Four Core Genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels

Yuichiro Itoh1, Ryan Mackie1, Kathy Kampf1, Shelly Domadia1, Judith D Brown2, Rachel O'Neill3 and Arthur P Arnold1*

Abstract

Background: The “four core genotypes” (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues.

Findings: We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12–14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27–29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels.

Conclusion: The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.

Keywords: Four core genotypes, Sex chromosome, Sry, Mouse, Vectorette PCR, Inverted PCR, Anogenital distance, Transgene, Fluorescence in situ hybridization, Integration site

The four core genotypes (FCG) mouse model has the advantage of separating two major factors that cause phenotypic sex differences: sex chromosome complement (XX vs. XY) and gonadal hormones [1-10]. The FCG model was established by combining two mutations in the same mouse line: deletion of the Sry gene from the Y chromosome (producing the Y− chromosome), and insertion of an Sry transgene onto an autosome [11,12]. Four genotypes are produced: XX mice with and without the Sry transgene, (XXSry, XX), and XY− mice with and without the Sry transgene (XY−Sry, XY−). Comparing XX and XY mice of the same gonadal type allows the measurement of the effect of sex chromosome complement (XX vs. XY) on traits in a similar hormonal environment. The Sry transgene has been used in over 60 primary literature articles (Table 1), and the FCG model is available commercially (Jackson Laboratory, Bar Harbor ME, strain 010905, B6.Cg-Tg(Sry)2Ei Sry < dl1Rlb>/ArnoJ). Here we report the location and number of copies of the Sry transgene.

An important issue is whether XX and XY FCG mice with the same type of gonad experience different levels of gonadal hormones, which therefore might confound the effects of sex chromosome complement (XX vs. XY). Previous studies have not detected differences in the levels of testosterone in XX vs. XY adult males, or in estradiol in XX vs. XY females groups [33,38,47,74]; R. Schafer, personal...
Table 1 Publications using the Sry transgene

Authors and years	Authors and years
Abel et al., 2011 [13]	Markham et al., 2003 [14]
Barker et al., 2010 [15]	Mazeyrat et al., 2001 [16]
Bonthius et al., 2012 [17]	McPhie-Lamansingh et al., 2008 [18]
Burgoyne et al., 2002 [19]	Moore et al., 2013 [20]
Caeiro et al., 2011 [21]	Ngu et al., 2014 [22]
Carruth et al., 2002 [23]	Palaszynski et al., 2005 [24]
Chen et al., 2008, 2009, 2012, 2013a, 2013b [25-29]	Park et al., 2008 [30]
Cocquet et al., 2009 [31]	Quinn et al., 2007 [32]
Corre et al., 2014 [33]	Reynard et al., 2009 [34]
Cox and Rissman, 2011 [35]	Robinson et al., 2011 [36]
Dadam et al., 2014 [37]	Sasidhar et al., 2012 [38]
De Vries et al., 2002 [1]	Scerbo et al., 2014 [39]
Ducova-Hills et al., 2004 [40]	Seney et al., 2013a, 2013b [41,42]
Ehlen et al., 2013 [43]	Seu et al., 2014 [44]
Ellis et al., 2005 [45]	Smith-Bouvier et al., 2008 [46]
Gatewood et al., 2006 [47]	Szot et al., 2003 [48]
Gioiosa et al., 2008a, 2008b [49,50]	Touré et al., 2004, 2005 [51,52]
Ishikawa et al., 2003 [53]	Van Nas et al., 2009 [54]
Ji et al., 2010 [55]	Vernet et al., 2011, 2012 [56,57]
Kopsida et al., 2013 [58]	Wagner et al., 2004 [59]
Kuljis et al., 2013 [60]	Ward and Burgoyne, 2006 [61]
Kuo et al., 2010 [62]	Wijchers et al., 2010 [63]
Li et al., 2014 [64]	Xu and Arnold, 2005 [65]
Liu et al., 2010 [66]	Xu et al., 2002, 2005a, 2005b, 2006, 2008a, 2008b [67-72]
Mahadevaiah et al., 1998 [12]	Yamauchi et al., 2010 [73]
Manwani et al., 2015 [74]	

PCR was carried out with MyTaq HS Red Mix (Bioline USA Inc.). The PCR reaction started at 94°C for 4 min before the cycling reaction of 35 cycles of 94°C for 45 sec/60°C for 30 sec/72°C for 1 min, and then followed by single reaction at 72°C for 7 min. The PCR reaction mixture was separated by 1.5% agarose gel electrophoresis in 1 x TAE at 80 V. The primers used in Figure 1 were: a) 5′-CCA TCT GGC CTA TGA TGG AT-3′ (chr 3), b) 5′-CCT GCA GAC ATT CTC TGT GC-3′ (chr 3), c) 5′-GCA AAG CTG AAC AAG CAA CA-3′ (Sry transgene), d) 5′-CCA GGA CCA GCC AAT TAT GT-3′ (Sry transgene), e) 5′-TAA ATG GAG GGA AGC TGG AA-3′ (chr 3). Boundary DNA sequences are deposited in Genbank (accession: KF959637).

To estimate the number of Sry copies integrated in the insertion site, we used quantitative PCR (standard curve method) to amplify Sry transgenes from genomic DNA. The quantitative PCR primers for Sry and control beta-2 microglobulin (B2m) were: Sry (5′-TTC CAG GAG CCA CAG AGA TT-3′, 5′-GCA GGC TGT AAA ATG CCA CAG AGA TT-3′), B2m (5′-AGG CCA AAA GCT CAC TCA AA-3′, 5′-GTG AGT TCT TGT GCC TCC ACC AT-3′). We also confirmed the FCG vs. WT difference in copy number non-quantitatively and visually on agarose gels with PCR using other primers: Sry (5′-AGC CCT ACA GCC ACA TGA TA-3′, 5′- GTC TTG CCT GTA TGT GAT GG-3′), myogenin (5′-TTA CGT CCA TCG TGG AAG CCA AC-3′, 5′-TGG CTT GGG TGT TAG TCT TAT-3′).

To evaluate the influence of the Sry transgene on genes in the vicinity of the transgene, we analyzed the FCG and WT liver microarray expression datasets (GSE13264, GSE13265) [54]. Those comparable datasets were from C57BL/6J background, using the same microarray platform in the same lab. One dataset allows measuring changes in gene expression caused by the Sry transgene in gonadectomized FCG mice (using a 2-way ANOVA with factors of sex chromosome complement (XX vs. XY) and Sry transgene (present vs. absent)). The other dataset compares gonadectomized WT males and females, allowing measurement of the effects of the endogenous Sry gene on the Y chromosome (one-way ANOVA). The strain origin of the Y chromosome differed in the two datasets. We report both the p-values of the ANOVAs (non-stringent analysis without correction for multiple testing), as well as more conservative False Discovery Rate p-values [79] (Table 2).

Metaphase chromosome spreads for FISH analysis were prepared from primary fibroblast cells cultured from tail tips. The Sry transgene plasmid construct was labeled with AF555 dUTP by nick-translation and hybridization was performed at 37°C in a humid chamber for 18–20 hours in the presence of 10 ug mouse Cot1 DNA (Invitrogen) and 9.4 mg salmon sperm DNA in Hybrisol VII (MP Bio- medicals). Post-hybridization washes were 1× 2 minutes

communication), but possible differences in levels of prenatal hormones have not been assessed. Here we measured anogenital distance postnatally. Because androgens secreted prenatally by the testes cause the AGD to be larger in mice with testes than in those with ovaries [75,76], AGD is considered an excellent bioassay for the prenatal levels of androgens. These effects of androgens cause permanent sex differences in AGD, and are classified as “organizational” effects of gonadal hormones.

Methods

To identify the Sry transgene location, we first screened the DNA sequences flanking the transgene using inverted PCR [77] and vectorette PCR [78]. Amplified PCR fragments of the boundaries were sequenced, and their specificities were confirmed by PCR using 6 and 10 pairs of transgene-specific and flanking region primers on each end, using DNA from C57BL/6 FCG mice as templates.
2XSSC/0.3% NP40 at 68°C, 1 × 2 minutes 2XSSC/0.1% NP40 at 25°C. Images were captured using an Olympus AX-71 equipped with the Genus imaging software (Leica). For chromosome 3 (Chr3) painting, biotin-labeled Chromosome 3 Star®FISH® paint (Cambio) was used with the addition of a pre-annealing step prior to hybridization at 37°C for 90 minutes, followed by signal detection with fluoresceinated avidin.

Anogenital distance was measured in 34–44 C57BL/6 J FCG mouse pups per genotype, at 27–29 days after birth, using a caliper. A two-way ANOVA (factors of sex chromosome complement, XX vs. XY, and Sry (present vs. absent) was used to assess group differences. The investigator was blind to the genotype. Genotypes of FCG mice was determined by standard PCR genotyping methods using the primers: Sry (5′-AGC CCT ACA GCC ACA TGA TA-3′, 5′-GTC TTG CCT GTA TGT GAT GG-3′), Ymt (Y chromosome-specific sequence, 5′-CTG GAG CTC TAC AGT GAT GA-3′, 5′-CAG TTA CCA ATC AAC ACA TCA C-3′), and myogenin (5′-TTA CGT CCA TCG TGG ACA GCA T-3′, 5′-TGG GCT GGG TGT TAG TCT TAT-3′).

Findings
The inverted PCR and vectorette PCR methods indicated that DNA sequences flanking the transgene represent part of a repetitive motif that is found at 210–388 genomic locations (http://www.ensembl.org, Release 73). Figure 1A and B show the transgene-specific PCR amplification between Sry transgene sequence and the surrounding repetitive sequence. These were not informative for mapping the transgene in the genome, but some DNA fragments from vectorette PCR suggested that the transgene was integrated into the motif within Chr3. This conclusion was confirmed by amplification with Chr3-specific primer a and transgene-specific primer c (Figure 1C and D). The Sry transgene integration site was at Chr3 70673749-70673824 bp (Figure 1E, based on Ensembl Release 73), and involved deletion of 74 bp of Chr3 during integration. The integration did not interrupt any known protein coding genes or pseudogenes (Table 3). The gene closest to the integration site is the Gm10780 pseudogene, 15 kb distant from the transgene.

To assess if the transgene affected gene expression nearby, we compared expression of 22 probes in liver in FCG mice with and without the transgene (Table 2). Most nearby genes showed no effect of the transgene. In a few cases, expression was affected by Sry, which could have been a local effect or one mediated by testicular secretions downstream of Sry. To control for hormonally-induced changes in gene expression, we compared expression of the same genes in WT males (with endogenous Sry) vs. females using published microarray gene profiling. Two genes, Lxn and Ppid, show evidence of regulation by the
main effect of sex (F(1,146) = 223, p < 0.00001), but no effect of sex chromosome complement (XX vs. XY, F(1,146) = 0.03, p = 0.87) and no significant interaction (F(1,146) = 0.67, p = 0.42).

Discussion

The goal of transgenic insertion is to achieve normal levels of expression of the transgene without influencing other genes because of interruption of coding or regulatory regions in the genome. Transgenic models are often useful even when this goal is not achieved in every respect. In the FCG model, mice with Sry are similar to WT males in

Table 2 Expression of Chr3 genes near the Sry transgene
Probe
ANOVA
Lxn
Rames1
Mfsd1
Schip1
Schip1
Il12a
Trim39
Trim39
Kpnad4
Ppm1l
Nmd3

Table 3 Chr3 genes near the Sry transgene

Ensembl gene ID	Start (bp)	End (bp)	Gene name
ENSMUSG00000087848	69685467	69685580	Gm25621
ENSMUSG00000068969	69716986	69717393	Rpl32-ps
ENSMUSG00000027787	69721985	69749042	Nmd3
ENSMUSG00000043461	69819538	69859896	Sptssb
ENSMUSG00000077366	69962315	69962445	Gm23484
ENSMUSG00000027788	70076713	70028708	Otol1
ENSMUSG00000089507	70228747	70228874	Gm23477
ENSMUSG00000074877	70689092	70689380	Gm10780
ENSMUSG00000097252	70772379	70807291	AC105155.1

The table shows ANOVA and False Discovery Rate (FDR) p-values of Sry effects on gene expression in liver of FCG mice (effect of Sry transgene) and of WT mice (effect of endogenous Sry). For several genes, p values for two different probes for the same gene are shown. MF is fractional mean difference between males (M, with Sry) and females (F, without Sry). For example, -0.08 means that F had about 8% higher expression than M. Distance is relative to the Sry transgene in FCG mice.

Sry transgene but not by WT Sry, based on conservative analysis. These are about 3 megabases or more from the transgene. Based on less stringent analysis, several other genes are candidates for those differentially expressed by the transgene vs. WT Sry. Further work is needed to determine if the transgene effects are found in different tissues and conditions, and are direct or indirect.

The Sry transgene band in genomic DNA from FCG was stronger than in WT (Figure 1F), suggesting that the transgene was concatemerized during integration at this site. The number of copies of the transgene was estimated with quantitative genomic PCR (not shown) to be 12–14. The Sry transgene probe was co-localized with the Chr3 paint in metaphase spreads from FCG mice (Figure 2).

AGD was found to differ in mice with testes vs. ovaries (Figure 3), but not in XX and XY mice of the same gonadal sex (Figure 3). A two-way ANOVA showed a significant
numerous traits, but differ for a few other traits, including higher expression of Sry, indicating that the transgene effect is similar but not identical to endogenous Sry [1,74]. Here we show that insertion of Sry onto Chr3 does not disrupt any known coding sequence. Moreover, analysis of gene expression suggests that two genes near Sry may also be altered by the transgenic insertion, as judged by expression levels in liver. Further analysis is required to determine if local genes are affected by the transgene. The FCG model has the advantage of comparing the effects of sex chromosome complement (XX vs. XY) in mice with and without the transgene. The FCG model has been useful for discovering numerous traits that are influenced by sex chromosome complement, which are independent of the presence of the transgene or have been confirmed by analysis of non-transgenic mouse models that vary sex chromosome complement [25-28,64,80]. The concatemeric insertion of 12–14 copies of a transgene at one site is not unexpected, and in the present case is associated with higher than normal expression of Sry in FCG than WT mice [74].

The greater AGD in mice with testes is expected from previous studies that demonstrate that AGD is influenced by the level of prenatal androgens. The present data offer no support for the hypothesis that the levels of androgens secreted prenatally, when AGD is determined, differ in XX and XY mice with the same type of gonad. For example, there was no masculinization of AGD of XY females relative to XX females. That result argues against the idea that XX vs. XY differences observed in numerous tissues are a result of differences in levels of prenatal androgens.

The present results contribute to the understanding of the FCG model which is used increasingly to discriminate effects of sex chromosome complement and gonadal effects on sexually dimorphic non-gonadal phenotypes (Table 1).

Abbreviations
FCG: Four core genotypes; AGD: Anogenital distance; FISH: Fluorescence in situ hybridization, WT: Wild type.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YI and APA designed the study and wrote the paper. YI designed and screened the DNA sequences of Sry transgene integration site, sequenced, and confirmed it by PCR. KK and SD contributed to screening. RM measured the anogenital distance in FCG mice. RO and JB confirmed the Sry transgene chromosomal location via FISH. All authors read and approved the final manuscript.

Acknowledgements
Thanks to Dr. Ryohei Sekido for the gift of the Sry construct and Dr. Louise D. McCullough for the gift of tissue for metaphase spreads. This work was supported by NIH grants NS043196, D083561, and HD076125 and a Yamada Science Foundation grant to Y. Itoh, and an NSF award to RO. All animal use protocols were approved in advance by the UCLA Chancellor’s Animal Research Committee, the Institutional Animal Care and Use Committee.

Author details
1 Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA, USA. 2 Institute for Systems Genomics and the Department of Allied Health Sciences, University of CT, Storrs, CT, USA. 3 Institute for Systems Genomics and the Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.

Received: 24 October 2014 Accepted: 20 January 2015
Published online: 07 March 2015

References
1. De Vries GJ, Risman EF, Simeryl RB, Yang LY, Scordalakes EM, Auger CJ, et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci. 2002;22:9005–14.
2. Arnold AP, Burgoyne PS. Are XX and XY brain cells intrinsically different? Trends Endocrinol Metab. 2004;15:6–11.
3. Arnold AP. Sex chromosomes and brain gender. Nat Rev Neurosci. 2004;5:701–8.
4. Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55:570–8.
5. Arnold AP. Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J Neuroendocrinol. 2009;21:377–86.

6. Arnold AP, Chen X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol. 2009;30:1–9.

7. McCarthy MM, Arnold AP. Refocusing sexual differentiation of the brain. Nat Neurosci. 2011;14:677–83.

8. Arnold AP, Chen X, Link JC, Itoh Y, Reue K. Cell-autonomous sex determination outside of the gonad. Dev Dyn. 2013;242:371–9.

9. Link JC, Chen X, Arnold AP, Reue K. Metabolic impact of sex chromosomes. Adipocyt. 2013;2:74–9.

10. Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: Relevance to humans. Front Neuroendocrinol. 2014;35:405–19.

11. Lovell-Badge R, Robertson E. XY female mice resulting from a heritable mutation in the primary testis-determining gene. Tdy Dev. 1990;109:635–46.

12. Mahadeviah SK, Odorioso T, Elliott DJ, Rattigan A, Sotz M, Laval SH, et al. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet. 1998;7:715–27.

13. Abel JM, Witt DM, Rissman EF. Sex differences in the cerebellum and frontal cortex roles of estrogen receptor-alpha and sex chromosome genes. Neuroendocrinol. 2011;93:230–40.

14. Markham JA, Leguina HA, Auger CI, De Vries GJ, Arnold AP, Juraska JM. Sex differences in mouse corticinal thickness are independent of the complement of sex chromosomes. Neurosci. 2003;116:71–5.

15. Barker JM, Torregrossa MN, Arnold AP, Taylor JR. Dissociation of genetic and hormonal influences on sex differences in alcoholism-related behaviors. J Neurosci. 2010;30:9140–8.

16. Mazeyrat S, Saut N, Grigoriev V, Mahadeviah SK, Ojairke OA, Rattigan A, et al. A y-encoded subset of the translation initiation factor eIF2 alpha is essential for mouse spermatogenesis. Nat Genet. 2001;29:49–53.

17. Bonthuis PJ, Cox KH, Rissman EF. X-chromosome dosage affects male sexual behavior. Horm Behav. 2012;64:566–572.

18. McPhie-Lalmansingh AA, Tejada LD, Weaver JL, Rissman EF. Sex chromosome complement influences functional callosal myelination. Neurosci. 2014;150:479–86.

19. Burgoyne PS, Ojairke OA, Turner JM. Evidence that postnatal growth retardation in XO mice is due to haploinsufficiency for a non-PAR X gene. Cytogenet Genome Res. 2002;99:252–6.

20. Moore S, Patel R, Hannus G, Yang J, Tiwari-Woodruff SK. Sex chromosome complement influences functional caudal myelination. Neurosci. 2013;245:166–178.

21. Caeiro XE, Mir FR, Vivas LM, Carrer HF, Cambiasso MJ. Sex chromosome complement contributes to sex differences in bradycardic baroreflex response. Hypertension. 2011;58:505–10.

22. Sotz M, Grigoriev V, Mahadeviah SK, Ojairke OA, Rattigan A, et al. Y-chromosome genes and behavior: Relevance to humans. Front Neurol. 2014;5:405.

23. Seney ML, Ekong KI, Ding Y, Tseng GC, Sibille E. Sex chromosome complement influences operating response for a palatable food in mice. Genes Brain Behav. 2013;14:527–34.

24. Eller NJ, Wilsch P, Riddell D, Snipshuy P, Malek F, Fields SP, et al. Role of genetic sex and sex chromosome complement in mediating sex differences in spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct Funct. 2014;229:1203–15.

25. Cochrane R, Kulyk PF, Balaban C, Rattigan A, Ojarikre OA, Arnold AP. Sex chromosome complement contributes to sex differences in the brain and other tissues. Front Neuroendocrinol. 2014;35:405–19.

26. Lovell-Badge R, Robertson E. XY female mice resulting from a heritable mutation in the primary testis-determining gene. Tdy Dev. 1990;109:635–46.

27. Mahadeviah SK, Odorioso T, Elliott DJ, Rattigan A, Sotz M, Laval SH, et al. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet. 1998;7:715–27.

28. Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, et al. The X Chromosome Trisomy mouse model of XXX and XYX: metabolism and motor performance. Biol Sex Differ. 2013;4:15.
transcriptome analysis of mice with deletions of the Y chromosome long arm. Genome Biol. 2005;6:R102.

53. Ishikawa H, Rattigan A, Fundele R, Burgoyne PS. Effects of sex chromosome dosage on placental size in mice. Biol Reprod. 2003;69:483–8.

54. Van N, GuhaHakuta D, Wang SS, Yehya N, Horvath S, Zhang B, et al. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinol. 2010;151:1235–49.

55. Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, et al. Sex chromosome effects unmasked in angiogenesis II-induced hypertension. Hypertension. 2010;55:1275–82.

56. Vernet N, Mahadevaiah SK, Ojarikre OA, Longepied G, Prosser HM, Bradley A, et al. The Y-encoded gene zf2 acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice. Curr Biol. 2011;21:787–93.

57. Vernet N, Mahadevaiah SK, Ellis PJ, de Rooij DG, Burgoyne PS. Spermatid development in XO male mice with varying Y chromosome short-arm gene content: evidence for a Y gene controlling the initiation of sperm morphogenesis. Reproduction. 2012;144:433–45.

58. Kopsida E, Lynn FM, Humby T, Wilkinson LS, Davies W. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice. PLoS ONE. 2013;8:e73699.

59. Wagner CK, Xu J, Pfau JL, Quadros PS, De Vries GJ, Arnold AP. Neonatal mice possessing an Sry transgene show a masculinized pattern of progesterone receptor expression in the brain independent of sex chromosome status. Endocrinol. 2004;145:1046–9.

60. Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, et al. Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinol. 2013;154:1501–12.

61. Ward MA, Burgoyne PS. The effects of deletions of the mouse Y chromosome long arm on sperm function–intracytoplasmic sperm injection (ICS)-based analysis. Biol Reprod. 2006;74:6552–8.

62. Kuo J, Hamid N, Bondar G, Dewing P, Clarkson J, Micevych P. Sex differences in hypothalamic astrocyte response to estradiol stimulation. Biol Sex Differ. 2010;1:7.

63. Wijchers PJ, Yandim C, Panousopoulou E, Ahmad M, Harker N, Saveliev A, et al. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev Cell. 2010;19:477–84.

64. Li J, Chen X, McClusky R, Ruiz-Sundstrom M, Itoh Y, Umar S, et al. The number of X chromosomes influences protection from cardiac ischaemia/ reperfusion injury in mice: one X is better than two. Cardiovasc Res. 2014;102:375–94.

65. Xu J, Arnold AP. Sexually dimorphic expression of co-repressor Sin3A in mouse kidneys. Endocr Res. 2005;31:111–9.

66. Liu J, Ji H, Zheng W, Wu X, Zhu JI, Arnold AP, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17beta-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2014;5:16.

67. Xu J, Deng X, Watkins R, Distech CM. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci. 2008;28:4521–7.

68. Xu J, Deng X, Distech CM. Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain. PLoS One. 2008;3:e2553.

69. Xu J, Burgoyne PS, Arnold AP. Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet. 2002;11:1409–19.

70. Xu J, Taya S, Kaibuchi K, Arnold AP. Sexually dimorphic expression of Usp9x is related to sex chromosome complement in adult mouse brain. Eur J Neurosci. 2005;21:3017–22.

71. Xu J, Taya S, Kaibuchi K, Arnold AP. Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development. J Neurosci Res. 2005;80:47–55.

72. Xu J, Watkins R, Arnold AP. Sexually dimorphic expression of the X-linked gene Elf2s3x mRNA but not protein in mouse brain. Gene Expr Patterns. 2006;6:146–55.

73. Yamauchi Y, Iwabuchi T, Soga Y, Yuki A. Direct sequencing of flanking regions of a transgene amplified by inverted PCR. Agric Biol Chem. 1990;54:1869–72.

74. Arnold C, Hodgson UJ. Vectorcette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991;1:39–42.

75. Schneider JE, Wysocki CJ, Nygyy J, Whitney G. Determining the sex of neonatal mice (Mus musculus). Behav Res Methods Meth Anim. 1978;10.105.

76. Hotchkiss AK, Vandenberghe JG. The anogenital distance index of mice (Mus musculus domesticus): an analysis. Contemp Top Lab Anim Sci. 2005;44:46–8.

77. Ninomiya T, Iwabuchi T, Soga Y, Yuki A. Direct sequencing of flanking regions of a transgene amplified by inverted PCR. Agric Biol Chem. 1990;54:1869–72.

78. Arnold C, Hodgson UJ. Vectorcette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991;1:39–42.

79. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.

80. Du S, Itoh N, Askarinam S, Hill H, Arnold AP, Voskuhl RR. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2014;111:2806–11.