Centre Vortex Effects on the Overlap Quark Propagator

Daniel Trewartha
Derek Leinweber and Waseem Kamleh

CSSM, School of Chemistry and Physics
University of Adelaide

Wednesday, 25th June 2014
The fundamental aspects of the QCD vacuum that are responsible for the dynamical generation of mass through chiral symmetry breaking and confinement are an ongoing source of debate.

Centre vortices are associated with the fundamental centre degree of freedom of QCD, and so are a natural candidate for investigation.
The fundamental aspects of the QCD vacuum that are responsible for the dynamical generation of mass through chiral symmetry breaking and confinement are an ongoing source of debate.

Centre vortices are associated with the fundamental centre degree of freedom of QCD, and so are a natural candidate for investigation.
Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds

 Qualitatively different results to previous ASQTAD results
- Effects of cooling on vortex-only backgrounds
Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds
 - Qualitatively different results to previous ASQTAD results
- Effects of cooling on vortex-only backgrounds
Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds
 - Qualitatively different results to previous ASQTAD results
- Effects of cooling on vortex-only backgrounds
Overview

- Identifying centre vortices on the lattice via MCG fixing
- Overlap quark propagator on vortex-free and vortex-only backgrounds
 Qualitatively different results to previous ASQTAD results
- Effects of cooling on vortex-only backgrounds
Identifying Centre Vortices on the Lattice

Transform to Maximal Centre Gauge, where links are brought close to centre elements

\[Z_\mu(x) = z \mathbf{I}, \quad z^3 = 1 \]

\[= \exp \left[\frac{2\pi i}{3} m_\mu(x) \right] \mathbf{I}, \quad m_\mu(x) \in \{-1, 0, 1\} \] (1)

Require transformation \(\Omega(x) \) maximising overlap between gauge links and centre elements

\[\sum_{x, \mu} \text{Re} \text{Tr} \left[U_\mu^\Omega(x) Z_\mu^\dagger(x) \right] \rightarrow \text{Max} \] (2)
Identifying Centre Vortices on the Lattice

- Transform to Maximal Centre Gauge, where links are brought close to centre elements

\[Z_\mu(x) = zI, \quad z^3 = 1 \]
\[= \exp\left[\frac{2\pi i}{3} m_\mu(x) \right] I, \quad m_\mu(x) \in \{-1, 0, 1\} \] \hspace{1cm} (1)

- Require transformation \(\Omega(x) \) maximising overlap between gauge links and centre elements

\[\sum_{x,\mu} \text{Re Tr} \left[U_\mu^\Omega(x) Z_\mu^\dagger(x) \right] \to \text{Max} \] \hspace{1cm} (2)
Identifying Centre Vortices on the Lattice

- Implemented through ’mesonic’ centre gauge fixing condition

\[R_{mes} = \sum_{x,\mu} |\text{Tr} \ U_\mu^\Omega(x)|^2 \rightarrow \text{Max} \]

(3)

- Then we project onto \(Z_3 \)

\[\frac{1}{3} \text{Tr}U_\mu^\Omega(x) = r_\mu(x) \exp(i\phi_\mu(x)) \]

(4)

Choose \(m_\mu(x) \in \{-1, 0, 1\} \) with \(\frac{2\pi m_\mu(x)}{3} \) closest to \(\phi_\mu(x) \)
Identifying Centre Vortices on the Lattice

- Implemented through ‘mesonic’ centre gauge fixing condition

\[
R_{mes} = \sum_{x,\mu} |\text{Tr} \ U^\Omega_{\mu}(x)|^2 \rightarrow \text{Max} \tag{3}
\]

- Then we project onto \(Z_3 \)

\[
\frac{1}{3} \text{Tr} U^\Omega_{\mu}(x) = r_{\mu}(x) \exp(i\phi_{\mu}(x)) \tag{4}
\]

Choose \(m_{\mu}(x) \in \{-1, 0, 1\} \) with \(\frac{2\pi m_{\mu}(x)}{3} \) closest to \(\phi_{\mu}(x) \)
We use the overlap operator, which has a lattice-deformed version of chiral symmetry, leading to greater sensitivity to topological effects.

Results calculated on 50 $20^3 \times 40$ gauge-field configurations using Lüscher-Weisz $O(a^2)$ mean-field improved action with a lattice spacing of 0.125 fm.
Simulation Details

- We use the overlap operator, which has a lattice-deformed version of chiral symmetry, leading to greater sensitivity to topological effects.
- Results calculated on 50 $20^3 \times 40$ gauge-field configurations using Lušcher-Weisz $\mathcal{O}(a^2)$ mean-field improved action with a lattice spacing of 0.125 fm.
MCG-fixed phases
Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations

\[U_\mu(x) \]

(5)

- Vortex-only configurations

\[Z_\mu(x) = \exp \left[\frac{2\pi i}{3} m_\mu(x) \right] I \]

(6)

- Vortex removed configurations

\[R_\mu(x) = Z^\dagger_\mu(x) U^\Omega_\mu(x) \]

(7)
Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations
 \[U_\mu(x) \] (5)

- Vortex-only configurations
 \[Z_\mu(x) = \exp\left[\frac{2\pi i}{3} m_\mu(x) \right] I \] (6)

- Vortex removed configurations
 \[R_\mu(x) = Z_\mu^\dagger(x) U_\mu^\Omega(x) \] (7)
Identifying Centre Vortices on the Lattice

3 sets of configurations:

- **Untouched configurations**
 \[U_\mu(x) \] \hspace{1cm} (5)

- **Vortex-only configurations**
 \[Z_\mu(x) = \exp \left[\frac{2\pi i}{3} m_\mu(x) \right] I \] \hspace{1cm} (6)

- **Vortex removed configurations**
 \[R_\mu(x) = Z^\dagger_\mu(x) U_\mu^\Omega(x) \] \hspace{1cm} (7)
Identifying Centre Vortices on the Lattice

3 sets of configurations:

- Untouched configurations
 \[U_\mu(x) \]

- Vortex-only configurations
 \[Z_\mu(x) = \exp \left[\frac{2\pi i}{3} m_\mu(x) \right] I \]

- Vortex removed configurations
 \[R_\mu(x) = Z_\mu^\dagger(x) U_\mu^\Omega(x) \]
Centre Vortices and Confinement

From Bowman et al, Phys. Rev. D 84, 034501 (2011)
Previous Results Using an ASQTAD action

Performed with $m_0a = 0.048$, $a = 0.122$ on a $16^3 \times 32$ lattice

From Bowman et al, Phys. Rev. D 84, 034501 (2011)
Previous Results Using an ASQTAD action

Performed with $m_0 a = 0.048$, $a = 0.122$ on a $16^3 \times 32$ lattice

From Bowman et al, Phys. Rev. D 84, 034501 (2011)
Write momentum-space propagator as

\[S(p) = \frac{Z(p)}{i\vec{q} + M(p)}, \tag{8} \]

with \(q_\mu \) the tree-level improved kinematic lattice momentum[1]

Fixed to Landau gauge using a Fourier transform accelerated algorithm [2] to the \(\mathcal{O}(a^2) \) improved gauge-fixing functional [3].

[1] F.D.R. Bonnet et al, Phys. Rev. D 65, 2002
[2] C.T.H. Davies et al. Phys. Rev. D 37, 1581 (1988)
[3] F.D.R. Bonnet et al, Austral. J. Phys. 52, 939 (1999)
Write momentum-space propagator as

\[S(p) = \frac{Z(p)}{i\not{q} + M(p)}, \quad (8) \]

with \(q_\mu \) the tree-level improved kinematic lattice momentum[1].

Fixed to Landau gauge using a Fourier transform accelerated algorithm [2] to the \(\mathcal{O}(a^2) \) improved gauge-fixing functional [3].

[1] F.D.R. Bonnet et al, Phys. Rev. D 65, 2002
[2] C.T.H. Davies et al. Phys. Rev. D 37, 1581 (1988)
[3] F.D.R. Bonnet et al, Austral. J. Phys. 52, 939 (1999)
Mass function on Untouched Configurations

\[m_q = 70 \text{ MeV} \]

- Untouched
- Bare Mass

\[
\begin{align*}
M(p) \text{ MeV} & \quad \text{versus} \quad p \text{ GeV} \\
0 & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\
\end{align*}
\]
Mass function with Vortex Removed Configurations

\[m_q = 70 \text{ MeV} \]

- Untouched
- Vortex Removed
- Bare Mass

\[\text{MeV} \]

\[\text{GeV} \]
Renormalization function on UT Configurations

\[Z(p) \]

\[m_q = 70 \text{ MeV} \]

untouched
Renormalization function with VR Configurations

\[m_q = 70 \text{ MeV} \]

- Untouched
- VR
Quark Propagator on Vortex Removed Configurations

- ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
- Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
- Loss of confinement on vortex removed backgrounds using overlap
ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
Loss of confinement on vortex removed backgrounds using overlap
Quark Propagator on Vortex Removed Configurations

- ASQTAD propagator unable to show loss of dynamical mass generation with vortex removal
- Overlap propagator shows loss of dynamical mass generation coincident with vortex removal
- Loss of confinement on vortex removed backgrounds using overlap
Mass function on Vortex Only Configurations

\[m_q = 70 \text{ MeV} \]

- x Untouched
- o Vortex Only
- -- Bare Mass
Renormalization function on VO Configurations

\[m_q = 70 \text{ MeV} \]

- Untouched
- VO
The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?
The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?
The story so far...

- Vortex-only backgrounds cannot reproduce dynamical mass generation
- Vortex-only backgrounds not trivial; evidence of confinement
- The question: what information about the original configurations do vortex-only configurations retain?
Cooling

- Vortex-only configurations consist only of center elements ⇒ high action
- We will perform cooling on vortex-only configurations
- Cooling is performed using an $\mathcal{O}(a^4)$-three-loop improved action, and the topological charge density is calculated using an $\mathcal{O}(a^4)$-five-loop improved definition of the field-strength tensor.
Vortex-only configurations consist only of center elements ⇒ high action

We will perform cooling on vortex-only configurations

Cooling is performed using an $O(a^4)$-three-loop improved action, and the topological charge density is calculated using an $O(a^4)$-five-loop improved definition of the field-strength tensor.
Cooling

- Vortex-only configurations consist only of center elements \(\Rightarrow \) high action
- We will perform cooling on vortex-only configurations
- Cooling is performed using an \(\mathcal{O}(a^4) \)-three-loop improved action, and the topological charge density is calculated using an \(\mathcal{O}(a^4) \)-five-loop improved definition of the field-strength tensor.
Untouched Configurations with Cooling
Untouched Configurations with Cooling
Vortex Only Configurations with Cooling
Vortex Only Configurations with Cooling
40 sweep comparison
Mass function with cooling

- Under a UV filter, the overlap mass function retains its form qualitatively, with some loss of dynamical mass generation[1]

[1] D. T, W. Kamleh, D. Leinweber and D. S. Roberts, Phys. Rev. D 88, 034501 (2013) [arXiv:1306.3283 [hep-lat]].
Renormalization function with cooling

\[Z(p) \]

- \(m_q = 70 \text{ MeV} \)
- Untouched
- 40 sweeps cooling

\(p \text{ GeV} \)
Mass function with cooling

\[m_q = 70 \text{ MeV} \]

- Vortex Only
- --- Bare Mass

\[M(p) \text{ MeV} \]

\[p \text{ GeV} \]
Mass function with cooling

\[m_\eta = 70 \text{ MeV} \]

- \(\times \) Vortex Only
- \(\Box \) Vortex Only Cooled
- \(- - - - \) Bare Mass

![Graph showing mass function with cooling](image-url)
Renormalization function with cooling

\[Z(p) \]

\[m_q = 70 \text{ MeV} \]

\[\text{Vortex Only} \]
Renormalization function with cooling

\[Z(p) \]

- \[m_q = 70 \text{ MeV} \]
- \(\square \) Vortex Only
- \(\times \) Vortex Only Cooled
Mass function with cooling

\[m_q = 70 \text{ MeV} \]

- Untouched
- Vortex Only
- Bare Mass
Renormalization function with cooling

\[Z(p) \]

- \[m_q = 70 \text{ MeV} \]
- Untouched
- VO
Mass function with cooling

\[m_q = 70 \text{ MeV} \]

- Untouched
- Vortex Removed
- Vortex Only
- Bare Mass
Renormalization function with cooling

\[m_q = 70 \text{ MeV} \]
- Untouched
- Vortex Removed
- VO
Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement
- Dynamical mass generation exists on vortex only configurations after cooling
Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation.
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement.
- Dynamical mass generation exists on vortex only configurations after cooling.
Conclusion

- Shown for the first time removal of centre vortices coincident with loss of dynamical mass generation
- A centre vortex background alone does not support dynamical mass generation, but shows evidence of confinement
- Dynamical mass generation exists on vortex only configurations after cooling
Additional Slides
Preconditioning Landau-gauge fixing

\[m_q = 70 \text{ MeV} \]

- Untouched
- VO Method A
- VO Method B
- VO Method C

Bare Mass

\[M(p) \text{ MeV} \]

\[p \text{ GeV} \]
MCG fixing

- Wish to maximise the local quantity

\[R_x = \sum_{\mu} |\text{Tr}\{G(x)U_{\mu}(x)\}|^2 + \sum_{\mu} |\text{Tr}\{U_{\mu}(x - \mu)G^\dagger(x)\}|^2 \quad (9) \]

- Use an \(SU(2) \) matrix \(g = g_4 I - ig_i \sigma_i \) embedded in one of the 3 \(SU(2) \) subgroups of \(SU(3) \)

- Can be re-written as

\[R_x = g_i A_{ij} g_j + g_i b_i + c, \quad (10) \]

with \(A \) real, symmetric \(4 \times 4 \) matrix, \(b \) a real 4-vector, \(c \) a real constant.

Method of A. Montero, Phys. Lett. B 467, 106 (1999)
MCG fixing

- Wish to maximise the local quantity

\[R_x = \sum_{\mu} |\text{Tr}\{G(x)U_{\mu}(x)\}|^2 + \sum_{\mu} |\text{Tr}\{U_{\mu}(x - \hat{\mu})G^\dagger(x)\}|^2 \] \hspace{1cm} (9)

- Use an $SU(2)$ matrix $g = g_4I - ig_i\sigma_i$ embedded in one of the 3 $SU(2)$ subgroups of $SU(3)$

- Can be re-written as

\[R_x = g_iA_{ij}g_j + g_ib_i + c, \] \hspace{1cm} (10)

with A real, symmetric 4×4 matrix, b a real 4-vector, c a real constant.

Method of A. Montero, Phys. Lett. B 467, 106 (1999)
Wish to maximise the local quantity

\[R_x = \sum_\mu |\text{Tr}\{G(x)U_\mu(x)\}|^2 + \sum_\mu |\text{Tr}\{U_\mu(x - \hat{\mu})G^\dagger(x)\}|^2 \] \hspace{1cm} (9)

Use an $SU(2)$ matrix $g = g_4 I - ig_i \sigma_i$ embedded in one of the 3 $SU(2)$ subgroups of $SU(3)$

Can be re-written as

\[R_x = g_i A_{ij} g_j + g_i b_i + c, \] \hspace{1cm} (10)

with A real, symmetric 4×4 matrix, b a real 4-vector, c a real constant.

Method of A. Montero, Phys. Lett. B 467, 106 (1999)
Lower Bare Masses

\[m_q = 12 \text{ MeV} \]

- Untouched
- VO
- VR

\[\text{Bare Mass} \]
Lower Bare Masses

\[m_q = 70 \text{ MeV} \]
- Untouched
- VR
- VO
$m_q = 70$ MeV

- Untouched
- Vortex Only
- Vortex Removed

--- Bare Mass
$z(p)$

$m_q = 70$ MeV

- Untouched
- VR
- VO