Identification of *Veillonella* Species in the Tongue Biofilm by Using a Novel One-Step Polymerase Chain Reaction Method

Izumi Mashima¹,², Citra Fragrantia Theodorea²,³, Boonyanit Thaweboon⁴, Sroisiri Thaweboon⁴, Futoshi Nakazawa²*

¹ Postdoctoral Fellow of Japan Society for the Promotion of Science, 5-3-1, Kouji-machi, Chiyoda-Ku, Tokyo, 102-0083, Japan, ² Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan, ³ Department of Oral Biology, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, 10430, Indonesia, ⁴ Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Bangkok, 10400, Thailand

* nakazawa@hoku-iryo-u.ac.jp

Abstract

Six *Veillonella* species have been frequently isolated from human oral cavities including infectious sites. Recently, it was reported that diet, smoking, and possibly socioeconomic status can influence the bacterial profile in oral cavities. In addition, oral hygiene habits may also influence oral microbiota in terms of both numbers and diversity of microorganisms. In this study, the identification of *Veillonella* species in tongue biofilms of Thai children, divided into three groups dependent on their status of oral hygiene. For this, we used a novel one-step PCR method with species-specific primer sets based on sequences of the *rpoB* gene. As shown in the results, the number of isolates of *Veillonella* species was 101 strains from only 10 of 89 subjects. However, the total number of bacteria was high for all subjects. Since it was reported in previous studies that *Veillonella* species were easy to isolate in human tongue biofilms at high numbers, the results obtained in this study may suggest country- or age-specific differences. Moreover, *Veillonella* species were detected predominantly in subjects who had poor oral hygiene compared to those with good or moderate oral hygiene. From these results, there is a possibility that *Veillonella* species may be an index of oral hygiene status. Furthermore, *V. rogosae* was a predominant species in tongue biofilms of Thai children, whereas *V. parvula* and *V. denticariosi* were not isolated at all. These characteristics of the distribution and frequency of *Veillonella* species are similar to those reported in previous studies. Although further studies are needed in other countries, in this study, a successful novel one-step PCR method was established to detect *Veillonella* species in human oral cavities easily and effectively. Furthermore, this is the first report investigating the distribution and frequency of *Veillonella* species in tongue biofilms of Thai children.
Introduction

The genus *Veillonella* consists of small, strictly anaerobic, Gram-negative cocci that lack flagella, spores, and capsules. Members of this genus obtain energy from the utilization of short chain organic acids and have been isolated from the oral cavity and intestinal tract of humans and other animals [1, 2]. Currently, the genus *Veillonella* is subdivided into 13 species. Of these species, only *V. atypica*, *V. denticiariosi*, *V. dispar*, *V. parvula*, *V. rogosae*, and *V. tobetsuensis* have been isolated from human oral cavities [3–7]. The main habitats of these oral *Veillonella* are the tongue, buccal mucosa, and saliva [3, 8–12]. Oral *Veillonella*, especially *V. parvula*, are associated with severe early childhood caries [13] and intraradicular infections [14, 15], including abscesses [16], apical root canals [17], and dental tubules [18]. *Veillonella* species are also predominantly found in subgingival biofilm samples of patients who have chronic periodontitis [19–21], and our previous study concluded that *V. parvula* is associated with the state of chronic periodontitis [21]. Furthermore, in periodontal patients undergoing therapy, *Veillonella* species, along with *Streptococcus* and *Neisseria* species, were found to be consistently resistant to tetracycline [22]. Moreover, tetracycline-resistant *Veillonella* species have the opportunity to come in close contact with, and consequently transfer resistance elements to other oral bacteria and bacteria that pass through the oral cavity [23]. *Veillonella* species were previously known to be sensitive to penicillin and ampicillin but are now frequently resistant to these antibiotics [24]. In addition, Delwiche et al. [25] reported that *Veillonella* species produce a large amount of lipopolysaccharides (LPS) and Metera et al. [26] reported that with *V. parvula*, LPS-stimulated cytokine induction, as well as p38 MAPK activation, are Toll-like receptor 4-dependent. It is thought that these properties of *Veillonella* species make it difficult to treat the associated periodontitis.

In the case of dental caries, *Veillonella* species are highly associated with lactic acid-producing species [27]. This is not surprising given their reliance on lactate as a nutrient source. This has potential clinical utility; *Veillonella* levels may serve as a sensitive biological indicator and early warning sign of acid production. In addition, among children without a history of caries, the presence of *Veillonella* or other acid-producing bacteria, including *Streptococcus mutans*, has predicted the development of future caries [27].

The bacterial communities found in the human oral cavities, with around 1000 species present [28], have been shown to be the second most complex in the body, after the colon [29]. It has been known for a long time that periodontitis and dental caries are caused by oral biofilms. Oral biofilms are composed of multiple species, whose development is initiated by adherence of pioneer species to the salivary proteins and glycoproteins adsorbed onto the tooth enamel. The biofilm is not formed by the random simultaneous colonization of these species, but rather by selective, reproducible, and sequential colonization [30, 31].

As mentioned above, it is evident that oral *Veillonella* are associated with oral biofilms, which cause many human oral infectious diseases, such as periodontitis and dental caries. Furthermore, Periasamy and Kolenbrander [32] reported that *Veillonella* species had a central role as an early colonizer in establishing multispecies oral biofilm communities having initial, middle, and late colonizers. Therefore, it would appear that understanding the distribution and frequency of *Veillonella* species in oral biofilms is important in considering treatments or preventions for these oral infectious diseases. Furthermore, several recent reports indicated that diet, smoking, and potentially socioeconomic status can influence the bacterial profile of oral cavities [33–35]. According to these reports, the possibility of having country-, community-, or family-specific distribution and frequency of bacteria in oral biofilms has been considered. In addition, it was reported that oral hygiene habits might also influence oral microbiota qualitatively and quantitatively [36, 37].
In this study, the distribution and frequency of *Veillonella* species in tongue biofilms of children in Thailand, in association with the level of oral hygiene, were examined. We then compared the results to previous reports of our group and others regarding the identification of *Veillonella* species in tongue biofilm. Moreover, the effective novel one-step PCR method using species-specific primer sets designed from the *rpo B* gene (encoding the β subunit of bacterial RNA polymerase) was established in this study.

Materials and Methods

Ethics Statement

This study received approval from the Ethics Committee, Mahidol University, Bangkok, Thailand under process number MU-DT/PY-IRB 2015/DT028, and samples were collected in March 2015. The participants and their parents were made aware of the objectives and procedures of the study and agreed to participate by providing written, informed consent.

Subjects

The 89 children selected consisted of 41 males and 48 females (age range: 7 to 15 years). Children with a history of immunosuppression or systemic diseases (e.g. diabetes and HIV), those using medications that reduce saliva flow, and those under treatment with antimicrobials in the previous three months, were excluded from the study. The participants were evaluated by the Simplified Oral Hygiene Index (OHI-S) according to the criteria of Greene & Vermillion [38] and divided into three groups. The first group (Good oral hygiene) was composed of 29 children (10 males and 19 females) with OHI-S scores of 0–1.2. The second group (Moderate oral hygiene) was composed of 30 children (15 males and 15 females) with OHI-S scores of 1.3–3.0. The third group (Poor oral hygiene) was composed of 30 children (16 males and 14 females) with OHI-S scores of 3.1–6.0.

Sample Collection

Tongue biofilm samples were collected at Dental Hospital, Mahidol University Faculty of Dentistry using sterile cotton wool swabs to swab the tongue 5 times each per subject. Samples in reduced transport fluids were transported in an anaerobic box (HIRASA WA WORKS Inc.) containing 80% N₂, 10% CO₂, and 10% H₂. The samples were immediately placed in 1 mL of sterile saline (< 1 hour from the time of collection). Samples were homogenized for 3 min with a BioMasher™HII (Nippi, Incorporated Protein Engineering Office, Tokyo, Japan) to disperse the biofilm and were serially diluted 10-fold with sterile saline from 10⁻³ to 10⁻⁸.

Culture Conditions

Aliquots of serial 10-fold dilutions (100 μL) were used to inoculate Bacto™ Brain Heart Infusion (Difco Laboratories, BD) supplemented with 5% (volume/volume) defibrinated sheep blood (BHI agar), hemin (10 μg/mL), and menadione (5 μg/mL), and also the selective medium, *Veillonella* agar [39]. After inoculation, all media were incubated in an anaerobic box containing 80% N₂, 10% CO₂, and 10% H₂ at 37°C; *Veillonella* agar was incubated for 5 days, while BHI agar was incubated for 7 days.

The total number of bacteria in the samples was determined by counting the total number of colonies on BHI agar, while the number of *Veillonella* was determined by counting the total number of typical *Veillonella* colonies on *Veillonella* agar. Bacterial cells of typical *Veillonella* colonies were confirmed by light microscopy after Gram staining.
Bacterial Strains

V. atypica ATCC 17744\(^T\), *V. denticariosi* JCM 15641\(^T\), *V. dispar* ATCC 17748\(^T\), *V. parvula* ATCC 10790\(^T\), *V. rogosae* JCM 15642\(^T\) and *V. tobetsuensis* ATCC BAA-2400 (= JCM 17976\(^T\)) were used as control oral *Veillonella* to confirm the specificity of the primer sets. They were cultured on BHI agar at 37°C in the anaerobic box for 5 days.

DNA Extraction

Genomic DNA was extracted from individual bacterial cells using an InstaGene Matrix Kit (Bio-Rad) and the DNA concentration was determined based on fluorescence using a Qubit\textregistered 3.0 Fluorometer (Invitrogen life technologies) according to the manufacturer’s instructions.

Design of Primer Sets

According to the DNA sequence of a conserved region of the partial sequence of the *rpo B* gene, species-specific primer sets for six *Veillonella* species were designed by the standard manual method [40]. The accession numbers of the *rpo B* gene sequences of reference strains from the GenBank database (Database ID: BA123456) were EF185159 for *V. atypica*, EF185162 for *V. denticariosi*, EF185161 for *V. dispar*, EF185158 for *V. parvula*, EF211831 for *V. rogosae*, and AB698646 for *V. tobetsuensis*. Pairwise similarities among six *Veillonella* species were estimated by MEGALINE including CLUSTAL W in the LASERGENE program (DNASTAR).

Identification of *Veillonella* Species

Specific primer sets were used to obtain the PCR products described below. For identification of oral *Veillonella* at the genus level, one primer pair: Veill-rpoBF (5’–GTAACAAAGGTGTCGTTTCTCG–3’) and Veill-rpoBR (5’–GCACCRTCAATACAGGTGTAGC–3’) was used before identification of oral *Veillonella* at the species level [41, 42].

PCR Protocol

PCR at the species level was performed using 1 µL of template DNA, 1 µL of each primer (10 pmol/µL), 17 µL of PCR grade water, and 25 µL of master mix from an AmpliTaq Gold\textregistered 360 Master Mix (Applied Biosystems). When using specific primer sets for six *Veillonella* species, PCR mixtures were subjected to preheating at 94°C for 15 min; followed by 30 cycles of 92°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s; with a final extension at 72°C for 5 min. The PCR products were applied to a 3.0% agarose gel. In the case of PCR at the genus level, the PCR protocol was performed in accordance with the protocols described by Arif et al. and Beighton et al. [6, 41]. After electrophoresis, the gel was stained with SYBR\textregistered Safe DNA gel stain (Invitrogen\texttrademark).

Clonal Analysis of Unknown Strains

Unknown strains of genus *Veillonella* (PCR reaction was positive with genus-specific primers, but was negative with species-specific primer sets in this study) were examined clonal analysis. The representative 11 strains in the 40 unknown strains were chosen in this study.

DNA was extracted from the individual bacterial cells isolated on *Veillonella* agar by using the InstaGene Matrix kit (Bio-Rad), according to the manufacturer’s instructions. PCR-based amplification and partial sequence analyses of *rpoB* were performed using previously described specific primers for genus *Veillonella* [41, 42]. The sequence determined with an ABI PRISM 310 Genetic Analyzer were aligned with each other and connected by using SEQUAN IIof the LASERGENE program (DNASTAR). The programs MEGALIGN including CLUSTALW and
NJPlot were used to compare sequences and reconstruct the evolutionary tree by the neighbour-joining method. Also, confidence intervals were assessed by CLUSTAL W with bootstrap analysis. In particular, pairwise similarity values were determined with MEGALIGN in the LASERGENE program. The rpoB (559 nt) partial sequences of 11 strains were aligned against the sequences of the representative strains retrieved from GenBank.

Results

Species-specific Primer Sets for Oral Veillonella

A similarity search of the rpo B gene of six Veillonella species revealed a high degree of polymorphism in the region of position 2500 to 3100 in all oral Veillonella tested. The similarities among partial sequences of the rpo B gene regions of these six Veillonella species were found to be from 73.7 to 90.9% (Table 1).

One forward primer, VF (5′–GTAACAAAGGTGTCGTTTCTCG–3′), was designed using the sequence of the conserved region of the rpo B gene for all Veillonella species (Fig 1). According to the sequences of the variable regions in the rpo B gene of oral Veillonella, six reverse primers were designed as species-specific primers. These specific reverse primers were designated as ATYR (5′–AGCAGCTTTCTCTACGTGACC–3′) for V. atypica, as DENR (5′–CAACCCGTTGCTCTGCGCG–3′) for V. denticariosi, as DISR (5′–GCAGATGGCAGTGTC–3′) for V. dispar, as PARR (5′–CCTACATCTCCGAATCC–3′) for V. parvula, as ROGR (5′–GATCCATTTCCTGGAGCATCC–3′) for V. rogosae and as TOBR (5′–TTTCAATAGCTTTAAATTCCGC–3′) for V. tobetsuensis (Fig 1).

Specificity and Sensitivity of the Primer Sets

To achieve faster and more convenient identification of oral Veillonella, all six reverse primers (ATYR, DENR, DISR, PARR, ROGR, and TOBR) were examined for use with VF in single PCR mixture. PCR was performed using DNA templates from the type strain of six Veillonella species as described in Materials and Methods. The electrophoretically detected PCR amplicons were shown as species-specific products (Fig 2). The molecular weights of the PCR products were also identical to the theoretical values, which were 396 base pairs (bp) for V. atypica, 594 bp for V. denticariosi, 257 bp for V. dispar, 311 bp for V. parvula, 510 bp for V. rogosae and 447 bp for V. tobetsuensis (Fig 2).

Each of the six PCR products were mixed and applied to the agarose gel to use as a molecular marker (Fig 2) for reference when six Veillonella species were identified from tongue samples, through electrophoresis. These results demonstrated that six Veillonella species could be specifically and effectively identified by PCR using a mixture of primer sets, ATYR, DENR, DISR, PARR, ROGR, TOBR and VF.

Table 1. Level of rpoB partial sequence similarity among six species of oral Veillonella.

Species	V. atypica	V. denticariosi	V. dispar	V. parvula	V. rogosae	V. tobetsuensis
V. atypica	73.7					
V. denticariosi	81.4	76.6				
V. dispar	76.7	78.2	82.8			
V. parvula	75.8	81	83.2	90.9		
V. rogosae	80.7	74.1	81.9	76.9	78.5	
V. tobetsuensis	80.7	74.1	81.9	76.9	78.5	

doi:10.1371/journal.pone.0157516.t001
To examine the sensitivity of these primers, PCR was performed with 0.01 pg–10 ng of template DNA from the type strains of six *Veillonella* species (Fig 3). 1 pg of *V. atypica* and *V. denticariosi* DNA, 0.1–0.01 ng of *V. dispar* DNA, 0.01 ng of *V. parvula* and *V. tobetsuensis* DNA, and 0.01 ng-1 pg of *V. rogosae* DNA could be detected using these primer sets (Fig 3).

Detection of Oral *Veillonella* at the Species Level from Tongue Samples

Oral *Veillonella* were detected in only 10 subjects from 89 subjects from all oral hygiene groups as shown in Tables 2–4. However, the tongue biofilm swabs did indeed yield high numbers of bacterial colonies on BHI agar. Mean (SE) colony-forming units (CFU/mL) per swab were 2.2 (0.08) x 10^6 with a median of 9.0 x 10^5 in the first group (Good oral hygiene), Table 2, 5.6 (0.02) x 10^5 with a median of 9.0 x 10^4 in the second group (Moderate oral hygiene), Table 3, and 1.4 (0.04) x 10^6 with a median of 6.5 x 10^5 in the third group (Poor oral hygiene), Table 4. A total of 101 strains were isolated from *Veillonella* agar in all groups. *Veillonella* species were predominantly detected in subjects who had poor oral hygiene compared to those with good or moderate oral hygiene (Tables 2–4). Typical *Veillonella* colonies on the *Veillonella* agar were 2–4 mm in diameter, regular and slightly domed in shape and were entirely white; they were composed of small, gram-negative coccal cells, mainly existing as single cells but with some
short chains visible. The detection limit was dependent on the number of bacteria in the sample and was < 0.1% of the total colony count.

Using species-specific primer sets, 61 of the 101 isolates were identified as either *V. atypica*, *V. dispar*, *V. rogosae*, or *V. tobetsuensis* (Tables 2–4). Among them, *V. rogosae* was detected as the predominant species through all groups. However, *V. parvula* and *V. denticariosi* were not isolated from any subjects. *V. dispar* was isolated mainly from subjects who had good or moderate oral hygiene. In addition, of the 101 strains isolated in this study, zero or multiple PCR products were detected using species-specific primer sets with DNA from 40 strains isolated from eight subjects (Tables 2–4). These 40 strains made distinctive PCR products with *Veillonella* genus primers (Data not shown).

Clonal Analysis of Unknown Strains

The 11 strains formed distinct taxa with robust bootstrap support (100 and 95.9%) in the *rpoB* tree (Fig 4) within the genus *Veillonella*. The *rpoB* partial sequence similarity among the 11 strains was 92.4–100%. The mean *rpoB* sequence similarity among the 11 strains belonged to *V. dispar* and the most closely related species was 98.3%.

Discussion

Veillonella species are relatively easily identified at the genus level, but species-level identification of the members of this genus is difficult because of a lack of conventional phenotypic and biochemical tests [5, 42–44]. Molecular methods based on 16S ribosomal DNA (rDNA) gene sequencing, including PCR-random fragment length polymorphism analysis, have been used to identify *Veillonella* strains at the species level [44, 45]. However, recent studies have shown that identification of the members of this genus using 16S rDNA gene sequencing is not reliable [6, 7, 44, 46]. To overcome this problem, sequence analysis of housekeeping genes, including
Fig 3. Sensitivity of the PCR for decreasing concentrations of genomic DNA purified from *Veillonella* species using species-specific primer sets. A molecular weight marker is shown in lanes 1, 9, 17, 25, 33, and 41. Lane 2 to lane 8: *V. atypica*, lane 10 to 16: *V. denticariosi*, lane 18 to 24: *V. dispar*, lane 26 to 32: *V. parvula*, lane 34 to 40: *V. rogosae*, lane 42 to 48: *V. tobetsuensis*. Amount of the target genomic DNA in the reaction mixture is as follows. Lane 2, 10, 18, 26, 34, and 42: 10 ng; lane 3, 11, 19, 27, 35, and 43: 1 ng; lane 4, 12, 20, 28, 36, and 44: 0.1 ng; lane 5, 13, 21, 29, 38, and 45: 0.01 ng; lane 6, 14, 22, 30, 38, and 46: 1 pg; lane 7, 15, 23, 31, 39, and 47: 0.1 pg; lane 8, 16, 24, 32, 40, and 48: 0.01 pg.

doi:10.1371/journal.pone.0157516.g003
rpoB, dnaK, and gyrB, have been used to define Veillonella species [5–7, 46]. This approach has enabled clear discrimination between species that are well defined based on DNA-DNA homology but poorly defined based on 16S rDNA. V. denticariosi, V. rogosae, and V. tobetsuensis have been proposed as novel species of oral Veillonella based on the results of the molecular analysis using rpoB or dnaK gene sequencing in conjunction with sequence analysis of the 16S rDNA gene [5–7]. Beighton et al. [11] successfully used the rpoB gene sequence, rather than 16S rDNA gene sequence, to discriminate between 253 Veillonella isolates from human

Table 2. The first group (Good oral hygiene).

Subject	Age	Sex	Total number	Isolated Veillonella spp.	Total number (100%)	V. atypica number (%)	V. denticariosi number (%)	V. dispar number (%)	V. parvula number (%)	V. rogosae number (%)	V. tobetsuensis number (%)	Unknown species number (%)
G-1	10	F	2.4	0.006	6	0 (0.0)	0 (0.0)	2 (33.3)	0 (0.0)	2 (33.3)	2 (33.3)	
G-2	11	F	0.02	0.009	9	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (11.1)	0 (0.0)	8 (88.9)
G-3	10	M	0.03	0								
G-4	9	F	0.002	0								
G-5	12	M	0.09	0								
G-6	15	F	0.002	0								
G-7	13	M	0.3	0								
G-8	11	F	0.006	0								
G-9	11	M	0.4	0								
G-10	10	F	0.02	0								
G-11	11	M	0.1	0								
G-12	10	F	0.2	0								
G-13	10	M	0.03	0								
G-14	10	F	0.002	0								
G-15	11	F	0.06	0								
G-16	12	F	0.4	0								
G-17	10	F	0.3	0								
G-18	9	F	0.1	0								
G-19	9	F	0.01	0								
G-20	12	M	0.005	0								
G-21	8	F	0.5	0								
G-22	13	M	0.01	0								
G-23	12	M	0.1	0								
G-24	11	M	0.2	0								
G-25	13	F	0.5	0								
G-26	9	F	0.06	0								
G-27	7	F	0.2	0								
G-28	10	F	0.2	0								
G-29	10	F	0.08	0								

Total number of anaerobic bacterial colony counts, total number of Veillonella species counts and the number of isolates from each subject identified using species-specific primer sets. CFU: colony-forming unit; detection limit <0.1% of the total count. Individual species as a percentage of the number of isolates from each subject identified using species-specific primer sets.
tongues of healthy adults at the species level. However, it is time consuming to obtain sequence data of many strains, and laborious to identify them at the species level.

Igarashi et al. [47] reported the successful design of species-specific primer sets for five species of oral *Veillonella* (*V*. *atypica*, *V*. *denticariosi*, *V*. *dispar*, *V*. *parvula*, and *V*. *rogosae*) based on a highly variable region (positions 2500–3100) of the *rpoB* gene. They distinguished between five species of oral *Veillonella* at the species level by using PCR products generated by a two-step PCR method with species-specific primer sets. This proved to be easier than using

Subject	Age	Sex	Total number	*Veillonella* spp. CFU/mL (× 10³)	*Veillonella* spp. CFU/mL (× 10⁵)
M-1	11	F	0.3	2.0	20
M-2	12	F	0.2	2.0	20
M-3	10	M	0.05	0	0
M-4	13	M	0.004	0	0
M-5	12	M	0.0004	0	0
M-6	11	M	0.001	0	0
M-7	10	M	0.08	0	0
M-8	9	F	0.001	0	0
M-9	10	M	0.04	0	0
M-10	11	F	0.06	0	0
M-11	10	M	0.4	0	0
M-12	11	F	0.08	0	0
M-13	10	M	0.06	0	0
M-14	12	M	0.03	0	0
M-15	12	M	0.004	0	0
M-16	11	F	0.03	0	0
M-17	13	M	0.001	0	0
M-18	11	F	0.008	0	0
M-19	11	F	0.0005	0	0
M-20	9	F	0.002	0	0
M-21	12	F	0.2	0	0
M-22	11	M	0.0004	0	0
M-23	11	F	0.01	0	0
M-24	11	F	0.0001	0	0
M-25	11	M	0.003	0	0
M-26	11	M	0.008	0	0
M-27	11	M	0.005	0	0
M-28	11	F	0.03	0	0
M-29	9	F	0.09	0	0
M-30	15	M	0.001	0	0

Table 3. The second group (Moderate oral hygiene).

The second group (Moderate oral hygiene [OHIs 1.3–3.0])

Subject	Age	Sex	Total number	*Veillonella* spp. CFU/mL (× 10⁵)
M-1	11	F	0.3	2.0
M-2	12	F	0.2	2.0
M-3	10	M	0.05	0
M-4	13	F	0.004	0
M-5	12	M	0.0004	0
M-6	11	M	0.001	0
M-7	10	M	0.08	0
M-8	9	F	0.001	0
M-9	10	M	0.04	0
M-10	11	F	0.06	0
M-11	10	M	0.4	0
M-12	11	F	0.08	0
M-13	10	M	0.06	0
M-14	12	M	0.03	0
M-15	12	M	0.004	0
M-16	11	F	0.03	0
M-17	13	M	0.001	0
M-18	11	F	0.008	0
M-19	11	F	0.0005	0
M-20	9	F	0.002	0
M-21	12	F	0.2	0
M-22	11	M	0.0004	0
M-23	11	F	0.01	0
M-24	11	F	0.0001	0
M-25	11	M	0.003	0
M-26	11	M	0.008	0
M-27	11	M	0.005	0
M-28	11	F	0.03	0
M-29	9	F	0.09	0
M-30	15	M	0.001	0

Total number of anaerobic bacterial colony counts, total number of *Veillonella* species counts and the number of isolates from each subject identified using species-specific primer sets. CFU: colony-forming unit; detection limit <0.1% of the total count. Individual species as a percentage of the number of isolates from each subject identified using species-specific primer sets.

doi:10.1371/journal.pone.0157516.t003
complete rpoB gene sequences. In addition, the distribution and frequency of five species of oral Veillonella in tongue biofilms of healthy adults were analyzed by PCR with these specific-primer sets as performed in our previous study [12]. Furthermore, species-specific primer pairs for V. tobetsuensis were designed using the sequence of the dnaK gene in the region displaying a high degree of polymorphism (positions 424–1048) [48]. In addition, the distribution and frequency of six species of oral Veillonella in the periodontal pockets were recently clarified by PCR using these primer sets and those of our previous study [21]. Thus, our previous study

Subject	Age	Sex	Total number	Isolated Veillonella spp.	Total number (100%)	V. atypica number (%)	V. denticariosi number (%)	V. dispar number (%)	V. parvula number (%)	V. rogosae number (%)	V. tobetsuensis number (%)	Unknown species number (%)
P-1	11	F	0.07	0.002	2	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (50.0)	0 (0.0)	1 (50.0)
P-2	9	M	0.02	2.0	20	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	10 (50.0)	0 (0.0)	10 (50.0)
P-3	13	M	0.1	0.002	2	1 (50.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (50.0)	0 (0.0)	0 (0.0)
P-4	12	M	0.7	0.001	1	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (100.0)	0 (0.0)	0 (0.0)
P-5	11	M	0.1	2.0	20	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	19 (95.0)	0 (0.0)	1 (5.0)
P-6	9	M	0.1	0.001	1	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (100.0)	
P-7	9	M	0.06	0	-	-	-	-	-	-	-	
P-8	12	F	0.4	0	-	-	-	-	-	-	-	
P-9	10	M	0.03	0	-	-	-	-	-	-	-	
P-10	11	F	0.1	0	-	-	-	-	-	-	-	
P-11	11	F	0.01	0	-	-	-	-	-	-	-	
P-12	11	F	0.005	0	-	-	-	-	-	-	-	
P-13	11	M	0.05	0	-	-	-	-	-	-	-	
P-14	10	F	0.01	0	-	-	-	-	-	-	-	
P-15	13	F	0.01	0	-	-	-	-	-	-	-	
P-16	11	F	0.2	0	-	-	-	-	-	-	-	
P-17	10	F	0.5	0	-	-	-	-	-	-	-	
P-18	11	F	0.06	0	-	-	-	-	-	-	-	
P-19	11	M	0.2	0	-	-	-	-	-	-	-	
P-20	9	F	0.2	0	-	-	-	-	-	-	-	
P-21	11	M	0.08	0	-	-	-	-	-	-	-	
P-22	9	F	1.0	0	-	-	-	-	-	-	-	
P-23	9	M	0.004	0	-	-	-	-	-	-	-	
P-24	12	M	0.005	0	-	-	-	-	-	-	-	
P-25	11	F	0.08	0	-	-	-	-	-	-	-	
P-26	7	M	0.03	0	-	-	-	-	-	-	-	
P-27	12	M	0.03	0	-	-	-	-	-	-	-	
P-28	9	M	0.02	0	-	-	-	-	-	-	-	
P-29	11	M	0.09	0	-	-	-	-	-	-	-	
P-30	11	F	0.01	0	-	-	-	-	-	-	-	

Total number of anaerobic bacterial colony counts, total number of Veillonella species counts and the number of isolates from each subject identified using species-specific primer sets. CFU: colony-forming unit; detection limit <0.1% of the total count. Individual species as a percentage of the number of isolates from each subject identified using species-specific primer sets.

doi:10.1371/journal.pone.0157516.t004
demonstrated that these species-specific primer sets were effective in identifying oral *Veillonella* at the species level, more so than sequence analysis of housekeeping genes. However, these previous procedures used three steps (a two-step PCR with species-specific primer sets for five *Veillonella* species and PCR with species-specific primer pair for *V. tobetensis*) to define all species of oral *Veillonella*. This study describes the establishment of the first successful one-step PCR method, using species-specific primer sets for the highly variable region of the *rpoB* gene of six species of oral *Veillonella* (positions 2,500–3,100). This one-step PCR method with species-specific primer sets is easier and more effective than previous PCR methods with species-specific primer sets and pairs for oral *Veillonella* described above.
For faster and more convenient identification of the six *Veillonella* species, our pilot study used a multiplex PCR method and was tested in many conditions, simultaneously using all species-specific primer sets and DNA templates of six *Veillonella* species in a single PCR mixture. Only the PCR product of VF and DISR, specific for *V. dispar*, could not be confirmed (Data not shown). Although the reason was not clarified, it was suspected to be due to the sensitivity of DISR. The specific primer set for *V. dispar*, VF and DISR, showed lower sensitivity than the other sets (Fig 3). Therefore, a one-step PCR method, with species-specific primer sets for six species of oral *Veillonella*, was developed in this study.

According to the results of Tables 2–4, *Veillonella* species had a tendency to be detected in subjects who had poor oral hygiene compared to those with good or moderate oral hygiene. However, the CFU count of all bacteria in tongue biofilms had no relationship with oral hygiene status. It was suggested that the appearance of *Veillonella* species in tongue biofilm of Thai children would be one of the indexes for deteriorating oral hygiene.

In our previous study, the distribution and frequency of oral *Veillonella* at a species level in the tongue biofilm of Japanese healthy young adults (Twenty-seven subjects: 12 males and 15 females, age: 20s) were investigated [12]. In that study, all subjects had *Veillonella* species (more than 0.6×10^6 CFU/mL), and the number of isolates was 416 from all subjects. Tongue biofilm samples from these subjects could be divided into two groups based on the distribution and frequency of five species of oral *Veillonella*. In one group, *V. rogosae* was predominant, while the other group consisted of mainly *V. dispar* and *V. atypica*. Beighton et al. [11] also reported the predominant cultivable *Veillonella* species in tongue biofilm of healthy adults (eleven subjects: the ratio of gender and range of age were not shown) in the UK. They also demonstrated that *Veillonella* species were isolated from all subjects, and the total number of *Veillonella* isolates was 253. In addition, they reported that the predominant species in tongue biofilms were *V. atypica*, *V. dispar*, and *V. rogosae*. In this study, only 10 of 89 subjects had *Veillonella* species, and the total number of isolates was 101 from 10 subjects. The ratio of *Veillonella* isolates was clearly low compared to these previous reports. As described in the introduction, it was reported that *Veillonella* species have a central role in biofilm formation as the early colonizer [32]. The results herein may be due to country- or age-specific differences, in which case, other oral bacterial species may have central roles as the early colonizer to form the biofilm and to cause various oral infectious diseases. As the source of these differences was not clarified here (for example, whether it is due to country- or age-specific differences), further studies are needed to investigate the distribution and frequency of *Veillonella* species from tongue biofilms of children in other countries including Japan.

V. rogosae was also isolated as the predominant species in tongue biofilms in this study. In addition, *V. parvula* and *V. denticariosi* were not isolated at all. Similarly, Beighton et al. [11] reported that *V. parvula* was isolated from only one subject while *V. denticariosi* was not isolated from any subjects in their study. In our previous study [12], *V. parvula* was isolated from four subjects and *V. denticariosi* was isolated from only one subject. Taken together, it appears that the distribution and frequency of *Veillonella* species in tongue biofilm have generational and universal commonality. In this study, *V. tobetsuensis* was isolated from only one subject. In addition, in our previous studies [12, 48], 12 strains of *V. tobetsuensis* were isolated from tongue biofilms of 5 of 27 subjects. Here, it was also considered that *V. tobetsuensis* is a minor species in the tongue biofilm. There are likely to be several factors that influence these differences in distribution and frequency of *Veillonella* species in tongue biofilms.

PCR products could not be identified in 40 strains, using species-specific primer sets for oral *Veillonella* species, but these 40 strains produced PCR products with the *Veillonella* genus-specific primer set used in the present study. This confirms that these 40 strains were members of the genus *Veillonella*. Although these 40 strains could not be classified as any of the
established oral *Veillonella*, these results suggest the possibility that other *Veillonella* species also inhabit the human oral cavity.

In addition, according to the results of clonal analysis, although the representative 11 strains in the 40 unknown strains showed similar sequences with *V. dispar*, they formed distinct taxa with robust bootstrap support (100 and 95.9%) in the *rpoB* tree (Fig 4). These 40 isolates may be members of novel oral *Veillonella* species. Furthermore, there are at least two novel *Veillonella* species in the 40 unknown strains based on the evolutionary tree of *rpoB* gene (Fig 4). However, the sequence analysis of other housekeeping genes, such as 16S rDNA, *dnaK* and *gyrB* genes, are required to propose the novel species of genus *Veillonella* [5–7, 44–46]. At present time of writing this manuscript, the sequence analysis of other housekeeping genes of these representative 11 unknown strains are in the process.

In this study, a novel one-step PCR method with species-specific primer sets for oral *Veillonella* was established using a partial sequence of the *rpoB* gene. Moreover, this is the first report of the use of species-specific primer sets for determining the distribution and frequency of oral *Veillonella* in tongue biofilm of Thai children. However, as described above, further studies are needed to discuss the country- or age-specific differences in the distribution and frequency of oral *Veillonella*. The study of the distribution and frequency of oral *Veillonella* by using the tongue biofilms in other countries including Japan will be investigated in near future.

Acknowledgments

We are grateful to Dr. Masahiro Asakura in FUSO pharmaceutical industries, R&D center, Osaka, Japan, Dr. Natdhanai Chotprasert in Maxillofacial Prosthetic Unit, Faculty of Dentistry, Mahidol University, Thailand, and Dr. Doan Minh Tri in Faculty of Odonto-Stomatology, University of Medicine and Pharmacy Ho Chi Minh City, Vietnam.

Author Contributions

Conceived and designed the experiments: IM BT ST FN. Performed the experiments: IM CFT. Analyzed the data: IM CFT FN. Contributed reagents/materials/analysis tools: IM CFT BT ST. Wrote the paper: IM FN.

References

1. Mancl KA, Kirsner RS, Ajdic D. Wound biofilms: lessons learned from oral biofilms. *Wound Rep Reg* 2013 21(3):352–362.
2. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. *J Dent Res* 2008 87(11):1016–1020. PMID: 18946007
3. Mays TD, Holdeman LV, Moore WEC, Rogosa M, Johnson JL. Taxonomy of the genus *Veillonella* Prévot. *Int J Syst Bacteriol* 1982 32:28–36.
4. Rogosa M. The genus *Veillonella*. IV. Serological groupings, and genus and species emendations. *J Bacteriol* 1965. 90(3):704–709. PMID: 16562069
5. Byun R, Carlier JP, Jacques NA, Marchand H, Hunter N. *Veillonella denticiariosi* sp. nov., isolated from human carious dentine. *Int J Syst Evol Microbiol* 2007 57:2844–2848. PMID: 18048736
6. Arif N, Do T, Byun R, Sheehy E, Clark D, Gilbert SC, et al. *Veillonella rogosae* sp. nov., an anaerobic, Gram-negative coccus isolated from dental plaque. *Int J Syst Evol Microbiol* 2008 58:581–584. doi: 10.1099/ijs.0.65093-0 PMID: 18319459
7. Mashima I, Kamaguchi A, Miyakawa H, Nakazawa F. *Veillonella tobetsuensis* sp. nov., an anaerobic, Gram-negative coccus isolated from human tongue biofilms. *Int J Syst Evol Microbiol* 2013 63:1443–1449. doi: 10.1099/ijs.0.042515-0 PMID: 22843723
8. Sutter VL. Anaerobes as normal oral flora. *Rev Infect Dis* 1984 6(Suppl 1):S62–S66. PMID: 6372039
9. Rogosa M. Anaerobic Gram-negative cocci, p 680–685. In Krieg NR, Holt JG (ed), Bergey’s manual of systematic bacteriology, vol 1. 1984 Williams & Wilkins, Baltimore, MD.
Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacteria flora of the oral cavity. J Clin Microbiol 2005 43(11):5721–5732. PMID: 16272510

Beighton D, Clark D, Hanakura B, Gilbert S, Do T. The predominant cultivable Veillonella spp. of the tongue of healthy adults identified using rpOB sequencing. Oral Microbiol Immunol 2008 23(4):344–347. doi: 10.1111/j.1399-302X.2007.00424.x PMID: 18582335

Mashima I, Kamaguchi A, Nakazawa F. The distribution and frequency of oral Veillonella spp. in the tongue biofilm of healthy young adults. Curr Microbiol 2011 63(5):403–407. doi: 10.1007/s00284-011-9993-2 PMID: 21850474

Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res 2010 44(5):485–497. doi: 10.1159/000320158 PMID: 20861633

Sundqvist G. Associations between microbial species in dental root canal infections. Oral Microbiol Immunol 1992 7(5):257–262. PMID: 1494447

Wittgow WC Jr, Sabiston CB Jr. Microorganisms from pulpal chambers of intact teeth with necrotic pulps. J Endod 1975 1(5):168–171. PMID: 1061795

Khemaleelakul S, Baumgartner JC, Pruksakorn S. Identification of bacteria in acute endodontic infections and their antimicrobial susceptibility. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002 94(6):746–755. PMID: 12464902

Baumgartener JC, Falkler WA Jr. Bacteria in the apical 5 mm of infected root canals. J Endod 2001 27(2):76–81. PMID: 11491642

Heller D, Silva-Boghossian CM, do Souto RM, Colombo AP. Subgingival microbial profiles of healthy young adults. Oral Microbiol Immunol 2013 28(8):2837–2848. PMID:16597990

Silva-Boghossian CM, Neves AB, Resende FA, Colombo AP. Suppuration-associated bacteria in subjects with chronic and aggressive periodontitis. J Periodontol 2013 84(9):e9–e16. doi: 10.1902/jop.2013.120639 PMID: 23327648

Mashima I, Fujita M, Nakatsuka Y, Kado T, Furuichi Y, Herastuti S, et al. The Distribution and Frequency of Oral Veillonella spp. of the tongue of healthy adults identified using 16S rRNA sequencing. Oral Microbiol Immunol 2007 221:2944–2953. doi: 10.1111/j.1399-302X.2007.00424.x PMID: 17967242

Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, et al. Molecular characterization of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol 2009 16(12):1804–1809. doi: 10.1128/CVI.00310-09 PMID: 19826771

Veillonella parvula sp. in establishing multi-species biofilm communities with initial, middle, and late colonizers of enamel. Arch Oral Biol 2012 57(7):973–980. doi: 10.1016/j.archoralbio.2012.02.003 PMID: 22377404

Periasamy S, Kolenbrander PE. Central role of the early colonizer Veillonella sp. in establishing multi-species biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol 2010 192(12):2965–2972. doi: 10.1128/JB.01631-09 PMID: 20154130
33. Belstrøm D, Holmstrup P, Nielsen CH, Kirkby N, Tvetman S, Heitmann BL, et al. Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J Oral Microbiol 2014 6:23609.

34. Tomczyk J. Comments on Soltysiak's paper: "Comment: low dental caries rate in Neandertals: the result of diet or the oral flora compositions?" Homo 2012 63(4): 311–314. doi: 10.1016/j.jchb.2012.06.002 PMID: 22858155

35. Brook I. The impact of smoking on oral and nasopharyngeal bacterial flora. J Dent Res 2011 90 (6):704–710. doi: 10.1177/0022034510391794 PMID: 21558542

36. Haffajee AD, Teles RP, Socransky SS. The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontol 2000 2006 42:219–258. PMID: 16930312

37. Tanwir F, Altamash M, Gustafsson A. Effect of diabetes on periodontal status of a population with poor oral health. Acta Odontol Scand 2009 67(3):129–133. doi: 10.1080/00016350802208406 PMID: 19367474

38. Greene JC, Vermillion JR. The simplified oral hygiene index. Journal of the American Dental Association 1964 68:7–13. PMID: 14076341

39. Rogosa M, Fitzgerald RJ, Mackintosh ME, Beaman AJ. Improved medium for selective isolation of Veillonella. J Bacteriol 1958 76(4):455–456. PMID: 13587489

40. Wu DY, Ugozzoli L, Pal BK, Qian J, Wallace RB. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol 1991 10:233–238. PMID: 2012681

41. Beighton D, Clark D, Hanakuka B, Gilbert S, Do T. The predominant cultivable Veillonella spp. of the tongue of healthy adults identified using rpoB sequencing. Oral Microbiol Immunol 2008 23(4):344–347. doi: 10.1111/j.1399-302X.2007.00424.x PMID: 18582335

42. Kolenbrander PE, Moore LVH. The genus Veillonella. In: Balows HG, Trüper M, Dworkin W, Harder W, Schleifer KH, editors. The prokaryotes. 2nd ed. New York: Springer; 1992. p. 2034e47.

43. Haraszthy VI, Zambon JJ, Sreenivasan PK, Zambon MM, Gerber D, Rego R, et al. Identification of oral bacterial species associated with halitosis. J Am Dent Assoc 2007 138(8):1113–1120. PMID: 17670880

44. Marchandin H, Teysnier C, Siméon DB, Jean PH, Carriere C, Jumas BE. Intrachromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications or phylogeny and taxonomy. Microbiology 2003 149(Pt 6):1493–1501. PMID: 12777489

45. Sato T, Matsuyama J, Sato M, Hoshino E. Differentiation of Veillonella atypica, Veillonella dispar, Veillonella parvula using restricted fragment-length polymorphism analysis of 16S rDNA amplified by polymerase chain reaction. Oral Microbiol Immunol 1997 12(6):350–353.

46. Jumas BE, Carlier JP, Jean PH, Teysnier C, Gay B, Campos J, et al. Veillonella montpellierensis sp. nov., a novel anaerobic gram-negative coccus isolated human clinical samples. Int J Syst Evol Microbiol 2004 54(Pt 1):1311–1316. PMID: 15289307

47. Igarashi E, Kamaguchi A, Fujita M, Miyakawa H, Nakazawa F. Identification of oral species of the genus Veillonella by polymerase chain reaction. Oral Microbiol Immunol 2009 24(1):1–4.

48. Mashima I, Nakazawa F. Identification of Veillonella tobetsuensis in tongue biofilm by using a species-specific primer pair. Anaerobe 2013 22:77–81. doi: 10.1016/j.anaerobe.2013.04.015 PMID: 23664905