I. INTRODUCTION

Dirac physics is one of the central concepts driving the intellectual revolution of topological phases in condensed matter physics [1, 2]. Since the seminal proposal of quantum spin Hall effect in graphene with a hypothetically large spin-orbit coupling [3, 4], it has been known that gapping a Dirac system is a natural way to achieve a gapped topological state. On the other hand, boundary modes with Dirac dispersion often emerge on the \((d - 1) \)-dimensional boundaries of a \(d \)-dimensional topological phase, enforced by the bulk-boundary correspondence principle. For example, two-dimensional (2d) and three-dimensional (3d) time-reversal-invariant topological insulators (TI) are known to host one-dimensional (1d) helical Dirac edge states [3–6] and 2d Dirac surface states [1, 2], respectively.

A massless 3d Dirac state is different from its 1d and 2d counterparts in that practically it can only exist in a 3d bulk Dirac system in solids and that its Dirac point enjoys a four-fold degeneracy, as required by the spinor mathematical structure of the Dirac equation. A 3d Dirac phase can thus be viewed as a highly degenerate quantum critical point that could lead to various interesting topological phases upon symmetry breakings. However, it took almost a decade for the community to realize that 3d Dirac points with four-fold degeneracy are supported (DSM) with a pair of robust 3d Dirac points. These bulk Dirac points with four-fold degeneracy are supported by the combined protection of time-reversal symmetry (TRS), spatial inversion symmetry, and certain out-of-plane rotational symmetries. When projected onto the surface, the bulk Dirac points are connected by arc-like surface states on the Fermi surface, which manifests the topological nature of a DSM. Importantly, such DSMs can be driven to a 3d TI or a Weyl semimetal by explicit or spontaneous symmetry breakings. Another intriguing 3d Dirac phase is the 3d Dirac superconductor (DSC) [12], whose defining features are gapless Dirac points in the bulk Bogoliubov-de Gennes (BdG) spectrum and Majorana Fermi-arc surface states. Candidate materials for 3d DSCs include Cu\(_2\)Bi\(_2\)Se\(_3\) [12], doped DSMs [13, 14], and iron-based superconductors [15].

On the other hand, a recent development in the topological classification of matter is the extension of band topology into a “higher-order” version [16–21], where the topologically protected boundary modes can live in a lower codimension than those in traditional topological materials. Specifically, we adapt the definition in which an \(n \)-th order topological state has anomalous gapless modes on its \(d - n \) dimensional boundary. In this definition, \(n = 1 \) and \(n > 1 \) correspond respectively to traditional and higher-order topological phases. For example, a 3d second-order TI has energy gaps on its 2d surfaces, but the hinges connecting different surfaces can host 1d channels that penetrate both bulk and surface gaps. The robustness of this new type of higher-order topology often originates from the protection of certain crystalline spectroscopy (ARPES) measurements [10, 11] have unambiguously established them as 3d “Dirac semimetals” (DSM) with a pair of robust 3d Dirac points. These bulk Dirac points with four-fold degeneracy are supported by the combined protection of time-reversal symmetry (TRS), spatial inversion symmetry, and certain out-of-plane rotational symmetries. When projected onto the surface, the bulk Dirac points are connected by arc-like surface states on the Fermi surface, which manifests the topological nature of a DSM. Importantly, such DSMs can be driven to a 3d TI or a Weyl semimetal by explicit or spontaneous symmetry breakings. Another intriguing 3d Dirac phase is the 3d Dirac superconductor (DSC) [12], whose defining features are gapless Dirac points in the bulk Bogoliubov-de Gennes (BdG) spectrum and Majorana Fermi-arc surface states. Candidate materials for 3d DSCs include Cu\(_2\)Bi\(_2\)Se\(_3\) [12], doped DSMs [13, 14], and iron-based superconductors [15].

On the other hand, a recent development in the topological classification of matter is the extension of band topology into a “higher-order” version [16–21], where the topologically protected boundary modes can live in a lower codimension than those in traditional topological materials. Specifically, we adapt the definition in which an \(n \)-th order topological state has anomalous gapless modes on its \(d - n \) dimensional boundary. In this definition, \(n = 1 \) and \(n > 1 \) correspond respectively to traditional and higher-order topological phases. For example, a 3d second-order TI has energy gaps on its 2d surfaces, but the hinges connecting different surfaces can host 1d channels that penetrate both bulk and surface gaps. The robustness of this new type of higher-order topology often originates from the protection of certain crystalline
symmetries in the sense that the boundary modes of a higher-order topological phase cannot be removed without either closing the bulk gap or breaking these symmetries [22]. This type of higher-order topological phases are often referred to as “intrinsic”, which is in contrast to the “extrinsic” ones that lack crystalline symmetry protection.

While higher-order TIs have attracted considerable attention, there has been relatively little research on higher-order topology in superconductors [23–35]. One major difference between the two cases is that in the latter, the hinge or corner-localized states are essentially Majorana modes. So far, extrinsic higher-order topological superconductivity has been theoretically proposed in TI/unconventional superconductor heterostructures [24–27], iron-based superconductors [36–38], and other platforms [29, 30, 34, 35], whereas inversion-protected intrinsic superconductivity has been proposed in gated monolayer WTe$_2$ [39] and doped ferromagnetic nodal semimetals [40]. Overall, intrinsic higher-order 3d topological superconductors (TSC) remain largely unexplored.

Here we raise the following important conceptual questions: Can an intrinsic 3d higher-order version of topological Dirac phases in principle exist? If so, what are the protecting symmetries? Surprisingly, there has been little research to systematically establish the connection between Dirac and higher-order topological physics. A pioneering attempt towards this direction was made in Ref. [41], where the proposed quadrupolar semimetal state is actually a surface state with an energy gap in the bulk. On the other hand, Ref. [42, 43] showed interesting examples of bulk nodal phases with gapless hinge modes, while the role of symmetry protection and the corresponding topological invariants were not clearly demonstrated. In the context of spinless fermions, Ref. [44] and Ref. [40] have explored the possibility of higher-order monopole nodal line physics, where the higher-order topology is protected by the spatial inversion symmetry. The gaplessness of the bulk here, however, relies on the spin SU(2) symmetry, so the ubiquitous spin-orbit coupling can drive the phase into a higher-order TI by breaking the SU(2) symmetry. Therefore, the possibility of symmetry-protected higher-order topological Dirac phases in 3d remains an important open question.

In this work, we introduce a new type of gapless topological phase, the higher-order topological Dirac superconductor (HOTDSC), as the first example of a symmetry-protected higher-order three-dimensional superconducting Dirac phase. The HOTDSC gets its name from simultaneously hosting 3d bulk Dirac nodes, 2d gapped surface states, and 1d helical hinge Majorana modes in the BdG spectrum, all of which are enforced by symmetries [see Fig. 1 (a)]. We first show that the bulk Dirac points and the Majorana hinge modes are protected by C_6 rotation and inversion symmetry respectively. We then define a set of topological invariants accordingly that fully characterize this phase. Importantly, we point out that introducing superconductivity to doped DSMs can be a practical way to experimentally realize this exotic higher-order phase. Through a systematic study of superconducting DSMs with various rotational symmetries [see Table I], we find that C_6 is the lowest symmetry that is compatible with the minimal symmetry and topological requirements for a HOTDSC.

To develop the theory, we construct a minimal model for the HOTDSC phase by introducing a time-reversal pairing gap that is odd under both C_6 rotation and inversion to a C_6-symmetric doped DSM. Specifically, we show analytically and numerically that our minimal model, both in the continuum limit and on a hexagonal
prism lattice, not only exhibits the expected topological invariants, but also possesses a pair of robust bulk Dirac points, gapped 2d surfaces, and helical Majorana hinge modes. Hence the bulk-boundary correspondence for the HOTDSC phase is explicitly demonstrated in our model.

Importantly, our proposed HOTDSC phase also offers an example of a higher-order topological quantum critical point. As shown in Fig. 1 (b), a variety of higher-order topological phases could be achieved upon different symmetry breakings of a HOTDSC, including an intrinsic/extrinsic higher-order TSC, a Weyl superconductor and a higher-order Weyl superconductor. In particular, the higher-order Weyl superconductor is a qualitatively new type of gapless topological state that has never before been defined or studied. Different from a HOTDSC, a higher-order Weyl superconductor features not only 3d bulk Weyl nodes connected by 2d surface Majorana Fermi arcs in the BdG spectrum, but also possesses co-existing 1d helical hinge Majorana modes. Remarkably, all these exotic topological features in different dimensions are protected against mixing with each other by the translational symmetry, offering a natural example for “hybrid higher-order topology” [33].

The paper is organized as follows. In Sec. II, we present a detailed discussion on the bulk topological invariants that are crucial for defining the HOTDSC phase. By clarifying the topological nature of superconducting DSMs, we identify the symmetry requirements for HOTDSC phase. In Sec. II A, we briefly review the extension of symmetry operations from a normal electron system to its BdG counterpart. In Sec. II B, we first review the definition of topological charge for electronic DSMs and further generalize the theory to describe BdG Dirac systems. This extension allows us to establish the deep connection between superconducting DSMs and Dirac superconductors. In Sec. II D, we develop a simple relation between the mirror Chern number of a BdG system and that of its normal part. In Sec. II C, we review the theory of symmetry indicator \(\kappa \) for inversion-symmetric BdG systems, which are responsible for hinge Majorana physics in HOTDSC. The above discussions on the topological indices pave the way for clarifying the required conditions of HOTDSC, which is concluded in Sec. II E.

In Sec. III, we present a minimal lattice model for the HOTDSC phase and establish the defining properties of the HOTDSC phase both analytically and numerically. In Sec. III A, we start by introducing a tight-binding model for 3d \(C_6 \)-symmetric DSM on a hexagonal lattice. In Sec. III B, we classify pairing terms that satisfy the symmetry requirement for HOTDSC, thus leading to the non-trivial bulk Dirac physics. In Sec. III C, we analytically solve our superconducting model for the low-energy surface state in a cylinder geometry and construct an effective boundary BdG theory for our model. This effective theory shows an anisotropic surface pairing gap that directly implies the existence of hinge Majorana states. In Sec. III D, we numerically calculate the energy spectrum in an infinite long hexagonal prism geometry to unambiguously and explicitly demonstrate the co-existence of bulk Dirac physics and helical hinge Majorana physics.

In Sec. IV, we establish the HOTDSC phase as a higher-order topological quantum critical point and introduce the concept of higher-order Weyl SC. We then show how various topological phases (especially the higher-order Weyl physics) naturally emerge from the HOTDSC by breaking different symmetries. Finally in Sec. V, we summarize our results and discuss possible directions for the experimental realization of our predictions.

II. Symmetries and Topological Invariants for HOTDSC

In this section, we establish the theoretical framework for a HOTDSC phase by introducing the crucial symmetries and the corresponding topological invariants. In particular, we define a topological charge \(Q_j \) for \(C_n \) rotation symmetry, a mirror Chern number \(C_M \) for a mirror symmetry in \(z \) direction, and a symmetry indicator \(\kappa \) for the spatial inversion symmetry. These three invariants govern the topological properties of the 3d bulk, 2d surfaces, and 1d hinges respectively in a 3d superconductor. The basic requirements for realizing a HOTDSC are determined by both the symmetry constraints and the values of \(\{ Q_j, C_M, \kappa \} \).

A. Symmetry for BdG Systems

We start by reviewing the symmetry properties of a general BdG Hamiltonian

\[
H(k) = \begin{pmatrix} h(k) & \Delta(k) \\ \Delta^\dagger(k) & -h(-k)^* \end{pmatrix}
\] (1)

defined in the Nambu basis

\[
\Psi(k) = (c_{1,k}, c_{2,k}, \ldots, c_{n,k}, c_{1,-k}^\dagger, c_{2,-k}^\dagger, \ldots, c_{n,-k}^\dagger)^T,
\] (2)

where \(c_{i,k} (c_{i,-k}^\dagger) \) annihilates an electron (a hole) at momentum \(k \) with band index \(i = 1, 2, \ldots, n \). \(H(k) \) satisfies the particle-hole symmetry (PHS)

\[
\Xi = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \mathcal{K} = \tau_x \mathcal{K}.
\] (3)

\(I_n \) is an \(n \times n \) identity matrix and \(\mathcal{K} \) is the complex conjugation. We define the Pauli matrix \(\tau_i \) to characterize the particle-hole degree of freedom.

Let us assume that the normal state Hamiltonian \(h(k) \) is invariant under a unitary symmetry \(\hat{A} \) with \(\hat{A} h(k) \hat{A}^\dagger = h(\hat{A} k) \). When the pairing function satisfies

\[
\hat{A} \Delta(k) \hat{A}^\dagger = \chi \Delta(\hat{A} k),
\] (4)
with χ being a $U(1)$ phase factor, the BdG Hamiltonian $H(\mathbf{k})$ is invariant under the BdG extension of \mathcal{A},

$$A = \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \chi \mathcal{A}^* \end{pmatrix}. \quad (5)$$

When we further require $H(\mathbf{k})$ to be invariant under the time-reversal operation Θ, the requirement that $[\Theta, A] = 0$ will impose a strong constraint on both χ and the pairing function. Specifically, the time-reversal operation for a general BdG system is given by

$$\Theta = \begin{pmatrix} T & 0 \\ 0 & T^* \end{pmatrix}, \quad (6)$$

where T is the unitary part of the normal-state time-reversal operation. Together with Eq. 5, we arrive at

$$\chi = \pm 1 \in \mathbb{R}. \quad (7)$$

Therefore, for a time-reversal-invariant BdG system that respects \mathcal{A} symmetry, the pairing function can be either even ($\chi = 1$) or odd ($\chi = -1$) under \mathcal{A}, following Eq. 4.

Next, we will consider time-reversal BdG Hamiltonians with symmetry \mathcal{A} being the rotational, mirror, and inversion symmetries, and discuss their corresponding topological indices. These three crystalline symmetries are necessary for protecting a HOTDSC phase, which guarantees gapless 3d Dirac nodes, gapped 2d surface states, and gapless 1d hinge modes, respectively.

B. Rotation Topological Charge Q_j

In this subsection, we discuss how certain rotational symmetries can stabilize 3d bulk Dirac nodes in both Dirac semimetals (DSM) and Dirac superconductors (DSC), and discuss their corresponding topological indices. Following Ref. [13] and [45], we first define a set of topological charges $\{\tilde{Q}_j\}$ for 3d DSM that (i) unambiguously characterizes the existence of rotation-protected bulk Dirac nodes; (ii) only relies on the rotation eigenvalues at time-reversal-invariant momenta (TRIM) along the rotation axis (e.g. Γ and Z). These topological charges are hence symmetry indicators. Based on the definition of $\{\tilde{Q}_j\}$, we will then define analogous topological charges $\{Q_j\}$ for Dirac superconductors (DSC). The deep connection between $\{\tilde{Q}_j\}$ and $\{Q_j\}$ offers a simple approach to determine what kind of DSC physics can be achieved by a given superconducting DSM system in the weak pairing limit.

1. Topological Charge for Dirac Semimetals

For a DSM whose bulk Dirac nodes are away from TRIMs, the presence of symmetry-protected bulk Dirac nodes can be diagnosed by a set of topological charges $\{\tilde{Q}_j\}$ defined on the rotation axis (e.g. k_z-axis) [45].

Generally, for an electronic system with an n-fold rotation symmetry C_n, there are n inequivalent irreducible representations (irrep) labeled by the z-component angular momentum $j = \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots, \pm \left(\frac{n+1}{2}\right) - \frac{1}{2}$, where $|x|$ is the floor function. Since the Hamiltonian along the k_z axis

$$h(0, 0, k_z) = \bigoplus_j h_j(k_z) \quad (8)$$

is block-diagonal in irrep j, we can define an independent topological charge Q_j for each block Hamiltonian $h_j(k_z)$.

These topological charges $\{\tilde{Q}_j\}$ are defined as follows. For a given irrep j, the Hamiltonian $h_j(k_z)$ at each k_z can be viewed as a 0d system with C_n symmetry. Since both $h_j(0)$ and $h_j(\pi)$ are gapped (as the Dirac nodes are away from TRIMs), we can define a quantity

$$\omega_j(k_z) = \frac{1}{2} \left[N^v_j(k_z) - N^c_j(k_z)\right] \quad (9)$$

for each of them, which measures the number difference between the filled states $N^v_j(k_z)$ and the empty states $N^c_j(k_z)$ at $k_z = 0, \pi$ for irrep j. When $\omega_j(0) \neq \omega_j(\pi)$, there necessarily exist gapless modes between 0 and π along k_z that cannot be removed without closing the gaps at k_z. The number of the gapless modes is simply given by the topological charge [13, 45]

$$\tilde{Q}_j = \omega_j(0) - \omega_j(\pi). \quad (10)$$

When $\tilde{Q}_j = 0$, $h_j(0)$ and $h_j(\pi)$ are topologically equivalent and one can generally find an adiabatic path along k_z to smoothly deform $h_j(0)$ to $h_j(\pi)$ without closing the energy gap, and hence with no gapless points in between. When $\tilde{Q}_j \neq 0$, there necessarily exist $|\tilde{Q}_j|$ of gapless 1d “chiral” modes along the k_z axis that are either left movers ($\tilde{Q}_j < 0$) or right movers ($\tilde{Q}_j > 0$).

To determine the number of robust Dirac points from the topological charges $\{\tilde{Q}_j\}$, we need to consider two additional constraints. First, in the presence of inversion and time-reversal symmetries, the spectra of $h_j(k_z)$ and $h_{-j}(k_z)$ are degenerate. The two irreps $\pm j$ therefore have the same topological charge

$$\tilde{Q}_j = \tilde{Q}_{-j}. \quad (11)$$

Second, the definition of a Dirac point requires the number of left movers and that of right movers to be the same, which imposes a “charge conservation” condition

$$\sum_j \tilde{Q}_j = 0. \quad (12)$$

With the constraints in Eq. 11 and Eq. 12, the number of independent topological charges for a C_n-invariant system is (i) $n/2 - 1$ when n is even; (ii) $(n - 1)/2$ when n is odd. Our choice of independent topological charges is given by:

$$\{\tilde{Q}_\frac{1}{2}, \tilde{Q}_{\frac{3}{2}}, \ldots, \tilde{Q}_{\frac{n-1}{2}}\}, \text{ for } n \text{ even}$$

$$\{\tilde{Q}_\frac{1}{2}, \tilde{Q}_{\frac{3}{2}}, \ldots, \tilde{Q}_{\frac{n}{2}}\}, \text{ for } n \text{ odd}. \quad (13)$$
Since the Dirac points always come in pairs, the total number of bulk Dirac points (DP) along \(k_z \) axis is given by

\[
\text{Number of DPs} = 2 \sum_j |\tilde{Q}_j|, \quad (14)
\]

where only independent \(\tilde{Q}_j \)s defined in Eq. 13 will be counted.

2. Topological Charge for Dirac Superconductors

We now generalize the concept of topological charges to describe rotational symmetric DSCs in the weak pairing limit. Consider a superconductor whose normal state is invariant under an \(n \)-fold rotational operation \(\tilde{C}_n \), and the pairing gap transforming under \(\tilde{C}_n \) as

\[
\tilde{C}_n \Delta(k) \tilde{C}^T = e^{i\frac{2\pi}{n} \alpha} \Delta(C_n k), \quad (15)
\]

where \(\alpha = 0, 1, 2, ..., n - 1 \). We can define an \(n \)-fold rotational operation in the Nambu basis for the corresponding BdG Hamiltonian

\[
C_n = \begin{pmatrix} C_n & 0 \\ 0 & e^{i\frac{2\pi}{n} \alpha} C_n^* \end{pmatrix}, \quad (16)
\]

such that the BdG Hamiltonian is invariant under \(C_n \). It is then clear that for a Bogolubov quasiparticle belonging to irrep \(j \), its particle-hole partner belongs to irrep \((\alpha - j) \).

We now discuss the constraints on \(n \) and \(\alpha \) for achieving robust gapless Dirac points along \(k_z \). First, since each BdG band can avoid mixing with its particle-hole partner and stay gapless only when the two bands belong to different irreps, we focus on \(\alpha \neq 0 \). Moreover, as we previously discussed in Sec. II A, the compatibility relation with TRS requires

\[
e^{i\frac{2\pi}{n} \alpha} = -1, \quad (17)
\]

which implies that \(\alpha = \frac{2}{n} \in \mathbb{Z} \). This leads to the following two choices of \(n \) and \(\alpha \) to achieve a time-reversal DSC: (i) \(n = 4, \alpha = 2 \); (ii) \(n = 6, \alpha = 3 \). In the weak pairing limit, the topological charge for such a DSC can be defined by summing over the \(\tilde{Q}_j^{(e)} \) from the electrons and the \(\tilde{Q}_j^{(h)} \) from the holes. In particular,

- \(n = 4, \alpha = 2 \): For the electron part, there are four inequivalent irreps \(j = \pm \frac{1}{2}, \pm \frac{3}{2} \), based on which a single independent topological charge \(\tilde{Q}_j^{(e)} \) is well-defined. Since PHS will transform the electron state \(| \pm \frac{1}{2}, e \rangle \) and \(| \pm \frac{3}{2}, e \rangle \) to the hole state \(| \pm \frac{1}{2}, h \rangle \) and \(| \pm \frac{3}{2}, h \rangle \), respectively, the topological charge for the holes can be related to that of the electrons by

\[
\tilde{Q}_j^{(h)} = -\tilde{Q}_j^{(e)} = \tilde{Q}_j^{(e)}. \quad (18)
\]

The total topological charge for the entire BdG system is given by

\[
Q_j^{\pm} = Q_j^{(e)} + Q_j^{(h)} = 2Q_j^{(e)}. \quad (19)
\]

When \(Q_j^{\pm} \neq 0 \), the BdG system is a DSC protected by \(C_4 \) symmetry.

- \(n = 6, \alpha = 3 \): For \(\tilde{C}_6 \) symmetry, there are six irreps \(j = \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{3}{2} \). As a result, one can define two independent topological charges \(\tilde{Q}_j^{(e)} \) and \(\tilde{Q}_j^{(h)} \) to characterize the Dirac nodes for the electron part. While PHS transforms the electron states \(| \pm \frac{1}{2}, e \rangle \) and \(| \pm \frac{1}{2}, e \rangle \) to the hole states \(| \pm \frac{1}{2}, h \rangle \) and \(| \pm \frac{1}{2}, h \rangle \), respectively, the electron states \(| \pm \frac{3}{2}, e \rangle \) are transformed into \(| \pm \frac{3}{2}, h \rangle \). Therefore, we have

\[
\tilde{Q}_j^{(h)} = \tilde{Q}_j^{(e)} + \tilde{Q}_j^{(e)}, \quad \tilde{Q}_j^{(h)} = -\tilde{Q}_j^{(e)}. \quad (20)
\]

As a result, the topological charges for such a BdG system are given by

\[
Q_j^{\pm} = Q_j^{(e)} + Q_j^{(h)} = 2Q_j^{(e)} + Q_j^{(e)}
\]

\[
Q_j^{\pm} = Q_j^{(e)} + Q_j^{(h)} = 0. \quad (21)
\]

For \(Q_j^{\pm} \neq 0 \), since the BdG Dirac point is formed between electron bands with \(j = \pm \frac{1}{2} \) and hole bands with \(j = \pm \frac{3}{2} \), it is actually a “double” Dirac point with a linear dispersion along \(k_z \) and quadratic in-plane dispersions. By definition, such a BdG system is dubbed a double DSC.

3. From Dirac Semimetal to Dirac Superconductor

The relations in Eq. 19 and Eq. 21 reveal deep connections between DSMs and DSCs. In particular, starting from a DSM with a non-trivial \(\tilde{Q}_j \), the final SC state is very likely a DSC if the time-reversal-symmetric pairing follows \(\alpha \neq 0 \).

As an example, let us consider a \(\tilde{C}_6 \)-symmetric DSM with a pair of bulk Dirac points, which consists of \(| j = \pm \frac{1}{2} \rangle \) and \(| j = \pm \frac{3}{2} \rangle \). Without loss of generality, we assume the topological charges to be \(Q_j^{(e)} = -Q_j^{(e)} = 1 \). By developing time-reversal-symmetric superconductivity with \(\alpha = 3 \), we follow Eq. 21 and arrive at

\[
Q_j^{\pm} = 1, \quad Q_j^{\pm} = 0. \quad (22)
\]

Therefore, the final SC state is a double DSC with a pair of double Dirac points along \(k_z \) axis.

Similarly, we can apply this topology analysis to study the possibility of DSC phase for a superconducting DSM with other rotation symmetries or irreps. A summary of these results is listed in Table. I.
C. Inversion Symmetry Indicator \(\kappa \)

In this subsection, we discuss how the inversion symmetry can protect 1d Majorana hinge modes in a 3d DSC phase. For a superconductor whose superconducting gap transforms under the normal-state inversion \(\mathcal{P} \) as \(\mathcal{P}\Delta(k)\mathcal{P}^T = \eta\Delta(-k) \), we can define an inversion operator in the Nambu basis

\[
\mathcal{P} = \begin{pmatrix} \tilde{\mathcal{P}} & 0 \\ 0 & \eta \tilde{\mathcal{P}} \end{pmatrix}
\]

such that the BdG Hamiltonian is invariant under \(\mathcal{P} \). Here \(\eta = \pm 1 \) is the parity of the superconducting gap. As pointed out previously in Ref. [22, 46, 47], we can then define a \(\mathbb{Z}_8 \) symmetry indicator for a 3d inversion-protected topological crystalline superconductor in the presence of time-reversal symmetry

\[
\kappa = \frac{1}{4} \sum_{k_i \in \text{TRIM}} \sum_{n \in \text{occ}} p_n(k_i) \text{ (mod 8)},
\]

where \(p_n(k_i) \) is the parity eigenvalue of an occupied BdG band \(n \) at a TRIM \(k_i \). For even-parity superconductors, \(\kappa \) is always zero because of the exact cancellation between the contribution to \(\kappa \) from the electrons and from the holes. In contrast, for odd-parity superconductors, \(\kappa = 1, 2, \ldots, 7 \) characterizes topologically distinct inversion-protected 3d crystalline superconductors.

These topological crystalline superconductors with different values of \(\kappa \) host Majorana boundary modes that live in different dimensions, and hence offer a way to realize intrinsic higher-order TSCs. Specifically, one can write \(\kappa \) in the binary form [47],

\[
\kappa = \sum_{d=0}^{2} \nu_2 - d \nu^d = [\nu_0 \nu_1 \nu_2],
\]

where \(\nu_d = 0 \) or 1 for \(d = 0, 1, 2 \). Here, the \(\mathbb{Z}_2 \) numbers \(\{\nu_d\} \) are the topological indices that characterize the existence of protected \(d \)-dimensional Majorana boundary modes in this 3d superconductor. For example, when \(\kappa = 2 = [010] \), \(\nu_0 = \nu_2 = 0 \) implies the absence of any 2d surface or 0d corner Majorana modes. However, there exist 1d helical Majorana hinge modes which are localized on the hinges connecting neighboring surfaces, which is indicated by \(\nu_1 = 1 \).

We can further relate this indicator for the BdG Hamiltonian to topological indices for the normal state as [46]

\[
\kappa = [1 - (-1)^\eta] \tilde{\kappa}
\]

in the weak-pairing limit. Here, \(\tilde{\kappa} \in \mathbb{Z}_4 \) is the analogous inversion symmetry indicator defined for the normal state [22], and is related to the \(\mathbb{Z}_2 \) topological index for a time-reversal-invariant normal state through \(\tilde{\nu} = \tilde{\kappa} \) (mod 2). Therefore, in order to achieve 1d hinge Majorana modes protected by inversion symmetry, a good starting point is a topological normal state with an odd \(\tilde{\kappa} \) (or equivalently a strong \(\mathbb{Z}_2 \) index \(\tilde{\nu} \)). As we further introduce odd-parity pairing, the higher-order topology will automatically emerge with

\[
\kappa = 2\tilde{\nu} = 2 = [010],
\]

which indicates the existence of 1d helical hinge Majorana modes.

D. Mirror Chern Number \(C_M \)

In this subsection, we discuss the mirror symmetry \(M_z \) that sends \(z \to -z \) and the corresponding mirror Chern number \(C_M \) for BdG systems. For our purpose of achieving a robust DSC from a \(\mathcal{C}_n \)-symmetric DSM, we focus on the cases where \(n = 4, 6 \) with \(\alpha = n/2 \), as concluded in section II B 3. Importantly, since such a DSC is always invariant under a two-fold rotational \(C_2 \) and spatial inversion \(\mathcal{P} \), it automatically has the mirror symmetry \(M_z = C_2\mathcal{P} \). It is therefore important to study the corresponding mirror Chern number \(C_M \), since \(M_z \) can protect unwanted gapless surface states (for our purpose) when \(C_M \) is non-zero, as we show in the following.

For a \(\mathcal{C}_n \)-symmetric BdG Hamiltonian, \(M_z \) can be defined in the Nambu basis as

\[
M_z = (C_n)\frac{\pi}{2}\mathcal{P} = \begin{pmatrix} \tilde{\mathcal{C}}_2 & 0 \\ 0 & (-1)^\alpha \tilde{C}_2 & 0 \\ 0 & \eta \tilde{M}_z & \eta \tilde{M}_z \end{pmatrix}
\]

\[
= \begin{pmatrix} \tilde{M}_z & 0 \\ 0 & (-1)^\alpha \eta \tilde{M}_z \end{pmatrix},
\]

where \(\tilde{\mathcal{C}}_2, \tilde{\mathcal{P}}, \tilde{M}_z \) are the two-fold rotation, inversion, and mirror operators for normal state Hamiltonian respectively. In the last step of Eq. 28, we make use of the fact that \(\tilde{M}_z^* = -\tilde{M}_z \) for spinful fermions and \(\eta = -1 \) for odd-parity pairing.

Given a normal state with an electronic mirror Chern number \(\tilde{C}_M \), the \(C_M \) for the BdG system is

\[
C_M = [1 + (-1)^\alpha]\tilde{C}_M = \begin{cases} 2\tilde{C}_M & \alpha \in \text{even}, \\ 0 & \alpha \in \text{odd}. \end{cases}
\]

This relation implies that \(M_z \)-protected 2d surface states can only exist when \(\alpha \) is even. To achieve a HOTDSC, where the 2d surface has to be gapped, we are therefore limited to the case with \(n = 6 \) and \(\alpha = 3 \).

E. Necessary Conditions for HOTDSC

As we discussed above, the band topology of a superconducting Dirac semimetal is characterized by the following topological indices:

\[
\{Q_j, C_M, \kappa\},
\]

which characterize the existence of 3d rotation-protected bulk Dirac nodes, 2d mirror-protected Majorana surface
TABLE I. Summary on topological properties for superconducting DSMs with an n-fold rotation symmetry. For our purpose, we have only considered odd-parity pairing terms for DSMs that preserve TRS. The pairing term is even (odd) under n-fold rotation symmetry when $\alpha = 0$ ($\alpha = n/2$). The presence of hinge Majorana modes indicates that the BdG system is higher-order topological.

* For $n = 6, \alpha = 0$, the normal state is a DSM if $j = \pm \frac{1}{2}, \pm \frac{3}{2}$ or $j = \pm \frac{5}{2}, \pm \frac{7}{2}$, and the superconducting state is a mirror TSC with $|C_M| = 2$. For $j = \pm \frac{1}{2}, \pm \frac{3}{2}$, the normal state is a double DSM and the superconducting state has $|C_M| = 6$

** The resulting superconducting state hosts two pairs of double Dirac nodes in the BdG spectrum.

III. MODEL

In this section, we construct a minimal $k \cdot p$ model and the corresponding tight-binding model on a 3d hexagonal lattice that realize the HOTDSC phase predicted by our general topological index analysis in the previous section. Our models for a HOTDSC phase exhibit the expected set of bulk topological indices and the defining properties in the spectrum, namely the gapless bulk Dirac nodes, gapped surface states, and gapless Majorana hinge modes, as we demonstrate analytically and numerically below in the continuum and lattice models respectively. As we show in the following, our numerical and analytical results are completely consistent with each other, providing compelling support for our predictions on HOTDSC.

A. Tight-binding Model for C_6-symmetric DSM

1. The minimal $k \cdot p$ model for DSM

We start with a four-band minimal continuum model for a 3d DSM that was considered in Ref. [7] and [9],

\[h_0 = v(k_x \gamma_1 - k_y \gamma_2) + m(k) \gamma_5 \]

(31)

up to $O(k^2)$ order, where the mass term is given by $m(k) = M_0 - M_1(k_x^2 + k_y^2) - M_2 k_z^2$. Here, the Dirac
matrices are defined as
\[
\begin{align*}
\gamma_1 &= s_z \otimes \sigma_x, \\
\gamma_2 &= s_0 \otimes \sigma_y, \\
\gamma_3 &= s_z \otimes \sigma_x, \\
\gamma_4 &= s_y \otimes \sigma_z, \\
\gamma_5 &= s_0 \otimes \sigma_z,
\end{align*}
\]
where \(s_i\) and \(\sigma_i\) denote the Pauli matrices in the spin \(s = \uparrow, \downarrow\) and orbital \(\sigma = s, p\) bases, respectively. The four basis states can therefore be labeled by their \(z\)-component angular momenta as \(\{\frac{3}{2}, \frac{1}{2}\}, \{-\frac{3}{2}, \frac{1}{2}\}\). In such spin and orbital bases, the spatial inversion symmetry and time reversal symmetry are given by
\[
\hat{\mathcal{P}} = s_0 \otimes \sigma_z = \gamma_5,
\]
\[
\hat{\Theta} = is_y \otimes s_0 K = i\gamma_{13} K,
\]
where \(\gamma_{ij} \equiv [\gamma_i, \gamma_j]/(2i)\). The continuum model respects a continuous rotational symmetry around the \(z\)-axis
\[
\hat{C}_\infty = e^{i\theta J_z}
\]
for an arbitrary rotation angle \(\theta\), where the generator is a diagonal matrix \(J_z = \text{diag}(1, -1, -1, -1)\). This rotational symmetry prevents avoided-crossings between bands of different irreps, and is thus the symmetry that protects gapless Dirac points. In particular, when \(M_0M_2 > 0\), this model has two \(\hat{C}_\infty\)-protected four-fold degenerate bulk Dirac points at
\[
k_z = k_y = 0, \quad k_z = \pm k_0 = \pm \sqrt{\frac{M_0}{M_2}},
\]
These bulk Dirac points remain robust even when we regularize the model on a lattice and break the continuous \(\hat{C}_\infty\) down to a discrete rotational symmetry \(\hat{C}_n\) with \(n = 3, 4, 6\), as we previously discussed in Sec. II B 1.

We also include the symmetry-allowed next leading order term \(h_1(k)\) for this DSM model in our later discussions [7]. In particular,
\[
h_1(k) = v_z \begin{pmatrix} 0 & 0 & k_z k_2 & 0 \\
0 & 0 & 0 & k_z k_2 \\
k_z k_2 & 0 & 0 & 0 \\
k_z k_2 & 0 & 0 & 0 \end{pmatrix},
\]
which clearly vanishes along \(k_z\) axis. Physically, \(h_1(k)\) has no effect on the bulk Dirac nodes but is able to deform the dispersion of Fermi arc surface states [48].

2. The lattice model

We now regularize the continuum model and put it on a hexagonal lattice characterized by the lattice vectors \(a_1 = (1, 0, 0), \; a_2 = \frac{1}{2}(1, \sqrt{3}, 0)\), and \(a_3 = (0, 0, 1)\), as shown in Fig. 2 (a). The resulting tight-binding model has the form
\[
h_{tb}(k) = \sum_{i=1}^{3} d_i(k) \hat{\gamma}_i
\]
FIG. 2. The hexagonal lattice structure and lattice vectors for the tight-binding model are shown in (a). The (010) surface spectrum of the lattice DSM model is plotted in (b), which clearly shows the bulk Dirac point and the Fermi-arc surface states. Here we choose \(v_0 = 0.25, u_z = 0.1, t = 1, t_z = 2, k_0 = 0.3\pi\).

with
\[
\begin{align*}
d_1 &= v_0 [2 \sin k_1 + \sin(k_1 - k_2) + \sin k_2] \\
d_2 &= \sqrt{3} v_0 [\sin k_2 - \sin(k_1 - k_2)] \\
d_3 &= u_z \sin k_z [2 \cos k_1 - \cos(k_1 - k_2) - \cos k_2] \\
d_4 &= -u_z \sqrt{3} \sin k_z [\cos(k_1 - k_2) - \cos k_2] \\
d_5 &= t_2 [\cos k_1 + \cos k_2 + \cos(k_1 - k_2) - 3] + t_z [\cos k_2 - \cos k_0],
\end{align*}
\]
where we have defined \(k_1 = k_x\) and \(k_2 = (k_x + \sqrt{3}k_y)/2\). In the long-wavelength limit, \(h_{tb}\) reproduces the continuum model in Eq. 31 and Eq. 36 if we replace \(v_0 \to \frac{4}{\sqrt{3}} v, \; u_z \to \frac{4}{\sqrt{3}} u_z, \; t \to \frac{4}{\sqrt{3}} M_1, \; t_z \to 2M_2, \; \) and \(k_0 \to \cos^{-1}(1 - \frac{M_0}{2M_2})\). Nonetheless, instead of the continuous rotational symmetry \(\hat{C}_\infty\), \(h_{tb}\) preserves the six-fold rotational symmetry
\[
\hat{C}_6 = e^{i\frac{\pi}{3} J_z}
\]
such that \(\hat{C}_6 h_{tb}(k_1, k_2, k_3) \hat{C}_6^\dagger = h_{tb}(k_1 - k_2, k_1, k_2)\). Together with the fact that there exists a pair of bulk Dirac points at \(k = (0, 0, \pm k_0)\), we have shown that \(h_{tb}\) is a lattice model that realizes a \(C_6\)-symmetric DSM.

We numerically demonstrate the existence of bulk Dirac points along \(\Gamma-Z\) and the corresponding Fermi arc states by plotting the (010) surface spectrum in a semi-infinite geometry using the iterative Green function method [see Fig. 2 (b)]. It is easy to check that the bulk Dirac points are labeled by the topological charge \(Q_1^{(c)} = Q_2^{(c)} = 1\) (as discussed in Sec. II B 1), and the Fermi arc surface states are protected by the mirror Chern number \(\hat{C}_M = 1\). Meanwhile, the inversion symmetry indicator \(\hat{k} = 1\) offers an additional protection for the surface Fermi arc states from TRS.
Given the above symmetry constraints, we find that the Hamiltonian \(H_0(k) \) to be invariant under the following symmetry operations defined in the Nambu basis:

\[
\Theta = i\tau_0 \otimes \gamma_{13} K, \quad I = \tau_z \otimes \gamma_5, \quad C_6 = \begin{pmatrix} \tilde{C}_6 & 0 \\ 0 & -\tilde{C}_6^* \end{pmatrix}.
\]

(41)

Given the above symmetry constraints, we find that the general symmetry-preserving pairing term that respects fermionic statistics has the form

\[
H_\Delta(k) = \Delta_1[k_z \tau_z \otimes s_z \otimes (\sigma_0 - \sigma_3)] + \Delta_2[(k_x^2 - k_y^2)\tau_y \otimes s_y \otimes \sigma_x - 2k_x k_y \tau_x \otimes s_x \otimes \sigma_y] + \Delta_3[k_z(k_x \tau_y \otimes s_0 \otimes \sigma_y + k_y \tau_x \otimes s_z \otimes \sigma_y)],
\]

(42)

up to \(O(k^2) \) order, where parameters \(\Delta_1, \Delta_2, \Delta_3 \) are assumed to be real for simplicity. Here, the \(\Delta_2 \) and \(\Delta_3 \) terms correspond to two distinct nodal d-wave pairings, and the \(\Delta_1 \) term corresponds to a \(p_\pm \)-wave pairing, with all of these terms being time-reversal symmetric and odd under inversion and six-fold rotation (i.e., \(\alpha = 3 \)). Throughout our work, we will set \(\Delta_3 = 0 \) for simplicity since it is irrelevant to the topological physics we study. Importantly, the \(p_\pm \)-wave pairing exists only between electrons and holes with \(j = \pm \frac{3}{2} \) to respect the rotational symmetry, which therefore leaves us two pairs of rotation-protected Dirac nodes between the BdG bands comprising mostly \(j = \pm 1/2 \) electron and \(j = \pm 5/2 \) hole bands respectively [see Fig. 3 for a schematic demonstration].

Recall that the normal state \(H_0(k) \) is a DSM with the following topological indices

\[
Q_{\frac{3}{2}}^{(e)} = -Q_{\frac{3}{2}}^{(e)} = 1, \quad \tilde{C}_M = 1, \quad \tilde{\kappa} = 1.
\]

(43)

Following the results in Sec. II, it is then straightforward to show that our BdG system \(H(k) \) hosts the following BdG indices

\[
Q_{\frac{3}{2}} = 1, \quad Q_{\frac{5}{2}} = 0, \quad C_M = 0, \quad \kappa = 2.
\]

(44)

which are exactly the indices that correspond to a HOTDSC with a pair of bulk double Dirac nodes, gapped surface states, and helical hinge Majorana modes. As we have discussed the Dirac physics in the bulk, in the following, we will demonstrate that the hinges are gapless while the surface states are gapped by analytically constructing an effective surface theory (Sec. III C) and numerically calculating the boundary spectrum on an open geometry (Sec. III D).

B. Odd-Parity Superconductivity and Higher-Order Topology

We now consider a doped \(\tilde{C}_6 \)-symmetric DSM model and introduce symmetry-allowed pairing gaps to construct the BdG Hamiltonian \(H(k) = H_0(k) + H_\Delta(k) \) for a HOTDSC phase.

Starting from the continuum limit, the minimal Hamiltonian for a doped DSM can be written in the Nambu basis as

\[
H_0(k) = \mu(k) \tau_z \otimes \gamma_5 - \mu \tau_z \otimes \gamma_0,
\]

(40)

where \(\mu \) denotes the chemical potential capturing the doping effect, and \(\tau_i \) denote the Pauli matrices in the particle-hole basis. For our purpose, we will ignore the \(O(k^3) \) term in Eq. 36 in \(H(k) \) for now and will include it as a perturbation in later discussions.

To obtain a HOTDSC phase, the pairing term in \(H_\Delta \), as already discussed in Sec. II, has to be time-reversal symmetric, but odd under both inversion and six-fold rotation. This requires the full Hamiltonian \(H(k) \) to be invariant under the following symmetry operations defined in the Nambu basis:

\[
\Theta = i\tau_0 \otimes \gamma_{13} K, \quad I = \tau_z \otimes \gamma_5, \quad C_6 = \begin{pmatrix} \tilde{C}_6 & 0 \\ 0 & -\tilde{C}_6^* \end{pmatrix}.
\]

(41)

Given the above symmetry constraints, we find that the general symmetry-preserving pairing term that respects fermionic statistics has the form

\[
H_\Delta(k) = \Delta_1[k_z \tau_z \otimes s_z \otimes (\sigma_0 - \sigma_3)] + \Delta_2[(k_x^2 - k_y^2)\tau_y \otimes s_y \otimes \sigma_x - 2k_x k_y \tau_x \otimes s_x \otimes \sigma_y] + \Delta_3[k_z(k_x \tau_y \otimes s_0 \otimes \sigma_y + k_y \tau_x \otimes s_z \otimes \sigma_y)],
\]

(42)

C. Effective Boundary Theory and Bulk-boundary Correspondence

Building an effective surface theory is a crucial step in understanding the higher-order bulk-boundary correspondence for HOTDCS. For our purpose, we focus on the surface spectrum for an infinite long cylinder geometry. Here we work with the cylindrical coordinate \((r, \theta, z) \), where an open surface around the cylinder is labeled by the polar angle \(\theta \). Because of the nontrivial bulk topological indices of our model, we expect topological features in the boundary spectrum. For example, if the surface state for our system has a \(\theta \)-dependent energy gap that vanishes at some special angles, this clearly suggests gapless hinge Majorana physics in our system.

Our starting point is the continuum Hamiltonian \(H_0(k) \) on a cylindrical geometry, whose surface states will be solved analytically. In the weak pairing limit, we treat \(h_1(k) \) in the normal state and the pairing term \(H_\Delta(k) \) as perturbations, and we project them onto the low-energy bases spanned by the surface states of \(H_0(k) \) later. In the absence of the perturbations, the normal state Hamiltonian \(H_0(k) = \text{diag}[h_1(k), h_1(k), -h_1(k), -h_1(k)] \) is
Here we have dropped the spatial part $f(r)$ and the plane-wave factor e^{ikz} for simplicity. As discussed in Ref. [49, 50], the electronic surface states $\psi_{e,\uparrow,l}$ and $\psi_{e,\downarrow,l}$ exist only between the bulk Dirac points at $k_z = \pm k_0$ and thus manifest themselves as the Fermi arc states. Interestingly, Eq. 47 predicts the Fermi arc states having a finite size gap of $\frac{u}{\pi}$, which is numerically confirmed in Appendix A. We emphasize that these apparent “gaps” are not real energy gaps, but are just finite system size effects.

The next step is to project the perturbation terms onto the low-energy surface states to obtain an effective surface theory. To fully incorporate the time-reversal symmetry Θ, the particle-hole symmetry Ξ, and the Cooper pairing Δ, the minimal set of basis states of the effective theory necessarily consists of eight fermionic fields [see Fig. 4]. Nonetheless, we can simplify the basis by dividing these eight fields into

$$\Phi_{1,l} = (\psi_{e,\uparrow,l}, \psi_{e,\downarrow,l}, \psi_{h,\uparrow,l+1}, \psi_{h,\downarrow,l-1})^T,$$

$$\Phi_{2,l} = (\psi_{e,\uparrow,l-1}, \psi_{e,\downarrow,l+1}, \psi_{h,\uparrow,l-1}, \psi_{h,\downarrow,l})^T. \quad (48)$$

Since the two sets of states are related by $\Phi_{1,l} = \Phi_{2,-l-1}$ and are decoupled from each other, we only need to construct the low-energy theory spanned by $\Phi_{1,l}$. In the basis of $\Phi_{1,l}$, the symmetry operations are given by

$$\mathcal{P} = (-1)^{l+1} \mu_0 \otimes s_0, \quad \Theta = i \mu_0 \otimes s_y K, \quad C_6 = e^{i \frac{\pi}{4} J_z}, \quad (49)$$

where the rotation generator is given by

$$J_z = \text{diag}\{l + \frac{3}{2}, -(l + \frac{3}{2}), l + \frac{5}{2}, -(l + \frac{5}{2})\}. \quad (50)$$

By projecting $h_\uparrow(k)$ in Eq. 36 and pairing term H_Δ in Eq. 42 onto $\Phi_{1,l}$, the resulting effective Hamiltonian and its eigenvalues are given by

FIG. 4. The relations among various low-energy surface fermion fields in the cylindrical geometry. The blue (red) arrows connect the fermion fields that are particle-hole (time-reversal) partners. The green arrows connect pairs of fermion fields that form Cooper pairs.
\[H_{\text{eff},l} = \frac{v}{R} (d + \frac{1}{2}) + \begin{pmatrix} 0 & -iv_2k_z e^{-i(2l+3)\theta} & \Delta_1 k_z e^{i\theta} & \Delta_2 e^{-i(2l+1)\theta} \sin 3\theta & -\Delta_1 k_z e^{-i\theta} \\ iv_2k_z e^{i(2l+3)\theta} & 0 & -\Delta_2 e^{i(2l+1)\theta} \sin 3\theta & 0 & -iv_2k_z e^{i(2l-1)\theta} \\ \Delta_1 k_z e^{-i\theta} & -\Delta_2 e^{i(2l+1)\theta} \sin 3\theta & 0 & 0 & \Delta_1 k_z e^{-i\theta} \\ \Delta_2 e^{-i(2l+1)\theta} \sin 3\theta & 0 & 0 & 0 & \Delta_2 e^{-i(2l+1)\theta} \sin 3\theta \\ \Delta_1 k_z e^{-i\theta} & -iv_2k_z e^{i(2l-1)\theta} & \Delta_1 k_z e^{-i\theta} & \Delta_2 e^{-i(2l+1)\theta} \sin 3\theta & 0 \end{pmatrix} \] (51)

\[E_l(k_z, \theta) = \frac{v}{R} (d + \frac{1}{2}) \pm \sqrt{(v_2k_z \cos 3\theta)^2 + (\sqrt{2\Delta_2 \sin 3\theta})^2 + (v_2k_z \cos 3\theta)^2 + \Delta_1 k_z)^2}, \] (52)

D. Numerical Evidence for HOTDSC phase

Next, we numerically verify the HOTDSC physics in our model. The first step is to verify the analytical prediction for surface physics from the previous subsection. We will then proceed to directly show the coexistence of bulk Dirac nodes and hinge Majorana modes by numerically calculating the energy spectrum in a hexagonal prism geometry, which will unambiguously demonstrate the higher-order Dirac nature of our model.

We start by regularizing our continuum BdG model (including \(H_\Delta\)) onto a 3d hexagonal lattice and arrive at

\[H_{\text{TB}}(k) = d_1 \tau_0 \otimes \gamma_1 + d_2 \tau_2 \otimes \gamma_2 + d_3 \tau_0 \otimes \gamma_3 \\
+ d_4 \tau_z \otimes \gamma_4 + d_5 \tau_5 \otimes \gamma_5 - \mu \tau_2 \otimes I_4 \\
+ d_6 \tau_y \otimes \gamma_4 + d_7 \tau_x \otimes \gamma_3 \\
+ d_8 \tau_x \otimes (\gamma_5 - \gamma_12), \] (55)

where we have defined

\[d_6(k) = \Delta_2 |2 \cos k_1 - \cos (k_1 - k_2) - \cos k_2| \]
\[d_7(k) = -\sqrt{3}\Delta_2 |\cos (k_1 - k_2) - \cos k_2| \]
\[d_8(k) = \Delta_1 \sin k_2. \] (56)

Next, we numerically verify the surface gap closing condition in Eq. 53 by solving for the boundary-localized eigenstates of our minimal lattice model on a 3d hexagonal lattice. Specifically, we consider the two semi-infinite configurations for side surfaces shown in Fig. 5 (b): (i) the rough surface (colored in blue) along y direction with \(\theta = 0 \); (ii) the smooth surface (colored in red) along x direction with \(\theta = \pi/2 \). We then calculate the surface-state spectra for both the smooth and the rough surfaces with \(\Delta_1 = 0.1 \) and \(\Delta_2 = 0.25 \), as shown in Fig. 5 (c) and (d) respectively. We find that both surface calculations show one single bulk Dirac point at zero energy in the presence of finite pairing parameters, as indicated by the topological indices of our model. In particular, the smooth surface acquires a finite surface gap while the rough surface \((\theta = 0) \) remains gapless even in the presence of finite superconducting pairing [51], which validates our analytical prediction for the projected pairing gap on the surfaces in Eq. 53.

To directly reveal the hinge Majorana modes, it is necessary to place our model in an infinite long hexagonal prism geometry along z direction, as shown in Fig. 6 (a). For our purpose, all six side surfaces around the infinite prism are taken to be “smooth surfaces”, which are
defined by the polar angle
\[
\theta_s = \frac{(2n + 1)\pi}{6}, \quad n = 0, 1, \ldots, 5. \tag{57}
\]

According to Eq. 53, all six surfaces share a surface pairing gap that is proportional to \(|\Delta_2|\), which just follows our calculation in Fig. 5 (c). As an example, we focus on two adjacent surfaces: the pink surface with \(\theta = \pi/6\) and the purple surface with \(\theta = \pi/2\), which are shown in Fig. 6 (a). The projected pairing function that controls the surface gap is simply the off-diagonal term in Eq. 51:
\[
\Delta_s(\theta) = \Delta_2 e^{-i(2l+1)\theta} \sin 3\theta. \tag{58}
\]

Interestingly, the surface pairing \(\Delta_s\) for the pink and purple surfaces in Fig. 6 (a) differ by a phase of \(4\pi/3\) for the \(l = 0\) surface state. Therefore, rather surprisingly, the neighboring smooth surfaces are not forming a surface mass domain wall with a \(\pi\)-phase difference. Although the \(\pi\)-phase domain wall physics serves as the key to understanding the boundary physics in many higher-order topological systems, the predicted hinge Majorana modes in our HOTDSC system arise from a different origin.

To resolve the origin of hinge Majorana modes, we consider a 2d parameter space spanned by the real and imaginary parts of \(\Delta_s(\theta)\) projected onto the surfaces. As we change the value of \(\theta\) from 0 to \(\pi\), the possible value of \(\Delta_s\) for the \(l = 0\) surface state is constrained to the 1d closed loop trajectory shown in Fig. 6 (b). To demonstrate, we label the surface gaps \(\Delta_s\) for the pink and purple surfaces in Fig. 6 (a) by pink and purple dots in Fig. 6 (b), respectively. While in general gapped hinges are expected for a trajectory that avoids the origin of the parameter space, the trajectory in our case necessarily goes through the origin and thus enforces the existence of gapless hinge modes.

Now we are ready to perform numerical calculation on the energy spectrum in the same infinite hexagonal prism geometry. The side length (or the “radius”) \(R\) of the hexagonal cross section is taken to be 14 unit cells. In Fig. 6 (c), we plot the energy spectrum of the hexagonal wire as a function of \(k_z\) with the same set of parameters as that in Fig. 5 (c). Just as we expect, at \(k_z = 0\), the surface Fermi arc state opens a finite pairing gap. We plot the in-plane spatial profile of the gapped state shown by the red dot in Fig. 6 (f), which confirms its surface-state nature. Remarkably, inside the surface pairing gap, there exist six pairs of 1d helical Majorana channels. As shown in Fig. 6 (e), we find one pair of helical hinge Majorana modes on each of the six hinges of the hexagonal prism.

Fig. 6 (c) also reveals the bulk BdG Dirac nodes. Although the Dirac points appear to be gapped due to finite-size effects, the scaling behavior of the finite-size gap \(\delta_{DP}\) in Fig. 6 (d) clearly indicates the existence of gapless Dirac points in the thermodynamic limit. The red dashed line shows a polynomial-function fit of \(\delta_{DP}\)
as a function of the prism radius R with
\[\delta_{DP}(R) = \frac{a}{R} + \frac{b}{R^2} + O\left(\frac{1}{R^3}\right) \] (59)
and $a \approx b/2 \approx 2.7$. As expected, $\delta_{DP}(\infty) = 0$ in the thermodynamic limit, confirming the gaplessness of the Dirac point in the system.

Therefore, the 3d bulk BdG Dirac physics and the coexisting helical hinge Majorana physics together establish our system as a higher-order topological Dirac superconductor protected by time-reversal symmetry, inversion symmetry, and six-fold rotational symmetry. The exotic boundary phenomena shown in the above numerical calculations originate from and agree with our theoretical symmetry indicator analysis. Hence, we have established the bulk-boundary correspondence of the HOTDSC phase in our minimal model.

IV. A HIGHER-ORDER TOPOLOGICAL QUANTUM CRITICAL POINT

In this section, we establish the HOTDSC phase as a higher-order topological quantum critical point, which could be driven into various (higher-order) topological phases through either spontaneous or explicit symmetry breaking, as shown in Fig. 1 (b). In particular, we define and construct a higher-order version of Weyl superconductors, a concept which has not before been discussed in the literature. This exotic higher-order gapless phase could be achieved by breaking inversion symmetry in a HOTDSC. In the following, we will discuss in details the resulting topological phases upon various symmetry breakings. The concepts of higher-order Weyl superconductor and higher-order topological quantum critical point arising from HOTDSC are among our important new theoretical findings.

A. Θ Breaking: Double Weyl Superconductor

When TRS is explicitly or spontaneously broken, each bulk Dirac node will immediately split into a pair of bulk Weyl nodes that carry monopole charges of ±2 in momentum space. Such Weyl nodes are often known as the double Weyl points. In addition, the helical hinge Majorana modes are expected to develop a Zeeman gap due to TRS breaking, which trivializes the higher-order topology of the system. Therefore, we expect that the broken TRS of a HOTDSC phase should lead to a double Weyl superconductor, which features double Weyl nodes in the bulk and Majorana Fermi-arc states on the surface.

We now numerically demonstrate the emergence of double Weyl superconductivity upon TRS breaking. To model the effect of TRS breaking, we add a generalized Zeeman term to our minimal lattice model for HOTDSC:
\[H_{\text{Zeeman}} = g_0 \tau_z \otimes s_z \otimes \sigma_0 + g_1 \tau_z \otimes s_z \otimes \sigma_z. \] (60)

Here, the g_0 and g_1 terms capture the conventional Zeeman effect and the difference in the g-factors for different orbitals, respectively. In Fig. 7 (a) we show the Fermi surface for the spectrum of the (010) surface with $g_0 = 0.1, g_1 = 0.2$, where the red and green dots denote the bulk Weyl nodes with a monopole charge of +2 and −2, respectively. In addition, the Majorana Fermi arc states connecting the Weyl nodes always come in pairs, which is a signature of a Weyl superconductor with higher monopole charges.

We now examine the fate of hinge Majorana modes under TRS breaking by calculating the energy spectrum in an infinite hexagonal prism geometry [see Fig. 7 (b)]. In contrast to the spectrum without TRS breaking in Fig. 5 (c), now the spectrum shows a finite energy gap at $k_z = 0$, which implies the absence of gapless hinge modes. Moreover, upon the splitting of a Dirac node into a pair of Weyl nodes with opposite charges, a continuous distribution of gapless Majorana Fermi-arc surface states emerge between each pair of Weyl nodes, which is consistent with our finding in Fig. 7 (a). We therefore conclude
that TRS breaking will indeed trivialize the higher-order topology and drive the system into a “conventional” double Weyl superconductor without any gapless Majorana hinge modes.

B. \mathcal{P} Breaking: Higher-Order Weyl Superconductor

Breaking inversion symmetry \mathcal{P} also drives a transition from a bulk Dirac node to a pair of Weyl nodes, but it is known that a weak \mathcal{P} breaking term does not necessarily gap out the hinge Majorana modes. Although the hinge Majorana modes are no longer directly protected by the inversion symmetry, we expect that they can still exist as a result of extrinsic higher-order topology as long as the surfaces remain gapped around $k_z = 0$.

To confirm this picture, we add the following inversion-breaking perturbation

$$H_{\text{ivb}} = w \sin k_z \tau_z \otimes s_z \otimes \sigma_z,$$

(61)

to our lattice model, which preserves both TRS and C_6 symmetry. The Fermi surface plot for the (010) surface is shown in Fig. 7 (c), where we set $w = 0.4$. Both the bulk Weyl nodes and the Majorana Fermi arc states are clearly revealed, which confirms the Weyl superconductor nature of the inversion-breaking phase. It is worth pointing out that the Weyl points here are split from a Dirac point in a different way compared with that in the TRS breaking phase, as shown in Fig. 7 (a) and (c). This is because, given a Weyl point, inversion symmetry (TRS) will enforce the existence of another Weyl point at an opposite crystal momentum with an opposite (same) monopole charge. We show explicitly how symmetries constrain the charges of Weyl points in Fig. 7 (a) and (c).

We then numerically calculate the energy spectrum of $H + H_{\text{ivb}}$ with $w = 0.4$ in an infinitely long prism geometry. As shown in Fig. 7 (d), there exist bulk Weyl points and inter-node Majorana Fermi arc surface states as expected. Remarkably, we also find six pairs of helical hinge Majorana modes that live inside the pairing gap on the surface, similar to the case of HOTDSC. The existing 3d bulk Weyl points, 2d surface Fermi arc states, and 1d helical hinge Majorana states together define the \mathcal{P}-breaking phase as the first example of a truly exotic higher-order Weyl superconductor.

The topological features of this higher-order Weyl SC, including the bulk Weyl nodes, surface states and the hinge modes, are all separated in momentum space. It is therefore, in principle, possible to detect them individually in momentum-resolved spectroscopic experiments. Since the appearance of Majorana Fermi arc states is guaranteed by the bulk Weyl nature of the system, a higher-order Weyl SC by definition represents an example of hybrid higher-order topology [33], where 2d and 1d boundary modes coexist.

C. C_6 Breaking: Higher-Order TSC

When the C_6 symmetry is broken, the bulk Dirac points are expected to be gapped due to the absence of any symmetry protection. Nonetheless, the remaining symmetries, i.e., time-reversal and space-inversion, will still guarantee the stability of the Majorana hinge modes. We therefore arrive at a fully gapped higher-order TSC protected by inversion symmetry, which is characterized by an inversion symmetry indicator $\kappa = 2$. In fact, the hinge Majorana modes will still be robust even if the inversion symmetry is weakly broken. This will lead to a TRS protected extrinsic higher-order TSC, as demonstrated in Fig. 1 (b).

Given all these resulting higher-order phases upon different symmetry breaking patterns, we expect the higher-order topology in the HOTDSC phase to be immune to generic weak non-magnetic disorder in the system even if such disorder violates C_6 or inversion symmetries. Practically speaking, even if a material candidate fails to fulfill all the required symmetries for the HOTDSC phase listed in Sec. II, this “failed” HOTDSC candidate could still be one of the exotic topological phases discussed in this section.

V. CONCLUSION

In summary, we introduce a new gapless phase of matter featuring higher-order band topology, namely, the higher-order topological Dirac superconductor, whose defining properties are (1) symmetry-protected three-dimensional Dirac nodes, (2) absence of two-dimensional Fermi-arc states, and (3) symmetry-protected one-dimensional Majorana hinge modes. Such an exotic nodal paired state is therefore topologically distinct from traditional topological superconductors and previously proposed Dirac superconductors. We establish that such a phase can be realized under the protection of six-fold rotation, spatial inversion, and time-reversal symmetries in the presence of unconventional pairing that is odd under inversion and rotation. This HOTDSC phase can therefore be fully characterized by a corresponding set of topological indices defined for Bogoliubov-de Gennes Hamiltonians. Following the above symmetry criteria, we further construct a 3d minimal lattice model for a HOTDSC by introducing symmetry-allowed nodal pairings in a hexagonal Dirac semimetal. In particular, we verify that our model exhibits the expected topological invariants and numerically demonstrate the three defining properties of HOTDSC on an open geometry.

In terms of materials search for HOTDSC phases, there are two possible routes to pursue. One is to look for time-reversal symmetric nodal superconductors with centrosymmetric hexagonal lattices. The other is to look for Dirac semimetals with the same type of lattices that develop nodal superconductivity. We point out that heavy
fermion compounds could be an appealing platform that offers promising candidates. For the first route, there are in fact a few Uranium-based superconductors with hexagonal space group symmetries that are known to have unconventional pairings \[52\]. In particular, UNi$_2$Al$_3$ and UPd$_2$Al$_3$ have C_6 rotational symmetry (space group No. 191) \[53\], while UPt$_3$ has C_6 screw rotational symmetry (space group No. 194) \[52\], which we expect to work as normal C_6 for our purpose. Moreover, while UPd$_2$Al$_3$ is often considered as a non-phonon \[54\] nodal \[55–58\] superconductor, UNi$_2$Al$_3$ and UPt$_3$ are experimentally shown to be spin-triplet superconductors \[52, 59\] with possible point nodes \[52, 60–62\]. As for the second route, despite that the rotational symmetry is four-fold and the existence of superconductivity is yet to be explored, it has been pointed out that heterostructures involving rare-earth Kondo insulators can lead to a Dirac semimetal phase \[63\]. We hope our theory will inspire more future efforts towards realizing higher-order topology in heavy fermion superconductors and beyond. We believe that HOTDSC should exist in nature (or could be synthesized in the laboratory) since all the individual ingredients for its existence have already been realized in different situations.

VI. ACKNOWLEDGMENT

R.-X.Z is indebted to Jiabin Yu and Fengcheng Wu for helpful discussions. This work is supported by Laboratory for Physical Sciences and Microsoft. R.-X.Z is supported by a JQI Postdoctoral Fellowship.

Upon finalizing our manuscript, we became aware of a related work \[64\] that also discusses higher-order Dirac physics.

Appendix A: Surface Gap Scaling of cylindrical Dirac semimetal

In this appendix, we discuss the finite-size effect of the surface Fermi arc states when a DSM is placed in a cylindrical (hexagonal prism) geometry. In the cylindrical geometry, the energy spectrum of Fermi arc surface states in the DSM model follows Eq. 47, which shows a finite-size gap between $E_{e,\uparrow,0}$ and $E_{e,\uparrow,-1}$:

$$\delta_{\text{analytical}} = E_{e,\uparrow,0} - E_{e,\uparrow,-1} = \frac{v}{R}$$ \hspace{1cm} (A1)

Physically, this finite energy gap originates from the spin Berry phase effect of the Fermi arc states \[49\].

As shown in Fig. 8, we numerically calculate the surface gap of the DSM model at $k_z = 0$ for $v \in \{0.5, 1.0, 1.5\}$ in a hexagonal prism geometry by changing the radius R. By performing polynomial fittings, we arrive at a simple universal relation between the numerical finite-size gap $\delta_{\text{numerical}}(v, R)$:

$$\delta_{\text{numerical}} = \frac{4v}{3R} + \mathcal{O}(\frac{1}{R^2}).$$ \hspace{1cm} (A2)

The different linear coefficients of $\delta_{\text{numerical}}$ and $\delta_{\text{analytical}}$ come from the geometric difference between a cylinder and a hexagonal prism. Therefore, the validity of the analytical boundary theory for the DSM model is further confirmed by the numerical results of the finite-size gap in Fig. 8.

![FIG. 8. The surface gap scaling of a DSM with different v is plotted in a hexagonal prism geometry by varying radius R.](image-url)
