CysModDB: a comprehensive platform with the integration of manually curated resources and analysis tools for cysteine posttranslational modifications

Yanzheng Meng 1, Lin Zhang 1, Laizhi Zhang, Ziyu Wang, Xuanwen Wang, Chan Li, Yu Chen, Shipeng Shang and Lei Li 2

Abstract
The unique chemical reactivity of cysteine residues results in various posttranslational modifications (PTMs), which are implicated in regulating a range of fundamental biological processes. With the advent of chemical proteomics technology, thousands of cysteine PTM (CysPTM) sites have been identified from multiple species. A few CysPTM-based databases have been developed, but they mainly focus on data collection rather than various annotations and analytical integration. Here, we present a platform-dubbed CysModDB, integrated with the comprehensive CysPTM resources and analysis tools. CysModDB contains five parts: (1) 70,536 experimentally verified CysPTM sites with annotations of sample origin and enrichment techniques, (2) 21,654 modified proteins annotated with functional regions and structure information, (3) cross-references to external databases such as the protein–protein interactions database, (4) online computational tools for predicting CysPTM sites and (5) integrated analysis tools such as gene enrichment and investigation of sequence features. These parts are integrated using a customized graphic browser and a Basket. The browser uses graphs to represent the distribution of modified sites with different CysPTM types on protein sequences and mapping these sites to the protein structures and functional regions, which assists in exploring cross-talks between the modified sites and their potential effect on protein functions.

Keywords: posttranslational modification, chemical proteomics, PTM cross-talk, cysteine modification, database

Introduction
Cysteine contains a thiol side chain with high nucleophilicity and redox sensitivity, which makes cysteine susceptible to many reactive molecules and generates different cysteine PTM types (CysPTMs). The modification types can be classified into three categories due to their characteristics: oxidation posttranslational modification (PTM) [1], lipid PTM [2, 3] and metabolite PTM [4]. The oxidation PTM means cysteine oxidation by reactive oxygen species, reactive nitrogen species, reactive sulfur species or glutathione (GSH) [1]. It includes s-nitrosylation, s-sulfenylation, s-sulfinylation, s-sulfonylation, s-glutathionylation, s-disulfidation and s- persulfidation. The lipid PTM refers to cysteine lipidation [3, 5], including s-palmitoylation and s-prenylation. The metabolite PTM covers a series of nonenzymatic modifications caused by reactive metabolites [6], such as s-itaconation and s-carbonylation. Cysteine residues play various functional roles such as metal-binding, enzyme activation and structural stabilization, and cysteine modifications may regulate protein structures and functions [7]. It has been revealed that CysPTMs are associated with many diseases like cancer and neurodegenerative disorder [8, 9].

Identifying CysPTM sites on proteomes is the foundation of exploring their functional roles in biological activities. Nevertheless, it is challenging to directly detect CysPTM sites on a proteomic scale due to their low abundance and significant dynamic changes. Unlike some PTM types (e.g. tyrosine phosphorylation...
Material and methods

Data collection

The data collection pipeline is shown in Supplementary Figure S1. Specifically, we retrieved literature in the PubMed database using ‘cysteine’ or ‘cysteine proteomics’ combined with specific CysPTM names (or synonyms). They include s-nitrosylation (s-nitrosothiols, s-nitrosocysteine or s-nitrosation), s-sulfenylation (cysteine sulfenic acid, s-sulfenyl or s-sulfenation), s-sulfinylation (cysteine sulfinic acid or s-sulfination), s-sulfonylation (cysteine sulfonic acid or s-sulfonation), s-glutathionylation, s-disulfidation (disulfide bonds), s-persulfidation (sulhydrylation or persulfide), s-palmitoylation (s-acetylation), s-prenylation (farnesylation or geranylgeranylation), s-carbonylation (cysteine alkylation or HNE-modified cysteine), s-itaconation and s-succinisation (s-2-succino) cysteine. Over 300 articles were obtained, and most were published between 2009 and 2021 (Supplementary Table S1). After manually scanning these papers, the data from high-throughput proteomics studies were collected as the CysPTM data source (Figure 1A). We further extracted essential information from the literature, including identification approaches, experimental sample names, protein names and cysteine positions with PTM types.

We explored online prediction algorithms for the CysPTM sites from literature (Figure 1A) and retained 10 accessible tools to date (Figure 1B), such as DeepCSO [24], DeepGSH [25], GPS-Palm [26], iPrenyl-PeAAc [27], iSulf-Cys [28], Mul-SNO [29], PresNO [30], SIMLIN [31], SulCysSite [32] and pCysMod [33].

Data processing

The CysPTM data extracted from the literature were annotated and integrated with external resources (Supplementary Figure S2). The CysPTM information was clustered into two levels: modified sites and proteins (Figure 1B). The information for each site includes the CysPTM type and the related modification category, the identification approach, the name of the sample (or cell line) where the modification was detected, flanking sequence regions from the corresponding protein in the UniProtKB database [34] and the references (i.e. PubMed IDs). The information for each protein includes gene and protein names, UniProt AC, organism, functional description, subcellular location, protein sequence with highlighted CysPTM sites, functional regions, secondary structure [34] and tertiary structure from the AlphaFold database [35, 36]. In addition, every protein was cross-referenced with three external databases (i.e. Reactome Pathway Database, STRING and dbPTM [14, 22, 23]), providing information about involved pathways, protein–protein interactions and PTM cross-talks.

Development of online analysis tools

CysModDB includes four online bioinformatics tools: gene ontology (GO) enrichment analysis, regulatory network, sequence logo and composition heatmap (Figure 1B). The former two tools were developed for modified proteins, while the latter two were used for modified sequences. The GO enrichment analysis facilitates the enrichment analysis of the CysPTM proteins in specific categories, and the regulatory network reveals the potential regulatory relationships between the modified proteins. The sequence logo and the composition heatmap graphically represent multiple sequence alignment results.

The GO enrichment analysis was developed using the Enrichr web API [37] for statistical protein enrichment analysis. The output would show the results of GO:biological process (BP), GO:molecular function (MF) and GO:cellular component (CC). Additionally, the regulatory network was based on the STRING API [23]. Both GO analysis results and regulatory network are visualized by Echarts [38].

The sequence logo was based on WebLogo [39] and generated using the flanking sequence of modified cysteines. Each logo consists of stacks of symbols, and one stack corresponds to a
The composition heatmap was built using two modules, i.e. position probability matrix (PPM) and position weight matrix (PWM), from the seqlogo python package [39]. PPM describes the probability of each amino acid on each position of the sequences. PWM illustrates the pattern of the amino acid distribution around the modified cysteines. The PPM and PWM for each Basket can be separately calculated through the following formulas.

\[
M_{\text{PPM}} = \begin{pmatrix}
 P_{1,1} & P_{1,2} & \cdots & P_{1,n} \\
 P_{2,1} & P_{2,2} & \cdots & P_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 P_{m,1} & P_{m,2} & \cdots & P_{m,n}
\end{pmatrix},
\]

\[
M_{\text{PWM}} = \log_2 \left(\frac{M_{\text{PPM}}}{b_m} \right),
\]

where \(P_{m,n} \) is the probability of the amino acid \(m \) at the position \(n \) of the sequences. PWM is the PPM converted into log-likelihood, where \(b_m \) is the probability of amino acid \(m \) in the proteome. In this module, \(m \) is up to 20, and the range of \(n \) value is from \(-15 \) to \(+15 \).

Web-server implementation

Figure 1C shows various web applications for developing the front and back ends. The form layout of the front end was arranged using HTML5 and Bootstrap 5. Data and statistical results were shown using two JavaScript packages: D3 and Echarts. Notably, an interactive graphic browser was developed to visualize the PTM sites on proteins. Protein and PTM annotations were outputted using ProtVista and Echarts [38, 40]. Protein tertiary structures with CysPTM annotations were visualized by the interactive viewer 3Dmol.js [41]. On the back end, input data were processed using the Python-based framework Django. All the data were stored and organized by MySQL and Redis (Figure 1C). AJAX was used for the communication between the front-end and the back-end. Jquery was applied to improve interactive development and browser compatibility. Form validation and CSRF validation were added to prevent potential security risks.

Results

Figure 1 shows the construction procedure of CysModDB, which includes three steps. The first step is information collection. The experimentally identified CysPTM sites and identification approaches were retrieved from the literature, as well as online computational programs for predicting CysPTM sites. The second step includes data processing and the integration of online tools. The third step is the web-server construction for storing, showing and visualizing the collected information. The details of each step can be found in ‘Materials and Methods’. In the following, we present the features and functions of the database.

Data summary and statistics

CysModDB contains 70,536 experimentally identified CysPTM sites on 21,654 proteins across 12 organisms. These sites are annotated with 12 modification types and classified into three PTM categories according to the modification characteristics: seven in the oxidation PTM category, two in the lipid PTM category and three in the metabolite PTM category (Figure 2). Among the three categories, oxidation includes the largest number of PTM sites and proteins (60,702 sites and 25,317 proteins), perhaps because oxidation is a common biological reaction throughout the life span (Figure 3A) [42]. Interestingly, the number of s-sulfonylation sites in the oxidation category is minimal (89 sites from 61 proteins), probably because it is at the highest oxidation state. Oxidized cysteines in vivo can be identified using advanced chemical proteomics techniques based on the thiol blocking strategy, like the CPT tags [11]. It should be noted that some tags (e.g. CPT) can identify but not distinguish multiple oxidation types, and the modified sites identified using these tags were grouped and annotated as ‘not elsewhere classified’ (nc) (Figure 3A). Additionally, CysModDB includes three metabolite PTM types (i.e. s-itaconation [19], s-succination [20] and s-carbonylation [43]), which are excluded in previous databases [18].

We investigated the distribution of different modified sites clustered into different PTM types and organisms (Figure 3B). The majority of CysPTM sites are from the human and mouse.
species (human/mouse: 19,072/40,403 sites), covering all three categories. Additionally, s-glutathionylation was widely investigated across six organisms, whereas s-prenylation and s-carbynlation were explored in a single organism and require further analysis. Besides, we collected 32 approaches developed to identify CysPTM sites and 10 online computational programs for predicting the CysPTM sites (Figure 3C). All the prediction tools focus on oxidation and lipid PTM categories, possibly due to numerous related CysPTM sites identified. In contrast, no predictor has been developed for the recently reported metabolite PTM types. Supplementary Table S2 lists the detailed information of the 10 prediction models, including data size, feature encodings and algorithms. We compared the models and found that the early ones were based on traditional machine learning algorithms (e.g. support vector machine and random forest), while the late ones relied on advanced algorithms (e.g. XGBoost and deep neural network). For example, four models for predicting s-sulfenylations sites have been developed, i.e. iSulf-Cys [28], SulCysSite [32], SIMLIN [31] and DeepCSO [24] (Supplementary Table S2).

The latest model DeepCSO, superior to others, was constructed using deep-learning-based long short-term memory instead of traditional machine learning algorithms used in the other models (Supplementary Table S2).

Data query and result display

The 'Home' page briefly introduces CysModDB and data statistics (Figure 4A). The 'Statistics' diagram is an interactive Sankey diagram using Echarts [38] and shows the number of CysPTM sites annotated with different PTM types from distinct species. The diagram links the CysPTM sites to the organisms and the CysPTM categories through weighted lines, where the line thickness is proportional to the number of CysPTM sites. Additionally, the data are accessible via either the 'Browse' page or the 'Search' page (Figure 4B). The 'Browse' page contains two parts: 'Browse by PTM type' and 'Browse by organisms', where each item is clickable to query the results (Figure 4B). There are three options on the 'Search' page (i.e. simple, advanced and multiple searches), where gene name, protein name, UniProt AC and organism name are...
supported as queries (Figure 4C). We exemplified the usage via 'glyceraldehyde-3-phosphate dehydrogenase' (GAPDH), an essential enzyme in glycolytic metabolism. The result page showed the table containing Gene Name, Protein Name, PTM categories, Organism, UniProt AC and CMID (i.e. CysModDB ID) (Figure 4D). Notably, GAPDH has a few isoforms with different UniProt AC.

The detailed information on mouse GAPDH (UniProt AC: P16885) can be visited from the 'Detailed page' via the hyperlink of its CMID. This page shows the annotations on this protein and its CysPTM sites (Figure 4E). The top part contains the summary of the protein and the identified CysPTM types so that the users can take a quick overview. Below the summary, an interactive graphic browser shows the protein sequence with the annotations of the modified cysteines and PTM types, protein functional regions and secondary structures. The Zoom bar can be adjusted to focus on CysPTM site(s) in a specific region, enabling the investigation of the potential functions. For instance, four modifications of cysteine at the 150th position (i.e. C150) are shown in the second
part of Figure 4E. C150 is annotated as an active site and localized in glyceraldehyde-3-phosphate binding region (Figure 4E). Similar to the active site C195 of isocitrate lyase, whose S-itaconation can block the enzyme activity and cause inhibition of bacterial growth [44], these C150 modifications may affect GAPDH catalytic activity and result in metabolic abnormalities. The third part of Figure 4E shows protein information, including UniProt ID, protein functions, subcellular locations and protein sequence with modified cysteines highlighted in red. The fourth part displays a PTM table that summarizes the information of the CysPTM sites, including position, sequence window, PTM type, identification strategy, identification approach, sample origin, reference and publication year. For example, GAPDH C22 was annotated with three modification types: s-nitrosylation identified from mouse ischemia heart cells using the SNOXICAT approach [45], s-glutathionylation recognized from RAW 264.7 cells based on the TMT approach [46] and s-oxidation (nec.) detected by CPT from distinct mouse tissues [11]. The annotations about identification techniques and sample origins contribute to further investigation of C22 modifications. The fifth part of Figure 4E shows the GAPDH tertiary structure with modified cysteines highlighted, which facilitates structural investigation of PTM sites. Finally, three external databases (i.e. Reactome [22], STRING [23] and dbPTM [14]) were cross-referenced to provide additional information about protein pathways, protein–protein interactions and PTM cross-talks for this protein.

Online analysis tools
CysModDB includes a few analysis tools on the ‘Tools’ page, enabling users to promptly analyze the features of the modified sites or proteins of interest (Figure 5). These tools include GO enrichment [37, 47], regulatory network [23], sequence logo [39] and composition heatmap [48]. The items of interest in the PTM table can be selected and saved in the Basket, which appears as a slide page when clicking the Basket button (Figure 5A). The saved items can be moved to Basket A for further analysis. If the items are composed of those with two different features (e.g. sites with different modification types), they can be split into two Baskets (Baskets A and B) to examine the similarities and differences between the two baskets of items (Figure 5A). We took the mouse proteins containing the s-itaconation as an example to demonstrate the analysis of GO enrichment analysis. Figure 5B shows the enrichment results for BP, MF and CC, where the P-value threshold can be adjusted. For instance, these proteins were predominantly enriched in RNA metabolic process (GO:0016070;
Figure 5. The detailed analysis procedure in CysModDB. (A) The ‘Basket’ was designed to add items of interest for later analysis. (B) The enrichment analysis results for GO (FDR-adjusted \(P \)-value < 0.01). (C) Regulatory network result for some s-itaconation proteins (the input proteins were marked as orange circle). (D) Sequence logos for the s-itaconation sites (1117 sites; Basket A) and the rest modified sites (2181 sites; Basket B) in the mouse proteins. (E) Heatmaps of position probability matrix and position weight matrix for the same data in (D).

FDR-adjusted \(P \)-value = 3.0e−08, RNA binding (GO:0003723; FDR-adjusted \(P \)-value = 1.3e−60) and nucleus (GO:0005634; FDR-adjusted \(P \)-value = 2.0e−26), indicating s-itaconation may play a role in regulating transcription. Indeed, s-itaconation can suppress inflammation by metabolism regulation and anti-inflammatory signal pathway [19]. Here we selected three s-itaconated proteins to generate a small regulatory network. The proteins included LDHA and IDH1, related to energy metabolism, and Keap1, an anti-inflammatory transcription factor. Figure 5C shows that all three proteins interact with a series of other proteins, suggesting that s-itaconation may regulate macrophage activity via multiple pathways.

The occurrence of a PTM site is usually affected by the residues around the modified site. In other words, certain amino acid types may be preferred as flanking residues for a specific PTM type. The preference for flanking residues can be identified using
Table 1. A comparison between CysModDB and other available related databases

	CysModDB	iCysMod	SwissPalm	dbSNO	
Modification types	12 types: S-NO, S-OH, S-O2H, S-O3H, S-SG, S-SH, S-SR, S-Palm, S-Pren, S-Carb, S-Ita, S-Suc, S-oxidation (nec.)	8 types: S-NO, S-OH, S-O2H, S-SG, S-SH, S-SR, S-Palm, S-oxidation (nec.)	1 type: S-Palm	1 type: S-NO	
Data main source	Literature retrieving	Database collection	Literature retrieving	Literature retrieving	
Number of PTM sites	70,536	85,747	7,459	4,165	
Protein information					
Protein functions	√	√	√	√	
Full sequences	Provided with PTM positions highlighted	√			
Subcellular localization	√	–	√	√	
Secondary structure	Experimentally determined	Prediction by NetSurfP-2.0	–	Experimentally determined	
Tertiary structure	Extracted from AlphaFold DB	–	–	Extracted from PDB	
Functional regions	Extracted from Uniprot	–	–	Extracted from InterPro	
Pathways	Link to Reactome	–	–	Link to KEGG	
Protein–protein interactions	Link to STRING	–	–	–	
PTM site information					
PTM types	√				√
PubMed IDs	√				√
Flanking sequences	√				√
PTM cross-talks	Link to dbPTM	–	–	Link to dbPTM	
Sample origin					
PTM detection techniques	√				
Visualization	Interactive	Interactive	–	Static	
Online analysis tools	GO analysis, regulatory network, sequence logo and composition heatmaps	–	–	SNO-containing protein regulatory network	
External prediction tools					
Data acquisition	Direct download	By request	Direct download	Direct download	
File formats for download	tsv, xml, fasta and json	tsv	tsv and json	tsv	

Additionally, the ‘About’ page provides the contact information of the platform developers.

Discussion and conclusions

With the identification of numerous CysPTM types and their significant roles in life activities, it is necessary to establish a comprehensive platform integrated with CysPTM data resources and online analysis tools for the community. CysModDB is such a platform, containing 70,536 CysPTM sites on 21,654 proteins across 12 organisms and covering 12 PTM types. Extensive information from external databases and literature is included to annotate the CysPTM sites and related proteins. CysModDB includes a customized graphic browser to visualize the distribution of modified sites compared with other PTM types and mapping these sites to protein structures and functional regions, which assists in exploring cross-talks between the modified sites and the potential influence of the CysPTM sites on protein functions. Online analysis tools are integrated, including gene enrichment, regulatory network, investigation of sequence features and online computational classifiers for predicting CysPTM sites.

Compared with the reported CysPTM databases (Table 1), CysModDB contains more PTM types, richer annotations and information visualization and more data formats for downloading. Specifically, it includes experimental identification.
Supplementary Table S3 shows that 9 CysModDB is a comprehensive platform including 70,536 subtypes are noteworthy compared with the cross-talks between s-nitrosylation and these two oxidation to s-glutathionylation and s-sulfenylation. Indeed, the numbers sulfenylation, suggesting that s-nitrosylation has similar features is the shortest, followed by that between s-nitrosylation and s-glutathionylation, as well, and therefore, the modified sites recognized by sodium arsenate was applied to detect s-sulfenylation, but it was later found to identify disulﬁdes as well, and therefore, the modified sites recognized by sodium arsenate cannot be annotated with s-sulfenylation only [1, 50].

As most of the CysPTM types in CysModDB are identiﬁed from the human species, we examined sequence preferences around the modiﬁcation sites of different CysPTM types in humans. The results are similar to the previous study in the iCysMod database [18] (data not shown). Furthermore, we investigated the differences between the CysPTM types by calculating the Euclidean distance of the PPMs of every two CysPTM types. A short distance indicates similar sequence features. Figure 6A shows that the distance between s-nitrosylation and s-glutathionylation is the shortest, followed by that between s-nitrosylation and s-sulfenylation, suggesting that s-nitrosylation has similar features to s-glutathionylation and s-sulfenylation. Indeed, the numbers of cross-talks between s-nitrosylation and these two oxidation subtypes are noteworthy compared with the cross-talks between any other two types (Figure 6B), which is consistent with the previous study [18, 51]. Interestingly, the distance between s-nitrosylation and s-succination is relatively short, suggesting both share certain sequence features (Figure 6A). Figure 6A also shows that s-palmitoylation is far from any other CysPTM type, probably because s-palmitoylation requires catalysis by enzymes with unique features, whereas the rest modiﬁcation types do not [2].

Different CysPTM types can competitively co-occupy at the identical position. Such co-occurrences include pairwise cross-talks between two different CysPTM types at the same position and multiple cross-talks with more than two CysPTM types. We investigated the cross-talks from the human CysPTM sites in CysModDB (Figure 6B; Supplementary Table S3). There are 1987 sites involved in pairwise cross-talks and 1262 sites involved in multiple cross-talks (Supplementary Table S3). s-nitrosylation contributed to the most PTM sites and formed the most cross-talks to other oxidation types (e.g. 464 to s-sulfenylation, 419 to s-glutathionylation, 273 to s-persulfidation), which might match the fact that s-nitrosylation is the initial state of many oxidation types [52]. Additionally, as the three CysPTM types (i.e. s-glutathionylation: 1748, s-palmitoylation: 1525 and s-persulfidation: 1660) have a similar number of PTM sites, we investigated their pairwise cross-talks. The number of cross-talks between s-glutathionylation and s-persulfidation was 353, double than those for the other two pairs (196 and 165). This observation suggests the high similarity of both oxidation types and the difference between them and s-palmitoylation.

A few shortcomings of CysModDB still need to be addressed in the future. First, the identiﬁcation method lacks detailed description and may be hard to understand. It is better to visualize them with graphics and provide the chemical structure of probes. Second, the online analysis tools require manual operations, which is inconvenient for large data analysis. We will develop an API to analyze the data in batches or enable users to upload data. Third, the online analysis tools are limited, and we will integrate other powerful tools such as network analysis. In addition, we will collect more CysPTM data with richer annotations. As some CysPTM types (e.g. s-itaconation [19] and s-succination [20]) still lack computational prediction tools, we will develop related predictors based on advanced algorithms such as ensemble learning, multi-feature fusion and deep learning [53–55]. Overall, CysModDB is a comprehensive online platform integrating various data and tools to provide an almost one-stop solution for investigating CysPTM, and we anticipate that it is helpful for both experimental and computational biologists.

Key Points
• CysModDB is a comprehensive platform including 70,536 cysteine PTM sites with 12 different types, covering the
largest number of PTM types compared with previous databases.

- CysModDB comprises several parts: PTM site and protein annotations, cross-reference to external resources, online computational tools for predicting CysPTM sites and integrated analysis tools. They are integrated by a customized graphic browser and a ‘Basket’.
- CysModDB is user-friendly, in which the information is easily accessible, and data are downloadable in various file formats.

Supplementary Data

Supplementary data are available online at https://academic.oup.com/bib.

Funding

National Natural Science Foundation of China (grant 31770821, 32071430); Shandong Training Program of Innovation and Entrepreneurship for Undergraduates (grant S202011065118).

References

1. Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev 2018;47:231–68.
2. Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007;8:74–84.
3. Xu N, Shen N, Wang X, et al. Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Sci China Life Sci 2015;58:328–35.
4. Diskin C, Ryan TAJ, O’Neill LAJ. Modification of proteins by metabolites in immunity. Immunity 2021;54:19–31.
5. Peng T, Thonon E, Hang HC. Proteomic analysis of fatty-acetylated proteins. Curr Opin Chem Biol 2016;30:77–86.
6. Qin W, Yang F, Wang C. Chemoproteomic profiling of protein-metabolite interactions. Curr Opin Chem Biol 2020;54:28–36.
7. Bak DW, Bechtel TJ, Falco JA, et al. Cysteine reactivity across the subcellular universe. Curr Opin Chem Biol 2019;48:96–105.
8. Jeong A, Suazo KF, Wood WG, et al. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Crit Rev Biochem Mol Biol 2018;53:279–310.
9. Weiss JM, Davies LC, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest 2018;128:3794–805.
10. Couvertier SM, Zhou Y, Weerapan E. Chemical-proteomic strategies to investigate cysteine posttranslational modifications. Biochim Biophys Acta 2014;1844:2315–30.
11. Xiao H, Jedrychowski MP, Schwepe DK, et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 2020;180:968, 8924–938.e24.
12. Yang J, Gupta V, Carroll KS, et al. Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun 2014;5:4776.
13. Sun MA, Wang Y, Cheng H, et al. RedoxDB—a curated database for experimentally verified protein oxidative modification. Bioinformatics 2012;28:2551–2.
14. Li Z, Li S, Luo M, et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res 2022;50:D471–9.
15. Chen YJ, Su MG, et al. dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation. Nucleic Acids Res 2015;43:D503–11.
16. Chen YJ, Lu CT, Lee TY, et al. dbGSH: a database of S-glutathionylation. Bioinformatics 2014;30:2386–8.
17. Blanc M, David F, Abrami I, et al. SwissPalm: protein palmitoylation database. F1000Res 2015;4:261.
18. Wang P, Zhang Q, Li S, et al. iCysMod: an integrative database for protein cysteine modifications in eukaryotes. Brief Bioinform 2021;22. https://doi.org/10.1093/bib/bbaa1400.
19. O’Neill LAJ, Artyomov MN. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 2019;19:273–81.
20. Merkley ED, Metz TO, Smith RD, et al. The succininated proteome. Mass Spectrom Rev 2014;33:98–109.
21. Qu Z, Greenlief CM, Gu Z. Quantitative proteomic approaches for analysis of protein S-nitrosylation. J Proteome Res 2016;15:1–14.
22. Jassal B, Matthews I, Viteri G, et al. The reactome pathway knowledgebase: Nucleic Acids Res 2020;48:D498–503.
23. Szkarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021;49:D605–12.
24. Lyu X, Li S, Jiang C, et al. DeepCSO: a deep-learning network approach to predicting cysteine S-sulphenylation sites. Front Cell Dev Biol 2020;8:594587.
25. Li S, Yu K, Wang D, et al. Deep learning based prediction of species-specific protein S-glutathionylation sites. Biochim Biophys Acta Proteins Proteomics 2020;1868:140422.
26. Ning W, Jiang P, Guo Y, et al. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins. Brief Bioinform 2021;22:1836–47.
27. Xu Y, Wang Z, Li C, et al. iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med Chem 2017;13:544–51.
28. Xu Y, Ding J, Wu LY. iSulf-Cys: prediction of S-sulphenylation sites in proteins with physicochemical properties of amino acids. PLoS One 2016;11:e0154237.
29. Zhao Q, Ma J, Wang Y, et al. Mul-SNO: a novel prediction tool for S-nitrosylation sites based on deep learning methods. IEEE J Biomed Health Inform 2021;26:2379–87.
30. Hasan MM, Manavalan B, Khatun MS, et al. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol Omics 2019;15:451–8.
31. Wang X, Li C, Li F, et al. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models. BMC Bioinformatics 2019;20:602.
32. Hasan MM, Guo D, Kurata H. Computational identification of protein S-sulphenylation sites by incorporating the multiple sequence features information. Mol Biosyst 2017;13:2545–50.
33. Li S, Yu K, Wu G, et al. pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front Cell Dev Biol 2021;9:617366.
34. UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021;49:D480–9.
35. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.
36. Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural
coverage of protein-sequence space with high-accuracy models.

Nucleic Acids Res 2022;50:D439–44.

37. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.

Nucleic Acids Res 2016;44:W90–7.

38. Li D, Mei H, Shen Y, et al. ECharts: a declarative framework for rapid construction of web-based visualization.

Vis Informatics 2018;2:136–46.

39. Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator.

Genome Res 2004;14:1188–90.

40. Watkins X, Garcia LJ, Pundir S, et al. ProtVista: visualization of protein sequence annotations.

Bioinformatics 2017;33:2040–1.

41. Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL.

Bioinformatics 2015;31:1322–4.

42. Held JM. Redox systems biology: harnessing the sentinels of the cysteine redoxome.

Antioxid Redox Signal 2020;32:659–76.

43. Curtis JM, Hahn WS, Long EK, et al. Protein carbonylation and metabolic control systems.

Trends Endocrinol Metab 2012;23:399–406.

44. Zhang Y, Qin W, Liu D, et al. Chemoproteomic profiling of itaconations in Salmonella.

Chem Sci 2021;12:6059–63.

45. Chouchani ET, James AM, Methner C, et al. Identification and quantification of protein S-nitrosoylation by nitrite in the mouse heart during ischemia.

J Biol Chem 2017;292:14486–95.

46. Duan J, Zhang T, Gaffrey MJ, et al. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations.

Redox Biol 2020;36:101649.

47. Klopfenstein DV, Zhang L, Pedersen BS, et al. GOATOOLS: a Python library for gene ontology analyses.

Sci Rep 2018;8:10872.

48. Wang H, Wang Z, Li Z, et al. Incorporating deep learning with word embedding to identify plant ubiquitylation sites.

Front Cell Dev Biol 2020;8:572195.

49. He Y, Shen Z, Zhang Q, et al. A survey on deep learning in DNA/RNA motif mining.

Brief Bioinform 2021;22. https://doi.org/10.1093/bib/bbaa1229.

50. Tyther R, Ahmeda A, Johns E, et al. Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat.

J Proteome Res 2010;9:2678–87.

51. Martinez-Ruiz A, Lamas S. Signalling by NO-induced protein S-nitrosoylation and S-glutathionylation: convergences and divergences.

Cardiovasc Res 2007;75:220–8.

52. Gorelenkova Miller O, Mieyal JJ. Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases.

Arch Toxicol 2015;89:1439–67.

53. Bao W, Yuan CA, Zhang Y, et al. Multi-features prediction of protein translational modification sites.

IEEE/ACM Trans Comput Biol Bioinform 2018;15:1453–60.

54. Bao W, Yang B, Chen B. 2-hyd_Ensemble: lysine 2-hydroxyisobutyrylation identification with ensemble method.

Chemom Intel Lab Syst 2021;215:104351.

55. Chen Z, Liu X, Li F, et al. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.

Brief Bioinform 2019;20:2267–90.

56. Chen T, Zhang H, Liu Y, et al. EVenn: easy to create repeatable and editable Venn diagrams and Venn networks online.

J Genet Genomics 2021;48:863–6.