Observations of a possible new soft gamma repeater, SGR1801-23

T. Cline1, D. D. Frederiks2, S. Golenetskii2, K. Hurley3 C. Kouveliotou4, E. Mazets2, and J. van Paradijs5,6

Received ______________; accepted ______________

1NASA Goddard Space Flight Center, Greenbelt, MD 20771
2Ioffe Physical-Technical Institute, St. Petersburg, 194021, Russia
3University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720-7450, khurley@sunspot.ssl.berkeley.edu
4Universities Space Research Association at NASA Marshall Space Flight Center, ES-84, Huntsville AL 35812
5Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, The Netherlands
6Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899
ABSTRACT

We report on two observations of a soft bursting source in 1997 June, whose time histories and energy spectra are consistent with those of the soft gamma repeaters. The source can only be localized to an ≈ 3.8° long error box in the direction of the Galactic center, whose area is ≈ 80 arcmin². The location of the source, while not consistent with that of any of the four known soft repeaters, is consistent with those of several known and possible supernova remnants.

Subject headings: gamma rays: bursts — stars: neutron — X-rays: stars — supernova remnants

1. Introduction

Soft gamma repeaters (SGRs) are neutron stars in or near radio or optical supernova remnants. There is good evidence that they are ‘magnetars’, i.e. neutron stars in which the magnetic field energy dominates all other sources of energy, including rotation (Duncan & Thompson 1992). In the case of SGR1806-20, evidence for this comes from observations of the period and period derivative of the quiescent soft X-ray emission (Kouveliotou et al. 1998). In the case of SGR1900+14, evidence comes from observations of both the spindown and of a giant flare (Kouveliotou et al. 1999, Hurley et al. 1999a; however, see Marsden, Rothschild, & Lingenfelter 1999 for a different interpretation). The magnetar model (Thompson and Duncan 1995) predicts a galactic birth rate of ≈ 1-10/10000 y, and a lifetime of ≈ 10000 y, so at any given time, up to 10 magnetars could be active. This is consistent with observational estimates of the magnetar birth rate and of the total number in the Galaxy (Kouveliotou et al. 1998). Only four have been identified to date, however, and various studies have placed upper limits on the number of active SGRs (e.g., Norris et
al. 1991, Kouveliotou et al. 1992, Hurley et al. 1994). Taking the galactic magnetar census is therefore an interesting exercise for understanding the formation and life cycles of these unusual objects.

In 1997 June, during a period when SGR1806-20 was undergoing a phase of intense activity, two bursts were observed whose positions were close to, but clearly inconsistent with that of this source. It was hoped that this new source would remain active, allowing a better determination of its position, but to date this has not happened. Therefore we present the existing data at this time, even though the picture is still incomplete.

2. Observations

The two bursts were observed by four instruments: BATSE - CGRO (Meegan et al. 1996), Konus-A aboard the Kosmos spacecraft (Aptekar et al. 1997), Konus-W aboard the Wind spacecraft (Aptekar et al. 1995), and the GRB experiment aboard Ulysses (Hurley et al. 1992). Table 1 gives the details of the observations, including the time resolutions ΔT with which each instrument observed the bursts; the time histories are shown in Figures 1 and 2. Both are short, and have soft energy spectra, e.g. consistent with an optically thin thermal bremsstrahlung (OTTB) function with a kT of ≈ 25 keV. The peak fluxes and fluences are reported in Tables 1 and 2. Note that the peak flux of the second burst implies that the source is super-Eddington for any distance $\gtrsim 250$ pc; at the distance of the Galactic center (see below) it would be $\gtrsim 1200L_E$. All these characteristics are typical of SGRs in general. In addition, there is evidence in the KONUS-W data for spectral evolution in the second burst (Frederiks et al. 1998): the initial phase has a spectrum consistent with an OTTB function with $kT \approx 20$ keV, softening to $kT \approx 9$ keV in the final phase.
3. Localization

The second event was observed by three instruments in high time resolution modes (Table 1), leading to two statistically independent, narrow triangulation annuli. However, since two of the spacecraft (Konus-W and CGRO) were separated by only 1.4 light-seconds, these annuli have practically identical centers and radii, and therefore intersect at grazing incidence to define two long, narrow error boxes, whose lengths are constrained by the third (Konus-W/BATSE) annulus. Only one is consistent with the BATSE error circle (radius $\approx 5^\circ$), but the error box is fully contained within it, and is therefore not constrained by it.

The first event was observed with high time resolution by Ulysses, but with time resolution greater than the event duration by the two Konus instruments, leading to relatively wide triangulation annuli. These are consistent with the first error box, but because this event occurred only ≈ 9000 s before the second one, the Ulysses-Earth vector moved only slightly between the two, resulting again in annuli which intersect the first error box at grazing incidence. This intersection is consistent with the coarse localization capabilities of Konus-A and Konus-W. Table 3 gives the details of the triangulation annuli, and Table 4 gives the coordinates of the error box.

Initially, it was thought, based on preliminary data, that a third burst originated from this source on 1997 September 12 (Hurley et al. 1997; Kouveliotou et al. 1997) and that the Rossi X-Ray Timing Explorer had observed it in the collimated field of view of the All-Sky Monitor, providing an error box which intersected the annuli (Smith et al. 1997). However, on this day, the Ulysses-Earth vector was equidistant from this error box and the position of SGR1806-20; thus the triangulation annulus for either one of these sources would automatically pass very close to the other. When the final data were obtained and a more precise annulus could be obtained, it proved to be consistent with the position of SGR1806-20 to better than 10 $''$, making this SGR the likely source of this event. Moreover,
it turned out that the burst had entered the RXTE ASM proportional counters through their sides, and no location information could in fact be extracted from the data (D. Smith, private communication). Thus the only information on the location of this new SGR comes from the triangulation annuli and the BATSE error circle.

The error box, which is in the direction of the Galactic center, is shown in Figure 3. The triangulation annuli of the two bursts may also be combined using the statistical method of Hurley et al. (1999b) to derive an error ellipse. The method gives an acceptable χ^2, but results in an ellipse which is somewhat longer than the error box and only slightly smaller in area. Given the density of possible counterpart sources in the region of Figure 3, the error box is probably the more useful description of the SGR location. It lies $\approx 0.93^o$ from the position of SGR1806-20. A timing error of ≈ 39 s would have to be invoked for one spacecraft in each of the two observations to achieve consistency with this SGR, and there is no evidence in any of the data for such an error.

4. Discussion

As the four known SGRs are associated with SNRs, we have searched several catalogs for possible associations. The results are shown in Figure 3. G5.4-1.2, G6.4-0.1, and G8.7-0.1 (just visible at the left of Figure 3) are from Green (1998). G6.0-1.2 is from Goss & Shaver (1970), and all other sources are from Reich, Reich, & Fürst (1990). Not all of these objects are confirmed SNRs. Of the confirmed SNRs, only G6.4-0.1 (=W28) is consistent with the error box. However, this SNR may be associated with the pulsar B1758-23 (Kaspi et al. 1993), which lies outside the error box. G5.4-0.29, G7.2+0.2, and G8.1+0.2 are other possible associations. Given that SGR1900+14 lies outside its supernova remnant (Hurley et al. 1999c), SGR1801-23 could also be associated with an object such as G5.9-0.4, which lies slightly outside the error box.
The four known SGRs are also quiescent soft X-ray sources (e.g. Hurley et al. 1999d and references therein) with fluxes $\approx 10^{-11} - 10^{-12}\text{erg cm}^{-2}\text{s}^{-1}$, i.e. bright enough to be detected not only in pointed observations, but also in sky surveys. Accordingly, we have searched the ROSAT catalogs available through the HEASARC. Only two objects are close to the error box. One is the unidentified source 1WGA J1802.3-2151 in the WGA catalog (White, Giommi, & Angelini 1995), which lies slightly outside it. The other is the diffuse emission associated with W28.

Finally, it has been suggested that magnetars evolve into anomalous X-ray pulsars (AXPs) (Kouveliotou et al. 1998). Sporadic bursts from an AXP could confirm this association. Accordingly, we have checked the positions of the six known (Gotthelf & Vasisht 1998 and references therein) and one proposed (Li & van den Heuvel 1999) AXPs, but none lies near this source.

Given the shape and location of the error box, it is not unlikely that it will cross several interesting objects by chance coincidence, and the nature of this source therefore remains unknown. Based on the properties of the two events observed to date, it most closely resembles an SGR. Indeed, SGR1900+14 was discovered when it burst just 3 times in 3 days (Mazets et al. 1979); 13 years elapsed before it was detected again (Kouveliotou et al. 1993). Until SGR1801-23 bursts again, allowing a more accurate position to be derived for it, associating it with an SNR or quiescent soft X-ray source will be difficult.

KH is grateful to JPL for Ulysses support under Contract 958056, and to NASA for Compton Gamma-Ray Observatory support under grant NAG 5-3811. On the Russian side, this work was supported by RSA Contract and RFBR grants N97-02-18067 and N99-02-17031. JvP acknowledges support from NASA grants NAG5-3674 and NAG5-7808. This study has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center.
REFERENCES

Aptekar, R. et al. 1995, Space Sci. Rev. 71, 265

Aptekar, R. et al. 1997, Astron. Lett. 23(2), 147

Duncan, R., and Thompson, C. 1992, ApJ 392, L9

Frederiks, D., Aptekar, R., Golenetskii, S., Il’inskii, V., Mazets, E., and Terekhov, M., in
Gamma-Ray Bursts: 4th Huntsville Symposium, Eds. C. Meegan, R. Preece, and T.
Koshut, AIP Conf. Proc. 428, AIP Press (New York), p. 921, 1998

Goss, W., and Shaver, P. 1970, Aust. J. Phys. Astrophysical Suppl. No. 14, 1

Gotthelf, E., and Vasisht, G. 1998, New Astronomy 3, 293

Green D. A. 1998, A Catalogue of Galactic Supernova Remnants (1998 September version),
Mullard Radio Astronomy Observatory, Cambridge, United Kingdom (available at
http://www.mrao.cam.ac.uk/surveys/snrs/)

Hurley, K. et al. 1992, A&AS, 92(2), 401

Hurley, K. et al. 1999a, Nature 397, 41

Hurley, K., Kouveliotou, C., Cline, T., Mazets, E., Golenetskii, S., Frederiks, D., and van
Paradijs, J. 1999b, ApJ, submitted

Hurley, K. Kouveliotou, C., Woods, P., Cline, T., Butterworth, P., Mazets, E., Golenetskii,
S., and Frederics, D. 1999c, ApJ 510, L107

Hurley, K. et al. 1999d, ApJ 510, L111

Hurley, K. et al. 1994, ApJ 423, 709

Hurley, K., Kouveliotou, C., Cline, T., and Mazets, E. 1997, IAU Circ. 6743

Kaspi, V., Lyne, A., Manchester, R., Johnston, S., D’Amico, N., and Shemar, S., ApJ 409,
L57
Kouveliotou, C., Norris, J., Wood, K., Cline, T., Dennis, B., Desai, U., & Orwig, L. 1992, ApJ 392, 179

Kouveliotou, C. et al. 1993, Nature 362, 728

Kouveliotou, C., Fishman, G., Meegan, C., and Woods, P. 1997, IAU Circ. 6743

Kouveliotou, C., et al. 1998, Nature 393, 235

Kouveliotou, C., et al. 1999, ApJ 510, L115

Li, X., and van den Heuvel, E. 1999, ApJ 513, L45

Marsden, D., Rothschild, R., and Lingenfelter, R. 1999, ApJ, submitted

Mazets, E., Golenetskii, S., and Guryan, Yu. 1979, Sov. Astron. Lett. 5(6), 343

Meegan, C. et al. 1996, ApJS 106, 45

Norris, J., Hertz, P., Wood, K., & Kouveliotou, C. 1991, ApJ 366, 240

Reich, W., Reich, P., and Fürst, E. 1990, Astron. Astrophys. Suppl. Ser. 83, 539

Smith, D., Levine, A., Morgan, E., Remillard, R. and Rutledge, R. 1997 IAU Circ. 6743

Thompson, C., and Duncan, R. 1995, MNRAS 275, 255

White, N., Giommi, P., and Angelini, L. 1995, The WGA Catalog of ROSAT Point Sources, available at http://lheawww.gsfc.nasa.gov/users/white/wgacat/wgacat.html

This manuscript was prepared with the AAS \LaTeX\ macros v5.0.
Fig. 1.— Time history of the first burst from SGR1801-23 as observed by Ulysses. The energy range is ≈ 25-150 keV. The background rate is indicated by a dashed line.

Fig. 2.— Time history of the second burst as observed by Konus-W (14-230 keV), BATSE (25-100 keV), and Ulysses (25-150 keV). The background rates are indicated by dashed lines.

Fig. 3.— IPN error box for SGR1801-23 (the lines are too closely spaced to distinguish). The center is indicated with an asterisk. Circles give the approximate locations of confirmed and suspected SNRs; the radii have been taken as half the size given in the catalogs. Asterisks give the positions of ROSAT X-ray sources, and two pulsars, PSR1800-21 and B1758-23, probably associated with SNRs 8.7-0.1 and 6.4-0.1. Coordinates are J2000.
Table 1. *IPN Observations of SGR1801-23.*

Date UT, s	BATSE	Konus-A	Konus-W	Ulysses		
970629	14424	O¹	2.0	1.472	0.03125	
970629	23492	TTS²	.064	O	0.002	0.03125

¹Source was Earth-occulted

²Time-to-spill mode: variable time resolution from ≈ 5 ms up
Table 2. *Peak fluxes and fluences.*

Date UT, s	Peak flux, 25-100 keV, over 32 ms	Fluence, 25-100 keV, erg cm$^{-2}$
970629 14424	5×10^{-6}	9×10^{-7}
970629 23492	2×10^{-5}	5×10^{-6}
Table 3. *IPN Localizations of SGR1801-23.*

Date	UT, s	Spacecraft	α (2000)	δ (2000)	Radius, θ	3σ half-width
970629	14424	*Ulysses - Konus-W*	333.7154	-25.9376	57.2971	0.0206
970629	14424	*Ulysses - Konus-A*	333.6945	-25.9347	57.2813	0.0268
970629	23492	*Ulysses - BATSE*	333.7050	-25.9223	57.2819	0.0030
970629	23492	*Ulysses - Konus-W*	333.7251	-25.9253	57.2990	0.0030
970629	23492	Konus-W - BATSE	295.6453	-15.1844	25.1863	0.9472
Table 4. Triangulation error box of SGR1801-23

	α(2000), degrees	δ(2000), degrees
Center:	270.2454	-22.9468
Corners:	269.6792	-24.6820
	270.8738	-21.0889
	269.6827	-24.6929
	270.8762	-21.1016
