Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 related pancreatic cancer surveillance disruptions amongst high-risk individuals

Bryson W. Katona, Nadim Mahmud, Mohamad Dbouk, Nuzhat Ahmad, Ankit Chhoda, Beth Dudley, Umar Hayat, Richard S. Kwon, Linda S. Lee, Anil K. Rustgi, Chinedu Ukaegbu, Lisa Vasquez, Sarah Volk, Randall E. Brand, Marcia I. Canto, Amitabh Chak, James J. Farrell, Fay Kastrinos, Elena M. Stoffel, Sapna Syngal, h, Michael Goggins,

a Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
b The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
c Section of Digestive Disease, Yale School of Medicine, New Haven, CT, USA
d Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
e Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
f Division of Gastroenterology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
g Dana-Farber Cancer Institute, Boston, MA, USA
h Division of Gastroenterology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
i Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
j Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA

Article Info

Article history:
Received 17 February 2021
Received in revised form 5 April 2021
Accepted 13 April 2021
Available online 20 April 2021

Keywords:
COVID-19
e EUS
Pancreatic cancer surveillance

Abstract

Background: COVID-19 pandemic-related disruptions to EUS-based pancreatic cancer surveillance in high-risk individuals remain uncertain.

Methods: Analysis of enrolled participants in the CAPS5 Study, a prospective multicenter study of pancreatic cancer surveillance in high-risk individuals.

Results: Amongst 693 enrolled high-risk individuals under active surveillance, 108 (16%) had an EUS scheduled during the COVID-19 pandemic-related shutdown (median length of 78 days) in the spring of 2020, with 97% of these procedures being canceled. Of these canceled surveillance EUSs, 83% were rescheduled in a median of 4.1 months, however 17% were not rescheduled after 6 months follow-up. Prior history of cancer was associated with increased likelihood of rescheduling. To date no pancreatic cancer has been diagnosed among those whose surveillance was delayed.

Conclusions: COVID-19 delayed pancreatic cancer surveillance with no adverse outcomes in efficiently rescheduled individuals. However, 1 in 6 high-risk individuals had not rescheduled surveillance, indicating the need for vigilance to ensure timely surveillance rescheduling.

© 2021 IAP and EPC. Published by Elsevier B.V. All rights reserved.

Introduction

The COVID-19 pandemic led to unprecedented disruptions to medical care worldwide, including cancer screening [1,2]. Significant delays in cancer screening due to the pandemic risks increased advanced cancer diagnoses [3–5], increased cancer-related deaths [6], and widened disparities in cancer screening and prevention [7]. Screening delays may have the largest impact on individuals with elevated cancer risk [8], including those with increased risk of pancreatic ductal adenocarcinoma (PDAC) due to a family history of PDAC and/or a defined genetic predisposition. Recent guidelines recommend consideration of annual PDAC surveillance in these high-risk individuals [9,10], with early studies demonstrating that PDAC surveillance increases resectability and overall survival for screen-detected PDACs [11,12].
How COVID-19 pandemic-related delays will affect patients at high-risk of PDAC remains uncertain. Therefore, herein we examine pandemic-related disruptions to PDAC surveillance in the prospective, multicenter Cancer of the Pancreas Screening-5 (CAPS5) Study, including rescheduling efficiency, factors associated with surveillance delays, and the impact of delayed surveillance on clinical outcomes.

Methods

The CAPSS Study (NCT02000089) is a prospective, multicenter study of PDAC surveillance in high-risk individuals, that has primary approval from the Johns Hopkins Institutional Review Board with site-specific approval from each participating institution. Enrollment for CAPSS began in 2014, and eligibility included individuals at increased risk of PDAC due to genetic and/or familial risk factors (see Supplemental Methods for eligible high-risk groups). Enrolled participants undergo yearly pancreatic cancer surveillance with either EUS, MRI, or CT. We identified all enrolled CAPSS participants who had an endoscopic ultrasound (EUS) scheduled during the initial COVID-19 pandemic shutdown. This shutdown period was defined on an institution-specific basis given variations in local restrictions as the time from initial implementation of procedural restrictions during the initial height of the COVID-19 pandemic in the spring of 2020 until lifting of stay-at-home orders with resumption of routine EUS surveillance (Table 1). All participating CAPSS sites made attempts to

Institution	City, State	Date of initial procedural restrictions	Date of routine EUS surveillance resumption	Pandemic shutdown duration (days)
Case Western Reserve University	Cleveland, OH	March 3rd	May 5th	63
Columbia University	New York, NY	March 19th	June 22nd	95
Dana Farber Cancer Institute/Brigham and Women's Hospital	Boston, MA	March 16th	May 25th	70
Johns Hopkins University	Baltimore, MD	March 16th	June 1st	77
University of Michigan	Ann Arbor, MI	March 14th	June 1st	79
University of Pennsylvania	Philadelphia, PA	March 16th	June 4th	80
University of Pittsburgh	Pittsburgh, PA	March 23rd	May 11th	49
Yale University	New Haven, CT	March 16th	June 17th	93

All dates are from the year 2020.

Table 2

Factor	Not Rescheduled (N = 18)	Rescheduled (N = 87)	p-value
Age, median (IQR)	63.5 (58, 71)	60 (55, 68)	0.16
Sex			0.80
Female	10 (56%)	52 (60%)	
Male	8 (44%)	35 (40%)	
Race			0.12
White	17 (94%)	80 (92%)	
Black	0 (0%)	7 (8%)	
Asian	1 (6%)	0 (0%)	
Smoking status			0.28
Current	2 (11%)	4 (5%)	
Former	3 (17%)	27 (31%)	
Never	13 (72%)	56 (64%)	
Alcohol use			0.20
Current	4 (22%)	37 (43%)	
Former	2 (11%)	13 (15%)	
Never	12 (67%)	37 (43%)	
Personal cancer history			0.034
No	15 (83%)	48 (55%)	
Yes	3 (17%)	39 (45%)	
Jewish ancestry			0.23
No	11 (61%)	67 (77%)	
Yes	7 (39%)	20 (23%)	
Relatives with PDAC			0.19
0−1	2 (11%)	28 (32%)	
2	10 (56%)	35 (40%)	
3+	6 (33%)	24 (28%)	
High-risk category			0.40
Familial PDAC without a known disease-causing gene variant	12 (67%)	42 (48%)	
Disease-causing gene variant (ATM, BRCA1, BRCA2, PALB2, or Lynch syndrome genes) with PDAC family history	6 (33%)	34 (39%)	
CDKN2A	0 (0%)	9 (10%)	
Other	0 (0%)	2 (2%)	
First surveillance EUS	2 (11%)	18 (21%)	0.35
Pancreatic abnormality on prior surveillance exam	6 (33%)	21 (24%)	0.75
Number of prior surveillance exams, median (IQR)	2.5 (2, 4)	2 (1, 4)	0.46
Time in surveillance (months), median (IQR)	28.9 (12.3, 46.8)	22.8 (10.0, 45.4)	0.42
reschedule surveillance for individuals whose surveillance EUSs were canceled due to the pandemic. For the purpose of this study, individuals under active surveillance were defined as enrolled CAPS5 participants who had prior pancreatic surveillance (EUS, MRI, or CT) within 2 years of the start of the pandemic plus those who had their initial surveillance procedure scheduled during the pandemic shutdown. Data were collected through December 1, 2020. Descriptive statistics were presented as medians and interquartile ranges (IQR) or as percentages. We compared characteristics between participants who rescheduled PDAC surveillance after a canceled EUS and those who did not. Continuous and categorical variables were compared using Wilcoxon rank-sum and Fisher’s exact tests, respectively. Likert scale data were visualized using stacked bar graphs, stratified by rescheduling status, and compared using Wilcoxon rank-sum tests.

Results

Amongst 693 high-risk CAPS5 participants actively undergoing PDAC surveillance, 108 (16%) had an EUS scheduled during the COVID-19 pandemic shutdown, which lasted for a median of 78 days [IQR 68, 83 days] (Table 1). With pandemic-related procedural restrictions in place, 105 (97%) of these procedures were canceled, whereas 3 (3%) were performed as scheduled. Of the 105 participants with a canceled EUS, 87 (83%) were rescheduled as either an EUS (n = 73, 84%) or MRI (n = 14, 16%) during the approximately 6-month follow-up period. The median time between EUS cancellation and rescheduled EUS/MRI was 4.1 months [IQR 2.3, 5.7 months]. No individual with a rescheduled EUS/MRI was diagnosed with PDAC nor found to have a high-risk pancreatic lesion during the follow-up interval. Eighteen (17%) participants did not have rescheduled surveillance during the follow-up period.

Individuals with a personal history of cancer were more likely to have a rescheduled procedure compared to those without a personal history of cancer (93% [39 of 42] versus 76% [48 of 63], p = 0.034, Table 2). Other characteristics between those with and without a rescheduled procedure, including age, race/ancestry, smoking/alcohol status, family history of PDAC, high-risk category, whether the canceled EUS was the participant’s first surveillance EUS, whether a pancreatic abnormality was identified on a prior surveillance exam, number of prior surveillance exams, and time in surveillance, were not significantly different between the groups. Survey questionnaire data about baseline concern for cancer risk were available on 77 (73%) individuals with canceled procedures, including 64 with, and 13 without, a rescheduled EUS/MRI. There were no significant differences in responses between participants who rescheduled and those who did not (each p > 0.05) (Fig. 1).

Discussion

COVID-19 pandemic-related delays in cancer screening are widespread, and patients at high-risk of PDAC are no exception. Our study demonstrates the remarkable PDAC surveillance disruptions the COVID-19 pandemic produced in our multicenter high-risk cohort, with 97% of surveillance EUSs scheduled during the pandemic-related shutdown being canceled. While most of these participants (83%) had their surveillance rescheduled as an EUS or MRI within 6 months of procedural restrictions being lifted, it is notable that 1 in 6 participants did not yet have a surveillance EUS/MRI rescheduled.

We found individuals with a rescheduled EUS/MRI were more likely to have a prior history of cancer. This is consistent with data showing increased screening adherence amongst cancer survivors [13]. While extra steps should be taken to ensure all high-risk individuals are rescheduled for PDAC surveillance, extra attention may need to be paid to the sub-group without prior cancer. Furthermore, compliance with PDAC surveillance in high-risk individuals remains a significantly understudied area that merits dedicated longitudinal study to identify factors associated with surveillance compliance in high-risk individuals.

Whether screening delays in these high-risk patients are clinically relevant is also important. Amongst our cohort, with a median rescheduling time of 4.1 months, there were no PDACs detected nor high-risk lesions identified on subsequent surveillance. However, further longitudinal follow-up of high-risk individuals who have not yet rescheduled surveillance exams will be important to determine if longer delays in rescheduling are associated with negative clinical outcomes. Additionally, this data also brings up the question of whether yearly surveillance is the ideal interval for individuals at increased PDAC risk, and whether this interval should be increased. While our data may initially appear to support that negative clinical outcomes. Additionally, this data also brings up the question of whether yearly surveillance is the ideal interval for individuals at increased PDAC risk, and whether this interval should be increased. While our data may initially appear to support that increasing the surveillance interval may be safe, given the overall small number of patients analyzed and the overall low rate of PDAC conversion in surveillance populations [12], this data should be interpreted with caution. Ultimately, determining the ideal surveillance interval will require continued prospective data collection from high-risk individuals in large surveillance cohorts.

PDAC surveillance can be performed by either EUS or MRI [14]. In our cohort we observed that of patients with a canceled EUS who rescheduled pancreatic cancer surveillance, 16% chose to
reschedule this surveillance as an MRI. Unlike EUSs, MRIs are not aerosolizing procedures and typically do not require pre-procedure COVID screening. Therefore, performing pancreatic cancer surveillance in high-risk individuals via MRI has potential benefits during the pandemic, and thus it is not surprising that some patients changed their surveillance modality to MRI.

Limitations of our study include the relative lack of racial diversity of the CAPS5 population, limited geographic diversity with most participating centers located in the northeastern United States, and lack of detail about why some high-risk individuals did not have a rescheduled surveillance procedure. Another limitation is that our analysis only focused on pandemic-related EUS cancellations. The pandemic shutdown had a much greater effect on the scheduling of endoscopic procedures compared to MRI [15], and EUS scheduling is more easily tracked than MRI, which is sometimes performed locally outside of CAPS5 centers.

With the potential for additional PDAC surveillance delays due to COVID-19, it is important to understand factors associated with delayed PDAC surveillance and the outcomes of these surveillance delays. It also remains critical to diligently monitor individuals from high-risk PDAC cohorts to ensure that their surveillance exams are rescheduled efficiently.

Acknowledgements

Smith Family Research Fund (BWK), ACG Junior Faculty Development Award ACG-JR-010-2020 (NM), Bowen-Chapman Family Fund (SS), NIH/NCI grant U01CA210170 (MG).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pan.2021.04.005.

Disclosures

BWK: Consulting (Exact Sciences), Travel (Janssen). SS: Consulting (Myriad Genetics, Inc.).

References

[1] Patt D, Gordon L, Diaz M, Okon T, Grady L, Harmison M, et al. Impact of covid-19 on cancer care: how the pandemic is delaying cancer diagnosis and treatment for American seniors. JCO Clin Cancer Inform 2020;4:1059–71.
[2] Bakouny Z, Piaciotti M, Schmidt AL, Lipitsz SR, Choueiri TK, Trinh QD. Cancer screening tests and cancer diagnoses during the covid-19 pandemic. JAMA Oncol 2021;7(3):458–60.
[3] Gathani T, Clayton G, Machnes E, Hargan K. The covid-19 pandemic and impact on breast cancer diagnoses: what happened in England in the first half of 2020. Br J Cancer 2020;124(4):710–2.
[4] Ricciardiello L, Ferrari C, Cameletti M, Gaiani F, Buttitta F, Bazzoli F, et al. Impact of sars-cov-2 pandemic on colorectal cancer screening delay: effect on stage shift and increased mortality. Clin Gastroenterol Hepatol 2020.
[5] Turkington RC, Lavery A, Donnelly D, Cairnduff V, McManus DT, Coleman HG. The impact of the covid-19 pandemic on Barrett’s esophagus and esophagogastric cancer. Gastroenterology 2021. published online.
[6] Maringe C, Spicer J, Morris M, Purushotham A, Nolte E, Sullivan R, et al. The impact of the covid-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol 2020;21:1023–34.
[7] Carethers JM, Sengupta R, Blakey R, Ribas A, D’Souza G. Disparities in cancer prevention in the covid-19 era. Cancer Prev Res 2020;13:893–6.
[8] Mckenna DB, Dudzik CM, Kumar S, Mahud N, Katona BW. Covid-19 disruptions to endoscopic surveillance in Lynch syndrome Cancer Prev Res (Phila). 2021, in press.
[9] Goggins M, Overbeek KA, Brand R, Syngal S, Del Chiaro M, Bartsch DK, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the international cancer of the pancreas screening (caps) consortium. Gut 2020;69:7–17.
[10] Daly MB, Pilarski R, Yurgelun MB, Berry MP, Buys SS, Dickson P, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 1. J Natl Compr Canc Netw 2020;18:380–91.
[11] Vasen H, Ibrahim I, Ponce CG, Slater EP, Matthaei E, Carrato A, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers. J Clin Oncol 2016;34:2010–9.
[12] Canto MI, Almario JA, Schuckit RD, Yeo CJ, Klein A, Blackford A, et al. Risk of neoplasic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology 2018;155:740–751 e742.
[13] Clarke TC, Soler-Vila H, Fleming LE, Christ SL, Lee DJ, Arheart KL. Trends in adherence to recommended cancer screening: the us population and working cancer survivors. Front Oncol 2012;2:190.
[14] Harinck F, Konings IC, Klijtui P, Foley JW, van Hoot JE, van Dullumen HM, et al. A multicentre comparative prospective blinded analysis of eus and mri for screening of pancreatic cancer in high-risk individuals. Gut 2016;65:1505–13.
[15] Markar SR, Clarke J, Kinross J. PanSurg Collaborative g. Practice patterns of diagnostic upper gastrointestinal endoscopy during the initial covid-19 outbreak in England. Lancet Gastroenterol Hepatol 2020;5:804–5.