Effectiveness of therapy with basal insulin analogs to improve glycemic control in type 2 diabetes mellitus patients poorly controlled with oral antidiabetic drugs in combination or not with NPH insulin

Alfonso Soto-González and Diego Bellido-Guerrero
*Correspondence: diegobellido@endofer.com
†Both authors contributed equally to this work.
1Department of Endocrinology, Complejo Hospitalario Universitario de A Coruña, As Xubias, 84 15006, A Coruña, Spain.
2Department of Endocrinology, Hospital Arquitecto Marcide, Carretera San Pedro de Leixa, s/n, 15405, Ferrol (A Coruña), Spain.

Abstract
Objective: To determine the effectiveness of therapy with basal insulin analogs administered in poorly controlled type 2 diabetes mellitus patients switching from oral antidiabetic drugs with or without NPH insulin.

Patients and methods: Observational retrospective study carried out in 250 type 2 diabetes mellitus patients who switched from oral antidiabetic drugs with or without insulin NPH to basal insulin analog, due to poor metabolic control (HbA1c >8%). Demographic data, anthropometric, laboratory parameters and treatment-related information were retrospectively extracted from patients' medical notes at the initiation of therapy with basal insulin analog and after at least 5 months of treatment.

Results: A significant reduction in HbA1c levels between baseline and month 5 (9.2±1.4% vs 7.6±1.1%; p<0.001) was obtained, with a total of 61 (24.4%) patients reaching metabolic control (HbA1c <7%). An overall non-significant change in body weight was observed between baseline to month 5 (79.8±13.2kg vs 79.5±13.1kg; p>0.05). Among those 38 subjects who received NPH insulin prior to basal insulin analog, a significant decrease in the number of patients with hypoglycemic episodes after at least 5 months of treatment was seen (16 vs 5; p<0.01).

Conclusions: Treatment with long-acting basal insulin analogs improved glycemic control in type 2 diabetes mellitus patients poorly controlled with oral antidiabetic drugs in combination or not with NPH insulin. Moreover, this improvement was produced with a significant reduction in the number of symptomatic hypoglycemic episodes and without a significant increase in body weight.

Keywords: Diabetes mellitus, type 2, insulin, long-acting, insulin, NPH

Introduction
Type 2 diabetes mellitus (T2DM) is a disease characterized by chronic hyperglycemia secondary to a dual pathological mechanism: resistance to the action of insulin and a progressive failure in pancreatic secretion of insulin [1].

For successful management of the disease, it is essential to achieve good metabolic control, based primarily on obtaining near normal glycated hemoglobin (HbA1c) levels. In this context, current guidelines generally recommend achieving and maintaining HbA1c levels below 7%. However, on an individualized basis according to the characteristics of each patient, HbA1c levels below 6% may be considered, as long as the risk of hypoglycemic episodes is not substantially increased [2,3]. In this regard, it is well established that the risk of long-term microvascular and macrovascular complications is related to glycaemia control, as measured by HbA1c levels [4]. The results of prospective observational studies have shown that improved metabolic control of diabetes is associated with lower rates of suffering long-term vascular complications [5,6].

Although treatment with oral antidiabetic drugs (OADs), either as sole or combined therapy, is initially effective, it usually proves inadequate as the disease progresses [7]. Progressive impairment of pancreatic beta cells makes it necessary to administer insulin to restore normoglycemia. In this regard, a number of studies have shown that patients with T2DM with inadequate glycemic control after treatment with OADs alone could achieve HbA1c levels ≤7% by the addition of basal insulin analogs [8-12]. However, in patients with diabetes of long duration, it is common not to use basal insulin early or intensely enough to reach the therapeutic targets necessary to prevent chronic complications. The reasons generally given in these circumstances are doubts about the effectiveness of insulin therapy in patients with T2DM [13] and the fear of suffering hypoglycemic episodes [14].

The aim of this study was to determine the effectiveness of therapy with basal insulin analogs to improve glycemic control in T2DM patients poorly controlled with OADs in combination or not with NPH insulin.
A multicenter, retrospective, epidemiological observation study was carried out at 32 primary care centers from the Spanish Galician region (15 primary care centers from Ferrol and 17 primary care centers from A Coruña). The study was conducted in accordance with the Declaration of Helsinki and applicable current legislation. In addition, the study was evaluated and approved by the regional committee of the Galician Health Service and all patients gave their written informed consent to use their data in the study.

Patient selection
This study included male and female patients aged 18 years or older with a documented diagnosis of T2DM who had received treatment with OADs, with or without NPH insulin for at least 8 months, and due to poor glycemic control had been switched to long-acting analogs for at least 5 months before their inclusion in the study. Patients also had to have HbA1c levels >8% before switching to long-acting analog therapy. Patients with concomitant diseases and with a history of severe or repeated asymptomatic hypoglycemic episodes were excluded. Treatment was administered according to standard clinical practice at each study site. Given the observational and retrospective nature of the study, there was no interference in the decision or administration of treatment.

Patient evaluations
Information on evaluations of the study participants was collected retrospectively from the patients' medical histories at two time points: At the time of the change to therapy with long-acting analogs and after at least 5 months of treatment with long-acting analogs. The information collected at both time points was based on demographic, anthropometric and laboratory test data (HbA1c, blood glucose profile, biochemistry and lipid profile). In addition, data related to antidiabetic treatment (OADs, type of insulin and total daily dose of insulin) was collected at both time points, as well as the number of documented hypoglycemic episodes suffered during the previous month.

Asymptomatic hypoglycemia was defined as an event without symptoms of hypoglycemia but which was associated with a blood glucose value <3.33 mmol/L. Symptomatic hypoglycemia was defined as an event with symptoms consistent with hypoglycemia in which the subject responded to intake of carbohydrates/food/snack with a blood glucose value <3.33 mmol/L.

Additionally, the reasons leading to the change in treatment regimen and the assessment of satisfaction with the new treatment perceived by the physician and the patient (very good, good, fair, poor, very poor) after at least 5 months from the treatment change were recorded.

Statistical considerations
A descriptive analysis was carried out on the study variables using measures of central tendency and dispersion for quantitative variables, and valid frequencies and percentages for qualitative variables. Pre- and post-treatment change comparisons were made using the paired t-test according to the circumstances, Wilcoxon test or Mann-Whitney test for quantitative variables, and the chi-square test, Fisher exact test or McNemar test for qualitative variables. In addition, a multivariate analysis was carried out to obtain a predictive model of the factors associated with the variable "treatment with basal insulin only". Missing data were not imputed and the difference was considered statistically significant if p ≤0.05. All statistical analyses were performed with the Statistical Package for the Social Sciences version 17.0 (SPSS, Inc, Chicago, IL, USA).

Results
Patients
From September 2009 to April 2010, a total of 250 patients

| Table 1. Baseline characteristics (N=250). |
| Characteristics | Values |
|-----------------|--------|
| Age* years (mean ± S.D.) | 66.5 ± 10.9 |
| Gender†, n (%) | |
| Male | 127 (51) |
| Female | 122 (49) |
| Body weight†, kg (mean ± S.D.) | 79.6 ± 13.2 |
| Abdominal circumference†, cm (mean ± S.D.) | 101 ± 14.2 |
| BMF, kg/m² (mean ± S.D.) | 29.9 ± 4.8 |
| Disease evolution*, years (mean ± S.D.) | 10.6 ± 7.4 |
| Fasting blood glucose, mmol/l (mean ± S.D.) | 11.1 ± 3.5 |
| HbA1c, % (mean ± S.D.) | 9.2 ± 1.4 |
| Comorbidities*, n (%) | |
| Dyslipidemia | 174 (69.3) |
| Hypertension | 173 (68.9) |
| Abdominal obesity | 138 (55.0) |
| Smoker | 35 (14.6) |
| Diabetes complications*, n (%) | |
| Microalbuminuria | 89 (35.5) |
| Macroalbuminuria | 15 (6.0) |
| Retinopathy | 45 (17.9) |
| Neuropathy | 19 (7.6) |
| Myocardial infarction | 14 (5.6) |
| Angina | 16 (6.4) |
| Unstable angina | 3 (1.2) |
| Heart failure | 11 (4.4) |
| Cerebrovascular accident | 10 (4.0) |
| Transient ischemic accident | 10 (4.0) |
| Peripheral vascular disease | 39 (15.5) |

Missing data: a=5, b n=1, c n=6, d n=61, e n=8, f n=10. *Multiple-choice question. HbA1c, glycated hemoglobin; BMI, body mass index; S.D., standard deviation.
Table 2. Previous antidiabetic treatment (N=250).  

| Treatment                        | Values         |
|---------------------------------|----------------|
| Oral antidiabetic drugs*; n (%)  | 241 (96.4)     |
| Metformin                       | 197 (78.8)     |
| Sulphonylureas                  | 143 (57.2)     |
| DPP4 Inhibitors                 | 32 (12.8)      |
| Rapid-acting insulin secretagogues | 22 (8.8)     |
| Thiazolidinediones              | 15 (6.0)       |
| Alpha-glucosidase inhibitors    | 15 (6.0)       |
| GLP1 analogs                    | 2 (0.8)        |
| NPH insulin; n (%)              | 38 (15.2)      |
| No. NPH insulin injections/day (mean ± S.D.) | 1.8 ± 0.4 |
| Total daily dose of NPH insulin, UI (mean ± S.D.) | 38.1 ± 15.8 |
| Time from treatment initiation with insulin, months (mean ± S.D.) | 48.5 ± 47.2 |

* Multiple-choice question. DPP4, dipeptidyl peptidase 4; S.D., standard deviation; GLP1, Glucagon-like peptide-1.

were included with the baseline characteristics described in Table 1. The vast majority of these patients (241 (96.4%)) had been treated with an oral hypoglycemic agent and only 38 (15.2%) patients had received treatment with NPH insulin before the change in treatment regimen (Table 2).

**Anti-diabetic treatment**

After the treatment change, all patients received insulin analogs as basal insulin, consisting of insulin glargine (mean total daily dose, 31.2 ± 14 IU) in 219 (87.6%) patients and insulin detemir (mean total daily dose, 37.7 ± 2.5 IU) in 5 (2%) patients. A total of 223 (89.2%) received only basal insulin as the insulinizing agent, whereas 27 (10.8%) receiving one or more additional doses of rapid insulin: one dose in 4 (1.6%) patients and more than two doses in 23 (9.2%) patients. On the other hand, treatment with OADs was maintained in 209 (83.6%) patients: metformin in 177 (84.7%) patients, sulfonylurreas in 32 (15.3%), DPP-4 antagonists in 23 (11%), rapid-acting insulin secretagogues in 13 (6.2%), glitazones in 7 (3.3%), and alpha-glucosidase inhibitors in 4 (1.9%) patients. The reasons leading to the change in treatment regimen were poor metabolic control in 218 (87.2%) patients, HbA1c levels in 211 (84.4%), and postprandial glucose levels in 95 (38.0%) patients. After the first change in treatment regimen, a second change in insulin regimen was made in 95 (39.4%) patients. Among the reasons given for the change in treatment regimen were poor metabolic control in 52 (54.7%) patients, HbA1c levels in 43 (45.3%), fasting glucose levels in 40 (42.1%), and postprandial glucose levels in 39 (41.1%) patients.

**Efficacy**

On switching to treatment with basal insulin analogs, a reduction was noted in mean HbA1c levels of 1.6% during the study, with levels going from 9.2 ± 1.4% at the start of therapy with basal insulin analogs to 7.6 ± 1.1% after at least 5 months from the treatment change (p<0.001) (Figure 1). Thus, 61 (24.4%) patients achieved metabolic control (HbA1c levels <7%), 54 (88.5%) who had not received NPH insulin before the change in therapy and 7 (11.5%) who had (p<0.001). In this latter subgroup of patients, the mean total daily dose of basal insulin analog was 26.7 ± 11.7 IU, and insulin glargine was the most used basal insulin (56 (91.8%)). In addition, 49 of 61 (80.3%) patients with HbA1c <7% were also receiving OADs together with basal insulin: metformin in 41 (83.7%), sulfonylurreas in 7 (14.3%), DPP-4 antagonists in 7 (14.3%), rapid-acting insulin secretagogues in 3 (6.1%), alpha-glucosidase inhibitors in 2 (4.1%), and glitazones in 1 (2%).

Mean fasting blood glucose decreased significantly from the change to therapy with basal insulin analogs to at least 5 months of treatment (11.1 ± 3.46 mmol/L vs 7.6 ± 2.3 mmol/L; p<0.01). Similarly, a statistically significant reduction was observed in postprandial blood glucose levels from the start of therapy with basal insulin analogs to at least 5 months of treatment, measured both 2 hours after breakfast (11.9 ± 3.2 mmol/L vs 8.8 ± 2.2 mmol/L; p<0.01), and 2 hours after lunch (12.4 ± 3.5 mmol/L vs 9.6 ± 2.8 mmol/L; p<0.01) or 2 hours after supper (11.8 ± 2.9 mmol/L vs 9.2 ± 2.3 mmol/L; p<0.01). Likewise, the same trend was seen on comparing postprandial glucose levels of patients who received treatment with NPH insulin before the change in therapy (Figure 2A) versus those who did not receive it (Figure 2B).

In the 38 patients on NPH insulin before the change in therapy, a significant decrease was seen in the number of patients with hypoglycemic episodes after at least 5 months of treatment with basal insulin analogs versus the start of treatment (16 (42.7%) vs 5 (13.2%); p<0.01). Although the number of asymptomatic episodes did not vary significantly between both times (8 (21.1%) vs 3 (7.9%); p>0.05), the number of symptomatic episodes decreased significantly (15 (39.5%) vs 3 (7.0%); p<0.01) (Table 3).

**Anthropometric data and cardiovascular risk factors**

No statistically significant differences were found in mean patient weight after changing to treatment with basal insulin analogs, which went from 79.8 ± 13.2 kg at the start...
of treatment with basal insulin analogs to 79.5 ± 13.1 kg after at least 5 months of treatment (p>0.05). However, abdominal circumference decreased significantly from 100.9 ± 14 cm at the start of treatment to 100.2 ± 13.6 cm after at least 5 months of treatment (p<0.05). With regard to cardiovascular risk factors, a statistically significant decrease was also observed in blood pressure values, heart rate and lipid profile from the start of treatment with basal insulin analogs to at least 5 months of treatment (p<0.01) (Table 4).

### Treatment satisfaction

The assessment of patient treatment satisfaction perceived by the physician revealed that in 185 (74.9%) patients, this was considered to be “good/very good”, “fair” in 47 (19%), and “poor/very poor” in 15 (6.1%) patients. Regarding the patient perception of treatment satisfaction, 148 (75.2%) patients rated their satisfaction as “good/very good” and 49 (24.8%) as “fair” (Figure 3).

### Discussion

This study was designed as a retrospective observational study to determine if therapy with long-acting basal insulin analogs in combination with OADs improves glycemic control, measured in terms of reduction of HbA1c levels and hypoglycemic episodes in patients with T2DM, who despite receiving oral hypoglycemic agents in combination or not with NPH insulin had poor metabolic control (HbA1c >8%). Numerous studies have investigated the benefits of adding long-acting basal insulin analogs, specifically insulin glargine, to oral hypoglycemic treatment in comparison to NPH insulin in patients with T2DM and poor glycemic control [11,15-17]. Although, in general, both regimens have been shown to be

---

**Table 3. Comparison of hypoglycemic episodes before and after treatment with basal insulin analogs (N=38).**

| Asymptomatic hypoglycaemic episodes, n (%) | At least 5 months of treatment | p-value* |
|------------------------------------------|--------------------------------|----------|
|                                          | No (73.7)                     | Yes (2.6) | >0.05    |

| Symptomatic hypoglycaemic episodes, n (%) | At least 5 months of treatment | p-value* |
|------------------------------------------|--------------------------------|----------|
|                                          | No (22.7)                      | Yes (5.3) | <0.01    |

*McNemar’s test for paired data.
effective in controlling blood glucose levels, treatments based on
administration of insulin glargine appear to achieve target
HbA1c levels with a lower incidence of hypoglycemic episodes
and to have greater effectiveness in metabolic control in
these patients. Thus, the results obtained in the investigation
carried out by MC Riddle et al., showed that the addition of
insulin glargine or NPH insulin to treatment with oral
hypoglycemic agents to achieve HbA1c levels <7%, resulted
in both groups in a decrease of 1.6% in HbA1c levels [11]. This
reduction in HbA1c levels is comparable to that found in our
study, confirming the beneficial effect of adding long-acting
basal insulin analogs to treatment with oral hypoglycemic
agents for glycemic control in patients with T2DM and poor
glycemic control under routine clinical practice conditions.
Furthermore, it was seen that a larger proportion of patients
treated with insulin glargine obtained these results without
the occurrence of nocturnal hypoglycemic episodes [11].
Similarly, an open study carried out in 29 European sites to
compare the efficacy and safety of both formulations noted
that there was a significantly higher number of patients in
the NPH insulin group that suffered a nocturnal hypoglycemic
episode than in the insulin glargine group [15]. However,
in our investigation could not establish a comparison in the
incidence of nocturnal hypoglycemic episodes between both
therapies because of the small number of patients initially
in the NPH insulin group, and furthermore the study was
about basal insulin analogs and not only insulin glargine.
Nevertheless, our investigation obtained a reduction in the
number of hypoglycemic episodes, mainly symptomatic,
after the change in treatment. These results are comparable
to those obtained in the study conducted by Yki-Järvinen
et al., in which it was found that control of blood glucose
levels could be achieved after the addition of insulin glargine
or NPH insulin to hypoglycemic treatment with metformin.
However, a larger number of patients in the group treated
with NPH insulin suffered a symptomatic hypoglycemic event
as compared to patients who received insulin glargine [17].

The importance of maintaining strict control of blood
glucose levels by achieving target HbA1c values with the aim
of reducing microvascular and macrovascular complications
in patients with T2DM is widely known. Thus, a 1% reduction
in HbA1c levels is associated with a 14% reduction in the
risk of suffering a myocardial infarction and in mortality for
any cause, a 37% reduction in microvascular complications
and a 21% reduction in overall complications of diabetes
[4]. A recently published observational study noted that the
addition of insulin to existing treatment with OADs did not
significantly increase the incidence of microvascular and
macrovascular events in comparison to the addition of a new
OAD to existing treatment [18].

Furthermore, it is known that HbA1c reflects the contribution
of both fasting hyperglycemia or basal hyperglycemia
(BHG) and postprandial hyperglycemia (PPHG). In our
study, the reduction in HbA1c levels could be largely due
to the reduction in fasting hyperglycemia levels, since this
reduction was higher in those patients who did not receive
NPH insulin than in those who did. The relative contribution
of BHG and PPHG to HbA1c levels have been shown in recent
study carried out by M Riddle et al., this study noted that in
patients with HbA1c >7%, BHG was the contribution that
initially predominates in HbA1c results in a proportion
of almost 80% depending on the HbA1c level, despite treatment
with OADs. Following treatment intensification, it has been
seen that this contribution decreases to 34% after treatment
with basal insulin, or nearly 70% after administration of other
therapeutic agents [19]. These results, therefore, expand
the concept that L Monnier et al., proposed and developed
in two consecutive studies, showing that intensification of
hypoglycemiant treatment modifies the relative contribution
of BHG versus PPHG on HbA1c values [20,21].

The authors recognize some limitations in this study that
should be considered when interpreting its results. First,
insulin glargine was found to be the basal insulin analog
administered to most of the study participants, so it would
be difficult to ensure that similar results would be obtained
with other basal insulin analogs. Furthermore, the design of
our investigation was proposed only as a short duration study,
so its results cannot be used to infer long-term effectiveness.
Finally, as it is an observational study, the information extracted
does not provide sufficient evidence to establish cause-effect
relationships. However, the conducting of this type of studies
is of great relevance to know the conditions derived from
routine clinical practice.

Conclusions
The results obtained in this study show that treatment with
long-acting basal insulin analogs improved glycemic control in
T2DM patients poorly controlled with OADs in combination or
not with NPH insulin, under routine clinical practice conditions.
Moreover, this improvement was produced with a significant
reduction in the number of symptomatic hypoglycemic
episodes and without a significant increase in body weight
of the participating patients.

List of abbreviations
BHG: Basal hyperglycemia
HbA1c: Glycated hemoglobin
OADs: Oral antidiabetic drugs
PPHG: Postprandial hyperglycemia
T2DM: Type 2 diabetes mellitus

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors took part in the conception and design of the
study; analysis and interpretation of data; drafting of the
article or revising it critically for important intellectual
content and final approval of the version to be published.

Acknowledgement
The authors thank all of the Investigators of the BALADO
Study Group for its dedication and enthusiasm. We thank Ana López and Antonio Torres (Dynamic S.L.) for assistance in medical writing and editing, funded by Sanofi Spain. This study was sponsored by Sanofi Spain.

BALADO Study Group: Mª C Duran, Marcelino, Carlos Suarez, Margarita Palacios, Mª Cruz Grandal, Manuel A Ramos, Miguel De Santiago, Fernando Malo, Cayetano Galan, Jose C. Garcia Vilamea, Cristina Iglesias, Manuel Pereira, Jesus De Juan, Carlos Castiego, Esperanza Rodriguez Molde, Fernando Paramio, Francisco Malvar, Juan R. Couce, Manuel Tarrio, Juan Martinez Montero, Eloy Gonzalez Alonso, Adolfo Rodriguez Tejeiro, Jose Cabello, Juan Francisco Sanchez Perez, Mª Luisa Varela, Dolores Recarey, Mª Portal, Jose Insua, Andres Martinez Gonzalez, Jose Ignacio Paz, Antonio Jose Asensi, Mª Lopez Toled, Luis Sarone, Mª C Pastor, Mª Luisa Marín, Luis M Fernandez Alonso, Manuel Barral, Alejandro Rey, Mª Mar Terceiro, Juan Manuel Peteiro, Mª Antonia Trueba, Mercede Ferreira, Ana I Carvajal, Mª Asuncion Lijo, Mª Luisa Zapata, Manuel Soto, Lidia Vazquez, Jose Carreira, Arturo Salvador.

Publication history
Received: 04-Feb-2013 Revised: 10-Apr-2013 Accepted: 26-Apr-2013 Published: 04-May-2013

References
1. Menendez Torre E, Lafita Tejedor FJ, Arto Menendez S, Millan Nunez-Cortes J, Alonso Garcia A, Puig Domingo M, Garcia Solans JR, Alvarez Guisasola F, Garcia Alejia G, Mediavilla Bravo J, Miranda Fernandez-Santos C and Romero Gonzalez R: [Recommendations for the pharmacological treatment of hyperglycemia in type 2 diabetes]. Aten Primaria 2011, 43:202 e1-9. | Article | PubMed
2. Standards of medical care in diabetes--2011. Diabetes Care 2011, 34 Suppl 1:S1-61. | Article | PubMed Abstract | PubMed Full Text
3. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R and Zinman B: [Effect of intensive blood-glucose control with metformin on complications in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes]. Diabetes Care 2009, 32:193-203. | Article | PubMed Abstract | PubMed Full Text
4. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC and Holman RR: [Assessment of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000, 321:405-12. | Article | PubMed Abstract | PubMed Full Text
5. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352:854-65. | Article | PubMed
6. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352:837-53. | Article | PubMed
7. Turner RC, Cull CA, Frighi V and Holman RR: [Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999, 281:2005-12. | Article | PubMed
8. Bretzel RG, Nuber U, Landgraf W, Owens DR, Bradley C and Linn T: [Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycemic agents (APOLLO): an open randomised controlled trial. Lancet 2008, 371:1073-84. | Article | PubMed
9. Gerstein HC, Yale JF, Harris SB, Issa M, Stewart JA and Dempsey E: [A randomized trial of adding insulin glargine vs. avoidance of insulin in people with Type 2 diabetes on either no oral glucose-lowering agents or submaximal doses of metformin and/or sulphonylureas. The Canadian INSIGHT (Implementing New Strategies with Insulin Glargine for Hyperglycaemia Treatment) Study]. Diabet Med 2006, 23:736-42. | Article | PubMed
10. Hermansen K, Davies M, Derezinski T, Martinez Ravn G, Clauson P and Home P: [A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care 2006, 29:1269-74. | Article | PubMed
11. Riddle MC, Rosenstock J and Gerich J: [The treat-to-target trial: randomized addition of glargine or human NPH insulin to treatment of type 2 diabetes randomized patients. Diabetes Care 2003, 26:3080-6. | Article | PubMed
12. Yki-Jarvinen H, Juurinen L, Alvarsson M, Bystedt T, Caldwell I, Davies M, Lahdenpera S, Nijeps G and Vahtala M: [Initiate Insulin by Aggressive Titration and Education (INITIATE): a randomized study to compare initiation of insulin combination therapy in type 2 diabetic patients individually and in groups. Diabetes Care 2007, 30:1364-9. | Article | PubMed
13. Hayward RA, Manning WG, Kaplan SH, Wagner EH and Greenfield S: [Starting insulin therapy in patients with type 2 diabetes: effectiveness, complications, and resource utilization. JAMA 1997, 278:1663-9. | Article | PubMed
14. Cryer PE: [Hypoglycemia is the limiting factor in the management of diabetes. Diabet Metab Res Rev 1999, 15:42-6. | Article | PubMed
15. Safety and efficacy of insulin glargine (HOE 901) versus NPH insulin in combination with oral treatment in Type 2 diabetic patients. Diabet Med 2003, 20:545-51. | Article | PubMed
16. Eliaschewitz FG, Calvo C, Valbuena H, Ruiz M, Aschner P, Villena J, Ramirez LA and Jimenez J: [Therapy in type 2 diabetes: Insulin glargine vs. NPH insulin both in combination with gliclazide. Arch Med Res 2006, 37:495-501. | Article | PubMed
17. Yki-Jarvinen H, Kauppinen-Makelin R, Tilkikainen M, Vahtala M, Virtamo H, Niskila K, Tulokas T, Hulme S, Hardy K, McNulty S, Hanninen J, Levanen H, Lahdenpera S, Lehtonen R and Ryysy L: [Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANNMET study. Diabetologia 2006, 49:442-51. | Article | PubMed
18. Hall GC, McMahon AD, Carroll D and Home PD: [Macrovascular and microvascular outcomes after beginning of insulin versus additional oral glucose-lowering therapy in people with type 2 diabetes: an observational study. Pharmacoeconomics Drug Saf 2012, 21:305-13. | Article | PubMed
19. Riddle M, Umpperjee G, DiGenio A, Zhou R and Rosenstock J: [Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care 2011, 34:2508-14. | Article | PubMed Abstract | PubMed Full Text
20. Monnier L, Lapinski H and Colette C: [Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 2003, 26:881-5. | Article | PubMed
21. Monnier L, Colette C, Dunseath GJ and Owens DR: [The loss of postprandial glycemict control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 2007, 30:263-9. | Article | PubMed

Citation:
Soto-Gonzalez A and Bellido-Guerrero D: Effectiveness of therapy with basal insulin analogs to improve glycemic control in type 2 diabetes mellitus patients poorly controlled with oral antidiabetic drugs in combination or not with NPH insulin. Journal of Diabetes Research & Clinical Metabolism 2013, 2:20. http://dx.doi.org/10.7243/2050-0866-2-20