Taxonomic notes on the tribes Tillomorphini Lacordaire, 1868 and Clytellini Miroshnikov, 2014, stat.n., with descriptions of new taxa and a third addition to review of the genus Clytellus Westwood, 1853 (Coleoptera: Cerambycidae: Cerambycinae)

Таксономические заметки по жукам-древосекам триб Tillomorphini Lacordaire, 1868 и Clytellini Miroshnikov, 2014, stat.n. с описанием новых таксонов и третьим дополнением к обзору рода Clytellus Westwood, 1853 (Coleoptera: Cerambycidae: Cerambycinae)

ALEXANDR I. MIROSHNIKOV
A.I. Мирошников

KEY WORDS: Coleoptera, Cerambycidae, Tillomorphini, Clytellini, new status, new genus, new combination, Clytellus, new species, Borneo.

ABSTRACT. The rank of the monotypic subtribe Clytellina Miroshnikov, 2014 established within the tribe Tillomorphini Lacordaire, 1868 is elevated to the tribal level, Clytellini stat.n. The type genus of Tillomorphini, Tillomorpha Blanchard in Gay, 1851 is divided into two separate genera and a new genus, Neotillomorpha Miroshnikov, gen.n. is described. These genera are differ very distinctly from each other by the body shape, the structure of the head, antennae, palpi, pronotum, elytra, pro-, meso- and metasterna, metatarsi, and some other traits. The following new combination is established: Neotillomorpha myrmicaria (Fairmaire et Germain, 1859), comb.n. A new species, Clytellus konstantinovi Miroshnikov, sp.n. is described from Borneo. New data on Clytellus laosicus Gressitt et Rondon, 1970 and C. jenisi Miroshnikov, 2015, including those expanding their distribution area, are presented. A detailed bibliography is given.

REZЮМÈ. Ранг монотипической подтрибы Clytellina Miroshnikov, 2014, установленной в составе трибы Tillomorphini Lacordaire, 1868, повышен до уровня трибы, Clytellini stat.n. Типовой род Tillomorphini — Tillomorpha Blanchard in Gay, 1851 разделен на два отдельных рода и описан новый род Neotillomorpha Miroshnikov, gen.n. Эти роды ясственно отличаются друг от друга формой тела, строением головы, усиков, щупиков, переднеспинки, надкрыльй, ворсом, мезо- и метастренула, задних лапок и некоторыми другими признаками. Установлена следующая новая комбинация: Neotillomorpha myrmicaria (Fairmaire et Germain, 1859), comb.n. Описан новый вид Clytellus konstantinovi Miroshnikov, sp.n. с Борнео. Представлены новые данные о Clytellus laosicus Gressitt et Rondon, 1970 и C. jenisi Miroshnikov, 2015, в том числе расширяющие их ареал. Дана подробная библиография.

Introduction

The tribe Tillomorphini Lacordaire, 1868 is distributed in both the Old and New Worlds and contains more than 30 genera [Tavakilian, Chevillotte, 2020), taking into account some recent taxonomic changes [Miroshnikov, 2020]. At the same time, as noted before [Miroshnikov, 2014], the tribe requires a detailed revision.

In this paper, the suprageneric classification of the tribe, proposed by Miroshnikov [2014], is being clarified, while the type genus Tillomorpha Blanchard in
Gay, 1851 is divided into two separate genera. In addition, a new species of the genus *Clytella* Westwood, 1853 is described here and new data on some little-known species of this genus are given.

The material used in this paper comes from the following institutional and private collections: ACM — American Coleoptera Museum (James Wappes) (San Antonio, Texas, USA); CAM — coll. Alexandr Miroshnikov (Krasnodar, Russia); CAM — coll. Müllner, 2014: 142), it was noted that "T. myrmicaria differs from *T. lineoligera* strongly enough by a number of features and possibly deserves a new generic-level taxon of its own, being considered here within the genus *Tillomorpha* but provisionally".

Currently, after additional research, I have come to the conclusion that it is justified to establish a separate new genus for *Tillomorpha myrmicaria* Fairmaire et Germain, 1859 (see below).

Tillomorpha lineoligera Blanchard in Gay, 1851

Figs 1–3, 6, 9, 11, 13.

Tillomorpha lineoligera Blanchard in Gay, 1851: 483. Type locality: "Chili: las cercanias de Valparaiso y en Illapel" (ac-ording to the original description). Blanchard, 1854: pl. 29, figs 4a-f; White, 1855: 290; Fairmaire, Germain, 1859: 503; Strauch, 1861: 131; J. Thomson, 1861: 229; Chevolot, 1862: 526; J. Thomson, 1864: 195; Lacordaire, 1869: 91; Gemminger, 1872: 2942; Bates, 1885: 59; Philippi, 1887: 774; Aurivillius, 1912: 421; Blackwelder, 1946: 583; Cerda, 1986: 35; Solerice-ns, Elgueta, 1989: 103; Barriga et al., 1993: 72; Monné, 1993: 77; Napp, 1994: 279; Monné, Giesbert, 1995: 125; Arias, 2000: 160; Monné, 2005: 554; Monné, Hovore, 2005: 134; Barriga, Cepeda, 2007: 9; Lingafelter, Nears, 2007: 179; Monné et al., 2007: 141; Monné, Bezark, 2011: 171; Monné, 2012: 53; Bezark, Monné, 2013: 177; Miroshnikov, 2014: 142, 201, figs 1–3; Bezark, 2016: 179; Monné, 2020: 832.

Tillomorpha voini Monné, 1993: 77; Monné, 2005: 554; Monné, Hovore, 2005: 134; Monné et al., 2007: 141; Barriga, Cepeda, 2007: 9 (syn. pro *Tillomorpha lineoligera*).

Tillomorpha lineoligera Blanchard in Gay, 1851

Figs 1–3, 6, 9, 11, 13.

Tillomorpha lineoligera Blanchard in Gay, 1851: 483. Type locality: "Chili: las cercanias de Valparaiso y en Illapel" (ac-ording to the original description). Blanchard, 1854: pl. 29, figs 4a-f; White, 1855: 290; Fairmaire, Germain, 1859: 503; Strauch, 1861: 131; J. Thomson, 1861: 229; Chevolot, 1862: 526; J. Thomson, 1864: 195; Lacordaire, 1869: 91; Gemminger, 1872: 2942; Bates, 1885: 59; Philippi, 1887: 774; Aurivillius, 1912: 421; Blackwelder, 1946: 583; Cerda, 1986: 35; Solerice-ns, Elgueta, 1989: 103; Barriga et al., 1993: 72; Monné, 1993: 77; Napp, 1994: 279; Monné, Giesbert, 1995: 125; Arias, 2000: 160; Monné, 2005: 554; Monné, Hovore, 2005: 134; Barriga, Cepeda, 2007: 9; Lingafelter, Nears, 2007: 179; Monné et al., 2007: 141; Monné, Bezark, 2011: 171; Monné, 2012: 53; Bezark, Monné, 2013: 177; Miroshnikov, 2014: 142, 201, figs 1–3; Bezark, 2016: 179; Monné, 2020: 832.

Tillomorpha voini Monné, 1993: 77; Monné, 2005: 554; Monné, Hovore, 2005: 134; Monné et al., 2007: 141; Barriga, Cepeda, 2007: 9 (syn. pro *Tillomorpha lineoligera*).
and very well-expressed ocelli, as in Fig. 10; genae relatively short; antennae slender, moderately long, as in Figs 4–5; antennal tubercles weakly developed.

Prostomum of a peculiar shape (see Diagnosis above), strongly shiny, as in Figs 4, 8, 10; with a very small, irregular, very sparse punctuation and with individual, more or less rough punctures, sometimes with gentle dense wrinkles; at base and near apex with a distinct scabrous sculpture.

Scutellum small, widely rounded apically.

Elytra in basal part with a small and rough, dense, scabrous punctuation, as in Figs 4–5; on disc at apex very distinctly elevated, as in Fig. 7; each elytron with an eburneous, distinctly raised, glabrous, oblique fascia in the middle, as in Figs 4, 7, 8.

Prosternal process very narrow between procoxae, as in Fig. 12; mesosternal process narrow between mesocoxae, as in Fig. 12; metasternum quite long, not less than 1.8 or 1.6 times as long as mesosternum and first (visible) abdominal sternite, respectively, as in Fig. 5.

First metatarsomere strongly elongate, as in Figs 4–5, 8.

Body moderately compressed dorsoventrally, almost entirely shiny, as in Figs 4–5, 7, dorsally without erect setae.

Head at eye level distinctly longer than all following metatarsomeres, as in Figs 4–5, 8, with more or less distinct, partly unclear, irregular, in places sparse or very sparse punctuation; eyes strongly convex, as in Fig. 14; temples relatively weakly narrowed backwards, as in Figs 4–5; antennal bases moderately widely spaced, thereby shortest distance between antennal cavities significantly shorter than distance between inner margins of lower lobes of eyes, as in Fig. 14; antennomeres 5 longest, clearly longer than antennomere 1, as in Figs 4, 8; maxillary palpi strongly developed, especially so in male, as in Figs 10, 14.

Prosternum in profile very clearly curved, as in Fig. 10;

Elytra moderately elongate, with very well-developed, widely rounded lateral tubercles, mostly with a gentle sculpturing, as in Figs 4, 8, 10; on disc strongly convex, dorsally barely constricted in front of base, as in Fig. 10.

Elytra in basal part with a coarse and very coarse sparse punctuation, as in Figs 4, 7–8; on disc at base very distinctly elevated, as in Fig. 7; each elytron with an eburneous, distinctly raised, glabrous, oblique fascia in the middle, as in Figs 4, 7–8.

Body strongly compressed dorsoventrally, dull dorsally, as in Figs 1–3, 6, and ventrally covered by long, erect and suberect setae.

Head at eye level subequal to prostomum at apex, as in Figs 1–3, mostly coarsely alveolate-punctate, at least so in front and dorsally; eyes weakly convex, as in Fig. 13; temples relatively weakly narrowed backwards, as in Figs 1–3; antennal bases very widely spaced, thereby shortest distance between antennal cavities subequal to distance between inner margins of lower lobes of eyes, as in Fig. 13; antennomere 1 strongly elongate, longest, clearly longer than antennomere 5, as in Figs 1–2; maxillary palpi short, as in Figs 3, 9, 13.

Prosternum at base very clearly narrower than at apex, with barely expressed lateral tubercles, entirely with a distinctly scabrous sculpture, as in Figs 1–2, 9, on disc barely convex, dorsally quite strongly constricted in front of base, as in Fig. 9.

Elytra in basal part with a small and rough, dense, scabrous punctuation, as in Figs 1–2, 6; on disc at base almost flat, as in Fig. 6; each elytron with a narrow, oblique fascia in the middle, being formed only by dense, recumbent, white setae or, in addition, by a more or less light, partly brownish coloration of integument, but not a raised surface, as in Figs 1–2, thereby a shorter narrow fascia in basal third of the same structure as middle fascia, but it is directed obliquely downward to suture, as in Figs 1–2.

Prosternal process moderately narrow between procoxae, as in Fig. 11; mesosternal process quite wide between mesocoxae, as in Fig. 11; metasternum moderately long, not more than 1.6 or 1.2 times as long as mesosternum and first (visible) abdominal sternite, respectively, as in Fig. 3.

First metatarsomere moderately long, as in Figs 2–3.
Figs 1–5. Tillomorpha and Neotillomorpha (gen.n.) spp., habitus, dorsal and ventral views: 1–3 — *T. lineoligera*; 4–5 — *N. myrmicaria* comb.n. (1 — photograph by Alexander Konstantinov).

Рис. 1–5. Tillomorpha и Neotillomorpha (gen.n.) spp., общий вид, сверху и снизу: 1–3 — *T. lineoligera*; 4–5 — *N. myrmicaria* comb.n. (1 — фотография А. Константинова).
Figs 6–10. Tillomorpha and Neotillomorpha (gen.n.) spp.: 6, 9 — *T. lineoligera*; 7–8, 10 — *N. myrmicaria* comb.n.; 6–7 — habitus, lateral view; 8 — habitus, dorsal view; 9–10 — head and prothorax, lateral view (8 — photograph by Alexander Konstantinov).

Рис. 6–10. Tillomorpha и Neotillomorpha (gen.n.) spp.: 6, 9 — *T. lineoligera*; 7–8, 10 — *N. myrmicaria* comb.n.; 6–7 — общий вид, сбоку; 8 — общий вид, сверху; 9–10 — голова и переднегрудь, сбоку (8 — фотография А. Константинова).
Holzschuh, 2019a, b; Botero et al., 2020; Heffern et al., 2020; Vlasák, Santos-Silva, 2020; Miroshnikov, 2020], showed the stability and reliability of all the previously noted important differences between the subtribes.

Taking into account the results of these studies and a diverse complex of taxonomically significant diagnostic features characteristic of each of the subtribes [Miroshnikov, 2014], currently, it seems quite obvious the expediency of

Figs 11–14. Tillomorpha and Neotillomorpha (gen.n.) spp.: 11, 13 — *T.* lineoligera; 12, 14 — *N.* myrmicaria comb.n.; 11–12 — pro- and mesosterna; 13–14 — head, frontal view.

Рис. 11–14. Tillomorpha и Neotillomorpha (gen.n.) spp.: 11, 13 — *T.* lineoligera; 12, 14 — *N.* myrmicaria comb.n.; 11–12 — прок- и мезостернум; 13–14 — голова, спереди.
Figs 15–18. Clytellus konstantinovi sp.n., holotype, female: 15 — habitus, dorsal view; 16 — pronotum; 17 — base of elytra; 18 — habitus, lateral view.

Рис. 15–18. Clytellus konstantinovi sp.n., голотип, самка: 15 — общий вид, сверху; 16 — переднеспинка; 17 — основание надкрыльй; 18 — общий вид, сбоку.
Taxonomic notes on the tribes Tillomorphini and Clytellini
raising the rank of the subtribe Clytellina to the tribal level. Therefore, the tribe Clytellini Miroshnikov, 2014, stat.n.
Looking at the distinguishing features the tribe Tillomorphini differs it becomes clear that it more similar to some tribes, in particular Obriini Mulsant, 1839 and Anaglyptini Lacordaire, 1868, than to Clytellini stat.n.

Genus Clytellus Westwood, 1853
Clytellus Westwood, 1853: 481; 1854: 240; White, 1855: 291; Boheman, 1857: 48; J. Thomson, 1861: 379; 1864: 195; Lacordaire, 1869: 94; Pascoe, 1869: 642; Gemminger, 1872: 2943; Gahan, 1906: 312; Aurivillius, 1912: 424; Matsushita, 1933: 308; Wu, 1937: 719; Gressitt, 1939: 46; Mitono, 1940: 129; Gressitt, 1951: 310; Gressitt, Rondon, 1970: 287; Makihara et al., 1989: 299; Heffern, 2005: 25; Löbl, Smetana, 2010: 206; Heffern, 2013: 26; Miroshnikov, 2014: 137.

Type species: Clytellus methocoides Westwood, 1853, by monotypy.

COMPOSITION. The genus includes 38 species [Miroshnikov, 2014, 2015; Miroshnikov, Tichý, 2015; Niisato, 2015], one of which is described here as new.
DISTRIBUTION. Oriental realm.

Clytellus konstantinovi Miroshnikov, sp.n.
Figs 15–18.

MATERIAL. Holotype ♂ (NHMD) (Fig. 15), E Malaysia, Sarawak, Kuching dist., Serapi Mt., 27–29.03.1994 (leg. Sv. Bílý), “Clytellus westwoodii Pascoe”, “Clytellus monilis Holzschuh, Ole Mehl det. 2012”.

DIAGNOSIS. This new species seems to be especially similar to Clytellus viridipennis Hayashi, 1977, but differs clearly at least by the presence of a distinct constriction in the apical third of the pronotum, as in Figs 15–16 (in Clytellus viridipennis, pronotum in the apical third without any constriction), the microsculpture developed across entire width in the basal

Figs 19–20. Clytellus spp., habitus, dorsal view: 19 — C. jenisi, female from Sarawak, Malaysia; 20 — C. laosicus, male from Vietnam.
third of the elytra, as in Fig. 17 (in *C. viridipennis*, micro-
sculpture between coarse and very coarse punctures on the
basal third of each elytron is located in the inner half only). *
Clytellus konstantinovi* sp.n. can also be compared to as a yet
undescribed species similar to *C. viridipennis* [see Mirosh-
nikov, 2014: 160], but is distinguished through the presence of
dense, recumbent, white setae at the apex of the elytra, as
in Fig. 15, as well as, like from *C. viridipennis*, by the the
presence of a distinct constriction in the apical third of the
pronotum, as in Figs 15–16.

DESCRIPTION. Female. Body length 6.1 mm, humeral
width 1.5 mm. Black; antennae, partly legs dark reddish-
brown; tarsi, visible abdomen sternites, mostly, reddish-
brown; elytra reddish at apex; dorsum almost entirely shiny;
elytra with a distinct, metallic, greenish lustre.

Head with a flat frons; antennomere 2, 1.4 times as long
as isthmus between antennal cavities; antennae slightly not
reaching apical third of elytra; length ratio of antennomeres
1–11, 38 : 20 : 28 : 32 : 35 : 33 : 29 : 25 : 24 : 24 : 42;
antennomere 2, 1.65 times as long as wide.

Pronotum 1.74 times as long as wide at apex, 2.18 times
as long as width at base; apex 1.25 times as broad as base, the
very base 1.32 times as broad as constriction in front of base;
strongly convex; with a distinct constriction in apical third;
area of constriction in front of base with coarse, longitudinal
grooves very sharp both on sides and dorsally; longitudinal
groove at bottom of this constriction sharply expressed;
remaining surface almost smooth, only with sparse, small,
mostly clear punctures.

Elytra 2.31 times as long as wide at humeral width, in
apical half 1.03 times as broad as humeral width; a strong
depression before middle, a moderately convex surface be-
hind; basal part with coarse to very coarse, mostly oblong-
oval, heterogeneous punctures, thereby many of them located
in area of a contrasting, wide, velvety, dull, microsculpture
fascia covering entire width of elytra (like in some other
Clytellus species, e.g. *C. oletteroides* Pascoe, 1885 or *C.
gressitti* Miroshnikov, 2014); on sides with a longitudinal,
long, sharply expressed groove formed by coarse, oblong-
oval, very dense punctures; apical part with small punctures
forming on each elytron more or less clear, longitudinal, long
rows.

Prosternum with an obliterated sculpture; its profile bare-
ly curved in apical part (Fig. 18); prosternal process at apex
about as wide as between procoxae; mesosternal process
between mesocoxae barely narrower than prosternal process
between procoxae; metepisterna with a very distinct denticle
at apex; first (visible) abdominal sternite 1.43 times as long as
all following (visible) sternites combined.

Last tarsomere with two claws not fused at base.

Setation mainly as follows: base of pronotum in the form
of a well-developed fascia (Figs 15–16), apex of elytra (Fig.
15), partly prosternum, most of mesosternum, almost com-
plete metasternum and first (visible) abdominal sternite, as
well as partly legs clothed with more or less dense, recum-
bent, white setae, partly with a silver tint; head, antennae,
partly pronotum, as well as venter and legs covered by
similar, but sparser setae; head, partly antennae, pronotum on
sides at apex, elytra, venter and, partly, legs with more or less
long, sparse, on elytra mainly more robust, erect or suberect,
light setae, thereby on elytra being mostly yellowish.

ETYMOLOGY. I am pleased to dedicate this new species
my friend and colleague, Dr. Alexander S. Konstantinov
(National Museum of Natural History, Smithsonian Institu-
tion, Washington D.C., USA), who constantly provides his
great help to my research.

Clytellus jenisi Miroshnikov, 2015

Fig. 19.

MATERIAL. 1♀ (NHMD) (Fig. 19), E Malaysia, Sarawak,
Kapit dist., Rumah Ugap vill., Sat. riv., 3–9.03.1994 (leg. Sv. Bily).

DISTRIBUTION. This species was described from Sabah,
Malaysia [Miroshnikov, 2015], but is distinguished through the presence
of the studied material, *C. jenisi* is being recorded
here from Sarawak, Malaysia for the first time.

BIONOMICS. The holotype was collected at the end of
May [Miroshnikov, 2015], while the studied specimen was
observed during the first decade of March.

REMARKS. The body length of the studied female is 5.6
mm, the humeral width is 1.35 mm.

Clytellus laosicus Gressitt et Rondon, 1970

Fig. 20.

MATERIAL. 1♂♂ (cAM) (Fig. 20), Vietnam, Quang Nam
Prov., Tay Giang Distr., 1300 m, 05.2019 (local collector).

DISTRIBUTION. This species has hitherto been known
only from northern Laos [Gressitt, Rondon, 1970; Mirosh-
nikov, 2014, 2015].

Based on the studied material, *C. laosicus* is being re-
corded here from central Vietnam for the first time.

BIONOMICS. In northern Laos, adults active from about
mid-February at least to the second half of March [Gressitt,
Rondon, 1970; Miroshnikov, 2014]. In central Vietnam, one
specimen was collected in May.

REMARKS. The body length of the studied male is 4.2
mm, the humeral width is 1.0 mm.

Acknowledgements. I am very grateful to Alexander S.
Konstantinov (USNM), Alexey Yu. Solodovnikov (NHMD),
James E. Wappes (ACMT) for the opportunity to study the
museum material, again to Alexander S. Konstantinov for
the helpful provision of a series of high-quality photographs
of some Tillomorphini species and a valuable information
used in the present paper. I give special thanks to Kirill V.
Makarov (Moscow Pedagogical State University, Moscow,
Russia) for having rendered his great help in the preparation
of most pictures and to my wife Tatiana P. Miroshnikova
who helped a lot in the preparation of the illustrations for
publication.

References

Adlbauer K. 2000. Neue Bockkäfer aus dem Transvaal Museum mit
weiteren taxonomischen Bemerkungen (Coleoptera: Ceramby-
cidae, Cerambycinae) // Coleoptera. Bd.4. S.1–12.

Arias E. 2000. Coleopteros de Chile (Chilean Beetles). Santiago:
Fototeknika. 210 pp.

Amert R.H. 1962. The beetles of the United States (A manual for
identification). Washington: The Catholic University of Ame-
rica Press. xi + 1112 pp.

Aurivillius Chr. 1912. Cerambycidae: Cerambycinae // Coleope-
torum Catalogus, auspiciis et auxilio W. Junk, editus a S.
Schenkling. Pars 39. Berlin: W.Junk. P.3–574.

Bates H.W. 1870. XIX. Contributions to an insect fauna of the
Amazon Valley (Coleoptera, Cerambycinae) // Transactions of
the Entomological Society of London. Vol.18. P.391–444.

Bates H.W. 1885. 1879–1886. Longicornia. Supplement. P.249–
436 + pls 17–25 // F.D. Godman, O. Salvin (Eds). Biologia
Centrali-Americana. Insecta. Coleoptera. Vol. 5. London: Tay-
lor and Francis. xii + 525 pp. + 26 pls.

Barriga J.E., Curkovic T.M., Fichet T., Henríquez J.L,. Macaya J.
R. 2015. Nuevos antecedentes de coleópteros xilóforos y plantas
hospederas en Chile, con una recopilación de citas previas //
Revista Chilena de Entomología. Vol.20. P.65–91.
Taxonomic notes on the tribes Tillomorphini and Cylindrotini

Barriga J.E., Cepeda D.E. 2007. Nuevas sinonimias en Ceramby- cidae de Chile (Coleoptera) // Revista Chilena de Entomología. Vol.33. P.5-13.

Bezark L.G. 2016. Checklist of the Oxypodidae, Vesperidae, Disteni- dae and Cerambycidae, (Coleoptera) of the Western Hemi- sphere. 497 pp. Available from: https://www.zin.ru/Animalia/ Coleoptera/Rus/whemis16.htm

Bezark L.G., Monné M.A. 2013. Checklist of the Cerambycidae and related families (Coleoptera) of the Western Hemisphere 2013 Version. 484 pp. Available from: https://www.zin.ru/Animalia/ Coleoptera/rus/allpdf16.htm

Blackburn T. 1896. Further notes on Australian Coleoptera, with descriptions of new genera and species // Transactions and Proceedings and Report of the Royal Society of South Australia. Vol.10. P.35–109.

Blackwelder R.E. 1946. Checklist of the coleopterous insects of Mexico, Central America, the West Indies and South America. Part 4 // Bulletin of the United States National Museum. No.185. P.551–763.

Blanchard E. 1854. Coleopteros [Cerambycianos] Lam. [Pls] 27–30 // C. Gay. Atlas de la historia fisica y politica de Chile. T.2. Paris: Imprenta de E. Thunot y C. 135 pls.

Boethem H. 1987. Bewertelte um Freistegen in Insektern, Myri- apodernas och Arachnidernas Naturalhistoria för 1853 och 1854. Stockholm: P.A. Norstedt & Söner. 295 S.

Botero J.P.R., Bezark L.G., Monné M.A. 2013. Checklist of the Cerambycidae and Vesperidae. Electronic Version, 2013.1. 107 pp. Available at: https://www.zin.ru/animalia/coleoptera/pdf/ heffern_2013_cerambycidae_ref.pdf

Bouchard P., Cepeda D.E. 2007. Nuevas sinonimias en Ceramby- cidae, Cerambycinae) // ZooKeys. Vol.106. P.55–75. doi: 10.3897/ zookeys.106.1470

Bouchard P., Cepeda D.E. 2007. Revision of the tribes Tillomorphini and Clytellini (Coleoptera, Cerambycidae) // ZooKeys. Vol.88. P.1–972. doi: 10.3897/ zookeys.88.807

Chevrolat L.A.A. 1862. Description de Clytides Américains // Annales de la Société Entomologique de France. Ser.4. T.2. P.517–536.

Chemsak J.A. 1969. Records and descriptions of Mexican and Central American Tillomorphini (Coleoptera: Cerambycidae) // The Pan-Pacific Entomologist. Vol.45. No.4. P.303–317.

Chemsak J.A. 1969. Records and descriptions of Mexican and Central American Tillomorphini (Coleoptera: Cerambycidae) // Les Cahiers Magellanes (NS). Vol.32. P.58–73.

Chemsak J.A. 1969. Records and descriptions of Mexican and Central American Tillomorphini (Coleoptera: Cerambycidae) // Les Cahiers Magellanes (NS). Vol.33. P.367–358.

Chemsak J.A. 1969. Records and descriptions of Mexican and Central American Tillomorphini (Coleoptera: Cerambycidae) // Les Cahiers Magellanes (NS). Vol.33. P.66–103.

Chevrolet L.A.A. 1862. Description de Clytides Américains // Annales de la Société Entomologique de France. Ser.4. T.2. P.517–536.

Deflín F.T. 1900. Datos para el conocimiento de los Coleópteros e lombay de Historia Natural. Vol.4. No.1. P.8–14.

Dekker E.F., Chemas J.A. 1997. A review of the genus Euderces Leconte (Coleoptera: Cerambycidae: Tillomorphini) // Proceedings of the California Academy of Sciences. Vol.49. No.8. P.211–286.

Gressitt J.L. 139. A new species of the longicorn beetles of Kwangtung Province, S. China (Coleoptera: Cerambycidae) // Linnaean Science Journal. Vol.18. No.1. P.1–12 + pls–3.

Gressitt J.L. 1940. The longicorn beetles of Hainan Island (Col., Cer.) // The Philippine Journal of Science. Vol.72. Nos 1–2. P.1–239.

Gressitt J.L. 1942. A provisional synopsis of the longicorn beetles of China — subfamily Cerambycinae // Linnaen Natural History Survey & Museum. Special Publication. No.4. P.1–34.

Gressitt J.L. 1951. Longicorn beetles of China // P. Lepesme (Ed.). Longicornia. Etudes et notes sur les Longicornes. Vol.2. Paris: Paul Lechevalier. 667 pp + 22 pls.

Gressitt J.L. 1959. Longicorn beetles from New Guinea, 1 (Ceram- bycidae) // Pacific Insects. Vol.1. No.1. P.59–171.

Hayashi M. 1977. Study on Cerambycidae from West Malaysia (Col.). Part 1 // Bulletin of the Osaka Jonan Women’s Junior College. Vol.10 (May). P.167–209 + 6 pls.

Hayashi M. 1977. Study on Cerambycidae from West Malaysia (Col.). Part 1 // Bulletin of the Osaka Jonan Women’s Junior College. Vol.10 (November). P.93–128.

Heffern D.J. 2005. Catalog and Bibliography of Longhorned Beetles from Borneo (Coleoptera: Cerambycidae). Electronic Version, 2005.1. 102 pp.

Heffern D.J. 2013. A Catalog and Bibliography of Longhorned Beetles from Borneo (Coleoptera: Cerambycidae, Distenidae and Vesperidae). Electronic Version, 2013.1. 107 pp. Available at: https://www.zin.ru/animalia/coleoptera/pdf/ heffern_2013_borneo_catalog.pdf (accessed 17 October 2020).

Heffern D.J., Botero J.P.R., Santos-Silva A. 2020. A new species of Neoclypeus (Neoibidionini), and a new species and new com- binations in Tillomorphini (Cerambycidae, Cerambycinae) // Zoo- taxa. Vol.4748. P.338–359.

Holzschuh C. 2009. Beschreibung von 59 neuen Bockkäfern und vier neuen Gattungen aus der orientalischen und palaearktis- chen Region, vorwiegend aus Laos, Borneo und China (Co- leoptera, Cerambycidae) // Entomologica Basilienca et Collections Frey. Bd.31. S.367–358.

Holzschuh C. 2019a. Zur Synonymie und neun neue Taxa von Bockkäfern aus Asien (Coleoptera, Cerambycidae) // Les Cahiers Magellanes (NS). Vol.32. P.58–73.

Holzschuh C. 2019b. Zur Synonymie und zehn neue Taxa von Bockkäfern aus Asien (Coleoptera, Cerambycidae) // Les Cahiers Magellanes (NS). Vol.33. P.86–103.

Hüdepohl K.-E. 1990. The longhorned beetles of the Philippines. Part II // Entomofauna. Zeitschrift für Entomologie. Bd.11. Hf.3/1. S.45–102.

Knul J.N. 1946. The long-horned beetles of Ohio (Coleoptera, Cerambycidae) // Ohio Biological Survey, Bulletin. Vol.39. No.7. P.133–354.

Lacordaire J.T. 1868. Histoire naturelle des insectes. Genera des Coleopterorum, ou expose methodique et critique de tous les genres proposés jusqu’ici dans cet ordre d’insectes. T.8. 1869. Paris: Librairie encyclopédique de Roret. 552 pp. + pls 81–91.

Lacordaire J.T. 1869. Histoire naturelle des insectes. Genera des Coleopterorum, ou expose méthodique et critique de tous les genres proposés jusqu’ici dans cet ordre d’insectes. T.9. P.1–31. Paris: Librairie encyclopédique de Roret. 409 pp. + pls 92–100.

Lingafelter S.W. 2011. New myrmecomorphic longhorned beetles from Haiti and the Dominican Republic with a key to Anaglyp- lina and Tillomorphini of Hispaniola (Coleoptera, Ceramby- cidae, Cerambycinae) // ZooKeys. Vol.106. P.55–75. doi: 10.3897/zookeys.106.1470
Taxonomic notes on the tribes Tillomorphini and Clytellini

Philippi F. 1887. Catalogo de los Coleópteros de Chile (Conclusión) // Anales de la Universidad de Chile. Vol.71. No.1. P.767–778.

Plavilstshikov N.N. 1931. Cerambycidae I. Teil. Cerambycinae: Disteniini, Cerambycini 1 (Protaxina, Spondylina, Asenina, Saphana, Achrysolina, Dernina, Cerambycina) // Bestimmungs-Tabelle der europäischen Coleopteren. Hf.101. Troppau. 102 ss.

Plavilstshikov N.N. 1940. Fauna SSSR. Nasekomye zhestkotrye. Plavilstshikov N.N. 1931. Cerambycidae I. Teil. Cerambycinae: Disteniini, Cerambycini 1 (Protaxina, Spondylina, Asenina, Saphana, Achrysolina, Dernina, Cerambycina) // Bestimmungs-Tabelle der europäischen Coleopteren. Hf.101. Troppau. 102 ss.

Porter C.E. 1930. Nueva localidad de un cerambicido // Revista Chilena de Historia Natural. Vol.34. P.48.

Shelford R. 1902. Observations on some mimetic insects and spiders from Borneo and Singapore [With appendices containing descriptions of new species by R. Shelford, K. Jordan, C.G. Gahan, R.H.S. Gorham, A. Senna] // Proceedings of the general meetings of scientific business of the Zoological Society of London. Vol.2. No.4. P.230–284 + pls 19–23.

Siepinski S.A., Escalon H.E. 2016. Australian Longhorn Beetles (Coleoptera: Cerambycidae). Vol.2. Subfamily Cerambycinae. Csiro publishing. P.iii–xvi + 613.

Solervicens J., Elgueta M. 1989. Entomofauna asociada al matorral costero del norte Chico // Acta Entomologica Chilena. Vol.15. P.91–122.

Strach A. 1861. Catalogue Systématique de tous les Coleoptères décrits dans les Annales de la Société Entomologique de France depuis 1832 jusqu’à 1859. Halle: H.W. Schmidt. i–iv + 159 + [1] pp.

Swift J.P., Bezark L.G., Nears E.H., Solis A., Hovore F.T. 2010. Checklist of the Cerambycidae (Coleoptera) of Costa Rica. // Insecta Mundi. Vol.0131. P.1–68.

Tavakilian G.L., Chevillotte H. 2020. Titan: base de données Titan sur les Cerambycides ou Longicornes. Available at: http://titan.gbif.fr/ (accessed 17 October 2020).

Thomson J. 1861. Essai d’une classification de la famille des Cérambycides et matériaux pour servir à une monographie de cette famille. Paris: chez l’auteur [James Thomson]. P.129–396 + 3 pls.

Thomson J. 1864. Systema Cerambycidarum ou exposé de tous les genres compris dans la famille des Cérambycides et familles limirtrophes. Liège: H. Dessain. P.1–352.

Touroult J. 2014. Nouveautés taxonomies et faunistiques concernant les longicornes des Petites Antilles (Coleoptera, Cerambycidae) // ACAOREP-France: Coléoptères des Petites Antilles. T.2. P.82–89.

Turnbow R.H., Cave R.D., Thomas M.C. 2003. A list of the Cerambycidae of Honduras, with additions of previously unrecorded species // Ceiba. Vol.44. No.1. P.1–43.

Villiers A. 1890. Coleoptères Cerambycidae des Antilles françaises. II. Cerambycinae // Annales de la Société Entomologique de France (n.s.). T.16. No.2. P.265–306.

Vitali F. 2010. Catalogue of the types of the Cerambycoidea of the National Museum of Natural History of Luxembourg // Bulletin de l’Institut Royal des Sciences Naturelles Belgique (Entomologie). Vol.80. P.109–126.

VITALI F. 2017. Two new fossil species of Tillomorphites Vitali (Coleoptera: Cerambycidae) and remarks on the morphological evolution, mimicry, biogeography and phylogeny of the tribe Tillomorphini // Baltic Journal of Coleopterology. Vol.17. No.2. P.147–160.

Vives E. 2015. New or interesting Cerambycidae from the Philippines (Part X) (Coleoptera, Cerambycidae, Cerambycinae) // Les Cahiers Magellanes (NS). Vol.18. P.1–18.

Vivares F. 1975. Revision de la famille Cerambycidae (Coleoptera, Cerambycinae) et remarks on the morphological evolution, mimicry, biogeography and phylogeny of the tribe Tillomorphini // Baltic Journal of Coleopterology. Vol.17. No.2. P.147–160.