Conundrum of re-positive COVID-19 cases: A systematic review of case reports and case series

Arun Kumar Yadav, S. Ghosh, Sudhir Dubey

Article history:
Received 23 February 2021
Accepted 31 May 2021

Article Info
Article history:
Received 23 February 2021
Accepted 31 May 2021

Keywords:
COVID-19
Re-positives
Reinfection
Systematic review

Abstract
Background: The systematic review was conducted to summarize and synthesize evidence from all available case series and case reports published on re-positive COVID-19 cases.

Methods: The systematic review was registered with Prospero (CRD42020210446). PRISMA guidelines were followed for conducting the systematic review. Inclusion criteria for studies included case reports and case series which have documented cases of positive reverse transcriptase polymerase chain reaction (RT-PCR) after a period of clinical improvement or a negative RT-PCR report. Reviews, opinions, and animal studies were excluded. Methodological quality was assessed using the modified Murad scale.

Results: A total of 30 case reports/case series were included in the study, wherein a total of 219 cases were included. In re-positive cases, the age range varied from 10 months to 91 years. The pooled proportion of positive cases after follow-up using random-effects was 12% (95% confidence interval [CI]: 09%–15%). Among the re-positives, a total of 57 cases (26%) had comorbidities. A total of 51 (23.3%) and 17 (7.8%) re-positive cases had been treated with antivirals and corticosteroids, respectively. Only a few studies have confirmed the presence of antibodies after the first episode. Studies that included contact tracing of re-positives did not find any positive cases among close contacts of re-positive cases.

Conclusion: The systematic review found that reinfection is a possibility within 123 days of a negative RT-PCR test in a small number of cases of COVID-19. This has wider ramifications in framing clinical, preventive, and public health policy guidelines.

© 2021 Director General, Armed Forces Medical Services. Published by Elsevier, a division of RELX India Pvt. Ltd. All rights reserved.

Introduction
Clusters of atypical pneumonia cases were reported from Wuhan city, China, in December 2019 in the Hubei province. The agent was identified as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and the disease was named as COVID-19. World Health Organization declared it as Public Health Emergency of International Concern on 30 January 2020 and subsequently as a pandemic on 11 March 2020.

Although scientific knowledge of the novel SARS-CoV-2 in the context of characteristics, transmission dynamics,
pathophysiology, and clinical spectrum of disease manifestations has considerably increased over the past one year, knowledge gaps continue to persist in the natural history of the disease. The immune response to the infection (humoral versus cellular immunity, the persistence of acquired immunity, and natural immunity to the disease) are still plagued with uncertainty.

Case reports and case series have documented COVID-19 cases with reverse transcriptase polymerase chain reaction (RT-PCR)–positive test reports at two different time frames following a symptom-free period and/or RT-PCR–negative test. These cases may include re-positives, reactivated, and reinfection cases. It is unknown whether these cases share common characteristics or features that may help identify re-positive cases before discharge. The systematic review of the case reports and case series of the re-positives may help in better understanding of the natural history of the disease. Hence, a systematic review to summarize and synthesize evidence from all the published case series and case reports was conducted.

Materials and methods

The present systematic review was registered with Prospero with registration number CRD42020210446. We followed PRISMA guidelines for conducting the systematic review. A detailed literature search was carried out until 12 November 2020 for studies with reported cases of COVID-19 after a symptom-free interval. The databases that were searched included Medline through Pubmed and Cochrane databases. The key terms used were COVID-19, severe acute respiratory syndrome corona virus, relapse, re-activation, re-positive, and re-infection. The detailed search for Pubmed is given in Supplementary Table 1. Hand searches of the references of articles were also carried out. Observational studies, including case reports and case series, which had reported COVID-19 cases positive for RT-PCR on different occasions following a symptom-free interval and/or negative RT-PCR test were considered for the systematic review. Studies published in English language only were considered for the systematic review. Inclusion criteria for studies included case reports and case series that have documented positive RT-PCR cases after a period of clinical improvement or after a negative RT-PCR report. Review, opinions, and animal studies were excluded. Case reports which described clinical presentation or manifestations of COVID-19 cases were also excluded from the studies if they did not specify the positive molecular test after a symptom-free period or negative RT-PCR test.

Case definition

For this systematic review, the words relapse, re-activation, and re-positives were used interchangeably to include anyone who had become RT-PCR positive again after a symptom-free interval or negative RT-PCR test. Reinfection was restricted to only those studies where genomic characterization of the virus at two different time frames following a negative RT-PCR test proved fresh infection. The term “Recurrence” was used for encompassing both reinfection and re-positive/relapse/reactivation.

A data extraction form was developed, and data were extracted by two authors independently. The data items consisted of age and sex of the patients, clinical comorbidities, date of initial positive RT-PCR test, date of negative RT-PCR test based on which the patient was declared as cured, and date of positive RT-PCR test in recovered individuals who reported with new onset of symptoms suggestive of COVID-19 reinfection after a disease-free interval. Data on serology (if performed) and the clinical outcome of patients were also collated. If there was a mismatch in data extraction by the two authors, the same was resolved through discussion with a senior epidemiologist.

Methodological quality was assessed using the existing Murad scale.4 The scale consists of eight items that converge into four domains: selection, ascertainment, causality, and reporting. Two items pertaining to adverse drug events (dose–response effect and challenge and rechallenge phenomenon) were not considered relevant. The data were extracted for remaining six items by two independent authors, and in case of mismatch, consensus was made in consultation with a senior epidemiologist. Narrative synthesis of the results was carried out. Random-effects model was used for the pooling of results. The description of variable was carried out as mean and standard deviation for continuous variables and proportion for categorical variables. 95% confidence interval (95% CI) was calculated. The statistical analysis was carried out using StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.

Results

The selection for the study is shown as PRISMA Chart in Fig. 1. A total of 30 case reports/case series with 219 cases were included in the study. The patients’ details and characteristics in the case series and case reports are shown in Table 1.5–33 A study carried out in China among children with a median age of age of 5.7 years which studied recurrence in 14 children22 and another Chinese study among 10 elderly subjects which did not mention the age and gender of the participants26 were also included in the study. The pooled mean age of 195 cases was 44.3 ± 19.2 years. A total of 111 (50.68%) of 195 were women. The age range of the recurrence cases varied from 10 months to 91 years of age.

Molecular test for COVID-19 among discharged patients had been performed on sputum (lower respiratory tract), nasopharyngeal and anal swab. The details are shown in Table 1.

The majority of the cases (197, 89.9%) had mild to moderate clinical presentation. The clinical severity at initial presentation was not specified for 10 cases. Only 12 cases (5.5%; 95% CI: 2.8%–9.4%) had severe disease manifestation at initial presentation. A total of 64 (29.2%) reported cases were symptomatic during the second episode with the majority of them having less severe disease manifestation compared with the first episode. One hundred fifty (68.5%) cases were asymptomatic, and the status of five was unknown.

A total of 57 cases (26%) among the re-positives cases had comorbidities. A total of 51 and 17 re-positive cases had received
antivirals and corticosteroids, respectively. Time interval between discharge/preceding a RT-PCR-negative report and a positive molecular test report ranged from 03 days to 123 days.

Eight studies have mentioned the proportion of cases that became re-positives after a negative RT-PCR test during follow-up period. The summary of proportions and their pooled ratio is given in Fig. 2. The pooled proportion using random-effects was 12% (95% CI: 09%–15%). All studies had a follow-up period in the range of 4–17 days except one which had a follow-up period of 14–46 days.26

Only a few studies confirmed the presence of antibodies after the first episode of clinical illness (Table 1). Even after the development of antibodies, studies had reported re-positivity (Table 1). A few studies had conducted contact tracing of re-positives. The studies did not find any positive cases among high risk contact with re-positives (Table 1). Mortality was reported in seven re-positive cases. The age range of these cases ranges from 73 to 91 years. All of them had multiple comorbidities.

Only a few studies had looked into the genetic analysis of the SARS-COV-2 to confirm reinfection.30–35 These studies had found reinfection to occur even after a period of 123 days after the last RT-PCR negative test.

The quality of studies was assessed by using the modified Murad et al scale as shown in Fig. 3. In most of the studies, selection methods of COVID-19 cases were not clear; in addition, there were no precautions taken for ruling out false positives or rule out an alternate pathogen, which could produce similar signs and symptoms.

Korea Centers for Disease Control and Prevention reported 141 cases positive by RT-PCR after they recovered from COVID-19.34 However, the probable reason given was relapse or inconsistent tests. The details were not available on the site.

Discussion

The systematic review was carried out for all case reports and case series to identify common characteristics and evidence available for re-positive cases. Although during review of available literature, we found evidence of re-positives after symptom free and negative RT-PCR test, yet it is difficult to ascertain whether it was due to continuous shedding of the virus, relapse, or reinfection by the virus. Only six studies that have carried out the genetic analysis of the COVID-19 virus in...
S no	Study	Age and sex	Country	Symptomatic	Comorbidity	Clinical severity	First COVID 19 (PCR)	Test Done	Serological test done after first episode	RT PCR negative after first episode	Symptomatic again after period of weeks	Date of Second COVID 19 Test done	Outcome	
1	Batisse et al.	19, F	France	Yes	7 Comorbidity	Mild	D2	RT-PCRa	Available	NM	Yes	D2	26	3 Dead
2	Lafai et al.	84, F	France	Yes	Yes	Severe	26 March	PCR	Yes**	No	Yes	26 days	RT PCRa	Death
3	Enrico et al.	69, F	Italy	Yes	Yes	Severe	24 March	RT-PCR	Yes IgG Positive	Yes (two)	Yes	32 days	RT PCR	Alive
4	Ye et al.	30, M	China	Yes	No	Mild	NM	NM	NM	NM	Yes	4–17 days	RT PCRa	Alive
5	Ravioli et al.	81, F	Switzerland	Yes	Yes	Moderate	09 March	RT-PCRa	NM	Yes	Yes	21	RT-PCRa	Died
6	Loconsole et al.	48, M	Italy	Yes	No	Severe	17 March	RT-PCR	Yes	Yes	Yes	30	RT PCR	Alive
7	Jiang et al.	35 F	China	Yes	No	Mild	30 January	RT-PCRa	No	Yes	Yes	9 days	RT-PCRa	Re-hosp
2		56 F	Yes	Yes	Mild	30 January	No	Yes	Yes	No	14 days		Alive	
3		F	Yes	No	Mild	03 February	No	Yes	Yes	Yes	8 days		Alive	
4		F	Yes	No	Mild	03 February	No	Yes	Yes	No	7 days		Alive	
5		F	Yes	Yes	Mild	05 February	No	Yes	Yes	No	9 days		Alive	
6		F	Yes	No	Mild	06 February	No	Yes	Yes	No	5 days		Alive	
No.	Gender	Age	Country	Comorbidities	Symptoms	Date of Onset	Test Method	Date of Test	Result	Test Method	Date of Test	Result		
-----	--------	-----	---------	---------------	----------	--------------	-------------	--------------	--------	-------------	--------------	--------		
1	M	14M	China	No	Mild	01 February	RT-PCR	No	Yes	No	7	Alive		
2	M	13M	China	No	Moderate	01 February	RT-PCR	No	Yes	No	11	Alive		
3	F	0.8F	China	Yes	No	02 February	RT-PCR	No	Yes	No	9	Alive		
4	M	35M	China	Yes	No	31 January	RT-PCR	No	Yes	No	9	Alive		
5	M	35M	China	No	No	27 January	RT-PCR	No	Yes	No	8	Alive		
6	M	33M	China	No	No	31 January	RT-PCR	No	Yes	No	5	Alive		
7	M	26M	China	Yes	No	26 January	RT-PCR	No	yes	No	11	Alive		
8	F	29F	Korea	Yes	No	03 March	RT-PCR	No	Yes	Yes	14	Alive		
9	M	35M	China	Yes	No	30 January	RT-PCR	Yes	Yes	Yes	15	Alive		
10	M	38M	China	Yes	No	02 February	RT-PCR	Yes	Yes	Yes	9	Alive		
11	F	34F	China	No	No	31 January	RT-PCR	No	Yes	No	5	Alive		
12	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
13	F	34F	China	No	No	31 January	RT-PCR	No	Yes	No	5	Alive		
14	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
15	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
16	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
17	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
18	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
19	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
20	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
21	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
22	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
23	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
24	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
25	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
26	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
27	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
28	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
29	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
30	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
31	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
32	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
33	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		
34	F	34F	China	No	No	27 January	RT-PCR	No	Yes	No	5	Alive		

(continued on next page)
S no	Study	Age and sex	Country	Symptomatic	Comorbidity	Clinical severity	First COVID 19 (PCR)	Test Done	Serological test done after first episode	RT PCR negative after first episode	Symptomatic again after period of weeks	Date of Second COVID 19 Test done	Test done	Outcome
13	Cao et al.\(^{18}\)	54F China	Yes	No	Severe	NM	RT-PCR\(^{a}\)	NM	Yes	No	12	RT-PCR\(^{a}\)	Alive	
2	72F	Yes	No	Moderate	NM	NM	Yes	No	14	Alive				
3	60F	Yes	No	Moderate	NM	NM	Yes	No	09	Alive				
4	65F	Yes	Yes	Moderate	NM	NM	Yes	No	12	Alive				
5	58M	Yes	No	Moderate	NM	NM	Yes	No	16	Alive				
6	64M	Yes	No	Severe	NM	NM	Yes	No	29	Alive				
7	36F	Yes	No	Moderate	NM	NM	Yes	No	06	Alive				
8	26M	No	No	Moderate	NM	NM	Yes	No	06	Alive				
14	Deng et al.\(^{19}\)	Age - 54.8 years, F - 36 China	NM	24 (39.3%)	Severe-3 (4.9%)	NM	RT-PCR\(^{a}\)	Not done	Yes	38-No	0 (7–13)	36-RTPCR 17- AS, 8-sputum	Alive (All)	
15	Peng et al.\(^{20}\)	67M China	Yes	NM	Mild	24 January	PCR	NM	Yes	No	4	RT-PCR	Alive	
2	- M	Yes	NM	Mild	24 January	PCR	NM	Yes	No	6	RT-PCR	Alive		
3	- F	Yes	NM	Mild	27 January	PCR	NM	Yes	No	3	RT-PCR	Alive		
4	- M	Yes	NM	Mild	28 January	PCR	NM	Yes	No	7	RT-PCR	Alive		
5	38F	Yes	NM	Mild	24 January	PCR	NM	Yes	No	6	AS	Alive		
6	29M	Yes	NM	Mild	29 January	PCR	NM	Yes	No	6	AS	Alive		
7	21F	Yes	NM	Mild	31 January	PCR	NM	Yes	No	5	RT-PCR	Alive		
16	Wu et al.\(^{21}\)	>70 China	NM	Yes	NM	01 February	PCR	NM	Yes	No	3	RT-PCR	Alive	
2	>70	NM	Yes	NM	02 February’	NM	NM	Yes	No	5	RT-PCR/AS	Alive		
3	NM	NM	NM	02February	NM	NM	Yes	No	6	AS	Alive			
4	NM	NM	NM	23 January	NM	NM	No	25	RT-PCR	Alive				
5	NM	NM	NM	27 January	NM	NM	No	16	RT-PCR	Alive				
6	NM	NM	NM	30 January	NM	NM	No	9	RT-PCR	Alive				
7	NM	NM	NM	29 January	NM	NM	No	22	AS	Alive				
8	NM	NM	NM	28 January	NM	NM	No	23	AS	Alive				
9	NM	NM	NM	07 February	NM	NM	No	11	AS	Alive				
10	NM	NM	NM	07 February	NM	NM	No	07	AS	Alive				
17	Zhou et al.\(^{22}\)	40M China	Yes	Yes	Severe	23 January	RT-PCR	Yes	Yes	Yes	5 days after discharge	RT-PCR	Alive	
No.	Author	Sex	Co-morbidity	Age	Country	Cohort	Comorbidities	Onset of Disease	Test	Result	Outcome	Notes		
-----	--------	-----	--------------	-----	---------	--------	--------------	-----------------	------	--------	---------	-------		
18	Zhao et al.	Female	No	Median (2.9–7.3)	China	5	Yes/No	Mild (All)	5.7 (Median) 2.9–7.3	Range	F-4	50M	Alive (All)	
19	Li et al.	Female	No	Yes	Mild	D13	RT-PCR	Yes on D 40. IgM and IgG positive	Yes	No	14	RT-PCR	Alive	
20	Chen et al.	Male	No	29	China	Yes	No	Mild	01 February	RT-PCR	Alive			
				49	China	Yes	No	Mild	02 February	RT-PCR	Alive			
				12	China	Yes	No	Mild	05 February	RT-PCR	Alive			
				38	China	Yes	No	Mild	30 January	RT-PCR	Alive			
						Yes	No	Moderate-9	3-Co-morbidities	Alive				
						Yes	No	Severe-1	3-Co-morbidities	Alive				
						Yes	No	Mild-1	3-Co-morbidities	Alive				
						Yes	No	Alive	3-Co-morbidities	Alive				
21	Hu et al.	Male	Yes	Median age 27, range 4–58 years	China	1	Yes/No	Mild	27	Range	0.7	Alive (All)		
				1/11	China	1/11	Yes/No	Moderate-27	3-Co-morbidities	Alive (All)				
				1/27	China	1/27	Yes/No	Yes/No	Moderate-27	Alive (All)				
22	Jianghong An et al.	Male	Yes	20 (5–64)	China	1	Yes/No	Mild	14 days	RT-PCR, Anal swab	Yes no difference between the two groups	Alive		
				7	China	7	Yes/No	Yes/No	Moderate-27	Alive				
				38	China	38	Yes/No	Yes/No	Severe-1	Alive				
				15	China	15	Yes/No	Yes/No	Alive	Alive				
23	Chen et al.	Female	Yes	Yes	Mild	24 January	RT-PCR	Yes	No	03 days after last negative test	RT-PCR	Alive		
24	Duggan et al.	Male	Yes	Yes	Severe	Early April	RT-PCR	No	Yes	10 days post discharge	RT-PCR	Alive		
25	Ye-min et al.	Male	Yes	Yes	Mild	22 January	RT-PCR	Yes	No	3 days after discharge	RT-PCR	Alive		
26	To et al.	Male	Yes	Yes	Mild	29 March	RT-PCR	Yes	No	123 days after discharge	RT-PCR	Alive		
27	Tillet et al.	Male	Yes	Yes	Mild	18 April	RT-PCR	Yes	No	10 days after last negative test	RT-PCR	Alive		

(continued on next page)
Re-positives found genomic diversity, thus establishing reinfection.

Recurrence has been observed across all ages, from 10 months to 91 years of age. Mortality after reinfection is seen in the older age group with multiple comorbidities which is consistent with primary infection. Innate and acquired immunity of the individual may also influence recurrences. Hence, immune-senescence of the old age and immunosuppressant drugs may affect recurrence. However, the majority (92.2%) of the COVID-19 re-positive cases had not been given corticosteroids for management during the primary episode of illness. Many re-positive cases were also given antivirals. However, in absence of control group, it is difficult to draw any inference for association of corticosteroids or antivirals. Second, the denominator in case reports or case series is difficult to ascertain, hence rate can also be not calculated. The effect of other immunomodulators and antiviral drugs on recurrence may be studied in a well-designed study with control group.

Pooled proportion of studies that have specified the proportion of COVID-19 re-positives was carried out. Approximately 12% of discharged COVID-19 cases after the first episode of infection were detected positive during subsequent molecular testing. The reasons may be related to Intermittent shedding of virus, the persistence of the virus, testing technique including sampling, or host characteristics. There was no evidence of secondary cases arising from these re-positives. Study carried out on nine patients of COVID-19 cases noted prolonged viral shedding in sputum. However, there is a little residual risk of infectivity with viral load less than 100,000 viral RNA copies per ml of sputum. This viral shedding in sputum needs to be further explored for infectivity of virus during recurrences as infectiousness of recurrence cases would have major implication on public health policy.

A notable area of scientific interest is the role of seroconversion among re-positives. Although animal studies suggest that antibody formation is protective against reinfection, yet in present systematic review we found that re-positives can occur even after seroconversion. The relation between seroconversion and re-positives further need to be explored.

Different anatomical sampling sites may also have some effect on viral detection. In many cases, even if the sample from the nasopharyngeal is negative, the samples from sputum (lower respiratory tract) and anal swab have been positive. There is evidence that the virus may be shed longer from the extrapharyngeal sites. There are reports that virus shedding from asymptomatic patients may continue from extrapulmonary sites in various bodily fluids (saliva, tears, faeces, throat, or nasal discharge) for a longer duration of time. Its role in reinfection is still not known.

Antibody-dependent enhancement is a known phenomenon in viral disease and responsible for increased severity of subsequent infections. However, in this systematic review, we found that clinical manifestations in majority of re-positive cases were milder than the initial infection. This may be because most of the cases were not true reinfections but persistence of the same infection or due to intermittent virus shedding. Even in the six studies with documented genomic analysis, clinical manifestations in the reinfection
cases were mild to moderate. A model for reinfection has concluded that the rate of reinfection in the recovered population would decline to zero over time as the virus is cleared clinically from the system of the recovered cases.41

Risk of bias

Although there are no set guidelines for estimating the risk of bias in case reports and case series, the authors feel that initial RT-PCR positive, subsequent RT-PCR negative, serological testing, and RT-PCR positive after symptom-free period are essential for drawing conclusion about relapse or reinfection. Few case reports did not mention a negative RT-PCR test after the first COVID-19 infection.5,9

One of the limitations of our study is that the literature search has been restricted to only English language and to Medline and Cochrane database. Hence, we may have missed articles published in Chinese and other non-English languages.

Since these patients of recurrence may represent a special subset of COVID-19 cases, the findings may not be generalizable to all COVID-19 cases. More research is needed to delineate the factors responsible for recurrence in recovered cases.
As the pandemic progresses, more conclusive evidence in this context would be gathered. Nevertheless, there is a strong case for proper documentation of all the cases to further refute or confirm the findings.

Disclosure of competing interest

The authors have none to declare.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mjaf.2021.05.025.

REFERENCES

1. She J, Jiang J, Ye L, Hu L, Bai C, Song Y. Novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clin Transl Med. 2019;2020:9. https://doi.org/10.1186/s40169-020-00271-z.
2. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-19)-and-the-virus-that-causes-it [accessed August 17, 2020].
3. Coronavirus (COVID-19) events as they happen. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen [accessed August 17, 2020].
4. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ Evid-Based Med. 2018;23:60–63. https://doi.org/10.1136/bmjebm-2017-110853.
5. Batisse D, Benche N, Botelho-Nevers E, et al. Recurrence or relapse of COVID-19 in older patients: a description of three cases. J Am Geriatr Soc. n.d.;n/a. doi: 10.1111/jgs.16728.
6. Lafai L., Célarier T., Goethals L., et al. Recurrence or relapse of COVID-19 in older patients: a description of three cases. J Am Geriatr Soc. n.d.;n/a. doi: 10.1111/jgs.16728.
7. Bentivegna E, Sentimentale A, Luciani M, Speranza ML, Gueritore L, Martelletti P. New IgM seroconversion and positive RT-PCR test after exposure to the virus in recovered COVID-19 patient. J Med Virol. n.d.;n/a. doi: 10.1002/jmv.26160.
8. Ye G, Pan Z, Pan Y, et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation. J Infect. 2020;80:e14–e17. https://doi.org/10.1016/j.jinf.2020.03.001.
9. Ravioli S, Ochsner H, Lindner G. Reactivation of COVID-19 pneumonia: a report of two cases. J Infect. 2020;81:e72–e73. https://doi.org/10.1016/j.jinf.2020.05.008.
10. Loconsole D, Passerini F, Palmieri VO, et al. Recurrence of COVID-19 after recovery: a case report from Italy. Infection. 2020. https://doi.org/10.1007/s10603-020-01444-1.
11. Jiang M, Li Y, Han M, Wang Z, Zhang Y, Du X. Recurrent PCR positivity after hospital discharge of people with coronavirus disease 2019 (COVID-19). J Infect. 2020;81:147–178. https://doi.org/10.1016/j.jinf.2020.03.024.
12. Chang S-C, Wang J-T, Huang L-M, et al. Longitudinal analysis of severe acute respiratory syndrome (SARS) coronavirus-specific antibody in SARS patients. Clin Diagn Lab Immunol. 2005;12:1455–1457. https://doi.org/10.1128/CDLI.12.12.1455-1457.2005.
13. Yoo SY, Lee Y, Lee GH, Kim DH. Reactivation of SARS-CoV-2 after recovery. Pediatr Int. 2020;62:879–881. https://doi.org/10.1111/ped.14312.
14. Liu F, Cai Z, Huang J, et al. Positive SARS-CoV-2 RNA recurs repeatedly in a case recovered from COVID-19: dynamic results from 108 days of follow-up. Pathog Dis. 2020. https://doi.org/10.1093/femspd/ffaa031.
15. Yuan B, Liu H-Q, Yang Z-R, et al. Recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 patients during medical isolation observation. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-68782-w.
16. Lan L, Xu D, Ye G, et al. Positive RT-PCR test results in patients recovered from COVID-19. J Am Med Assoc. 2020;323:1502–1503. https://doi.org/10.1001/jama.2020.2783.
17. Cao H, Ruan L, Liu J, Liao W. The clinical characteristic of eight patients of COVID-19 with positive RT-PCR test after discharge. J Med Virol. 2020. https://doi.org/10.1002/jmv.26017.
18. Deng W, Guang T, Yang M, et al. Positive results for patients with COVID-19 discharged form hospital in Chongqing, China. BMC Infect Dis. 2020;20. https://doi.org/10.1186/s12879-020-05151-y.
19. Peng J, Wang M, Zhang G, Lu E. Seven discharged patients turning positive again for SARS-CoV-2 on quantitative RT-PCR. Am J Infect Contr. 2020;48:725–726. https://doi.org/10.1016/j.ajic.2020.03.017.
20. Wu J, Liu X, Liu J, et al. Coronavirus disease 2019 test results after clinical recovery and hospital discharge among patients in China. JAMA Netw Open. 2020;3. https://doi.org/10.1001/jamanetworkopen.2020.9759. e209759..
21. Zhou W., Xu X., Chang Z., et al. The dynamic changes of serum IgM and IgG against SARS-CoV-2 in patients with COVID-19. J Med Virol. n.d.;n/a. doi: 10.1002/jmv.26353.
22. Zhao W, Wang Y, Tang Y, et al. Characteristics of children with reactivation of SARS-CoV-2 infection after hospital discharge. Clin Pediatr (Philad). 2020;59:929–932. https://doi.org/10.1177/0009922820928057.
23. Li J, Long X, Fang X, et al. SARS-CoV-2 positivity in a discharged COVID-19 patient: a case report. Clin Microbiol Infect. 2020;26:1115–1117. https://doi.org/10.1016/j.cmi.2020.04.032.
24. Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: a case report. Int J Infect Dis. 2020;93:297–299. https://doi.org/10.1016/j.ijid.2020.03.003.
25. Hu R, Jiang Z, Gao H, et al. Recurrent positive Reverse transcriptase–polymerase Chain reaction results for coronavirus disease 2019 in patients discharged from a hospital in China. JAMA Netw Open. 2020;3. https://doi.org/10.1001/jamanetworkopen.2020.10475. e2010475.–e2010475.
26. An J, Liao X, Xiao T, et al. Clinical characteristics of recovered COVID-19 patients with re-detectable positive RNA test. Ann Transl Med. 2020;8:1084. https://doi.org/10.21037/atm-20-5602.
27. Duggan NM, Ludy SM, Shannon BC, Reinsier AT, Wilcox SR. A case report of possible novel coronavirus 2019 reinfecion. Am J Emerg Med. 2020. https://doi.org/10.1016/j.ajem.2020.06.079.
28. Positive Result of Sars-Cov-2 in Sputum from a Cured Patient with COVID-19 | Elsevier Enhanced Reader. doi: 10.1016/j.jtmaid.2020.101619..
29. To KK-W, Hung IF-N, Ip JD, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. https://doi.org/10.1093/cid/ciaa1275.
30. Tillett RL, Sevinsky JR, Hartley PD, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30764-7.

31. Van Elslande J, Vermeersch P, Vandervoort K, et al. Symptomatic SARS-CoV-2 reinfection by a phylogenetically distinct strain. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. https://doi.org/10.1093/cid/ciaa1330.

32. Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, et al. COVID-19 Re-infection by a Phylogenetically Distinct SARS-CoV-2 Variant, First Confirmed Event in South America. Rochester, NY: Social Science Research Network; 2020.

33. Gupta V, Bhoyar RC, Jain A, et al. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. https://doi.org/10.1093/cid/ciaa1451.

34. www.ETHealthworld.com. Why are some S.Koreans who recovered from the coronavirus testing positive again ? ET HealthWorld. ETHealthworld.Com. Available at: https://health.economictimes.indiatimes.com/news/industry/why-are-s-koreans-who-recovered-from-the-coronavirus-testing-positive-again/-75178047 [accessed August 15, 2020].

35. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010;10:514–526. https://doi.org/10.1038/nri2802.

36. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-19. Nature. 2020;581:465–469. https://doi.org/10.1038/s41586-020-2196-x.

37. Bao L, Deng W, Gao H, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. BioRxiv. 2020. https://doi.org/10.1101/2020.03.13.990226.

38. Kalkeri R, Goebel S, Sharma GD. SARS-CoV-2 shedding from asymptomatic patients: contribution of potential extrapulmonary tissue reservoirs. Am J Trop Med Hyg. 2020;103:18–21. https://doi.org/10.4269/ajtmh.20-0279.

39. Du W, Yu J, Liu X, Chen H, Lin L, Li Q. Persistence of SARS-CoV-2 virus RNA in feces: a case series of children. J Infect Public Health. 2020;13:926–931. https://doi.org/10.1016/j.jiph.2020.05.025.

40. Kulkarni R. Antibody-dependent enhancement of viral infections. Dyn Immune Act Viral Dis. 2019;9:9–41. https://doi.org/10.1007/978-981-15-1045-8_2.

41. Okhuese AV. Estimation of the probability of reinfection with COVID-19 by the susceptible-exposed-infectious-removed-undetectable-susceptible model. JMIR Public Health Surveill. 2020;6. https://doi.org/10.2196/19097.