Fishes from the Tirimbina Biological Reserve, La Virgen de Sarapiquí, Heredia, Costa Rica

Arturo Angulo,1,2,3,4 Beatriz Naranjo-Elizondo,1,2,3 Emmanuel Rojas,5 Juan Manuel Ley-López5

1 Escuela de Biología, Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica. 2 Museo de Zoología, Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica. 3 Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica. 4 UNESP, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Laboratório de Ictiologia, Departamento de Zoologia e Botânica, Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil. 5 Tirimbina Biological Reserve, 41002, La Virgen de Sarapiquí, Heredia, Costa Rica.

Corresponding author: Arturo Angulo, arturo.angsib@gmail.com

Abstract
The Tirimbina Biological Reserve (TBR), located in La Virgen de Sarapiquí, Heredia Province, Atlantic versant (Sarapiquí river basin), Costa Rica, is a private wildlife refuge established as “a place of absolute conservation” and for scientific research. An annotated and illustrated catalog of the fish species known to occur within the limits of the TBR, as well as an identification key to and descriptions of all species listed, is presented. A total of 29 species, 23 genera, 9 families and 6 orders were recorded from 13 localities regularly sampled between December 2009 and December 2016. The conservation status of the species and major threats also are briefly discussed. This contribution will serve as a scientific and educational tool to researchers and conservationists, as well as to the public, interested in knowing and working with the fish fauna of the TBR and surrounding areas.

Key words
Ichthyofauna; Neotropical freshwater fishes; diversity; identification key; photographic album.

Introduction
The Tirimbina Biological Reserve (TBR) is a 345 ha private wildlife refuge located in La Virgen de Sarapiquí, Heredia Province, Atlantic slope (Sarapiquí river basin), Costa Rica. It is one of the most biologically diverse and relatively well-studied areas of the country (McDade et al. 1993, TBR 2010). The TBR was formally established in 1960, by Dr Robert Hunter, to become “a place of absolute conservation” and for scientific research (TBR 2010). Between 1960 and 1998 the TBR stood out because of the development of several crops that were new to the area (e.g. cacao, pepper, vanilla, and nutmeg) which promoted several research projects, mainly related to the cultivation of cacao, developed by foreign institutions as well as by the Costa Rican Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) (TBR 2010). Before 1999, the TBR adopted a strategic operational plan, which remains in effect today, where incomes from ecotourism are directly invested in conservation through environmental education and scientific research. As a result, the environmental education program is currently considered the “heart” of the TBR, promoting work within the community and local schools (Schmidt 2012).
As part of its scientific research program, the TBR has permanent researchers studying mammals, birds, butterflies, and plants, among other groups. This program has resulted in dozens of newly recorded species and species new to science (e.g. Grishin 2012, Angulo and Gracian-Negrete 2013, Silva and Lapinski 2014). In addition, many external research projects also have been developed at the TBR, including long-term studies and undergraduate and graduate theses from both national and foreign institutions (Finegan and Camacho 1999, TBR 2010, Grøtan et al. 2014); for more information please visit the TBR website at http://www.tirimbina.org/. Based on the above, the TBR is currently considered one of the most important educational, scientific, and ecotourism destinations in Costa Rica.

As in most of the Costa Rican Atlantic lowlands, the TBR is crossed by several rivers and small creeks (Fig. 1). The Sarapiquí River borders the western edge of the reserve for approximately 2.5 km while the Tirimbina River crosses the reserve for roughly 3 km, entering by the southeast corner and leaving it by the reserve’s northwesternmost portion (Fig. 1). The whole reserve is currently under protection with almost 100% of forest cover; however, the area surrounding the TBR is highly deforested with most land used for agriculture (mainly banana and pineapple plantations) and cattle (Shaver et al. 2015). Given this, the TBR can be considered as a “purifier”, “source”, and “reservoir” of the rivers and other water bodies in the area. besides deforestation, overfishing, introduction of exotic species, and the proliferation of hydroelectric dams represent the main actual threats for the aquatic ecosystems in the area (Anderson et al. 2008). Biological and chemical analyses have been done annually for the last 10 years in the main 2 rivers of the reserve (Sarapiquí and Tirimbina) and indicate relatively good quality levels (Quirós-Sanabria 2017); however, comprehensive studies regarding the health state of these rivers as well as of the aquatic populations in the area are still scarce.

Since 2009, the TBR fish fauna has been extensively sampled by both national and foreign biologists as part of several research projects. Part of the results of these research projects are herein presented under the format of an annotated and illustrated catalog, the first comprehensive study of the fish fauna of the TBR. An identification key to and descriptions of all species listed are also included to provide a tool to help with the identification of the fish species within the TBR, as basis for future inventories.

Figure 1. A. Map of the TBR showing the main trails and water bodies with the different sampled localities marked in red (see Table 1 for localities data). B. Sarapiquí River, main branch (sampling locality A). C. Sarapiquí River small tributary, swamp (sampling locality E). D. “Cuculmeca” Creek, tributary of Sarapiquí River (sampling locality H). E. Tirimbina River, upper portion (sampling locality K), photo by Carlos Garita.
Table 1. Sampling localities within the TBR. ID = locality identification, see also Figure 1 and Table 2.

ID	Sampling localities	Latitude (N)	Longitude (W)	Altitude (m)	General description
A	Sarapiquí River, main branch N1	10°24'56"	084°07'18"	149	Current very strong (40–75 cm/seg); maximum depth about 1.5 m; maximum width about 40 m; mainly rocky substrate with very little organic matter; canopy cover scarce; periphyton present, submerged vegetation absent; emergent vegetation absent; floating vegetation absent.
B	Sarapiquí River, main branch N2	10°25'06"	084°07'12"	148	Current strong (25–75 cm/seg); maximum depth about 1.8 m; maximum width about 60 m; mainly rocky substrate with very little organic matter; canopy cover scarce; periphyton present; submerged vegetation absent; emergent vegetation absent; floating vegetation absent.
C	Sarapiquí River, secondary branch N1	10°24'50"	084°07'16"	167	Current slow to moderate (5–25 cm/seg); maximum depth about 1.5 m; maximum width about 6 m; mainly rocky substrate with sand and little organic matter; canopy cover about 75%; periphyton present; submerged vegetation absent; emergent vegetation absent; floating vegetation absent.
D	Sarapiquí River, secondary branch N2	10°25'16"	084°07'05"	152	Current slow (5–15 cm/seg); maximum depth about 1.2 m; maximum width about 5 m; mainly rocky substrate with sand and organic matter; canopy cover about 75%; periphyton present; submerged vegetation absent; emergent vegetation absent; floating vegetation absent.
E	Sarapiquí River small tributary, swamp1	10°24'57"	084°07'20"	149	None to very slow current (0–10 cm/seg); maximum depth about 0.5 m; maximum width about 3 m; mainly muddy substrate with sand and abundant organic matter; canopy cover about 60%; periphyton absent; submerged vegetation present; emergent vegetation abundant; floating vegetation scarce.
F	Sarapiquí River small tributary, swamp2	10°24'45"	084°07'14"	189	None to very slow current (0–10 cm/seg); maximum depth about 0.8 m; maximum width about 6 m; mainly muddy substrate with sand and abundant organic matter; canopy cover about 85%; periphyton absent; submerged vegetation present; emergent vegetation present; floating vegetation scarce.
G	Sarapiquí River tributary	10°24'33"	084°07'22"	168	Current slow to moderate (15–50 cm/seg); maximum depth about 2.2 m; maximum width about 15 m; mainly rocky substrate with very little organic matter; canopy cover about scarce; periphyton cover; submerged vegetation cover; emergent vegetation present (mainly at the margin); floating vegetation absent.
H	“Cuculmeca” Creek, tributary of Sarapiquí River	10°24'34"	084°07'01"	199	Current slow to moderate (5–25 cm/seg); maximum depth about 0.6 m; maximum width about 3 m; mainly muddy substrate with abundant organic matter; canopy cover about 90%; periphyton absent; submerged vegetation scarce (mainly at the margin); floating vegetation absent.
I	“Corteza” Creek, tributary of Sarapiquí River	10°24'49"	084°07'07"	186	Current slow to moderate (5–25 cm/seg); maximum depth about 0.5 m; maximum width about 4 m; mainly muddy substrate with abundant organic matter; canopy cover about 90%; periphyton absent; submerged vegetation present; emergent vegetation scarce (mainly at the margin); floating vegetation absent.
J	“Hunter” Creek, tributary of Tirimbina River	10°24'18"	084°06'47"	198	Current slow to moderate (5–25 cm/seg); maximum depth about 0.4 m; maximum width about 2 m; mainly muddy substrate with sand and organic matter present; canopy cover about 60%; periphyton absent; submerged vegetation absent; emergent vegetation scarce (mainly at the margin); floating vegetation absent.
K	Tirimbina River, N1	10°24'07"	084°06'24"	198	Current strong to moderate (15–50 cm/seg); maximum depth about 1.2 m; maximum width about 6 m; mainly rocky substrate with very little organic matter; canopy cover about 60%; periphyton present; submerged vegetation scarce; emergent vegetation present (mainly at the margin); floating vegetation absent.
L	Tirimbina River, N2	10°24'32"	084°06'28"	193	Current strong to moderate (15–50 cm/seg); maximum depth about 1.5 m; maximum width about 6 m; mainly rocky substrate with very little organic matter; canopy cover about 80%; periphyton present; submerged vegetation scarce; emergent vegetation present (mainly at the margin); floating vegetation absent.
M	Tirimbina River, N3	10°25'08"	084°06'50"	164	Current strong to moderate (15–50 cm/seg); maximum depth about 1.5 m; maximum width about 8 m; mainly rocky substrate with very little organic matter; canopy cover about 75%; periphyton present; submerged vegetation scarce; emergent vegetation present (mainly at the margin); floating vegetation absent.

and applied works, both at local and regional scale. This contribution will serve as a scientific and educational tool to researchers and conservationist, as well as to the public, interested in knowing and working with the fish fauna of the TBR and surrounding areas.

Methods

Field sampling was performed between December 2009 and December 2016. Thirteen localities (Table 1; Fig. 1) were regularly sampled during that period (about 1–5 times per year). Sampling gear included seines, cast nets, and backpack electrofishers; visual censuses also were carried out using mask and snorkel. Collection and research permits (152-2009-SINAC, 181-2010-SINAC, 157-2012-SINAC, 007-2013-SINAC, 004-2015-ACCVC-PI and SINAC-SF-145-2016) were issued by the Costa Rican Ministry of Environment and Telecommunications (MINAET) and the Sistema Nacional de Áreas de Conservación (SINAC). Voucher specimens fixed in about 10% formaldehyde and preserved in about 70% ethanol were deposited at the fish collections of the Museo de Zoología of the University of Costa Rica (UCR), the Museum of Natural Science of the Louisiana State University (LSUMZ) and the Universidad Michoacana de San Nicolás de Hidalgo (CPUM). Species by sampled
Table 2. Fish species recorded within the TBR, by family, order (in parenthesis) and sampling locality (also see Figure 1 and Table 1), with relative abundances (RA) and voucher specimens.

Family/species	Sampling localities (see Table 1)	RA	Voucher
Characidae (CH) 2/4	Atyanax transversus	X	UC UCR 03197
	Atyanax nicaraguensis	X X	AB LSUMZ 14731
	Eretmobrycon soroarius	X X	VC LSUMZ 14732
	Roeboides boucheili	X X	CO CPUM 12762
Bryconidae (CH) 1/1	Brycon costanciense	X X	UC UCR 02936
Heptapteridae (SI) 1/3	Rhamdia guatemalensis	X X	CO UCR 03197
	Rhamdia laterica	X X	CO UCR 03197
	Rhamdia nicaraguensis	X X	CO UCR 03197
Atherinopside (AT) 1/1	Atherinella hubbsi	X X	UN CPUM 12754
Poeciliidae (CY) 6/6	Alfaro cultratus	X X	VC UCR 03197
	Brachyrhaphis parisma	X X	UC UCR 03197
	Phallichthys amates	X X	VC LSUMZ 14734
	Poecilia gillii	X X	AB CPUM 12759
	Priapichthys annectens	X X	CO UCR 03197
	Xenophallus umbritatis	X X	UC UCR 03197
Synbranchidae (SY) 1/1	Synbranchus marmoratus	X	RA UCR 02614
Mugilidae (PE) 2/2	Agonostomus monticola	X X	CO CPUM 12749
	Joturus picardi	X	RA UCR 02257
Cichlidae (PE) 6/9	Amatitlania septemfasciata	X X	VC CPUM 12770
	Amatitlania siquia	X X	VC CPUM 12771
	Cribroheros alliar	X X	CO UCR 03197
	Hypsophrys nicaraguensis	X X	UC CPUM 12767
	Neotroplus nematopus	X X	CO UCR 02614
	Parachromis davii	X X	UC UCR 02540
	Parachromis laoeli	X X	RA UCR 03197
	Parachromis managuensis	X	RA UCR 03197
	Tomocichla tuba	X X	CO LSUMZ 14729
Gobiidae (PE) 2/2	Awaous banana	X	UC UCR 03197
	Sicydium altum	X X	CO CPUM 12776

locality and catalog numbers for voucher specimens are listed in Table 2.

The catalog is arranged phylogenetically at the ordinal and familial levels following Eschmeyer and Fong (2017). Genera and species within each family are arranged in alphabetical order. Number of species (S), genera (G) and families (F) are indicated for each more inclusive taxon. Valid species names, their authorities and year of publication follow Eschmeyer et al. (2017). When available, common English (En) and Spanish (Sp) names are provided after the species name following Bussing (1998), Angulo (2013), and Froese and Pauly (2017). Synonyms, after Angulo et al. (2013), are also listed. Identifications were carried out following Bussing (1998). Diagnosis, coloration pattern and maximum body length (standard length: SL; in mm) are provided for each species according to Bussing (1998), Froese and Pauly (2017), the original diagnosis of the species and to information collected by us in the field. Finally, since no standardized samplings were feasible given the use of different sampling gears according to the conditions of each sampled locality, relative abundances (Table 2) were defined by us considering the number of specimens captured during the entire sampling period [i.e. rare (R) species were those for which we captured less than 5 individuals; uncommon (UC) were those with 5–20 captures; common (CO) were those with more than 20 to about 75 captures; very common (VC) were those with more than 75 to about 150 captures; and abundant (AB) were those with more than 150 captures].

Results

A total of 29 species, 23 genera, 9 families and 6 orders were recorded. The orders represented are (in order of species richness): Perciformes (PE; 3 F/10 G/13 S),
Cyprinodontiformes (CY; 1 F/6 G/6 S), Characiformes (CH; 2 F/4 G/5 S), Siluriformes (SI; 1 F/1 G/3 S), Atheriniformes (AT; 1 F/1 G/1 S), and Synbranchiformes (SY; 1 F/1 G/1 S). The families represented are (in order of species richness): Cichlidae (6 G/9 S), Poeciliidae (6 G/6 S), Characidae (3 G/4 S), Heptapteridae (1 G/3 S), Gobiidae (2 G/2 S), Mugilidae (2 G/2 S), Atherinopsidae (1 G/1 S), Bryconidae (1 G/1 S) and Synbranchidae (1 G/1 S).

Four species were listed as rare, 6 as uncommon, 11 as common, 5 as very common, and 2 as abundant. Sampling localities were usually dominated by Poecilia gillii (Poeciliidae) and/or Astyanax nicaraguensis (Characidae), with exception of the sites H, I, and J in which only 3 or 4 species of poeciliids (Brachyraphis parismina, Phallichthys amates, Poecilia gillii, and Priapichthys annectens) were recorded. The site G was the most diverse with 25 species recorded, followed by the sites D and L with 22 and 21 species, respectively.

According to their supposed tolerance to salinity (see Myers 1949), only 8 species (27.5%) are primary or obligate freshwater, while the vast majority (21 species; 72.5%) are secondary freshwater. All species herein listed are native from Costa Rica and the Sarapiqui river basin, i.e. no exotic and/or invasive species were recorded. All species with exception of Agonostomus monticola are classified as Data Deficient according to the International Union for Conservation of Nature (IUCN) Red List categories and criteria (IUCN 2016). Agonostomus monticola, with a postulated distribution ranging from southeast United States to Venezuela (both versants, Pacific and Atlantic), including the Cocos and Galapagos Islands (Bussing 1998), is classified as Least Concern, showing stable populations trends.

Order Characiformes (2 F/4 G/5 S)
Family Characidae (3 G/4 S)

(1) Astyanax bransfordii (Gill 1877: 190); Longjaw tetra (En), Sardina picuda (Sp)

Figure 2A
Branchsynus bransfordii (Gill 1877: 190)—Angulo et al. (2013): 991.

Body elongate and moderately deep; snout length about equal or usually larger than eye diameter; both jaws of equal length, usually elongate; premaxillary teeth unicuspoid and enlarged; nape usually convex or straight; fins without strong spines; a single dorsal fin; adipose fin present, its base shorter than the base of the dorsal fin; caudal fin forked; general coloration white silvery, darker dorsally, usually olive gray, and paler, usually white, ventrally, with a gray lateral band; caudal blotch black and rhomboid, mainly on peduncle and caudal fin base; fins usually transparent, in some specimens, the anal fin can be (partially) light red or rose and the caudal fin orange or red with the middle rays black; maximum body length ca 150 mm SL.

(2) Astyanax nicaraguensis Eigenmann and Ogle 1907: 23; Nicaraguan tetra (En), Sardina (Sp)

Figure 2B
Astyanax aeneus (Günther 1860): 319—Angulo et al. (2013): 991, in part.

Body elongate and moderately deep; snout length usually shorter than the eye diameter; both jaws of equal length, not enlarged; premaxillary teeth multicuspid, usually not enlarged; nape usually convex or straight; fins without strong spines; a single dorsal fin; adipose fin present, its base shorter than the base of the dorsal fin; caudal fin forked; general coloration white silvery, darker dorsally, usually greenish brown, and paler, usually pearl white, ventrally, with a gray lateral band; humeral blotch dark and vertically elongate; caudal blotch black and rhomboid, mainly on peduncle and caudal fin base; fins usually transparent with little dark pigment, in some specimens, the anal fin can be (partially) red, orange and/or yellow; maximum body length ca 140 mm SL.

(3) Eretmobrycon scleroparius (Regan 1908: 455); Creek tetra (En), Sardinilla de quebrada (Sp)

Figure 2C
Brachyonamericanus scleroparius (Regan 1908): 455—Angulo et al. (2013): 992.

Body elongate and moderately deep; snout length usually shorter than the eye diameter; both jaws of equal length, not enlarged; teeth multicuspid, usually not enlarged; nape usually convex or straight; fins without strong spines; a single dorsal fin; adipose fin present, its base shorter than the base of the dorsal fin; caudal fin forked; general coloration white silvery, darker dorsally, usually moss green, and paler, usually pearl white (orange or red in mature specimens), ventrally, with a diffuse violet spot present on the opercle, in live specimens, and a silvery yellow lateral band; humeral blotch dark and vertically elongate; caudal blotch black and rhomboid, mainly on peduncle and caudal fin base; fins usually orange-yellow with little dark pigment; maximum body length ca 110 mm SL.

(4) Roeboides bouchellei Fowler 1923: 25; Crystal tetra (En), Sardinilla (Sp)

Figure 2D
Brachyonamericanus bouchellei Fowler 1923: 25—Angulo et al. (2013): 991.

Body moderately elongate and moderately deep, strongly compressed; snout length usually shorter than the eye diameter; both jaws of equal length, not enlarged; 2 pairs of external teeth on premaxillary; nape concave; fins without strong spines; a single dorsal fin; adipose fin present, its base shorter than the base of the dorsal fin; anal fin very long with 42–50 rays; caudal fin forked; general coloration white silvery, darker dorsally, usually greenish yellow-green, and paler, usually pearl white, ventrally; fins usually transparent, yellowish (or light orange) in some specimens, and with black margins; maximum body length ca 105 mm SL.

Family Bryconidae (1 G/1 S)

(5) Brycon costaricensis Angulo and Gracian-Negrete 2013: 258; Machaca (En/Sp)

Figure 2E
Brachyonamericanus costaricensis Angulo and Gracian-Negrete 2013: 258; Machaca (En/Sp)

Body elongate, robust, fusiform; snout length usually shorter than the eye diameter; upper jaw in advance of...
Figure 2. Species of the Characiformes in the TBR. A. *Astyanax bransfordii* (Gill, 1877, upper: adult specimen, about 105 mm SL, lower: detail of the snout (elongate and with unicuspid teeth). B. *Astyanax nicaraguensis* Eigenmann & Ogle, 1907, upper: adult specimen, about 100 mm SL, lower: adult specimen, about 80 mm SL. C. *Eremobrycon scleroparius* (Regan, 1908), upper: adult specimen, about 65 mm SL, lower: adult specimen, about 95 mm SL. D. *Roeboides bouchelli* Fowler, 1923, upper: juvenile specimen, about 42 mm SL, middle: adult specimen, about 85 mm SL, lower: adult specimen, about 93 mm SL. E. *Brycon costaricensis* Angulo & Gracian-Negrete, 2013, upper: juvenile specimen, about 120 mm SL, middle: adult specimen, about 190 mm SL, lower: detail of the snout (upper jaw in advance of lower jaw).
lower jaw; upper jaw with 3 or 4 rows of teeth; premaxillary teeth multicuspids, usually not enlarged; nape usually convex or straight; fins without strong spines; a single dorsal fin; adipose fin present, its base shorter than the base of the dorsal fin; caudal fin forked; general coloration silvery, olive dorsally (more prominent in larger specimens) and white ventrally; fins usually transparent, pinkish or yellowish in some specimens (especially the dorsal and caudal fins); maximum body length ca 500 mm SL.

Order Siluriformes (1 F/1 G/3 S)
Family Heptapteridae (1 G/3 S)

(6) Rhamdia guatemalensis (Günther 1864: 122); Catfish (En), Barbudo (Sp)

Figure 3A

Body very elongate; 3 pairs of barbels, maxillary barbels relatively long (usually extending beyond the pectoral fin origin, sometimes passing the caudal fin origin); scales absent; fins with strong spines; serrations present on both margins of the pectoral fin spine; a single dorsal fin; adipose fin present, its base larger than the base of the dorsal fin and occupying about 75% or more of the distance between the dorsal fin insertion and the origin of the caudal fin; caudal fin forked; general coloration brownish gray, darker dorsally, usually dark gray to tan, and paler, usually yellowish white or almost white, ventrally; the dorsal and caudal fins are dusky and the paired and anal fins are almost transparent or white; maximum body length ca 270 mm SL.

(7) Rhamdia laticauda (Kner 1858: 420); Catfish (En), Barbudo (Sp)

Figure 3B

Body very elongate; 3 pairs of barbels, maxillary barbels not extending beyond the pectoral fin origin; scales absent; fins with strong spines; serrations present only on the inner (posterior) margin of the pectoral fin spine, or absent; a single dorsal fin; adipose fin present, its base larger than the base of the dorsal fin and occupying about 50% of the distance between the dorsal fin insertion and the origin of the caudal fin; caudal fin forked; general coloration brownish gray, darker dorsally, usually dark gray to tan, and paler, usually white, ventrally; the dorsal and caudal fins are dusky and the paired and anal fins are almost transparent or white; maximum body length ca 225 mm SL.

(8) Rhamdia nicaraguensis (Günther 1864: 125); Catfish (En), Barbudo (Sp)

Figure 3C

Body very elongate; 3 pairs of barbels, maxillary barbels usually extending beyond the dorsal fin origin up to the pelvic fin insertion; scales absent; fins with strong spines; serrations present only on the inner (posterior) margin of the pectoral fin spine, or absent; a single dorsal fin; adipose fin present, its base larger than the base of the dorsal fin and occupying about 75% or more of the distance between the dorsal fin insertion and the origin of the caudal fin; caudal fin forked; general coloration brownish gray, darker dorsally, usually dark gray to tan, and paler, usually yellowish white or almost white, ventrally; the dorsal and caudal fins are dusky and the paired and anal fins are almost transparent, or white lightly pigmented; maximum body length ca 260 mm SL.

Order Atheriniformes (1 F/1 G/1 S)
Family Atherinopsidae (1 G/1 S)

(9) Atherinella hubbsi (Bussing 1979: 400); Silverside (En), Pejerrey (Sp)

Figure 3D

Body very elongate and compressed; 2 dorsal fins; anal fin spine weak and flexible; caudal fin forked; general coloration light yellowish (almost transparent), darker dorsally, usually yellowish olive, and paler, usually white, ventrally, with a conspicuous silver stripe (usually black or dark brown bordered) along the mid-side of the body in both live and preserved specimens; fins usually transparent or light yellow (generally the dorsal and the caudal fins); maximum body length ca 90 mm SL.

Order Cyprinodontiformes (1 F/6 G/6 S)
Family Poeciliidae (6 G/6 S)

(10) Alfaro cultratus (Regan 1908: 458); Knife livebearer (En), Olomina (Sp)

Figure 3E

Body elongate, moderately deep and deeply compressed; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified into a short gonopodium not extending beyond the dorsal fin insertion; ventral margin of the caudal peduncle sharp and compressed, scales forming a sheathed keel; caudal fin rounded; general coloration yellowish gray or pale yellow (almost transparent in some specimens) with metallic blue/green flashes in the abdomen and a thin dark line running along the entire length of the body; fins transparent or yellow; maximum body length ca 65 mm SL.

(11) Brachyrhaphis parismina (Meek 1912: 86); Parismina livebearer (En), Olomina (Sp)

Figure 3F

Body elongate and moderately deep; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified into a long gonopodium usually extending beyond the dorsal fin insertion; caudal fin rounded; general coloration yellowish gray with a fine black line along the mid-side of the body; fins usually transparent or yellow; maximum body length ca 40 mm SL.

(12) Phallichthys amates (Miller 1907: 108); Merry widow (En), Olomina (Sp)

Figure 4A

Body moderately elongate and deep, almost rhomboid, moderately compressed; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified
Figure 3. Species of the Siluriformes, Atheriniformes and Cyprinodontiformes (in part) in the TBR. A. *Rhamdia guatemalensis* (Günther, 1864), upper: adult specimen, about 160 mm SL, middle: adult specimen, about 142 mm SL, dorsal view, lower: detail of the head. B. *Rhamdia laticauda* (Kner, 1858), upper: adult specimen, about 98 mm SL, dorsolateral view, middle: adult specimen, about 98 mm SL, lower: detail of the head, dorsolateral view. C. *Rhamdia nicaraguensis* (Günther, 1864), upper: adult specimen, about 115 mm SL, lower: adult specimen, about 100 mm SL, dorsal view. D. *Atherinella hubbsi* (Bussing, 1979), upper: adult specimen, about 78 mm SL, lower: adult specimen, about 90 mm SL. E. *Alfaro cultratus* (Regan 1908), upper: adult specimen, about 55 mm SL, female, lower: adult specimen, about 60 mm SL, male (parasite by the trematode *Uvulifer ambiguus* encysted in skin). F. *Brachyrhaphis parismina* (Meek, 1912), adult specimen, about 38 mm SL.
into a long gonopodium extending to the caudal fin origin; caudal fin rounded; general coloration yellowish gray or pale yellow (almost transparent in some specimens) with bluish or purplish highlights; in some specimens, scales bordered by black, giving a cross-hatch pattern to the body (this pattern is more intensive along the mid-line of the flanks and sometimes resembles a series of X’s along the body); females usually with prominent black or purple blotch covering base of pelvic and/or anal fins; fins usually transparent or yellowish; maximum body length ca 70 mm SL.

(13) *Poecilia gillii* (Kner 1863: 224); Molly (En), Olomina panzona (Sp)
Figure 4B

Body elongate and moderately deep, robust; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified into a short gonopodium not extending beyond the dorsal fin insertion; caudal fin truncate to rounded; general coloration yellowish gray or pale yellow, darker dorsally, usually yellowish or grayish brown, and paler, usually yellowish white or almost white with bluish or greenish highlights, ventrally; sides with 6–8, usually 7, rows of yellow dots (1 per scale); fins usually transparent or yellow, red, principally the dorsal fin, in a few specimens); in some males the dorsal and caudal fins have black spots or blotches on the base; maximum body length ca 100 mm SL.

(14) *Priapichthys annectens* (Regan 1907: 259); Livebearer (En), Olomina (Sp)
Figure 4C

Body elongate and moderately deep; teeth conical and well fixed in the jaws; jaw bones firmly united; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified into a long gonopodium extending beyond the dorsal fin insertion; caudal fin rounded; general coloration grayish yellow, darker dorsally, usually brownish yellow, and paler, usually yellowish white or almost white with bluish or purplish highlights, ventrally, and with 6–12, usually 6–8 dark bars on the sides; the scales are conspicuously bordered by black, giving a cross-hatch pattern to the body (this pattern is more intensive along the mid-line of the flanks and sometimes resembles a series of X’s along the body); fins usually transparent, yellowish or orange in some specimens, with membranes of the dorsal fin base with elongate black blotches and the distal portion usually orange; maximum body length ca 60 mm SL.

(15) *Xenophallus umbratilis* (Meek 1912: 390); Livebearer (En), Olomina (Sp)
Figure 4D

Body elongate and moderately deep; lateral line reduced to a series of individual pits along side of body; fins without spines; a single dorsal fin; males with anal fin modified into a long gonopodium extending beyond the dorsal fin insertion; gonopodium asymmetric, either dextral or sinistral; caudal fin rounded; general coloration grayish yellow, darker dorsally, usually brownish yellow, and paler, usually yellowish white or almost white ventrally; juveniles and adult males with 5–10 black bars on the flanks; fins usually transparent or yellowish, the dorsal fin have the first ray black and a wedge-shaped black base, usually with a dusky posterior margin (in males, the remaining fin is usually brilliant yellow); maximum body length ca 45 mm SL.

Order Synbranchiformes (1 F/1 G/1 S)
Family Synbranchidae (1 G/1 S)

(16) *Synbranchus marmoratus* Bloch 1795: 87; Marbled swamp eel (En), Anguila de pantano (Sp)
Figure 4E

Body elongate, eel-like; scales absent; pectoral, pelvic and caudal fins absent; dorsal and anal fins vestigial (reduced to a rayless ridge); general coloration grayish brown or yellowish brown, darker dorsally and paler ventrally, usually with dark speckles of variable size ventrally; maximum body length ca 1500 mm SL.

Order Perciformes (3 F/10 G/13 S)
Family Mugilidae (1 G/2 S)

(17) *Agonostomus monticolus* Bancroft 1834: 367; Mountain mullet (En), Tepemechín (sp)
Figure 5A

Body elongate, robust, fusiform; mouth about terminal; fins with strong spines; 2 dorsal fins; second dorsal fin rays 9; anal fin rays 10; caudal fin forked; general coloration gray olive, darker dorsally, and paler, usually yellowish white ventrally; dark scale edges form crisscross lines on upper body; fins usually yellowish; maximum body length ca 300 mm SL.

(18) *Joturus pickardi* Poey 1860: 263; Bobo mullet (En), Bobo (Sp)
Figure 5B

Body elongate, robust, fusiform; mouth ventral (below a tumid, fleshy and projecting snout); fins with strong spines; 2 dorsal fins; second dorsal fin rays 10 or rarely 11; anal fin rays 11; caudal fin forked or lunate; general coloration silvery to grey green or green olive in adults, and silvery white, with dark stripes on dorsal, anal and caudal fins in juveniles; fins usually transparent, pinkish in some adult specimens; maximum body length ca 700 mm SL.

Family Cichlidae (6 G/9 S)

(19) *Amatitlania septemfasciata* (Regan 1908: 461); Seven stripe cichlid (En), Mojarra (Sp)
Figure 5C

Cryptoheros septemfasciatus (Regan 1908: 461—Angulo et al. (2013): 1005.

Body moderately elongate and deep; predorsal profile of head slightly curved, snout relatively short and convex, usually ca 33–43% of head length; mouth terminal, rarely inferior, relatively short, usually <30% of head length;
Figure 4. Species of the Cyprinodontiformes (continuation) and Synbranchiformes in the TBR. A. Phallichthys amates (Miller, 1907), upper: adult specimen, about 60 mm SL, male, lower: adult specimen, about 58 mm SL, female. B. Poecilia gillii (Kner, 1863), upper: adult specimen, about 75 mm SL, male, yellow fins form, middle-upper: adult specimen, about 78 mm SL, male, red fins form, middle-lower: adult specimen, about 60 mm SL, female; lower: adult specimen, about 70 mm SL, female. C. Priapichthys annectens (Regan, 1907), adult specimen, about 42 mm SL, male, lower: adult specimen, about 38 mm SL, female. D. Xenophallus umbratilis (Meek, 1912), adult specimen, about 35 mm SL, female. E. Synbranchus marmoratus Bloch, 1795, juvenile specimen, about 320 mm total length.
Figure 5. Species of the Perciformes (Mugilidae and Cichlidae, in part) in the TBR. A. *Agonostomus monticola* (Bancroft, 1834), upper: adult specimen, about 140 mm SL, lower: adult specimen, about 155 mm SL. B. *Joturus pichardi* Poey, 1860, upper: juvenile specimen, about 135 mm SL, middle: detail of the head (mouth ventral, below a tumid, fleshy and projecting snout), lower: detail of the mouth. C. *Amatitlania septemfasciata* (Regan, 1908), upper: adult specimen, about 66 mm SL, female, middle: adult specimen, about 75 mm SL, male, lower: adult specimen, about 70 mm SL, mature female. D. *Amatitlania siquia* Schmitter-Soto, 2007, upper: adult specimen, about 64 mm SL, mature female, lower: adult specimen, about 53 mm SL, mature male.
maxillary not extending to below the eye; jaws of equal length; teeth conical and cylindrical, somewhat enlarged, but no large canines; lateral line conspicuous, divided in 2 straight overlapping sections; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration maroon-brown (males) or grayish brown (females), darker dorsally and paler ventrally; iris bluish; opercular blotch absent; flanks usually with 6 diffuse black vertical bars, the third usually more prominent and forming an oval blotch; first vertical bar not Y-shaped; median fins solid maroon brown and pelvic fins dusky; caudal blotch mainly on caudal peduncle; during the reproductive season, the females becomes bluish gray on the lower half of the head and the abdomen, a large golden/orange area appears on the middle of the side, the median fins change to gray, the spinous dorsal fin shows a long black blotch with golden edges and the anal fin acquires blue tints; maximum body length ca 100 mm SL.

(20) *Amatitlania siquia* Schmitter-Soto 2007: 54; Honduran red point cichlid (En), Mojarrita (Sp)

Figure 5D

Body moderately elongate and deep; predorsal profile of head usually straight or slightly curved, relatively short and convex, usually ca 33–43% of head length; mouth terminal, rarely inferior or ventral, relatively short, usually <30% of head length; maxillary not extending to below the eye; jaws of equal length, rarely upper jaw in advance of lower jaw; teeth conical and cylindrical, somewhat enlarged, but no large canines; lateral line conspicuous, divided in two straight overlapping sections; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration tan or brownish purple, darker dorsally and paler ventrally; iris usually golden or yellowish; opercular blotch present; flanks usually with 6–8 relatively well defined black vertical bars; first vertical bar Y-shaped; fins pale, with the dark bars extending partially onto the dorsal and anal fins; caudal blotch mainly on caudal fin base; during the reproductive season, in the females, the striped pattern is intensified, the lower part of the head in darkened and a golden coloration appears on the scales of the lower half of the sides; maximum body length ca 100 mm SL.

(21) *Cribroheros alfari* (Meek 1907: 148); Pastel cichlid (En), Mojarrita (Sp)

Figure 6A

Amphilophus alfari (Meek 1907): 148—Angulo et al. (2013): 1004.

Body moderately elongate and deep; predorsal profile of head usually straight or slightly curved, snout relatively long, pointed, straight and produced, usually ca 43–53% of head length; mouth terminal, rarely inferior or ventral, relatively short, usually <30% of head length; maxillary not extending to below the eye; jaws of equal length, rarely upper jaw in advance of lower jaw; teeth conical and cylindrical, somewhat enlarged, but no large canines; lateral line conspicuous, divided into 2 straight overlapping sections; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration olive brown, darker dorsally and paler, usually reddish white, ventrally, with a dark band between eye and lateral line, and 3–5 brown vertical bars, separated by paler spaces, on posterior portion of the flanks; head and body with irregular iridescent blue spots or vermiculations; median fins tan, in some specimens the dorsal and caudal fins are covered with evenly distributed blue dots; edge of the dorsal fin bicolored (margin red with a submarginal blue line below) and edge of anal fin olive brown; pectoral and pelvic fins usually transparent, gray, yellowish, or reddish; maximum body length ca 150 mm SL.

(22) *Hypsophrys nicaraguensis* (Günther 1864: 153); Butterfly cichlid (En), Moga amarilla (Sp)

Figure 6B

Body moderately elongate and deep; predorsal profile of head usually curved, snout convex, rarely pointed; mouth inferior, usually ventral; teeth of outer rows compressed antero-posteriorly (incisors), at least at the tip; lateral line conspicuous, divided into 2 straight overlapping sections; fins with strong spines; a single dorsal fin; anal fin spines 6–9; caudal fin truncate; general coloration grayish yellow, with the mid-body usually with a large black blotch on the mid-side crossed or not by a dark lateral stripe; upper portion of the snout usually yellowish or in some adult specimens grayish blue-green, without black stripes joining the eyes; iris usually yellowish; fins usually grayish yellow; maximum body length ca 165 mm SL.

(23) *Neetroplus nematopus* (Günther 1867: 603); Poor man’s trophus (En), Moga (Sp)

Figure 6C

Hypsophrys nematopus (Günther 1867): 603—Angulo et al. (2013): 1005.

Body elongate and moderately deep; predorsal profile of head usually curved, snout convex, rarely pointed; mouth inferior, usually ventral; teeth with flattened or truncate tips; lateral line conspicuous, divided in 2 straight overlapping sections; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration grayish brown or grayish olive, usually with 7 dark bars on the flanks in juveniles and a broad dark bar on the mid-body in adults and some juveniles (during breading season this pattern is reversed, that is, a white bar appears on a dark gray background); median fins brown; pectoral fins clear and pelvic fins dusky; iris usually bluish, silvery in a few specimens; maximum body length ca 140 mm SL.

(24) *Parachromis dovii* (Günther 1864: 154); Rainbow bass (En), Guapote lagunero (Sp)

Figure 6D

Body elongate, greatest body depth smaller than head length; predorsal profile of head usually straight or slightly curved, snout usually pointed; mouth terminal, relatively large, usually ca 30–40% of head length; maxillary extending to below eye; lower jaw usually in advance of upper jaw; teeth enlarged, caniniform; posterior edge of opercle almost straight; total gill rakers 9–13; lateral
Figure 6. Species of the Perciformes (continuation: Cichlidae, in part) in the TBR. A. *Cribroheros alfari* (Meek, 1907), upper: adult specimen, about 70 mm SL, lower: adult specimen, about 75 mm SL. B. *Hypsophrys nicaraguensis* (Günther, 1864), upper: juvenile specimen, about 52 mm SL, middle: juvenile specimen, about 55 mm SL, lower: adult specimen, about 106 mm SL. C. *Neetroplus nematopus* (Günther, 1867), upper: juvenile specimen, about 68 mm SL, lower: adult specimen, about 112 mm SL. D. *Parachromis dovii* (Günther, 1864), upper: juvenile specimen, about 75 mm SL, middle: adult specimen, about 118 mm SL, lower: detail of the head (mouth terminal, relatively large, maxillary extending to below the eye, lower jaw usually in advance of upper jaw, teeth enlarged, caniniform).
line conspicuous, divided into 2 straight overlapping sections; longitudinal scales 31–34; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration grayish brown or grayish olive (light golden, yellowish, or bluish gray in some adult specimens), darker dorsally and paler, usually yellowish white, ventrally, with a black band between eye and caudal fin and another band between eye and margin of preopercle, 6 or 7 pale bars on flanks and a dark blotch on the base of caudal fin; males usually covered by tiny black spots from head to caudal fin; fins grayish brown or yellowish brown; maximum body length ca 700 mm SL.

(25) *Parachromis loisellei* (Bussing 1989: 153); Loiselle’s cichlid (En), Guapote Amarillo (Sp)

Figure 7A

Body elongate, greatest body depth equal to or greater than head length; predorsal profile of head usually straight or slightly curved, snout usually pointed; mouth terminal, relatively large, usually ca 30–40% of head length; maxillary extending to below eye; lower jaw usually in advance of upper jaw; teeth enlarged, caniniform; posterior edge of opercle almost straight; total gill rakers 14 or 15; lateral line conspicuous, divided into 2 straight overlapping sections; longitudinal scales 27–31; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration grayish brown, brownish golden or yellowish brown, darker, usually grayish brown with or without golden iridescence, dorsally, presenting the most intense colors below lateral band dark band (which is formed by a series of irregular black or dark brown squares); there is another dark oblique band between eye and lower opercle; fins gray brown; males distinguished by having black spots on median fins and a reticulate pattern on body; maximum body length ca 185 mm SL.

(26) *Parachromis managuensis* (Günther 1867: 602); Jaguar guapote (En), Guapote Amarillo (Sp)

Figure 7B

Body elongate, greatest body depth smaller than head length; predorsal profile of head usually straight or slightly curved, snout usually pointed; mouth terminal, relatively large, usually ca 30–40% of head length; maxillary extending to below eye; lower jaw usually in advance of upper jaw; teeth enlarged, caniniform; posterior edge of opercle with a conspicuous lobe at its lower angle; total gill rakers 9–13; lateral line conspicuous, divided into 2 straight overlapping sections; longitudinal scales 27–31; fins with strong spines; a single dorsal fin; caudal fin truncate; general coloration grayish brown, brownish golden or yellowish brown; maximum body length ca 140 mm SL.

Identification key to the fishes from the Tirimbina Biological Reserve, La Virgen de Sarapiquí, Heredia, Costa Rica

1 Body eel-like; scales absent; pectoral, pelvic and caudal fins absent; dorsal and anal fins vestigial, reduced to a rayless ridge (Synbranchidae)

1′ Body not eel-like; scales present (absent in...
Figure 7. Species of the Perciformes (continuation: Cichlidae, in part, and Gobiidae) in the TBR. A. *Parachromis loisellei* (Bussing, 1989), upper: juvenile specimen, about 67 mm SL, brown form, middle: adult specimen, about 78 mm SL, brown form, lower: adult specimen, about 92 mm SL, yellow form. B. *Parachromis managuensis* (Günther, 1867), upper: juvenile specimen, about 82 mm SL, middle: juvenile specimen, about 84 mm SL, lower: adult specimen, about 230 mm SL. C. *Tomocichla tuba* (Meek, 1912), upper: juvenile specimen, about 76 mm SL, lower: adult specimen, about 110 mm SL. D. *Awaous banana* (Valenciennes, 1837), upper: juvenile specimen, about 82 mm SL, lower: dorsal view. E. *Sicydium altum* Meek, 1907, upper: adult specimen, about 72 mm SL, middle: adult specimen, about 78 mm SL, lower: adult specimen, about 74 mm SL, detail of the pelvic fins.
members of Heptapteridae); all fins present and well developed .. 2

2(1') Pelvic fins united into an adhesive disc (Gobiidae) .. 3

2' Pelvic fins separated, not in form of an adhesive disc .. 4

3(2) 2 or 3 rows of teeth on both jaws, conical; gill rakers present; pelvic adhesive disc oval, longer than width; general coloration yellowish brown .. **Awaous banana** (Fig. 7D)

3' 2 rows of teeth on both jaws, minute and compressed in upper jaw, recurved and conical in lower jaw; gill rakers absent; pelvic adhesive disc almost circular, or if oval, wider than long; general coloration greenish gray .. **Sicydium altum** (Fig. 7E)

4(2') 3 pairs of barbels; scales absent; adipose fin present, its base larger than base of dorsal fin (Heptapteridae) .. 5

4' Barbels absent; scales present; adipose fin absent, if present (in members of Characidae and Bryconidae), its base shorter than base of dorsal fin .. 7

5(4) Maxillary barbels relatively long (usually extending beyond pectoral fin origin, sometimes passing caudal fin origin); serrations present on both margins of pectoral fin spine ... **Rhamdia guatemalensis** (Fig. 3A)

5' Maxillary barbels relatively short (usually not extending beyond pectoral fin origin, or if passing, not passing pelvic fin insertion; serrations present only on inner (posterior) margin of pectoral fin spine, or absent .. 6

6(5') Maxillary barbels usually extending beyond dorsal fin origin up to pelvic fin insertion; adipose fin base relatively long, occupying ca ≥75% of distance between dorsal fin insertion and origin of caudal fin. **Rhamdia nicaraguensis** (Fig. 3C)

6 Maxillary barbels not extending beyond pectoral fin origin; adipose fin base relatively short, occupying ca 50% of distance between dorsal fin insertion and origin of caudal fin .. **Rhamdia laticauda** (Fig. 3B)

7(4') Adipose fin present; general coloration silvery (Characiniformes) 8

7' Adipose fin absent; general coloration variable, usually not silvery (except in Atherinopsidae) .. 12

8(7) Body strongly compressed; 2 pairs of external teeth on premaxillary; nape concave; anal fin very long with 42–50 rays .. **Roeboides bouchellei** (Fig. 2D)

8' Body robust, not strongly compressed; no external teeth on premaxillary; nape convex or straight; anal fin relatively short, usually with <42 rays .. 9

9(8') Body usually very elongate; upper jaw in advance of lower jaw; upper jaw with 3 or 4 rows of teeth; maximum body length ca 500 mm SL (Bryconidae) **Brycon costaricensis** (Fig. 2E)

9' Body usually not very elongate; both jaws of equal length; upper jaw with 1 or 2 rows of teeth; maximum body length ca 150 mm SL 10

10(9') Snout length ≥ eye diameter; jaws usually elongate, teeth unicusp, and enlarged .. **Astyanax transversii** (Figure 2A)

10' Snout length usually < eye diameter; jaws not elongate; teeth multicusp, usually not enlarged .. 11

11(10') Body usually less robust and elongated; third infraorbital deep and not in contact with lower limb of preopercle, yields on pressure by dissecting needle; no spots on opercle; caudal peduncle usually thin ... **Astyanax nicaraguensis** (Fig. 2B)

11' Body usually more robust and elongated; third infraorbital deep and in contact with lower limb of the preopercle, does not yield when depressed; a diffuse violet spot present on opercle in live specimens; caudal peduncle usually thick ... **Eretmobrycon scleroparius** (Fig. 2C)

12(7') 2 dorsal fins (first dorsal fin small and usually inconspicuous in Atherinopsidae); caudal fin forked or lunate .. 13

12' A single dorsal fin; caudal fin truncate or rounded .. 15

13 Body very elongate and compressed; eye size ca 40% of head length; anal fin spine weak and flexible; a silver stripe present along mid-side of body in both live and preserved specimens; maximum body length ca 70 mm SL (Atherinopsidae) .. **Atherinella hubbsi** (Fig. 3D)

13' Body not very elongate and compressed, robust; eye size ca 25% of head length; anal fin spines (2) strong; no silver stripe along mid-side of body; maximum body length ca 700 mm SL (Mugilidae) .. 14

14(13') Mouth about terminal; second dorsal fin rays 9; anal fin rays 10; general coloration gray olive, darker dorsally, and paler, usually yellowish white ventrally; dark scale edges form crisscross lines on upper body; fins usually yellowish ... **Agonostomus monticola** (Fig. 5A)

14' Mouth ventral; second dorsal fin rays 10 or rarely 11; anal fin rays 11; general coloration silvery to grey green in adults, silvery white, with dark stripes on dorsal, anal and caudal fins in juveniles; fins usually transparent, pinkish in some adult specimens **Joturus pichardi** (Fig. 5B)

15(12') Body elongate and moderately deep; lateral line reduced to a series of individual pits along side of body; fins without spines; males with anal fin modified into a gonopodium; caudal fin usually rounded; maximum body length ca 105 mm SL, usually less than 60 mm SL (Poeciliidae) .. 16

15' Body moderately elongate and deep; lateral
line conspicuous, divided into 2 straight overlapping sections; fins with strong spines; males without gonopodium; caudal fin usually truncate; maximum body length ca 700 mm SL, usually >60 mm SL (Cichlidae) .. 21

16(15) Body deeply compressed; ventral margin of the caudal peduncle sharp and compressed, scales forming a sheathed keel .. Alfaro cultratus (Fig. 3E)

16′ Body not deeply compressed; ventral margin of caudal peduncle rounded with a series of scales along mid-line ... 17

17(16′) Anal fin with a black blotch mainly covering its antero-basal portion; males with an moderately long gonopodium, usually 27–29% of SL .. Brachyrhaphis parismina (Fig. 3F)

17′ Anal fin clear or dusky, without a black blotch covering antero-basal portion; males with relatively long gonopodium, usually >29% of SL, or a relatively short gonopodium, usually <27% of SL ... 18

18 Males with asymmetric gonopodium, either dextral or sinistral; dorsal fin with first ray black and with wedge-shaped black base, usually with dusky posterior margin, in males the remaining fin is brilliant yellow; juveniles and adult males with 5–10 black bars on flanks .. Xenophallus umbratilis (Fig. 4D)

18′ Males with symmetric gonopodium; dorsal fin not as described above; no black bars on sides ... 19

19(18′) Teeth conical and well fixed in jaws; jaw bones firmly united; scales conspicuously bordered in black, giving a cross-hatch pattern to body (this pattern more intensive along mid-line of flanks and sometimes resembles a series of X’s along body); membranes of dorsal fin base with elongate black blotches; distal portion of dorsal fin usually orange Priapichthys annectens (Fig. 4C)

19′ Teeth compressed and not firmly fixed in jaws; jaw bones weakly united; scales usually not as described above (cross-hatching pattern present in some specimens of Phallichthys amates); dorsal fin without marks, or if present, not as described above .. 20

20(19′) Body moderately elongate, deep, almost rhomboid, moderately compressed; males with a long gonopodium, usually extending to caudal fin origin; sides usually uniformly colored, without rows of yellow dots; dorsal fin usually without spotting; females usually with a prominent black or purple blotch covering base of pelvic and/or anal fins; caudal fin usually not profusely spotted, even on its base .. Phallichthys amates (Fig. 4A)

20′ Body elongate and moderately deep, robust; males with a short gonopodium, rarely extending beyond dorsal fin insertion; sides with 6–8, usually 7, rows of yellow dots (1 per scale); dorsal fin usually with black spots and/or a black blotch on its base; females usually without a dark blotch covering base of pelvic and/or anal fins; caudal fin profusely spotted on base, often on entire fin .. Poecilia gillii (Fig. 4B)

21(15′) Predorsal profile of head usually curved, snout convex, rarely pointed; mouth inferior, usually ventral; teeth of outer rows compressed antero-posteriorly (incisors), at least at the tip 22

21′ Predorsal profile of head usually straight or slightly curved, snout usually pointed or convex; mouth terminal, rarely inferior or ventral; teeth of outer rows sharp, conical and cylindrical ... 24

22(21) Teeth with flattened or truncate tips; iris usually bluish, silvery in a few specimens; mid-body with a broad dark bar, on a grayish brown background (during breeding season pattern reversed, that is, a white bar appears on a dark gray background Neotropus nematopus (Fig. 6C)

22′ Teeth spatulate with rounded tips; iris usually yellowish or reddish; mid-body dark bar absent ... 23

23(22′) Anal fin spines 6–9; upper portion of the snout usually yellowish or in some adult specimens grayish blue-green, without black stripes joining the eyes; iris usually yellowish; mid-body usually with a large black blotch on mid-side crossed or not by a dark lateral stripe .. Hypsophrys nicaraguensis (Fig. 6B)

23′ Anal fin spines 4 or 5; upper portion of the snout usually gray olive and with 2 black stripes joining the eyes; iris usually reddish; mid-body black blotch absent, in turn, some specimens present 7–10 incomplete dark bars on flanks ... Tomocichla tuba (Fig. 7C)

24(21′) Mouth relatively large, usually ca 30–40% of head length; maxillary extending to below the eye; lower jaw usually in advance of upper jaw; teeth enlarged, caniniform; maximum body length about 700 mm SL .. 25

24′ Mouth relatively short, usually <30% of head length; maxillary not extending to below eye; jaws of equal length, rarely upper jaw in advance of lower jaw; teeth somewhat enlarged, but no large canines; maximum body length ca 150 mm SL .. 27

25(24) Posterior edge of opercle usually with a conspicuous lobe at its lower angle; total gill rakers 14 or 15 ... Parachromis managuensis (Fig. 7B)

25′ Posterior edge of opercle almost straight; total gill rakers 9–13 .. 26

26(25′) Greatest body depth < head length; longitudinal scales 31–34; maximum body length ca 700 mm SL Parachromis dovii (Fig. 6D)

26′ Greatest body depth ≥ head length; longitudinal scales 27–31; maximum body length ca 185 mm
and the most (Linnaeus, in order of importance) are swift waters over rocky bottoms and grassy margins with diversity, measured as the total number of species (Table 1), favors relative fast swimmers (e.g., Astyanax, Agonostomus, Brycon, Eretmobrycon, Joturus, Tomocichla, and Neotropical) and bottom dwellers that fixate to rocks with adhesive discs (e.g., Awaous and Sicydium), as well as relatively small fishes that use the grassy margins as refuge, protection and foraging areas (e.g. Amaiitllania, Parachromis, Poecilia, Rhamdia, etc.). The sites H, I, and J, in contrast, characterized by having clay substrates, slow waters, high concentration of organic matter, and consequently acid waters with little dissolved O$_2$ (Table 1), showed the lowest values of diversity; these environments were dominated by highly tolerant fish species such as Poecilia and Priapichthys (Bussing 1998). These results are consistent with the patterns described by Bussing (1993, 1994) and Angulo and Garita-Alvarado (2013) in environments that share, in general terms, such physical, chemical and structural characteristics.

No exotic species were recorded in this study despite that (1) the zone of La Virgen de Sarapiquí has several small-scale tilapia [Oreochromis niloticus (Linnaeus 1758)] farms, one of them, quite close to the limits of the TBR, and (2) other exotic species, beside to _O. niloticus_ [e.g. the armored catfishes Pterygoplichthys pardalis (Castlenau, 1855) and Hypostomus aspidolepis (Günther 1867), among others], have been reported in neighboring water bodies and areas (Bussing 1998, Angulo and Garita-Alvarado 2013, Angulo et al. 2013). The absence of ideal conditions for the establishment of such species (i.e. the dominance of swift waters over rocky bottoms with depths usually < 1 m) could explain their absence in the sampled localities. Both _Oreochromis_ and _Pterygoplichthys/Hypostomus_ usually prefer calm waters, on sandy or muddy bottoms, steep edges, depths usually greater than 1 m, low concentrations of dissolved oxygen and presence of submerged and/or floating vegetation (Page and Robins 2006, Zambrano et al. 2010, Wakida-Kusunoki and Amador-del Angel 2011). Additional sampling and monitoring is necessary to corroborate this, and, in the case of confirm the presence of such (and another) exotic species in natural water bodies of the area, to assess their possible impacts on the native fauna.

Very few Costa Rican freshwater fish species have been assessed for their conservation status and/or risk of extinction. About 97% of the species herein listed (all except _A. monticolae_) were classified under the IUCN Data Deficient category. Moreover, the information required to develop red lists of the freshwater fishes of the area (and Costa Rica in general) is still meager or in many instances unavailable. Filling gaps in the data is necessary for fish species conservation in many Costa Rican basins because the increased damming of rivers, water diversion, inappropriate land-use, waterway construction, contamination, and introduction of exotic species, among others. Of the species herein listed, at least 4 (_Joturus pichardi_, _Parachromis dovii_, _P. managuensis_, and _Brycon costaricensis_, in order of importance) are subject of (intensive) sport and artisanal fishing, which...
has led to a decline in their populations during the last 20 years (Bussing 1998, Masis-Calvo, M. unpublished data, personal observation of authors). Other species (i.e. *Alfaro cultratus*, *Amatitlania* spp., *Cribroheros alfari*, *Parachromis loisellei*, *Priapichthys annectens*, *Xenophallus umbratilis*, among others) are of importance in the aquarium hobby and industry (Bussing 1998, Angulo and Garita-Alvarado 2013, Angulo 2014), which could lead to unregulated extraction for local and international trade (not verified in this study). In this regard, further research is strongly recommended for the application and improvement of the IUCN regional criteria based on better socio-ecological information.

Acknowledgements

We are grateful to Ana R. Ramírez, Myrna López, the late William Bussing, and the authorities of the Museo de Zoología of the Universidad de Costa Rica, the Centro de Investigación en Ciencias del Mar y Linnmologia of the Universidad de Costa Rica, and the Tirimbina Biological Reserve for encouragement and the use of facilities and equipment. We also are grateful to Aldo Farah, Andres Beita, Bernald Pacheco, Caleb McMahan, Carlos Garita, Derick Herrera, Eloisa Torres, Francisco Álvarez, Geiner Picado (El Danier), Gerardo Umaña, Jennifer Contreras, Marianela Masis, Prosanta Chakrabarty, Roberto Morales, and Wilfredo Matamoros, among others, for assistance in the field. Melquisedec Gamba provided the basic elements necessary for the elaboration of the map in Figure 1. This work was in part possible by the collaboration program between the TBR and the Asociación Zoología of the Universidad de Costa Rica, the Centro de Acuarismo para la Conservación de los Ecosistemas Dulceacuícolas (ACACED; http://www.acaced.org) that partially supported 2 of the authors (AA and BNE). AA also was supported by the Costa Rican Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT; PED-017-2015-1) and by the Partnerships Program for Education and Training of the Organization of American States and the Grupo Coimbra de Universidades Brasileiras (PAEC OEA-GCUB 2014).

Authors’ Contributions

AA drafted the first version of the manuscript. All authors collected data and contributed in the construction and improvement of the manuscript. AA and BNE verified the specimens. AA made part of the map. AA and JMLL took most of the pictures (otherwise the photographic credit is indicated). AA edited the figures.

References

Anderson EP, Pringle CM, Freeman MC (2008) Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí river basin, Costa Rica. Aquatic Conservation 18 (4): 408–417. https://doi.org/10.1002/aqc.882

Angulo A (2014) Nombres comunes y técnicos de los peces de agua dulce de Costa Rica. Revista de Filología y Lingüística de la Universidad de Costa Rica 39 (2): 77–103.

Angulo A, Garita-Alvarado CA (2015) Peces comunes de la cuenca del río Sarapiquí, Costa Rica. Ciencia, Arte y Tecnología, San José, 142 pp.

Angulo A, Gracián-Negrete JM (2013) A new species of *Brycon* (Characiformes: Characidae) from Nicaragua and Costa Rica, with a key to the lower Mosameanric species of the genus. Zootaxa 3731 (2): 255–266. https://doi.org/10.11646/zootaxa.3731.2.6

Angulo A, Garita-Alvarado CA, Bussing WA, López MI (2013) Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List 9 (5): 987–1019. https://doi.org/10.15560/9.5.987

Bancroft EN (1834) *Agonostomus monticola*. In: Griffith E, Smith CH (Eds) The class Pices, arranged by the Baron Cuvier, with supplementary additions, by Edward Griffith, F.R.S., and Lieut. Col. Charles Hamilton Smith, F.R., L.S.S. Whitaker & Co., London, 680 pp.

Bloch ME (1795) Naturgeschichte der ausländischen Fische. Auf Kosten des Verfassers, und in Commission in der Buchhandlung der Realschule, Berlin, 192 pp.

Bussing WA (1979) Taxonomic status of the atherinid fish genus *Mela* in lower Central America, with the description of three new species. Revista de Biología Tropical 26 (2): 391–413.

Bussing WA (1989) *Cichlasoma loisellei*, a new *nandopsis* group cichlid fish from Central America. Revista de Biología Tropical 37 (2): 153–161.

Bussing WA (1993) Fish communities and environmental characteristics of a tropical rain forest river in Costa Rica. Revista de Biología Tropical 41 (3B): 791–809.

Bussing WA (1994) Ecological aspects of the fish community. In: McDade L, Bawa K, Hespenheide HA, Hartshorn GS (Eds) *La Selva, Ecology and Natural History of a Tropical Rainforest*. University of Chicago Press, Chicago, 195–198.

Cuvier G, Valenciennes A (1837) Histoire naturelle des poissons. Tome douzième. Suite du livre quatorzième. Gobioides. Livre quinzième. Acanthoptérygiens à pectorales pédiculées. Strasbourg, Paris, 577 pp.

Eigenmann CH, Ogle F (1907) An annotated list of characin fishes in the United States National Museum and the Museum of Indiana University, with descriptions of new species. Proceedings of the United States National Museum 33 (1556): 1–36.

Eschmeyer WN, Fong JD (2017) Species of Fishes by family/subfamily. California Academy of Sciences, San Francisco. http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.html Accessed on: 2017-1-22.

Eschmeyer WN, Fricke R, van der Laan R (2017) Catalog of Fishes. California Academy of Sciences, San Francisco. http://research.calacademy.org/ichthyology/catalog/fishcatsearch.html Accessed on: 2017-1-22.

Finegan B, Camacho M (1999) Stand dynamics in a logged and culturally treated Costa Rican rain forest, 1988–1996. Forest Ecology and Management 121 (3): 177–189. https://doi.org/10.1016/S0378-1127(98)00550-7

Fowler HW (1923) Fishes from Nicaragua. Proceedings of the Academy of Natural Sciences of Philadelphia 75: 23–32.

Froese R, Pauly D (2017) FishBase. http://www.fishbase.org Accessed on: 2017-1-22.

Gill TN (1877) Synopsis of the fishes of Lake Nicaragua. Proceedings of the Academy of Natural Sciences of Philadelphia 29: 175–191.

Grishin NV (2012) A new Central American *Amatitlania* sp., a new species with unusually distinct genitalia (Lepidoptera, Hesperiidae, Pyrginae). Tropical Lepidoptera Research 22 (1): 1–7.

Groten V, Lande R, Chacon IA, DeVries PJ (2014) Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography 37 (5): 509–516. https://doi.org/10.1111/ecog.00635

Günther A (1860) On new reptiles and fishes from Mexico. Proceedings of the Academy of Natural Sciences of Philadelphia 29: 175–191.

Günther A (1860) Douzième. Suite du livre quatorzième. Gobioides. Livre quinzième. Acanthoptérygiens à pectorales pédiculées. Strasbourg, Paris, 577 pp.
Günther A (1864) Catalogue of the Fishes in the British Museum. Catalogue of the Physostomi, Containing the Families Siluridae, Characiniidae, Haplochitonidae, Sternoptychidae, Scopelidae, Stomiidae in the Collection of the British Museum 5: 1–455.

Günther A (1867) On the fishes of the states of Central America, founded upon specimens collected in fresh and marine waters of various parts of that country by Messrs. Salvin and Godman and Capt. J.M. Dow. Proceedings of the Zoological Society of London 1866 (3): 600–604.

IUCN (2016) The IUCN Red List of Threatened Species. Version 2016-3. http://www.iucnredlist.org. Accessed on: 2017-1-22.

Kner R (1858) Ichthyologische Beiträge. II. Abtheilung. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Classe 26 (373): 373–448.

Kner R (1863) Eine Uebersicht der ichthyologischen Ausbeute des Herrn Professors Dr Mor. Wagner in Central-Amerika. Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften zu München 2 (1863): 220–230.

Kohlmann B, Roderus D, Elle O, Solís A, Soto X, Russo R (2010) Biodiversity conservation in Costa Rica: a correspondence analysis between identified biodiversity hotspots (Araceae, Arecaceae, Bromeliaceae, and Scarabaeinae) and conservation priority life zones. Revista Mexicana de Biodiversidad 81: 511–559.

Kohlschmidt, B. B. de, Beneeker, E., Schmitz, M., & Oliva, E. (2013) Food web analysis of a Neotropical floodplain lake: implications for functional ecosystem integrity. Freshwater Biology 58(6): 1247–1259.

Page LM, Robins RH (2006) Identification of sailfin catfishes (Teleostei: Loricariidae) in southeastern Asia. The Raffles Bulletin of Zoology 54 (2): 455–457.

Poey F (1860) Memorias sobre la historia natural de la Isla de Cuba, acompañadas de sumarios Latinos y extractos en Francés. Tomo 2. Imprenta de Barcina, La Habana, 239 pp.

Quiros-Sanabria JM (2017) Clasificación biológica y microbiológica de 100 cuerpos de agua dulce superficiales (149 puntos de muestreo) de Costa Rica, utilizando el Reglamento para la Clasificación de Cuerpos de agua superficiales: 33–903. Periodo 2010–2016. Laboratorio Nacional de Aguas. Instituto Costarricense de Acueductos y Alcantarillados, San José, 46 pp.

Regan CT (1907) Descriptions of six new freshwater fishes from Mexico and Central America. Annals and Magazine of Natural History 19 (111): 258–260.

Regan CT (1908) A collection of freshwater fishes made by Mr C.F. Underwood in Costa Rica. Annals and Magazine of Natural History 2 (11): 455–464.

Schmitter-Soto JJ (2007) A systematic revision of the genus Archo- centrus (Perciformes: Cichlidae), with the description of two new genera and six new species. Zootaxa 1603: 1–76.

Shaver I, Chain-Guadarrama A, Cleva KA, Sanfiorenzo A, Santiago-García RJ, Finegan B, Hormel N, Sibelet N, Vierling LA, Bosque-Pérez NA, DeClerck F, Fagan ME, Waits LP (2015) Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Global Environmental Change 32: 74–86. https://doi.org/10.1016/j.gloenvcha.2015.02.006

Silva ELC, Lapinski W (2012) A new species of Trechalea Thorell, 1869 (Araneae: Lycosidae: Trechaleidae: Trechaleinae) from Costa Rica, with notes on its natural history and ecology. Zootaxa 3563: 58–64.

TBR (2010) Tirimbina Biological Reserve homepage. http://www.tirimbina.org/. Accessed on: 2017-1-22.

Wakida-Kusunoki AT, Amador-del Ángel LE (2011) Aspectos biológicos del pleco invasor Pterygoplichthys pardalis (Teleostei: Loricariidae) en el río Palizada, Campeche, México. Revista Mexicana de Biodiversidad 82 (3): 870–878.

Zambrano L, Valiente E, Vander Zanden MJ (2010) Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biological Invasions 12 (9): 3061–3069. https://doi.org/10.1007/s10530-010-9697-8