Comparative clinical outcomes between direct oral anticoagulants and warfarin among elderly patients with non-valvular atrial fibrillation in the CMS medicare population

Alpesh Amin1 · Allison Keshishian2 · Oluwaseyi Dina3 · Amol Dhamane4 · Anagha Nadkarni4 · Eric Carda3 · Cristina Russ3 · Lisa Rosenblatt4 · Jack Mardekian3 · Huseyin Yuce5 · Christine L. Baker3

Published online: 28 March 2019
© The Author(s) 2019

Abstract
Atrial fibrillation (AF) prevalence increases with age; > 80% of US adults with AF are aged ≥ 65 years. Compare the risk of stroke/systemic embolism (SE), major bleeding (MB), net clinical outcome (NCO), and major adverse cardiac events (MACE) among elderly non-valvular AF (NVAF) Medicare patients prescribed direct oral anticoagulants (DOACs) vs warfarin. NVAF patients aged ≥ 65 years who initiated DOACs (apixaban, dabigatran, and rivaroxaban) or warfarin were selected from 01JAN2013-31DEC2015 in CMS Medicare data. Propensity score matching was used to balance DOAC and warfarin cohorts. Cox proportional hazards models estimated the risk of stroke/SE, MB, NCO, and MACE. 37,525 apixaban–warfarin, 18,131 dabigatran–warfarin, and 55,359 rivaroxaban–warfarin pairs were included. Compared to warfarin, apixaban (HR: 0.69; 95% CI 0.59–0.81) and rivaroxaban (HR: 0.82; 95% CI 0.73–0.91) had lower risk of stroke/SE, and dabigatran (HR: 0.88; 95% CI 0.72–1.07) had similar risk of stroke/SE. Apixaban (MB: HR: 0.61; 95% CI 0.57–0.67; NCO: HR: 0.64; 95% CI 0.60–0.69) and dabigatran (MB: HR: 0.79; 95% CI 0.71–0.89; NCO: HR: 0.84; 95% CI 0.76–0.93) had lower risk of MB and NCO, and rivaroxaban had higher risk of MB (HR: 1.08; 95% CI 1.02–1.14) and similar risk of NCO (HR: 1.04; 95% CI 0.99–1.09). Compared to warfarin, apixaban had a lower risk for stroke/SE, MB, and NCO; dabigatran had a lower risk of MB and NCO; and rivaroxaban had a lower risk of stroke/SE but higher risk of MB. All DOACs had lower risk of MACE compared to warfarin.

Keywords Apixaban · Dabigatran · Rivaroxaban · Warfarin · Non-valvular atrial fibrillation · Medicare

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11239-019-01838-5) contains supplementary material, which is available to authorized users.

• The prevalence of NVAF and risk of stroke increase with age.
• Few studies have compared DOACs to warfarin among elderly NVAF patients regarding such outcomes.
• This study showed that compared to warfarin, all DOACs were associated with lower risk of MACE, and there were varying rates of stroke/SE, MB, and NCO between the individual DOACs and warfarin.
• The findings warrant more studies to better understand effectiveness and safety profiles in the elderly NVAF population.
Introduction

The 2010 Global Burden of Disease Study estimated the worldwide age-adjusted prevalence of atrial fibrillation (AF) at 596 per 100,000 men and 373 per 100,000 women, equating to 33.5 million individuals (20.9 and 12.6 million men and women, respectively) [1]. In the United States, the estimated prevalence of AF is 3–5 million [2, 3]. The proportion of AF patients was found to increase sharply with age, especially in people aged ≥ 65 years, who account for three-quarters of the AF population [3].

Patients with AF diagnoses are at a nearly fivefold greater risk of stroke [4]. Moreover, the AF-attributable risk for ischemic stroke is age-dependent and increases from 4.6 to 7.9% to > 10% among patients aged 50–59, 60–69, and ≥ 70 years, respectively [4]. Hence, the stroke risk stratification schema CHA2DS2-VASc score considers older age (65–74 and ≥ 75 years) as a risk factor for stroke and thromboembolism in AF patients [5].

Oral anticoagulants (OACs) prevent stroke and systemic embolism (SE) among AF patients; they are recommended by the American College of Cardiology (ACC) and the American Heart Association (AHA) guidelines for patients with non-valvular AF (NVAF) and prior stroke, transient ischemic attack (TIA), or a CHA2DS2-VASc score ≥ 2 [6]. Warfarin, a vitamin K antagonist (VKA), has been used for stroke prevention among AF patients for decades. However, the narrow therapeutic window and increased risk of bleeding have hindered use, especially among the elderly [6].

In recent years, randomized clinical trials have demonstrated that compared to warfarin, direct OACs (DOACs)—including apixaban, dabigatran, edoxaban, and rivaroxaban—were all associated with similar to lower risk of stroke/SE and major bleeding (MB) among elderly patients [7–9]. Introduced in 2008, the Fit-for-The-Aged (FORTA) classification is the first system with both negative (harmful or critical drugs: D and C labels) and positive (beneficial drugs: A and B labels) labelling at the individual drug and drug group levels. Based on FORTA and the Delphi process, warfarin, dabigatran, edoxaban, and rivaroxaban were labelled B (beneficial; safely and effectively treat AF), and apixaban was labelled A (absolutely; most beneficial risk–benefit ratio) for the treatment of AF patients aged > 65 years [10].

Using the largest US claims database of elderly patients, we evaluated real-world comparative risks of stroke/SE, MB, net clinical outcomes (stroke/SE or MB [NCO]), and major adverse cardiac events (MACE) among NVAF patients who initiated either DOACs (apixaban, dabigatran, and rivaroxaban) or warfarin. This study added more recent data and additional outcome measures to our previous study, which provides comprehensive and current evidence to help prevent stroke among the elderly NVAF population [11]. The results also supplement clinical trials and add key information to real-world literature.

Methods

Data source

This retrospective observational study used the fee-for-service (FFS) US Centers for Medicare & Medicaid Services (CMS) data from 01JAN2012-31DEC2015. This dataset is composed of adults aged ≥ 65 years, certain young people with disabilities, and people with end-stage renal disease. As of 2015, > 38 million beneficiaries were enrolled in this insurance [12]. The data include institutional (inpatient, skilled nursing facility, home health, hospice, and hospital outpatient) and non-institutional (physician/supplier–carrier and durable medical equipment) claims and Part D prescription claims, coded using International Classification of Diseases, Ninth/Tenth Revision, Clinical Modification (ICD-9/10-CM) diagnosis and procedure codes, the Health Care Common Procedure Coding System, Current Procedural Terminology codes, and National Drug Codes [13].

Patient selection

AF (ICD-9-CM: 427.31 or ICD-10-CM: I48.0-I48.2, I48.91) patients aged ≥ 65 years with ≥ 1 pharmacy claim for apixaban, dabigatran, edoxaban, rivaroxaban, or warfarin between 01JAN2013-31DEC2015 (identification period) were selected. The first DOAC claim date during the identification period was designated as the index date for patients with any DOAC claim; the first warfarin prescription date was designated as the index date for those without a DOAC claim [14]. Patients were also required to have continuous health plan enrollment with both medical and pharmacy benefits for the 12-month pre-index (baseline) period.

To select OAC treatment-naïve patients, those with any OAC claim during the baseline period were excluded. Patients with evidence of valvular heart disease or transient AF during the baseline period were also excluded. To omit OAC use for the treatment or prophylaxis of venous thromboembolism (VTE), patients with VTE in the baseline period or who had hip or knee replacement surgery within 6 weeks prior to the index date were excluded. Detailed selection criteria appear in Fig. 1.

Outcome measures

The primary outcomes were the occurrence of stroke/SE and MB, identified by hospitalizations with stroke/SE or MB as
the principal diagnosis. Stroke/SE was further categorized by ischemic stroke, hemorrhagic stroke, and SE; MB was categorized by gastrointestinal (GI) bleeding, intracranial hemorrhage (ICH), and MB at other key sites [15, 16].

The secondary outcomes were NCO (a composite of stroke/SE and MB) and MACE, comprised of stroke (hemorrhagic and ischemic stroke), myocardial infarction (MI), and all-cause death. Claims databases cannot evaluate cardiovascular-related death, so the MACE definition included all-cause death.

Patients were censored at the earliest of the discontinuation date of the index treatment (no evidence of a prescription for 30 days from the last day of the index medication days’ of supply), date of switch from the index drug to another OAC (a prescription for an OAC other than the index drug within 30 days before or after the discontinuation date), date of death, end of continuous enrollment, or end of study.

Statistical methods

One-to-one propensity score matching (PSM) was conducted between DOACs and warfarin (apixaban versus warfarin, dabigatran versus warfarin, and rivaroxaban versus warfarin) to control for potential confounders such as baseline demographics and clinical characteristics.

Using established methodology, propensity scores were generated by logistic regression. Age, sex, US geographic region, Charlson comorbidity index (CCI) [17], CHA₂DS₂-VASc, and HAS-BLED scores, prior bleeding and stroke, comorbidities, baseline co-medications, and baseline inpatient visits were included in the models as covariates. The nearest neighbor without replacement method and a caliper of 0.01 were implemented in the PSM [18]. After PSM, the balance of covariates was checked based on standardized differences, with a threshold of 10% [19].

For post-PSM cohorts, the incidence of primary and secondary outcomes was calculated as the number of events per 100 person-years.

Cox proportional hazards models with robust sandwich estimates were used to evaluate the hazard ratios (HRs) of stroke/SE, MB, NCO, and MACE in each matched cohort [18]. After ensuring all the matched baseline covariates were balanced post-PSM, OAC treatment was included in the Cox models as the only independent variable.

Sensitivity analysis was conducted wherein patients were censored at 6 months of follow-up, creating more balance between cohorts.

Statistical analyses were performed using the Statistical Analysis System (SAS) Version 9.3 (Cary, NC).

Results

The study included eligible 198,171 patients; 81,410 (41.1%) were prescribed warfarin, 38,466 (19.4%) apixaban, 18,162 (9.2%) dabigatran, and 60,133 (30.3%) rivaroxaban (Fig. 1). Edoxaban was excluded due to small sample size (N = 150). Before PSM, patients who initiated warfarin were older with
a mean age of 79 years, followed by those who initiated apixaban (78 years), rivaroxaban (78 years), and dabigatran (77 years). In addition, warfarin patients also had higher CCI and CHA2 DS2 -VASc scores than DOAC patients (Table 1).

Through PSM, 37,525 apixaban, 18,131 dabigatran, and 55,359 rivaroxaban patients were separately matched to warfarin patients. Baseline characteristics were balanced after matching with mean standardized differences <10%. For the matched cohorts, the means were: age: 77–78 years, CHA2 DS2 -VASc scores: 4.4–4.6, and HAS-BLED scores: 3.2–3.4 (Table 2). Patient data were assessed for a mean duration of 8–10 months. 71%, 80%, and 66% of patients were prescribed the standard dose of DOAC (apixaban 5 mg, dabigatran 150 mg, and rivaroxaban 20 mg), respectively.

Stroke/SE and MB

Compared to warfarin, apixaban (HR: 0.69; 95% confidence interval [CI] 0.59–0.81, p < 0.001) and rivaroxaban (HR: 0.82; 95% CI 0.73–0.91, p < 0.001) were associated with a significantly lower risk of stroke/SE; dabigatran (HR: 0.88; 95% CI 0.72–1.07, p = 0.206) was associated with a non-significantly lower risk of stroke/SE (Fig. 2). All DOACs were associated with a lower risk of hemorrhagic stroke versus warfarin.

Compared to warfarin, apixaban (HR: 0.61; 95% CI 0.57–0.67, p < 0.001), and dabigatran (HR: 0.79; 95% CI 0.71–0.89, p < 0.001) were associated with a significantly lower risk of MB, and rivaroxaban (HR: 1.08; 95% CI 1.02–1.14, p = 0.006) was associated with a higher risk of MB, mainly due to GI bleeding (Fig. 2). All DOACs were associated with a lower risk of ICH versus warfarin.

NCO and MACE

As a composite of stroke/SE and MB, the risk of NCO was significantly lower than warfarin for apixaban (HR: 0.64; 95% CI 0.60–0.69, p < 0.001) and dabigatran, (HR: 0.84; 95% CI 0.76–0.93, p = 0.001) but similar for rivaroxaban (HR: 1.04; 95% CI 0.99–1.09, p = 0.169) (Fig. 3).

Compared to warfarin, all DOACs were associated with a lower risk of MACE (apixaban: HR: 0.70; 95% CI 0.67–0.74, p < 0.001; dabigatran: HR: 0.76; 95% CI 0.71–0.82, p < 0.001; rivaroxaban: HR: 0.83; 95% CI 0.80–0.86, p < 0.001; Fig. 3).

Sensitivity analysis

In the sensitivity analysis wherein the follow-up period was censored at 6 months, the results were consistent with the main analysis (Supplemental Table 1).

Discussion

Using Medicare FFS data from 2012 to 2015, this study showed that compared to warfarin among elderly patients with NVAF, apixaban was associated with significant lower risks of stroke/SE, MB, NCO, and MACE. Dabigatran was associated with significantly lower risks of MB, NCO, and MACE as well as a numerically lower risk of stroke/SE. Rivaroxaban was associated with lower risks of stroke/SE and MACE, but higher MB and numerically higher NCO risks compared to warfarin.

The study results supplement RCT findings for apixaban, dabigatran, and rivaroxaban compared to warfarin and their corresponding age subgroup analyses [20–25]. In the RE-LY trial, patients (overall and ≥ 75 years) with 150 mg dabigatran had lower rates of stroke/SE and similar rates of MB compared to warfarin [20, 23]. In this real-world study among NVAF patients aged ≥ 65 years, 150 mg and 75 mg dabigatran showed numerically lower stroke/SE and significantly lower MB risks versus warfarin. Although NCO was not studied in the RE-LY trial’s elderly group, overall dabigatran and warfarin patient analysis demonstrated that compared to warfarin, 150 mg twice-daily dabigatran was associated with a non-significantly lower risk of net clinical benefit (a composite of stroke/SE, pulmonary embolism, MI, death, and MB) [20]. In this study, elderly dabigatran patients were associated with significantly lower NCO and MACE risks than warfarin patients.

In the ARISTOTLE trial, apixaban was associated with lower rates of stroke/SE, MB, and net clinical events (stroke/SE, MB, and all-cause death) compared to warfarin among all patients and patients aged ≥ 65 years [22, 25]. This study found consistent trends. In the ROCKET AF trial, rivaroxaban was associated with a non-inferior rate of stroke/SE and similar rate of MB compared to warfarin [21]. Among patients aged ≥ 75 years, 20 and 15 mg daily rivaroxaban showed a numerically lower risk of stroke/SE but a higher risk of MB compared to warfarin [24]. This study found similar trends between rivaroxaban and warfarin among patients aged ≥ 65 years. To the best of our knowledge, no previous studies have compared net clinical benefits between rivaroxaban and warfarin.

Several real-world studies have focused on effectiveness and safety comparisons between DOACs and warfarin in an elderly NVAF population [11, 26–29]. Our previous study of the elderly Medicare population from 2012 to 2014 consistent results of stroke/SE and major bleeding were found for the comparisons between DOACs and warfarin [11]. This study provides more recent and comprehensive analysis with updated data and added NCO and MACE outcomes. Using Medicare data from 2010 to 2012, Graham et al. [26] demonstrated that...
Table 1 Baseline descriptive table before PSM

	Warfarin (N=81,410)	Apixaban (N=38,466)	Dabigatran (N=18,162)	Rivaroxaban (N=60,133)
Age				
65–74	7.5	7.5	7.0	7.3
75–84	32.0%	35.4%	41.2%	38.7%
≥ 85	24.9%	23.0%	21.3%	15.9%
Sex				
Male	50.4%	48.3%	51.4%	49.7%
Female	49.6%	51.7%	48.6%	50.3%
Race				
White	90.5%	91.8%	89.8%	90.9%
Black	5.2%	3.7%	4.3%	3.9%
Hispanic	1.3%	1.1%	1.6%	1.5%
Other	3.0%	3.4%	4.1%	3.7%
Geographic region				
Northeast	19.7%	16.9%	19.9%	17.6%
North Central	30.8%	20.6%	23.6%	23.0%
South	32.5%	44.8%	25.4%	38.3%
West	16.9%	17.7%	18.6%	4.6
Other	0.1%	0.1%	0.2%	0.2%
Medicaid dual-eligibility				
	23.2%	19.5%	23.5%	19.4%
Part D low-income subsidy				
	26.3%	22.6%	26.5%	22.7%
Baseline comorbidity				
Deyo-Charlson comorbidity index	3.1	2.8	2.9	2.6
CHADS2 score	2.9	1.4	2.8	1.5
CHA2DS2-VASc score	4.7	1.7	4.6	1.8
HAS-BLED scoreb	3.3	1.3	3.4	1.3
Baseline prior bleed	24.780	30.4%	11,807	30.7%
Baseline prior stroke	12,496	15.3%	5280	13.7%
Congestive heart failure	29,326	36.0%	12,064	31.4%
Diabetes	32,705	40.2%	13,602	35.4%
Hypertension	71,416	87.7%	34,649	90.1%
Renal disease	21,021	25.8%	8599	22.4%
Myocardial infarction	12,021	14.8%	5040	13.1%
Dyspepsia or stomach discomfort	17,317	21.3%	8699	22.6%
Peripheral vascular disease	46,697	57.4%	22,742	59.1%
Peripheral artery disease	20,131	24.7%	8932	23.2%
Transient ischemic attack	6411	7.9%	3528	9.2%
Coronary artery disease	40,079	49.2%	19,962	51.9%
Baseline medication use				
Angiotensin converting enzyme inhibitor	30,102	37.0%	13,194	34.3%
Amiodarone	5612	6.9%	4300	11.2%
Angiotensin receptor blocker	17,030	20.9%	10,056	26.1%
Beta blockers	42,053	51.7%	22,070	57.4%
H2-receptor antagonist	5699	7.0%	2282	7.4%
Proton pump inhibitor	24,020	29.5%	13,008	33.8%
Anti-platelets	15,589	19.1%	9235	24.0%
Statins	45,149	55.5%	23,492	61.1%
Inpatient admission	36,572	44.9%	15,168	39.4%

Std Difference greater than 10 is considered significant is given in bolditalic

CHA2DS2-VASc: congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65–74 years, sex category; HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile INRs (international normalized ratio), elderly, drugs, and alcohol; PSM: propensity score matching; SD: standard deviation

a Std Difference = 100*|actual std diff|

b As the INR value was not available in the data, a modified HAS-BLED score was calculated using a range of 0 to 8

© Springer
Table 2 Baseline descriptive and mean follow-up time table after PSM between warfarin and DOACs

	Apixaban–warfarin cohort	Dabigatran–warfarin cohort	Rivaroxaban–warfarin cohort			
	Apixaban	Warfarin	Dabigatran	Warfarin	Rivaroxaban	Warfarin
	(N = 37,525)	(N = 37,525)	(N = 18,131)	(N = 18,131)	(N = 55,359)	(N = 55,359)
Age						
65–74	78.4 7.5	78.4 7.4	77.1 7.0	77.3 7.1	77.9 7.3	78.0 7.3
75–84	15,164 41.6%	15,698 41.8%	7606 42.0%	7602 41.9%	23,651 42.7%	23,685 42.8%
≥ 85	8775 23.4%	8623 23.0%	3076 17.0%	3057 16.9%	11,488 20.8%	11,472 20.7%
Sex						
Male	18,176 48.4%	18,112 48.3%	9313 51.4%	9268 51.1%	27,463 49.6%	27,494 49.7%
Female	19,349 51.6%	19,413 51.7%	8818 48.6%	8863 48.9%	27,896 50.4%	27,865 50.3%
Race						
White	34,436 91.8%	34,369 91.6%	16,288 89.8%	16,308 89.9%	50,418 91.1%	50,373 91.0%
Black	1424 3.8%	1451 3.9%	785 4.3%	816 4.5%	2282 4.1%	2309 4.2%
Hispanic	412 1.1%	427 1.1%	288 1.6%	269 1.5%	788 1.4%	797 1.4%
Other	1253 3.3%	1278 3.4%	770 4.2%	738 4.1%	1871 3.4%	1880 3.4%
Geographic region						
Northeast	6486 17.3%	6530 17.4%	3606 19.9%	3559 19.6%	10,234 18.5%	10,215 18.5%
North central	7906 21.1%	7897 21.0%	4184 23.1%	4135 22.8%	13,233 23.9%	13,260 24.0%
South	16,433 43.8%	16,467 43.9%	6932 38.2%	7161 39.5%	21,568 39.0%	21,515 38.9%
West	6679 17.8%	6615 17.6%	3379 18.6%	3245 17.9%	10,241 18.5%	10,292 18.6%
Other	21 0.1%	16 0.0%	30 0.2%	31 0.2%	83 0.1%	77 0.1%
Medicaid dual-eligibility	7399 19.7%	7509 20.0%	4257 23.5%	4230 23.3%	12,157 22.0%	12,053 21.8%
Part D low-income subsidy	8454 22.5%	8584 22.9%	4801 26.5%	4782 26.4%	13,697 24.7%	13,620 24.6%
Baseline comorbidity						
Deyo-Charlson comorbidity index	2.9 2.6	2.9 2.7	2.5 2.4	2.5 2.4	2.7 2.5	2.7 2.6
CHADS2 score	2.8 1.5	2.8 1.4	2.6 1.4	2.6 1.4	2.7 1.4	2.7 1.4
CHA2DS2-VASc score	4.6 1.8	4.7 1.7	4.4 1.7	4.4 1.7	4.5 1.7	4.5 1.7
HAS-BLED score	3.4 1.3	3.4 1.3	3.2 1.2	3.2 1.2	3.3 1.3	3.3 1.3
Baseline prior bleed	11,495 30.6%	11,455 30.5%	4726 26.1%	4748 26.2%	16,013 28.9%	16,128 29.1%
Baseline prior stroke	5202 13.9%	5221 13.9%	2159 11.9%	2226 12.3%	7131 12.9%	7146 12.9%
Congestive heart failure	11,897 31.7%	12,028 32.1%	5114 28.2%	5177 28.6%	16,729 30.2%	16,615 30.0%
Diabetes	13,442 35.8%	13,565 36.1%	6731 37.1%	6753 37.2%	20,370 36.8%	20,298 36.7%
Hypertension	33,730 89.9%	33,816 90.1%	15,934 87.9%	15,991 88.2%	48,716 88.0%	48,780 88.1%
Renal disease	8,479 22.6%	8,508 22.7%	2892 16.0%	2984 16.5%	10,376 18.7%	10,392 18.8%
Myocardial infarction	4941 13.2%	4990 13.3%	1940 10.7%	2040 11.3%	6890 12.4%	6877 12.4%
Dyspepsia or stomach discomfort	8427 22.5%	8411 22.4%	3597 19.8%	3691 20.4%	11,843 21.4%	11,852 21.4%
	Apixaban–warfarin cohort	Warfarin (N = 37,525)	Dabigatran–warfarin cohort	Warfarin (N = 18,131)	Rivaroxaban–warfarin cohort	Warfarin (N = 55,359)
--------------------------------	--------------------------	-----------------------	---------------------------	------------------------	---------------------------	------------------------
	N/mean %/SD	N/mean %/SD	N/mean %/SD	N/mean %/SD	N/mean %/SD	N/mean %/SD
Peripheral vascular disease	22,042 58.7%	22,245 59.3%	9669 53.3%	9867 54.4%	30,815 55.7%	30,831 55.7%
Peripheral artery disease	8717 23.2%	9076 24.2%	3633 20.0%	3707 20.4%	12,412 22.4%	12,567 22.7%
Transient ischemic attack	3384 9.0%	3395 9.0%	1338 7.4%	1344 7.4%	4342 7.8%	4373 7.9%
Coronary artery disease	19,294 51.4%	19,501 52.0%	8347 46.0%	8582 47.3%	26,481 47.8%	26,523 47.9%
Baseline medication use						
Angiotensin converting enzyme inhibitor	12,998 34.6%	13,084 34.9%	6859 37.8%	6841 37.7%	19,972 36.1%	20,044 36.2%
Amiodarone	3867 10.3%	3801 10.1%	1614 8.9%	1637 9.0%	4355 7.9%	4360 7.9%
Angiotensin receptor blocker	9532 25.4%	9538 25.4%	4478 24.7%	4603 25.4%	13,103 23.7%	13,042 23.6%
Beta blockers	21,347 56.9%	21,379 57.0%	9731 53.7%	9777 53.9%	29,724 53.7%	29,670 53.6%
H2-receptor antagonist	2728 7.3%	2797 7.5%	1208 6.7%	1232 6.8%	3800 6.9%	3822 6.9%
Proton pump inhibitor	12,520 33.4%	12,521 33.4%	5347 29.5%	5553 30.6%	17,089 30.9%	17,116 30.9%
Anti-platelets	8722 23.2%	8814 23.5%	3436 19.0%	3510 19.4%	11,334 20.5%	11,404 20.6%
Statins	22,711 60.5%	22,960 61.2%	10,449 57.6%	10,589 58.4%	31,640 57.2%	31,568 57.0%
Inpatient admission	14,935 39.8%	15,081 40.2%	6819 37.6%	6986 38.5%	23,133 41.8%	23,214 41.9%
Patients on standard dose DOAC	26,628 71.0%	26,926 71.5%	14,496 80.0%	14,566 80.6%	36,656 66.2%	36,656 66.2%
Mean follow-up time (in days)	230.3 211.3	281.3 260.0	257.0 265.9	285.6 264.7	275.8 265.7	284.0 262.7

CHA2DS2-VASc: congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65–74 years, sex category; HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile INRs (international normalized ratio), elderly, drugs, and alcohol; PSM: propensity score matching; SD: standard deviation

As the INR value was not available in the data, a modified HAS-BLED score was calculated using a range of 0 to 8
among elderly patients, apixaban was associated with similar risk for ischemic stroke and MI, a lower risk for stroke and similar risk for MB; and a higher major GI bleeding risk. Our results are generally consistent with previous literature. However, more studies are needed to better understand effectiveness and safety profiles in elderly populations. Moreover, as DOAC use increases, further research will be necessary to assist in decision-making for such populations [33].

Despite growing evidence of improved safety with DOACs, warfarin is still widely used in high-risk NVAF populations [34]. Our study provides a current and comprehensive analysis comparing DOACs and warfarin regarding the risk of stroke/SE, MB, NCOs, and MACE among elderly US Medicare NVAF patients. Given the distinct clinical characteristics of the elderly NVAF population, the study results may add useful information to the literature to assist in disease management decision making.

This study has several limitations. Given its observational nature, confounding factors may have impacted the results. To control for potential confounders, a comprehensive list of baseline covariates was included in the PSM, including patient demographics and clinical characteristics. However, variables such as over-the-counter use of aspirin, serum creatinine/creatinine clearance, and laboratory test result values are not captured in the Medicare data. As claims data analysis, the study may also be subject to coding errors and inaccurate or incomplete clinical information. For example, treatments recorded based on prescription claims include no

Apixaban vs Warfarin	DOAC	Warfarin	Hazard Ratio (95% CI)	P-value
Stroke/SE	261 (1.11)	426 (1.52)	0.69 (0.59 – 0.81)	<0.001
Ischemic	218 (0.92)	315 (1.10)	0.79 (0.66 – 0.94)	0.007
Hemorrhagic	32 (0.14)	101 (0.35)	0.38 (0.26 – 0.57)	<0.001
Major Bleeding	11 (0.05)	29 (0.07)	0.65 (0.31 – 1.35)	0.245
GI Bleeding	868 (2.70)	1,611 (5.66)	0.61 (0.57 – 0.67)	<0.001
ICH	416 (1.76)	787 (2.74)	0.60 (0.55 – 0.67)	<0.001
Other Bleeding	121 (0.51)	243 (0.84)	0.60 (0.48 – 0.75)	<0.001
	375 (1.59)	688 (2.40)	0.62 (0.55 – 0.71)	<0.001

Dabigatran vs Warfarin	Stroke/SE	176 (1.39)	217 (1.54)	0.88 (0.72 – 1.07)	0.206
	Ischemic	155 (1.22)	160 (1.13)	1.05 (0.84 – 1.31)	0.685
	Hemorrhagic	15 (0.12)	47 (0.33)	0.35 (0.20 – 0.64)	<0.001
	SE	6 (0.05)	19 (0.07)	0.64 (0.23 – 1.75)	0.381
	Major Bleeding	516 (4.08)	709 (5.07)	0.79 (0.71 – 0.89)	<0.001
	GI Bleeding	323 (2.54)	331 (2.15)	1.06 (0.91 – 1.23)	0.460
	ICH	52 (0.41)	113 (0.80)	0.51 (0.37 – 0.71)	<0.001
	Other Bleeding	187 (1.47)	301 (2.14)	0.68 (0.57 – 0.81)	<0.001

Rivaroxaban vs Warfarin	Stroke/SE	567 (1.36)	714 (1.67)	0.82 (0.73 – 0.91)	<0.001
	Ischemic	413 (0.99)	507 (1.38)	0.84 (0.75 – 0.93)	0.007
	Hemorrhagic	125 (0.30)	171 (0.40)	0.76 (0.60 – 0.95)	0.017
	SE	29 (0.07)	36 (0.08)	0.83 (0.51 – 1.35)	0.444
	Major Bleeding	2,506 (6.08)	2,384 (5.63)	1.08 (1.02 – 1.14)	0.006
	GI Bleeding	1,367 (2.9)	1,126 (2.64)	1.25 (1.16 – 1.35)	<0.001
	ICH	277 (0.66)	400 (0.93)	0.71 (0.61 – 0.83)	<0.001
	Other Bleeding	1,056 (2.54)	1,015 (2.38)	1.07 (0.98 – 1.17)	0.121

Fig. 2 Incidence rate and hazard ratio of stroke/SE and major bleeding for propensity score-matched patients
evidence of drug adherence. Moreover, since international normalized ratio values were not obtained, the quality of warfarin treatment could not be evaluated and the calculation for HAS-BLED score was modified. Moreover, proper dosage for DOACs based on age, renal function, and weight could not be assessed.

In summary, in the elderly Medicare population with NVAF, compared to warfarin, the DOACs were associated with a lower to similar risk of stroke/SE and MACE, but with varying comparative risks for MB and NCO.

Funding This work was funded by Pfizer Inc. and Bristol-Myers Squibb.

Compliance with ethical standards

Conflict of interest Amin is an employee of the University of California, Irvine and was a paid consultant to Bristol-Myers Squibb in connection with this study and the development of this manuscript. Keshishian is an employee of STATinMED Research, a paid consultant to Pfizer and Bristol-Myers Squibb in connection with this study and the development of this manuscript. Dina, Carda, Russ, Mardekian, and Baker are employees of Pfizer Inc., with ownership of stocks in Pfizer Inc. Dhamane, Nadkarni, and Rosenblatt are employees of Bristol-Myers Squibb Company, with ownership of stocks in Bristol-Myers Squibb Company. Yuce has no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Chugh SS, Havmoeller R, Narayan K et al (2014) Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 Study. Circulation 129(8):837–847
2. Colilla S, Crow A, Petkun W et al (2013) Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol 112(8):1142–1147
3. Naccarelli GV, Varker H, Lin J, Schulman KL (2009) Increasing prevalence of atrial fibrillation and flutter in the United States. Am J Cardiol 104(11):1534–1539
4. Björck S, Palaszewski B, Friberg L, Bergfeldt L (2013) Atrial fibrillation, stroke risk, and warfarin therapy revisited: a population-based study. Stroke 44(11):3103–3108
5. Lip GY, Niewlaat R, Pisters R, Lane DA, Crijns HJ (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137(2):263–272
6. January CT, Wann LS, Alpert JS et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130(23):2071–2104
7. Sardar P, Chatterjee S, Chaudhari S, Lip GY (2014) New oral anticoagulants in elderly adults: evidence from a meta-analysis of randomized trials. J Am Geriatr Soc 62(5):857–864
8. Kim IS, Kim HJ, Kim TH et al (2018) Non-vitamin K antagonist oral anticoagulants have better efficacy and equivalent safety compared to warfarin in elderly patients with atrial fibrillation: a systematic review and meta-analysis. J Cardiol 72(2):105–112
9. Ruff CT, Giugliano RP, Braunwald E et al (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383(9921):955–962
10. Wehling M, Collins R, Gil VM et al (2017) Appropriateness of oral anticoagulants for the long-term treatment of atrial fibrillation in older people: results of an evidence-based review and international consensus validation process (OAC-FORTA 2016). Drugs Aging 34(7):499–507
11. Amin A, Keshishian A, Trocio J et al (2017) Risk of stroke/systemic embolism, major bleeding and associated costs in non-valvular atrial fibrillation patients who initiated apixaban, dabigatran or rivaroxaban compared with warfarin in the United States Medicare population. Curr Med Res Opin 33(9):1595–1604

12. Centers for Medicare & Medicaid Services (2015) Total Medicare Enrollment. CMS Chronic Conditions Data Warehouse. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/CMSProgramStatistics/2015/Downloads/MDCR_ENROLL_AB/2015_CPS_MDCR_ENROLL_AB_1.pdf. Accessed 17 July 2018

13. Chronic Condition Data Warehouse (2017) CCW White Paper: Medicare Claims Maturity. Chronic Condition Data Warehouse. https://www.ccwdata.org/web/guest/ccw-medicare-data-white-papers. Accessed 17 July 2018

14. Yao X, Abraham NS, Sangaralingham LR et al (2016) Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc 5(6):e003725

15. Thigpen JL, Dillon C, Forster KB et al (2015) Validity of international classification of disease codes to identify ischemic stroke and intracranial hemorrhage among individuals with associated diagnosis of atrial fibrillation. Circ Cardiovasc Qual Outcomes 8(1):8–14

16. Cunningham A, Stein CM, Chung CP et al (2011) An automated database case definition for serious bleeding related to oral anticoagulant use. Pharmacoepidemiol Drug Saf 20(6):560–566

17. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383

18. Austin PC (2014) The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 33(7):1242–1258

19. Austin PC (2009) Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 28:3083–3107

20. Connolly SJ, Ezekowitz MD, Yusuf S et al (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361(12):1139–1151

21. Patel MR, Mahaffey KW, Garg J et al (2011) Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 365(10):883–891

22. Granger CB, Alexander JH, McMurray JJ et al (2011) Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 365(11):981–992

23. Eikelboom JW, Wallentin L, Connolly SJ et al (2011) Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation 123(21):2363–2372

24. Halperin JL, Hankey GJ, Wojdyla DM et al (2014) Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Circulation 130(2):138–146

25. Halvorsen S, Atar D, Yang H et al (2014) Efficacy and safety of apixaban compared with warfarin according to age for stroke prevention in atrial fibrillation: observations from the ARISTOTLE trial. Eur Heart J 35(28):1864–1872

26. Graham DJ, Reichman ME, Wernette M et al (2015) Cardiovascular, bleeding, and mortality risks in elderly Medicare patients treated with dabigatran or warfarin for non-valvular atrial fibrillation. Circulation 131(2):157–164

27. Deitelzweig S, Luo X, Gupta K et al (2017) Comparison of effectiveness and safety of treatment with apixaban vs. other oral anticoagulants among elderly nonvalvular atrial fibrillation patients. Curr Med Res Opin 33(10):1745–1754

28. Avgil-Tsadok M, Jackevicius CA, Essebag V et al (2016) Dabigatran use in elderly patients with atrial fibrillation. Thromb Haemost 115(1):152–160

29. Coleman CI, Weedn ER, Nguyen E, Bunz TJ, Sood NA (2018) Effectiveness and safety of rivaroxaban vs. warfarin in patients 80+ years of age with non-valvular atrial fibrillation. Eur Heart J Qual Care Clin Outcomes 4(4):328–329

30. Seeger JD, Bykov K, Bartels DB et al (2015) Safety and effectiveness of dabigatran and warfarin in routine care of patients with atrial fibrillation. Thromb Haemost 114(6):1277–1289

31. Norby FL, Bengtson LG, Lutsey PL et al (2017) Comparative effectiveness of rivaroxaban versus warfarin or dabigatran for the treatment of patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 17(1):238

32. Li XS, Deitelzweig S, Keshishian A et al (2017) Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in “real-world” clinical practice. A propensity-matched analysis of 76,940 patients. Thromb Haemost 117(6):1072–1082

33. Patel PA, Zhao X, Fonarow GC et al (2015) Novel oral anticoagulant use among patients with atrial fibrillation hospitalized with ischemic stroke or transient ischemic attack. Circ Cardiovasc Qual Outcomes 8(4):383–392

34. Di Minno MN, Ambrosio P, Dentali F (2017) Safety of warfarin in “high-risk” populations: a meta-analysis of randomized and controlled trials. Thromb Res 150:1–7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.