Guanyl Nucleotide Exchange Factor Sql2 and Ras2 Regulate Filamentous Growth in Ustilago maydis

Philip Müller, Jörg D. Katzenberger,† Gabriel Loubradou,‡ and Regine Kahmann*

Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, and Institute for Genetics and Microbiology, University of Munich, D-80638 Munich, Germany

Received 23 September 2002/Accepted 22 February 2003

The cyclic AMP (cAMP)-signaling pathway regulates cell morphology and plays a crucial role during pathogenic development of the plant-pathogenic fungus Ustilago maydis. Strains lacking components of this signaling pathway, such as the Gα-subunit Gpa3 or the adenylyl cyclase Uac1, are nonpathogenic and grow filamentously. On the other hand, strains exhibiting an activated cAMP pathway due to a dominant-active allele of gpa3 display a glossy colony phenotype and are unable to proliferate in plant tumors. Here we present the identification of sql2 as a suppressor of the glossy colony phenotype of a gpa3Δ2000Δ strain. sql2 encodes a protein with similarity to CDC25-like guanine nucleotide exchange factors, which are known to act on Ras proteins. Overexpression of sql2 leads to filamentous growth that cannot be suppressed by exogenous cAMP, suggesting that Sql2 does not act upstream of Uac1. To gain more insight in signaling processes regulated by Sql2, we isolated two genes encoding Ras proteins. Expression of dominant active alleles of ras1 and ras2 showed that Ras2 induces filamentous growth while Ras1 does not affect cell morphology but elevates pheromone gene expression. These results indicate that Ras1 and Ras2 fulfill different functions in U. maydis. Moreover, observed similarities between the filaments induced by sql2 and ras2 suggest that Sql2 is an activator of Ras2. Interestingly, sql2 deletion mutants are affected in pathogenic development but not in mating, indicating a specific function of sql2 during pathogenesis.

Corn smut disease is caused by the fungal pathogen Ustilago maydis. The most prominent symptom of this disease is the formation of large plant tumors (18). The fungal mycelium proliferates within these tumors and finally differentiates into diploid spores (5). In U. maydis, pathogenic and sexual development are intimately connected. Fusion of two nonpathogenic haploid cells and subsequent development of the filamentous dikaryon are compulsory for pathogenesis (33). These processes are under the control of two mating-type loci termed a and b. Cell-cell recognition and fusion are controlled by the a locus carrying the pheromone (mfa) and receptor (pra) genes, while the switch to filamentous growth and all following developmental steps depend on the b locus (4, 11). The b locus codes for two unrelated homeodomain proteins (bE and bW), which form an active transcription factor only when they are derived from different alleles (27, 36). When haploid strains differ in their a and b mating-type alleles, they are termed compatible; i.e., they can fuse and undergo sexual and pathogenic development.

During the development of U. maydis, the transcription of genes in the a and b loci is coregulated; prior to fusion, pheromone secreted by haploid cells induces the transcription of the a and b genes in a compatible partner; after fusion, an autocrine pheromone stimulus triggers the expression of the active b heterodimer (64). The pheromone-induced transcription, as well as the basal transcription of the a and b genes, is mediated by the HMG domain transcription factor Prf1 (30). Prf1 is presumed to be activated by the Kpp2/Ubc3 MAP kinase module as well as the cAMP pathway, and both pathways are involved in the regulation of pheromone-responsive gene expression (40, 49). Interestingly, both signaling cascades also influence cell morphology, but they do so in opposing manners. While the mitogen-activated protein kinase (MAPK) module positively regulates filamentous growth, cAMP signaling triggers budding growth. The core components of the MAPK cascade (Kpp2/Ubc3, Fuz7, and Kpp4/Ubc4) (3, 6, 46, 49; P. Müller et al., submitted for publication), as well as of the cAMP cascade, have been characterized. An unknown signal initiates cAMP signaling by activating adenylyl cyclase Uac1, which produces the second messenger cAMP (7). Increasing concentrations of cAMP activate the cAMP-dependent protein kinase (PKA) composed of the regulatory subunit Ubc1 and the catalytic subunit Adr1 (23, 29). Strains disrupted in uac1 or adr1 grow filamentously, whereas strains exhibiting constitutively active PKA caused by the deletion of ubc1 show a cytokinesis defect termed multiple budding (7, 23, 29). Since all these mutants are nonpathogenic, regulated PKA activity appears to be crucial for pathogenic development.

In recent years, it has become evident that cAMP signaling plays a key role during development and pathogenesis in a variety of pathogenic fungi (22). Thus, detailed insight into the regulation of adenylyl cyclases is expected to improve a general understanding of the signaling mechanisms linking development and pathogenicity. In Saccharomyces cerevisiae, adenylyl cyclase Cyl1p is regulated by two small G-proteins, Ras1p and Ras2p (37, 61). In addition to Ras, the Gα-subunit Gpa2p

* Corresponding author. Mailing address: Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany. Phone: 496421178501. Fax: 496421178509. E-mail: Kahmann @mailer.uni-marburg.de.
† Present address: Institute for Toxicology and Genetics, Karlsruhe Research Center, D-76021 Karlsruhe, Germany.
‡ Present address: European Patent Office, D-80331 Munich, Germany.
plays the central roles in activating Cyt1p after the action of glucose stimuli (35, 50). In *U. maydis*, adenyl cyclase appears to be positively regulated by the G-protein α-subunit Gpa3 (30). Strains expressing a dominant-active allele of *gpa3*, which codes for a α-subunit with strongly reduced GTPase activity, show elevated phenomerone gene expression but exhibit an altered cell morphology (54). In addition, such strains are able to induce tumors in plants, but they do not proliferate inside the plant tissue (41). Another characteristic phenotype of *gpa3* deletion strains is a glossy colony phenotype (41). Previously, we isolated suppressors of the glossy colony phenotype of *gpa3*. One of the identified genes was *sql1*, coding for a tetratricopeptide-repeat-type repressor related to Sn6np of *S. cerevisiae* (44). Overexpression of *sql1* triggered filamentous growth in wild-type cells, presumably by interfering with cAMP signaling on the transcriptional level (44). In this report we describe the characterization of a second gene, *sql2*, identified in the same screen. *sql2* encodes a protein with similarities to guanine nucleotide exchange factors (GEFs) of the CDC25-family. Since Ras proteins are the main effectors of cAMP signaling on the transcriptional level (44). In this report we describe the characterization of a second gene, *sql2*, identified in the same screen. *sql2* encodes a protein with similarities to guanine nucleotide exchange factors (GEFs) of the CDC25-family. Since Ras proteins are the main effectors of cAMP signaling on the transcriptional level (44).

MATERIALS AND METHODS

Strains and strain constructions.

For cloning purposes, the *Escherichia coli* strain *U. maydis* (5) was used. *U. maydis* strains F11 (a1a2b1b2), FB1gpa3QL, and FB2gpa3QL have been described previously (45, 54). *FB1a1b1b2/DxtDOD* has been described (Müller et al., submitted). Strains *FB1sql2* and *FB2sql2* were generated by transformation of the wild-type strains with plasmid psql2 that had been digested with DraI. *FB1sql2*, *FB2sql2*, *FB1sql2* and *FB2sql2*-specif were created by transforming the respective progenitor strains with plasmid pOTEFSql2 that had been digested with DraI. In all cases, homologous integration was verified by Southern analysis. *FB1sql2* was created by transformation of *FB1* with pRU11ras1QL67L digested with *Npl*. Single homologous integration into the *ip* locus was verified by Southern analysis as described previously (44). *FB2sql2* [pNEBUC] and *FB2sql2* [pNEBUC-sql2] were generated by transformation of *FB2sql2* with plasmids pNEBUC and pNEBUC-sql2, respectively, which had been digested with *Npl* prior to transformation. Single ectopic integration events were confirmed by Southern analysis.

To generate *FB2ras2ql* strains, we transformed *FB2* with plasmid pRas2QL65L cut with DraI. Among 48 transformants screened, we were unable to identify transformants showing homologous integration of the construct. Therefore, we continued to work with three independent transformants harboring single ectopic integrations at different sites in the genome.

Growth conditions for *U. maydis*.

U. maydis strains were grown as described previously (15). To assay the effects of cAMP on morphology, strains were grown in potato dextrose (PD) liquid medium and on charcoal-containing PD plates to which cAMP was added at the concentrations indicated in the descriptions of the representative experiments. For induction of the cAMP promoter, strains were grown in complete medium containing 1% glucose to an optical density at 600 nm of 0.8, washed twice in water, and resuspended in complete medium containing 1% arabinoxylan. Hygromycin B was purchased from Roche, phleomycin was purchased from Cayla, and carboxin was purchased from Riedel de Haën. cAMP was added directly to the medium, which was filter sterilized before use. All other chemicals were of analytical grade and were obtained from Sigma or Merck.

The mating reaction was observed by cospotting strains onto charcoal-sterilized plates after incubation at 24 °C for 7 days. In order to detect the presence of Southern analysis. *FB1sql2* was created by transformation of *FB1* with pRU11ras1QL67L digested with *Npl*. Single homologous integration into the *ip* locus was verified by Southern analysis as described previously (44). *FB2sql2* [pNEBUC] and *FB2sql2* [pNEBUC-sql2] were generated by transformation of *FB2sql2* with plasmids pNEBUC and pNEBUC-sql2, respectively, which had been digested with *Npl* prior to transformation. Single ectopic integration events were confirmed by Southern analysis.

To generate *FB2ras2ql* strains, we transformed *FB2* with plasmid pRas2QL65L cut with DraI. Among 48 transformants screened, we were unable to identify transformants showing homologous integration of the construct. Therefore, we continued to work with three independent transformants harboring single ectopic integrations at different sites in the genome.

Growth conditions for *U. maydis*.

U. maydis strains were grown as described previously (15). To assay the effects of cAMP on morphology, strains were grown in potato dextrose (PD) liquid medium and on charcoal-containing PD plates to which cAMP was added at the concentrations indicated in the descriptions of the representative experiments. For induction of the cAMP promoter, strains were grown in complete medium containing 1% glucose to an optical density at 600 nm of 0.8, washed twice in water, and resuspended in complete medium containing 1% arabinoxylan. Hygromycin B was purchased from Roche, phleomycin was purchased from Cayla, and carboxin was purchased from Riedel de Haën. cAMP was added directly to the medium, which was filter sterilized before use. All other chemicals were of analytical grade and were obtained from Sigma or Merck.

The mating reaction was observed by cospotting strains onto charcoal-sterilized plates after incubation at 24 °C for 7 days. In order to detect the presence of Southern analysis. *FB1sql2* was created by transformation of *FB1* with pRU11ras1QL67L digested with *Npl*. Single homologous integration into the *ip* locus was verified by Southern analysis as described previously (44). *FB2sql2* [pNEBUC] and *FB2sql2* [pNEBUC-sql2] were generated by transformation of *FB2sql2* with plasmids pNEBUC and pNEBUC-sql2, respectively, which had been digested with *Npl* prior to transformation. Single ectopic integration events were confirmed by Southern analysis.

To generate *FB2ras2ql* strains, we transformed *FB2* with plasmid pRas2QL65L cut with DraI. Among 48 transformants screened, we were unable to identify transformants showing homologous integration of the construct. Therefore, we continued to work with three independent transformants harboring single ectopic integrations at different sites in the genome. The mating reaction was observed by cospotting strains onto charcoal-sterilized plates after incubation at 24 °C for 7 days. In order to detect the presence of Southern analysis. *FB1sql2* was created by transformation of *FB1* with pRU11ras1QL67L digested with *Npl*. Single homologous integration into the *ip* locus was verified by Southern analysis as described previously (44). *FB2sql2* [pNEBUC] and *FB2sql2* [pNEBUC-sql2] were generated by transformation of *FB2sql2* with plasmids pNEBUC and pNEBUC-sql2, respectively, which had been digested with *Npl* prior to transformation. Single ectopic integration events were confirmed by Southern analysis.

To generate *FB2ras2ql* strains, we transformed *FB2* with plasmid pRas2QL65L cut with DraI. Among 48 transformants screened, we were unable to identify transformants showing homologous integration of the construct. Therefore, we continued to work with three independent transformants harboring single ectopic integrations at different sites in the genome.
RESULTS

Isolation of sql2 as suppressor of the glossy colony phenotype of a \textit{gpa3Q206L} strain. Plasmid pSQL2 was isolated by its ability to suppress the glossy colony phenotype of a \textit{gpa3Q206L} strain. pSQL2 contained an 8-kb DNA fragment, and the suppressing activity was mapped to the insert (data not shown). Subsequent sequencing revealed a single ORF of 4,323 bp with no indication for introns. This gene was termed sql2 and encodes a putative protein of 1,441 amino acids. To confirm that sql2 is a multiplicity suppressor of the glossy colony phenotype of a \textit{gpa3Q206L} strain, we placed the gene under the control of the constitutively strong \textit{otef} promoter (59) by replacing the endogenous promoter of \textit{sql2} in FB1\textit{gpa3QL} (a1b1) and FB2\textit{gpa3QL} (a2b2). In the resulting strains, FB1\textit{gpa3QL_POTEF:sql2} and FB2\textit{gpa3QL_POTEF:sql2}, \textit{sql2} mRNA was approximately threefold more abundant than in the respective progenitor strains (Fig. 1B). In contrast to the glossy progenitor strain, colonies of these strains did not appear glossy on plates (Fig. 1C, upper panel, shown for FB1\textit{gpa3QL_POTEF:sql2}). To analyze the cell morphology, we propagated FB1\textit{gpa3QL_POTEF:sql2} as well as FB1\textit{gpa3QL} in liquid medium. While FB1\textit{gpa3QL} cells were indistinguishable from the wild type, FB1\textit{gpa3QL_POTEF:sql2} formed aggregates of irregularly branched cells and the individual cells appeared elongated and curved (Fig. 1C, lower panel). This indicates that the suppressing effect of \textit{sql2} is associated with a dramatic change in cellular morphology.

Analysis of the deduced amino acid sequence of \textit{sql2} with SMART and CDART (43, 57) revealed that \textit{sql2} contains a N-terminal SH3 domain (amino acids 88 to 143), known to be involved in protein-protein interactions, and indicated a Ras-GEF domain (amino acids 920 to 1055) and a RasGRF_CDC25 domain (amino acids 1134 to 1386) (Fig. 1A) located in the C terminus. The last two domains are characteristic for proteins belonging to the family of GEFs (guanine nucleotide exchange factors). Such proteins promote the loss of bound GDP and the uptake of GTP in small G-proteins, leading to activation (9, 13). On the basis of sequence similarities, GEFs are classified into two families, the CDC24 family and the CDC25 family. While members of the CDC24 family act on Ras-like G-proteins such as Rho, CDC25 family members activate Ras proteins. \textit{Sql2} displayed no similarities to proteins of the CDC24 family but showed significant similarity to CDC25 family members over its entire length (Cdc25p of \textit{Candida albicans}, 43%; Cdc25p and Scdc25p of \textit{S. cerevisiae}, 40 and 37%, respectively; Ste6 and Efc25 of \textit{Schizosaccharomyces pombe}, 36 and 37%, respectively [Fig. 1A]). Therefore, we conclude that
Sq2 belongs to the CDC25 family of GEFs and might act on Ras proteins in *U. maydis*.

Deletion of sq2 does not affect mating but interferes with pathogenic development. To analyze the function of sq2 in more detail, we constructed Δsq2 deletion strains. To this end, we deleted almost the whole coding region of sq2 (from positions +22 to +4276) in strains FB1 (*a1b1*) and FB2 (*a2b2*) by replacing this region with a hygromycin resistance cassette (see Materials and Methods). The resulting Δsq2 deletion strains were viable, showed no apparent growth defect, and displayed a wild-type budding pattern (not shown). Colonies of Δsq2 deletion mutants exhibited a glossy phenotype, which is similar to *gpa3QL2* strains, while colonies of the wild-type strain appeared dull (Fig. 2A). It has been shown that the glossy colony phenotype of *gpa3QL2* strains is correlated with production of an extracellular matrix and does not reflect a special growth mode (41).

The mating ability of Δsq2 mutants was tested in a plate mating assay, in which the fusion products, the dikaryotic hyphae, appear as white fuzzy filaments (Fig. 2B). Mixtures of compatible Δsq2 strains developed large numbers of dikaryotic hyphae and in this respect resembled wild-type strains (Fig. 2B). This demonstrated that sq2 is not necessary for successful recognition, fusion, and filamentous growth.

Interestingly, in the presence of 6 mM cAMP, dikaryon formation of compatible Δsq2 strains was attenuated, while compatible wild-type strains still formed filaments (Fig. 2C). Moreover, we could hardly detect any dikaryotic filaments in mixtures of compatible Δsq2 strains when 15 mM cAMP was added to the plates, while under these conditions the wild-type strains showed only a slight reduction of dikaryon formation (Fig. 2B, right panel). It has been demonstrated that high levels of exogenous cAMP (25 mM) inhibit this dimorphic switch (29); however, dikaryon formation of Δsq2 strains is inhibited by much lower cAMP concentrations. Thus, Δsq2 strains may be more sensitive to exogenous cAMP, suggesting an influence of sq2 on the intracellular cAMP content.

To analyze whether sq2 plays a role during pathogenic development, we infected plants with mixtures of compatible Δsq2 mutants. Only 10 of 106 infected plants developed tumors (Table 1). This outcome suggests that sq2 plays an important role during pathogenesis, although it is dispensable for mating. All 10 tumors observed contained fungal spores (data not shown), indicating that lack of sq2 did not affect fungal development inside the plant tumor. Introduction of the wild-type *sq2* gene into plasmid pNBU3-sq2 but not of the empty vector into FB2Δsq2 restored pathogenicity (in mixtures with FB1Δsq2), demonstrating that the reduction in tumor development was due to deletion of sq2 (Table 1).

Overexpression of sq2 does not suppress the proliferation defect of *gpa3QL2* strains. Compatible strains harboring the *gpa3QL2* allele are able to induce tumors in corn plants. However, such tumors remain hard and green, most probably due to the observed proliferation defect of *gpa3QL2* strains (41). Consequently, we wondered whether overexpression of *sq2* would also suppress the proliferation defect of *gpa3QL2* strains in plant tumor tissue. For this purpose, we infected corn plants with mixtures of FB1*gpa3QL2POTEF-sq2* and FB2*gpa3QL2POTEF-sq2*. Since it has been shown that the *otef* promoter is active in all developmental stages of the fungus, in the strains used *sq2* should be overexpressed in planta (59). Plant tumors induced by these mixtures resembled tumors induced by compatible *gpa3QL2* strains (data not shown), demonstrating that overexpression of *sq2* does not suppress the proliferation defect of *gpa3QL2* strains.

Overexpression of sq2 induces filamentous growth but does not affect pathogenic growth. Since overexpression of *sq2* in strains harboring *gpa3QL2* resulted in an altered cell morphology, we have studied the effects of *sq2* overexpression in a wild-type background. To this end, we replaced the endoge-
nous sql2 gene in FB1 by P옴PEF:sql2, resulting in strain FB1P옴PEF:sql2. Colonies of FB1P옴PEF:sql2 displayed filamentous growth (Fig. 3A). In liquid media, aggregates of cells were observed, which were elongated and branched (Fig. 3B). This phenotype resembles the filamentous growth of strains with deletion of adenyl cyclase (Uac1), which can be made to revert to wild-type morphology by addition of cAMP (28). Interestingly, in the presence of 6 mM cAMP, filament formation of FB1P옴PEF:sql2 on plates was significantly reduced (Fig. 3A), while in liquid medium containing 6 mM cAMP, FB1P옴PEF:sql2 still showed elongated cells (Fig. 3B). However, under these conditions, cell aggregates became denser and filaments were shorter, more branched, and slightly curved (Fig. 3B). These cell aggregates were reminiscent of those observed in FB1pacam1P옴PEF:sql2 (Fig. 1B). In the presence of 15 mM cAMP, the wild-type strain FB1 started to grow by multiple budding as described previously (28), while in FB1P옴PEF:sql2, branching became more prominent and aggregation increased (Fig. 3B). These results show that overexpression of sql2 in wild-type strains induces filamentous growth, which cannot be made to revert to budding growth by addition of exogenous cAMP.

To analyze whether filamentous growth induced by sql2 interferes with pathogenic development, we inoculated corn plants with crossings of FB1P옴PEF:sql2 and FB2P옴PEF:sql2. Interestingly, 83% of infected plants developed tumors, demonstrating that overexpression of sql2 interferes with pathogenic development, as tumors in infected plants did not revert to wild-type morphology by addition of cAMP (28). These results show that overexpression of sql2 interferes with pathogenic development, as tumors in infected plants did not revert to wild-type morphology by addition of cAMP.

Isolation of two genes encoding Ras homologues. Ras proteins are known to be the main effector proteins of CDC25-like GEFs. Therefore, it was plausible that overexpression or deletion of sql2 could influence the activity of Ras proteins. To further elucidate the role of Sql2 in U. maydis, we decided to isolate genes coding for Ras proteins.

Using two different short sequence tags showing homology to ras genes (kindly provided by Peter Margolis, Verscor Inc., Fremont, Calif.), we cloned the ras1 and ras2 genes of U. maydis (see Materials and Methods). Sequencing of the obtained ras1 clone revealed that the ORF of ras1 was interrupted by a putative intron of 149 bp. Reverse transcription-PCR analysis confirmed the presence of this intron (data not shown). The ras1 mRNA codes for a putative protein of 215 amino acids. Sequence analysis of the ras2 clone indicated that the ras2 ORF was not disrupted by introns and codes for a putative protein of 192 amino acids. BlastX (2) analysis of ras1 and ras2 confirmed that both genes code for proteins with significant homology to other fungal Ras proteins. The deduced proteins have 48% overall identity, which is most prominent in their N-terminal domains. With respect to other fungal Ras proteins, U. maydis Ras1 shows high identity to Ras1 proteins from other organisms, e.g., 79% identity to Ras1 of S. pombe, 77% identity to Ras1 of Cryptococcus neoformans, and 75% identity to Ras1p of S. cerevisiae. Ras2 has moderate identity to other Ras2 proteins; e.g., 65% identity to Ras2 of Neurospora crassa, 56% identity to Ras2p of S. cerevisiae, and 51% identity to Ras2 of C. neoformans. Ras1 and Ras2 from U. maydis have a conserved GTP-binding site and a C-terminal CAAX motif commonly found in small GTP-binding proteins.

The dominant-active allele of ras2 triggers filament formation. To analyze the role of Ras2 in cell morphology, we constructed dominant-active alleles of ras2 by introducing a point mutation leading to the amino acid substitution Q65L (see Materials and Methods). It was shown that this kind of substitution causes the loss of intrinsic GTPase activity and results in a dominant-active Ras protein (60). To express ras2Q65L in U. maydis, we introduced this allele under the control of the native promoter into wild-type strain FB2 (see Materials and Methods). We selected three independent transformants that carried one copy of the construct at different sites in the genome (data not shown). All three FB2ras2Q65L mutants displayed filamentous growth on plates as well as in liquid media and were indistinguishable from each other (Fig. 3, shown for FB2ras2Q65L#5), indicating that this phenotype was due to the dominant-active allele of ras2. Filament formation of FB2ras2Q65L was strongly reduced when cAMP was added at a final concentration of 6 mM (Fig. 3A). In the presence of 15 mM cAMP, colonies of FB2ras2Q65L appeared glossy on the plates (Fig. 3A). In liquid medium, 6 mM cAMP induced branching and curving in filaments induced by ras2Q65L (Fig. 3B). In liquid medium containing 15 mM cAMP, FB2ras2Q65L cells formed clusters of branched filaments (Fig. 3B). Thus, the morphology of FB2ras2Q65L resembled the phenotype of FB1P옴PEF:sql2 (Fig. 3B). However, while both strains responded to exogenous cAMP, the amount of cAMP needed to induce the transitions was different: single colonies of FB2ras2Q65L appeared like doughnuts in the presence of 6 mM cAMP, while FB1P옴PEF:sql2 cells formed colonies of this type only with 15 mM cAMP added (Fig. 3A). In addition, exogenous cAMP (15 mM) induced the glossy colony phenotype in FB2ras2Q65L but did not do so in FB1P옴PEF:sql2 (Fig. 3A). These differences could be explained by assuming that expression of the dominant-active allele leads to higher levels of active Ras2 compared to active Ras2 levels attained by sql2 overexpression. On these grounds, we suggest that Sql2 might be the GEF that activates Ras2.

The dominant-active allele of ras1 induces mfa1 gene transcription. To analyze the function of Ras1 in cell morphology, we constructed a dominant-active allele of ras1 by analogy to the ras2Q65L allele. This ras1Q67L allele was placed under the control of the mgp1 promoter and introduced into the ip locus of FB1 in single copy (12). The mgp1 promoter is repressed by glucose and induced by arabinose. In glucose-containing media, the resulting strain, FB1P옴PEF:ras1Q67L, showed wild-type morphology (data not shown). After a shift to arabinose-containing medium, no morphological changes in FB1P옴PEF:ras1Q67L were observed even after incubation for up to 16 h (data not shown). The absence of an influence on cell morphology suggests that Ras1 is not an effector of Sql2.

Inoculum	No. of infected plants	No. of plants with tumors	% Tumor formation
FB1 (a/h1) × FB2 (a/h2)	100	72	72
FB1sql2 × FB2sql2	106	10	9
FB1P옴PEF:sql2 × FB2P옴PEF:sql2	97	81	9
FB1sql2 × FB2	16	10	63
FB1sql2 × FB2sql2[pNEBUC]	16	1	6
FB1sql2 × FB2sql2[pNEBUC-sql2]#2	15	11	73
FB1sql2 × FB2sql2[pNEBUC-sql2]#5	14	10	71
Since Ras proteins are known to regulate signaling pathways by interacting with proteins, which contains a so-called Ras association (RA) domain, we searched for proteins containing a putative RA domain. By this computer algorithm-based search, we identified at least three known proteins: the adenylyl cyclase Uac1 (amino acids 970 to 1050), the MAPKK kinase (MAPKKK) kinase Ubc4 (amino acids 44 to 153), and the adaptor protein Ubc2 (amino acids 402 to 490), which most probably acts upstream of Ubc4 (47). Since the cAMP cascade and the MAPK cascade both regulate pheromone gene (mfa1) expression, we analyzed whether expression of the ras1Q67L allele affects the level of mfa1 transcription. After inducing the expression of ras1Q67L, we detected elevated levels of mfa1 mRNAs (Fig. 4, lanes 5 and 6), whereas in the progenitor strain FB1, the levels of mfa1 transcription were unaffected by growth in arabinose-containing medium (lanes 1 and 2). Since mfa1 transcription is induced by activated cAMP as well as MAPK signaling (40; Müller et al., submitted), we analyzed whether the increased mfa1 expression triggered by ras1Q67L is due to activation of the cAMP cascade or the MAPK module. For this purpose, we chose a second reporter gene, frb34, encoding a putative acyltransferase, whose transcription is slightly elevated in the presence of high intracellular cAMP conditions (15). To analyze how this gene responds to an activated MAPK module, we used a strain that expresses a constitutively active allele of the MAPKK gene (fuz7DD) under control of the crg1 promoter. After induction of fuz7DD, frb34 transcription was repressed (Fig. 4, lanes 3 and 4), whereas in the progenitor strain FB1, the expression of frb34 was not affected by the shift from glucose- to arabinose-containing medium (lanes 1 and 2). Thus, frb34 is a suitable reporter to distinguish between an active cAMP or MAPK cascade. When frb34 mRNA levels were compared after induction of ras1Q67L, a twofold increase was detected (lanes 5 and 6). Thus, ras1Q67L presumably activates the cAMP-signaling cascade to regulate mfa1 and frb34 gene expression.

DISCUSSION

In this study, we identified sql2 as a multicopy suppressor of the glossy colony phenotype of a gpa3Q206L strain, which is
supposed to have an activated cAMP pathway. sql2 encodes a structural homologue of CDC25-like GEFs. In particular, the C-terminal region of Sql2 contains one RasGEF domain and RasGRF_CDC25 domain, which are known to catalyze the guanine nucleotide exchange in small G-proteins called Ras proteins (9, 13). In S. pombe, two different CDC25-like GEFs, Ste6 and Efc25, are present and have different functions. Deletion of ste6 abolishes conjugation, while deletion of efc25 affects cell morphology (34, 62). As in S. pombe, the CDC25 homologue of C. albicans is not essential for growth but is needed for the dimorphic switch in response to serum (24). In S. cerevisiae, two related CDC25-like GEFs exist: Cdc25p and Sdc25p, both of which have Ras GDP-GTP exchange activity (14, 20). While deletion of SDC25 results in no obvious phenotype, CDC25 is essential for growth by acting upstream of Ras1p and Ras2p (21, 38, 55, 60). In S. cerevisiae,cdc25 strains are viable when exogenous cAMP is provided, which demonstrates that death of cdc25 strains is due to dysfunction of the adenyl cyclase Cyp1p (17).

In U. maydis, the Cdc25p homologue Sql2 differs in function from its homologues Cdc25p of S. cerevisiae and Ste6 of S. pombe in being dispensable for vegetative growth and conjugation. Δsql2 strains show no defect in plate mating assays, demonstrating that sql2 is not necessary for cell fusion and subsequent development of dikaryotic hyphae. However, Sql2 is required for full virulence, indicating that it is specifically involved in signaling processes activated during pathogenic development of U. maydis.

What are the signaling processes mediated by Sql2? The findings that overexpression of sql2 suppresses the glossy colony appearance of gpa3Q206L strains and, conversely, that deletion of sql2 results in a glossy colony phenotype suggest that Sql2 influences cAMP signaling negatively. In addition, dikaryon development of Δsql2 mutants is more sensitive to cAMP than is that of the wild type. Consistent with a negative effect on cAMP signaling, sql2 overexpression triggers filamentous growth in haploid strains, which is also observed in strains affected in cAMP signaling. These results suggest that Sql2 could inhibit cAMP signaling directly. However, we consider it more likely that Sql2 acts in a pathway that operates in parallel to cAMP signaling. First, suppression of the glossy colony appearance of gpa3Q206L strains by sql2 is associated with a dramatic change in cell morphology, and overexpression of sql2 fails to suppress the characteristic tumor phenotype of gpa3Q206L strains. Thus, in the strict sense, sql2 cannot be classified as a genuine suppressor, which should have caused the mutant phenotype to revert to the wild type. Second, overexpression of sql2 does not interfere with pathogenic development, while strains affected in cAMP signaling are nonpathogenic (23). Third, the filamentous phenotype induced by sql2 is affected by adding cAMP but cannot be made to revert to the budding phenotype seen in wild-type strains. We take this to indicate that sql2 regulates morphology independently of the cAMP pathway, most probably via a pathway that is interconnected.

CD25-like GEFs are known to activate Ras proteins by catalyzing the GDP-GTP exchange in these proteins. In this study, we isolated two related genes, ras1 and ras2 (48% identity at the amino acid level), encoding proteins that are similar to known fungal Ras proteins. In U. maydis, the mRNA levels of ras1 and ras2 are comparable (data not shown). Two different Ras genes also exist in S. cerevisiae, both of which serve overlapping as well as distinct functions. In yeast, Ras2p and Ras1p function upstream of the adenyl cyclase and only Ras2p also acts on the STE20/STE11/STE7/KSS1-MAPK module to regulate pseudohyphal differentiation (26, 48, 53). In S. pombe, Ras1 activates the pheromone-responsive MAPK cascade during conjugation and also regulates cell morphology independently of the MAPK cascade (25, 67). Recent studies revealed that these dual roles of Ras1 are controlled mainly by the action of two different Cdc25-like GEFs, Ste6 and Efc25. While Ste6 couples Ras1 to the MAPK pathway, Efc25 links Ras1 to the Cdc42 pathway (52). In U. maydis, the two different Ras proteins seem to operate in different signaling pathways. Expression of a dominant-active allele of ras2 induces filaments, while expression of a dominant-active allele of ras1 does not affect cell morphology but induces pheromone gene expression. In contrast to an activated MAPK module which represses the expression of frh34, this reporter gene is induced twofold by ras1Q67L. We take this as an indication that Ras1 activates the cAMP pathway. It has been shown that in S. cerevisiae, dominant-active Ras2p activates Cyp1p and binds to a RA domain found in the leucine-rich repeats of Cyp1p (19, 39, 61). The adenyl cyclase, Uac1, of U. maydis also harbors a RA domain (amino acids 970 to 1050), and Ras1 may be coupled to Uac1 by interaction via this domain.

The second Ras protein in U. maydis, Ras2, is unlikely to act on adenyl cyclase, since theofilaments developed by strains expressing ras2Q65L, are clearly distinct from theofilaments induced under low-cAMP conditions. In addition, theofilaments induced by ras2Q65L, are similar to theofilaments triggered by overexpression of sql2. Therefore, we assume that Sql2 may be the activator of Ras2. Consistently, yeast two-hybrid studies show that Sql2 interacts weakly with Ras2 but fails to interact with Ras1 (J. Katzenberger and R. Kahmann, unpublished data). Therefore, it is conceivable that Ras1 is activated by another, not yet identified, GEF.

The signaling cascade by which Sql2 and Ras2 regulate cell morphology in U. maydis is not known. One candidate effector pathway may include a Cdc42 homologue. In S. pombe, Cdc42 is regulated by Ras1 and acts on the Pak1/Shk1 kinase involved in polarized growth, presumably by affecting the cytoskeleton. In particular, it was shown that overexpression of dominant-negative Pak1 results in delocalized actin (51). These and other examples suggest a direct link between Ras signaling and the cytoskeleton in fungi (1, 16, 31, 65) that is critical for morphogenesis. Hence, for the situation in U. maydis, it is conceivable that Sql2 and Ras2 take part in controlling morphogenesis by regulating the cytoskeleton.

Alternatively, Ras2 in U. maydis may act on the MAPK cascade composed of Ubc4, Fuz7, and Kpp2/Ubc3, since this cascade is a positive regulator of filamentous growth. Moreover, the furthest-upstream component, Kpp4/Ubc4, contains a RA domain that is conserved in proteins interacting with Ras proteins (3; Müller et al., submitted). In S. pombe, Ras1 regulates the Ubc4 homologue, Byr2, by interacting with the RA domain of Byr2 MAPK kinase, and this interaction leads to the translocation of Byr2 to the plasma membrane (8, 45, 63). Recently, the ras2 gene of U. maydis was found to act upstream of kpp2/ubc3 (42). Mutants lacking ras2 are attenuated in mat-
ing and impaired in pathogenic development (42). To reconcile this with our data that deletion of sql2 affects pathogenicity only, one would have to propose that Sql2 might control Ras2 activity specifically during pathogenic development. For future studies, it will be very interesting to elucidate which signals are transmitted to Sql2 and to determine how and at which stage Ras2 becomes activated by Sql2 or other effectors.

ACKNOWLEDGMENTS

P. Müller and J. Katzenberger contributed equally to the work. We are most grateful to Peter Margolis (Versicor, Inc., Fremont, Calif.) for providing the two sequence tags of ras genes. We thank Jan Schirawski for his critical comments on the manuscript. This work was supported by the DFG through SFB369. G.L. was supported by a Marie Curie postdoctoral training grant from the European Commission.

REFERENCES

1. Alspaugh, J. A., L. M. Cavallo, J. R. Perfect, and J. Heitman. 2000. Homologous activators of ras in fission and budding yeast. Nature 344:355–357.
2. Andrews, D. L., J. D. Egan, M. E. Mayorga, and S. E. Gold. 1990. Multiallelic recognition: nonself-dependent dimerization of the bE and bW gene function test in diploid Candida albicans. J. Bacteriol. 182:5730–5736.
3. Arnaud, J. E., C. P. Ponting, and P. Bork. 2002. SMART: genome-scale functional annotation with a conserved domain database. Nucleic Acids Res. 30:229–231.
4. Ashburner, M., W. B. Dolinski, J. T. Harris, A. J. Holsinger-K势, D. J. Hope, M. I. King, and C. K. Mitre. 2000. Gene ontology: tool for the unification of biology. Nature Genet. 25:25–29.
5. Atay, O., H. Liu, I. A. Scherer, G. R. Fink, and R. C. King (ed.), Handbook of genetics, vol. 1. Plenum Press, New York, N.Y.
6. Baulch, S., G. Duncan, K. Barrett, and J. Kronstad. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8:2805–2816.
7. Bush, D. A., Y. Fukui, and M. Yamamoto. 1990. Homologous activators of ras in fission and budding yeast. Nature 344:355–357.
8. Bush, D. A., Y. Fukui, and M. Yamamoto. 1990. Homologous activators of ras in fission and budding yeast. Nature 344:355–357.
9. Busch, D. A., Y. Fukui, and M. Yamamoto. 1990. Homologous activators of ras in fission and budding yeast. Nature 344:355–357.
10. Caminos, J. H., M. Kalekine, B. Gondre, H. Garreau, E. Boy-Mar coccte, and M. Jacquet. 1996. Characterization, cloning and sequence analysis of the CDC25 gene which contains a RAS-activating domain. Mol. Gen. Genet. 250:619–625.
11. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
12. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
13. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
14. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
15. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
16. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
17. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
18. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
19. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
19. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
19. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
19. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
19. Cap, M.-T., C. Doyle, D. Botstein, and G. R. Fink. 2000. A single-transformation gene function test in Ustilago maydis. Mol. Gen. Genet. 260:193–198.
growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5352–5356.

49. Muller, P. C., Aichinger, M. Feldbrugge, and R. Kahmann. 1999. The MAP kinase klp2 regulates mating and pathogenic development in Ustilago maydis. Mol. Microbiol. 34:1007–1017.

50. Nakafuku, M., T. Obara, K. Kaibuchi, I. Miyajima, A. Miyajima, H. Itoh, S. Nakamura, K. Arai, K. Matsumoto, and Y. Kaziro. 1988. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85:1374–1378.

51. Ottilie, S., P. J. Miller, D. I. Johnson, C. L. Creasy, M. A. Sells, S. Bagrodia, S. L. Forsburg, and J. Chernoff. 2002. Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors. Mol. Cell. Biol. 22:4598–4606.

52. Peter, M., A. M. Neiman, H. O. Park, M. van Lohuizen, and I. Herskowitz. 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase. EMBO J. 15:5704–5709.

53. Regenfelder, E., T. Spellig, A. Hartmann, S. Lauenstein, M. Bolker, and R. Kahmann. 1997. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 16:1934–1942.

54. Robinson, L. C., J. B. Gibbs, M. S. Marshall, I. S. Sigal, and K. Tatchell. 1987. CDC25: a component of the RAS-adenylate cyclase pathway in Schizosaccharomyces cerevisiae. Science 235:1218–1221.

55. Sambrook, J. E. Frisch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

56. Schulz, J. F., Milipets, P. Bork, and C. P. Ponting. 1998. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95:5857–5864.

57. Schulz, B., F. Banne, D. Dahl, R. Schlesinger, W. Schäfer, T. Martin, I. Herskowitz, and R. Kahmann. 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homodomain-related motif. Cell 60:295–306.

58. Spellig, T., A. Bottin, and R. Kahmann. 1996. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol. Gen. Genet. 252:503–509.

59. Tatchell, K., D. T. Chaliff, D. DeFeo-Jones, and E. M. Scolnick. 1984. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spor viability. Nature 309:523–527.

60. Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Brock, S. Cameron, J. Brosch, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.

61. Tratner, I., A. Fourticq-Esqueoute, J. Tilit, and G. Baldacci. 1997. Cloning and characterization of the S. pombe gene ef25+, a new putative guanine nucleotide exchange factor. Gene 193:203–210.

62. Tu, H., M. Barr, D. L. Dong, and M. Wigler. 1997. Multiple regulatory domains on the Byr2 protein kinase. Mol. Cell. Biol. 17:5876–5887.

63. Urban, M., R. Kahmann, and M. Bolker. 1996. Identification of the pheromone response element in Ustilago maydis. Mol. Gen. Genet. 251:31–37.

64. Waugh, M. S., C. R. Nichols, C. M. DeCesare, G. M. Cox, J. Heitman, and J. A. Alspaugh. 2002. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 148:191–201.

65. Wiseman, R. W., S. J. Stowers, E. C. Miller, M. W. Anderson, and J. A. Miller. 1986. Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. Proc. Natl. Acad. Sci. USA 83:5825–5829.

66. Xie, H. P., M. White, S. Marcus, and M. Wigler. 1994. Concerted action of RAS and G proteins in the sexual response pathways of Schizosaccharomyces pombe. Mol. Cell. Biol. 14:50–58.