Article

Design Optimization of Double-Gate Isosceles Trapezoid Tunnel Field-Effect Transistor (DGIT-TFET)

Hwa Young Gu and Sangwan Kim *

Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea; dogn1006@ajou.ac.kr
* Correspondence: sangwan@ajou.ac.kr

Received: 19 February 2019; Accepted: 28 March 2019; Published: 30 March 2019

Abstract: Recently, tunnel field-effect transistors (TFETs) have been regarded as next-generation ultra-low-power semiconductor devices. To commercialize the TFETs, however, it is necessary to improve an on-state current caused by tunnel-junction resistance and to suppress a leakage current from ambipolar current (I_{AMB}). In this paper, we suggest a novel TFET which features double gate, vertical, and trapezoid isosceles channel structure to solve the above-mentioned technical issues. The device design is optimized by examining its electrical characteristics with the help of technology computer-aided design (TCAD) simulation. As a result, double-gate isosceles trapezoid (DGIT) TFET shows a much better performance than the conventional TFET in terms of ON-state current (I_{ON}), I_{AMB}, and gate-to-drain capacitance (C_{GD}). It is confirmed that an inverter composed of DGIT-TFETs can operate with less than 1 ns intrinsic delay time and negligible voltage overshoot.

Keywords: tunnel field-effect transistors (TFETs); ambipolar current; scaling; subthreshold swing; FinFET

1. Introduction

Over the past several decades, complementary metal-oxide-semiconductor (CMOS) technologies have been scaled down to improve integration densities and performance [1–3]. As the integration density increases, however, the increase of power consumption becomes an emerging main concern. Since the power dissipation is proportional to the square of supply voltage (V_{DD}), future CMOS devices should be operating with low V_{DD}. However, MOS field-effect transistors (MOSFETs) have a limit of 60 mV/dec subthreshold swing (S) at room temperature because they are based on a thermionic carrier injection. As a result, it is fundamentally impossible to lower V_{DD} maintaining a high on-off current ratio (I_{ON}/I_{OFF}) [4]. Therefore, a sharp-switching device, based on a novel operating mechanism, is needed to achieve sub-60 mV/dec-S, and hence ultra-low power operation. Recently, tunnel FETs (TFETs) have been extensively investigated as one of the promising candidates for a next-generation low-power logic element [5–11]. Because TFETs inject charges through a band-to-band tunneling (BTBT) mechanism from a source to a channel, abrupt switching is possible compared to conventional MOSFETs with drastically reduced I_{OFF} [12–14]. In addition, they are able to inherit MOSFETs technologies with minimum cost and maximum efficiency with the help of similar structure and process to MOSFETs used in current CMOS technologies [15].

However, TFETs have some technical challenges to be solved for succeeding or alternating MOSFETs. First, they suffer from a low-level I_{ON} and a worse S than expectation due to a high tunnel resistance [16]. A multi-gate structure and a narrow bandgap material (e.g., SiGe or Ge) are regarded as promising strategies to address the above-mentioned issues by improving gate controllability and BTBT efficiency [16–18]. In addition, heterojunction is preferred to suppress the I_{OFF} caused by Shockley-Read-Hole (SRH) recombination, which is exponentially increased in narrow band-gap...
materials [19]. However, in case of a conventional lateral-channel structure, there is a process capability issue for forming SiGe-Si heterojunction [20], with abrupt doping profile aligning with gate.

The second technical challenge is ambipolar current (I_{AMB}), which is attributed to the BTBT at the channel-to-drain junction and causes a conduction of current during both positive and negative gate voltages (V_{GS}) [21]. Lowering a drain doping concentration (N_D) and introducing an underlap between gate and drain have been studied to address it [22,23]. Because TFETs have low-level driving currents, the effect of increasing resistance (e.g., drain resistance and contact resistance), due to a lightly doped drain, is negligible. However, if the driving current of TFETs is eventually improved, it will not be an ultimate solution because it will act as a new bottleneck in current drivability [24]. Similarly, the length of drain underlap region (DU) should be minimized since it increases parasitic resistance and degrades integration density.

Therefore, in this paper, a new structure TFET is proposed to address the abovementioned issues (i.e., I_{ON}, I_{OFF}, and S), simultaneously. In addition, its electrical characteristics are analyzed and optimized using technology computer-aided design (TCAD) simulation [25]. This paper is organized as follows: In Section 2, the key features of device design, and the parameters used in TCAD, simulation are described. In Section 3, the device design is optimized in terms of direct current (DC) and alternating current (AC) characteristics, depending on the several design parameters. Finally, the results are summarized and concluded in Section 4.

2. Double-Gate Isosceles Trapezoid TFET (DGIT-TFET)

Figure 1 shows a structure of double-gate isosceles trapezoid TFET (DGIT-TFET) studied in this work. It adopts a double-gate (DG) structure to enhance gate controllability over the channel. It features a vertical channel structure, in which the source and drain are located at a narrow top, and relatively thick bottom regions, respectively. The vertical structure is advantageous, not only for increasing the integration density without any areal penalty, but also for adopting a selective epitaxial layer growth (SEG) technique to improve I_{ON}/I_{OFF} with the help of heterojunction [26]. In this study, the Si$_{1-x}$Ge$_x$-channel is overlapped with the gate by 15 nm considering the process margin in SEG process (Figure 1). It is also helpful to improve the I_{ON} further by using pseudo-direct BTBT when the Ge mole fraction is increased [16,18,27]. The channel length (L_{CH}) is set by 30 nm to exclude short-channel effects and equivalent gate oxide thickness (T_{OX}) is set by 0.5 nm assuming high-k dielectric. The other important design parameters are summarized in Table 1, unless otherwise noted [28]. The electrical characteristics of DGIT-TFET, depending on the design parameters are investigated, and analyzed using Synopsys Sentaurus™ (Synopsys, Mountain View, CA, USA) [25]. For a rigorous examination, Shockley-Read-Hall (SRH) and dynamic non-local BTBT models are used after calibration. In detail, A and B parameters in Kane’s model is changed as in [18], to consider both indirect and direct BTBT components, simultaneously. The modified local density approximation (MLDA) model is also used for the consideration of quantum effect.
A bulk-Si substrate can alternate the SOI with the help of vertical structure of DGIT-TFET. The sequential in-situ, doped epitaxial growths are performed for channel (i.e., lightly doped p-Si and Ge layers) and source (i.e., highly doped p+ Ge layer) (c). After patterning tapered structure, conventional shallow trench isolation (STI) process is performed by oxide gap-fill, chemical mechanical polishing (CMP), and STI wet-etching processes in sequence (d). The length of DU can simply be adjusted by changing STI-oxide wet-etching time. After dopant activation, atomic layer deposition (ALD) for high-k gate oxide is followed by metal gate deposition (e). Finally, double-gates are formed by side-wall spacer technique, with an appropriate over-etching, to avoid gate-to-source overlap (f). The back-end-of-line (BEOL) processes are not shown here, since the conventional techniques are applicable.

Table 1. Parameters of double-gate isosceles trapezoid (DGIT-TFET) using technology computer-aided design (TCAD) simulation.

Abbreviations	Definitions	Values
\(N_S \)	source doping concentration	Boron, \(1 \times 10^{20} \) \(\text{cm}^{-3} \)
\(N_B \)	channel doping concentration	Boron, \(1 \times 10^{17} \) \(\text{cm}^{-3} \)
\(N_D \)	drain doping concentration	Arsenic, \(1 \times 10^{20} \) \(\text{cm}^{-3} \)
\(L_{CH} \)	channel length	30 nm
\(L_S = L_D \)	charge neutral region length	20 nm
\(T_{OX} \)	equivalent gate oxide thickness	0.5 nm
\(T_S \)	source region thickness	5 nm
\(T_D \)	drain region thickness	20 nm
\(V_{DS} \)	drain voltage	1 V
\(\phi_m \)	gate work function	4.0 eV

The \(n \)-channel DGIT-TFET can be fabricated by the process flow, shown in Figure 2. Starting with a silicon-on-insulator (SOI) wafer (a) drain region is formed by arsenic (As) ion implantation (b). A bulk-Si substrate can alternate the SOI with the help of vertical structure of DGIT-TFET. The sequential in-situ, doped epitaxial growths are performed for channel (i.e., lightly doped p-Si and Ge layers) and source (i.e., highly doped p+ Ge layer) (c). After patterning tapered structure, conventional shallow trench isolation (STI) process is performed by oxide gap-fill, chemical mechanical polishing (CMP), and STI wet-etching processes in sequence (d). The length of DU can simply be adjusted by changing STI-oxide wet-etching time. After dopant activation, atomic layer deposition (ALD) for high-k gate oxide is followed by metal gate deposition (e). Finally, double-gates are formed by side-wall spacer technique, with an appropriate over-etching, to avoid gate-to-source overlap (f). The back-end-of-line (BEOL) processes are not shown here, since the conventional techniques are applicable.
In order to estimate the effect of asymmetric body thickness (T_B) in DGIT-TFET (i.e., thin source and thick drain) on its electrical characteristics, drain current (I_D) as a function of V_{GS} with different T_B are examined in the conventional DG-TFET structure (Figure 3a). The simulation results show that the I_{ON} and S are improved as T_B becomes thinner (Figure 3b). It is attributed to the improved gate controllability over the channel, which is confirmed by the increase in electric field at source-to-channel junction as T_B decreases (Figure 3c). Unfortunately, there is a drawback that the I_{AMB} is also increased with the thinner T_B since tunnel barrier width (W_{TUN}) at channel-to-drain junction is decreased as well (Figure 3d). On the other hand, it is expected that the DGIT-TFET’s asymmetric source/drain thicknesses will allow it to achieve high I_{ON} and low I_{OFF}, simultaneously.
3. Design Optimization of DGIT-TFET

Figure 4a shows the transfer characteristics of DGIT-TFET by changing the drain thickness \((T_D)\) from 5 to 50 nm, while the source thickness \((T_S)\) is fixed at 5 nm considering process capability and compatibility with sub-7 nm technology node [29]. In case of 5 nm-thick \(T_D\), DGIT-TFET is identical to the conventional DG-TFET in Figure 3a,b which shows improved \(I_{ON}\) but suffers from \(I_{AMB}\). On the other hand, it is clear that DGIT-TFET can suppress \(I_{AMB}\), without any \(I_{ON}\) and 5 degradation, by increasing \(T_D\) (Figure 4a). The simulation result shows that \(I_{AMB}\) is reduced approximated 2 orders of magnitude as \(T_D\) increases from 5 nm to 20 nm, since the electric field at the channel-to-drain junction is decreased efficiently.
Performances are examined as well. In case of TFET, unlike to the MOSFET, gate-to-drain capacitance (C_{GD}) dominates entire gate capacitance (C_{GG}) while gate-to-source capacitance (C_{GS}) is negligible [30]. Therefore, C_{GD} as a function of V_{GS}, is examined with the various T_D from 5 to 50 nm-thick. Figure 4b shows that C_{GD} is increased proportionally to the T_D, due to the increase of drain area. It is problematic for high-speed and low-power CMOS logic applications, since the C_{GD} is directly related to the Miller capacitance, which increases voltage over/under-shoots and delay time [31]. In other words, there is a trade-off between I_{AMB} and C_{GD} in terms of T_D. As shown in Figure 5, the C_{GD} remarkably increases when $T_D \geq 20$ nm while the amount of decreasing I_{AMB} is negligible. Therefore, the optimum T_D is determined as 20 nm.

In addition to the increase in T_D, another strategy is required to suppress I_{AMB} and C_{GD}, simultaneously. As shown in Figure 6a, if the DU (i.e., the length of drain underlap region) is increased, the I_{AMB} is further decreased. This result is obvious based on the previous studies [32,33]. However, DGIT-TFET can minimize the DU because I_{AMB} is already restrained by large T_D. It is beneficial, not only for the small parasitic resistance, but for the high integration density. Moreover, Figure 6a clearly shows that if the DU increases more than 10 nm, the I_{OFF} becomes worse in spite of the longer DU due to the significant SRH leakage. The DGIT-TFET with 10 nm-DU shows smaller I_{AMB} and C_{GD} than that for 0 nm-DU with the amount of about 2.1, and 3.5 orders of magnitudes, respectively (Figure 6a,b). Considering these results, the optimum DU can be determined as ~10 nm. The adoption of drain underlap region can be realized easily without any aggressive process capability issue by changing the height of STI oxide. The detail about the influence of C_{GD} on voltage overshoot during CMOS operation will be discussed at the end of this section.

Figure 4. DGIT-TFET’s (a) I_D and (b) C_{GD} as a function of V_{GS} while the T_D changes from 5 to 50 nm.
Figure 5. I_{AMB} and C_{GD} depending on T_D from 5 to 50 nm.

Figure 6. (a) I_D and (b) C_{GD} curves of DGIT-TFET as a function of V_{GS} while the DU changes from 0 to 15 nm.

As above-mentioned, the vertical-structured DGIT-TFET is compatible to the SEG process for Si$_{1-x}$Ge$_x$/Si heterojunction formation. It is worthwhile to study the effects of heterojunction on DGIT-TFET’s driving current, since the use of a narrow bandgap material can reduce the tunnel resistance drastically. Figure 7b shows transfer characteristics of DGIT-TFET according to the Ge mole fraction (x_M) at source-channel junction (Figure 7a). If x_M increases, I_{ON} is effectively improved, without increasing I_{AMB}, due to the decrease of BTBT resistance. In case of 100%-xM, I_{ON} is increased more than two-orders of magnitude from that for sub-70%-xM cases because direct band-to-band tunneling (BTBT) can be utilized [16,18,27].

Last of all, the transient characteristics of CMOS inverter composed of n-channel DGIT-TFET and p-channel DGIT-MOSFET are investigated by changing DU. In this case, 100%-xM is used as a
source-channel junction for best performance. As shown in Figure 8, it is clear that DGIT-TFET inverter can be operated with less than 1 ns intrinsic delay time. There is a considerable voltage overshoot for the 0 nm-DU due to the large Miller capacitance; C_{GD}. It is necessary to address this issue since it is problematic in terms of power consumption, reliability, and so on. As shown in the inset of Figure 8, the overshoot phenomenon is significantly suppressed as DU increases with the help of decreased C_{GD} (Figure 6b). If 10 nm-DU (the optimized length considering I_{OFF} and C_{GD}) is adopted in DGIT-TFET, overshoot voltage becomes ~30 % of that for 0 nm-DU.

![Figure 6b](image)

Figure 6. (a) ID and (b) CGD curves of DGIT-TFET as a function of DU = 0, 2.5, 5, 7.5, 10, 15 nm.

![Figure 7](image)

Figure 7. (a) The structures of heterojunction Si$_{1-x}$Ge$_x$ according to changing Ge mole fraction from 0 to 100 % on source and source-side channel. (b) I_D as a function of V_{GS} for the structures in (a). As the Ge mole fraction of Si$_{1-x}$Ge$_x$ is higher, the I_{ON} level is accordingly higher.

![Figure 8](image)

Figure 8. Transient responses of CMOS inverter composed of n-channel DGIT-TFET and p-channel DGIT-MOSFET during the input signal rising. The inset shows the voltage overshoots can be efficiently suppressed as DU increase. The graph with open symbols also compares in case the conventional structure without tapering (i.e., DG-TFET) is used as a pull-down device. The overshoot trends are exactly matched with C_{GD} characteristics shown in Figures 4b and 6b.
4. Summary

In this paper, a novel vertical-channel DG TFET, with asymmetric source/drain area, has been proposed and optimized by using TCAD simulations. It can achieve improved DC, as well as AC performances (i.e., improved I_{ON}, suppressed I_{AMB} and C_{GD}), with the help of its geometrical benefits. Since the proposed structure is compatible with the SEG process, its performance can be further improved by adopting Si$_{1-x}$Ge$_x$ heterojunction at source-channel junction, with high xM. In addition, its high compatibility with state-of-the-art FinFET process flow promises its feasibility of a readily introduction to the current CMOS technology as a successor and/or supplementary for MOSFETs.

Author Contributions: Conceptualization, S.K.; methodology, S.K.; software, H.Y.G.; investigation, H.Y.G.; data curation, H.Y.G. and S.K.; writing—original draft preparation, H.Y.G.; writing—review and editing, S.K.; visualization, H.Y.G.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K.

Funding: This research was supported in part by the Brain Korea 21 Plus Project in 2019, in part by the NRF of Korea funded by the Ministry of Education (MOE) under Grant 2017R1D1A1B03034352 (Basic Science Research Program), in part by the MOTIE/KSRC under Grant 10080575 (Future Semiconductor Device Technology Development Program), and in part by the MSIT, Korea, under the ITRC support program (IITP-2018-2016-0-00309-002) supervised by the IITP. The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Roadmap for Devices and Systems 2016. Available online: https://irds.ieee.org/reports (accessed on 13 September 2018).
2. Haron, N.Z.; Hamdlioui, S. Why is CMOS scaling coming to an END? In Proceedings of the IEEE 3rd International Design and Test Workshop, Monastir, Tunisia, 20–22 December 2008.
3. BintiMdSallah, S.S.; Mohamed, H.; Mamun, M.; Amin, M.S. CMOS downsizing: Present, past and future. J. Appl. Sci. Res. 2012, 8, 4138–4146.
4. Adrian, M. Ionescu and Heike Riel. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329–337. [CrossRef]
5. Seabaugh, A.C.; Zhang, Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 2010, 98, 2095–2110. [CrossRef]
6. Boucart, K.; Ionescu, A.M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 2007, 54, 1725–1733. [CrossRef]
7. Lu, H.; Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE J. Electron Devices Soc. 2014, 2, 44–49. [CrossRef]
8. Avci, U.E.; Morris, D.H.; Hasan, S.; Kotlyar, R.; Kim, R.; Rios, R.; Nikonov, D.E.; Young, I.A. Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at $L_D = 13$ nm, including P-TFET and variation considerations. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013.
9. Robbins, M.C.; Koester, S.J. Crystal-oriented black phosphorus TFETs with strong band-to-band-tunneling anisotropy and subthreshold slope nearing the thermionic limit. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017.
10. Kwon, H.T.; Kim, S.W.; Lee, W.J.; Wee, D.H.; Kim, Y. A recessed-channel tunnel field-effect transistor (RTFET) with the asymmetric source and drain. JSTS 2016, 16, 635–640. [CrossRef]
11. Kim, S.W.; Kim, J.H.; Liu, T.-K.; Choi, W.Y.; Park, By. Demonstration of L-shaped Tunnel Field-Effect Transistors. IEEE Trans. Electron Devices 2015, 63, 1774–1778. [CrossRef]
12. Shih, P.-C.; Huang, H.-C.; Wang, C.-A.; Li, J.-Y. A novel vertical tunnel FET of band-to-band tunneling aligned with gate electric field with averaged SS of 28 mV/decade. In Proceedings of the Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 4–5 June 2017; p. 45.
13. Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A review of sharp-switching devices for ultra-low power applications. IEEE J. Electron Devices Soc. 2016, 4, 215–226. [CrossRef]
14. Choi, W.Y.; Park, B.G.; Lee, J.D. Tunneling Field-Effect Transistor (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec. IEEE Electron Device Lett. 2007, 28, 743–745. [CrossRef]
15. Wu, Y.-T.; Chiang, M.-H.; Chen, J.F.; Ding, F.; Connelly, D.; Liu, T.-J.K. High-Density SRAM Voltage Scaling Enabled by Inserted-Oxide FinFET Technology. In Proceedings of the IEEE SOI-3D-Subthreshold Microelectronics Unified Conference (S3S), Burlingame, CA, USA, 16–19 October 2017.

16. Krishnamohan, T.; Kim, D.; Raghunathan, S.; Saraswat, K. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60 mV/dec subthreshold slope. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2008.

17. Kuhn, K.J.; Murthy, A.; Kotlyar, R.; Kuhn, M. Past, Present and Future: SiGe and CMOS Transistor Scaling. ECS Trans. 2010, 33, 3–17.

18. Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Soree, B.; Groeseneken, G.; de Meyer, K. Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs. IEEE Trans. Electron Devices 2012, 59, 292–301. [CrossRef]

19. Schenk, A.; Sant, S.; Moselund, K.; Riel, H. The impact of hetero-junction and oxide-interface traps on the performance of InAs/Si and InAs/GaAsSb nanowire tunnel FETs. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 7–9 September 2017.

20. Kunii, Y.; Inokuchi, E.Y. Vertical SiGe epitaxial growth system. Hitachi Rev. 2002, 51, 104–108.

21. Narang, R.; Saxena, M.; Gupta, R.S.; Gupta, M. Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J. Semicond. Technol. Sci. JSTS 2012, 12, 482–491. [CrossRef]

22. Abdi, D.B.; Kumar, M.J. Controlling Ambipolar Current in Tunneling FETs Using Overlapping Gate-on-Drain. IEEE J. Electron Devices Soc. 2014, 2, 187–190. [CrossRef]

23. Saurabh, S.; Kumar, M.J. Fundamentals of Tunnel Field-Effect Transistors; CRC Press: Boca Raton, FL, USA, 2016; p. 162.

24. Kwon, D.W.; Kim, J.H.; Park, B.-G. Effects of drain doping concentration on switching characteristics of tunnel field-effect transistor inverters. Jpn. J. Appl. Phys. 2016, 55, 114201. [CrossRef]

25. Sentaurus™ Device User Guide, ver. K-2015.06, Synopsys Inc. Available online: http://www.sentaurus.dsdod.pl/manuals/data/sdevice_ug.pdf (accessed on 13 September 2018).

26. Pala, M.G.; Brocard, S. Exploiting Hetero-Junctions to Improve the Performance of III–V Nanowire Tunnel-FETs. IEEE Electron Devices Soc. 2015, 3, 115–121. [CrossRef]

27. Kim, S.W.; Choi, W.Y. Hump Effects of Germanium/Silicon Heterojunction Tunnel Field-Effect Transistors. IEEE Trans. Electron Devices 2016, 63, 2583–2588. [CrossRef]

28. Choi, W.Y.; Song, J.Y.; Lee, J.D.; Park, Y.J.; Park, B.-G. A novel biasing scheme for I-MOS (impact-ionization MOS) devices. IEEE Trans. Nanotechnol. 2005, 4, 322–325. [CrossRef]

29. Sicard, E. Introducing 7-nm FinFET technology in Microwind. Arch. Ouvert. HAL 2017, 1–22. Available online: https://hal.archives-ouvertes.fr/hal-01558775/ (accessed on 20 January 2019).

30. Yang, Y.; Tong, X.; Yang, L.-T.; Guo, P.-F.; Fan, L.; Yeo, Y.-C. Tunneling field-effect transistor: Capacitance components and modeling. IEEE Electron Device Lett. 2010, 31, 752–754. [CrossRef]

31. Kwon, D.W.; Kim, J.H.; Park, E.; Lee, J.; Kim, S.; Park, B.-G. Switching Characteristics Analysis of Tunnel Field-Effect Transistor (TFET) Inverters. J. Nanosci. Nanotechnol. 2017, 17, 7134–7139. [CrossRef]

32. Vandenberghe, W.G.; Verhulst, A.S. Tunnel Field-Effect Transistor with Gated Tunnel Barrier. U.S. Patent 8,120,115B2, 21 February 2012.

33. Verhulst, A.S.; Vandenberghe, W.G.; Maex, K.; Groeseneken, G. Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 2007, 91, 053102. [CrossRef]