Genetic Variations in ADIPOQ Gene Are Associated with Chronic Obstructive Pulmonary Disease

Yiming Yuan1,2, Haiou Jiang2, Jiangying Kuang2, Xiaoming Hou2, Yulin Feng3, Zhiguang Su2*

1 Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China, 2Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China, 3Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China

Abstract

Background: Adiponectin is reported to be related to the development of chronic obstructive pulmonary disease (COPD). Genetic variants in the gene encoding adiponectin (ADIPOQ) have been reported to be associated with adiponectin level in several genome–wide linkage and association studies. However, relatively little is known about the effects of ADIPOQ gene variants on COPD susceptibility. We determined the frequencies of single-nucleotide polymorphisms (SNPs) in ADIPOQ in a Chinese Han population and their possible association with COPD susceptibility.

Methods: We conducted a case–control study of 279 COPD patients and 367 age- and gender-distribution-matched control subjects. Seven tagging SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537 were genotyped by SNaPshot. Association analysis of genotypes/alleles and haplotypes constructed from these loci with COPD was conducted under different genetic models.

Results: The alleles or genotypes of rs1501299 distributed significantly differently in COPD patients and controls (allele: \(P = 0.002 \), OR = 1.43 and 95%CI = 1.14–1.79; genotype: \(P = 0.008 \)). The allele A at rs1501299 was potentially associated with an increased risk of COPD in all dominant model analysis (\(P = 0.009 \); OR: 1.54; 95%CI: 1.11–2.13), recessive model analyses (\(P = 0.015 \); OR: 1.75; 95% CI: 1.11–2.75) and additive model analyses (\(P = 0.003 \); OR: 2.11; 95% CI: 1.29–3.47). In haplotype analysis, we observed haplotypes AAAAACT and GGACCTC had protective effects, while haplotypes AGAACTC, AGGCCTC, GGAACCT, GGGACCT and GGGGCCTC were significantly associated with the increased risk of COPD.

Conclusions: We conducted the first investigation of the association between the SNPs in ADIPOQ and COPD risk. Our current findings suggest that ADIPOQ may be a potential risk gene for COPD. Further studies in larger groups are warranted to confirm our results.

Introduction

Chronic obstructive pulmonary disease (COPD) is a major global disease that has been predicted to be the third leading cause of mortality worldwide by the year 2020 [1], and it is estimated to affect nearly 8.2% of the Chinese adult population [2]. Cigarette smoking is the major environmental risk factor for COPD; however, only approximately 15% of smokers develop clinically relevant airflow obstruction [3]. The variation in the susceptibility to cigarette smoke, in combination with the familial inheritance pattern of COPD, suggests that there may be a genetic component to the development of COPD [4]. The associations between COPD and polymorphisms in genes with potential importance in COPD pathogenesis have been investigated [5]; however, only α1-antitrypsin has been unequivocally identified as relevant to the development of COPD. Recently, polymorphisms in the CHRNA3-CHRNA5-IREB2, HHIP, and FAM13A loci have been found to be associated with COPD by genome-wide association studies (GWAS) [6–8].

There is increasing evidence of systemic inflammation in patients with COPD. Several disease biomarkers have been found to be helpful in assessing systemic and local inflammation, including interleukin (IL) 6, IL-8 and C-reactive protein (CRP) [9,10]. Adiponectin is a secretory 30 kD protein synthesized by adipocytes in healthy subjects. Its role in inflammation is controversial, as its plasma concentration decreases in diseases such as metabolic syndrome and type II diabetes [11], but increases in some inflammatory diseases such as rheumatoid arthritis and systemic lupus erythematosus [12,13]. Animal studies, for instance, suggest that reduced expression of adiponectin is associated with development of emphysema and is associated with the pathogenesis of cachexia and osteoporosis [14]. However, human studies indicate that circulating adiponectin levels are raised in COPD and associated with poor health outcomes including increased risk of exacerbations [15–17]. Thus, the
relationship of adiponectin to COPD outcomes remains uncertain. Genetic factor accounts for about 40–70% of the variation in adiponectin levels [10]. Genetic variants in the gene encoding adiponectin (ADIPOQ) have been reported to be associated with adiponectin levels in several genome-wide linkage and association studies [18–20]. However, inconsistent findings on the association of genetic variants of ADIPOQ with adiponectin levels have been reported [18–22], which could be due to a difference in ethnic populations, single nucleotide polymorphism (SNP) selection, and study power.

With these considerations in mind, we hypothesized that polymorphisms in the ADIPOQ gene might modulate susceptibility to COPD. To test this hypothesis, we investigated the association of common genetic variants in the ADIPOQ gene with the risk of COPD in a Chinese Han population.

Materials and Methods

Ethics Statement

The use of human tissue and the protocol in this study were strictly conformed to the principles expressed in the Declaration of Helsinki and were approved by the Ethical Committee of the West China Hospital, Sichuan University, and written informed consent was obtained from all subjects before their participation in the study. The investigator explained the nature, purpose and risks of the study and provided the subject with a copy of the information sheet.

Subjects

As described previously [23], 279 patients with COPD and 367 age-matched non-COPD control subjects were recruited for this study. The subjects in both groups were unrelated ethnic Han Chinese individuals recruited from Chengdu city or surrounding regions in the Sichuan province of western China. All subjects underwent physical examinations including chest x-ray, anthropometric measurements including body mass index (BMI), assessment of lung function, and blood sampling. The recruitment and clinical analyses were conducted at the department of respiratory medicine in West China Hospital of Sichuan University; clinical analyses were performed according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria [24]. COPD patients were enrolled when they suffered from cough, sputum production and dyspnea at least upon exertion and showed chronic irreversible airflow limitation defined by an FEV1 (forced expiratory volume in 1s) to FVC (forced vital capacity) ratio <70%, and FEV1 predicted <80% after the inhalation of a β2-agonist. Patients were excluded from this study if they had other significant respiratory diseases, such as bronchial asthma, bronchiectasis, lung cancer, or pulmonary tuberculosis based on their chest x-ray test.

The age-matched non-COPD control subjects were volunteers who came to the West China Hospital of Sichuan University for physical examination only. The inclusion criteria for controls were as follows: (1) FEV1/FVC ratio >70%, FEV1% and FVC% predicted >80% and (2) without pulmonary disease. Individuals were excluded if they had a history of chronic lung disease, atopy, an acute pulmonary infection in the 4 weeks before assessment for this study, or a family history of COPD.

Biochemical Measurements

Blood samples were collected at baseline from patients and controls after an overnight fast. Plasma separated from cells by centrifugation at 500 g for 10 min at room temperature was used for lipid, glucose and adiponectin analyses. The plasma levels of total cholesterol, triglycerides and glucose were determined with an enzymatic kit (Boehringer Mannheim) and calibrated with a plasma calibrator. Circulating total adiponectin level was measured by the enzyme-linked immunosorbent assay method (QuantiKine, R&D Systems, Minneapolis, MN, USA).

SNP Selection and Genotyping

Genotype data of the Chinese population for the ADIPOQ region were obtained from the HapMap website (http://www.hapmap.org/), and tag SNPs were selected using the Tagger software implemented in the Haploview software [25], with an r2 threshold of 0.8 and minor allele frequencies (MAF) of 0.1. There were seven tagging SNPs (rs710445, rs16861205, rs229396, rs7627128, rs1501299, rs3821799 and rs1063537), which captured all the fifteen SNPs from 3-kb region upstream to 1-kb downstream of the gene (position 138,040,157–188,059,946 bp, GenBank accession number NM_004797.3, NCBI build 36).

Genomic DNA was extracted from peripheral blood leukocytes using a commercial extraction kit (Biotek Corporation, Beijing, China) according to the manufacturer’s instructions. SNPs were genotyped using the ABI SNaPshot method (Applied Biosystems, CA, USA). The genomic regions of interest were amplified by primers shown in Table 1. The PCR products were then purified by incubating with shrimp alkaline phosphatase (SAP) and exonuclease I (Exo I). The purified PCR products were used as the templates for SNaPshot reaction using the specific SNaPshot primers (Table 1). 3 µl of pooled PCR products, 1 µl of pooled SNaPshot primers and 1 µl of deionized water were incubated in a GeneAmp 9600 thermal cycler by 25 cycles at 96°C for 10 s, 50°C for 5 s, and 60°C for 30 s, and finally 60°C for 30 s. Then, 1 U of SAP was added to SNaPshot product and incubated at 37°C for an hour to deactivate the enzyme. The SNaPshot reaction products were mixed with Hi-Di formamide and GeneScan-120 LIZ internal size standard (Applied Biosystems), and analyzed on an ABI 3130 Genetic Analyzer (Applied Biosystems, CA, USA). The data were analyzed by the software of GeneMapper 4.0. Genotype analysis was performed in a blinded manner so that the staff was unaware of the cases or control status. For quality control, a 10% masked random sample of cases and controls was tested repetitively by different investigators and all the results were completely concordant.

Statistical Analyses

The demographic and clinical data between the COPD patients and the control subjects were compared using the χ2 test and Student’s t-test. A two-sided significance level of α < 0.05 was used for all significant tests. Statistical analyses were performed in SPSS version 17.0 and Microsoft Excel. A multiple logistic regression analysis using BMI and glucose as covariates was done to correct the significant p-value of adiponectin.

The Hardy-Weinberg equilibrium (HWE) test using two-sided χ2 analysis was done for each SNP among cases and controls. Differences in the distribution of genotypes or alleles under different genetic models (including dominant, recessive and additive models) between the COPD patients and the controls were estimated by using the χ2 test. Odds ratios (OR) and 95% CIs were calculated by unconditional logistic regression analyses [26,27]. Correction for multiple testing was performed by the SNP spectral decomposition method (SNPSpD) [28]. Under this method, the effective number of independent marker loci (MeffLi) was 7, and the experimental-wide significance threshold to keep type 1 error rate at 5% was 0.0098.

Pairwise linkage disequilibrium (LD) estimation and haplotype reconstruction were performed using SHEsis (http://analysis.bio-
significantly lower BMI (22.03 ± 6.12 vs. 23.91 ± 2.48 kg/m^2, P < 0.01) and a 1.4-fold higher adiponectin levels (3.54 ± 0.66 μg/ml vs 6.12 ± 0.57 μg/ml, P < 0.01). The adiponectin levels remained significantly higher in COPD patients after further adjusting for BMI and glucose levels (P < 0.01).

Distribution of the SNPs in ADIPOQ between COPD Patients and Controls

Seven SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537, were screened in all 279 patients with COPD and 367 controls using the SNaPshot method. The genotype and allele frequencies of each SNP in both COPD patients and controls were presented in Table 3. All of the tested SNPs didn’t significantly deviate from that expected for a Hardy-Weinberg equilibrium (HWE) in the COPD patients and controls (Table 3, all P values were higher than 0.05), illustrating that our subjects presented the source population well.

We compared the differences in frequency distributions of genotypes or alleles of every SNP between COPD patients and controls by χ^2 test. As shown in Table 3, significant differences in allele or genotype frequencies were observed between COPD patients and controls at rs1501299 (allele: P = 0.002, OR = 1.43 and 95%CI = 1.14–1.79; genotype: P = 0.008).

Results

General Characteristics of the Subjects

The baseline characteristics, biochemical features and the results of the pulmonary function tests for the 279 patients with COPD and 367 control subjects were presented in Table 2. All patients had FEV1 values <80% of predicted and thus were diagnosed with moderate-to-severe COPD according to the Global Initiative for Chronic Obstructive Lung Disease [24] (classification of severity: mild = FEV1 80–120% of predicted; moderate = FEV1 60–80% to <80% of predicted; severe = FEV1 <60% of predicted). The COPD cases and control subjects did not significantly differ in sex, age or smoking history. The FEV1, FEV1/predicted and FEV1/FVC were significantly lower in the COPD patients compared with the controls (P < 0.01), however, they were still within the normal range. In addition, the COPD patients showed statistically higher glucose concentrations (P < 0.01), adiponectin levels remained significantly higher in COPD patients after further adjusting for BMI and glucose levels (P < 0.01).

Distribution of the SNPs in ADIPOQ between COPD Patients and Controls

Seven SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537, were screened in all 279 patients with COPD and 367 controls using the SNaPshot method. The genotype and allele frequencies of each SNP in both COPD patients and controls were presented in Table 3. All of the tested SNPs didn’t significantly deviate from that expected for a Hardy-Weinberg equilibrium (HWE) in the population well.

We compared the differences in frequency distributions of genotypes or alleles of every SNP between COPD patients and controls by χ^2 test. As shown in Table 3, significant differences in allele or genotype frequencies were observed between COPD patients and controls at rs1501299 (allele: P = 0.002, OR = 1.43 and 95%CI = 1.14–1.79; genotype: P = 0.008).

Table 1. Seven SNPs in the ADIPOQ gene in the study.

SNPs	Position (build 37.3)	Alleles	Primers (5’-3’)	PCR	SNaPshot
rs710445	186,561,518	G/A	ctagggccagagaattgcttg	taatgagatataaatgagaagaaggtgcc	acaacagaggtgcctgaa
rs16861205	186,561,634	G/A	ccttcctattgtggactcctagctg	gcttcctattgtggactcctagctg	ggtttcctattgtggactcctagctg
rs822396	186,566,877	A/G	ttctttcattgtggactcctagctg	ggtttcctattgtggactcctagctg	ggtttcctattgtggactcctagctg
rs7627128	186,568,799	C/A	gcttggcaactctgctttg	gcttggcaactctgctttg	gcttggcaactctgctttg
rs1501299	186,571,123	A/C	gcttggcaactctgctttg	gcttggcaactctgctttg	gcttggcaactctgctttg
rs3821799	186,571,466	T/C	gcttggcaactctgctttg	gcttggcaactctgctttg	gcttggcaactctgctttg
rs1063537	186,574,075	C/T	gcttggcaactctgctttg	gcttggcaactctgctttg	gcttggcaactctgctttg

Table 2. Characteristics of COPD patients and control subjects.

Variable	Controls (n = 367)	Cases (n = 279)	P
Age, years	65±8	63±9	NS
Sex (Men/Women)	323/44	239/40	NS
BMI(kg/m^2)	23.91±2.48	22.03±2.27	<0.01
Total cholesterol(mmol/l)	4.87±0.22	4.96±0.47	NS
Triglycerides(mmol/l)	1.24±0.57	1.19±0.48	NS
Glucose(mmol/l)	5.13±0.12	5.86±0.16	<0.01
Adiponectin(μg/ml)	6.12±0.57	8.54±0.66	<0.01
Smoking history			
0–20 pack years	88	75	NS
≥20 pack years	279	204	NS
FEV1	1.87±0.60	0.97±0.32	<0.01
FEV1 of predicted, %	93.7±3.4	46.0±0.4	<0.01
FEV1/FVC	78.0±4.6	49.2±8.3	<0.01

Data are presented as means ± SD. NS, no significant difference (P > 0.05).

BMI, body mass index.

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.

Pack years = (number of cigarettes smoked per day × number of years smoked)/20.

x.cn) [29]. For haplotype analysis, only haplotypes with a frequency >3% in at least one group were tested. We also used Haplview 4.2 [25] to estimate LD.
Haplotype Analysis
rs1501299 is Associated with Plasma Adiponectin Levels

We investigated the relationship between rs1501299 and plasma adiponectin levels in both COPD patients and control subjects (Figure 1). Compared to subjects with homozygote CC at rs1501299, the subjects with homozygote AA had significantly higher adiponectin levels after adjusting for BMI and glucose levels (OR = 0.50, 95% CI: 0.34–0.75 in controls, 9.13 ± 0.49 μg/ml vs. 2.27 ± 0.53 μg/ml in COPD patients, P < 0.05 in both groups).

Linkage Disequilibrium (LD) between SNPs and Haplotype Analysis
The extent of linkage disequilibrium in pairwise combinations of alleles in different SNP was estimated by means of maximum likelihood from the genotype frequency in the COPD and control groups. Pairwise LD between the seven SNPs was shown in Table 5 and Figure 2. Based on LD determinations, two blocks with moderate LD were detected: block 1 is composed of rs710445 and rs16861205, block 2 is composed of rs1501299, rs3821799 and rs1065537.

We estimated the frequencies of haplotypes constructed from phased multi-locus genotypes in ADIPOQ. The haplotypes with a frequency higher than 3% in at least one group were involved in the haplotype analysis (Table 6). The global result for block 1 (rs710445 and rs16861205) was: $\chi^2 = 22.99$ while df = 3, $P = 4.16 \times 10^{-5}$. The global result for block 2 (rs1501299, rs3821799 and rs1065537) was: $\chi^2 = 79.33$ while df = 5, $P = 7.66 \times 10^{-15}$. The overall frequency distribution of haplotype composed of all seven SNPs was significantly different between cases and controls (total global $\chi^2 = 159.35$ while df = 10, $P = 4.40 \times 10^{-29}$).

The results of the association between the ADIPOQ haplotype and the risk of COPD were included in Table 6. Haplotype GA in block 1 was found to be associated with an increased risk of COPD (OR = 11.54, 95% CI = 3.20–41.57, $P = 2.61 \times 10^{-4}$). In block 2, two haplotypes were observed to be associated with the risk of COPD: (ACT: OR = 1.62, 95% CI = 1.20–2.10, $P = 2.85 \times 10^{-4}$; ATC: OR = 3.85, 95% CI = 2.01–7.37, $P = 1.43 \times 10^{-4}$), while haplotypes ACC and CTT were protective from COPD (ACC: OR = 0.50, 95% CI = 0.34–0.74, $P = 4.33 \times 10^{-4}$; CTT: OR = 0.02, 95% CI = 0.01–0.12, $P = 1.97 \times 10^{-5}$). Global haplotype association analyses showed that five haplotypes, including AGAACTC, AGGCTCG, AGGACTC, GGACACT and GGGCCTC, were significantly associated with the risk of COPD (all OR > 1.00, and $P < 0.01$). In addition, two protective haplotypes AAAAACT (OR = 0.36, 95% CI = 0.16–0.82, $P = 0.011$) and

Table 3. Distributions of the ADIPOQ SNPs in COPD patients and controls.

SNP	Group	Genotype (freq.%)	P	HWE* P	Allele (freq.%)	P	OR [95% CI]b
rs710445	COPD	GG 25(26.9)			AG 57(20.4)		
		A 102(27.8)		0.953	A 331(53.5)		0.910
rs16861205	COPD	GG 155(55.6)			A 12(4.3)		0.132
		A 230(62.6)		0.068	A 164(44.4)		0.94-1.59
rs822396		AA 169(60.6)			A 9(3.2)		0.02
		A 249(67.8)		0.098	A 14(3.8)		1.01
rs7627128	COPD	CC 119(42.7)			C 27(9.7)		
		C 157(47.8)		0.167	C 35(9.5)		
rs1501299	COPD	CC 92(33.0)		0.008	C 39(10.6)		1.14-1.79
		A 158(43.1)		0.006	A 46(6.2)		
rs3821799	COPD	TT 10(3.6)		0.993	T 41(14.7)		
		T 145(45.9)		0.544	T 55(15.0)		
rs106537	COPD	CC 131(47.0)		0.823	C 22(7.8)		
		C 181(49.3)		0.531	C 29(7.9)		

a. HWE: Hardy-Weinberg equilibrium. b. OR: odds ratio; CI: confidence interval.
doi:10.1371/journal.pone.0050848.t003
GGACCTC (OR = 0.29, 95%CI = 0.22–0.39, \(P = 4.00 \times 10^{-12}\)), which were associated with a decreased risk of COPD.

Discussion

Adiponectin, an adipose tissue-derived cytokine, has important roles in insulin sensitization, cardioprotection, and anti-inflammatory processes. Plasma adiponectin level is negatively correlated with body mass index (BMI), glucose, insulin and triglyceride levels and is positively associated with high-density lipoprotein cholesterol (HDL-C) concentration and insulin-stimulated glucose disposal [30]. Although its action on the respiratory system is not fully known, expression of adiponectin and its functional receptors on airway epithelium have been reported [31]. There have been several clinical studies reporting on the relationship between circulating adiponectin and COPD, and elevation of plasma adiponectin level was found in patients with stable and acute exacerbation of COPD [15–17,32]. The most bioactive form of adiponectin is a 400-kDa high molecular weight (HMW) complex [33], which was also found to be increased dramatically in COPD patients in a recent report [34].

Table 4. Association between ADIPOQ SNPs and the risk of COPD under different genetic models.

SNP	Genetic model	\(P\)	OR [95%CI]
rs710445	Dominant (AG+AA) vs GG	0.797	1.05 [0.74–1.49]
	Recessive AA vs GG	0.931	0.98 [0.67–1.45]
	Additive AG vs GG	0.765	1.06 [0.73–1.53]
rs16861205	Dominant (AG+AA) vs GG	0.068	1.34 [0.98–1.84]
	Recessive AA vs GG	0.971	0.99 [0.46–2.12]
	Additive AG vs GG	0.058	1.37 [0.99–1.91]
rs822396	Dominant (AG+GG) vs AA	0.055	1.37 [0.99–1.90]
	Recessive GG vs AA	0.689	0.84 [0.36–1.97]
	Additive AG vs AA	0.036	1.43 [1.02–2.00]
rs7627128	Dominant (AC+AA) vs CC	0.974	1.01 [0.73–1.38]
	Recessive AA vs CC	0.952	1.02 [0.60–1.72]
	Additive AC vs CC	0.987	1.00 [0.72–1.39]
rs1501299	Dominant (AC+AA) vs CC	0.009	1.54 [1.11–2.13]
	Recessive AA vs CC	0.015	1.75 [1.11–2.75]
	Additive AC vs CC	0.051	1.40 [0.99–1.98]
rs3821799	Dominant (TC+CC) vs TT	0.983	1.00 [0.73–1.38]
	Recessive CC vs TT	0.918	0.98 [0.63–1.52]
	Additive TC vs TT	0.952	1.01 [0.72–1.42]
rs1063537	Dominant (CT+TT) vs CC	0.551	1.01 [0.81–1.50]
	Recessive TT vs CC	0.942	0.98 [0.61–1.58]
	Additive CT vs CC	0.533	1.11 [0.80–1.53]

OR: odds ratio; CI: confidence interval. doi:10.1371/journal.pone.0050848.t004

In this case-control study in a Han Chinese population, we evaluated the possible association of ADIPOQ polymorphisms with susceptibility to COPD. To the best of our knowledge, this study was the first investigation of the association between the SNPs in ADIPOQ and COPD risk. Our current findings suggested that rs1501299 associated with the risk of COPD. In comparison with allele G at rs1501299, the allele A could increase the risk of COPD under all dominant, recessive and additive genetic models. The polymorphism rs1501299, also known as C276A, in ADIPOQ has been found to be in association with adiponectin levels in diverse population [35–37], and its A allele is associated with higher

![Figure 1. The allele effect of rs1501299 on plasma adiponectin levels. Values were expressed as means ± SD. \(P<0.05\) vs. subjects with CC genotype. doi:10.1371/journal.pone.0050848.g001](10.1371/journal.pone.0050848.g001)

![Figure 2. Linkage disequilibrium (LD) plots for ADIPOQ. The LD plots were generated by Haploview 4.2. Polymorphisms are identified by their dbSNP rs numbers, and their relative positions are marked by vertical lines within the white horizontal bar. The numbers within squares indicate the D' value, expressed as a percentile. doi:10.1371/journal.pone.0050848.g002](10.1371/journal.pone.0050848.g002)
adiponectin. One report showed that serum adiponectin levels were higher in COPD patients than in control subjects and were associated with weight loss and systemic inflammation as assessed by circulating tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) levels [15]. A recently study showed that serum adiponectin was associated with all-cause mortality in COPD patients [38]. However, this association is conflicted in animal models. In one study, hypoadiponectinemia in \(\text{ADIPOQ}\) gene-knockout mice was associated with emphysema-like changes in the lungs and extrapulmonary features including systemic inflammation, obesity, and osteoporosis [14], while another study reported the opposite effect in which mice deficient in adiponectin were protected from emphysema when they were exposed to cigarette smoke [39]. In our current study, the association of rs1501299 in \(\text{ADIPOQ}\) and COPD might be modulated by its effects on the adiponectin levels. However, rs1501299 is in intron 2 of the \(\text{ADIPOQ}\) gene and does not have a known function. It is probably a marker of some other variant affecting adiponectin expression. We assessed the

Table 5. Pairwise linkage disequilibrium analysis of SNPs of the \(\text{ADIPOQ}\) gene.
\(D'\)
rs710445
rs16861205
rs822396
rs7627128
rs1501299
rs3821799

\(D'\): Linkage disequilibrium coefficient.

doi:10.1371/journal.pone.0050848.t005

Table 6. Frequencies of pairwise haplotype constructed by SNPs in \(\text{ADIPOQ}\).
Block
1
AG
GA
GG
Global
2
ACT
ATC
CCT
CTC
CTT
Global
Total
AAGAAC
AGGAAT
AGAACT
AGACCT
AGGACCT
GGAACAT
GGAACT
GGACAT
GGAACCT
GGGACCT
Global

a. The order of SNPs from left to right is: rs710445 and rs16861205 for block 1; rs1501299, rs3821799 and rs1063537 for block 2; rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537 for total.

b. Only haplotypes with a frequency > 3% in at least one group were listed.

c. OR: odds ratio; CI: confidence interval.

d. The OR could not be calculated for the haplotype GGGCCTC, because of the zero value in the population.

doi:10.1371/journal.pone.0050848.t006
extent of linkage disequilibrium (LD) between rs1501299 and other SNPs in exons, 3’UTR and promoter regions of the ADIPOQ gene in Han Chinese in Beijing (CHB) using HapMap project data (Figure S1), which indicated that rs1501299 was in a LD block encompassing the whole 3’UTR of the ADIPOQ gene, but whether and how far such block extends beyond the gene boundaries remain to be determined [40].

In addition to the genotype analysis, our study also adopted a haplotype based approach. Haplotype analysis, in which several SNPs within the same gene are evaluated simultaneously, can provide more information than a single SNP and thus elevates the statistical power of the analysis [41]. Using this approach, we provided strong support that ADIPOQ variations contributed to the susceptibility to COPD. LD analysis showed that some SNPs in ADIPOQ gene were in moderate LD, and some haplotypes with low frequency were found to affect the risk of COPD dramatically. Haplotypes AAAAAACT and GGACCTC were associated with a reductive risk of COPD, while haplotypes AGAACTC, AGGCCCTC, GGACACTC and GGGCCCTC increased the risk of developing COPD, indicating the complexity of ADIPOQ gene in the development of COPD. This might be attributable to the complex genetic determinants of plasma adiponectin levels. In addition to the SNP in ADIPOQ gene, other gene loci such as 14q13 have been reported to affect plasma adiponectin value and play a much bigger role [40]. Recently, Genome wide association study (GWAS) for genetic markers in determining plasma adiponectin value in Korean population reported that genetic variants in CDH13 on chromosome 16, but not genetic variants in the ADIPOQ gene, influence adiponectin levels [42]. However, another GWAS using plasma adiponectin as a quantitative trait demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin in Caucasian population [20].

We are aware that the significant results in this study could prove to be false positives because of the relatively small sample size. 279 COPD patients and 367 control subjects were not relatively large among COPD association studies published to date, further studies using larger populations are needed. But even with a larger sample, the functional and biological impacts of the described polymorphisms would require further study. Possible gene-gene and gene-environment interactions also pose a challenge for genetic analysis of COPD association studies. We selected SNPs with MAF higher than 10% in the Han Chinese population (CHB) using HapMap project data, this is not suited for situations where genetic architecture is such that multiple rare disease-causing variants contribute significantly to disease risk. Recent studies demonstrate that identification of rare variants may lead to critically important insights about disease etiology through implication of new genes and/or pathways [43,44]. The rare variants in the ADIPOQ gene should be investigated to clarify their susceptibility to the development of COPD.

In conclusion, our comprehensive analysis of SNPs in the ADIPOQ gene suggests that ADIPOQ genotypes and haplotypes are associated with COPD risk. These findings indicate that the genetic variants of ADIPOQ gene play a complex role in the development of COPD, and that interactions of loci in ADIPOQ gene may be more important than a single locus. Our findings in this study provided new evidence for the association between SNPs and haplotypes of ADIPOQ gene and the risk of COPD.

Supporting Information

Figure S1 Relative position of SNPs and LD map for ADIPOQ in the Han Chinese population (CHB) using HapMap project data. This figure shows that strong LD was observed between rs1501299 and the SNPs in the 3’UTR of ADIPOQ.

TIF

Acknowledgments

We are grateful to all the participants in this study.

Author Contributions

Conceived and designed the experiments: YY YF ZS.Performed the experiments: YY HJ JK XH. Analyzed the data: YY HJ JK. Contributed reagents/materials/analysis tools: YY HJ JK. Wrote the paper: YY ZS.

References

1. Murray CJ, Lopez AD (1996) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274: 740–747.
2. Zhong N, Wang C, Yao W, Chen P, Kang J, et al. (2007) Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med 176: 753–760.
3. Davis RM, Novotny TE (1989) The epidemiology of cigarette smoking and its impact on chronic obstructive pulmonary disease. Am Rev Respir Dis 140: S82–S84.
4. Khouyr MJ, Beaty TH, Tockman MS, Self SG, Cohen BH (1995) Familial aggregation in chronic obstructive pulmonary disease: use of the loglinear model to analyze intermediate environmental and genetic risk factors. Genet Epidemiol 2: 155–166.
5. Castaldi PJ, Cho MH, Cohen M, Langerman F, Moran S, et al. (2010) The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet 19: 526–534.
6. Cho MH, Boutoumi N, Klanderman BJ, Sylvia JS, Zimit JF, et al. (2010) Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42: 200–202.
7. Pillai SG, Ge D, Zhu G, Kong X, Shiang KV, et al. (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5: e1000421.
8. Wilk JB, Glenn TH, Gotthelf DJ, Walter RE, Nagle MW, et al. (2009) A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 5: e1000429.
9. Kohut U, Roy K, Starkey C, Borrill Z, Truman N, et al. (2009) The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year. Int J Chron Obstruct Pulmon Dis 4: 149–156.
10. Yamamoto C, Yoneeda T, Yoshikawa M, Fu A, Tokuyama T, et al. (1997) Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 112: 505–510.
11. Kadowaki T, Yamauchi T, Kubota N, Harz K, Ueki K, et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116: 1784–1792.
12. Otero M, Lago R, Gomez R, Lago F, Dieguez C, et al. (2006) Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis 65: 1198–1201.
13. Rovin BH, Song H, Hebert LA, Nadasy T, Nadasy G, et al. (2005) Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int 68: 1825–1833.
14. Nakashii K, Takeda Y, Tatemoto S, Iwasaki T, Tujino K, et al. (2011) Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. Am J Respir Crit Care Med 183: 1164–1175.
15. Tomoseda K, Yoshikawa M, Ishii T, Tamaki S, Fukuoka A, et al. (2007) Elevated circulating plasma adiponectin in underweight patients with COPD. Chest 132: 135–140.
16. Kirdar S, Serter M, Ceylan E, Sener AG, Kavak T, et al. (2009) Adiponectin as a biomarker of systemic inflammatory response in smoker patients with stable and exacerbation phases of chronic obstructive pulmonary disease. Scand J Clin Lab Invest 69: 219–224.
17. Chan KH, Yeung SC, Yao TJ, Ip MS, Cheung AH, et al. (2010) Elevated plasma adiponectin levels in patients with chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 14: 1193–1200.
18. Guo X, Saad MF, Langfeld CD, Williams AH, Cui J, et al. (2006) Genome-wide linkage of plasma adiponectin reveals a major locus on chromosome 3q

PLOS ONE | www.plosone.org
Polymorphisms of ADIPOQ and COPD

31. Miller M, Cho JY, Pham A, Ramsdell J, Broide DH (2009) Adiponectin and functional adiponectin receptor 1 are expressed by airway epithelial cells in chronic obstructive pulmonary disease. J Immunol 182: 684–691.

32. Kromidas G, Kostikas K, Papahedouros G, Koutoukeri A, Gourgiotidaki KI, et al. (2010) Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Respir Med 104: 40–46.

33. Brochu-Gaudreau K, Rehfeld C, Blouin R, Bordignon V, Murphy BD, et al. (2010) Adiponectin action from head to toe. Endocrine 37: 11–32.

34. Daniele A, De Rosa A, Nigro F, Scudiero O, Capasso M, et al. (2012) Adiponectin oligomerization state and adiponectin receptors airway expression in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 44: 563–569.

35. Won JG, Dolan LM, Deka R, Kazhish RD, Shenh Y, et al. (2006) Interactions between noncontiguous haplotypes in the adiponectin gene ACDC are associated with plasma adiponectin. Diabetes 55: 523–529.

36. Vasquez F, Helbecque N, Dina C, Lobbers S, Delannoy V, et al. (2002) Single-nucleotide polymorphism haplotypes in the both proximal promoter and exons 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 11: 2867–2874.

37. Qi L, Li T, Ruan E, Zhang C, Rifai N, et al. (2005) The +276 polymorphism of the APM1 gene, plasma adiponectin concentration, and cardiovascular risk in diabetic men. Diabetes 54: 1607–1610.

38. Yoon H, Li Y, Man SF, Tashkin D, Wise RA, et al. (2012) The complex relationship of serum adiponectin to COPD outcomes. Chest 142: 1311–2173.

39. Miller M, Pham A, Cho JY, Rosenthal P, Broide DH (2010) Adiponectin-deficient mice are protected against tobacco-induced inflammation and increased emphysema. Am J Physiol Lung Cell Mol Physiol 299: L834–842.

40. Menzaghi C, Ercolino T, Salvemini L, Coco A, Kim SH, et al. (2004) Multigenic loci with minor effect contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 11: 2607–2614.

41. Morris RW, Kaplan NL (2002) On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol 19: 170–174.

42. Lee SH, Sull JW, Lee JE, Shin C, Park J, et al. (2010) Adiponectin concentration: a genome-wide association study. Am J Hum Genet 87: 545–552.

43. Cole JW, Stine OC, Liu X, Pratap A, Cheng Y, et al. (2012) Rare variants in ischemic stroke: an exome pilot study. PLoS One 7: e35591.

44. Nelson MR, Wegmann D, Ehm MG, Kesner D, St Jean P, et al. (2012) An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 People. Science 337: 100–104.