Machine learning on large-scale proteomics data identifies tissue- and cell type-specific proteins
Tine Claeys¹,², Maxime Menu¹,², Robbin Bouwmeester¹,², Kris Gevaert¹,², Lennart Martens¹,²,*
¹ VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
² Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
* To whom correspondence should be addressed; lennart.martens@ugent.be
Supplementary data

Supplementary table 1. Overview of all used public proteomics datasets and their PRIDE accession number.

Supplementary table 2. Tsv file containing result of manual annotation effort on a raw file level.

Supplementary table 3. Overview of used algorithms and their hyperparameters.

Supplementary figure 1. Structure of the protein expression atlas built in MySQL.

Supplementary table 4. Structure of the MySQL database with the primary keys and size of each table.

Supplementary table 5. Overview of all tissues and cell types in the database.

Supplementary figure 2. Distribution of the raw files and projects per tissue. The most represented class is blood with 4,105 raw files and the least represented classes are epididymis, parathyroid gland, trachea, anus, uterus and seminal vesicle with only two raw files.

Supplementary table 6. Overview of the proteins, raw files, tissues and cell types for the six different atlases that were built using the MySQL database.

Supplementary figure 3. Heatmap visualising classifier performance on tissue fPexAt data

Supplementary figure 4. Heatmap visualising classifier performance on cell-type fPexAt data

Supplementary figure 5. Heatmap visualising classifier performance on the tissue PexAt data.

Supplementary figure 6. Heatmap visualising classifier performance on the cell-type PexAt data

Supplementary table 7. The ten most important proteins for brain classification in the tissue classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary table 8. The ten most important proteins for brain classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary table 9. The ten most important proteins for substantia nigra classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary table 10. The ten most important proteins for frontal cortex classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary figure 7. t-SNE visualisation of NK-cells, heart and testis, coloured according to the assays.

Supplementary figure 8. Boxplots visualising the distribution of Kendall correlation coefficient comparison between ProteomicsDB and the Human Protein Atlas data (antibody atlas, unnormalized RNA atlas (tpm), normalized RNA atlas (nTPM) and protein-coding RNA atlas (ptpm) on the level of the organ (top) and the protein (bottom).
PXD_accession	PXD000072	PXD006517	PXD006776	PXD006863	PXD009258	PXD009393	PXD009261
	PXD003534	PXD009118	PXD008205	PXD009396	PXD010286	PXD008568	PXD010154
	PXD001674	PXD006805	PXD001985	PXD002437	PXD009606	PXD009348	PXD020192
	PXD006833	PXD001325	PXD002211	PXD009438	PXD010821	PXD009917	PXD004682
	PXD004626	PXD000533	PXD007745	PXD009112	PXD009916	PXD007975	PXD009737
	PXD009310	PXD006576	PXD006570	PXD007123	PXD009893	PXD011214	PXD009870
	PXD006578	PXD008311	PXD002990	PXD00529	PXD005436	PXD009813	PXD007959
	PXD002212	PXD001326	PXD006589	PXD009196	PXD011492	PXD009061	PXD008992
	PXD007744	PXD000004	PXD010690	PXD011309	PXD009784	PXD00561	PXD015239
	PXD006847	PXD003215	PXD003075	PXD008252	PXD003533	PXD015523	
	PXD010093	PXD005733	PXD009021	PXD002014	PXD008130	PXD017213	
	PXD000228	PXD008440	PXD010150	PXD000440	PXD009880	PXD004928	
	PXD002620	PXD010271	PXD006571	PXD009709	PXD006607	PXD012971	
	PXD007592	PXD005477	PXD010708	PXD008443	PXD011000	PXD012970	
	PXD005755	PXD001524	PXD004355	PXD010284	PXD011175	PXD011178	
	PXD011204	PXD009343	PXD005055	PXD010260	PXD007740	PXD012960	
	PXD004683	PXD007846	PXD004540	PXD007080	PXD001425	PXD017261	
	PXD003045	PXD006176	PXD007258	PXD005323	PXD007081	PXD016865	
	PXD005220	PXD009645	PXD008465	PXD009144	PXD005709	PXD010508	
	PXD006522	PXD006465	PXD002883	PXD009781	PXD004443	PXD016261	
	PXD009029	PXD008832	PXD009754	PXD009440	PXD010469	PXD005970	
	PXD006268	PXD001324	PXD008795	PXD006911	PXD006743	PXD017268	
	PXD009996	PXD008723	PXD006572	PXD009254	PXD011609	PXD018678	
	PXD006065	PXD011183	PXD008934	PXD009056	PXD008354	PXD017976	
	PXD006897	PXD008996	PXD009755	PXD007122	PXD009300	PXD016437	
	PXD009624	PXD009350	PXD009646	PXD011241	PXD009716	PXD016555	
	PXD004625	PXD007624	PXD010698	PXD007705	PXD007873	PXD017804	
	PXD009752	PXD006265	PXD010294	PXD007894	PXD005693	PXD018682	
	PXD004624	PXD008029	PXD008682	PXD002133	PXD007231	PXD013649	

Supplementary Table S1. Overview of all used public proteomics datasets and their PRIDE accession number.

Supplementary table 2.tsv

Supplementary Table S2. Tsv file containg result of manual annotation effort on a raw file level.
Classifier name	Code
RandomForest unbalanced	RandomForestClassifier(random_state=42, n_jobs=-1)
RandomForest dict balanced	RandomForestClassifier(random_state=42, class_weight=dict_train_label_weights, n_jobs=-1)
RandomForest balanced	RandomForestClassifier(random_state=42, class_weight='balanced', n_jobs=-1)
RandomForest balanced subsample	RandomForestClassifier(random_state=42, class_weight='balanced_subsample', n_jobs=-1)
Balanced RandomForest	BalancedRandomForestClassifier(random_state=42, n_jobs=-1)
Balanced RandomForest balanced	BalancedRandomForestClassifier(random_state=42, class_weight='balanced', n_jobs=-1)
Balanced Random Forest balanced subsample	BalancedRandomForestClassifier(random_state=42, class_weight='balanced_subsample', n_jobs=-1)
SVM unbalanced	SVC(random_state=42)
SVM	SVC(random_state=42, class_weight=dict_train_label_weights)
XGBClassifier unbalanced	XGBClassifier(random_state=42, objective='multi:softprob', eval_metric='mlogloss', num_class=num_classes, n_jobs=-1)
XGBClassifier dict balanced	XGBClassifier(random_state=42, objective='multi:softprob', eval_metric='mlogloss', num_class=num_classes, weight=train_weights, n_jobs=-1)
LogisticRegression unbalanced	LogisticRegression(random_state=42, multi_class='multinomial', n_jobs=-1)
LogisticRegression dict balanced	LogisticRegression(random_state=42, multi_class='multinomial', class_weight=dict_train_label_weights, n_jobs=-1)
LogisticRegression balanced	LogisticRegression(random_state=42, multi_class='multinomial', class_weight='balanced', n_jobs=-1)

Supplementary Table S3. Overview of used algorithms and their hyperparameters.
Supplementary Figure S1. Structure of the protein expression atlas built in MySQL.
Table

Table	Primary keys	Rows
Assay	Assay_id, project_id	15,146
Modifications	Mod_id	1,505
Peptide	Peptide_id	262,329
Peptide_modifications	Peptide_id	8,020,452
Peptide_to_assay	Assay_id, peptide_id	14,259,946
Peptide_to_protein	Peptide_id, uniprot_id	263,466
Project	Project_id, PXD_accession	183
Protein	Uniprot_id	15,108
Tissue	Tissue_id	156
Tissue_to_assay	Assay_id, tissue_id	15,145

Supplementary Table S4. Structure of the MySQL database with the primary keys and size of each table.

tissue_name	cell_type	tissue_name	cell_type	tissue_name	cell_type
Adipose tissue	Adipose tissue	Eye	Anterior chamber	Small intestine	Small intestine
Adrenal gland	Adrenal gland	Eye	Sclera	Smooth muscle	Smooth muscle
Anus	Anus	Eye	Eye	Spleen	Spleen
Appendix	Appendix	Eye	Vitreous humor	Sputum	Sputum
Ascites	Ascites	Follicular fluid	Follicular fluid	Stomach	Stomach
B-cells	B-cells	Gall bladder	Gall bladder	Synovial tissue	Synovial tissue
Blood	Blood plasma	Heart	Heart	T-cells	CD4 T-cells
Blood	Blood	hMSC	Umbilical cord	T-cells	CD8 T-cell
Blood	Blood serum	hMSC	Adipose tissue	T-cells	T-cells
Blood	Blood platelet	Kidney	Kidney	Testis	Testis
Blood	Blood serum	Kidney	Kidney (glomeruli)	Thyroid	Thyroid
Blood	Blood platelets	Kidney	Kidney (single tubules)	Tonsil	Tonsil
Blood	Erythrocyte	Kidney	Kidney (podocytes)	Tooth	Tooth enamel
Blood	Neutrophil	Kidney	Kidney (primary urinary cells)	Trachea	Trachea
Blood	Reticulocyte	Liver	Liver	Trophoblast	Trophoblast
Blood	Blood plasma (EDTA)	Lung	Lung	Umbilical cord	Umbilical vein
Blood	Blood plasma (with heparin added)	Lymph node	Lymph node	Ureter	Ureter
Bone	Bone	Microvessel	Microvessel	Urinary bladder	Urinary bladder
Bone marrow	Bone marrow	Monocytes	Monocytes	Urine	Urine
Brain	Brain	Nasal polyps	Nasal polyps	Uterine cervix	Hela
Brain	Substantia Nigra	NK-cells	NK-cells	Uterine cervix	Uterine cervix
Brain	Temporal Lobe	Ovary	Ovary	Uterus	Uterus
Brain	Prefrontal cortex	Oviduct	Oviduct		
Brain	Frontal cortex	Pancreas	Pancreas		
Brain	Spinal cord	Pancreas	Pancreatic islet		
Brain	Temporal lobe	Parathyroid gland	Parathyroid gland		
Brain	Parietal	Parotid gland	Parotid gland		
Brain	Occipital cortex	Pituitary gland	Pituitary gland		
Brain	Cerebellum	Placenta	Placenta		
Brain	Medulla oblongata	Prostate	Prostate		
Supplementary Table S5. Overview of all tissues and cell types in the database.

Tissue Type	Complete Atlas	Complete Atlas Healthy Tissue	Complete Atlas Diseased Tissue	Filtered Atlas	Filtered Atlas Healthy Tissue	Filtered Atlas Diseased Tissue
Proteins	11,891	11,809	11,538	5,110	5,021	3,371
Raw Files	8,279	3,191	5,088	8,246	3,173	5,073
Tissues	65	58	32	65	58	32
Cell Types	97	81	45	97	81	45

Supplementary Figure S2. Distribution of the raw files and projects per tissue. The most represented class is blood with 4,105 raw files and the least represented classes are epididymis, parathyroid gland, trachea, anus, uterus and seminal vesicle with only two raw files.
Supplementary Table S6. Overview of the proteins, raw files, tissues and cell types for the six different atlases that were built using the MySQL database.

Model	Accuracy	F1_macro	precision_macro	recall_macro	F1_weighted	precision_weighted	recall_weighted
SVM unbalanced	0.63	0.707	0.757	0.707	0.099	0.027	0.83
SVM	0.942	0.918	0.933	0.947	0.942	0.947	0.942
Randomforest unbalanced	0.903	0.976	0.902	0.975	0.903	0.905	0.903
RandomForest dict balanced	0.983	0.976	0.902	0.975	0.982	0.984	0.983
RandomForest balanced	0.992	0.975	0.981	0.975	0.992	0.984	0.982
Random Forest balanced subsample	0.939	0.935	0.948	0.943	0.945	0.967	0.939
Balanced Randomforest	0.917	0.919	0.935	0.928	0.915	0.953	0.917
Balanced RandomForest balanced subsample	0.916	0.917	0.933	0.926	0.924	0.951	0.916
Balanced RandomForest balanced subsample	0.955	0.946	0.954	0.955	0.955	0.972	0.955
XGBClassifier unbalanced	0.968	0.942	0.953	0.941	0.966	0.969	0.968
XGBClassifier dict balanced	0.968	0.942	0.953	0.941	0.966	0.969	0.968
XGBClassifier balanced	0.996	0.985	0.993	0.985	0.993	0.985	0.994
LogisticRegression unbalanced	0.248	0.117	0.354	0.131	0.178	0.232	0.248
LogisticRegression dict balanced	0.879	0.85	0.845	0.859	0.901	0.960	0.879
LogisticRegression balanced	0.604	0.522	0.604	0.536	0.692	0.707	0.604

Supplementary Figure S3. Heatmap visualising classifier performance on tissue fPexAt data

Metrics	Accuracy	F1_macro	precision_macro	recall_macro	F1_weighted	precision_weighted	recall_weighted
SVM unbalanced	0.906	0.651	0.697	0.653	0.778	0.798	0.806
SVM	0.939	0.9	0.933	0.901	0.916	0.942	0.939
Randomforest unbalanced	0.903	0.97	0.973	0.971	0.982	0.985	0.983
RandomForest dict balanced	0.904	0.972	0.975	0.971	0.983	0.984	0.984
RandomForest balanced	0.994	0.973	0.977	0.973	0.993	0.985	0.994
Random Forest balanced subsample	0.826	0.818	0.852	0.835	0.84	0.901	0.826
Balanced Randomforest	0.734	0.702	0.786	0.738	0.730	0.822	0.734
Balanced RandomForest balanced subsample	0.728	0.716	0.771	0.731	0.712	0.82	0.728
Balanced RandomForest balanced subsample	0.791	0.787	0.823	0.799	0.837	0.879	0.791
XGBClassifier unbalanced	0.962	0.919	0.928	0.921	0.966	0.963	0.962
XGBClassifier dict balanced	0.962	0.919	0.928	0.921	0.966	0.963	0.962
XGBClassifier balanced	0.952	0.919	0.928	0.921	0.956	0.963	0.956
LogisticRegression unbalanced	0.225	0.096	0.125	0.109	0.152	0.185	0.225
LogisticRegression dict balanced	0.873	0.751	0.806	0.815	0.878	0.907	0.873
LogisticRegression balanced	0.559	0.497	0.585	0.553	0.56	0.706	0.559

Supplementary Figure S4. Heatmap visualising classifier performance on cell-type fPexAt data
Supplementary Figure S5. Heatmap visualising classifier performance on the tissue PexAt data.

Method	Accuracy	F1_macro	precision_macro	recall_macro	F1_weighted	precision_weighted	recall_weighted
SVM unbalanced	0.892	0.538	0.606	0.517	0.665	0.674	0.692
SVM	0.873	0.34	0.864	0.833	0.871	0.887	0.873
RandomForest unbalanced	0.931	0.897	0.921	0.895	0.925	0.934	0.913
RandomForest dist balanced	0.935	0.916	0.933	0.902	0.93	0.939	0.935
RandomForest balanced	0.933	0.895	0.921	0.891	0.929	0.937	0.933
Random Forest balanced subsample	0.771	0.729	0.742	0.773	0.777	0.821	0.771
Balanced RandomForest	0.65	0.63	0.646	0.701	0.643	0.722	0.65
Balanced RandomForest balanced	0.65	0.624	0.643	0.702	0.638	0.719	0.65
Balanced RandomForest balanced subsample	0.608	0.761	0.777	0.802	0.807	0.810	0.608
XGBClassifier unbalanced	0.939	0.901	0.916	0.902	0.916	0.942	0.939
XGBClassifier dist balanced	0.939	0.901	0.916	0.902	0.916	0.942	0.939
Logistic Regression unbalanced	0.217	0.059	0.075	0.079	0.111	0.142	0.127
Logistic Regression dist balanced	0.7	0.64	0.661	0.694	0.596	0.746	0.7
Logistic/Regression balanced	0.491	0.6	0.444	0.669	0.468	0.537	0.491

Supplementary Figure S6. Heatmap visualising classifier performance on the cell-type PexAt data.

Method	Accuracy	F1_macro	precision_macro	recall_macro	F1_weighted	precision_weighted	recall_weighted
SVM unbalanced	0.67	0.332	0.553	0.537	0.932	0.469	0.67
SVM	0.68	0.424	0.865	0.845	0.878	0.896	0.88
RandomForest unbalanced	0.927	0.865	0.883	0.864	0.919	0.926	0.927
RandomForest dist balanced	0.93	0.873	0.885	0.87	0.933	0.929	0.93
RandomForest balanced	0.93	0.873	0.885	0.872	0.922	0.925	0.93
Random Forest balanced subsample	0.434	0.398	0.427	0.502	0.427	0.538	0.434
Balanced RandomForest	0.36	0.333	0.36	0.454	0.338	0.398	0.36
Balanced RandomForest balanced	0.365	0.337	0.367	0.457	0.336	0.42	0.365
Balanced RandomForest balanced subsample	0.375	0.353	0.382	0.485	0.362	0.470	0.375
XGBClassifier unbalanced	0.926	0.869	0.883	0.872	0.921	0.928	0.926
XGBClassifier dist balanced	0.926	0.865	0.883	0.872	0.921	0.928	0.926
Logistic Regression unbalanced	0.176	0.0572	0.0708	0.0694	0.112	0.152	0.176
Logistic Regression dist balanced	0.69	0.62	0.64	0.676	0.697	0.748	0.698
Logistic/Regression balanced	0.469	0.394	0.436	0.417	0.457	0.54	0.469
Brain - tissue classifier

uniprot ID	importance	standard deviation	mean abundance	protein name	Brain enrichment
Q16352	0.0139	0.0651	0.0161	Alpha-internexin	yes, all sources
P80723	0.0116	0.0409	0.0218	Brain acid soluble protein 1	yes, all sources
P62328	0.0093	0.0239	0.0520	Thymosin beta-4	yes, Bgee (Uniprot and HPA: in blood)
Q12860	0.0085	0.0717	0.0094	Contactin-1	yes, all sources
Q96GW7	0.0082	0.0610	0.0020	Brevican core protein	yes, all sources
P63313	0.0080	0.0212	0.0000	Thymosin beta-10	yes, Bgee (Uniprot and HPA: in blood)
P07196	0.0079	0.0577	0.0073	Neurofilament light polypeptide (NF-L)	yes, all sources
P35612	0.0072	0.0608	0.0006	Beta-adducin	yes, all sources
O94811	0.0072	0.0601	0.0041	Tubulin polymerization-promoting protein	yes, all sources
Q7L0J3	0.0072	0.0595	0.0026	Synaptic vesicle glycoprotein 2A	yes, all sources

Supplementary Table S7. The ten most important proteins for brain classification in the tissue classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary Table S8. The ten most important proteins for brain classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Brain - cell classifier

uniprot ID	importance	standard deviation	mean abundance	protein name	Brain enrichment
Q16352	0.037583	0.12124	0.016075	Alpha-internexin	yes, all sources
P07196	0.026597	0.123581	0.007261	Neurofilament light polypeptide	yes, all sources
P78357	0.022235	0.111044	0.00183	Contactin-associated protein 1	yes, all sources
Q16720	0.018581	0.0992	0.000913	Plasma membrane calcium-transporting ATPase 3	yes, all sources
P80723	0.018152	0.052642	0.021842	Brain acid soluble protein 1	yes, all sources
P17600	0.017851	0.092861	0.004649	Synapsin-1	yes, all sources
P60201	0.016725	0.096025	0.050548	Myelin proteolipid protein	yes, all sources
Q12860	0.016487	0.100304	0.009490	Contactin-1	yes, all sources
P05129	0.016079	0.084747	0.000902	Protein kinase C gamma type	yes, all sources
Q92752	0.015677	0.092039	0.008958	Tenascin-R	yes, all sources

Substantia nigra - cell classifier

uniprot ID	importance	standard deviation	mean abundance	protein name	Brain enrichment
Q8N6N7	0.022	0.146683	0.002032	Acyl-CoA-binding domain-containing protein 7	Yes, HPA and Bgee
Supplementary Table S9. The ten most important proteins for substantia nigra classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Uniprot ID	Importance	Standard Deviation	Mean Abundance	Protein Name	Brain Enrichment
P42684	0.030019	0.170584419	0.0000245	Tyrosine-protein kinase ABL2	No
Q9UNA1	0.02	0.14	0.0000522	Rho GTPase-activating protein 26	No
Q6ICH7	0.018	0.132951119	0.0000757	Aspartate beta-hydroxylase domain-containing protein 2	Yes, all sources
Q5TCQ9	0.01604	0.125472028	0.0000176	Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 3	No
Q9NVE7	0.016	0.125475097	0.0000359	4'-phosphopantetheine phosphatase	No
P10915	0.015987	0.125355759	0.0004557	Hyaluronan and proteoglycan link protein 1	Yes
O96007	0.014043	0.117489241	0.0001154	Molybdopterin synthase catalytic subunit	Yes, all sources
Q9NZ56	0.014025	0.117488168	0.0001073	Formin-2	Yes, all sources
Q8IXS8	0.014021	0.117488866	0.0000485	Protein FAM126B	Yes, Bgee
Q96AB3	0.014	0.117490425	0.0000407	Isochorismatase domain-containing protein 2	No
Supplementary Table S10. The ten most important proteins for frontal cortex classification in the cell type classifier with their mean importance, the standard deviation over all decision trees. The column ‘Brain enrichment’ contains a surface-level cross-check with three other sources: UniProtKB, the Human Protein Atlas (HPA) and the Bgee gene expression database.

Supplementary figure 7. t-SNE visualisation of NK-cells, heart and testis, coloured according to the assays.
Supplementary figure 8. Boxplots visualising the distribution of Kendall correlation coefficient comparison between ProteomicsDB and the Human Protein Atlas data (antibody atlas, unnormalised RNA atlas (tpm), normalized RNA atlas (nTPM) and protein-coding RNA atlas (ptpm) on the level of the organ (top) and the protein (bottom).