CLASSIFYING p-GROUPS VIA THEIR MULTIPLIER

PEYMAN NIROOMAND

Abstract. The author in (On the order of Schur multiplier of non-abelian p-groups. J. Algebra (2009).322: 4479–4482) showed that for any p-group \(G \) of order \(p^n \) there exists a nonnegative integer \(s(G) \) such that the order of Schur multiplier of \(G \) is equal to \(p^{\frac{1}{2}(n-1)(n-2)}+1-s(G) \). Furthermore, he characterized the structure of all non-abelian p-groups \(G \) when \(s(G) = 0 \). The present paper is devoted to characterization of all p-groups when \(s(G) = 2 \).

The concept of Schur multiplier, \(\mathcal{M}(G) \), have been studied by several authors, initiated by Schur in 1904. It is known that the order of Schur multiplier of a given finite p-group of order \(p^n \) is equal to \(p^{\frac{1}{2}n(n-1)-t(G)} \) for some \(t(G) \geq 0 \) by a result of Green [5]. It is of interest to know which p-groups have the Schur multiplier of order \(p^{\frac{1}{2}n(n-1)-t(G)} \), when \(t(G) \) is in hand.

Historically, there are several papers trying to characterize the structure of \(G \) by just the order of its Schur multiplier. In [1] and [13], Berkovich and Zhou classified the structure of \(G \) when \(t(G) = 0, 1 \) and \(2 \), respectively.

Later, Ellis in [2] showed that having a new upper bound on the order of Schur multiplier of groups reduces characterization process of structure of \(G \). He reformulated the upper bound due to Gaschütz at. al. [4] and classified with a quite way to that of [1, 13] the structure of \(G \) when \(t(G) = 3 \).

The result of [9] shows that there exists a nonnegative integer \(s(G) \) such that \(|\mathcal{M}(G)| = p^{\frac{1}{2}(n-1)(n-2)}+1-s(G) \) which is a reduction of Green’s bound for any given non-abelian p-group \(G \) of order \(p^n \). One can check that the structure of \(G \) can be characterized by using [9, Main Theorem], when \(t(G) = 1, 2, 3 \). Moreover, characterizing non-abelian p-groups by \(s(G) \) can be significant since for instance the result of [9] and [12] emphasize that the number of groups with a fixed \(s(G) \) is more than that with fixed \(s(G) \). Also the results of [10] and [11] show handling the p-groups characterized by \(s(G) = 0, 1 \) may be caused to characterize the structure of \(G \) by \(t(G) \).

In the present paper, we intend to classify the structure of all non-abelian p-groups when \(s(G) = 2 \).

Throughout this paper we use the following notations.

\(Q_8 \): quaternion group of order 8,
\(D_8 \): dihedral group of order 8,
\(E_1 \): extra special p-group of order \(p^3 \) and exponent \(p \),
\(E_2 \): extra special p-group of order \(p^3 \) and exponent \(p^2 \) (\(p \neq 2 \)),
\(\mathbb{Z}_{p^m} \): direct product of \(m \) copies of the cyclic group of order \(p^n \),
\(G_{ab} \): the abelianization of group \(G \),
\(H \cdot K \): the central product of \(H \) and \(K \).

Date: March 4, 2010.
Mathematics Subject Classification 2010. Primary 20D15; Secondary 20E34, 20F18.
\[E(m) : E \cdot Z(E), \] where \(E \) is an extra special \(p \)-group and \(Z(E) \) is cyclic group of order \(p^m \) \((m \geq 2)\),

\(\Phi(G) \): the Frattini subgroup of group \(G \).

Also, \(G \) has the property \(s(G) = 2 \) or briefly with \(s(G) = 2 \) means the order of its Schur multiplier is of order \(p^{2(n-1)(n-2)-1} \).

The following lemma is a consequence of \([9] \) Main Theorem.

Lemma 1. There is no \(p \)-group with \(|G'| \geq p^3 \) and \(s(G) = 2 \).

Lemma 2. There is no \(p \)-group of order \(p^n \) \((n \geq 5)\) when \(G^{ab} \) is not elementary abelian and \(s(G) = 2 \).

Proof. First suppose that \(n = 5 \). By virtue of \([11] \) Theorem 3.6, the result follows.

In case \(n \geq 6 \), by invoking \([9] \) Lemma 2.3, we have \(|\mathcal{M}(G/G')| \leq p^{2(n-2)(n-3)} \), and since \(G/Z(G) \) is capable the rest of proof is obtained by using \([3] \) Proposition 1. □

Lemma 3. Let \(G \) be a \(p \)-group and \(|G'| = p \) or \(p^2 \) with \(s(G) = 2 \). Then \(Z(G) \) is of exponent at most \(p^2 \) and \(p \), respectively.

Proof. Taking a cyclic central subgroup \(K \) of order \(p^k \) \((k \geq 3)\) and using \([5] \) Theorem 2.2, we should have

\[
|\mathcal{M}(G)| \leq |G/K \otimes K|p^{\frac{k}{2}(n-k)(n-k-1)} \leq p^{n-k-1-p^{\frac{k}{2}(n-k)(n-k-1)}} \leq p^{\frac{k}{2}(n-1)(n-2)-2},
\]

which is a contradiction. In case \(|G'| = p^2 \), the result obtained similarly. □

Lemma \([11] \) indicates when \(G \) has the property \(s(G) = 2 \), then \(|G'| \leq p^2 \). First we suppose that \(|G'| = p \).

Theorem 4. Let \(G \) be a \(p \)-group with centre of order at most \(p^2 \) and \(G^{ab} \) be elementary abelian of order \(p^{n-1} \) and \(s(G) = 2 \). Then \(G \cong E(2), E_2 \times \mathbb{Z}_p, Q_8 \) or \(H \), where \(H \) is an extra special \(p \)-group of order \(p^{2m+1} \) \((m \geq 2)\).

Proof. First assume that \(|Z(G)| = p \). Hence \(G \cong Q_8 \) or \(G \cong H \), where \(H \) is an extra special \(p \)-group of order \(p^{2m+1} \) \((m \geq 2)\) by a result of \([3] \) Theorem 3.3.6. Now, assume that \(|Z(G)| \geq p^2 \). Lemma \([3] \) and assumption show that \(Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \) or \(\mathbb{Z}_{p^2} \).

In case for which \(Z(G) \) is of exponent \(p \), \([9] \) Lemma 2.1] follows that \(G \cong H \times \mathbb{Z}_p \). It is easily checked that \(H \cong E_2 \) by using \([8] \) Theorems 2.2.10 and 3.3.6.

In case \(Z(G) \) is of exponent \(p^2 \), since \(\Phi(G) = G' \), \([4] \) Theorem 3.1] shows that

\[
p^{\frac{k}{2}(n-1)(n-2)} = |\mathcal{M}(G/\Phi(G))| \leq p \cdot |\mathcal{M}(G)|,
\]

and hence \(p^{\frac{k}{2}(n-1)(n-2)-1} \leq |\mathcal{M}(G)| \). On the other hand, Main Theorems of \([9] \) and \([2] \) imply that \(|\mathcal{M}(G)| = p^{\frac{k}{2}(n-1)(n-2)-1} \) since \(Z(G) \) is cyclic of order \(p^2 \). Moreover, \(G \cong E(2) \) by appealing \([3] \) Lemma 2.1, as required. □

Theorem 5. Let \(G \) be a \(p \)-group, \(G^{ab} \) be elementary abelian, \(|G'| = p \) and \(|Z(G)| \geq p^3 \) be of exponent \(p^2 \). Then \(G = H \cdot Z(G) \) and \(H \cap Z(G) = G' \) by virtue of \([9] \) Lemma 2.1.

Now, for the sake of clarity, we consider two cases.

Case 1. First assume that \(G' \) lies in a central subgroup \(K \) of exponent \(p^2 \). Therefore, one can check that there exists a central subgroup \(T \) such that \(G = H \cdot K \times T \cong \).
Thus, when T is an elementary abelian p-group by using [8] Theorem 2.2.10 and Theorem [3] we have
\[|\mathcal{M}(G)| = |\mathcal{M}(E(2))||\mathcal{M}(T)||E(2)^{ab} \otimes T| \]
\[= 2m^2 + m - 1 + \frac{1}{p}(n - 2m - 2)(n - 2m - 3) + 2m + 1(n - 2m - 2) \]
\[= \frac{1}{p}(n - 1)(n - 2) - 1. \]

In the case T is not elementary abelian, a similar method and [9] Lemma 2.2 asserts that
\[|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n^2 - 5n + 4)} \leq p^{\frac{1}{2}(n - 1)(n - 2) - 2}. \]

Case 2. G' has a complement T in $Z(G)$, and hence $G = H \times T$ where T is not elementary abelian, and so by invoking [9] Lemma 2.2 and [8] Theorems 2.2.10 and 3.3.6, $|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n - 1)(n - 2) - 2}$. □

Theorem 6. Let G be a p-group of order p^n, G^{ab} be elementary abelian of order p^{n-1} and $Z(G)$ be of exponent p. Then G has the property $s(G) = 2$ if and only if it is isomorphic to one of the following groups.
\[Q_8 \times \mathbb{Z}_2^{(n-3)}, E_2 \times \mathbb{Z}_p^{(n-3)} \text{ or } H \times \mathbb{Z}_p^{(n-2m-1)}, \]
where H is extra special of order p^{2m+1}. $m \geq 2$.

Proof. It is obtained via Theorem [3][8] Theorems 2.2.10 and 3.3.6 and assumption. □

Lemma 7. Let G be a p-groups of order p^n and $|G'| = p$. Then G has the property $s(G) = 2$ if and only if G is isomorphic to the one of the following groups.
\[
(1) \quad Q_8 \times \mathbb{Z}_2,
(2) \quad \langle a, b | a^4 = 1, b^4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a^2b^2 \rangle
(3) \quad E_2 \cong E_2(2),
(4) \quad E_2 \otimes \mathbb{Z}_2,
(6) \quad \langle a, b | a^{p^2} = 1, b^p = 1, [a, b, a] = [a, b, b] = 1 \rangle,
\]

Proof. It is obtained by using Theorems [1][2] and a result of [10] Lemma 3.5. □

The structure of all p-group of order p^n is characterized with the property $s(G) = 2$ and $|G'| = p^2$. Now, we may suppose that $|G'| = p^2$.

Lemma 8. There is no p-group of order p^n $(n \geq 5)$ with $s(G) = 2$, where $|G'| = p^2$ and $G' \not\subseteq Z(G)$.

Proof. First assume that $|Z(G)| = p^2$, since $Z(G)$ is elementary by Lemma [4] Let K be a central subgroup of order p, such that $|(G/K)'| = p^2$. It is seen that
\[|\mathcal{M}(G)| \leq |\mathcal{M}(G/K)||K \otimes G/(K \times G')| \leq |\mathcal{M}(G/K)| \leq p^{n-3} \]
by [11] Theorem 4.1. On the other hand, [9][12] Main Thorems imply that
\[|\mathcal{M}(G/K)| \leq p^{\frac{1}{2}(n-2)(n-3)-1}, \]
and hence $|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n-1)(n-2)-2}$.

In case $|Z(G)| = p$, there exists a central subgroup K of order p^2 such that $G' \cap K = 1$. The rest of proof is obtained similar to the pervious case. When $|Z(G)| = p$, since G is nilpotent of class 3, the result is deduced by [8] Proposition 3.1.11]. □
Theorem 9. Let G be a p-group of order p^n ($n \geq 5$) and $|G'| = p^2$ with $s(G) = 2$. Then

$$G \cong \mathbb{Z}_p \times (\mathbb{Z}_p^{(4)} \rtimes_\theta \mathbb{Z}_p) \ (p \neq 2).$$

By the results of Lemmas 4 and 8 we may assume that $G' \subseteq Z(G)$ and $Z(G)$ is of exponent p. We consider three cases relative to $|Z(G)|$.

Case1. Assume that $|Z(G)| = p^4$, there exists a central subgroup K of order p^2 such that $K \cap G' = 1$. [9] Main Theorem implies that $|\mathcal{M}(G/K)| \leq p^{\frac{1}{2}(n-3)(n-4)}$, and so $|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n-1)(n-2)-1}$ due to [7] Theorem 4.1.

Case2. In the case $|Z(G)| = p^2$, we have $G' = Z(G)$. Moreover [12] Main Theorem deduces that $n \geq 6$ and so there exists a central subgroup K such that $G/K \cong H \times Z(G/K)$ where H is a extra special p-groups of order p^{2m+1} $m \geq 2$, thus

$$|\mathcal{M}(G)| \leq p^{n-3} |\mathcal{M}(G/K)| \leq p^{n-3} p^{\frac{1}{2}(n-1)(n-4)} \leq p^{\frac{1}{2}(n-1)(n-2)-2}.$$

Case3. Now, we may assume that $|Z(G)| = p^3$. Let K be a complement of G' in $Z(G)$, so [11] Main Theorem asserts that $|\mathcal{M}(G/K)| \leq p^{\frac{1}{2}(n-2)(n-3)}$. On the other hand, [7] Theorem 4.1 and assumption imply that

$$p^{\frac{1}{2}(n-1)(n-2)-1} = |\mathcal{M}(G)| \leq |\mathcal{M}(G/K)||K \otimes G/Z(G)| \leq |\mathcal{M}(G/K)|p^{n-3},$$

so we should have $|\mathcal{M}(G/K)| = p^{\frac{1}{2}(n-2)(n-3)}$ and $G/Z(G)$ is elementary abelian. Now, since $|\mathcal{M}(G/K)| = p^{\frac{1}{2}(n-2)(n-3)}$ and $|Z(G')| = p^2$, by using [12] Main Theorem], $G/K \cong \mathbb{Z}_p^{(4)} \rtimes_\theta \mathbb{Z}_p (p \neq 2)$. Moreover, [3] Proposition 1 and assumption show that G^{ab} is elementary abelian. Hence, it is readily shown that

$$G \cong \mathbb{Z}_p \times (\mathbb{Z}_p^{(4)} \rtimes_\theta \mathbb{Z}_p) \ (p \neq 2).$$

Theorem 10. Let G be a group of order p^4 with $s(G) = 2$ and $|G'| = p^2$. Then G is isomorphic to the one of the following groups.

1. \(a, b \mid a^4 = b^2 = 1, [a, b, a] = 1, [a, b, b] = a^6, [a, b, b, b] = 1\),
2. \(a, b \mid a^p = 1, b^p = 1, [a, b, a] = [a, b, b] = [a, b, b, b] = 1\) ($p \neq 3$).

Proof. The structure of these groups has been characterized in [10] Lemma 3.6. □

We summarize all results as follows

Theorem 11. Let G be a group of order p^n. Then G has a property $s(G) = 2$ if and only if isomorphic to the one of the following groups.

1. $E(2) \times \mathbb{Z}_p^{(n-2m-2)}$,
2. $E_2 \times \mathbb{Z}_p^{(n-3)}$,
3. $Q_8 \times \mathbb{Z}_p^{(n-3)}$,
4. $H \times \mathbb{Z}_p^{(n-2m-1)}$, where H is an extra special p-group of order p^{2m+1} ($m \geq 2$),
5. \(a, b \mid a^4 = 1, b^4 = 1, [a, b, a] = 1, [a, b] = a^2 b^2\)
6. \(a, b, c \mid a^2 = b^2 = c^2 = 1, abc = bca = cab\).
7. \(a, b \mid a^{p^2} = 1, b^p = 1, [a, b, a] = [a, b, b] = 1\),
8. $\mathbb{Z}_p \times (\mathbb{Z}_p^{(4)} \rtimes_\theta \mathbb{Z}_p) \ (p \neq 2)$,
9. \(a, b \mid a^4 = b^2 = 1, [a, b, a] = 1, [a, b] = a^6, [a, b, b, b] = 1\),
10. \(a, b \mid a^p = 1, b^p = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1\) ($p \neq 3$).
CLASSIFYING p-GROUPS VIA THEIR MULTIPLIER

References

[1] Berkovich, Ya. G. (1991). On the order of the commutator subgroups and the Schur multiplier of a finite p-group. J. Algebra 144: 269-272.
[2] Ellis, G. (1999). On the Schur multiplier of p-groups. Comm. Algebra 27(9): 4173-4177.
[3] Ellis, G., Wiegold, J. (1999). A bound on the Schur multiplier of a prime-power group. Bull. Austral. Math. Soc. 60: 191-196.
[4] Gaschütz, W., Neubiüer, J., Yen, T. (1967). Über den Multiplikator von p-Gruppen, Math. Z. 100: 93-96.
[5] Green, J.A., (1956). On the number of automorphisms of a finite group, Proc. Roy. Soc. A 237: 574–581.
[6] Jones, M. R. (1972). Multiplicators of p-groups. Math. Z. 127: 165-166.
[7] Jones, M.R. (1973). Some inequalities for the multiplicator of a finite group. Proc. Amer. Math. Soc. 39 450-456.
[8] G. Karpilovsky, The Schur multiplier, London Math. Soc. Monogr. (N.S.) 2 (1987).
[9] P. Niroomand. (2009). On the order of Schur multiplier of non-abelian p-groups. J. Algebra 322: 4479-4482.
[10] P. Niroomand. Characterizing finite p-groups by their Schur multipliers. Preprint.(2010) http://arxiv.org/abs/1001.4256v1
[11] P. Niroomand. Characterizing finite p-groups by their Schur multipliers, $t(G) = 5$. Preprint. (2010) http://arxiv.org/abs/1001.4257v1
[12] P. Niroomand. A note on the Schur multiplier of prime power groups. submitted.
[13] Zhou, X. (1994). On the order of the Schur multiplier of finite p-groups. Comm. Algebra 22: 1-8.

E-mail address: niroomand@dubs.ac.ir

School of Mathematics and Computer Science, Damghan University of Basic Sciences, Damghan, Iran