Searching for Networks: Ecological Connectivity for Amphibians Under Climate Change

Felipe S. Campos, Ricardo Lourenço-de-Moraes, Danilo S. Ruas, Caio V. Mira-Mendes, Marc Franch, Gustavo A. Llorente, Mirco Solé, Pedro Cabral

This is the author accepted manuscript of the following article published by Springer:
Campos, F. S., Lourenço-de-Moraes, R., Ruas, D. S., Mira-Mendes, C. V., Franch, M., Llorente, G. A., ... Cabral, P. (2020). Searching for Networks: Ecological Connectivity for Amphibians Under Climate Change. Environmental Management, 65(1), 46-61. [Advanced online publication on 12 december 2019]. Doi: https://doi.org/10.1007/s00267-019-01240-0, which has been published in final form at https://doi.org/10.1007/s00267-019-01240-0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Searching for networks: ecological connectivity for amphibians under climate change

Felipe S. Campos¹,²,*, Ricardo Lourenço-de-Moraes³, Danilo S. Ruas⁴, Caio V. Miranda⁵, Marc Franch⁶, Gustavo A. Llorente¹, Mirco Solé⁶, Pedro Cabral²

¹ Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
² NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal
³ Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Campus IV - Litoral Norte, 58297-000, Rio Tinto, PB, Brazil.
⁴ Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, 45662-000, Ilhéus, BA, Brazil
⁵ CICGE – Centro de Investigação em Ciências Geo-Espaciais, Observatório Astronómico Prof. Manuel de Barros, Universidade do Porto, 4430-146, Vila Nova de Gaia, Portugal
⁶ Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, 45662-000, Ilhéus, BA, Brazil

* Corresponding author at: Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, ES-08028, Barcelona, Spain. Phone numbers: +34 691 38 86 90 / +34 934 02 14 55.
Abstract

Ecological connectivity depends on key elements within the landscape, which can support ecological fluxes, species richness and long-term viability of a biological community. Landscape planning requires clear aims and quantitative approaches to identify which key elements can reinforce the spatial coherence of protected areas design. We aim to explore the probability of the ecological connectivity of forest remnants and amphibian species distributions for current and future climate scenarios across the Central Corridor of the Brazilian Atlantic Forest. Integrating amphibian conservation, climate change and ecological corridors, we design a landscape ranking based on graph and circuit theories. To identify the sensitivity of connected areas to climate-dependent changes, we use the Model for Interdisciplinary Research on Climate by means of simulations for 2080-2100, representing a moderated emission scenario within an optimistic context. Our findings indicate that more than 70% of forest connectivity loss by climate change may drastically reduce amphibian dispersal in this region. We show that high amphibian turnover rates tend to be greater in the north-eastern edges of the corridor across ensembles of forecasts. Our spatial analysis reveals a general pattern of low-conductance areas in landscape surface, yet with some well-
connected patches suggesting potential ecological corridors. Atlantic Forest reserves are expected to be less effective in a near future. For improved conservation outcomes, we recommend some landscape paths with low resistance values across space and time. We highlight the importance of maintaining forest remnants in the southern Bahia region by drafting a blueprint for functional biodiversity corridors.

Keywords

Anura, Atlantic Forest, functional corridor, climate models, dispersal ability

Introduction

The implementation of Protected Areas (PAs) is among the most effective methods for long-term biodiversity conservation plans (Rodrigues et al. 2004), working as a key strategic tool in the development of environmental policies and efforts to sustain natural ecosystem processes (Le Saout et al. 2013; Laurance et al. 2014). The selection of PAs is often aimed to preserve either species of different taxonomic groups, conservation target species (e.g., threatened and/or endemics), or combinations of different abiotic conditions favourable to local ecosystems that will likely protect a wide range of biodiversity (Lawler and White 2008). Given that habitat loss is the most important threat to species survival (Haddad et al. 2015), the protected sites chosen by decision-makers can determine which species will be able to survive in the area (Jenkins et al. 2015). The effectiveness of these selected sites in reaching conservation goals depends on how many of the target species are represented in a given area (Dietz et al. 2015). Although generally unseen, amphibians are the most abundant land vertebrates in humid tropical forests (Stebbins and Cohen 1995). Globally, they include over 7,000 species...
of frogs (Anura), 700 species of salamanders (Caudata) and 200 species of caecilians (Gymnophiona) (Frost, 2019). However, amphibian conservation actions have overlooked the biodiversity patterns in an effective conservation policy (Campos et al. 2017).

Among all vertebrates, amphibians are the group with the most species (24%) whose geographical ranges are unprotected and not included in PAs (Nori et al. 2015). More than 2,000 amphibian species are listed as threatened by extinction, which makes them the most threatened vertebrate group worldwide (Stuart et al. 2004; IUCN 2018). Many reductions and extinctions of amphibians have occurred due to the habitat loss (Stuart et al. 2004; Becker et al. 2007; Ferreira et al. 2016), mainly in the Neotropical region, which harbours a significant amount of the global amphibian diversity (Young et al. 2004; Silvano and Segalla 2005; Becker et al. 2007). Amphibian conservation in fragmented landscapes is directly related to the establishment of protected areas and requires special management tools such as habitat restoration and management of forest patches, ensuring habitat quality and, hopefully, the permanence of the species (Ochoa-Ochoa et al. 2009; Lourenço-de-Moraes et al. 2018). Therefore, compiling data about species distribution ranges is key to planning conservation actions (Verdade et al. 2012; Morais et al. 2013; Campos et al. 2017).

Conservation strategies aimed at protecting threatened amphibians were proposed by previous studies that highlighted parts of the Brazilian Atlantic Forest as high priority areas (e.g., Loyola et al. 2008; Campos et al. 2013; Lemes and Loyola 2013; Dias et al. 2014). In addition, some taxonomic groups of amphibians from small areas within the Atlantic Forest were identified as potential surrogates of biodiversity in Brazil (Campos et al. 2014). Species with access to mountainous regions may migrate to higher altitude areas with lower temperatures (Colwell et al. 2008), which in the case of
the Atlantic Forest, should retain greater humidity due to better-preserved forest cover
(Ribeiro et al. 2009). However, the survival of threatened amphibians in fragmented
tropical landscapes is dependent on the integrity and persistence of their PAs(Urbina-
Cardona 2008; Ochoa-Ochoa et al. 2009; Lourenço-de-Moraes et al. 2019).

The economic growth policy in Brazil is widely based on the expansion of
agricultural frontiers (Ribeiro et al. 2009), directly affecting the availability and the
distribution of forest remnants in scattered private lands, which are gradually becoming
crop and pasture production areas (Tabarelli et al. 2004). Forest isolation can affect
many species’ distributions by habitat loss, leading to long-term changes in the structure
of the remaining fragments (Metzger 2009; Lourenço-de-Moraes et al. 2018). This
factor means that the use of ecological connectivity metrics can be good indicators for
measuring the isolation of PAs and their ecosystem functions (Gurrutxaga et al. 2011).

Assessing ecological connectivity among PAs is becoming a relevant subject of
growing international effort in relation to nature conservation policies (Bennett and
Mulongoy 2006; Worboys et al. 2006). By using connectivity in planning, managers
attempt to avoid functional isolation of PAs (Carroll et al. 2004; Liang et al. 2018) and
mitigate the effects of climate change on the population structure of endemic species by
allowing for range shifts (Bennett and Mulongoy 2006; Triviño et al. 2018). Thus, an
understanding of future climate conditions is essential for predicting the effects of
habitat isolation and species range shifts. In an attempt to understand these effects,
modelling species responses to different climatic scenarios of environmental conditions
has proven to be an effective tool (Carnaval and Moritz 2008; Diniz-Filho et al. 2009;
Austin and Van Niel 2011; Araújo and Peterson 2012). Researchers are combining
environmental spatial data with ecological and evolutionary processes to predict how
species will shift their ranges in the future (Elith et al. 2010; Kearney et al. 2010;
Ecological niche models (ENMs), also referred to as species distribution models (SDMs) (Peterson et al. 2011; Rangel and Loyola 2012), have been increasingly used to estimate the spatial ranges of species for future scenarios of climate change (Peterson et al. 2011). These predictions may provide useful contributions to decision-making regarding biodiversity conservation (Loyola et al. 2014).

Ecological implications of species tolerances to climate change are increasing and contributing to a better understanding of how spatiotemporal connectivity information can be incorporated into dispersal patterns (Bled et al. 2013). Climatic change may alter species distributions (Pearson and Dawson 2003; Raxworthy et al. 2008), as well as significant species turnovers (Peterson et al. 2012). In this context, ecological connectivity of forest landscapes is of paramount importance to ensure the flow of species among potential climate refuges (Pearson and Dawson 2005). Considering that climate change can aggravate environmental stresses from habitat loss and fragmentation, there is high interest in maintaining ecological connectivity in changing climates (Hamilton et al. 2016). However, only a few studies considered the potential impact of climate change on the fragmentation of populations (Duan et al. 2016).

Ecological connectivity strategies depend not only on the existence of structural connections between habitat patches but also on habitat suitability, stepping stones, matrix permeability and the target organisms’ responses to these elements (Tischendorf and Fahrig 2000; Baum et al. 2004). Complex agroforestry systems are often used as suitable habitats for different species across fragmented landscapes, also improving dispersal pathways and connecting local species assemblages (Faria et al. 2007). Advances in conservation biogeography have addressed many interactions between
habitat suitability and species response, varying in complexity, realism and data requirements (Franklin 2010). Graph and circuit theories are complementary methods that have been used to provide efficient approaches for identifying biodiversity corridors (McRae et al. 2008; Spear et al. 2010). While circuit theory models outline high-conductance areas between patches (McRae et al. 2008), graph-based models determine the optimal least-cost routes pairwise landscape distances (Urban and Keitt 2001). However, efficient ecological corridors must facilitate dispersal movements and consider species life-history requirements (Rosenberg et al. 1997). In this context, amphibians have been cited as highly appropriate species for examining landscape effects on community structure, due to their relatively limited mobility, sensitivity to dispersal barriers and strong microhabitat associations (Austin et al. 2002; Spear et al. 2005; Lee-Yaw et al. 2009).

To answer where the amphibian species could disperse in the face of climate change, we assess how changing climate might affect the protected network effectiveness for amphibian distributions. Here, we explore the probability of the ecological connectivity of forest remnants and amphibian species for current and future climate scenarios. Specifically, we aim at modelling the ecological connectivity to represent forest remnants that most contribute to upholding amphibian connectivity in the Central Corridor of the Brazilian Atlantic Forest, estimating the species turnover between current and future amphibian species distributions. We evaluate if the PAs network of this corridor safeguards amphibian species that occur in this region, testing if this network can work as an effective biodiversity corridor for amphibians. Then, we show the relationship between environmental variables and amphibian species distributions across the protected network. We highlight the importance of maintaining forest remnants in the main Atlantic Forest biodiversity corridor (i.e., the Central
Corridor), suggesting implications for amphibian conservation planning and providing new approaches on ecological connectivity in different climatic conditions. These results may be useful as a tool for designing conservation strategies that incorporate the effects of climate change and habitat fragmentation in a landscape planning approach.

Materials and Methods

Study area

The Atlantic Forest represents one of the five most important biodiversity hotspots on Earth (Mittermeier et al. 2011). Originally, it covered around 1,500,000 km2, of which only about 12% (i.e., 194,524 km2) still remains in Brazil, Paraguay and Argentina (Ribeiro et al. 2009), corresponding to about 100,000 km2 of Brazilian forest remnants (Tabarelli et al. 2005). Despite having high rates of habitat loss (Teixeira et al. 2009), which is one of the main factors driving amphibians to extinction (Stuart et al. 2004; Becker et al. 2007), the Atlantic Forest is the leader biome in amphibian diversity in Brazil (Haddad et al. 2013), accounting more than 50% of all Brazilian amphibian species (Haddad et al. 2013).

We focused our study on the Central Corridor of the Brazilian Atlantic Forest, which comprises about 8% of the total biome area (i.e., 7,913.42 km2), covering 14% of forest remnants (SOS Mata Atlântica and INPE 2015). Here, we used the term Brazilian Atlantic Forest to refer to the forest remnants map provided by SOS Mata Atlântica and INPE (2015).

Protected networks
We examined all the PAs covered by the Central Corridor of the Brazilian Atlantic Forest, providing information on the political categories and the sizes of each PA, as well as their associated amphibian species richness and local environmental data. We separated the PAs into two categories according to the IUCN criteria (IUCN 2018): strict protection (IUCN categories I–II) and sustainable use (IUCN categories III–VI), identifying the relative differences in the allocation of protection by each category. We used national, state and municipal PAs spatial data through the Brazilian Ministry of the Environment database (MMA 2015).

We assessed the relationships between species richness and their environmental predictors (i.e., altitude, temperature, precipitation, and forest cover) to evaluate the effect of environmental variables on the representation of species within the PAs categories. For this, we performed a permutational multivariate analysis of variance (PERMANOVA) using 1,000 permutations based on a Euclidean distance matrix, through the “adonis” function in the R package “vegan” (Oksanen et al. 2013; R Core Team 2016).

Species distribution data

We obtained spatial data of amphibian species through four steps: Firstly, we built a dataset with all the species distributed in the Atlantic Forest according to Haddad et al. (2013). Secondly, we included the species occurrences records available through the Global Biodiversity Information Facility (GBIF: http://www.gbif.org). Thirdly, we added spatial data for the mapping of species using the IUCN Red List of Threatened Species database (IUCN 2018). Finally, we selected and filtered out the species that
only occur in the forest remnants within the limits of distribution of the Central Corridor of the Brazilian Atlantic Forest, excluding all urban and non-forested areas (SOS Mata Atlântica and INPE 2015). Hence, we combined vector files based on expert knowledge of the species' ranges and forest remnant polygons into an overall coverage for species distribution modelling, through both sources of species presences (Fourcade 2016).

We used ArcGIS 10 software (ESRI 2011) to build presence/absence matrices from the species distribution data by overlapping a grid system with cells of 0.1 latitude/longitude degrees, creating a matrix with 838 grid cells. A total of 146 amphibian species were spatially represented in this grid system after using the “Spatial Join” tool available in ArcGIS. We only considered spatial occurrences by those species in which the distribution data intersected at least one grid cell (i.e., ~ 10 km²). We used forest remnant data to meet the habitat patch requirements based on visual interpretation at a scale of 1:50,000, delimiting more than 260,000 forest remnants with a minimum mapping area of 0.3 km². Therefore, we considered a species present in a cell if its spatial range intersected more than 0.3 km². To improve coarse species distribution data, the “Count Overlapping Polygons” ArcGIS toolbox was used to obtain the species richness at the spatial resolution assessed, removing all duplicate records from the analyses (i.e., repeated records of a species at the same location).

Climate models and environmental data

Given that species occurrence patterns are determined at large-scales by responses of organisms to different climatic conditions (reflecting the ecological niche; see Soberón 2007; Booth et al. 2014), we used ecological niche models (ENMs) to predict the distribution area of amphibian species. We used the species occurrence matrix and the
layers of climatic variables, resulting in a suitability matrix, which we used to model and map the potential distribution of each species evaluated (Loyola et al. 2014). We used current and future climate data according to the Coupled Model Intercomparison Project Phase 5 – CMIP5 (http://cmip-pcmdi.llnl.gov), from coupled Atmosphere-Ocean Global Climate Models (AOGCMs) to develop the spatial range models. These simulations show a high sensibility to detect potential impacts of land use changes on climate in human-induced landscapes (Dirmeyer et al. 2010). We implemented the Model for Interdisciplinary Research on Climate (MIROC5) by 2080 (mean of simulations for 2080-2100), which represents a moderated emission scenario within an optimistic context (Representative Concentration Pathway – RCP 4.5; Taylor et al. 2012). This moderate scenario (RCP4.5) incorporates historical emissions pathways and land cover information to meet potential climate policies (Thomson et al. 2011). We based the model projections on seven independent climatic variables tested by stepwise multiple regression analyses, using a confidence interval of 95%: 1) annual mean temperature, 2) temperature seasonality, 3) mean temperature of the warmest and 4) coldest quarters, 5) annual precipitation, and 6) precipitation of the driest and 7) wettest quarters. We obtained these climatic data through the EcoClimate database (Lima-Ribeiro et al. 2015) and downscaled them from 0.5 to 0.1 latitude/longitude degrees for fitting our spatial scale. We also used altitude as an environmental filter to predict the species richness from the dataset available at WorldClim Global Climate Data (Hijmans et al. 2005). Given that temperature and humidity are the main climate components that directly affect the biology of amphibians (Carey and Alexander 2003), we compared these variables along altitudinal gradients to evaluate which environmental features are the best predictors of amphibian richness.
We employed the maximum entropy method implemented in the MaxEnt software (Phillips et al. 2006) to develop the potential distribution map for the forest remnants associated with all the climatic variables adopted in the future predictions by 2080 (i.e., mean of simulations for 2080-2100). We randomly partitioned presence and pseudo-absence data for each species into 75% of calibration (i.e., training) and 25% of evaluation (i.e., tests), repeating this process ten times by cross-validation to avoid over-fitting biases in the least-suitable environmental conditions. We converted the continuous predictions of suitability into a binary vector of 1/0, finding the threshold that maximizes sensitivity and specificity values in the receiver-operating characteristic curves (Phillips et al. 2017) to build each ecological niche model. These curves are generated by plotting values of the relative frequency of true positive records predicted by a given model against the values of the relative frequency of pseudo-absence records, generating the Area Under the Curve (AUC). For this purpose, one-third of the occurrence records are set aside from modelling as test points (Phillips et al. 2006). Values of AUC range from 0.5 (i.e., random) for models with no predictive ability to 1.0 for models giving perfect predictions. According to the Swets (1988) classification, AUC values above 0.9 describe “very good”, 0.8 “good”, and 0.7 “useful” discrimination abilities.

The main reason behind our choice of the MaxEnt modelling approach was to look for a straightforward combination of environmental predictors that best explains the presence-only species distribution across forest remnants. Using presence-only data, MaxEnt is considered one of the most efficient methods for habitat suitability modelling in terms of predictive performance (Elith and Graham 2009; Phillips et al. 2017; Duflot et al. 2018). This predictive modelling approach has a high analytical power to combine continuous and categorical environmental variables (Phillips et al. 2006), accounting for
potential interactions among them (Phillips and Dudik 2008). MaxEnt also has been
considered as less sensitive to sample sizes and layer resolutions when compared with
other habitat suitability models (Merow and Silander 2014; Wisz et al. 2008). In
addition, this multi-attribute approach works in free, user-friendly software that
provides input and output files totally compatible with geographic information system
tools (Phillips et al. 2006).

We assessed the potential current and future distributions of the forest cover
according to the current vegetation remnants map of the Brazilian Atlantic Forest (SOS
Mata Atlântica and INPE 2015), of which we excluded all the areas where there are
currently agriculture, urban zones or settlements, only representing forest remnants
without overlaps on the land use/cover changes.

Species turnover

We also applied the maximum entropy method implemented in the MaxEnt software
(Phillips et al. 2006), to determine the species geographic distributions patterns,
following the same climatic variables adopted in the modelling process for the forest
remnants assessed. However, in this case, we employed the modelling strategy at the
community level of “predict first, assemble later” (Overton et al. 2002), where the
ranges of individual species are modelled one at a time as a function of environmental
predictors and then overlapped for obtaining the species richness. We calculated the
species turnover between current and future amphibian species distributions according
to the equation proposed by Thuiller et al. (2005) (1):

\[
Species \ Turnover = 100*\frac{(G+L)}{(S+G)} \quad (1)
\]
where “G” refers to the number of species gained, “L” the number of species lost and “S” the contemporary species richness found in the forest remnants assessed. We obtained the final maps of species richness for the current and future times, as well as the species turnover rates through the average of values projected by the MaxEnt model for each grid cell assessed (i.e., 0.1 latitude/longitude degrees of spatial resolution).

Probability of connectivity

We assessed the forest remnants through the probability of connectivity (PC) index (Saura and Rubio 2010), calculated for the patches of the Central Corridor of the Brazilian Atlantic Forest under two environmental scenarios (i.e., current and future), using Conefor 2.6 software (Saura and Torné 2009). The PC is a graph-based habitat availability metric that quantifies functional connectivity (Saura and Rubio 2010). It is defined as the probability that two points randomly placed within the landscape fall into habitat areas that are reachable from each other (interconnected) given a set of “n” habitat patches and the links (direct connections) among them (Saura and Pascual-Hortal 2007) (2).

\[
PC = \left(\sum_{i=0}^{n} \sum_{j=0}^{n} a_i x a_j x p_{ij} \right) / A_{L^2} = PC_{num} / A_{L^2} \quad (2)
\]

where \(a_i\) and \(a_j\) are the attributes of patches \(i\) and \(j\) (i.e., ID and area). AL is the maximum landscape attribute, which corresponds to the total landscape area (i.e., area of the study region, comprising both habitat and non-habitat patches). The product probability of a path is the product of all the values of the probability of direct dispersal
(Pij) for all the links in that path. Thus, Pij is the maximum product probability of all of
the possible paths between patches i and j, including direct dispersal between the two
patches.

We performed a prioritization ranking of the landscape elements (i.e., patches)
by their contribution to overall habitat availability and connectivity from the percentage
of the variation in PC (dPC_k), achieved by the removal of each patch from the overall
landscape (see Saura and Pascual-Hortal 2007; Saura and Rubio 2010). The dPC_k is a
relative measure of the increase in the PC value that resulted from the improvement in
the strength of that link after the implementation of the defragmentation measures
(Saura and Rubio 2010) (3).

\[dPC_k = 100 \times \frac{PC - PC_{\text{remove.k}}}{PC} = 100 \times \frac{dPC_k}{PC} \] (3)

where PC_{\text{remove.k}} is the index value after removal of the landscape element (i.e., after a
certain habitat patch loss). This measure corresponds to the “link change” analysis mode
implemented in the Conefor 2.6 software (Saura and Torné 2009). For all the
connectivity analyses, we used a mean dispersal distance for amphibians according to
the review conducted by Smith and Green (2005), where an estimative average distance
of 400 m for amphibians, in general, was proposed. Whereas some amphibians can
disperse over distances greater than 400 m (Smith and Green 2005), we also assessed
scenarios with a greater potential for dispersal, using distances of 600 and 800 m. To
assess the ecological connectivity results for the future scenario, we considered only the
areas with an assessed likelihood greater than 50%, considering the potential
distribution areas with a minimum favourable condition for the forest persistence under
the climate change predictions used.
Landscape resistance models

We performed a landscape resistance approach to calculate the functional connectivity between the forest remnants expressed as least-cost paths. To compare the sensitivity of dPC models within the landscape, we used a resistance surface based on the landscape heterogeneity with isolation-by-resistance (IBR), following the model proposed by McRae (2006). We also assessed null models through isolation by Euclidean distance (IBD), and isolation by Euclidean 3D distance with elevation data (IB3D), both of which did not consider the influence of landscape heterogeneity. IBD and IB3D represent landscape-free models and consider a maximum conductance for different land use types, while IBR is strongly based on landscape heterogeneity. We estimated the resistance values on the potential amphibian dispersal across the land use types within the landscape matrix, according to a systematic mapping of land use at a 1:250,000 scale, provided by the Brazilian Institute of Geography and Statistics (IBGE 2014).

We considered a conceptual framework for scoring the matrix permeability (cost surface) associated with landscape features based on empirical data and expert opinion (e.g., Ray et al. 2002; Joly et al. 2003; Semlitsch et al. 2008; Janin et al. 2009; Popescu and Hunter 2011) to determine the resistance values assigned to each land use type. Thus, we followed a rank-based criterion to reflect the relative order of landscape conductance for amphibian ecological connectivity (e.g., Gibbs et al. 2005; Grant 2005; Patrick 2006; Semlitsch et al. 2008; Popescu and Hunter 2011; Decout et al. 2012). We used 27 detailed land use classes to generate our land cover input file, assuming different resistance values to each land use type (Table S1). We estimated null conductance values to each land use type for evaluating the extent to which the results
were influenced by the magnitude of these values, where a low conductance value indicates a high resistance to dispersal. Considering the current landscape heterogeneity, we examined the relationship between landscape resistance distances (IBD, IB3D and IBR) and ecological connectivity under present and future climate conditions (dPC present and dPC future). For this, we used Mantel tests to account for statistical significance in pairwise comparisons. We performed the Mantel tests through 200,000 permutations in the PASSaGE 2 software (Rosenberg and Anderson 2011). We used Circuitscape 2.2 software (McRae 2006) to generate the pairwise matrices of landscape resistance and to produce the cumulative land conductance maps based on circuit theory.

Spatial prioritization framework

Finally, we selected the most suitable habitats defining different representation targets based on four methodological steps (i.e. forest modelling, species modelling, probability of connectivity and landscape resistance models) (Fig. 1). Combining these targets into a landscape modelling approach, we designed a spatial representation to select priority areas for conservation, which might work as a suitability surface for ecological connectivity in the Central Corridor of the Brazilian Atlantic Forest. Therefore, this approach favoured the selection of habitats less disturbed by human-induced actions for improved conservation outcomes.

Results
We showed that 110 PAs are covered by the Central Corridor of the Brazilian Atlantic Forest (i.e. 70% of sustainable use and 30% of strict protection), which comprise to 6,607.98 km² and correspond to only 8% of the total corridor area (Fig. 2a).

Considering the 146 amphibian species distributed in the forest remnants assessed (Fig. 2b), only 20% are distributed within the current PAs network. According to the PERMANOVA, when we compared species richness and PA categories with all the environmental variables together, we found direct relations with precipitation, temperature, evapotranspiration and forest cover (Table 1), where precipitation was the variable most associated with the amphibian species richness in the Central Corridor of the Brazilian Atlantic Forest. According to the stepwise multiple regression analyses, there was no correlation among any of the climate variables ($R^2 = 0.26; F = 92.57; P = 0.078$). The potential distribution of the forest remnants for the future scenario showed an average AUC value of 0.86, which indicated a good predictive ability by the dataset provided (Fig. 3a). The climate change models predicted a reduction of 75% in the probability of occurrence of the Atlantic Forest remnants in the central region of the Central Corridor. The northern and southern edges of the Central Corridor, as well as high altitude areas, showed the higher probability of forest occurrence. On the species distribution models under climate change, we predicted a high amphibian turnover rate, given that more than 50% of the grid cells had species turnover ratios greater than 0.7 (Fig. 3b). However, these expected changes in species composition tend to be greater on the northern edge than the southern edge of the Central Corridor.

Considering a dispersal distance of 400 m, our analyses of connectivity showed that the Central Corridor of the Brazilian Atlantic Forest does not guarantee good connectivity among the fragments, with an average dPC value of 8.43. When we assessed the dispersal distances of 600 and 800 m, the average dPC was the same than
that observed with a 400 m distance. However, our results showed higher connectivity
d areas in the northeastern region of the Central Corridor of the Brazilian Atlantic Forest,
mainly in the southern Bahia region (Fig. 4). We found that 95% of the values pointed
out by the connectivity index were directed to the sustainable use areas, only of which
5% are classified as integral protection areas (Table S2).

For the current scenario, we only found 10 PAs with high connectivity (dPC >
60.0), although 71 had very low values (dPC < 1.0). This situation can be aggravated
considering the climate model results for the future (2080-2100), which showed a high
probability of forest remnants retraction in the evaluated region. This represents 74% of
connectivity loss in a total of 4,889.90 km² of Atlantic Forest areas (Fig. 4). According
to these future predictions, we estimated that 83 PAs would be without any ecological
connectivity by the years 2080-2100 (dPC < 0.0), while only six PAs will remain with
dPC higher than 1.0, which correspond to a plausible conservation attribute in terms of
interpatch connectivity and habitat suitability. RPPN Renascer, RPPN Refúgio do
Guigó I and II, and RPPN Boa União, in the Bahia state, and RPPN Mata da Serra, APA
Serra da Vargem Alegre, and Parque Estadual do Forno Grande, in the Espírito Santo
state represented the PAs with a better expected connectivity under climate change.
Circuit theory current flow maps predicted a high likelihood of connectivity in
the central portion of our study area (i.e., in southern Bahia) for the current scenario
(Fig. 5). The landscape surface was represented by a general pattern of low-conductance
areas (i.e., low potential for amphibian dispersal), yet with some well-connected areas
showing low resistance for species moving between patches. These well-connected
areas (i.e., with high-conductance) can be potential amphibian biodiversity corridors,
which would connect the Monte Pascoal, Pau Brasil and Serra das Lontras PAs, located
in the southern Bahia region. Landscape resistance models that incorporated absolute
dispersal barriers resulted in significant correlations when compared with those based on landscape-free models (i.e., null resistances). The Mantel tests showed significantly different relationships between dPC values (present and future) and resistance distances (IBD, IB3D and IBR) (Table 2), indicating the sensitivity of the functional connectivity models within the landscape.

Discussion

Habitat suitability assessment

Considering the effectiveness of habitat suitability models of our landscape planning, we highlight the southern Bahia region and the Espírito Santo state with the best ecological distances between forest remnants (i.e., high-conductance areas with low resistance values). The use of resistance surfaces in landscape ecology incorporate multiple pathways that rely on the habitat quality for identifying important landscape elements connecting suitable environments for conservation (McRae et al. 2008; Zeller et al. 2012). Interactions between habitat suitability and species dispersal movements can be crucial for functional connectivity strategies in landscape change (Hodgson et al. 2009; Doerr et al. 2011). Therefore, given the landscape resistance surface and the connectivity metrics used as an aid for our amphibian conservation approach, we suggest some potential ecological corridors under current and future conditions.

Based on shifts in geographic ranges and climatically suitable habitats, our results reveal that the areas with high turnover rates are not the same areas with high occurrence probability of forest remnants under climate change. The selection of critical habitats for amphibian conservation under climate change is important for making
effective management decisions (Guisan et al. 2013). Forecasting approaches in spatial planning suggest that regions with high species turnover rates are expected to have more restricted-range species than regions with low species turnover rates (Diniz-Filho et al. 2009). Areas with high turnover rates can be associated to areas with low species richness under the current climate (Duan et al. 2016), which in the case of the Atlantic Forest may be represented by higher altitude areas. Moreover, low turnover rates in high altitude areas can strengthen mountainous regions as potential climatic refuges (Carnaval et al. 2009; Randin et al. 2009; Araújo et al. 2011; Lourenço-de-Moraes et al. 2019).

The use of MaxEnt as a single modelling algorithm for ecological approaches also has some concerns regarding data acquisition and analysis, which should include the full environmental range of the species (Elith et al. 2011). One of the main limitations of this presence-only modelling seems to be a biased approach for species–habitat relationships, given the unknown sampling effort intensity (Elith et al. 2011). Addressing possible sampling limitations by combining local field records with environmental layers is a promising strategy to improve the relevancy of habitat suitability models for effective landscape planning (Maréchaux et al. 2017). Possible solutions to avoid this sample selection bias can be corrected by adding a mask as an explanatory variable or by discarding some of the presence points in oversampled areas (Phillips et al. 2009; Radosavljevic and Anderson 2014; Stevenson-Holt et al. 2014).

Another limitation of our habitat suitability models is that climate datasets needed for this modelling approach are not always available, and some of them need to be downscaled for fitting our spatial scale (see Lima-Ribeiro et al. 2015). Therefore, we assume that our climatic projections capture only part of the climate variability changes associated with the habitat suitability models. However, downscaling climate
projections is a widely used technique for exploring the regional and local-scale responses to global climate change for simulating low-resolution climate models (Hewitson and Crane 2006; Cabral et al. 2016). Given the on-going challenges to the future development of climate downscaling, data scarcity and scale issues need to diminish the overestimation of suitable habitats for future species distributions by better-capturing landscape heterogeneity (Tabor and Williams 2010).

Challenges and opportunities for the Central Corridor of the Brazilian Atlantic Forest

Our findings show that the proportion of forest fragments with good connectivity is very low along the Central Corridor of the Brazilian Atlantic Forest, which consequently may reduce the flow of species among the fragments and significantly restricts the functional role of this ecological corridor. Using expert knowledge to distinguish species records can be a practical way of improving conservation-relevant decisions even with a paucity of biodiversity data (Akçakaya et al. 2018). We focus on an approach for allowing decision-makers to make the best use of the available data at a local scale, considering the extent to which such decisions might affect conservation outcomes at broad scales. The complementary use of species range maps with occurrence data is a promising route for advancing efforts to local-scale conservation decisions, supporting our species distribution data (Maréchaux et al. 2017). Such approaches for improving decision-making effectiveness are even more urgent in species-rich regions, where conservation strategies should ensure the lack of biodiversity data (Maréchaux et al. 2017; Lourenço-de-Moraes et al. 2019). In this context, we suggest that the forest fragments located in the coastal parts of the southern
Bahia region and the Espírito Santo state deserve special attention in conservation plans because they hold the highest proportion of ecological connectivity along the Central Corridor of the Brazilian Atlantic Forest.

Our proposal of special attention to southern Bahia is reinforced due to their resistance surface values within a landscape matrix composed by shaded cocoa plantations (i.e., “cabrucas”), as indicated by Pardini et al. (2009). This agroforestry system has allowed the conservation of large numbers of native plant species, besides hosting typical mature forest fauna species (Pardini et al. 2009). Many amphibian species use the bromeliads that are in the “cabrucas” system during their entire life cycle and others only as diurnal shelter (Ferreira et al. 2016). Given their forest-like structure, shaded cocoa plantations of the Forest remnants from southern Bahia perform a fundamental role in maintaining connectivity between forest fragments (Sperber et al. 2004; Delabie et al. 2007; Faria and Baumgarten 2007). Our results, integrating graph-based connectivity metrics into forecast models, indicate that this region has a high probability of forest occurrence in a climate change scenario, which suggests climatically suitable habitats and potential ecological corridors.

Forest remnants management is critical to ensure the persistence of species, but dynamic threats such as land use change and climate change can directly reduce the effectiveness of PAs planned under a static approach (Faleiro et al. 2013). Due to developing technologies in remote sensing, there are several approaches to improve how we assess and monitor forest remnants through a variety of spatial and temporal scales (Tehrany et al. 2017). In this context, there is an urgent need to incorporate species range shifts in spatial conservation plans to ensure their effectiveness in the future (Hannah 2010). We recommend that the design of new conservation plans in the Central Corridor of the Brazilian Atlantic Forest must attempt to re-establish ecological
connectivity between the remaining fragments and the higher altitude areas. This recommendation may represent an alternative mechanism to mitigate potential impacts related to climate change and land use change in the Atlantic Forest Hotspot.

Corroborating our findings, other amphibian studies in the Atlantic Forest have also warned about the need to invest in PAs near high altitude areas (Lemes and Loyola 2013; Loyola et al. 2014; Lourenço-de-Moraes et al. 2019), mainly in the southern Bahia region (Carnaval et al. 2009), which retain high humidity provided by well-preserved forest cover. Climate threats to amphibian biodiversity have often been related to their high humidity dependence (Hopkins 2007), where moisture conditions are associated with microhabitats, rainfall regimes and terrestrial water balance, limiting the species' dispersal abilities (Early and Sax 2011). Dispersal limitation is a critical determinant of amphibian geographical ranges, assuming a general metapopulation structure related to habitat patch isolation (Smith and Green 2005). Our predictions on the environmental variables for amphibian species richness in the Atlantic Forest are dependent on their limited dispersal patterns. Therefore, dispersal capability might severely limit the ability of species to track suitable climatic conditions geographically (Massot et al. 2008; Early and Sax 2011). The use of various environmental variables has been demonstrated as an efficient strategy to reach outcomes closer to reality, being one of the keys to understanding how communities can respond to climatic factors (Araújo and New 2007; Marmion et al. 2009).

Implications for conservation planning under climate change

Our findings show that potential impacts of climatic changes should occur in almost the entire Central Corridor of the Brazilian Atlantic Forest, which could affect the
ecological connectivity of the whole biome. We suggest that the PAs with the better-
expected connectivity under climate change need critical attention in future
conservation plans (e.g., RPPN Renascer, RPPN Refúgio do Guigó I and II, and RPPN
Boa União, in the Bahia state, and RPPN Mata da Serra, APA Serra da Vargem Alegre,
and Parque Estadual do Forno Grande, in the Espírito Santo state). In this context, these
mitigations can be useful to avoid potential extinction process expected for the
amphibians from the Central Corridor of the Brazilian Atlantic Forest PAs.

Amphibian species from Atlantic Forest PAs are more threatened with
extinction than in other Brazilian protected networks (Campos et al. 2016). This
phenomenon happens mainly because the Southeast Region of Brazil is the economic
core of the country, with highly fragmented forest remnants (Ribeiro et al. 2009), with a
high human population density, and the presence of mining and logging activities
(Lemes et al. 2014). Atlantic Forest reserves close to urban ecosystems are also failing
to protect amphibian species (Lourenço-de-Moraes et al. 2018). Our approach does not
specifically estimate a quantitative species extinction risk but shows evidence of a
potential regional extinction within limited dispersal models. We highlight that many
PAs will become less effective in future scenarios, which can dramatically affect the
diversity and distribution of the amphibian species that occur in the forest remnants
assessed.

Conserving biodiversity under climate change comes out as a challenge for
conservation scientists. For being a dynamic system, controlling all the climatic
variables and synergies related to environmental conditions and its consequences is a
huge task. If the rates of climate change overtake the response potential of biological
systems to ecological connectivity and its impacts on ecosystem functioning, effects on
community structure and species distributions can be irreversible. Therefore, enhanced
conservation efforts of forest management will play a critical role for mitigating effects of environmental change. In some human-modified landscapes characterized by secondary forest, environmental heterogeneity can be maintained and even increased, thus contributing to the community structure (Tscharntke et al. 2012). A recent meta-analysis showed that ecological restoration success can be higher for natural regeneration than for active restoration in tropical forests (Crouzeilles et al. 2017). In this context, our research highlights the importance of maintaining the mosaic of forest remnants and the landscape heterogeneity in the Central Corridor of the Brazilian Atlantic Forest, providing dynamic tools to prioritize conservation investment for ecological connectivity assessments.

Practical strategies should be sensible for species adaptation, impact mitigation, and must prioritize the protection and connectivity of heterogeneous landscapes to improve conservation management (Richardson and Whittaker 2010). In the particular case of the Atlantic Forest, the response of amphibians to anticipated declines depends on local climatic conditions (Lourenço-de-Moraes et al. 2019). Regarding adaptation to climate change, we show that species tend to use potential corridors in high altitude areas with better-preserved forest cover. Our research highlights that integrating the amphibian-climate refuges in the well-connected areas is essential for spatial decision-making in the Atlantic Forest hotspot, which can reduce extinction risk and avoid species loss. This work has advanced knowledge of the analytical methods that can be used to incorporate landscape paths with low resistance into potentially connected areas for amphibian conservation in the Central Corridor of the Brazilian Atlantic Forest. The methodological approach proposed here is not only amphibian-specific but can also be used in conservation plans for other taxonomic groups. This innovative approach has
sought to move forward the knowledge on ecological connectivity of endangered forest remnants and supports conservation actions in the face of climate change.

Acknowledgements

This work was supported by the CAPES Foundation, Ministry of Education of Brazil (99999.001180/2013-04). We thank J. David and M. Rodrigues for useful comments on the manuscript. We also thank the Center for Computational Biology and Biotechnology Information Management (NBCGIB/UESC) and N. Sillero from CICGE for making the use of supercomputers available. R.L.M. thanks funding from CNPq (140710/2013-2; 152303/2016-2; 430195/2018-4).

Appendix A. Supplementary files

Supplementary files associated with this article can be found in the online version (Tables S1 to S2).

References

Akçakaya HR, Bennett EL, Brooks TM, Grace MK, Heath A, Hedges S, Hilton-Taylor C, Hoffmann D, Keith DA, Long B, Mallon DP, Meijaard E, Milner-Gulland EJ, Rodrigues ASL, Rodriguez JP, Stephenson PJ, Stuart SN, Young RP (2018) Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv Biol 32:1128–1138. https://doi.org/10.1111/cobi.13112
Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. https://doi.org/10.1111/j.1461-0248.2011.01610.x

Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. https://doi.org/10.1016/j.tree.2006.09.010

Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539. https://doi.org/10.1890/11-1930.1

Austin JD, Lougheed SC, Neidrauer L, Chek AA, Boag PT (2002) Cryptic lineages in a small frog: The post-glacial history of the spring peeper, *Pseudacris crucifer* (Anura: Hylidae). Mol Phylogenet Evol 25:316–329. https://doi.org/10.1016/S1055-7903(02)00260-9

Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: Variable selection and scale. J Biogeogr 38:1–8. https://doi.org/10.1111/j.1365-2699.2010.02416.x

Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:2671–2676. https://doi.org/10.1890/04-0500

Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777. https://doi.org/10.1126/science.1149374

Bennett G, Mulongoy KJ (2006). Review of experience with ecological networks, corridors and buffer zones. CBD Technical Series 23:100

Bled F, Nichols JD, Altwegg R (2013) Dynamic occupancy models for analyzing species’ range dynamics across large geographic scales. Ecol Evol 3:4896–4909. https://doi.org/10.1002/ece3.858
Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 20:1–9. https://doi.org/10.1111/ddi.12144.

Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147. https://doi.org/10.1016/j.tree.2006.11.002

Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: Size, Shape, Boundaries, and Internal Structure. Annu Rev Ecol Evol Syst 27:597–623. https://doi.org/10.1146/annurev.ecolsys.27.1.597

Cabral P, Feger C, Levrel H, Chambolle M, Basque D (2016) Assessing the impact of land-cover changes on ecosystem services: a first step toward integrative planning in Bordeaux, France. Ecosyst Serv 22:318–327. https://doi.org/10.1016/j.ecoser.2016.08.005

Campos FS, Brito D, Solé M (2013) Threatened Amphibians and Their Conservation Status within the Protected Area Network in Northeastern Brazil. J Herpetol 47:277–285. https://doi.org/10.1670/11-158

Campos FS, Trindade-Filho J, Brito D, Llorente GA, Solé M (2014) The efficiency of indicator groups for the conservation of amphibians in the Brazilian Atlantic Forest. Ecol Evol 4:2505–2514. https://doi.org/10.1002/ece3.1073

Campos FS, Llorente GA, Rincón L, Lourenço-de-Moraes R, Solé M (2016) Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest. Web Ecol 16:9–12. https://doi.org/10.5194/we-16-9-2016
Campos FS, Lourenço-de-Moraes R, Llorente GA, Solé M (2017) Cost-effective conservation of amphibian ecology and evolution. Sci Adv 3:e1602929. https://doi.org/10.1126/sciadv.1602929

Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121. https://doi.org/10.1046/j.1472-4642.2003.00011.x

Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability Predicts Genetic Diversity in the Brazilian Atlantic Forest Hotspot. Science 323:785–789. https://doi.org/10.1126/science.1166955

Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x

Carroll C, Noss RF, Paquet PC, Schumaker NH (2004) Extinction debt of protected areas in developing landscapes. Conserv Biol 18:1110–1120. https://doi.org/10.1111/j.1523-1739.2004.00083.x

Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science 322:258–261. https://doi.org/10.1126/science.1162547

Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JBB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BB (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:e1701345. https://doi.org/10.1126/sciadv.1701345

Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: A case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc Ecol 27:267–279. https://doi.org/10.1007/s10980-011-9694-z
Delabie JHC, Jahyny B, Nascimento IC, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers Conserv 16:2359–2384. https://doi.org/10.1007/s10531-007-9190-6

Dias IR, Medeiros TT, Nova MFV, Solé M (2014) Amphibians of Serra Bonita, Southern bahia: A new hotspot within Brazil’s atlantic forest hotspot. ZooKeys 449:105–130. https://doi.org/10.3897/zookeys.449.7494

Dietz MS, Belote RT, Aplet GH, Aycrigg JL (2015) The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the U.S. National Wilderness Preservation System. Biol Conserv 184: 431–438. https://doi.org/10.1016/j.biocon.2015.02.024

Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906. https://doi.org/10.1111/j.1600-0587.2009.06196.x

Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: A response to Hodgson et al. J Appl Ecol 48:143–147. https://doi.org/10.1111/j.1365-2664.2010.01899.x

Duan RY, Kong XQ, Huang MY, Varela S, Ji X (2016) The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ 4:e2185. https://doi.org/10.7717/peerj.2185

Duflot R, Avon C, Roche P, Bergès L (2018) Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied
methodological framework and a species case study. J Nat Conserv 46:38–47.

https://doi.org/10.1016/j.jnc.2018.08.005

Dirmeyer PA, Niyogi D, de Noblet-Ducoudré N, Dickinson RE, Snyder PK (2010)
Impacts of land use change on climate. Int J Climatol 30:1905–1907.

https://doi.org/10.1002/joc.2157

Early R, Sax DF (2011) Analysis of climate paths reveals potential limitations on
species range shifts. Ecol Lett 14:1125–1133. https://doi.org/10.1111/j.1461-0248.2011.01681.x

Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding
reasons for differing performances of species distribution models. Ecography 32:
66–77. https://doi.org/10.1111/j.1600-0587.2008.05505.x

Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species.
Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical
explanation of MaxEnt for ecologists. Divers Distrib 17: 43–57.

https://doi.org/10.1111/j.1472-4642.2010.00725.x

ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute,
Redlands

Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in
the face of land-use and climate change. Biol Conserv 158: 248–257.

https://doi.org/10.1016/j.biocon.2012.09.020

Faria D, Baumgarten J (2007) Shade cacao plantations (Theobroma cacao) and bat
conservation in southern Bahia, Brazil. Biodivers Conserv 16:291–312.

https://doi.org/10.1007/s10531-005-8346-5
Faria D, Paciencia MLB, Dixo M, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 16:2335–2357. https://doi.org/10.1007/s10531-007-9189-z

Ferreira RB, Lourenço-de-Moraes R, Teixeira RL, Beard KH (2016) Frogs associations with bromeliads in an abandoned cacao plantation in Northeastern Brazil. North-West J Zool 12:392–396

Fourcade Y (2016) Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol Inform 36:8–14. http://dx.doi.org/10.1016/j.ecoinf.2016.09.002

Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330. https://doi.org/10.1111/j.1472-4642.2010.00641.x

Frost DR (2019) Amphibian Species of the World: an Online Reference, Version 6.0. American Museum of Natural History, New York. http://research.amnh.org/herpetology/amphibia/index.html

Gaston KJ (2003) The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford

Gibbs JP, Whiteleather KK, Schueler FW (2005) Changes in frog and toad populations over 30 years in New York State. Ecol App 15:1148–1157. https://doi.org/10.1890/03-5408

Grant EHC (2005) Correlates of vernal pool occurrence in the Massachusetts, USA landscape. Wetlands 25:480–487. https://doi.org/10.1672/22
Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons J, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: A transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320. https://doi.org/10.1016/j.landurbplan.2011.02.036

Haddad CFB, Toledo LF, Prado CPA, Loebmann D, Gasparini JL, Sazima I (2013) Guia dos anfíbios da Mata Atlântica – diversidade e biologia. Anolis Books, São Paulo

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy T, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. https://doi.org/10.1126/sciadv.1500052

Hamilton CM, Baumann M, Pidgeon AM, Helmers DP, Thogmartin WE, Heglund PJ, Radeloff VC (2016) Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges. Landsc Ecol 31: 2175–2186. https://doi.org/10.1007/s10980-016-0392-8
distribution in a context of spreading agriculture. J Appl Ecol 46:833–841.

https://doi.org/10.1111/j.1365-2664.2009.01665.x

Jenkins CN, Van Houtan KS, Pimm SL, Sexton JO (2015) US protected lands mismatch

biodiversity priorities. Proc Natl Acad Sci USA 112:5081–5086.

https://doi.org/10.1073/pnas.1418034112

Joly P, Morand C, Cohas A (2003) Habitat fragmentation and amphibian conservation:

building a tool for assessing landscape matrix connectivity. C R Biol 326:132–

139. https://doi.org/10.1016/S1631-0691(03)00050-7

Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of

species distribution provide congruent forecasts under climate change. Conserv

Lett 3:203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x

Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23.

https://doi.org/10.1086/286054

Laurance WF, Sayer J, Cassman, KG (2014) Agricultural expansion and its impacts on

tropical nature. Trends Ecol Evol 29:107–116.

https://doi.org/10.1016/j.tree.2013.12.001

Lawler JJ, White D (2008) Assessing the mechanisms behind successful surrogates for

biodiversity in conservation planning. Anim Conserv 11:270–280.

https://doi.org/10.1111/j.1469-1795.2008.00176.x

Lee-Yaw JA, Davidson A, McRae BH, Green DM (2009) Do landscape processes

predict phylogeographic patterns in the wood frog? Mol Ecol 18:1863–1874.

https://doi.org/10.1111/j.1365-294X.2009.04152.x

Le Saout S, Hoffmann M, Shi Y, Hughes A, Bernard C, Brooks TM, Bertzky B,

Butchart SHM, Stuart SN, Badman T, Rodrigues ASL (2013) Protected Areas and
Effective Biodiversity Conservation. Science 342:803–805.
https://doi.org/10.1126/science.1239268

Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Amsterdam

Lemes P, Loyola RD (2013) Accommodating Species Climate-Forced Dispersal and Uncertainties in Spatial Conservation Planning. PLoS ONE 8:e54323.
https://doi.org/10.1371/journal.pone.0054323

Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368. https://doi.org/10.1007/s10531-013-0605-2

Liang J, He X, Zeng G, Zhong M, Gao X, Li X, Li X, Wu H, Feng C, Xing W, Fang Y, Mo D (2018) Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci Total Environ 626:22-29. DOI:10.1016/j.scitotenv.2018.01.086

Lima-Ribeiro MS, Varela S, González-Hernández J, de Oliveira G, Diniz-Filho JAF, Terribile LC (2015) EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Informatics, 10:1–21. https://doi.org/10.17161/bi.v10i0.4955

Lourenço-de-Moraes R, Malagoli LR, Guerra V, Ferreira RB, Affonso IP, Haddad CFB, Sawaya RJ, Bastos RP (2018) Nesting patterns among Neotropical species assemblages: can reserves in urban areas be failing to protect anurans? Urban Ecosyst 5:933–942. https://doi.org/10.1007/s11252-018-0767-5

Lourenço-de-Moraes R, Campos FC, Ferreira RB, Solé M, Beard KH, Bastos RP (2019) Back to the future: Conserving functional and phylogenetic diversity in amphibian climate-refuges. Biodivers Conserv 28:1049–1073 https://doi.org/10.1007/s10531-019-01706-x
Loyola RD, Becker CG, Kubota U, Haddad CFB, Fonseca CR, Lewinsohn TM (2008) Hung out to dry: Choice of priority ecoregions for conserving threatened neotropical anurans depends on life-history traits. PLoS ONE:e2120. https://doi.org/10.1371/journal.pone.0002120

Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LDS (2014) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 37:65–72. https://doi.org/10.1111/j.1600-0587.2013.00396.x

Maréchaux I, Rodrigues ASL, Charpentier A (2017) The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography 40:1166–1176. https://doi.org/10.1111/ecog.02598

Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x

Martensen AC, Saura S, Fortin MJ (2017) Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol Evol 8:1253–1264. https://doi.org/10.1111/2041-210X.12799

Massot M, Clobert J, Ferrière R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Chang Biol 14:461–469. https://doi.org/10.1111/j.1365-2486.2007.01514.x

McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. https://doi.org/10.1554/05-321.1

McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. https://doi.org/10.1890/07-1861.1
Merow C, Silander Jr JA (2014) A comparison of Maxlike and Maxent for modelling species distributions. Methods Ecol Evol 5:215–225. https://doi.org/10.1111/2041-210X.12152

Metzger JP (2009) Conservation issues in the Brazilian Atlantic forest. Biol Conserv 142:1138–1140. https://doi.org/10.1016/j.biocon.2008.10.012

Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global Biodiversity Conservation: The Critical Role of Hotspots. In: Zachos F, Habel J (eds) Biodiversity Hotspots, Springer, Berlin, pp 3–22. https://doi.org/10.1007/978-3-642-20992-5_1

MMA (2015) Cadastro Nacional de Unidades de Conservação. Brasil: Ministério do Meio Ambiente, Brasília. http://www.mma.gov.br/cadastro_uc/

Morais AR, Siqueira MN, Lemes P, Maciel NM, de Marco P, Brito D (2013) Unraveling the conservation status of data deficient species. Biol Conserv 166:98–102. http://dx.doi.org/10.1016/j.biocon.2013.06.010

Nori J, Lemes P, Urbina-Cardona N, Baldo D, Lescano J, Loyola R (2015) Amphibian conservation, land-use changes and protected areas: A global overview. Biol Conserv 191:367–374. https://doi.org/10.1016/j.biocon.2015.07.028

Ochoa-Ochoa L, Urbina-Cardona JN, Vázquez LB, Flores-Villela O, Bezaury-Creel J (2009) The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS ONE 4:e6878. https://doi.org/10.1371/journal.pone.0006878

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2013) Vegan: Community Ecology Package. R Foundation for Statistical Computing, Vienna. https://doi.org/10.4135/9781412971874.n145
Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297. https://doi.org/10.1016/j.biocon.2003.12.008

Overton JMC, Stephens RTT, Leathwick JR, Lehmann A (2002) Information pyramids for informed biodiversity conservation. Biodivers Conserv 11:2093–2116. https://doi.org/10.1023/A:1021386426790

Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia ML, Dixo M, Baumgarten J (2009) The challenge of maintaining Atlantic forest biodiversity: A multi-taxon conservation assessment of specialist and generalist species in an agroforestry mosaic in southern Bahia. Biol Conserv 142:1178–1190. https://doi.org/10.1016/j.biocon.2009.02.010

Patrick DA, Hunter ML, Calhoun AJK (2006) Effects of experimental forestry treatments on a Maine amphibian community. Forest Ecol Manag 234:323–332. https://doi.org/10.1016/j.foreco.2006.07.015

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: Identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401. https://doi.org/10.1016/j.biocon.2004.12.006

Peterson T, Ortega-Huerta M, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–9. https://doi.org/10.1038/416626a
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographical distributions. Princeton University Press, New Jersey

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier, S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197. https://doi.org/10.1890/07-2153.1

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893. https://doi.org/10.1111/ecog.03049

Popescu VD, Hunter ML (2011) Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements. Ecol Appl 21:1283–1295. https://doi.org/10.1890/10-0658.1

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. https://doi.org/10.1111/jbi.12227
Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz A, Thuiller W, Guisan A (2009) Climate change and plant distribution: Local models predict high-elevation persistence. Glob Chang Biol 15:1557–1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x

Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126 https://doi.org/10.4322/natcon.2012.030

Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob Chang Biol 14:1703–1720. https://doi.org/10.1111/j.1365-2486.2008.01596.x

Ray N, Lehmann A, Joly P, (2002) Modeling spatial distribution of amphibian populations: A GIS approach based on habitat matrix permeability. Biodivers Conserv 11:2143–2165. https://doi.org/10.1023/A:1021390527698

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

Richardson DM, Whittaker RJ (2010) Conservation biogeography – foundations, concepts and challenges. Divers Dist 16:313–320. https://doi.org/10.1111/j.1472-4642.2010.00660.x

Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Effectiveness of the global protected area network
in representing species diversity. Nature 428:640–643.

https://doi.org/10.1038/nature02422

Rosenberg DK, Noon BR, Meslow EC (1997) Biological Corridors: Form, Function, and Efficacy. BioScience 47:677–687. https://doi.org/10.2307/1313208

Rosenberg MS, Anderson CD (2011) PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis, Version 2. Methods Ecol Evol 2:229–232.

https://doi.org/10.1111/j.2041-210X.2010.00081.x

Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103.

https://doi.org/10.1016/j.landurbplan.2007.03.005

Saura S, Torné J (2009) Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139. https://doi.org/10.1016/j.envsoft.2008.05.005

Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537. http://dx.doi.org/10.1111/j.1600-0587.2009.05760.x.

Semlitsch RD, Conner CA, Hocking DJ, Rittenhouse TAG, Harper EB (2008) Effects of timber harvesting on pond-breeding amphibian persistence: Testing the evacuation hypothesis. Ecol Appl 18:283–289. https://doi.org/10.1890/07-0853.1

Silvano DL, Segalla MV(2005) Conservation of Brazilian amphibians. Conserv Biol 19: 653–658. https://doi.org/10.1111/j.1523-1739.2005.00681.x

Smith MA, Green DM (2005) Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations?

Ecography 28:110–128. https://doi.org/10.1111/j.0906-7590.2005.04042.x
Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10: 1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

SOS Mata Atlântica, INPE (2015) Atlas dos Remanescentes Florestais da Mata Atlântica Período 2013-2014. https://www.sosma.org.br/projeto/atlas-da-mata-atlantica/dados-mais-recientes/

Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564. https://doi.org/10.1111/j.1365-294X.2005.02573.x

Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: Considerations for parameterization and analysis. Mol Ecol 19:3576–3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x

Sperber CF, Nakayama K, Valverde MJ, Neves FS (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251. https://doi.org/10.1016/j.baae.2004.04.001

Stebbins RC, Cohen, NW (1995) A natural history of amphibians. Princeton University Press, Princeton

Stevenson-Holt CD, Watts K, Bellamy CC, Nevin OT, Ramsey AD (2014) Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: a comparison of approaches using expert-opinion and habitat suitability modelling. PloS ONE 9:e112119. https://doi.org/10.1371/journal.pone.0112119

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. https://doi.org/10.1126/science.1103538
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. https://doi.org/10.1126/science.3287615

Tabarelli M, Silva JMC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425. https://doi.org/10.1023/B:BIOC.0000019398.36045.1b

Tabarelli M, Pinto LP, Silva JMC, Hirota M, Bede L (2005) Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conserv Biol 19:695–700. https://doi.org/10.1111/j.1523-1739.2005.00694.x

Tabor K, Williams JW (2010) Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol Appl 20:554–565. https://doi.org/10.1890/09-0173.1

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Tehrany MS, Kumar L, Drielsma MJ (2017) Review of native vegetation condition assessment concepts, methods and future trends. J Nat Conserv 40:12–23. https://doi.org/10.1016/j.jnc.2017.08.004

Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: Implications for conservation. Forest Ecol Manag 257:1219–1230. https://doi.org/10.1016/j.foreco.2008.10.011

Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77. https://doi.org/10.1007/s10584-011-0151-4
Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. https://doi.org/10.1073/pnas.0409902102

Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x

Triviño M, Kujala H, Araújo MB, Cabeza M (2018) Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc Ecol 33:659–673. https://doi.org/10.1007/s10980-018-0626-z

Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x

Urban D, Keitt T (2001). Landscape connectivity: A graph-theoretic perspective. Ecology 82:1205–1218. https://doi.org/10.1890/0012-9658(2001)082[1205:lcagtp]2.0.co;2

Urbina-Cardona, JN (2008) Conservation of Neotropical Herpetofauna: Research Trends and Challenges. Trop Conserv Sci 11: 359–375. https://doi.org/10.1177/19400829080100405

Verdade VK, Valdujo PH, Carnaval AC, Schiesari L, Toledo LF, Mott T, Andrade GV, Eterovick PC, Menin M, Pimenta BVS, Nogueira C, Lisboa CS, de Paula CD, Silvano (2012). A leap further: the Brazilian amphibian conservation action plan. Alytes 29:28–43.
Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Dist 14:763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

Worboys GL, Francis WL, Lockwood M (2010) Connectivity Conservation Management: A Global Guide. Earthscan, London

Young BE, Stuart SN, Chanson JS, Cox NA, Boucher TM (2004) Disappearing jewels: the status of New World amphibians. NatureServe, Virginia

Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797. https://doi.org/10.1007/s10980-012-9737-0
Tables

Table 1. Results from the PERMANOVA on the species richness and PA categories by the variables altitude, temperature, precipitation and forest cover in the Central Corridor of the Brazilian Atlantic Forest.

Environmental Variables	df	F	R^2	P value
Altitude	1	21.27	0.06	0.98
Temperature	1	43.70	0.14	0.00*
Precipitation	1	130.71	0.42	0.00*
Forest cover	1	27.88	0.09	0.02*
Residuals	105	–	0.29	–
Total	109	–	1.00	–

*Significant values
Table 2. Statistical significance for Mantel test between dPC values (Present and Future) and resistance distances (IBD, IB3D and IBR) for calculating the landscape connectivity between forest remnants in the Central Corridor of the Brazilian Atlantic Forest.

IBD: null model through isolation by Euclidean distance; IB3D: null model through isolation by Euclidean 3D distance with elevation data; IBR: resistance model through isolation-by-resistance between patches based on landscape heterogeneity.

Matrix	Mantel r	P-value
dPC Present-IBD	0.01091	0.00000
dPC Present-IB3D	0.01055	0.00000
dPC Present-IBR	0.00962	0.00000
dPC Future-IBD	0.00316	0.03253
dPC Future-IB3D	0.00295	0.04637
dPC Future-IBR	0.00310	0.03871

All tested pairs for dPC-Present and dPC-Future are significant (p > 0.05).
Figures

Fig. 1. Schematic representation of the methodological steps used in the landscape modelling approach for amphibian conservation in the Central Corridor of the Brazilian Atlantic Forest, Brazil. Forest modelling (A), Species modelling (B), Probability of connectivity (C) and Landscape resistance models (D).
Fig. 2. Location of the Central Corridor of the Brazilian Atlantic Forest, in eastern Brazil, representing their Protected Areas and Forest Remnants. BA: Bahia state; MG: Minas Gerais state; ES: Espírito Santo state; RJ: Rio de Janeiro state (A). Species Richness per grid cell with summary statistic values such as Maximum, Mean, Standard Deviation and Minimum (B).
Fig. 3. Probability of forest cover according to the MaxEnt model (A), and amphibian species turnover rate (B), under climate change in the Central Corridor of the Brazilian Atlantic Forest.
Fig. 4. Potential amphibian ecological connectivity under dPC models for current (A), and future (B) scenarios, across the forest remnants in the Central Corridor of the Brazilian Atlantic Forest with altitudinal representation.
Fig. 5. Maps of landscape resistance models for amphibian ecological connectivity between forest remnants in the Central Corridor of the Brazilian Atlantic Forest. Null model for isolation-by-distance – IBD/IB3D (A), landscape model for isolation-by-resistance – IBR (B); landscape model for IBR showing the distribution of forest remnants with a frame in the highest conductance areas (C); zoom in the frame with high-conductance areas showing the potential landscape connectivity between patches with low resistance surface (D).