Chicken Egg White—Advancing from Food to Skin Health Therapy: Optimization of Hydrolysis Condition and Identification of Tyrosinase Inhibitor Peptides

Pei-Gee Yap and Chee-Yuen Gan *

Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia; peggy-yap@hotmail.com
* Correspondence: cygan@usm.my; Tel.: +60-4653-4206

Received: 27 August 2020; Accepted: 14 September 2020; Published: 18 September 2020

Abstract: Active fragments (bioactive peptides) from the chicken egg white proteins were expected to exert tyrosinase inhibitory activities in which skin hyperpigmentation could be prevented. Egg white was hydrolyzed by trypsin, chymotrypsin and the combination of both enzymes. The enzyme treatments achieved >50% degree of hydrolysis (DH) at substrate-to-enzyme (S/E) ratio of 10–30 (w/w) and hydrolysis time of 2–5 h. A crossed D-optimal experimental design was then used to determine the optimal enzyme composition, S/E ratio and hydrolysis time in order to yield hydrolysates with strong monophenolase and diphenolase inhibitory activities. The optimized conditions 55% trypsin, 45% chymotrypsin, S/E 10:1 w/w and 2 h achieved 45.9% monophenolase activity inhibition whereas 100% trypsin, S/E 22.13:1 w/w and 3.18 h achieved 48.1% diphenolase activity inhibition. LC/MS and MS/MS analyses identified the peptide sequences and the subsequent screening had identified 7 peptides (ILELPFASGDLLML, GYSLGNWVCAAK, YFGYTGALRCLV, HIATNAVLFFGR, FMMFESQNKDLLFK, SGALHCLK and YFGYTGALR) as the potential inhibitor peptides. These peptides were able to bind to H85, H94, H259, H263, and H296 (hotspots for active residues) as well as F92, M280 and F292 (stabilizing residues) of tyrosinase based on structure-activity relationship analysis. These findings demonstrated the potential of egg white-derived bioactive peptides as skin health therapy.

Keywords: bioactive peptide; crossed D-optimal design; diphenolase inhibitory activity; egg white; monophenolase inhibitory activity; pigmentation; tyrosinase

1. Introduction

The excess melanin production and deposition in the melanocytes and keratinocytes cause hyperpigmentation, leading to uneven skin tones. Tyrosinase (E.C. 1.14.18.1) plays a key role in melanin synthesis (melanogenesis) by catalyzing the rate-limiting hydroxylation of \(\text{L-tirosine} \) to 3,4-dihydroxy-L-phenylalanine (L-DOPA) and the subsequent oxidation of L-DOPA to dopaquinone, via the monophenolase and diphenolase reactions, respectively [1]. The inhibition of tyrosinase using a nature-derived agent is hence of huge cosmeceutical demand, as some potent skin-lightening ingredients including hydroquinone and heavy metals have been ascribed with harmful side effects and banned for use in certain countries [2,3]. Since the discovery of a potential protein or peptide with tyrosinase inhibitory activity from lemon skin extract in 2006 [4], reports on peptide-based skin lightening agents has increased by leaps and bounds. The anti-pigmentation mechanisms of peptides include tyrosinase inhibition [5], copper chelation [6] and melanogenesis pathway regulation [7]. Peptide was also incorporated as an active ingredient in commercial skin lightening products such as

Foods 2020, 9, 1312; doi:10.3390/foods9091312 www.mdpi.com/journal/foods
β-White™ (contains oligopeptide-68) and Melanostatine™ 5 (contains nonapeptide-1) marketed by Lucas Meyer Cosmetics. The emergence of bioactive peptides as a new class of therapeutic agent is nonetheless endowed by their relatively small size, low toxicity, fast clearance and high specificity in inhibiting protein-ligand interactions [8].

Anti-pigmentation peptides have been discovered from various natural protein sources including rice bran [6,9] and marine microalgae [10]. Yet, there has been no relevant study on the anti-pigmentation effect of chicken egg white-derived peptides, although this readily available protein has been traditionally used as facial masks to boost skin health. It should be also noted that the active fragments are usually encrypted in the parent protein and required to be released in order to exhibit higher rate of the bioactivity. Enzymatic hydrolysis was therefore employed in this study to release the bioactive peptides from the egg white. In addition, the hydrolysis conditions such as the enzyme used, enzyme composition, substrate-to-enzyme (S/E) ratio and hydrolysis time in order to produce egg white hydrolysates that exhibit the highest monophenolase and diphenolase inhibitory activities should be optimized using D-optimal experimental design. The crossed D-optimal approach conjugates the mixture component (enzyme composition) and process factors (S/E ratio and hydrolysis time) in a single experimental design and generates a relatively smaller number of experimental runs, which has made it more viable in terms of cost and time, especially when each variable comes with multiple levels [11]. In fact, crossed D-optimal design had been successfully implemented to optimize different hydrolysis conditions for other purposes [12,13]. Therefore, this technique was used in this study.

Enzymes used in this study were trypsin and chymotrypsin due to their specific cleavage preferences, i.e., trypsin selectively cleaves at the C-terminal of arginine and lysine [14] whereas chymotrypsin predominantly cleaves at the C-terminal of the aromatic phenylalanine, leucine, methionine, tryptophan and tyrosine [15]. The peptides released may thus fulfil the characteristics of strong tyrosinase inhibitors such as the presence of an aromatic C-terminal residue tyrosine, tryptophan or phenylalanine [9,16] or one or more arginine in combination with phenylalanine, valine, alanine and leucine in the peptide sequence as delineated by Schurink, van Berkel, Wichers and Boeriu [17]. Therefore, the objectives of present study were to determine the optimum hydrolysis conditions of egg white using trypsin and/or chymotrypsin that yield the protein hydrolysates with tyrosinase inhibitory activities followed by peptide sequence identification as well as to investigate the structure-activity relationship between the identified inhibitor peptides and tyrosinase.

2. Materials and Methods

2.1. Chemicals

Egg white powder was purchased from a local market (Penang, Malaysia). Trypsin (EC 3.4.21.4, 10,000 U/mg) and α-chymotrypsin (EC 3.4.21.1, 40 U/mg) from bovine pancreas, tyrosinase (EC 1.14.18.1, 7164 U/mg) from Agaricus bisporus were purchased from Sigma-Aldrich. Other chemicals and reagents used were of analytical grade and purchased from Sigma-Aldrich unless otherwise stated.

2.2. Enzymatic Hydrolysis of Egg White Proteins

The enzymatic hydrolysis of egg white was conducted according to the protocol of Miguel, Recio, Gomez-Ruiz, Ramos and Lopez-Fandino [18] with modifications. Briefly, egg white powder was dissolved in 0.05 M sodium phosphate buffer (pH 7.8 or 8.0, depending on the digestive enzyme used) to 5 mg/mL and boiled at 95 °C for 30 min. Subsequently, designated enzyme treatments at various substrate-to-enzyme (S/E) ratios were added to the substrate solution and incubated for different durations at 37 °C with constant shaking of 300 rpm. The details of the experiment will be elaborated in Sections 2.2.1 and 2.2.2. The resultant hydrolysate was then boiled at 95 °C for 30 min to terminate the reaction and centrifuged at 4500× g for 15 min. The supernatant was collected and stored at −20 °C until further analysis. Heat-inactivated enzymes were used as the control treatment.
2.2.1. Single-Factor Experiment

The effects of enzyme composition, S/E ratio and hydrolysis time on the degree of hydrolysis (DH) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) protein band profiling of egg white hydrolysate were studied as preliminary work to investigate the hydrolysis condition required to produce sufficient peptides from egg white. Below are the details of the experiment:

The effect of enzyme composition was investigated based on the hydrolysis of egg white using designated enzyme treatments: 100% trypsin (T), 100% chymotrypsin (C), and 50% trypsin + 50% chymotrypsin (T+C). Phosphate buffer at pH 7.8 was used for T whereas pH 8.0 was used for C and T+C treatments. All these compositions were used for the investigations of the effects of S/E ratio and hydrolysis time. During the investigation of the effect of S/E ratio, the ratio of 10:1, 20:1, 30:1, 40:1 and 50:1 (w/w) were studied whereas the hydrolysis time was fixed at 3 h. On the other hand, 0.5, 1, 2, 3, 4 and 5 h were studied during the investigation of the effect of hydrolysis period and the S/E ratio fixed at 30:1 (w/w).

The DH of the hydrolysate was determined by measuring the soluble protein content in 10% trichloroacetic acid (TCA) (Fisher Chemicals™, Leicestershire, UK) according to the protocol of Baharuddin, Halim and Sarbon [19] with modifications. Briefly, the hydrolysate was dissolved in an equal volume of 20% TCA and incubated at room temperature for 30 min. The sample was then centrifuged at 3000 × g for 10 min. The pellet was suspended in 0.5 mL 0.1 M NaOH and subjected to Bradford assay to determine the amount of soluble protein in the hydrolysate. Briefly, 5 µL of the hydrolysate was added with 250 µL of Bradford reagent and incubated at room temperature for 10 min. The absorbance was then measured at 595 nm using a spectrophotometer (Spectramax M5, Molecular Devices, San Jose, CA, USA). Each measurement was autozeroed against a blank containing Bradford reagent and 0.1 M NaOH. The DH was calculated using the following equation:

\[
\text{Degree of hydrolysis (\%)} = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100
\]

where \(A_{\text{control}}\) denotes the absorbance of the system containing Bradford reagent, NaOH and undigested egg white powder; \(A_{\text{sample}}\) denotes the absorbance of the system containing Bradford reagent, NaOH and egg white hydrolysate.

To evaluate the protein profile after enzymatic hydrolysis, SDS-PAGE analysis was conducted using 4% stacking gel and 12% resolving gel. Briefly, 10 µL of sample was added with 10 µL 2× Laemmli buffer (Bio-Rad Laboratories Inc., Hercules, CA, USA) and 1 µL 2-mercaptoethanol followed by incubation at 95 °C for 15 min. Then, 10 µL of the mixture was loaded into the well and the set was run at 80 V for 15 min followed by 120 V for 1 h. Opti-Protein XL Marker G266 (abm Inc., Richmond, BC, Canada) with a molecular weight range of 10 to 245 kDa was used as the standard protein marker. The gel was stained overnight using staining solution (50% ddH\(_2\)O, 40% methanol, 10% acetic acid, 0.1% Coomassie Blue) and destained using destaining solution (50% ddH\(_2\)O, 40% methanol, 10% acetic acid) until blue protein bands were visible against a clear background. The image of the gel was captured using Fujifilm LAS-3000 Imager (Fujifilm, Tokyo, Japan). The molecular weights of the protein bands were analyzed using Multi Gauge software version 3.0 (Fujifilm, Tokyo, Japan).

2.2.2. Optimization of Hydrolysis Conditions for Monophenolase and Diphenolase Inhibitory Activities

Crossed D-optimal design was used to optimize the hydrolysis parameters to yield egg white hydrolysates with the highest tyrosinase inhibitory activities (i.e., the monophenolase inhibitory activity (Y) and diphenolase inhibitory activity (Z)). The enzyme composition (trypsin, \(X_1\); chymotrypsin, \(X_2\)) represents the mixture component whereas S/E ratio (\(X_3\)) and hydrolysis time (\(X_4\)) represents the process factors. Based on the results of single-factor experiment (Section 2.2.1), the levels of the variables were chosen and coded, as shown in Table 1. These variables generated 28 experimental runs. Data analysis and calculation of predicted response were conducted using Design-Expert software
Foods 2020, 9, 1312 (version 6.0, Minneapolis, MN, USA). Five confirmation experiments were performed to verify the optimized condition.

Table 1. Parameters and levels for crossed D-optimal design of the monophenolase and diphenolase inhibitory activities.

Variable	Coded Variable	Coded Variable Level
Trypsin composition (%)	X₁	−1 −0.5 0 0.5 1
Chymotrypsin composition (%)	X₂	−1 −0.5 0 0.5 1
S/E ratio (w/w)	X₃	−1 −0.5 0 0.5 1
Hydrolysis time (h)	X₄	−1 −0.5 0 0.5 1

2.3. Determination of Tyrosinase Inhibitory Activities

2.3.1. Monophenolase Inhibitory Activity

The monophenolase inhibitory activity was performed according to Takahashi, Takara, Toyozato and Wada [20] with slight modifications. Briefly, 10 µL of sample and 180 µL of 50 mM potassium phosphate buffer (pH 6.8) containing 0.5 mM L-tyrosine were added to a 96-well plate and incubated at 30 °C for 10 min. The reaction was started by the addition of 1 µL tyrosinase (6250 U/mL) and immediately monitored at 470 nm at every 20 s for 15 min with a constant temperature of 30 °C throughout the reaction. Each measurement was autozeroed against a blank containing L-tyrosine. The monophenolase inhibitory activity is calculated as follows:

\[
\text{Monophenolase inhibitory activity (\%)} = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100 (2)
\]

where \(A_{\text{control}}\) denotes the absorbance of the system containing tyrosinase and L-tyrosine; \(A_{\text{sample}}\) denotes the absorbance of the system containing tyrosinase, L-tyrosine and sample.

2.3.2. Diphenolase Inhibitory Activity

The diphenolase inhibitory activity was performed according to Takahashi, Takara, Toyozato and Wada [20] with slight modifications. Briefly, 10 µL of sample and 180 µL of 50 mM potassium phosphate buffer (pH 6.8) containing 0.5 mM L-DOPA were added to a 96-well plate and incubated at 30 °C for 10 min. The reaction was started by the addition of 1 µL tyrosinase (6250 U/mL) and immediately monitored at 470 nm at every 10 s for 1 min with a constant temperature 30 °C throughout the reaction. Each measurement was autozeroed against a blank containing L-DOPA. The diphenolase inhibitory activity is calculated as follows:

\[
\text{Diphenolase inhibitory activity (\%)} = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100 (3)
\]

where \(A_{\text{control}}\) denotes the absorbance of the system containing tyrosinase and L-DOPA; \(A_{\text{sample}}\) denotes the absorbance of the system containing tyrosinase, L-DOPA and sample.

2.4. Identification of Bioactive Peptides

The samples produced using the optimized parameters (Section 2.2.2) were subjected to LC/MS and MS/MS analyses using Easy-nLC II system (Thermo Scientific, San Jose, CA, USA) coupled with LTQ Orbitrap Velos. The chromatographic separation and mass spectrometry (MS) parameters were set up according to Siow and Gan [21]. Data acquisition was conducted using Xcalibur version 2.1. Peptide sequencing and identification based on the spectra acquired were performed using PEAKS Studio version 7.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada) [22]. The error mass tolerance
allowed for precursor and fragmented ions were 0.1 and 0.8 Da, respectively. Enzyme was not specified in the peaks search against SwissProt2019 database and the false discovery rate (FDR) was estimated with decoy-fusion method. PeptideRanker web server (http://bioware.ucd.ie/, accessed on 6th July 2020) was used to screen for potential biologically active peptides where peptides with PeptideRanker score >0.5 were considered potentially active [23] and hence selected for further analysis. Protein-peptide docking was then performed using PepSite 2 web server (http://pepsite2.russelllab.org/, accessed on 7th July 2020) to predict the potential peptide binding sites on the protein molecule [24]. The server requires inputs for a protein structure in pdb format and a peptide sequence for prediction. The three-dimensional crystal structure of mushroom tyrosinase (PDB ID: 2Y9X) was obtained from the RCSB Protein Data Bank (PDB) at https://www.rcsb.org (accessed on 10th July). For peptide sequence input, peptides with >10 residues were split into equal portions since the maximum size of peptide accepted by PepSite 2 server was 10 residues. The predicted protein–peptide binding spots were ranked according to statistical significance where a \(p \)-value < 0.25 implies significant binding interaction.

2.5. Statistical Analysis

The study was performed in replicates. Statistical analysis was conducted using SPSS version 20.0 (SPSS Institute, Chicago, IL, USA). The results were analyzed using one-way ANOVA. \(p \)-value less than 0.05 implies a significant difference between sample means. T-test was conducted to analyze the significant \((p < 0.05) \) difference between the experimental and predicted results for model validation.

3. Results and Discussion

3.1. Single-Factor Experiment

The SDS-PAGE profile of the protein bands after enzymatic hydrolysis using different enzyme compositions, S/E ratios and hydrolysis times was shown in Figure 1. Generally, protein bands with MW ranging from 11–48 kDa and >245 kDa were observed in control treatments (L1). According to Abdou, Kim and Sato [25], the possible egg white proteins within or near the molecular weight range include ovomucin (230–8300 kDa), ovomacroglobulin (760–900 kDa), ovotransferrin (77.7 kDa), avidin (60 kDa), ovoinhibitor (49 kDa), ovoglobulin G3 (45 kDa), ovalbumin (44.5 kDa), ovoflavoprotein (32–36 kDa), ovoglobulin G2 (36 kDa), ovomucoid (28 kDa), ovoglobulin G2 (24.4 kDa), lysozyme (14.4 kDa) and cystatin (12.7 kDa). Ovalbumin-related protein X and Y, on the other hand, share similar molecular weight of 50 kDa [26,27]. Notably, the >245 kDa bands were absent after enzymatic hydrolysis, suggesting the successful cleavage of large molecular weight proteins ovomucin and ovomacroglobulin into smaller protein fragments. For T treatment, the protein bands observed after hydrolysis were <17 kDa (Figure 1a). An 11–17 kDa band was observed at \(t = 0.5 \) and 1 h (Figure 1a, Lane 2 and 3) which is likely due to the presence of either lysozyme, cystatin or a subunit (15.6 kDa) of the tetrameric avidin. Protein bands of >25 kDa were also absent as the S/E ratio decreased from 50 to 10 (w/w) (Figure 1, Lane 8–12) where S/E 10 (w/w) treatment (Figure 1a, Lane 8) showed no observable bands at MW > 11 kDa. A <11 kDa band was found in all hydrolysates regardless of the hydrolysis time and S/E ratio, yet there were no reports on egg white proteins within this molecular weight range. This protein band may be contributed by a new, uncharacterized protein or the hydrolysis product from the aforementioned egg white proteins. Similar observations were recorded in C treatment (Figure 1b) yet 17–48 kDa protein bands were observed at S/E 40 and 50 (w/w) (Figure 1b, Lane 11 and 12), suggesting the incomplete hydrolysis of ovalbumin, ovoflavoprotein, ovomucoid or ovogloboprotein when low amount of enzyme was used. Abeyrathne, Lee, Jo, Nam and Ahn [28] had reported the inability of 1% chymotrypsin to hydrolyze 20 mg/mL ovalbumin even up to 24 h. Apart from incomplete hydrolysis by chymotrypsin, the presence of ovoflavoprotein and ovomucoid could be attributed by their high thermal stability as boiling at 100 °C for 30 min could not denature the protein structures [25,29]. In contrast, \(T + C \) treatment showed complete digestion of large MW proteins (25–48 kDa) even when the shortest hydrolysis time at \(t = 0.5 \) h (Figure 1c, Lane 2).
and the least amount of enzyme at S/E 50 (w/w) (Figure 1c, Lane 12) were used. This implies enzyme combination using trypsin and chymotrypsin was more effective in releasing smaller peptides from large protein molecules compared to individual enzyme treatments.

Figure 1. SDS-PAGE protein band profiling of albumin hydrolysate by (a) 100% trypsin, T; and (b) 100% chymotrypsin, C and (c) 50% trypsin + 50% chymotrypsin, T+C treatments at various substrate-to-enzyme (S/E) ratios and hydrolysis times. L1, control; L2, t = 0.5 h; L3, t = 1 h; L4, t = 2 h; L5, t = 3 h; L6, t = 4 h; L7, t = 5 h; L8, S/E = 10 (w/w); L9, S/E = 20 (w/w); L10, S/E = 30 (w/w); L11, S/E = 40 (w/w); L12, S/E = 50 (w/w).
DH is an indication of peptide bond cleavage in a protein hydrolysate and is vital in modulating the composition and properties of the peptides produced. The effects of different enzyme compositions, S/E ratio and hydrolysis time on the DH of egg white were summarized in Figure 2. Overall, it was observed that a lower S/E ratio and longer hydrolysis time contributed to higher DH in all T, C and T+C enzyme treatments. The highest DH was recorded in the T+C treatments at S/E ratio 10 (88.3 ± 0.4%; Figure 2a) and t = 5 h (86.1 ± 1.7%; Figure 2b). This could be due to the synergistic effect between the trypsin and chymotrypsin as the enzymes have different preferential cleavage sites. For example, the simultaneous treatment with trypsin and chymotrypsin had significantly reduced the time required for total hydrolysis of cheese whey proteins [30]. Chymotrypsin may cleave the bulky side chains of egg white proteins, exposing more cleavage sites for trypsin actions. Moreover, the resistance of albumin to trypsin digestion was overcome by boiling at 95 °C for 30 min before enzymatic hydrolysis. Heat treatment may have partially denatured or altered the tertiary structure of albumin, making the protein more accessible to both trypsin and chymotrypsin cleavage. A high DH corresponds to more peptide production and is often related to high bioactivity. For instance, Noh and Suh [31] who hydrolyzed egg white liquid using Alcalase, Neutrase, Protamex, Flavourzyme, Collupulin and Ficin had reported a positive correlation between DH and antioxidant activity. Alcalase hydrolysate produced at S/E 50 w/w and 24 h recorded the highest DH (43.2%) and free radical scavenging effects (82.5%) compared to other enzyme treatments. Moreover, high radical scavenging effect (ORAC value 1193.12 and DPPH value 19.05 Trolox EQ µmol g⁻¹) were recorded when the DH of egg white were higher than 50% [32]. Similar conclusion was drawn by Chen, Chi, Zhao and Xu [33] where the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of egg white protein hydrolysate increased as the DH increased. Thus, together with the SDS-PAGE analysis result, the S/E ratio of 10–30 (w/w) and hydrolysis time of 2–5 h were selected for optimization study as these ranges recorded egg white hydrolysates with small peptides (MW < 17 kDa) and DH >50%.
This is because the summation of X\(^2\) suggested by the software.

The experimental and predicted responses of the 28 generated runs, presented as the mean of triplicate experiments, are shown in Table 2. There was a close agreement between the experimental and predicted responses. X\(_1\) was designated as the slack variable and removed from the model. Hence, a significant (p < 0.05) \(X_2\) reflects the significance of \(X_1\). Square root transformation of data was performed to normalize the data as suggested by the software.

Table 2. Crossed D-optimal experimental design with the actual and predicted responses for (a) monophenolase and (b) diphenolase inhibitory activities.

Run	Enzyme Composition (%)	S/E Ratio, \(X_1\)	Hydrolysis Time, \(X_4\) (h)	(a) Monophenolase Inhibitory Activity (%)	(b) Diphenolase Inhibitory Activity (%)		
	Trypsin, \(X_1\)	Chymotrypsin, \(X_2\)	Experimental (\(y_1\))	Predicted \(^*\) (\(y_3\))	Experimental (\(y_2\))	Predicted \(^*\) (\(y_4\))	
1	100	0 10	5	32.5 ± 2.8	35.6	30.7 ± 1.7	33.6
2	50	100 20	3.5	20.8 ± 1.8	20.2	44.3 ± 4.5	44.1
3	0	100 10	2	15.2 ± 1.4	12.7	31.4 ± 3.5	32.1
4	0	100 10	2	31.6 ± 2.4	30.5	34.2 ± 4.0	33.8
5	100	0 30	2	24.7 ± 1.3	24.3	35.7 ± 2.1	36.1
6	0	100 30	5	39.1 ± 3.4	38.5	40.6 ± 1.8	40.9
7	0	100 30	5	18.9 ± 1.8	19.6	30.2 ± 2.3	31.1
8	100	0 20	2	39.5 ± 4.7	30.7	45.5 ± 3.6	48.1
9	0	100 30	2	20.0 ± 3.8	19.6	32.0 ± 0.5	31.1
10	50	100 10	5	37.2 ± 2.5	37.5	32.8 ± 0.9	31.7
11	0	100 10	2	30.2 ± 5.0	30.5	33.7 ± 1.7	33.8
12	50	100 30	5	26.1 ± 3.7	25.3	28.8 ± 2.7	30.0
13	100	0 30	3.5	26.3 ± 3.5	27.3	32.1 ± 1.7	37.3
14	100	0 30	2	30.3 ± 4.5	32.8	35.8 ± 3.9	35.6
15	50	100 20	2	15.8 ± 3.8	16.9	44.7 ± 3.9	42.5
16	50	100 30	3.5	19.2 ± 2.8	21.0	43.4 ± 3.8	44.3
17	75	25 25	2.75	26.1 ± 3.5	23.5	49.6 ± 3.2	47.0

Figure 2. Effects of enzyme treatments (100% trypsin, T; 100% chymotrypsin, C and 50% trypsin + 50% chymotrypsin, T+C) on the degree of hydrolysis of egg white proteins at various (a) substrate-to-enzyme (S/E) ratio where the hydrolysis time is fixed at t = 3 h and (b) hydrolysis time where the S/E ratio is fixed at 30 (w/w). Results were reported as means with error bars representing the standard deviations of triplicate experiments.

3.2. Optimization of Tyrosinase Inhibitory Activities

The experimental and predicted responses of the 28 generated runs, presented as the mean of triplicate experiments, are shown in Table 2. There was a close agreement between the experimental and predicted responses. Square root transformation of data was performed to normalize the data as suggested by the software.
Table 2. Cont.

Run	Trypsin, X1 (%)	Chymotrypsin, X2 (%)	S/E Ratio, X3	Hydrolysis Time, X4 (h)	(a) Monophenolase Inhibitory Activity (%)	Predicted * (y1)	(b) Diphenolase Inhibitory Activity (%)	Predicted # (z1)
18	0	100	20	5	21.8 ± 3.6	23.9	36.2 ± 3.4	35.1
19	25	75	15	2.75	19.0 ± 2.1	20.9	31.8 ± 2.5	35.0
20	0	100	30	5	38.4 ± 0.6	38.5	41.6 ± 2.2	40.9
21	0	100	10	5	43.4 ± 4.0	41.5	46.6 ± 2.0	48.7
22	0	100	10	3.5	37.4 ± 4.5	39.7	41.7 ± 2.7	39.3
23	75	25	20	5	48.0 ± 4.1	48.1	35.9 ± 2.8	34.5
24	100	0	30	5	44.7 ± 0.2	44.4	25.0 ± 2.3	25.2
25	100	0	10	5	38.7 ± 0.7	35.6	35.7 ± 4.2	33.6
26	100	0	10	2	35.2 ± 1.3	32.8	36.9 ± 1.4	35.6
27	50	50	10	2	47.2 ± 2.2	45.9	37.7 ± 2.5	38.6
28	75	25	15	3.5	36.1 ± 1.4	34.6	39.1 ± 1.7	39.7

Note: Data is presented as the mean ± standard deviation of triplicate experiments; * predicted using Equation (4); # predicted using Equation (5).

Based on Table 2a, the experimental monophenolase inhibitory activity ranged from 15.2–48.0% under various test conditions, with the highest inhibition (47.989%) recorded at $X_1 = 75\%$, $X_2 = 25\%$, $X_3 = 25 \text{w/w}$ and $X_4 = 5 \text{h}$. On the other hand, the experimental diphenolase inhibitory activity were ranging from 25.0–49.6% under various test conditions, with the highest inhibition (49.6%) recorded at $X_1 = 75\%$, $X_2 = 25\%$, $X_3 = 25 \text{w/w}$ and $X_4 = 2.75 \text{h}$ (Table 2b). Analysis of variance (ANOVA) was then conducted to evaluate the significance of the coefficient models at a 95% confidence interval (Table 3). The crossed reduced quadratic × cubic model was selected as it recorded a p-value of <0.0001 for both monophenolase and diphenolase inhibitory activities. The insignificant lack of fit p-value of 0.3348 (Table 3a) and 0.2906 (Table 3b) were observed for monophenolase and diphenolase inhibitory activities, respectively, indicating a well-fitted model that is adequate to describe the observed data. In addition, the values of coefficient of determination, R^2 and adjusted R^2 observed were 0.967 and 0.920, respectively (for monophenolase inhibitory activity), and 0.934 and 0.863, respectively (for diphenolase inhibitory activity), suggesting an excellent fit to the selected model. The coefficient of variation (CV) measures the dispersion of data around the mean. Both models had a low CV of 4.611 and 2.996%, respectively, implying a high precision and low degree of variation of the experiment performed.

Table 3. ANOVA for crossed reduced quadratic × cubic model: estimated regression model of the relationship between the mixture component (X_1, X_2), process variables (X_3, X_4) and the response variables (a) monophenolase inhibitory activity (Y) and (b) diphenolase inhibitory activity (Z).

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F
Model	20.668	16	1.292	20.447	<0.0001
X_1	1.678	1	1.678	26.563	0.0003
X_2	0.009	1	0.009	0.139	0.7167
X_3	4.155	1	4.155	65.766	<0.0001
X_4	0.075	1	0.075	1.189	0.2988
X_1^2	1.469	1	1.469	23.260	0.0005
X_2^2	0.258	1	0.258	4.079	0.0685
X_3^2	1.728	1	1.728	27.346	0.0003
X_4^2	0.973	1	0.973	15.396	0.0024
X_1X_2	0.873	1	0.873	13.812	0.0034
$X_1^2X_3$	1.489	1	1.489	23.572	0.0005
$X_1^2X_4$	1.222	1	1.222	19.342	0.0011
X_2X_3	5.107	1	5.107	80.846	<0.0001
X_2X_4	0.217	1	0.217	3.442	0.0905
$X_3^2X_4$	2.024	1	2.024	32.038	0.0001
Table 3. Cont.

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F
$X_2X_4^2$	0.005	1	0.005	0.071	0.7943
$X_2X_3X_4$	0.073	1	0.073	1.148	0.3069
Residual	0.695	11	0.063		
Lack of Fit	0.447	6	0.075	1.507	0.3348
Pure Error	0.247	5	0.049		
Cor Total	21.362	27			
R^2	0.967				
Adjusted R^2	0.920				
C.V.	4.611				

(b) Diphenolase inhibitory activity (Z)

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F
Model	6.078	14	0.434	13.106	<0.0001
X_2	0.185	1	0.185	5.573	0.0345
X_3	0.071	1	0.071	2.143	0.1669
X_4	0.519	1	0.519	15.658	0.0016
X_2^2	0.010	1	0.010	0.316	0.5833
X_3^2	1.283	1	1.283	38.730	<0.0001
X_4^2	0.214	1	0.214	6.454	0.0246
X_2X_3	0.235	1	0.235	7.104	0.0194
X_2X_4	0.385	1	0.385	11.632	0.0046
X_3X_4	0.258	1	0.258	7.799	0.0152
$X_2^2X_3$	0.263	1	0.263	7.939	0.0145
$X_2^2X_4$	1.060	1	1.060	31.990	<0.0001
$X_2X_3^2$	1.771	1	1.771	53.473	<0.0001
$X_3X_4^2$	0.314	1	0.314	9.481	0.0088
$X_2X_3X_4$	0.040	1	0.040	1.198	0.2936
Residual	0.431	13	0.033		
Lack of Fit	0.315	8	0.039	1.696	0.2906
Pure Error	0.116	5	0.023		
Cor Total	6.508	27			
R^2	0.934				
Adjusted R^2	0.863				
C.V.	2.996				

The significant ($p < 0.05$) effect on the monophenolase inhibitory activity was contributed by the linear terms X_4 and X_2, quadratic term X_3^2 and various interaction terms X_2X_3, X_2X_4, X_3X_4, $X_2^2X_3$, $X_2^2X_4$, $X_2X_3^2$ and $X_3^2X_4$, whereas, the significant ($p < 0.05$) effect on the diphenolase inhibitory activity was contributed by the linear terms X_4 and X_2, quadratic terms X_3^2 and X_4^2 alongside various interaction terms X_2X_3, X_2X_4, X_3X_4, $X_2^2X_3$, $X_2^2X_4$, $X_2X_3^2$ and $X_3X_4^2$. This suggested the hydrolysis time, enzyme compositions, as well as their interactions with S/E ratio, played a prominent role in the inhibition of these activities. To better fit the model, backward elimination step was carried out to eliminate the non-significant terms. The final response equations for monophenolase and diphenolase inhibitory activities in coded variables are given in Equations (4) and (5), respectively.

\[
\sqrt{\text{Monophenolase inhibitory activity}} = 6.269 - 2.711x_2 + 1.395x_4 - 1.084x_2^2 + 0.612x_4^2 - 3.157x_2x_3 - 2.128x_2x_4 + 0.289x_3x_4 + 2.835x_2^2x_3 + 2.334x_2^2x_4 + 3.45x_2X_3^2 - 0.926x_2x_4^2 - 0.938x_3^2x_4
\]

\[
\sqrt{\text{Diphenolase inhibitory activity}} = 6.943 - 1.258x_2 - 0.269x_4 - 0.952x_3^2 - 0.269x_4^2 + 1.301x_2x_3 - 1.472x_2x_4 - 0.139x_3x_4 - 1.267x_2^2x_3 + 2.244x_2^2x_4 + 1.726x_2x_3^2
\]
3.3. Verification of Predictive Models

Various combination of hydrolysis parameters was suggested to verify the suitability of the predictive models. Taking into consideration the cost, efficiency and feasibility of the experiment, the optimal condition (desirability value of 0.949, which indicating that the suggested condition is close to the desired process condition-minimum amount of enzymes, minimum hydrolysis time and maximum inhibitory activities) to achieve monophenolase inhibitory activity of 45.9% corresponded to 55% trypsin, 45% chymotrypsin, S/E ratio 10:1 (w/w) and hydrolysis time 2 h was examined. The experimental value of 45.3% was found close with no significant (p > 0.05) difference with the predicted value (45.9%). The DH determined was 84.8 ± 1.8%. For diphenolase inhibitory activity, the optimal condition suggested was 100% trypsin, 0% chymotrypsin, S/E ratio 22.13:1 (w/w) and hydrolysis time 3.18 h. The experimental value of 48.1% was found close with no significant (p > 0.05) difference with the predicted value (48.1%). The degree of hydrolysis determined was 64.0 ± 2.1%. Therefore, this model was valid for the optimization of monophenolase and diphenolase inhibitory activities from egg white. It was also observed that in monophenolase inhibitory activity optimization, even though 48.0% was achieved by sample run 23 (Table 2), 5 h of hydrolysis time was required, whereas 2 h of hydrolysis time could achieve 45.3% (the difference by only 2.7%) in the optimized condition. In the optimization of diphenolase inhibitory activity, the optimized sample achieved 48.1% activity by using only trypsin (lower in cost) compared to the sample run 17 (49.6%) in which the difference was only 1.5%. Therefore, it was suggested that the optimization process had managed to achieve the goal of study.

3.4. Identification of Bioactive Peptides

There were 139 and 189 peptides identified for monophenolase and diphenolase inhibitory activities, respectively, using PEAKS Studio (Appendix A Table A1). For monophenolase inhibitory activity, 76, 36, 4, 7, 11, 4 and 1 peptides were identified from ovalbumin, ovotransferrin, ovomucoid, ovalbumin-related protein X, ovalbumin-related protein Y, Ovomucin, and cystatin, respectively, where they were found to achieve 77%, 45%, 42%, 38%, 32%, 16% and 12% coverages of the corresponding protein sequences (Appendix A Table A1a). For diphenolase activity, 81, 54, 9, 12, 4, 8, 20 and 2 peptides identified were found to match 81%, 63%, 54%, 38%, 29%, 28%, 26% and 2% sequence coverages of ovalbumin, ovotransferrin, lysozyme, ovomucoid, ovalbumin-related protein X, ovalbumin-related protein Y, Ovomucin and ovostatin, respectively (Appendix A Table A1b). Subsequently, PeptideRanker web server was used to screen for potential biologically active peptides since the likeliness of being bioactive is usually governed by specific structural characteristics of peptide [23]. The use of PeptideRanker for initial screening and prediction had been proven successful to identify bioactive peptides with wide array of bioactivities [34–36]. Therefore, there were 7 and 21 peptides (PeptideRanker score >0.5) shortlisted for monophenolase and diphenolase inhibitory activities, respectively. The shortlisted peptides were further subjected to structure-activity relationship analysis with mushroom tyrosinase using the PepSite2 web server.

The p-values of mushroom tyrosinase-peptide binding interactions predicted by PepSite 2 web server were summarized in Table 4. A smaller p-value signifies higher potential of peptide binding to the enzyme. The smallest p-value was recorded by ADHPF (0.002658), AFKDEDTKAMPF (0.02053) and ILELPFASGDLLML (0.03464) whereas the largest p-value was recorded by DGSGGCIKP (0.1274) for monophenolase inhibitory activity (Table 4a). For diphenolase activity, SDFHLGFPPGK (0.009412), FDGRSK (0.01312) and FNCSSAGPGAIGSEC (0.01614) were among the peptides with the smallest p-values whereas YFGYTGALR had recorded the largest p-value of 0.2364 (Table 4b). Overall, all peptides showed significant (p < 0.25) binding interactions with mushroom tyrosinase. Notably, phenylalanine, leucine and alanine were frequently observed in the peptide sequences. Phenylalanine may act as the pseudo-substrate of tyrosinase since it is structurally identical to tyrosine, the natural substrate of tyrosinase. Besides, the hydrophobic side chains of leucine and alanine may interact directly with the hydrophobic binding pocket of tyrosinase to cause enzyme inhibition. According to
Strothkamp, Jolley and Mason [37], mushroom tyrosinase is a tetramer comprising of two H subunits and two L subunits. The L subunit is the product of Orf239342 gene and possesses a lectin-like structure, hence annotated as mushroom tyrosinase associated lectin-like protein. It comprises residues 9–28 and 35–150 of ORF239342 protein and is arranged into 12 antiparallel β-strands that is located away from the tyrosinase catalytic site, suggesting an insignificant role in enzyme activity [38]. The L subunit was postulated to provide innate immunity against bacterial infection [39] and act as a cofactor in melanin production [40]. In contrast, the H subunit originates from ppo3 gene and covers residues 2–392 of PPO3. This subunit is made up of 13 α-helices, 8 short β-strands and loops that structured the catalytically essential tyrosinase core domain [38,41]. The H subunit houses a binuclear copper active site where copper A is coordinately bonded with H61, H85 and H94 whereas copper B to H 259, H263 and H296. The 6 histidine residues form a hydrophobic binding pocket at the bottom of the H subunit and H263 is postulated to regulate proper orientation of incoming substrate [38]. The structural rigidity of the binding pocket is maintained by several interactions between the 6 histidine and their neighboring residues. For instance, the side chain rotational freedom of H85 is restricted through the formation of a thioether bond with the side chain of C83. This thioether bond stabilizes H85 and is also suggested to optimize redox potential as well as to facilitate rapid electron transfer for the redox reactions occurring in the binuclear copper site [38,42]. Furthermore, the presence of F90 confers structural constraints to H94, H259 and H296 while F292 limits the side chain flexibility of H61, H263 and H296 [38]. The interaction between M280 and the aromatic ring of histidines also stabilizes the protein structure [43] and this residue may aid in copper incorporation into the binding pocket [44]. Notably, the ILELPFASGDLLML for monophenolase inhibitory activity (Table 4a) and GYSLGNWVCAAK, YFGYTGALRCLV, HIATNAVLFFGR, FMMFESQNKDLLFK, SGALHCLK and YFGYTGALR for diphenolase inhibitory activity (Table 4b) were found to interact with H61, H85, H94, H259, H263, and H296 (hotspot residues) and F92, F292 and M280 (stabilizing residues) of mushroom tyrosinase. The peptide interactions with the hotspot residues may weaken or hinder enzyme binding with its putative substrate whereas peptide interactions with the stabilizing residues may disrupt the integrity of active site, which reduces the catalytic potency of the enzyme. Thus, ILELPFASGDLLML, GYSLGNWVCAAK, YFGYTGALRCLV, HIATNAVLFFGR, FMMFESQNKDLLFK, SGALHCLK and YFGYTGALR represent potential tyrosinase inhibitory peptides.
Table 4. List of potential biologically active egg white-derived peptides shortlisted for (a) monophenolase and (b) diphenolase inhibitory activities using PeptideRanker web server and their potential binding sites on mushroom tyrosinase predicted using PepSite 2 web server.

No.	Peptide Sequence	Egg Protein Fragment	Peptide Length	Potential Binding Sites of Mushroom Tyrosinase (PDB ID: 2Y9X)	PepSite 2 p-Value
				(a) Monophenolase inhibitory activity	
1	ADHPF	Ovalbumin	5	Y140, K389, H390	0.002658
2	AFKDEDTKAMPF	Ovalbumin	12	N22, F135, D137, Y140, R301, P366, D367, W386, H390, Y391, Y36, L40, F54, G58, H61, H85, F90, H94, W101, Q133, H259, H263, M280, H285, A286, A287, F288, D289, F290, F292, W293, H296	0.02053
3	ILELPSGDDLML	Ovalbumin-related protein X	14	H263, M280, H285, A286, A287, F288, D289, F290, F292, W293, H296	0.03464
4	DKLPFGED	Ovalbumin	8	Y140, P370, Y382, W386, K389, H390	0.05277
5	FKLPFGED	Ovalbumin	9	Y140, P370, Y382, W386, K389, H390	0.0722
6	DMLPDGEQSGTSVN	Ovalbumin	20	Y140, T233, R301, M309, D367, Y382, N384, W386, H388, K389, H390	0.08107
7	DGSSGCIPK	Ovomucin	9	Y140, R313, D367, Y382, W386, K389, H390	0.1274
				(b) Diphenolase inhibitory activity	
1	SDFHLCPPGBK	Ovotransferrin	11	H61, H85, H94, 197, Y140, H259, H263, M280, V283, A287, F292, W293, H296, H61, H85, F90, Y97, Y140, R301, P366, D367, W386, H390, Y391	0.009412
2	FDGRSR	Ovotransferrin	6	D137, R301, P366, D367, W386, H390, Y391	0.01312
3	FNCSAGFAGMCGSEC	Ovotransferrin	15	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.01614
4	MYOQGFLR	Ovomucin	8	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.01614
5	GYSLGNWVCAAK	Lysozyme	12	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.01832
6	DLEKDFSAIMLK	Ovotransferrin	12	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.02538
7	CQCOQSKGHPPEK	Ovotransferrin	14	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.02578
8	ADHPFLF	Ovalbumin	7	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.03051
9	SGAFHCLK	Ovotransferrin	8	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.03994
10	YFGYTGALRCLVL	Ovotransferrin	12	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.04488
11	HATNAVLFGR	Ovalbumin	12	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.04707
12	FKDEDTQAMPFR	Ovalbumin	12	H61, H85, H94, 197, Y140, R301, P366, D367, W386, H390, Y391	0.05594
Table 4. Cont.

No.	Peptide Sequence	Egg Protein Fragment	Peptide Length	Potential Binding Sites of Mushroom Tyrosinase (PDB ID: 2Y9X)	PepSite 2 \(p \)-Value
13	FMMFESQNKDLFK	Ovotransferrin	14	H61, N81, Y92, C83, T84, H65, F90, W93, H94, Y97, D137, Y140, H259, H263, M280, A286, A287, F292, W293, H296	0.06287
14	FDKLPFGCD	Ovalbumin	9	Y140, P370, Y382, W386, K389, H390	0.07225
15	SMLVLPDEVGQLESINFEK	Ovalbumin	24	D137, Y140, R301, D367, P370, Y382, W386, K389, H390, Y391	0.08195
16	SGGYSAFHCLK	Ovotransferrin	11	Y140, R301, P366, D367, Y382, W386, H390	0.0849
17	SGGQFSLSTVKEC	Ovomucin	14	D137, Y140, R301, D367, W386, H390, Y391	0.08667
18	SGGALHCLK	Ovotransferrin	8	H61, N81, Y92, C83, T84, H65, W93, H94, R95, Y97, E98, H259, H263, A286, A287, F292, W293, H296	0.1247
19	SSCICS	Ovomucin	6	N22, F135, D137, R301, P366, D367, W386, H390	0.1938
20	SSGELDCVCT	Ovomucin	9	D137, Y140, R301, D367, W386, H390, Y391	0.2086
21	YFGYTGALR	Ovotransferrin	9	H61, H85, H94, Y97, H259, H263, M280, V283, A286, A287, F292, W293, H295, H296, V299	0.2364

Note: Underlined residues are actively involved in binding interaction with mushroom tyrosinase; Residues in bold indicate mushroom tyrosinase hotspots; Residues in italics indicate stabilizing residues.
On the other hand, majority of the peptides were also found to bind to Y140, W386 and H390 (Table 4) which were not within the mushroom tyrosinase substrate binding pocket. Hassani Hagnbeen and Fazli [45] reported two mixed-type inhibitors of tyrosinase, phthalic acid and cinnamic acid, each bound to different binding sites of the enzyme. For instance, phthalic acid formed hydrogen bonds with W136, W141 and G149 and van der Waals interactions with D137, W138, G139, Y140, F147 and F224 whereas cinnamic acid form hydrogen bonds with Q307 and D312 and van der Waals interactions with T308, Y311, V313, Y314, E356 and W358. Jung et al. [46] also reported a mixed-type tyrosinase inhibitor, (E)-2-(2,4-dihydroxybenzylidene)-2,3-dihydro-1H-inden-1-one (BID3) which formed a hydrogen bond with Y140 and interacted hydrophobically with L24, F147 and I148. These findings suggest potential peptide interaction with non-specific binding site of the enzyme since the allosteric site of mushroom tyrosinase has yet to be identified.

4. Conclusions

In this study, egg white has been proven to be more than just a food component. The optimization of enzymatic hydrolysis conditions, LC/MS MS/MS peptide identification and sequencing followed by structure-activity relationship analyses had corroborated the potential of this food protein as a source for the production of anti-tyrosinase peptides to prevent skin hyperpigmentation. Nonetheless, the monophenolase and diphenolase inhibitory peptides identified will next be chemically synthesized and validated for their in vitro anti-tyrosinase efficacies before proceeding to in vivo assays to examine their effects on the melanogenesis pathway regulatory proteins.

Author Contributions: Conceptualization, P.-G.Y. and C.-Y.G.; methodology, C.-Y.G.; software, P.-G.Y.; validation, P.-G.Y. and C.-Y.G.; formal analysis, P.-G.Y.; investigation, P.-G.Y.; resources, C.-Y.G.; data curation, P.-G.Y.; writing—original draft preparation, P.-G.Y.; writing—review and editing, P.-G.Y. and C.-Y.G.; visualization, P.-G.Y.; supervision, C.-Y.G.; project administration, C.-Y.G.; funding acquisition, C.-Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by Universiti Sains Malaysia RUI Grant (Grant number: 1001/CABR/8011045) and Universiti Sains Malaysia MyRA incentive fund (1001/CABR/AUPS001).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of egg white-derived peptides for (a) monophenolase and (b) diphenolase inhibitory activities with their corresponding PeptideRanker scores.

No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
(a) Monophenolase inhibitory activity				
1	ADHPF *	361–365	0.8592	
2	FDKLPGFGD *	60–68	0.6817	
3	FDKLPFGDFSIEAQGSTVN *	60–79	0.5429	
4	AFKDEDTKAMPF *	188–199	0.5332	
5	DKLPGFGD *	61–68	0.5174	
6	MSALAM	36–41	0.4941	
7	RGGLPEINF	127–135	0.4842	
8	YILPEYL	112–119	0.4732	
9	AFKDEDTQAMPF	188–199	0.4636	
10	VLLPDEVSGLEKLESIINF	244–262	0.4494	
11	QVLPDEVSGLEQULESIINF	243–262	0.4335	
12	KEDTQAMPF	190–199	0.4113	
13	FDKLPFGDSIEAQ	60–73	0.4067	
14	YPLPELYLVCKELY	112–126	0.3960	
15	VLPHEVSQLEQLESIINF	244–262	0.3712	
16	LQPLDEVSGLEQLESIINF	243–262	0.3593	
17	LPDEVSGLEQLESIINF	246–262	0.3544	
18	MAMGITDVF	299–307	0.3250	
19	SSSANLSGISSAESLK	308–323	0.3207	
Table A1. Cont.

No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
(a) Monophenolase inhibitory activity				
20	LVLLPDEVSGLEQLESINFE	243–262	0.3189	
21	VHHANENIFY	21–30	0.3132	
22	VTEQESKPVQMMYXQLF	210–218	0.3126	
23	VHANENIF	21–29	0.2953	
24	GGLPINFQTAADQAR	128–143	0.2810	
25	VLLPDEVSGLEQLESINFE	244–263	0.2738	
26	VASMAEKMK	220–229	0.2728	
27	AAHAEINEAGR	330–340	0.2679	
28	AEERYPILPEYL	108–119	0.2648	
29	YPILEPYLQ	112–120	0.2638	
30	ISQAVHAAHAEINEAGR	324–340	0.2599	
31	SANLSGIIASESLK	310–323	0.2537	
32	SVVESQTNQIR	148–159	0.2523	
33	AKFDEDTQAMP	189–198	0.2456	
34	SGIassaelsk	314–323	0.2242	
35	MAMGITDVFFSSANLSGIS	299–317	0.2239	
36	INSVESQTNQIIIR	146–159	0.2193	
37	LYAERYIPILPEYL	106–119	0.2015	
38	SGIassaesl	314–322	0.1982	
39	VLLPDEVSGLEQLESINFE	244–264	0.1885	
40	VLLPDEVSGLEQIS	244–256	0.1835	
41	VLLPDEVSGLEQIS	313–323	0.1793	
42	HAEINEAGR	332–340	0.1789	
43	SAEAGVEDAASVEEF	345–359	0.1784	
44	VLLPDEVSGLEQESIN	244–261	0.1723	
45	EVVSGSAEAVGDAASVSEEF	341–360	0.1703	
46	NVLQPSSVHSQTAM	160–173	0.1699	
47	AMGITDVFFS	300–309	0.1674	
48	SSNVMEEM	270–276	0.1638	
49	EVVSGSAEAVGDAASVSEEF	341–359	0.1629	
50	SGIassaesl	314–323	0.1544	
51	ELINSWVESQTNQIR	144–159	0.1482	
52	SGIassaesl	314–323	0.1469	
53	VTEQESKPVQMM	201–212	0.1453	
54	AEINEAGR	333–340	0.1437	
55	VLPQSSVDSQTAM	161–173	0.1431	
56	VESQTNQIIIR	150–159	0.1401	
57	NLQPSSVDSQTAM	160–173	0.1362	
58	VLLPDEVSGLEQLESR	244–259	0.1282	
59	VLLPDEVSGLEKESIINF	244–264	0.1189	
60	VASMAEK	220–227	0.1086	
61	ISQAVH	324–329	0.1070	
62	TSSNVMEER	269–277	0.1050	
63	VLLPHEVSGLEQLES	244–258	0.0986	
64	QITKPNDVY	90–98	0.0968	
65	DILNQITKPNDVY	86–98	0.0951	
66	VLLPDEVSGLEQLES	244–258	0.0916	
67	NQITKPNDVY	89–98	0.0879	
68	LTEWTSSNVMEER	265–277	0.0807	
69	VTEQESKPVQMK	201–212	0.0805	
70	RVTEQESKPVQMM	200–211	0.0787	
71	NQITEPNDVY	89–98	0.0742	
72	VTEQESKPVQ	201–211	0.0712	
73	VTEQESKPV	201–209	0.0395	
74	NVLQPSSVDSQTAMVLVNAIVFK	160–182	0.0365	
75	NVLQPSSVDSQTAMVLVNAIVF	160–181	0.0218	
76	KTSSNVWNINLKL	458–468	0.4883	
77	GEADAVALHGGLVY	406–419	0.4290	
78	NLQMDDFELL	579–588	0.4262	
79	NLKMDDFELL	579–588	0.3988	
No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
81		KDQLTPSPR	352–360	0.3329
82		VPSLMHSQLY	329–338	0.3155
83		GAIEWEGIESGSVEKAVAK	155–173	0.2986
84		KGeadavaldgglvy	405–419	0.2793
85		TAGVCGLVPVMAER	420–433	0.2662
86		VPSLMDSQLY	329–338	0.2612
87		AQSDFGVTDK	289–298	0.2525
88		GAIEWEGIESGSVEQAVAK	155–173	0.2308
89		RVPSLMDSQLY	328–338	0.2249
90		VPVMAER	427–433	0.1784
91		VAAHAVVAR	266–274	0.1704
92		GAIEWEGIESGSVEQAVAE	155–173	0.1683
93		AIEWEGIESGSVEQAVAK	156–173	0.1624
94		LKPIAAEYY	93–101	0.1209
95		HAVVPRPEK	611–619	0.1184
96		TVNDQLGK	124–131	0.1055
97		AVVVPRPEK	612–619	0.0953
98		HTTVNENAPDQDKEYELL	229–246	0.0946
99		EIEGIEGSVEQAVAK	160–173	0.0919
100		TDERPASY	443–450	0.0891
101		TKHSTVEENGTGK	559–571	0.0865
102		TVNDLQGK	124–131	0.0847
103		DLTQQER	44–50	0.0846
104		TVQHSTVEENGTGK	559–571	0.0835
105		EGIESGSVEQAVAK	160–173	0.0768
106		TVISSL	682–688	0.0710
107		HHTVNENAPDQDKEYELL	229–246	0.0630
108		EIEGIESGSVEQAVAE	160–173	0.0600
109		VVVPRPEK	613–619	0.0580
110		TVEENGTGK	563–571	0.0491
111		ISDAVHGF	324–332	0.4692
112		MISDAVHGF	323–332	0.4224
113		VAAHAVVARDNDNQVEDIW	266–283	0.2846
114		HSLELEEFR	354–362	0.2286
115	Ovalbumin-related protein Y	SLEIADKLY	99–107	0.1898
(32%)		VLLPDEVSLER	244–255	0.1871
116		VLLPDEVSLERIEKTN	244–261	0.1605
117		MEVNEEGTATGSTGAIGNIK	333–353	0.1211
118		TGGVEEVNFK	127–136	0.1200
119		NVATLPAEK	219–227	0.1152
120		VAAHAVVARDNDNQVEDIW	74–87	0.8643
121	Ovalbumin-related protein X	ILELPASDGDLML	74–87	0.8223
(38%)		TGISSAEHLK	158–167	0.1152
122		NVATLPAEK	63–71	0.1084
123		VLLPDEVSDLER	88–99	0.1070
124		VLLPDEVSLERIEK	166–173	0.1070
125		AGSTGVIEDIK	187–197	0.1025
126		VTKQESKPVQV	45–55	0.0833
127		FPNAVTDKEGK	32–41	0.3269
128		DLRPICGTIDGVTY	49–61	0.2154
129		VEQGASVDR	137–146	0.0903
130		VEQGASVDR	137–146	0.0734
131		DGSGGCIPK	814–822	0.6103
132		VTDSF	1591–1595	0.2004
133		SNSLVLTPQA	1494–1503	0.1384
134		IOQEATDPGAEK	941–952	0.1215
135		LLGAPPVDENEDEQLQR	30–46	0.2450
Table A1. Cont.

No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
(b) Diphenolase inhibitory activity				
1	ADHPFLF*	361–367	0.9699	
2	MYQGLFR*	212–219	0.8011	
3	SMLVLLPDEVSGLEQLESINFEK*	241–264	0.6983	
4	FDKLPGFGD*	60–68	0.6817	
5	HIATNAVLFGER*	371–382	0.5209	
6	FKDDETDQAMPFR*	189–200	0.5001	
7	DEDTKAMPFR	191–200	0.4978	
8	ILELFASGTMS	230–241	0.4972	
9	DEDTQAMPFR	191–200	0.4842	
10	MLVLLPDEVSGLEQLESINFEK	242–264	0.4842	
11	YPILPEYLQCVK	112–123	0.4769	
12	AFKDDETDQAMPFR	188–200	0.4702	
13	SSANLSGISSAESLKR	308–323	0.3207	
14	SQAVHAAHAEINEAGR	325–340	0.2965	
15	VTEQESKPVQMMYQQLFR	201–219	0.2886	
16	GLEPINFQTAADQAR	128–143	0.2810	
17	SQTAMVLVNAIVFK	169–182	0.2781	
18	VASMASEMK	220–229	0.2728	
19	AAHAINEAGR	330–340	0.2679	
20	YPILPEYLQ	112–120	0.2638	
21	QAVHAAHAEINEAGR	326–340	0.2606	
22	ISQAVHAAHAEINEAGR	324–340	0.2599	
23	EAQCGTSNVHSSLR	71–85	0.2554	
24	SANLSGISSAESLKR	310–323	0.2537	
25	SSANLSGISSAESLKR	309–323	0.2497	
26	EVCGSAEAGVDAASVSEEFR	341–360	0.2424	
27	GLEPINFQTAADQAR	129–143	0.2420	
28	VLLPDEVSGLEQLESINFEQ	244–264	0.2410	
29	VLVNAIVFK	174–182	0.2362	
30	NSQAVHAAHAEINEAGR	324–340	0.2273	
31	ISQAVHAAHAEIN	324–336	0.2267	
32	DLNQTPTKPDVYVSFLASR	86–105	0.2229	
33	FQTAADQAR	135–143	0.2202	
34	VLVNAIVFK	174–182	0.2049	
35	MAMGIDTFVSSSANLSGISSAESLKR	299–323	0.1963	
36	AVHAHAHAINEAGR	327–340	0.1935	
37	SVNVHSSLR	77–85	0.1930	
38	LCEWTTSSNVMEER	265–277	0.1886	
39	VLLPDEVSGLEQLESINFEK	244–264	0.1885	
40	DLIPINFQTAADQAR	129–143	0.1854	
41	LSGIASSAESL	313–323	0.1793	
42	HAEINEAGR	332–340	0.1789	
43	LEPINFQTAADQAR	130–143	0.1739	
44	EVCGSAEAGVDAASVSEEFR	341–360	0.1703	
45	DILNQITKPDVYYSF	86–100	0.1698	
46	EAGVDAASVSEEFR	437–360	0.1664	
47	AEAGVDAASVSEEFR	346–360	0.1641	
48	VHAHAHAINEAGR	328–340	0.1633	
49	EVCGAEGVDAASVSEEFR	341–360	0.1628	
50	EPINFQTAADQAR	131–143	0.1588	
51	ISQAVHAAH	324–332	0.1572	
52	ELINSWVESQTNGIIR	144–159	0.1482	
53	VTEQESKPVQMM	201–212	0.1453	
54	VTEQESKPVQMMY	201–213	0.1416	
55	RVTQESKPVQMMY	200–213	0.1413	
56	GITHVSSSANLSGISSAESLK	302–323	0.1401	
57	VLVNAIVFE	174–182	0.1401	
58	AMNGTDVFSSSANLSGISSAESLK	300–323	0.1395	
59	NVLPSSVDQTAM	160–173	0.1362	
60	EWTSSNVMEER	267–277	0.1280	
Table A1. Cont.

No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
61	GTSVN VHSSLR	75–85	0.1274	
62	LQPSVDQSQTAMLVNAIVFK	162–182	0.1259	
63	AMGTDVFSSANLSGISSAESEKL	300–323	0.1239	
64	VTEQESKPKVM	201–211	0.1172	
65	GITDVFSSANLSGISSAESEKL	302–323	0.1089	
66	VASMAEK	200–227	0.1086	
67	TSSNVMEER	269–277	0.1050	
68	DLINQTKPNDVY	86–98	0.0951	
69	LTEWTSNVMEER	265–277	0.0807	
70	ELINSWVEQTN	144–155	0.0798	
71	TEWTSSNVMEER	266–277	0.0763	
72	IYAEER	106–111	0.0759	
73	EAVGDAASV5	347–356	0.0755	
74	VASMAEK	220–227	0.0721	
75	VTEQESKPVQOM	201–211	0.0712	
76	TQINK	52–56	0.0607	
77	NVKVR	55–59	0.0591	
78	VTEQESKPQVMQMYQIGLFRVASMAEK	201–227	0.0512	
79	NVLKPSVDQSQTAMLVNAIVFK	160–182	0.0486	
80	NVLQPSVDQSQTAMLVNAIVFK	160–182	0.0365	
81	SDHFLGFPGPK *	299–309	0.8619	
82	SCYGAFHCLK *	208–218	0.8239	
83	SCAHCLK *	211–218	0.8038	
84	CQLQSGGGIPPEK *	518–531	0.6874	
85	YFQYGTALRCLV *	540–551	0.6541	
86	DLLFKDAMIL *	216–327	0.6400	
87	SGALHCLK *	211–218	0.5971	
88	FMMFESQKDLFLK *	644–657	0.5892	
89	YFGYTALR *	540–548	0.5801	
90	KDSNVWNNLK	458–468	0.4863	
91	DDNVEWDSLK	275–288	0.4641	
92	SGIPPEK	524–531	0.4622	
93	NIPGTLHHR	145–155	0.4328	
94	DLLFKDAMIL *	316–327	0.4322	
95	SAIQSMR	345–351	0.4293	
96	ANVMDYR	595–601	0.4255	
97	FFASASCPGATIEQK	174–188	0.4152	
98	NIPGTLHHR	145–154	0.3756	
99	TSCHTGLGR	132–140	0.3624	
100	GAIEWREGIESGSGVEQAVAKFFSASCPG	155–183	0.3503	
101	FMMFESKNK	644–652	0.3416	
102	KDQLTPSPR	352–360	0.3329	
103	FMMFESQNK	644–652	0.3265	
104	GDVAFVK	222–228	0.3236	
105	EAGLAPYK	85–92	0.3173	
106	GLIHNK	488–493	0.3124	
107	VEDIWSFSLSE	278–288	0.3066	
108	GAIEWREGIESGSGVEKAVAK	155–173	0.2986	
109	DKGDVAEVK	219–228	0.2939	
110	SDFGVDTK	291–298	0.2580	
111	AQDSDFGVT DK	289–298	0.2525	
112	GDVAFK	222–228	0.2525	
113	TDERPASYF	443–451	0.2356	
114	GAIEWREGIESGSGVEQAVAK	155–173	0.2308	
115	AAHAVAR	267–274	0.2295	
116	GAIEWREGIESGSGVEQAVAK	155–173	0.2076	
117	GAIEWREGIESGSGVEQAVAK	155–173	0.2067	
118	AQDSFGVDT E	289–298	0.1852	
119	FYTVISSLLKTCP NS	680–693	0.1792	
120	VAAHAVVAR	266–274	0.1704	

(b) Diphenolase inhibitory activity
Table A1. Cont.

No.	Egg Protein Sequence Coverage	Peptide	Peptide Sequence Number	Score
121	(-)	GAIEWEGIESGSVEQVAEE	155–173	0.1683
122	FGVHGSEK	634–641	0.1601	
123	FGVNCSEKSK	634–643	0.1364	
124	RFGVNGSEK	633–641	0.1351	
125	GDVAFQHQSTVEENTGGK	554–571	0.1323	
126	KGTEFTVNDLQGK	119–131	0.1190	
127	GTEFTVNDLQGK	120–131	0.1166	
128	DVAFIQHSTVEENTGGK	555–571	0.1158	
129	KCVAS	531–535	0.1136	
130	TDERPASY	443–450	0.0891	
131	LKPAAAEYEHTEGTSYY	93–112	0.0753	
132	YTVSSLK	681–688	0.0742	
133	CTVDETK	390–397	0.0495	
134	HTTVNENADQPK	229–240	0.0390	
135	FPNATDEKK	32–41	0.3269	
136	VMVLCNR	107–113	0.2887	
137	GASVDR	140–146	0.2203	
138	SIEFTGNIK	71–80	0.1899	
139	AVVESNTLTLHFGK	194–209	0.1597	
140	FCNAVYES	191–198	0.1383	
141	VEQGASVDR	137–146	0.0903	
142	CAHKVEQ	133–139	0.0902	
143	VEQGASVDER	137–146	0.0734	
144	CNFCNAVVESNTLTLHFGK	189–209	0.0623	
145	VEQGASVDK	137–145	0.0585	
146	VEQGASVDE	137–145	0.0467	
147	SCCSGLTSTVVC *	1973–1986	0.5560	
148	FNSSAGPAGIGSEC *	771–785	0.5429	
149	SSSCICS *	270–275	0.5397	
150	FDGRSR *	1000–1005	0.5330	
151	PAQFQLM	1255–1261	0.3931	
152	KSLSCSLLK	916–924	0.3501	
153	VTSDCGCK	2001–2008	0.3200	
154	LEGCYPECS	1163–1171	0.3088	
155	ECNGSC	312–317	0.2923	
156	EPSELCK	1629–1635	0.2680	
157	TCTCNKR	846–852	0.2315	
158	DTCADPE	319–325	0.2167	
159	VTDSE	1591–1595	0.2004	
160	TATGAVEDESSAASFGNSWE	547–564	0.1661	
161	GTCTSYS	2044–2050	0.1278	
162	IQETAPGAEK	941–952	0.1215	
163	EVIVDTLISR	1722–1731	0.1101	
164	VQVSTVGR	28–35	0.0990	
165	AVTGTN	1901–1906	0.0685	
166	GYSLGWNVCAAK *	40–51	0.6563	
167	HGLEDNYRG	33–40	0.4763	
168	HGLEDNYR	33–39	0.3753	
169	GTDVQAWIR	135–143	0.3365	
170	GILQINSR	72–79	0.2008	
171	FESNFQTATNR	52–63	0.1820	
172	SNFTQATNR	54–63	0.1487	
173	ILQINSR	73–79	0.1212	
174	NTDGSTDYGILQINSR	64–79	0.0900	
175	VHNLFK	80–85	0.3580	
176	HSLEELFR	354–362	0.2286	
177	VTATLPAEKMUK	220–229	0.1937	
178	Ovalbumin-related protein Y	KFYTGVEEVFNFK	124–136	0.1917
179	VPLLDEVSGLER	244–255	0.1871	

(b) Diphenolase inhibitory activity
Table A1. Cont.

No.	Egg Protein Sequence	Peptide	Peptide Sequence Number	Score
181	FYTGGVEEVNFK		125–136	0.1570
182	ATGSTGAI		342–349	0.1262
183	TESQMK		50–55	0.0899
184	EKMAPALRLLV		538–548	0.4863
185	LVDKDNISPISK		379–390	0.1410
186	HNPNITIVYPGR		217–228	0.2810
187	ILELPFASGLSMVLVPDEVSNER	74–99	0.1682	
188	ILELPFASGLSMVLVPDEVSHEL	74–99	0.1607	
189	ISQAVHGAFMELSEDGIEMAGSTGVEDIK	168–197	0.0118	

* shortlisted peptides (PeptideRanker score > 0.5) for structure-activity relationship analysis.

References

1. Sánchez-Ferrer, A.; Rodriguez-López, J.N.; García-Cánovas, F.; García-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. BBA Protein Struct. Mol. Enzymol. 1995, 1247, 1–11. [CrossRef]
2. Michalek, I.M.; Benn, E.K.; dos Santos, F.L.C.; Gordon, S.; Wen, C.; Liu, B. A systematic review of global legal regulations on the permissible level of heavy metals in cosmetics with particular emphasis on skin lightening products. Environ. Res. 2019, 170, 187–193. [CrossRef] [PubMed]
3. Westerhof, W.; Kooyers, T.J. Hydroquinone and its analogues in dermatology—A potential health risk. J. Cosmet Dermatol. 2005, 4, 55–59. [CrossRef] [PubMed]
4. Lee, M.C. Tyrosinase Inhibitor Extract. U.S. Patent 7,125,572, 24 October 2006.
5. Ubeid, A.A.; Zhao, L.; Wang, Y.; Hantash, B.M. Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. Investig. Dermatol. 2009, 129, 2242–2249. [CrossRef]
6. Kubaglomsong, S.; Theerakulkait, C.; Reed, R.L.; Yang, L.; Maier, C.S.; Stevens, J.F. Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin. J. Agric. Food Chem. 2018, 66, 8346–8354. [CrossRef] [PubMed]
7. Marini, A.; Farwick, M.; Grether-Beck, S.; Brenden, H.; Felsner, I.; Jaenicke, T.; Weber, M.; Schild, J.; Maczkiewitz, U.; Kähler, T.; et al. Modulation of skin pigmentation by the tetrapeptide PKEK: In vitro and in vivo evidence for skin whitening effects. Exp. Dermatol. 2012, 21, 140–146. [CrossRef] [PubMed]
8. Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem. 2012, 4, 1527–1531. [CrossRef]
9. Ochiai, A.; Tanaka, S.; Tanaka, T.; Taniguchi, M. Rice bran protein as a potent source of antimelanogenic peptides with tyrosinase inhibitory activity. J. Nat. Prod. 2016, 79, 2545–2551. [CrossRef]
10. Oh, G.W.; Ko, S.C.; Hsiao, N.W.; Tseng, T.S.; Lee, Y.C.; Chen, W.C.; Lin, H.H.; Chen, Y.R.; Wang, Y.-T.; Hsu, H.-J.; Tsai, K.C. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. J. Chem. Inf. Model. 2014, 54, 3099–3111. [CrossRef] [PubMed]
11. Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. D-optimal design. In Design of Experiments: Principles and Applications; UMETRICS: Stockholm, Sweden, 2000.
12. Alkali, L.M.T.B.M. D-optimal design optimization of Jatropha curcas L. seed oil hydrolysis via alkali-catalyzed reactions. Sains Malays. 2012, 41, 731–738.
13. Bahadi, M.; Yusoff, M.F.; Derawi, J.S.D. Optimization of response surface methodology by d-optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malays. 2020, 49, 29–41. [CrossRef]
14. Olsen, J.V.; Ong, S.E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 2004, 3, 608–614. [CrossRef] [PubMed]
15. Blow, D.M. The Structure of Chymotrypsin. In The Enzymes, 3rd ed.; Boyer, P.D., Ed.; Academic Press: New York, NY, USA, 1971; pp. 185–212.
16. Hsiao, N.W.; Tseng, T.S.; Lee, Y.C.; Chen, W.C.; Lin, H.H.; Chen, Y.R.; Wang, Y.-T.; Hsu, H.-J.; Tsai, K.C. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. J. Chem. Inf. Model. 2014, 54, 3099–3111. [CrossRef] [PubMed]
17. Schurink, M.; van Berkel, W.J.; Wickers, H.J.; Boeriu, C.G. Novel peptides with tyrosinase inhibitory activity. Peptides 2007, 28, 485–495. [CrossRef]
18. Miguel, M.; Recio, I.; Gomez-Ruiz, J.A.; Ramos, M.; Lopez-Fandino, R. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. *J. Food Protect.* 2004, 67, 1914–1920. [CrossRef]
19. Baharuddin, N.A.; Halim NR, A.; Sarbon, N.M. Effect of degree of hydrolysis (DH) on the functional properties of I-converting enzyme (ACE) inhibitory activity of eel (*Monopterus sp.*) protein hydrolysate. *Int. Food Res. J.* 2016, 23, 1424–1431.
20. Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of *Morus australis* inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. *J. Oleo Sci.* 2012, 61, 585–592. [CrossRef]
21. Siow, H.L.; Gan, C.Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. *Food Chem.* 2013, 141, 3435–3442. [CrossRef]
22. Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* 2003, 17, 2337–2342. [CrossRef]
23. Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. *PLoS ONE* 2012, 7, e45012. [CrossRef]
24. Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. *Nucleic Acids Res.* 2012, 40, W423–W427. [CrossRef] [PubMed]
25. Abdou, A.M.; Kim, M.; Sato, K. Functional proteins and peptides of hen’s egg origin. In *Bioactive Food Peptides in Health and Disease*; Blanca, H.L., Hsieh, C.C., Eds.; InTech: Rijeka, Croatia, 2013; pp. 115–144.
26. Akazawa, T.; Ogawa, M.; Hayakawa, S. Migration of chicken egg-white protein ovalbumin-related protein X and its alteration in heparin-binding affinity during embryogenesis of fertilized egg. *Poult. Sci.* 2019, 98, 5100–5108. [CrossRef] [PubMed]
27. Hirose, J.; Doi, Y.; Kitabatake, N.; Narita, H. Ovalbumin-related gene Y protein bears carbohydrate chains of the ovomucoid type. *Biosci. Biotechnol. Biochem.* 2006, 70, 144–151. [CrossRef]
28. Abeyrathne, E.D.N.S.; Lee, H.Y.; Jo, C.; Nam, K.C.; Ahn, D.U. Enzymatic hydrolysis of ovalbumin and the functional properties of the hydrolysates. *Poult. Sci.* 2014, 93, 2678–2686. [CrossRef] [PubMed]
29. Stevens, L. Egg white proteins. *Comp. Biochem. Phys. B Comp. Biochem.* 1991, 100, 1–9. [CrossRef]
30. Custódio, M.F.; Goulart, A.J.; Marques, D.P.; Giordano, R.C.; Giordano, R.D.L.C.; Monti, R. Hydrolysis of cheese whey proteins with trypsin, chymotrypsin and carboxypeptidase A. *Aliment. Nutr. Araraquara* 2009, 16, 105–109.
31. Noh, D.O.; Suh, H.J. Preparation of egg white liquid hydrolysate (ELH) and its radical-scavenging activity. *Prev. Nutr. Food Sci.* 2015, 20, 183. [CrossRef]
32. de Castro, R.J.S.; Sato, H.H. A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidative activities. *Biocatal. Agric. Biotechnol.* 2015, 4, 55–62. [CrossRef]
33. Chen, C.; Chi, Y.J.; Zhao, M.Y.; Xu, W. Influence of degree of hydrolysis on functional properties, antioxidative and ACE inhibitory activities of egg white protein hydrolysate. *Food Sci. Biotechnol.* 2012, 21, 27–34. [CrossRef]
34. Garg, S.; Apostolopoulos, V.; Nurgali, K.; Mishra, V.K. Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. *J. Funct. Foods* 2018, 41, 34–40. [CrossRef]
35. Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. *Food Chem.* 2018, 259, 46–54. [CrossRef] [PubMed]
36. Salim MA, S.M.; Gan, C.Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. *J. Funct. Foods* 2020, 64, 103618.
37. Strothkamp, K.G.; Jolley, R.L.; Mason, H.S. Quaternary structure of mushroom tyrosinase. *Biochem. Bioph. Res. Co.* 1976, 70, 519–524.
38. Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wickers, H.J.; Dijkstra, B.W. Crystal structure of *Agaricus bisporus* mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. *Biochemistry* 2011, 50, 5477–5486.
39. Drickamer, K.; Taylor, M.E. Recent insights into structures and functions of C-type lectins in the immune system. *Curr. Opin. Struct. Biol.* 2015, 34, 26–34. [PubMed]
40. Weijn, A.; Bastiaan-Net, S.; Wichers, H.J.; Mes, J.J. Melanin biosynthesis pathway in Agaricus bisporus mushrooms. *Fungal Genet. Biol.* 2013, 55, 42–53.
41. Flurkey, W.H.; Inlow, J.K. Proteolytic processing of polyphenol oxidase from plants and fungi. *J. Inorg. Biochem.* 2008, 102, 2160–2170. [CrossRef]
42. Kanteev, M.; Goldfeder, M.; Fishman, A. Structure–function correlations in tyrosinases. *Protein Sci.* 2015, 24, 1360–1369.
43. Valley, C.C.; Cembran, A.; Perlmutter, J.D.; Lewis, A.K.; Labello, N.P.; Gao, J.; Sachs, J.N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. *J. Biol. Chem.* 2012, 287, 34979–34991.
44. Kanteev, M.; Goldfeder, M.; Chojnacki, M.; Adir, N.; Fishman, A. The mechanism of copper uptake by tyrosinase from Bacillus megaterium. *JBIC J. Biol. Inorg. Chem.* 2013, 18, 895–903.
45. Hassani, S.; Haghbeen, K.; Fazli, M. Non-specific binding sites help to explain mixed inhibition in mushroom tyrosinase activities. *Eur. J. Med. Chem.* 2016, 122, 138–148. [CrossRef] [PubMed]
46. Jung, H.J.; Noh, S.G.; Park, Y.; Kang, D.; Chun, P.; Chung, H.Y.; Moon, H.R. In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives. *Comput. Struct. Biotechnol. J.* 2019, 17, 1255–1264. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).