Supporting Information

A microporous Ce-based MOF with the octahedron cage for highly selective adsorption towards xenon over krypton

Xiaoling Wu a, b, Zi-Jian Li a, He Zhou a, b, Lin Li a, b, Zhenghua Qian a, Nan Qian a, Xinxin Chu a, b*, Wei Liu a, b*

a. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
b. University of Chinese Academy of Sciences, Beijing 100049, China

Table of Contents

I. Experimental Section
1. Crystallographic Data of Ce-SINAP-1 S2
2. Structure of Ce-SINAP-1 S3
3. Thermogravimetry Analysis S4
4. Powder X-ray Diffraction Pattern S5
5. BET and pore size distribution S6
6. Single component isotherm S7

II. Calculations
7. Langmuir-Freundlich Fitting and Henry Constant Fitting S9
8. Isosteric Heat of Adsorption S11
9. IAST calculation of Adsorption Selectivity S11
10. Breakthrough Experiment S11
11. Density of state of different elements in Ce-SINAP-1 S12
12. List of the adsorption performance of MOFs adsorbents for Xe/Kr under different radiation condition S12

III. References
Tables and Figures

Table S1. Crystallographic Data for Ce-SINAP-1.

Code	Ce-SINAP-1		
CCDC number	2085724		
Formula	C_{29}H_{16}O_{8}Ce		
Mass	632.54		
Habit	Triclinic		
Space Group	P-1		
a (Å)	12.1829(10)		
b (Å)	14.9798(13)		
c (Å)	15.5382(13)		
α (°)	67.680(3)		
β (°)	69.005(3)		
γ (°)	67.206(3)		
V (Å³)	2343.1(4)		
Z	2		
T (K)	100		
λ (Å)	0.71073		
Max. 20 (°)	55.152		
ρ_{calc} (g·cm⁻³)	0.897		
μ (mm⁻¹)	0.999		
F (000)	624.0		
Crystal size (mm³)	0.2*0.18*0.1		
GoF on F²	1.081		
Radiation	MoKα		
R_1, ωR_2 [I>2σ(I)]	0.0434, 0.1213		
R_1, ωR_2 (all data)	0.0480, 0.1235		
(Δρ)_{max}, (Δρ)_{min} / e (Å⁻³)	2.167, -1.619		
Reflections collected	38851		
Assignment	Bond length(Å)	Assignment	Bond length(Å)
------------	----------------	------------	----------------
Ce1-O1	2.452(3)	Ce1-O5	2.462(3)
Ce1-O1a	2.898(3)	Ce1-O6	2.572(3)
Ce1-O2	2.579(3)	Ce1-O7	2.490(3)
Ce1-O3	2.567(3)	Ce1-O8	2.515(3)
Ce1-O4	2.410(3)		

Assignment	Bond angles(°)	Assignment	Bond angles(°)
O1-Ce1-O1a	78.66(9)	O3-Ce1-O6	50.90(9)
O1-Ce1-O2	89.33(9)	O3-Ce1-O7	71.08(10)
O1-Ce1-O3	155.47(10)	O3-Ce1-O8	73.60(10)
O1-Ce1-O4	75.19(10)	O4-Ce1-O1a	70.87(9)
O1-Ce1-O5	75.95(9)	O4-Ce1-O5	133.19(9)
O1-Ce1-O6	144.79(10)	O4-Ce1-O6	75.24(9)
O1-Ce1-O7	125.83(9)	O4-Ce1-O7	90.75(11)
O1-Ce1-O8	82.21(10)	O4-Ce1-O8	136.28(11)
O2-Ce1-O1a	159.97(9)	O5-Ce-O1a	67.87(9)
O2-Ce1-O3	78.97(9)	O5-Ce1-O6	139.16(9)
O2-Ce1-O4	90.70(10)	O5-Ce1-O7	77.42(10)
O2-Ce1-O5	78.97(9)	O5-Ce1-O8	73.65(10)
O2-Ce1-O6	72.38(9)	O6-Ce1-O1a	108.85(9)
O2-Ce1-O7	143.83(9)	O6-Ce1-O7	73.11(9)
O2-Ce1-O8	51.66(10)	O6-Ce1-O8	107.00(9)
O3-Ce1-O1a	117.90(9)	O7-Ce1-O1a	47.64(8)
O3-Ce1-O4	125.89(9)	O7-Ce1-O8	132.39(12)
O3-Ce1-O5	93.07(9)	O8-Ce1-O1a	140.07(9)

Figure S1. Single unit of **Ce-SINAP-1** with labels.
Figure S2. Structure of Ce-SINAP-1.

Thermogravimetric Analysis (TGA) Plot
Figure S3. TGA curves of as-synthesized **Ce-SINAP-1** before and after activation.

PXRD Patterns

Figure S4. PXRD patterns of **Ce-SINAP-1**, simulated, as-synthesized, activated and after γ-ray irradiation.
Figure S5. PXRD patterns of Ce-SINAP-1 with different temperatures.

BET and pore size distribution
1. BET Analysis

\[y = a + b \times x \]

Adj. R-Square: 0.99995
Slope: 0.00947
Standard Error: 2.64274E-5

Figure S6. Brunauer-Emmet-Teller (BET) and the Langmuir surface areas were calculated to be 459.4 m²/g and 490.1 m²/g for Ce-SINAP-1.
2. Pore Size Use NLDFT Model

![Diagram](image)

Figure S7. Pore size distribution for Ce-SINAP-1 samples using Non-Local Density Functional Theory (NLDFT) model.

Single Component Isotherm:

The adsorption isotherms for Xe, Kr and Ar in Ce-SINAP-1 were measured at 273 K, 293 K and 313 K. The single-component isotherm data were fitted with the Single-site Langmuir-Freundlich model for Xe, Kr and Ar. Here, P is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol/kg), q_{sat} is the saturation capacities of site (mol/kg). b_a is affinity coefficient of site (1/kPa), and v_a represents the deviations from an ideal homogeneous surface.

$$q = q_{a, \text{sat}} \frac{b_ap^{v_a}}{1 + b_ap^{v_a}}$$

1. Kr Adsorption Isotherms
Figure S8. Kr adsorption isotherms for Ce-SINAP-1 at different temperatures (273 K, 293 K, 313 K).

2. Xe Adsorption Isotherm
3. Ar Adsorption Isotherm

Figure S10. Ar adsorption isotherms for Ce-SINAP-1 at different temperatures (273K, 293K, 313K).

Table S3. The fitting parameters of single-site Langmuir-Freundlich model at
293 K.

Adsorbent	Adsorbates	$q_{a,sat}$ (mmol/g)	b_a (kPa$^{-1}$)	v_a
Ce-SINAP-1	Xe	3.77792	0.02002	0.85889
	Kr	2.77311	0.00267	1.04838
	Ar	2.67065	0.00161	1.09001

Henry’s Constant Fitting

The Henry’s constant of Ce-SINAP-1 were obtained from a linear fit in low pressure of the adsorption isotherm as the following function.1

$$H(\text{mmol}\cdot\text{g}^{-1}\text{bar}^{-1}) = \frac{q(\text{mmol/g})}{P(\text{bar})}$$

Figure S11. Henry coefficient fitting of Xe adsorption isotherm at 293 K.
Figure S12. Henry coefficient fitting of Kr adsorption isotherm at 293 K.

Figure S13. Henry coefficient fitting of Ar adsorption isotherm at 293 K.

Table S4. The Henry coefficient of Xe/Kr, Xe/Ar and Kr/Ar at 293K.

Adsorbate	Henry Coefficient	Xe/Kr selectivity	Xe/Ar Selectivity	Kr/Ar Selectivity
Xe	6.76			
Kr	0.82			
Ar	0.23			

S11
Isosteric Heat of Adsorption

Isosteric heat of adsorption (Q_{st}) is used to evaluate the adsorption affinity and strength of interaction between the adsorbates and the adsorbents. The Clausius-Clapeyron equation and Langmuir-Freundlich method are used to signify the Q_{st}. It defined as:

$$Q_{st} = -RT^2 \left(\frac{\partial \ln P}{\partial T} \right)_{n_a}$$

Where n_a (mmol/g) is the amount of adsorbed gas, T (K) is the temperature, P (kPa) is the pressure, Q_{st} (kJ/mol) is the isosteric heat of adsorption. Integration of the equation gives:

$$\ln P = \frac{Q_{st}}{RT} + C$$

In this study, adsorption equilibrium data at 273k, 293 K and 313 K were used to calculated the heat of adsorption that was obtained at a given uptake from the slopes of the isosteres according to the equations as mentioned. The fitting parameters of Langmuir-Freundlich model were displayed in Table S3.

IAST Calculation of Adsorption Selectivity

The adsorption selectivity was calculated by the Ideal Adsorbed Solution Theory (IAST)2 for Xe/Kr (20/80, v/v) and Xe/Ar (1/99, v/v), two binary mixtures in Ce-SINAP-1. The adsorption selectivity, S_{12}, is defined by the following equation:

$$S_{12} = \frac{x_1/x_2}{y_1/y_2}$$

Where x_1 and x_2 are the equilibrated adsorption capacity of component 1 and 2 in adsorbents, respectively; and y_1 and y_2 are the molar fractions of component 1 and 2 in gas phase, respectively.3-5

Breakthrough experiments

The adsorption capacity was estimated from the breakthrough curves using the following equation:

$$n_{adsi} = FC_i t_i$$

Where n_{adsi} is the adsorption capacity of the gas i, F is the total molar flow, C_i is the concentration of the gas i entering the column and the t_i is the time corresponding to the gas i, which is estimated from the breakthrough profile.
Figure S14. Flowchart of the dynamic breakthrough experiment.

1,2,3-Helium, Mixture Gas (Ar Kr Xe), Argon
4-Gas Mixer, 5-Gas Flowmeter, 6,9-Pressure Gauge
7-Temperature Controlled Chamber
8- Packed Bed, 10-Gas Filter, 11-Gas Chromatograph

Figure S15. Density of states of different elements in Ce-SINAP-1.

Table S5. List of the adsorption performance of MOFs adsorbents for Xe/Kr under different radiation condition

adsorbents	Xe uptake (mmol/g at 1.0 bar)	Xe Qst (kJ/mol)	γ-ray Irradiation Resistance (kGy)	Xe/Kr Selectivity
UiO-66(Zr)	2.0^a	24.6	2	7.7^c
Zr-Fum-Me	1.9^a	30.9	8	15.8^c
SIFSIX-3-Cu	2.1^a	-	50	4.81^e
SIFSIX-3-Fe	2.45^a	27.4	10	around 6^c
Ce-SINAP-1	2.02^b	24.2	20	8.24^d

^a Ref. [1], ^b Ref. [2], ^c Ref. [3], ^d Ref. [4], ^e Ref. [5]
a. Xe uptake at 298K
b. Xe uptake at 293K
c. Henry’s separation at 298K
d. Henry’s separation at 293K
e. Xe/Kr selectivity at 298K with 400 ppm Xe and 40 ppm Kr, balanced with dry air.

References

(1) Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X.-Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-Organic Framework with optimally selective xenon adsorption and separation, Nature Communications. 2016, 7:11831.

(2) Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed–gas adsorption. AIChE J. 1965, 11, 121.

(3) Babarao, R.; Hu, Z. Q.; Jiang J. W.; Chempath, S.; Sandler, S. I. Storage and separation of CO₂ and CH₄ in silicalite, C₁₆₈ schwarzite, and IRMOF-1: A comparative study from Monte Carlo simulation. Langmuir, 2007, 23, 659.

(4) Goetz, V.; Pupier, O.; Guillot, A. Carbon dioxide-methane mixture adsorption on activated carbon. Adsorption. 2006, 12, 55.

(5) Bae, Y. S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Separation of CO₂ from CH₄ using mixed-ligand metal-organic frameworks. Langmuir, 2008, 24, 8592.