INTRODUCTION

Amiloride hydrochloride is a potassium-sparing diuretic. It is chemically 3,5-diamino-N-(diaminomethylene)-6-chloropyrazinecarboxamide monohydrate [1,2] (Fig. 1). It works by inhibiting sodium reabsorption in renal epithelial cells by binding to sodium channels. Inhibition of sodium reabsorption creates a negative voltage in the luminal membranes of principal cells, situated at the distal convoluted tubule and collecting duct. This negative voltage decreases the potassium and hydrogen ion secretion [2,3]. It is used in conjunction with diuretics to spare dihydrochlorothiazide [1,2] (Fig. 1). Furosemide inhibits water reabsorption in the nephron by blocking sodium and chloride reabsorption in the ascending limb of the loop of Henle [4]. Furosemide helps to maintain potassium and minimize the risk of alkalosis, in the treatment of edema associated with hepatic cirrhosis and congestive heart failure [2,5].

The thorough literature survey reveals that few analytical methods such as RP-HPLC and UV methods are reported for simultaneous estimation of amiloride hydrochloride and furosemide in pharmaceutical dosage forms [3,6,7]. Thus, the present investigation was held out to acquire new, simple, accurate, rapid, and cost-effective stability indicating RP-HPLC method for the simultaneous estimation of amiloride hydrochloride and furosemide in pharmaceutical dosage form. The suggested method was applied successfully to split up the degraded products from the samples.

METHODS

Reagents and chemicals

Amiloride hydrochloride and furosemide standards were provided by Alkem Laboratories, Navi Mumbai, Maharashtra, India, and Yarrow Chem Products, Dombivili, Maharashtra, India. Commercial tablet dosage form, Frumil, was purchased from local markets. The HPLC grade acetonitrile and water were purchased from S.D. Fine Chemicals. Analytical grade orthophosphoric acid (OPA), hydrochloric acid, sodium hydroxide, and hydrogen peroxide were purchased from S.D. Fine Chemicals.

Instrument

The chromatographic separation was carried out by Shimadzu LC-2030 HPLC system equipped with UV detector and autosampler. The LabSolution software was used for signal monitoring and processing. Photolytic degradation was done in UV chamber, and hot air oven was employed for thermal degradation.

Selection of wavelength

Both the drugs were scanned by UV individually, in a wavelength range of 200–400 nm and maxima for each drug was measured. The corresponding UV spectrum graphs of the drugs such as amiloride hydrochloride and hydrochlorothiazide are shown in Fig. 2. The detection wavelength was selected from the overlay UV spectrum and was found to be 281 nm.

Chromatographic conditions

The chromatographic separation of analytes was carried out using Shimadzu-RP-HPLC system with Shim-pack GIST C18 (250 × 4.6 mm, 5 µ) column. The mobile phase of a mixture of water and acetonitrile in the ratio of 35:65, and elements were scanned using a UV detector at 281 nm.

RESULTS

The retention time of amiloride hydrochloride and furosemide was found to be 1.92 min and 3.14 min, respectively. Linearity was found to be 12–28 ppm for amiloride hydrochloride and 96–224 ppm for furosemide, respectively. Limit of detection and limit of quantification for amiloride hydrochloride were 0.381 ppm and 1.156 ppm and for furosemide were 2.00 ppm and 6.068 ppm, respectively.

Conclusion

The stability indicating method was developed by subjecting the drugs to stress conditions such as acid and base hydrolysis, oxidation, humidity, photolytic, and thermal degradation, and the degraded products formed were resolved successfully from the samples.

Keywords: Amiloride hydrochloride, Furosemide, Reverse-phase high-performance liquid chromatography, Degradation, Validation, ICH.
with water:acetonitrile (35:65) as diluent and sonicated for 10 min. From the above solution, 0.2 ml of amiloride hydrochloride and 1.6 ml of furosemide were transferred separately to 10 ml volumetric flasks, and 1 ml 5% OPA was added as a supporter and sonicated for 5 min and made up the volume with diluent to get 20 ppm of amiloride hydrochloride and 160 ppm of furosemide standard stock solution.

Preparation of sample solution
Ten tablets (Frumil tablets: 5 mg amiloride hydrochloride and 40 mg furosemide) were weighed and the average weight of each tablet was calculated; then, the weight equivalent to 1 tablet was transferred into a 100 ml clean dry volumetric flask, add 30 ml of diluent, sonicated for 25 min, and make up to the final volume with diluent and filtered. 2 ml of the filtered solution was pipetted out into a 10 ml volumetric flask and 1 ml 5% of the OPA was added as a supporter and sonicated for 5 min, and volume made up to 10 ml with diluent.

Method validation
The method validation was done according to the ICH guidelines with above developed RP-HPLC method for simultaneous estimation of amiloride hydrochloride and furosemide. Several parameters were evaluated such as system suitability, precision, accuracy, linearity, robustness, limit of detection (LOD), and limit of quantification (LOQ) [8,9].

Forced degradation studies
The ICH degradation was attempted under various stress conditions such as acid, alkaline, oxidation, thermal, humidity, and photolytic conditions to evaluate the interference of degradation impurities. These studies help to know the inherent stability characteristic of the active molecules in drug product and the possible degradation products.

Acid, base, and oxidation degradations were performed by adding 5 ml of 1 N HCl, 5 ml of 1 N NaOH, and 5 ml of 30% peroxide solution (H₂O₂), respectively, to the sample solutions, and these samples were kept at room temperature for 3 h. Thermal degradation was performed by keeping the tablets in a Petri dish and then placed them in an oven at 105°C for 48 h. Humidity degradation was performed by placing the tablets in a Petri dish and kept in a humidity chamber at 95% relative humidity, at 25°C for 120 h. A photolytic degradation study was carried out by placing the tablets in a Petri dish in a photolytic chamber for 7 days.

RESULTS AND DISCUSSION

Method development
A series of tests was taken with different columns such as Inertsil ODS and Shim-pack C18 column with different mobile phases to produce a suitable RP-HPLC method for estimation of amiloride hydrochloride and furosemide in tablet dosage form, and finally, a typical chromatogram was obtained with water and acetonitrile in the ratio of 35:65. The chromatographic separation was performed on Shim-Pack C18 (250 × 4.6 mm, 5 µ) column by injecting 20 μL, and the analytes were detected with UV detector at 281 nm. The retention time of amiloride hydrochloride and furosemide was found to be 1.92 min and 3.14 min, respectively. Forced degradation studies for amiloride hydrochloride and hydrochlorothiazide in tablet dosage form were also carried out using the developed method, and the degraded compounds were effectively resolved. The optimized conditions were given in Table 1 and Fig. 3.

System suitability
System suitability was performed to verify the acceptability of the resolution and repeatability of the system. System suitability was performed by injecting six replicate injections of the standard solution (100%). and parameters such as peak area, USP tailing, theoretical plates, retention time, and peak asymmetry were evaluated. The % relative standard deviation (RSD) was determined and reported within the limits [10]. The results are shown in Table 2.

Accuracy
The accuracy of the proposed method was evaluated by calculating the recovery studies of the test drug at three different concentration levels (80%, 100%, and 120%) by the standard addition method [11]. A known amount of amiloride hydrochloride and furosemide was added to the prequantified sample solution, and three replicates of each concentration level were processed under the optimized conditions.
The linearity of the method was determined at different concentration levels ranging from 12 to 28 ppm of amiloride hydrochloride and from 96 to 224 ppm of furosemide. All the concentrations were prepared and injected into the system. The linearity curve was constructed by plotting peak area versus concentration of the analyte. From the results obtained, the proposed method was found to be linear. The regression coefficient \(r^2 \) was found to be 0.999 and 0.999 for amiloride hydrochloride and furosemide, respectively, and the result is shown in Fig. 4.

Linearity

The linearity of the method was determined at different concentration levels ranging from 12 to 28 ppm of amiloride hydrochloride and from 96 to 224 ppm of furosemide. All the concentrations were prepared and injected into the system. The linearity curve was constructed by plotting peak area versus concentration of the analyte. From the results obtained, the proposed method was found to be linear. The regression coefficient \(r^2 \) was found to be 0.999 and 0.999 for amiloride hydrochloride and furosemide, respectively, and the result is shown in Fig. 4.

LOD and LOQ

In the present study, the LOD and LOQ of amiloride hydrochloride and furosemide were evaluated based on the standard calibration curve method [13]. LOD is performed to know the lowest concentration level of the analyte that gives a measurable response. LOD for amiloride hydrochloride are 0.381 ppm and 1.156 ppm and for furosemide are 2.00 ppm and 6.068 ppm, respectively.

Robustness

Robustness of the proposed method has been evaluated by small deliberate changes in the system parameters such as flow rate, wavelength, and temperature [14]. It was found that none of the above parameters caused an alteration in the peak area, retention time, and USP tailing by small changes such as ±0.2 ml change in flow rate, ±2 nm wavelength, and ±2°C changes in temperature. The % RSD was found to be within the limits, and the method was found to be robust. The robustness results are shown in Table 5.

Assay of marketed formulation

Analysis of marketed formulation (Frumil tablets: 5 mg amiloride hydrochloride and 40 mg furosemide) was purchased from local markets. Ten tablets were weighed and average weight of each tablet was calculated; then, the weight equivalent to 1 tablet was transferred into a 100 ml clean dry volumetric flask, add 30 ml of diluent, sonicated for 25 min, and make up to the final volume with diluent and filtered. 2 ml of the filtered solution was pipetted out into a 10 ml volumetric flask, and 1 ml 5% of OPA is added as a supporter and made up to 10 ml with diluent. From the resulting solution, 20 ml was injected into HPLC system and peak areas were recorded. The % assay of the marketed formulation was found to be 99.95% for amiloride hydrochloride and 99.99% for furosemide as shown in Table 6.

Forced degradation studies

Forced degradation studies of the drug formulation were carried out by treating the drug samples under stress-induced conditions such as acid and base hydrolysis, oxidation, humidity, and photo- and thermal-degradation to evaluate the ability of the proposed method to separate amiloride hydrochloride and furosemide from its degradation products as shown in Figs. 5-11. The % assay of amiloride hydrochloride and furosemide with respect to untreated sample and % assay results obtained from treating the samples with various stress conditions had a difference which was within the acceptable limits. The results of stress studies are shown in Table 7.

Acid degradation

Acid (1 N hydrochloric acid) degradation study showed 1.3% and 1.9% degradation for amiloride hydrochloride and furosemide, respectively. However, no degradation product was observed in the chromatogram (Fig. 6).

Alkali degradation

The degradation in base (1 N sodium hydroxide) was found to be 1.1% and 3.9% for amiloride hydrochloride and furosemide, respectively. However, no degradation product was observed in the chromatogram (Fig. 7).

Oxidative degradation

Oxidative degradation study in 30% hydrogen peroxide gave around 2.2% and 6.9% for amiloride hydrochloride and furosemide, respectively. However, no degradation product was observed in the chromatogram (Fig. 8).
Table 3: Percentage recovery results of amiloride hydrochloride and furosemide

Spiked (%)	Percentage recovery	Mean percentage recovery	%RSD		
	Amiloride hydrochloride	Furosemide		Amiloride hydrochloride	Furosemide
80	99.7	100	100.1	0.74	0.50
	100.8	99.6	100.6	0.47	0.06
	101.1	100.6	101	0.23	0.06
100	100.2	100	100.1	0.47	0.06
	99.9	100	100	0.23	0.06
	100.9	100.7	100.7	0.23	0.06
	101	100.8	101	0.23	0.06

RSD: Relative standard deviation

Table 4: Results of method precision for amiloride hydrochloride and furosemide

% Assay	Amiloride hydrochloride	Furosemide
S. No.		
1	101.1	100.9
2	101.7	100.2
3	101	100.6
4	101.6	100.5
5	100.9	99.7
6	101.5	100.2
Mean±SD	±0.35	±0.41
%RSD	0.35	0.41

SD: Standard deviation, RSD: Relative standard deviation

Thermal degradation
In thermal degradation, there was no degradation peak observed in the chromatogram (Fig. 9).

Humidity degradation
In humidity degradation, the drug degraded was 0.6% and 10.5% for amiloride hydrochloride and furosemide, respectively. However, no degradation product was observed in the chromatogram (Fig. 11).
Shaikh and Rao
Asian J Pharm Clin Res, Vol 11, Issue 7, 2018, 215-221

CONCLUSION
Stability indicating RP-HPLC method has been developed and for simultaneous estimation of amiloride hydrochloride and furosemide in tablet dosage form. The validated method was successfully implemented for the stress testing and analysis of amiloride hydrochloride and furosemide. The stress testing studies revealed that the method was successfully employed to resolve the degraded products from the sample. The proposed method was proved to be selective, accurate, precise, and rapid, and it can be used for the routine analysis of the amiloride hydrochloride and furosemide in the formulation.
Fig. 7: Chromatogram of base degradation

Fig. 8: Chromatogram of oxidative degradation

Fig. 9: Chromatogram of photolytic degradation

Fig. 10: Chromatogram of thermal degradation

Fig. 11: Chromatogram of humidity degradation
ACKNOWLEDGMENT

The authors are thankful to our Principal Dr. Mrs. Sudha Rathod, Oriental College of Pharmacy Sanpada, Navi Mumbai, for providing a platform and facility to conduct research work. The authors are thankful to Alkem Laboratories for providing a gift sample of amiloride hydrochloride.

AUTHORS’ CONTRIBUTION

All the authors have contributed equally.

CONFLICTS OF INTEREST

The authors confirm that this paper has no conflict of interests.

REFERENCES

1. Mahgoub S. Novel stability-indicating RP-HPLC method for determination of hydrochlorothiazide, amiloride Hydrochloride and timolol Maleate in tablet dosage form. Columbia Int Puhl Am J Modern Chromatogr 2016;3:23-32.
2. Nagori BP, Solanki R. RP-HPLC method for simultaneous estimation of furosemide and amiloride hydrochloride in tablet formulation. Indian J Pharm Sci 2010;72:384-7.
3. Al-Saidi HK, Abdllaziz S, Semeir S. Simultaneous determination of amiloride hydrochloride and hydrochlorothiazide in pharmaceuticals by derivative spectrophotometry. J Al Nahrain Univ 2010;13:52-61.
4. Mannam R, Yallamalli IM. RP-HPLC method for estimation of furosemide in rabbit plasma. J Chem Pharm Res 2018;10:1-5.
5. Tandel JN. Development and validation of RP-HPLC method for the simultaneous determination of amiloride hydrochloride and furosemide in pure and pharmaceutical dosage form. Eur J Anal Chem 2017;12:385-94.
6. Kopuri G, Anusha K, Rao DS. Development of a new HPLC method for simultaneous estimation of amiloride and hydrochlorothiazide. J Chem Pharm Sci 2015;8:661-3.
7. Narasimham YS, Barhate VD. Development and validation of stability indicating UPLC method for the simultaneous determination of beta-blockers and diuretics in pharmaceutical dosage forms. J Chem Metrol 2010;4:1-20.
8. Tengli AR, Gurupadayya BM. Method development and validation of a tablet dosage form containing losartan, atenolol and hydrochlorothiazide using internal standard by RP-HPLC. J Chromatogr Separation Tech 2013;4:1-5.
9. Devanna N, Dudekula B, Ramachandraiah C. Development and validation for the simultaneous estimation of dolategravir and lamivudine in drug product by RP-HPLC. Int J Res Pharm Nano Sci 2017;6:173-80.
10. Thomas A, Bhosale S, Nanda R. Formulation of solid dosage form containing clopidogrel and cilostazol and its HPLC analysis. Int J Pharm Pharm Sci 2017;9:12-8.
11. Suneetha A, Kathirvel S, Ramachandrika G. A validated RP HPLC method for simultaneous estimation of lopinavir and ritonavir in combined dosage form. Int J Pharm Pharm Sci 2011;3:49-51.
12. Swetha A, Kuber BR. A novel stability-indicating reverse phase liquid chromatographic method for the simultaneous estimation of metformin and tenelaglipitin in pure and pharmaceutical formulations. Int J Pharm Pharm Sci 2017;9:163-9.
13. Jain V, Shaikh MS. Simultaneous RP-HPLC analysis of quercitin and kaempferol in different plant parts of cissusquadragularis. Int J Pharm and Pharm Sci 2016;8:138-42.
14. Marineni B, Reddy TS. Development and validation of stability-indicating RP-HPLC assay method for azacitidine and its bulk drug. Int J Pharm Pharm Sci 2014;6:240-4.