Synthesis of bismuth doped yttria stabilized zirconia electrolyte and study of ionic conductivity

Xia Guo, Xiaobing Zhao, Jinrong Liu, Weiyan He

School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Contact email:* heweiyan@imut.edu.cn

ABSTRACT

\(x\% \text{mol} \text{Bi}^{3+} - \text{doped} \text{ yttria-stabilized} \text{ zirconia} \text{ with} \ 4\% \text{molYO}_{1.5} \ (x=0-5, \text{BiYSZ}) \) are prepared via lamellar liquid crystal template method. The influence of different doping amount of \(\text{Bi}^{3+} \) on crystal form, morphology, the ionic conductivity are investigated in detail. In addition, densification time of BiYSZ are determined. X-ray diffraction (XRD), Raman spectrum, Scanning Electron Microscope (SEM) results show that BiYSZ powder with stable tetragonal phase and spherical structure is nanometer level. Moreover, by using the Ac impedance spectroscopy to analyse conductivity of solid electrolytes, we find that \(\text{Bi}^{3+} - \text{doped} \text{ yttria-stabilized} \text{ zirconia} \text{ with} \ 4\% \text{molYO}_{1.5} \) improve the ionic conductivity. Comparing all the compositions, 3mol%Bi\(^{3+}\) doped yttria stabilized zirconia with 4%molY\(^{3+}\) gives the highest ionic conductivity of 7.41x10\(^{-5}\) S/cm\(^{-1}\) at 500\(^{\circ}\)C, and sintering temperatures of BiYSZ reduce around 100\(^{\circ}\)C than \(\text{Y}_{0.04}\text{Zr}_{0.96}\text{O}_{2} (4\text{YSZ}), \) ionic conductivity increases one order of magnitude.

Keywords: BiYSZ; Doped; Crystal; Ionic conductivity

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.
Funding: This work was financially supported by Natural Science Foundation of Inner Mongolia (2017MS0215) and Scientific research projects of the Inner Mongolian Higher Educational System (NJZY7101).

1. Introduction

Solid oxide fuel cells (SOFCs) have attracted attention as an ecofriendly and highly efficient power generation system\(^1\). Electrolyte is the core component of SOFC. The typical oxygen ion solid electrolyte has \(\text{ZrO}_2 \)-based, \(\text{CeO}_2 \)-based, \(\text{Bi}_2\text{O}_3 \)-based, \(\text{ABO}_3 \) perovskite type and so on. Yttria-stabilized zirconia (YSZ) is generally used as a solid electrolyte because of its high oxygen ion conductivity and chemical stability at high temperatures (over 800 °C)\(^2, 3\). However, ionic conductivity and sintering temperature of the sample need to be improved in order to popularization and application of solid oxide fuel cell at intermediate temperatures (400-650°C, IT-SOFC)\(^2, 4\).

Powder preparation, solid forming and high temperature sintering are three important stages of electrolyte preparation process. Therefore, there are many factors affecting the ionic conductivity. Recent reports have suggested that co-doping strategy is an effective method for improving electrical conductivity of solid electrolytes\(^5, 6\). At present, most studies have doped commercial yttria-stabilized zirconia to change its electrical properties by regulating the crystal phase, morphology and particle size distribution. In addition, many groups have prepared different levels powder by different techniques to further decrease the ohmic resistance of solid electrolyte, for example, chemical coprecipitation method\(^7\), sol–gel methods\(^8\) and so on. Rudzani
sigwadi[9] prepared zirconia with relatively small particle size and small distance between lattice fringes (0.2928 nm and 0.2824 nm) by precipitation method, and the effect of calcination temperature on the crystallinity and particle size of zirconia particles was investigated. In this paper, lamellar liquid crystal template method is first adopted, which has the important advantage of mild reaction conditions, and enables synthesis of nanopowder at low temperature.

Bismuth oxides stabilized with lanthanide dopants in a fluorite structure (\(\delta\)-Bi\(_2\)O\(_3\)) are known for superior ionic conductivity[10, 11], but they reduce to metallic Bi under reducing atmosphere and undergo a transformation to a low ionic conductive phase at the operation temperatures[12, 13]. So bismuth oxides cannot be utilized as stand-alone electrolytes[14]. Gil and others have proved the addition of Bi\(_2\)O\(_3\) can reduce the sintering temperature of gadolinium-doped ceria (GDC) electrolytes by about 250-300\(^\circ\)C[15]. In another report, densification of the GDC electrolyte was achieved at a low sintering temperature of 1000-1200\(^\circ\)C by adding Bi\(_2\)O\(_3\) as dopant[16, 17]. Hirano[18] reported that doping with 1mol\% Bi\(_2\)O\(_3\) decreased the sintering temperature of scandia-stabilized zirconia ceramics by 300\(^\circ\)C, while allowing its electrical conductivity at 1000\(^\circ\)C and 800\(^\circ\)C to reach 0.33 and 0.12 S/cm, respectively. As a sintering aid, Bi\(_2\)O\(_3\) is also a very good oxygen ion conductor. Therefore, adding Bi\(^{3+}\) to zirconia oxide may not only improve ionic conductivity, but also decrease sintering temperature.

Based on the above analysis, bismuth oxide doped yttrium oxide stabilized zirconia are synthetised by lamellar liquid crystal template method in this
work, which aims to regulate the powder structure by template with SDS/C_{10}H_{22}O/H_{2}O, further improve its electrical conductivity by doping ZrO_{2}-based solid electrolyte.

2 Experimental

2.1 Synthesis of powder and electrolyte

As raw materials with Bi(NO_{3})_{3}•5H_{2}O, (Y(NO_{3})_{3}•6H_{2}O, C_{10}H_{22}O, H_{2}O, ZrOCl_{2}•8H_{2}O, C_{12}H_{25}NaSO_{4} (SDS), composite powder of Y_{x}Zr_{1-x}O_{2} and Bi_{x}Y_{0.04}Zr_{0.96-x}O_{2} are prepared via lamellar liquid crystal template method. Bi(NO_{3})_{3}•5H_{2}O, (Y(NO_{3})_{3}•6H_{2}O, C_{10}H_{22}O, ZrOCl_{2}•8H_{2}O are purchased from Aladdin Biochemical Technology Co., Ltd. The manufacturer of C_{12}H_{25}NaSO_{4} (SDS) and NH_{3}•H_{2}O (25%-28%) are Tianjin Yong sheng Fine Chemical Co., Ltd. H_{2}O is from Inner Mongolia University of Technology.

First, lamellar liquid crystal template is made of SDS, C_{10}H_{22}O and H_{2}O prepared at mass ratio of 15:10:75. The stock solution is prepared by dissolving stoichiometric Bi(NO_{3})_{3}•5H_{2}O in nitric acid, and (Y(NO_{3})_{3}•6H_{2}O and ZrOCl_{2}•8H_{2}O in water, making concentration of Zr^{4+} is 1mol/L in the total solution. Then pouring into the SDS/C_{10}H_{22}O/H_{2}O ternary system. The resulting solution stand 12h at 25°C in thermostat waterbath. Precipitation is carried out by adding 5mol/L NH_{3}•H_{2}O to the solution after 12h. The pH value is controlled in 8–9 at the end. Then, mix solution in centrifuge after 12h at 9000 r/min speed with alcohol and water alternately clean 7min, until foam is eliminated. Next, the precursor of Bi^{3+}-doped yttria stabilized zirconia
was dried in an vacuum drying oven at 80 °C for 12h. Finally, the dried sample undergo calcined(700°C, 2h), pressed, glued, sintered and silver-coated to synthesize solid electrolytes. \(\text{Y}_x\text{Zr}_{1-x}\text{O}_2 \) and \(x\text{Bi}^{3+} \) doped yttria stabilized zirconia with 4%mol\(\text{Y}^{3+} \)(\(x=1-5 \)%mol) ceramic disks are sintered in air atmosphere for 2h at 1200°C and 1100°C respectively. In addition, diameter and thickness of ceramic disks are 12mm and 1mm, respectively.

2.2. Characterization of powder and electrolyte

X-ray powder diffraction (XRD) analysis mainly analyzes the phase structures, crystal form and cell parameters of the samples. The data are collected using the Rigaku SmartLab-9kW (Japan). Test conditions are as follows: \(\text{Cu K}\alpha \) radiation, \(2\theta = 20-80 \). XRD can calculate grain size by Scherre formula,

\[
D = \frac{K\lambda}{B\cos\theta} \tag{1}
\]

Where \(D \) is grain size, \(B \) is Half-peak width of diffraction peak, \(\theta \) is Bragg diffraction angle, \(K \) and \(\lambda \) is a constant of 0.89 and 0.154056 respectively.

Phase structures is further confirmed via using InVia Microscope Raman. The relative density of the sintered disk is determined via Archimedes’ method using GP-120C Precision Ceramic Porosity Volume Density Test. Morphology of powders are observed by scanning electron microscope(SEM) with Hitachi, Su8220(Japan).

The electrical properties of the samples are measured using the AC impedance spectroscopy, which adopt a high temperature dielectric temperature spectrometer HDMS-1000 of Wuhan Bailibo Technology Co., Ltd, test conditions are as follows: \(T=300°C-500°C, 50°C \) intervals, the frequency range is 20 Hz-1MHz. The
Impedance data is gained from intersection of AC impedance spectroscopy with x-axis, the conductivity is calculated from following equation\cite{19}: \[
\sigma = L/AR
\]
(2)

Where \(L\) is the disk thickness, \(A\) is its superficial area, \(R\) is the resistance calculated from the impedance spectra. The activation energy \((E_a)\) of the conductivity is determined by the Arrhenius law:
\[
\sigma = \sigma_0 \exp(-E_a/kT)
\]
(3)

Where \(\sigma_0\) is the pre-exponential factor, \(T\) is testing temperature (K), \(k\) is the Boltzmann constant, \(E_a\) is activation energy.

3. Results and discussions

3.1. Phase structure characterization

Fig. 1 shows the XRD and Raman patterns of different amount (0-5 mol\%) of Bi\(^{3+}\)-doped yttria stabilized zirconia nanopowders calcined at 973 K for 2 h under air atmosphere. All diffraction peaks of these patterns match with cubic and tetragonal structure (PDF#50-1089). Because the diffraction peaks of tetragonal and cubic phases have similar diffraction patterns, it is difficult to distinguish the cubic phase or the tetragonal phase accurately by XRD. However, Raman spectra can further determine crystal phase of the sample. As can be seen from the diagram, the diffraction peaks of synthesized powder correspond to the tetragonal phase\cite{20}. The XRD and Raman results show that the phase structures of the sample is tetragonal phase, in other words, the addition of Bi (NO\(_3\))\(_3\) also stabilizes zirconia in the tetragonal phase.
Fig. 2 investigates the XRD diffraction pattern of 3% mol Bi\(^{3+}\)-doped 4YSZ (3Bi4YSZ) samples sintered at varying temperatures. Diffraction shows that the sample are monocline phase at 1050°C and 1150°C, however, still is tetragonal phase at 1100°C. Which may be it makes that yttrium distributes to the lattice gap, further forms lattice association to changing of sintering temperature in fixed doping amount of bismuth nitrate.

3.2 XPS analysis

XPS surveys of ZrO\(_2\), 4YSZ, 3Bi4YSZ samples are shown in Fig. 3. The presence of Y3p, Y3d, Bi4d in 4YSZ and 3Bi4YSZ compared with ZrO\(_2\), which further indicate that Y, Bi have been incorporated into the zirconia lattice. In addition, Table 1 varies in lattice constant of BiYSZ, which represents the dopant enters the lattice of zirconia.

3.3 Microstructure analysis

Scanning electron microscope images of BiYSZ nanopowders in 200k multiple are shown in Fig. 4 a-f, which show the addition of Bi(NO\(_3\))\(_3\) don’t affect the morphology, size and dispersion of the samples. With the increase of the content of bismuth nitrate, BiYSZ powder is still monodisperse spherical structure with a diameter less than 15nm. Table 2 shows particle size of BiYSZ obtained by different methods. A is
calculated by Scherre formula, B is gained by Jade6 software. The average particle sizes both tend to decrease first and then increase, and the total particle size are controled within 15nm.

Fig.4

Table 2

Fig. 5 gives SEM images of 4YSZ (a=1200 °C) and 3Bi4YSZ (b=1100 °C) after sintering. As can be seen from Fig. 6(a), density of 4YSZ sample is still lacking. On the one hand, the equipment may limit the increase of temperature, on the other hand, multiple of the scanning equipment also may limit its clarity. While the sintering density decreases, and the grain and grain boundary melts, which leads to the spherical shape of the grain in Fig. 6(b). The resulting densities both are shown in Table 3.

Fig. 5

3.4 Electrical conductivity

The corresponding equivalent circuit is shown in Fig. 6. The typical AC impedance spectra of ionic conductor consist of two semicircles and a diagonal line. High and low frequency semicircles correspond to grain impedance and grain boundary impedance respectively, and diagonal lines correspond to resistance and capacitance effect of electrode. Grain and grain boundary impedance of the sample can be obtained by the intersection of semicircle and spectrum x axis.

At the same time, Fig. 6 gives the AC impedance spectra or Nyquist plot of BiYSZ at 500°C. 3Bi4YSZ is shown in the insert of Fig. 6. The lines in Fig. 6 are the experiment data and the different symbols with different colors are the fitting results.
relaxation properties of different materials and the relatively high measurement temperature, the high-frequency semicircle of 4YSZ sample represents its grain boundary resistance, and the grain resistance is calculated via the horizontal intercept of the high frequency curve[21]. In the 4YSZ sample, the total resistance mainly comes from the grain resistance. While in BiYSZ sample, with the increase of doping amount, the grain boundary semicircle become gradually intact, and the electrode line begins to appear, until the doping amount increases to 4mol%, the electrode line disappears. On the whole, grain resistance, grain boundary resistance and total resistance decrease rapidly first, then increase rapidly, finally decrease rapidly, and resistance is minimized at x=0.03, that is $R_g=950\Omega, R_g+R_{gb}=1420\Omega$. Comparing show that the doping amount is 3mol% is better, and the conductivity is 7.41×10^{-5} by formula (2).

Fig. 6

Fig. 7 shows Arrhenius plots for the total ion conductivity of BiYSZ. The total ion conductivity varies in a straight line with the change of temperature in the detection temperature range (300-500°C). The sample activation energy is calculated by slope and formula (3), minimum activation energy is 0.72eV (x=0.03). Grain conductivity, grain boundary conductivity, total ionic conductivity, sintering temperature and activation energy of 4YSZ and 3Bi4YSZ are listed in Table 3. The reason for the result may be the melting point of Bi$_2$O$_3$ is lower than ZrO$_2$, while melting point of is, so the sintering temperature is too high to cause the phenomenon of over-sintering, the grain boundary is spherical, and then the density is
However, due to the good conductivity of bismuth nitrate itself, its conductivity has increased. In 3Bi4YSZ sample exhibits the highest conductivity of 7.41×10^{-5} S/cm at 500°C, while the conductivity of 4YSZ sintered at 1200°C is about 3.26×10^{-6} S/cm at 500°C, demonstrating that adding Bi(NO$_3$)$_3$ improves the conductivity to about one order of magnitude, and decreases of 100°C in sintering temperature.

Fig. 7

Table 3

Fig. 8 studies the effects of the sintering condition, found that 3Bi4YSZ sintered at 1100°C for 2.5h and 3h had a lower conductivity compared with 2h. Therefore, sintering time of 2h was determined.

Fig. 8

4. Conclusions

Spherical BiYSZ with tetragonal structure nano-powders are prepared via lamellar liquid crystal template method. Tetragonal ZrO$_2$ can be obtained via doping 4mol% of Y(NO$_3$)$_3$ and 0-5mol% of Bi(NO$_3$)$_3$ into its lattice. The addition of Bi(NO$_3$)$_3$ and the nanocrystallization of the powder BiYSZ increase the ionic conductivity of the electrolyte. It is confirmed that 3mol% Bi(NO$_3$)$_3$ doped yttria stabilized zirconia raise in ionic conductivity at 500°C and reduce sintering temperature.

Acknowledgments

Xia Guo: Data curation, Writing-original draft preparation. Xiaobing Zhao: Validation, Supervision. Weiyan He: Reviewing, Revising.
Refers

[1] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy [J]. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433-55.

[2] SHAO Z, ZHOU W, ZHU Z. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells [J]. Progress in Materials Science, 2012, 57(4): 804–74.

[3] PIROONLERKGUL P, LAOSIRIPOJANA N, ADESINA A A, et al. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal [J]. Chemical Engineering & Processing, 2009, 48(2): 672-82.

[4] HBAIEB K. Reducing sintering temperature of yttria stabilized zirconia through addition of lithium nitrate and alumina [J]. Ceramics International, 2012, 38(5): 4159-64.

[5] SINGH N K, SINGH P, KUMAR D, et al. Electrical conductivity of undoped, singly doped, and co-doped ceria [J]. Ionics, 2012, 18(s 1-2): 127-34.

[6] MAHESHWARI A, WIEMH?FER H D. Sr2+-Gd3+ co-doped CeO2: A cost-effective variant for IT-SOFC electrolytes [J]. Ceramics International, 2015, 41(7): 9122-30.

[7] LUO Q, CAI Q Z, LI X W, et al. Preparation and characterization of ZrO2/TiO2 composite photocatalytic film by micro-arc oxidation [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2945-50.

[8] FRUTH V, POPA M, BERGER D, et al. Deposition and characterisation of bismuth oxide thin films [J]. Journal of the European Ceramic Society, 2005, 25(12): 2171-4.

[9] A R S, A T M, B M D. The synthesis, characterization and electrochemical study of zirconia oxide nanoparticles for fuel cell application [J]. Physica B: Condensed Matter, 2020, 581(1).

[10] JIN S A, PERGOLESI D, CAMARATTA M A, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells [J]. Electrochemistry Communications, 2009, 11(7): 1504-7.

[11] MATER A M A. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(W03)y-(BiO1.5)1-x-y [J]. Acta Materialia, 2010, 58(2): 355-63.

[12] CHRISTENSEN M. Enhancement of the chemical stability in confined delta-Bi2O3 [J]. Nature Materials, 2015, 14(5): 500.

[13] SHUK P, WIEMH?FER H D, GUTH U, et al. Oxide ion conducting solid electrolytes based on Bi2O3 [J]. Solid State Ionics, 1996, 89(3-4): 179-96.

[14] TAKAHASHI T, ESAKA T, IWAHARA H. Conduction in Bi2O3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi2O3-Y2O3 electrolyte [J]. Journal of Applied Electrochemistry, 1977, 7(4): 299-302.

[15] GIL V, MOURE C, DUR N P, et al. Low-temperature densification and grain growth of Bi 2O 3-doped-ceria gadolinia ceramics [J]. Solid State Ionics Diffusion & Reactions, 2007, 178(5-6): 359-65.

[16] ZAGAYNOV I V, FEDOROV S V, KONOVALOV A A, et al. Perspective ceria-based solid solutions Gd x Bi 0.2-x Ce 0.8 O 2 [J]. Materials Letters, 2017, 203(sep.15): 9-12.

[17] FRATTINI D, HAM H C, HAN J H, et al. Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion [J]. Ceramics International, 2018,
[18] HIRANO M, ODA T, UKAI K, et al. Effect of Bi2O3 Additives in Sc Stabilized Zirconia Electrolyte on a Stability of Crystal Phase and Electrolyte Properties [J]. Solid State Ionics, 2003, 158(3): 215-23.
[19] CHITTIMADULA M, KASARAPU V, ALWIYAH N, et al. Effect of La 3+ and Pr 3+ co-doping on structural, thermal and electrical properties of ceria ceramics as solid electrolytes for IT-SOFC applications [J]. Current Applied Physics, 2018, 18(1134-42.
[20] LI S, KAMCHUNG T, NINGBEW W. Thermal stability of zirconia membranes [J]. Journal of Materials Science, 1999, 34(14): 3367-74.
[21] JESSE, P., ANGLE, et al. Parameters influencing thermal shock resistance and ionic conductivity of 8 mol% yttria-stabilized zirconia (8YSZ) with dispersed second phases of alumina or mullite [J]. Journal of the European Ceramic Society, 2014,
[22] 皮陈炳. ZrO_2 陶瓷的掺杂及其导电性研究 [D].

Captions

Fig.1 XRD and Raman patterns of BiYSZ nanopowders calcined at 973 K for 2h under air atmosphere.

Fig.2 XRD patterns of 3mol%Bi^{3+} doped 4YSZ nanopowders sintered at 1050℃、1100℃、1150℃

Fig.3 XPS survey of ZrO_2、4YSZ and 3Bi4YSZ

Fig.4 SEM images of xBi^{3+} doped yttria stabilized zirconia with 4mol%Y^{3+}

Fig.5 SEM images of 4YSZ(a=1200℃)and 3Bi4YSZ(b=1100℃) after sintering

Fig.6 Equivalent circuit diagram and the Ac impedance spectra measured at 500℃ in air atmosphere for BiYSZsintered at 1100℃(note:sintering temperature of x=0 is1200℃)

Fig.7 Arrhenius plots for the total ion conductivity of Bi_xY_{0.04}Zr_{0.96-x}O_2 with x=0.00-0.05

Fig.8The impedance spectra of Bi_{0.03}Y_{0.04}Zr_{0.93} in sinter time with 2h、2.5h、3h

Table1 The lattice constant of BiYSZ

Table2 Particle size of BiYSZ obtained by different methods
Table 1: The lattice constant of BiYSZ

Sample	a=b (nm)	c (nm)	sintering temperature (°C)
4YSZ	0.3608	0.5160	1200
1BiYSZ	0.3591	0.5222	1100
2BiYSZ	0.3591	0.5256	1100
3BiYSZ	0.3612	0.5192	1100
4BiYSZ	0.3603	0.5164	1100
5BiYSZ	0.3612	0.5262	1100

Table 2: Particle size of BiYSZ obtained by different methods

Sample	A (nm)	B (nm)
Y_{0.04}Zr_{0.96}O_{2}	12.86	10.4
Bi_{0.01}Y_{0.04}Zr_{0.95}O_{2}	11.94	8.9
Bi_{0.02}Y_{0.04}Zr_{0.94}O_{2}	10.45	8
Bi_{0.03}Y_{0.04}Zr_{0.93}O_{2}	10.44	9.5
Bi_{0.04}Y_{0.04}Zr_{0.92}O_{2}	12.45	10.3
Bi_{0.05}Y_{0.04}Zr_{0.91}O_{2}	13.96	11.6
Table 3: Grain and grain boundary conductivity, total ionic conductivity, sintering density and activation energy of $Y_{0.04}Zr_{0.93}O_2$ and $Bi_{0.03}Y_{0.04}Zr_{0.91}O_2$

Sample	Grain conductivity	Grain boundary conductivity	Total (S/cm) conductivity	Activation (eV)	Sintering density (%)
4YSZ	3.26×10^{-6}	--	3.26×10^{-6}	0.85	96
3BiYSZ	1.11×10^{-4}	2.24×10^{-4}	7.41×10^{-5}	0.72	65