Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

Youn Sook Jo1, Hye Bin Park1, Ji Yun Kim1, Seong Min Choi1, Da Sol Lee1, Do Hoon Kim1, Young Hee Lee1, Chang-Jin Park2, Yong-Chull Jeun3, and Jeum Kyu Hong 1*

1Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
2Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
3College of Applied Life Science, Faculty of Bioscience and Industry, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju 63243, Korea

(Received on June 29, 2020; Revised on July 10, 2020; Accepted on July 16, 2020)

Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 10^4 and 2 × 10^5 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinerea-inoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

Keywords: Botrytis cinerea, eco-friendly, fungicidal, menadione sodium bisulfite, plant defence, tomato grey mould

Handling Editor: Mee Kyung Sang

Grey mould disease by Botrytis cinerea has been a great trouble in culturing important horticultural crops including grape, strawberry and tomato plants, and chemical fungicides were widely used for the disease management (Petrasch et al., 2019; Steel et al., 2013; Williamson et al., 2007). Occurrence of chemical fungicide-resistant B. cinerea isolates in many countries and environment concerns due to frequent fungicide usages have urged to find eco-friendly alternatives for controlling grey mould for a sustainable horticulture (Fan et al., 2016; Jacometti et al., 2010; Saito et al., 2019). Antagonistic microbes (Bacillus subtilis, Streptomyces philanti, Fusarium equiseti), plant essential oils (origanum oil, thyme oil) and plant defence-priming agents (β-aminobutyric acid, hexanoic acid) have been suggested to manage tomato grey mould on leaves and fruits eco-friendly (Ben-Jabur et al., 2015; Boukaew...
A variety of vitamins such as vitamin B1 and vitamin C have shown in vitro antifungal activities and/or plant defence activation, and vitamins have been exogenously applied to reduce plant diseases. Rice and cucumber plants pretreated with vitamin B1 (thiamine) showed reduced lesions on leaves infected by rice blast and cucumber anthracnose, respectively, although in vitro antifungal activity of vitamin B1 was not found against Magnaporthe grisea and Colletotrichum orbiculare (formally C. lagenarium) (Ahn et al., 2005). Dose-dependent decreases in germ-tube elongation and appressorium formation of M. grisea were demonstrated by vitamin C (ascorbic acid) treatment (Egan et al., 2007). Ascorbic acid also arrested in vitro mycelial growth of Alternaria brassicicola and Fusarium ananatum (Barral et al., 2017; Botanga et al., 2012). Deficiency of vitamin C in Arabidopsis plants resulted in enhanced disease susceptibility to A. brassicicola infection suggesting an active role of ascorbic acid during the plant immunity response (Botanga et al., 2012). Vitamin K3 is one of fat-soluble vitamin groups and often applied to fungi and plants as a form of water-soluble menadione sodium bisulfite (MSB). MSB had in vitro antifungal activity against a variety of phytopathogenic fungi such as Alternaria alternata, Fusarium graminearum and Ustilago maydis (Nikolaou et al., 2009; Yu et al., 2016). Stem canker, fungal disease caused by Leptosphaeria maculans, could be controlled in oilseed rape plants locally and systemically by MSB pretreatment via pathogenesis-related protein 1 (PR1) and ascorbate peroxidase (APX) gene expressions showing MSB-enhanced plant defences (Borges et al., 2003). MSB-regulated hydrogen peroxide accumulation and defence-related gene transcription in Arabidopsis plants suggested that MSB can modulate defence-associated metabolisms in response to pathogen invasions as well as environmental stresses (Borges et al., 2009). Indeed, MSB can confer enhanced tolerance to Arabidopsis plants to deal with environmental stresses such as high salinity via controlling genes associated with proline metabolism (Jiménez-Arias et al., 2015a, 2015b). These results suggest that MSB can be applied to crops as a priming agent to cope with pathogen attacks as well as adverse environmental conditions (Borges et al., 2014a).

MSB treatment directly arrested in vitro conidial germination and mycelial growth of B. cinerea in dose-dependent manners in our previous study (Hong et al., 2016). Pretreatment with increasing MSB (2 to 20 mM) at 1 day before the fungal challenge-inoculation resulted in dose-dependent reductions in necrotic lesion sizes on tomato true leaves inoculated by conidial suspension (1 × 10^5 conidia/ml) of B. cinerea compared to control leaves (Hong et al., 2016). In this study, we compared protection efficacies of 10 mM MSB on tomato grey mould in cotyledons and true leaves with different leaf positions against different disease pressures caused by two inoculum densities of B. cinerea (2 × 10^4 and 2 × 10^5 conidia/ml). Arrested plant cell death, hydrogen peroxide and fungal growths of B. cinerea were observed on MSB-pretreated tomato leaves. Repeated MSB-pretreatment was also evaluated to improve the protection efficacies against tomato grey mould. In addition, MSB-inducible expression of defence-related genes was analysed to decipher possible molecular role of MSB as a plant defence priming agent in tomato leaves.

Materials and Methods

Plant growth and fungus culture.

Tomato seeds (cv. Cupirang) (Nongwoo Bio Co., Ltd., Suwon, Korea) were sown in pots (90 mm in diameter, 70 mm in height) containing commercial soil mixtures ‘Toshil’ (Shinan Growth Co., Ltd., Jinju, Korea) and grown under controlled environments in walk-in plant growth rooms for 4- or 5-weeks previously described (Hong et al., 2016). Third true leaves were detached from 5-leaf stages of the tomato seedlings and two primary leaflets of the third true leaves were used for the Botrytis cinerea inoculation unless otherwise noted.

B. cinerea KACC 40573 was provided by the Korean Agricultural Culture Collection established in Rural Development Administration, Republic of Korea, and the fungal isolate was virulent to the tomato cultivar ‘Cupirang’ in which spreading necrotic lesions were developed on the inoculated leaves. The fungal isolate was cultured on 1/2-strength potato dextrose agar media at 25°C under dark condition for 14 days to prepare conidial suspension. Quarterly diluted potato dextrose broth was poured in Petri dishes with the 14-day-old fungal cultures, scraped with sterile spatula and filtered with double-layered gauzes to collect conidial suspension. Concentration of the conidial suspension was adjusted to 2 × 10^4 and 2 × 10^5 conidia/ml with haemacytometer under a light microscope.

MSB treatment.

Ten mM of MSB (Sigma-Aldrich Co., St. Louis, MO, USA) prepared in distilled water were foliar sprayed onto the tomato seedlings in the pots (10 ml per one tomato seedling) at 1, 3, or 7 days prior to challenge-inoculation of B. cinerea. To examine enhanced plant protection efficacies by repeated MSB pretreatment, four different pretreatment regimes (twice pretreatment: 7 and 3 days, 7 and 1 days, 3 and 1 days prior to the fungal inocula-
Staining of B. cinerea on the tomato leaflets and observation under a light microscope. At 10 and 24 hpi, B. cinerea-inoculated tomato leaflets were cut in pieces of 5 mm × 5 mm and stained with lactophenol-trypan blue solution, and conidial germination and mycelial elongation of B. cinerea on the leaf tissues were observed under a light microscope described previously (Hong et al., 2018). Conidial numbers of B. cinerea on the leaflet fragments were counted and expressed per leaf mm². Ten leaflet fragments were prepared for mock and MSB treatment, respectively, and five independent experiments were conducted.

Plant total RNA isolation and gene expression analyses. Total RNA was isolated from tomato leaflets and gene expression analyses were performed via semi-quantitative reverse transcription polymerase chain reaction as described previously (Lee et al., 2019). Expression of tomato genes, SlPR1a, SlPR1b, SlPIN2, SlChi3, SlChi9, SlACO1, SlAPX1, and SlPAL3 were evaluated for MSB-mediated defence responses. Tomato glyceraldehyde 3-phosphate dehydrogenase (SIGAPDH) gene expression was investigated as an internal control. PCR primer pair for each gene was shown in Supplementary Table 1. Three independent experiments were conducted for each gene expression and representative results were demonstrated.

Statistical analyses. An analysis of variance (ANOVA) was conducted to determine the effects of MSB pretreatments on the lesion diameters caused by B. cinerea inoculation and OA treatment. An ANOVA was also conducted to determine the effects of MSB pretreatments on sensitivity of tomato leaflets to H₂O₂. Means were compared using least significant difference tests. Statistical analysis was performed with the SAS software version 8.1 (SAS Institute Inc., Cary, NC, USA). For conidial numbers on the tomato leaflets, Student’s t-test was used to compare the means. A difference was statistically significant when \(P < 0.05 \). Error bars in figures represent standard errors of the means.

Results

MSB pretreatment reduced grey mould lesion but not OA stress on detached tomato leaflets. Two concentrations (2 × 10⁴ and 2 × 10⁵ conidia/ml) of B. cinerea conidial suspension as different disease pressures were challenge-inoculated onto the leaflets from tomato plants pretreated with mock and MSB at 1, 3 and 7 days prior to the fungal inoculation (Fig. 1A). Three different timings of MSB pretreatment were equally sufficient for tomato leaflet protec-
tion against two inoculum densities of *B. cinerea* shown as reduced lesion diameter on the inoculated leaflets. However, protection efficacies against the lower inoculum density was higher than those against higher inoculum density (Fig. 1B). MSB pretreatment at 1, 3 and 7 days prior to OA (20 mM) stress did not confer tolerance of tomato plants (Fig. 1C). No difference in lesion sizes caused by OA was found in the leaflets pretreated with mock and MSB.

Decreased cell death and hydrogen peroxide generation in the *B. cinerea*-inoculated tomato leaflets by MSB pretreatment. Plant cell death and hydrogen peroxide accumulation in the *B. cinerea*-inoculated tomato leaflets were decreased by MSB pretreatment (Fig. 2).

By *B. cinerea* infection in the mock-pretreated leaflets, necrotic grey mould lesions gradually enlarged with the fungal pathogenesis for 3 days. However, the lesion sizes were relatively reduced during the MSB-mediated protection against *B. cinerea* compared to ones occurred in the mock-pretreated leaflets at the same time points. Plant cell deaths and hydrogen peroxide detected by Evans blue and DAB staining, respectively, were accordance with increasing necrotic lesion sizes (Fig. 2A). In MSB-pretreated leaflets, plant cell deaths and H$_2$O$_2$ were distinctly diminished compared to those in the mock-pretreated leaflets at the same time points.

No difference was found in chlorophyll contents in mock- and MSB-pretreated leaves in response to exogenous H$_2$O$_2$ (Fig. 2B). Increasing concentrations (0.0625 to 1 M) of H$_2$O$_2$ caused significant decreases in chlorophyll contents in dose-dependent manner compared to untreated control (0 mM) in the mock-pretreated leaves. Same doses of H$_2$O$_2$ resulted in reduced chlorophyll contents in the MSB-pretreated leaves without any difference with the
chlorophyll contents in the mock-pretreated leaves.

Suppressed B. cinerea development on the MSB-pretreated tomato leaflets. Retarded early growth of *B. cinerea* by MSB pretreatment was observed on the tomato leaflets under a light microscope (Fig. 3).

Numbers of *B. cinerea* conidia reduced significantly on the MSB-pretreated leaflets compared to mock-pretreated ones at 10 hpi (Fig. 3A). Conidia were germinated and occupied ca. 389.5 per leaf mm² on the mock-pretreated leaflets, which was comparably decreased number of conidia as 71.6 per leaf mm² on the MSB-pretreated leaflets. Most conidia germinated and formed appressorium on the mock-pretreated leaflets, whereas only a few conidia initiated to germinate on the MSB-pretreated ones at 10 hpi (Fig. 3B). Fungal hyphae were proliferated on the mock-pretreated leaflets at 24 hpi. But reduced germ-tube elongation and appressorium formation of *B. cinerea* was found on the MSB-pretreated ones at 24 hpi, and some conidia was still ungerminated (Fig. 3B).
Grey mould lesion formations on tomato plants with or without MSB pretreatment were dependent on both plant leaf position and inoculum densities of *B. cinerea* (Fig. 4).

Without MSB pretreatment, grey mould lesion sizes gradually decreased in tomato leaves as leaves were younger by both low and high inoculum densities. Cotyledons showed largest lesions by both inoculum densities. As true leaf numbers increased from 1° to 5° (from lower to upper position), lesion sizes were reduced by both inoculum densities.

Grey mould suppressions by MSB-pretreatment were different in tomato leaves by both low and high inoculum densities. By low inoculum density, distinct decline in lesion sizes were found in cotyledons and true leaflets from 1° to 5° without significant difference. However, only true leaflets from 1° to 3° showed MSB-pretreated reductions in grey mould lesions by high inoculum density compared to mock-pretreated control in each leaf position. MSB pretreatment-mediated protections were not obviously observed in cotyledons and relatively younger 4° and 5° leaflets.

Enhanced protective efficacies against tomato grey mould by repetitive MSB pretreatments. Increased frequency of MSB pretreatment increased protection to high inoculum density (2 × 10⁵ conidia/ml) of *B. cinerea* (Fig. 5). MSB pretreatment twice within 7 days prior to the fungal inoculation showed significantly increased tomato protection compared to MSB pretreatment once at 7 days prior to the fungal inoculation, nevertheless pretreatment timings. No difference was found in 3 different regimes of MSB pretreatment twice: 7 days and 3 days, 7 days and 1 day, 3 days and 1 day. MSB pretreatment thrice (7 days, 3 days, and 1 day) prior to the fungal inoculation increased protection efficacy compared MSB pretreatment once. But the protection efficacy was not different from ones derived by MSB pretreatment twice.

MSB-inducible expression of tomato defence-associated genes. Expressions of defence-related tomato genes were investigated in tomato leaflets treated with MSB at 6 and 24 h to investigate whether or not involvement of MSB in enhanced plant immunity to protect tomato plants against grey mould (Fig. 6).

Ten mM of MSB resulted in induction of plant defence-
related gene expressions in tomato leaflets compared to the mock treatment. SlPR1a, SlPR1b, SlPIN2, SlChi3, SlChi9, and SlACO1 genes were up-regulated by MSB application within 24 h. However, SlAPX1 and SlPAL3 were not regulated in the tomato leaf tissues by the MSB.

Discussion

MSB has shown its antifungal activities during *in vitro* conidial germination and mycelial growth of *B. cinerea* (Hong et al., 2016). Pretreatment with the antifungal MSB efficiently protected tomato leaves against the two different disease pressures by *B. cinerea* infection. As expected, the protection efficacy against the low disease pressure (2 × 10⁴ conidia/ml) was significantly higher than that against high disease pressure (2 × 10⁵ conidia/ml). Increasing inoculum concentrations of *B. cinerea* was associated with augmenting stem end decay of pear fruits as well as grey mould in stem and flower of tomato plants (Carisse et al., 2015; Spotts et al., 2008). In the present study, necrotic lesion developments in the mock-pretreated tomato cotyledons and true leaves (1st to 5th) by the high disease pressure of *B. cinerea* were faster than those caused by the low disease pressure, although statistical data with significant difference between low and high disease pressures were not demonstrated (Fig. 4). It needs to be investigated whether MSB was still effective to cope with much higher disease pressure caused by more than 2 × 10⁵ conidia/ml of *B. cinerea*, because much higher disease pressure of *B. cinerea* can diminish protective effect of MSB on tomato leaf grey mould. More efficient grey mould control by MSB-pretreatment against the lower diseases suggests that reducing inoculum density of *B. cinerea* by applying other eco-friendly agents such as beneficial microbes and/or plant defence activators, may improve MSB-mediated grey mould control efficacy during tomato production under a protected greenhouse environment (Elad et al., 1994; Gao et al., 2018; Sivakumaran et al., 2016; Vicedo et al., 2009). It also suggested that repetitive pretreatment with MSB at least two times efficiently increased protection efficacy against tomato grey mould without phytotoxic side effect, showing more decreased grey mould lesions by MSB-pretreatment. Second MSB pretreatment may increase its residual antifungal activities against conidial germination and mycelial growth of *B. cinerea* on tomato leaves.

Preventive efficacies of MSB pretreatment was prolonged for at least 7 days in responses to the *B. cinerea* challenge inoculations by the low and high concentrations of *B. cinerea* under controlled ambient conditions. Preventive effects of MSB for 7-1 day prior to *B. cinerea* inoculation under a greenhouse remains investigated for stable and reliable grey mould control. Different control efficacies on grey mould in tomato stems were demonstrated by preventive and curative treatments with different commercial microbes (Utkhede and Mathur, 2006). Hexanoic acid pretreatment was more protective to control tomato grey mould as compared to its treatment after *B. cinerea* inoculation (Leyva et al., 2008). Prolonged curative effect of MSB treatment to control tomato grey mould remains evaluated in a further study.

OA was secreted from several fungal species including *B. cinerea* and played roles as a pathogenicity factor via decreasing ambient pH during the fungal invasion (Lee et al., 2019; Mbengue et al., 2016). In the present study, pretreated MSB could not mitigate tomato leaf tissue necrosis caused by OA application, indicating that MSB-mediated grey mould decline may not be related to the direct elimination of OA or enhanced plant defences to OA secreted from *B. cinerea*.

MSB-mediated decreases in grey mould lesions were closely associated with decreases in dying cells and H₂O₂ accumulation in the tomato leaflets. Invading *B. cinerea* led to plant cell deaths and H₂O₂ accumulation in tomato...
leaf tissues and suspension cultured cells (Asselbergh et al., 2007; Pietrowska et al., 2015). H$_2$O$_2$ produced in the grey mould lesions was limited in biologically-protected leaves of tomato plants in response to B. cinerea infection (Herrera-Téllez et al., 2019). N-Nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) reduced both tomato grey mould necrotic lesions and H$_2$O$_2$ generation in the lesions (Sivakumaran et al., 2016). H$_2$O$_2$ generation in the necrotic plant tissues provide favours to growth and virulence of B. cinerea (Govrin and Levine, 2000; Rossi et al., 2017). We investigated whether or not MSB confer tolerance to tomato leaves to H$_2$O$_2$-mediated oxidative stress. MSB could not limit the tissue damages of tomato leaves by exogenously applied excess H$_2$O$_2$, although MSB confer enhanced tolerances to plants abiotic stresses such as chilling and high salt stresses and is involved in reactive oxygen species (ROS)-dependent signalling (Borges et al., 2014a). The lowest H$_2$O$_2$ concentration of 0.0625 M used in this study was sufficient to decrease chlorophyll contents to ca. 50% in mock- and MSB-pretreated leaves without any difference. It remains investigated whether MSB pretreatment can alter stress sensitivity of tomato leaves in response to the relatively lower H$_2$O$_2$. We also cannot exclude the possibility that MSB as a superoxide anion generator can trigger microscopic ROS-associated cellular events before necrotic symptom development to combat B. cinerea infection.

Early growth behaviour of B. cinerea during the fungal pathogenesis was distinctly arrested on the MSB-pretreated tomato leaf surfaces compared to the mock-pretreated one as observed under a light microscope. Conidial numbers on the MSB-pretreated leaf tissues were significantly reduced at 10 h, indicating that MSB may directly show its antifungal activity via mechanical disruption of B. cinerea conidia. In our previous study, 10 mM of MSB completely suppressed the in vitro conidial germination of B. cinerea at 20°C after 6 h-incubation, and reduced number of conidia treated with MSB was not recognised on the glass slides (Hong et al., 2016). Cell-free supernatant of Pseudomonas sp. QBA5 directly disrupted B. cinerea conidia by destroying plasma membrane integrity, and inhibited conidial germination and germ-tube elongation (Gao et al., 2018). In vitro and in planta destructive nature of MSB to B. cinerea conidia as well as conidial stress responses remains elucidated.

MSB-mediated grey mould protection was dependent on inoculum density and tomato leaf position. By both low and high inoculum densities, lesion diameters in the mock-pretreated leaves were decreased as leaves were younger in our present study. In contrast, grey mould in tomato stems less developed in basal parts of tomato plants compared to middle and top parts (Borges et al., 2014b). Leaf age-dependent grey mould development was also found in strawberry leaves, and the plant basal immunity was highly correlated with biochemical changes including H$_2$O$_2$, total flavonoids and ascorbate peroxidase activity in different leaves (Meng et al., 2019). Biochemical changes in tomato leaves of different ages with and without MSB pretreatment will provide basis on age-dependent plant immunity against B. cinerea infection. MSB-pretreatment resulted in constant protection efficacies against the low inoculum density of B. cinerea regardless of leaf positions. However, protection efficacies of MSB-pretreatment could not be different in highly susceptible cotyledons and moderate resistant true leaves 4th and 5th by the high inoculum density.

Recently MSB was suggested as a defence elicitor in host plants against challenging pathogen invasions (Borges et al., 2014a). MSB treatment differentially regulated transcriptions of stress-associated genes such as glutathione S-transferases, G-box-regulating transcription factors and cytochrome P450 in Arabidopsis plants without any challenging stress (Borges et al., 2009). In this present study, MSB was found to induce plant defence-related genes like SIPR1a, SIPR1b, SIPIN2, and SlACO1 in tomato leaves within 24 h prior to B. cinerea inoculation. Tomato SlPR1a, SIPR1b, SIPIN2, and SlACO1 were known to be B. cinerea infection-inducible genes involved in the defence responses to the fungal infection (Harel et al., 2014; Li et al., 2014). Both SIPR1a and SIPR1b gene expressions activated by either salicylic acid (SA) or ethylene application, but MSB-induced SIPR1a and SIPR1b in the tomato leaves may be mediated by activated ethylene-signalling not by SA-signalling, because SA down-regulated basal immunity of tomato leaves against B. cinerea (El Oirdi et al., 2011; Schuhegger et al., 2006; Tornero et al., 1994, 1997). SIPIN2 and SlACO1 were responsive to methyl jasmonate and ethylene, respectively, and both gene expressions implied activation of jasmonic acid (JA) and ethylene defence signalling, respectively (Blume and Grierson, 1997; Li et al., 2002). JA-insensitive mutant jai1 and jasmonate synthesis tomato mutant def1 showed enhanced susceptibility to grey mould in leaves (Diaz et al., 2002; Du et al., 2017). Treatments with ethylene and its precursor 1-aminoacyclopropane-1-carboxylic acid (ACC) were sufficient to reduce lesions in tomato leaves inoculated by B. cinerea (Diaz et al., 2002; Nambeesan et al., 2012). It was opposite from results that exogenous ethylene accelerated necrotic lesion expansion and silver thiosulfate ethylene action blocker reduced susceptibility in tomato leaves inoculated by B. cinerea (Elad, 1990). SlChi3 and SlChi9 encoding acidic
and basic chitinases, respectively, showed differential gene expressions by defence-related chemicals, ethylene, methyl jasmonate and SA (Puthoff et al., 2010). SlChi3 expression was strongly induced in tomato leaves by ethylene and moderately increased by SA and methyl jasmonate, whilst SlChi9 expression was moderately inducible by methyl jasmonate and slightly increased by ethylene but not by salicylic acid. Pretreated MSB may mediate enhanced plant immunity in tomato leaves via activating JA and/or ethylene defence-signalling pathways to halt B. cinerea infection. SlACO1 is one of seven ACC oxidase genes in tomato genome, and may convert ACC into ethylene during the wounding response and onset of senescence in tomato leaves (Barry et al., 1996; Houwen and Van de Poel, 2019). It will be interesting to decipher defensive role of ethylene generated by MSB-mediated SlACO1 gene expression, because ethylene may play roles positively or negatively during the tomato grey mould lesion development depending on different ambient conditions. SlPR1a, SlPR1b, SlChi3, and SlChi9 encode different putative antimicrobial peptides, and we cannot exclude that possibility that B. cinerea invading tomato leaf tissues can be directly limited by these antimicrobial peptides induced by MSB pretreatment.

Tomato grey mould occurs in different organs of tomato plants like leaves, flowers and fruits, and protective role of MSB against the grey mould was demonstrated only in the tomato leaves in this study. Studies on MSB-controlling tomato grey mould in most vulnerable flowers and postharvest fruits may increase further horticultural application to extend shelf-life. Molecular and biochemical investigation on mode-of-action of MSB to enhance tomato plant immunity also will pave the ways to protect tomato plants against other destructive pathogens.

Acknowledgments

This research was financially supported by Research Year I Grant from Gyeongnam National University of Science and Technology (GNTech) to Jeum Kyu Hong in 2019.

Electronic Supplementary Material

Supplementary materials are available at The Plant Pathology Journal website (http://www.ppjonline.org/).

References

Ahn, I.-P., Kim, S. and Lee, Y.-H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515.

Asselbergh, B., Curves, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. and Hõtte, M. 2007. Resistance to Botrytis cinerea in sittens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidemis. Plant Physiol. 144:1863-1877.

Barral, B., Chillet, M., Minier, J., Léchaudel, M. and Schorr-Galindo, S. 2017. Evaluating the response to Fusarium aumatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 121:1045-1053.

Barry, C. S., Blume, B., Bouzayan, M., Copper, W., Hamilton, A. J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9:525-535.

Ben-Jabur, M., Ghabri, E., Myriam, M. and Hamada, W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 94:35-40.

Blume, B. and Griers, D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J. 12:731-746.

Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436.

Borges, A. A., Dobson, A., Expósito-Rodríguez, M., Jiménez-Arias, D., Borges-Pérez, A., Casanás-Sánchez, V., Pérez, J. A., Luis, J. C. and Tornero, P. 2009. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol. J. 7:744-762.

Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandoval, L. M. and Pérez, J. A. 2014a. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front. Plant Sci. 5:642.

Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandoval, L. M. and Pérez, J. A. 2014b. Key factors to inoculate Botrytis cinerea in tomato plants. Summa Phytopathol. 40:221-225.

Botanga, C. J., Bethke, G., Chen, Z., Gallie, D. R., Fiehn, O. and Glazebrook, J. 2012. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascospore reduces disease severity. Mol. Plant-Microbe Interact. 25:1628-1638.

Boukaew, S., Frasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato grey mold caused by Botrytis cinerea by using Streptomyces spp. Biocontrol 62:793-803.

Carisse, O. and Van der Heyden, H. 2015. Relationship of airborne Botrytis cinerea conidium concentration to tomato flower and stem infections: a threshold for de-leafing operations. Plant Dis. 99:137-142.

Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D. 2019. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. Plant Pathol. J. 35:425-436.
Diaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351.

Du, M., Zhao, J., Tzeng, D. T. W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Zhong, S., Li, C.-B. and Li, C. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883-1906.

Egan, M. J., Wang, Z.-Y., Jones, M. A., Smirnoff, N. and Talbot, N. J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 104:11772-11777.

Elad, Y. 1990. Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol. Mol. Plant Pathol. 36:277-287.

Elad, Y., Köhl, J. and Fokkema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur. J. Plant Pathol. 100:315-336.

El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodríguez, M. C., Daayf, F., Vojnov, A. and Bouarab, K. 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405-2421.

Fan, F., Li, N., Li, G. Q. and Luo, C. X. 2016. Occurrence of fungicide resistance in Botrytis cinerea from greenhouse tomato in Hubei province, China. Plant Dis. 100:2414-2421.

Gao, P., Qin, J., Li, D. and Zhou, S. 2018. Inhibitory effect and possible mechanism of a Pseudomonas strain QBAS against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS ONE 13:e0190932.

Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757.

Harel, T. M., Mehari, Z. H., Rav-David, D. and Elad, Y. 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150-157.

Herrera-Téllez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León, S. and Saucedo-García, M. 2019. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20:2007.

Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., Chang, S. W. and Park, C.-J. 2018. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Res. Plant Dis. 24:292-301.

Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32:469-480.

Houben, M. and Van de Poel, B. 2019. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10:695.

Jacometti, M. A., Wratten, S. D. and Walter, M. 2010. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res. 16:154-172.

Jiménez-Arias, D., Borges, A. A., Luis, J. C., Valdés, F., Sandalio, L. M. and Pérez, J. A. 2015a. Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environ. Exp. Bot. 120:23-30.

Jiménez-Arias, D., Pérez, J. A., Luis, J. C., Martin-Rodriguez, V., Valdés-González, F. and Borges, A. A. 2015b. Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation. Environ. Exp. Bot. 109:23-30.

Lee, Y. H., Kim, Y. J., Moon, J. Y., Kim, H. J., Park, J. M., Hwang, I. S. and Hong, J. K. 2019. Response of two Arabidopsis ecotypes Columbia-0 and Dijon-G to necrotrophic and biotrophic pathogens. Biol. Plant. 63:654-661.

Leyva, M. O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M. D., García-Agustín, P. and González-Bosch, C. 2008. Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol. 57:1038-1046.

Li, L., Li, C., Lee, G. I. and Howe, G. A. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U. S. A. 99:6416-6421.

Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SIMKK2 and SIMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166.

Luna, E., Beardon, E., Ravnskov, S., Scholes, J. and Ton, J. 2016. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis. 100:704-710.

Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A. and Raffaele, S. 2016. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front. Plant Sci. 7:422.

Meng, L., Höfte, M. and Van Labeke, M.-C. 2019. Leaf age and light quality influence the basal resistance against Botrytis cinerea in strawberry leaves. Environ. Exp. Bot. 157:35-45.

Mónaco, C., Dal Bello, G., Rollán, M. C., Ronco, L., Lampugnani, G., Arteta, N., Abramoff, C., Aprea, A., Barascud, M., Badet, T., Vincent, R., Barbacci, A. and Raffaele, S. 2016. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Arch. Phytopathol. Plant Protect. 42:729-737.

Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A. K., Mickelbart, M. V., Ferruzzi, M. G., Mengiste, T. and Handa, A. K. 2012. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol. 158:1034-1045.

Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. and Brown, A. J. P. 2009. Phylogenetic diversity of stress signalling pathway in fungi. BMC Evol. Biol. 9:44.
Pietrowska, E., Różalska, S., Kaźmierczak, A., Nawrocka, J. and Malolepsza, U. 2015. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures - *Botrytis cinerea* interaction. *Protoplasma* 252:307-319.

Petrasch, S., Knapp, S. J., van Kan, J. A. L. and Blanco-Ulate, B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen *Botrytis cinerea*. *Mol. Plant Pathol.* 20:877-892.

Puthoff, D. P., Holzer, F. M., Perring, T. M. and Walling, L. L. 2010. Tomato pathogenesis-related protein genes are expressed in response to *Trialeurodes vaporariorum* and *Bemisia tabaci* biotype B feeding. *J. Chem. Ecol.* 36:1271-1285.

Rossi, F. R., Krapp, A. R., Bisaro, F., Maiale, S. J., Pieckenstain, F. L. and Carrillo, N. 2017. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus *Botrytis cinerea*. *Plant J.* 92:761-773.

Saito, S., Michailides, T. J. and Xiao, C. L. 2019. Fungicide-resistant phenotypes in *Botrytis cinerea* populations and their impact on control of gray mold on stored table grapes in California. *Eur. J. Plant Pathol.* 154:203-213.

Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by *N*-acyl-L-homoserine lactone-producing rhizosphere bacteria. *Plant Cell Environ.* 29:909-918.

Sivakumaran, A., Akinyemi, A., Mandon, J., Cristescu, S. M., Hall, M. A., Harren, F. J. M. and Mur, L. A. J. 2016. ABA suppresses *Botrytis cinerea* elicited NO production in tomato to influence *H₂O₂* generation and increase host susceptibility. *Front. Plant Sci.* 7:709.

Soylu, E. M., Kurt, Ş. and Soylu, S. 2010. *In vitro* and *in vivo* antifungal activities of the essential oils of various plants against tomato grey mould disease agent *Botrytis cinerea*. *Int. J. Food Microbiol.* 143:183-189.

Spotts, R. A., Wallis, K. M., Serdani, M., O’Gorman, D. T. and Sholberg, P. L. 2008. Methodology for determining relationships between inoculum concentration of *Botrytis cinerea* and *Penicillium expansum* and stem end decay of pear fruit. *Plant Dis.* 92:451-455.

Steel, C. C., Blackman, J. W. and Schmidtke, L. M. 2013. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. *J. Agric. Food Chem.* 61:5189-5206.

Sung, C. H. and Hong, J. K. 2010. Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. *Plant Biotechnol. Rep.* 4:243-251.

Tornero, P., Conejero, V. and Vera, P. 1994. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. *Mol. Gen. Genet.* 243:47-53.

Tornero, P., Gadea, J., Conejero, V. and Vera, P. 1997. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. *Mol. Plant-Microbe Interact.* 10:624-634.

Utkhede, R. S. and Mathur, S. 2006. Preventive and curative biological treatments for control of *Botrytis cinerea* stem canker of greenhouse tomatoes. *BioControl* 51:363-373.

Vicedo, B., Flors, V., de la O Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., García-Agustín, P. and González-Bosch, C. 2009. Hexanoic acid-induced resistance against *Botrytis cinerea* in tomato plants. *Mol. Plant-Microbe Interact.* 22:1455-1465.

Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. *Botrytis cinerea*: the cause of grey mould disease. *Mol. Plant Pathol.* 8:561-580.

Yu, P.-L., Chen, L.-H. and Chung, K.-R. 2016. How the pathogenic fungus *Alternaria alternata* copes with stress via the response regulators SSK1 and SHO1. *PLoS ONE* 11:e0149153.