A single residue in the αB helix of the E protein is critical for Zika virus thermostability

Dong-Yang Xie1,2, Zhong-Yu Liu1, Qing-Gong Nian1, Ling Zhu3, Nan Wang3, Yong-Qiang Deng1, Hui Zhao1, Xue Ji1, Xiao-Feng Li1, Xiangxi Wang3, Pei-Yong Shi4 and Cheng-Feng Qin1,2

Zika virus (ZIKV) has been linked to a panel of unexpected biological features that diverge significantly from other well-known mosquito-borne flaviviruses, such as dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), and St. Louis encephalitis virus (SLEV). A recent study showed that ZIKV displayed much greater stability than DENV at high temperatures, leading to the hypothesis that this superior stability of ZIKV may contribute to its unique pathology and routes of transmission.

One interesting feature of viral thermostability is that the variations often have definite genetic and structural basis. A cryo-electron microscopy structural reconstruction of ZIKV virions revealed two distinct structural features of ZIKV: (i) an extended glycan loop structure and (ii) an extra hydrogen-bonding interaction between residues Q350 and T351 of domain III around the 5-fold vertex, which might contribute to the observed high stability of ZIKV.

Interestingly, a comparison of the thermostabilities of ZIKV/DENV chimeric viruses with their parental viruses clearly demonstrated that the predominant determinants of ZIKV thermostability lie in the prM-E proteins. This result inspired us to further explore the potential molecular determinants within the prM-E proteins by using the reverse genetics system of ZIKV. Recently, we demonstrated the critical role of residue 264 of the E protein (E-264) in modulating the stability of JEV, and a single H264Q substitution in the E protein significantly decreased the thermal stability of JEV. Residue 264 is located in the αB helix of domain II of the E protein (residues 259–266) of JEV. Sequence alignment revealed that the homologous residue E-264 is threonine 267 (T267) in ZIKV, which is highly conserved among most flaviviruses, including YFV, DENV and SLEV (Fig. 1a), and among all ZIKV strains (Figure S1). To verify the potential role of this residue in ZIKV thermal stability, we introduced the T267Q and T267H mutations (the primer sets used in this study are listed in Table S1) into the αB helix of the E protein based on the infectious clone of ZIKV. Both mutant viruses were successfully constructed and recovered in BHK-21 cells with similar peak titers and plaque morphologies to the WT ZIKV (Fig. 1b). Standard thermal stability assays were performed as previously described, and the results demonstrated that the ZIKV/T267H mutant virus showed the same resistance to heat as the WT ZIKV at 50°C. Meanwhile, the ZIKV/T267Q mutant was highly sensitive to heat treatment, and incubation for 30 min completely abolished ZIKV infectivity (Fig. 1c).

A structural analysis of the E:M:M:E heterotetramer of ZIKV revealed that residue T267 within helix αB of ZIKV is capable of stabilizing viral particles through both hydrophobic and hydrophilic interactions. Residue T267 interacts with V2 and Y27 from the M protein through hydrophobic interactions and forms hydrogen bonds with Q261 and G263 of the E protein, and H267 forms hydrogen bonds with A1 from the M protein and Q261 from the E protein (Fig. 1d, Supplementary Table S2). However, the replacement of...
H267 or T267 with Q267 disrupts the hydrophobic interactions with the E or M proteins and only maintains weak hydrogen bonds with A1 from the M protein (Fig. 1d and Supplementary Table S2). This finding suggests that the hydrophobic and hydrophilic interactions between the αB helix of the E and M proteins are critical for flavivirus thermostability.

In this report, we identified a highly conserved residue in the αB helix in the E protein of ZIKV as a potent molecular determinant for its thermal stability. These findings will not only help us understand the molecular and structural basis of flavivirus stability, but they also provide important clues for the rational design of a flavivirus vaccine with improved thermostability.
Acknowledgements
This work was supported by the National Key Research and Development Project of China (No. 2016YFD0500304), the National Science and Technology Major Project of China (No. 2017ZX09101005 and No. 2017ZX10004002), and the National Natural Science Foundation of China (No. 31770190, No. U170220033, No. 81661130162 and No. 81661140204). C.F.Q. was supported by the NSFC Excellent Young Scientist (No. 81522025), the Innovative Research Group (No. 81621005), and the Newton Advanced Fellowship from the Academy of Medical Sciences, UK.

Author details
1Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
2Anhui Medical University, Hefei 230032, China.
3National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China.
4Department of Biochemistry and Molecular Biology, Department of Pharmacology and Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA

Received: 1 September 2017 Revised: 1 November 2017 Accepted: 12 November 2017
Published online: 24 January 2018

References
1. Kostyuchenko, V. A., Lim, E. X. & Zhang, S. et al. Structure of the thermally stable Zika virus. Nature 533, 425–428 (2016).
2. Rincon, V., Rodriguez-Huete, A. & Lopez-Arguello, S. et al. Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure 22, 1560–1570 (2014).
3. Sirohi, D., Chen, Z. & Sun, L. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).
4. Xie X., Yang Y., Muruato A. E., et al. Understanding Zika virus stability and developing a chimeric vaccine through functional analysis. mBio 2017; 8. pii: e02134-16.
5. Goo L. et al. Zika virus is not uniquely stable at physiological temperatures compared to other flaviviruses. mBio 2016; 7. pii: e01396-16.
6. Shan, C., Xie, X. & Muruato, A. E. et al. An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe. 19, 891–900 (2016).
7. Wang, X., Li, S. H. & Zhu, L. et al. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nat. Commun. 8, 14 (2017).
8. Stobart, C. C., Rostad, C. A. & Ke, Z. et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat. Commun. 7, 13916 (2016).