Arsenic Sulfide Promotes Apoptosis in Retinoid Acid Resistant Human Acute Promyelocytic Leukemic NB4-R1 Cells through Downregulation of SET Protein

Yuwang Tian1, Yanfeng Liu2, Pengcheng He2*, Feng Liu2, Naicen Zhou2, Xiaoyan Cheng2, Lili Shi2, Huachao Zhu2, Jing Zhao2, Yuan Wang2, Mei Zhang2*

1 Department of Pathology, General Hospital of Beijing Military Area of PLA, Beijing, China, 2 Department of Hematology, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with anti-tumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism of action of As4S4 in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET over-expression inhibited it, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also demonstrated that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, over-expression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a pro-apoptotic factor and PML-RARα is an anti-apoptotic factor, our results suggest that As4S4-induced apoptosis in NB4-R1 cells is through the downregulation of SET protein expression, which in turn increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.

Introduction

Acute promyelocytic leukemia (APL), also known as acute progranulocytic leukemia (AML), is characterized by a severe risk of early hemorrhagic death caused by a combination of disseminated intravascular coagulation (DIC) and hyperfibrinolysis [1,2]. APL is also a morphological M3 subtype of AML and is characterized cytogenetically by a reciprocal translocation between chromosomes 15 and 17, which results in the fusion gene of promyelocytic leukemia (PML) gene and retinoic acid receptor α (RARα) gene [1,3]. This fusion protein, PML-RARα, binds with enhanced affinity to sites on the cellular DNA and enhances interaction of nuclear co-repressor (NCOR) molecule and histone deacetylase (HDAC), thus blocking transcription, differentiation of granulocytes, and inhibition of apoptosis [4,5]. All trans retinoic acid (ATRA) in combination with anthracycline-based chemotherapy is the standard treatment modality for APL and is able to induce complete remission (CR) in most of the patients with APL through in vivo differentiation of APL blasts, resulting in cure rates exceeding 80% [6,7]. More recently, arsenic trioxide (As2O3 or ATO), with or without ATRA, has shown high efficacy and reduced hematologic toxicity in APL treatment and has been approved for the treatment of relapsed patients both in the United States and Europe [8].

Approximately 75% patients with APL achieved CR after receiving traditional chemotherapy, which includes daunorubicin (DNR) or 4-(9-acridinylamino) methanesulfan-m-anisidine (AMSA) in combination with arabinosylcytosine (Ara-C) and 6-thioguanine (TG) [9], however, traditional chemotherapy can lead to early hemorrhagic death due to abnormalities of blood coagulation that occurs in most of the patients at diagnosis. Although ATRA is considered to be a relatively safe drug and more than 90% APL patients were reported to achieve CR [10,11], drug resistances and side effects such as retinoic acid syndrome and pseudotumor cerebri can occur when using ATRA (PC) [12,13]. Therefore, development of new drugs with higher efficacy and lower toxicity is still needed for APL treatment. Despite the well known toxicity of arsenic, As2O3 is an efficacious agent for the treatment of APL in either primary or relapsed patients [14,15,16]. Tetra-arsenic tetra-sulfide (As4S4) is another arsenic compound with anti-tumor activity, especially on hematological malignancies. Moreover, multi-dose oral As4S4 is safe and relatively well tolerated in APL patients [17]. Lu et al observed that oral As4S4 was highly effective and safe in both remission...
induction and maintenance therapy in 129 patients with APL, regardless of disease stages [10]. In addition, As4S4 also has potential clinical applications when combined with imatinib in the treatment of chronic myelogenous leukemia (CML) [19]. The molecular mechanisms for the anti-tumor action of As4S4 were shown to be through the induction of apoptosis [19,20] and/or through the redistribution of PML-RARα protein in leukemic cells from APL patients [21].

Our previous study demonstrated the induction ability of cellular apoptosis of As4S4 in RA-resistant cells by using a serial in vitro assays [22]. Moreover, we identified several As4S4 targeted proteins, such as SET/template-activating factor (TAF-1β), RPP2, and PHB by using the high-resolution two-dimensional electrophoresis system and mass spectrometry [22]. In the current study, we further investigated the role of the oncprotein SET/TAF-1β in inducing apoptosis by As4S4 in RA-resistant human APL NB4-R1 cells.

Materials and Methods

Cell culture and reagents

The NB4-R1 APL-derived cell line is a RA-resistant promyelocytic cell line, which was a gift from the School of Medicine, Shanghai Jiao Tong University [22]; it was cultured in RPMI 1640 (GIBCO, BRL, USA) supplemented with 10% heat inactivated fetal bovine serum in a humidified incubator containing 5% CO2 and 95% air at 37°C. As4S4 (Xi’an Traditional Chinese Drug Company, China) stock solution was prepared by dissolving in 1.0M NaOH.

MTT assay

MTT assay was used to test the cytotoxic effect of As4S4 (2–50 μmol/L) on NB4-R1 cells. Control and treated cells were cultured in sterile 96-well plates at an optimal cell density of 5x10⁴/ml per well and were incubated at 37°C in 5% CO2 incubator for 24 h, 48 h and 72 h respectively (n = 6). Then, they were assayed for cell viability using the colorimetric MTT assay as described previously [22]. A growth curve was drawn according to MTT colorimetry. Percentage growth inhibition was equal to [1 – (OD of treated/OD of control)] x 100%. IC50 (the concentration inhibiting 50% of in vitro cell growth) was calculated by SPSS 15.0.

Transmission electron microscopy

NB4-R1 cells treated with As4S4 (25 μmol/L, 24 h, 48 h) or control were harvested and fixed in phosphate-buffered 2.5% glutaraldehyde and 1% osmium tetroxide, followed by dehydration through graded ethanol. The samples were then embedded in Epon 812, thin-sectioned, and stained with uranyl acetate and lead citrate. The slides were subsequently examined under a transmission electron microscope (JEOL Company, Japan).

Identification of differentially expressed proteins by MS and MS/MS

Frozen cell samples prepared from NB4-R1 untreated (R0) and samples treated with 25 μmol/L As4S4 for 24 h (R24) and 48 h (R48) cells were dissolved in lysis buffer containing 40 mM Tris base, 8M urea, 2M thiourea, 4% (w/v) 3-[3-Cholamidopropyl]dimethylammonio]-1-propanesulfonate (CHAPS), 1% (w/v) dithiothreitol (DTT), 1 mM EDTA and 1x protease inhibitor cocktail (Roche Diagnostic, Indianapolis, IN), freezing and thawing for three times in liquid nitrogen. After centrifugation at 14,000xg (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 4°C, the supernatant was used as two-dimensional electrophoresis (2-DE) sample, and the protein concentration was determined by the Bradford method with a commercial Bradford reagent (Bio-Rad Laboratories, Hercules, CA). 2-DE was performed as follows. 140 μg of proteins for analytical gels or 1.4 mg of proteins for micropreparative gels were briefly diluted to 350 μl with rehydration solution (10M urea, 2% (w/v) CHAPS, 60 mM DTT, and 0.8% immobilized pH gradient (IPG) buffer (Amersham Pharmacia Biotech, Piscataway, NJ)) and applied onto IPG gel. The total voltage-time was 20–22 kVh, 18 cm (pH 3–10) not linear immobilized pH gradient Drystrip (Amersham Pharmacia Biotech). The strips were rehydrated for 11 h at 20°C. The proteins were then focused on the IPGphor system (Amersham Pharmacia Biotech) according to the manufacturer’s protocol. The strips were then equilibrated for 15 min in a solution containing 6M urea, 2% (w/v) SDS, 20 mM DTT, 30% (w/v⁻¹) glycerol and 50 mM Tris–HCl (pH 8.8). A second equilibration step was also carried out for 15 min in the same solution but DTT was replaced by 100 mM iodoacetamide. Separation in the second-dimensional electrophoresis was carried out in the PROTEAN xi Cell (Bio-Rad company, Richmond, CA, USA) with a 13% SDS-polyacrylamide gel without a stacking gel at a constant current of 20 mA/gel for the initial 40 min and 30 mA/gel thereafter until the bromophenol blue dye marker reached the bottom of the gel. The samples from the same treatment were run at least two times in order to determine the variability.

Silver nitrate staining and Coomassie Brilliant Blue R-250 (0.05%) Brilliant Blue) were used for the analytical and micropreparative gels, respectively. 2-DE images were analyzed with an ImageScanner (Amersham Pharmacia Biotech). Spot detection, quantification, and alignment were performed with the ImageMasterTM 2D Platinum software (Amersham Pharmacia Biotech). Intensity levels were normalized between gels by expressing the intensity of each spot in a gel as a proportion of the total protein intensity detected for the entire gel. Spot relative volumes were normalized for every gel [(spot volume)/(spot volumes) x 10⁴] to correct for subtle variation in protein loading and gel staining between the gels to be compared.

After matching the micropreparative gel image with the analytical image, the in-gel digestion was performed. 0.5–1 μl sample solution and equal volume of the saturated matrix solution were mixed and applied onto the target plate. All mass spectra of MALDI-TOF-MS were obtained on a Bruker REFLEX III MALDI-TOF-MS (Bruker-Franzen, Bremen, Germany) in positive ion mode at an accelerating voltage of 20 kV. Monoisotopic peptide masses, used to search the database, allowed a peptide mass accuracy of 0.3 Da and one partial cleavage. Oxidation of methionine and carbamidomethyl modification of cysteine were also considered. The obtained PMF were used to search through the SWISS-PROT and NCBInr database by the Mascot search engine.

RNA Extraction and Real-time PCR

RNA extracted from NB4-R1 cells (RNAeasy Mini Kit; Qiagen) were used to synthesize first-strand cDNA from total RNA (SuperScript First-Strand Synthesis System; Invitrogen, Carlsbad, CA). Real Time-PCR primers: human SET forward: 5’-aatataaacaactcgcacca-3’ and reverse: 5’-aggctctctatcctctc-3’; The GAPDH was used as internal control using the following primers: forward: 5’-gacacaatgcattag-3’ and reverse: 5’-gctgtc-gaggagtgtgatc-3’. The real-time PCR reaction containing 10 ng cDNA, 1× SybrGreen Supermix, 0.25 mM/L forward, and reverse primers was carried out following three-step amplification protocol in QuantiTect; ABI PRISM 7700 machine, and the melt
Western blotting (WB) assay

NB4-R1 cells were washed once with ice-cold PBS and disrupted by homogenization in RIPA buffer (Sigma). Protein concentration was determined by BCA kit. Protein expression was analyzed by Western blot (20 μg/lane) using anti-SET specific antibody (1: 1000). Level of GAPDH protein was used as loading control. Protein-bands were detected using Super Signal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) and exposed on Kodak X-OMAT film (Kodak). For WB assay, in each experiment, we did three times. Densitometric analysis of bands was carried-out with Quantity One 4.6.2 software.

Plasmid construction and lentivirus production

pHelper 1.0, pHelper 2.0 and pGCSIL-GFP plasmids were purchased from Shanghai GeneChem Co. Ltd. (Shanghai, China). To construct the recombinant vector, RNAi stem-loop DNA oligos containing the target sequences (GGGATTGAACACATTGAGT) in the region of SET gene were chemically synthesized, annealed, and cloned into the AgeI/EcoRI-digested pGCSIL-GFP, thus generating the lentiviral vector pGCSIL-SET. A control shRNA that targets none of human genes was also designed and cloned into pGCSIL-GFP to obtain the control vector pGCSIL-GFP-Mock. In these two vectors, the expression of shRNA was verified by DNA sequence analysis. Semi-confluent NB4-R1 cells were transfected with pGCL-NC or pGCL-SET. After 24 h or 48 h of transfection, the GFP-expressing cells were counted under fluorescence microscopy. The total RNA and protein were prepared from the cells with transfection efficiency over 70%.

Annexin V-FITC/PI

Flow cytometric analysis using Annexin V FITC (Sigma, USA) and propidium iodide (PI, Sigma, USA) were used to analyze the apoptotic NB4-R1 cells after As4S4 treatment for 24 and 48 h, respectively. NB4-R1 cells were briefly washed twice with cold PBS at 4°C and re-suspended in 1x binding buffer. Annexin V-FITC (25 μg/mL) and PI (5 μg/mL) were added to the cell suspension. After 15 min of incubation in dark at room temperature, analysis was performed by flow cytometer (Becton Dickinson FACS caliber double laser flow cytometer) immediately. Flow cytometric reading was taken using 488 nm excitation and band pass filters of 530/30 nm (for FITC detection) and 585/42 nm (for PI detection). Data analysis was performed by CellQuest software program.

Statistical analysis

SPSS 15.0 software was used for data analysis. All experiments were repeated at least three times with different cell preparations. The data was expressed as mean ± standard deviation. ANOVA was used for multi-group comparison. The difference between two groups was determined by a t-test. P values less than 0.05 were considered statistically significant.

Results

As4S4 inhibits the proliferation of NB4-R1 cells

We first determined the inhibitory effect of As4S4 on the proliferation of NB4-R1 cells. As shown in Figure 1, the inhibitory effect of As4S4 on NB4-R1 cell proliferation was in a dose- and time-dependent manner. Under the treatment with different concentrations of As4S4 (2–50 μmol/L), the inhibition rates ranged from 9.97±2.35% (24 h) to 80.82±4.21% (48 h), with IC50 about 24.18±0.19 μmol/L at 24 h, and 9.50±0.13 μmol/L at 48 h after treatment. We therefore chose 25 μmol/L, the IC50 at 24 h, as doses of As4S4 for the following experiments.

The morphological changes of As4S4 on NB4-R1 cells

To determine whether the inhibition of cell proliferation by MTT assay after treatment with As4S4 was attributed to the induction of cellular apoptosis, ultrastructural characteristics of the cells were evaluated by transmission electron microscopy (TEM). The transmission images of untreated control cells showed intact nuclei and membrane (Figure 2A), while 25 μmol/L As4S4 treated NB4-R1 cells for 24 h exhibited vacuolization, chromatin, and cytoplasmic condensation with intact nuclei and membrane (Figure 2B), followed by prominent nuclear fragmentation and margination of fragmented nuclei towards the membrane, and formation of apoptotic bodies after exposure to As4S4 for 48 h (Figure 2C). These morphological features of cells indicated that As4S4 could induce apoptosis in NB4-R1 cells.
Figure 1. Comparative cytotoxicity of As4S4 in NB4-R1 cells by the MTT assay. Dose- and time-dependent curve of inhibition rate of As4S4 on NB4-R1 cells by the MTT assay. Data were presented as the means±SD of three independent experiments performed in quintuplicate. Each value represents the mean ± SD of triplicate experiments. MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide). SD: standard deviation. doi:10.1371/journal.pone.0083184.g001

Proteome analysis of NB4-R1 cells treated with and without As4S4

In order to identify the differentially expressed proteins that are associated with As4S4-induced apoptosis in NB4-R1 cells, we performed 2-DE on the cell samples prepared from NB4-R1 that were untreated (R0), treated with 25 μmol/L As4S4 for 24 h (R24) or 48 h (R48). All maps from untreated and treated cells showed high resolution and good repeatability in their protein expression patterns (Figure 3A). Averagely 231±7, 219±9 and 196±7 spots could be detected on silver nitrate staining gel of R0, R24 and R48 respectively by the autodetect spots menu of ImageMasterTM software. Matching rate of the spots between R24 gel and R0 gel was 79.94%. Matching rate of the spots between R48 gel and R0 gel was 69.33%. To accurately quantify the changes of expression level of the same protein spot, relative amount (volume %) of each gel was represented as the expression level of a protein spot. The normalized data obtained by ImageMasterTM 2D Platinum software was statistically analyzed with Student’s t-test. Combining above matching analysis with artificial comparison, 8 spots with significant expressing changes more than 3-fold were selected for mass spectrometry, including 2 protein spots up-regulated after exposing As4S4 for 24 h and 3 protein spots up-regulated after exposing As4S4 for 48 h. There were 2 protein spots which were down-regulated after exposing As4S4 for 24 h and were not detected in R48 gel. Only 1 protein spot consistently down-regulated after exposing As4S4 for 24 h and 48 h, and it was finally identified as protein SET (Table 1) (Figure 3B).

Down-regulation of SET protein and mRNA expression in NB4-R1 cells treated with As4S4

To confirm the reliability of mass spectrometry proteomic data, we quantitatively determined SET protein and mRNA expression in NB4-R1 cells treated with As4S4. As seen from Figure 4A, SET protein expression was down-regulated in NB4-R1 cells treated with 25 μmol/L As4S4 by 47.2±4.22% (p<0.01) at 24 h and

Figure 2. Ultrastructural changes in As4S4 treated NB4-R1 cells by TEM. Ultrastructural changes in untreated and As4S4 treated NB4-R1 cells by transmission electron microscopy (TEM) (original magnification: ×5000): (A) Untreated control cells showed intact nuclei and membrane. (B) As4S4 treatment for 24 h showed vacuolization, cytoplasm and chromatin condensation with intact membrane and nuclei. (C) As4S4 treatment for 48 h showed nuclear fragmentation and apoptotic bodies formation. doi:10.1371/journal.pone.0083184.g002

58.4±5.16% (p<0.01) at 48 h, respectively, in comparison with untreated cells. Meanwhile, SET mRNA expression was also down-regulated in NB4-R1 cells treated with 25 μmol/L As4S4 by 23.6±3.52% (p<0.05) at 24 h and 47.9±5.07% (p<0.05) at 48 h, respectively (Figure 4B).

Induction of apoptosis by As4S4 is through the downregulation of SET expression in NB4-R1 cells

In order to investigate whether or not SET is the key mediator of As4S4 induced apoptosis in NB4-R1 cells, we constructed two plasmids, SET RNAi that was able to silence SET and SET expression plasmid that was able to over-express SET. The transfection efficiencies of both plasmids were close to 75% (Figure 5A). Real-time PCR and Western blot analysis revealed that SET RNAi was able to inhibit 80% SET expression (Figure 5B), while SET overexpression plasmid was able to increase the expression of SET by 65% (Figure 5C).

We next investigated whether or not the knockdown and over-expression of SET gene had any effect on As4S4-induced apoptosis in NB4-R1 cells. By using Annexin V-FITC/PI double staining and flow cytometry analysis, we further confirmed that there were only 4.2±0.31% apoptotic cells in negative control NB4-R1 cells, but 10.26±1.31%, 38.2±2.44% apoptotic cells in NB4-R1 cells treated with As4S4 for 24 and 48 h, respectively. As expected, knockdown of SET gene by siRNA increased the apoptotic cells in NB4-R1 cells, which was 41.7±3.67%. Compared to As4S4 treatment alone (Figure 5F b, c), and As4S4 plus SET RNAi significantly enhanced apoptosis (Figure 5F d), which was up to 58±3.96%. By contrast, over-expression of SET gene plus As4S4 treatment significantly decreased apoptosis in NB4-R1 cells to a level that was not significantly different from the negative control, indicating that SET gene overexpression abolished As4S4-induced cell apoptosis (Figure 5F h). These results suggest that As4S4-induced cell apoptosis might be through the downregulation of SET expression.

As4S4 alters SET-regulated PP2A and PML-RARα expressions in NB4-R1 cells

PP2A is a pro-apoptotic protein, and SET is its natural inhibitor. PML-RARα is an anti-apoptotic fusion protein, which can be enhanced by SET. As shown in Figure 5G, knockdown of SET by RNAi enhanced the expression of PP2A and reduced the expression of PML-RARα. In the presence of As4S4, the SET RNAi-induced upregulation of PP2A was further increased, and
the PML-RAR\textsubscript{a} downregulation was further reduced. Also in the presence of As\textsubscript{4}S\textsubscript{4}, the SET RNAi-induced upregulation of PP2A was further increased, and the PML-RAR\textsubscript{a} downregulation was further reduced. In the presence of As\textsubscript{4}S\textsubscript{4}, the downregulated PP2A and upregulated PML-RAR\textsubscript{a} expressions induced by SET overexpression were restored. These results suggest that As\textsubscript{4}S\textsubscript{4} may induce apoptosis through the downregulation of SET protein expression, thereby increases PP2A expression and reduce PML-RAR\textsubscript{a} expression, leading to the apoptosis of NB4-R1 cells.

Discussion

Clinical use of As\textsubscript{4}S\textsubscript{4} in the APL treatment can be either in composite formulas as a standard practice of traditional Chinese medicine or as a single agent [23,24]. Current studies have shown that As\textsubscript{4}S\textsubscript{4}, as a new oral arsenic formulation, is highly effective and safe in the treatment of newly diagnosed APL patients in both remission induction and maintenance therapy regardless of disease stage, and more importantly in relapsed/refractory APL patients with ATRA resistance [18,25]. Compared to As\textsubscript{2}O\textsubscript{3}, As\textsubscript{4}S\textsubscript{4} is generally well tolerated with moderate side effects and possesses the biologic property of less toxic and adverse reaction [18]. Although recent studies revealed that the therapeutic action of As\textsubscript{4}S\textsubscript{4} is closely associated with the induction of cellular apoptosis [19,26,27,28], the definitive molecular mechanism of action of As\textsubscript{4}S\textsubscript{4} in APL therapy still remains unknown. In the present study, As\textsubscript{4}S\textsubscript{4} was further confirmed to inhibit the growth of RA-resistant NB4-R1 cells in a time- and dose-dependent manner. The increased number of apoptotic cells observed in NB4-R1 by electron microscopic; flow cytometric analyses confirmed that As\textsubscript{4}S\textsubscript{4} inhibited tumor cell growth via inducing apoptosis. By performing 2-DE of cell lysates from As\textsubscript{4}S\textsubscript{4} treated versus untreated cells and MS or MS/MS analysis, we identified 8 proteins that were significantly changed (more than 3-fold changes) in NB4-R1 cells for the first time. We selected one of proteins, SET for further study and found that SET is the key mediator of As\textsubscript{4}S\textsubscript{4} induced apoptosis in NB4-R1 cells. We found that As\textsubscript{4}S\textsubscript{4} induced apoptosis in NB4-R1 cells was significantly enhanced by knockdown of SET gene but abolished by overexpression of SET, indicating that As\textsubscript{4}S\textsubscript{4}-induced cell apoptosis might be through the downregulation of SET expression. We further demonstrated that knockdown of SET by RNAi enhanced PP2A and reduced PML-RAR\textsubscript{a} expressions. In contrast, the overexpression of SET inhibited PP2A expression enhanced PML-RAR\textsubscript{a} expression. Also in the presence of As\textsubscript{4}S\textsubscript{4}, the SET RNAi-induced upregulation of PP2A was further increased, and the PML-RAR\textsubscript{a} downregulation was further reduced. In the presence of As\textsubscript{4}S\textsubscript{4}, the downregulated PP2A and upregulated PML-RAR\textsubscript{a} expressions induced by SET overexpression were restored. Because PP2A is a pro-apoptotic protein and SET is its natural inhibitor, our results suggest that As\textsubscript{4}S\textsubscript{4} may induce apoptosis through the downregulation of SET protein expression, thereby increases PP2A expression and reduce PML-RAR\textsubscript{a} expression, leading to the apoptosis of NB4-R1 cells.

SET, also called I2PP2A or TAF-1\textsubscript{b}, is an inhibitor of histone acetyltransferase, which inhibits active demethylation of DNA, integrates DNA methylation, and transcriptional silencing [29]. As an intracellular inhibitor of serine/threonine phosphatase PP2A [30], SET was first identified in acute non-lymphocytic leukemia as part of the SETCAN (nucleopoin Nup214) fusion protein resulting from a gene translocation. Phosphorylation of SET protein at ser171 by protein kinase D2 diminishes its inhibitory effect on PP2A [31]. It was reported that SET protein is leukemogenic and is the natural inhibitor of PP2A, which destroys the activity of PP2A [32]. It is also an inhibitor of the tumor suppressor NM23-H1 [32], and it was reported to be associated with the oncoprotein MLL (mixed lineage leukemia also termed ALL1, HRX) in AML [33]. High levels of SET have been detected in a number of different human malignancies, including cancers from uterus, colon, stomach, and rectum [29], ovarian tumor [34], Wilms' tumor and leukemia [35,36], thus implying an oncogenic role of SET in tumorigenesis. Moreover, SET overexpression is associated with a poor outcome in AML [37]. Therefore, SET overexpression may also be critical for tumorigenesis of APL and RA-resistance.

![Figure 3. Proteomic comparison between untreated and As\textsubscript{4}S\textsubscript{4} treated NB4-R1 cells using 2-DE and MALDI-TOF-MS. (A) Untreated, As\textsubscript{4}S\textsubscript{4} treated for 24 h and 48 h NB4-R1 cells; (B) Enlarged regions of SET expressed representative protein spots in 0, 24, and 48 h map. 2-DE: two-dimensional electrophoresis. doi:10.1371/journal.pone.0083184.g003](https://www.plosone.org/figure/3.003)
Besides rapid reduction of SET expression, we also observed that PP2A expression was increased during the apoptosis of NB4-R1 cells induced by As4S4. SET exerts its potent PP2A inhibitory activity via its N-terminal sequence [38]. PP2A represents an abundant class of structurally complex Ser/Thr phosphatases in mammalian cells, which maintains cell homeostasis by counteracting most of the kinase-driven intracellular signaling pathways, have been shown to be genetically altered or functionally inactivated in many solid cancers and leukemias, and is therefore a tumor suppressor [39,40]. Suppression of SET/I2PP2A by short hairpin RNAs was observed and resulted in an increase of PP2A activity and a reduction in BCR/ABL leukemogenesis in vivo [41]. Therefore, As4S4 inhibitions of SET expression may result in the activation of PP2A, which may lead to the dephosphorylation of PP2A target genes, thereby culminating in the induction of apoptosis in NB4-R1 cells.

APL is characterized by a chromosomal translocation, which results in the fusion gene between the genes of promyelocytic leukemia (PML) and retinoic acid receptor \(\alpha \) (RAR \(\alpha \)), and finally produces a fusion protein, PML-RAR\(\alpha \). The PML-RAR\(\alpha \) protein is able to form homo/heterodimers that sequestrate PML proteins in a large protein complex. This result in the disruption of RA signal pathway and the repression of the transcriptional expression of target genes that are essential for granulocytic differentiation and apoptosis [4,5]. Previous studies showed that As4S4 was able to decrease positive rate of PML-RAR\(\alpha \) protein in APL patients [42], and As4S4 also makes redistribution of PML-RAR\(\alpha \) protein in leukemia cells from APL patients which is quite different from that of RA treatment [21]. Our current study revealed that As4S4 inhibits the production of PML-RAR\(\alpha \) protein in NB4-R1 cells, and this inhibition may be through the inhibition of SET, since SET down-regulation by SET-RNAi and SET-RNAi plus As4S4 significantly decreased PML-RAR\(\alpha \) protein expression, as well as SET overexpression significantly increased PML-RAR\(\alpha \) protein expression. We also confirmed that the inhibition of SET expression was able to promote As4S4 induced apoptosis, while SET over-expression was able to inhibit As4S4 induced apoptosis in NB4-R1 cells. These results indicate that SET maybe an upstream gene of PML-RAR\(\alpha \) and may possibly be involved in PML-RAR\(\alpha \) down-regulation and promotes As4S4 induced apoptosis in NB4-R1 cells.

In conclusion, As4S4 was determined that it is able to inhibit the growth and induce apoptotic cells in retinoic acid (RA)-resistant NB4-R1 cells. Eight proteins including oncoprotein SET/TAF-1\(\beta \) were significantly changed (more than 3-fold changes) in As4S4 treated NB4-R1 cells.

Spot	Protein name	Swiss-Prot accession no.	NCBI accession no.	Mass weight (Da)	P/I Sequence coverage (%)	Function
R0-1	SET	Q01105	gi:170763500	33,489	4.23 30	Oncoprotein
R0-2	\(\alpha \)-tubulin	P07437	gi:338695	49,971	4.78 53	Microtubule assembly
R0-3	Poly(C)-binding protein 1 (PCBP1)	Q15365	gi:212232151	37,498	6.66 54	Poly (C)-binding ability
R0-4	ACTB	P60709	gi:11176787	41,379	5.59 17	Cell motility
R48-5	High-mobility group box 1 protein (HMGB1)	P09429	gi:48149343	24,894	5.14 54	Gene expression regulation
R48-6	Phosphoglycerate mutase (PGM)	P09429	gi:11176787	41,379	5.59 17	Glucose breakdown and synthesis
R48-7	Phosphoglycerate mutase (PGM)	P09429	gi:11176787	41,379	5.59 17	Glucose breakdown and synthesis
R48-8	Rho GDP dissociation inhibitor 2 (RhoGDI2)	P09429	gi:48149343	24,894	5.14 54	Signal transduction
R48-9	Heat shock protein 90 kDa (HSP90)	P08107	gi:11176787	70,652	5.48 19	Molecular chaperone

Table 1. Differentially expressed proteins in As4S4-treated/untreated NB4-R1 cells identified by MALDI-TOF-MS.
treated NB4-R1 cells. This study identified SET/TAF-1β is a critical gene in As4S4 induced apoptosis in NB4-R1 cells and may be a potential novel effective therapeutic target for RA-resistant APL.

Acknowledgments
The authors express their gratitude to Dr. Xinyang Wang and Dr. Wen Wen for their technological assistance.

Author Contributions
Conceived and designed the experiments: MZ YL PH. Performed the experiments: YL PH YT FL YW JZ. Analyzed the data: NZ XC YT FL YW. Contributed reagents/materials/analysis tools: LS HZ JZ. Wrote the manuscript: MZ YT.

References
1. Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111: 2505–2515.
2. Falanga A, Rickles FR (2003) Pathogenesis and management of the bleeding diathesis in acute promyelocytic leukemia. Best Pract Res Clin Haematol 16: 463–482.
3. Mattox JC (2000) Acute promyelocytic leukemia. From morphology to molecular lesions. Clin Lab Med 20: 83–103, ix.
4. Martens JH, Brinkman AB, Simmer F, Francoij KJ, Nebbioso A, et al. (2010) PML-RARalpha/RXRβ alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 17: 173–185.
5. Kamimura T, Miyamoto T, Harada M, Akashi K (2011) Advances in therapies for acute promyelocytic leukemia. Cancer Sci 102: 1929–1937.
6. Lo-Coco F, Avvisati G, Viglietti M, Thiele C, Orlando SM, et al. (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369: 111–121.
7. Degos L, Wang ZY (2001) All trans retinoic acid in acute promyelocytic leukemia. Oncogene 20: 7140–7145.
8. Braccia M, Lo-Cocco F (2012) Arsenic trioxide for management of acute promyelocytic leukemia: current evidence on its role in front-line therapy and recurrent disease. Expert Opin Pharmacother 13: 1031–1043.
9. Cunningham I, Gee TS, Reich LM, Kempin SJ, Naval AN, et al. (1989) Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood 73: 1116–1122.
10. Hoffman E, Mielicki WP (2010) [All-trans retinoic acid (ATRA) in prevention and cancer therapy]. Postepy Hig Med Dosw (Online) 64: 284–290.
11. Ravandi F, Estey E, Jones D, Faderl S, O’Brien S, et al. (2009) Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gentuzumab oogogamic. J Clin Oncol 27: 505–510.
12. Holmes D, Vashu P, Dorer RK, Aboalafia DM (2012) All-Trans Retinoic Acid-Induced Pseudotumor Cerebri during Induction Therapy for Acute Promyelo-
27. Wang XB, Gao HY, Hou BL, Huang J, Xi RG, et al. (2007) Nanoparticle toxicity.
26. Ye HQ, Gan L, Yang XL, Xu HB (2005) Membrane toxicity accounts for the cellular and molecular mechanisms of arsenic trioxide: A novel paradigm.
25. Balaz P, Sedlak J (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview).
24. Tallman MS (2008) What is the role of arsenic in newly diagnosed acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML-proteins.
23. Kogan SC (2009) Curing APL: differentiation or destruction?
22. Wang JZ, Liu YR, Qin YZ, Jiang H, Wang FR, et al. (2003) Downregulation of Bcl-2 expression and modulation of PML-RARalpha protein during treatment with tetraarsenic tetra-sulfide in inducing apoptosis of acute promyelocytic leukemia.
21. Wang FR, Lou YQ, Lu DP (2005) Clinical pharmacokinetic study of multi-agent arsenical therapy. Medittr J Hematol Infect Dis 3: e2011056.
20. Teng ZP, Zhang P, Zhu HH, Hao HY, Qin XY, et al. (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107: 2627–2632.
19. Yin T, Wu YL, Sun HP, Sun GL, Du YZ, et al. (2004) Mechanism of apoptosis induced by realgar nanoparticles (a minireview). Toxins (Basel) 2: 1568–1581.
18. Lu DP, Qiu JY, Jiang B, Wang Q, Liu KY, et al. (2002) Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukaemia: a pilot report. Blood 99: 3136–3143.
17. Wang FR, Lou YQ, Lu DP (2005) A clinical pharmacokinetic study of multi-agent arsenical therapy. Medittr J Hematol Infect Dis 3: e2011056.
16. Mathews V, Chendamarai E, George B, Viswabandya A, Srivastava A (2011) In vitro studies on caspase MAPK and mitochondrial pathways. Arch Pharm Res 30: 653–658.
15. Mathews V, George B, Lakshmi KM, Viswabandya A, Srivastava A (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins (Basel) 2: 1568–1581.
14. Chen GQ, Zhu J, Hao HY, Qin XY, et al. (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML-proteins. Blood 108: 1052–1061.
13. Zayed A, Couban S, Hayne O, Sparavalo N, Shawwa A, et al. (2007) Acute promyelocytic leukemia: a novel PML-RARalpha fusion that generates a frameshift in the RARalpha transcript and ATRA resistance. Leuk Lymphoma 48: 489–496.
12. Chen QG, Zhu J, Shi XG, Ni JH, Zhong HJ, et al. (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide: As2O3 in the treatment of acute promyelocytic leukemia. Blood 88: 1052–1061.
11. Gao HY, Hou BL, Huang J, Xi RG, et al. (2007) Nanoparticle toxicity.
10. Tse WP, Cheng CH, Che CT, Zhao M, Fan RQ, et al. (2009) Realgar-mediated growth inhibition on HaCaT human keratinocytes is associated with induction of apoptosis. Int J Mol Med 24: 189–196.
9. Cervoni N, Deitch N, Seo SB, Chakravarti D, Szyf M (2002) The oncoprotein Set/TAF-Ibeta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 277: 25026–25031.
8. Santa-Coloma TA (2003) Apo32e (CipDl1) and related protein phosphatase 2 inhibitors. Cereb Ann 2: 519–529.
7. Irie A, Harada K, Araki N, Nishimura Y (2012) Phosphorylation of SET protein at Ser171 by protein kinase D2 diminishes its inhibitory effect on protein phosphatase 2A. Plos one 7: e51242.
6. Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271: 11059–11062.
5. Adler HT, Nallaseth FS, Walter G, Tkachuk DC (1997) HRX leukemia fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. J Biol Chem 272: 28407–28414.
4. Ouellet V, Le Page C, Guyot MC, Lussier C, Tonin PN, et al. (2006) SET complex in serous epithelial ovarian cancer. Int J Cancer 119: 2119–2126.
3. Carlson SG, Eng E, Kim EG, Perlman EJ, Copeland TD, et al. (1998) Expression of SET, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. J Am Soc Nephrol 9: 1873–1880.
2. Fornerod M, Boer J, van Baal S, Jaegle M, von Lindern M, et al. (1995) Relocation of the carboxyterminal part of CAN from the nuclear envelope to the plasma membrane as a result of leukemia-specific chromosome rearrangements. Oncogene 10: 1739–1748.
1. Cristobal I, Garcia-Orti I, Ciraqui C, Cortes-Lavaud X, Garcia-Sanchez MA, et al. (2012) Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica 97: 545–550.

As4S4 Promotes Apoptosis in APL