Momentum distribution of liquid helium

Saverio Moroni(1), Gaetano Senatore(2,3) and Stefano Fantoni(1,4)
(1) International Centre for Theoretical Physics, I-34014, Trieste, Italy
(2) Istituto Nazionale di Fisica della Materia
(3) Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy
(4) Interdisciplinary Laboratory, SISSA, Via Beirut 2/4, I-34014, Trieste, Italy
(Submitted to Phys. Rev. B, July 18, 1996)

We have obtained the one-body density matrix and the momentum distribution \(n(p) \) of liquid \(^{4}\)He at \(T = 0^\circ \text{K} \) from Diffusion Monte Carlo (DMC) simulations, using trial functions optimized via the Euler Monte Carlo (EMC) method. We find a condensate fraction smaller than in previous calculations. Though we do not explicitly include long-range correlations in our calculations, we get a momentum distribution at long wavelength which is compatible with the presence of long-range correlations in the exact wave function. We have also studied \(^{3}\)He, using fixed-node DMC, with nodes and trial functions provided by the EMC. In particular, we analyze the momentum distribution \(n(p) \) with respect to the discontinuity \(z \) as well as the singular behavior, at the Fermi surface. We also show that an approximate factorization of the one-body density matrix \(\rho(r) \simeq \rho_0(r)\rho_B(r) \) holds, with \(\rho_0(r) \) and \(\rho_B(r) \) respectively the density matrix of the ideal Fermi gas and the density matrix of a Bose \(^{3}\)He.

PACS numbers: 67., 67.40.-w, 67.55.-s

I. INTRODUCTION

The momentum distribution \(n(p) = \langle a_\mathbf{p}^\dagger a_\mathbf{p} \rangle \) is a fundamental quantity for the study of both the static and the dynamical properties of quantum liquids, as it gives direct information on the high momentum components of the ground state wave function. Experimentally, access to \(n(p) \) is provided by deep inelastic neutrino scattering at large momentum transfer \(\hbar Q \). The extraction of \(n(p) \) from the measured scattered intensity, however, is affected by the the limitations imposed by the experimental resolution and the final-state interactions. Thus, the most accurate information on the momentum distribution of \(^{4}\)He available to date is likely to be the one obtained through accurate, microscopic calculations, such as those presented in this study.

At \(T = 0^\circ \text{K} \) the momentum distribution \(n(p) \) of an ideal Bose gas is given by a delta function \(\delta(\mathbf{p}) \), corresponding to all particle being in the condensate. On the contrary, the condensate fraction of \(^{4}\)He at the equilibrium density is less than 10\%, implying that the effects of the strongly repulsive core of the interatomic interaction is non-perturbative. Similarly for \(^{3}\)He the discontinuity of \(n(p) \) at the Fermi momentum \(\hbar q_F \), which gives the strength of the quasiparticle pole, is \(\sim 0.2 \) at equilibrium instead of 1, as in the ideal Fermi gas. In fact, it has been always difficult to carry out \textit{ab initio} calculations of the momentum distribution for these systems, within the field–theoretical approach.

Modern, realistic, quantitative calculations only started with the development of Variational Monte Carlo (VMC) methods(4) and the Hyper–Netted–Chain (HNC,FHNC) equations(5) for Jastrow models of both Bose and Fermi liquids. FHNC and HNC equations for the momentum distribution have been numerically solved in Variational calculations of nuclear matter(1), liquid \(^{4}\)He(2), and liquid \(^{3}\)He(3), for which triplet and backflow correlations were also taken into account. To improve upon the above variational estimates of \(n(p) \), non conventional perturbative techniques, based on correlated basis functions (CBF), have been developed, and applied to liquid \(^{4}\)He and nuclear matter.

HNC and FHNC theories have the merit to allow for fine details of interparticle correlations, such as long-range behavior, spin dependence, anisotropies in inhomogeneous systems. However, not all cluster diagrams resulting from the theory and involved in the HNC formalism, can be summed in closed form and in FHNC the procedure to estimate the elementary diagrams with exchange bonds is not completely under control. Therefore, approximations like scaling(6), interpolation(7) or truncated summations(8) must be invoked, and, in liquid helium calculations, these result in a non negligible loss of accuracy with respect to a fully variational treatment.

The momentum distribution of liquid \(^{4}\)He and \(^{3}\)He has also been calculated, at zero temperature, by using the Green Function Monte Carlo (GFMC) method(9). At finite temperature calculations have been performed for \(^{4}\)He by Path Integral Monte Carlo (PIMC)(10) and, more recently, by VMC with trial functions of the Shadow type(11). The available theoretical estimates of the momentum distribution of liquid \(^{4}\)He provided by variational and GFMC methods are in reasonably good agreement among themselves, except for low momenta and for the condensate fraction. For liquid \(^{3}\)He the situation is less satisfactory.

The GFMC and the Diffusion Monte Carlo (DMC) methods afford to date the most precise tools to perform ground–state calculations for many–particle
systems. For Bosons they provide estimates of the energy that are virtually exact, within the statistical accuracy. In fact the same is true for the averages of operators that are (R-)diagonal (not the case for n(p)!), for which algorithms exist, like the so-called forward walk-
ing method, that yield pure estimates. On the other hand, the estimates of observables that do not commute with the Hamiltonian are usually obtained from mixed averages—through an extrapolation procedure whose accuracy depend on the quality of the trial function \(\Psi \) used for the importance sampling. The extrapolation introduces a bias in the estimates which is second order in the difference between \(\Psi \) and ground-state wave function \(\Phi_g \). For Bosons there is an additional source of error related to the existence of the so-called sign problem. To date, to get a numerically stable algorithm it is customary to approximate the unknown nodes of the sought ground state \(\Phi_g \) with those of the trial function \(\Psi \) (fixed-node approximation). This imposes a bias on any average, which for non-diagonal observables cumulates with the one arising from the extrapolation procedure. Therefore, to minimize systematic errors, especially in the evaluation of properties such as the momentum distribution, it is necessary to achieve maximum accuracy in the optimization of the trial function.

Recently, a new optimization procedure based on Monte Carlo calculations and denoted as Euler Monte Carlo (EMC) method has been proposed. This EMC method has been successfully applied to both liquid \(^4 \text{He} \) and \(^3 \text{He} \). The EMC wave functions have pair and triplet correlations fully optimized and provide the lowest available energy upperbounds. Moreover, their use in Diffusion Monte Carlo (DMC) calculations has led to results of unprecedented accuracy for the energy, pair function and static structure function.

In this paper we present results for the one–body density matrix \(\rho (r) \) and the momentum distribution \(n(p) \) of liquid \(^4 \text{He} \) and \(^3 \text{He} \), at various densities, obtained with DMC calculations based on EMC wave functions. The plan of the paper is as follows. In the next section we summarize the computational details involved in the calculation of \(n(p) \). We then present the results for liquid \(^4 \text{He} \) in Sec. II and those for liquid \(^3 \text{He} \) in Sec. III. We finally offer a summary and conclusions in Sec. V.

II. COMPUTATIONAL DETAILS

In DMC simulations, the ground state wave functions \(\Phi_g \) is sampled through a random walk in configuration space, guided by a trial function \(\Psi \). In practice one samples the mixed probability \(f = \Phi_g \Psi \). We choose \(\Psi = SF \) for \(^4 \text{He} \) and \(\Psi = D_1 D_2 F \) for \(^3 \text{He} \), with the correlation part \(F \) symmetric in the particle coordinates, \(S \) a symmetrized product of one-particle orbitals and \(D_1 \) and \(D_2 \) Slater determinants of one-particle orbitals for particles of up and down spin. In the homogeneous liquid \(S = \text{const} \) and \(D_2 \) is built from plane waves (PW), or from plane waves with short (SBF) or long (LBF) ranged back-flow corrections. As a full account has already been given elsewhere of both the EMC method, which we employ to construct and optimize the trial wave function \(\Psi \), and of the use of EMC wave functions in DMC simulations, here we shall restrict to essential details.

All the calculations (variational and diffusion) presented in this paper, unless explicitly noted, have been performed using EMC wave functions with fully optimized pair and triplet pseudopotentials (OJOT) and modeling helium with the HFDHE2 pair potential of Aziz et al. A cubic simulation box and periodic boundary conditions were used. For \(^3 \text{He} \) backflow correlations have been included, in the usual way, by replacing the plane waves exp \((i \mathbf{k} \cdot \mathbf{r}) \) in the Slater determinants with \(\exp (i \mathbf{k} \cdot \mathbf{x}_j) \), where \(\mathbf{x}_j = \mathbf{r}_j + \sum_{k \neq j} \eta (r_{jk}) (\mathbf{r}_j - \mathbf{r}_k) \). The function \(\eta (r) \) is taken either short–ranged (SR) or long–ranged (LR)

\[
\eta_S (r) = \lambda_B \exp \left(-\frac{(r - r_B)^2}{\omega_B^2} \right) \left(\frac{2r - L}{L} \right)^3, \tag{1}
\]

or

\[
\eta_L (r) = \lambda_B \exp \left(-\frac{(r - r_B)^2}{\omega_B^2} \right) + \lambda_R^2 \frac{r}{r^3}, \tag{2}
\]

with \(\lambda_B, r_B, \omega_B \) and \(\lambda_R^2 \) variational parameters. The long–ranged backflow function is smoothly cutoff at the the boundary of the simulation box of size \(L \) by the expression given in Eq. (2) with \(\eta_S (r) = \eta_S (r) + \eta_L (L - r) - 2\eta_L (L/2) \). In practice, we first simultaneously optimize the pair and triplet pseudopotentials with the backflow parameters as specified in Refs. [27] and [28], and then we optimize \(\eta (r) \) at fixed pseudopotentials.

The \(^3 \text{He} \) results presented below were obtained with short–ranged backflow, unless otherwise specified. Also the DMC simulations were performed within the fixed–node approximation, whereby the nodes of the ground–state \(\Phi_g \) are assumed to coincide with those of the EMC trial function.

In a uniform liquid in a state described by the wave function \(\Psi \) the one–body density matrix can be defined as

\[
\rho (r) = V \int \frac{d^3 \mathbf{r}_2 \cdots d^3 \mathbf{r}_N}{d^3 \mathbf{r}_1} |\Psi (\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 \delta (\mathbf{r}_1 + \mathbf{r}_2 + \cdots + \mathbf{r}_N), \tag{3}
\]

so that, having imposed periodic boundary conditions to the \(N \) particles in the volume \(V \),

\[
\rho (0) = 1, \tag{4}
\]

and the independence on \(\mathbf{r}_1 \) follows from translational invariance. For Fermions, the integration over the variable \(\mathbf{r}_1 \) is understood to imply also the trace over spin projection. If we denote with \(R \) and \(R' \) respectively the configurations \((\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N) \) and \((\mathbf{r}_1 + \mathbf{r}_2, \cdots, \mathbf{r}_N) \), and we exploit the translational invariance, we can rewrite Eq. (3) as
\[\rho(r) = \frac{\int dR \Psi^*(R) \Psi(R')}{\int dR |\Psi(R)|^2} = \int dR P(R) \frac{\Psi(R')}{\Psi(R)}, \quad (5) \]

with

\[P(R) = \frac{|\Psi(R)|^2}{\int dR |\Psi(R)|^2} \quad (6) \]

the probability induced by the wave function \(\Psi \). Using Eq. (3), the variational density matrix (i.e., the one defined in term of the trial wave function \(\Psi \)) may be conveniently calculated by Monte Carlo as

\[\rho_{\text{VMC}}(r) \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{\Psi(R'_i)}{\Psi(R_i)}. \quad (7) \]

with the configurations \(R_i \) drawn from the probability \(P(R) \). The DMC extrapolated estimate \(\rho(r) \) is given by

\[\rho(r) = 2\rho_{\text{mix}}(r) - \rho_{\text{VMC}}(r), \quad (8) \]

where the mixed estimate \(\rho_{\text{mix}}(r) \) is calculated from an expression identical with that of Eq. (3), with the configurations \(R_i \) drawn however from the mixed probability \(P_{\text{mix}}(R) = f(R)/\int dR f(R), \) \(f(R) = \Phi_0(R) \Psi(R) \). In practice, the auxiliary configurations \(R'_i \) appearing in Eq. (4) are generated from a given \(R \) by moving a particle either of fixed increments along a random direction (FM) or to points randomly distributed in the simulation box (RM). It turns out that the two methods give more accurate results at small and at large \(r \), respectively.

The momentum distribution is defined as \(n(p) = \langle a_p^\dagger a_p \rangle \), where an average on spin projections is also implied for unpolarized \(^3\text{He} \). It is simply related to the one–body density matrix, by a Fourier transform:

\[n(p) = \rho \int d^3r e^{ip\cdot r} \rho(r) \]
\[= \rho \left(n_0 \delta(p) + \int d^3r e^{ip\cdot r} (\rho(r) - n_0) \right), \quad (9) \]

with \(\rho = N/V \) the density of the system, \(\nu \) the degeneracy factor, which is 1 for \(^4\text{He} \) and the fully polarized \(^3\text{He} \), and 2 for normal \(^3\text{He} \), and \(n_0 \) the large \(r \) limit of the density matrix, \(n_0 = \rho(\infty) \). In fact \(\rho(r) \) vanishes for large values of \(r \) in \(^3\text{He} \), whereas for \(^4\text{He} \) it saturates to \(n_0 \neq 0 \), due to macroscopic occupation of the state with zero momentum. \(n_0 \) is the condensate fraction, i.e., the fraction of \(^4\text{He} \) atoms occupying the state with \(p = 0 \).

Evidently, the normalization of the density matrix given in Eq. (4) implies, for the momentum distribution, the normalization sum rule

\[\frac{\nu}{(2\pi)^3} \int dp \ n(p) = \rho(0) = 1. \quad (10) \]

The momentum distribution has been calculated in two different manners. Having sampled the density matrix as function of \(r \) one can just take its Fourier transform according to Eq. (9). Alternatively, restricting to the RM method, one can also directly accumulate

\[n(p) = \rho \frac{1}{\nu N} \sum_{i=1}^{N} \frac{e^{ip\cdot r} \Psi(R'_i)}{\Psi(R_i)}. \quad (11) \]

At a first sight it seems that the \(r \) integration is missing in Eq. (11) above. However, a little reflection shows that accumulating the estimator of Eq. (11) correctly implements the integration (average) over \(r \), which appears in the definition (4) of the momentum distribution, since \(r \) is chosen at random for each configuration \(R_i \), with a uniform distribution in the simulation box. This second calculation of \(n(p) \) is implemented for \(p \)’s that are reciprocal lattice vectors of the simulation cell. Eq. (11) is employed to accumulate variational and mixed estimators, from which the extrapolated estimator is then obtained, as explained above. From Eqs. (9) it follows that the kinetic energy per particle \(T \) can be related to the curvature of the density matrix at the origin, according to

\[T = -\left[\frac{\hbar^2}{2M} \nabla^2 \rho(r) \right]_{r=0}, \quad (12) \]

which also implies the kinetic energy sum rule (see Eq. (3))

\[T = \frac{\hbar^2}{2M} \frac{\nu}{(2\pi)^3} \int dp p^2 n(p). \quad (13) \]

III. LIQUID \(^4\text{HE} \)

We have carried out DMC calculations of the one–body density matrix and of the momentum distribution of \(^4\text{He} \) at four densities, using EMC trial functions and 64 atoms in the simulation box. Selected runs with up to 232 particles have been performed to check for finite size effects. In Fig. 4 we show our results for the one–body density matrix \(\rho(r) \) at the equilibrium density. The kinetic energy sum rule (13) is manifestly satisfied and the saturation to a finite \(n_0 \) at large \(r \) is evident, in spite of the fact that with 64 particles only distances up to about 7\(\AA \) are accessible. We also give in the inset a comparison between estimates obtained with the FM and RM methods. The greater accuracy of the latter method at large distances is apparent. In Fig. 4 we report, also at the momentum density, extrapolated estimates of the momentum distribution \(n(p) \), obtained using Eq. (11). Due to the finite size of the system only wave vectors larger than \(\sim 0.4\text{Å}^{-1} \) are accessible. We note that a shoulder is discernible in \(mn(p) \) at \(p \gtrsim 2\text{Å} \).

In order to extract the condensate fraction \(n_0 \) from our DMC results, as well as to facilitate applications, we have fitted our DMC extrapolated estimates of the density matrix and momentum distribution, obtained with the RM method, to the following analytic formula:
The first 2 terms in Eq. (14) account for the existence of the condensate, while the third suitably models the shoulder in $\rho_0(r)$. We have simultaneously fitted $n(p)$ and $\rho(r)$, which must be obtained numerically by Fourier transforming the function of Eq. (14), imposing as well the normalization condition (13) and the kinetic energy sum rule (13). Moreover, we set $p_1 = M_c/2\hbar$ to satisfy the long-wavelength behavior

$$n(p) = \frac{2\pi}{\rho_0(p)n_0}$$

$$+ \left(\frac{p_1}{p} + n_1 \cos^2 \left(\frac{p}{p_2} \right) \right) e^{-(p/p_3)^\alpha}$$

$$+ n_2 e^{-(p-p_4)^2/p_5^2},$$

(14)

The resulting fit parameters are recorded in Table I. The fit appears to be very good. We may conclude that our data are consistent with the presence of singular term in $n(p)$, which we estimate from the DMC momentum distribution and density matrix at the four densities that we have studied.

In principle one could take c too as unknown and get an independent estimate of the sound velocity. We have tried this alternative, at the equilibrium density, obtaining an estimate of c that is about 10% lower than experimental and DMC-EOS estimates, and has however a very large uncertainty (\sim 50%), reflecting the absence of DMC points for $p \lesssim 0.4\AA^{-1}$, where the singular term in $n(p)$ is important. We may conclude that our data are compatible with the presence of singular term in $n(p)$, in spite of the lack of long-range terms in the pseudopotentials that we have used. In Fig. 1 we show the density matrix at the four densities that we have studied, as given by the fit of Eq. (14) with the parameters of Table I.

DMC momentum distribution and density matrix are compared with the fit of Eq. (14) in Figs. 1 and 2 at the equilibrium density. The fit appears to be very good. A similar conclusion holds at the other densities that we have studied.

The condensate fraction n_0 is mostly constrained by the large r behavior of $\rho(r)$, which results into the term proportional to $\delta(p)$ in the momentum distribution. As we have already mentioned, the singular behavior of $n(p)$ at small p, implied by Eq. (13), is much less effective in

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
ρ & 0.01964 & 0.02186 & 0.02401 & 0.02622 \\
\hline
n_0 & 0.11163 & 0.071673 & 0.046227 & 0.027079 \\
\hline
α & 1.6941 & 1.7634 & 2.2342 & 1.9976 \\
\hline
n_1 & 0.055274 & 0.038282 & 0.019157 & 0.021497 \\
\hline
n_2 & 0.40285 & 0.39893 & 0.36695 & 0.38483 \\
\hline
p_1 & 0.49957 & 0.73394 & 0.95934 & 1.1964 \\
\hline
p_2 & 0.38971 & 0.38525 & 0.40435 & 0.40588 \\
\hline
p_3 & 1.4900 & 1.6744 & 2.2153 & 2.1832 \\
\hline
p_4 & 0.29713 & 0.20538 & 0.28494 & 0.062765 \\
\hline
p_5 & 0.85128 & 1.0016 & 1.0132 & 1.2549 \\
\hline
\end{tabular}
\caption{Parameters of the fit (14) to the DMC momentum distribution and density matrix of 4He at $T = 0^\circ$K, at various densities. ρ is in \AA^{-3} and p_1--p_5 are in \AA^{-1}.}
\end{table}
FIG. 3. One-body density matrix $\rho(r)$ of 4He. The curves from the topmost to the lowest, give the analytical fit of Eq. (14) to our DMC results (extrapolated estimates), respectively at $\rho(\AA^{-3}) = 0.01964, 0.02186, 0.02401$ and 0.02622. The inset shows $\rho(r)$ in the tail region with an enlarged scale.

FIG. 4. Dependence on the quality of the wave function and on the method (VMC versus DMC) of the one body–density matrix of 4He, at the equilibrium density $\rho(\AA^{-3}) = 0.02186$. The full curve is the fit to our DMC results (extrapolated estimates) for 64 particles, using our best trial function (OJOT), while the dashed curve gives the fit to the VMC results obtained with this trial function. Empty rectangles and solid squares give respectively VMC and DMC results obtained from a simple OJ trial function, which embodies only pair pseudopotentials. Finally, the triangles are the DMC results obtained using the OJOT trial function and 232 particles and the circles report the finding of PIMC at $T = 1.18^\circ$K. Determining n_0, because of the absence of DMC estimates for $p \lesssim 0.4\AA^{-1}$. From the inset of Fig. 3 one might conclude that the range $r \lesssim 7\AA$ accessible with 64 atoms is not big enough to unambiguously assess the value of n_0. However, with 232 atoms yield, in the extra range $7\AA \lesssim r \lesssim 11$, DMC estimates that are in perfect agreement with the fit to the 64 particles results, as it is clear from Fig. 4. We also illustrate in this figure the dependence of the large r limit of density matrix, i.e., n_0, on the quality of the wave function. In particular it is apparent that improving the MC description either changing from VMC to DMC, for given trial function, or changing to a better trial function in DMC, results into a decrease of n_0, in the case considered.

FIG. 5. Condensate fraction of liquid 4He, as a function of the density. DMC (solid circles); EMC (open circles); GFMC (diamonds); HNC (crosses); experimental estimates at $T = 0.75^\circ$K (solid triangles); PIMC at $T = 1.18^\circ$K (empty triangle).

In Fig. 5 and Table I we compare our predictions for n_0 with those from other theoretical treatments as well as with experimental results at low temperature. Consistently with the observation made above, our use of very accurate trial functions yields DMC predictions for the condensate fraction which are lower than previously obtained by GFMC and HNC. On the theoretical side the only prediction that agrees with our own, though it has a much larger statistical error, is the PIMC one at $T = 1.18^\circ$K. We should remind the reader that in fact PIMC has no trial function bias. We find instead a sizeable discrepancy with the experimental estimates of Snow et al., who determine n_0 by fitting a model $n(p)$ to the measured Compton profile $J(Y)$—a procedure however which appears to be model dependent. Different choices for $n(p)$ produce equivalently good fits of $J(Y)$, though embodying very different condensate fractions, all the way from $n_0 = 0$ to $n_0 = 10\%$. In fact, our DMC momentum distribution yields prediction for the Compton profile which agrees well with the experiments, as we show below.
FIG. 6. Compton profile $J(Y)$ of 4He at the equilibrium density $\rho(\AA^{-3}) = 0.02186$ compared with experimental (solid circles) data at $Q = 23\, \AA^{-1}$ and $T = 0.35^\circ \text{K}$.

The dashed (solid) curve is obtained from our fit to the DMC $n(p)$ allowing (not allowing) for both the experimental broadening and the final state interactions of Ref. 34. In calculating the dashed curve a shift of $-0.1\, \AA$ in Y has been also used as in 34.

The inelastic neutron scattering cross-section at high momentum transfer $\overline{\hbar Q}$ can be approximated by its Impulse Approximation (IA) expression, which is proportional to the Compton profile:

$$J(Y) = \frac{1}{4\pi^2\rho} \int_{|Y|}^{\infty} dp \, pn(p). \quad (16)$$

The scattering, in IA, does not depend on the energy ω and the momentum transfer $\hbar Q$ separately, but only through the scaling variable Y, given by

$$Y = (M/\hbar Q)(\omega - \omega_r), \quad (17)$$

where $\omega_r = \hbar^2 Q^2/2M$ is the recoil energy of the scattering atom. The dynamical response function $S(Q, \omega)$, in IA, is given by $J(Y)$ times the factor $M/(\hbar Q)$. Final state effects (FSE) of the medium on the scattered atom as well

ρ	0.01964	0.02186	0.02401	0.02622
DMC	0.112(1)	0.0717(5)	0.0462(6)	0.0271(6)
PIMC	0.069(10)			
GFMC	0.092(1)	0.052(1)	0.037(2)	
HNC	0.092	0.065	0.043	

TABLE II. Condensate fraction n_0 in 4He. DMC, GFMC, and HNC predictions are at $T = 0$. The PIMC result is at $T = 1.18^\circ \text{K}$ and the density is in \AA^{-3}. The figure in parenthesis is the uncertainty on the last figure, whenever available.

FIG. 7. One body–density matrix of 3He at the equilibrium density $\rho(\AA^{-3}) = 0.01635$. The full curve is the fit of Eq. (19) to our DMC results (extrapolated estimates), with the dashed curve showing the parabola $1 - (MT/3\hbar^2)r^2$ that satisfies the kinetic energy sum rule. The solid circles and rectangles respectively give our DMC results obtained with the FM and RM methods.

In Fig. 7 we give our DMC estimates for the density matrix at the equilibrium density. It is clear that the kinetic energy sum rule (13) is satisfied. The size of the system allows for the determination of $\rho(r)$ through its first zero and up to the first minimum. A comparison between results obtained with FM and RM methods is also given, in the inset. The smaller error on the FM results, compared with that on the RM estimates, is due to the much longer runs used to accumulate the FM $\rho(r)$ in this case.
functions, with 54 (solid circles) and 114 (rectangles) par-
ticles.

In a normal Fermi liquid such as $^3\mathrm{He}$ the momentum
distribution, in addition to the discontinuity, has infinite
slopes\cite{footnote1} at p_F. To leading order in $p - p_F$

\begin{equation}
 n(p \to p_F^\pm) \simeq n(p_F^\pm) + A \frac{p - p_F}{p_F^2} \ln \left| \frac{p - p_F}{p_F^2} \right|, \tag{18}
\end{equation}

with the coefficient A related to imaginary part of the
self–energy $\Sigma(p, E)$.

To extract Z from the calculated momentum distribu-
tion and to check that our results are consistent with the
presence of the singular term of Eq. (18) we have fitted
our data for $\rho(r)$ and $n(p)$ to the real space form

\begin{equation}
 \rho(r) = Z \rho_0(x) + a_1 \rho_0(x) + a_2 \frac{x \rho_0(x) - \sin(x)}{x^3}
 - a_1 \frac{e^{-b_1 x}}{x} + (a_3 + a_4 x + a_5 x^2 + a_6 x^3) e^{-b_2 x}
 \tag{19}
\end{equation}

with $x = p_F r$, and

\begin{equation}
 \rho_0(x) = \frac{3}{x^3} (\sin x - x \cos x), \tag{20}
\end{equation}

the density matrix of the ideal Fermi Gas. The first two
terms in Eq. (19) account respectively for the discon-
tinuity and the infinite slope of $n(p)$ at p_F. The third
term allows for a finite discontinuities in the first and sec-
ond derivatives of $n(p)$ at p_F. Finally, the fourth term is
needed to eliminate the divergence that the term $\rho_0(x)/x$
produces at the origin. We impose the normalization con-
dition (11) and the kinetic energy sum rule (13), as well
as the vanishing of the first and third derivative of $\rho(r)$
at $r = 0$. Thus we fit at each density 5 independent
parameters to more than 100 MC points, with a reduced χ^2
between 0.87 and 1.15. The resulting fit parameters are
recorded in Table III.

We compare fit and DMC estimates for $\rho(r)$ and for
$n(p)$, respectively in Fig. 7 and Fig. 8. Evidently, Eq.
(19) is fully consistent with our DMC results. In Fig. 10
we show the one–body density matrix at three of the den-
sities that we have studied, as given by the fit of Eq. (19).
As for the non–interacting case, $\rho(r)$ becomes steeper
with increasing the density and its first zero moves to-
ward the origin.

A comparison of our results for the momentum distribu-
tion of $^3\mathrm{He}$ with those from some other calculations is
given in Fig. 11 and in Table IV. HNC results\cite{footnote2}

are in close agreement with our variational $n(p)$, for $p \geq p_F$
as well as with the estimate of Z, while small differences
are present at small momenta, which are however of little
relevance in the density of states $\propto n(p)p^2$. The evident
discrepancies between our results and those of GFMC\cite{footnote3}

when the nodes of the trial function are improved from
PW to SRB and then to LBF. Size effects on the momen-
tum distribution appear to be negligible, as it is clear
from the comparison between variational results for 54
and 114 particles given in Fig. 9 at the equilibrium den-
sity.

FIG. 9. Momentum distribution of $^3\mathrm{He}$ at equilibrium den-
sity $\rho(\mathring{A}^{-3}) = 0.01635$ with the VMC method, using OJ trial
functions, with 54 (solid circles) and 114 (rectangles) parti-
cles.

In Fig. 8 we report, at three different densities, the momen-
tum distribution $n(p)$ obtained using Eq. (11). Clearly, the
discontinuity Z at the Fermi wave vector p_F
is substantially reduced, with respect to its value $Z = 1$
in the noninteracting system, and moreover it systemati-
cally shrinks, as the system gets denser and the effects of
the interaction become more important. Z is also slightly
reduced
around the Fermi surface are probably due to the poorer trial function used in GFMC, as well as to statistical errors.

As we have already mentioned, the functional form of Eq. (18), with $A = a_1/\pi$, for instance, at the equilibrium density $\rho(A^{-3}) = 0.01635$ we find $A = 0.06(2)$, being however unable at present to assess the size dependence of such estimate. An independent estimate of A is given by a perturbation calculation for a dilute, hard–sphere, Fermi gas. To order $(p_F R)^2$

$$A_0 = 2\frac{\nu - 1}{\pi^2} (p_F R)^2,$$

(21)

with R the radius of the Fermi particle. Evidently 3He at equilibrium is no at all dilute. Nevertheless, taking $R = \sigma/2 \approx 1.3\AA$, one gets $A_0 \approx 0.20$, which is of the same order of magnitude as our DMC estimate. In CBF theory one obtains

$$A_{CBF} = \frac{2W_0}{\pi} p_F \frac{d e^\nu(p_F)}{dp},$$

(22)

where $e^\nu(p)$ is the variational energy and W_0 is an inverse energy parameter characterizing the imaginary part $W(p, E)$ of the self–energy $\Sigma(p, E)$, close to the Fermi energy.

$$W(p, E) \approx W_0 (E - \varepsilon_F)^2, \quad E \rightarrow \varepsilon_F.$$

(23)

If one takes $W_0 \approx 2.5^3 K^{-1}$ and $\partial W_0 / \partial p = h^2 p_F/\omega_F$, $\omega_F/M = 0.76$, from earlier work\[25] where a model form of $W(p, E)$ was fitted to the measured specific heat in 3He, $A_{CBF} \approx 21$ is obtained, which is 2 order of magnitude larger than both the DMC and the perturbative estimate.

The effective mass M^* is related to the dispersion at p_F of the quasi–particle energy

$$e(p) = \frac{h^2 p^2}{2M} + \Re \Sigma(p, e(p)),$$

(24)

according to $h^2 p_F/M^* = de(p_F)/dp$. Thus

$$M^*/M = M_K M_K$$

and the E–mass

$$M_E = 1 - \frac{\partial}{\partial E} \Re \Sigma(p, E) \big|_{E=\varepsilon_F, p=p_F} = Z^{-1}.$$

(25)

Thus, the E–mass is nothing but Z^{-1}, i.e., the strength of the quasi–particle pole at p_F.

TABLE III. Parameters of the fit [(18)] to the fixed–node DMC momentum distribution and density matrix of 3He at $T = 0^\circ K$, at various densities. ρ is in \AA^{-3}.

ρ	0.01198	0.01413	0.01635	0.01797	0.01946
Z	0.45977	0.30598	0.23616	0.14328	0.13666
a_1	0.14248	0.28612	0.19376	0.41699	0.24613
a_2	-0.11973	-0.21912	-0.12381	-0.28125	-0.23982
a_3	-0.73200	-0.80732	-0.64305	-2.1780	-0.96272
a_4	3.2095	1.9033	3.2723	4.1029	3.9981
a_5	-1.5905	0.64801	-0.098765	-2.4600	-0.64725
a_6	7.6229	1.5582	4.6639	6.8026	6.2113
b_1	9.0415	5.3494	7.3460	7.3676	7.5530
b_2	3.5907	2.7487	3.0716	3.3316	3.1652

FIG. 10. One–body density matrices ρ of 3He. The curves from the less to the most steep, give the analytical fit of Eq. (19) to our fixed-node DMC results (extrapolated estimates), respectively at $\rho(A^{-3}) = 0.01198, 0.01635$ and 0.01946. The inset shows $\rho(r)$ in the tail region with an enlarged scale.

FIG. 11. Momentum distribution of 3He at equilibrium density $\rho(A^{-3}) = 0.01635$: comparison of the present DMC (—) and VMC (—) fits with the predictions of GFMC (circles) and HNC (solid circles).
an estimate of the K–mass, to predict M^*. Hence, we are planning to perform variational and transient estimate calculations of M^*, along the lines of an equivalent calculation for the 2–dimensional electron gas.

FIG. 12. The one-body density matrix $\rho(r)$ of 3He at $T = 0^\circ$K and $\rho_e = 0.01635\AA^3$ (full curve). The dashed curve gives the product $\rho_0(r)\rho_B(r)$, with $\rho_0(r)$ and $\rho_B(r)$ respectively the density matrix for the ideal (uncorrelated) Fermi gas and the density matrix of a Bose 3He.

At the Fermi wave vector p_F, the momentum distribution $n(p)$ has a discontinuity and, according to perturbation theory and to CBF, at least the additional singular behavior of Eq. (18). It is known that singularities dominate the large distance behavior of the Fourier transform of a generalized function, such as $n(p)$. This imply in particular that as $r \to \infty \rho(r) \approx Z\rho_0(r)$, to leading order. On the other hand, using the parameters given in Table I one can show that the first zero of the DMC density matrix at the equilibrium density (see, also, Fig. 7) is at $p_F r = 5.62$, which is not very different from $p_F r = 5.72$—the location of the first zero of $\rho_0(r)$. We therefore consider the approximate decoupling

$$\rho(r) = \rho_0(r)\rho_B(r),$$

with the function $\rho_B(r)$ that must satisfy $\rho_B(0) = 1$, $\lim_{r \to \infty} \rho_B(r) = Z$, and we further choose it to be everywhere non–negative. It is tempting to take $\rho_B(r)$ as the density matrix of a suitable Bose system, with a condensate fraction Z.

We have thus simulated a system of 3He with Bose statistics, at the equilibrium density of real 3He. We find a condensate fraction of 0.208(5), which within error bars agrees with our best estimate of $Z = 0.21(2)$. In Fig. 12 we compare our fit to the density matrix of 3He with the prediction of the approximate formula (27), using for $\rho_B(r)$ the fit to the simulated density matrix of a Bose 3He. It is apparent that the decoupling of Eq. (27) approximately holds. In fact Eq. (27) overestimates the kinetic energy by 14%, while underestimating the envelope of the tail of $\rho(r)$ by about a 20%. Thus statistics and correlations in 3He decouple, within a reasonable accuracy, into those of an ideal (uncorrelated) Fermi gas and a Bose 3He, as far as $\rho(r)$ is concerned.

V. CONCLUSIONS

We have presented in this paper results of DMC calculations of the one–body density matrix and the momentum distribution of liquid 4He and liquid 3He. These DMC simulations are based on accurate trial wave functions with fully optimized pair and triplet pseudopotentials. For 3He the Fermion sign problem has been avoided, by resorting to the fixed–node approximation. In particular, we have used backflow nodes, which are more accurate than the simpler plane–wave nodes. We have recorded our data in a form suitable for future use, in terms of analytical fits.

Our prediction for the condensate fraction of 4He is lower than in previous microscopic calculations and we have argued that these seems to be consistently related to the improved description of 4He afforded by the calculations presented here. We have also found that our results are statistically consistent with the presence of a singular term in $n(p)$ as predicted earlier by Gavoret and Nozieres, in spite of the absence of explicit long–range correlations in our trial functions.

The discontinuity Z of $n(p)$ at p_F in 3He is also predicted from our calculations to be sensibly lower than in previous variational calculation and in substantial agreement with GFMC estimates. We have investigate the presence in the $n(p)$ of logarithmic singularities, as predicted by approximate treatments. We find that our results are compatible with the presence of such terms. However the strength of such term is in order of magnitude agreement with perturbation theory, whereas a CBF treatment with empirical parameters for the imaginary part of the optical potential imply a strength which differs from our prediction by 2 orders of magnitude.

We have have also demonstrated that an approximate decoupling $\rho(r) \simeq \rho_0(r)\rho_B(r)$ holds, with $\rho_0(r)$ and

ρ	0.01198	0.01413	0.01635	0.01797	0.01946
HNCa	0.348	0.275	0.244	0.221	
VMC		0.272(2)			
GFMCb			$\lesssim 0.2$		
SBF	0.46(2)	0.31(2)	0.24(1)	0.14(1)	0.14(1)
LBF	0.21(2)				

aRef. 10
bRef. 18
$\rho_B(r)$ respectively the density matrix for the ideal Fermi gas and the density matrix of a Bose 3He. Thus statistics and correlations effects seem to decouple in 3He, as far as the density matrix is concerned. The Bose 3He has in fact a condensate fraction which agree within error bars with the discontinuity Z found in the Fermi 3He.

We believe that the estimates given in this paper provide the most accurate information of this kind on 4He available to date. This is of particular importance for the condensate fraction in 4He, as its extraction from deep inelastic neutron scattering seems still not feasible. Using our accurate EMC trial functions we have also studied partially polarized 3He. We shall report on this study elsewhere.

Acknowledgments

Most of the work presented in this paper was done when SM was enjoying a postdoctoral fellowship at the Laboratorio FORUM of the Istituto Nazionale di Fisica della Materia, Pisa. Access to the computing facilities of CNUCE are also gratefully acknowledged.

1. Momentum Distributions, R.N.Silver and P.E.Sokol, eds (Plenum, N.Y., 1989).
2. See, e.g., A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).
3. D.M.Ceperley and M.H.Kalos, in Monte Carlo Methods in Statistical Physics, K.Binder, ed. (Springer, N.Y., 1979).
4. S.Fantoni, Nuovo Cimento 44A, 191 (1978).
5. M.L.Ristig, in From Particle to Nuclei, Course LXIX Int. School of Phys.Enrico Fermi, A.Molinari ed., (North-Holland, Amsterdam, 1981).
6. S.Fantoni and V.R.Pandharipande, Nucl. Phys. A427, 473 (1984).
7. E.Manousakis, V.R.Pandharipande and Q.N.Usmani, Phys. Rev. B31, 7022 (1985).
8. A. Fabrocini, S. Rosati, Nuovo Cimento D1, 567, 615 (1982).
9. M.F.Flynn, Phys. Rev. B33, 91 (1986).
10. A.Fabrocini, V.R.Pandharipande and Q.N.Usmani, Nuovo Cimento 14D, 469 (1992).
11. E. Feenberg, Theory of Quantum Liquids (Academic, New York, 1969).
12. Q. N. Usmani, S. Fantoni, V. R. Pandharipande, Phys. Rev. B26, 6123 (1982), and references therein.
13. R. A. Smith, Phys. Lett. 63B, 369 (1976); 85B, 183 (1976); R. A. Smith, A. Kallio, M. Puoskari, P. Toropainen, Nucl. Phys. 328A, 186 (1979).
14. E. Krotscheck, Phys. Rev. B33, 3158 (1986).
15. X.Q.G.Wang, S.Fantoni, E.Tosatti and L.Yu, Phys Rev B49, 10027, 1994.
16. S.Moroni, S.Fantoni, G.Senatore, Europhys. Lett., 30, 93 (1995).
17. S.Moroni, S.Fantoni, G.Senatore, Phys. Rev., B52, 13547 (1995).
18. P.A.Whitlock and R.Panoff, Ca. J. of Phys. 65, 1409 (1987).
19. D.M.Ceperley and E.L.Pollock, Phys. Rev. Lett. 56, 351 (1986); Can J. of Phys. 65, 1416 (1986); E.L.Pollock and D.M.Ceperley, Phys. Rev. B36, 8343 (1986).
20. G.L.Masserini, L.Reatto, S.A.Vitiello, Phys. Rev. Lett. 69, 2098 (1992).
21. P.I.Reynolds, D.M.Ceperley, B.J.Alder, W.A.Lester, J. Chem. Phys. 77, 5593 (1982).
22. D. M. Ceperley, in Recent Progress in Many-Body Theories, ed. J. Zabolitzky (Springer 1981); D. M. Ceperley, J. Stat. Phys. 63, 1237 (1991).
23. K.S. Liu, M.H. Kalos, and G.V.Chester, Phys. Rev. A10, 303, (1974).
24. I. Casulleras and J. Boronat, Phys. Rev. B 52, 3654, (1995).
25. S. A. Vitiello, K. E. Schmidt, Phys. Rev. B46, 5442 (1992).
26. R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, G. E. Comuille, J. Chem. Phys. 70, 4330 (1979).
27. K. E. Schmidt, M. A. Lee, M. W. Kalos, G. V. Chester, Phys. Rev. Lett. 47, 807 (1981).
28. E. Manousakis, S. Fantoni, V. R. Pandharipande, Q. N. Usmani, Phys. Rev. B28, 3770 (1983).
29. Y. Kwon, D. M. Ceperley, R. M. Martin, Phys. Rev. B48, 12037 (1993).
30. R.M.Panoff, J.Carlson, Phys. Rev. Lett. 62, 1130 (1989).
31. J.Gavoret and P.Nozières, Ann. Phys. (NY) 28,439 (1964); W.N.Snow,Y.Wang and P.E.Sokol, Europhys. Lett. 19, 403 (1992).
32. P.E.Sokol in Bose–Einstein condensation, A.Griffin, D.W.Snoke and S. Stringari, eds. (Cambridge University Press, 1995).
33. R.R.Sosnick, W.M.Snow, P.E.Sokol and R.N.Silver, Europhys. Lett. 9, 707 (1989).
34. S.Fantoni, B.L.Friman and V.R.Pandharipande, Nucl. Phys. A399, 51 (1983).
35. R.Sartor and C.Mahaux, Phys. Rev. C21, 1546 (1980).
36. P.E.Sokol, K.Sköld, D.L.Price, R.Kleb, Phys. Rev. Lett. 54, 90 (1985).
37. S.Fantoni, V.R.Pandharipande and K.E.Schmidt, Phys. Rev. Lett. 48, 878 (1982).
38. J.P.Jeukenne, A.Lejeunne and C.Mahaux, Phys.Rep. 25, 83 (1986).
39. A.B.Migdal, JETP (Sov. Phys) 5, 333 (1957).
40. J.M.Luttinger, Phys. Rev. 119, 1153 (1960).
41. Y. Kwon, D.M. Ceperley, and R.M. Martin, Phys. Rev. B50, 1684 (1994).
42. Y. Kwon, D.M. Ceperley, and R.M. Martin, Phys. Rev. B53 7376 (1996).
43. M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions (Cambridge University Press, Cambridge 1959).
44. S. Moroni, S.Fantoni, G.Senatore, in preparation.