Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species

Zee-Won Lee1, Byoung Sik Kim2,3, Kyung Ku Jang1,10, Ye-Ji Bang1,11, Suhyeon Kim4, Nam-Chul Ha5, Young Hyun Jung5, Hyun Jik Lee5, Ho Jae Han7, Jong-Seo Kim6,8, Jeesoo Kim6,7, Pramod K. Sahu8,9, Lak Shin Jeong8, Myung Hee Kim3 & Sang Ho Choi1

Increasing antibiotic resistance has led to the development of new strategies to combat bacterial infection. Anti-virulence strategies that impair virulence of bacterial pathogens are one of the novel approaches with less selective pressure for developing resistance than traditional strategies that impede viability. In this study, a small molecule CM14 [N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide] that inhibits the activity of HlyU, a transcriptional regulator essential for the virulence of the fulminating human pathogen Vibrio vulnificus, has been identified. Without affecting bacterial growth or triggering the host cell death, CM14 reduces HlyU-dependent expression of virulence genes in V. vulnificus. In addition to the decreased hemolysis of human erythrocytes, CM14 impedes host cell rounding and lysis caused by V. vulnificus. Notably, CM14 significantly enhances survival of mice infected with V. vulnificus by alleviating hepatic and renal dysfunction and systemic inflammation. Biochemical, mass spectrometric, and mutational analyses revealed that CM14 inhibits HlyU from binding to target DNA by covalently modifying Cys30. Remarkably, CM14 decreases the expression of various virulence genes of other Vibrio species and thus attenuates their virulence phenotypes. Together, this molecule could be an anti-virulence agent against HlyU-harboring Vibrio species with a low selective pressure for the emergence of resistance.

Traditional strategies to combat bacterial infection are mostly dependent on the use of antibiotics that inhibit bacterial viability. However, inhibition of viability leads to the inevitable emergence of strains resistant to antibiotics. The emergence and spread of antibiotic-resistant bacteria have become a threat to public health by reducing the effectiveness of present antibiotics, and thus these are a major cause for the rising healthcare costs1–3. This situation leads to an imminent need for the development of new strategies to impede the virulence, rather than viability, of bacterial pathogens4,5. Anti-virulence strategies disarm the pathogens, thereby rendering them harmless and more susceptible to immune clearance6–8. Compared to strategies that target viability, anti-virulence strategies may impose less selective pressure for the emergence of resistant strains1, and even further diminish the risk of commensal bacteria elimination5,10. Considerable works have been conducted to develop anti-virulence strategies, such as the inhibition of expression, secretion, or activity of virulence factors5,8.

1National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea. 2Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea. 3Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. 4Department of Agricultural Biotechnology and Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea. 5Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea. 6Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea. 7School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea. 8Department of Pharmacy, Seoul National University, Seoul, 08826, South Korea. 9Future Medicine Co., Ltd, Seoul, 06665, South Korea. 10Present address: Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA. 11Present address: Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390, USA. Zee-Won Lee and Byoung Sik Kim contributed equally. Correspondence and requests for materials should be addressed to S.H.C. (email: choish@snu.ac.kr)
Vibrio species generally inhabit in diverse marine environments. As an emerging cause of bacterial infection, some pathogenic **Vibrio** species infect humans and lead to a variety of clinical symptoms\(^1\)\(^,\)\(^2\). For example, **Vibrio vulnificus** can cause life-threatening septicemia and necrotizing fasciitis with high mortality rates in susceptible individuals\(^3\). **Vibrio parahaemolyticus** is a leading cause of seafood-borne gastroenteritis worldwide, resulting in diarrhea, nausea, fever, and chills\(^4\). **Vibrio cholerae**, a causative agent of watery diarrhea, is responsible for large outbreaks of cholera in various countries\(^5\), and **Vibrio alginolyticus** causes otitis and superficial wound infections in humans\(^6\). Although many antibiotics such as quinolones and tetracyclines have been applied for the treatment of **Vibrio** infection\(^7\), the recent reports of antibiotic resistant **Vibrios** threaten the efficacies of these antibiotics as treatment options\(^8\)\(^,\)\(^9\). In an effort to develop anti-virulence strategies against pathogenic **Vibrio** species, small molecules targeting virulence of **Vibrio** species have been identified\(^10\)\(^-\)\(^15\). However, very little is known about the molecular mechanisms of the compounds.

HlyU is a conserved transcriptional regulator required for the activation of various virulence genes in **Vibrio** species\(^14\)\(^,\)\(^26\)-\(^28\). For example, *V. vulnificus* HlyU induces the expression of vvhA, rtxA, and plpA encoding hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and phospholipase A2, respectively, by directly binding to the promoter region\(^29\)\(^,\)\(^30\). Similarly, *V. parahaemolyticus* HlyU directly induces the expression of esxA, which is essential for the type III secretion system 1 (T3SS1)\(^31\). The hemolysin VvhA lyses erythrocytes, damages endothelial cells, and induces inflammatory cell infiltration\(^32\)\(^,\)\(^33\). The MARTX toxin causes host cell rounding by dysregulating actin cytoskeleton and antagonizes phagocytic activity of host immune cells\(^33\)\(^-\)\(^36\). The secretory phospholipase A2 PlpA contributes to the lysis and necrotic death of host cells\(^37\). T3SS1 directly delivers multiple cytopathic and cytotoxic effector proteins into the host cells\(^37\). Host tissue destruction and inflammation caused by these virulence factors promote the survival, dissemination, and pathogenesis of *V. vulnificus* and *V. parahaemolyticus* in mice\(^38\)\(^,\)\(^39\). Accordingly, a deletion mutation of *hlyU* significantly attenuated virulence of the bacteria against human epithelial HeLa cells or mice\(^44\)\(^-\)\(^49\). Therefore, inhibition of the HlyU activity could be a plausible anti-virulence strategy against these **Vibrio** species.

In the present study, we performed high-throughput screening of 8,385 compounds and identified a small-molecule inhibitor of HlyU, CM14, that significantly inhibited the HlyU activity in *V. vulnificus*. CM14 reduced the expression of HlyU-regulated virulence genes, attenuating the virulence-related phenotypes of *V. vulnificus* in vitro, ex vivo, and in a mouse model. Biochemical analysis indicated that CM14 prevents HlyU binding to its target promoter DNA. Further mass spectrometric and mutational analyses revealed that a part of CM14 covalently modifies Cys30, a well-conserved residue of HlyU proteins in **Vibrio** species, without affecting the bacterial growth.

Results

Identification of CM14 as an inhibitor of the HlyU activity. To identify a specific inhibitor of HlyU, we constructed an *Escherichia coli* reporter strain containing pKK1306 (carrying an arabinose-inducible hlyU of *V. vulnificus*) and pZW1608 (carrying a promoterless lux operon fused to a promoter P\(_{V.VELENO.00539}\))\(^36\). Because the VVMO6_00539 gene is directly repressed by HlyU (Fig. 1a; Supplementary Fig. S1a,b), the resulting same reporter plasmid pZW1608 (Fig. 1c) or pZW1609 (Fig. 1d), respectively. In contrast to pZW1608, pZW1609 expression or function of HlyU (Fig. 1a). By using this HlyU-repressed reporter strain, we constructed an *Escherichia coli* reporter strain containing pKK1306 (carrying an arabinose-inducible lux operon fused to a promoter P\(_{E. COLI} \text{lux}\)) and pZW1608 (carrying a promoterless lux operon fused to a promoter P\(_{V. VELENO.00539}\))\(^36\). Because the VVMO6_00539 gene is directly repressed by HlyU (Fig. 1a; Supplementary Fig. S1a,b), the resulting E. coli strain remains non-luminescent in an arabinose-containing media unless a potential hit molecule inhibits either the expression or function of HlyU (Fig. 1a). By using this HlyU-repressed lux reporter system instead of the HlyU-activated system, we could eliminate the false identification of luciferase-inhibiting and/or luminescence-absorbing molecules as hits. Due to the lack of a previously discovered ligand or a putative ligand-binding site in HlyU, a random chemical library containing 8,385 small molecules was screened using the E. coli reporter strain. From the screening, three hit molecules (1025E12, 1030B04, and 1040E12) were identified as putative HlyU inhibitors (Fig. 1b). These hit molecules were reexamined using the *V. vulnificus* reporter strain containing the same reporter plasmid pZW1608 (Fig. 1c) or pZW1609 (Fig. 1d), respectively. In contrast to pZW1608, pZW1609 carries the promoterless lux operon fused to a promoter of the rtxA gene, P\(_{rtxA}\), which is directly induced by HlyU\(^26\). With each of the hit molecules, the wild-type *V. vulnificus* containing pZW1608 was more luminescent than the negative control (dimethyl sulfoxide, DMSO) (Fig. 1c), while *V. vulnificus* containing pZW1609 was less luminescent than the negative control (Fig. 1d). The use of these two distinct *V. vulnificus* reporter strains verified that the hit inhibitor molecules function directly on HlyU, not on other components such as a luciferase enzyme.

Among the hit molecules, 1025E12, N-(4-oxo-4H-thieno[3,4-c]chromen-3-yl)-3-phenylprop-2-ynamide (C\(_{20}\)H\(_{11}\)NO\(_{3}\)S, molecular weight of 345.37) was most effective in the HlyU inhibition, and thus selected as a HlyU inhibitor and renamed ‘CM14’ (Fig. 2a). The structure of CM14 was confirmed by 1H NMR, 13C NMR, and mass spectrometric analyses (see Supplementary Information Methods). The HlyU activities were assessed using the wild-type *V. vulnificus* containing pZW1609 in the presence of various concentrations of CM14, and the half maximal effective concentration (EC\(_{50}\)) of the molecule was determined as 30.97 \(\mu\)M (Fig. 2b). It is noteworthy that CM14 in the range of 20 to 200 \(\mu\)M did not alter the HlyU levels in *V. vulnificus* cells (Fig. 2c), suggesting that CM14 inhibits the activity rather than the cellular levels of HlyU. In addition, CM14 did not affect the growth of *V. vulnificus* (up to 2 \(\mu\)M) and was not toxic to the human epithelial INT-407 cells (up to 500 \(\mu\)M) (Fig. 2d,e). Therefore, these results suggested that CM14 is a small-molecule inhibitor of HlyU activity having a potential to be developed as an anti-virulence agent against *V. vulnificus*.

CM14 reduces the HlyU-dependent virulence gene expression in vitro. Next, we examined if CM14 affects the expression of vvhA, rtxA, and plpA in *V. vulnificus*. Consistent with the previous result that CM14 inhibits HlyU activity, the transcript levels of vvhA, rtxA, and plpA of the wild-type *V. vulnificus* strain were significantly reduced in the presence of the molecule at 20 \(\mu\)M (Fig. 3a; WT + DMSO vs. WT + CM14). The reduced expression levels of the genes were close to those of the hlyU mutant strain ZW141 (Fig. 3a; WT + CM14 vs. hlyU+ DMSO). We further investigated whether the reduced expression of the virulence genes is reflected in
the virulence-related phenotypes. It was reported that *V. vulnificus* VvhA has a hemolytic activity against erythrocytes. Thus, we compared the hemolytic activities in the culture supernatants of the *V. vulnificus* strains grown in the presence or absence of CM14. When incubated with human erythrocytes, the culture supernatant of the wild-type *V. vulnificus* grown in the presence of DMSO control showed robust hemolytic activity (Fig. 3b). In contrast, the culture supernatant of the wild-type *V. vulnificus* grown in the presence of CM14 exhibited significantly reduced (at 20 μM) or nearly no hemolytic activities (at 50 μM) similar to that of the *hlyU* mutant (Fig. 3b).

Collectively, these results indicated that the effect of CM14 on the decreased expression of virulence genes is also represented as a reduced virulence-related phenotype of *V. vulnificus* in vitro.

CM14 attenuates the virulence of *V. vulnificus* ex vivo. The effects of CM14 on the *V. vulnificus*-mediated cytopathic changes of the host cells were assessed ex vivo. Since CM14 significantly decreased the *rtxA* transcript level in *V. vulnificus* (Fig. 3a), we first examined whether the molecule prevents the actin cytoskeleton dysregulation primarily caused by the MARTX toxin. To this end, we monitored a rapid rounding phenotype of the HeLa cells infected with the *V. vulnificus* strains in the presence or absence of CM14. HeLa became round at 1 h post infection of the wild type (Fig. 3c; WT + DMSO). However, the rounding of HeLa cells was significantly attenuated in the presence of CM14 at 50 μM (Fig. 3c; WT + CM14), and thus the morphology of the cells was comparable to that of the cells with phosphate buffered saline (PBS, vehicle control) or the *hlyU* mutant (Fig. 3c; PBS + DMSO or *hlyU* + DMSO).

Furthermore, the effects of CM14 on the cytotoxicity of *V. vulnificus* were evaluated. For this purpose, lactate dehydrogenase (LDH) release from the INT-407 cells infected with the bacteria was determined. As shown in Fig. 3d, CM14 reduced LDH release from the cells infected with the wild-type *V. vulnificus* in a dose-dependent manner. Notably, 100 μM of CM14 almost abolished the LDH-releasing activity of *V. vulnificus* (Fig. 3d). Taken together, these results revealed that CM14 successfully attenuates the cytotoxicity and cytotoxicity of *V. vulnificus* ex vivo.

CM14 attenuates the pathogenesis of *V. vulnificus* in mice. To investigate the *in vivo* efficacy of CM14, mortality of mice infected with *V. vulnificus* was evaluated with or without co-administration of the molecule (Fig. 4a). All of the mice infected subcutaneously with the wild type strain were succumbed within 15 h
post infection (Fig. 4a; WT + DMSO). In contrast, 80% of the mice survived until the end of experiment (36 h post infection) when CM14 was co-administered at 1.125 mM concentration (1.4 mg/kg body weight) (Fig. 4a; WT + CM14). These results revealed that co-administration of CM14 significantly prolonged the survival of mice infected with \textit{V. vulnificus} (\(p<0.0001\), log rank test). Markedly, the survival rate of the mice infected with the wild type in the presence of CM14 was not statistically different from that of mice infected with the \textit{hlyU} mutant (Fig. 4a; \(\text{hlyU} + \text{DMSO}\)). The combined results indicated that CM14 effectively inhibits the pathogenesis of \textit{V. vulnificus} during murine infection.

To examine not only survival but also pathophysiological changes, especially in the degrees of hepatic and renal dysfunction, we analyzed the biochemical parameters in the blood of the mice infected with \textit{V. vulnificus} in the presence or absence of CM14. When mice were infected with the wild type (WT + DMSO), the blood plasma levels of total protein (TP) and albumin (ALB) were decreased, while the levels of aspartate aminotransferase (AST) and blood urea nitrogen (BUN) were increased, compared to the uninfected control mice injected with the vehicle (Fig. 4b; PBS + DMSO). However, the levels of biochemical parameters in mice infected with wild type in the presence of CM14 (WT + CM14) were comparable to those in the control groups such as mice infected with the \textit{hlyU} mutant (Fig. 4b; \(\text{hlyU} + \text{DMSO}\)). The levels of alanine aminotransferase (ALT) and creatine (CREA) did not show any significant differences among the groups in the conditions tested (Fig. 4b).

Since severe inflammation is accompanied with \textit{V. vulnificus} infection38,42, we next assessed immune responses in the \textit{V. vulnificus}-infected mice either co-administered with or without CM14. The pro-inflammatory cytokines interleukin (IL)-1\(\beta\) and IL-6 levels in mouse blood plasma were significantly elevated upon infection of the wild type (Fig. 4c,d; PBS + DMSO vs. WT + DMSO). However, co-administration of CM14 alleviated the secretion of these pro-inflammatory cytokines (Fig. 4c,d; WT + CM14). Consistent with this, the recruitment of F4/80\(^+\) macrophages to the infection site was also reduced by the administration of CM14 (Fig. 4e). Remarkably, the percentage of F4/80\(^+\) cells over 4',6-diamidino-2-phenylindole (DAPI)\(^+\) cells at the site infected with the wild
type in the presence of CM14 was not significantly different from that with the hlyU mutant (Fig. 4e). Meanwhile, CM14 did not appear to be toxic to mice, as the levels of blood parameters and macrophage infiltration of the mice injected with CM14 were comparable to those of the mice injected with the vehicle (Fig. 4b to e; CM14 vs. PBS + DMSO). Furthermore, none of the mice injected with CM14 died (Fig. 4a). Taken together, these results indicated that CM14 attenuates the virulence of V. vulnificus in vivo and is not toxic toward mice.

CM14 inhibits the binding of HlyU to its target promoter DNA. As a transcriptional regulator, HlyU functions by binding directly to its target DNA.4,14,26,30,43 Thus, we examined whether CM14 inhibits the activity of HlyU by altering the DNA binding of HlyU. Electrophoretic mobility shift assays (EMSAs) revealed that HlyU bound to the target P_{rtxA} DNA and resulted in a retarded band of the DNA-HlyU complex in a HlyU concentration-dependent manner (Fig. 5a, DMSO). When 20 μM of CM14 was added, however, the HlyU binding to the DNA decreased, as less amount of retarded bands were detected compared to the DMSO-added control (Fig. 5a; CM14). In contrast, a random molecule that showed no HlyU-inhibiting activity in the screening did not affect HlyU binding to the DNA (Fig. 5a; Control). To determine the effect of CM14 on the dissociation constant (K_d) for HlyU, additional EMSA experiments were performed (Fig. 5b,c). Based on the concentration of HlyU required to bind 50% of the DNA probe, the K_d for HlyU without CM14 was estimated as 25.16 nM, while that with 2.5 μM of CM14 was estimated as 54.83 nM (Fig. 5d), indicating that the molecule significantly affects the equilibrium between free and DNA-bound HlyU proteins in the binding reaction. Indeed, the addition of increasing amounts of CM14 resulted in a concentration-dependent inhibition of HlyU binding to the DNA, and 50 μM of CM14 completely abolished the formation of the DNA-HlyU complex (Fig. 5e). Together, these results suggested that inhibition of HlyU binding to its target DNA is a possible mechanism of CM14.

Figure 3. Effects of CM14 on the virulence-related phenotypes of V. vulnificus. (a,b) The V. vulnificus strains grown along with CM14 as indicated or DMSO (control) were harvested and fractionated for further analyses. (a) The transcript levels of vvhA, rtxA, and plpA in the total RNA of the cells were quantified by qRT-PCR and expressed using each transcript level of the wild type in the presence of DMSO as 1. (b) Hemolytic activities of the culture supernatants were determined against human erythrocytes and expressed using complete hemolysis by 5% Triton X-100 as 100%. (c) Morphological changes of HeLa cells infected with the V. vulnificus strains along with CM14 (50 μM) or DMSO (control) were photographed. Scale bars, 100 μm. (d) Cytotoxicity was determined using LDH activities released from INT-407 cells infected with the V. vulnificus strains along with CM14 as indicated and expressed using the LDH activity from the cells completely lysed by 5% Triton X-100 as 100%. Error bars represent the SD from three independent experiments (a,b) and from the representative of three independent experiments (d). Statistical significance was determined by the Student's t-test (a) and by one-way ANOVA (b,d) (***p < 0.0005; **p < 0.005; *p < 0.05; ns, not significant). WT, wild type; hlyU, hlyU mutant.
Chemical modification of HlyU by CM14. The possible mechanism of CM14 to inhibit the DNA-binding activity of HlyU was further investigated at a molecular level. To this end, tandem mass spectrometric analysis was performed for the CM14-treated HlyU sample. Figure 6a clearly showed that the Cys30 residue (C#) in the HlyU peptide, RLQILC#MLHNQELSVGELCAK, was covalently modified by the moiety with molecular mass of 130.042 Da, indicating that a certain part of CM14, probably consisting of C9H7O, is attached to the Cys30 of HlyU. Importantly, this modification seems to occur in vivo as well, because the freshly purified HlyU protein from the CM14 (50 μM)-treated E. coli cells also revealed the same result (Supplementary Fig. S2a). To verify this modification on the Cys30, a mutant HlyU protein with Cys to Ser substitution at Cys30 (HlyUC30S) was prepared and reacted with CM14. When the resulting mixture was analyzed by tandem mass spectrometry, a spectrum corresponding to the HlyU peptide containing a substituted serine, but not containing the covalently modified moiety, was detected (Supplementary Fig. S2b), indicating that the thiol group of Cys30 is important for the covalent modification. Consistent with this, the mutant HlyUC30S became resistant to CM14, as supported by the observations that the DNA-binding activity of HlyU C30S was less affected by the molecule in vitro (Fig. 6b) and that the expression of rtxA was not attenuated by the molecule in vivo (Fig. 6c).

According to the previously determined crystal structure of HlyU, there is another Cys residue, Cys96, near the Cys30 (Supplementary Fig. S2c; PDB code: 3JTH). To examine the role of Cys96 in the CM14-mediated modification of Cys30, this residue was also substituted with Ser. The resulting HlyU C96S was also resistant to CM14 in vitro and in vivo, as was HlyU C30S (Fig. 6b,c; HlyU C30S). Notably, however, Cys96 residue was detected unmodified in the above tandem mass spectrometric analysis of CM14-treated HlyU sample. Taken together, the
results indicated that CM14 reacts with the thiol group of Cys30 of HlyU via a putative chemical reaction involving Cys96, and consequently inhibits the DNA-binding activity of HlyU.

To gain insights into the structural influence of CM14 on HlyU, we determined the crystal structure of CM14-treated HlyU protein at 2.1 Å resolution and compared it with the previously determined apo-HlyU structure44 (PDB code: 3JTH) (Fig. 6d,e). The overall structure of the CM14-treated HlyU is similar to that of apo-HlyU (Fig. 6d). However, there is an extra electron density map around Cys30 of the CM14-treated HlyU suggesting a potential chemical modification of Cys30 (Fig. 6e). Although the moiety attached to Cys30 is partially visible presumably due to the high flexibility, this observation is consistent with the above result that CM14 modifies the Cys30 of HlyU (Fig. 6a). Notably, further comparison revealed that CM14 induces a conformational change of HlyU, thereby substantially decreasing the distance between Cys30 and Cys96 from 8.4 Å to 4.1 Å (Fig. 6f,g). In addition, we found that the distance between two DNA-binding 𝛼-helices (𝛼4) in HlyU dimer by 2.9 Å (Fig. 6d), which may account for the impaired DNA-binding activity of HlyU (Fig. 5).

CM14 exhibits anti-virulence effects against other Vibrio species. HlyU proteins are highly conserved in Vibrio species and show high degree of sequence similarity. Especially, the residues Cys30 and Cys96 are well conserved in HlyU homologues of common pathogenic Vibrios, including V. parahaemolyticus, V. alginolyticus, and V. cholerae43 (Supplementary Fig. S3). Thus, we hypothesized that CM14 would be effective against other Vibrio species harboring HlyU homologue. Unfortunately, the homologues of rtxA and vvhA are absent in V. parahaemolyticus and V. alginolyticus, while the plpA homologue is present. However, the plpA homologues have not been reported to be regulated by HlyU. Accordingly, we examined the expression of exsA in V. parahaemolyticus. As expected, CM14 significantly reduced the exsA expression in V. parahaemolyticus (Fig. 7a). Since ExsA positively regulates multiple T3SS1-associated genes14, we further examined the expression of T3SS1 genes (val1668, vopQ, vopS, and vopR) in the presence or absence of CM14. Again, the expression of tested T3SS1 genes was significantly attenuated by CM14 treatment (Fig. 7a). Moreover, this molecule reduced the cytotoxicity of V. parahaemolyticus against the INT-407 cells in a dose-dependent manner (Fig. 7b).

Next, the effects of CM14 on V. alginolyticus and V. cholerae were examined. Since V. alginolyticus possesses T3SS which is particularly similar to that of V. parahaemolyticus16, we assumed that HlyU may also regulate T3SS in V. alginolyticus. In V. cholerae, HlyU activates the expression of hlyA by directly binding to the promoter region45. As shown in Fig. 7c to f, CM14 markedly inhibited the expression of exsA and T3SS genes (val1668, vopQ, vopS, and vopR) in V. alginolyticus and two divergently transcribed hemolysin genes (hlyA and tlh) in V.
Cholerae, thereby attenuating cytotoxicity or hemolytic activity of the Vibrios. Notably, CM14 did not hamper the growth of V. parahaemolyticus, V. alginolyticus, and V. cholerae (Supplementary Fig. S4), as in the case of V. vulnificus (Fig. 2d).

Discussion

Numerous bacterial genes encoding virulence factors required for overall success in the pathogenesis have been identified. Many of these genes are coordinately regulated by a common global regulatory protein(s) to obtain their effective cooperation during infection. Therefore, inhibiting the activity of global regulatory proteins is a promising strategy that can prevent the production of virulence factors simultaneously and thereby impede bacterial pathogenesis efficiently. HlyU homologue in Vibrio species is a key regulatory protein that induces the expression of various virulence genes, suggesting that it could be an attractive target to develop the anti-virulence strategies against the pathogenic Vibrios. In the present study, we have identified and characterized a small molecule, CM14, that specifically inhibits HlyU activity, thus attenuating the pathogenesis of V. vulnificus without suppressing its growth. As expected, it also attenuated virulence phenotypes of other pathogenic Vibrios.

Among the genes regulated by HlyU in V. vulnificus, the expressions of VVMO6_00539 and VVMO6_03281 which are directly repressed by the protein (Supplementary Fig. S1a to c) were significantly induced in the...
presence of CM14 (Supplementary Fig. S1d,e). These results indicated that CM14 inhibits HlyU activity regardless of its regulatory mode, and also suggested that the molecule functions at a stage of HlyU binding to the target promoter DNA rather than other stages such as interaction of the protein with RNA polymerase. Indeed, the EMSA results revealed that CM14 directly inhibits DNA-HlyU interaction (Fig. 5). This inhibitory mode of action is advantageous in controlling pathogenesis of the bacteria because it blocks the production of virulence factors at the earliest step2,5.

To the best of our knowledge, CM14 is the first compound that covalently modifies HlyU and inhibits the virulence of

V. vulnificus

in a mammalian infection model. Although two compounds, furusultiamine hydrochloride and 2′,4′-dihydroxochalcone, have been identified as HlyU inhibitors, their mode of action was barely demonstrated24,25. Moreover, both of them failed to show in vivo efficacy in an animal model, and the latter even impeded bacterial growth at the low concentration of 15 μM. From the structural point of view, compared to the
two compounds, CM14 is endowed with a novel keto-alkyne moiety that is required for the covalent modification of Cys30 in HlyU (see below).

Acute failures of liver and kidney in \textit{V. vulnificus}-infected patients are the key pathophysiological features associated with fatal death48,49. Our study revealed that the inhibition of HlyU activity by CM14 suppressed the hepatic and renal dysfunction (Fig. 4b) and subsequently increased the survival rate of mice infected with \textit{V. vulnificus} (Fig. 4a). In addition, our data showed that CM14 reduces both the production of pro-inflammatory cytokines in the blood plasma (Fig. 4c,d) and the massive recruitment of macrophages to the infection site (Fig. 4e). Because the MARTX toxin and VvhA induce pro-inflammatory cytokine production in mice38 and these cytokines trigger the recruitment of immune cells such as macrophages52,53, the \textit{in vivo} results indicate that CM14 alleviates the clinical manifestations related to the \textit{V. vulnificus}-induced septicemia by down-regulating the virulence factors. Since these virulence factors are also crucial for the invading pathogen to combat against residing immune cells and thus to proliferate/disseminate in the host30,33,38, \textit{V. vulnificus} cells attenuated by the molecule might be readily cleared out of the mice.

Given the clear mass spectrometric evidence and biochemical data (Fig. 6a to c), we concluded that the Cys30 residue of HlyU was covalently modified with a certain part of CM14 consisting of C\textsubscript{9}H\textsubscript{7}O, and the Cys96 residue participated in this modification reaction. Based on these observations, we propose a possible chemical reaction mechanism for the covalent modification of HlyU by CM14 (Fig. 8; see the blue dashed box on the right). In the proposed reaction, the sulfur atom of Cys96 of HlyU may first attack a carbon atom (asterisk) of CM14, forming a Michael reaction acceptor site. Then, a sulfur atom of Cys30 of HlyU attacks a carbonyl carbon of CM14, releasing an amine group with bulky rings. Subsequently, a nucleophile (Nu, e.g. His92) around the reaction site would cleave the sulfur-carbon bond between Cys96 and the remaining part of CM14, protonating the carbon and releasing an amine group with bulky rings. Subsequently, a nucleophile (e.g. His92; Supplementary Fig. S2c) around the reaction site would cleave the sulfur-carbon bond between Cys96 and the remaining part of CM14, protonating the carbon and releasing an amine group with bulky rings, remaining a part with the phenyl group of CM14. Subsequently, a nucleophile (e.g. His92; Supplementary Fig. S2c) around the reaction site would cleave the sulfur-carbon bond between Cys96 and the remaining part of CM14, and the carbon is protonated, leaving the C\textsubscript{9}H\textsubscript{7}O moiety on Cys30.

Notably, CM14 seems specific for HlyU among various thiol-dependent transcriptional regulators, because only the HlyU regulon was differentially regulated by CM14 in the whole transcriptome sequencing analysis (Supplementary Fig. S5a). Indeed, samples of WT + CM14, \textit{hlyU} + DMSO, \textit{hlyU} + CM14 were clustered into a certain group that is distinct from the WT + DMSO samples in a principal component analysis (Supplementary Fig. S5b). We thus hypothesize that the bulky rings of CM14 may be involved in the specific interaction with HlyU at the early steps of binding, but the details of interactions including binding constant remain to be studied in the future.

The effects of CM14 on thiol groups of other proteins such as those in the host should also be clarified by future studies.

Nonetheless, how does this modification affect the DNA-binding activity of HlyU protein? Intriguingly, a previous simulation study on the \textit{V. cholerae} HlyU protein revealed that a distance between Cys38 and Cys104, which correspond to the Cys30 and Cys96 of \textit{V. vulnificus} HlyU, respectively, has a correlation with the target DNA binding. Specifically, the distance between Cys38 and Cys104 is 8.67 Å when the protein is expected to bind to a target DNA51. From the comparison of the crystal structure of CM14-treated HlyU with that of apo-HlyU (Fig. 6d), we found that the distance between Cys30 and Cys96 residues was significantly shortened from 8.4 Å to 4.1 Å upon CM14 treatment (Fig. 6f,g). Furthermore, the distance between two DNA-binding \(\alpha\)-helices (α4) in HlyU dimer was also decreased by 2.9 Å (Fig. 6d). Altogether, the results indicate that CM14-mediated Cys30 modification substantially changes the HlyU conformation, and thus inhibits HlyU binding to target DNA (Figs 5 and 8).

Increasing number of studies have reported small molecules that can inhibit the activity or expression of virulence factors without affecting bacterial growth. For instance, Virstatin precludes dimerization of \textit{V. cholerae} ToxT and prevents the expression of cholera toxin and toxin coregulated pilus54,55. Similarly, LED209 inhibits QseC activity, reducing the QseC-dependent virulence gene expression and virulence of multiple Gram-negative pathogens56,57. ITC-12 covalently modifies a cysteine residue of LasR, inhibits quorum sensing-mediated gene
expression, and attenuates virulence of *Pseudomonas aeruginosa*[^58^]. Ebsealen binds to an active cysteine residue in the cysteine protease domain and thereby inhibits the autoproteolytic cleavage of TcdA and TcdB, the *Clostridium difficile* major toxins[^59^]. Interestingly, CM14, in addition to ITC-12 and Ebsealen, also covalently modifies Cys30 of *V. vinvificus* HlyU (Fig. 6a), supporting the present idea that cysteine residues, along with their scarcity and enhanced reactivity, can be good targets for the development of selective inhibitors of toxins[^60^].

CM14 successfully inhibited the expression of various virulence genes in *Vibrio* species, including *vvhA*, *rtxA*, and *plpA* of *V. vinvificus* (Fig. 3a), T3SS1 genes of *V. parahaemolyticus* (Fig. 7a), T3SS genes of *V. alginolyticus* (Fig. 7c), and *hlyA* and *thl* of *V. cholerae* (Fig. 7e). Consistent with the previous report that the promoter region of *rtxA* in *V. cholerae* is not directly bound by the HlyU protein[^61^], the expression of *rtxA* in *V. cholerae* was not affected by CM14 (Fig. 7e). This is noteworthy because it further supports that CM14 specifically affects the HlyU protein. Nevertheless, these results suggest that CM14 has a broad-spectrum anti-virulence effect against pathogenic *Vibrio* species harboring HlyU homologue to regulate the expression of diverse virulence genes.

In conclusion, we identified a small molecule CM14 which inhibits HlyU activity by covalently modifying Cys30 and thus attenuates the virulence of *Vibrio* species. CM14 exhibited its anti-virulence effect even at the post-infection treatment, although it was *ex vivo* case (Supplementary Fig. S6). Further studies are needed to explore the potential of CM14 as a therapeutic agent against *V. vinvificus* infection, including the evaluation of CM14 analogues with improved bioavailability. Since CM14 does not hamper the bacterial growth, it would present no or low selective pressure for the development of resistance.

Methods

Strains, plasmids, culture conditions, and high-throughput screening.

The strains and plasmids used in this study are listed in Supplementary Table S1. *E. coli* and *V. vinvificus* strains were grown in Luria-Bertani (LB) medium and LB supplemented with 2% (w/v) NaCl (LBS) at 37 °C and 30 °C, respectively. *V. parahaemolyticus*, *V. alginolyticus*, and *V. cholerae* were grown in LBS, tryptic soy broth supplemented with 1% (w/v) NaCl and LB, respectively, at 37 °C. For T3SS1 inducing condition, *V. parahaemolyticus* was grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 1% fetal bovine serum (FBS)[^42^]. Bacterial growth was monitored spectrophotometrically at 600 nm (A600). HeLa cells originated from the American Type Culture Collection were maintained at 37 °C with 5% CO2 in DMEM containing 10% FBS, 50 μg/ml penicillin and 50 μg/ml streptomycin. For infection experiments, the cells were washed with pre-warmed PBS and kept in fresh DMEM. The small molecule libraries (each dissolved in 100% DMSO) were kindly provided by the Korea Chemical Bank (http://www.chembank.org). Detailed descriptions on construction of the *E. coli* reporter strain, information related to the high-throughput screening and results are provided in Supplementary Information Methods and Supplementary Table S2.

Determination of the EC50 of CM14.

To determine EC50 (the concentration of CM14 inhibiting the HlyU activity by 50%), the wild-type *V. vinvificus* reporter strain containing pZW1609 (Supplementary Table S1), a HlyU-activated reporter plasmid, was exposed to various concentrations (10^-10 to 10^-3 M) of CM14. Luminescence and growth (A600) of the reporter strain were measured after 1.5 h incubation using a microplate reader (Infinite^TM^ M200 microplate reader, Tecan, Switzerland), and RLUs were calculated by dividing luminescence with A600[^62^]. The HlyU activities were expressed using the RLU observed in the absence of CM14 (in the presence of 2% DMSO) as 100%. The EC50 was calculated by plotting the relative HlyU activities versus the CM14 concentrations using GraphPad Prism 7.0 (GraphPad Software, San Diego, CA).

Western blot and transcript analyses.

The *V. vinvificus* strains along with CM14 or 2% DMSO were grown to A600 of 0.5 and used to analyze either the HlyU protein or the vvhA, rtxA, and plpA transcript levels. HlyU and DnaK in the cell lysates were detected using rabbit anti-*V. vinvificus* HlyU antibody and mouse anti-*E. coli* DnaK antibody (Enzo life science, Farmingdale, NY) by Western blot analysis. Expression of specific genes was determined by qRT-PCR with a pair of specific primers (Supplementary Table S3). Relative expression levels of each gene were calculated by using the 16S rRNA expression level as the internal reference for normalization.

Virulence assays.

To determine hemolytic activity *in vitro*, the *V. vinvificus* strains grown to A600 of 1.0 along with CM14 or 2% DMSO (control) were harvested and fractionated into cells and supernatants by centrifugation. The culture supernatants were purified through Puradisc™ 25 mm syringe filter (pore size 0.2 μm; GE healthcare, Novi, MI) and incubated at 37 °C for 3 h. The hemolytic activity was measured by spectrophotometry as described previously[^63^].

Two different assays were performed to determine cytotoxicity and cytopathicity of the *V. vinvificus* strains *ex vivo*. To examine the cytopathic changes, HeLa cells grown in a μ-slide 4-well plates (Ibidi, Germany) were infected with the *V. vinvificus* strains at an MOI of 2 along with 50 μM of CM14 or 1% DMSO (control). After 1 h incubation at 37 °C, the cells were fixed and stained with DAPI (1 mg/ml; Thermo Fisher Scientific, Waltham, MA) and analyzed using a laser scanning confocal microscope (C2plus, Nikon, Japan) and analyzed using NIS-Elements software (Nikon). To examine cytotoxicity, the monolayers of INT-407 cells (HeLa cell-derived epithelial cells) grown in a 96-well tissue culture plate (Nunc, Roskilde, Denmark) were infected with *V. vinvificus* strains at an MOI of 10 along with various concentrations of CM14 or 1% DMSO (control). After 2.5 h incubation at 37 °C, the LDH activities in the supernatant were measured as described previously[^64^].
Mouse infection assays. All manipulations for mouse infection assay were performed following the National Institutes of Health Guidelines for Humane Treatment and approved by the Animal Care and Use Committee of Seoul National University (SNU-170417-26-2). Mouse mortality, blood biochemical parameters, pro-inflammatory cytokine production, and macrophage infiltration were evaluated to determine the virulence of *V. vulnificus* in vivo. For the mouse mortality test, the *V. vulnificus* strains grown to *A*_max of 0.5 were harvested and suspended in PBS to 7.5 × 10^6 CFU/ml. Groups of Institute of Cancer Research (ICR) female mice (7-week-old, specific-pathogen-free; Orient Bio, Seongnam, Republic of Korea) were injected with 100 μl of the bacterial suspension along with CM14 (to achieve 1.4 mg/kg body weight) or 10% DMSO subcutaneously under the dorsal skin. Survival of the mice was monitored for 36 h as described previously 30.

To examine the levels of blood biochemical parameters, pro-inflammatory cytokine production, and macrophage infiltration to the injection sites, the mice injected as described above were sacrificed at 7 h post infection to obtain blood and skin tissue samples, respectively. For blood biochemical analysis, the blood samples were collected using cardiac puncture in heparin-coated tube (IDEXX Laboratories, Westbrook, ME) and analyzed as described previously 30. Briefly, the levels of TP, ALB, AST, ALT, BUN, and CREA in the blood plasma were measured using a biochemistry autoanalyzer (Hitachi 7180 autoanalyzer, High-Technologies Corp., Tokyo, Japan). The remaining blood samples were fractionated by centrifugation for 10 min at 1,000 × g to obtain the blood plasma. Cytokine levels of IL-1β and IL-6 in the blood plasma were determined by ELISA using commercially available ELISA kits for IL-1β (R&D systems, Minneapolis, MN) and IL-6 (AbFrontier, Seoul, Republic of Korea). For immunohistochemical analysis, the mouse skin tissue samples around injection sites were embedded in optimum cutting temperature (O.C.T.) compound (Sakura Finetek, Torrance, CA) and stored at −80 °C. Frozen tissue samples were cryo-sectioned to a 20-μm thickness and then mounted on silane-coated slides (Muto Pure Chemicals, Tokyo, Japan). Tissue samples on slides were fixed with 10% PBS–acetone for 10 min, washed twice with PBS, and blocked in 5% normal goat serum (Sigma-Aldrich, St. Louis, MO) for 20 min. Slides were incubated with F4/80 antibody (1:100 dilution; Santa Cruz, Paso Robles, CA) for 2 h at room temperature. After washing three times with PBS, the slides were incubated with Alexa Fluor 488®-conjugated goat anti-rabbit secondary antibody (1:200 dilution; Thermo Fisher Scientific) for 1 h. Subsequently, all slides were incubated with DAPI solution (5 μg/ml; Thermo Fisher Scientific) in PBS for 5 min at room temperature. All immunofluorescence images were obtained by Eclipse Ti2® fluorescence microscopy (Nikon, Tokyo, Japan), and colocalization of F4/80 with DAPI was analyzed by MetaMorph software (Universal Imaging, West Chester, PA).

Protein purification, site-directed mutagenesis, and EMSA. The purification of recombinant HlyU was performed by affinity chromatography followed by size exclusion chromatography. Site-directed mutagenesis was performed using QuikChange Site-Directed Mutagenesis Kit as described previously 64. For EMSA, the 264-bp 3′-[γ-32P]ATP-labeled DNA fragment of *P. aeruginosa* β-lactamase was amplified and incubated with the purified HlyU. Electrophoretic analysis of the DNA–protein complexes was performed as described previously 65. When necessary, various concentrations of CM14 or DMSO were added to reaction mixture before incubation. As a control, a chemical randomly chosen from libraries that had no HlyU-inhibiting activity was added to the reaction mixture instead of CM14.

Mass spectrometric analysis of the HlyU modification. The gel slices corresponding to HlyU protein treated with CM14 were destained and followed by in-gel reduction and alkylation of cysteine residues. The resulting samples were washed, digested by sequencing-grade trypsin, subjected to C18-SPE clean up, and reconstituted for LC-MS/MS analysis. The acquired datasets from LC-MS/MS experiment were initially searched to find the unknown cysteine modification and subjected to MS-GF + analysis 65 to confirm the cysteine modification.

Crystallization, structure determination, and refinement. HlyU protein was incubated with CM14 for 0.5 h at 4 °C and crystallized in a precipitation solution containing 0.1 M HEPES (pH 8.0), 20% (v/v) polyethylene glycol (PEG) 4 K and 10% (v/v) 2-propanol by hanging-drop vapor diffusion method at 14 °C. The HlyU-CM14 crystals were flash-frozen using 20% (w/v) sorbitol as a cryoprotectant in a nitrogen stream at −173 °C. An X-ray diffraction dataset was collected at Pohang Accelerator Laboratory beamline 5 C. The structure was determined and refined at a 2.1 Å resolution with an R factor of 23.8% and an R_free of 26.8%. Further details on the structure determination and refinement are given in Supplementary Table S4.

Statistical analysis. Statistical analyses were performed as indicated in figure legends using GraphPad Prism 7.0 (GraphPad Software). For mouse lethality, mouse infection experiments were repeated twice to ensure reproducibility.

References

1. Clatworthy, A. E., Pierson, E. & Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. *Nat Chem Biol* 3, 541–548, https://doi.org/10.1038/nchembio.2007.24 (2007).
2. Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. *Nat Rev Drug Discov* 9, 117–128, https://doi.org/10.1038/nrd3013 (2010).
3. Smith, R. D. & Coast, J. Antimicrobial resistance: a global response. *Microb Res* 417–433, https://doi.org/10.1128/Minbr.00016-10 (2010).
4. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. *Microbiol Mol Biol Rev* 74, 417–433, https://doi.org/10.1128/MMbr.00016-10 (2010).
5. Cegelski, L., Marshall, G. R., Eldridge, G. R. & Hultgren, S. J. The biology and future prospects of antivirulence therapies. *Nat Rev Microbiol* 6, 17–27, https://doi.org/10.1038/nrmicro1818 (2008).
6. Dickey, S. W., Cheung, G. Y. C. & Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. *Nature Reviews Drug Discovery* 16, 457–471, https://doi.org/10.1038/nrd.2017.23 (2017).
7. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? *Nat Rev Microbiol* 12, 300–308, https://doi.org/10.1038/nrmicro3223 (2014).
41. Satchell, K. J. F. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of
42. Shin, S. H., Shin, D. H., Ryu, P. Y., Chung, S. S. & Rhee, J. H. Proinflammatory cytokine profile in
43. Mukherjee, D., Pal, A., Chakravarty, D. & Chakrabarti, P. Identification of the target DNA sequence and characterization of DNA
44. Nishi, K.
45. Zhou, X. H., Shah, D. H., Konkel, M. E. & Call, D. R. Type III secretion system 1 genes in
46. Newton, A., Kendall, M., Vugia, D. J., Henao, O. L. & Mahon, B. E. Increasing rates of Vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis 54, 5391–5395, https://doi.org/10.1093/cid/cis243 (2012).
47. Baker-Austin, C. & Oliver, J. D. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol 20, 423–430, https://doi.org/10.1111/1462-2920.13955 (2018).
48. Getz, L. J. & Thomas, N. A. The transcriptional regulator HlyU positively regulates exsA expression leading to type III secretion system-1 activation in Vibrio parahaemolyticus. J Bacteriol, https://doi.org/10.1128/Jb.00653-17 (2018).
49. Perez-Reyto, D. et al. Role of non-coding regulatory RNA in the virulence of human pathogenic Vibrios. Front Microbiol 7, https://doi.org/10.3389/fmicb.2016.02160 (2017).
50. Zhao, Z. et al. Autophagy is induced by the type III secretion system of Vibrio alginolyticus in several mammalian cell lines. Arch Microbiol 193, 53–61, https://doi.org/10.1007/s00203-010-0646-9 (2011).
51. Wong, K. C., Brown, A. M., Luscombe, G. M., Wong, S. J. & Mendis, K. Antibiotic use for patients’ sera. Fems Immunol Med Mic 61, 133–138, 138–143, 137, https://doi.org/10.1111/j.1574-695X.2002.tb00582.x (2002).
52. Elmahdi, S., DaSilva, L. V. & Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol 57, 128–134, https://doi.org/10.1016/j.fm.2016.02.006 (2016).
53. Scarano, C. et al. Antimicrobial resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. New Microbiol 38, 329–337 (2014).
54. Brackman, G. et al. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. Microbiol B, https://doi.org/10.1111/1462-2920.13096 (2018).
55. Lee, B. C., Lee, A., Jung, J. H., Choi, S. H. & Kim, T. S. In vitro and in vivo anti-Vibrio vulnificus activity of psammaplin A, a natural marine compound. Mol Med Rep 14, 2691–2696, https://doi.org/10.3892/mmr.2016.5532 (2016).
56. Kim, J. R. et al. Resveratrol modulates RTX toxin-induced cytotoxicity through interference in adherence and toxin production. Eur J Pharmacol 642, 163–168, https://doi.org/10.1016/j.ejphar.2010.05.037 (2010).
57. Packjivath, I., Sasikumar, P., Pandian, S. & Veera Ravi, A. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl Microbiol Biot 97, 10177–10187, https://doi.org/10.1007/s00253-014-4704-5 (2013).
58. Kim, S. et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71, 5461–5471, https://doi.org/10.1128/IAI.71.10.5461-5471.2003 (2003).
59. Jang, K. K. et al. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A2, essential for pathogenesis. J Biol Chem 292, 17129–17134, https://doi.org/10.1074/jbc.M117.791657 (2017).
60. Gray, L. D. & Kreger, A. S. Purification and characterization of an extracellular cytolsin produced by Vibrio vulnificus. Infect Immun 48, 62–72 (1985).
61. Gray, L. D. & Kreger, A. S. Mouse skin damage caused by cytolsin from Vibrio Vulnificus and V. vulnificus infection. J Infect Dis 155, 236–241 (1987).
62. Ho, H. R. et al. RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203, 1866–1874, https://doi.org/10.1093/infdis/jit210 (2011).
63. Kim, B. S., Gavin, H. E. & Satchell, K. J. F. Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. Mbio, 6 https://doi.org/10.1128/mBio.00324-15 (2015).
64. Dolores, J. S., Agarwal, S., Egerer, M. & Satchell, K. J. F. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 95, 590–604, https://doi.org/10.1111/mmi.12879 (2015).
65. Zhou, Y. et al. N-episol-Fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358, 528–530, https://doi.org/10.1126/science.aam8659 (2017).
66. Broberg, C. A., Calder, T. J. & Orth, K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13, 992–1001, https://doi.org/10.1016/j.micinf.2011.06.013 (2011).
67. Jeong, H. G. & Satchell, K. J. F. Additive function of Vibrio Vulnificus MARTX(V) and VhA cytolsins promotes rapid growth and epithelial tissue necrosis during intestinal infection. Plos Pathog 8, e1002581, https://doi.org/10.1371/journal.ppat.1002581 (2012).
68. Pinero, P. et al. Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect Immun 78, 4551–4559, https://doi.org/10.1128/IAI.00461-10 (2010).
69. Kim, B. S. et al. QStatin, a selective inhibitor of quorum sensing in Vibrio Species. Mbio, 9 https://doi.org/10.1128/mBio.02262-17 (2018).
70. Satchell, K. J. F. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. Microbiol Spectr 3, https://doi.org/10.1128/microbiolspec.VE-0002-2014 (2015).
71. Shin, S. H., Shin, D. H., Ryu, P. Y., Chung, S. S. & Rhe, J. H. Proinflammatory cytolsin profile in Vibrio Vulnificus septicemic patients’ sera. Fems Immunol Med Mic 33, 133–138, https://doi.org/10.1111/1574-695X.2002.tb00582.x (2002).
72. Mukherjee, D., Pal, A., Chakravarty, D. & Chakrabarti, P. Identification of the MARTX toxin DNA sequence and characterization of DNA binding features of HlyU, and suggestion of a redox switch for hlyA expression in the human pathogen Vibrio cholerae from in silico studies. Nucleic Acids Res 43, 1407–1417, https://doi.org/10.1093/nar/gku1319 (2015).
73. Nishi, K. et al. Crystal structure of the transcriptional activator HlyU from Vibrio vulnificus CMCP6. Fews Lett 584, 1097–1102, https://doi.org/10.1016/j.feslet.2010.02.052 (2010).
74. Zhou, X. H., Shah, D. H., Konkel, M. E. & Call, D. R. Type III secretion system 1 genes in Vibrio parahaemolyticus are positively regulated by ExsA and negatively regulated by ExsD. Mol Microbiol 69, 747–764, https://doi.org/10.1111/j.1365-2958.2008.06526.x (2008).
75. Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136–169 (1997).
47. Wu, H. I., Wang, A. H. J. & Jennings, M. P. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 12, 93–101, https://doi.org/10.1016/j.copcb.2008.01.023 (2008).
48. Cotter, P. A. & DiRita, V. J. Bacterial virulence gene regulation: An evolutionary perspective. Annu Rev Microbiol 54, 519–565, https://doi.org/10.1146/annurev.micro.54.1.519 (2000).
49. Miller, J. F., Mekalanos, J. J. & Falkow, S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243, 916–922, https://doi.org/10.1126/science.2537530 (1989).
50. Chou, T. N. K. et al. Predictors of mortality in skin and soft-tissue infections caused by Vibrio vulnificus. World J Surg 34, 1669–1675, https://doi.org/10.1007/s00268-010-0455-y (2010).
51. Huang, K. C., Tsai, Y. H., Huang, K. C. & Lee, M. S. Model for end-stage liver disease (MELD) score as a predictor and monitor of mortality in patients with Vibrio vulnificus necrotizing skin and soft tissue infections. Plos Negl Trop Dis 9, https://doi.org/10.1371/journal.pntd.0003720 (2015).
52. Kumar, H., Kawai, T. & Akira, S. Pathogen Recognition by the Innate Immune System. Int Rev Immunol 30, 16–34, https://doi.org/10.1080/08830185.2010.529976 (2011).
53. Akira, S., Uematatu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801, https://doi.org/10.1016/j.cell.2006.02.015 (2006).
54. Huang, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310, 670–674, https://doi.org/10.1126/science.1116739 (2005).
55. Shakhnovich, E. A., Huang, D. T., Pierson, E., Lee, K. & Mekalanos, J. J. Virstatin inhibits dimerization of the transcriptional activator ToxT. P Natl Acad Sci USA 104, 2372–2377, https://doi.org/10.1073/pnas.0611643104 (2007).
56. Rasko, D. A. et al. Targeting QueC signaling and virulence for antibiotic development. Science 321, 1078–1080, https://doi.org/10.1126/science.1160554 (2008).
57. Curtis, M. M. et al. QueC inhibitors as an antivirus approach for Gram-negative pathogens. Mbio 5, https://doi.org/10.1128/mBio.02165-14 (2014).
58. Amara, N. et al. Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131, 10610–10619, https://doi.org/10.1021/ja903292v (2009).
59. Bender, K. O. et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 7, https://doi.org/10.1126/scitransmed.aac9103 (2015).
60. Lagoutte, R., Patouret, R. & Winsinger, N. Covalent inhibitors: an opportunity for rational target selectivity. Curr Opin Chem Biol 19, 54–63, https://doi.org/10.1016/j.coob.2015.07.008 (2017).
61. Wang, H. X., Ayala, J. C., Benitez, J. A. & Silva, A. J. RNA-Seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-N5) affecting Vibrio cholerae virulence, stress response and chemotaxis. PloS One 10, https://doi.org/10.1371/journal.pone.0118295 (2015).
62. Jang, K. K., Gil, S. Y., Lim, J. G. & Choi, S. H. Regulatory characteristics of Vibrio vulnificus gbpA gene encoding a mucin-binding protein essential for pathogenesis. J Biol Chem 291, 5774–5787, https://doi.org/10.1074/jbc.M115.685321 (2016).
63. Lim, J. G. & Choi, S. H. Incr is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 82, 569–578, https://doi.org/10.1128/IAI.01141-13 (2014).
64. Bang, Y. J. et al. OxyR2 functions as a three-state redox switch to tightly regulate production of Prx2, a peroxiredoxin of Vibrio vulnificus. J Biol Chem 291, 16038–16047, https://doi.org/10.1074/jbc.M115.710343 (2016).
65. Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5, 5277, https://doi.org/10.1038/ncomms6277 (2014).

Acknowledgements

We thank the Korea Chemical Bank for generously providing the small-molecule libraries. We also thank Professor Seok, Yeong-Jae, Seoul National University, for help in the V. cholerae experiments. This work was supported by National Research Foundation of Korea, funded by the Ministry of Science, ICT, and Future Planning (2017R1E1A1A01074639) and the Institute of Planning and Evaluation for Technology (IPET) of the Ministry of Agriculture, Food, and Rural Affairs (710012-03-2-SB110) to S.H.C, and by the Ewha Womans University Research Grant of 2018 to B.S.K.

Author Contributions

Z.-W.L., B.S.K., N.-C.H., H.J.H., and S.H.C. conceived, designed, and coordinated the research. Z.-W.L., B.S.K., K.K.J., Y.-J.B., S.K., Y.H.J., H.J.L., J.-S.K., J.K., and P.K.S. performed the experiments and acquired the data. Z.-W.L., B.S.K., S.K., N.-C.H., Y.H.J., H.J.L., H.J.H., J.-S.K., J.K., L.S.J., M.H.K., and S.H.C. analyzed the data. Z.-W.L., B.S.K., N.-C.H., H.J.H., J.-S.K., and S.H.C. wrote the paper. All the authors participated in discussions of the results and reviewed the final draft.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-39554-7.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.