The Subcutaneous ICD: A Review of the UNTOUCHED and PRAETORIAN Trials

Ahmadreza Karimianpour, Leah John and Michael R Gold

Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, US

Abstract
The ICD is an important part of the treatment and prevention of sudden cardiac death in many high-risk populations. Traditional transvenous ICDs (TV-ICDs) are associated with certain short- and long-term risks. The subcutaneous ICD (S-ICD) was developed in order to avoid these risks and complications. However, this system is associated with its own set of limitations and complications. First, patient selection is important, as S-ICDs do not provide pacing therapy currently. Second, pre-procedural screening is important to minimise T wave and myopotential oversensing. Finally, until recently, the S-ICD was primarily used in younger patients with fewer co-morbidities and less structural heart disease, limiting the general applicability of the device. S-ICDs achieve excellent rates of arrhythmia conversion and have demonstrated noninferiority to TV-ICDs in terms of complication rates in real-world studies. The objective of this review is to discuss the latest literature, including the UNTOUCHED and PRAETORIAN trials, and to address the risk of inappropriate shocks.

Keywords
Subcutaneous ICD, inappropriate shocks, sudden cardiac death, defibrillators, clinical trials

The prevention of sudden cardiac death is one of the main goals of cardiac device therapy. ICDs are effective in sensing and treating deadly ventricular arrhythmias through complex iteratively developed rhythm identification algorithms. For decades, the only available implantable options proven to be effective have been transvenous ICDs (TV-ICDs) and surgical implantation of patches and epicardial leads on the heart. However, the short- and long-term risks involved with implantation are significant. The subcutaneous ICD (S-ICD) has been developed as an alternative to these transvenous devices. S-ICDs avoid many of the short-term risks associated with de novo implantation, such as pneumothorax or cardiac perforation, and long-term risks, such as systemic infection.

For more than a decade, S-ICDs have been studied in multicentre clinical trials and have proven to be effective. Moreover, recent data suggest that S-ICDs may even be superior to TV-ICDs in some respects. Nevertheless, S-ICDs present a unique set of potential complications and risks – as well as the risks that are common to both types of ICDs. Complications and risks unique to S-ICDs are discussed in further detail in the following sections. However, the main objective of this review is to discuss the most recent literature and contemporary populations studied with this device, with a focus on the risk of inappropriate shocks (IAS) – an issue mutual to both S-ICDs and TV-ICDs.

Inappropriate Shocks
The rate of IAS in TV-ICDs with contemporary programming is typically less than 5% annually. Common causes of IAS in people with TV-ICDs are misdiagnosed AF or abnormal sensing in the setting of lead malfunction. In contrast, with S-ICDs the most common causes of IAS are T wave oversensing and myopotentials. Misclassification of supraventricular arrhythmias is infrequent with S-ICDs. These different aetiologies of IAS largely offset each other. Nonetheless – regardless of the type of implantable device – IASs are painful, hazardous and can result in psychological sequelae.

TV-ICD sensing was developed as a beat-by-beat counter to classify arrhythmias rapidly and deliver therapy. S-ICD algorithms sense somewhat differently and intended to be a rhythm detector. This device has a more detailed morphology matching process and a much longer time to classify the rhythm. The algorithm is comprised of three phases. Phase 1 is the sensed event detection phase, which filters signals and adjusts sensitivity based on preceding QRS complexes before certifying an elevated heart rate to reduce R wave double counting and T wave oversensing. Phase 2 classifies sensed events as certified QRS complexes or as suspected oversensing events and calculates the heart rate. This includes advanced waveform algorithms that use frequency and slew-rate analysis to reject myopotentials and electromagnetic interference. Phase 3 is the decision phase during which ventricular arrhythmias are discriminated from supraventricular tachycardias.

Except for the initial generation of ICDs, TV-ICDs have the pacing capabilities to terminate ventricular tachycardia without a shock. This made the programming of multiple zones important. S-ICDs only deliver full energy shocks but have two programmable zones: a conditional zone, where the discrimination algorithms are active, and a shock zone, which delivers therapy based solely on rate. Initially, many implanters did not activate the conditional zone for programming as the same therapy is
delivered in both zones. However, the importance of the conditional zone for discrimination became clear in analyses of prospective clinical trials, so it is now standard.²⁵

Advances have been made in the programming and algorithms of both types of devices to reduce IAS rates. Ironically, this was because TV-ICDs were classifying rhythms and delivering therapies too quickly. Clinical trials showed that prolonging detection in TV-ICDs reduced IAS.⁴,¹¹ In contrast, the duration of detection is not programmable in the S-ICD. However, improvements in the SMART Pass technology reduced IAS rates by 50% in real-world studies.²⁶,²⁷

Previous cohorts that studied outcomes in S-ICD, such as the EFFORTLESS registry and S-ICD IDE studies, enrolled patients that were younger and with fewer comorbidities and demonstrated higher IAS rates.⁷,²⁸ The Food and Drug Administration mandated a post-marketing registry of the S-ICD by 50% in real-world studies. Two major multicentre S-ICD trials. In the UNTOUCHED trial, regression analysis revealed that predictors of IAS were history of AF and two-lead systems. Remarkably, there were no cases of supraventricular tachycardia misdagnosis or discrimination errors. Overall, at 18 months, the IAS-free rate was 95.9%. Moreover, the complication-free rate was 95.8% at 30 days, which satisfied the performance goal of 93.8%. Despite a cohort with greater left ventricular dysfunction and heart failure, the UNTOUCHED trial outcomes demonstrated the lowest ever IAS rate compared to prior S-ICD trials and the MADIT-RIT trial.¹⁰

Table 1 shows a comparison of baseline characteristics between four major multicentre S-ICD trials. In the UNTOUCHED trial, regression analysis revealed that predictors of IAS were history of AF and two-incision implant technique. It is postulated that distal lead migration may result in detection of myopotentials resulting in IAS. However, in a direct comparison of three- versus two-incision technique, there were no differences in first shock efficacy during conversion testing, shock impedance, complication-free survival at 5 years, or IAS rate at 5 years.³¹

Table 1: Baseline Characteristics of Four Large S-ICD Trials

Region	EFFORTLESS 2017²⁸	S-ICD PAS 2017, 2020²⁹,³⁰	PRAETORIAN 2020⁹	UNTOUCHED 2021³⁰
Patients (n)	985	1,637	426 (S-ICD only)	1,116
Age (years), mean ± standard deviation	48 ± 17	53 ± 15	63 (median)	56 ± 12
Male	72%	69%	79%	74%
Ejection fraction, mean ± SD	43 ± 18%	32 ± 15%	30% (median)	26 ± 6%
Primary prevention	65%	77%	81%	100%
Heart failure (NYHA Class II)	27%	74%	65%	88%
Hypertension	28%	62%	54%	71%
Diabetes	11%	34%	26%	33%
AF	15.9%	16%	27%	13%

NYHA = New York Heart Association; S-ICD = subcutaneous ICD

The Understanding Outcomes with the S-ICD in Primary Prevention Patients with Low Ejection Fraction (UNTOUCHED) was designed as a multinational, prospective trial to investigate limitations of S-ICDs in a higher risk population of patients. The trial spanned almost 3 years across North America and Europe, enrolling more than 1,100 patients with left ventricular ejection fractions ≤35% due to both ischaemic and non-ischaemic aetiologies. Patients who had indications for pacing or cardiac resynchronisation therapy, history of sustained ventricular arrhythmias, New York Heart Association classification IV and life expectancy shorter than 18 months were excluded from the study. Patients underwent standard pre-implant screening and devices were programmed based on MADIT-RIT TV-ICD programming to optimise detection and appropriate arrhythmia therapy.¹¹ The primary endpoint for the study was the IAS-free rate at 18 months, which was compared to a performance goal of 91.6% (MADIT RIT arms B [higher rate] and C [longer duration to therapy], which is the standard for contemporary programming of TV-ICDs). An important feature of the study design was the use of prescriptive programming requiring a conditional zone at 200 BPM and shock zone at 250 BPM.³⁰

Approximately 87% of patients had more than one passing vector in the supine and upright position at screening, and adherence to prespecified programming was approximately 98% at hospital discharge and 96% throughout the study. IAS due to cardiac oversensing occurred in 2.7% of patients, with the most common cause being T wave oversensing (1.6%). Non-cardiac oversensing (including myopotentials) occurred in 1.4% of patients. Remarkably, there were no cases of supraventricular tachycardia misdagnosis or discrimination errors. Overall, at 18 months, the IAS-free rate was 95.9%. Moreover, the complication-free rate was 95.8% at 30 days, which satisfied the performance goal of 93.8%. Despite a cohort with greater left ventricular dysfunction and heart failure, the UNTOUCHED trial outcomes demonstrated the lowest ever IAS rate compared to prior S-ICD trials and the MADIT-RIT trial.¹⁰

The long-anticipated Prospective Randomized Comparison of Subcutaneous and Transvenous Implantable Cardioverter Defibrillator Therapy (PRAETORIAN) was a head-to-head trial comparing S-ICDs to TV-ICDs in terms of device-related complications and IASs. The study spanned almost seven years and included 876 patients across Europe and the US. The majority of patients were men and had ischaemic cardiomyopathy with a median left ventricular ejection fraction of 30%. Over an almost 50-month follow-up period, the incidence of IAS in a subgroup analysis was slightly higher in the S-ICD group, though not statistically significant, and were mostly due to cardiac oversensing. Notably, appropriate ICD shocks were more frequent in the S-ICD group, as the system is incapable of delivering anti-tachycardia pacing. In the TV-ICD group, the rate of anti-tachycardia pacing was higher, and successfully terminated 55% of all treated ventricular arrhythmias.⁹

The primary endpoint of the PRAETORIAN trial was a composite of IASs and device-related complications. The S-ICD group had a nonsignificant trend towards more shocks while the TV-ICD group had a trend towards more device-related complications and significantly more lead-related complications. It is noteworthy that the majority of patients in this trial had older second-generation devices in which SMART Pass filter is not available.
or not activated automatically. In the UNTOUCHED study, a majority of patients had more contemporary third-generation devices with SMART Pass filter activated, and therefore the IAS rate was lower in this study than in either arm of the PRAETORIAN trial.13 Figure 1 provides a comparison of annual IAS rate between five S-ICD trials and three TV-ICD trials.

Efficacy
The S-ICD delivers all shocks at 80 J and has the ability to reverse vector polarity similar to TV-ICDs for unsuccessful defibrillation. Although average defibrillation thresholds of S-ICDs are threefold higher than those of TV-ICDs, 80 J shocks provide a large safety margin.29 Failure of conversion with the first shock is predicted by patient height and BMI.30 In an analysis of the S-ICD IDE population, lower BMI and shock impedance were associated with higher conversion success rates while white race was associated with lower conversion success rates.32 Various trials have reported an 83–90% success rate for first shock in TV-ICDs and 97.3–99.6% overall shock efficacy.13,31–35 S-ICDs were initially reported to have 100% sensitivity for detection of induced VF and 98% shock efficacy.6 However, a more recent multicentre study of 137 patients undergoing conversion testing at time of implantation revealed undersensing with >18 seconds time-to-therapy in 14% of patients and absence of therapy related to noise oversensing in 6% of patients.34 This finding has not been confirmed in much larger multicentre registries and time to therapy >20 seconds is well recognised in a minority of patients during testing.36,37,39 Whether conversion testing is needed routinely at implantation is unclear given the extremely high success rate of such procedures in prospective studies.36,39,30

Finally, chronic conversion testing performed ±150 days after implantation revealed a 96% success rate with 65 J shock and 100% with 80 J shock. In the same study where 119 spontaneous ventricular arrhythmia episodes were observed in 21 patients, the S-ICDs demonstrated a 92.1% first shock success rate with 100% overall conversion rate.7 In fact, the START trial had already demonstrated equivalent S-ICD efficacy in detection and discrimination of ventricular arrhythmias.10

Complications
Complications associated with TV-ICD implantation include vascular or brachial plexus injury, cardiac perforation and tamponade, pneumothorax or haemothorax, lead dislodgement or malfunction and infection and haematoma formation.37 According to a systematic review of real-world reported data from the National Cardiovascular Data Registry, TV-ICD implantation carries a 3.08% risk of complication. However, a pooled complication rate from randomised clinical trials reveals a rate of 9.1%, suggesting underestimation of long-term complications due to variable reporting.38 S-ICDs were designed, in part, as a way to circumvent many of the risks associated with TV-ICDs. Unique approaches to S-ICD implantation are needed such as the need for deep sedation or regional anaesthesia, although general anaesthesia is not obligatory. Moreover, anticoagulation is a risk factor for haematoma formation in these devices.40

Finally, the intermuscular technique was adopted to reduce pocket complications and infections. Although there is a learning curve associated with successful intermuscular implantation (between the latissimus dorsi and serratus anterior muscles), this technique has been shown to reduce pocket infections, haematoma formation, and demonstrate lower shock impedance and defibrillation threshold by allowing more posterior device position with less adipose tissue separating the pulse generator and the rib cage.41 In fact, combining two-incision and intermuscular technique resulted in the lowest risk PRAETORIAN scores.42

Figure 1: Rates of Inappropriate Shocks in Major Trials

Comparison of the annual rate of IAS amongst the major S-ICD and TV-ICD trials demonstrates improvement over time. IAS rates in the latest S-ICD trials are comparable to those in TV-ICD trials. IAS = inappropriate shock; S-ICD = subcutaneous ICD; TV-ICD = transvenous ICD.
with the S-ICD system as one unit, broadening the applicability of totally extra-vascular cardiac rhythm management systems. The other concept is an ICD with an extravesicular yet substernal lead that has shown promising results for successful pacing and defibrillation.

Conclusion

The ICD is a cornerstone in treatment for the prevention of sudden cardiac death. Traditional TV-ICDs are associated with certain short-term risks such as pneumothorax, vascular and valvular injury, cardiac perforation and infection. Long-term risks include lead malfunction and systemic infection resulting in endocarditis. Despite the very encouraging results from recent S-ICD trials, there are limitations and complications. First, patient selection is important, as S-ICDs do not provide pacing therapy currently. Second, pre-procedural screening is important to determine appropriate sensing of the cardiac electrical complex to reduce the risk of undersensing or T wave oversensing. The importance of electrocardiographic screening for appropriate sensing in multiple postures has been a requirement for this device as part of labelling and has been employed in all major trials of the S-ICD. More recently, an automated screening tool was developed to facilitate this process. Third, IAS occur, although iterative improvements in SMART Pass filtering and contemporary programming have reduced IAS significantly while maintaining the ability to successfully diagnose and treat ventricular arrhythmias.

S-ICDs have been studied in large randomised trials and proven to be effective and achieve excellent arrhythmia conversion. Despite a cohort with higher left ventricular dysfunction and heart failure, as shown in Table 1, the UNTOUCHED trial outcomes demonstrated the lowest ever IAS rate compared to prior S-ICD trials and the MADIT-RIT trial as depicted in Figure 1. Finally, the PRAETORIAN trial demonstrated noninferiority of S-ICDs to TV-ICDs in terms of device-related complications and IAS.

Clinical Perspective

- Subcutaneous ICD technology has evolved to meet clinical standards and noninferiority in terms of device-related complications when compared to transvenous ICDs, as shown in the PRAETORIAN trial.
- The UNTOUCHED trial demonstrated that inappropriate shock rates of subcutaneous ICDs in a sicker cohort of patients are similar, if not lower, compared with transvenous ICDs.
- Appropriate patient selection and screening alongside contemporary device programming are paramount to the success of subcutaneous ICDs.
30. Burke MC, Azadlo JD, El-Chami MF, et al. 1-year prospective evaluation of clinical outcomes and shocks: the subcutaneous ICD post approval study. JACC Clin Electrophysiol 2020;6:1537–50. https://doi.org/10.1016/j.jcircp.2020.05.036; PMID: 32283884.

31. van der Stuijt W, Baasman SWE, Brouwer TF, et al. Long-term follow-up of the two-incision implantation technique for subcutaneous implantable cardioverter-defibrillator. Pacing Clin Electrophysiol 2020;43:1476–80. https://doi.org/10.1111/poc.15022; PMID: 32720388.

32. Amin AK, Gold MR, Burke MC, et al. Factors associated with high-voltage impedance and subcutaneous implantable defibrillator ventricular fibrillation conversion success. Circ Arrhythm Electrophysiol 2019;12:e006665. https://doi.org/10.1161/CIRCEP.118.006665; PMID: 30917689.

33. Blatt JA, Pasie JE, Johnson GW, et al. No benefit from defibrillation threshold testing in the SCD-HeFT (Sudden Cardiac Death in Heart Failure Trial). Circ Arrhythm Electrophysiol 2018;15:520–3. https://doi.org/10.1161/CIRCEP.118.006590; PMID: 29709229.

34. Saxon LA, Hayes DL, Gilliam FR, et al. Long-term outcomes related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized controlled trials. J Am Coll Cardiol 2011;58:995–1000. https://doi.org/10.1016/j.jacc.2011.06.077; PMID: 21857832.

35. Gold MR, Higgins S, Klein R, et al. Efficacy and temporal stability of reduced safety margins for ventricular defibrillation: primary results from the Low Energy Safety Study (LESS). Circulation 2010;122:2359–67. https://doi.org/10.1161/CIRCULATIONAHA.110.960633; PMID: 21098452.

36. le Polain de Waroux JB, Ploux S, Mondoly P, et al. Defibrillation testing is mandatory in patients with subcutaneous implantable cardioverter-defibrillator to confirm appropriate ventricular fibrillation detection. Heart Rhythm 2018;15:542–50. https://doi.org/10.1016/j.hrthm.2018.02.013; PMID: 29705229.

37. van Rees JB, de Be MK, Thijsen J, et al. Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized controlled trials. J Am Coll Cardiol 2015;68:95–100. https://doi.org/10.1016/j.jacc.2015.11.026; PMID: 26823041.

38. Essandoh MK, Mark GE, Azadlo JD, et al. Anesthesia for subcutaneous implantable cardioverter-defibrillator implantation: perspectives from the clinical experience of a U.S. panel of physicians. Pacing Clin Electrophysiol 2018;41:807–16. https://doi.org/10.1111/pace.13364; PMID: 29754394.

39. Afzal MR, Mehta D, Evenson C, et al. Perioperative management of oral anticoagulation in patients undergoing implantation of subcutaneous implantable cardioverter-defibrillator. Heart Rhythm 2018;15:520–3. https://doi.org/10.1016/j.hrthm.2017.11.010; PMID: 29146276.

40. Migliore F, Mattesi G, De Franceschi P, et al. Multicentre experience with the second-generation subcutaneous implantable defibrillator. J Cardiovasc Electrophysiol 2019;30:854–64. https://doi.org/10.1111/jce.13894; PMID: 30827041.

41. Francia P, Biffi M, Addisi C, et al. Implantation technique and optimal subcutaneous defibrillator chest position: a PRAETORIAN score-based study. Europace 2020;22:1922–9. https://doi.org/10.1093/europace/euaa231; PMID: 31181017.

42. Friedman DJ, Parzynski CS, Varony PD, et al. Trends and in-hospital outcomes associated with adoption of the subcutaneous implantable cardioverter-defibrillator in the United States. JAMA Cardiol 2016;1:900–11. https://doi.org/10.1001/jamacardio.2016.2762; PMID: 27803935.

43. Lewis GF, Gold MR. Safety and efficacy of the subcutaneous implantable defibrillator. J Am Coll Cardiol 2016;67:445–54. https://doi.org/10.1016/j.jacc.2015.11.026; PMID: 26823634.

44. Hussam A, Lupo P, Cappato R. The entirely subcutaneous defibrillator – a new generation and future expectations. Arrhythm Electrophysiol Rev 2015;4:191–6. https://doi.org/10.1016/j.jarrhyth.2014.12.007; PMID: 26823582.

45. Tjong FV, Koop BE. The modular cardiac rhythm management system: the EMPOWER leadless pacemaker and the EMBLEM subcutaneous ICD. Herzschrittmacherther Elektrophysiol 2018;29:355–61. https://doi.org/10.1093/europace/euaa231; PMID: 33118017.

46. Bögeholz N, Pauls P, Guenter F, et al. Direct comparison of the novel automated screening tool (AST) versus the manual screening tool (MST) in patients with already implanted subcutaneous ICD. Int J Cardiol 2018;238:90–6. https://doi.org/10.1016/j.ijcard.2018.02.030; PMID: 29885706.

47. Kleemann T, Becker T, Boenges K, et al. Annual rate of transient defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years. Circulation 2007;115:2474–80. https://doi.org/10.1161/CIRCULATIONAHA.106.663807; PMID: 17470696.

48. Boston Scientific. Important medical device advisory. Boston Scientific, December 2020. https://www.bostonscientific.com/content/dam/bostonscientific/quality/dlt/hd/code-228/2020Dec_BSC_EmblemElectrode3561_PhysLit_Final.pdf (accessed 22 March 2021).

49. Boston Scientific. Important medical device advisory. Boston Scientific, December 2020. https://www.bostonscientific.com/content/dam/bostonscientific/quality/dlt/hd/code-228/2020Dec_BSC_EmblemPBD_PhysLit_US_Final.pdf (accessed 22 March 2021).

50. Kleemann T, Becker T, Boenges K, et al. Annual rate of transient defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years. Circulation 2007;115:2474–80. https://doi.org/10.1161/CIRCULATIONAHA.106.663807; PMID: 17470696.

51. Bögeholz N, Pauls P, Guenter F, et al. Direct comparison of the novel automated screening tool (AST) versus the manual screening tool (MST) in patients with already implanted subcutaneous ICD. Int J Cardiol 2018;238:90–6. https://doi.org/10.1016/j.ijcard.2018.02.030; PMID: 29885706.

52. Okabe T, Miller A, Koppen T, et al. Feasibility and safety of same day subcutaneous defibrillator implantation and send home (DASH) strategy. J Interv Card Electrophysiol 2020;57:311–8. https://doi.org/10.1007/s10840-019-00673-1; PMID: 31830598.