Taxonomy and Multi-Gene Phylogeny of Poroid *Panellus* (Mycenaceae, Agaricales) With the Description of Five New Species From China

Qiu-Yue Zhang¹, Hong-Gao Liu², Viktor Papp³, Meng Zhou¹, Fang Wu¹* and Yu-Cheng Dai¹*

¹ School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China, ² Faculty of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China, ³ Department of Botany, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary

Panellus is an Agaricales genus with both lamellate and poroid hymenophore. The poroid species are readily overlooked because of their tiny basidiocarps. The Chinese samples of poroid *Panellus* are studied, and five species, namely *Panellus alpinus*, *Panellus crassiporus*, *Panellus longistipitatus*, *Panellus minutissimus*, and *Panellus palmicola* are described as new species based on morphology and molecular phylogenetic analyses inferred from an nrITS dataset and a multi-gene dataset (nrITS + nrLSU + mtSSU + nrSSU + tef1). *Panellus alpinus* is characterized by its round to ellipsoid pores measuring 4–6 per mm and oblong ellipsoid basidiospores measuring 4.8–6 µm × 2.8–3.6 µm; *P. crassiporus* differs from other poroid species in the genus by the irregular pores with thick dissepiments and globose basidiospores measuring 8–9.8 µm × 6.9–8 µm; *P. longistipitatus* is distinguished by its long stipes, pyriform cheilocystidia, and broadly ellipsoid to subglobose basidiospores measuring 7–9.8 µm × 5–7 µm; *P. minutissimus* is characterized by its tiny and gelatinous basidiocarps, 5–20 pores per basidiocarp, and ellipsoid basidiospores measuring 6–8 µm × 3.2–4.2 µm; *P. palmicola* is characterized by its round pores measuring 2–4 per mm, the presence of acerose basidioles, and globose basidiospores measuring 7–9.5 µm × 6.2–8.2 µm. An identification key to 20 poroid species of *Panellus* is provided.

Keywords: Agaricomycetes, Basidiomycota, new taxa, polypore, wood-decaying fungi

INTRODUCTION

The genus *Panellus* P. Karst. (Mycenaceae, Agaricales), typified by *Panellus stipticus* (Bull.) P. Karst., was established by Karsten (1879). It is characterized by gelatinous to soft coryx, piletate to stipitate basidiocarps with both lamellate and poroid hymenophore, thick-walled tramal hyphae, dichophyial hyphae, ellipsoid, ovoid to globose basidiospores, and as causing a white rot (Burdass and Miller, 1975, 1978; Libonati-Barnes and Redhead, 1984; Corner, 1986; Chang, 1996; Zhang and Dai, 2021).
The taxonomic history of *Panellus* is somewhat ambiguous. In previous studies, the hymenophore structure (e.g., lamella and pores) was considered as an important taxonomic feature on generic level. Later, taxonomists found some intermediate species, such as *Panellus pusillus* (Pers. ex Lév.) Burds. and O. K. Mill., and *Panellus intermedius* Corner with poroid to lamellate hymenophore (Singer, 1953; Corner, 1986). Accordingly, Burdsall and Miller (1975) treated *Dictyopus Pat.*, a poroid mushroom and a subgenus of *Panellus*, and all species of *Dictyopus* transferred to *Panellus*.

Panellus has been extensively studied in the Americas and Europe. However, previous studies mainly focused on lamellate species and only a few reports were provided on poroid species (Earle, 1909; Macrae, 1937; Singer, 1962; Miller, 1970). So far, Corner (1986) reported 13 poroid species of *Panellus*, including eight new species. Johnston et al. (2006) transferred *Favolaschia minima* (Jungh.) Kuntze to *Panellus* based on morphological characteristics and molecular analyses. Zhang and Dai (2021) reported two new poroid species of *Panellus* based on morphology and phylogeny. Currently, more than 50 species are accepted in *Panellus* (Wijayawardene et al., 2022), among them 15 have poroid hymenophore.

This study aims to explore the diversity and phylogeny of *Panellus*, and five new poroid species from China are confirmed to be members of the genus. Currently, the main morphological characteristics of 20 poroid species of *Panellus* are outlined, and an identification key to these species of *Panellus* is provided.

MATERIALS AND METHODS

Morphological Studies

The studied specimens are deposited in the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC). Morphological descriptions are based on field notes and voucher specimens. Microscopic analyses follow Cui et al. (2019) at a magnification of 1,000× using a Nikon Eclipse 80i microscope (Tokyo, Japan) with phase contrast illumination. In the description, the following abbreviations are used: KOH = 5% potassium hydroxide; IKI = Melzer’s reagent, IKI+ = amyloid; CB = Cotton Blue, CB- = acyanophilous in Cotton Blue; L = arithmetic average of basidiospores length, W = arithmetic average of basidiospores width, Q = L/W ratios, x/y = x measurements of basidiospores from y specimens. Color terms are from Royal Botanic Garden Edinburgh (1969) and Petersen (1996).

Molecular Studies and Phylogenetic Analysis

A cetyltrimethylammonium bromide (CTAB) rapid plant genome extraction kit (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to extract DNA (Sun et al., 2020; Liu et al., 2021). The following primer pairs were used to amplify the non-coding genes: ITS5 (5′-GGA AGT AAA AGT CGT AAC AAG G-3′) and ITS4 (5′-TCC TCC TTC GCT TAT TGAAT GC-3′) for the internal transcribed spacer regions (nrITS; White et al., 1990); LR0R (5′-ACC CGC TGA ACT TAA GC-3′) and LR7 (5′-TAC TAC CAC GAT CT-3′) for nuclear large subunit rDNA (nrLSU; Vilgalys and Hester, 1990); MS1 (5′-CAG CAG TCA AGA ATA TTA GTC AAT G-3′) and MS2 (5′-GGG GAT TAT CGA ATT AAA TAA C-3′) for the small subunit mitochondrial rRNA gene (mtSSU); NS1 (5′-GTA GTC ATA TGC TTG TCT C-3′) and NS4 (5′-CTT CCG TCA ATT CCT TTA AG-3′) for the small subunit of nuclear ribosomal RNA gene (nrSSU); as well as protein coding gene: 983F (5′-GCT TCC CCA ACC GCA TAT C-3′) and 1567R (5′-ACH GTR CCR ATA CCA CAC GTC TTA AT-3′) for translation elongation factor 1a (tEF1).

The PCR cycling schedules for different DNA sequences of nrITS, nrLSU, mtSSU, nrSSU, and tEF1 genes used in this study followed those used in Wang et al. (2021) and Zhou et al. (2021). The PCR products were purified and sequenced at the Beijing Genomics Institute (BGI), China with the same primers, and the newly generated sequences were deposited in the GenBank. The sequences generated in this study were aligned with additional sequences downloaded from GenBank (Table 1) using Clustal X (Thompson et al., 1997) and manually adjusted in BioEdit (Hall, 1999).

In this study, nuclear ribosomal RNA genes were used to determine the phylogenetic positions of new species. The sequence alignment was deposited at TreeBase (submission ID 29605). Sequences of *Hemimycena mairei* (E.-J. Gilbert) Singer were used as outgroup (Vu et al., 2018).

Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI) were employed to perform the phylogenetic analysis of the two aligned datasets. MP topology and bootstrap (BT) values obtained from 1,000 replicates were computed in PAUP* version 4.0b10 (Swofford, 2002). All characters were equally weighted, and the gaps were treated as missing data. Trees were inferred using the heuristic search option with tree-bisection reconnection (TBR) branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed by a BT analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics, such as tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree (MPT) generated.

RAxML 7.2.8 was used to construct ML trees for both datasets with the GTR + I + G model of site substitution, including the estimation of gamma-distributed rate heterogeneity and a proportion of invariant sites (Stamatakis, 2006). The branch support was evaluated with a bootstrapping method of 1,000 replicates (Hillis and Bull, 1993).

The BI was conducted with MrBayes 3.2.6 in two independent runs, each of which had four chains for 10 million generations and started from random trees (Ronquist and Huelsenbeck, 2003). Trees were sampled every 1000th generation. The first 25% of the sampled trees were discarded as burn-in and the remaining ones were used to reconstruct a majority rule consensus and calculate Bayesian posterior probabilities (BPPs) of the clades. Phylogenetic trees were visualized using Treeview (Page, 1996). Branches that received BT support for MP
Zhang et al. Phylogeny and Diversity of Poroid Panellus

RESULTS

Phylogeny
The nrITS-based phylogeny included nrITS sequences from 38 fungal collections representing 13 species. The dataset had an aligned length of 665 characters, of which 372 characters are constant, 61 are variable and parsimony-uninformative, and 232 are parsimony-informative. MP analysis yielded two trees (TL = 546, CI = 0.771, RI = 0.921, RC = 0.710, HI = 0.229). The best model for the nrITS sequences dataset estimated and applied in the BI was GTR + I + G. BI resulted in a similar topology with an average standard deviation of split frequencies = 0.007304 to MP analysis, and thus only the MP tree is provided.

The combined 5-gene (nrITS + nrLSU + mtSSU + nrSSU + tef1) sequence dataset from 38 fungal specimens representing 13 taxa did not show any conflicts in tree topology for the reciprocal bootstrap trees, which allowed us to combine them (p > 0.01). The dataset had an aligned length of 3,682 characters, of which 2,932 characters are constant, 266 are variable and parsimony-uninformative, and 484 are parsimony-informative. MP analysis yielded three trees (TL = 1120, CI = 0.846, RI = 0.918, RC = 0.777, HI = 0.154). The best model for the combined

TABLE 1	Taxa information and GenBank accession numbers of sequences used in this study.						
Species	Specimen No.	Locality	nrITS GenBank accession No.	nrLSU GenBank accession No.	mtSSU GenBank accession No.	nrSSU GenBank accession No.	tef1 GenBank accession No.
----------	--------------	-------------------	-----------------------------	----------------------------	----------------------------	-----------------------------	----------------------------
H. mairei	CBS 263	France	MH8656248	MH867779	–	–	–
P. alpinus	Dai 2359	China	ON074661	ON074727	ON074340	–	–
P. crassiporus	Dai 19899	China	ON074662	–	ON074341	ON074713	–
P. crassiporus	Dai 1997	China	ON074664	ON074729	–	ON074715	–
P. crassiporus	Dai 2363	China	ON074665	–	–	–	–
P. crassiporus	Dai 2364	China	ON074666	ON074730	ON074342	ON074716	ON078668
P. longistipitatus	WTNF 043066	United States	MK169353	–	–	–	–
H. mairei	CBS 265	France	MH8656249	MH867780	–	–	–
P. alpinus	Dai 2361	China	ON074666	–	ON074341	ON074713	–
P. bambusicola	Dai 19899	China	MT363746	–	–	–	–
P. crassiporus	Dai 19863	China	ON074663	ON074728	–	ON074714	ON078667
P. crassiporus	Dai 1997	China	ON074664	ON074729	–	ON074715	–
P. crassiporus	Dai 2363	China	ON074665	–	–	–	–
P. crassiporus	Dai 2364	China	ON074666	ON074730	ON074342	ON074716	ON078668
P. minimus	PDD75430	New Zealand	DQ026258	–	–	–	–
P. minutissimus	Dai 22052	China	ON074669	ON074733	ON074343	ON074718	ON078670
P. minutissimus	Dai 22068	China	ON074670	ON074734	ON074344	ON074719	ON078671
P. palmicola	Dai 1970	China	ON074671	ON074735	ON074345	ON074720	–
P. palmicola	Dai 1971	China	ON074672	ON074736	ON074346	ON074721	ON078672
P. palmicola	Dai 22339	China	ON074673	ON074737	ON074347	ON074722	ON078673
P. palmicola	Dai 22330	China	ON074674	–	ON074348	ON074723	ON078674
P. palmicola	Dai 22331	China	ON074675	ON074740	ON074349	ON074724	ON078675
P. palmicola	Dai 22332	China	ON074676	–	ON074350	–	–
P. palmicola	Dai 22333	China	ON074677	ON074738	ON074351	ON074725	ON078676
P. palmicola	Dai 22334	China	ON074678	ON074739	ON074352	ON074726	ON078677
P. pusillus	Dai 20433	China	MZ8017777	MZ914394	–	–	–
P. pusillus	Dai 20434	China	MZ801775	–	–	–	–
P. ringens	MQ189309	Canada	MN992238	–	–	–	–
P. ringens	P. Zhang214	China	KY820048	–	–	–	–
P. stipicus	TN 6157	United States	AF289071	–	–	–	–
P. stipicus	AODJ.161.148	–	–	–	–	–	–
P. stipicus	AODJ.161.148	–	–	–	–	–	–
P. stipicus	TN 9525	Canada	AF289070	–	–	–	–
P. stipicus	JP 2998	Finland	MT305625	–	–	–	–
P. stipicus	OM14173	Finland	MT305626	–	–	–	–
P. yunnanensis	Dai 20728	China	MT300504	MT300511	–	–	–
P. yunnanensis	Dai 20729	China	MT300506	MT300512	–	–	–
P. yunnanensis	Dai 20730	China	MT300506	MT300513	–	–	–

New sequences are shown in bold.
nrITS + nrLSU + mtSSU + nrSSU + tef1 dataset estimated and applied in the Bayesian analysis was GTR + I + G. Bayesian analysis resulted in a similar topology with an average standard deviation of split frequencies = 0.004519 to MP analysis, and thus only the MP tree is provided. Both BT values (≥75%) and BPP values (≥0.95) are shown at the nodes (Figures 1, 2).

In both nrITS and nrLSU + mtSSU + nrSSU + tef1 based phylogenies (Figures 1, 2), five new well-supported lineages were formed. Among them, two specimens (Dai 23597 and Dai 23601) from Tibet formed a well-supported lineage (100/100/1 in Figure 1, 100/99/1 in Figure 2), named Panellus alpinus, sister to P. puissillus. Two specimens (Dai 22052 and Dai 22068) formed a well-supported lineage, named P. minutissimus (100/100/1 in Figures 1, 2), and is closely related to Panellus bambusicola Q. Y. Zhang and Y. C. Dai and Panellus yunnanensis Q. Y. Zhang and Y. C. Dai. In addition, another 14 samples formed three distinct lineages nested in Panellus, and they are named P. crassiporus, P. longistipitatus, and P. palmicola, respectively.

Taxonomy

Panellus alpinus Q. Y. Zhang, F. Wu, and Y. C. Dai, sp. nov., Figures 3A, 4A, 5.

MycoBank: MB844364.

Type. China, Tibet Autonomous Region, Nyingchi, Bomi County, dead bamboo (Bambusoideae), 26 October 2021, Dai 23600 (holotype, BJFC 038172).

Etymology. Alpinus (Lat.): Referring to the species being found in high-altitude areas.

Basidiocarps annual, pileate with a lateral rudimentary stipe base, gregarious, soft corky when fresh, and chalky when dry. **Pileus** 1.5–4 mm × 1–3 mm, flabelliform, semicircular or ellipsoid; pileal surface white to cream when fresh and dry, opaque, convex to plane, pruinose; margin incurved, entire; context thin. **Hymenophore** concolorous with a pileal surface, poroid, about 60–180 pores per basidiocarp; mature pores 4–6 per mm, irregularly angular to round with thick dissepiments; tubes up to 0.4 mm long. **Stipe** base 0.4–1 mm × 0.2–0.6 mm, concolorous with pileal surface, tapering to the slightly swollen base, and pruinose on surface.

Basidiocarps 3–9 mm in diameter. **Tramal** hyphae interwoven, occasionally branched, slightly thick-walled, 2–4 μm in diameter. **Hyphe in stipe base** subparallel along stipe, some part swollen, slightly thick-walled, 3–12 μm in diameter. Clamp connections are present.

Additional specimens (paratypes) examined: CHINA, Tibet Autonomous Region, Nyingchi, Bomi County, dead bamboo (Bambusoideae), 26 October 2021, Dai 23597 (BJFC 038169), Dai 23598 (BJFC 038170), Dai 23599 (BJFC 038171), Dai 23601 (BJFC 038173), Dai 23602 (BJFC 038174), Dai 23605 (BJFC 038177).

Note. *Panellus alpinus* grows on dead bamboo (Bambusoideae), and it was found in Tibet, China at an elevation of 3,000 m around timberline.

Panellus crassiporus Q. Y. Zhang, F. Wu, and Y. C. Dai, sp. nov., Figures 3B, 4B, 6.

MycoBank: MB844365.

Type. China, Yunnan Province, Wenshan, Xichou County, Xiaoqiaogou Forest Farm, fallen angiosperm trunk, 29 June 2019, Dai 19963 (holotype, BJFC 031637).

Etymology. Crassiporus (Lat.): Referring to the species having thick dissepiments of pores.

Basidiocarps annual, gregarious, soft corky when fresh, and chalky when dry. **Pileus** 2–5 × 1–3 mm, reniform or flabelliform; pileal surface white to pale buff when fresh and dry, opaque, convex to plane, pruinose; margin incurved or straight, entire; context thin. **Hymenophore** concolorous with a pileal surface, poroid, about 60–180 pores per basidiocarp; mature pores 4–6 per mm, irregularly angular to round with thick dissepiments; tubes up to 0.4 mm long. **Stipe** 0.1–1.3 mm × 0.1–0.5 mm, concolorous with a pileal surface, laterally attached, short with slightly swollen base, pruinose on the surface.

Basidiocarps (7.5–)8–9.8(–10) μm × (6.8–)6.9–8(–9) μm, L = 8.63 μm, W = 7.52 μm, Q = 1.13–1.16 (n = 90/3), subglobose to globose, hyaline, thin-walled, smooth, with some guttules, faintly IKI+, CB–. **Basidia** 30–36 μm × 8–12 μm, clavate with some guttules, 2(4)–spored, sterigmata 2–5 μm long; basidioles 22–34 μm × 5–9 μm, clavate, acerose or fusiform. **Pleurocystidia** 18–38 μm × 3–7 μm, present in hymenium, tubular, thin-walled. **Cheilocystidia** 22–30 μm × 3–5 μm, present at dissepiment edge, tubular or narrowly clavate, thin-walled, some with diverticulate projections at the apex. **Pileipellis** comprises abundant, dense dichophylous hyphae; dichophylous hyphae slightly thick-walled, 3–5 μm in diameter; pileocystidia absent. **Pileus hyphae** interwoven, with diverticulate projections, slightly thick-walled, 1.5–5 μm in diameter. **Tramal** hyphae interwoven, slightly thick-walled, 2–4 μm in diameter. **Hyphe in stipe** subparallel along stipe, some part swollen, thick-walled, 3–9 μm in diameter. Clamp connections present.

Additional specimens (paratypes) examined: China, Tibet Autonomous Region, Nyingchi, Medog County, rotten angiosperm wood, 28 August 2021, Dai 23663 (BJFC 038235), fallen angiosperm trunk, Dai 23664 (BJFC 038236); Yunnan Province, Wenshan, Xichou County, Xiaoqiaogou Forest Farm, rotten angiosperm wood, 29 June 2019, Dai 19977 (BJFC 031651).

Note. *Panellus crassiporus* was found in Medog (elevation around 1000 m) of Tibet and Xichou of Yunnan, southwest China, and both areas have subtropical vegetation.
Panellus longistipitatus Q. Y. Zhang, F. Wu, and Y. C. Dai, sp. nov., Figures 3C, 7.

Mycobank: MB844366.

Type. Hainan Province, Qiongzhong County, Hainan Tropical Rainforest National Park, Limushan, dead *Trachycarpus fortunei*, 29 June 2021, Dai 22487 (holotype, BJFC 037070).

Etymology. *Longistipitatus* (Lat.): referring to the species having a long stipe.

Basidiocarps annual, gregarious, soft corky when fresh, and chalky when dry. **Pileus** 1–4.2 × 1–3 mm, reniform to semicircular; pileal surface white to cream when fresh and dry, opaque, convex to plane, pruinose; margin incurved, entire; context thin. **Hymenophore** concolorous with pileal surface, poroid, about 42–164 pores per basidiocarp; mature pores 4–6 per mm, round to irregularly angular; tubes up to 0.3 mm long. **Stipe** 1–3 mm × 0.8–1 mm, concolorous with pileal surface, laterally attached, somewhat reduce to a tapering base, pruinose on surface.

Basidiospores 7–9.8(–10) µm × 5–7 µm, $L = 8.03$ µm, $W = 6.27$ µm, $Q = 1.32–1.33$ ($n = 60/2$), broadly ellipsoid to
subglobose, hyaline, thin-walled, smooth, with some guttules, faintly IKI+, CB−. **Basidia** 28–36 μm × 5–8 μm, clavate with some guttules, 4-spored, sterigmata 3–6 μm long; basidioles 23–31 μm × 6–9 μm, clavate to acerose. **Pleurocystidia** 35–53 μm × 3–6 μm, present in hymenium, tubular with tapered at the apex, thin-walled. **Cheilocystidia** 15–28 μm × 7–11 μm, present at dissepiment edge, pyriform, thin-walled. **Pileipellis** comprises a palisade of numerous dichophysial hyphae and pileocystidia; dichophysical hyphae slightly thick-walled, 2–5 μm in diameter; pileocystidia 17–40 μm × 5–8 μm, narrowly clavate, thin-walled. **Tramal** hyphae subparallel along tubes, slightly thick-walled, 3–5 μm in diameter; numerous dichophysical hyphae present at dissepiment edge. **Hyphae in stipe** subparallel along stipe, thick-walled, 3–7 μm in diameter. Clamp connections present.

Additional specimen (paratype) examined: China, Hainan Province, Qiongzhong County, Hainan Tropical Rainforest National Park, Limushan, dead *Trachycarpus fortunei*, 11 November 2020, Dai 22065 (BJFC 035958).

Note. Panellus longistipitatus grows on dead palm (*Trachycarpus fortunei*) in a tropical forest.

Panellus minutissimus Q. Y. Zhang, F. Wu, and Y. C. Dai, sp. nov., Figures 3D, 4C, 8.

MycoBank: MB844367.

Type. Hainan Province, Qiongzhong County, Hainan Tropical Rainforest National Park, Limushan, dead

Figure 2 | Maximum parsimony (MP) tree illustrating the phylogeny of *Panellus* based on combined 5-gene (nrITS + nrLSU + mtSSU + nrSSU + tef1) dataset. Branches are labeled with parsimony bootstrap values (MP/ML) higher than 75% and Bayesian posterior probabilities (BPPs) more than 0.95. The five colors represent the five new species in this paper, respectively.
bamboo (Bambusoideae), 11 November 2020, Dai 22052 (holotype, BJFC 035946).

Etymology. *Minutissimus* (Lat.): referring to the species having tiny basidiocarps.

Basidiocarps annual, gregarious, and gelatinous. **Pileus** 0.2–0.6 mm × 0.1–0.6 mm, conchoid, semicircular or ellipsoid; pileal surface pure white to white when fresh, becoming pale cream to ivory upon drying, opaque, convex to plane, slightly powdery appearance; margin incurved; context thin. **Hymenophore** concolorous with pileal surface, poroid, about 4–15 pores per basidiocarp; mature pores 8–10 per mm, round to ellipsoid. **Stipe** absent.

Basidiospores 6–8(–8.2) µm × 3.2–4.2(–4.5) µm, L = 6.98 µm, W = 3.90 µm, Q = 1.78–1.79 (n = 60/2), ellipsoid to oblong ellipsoid, tapering at apiculus, hyaline, thin-walled, smooth, with some guttules, faintly IKI +, CB–.

Basidia 18–21 µm × 6–8 µm, clavate with some guttules, 4–spored, sterigmata 1–5 µm long; basidioles 14–20 µm × 4–7 µm, clavate or acerose. **Pleurocystidia** 15–25 µm × 2.5–4 µm, present in hymenium, tubular with slightly curved at the apex, thin-walled. **Cheilocystidia** 20–24 µm × 10–12 µm, present at dissepiment edge, mostly pyriform, thin-walled. **Pileipellis** composed of interwoven dichophysial hyphae and pileocystidia; dichophysial hyphae slightly thick-walled, 2–5 µm in diameter; pileocystidia 12–16 µm × 6–9 µm, pyriform, thin-walled. **Tramal** hyphae subparallel along tubes, slightly thick-walled, 3–6 µm in diameter; numerous dichophysical hyphae present at dissepiment edge, interspersed between cheilocystidia. Clamp connections present.

Additional specimen (paratype) examined: China, Hainan Province, Qiongzhong County, Hainan Tropical Rainforest National Park, Limushan, dead bamboo (Bambusoideae), 11 November 2020, Dai 22068 (BJFC 035961).

Note. *Panellus minutissimus* is a gelatinous species with a very small pileus, and it grows on small bamboo (Bambusoideae) in a tropical forest.

Panellus palmicola Q. Y. Zhang, F. Wu, and Y. C. Dai, sp. nov., Figures 3E, 4D, 9. MycoBank: MB844368.

Type. Guangdong Province, Guangzhou, Baiyunshan, on *Trachycarpus fortunei*, 11 June 2019, Dai 19717 (holotype, BJFC 031392).

Etymology. *Palmicola* (Lat.): referring to the species growth on palm (*Trachycarpus fortunei*). **Basidiocarps** annual, gregarious, soft corky when fresh, and chalky when dry. **Pileus** 3–6 mm × 1–3 mm, reniform, flabelliform or ellipsoid; pileal surface cream, pale buff or cinnamon when fresh and dry, opaque, convex to plane, pruinose; margin incurved or straight, entire; context thin. **Hymenophore** concolorous with pileal surface, poroid, about 40–130 pores per basidiocarp; mature pores 2–4 per mm, round; tubes up to 0.4 mm long. **Stipe** 1.5–3 mm × 0.5–1 mm, concolorous with pileal surface, laterally attached, subcylindrical, equal in most of the width but with a slightly swollen base, pruinose on the surface.

Basidiospores 7–9.5(–9.8) µm × (6–)6.2–8.2(–8.5) µm, L = 8.33 µm, W = 7.16 µm, Q = 1.15–1.20 (n = 90/3), subglobose to globose, hyaline, thin-walled, smooth, with some guttules, faintly IKI+, CB–. **Basidia** 28–34 µm × 8–11 µm, clavate with...
some guttules, 4–spored, sterigmata 3–5 µm long; basidioles 26–32 µm × 6–8 µm, clavate or acerose. Pleurocystidia 20–30 µm × 3–5 µm, present in hymenium, fusiform or tubular, thin-walled. Cheilocystidia 22–40 µm × 3–4.5 µm, present at dissepiment edge, cylindrical or tubular, thin-walled, some with diverticulate projections at the apex. Piléipellis comprises abundant, dense dichophysial hyphae; dichophysial hyphae slightly thick-walled, 2–7 µm in diameter; pileocystidia absent. Tramal hyphae subparallel along tubes, slightly thick-walled, 3–5 µm in diameter. Hyphae in stipe subparallel along stipe, thick-walled, some part swollen, 3–8 µm in diameter. Clamp connections present.

Additional specimens (paratypes) examined: China, Fujian Province, Fuzhou, Fuzhou National Forest Park, living Rhapis excelsa, 4 June 2021, Dai 22329 (BJFC 036917), Dai 22330 (BJFC 036918), Dai 22331 (BJFC 036919), Dai 22332 (BJFC 036920), Dai 22333 (BJFC 036921), Dai 22334 (BJFC 036922), Dai 22335 (BJFC 036923); Guangdong Province, Guangzhou, Baiyunshan, on Trachycarpus fortunei, 11 June 2019, Dai 19718 (BJFC 031393), Dai 19719 (BJFC 031394); Zhaoqing, Fengkai County, Heishiding Nature Reserve, angiosperm wood, 7 June 2019, Dai 19707 (BJFC 031382).

Note. Panellus palmicola was found in Fujian and Guangdong, subtropical China, and it grows on both monocotyledonous and dicotyledonous plants in parks.

DISCUSSION

In this study, 15 previously accepted poroid species of Panellus, viz. Panellus albifavolus Corner, P. bambusicola, Panellus bambusifavolus Corner, Panellus bruneifavolus Corner, Panellus hispidifavolus Corner, Panellus luminosporus Corner, Panellus megasporus Corner, Panellus microsporus Corner, Panellus minimus (Jungh.) P. R. Johnst. and Moncalvo, Panellus orientalis (Kobayasi) Corner, Panellus pauciporus Corner, P. pusillus, Panellus sublamelliformis Corner, and P. yunnanensis, were identified mostly based on morphological examination. Among them, only four species, viz. Panellus bambusicola, P. minimus, P. pusillus, and P. yunnanensis, were confirmed by molecular evidence. Our present study demonstrates five new poroid species of Panellus based on both morphological characteristics and molecular phylogenetic analyses.

Panellus alpinus was found in Tibet, China, at an altitude of 3,000 m. Phylogenetically, samples of P. alpinus (Dai 23597 and Dai 23601) formed an independent lineage and were related to P. pusillus. Morphologically, P. alpinus, P. hispidifavolus, P. luxfilamentus, and P. pusillus share chalky basidiospores when dry and similar basidiospores (oblong ellipsoid to cylindrical, less than 6 µm in length). However, P. hispidifavolus...
FIGURE 5 | Microscopic structures of *Panellus alpinus* (holotype). (A) Basidiospores. (B) Dichophysial hyphae and pileocystidia from pileipellis. (C) Hyphae from pileus. (D) Hyphae from stipe base. (E) A section of tube trama, including pleurocystidia, cheilocystidia, basidia, and basidioles. The dotted circles represent some guttules in basidiospores, basidia or basidioles.
differs from *P. alpinus* by the absence of pleurocystidia in hymenium and growth on the dead leaf of *Tristania* (Corner, 1986). *Panellus luxfilamentus* is distinguished from *P. alpinus* by its larger pores (hexagonal, 3 per mm vs. round, 4–6 per mm) and the absence of pleurocystidia in hymenium (Chew et al., 2015).
There are several synonyms for *Panellus pusillus* in literature (Berkeley, 1839, 1856; Berkeley and Curtis, 1868; Singer, 1953; Corner, 1954; Burdsall and Miller, 1975). Among them, *Dictyopanus copelandii* Pat. [= *Panellus copelandii* (Pat.) Burds. and O. K. Mill.] was described from Philippines (Patouillard, 1914) and *Dictyopanus gloeocystidiatus* Corner [= *Panellus gloeocystidiatus* (Corner) Corner] was described from Japan (Corner, 1954). *Dictyopanus copelandii* differs from *Panellus alpinus* by its longer stipe (4–6 mm vs. 0.4–1 mm in length) and larger basidiospores (6.5–9 µm × 3.5–5.5 µm vs. 4.8–6 µm × 2.8–3.6 µm, Burdsall and Miller, 1975). *Dictyopanus gloeocystidiatus* is distinguished from *Panellus*
alpinus by its smaller basidiospores (3.2–4 µm × 2–2.3 µm vs. 4.8–6 µm × 2.8–3.6 µm) and thinner basidia (15–19 µm × 3.5–4 µm vs. 17–24 µm × 4–6 µm, Corner, 1954).

Phylogenetically, Panellus minutissimus is closely related to P. bambusicola and P. yunnanensis (Figures 1, 2). However, P. bambusicola differs from P. minutissimus by smaller basidia (15–18 µm × 5–6.5 µm vs. 18–21 µm × 6–8 µm) and the absence of pleurocystidia in hymenium (Zhang and Dai, 2021). Panellus yunnanensis is distinguished from P. minutissimus by its reniform and shell-shaped basidiocarps, longer basidia (20–28 µm × 5–8 µm vs. 18–21 µm × 6–8 µm), and smaller cheilocystidia (10–20 µm × 7–10 µm vs. 20–24 µm × 10–12 µm; Zhang and Dai, 2021). Morphologically, P. albifavolus and P. minimus are similar to P. minutissimus by

FIGURE 8 | Microscopic structures of Panellus minutissimus (holotype). (A) Basidiospores. (B) Dichophysial hyphae and pleurocystidia from pileipellis. (C) A section of tube trama, including pleurocystidia, cheilocystidia, basidia, and basidioles. The dotted circles represent some guttules in basidiospores, basidia or basidioles.
sharing gelatinous basidiocarps, growth on palm (*Trachycarpus fortunei*), bamboo (Bambusoideae), and other monocotyledons. However, *P. albifavolus* is distinguished from *P. minutissimus* by its larger basidiocarps (up to 3 mm vs. 0.2–0.6 mm), wider basidiospores (7–8.5 µm × 4.7–6 µm vs. 6–8 µm × 3.2–4.2 µm), and the absence of pileocystidia (Corner, 1986). *Panellus minimus* differs from *P. minutissimus* by its larger basidiocarps (0.9–3.5 mm vs. 0.2–0.6 mm) and long stipe (up to 2 mm; Johnston et al., 2006).

In both nrITS and nrITS + nrLSU + mtSSU + nrSSU + tef1 based phylogenies (Figures 1, 2), samples of *Panellus crassiporus*, *P. longistipitatus*, and *P. palmicola* formed three distinct lineages nested in a subclade, and they are closely related. Morphologically, species in the subclade are characterized by chalky basidiocarps when dry and similar basidiospores (subglobose to globose, more than 6 µm in width). However, *P. longistipitatus* is distinguished from *P. crassiporus* by its longer stipe (1–3 mm vs. 0.1–1.3 mm in length) and the presence of pileocystidia. *Panellus palmicola* differs from *P. crassiporus* in having larger pores (2–4 per mm vs. 4–6 per mm) and longer stipe (1.5–3 mm vs. 0.1–1.3 mm in length). *Panellus palmicola* differs from *P. longistipitatus* by

FIGURE 9 | Microscopic structures of *Panellus palmicola* (holotype). (A) Basidiospores. (B) Dichophysial hyphae from pileipellis. (C) Hyphae from stipe. (D) A section of tube trama, including pleurocystidia, cheilocystidia, basidia, and basidioles. The dotted circles represent some guttules in basidiospores, basidia or basidioles.
its larger pores (2–4 per mm vs. 4–6 per mm), smaller pleurocystidia (20–30 µm × 3–5 µm vs. 35–53 µm × 3–
6 µm), and the absence of pileocystidia in hymenium. Furthermore, P. brunneifavolus, P. megalosporus, and P. orientalis
have globose basidiospores (Kobayasi, 1963; Corner, 1986). However, P. brunneifavolus and P. megalosporus have big
basidiospores measuring 9–12.5 µm × 8–11 µm and 13–
18.5 µm × 12–16 µm, respectively, while the basidiospores
are 7–9.8 µm × 5–8.2 µm in the three new species. Panellus
orientalis is distinguished from P. crassiporus, P. longistipitatus, and P. palmicola by its larger basidiocarp (up to 17 mm vs.
1–6 mm in the three new species) and longer cheilocystidia
(40–190 µm × 3–6 µm vs. 15–40 µm × 3–11 µm in the
three new species).

Previously, Panellus was characterized by allantoid to
narrowly elliptical, amylloid basidiospores, thick-walled
trimal hyphae, the presence of cheilocystidia, and lignicolous
habitat (Burdssall and Miller, 1975). However, the diversity
of poroid Panellus was underestimated. The definition
of Panellus has been improved with the discovery of
poroid species with globose basidiospores (Kobayasi, 1963;
Corner, 1986). Our investigations on the Chinese Panellus
show that most species have globose basidiospores. In
addition, most Panellus species were found in lowland
areas or areas at an elevation below 2,000 m (Corner,
1986; Chang, 1996), while our new species P. alpinus
was found in the mountainous area and at an elevation
up to 3,000 m. Accordingly, we presume that more
new poroid species of Panellus exist in the world, and
more species will be confirmed after morphological and
molecular analyses.

The main morphological characteristics of 20 poroid species
of Panellus are listed in Supplementary Table 1, and an
identification key is provided as follows:

1. Basidiospores mostly >6 µm in width, subglobose to
globose...2
 1. Basidiospores mostly <6 µm in width, ellipsoid to
cylindrical..7
 2. Pileus up to 17 mm in the largest
dimension..0.3
 2. Pileus up to 6 mm in the largest
dimension..0.4
 3. Basidiospores 12–16 µm in
width..P. megalosporus
 3. Basidiospores 6–8.5 µm in
width..P. orientalis
 4. Basidiospores mostly >9 µm in width; pleurocystidia
absent..P. brunneifavolus
 4. Basidiospores mostly <9 µm in width; pleurocystidia
present...0.5
 5. Pores 2–4 per mm...P. palmicola
 5. Pores 4–6 per mm...0.6
 6. Stipe up to 3 mm in length; cheilocystidia
pyriform...P. longistipitatus
 6. Stipe up to 1.3 mm in length; cheilocystidia
 tubular or narrowly
 clavate...P. crassiporus

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

Q-YZ, FW, and Y-CD designed the research and contributed
to data analysis and interpretation. Q-YZ and MZ prepared the
samples and drafted the manuscript. VP discussed the results and edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP Grant No. 2019QZKK0503) and National Natural Science Foundation of China (Project No. U1802231).

ACKNOWLEDGMENTS

The support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences to VP is highly appreciated.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.928941/full#supplementary-material

REFERENCES

Berkeley, M. J. (1839). Contributions towards a flora of Van Diemen's Land. J. Nat. Hist. 3, 322–327. doi: 10.1006/jnsh.2000.0944 3244
Berkeley, M. J. (1856). Decades of fungi. decades LXI–LXII. rio negro fungi. Hookers J.Bot. Ker Gawd. Misc. 8, 272–280.
Berkeley, M. J., and Curtis, M. A. (1868). Fungi cubenses (Hymenomycetes). Bot. J. Linn. Soc. 10, 280–320. doi: 10.1111/j.1095-8339.1868
Bursdall, H. H., and Miller, O. K. (1975). A revaluation of Panellus and Dictyopus (Agaricales). Nova Hedwig. 51, 79–91.
Bursdall, H. H., and Miller, O. K. (1978). Notes on the genus Panellus (Fungi). Mycotaxon 7, 511–514. doi: 10.1177/000715367800400402
Chang, T. T. (1996). Three poroid Panellus and one Perenniporia species new to Taiwan. Trans. Mycol. Soc. Repub. China 11, 113–120.
Chew, A. L. C., Desjardin, D. E., Tan, Y. S., Musa, M. Y., and Sabaratnam, V. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 97, 137–392.
Corner, E. J. H. (1954). Further descriptions of luminous agarics. Trans. Br. Mycol. Soc. 57, 256–271. doi: 10.1016/S0007-1536(54)80009-X
Corner, E. J. H. (1986). The agaric genus Panellus Karst. (including Dictyopus Pat.) in Malaysia. Gardens' Bull. 39, 103–147.
Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., et al. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 97, 137–392.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Earle, F. S. (1909). The genera of the North American gill fungi. Trans. Mycol. Soc. Repub. China 11, 113–120.
Zhang, Q. Y., and Dai, Y. C. (2021). Two new species of *Panellus* (Agaricales, Basidiomycota) from China. *Mycol. Prog.* 20, 51–60.

Zhou, M., Dai, Y. C., Vlasák, J., and Yuan, Y. (2021). Molecular phylogeny and global diversity of the genus *Haploporus* (Polyporales, Basidiomycota). *J. Fungi* 7:96. doi: 10.3390/jof7020096

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a past collaboration with one of the author VP.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhang, Liu, Papp, Zhou, Wu and Dai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.