiuchi et al. have reported that EBV infection in OSCCs was detected in 52.8% of cases by PCR and that EBER was detected 27.5% of cases by in-situ hybridization (ISH), whereas LMP-1 was not detectable [54]. These reports indicated a low level of LMP-1 among the EBV genes in OSCCs. A research group in Thailand has indicated that EBV is not a risk factor for OSCC, as they found that EBER was not detectable in 24 such cases [95]. A more recent PCR study has reported positivity for EBV infection in all of 36 (100%) OSCCs, 7 of 9 (77.8%) pre-cancerous lesions and 10 of 12 (8.3%) normal mucosa samples [96]. Furthermore, a research group in Taiwan using EBV genomic microarray (EBV-chip) has reported a high rate of EBV infection (82.5%) in biopsy specimens from 57 cases of OSCC [94]. Using PCR, we have confirmed the presence of EBV latent infection genes in normal epithelia, gingivitis, epithelial dysplasia, and OSCC. The expression of EBV latent infection genes was significantly higher in severe epithelial dysplasia (EBNA-2: 66.7%, LMP-1: 44.4%) than in OSCC (EBNA-2: 52.0%, LMP-1: 10.7%), which is a finding not reported previously. EBV genes were also detectable in normal mucosa (EBNA-2:83.3% and LMP-1:23.3%) and gingivitis (EBNA-2:78.1% and LMP-1:21.9%) [93]. Similarly, it has been reported that the EBV detection rate was 0–7% [49,55,56] or 92% [57] in normal oral mucosa, and 19–27% in gingivitis [97], thus supporting our PCR data for non-tumorous lesions. These findings suggest that the oral cavity is an environment that favors latent EBV infection (Figs. 3 and 4).

5.2. Detection of EBER by in-situ hybridization (ISH)

As EBER is detected in healthy adults with a history of EBV infection, there is a need for caution with evaluation. In EBV-infected cells EBER is localized primarily in the nucleus, but may also be present in the cytoplasm [98]. Therefore, there
Figure 2 Detection of the EBNA-2 genes in oral squamous cell carcinomas (OSCCs) by PCR. PCR analysis of Epstein–Barr virus (EBV) genes in formalin-fixed, paraffin-embedded tissues. The detection rate of EBNA-2 (206 bp) in OSCC specimens was 52.0%. Positive and negative cases are marked red and green, respectively. EBNA-2 bands showed the same level as those in Raji cells used as a positive control.

Figure 3 EBER and LMP-1 expression in OSCCs detected by ISH and IHC. HE staining (a, d), EBER (b, e), and LMP-1 (c, f). Positive reaction for EBER and LMP-1 shows a similar distribution in OSCC (b, c). Reaction for EBER is weakly positive in SCC, and inflammatory cells are strongly positive in the stroma (e). Reaction for LMP-1 is strongly positive in SCC and inflammatory cells in the stroma (f). (a–c, original magnification, ×12.5, d–f, original magnification, ×200).

is a need to evaluate both of these sites. We found a positive reaction for EBER in the nucleus or cytoplasm in each of the lesions we tested. High-grade EBER expression was more evident in NPC (61.9%) than in SCC (34.7%). Here we newly demonstrated that high-grade EBER expression was significantly more frequent in severe epithelial dysplasia (94.4%) than in OSCC (34.7%), mild to moderate epithelial dysplasia (21.5%), and gingivitis (65.6%) [93]. EBER was highly expressed in severe epithelial dysplasia and was related to carcinogenesis in pre-cancerous tissue. Gene expression indicative of EBV infection is considered to be reduced over time after a cancerous change occurs. In Burkitt’s lymphoma cell lines, EBV clones become reduced during long-term passage [3].
5.3. Detection of LMP-1 by immunohistochemistry (IHC)

LMP-1 is known to be an oncogene [7,8] essential for immortalization of B cells developing into B-cell lymphoma in transgenic mice [99,100]. Furthermore, it has been reported that LMP-1 inhibits the differentiation of human epithelial cells [101], being also related to cancer development, growth, invasion, metastasis and the epithelial-mesenchymal transition [102]. However, there have been few reports of LMP-1 expression in OSCC. Using IHC, Gonzalez-Moles et al. showed that LMP-1 protein was positively expressed in 31 out of 78 (39.7%) OSCCs, 19% of which showed EBV-positivity by PCR [58]. Similarly, Kobayashi et al. found expression of LMP-1 protein in 6 out of 46 (13.0%) OSCCs [51]. In contrast to these reports, Kis et al. [103] and Cruz et al. [104] detected no expression of LMP-1 protein in OSCC. In a recent study, however, high-grade expression of LMP-1 was observed in NPC (52.4%), OSCC (38.7%), severe epithelial dysplasia (72.2%), mild to moderate epithelial dysplasia (6.2%), and gingivitis (6.3%) [93]. Although LMP-1 expression was most commonly seen in NPC, its expression was also significant in OSCC. Of note was that the rate of high-grade LMP-1 expression was higher in severe epithelial dysplasia (72.2%) than in OSCC (38.7%) [93], a new finding that had not been reported previously. It has been reported that LMP-1 expression is related to the activation of signal transducer and activator of transcription 3 activation (STAT3) [105,106]. An important role of LMP-1 expression is activation of STAT3, and also the signaling pathway that includes Janus kinase 3 (JAK3)/STAT3, inhibitor of kappa B kinase (IκB kinase: IKK)/nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1), and MAPK/extracellular signal-regulated kinase (ERK) [106,107]. Fang et al. have reported that LMP-1 has a double activation mechanism due to an increase in the NPC cell membrane programmed cell death protein 1 ligand (PD-L1), and induction of PD-L1 in the JAK/STAT pathway through the interferon-γ (IFN-γ) receptor by production of IFN-γ from T-cells [107]. Furthermore, Chen et al. have reported that LMP-1 expression increased the levels of STAT3 and c-MYC protein in NPC cell lines [108]. Expression of LMP-1 in oral precancerous lesions and OSCC suggests the involvement of STAT3 activation in the dysplasia-carcinoma sequence in the oral cavity.

6. EBV-associated B-cell lymphoproliferative disorders (LPDs) of the oral cavity

6.1. MTX-related EBV-associated B cell LPDs

In recent years, reports of EBV-associated B-cell LPD of the oral cavity have increased [23,24,109,110]. EBV-associated B-cell LPDs occurring in the oral cavity are often seen as intractable mucosal ulcers (Fig. 5a,b) or as failure of extraction sockets to heal (Fig. 5c,d) [23,24,109]. The affected patients are believed to be immunosuppressed, a condition that causes reactivation of EBV. EBV-driven B cell LPDs can be age-related or can occur in patients who are immunosuppressed due to primary immune deficiency, HIV infection, organ transplantation, and treatment with methotrexate (MTX) or tumor necrosis factor-α (TNF-α) antagonist for rheumatoid arthritis (RA) [111,112]. MTX is regarded as an effective immunosuppressive agent for treatment of autoimmune diseases, especially RA, and is therapeutically effective in many cases that are resistant to some anti-rheumatic drugs [113]. Recently, it has been shown that patients with RA and other rheumatic diseases treated with MTX have an increased risk of developing LPDs or lymphomas [114]. Patients with immunodeficiency have a higher risk of LPDs than immunocompetent individuals. Approximately 50% of LPDs are EBV-positive [114]. Overall, approximately 40% of reported cases have involved extranodal sites, including the gastrointestinal tract, skin, lung, kidney, and soft tissues [114,115], including the oral cavity [23,109,110]. Overall, however, approximately 60% of reported cases have shown at least partial regression in response to withdrawal of MTX, the majority being EBV positive cases [114]. The mechanism by which MTX increases the propensity of RA patients for development of lymphomas.
is not entirely clear. Menke et al. [115] have reported that cell dysregulation as measured by p53 protein expression and EBV-related transformation play important roles in the pathogenesis of lymphomas arising in patients with connective tissue disease who are immunosuppressed with MTX.

6.2. Age-related EBV-associated B cell LPDs

Age-related EBV-associated B cell LPD is a group of clinicopathologic entities, originally described by Oyama et al. [116], that differs from immunodeficiency-associated LPDs in the World Health Organization (WHO) classification [117], occurring predominantly in elderly patients over the age of 50 years (median age 71 years) and sharing features of EBV-positive B cell neoplasms seen in patients with immunologic impairment despite absence of any predisposing immunodeficiency [116,118]. Age-related EBV positive B cell LPD may be associated with immune senescence in the elderly, and is now incorporated into the 2008 WHO lymphoma classification as EBV-positive diffuse large B cell lymphoma (DLBCL) of the elderly [119]. Approximately 70% of reported cases of this newly described disease have involved extranodal sites, such as the skin, lung, tonsil and stomach [119], and been characterized by proliferation of atypical large B cells including Hodgkin and Reed–Sternberg-like cells with reactive inflammatory components. Age-related EBV-associated B cell LPD is rare in the oral cavity [24] (Fig. 5c, d).

6.3. Roles of LMP-1 protein in B cell lymphomagenesis

The products of viral genes upregulate a variety of cellular antigens and expression of genes in B cells. Key molecular pathways controlling the cell cycle, such as nuclear factor-kappa-light-chain-enhancer of activated B-cells (NF-kB), are activated and virus-induced cytokines exert paracrine proliferative effects [12,120–122]. The major EBV-encoded LMP-1 is an integral membrane protein, which activates signaling pathways such as that involving NF-kB, which increases B-cell survival and facilitates transformation [85,123–126] by induction of anti-apoptotic protein. LMP-1 is a 63-kDa integral membrane protein with three domains, and contains two distinct functional regions within its C-terminus, designated C-terminal activating regions 1 and 2 (CTAR1 and CTAR2). The protein also protects cancer cells from apoptosis, by inducing anti-apoptotic proteins, including BCL-2, MCL-1, A20, early growth response transcription factor-1(Egr-1) and SNARK [127–129]. An in vitro study has shown that EBV-infected cells undergo hypermutation or switching of recombination via up-regulation of activation-induced cytidine deaminase (AID) [130], and EBV-induced AID is also associated with oncogene mutations that contribute to lymphomagenesis [131]. In a mouse bone marrow transplantation model, AID overexpression was reported to promote B-cell lymphomagenesis [132]. Although the relationship between LMP-1 and lymphomagenesis has been relatively
6.4. Roles of AID in B-cell lymphomagenesis

Activation-induced cytidine deaminase (AID) is normally expressed in germinal center (GC) B-cells [110,133] (Fig. 6), where it plays a central role in both somatic hypermutation and class switch recombination in humans and mice [134,135]. AID converts single-stranded genomic cytidine to uracil, with pronounced activity in the immunoglobulin variable and switch regions [136–139]. Aberrant expression of AID and abnormal targeting of AID activation in both B- and non-B-cells causes DNA double-strand breaks (DSBs) and DNA point mutations in both Ig and non-Ig genes, inducing tumorigenesis [140]. AID is required for chromosomal DSBs at the c-myc and IgH loci, leading to reciprocal c-myc/IgH translocations and resulting in the development of B-cell lymphomas, such as Burkitt lymphoma in humans and plasmacytoma in mice [141]. AID protein is localized more in the cytoplasm than in the nucleus in normal and neoplastic B-cells, and cytoplasmic AID protein relocates to the nucleus when pathological change occurs in B-cells [142,143]. A recent in vitro study by Kim et al. [144] has shown that LMP-1 increases genomic instability through Egr-1-mediated up regulation of AID in B-cell lymphoma cell lines.

6.5. Roles of Egr-1 in B-cell lymphomagenesis

The early growth transcription response-1 (Egr-1) gene (also named zif268, NGFI-A, or Krox24) encodes an 80-kDa DNA-binding transcription factor [145]. Egr-1 is an exceptionally multi-functional transcription factor. In response to growth factors and cytokine signaling, Egr-1 regulates cell growth, differentiation and apoptosis [146]. Egr-1 has been associated with EBV infection [147]. First, Egr-1 is upregulated when EBV interacts with B lymphocytes at the initial infection stage, and constitutive expression of Egr-1 correlates with certain types of EBV latency in B-lymphoid cell lines.
EBV reactivation is associated with up-regulation of Egr-1, and Egr-1 can be induced as an EBV lytic transactivator [149].

6.6. Comparison of DLBCLs with MTX- and age-related EBV-associated B-cell LPDs

AID triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Such aberrant AID expression is seen in B-cell leukemia/lymphomas, including Burkitt lymphoma which is associated with c-myc translocation. Moreover, LMP-1 increases genomic instability through Egr-1 mediated upregulation of AID in B-cell lymphoma cell lines. A recent in vitro study by Kim et al. [144] has shown that LMP-1 increases genomic instability through Egr-1-mediated upregulation of AID in B-cell lymphoma cell lines. A recent in vivo study [110] has demonstrated overexpression of AID, including LMP-1 and Egr-1, in LPDs (MTX- and age-related) associated with pre-cancerous states due to immunosuppression in the head and neck. In LPDs that occur in patients who are immunosuppressed due to MTX administration or ageing, memory B-cells without mutation/translocation first express LMP-1 by reactivation of EBV latent genes. Secondly, LPDs with polyclonal growth show an increase AID expression through the LMP-1/NF-kB/Egr-1 signaling pathway, and LPDs with monoclonal proliferation undergo gene mutation or gene translocation through the effect of increased AID. Abnormal long-term expression of AID in LPDs leads to development of true malignant lymphoma, and the changed malignant B-cell lymphomas show an increase of AID expression through acquired monoclonal growth. On the other hand, lymphoma caused by a gene mutation will develop when the expression of AID is absent or low involved.

EBV infection is relate to cancers of lymphoid and epithelial tissues such as Burkitt’s lymphoma, Hodgkin’s disease, NPC, gastric carcinoma and OSCC. However, it has remained uncertain whether EBV plays a role in lymphomagenesis and carcino genesis of the oral cavity. Using PCR and ISH, we have found that EBV latent genes are present in B-cell-type lesions (LPDs) as well as in oral epithelial lesions (inflamed gingiva, severe epithelial dysplasia and OSCC). In particular, it was suggested that LMP-1 expression may play an important role in lymphomagenesis and carcinogenesis in the oral cavity. In the dysplasia-carcinoma sequence, LMP-1 expression was mostly higher in severe epithelial dysplasia than in OSCC. In LPDs, expression of LMP-1, Egr-1 and AID was higher than in DLBCLs. Both LPDs and severe epithelial dysplasia are considered to be precancerous conditions. Increased AID expression in LPDs of the oral cavity may be part of
the process of lymphogenesis, thereby further increasing the survival of genetically destabilized B-cells. Likewise, the LMP-1/Egr-1/AID signaling pathway may be related to the dysplasia–carcinoma sequence in the oral cavity. Further study is needed to clarify the role of EBV latent genes and their reactivation mechanisms for malignant transformation in oral disease.

Conflict of interest

There are no conflicts of interest associated with this review.

Acknowledgements

Part of this work was supported by the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Scientific Research (KAKENHI) No. 25463118.

References

[1] Epstein MA, Achorng BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1964;1:702–3.
[2] Okano M, Gross TG. Advanced therapeutic and prophylactic strategies for Epstein–Barr virus infection in immunocompromised patients. Expert Rev Anti Infect Ther 2007;5:403–13.
[3] Shimizu N, Tanabe-Tochikura A, Kuroiwa Y, Takada K. Isolation of Epstein–Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol 1994;68:6069–73.
[4] Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 1985;313:815–40.
[5] Shirakata M, Imadome KJ, Hirai K. Requirement of replication licensing for the dyad symmetry element-dependent replication of the Epstein–Barr virus ori P minichromosome. Virology 1999;263:42–54.
[6] Wang F, Gregory CD, Rowe M, Richardson AB, Wang D, Birkenbach M, et al. Epstein–Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci U S A 1987;84:3452–6.
[7] Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985;313:43–81–40.
[8] Wang D, Liebowitz D, Wang F, Gregory C, Rickinson A, Larson R, et al. Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 1988;62:473–84.
[9] Luzuria K, Sullivan JL. Infectious mononucleosis. N Engl J Med 2010;362:1993–2000.
[10] Houldcroft CJ, Kellam P. Host genetics of Epstein–Barr virus infection, latency and disease. Rev Med Virol 2015;25:71–84.
[11] Paydas S, Ergin M, Erdogan S, Seydaoglu G. Prognostic significance of EBV-LMP1 and VEGF—a expression in non-Hodgkin’s lymphomas. Leuk Res 2008;32:1424–30.
[12] Yong LS, Richardson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer 2004;4:757–68.
[13] Vockerodt M, Yap L-F, Shannon-Lowe C, Curley H, Wei W, Vizalikova K, et al. The Epstein–Barr virus and the pathogenesis of lymphoma. J Pathol 2015;235:312–22.
[14] Tsao SW, Tsang CM, Pang PS, Zhang G, Chen H, Lo KW. The biology of EBV infection in human epithelial cells. Semin Cancer Biol 2012;22:137–43.
[15] Li J, Mookerjee B, Wagner J, Flomenberg N. In vitro methods for generating highly purified EBV-associated tumor antigen-specific T cells by using solid phase T cell selection system for immunotherapy. J Immunol Methods 2007;328:169–81.
[16] Young LS, Rowe M. Epstein–Barr virus, lymphomas and Hodgkin’s disease. Semin Cancer Biol 1992;3:273–84.
[17] Ambinder RF, Mann RB. Detection and characterization of Epstein–Barr virus in clinical specimens. Am J Pathol 1994;145:239–52.
[18] Jha HC, Banerjee S, Robertson ES. The role of gamma-herpesviruses in cancer pathogenesis. Pathogenesis 2016;5(18):1–43.
[19] Raphaeli M, Said J, Borish C, Cesarman E, Harris NL. Lymphomas associated with HIV infection. In: Swerdlow SH, Campo E, Harris NL, Jaff ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 340–2.
[20] Swerdlow SH, Webber SA, Chadburn A, Ferry JA. Post-transplant lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, Jaff ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 350–1.
[21] Gaujard P, Swerdlow SH, Harris NL, Jaffe ES, Sundström C. Other iatrogenic immunodeficiency-associated lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, Jaff ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 343–9.
[22] Nakamura S, Jaffe ES, Swerdlow SH. EBV positive diffuse large B-cell lymphoma of the elderly. In: Swerdlow SH, Campo E, Harris LN, Jaff ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 243–4.
[23] Kikuchi K, Miyazaki Y, Tanaka A, Shigematu H, Kojima M, Sakashita H, et al. Methotrexate-related Epstein–Barr Virus (EBV)-associated lymphoproliferative disorder–so-called Hodgkin-like lesion–of the oral cavity in a patient with rheumatoid arthritis. Head Neck Pathol 2010;4:305–11.
[24] Kikuchi K, Fukunaga S, Inoue H, Miyazaki Y, Kojima M, Ide F, et al. A case of age-related Epstein–Barr virus (EBV)-associated B cell lymphoproliferative disorder, so-called polymorphic subtype, of the mandible, with a review of the literature. Head Neck Pathol 2013;7:178–87.
[25] Chan JKC, Bray F, McCarron P, Foo W, Lee AWM, Yip T, et al. Nasopharyngeal carcinoma. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. WHO classification of tumors, pathology and genetics of head and neck tumours. Lyon: IARC; 2005. p. 85–97.
[26] Burke AP, Yen TS, Shekitika KA, Sobin LH. Lymphoepithelial carcinoma of the stomach with Epstein–Barr virus demonstrated by polymerase chain reaction. Mod Pathol 1990;3:377–80.
[27] Shibata D, Weiss LM. Epstein–Barr virus-associated gastric adenocarcinoma. Am J Pathol 1992;140:769–74.
[28] Tokunaga M, Land CE, Uemura Y, Tokudome T, Tanaka S, Sato E. Epstein–Barr virus in gastric carcinoma. Am J Pathol 1993;143:1250–4.
[29] Imai S, Koizumi S, Sugimori M, Tokunaga M, Uemura Y, Yamamoto N, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein. Proc Natl Acad Sci U S A 1994;91:9131–5.
[30] Fukayama M, Hayashi Y, Iwasaki Y, Chong J, Ooba T, Takizawa T, et al. Epstein–Barr virus-associated gastric carcinoma and Epstein–Barr virus infection of the stomach. Lab Investig 1994;71:73–81.

[31] Iizasa H, Nanbo A, Nishikawa J, Jinushi M, Yoshiyama H. Epstein–Barr virus (EBV)-associated gastric carcinoma. Viruses 2012;4:3420–36.

[32] Nishikawa J, Yoshihisa H, Iizasa H, Kameiho Y, Nakamura M, Nishimura J, et al. Epstein–Barr virus in gastric carcinoma. Cancers 2014;6:2259–74.

[33] Hamilton-Dutoit SJ, Hamilton-Therklidsen M, Nielsen NH, Jensen H, Hensen JPH, Pallesen G. Undifferentiated carcinoma of the salivary gland in Greenland Eskimos: demonstration of Epstein–Barr virus DNA by in situ hybridization. Hum Pathol 1991;22:811–5.

[34] Kotsiantis A, Costopoulos J, Mergolla S, Papadimitrakis C. Undifferentiated carcinoma of the parotid gland in a white patient: detection of Epstein–Barr virus by in situ hybridization. Hum Pathol 1996;27:87–90.

[35] Herbst H, Niedobitek G. Sporadic EBV-associated lymphoepithelial salivary gland carcinoma with EBV-positive low-grade myoepithelial component. Virchows Arch 2006;448:648–54.

[36] Labrecque LG, Barnes DM, Fentiman IS, Griffin BE. Epstein–Barr virus in epithelial cell tumors: a breast carcinoma study. Cancer Res 2001;55:39–45.

[37] Jawz S, Salam M, Awad NH. Detection of Epstein–Barr virus in breast carcinoma in Egyptian women. Clin Biochem 2008;41:486–92.

[38] Arbach H, Viglasky V, Lefeu F, Guinebretière JM, Ramirez V, Bride N, et al. Epstein–Barr virus (EBV) genome and expression in breast carcinoma tissue: effect of EBV infection of breast carcinoma cells on resistance to paclitaxel (Taxol). J Virol 2006;80:845–53.

[39] Preciado MV, Chabay PA, De Matteo EN, Gonzalez P, Grinstein S, Actis A, et al. Epstein–Barr virus in breast carcinoma in Argentina. Arch Pathol Lab Med 2005;129:377–81.

[40] Khabaz M. Association of Epstein–Barr virus infection and breast carcinoma. Arch Med Sci 2013;30:745–51.

[41] Perrigueau JG, den Boon JA, Friedl A, Newton MA, Ahlquist P, Sugden B. Lack of association between EBV and breast carcinoma. Cancer Epidemiol Biomark Prev 2005;14:809–14.

[42] Herrmann K, Niedobitek G. Lack of evidence for an association of Epstein–Barr virus infection with breast carcinoma. Breast Cancer Res 2003;5:13–7.

[43] Deshpande CG, Badve S, Kidwai N, Longnecker R. Lack of expression of the Epstein–Barr virus (EBV) gene products, EBERs, EBNA1, LMP1, and LMP2A, in breast cancer cells. Lab Invest 2002;82:1193–9.

[44] Gazzaniga P, Vercillo R, Gradilone A, Silvestri I, Gandini O, Napolitano M, et al. Prevalence of papillomavirus, Epstein–Barr virus, cytomegalovirus, and herpes simplex virus type 2 in urinary bladder cancer. J Med Virol 1998;55:262–7.

[45] Shimakage M, Kawahara K, Harada S, Sasagawa T, Shinka T, Oka T. Expression of Epstein–Barr virus in renal cell carcinoma. Oncol Rep 2007;18:41–6.

[46] Sasagawa T, Shimakage M, Nakamura M, Sakaie J, Ishikawa H, Inoue M. Epstein–Barr virus (EBV) genes expression in cervical intraepithelial neoplasia and invasive cervical cancer: a comparative study with human papillomavirus (HPV) infection. Hum Pathol 2000;31:318–26.

[47] Liu HX, Ding YQ, Sun YO, Liang L, Yang YF, Qi ZL, et al. Detection of Epstein–Barr virus in human colorectal cancer by in situ hybridization. Di Yi Jun Yi Da Xue Xue Bao 2002;22:915–7.

[48] Castro CY, Ostrowski ML, Barrios R, Green LK, Popper HH, Powell S, et al. Relationship between Epstein–Barr virus and lymphoepithelioma-like carcinoma of the lung: a clinicopathologic study of 6 cases and review of the literature. Hum Pathol 2001;32:863–72.

[49] O'Donovan J, Saranath D, Sanghvi Y, Mehta AR. Epstein–Barr virus in tobacco-induced oral cancers and oral lesions in patients from India. J Oral Pathol Med 1998;27:78–82.

[50] González-Moles M, Gutiérrez J, Ruiz I, Fernández JA, Rodríguez M, Aneiros J. Epstein–Barr virus and oral squamous cell carcinoma in patients without HIV infection: viral detection by polymerase chain reaction. Microbios 1998;96:23–31.

[51] Kobayashi I, Shima K, Saito I, Kiyoshima T, Matsuo K, Ozeki S, et al. Prevalence of Epstein–Barr virus in oral squamous cell carcinoma. J Pathol 1999;189:34–9.

[52] Tsuchako K, Nakazato I, Miyagi J, Iwamasa T, Arasaki A, Hirotsuka H, et al. Comparative study of oral squamous cell carcinoma in Okinawa, Southern Japan and Sapporo in Hokkaido, Northern Japan; with special reference to human papillomavirus and Epstein–Barr virus infection. J Oral Pathol Med 2000;29:70–9.

[53] Higa M, Kinjo T, Kaimamya K, Chinen K, Iwamasa T, Arasaki A, et al. Epstein–Barr virus (EBV)-related oral squamous cell carcinoma in Okinawa, a subropical island, in southern Japan-simultaneously infected with human papillomavirus (HPV). Oral Oncol 2003;39:405–14.

[54] Horuchi K, Mishima K, Ichijima K, Sugimura M, Ishida T, Kiriti T. Epstein–Barr virus in the proliferative diseases of squamous epithelium in the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;79:57–63.

[55] Sand LP, Jalouli J, Larsson PA, Hirsch JM. Prevalence of Epstein–Barr virus in oral squamous cell carcinoma, oral lichen planus, and normal oral mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;93:586–92.

[56] Bagán JV, Jiménez Y, Murillo J, Poveda R, Díaz JM, Gavaldà C, et al. Epstein–Barr virus in oral proliferative verrucous leukoplakia and squamous cell carcinoma: a preliminary study. Med Oral Palatol Cir Bucal 2008;13:110–3.

[57] Jang HS, Cho JO, Yoon CY, Kim HJ, Park JC. Demonstration of Epstein–Barr virus in odontogenic and nonodontogenic tumors by the polymerase chain reaction (PCR). J Oral Pathol Med 2001;30:603–10.

[58] Gonzalez-Moles MA, Gutierrez J, Rodriguez MJ, Ruiz-Avila J, Rodriguez-Archilla A. Epstein–Barr virus latent membrane protein-1 (LMP-1) expression in oral squamous cell carcinoma. Laryngoscope 2002;112:482–7.

[59] Shimakage M, Horii K, Tempaku A, Kakudo K, Shirasaka T, Sasagawa T. Association of Epstein–Barr virus with oral cancers. Hum Pathol 2002;33:608–14.

[60] Marsh M, Helenius A. Virus entry. Cell 2006;124:729–40.

[61] Sieczkarski AB, Whitaker GR. Viral entry. Curr Top Microbiol Immunol 2005;280:1–23.

[62] Sxhafer G, Blumenthal MJ, Katz AA. Interaction of human tumor virus with host cell surface receptors and cell entry. Viruses 2015;7:2592–617.

[63] Wang HB, Zhang H, Zhang JP, Li Y, Zhao B, Feng GK, et al. Neureopilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun 2015;6:6240.

[64] Katzman RB, Longnecker R. Cholesterol-dependent infection of Burkitt’s lymphoma cell lines by Epstein–Barr virus. J Gen Virol 2003;84:2987–92.

[65] Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 1984;81:4510–4.

[66] Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos GC, et al. Human complement receptor type 1/CD35 is an Epstein–Barr virus receptor. Cell Rep 2013;3:371–85.
[67] Tanner J, Weis J, Fearon D, Whang Y, Kieff E. Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capsulation, and endocytosis. Cell 1987; 50: 203–13.

[68] Li Q, Springer MK, Kovats S, Turk SM, Comeau MR, Nepom B, et al. Epstein–Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 1997; 71: 4657–62.

[69] Chenskova NS, Lishchuna SL, Hutt-Fletcher LM. Fusion of epithelial cells by Epstein–Barr virus: virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 and αvβ8. Proc Natl Acad Sci U S A 2009; 106: 20464–9.

[70] Xiao J, Palefsky JM, Herrera R, Berlina J, Tugizov SM. The Epstein–Barr Virus BMRF-2 protein facilitates virus attachment to oral epithelial cells. Virology 2008; 370: 430–42.

[71] Xiao J, Palefsky JM, Herrera R, Berlina J, Tugizov SM. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells. Virology 2009; 388: 335–43.

[72] Wang HB, Zhang H, Zhang JP, Li Y, Zhao B, Feng GK, et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun 2015; 6: 6240.

[73] Hutt-Fletcher LM. Epstein–Barr virus entry. J Virol 2007; 81: 7825–32.

[74] Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, et al. The Epstein–Barr virus and pathogenesis of lymphoma. J Pathol 2015; 235: 312–22.

[75] Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein–Barr virus in epithelial malignancies. J Pathol 2015; 235: 323–33.

[76] Houldcroft CJ, Kellam P. Host genetics of Epstein–Barr virus infection, latency and disease. Rev Med Virol 2015; 25: 71–84.

[77] Tsao SW, Tsang CM, Pang PS, Zhang G, Chen H, Lo KW. The biology of EBV infection in human epithelial cells. Semin Cancer Biol 2012; 22: 137–43.

[78] Tsang CM, Zhang G, Seto E, Takada K, Deng W, Yap YL, et al. Epstein–Barr virus infection in immortalized nasopharyngeal epithelial cells: regulation of infection and phenotypic characterization. Int J Cancer 2010; 127: 1570–83.

[79] Marquitz AR, Mathur A, Chugh PE, Dittmer DP, Raab-Traub N. Expression profile of microRNAs in Epstein–Barr virus-infected AGS gastric carcinoma cells. J Virol 2014; 88: 1389–93.

[80] Strong MJ, Xu G, Cocco J, Baribault C, Vinay DS, Lacey MR, et al. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 2013; 9: e1003341.

[81] Lung RW, Tong JH, To KF. Emerging roles of small Epstein–Barr virus-derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013; 14: 17378–409.

[82] Fai K, Erber S, Sakthivel R, Davis J, Christensen B, Luka J, et al. Expression of Epstein–Barr virus-encoded proteins and B-cell markers in fatal infectious mononucleosis. Int J Cancer 1990; 46: 976–84.

[83] Tierney RJ, Steven N, Young LS, Richardson AB. Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 1994; 68: 7374–85.

[84] Gordadze AV, Poston D, Ling PD. The EBNA2 polyproline region is dispensable for Epstein–Barr virus-mediated immortalization maintenance. J Virol 2002; 76: 7349–55.

[85] Gires D, Zimmer-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R, et al. Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 1997; 16: 6131–40.

[86] Farrell PJ. Signal transduction from the Epstein–Barr virus LMP-1 transforming protein. Trends Microbiol 1998; 6: 175–7.

[87] Zimmer-Strobl U, Kemptes B, Marschall G, Zeidler R, Van Kooten C, Banchereau J, et al. Epstein–Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J 1996; 15: 7070–8.

[88] Gregory CD, Dive C, Henderson S, Smith CA, Williams GT, Gordon J, et al. Activation of Epstein–Barr virus latent genes protects human B cells from death by apoptosis. Nature 1991; 349: 612–4.

[89] Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 1991; 65: 1107–15.

[90] Uchida J, Yasui T, Takaoa-Shichijo Y, Muraoka M, Kilwichit W, Raab-Traub N, et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 1999; 286: 300–3.

[91] Kang MS, Kieff E. Epstein–Barr virus latent genes. Exp Mol Med 2015; 47: e131.

[92] Ali AS, Al-Shraim M, Al-Hakami AM, Jones JM. Epstein–Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis. Open Virol J 2015; 9:7–28.

[93] Kikuchi K, Noguchi Y, de Rivera MW, Hoshino M, Sakashita H, Yamada T, et al. Detection of Epstein–Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol 2016; 37: 3389–404.

[94] Tsang NM, Chang WP, Lin SY, Hsu SP, Tseng CK, Kuo TT, et al. Detection of Epstein–Barr virus-derived latent membrane protein-1 gene in various head and neck cancers: is it specific for nasopharyngeal carcinoma? Laryngoscope 2003; 113: 1050–4.

[95] Iamaoro A, Khemaleelakul U, Pongsriwet S, Pintong J. Co-expression of p53 and K</s>
[106] Liu YP, Tan YH, Wang ZL, Zeng L, Lu ZX, Li LL, et al. Phosphorylation and nuclear translocation of STAT3 regulated by the Epstein–Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Int J Mol Med 2008;21:153–62.

[107] Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget 2014;5:12189–202.

[108] Chen H, Hutt-Fletcher L, Cao L, Hayward SD. A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein–Barr virus. J Virol 2003;77:4139–48.

[109] Dojcinov SD, Venkataraman G, Raffeld M, Pittaluga S, Jaffe ES. EBV positive mucocutaneous ulcer—a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol 2010;34(March (3)):405–17.

[110] Kikuchi K, Ishige T, Ide F, Ito Y, Saito I, Hoshino M, et al. Overexpression of activation-induced cytidine deaminase in MTX- and age-related Epstein–Barr virus-associated B-cell lymphoproliferative disorders of the head and neck. J Oncol 2015;2015:605750, http://dx.doi.org/10.1155/2015/605750. Epub 2015 Mar S. PubMed PMID: 25834572; PubMed Central PMCID: PMC44365324.

[111] Jaffe ES, Harris NL, Swerdlow SJ, et al. Immunodeficiency-associated lymphoproliferative disorder. In: Swerdlow SJ, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. World Health Organization classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 335–51.

[112] Oyama T, Ichimura K, Suzuki R, Suzumiji J, Ohshima K, Yatabe Y, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathological study of 22 patients. Am J Surg Pathol 2003;27:16–26.

[113] Tishler M, Caspi D, Yaron M. Long-term experience with low dose methotrexate in rheumatoid arthritis. Rheumatol Int 1993;13:103–6.

[114] Salloum E, Cooper DL, Howe G, Lacy J, Tallini G, Crouch J, et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J Clin Oncol 1996;14:1943–9.

[115] Menke DM, Griesser H, Morder KG, Tefferi A, Luthra HS, Cohen MD, et al. Lymphomas in patients with connective tissue disease. Comparison of p53 protein expression and latent EBV infection in patients immunosuppressed and not immunosuppressed with methotrexate. Am J Clin Pathol 2000;113:212–8.

[116] Oyama T, Ichimura K, Suzuki R, Suzumiji J, Ohshima K, Yatabe Y, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol 2003;27:16–26.

[117] Borisch B, Raphael M, Swerdlow SH, Jaffe ES, et al. Immunodeficiency associated lymphoproliferative disorders. In: Harris NL, Stein H, Vardiman JW, Jaffe ES, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 255–71.

[118] Oyama T, Yamamoto K, Asano N, Oshiro A, Suzuki R, Kagami Y, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res 2007;13:5124–32.

[119] Nakamura S, Jaffe ES, Swerdlow SH. EBV-positive diffuse large B-cell lymphoma of the elderly. In: Swerdlow SJ, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008. p. 243–4.

[120] Kanegane H, Wakiyuchi H, Kanegane C, Kurashige T, Tosato G. Viral interleukin-10 in chronic active Epstein–Barr virus infection. J Infect Dis 1997;176:254–7.

[121] Kojima M, Kashimura M, Itoh H, Noro A, Akikusa B, Iijima M, et al. Epstein–Barr virus–related reactive lymphoproliferative disorders in middle-age or elderly patients presenting with atypical features. A clinicopathological study of six cases. Pathol Res Pract 2007;203:587–91.

[122] Kutok JL, Wang F. Spectrum of Epstein–Barr virus–associated diseases. Annu Rev Pathol 2006;1:375–404.

[123] Murray PG, Young LS, Rowe M, Crocker J. Immunohistochemical demonstration of the Epstein–Barr virus–encoded latent membrane protein in paraffin sections of Hodgkin's disease. J Pathol 1992;166:1–5.

[124] Peng M, Lundgren E. Transient expression of the Epstein–Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 1992;7(September):1775–82.

[125] Huen DS, Henderson SA, Croom-Carter D, Rowe M. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 1995;10:549–60.

[126] Cahir McFarland ED, Izumi KM, Mosialos G. Epstein–Barr virus transformation: involvement of latent membrane protein 1-mediated activation of NF-kappaB. Oncogene 1999;18:6959–64.

[127] Baumforth KR, Young LS, Flavell KJ, Constandinou C, Murray PG. The Epstein–Barr virus and its association with human cancers. Mol Pathol 1999;52:307–22.

[128] Kim JH, Kim WS, Kang JH, Lim HY, Ko YH, Park C. Egr-1, a new downstream molecule of Epstein–Barr virus latent membrane protein 1. FEBS Lett 2007;581:623–8.

[129] Kim JH, Kim WS, Park C. SNARK, a novel downstream molecule of EBV latent membrane protein 1, is associated with resistance to cancer cell death. Leuk Lymphoma 2008;49:1392–8.

[130] He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BlyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 2003;171:5215–24.

[131] Epeldegui M, Hung YP, McQuay A, Ambinder RF, Martinez-Maza O. Infection of human B cells with Epstein–Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol Immunol 2007;44:934–42.

[132] Komeno Y, Kitaura J, Watanabe-Okochi N, Kato N, Oki T, Nakahara F, et al. AID-induced T-Lymphoma or B-leukemia/lymphoma in a mouse BMT model. Leukemia 2010;24:1018–24.

[133] Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999;274:18470–6.

[134] Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000;102:565–75.

[135] Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinaki Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102:553–63.

[136] de Yebenes VG, Ramiro AR. Activation-induced deaminase: light and dark sides. Trends Mol Med 2006;12:432–9.

[137] Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 2006;18:164–74.
[138] Delker RK, Fugmann SD, Papavasililou FN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 2009;10:1147–53.

[139] Kuraoka M, McWilliams L, Kelsoe G. AID expression during B-cell development: searching for answers. Immunol Res 2011;49:3–13.

[140] Park SR. Activation-induced cytidine deaminase in B cell immunity and cancers. Immunol Res 2011;49:3–13.

[141] Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R, et al. Expression of the AID protein in normal and neoplastic B cells. Blood 2004;104:3318–25.

[142] Cattoretti G, Büttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 2006;107:3967–75.

[143] Kim JH, Kim WS, Park C. Epstein—Barr virus latent membrane protein 1 increases genomic instability through Egr-1-mediated up-regulation of activation-induced cytidine deaminase in B-cell lymphoma. Leuk Lymphoma 2013;54:2035–40.

[144] Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 1987;238:797–9.

[145] Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2013;229:286–97.

[146] Rickinson AB, Kieff E. Epstein—Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2575–627.

[147] Calogero A, Cuomo L, D’Onofrio M, de Grazia U, Spinsanti P, Mercola D, et al. Expression of Egr-1 correlates with the transformed phenotype and the type of viral latency in EBV genome positive lymphoid cell lines. Oncogene 1996;13:2105–12.

[148] Chang Y, Lee HH, Chen YT, Lu J, Wu SY, Chen CW, et al. Induction of the early growth response 1 gene by Epstein—Barr virus lytic transactivator Zta. J Virol 2006;80:7748–55.