Electronic Supplementary Information (ESI)

Controllable Conversion of Prussian blue@yeast bio-template into 3D Cage-like Magnetic Fe₃O₄@N-doped Carbon Absorbent and its Cohesive Regeneration by Persulfate Activation

Si Chen a, b, Bo Bai *, b, c, d, Yunhua He a, b, Na Hu c, d, Honglun Wang c, d, Yourui Suo c, d

(*Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, No. 126 Yanta Road, Xi’an 710054, Shaanxi, China,
 b College of Environmental Science and Engineering, Chang’an University, Xi’an, 710054, P.R. China;
 c Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China;
 d Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining, 810001, P.R. China)

* Corresponding author
Email address: baibochina@163.com
Tel: +86 29 82339052
Fax: +86 29 82339961
Contents

Fig. S1 FE-SEM images of (a-b) Fe₃O₄@C (1:0.05); (c-d) Fe₃O₄@C (1:0.22).

Fig. S2 EDS analysis of (a) Fe₃O₄@C (1:0.05) and (b) Fe₃O₄@C (1:0.22).

Fig. S3 EDS analysis of N-doped Fe₃O₄@C (1:0.11) and the corresponding mapping images.

Fig. S4 XRD patterns of PB@yeast bio-templates.

Fig. S5 Linear fits of experimental data for (a) Langmuir isotherm model; (b) Freundlich isotherm model; (c) pseudo-first kinetic model; (d) pseudo-second kinetic model.

Fig. S6 Linear fits at different temperature for (a) Langmuir isotherm model and (b) Freundlich isotherm model.

Table S1 Comparison of maximum adsorption capacities of adsorbents for RhB in previous literatures

Table S2 Kinetic parameters for RhB adsorption at different initial concentration

Table S3 Adsorption isotherm parameters for RhB adsorption at different temperatures
Fig. S1 FE-SEM images of (a-b) Fe$_3$O$_4$@C (1:0.05) and (c-d) Fe$_3$O$_4$@C (1:0.22).

Fig. S2 EDS analysis of (a) Fe$_3$O$_4$@C (1:0.05) and (b) Fe$_3$O$_4$@C (1:0.22).
Fig. S3 EDS analysis of N-doped Fe₃O₄@C (1:0.11) and the corresponding mapping images.

Fig. S4 XRD patterns of PB@yeast bio-templates.
Fig. S5 Linear fits of experimental data for (a) Langmuir isotherm model; (b) Freundlich isotherm model; (c) pseudo-first kinetic model; (d) pseudo-second kinetic model.

Fig. S6 Linear fits at different temperature for (a) Langmuir isotherm model and (b) Freundlich isotherm model.
Adsorbent	T (°C)	pH	q_{max} (mg·g$^{-1}$)	References
gelatin/activated carbon composite beads (GE/AC)	60	4.0	256.41	1
Fe$_3$O$_4$/RGO	60	5.3	142.86	2
In-MOF@GO-2	25	6.0	267	3
iron-pillared bentonite (Fe-Ben)	25	5.0	98.6	4
carbonaceous adsorbent (TPC)prepared from Thespusia populinia bark	60	7.0	77.18	5
Fe$_3$O$_4$@N-C (1:0.05)	25	6.0	206.19	This study
Fe$_3$O$_4$@N-C (1:0.11)	25	6.0	257.06	This study
Fe$_3$O$_4$@N-C (1:0.22)	25	6.0	171.53	This study
Table S2 Kinetic parameters for RhB adsorption at different initial concentration

Kinetic models	Parameters	25	50	100			
	$q_{e,exp}$ (mg·g$^{-1}$)	39.06	66.28	122.61			
Pseudo-first-order	$q_{e,cal}$ (mg·g$^{-1}$)	8.65	12.20	11.93			
	k_1 (min$^{-1}$)	0.0225	0.0262	0.0147			
	R^2	0.9643	0.9515	0.9747			
pseudo-second-order	$q_{e,cal}$ (mg·g$^{-1}$)	41.77	72.46	129.87			
	$k_2\times10^{-3}$ (g·mg$^{-1}$·min$^{-1}$)	1.4537	0.5262	0.3576			
	R^2	0.9977	0.9989	0.9993			
	k_{1d} (mg·g$^{-1}$·min$^{-0.5}$)	4.6083	5.6125	10.3763			
	R^2	0.9788	0.9968	0.9841			
intra-particle diffusion	k_{2d} (mg·g$^{-1}$·min$^{-0.5}$)	1.7468	2.3845	3.2649			
	R^2	0.9605	0.9960	0.9961			
	k_{3d} (mg·g$^{-1}$·min$^{-0.5}$)	0.0959	0.1495	0.9077			
	R^2	0.8401	0.5680	0.9273			
T (°C)	q_{max} (mg·g$^{-1}$)	K_L (L·g$^{-1}$)	R^2	R_L	$1/n$	K_F (L·g$^{-1}$)	R^2
-------	------------------	------------------	------	------	------	------------------	------
10	206.61	0.0317	0.9988	0.14-0.39	0.4575	8.1669	0.9709
25	257.06	0.0343	0.9965	0.13-0.37	0.4874	8.5676	0.9778
40	262.46	0.0437	0.9954	0.10-0.30	0.4564	9.2963	0.9772
55	268.10	0.0764	0.9965	0.06-0.21	0.4101	10.265	0.9825
References

1 F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, *Colloid Surface A*, 2017, **513**, 259-266.
2 Y. Qin, M. Long, B. Tan and B. Zhou, *Nano-Micro Lett.*, 2014, **6**, 125-135.
3 C. Yang, S. Wu, J. Cheng and Y. Chen, *J. Alloy Compd.*, 2016, **687**, 804-812.
4 M.F. Hou, C.X. Ma, W.D. Zhang, X.Y. Tang, Y.N. Fan and H.F. Wan, *J. Hazard. Mater.* 2011, **186**, 1118-1123.
5 M. Hema and S. Arivoli, *Indian J. Chem. Technol.* 2009, **16**, 38-45.