A divergent approach to the synthesis of the yohimbinoid alkaloids venenatine and alstovenine

Terry P. Lebold,† Jessica L. Wood,† Josh Deitch,† Michael W. Lodewyk,‡ Dean J. Tantillo,‡ and Richmond Sarpong*†

†Department of Chemistry
University of California, Berkeley
Berkeley, CA 94720 (USA)
Fax: (+1) 510-642-9675
E-mail: rsarpong@berkeley.edu

‡Department of Chemistry
University of California, Davis
Davis, CA 95616 (USA)
E-mail: tantillo@chem.ucdavis.edu

Table of Contents

General Experimental page S-2 – S-2
Experimental Procedures and Characterization Data page S-2 – S-14
Supercritical Fluid Chromatography Data page S-15 – S-17
1H & 13C NMR Spectra page S-18 – S-41
Crystallographic Data page S-42 – S-59
Computational Data page S-60 – S-125
General Experimental

All reactions were performed in flame-dried glassware fitted with rubber septa under a nitrogen atmosphere unless otherwise specified. Microwave reactions were performed using a Biotage Initiator. Liquid reagents and solvents were transferred via syringe under nitrogen. Tetrahydrofuran (THF), diethyl ether, benzene, toluene, and triethylamine were dried over alumina under a nitrogen atmosphere in a GlassContour solvent system. Dichloromethane (DCM) was distilled over calcium hydride. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C were controlled by an IKA® temperature modulator. Reactions were monitored by thin layer chromatography using SiliCycle silica gel 60 F254 precoated plates (0.25 mm) which were visualized using UV light, p-anisaldehyde stain, KMnO₄ or CAM stain. Sorbent silica gel (particle size 40-63 μm) was used for flash chromatography. Preparative thin layer chromatography was carried out using Uniplate silica gel precoated plates (2.0 mm). ¹H and ¹³C NMR were recorded on Bruker AVB-400, AV-500, or AV-600 MHz spectrometers with ¹³C operating frequencies of 100, 125, and 150 MHz, respectively, in CDCl₃ or C₆D₆ at 23 °C. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR, C₆D₆ δ = 7.16 ppm for ¹H NMR and δ = 128.06 for ¹³C NMR). Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constant, number of hydrogens). Multiplicity is abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a Nicolet MAGNA-IR 850 spectrometer and are reported in frequency of absorption (cm⁻¹). Mass spectral data were obtained from the Mass Spectral Facility at the University of California, Berkeley.

Experimental Procedures and Characterization Data

Diene 19 (2.060 g, 6.765 mmol) and enone 20 (1.375 g, 9.812 mmol) were dissolved in toluene (45 mL) and the mixture heated to 100 °C. After 16 h NMR analysis showed complete consumption of the diene. The reaction mixture was concentrated under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (hexanes→5% EtOAc/hexanes) to yield alkene 18-endo (2.553 g, 85% yield) and alkene 18-exo (117 mg, 0.263 mmol, 4% yield) as viscous pale yellow oils. Rf = 0.47 (10% EtOAc/hexanes X 2); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.28-7.24 (m, 3H), 5.91 (dd, J = 10.4, 4.3, 2.7 Hz, 1H), 5.70 (ddd, J = 10.4, 1.1, 1.1 Hz, 1H), 4.65 – 4.63 (m, 1H), 4.54 – 4.49 (m, 2H), 3.75 (s, 3H), 3.67 – 3.60 (m, 2H), 3.02 (ddd, J = 13.0, 6.5, 6.5 Hz, 1H), 2.52 – 2.46 (m, 1H), 2.42 – 2.36 (m, 1H), 2.29 – 2.22 (m, 1H), 2.07 – 1.98 (m, 1H), 1.91 – 1.85 (m, 1H), 0.90 (s, 9H), 0.06 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 212.0, 171.0, 137.9, 128.3, 128.0, 127.9, 127.6, 124.9, 73.2, 71.8, 63.8, 63.4, 54.7, 39.4, 38.7, 36.7, 25.8, 20.6, 18.2, -5.43, -5.46; IR (thin film) νmax 3031, 2953, 2859, 1753, 1727, 1598, 1497, 1455, 1360, 1254, 1231, 1189, 1111, 1088, 1069, 960, 835, 775, 737, 698, 667 cm⁻¹; HRMS (ESI) calc’d for [C₂₅H₃₆O₅SiLi]⁺: m/z 451.2492, found 451.2487.
Sulfonate 21 was prepared in two steps from alkene 18-endo without purification of alkane A or alcohol B, as both intermediates were of sufficient purity for subsequent reactions. For authenticative purposes, a small amount of alkane A and alcohol B were purified to allow full characterization.

Alkene 18-endo (1.248 g, 2.807 mmol) was dissolved in EtOAc (30 mL). 10% Pd/C (325 mg) was then added and the reaction flask was evacuated and backfilled with H₂ (3X). The reaction was carefully monitored and upon completion by NMR analysis (indicated by disappearance of olefinic protons) the reaction mixture was filtered through Celite, the filter cake washed with EtOAc, and the solvent removed under reduced pressure to produce crude alkane A as a colorless oil which was carried on without purification. Crude alkane A was dissolved in 1% HCl/MeOH (25 mL) and stirred for 30 minutes after which TLC showed complete consumption of the starting material. The reaction was poured into saturated NaHCO₃ solution and extracted with DCM (4 X 10 mL). The combined organics were dried with MgSO₄ and the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (20→30% EtOAc/hexanes) to yield sulfonate 21 (1.106 g, 83% yield over three steps) as a colorless viscous oil. Rf = 0.55 (20% EtOAc/hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.21 (m, 5H), 5.96 – 5.88 (m, 2H), 4.57 (d, J = 11.5 Hz, 1H), 4.52 – 4.51 (m, 1H), 4.48 (d, J = 11.5 Hz, 1H), 3.72 (dd, J = 9.6, 6.1 Hz, 1H), 3.67 (s, 3H), 3.58 (dd, J = 9.5, 7.4 Hz, 1H), 2.89 – 2.81 (m, 1H), 2.37 – 2.25 (m, 1H), 2.22 – 2.11 (m, 2H), 2.00 – 1.91 (m, 1H), 1.93 – 1.84 (m, 1H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 167.6, 138.3, 132.5, 128.2, 127.6, 127.5, 124.6, 71.3, 70.8, 66.8, 66.4, 52.7, 40.6, 35.5, 34.0, 26.3, 25.9, 18.3, -5.38, -5.42; IR (thin film) νmax 3031, 2953, 2929, 2894, 2857, 1755, 1738, 1730, 1462, 1433, 1399, 1249, 1211, 1101, 1061, 938, 837, 777, 735, 698 cm⁻¹; HRMS (ESI) calc’d for [C₂₅H₂₈O₇SNa]⁺: m/z 495.1453, found 495.1454.
Alcohol 22 was prepared in three steps from sulfonate 21 without purification of the intermediates. For authenticative purposes a small amount of silyl enol ether C was purified to allow full characterization. The procedure for the α-hydroxylation was adapted from: Tsui, H.-C., Paquette, L. A. Reversible charge-accelerated Oxy-Cope rearrangements. J. Org. Chem. 63, 9968-9977 (1998).

Sulfonate 21 (468 mg, 0.990 mmol) was dissolved in DCM (15 mL) and cooled to −30 °C. NEt3 (0.69 mL, 5.0 mmol) was then added followed by the dropwise addition of TBSOTf (0.27 mL, 1.2 mmol). The reaction was then allowed to warm to −10 °C. After 90 min TLC indicated that starting material remained so additional portions of NEt3 (1 mL, 7 mmol) and TBSOTf (0.27 mL, 1.2 mmol) were added. After 60 min TLC showed complete consumption of the starting material and the reaction was quenched with saturated NaHCO3 solution (5 mL). The solution was diluted with H2O and extracted with DCM (4 X 10 mL). The combined organics were concentrated to produce crude silyl enol ether C as a light yellow oil. Silyl enol ether C was dissolved in a 1:1:1 mixture of DCM/acetone/H2O (39 mL). 18-Crown-6 (100.0 mg, 0.378 mmol) and NaHCO3 (6.07 g, 72.3 mmol) were then added. Oxone (5.48 g, 8.91 mmol) was then added in portions over 5 minutes with vigorous stirring. After 60 min TLC indicated that starting material remained, so additional Oxone (2.0 g, 3.2 mmol) was added. After 30 minutes TLC showed complete consumption of the starting material and the reaction was quenched with saturated NaHCO3 solution (5 mL). The solution was then removed to produce the crude alcohol 22 which was absorbed on silica and purified by column chromatography (30→50% EtOAc/hexanes). Alcohol 22 (412 mg, 85%) was obtained as colorless viscous oil. Rf = 0.26 (40% EtOAc/hexanes; 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 10.1 Hz, 1H), 4.94 (s, 1H), 4.84 (d, J = 10.1 Hz, 1H), 3.10 (dd, J = 12.8, 6.4 Hz, 1H), 1.84 – 1.77 (m, 1H), 1.62 – 1.42 (m, 3H); 13C NMR (150 MHz, CDCl3) δ 214.4, 170.8, 138.1, 128.2, 127.5, 127.3, 77.3, 72.0, 65.4, 63.0, 40.9, 39.2, 38.1, 26.1, 20.4, 17.3; IR (thin film) νmax 3434, 2950, 2865, 1749, 1724, 1455, 1436, 1399, 1254, 1198, 1165, 1088, 1069, 1046, 736, 698 cm⁻1; HRMS (ESI) calc’d for [C19H24O5Li]+: m/z 339.1784, found 339.1787.

Alcohol 22 was prepared in three steps from sulfonate 21 without purification of the intermediates. For authenticative purposes a small amount of silyl enol ether C was purified to allow full characterization. The procedure for the α-hydroxylation was adapted from: Tsui, H.-C., Paquette, L. A. Reversible charge-accelerated Oxy-Cope rearrangements. J. Org. Chem. 63, 9968-9977 (1998).

Sulfonate 21 (468 mg, 0.990 mmol) was dissolved in DCM (15 mL) and cooled to −30 °C. NEt3 (0.69 mL, 5.0 mmol) was then added followed by the dropwise addition of TBSOTf (0.27 mL, 1.2 mmol). The reaction was then allowed to warm to −10 °C. After 90 min TLC indicated that starting material remained so additional portions of NEt3 (1 mL, 7 mmol) and TBSOTf (0.27 mL, 1.2 mmol) were added. After 60 min TLC showed complete consumption of the starting material and the reaction was quenched with saturated NaHCO3 solution (5 mL). The solution was diluted with H2O and extracted with DCM (4 X 10 mL). The combined organics were concentrated to produce crude silyl enol ether C as a light yellow oil. Silyl enol ether C was dissolved in a 1:1:1 mixture of DCM/acetone/H2O (39 mL). 18-Crown-6 (100.0 mg, 0.378 mmol) and NaHCO3 (6.07 g, 72.3 mmol) were then added. Oxone (5.48 g, 8.91 mmol) was then added in portions over 5 minutes with vigorous stirring. After 60 min TLC indicated that starting material remained, so additional Oxone (2.0 g, 3.2 mmol) was added. After 30 minutes TLC showed complete consumption of the starting material and the reaction was quenched with H2O and extracted with EtOAc (4 X 10 mL). The combined organics were washed with H2O and brine and concentrated to produce a light yellow oil which was redissolved in 1% HCl/MeOH (10 mL). After 60 min a small amount of solid NaHCO3 was added. Solvent was then removed to produce the crude alcohol 22 which was absorbed on silica and purified by column chromatography (30→50% EtOAc/hexanes). Alcohol 22 (412 mg, 85%) was obtained as colorless viscous oil. Rf = 0.26 (40% EtOAc/hexanes; 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 10.1 Hz, 1H), 4.94 (s, 1H), 4.84 (d, J = 10.1 Hz, 1H), 3.10 (dd, J = 12.8, 6.4 Hz, 1H), 1.84 – 1.77 (m, 1H), 1.62 – 1.42 (m, 3H); 13C NMR (150 MHz, CDCl3) δ 214.4, 170.8, 138.1, 128.2, 127.5, 127.3, 77.3, 72.0, 65.4, 63.0, 40.9, 39.2, 38.1, 26.1, 20.4, 17.3; IR (thin film) νmax 3434, 2950, 2865, 1749, 1724, 1455, 1436, 1399, 1254, 1198, 1165, 1088, 1069, 1046, 736, 698 cm⁻1; HRMS (ESI) calc’d for [C19H24O5Li]+: m/z 339.1784, found 339.1787.
= 8.0 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.57 (dd, J = 8.0, 7.5 Hz, 2H), 7.33 – 7.26 (m, 3H), 7.16 (d, J = 6.5 Hz, 2H), 4.42 (d, J = 11.0 Hz, 1H), 4.39 (s, 1H), 4.22 (d, J = 11.0 Hz, 1H), 4.00 – 3.90 (m, 3H), 3.75 (s, 3H), 3.28 (ddd, J = 13.0, 8.0, 5.0 Hz, 1H), 2.24 (ddd, J = 13.5, 13.0, 7.5 Hz, 1H), 2.14 – 2.02 (m, 3H), 1.60 – 1.42 (m, 4H); 13C NMR (150 MHz, CDCl3) δ = 212.5, 169.7, 137.3, 135.8, 133.9, 129.3, 128.4, 127.89, 127.87, 127.6, 76.5, 73.2, 72.12, 72.06, 63.1, 53.0, 37.3, 34.8, 28.8, 25.4, 16.4; IR (thin film) νmax 3430, 2951, 1758, 1726, 1622, 1448, 1404, 1361, 1256, 1187, 1095, 1047, 955, 826, 755, 689 cm−1; HRMS (ESI+) calc’d for [C25H28O8SNa]+: m/z 511.1403, found 511.1397.

Rf = 0.68 (40% EtOAc/hexanes); 1H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 7.8 Hz, 2H), 7.66 (t, J = 7.8 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H), 7.30 – 7.21 (m, 5H), 4.73 (s, 1H), 4.49, 4.47 (ABq, J = 12.3 Hz, 2H), 4.17 (s, 1H), 3.89 (d, J = 7.2 Hz, 2H), 3.68 (s, 3H), 2.96 – 2.92 (m, 1H), 2.16 (t, J = 12.0 Hz, 1H), 2.02 – 1.92 (m, 2H), 1.84 (ddd, J = 13.2, 7.8, 3.0 Hz, 1H), 1.50 – 1.39 (m, 2H), 1.31 – 1.27 (m, 1H), 0.86 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 173.8, 153.3, 139.4, 136.0, 133.7, 129.2, 128.1, 127.9, 127.0, 126.8, 102.9, 74.4, 73.2, 71.9, 61.1, 52.0, 41.1, 35.6, 27.5, 26.8, 17.82, 17.75, -4.7, -5.6; IR (thin film) νmax 2951, 2931, 2893, 2857, 1727, 1649, 1462, 1449, 1365, 1300, 1238, 1188, 1176, 1096, 1066, 1028, 961, 887, 841, 789, 734, 719, 689 cm−1.

Alcohol 22 (517 mg, 1.06 mmol) was dissolved in DCM (20 mL) and allyl alcohol (3 mL). Pb(OAc)4 (704 mg, 1.59 mmol) was then added in one portion to produce a bright orange solution. The reaction was allowed to stir for one hour after which TLC showed complete consumption of the starting material. The reaction was quenched with saturated NaHCO3 solution and water. The mixture was then filtered through a pad of Celite and washed with DCM (20 mL). The layers were then separated and the aqueous layer extracted with DCM (2 X 20 mL). The combined organics were dried with MgSO4 and the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (30% EtOAc/hexanes) to yield aldehyde 17 (472 mg, 82%) as a colorless viscous oil. **Rf** = 0.29 (33% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 9.62 (s, 1H), 7.84 (dd, J = 8.3, 1.3 Hz, 2H), 7.65 – 7.61 (m, 2H), 7.55 – 7.52 (m, 2H), 7.31 – 7.28 (m, 2H), 7.26 – 7.24 (m, 2H), 7.21 – 7.17 (m, 2H), 5.75 (ddt, J = 6.4 Hz, 1.2 Hz, 1H), 5.26 – 5.08 (m, 2H), 4.61 – 4.54 (m, 1H), 4.52 (d, J = 11.4 Hz, 1H), 4.48 – 4.44 (m, 1H), 4.38 (d, J = 11.3 Hz, 1H), 3.84 – 3.75 (m, 2H), 3.72 (s, 3H), 3.45 (dt, J = 6.6, 3.4 Hz, 1H), 3.07 – 3.02 (m, 1H), 2.30 (ddd, J = 12.4, 6.3, 1.8 Hz, 1H), 2.02 – 1.97 (m, 1H), 1.93 – 1.85 (m, 1H), 1.79 – 1.70 (m, 1H), 1.46 – 1.30 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 201.9, 169.0, 168.1, 138.2, 135.8, 133.8, 131.2, 129.3, 128.4, 127.8, 127.6, 127.2, 119.2, 76.7, 72.2, 72.0, 66.2, 62.9, 53.3, 41.3, 37.5, 31.2, 24.8, 17.8; IR (thin film) νmax 3065, 2952, 2726, 1737, 1727, 1449, 1359, 1254, 1204, 1187, 1126, 1095, 1067, 1028, 963, 813, 755, 689 cm−1; HRMS (ESI+) calc’d for [C28H32O9SLi]+: m/z 551.1922, found 551.1927.
Aldehyde 17 (57 mg, 0.10 mmol) was dissolved in acetonitrile (4 mL). KCN (34 mg, 0.52 mmol) and MgSO₄ (210 mg) were then added and mixture stirred for 10 minutes after which tryptamine (25 mg, 0.16 mmol) was added. Upon complete consumption of the starting material by TLC analysis the reaction mixture was filtered through a sintered glass funnel and the solids washed with EtOAc. The solvent was removed under reduced pressure to produce a crude oil that was purified by column chromatography on silica gel (50% EtOAc/hexanes) to yield aminonitrile 16a (52 mg, 90%) as a colorless film.

R_f = 0.95 (5% MeOH/DCM); **¹H NMR** (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.39 – 7.25 (m, 5H), 7.18 (t, J = 7.0 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 5.83 (m, 1H), 5.29 (dd, J = 17.2, 1.5 Hz, 1H), 5.19 (dd, J = 10.4, 1.3 Hz, 1H), 4.69 – 4.45 (m, 5H), 3.96 (s, 1H), 3.74 (s, 3H), 2.98 – 2.60 (m, 3H), 2.14 (qd, J = 13.8, 13.1, 4.2 Hz, 1H), 2.07 – 1.99 (m, 1H), 1.81 – 1.68 (m, 2H), 1.29 – 1.21 (m, 2H); **¹³C NMR** (100 MHz, CDCl₃) δ 169.5, 167.7, 138.8, 136.1, 131.4, 128.2, 127.4, 127.3, 127.1, 121.9, 121.6, 119.2, 118.7, 118.68, 116.5, 113.7, 111.0, 76.6, 72.3, 65.8, 62.4, 54.6, 53.7, 53.1, 35.2, 26.1, 23.1, 20.0; **IR** (thin film) ν_{max} 3414, 3059, 3031, 2950, 2930, 2867, 1734, 1497, 1456, 1434, 1341, 1252, 1206, 1116, 1092, 1066, 1016, 943, 911, 740, 698 cm⁻¹; **HRMS** (ESI+) calc’d for [C₃₄H₃₈N₃O₅]⁺: m/z 556.2811, found 556.2813.

Aldehyde 17 (188 mg, 0.345 mmol) was dissolved in acetonitrile (6 mL). KCN (112 mg, 1.72 mmol) and MgSO₄ (500 mg) were then added and mixture stirred for 10 minutes after which 4-OMe-tryptamine (85 mg, 0.45 mmol) was added. Upon complete consumption of the starting material by TLC analysis the reaction mixture was filtered through a sintered glass funnel and the solids washed with EtOAc (10 mL). The solvent was removed under reduced pressure to produce a crude oil that was purified by column chromatography on silica gel (30% EtOAc/hexanes) to yield aminonitrile 16b (154 mg, 76%) as a colorless foam.

R_f = 0.28 (33% EtOAc/hexanes); **¹H NMR** (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.24 (m, 3H), 7.07 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.86 (s, 1H), 6.46 (d, J = 7.7 Hz, 1H), 5.83 (dtt, J = 17.3, 10.5, 5.7 Hz, 1H), 5.28 (dd, J = 17.3, 1.5 Hz, 1H), 5.18 (dd, J = 10.4, 1.3 Hz, 1H), 4.68 – 4.58 (m, 2H), 4.56 – 4.43 (m, 3H), 3.97 (s, 1H), 3.91 (s, 3H), 3.74 (s, 3H), 3.06 – 2.89 (m, 3H), 2.80 – 2.56 (m, 5H), 2.26 (d, J = 14.2 Hz, 1H), 2.19 – 2.09 (m, 1H), 2.07 – 2.00 (m, 1H), 1.73 (dd, J = 35.4, 14.3 Hz, 2H), 1.29 – 1.20 (m, 1H); **¹³C NMR** (100 MHz, CDCl₃) δ 169.5, 167.8, 154.7, 138.8, 137.9, 131.4, 128.2, 127.3, 127.1, 122.7, 120.5, 118.7, 117.3, 116.8, 114.2, 104.3, 99.3, 76.6, 72.3, 65.8, 62.4, 57.6, 55.0, 54.7, 53.6, 53.0, 35.2, 33.6, 26.2, 25.4, 24.9, 20.0 (note: 1 sp² carbon is missing presumably due to overlap); **IR** (thin film) ν_{max} 3409, 2951, 2837, 2252, 2220, 1735, 1616, 1587, 1548, 1507, 1455, 1436, 1362, 1255, 1207, 1118, 1066, 1028, 1017, 943, 911, 777, 734, 699 cm⁻¹; **HRMS** (ESI+) calc’d for [C₃₄H₄₀N₃O₆]⁺: m/z 586.2912, found 586.2928.
Aldehyde 17 (43 mg, 0.079 mmol) was dissolved in acetonitrile (4 mL). KCN (103 mg, 1.58 mmol) and MgSO$_4$ (150 mg) were then added and mixture stirred for 10 minutes after which 6-OMe-tryptamine (30 mg, 0.16 mmol) in acetonitrile (1.5 mL) was added. Upon complete consumption of the starting material by TLC analysis the reaction mixture was filtered through a sintered glass funnel and the solids washed with EtOAc (10 mL). The solvent was removed under reduced pressure to produce a crude oil that was purified by column chromatography on silica gel (33% EtOAc/hexanes) to yield aminonitrile 16c (40 mg, 87%) as a colorless film. R$_f$ = 0.51 (33% EtOAc/hexanes); 1H NMR (500 MHz, CDCl$_3$) δ 7.80 (s, 1H), 7.45 (d, J = 8.5 Hz, 1H), 7.35 – 7.26 (m, 5H), 6.90 (s, 1H), 6.83 (d, J = 2.5 Hz, 1H), 5.29 (dd, J = 17.0, 1.0 Hz, 1H), 5.19 (dd, J = 10.5, 1.0 Hz, 1H), 4.69 – 4.45 (m, 5H), 3.96 (s, 1H), 3.84 (s, 3H), 3.74 (s, 3H), 3.00 – 2.60 (m, 8H), 2.27 (d, J = 14.1 Hz, 1H), 2.14 (qd, J = 13.6, 4.1 Hz, 1H), 2.07 – 1.97 (m, 1H), 1.81 – 1.69 (m, 2H), 1.30 – 1.19 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 169.5, 167.7, 156.5, 138.8, 136.8, 131.4, 128.2, 127.3, 127.1, 121.8, 120.3, 119.3, 118.7, 116.5, 113.7, 109.2, 94.7, 76.6, 72.3, 65.8, 62.4, 56.2, 55.7, 54.6, 53.7, 53.1, 35.1, 33.5, 26.1, 25.4, 23.2, 20.1; IR (thin film) ν_{max} 3414, 2950, 1737, 1730, 1630, 1453, 1346, 1305, 1257, 1200, 1160, 1117, 1090, 1066, 943, 802, 745 cm$^{-1}$; HRMS (ESI+) calc’d for [C$_{34}$H$_{40}$N$_3$O$_6$]$^+$: m/z 586.2912, found 586.2922.

Aminonitrile 16a (26 mg, 0.047 mmol) was dissolved in 10% 1N HCl/THF (9 mL) and the reaction stirred until TLC showed complete consumption of the starting material. The reaction was quenched with saturated NaHCO$_3$. Brine solution was added and mixture extracted with DCM (4 X 10 mL). The solvent was removed under reduced pressure to produce a crude oil that was purified by column chromatography on silica gel (EtOAc→5% MeOH/DCM) to yield pentacycle 23a (21 mg, 84%) as a colorless film. R$_f$ = 0.18 (5% MeOH/DCM); 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.36 – 7.26 (m, 5H), 7.21 – 7.10 (m, 2H), 5.92 (m, 1H), 5.41 – 5.23 (m, 2H), 4.76 – 4.54 (m, 3H), 4.52 – 4.40 (m, 3H), 3.59 (s, 3H), 3.33 – 3.16 (m, 2H), 3.07 – 2.93 (m, 2H), 2.83 (td, J = 14.3, 4.5 Hz, 1H), 2.62 – 2.31 (m, 5H), 2.15 – 2.00 (m, 1H), 1.81 (m, 1H), 1.51 (d, J = 13.2 Hz, 1H), 1.34 (d, J = 13.9 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 169.7, 168.6, 138.7, 135.9, 133.2, 131.7, 128.2, 127.9, 127.3, 127.2, 121.1, 119.2, 119.1, 117.8, 111.3, 107.6, 72.2, 65.9, 62.7, 61.0, 54.6, 52.9, 51.0, 50.5, 33.9, 27.8, 25.5, 24.1, 19.7, 16.7; IR (thin film) ν_{max} 3412, 3032, 2926, 2855, 1737, 1728, 1462, 1451, 1352, 1330, 1286, 1253, 1199, 1144, 1091, 1067, 1017, 910, 737, 697 cm$^{-1}$; HRMS calc’d for [C$_{32}$H$_{37}$N$_2$O$_5$]$^+$: m/z 529.2697, found 529.2690.
Pentacycle 16b could be obtained as either the free base or HCl salt following the procedures described below.

Aminonitrile 16b (67 mg, 0.11 mmol) was dissolved in a solution of 10% 1N HCl in THF (10 mL). The reaction was allowed to stir for 28 hours after which TLC analysis showed complete consumption of the starting material. The reaction was then carefully neutralized with saturated NaHCO₃ solution and the mixture extracted with DCM (3 X 10 mL). The combined organics were dried with MgSO₄ and the solvent was removed under reduced pressure. The crude mixture was purified by column chromatography on silica gel (2% MeOH/DCM) to yield pentacycle 23b (52 mg, 0.093 mmol, 81%) as a light yellow solid.

Rf = 0.37 (5% MeOH/DCM);

1H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.38–7.26 (m, 5H), 7.09–6.97 (m, 2H), 6.48 (dd, J = 7.1, 1.6 Hz, 1H), 5.90 (ddt, J = 16.6, 10.3, 5.9 Hz, 1H), 5.38–5.22 (m, 2H), 4.73–4.52 (m, 3H), 4.49–4.37 (m, 3H), 3.89 (s, 3H), 3.58 (s, 3H), 3.28–3.09 (m, 3H), 2.85 (d, J = 15.1 Hz, 1H), 1.51 (d, J = 12.9 Hz, 1H), 1.33 (d, J = 13.7 Hz, 1H); **13C NMR** (150 MHz, CDCl₃) δ 169.6, 168.6, 154.2, 138.7, 137.2, 131.7, 128.2, 127.6, 127.5, 121.7, 119.1, 117.9, 107.5, 104.8, 99.5, 76.7, 72.2, 65.9, 62.7, 55.2, 54.7, 52.9, 51.3, 50.4, 33.84, 33.75, 25.5, 24.1, 19.7, 18.8; **IR** (thin film) νmax 3340, 2929, 1737, 1727, 1590, 1504, 1452, 1353, 1330, 1251, 1198, 1145, 1105, 1066, 910, 734, 697 cm⁻¹; **HRMS** (ESI+) calc’d for [C₃₃H₃₈N₂O₆]⁺: m/z 559.2803, found 559.2808.

Direct concentration of the above reaction mixture leads to formation of the HCl salt of 23b. Recrystallization from MeOH with slow diffusion of hexanes yields crystals suitable for x-ray diffraction.

1H NMR (500 MHz, CDCl₃) δ 12.58 (d, J = 10.0 Hz, 1H), 8.37 (s, 1H), 7.36–7.33 (m, 3H), 7.28–7.23 (m, 2H), 7.13 (dd, J = 8.5, 8.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 5.83 (dddd, J = 17.5, 10.5, 5.5, 5.5 Hz, 1H), 5.30 (dd, J = 17.5, 1.5 Hz, 1H), 5.24 (dd, J = 10.5, 1.5 Hz, 1H), 4.92 (s, 3H), 4.70 (d, J = 11.5 Hz, 1H), 4.68 (dd, J = 13.0, 5.5 Hz, 1H), 4.52 (dd, J = 13.0, 5.5 Hz, 1H), 4.48 (br.s, 1 H), 4.36 (d, J = 11.5 Hz, 1H), 3.90 (s, 3H), 3.59 (s, 3H), 3.54 (dd, J = 13.0, 5.0 Hz, 1H), 3.48 (dd, J = 13.0, 5.5 Hz, 1H), 3.37–3.28 (m, 2H), 3.26–3.17 (m, 2H), 3.01 (d, J = 13.0 Hz, 1H), 2.83 (dq, J = 13.5, 4.0 Hz, 1H), 2.60 (d, J = 13.0 Hz, 1H), 2.49 (d, J = 13.0 Hz, 1H), 2.17 (d, J = 15.5 Hz, 1H), 1.77 (d, J = 13.0 Hz, 1H), 1.67 (t, J = 14.0 Hz, 1H), 1.48 (d, J = 14.0 Hz, 1H); **13C NMR** (100 MHz, CDCl₃) δ 168.6, 168.3, 154.2, 138.2, 138.0, 131.2, 128.4, 127.6, 127.5, 124.3, 123.8, 119.3, 116.8, 106.0, 105.1, 100.1, 75.7, 72.3, 66.4, 62.2, 55.8, 55.2, 53.2, 51.2, 49.2, 32.4, 31.7, 25.0, 23.0, 19.5, 17.8; **IR** (thin film) νmax 3427, 3174, 2948, 2493, 1736, 1512, 1450, 1435, 1359, 1330, 1256, 1206, 1167, 1106, 1067, 738 cm⁻¹; **HRMS** (ESI+) calc’d for [C₃₃H₃₉N₂O₆]⁺: m/z 559.2803, found 559.2811.
Aminonitrile 16c (24 mg, 0.041 mmol) was dissolved in 10% 1N HCl/THF (9 mL) and the reaction stirred until TLC showed complete consumption of the starting material. The reaction was quenched with saturated NaHCO₃. Brine solution was added and mixture extracted with DCM (4 X 10 mL). The solvent was removed under reduced pressure to produce a crude oil that was purified by column chromatography on silica gel (5% MeOH/DCM) to yield pentacycle 23c (22 mg, 96%) as a light yellow film.

\[R_f = 0.52 \] (10% MeOH/DCM); \[^1H \text{ NMR} \] (400 MHz, CDCl₃) \(\delta \) 8.05 (s, 1H), 7.39 – 7.22 (m, 6H), 6.94 (d, \(J = 2.2 \) Hz, 1H), 6.79 (dd, \(J = 8.6, 2.3 \) Hz, 1H), 5.97 – 5.82 (m, 1H), 5.40 – 5.21 (m, 2H), 4.74 – 4.40 (m, 6H), 3.86 (s, 3H), 3.60 (s, 3H), 3.39 – 3.20 (m, 2H), 3.08 – 2.80 (m, 3H), 2.68 – 2.55 (m, 2H), 2.52 – 2.31 (m, 3H), 2.15 – 2.03 (m, 1H), 1.89 – 1.71 (m, 2H), 1.56 (d, \(J = 13.3 \) Hz, 1H), 1.36 (d, \(J = 13.8 \) Hz, 1H); \[^13C \text{ NMR} \] (100 MHz, CDCl₃) \(\delta \) 169.5, 168.7, 156.2, 138.6, 136.8, 131.6, 130.6, 128.3, 127.3, 127.2, 122.1, 119.1, 118.3, 109.0, 107.1, 95.5, 76.5, 72.2, 66.0, 62.6, 55.8, 54.6, 53.0, 50.6, 50.0, 33.6, 33.5, 25.4, 23.8, 19.5, 16.6; \[IR \] (thin film) \(v_{max} \) 3398, 2929, 2854, 1732, 1628, 1570, 1498, 1456, 1360, 1330, 1258, 1233, 1200, 1159, 1147, 1091, 1066, 1030, 943, 817, 738, 699 cm⁻¹; \[HRMS \] calc’d for [C₃₃H₃₉N₂O₆]+: m/z 559.2803, found 559.2796.

A 5 mL microwave vial was charged with a stir bar, aminonitrile 16a (20 mg, 0.036 mmol), sodium iodide (14 mg, 0.095 mmol), and MeCN (3.6 mL). The vials were sealed, then evacuated and backfilled with N₂ (3X). The reaction vial was heated in the microwave at 160 °C for 1 h, then 180 °C for an additional 1 h to force complete conversion. Upon completion, the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (2% MeOH/DCM) to yield pentacycle 24a (10 mg, 53%) as a yellow solid.

\[R_f = 0.36 \] (5% MeOH/DCM); \[^1H \text{ NMR} \] (600 MHz, CDCl₃) \(\delta \) 7.85 (s, 1H), 7.45 (d, \(J = 7.7 \) Hz, 1H), 7.30 (d, \(J = 8.0 \) Hz, 1H), 7.23 – 7.03 (m, 5H), 7.11 (t, \(J = 8.2 \) Hz, 1H), 7.06 (t, \(J = 7.5 \) Hz, 1H), 5.88 – 5.78 (m, 1H), 5.31 – 5.17 (m, 2H), 4.72 – 4.65 (m, 1H), 4.57 (d, \(J = 12.0 \) Hz, 1H), 4.51 – 4.44 (m, 2H), 4.36 (d, \(J = 11.9 \) Hz, 1H), 3.75 (s, 3H), 3.17 (d, \(J = 11.9 \) Hz, 1H), 3.01 – 2.93 (m, 2H), 2.89 – 2.78 (m, 2H), 2.69 (dd, \(J = 14.2, 4.3 \) Hz, 1H), 2.62 – 2.51 (m, 2H), 2.54 – 2.45 (m, 1H), 2.39 – 2.24 (m, 2H), 2.04 – 1.94 (m, 1H), 1.86 – 1.78 (m, 1H), 1.65 (d, \(J = 12.9 \) Hz, 1H), 1.31 (d, \(J = 14.3 \) Hz, 1H); \[^13C \text{ NMR} \] (150 MHz, CDCl₃) \(\delta \) 170.0, 168.6, 138.6, 135.9, 131.7, 128.1, 127.4, 127.24, 127.19, 121.0, 119.2, 118.5, 118.0, 110.7, 107.8, 76.4, 71.9, 65.7, 63.0, 61.5, 61.2, 53.4, 53.0, 39.5, 34.7, 27.4, 25.3, 21.7, 20.6; \[IR \] (thin film) \(v_{max} \) 3399, 2929, 2854, 1732, 1453, 1370, 1351, 1321, 1231, 1197, 1108, 1092, 1066, 1025, 911, 738, 699 cm⁻¹; \[HRMS \] (ESI+) calc’d for [C₃₂H₃₇N₂O₅]+: m/z 529.2697, found 529.2688.
Two separate 5 mL microwave vials were charged with a stir bar, aminonitrile 16b (19 mg in each, 0.065 mmol), sodium iodide (14 mg in each, 0.18 mmol), and MeCN (4 mL each). The vials were sealed, then evacuated and backfilled with N₂ (3X). Each reaction vial was heated in the microwave at 160 °C for 2.5 h. Upon completion, the contents of both vials were combined, and the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (2% MeOH/DCM) to yield pentacycle 24b (26 mg, 72%) as a yellow solid.

\[
\text{R}_f = 0.48 \text{ (5\% MeOH/DCM); } ^1\text{H NMR} \ (500 \text{ MHz, CDCl}_3) \delta 7.79 (s, 1H), 7.23 - 7.13 (m, 5H), 7.01 - 6.96 (m, 1H), 6.91 (dd, \text{J} = 8.1, 2.1 \text{ Hz, 1H}), 6.44 (d, \text{J} = 8.1 \text{ Hz, 1H}), 5.88 - 5.75 (m, 1H), 5.27 (d, \text{J} = 17.1 \text{ Hz, 1H}), 5.19 (d, \text{J} = 10.5 \text{ Hz, 1H}), 4.68 (dd, \text{J} = 13.1, 5.5 \text{ Hz, 1H}), 4.56 (d, \text{J} = 11.8 \text{ Hz, 1H}), 4.49 - 4.43 (m, 2H), 4.36 (d, \text{J} = 11.8 \text{ Hz, 1H}), 3.87 (s, 3H), 3.74 (s, 3H), 3.15 - 3.07 (m, 2H), 2.99 - 2.88 (m, 2H), 2.87 - 2.76 (m, 2H), 2.53 (d, \text{J} = 12.0 \text{ Hz, 2H}), 2.51 - 2.42 (m, 1H), 2.30 (m, 2H), 1.99 (d, \text{J} = 13.5 \text{ Hz, 1H}), 1.81 (t, \text{J} = 14.4 \text{ Hz, 1H}), 1.63 (d, \text{J} = 13.1 \text{ Hz, 1H}), 1.30 (d, \text{J} = 14.5 \text{ Hz, 1H}); ^{13}\text{C NMR} \ (150 \text{ MHz, CDCl}_3) \delta 170.0, 168.6, 154.4, 138.6, 137.3, 133.5, 131.7, 128.1, 127.20, 127.19, 121.7, 118.5, 107.6, 104.3, 99.7, 76.4, 71.9, 65.7, 63.0, 61.5, 61.2, 55.3, 53.7, 52.9, 39.4, 27.5, 25.3, 23.8, 20.6, 14.1; \text{IR} \ (\text{thin film}) \nu_{\text{max}} 3397, 2936, 2800, 2752, 1733, 1618, 1596, 1569, 1457, 1435, 1256, 1105 \text{ cm}^{-1}; \text{HRMS} \text{ calc’d for } [\text{C}_{33}\text{H}_{39}\text{N}_2\text{O}_6]^+: m/z 559.2803, \text{ found 559.2797.}
\]

A 5 mL microwave vial was charged with a stir bar, aminonitrile 16c (10 mg, 0.02 mmol), sodium iodide (8.5 mg, 0.057 mmol), and MeCN (1.9 mL). The vial was sealed, then evacuated and backfilled with N₂ (3X). The reaction vial was heated in the microwave at 160 °C for 0.5 h. Upon completion, the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (2% MeOH/DCM) to yield pentacycle 24c (9.1 mg, 96%) as a yellow solid.

\[
\text{R}_f = 0.36, \text{ (10\% MeOH/DCM);} ^1\text{H NMR} \ (600 \text{ MHz, CDCl}_3) \delta 7.73 (s, 1H), 7.39 - 7.31 (m, 2H), 7.24 - 7.15 (m, 4H), 6.83 (d, \text{J} = 2.2 \text{ Hz, 1H}), 6.73 (dd, \text{J} = 8.6, 2.3 \text{ Hz, 1H}), 5.83 (m, 1H), 5.31 - 5.17 (m, 2H), 4.73 - 4.65 (m, 1H), 4.57 (d, \text{J} = 12.0 \text{ Hz, 1H}), 4.53 - 4.41 (m, 2H), 4.36 (d, \text{J} = 12.1 \text{ Hz, 1H}), 3.83 (s, 3H), 3.74 (s, 3H), 3.14 (d, \text{J} = 11.5 \text{ Hz, 1H}), 3.02 - 2.88 (m, 3H), 2.87 - 2.77 (m, 2H), 2.69 - 2.60 (m, 1H), 2.61 - 2.43 (m, 3H), 2.40 - 2.22 (m, 2H), 1.99 (d, \text{J} = 15.2 \text{ Hz, 1H}), 1.86 - 1.77 (m, 1H), 1.31 (d, \text{J} = 15.4 \text{ Hz, 1H}); ^{13}\text{C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 170.0, 168.6, 155.8, 138.6, 136.7, 134.2, 131.7, 128.5, 128.3, 128.1, 127.6, 127.2, 122.0, 118.5, 118.4, 108.5, 107.6, 95.1, 76.4, 71.9, 65.7, 62.9, 61.5, 61.2, 55.8, 53.4, 52.9, 39.5, 34.7, 27.5, 25.3, 21.8, 20.6; \text{IR} \ (\text{thin film}) \nu_{\text{max}} 3397, 2931, 2800, 2752, 1733, 1630, 1498, 1457, 1345, 1263, 1229, 1198, 1154, 1107, 1067, 1028, 910, 734, 699 \text{ cm}^{-1}; \text{HRMS} \ (\text{ESI}+) \text{ calc’d for } [\text{C}_{33}\text{H}_{39}\text{N}_2\text{O}_6]^+: m/z 559.2803, \text{ found 559.2792.}
A 4 mL vial was charged with pentacycle 23b (9 mg, 0.02 mmol), Pd(OAc)₂ (2.4 mg, 0.01 mmol), PPh₃·PS (2.8 mg, 3 mmol/g, 0.008 mmol), EtOH (0.5 mL) and H₂O (0.1 mL). The vial was purged with N₂ for 5 min, then sealed with Teflon tape, and heated to 70 °C in a heating block. Upon complete consumption of starting material (by TLC), the reaction mixture was filtered through a plug of Celite, rinsed with DCM (2 mL). The combined organics were dried with MgSO₄ and the solvent was removed under reduced pressure to give a crude mixture that was purified by column chromatography on silica gel (1% MeOH/DCM→10% MeOH/DCM) to yield monoester 29 (3.1 mg, 41%) as a white solid and enoate 30 (1.1 mg, 19%).

\[R_f = 0.3 \text{ (10\% MeOH/DCM)} \]

1H NMR (500 MHz, CDCl₃) δ 8.28 (s, 1H), 7.40–7.25 (m, 5H), 7.12–7.01 (m, 2H), 6.49 (d, J = 7.5 Hz, 1H), 4.71 (s, 1H), 4.65 (d, J = 11.9 Hz, 1H), 4.36 (d, J = 11.9 Hz, 1H), 4.18 (s, 1H), 3.89 (s, 3H), 3.66 (s, 3H), 3.51–3.30 (m, 2H), 3.27–3.04 (m, 3H), 2.93–2.78 (m, 2H), 2.53–2.37 (m, 3H), 2.26–2.16 (m, 1H), 2.06 (m, 1H), 1.63–1.61 (m, 1H) 1.44 (d, J = 14.0 Hz , 1H), 1.37–1.26 (m, 1H);

13C NMR (150 MHz, CDCl₃) δ 172.8, 154.3, 138.6, 137.8, 128.3, 127.5, 127.4, 123.1, 117.2, 106.6, 104.9, 100.0, 73.4, 71.4, 55.2, 51.6, 50.8, 49.4, 49.2, 35.9, 29.7, 29.0, 28.1, 24.1, 19.7, 18.3 (note: 1 sp² carbon is missing presumably due to overlap);

IR (thin film) ν max 3431, 2929, 1731, 1508, 1436, 1353, 1300, 1257, 1208, 1106, 1066, 910, 731, 667, 643 cm⁻¹;

HRMS (ESI⁺) calc’d for [C₂₉H₃₅N₂O₄]+: m/z 475.2597, found 475.2591.

Pale yellow solid. \[R_f = 0.3 \text{ (10\% MeOH/DCM)} \];

1H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.07–6.95 (m, 3H), 6.47 (d, J = 7.5 Hz 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.24–3.09 (m, 2H), 3.09–2.95 (m, 2H), 2.95–2.83 (m, 1H), 2.61 (s, 1H), 2.53 (m, 1H), 2.38–2.06 (m, 6H), 1.94–1.81 (br s, 1H), 1.66–1.56 (m, 1H);

13C NMR (150 MHz, CDCl₃) δ 167.6, 154.4, 140.5, 137.2, 128.2, 127.3, 121.9, 117.8, 107.8, 104.6, 99.7, 64.4, 60.4, 55.3, 54.5, 52.2, 51.6, 33.1, 30.7, 19.1, 14.2, 13.7; **IR** (thin film) ν max 2925, 2851, 1701, 1635, 1559, 1512, 1437, 1358, 1334, 1251, 1211, 1129, 1108, 778, 738, 700 cm⁻¹; **HRMS** (ESI⁺) calc’d for [C₂₂H₂₇N₂O₃]+: m/z 367.2022, found 367.2018.

A flame-dried 4 mL vial was charged with monoester 29 (15 mg, 0.032 mmol) and DCM (1.9 mL). The reaction flask was cooled to –78 °C in a dry ice/acetone bath under N₂. A 1M solution of BBr₃ in DCM (160 μL, 0.16 mmol, 5 equiv) was added dropwise over 5 mins. The light yellow solution became dark brown and heterogeneous with the addition of BBr₃. Upon complete consumption of starting material (by TLC), the reaction mixture was quenched by the addition of sat. aq. NaHCO₃ (3 mL). The aq. layer was extracted with DCM (3 X 5 mL), then the combined organics were washed with brine, dried with MgSO₄ and the solvent was removed under reduced pressure to give a crude mixture that was purified by preparative TLC on silica gel (5% MeOH/DCM) to yield venenatine 9 (6.9 mg, 56%) as a white solid. \[R_f = 0.10 \text{ (10\% MeOH/DCM)} \];

1H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 6.99 (dd, J = 7.5, 8.0 Hz, 1H), 9.94 (d, J = 8.0 Hz, 1H), 6.44 (d, J = 7.5 Hz, 1H), 4.32 (s, 1H), 4.29 (s, 1H),
3.86 (s, 3H), 3.80 (s, 3H), 3.25 – 3.10 (m, 3H), 3.00 (dd, $J = 11.5, 3.5$ Hz, 1H), 2.82-2.73 (m, 2H), 2.50 (dd, $J = 11.5, 2.0$ Hz, 1H), 2.45 (br.s, 1H), 2.34 (dq, $J = 12.5, 3.0$ Hz, 1H), 2.21 (br.s, 1H), 2.08-1.98 (m, 2H), 1.83 (d, $J = 14.0$ Hz, 1H), 1.55 (d, $J = 12.5$ Hz, 1H), 1.43 (tt, $J = 13.5, 3.5$ Hz, 1H), 1.32 (dd, $J = 13.5, 3.5$ Hz, 1H); 13C NMR (150 MHz, CDCl$_3$) δ 175.0, 154.2, 137.0, 131.0, 121.6, 117.8, 107.7, 104.4, 99.5, 65.8, 55.2, 54.2, 51.8, 51.4, 50.6, 49.5, 36.7, 32.0, 31.1, 25.8, 19.8, 18.9; IR (thin film) ν_{max} 3390, 2951, 1717, 1622, 1437, 1262, 1107 cm$^{-1}$; HRMS (ESI+) calc’d for [C$_{22}$H$_{29}$N$_2$O$_4$]$^+$: m/z 385.2122, found 385.2127.

This Work	Isolateda	Computational
175.0	174.7	178.2
154.2	155.1	152.5
137.0	137.1	134.4
131.0	130.6	131.2
121.6	121.5	118.9
117.8	117.6	115.9
107.7	107.1	107.1
104.4	105.7	102.7
99.5	104.3	96.8
65.8	67.1	67.0
55.2	54.9	54.4
54.2	53.8	51.9
51.8	51.9	51.5
51.4	51.5	51.3
50.6	50.8	50.9
49.5	50.7	50.7
36.7	39.7	38.5
32.0	32.0	32.7
31.1	31.6	32.3
25.8	31.0	25.9
19.8	22.8	21.2
18.9	18.7	20.6

a Chatterjee, A., Roy, D. J., Mukhopadhyay S. 16-epivenenatine and 16-epialstovenine, new stereomers from Alstonia venenata. Phytochemistry 20, 1981-1985 (1981).
Procedures for the deallylation/decarboxylation sequence were adapted from: (a) Kunz, H., Waldmann, H. Synthesis of the Glycopeptide Partial Sequence A80–A84 of Human Fibroblast Interferon. Helv. Chim. Acta 68, 618-622 (1985). (b) Deziel, R. Mild palladium (O)-catalyzed deprotection of allyl esters. A useful application in the synthesis of carbapenems and other β-lactam derivatives. Tetrahedron Lett. 28, 4371-4372 (1987).

A 5 mL microwave vial was charged with pentacycle 24b (14 mg, 0.025 mmol), Pd2dba3•CHCl3 (1.8 mg, 2.0 μmol), MeCN (2 mL) and pyrrolidine (20 μL, 0.2 mmol). The vial was sealed, then evacuated and backfilled with N2 (3X) and heated to 70 °C in an oil bath. Upon complete consumption of starting material (by TLC), the solvent was removed under reduced pressure to give a crude mixture that was purified by preparative TLC on silica gel (2% MeOH/DCM → 5% MeOH/DCM) to yield monoester 31 (7.7 mg) as a white solid. Rf = 0.36 (10% MeOH/DCM);

1H NMR (600 MHz, CDCl3) δ 7.83 (s, 1H), 7.23 (m, 5H), 6.98 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.44 (d, J = 7.8 Hz, 1H), 4.53 (d, J = 12.4 Hz, 1H), 4.34 (d, J = 12.5 Hz, 1H), 4.17 (br s, 1H), 3.87 (s, 3H), 3.67 (s, 3H), 3.18 – 3.05 (m, 2H), 3.00 – 2.90 (m, 2H), 2.97 (d, J = 11.4 Hz, 1H), 2.60 – 2.53 (m, 1H), 2.51 – 2.43 (m, 1H), 2.42 – 2.35 (m, 1H), 2.35 – 2.20 (m, 3H), 2.10 (d, J = 13.6 Hz, 1H), 1.67 (d, J = 13.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 173.0, 154.4, 138.9, 137.3, 133.8, 128.1, 127.6, 127.2, 121.7, 107.5, 104.3, 99.7, 73.6, 71.1, 61.8, 61.1, 55.3, 54.0, 51.4, 50.2, 39.7, 36.0, 28.5, 28.4, 23.8, 21.1; IR (thin film) νmax 3377, 2929, 2796, 2749, 1732, 1597, 1557, 1479, 1456, 1353, 1254, 1105, 733, 680 cm−1; HRMS (ESI+) calc’d for [C29H35N2O4]+: m/z 475.2591, found 475.2581.

A flame dried 4 mL vial was charged with monoester 31 (7.7 mg, 0.016 mmol) and DCM (1 mL), then cooled to –78 °C in a dry ice/acetone bath under N2. A 1M solution of BBr3 in DCM (60 μL, 60 μmol) was added dropwise over 5 min. The light yellow solution became bright orange-red. Upon complete consumption of starting material (by TLC), the reaction mixture was quenched by the addition of sat. aq. NaHCO3 (3 mL). The aq. layer was extracted with DCM (3 X 5 mL), then the combined organics were washed with brine, dried with MgSO4 and the solvent was removed under reduced pressure to give a crude mixture that was purified by preparative TLC on silica gel (5% MeOH/DCM) to yield alstovenine 12 (4.3 mg, 44% over 2 steps) as a white solid. Rf = 0.41 (10% MeOH/DCM);

1H NMR (600 MHz, CDCl3) δ 7.68 (s, 1H), 6.99 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.45 (d, J = 7.8 Hz, 1H), 4.27 (s, 1H), 3.87 (s, 1H), 3.83 (s, 1H), 3.38 (s, 1H), 3.13 – 3.06 (m, 1H), 3.03 (d, J = 10.8 Hz, 1H), 2.97 – 2.91 (m, 2H), 2.87 (d, J = 11.4 Hz, 1H), 2.62 – 2.59 (m, 1H), 2.55 (d, dd, J = 11.4, 3.6 Hz, 1H), 2.47 (dt, J = 11.4, 4.2 Hz, 1H) 2.42 – 2.30 (m, 3H), 1.98 (dd, J = 14.4, 1.2 Hz, 1H), 1.74 (d, J = 11.4 Hz, 1H), 1.46 (t, J = 14.4 Hz, 1H), 1.33 (d, J = 11.4 Hz, 1H) (note: OH proton is missing); 13C NMR (150 MHz, CDCl3) δ 175.7, 154.5, 137.3, 133.1, 121.9, 117.6, 108.1, 104.2, 99.8, 65.7, 61.6, 60.8, 55.3, 53.7, 51.9, 49.7, 37.6, 36.8, 31.8, 29.4, 23.8, 20.5; IR (thin film) νmax 3389, 2928, 2798, 2750, 1722, 1711, 1620, 1597, 1435, 1456, 1353, 1105, 733, 680 cm−1; HRMS (ESI+) calc’d for [C22H29N2O4]+: m/z 385.2122, found 385.2125.
This Work	Isolation*	Computational
175.7	175.4	178.1
154.5	154.3	152.4
137.3	137.3	134.6
133.1	132.5	132.6
121.9	121.8	119.9
117.6	-	115.2
108.1	107.8	107.2
104.2	104.1	101.2
99.8	99.6	96.4
65.7	66.8	67.1
61.6	61.1	59.7
60.8	59.7	59.4
55.3	55.1	52.0
53.7	53.0	51.7
51.9	52.2	51.3
49.7	51.7	50.3
37.6	40.4	39.9
36.8	36.5	38.4
31.8	34.1	31.6
29.4	31.4	30.3
23.8	23.6	25.0
20.5	23.1	22.4

* Chatterjee, A., Roy, D. J., Mukhopadhyay S. 16-epivenenatine and 16-epialstovenine, new stereomers from Alstonia venenata. Phytochemistry 20, 1981-1985 (1981).
Supercritical Fluid Chromatography (SFC) Data

Analysis Summary:

The following SFC separation (conditions listed below) yielded 410mg of 18-endo-peak-1 (chemical purity >99%, ee >99%) and 435mg of 18-endo-peak-2 (chemical purity >99%, ee >99%). Peaks-1 and 2 were ‘re-worked’ to improve ee%. Samples may contain residual solvent. Chromatograms are included in this report.

Preparative Method:

OD-H (3 x 15 cm)
10% 1:1 hep:iPOH(0.1%DEA)/CO₂, 100 bar
60 mL/min, 254 nm.
inj vol.: 0.5 mL, 15 mg/mL ethanol

Analytical Method:

OD-H (15 x 0.46 cm)
10% 1:1 hep:iPOH(DEA)/CO₂, 100 bar
3 mL/min, 220 and 254 nm

Sample: 18-endo
Sample: **18-endo** (peak-1)

Index	Time (min)	Area (%)
Peak-1	2.93	100.00
Peak-2		
Total		100.00
Sample: 18-endo (peak-2)

Index	Time (min)	Area (%)
Peak-1	3.21	0.147
Peak-2	3.47	99.843
Total		100.00
\[^1H \text{ and } ^{13}C \text{ NMR Spectra} \]

[Diagram of the NMR spectra for compounds 18-endo]
24c

BnO
CO₂Me
CO₂allyl
H
H
H
N
N
H
OMe

24c

BnO
CO₂Me
CO₂allyl
H
H
H
N
N
H
OMe
9: venenatine

9: venenatine
\[^1\text{H}\] irradiated
\[^1\text{H}\] nOe observed

\[\text{E} = \text{CO}_2\text{Me}\]

9. venenatine
Crystallographic Data

A colorless plate 0.20 x 0.12 x 0.03 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 97.6% complete to 67.00° in θ. A total of 26646 reflections were collected covering the indices, -11<=h<=11, -12<=k<=12, -18<=l<=19. 5546 reflections were found to be symmetry independent, with an R_{int} of 0.0274. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be P-1 (No. 2). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2008) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.
Table 1. Crystal data and structure refinement for sarpong21.

Property	Value
X-ray ID	sarpong21
Sample/notebook ID	JWX-073B
Empirical formula	C34 H39 N3 O6
Formula weight	585.68
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 9.7555(8) Å, α = 92.716(5)°
	b = 10.4051(9) Å, β = 100.872(4)°
	c = 15.9353(15) Å, γ = 99.935(4)°
Volume	1559.3(2) Å³
Z	2
Density (calculated)	1.247 Mg/m³
Absorption coefficient	0.696 mm⁻¹
F(000)	624
Crystal size	0.20 x 0.12 x 0.03 mm³
Crystal color/habit	colorless plate
Theta range for data collection	2.83 to 68.30°
Index ranges	-11<=h<=11, -12<=k<=12, -18<=l<=19
Reflections collected	26646
Independent reflections	5546 [R(int) = 0.0274]
Completeness to theta = 67.00°	97.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9794 and 0.8734
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	5546 / 0 / 390
Goodness-of-fit on F²	1.021
Final R indices [I>2sigma(I)]	R1 = 0.0430, wR2 = 0.1128
R indices (all data)	R1 = 0.0506, wR2 = 0.1188
Largest diff. peak and hole	0.781 and -0.224 e.Å⁻³
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for sarpong21. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U^j tensor.

	x	y	z	$U(\text{eq})$
C(1)	-159(2)	3386(2)	6298(1)	22(1)
C(2)	404(2)	4200(2)	7168(1)	21(1)
C(3)	838(2)	3346(1)	7909(1)	20(1)
C(4)	2179(2)	2772(2)	7875(1)	21(1)
C(5)	2507(2)	1952(1)	8636(1)	20(1)
C(6)	10(2)	1425(2)	8698(1)	23(1)
C(7)	-403(2)	2224(2)	7941(1)	22(1)
C(8)	-864(2)	1381(2)	7086(1)	25(1)
C(9)	-1298(2)	2210(2)	6349(1)	25(1)
C(10)	1027(2)	2957(2)	5161(1)	32(1)
C(11)	2390(2)	2593(2)	5010(1)	29(1)
C(12)	3684(2)	3426(2)	5341(1)	35(1)
C(13)	4952(2)	3070(2)	5242(1)	36(1)
C(14)	4941(2)	1874(2)	4813(1)	36(1)
C(15)	3674(2)	1052(2)	4475(1)	37(1)
C(16)	2401(2)	1417(2)	4575(1)	34(1)
C(17)	1638(2)	5289(2)	7089(1)	21(1)
C(18)	2359(2)	6942(2)	6207(1)	29(1)
C(19)	2151(2)	8212(2)	6589(1)	36(1)
C(20)	1206(3)	8380(2)	7022(1)	53(1)
C(21)	-751(2)	4947(2)	7368(1)	24(1)
C(22)	-1277(2)	6406(2)	8392(2)	44(1)
C(23)	2936(2)	2839(2)	9449(1)	23(1)
C(24)	1595(2)	51(2)	9358(1)	22(1)
C(25)	2916(2)	-548(2)	9341(1)	22(1)
C(26)	3075(2)	-1614(2)	9938(1)	22(1)
C(27)	2890(2)	-2915(2)	9694(1)	26(1)
C(28)	3633(2)	-2754(2)	11117(1)	24(1)
C(29)	4115(2)	-2989(2)	11971(1)	28(1)
C(30)	4523(2)	-1920(2)	12560(1)	29(1)
C(31)	4447(2)	-642(2)	12326(1)	27(1)
C(32)	3960(2)	-421(2)	11482(1)	22(1)
C(33)	3550(2)	-1485(2)	10854(1)	21(1)
C(34)	4425(2)	1897(2)	11793(1)	32(1)
N(1)	1311(1)	909(1)	8661(1)	20(1)
N(2)	3210(2)	3526(1)	10061(1)	29(1)
N(3)	3201(2)	-3607(1)	10397(1)	28(1)
O(1)	1063(1)	3001(1)	6057(1)	23(1)
O(2)	2718(1)	5631(1)	7609(1)	26(1)
O(3)	1316(1)	5861(1)	6353(1)	24(1)
O(4)	-1855(1)	4972(1)	6892(1)	34(1)
O(5)	-317(1)	5613(1)	8135(1)	32(1)
O(6)	3855(1)	782(1)	11194(1)	26(1)
Table 3. Bond lengths [Å] and angles [°] for sarppong21.

Bond	Length/Angle
C(1)-O(1)	1.4327(18)
C(1)-C(9)	1.521(2)
C(1)-C(2)	1.543(2)
C(1)-H(1)	1.0000
C(2)-C(17)	1.532(2)
C(2)-C(21)	1.546(2)
C(2)-C(3)	1.552(2)
C(3)-C(4)	1.538(2)
C(3)-C(7)	1.540(2)
C(3)-H(3)	1.0000
C(4)-C(5)	1.533(2)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-N(1)	1.4579(19)
C(5)-H(5)	1.0000
C(6)-N(1)	1.4708(19)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.532(2)
C(7)-H(7)	1.0000
C(8)-C(9)	1.529(2)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-O(1)	1.419(2)
C(10)-C(11)	1.502(2)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(16)	1.381(3)
C(11)-C(12)	1.397(3)
C(12)-C(13)	1.385(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.388(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.375(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.394(3)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(17)-O(2)	1.198(2)
N(3)-H(3A)	0.8800

© 2012 Macmillan Publishers Limited. All rights reserved.
O(1)-C(1)-C(9) 111.83(12)
O(1)-C(1)-C(2) 105.35(12)
C(9)-C(1)-C(2) 112.51(13)
O(1)-C(1)-H(1) 109.0
C(9)-C(1)-H(1) 109.0
C(2)-C(1)-H(1) 109.0
C(17)-C(2)-C(1) 109.58(12)
C(17)-C(2)-C(21) 103.94(12)
C(1)-C(2)-C(21) 108.84(13)
C(17)-C(2)-C(3) 111.48(12)
C(1)-C(2)-C(3) 112.51(12)
C(21)-C(2)-C(3) 110.12(12)
C(4)-C(3)-C(7) 109.18(12)
C(4)-C(3)-C(2) 114.96(12)
C(7)-C(3)-C(2) 110.01(12)
C(4)-C(3)-H(3) 107.5
C(7)-C(3)-H(3) 107.5
C(2)-C(3)-H(3) 107.5
C(5)-C(4)-C(3) 110.43(12)
C(5)-C(4)-H(4A) 109.6
C(3)-C(4)-H(4A) 109.6
C(5)-C(4)-H(4B) 109.6
C(3)-C(4)-H(4B) 109.6
H(4A)-C(4)-H(4B) 108.1
N(1)-C(5)-C(23) 112.21(12)
N(1)-C(5)-C(4) 111.47(12)
C(23)-C(5)-C(4) 109.11(12)
N(1)-C(5)-H(5) 108.0
C(23)-C(5)-H(5) 108.0
C(4)-C(5)-H(5) 108.0
N(1)-C(6)-C(7) 112.24(12)
N(1)-C(6)-H(6A) 109.2
C(7)-C(6)-H(6A) 109.2
N(1)-C(6)-H(6B) 109.2
C(7)-C(6)-H(6B) 109.2
H(6A)-C(6)-H(6B) 107.9
C(6)-C(7)-C(8) 112.51(13)
C(6)-C(7)-C(3) 109.62(13)
C(8)-C(7)-C(3) 111.02(13)
C(6)-C(7)-H(7) 107.8
C(8)-C(7)-H(7) 107.8
C(3)-C(7)-H(7) 107.8
C(9)-C(8)-C(7) 110.91(13)
C(9)-C(8)-H(8A) 109.5
C(7)-C(8)-H(8A) 109.5
C(9)-C(8)-H(8B) 109.5
C(7)-C(8)-H(8B) 109.5
H(8A)-C(8)-H(8B) 108.0
C(1)-C(9)-C(8) 113.16(13)
C(1)-C(9)-H(9A) 108.9
C(8)-C(9)-H(9A) 108.9
C(1)-C(9)-H(9B) 108.9
C(8)-C(9)-H(9B) 108.9
H(9A)-C(9)-H(9B) 107.8
O(1)-C(10)-C(11) 107.79(13)
O(1)-C(10)-H(10A) 110.1
Bond	Angle
C(11)-C(10)-H(10A)	110.1
O(1)-C(10)-H(10B)	110.1
C(11)-C(10)-H(10B)	110.1
H(10A)-C(10)-H(10B)	108.5
C(16)-C(11)-C(12)	118.69(17)
C(16)-C(11)-C(10)	121.20(17)
C(12)-C(11)-C(10)	120.07(16)
C(13)-C(12)-C(11)	120.52(17)
C(13)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7
C(12)-C(13)-C(14)	119.92(18)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-H(13)	120.0
C(15)-C(14)-C(13)	120.13(17)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	119.72(17)
C(14)-C(15)-H(15)	120.1
C(16)-C(15)-H(15)	120.1
C(11)-C(16)-C(15)	121.01(17)
C(11)-C(16)-H(16)	119.5
C(15)-C(16)-H(16)	119.5
O(2)-C(17)-O(3)	123.88(14)
O(2)-C(17)-C(2)	126.12(14)
O(3)-C(17)-C(2)	109.96(13)
O(3)-C(18)-C(19)	111.94(15)
O(3)-C(18)-H(18A)	109.2
C(19)-C(18)-H(18A)	109.2
O(3)-C(18)-H(18B)	109.2
C(19)-C(18)-H(18B)	109.2
H(18A)-C(18)-H(18B)	107.9
C(20)-C(19)-C(18)	126.64(19)
C(20)-C(19)-H(19)	116.7
C(18)-C(19)-H(19)	116.7
C(19)-C(20)-H(20A)	120.0
C(19)-C(20)-H(20B)	120.0
H(20A)-C(20)-H(20B)	120.0
O(4)-C(21)-O(5)	124.51(15)
O(4)-C(21)-C(2)	125.38(15)
O(5)-C(21)-C(2)	110.04(14)
O(5)-C(22)-H(22A)	109.5
O(5)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
O(5)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
N(2)-C(23)-C(5)	177.31(17)
N(1)-C(24)-C(25)	112.83(12)
N(1)-C(24)-H(24A)	109.0
C(25)-C(24)-H(24A)	109.0
N(1)-C(24)-H(24B)	109.0
C(25)-C(24)-H(24B)	109.0
H(24A)-C(24)-H(24B)	107.8
C(26)-C(25)-C(24)	113.72(13)
C(26)-C(25)-H(25A)	108.8
C(24)-C(25)-H(25A)	108.8
C(26)-C(25)-H(25B) 108.8
C(24)-C(25)-H(25B) 108.8
H(25A)-C(25)-H(25B) 107.7
C(27)-C(26)-C(33) 106.03(14)
C(27)-C(26)-C(25) 125.52(15)
C(33)-C(26)-C(25) 128.29(14)
C(26)-C(27)-N(3) 110.42(15)
C(26)-C(27)-H(27) 124.8
N(3)-C(27)-H(27) 124.8
N(3)-C(28)-C(29) 130.02(15)
N(3)-C(28)-C(33) 107.14(14)
C(29)-C(28)-C(33) 122.82(16)
C(30)-C(29)-C(28) 116.96(15)
C(30)-C(29)-H(29) 121.5
C(28)-C(29)-H(29) 121.5
C(29)-C(30)-C(31) 121.99(16)
C(29)-C(30)-H(30) 119.0
C(31)-C(30)-H(30) 119.0
C(32)-C(31)-C(30) 120.61(16)
C(32)-C(31)-H(31) 119.7
C(30)-C(31)-H(31) 119.7
C(32)-C(31)-C(33) 121.73(16)
O(6)-C(32)-C(31) 124.74(15)
O(6)-C(32)-C(33) 115.83(14)
C(31)-C(32)-C(33) 119.42(15)
C(32)-C(33)-C(28) 118.19(15)
C(32)-C(33)-C(26) 134.48(14)
C(28)-C(33)-C(26) 107.29(14)
C(32)-C(34)-H(34A) 109.5
O(6)-C(34)-H(34A) 109.5
H(34A)-C(34)-H(34B) 109.5
H(34A)-C(34)-H(34C) 109.5
H(34B)-C(34)-H(34C) 109.5
C(5)-N(1)-C(6) 111.76(12)
C(5)-N(1)-C(24) 113.70(12)
C(6)-N(1)-C(24) 110.24(12)
C(28)-N(3)-C(27) 109.10(13)
C(28)-N(3)-H(3A) 125.5
C(27)-N(3)-H(3A) 125.5
C(10)-O(1)-C(1) 113.86(12)
C(17)-O(3)-C(18) 116.25(12)
C(21)-O(5)-C(22) 116.00(15)
C(32)-O(6)-C(34) 117.26(13)

Symmetry transformations used to generate equivalent atoms:
A colorless plate 0.08 x 0.06 x 0.04 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 98.4% complete to 67.00° in θ. A total of 51705 reflections were collected covering the indices, -13<=h<=13, -30<=k<=25, -13<=l<=14. 5881 reflections were found to be symmetry independent, with an R_{int} of 0.0423. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1)/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2008) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

ORTEP representation of 23b - HCl
Table 1. Crystal data and structure refinement for sarpong26.

Property	Value
X-ray ID	sarpong26
Sample/notebook ID	TL5-127-2
Empirical formula	C33 H39 Cl N2 O6
Formula weight	595.11
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	a = 11.4692(6) Å, b = 25.8682(13) Å, c = 12.3901(6) Å
Volume	3316.5(3) Å^3
Z	4
Density (calculated)	1.192 Mg/m^3
Absorption coefficient	1.375 mm^{-1}
F(000)	1264
Crystal size	0.08 x 0.06 x 0.04 mm^3
Crystal color/habit	colorless plate
Theta range for data collection	3.42 to 67.89°
Index ranges	-13<=h<=13, -30<=k<=25, -13<=l<=14
Reflections collected	51705
Independent reflections	5881 [R(int) = 0.0423]
Completeness to theta = 67.00°	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9470 and 0.8979
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5881 / 0 / 382
Goodness-of-fit on F^2	1.145
Final R indices [I>2sigma(I)]	R1 = 0.0879, wR2 = 0.2262
R indices (all data)	R1 = 0.0923, wR2 = 0.2292
Largest diff. peak and hole	1.115 and -0.419 eÅ^{-3}
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for sarpong26. U_{eq} is defined as one third of the trace of the orthogonalized U^i tensor.

	x	y	z	U_{eq}
C(1)	4679(4)	1682(2)	6988(4)	28(1)
C(2)	5332(4)	2183(2)	6860(4)	30(1)
C(3)	5172(4)	2235(2)	5573(4)	34(1)
C(4)	3762(4)	2223(2)	4691(4)	32(1)
C(5)	3120(4)	1722(2)	4794(4)	31(1)
C(6)	1724(4)	1660(2)	3901(4)	32(1)
C(7)	-560(4)	1920(2)	3264(4)	37(1)
C(8)	-1011(4)	1364(2)	3236(4)	34(1)
C(9)	-558(4)	1172(2)	4504(4)	30(1)
C(10)	-867(4)	708(2)	4974(4)	30(1)
C(11)	-1675(4)	283(2)	4465(4)	29(1)
C(12)	-1774(4)	-101(2)	5177(4)	33(1)
C(13)	-992(4)	-80(2)	6441(4)	33(1)
C(14)	-172(4)	323(2)	6964(4)	33(1)
C(15)	-123(4)	719(2)	6224(4)	27(1)
C(16)	318(4)	1432(2)	5452(4)	29(1)
C(17)	951(4)	1941(2)	5428(4)	31(1)
C(18)	2344(4)	2009(2)	6313(4)	28(1)
C(19)	3251(4)	1637(2)	6078(4)	28(1)
C(20)	5434(4)	1212(2)	6836(3)	28(1)
C(21)	7523(5)	901(2)	7287(5)	44(1)
C(22)	4889(4)	1635(2)	8294(4)	27(1)
C(23)	4283(5)	1181(2)	9634(4)	36(1)
C(24)	5416(5)	859(2)	10353(4)	45(1)
C(25)	6249(6)	655(2)	9999(5)	58(2)
C(26)	5618(4)	3022(2)	7688(4)	31(1)
C(27)	4934(4)	3494(2)	7814(4)	29(1)
C(28)	5628(4)	3869(2)	8649(4)	32(1)
C(29)	5037(5)	4319(2)	8737(4)	37(1)
C(30)	3749(5)	4410(2)	8003(4)	40(1)
C(31)	3059(5)	4034(2)	7166(4)	40(1)
C(32)	3637(4)	3581(2)	7065(4)	32(1)
C(33)	-3142(4)	-142(2)	2680(4)	36(1)
N(1)	814(3)	2001(1)	4160(3)	31(1)
N(2)	605(3)	1164(1)	6499(3)	28(1)
O(1)	4963(3)	820(1)	6336(3)	36(1)
O(2)	6703(3)	1307(1)	7382(3)	39(1)
O(3)	5675(3)	1876(1)	9117(3)	37(1)
O(4)	4127(3)	1268(1)	8418(2)	33(1)
O(5)	4739(3)	2612(1)	7157(2)	28(1)
O(6)	-2363(3)	299(1)	3235(3)	32(1)
Cl(1)	1087(1)	3178(1)	3887(1)	38(1)
Table 3. Bond lengths [Å] and angles [°] for sarpong26.

Bond	Distance Å	Bond	Distance Å
C(1)-C(22)	1.533(5)	C(17)-H(17)	1.0000
C(1)-C(2)	1.539(6)	C(18)-C(19)	1.534(5)
C(1)-C(19)	1.541(6)	C(18)-H(18A)	0.9900
C(1)-C(20)	1.550(5)	C(18)-H(18B)	0.9900
C(2)-O(5)	1.431(5)	C(19)-H(19)	1.0000
C(2)-C(3)	1.530(6)	C(20)-O(1)	1.190(5)
C(2)-H(2)	1.0000	C(20)-O(2)	1.336(5)
C(3)-C(4)	1.512(6)	C(21)-O(2)	1.448(5)
C(3)-H(3A)	0.9900	C(21)-H(21A)	0.9800
C(3)-H(3B)	0.9900	C(21)-H(21B)	0.9800
C(4)-C(5)	1.524(6)	C(21)-H(21C)	0.9800
C(4)-H(4A)	0.9900	C(22)-O(3)	1.203(5)
C(4)-H(4B)	0.9900	C(22)-O(4)	1.343(5)
C(5)-C(6)	1.512(6)	C(23)-O(4)	1.457(5)
C(5)-C(19)	1.548(5)	C(23)-C(24)	1.476(7)
C(5)-H(5)	1.0000	C(23)-H(23A)	0.9900
C(6)-N(1)	1.503(5)	C(23)-H(23B)	0.9900
C(6)-H(6A)	0.9900	C(24)-C(25)	0.9500
C(6)-H(6B)	0.9900	C(24)-H(24)	0.9500
C(7)-N(1)	1.501(6)	C(25)-H(25A)	0.9500
C(7)-C(8)	1.522(6)	C(25)-H(25B)	0.9500
C(7)-H(7A)	0.9900	C(26)-O(5)	1.415(5)
C(7)-H(7B)	0.9900	C(26)-C(27)	1.495(6)
C(8)-C(9)	1.511(6)	C(26)-H(26A)	0.9900
C(8)-H(8A)	0.9900	C(26)-H(26B)	0.9900
C(8)-H(8B)	0.9900	C(27)-C(28)	1.391(6)
C(9)-C(16)	1.351(6)	C(27)-C(32)	1.391(6)
C(9)-C(10)	1.443(6)	C(28)-C(29)	1.376(6)
C(10)-C(11)	1.401(6)	C(28)-H(28)	0.9500
C(10)-C(15)	1.410(6)	C(29)-C(30)	1.380(7)
C(11)-C(12)	1.365(6)	C(29)-H(29)	0.9500
C(11)-O(6)	1.382(5)	C(30)-C(31)	1.392(7)
C(12)-C(13)	1.431(6)	C(30)-H(30)	0.9500
C(12)-H(12)	0.9500	C(31)-C(32)	1.379(6)
C(13)-C(14)	1.366(6)	C(31)-H(31)	0.9500
C(13)-H(13)	0.9500	C(32)-H(32)	0.9500
C(14)-C(15)	1.391(6)	C(33)-O(6)	1.430(5)
C(14)-H(14)	0.9500	C(33)-H(33A)	0.9800
C(15)-N(2)	1.376(5)	C(33)-H(33B)	0.9800
C(16)-N(2)	1.381(5)	C(33)-H(33C)	0.9800
C(16)-C(17)	1.509(6)	N(1)-H(1)	0.9300
C(17)-C(18)	1.508(6)	N(2)-H(2A)	0.8800
C(17)-N(1)	1.518(5)		
C(22)-C(1)-C(2) 108.3(3)			
C(22)-C(1)-C(19) 113.6(3)			
C(2)-C(1)-C(19) 113.5(3)			
C(22)-C(1)-C(20) 103.0(3)			
C(2)-C(1)-C(20) 108.9(3)			
C(19)-C(1)-C(20) 108.9(3)			
O(5)-C(2)-C(3) 110.0(3)			
O(5)-C(2)-C(1) 108.6(3)			
C(3)-C(2)-C(1) 109.7(3)			
O(5)-C(2)-H(2) 109.5			
C(3)-C(2)-H(2) 109.5			
C(1)-C(2)-H(2) 109.5			
C(4)-C(3)-C(2) 111.2(3)			
C(4)-C(3)-H(3A) 109.4			
C(2)-C(3)-H(3A) 109.4			
C(4)-C(3)-H(3B) 109.4			
H(3A)-C(3)-H(3B) 108.0			
C(3)-C(4)-C(5) 111.2(4)			
C(3)-C(4)-H(4A) 109.4			
C(5)-C(4)-H(4A) 109.4			
C(3)-C(4)-H(4B) 109.4			
C(5)-C(4)-H(4B) 109.4			
H(4A)-C(4)-H(4B) 108.0			
C(6)-C(5)-C(4) 115.2(4)			
C(6)-C(5)-C(19) 109.9(3)			
C(4)-C(5)-C(19) 111.7(3)			
C(6)-C(5)-H(5) 106.5			
C(4)-C(5)-H(5) 106.5			
C(19)-C(5)-H(5) 106.5			
N(1)-C(6)-C(5) 113.4(3)			
N(1)-C(6)-H(6A) 108.9			
C(5)-C(6)-H(6A) 108.9			
N(1)-C(6)-H(6B) 108.9			
C(5)-C(6)-H(6B) 108.9			
H(6A)-C(6)-H(6B) 107.7			
N(1)-C(7)-C(8) 112.8(3)			
N(1)-C(7)-H(7A) 109.0			
C(8)-C(7)-H(7A) 109.0			
N(1)-C(7)-H(7B) 109.0			
C(8)-C(7)-H(7B) 109.0			
H(7A)-C(7)-H(7B) 107.8			
C(9)-C(8)-C(7) 109.0(4)			
C(9)-C(8)-H(8A) 109.9			
C(7)-C(8)-H(8A) 109.9			
C(9)-C(8)-H(8B) 109.9			
C(7)-C(8)-H(8B) 109.9			
H(8A)-C(8)-H(8B) 108.3			
C(16)-C(9)-C(10) 106.5(4)			
C(16)-C(9)-C(8) 122.3(4)			
C(10)-C(9)-C(8) 131.2(4)			
C(11)-C(10)-C(15) 118.6(4)			
C(11)-C(10)-C(9) 134.6(4)			
C(15)-C(10)-C(9) 106.9(4)			
C(12)-C(11)-O(6) 124.5(4)			
C(12)-C(11)-C(10) 120.3(4)			
O(6)-C(11)-C(10) 115.2(4)			
C(11)-C(12)-C(13) 119.5(4)			
C(11)-C(12)-H(12) 120.2			
C(13)-C(12)-H(12) 120.2			
C(14)-C(13)-C(12) 115.2(4)			
C(14)-C(13)-H(13) 120.2			
C(12)-C(13)-H(13) 120.2			
C(13)-C(14)-C(15) 119.5(4)			
C(13)-C(14)-H(14) 120.2			
C(15)-C(14)-H(14) 120.2			
N(2)-C(15)-C(14) 115.2(4)			
N(2)-C(15)-C(10) 107.6(3)			
C(14)-C(15)-C(10) 122.2(4)			
C(9)-C(16)-N(2) 110.6(4)			
C(9)-C(16)-C(17) 126.9(4)			
N(2)-C(16)-C(17) 122.4(4)			
C(18)-C(17)-C(16) 117.1(4)			
C(18)-C(17)-N(1) 110.2(3)			
C(16)-C(17)-N(1) 105.9(3)			
C(18)-C(17)-H(17) 107.8			
C(16)-C(17)-H(17) 107.8			
N(1)-C(17)-H(17) 107.8			
C(17)-C(18)-C(19) 112.5(3)			
C(17)-C(18)-H(18A) 109.1			
C(19)-C(18)-H(18A) 109.1			
C(17)-C(18)-H(18B) 109.1			
C(19)-C(18)-H(18B) 109.1			
H(18A)-C(18)-H(18B) 107.8			
C(18)-C(19)-C(1) 114.0(3)			
C(18)-C(19)-C(5) 109.5(3)			
C(1)-C(19)-C(5) 110.1(3)			
C(18)-C(19)-H(19) 107.7			
C(1)-C(19)-H(19) 107.7			
C(5)-C(19)-H(19) 107.7			
O(1)-C(20)-O(2) 124.7(4)			
O(1)-C(20)-C(1) 125.4(4)			
O(2)-C(20)-C(1) 109.8(3)			
O(2)-C(21)-H(21A) 109.5			
O(2)-C(21)-H(21B) 109.5			
H(21A)-C(21)-H(21B) 109.5			
O(2)-C(21)-H(21C) 109.5			
H(21A)-C(21)-H(21C) 109.5			
O(3)-C(22)-O(4) 123.7(4)			
O(3)-C(22)-C(1) 124.9(4)			
O(4)-C(22)-C(1) 111.2(3)			
O(4)-C(23)-C(24) 113.3(4)			
O(4)-C(23)-H(23A) 108.9			
C(24)-C(23)-H(23A) 108.9			
O(4)-C(23)-H(23B) 108.9			
C(24)-C(23)-H(23B) 108.9			
H(23A)-C(23)-H(23B) 107.7			
C(25)-C(24)-C(23) 126.9(5)			
C(25)-C(24)-H(24) 116.6			
C(23)-C(24)-H(24) 116.6			
C(24)-C(25)-H(25A) 120.0			
Bond	Angle (°)		
-----------------------	------------		
C(24)-C(25)-H(25B)	120.0		
H(25A)-C(25)-H(25B)	120.0		
O(5)-C(26)-C(27)	111.1(3)		
O(5)-C(26)-H(26A)	109.4		
C(27)-C(26)-H(26A)	109.4		
O(5)-C(26)-H(26B)	109.4		
C(27)-C(26)-H(26B)	109.4		
H(26A)-C(26)-H(26B)	108.0		
C(28)-C(27)-C(32)	119.2(4)		
C(28)-C(27)-C(26)	119.3(4)		
C(32)-C(27)-C(26)	121.4(4)		
C(29)-C(28)-C(27)	120.5(4)		
C(29)-C(28)-H(28)	119.8		
C(27)-C(28)-H(28)	119.8		
C(28)-C(29)-C(30)	121.0(4)		
C(28)-C(29)-H(29)	119.5		
C(30)-C(29)-H(29)	119.5		
C(29)-C(30)-C(31)	118.4(4)		
C(29)-C(30)-H(30)	120.8		
C(31)-C(30)-H(30)	120.8		
C(32)-C(31)-C(30)	121.3(4)		
C(32)-C(31)-H(31)	119.3		
C(30)-C(31)-H(31)	119.3		
C(31)-C(32)-C(27)	119.7(4)		
C(31)-C(32)-H(32)	120.2		
C(27)-C(32)-H(32)	120.2		
O(6)-C(33)-H(33A)	109.5		
O(6)-C(33)-H(33B)	109.5		
H(33A)-C(33)-H(33B)	109.5		
O(6)-C(33)-H(33C)	109.5		
H(33A)-C(33)-H(33C)	109.5		
H(33B)-C(33)-H(33C)	109.5		
C(7)-N(1)-C(6)	111.3(3)		
C(7)-N(1)-C(17)	111.0(3)		
C(6)-N(1)-C(17)	112.9(3)		
C(7)-N(1)-H(1)	107.1		
C(6)-N(1)-H(1)	107.1		
C(17)-N(1)-H(1)	107.1		
C(15)-N(2)-C(16)	108.4(3)		
C(15)-N(2)-H(2A)	125.8		
C(16)-N(2)-H(2A)	125.8		
C(20)-O(2)-C(21)	115.5(4)		
C(22)-O(4)-C(23)	115.6(3)		
C(26)-O(5)-C(2)	112.2(3)		
C(11)-O(6)-C(33)	116.6(3)		

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² x 10³) for sarpong26. The anisotropic displacement factor exponent takes the form: -2π² [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U¹¹	U¹²	U¹³	U¹²	U¹²	U¹²
C(1)	33(2)	29(2)	29(2)	-1(2)	19(2)	0(2)
C(2)	32(2)	26(2)	38(2)	-1(2)	21(2)	0(2)
C(3)	41(2)	30(2)	38(2)	1(2)	25(2)	1(2)
C(4)	43(2)	32(2)	26(2)	0(2)	21(2)	2(2)
C(5)	37(2)	30(2)	29(2)	-1(2)	19(2)	2(2)
C(6)	42(2)	32(2)	26(2)	-2(2)	18(2)	0(2)
C(7)	40(2)	36(2)	33(2)	5(2)	13(2)	6(2)
C(8)	32(2)	36(2)	28(2)	0(2)	7(2)	5(2)
C(9)	30(2)	29(2)	33(2)	-1(2)	16(2)	4(2)
C(10)	33(2)	29(2)	34(2)	-1(2)	20(2)	5(2)
C(11)	29(2)	28(2)	36(2)	-3(2)	19(2)	4(2)
C(12)	33(2)	31(2)	38(2)	-5(2)	17(2)	3(2)
C(13)	33(2)	31(2)	40(2)	4(2)	23(2)	7(2)
C(14)	32(2)	35(2)	34(2)	1(2)	18(2)	5(2)
C(15)	21(2)	31(2)	31(2)	1(2)	13(2)	4(2)
C(16)	32(2)	27(2)	32(2)	1(2)	16(2)	5(2)
C(17)	39(2)	27(2)	33(2)	-1(2)	22(2)	4(2)
C(18)	35(2)	26(2)	29(2)	1(2)	19(2)	2(2)
C(19)	37(2)	23(2)	30(2)	-3(2)	20(2)	0(2)
C(20)	34(2)	31(2)	25(2)	2(2)	19(2)	4(2)
C(21)	39(3)	44(3)	52(3)	-7(2)	21(2)	4(2)
C(22)	31(2)	25(2)	29(2)	-2(2)	17(2)	4(2)
C(23)	47(3)	40(2)	27(2)	4(2)	21(2)	1(2)
C(24)	52(3)	46(3)	36(2)	6(2)	19(2)	3(2)
C(25)	56(3)	67(4)	59(3)	24(3)	32(3)	2(3)
C(26)	25(2)	37(2)	30(2)	-5(2)	11(2)	-1(2)
C(27)	33(2)	31(2)	27(2)	2(2)	17(2)	-1(2)
C(28)	33(2)	35(2)	32(2)	-1(2)	18(2)	-8(2)
C(29)	51(3)	28(2)	38(2)	-4(2)	24(2)	-11(2)
C(30)	47(3)	30(2)	51(3)	4(2)	28(2)	4(2)
C(31)	36(2)	40(3)	42(3)	6(2)	15(2)	7(2)
C(32)	34(2)	34(2)	30(2)	-1(2)	16(2)	-2(2)
C(33)	36(2)	32(2)	35(2)	-5(2)	13(2)	-2(2)
N(1)	35(2)	28(2)	30(2)	2(1)	14(2)	2(2)
N(2)	29(2)	30(2)	25(2)	1(1)	11(1)	3(1)
O(1)	43(2)	30(2)	42(2)	-1(1)	25(2)	5(1)
O(2)	36(2)	38(2)	46(2)	-7(1)	20(1)	7(1)
O(3)	46(2)	35(2)	33(2)	-4(1)	21(2)	-3(1)
O(4)	36(2)	39(2)	26(1)	3(1)	14(1)	-2(1)
O(5)	29(1)	26(1)	33(2)	-1(1)	16(1)	1(1)
O(6)	32(2)	29(2)	32(2)	-2(1)	12(1)	1(1)
Cl(1)	45(1)	34(1)	34(1)	6(1)	17(1)	2(1)
Table 5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for sarpong26.

	x	y	z	U(eq)
H(2)	6273	2172	7419	36
H(3A)	5562	2565	5487	40
H(3B)	5635	1949	5394	40
H(4A)	3688	2258	3868	38
H(4B)	3309	2520	4844	38
H(5)	3608	1434	4633	37
H(6A)	1645	1742	3092	39
H(6B)	1464	1295	3900	39
H(7A)	-646	2015	2460	45
H(7B)	-1129	2152	3459	45
H(8A)	-1966	1348	2815	41
H(8B)	-651	1143	2800	41
H(12)	-2357	-380	4836	40
H(13)	-1046	-354	6929	39
H(14)	348	332	7803	39
H(17)	438	2222	5574	37
H(18A)	2424	1950	7131	34
H(18B)	2613	2369	6270	34
H(19)	2961	1277	6124	33
H(21A)	7429	590	7695	67
H(21B)	8425	1015	7661	67
H(21C)	7269	822	6442	67
H(23A)	3495	1011	9602	43
H(23B)	4370	1520	10036	43
H(24)	5562	791	11155	54
H(25A)	6147	711	9205	70
H(25B)	6949	453	10537	70
H(26A)	6073	3104	7188	38
H(26B)	6272	2914	8486	38
H(28)	6515	3814	9162	39
H(29)	5523	4572	9311	44
H(30)	3343	4721	8067	48
H(31)	2172	4091	6655	48
H(32)	3152	3330	6486	39
H(33A)	-2591	-450	2849	53
H(33B)	-3585	-88	1813	53
H(33C)	-3784	-192	2996	53
H(1)	1026	2341	4080	37
H(2A)	1160	1260	7220	33
Table 4. Anisotropic displacement parameters (Å²x 10³) for sarpong21. The anisotropic displacement factor exponent takes the form: -2π² [h²a² U₁₁ + ... + 2hkak*b*U₁₂]

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
C(1)	20(1)	24(1)	24(1)	3(1)	0(1)	8(1)
C(2)	20(1)	20(1)	23(1)	2(1)	3(1)	7(1)
C(3)	20(1)	20(1)	21(1)	3(1)	4(1)	6(1)
C(4)	18(1)	21(1)	23(1)	5(1)	4(1)	5(1)
C(5)	19(1)	19(1)	23(1)	2(1)	4(1)	6(1)
C(6)	19(1)	23(1)	29(1)	6(1)	7(1)	6(1)
C(7)	18(1)	22(1)	29(1)	6(1)	6(1)	7(1)
C(8)	20(1)	20(1)	33(1)	4(1)	2(1)	3(1)
C(9)	21(1)	25(1)	28(1)	2(1)	-2(1)	5(1)
C(10)	34(1)	42(1)	21(1)	0(1)	0(1)	16(1)
C(11)	33(1)	35(1)	21(1)	6(1)	4(1)	12(1)
C(12)	41(1)	29(1)	34(1)	3(1)	5(1)	9(1)
C(13)	33(1)	35(1)	39(1)	9(1)	5(1)	1(1)
C(14)	34(1)	40(1)	38(1)	10(1)	15(1)	10(1)
C(15)	39(1)	35(1)	40(1)	-2(1)	15(1)	7(1)
C(16)	31(1)	36(1)	33(1)	-3(1)	6(1)	4(1)
C(17)	23(1)	20(1)	22(1)	2(1)	4(1)	8(1)
C(18)	26(1)	28(1)	30(1)	9(1)	2(1)	0(1)
C(19)	33(1)	26(1)	42(1)	4(1)	-8(1)	3(1)
C(20)	81(2)	35(1)	43(1)	0(1)	-2(1)	22(1)
C(21)	25(1)	20(1)	31(1)	7(1)	9(1)	6(1)
C(22)	43(1)	37(1)	60(1)	-6(1)	24(1)	16(1)
C(23)	22(1)	21(1)	28(1)	9(1)	5(1)	6(1)
C(24)	21(1)	20(1)	26(1)	5(1)	5(1)	4(1)
C(25)	24(1)	20(1)	23(1)	3(1)	5(1)	7(1)
C(26)	19(1)	22(1)	27(1)	4(1)	5(1)	6(1)
C(27)	27(1)	22(1)	30(1)	2(1)	4(1)	6(1)
C(28)	17(1)	23(1)	34(1)	7(1)	7(1)	6(1)
C(29)	20(1)	29(1)	37(1)	16(1)	8(1)	8(1)
C(30)	21(1)	41(1)	28(1)	14(1)	6(1)	9(1)
C(31)	21(1)	33(1)	27(1)	3(1)	5(1)	6(1)
C(32)	16(1)	24(1)	27(1)	5(1)	5(1)	7(1)
C(33)	15(1)	22(1)	28(1)	6(1)	6(1)	5(1)
C(34)	38(1)	25(1)	33(1)	-3(1)	-2(1)	10(1)
N(1)	18(1)	19(1)	25(1)	5(1)	5(1)	5(1)
N(2)	38(1)	21(1)	28(1)	3(1)	4(1)	7(1)
N(3)	30(1)	17(1)	37(1)	6(1)	6(1)	6(1)
O(1)	22(1)	27(1)	20(1)	2(1)	1(1)	9(1)
O(2)	25(1)	24(1)	27(1)	4(1)	-1(1)	2(1)
O(3)	23(1)	23(1)	24(1)	6(1)	2(1)	3(1)
O(4)	24(1)	35(1)	44(1)	6(1)	2(1)	14(1)
O(5)	32(1)	33(1)	36(1)	-4(1)	10(1)	14(1)
O(6)	29(1)	20(1)	27(1)	0(1)	0(1)	7(1)
Table 5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for sarpong21.

	x	y	z	U(eq)
H(1)	-561	3957	5866	27
H(3)	1027	3912	8458	24
H(4A)	2034	2217	7332	25
H(4B)	2993	3492	7888	25
H(5)	3334	1537	8564	24
H(6A)	157	1985	9239	28
H(6B)	-778	687	8701	28
H(7)	-1226	2624	8041	26
H(8A)	-71	961	6976	30
H(8B)	-1675	680	7119	30
H(9A)	-1514	1654	5801	30
H(9B)	-2176	2520	6420	30
H(10A)	930	3822	4948	38
H(10B)	207	2300	4853	38
H(12)	3694	4244	5636	42
H(13)	5827	3643	5467	44
H(14)	5811	1623	4754	43
H(15)	3666	240	4174	44
H(16)	1527	847	4339	41
H(18A)	2298	6988	5582	35
H(18B)	3320	6791	6460	35
H(19)	2783	8974	6502	43
H(20A)	548	7649	7127	64
H(20B)	1164	9236	7238	64
H(22A)	-1412	7075	7987	66
H(22B)	-872	6830	8969	66
H(22C)	-2194	5847	8393	66
H(24A)	762	-663	9311	26
H(24B)	1719	563	9916	26
H(25A)	2874	-911	8749	26
H(25B)	3767	153	9497	26
H(27)	2588	-3290	9120	32
H(29)	4157	-3850	12135	33
H(30)	4866	-2046	13143	35
H(31)	4733	74	12751	32
H(34A)	3894	1869	12257	49
H(34B)	4348	2697	11501	49
H(34C)	5427	1890	12030	49
H(3A)	3133	-4463	10386	34
Computational Data

General

Calculations (geometry optimization, frequency, and NMR chemical shift) were performed on venenatine (9), venenatine – HCl salt (9-HCl) alstovenine (12), 16-epi-alstovenine (13), and 9-methoxy-3-epi-α-yohimbine (8).

Candidate conformers for each system were identified via systematic conformational searches performed as described below with the MMFF94 force field in Spartan’10. Quantum mechanical calculations were performed with GAUSSIAN09. Geometries were optimized in the gas-phase using the B3LYP/6-31+G(d,p) level of theory. Frequency calculations (at 298.15 K) at the same level of theory were used to confirm the nature of all stationary points as minima and also provided values for computed free energies. NMR single point calculations (GIAO) were performed as described below on these geometries at the mPW1PW91/6-311+G(d,p) level of theory in an implicit chloroform solvent continuum (SMD method).

Conformational Search and Analysis of NMR data

For each system, systematic conformation searches were performed in two major stages: first to locate conformers of the ring system, and second to locate conformers of the hydroxyl and ester substituents on each ring conformer. The candidate conformers located via the systematic force field searches in Spartan’10 were first refined in GAUSSIAN09 at the B3LYP/6-31G(d) level of theory (optimizations only, no frequency calculations); unique conformers within a 20 kcal/mol electronic energy window were then further refined with optimizations and frequency calculations at the B3LYP/6-31+G(d,p) level of theory. In some cases the intermediate B3LYP/6-31G(d) optimizations were bypassed. Ring system conformers within a 10 kcal/mol free energy window at the B3LYP/6-31+G(d,p) level of theory were carried through to the second stage where conformations of the hydroxyl and ester substituents were analyzed using the same approach. In the end, all unique conformers within a 3 kcal/mol free energy window at the B3LYP/6-31+G(d,p) level of theory were included in the subsequent NMR calculations.

Boltzmann-weighted averaging of the computed chemical shifts based on the relative computed free energies at 298.15 K of each conformer was performed, using the equation below to determine relative populations.

\[
P_i = \frac{e^{-\frac{(E_i - E_j)}{RT}}}{\sum_j e^{-\frac{(E_i - E_j)}{RT}}} P_i = \text{population of conformer } i \text{ relative to lowest energy conformer } j
\]

\[
E_i, E_j = \text{computed free energies (in J/mol)}
\]

\[
R = \text{molar gas constant (8.314510 J mol}^{-1} \text{ K}^{-1})
\]

\[
T = 298.15 \text{ K}
\]

The relative populations were then converted to Boltzmann-weighting factors by means of a set of linear equations.
Empirical scaling of computed NMR chemical shifts

Computed chemical shifts are commonly scaled empirically in order to remove systematic error that results from a variety of sources. The scaling factors themselves are generally determined by comparison of computed NMR data with known experimental chemical shifts for large databases of molecules. These factors (slope and intercept from a best fit line) are specific for each level of theory used computationally. We have generated numerous such scaling factors for 1H and 13C chemical shifts utilizing a database originally compiled by Rablen and co-workers and have made them available on our web site at http://cheshirenmr.info.

One of our preferred methods for obtaining high quality computed chemical shifts at reasonable costs is to use mPW1PW91/6-311+G(2d,p) NMR calculations (with the SMD chloroform continuum model) on B3LYP/6-31+G(d,p) geometries. After scaling, this method produces average errors (CMAD’S) of 0.11-0.15 ppm for 1H and 1.8-2.5 ppm for 13C on diverse sets of small organic molecules. Details and numerous references on linear regression methods applied to computed chemical shifts can be found in our review paper.7

The specific scaling factors used in this study are given below and are applied to the computed NMR isotropic shielding constants by way of the equation shown.

\[
\delta = b - \sigma - m
\]

\[\sigma = \text{computed isotropic shielding constant}\]

\[m = \text{slope, } b = \text{intercept}\]

References

1: Spartan‘10; Wavefunction, Inc., Irvine, CA.

2: Gaussian 09, Revision B.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian, Inc., Wallingford CT, (2009).

3: (a) Becke, A. D. A new mixing of Hartree-Fock and local-density-functional theories. J. Chem. Phys. 98, 1372-1377 (1993). (b) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993). (c) Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789 (1988). (d) Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys.
Chem. 98, 11623-11627 (1994). (e) Tirado-Rives, J., Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 4, 297-306 (2008).

4: (a) London, F. J. Phys. Radium 8, 397-409 (1937). (b) McWeeny, R. Phys. Rev. 126, 1028-1034 (1962). (c) Ditchfield, R. Mol. Phys. 27, 789-807 (1974). (e) Wolinski, K., Hilton, J. F., Pulay, P. J. Am. Chem. Soc. 112, 8251-8260 (1990). (f) Cheeseman, J. R., Trucks, G. W., Keith, T. A., Frisch, M. J. J. Chem. Phys. 104, 5497-5509 (1996).

5: Adamo, C., Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 108, 664-675 (1998).

6: Marenich, A. V., Cramer, C. J., Truhlar, D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378-6396 (2009).

7: Lodewyk, M. W., Siebert, M. R., Tantillo, D. J. Computational Prediction of 1H and 13C chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 112, 1839-1862 (2012).
Venenatine (9) 13C computed NMR data (ppm)

	Computed	Exp. a	Abs. Dev. a	Exp. b	Abs. Dev. b
C2	131.23	130.62	0.61	131.0	0.23
C3	54.37	53.82	0.55	55.2	0.83
C5	51.50	50.77	0.73	51.8	0.30
C6	20.57	18.74	1.83	18.9	1.67
C7	107.12	107.10	0.02	107.7	0.58
C8	115.92	117.56	1.64	117.8	1.88
C9	152.54	155.06	2.52	154.2	1.66
C10	96.81	104.29	7.48	99.5	2.69
C11	118.93	121.49	2.56	121.6	2.67
C12	102.67	105.66	2.99	104.4	1.73
C13	134.42	137.07	2.65	137.0	2.58
C14	25.92	30.96	5.04	25.8	0.12
C15	32.67	32.02	0.65	32.0	0.67
C16	50.91	51.86	0.95	50.6	0.31
C17	66.95	67.14	0.19	65.8	1.15
C18	32.27	31.61	0.66	31.1	1.17
C19	21.22	22.77	1.55	19.8	1.42
C20	38.48	39.74	1.26	36.7	1.78
C21	50.65	50.68	0.03	49.5	1.15
C22	178.16	174.67	3.49	175.0	3.16
C23	51.26	51.46	0.20	51.4	0.14
C24	51.88	54.94	3.06	54.2	2.32

MAD: **1.85**

aPhytochemistry, **1981**, 20, 1981-1985, C14 and C19 assignments swapped

bThis work
Venenate – HCl salt (9-HCl) 13C computed NMR data (ppm)

	Computed	Exp.	Abs. Dev.
C2	126.18	130.62	4.44
C3	55.42	53.82	1.60
C5	49.77	50.77	1.00
C6	19.51	18.74	0.77
C7	107.09	107.10	0.01
C8	116.09	117.56	1.47
C9	152.11	155.06	2.95
C10	97.71	104.29	6.58
C11	121.44	121.49	0.05
C12	100.97	105.66	4.69
C13	135.08	137.07	1.99
C14	24.13	30.96	6.83
C15	30.47	32.02	1.55
C16	50.75	51.86	1.11
C17	67.72	67.14	0.58
C18	33.15	31.61	1.54
C19	21.89	22.77	0.88
C20	37.26	39.74	2.48
C21	47.77	50.68	2.91
C22	175.22	174.67	0.55
C23	51.35	51.46	0.11
C24	52.13	54.94	2.81

MAD: 2.13

*Phytochemistry, **1981**, 20, 1981-1985, C14 and C19 assignments swapped
Alstovenine (12) 13C computed NMR data (ppm)

	Computed	Exp.	Abs. Dev.	Exp.	Abs. Dev.
C2	132.55	132.50	0.05	133.1	0.55
C3	59.36	59.70	0.34	60.7	1.34
C5	51.97	55.10	3.13	55.3	3.33
C6	25.01	23.60	1.41	23.8	1.21
C7	107.22	107.80	0.58	108.1	0.88
C8	115.22	--	--	117.6	2.38
C9	152.35	154.30	1.95	154.5	2.15
C10	96.38	99.60	3.22	99.8	3.42
C11	119.85	121.80	1.95	121.9	2.05
C12	101.21	104.10	2.89	104.2	2.99
C13	134.56	137.30	2.74	137.3	2.74
C14	30.25	31.40	1.15	29.4	0.85
C15	39.85	40.40	0.55	37.6	2.25
C16	50.34	61.70	11.36	49.7	0.64
C17	67.05	66.80	0.25	65.7	1.35
C18	31.59	34.10	2.51	31.3	0.29
C19	22.36	23.10	0.74	20.5	1.86
C20	38.36	36.50	1.86	36.8	1.56
C21	59.73	61.10	1.37	61.6	1.87
C22	178.10	175.40	2.70	175.7	2.40
C23	51.28	52.20	0.92	51.9	0.62
C24	51.65	53.00	1.35	53.7	2.05

aPhytochemistry, 1981, 20, 1981-1985

bThis work

MAD: 2.05 1.76

© 2012 Macmillan Publishers Limited. All rights reserved.
16-epi-alstovenine (13) 13C computed NMR data (ppm)

	Computed	Exp.\(^a\)	Abs. Dev.\(^a\)
C2	132.82	134.03	1.21
C3	59.34	60.49	1.15
C5	51.74	52.76	1.02
C6	25.14	24.26	0.88
C7	107.10	106.29	0.81
C8	115.05	117.15	2.10
C9	152.32	154.16	1.84
C10	96.52	99.34	2.82
C11	119.91	121.34	1.43
C12	101.30	105.13	3.83
C13	134.37	137.88	3.51
C14	33.72	32.89	0.83
C15	37.95	36.32	1.63
C16	52.43	51.46	0.97
C17	68.56	67.03	1.53
C18	30.99	32.80	1.81
C19	21.58	23.36	1.78
C20	33.93	34.88	0.95
C21	59.29	61.43	2.14
C22	175.13	173.25	1.88
C23	50.97	53.12	2.15
C24	51.78	55.43	3.65

\(^a\)Phytochemistry, \textbf{1981}, 20, 1981-1985.

MAD: \textbf{1.81}
9-methoxy-3-epi-α-yohimbine (8) 13C computed NMR data (ppm)

	Computed	Exp.	Abs. Dev.
C2	130.91	130.00	0.91
C3	54.15	53.80	0.35
C5	51.41	51.30	0.11
C6	20.62	18.50	2.12
C7	107.39	108.20	0.81
C8	115.56	117.90	2.34
C9	152.70	154.00	1.30
C10	96.90	99.80	2.90
C11	119.23	122.10	2.87
C12	103.23	104.30	1.07
C13	134.71	136.90	2.19
C14	24.26	24.30	0.04
C15	33.23	32.40	0.83
C16	55.09	53.90	1.19
C17	65.58	66.00	0.42
C18	32.96	33.30	0.34
C19	25.19	23.70	1.49
C20	37.84	35.90	1.94
C21	49.97	49.60	0.37
C22	176.74	174.50	2.24
C23	51.12	55.20	4.08
C24	51.88	51.90	0.02

MAD: 1.36

a Chem. Pharm. Bull., 2004, 3, 359-361.
Energies, coordinates, and NMR isotropic shielding constants

venenatine (9), conformer 1

Sum of electronic and thermal free energies = \(-1265.26599\) H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	1.213487	1.176565	0.890635	
2	6	1.020165	-0.196080	0.837514	
3	6	-0.229924	-0.938406	1.257648	
4	7	-0.230712	-2.286647	0.653449	
5	6	1.043245	-2.972308	0.919033	
6	6	2.287207	-2.299213	0.283996	
7	6	2.182170	-0.805327	0.424486	
8	6	3.141309	0.243701	0.188638	
9	6	4.484549	0.274445	-0.248753	
10	6	5.137265	1.501035	-0.365991	
11	6	4.465738	2.704722	-0.052203	
12	6	3.146314	2.716998	0.379294	
13	6	2.503163	1.475310	0.493123	
14	6	-1.567007	-0.220229	0.998496	
15	6	-1.971014	-0.214122	-0.487044	
16	6	-3.357547	0.439730	-0.775298	
17	6	-4.575954	-0.410300	-0.330447	
18	6	-4.466635	-1.833713	-0.881717	
19	6	-3.124309	-2.499283	-0.546859	
20	6	-1.942374	-1.654282	-1.053205	
21	6	-0.569541	-2.282186	-0.775538	
22	6	-3.443294	1.854636	-0.232173	
23	6	-2.631296	4.072834	-0.449749	
24	6	6.400031	-0.970547	-0.974302	
25	8	5.050552	-0.941169	-0.530422	
26	8	-4.708288	-0.499864	1.087295	
27	8	-4.160163	2.222704	0.685757	
28	8	-2.617058	2.697119	-0.884532	
29	1	0.517710	1.856284	1.150725	
30	1	-0.173926	-1.959829	2.345965	
31	1	0.953561	-4.008048	0.571661	
32	1	1.168078	-3.007798	2.008548	
33	1	2.383776	-2.578895	-0.774281	
34	1	3.192442	-2.677802	0.772220	
35	1	6.167031	1.550167	-0.698202	
36	1	5.005049	3.641954	-0.153218	
37	1	2.639233	3.646503	0.620340	
38	1	-1.506332	0.805735	1.386454	
39	1	-2.338467	-0.717731	1.589182	
40	1	-1.224787	0.372313	-1.039190	
41	1	-3.423695	0.535661	-1.868386	
42	1	-5.479931	0.061949	-0.746661	
43	1	-4.596707	-1.791724	-1.972437	
44	1	-5.302004	-2.417992	-0.481162	
45	1	-3.082002	-3.492177	-1.012307	
46	1	-3.042682	-2.658321	0.532207	
47	1	-2.034524	-1.579544	-2.148187	
48	1	0.182201	-1.743838	-1.380489	
49	1	0.568206	-3.325805	-1.13974	
50	1	-1.891677	4.578430	-1.069450	
51	1	-2.367238	4.143381	0.608067	
52	1	-3.622612	4.506646	-0.599572	
53	1	7.078982	-0.555146	-0.218754	
54	1	6.523548	-0.420057	-1.915636	
55	1	6.638398	-2.022905	-1.136183	
56	1	-4.788549	0.410347	1.415646	
Nucleus	Isotropic shielding				
---------	---------------------				
C2	48.8082				
C3	129.2013				
C5	132.202				
C6	165.3658				
C7	73.6688				
C8	64.1538				
C9	25.8295				
C10	84.4953				
C11	61.3757				
C12	78.3122				
C13	45.0674				
C14	159.4591				
C15	152.019				
C16	132.863				
C17	116.0144				
C18	152.6971				
C19	164.5188				
C20	145.8592				
C21	133.9814				
C22	-1.6539				
C23	132.5075				
C24	131.8571				
venenatine (9), conformer 2

Sum of electronic and thermal free energies = -1265.262794 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.163722	1.177230	0.883055
2	6	1.098891	-0.207526	0.874169
3	6	-0.082680	-1.044692	1.307438
4	7	-0.004706	-2.377300	0.669653
5	6	1.313231	-2.983011	0.918969
6	6	2.519429	-2.209050	0.320747
7	6	2.302528	-0.726523	0.458667
8	6	3.158822	0.396191	0.171608
9	6	4.488073	0.534198	-0.286082
10	6	5.020925	1.809979	-0.465529
11	6	4.241447	2.957908	-0.193325
12	6	2.933059	2.864783	0.261193
13	6	2.410947	1.574700	0.439558
14	6	-1.455977	-0.403839	1.076684
15	6	-1.800173	-0.325904	-0.421411
16	6	-3.160132	0.329097	-0.755477
17	6	-4.387218	-0.522157	-0.370089
18	6	-4.251934	-1.949250	-0.926603
19	6	-2.909774	-2.616637	-0.587338
20	6	-1.726488	-1.742365	-1.040551
21	6	-0.345452	-2.357365	-0.759873
22	6	-3.252190	1.774029	-0.274950
23	6	-4.658304	3.670219	-0.093056
24	6	6.507238	-0.554473	-0.90254
25	8	5.164980	-0.635095	-0.523749
26	8	-4.499055	-0.506247	1.062256
27	8	-2.330518	2.427585	0.176991
28	8	-4.481544	2.293561	-0.477346
29	1	0.373345	1.792521	1.011025
30	1	0.004936	-1.224463	2.389901
31	1	1.297762	-4.010128	0.535828
32	1	1.431671	-3.047795	2.007837
33	1	2.663340	-2.470952	-0.736828
34	1	3.436932	-2.528276	0.528917
35	1	6.037775	1.941016	-0.815181
36	1	4.687642	3.936522	-0.344634
37	1	2.342084	3.750987	0.471370
38	1	-1.476673	0.592900	1.525660
39	1	-2.202823	-0.993144	1.610287
40	1	-1.030492	0.288361	-0.906391
41	1	-3.208991	0.410131	-1.853307
42	1	-5.279184	-0.499664	-0.800829
43	1	-4.371422	-1.895301	-2.018630
44	1	-5.090568	-2.554599	-0.557029
45	1	-2.854141	-3.593630	-1.083683
46	1	-2.844899	-2.811531	0.487240
47	1	-1.797746	-1.636290	-2.134927
48	1	0.397499	-1.797409	-1.355506
49	1	0.324726	-3.958755	-1.114636
50	1	-3.978767	4.314930	-0.652790
51	1	-4.467290	3.790531	0.978457
52	1	-5.696031	3.905730	-0.324988
53	1	7.148369	-0.042478	-0.251109
54	1	6.517893	-0.036608	-1.945936
55	1	6.845497	-1.585168	-1.098972
56	1	-5.344620	-0.900541	1.311505
Nucleus	Isotropic shielding			
---------	---------------------			
C2	47.6405			
C3	128.8528			
C5	132.3662			
C6	165.3193			
C7	73.3022			
C8	64.9024			
C9	25.8694			
C10	84.565			
C11	61.2457			
C12	78.2111			
C13	44.6407			
C14	160.5346			
C15	154.3091			
C16	132.893			
C17	113.8008			
C18	149.4938			
C19	164.9703			
C20	145.5844			
C21	134.0752			
C22	3.1019			
C23	133.0294			
C24	132.0341			
venenatine (9), conformer 3

Sum of electronic and thermal free energies = -1265.263914 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.171332	1.248225	0.769015
2	6	1.084626	-0.133898	0.850762
3	6	-0.118718	-0.931092	1.302803
4	7	-0.042332	-2.296981	0.742604
5	6	1.255983	-2.907076	1.070317
6	6	2.493995	-2.185035	0.472481
7	6	2.292172	-0.694519	0.506925
8	6	3.173073	0.394656	0.169973
9	6	4.516458	0.483375	-0.258366
10	6	5.071782	1.736724	-0.512384
11	6	4.301501	2.910473	-0.344318
12	6	2.980436	2.865903	0.079565
13	6	2.436099	1.598035	0.333928
14	6	-1.483313	-0.296153	1.002464
15	6	-1.805813	-0.309535	-0.501607
16	6	-3.175164	0.323658	-0.865330
17	6	-4.408221	-0.541287	-0.501906
18	6	-4.232760	-1.976542	-1.008145
19	6	-2.901437	-2.613924	-0.585495
20	6	-1.711805	-1.754148	-1.045729
21	6	-0.336688	-2.347400	-0.696244
22	6	-3.247480	1.769663	-0.387997
23	6	-4.658619	3.528231	0.365559
24	6	6.539765	-0.676061	-0.811576
25	8	5.182922	-0.707676	-0.390555
26	8	-4.644790	-0.602800	0.910287
27	8	-4.305080	2.536177	-0.351750
28	8	-4.500497	2.146935	-0.025893
29	1	0.388921	1.883182	0.821781
30	1	-0.059463	-1.049436	2.395432
31	1	1.235904	-3.953236	0.743522
32	1	1.336144	-2.914239	2.164597
33	1	2.675249	-2.514501	-0.559995
34	1	3.387362	-2.480479	1.035138
35	1	6.099345	1.830244	-0.842144
36	1	4.765030	3.870208	-0.553250
37	1	2.396119	3.771876	0.208308
38	1	-1.496475	0.729479	1.388703
39	1	-2.246104	-0.844766	1.558675
40	1	-1.041036	0.289002	-1.01561
41	1	-3.192271	0.412493	-1.964510
42	1	-5.298585	-0.104730	-0.990574
43	1	-4.296134	-1.957731	-2.105430
44	1	-5.081782	-2.567890	-0.648943
45	1	-2.820166	-3.614407	-1.028785
46	1	-2.875928	-2.752759	0.499370
47	1	-1.752544	-1.700058	-2.145336
48	1	0.424296	-1.814581	-1.293983
49	1	0.303649	-3.401703	-0.998731
50	1	-4.368050	4.188032	-0.454610
51	1	-4.042748	3.747666	1.240476
52	1	-5.716886	3.643504	0.597549
53	1	7.165237	-0.121073	-0.100592
54	1	6.641436	-0.229551	-1.809093
55	1	6.866547	-1.716624	-0.845854
56	1	-4.957453	0.267991	1.190717
Nucleus	Isotropic shielding			
---------	---------------------			
C2	47.9366			
C3	129.1879			
C5	132.3413			
C6	165.1666			
C7	73.3564			
C8	64.6853			
C9	25.8497			
C10	84.5691			
C11	60.9992			
C12	78.0521			
C13	44.4221			
C14	160.3549			
C15	153.7286			
C16	130.9901			
C17	116.5857			
C18	152.2444			
C19	165.1108			
C20	145.6378			
C21	134.1385			
C22	2.9491			
C23	132.5005			
C24	131.9325			
venenatine (9), conformer 4

Sum of electronic and thermal free energies = -1265.263983 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	-1.494416 0.760799 -1.389913			
2	6	-1.181260 -0.353144 -0.625696			
3	6	0.175291 -0.990060 -0.584707			
4	7	0.211516 -1.987646 0.498205			
5	6	-1.002736 -2.806721 0.582054			
6	6	-2.222437 -1.970036 0.958769			
7	6	-2.289533 -0.763845 0.068849			
8	6	-3.352965 0.147562 -0.269543			
9	6	-4.707794 0.269016 0.110584			
10	6	-5.478238 1.299627 -0.426648			
11	6	-4.912474 2.215889 -1.342304			
12	6	-3.584733 2.131463 -1.739661			
13	6	-2.822216 1.090194 -1.190121			
14	6	1.319589 0.045886 -0.382414			
15	6	2.412097 -0.482952 0.571936			
16	6	3.735376 0.341975 0.545680			
17	6	4.624346 0.108644 -0.703556			
18	6	4.849611 -1.388111 -0.927900			
19	6	3.537076 -2.181797 -0.964121			
20	6	2.721170 -1.976639 0.325027			
21	6	1.410518 -2.815430 0.356480			
22	6	3.472939 1.820185 0.771338			
23	6	2.777882 3.451289 2.345895			
24	6	-6.516420 -0.579591 1.434610			
25	8	-5.165094 -0.664425 1.004018			
26	8	4.066092 0.647552 -1.901728			
27	8	3.576952 2.696478 -0.074686			
28	8	3.093083 2.077126 2.036195			
29	1	-0.858115 1.257660 -1.992797			
30	1	0.346449 -1.505579 -1.556154			
31	1	-0.828479 -3.579455 1.338835			
32	1	-1.193835 -3.328286 -0.379042			
33	1	-2.172629 -1.675905 2.015334			
34	1	-3.135908 -2.579824 0.853000			
35	1	-6.519622 1.413397 -0.151415			
36	1	5.541296 3.006108 -1.741829			
37	1	-3.159122 2.840373 -2.443442			
38	1	0.901178 0.964252 0.045427			
39	1	1.751334 0.304345 -1.352505			
40	1	2.011567 -0.402055 1.586785			
41	1	4.319608 0.004018 1.413017			
42	1	5.597572 0.588991 -0.514245			
43	1	5.488447 -1.769600 -0.119143			
44	1	5.405828 -1.512632 -1.863125			
45	1	3.754978 -3.249486 -1.093757			
46	1	2.947263 -1.876872 -1.837110			
47	1	3.353422 -2.311968 1.160083			
48	1	1.431466 -3.513163 1.200310			
49	1	1.349494 -3.430871 -0.565348			
50	1	3.648543 4.087802 2.173344			
51	1	2.500155 3.451731 3.399100			
52	1	1.947460 3.798550 1.727079			
53	1	-7.212760 -0.694659 0.594186			
54	1	-6.714744 0.372630 1.942923			
55	1	-6.658254 -1.401923 2.137594			
56	1	3.921513 1.593722 -1.733839			
Nucleus	Isotropic shielding				
---------	---------------------				
C2	44.5215				
C3	129.8354				
C5	132.8169				
C6	160.1434				
C7	74.3357				
C8	66.2911				
C9	26.0676				
C10	84.9963				
C11	60.4375				
C12	79.2983				
C13	44.4491				
C14	155.7834				
C15	150.7355				
C16	134.9913				
C17	116.0425				
C18	152.2445				
C19	160.1417				
C20	147.5705				
C21	125.2858				
C22	-1.8161				
C23	132.5809				
C24	132.0068				
venenatine – HCl salt (9-HCl), conformer 1

Sum of electronic and thermal free energies = -1726.085995 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	-1.378848	1.097762	-1.090939	
2	6	-1.083263	-0.206722	-0.731113	
3	6	0.235054	-0.880296	-0.991243	
4	7	0.317626	-2.105588	-0.112891	
5	6	-0.935552	-2.935341	-0.218892	
6	6	-2.186139	-2.216798	0.301572	
7	6	-2.193163	-0.791596	-0.170784	
8	6	-3.232648	0.204816	-0.169947	
9	6	-4.577325	0.223571	0.263573	
10	6	-5.326777	1.387102	0.099427	
11	6	-4.750897	2.534059	-0.492988	
12	6	-3.434050	2.594429	-0.930899	
13	6	-2.691936	1.376337	-0.758839	
14	6	1.491285	-0.009527	-0.816935	
15	6	1.749990	0.359252	0.654393	
16	6	2.973794	1.293816	0.890212	
17	6	4.347374	0.614133	0.665060	
18	6	4.438230	-0.684636	1.470776	
19	6	3.261140	-1.636234	1.210851	
20	6	1.918371	-0.933805	1.487375	
21	6	0.684800	-1.830616	1.314430	
22	6	2.858806	2.591241	0.107799	
23	6	1.662208	4.629350	-0.106577	
24	6	-6.394449	-0.982619	1.258292	
25	8	-5.04052	-0.936619	0.821366	
26	8	4.588342	0.299909	-0.702567	
27	8	3.579852	2.930446	-0.816083	
28	8	1.842801	3.358189	0.553539	
29	1	-0.746093	1.742712	-1.535725	
30	1	0.258226	-1.285283	-2.011877	
31	1	-0.737141	-3.867881	0.314029	
32	1	-1.028692	-3.182782	-1.279297	
33	1	-2.247375	-2.270305	1.396740	
34	1	-3.065521	-2.755621	-0.066244	
35	1	-6.360053	1.429632	0.421040	
36	1	-5.365240	3.422118	-0.606928	
37	1	-3.003832	3.439786	-1.388576	
38	1	1.372556	0.888004	-1.435672	
39	1	2.345312	-0.546679	-1.235044	
40	1	0.868350	0.893983	1.031687	
41	1	2.930650	1.582923	1.949949	
42	1	5.124622	1.307322	1.023069	
43	1	4.479720	-0.425325	2.538437	
44	1	5.384663	-1.174581	1.221442	
45	1	3.348050	-2.511926	1.865174	
46	1	3.305063	-2.023448	0.188371	
47	1	1.910466	-0.645424	2.549879	
48	1	-0.176661	-1.360878	1.797534	
49	1	0.852524	-2.809092	1.774650	
50	1	0.790971	5.078958	0.368073	
51	1	1.493691	4.484880	-1.176288	
52	1	2.545501	5.256418	0.033549	
53	1	-7.086866	-0.811227	0.425035	
54	1	-6.582870	-0.245203	2.048260	
55	1	-6.545417	-1.987075	1.655644	
56	1	4.573944	1.137540	-1.192057	
57	1	1.091111	-2.765631	-0.595988	
58	17	2.061495	-3.889226	-1.559727	
Supplementary Information

Nucleus	Isotropic shielding
C2	54.674
C3	129.5075
C5	133.7712
C6	166.2318
C7	74.1582
C8	64.76
C9	26.1242
C10	83.8962
C11	58.5074
C12	80.9207
C13	44.6748
C14	159.9608
C15	153.3416
C16	133.6882
C17	116.7531
C18	153.6965
C19	163.3266
C20	147.1667
C21	135.8696
C22	-0.5124
C23	132.5143
C24	131.4524
venenatine – HCl salt (9-HCl), conformer 2

Sum of electronic and thermal free energies = -1726.087139 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	-1.288005	1.171891	-1.027843
2	6	-1.151476	-0.181629	-0.771234
3	6	0.093723	-0.974703	-1.043603
4	7	0.073101	-2.191560	-0.148294
5	6	-1.229364	-2.934800	-0.292680
6	6	-2.457277	-2.123472	0.150895
7	6	-2.323542	-0.685392	-0.263025
8	6	-3.243076	0.419727	-0.179423
9	6	-4.581122	0.556946	0.251934
10	6	-5.183624	1.812502	0.205531
11	6	-4.466099	2.935535	-0.267260
12	6	-3.152647	2.839696	-0.704947
13	6	-2.559253	1.569168	-0.657742
14	6	1.407988	-0.213250	-0.867901
15	6	1.605071	0.212404	0.597407
16	6	2.824999	1.122116	0.861532
17	6	4.182688	0.408608	0.706489
18	6	4.206385	-0.879039	1.546614
19	6	3.007191	-1.808130	1.297870
20	6	1.677956	-1.050934	1.486004
21	6	0.418002	-1.913622	1.287060
22	6	2.733455	2.439461	0.096672
23	6	3.846330	4.467186	-0.412085
24	6	-6.543004	-0.514142	1.117373
25	8	-5.187379	-0.589735	0.692551
26	8	4.370464	0.163331	-0.691819
27	8	1.761538	2.819738	-0.53436
28	8	3.839591	3.187498	0.253386
29	1	-0.523373	1.802291	-1.231400
30	1	0.075556	-1.389517	-2.059607
31	1	-1.125493	-3.866206	0.268738
32	1	-1.287955	-3.200077	-1.351354
33	1	-2.603421	-2.197047	1.236810
34	1	-3.344756	-2.587319	-0.29336
35	1	-6.208500	1.947235	0.529122
36	1	-4.966918	3.898333	-0.287664
37	1	-2.610991	3.706376	-1.069990
38	1	1.398209	0.654481	-1.530543
39	1	2.226834	-0.847879	-1.208814
40	1	0.720946	0.787319	0.900535
41	1	2.777320	1.421638	1.920433
42	1	4.970805	1.084654	1.063277
43	1	4.238487	-0.583710	2.605743
44	1	5.144905	-1.414863	1.353273
45	1	3.049165	-2.648106	2.001501
46	1	3.066549	-2.256285	0.301177
47	1	1.630647	-0.726381	2.537322
48	1	-0.439404	-1.410524	1.741967
49	1	0.540263	-2.893056	1.759598
50	1	3.030893	5.092753	-0.041832
51	1	3.739375	4.331123	-1.490413
52	1	4.812447	4.910247	-0.173337
53	1	-7.197090	-0.178981	0.302905
54	1	-6.654862	0.159837	1.975866
55	1	-6.820411	-1.527018	1.412502
56	1	5.189541	-0.331847	-0.823826
57	1	0.824901	-2.892087	-0.578055
58	17	1.876269	-4.081191	-1.422823
Nucleus	Isotropic shielding			
---------	---------------------			
C2	53.3544			
C3	127.7252			
C5	134.221			
C6	165.9212			
C7	73.6855			
C8	64.1154			
C9	26.3883			
C10	83.5614			
C11	58.6217			
C12	80.0836			
C13	44.2352			
C14	161.3569			
C15	154.8073			
C16	133.3262			
C17	114.2423			
C18	150.6656			
C19	163.5373			
C20	147.276			
C21	136.3758			
C22	2.5512			
C23	132.4943			
C24	131.662			

![Molecular structure diagram]

© 2012 Macmillan Publishers Limited. All rights reserved.
venenatine – HCl salt (9-HCl), conformer 3

Sum of electronic and thermal free energies = -1726.085870 H

Center Number	Atomic Number	Coordinates (Angstroms) X	Y	Z
1	7	-1.283800	1.221268	-0.969673
2	6	-1.144034	-0.140553	-0.754404
3	6	0.106090	-0.924178	-1.038554
4	7	0.076810	-2.167233	-0.182733
5	6	-1.220793	-2.909278	-0.368171
6	6	-2.458352	-2.116719	0.080674
7	6	-2.322021	-0.665605	-0.282622
8	6	3.247714	0.432191	-0.174237
9	6	-4.592865	0.548401	0.241190
10	6	5.199305	1.802936	0.232955
11	6	-4.478675	2.945295	-0.185511
12	6	-3.158586	2.870099	-0.606876
13	6	-2.561783	1.600360	-0.597321
14	6	1.418838	-0.167346	-0.823448
15	6	1.597875	0.212666	0.656323
16	6	2.817847	1.120251	0.944811
17	6	4.188643	0.405068	0.843323
18	6	4.176192	-0.900857	1.645811
19	6	2.933068	-1.823200	1.316158
20	6	1.659298	1.076834	1.506015
21	6	0.401828	-1.932224	1.263877
22	6	2.723632	2.418496	0.149933
23	6	3.923038	4.276907	-0.718110
24	6	-6.563233	-0.561209	1.036278
25	8	-5.201088	-0.615806	0.629052
26	8	4.530977	0.039359	-0.510775
27	8	1.687288	2.916499	-0.251343
28	8	3.928617	2.998950	-0.042575
29	1	-0.518670	1.865587	-1.115451
30	1	0.099558	-1.306147	-2.067535
31	1	-1.120667	-3.856633	0.166469
32	1	-1.261852	-3.144329	-1.434715
33	1	-2.622899	-2.225263	1.169050
34	1	-3.335532	-2.567500	-0.395569
35	1	-6.229389	1.921981	0.545884
36	1	-4.982524	3.907223	-0.176569
37	1	-2.614651	3.751861	-0.930033
38	1	1.405948	0.720440	-1.461994
39	1	2.244802	-0.788247	-1.176496
40	1	0.712031	0.780659	0.965068
41	1	2.727814	1.446133	1.994734
42	1	4.955126	1.066101	1.266969
43	1	4.150605	-0.637370	2.713105
44	1	5.124082	-1.417754	1.466201
45	1	3.018592	-2.694551	1.981382
46	1	3.086721	-2.222764	0.301570
47	1	1.596836	-0.783856	2.565785
48	1	-0.462236	-1.443888	1.722822
49	1	0.519446	-2.925083	1.708604
50	1	3.331084	4.998965	-0.151997
51	1	3.505337	4.173024	-1.721795
52	1	4.976742	4.582955	-0.762455
53	1	-7.206541	-0.198163	0.225225
54	1	-6.690527	0.079567	1.917685
55	1	-6.840561	-1.585496	1.288981
56	1	4.830765	0.906039	-0.939919
57	1	0.833250	-2.860923	-0.630884
58	17	1.841573	-4.032812	-1.516677
Nucleus | Isotropic shielding
---|---
C2 | 53.4775
C3 | 128.0602
C5 | 134.1002
C6 | 166.0597
C7 | 73.3278
C8 | 64.072
C9 | 26.2202
C10 | 83.4474
C11 | 58.716
C12 | 79.6663
C13 | 43.8179
C14 | 161.64
C15 | 154.3061
C16 | 131.1761
C17 | 117.0109
C18 | 152.7694
C19 | 163.6546
C20 | 147.312
C21 | 136.4254
C22 | 2.7456
C23 | 132.1534
C24 | 131.5968
venenatine – HCl salt (9-HCl), conformer 4

Sum of electronic and thermal free energies = -1726.083219 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	-1.509131	1.392054	-1.077039	
2	6	-1.234524	0.074873	-0.744813	
3	6	0.124724	-0.540625	-0.867351	
4	7	0.114752	-1.884266	-0.191053	
5	6	-1.136593	-2.680973	-0.439182	
6	6	-2.370555	-1.978387	0.131867	
7	6	-2.375955	-0.544019	-0.306042	
8	6	-3.422445	0.443693	-0.349777	
9	6	-4.795942	0.434954	-0.019203	
10	6	-5.539458	1.602899	-0.179863	
11	6	-4.929220	2.780360	-0.668903	
12	6	-3.583756	2.827637	-1.006529	
13	6	-2.847436	1.645802	-0.836346	
14	6	1.258995	0.322155	-0.273454	
15	6	2.482500	-0.515668	0.183960	
16	6	3.803446	0.267345	0.157836	
17	6	4.416895	0.493628	-1.258903	
18	6	4.491820	-0.827834	-2.026987	
19	6	3.148403	-1.570570	-2.054586	
20	6	2.634538	-1.827033	-0.623280	
21	6	1.336802	-2.673484	-0.567250	
22	6	3.719380	1.570459	0.931762	
23	6	3.538820	2.523106	3.097212	
24	6	-6.654005	-0.806018	0.847521	
25	8	-5.291256	-0.753440	0.441817	
26	8	3.651603	1.409601	-2.043399	
27	8	3.622015	2.681295	0.426512	
28	8	3.721498	1.365059	2.253986	
29	1	-0.835212	2.076599	-1.381246	
30	1	0.344646	-0.743060	-1.925855	
31	1	-0.980223	-3.649977	0.040793	
32	1	-1.224750	-2.825723	-1.522258	
33	1	-2.359378	-2.054510	1.225616	
34	1	-3.263161	-2.504901	-0.219819	
35	1	-6.593307	1.626106	0.068888	
36	1	5.538875	3.672098	-0.779971	
37	1	3.125164	3.738139	-1.379380	
38	1	0.867660	0.869811	0.590267	
39	1	1.550811	1.048030	-1.035537	
40	1	2.296967	-0.801355	1.224947	
41	1	4.550857	-0.353104	0.706789	
42	1	5.437990	0.888287	-1.140027	
43	1	5.253367	-1.463184	-1.554806	
44	1	4.835505	-0.614560	-3.044483	
45	1	3.267601	-2.526648	-2.580061	
46	1	2.425185	-0.982189	-2.631254	
47	1	3.403232	-2.422810	-0.113121	
48	1	1.415832	-3.451033	0.194756	
49	1	1.139262	-3.144239	-1.536681	
50	1	4.354210	3.233594	2.944865	
51	1	3.542850	2.136466	4.115429	
52	1	2.585720	3.006184	2.872710	
53	1	-7.328830	-0.597008	0.007975	
54	1	-6.852839	-0.098591	1.661809	
55	1	-6.819983	-1.823977	1.202386	
56	1	3.602951	2.232157	-1.525829	
57	1	0.165560	-1.771510	0.919058	
58	17	0.320628	-1.942076	2.710010	
Nucleus	Isotropic shielding				
---------	---------------------				
C2	52.1567				
C3	130.4228				
C5	132.3832				
C6	163.1832				
C7	74.7322				
C8	65.0686				
C9	25.9254				
C10	83.854				
C11	58.4262				
C12	80.062				
C13	43.678				
C14	158.4554				
C15	152.5591				
C16	136.0204				
C17	115.9209				
C18	152.7106				
C19	158.9347				
C20	149.1928				
C21	128.199				
C22	-1.2742				
C23	132.3201				
C24	131.5326				
alstovenine (12), conformer 1

Sum of electronic and thermal free energies = -1265.27218 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	1.439374	1.490559	-0.423238	
2	6	1.200681	0.133819	-0.586392	
3	6	-0.122309	-0.458244	-0.977821	
4	7	-0.070707	-1.911438	-0.748702	
5	6	1.152763	-2.527195	-1.276472	
6	6	2.396573	-2.060470	-0.507539	
7	6	2.359945	-0.566551	-0.372946	
8	6	3.374692	0.399364	-0.039373	
9	6	4.745740	0.317525	0.290545	
10	6	5.451660	1.487049	0.569857	
11	6	4.805537	2.743494	0.524574	
12	6	3.460537	2.865923	0.202905	
13	6	2.763954	1.680751	-0.076449	
14	6	-1.310740	0.144310	-0.205233	
15	6	-2.633264	-0.514088	-0.643144	
16	6	-3.904469	-0.000202	0.101068	
17	6	-4.035496	-0.498577	1.563177	
18	6	-3.902361	-2.021956	1.618731	
19	6	-2.625464	-2.528505	0.933965	
20	6	-2.544068	-2.054672	-0.528224	
21	6	-1.282494	-2.558787	-1.249088	
22	6	-4.032431	1.508858	0.011265	
23	6	-4.499861	3.334748	-1.430288	
24	6	6.654972	-1.084788	0.651577	
25	8	5.283241	-0.942892	0.309869	
26	8	-3.054341	0.058230	2.434476	
27	8	-3.847180	2.294694	0.927901	
28	8	-4.372255	1.911551	-1.229353	
29	1	0.744364	2.218274	-0.460171	
30	1	-0.291011	-0.260307	-2.062934	
31	1	1.276937	-2.298563	-2.354744	
32	1	1.045177	-3.613253	-1.187670	
33	1	3.298724	-2.386869	-1.036017	
34	1	2.420462	-2.538147	0.481091	
35	1	6.503269	1.450977	0.827045	
36	1	5.385265	3.633872	0.749597	
37	1	2.972913	3.835590	0.171064	
38	1	-1.359129	1.223490	-0.403910	
39	1	-1.144936	0.020532	0.867121	
40	1	-2.777319	-0.272239	-1.705745	
41	1	-4.762710	-0.409192	-0.449869	
42	1	-5.038828	-0.217342	1.921778	
43	1	-4.784887	-2.463574	1.134687	
44	1	-3.925776	-2.327520	2.670247	
45	1	-2.605975	-3.625556	0.959269	
46	1	-1.745301	-2.186657	1.485651	
47	1	-3.406694	-2.477507	-1.066888	
48	1	-1.399542	-2.392604	-2.342155	
49	1	-1.182756	-3.636737	-1.096798	
50	1	-4.774945	3.453936	-2.477553	
51	1	-3.552358	3.836090	-1.219741	
52	1	-5.274970	3.741973	-0.777290	
53	1	6.855298	-0.710935	1.663725	
54	1	7.301819	-0.561026	-0.063846	
55	1	6.863595	-2.155048	0.612660	
56	1	-3.141658	1.029340	2.373662	
Nucleus	Isotropic shielding				
---------	---------------------				
C2	46.9257				
C3	124.0244				
C5	131.7747				
C6	160.1914				
C7	73.5286				
C8	65.1842				
C9	26.0791				
C10	85.0317				
C11	60.2032				
C12	80.01				
C13	44.8093				
C14	154.6347				
C15	144.5527				
C16	133.6465				
C17	115.8723				
C18	153.3528				
C19	162.898				
C20	146.2299				
C21	123.5542				
C22	-1.3426				
C23	132.4986				
C24	132.1374				
alstovenine (12), conformer 2

Sum of electronic and thermal free energies = -1265.267873 H

Center Number	Atomic Number	Coordinates (Ångstroms)
1	7	1.494169 1.459343 -0.582484
2	6	1.293818 0.086166 -0.614854
3	6	-0.001637 -0.571538 -0.985290
4	7	0.072942 -1.994082 -0.607297
5	6	1.326283 -2.629014 -1.031594
6	6	2.534072 -2.055529 -0.276438
7	6	2.461526 -0.556662 -0.296576
8	6	3.442714 0.464761 -0.036053
9	6	4.805397 0.455159 0.335330
10	6	5.475265 1.665689 0.508871
11	6	4.801006 2.893166 0.315013
12	6	3.463276 2.945213 -0.052492
13	6	2.802745 1.719402 -0.223720
14	6	-1.226490 0.082419 -0.320373
15	6	-2.517640 -0.639209 -0.757486
16	6	-3.836827 -0.094978 -0.155032
17	6	-4.035221 -0.413767 1.340607
18	6	-3.844029 -1.915373 1.603461
19	6	-2.533686 -2.468127 1.026897
20	6	-2.404961 -2.158667 -0.476221
21	6	-1.106550 -2.711123 -1.085440
22	6	-4.095101 1.372187 -0.483741
23	6	-5.573245 3.193436 -0.157689
24	6	6.742396 -0.850384 0.870271
25	8	5.373356 -0.782264 0.499982
26	8	-3.105425 0.391252 2.082260
27	8	-3.432746 2.058731 -1.236123
28	8	-5.220399 1.823948 0.115339
29	1	0.786747 2.158123 -0.744593
30	1	-0.132919 -0.490860 -2.089797
31	1	1.481096 -2.550547 -2.123120
32	1	1.240609 -3.703323 -0.836183
33	1	3.459809 -2.411773 -0.741184
34	1	2.535636 -2.430599 0.755977
35	1	6.519937 1.684446 0.794672
36	1	5.353097 3.817342 0.458893
37	1	2.953841 3.892593 -0.200727
38	1	-1.294156 1.130401 -0.626960
39	1	-1.102781 0.059806 0.761494
40	1	-2.598543 -0.509244 -1.845910
41	1	-4.654547 -0.629076 -0.664984
42	1	-5.056737 -0.125332 1.618136
43	1	-4.699389 -2.445856 1.160051
44	1	-3.898546 -2.097877 2.685197
45	1	-2.496502 -3.554168 1.180423
46	1	-1.678109 -2.048587 1.564171
47	1	-3.237481 -2.661398 -0.994128
48	1	-1.180566 -2.665661 -2.193254
49	1	-0.997369 -3.768253 -0.816014
50	1	-5.374825 3.340304 -1.228282
51	1	-4.780226 3.863944 0.181582
52	1	-6.492731 3.372246 0.399227
53	1	-6.918044 -0.372549 1.842691
54	1	7.385963 -0.381899 0.114565
55	1	6.980831 -1.912873 0.940922
56	1	-3.306948 0.312432 3.023455
Nucleus	Isotropic shielding	
---------	---------------------	
C2	46.1839	
C3	123.6361	
C5	131.6351	
C6	160.0053	
C7	74.7009	
C8	64.9666	
C9	25.5893	
C10	84.7143	
C11	61.4916	
C12	78.3088	
C13	44.401	
C14	156.0238	
C15	146.8179	
C16	133.046	
C17	113.1501	
C18	149.4935	
C19	163.8666	
C20	144.5434	
C21	124.4232	
C22	3.191	
C23	132.9066	
C24	131.9224	
alstovenine (12), conformer 3

Sum of electronic and thermal free energies = -1265.269559 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.465857	1.409281	-0.676507
2	6	1.237931	0.041924	-0.642073
3	6	-0.063819	-0.611288	-1.002653
4	7	-0.017256	-2.022213	-0.584425
5	6	1.238252	-2.685810	-0.949837
6	6	2.430750	-2.104728	-0.179234
7	6	2.386617	-0.607489	-0.269184
8	6	3.384370	0.406972	-0.046011
9	6	4.739841	0.389747	0.351119
10	6	5.432815	1.594138	0.468042
11	6	4.789231	2.822262	0.192748
12	6	3.458996	2.881541	-0.200083
13	6	2.775116	1.661904	-0.313230
14	6	-1.287837	0.068441	-0.361140
15	6	-2.583417	-0.646899	-0.786961
16	6	-3.887864	-0.050662	-0.186726
17	6	-4.117662	-0.378788	1.308273
18	6	-3.988531	-1.886446	1.545737
19	6	-2.672153	-2.463427	1.008171
20	6	-2.499167	-2.162723	-0.491630
21	6	-1.195518	-0.737687	-1.068877
22	6	-4.031696	1.418417	-0.566155
23	6	-4.554915	3.616925	0.175703
24	6	6.635199	-0.923571	1.004084
25	8	5.276696	-0.847244	0.595641
26	8	-3.188731	0.272530	2.179610
27	8	-3.893318	1.851386	-1.691578
28	8	-4.355004	2.220217	0.483847
29	1	0.787507	2.112242	-0.920917
30	1	-0.190515	-0.555593	-2.109274
31	1	1.427670	-2.608481	-2.039647
32	1	1.130214	-3.753347	-0.718148
33	1	3.364742	-2.495777	-0.596647
34	1	2.390418	-2.433864	0.867809
35	1	6.472589	1.607209	0.771285
36	1	5.359139	3.741273	0.293539
37	1	2.973197	3.829694	-0.410154
38	1	-1.332588	1.115182	-0.688620
39	1	-1.170770	0.064463	0.725087
40	1	-2.667377	-0.524841	-1.877947
41	1	-4.716009	-0.535639	-0.727494
42	1	-5.138074	-0.066490	1.573772
43	1	-4.838206	-2.384409	1.057567
44	1	-4.083265	-2.071005	2.621130
45	1	-2.659285	-3.549820	1.163413
46	1	-1.827197	-2.056911	1.571534
47	1	-3.327064	-2.653445	-1.027565
48	1	-1.248513	-2.714103	-2.178418
49	1	-1.101699	-3.789534	-0.775482
50	1	-4.824947	4.086497	1.121042
51	1	-5.357106	3.730242	-0.556373
52	1	-3.636844	4.051553	-0.225709
53	1	6.798450	-0.393820	1.951284
54	1	7.307030	-0.514375	0.238708
55	1	6.846732	-1.985086	1.141846
56	1	-3.354805	1.223297	2.117711
Nucleus	Isotropic shielding			
---------	---------------------			
C2	46.7368			
C3	123.7459			
C5	131.8664			
C6	160.0717			
C7	74.2956			
C8	64.7845			
C9	25.6666			
C10	84.6357			
C11	61.4055			
C12	78.7577			
C13	44.4986			
C14	154.7727			
C15	144.0527			
C16	131.2231			
C17	116.8815			
C18	152.2512			
C19	163.9968			
C20	144.5202			
C21	124.4169			
C22	2.5826			
C23	132.6936			
C24	131.8174			
16-epi-alstovenine (13), conformer 1

Sum of electronic and thermal free energies = -1265.268541 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.821298	1.650656	-0.350311
2	6	1.433271	0.330090	-0.519810
3	6	0.033653	-0.113033	-0.833147
4	7	-0.051251	-1.569621	-0.634654
5	6	1.064963	-2.292475	-1.255941
6	6	2.398763	-1.975883	-0.564566
7	6	2.525394	-0.490224	-0.396991
8	6	3.654649	0.358994	-0.117962
9	6	5.029175	0.130968	0.114740
10	6	5.869397	1.215937	0.361888
11	6	5.354934	2.532536	0.379668
12	6	4.011056	2.793115	0.154398
13	6	3.178597	1.696763	-0.093586
14	6	-1.034661	0.589506	0.024052
15	6	-2.443037	0.078233	-0.331672
16	6	-3.559172	0.761305	0.521251
17	6	-3.713649	0.182861	1.943523
18	6	-3.713132	-1.350918	1.974103
19	6	-2.535669	-1.962940	1.204346
20	6	-2.507372	-1.465197	-0.251817
21	6	-1.353695	-0.073425	-1.065246
22	6	-4.887619	0.730796	-0.220594
23	6	-6.067402	1.608326	-2.081122
24	6	6.805721	-1.465936	0.308611
25	8	5.433819	-1.177984	0.077955
26	8	-2.625640	0.736458	2.706876
27	8	-5.859585	0.058651	0.066957
28	8	-4.867926	1.568723	-1.283710
29	1	1.206033	2.447850	-0.343691
30	1	-0.180939	0.127386	-1.901451
31	1	1.141593	-2.048262	-2.35200
32	1	0.851701	-3.364008	-1.182315
33	1	3.225099	-2.376526	-1.161602
34	1	2.440362	-2.482214	0.409198
35	1	6.926627	1.066760	0.544277
36	1	6.037435	3.354151	0.576474
37	1	3.625110	3.813133	0.170148
38	1	-0.999721	1.671761	-0.160109
39	1	-0.812733	0.436507	1.082277
40	1	-2.623203	0.362923	-1.37066
41	1	-3.294503	1.820279	0.627917
42	1	-4.662796	0.546094	2.359564
43	1	-4.662453	-1.691697	1.544928
44	1	-3.705323	-1.683925	3.021513
45	1	-2.623291	-3.056833	1.211160
46	1	-1.588075	-1.722957	1.696504
47	1	-3.441354	-1.792898	-0.732814
48	1	-1.523348	-1.870253	-2.144452
49	1	-1.356236	-3.162524	-0.941757
50	1	-6.282648	0.620968	-2.496749
51	1	-5.862501	2.324703	-2.876178
52	1	-6.916418	1.935242	-1.476122
53	1	6.895803	-2.550593	0.236241
54	1	7.120729	-1.138961	1.307792
55	1	-7.446301	-0.993304	-0.446928
56	1	-2.687238	0.405672	3.612614
Nucleus	Isotropic shielding			
---------	----------------------			
C2	46.6148			
C3	124.0653			
C5	131.9455			
C6	160.0885			
C7	73.7864			
C8	65.5739			
C9	26.1516			
C10	84.847			
C11	60.0077			
C12	79.8808			
C13	45.1488			
C14	151.239			
C15	145.61			
C16	132.6854			
C17	114.8558			
C18	153.0301			
C19	163.5496			
C20	150.6942			
C21	123.8091			
C22	1.8758			
C23	132.8651			
C24	131.9658			
16-epi-alstovenine (13), conformer 2

Sum of electronic and thermal free energies = -1265.267551 \text{H}

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	-1.878887	-1.584504	-0.654010
2	6	-1.508976	-0.248592	-0.611117
3	6	-0.126274	0.261856	-0.896318
4	7	-0.046951	1.667462	-0.464082
5	6	-1.195333	2.465233	-0.909712
6	6	-2.493829	2.016334	-0.224943
7	6	-2.602612	0.522267	-0.309990
8	6	-3.712786	-0.378860	-0.138347
9	6	-5.079001	-0.214290	0.180493
10	6	-5.900288	-1.337637	0.268505
11	6	-5.374648	-2.630376	0.042840
12	6	-4.038120	-2.833975	-0.273277
13	6	-3.224765	-1.694216	-0.359589
14	6	0.980288	-0.551385	-0.201456
15	6	2.372179	0.026876	-0.522745
16	6	3.513694	-0.761924	0.165877
17	6	3.721781	-0.410478	1.662060
18	6	3.748005	1.104966	1.900124
19	6	2.531935	1.819177	1.296337
20	6	2.427575	1.542093	-0.213785
21	6	1.231523	2.253494	-0.865269
22	6	4.824914	-0.629858	-0.607863
23	6	7.057486	-1.414399	-0.767565
24	6	-6.857100	1.299069	0.721324
25	8	-5.495315	1.075657	0.384294
26	8	2.664842	-1.045181	2.374426
27	8	5.014271	0.072096	-1.581075
28	8	5.784623	-1.434392	-0.092019
29	1	-1.256571	-2.361308	-0.807130
30	1	0.050847	0.202827	-1.995981
31	1	-1.317590	2.403487	-2.010375
32	1	-0.988400	3.512802	-0.666843
33	1	-3.349703	2.502182	-0.705700
34	1	-2.491638	2.348580	0.822848
35	1	-6.951065	-1.237402	0.511757
36	1	-6.042423	-3.483365	0.120423
37	1	-3.643523	-3.830794	-0.445377
38	1	0.944218	-1.593208	-0.549421
39	1	0.794093	-0.566206	0.874685
40	1	2.525337	-0.079855	-1.604940
41	1	3.275264	-1.834184	0.147687
42	1	4.670755	-0.851502	1.990099
43	1	4.671790	1.506596	1.458913
44	1	3.819082	1.295488	2.980115
45	1	2.621008	2.899991	1.464101
46	1	1.615546	1.497627	1.800865
47	1	3.332302	1.941772	-0.691473
48	1	1.352962	2.226311	-1.968776
49	1	1.229950	3.309223	-0.570141
50	1	6.942117	-1.734576	-1.805795
51	1	7.687955	-2.112059	-0.217037
52	1	7.484399	-0.408834	-0.748411
53	1	-6.961396	2.378234	0.844452
54	1	-7.124149	0.797777	1.660438
55	1	-7.528851	0.957099	-0.076469
56	1	2.741362	-0.847253	3.315534
Nucleus	Isotropic shielding			
---------	---------------------			
C2	46.0778			
C3	123.8138			
C5	131.9817			
C6	159.9601			
C7	73.8903			
C8	64.7252			
C9	25.9024			
C10	84.9716			
C11	61.0382			
C12	79.6218			
C13	44.5976			
C14	151.9381			
C15	148.9824			
C16	132.2275			
C17	112.466			
C18	152.1709			
C19	164.4993			
C20	149.9014			
C21	124.2177			
C22	2.9715			
C23	132.8374			
C24	132.0572			
16-epi-alstovenine (13), conformer 3

Sum of electronic and thermal free energies = -1265.266627 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	1.824374 1.669203 -0.321762			
2	6	1.436278 0.352869 -0.524023			
3	6	0.037700 -0.082283 -0.851833			
4	7	-0.048076 -1.544562 -0.702897			
5	6	1.076098 -2.249284 -1.332267			
6	6	2.408544 -1.952380 -0.615399			
7	6	2.526332 -0.471432 -0.410165			
8	6	3.654570 0.370198 -0.105010			
9	6	5.026772 0.133952 0.134016			
10	6	5.867043 1.212263 0.408061			
11	6	5.355038 2.529339 0.446899			
12	6	4.013508 2.802794 0.217285			
13	6	3.180711 1.707788 -0.057353			
14	6	-1.029033 0.582295 0.037190			
15	6	-2.440811 0.083451 -0.326333			
16	6	-3.553827 0.723008 0.564816			
17	6	-3.734398 0.055275 1.955063			
18	6	-3.746651 -1.475660 1.883036			
19	6	-2.557362 -2.043835 1.093203			
20	6	-2.506164 -1.462824 0.330989			
21	6	-1.346902 -2.031478 -1.164731			
22	6	-4.870954 0.751354 -0.196718			
23	6	-6.053884 1.820877 -1.952836			
24	6	6.796686 -1.471945 0.315757			
25	8	5.427913 -1.174768 0.075727			
26	8	-2.743321 0.548268 2.870816			
27	8	-5.824196 0.018552 -0.014075			
28	8	-4.864344 1.717985 -1.145654			
29	1	1.215356 2.471230 -0.325626			
30	1	-0.184123 0.198515 -1.908172			
31	1	1.165453 -1.974164 -2.402598			
32	1	0.861638 -3.322200 -1.291462			
33	1	3.234491 -2.383181 -2.11302			
34	1	2.429160 -2.483497 0.345514			
35	1	6.922470 1.057550 0.595940			
36	1	6.037803 3.345488 0.664032			
37	1	3.629692 3.817939 0.250237			
38	1	-0.998846 1.671756 -0.093048			
39	1	-0.775699 0.383946 1.081761			
40	1	-2.621841 0.421461 -1.355838			
41	1	-3.279784 1.769256 0.742837			
42	1	-4.686194 0.398096 2.371301			
43	1	-4.681357 -1.779343 1.399634			
44	1	-3.765630 -1.872122 2.905247			
45	1	-2.647869 -3.135718 1.036459			
46	1	-1.604638 -1.855920 1.605333			
47	1	-3.437052 -1.758911 -0.836403			
48	1	-1.509505 -1.780534 -2.234443			
49	1	-1.347879 -3.124858 -1.090377			
50	1	-5.865672 2.643788 -2.641797			
51	1	-6.922633 2.033075 -1.325347			
52	1	-6.225648 0.890644 -2.499928			
53	1	6.887704 -2.555354 0.224323			
54	1	7.101566 -1.164604 1.324161			
55	1	7.446720 -0.987766 -0.424092			
56	1	-1.967981 -0.026670 2.845733			
Nuclear Isotropic Shielding

Nucleus	Isotropic Shielding
C2	47.3713
C3	124.0948
C5	132.1273
C6	160.0684
C7	73.5574
C8	65.6835
C9	26.1342
C10	84.6868
C11	59.6667
C12	79.7853
C13	45.0457
C14	150.416
C15	146.3818
C16	130.3556
C17	115.2736
C18	155.2437
C19	164.3094
C20	151.2175
C21	123.8634
C22	1.9792
C23	132.9268
C24	131.9119
16-epi-alstovenine (13), conformer 4

Sum of electronic and thermal free energies = -1265.266106 H

Center Number	Atomic Number	Coordinates (Ångstroms)		
		X	Y	Z
1	7	1.885375	1.598361	-0.647894
2	6	1.512916	0.262320	-0.618162
3	6	0.129951	-0.243807	-0.909184
4	7	0.047203	-1.654821	-0.496153
5	6	1.199079	-2.448450	-0.943045
6	6	2.492179	-2.007324	-0.243997
7	6	2.603182	-0.512782	-0.315927
8	6	3.714438	0.384801	-0.133008
9	6	5.078510	0.213849	0.192137
10	6	5.902031	1.334457	0.291271
11	6	5.380874	2.629824	0.070557
12	6	4.046752	2.839534	-0.251213
13	6	3.230934	1.702384	-0.348524
14	6	-0.973930	0.555489	-0.194088
15	6	-2.369959	-0.013695	-0.516010
16	6	-3.509045	0.759871	0.194459
17	6	-3.740755	0.353655	1.685967
18	6	-3.782942	-1.169699	1.857858
19	6	-2.558762	-1.867240	1.243991
20	6	-2.429397	-1.539548	-0.253735
21	6	-1.229519	-2.234093	-0.915392
22	6	-4.812983	0.658469	-0.593323
23	6	7.030936	1.483455	-0.758339
24	6	6.849514	-1.308636	0.730827
25	8	5.489316	-1.078194	0.389916
26	8	2.771213	0.966118	2.543558
27	8	-2.013428	-0.47319	-1.562715
28	8	-5.756835	1.484689	-0.084928
29	1	1.271937	2.377702	-0.822581
30	1	-0.054940	-0.164608	-2.005751
31	1	1.328698	-2.374158	-2.041645
32	1	0.994444	-3.498259	-0.713238
33	1	3.351426	-2.489296	-0.722315
34	1	2.418187	-2.436333	0.800660
35	1	6.951120	1.230084	0.539837
36	1	6.050461	3.480449	0.157254
37	1	3.655892	3.838596	-0.418731
38	1	0.939705	1.606724	-0.509898
39	1	-0.754420	0.544244	0.877377
40	1	2.521198	0.122382	-1.594659
41	1	-3.264853	1.829812	0.220964
42	1	-6.89885	0.788106	2.007852
43	1	-6.691564	-1.550034	1.371224
44	1	-3.876274	-1.397812	2.925964
45	1	-2.654389	-2.952252	1.374655
46	1	-1.636066	-1.589118	1.770004
47	1	-3.330912	-1.917545	-0.752717
48	1	-1.345600	-2.183123	-2.018160
49	1	-1.227576	-3.295808	-0.643403
50	1	-7.647265	2.196488	-0.211622
51	1	-7.476309	0.486115	-0.731012
52	1	-6.911399	1.794042	-1.799011
53	1	6.949468	-2.388937	0.846697
54	1	7.114116	-0.814844	1.674451
55	1	7.525069	-0.963277	-0.062126
56	1	-1.970692	0.426510	2.564485
Nucleus | Isotropic shielding
---|---
C2 | 46.6817
C3 | 123.7971
C5 | 132.1134
C6 | 160.0117
C7 | 73.5803
C8 | 64.8873
C9 | 25.8718
C10 | 84.8479
C11 | 60.6638
C12 | 79.6521
C13 | 44.599
C14 | 150.9263
C15 | 149.2805
C16 | 129.8669
C17 | 112.5867
C18 | 154.6679
C19 | 165.3754
C20 | 150.5327
C21 | 124.4524
C22 | 2.9403
C23 | 132.8521
C24 | 132.0026
16-epi-alstovenine (13), conformer 5

Sum of electronic and thermal free energies = -1265.267365 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.821744	1.656694	-0.333786
2	6	1.434895	0.336968	-0.514938
3	6	0.036098	-0.104312	-0.833426
4	7	-0.046653	-1.563678	-0.664665
5	6	1.075145	-2.275363	-1.287992
6	6	2.402162	-1.967201	-0.580033
7	6	2.527436	-0.483228	-0.397051
8	6	3.655928	0.364895	-0.111303
9	6	5.030384	0.135835	0.121253
10	6	5.870249	1.219837	0.374154
11	6	5.355684	2.536196	0.398143
12	6	4.011700	2.802853	0.174108
13	6	3.179549	1.702270	-0.079105
14	6	-1.033007	0.574191	0.042847
15	6	-2.440691	0.072540	-0.330672
16	6	-3.559850	0.736448	0.534254
17	6	-3.721899	0.117029	1.948167
18	6	-3.723894	-1.412359	1.935937
19	6	-2.540872	-2.002747	1.157312
20	6	-2.504526	-1.472341	-0.286833
21	6	-1.346768	-2.060810	-1.109348
22	6	-4.881172	0.727506	-0.221032
23	6	-6.080875	1.733339	-2.003398
24	6	6.806269	-1.462163	0.311994
25	8	5.435107	-1.172472	0.078097
26	8	-2.643154	0.533168	2.803434
27	8	-5.823438	-0.013055	-0.016671
28	8	-4.891137	1.672677	-1.191967
29	1	1.210503	2.456689	-0.347049
30	1	0.183231	0.160083	-1.895324
31	1	1.161019	-2.015352	-2.362866
32	1	0.862403	-3.347966	-1.231562
33	1	3.234494	-2.361473	-1.172832
34	1	2.433235	-2.483349	0.388836
35	1	6.927356	1.069901	0.556531
36	1	6.038072	3.356961	0.598638
37	1	3.625727	3.817617	0.194854
38	1	-0.996063	1.661815	-0.110172
39	1	-0.811421	0.384339	1.095560
40	1	-2.615114	0.382790	-1.370427
41	1	-3.294130	1.795775	0.652038
42	1	-4.673201	0.465310	2.372213
43	1	-4.667454	-1.739026	1.485763
44	1	-3.715017	-1.757807	2.975408
45	1	-2.630068	-3.096384	1.136255
46	1	-1.598319	-1.776909	1.664970
47	1	-3.435829	-1.787990	-0.780257
48	1	-1.512730	-1.836663	-2.185095
49	1	-1.348078	-3.151984	-1.007317
50	1	5.906205	2.541611	-2.712929
51	1	6.954861	1.945260	-1.383049
52	1	6.234181	0.786468	-2.526725
53	1	6.899906	-2.546505	0.235063
54	1	7.117859	-1.139852	1.313704
55	1	7.449474	-0.986477	-0.439354
56	1	-2.740495	1.473168	3.002915
Nucleus Isotropic shielding

C2 46.9186
C3 123.9854
C5 132.1062
C6 160.0912
C7 73.5599
C8 65.5575
C9 26.1139
C10 84.7923
C11 59.9206
C12 80.0242
C13 45.1771
C14 150.7378
C15 145.6352
C16 129.2897
C17 115.3353
C18 155.5207
C19 163.3123
C20 151.0117
C21 123.7218
C22 2.3563
C23 132.9204
C24 131.9456
16-epi-alstovenine (13), conformer 6

Sum of electronic and thermal free energies = -1265.267026 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.876063	1.589108	-0.650529
2	6	1.508257	0.252031	-0.613303
3	6	0.126743	-0.259734	-0.901062
4	7	0.050723	-1.669365	-0.485642
5	6	1.203838	-2.459978	-0.930621
6	6	2.495785	-2.012242	-0.232794
7	6	2.602334	-0.517626	-0.311510
8	6	3.710952	0.384811	-0.136248
9	6	5.076630	0.221226	0.185653
10	6	5.896738	1.345347	0.275653
11	6	5.370613	2.637608	0.049003
12	6	4.034401	2.840293	-0.269221
13	6	3.222159	1.699850	-0.356877
14	6	-0.981582	0.538926	-0.191253
15	6	-2.372692	-0.035222	-0.524052
16	6	-3.511969	0.746638	0.176156
17	6	-3.724012	0.364246	1.676340
18	6	-3.755706	-1.150827	1.880315
19	6	-2.534838	-1.852148	1.270188
20	6	-2.425276	-1.555935	-0.235384
21	6	-1.225750	2.254095	-0.894430
22	6	-4.827665	0.631109	-0.588648
23	6	-7.025148	1.508428	-0.772456
24	6	6.854110	-1.290762	0.732299
25	8	5.493386	-1.068069	0.389725
26	8	-2.662429	0.877919	2.492500
27	8	-5.065949	-0.131709	-1.503096
28	8	-5.737983	1.522016	-0.123608
29	1	1.258955	2.364183	-0.830144
30	1	-0.054987	-0.185524	1.999321
31	1	1.333882	-2.389245	-2.029894
32	1	0.998163	-3.509843	-0.697213
33	1	3.356838	-2.493877	-0.708351
34	1	2.484700	-2.345972	0.813474
35	1	6.946994	1.245911	0.521394
36	1	6.037608	3.491083	0.127893
37	1	3.639476	3.836988	0.441926
38	1	-0.94462	1.587985	-0.518829
39	1	-0.795167	0.526235	0.885482
40	1	-2.522886	0.087224	-1.605137
41	1	-3.271190	1.819701	0.161576
42	1	-4.674278	0.797339	2.011739
43	1	-4.673516	-1.540675	1.418754
44	1	-3.826639	-1.348994	2.955301
45	1	-2.624576	-2.935442	1.420929
46	1	-1.623702	-1.537484	1.787547
47	1	-3.327439	-1.948956	-0.721780
48	1	-1.345540	-2.214861	-1.997944
49	1	-1.221763	-3.312876	-0.611145
50	1	-6.918359	1.744796	-1.833803
51	1	-7.613433	2.272383	-0.264932
52	1	-7.490455	0.527023	-0.669357
53	1	6.958356	-2.369876	0.855541
54	1	7.116737	-0.789593	1.672660
55	1	7.528774	-0.948191	-0.062733
56	1	-2.739722	1.839445	2.542693
Nucleus | Isotropic shielding
---|---
C2 | 46.2541
C3 | 123.8133
C5 | 132.1181
C6 | 159.9807
C7 | 73.6554
C8 | 64.7146
C9 | 25.8264
C10 | 84.9226
C11 | 60.9916
C12 | 79.8162
C13 | 44.6437
C14 | 151.296
C15 | 148.4234
C16 | 128.9427
C17 | 112.56
C18 | 154.8609
C19 | 164.3613
C20 | 150.2003
C21 | 124.2628
C22 | 3.0723
C23 | 132.8771
C24 | 132.0304
16-epi-alstovenine (13), conformer 7

Sum of electronic and thermal free energies = -1265.264693 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.745961	1.630964	-0.149165
2	6	1.443593	0.311916	-0.452994
3	6	0.079446	-0.182058	-0.837752
4	7	0.080155	-1.653310	-0.783801
5	6	1.250963	-2.245768	-1.442733
6	6	2.548627	-1.918193	-0.690438
7	6	2.581716	-0.449882	-0.382999
8	6	3.651858	0.435259	-0.000772
9	6	5.034174	0.268748	0.238814
10	6	5.801836	1.374496	0.602261
11	6	5.207359	2.650619	0.730196
12	6	3.853431	2.855754	0.502185
13	6	3.094303	1.739777	0.137219
14	6	-1.046266	0.367413	-0.058025
15	6	-2.410533	-0.195621	-0.375159
16	6	-3.589395	0.354147	0.503507
17	6	-4.191190	-0.703117	1.439721
18	6	-3.093581	-1.565292	2.062027
19	6	-2.339719	-2.386025	0.989880
20	6	-2.374248	-1.738909	-0.418028
21	6	-1.183921	-2.197525	-1.277735
22	6	-4.667573	0.933885	-0.394740
23	6	-5.462086	2.907870	-1.435702
24	6	6.904158	-1.228039	0.316205
25	6	5.519432	-1.003903	0.089077
26	6	-4.931123	0.030756	2.426670
27	6	-5.539805	0.29387	-0.949190
28	6	-4.512073	2.266767	-0.561611
29	1	1.088376	2.392573	-0.108728
30	1	-0.136677	0.152103	-1.879642
31	1	1.333621	-1.895559	-2.491370
32	1	1.102386	-3.30029	-1.475702
33	1	3.409953	-2.211561	-1.300082
34	1	2.601077	-2.509933	0.233286
35	1	6.863227	1.272585	0.792623
36	1	5.835216	3.489604	1.015396
37	1	3.405834	3.839919	0.602567
38	1	-1.075409	1.462593	-0.012226
39	1	-0.824893	0.113912	1.100598
40	1	-2.570790	0.142054	-1.408617
41	1	-3.213212	1.164661	1.136447
42	1	-4.882282	-1.313633	0.861672
43	1	-3.534392	-2.232964	2.812480
44	1	-2.408142	-0.903214	2.605575
45	1	-2.778547	-3.388343	0.912360
46	1	-1.298747	-2.522422	1.298787
47	1	-3.286197	-2.069658	-0.931475
48	1	-1.361968	-1.908759	-2.334561
49	1	-1.15433	-3.291256	-1.253016
50	1	-5.183676	3.961361	-1.443327
51	1	-6.476471	2.779439	-1.051087
52	1	-5.403168	2.484227	-2.441291
53	1	7.184997	-0.982373	1.348245
54	1	7.522643	-0.644498	-0.377584
55	1	7.067463	-2.292344	0.140082
56	1	-5.496756	-0.582044	2.913855
Nucleus	Isotropic shielding			
---------	---------------------			
C2	47.2704			
C3	124.5893			
C5	132.2003			
C6	159.9431			
C7	73.4507			
C8	65.6936			
C9	26.486			
C10	84.9033			
C11	59.4044			
C12	79.7138			
C13	45.1283			
C14	148.2935			
C15	143.0634			
C16	130.7744			
C17	113.5415			
C18	155.4724			
C19	162.425			
C20	154.3355			
C21	125.863			
C22	-0.1214			
C23	132.635			
C24	132.0439			
16-epi-alstovenine (13), conformer 8

Sum of electronic and thermal free energies = -1265.2664 H

Center Number	Atomic Number	Coordinates (Angstroms)
		X
1	7	1.725836
2	6	1.427999
3	6	0.068428
4	7	0.071103
5	6	1.250686
6	6	2.538343
7	6	2.566759
8	6	3.632713
9	6	5.013533
10	6	5.777004
11	6	5.179645
12	6	3.826900
13	6	3.072063
14	6	-1.066254
15	6	-2.429842
16	6	-3.599114
17	6	-4.326488
18	6	-3.299864
19	6	-2.400477
20	6	-2.391814
21	6	-1.185430
22	6	-4.599733
23	6	-4.879551
24	6	6.883740
25	6	5.501429
26	6	-5.167439
27	6	-5.812736
28	6	-4.002099
29	1	1.066342
30	1	-0.140872
31	1	1.345887
32	1	1.104182
33	1	3.407540
34	1	2.579053
35	1	6.837189
36	1	5.804212
37	1	3.377156
38	1	-1.096177
39	1	-0.856784
40	1	-2.593404
41	1	-3.172980
42	1	-4.939314
43	1	-3.830651
44	1	-2.698209
45	1	-2.741726
46	1	-1.374844
47	1	-3.289261
48	1	-1.345259
49	1	-1.118698
50	1	-4.221026
51	1	-5.492020
52	1	-5.531548
53	1	7.153247
54	1	7.509625
55	1	7.048975
56	1	-5.877929
Nucleus Isotropic shielding

Nucleus	Isotropic shielding
C2	47.2447
C3	124.4546
C5	132.2413
C6	159.9178
C7	73.4184
C8	65.6331
C9	26.407
C10	84.7847
C11	59.3475
C12	79.562
C13	45.1552
C14	147.7851
C15	144.6787
C16	128.2265
C17	116.2419
C18	158.1884
C19	163.0869
C20	153.1978
C21	125.8321
C22	-1.718
C23	132.4063
C24	132.0077
16-epi-alstovenine (13), conformer 9

Sum of electronic and thermal free energies = -1265.26502 H

Center Number	Atomic Number	Coordinates (Angstroms) X	Y	Z
1	7	1.824659	1.635944	-0.388839
2	6	1.524743	0.288524	-0.525850
3	6	0.167451	-0.250168	-0.872508
4	7	0.164441	-1.704364	-0.640964
5	6	1.350790	-2.372159	-1.190541
6	6	2.627939	-1.953324	-0.488448
7	6	2.658225	-0.457723	-0.329246
8	6	3.722281	0.469375	-0.041010
9	6	5.097628	0.335336	0.252719
10	6	5.860723	1.478955	0.485324
11	6	5.268484	2.761182	0.429042
12	6	3.921055	2.935008	0.143566
13	6	3.166562	1.775343	-0.088428
14	6	-0.974047	0.399864	-0.067665
15	6	-2.331196	-0.207755	-0.465634
16	6	-3.524219	0.433937	0.297688
17	6	-4.143394	-0.493823	1.393237
18	6	-3.043064	-1.276670	2.099015
19	6	-2.304860	-2.232597	1.140200
20	6	-2.296968	-1.746050	-0.331340
21	6	-1.087946	-2.302696	-1.10749
22	6	-4.611676	0.906971	-0.659520
23	6	-6.684320	2.075657	-0.800790
24	6	6.957622	-1.138864	0.582832
25	8	5.581503	-0.946114	0.285448
26	8	-4.843472	0.252034	2.383828
27	8	-4.667517	0.705200	-1.854242
28	8	-5.581144	1.601121	0.001899
29	1	1.171889	2.397419	-0.477804
30	1	-0.031051	-0.044360	-1.950070
31	1	1.463542	-2.153633	-2.271639
32	1	1.200184	-3.452381	-1.093976
33	1	3.505084	-2.321742	-0.991113
34	1	2.651118	-2.424275	0.543501
35	1	6.916915	1.402520	0.713037
36	1	5.892538	3.630123	0.615951
37	1	3.474721	3.924035	0.102745
38	1	-0.994402	1.480333	-0.265890
39	1	-0.768461	0.269475	1.000549
40	1	-2.478461	0.010286	-1.529675
41	1	-3.179699	1.322974	0.842980
42	1	-4.836641	-1.203918	0.911425
43	1	-3.491493	-1.826816	2.932470
44	1	-2.350990	-0.552567	2.546316
45	1	-2.775214	-3.223374	1.169665
46	1	-1.274044	-2.364791	1.483230
47	1	-3.195586	-2.132854	-0.830682
48	1	-1.237190	-2.138297	-2.18863
49	1	-1.023637	-3.386023	-0.946920
50	1	-7.337720	2.607160	-0.109667
51	1	-7.208040	1.235345	-1.261783
52	1	-6.319927	2.746486	-1.581499
53	1	-7.208839	-0.753326	1.579077
54	1	-7.599663	-0.657364	-0.165745
55	1	-7.120076	-2.217519	0.560032
56	1	-5.468318	0.838278	1.932144
Nucleus Isotropic shielding

C2 47.0015
C3 124.5904
C5 132.0999
C6 160.0721
C7 73.4066
C8 65.5469
C9 26.1755
C10 85.0218
C11 60.0907
C12 80.1687
C13 45.0406
C14 148.5738
C15 148.2051
C16 128.7134
C17 113.9037
C18 157.6917
C19 162.6636
C20 154.7469
C21 125.9116
C22 1.066
C23 132.1996
C24 132.0952
16-epi-alstovenine (13), conformer 10

Sum of electronic and thermal free energies = -1265.264201 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.738940	1.520160	-0.529266
2	6	1.470101	0.160007	-0.572951
3	6	0.139971	-0.434508	-0.932925
4	7	0.151894	-1.866822	-0.591898
5	6	1.377320	-2.548865	-1.028020
6	6	2.605562	-2.044665	-0.258269
7	6	2.605034	-0.544085	-0.262418
8	6	3.637153	0.425327	0.001082
9	6	4.998367	0.342922	0.369835
10	6	5.729500	1.516840	0.547120
11	6	5.118322	2.777946	0.360423
12	6	3.784548	2.901076	-0.002638
13	6	3.061956	1.711330	-0.177283
14	6	-1.038385	0.231923	-0.205268
15	6	-2.392702	-0.409319	-0.565145
16	6	-3.520945	0.200056	0.322750
17	6	-4.597585	-0.856734	0.671473
18	6	-3.970033	-1.998973	1.492139
19	6	-2.562038	-2.412775	0.989703
20	6	-2.340978	-1.956641	-0.462485
21	6	-1.057192	-2.508618	-1.102398
22	6	-4.178053	1.392051	-0.350994
23	6	-5.057816	3.564310	-0.013568
24	6	6.863903	-1.063590	0.903095
25	8	5.500798	-0.921964	0.527153
26	8	-5.725857	-0.287897	1.334255
27	8	-4.526635	1.430393	-1.51435
28	8	-4.351148	2.421179	0.508879
29	1	1.079646	2.257804	-0.71058
30	1	-0.021397	-0.312691	-2.028956
31	1	1.540746	-2.411826	-2.116029
32	1	1.241793	-3.621361	-0.853915
33	1	3.516637	-2.438300	-0.71298
34	1	2.581747	-2.431254	0.769429
35	1	6.774314	1.480813	0.830580
36	1	5.718134	3.671689	0.507109
37	1	3.324527	3.874414	-0.144042
38	1	-1.076527	1.301382	-0.452620
39	1	-0.851647	0.157890	0.872761
40	1	-2.625033	-0.158336	-1.607228
41	1	-3.093441	0.550758	1.271367
42	1	-5.015622	-1.242343	-0.263450
43	1	-4.661675	-2.848266	1.472890
44	1	-3.913911	-1.672293	2.539674
45	1	-2.443111	-3.499952	1.063206
46	1	-1.781643	-1.980974	1.625068
47	1	-3.166138	-2.361313	-1.064981
48	1	-1.127605	-2.394881	-2.204965
49	1	-0.989280	-3.583085	-0.898237
50	1	-5.096377	4.280963	0.806350
51	1	-6.064949	3.275067	-0.322547
52	1	-4.524812	3.984302	-0.869814
53	1	7.059882	-0.599269	1.877960
54	1	7.53585	-0.626957	0.151280
55	1	7.045261	-2.137264	0.970292
56	1	-5.435442	0.108245	2.168145
Nucleus	Isotropic shielding			
---------	----------------------			
C2	47.1472			
C3	125.1631			
C5	131.9466			
C6	160.0728			
C7	73.7504			
C8	65.0404			
C9	25.6128			
C10	84.7088			
C11	60.8574			
C12	79.1592			
C13	44.426			
C14	149.9412			
C15	146.1026			
C16	126.774			
C17	112.0614			
C18	151.4939			
C19	160.3979			
C20	152.0942			
C21	125.6352			
C22	-0.3952			
C23	132.7747			
C24	131.9308			
9-methoxy-3-epi-α-yohimbine (8), conformer 1

Sum of electronic and thermal free energies = -1265.267083 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	1.245195	1.182956	0.885441	
2	6	1.075121	-0.193792	0.872465	
3	6	-0.149831	-0.949236	1.339670	
4	7	-0.148037	-2.305778	0.750404	
5	6	1.140742	-2.970577	1.004828	
6	6	2.363572	-2.289522	0.337782	
7	6	2.237140	-0.794693	0.447888	
8	6	3.170343	0.263804	0.156818	
9	6	4.501132	0.304764	-0.316512	
10	6	5.126145	1.538823	-0.491221	
11	6	4.439408	2.739344	-0.98937	
12	6	3.132399	2.741339	0.268692	
13	6	2.516826	1.492210	0.440145	
14	6	-1.502788	-0.254715	1.105153	
15	6	-1.934937	-0.267507	-0.375970	
16	6	-3.333917	0.367226	-0.620725	
17	6	-4.498163	-0.499844	-0.090912	
18	6	-4.416889	-1.912526	-0.664245	
19	6	-3.057158	-2.570586	-0.396598	
20	6	-1.896709	-1.711590	-0.930246	
21	6	-0.512189	-2.322532	-0.670153	
22	6	-3.430300	1.791247	-0.096264	
23	6	-2.495805	3.968639	-0.184862	
24	6	6.420408	-0.927530	-1.053317	
25	8	5.083115	-0.908582	-0.572944	
26	8	-5.762674	0.043829	-0.464631	
27	8	-4.299471	2.212402	0.649019	
28	8	-2.441126	2.579092	-0.569190	
29	1	0.530706	1.858992	1.101119	
30	1	-0.061590	-1.090162	2.428063	
31	1	1.058757	-4.011885	0.672950	
32	1	1.285573	-2.989838	2.092239	
33	1	2.448199	-2.588218	-0.716239	
34	1	3.282066	-2.644585	0.818793	
35	1	6.145668	1.596502	-0.852336	
36	1	4.957135	3.682663	-0.345629	
37	1	2.614338	3.668669	0.49057	
38	1	-1.453966	0.774278	1.480829	
39	1	-2.242681	-0.768468	1.722171	
40	1	-1.206364	0.325187	-0.942329	
41	1	-3.466771	0.446201	-1.710882	
42	1	-4.437081	-0.551550	1.006195	
43	1	-4.599994	-1.849131	-1.748095	
44	1	-5.232898	-2.508596	-0.243952	
45	1	-3.024763	-3.556401	-0.876873	
46	1	-2.925806	-2.751647	0.676270	
47	1	-2.011341	-1.647145	-2.022880	
48	1	0.223985	-1.784908	-1.293397	
49	1	0.505811	-3.370302	-0.994921	
50	1	3.428027	4.420942	-0.530663	
51	1	1.638902	4.435918	-0.669101	
52	1	2.432370	4.068027	0.901429	
53	1	6.507293	-0.405596	-2.014736	
54	1	6.674515	-1.979967	-1.188192	
55	1	7.111498	0.475680	-0.330558	
56	1	5.857580	0.885838	0.006110	
Nucleus | Isotropic shielding
--- | ---
C2 | 49.1851
C3 | 129.3655
C5 | 132.2462
C6 | 165.378
C7 | 73.3985
C8 | 64.6323
C9 | 25.5462
C10 | 84.3759
C11 | 61.0935
C12 | 77.3693
C13 | 44.6506
C14 | 161.3355
C15 | 151.6821
C16 | 128.3407
C17 | 117.7612
C18 | 152.2023
C19 | 160.4639
C20 | 146.5103
C21 | 134.7604
C22 | -0.0829
C23 | 132.6586
C24 | 131.8373
9-methoxy-3-epi-α-yohimbine (8), conformer 2

Sum of electronic and thermal free energies = -1265.264413 H

Center Number	Atomic Number	Coordinates (Angstroms)	
	X	Y	Z
1	1.271532	1.146346	0.983541
2	1.125273	-0.229540	0.885107
3	-0.078762	-1.030515	1.329354
4	-0.055568	-2.361818	0.687587
5	1.256173	-3.002402	0.873698
6	2.439420	-2.262899	0.198510
7	2.287524	-0.779835	0.397100
8	3.197978	0.311842	0.162430
9	4.518071	0.407837	-0.332228
10	5.123654	1.660272	-0.424287
11	4.426825	2.825266	-0.029692
12	3.128017	2.773518	0.457753
13	2.532283	1.506306	0.545667
14	-1.443567	-0.343981	1.138347
15	-1.897275	-0.309753	-0.33042
16	-3.300898	0.324408	-0.570178
17	-4.441630	-0.544451	-0.021560
18	-4.364702	-1.967910	-0.586326
19	-2.991032	-2.620241	-0.361716
20	-1.859021	-1.739205	-0.925383
21	-0.459616	-2.335769	-0.724524
22	-3.384242	1.731466	-0.002110
23	-3.312339	4.037818	-0.535930
24	6.434650	-0.736902	-1.204967
25	5.110306	-0.774569	-0.691513
26	-5.659373	0.104497	-0.417994
27	-3.517869	2.010671	1.174494
28	-3.248416	2.665685	-0.969168
29	0.573612	1.787559	1.324853
30	0.023874	-1.215777	2.410067
31	1.190218	-4.031864	0.502929
32	1.435593	-3.059608	1.954617
33	2.490242	-2.505112	-0.872119
34	3.382194	-2.622195	0.626438
35	6.135203	1.759635	-0.798582
36	4.929398	3.784358	-0.113387
37	2.600875	3.673859	0.758638
38	-1.410934	0.665905	1.558775
39	-2.170440	-0.887083	1.749021
40	-1.173834	0.298097	-0.893931
41	-3.445295	0.403353	-1.625364
42	-4.381578	-0.561511	1.074939
43	-4.585539	-1.908981	-1.660675
44	-5.156230	-2.580477	-0.134634
45	-2.967588	-3.597853	-0.864568
46	-2.822754	-2.817746	0.697049
47	-2.011547	-1.653814	-2.011719
48	0.247937	-1.763871	-1.350813
49	0.444553	3.371529	-1.086298
50	2.505715	4.256771	0.168344
51	4.272314	4.237657	-0.054326
52	3.203214	4.633217	-1.441898
53	6.489575	-0.142500	-2.125901
54	6.690011	-1.772226	-1.425761
55	7.138687	-0.330543	0.467556
56	-6.394512	-0.271668	0.082462
Nucleus | Isotropic shielding
---|---
C2 | 49.0453
C3 | 129.0419
C5 | 132.4834
C6 | 165.3312
C7 | 73.1494
C8 | 64.4867
C9 | 26.1361
C10 | 84.4111
C11 | 60.9077
C12 | 78.9103
C13 | 45.4165
C14 | 161.7544
C15 | 150.6399
C16 | 129.2277
C17 | 115.1401
C18 | 148.9023
C19 | 160.6593
C20 | 146.8711
C21 | 134.7125
C22 | 1.8842
C23 | 133.1265
C24 | 131.9679
9-methoxy-3-epi-α-yohimbine (8), conformer 3

Sum of electronic and thermal free energies = -1265.26566 H

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	7	1.189820 1.236405 0.780959			
2	6	1.127553 -0.145997 0.884711			
3	6	-0.048563 -0.957341 1.380122			
4	7	0.027564 -2.325726 0.826678			
5	6	1.342208 -2.917201 1.125048			
6	6	2.555661 -2.182159 0.493515			
7	6	2.333296 -0.694237 0.516658			
8	6	3.187763 0.402722 0.138690			
9	6	4.517537 0.504061 -0.327246			
10	6	5.045239 1.761066 -0.618878			
11	6	4.260861 2.925376 -0.450712			
12	6	2.953045 2.868274 0.010921			
13	6	2.436591 1.596964 0.303325			
14	6	-1.428042 -0.340956 1.111881			
15	6	-1.786256 -0.363613 -0.384461			
16	6	-3.169736 0.268384 -0.700552			
17	6	-4.361131 -0.608872 -0.238912			
18	6	-4.209833 -2.039458 -0.762819			
19	6	-2.858743 -2.677750 -0.417034			
20	6	-1.693418 -1.809610 -0.920833			
21	6	-0.303040 -2.387598 -0.604949			
22	6	-3.183439 1.720533 -0.225525			
23	6	-4.485654 3.532870 0.605264			
24	6	6.542545 -0.634071 -0.917230			
25	8	5.198697 -0.678693 -0.458732			
26	8	-5.609992 -0.137859 -0.745514			
27	8	-2.213001 2.453071 -0.221252			
28	8	-4.403571 2.152419 0.184659			
29	1	0.395125 1.857449 0.822991			
30	1	0.044725 -1.066894 2.471289			
31	1	1.327557 -3.965042 0.803891			
32	1	1.448977 -2.917827 2.170531			
33	1	2.719269 -2.518662 -0.539552			
34	1	3.465338 -2.459155 1.039082			
35	1	6.061828 1.864765 -0.978229			
36	1	4.702821 3.888152 -0.690041			
37	1	2.357998 3.767147 0.139600			
38	1	-1.446410 0.683097 1.500121			
39	1	-2.159960 -0.907758 1.695563			
40	1	-1.038624 0.238966 -0.912303			
41	1	-2.565954 0.339086 -1.796694			
42	1	-4.393311 -0.625772 0.861639			
43	1	-4.338526 -2.003680 -1.853436			
44	1	-5.040338 -2.631202 -0.370336			
45	1	-2.797794 -3.671592 -0.877533			
46	1	-2.770682 -2.838826 0.663308			
47	1	-1.769382 -1.764153 -2.017963			
48	1	0.437771 -1.851939 -1.224127			
49	1	-0.268160 -3.443359 -0.901452			
50	1	-5.526797 3.687166 0.886429			
51	1	-4.202437 4.194092 -0.216107			
52	1	-3.824721 3.707595 1.456222			
53	1	6.607910 -0.204704 -1.925156			
54	1	6.884562 -1.669947 -0.942034			
55	1	7.179178 -0.056413 -0.234881			
56	1	-5.742750 0.759757 -0.410340			
Nucleus	Isotropic shielding				
---------	----------------------				
C2	48.2352				
C3	129.1505				
C5	132.4893				
C6	164.9661				
C7	73.0073				
C8	64.7114				
C9	25.8728				
C10	84.5353				
C11	60.7328				
C12	78.1717				
C13	44.2867				
C14	161.6507				
C15	152.0416				
C16	128.741				
C17	117.4381				
C18	150.9009				
C19	161.1491				
C20	146.3082				
C21	134.8359				
C22	1.4997				
C23	132.5502				
C24	131.922				
9-methoxy-3-epi-α-yohimbine (8), conformer 4

Sum of electronic and thermal free energies = -1265.262583 H

Center Number	Atomic Number	Coordinates (Å)
		X
1	7	1.251758
2	6	1.116661
3	6	-0.104425
4	7	-0.063277
5	6	1.226862
6	6	2.464839
7	6	2.504027
8	6	3.219245
9	6	4.562016
10	6	5.159003
11	6	4.431928
12	6	3.112924
13	6	2.526689
14	6	-1.461516
15	6	-1.847021
16	6	-3.244723
17	6	-4.416070
18	6	-4.278262
19	6	-2.925922
20	6	-1.761614
21	6	-0.376160
22	6	3.300434
23	6	-4.024204
24	6	6.536496
25	8	5.183874
26	8	-5.602199
27	8	-3.928490
28	8	3.928490
29	1	0.510277
30	1	-0.042082
31	1	1.175790
32	1	1.328674
33	1	2.605575
34	1	3.366992
35	1	6.186552
36	1	4.927442
37	1	2.561603
38	1	-1.443693
39	1	-2.213061
40	1	-1.114402
41	1	-3.320084
42	1	-4.453597
43	1	-4.396873
44	1	-5.103655
45	1	-2.855222
46	1	-2.844131
47	1	-1.839076
48	1	0.371670
49	1	-0.339850
50	1	-4.572046
51	1	-4.563414
52	1	-3.029416
53	1	6.641871
54	1	-6.824657
55	1	-7.189618
56	1	-6.376078
Nucleus	Isotropic shielding	
---------	---------------------	
C2	49.1543	
C3	129.5149	
C5	132.4203	
C6	165.0108	
C7	73.4889	
C8	64.6312	
C9	25.664	
C10	84.6674	
C11	60.5679	
C12	78.5382	
C13	44.6886	
C14	160.3327	
C15	149.3103	
C16	128.228	
C17	116.7666	
C18	148.8889	
C19	160.9079	
C20	146.6507	
C21	134.8288	
C22	1.8219	
C23	133.3752	
C24	131.8904	
9-methoxy-3-epi-α-yohimbine (8), conformer 5

Sum of electronic and thermal free energies = -1265.263463 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	1.281691	1.136437	1.015083
2	6	1.158193	-0.239711	0.893997
3	6	-0.029135	-1.067459	1.332890
4	7	0.007979	-2.385525	0.664420
5	6	1.330983	-3.009584	0.826395
6	6	2.497649	-2.238452	0.157163
7	6	2.324146	-0.761809	0.384420
8	6	3.213407	0.349281	0.159496
9	6	4.526617	0.476549	-0.346265
10	6	5.109671	1.740658	-0.422659
11	6	4.396951	2.886526	-0.001115
12	6	3.104262	2.804021	0.498222
13	6	2.531224	1.525369	0.570139
14	6	-1.403225	-0.394502	1.166076
15	6	-1.859163	-0.331994	-0.303620
16	6	-3.266721	0.291404	-0.535299
17	6	-4.399775	-0.590001	0.038421
18	6	-4.321483	-2.004919	-0.546197
19	6	-2.937014	-2.649378	-0.370325
20	6	-1.815281	-1.750477	-0.922335
21	6	-0.409669	-2.339834	-0.74269
22	6	-3.82009	1.710178	-0.005750
23	6	-3.788317	3.967226	-0.598488
24	6	6.454843	-0.619840	-1.254641
25	8	5.135547	-0.689202	-0.731653
26	8	-5.680753	0.005517	-0.188379
27	8	-3.266252	2.043876	1.158138
28	8	-3.627295	2.592532	-1.001281
29	1	0.574206	1.759799	1.370292
30	1	0.084765	-1.272710	2.408767
31	1	1.277758	-4.032221	0.435190
32	1	1.520125	-3.085905	1.904412
33	1	2.545055	-2.459699	-0.918164
34	1	3.448863	-2.591017	0.571896
35	1	6.115633	1.863916	-0.804851
36	1	4.882231	3.855439	-0.073045
37	1	2.564894	3.689681	0.820198
38	1	-1.385578	0.605271	1.607914
39	1	-2.119591	-0.963764	1.765257
40	1	-1.136461	0.288522	-0.852394
41	1	-3.415894	0.345204	-1.621623
42	1	-4.313482	-0.623132	1.128631
43	1	-4.559016	-1.942357	-1.620427
44	1	-5.102140	-2.621000	-0.086233
45	1	-2.915989	-3.615273	-0.890159
46	1	-2.753622	-2.870874	0.866340
47	1	-1.975544	-1.648040	-2.006458
48	1	0.287080	-1.752113	-1.367922
49	1	0.389573	-3.369494	-1.121653
50	1	3.993783	4.516052	-1.517055
51	1	2.875049	4.336288	-0.125434
52	1	4.619892	4.060149	0.103727
53	1	6.735172	-1.646504	-1.495292
54	1	7.157884	-0.213972	-0.515968
55	1	6.492186	-0.009800	-2.165623
56	1	5.864619	-0.001033	-1.138510
Nucleus	Isotropic shielding			
---------	---------------------			
C2	49.1509			
C3	128.8644			
C5	132.5121			
C6	165.2324			
C7	72.9405			
C8	64.5278			
C9	26.1742			
C10	84.4529			
C11	60.8728			
C12	79.1596			
C13	45.5936			
C14	162.1698			
C15	150.6254			
C16	125.8853			
C17	113.8715			
C18	148.1466			
C19	159.9817			
C20	146.7331			
C21	134.7906			
C22	2.0259			
C23	133.0295			
C24	132.0046			
9-methoxy-3-epi-α-yohimbine (8), conformer 6

Sum of electronic and thermal free energies = -1265.2624 H

Center Number	Atomic Number	Coordinates (Å)		
		X	Y	Z
1	7	1.263112	1.307303	0.710982
2	6	1.123818	-0.067184	0.838916
3	6	-0.098134	-0.802841	1.344691
4	7	-0.058531	-2.205224	0.880340
5	6	1.233787	-2.820817	1.224248
6	6	2.465439	-2.176147	0.537093
7	6	2.507451	-0.680013	0.501082
8	6	3.224248	0.363852	0.121504
9	6	4.564400	0.387776	-0.325601
10	6	5.165106	1.611734	-0.616448
11	6	4.444515	2.818936	-0.467092
12	6	3.127900	2.837947	-0.028430
13	6	2.537636	1.598725	0.261756
14	6	-1.454983	-0.155944	1.014227
15	6	-1.846493	-0.304260	-0.466762
16	6	-3.248222	0.282980	-0.822131
17	6	-4.419767	-0.553597	-0.270706
18	6	-4.288675	-2.020307	-0.691952
19	6	-2.926171	-2.619462	-0.317611
20	6	-1.767429	-1.789400	-0.893202
21	6	-0.379752	-2.348883	-0.545910
22	6	-3.333977	1.758640	-0.460561
23	6	-3.975747	3.34863	1.172164
24	6	6.530177	-0.865350	-0.881117
25	8	5.179992	-0.831385	-0.439543
26	8	5.675640	0.000775	-0.680644
27	8	-2.960280	2.658340	-1.189063
28	8	3.827836	1.971931	0.777261
29	1	0.532738	1.988036	0.844078
30	1	-0.035655	-0.846318	2.442919
31	1	1.179902	-3.888280	0.981343
32	1	1.344898	-2.743871	2.313084
33	1	2.592901	-2.569242	-0.481082
34	1	3.373317	-2.464966	1.079015
35	1	6.190809	1.656857	-0.961668
36	1	4.943071	3.753972	-0.704887
37	1	2.581634	3.769743	0.081852
38	1	-1.434842	0.900770	1.304432
39	1	-2.205561	-0.623611	1.658571
40	1	-1.113179	0.251832	-1.665735
41	1	-3.317034	0.267079	-1.918452
42	1	-4.440982	-0.482851	0.820341
43	1	-4.419298	-2.081991	-1.784672
44	1	-5.109172	-2.591569	-0.243650
45	1	-2.859093	-3.648087	-0.688174
46	1	-2.831090	-2.686746	0.776636
47	1	-1.854037	-1.824030	-1.989877
48	1	0.363486	-1.849855	-1.192310
49	1	0.344354	-3.419824	-0.781488
50	1	-4.644313	3.868938	0.482424
51	1	-3.006411	3.853776	1.180062
52	1	-4.404073	3.318724	2.173582
53	1	6.631660	-0.446625	-1.890437
54	1	6.813362	-1.918936	-0.695895
55	1	7.189534	-0.320261	-0.193719
56	1	-5.790926	-0.161185	-1.627697
Nucleus	Isotropic shielding			
---------	---------------------			
C2	49.1612			
C3	129.5777			
C5	132.4169			
C6	165.1313			
C7	73.6266			
C8	64.7815			
C9	25.546			
C10	84.5577			
C11	60.5837			
C12	78.4637			
C13	44.7865			
C14	160.4155			
C15	149.0144			
C16	124.1561			
C17	115.6442			
C18	148.8136			
C19	160.1749			
C20	146.4441			
C21	134.8237			
C22	2.0682			
C23	133.2879			
C24	131.865			
9-methoxy-3-epi-α-yohimbine (8), conformer 7

Sum of electronic and thermal free energies = -1265.265227 H

Center Number	Atomic Number	Coordinates (Ångstroms)		
X	Y	Z		
---------------	---------------	-------------------------		
1	7	-1.548243	0.792004	-1.376276
2	6	-1.251765	-0.316984	-0.597418
3	6	0.099940	-0.962185	-0.533798
4	7	0.116646	-1.963124	0.544731
5	6	-1.110290	-2.763303	0.633237
6	6	-2.332320	-1.908717	0.992164
7	6	-2.571201	-0.713744	0.086452
8	6	-3.425504	0.198519	-0.276730
9	6	-4.786364	0.326463	0.079452
10	6	-5.544448	1.354372	-0.479994
11	6	-4.960701	2.260759	-1.394045
12	6	-3.627085	2.168665	-1.769285
13	6	-2.877326	1.129794	-1.198107
14	6	1.238391	0.066398	-0.288631
15	6	2.389312	-0.524190	0.560166
16	6	3.724649	0.262246	0.413094
17	6	4.406788	0.044822	-0.954055
18	6	4.613230	-1.445340	-1.216302
19	6	3.298329	-2.229345	-1.108210
20	6	2.622342	-2.020303	0.260020
21	6	1.297608	-2.821096	0.413019
22	6	3.550262	1.743294	0.709271
23	6	2.865090	3.335014	2.327599
24	6	-6.622161	-0.512817	1.371718
25	8	-5.261150	-0.598491	0.971846
26	8	5.684302	0.676757	-1.007339
27	8	3.834586	2.651922	-0.054820
28	8	3.049961	1.957349	1.940659
29	1	-0.902598	1.281424	-1.974995
30	1	0.288453	-1.467180	-1.507525
31	1	-0.948642	-3.528903	1.400063
32	1	-1.302225	-3.294824	-0.321114
33	1	-2.275636	-1.601024	2.044960
34	1	-3.241535	-2.510127	0.889134
35	1	-6.589956	1.473497	-0.223318
36	1	-5.580373	3.049314	-1.810719
37	1	-3.188033	2.869611	-2.472770
38	1	0.828543	0.933176	0.240856
39	1	1.602394	0.428878	-1.257106
40	1	2.080705	-0.448007	1.601068
41	1	4.413186	-0.118293	1.181551
42	1	3.766254	0.461569	-1.745248
43	1	5.341065	-1.825971	-0.486590
44	1	5.065011	-1.569090	-2.206349
45	1	3.489438	-3.298621	-1.261809
46	1	2.615854	-1.925407	-1.914104
47	1	3.324048	-2.391634	1.017720
48	1	1.341611	-3.453137	0.306652
49	1	1.185784	-3.503739	-0.454780
50	1	2.462315	3.297932	3.339025
51	1	2.164876	3.829556	1.650621
52	1	3.820136	3.864955	2.309358
53	1	-7.299004	-0.635208	0.516581
54	1	-6.833175	0.442628	1.686552
55	1	-6.778233	-1.330228	2.077214
56	1	5.526315	1.632556	-0.971615
Nucleus	Isotropic shielding			
---------	---------------------			
C2	45.2163			
C3	131.0675			
C5	133.0258			
C6	160.3705			
C7	74.1816			
C8	66.2516			
C9	26.0547			
C10	84.9033			
C11	60.2484			
C12	79.3563			
C13	44.5507			
C14	157.155			
C15	150.3261			
C16	129.3689			
C17	117.0343			
C18	152.6679			
C19	154.7569			
C20	148.151			
C21	126.0104			
C22	0.5437			
C23	132.658			
C24	132.0095			
9-methoxy-3-epi-α-yohimbine (8), conformer 8

Sum of electronic and thermal free energies = -1265.26251 H

Center Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	7	-1.576019	0.803569	-1.350717
2	6	-1.285665	-0.310566	-0.577434
3	6	0.060130	-0.969473	-0.524985
4	7	0.075333	-1.963807	0.560009
5	6	-1.154295	-2.759457	0.652542
6	6	-2.374342	-1.901119	1.008880
7	6	-2.406432	-0.703241	0.106847
8	6	-3.453904	0.220613	-0.246137
9	6	-4.812397	0.357607	0.115086
10	6	-5.562063	1.399200	-0.430074
11	6	-4.971823	2.310462	-1.335241
12	6	-3.640665	2.208559	-1.716607
13	6	-2.899659	1.155303	-1.160541
14	6	1.210006	0.050446	-0.302836
15	6	2.364561	-0.539497	0.541399
16	6	3.711661	0.233945	0.393463
17	6	4.409452	-0.008578	-0.951140
18	6	4.554959	-1.505379	-1.245449
19	6	3.218980	-2.252798	-1.136890
20	6	2.577293	-2.039824	0.246063
21	6	1.250172	-2.829160	0.429942
22	6	3.504150	1.724029	0.617375
23	6	3.457051	3.439583	2.250449
24	6	-6.651772	-0.476872	1.405471
25	8	-5.293837	-0.573053	0.998544
26	8	5.697662	0.620649	-0.851291
27	8	3.185960	2.528147	-0.237406
28	8	3.671536	2.054308	1.916653
29	1	-0.915344	1.319816	-1.909514
30	1	0.229582	-1.484569	-1.497140
31	1	-0.994852	-3.523530	1.421468
32	1	-1.347400	-3.293333	-0.300467
33	1	-2.320077	-1.595474	2.062423
34	1	-3.285084	-2.499705	0.902273
35	1	-6.605536	1.527577	-0.168667
36	1	5.584471	3.110659	-1.739969
37	1	-3.196504	2.913239	-2.413067
38	1	0.814223	0.929308	0.214815
39	1	1.570684	0.404130	-1.274970
40	1	2.064930	-0.457764	1.591057
41	1	4.384848	-0.124203	1.181149
42	1	3.828629	0.479841	-1.744508
43	1	5.274190	-1.920761	-0.527009
44	1	4.993495	-1.638097	-2.242778
45	1	3.378040	-3.324653	-1.308132
46	1	2.533059	-1.917665	-1.926939
47	1	3.295227	-2.417607	0.987183
48	1	1.302573	-3.445240	1.334359
49	1	1.124946	-3.527403	-0.423815
50	1	3.650678	3.512822	3.320221
51	1	2.429000	3.732597	2.023553
52	1	4.144926	4.075236	1.688149
53	1	-7.333916	-0.582646	0.552257
54	1	-6.850279	0.475384	1.913525
55	1	-6.813772	-1.300222	2.102875
56	1	6.017255	0.832630	-1.736490
Nucleus	Isotropic shielding			
---------	---------------------			
C2	45.0656			
C3	131.0934			
C5	132.9705			
C6	160.4794			
C7	74.3618			
C8	66.2012			
C9	25.979			
C10	84.9411			
C11	60.3405			
C12	79.2987			
C13	44.4336			
C14	156.3815			
C15	150.752			
C16	131.2475			
C17	114.947			
C18	149.8265			
C19	155.2184			
C20	148.9931			
C21	126.0309			
C22	2.4732			
C23	133.1016			
C24	132.048			