TABULATION OF KNOTS UP TO FIVE TRIPLE-CROSSINGS AND MOVES BETWEEN ORIENTED DIAGRAMS

MICHAŁ JABŁONOWSKI

Abstract. We enumerate and show tables of minimal diagrams for all prime knots up to the triple-crossing number equal to five. We derive a minimal generating set of oriented moves connecting triple-crossing diagrams of the same oriented knot. We also present a conjecture about a strict lower bound of the triple-crossing number of a knot related to the breadth of its Alexander polynomial.

1. Introduction

It is known since at least V.F.R. Jones observation in 1999 (in his Planar Algebras, I c.f. [4]) that any knot and every link has a diagram where, at each of its multiple-points in the plane, exactly three strands are allowed to cross pairwise transversely. For the very recent survey on this topic see [4]. Such triple-point diagrams and moves on them have been studied in several recent papers, such as [1, 2, 3, 6, 7].

The triple-crossing number of a knot K, denoted here by $c_3(K)$, is defined in analogy to the classical (double-crossing) number, as the least number of triple-crossings for any triple-crossing diagram of K. There are lower bounds for the triple-crossing number, in terms of double-crossing number $c_3(K) \geq \frac{1}{3} c_2(K)$, and if K is alternating then $c_3(K) \geq \frac{1}{2} c_2(K)$ (see [1]).

In [7] the author prove the following bound of the triple-crossing number c_3 by the canonical genus g_c. Let K be a knot. Then $c_3(K) \geq 2 \cdot g_c(K)$. It follows from this bound that the triple-crossing number is greater or equal to the breadth of the Alexander polynomial Δ, since it is known that $2 \cdot g_c(K) \geq \text{breadth}(\Delta(K))$. We propose a conjecture based on our extensive experiments.

Conjecture 1.1. Let K be a knot, such that $\Delta(K)$ is not monic. Then

$$c_3(K) > \text{breadth}(\Delta(K)).$$

A polynomial is called monic if the coefficient of the highest order term are equal to ± 1. If true, the conjecture immediately gives a sharp enough bound to obtain the exact (unknown) value of the triple-crossing number of many knots (from known upper bounds on the triple-crossing number), such as (giving only for knots with $c_2 \leq 13$):

9_3, 9_6, 9_9, 9_{16}, $K11a_{234}$, $K11a_{240}$, $K11a_{263}$, $K11a_{334}$, $K11a_{338}$, $K11a_{355}$, $K11a_{364}$, $K13a_{3092}$, $K13a_{3110}$, $K13a_{3132}$, $K13a_{3377}$, $K13a_{3380}$, $K13a_{4547}$, $K13a_{4558}$, $K13a_{4739}$, $K13a_{4822}$, $K13a_{4828}$, $K13a_{4862}$, $K13a_{4874}$.

Date: March 19, 2022.

2020 Mathematics Subject Classification. 57K10 (primary).

Key words and phrases. minimal triple-crossing diagram, triple-crossing number, Alexander polynomial, tabulation of knots, moves.
In Section 3 of this paper, we also derive a minimal generating set of oriented moves connecting triple-crossing diagrams of the same oriented knot. Later, in Section 4 we enumerate and show tables of minimal diagrams for all prime knots up to the triple-crossing number equal to five. We use the knot names used in the [5] database package, and for 11–14-crossing knots we use the Hoste-Thistlethwaite database.

2. Definitions

The projection of a knot or a link \(K \subset \mathbb{R}^3 \) is its image under the standard projection \(\pi : \mathbb{R}^3 \to \mathbb{R}^2 \) (or into a 2-sphere) such that it has only a finite number of self-intersections, called multiple points, and in each multiple-points each pair of its strands are transverse.

If each multiple-points of a projection has multiplicity three then we call this projection a triple-crossing projection. The triple-crossing is a three-strand crossing with the strand labeled \(T, M, B \), for top, middle and bottom.

The triple-crossing diagram is a triple-crossing projection such that each of its triple points is a triple-crossing, such that \(\pi^{-1} \) of the strand labeled \(T \) (in the neighborhood of that triple point) is on the top of the strand corresponding to the strand labeled \(M \), and the latter strand is on the top of the strand corresponding to the strand labeled \(B \) (see Figure 1).

![Figure 1. A deconstruction/construction of a triple-crossing.](image)

The triple-crossing number of a knot or link \(K \), denoted \(c_3(K) \), is the least number of triple-crossings for any triple-crossing diagram of \(K \). The classical double-crossing number invariant we will denote by \(c_2 \). The minimal triple-crossing diagram of a knot \(K \) is a triple-crossing diagram of \(K \) that has exactly \(c_3(K) \) triple-crossings.

A natural orientation (see an equivalent definition in [3]) on a triple-crossing diagram is an orientation of each component of that link, such that in each crossing the strands are oriented in-out-in-out-in-out, as we encircle the crossing. We begin with an interesting notice.

Lemma 2.1 ([3]). Every orientation of the triple-crossing diagram obtained from an oriented knot is the natural orientation.

3. Oriented moves

Theorem 3.1. Two oriented triple-crossing diagrams of knots are related by a sequence of oriented \(J_R \) and \(J'_R \) moves (see Figure 2) and a spherical isotopy, if and only if they define the same knot type.

In the \(J_R \) move, there can be finitely many triple-crossings (colored here in blue) such that for every triple-crossing the arc, that is nearest the letter \(T \) lies always on top. In the \(J'_R \) move that is the mirror move to \(J_R \), there can be finitely many triple-crossings (colored here in blue) such that for every triple-crossing the arc, that is nearest the letter \(B \) lies always on bottom. The orientations of the blue arcs are determined by the natural orientation property.
Figure 2. A minimal generating set of oriented moves on triple-crossing diagrams of a knot.

Proof. We have the minimal set of unoriented moves J_R and J'_R between unoriented knots, defined by the author in [6] that are identical as our moves in Figure 2 but without decorating arrows (so we leave the names unchanged). From Lemma 2.1 we see that specifying orientation on one strand in any triple-crossing the other strands in that crossing must have determined orientation. Therefore, because in each local diagram of unoriented moves J_R and J'_R there is a strand passing through all other triple-crossings, we have up to four generating moves J_R, J'_R, J_S and J'_S for oriented diagrams (for the latter pair see Figure 3). But the move J_S can be generated from J_R by a spherical isotopy. First choose any non-outer region adjacent region to the triple-crossings marked T, M, B and on the left to the triple-crossing then by a spherical isotopy make the region to be the outer (unbounded) region for the knot diagram. Then rotate the diagram by 180 degrees. The same goes with the pair J'_S and J'_R.

Corollary 3.2. The set \{\(J_R, J'_R\)\} (presented in Figure 2) is a minimal generating set of oriented moves connecting triple-crossing diagrams of the same oriented knot.

Figure 3. The other pair of oriented moves.
Table 1. Relations for the Jones polynomial.

\[
V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) = -t^\frac{3}{2}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - tV\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) + \\
-tV\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - t^\frac{3}{2}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - t^\frac{3}{2}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right)
\]

\[
V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) = -t^{-\frac{3}{2}}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - t^{-1}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) + \\
-t^{-1}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - t^{-\frac{3}{2}}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right) - t^{-\frac{3}{2}}V\left(\begin{array}{c}
\cdot \\
\cdot
\end{array}\right)
\]

\[
V(\underbrace{O\cup \ldots \cup O}_c) = \left(-t^\frac{3}{2} - t^{-\frac{3}{2}}\right)^{c-1}
\]

4. **Knot Tabulation**

After several months of computer computations, following the method described by the author in [6] and implemented in Wolfram Engine 12, we generate the table of knots with the triple-crossing number equal to five.

First, we enumerate all prime, connected, triple-crossing projections, up to spherical isotopy, up to mirror image, and up to moves \(M_1, M_2\) (see Figure 4), with five triple points, with the result of 116 projections (see Table 2).

![Figure 4. Moves M1 and M2.](image)

To identify types of knots, we use the classical polynomial invariants, the Jones polynomial (see Remark 4.1), and later two-variable polynomials where they are needed.

Remark 4.1. By Lemma 2.1 and the Kauffman bracket relations form [1], the Jones polynomial \(V\) for an oriented knot can be calculated from a triple-crossing diagram (regardless of the orientation) by resolving each triple-crossing by the following relations in Table 1.

The number of knots with a specific triple-crossing number is presented in Table 2. Diagrams of the knots, generated by a new algorithm, are presented in Table 3, where the labels are of the form \(tk_n\) (for the triple-crossing number equal to \(k\), and \(n\) the consecutive index in that family). The labels in brackets are the classical Alexander-Briggs-Rolfsen notation of a knot (up to mirror image). The convention here is that the green strand near
a triple-crossing is the bottom strand, and the red one is the upper strand (the loops are always black for simplicity).

Table 2. Enumeration of knots and projections.

crossings	number of projections	number of knots
2	1	2
3	2	2
4	15	24
5	116	118

An sPD code for a given knot can be found below the TikZ code of the corresponding diagram, in the LaTeX source file of this article’s arXiv preprint version. In that archive there is also a text file of sPD codes of all the mentioned triple-crossing projections.

References

[1] C. Adams, Triple crossing number of knots and links, *J. Knot Theory Ramifications* **22** (2013), 1350006.
[2] C. Adams, O. Capovilla-Searle, J. Freeman, D. Irvine, S. Petti, D. Vitek, A. Weber and S. Zhang, Multicrossing number for knots and the Kauffman bracket polynomial, *Math. Proc. of Cambridge Philos. Soc.* **164**(1) (2018), 147–178.
[3] C. Adams, J. Hoste and M. Palmer, Triple-crossing number and moves on triple-crossing link diagram, *J. Knot Theory Ramifications* **28** (2019), 1940001.
[4] C. Adams, Multi-Crossing Number of Knots and Links, In *Encyclopedia knot theory*, CRC Press (2021) 63–70.
[5] D. Bar-Natan, *The knot atlas*, http://katlas.org, (2021)
[6] M. Jabłonowski and Ł. Trojanowski, Triple-crossing projections, moves on knots and links, and their minimal diagrams, *J. Knot Theory Ramifications* **29** (2020), 2050015.
[7] M. Jabłonowski, Triple-crossing number, the genus of a knot or link and torus knots, *Topology and its Applications* **285** (2020), 107389.

Table 3: Knots with the triple-crossing number ≤ 5.

![t2_1 (3_1)](image1)
![t2_2 (4_1)](image2)
![t3_1 (5_2)](image3)
![t3_2 (6_1)](image4)

![t4_1 (5_1)](image5)
![t4_2 (6_2)](image6)
![t4_3 (6_3)](image7)
Knot	Description
t_{52}	$11n_{68}$
t_{53}	$11n_{79}$
t_{54}	$11n_{83}$
t_{55}	$11n_{91}$
t_{56}	$11n_{100}$
t_{57}	$11n_{101}$
t_{58}	$11n_{102}$
t_{59}	$11n_{113}$
t_{60}	$11n_{114}$
t_{61}	$11n_{116}$
t_{62}	$11n_{117}$
t_{63}	$11n_{123}$
t_{64}	$11n_{132}$
t_{65}	$11n_{140}$
t_{66}	$11n_{141}$
$t_{594} (12n_{608})$

14 MICHAŁ JABŁONOWSKI

15

5

94

15

95

13

608

13

838

13

469

13

1021

13

1475

13

1482

13

1513

13

1817

13

2067

13

2148

13

2328

13

2527

13

3158

13

3523

13

3594
Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
Email address: michal.jablonowski@gmail.com