Merit-based Fusion of NLP Techniques for Instant Feedback on Water Quality from Twitter Text

Khubaib Ahmada, Muhammad Asif Ayubb, Kashif Ahmadc, Jebran Khanc, Nasir Ahmadd, Ala Al-Fuqahab
aDepartment of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan.bInformation and Computing Technology (ICT) Division, College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar.cInformation and Computing Technology (ICT) Division, College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha, Qatar.dDepartment of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea.

Abstract

This paper focuses on an important environmental challenge: namely, water quality by analyzing the potential of social media as an immediate source of feedback. The main goal of the work is to automatically analyze and retrieve social media posts relevant to water quality with particular attention to posts describing different aspects of water quality, such as watercolor, smell, taste, and related illnesses. To this aim, we propose a novel framework incorporating different preprocessing, data augmentation, and classification techniques. In total, three different Neural Networks (NNs) architectures, namely (i) Bidirectional Encoder Representations from Transformers (BERT), (ii) Robustly Optimized BERT Pre-training Approach (XLM-RoBERTa), and (iii) custom Long short-term memory (LSTM) model, are employed in a merit-based fusion scheme. For merit-based weight assignment to the models, several optimization and search techniques are compared including a Particle Swarm Optimization (PSO), a Genetic Algorithm (GA), Brute Force (BF), Nelder-Mead, and Powell’s optimization methods. We also provide an evaluation of the individual models where the highest F1-score of 0.81 is obtained with the BERT model. In merit-based fusion, overall better results are obtained with BF achieving an F1-score of 0.852. We also provide comparison against existing methods, where a significant improvement for our proposed solutions is obtained. We believe such rigorous analysis of this relatively new topic will provide a baseline for future research.

Keywords: Water Quality Analysis, NLP, BERT, RoBERTa, Fusion, PSO, Brute Force Search, Genetic Algorithms, Text Classification

1. Introduction

Over the last decade, social media outlets have been proven an effective source of communication and information dissemination. Their capabilities to engage large volumes of audience worldwide make them a preferred platform to discuss and convey concerns over different domestic and global challenges [1,2]. The literature already reports their effectiveness in a diversified set of societal, environmental, and technological topics, such as food security [3], discrimination and racism [4], hate speech and crime [5,6], public health [7], natural disasters [8], and technological conspiracies [9].

There have been also debates and discussions on air and water quality in social media outlets. In such discussions, generally, different topics, such as bad taste, color, and smell of drinking water, potential causes of the pollution, its impact on public health, and associated diseases, are discussed. It is noticed that, in their posts, social media users generally explicitly identify the regions having water-related issues along with the relevant information. Geo-location information could also be extracted from the meta-data associated with such posts. The geo-location or the regions identified in relevant posts along with water-related issues can help in several ways. For instance, this information could be used as valuable feedback by public authorities on water distribution networks. However, generally, several challenges are associated with the extraction of relevant information from such informal sources. For instance, it is possible that the posts containing relevant or similar keywords do not represent the actual debates on water quality. Manually filtering and analyzing large collections of social media posts is a tedious and time-consuming process.

Recently, Machine Learning (ML) and Natural Language Processing (NLP) techniques have shown outstanding capabilities in similar applications. We believe ML and NLP techniques could also be employed in this interesting important application by automatically analyzing and filtering water-related social media posts. To explore the potential of ML and NLP techniques in the domain, in this work, we propose a classification framework incorporating several pre-processing, data augmentation, classification, and fusion techniques. The pre-processing techniques allow cleaning the data by removing URLs and punctuation etc. The data augmentation, where we used a back translation scheme, serves two purposes. It not only increases our training set but also helped to balance the dataset by increasing the number of training samples in minority classes. For fusion, we employed both the naive fusion method by treating all the models equally as well as merit-based fusion schemes. In the merit-based fusion, five different weights selec-
tion/optimization techniques are used to assign weights to three different state-of-the-art architectures; namely, BERT, XML-RoBERTa, and LSTM, based on their performances. We also provide an evaluation of the individual models. We believe such rigorous analysis of the relatively new application will provide a baseline for future research.

The main contributions of the work can be summarized as follows.

- We explore a relatively new application; namely, water quality analysis in social media posts by proposing a complete framework starting from pre-processing, data augmentation, classification, and fusion techniques.
- We evaluate multiple state-of-the-art models both individually and jointly using several late fusion techniques.
- We also demonstrate how the performance of the classification framework improves by taking into account the performance of individual models in a late fusion scheme using five different weight selection and optimization techniques.

The rest of the paper is organized as follows: Section 2 provides an overview of the related work. Section 3 provides a detailed description of the proposed methodology and fusion techniques employed in this work. Section 4 provides the description of the dataset, evaluation metrics, and experimental results. Finally, Section 5 concludes the work.

2. Related Work

Being an important factor of a healthier life, water quality monitoring and analysis have always been a concern for public authorities. To this aim different strategies and sources of information, such as satellite imagery and crowd-sourcing platforms, are utilized. For instance, Galvin et al. proposed a mobile application; namely, Cyanobacteria Assessment Network (CyAN) to monitor, detect, and disseminate information about water quality in lakes using remotely sensed images. Similarly, Mohsen et al. employed remote sensing techniques to monitor and analyze the quality of the water of Lake Burullus in Egypt in satellite imagery. Satellite imagery has also been employed in several other interesting works for water quality analysis in lakes in different parts of the world. However, satellite imagery provides a bird’s eye view and is generally used for large water reservoirs, such as lakes and dams.

On the other hand, crowd-sourcing techniques help in obtaining more detailed, contextual, and geo-localized information. The literature already reports several interesting crowd-sourcing solutions for monitoring water quality. For instance, Rapousis et al. proposed QoWater, a client-to-server architecture-based mobile application allowing mobile users to give feedback on water quality. Similarly, Jakositz et al. proposed and conducted a competition-based crowdsourcing study for tap water quality monitoring. One of the main drawbacks of such platforms for crowd-sourcing is the limited number of users.

This limitation could be addressed with social media. Social media outlets, such as Facebook, Twitter, and Instagram, provide access to a large number of users. Such platforms could be utilized to provide instant feedback on water quality. However, extracting meaningful information from such informal sources is very challenging.

Thanks to the recent advancement in ML and NLP techniques, social media information could be automatically analyzed and filtered to extract relevant information. There are already some efforts in this direction. For instance, Lambert performed sentiment analysis on users’ feedback in social media posts to obtain their opinion and perception on tap water quality. Li et al., on the other hand, provide sentiment analysis on public opinions in social media on recycled water in China. Similarly, sentiment analysis of social media posts is also carried out by Do where some basic NLP techniques, such as Bag of Words (BoW) and Naïve Bayes, Bernoulli Naïve Bayes, and Logistical Regression classifiers are used.

More recently, water quality analysis in social media posts has also been introduced in a benchmark competition; namely, MediaEval. In the task, participants were asked to develop automatic tools that differentiate between relevant (i.e., water quality discussions) and irrelevant Tweetter posts. The task mainly focuses on tweet text, however, additional information in the form of images associated with the tweets and meta-data. In total, two teams, including our team, completed the tasks by introducing several interesting solutions. For instance, Hanif et al. proposed a multimodal solution incorporating both images and text. For visual content, a pre-trained model namely VGGNet is fine-tuned while for textual features a BERT model is fine-tuned on the dataset. The authors also submitted the results of the visual information-based solution only. However, the results indicate lower performances for both solutions. On the other hand, considering the quality of the textual and visual content, our team decided to focus on the textual information only. To this aim, three different NNs models; namely, BERT, RoBERTa, and a custom LSTM, are employed both individually and jointly in a naive fusion scheme by treating all the models equally.

However, we believe merit-based fusion schemes could better exploit the potential of the models by assigning weights to the models based on their performance.

3. Proposed Methodology

Figure 1 provides the block diagram of the proposed methodology. The proposed method can be roughly divided into three phases starting with a pre-processing and data augmentation phase where several strategies are used to clean and augment the data. After pre-processing, multiple NNs models are trained on the data. Finally, the classification scores obtained with the individual models are combined using several merit-based late-fusion schemes. In the next subsections, we provide a detailed description of each phase.
3.1. Pre-processing and Data Augmentation

In the pre-processing and data augmentation phase, we employed different strategies to clean and increase the number of training samples. As a first step, we cleaned the text by removing URLs, account handles, emojis, and unnecessary punctuation. After cleaning the data, we performed data augmentation using text translation technique; namely, back translation. The text translation approach naturally suits our application as the dataset is composed of both Italian and English tweets where Italian tweets are translated into English and added to the original training set. This technique helps in generating more training samples without disturbing the context of the data.

Data augmentation serves two purposes. Firstly, it increased our training set. Secondly, it helped in balancing the training set by increasing the minority class. Moreover, along with data augmentation, we also used an up-sampling technique to balance the dataset.

3.2. Model Training and Classification

In this work, we used three different state-of-the-art Neural Networks (NNs) architectures; namely, BERT [24], XLM-RoBERTa [25], and LSTM. In the case of BERT and XLM-RoBERTa, we fine-tuned existing pre-trained models while a customized model is trained for LSTM. The details of the models are provided below.

- **BERT-based Solution**: BERT is a multi-layer encoder. In contrast of conventional NLP models, BERT relies on bi-directional training mechanism by taking into account both the previous and next tokens. Such training capabilities allow it to better extract contextual information. In this work, we rely on a pre-trained BERT model, which is fine-tuned on the water quality analysis dataset. The model is composed of 12 layers, 12 attention heads, and 110 million parameters. We note that necessary pre-processing of the cleaned training data is carried out, using TensorFlow libraries, to bring the data in the required form to be feed into the model. Since our dataset is composed of two classes only (i.e., binary classification task), we used Binary Cross entropy loss function along with the Adaptive Moments (Adam) optimizer. Table 1 summarizes the parameters setting of the BERT model used in this work.

Attribute	Value
Features	768
Number of Layers	12
Fully Connected	2 (fully connected feed-forward layers)
Cost Function	Binary crossentropy
Number of Classes	2
Training Solver	Adam
Mini-Batch Size	32
Dropout	0.1
Validation data	yes

- **XLM-RoBERTa-based Solution**: XLM-RoBERTa is a multilingual version of RoBERTa. RoBERTa itself is a modified version of BERT. The model is trained on a large-scale dataset covering text from 100 different languages using Mask Language Modeling (MLM) objective. The multi-lingual nature of the model makes it a better choice for our application.

As per the requirements of the model, the input text is tokenized before feeding into the model. The model is then fine-tuned on the water quality analysis dataset using Adam optimizer with a binary cross-entropy loss function. A summary of the parameter settings of the model is provided in Table 2.

- **LSTM-based Solution**: Our third model is based on LSTM architecture. LSTM is a Recurrent Neural Network (RNN) with better memorizing pattern capabilities, which makes it a better choice for text classification compared
to classical ML algorithms, such as decision trees, Random Forests (RF), and Support Vector Machines (SVMs).

In this work, we used a customized model composed of three layers including an input, LSTM, and output layer. Our model is composed of 491,713 trainable parameters.

A summary of the parameter settings of the model is provided in Table 3.

Attribute	Value
Features	1024
Number of Layers	36
Cost Function	Binary crossentropy
Number of Classes	2
Training Solver	Adam
mini-batch size	32
Dropout	0.1
Epochs	20
Token Max Length	512
Validation data	yes

3.3. Fusion

For the fusion, we mainly rely on late fusion schemes where both naive and merit-based fusion methods are employed. Our baseline method is based on a simple aggregation of the classification scores obtained with all the models. In merit-based fusion, we deploy different optimization and search techniques to optimize the weights assigned to the models in fusion. We note that in the current implementation, we use a linear combination of the models in the late fusion using Equ. 1.

\[
F_c = W_1C_1 + W_2C_2 + \ldots + W_nC_n
\]

Here \(F_c\) represents the combined classification score obtained as an outcome of fusion while \(w_n\) denotes the weight assigned to \(n\)th model whose score is represented by \(C_n\). In our case, \(n = 3\).

In the case of naive baseline fusion, all the models are assigned equal weights (i.e., \(W_1 = W_2 = W_n = 1 = 1/N\)). In the merit-based fusion, on the other hand, values of the weights are selected based on the optimization/search methods used in this work. The details of the fusions methods used in this work are provided below.

3.3.1. Particle Swarm Optimization (PSO) Based Fusion

The use of PSO based method is motivated by its promising performance in similar tasks [26, 27, 28]. The key concept of PSO is inspired by the social behavior of birds flocking and fish schooling, where the idea is to get benefit from the experience of each other in finding the best solution. To this aim, it starts with an arbitrary population of the possible solutions, which are termed as particles, and tries to iteratively optimize the potential solutions to satisfy a given constraint provided in the objective function. To find the best global minimum, the algorithm keeps track of the current and best position and velocity of each particle at each iteration, which are then updated in successive iterations.

In this work, each combination of weights is considered as a potential solution whereas our objective function is based on the accumulative error (\(E_{acc}\)), computed by Equ. 2.

\[
E_{acc} = 1 - A_{acc}
\]

Here \(A_{acc}\) represents the cumulative accuracy computed on the validation set using Equ. 3. In the equation, \(p_n\) represents the probability/score obtained with the \(n\)th model while \(x(n)\) is the weight to be assigned to the \(n\)th model.

\[
A_{acc} = x(1) * p_1 + x(2) * p_2 + \ldots + x(n) * p_n
\]

It is important to mention that PSO is a heuristic solution, and the solution is not guaranteed to be optimal. However, the literature indicates that the solutions found by PSO are generally close to the optimal one. Table 4 provides a summary of the pros and cons of PSO.

3.3.2. Genetic Algorithm Based Fusion

Genetic Algorithm, which is inspired by Charles Darwin’s theory of natural evolution, have also been widely explored in the literature for similar tasks involving weight selection and optimization [26]. The basic idea behind GA is to incorporate the natural evaluation phenomena in search/search problems by selecting the best one among the potential solutions at each iteration.

The GA-based search/search process is composed of several phases. The process starts with a random population of individuals/potential solutions (i.e., randomly selected weight combinations). The algorithm then searches for the fittest individuals (i.e., weight combination) by evaluating the individuals/potential solutions against fitness criteria provided in the fitness function, iteratively. The process continues by employing crossover and mutation operations until the population convergences (i.e., no further improvement is possible). Crossover and mutation are key operations directly contributing to the performance of the algorithm. The former aims to push the population towards local minimum/maximum and the latter aims to
explore the best among the candidate local minimum/maximum solutions.

In this work, similar to PSO-based fusion, our fitness criterion is based on the accumulated error (E_{acc}), which is computed on a separate validation set using Eq. 2.

3.3.3. Brute Force Based Fusion

The BF search, which is also known as exhaustive search, tries all the possible solutions to find a satisfactory one for an underlying problem. The BF method brings several advantages. For instance, it guarantees the best solution by considering all the possible solutions before choosing the best one. Moreover, a simple working mechanism makes it a preferred solution for small problems in a diversified list of applications. However, on the other hand, there are several limitations of the method. For instance, the complexity of the method is very high in high-dimensional applications. Moreover, it takes a lot of time to find all the possible solutions for a high-dimensional application.

In this work, we used the method to find the best combination of the weights assigned to the models that minimize the classification error. This method suits our task as we have only three models and the method needs to find very few combinations for the selection of the best combination. In this work, we used an open-source Python library, namely, SciPy for the implementation of the algorithm, which aims to find the grid point having the lowest value of the objective function (i.e., cumulative error defined by equation 2).

3.3.4. Powell’s Method Based Fusion

In this method, we rely on the evolutionary Powell’s method for the optimization of the weights to be assigned to the individual models during fusion. The method is inspired by the original method [29], however, a stochastic element is introduced. The method aims at global minima of the objective function, which is based on an cumulative error in our case.

The algorithm works in several steps. The process starts by randomly selecting and evaluating few points/solutions. In the second step, a list of parameters are selected in random order. In the third step, a portion of the previously-evaluated points/solutions is used as parents by ensuring the selection of points with the lowest error. The algorithm then looks for the children in the next generation. Finally, all the children are evaluated in the fifth step and the process is repeated again from the third step. It is important to mention that, while searching for the minimum, the algorithm moves in one direction only until it finds the local minima. The algorithm moves in the other direction once the minimum is found in the current direction.

Similar to the other methods used in this work, our objective/cost function is based on the cumulative error defined by Eq. 2. For the implementation of this method, we used a Python open-source library, namely, SciPy.

3.3.5. Nelder–Mead Based Fusion

Nelder-Mead algorithm, also known as a pattern search, is considered as one of the suitable algorithms for both one-dimensional and multidimensional optimization problems [30]. The algorithm is based on the concept of a simplex (i.e., a special polytope of $n + 1$ vertices in n dimensions). This implies that the algorithm produces and keeps a set of $n + 1$ dimensions for a n dimensional task. The algorithm then computes the values of the objective function for each point to find and replace one of the oldest points by a new one, iteratively. In our case, $n = 3$, and the objective function is based on the cumulative error defined by Eq. 2. For the implementation of the method, we used a Python open-source library, namely, SciPy.

4. Results and Analysis

4.1. Dataset

For the evaluation of proposed solutions, we used a large-scale dataset introduced in a benchmark competition task namely “WaterMM: Water Quality in Social Multimedia” MediaEval 2021 [21]. The dataset is composed of a large collection of Twitter tweets tweeted in English and Italian from May 2020 to April 2021. The data is collected using English and Italian keywords related to water quality, color, pollution, and water-related illnesses. The main challenge lies in differentiating among water quality related tweets and irrelevant tweets containing terms, such as water, floods, etc. Table ?? provides some sample tweets form both classes.

The dataset is manually annotated by analyzing the tweets under the guidelines provided by the authorities of Eastern Alps River Basin District, who are responsible for hydrogeological defense in North-East Italy. Each tweet is annotated as either relevant or irrelevant to water quality. In total, the dataset is comprised of 10,000 tweets. The training and test sets are already separated by the task organizers. The training set is comprised of 8,000 tweets and the test set covers 2,000 tweets. The training set is imbalanced containing only around 17.18% relevant tweets, which poses challenges in training AI models.

It is important to mention that the dataset also provides some images associated with tweets. However, images are associated with very few tweets. A total of 960 images are covered in the dataset, where the majority of the images are irrelevant to the task. Figure ?? provides some sample images from the dataset. Considering the quantity and quality of the images, we did not consider visual contents in our experiments.

4.2. Evaluation Metrics

The evaluation of the proposed solutions is carried out in terms of three different metrics; namely, precision, recall, and F1-score. These metrics are also used in the benchmark competition where the dataset was introduced.

4.3. Experimental Results

In this section, we provide a detailed description and analysis of the experimental results. We also provide comparisons against the methods proposed in the benchmark competition.
Table 4: A summary of the pros and cons of the weights selection/optimization methods used in this work.

Method	Pros	Cons
PSO	- Easy to understand and implement	- May easily fall and stuck into local minima
	- Efficient and insensitive to scaling	- Low convergence rate
	- Fewer parameters	- It is a heuristic solution and does not guarantee a global optimal solution
	- Suitable for concurrent parameters	
GA	- Robust to local minima	- Computationally expensive
	- Can be easily parallelized for concurrent processes	
BF	- Provides a guaranteed best solution	- Its complexity increases with an increase in the dimensionality of the problem
	- Applicable to several problems from different domains	- Very slow
	- Simple to understand and implement	
	- Better suited for small problems	
Powell’s Method	- The objective function does not need differentiable	- May not find local minima in many iterations
Nelder–Mead	- Works with function evaluations only	- Not efficient
		- May take a large number of iterations without much changes in function value
Figure 2: Sample images from the dataset.
Table 5: Some sample tweets from the dataset

Relevant Samples	Irrelevant Samples
“Alta concentrazione di cloro, acqua non potabile nella zona di San Pietro Lametino.” (Translation: High concentration of chlorine, non-drinking water in the San Pietro Lametino area)	
“PPPP Shame please supply water #TharNeedsWaterChannel”	“Neanche le 7 ed ho giA. cambiato una gomma ad un collega sul raccordo sotto l’acqua”. (Translation: Not even 7 and I have already changed a tire to a colleague on the fitting under the water.)
“I out of every 3 people on our planet do not have access to clean water.”	“Someone just threw a water bottle towards PPD”.
“Se l’occidente avesse problemi di acqua potabile, non ci metteremmo su secondi a depurare l’acqua del mare. Io stesso bisognerebbe fare con i paesi del sud del mondo.” (Translation: If the West had problems with drinking water, it would not take us seconds to purify the sea water. the same should be done with the countries of the southern hemisphere.)	
“Almeno il 15% delle terre coltivate del Planeta subisce una carenza idrica non dovuta a vincoli idrologici ma causata da unaA€” (Translation: At least 15% of the planet’s cultivated land suffers from a water shortage not due to hydrological constraints but caused by a ...)	
“a cena stasera ho un vegetariano e una che A’ a dieta e non mangia carboidrati e legumi QUIINDI mangeremo una bottiglia di acqua naturale.” (Translation: for dinner tonight I have a vegetarian and one who is on a diet and does not eat carbohydrates and legumes SO we will eat a bottle of still water.)	
“Neyyar water supply project faces more delays.”	“frosty water bottle.”
“Grazie al monitoraggio della gravitA. sulla Terra A’ possibile stimare la situazione dell’acqua dolce a livello planetario e prA.” (Translation: Thanks to the monitoring of gravity on Earth, it is possible to estimate the situation of fresh water at the planetary and prA€ level.)	
“RT @ContrattiFiume: Che cosa finisce nelle nostre #acque? E con quali impatti su #salute e #ambiente? Utilizzati come discariche dove smaltA €” (Translation: RT ContrattiFiume: What ends up in our #waters? And with what impacts on #health and #environment? Used as landfills where glazedA.)	
“Acqua di nuovo potabile a Cabbio e Muggio https://t.co/iIVXhdj6iH.” (Translation: Drinking water again in Cabbio and Muggio https://t.co/iIVXhdj6iH.)	
“Acqua di nuovo potabile a Cabbio e Muggio https://t.co/iIVXhdj6iH.” (Translation: Drinking water again in Cabbio and Muggio https://t.co/iIVXhdj6iH.)	
“Serra, ordinanza del commissario: non potabile là acqua prove-niente dai serbatoi Scorciatinaà. e Timpone Tondoa. #Calabria #calabrianotizie #acqua.” (Translation: Serra, order of the commissioner: the water from the à Scorciatinaà and Timpone Tondoà tanks is not drinkable #Calabria #calabrianotizie #water.)	
“all ever drank a water bottle too fast and almost drown yourself.”	

4.3.1. Evaluation of the Individual Models

Table 6 provides the experimental results of the individual models in terms of precision, recall, and F1-score. As can be seen, overall better results are obtained with the BERT model while surprisingly the least score is obtained with RoBERTa. However, there is no single winner in terms of all of the three metrics. For instance, the highest F1-score is obtained with the BERT model while LSTM achieved the highest score in terms of recall. The lower F1-Score for LSTM compared to BERT indicates a higher number of false positive samples. This variation in these metrics is an indication of the variations in the performances of these models on both classes, which provides the basis for our fusion-based experiments.

Methods	Precision	Recall	F1-Score
BERT	0.833	0.790	0.811
XLM-RoBERTa	0.81	0.579	0.687
LSTM	0.886	0.640	0.743

4.3.2. Evaluation of the Fusion Methods

Table 7 provides experimental results of the fusion experiment. In this experiment, we evaluated several fusion methods including a naive method by treating all the models equally and a merit-based fusion strategy where five different weight selec-
Table 7: Evaluation of fusion schemes in terms of micro precision, recall, and F1-score.

Methods	Precision	Recall	F1-Score
Baseline (Equal Weights)	0.873	0.760	0.813
PSO	0.781	0.916	0.843
GA	0.791	0.895	0.840
Brut Force	0.810	0.900	0.852
Powell’s Method	0.810	0.897	0.851
Nelder–Mead Method	0.862	0.807	0.834

As can be seen, interestingly, no significant improvement in the performance for the naive baseline fusion scheme over the best-performing individual model has been observed. One of the possible reasons could be the low-performing model (i.e., XML-RoBERTa) as it simply aggregates the classification scores of all the models. These results provide basis for our merit-based fusion where weights are assigned to the models based on their performance in the first experiment.

In merit-based fusion, significant improvement in terms of F1-score is obtained with all the methods over the best-performing individual model and the naive baseline fusion method. This emphasizes the fact that merit-based weights should be assigned to contributing models in fusion.

As far as the performance of the individual weights selection strategies for the merit-based fusion is concerned, better results are obtained with BF based method having an improvement of .001 and .009 over the Powell and PSO based fusion methods, respectively. One of the potential causes of better results of BF is its ability of providing a guaranteed best solution, where it first searches for all possible combinations and pick the best weight combination that maximizes the performance. The literature suggests that the complexity of BF increases with an increase in the dimensionality and consumes more computation power. However, in this work, we are considering just three models (i.e., dimension = 3) and thus the method is better suited for this particular application in the current implementation. It is important to note that the difference in the performances of BF and other competing methods, such as PSO, GA, and Powell’s method is negligible.

4.3.3. Comparison against Existing Solutions

We also provide comparisons against existing works proposed for the task in a benchmark competition; namely, MediaEval 2021 [21]. In total, two teams managed to complete the task. Our team also participated in the competition and obtained the highest scores. As can be seen in Table 8, all the merit-based fusion techniques employed in this work obtained significant improvements over the existing solutions. Our best performing merit-based method; namely, BF-based fusion, obtained an improvement of 48.1% over the method proposed by Hanif et al. [22]. On the other hand, it obtained an improvement of 4.1% over the method proposed by our team [23] for the task in the competition, where we proposed a naive fusion method by treating all the models equally.

The significant improvement in the performance of the water quality analysis framework indicates the significance of merit-based fusion.

4.4. Lessons Learned

The lessons learned during this work can be summarized as follows.

- Recently, water quality analysis got the attention of the research community, and several interesting solutions incorporating different sources of information have been proposed.
- Crowd-sourcing has been one of the potential solutions to obtain relevant and geo-localized feedback on water quality, however, it is a tedious and time-consuming process to obtain a sufficient number of participants. Social media outlets provide a better platform to involve a large number of volunteers in crowd-sourcing for water quality analysis.
- As demonstrated in this work, ML and NLP techniques allow to automatically analyze and extract relevant information from large collections of social media posts.
- The classification results are significantly improved by jointly employing the state-of-the-art models. However, individual models’ performances need to be considered in assigning weights to the models in fusion.
- The BF, though a computation-intensive method, obtained better results by searching all possible combinations of weights and choosing the one with the best results. However, in applications with fewer models (as we have in our application) the computational complexity is negligible.
- The difference in the performances of BF and other competing methods, such as PSO, GA, and Powell’s method is negligible.

5. Conclusions and Future Work

In this paper, we proposed an ensemble framework for water quality analysis in social media posts. To this aim, different preprocessing, data augmentation, classification, and fusion strategies are analyzed and evaluated. Though the social media posts contain images, we focused on textual information only. Our
choice of using textual information only is mainly motivated by the quality and quantity of the images associated with the posts. Overall, we used three state-of-the-art NNs models individually and jointly in both naive and merit-based fusion methods. During the experiments, we observed better performance for merit-based fusion schemes, where weights were assigned to models based on their performance. This emphasizes the assumption that individual performances of the models should be considered in fusion.

In the future, we aim to incorporate the additional information available in the form of images and meta-data to further enhance the performance of the framework. However, the use of the additional information especially the images associated with social media posts is subject to the availability and quality of the images. To explore this aspect of the problem, we also aim to collect a collection of social media posts containing images along with the text.

References

[1] K. Ahmad, K. Pogorelov, M. Riegler, N. Conci, P. Halvorsen, Social media and satellites: Disaster event detection, linking and summarization, MULTIMEDIA TOOLS AND APPLICATIONS 78 (3) (2019) 2837–2875.
[2] J. Boddy, L. Domineilli, Social media and social work: The challenges of a new ethical space, Australian Social Work 70 (2) (2017) 172–184.
[3] M. Ofori, O. El-Gayar, Drivers and challenges of precision agriculture: a social media perspective, Precision Agriculture 22 (3) (2021) 1019–1044.
[4] A. Ben-David, A. M. Fernández, Hate speech and covert discrimination on social media: Monitoring the facebook pages of extreme-right political parties in spain, International Journal of Communication 10 (2016) 27.
[5] A. Matamoros-Fernández, J. Farkas, Racism, hate speech, and social media: A systematic review and critique, Television & New Media 22 (2) (2021) 205–224.
[6] K. Müller, C. Schwarz, Fanning the flames of hate: Social media and hate crime, Journal of the European Economic Association 19 (4) (2021) 2131–2167.
[7] S. B. Naem, R. Bhatti, A. Khan, An exploration of how fake news is taking over social media and putting public health at risk, Health Information & Libraries Journal 38 (2) (2021) 143–149.
[8] N. Said, K. Ahmad, M. Riegler, K. Pogorelov, L. Hassan, N. Ahmad, N. Conci, Natural disasters detection in social media and satellite image: a survey, Multimedia Tools and Applications 78 (22) (2019) 31267–31302.
[9] A. Bodagi, J. Oliveira, The theater of fake news spreading, who plays which role? a study on real graphs of spreading on twitter, Expert Systems with Applications 189 (2022) 116110.
[10] N. Rapousis, M. Katsarakis, M. Papadopoliou, Qowater: A crowd-sourcing approach for assessing the water quality, in: Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks, 2015, pp. 1–6.
[11] M. Galvin, B. Schaeffer, R. Parmar, K. Wolfe, J. M. Johnston, Cyanobacteria assessment network (cyan).
[12] A. Mohsen, M. Elshemy, B. Zeidan, Water quality monitoring of lake burullus (egypt) using landsat satellite imageries, Environmental Science and Pollution Research 28 (13) (2021) 15687–15700.
[13] J. R. Fisher, E. A. Acosta, P. J. Dennedy-Frank, T. Kroeger, T. M. Boucher, Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality, Remote Sensing in Ecology and Conservation 4 (2) (2018) 137–149.
[14] M. Bonansea, M. Ledesma, C. Rodriguez, L. Pinotti, Using new remote sensing satellites for assessing water quality in a reservoir, Hydrologicales sciences journal 64 (1) (2019) 34–44.
[15] S. Jakosits, L. Pillsbury, S. Greenwood, M. Fahnestock, B. McGreavy, J. Bryce, W. Mo, Protection through participation: Crowdsourced tap water quality monitoring for enhanced public health, Water research 169 (2020) 115209.
[16] A. G. Nelson Mix, A. Haas, Social media monitoring for water quality surveillance and response systems, AWWA water science 112 (8) (2020) 44.
[17] H. Zheng, Y. Hong, D. Long, H. Jing, Monitoring surface water quality using social media in the context of citizen science, Hydrology and Earth System Sciences 21 (2) (2017) 949–961.
[18] L. H. Lambert, C. Bir, Evaluating water quality using social media and federal agency data, Journal of Water and Health 19 (6) (2021) 959–974.
[19] L. Li, X. Liu, X. Zhang, Public attention and sentiment of recycled wa-
ter: Evidence from social media text mining in china, Journal of Cleaner Production 303 (2021) 128614.
[20] H. Do, Mining social media to assess public perception of water quality, Ph.D. thesis, Duke University (2021).
[21] S. Andreassis, I. Gialampoukidis, A. Bozas, A. Mourtzidou, R. Fiorin, F. Lombardo, A. Karakostas, D. Norbiato, S. Vrochidis, M. Ferri, I. Kom-
patsiaris, Watermm:water quality in social multimedia task at mediaeval 2021, in: Proceedings of the MediaEval 2021 Workshop, Online, 2021.
[22] M. Hanif, A. Khawar, M. A. Tahir, M. Rafi, Deep learning based frame-
work for classification of water quality in social media data, in: Proceed-
ings of the MediaEval 2021 Workshop, Online, 2021.
[23] M. A. Ayub, K. Ahmad, K. Ahmad, N. Ahmad, A. Al-Fuqaha, Nlp tech-
iques for water quality analysis in social media content, in: Proceedings of the MediaEval 2021 Workshop, Online, 2021.
[24] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805.
[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretrain-
ing approach, arXiv preprint arXiv:1907.11692.
[26] K. Ahmad, K. Khan, A. Al-Fuqaha, Intelligent fusion of deep features for improved waste classification, IEEE Access 8 (2020) 96495–96504.
[27] K. Ahmad, M. L. Mehkalhi, N. Conci, F. Melgani, F. D. Natale, Ensemble of deep models for event recognition, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 14 (2) (2018) 1–20.
[28] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, R. G. Harley, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Transactions on Evolutionary Computation 12 (2) (2008) 171–195.
[29] M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The computer journal 7 (2) (1964) 155–162.
[30] S. Singer, J. Nelder, Nelder-mead algorithm, Scholarpedia 4 (7) (2009) 2928.