ON THE FUNCTORS ASSOCIATED WITH BEADED OPEN JACOBI DIAGRAMS

CHRISTINE VESPA

Abstract. Morphisms in the linear category \mathbf{A} of Jacobi diagrams in handlebodies give rise to interesting contravariant functors on the category \mathbf{gr} of finitely-generated free groups, encoding part of the composition structure of the category \mathbf{A}. These functors correspond, via an equivalence of categories given by Powell, to functors given by beaded open Jacobi diagrams. We study the polynomiality of these functors and whether they are outer functors. These results are inspired by and generalize previous results obtained by Katada.

1. Introduction

In [HM21], Habiro and Massuyeau extend the Kontsevich integral to construct a functor from the category of bottom tangles in handlebodies to the linear category \mathbf{A} of Jacobi diagrams in handlebodies. This category has \mathbb{N} as objects and for $n, m \in \mathbb{N}$, a generator of the vector space $\mathbf{A}(n, m)$ can be represented by a Jacobi diagram whose edges are oriented, such that each univalent vertex is embedded into the interior of the 1-manifold X_m, consisting of m arcs and where we have beads coloured with elements of the free group of rank n on edges. For example, for $F_3 = \langle x_1, x_2, x_3 \rangle$, the following is a non-zero element of $\mathbf{A}(3, 2)$:

\[x_2^{-1} \cdots x_3^{-1} x_1^{-1} x_1 x_2 \]

The definition of the composition in the linear category \mathbf{A} is natural from the geometric point of view. However, it is quite complicated to understand it algebraically and this paper sheds some light on this.

To study the composition in a category, we can fix an object n in the category and look at the composition of the morphisms from n with any morphism of the category. In our setting, this corresponds to studying, for n an object of \mathbf{A}, the linear functor $\mathbf{A}(n, -) : \mathbf{A} \rightarrow \mathbb{K}\text{-}\text{Mod}$ where $\mathbf{A}(-, -)$ denotes the \mathbb{K}-vector space of morphisms in \mathbf{A}, for \mathbb{K} a field of characteristic zero. These functors being still too complicated to study, we restrict them to the subcategory \mathbf{A}_0 of \mathbf{A} which is equivalent, by [HM21] p. 630, to the \mathbb{K}-linearization of the opposite of the category \mathbf{gr} of finitely-generated free groups. This gives rise to functors

$\mathbf{A}(n, -) : \mathbf{gr}^{\text{op}} \rightarrow \mathbb{K}\text{-}\text{Mod}$

encoding the composition of morphisms in \mathbf{A} from n with a morphism in the subcategory \mathbf{A}_0. The graduation by the degree d of the Jacobi diagrams defines subfunctors of $\mathbf{A}(n, -)$:

$\mathbf{A}_d(n, -) : \mathbf{gr}^{\text{op}} \rightarrow \mathbb{K}\text{-}\text{Mod}$

2010 Mathematics Subject Classification. 57M27, 57K16, 18A25, 18M05.

Key words and phrases. Jacobi diagrams, functors on free groups, polynomial functors.

This work was partially supported by the ANR Project ChroK, ANR-16-CE40-0003, ANR Project AlMaRe ANR-19-CE40-0001-01 and ANR Project HighAGT ANR-20-CE40-0016.
For \(n = 0 \), these functors have been studied by Katada in
\cite{Kata, Katb}. Katada shows that \(A_d(0, -) \) is a polynomial functor of degree \(2d \) which is an outer functor: i.e. for all \(m \in \mathbb{N} \), the inner automorphisms act trivially on \(A_d(0, m) \). She also gives the complete structure of the functors \(A_d(0, -) \) for \(d \in \{1, 2, 3\} \) and, for general \(d \), a decomposition of the functor \(A_d(0, -) \) into indecomposables.

The aim of this paper is to study, more generally, the functors \(A_d(n, -) : \text{gr}^{op} \to \mathbb{K}-\text{Mod} \) for \(d, n \in \mathbb{N} \).

Our first result shows that the polynomiality of the functors \(A_d(0, -) \) is exceptional.

Proposition 1 (Proposition 5.4). For \(d, n \in \mathbb{N} \), the functor \(A_d(n, -) : \text{gr}^{op} \to \mathbb{K}-\text{Mod} \) is polynomial iff \(n = 0 \).

Using the \(\text{gr}^{op} \)-gradation of \(A(n, m) \) introduced by Habiro and Massuyeau in
\cite{HM21}, we obtain, in Proposition 6.1, a subfunctor \(A(n, -)_0 \) of \(A(n, -) \), satisfying \(A(0, -)_0 = A(0, -) \). The generators of \(A(n, m)_0 \) are those of \(A(n, m) \) which can be represented by a Jacobi diagram on \(X_m \) without beads on \(X_m \) (but there may be beads on the Jacobi diagram). For example, for \(F_3 = (x_1, x_2, x_3) \), the following represents a non-zero element of \(A(3, 2)_0 \):

\[
\begin{array}{c}
\xymatrix{
& x_1^{-1} \ar[dr] & \\
& x_3 \ar[ur] \ar[dr] & \\
& x_2 &
}
\end{array}
\]

The graduation by the degree \(d \) of the Jacobi diagrams defines a subfunctor \(A_d(n, -)_0 \) of \(A(n, -)_0 \). Considering the subspace of \(A_d(n, m)_0 \) generated by the Jacobi diagrams having at least \(t \) trivalent vertices, we obtain subfunctors \(A^t_d(n, -)_0 \) of \(A_d(n, -)_0 \) defining a filtration:

\[
0 = A_{2d}^{d}(n, -)_0 \subset \ldots \subset A^{d}_1(n, -)_0 \subset A^{d}_0(n, -)_0 = A_d(n, -)_0
\]

corresponding, for \(n = 0 \), to the filtration considered by Katada in
\cite{Kata}.

These functors satisfy the following:

Theorem 2 (Theorem 6.9). For \(n \in \mathbb{N} \) and \(d \geq 1 \), the functor \(A_d(n, -)_0 : \text{gr}^{op} \to \mathbb{K}-\text{Mod} \) is polynomial of degree \(2d \) and the filtration \(\{F_i\} \) corresponds to the polynomial filtration.

However, contrary to the result of Katada, the functors \(A_d(n, -)_0 \) are rarely outer functors:

Theorem 3 (Theorem 6.13). For \(d, n \in \mathbb{N} \), the functor \(A_d(n, -)_0 \) is an outer functor iff \(n = 0 \) or \(d = 0 \).

We obtain a description of the functor \(A_1(n, -)_0 \) generalizing that of the functor \(A_1(0, -) \) given in
\cite{Kata} Section 4. Let \(\alpha : \text{gr} \to \mathbb{K}-\text{Mod} \) be the abelianization functor, \(\mathcal{P}_2 : \text{gr} \to \mathbb{K}-\text{Mod} \) the second Passi functor (see Section \$3 \$ and \((-)^\# : \mathcal{F}(\text{gr}; \mathbb{K})^{op} \to \mathcal{F}(\text{gr}^{op}; \mathbb{K}) \) the duality functor, we have:

Proposition 4. (Proposition 6.12) For \(n \in \mathbb{N} \), we have a natural equivalence

\[
A_1(n, -)_0 \cong \mathcal{P}_2^\# \otimes \mathbb{K}[F_n],
\]

where the action of \(\mathfrak{S}_2 \) on \(\mathbb{K}[F_n] \) is given by taking the inverse in \(F_n \): \(v \mapsto v^{-1} \) and the action of \(\mathfrak{S}_2 \) on \(\mathcal{P}_2^\# \) is given in Section \$3 \$. In particular, we have \(A_1(0, -) \cong S^2 \circ \alpha^\# \).

In Section 6.7 we give another proof, based on
\cite{PV18}, of \cite{Katb} Theorem 10.1, giving a direct sum decomposition of the functor \(A_d(0, -) \) in the category of functors on \(\text{gr}^{op} \).
One of the main ingredients of this paper is the use of the equivalence of categories given by Powell in [Powa]:

\[\alpha^{-1} : \mathcal{F}_\omega(\text{gr}^{\text{op}}; \mathbb{K}) \xrightarrow{\simeq} \mathcal{F}_{\text{Lie}} \]

where \(\mathcal{F}_\omega(\text{gr}^{\text{op}}; \mathbb{K}) \) is the category of analytic functors on \(\text{gr}^{\text{op}} \) and \(\mathcal{F}_{\text{Lie}} \) is the category of \(\mathbb{K} \)-linear functors from the linear PROP associated with the operad \(\text{Lie} \) to \(\mathbb{K} \)-Mod (see Section 2.3 for further details). It turns out that the polynomial filtration of a functor is easier to understand in the category \(\mathcal{F}_{\text{Lie}} \) than in the category \(\mathcal{F}_\omega(\text{gr}^{\text{op}}; \mathbb{K}) \) (see [Powa] and Section 2.4). It is also easier to show that the action of inner automorphisms is trivial in the category \(\mathcal{F}_{\text{Lie}} \) (see [Powb] and Section 2.5). The proofs of the previous results are based on the computation of the functor \(\alpha^{-1}(A_d(n,-)_0) \). In Section 6.2 we introduce the \(\mathbb{K} \)-vector space \(J_d^{F_n}(m) \) which is the quotient by the AS and the IHX relations, of the \(\mathbb{K} \)-vector space generated by equivalence classes of open Jacobi diagrams \(D \) whose edges are oriented and labelled by \(F_n \) (represented by beads) and equipped with a bijection \(\{\text{univalent vertices of } D\} \xrightarrow{\simeq} \{1, \ldots, m\} \). For example, the following is a non-zero element of \(J_2^{F_n}(3) \):

![Diagram]

The generators of \(J_d^{F_n}(m) \) are called \(F_n \)-beaded open Jacobi diagrams. The correspondence between the AS relation and the antisymmetry relation for Lie algebras and the IHX relation and the Jacobi relation for Lie algebras implies that this defines a functor \(J_d^{F_n} \) in \(\mathcal{F}_{\text{Lie}} \) (see Proposition 6.6). We have the following:

Theorem 5 (Theorem 6.7). For \(n, d \in \mathbb{N} \), we have an equivalence of functors in \(\mathcal{F}_{\text{Lie}} \):

\[\alpha^{-1}(A_d(n,-)_0) \simeq J_d^{F_n}. \]

The title of this paper reflects the fact that the functors \(J_d^{F_n} \) are much easier to study than the functors \(A_d(n,-)_0 \). A more in-depth study of the functors \(J_d^{F_n} \) will be given in another paper.

Acknowledgement: This work was inspired by Mai Katada’s papers [Kata, Katb], where the natural appearance of outer polynomial functors intrigued the author of this paper and motivated her to take an interest in the category of Jacobi diagrams in handlebodies. The author is grateful to Mai Katada for communicating her papers. The author is also grateful to Geoffrey Powell for discussions on his papers [Powb, Powa] and helpful comments on the previous versions of the manuscript.

Contents

1. Introduction
2. Functors on \(\text{gr}^{\text{op}} \)
 2.1. Generalities on \(\text{gr} \)
 2.2. Generalities on functors on \(\text{gr} \) and \(\text{gr}^{\text{op}} \)
 2.3. Polynomial and analytic functors on \(\text{gr}^{\text{op}} \)
 2.4. Analytic functors on \(\text{gr}^{\text{op}} \) and \(\text{CatLie}\)-modules
 2.5. Outer \(\text{CatLie}\)-modules
3. On the second Passi functor \(P_2 \)
4. Habiro-Massuyeau’s category

4.1. Definition

4.2. Two gradings and sub-(semi)-categories

5. Projective generators on Habiro-Massuyeau’s category

5.1. Generalities on the functors $A(n, -)$ and $A_d(n, -)$

5.2. Filtration of the functors $A(n, -)$ and $A_d(n, -)$

6. The functors $A(n, -)_0$ and beaded open Jacobi diagrams

6.1. Definition of the functors $A(n, -)_0$

6.2. The Cat_{Lie}-modules $J_{F_m}^n$ of F_m-beaded open Jacobi diagrams

6.3. The correspondence between $A_d(n, -)_0$ and $J_{F_m}^n$

6.4. On the polynomial filtration of the functors $A_d(n, -)_0$

6.5. On the functors $A_1(n, -)_0$

6.6. Outer property of the functors $A_d(n, -)_0$

6.7. On the functors $A_d(0, -)$

References

Notation. Denote by:

- \mathbb{K} a field of characteristic 0.
- \mathbb{K}-Mod the category of \mathbb{K}-vector spaces.

For $n \geq 0$:

- $n = \{1, \ldots, n\}$;
- S_n is the symmetric group on n letters;
- X_n is the oriented 1-manifold consisting of n arc components;
- $F_n = \langle x_1, \ldots, x_n \rangle$ is the free group of rank n. The trivial group is denoted by $\{1\}$.

For generalities on Jacobi diagrams we refer the reader to [CDM12, Chapter 5].

2. Functors on gr^{op}

2.1. Generalities on gr. Let gr be the category of finitely-generated free groups. This category is essentially small, with skeleton given by \mathbb{N}, where $n \in \mathbb{N}$ corresponds to the free group F_n of rank n. For clarity, we will sometimes denote the object n by F_n. The object $0 = F_0 = \{1\}$ is a null-object in gr. For n, m objects of gr, we denote by $0 : n \to m$ the composition $n \to 0 \to m$.

Explicitly, 0 is the homomorphism $F_m \to F_n$ sending each generator to 1.

The category gr is a PROP for the symmetric strict monoidal structure given by the free product.

By Pirashvili’s result [Pir02], the PROP gr is isomorphic to the free symmetric monoidal category generated by a commutative Hopf monoid. In other words, the morphisms of gr are generated by the permutations groups in $\text{gr}(n, n)$ for $n \in \mathbb{N}$ and the following homomorphisms:

1. $m_1 : 1 \to 0$ corresponding to $F_1 \to \{1\}$;
2. $m_2 : 1 \to 2$ corresponding to $F_1 \to F_2$ sending the generator x of F_1 to x_1x_2;
3. $m_3 : 0 \to 1$ corresponding to $\{1\} \to F_1$;
4. $m_4 : 1 \to 1$ corresponding to $F_1 \to F_1$ sending the generator x of F_1 to x^{-1};
5. $m_5 : 2 \to 1$ corresponding to $F_2 \to F_1$ sending x_1 to x and x_2 to x (this is the folding map).

2.2. Generalities on functors on gr and gr^{op}. We denote by $\mathcal{F}(\text{gr}; \mathbb{K})$ (resp. $\mathcal{F}(\text{gr}^{\text{op}}; \mathbb{K})$) the category of functors from gr (resp. gr^{op}) to \mathbb{K}-Mod. These categories are abelian.
A functor $M : \text{gr} \to \mathbb{K} \text{-Mod}$ (resp. $N : \text{gr}^{op} \to \mathbb{K} \text{-Mod}$) is said to be reduced if $M(0) = 0$ (resp. $N(0) = 0$).

Let $P_n : \text{gr} \to \mathbb{K} \text{-Mod}$ be the functor $\mathbb{K}[\text{gr}(n, -)]; \{P_n, n \in \mathbb{N}\}$ is a set of projective generators of the category $\mathcal{F}(\text{gr}; \mathbb{K})$. By the Yoneda lemma, for $F : \text{gr} \to \mathbb{K} \text{-Mod}$, $\text{Hom}_{\mathcal{F}(\text{gr}; \mathbb{K})}(P_n, F) \simeq F(n)$.

We denote by \hat{P}_1 the reduced part of P_1, i.e. $P_1 \cong \mathbb{K} \oplus \hat{P}_1$. For G a free group $\hat{P}_1(G)$ is the \mathbb{K}-vector space underlying the augmentation ideal IG of the \mathbb{K}-algebra $\mathbb{K}[G]$. Since $P_0 = \mathbb{K}$, we have $\text{Hom}_{\mathcal{F}(\text{gr}; \mathbb{K})}(P_1, F) \simeq F(0) \oplus \text{Hom}_{\mathcal{F}(\text{gr}; \mathbb{K})}(\hat{P}_1, F)$, so
\begin{equation}
\text{Hom}_{\mathcal{F}(\text{gr}; \mathbb{K})}(\hat{P}_1, \hat{P}_1) \simeq \hat{P}_1(1) \simeq IF_1.
\end{equation}

Composition with vector space duality functor $(-)^\# : \mathbb{K} \text{-Mod} \to \mathbb{K} \text{-Mod}^{op}$ gives rise to a pair of adjoint functors, named the duality functors
\begin{align*}
(-)^\# : \mathcal{F}(\text{gr}; \mathbb{K})^{op} &\to \text{Func}(\text{gr}; \mathbb{K} \text{-Mod}^{op})^{op} \\
(-)^\# : \mathcal{F}(\text{gr}; \mathbb{K}) &\to \text{Func}(\text{gr}; \mathbb{K} \text{-Mod}^{op})
\end{align*}
where the last equivalences are given by the usual equivalence of categories $\mathcal{F}(\text{gr}; \mathbb{K})^{op} \simeq \text{Func}(\text{gr}; \mathbb{K} \text{-Mod}^{op})$, where $\text{Func}(\text{gr}; \mathbb{K} \text{-Mod}^{op})$ is the category of functors from gr to the opposite of \mathbb{K}-Mod. The duality functors restrict to an equivalence of categories for functors taking finite dimensional values.

Let $\Omega : \text{gr} \to \mathbb{K} \text{-Mod}$ be the abelianization functor that sends a free group G to $(G/[G, G]) \oplus \mathbb{Z}$.

The category of outer functors $\mathcal{F}^{\text{Out}}(\text{gr}; \mathbb{K})$ is the full subcategory of $\mathcal{F}(\text{gr}; \mathbb{K})$ of functors F such that, for each $n \in \mathbb{N}$, inner automorphisms act trivially on $F(n)$. Outer functors were introduced in [PV18, Section 10]. Let $\Omega : \mathcal{F}(\text{gr}; \mathbb{K}) \to \mathcal{F}^{\text{Out}}(\text{gr}; \mathbb{K})$ be the left adjoint to the inclusion functor $\mathcal{F}^{\text{Out}}(\text{gr}; \mathbb{K}) \hookrightarrow \mathcal{F}(\text{gr}; \mathbb{K})$. The functor Ω is described explicitly in [PV18, Definition 11.5].

2.3. Polynomial and analytic functors on gr^{op}

Polynomial contravariant functors have been considered in a general setting in [HPV15, Section 3.1]. Here we recall the definitions for contravariant functors on gr.

For $k \in \{1, \ldots, n\}$, let $i^n_k : F_{n-1} \to F_n$ be the homomorphism given by
\[i^n_k(x_i) = \begin{cases} x_i & \text{if } i < k \\ x_{i+1} & \text{if } i \geq k \end{cases}\]

The n-th cross-effect of a functor $N : \text{gr}^{op} \to \mathbb{K} \text{-Mod}$ is a functor $\tilde{\tau}_n(N) : (\text{gr}^{op})^n \to \mathbb{K} \text{-Mod}$. Its evaluation on F_1 in each variable $\tilde{\tau}_n(N)(1, \ldots, 1)$ is equal to the kernel of the natural homomorphism
\[N(F_n) \xrightarrow{(N(r^n_1), \ldots, N(r^n_n))} \bigoplus_{k=1}^n N(F_{n-1}).\]

In the examples, it is easier to compute cross-effects using the following equivalent description using a cokernel instead of a kernel. For $k \in \{1, \ldots, n\}$, let $r^n_k : F_n \to F_{n-1}$ be the homomorphism given by
\[r^n_k(x_i) = \begin{cases} x_i & \text{if } i < k \\ 1 & \text{if } i = k \\ x_{i-1} & \text{if } i > k \end{cases}\]

$\tilde{\tau}_n(N)(1, \ldots, 1)$ is isomorphic to the cokernel of the natural homomorphism
\[\bigoplus_{k=1}^n N(F_{n-1}) \xrightarrow{(N(r^n_1), \ldots, N(r^n_n))} N(F_n).\]
For $d \in \mathbb{N}$, a functor $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod is polynomial of degree at most d if $\tilde{c}_d(1)(1, \ldots, 1) = 0$. Let $\mathcal{F}_d(\mathbf{gr}^{op}; \mathbb{K})$ be the full subcategory of polynomial functors of degree at most d. The forgetful functor $\mathcal{F}_d(\mathbf{gr}^{op}; \mathbb{K}) \to \mathcal{F}(\mathbf{gr}^{op}; \mathbb{K})$ has a right adjoint denoted by p_d. For $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod, the functor $p_d(N)$ is the largest subfunctor of N polynomial of degree d. Hence, a functor $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod admits a natural filtration, called the polynomial filtration of N:

$$p_0(N) \subset p_1(N) \subset \ldots \subset p_d(N) \subset p_{d+1}(N) \subset \ldots \subset N.$$

A functor $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod is analytic if it is the colimit of its subfunctors $p_d(N)$. Let $\mathcal{F}_d(\mathbf{gr}^{op}; \mathbb{K})$ denote the full subcategory of $\mathcal{F}(\mathbf{gr}^{op}; \mathbb{K})$ of analytic functors.

For $d \in \mathbb{N}$, we have a functor: $\mathbf{gr}_d : \mathcal{F}_d(\mathbf{gr}^{op}; \mathbb{K}) \to \mathbb{K}[[\mathcal{S}_d]]$-Mod, given on $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod by $\mathbf{gr}_d(N) = \tilde{c}_d(N)(1, \ldots, 1)$ where the action of \mathcal{S}_d is given by permuting the factors.

The functor $(a^#)^{\otimes d} : \mathbf{gr}^{op} \to \mathbb{K}$-Mod is polynomial of degree d. The following Proposition is the analogue, for contravariant functors, of [PV18, Proposition 6.9].

Proposition 2.1. [Prop. 7.20] For $d \in \mathbb{N}$, the functor $\mathbf{gr}_d : \mathcal{F}_d(\mathbf{gr}^{op}; \mathbb{K}) \to \mathbb{K}[[\mathcal{S}_d]]$-Mod has right adjoint given by

$$M \mapsto ((a^#)^{\otimes d} \otimes M)^{\mathcal{S}_d}$$

where \mathcal{S}_d acts diagonally. This functor is exact and $((a^#)^{\otimes d} \otimes M)^{\mathcal{S}_d}$ is semi-simple of polynomial degree d.

For $N : \mathbf{gr}^{op} \to \mathbb{K}$-Mod there is a natural short exact sequence

$$0 \to p_{d-1}(N) \to p_d(N) \to ((a^#)^{\otimes d} \otimes \mathbf{gr}_d(p_d(N)))^{\mathcal{S}_d} \to 0.$$

2.4. Analytic functors on \mathbf{gr}^{op} and \mathbf{CatLie}-modules.

Let \mathbf{CatLie} be the linear PROP associated with the operad \mathbf{Lie} [LV12, Section 5.4.1]. Explicitly, \mathbf{CatLie} is the \mathbb{K}-linear category such that $\text{Ob}(\mathbf{CatLie}) = \mathbb{N}$ and

$$\mathbf{CatLie}(m, n) = \bigoplus_{f \in \text{Fin}(m, n)} \mathcal{L}ie(|f^{-1}(i)|)$$

where Fin is the category of finite sets. Since \mathbf{Lie} is reduced (i.e. $\mathbf{Lie}(0) = 0$) the sum can be taken over the surjections $m \twoheadrightarrow n$. For $m \in \mathbb{N}, \mathbf{CatLie}(m, 1) = \mathbf{Lie}(m)$ and for $m < n$, $\mathbf{CatLie}(m, n) = 0$. Since $\mathbf{Lie}(1) = \mathbb{K}, \mathbf{CatLie}(m, m) \simeq \mathbb{K}[[\mathcal{S}_m]].$

Fix a generator $\mu \in \mathbf{Lie}(2)$. For $n \in \mathbb{N}$ and $i \in \{1, \ldots, n\}$, let $\mu_i^{n+1} \in \mathbf{CatLie}(n+1, n)$ be the morphism given by the set map $s_i^{n+1} : n + 1 \to n$ defined by $s_i^{n+1}(j) = j$ for $j < n + 1$ and $s_i^{n+1}(n + 1) = i$ and taking $1 \in \mathbf{Lie}(1)$ for the fibres of cardinal one and $\mu \in \mathbf{Lie}(2)$ for the fibre of cardinal 2. The \mathbb{K}-linear category \mathbf{CatLie} is generated (via linear combination and composition) by the morphisms $\mu_i^{n+1} \in \mathbf{CatLie}(n + 1, n)$ and $\mathbf{CatLie}(n, n) \simeq \mathbb{K}[[\mathcal{S}_n]]$ for $n \in \mathbb{N}$.

Note that a pointed version of \mathbf{CatLie} pointed with a shuffle condition on fibers intervenes in [HV15].

Let $\mathcal{F}_{\mathbf{CatLie}}$ be the category of \mathbb{K}-linear functors from \mathbf{CatLie} to \mathbb{K}-Mod. For $n \in \mathbb{N}$, $\mathbf{CatLie}(n, _ : \mathbf{CatLie} \to \mathbb{K}$-Mod is a linear functor. By the enriched Yoneda lemma, for $F : \mathbf{CatLie} \to \mathbb{K}$-Mod a \mathbb{K}-linear functor, we have an isomorphism:

$$\text{Hom}_{\mathcal{F}_{\mathbf{CatLie}}}(\mathbf{CatLie}(n, _), F) \simeq F(n)$$

We deduce that the functors $\mathbf{CatLie}(n, _)$, for $n \geq 0$, are projective generators of $\mathcal{F}_{\mathbf{CatLie}}$.

For $F \in \mathcal{F}_{\mathbf{CatLie}}$ and $i \in \mathbb{N}$, since $\mathbf{CatLie}(m, n) = 0$ for $m < n$, F admits a subfunctor $F_{\leq i}$ given by truncation, i.e.

$$F_{\leq i}(n) = \begin{cases} F(n) & \text{if } n \leq i \\ 0 & \text{if } n > i \end{cases}$$

It follows that a functor $F \in \mathcal{F}_{\mathbf{CatLie}}$ admits a natural filtration:

$$F_{\geq 0} \subset F_{\leq 1} \subset \ldots \subset F_{\leq d} \subset F_{\leq d+1} \subset \ldots \subset F.$$
In [Powa], Powell gives an equivalence of categories between $\mathcal{F}_{\mathcal{Lie}}$ and $\mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$. In particular, Powell constructs explicit exact functors:

$$\alpha : \mathcal{F}_{\mathcal{Lie}} \to \mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$$

$$\alpha^{-1} : \mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K}) \to \mathcal{F}_{\mathcal{Lie}}$$

giving this equivalence. By [Powa] Corollary 8.9, for $F \in \mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$ we have an isomorphism:

$$\alpha^{-1}(F)(d) \simeq \mathcal{C}_d(\mathcal{p}_d F)(1, \ldots, 1).$$

The category CatLie is easier to understand than the category \mathcal{gr}^{op}. For example, we have $\text{CatLie}(i,j) = 0$ for $i < j$. It follows that it is easier to work with CatLie-modules than with functors on \mathcal{gr}^{op}. In particular, the polynomiality of functors in $\mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$ has an easy interpretation in CatLie-modules: a functor $F \in \mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$ is polynomial of degree equal to d iff $\alpha(F)(d) \neq 0$ and $\alpha(F)(k) = 0$ for $k > d$. Via the equivalence of categories, the polynomial filtration of a functor in $\mathcal{F}_\omega(\mathcal{gr}^{op}; \mathbb{K})$ corresponds to the filtration given by the truncations of CatLie-modules. More precisely, for $N : \mathcal{gr}^{op} \to \mathbb{K}$-$\text{Mod}$ and $i \in \mathbb{N}$ we have:

$$\alpha^{-1}(\mathcal{p}_i(N)) = (\alpha^{-1}N)_{\leq i}.$$

To prove Theorem 6.7 we will need the following explicit description of the functor α given in [Powa] Theorem 9.17. Let CatAss^u be the linear PROP associated with unital associative algebras; CatAss^u is the \mathbb{K}-linear category such that $\text{Ob}(\text{CatAss}^u) = \mathbb{N}$ and

$$\text{CatAss}^u(m, n) = \bigoplus_{f \in \text{Fin}(m,n)} \bigotimes_{i=1}^n \text{Ass}^u(|f^{-1}(i)|)$$

where Fin is the category of finite sets. More explicitly, a generator of $\text{CatAss}^u(m, n)$ is represented by a set map $f \in \text{Fin}(m,n)$ and an order of the elements of each fiber of f. We denote by $(s_i^{n+1}, i < n + 1)$ (resp. $(s_i^{n+1}, n+1 < i)$) the morphism in $\text{CatAss}(n+1, n)$ given by the set map $s_i^{n+1} : n + 1 \to n$ and the order $i < n + 1$ (resp. $n+1 < i$) on the fiber of cardinal 2. The morphism of operads $\text{Lie} \to \text{Ass}^u$ induces a functor $\text{CatLie} \to \text{CatAss}^u$ sending the morphism $\mu_i^{n+1} \in \text{CatLie}(n+1, n)$ to $(s_i^{n+1}, i < n + 1) - (s_i^{n+1}, n+1 < i) \in \text{CatAss}(n+1, n)$.

By [Powa] Proposition 9.13 the sets of morphisms in CatAss^u define a functor:

$$\text{CatAss}^u : (\text{CatLie})^{op} \otimes \mathbb{K}[\mathcal{gr}^{op}] \to \mathbb{K}-\text{Mod}.$$

In [Powa] Lemma A.2, the functor $\text{CatAss}^u(i, -) : \mathcal{gr}^{op} \to \mathbb{K}$-$\text{Mod}$, for i an object of $(\text{CatLie})^{op}$, is described explicitly on the generators of \mathcal{gr} recalled in Section 2.1. By [Powa] Theorem 9.17, $\alpha = \text{CatAss}^u \otimes \text{CatLie}_{\text{Lie}}$, the category of functors from Σ to \mathbb{K}-Mod. The obvious functor $\Sigma \to \mathcal{gr}^{op}$ induces a functor $\mathcal{F}(\mathcal{gr}^{op}; \mathbb{K}) \to \mathcal{F}(\Sigma; \mathbb{K})$. By [Powa] Remark 9.18, for an object F of \mathcal{F}_{Lie} and d an object of \mathcal{gr}^{op}, the functor in $\mathcal{F}(\Sigma; \mathbb{K})$ associated with $\text{CatAss}^u \otimes \mathcal{F}_{\text{Lie}}$ is given explicitly by:

$$\alpha(F)(d) \simeq \bigoplus_{i \in \mathbb{N}} \mathbb{K}[\text{Fin}(i,d) \otimes F(i).$$

A $\mathbb{K}[\mathcal{G}_d]$-module M defines an object of \mathcal{F}_{Lie} which is 0 for $n \neq d$ and M on d. Such CatLie-module will be said atomic and will be denoted by $M[d]$.

For a $\mathbb{K}[\mathcal{G}_d]$-module M, by [Powa] Example 9.20], we have:

$$\alpha(M[d]) = (a^\#)^{\otimes d} \otimes M.$$
This is in the image of the faithful embedding \(\mathcal{F}_\omega(\text{ab}^{op}; \mathbb{K}) \hookrightarrow \mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \), where \(\text{ab} \) is the category of finitely-generated free abelian groups. The category of analytic functors \(\mathcal{F}_\omega(\text{ab}^{op}; \mathbb{K}) \) is semi-simple. More precisely we have an equivalence of categories:

\[
\mathcal{F}_\omega(\text{ab}^{op}; \mathbb{K}) \simeq F(\Sigma; \mathbb{K}).
\]

The functor \(\alpha^{-1} \) extends this equivalence of categories in the sense that we have a commutative diagram:

\[
\begin{array}{ccc}
\mathcal{F}_{\text{Lie}} & \xrightarrow{\alpha} & \mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \\
\downarrow & & \downarrow \\
F(\Sigma; \mathbb{K}) & \simeq & \mathcal{F}_\omega(\text{ab}^{op}; \mathbb{K}).
\end{array}
\]

Remark 2.2. For \(N : \text{gr}^{op} \to \mathbb{K}\text{-Mod} \), by Proposition 2.1 we can consider the graded functor \(\text{gr}(N) \) associated with the filtered functor \(N \), obtained by considering the polynomial filtration. We have \(\text{gr}(N) = \bigoplus_{d \in \mathbb{N}} (\mathbb{K}[\sigma_d])^{\otimes d} \), and \(\alpha(\text{gr}(N)) \) is the direct sum of atomic functors associated with the \(\mathbb{K}[\sigma_d]\)-module \(\sigma_d(p_d)N \) whereas \(\alpha(N) \) is not, in general, the direct sum of atomic functors. This illustrates the fact that, considering the graded associated with a functor, we lose much of the structure.

2.5. Outer \(\text{CatLie} \)-modules. In [Powb], Powell gives a characterization of \(\text{CatLie} \)-modules corresponding to outer functors via the equivalence of categories given in the previous section. These \(\text{CatLie} \)-modules will be called outer \(\text{CatLie} \)-modules. We briefly recall Powell’s result.

Let \(\tau : \mathcal{F}_{\text{Lie}} \to \mathcal{F}_{\text{Lie}} \) be the shifting functor given by precomposition with \(-1 : \text{CatLie} \to \text{CatLie} \). Let \(\mu : \tau \to \text{id} \) be the natural transformation defined as follows: for \(F \in \mathcal{F}_{\text{Lie}} \), \(\mu_F : \tau F \to F \) is given by the natural morphisms \((\mu_F)_n : \tau F(n) = F(n+1) \to F(n) \) induced by \(\sum_{i=1}^n \mu_i \in \text{CatLie}(n+1, n) \). Let \(\mathcal{F}_{\text{Lie}}^{\mu} \) be the full subcategory of \(\mathcal{F}_{\text{Lie}} \) of functors such that \(\mu_F = 0 \). By [Powb] Theorem 4.16, under the equivalence of categories \(\mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \simeq \mathcal{F}_{\text{Lie}} \), the full subcategory \(\mathcal{F}_{\text{Lie}}^{\mu} \) of \(\mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \) is equivalent to \(\mathcal{F}_{\text{Lie}}^{\mu} \).

Let \((-)^{\mu} : \mathcal{F}_{\text{Lie}} \to \mathcal{F}_{\text{Lie}}^{\mu} \) be the functor given by \(F^{\mu} := \text{coker}(\mu_F) \). By [Powb] Proposition 2.17, \((-)^{\mu} \) is the left adjoint to the inclusion \(\mathcal{F}_{\text{Lie}}^{\mu} \hookrightarrow \mathcal{F}_{\text{Lie}} \) and so corresponds to the functor \(\Omega : \mathcal{F}(\text{gr}^{op}; \mathbb{K}) \to \mathcal{F}(\text{gr}^{op}; \mathbb{K}) \) via the equivalence of categories \(\mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \simeq \mathcal{F}_{\text{Lie}}^{\mu} \).

3. On the second Passi functor \(\mathcal{P}_2 \)

The contents of this Section will be used in the proof of Proposition 6.12. As the results of this Section are of independent interest, we chose to dedicate a separate Section to them. The reader can skip this section on first reading.

Let \(\mathcal{P}_2 : \text{gr} \to \mathbb{K}\text{-Mod} \) be the functor defined by: \(\mathcal{P}_2(F_2) = I(F_n)/(I(F_n))^3 \). The functor \(\mathcal{P}_2 \) is called the second Passi functor (see [HPV15, Ves18, PV18]). It is the largest quotient of \(\overline{\mathcal{P}}_2 \) that is polynomial of degree 2.

The group \(G_2 \) acts on \(\mathcal{P}_2 \) by the following way: by (2.1), the element \([x_1^{-1}] - [1] \) of \(I(F_1) \) corresponds to a natural transformation \(\sigma \) in \(\text{End}_{\mathcal{F}(\text{gr}; \mathbb{K})}(\overline{\mathcal{P}}_1) \). For \(G \in \text{gr} \), \(\sigma_G : IGF \to IG \) is given explicitly by: \(\sigma_G([g] - [1]) = [gy^{-1}] - [1] \). Since \(\sigma^2 = 1, \sigma \) defines an action of \(G_2 \) on \(\overline{\mathcal{P}}_1 \). By composition with \(\overline{\mathcal{P}}_1 \to \mathcal{P}_2 \) we obtain

\[
\sigma \in \text{Hom}_{\mathcal{F}(\text{gr})}((\overline{\mathcal{P}}_1, \mathcal{P}_2) \simeq \text{Hom}_{\mathcal{F}(\text{gr})}(\overline{\mathcal{P}}_1, \mathcal{P}_2)
\]

where the last isomorphism is given by adjunction, so that \(G_2 \) acts on \(\mathcal{P}_2 \).

In the following lemma we give an explicit description of this action of \(G_2 \) on \(\mathcal{P}_2 \). Recall that \(a(G) \simeq IG/(IG)^2 \), for \(G \) an object of \(\text{gr} \).
Lemma 3.1. The natural transformation $\sigma : P_2 \to P_2$ restricts to a natural transformation $\sigma_{a^{n_2}} : a^{n_2} \to a^{n_2}$ given by the place permutation. The induced natural transformation $\overline{\sigma} : a \to a$ is given by $\overline{\sigma}(x) = -x$ for G an object of \mathbf{gr} and an element in $a(G)$.

Proof. By [Ves18, DPV16], P_2 is a generator of $\text{Ext}^1_{\mathcal{F}(\mathbf{gr})}(a, a^{\otimes 2})$. The non-split short exact sequence

$$0 \longrightarrow a^{\otimes 2} \longrightarrow P_2 \longrightarrow a \longrightarrow 0$$

(3.1)

gives rise, for G an object of \mathbf{gr}, to an exact sequence

$$0 \longrightarrow IG/(IG)^2 \otimes IG/(IG)^2 \longrightarrow IG/(IG)^3 \longrightarrow IG/(IG)^2 \longrightarrow 0$$

For $x, y \in G$ we have

$$\sigma_G \circ i \left(([x] - [1] + (IG)^2) \otimes ([y] - [1] + (IG)^2) \right) = \sigma_G \left(([x] - [1]).([y] - [1]) + (IG)^3 \right)$$

$$= \sigma_G \left(([xy] - [1]) - ([x] - [1]) - ([y] - [1]) + (IG)^3 \right)$$

$$= (y^{-1}x^{-1} - [1]) - ([x^{-1}] - [1] - ([y^{-1}] - [1]) + (IG)^3$$

$$= (y^{-1} - [1]).([x^{-1}] - [1]) + (IG)^3$$

$$= i \left((y^{-1} - [1] + (IG)^3) \otimes ([x^{-1}] - [1] + (IG)^3) \right)$$

We deduce that σ induces natural transformations $\sigma_{a^{n_2}} : a^{n_2} \to a^{n_2}$ and $\overline{\sigma} : a \to a$.

Since $([y] - [1])([y^{-1}] - [1]) = -([y] - [1]) - ([y^{-1}] - [1])$ in $(IG)^2$, we have

$$(y^{-1} - [1] + (IG)^2) \otimes ([x^{-1}] - [1] + (IG)^2) = -([y] - [1] + (IG)^3) \otimes -([x] - [1] + (IG)^2)$$

$$= ([y] - [1] + (IG)^2) \otimes ([x] - [1] + (IG)^2)$$

giving the explicit description of $\sigma_{a^{n_2}}$.

For that of $\overline{\sigma}$, we have:

$$p \circ \sigma_G([y] - [1] + (IG)^3) = p([y^{-1}] - [1] + (IG)^3) = [y^{-1}] - [1] + (IG)^2 = -([y] - [1]) + (IG)^2.$$

\square

The action of \mathfrak{S}_2 on P_2 corresponds to an action of \mathfrak{S}_2 on $P_2^\#$.

In order to describe the functor $A_1(n, -)_0$ in Proposition 6.12 we need the following results on the second Passi functor.

Proposition 3.2. We have a natural equivalence in $\mathcal{F}_{\mathbf{Lie}}$:

$$\alpha^{-1}(P_2^\#) \simeq \text{CatLie}(2, -)$$

hence $\alpha^{-1}(P_2^\#)$ is projective.

Proof. The duality functor and α^{-1} being exact functors, we deduce from the non-split exact sequence (3.1), the following non-split exact sequence in $\mathcal{F}_{\mathbf{Lie}}$:

$$0 \longrightarrow \alpha^{-1}(a^\#) \longrightarrow \alpha^{-1}(P_2^\#) \longrightarrow \alpha^{-1}(a^{\otimes 2}^\#) \longrightarrow 0.$$

(3.2)

By (2.5), $\alpha^{-1}(a^\#)$ and $\alpha^{-1}(a^{\otimes 2}^\#)$ are atomic functors given by: $\alpha^{-1}(a^\#) = \mathbb{K}[1]$ and $\alpha^{-1}(a^{\otimes 2}^\#) = \mathbb{K}[\mathfrak{S}_2][2]$. We deduce that $\alpha^{-1}(P_2^\#)$ is non-zero only on 1 and 2 and that

$$\alpha^{-1}(P_2^\#)(1) = \mathbb{K} \quad \text{and} \quad \alpha^{-1}(P_2^\#)(2) = \mathbb{K}[\mathfrak{S}_2].$$

The functor $\text{CatLie}(2, -) : \text{CatLie} \to \mathbb{K}$-Mod is non-zero only on 1 and 2 and we have:

$$\text{CatLie}(2, 1) \simeq \mathbb{K} \quad \text{and} \quad \text{CatLie}(2, 2) \simeq \mathbb{K}[\mathfrak{S}_2].$$
By the Yoneda lemma:
\[\text{Hom}(\text{CatLie}(2, -), \alpha^{-1}(\mathcal{P}_2^\#)) \simeq \alpha^{-1}(\mathcal{P}_2^\#)(2) = \mathbb{K}[\mathfrak{S}_2]. \]

Let \(\nu : \text{CatLie}(2, -) \to \alpha^{-1}(\mathcal{P}_2^\#) \) be the natural transformation corresponding to \([\text{Id}]\) by the previous isomorphism. By naturality of \(\nu \), we have:
\[\alpha^{-1}(\mathcal{P}_2^\#)(\mu_2^1 \circ \nu_2) = \nu_1 \circ \text{CatLie}(2, -)(\mu_2^1). \]

By construction, \(\nu_2 \) is an isomorphism and, since the short exact sequence (3.2) is non-split, \(\alpha^{-1}(\mathcal{P}_2^\#)(\mu_2^1) \neq 0 \). We deduce that \(\nu_1 \neq 0 \) and so it is an isomorphism. Consequently, \(\nu \) is a natural equivalence. \(\square \)

Corollary 3.3. The functor \(\mathcal{P}_2^\# \) is projective in the category of polynomial functors on \(\text{gr}^{\text{op}} \).

Proof. The functor \(\alpha \) is an equivalence of categories and, by Proposition 3.2, \(\alpha^{-1}(\mathcal{P}_2^\#) \) is projective in \(\text{CatLie} \). \(\square \)

Corollary 3.4. For \(n \in \mathbb{N} \), we have a natural equivalence:
\[\alpha^{-1}(\mathcal{P}_2^\# \otimes \mathbb{K}[F_n]) \simeq \text{CatLie}(2, -) \otimes \mathbb{K}[F_n], \]
where the action of \(\mathfrak{S}_2 \) on \(\mathbb{K}[F_n] \) is given by taking the inverse in \(F_n : v \mapsto v^{-1} \) and the action of \(\mathfrak{S}_2 \) on \(\mathcal{P}_2^\# \) is described in Lemma 3.7.

4. Habiro-Massuyeau’s category

4.1. **Definition.** In [HM21] Section 4.1, Habiro and Massuyeau consider Jacobi diagrams on a 1-manifold coloured by elements of a group (see also [GL01, ST04]). In order to avoid the confusion with the fact that we will also consider Jacobi diagrams where the univalent vertices are “coloured” by a set, we replace the terminology used by Habiro and Massuyeau by *beaded Jacobi diagrams* (following, for example, [GR04]).

For \(d \geq 0 \), let \(X_d \) be the oriented 1-manifold consisting of \(d \) arc components. Recall that a *Jacobi diagram* \(D \) on \(X_d \) is a uni-trivalent graph such that each trivalent vertex is oriented, the set of univalent vertices is embedded into the interior of \(X_d \) and each connected component of \(D \) contains at least one univalent vertex. When a Jacobi diagram \(D \) on \(X_d \) is drawn in the plane, we draw the 1-manifold \(X_d \) with solid lines, the Jacobi diagram part \(D \) with dashed lines and we assume counterclockwise orientation for the trivalent vertices of \(D \).

For \(G \) a group, a *\(G \)-beaded Jacobi diagram* on \(X_d \) is a Jacobi diagram \(D \) on \(X_d \) whose graph edges are oriented and a \(G \)-valued function on a finite subset of \(\text{Int}(X_d) \cup D \setminus \text{Vert}(D) \). This function labels the oriented edges of \(D \) and the arcs of \(X_d \), by elements in \(G \). In figures, the labels are encoded by “beads” coloured with elements of \(G \).

Two \(G \)-beaded Jacobi diagrams on \(X_d \) are said to be *equivalent* if they are related by the following sequence of local moves (see [HM21] (4.1) and p.618), where \(w, x \in G \):
For example, these two G-beaded Jacobi diagrams on X_2, where $w_1, w_2, w_3 \in G$, are equivalent:

In particular, each G-beaded Jacobi diagram on X_d is equivalent to a G-beaded Jacobi diagram of the form:

where $w_1, \ldots, w_d \in G$ and where we can have beads on the Jacobi diagram represented by the dashed part in the figure.

In [HM21] Section 4.2 Habiro and Massuyeau define the linear category \mathbf{A} of Jacobi diagrams in handlebodies. This category has \mathbb{N} as objects and for $n, m \in \mathbb{N}$, $\mathbf{A}(n, m)$ is the vector space generated by the equivalence classes of F_n-beaded Jacobi diagrams on X_m modulo the STU relation. The composition in the category \mathbf{A} is quite complicated and we refer the reader to [HM21] Section 4.2 for its definition.

By [HM21] Section 4.3, the linear category \mathbf{A} admits a symmetric monoidal structure given on objects by the addition of integers. We denote this monoidal structure by \otimes.

4.2. Two gradings and sub-(semi)-categories. In [HM21] Section 4.4] the authors define two gradings on the morphisms of \mathbf{A}. The first one is a \mathbb{N}-grading given by the degree of the Jacobi diagram: for $m, n \in \mathbb{N}$, $\mathbf{A}(n, m)$ can be decomposed as a direct sum with respect to the degree d of the Jacobi diagrams

\begin{equation}
\mathbf{A}(n, m) \simeq \bigoplus_{d \in \mathbb{N}} \mathbf{A}_d(n, m).
\end{equation}

This grading is compatible with the composition in the category \mathbf{A} giving maps

\begin{equation}
\circ : \mathbf{A}_{d'}(m, n') \times \mathbf{A}_d(n, m) \to \mathbf{A}_{d+d'}(n, n')
\end{equation}

for $d, d' \in \mathbb{N}$.

The second grading is a gr^{op}-grading: the homotopy class of an (m, n)-Jacobi diagram D on X_n is the homomorphism $h(D) : F_n \to F_m$ that maps each generator x_j to the product of the beads along the j^{th}-oriented component of X_n. We have

\begin{equation}
\mathbf{A}(m, n) = \bigoplus_{f \in \text{gr}^{op}(m, n)} \mathbf{A}(m, n)_f.
\end{equation}
Note that the identity morphism in $A(n, n)$ is in the homotopy class of the identity homomorphism $F_n \to F_n$. This grading is compatible with the composition in the category A.

(4.4) \[o : A(m, n')_g \times A(n, m)_f \to A(n, n')_{g\cdot f} \]

for $f \in \text{gr}^{\text{op}}(m, m) = \text{gr}(m, m)$ and $g \in \text{gr}^{\text{op}}(m, n') = \text{gr}(n', m)$.

Using these gradings we can consider the following subcategory and sub-semicategory of A.

Recall that a semicategory is defined as a category without the condition on the existence of identity morphisms (see [Mit72, Section 4]).

Taking degree $d = 0$, by (4.2) we have maps

\[o : A_0(m, n') \times A_0(n, m) \to A_0(n, n'). \]

Hence A has a subcategory, denoted by A_0, such that $\text{Obj}(A_0) = \text{Obj}(A)$ and the morphisms in A_0 are given by Jacobi diagrams of degree 0. By [HM21] p. 630 we have an isomorphism of linear categories

(4.5) \[h : A_0 \cong \text{K} \text{gr}^{\text{op}}. \]

This isomorphism comes from the fact that $A_0(n, m)$ is generated by F_n-beaded empty Jacobi diagrams on X_m. So we have only beads on the arcs of X_m. Such a choice of beads corresponds to a homomorphism: $F_n \to F_m$ sending x_i to the bead on the i-th arc of X_m.

Via the isomorphism h given in (4.5), the generators $(m_1, m_2, m_3, m_4, m_5)$ of gr recalled in Section 2.1 correspond to the morphisms $(n, \mu, \varepsilon, S, \Delta)$ given in [HM21] (5.28)).

Recall that $0 \in \text{gr}^{\text{op}}(n, m) = \text{gr}(m, n)$ is the composition $m \to 0 \to n$ in gr. By Section 4.1 a F_n-beaded Jacobi diagram D on X_m in the homotopy class of 0, is represented by a F_n-beaded Jacobi diagram without beads on X_m (but there may be beads on D).

By (4.3) we have maps

\[o : A(m, n')_0 \times A(n, m)_0 \to A(n, n')_0. \]

We deduce that A has a sub-semicategory, denoted by $A(-, -)_0$, such that $\text{Obj}(A(-, -)_0) = \text{Obj}(A)$ and the morphisms in $A(-, -)_0$ are given by beaded Jacobi diagrams in the homotopy class of 0.

5. **PROJECTIVE GENERATORS ON HABIRO-MASSUYEAU’S CATEGORY**

Let A-Mod be the category of K-linear functors from A to the category K-Mod. For $n \in \mathbb{N}$, $A(n, -) : A \to K$-Mod is a linear functor. By the enriched Yoneda lemma, for $F : A \to K$-Mod a K-linear functor, we have an isomorphism:

\[\text{Hom}_{A$-Mod}(A(n, -), F) \cong F(n). \]

We deduce that the functors $A(n, -)$, for $n \geq 0$, are projective generators of A-Mod.

Note that, for $d \in \mathbb{N}$, $A_d(n, -)$ do not define subfunctors of $A(n, -)$ since the degree of Jacobi diagrams is not preserved by composition. However, for $n \in \mathbb{N}$, by restriction to A_0, we have linear functors $A(n, -) : A_0 \cong K \text{gr}^{\text{op}} \to K$-Mod and so functors

\[A(n, -) : \text{gr}^{\text{op}} \to K$-Mod. \]

Then, by (4.2), the grading by the degree of the Jacobi diagrams defines subfunctors

\[A_d(n, -) : \text{gr}^{\text{op}} \to K$-Mod. \]

Remark 5.1. In [Kata, Katb], Katada studies the functor $A(0, -) : \text{gr}^{\text{op}} \to K$-Mod and, for $d \in \mathbb{N}$, its subfunctors $A_d(0, -)$ denoted by A_d in [Kata, Katb]. In [Kata], she proves that $A_d(0, -)$ is a polynomial functor of degree 2d which is an outer functor. She also gives a complete description of the functor $A_1(0, -)$ and the more complicated case of the functor $A_d(0, -)$. In [Katb] Theorem 10.1, she gives a direct decomposition of the functor $A_d(0, -)$ for $d \geq 1$ (see also Proposition
We will prove that for
\begin{equation}
\text{Lemma 5.6.}
\end{equation}
For \(n \geq 1\), we have \(A(n, -) \colon \gamma \times \gamma^{op} \to \mathbb{K}\)-\text{Mod} are not reduced. We denote by \(A(n, -)\) the reduced subfunctor of \(A(n, -)\). In particular, we have: \(A(n, -) \simeq \mathbb{K} \oplus A(n, -)\). Note that 0 is far from being an initial object in \(A\) and that \(A(0, -)\) is reduced.

Lemma 5.3. For \(d, n \in \mathbb{N}\), the precomposition with \(\text{Id}_n \circ \varepsilon \in A_d(n+1, n)\) gives injective natural transformations
\[
A(n, -) \hookrightarrow A(n+1, -); \quad A_d(n, -) \hookrightarrow A_d(n+1, -).
\]

Proof. For \(n = 0\), the injectivity follows from [HM21 Lemma 4.5] and the general case is a consequence of the generalization of this Lemma given in [HM21 Remark 4.6]. By (1.2) the composition preserves the degree of the Jacobi diagram.

In [Kata, Proposition 8.1], Katada proves that the functor \(A_d(0, -)\) is polynomial of degree 2\(d\). The following Proposition shows that the polynomiality of the functors \(A_d(n, -)\) is an infrequent phenomenon.

Proposition 5.4. For \(d, n \in \mathbb{N}\), the functor \(A_d(n, -) : \gamma^{op} \to \mathbb{K}\)-\text{Mod} is polynomial iff \(n = 0\).

The proof of this proposition is based on the following lemmas.

Lemma 5.5. For \(n \in \mathbb{N}\), we have an isomorphism of functors: \(A_0(n, -) \simeq P_n\). In particular, \(A_0(0, -) \simeq \mathbb{K}\) is polynomial of degree 0 and, for \(n \geq 1\), \(A_0(n, -)\) is neither polynomial nor analytic.

Proof. This follows from the isomorphism \(h : A_0 \xrightarrow{\sim} \mathbb{K}\gamma^{op}\) given in (1.5).

For \(n \geq 1\), note that \(A_0(0, n) = \mathbb{K}[\gamma^{op}]\) where \(\eta \in A_0(0, 1)\) is the morphism defined in [HM21 Section 5.6, (5.28)] corresponding to \(m_1\) (see Section 2.1) via the isomorphism \(h\) of (1.5).

Lemma 5.6. For \(d \geq 1\) and \(n \geq 1\) the functor \(A_d(n, -) : \gamma^{op} \to \mathbb{K}\)-\text{Mod} is not polynomial.

Proof. We will prove that for \(k \geq 2d+1\), \(\text{coker}(A_d(n, -)) \neq 0\).

By Section 2.3 \(\text{coker}(A_d(n, -))\) is the cokernel of the following homomorphism:
\[
\bigoplus_{i=1}^{k} A_d(n, -(F_{k-1})) \xrightarrow{(A_d(n, -(r^1_i)), \ldots, A_d(n, -(r^k_i)))} A_d(n, -(F_k))
\]
\(A_d(n, -(F_{k-1})) \neq 0\) and a generator of \(A_d(n, -(F_{k-1}))\) is represented by a \(F_n\)-beaded Jacobi diagram \(D\) on \(X_k\) having \(2d\) vertices. For \(1 \leq i \leq k\), \(A_d(n, -(r^k_i))(D)\) is the \(F_n\)-beaded Jacobi diagram \(D\) on \(X_k\) obtained from \(D\) by inserting the \(F_n\)-beaded arc:
\[
\text{between the } (i-1)\text{-th and the } i\text{-th arc of } D.
\]
So the following \(F_n\)-beaded Jacobi diagram on \(X_k\) is a non-zero element in \(\text{coker}(A_d(n, -))\):
\[
\text{Fig. 1}
\]
Proof of Proposition [5,4]. The case $d = 0$ follows from Lemma [5,5]. For $d \geq 1$, if $n \geq 1$ the functor $A_d(n, -)$ is not polynomial by Lemma [5,6]. The polynomiality of $A_d(0, -)$ is given by Kata Proposition 8.1 (see also Corollary 6.11).

5.2. Filtration of the functors $A(n, -)$ and $A_d(n, -)$. For $n, m, t \in \mathbb{N}$, let $A^t(n, m)$ be the subspace of $A(n, m)$ generated by Jacobi diagrams having at least t trivalent vertices. Similarly we define $A^t_d(n, m)$. We have the following result:

Proposition 5.7. For $d, m \in \mathbb{N}$, the functors $A(n, -)$ and $A_d(n, -)$ have a filtration given by the subfunctors:

$$A^t(n, -) \subset A(n, -); \quad A^t_d(n, -) \subset A_d(n, -).$$

Proof. Let D be a generator in $A^t(n, m)$ and $f \in \text{gr}^{\text{op}}(m, m')$. Via the isomorphism $\mathbb{K}[\text{gr}^{\text{op}}] \simeq A_0$, f corresponds to an element in $A_0(m, m')$. The composition in A is given by a suitable cabling of the Jacobi diagram of D on the arcs of X_m. This operations does not change the number of trivalent vertices in the Jacobi diagram.

In Kata, Katada considers the filtration

$$0 = A^{2d-1}_d(0, -) \subset \ldots \subset A^1_d(0, -) \subset A^0_d(0, -) = A_d(0, -).$$

6. The functors $A(n, -)_0$ and beaded open Jacobi diagrams

For $d \in \mathbb{N}$ and $n \geq 1$, by Proposition [5,3], $A_d(n, -)$ is not polynomial. In this section we introduce a subfunctor of $A_d(n, -)$, which is polynomial and which coincides, for $n = 0$, with $A_d(0, -)$.

6.1. Definition of the functors $A(n, -)_0$. The functors $A(n, -)_0$ are defined using the gr^{op}-grading of A which is compatible with the composition in A by (4.4).

We deduce from (4.3) the following Proposition:

Proposition 6.1. For $n \in \mathbb{N}$, the gr^{op}-grading gives rise to the subfunctor $A(n, -)_0 : \text{gr}^{\text{op}} \to \mathbb{K} \text{-Mod}$ of $A(n, -) : \text{gr}^{\text{op}} \to \mathbb{K} \text{-Mod}$ and the subfunctor $A_d(n, -)_0 : \text{gr}^{\text{op}} \to \mathbb{K} \text{-Mod}$ of $A_d(n, -) : \text{gr}^{\text{op}} \to \mathbb{K} \text{-Mod}$.

Proof. For $g \in \text{gr}^{\text{op}}(m, m')$ and $h \in \text{gr}^{\text{op}}(m, m')$ we have

$$0 \circ g = 0 \quad \text{and} \quad h \circ 0 = 0,$$

where $0 \in \text{gr}^{\text{op}}(m, n) = \text{gr}(m, n)$ is the homomorphism $F_m \to F_n$ sending each generator to 1.

Remark 6.2. For $n, m \in \mathbb{N}$, the generators of $A(n, m)_0$ are those of $A(n, m)$ which can be represented by an F_m-beaded Jacobi diagrams on X_m, without beads on X_m.

Corollary 6.3. For $d, n \in \mathbb{N}$, the precomposition with $\text{Id}_{A_0} \in \mathbb{A}_0(n + 1, n)$ gives injective natural transformations

$$A(n, -)_0 \leftrightarrow A(n + 1, -)_0; \quad A_d(n, -)_0 \leftrightarrow A_d(n + 1, -)_0.$$
Note that, for $n = 0$, we have $A(0, -) = A(0, -)$ and $A_d(0, -) = A_d(0, -)$.

Similarly to Proposition 5.7, we have the following result:

Proposition 6.4. For $d, n \in \mathbb{N}$, the functors $A(n, -)_0$ and $A_d(n, -)_0$ have a filtration given by the subfunctors:

$$A^i(n, -)_0 \subset A(n, -)_0; \quad A^i_d(n, -)_0 \subset A_d(n, -)_0.$$

Remark 6.5. We have $A_0(n, -)_0 = \mathbb{K}$ and $A_0(n, -)_0 \simeq P_n \simeq A_0(n, -)_0 \oplus P_n$.

6.2. The CatLie-modules J^{F_m} of F_m-beaded open Jacobi diagrams. Recall that an open Jacobi diagram is a uni-trivalent graph such that each trivalent vertex is oriented and having at least one univalent vertex in each connected component. For generalities on open Jacobi diagrams we refer the reader to [CDM12, Section 5.6].

For Z a set, a Z-labelled open Jacobi diagram is an open Jacobi diagram D and a bijection: {univalent vertices of D} $\xrightarrow{\sim} Z$. Note that in [Kata, p.13], Z-labelled open Jacobi diagrams are called special Z-coloured open Jacobi diagrams.

For G a group, a G-beaded open Jacobi diagram is an open Jacobi diagram whose graph edges are oriented and a map from a finite subset of $D \setminus \text{Vert}(D)$ to G which labels oriented edges of D by elements in G. In figures, the labels are encoded by "beads" coloured with elements of G.

Two G-beaded open Jacobi diagrams are said to be equivalent if they are related by the following local moves where $w, x \in G$:

$$\begin{align*}
&\text{\textbullet} \cdots \text{\textbullet} \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
&\text{\textbullet} \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
&\text{\textbullet} \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
&\text{\textbullet} \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
&\text{\textbullet} \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
&\text{\textbullet} \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \sim \cdots \text{\textbullet} \cdots \\
\end{align*}$$

For G a group and Z a set, $J^G(Z)$ is the quotient by the AS and the IHX relations, of the \mathbb{K}-vector space generated by equivalence classes of Z-labelled, G-beaded, open Jacobi diagrams. Let $J^G_0(Z)$ be the subspace of $J^G(Z)$ generated by the Jacobi diagram having $2d$ vertices.

A generator in $\text{CatLie}(n, m)$ can be viewed as a $m + n$-labelled, $F_0 = \{1\}$-beaded open Jacobi diagram. In this case the orientation of the edges can be taken arbitrarily (by the last relation given in (6.1)).

Proposition 6.6. For $d \in \mathbb{N}$, $n \mapsto J^{F_m}_d(n)$ has the structure of a \mathbb{K}-linear functor on CatLie

Proof. By the description of the category CatLie given in Section 2.4 it is sufficient to define $J^{F_m}_d$ on the generators $\sigma \in \text{CatLie}(n, m) \simeq \mathbb{K}[S_n]$ and $\mu^n_i \in \text{CatLie}(n, n - 1)$.

Let D be a generator in $J^{F_m}_d(n)$, that is D is represented by a n-labelled, F_m-beaded, open Jacobi diagram.

The action of $\text{CatLie}(n, n) \simeq \mathbb{K}[S_n]$ on D is given by the permutation of the labels of univalent vertices.

To define $J^{F_m}_d(\mu^n_i)(D)$, consider the open Jacobi diagram D' obtained from D by gluing the tree $i \rightarrow n$ to the corresponding univalent vertices of D. Edges of D' inherit an orientation from D and a labelling in F_m. Colouring the univalent vertex of D' without label by i, we obtain a $(n - 1)$-labelled, F_m-beaded, open Jacobi diagram. The antisymmetry and Jacobi relations in the operad Lie imply that this construction is well-defined on $J^{F_m}_d(n)$.

\Box
6.3. The correspondence between $A_d(n,-)_0$ and J^F_d. We have the following Theorem:

Theorem 6.7. For $n,d \in \mathbb{N}$, we have an equivalence of functors in $\mathcal{F}_\omega(\text{gr}^{op};\mathbb{K})$

\[\alpha(J^F_d) \simeq A_d(n,-)_0. \]

Proof. By definition, $\text{CatAss}^u \otimes_{\text{CatLie}} J^F_d$ is the coequalizer of the following diagram:

\[\text{CatAss}^u \otimes_{\text{CatLie}} J^F_d \xrightarrow{\Sigma} \text{CatAss}^u \otimes_{\text{CatLie}} J^F_d \]

where L is defined using the functor $\text{CatAss}^u : (\text{CatLie})^{op} \to \text{Func}(\mathbb{K}[\text{gr}^{op}];\mathbb{K}\text{-Mod})$ and R using the functor $J^F_d : \text{CatLie} \to \mathbb{K}\text{-Mod}$. More explicitly, $[\text{CatAss}^u \otimes_{\text{CatLie}} J^F_d]$ is the coequalizer of the following diagram:

\[\bigoplus_{k,\ell \in \mathbb{N}} \text{CatAss}^u(i,-) \otimes_{\Theta_i} \text{CatAss}^u(k,i) \otimes_{\Theta_k} J^F_d(k) \xrightarrow{L} \bigoplus_{c,\ell \in \mathbb{N}} \text{CatAss}^u(c,-) \otimes_{\Theta_c} J^F_d(c) \]

where L is defined using the map $\text{CatAss}^u(i,-) \otimes_{\Theta_i} \text{CatAss}^u(k,i) \to \text{CatAss}^u(k,-)$ obtained using the functor $\text{CatLie} \to \text{CatAss}^u$ and R is defined using the map $\text{CatAss}^u(k,i) \otimes_{\Theta_k} J^F_d(k) \to J^F_d(i)$.

Let $J^F_d(c)$ be the set of c-labelled, F_n-beaded, open Jacobi diagrams. For $l \in \mathbb{N}$, we define a linear map

\[\bigoplus_{c \in \mathbb{N}} \text{CatAss}^u(c,l) \otimes_{\Theta_c} \mathbb{K}[J^F_d(c)] \xrightarrow{f_l} A_d(n,-)_0(l) \]

as follows: for $[\tilde{a}]$ a generator of $\text{CatAss}^u(c,l)$ represented by a set map $\alpha : c \to l$ and a given order on each of its fiber and D a c-beaded, open Jacobi diagram, we define $f_l([\tilde{a}] \otimes [D])$ as being the Jacobi diagram on X_1 obtained by gluing the univalent vertices of D labeled by the elements of $\alpha^{-1}(k)$ on the k-th component of X_1, respecting the order given on the fiber $\alpha^{-1}(k)$, for $1 \leq k \leq l$.

The map f_l is well-defined with respect to the AS and IHX relations and so defines a linear map:

\[\bigoplus_{c \in \mathbb{N}} \text{CatAss}^u(c,l) \otimes_{\Theta_c} J^F_d(c) \xrightarrow{f_l} A_d(n,-)_0(l) \]

which is compatible with the action of the symmetric group Θ_i.

By Section 2.1, the PROP gr is generated by the permutations and the homomorphisms m_i for $i \in \{1, 2, 3, 4, 5\}$. To prove that the linear maps f_l define a natural transformation of functors on gr^{op}, it is sufficient to prove the naturality for these five homomorphisms. Using the explicit description of the functor $\text{CatAss}^u(c,-) : \text{gr}^{op} \to \mathbb{K}\text{-Mod}$, for $c \in \mathbb{N}$, given in [Powers A.2] and the definition of the composition in the category \textbf{A} given in [HM21], we obtain that the maps f_l define a natural transformation:

\[\bigoplus_{c \in \mathbb{N}} \text{CatAss}^u(c,-) \otimes_{\Theta_c} J^F_d(c) \xrightarrow{f_l} A_d(n,-)_0. \]

For example, for $m_2 : F_2 \to F_1$, the induced map $\text{CatAss}^u(c,1) \to \text{CatAss}^u(c,2)$ sends a set map $f : c \to 1$ with an order of c to the sum of all the maps $c \to 2$ obtained by shuffles and the map $A_d(n,-)_0(1) \to A_d(n,-)_0(2)$ sends a Jacobi diagram on X_1 to the sum of the Jacobi diagrams on X_1 and X_2 obtained by a shuffle of the univalent vertices. This corresponds in \textbf{A} to the box notation used to define the composition.

Since CatLie is generated by the morphisms $\mu_c^{k+1} \in \text{CatLie}(c+1,c)$, to prove that $f \circ L = f \circ R$ it is sufficient to prove this relation on these generators. Let $[\tilde{c}]$ be a generator in $\text{CatAss}^u(c,l)$
represented by a set map $\varepsilon : c \to l$ and a given order on each of its fiber. We denote by E_i the ordered fiber of $\varepsilon(i)$ by ε: explicitly we have:

$$E_i = \{a_1 < \ldots < a_u < i < b_1 < \ldots < b_v\}.$$

We consider the following ordered sets $E_i < m+1 = \{a_1 < \ldots < a_u < i < m + 1 < b_1 < \ldots < b_v\}$ and $E_{m+1} = \{a_1 < \ldots < a_u < m + 1 < i < b_1 < \ldots < b_v\}$.

We have:

$$L_i([c] \otimes [\mu^{c+1}_i] \otimes [D]) = [(\varepsilon \circ s_i^{c+1}, E_{i < m+1})] \otimes [D] - [(\varepsilon \circ s_i^{c+1}, E_{m+1})] \otimes [D]$$

where $[(\varepsilon \circ s_i^{c+1}, E_{i < m+1})]$ is the generator in $\text{CatAss}^u(c, l)$ represented by the set map $\varepsilon \circ s_i^{c+1} : c + 1 \to l$ and the order on the fibers over j, is the same that for ε for $j \neq 1$ and is $E_{i < m+1}$ for $j = 1$. The generator $[(\varepsilon \circ s_i^{c+1}, E_{m+1})]$ is defined similarly.

We have:

$$R_i([c] \otimes [\mu^{c+1}_i] \otimes [D]) = [c] \otimes \begin{array}{c} \hat{n} + 1 \\ \vdots \\ i \end{array}$$

By the STU relation we obtain that:

$$f_i \circ L_i([c] \otimes [\mu^{c+1}_i] \otimes [D]) = f_i \circ R_i([c] \otimes [\mu^{c+1}_i] \otimes [D])$$

and we deduce that f_i define a natural transformation

$$\text{CatAss}^u \otimes \text{CatCie} \xrightarrow{J^F_n} A_d(n, -) \circ \text{A}.$$

By the isomorphism given in (2.3), we obtain that this natural transformation is a natural equivalence.

Corollary 6.8. For $n, d \in \mathbb{N}$, we have an equivalence of functors in $F_\omega(\text{gr}^{op}; \mathbb{K})$:

$$\alpha((J^F_n)_{\leq 1}) \simeq A_d^{2d - 1}(n, -).$$

Proof. Since $((J^F_n)_{\leq 1}(i)) = 0$ for $i > l$, non-zero elements in $((J^F_n)_{\leq 1}(i))$ are open Jacobi diagrams, of degree d, having at most l univalent vertices and so at least $2d - l$ trivalent vertices. So, by the equivalence of categories described in Theorem 6.7 the subfunctor $(J^F_n)_{\leq 1}$ of J^F_n corresponds to the subfunctor $A_d^{2d - 1}(n, -)$ of $A_d(n, -)$.

For $m = 0$, since $A_d(0, -) = A_d(n, -)$ it follows from Theorem 6.7 that $\alpha(J^{(1)}_d) = A_d(0, -)$. In the rest of this section we will exploit the correspondence given in Theorem 6.7 in order to study the functors $A_d(n, -)$.

6.4. On the polynomial filtration of the functors $A_d(n, -)$.

Theorem 6.9. For $n \in \mathbb{N}$ and $d \geq 1$, the functor $A_d(n, -) : \text{gr}^{op} \to \text{K-Mod}$ is polynomial of degree $2d$ and the filtration of $A_d(n, -)$ given in Proposition 6.4 corresponds to the polynomial filtration. In other words

$$p_{2d - 1}(A_d(n, -)) = A_d^{2d - 1}(n, -).$$

Proof. Since $J^F_n(2d + 1) = 0$ and $J^F_n(2d) \neq 0$, the functor $\alpha(J^F_n) \in F_\omega(\text{gr}^{op}; \mathbb{K})$ is a polynomial functor of degree $2d$, by Section 2.4.

By (2.3), Theorem 6.7 and Corollary 6.8 we have:

$$\alpha^{-1}(p_i(A_d(n, -))) \simeq (\alpha^{-1}(A_d(n, -))_{\leq i} \simeq (J^F_n)_{\leq i} \simeq \alpha^{-1}(A_d^{2d - 1}(n, -)).$$

□
Corollary 6.11. We deduce that the cokernel of the previous map is zero.

Proof of Proposition 6.12. For \(d \geq 1 \), the functor \(\mathbf{A}_d(0, -) : \text{gr}^{op} \to \mathbb{K}\text{-Mod} \) is polynomial of degree \(2d \).

6.5. On the functors \(\mathbf{A}_1(n, -)_0 \). Recall that, in Section 3, we define the functor \(\mathcal{P}_2 \) and study the action of \(\Theta_2 \) on it.

Proposition 6.12. For \(n \in \mathbb{N} \), we have a natural equivalence

\[
\mathbf{A}_1(n, -)_0 \simeq \mathcal{P}_2^\# \otimes \mathbb{K}[F_n],
\]

where the action of \(\Theta_2 \) on \(\mathbb{K}[F_n] \) is given by taking the inverse in \(F_n : v \mapsto v^{-1} \) and the action of \(\Theta_2 \) on \(\mathcal{P}_2^\# \) is given in Section 3. In particular, we have \(\mathbf{A}_1(0, -)_0 \simeq S^2 \circ a^\# \).

The second part of the statement corresponds to a result of Katada given in [Kata, Section 4].

Proof of Proposition 6.12 By Theorem 6.7, the equivalence of categories \(\alpha^{-1} : \mathcal{F}_\omega(\text{gr}^{op}; \mathbb{K}) \xrightarrow{\sim} \mathcal{F}_{\text{Lie}} \) and Corollary 3.4, the statement is equivalent to the existence of a natural equivalence:

\[
J_1^{F_n} \simeq \text{CatLie}(2, -)_0 \otimes \mathbb{K}[F_n].
\]

The functor \(J_1^{F_n} : \text{CatLie} \to \mathbb{K}\text{-Mod} \) is non-zero only on 1 and 2 and we have:

\[
J_1^{F_n}(2) = \mathbb{K}[[\frac{1}{w} \frac{w}{2}]] \simeq \mathbb{K}[F_n];
\]

\[
J_1^{F_n}(1) = \mathbb{K}[\zeta^{-1}] / (\zeta^{-1} + \zeta + 1) \simeq \mathbb{K}[F_n]/([w] + [w^{-1}]);
\]

\(\Theta_2 \) acts on \(J_1^{F_n}(2) \) taking the inverse in \(F_n \) and \(J_1^{F_n}(\mu_2^2)([w]) = [\overline{w}] \), for \(w \in F_n \).

The functor \(\text{CatLie}(2, -)_0 : \text{CatLie} \to \mathbb{K}\text{-Mod} \) is non-zero only on 1 and 2 and we have:

\[
\text{CatLie}(2, 2) \simeq \mathbb{K}[\Theta_2] \quad \text{and} \quad \text{CatLie}(2, 1) \simeq \mathbb{K}[\mu_2^2];
\]
and \(\text{CatLie}(2, -)(\mu_n^2)(\tau) = -[\mu_n^2] \) for \(\tau \) the generator of \(\mathcal{G}_2 \).

In order to define a natural transformation \(\rho : \text{CatLie}(2, -) \otimes \mathbb{K}[F_n] \to J_{F_n}^\ell \), we define the \(\mathbb{K} \)-linear maps:

- \(\rho_2 : \mathbb{K}[\mathcal{G}_2] \otimes \mathbb{K}[F_n] \to \mathbb{K}[F_n] \) given by \(\rho_2([\sigma] \otimes [w]) = \sigma[w] \);
- \(\rho_1 : \mathbb{K}[\mu_n^2] \otimes \mathbb{K}[F_n] \to \mathbb{K}[F_n]/([w] + [w^{-1}]) \) given by \(\rho_1(\mu_n^2) \otimes [w]) = [w] \).

Denoting by \(C \) the functor \(\text{CatLie}(2, -) \otimes \mathbb{K}[F_n] \), we have:

\[
\rho_2 \circ C(\tau)([\tau] \otimes [w]) = \rho_2(\tau \circ \tau \otimes [w]) = \rho_2([\text{Id}] \otimes [w]) = [w]
\]

and

\[
J_{F_n}^\ell(\tau) \circ \rho_2([\tau] \otimes [w]) = J_{F_n}^\ell(\tau)(\tau[w]) = J_{F_n}^\ell([\tau]([w^{-1}]) = [w]
\]

and

\[
\rho_1 \circ C(\mu_n^2)([\tau] \otimes [w]) = \rho_1(-[\mu_n^2] \otimes [w]) = -[w]
\]

and

\[
J_{F_n}^\ell(\mu_n^2) \circ \rho_2([\tau] \otimes [w]) = J_{F_n}^\ell(\mu_n^2)(\tau[w]) = J_{F_n}^\ell(\mu_n^2)(([w^{-1}]) = [w^{-1}] = -[w].
\]

By similar computations on the generators \([\text{Id}] \otimes [w] \), we obtain that \(\rho_1 \) and \(\rho_2 \) satisfy the two relations

\[
\rho_2 \circ C(\tau) = J_{F_n}^\ell(\tau) \circ \rho_2 \quad \text{and} \quad \rho_1 \circ C(\mu_n^2) = J_{F_n}^\ell(\mu_n^2) \circ \rho_2
\]

and so define a natural transformation.

Since \(\rho_1 \) and \(\rho_2 \) are isomorphisms, \(\rho \) is a natural equivalence.

For \(n = 0 \), \(\mathbb{K}[F_n]/([w] + [w^{-1}]) = 0 \), so the functor \(\text{CatLie}(2, -) \otimes \mathbb{K}[F_n] \) is the atomic functor \(\mathbb{K}[2] \) and by \((2.5)\) we have:

\[
\alpha(J_{F_n}^\ell) = \alpha(\mathbb{K}[2]) \simeq (\mathbb{a}^\#)^{\otimes 2}_2 \otimes \mathbb{K} \simeq ((\mathbb{a}^\#)^{\otimes 2})^{\otimes 2} \simeq S^2 \circ \mathbb{a}^\#
\]

\(\square\)

6.6. Outer property of the functors \(\mathbf{A}_d(n, -)_0 \). For \(d \in \mathbb{N} \), in [Kata, Theorem 5.1], Katada proves that \(\mathbf{A}_d(0, -) \) is an outer functor, namely inner automorphisms of \(F_m \) act trivially on \(\mathbf{A}_d(0, m) \). Her proof is based on properties of the composition in the category \(\mathbf{A} \), especially properties of the box operator. In Theorem 6.13, we study the outer property of the functors \(\mathbf{A}_d(n, -)_0 \) using the equivalence of categories \(\mathcal{F}_\omega(\mathbf{gr}^{op}; \mathbb{K}) \simeq \mathcal{F}_{\text{Lie}}. \) For \(n = 0 \), this gives another proof of Katada’s result.

Theorem 6.13. For \(n \in \mathbb{N} \), the functor \(\mathbf{A}_d(n, -)_0 \) is an outer functor iff \(n = 0 \) or \(d = 0 \).

By Theorem 6.13 and Section 2.5, \(\mathbf{A}_d(n, -)_0 \) is an outer functor iff \(J_{F_d}^\ell \) belongs to \(\mathcal{F}_{\text{Lie}}^\ell. \) The proof of this theorem relies on the following result.

Proposition 6.14. The functor \(J_{F_d}^\ell \) belongs to \(\mathcal{F}_{\text{Lie}}^\ell. \)

Proof. For simplicity, the functor \(J_{F_d}^\ell \) is denoted by \(J_d \) below.

For \(k \in \mathbb{N} \), the natural transformation \((\mu_{J_d}) : \tau J_d \to J_d \) gives maps

\[
(\mu_{J_d})_k : \tau J_d(k) = J_d(k + 1) \to J_d(k).
\]

- For \(k \geq 2d \), \(J_d(k + 1) = 0 \) so \((\mu_{J_d})_k = 0 \).
- For \(k = 2d - 1 \), the generators of \(J_d(2d) \) are Jacobi diagrams of the form

\[
D := \begin{array}{cccc}
\tau_1 & \tau_2 & \cdots & \tau_{2d} \\
\tau_{2d} & \tau_{2d-1} & \cdots & \tau_1
\end{array}
\]
For $d = 1$, we have
\[(\mu_{J_d})_1(D) = (\mu_{J_d})_1(1 \ldots 2) = 0\text{ by the AS relation.}\]

For $d > 1$, and $\alpha \in \{1, \ldots, d - 1\}$
\[
\mu_{i_\alpha}^{2d}(D) = \begin{array}{c}
j_{\alpha} \\
i_{\alpha} \\
\end{array} \begin{array}{c}
\beta \\
j_{\alpha} \\
\end{array} \ldots
\quad \text{and} \quad \mu_{j_\alpha}^{2d}(D) = \begin{array}{c}
\beta \\
j_{\alpha} \\
\end{array} \begin{array}{c}
\alpha \\
j_{\alpha} \\
\end{array} \ldots
\]

Using the AS relation we have $\mu_{i_\alpha}^{2d}(D) + \mu_{j_\alpha}^{2d}(D) = 0$ and $\mu_{\beta}^{2d}(D) = 0$. We deduce that $(\mu_{J_d})_{2d-1} = 0$.

- For $k < 2d - 1$. By functoriality of J_d on CatLie, we have morphisms
\[
\text{CatLie}(k + 2, k + 1) \otimes J_d(k + 2) \to J_d(k + 1)
\]
We will prove that these maps are surjective.

Let D be a generator of $J_d(k + 1)$; since $k + 1 < 2d$, D has at least one connected component which is not of the form \ldots. We can chose one of these connected components having the form
\[
\begin{array}{c}
D' \\
\end{array}
\]
where $i \in \{1, \ldots, k + 1\}$ and D' is a Jacobi diagram. The generator D is obtained by applying $\mu_{k+2}^{j_\alpha}$ to the generator of $J_d(k + 2)$ obtained from D replacing the previous connected component by
\[
\begin{array}{c}
D' \\
\end{array}
\]
(which could be non-connected). By iteration we obtain that the morphism
\[
\text{CatLie}(2d, k + 1) \otimes J_d(2d) \to J_d(k + 1)
\]
is surjective. By the naturality of μ_{J_d} and the fact that $(\mu_{J_d})_{2d-1} = 0$, we deduce that $(\mu_{J_d})_k = 0$.

\[\square\]

Proof of Theorem 6.13. For $d = 0$, by Proposition 6.13, $A_0(n, -)_0 \simeq \mathbb{K}$ which is obviously an outer functor.

For $n = 0$, $A_d(0, -)_0$ is an outer functor by Proposition 6.11.

If $n \neq 0$ and $d \geq 1$, we prove that $J_d^{F_n}$ does not belong to F_n^{Lie}. The natural transformation $(\mu_{J_d^{F_n}}) : \tau J_d^{F_n} \to J_d^{F_n}$ gives map
\[(\mu_{J_d^{F_n}})_{2d-1} : \tau J_d^{F_n}(2d - 1) = J_d^{F_n}(2d) \to J_d^{F_n}(2d - 1).\]
Consider the following generator of $J_{d}\mathcal{P}_n(2d)$

$$D := \begin{array}{cccc}
1 & 2 & \cdots & d \\
\phi w_1 & \phi w_2 & \cdots & \phi w_d \\
d+1 & d+2 & \cdots & 2d
\end{array}$$

where $w_1, \ldots, w_d \in F_n$.

For $d = 1$, we have

$$(\mu_{j_1} \mathcal{P}_n)_1(D) = (\mu_{j_1} \mathcal{P}_n)_1(\frac{1}{\phi_1} \cdot 2) = \begin{array}{c}
\phi \\\n1
\end{array}.$$

Since $n \geq 1$, for $w_1 \neq 1 \in F_n$, $(\mu_{j_1} \mathcal{P}_n)_1(D) \neq 0$, so $J_{d}\mathcal{P}_n$ is not an outer CatLie-module.

For $d > 1$, $(\mu_{j_1} \mathcal{P}_n)_{2d-1}(D)$ is a sum of Jacobi diagrams of the form

![Diagram](image)

with a $2d$-labelling and beads in F_n on edges. In this sum there are exactly two summands where the tree is labelled by the set $\{1, d, d + 1\}$:

$$\mu^2_{1d}(D) = \begin{array}{cccc}
\phi w_1 & \phi w_d^{-1} & \phi w_2 & \cdots \\
1 & d+1 & 2 & \cdots \\
\phi w_1 & \phi w_d^{-1} & \phi w_2 & \cdots
\end{array}$$

and

$$\mu^2_{d+1}(D) = \begin{array}{cccc}
\phi w_1 & \phi w_d^{-1} & \phi w_2 & \cdots \\
1 & d+1 & 2 & \cdots \\
\phi w_1 & \phi w_d^{-1} & \phi w_2 & \cdots
\end{array}$$

where for $\mu^2_{1d}(D)$ we use the AS relation and for $\mu^2_{d+1}(D)$ we use the relation in F_n-beaded Jacobi diagrams.

For $w_1 \neq 1$, $\mu^2_{1d}(D) + \mu^2_{d+1}(D) \neq 0$. We deduce that, for $n \geq 1$, $(\mu_{j_1} \mathcal{P}_n)_{2d-1} \neq 0$ and $J_{d}\mathcal{P}_n$ is not an outer CatLie-module.

Remark 6.15. We can also show that $A_1(n, -)$ is not an outer functor by using Proposition 6.12 and [PV13] Example 11.13 where it is proved that the functor \mathcal{P}_d is not an outer functor.

6.7. On the functors $A_d(0, -)$. By Section 2.3, we can consider the polynomial filtration of $A_d(0, -)$ and by Proposition 6.9 $p_{2d-i}(A_d(0, -)) = A_d^i(0, -)$. So, the quotient

$$p_{2d-i}(A_d(0, -))/p_{2d-i-1}(A_d(0, -)) = A_d^i(0, -)/A_d^{i+1}(0, -)$$

corresponds to the functor denoted by $B_{d,i}$ in [Kata].
By Corollary [6.8] \(\alpha^{-1}(A_d^j(0, -)) \simeq (J_d^F_{d,i}) \leq 2d-i \), so \(\alpha^{-1}(A_d^j(0, -)/A_d^{j+1}(0, -)) \) is the atomic functor concentrated in \(2d-i \), where it is equal to the vector space \(D_{2d-i} \) which is the quotient by AS and IHX relations of the \(\mathbb{K} \)-vector space generated by the \((2d-i)\)-labelled Jacobi diagrams of degree \(d \). The symmetric group \(\mathcal{S}_{2d-i} \) acts on \(D_{2d-i} \) by the permutation of the labels of univalent vertices.

By (2.4) we obtain:

\[
B_{d,i} \simeq (a^\#)^{\otimes 2d-i} \otimes_{\mathcal{S}_{2d-i}} D_{2d-i}
\]

corresponding to the description of the functor \(B_{d,i} \) given by Katada in [Kata, (3)].

The decomposition of \(R_{d,0} \) given by Katada in [Kath] Proposition 7.7 is functorial. In other words, denoting by \(S_\lambda \) the Schur functor associated with the partition \(\lambda \vdash d \), we have, for \(d \geq 0 \):

\[
(6.3) \quad B_{d,0} \simeq \bigoplus_{\lambda \vdash d} S_\lambda \circ a^\#
\]

where, for \(\lambda = (\lambda_1, \ldots, \lambda_t) \vdash d \), \(2\lambda \) is the partition \((2\lambda_1, \ldots, 2\lambda_t) \vdash 2d \).

By [Ves18] Theorem 4.2, \(Ext^1_{\mathcal{F}(\mathfrak{gr}; \mathbb{K})}(F, S_{2d} \circ a) = 0 \), for \(F \) a polynomial functor so \(S_{2d} \circ a \) is an injective object in the category of polynomial functors on \(\mathfrak{gr} \), so \(S_{2d} \circ a^\# \) is a projective object in the category of polynomial functors on \(\mathfrak{gr}^{op} \). This allows us to give another proof of [Kath] Theorem 10.1.

Proposition 6.16. [Kath] Theorem 10.1] For \(d \in \mathbb{N} \), we have a direct decomposition in \(\mathcal{F}(\mathfrak{gr}^{op}; \mathbb{K}) \):

\[
A_d(0, -) = S_{2d} \circ a^\# \oplus A_d(0, -)/S_{2d} \circ a^\#.
\]

Proof. By the polynomial filtration and (6.3), we have an epimorphism in \(\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K}) \):

\[
(6.4) \quad p : A_d(0, -) \twoheadrightarrow S_{2d} \circ a^\#.
\]

Since \(S_{2d} \circ a^\# \) is a projective object in \(\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K}) \), the functor \(Hom_{\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K})}(S_{2d} \circ a^\#, -) : \mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K}) \to \mathbb{A}b \) is exact. Hence it sends the epimorphism (6.4) to an epimorphism:

\[
Hom_{\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K})}(S_{2d} \circ a^\#, A_d(0, -)) \to Hom_{\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K})}(S_{2d} \circ a^\#, S_{2d} \circ a^\#)
\]

We deduce that \(p \) has a section \(s \), i.e. a natural transformation \(s : S_{2d} \circ a^\# \to A_d(0, -) \) in \(\mathcal{F}_{2d}(\mathfrak{gr}^{op}; \mathbb{K}) \) such that \(p \circ s = Id_{S_{2d} \circ a^\#} \). \(\square \)

Note that [Kath] Proposition 10.2] proves a stronger result, namely that \(A_d(0, -)/S_{2d} \circ a^\# \) is indecomposable.

References

[CDM12] S. Chmutov, S. Duzhin, and J. Mostovoy, *Introduction to Vassiliev knot invariants*, Cambridge University Press, Cambridge, 2012. MR 2962302

[DPV16] Aurélien Djament, Teimuraz Pirashvili, and Christine Vespa, *Cohomologie des foncteurs polynomiaux sur les groupes libres*, Doc. Math. 21 (2016), 205–222. MR 3505136

[GL01] Stavros Garoufalidis and Jerome Levine, *Homology surgery and invariants of 3-manifolds*, Geom. Topol. 5 (2001), 551–578. MR 1837353

[GR04] Stavros Garoufalidis and Lev Rozansky, *The loop expansion of the Kontsevich integral, the null-move and S-equivalence*, Topology 43 (2004), no. 5, 1183–1210. MR 2080000

[HM21] Kazuo Habiro and Gwénaël Massuyeau, *The Kontsevich integral for bottom tangles in handlebodies*, Quantum Topol. 12 (2021), no. 4, 593–703. MR 4321214

[HPV15] Manfred Hartl, Teimuraz Pirashvili, and Christine Vespa, *Polynomial functors from algebras over a set-operad and nonlinear Mackey functors*, Int. Math. Res. Not. IMRN (2015), no. 6, 1461–1554. MR 3340064

[HV15] Eric Hoffbeck and Christine Vespa, *Leibniz homology of Lie algebras as functor homology*, J. Pure Appl. Algebra 219 (2015), no. 9, 3721–3742. MR 3345980

[Kata] Mai Katada, *Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I*, ArXiv 2102.06382.
[Katb]. *Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II*, arXiv:2105.09072.

[LV12] Jean-Louis Loday and Bruno Vallette, *Algebraic operads*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. MR 2954392

[LV12] Jean-Louis Loday and Bruno Vallette, *Algebraic operads*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. MR 2954392

[Mit72] Barry Mitchell, *The diamond of Isbell*, Trans. Amer. Math. Soc. 167 (1972), 319–331. MR 294441

[Pir02] Teimuraz Pirashvili, *On the PROP corresponding to bialgebras*, Cah. Topol. Géom. Différ. Catég. 43 (2002), no. 3, 221–239. MR 1928233

[Powa] Geoffrey Powell, *On analytic contravariant functors on free groups*, arXiv:2110.01934.

[Powb] Geoffrey Powell, *Outer functors and a general operadic framework*, arXiv:2201.13307.

[PV18] Geoffrey Powell and Christine Vespa, *Higher Hochschild homology and exponential functors*, ArXiv e-prints (2018), arXiv:1802.07574.

[ST04] Rob Schneiderman and Peter Teichner, *Whitney towers and the Kontsevich integral*, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 101–134. MR 2172480

[Ves18] Christine Vespa, *Extensions between functors from free groups*, Bulletin of the London Mathematical Society 50 (2018), no. 3, 401–419.

Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France.

Email address: vespa@math.unistra.fr

URL: http://irma.math.unistra.fr/~vespa/