Functional assessment of the BMPR2 gene in lymphoblastoid cell lines from Graves’ disease patients

Guillermo Pousada a, b, #, Mauro Lago-Docampo a, #, Sonia Prado a, b, Rubén Varela-Calviño c, Beatriz Mantinán d, Diana Valverde a, b, *

a Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Pontevedra, Spain
b Instituto de Investigación Biomédica de Ourense-Pontevedra-Vigo, Pontevedra, Spain
c Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, A Coruña, Spain
d Endocrine, Diabetes, Nutrition and Metabolism Department, Complexo Hospitalario Universitario de Vigo, Pontevedra, Spain

Received: June 26, 2017; Accepted: September 16, 2017

Abstract

In this study, we analysed the possible influence of the c.419-43delT BMPR2 variant in patients with Graves’ disease (GD), in a molecular basis, focusing our efforts on possible alterations in the mRNA processing and synthesis. The molecular assessment of this variant in patients with GD would shed light on the association between the BMPR2 gene and the disease. The variant was detected in 18%, 55% and 10% of patients with pulmonary arterial hypertension, GD and in general population, respectively. Patients with GD fold change showed increased BMPR2 expression when matched against the controls, with a mean of 4.21 ± 1.73 (P = 0.001); BMPR2 was overexpressed in the analysed cell cycle stages. Fold change analysis of variant carriers and non-carriers showed slight overexpression and differences between phases, but none of them were statistically significant. BMPR2 expression was confirmed in the lymphoblastoid cell lines (LCLs) with a molecular weight of 115 kD, and no differences between variant carriers and non-carriers were detected. To conclude, the BMPR2 variant c.419-19delT appears in high frequency in patients with GD, and independently of its presence, BMPR2 is overexpressed in the LCLs from the GD patients tested. This increase could be paired with the described decreased expression of transforming growth factor-β1 in thyroid tissue from patients with GD.

Keywords: pulmonary arterial hypertension • Graves’ disease • BMPR2 • functional analysis • lymphoblastoid cell lines • Epstein–Barr virus • expression assay • TGF-β/BMP

Introduction

The BMPR2 gene (OMIM #600799) is located in the chromosome 2 position q33, and it encodes for the bone morphogenetic protein receptor of type 2 (UNIPROT #Q13873), a constitutively active serine/threonine kinase receptor that plays a major role in the transforming growth factor beta (TGF-β; UNIPROT #P01137) superfamily regulation [1, 2]. Mutations in the germline BMPR2 have been widely related to at least 50% of the familial cases and 40% of the idiopathic of pulmonary arterial hypertension (PAH; OMIM #178600, ORPHA 422) [1, 3–6]. Although PAH shows a reduced penetrance pattern, only 20% of the mutation carriers end up developing the disease [7].

Pulmonary arterial hypertension is a rare disease characterized by precapillary pulmonary arteries remodel resulting in loss of permeability and increased blood flow resistance that eventually leads to right heart failure [8–10]. PAH has an annual incidence between 1 and 2 cases per million [11], and in the Spanish population, it has an incidence between 1.2 and 3.2 and a prevalence between 4.6 and 16 cases per million [12], affecting between two and four times more women than men [13, 14]. Average age of diagnosis is about 45 years [15], even though symptoms may appear at any age [8]. PAH can be classified as idiopathic (IPAH), familial (FPAH) or associated with other diseases such as connective tissue diseases, congenital heart diseases, portal hypertension and drug or toxin exposure (PAH) [9, 14]. Besides, several cases of associated PAH to GD have been reported [16–18].

After BMPR2 screening in PAH patients, we detected the c.419-43delT mutation in several of them [5]. Whenever we start to study a new mutation, a population analysis is carried out using DNA samples from general population and patients that have given their consent for the usage and storage of their anonymized genetic material by our group in future projects. We found this variant with a frequency up to 40% in a series of samples from an investigation project on thyroid
autoimmunity from the Endocrinology Service of the Complexo Hospitalario Universitario de Vigo.

These findings lead us to analyse the whole set of samples from that project which consisted in GD patients samples. GD is one of the most common autoimmune disorders, with an annual incidence of approximately 21 new cases per 100,000 individuals [19], affecting mostly women with a 5:1 ratio [20]. Clinical presentation of the GD is characterized by thyrotoxicosis, goitre and ophthalmopathy. Although the only common sign between every patient is the hyperthyroidism [21] caused by antibodies that imitate the action of the thyroid-stimulating hormone (TSH; UNIPROT P01222) activating its receptor. As an autoimmune disorder, GD has a variety of associated pathologies, being the APAH diagnosed in about a 15% of the cardiopathies caused by GD [16, 18].

Genetic variants are constantly reported, relying on in silico analysis for the prediction of its pathogenicity. These kind of predictions often differ from reality, where missense, synonymous or intronic mutations can end up playing an important role in the development of a disease. Synonymous and non-synonymous can alter protein structure, the splicing process and mRNA stability and conformation. There are several examples in the literature showing pathogenic mutations where the in silico analysis came back negative [3, 7, 22]. The functional studies are of great value to investigate the role of these mutations in the development of a disease.

The objectives of this work were to assess the presence of the c.419-43delT variation in patients with GD and to analyse the functionality of the mutation by minigene assay for splicing alterations and quantitative real-time PCR for expression measurement. Functional analysis of this frequent polymorphism in patients with GD would shed light on the relationship between the BMPR2 gene and the disease.

Patients and methods

Patients with GD and samples

Graves’ disease patients’ diagnosis was performed based in the laboratory examination of hyperthyroidism patients showing low or suppressed TSH and high levels of T3 and T4. In cases where GD appeared associated with ophthalmopathy and diffuse goitre, more tests were needed. On the contrary, complementary tests depending on the centre of diagnosis were performed, such as autoantibodies against TSH receptor detection (thyroid-stimulating immunoglobulin), thyroid scintigraphy or Doppler echography. Patients and controls signed an informed consent and the Ethical Committee for Clinical Research; Autonomic Ethics Committee approved the study (Galician Ethical Committee). Patients with GD and samples included in the project which consisted in GD patients samples. GD is one of the cardiopathies caused by GD [16, 18].

Genomic DNA amplification was performed with 50 ng of genomic DNA from each individual with a polymerase chain reaction (PCR), using GoTaq® Green Master Mix (Promega Corporation, Madison, WI, USA). The primers used to amplify the BMPR2 gene were as described by Deng et al. [23], and changes in other regions were not analysed. PCR amplification was performed at 55°C annealing temperature for the exons 1, 3, 5, 6, 7, 8, 9, 10, 11 and 13 and 60°C for the exons 2 and 12. PCR products were separated by electrophoresis through 2% agarose gels containing SYBR Safe DNA Gel Stain (Invitrogen, Carlsbad, CA, USA); to confirm the PCR products, HyperLadder IV (New England Biolabs, Ipswich, MA, USA) was used as the molecular weight marker; and PCR products were purified using ExoSAP-IT kit (USB Corporation, Cleveland, OH, USA). Sequencing reactions were performed using the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA), and the fragments were purified using Agencourt CleanSEQ-Dye Terminator Removal (Beckman Coulter, Brea, CA, USA). A second independent PCR and sequencing reaction in both the forward and reverse strands was performed to check for the detected mutations.

Sequences were aligned to the reference Ensembl DNA sequence [ENST00000374580]. To predict whether changes could affect, create or eliminate donor/acceptor splice sites were used Neural Network SPlice (NNSplice) 0.9 version from the Berkeley Drosophila Genome Project (Lawrence Berkeley National Laboratory, Berkeley, CA, USA), NetGene2 (Technical University of Denmark, Kongens Lyngby, Denmark), Splice View, Human Splicing Finder 2.4.1 version (Ax Marseille Université, Marseille, France) and Automated Splice Site Exon Definition Server-ASSEDA (University of Western Ontario, London, Canada).

Minigene assay

For the c.419delT variant, we amplified the exon and 250 bp of 5' and 3' intronic junctions from the control and the GD patient DNA with high-fidelity Phusion polymerase (Finnzymes, Espoo, Finland) to obtain the wild-type, with primers carrying restriction sites for XhoI/NheI (New England Biolabs) and L-glutamine penicillin/streptomycin (PAA Laboratories, Pasching, Austria). Genomic DNA was extracted, using the FlexiGene DNA Kit (Qiagen, Hilden, Germany), according to manufacturer’s protocol, from peripheral blood. Genomic DNA amplification was performed with 50 ng of genomic DNA from each individual with a polymerase chain reaction (PCR), using GoTaq® Green Master Mix (Promega Corporation, Madison, WI, USA). The primers used to amplify the BMPR2 gene were as described by Deng et al. [23], and changes in other regions were not analysed. PCR amplification was performed at 55°C annealing temperature for the exons 1, 3, 5, 6, 7, 8, 9, 10, 11 and 13 and 60°C for the exons 2 and 12. PCR products were separated by electrophoresis through 2% agarose gels containing SYBR Safe DNA Gel Stain (Invitrogen, Carlsbad, CA, USA); to confirm the PCR products, HyperLadder IV (New England Biolabs, Ipswich, MA, USA) was used as the molecular weight marker; and PCR products were purified using ExoSAP-IT kit (USB Corporation, Cleveland, OH, USA). Sequencing reactions were performed using the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA), and the fragments were purified using Agencourt CleanSEQ-Dye Terminator Removal (Beckman Coulter, Brea, CA, USA). A second independent PCR and sequencing reaction in both the forward and reverse strands was performed to check for the detected mutations.

Sequences were aligned to the reference Ensembl DNA sequence [ENST00000374580]. To predict whether changes could affect, create or eliminate donor/acceptor splice sites were used Neural Network SPlice (NNSplice) 0.9 version from the Berkeley Drosophila Genome Project (Lawrence Berkeley National Laboratory, Berkeley, CA, USA), NetGene2 (Technical University of Denmark, Kongens Lyngby, Denmark), Splice View, Human Splicing Finder 2.4.1 version (Ax Marseille Université, Marseille, France) and Automated Splice Site Exon Definition Server-ASSEDA (University of Western Ontario, London, Canada).

Minigene assay

For the c.419delT variant, we amplified the exon and 250 bp of 5' and 3' intronic junctions from the control and the GD patient DNA with high-fidelity Phusion polymerase (Finnzymes, Espoo, Finland) to obtain the wild-type, with primers carrying restriction sites for XhoI/NheI (New England Biolabs). The forward and reverse primers were 5'-GCTGGTGTGTTTTATGTCC-3' and 5'-GCTGGCAGAAGGGTAGCTGACTGATAA-3', respectively. The amplified fragments were cloned using the T4 DNA ligase concentrated (New England Biolabs) in the Exon Trapping Expression Vector p.SPL3 (Invitrogen, San Diego, CA, USA), provided by Dr. José María Millán. Wild-type and mutant construct were amplified using the GoTaQ® Green Master Mix (Promega Corporation) and were sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). The forward and reverse primers were 5'-GCCAGGACATGACGAGCAGCTGCA-3' and 5'-TCGAGGCTGCGCTCTCA-3', respectively.

As described previously [22], 2 × 10³ COS-7 cells (from kidney of Cercopithecus aethiops, provided by Dr. José María Millán) were grown to 90% confluency in Dulbecco’s modified Eagle medium-DMEM (Gibco, Grand Island, NY, USA) supplemented with 10% foetal bovine serum (PAA Laboratories, Pasching, Austria) and γ-glutamine penicillin/streptomycin (Gibco®) at 37°C and 5% CO₂ atmosphere. COS-7 cells were transiently transfected in triplicates with the minigene constructs using Lipofectamine 2000 reagents (Thermo Scientific, Carlsbad, CA, USA) according to manufacturer’s instructions. RNA was extracted and purified using the Nucleic Acid and Protein Purification kit (NucleoSpin RNA II; Macherey-Nagel, Düren, Germany), and cDNA was synthesized using the GeneAmp Gold RNA PCR Core Kit (Applied Biosystems). Primers used to amplify the cDNA were 5'-TCGAGCTCACCTGAGACAAC-3' and 5'-ATCTCAGTGGATTTGTGACG-3', using the high-fidelity Phusion 5, 6, 7, 8, 9, 10, 11 and 13 and 60
polymerase (Finnzymes). PCR products were analysed in 2% agarose gels containing SYBR Safe DNA Gel Stain (Invitrogen) and, finally, by direct sequencing in both senses.

Generation of LCLs by infection with Epstein–Barr virus

To obtain enough cells for gene expression from both controls and patients, immortalization of B cells and generation of LCLs was performed by infection with Epstein–Barr virus (EBV)-containing culture media, obtained from exponentially growing tetradecanoyl phorbol acetate-stimulated B95-8 cells (Prof. Mark Peakman, Department of Immunobiology, King’s College School of Medicine). Supernatants were stored at -20°C until usage.

To obtain LCLs, peripheral blood mononuclear cells (PBMCs) from both controls (n = 8) and GD patients (n = 7) were cultured in 25-cm² tissue culture flasks, treated for 1 hr with FK-506 (Tacrolimus; Sigma-Aldrich, Madrid, Spain) to inhibit the expansion of T lymphocytes and infected with EBV-containing culture media. After 5–7 days, clusters of transformed cells were detected, and culture media were changed every 2–3 days since then as required until enough cells were available for both cell characterization and gene expression analysis. Cellular origin of the growing cells was determined by cell staining using anti-CD19 antibodies (BD Biosciences, Madrid, Spain) and flow cytometry analysis (BD FACScalibur, BD Biosciences, Madrid, Spain). Phenotypic analysis was performed by duplicates using cells obtained 5–7 days apart, to analyse the stability of the phenotype. CD19 expression was performed after gating cells in the forward-scatter lymphocyte region.

Sorter and collected cells

Cells from the controls and patients with GD were cultured in a medium consisting in RPMI 1640 Medium (Gibco, Carlsbad, CA, USA). Cultures were stained with Hoechst 33342 (BD Biosciences) following the manufacturer’s recommendations. Thereafter, cells were harvested and resuspended at a concentration of 1 x 10⁶/ml in sort buffer + 2 mM EDTA and DNase and then sorted base on the DNA content. Cells in G0/G1, S and G2/M were collected using a BD Biosciences FACs Aria III flow cytometer (BD Biosciences, Madrid, Spain) and flow cytometry analysis (BD FACSDiva v8.0.1 (BD Biosciences, Madrid, Spain) and Flowjo v7.6.5 (FlowJo, LLC, Ashland, OR, USA) were used to data analysis. Then, the recollected cells were resuspended in RNAlater solution from Ambion (Invitrogen) and were stored at -80°C.

cDNA synthesis and expression assay by quantitative real-time PCR

A total of 2 µg of total RNA was used to perform the cDNA synthesis with the GeneAmp RNA PCR Core Kit (Life Technologies, Carlsbad, CA, USA). The cDNA was later used to amplify the target gene (BMPR2) and the reference genes (GADPH and ACTB) by quantitative real-time (qPCR) using commercial Taqman probes, with 4331182, 4331182 and 4331182 references, respectively (Life Technologies). The reaction was carried out in a Step One thermocycler (Life Technologies) with a total amount of 50 ng of cDNA in 20 µl, containing 10 µl of Taqman Universal PCR Mastermix (Life Technologies) and 1 µl of Taqman Gene Expression Mix (Life Technologies). The amplification conditions were as follows: 50°C for 2 min., 95°C for 10 min. and 40 cycles of 15 sec. at 95°C and 1 min. at 60°C. Expression data normalization was carried out using the Hellemans 2007 method [24] to calculate the normalized relative quantities (NRQ) and the fold change for the intergroup comparison.

Confirmation of the BMPR2 Protein expression by Western blot

Western blot analysis was performed using 20 µg of protein obtained from LCLs and cultured B lymphocytes. Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) containing 5% β-mercaptoethanol was used to dilute the samples before heating them at 95°C for 5 min. Proteins were separated by SDS-PAGE using a 7.5% TGX Mini-Prep gel (Bio-Rad). After electrophoresis, protein transfer into a PVDF membrane was performed using the Transfer Blot Turbo Transfer Pack (Bio-Rad) in a semidry blotting apparatus (Bio-Rad) for 7 min. at 1.3 A. The membrane was then blocked for 1 hr at room temperature using 5% non-fat milk in Tris-buffered saline (TBS) containing 0.1% Tween 20 (TBST). The immunoblotting was performed incubating the membrane overnight at 4°C with mouse monoclonal anti-BMPR2 IgG (reference Ab130206; ABCAM, Cambridge, UK) diluted 1/250 in blocking solution. After washing with blocking solution for 3 times, the membrane was incubated with 1/15.000 dilution of rabbit antimouse IgG conjugated with horseshad peroxidase (reference A9044; Sigma-Aldrich, St. Louis, MO, USA) for 45 min. in blocking solution. TBS was then used to wash the membrane.

BMPR2 was detected by chemiluminescence using the Clarity Western ECL Substrate (Bio-Rad) in a ChemiDoc™ (Bio-Rad) digital camera-based imaging system. Loading control was performed by Coo massie Brilliant Blue (R-250) staining as described by Welinder and Ekblad in 2010 [25].

Statistical analysis

Statistical analysis was carried out using the IBM-SPSS v.19 software (IBM, Armonk, NY, USA) and GraphPad Prism (GraphPad Software INC, La Jolla, CA, USA). Nonparametric statistic tests were used for intragroup analysis (Kruskal–Wallis and Wilcoxon) and intergroup (Mann-Whitney). Probability values of less than 0.05 were considered statistically significant.

Results

Controls and GD patient samples

Eight controls, obtained from the Faculty of pharmacy of University of Santiago de Compostela, seven patients with GD, obtained from the Endocrine, Diabetes, Nutrition and Metabolism Department of Complexo Hospitalario Universitario de Vigo and 100 individuals from general population, obtained from Complexo Hospitalario Universitario de Vigo, were included in this analysis. Four of the controls were women, and four were men; their medical history and analytics showed that
all values were within normal parameters, and no chronic pathologies nor hyperthyroidism/hypothyroidism were detected either. However, all patients with GD included in this study were women. The clinical characteristics of GD patients are summarized in Table 1.

For this analysis, we have differentiated between individuals from general population and controls. The first group represents random Galician population that did not have their medical history checked; their samples were only used to assess the frequency of the polymorphism in population from the same area as the patients. While, as stated above, controls were tested to assure the absence of health conditions that could jeopardize the results.

Mutational frequency of the BMPR2 gene in controls, GD patients and general population

We checked c.419-43delT variant, in BMPR2 gene, in 57 patients with PAH, in 40 patients with GD and in 100 individuals from general population, found the deletion in 18% of patients with PAH, in 55% of patients with GD and in 10% of individuals from general population (Fig. 1). Moreover, after the mutational analysis of BMPR2 gene in the controls we did not find variants in exons and intronic junctions nor in 5'UTR region. However, in three the seven analysed GD patients we identified the c.419-43delT variant.

After the in silico analysis of c.419-43delT, the splicing tools had foretold the benign nature of this deletion. Besides, we did not find alterations in the RNA processing using the minigene assay for the c.419-43delT variant in BMPR2 gene in comparison with the wild-type sequence, and the results showed that this deletion did not generate a new transcript (Fig. 2). In addition, we checked the splicing process using RNA from LCLs and the results were the same as in the minigene assay.

Phenotypic characterization of LCLs

Growing cells were characterized by flow cytometry after staining with anti-CD19 monoclonal antibodies. All growing LCLs obtained from both controls and GD patients were CD19-positive confirming their B-cell origin. LCLs obtained from controls were almost all CD19 positive, and this percentage remained stable with time (97.2 ± 1.4% in the first analysis and 97.7 ± 1.5% in the second analysis) (mean ± SD); when a similar procedure was carried out using PBMCs obtained from patients with GD, very similar results were obtained compared to those from controls (95.6 ± 2.1 in the first analysis and 95.3 ± 2.2 in the second analysis) (mean ± SD). These data confirm the B-cell origin of the growing cell lines obtained from both controls and GD patients and also the stability of the cell phenotype with time.

Cell separation went as expected, obtaining a higher number of cells for the G0/G1 phase. After sorting the LCLs using the BD Biosciences FACS Aria III flow cytometer (BD Biosciences). For the control samples, 500,000 cells were isolated for the G0/G1 phase and S phase and 100,000 cells for the G2/M phase. Same numbers were obtained for the patients group, with GD, for G2/M phase, and were isolated 250,000 cells for G0/G1 and S phases.
Expression assay of the *BMPR2* gene in LCLs

BMPR2 gene expression for patients with GD was detected with a mean threshold cycle (CT) value of 34.38 ± 2.04 (mean ± SD). In controls, the mean CT was 34.05 ± 0.94. NRQ values for controls showed similar expression levels between G0/G1 and S with a slight decrease in G2/M. However, patients with GD G0/G1 and G2/M phases had similar values, while S phase showed a noticeable drop. These intragroup differences were not statistically significant. The fold change obtained after comparing the controls and the patients with GD showed a generalized increase of expression for the patients (Fig. 3A), each dot representing individual data compared against the opposite group (controls and GD patients), showing a mean value of 4.21 ± 1.73 and a median value of 3.71. The increased *BMPR2* expression was detected in all the analysed cell cycle phases (Fig. 3B), and G0/G1 and G2/M phases showed mean fold values of 5.03 ± 3 and 4.75 ± 1.94, and median values of 3.84 and 4.83, respectively, S phase showed a mean fold increase of 2.93 ± 1.56 and a median of 2.19. These intergroup differences are statistically significant (*P* = 0.001).

The GD patients group can be spliced between wild-type and polymorphism carriers, and polymorphism carriers showed a mean CT of 34.6 ± 1.99 for *BMPR2* detection while the wild-type had a value of 34.08 ± 2.16. NRQ values for wild-type showed the lowest expression levels in the G0/G1 phase, an slight increase in S, and its maximum levels in the G2/M. Carriers showed slightly superior NRQ values than the WT in all phases, with similar levels in the G0/G1 and S phases and a slight increase in the G2/M, these differences were not statistical significant. The fold change obtained from these groups comparison resulted in greater expression for carriers (Fig. 4A), with a mean value of 1.36 ± 0.47 and a median of 1.28. This slight overexpression showed greater fold levels in the G0/G1 phase with a mean value of 2.72 ± 1.69 and a median of 1.62, a slight decrease in the S phase with 0.78 ± 0.36 mean value and a median of 0.62; and equal levels for G2/M with mean values of 1.03 ± 0.41 (Fig. 4B) and median of 1.18.

Fig. 2 Functional analysis of c.419-43delT variant by minigene assay. (A) Representative sequence electropherograms for the c.419-43delT variant in *BMPR2* gene. (B) Sequencing results for *in vitro* mRNA processing for c.419-43delT variant. (C) Agarose gel electrophoresis shows the band pattern of the transcripts obtained after mRNA processing for c.419-43delT variant. (D) Representative mRNA processing for c.419-43delT variant. The variant produced unchanged splicing when comparing wild-type and mutant.

Fig. 3 Expression assay results of Graves’ disease (GD) patients and controls. (A) Dot plot representing the fold change between GD patients and controls without taking into account cell cycle stage. The data showed augmented expression for the patients with GD when compared against the controls, and these data are statistically significant (*P* = 0.001). (B) Dot plot representing the fold change between GD patients and controls taking into consideration cell cycle stage. The data showed increased gene expression for the patients in all the cell cycle stages, and there were no statistically significant differences between stages.
Expression confirmation of the BMPR2 protein by Western blot assay in LCLs

BMPR2 was detected in the positive control (H1299 cell line, lane 1) and the lymphoblastoid samples matching its predicted molecular weight of 115 kD, both in the c.419-43delT (lane 2) and the wild-type sample (lane 3). These results are shown in Figure 5.

Discussion

The advances in mutations' detection methods offer us high amounts of data about the changes that we can find in the population, although there are not yet reliable systems that allow the determination of mutations' pathogenicity nor of those variants that may have an uncertain significance [26]. Thus, when a SNP is detected in high frequency in specific populations, pathology linkage should be considered, taking into account the enormous rate of variant's reclassification [27]. Assessing the functionality of the identified mutations is especially important in rare diseases, where it has gained relevance in the last years, as it enhances our ability to correctly identify pathologies or even gives us the possibility of predicting something as valuable as patient's prognosis. Therefore, functional characterization of gene variants reduces the difficulty of correctly cataloging them [28, 29] and helps in the task of creating more accurate bioinformatic applications.

The c.419-43delT variant is relatively common in the European population, where it has a frequency of 12.7% by ExAc and an 11.7% by Ensembl that when subdivided into the Iberian population lowers to an 8.4%. In our case, this variant was found in 18% of the PAH patients analysed, a proportion bigger than the expected after checking the SNPs databases, but this data were diminished after we found the polymorphism in 55% of the GD patients analysed. These data may indicate that the variant in study displays higher implication than expected in both PAH and GD that was still unknown. In addition, our analysis of the c.419-43delT variant in controls and general population supported the described frequencies in different databases.

In this study, we hypothesize that the variant c.419-43delT, classified as a polymorphism after an exhaustive in silico analysis, might have an influence in patients diagnosed with GD. Schleinitz et al. had only previously studied this variant in a cohort, where they analysed the role of BMPR2 gene in the pathophysiology of obesity, and no genotype/phenotype correlation was established for this variant [30]. The high frequency found in our study lead us to believe about a possible linkage with GD. GD is defined as a multifactorial disorder, being caused by a complex interaction between genotype and environment, which would lead to the loss of tolerance against the thyroid antigens, and therefore, being the first step of immune response against the thyroid gland [21]. In several families with recurrent autoimmune thyroiditis, there has been described a positive linkage between GD and various genes that can be divided among immune system regulators (human leukocyte...
antigen—antigen D regulated, HLA-DR, cytotoxic T-lymphocyte-associated protein4, CTLA4–OMIM #123890; cluster of differentiation 40, CD40–OMIM #109535; and protein tyrosine phosphatase non-receptor type 22, PTPN22–OMIM #600716) and thyroid specific (thyrogblobulin, TG–OMIM #188450; and thyroid-stimulating hormone receptor, TSHR–OMIM #603372) had been established, showing reduced penetrance [31].

After performing the minigene assay for the c.419-43delT variant to verify its pathogenicity in vitro, we did not find any differences concerning transcript processing between wild-type and mutant constructions, as this variant is not located in a consensus splicing region [32]. Likewise, we performed functional studies, using lymphoblastoid mRNA from carrier patients and patients without the deletion to confirm the minigene assay results. The mRNA analysis using lymphoblastoids did not detect any change in the splicing process. However, the splicing effect is tissue dependent; thus, these results should be taken carefully as they have to be confirmed using vascular endothelial cells or thyroid gland cells [22].

To analyse the expression pattern, we performed qPCR analysis in PBMCs, with negative results. As circulating B lymphocytes are in the G0 phase before their activation and beginning of clonal expansion, we postulated if BMPR2 expression in these cells could be cell cycle phase dependent. After a literature review, we decided to perform the EBV immortalization, as the expression of the BMPR2 in these cell lines had been previously described [7, 33–35].

We found increased expression levels in the patients with GD when compared against controls, and this overexpression may support the idea of BMPR2 being related to autoimmunity processes. Even though when we analysed the expression in the different cell cycle phases in each group, we did not find significant differences. This could be explained by the alterations produced by the EBV infection needed to produce the LCLs, which is able to alter the cell cycle check points [36]. Increasing the number of samples could be necessary to obtain a significant expression pattern between the cell cycle phases.

In 2005, Roberts et al. speculated about the possibility of BMPR2 influencing in the development of thyroid pathologies after finding these kinds of diseases in 100% of the IPAH patients carrying BMPR2 mutations, while only 14% of the non-carriers of BMPR2 mutations referred these pathologies [37]. More recently, Satoh et al. demonstrated the existence of increased prevalence and predisposition to the development of thyroid autoimmune diseases in patients of APAH [38]. This evolution towards autoimmunity might be based on the apparent relation between the BMPR2 and the differentiation and maturation of the T lymphocytes in the thymus [39, 40], where mutations in this gene may interfere in the normal development of thymocytes [39]. This was also suggested to explain the presence of connective tissue diseases in APAH [41].

When we separated the GD patients group into carriers and non-carriers of the variant, we found slightly increased values of BMPR2 expression in the carriers, but not statistically significant. In addition, the protein expressed in the LCLs of both groups matched the predicted molecular weight of 115 kD. It would be necessary to analyse a great number of samples in order to confirm these expression differences.

The TGF-β/BMP signalization pathway is one of the most important routes for cell stability making its presence ubiquitous within the organism. Its influence may vary between cell types because of the existing cell receptors and the context of hormones and growth factors [42, 43], but its main roles remain being the regulation of cell proliferation, differentiation, apoptosis and development. On the one hand, TGF-β can appear in three isoforms (TGF-β1, TGF-β2 and TGF-β3) with TGF-β1 being the most studied [44]. The TGF-β1 binds to the TGF-β type 2 receptor, and after its activation, it binds to the TGF-β type 1 receptor and phosphorylates it in the serine/threonine residues. Then, by the union of two receptors of each type, an heterocomplex with activity activin-like kinase is formed that will phosphorylate the Smad 2/3 proteins, which will then be able to translocate towards the nucleus to regulate gene expression [45]. This gene regulatory effect can be also caused without the need of phosphorylation by the activation of the Smad 4.

On the other hand, the BMP signalization starts when BMP binds to the BMPR2, which as a serine/threonine kinase protein phosphorylates one of the BMP type 1 receptors (ALK-3/BMPR-IA, ALK-6/ BMPR-B or ALK-2) forming a heterocomplex [46]. Upon its activation, the type 1 receptor activates and phosphorylates the Smad 1/5/8 proteins [47], which will then bind to the Smad 4 protein and translocate to the nucleus to regulate gene expression. The Smad 4 protein is therefore common in both pathways playing a central role. There has been reported that when BMPR2 signalization through the Smads proteins decrease, TGF-β signalization increases, and this effect is the result of their competition for the usage of the Smad 4 protein [48]. However, there is evidence of a more complex reciprocal regulation for both pathways [49]. Thus, the increased BMPR2 expression we found in our study could be paired with a decrease in the expression of the TGF-β1, something that has been demonstrated for patients with GD in a recent study carried out in biopsy samples from thyroid pathology patients [50].

TGF-β1 has been widely related to cell proliferation and tumour repression in thyroid healthy tissue, but it is believed to have the opposite function in cancerous thyroid [45, 51–54]. Thus, the different types of thyroid neoplasia show varying levels of the TGF-β1. In our case, all the patients with GD presented goitre, five diffuse and two nodular, so we could hypothesize that the goitre could be caused by the dysregulation of the TGF-β/BMP signalling pathway. BMPR2 overexpression should be confirmed in thyroid tissue. Although, the role of the TGF-β1 pathway has been extensively analysed in the thyroid gland, scarce studies have referred to the role of BMPR2 in this tissue.

The unanswered question is still why this variant appears in high frequency in patients with GD. We could consider a founder effect as a plausible explanation. However, we could neither rule out the possibility of this variant acting as an enhancer, affecting gene expression of a completely unrelated gene located within the chromosome 2. This enhancer activity has been reported with molecular distances of up to 1 Mbp [55]. Theoretically, a single base pair change as the reported in the c.419-19delT could make the enhancer miss its target, altering gene expression and affecting carrier’s phenotype.

Chromosome 2 has a wide variety of genes, but we would like to suggest a couple of candidates to be modulated by this possible
enhancer. Because of its proximity to the BMPR2 gene, the CTLA4
gene and the cluster of differentiation 28 (CD28; OMIM #187670)
would be suitable choices as they both are located in the q.33 posi-
tion. CTLA4 and CD28 are homologous proteins that bind to the B7
proteins [56]. CTLA4 acts as a checkpoint in the immune response,
transmitting an inhibitory signal to T cells and down-regulating
immune responses, whereas CD28 (UNIPROT #10747) plays the con-
trary role, transmitting a stimulatory signal [57]. Also, CTLA4 has
already been widely linked with GD [31, 58–60], so the possibility of
an enhancer modulating its expression or its counterpart’s is inter-
esting, as it could possibly alter GD development. A misbalance between
CTLA4 and CD28 could mean that T cells would be activating B cells
in a higher ratio, being the presence of anti-TSHR antibodies the
cause of GD, this augmented antibody production could affect GD
development and evolution.

The main limitation of our study is the low number of samples
included in the molecular analysis, as it diminishes our ability to draw
robust conclusions. Besides, we could not perform a genotype–
phenotype correlation to verify whether the c.419-19delT variant or the
differences in BMPR2 genetic expression affect patients’ pheno-
type. However, the comprehensive genetic analysis performed and
the strength of some findings add value to our results.

To conclude, the c.419-19delT appears in high frequency in patients with GD, and it does not produce alterations in the splicing
process in the tested cell lines, although it should be checked in thy-
roid and vascular endothelial cells due to the high variable behaviour
of the spliceosome between tissues. The BMPR2 gene is overex-
pressed in patients with GD, some articles referred decreased expres-
sion of TGF-β1 in GD patients’ thyroid, and this could be explained by
Smad 4 protein competition between the TGF-β/BMP signalization
routes. Thus, BMPR2 should be taken into consideration as a possible
therapeutic target for GD novel treatments.

Acknowledgements

We are grateful to the patients who participated in our study; we thank the physicians who participated in the collection of patients and data (Carlos
Vilarino Pombo, José Manuel Cirián, Olalla Castro Anón). We really thank to
Dr. Jose María Millán as he kindly provided the exon trapping expression vec-
tor pSPL3. We acknowledge the cooperation of Asociación Española de
Hipertensión Pulmonar and BIOCAPS Project (from European Commission
under the 7th Framework Programme, FP-7-REGPOT 2012-2013-1, Grant
agreement no. FP7-316265).

Funding source: This study was supported by the grants CO-0115-14 from
Actelion Pharmaceuticals and has received financial support from the Xunta de
Galicia (Centro singular de investigación de Galicia accreditation 2016-2019)
and the European Union (European Regional Development Fund—ERDF).

G.P. conceived the study and its design, performed genetic research, mini-
gene constructions, generation of LCLs, flow cytometry analysis, sorter and
collected cells, expression assay, data statistical analysis, interpretation and
drafted the manuscript. M.L.D. conceived the study, sorter and collected cells,
performed expression assay, validation of expression by Western blot, data
quality control, data statistical analysis, interpretation and drafted the manu-
script. S.P. performed sorter and collected cells, data interpretation and
drafted the manuscript. B.M. collected the patients and clinical data, performed
statistical analysis and drafted the manuscript. R.V.O. helped in study design,
generation of LCLs, flow cytometry analysis interpretation and draft the manu-
script. D.V. conceived the study and participated in its design and coordina-
tion, interpretation the results and draft the manuscript. All authors read and
approved the final manuscript.

Conflict of interest

The authors declare that they have no competing interests.

References

1. Machado RD, Eckelberg O, Elliott CG, et al. Genetics and genomics of pulmonary
arterial hypertension. J Am Coll Cardiol. 2009; 54(Suppl 1): S32–42.
2. Soubré F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial
hypertension. J Am Coll Cardiol. 2013; 62 (Suppl D): D13–21.
3. Wang H, Ji R, Meng J, et al. Functional changes in pulmonary arterial endothelial
cells associated with BMPR2 mutations. PLoS ONE. 2014; 9: e106703.
4. Pfarr N, Szamalek-Hoegel J, Fischer C, et al. Hemodynamic and clinical onset in
patients with hereditary pulmonary arterial hypertension and BMPR2 mutations. Respir
Res. 2011; 12: 99.
5. Poussada G, Balboa A, Vilarino C, et al. Novel mutations in BMPR2, ACVRL1 and
KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hyperpen-
sion. PLoS ONE. 2014; 9: e100261.
6. Pfarr N, Fischer C, Ehiken N, et al. Hemody-
namic and genetic analysis in children with idiopathic, heritable, and congenital
heart disease associated pulmonary arterial hypertension. Respir Res. 2013; 14: 3.
7. Hamid R, Cogan JD, Hedges LK, et al. Pen-
netration of pulmonary arterial hypertension is modulated by the expression of normal
BMPR2 allele. Hum Mutat. 2009; 30: 649–54.
8. Hoepner MM, Bogaard HJ, Condliffe R, et al. Defini-
tions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013; 62
(Suppl D): D42–50.
9. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary
hypertension. J Am Coll Cardiol. 2014; 62 (Suppl D): D34–41.
10. Galié N, Humbert M, Vachiery JL, et al. ESC/ERS guidelines for the diagnosis and
treatment of pulmonary hypertension. Eur Heart J. 2015; 37: 67–119.
11. Taichman DB, Mandel J. Epidemiology of pulmonary arterial hypertension. Clin Chest Med.
2013; 34: 619–37.
12. McGoon MD, Benza RL, Escribano-Subias
P, et al. Pulmonary arterial hypertension: epidemiology and registries. J Am Coll Cardiol.
2013; 62(25 Suppl): D51–99.
13. Badesch DB, Raskob GE, Elliott CG, et al. Pulmonary arterial hypertension baseline
characteristics from the REVEAL Registry. Chest. 2010; 137: 376–87.
14. Sanchez O, Marie E, Lerolle U, et al. Pul-
monary arterial hypertension in women. Rev Mal Respir. 2010; 27: e79–87.
15. Frost AE, Badesch DB, Barst RJ, et al. The
changing picture of patients with pulmonary
hypertension.
arterial hypertension in the United States. *Chest*. 2011; 139: 128–37.

16. Kurniawan A, Hardjo-Lugito NP, Tjiang MM, et al. Pulmonary arterial hypertension in Graves’ disease. *J Hypertens*. 2015; 33: e5.

17. Chia SY, Ho SC, Khoo DH. Graves disease presenting with right heart failure resulting from pulmonary hypertension. *Endocrinologist*. 2004; 14: 250–3.

18. Trapp CM, Elder RW, Gerken AT, et al. Pediatric pulmonary arterial hypertension and hyperthyroidism: a potentially fatal combination. *J Clin Endocrinol Metab*. 2012; 97: 2217–22.

19. Bartalena L. Diagnosis and management of Graves disease: a global overview. *Nat Rev Endocrinol*. 2013; 9: 724–34.

20. McLeod DS, Cooper DS. The incidence and prevalence of thyroid autoimmunity. *Endocrine*. 2012; 42: 252–65.

21. Menconi F, Marcocci C, Marino M. Diagnosis and classification of Graves’ disease. *Autoimmun Rev*. 2014; 13: 398–402.

22. Pousada G, Lupo V, Cástro-Sánchez S, et al. Molecular and functional characterization of the BMP2 gene in pulmonary arteriovenous hypertension. *Sci Rep*. 2017; 7: 1923.

23. Deng Z, Morse JH, Stager SL, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. *Am J Hum Genet*. 2000; 67: 737–44.

24. Helleman M, Mortier G, De Paepe A, et al. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biol*. 2007; 8: R19.

25. Welinder E, Ekblad L. Coomassie staining as loading control in Western blot analysis. *J Proteome Res*. 2010; 10: 1416–9.

26. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. *Nature*. 2014; 508: 468–76.

27. Krier J, Barfield R, Green RC, et al. Reclassification of genetic-based risk predictions as GWAS data accumulate. *Genome Med*. 2016; 8: 20.

28. Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. *Sci Transl Med*. 2011; 3: 65ra4.

29. López-Bigas N, Audit B, Ouzounis C, et al. Are splicing mutations the most frequent cause of hereditary disease? *FEBS Lett*. 2005; 579: 1900–3.

30. Schleinitz D, Klötting N, Böttcher Y, et al. Genetic and evolutionary analyses of the human bone morphogenetic protein receptor 2 (BMPR2) in the pathophysiology of obesity. *PLoS ONE*. 2011; 6: e16155.

31. Tomy Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. *J Autoimmun*. 2009; 32: 231–9.

32. Sharma N, Sosnay PR, Ramalho AS, et al. Experimental assessment of splicing variants using expression minigene and comparison with in silico predictions. *Hum Mutat*. 2014; 35: 1249–59.

33. Cogan JD, Pauculo MW, Batchman AP, et al. High frequency of BMPR2 exonic deletions/duplications in familial pulmonary arterial hypertension. *Am J Respir Crit Care Med*. 2006; 174: 590–9.

34. West J, Cogan J, Geraci M, et al. Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. *BMC Med Genomics*. 2008; 1: 45.

35. Austin ED, Hamid R, Hemmes AR, et al. BMPR2 expression is suppressed by signaling through the estrogen receptor. *Biol Sex Differ*. 2012; 3: 6.

36. Gruhne B, Kamranvar SA, Masucci MG, et al. EBV and genomic instability—a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. *Semin Cancer Biol*. 2009; 19: 394–400.

37. Roberts KE, Barst RJ, McElroy JJ, et al. Bone morphogenetic protein receptor 2 mutations in adults and children with idiopathic pulmonary arterial hypertension, association with thyroid disease. *Chest*. 2005; 129: 618S.

38. Sato H, Nakayama T, Naoki K, et al. Autoimmune thyroid disease in children and adolescents with idiopathic pulmonary arterial hypertension. *J Am Coll Cardiol*. 2010; 55: 1276–83.

39. Celalco T, Feinman S, Hernandez-Lopez C, et al. Bone morphogenetic protein receptor 2 signaling pathway components are expressed in human thymus and inhibit early T-cell development. *Immunology*. 2007; 121: 94–104.

40. Bleul CC, Boehm T. BMP signaling is required for normal thymus development. *J Immunol*. 2005; 175: 5213–21.

41. Cojocaru M, Cojocaru IM, Silosi I, et al. Associated pulmonary hypertension in connective tissue diseases. *J Clin Med*. 2011; 6: 141–5.

42. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. *EMBO J*. 2000; 19: 1745–54.

43. Nicolussi A, D’Inzeo S, Santulli M, et al. TGF-B control of rat thyroid follicular cells differentiation. *Mol Cell Endocrinol*. 2003; 207: 1–11.

44. Matsu SE, Fiore AP, Siguematsu SM, et al. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. *Arq Bras Endocrinol Metabol*. 2010; 54: 406–12.

45. Pisarev MA, Thomasz L, Juvenal GJ. Role of transforming growth factor beta in the regulation of thyroid function and growth. *Thyroid*. 2009; 19: 881–92.

46. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. *J Am Coll Cardiol*. 2004; 43: 13–24.

47. Kudo TA, Kanetaka H, Watanabe A, et al. Investigating bone morphogenetic protein (BMP) signaling in a newly established human cell line expressing BMP receptor type II. *Tohoku J Exp Med*. 2010; 222: 121–9.

48. Phillips JA, Poling JS, Phillips CA. Synergistic heterozygosity for TGFbeta1 SNPs and BMPR2 mutations modulates the age at diagnosis and penetrance of familial pulmonary arterial hypertension. *Genet Med*. 2008; 10: 359–65.

49. West J, Loyd JE, Hamid R. Potential interventions against BMPR2-related pulmonary hypertension. *Adv Pulm Hypertens*. 2012; 11: 25–32.

50. Kajdaniuk D, Marek B, Mazurek U, et al. Transcriptional activity of TGFβ1 and its receptor genes in thyroid gland. *Endokrynol Pol*. 2016; 67: 375–82.

51. Brace MD, Wang J, Petten M, et al. Differential expression of transforming growth factor-beta in benign versus papillary thyroid cancer nodules; a potential diagnostic tool? *J Otalaryngol Head Neck Surg*. 2014; 43: 22.

52. Mincione G, Di Marcantonio MC, Tarantelli C, et al. EGFr and TGF-β1 effects on thyroid function. *J Thyroid Res*. 2011; 2011: 1–13.

53. Zhang J, Wang Y, Li D, et al. Nosh and BMP-2/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. *Tumor Biol*. 2014; 35: 379–85.

54. Fang Y, Yu S, Bralely-Mullen H. TGF-B promotes proliferation of thyroid epithelial cells in IFN-γ−/− mice by down-regulation of p21 and p27 via AKT pathway. *Am J Pathol*. 2012; 180: 650–60.

55. Lettice LA, Heaney SJH, Purdie LA, et al. A long-range Sih enhancer regulates expression in the developing limb and fin and is
associated with preaxial polydactyly. *Hum Mol Genet.* 2003; 12: 1725–35.

56. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. *J Exp Med.* 1995; 182: 459–65.

57. Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. *Nature.* 1992; 356: 607–9.

58. Gu LQ, Zhu W, Zhao SX, et al. Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves’ disease. *Clin Endocrinol (Oxf).* 2009; 72: 248–55.

59. Du P, Ma X, Wang C. Associations of CTLA4 gene polymorphisms with Graves’ ophthalmopathy: a meta-analysis. *Int J Genomics.* 2014; 2014: 537969.

60. Pastuszak-Lewandoska D, Sewerynek E, Domanska D, et al. CTLA-4 gene polymorphisms and their influence on predisposition to autoimmune thyroid diseases (Graves’ disease and Hashimoto’s thyroiditis). *Arch Med Sci.* 2012; 8: 415–21.