Cryo-EM structure of a functional monomeric photosystem I from *Thermosynechococcus elongatus* reveals red chlorophyll cluster

O. Çoruh1,2, A. Frank3, H. Tanaka1, A. Kawamoto1, E. El-Moshnawy4, T. Kato5, K. Namba6,7,8, Christoph Gerle1, M.M. Nowaczyk3 & G. Kurisu1,2

1Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
2Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
3Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
4Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kaf Al Sheikh, Egypt.
5Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
6Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
7RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, Suita, Osaka, Japan.
8JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan.

A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from *Thermosynechococcus elongatus* was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from *Thermosynechococcus elongatus* BP-1 as determined by single particle cryo-EM using the CRYO ARM 200 (JEOL). Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.

Figure 1. Single particle cryo-EM structure of cyanobacterial monomeric PSI revealing regions of disorder (labeled in red) induced by the monomerization of its trimeric form.

[1] Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Moshnawy E, Kato T, Namba K, Gerle C, Nowaczyk MM, Kurisu G. (2021). *Communications Biology* **4**, 1-16.

[2] Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N. (2001). *Nature* **411**, 6840.

[3] Rögnér, M., Mühlenhoff, U., Boekema, E. J. & Witt, H. T. (1990). *Biophys. Biochem. Acta Bioenerg.* **1015**, 415-424.

[4] Pålsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP, Schloeder E. (1998). *Biophys. J.* **74**, 2611-2622.