Supplementary materials

Fruit size control by a zinc finger protein regulating pericarp cell size in tomato

Fangfang Zhao1,2,\#, Jiajing Zhang1,3,\#, Lin Weng1, Meng Li1, Quanhua Wang3, and Han Xiao1,*

Supplementary materials include:
Supplementary Figure S1-3
Supplementary Table S1
Figure S1. expression changes of cyclin genes in the whole fruits by altered *SlPZF1* expression

Total RNA was extracted from pooled samples of three plants of the RNAi, OE and wild type at the same developmental stages. Pre, young flower buds preanthesis; AnFl, anthesis flowers; Fr2/3, fruits at 2 and 3 DPA; Fr5, Fr7 and Fr10 are fruits at 5, 7 and 10 DPA, respectively. Relative expression level was normalized to *SleIF4a6* and data are means ± sd. n=3.
Figure S2. Co-expression analysis of SlPZF1 during fruit development

a, expression pattern of SlPZF1 in M82 fruits. b, expression pattern of PZF12 in M82 fruits. c, gene ontology analysis of genes co-expressing with SlPZF1 during fruit development. Enriched GO-slim terms were identified from the 1137 genes co-expressing with SlPZF1 in M82 fruits (correlation coefficient ≥0.7) by PATHER with a cutoff of fold enrichment >2 and FDR <0.05 (http://go.pantherdb.org/). The images in (a, b) were obtained from TEA (http://tea.solgenomics.net/expression_viewer/).
Figure S3. SlPZF1 interacted with PZFIs in N. benthamiana leaves.

a, subcellular localization of YFP alone and YFP fused with SlPZF1 and five PZFIs. b, BiFC verification of the interactions between SlPZF1 and five PZFIs in N.benthamiana leaves. Except YFP alone (a), merged images of YFP, autofluorescence and bright field were shown here, the single channel images of YFP signals were presented in Figure 8. YFPN, N-terminal part of YFP; YFPC, C-terminal part of YFP. Scale bar = 20 μm.
Supplementary table 1. Information of primers used in this study

Primer names	Sequence (5'-3')	Genes	Product sizes	Notes
Primers used for constructing vectors of plant transformation				
xp0687	GCTCTAGAGCCATGGCAATGGGGGAGAAGA	*SIPZF1*	2754bp	construction of overexpression vector
xp0688	CGAGCTCTTAGGCTTTGACAGATTACACAAAAACAA			
xp0791	TGCTCTAGAGGCGCGGCGTTATCTGAGTATAAGTAAAGGAAAAG	*SIPZF1*	395bp	RNAi construct
xp0792	CCGGATCCATTTAAATAAATAGTAGGATTTCAGCTACATC			
xp1027	CGCGGATCCTTTCAAGATTCTATCTCCTTCAACAAC	*SIPZF1*	2300bp	pSIPZF1::GUS
xp1073	CCGGAATTCTATCATACACAAGGTGAGTACAGATC			
Primers used for genotyping				
xp0515	CTACACAGCCATCGGCTTCCAG	*HygR*	787bp	
xp0516	CGTTATGTTTATCGGCACTTTG			
xp0517	AAAGCCAAGCAGACATTTAGGA	*BastaR*	957bp	nt 181-1137 on pFGC5941
xp0518	AGATACGCTGACACGCCAAG			
qRT-PCR primers				
xp0560	TGGAACTTCTTTCTGGGGTAC	*SIPZF1*	400bp	Solyc07g063970
xp0561	TTCGACAGAGCGACGACATTTTAT			
xp1163	CTCTGAAGCACCACACTTGG	*SlCYCB1;1*	148bp	Solyc06g073610
xp1164	AAGAGGGGCAACAGCAGATCT			
xp2491	GGGATGTATTTTTGGCCGAGA	*SlCDKB1*	187bp	Solyc10g074720
ID	Sequence	Gene	Length	Accession
-------	---------------------------------	---------	--------	-------------
xp2492	GAACAGCAGAGGCAAGTTC	SlCDKB2	150bp	Solyc04g082840
xp2493	GGGAGGGTACCTATGGAAG	SlCYCA2;1	168bp	Solyc06g065680
xp2494	CCCTTGAGAGCATTCTGAGG			
xp2495	CAAGCACAAGTCAAGGACCA	SlCYCA1;1	209bp	Solyc11g005090
xp2496	AGCCTTCCTGTTTCAAGCAA			
xp2497	CCGTTTTCTCACTCCTCCTCAA			
xp2498	SlCYCA1;1			
xp2499	SlCDKB2			
xp2500	AAGTGGCAGAAAGGCAAGGAATG			
xp2501	SlCDKB2			
xp2502	SlCDKB2			
xp2503	SlCDKB2			
xp2504	SlCDKB2			
xp2505	SlCDKB2			
xp2506	SlCDKB2			
xp2507	SlCDKB2			
xp2508	SlCDKB2			
xp2509	SlCDKB2			
xp2510	SlCDKB2			
xp2511	SlCDKB2			
xp2512	SlCDKB2			
xp2513	SlCDKB2			
xp2514	SlCDKB2			
xp2515	SlCDKB2			
xp2516	SlCDKB2			
xp2517	SlCDKB2			
xp2518	SlCDKB2			
xp2519	SlCDKB2			
xp2520	SlCDKB2			
xp2521	SlCDKB2			
xp2522	SlCDKB2			
xp2523	SlCDKB2			
xp2524	SlCDKB2			
xp2525	SlCDKB2			
xp2526	SlCDKB2			
xp2527	SlCDKB2			
xp2528	SlCDKB2			
xp2529	SlCDKB2			
xp2530	SlCDKB2			
xp2531	SlCDKB2			
xp2532	SlCDKB2			
xp2533	SlCDKB2			
xp2534	SlCDKB2			
xp2535	SlCDKB2			
xp2536	SlCDKB2			

Primers used for subcellular localization and BiFC

ID	Primer 1	Primer 2	Accession	Length	
XP7094	ggg GGTACC	ATGACACAAATCTTCAAAATATGG	Solyc01g006400	779bp	
XP7095	aaa GTCGAC	CTTCACTCATCATTGGATAGCT	Solyc09g074830	1449bp	
XP7707	aaaaaa GGTACC	CTTAATGCGAGAAAGACCAAAGTTGA	Solyc09g072570	1449bp	BiFC
XP7603	aaaaa GTCGAC				
Accession	Description	Sequence Details	Annotation		
-----------	-------------	-----------------	------------		
XP6989		TCAGTGAAGGAAGTCCTTCATTGGA	BiFC 1398bp		
XP6990		aaaaaa GGTACC ATGTCTAGAGGCTCTGTTTTCAGAG	01g079350		
XP6987		aaaaaa GGTACC ATGTACAAATATAAATGGACCTTTT	BiFC 1342bp		
XP7220		aaaaaa GTCGAC TCAAGCCTGCTCTTCTCACGAATT	03g116830		
XP6985		aaaaaa GGTACC ATGGGGTATTTTGCTGAAAGAGGT	BiFC 2793bp		
XP6986		aaaaaa GGTACC TTAATTACAGGGGCTACTACCTGGTT	c11g068960		
XP7094		ggg GGTACC ATGACACAAATCATTCAAATATGGAA	Subcellular localization 779bp		
XP7095		aaaa GTCGAC CTCATTACATCATCTTGGATAGCTT	01g006400		
XP7707		aaaaaa GGTACC CTTAATGCAGAAAGCAAGAATTGG	Subcellular localization 1449bp		
XP7603		aaaaaaa GTCGAC TCAGTGAAAGGAAGTCCTTCATTGGA	09g072570		
XP6989		aaaaaaa GGTACC ATGTCTAGAGGCTCTGTTTTCAGAG	BiFC 1398bp		
XP6990		aaaaaaa GGTACC ATGTCTAGAGGCTCTGTTTTCAGAG	01g079350		
XP6987		aaaaaaa GGTACC ATGTACAAATATAATGGACCTTTT	BiFC 1342bp		
XP7220		aaaaaaa GTCGAC TCAAGCCTGCTCTTCTCACGAATT	03g116830		
XP6985		aaaaaaa GGTACC ATGGGGTATTTTGCTGAAAGAGGT	BiFC 2793bp		
XP6986		aaaaaa GGTACC ATGGGGTATTTTGCTGAAAGAGGT	c11g068960		
Accession	Sequence 1	Sequence 2	Description		
-----------	------------	------------	------------------------------		
XP6986	aaaaaa GGTACC TTAATTACAGGGTCTACTACCTGTT	XP6991 aaaaaa GGTACC ATGGGGGAGAAGAAGAATAT	PZF1/Solyc0 7g063970 1284bp Subcellular localization and BiFC		
XP6992	aaaaaa GTCGAC TTAGGCTTTGCAAGATTACCAAAAA				