Spatial snowfall distribution in mountainous areas estimated with a snow model and satellite remote sensing

Yoshihiro Asaoka¹ and Yuji Kominami²

¹ Graduate School of Engineering, Tohoku University
² Kansai Research Center, Forestry and Forest Products Research Institute

Abstract:

We describe an approach for reconstructing snowfall that combines satellite observations of the snow disappearance date (SDD) with a snow model for two mountainous areas in Japan having distinct snow climatology. This approach allows assessment of the distribution of snow and topographical effects on snowfall within a catchment. We also evaluated how the reconstructed snowfall affects the catchment snow hydrology.

Validation at observation sites demonstrated that a combination of the snow model and snowfall reconstructions successfully estimated the seasonal changes of snow water equivalent (SWE). In Japan, the dependence of snowfall on elevation is stronger in mountainous areas along the coast on the Sea of Japan side of Japan’s central mountain spine (where snowfall triples with every 1000 m increase in elevation; $C_{sf} = 0.002$ m$^{-1}$) compared with inland locations of the same region (where snowfall doubles with every 1000 m increase; $C_{sf} = 0.001$ m$^{-1}$). Moreover, the reconstructed snowfall improved the estimation of maximum catchment SWE. Maximum total SWE, estimated with reconstructed snowfall, was 3.8×10^3 m3 in Kurobe catchment (along the coast on the Sea of Japan side of Japan’s central mountain spine), while that, estimated by convectional method with the spatially-constant $C_{sf} = 0.001$ m$^{-1}$, was 2.0×10^3 m3. As a result, estimations of the snow disappearance date and of the catchment snowmelt were also improved. These results suggest that it is useful to estimate the spatial snow distribution, especially where steep topography causes large gradients of snowfall amount with respect to elevation.

KEYWORDS snow disappearance date; elevation dependence of snowfall; degree-day method; snow water equivalent; snowmelt; SPOT/VEGETATION

INTRODUCTION

Snowfall is a key component of the hydrological cycle in snowy climates. As snowfall is the first input in a hydrological analysis in such regions, spatially accurate snowfall data are needed for both water balance analysis and water resources assessment with hydrological models (Tian et al., 2007; Asaoka et al., 2010). In Japan, Motoya et al. (2001) and Shinozaki et al. (2009) evaluated water balance over heavy snow catchments with hydrological models; these analyses were mostly driven by spatial datasets interpolated from routine meteorological station data. A serious problem with interpolated meteorological data is the scarcity of rain gauges and snow survey data in mountainous areas, where the complex topography introduces large spatial variability in the snowfall and snow water equivalent (SWE) (Asaoka et al., 2002).

Several factors can influence the estimation of spatial snowfall: whether precipitation is classified as snow, undercatchment of snowfall in gauges due to the wind effect, and spatially complicated topography. Yamazaki (2001) suggested a formula for the ratio of snowfall to total precipitation as a function of wet-bulb temperature, as analyzed by Sugaya (2005). Yokoyama et al. (2003) proposed a formula for the gauge undercatchment as a function of wind speed. Hirabayashi et al. (2008) constructed a global snowfall dataset by separating precipitation types and correcting for gauge undercatchment. To handle the heterogeneous distribution of snowfall, researchers have often used a simple function of elevation for interpolating snowfall from routine meteorological observations, under the assumption that the relationship of snowfall to elevation is constant over a large area.

Satellite-derived snow cover area (SCA) is effective for evaluating the uncertainty in the spatial snow distribution. Shimamura et al. (2003) estimated SWE in a catchment by combining satellite-derived SCA with in-situ data. Molotch et al. (2004) and Kazama et al. (2008) successfully combined the satellite-derived SCA data with distributed snowmelt models to estimate the spatial SWE during the snowmelt season. In most research, an uncertain parameter is assumed to be constant over the catchment or other large area. In reality, the complex terrestrial topography of Japan greatly affects the spatial snowfall or snowmelt. Thus, our research attempts to obtain the grid-based topographic parameter, the elevation dependence of snowfall, for reconstruction of the snowfall distribution over mountainous areas.

Our purpose is to reconstruct the snowfall distribution in Japanese catchments in mountainous terrain by combining satellite-derived SCA data with a snow model. We used SPOT/VEGETATION (SPT/VGT) data for determining the snow disappearance date (SDD). The elevation dependence of snowfall is analyzed in two geographically distinct mountainous regimes in Japan: 1) along the coast on the Sea of Japan side of Japan’s central mountain spine; and 2) within more inland areas on the same side of the central mountain spine. We compared our reconstruction approach with the conventional methods for snowfall estimation that assume that the elevation dependence of snowfall is spatially

Correspondence to: Yoshihiro Asaoka, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba Aramaki, Sendai 980-8579, Japan. E-mail: asaoka@kaigan.civil.tohoku.ac.jp ©2012, Japan Society of Hydrology and Water Resources.
constant when interpolating meteorological station data. Finally, we evaluated the effects of our reconstructed snowfall on catchment snow hydrology.

DATA AND METHODS

The snowfall reconstruction approach was used in the two mountainous areas (Supplement Figure S1) which are represented by the Kurobe Dam catchment (185 km²) and the Tadami Dam catchment (856 km²). Kurobe Dam (36°33'59"N 137°18'1"E) is located close to the coast on the Sea of Japan side of Japan’s central mountain spine and its catchment ranges in elevation from about 1500 m at the dam site to 3000 m at the highest peak. Tadami Dam (37°20'9"N 139°18'1"E) is located more inland than Kurobe Dam on the same side of the central mountain spine; the elevation of its catchment ranges from 400 to 2300 m. We used meteorological data from the Japan Meteorological Agency’s AMeDAS (Automated Meteorological Data Acquisition System) stations, which automatically record temperature, precipitation, sunshine duration and wind velocity, as well as snow depth at some sites. Moreover, we used observations of SWE (Yamaguchi et al., 2007) automatically recorded at four sites (St. A, B, C and D in Supplement 1) outside of the catchments for validation of the reconstruction approach.

The reconstruction approach estimates cumulative snowmelt during the season of snow cover on the assumption that it equals total snowfall. The duration of snow cover in each grid was estimated from information on SCA derived from the SPT/VGT. Next, total snowfall was apportioned to each grid of satellite images at 10 day intervals (Figures 1a and 1c). Some pixels may be covered by cloud even if SPT/VGT images are 10-day composites. SPT/VGT images have information about cloud cover. Therefore, cloud-cover pixels are excluded from detecting snow SDD. The extracted SDD in the SPT/GVT images were resampled to the grid of a digital elevation model with 1 km resolution using a nearest-neighbor method. The snow model estimates the beginning of the season of snow cover, in a manner described later in this chapter. Snowmelt rate was estimated with a degree-day method (Rango and Martinec, 1995) as follows:

\[M = k \times T_1 \]

where \(M \) is daily snowmelt (mm), \(k \) is a degree-day factor (mm day⁻¹ °C⁻¹) and \(T_1 \) is daily mean air temperature (°C). A base temperature below which snowmelt does not generate, is defined as 0°C. The degree-day factors were optimized from meteorological data at the AMeDAS station at Hakuba for the Kurobe area, and the station at Tadami for the Tadami area, by assimilating cumulative snowmelt with cumulative snowfall during the snow cover season. We obtained snowmelt rate factors of approximately 7.0 mm day⁻¹ °C⁻¹ at both sites; they were assumed to be spatially constant in this study.

Daily precipitation was interpolated from precipitation at AMeDAS sites over each grid as follows:

\[Pr = (1 + C_{sf}(z - elv_{obs}))Pr_{obs} \]

where \(Pr \) is daily precipitation at the elevation \(z \) (m), \(C_{sf} \) is the coefficient of the vertical gradient of snowfall with respect to height \(z \), and \(elv \) is the elevation. The subscript “obs” refers to AMeDAS observation sites. This approach does not need to use the coefficient for rainfall because the result of snowfall reconstruction does not depend on rainfall. The ratio \(s \) of snowfall to total precipitation was obtained from the wet-bulb temperature \(T_w \) as follows (Yamazaki, 2001):

\[s = \frac{Pr - C_{sf}(z - elv)}{Pr} \]

\[Pr_{obs} = \frac{s}{1 + s}Pr \]

\[Pr = \frac{Pr_{obs}}{1 + C_{sf}(z - elv)} \]

Figure 1. Snow disappearance date: (a) and (c) derived from SPT/VGT data; (b) and (d) estimated with the snow model and \(C_{sf} = 0.001 \) m⁻²; the solid lines indicate catchment boundaries.
ESTIMATING SPATIAL SNOW DISTRIBUTION

Tw is obtained from the daily temperature and water vapor pressure. Daily temperature at any point was calculated with a lapse rate of 6.5°C/km and we used daily temperature data at the AMeDAS sites. Water vapor pressure is interpolated from the nearest meteorological observatory or weather station of the Japan Meteorological Agency. We assumed that the gauges catch 0.8 of the snowfall because of wind-induced undercatchment of snow (Kominami et al., 2005), and all (1.0) of the rainfall. The coefficient Csf was obtained over each grid with the assumption that cumulative snowfall equals cumulative snowmelt during the snow cover season as follows:

\[
s = \begin{cases}
 1 - 0.5 \exp(-2.2(1.1 - T_w)^{1.3}), & T_w < 1.1 \\
 0.5 \exp(-2.2(T_w - 1.1)^{1.3}), & T_w \geq 1.1
\end{cases}
\]

\(T_w \) is obtained from the daily temperature and water vapor pressure. Daily temperature at any point was calculated with a lapse rate of 6.5°C/km and we used daily temperature data at the AMeDAS sites. Water vapor pressure is interpolated from the nearest meteorological observatory or weather station of the Japan Meteorological Agency. We assumed that the gauges catch 0.8 of the snowfall because of wind-induced undercatchment of snow (Kominami et al., 2005), and all (1.0) of the rainfall. The coefficient Csf was obtained over each grid with the assumption that cumulative snowfall equals cumulative snowmelt during the snow cover season as follows:

\[
SDD = \sum_{i=1}^{n} s_i Pr_i = \sum_{i=1}^{n} M_i
\]

where \(s_i \) is the ratio of snowfall to total precipitation and \(i \) is time interval and \(i = 1 \) represents the first date of snow cover. \(Pr \) was calculated with the three nearest AMeDAS sites by equation (1) and the inverse distance weighted interpolation, and we assumed that \(Csf \) is constant for the three stations.

Finally, in order to validate this approach and to evaluate the impact of reconstructed snowfall on catchment hydrology, snow water equivalent was estimated as follows:

\[
SWE_i = SWE_{i-1} + (SF_{i-1} - M_{i-1})
\]

where \(SF \) is daily snowfall and can be defined as \(sPr \). The time interval is one day and we assumed that all grids had no snow cover at the beginning of model calculations.

RESULTS AND DISCUSSION

Validation of the snowfall reconstruction approach with SWE

The reconstructed snowfall was validated by comparing estimated SWE with observed SWE data at four sites (Figure 2). The degree-day factor for each site was optimized at the closest AMeDAS station, and two types of snowfall data were used for SWE estimation: 1) reconstructed snowfall (thin line in Figure 2) and 2) precipitation data at the closest AMeDAS station (i.e. \(Csf = 0 \text{ m}^{-1} \)), after separation of precipitation type at the validation points and corrections for undercatchment (dashed line in Figure 2). The snow model, when coupled to the snowfall reconstruction approach, successfully estimated the seasonal change of SWE and the duration of the snow cover season. There were short-term errors near the peak values of SWE; the relative errors at the peak season were 23% at St.D and 10–15% at the other sites. The snowfall forcing data were based on interpolation from AMeDAS sites in lowland areas. Thus, interpolated snowfall was underestimated wherever snowfall occurred in the highlands but did not occur in the lowlands. The \(Csf \) values obtained by the reconstruction approach were 0.001, 0.001, 0.002, and 0.0015 m\(^{-1}\) at site A, B, C, and D, respectively. These results lead us to suspect optimization of \(Csf \) over each grid and constructed snowfall input into a snow model would increase accuracy in SWE and snowmelt estimation. The other estimation approach, which used the snow model and AMeDAS precipitation data, underestimated SWE throughout the snow cover season. As a result, less snowfall was input into the model, which caused estimates of SDD to be too early, especially at St.C (by 25 days) and St.D (by 13 days).

Figure 2. Observed and estimated snow water equivalent (SWE) in 1999/2000.
Spatial snowfall distribution during the snow cover season

Supplement Figure S2 represents the cumulative snowfall during the snow cover season in two study areas. The spatial average of optimized \(C_{sf} \) was approximately 0.002 m\(^{-1} \) for the Kurobe area, where snowfall accumulation triples with every 1000 m rise in elevation, and was 0.001 m\(^{-1} \) for the Tadami area, where snowfall doubles with every 1000 m rise. Also note that \(C_{sf} = 0.002 \) and 0.001 m\(^{-1} \) for St.C and St.B, respectively, for the validation represented in the previous section. Kondo et al. (1995) had obtained \(C_{sf} \) of approximately 0.001 m\(^{-1} \) from a water budget in a mountainous catchment on the Sea of Japan side of the central mountain spine of the northeast part of Japan. Therefore, Motoya et al. (2001), Asaoka et al. (2007) and Kazama et al. (2008) applied a \(C_{sf} \) value of 0.001 m\(^{-1} \) to estimate SWE distribution in Japan, and proved that this value was useful for estimating the average distribution of SWE in the central mountain spine of Northern Japan. Our study also obtained a spatial average of 0.001 m\(^{-1} \) for the optimized \(C_{sf} \) in the inland area west of the central mountain spine; i.e. the Tadami area and St.B (Okutadami-Maruyama). The consistency of our optimized \(C_{sf} \) values with values from previous research suggests that our reconstruction approach is valid, but it does not prove that a \(C_{sf} \) value of 0.001 m\(^{-1} \) is valid for smaller scales or for regions outside of the central mountain spine. In some mountainous areas adjacent to the Sea of Japan, annual precipitation ranges from 4000 to 12000 mm (Wada, 2004; Tsuchiya, 2005), which is much greater than the precipitation estimated with a \(C_{sf} \) value of 0.001 m\(^{-1} \).

The steep topography in the Kurobe area and around St.C (Myokoo-Sasagamine) leads to pronounced effects on precipitation when the wind impinges upon the steep mountain topography with saturated water vapor from the Sea of Japan. The Kurobe area is closer to the Sea of Japan and has steeper topographical gradients than does Tadami; the ground around Kurobe rises from 0 to 3000 m over a horizontal distance of 20 km. As a cold and dry winter monsoon blows from the Asian continent during the winter, heat and vapor are imparted from the relatively warm sea surface to the lowest atmospheric layer over the Sea of Japan. This causes the stability of the lower atmosphere to decrease, which leads to formation of cumulonimbus clouds, which when lifted over steep mountain slopes release huge amounts of precipitation. In Tadami, by contrast, lower elevation at the mountain peaks and less steep mountain topography result in a more moderate dependence of snowfall rate on elevation. Another reason is that the winter wind, originally saturated with water vapor on arriving from the Sea of Japan, arrives at Tadami after having relinquished a large fraction of its water vapor as precipitation upon the intervening mountain ranges.

Snowfall at ground level depended strongly on the elevation of the ground (Figure 3) in the Kurobe Dam catchment. Both catchments received more snowfall from 800 to 1400 m in elevation than the regression line would indicate. Most snow-producing clouds, generated over the Sea of Japan and blown by the wind against the mountain slopes, either drift upward or diverge around the mountain range in a horizontal direction. The height of cloud base is around 1 km above sea level (Nakai and Endoh, 1995). Hence, there is a steep dependence of snowfall on elevation in this altitude range. Moreover, winds cause snow particles to drift on the lower mountain slopes. Optimization of the \(C_{sf} \) coefficient in each grid would reflect these phenomena, except that this approach would not detect where the land surface is exposed on mountain peaks or ridges due to strong wind (Shimamura et al., 2005), as the spatial resolution of SPT/VGT is too coarse to resolve such small-scale phenomena. Also note that \(C_{sf} \) indicates the relationship of snowfall between each grid and AMeDAS sites, therefore, the snowfall gradient with respect to elevation in Figure 3 is smaller than the spatial average of optimized \(C_{sf} \) by the reconstruction approach.

Impact of snowfall on catchment snow hydrology

To evaluate the effect of the snowfall reconstruction approach, we estimated the seasonal changes of catchment SWE and snowmelt in the study areas by using two methods: 1) with the snow model and reconstructed snowfall data (using an optimized \(C_{sf} \) in each grid) and 2) with the snow model and interpolated snowfall data, under the assumption that \(C_{sf} \) was constant at 0.001 m\(^{-1} \) (Figure 4). The two methods yielded the same seasonal variation of SWE in the Tadami catchment, but a large difference in SWE in the Kurobe catchment: the maximum total SWE was 3.8 \(\times 10^3 \) m\(^3\) with the reconstruction approach but only 2.0 \(\times 10^3 \) m\(^3\) with the spatially constant \(C_{sf} \). The mean optimized value of \(C_{sf} \) in the Kurobe area was approximately 0.002 m\(^{-1} \), and spatially optimized values of \(C_{sf} \) tended to increase with elevation. In the Tadami area, on the other hand, the mean optimized \(C_{sf} \) was approximately 0.001 m\(^{-1} \), and this value did not tend to increase with elevation, so that both

Figure 3. Cumulative snowfall during the snow cover season in 1999/2000 as a function of elevation above sea level. Error bars indicate the standard deviation, and the dashed line is a linear regression line.
approaches yielded the same results for the Tadami catchment.

The differences in the estimated SWE between the two approaches had a large impact on snowmelt after the time of the maximum SWE in the Kurobe catchment. Estimated daily snowmelt in the catchment was about 300% greater using the reconstruction method than it was using the spatially constant C_{sf}, when averaged from DOY (day of the year) 140 (mid-May) to DOY 170 (mid-June). With remote sensing data, we detected that snow started to disappear after DOY 150 (end of May) in the year of this study (Figure 1a, while the method that uses a spatially constant C_{sf} estimated that snow would disappear after DOY 130 (early May) (Figure 1b). Therefore, the two methods differed most of all in their estimates of snowmelt after DOY 130. Combination of a snow model with a satellite-derived SDD can avoid an estimate for disappearance of snow that would be too early. Use of the reconstructed snowfall also resulted in successful estimates of the seasonal SWE in the catchment, and the amount of snowmelt after the time of peak SWE. In contrast, the two methods were in good agreement for the Tadami catchment because the SDD estimated by the snow model corresponded well with the satellite-derived SDD (Figures 1c and 1d).

CONCLUSION

Remotely-sensed snow information was combined with a snow model to reconstruct the snowfall in mountainous areas. This approach improved the seasonal estimation of SWE, especially its peak seasonal value and the snow disappearance date at observation sites in heavy snow areas. The conventional approach for estimating snowfall assumed the elevation dependency of snowfall was constant over a catchment or large area. Our approach allowed grid-based assessment of snowfall, and demonstrated that the elevation dependency of snowfall is distinct depending on the catchment or geographical condition. The computed spatial snowfall distribution was a steeper function of elevation in the mountainous area along the coast on the Sea of Japan side of the central mountain spine, where snowfall tripled with every kilometer increase in elevation ($C_{sf} = 0.001 m^{-1}$), while it doubled with every kilometer increase ($C_{sf} = 0.001 m^{-1}$) on the more inland side of the central mountain spine. Moreover, we found that using reconstructed snowfall in catchment snow hydrology prevented underestimation of the maximum SWE or snow disappearance date (SDD) that was too early. Especially, this approach estimated $3.8 \times 10^8 m^3$ maximum of total SWE in Kurobe catchment (along the coast, the Sea of Japan side of the central mountain spine), while the conventional approach, with the spatially-constant coefficient of the vertical gradient of snowfall with respect to height ($C_{sf} = 0.001 m^{-1}$), estimated $2.0 \times 10^8 m^3$. The beginning of SDD by the conventional method was approximately 20 days earlier than that of satellite-derived SDD. It followed that this approach reduced the present large underestimation of catchment snowmelt and duration of snowmelt season. Such results confirm that this approach is a more effective way to estimate snow hydrology, particularly in the heavy snow areas affected by the steep topography and high moisture content in air arriving from the Sea of Japan: that is, along the coast on the Sea of Japan side of Japan’s central mountain spine. This method of snowfall estimation also has the potential to provide more accurate and useful information to water resources managers in heavy snow areas.

ACKNOWLEDGEMENTS

The authors thank the Science and Technology Research Partnership for Sustainable Development (SATREPS) of JST-JICA and the Global Environmental Research Fund.
SUPPLEMENTS

Supplement Figure S1. Location of Kurobe Dam, Tadami Dam, and SWE observation sites.
Supplement Figure S2. Map of cumulative snowfall during snow cover season in 1999/2000. The solid lines indicate catchment boundaries.

REFERENCES

Asaoka Y, Kazama S, Sawamoto M. 2002. The variation characteristics of snow water resources in a wide area and its geographical and climate dependency. Journal of Japan Society of Hydrology and Water Resources 15: 279–289 (in Japanese).

Asaoka Y, Kominami Y, Takeuchi Y, Daimaru H, Tanaka N. 2007. Estimation of snow water equivalent in wide area based on satellite remote sensing and regional characteristics of the snowmelt rate factor. Journal of Japan Society of Hydrology and Water Resources 20: 519–529 (in Japanese).

Asaoka Y, Toyoda Y, Takeuchi Y. 2010. The effect of the precipitation form discrimination method on river discharge estimation during winter. Annual Journal of Hydraulic Engineering 54: 421–426 (in Japanese).

Duchemin B, Berchet B, Dedieu G, Leroy M, Maisongrande P. 2002. Normalization of directional effect in 10-day global syntheses derived from VEGETATION/SPOT: II. Validation of an operational method on actual data sets. Remote Sensing of Environment 81: 101–113.

Hirabayashi Y, Kanae S, Motoya K, Masuda K, Döll P. 2008. A 59-year (1948–2006) global meteorological forcing data set for land surface models. Part II: Global snowfall estimation. Hydrological Research Letters 2: 65–69. doi: 10.3178/HRL.2.65.

Holben BN. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7: 1417–1434.

Kazama S, Iizumi H, Sarukkalige PR, Nasu T, Sawamoto M. 2008. Estimating snow distribution over a large area and its application for water resources. Hydrological Processes 22: 2315–2324. doi: 10.1002/hyp.6826.

Kominami Y, Tanaka N, Endo Y, Nishino S. 2005. Estimation of snow distribution under global warming using data from remote weather stations (AMeDAS). Journal of Agricultural Meteorology 60: 445–450.

Kondo J, Motoya K, Matsushima D. 1995. A study on annual variation of the soil water content and water equivalent of snow in a watershed runoff and the river water temperature by the use of the new bucket model. Tenki 42: 11–21 (in Japanese).

Molotch NP, Fassnacht SR, Bales RC, Helfrich SR. 2004. Estimating the distribution of snow water equivalent and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona. Hydrological Processes 18: 1595–1611. doi: 10.1002/hyp.1408.

Motoya K, Yamazaki T, Yasuda N. 2001. Evaluating the spatial and temporal distribution of snow accumulation, snowmelt and discharge in a multi basin scale: an application to the Tohoku Region, Japan. Hydrological Processes 15: 2101–1219. doi: 10.1002/hyp.279.

Nakai S, Endoh T. 1995. Observation of snowfall and airflow over a low mountain barrier. Journal of the Meteorological Society of Japan 73: 183–199.

Rango A, Martinez J. 1995. Revisiting the degree-day method for snowmelt computations. Water Resources Bulletin 31: 657–669.

Saito A, Yamazaki T. 1999. Characteristics of spectral reflectance for vegetation ground surfaces with snow-cover; Vegetation indices and snow indices. Journal of Japan Society of Hydrology and Water Resources 12: 28–38 (in Japanese).

Shimamura Y, Iizumi T, Nakayama D, Matusyama H. 2003. Estimation of snow water equivalent and snowmelt water using the snow index – A case study the Kurobe Basin –. Journal of Japan Society of Hydrology and Water Resources 16: 331–348 (in Japanese).

Shimamura Y, Iizumi T, Matusyama H. 2005. Estimation of snow water resources in mountains based on snow surveys and remote sensing – A case study around the Joetsu Border of Niigata Prefecture in Japan. Journal of Japan Society of Hydrology and Water Resources 18: 411–423 (in Japanese).

Shimamura Y, Iizumi T, Matusyama H. 2006. Evaluation of a useful method to identify snow-covered areas under vegetation – comparisons among a newly proposed snow index, normalized difference snow index, and visible reflectance. International Journal of Remote Sensing 27: 4867–4884. doi: 10.1080/01431160600369693.

Shinohara Y, Kumagai T, Otsuki K, Kume A, Wada N. 2009. Impact of climate change on runoff from a mid-latitude mountainous catchment in central Japan. Hydrological Processes 23: 1418–1429. doi: 10.1002/hyp.7264.

Sugaya H. 2005. Estimation of winter precipitation forms in Japan based on wet-bulb temperature. Journal of Agricultural Meteorology 60: 733–736.

Tian X, Dai A, Yang D, Xie Z. 2007. Effects of precipitation-bias corrections on surface hydrology over northern latitudes. Journal of Geophysical Research 112: D14101. doi: 10.1029/2007JD008420.

Tsuchiya I. 2005. Interannual variation of annual precipitation more than 12000mm on Mt. Chokai between 1979 and 2003: Estimation based on the dam flow data. Tenki 52: 681–684 (in Japanese).

Wada N, Kawada K, Kawamura R, Aoki K, Kume A. 2004. Increasing winter runoff in a middle-latitude mountain area of central Japan. Journal of the Meteorological Society of Japan 82: 1589–1597.

Yamaguchi S, Abe O, Nakai S, Sato A. 2007. Recent snow cover fluctuations in the mountainous areas of Japan. IAHS Publication 318: 116–125.

Yamazaki T. 2001. A one-dimensional land surface model adaptable to intensely cold regions and its applications in Eastern Siberia. Journal of the Meteorological Society of Japan 79: 1107–1118.

Yokoyama K, Ohno H, Kominami Y, Inoue S, Kawakata T. 2003. Performance of Japanese precipitation gauges in winter. Seppyo 65: 303–316 (in Japanese).