Cubic-regularized Newton’s method (CR) is a popular algorithm that guarantees to produce a second-order stationary solution for solving nonconvex optimization problems. However, existing understandings of the convergence rate of CR are conditioned on special types of geometrical properties of the objective function. In this paper, we explore the asymptotic convergence rate of CR by exploiting the ubiquitous Kurdyka-Łojasiewicz (KŁ) property of nonconvex objective functions. In specific, we characterize the asymptotic convergence rate of various types of optimality measures for CR including function value gap, variable distance gap, gradient norm and least eigenvalue of the Hessian matrix. Our results fully characterize the diverse convergence behaviors of these optimality measures in the full parameter regime of the KŁ property. Moreover, we show that the obtained asymptotic convergence rates of CR are order-wise faster than those of first-order gradient descent algorithms under the KŁ property.

1 Introduction

A majority of machine learning applications are naturally formulated as nonconvex optimization due to the complex mechanism of the underlying model. Typical examples include training neural networks in deep learning [Goodfellow et al., 2016], low-rank matrix factorization [Ge et al., 2016, Bhojanapalli et al., 2016], phase retrieval [Candes et al., 2015, Zhang et al., 2017], etc. In particular, these machine learning problems take the generic form

$$\min_{x \in \mathbb{R}^d} f(x),$$

where the objective function $f : \mathbb{R}^d \to \mathbb{R}$ is a differentiable and nonconvex function, and usually corresponds to the total loss over a set of data samples. Traditional first-order algorithms such as gradient descent can produce a solution \bar{x} that satisfies the first-order stationary condition, i.e., $\nabla f(\bar{x}) = 0$. However, such first-order stationary condition does not exclude the possibility of approaching a saddle point, which can be a highly suboptimal solution and therefore deteriorate the performance.

Recently in the machine learning community, there has been an emerging interest in designing algorithms to escape saddle points in nonconvex optimization, and one popular algorithm is the cubic-regularized Newton’s algorithm [Nesterov and Polyak, 2006, Agarwal et al., 2017, Yue et al., 2018].
We characterize the convergence rate of CR locally towards second-stationary points for nonconvex (i.e., super-linearly) given an initialization with positive definite Hessian. Moreover, the function which is also referred to as cubic regularization (CR) for simplicity. Such a second-order method exploits the Hessian information and produces a solution \bar{x} for problem (P) that satisfies the second-order stationary condition, i.e.,

$$\text{(second-order stationary)}: \quad \nabla f(\bar{x}) = 0, \quad \nabla^2 f(\bar{x}) \succeq 0.$$

The second-order stationary condition ensures CR to escape saddle points wherever the corresponding Hessian matrix has a negative eigenvalue (i.e., strict saddle points [Sun et al., 2015]). In particular, many nonconvex machine learning problems have been shown to exclude spurious local minima and have only strict saddle points other than global minima [Baldi and Hornik, 1989, Sun et al., 2017, Ge et al., 2016]. In such a desirable case, CR is guaranteed to find the global minimum for these nonconvex problems. To be specific, given a proper parameter $M > 0$, CR generates a variable sequence $\{x_k\}_k$ via the following update rule

$$(CR) \quad x_{k+1} = \arg\min_{y \in \mathbb{R}^d} \langle y - x_k, \nabla f(x_k) \rangle + \frac{1}{2} (y - x_k)^T \nabla^2 f(x_k) (y - x_k) + \frac{M}{6} \| y - x_k \|^3. \quad (1)$$

Intuitively, CR updates the variable by minimizing an approximation of the objective function at the current iterate. This approximation is essentially the third-order Taylor’s expansion of the objective function. We note that computationally efficient solver has been proposed for solving the above cubic subproblem [Agarwal et al., 2017], and it was shown that the resulting computation complexity of CR to achieve a second-order stationary point serves as the state-of-the-art among existing algorithms that achieve the second-order stationary condition.

Several studies have explored the convergence of CR for nonconvex optimization. Specifically, the pioneering work [Nesterov and Polyak, 2006] first proposed the CR algorithm and showed that the variable sequence $\{x_k\}_k$ generated by CR has second-order stationary limit points and converges sub-linearly. Furthermore, the gradient norm along the iterates was shown to converge quadratically (i.e., super-linearly) given an initialization with positive definite Hessian. Moreover, the function value along the iterates was shown to converge super-linearly under a certain gradient dominance condition of the objective function. Recently, [Yue et al., 2013] studied the asymptotic convergence rate of CR under the local error bound condition, and established the quadratic convergence of the distance between the variable and the solution set. Clearly, these results demonstrate that special geometrical properties (such as the gradient dominance condition and the local error bound) enable much faster convergence rate of CR towards a second-order stationary point. However, these special conditions may fail to hold for generic complex objectives involved in practical applications. Thus, it is desired to further understand the convergence behaviors of CR for optimizing nonconvex functions over a broader spectrum of geometrical conditions.

The Kurdyka-Łojasiewicz (KL) property (see Section 2 for details) [Bolte et al., 2007, Bolte et al., 2014] serves as such a candidate. As described in Section 2, the KL property captures a broad spectrum of the local geometries that a nonconvex function can have and is parameterized by a parameter θ that changes over its allowable range. In fact, the KL property has been shown to hold ubiquitously for most practical functions (see Section 2 for a list of examples). The KL property has been exploited extensively to analyze the convergence rate of various first-order algorithms for nonconvex optimization, e.g., gradient method [Attouch and Bolte, 2009, Li et al., 2017], alternating minimization [Bolte et al., 2014] and distributed gradient methods [Zhou et al., 2016a]. But it has not been exploited to establish the convergence rate of second-order algorithms towards second-order stationary points. In this paper, we exploit the KL property of the objective function to provide a comprehensive study of the convergence rate of CR for nonconvex optimization. We anticipate our study to substantially advance the existing understanding of the convergence of CR to a much broader range of nonconvex functions. We summarize our contributions as follows.

1.1 Our Contributions

We characterize the convergence rate of CR locally towards second-stationary points for nonconvex optimization under the KL property of the objective function. As the first work that establishes the convergence rate under the KL property for a second-order algorithm, our results also compare and contrast the different order-level of guarantees that KL yields between the first and second-order algorithms. Specifically, we establish the convergence rate of CR in terms of the following optimality measures.

Gradient norm & least eigenvalue of Hessian: We characterize the asymptotic convergence rates of the sequence of gradient norm $\{\|\nabla f(x_k)\|\}_k$ and the sequence of the least eigenvalue of Hessian

...
Assumption 1. The objective function f is continuously twice-differentiable and bounded below, i.e., $\inf_{x \in \mathbb{R}^d} f(x) > -\infty$;
2. For any $\alpha \in \mathbb{R}$, the sub-level set $\{x : f(x) \leq \alpha\}$ is compact;

$\{\lambda_{\min}(\nabla^2 f(x_k))\}_{k}$ generated by CR. We show that CR meets the second-order stationary condition at a (super)-linear rate in the parameter range $\theta \in \left[\frac{1}{3}, 1\right]$ for the KL property, while the convergence rates become sub-linearly in the parameter range $\theta \in (0, \frac{1}{3})$ for the KL property.

Function value gap & variable distance: We characterize the asymptotic convergence rates of the function value sequence $\{f(x_k)\}_k$ and the variable sequence $\{x_k\}_k$ to the function value and the variable of a second-order stationary point, respectively. The obtained convergence rates range from sub-linearly to super-linearly depending on the parameter θ associated with the KL property. Our convergence results generalize the existing ones established in [Nesterov and Polyak, 2006] corresponding to special cases of θ to the full range of θ. Furthermore, these types of convergence rates for CR are orderwise faster than the corresponding convergence rates of the first-order gradient descent algorithm in various regimes of the KL parameter θ (see Table 1 and Table 2 for the comparisons).

Based on the KL property, we establish a generalized local error bound condition (referred to as the KL error bound). The KL error bound further leads to characterization of the convergence rate of distance between the variable and the solution set, which ranges from sub-linearly to super-linearly depending on the parameter θ associated with the KL property. This result generalizes the existing one established in [Yue et al., 2018] corresponding to a special case of θ to the full range of θ. We also point out the applicability of our results to CR with inexactness in the algorithm computation.

1.2 Related Work

Cubic regularization: CR algorithm was first proposed in [Nesterov and Polyak, 2006], in which the authors analyzed the convergence of CR to second-order stationary points for nonconvex optimization. In [Nesterov, 2008], the authors established the sub-linear convergence of CR for solving convex smooth problems, and they further proposed an accelerated version of CR with improved sub-linear convergence. Recently, [Yue et al., 2018] studied the asymptotic convergence properties of CR under the error bound condition, and established the quadratic convergence of the iterates. Several other works proposed different methods to solve the cubic subproblem of CR, e.g., [Agarwal et al., 2017], [Carmon and Duchi, 2016], [Cartis et al., 2011b].

Inexact-cubic regularization: Another line of work aimed at improving the computation efficiency of CR by solving the cubic subproblem with inexact gradient and Hessian information. In particular, [Ghadimi et al., 2017], [Tripuraneni et al., 2017] proposed an inexact CR for solving convex problem and nonconvex problems, respectively. Also, [Cartis et al., 2011a] proposed an adaptive inexact CR for nonconvex optimization, whereas [Jiang et al., 2017] further studied the accelerated version for convex optimization. Several studies explored subsampling schemes to implement inexact CR algorithms, e.g., [Kohler and Lucchi, 2017], [Xu et al., 2017], [Zhou et al., 2018], [Wang et al., 2018].

KL property: The KL property was first established in [Attouch and Bolte, 2009], and was then widely applied to characterize the asymptotic convergence behavior for various first-order algorithms for non-convex optimization [Attouch and Bolte, 2009], [Li et al., 2017], [Bolte et al., 2014], [Zhou et al., 2016a], [Zhou et al., 2017]. The KL property was also exploited to study the convergence of second-order algorithms such as generalized Newton’s method [Frankel et al., 2015] and the trust region method [Noll and Rondepierre, 2013]. However, these studies did not characterize the convergence rate and the studied methods cannot guarantee to converge to second-order stationary points, whereas this paper provides this type of results.

First-order algorithms that escape saddle points: Many first-order algorithms are proved to achieve second-order stationary points for nonconvex optimization. For example, online stochastic gradient descent [Ge et al., 2015], perturbed gradient descent [Tripuraneni et al., 2017], gradient descent with negative curvature [Carmon and Duchi, 2016], [Liu and Yang, 2017] and other stochastic algorithms [Allen-Zhu, 2017].

2 Preliminaries on KL Property and CR Algorithm

Throughout the paper, we make the following standard assumptions on the objective function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ [Nesterov and Polyak, 2006], [Yue et al., 2018].

Assumption 1. The objective function f in the problem (P) satisfies:
1. Function f is continuously twice-differentiable and bounded below, i.e., $\inf_{x \in \mathbb{R}^d} f(x) > -\infty$;
2. For any $\alpha \in \mathbb{R}$, the sub-level set $\{x : f(x) \leq \alpha\}$ is compact;
3. The Hessian of f is L-Lipschitz continuous on a compact set C, i.e.,
\[\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq L\|x - y\|, \quad x, y \in C. \]

The above assumptions make problem (P) have a solution and make the iterative rule of CR being well defined. Besides these assumptions, many practical functions are shown to satisfy the so-called Łojasiewicz gradient inequality [Łojasiewicz, 1963]. Recently, such a condition was further generalized to the Kurdyka-Łojasiewicz property [Bolte et al., 2007, Bolte et al., 2014], which is satisfied by a larger class of nonconvex functions.

Next, we introduce the KL property of a function f. Throughout, the (limiting) subdifferential of a proper and lower-semicontinuous function f is denoted as ∂f, and the point-to-set distance is denoted as $\text{dist}_\Omega(x) := \inf_{w \in \Omega} \|x - w\|$.

Definition 1 (KL property, [Bolte et al., 2014]). A proper and lower-semicontinuous function f is said to satisfy the KL property if for every compact set $\Omega \subset \text{dom} f$ on which f takes a constant value $f_\Omega \in \mathbb{R}$, there exist $\varepsilon, \lambda > 0$ such that for all $x \in \Omega$ and all $z \in \mathbb{R}^d : \text{dist}_\Omega(z) < \varepsilon, f_\Omega < f(z) < f_\Omega + \lambda$, one has
\[\varphi'(f(x) - f_\Omega) \cdot \text{dist}_{\partial f(x)}(0) \geq 1, \] where function $\varphi : [0, \lambda) \to \mathbb{R}_+$ takes the form $\varphi(t) = \frac{c}{\theta^2}t^\theta$ for some constants $c > 0, \theta \in (0, 1]$.

The KL property establishes local geometry of the nonconvex function around a compact set. In particular, consider a differentiable function (which is our interest here) so that $\partial f = \nabla f$. Then, the local geometry described in eq. (2) can be rewritten as
\[f(x) - f_\Omega \leq C\|\nabla f(x)\|^{\frac{1}{1-\theta}} \]
for some constant $C > 0$. Equation (3) can be viewed as a generalization of the well known gradient dominance condition [Łojasiewicz, 1963, Karimi et al., 2016], which corresponds to the special case of $\theta = \frac{1}{2}$ and is satisfied by various nonconvex machine learning models [Zhou et al., 2016b, Yue et al., 2018, Zhou and Liang, 2017]. In general, the parameter $\theta \in (0, 1]$ of the KL property captures the local curvature of the function, and we show in our main results that it determines the asymptotic convergence rate of CR.

The KL property has been shown to hold for a large class of functions including sub-analytic functions, logarithm and exponential functions and semi-algebraic functions. These function classes cover most of nonconvex objective functions encountered in practical applications. We provide a partial list of KL functions below and refer the reader to [Bolte et al., 2014, Attouch et al., 2010] for a comprehensive list.

- Real polynomial functions;
- Vector (semi-)norms $\| \cdot \|_p$ with $p \geq 0$ be any rational number;
- Matrix (semi-)norms, e.g., operator norm, nuclear norm, Frobenious norm, rank, etc;
- Logarithm functions, exponentiation functions;

Next, we provide some fundamental understandings of CR that determines the convergence rate. The algorithmic dynamics of CR [Nesterov and Polyak, 2006] is very different from that of first-order gradient descent algorithm, which implies that the convergence rate of CR under the KL property can be very different from the existing result for the first-order algorithms under the KL property. We provide a detailed comparison between the two algorithmic dynamics in Table 1 for illustration, where L_{grad} corresponds to the Lipschitz parameter of ∇f for gradient descent, L is the Lipschitz parameter for Hessian and we choose $M = L$ for CR for simple illustration.

\[\begin{array}{c|c|c}
\text{gradient descent} & \text{cubic-regularization (} M = L) \\\hline
f(x_k) - f(x_{k-1}) & \leq -\frac{L_{\text{grad}}}{2}\|x_k - x_{k-1}\|^2 & -\frac{L}{4\theta}\|x_k - x_{k-1}\|^3 \\
\|\nabla f(x_k)\| & \leq \frac{L}{2\theta}\|x_k - x_{k-1}\| & L\|x_k - x_{k-1}\|^2 \\
-\lambda_{\min}(\nabla^2 f(x_k)) & \leq \frac{L}{2\theta} & \frac{L}{\theta}\|x_k - x_{k-1}\| \\
\end{array} \]

Table 1: Comparison between dynamics of gradient descent and CR.
It can be seen from Table 1 that the dynamics of gradient descent involves information up to the first order (i.e., function value and gradient), whereas the dynamics of CR involves the additional second order information, i.e., least eigenvalue of Hessian (last line in Table 1). In particular, note that the successive difference of function value \(f(x_{k+1}) - f(x_k) \) and the gradient norm \(\| \nabla f(x_k) \| \) of CR are bounded by higher order terms of \(\| x_k - x_{k-1} \| \) compared to those of gradient descent. Intuitively, this implies that CR should converge faster than gradient descent in the converging phase when \(x_k+1 - x_k \to 0 \). Next, we exploit the dynamics of CR and the KL property to study its asymptotic convergence rate.

Notation: Throughout the paper, we denote \(f(n) = \Theta(g(n)) \) if and only if for some \(0 < c_1 < c_2 \), \(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \).

3 Convergence Rate of CR to Second-order Stationary Condition

In this subsection, we explore the convergence rates of the gradient norm and the least eigenvalue of the Hessian along the iterates generated by CR under the KL property. Define the second-order stationary gap

\[
\mu(x) := \max \left\{ \sqrt{\frac{2}{L + M}} \| \nabla f(x) \|, \ - \frac{2}{2L + M} \lambda_{\min}(\nabla^2 f(x)) \right\}.
\]

The above quantity is well established as a criterion for achieving second-order stationary [Nesterov and Polyak, 2006]. It tracks both the gradient norm and the least eigenvalue of the Hessian at \(x \). In particular, the second-order stationary condition is satisfied as \(\mu(x) = 0 \).

Next, we characterize the convergence rate of \(\mu \) for CR under the KL property.

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KL property associated with parameter \(\theta \in (0, 1] \). Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{ \mu(x_k) \}_k \) generated by CR satisfies

1. If \(\theta = 1 \), then \(\mu(x_k) \to 0 \) within finite number of iterations;
2. If \(\theta \in (\frac{1}{2}, 1) \), then \(\mu(x_k) \to 0 \) super-linearly as \(\mu(x_k) \leq \Theta \left(\exp \left(- \left(\frac{2\theta}{1-\theta} \right)^{k-k_0} \right) \right) \);
3. If \(\theta = \frac{1}{2} \), then \(\mu(x_k) \to 0 \) linearly as \(\mu(x_k) \leq \Theta \left(\exp \left(-(k-k_0) \right) \right) \);
4. If \(\theta \in (0, \frac{1}{2}) \), then \(\mu(x_k) \to 0 \) sub-linearly as \(\mu(x_k) \leq \Theta \left((k-k_0)^{-\frac{2\theta}{2\theta-1}} \right) \).

Theorem 1 provides a full characterization of the convergence rate of \(\mu \) for CR to meet the second-order stationary condition under the KL property. It can be seen from Theorem 1 that the convergence rate of \(\mu \) is determined by the KL parameter \(\theta \). Intuitively, in the regime \(\theta \in (0, \frac{1}{2}) \) where the local geometry is ‘flat’, CR achieves second-order stationary as (sub-)linearly. As a comparison, in the regime \(\theta \in (\frac{1}{2}, 1] \) where the local geometry is ‘sharp’, CR achieves second-order stationary fast as super-linearly.

We next compare the convergence results of \(\mu \) in Theorem 1 with that of \(\mu \) for CR studied in [Nesterov and Polyak, 2006]. To be specific, the following two results are established in [Nesterov and Polyak, 2006, Theorems 1 & 3] under Assumption 1:

1. \(\lim_{k \to \infty} \mu(x_k) = 0 \), \(\min_{1 \leq t \leq k} \mu(x_t) \leq \Theta(k^{-\frac{1}{2}}) \);
2. If the Hessian is positive definite at certain \(x_t \), then the Hessian remains to be positive definite at all subsequent iterates \(\{ x_k \}_{k \geq t} \) and \(\{ \mu(x_k) \}_k \) converges to zero quadratically.

Item 1 establishes a best-case bound for \(\mu(x_k) \), i.e., it holds only for the minimum \(\mu \) along the iteration path. As a comparison, our results in Theorem 1 characterize the convergence rate of \(\mu(x_k) \) along the entire asymptotic iteration path. Also, the quadratic convergence in item 2 relies on the fact that CR eventually stays in a locally strong convex region (with KL parameter \(\theta = \frac{1}{2} \)), and this is consistent with our convergence rate in Theorem 1 for KL parameter \(\theta = \frac{1}{2} \). In summary, our result captures the effect of the underlying geometry (parameterized by the KL parameter \(\theta \)) on the convergence rate of CR towards second-order stationary.
4 Other Convergence Results of CR

In this section, we first present the convergence rate of function value and variable distance for CR under the KL property. Then, we discuss that such convergence results are also applicable to characterize the convergence rate of inexact CR.

4.1 Convergence Rate of Function Value for CR

It has been proved in [Nesterov and Polyak, 2006, Theorem 2] that the function value sequence \(\{ f(x_k) \}_k \) generated by CR decreases to a finite limit \(\bar{f} \), which corresponds to the function value evaluated at a certain second-order stationary point. The corresponding convergence rate has also been developed in [Nesterov and Polyak, 2006] under certain gradient dominance condition of the objective function. In this section, we characterize the convergence rate of \(\{ f(x_k) \}_k \) to \(\bar{f} \) for CR by exploiting the more general KL property. We obtain the following result.

Theorem 2. Let Assumption 1 hold and assume problem \((P)\) satisfies the KL property associated with parameter \(\theta \in (0, 1] \). Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{ f(x_k) \}_k \) generated by CR satisfies

1. If \(\theta = 1 \), then \(f(x_k) \downarrow \bar{f} \) within finite number of iterations;
2. If \(\theta \in \left(\frac{1}{2}, 1 \right) \), then \(f(x_k) \downarrow \bar{f} \) super-linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left(\exp \left(- (\frac{2}{\theta(1-\theta)})^{k-k_0} \right) \right) \);
3. If \(\theta = \frac{1}{4} \), then \(f(x_k) \downarrow \bar{f} \) linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left(\exp \left(-(k-k_0) \right) \right) \);
4. If \(\theta \in (0, \frac{1}{2}) \), then \(f(x_k) \downarrow \bar{f} \) sub-linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left((k-k_0)^{-\frac{2}{3\theta}} \right) \).

From Theorem 2, it can be seen that the function value sequence generated by CR has diverse asymptotic convergence rates in different regimes of the KL parameter \(\theta \). In particular, a larger \(\theta \) implies a sharper local geometry that further facilitates the convergence. We note that the gradient dominance condition discussed in [Nesterov and Polyak, 2006] locally corresponds to the KL property in eq. (3) with the special cases \(\theta \in \left(\frac{1}{4}, 1 \right) \), and hence the convergence rate results in Theorem 2 generalize those in [Nesterov and Polyak, 2006, Theorems 6, 7].

We can further compare the function value convergence rates of CR with those of gradient descent method [Frankel et al., 2015] under the KL property (see Table 2 for the comparison). In the KL parameter regime \(\theta \in \left[\frac{1}{4}, 1 \right] \), the convergence rate of \(\{ f(x_k) \}_k \) for CR is super-linear—orderwise faster than the corresponding (sub)-linear convergence rate of gradient descent. Also, both methods converge sub-linearly in the parameter regime \(\theta \in (0, \frac{1}{2}) \), and the corresponding convergence rate of CR is still considerably faster than that of gradient descent.

Table 2: Comparison of convergence rate of \(\{ f(x_k) \}_k \) between gradient descent and CR.

KL parameter	gradient descent	cubic-regularization
\(\theta = 1 \)	finite-step	finite-step
\(\theta \in \left(\frac{1}{2}, 1 \right) \)	linear	super-linear
\(\theta \in \left[\frac{1}{2}, \frac{1}{2} \right) \)	sub-linear	(super)-linear
\(\theta \in (0, \frac{1}{2}) \)	sub-linear \(\mathcal{O}(k^{-\frac{1}{1-\theta}}) \)	sub-linear \(\mathcal{O}(k^{-\frac{2}{3\theta}}) \)

4.2 Convergence Rate of Variable Distance for CR

It has been proved in [Nesterov and Polyak, 2006, Theorem 2] that all limit points of \(\{ x_k \}_k \) generated by CR are second order stationary points. However, the sequence is not guaranteed to be convergent and no convergence rate is established.

Our next two results show that the sequence \(\{ x_k \}_k \) generated by CR is convergent under the KL property.
Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, the sequence \(\{x_k\}_k \) generated by CR satisfies
\[
\sum_{k=0}^{\infty} \|x_{k+1} - x_k\| < +\infty. \tag{4}
\]

Theorem 3 implies that CR generates an iterate \(\{x_k\}_k \) with finite trajectory length, i.e., \(\|x_\infty - x_0\| < +\infty \). In particular, eq. (3) shows that the sequence is absolutely summable, which strengthens the result in Nesterov and Polyak (2006) that establishes the cubic summability instead, i.e., \(\sum_{k=0}^{\infty} \|x_{k+1} - x_k\| < +\infty \). We note that the cubic summability property does not guarantee that the sequence is convergence, for example, the sequence \(\{1/k\}_k \) is cubic summable but is not absolutely summable. In comparison, the summability property in eq. (4) directly implies that the sequence \(\{x_k\}_k \) generated by CR is a Cauchy convergent sequence, and we obtain the following result.

Corollary 1. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, the sequence \(\{x_k\}_k \) generated by CR is a Cauchy sequence and converges to some second-order stationary point \(\bar{x} \).

We note that the convergence of \(\{x_k\}_k \) to a second-order stationary point is also established for CR in Yue et al. (2018), but under the special error bound condition, whereas we establish the convergence of \(\{x_k\}_k \) under the KL property that holds for general nonconvex functions.

Next, we establish the convergence rate of \(\{x_k\}_k \) to the second-order stationary limit \(\bar{x} \).

Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{x_k\}_k \) generated by CR satisfies
1. If \(\theta = 1 \), then \(x_k \to \bar{x} \) within finite number of iterations;
2. If \(\theta \in \left(\frac{1}{4}, 1 \right) \), then \(x_k \to \bar{x} \) super-linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta \left(\exp \left(- \left(\frac{20}{(k-k_0)} + \frac{2}{3} \right)^{k-k_0} \right) \right) \);
3. If \(\theta = \frac{1}{3} \), then \(x_k \to \bar{x} \) linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta \left(\exp \left(- (k-k_0) \right) \right) \);
4. If \(\theta \in \left(0, \frac{1}{3} \right) \), then \(x_k \to \bar{x} \) sub-linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta \left((k-k_0)^{-\frac{20}{3}} \right) \).

From Theorem 3 it can be seen that the convergence rate of \(\{x_k\}_k \) is similar to that of \(\{f(x_k)\}_k \) in Theorem 2 in the corresponding regimes of the KL parameter \(\theta \). Essentially, a larger parameter \(\theta \) induces a sharper local geometry that leads to a faster convergence.

We can further compare the variable convergence rate of CR in Theorem 4 with that of gradient descent method (Attouch and Bolte, 2009) (see Table 3 for the comparison). It can be seen that the variable sequence generated by CR converges orderwise faster than that generated by the gradient descent method in a large parameter regimes of \(\theta \).

Table 3: Comparison of convergence rate of \(\{x_k\}_k \) between gradient descent and CR.

KL parameter	gradient descent	cubic-regularization
\(\theta = 1 \)	finite-step	finite-step
\(\theta \in \left(\frac{1}{4}, 1 \right) \)	linear	super-linear
\(\theta \in \left(\frac{1}{3}, \frac{1}{2} \right) \)	(super-)linear	(super-)linear
\(\theta \in (0, \frac{1}{3}) \)	\(O(k^{-\frac{20}{3}}) \)	\(O(k^{-\frac{20}{3}}) \)

4.3 Extension to Inexact Cubic Regularization

All our convergence results for CR in previous sections are based on the algorithm dynamics Table 1 and the KL property of the objective function. In fact, such dynamics of CR has been shown to be satisfied by other inexact variants of CR (Cartis et al., 2011b, Cartis et al., 2011a, Kohler and Lucchi, 2017, Wang et al., 2018) with different constant terms. These inexact variants of
CR updates the variable by solving the cubic subproblem in eq. (1) with the inexact gradient $\nabla f(x_k)$ and inexact Hessian $\nabla^2 f(x_k)$ that satisfy the following inexact criterion

$$
\|\nabla f(x_k) - \nabla f(x_{k+1})\| \leq c_1 \|x_{k+1} - x_k\|^2, \tag{5}
$$

$$
\|(\nabla^2 f(x_k) - \nabla^2 f(x_{k+1}))(x_{k+1} - x_k)\| \leq c_2 \|x_{k+1} - x_k\|^2, \tag{6}
$$

where c_1, c_2 are positive constants. Such inexact criterion can reduce the computational complexity of CR and can be realized via various types of subsampling schemes [Kohler and Lucchi, 2017; Wang et al., 2018].

Since the above inexact-CR also satisfies the dynamics in Table I with different constant terms, all our convergence results for CR can be directly applied to inexact CR. Then, we obtain the following corollary.

Corollary 2 (Inexact-CR). Let Assumption [holds and assume that problem (P) satisfies the KL property. Then, the sequences $\{\mu(x_k)\}_{k}, \{f(x_k)\}_{k}, \{x_k\}_{k}$ generated by the inexact-CR satisfy respectively the results in Theorems [7, 8, 9, and 10].

5 Convergence Rate of CR under KL Error Bound

In [Yue et al., 2018], it was shown that the gradient dominance condition (i.e., eq. (3) with $\theta = \frac{1}{2}$) implies the following local error bound, which further leads to the quadratic convergence of CR.

Definition 2. Denote Ω as the set of second-order stationary points of f. Then, f is said to satisfy the local error bound condition if there exists $\kappa, \rho > 0$ such that

$$
\text{dist}_{\Omega}(x) \leq \kappa \|\nabla f(x)\|, \quad \forall \text{ dist}_{\Omega}(x) \leq \rho. \tag{7}
$$

As the KL property generalizes the gradient dominance condition, it implies a much more general spectrum of the geometry that includes the error bound in [Yue et al., 2018] as a special case. Next, we first show that the KL property implies the KL-error bound, and then exploit such an error bound to establish the convergence of CR.

Proposition 1. Denote Ω as the set of second-order stationary points of f. Let Assumption [1] hold and assume that f satisfies the KL property. Then, there exist $\kappa, \varepsilon, \lambda > 0$ such that for all $x \in \{z \in \mathbb{R}^d : \text{dist}_{\Omega}(z) < \varepsilon, f_\Omega < f(z) < f_\Omega + \lambda\}$, the following property holds.

$$
(\text{KL-error bound}) \quad \text{dist}_{\Omega}(x) \leq \kappa \|\nabla f(x)\|^{\frac{\theta}{1-\theta}}. \tag{8}
$$

We refer to the condition in eq. (8) as the KL-error bound, which generalizes the original error bound in eq. (7) under the KL property. In particular, the KL-error bound reduces to the error bound in the special case $\theta = \frac{1}{2}$. By exploiting the KL-error bound, we obtain the following convergence result regarding $\text{dist}_{\Omega}(x_k)$.

Proposition 2. Denote Ω as the set of second-order stationary points of f. Let Assumption [1] hold and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large $k_0 \in \mathbb{N}$ such that for all $k \geq k_0$ the sequence $\{\text{dist}_{\Omega}(x_k)\}_{k}$ generated by CR satisfies

1. If $\theta = 1$, then $\text{dist}_{\Omega}(x_k) \to 0$ within finite number of iterations;
2. If $\theta = \frac{1}{3}$, then $\text{dist}_{\Omega}(x_k) \to 0$ super-linearly as $\text{dist}_{\Omega}(x_k) \leq \Theta\left(\exp\left(-\frac{20}{1-\theta}(k-k_0)\right)\right)$;
3. If $\theta = \frac{1}{2}$, then $\text{dist}_{\Omega}(x_k) \to 0$ linearly as $\text{dist}_{\Omega}(x_k) \leq \Theta\left(\exp\left(-\frac{k-k_0}{1+\frac{1}{\theta}}\right)\right)$;
4. If $\theta \in \left(0, \frac{2}{3}\right)$, then $\text{dist}_{\Omega}(x_k) \to 0$ sub-linearly as $\text{dist}_{\Omega}(x_k) \leq \Theta\left(\frac{k-k_0}{1+\frac{1}{\theta}}\right)$.

We note that Proposition 2 characterizes the convergence rate of the point-to-set distance $\text{dist}_{\Omega}(x_k)$, which is different from the convergence rate of the point-to-point distance $\|x_k - \bar{x}\|$ established in Theorem 4. Also, the convergence rate results in Proposition 2 generalize the quadratic convergence result in [Yue et al., 2018] that corresponds to the case $\theta = \frac{1}{2}$.

6 Conclusion

In this paper, we explore the asymptotic convergence rates of the CR algorithm under the KL property of the nonconvex objective function, and establish the convergence rates of function value gap,
iterate distance and second-order stationary gap for CR. Our results show that the convergence behavior of CR ranges from sub-linear convergence to super-linear convergence depending on the parameter of the underlying KL geometry, and the obtained convergence rates are order-wise improved compared to those of first-order algorithms under the KL property. As a future direction, it is interesting to study the convergence of other computationally efficient variants of the CR algorithm such as stochastic variance-reduced CR under the KL property in nonconvex optimization.

References

[Agarwal et al., 2017] Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma, T. (2017). Finding approximate local minima faster than gradient descent. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1195–1199.

[Allen-Zhu, 2017] Allen-Zhu, Z. (2017). Natasha 2: Faster Non-Convex Optimization Than SGD. ArXiv:1708.08694v3.

[Attouch and Bolte, 2009] Attouch, H. and Bolte, J. (2009). On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Mathematical Programming, 116(1-2):5–16.

[Attouch et al., 2010] Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010). Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457.

[Baldi and Hornik, 1989] Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2(1):53 – 58.

[Bhojanapalli et al., 2016] Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2016). Global optimality of local search for low rank matrix recovery. In Proc. Advances in Neural Information Processing Systems (NIPS).

[Bolte et al., 2007] Bolte, J., Daniilidis, A., and Lewis, A. (2007). The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 17:1205–1223.

[Bolte et al., 2014] Bolte, J., Sabach, S., and Teboulle, M. (2014). Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494.

[Candès et al., 2015] Candès, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007.

[Carmon and Duchi, 2016] Carmon, Y. and Duchi, J. C. (2016). Gradient descent efficiently finds the cubic-regularized non-convex Newton step. ArXiv: 1612.00547.

[Cartis et al., 2011a] Cartis, C., Gould, N. I. M., and Toint, P. (2011a). Adaptive cubic regularization methods for unconstrained optimization. Part ii: worst-case function- and derivative-evaluation complexity. Mathematical Programming, 130(2):295–319.

[Cartis et al., 2011b] Cartis, C., Gould, N. I. M., and Toint, P. L. (2011b). Adaptive cubic regularization methods for unconstrained optimization. part i : motivation, convergence and numerical results. Mathematical Programming.

[Frankel et al., 2015] Frankel, P., Garrigos, G., and Peypouquet, J. (2015). Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. Journal of Optimization Theory and Applications, 165(3):874–900.

[Ge et al., 2015] Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015). Escaping from saddle points — online stochastic gradient for tensor decomposition. In Proc. 28th Conference on Learning Theory (COLT), volume 40, pages 797–842.

[Ge et al., 2016] Ge, R., Lee, J., and Ma, T. (2016). Matrix completion has no spurious local minimum. In Proc. Advances in Neural Information Processing Systems (NIPS), pages 2973–2981.

[Ghadimi et al., 2017] Ghadimi, S., Liu, H., and Zhang, T. (2017). Second-order methods with cubic regularization under inexact information. ArXiv: 1710.05782.

[Goodfellow et al., 2016] Goodfellow, I., Y. B., and Courville, A. (2016). Deep Learning. MIT Press.
Hartman, P. (2002). *Ordinary Differential Equations*. Society for Industrial and Applied Mathematics, second edition.

Jiang, B., Lin, T., and Zhang, S. (2017). A unified scheme to accelerate adaptive cubic regularization and gradient methods for convex optimization. *ArXiv:1710.04788*.

Karimi, H., Nutini, J., and Schmidt, M. (2016). *Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition*, pages 795–811.

Kohler and Lucchi (2017) Kohler, J. M. and Lucchi, A. (2017). Sub-sampled cubic regularization for non-convex optimization. In *Proc. 34th International Conference on Machine Learning (ICML)*, volume 70, pages 1895–1904.

Li, Q., Zhou, Y., Liang, Y., and Varshney, P. K. (2017). Convergence analysis of proximal gradient with momentum for nonconvex optimization. In *Proc. 34th International Conference on Machine Learning (ICML)*, volume 70, pages 2111–2119.

Liu and Yang (2017) Liu, M. and Yang, T. (2017). On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization. *ArXiv:1709.08571v2*.

Łojasiewicz, S. (1963). A topological property of real analytic subsets. *Coll. du CNRS, Les equations aux derivees partielles*, page 87–89.

Łojasiewicz, S. (1965). *Ensembles semi-analytiques*. Institut des Hautes Etudes Scientifiques.

Nesterov, Y. (2008). Accelerating the cubic regularization of newton’s method on convex problems. *Mathematical Programming*, 112(1):159–181.

Nesterov and Polyak, B. (2006). Cubic regularization of newton’s method and its global performance. *Mathematical Programming*.

Sun et al. (2017) Sun, J., Qu, Q., and Wright, J. (2015). When Are Nonconvex Problems Not Scary? *ArXiv:1510.06096v2*.

Sun et al. (2017) Sun, J., Qu, Q., and Wright, J. (2017). A geometrical analysis of phase retrieval. *Foundations of Computational Mathematics*, pages 1–68.

Tripuraneni et al. (2017) Tripuraneni, N., Stern, M., Jin, C., Regier, J., and Jordan, M. I. (2017). Stochastic Cubic Regularization for Fast Nonconvex Optimization. *ArXiv: 711.02838*.

Wang et al. (2018) Wang, Z., Zhou, Y., Liang, Y., and Lan, G. (2018). Sample Complexity of Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization. *ArXiv:1802.07372v1*.

Xu et al. (2017) Xu, P., Roosta-Khorasani, F., and Mahoney, M. W. (2017). Newton-type methods for non-convex optimization under inexact hessian information. *ArXiv: 1708.07164*.

Yue et al. (2018) Yue, M., Zhou, Z., and So, M. (2018). On the Quadratic Convergence of the Cubic Regularization Method under a Local Error Bound Condition. *ArXiv:1801.09387v1*.

Zhang et al. (2017) Zhang, H., Liang, Y., and Chi, Y. (2017). A nonconvex approach for phase retrieval: Reshaped wirtinger flow and incremental algorithms. *Journal of Machine Learning Research*, 18(141):1–35.

Zhou et al. (2018) Zhou, D., Xu, P., and Gu, Q. (2018). Stochastic Variance-Reduced Cubic Regularized Newton Method. *ArXiv:1802.04796v1*.

Zhou and Liang (2017) Zhou, Y. and Liang, Y. (2017). Characterization of Gradient Dominance and Regularity Conditions for Neural Networks. *ArXiv: 1710.06910v2*.

Zhou et al. (2017) Zhou, Y., Yu, Y., Dai, W., Liang, Y., and Xing, E. P. (2017). Distributed Proximal Gradient Algorithm for Partially Asynchronous Computer Clusters. *ArXiv:1704.03540*.

Zhou et al. (2016a) Zhou, Y., Yu, Y., Dai, W., Liang, Y., and Xing, P. (2016a). On convergence of model parallel proximal gradient algorithm for stale synchronous parallel system. In *Proc 19th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 51, pages 713–722.
[Zhou et al., 2016b] Zhou, Y., Zhang, H., and Liang, Y. (2016b). Geometrical properties and accelerated gradient solvers of non-convex phase retrieval. *In Proc. 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pages 331–335.
Supplementary Materials

The proof of Theorem 2 is based on the results in other theorems. Thus, we postpone its proof to the end of the supplementary material.

Proof of Theorem 2

Theorem 2. Let Assumption 1 hold and assume problem (P) satisfies the KL property associated with parameter \(\theta \in (0, 1) \). Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{f(x_k)\}_k \) generated by CR satisfies

1. If \(\theta = 1 \), then \(f(x_k) \downarrow \bar{f} \) within finite number of iterations;
2. If \(\theta \in (\frac{1}{3}, 1) \), then \(f(x_k) \downarrow \bar{f} \) super-linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left(\exp \left(- \frac{L-\theta}{3(1-\theta)} k - k_0 \right) \right) \);
3. If \(\theta = \frac{1}{3} \), then \(f(x_k) \downarrow \bar{f} \) linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left(\exp \left(- (k - k_0) \right) \right) \);
4. If \(\theta \in (0, \frac{1}{3}) \), then \(f(x_k) \downarrow \bar{f} \) sub-linearly as \(f(x_{k+1}) - \bar{f} \leq \Theta \left((k - k_0)^{-\frac{2}{3(\lambda-\theta)}} \right) \).

Proof. We first recall the following fundamental result proved in \cite{NesterovPolyak2006}, which serves as a convenient reference.

Theorem 5 (Theorem 2, \cite{NesterovPolyak2006}). Let Assumption 1 hold. Then, the sequence \(\{x_k\}_k \) generated by CR satisfies

1. The set of limit points \(\omega(x_0) \) of \(\{x_k\}_k \) is nonempty and compact, all of which are second-order stationary points;
2. The sequence \(\{f(x_k)\}_k \) decreases to a finite limit \(\bar{f} \), which is the constant function value evaluated on the set \(\omega(x_0) \).

From the results of Theorem 5, we conclude that \(\text{dist}_{\omega(x_0)}(x_k) \to 0 \), \(f(x_k) \downarrow \bar{f} \) and \(\omega(x_0) \) is a compact set on which the function value is the constant \(\bar{f} \). Then, it is clear that for any fixed \(\epsilon > 0, \lambda > 0 \) and all \(k \geq k_0 \) with \(k_0 \) being sufficiently large, \(x_k \in \{x : \text{dist}_{\omega(x_0)}(x) < \epsilon, f(x) < \bar{f} + \lambda\} \). Hence, all the conditions of the KL property in Definition 1 are satisfied, and we can exploit the KL inequality in eq. 2.

Denote \(r_k := f(x_k) - \bar{f} \). For all \(k \geq k_0 \) we obtain that

\[
\begin{align*}
 r_k^{(i)} &\leq C||\nabla f(x_k)|| \leq C ||x_k - x_{k-1}||^{\frac{1}{3}} \leq C(r_{k-1} - r_k)^{\frac{2(1-\theta)}{3(\lambda-\theta)}} \quad \text{(9)}
\end{align*}
\]

where (i) follows from the KL property in eq. 3, (ii) and (iii) follow from the dynamics of CR in Table 1 and we have absorbed all constants into \(C \). Define \(\delta_k = r_k C^{\frac{2(1-\theta)}{3(\lambda-\theta)}} \), then the above inequality can be rewritten as

\[
\delta_{k-1} - \delta_k \geq \delta_k^{\frac{3(1-\theta)}{2}}, \quad \forall k \geq k_0. \quad \text{(10)}
\]

Next, we discuss the convergence rate of \(\delta_k \) under different regimes of \(\theta \).

Case 1: \(\theta = 1 \).

In this case, the KL property in eq. 3 satisfies \(\varphi'(t) = c \) and implies that \(||\nabla f(x_k)|| \geq \frac{1}{c} \) for some constant \(c > 0 \). On the other hand, by the dynamics of CR in Table 1, we obtain that

\[
 f(x_{k+1}) \leq f(x_k) - \frac{M}{12} ||x_{k+1} - x_k||^2 \leq f(x_k) - \frac{M}{12} (\frac{2}{L+M})^2 ||\nabla f(x_k)||^2. \quad \text{(11)}
\]

Combining these two facts yields the conclusion that for all \(k \geq k_0 \)

\[
f(x_{k+1}) \leq f(x_k) - C
\]

for some constant \(C > 0 \). Then, we conclude that \(f(x_k) \downarrow -\infty \), which contradicts the fact that \(f(x_k) \downarrow \bar{f} > -\infty \) (since \(f \) is bounded below). Hence, we must have \(f(x_k) = \bar{f} \) for all sufficiently large \(k \).

Case 2: \(\theta \in (\frac{1}{3}, 1) \).
In this case $0 < \frac{3(1-\theta)}{2} < 1$. Since $\delta_k \to 0$ as $r_k \to 0$, $\delta_k \frac{3(1-\theta)}{2}$ is order-wise larger than δ_k for all sufficiently large k. Hence, for all sufficiently large k, eq. (10) reduces to

$$\delta_{k-1} \geq \delta_k \frac{3(1-\theta)}{2}. \tag{12}$$

It follows that $\delta_k \downarrow 0$ super-linearly as $\delta_k \leq \delta_k \frac{3(1-\theta)}{2}$. Since $\delta_k = r_k C_{1/k}^r$, we conclude that $r_k \downarrow 0$ super-linearly as $r_k \leq C_1 r_{k-1}^{3(1-\theta)}$ for some constant $C_1 > 0$. By letting k_0 be sufficiently large so that r_{k_0} is sufficiently small, we obtain that

$$r_k \leq C_1 r_{k-1}^{\frac{2}{3(1-\theta)}} \leq C_1^{k-k_0} r_{k_0}^{(\frac{3(1-\theta)}{2})^{k-k_0}} = \Theta \left(\exp \left(-\frac{2}{3(1-\theta)} k^{-k_0} \right) \right). \tag{13}$$

Case 3: $\theta = \frac{1}{2}$

In this case $\frac{3(1-\theta)}{2} = 1$, and eq. (9) reduces to $r_k \leq C(r_{k-1} - r_k)$, i.e., $r_k \downarrow 0$ linearly as $r_k \leq C_1 C_{1/k}^{r_{k-1}} r_{k-1}$ for some constant $C > 0$. Thus, we obtain that for all $k \geq k_0$

$$r_k \leq \Theta \left(\exp \left(-\frac{2}{3(1-\theta)} k^{-k_0} \right) \right).$$

Case 4: $\theta \in (0, \frac{1}{2})$

In this case, $1 < \frac{3(1-\theta)}{2} < 2$ and $-\frac{1}{2} < \frac{3\theta-1}{3(1-\theta)} < 0$. Since $\delta_k \downarrow 0$, we conclude that for all $k \geq k_0$

$$\delta_{k-1} \leq 2\delta_k \frac{3(1-\theta)}{2}. \tag{15}$$

Define an auxiliary function $\phi(t) := \int_{\delta_k}^{\delta_{k-1}} \theta(t) \, dt$ so that $\phi'(t) = -t^{\frac{3(1-\theta)}{2}}$. We next consider two cases. First, suppose that $\delta_k \frac{3(1-\theta)}{2} \leq 2\delta_{k-1} \frac{3(1-\theta)}{2}$. Then for all $k \geq k_0$

$$\phi(\delta_k) - \phi(\delta_{k-1}) = \int_{\delta_k}^{\delta_{k-1}} \phi'(t) \, dt = \int_{\delta_k}^{\delta_{k-1}} t^{-\frac{3(1-\theta)}{2}} \, dt \geq (\delta_{k-1} - \delta_k) \frac{3(1-\theta)}{2} \tag{16}$$

$$\geq \frac{1}{2} (\delta_{k-1} - \delta_k) \frac{3(1-\theta)}{2} \geq \frac{1}{2}, \tag{17}$$

where (i) utilizes the assumption and (ii) uses eq. (10).

Second, suppose that $\delta_k \frac{3(1-\theta)}{2} \geq 2\delta_{k-1} \frac{3(1-\theta)}{2}$. Then $\delta_k \frac{3(1-\theta)}{2} \geq 2\delta_{k-1} \frac{3(1-\theta)}{2} \delta_{k-1} \frac{3(1-\theta)}{2}$, which further leads to

$$\phi(\delta_k) - \phi(\delta_{k-1}) = \frac{2}{1 - 3\theta} (\delta_{k-1}^{\frac{3(1-\theta)}{2}} - \delta_k^{\frac{3(1-\theta)}{2}}) \geq \frac{2}{1 - 3\theta} (2 \delta_{k-1}^{\frac{3(1-\theta)}{2}} - 1) \delta_{k-1}^{\frac{3(1-\theta)}{2}} \tag{18}$$

$$\geq \frac{2}{1 - 3\theta} (2 \delta_{k-1}^{\frac{3(1-\theta)}{2}} - 1) \delta_{k-1}^{\frac{3(1-\theta)}{2}} \tag{19}.$$

Combining the above two cases and defining $C := \min \left\{ \frac{1}{2}, \frac{2}{1 - 3\theta} (2 \delta_{k-1}^{\frac{3(1-\theta)}{2}} - 1) \delta_{k-1}^{\frac{3(1-\theta)}{2}} \right\}$, we conclude that for all $k \geq k_0$

$$\phi(\delta_k) - \phi(\delta_{k-1}) \geq C, \tag{20}$$

which further implies that

$$\phi(\delta_k) \geq \sum_{i=0}^{k-1} \phi(\delta_i) - \phi(\delta_{i-1}) \geq C(k - k_0), \tag{21}$$

Substituting the form of ϕ into the above inequality and simplifying the expression yields $\delta_k \leq (C_3 - k_0 \frac{3(1-\theta)}{2})^{\frac{1}{3(1-\theta)}}$. It follows that $r_k \leq (C_3 - k_0 \frac{3(1-\theta)}{2})^{\frac{1}{3(1-\theta)}}$ for some $C_3 > 0$. \hfill \Box
Proof of Theorem 3

Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, the sequence \(\{x_k\}_{k} \) generated by CR satisfies

\[
\sum_{k=0}^{\infty} \|x_{k+1} - x_k\| < +\infty. \tag{4}
\]

Proof. Recall the definition that \(r_k := f(x_k) - \bar{f} \), where \(\bar{f} \) is the finite limit of \(\{f(x_k)\}_{k} \). Also, recall that \(k_0 \in \mathbb{N} \) is a sufficiently large integer. Then, for all \(k \geq k_0 \), the KL property implies that

\[
\varphi'(r_k) \geq \frac{1}{\|\nabla f(x_k)\|} \geq \frac{2}{(L + M)\|x_k - x_{k-1}\|^2},
\]

where the last inequality uses the dynamics of CR in Table I. Note that \(\varphi(t) = \frac{c}{\theta} t^\theta \) is concave for \(\theta \in (0, 1] \). Then, by concavity we obtain that

\[
\varphi(r_k) - \varphi(r_{k+1}) \geq \varphi'(r_k)(r_k - r_{k+1}) \geq \frac{M}{6(L + M)} \|x_{k+1} - x_k\|^3 \|x_k - x_{k-1}\|^2, \tag{23}
\]

where the last inequality uses eq. (22) and the dynamics of CR in Table I. Rearranging the above inequality, taking cubic root and summing over \(k = k_0, \ldots, n \) yield that (all constants are absorbed in \(C \))

\[
\sum_{k=k_0}^{n} \|x_{k+1} - x_k\| \leq C \sum_{k=k_0}^{n} \left(\varphi(r_k) - \varphi(r_{k+1}) \right)^{\frac{1}{3}} \|x_k - x_{k-1}\|^{\frac{2}{3}} \tag{24}
\]

\[
\leq C \left[\sum_{k=k_0}^{n} \left(\varphi(r_k) - \varphi(r_{k+1}) \right) \right]^{\frac{1}{3}} \left[\sum_{k=k_0}^{n} \|x_k - x_{k-1}\| \right]^{\frac{2}{3}} \tag{25}
\]

\[
\leq C \left[\varphi(r_{k_0}) \right]^{\frac{1}{3}} \left[\sum_{k=k_0}^{n} \|x_{k+1} - x_k\| \|x_k - x_{k-1}\| \right]^{\frac{2}{3}}, \tag{26}
\]

where (i) applies the Hölder's inequality and (ii) uses the fact that \(\varphi \geq 0 \). Clearly, we must have \(\lim_{n \to \infty} \sum_{k=k_0}^{n} \|x_{k+1} - x_k\| < +\infty \), because otherwise the above inequality cannot hold for all \(n \) sufficiently large. We then conclude that

\[
\sum_{k=k_0}^{\infty} \|x_{k+1} - x_k\| < +\infty,
\]

and the desired result follows because \(k_0 \) is a fixed number. \(\square \)

Proof of Theorem 4

Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{x_k\}_{k} \) generated by CR satisfies

1. If \(\theta = 1 \), then \(x_k \to \bar{x} \) within finite number of iterations;
2. If \(\theta \in (\frac{1}{3}, 1) \), then \(x_k \to \bar{x} \) super-linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta\left(\exp\left(-\left(\frac{2t^\theta}{3(1-\theta)}\right)^{k-k_0}\right)\right); \)
3. If \(\theta = \frac{1}{3} \), then \(x_k \to \bar{x} \) linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta\left(\exp\left(-\left(k-k_0\right)\right)\right); \)
4. If \(\theta \in \left(0, \frac{1}{3}\right) \), then \(x_k \to \bar{x} \) sub-linearly as \(\|x_{k+1} - \bar{x}\| \leq \Theta\left(\left(k-k_0\right)^{-\frac{2t^\theta}{3(1-\theta)}}\right). \)

Proof. We prove the theorem case by case.
Case 1: \(\theta = 1 \).

We have shown in case 1 of Theorem 2 that \(f(x_{k+1}) - f(x_k) = 0 \) for all \(k \geq k_0 \). Based on this observation, the dynamics of CR in Table I further implies that for all \(k \geq k_0 \)

\[
0 = f(x_{k+1}) - f(x_k) \leq -\frac{M}{12} \|x_{k+1} - x_k\|^3 \leq 0.
\]

(27)

Hence, we conclude that \(x_{k+1} = x_k \) for all \(k \geq k_0 \), i.e., \(x_k \) converges within finite number of iterations. Since Theorem 3 shows that \(x_k \) converges to some \(\bar{x} \), the desired conclusion follows.

Case 2: \(\theta \in \left(\frac{1}{2}, 1 \right) \).

Denote \(\Delta_k := \sum_{i=k}^{\infty} \|x_{i+1} - x_i\| \). Note that Theorem 3 shows that \(x_k \to \bar{x} \). Thus, we have \(\|x_k - \bar{x}\| \leq \Delta_k \). Next, we derive the convergence rate of \(\Delta_k \).

By Theorem 3, \(\lim_{n \to \infty} \sum_{i=k}^{n} \|x_{i+1} - x_i\| \) exists for all \(k \). Then, we can let \(n \to \infty \) in eq. (26) and obtain that for all \(k \geq k_0 \)

\[
\Delta_k \leq C(\varphi(r_k))^{\frac{k}{2}} \Delta_k^{\theta} \leq C_{1/2} \Delta_k \Delta_k^{\theta} \leq C(\Delta_k - \Delta_k) \exp \left(-\left(\frac{2\theta}{3(1-\theta)} + \frac{2}{3}\right)k\right).
\]

(28)

where \(C \) denotes a universal constant that may vary from line to line, and (i) uses the KL property and the dynamics of CR, i.e., \(r_k \leq C\|\nabla f(x_k)\|^{\frac{2}{1-\theta}} \leq C\|x_k - x_{k-1}\|^{\frac{2}{1-\theta}} \). Note that in this case we have \(\frac{2\theta}{3(1-\theta)} + \frac{2}{3} > 1 \), and hence the above inequality implies that \(\Delta_k \) converges to zero super-linearly as

\[
\Delta_k \leq C^{k-k_0} \Delta_k^{\left(\frac{2\theta}{3(1-\theta)} + \frac{2}{3}\right)k-k_0} = \Theta \left(\exp \left(-\left(\frac{2\theta}{3(1-\theta)} + \frac{2}{3}\right)k\right) \right).
\]

(29)

Since \(\|x_k - \bar{x}\| \leq \Delta_k \), it follows that \(\|x_k - \bar{x}\| \) converges to zero super-linearly as desired.

Cases 3 & 4.

We first derive another estimate on \(\Delta_k \) that generally holds for both cases 3 and 4, and then separately consider cases 3 and 4, respectively.

Fix \(\gamma \in (0, 1) \) and consider \(k \geq k_0 \). Suppose that \(\|x_{k+1} - x_k\| \geq \gamma \|x_k - x_{k-1}\| \), then eq. (23) can be rewritten as

\[
\|x_{k+1} - x_k\| \leq \frac{C}{\gamma^2} (\varphi(r_k) - \varphi(r_{k+1})).
\]

(30)

for some constant \(C > 0 \). Otherwise, we have \(\|x_{k+1} - x_k\| \leq \|x_k - x_{k-1}\| \). Combing these two inequalities yields that

\[
\|x_{k+1} - x_k\| \leq \gamma \|x_k - x_{k-1}\| + \frac{C}{\gamma^2} (\varphi(r_k) - \varphi(r_{k+1})).
\]

(31)

Summing the above inequality over \(k = k_0, \ldots, n \) yields that

\[
\sum_{k=k_0}^{n} \|x_{k+1} - x_k\| \leq \gamma \sum_{k=k_0}^{n} \|x_k - x_{k-1}\| + \frac{C}{\gamma^2} (\varphi(r_k) - \varphi(r_{n+1})).
\]

(32)

\[
\leq \gamma \left[\sum_{k=k_0}^{n} \|x_{k+1} - x_k\| + \|x_{k_0} - x_{k_0-1}\| \right] + \frac{C}{\gamma^2} \varphi(r_{k_0}).
\]

(33)

Rearranging the above inequality yields that

\[
\sum_{k=k_0}^{n} \|x_{k+1} - x_k\| \leq \frac{\gamma}{1-\gamma} \|x_{k_0} - x_{k_0-1}\| + \frac{C}{\gamma^2(1-\gamma)} \varphi(r_{k_0}).
\]

(34)
Recall $\Delta_k := \sum_{i=k}^{\infty} \|x_{i+1} - x_i\| < +\infty$. Letting $n \to \infty$ in the above inequality yields that for all sufficiently large k,

$$\Delta_k \leq \frac{\gamma}{1 - \gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2(1 - \gamma)^\theta} k^\theta$$

(35)

$$\leq \frac{\gamma}{1 - \gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2(1 - \gamma)^\theta} ||x_k - x_{k-1}||^{\frac{2\theta}{1 - \theta}}$$

(36)

$$\leq \frac{\gamma}{1 - \gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2(1 - \gamma)^\theta} (\Delta_{k-1} - \Delta_k)^{\frac{2\theta}{1 - \theta}}.$$

(37)

where (i) uses the KL property and the dynamics of CR, i.e., C.

Case 3: $\theta = \frac{1}{2}$. In this case, $\frac{2\theta}{1 - \theta} = 1$ and eq. (37) implies that $\Delta_k \leq C(\Delta_{k-1} - \Delta_k)$ for all sufficiently large k, i.e., Δ_k converges to zero linearly as $\Delta_k \leq (\frac{C}{1 + C})^{k - k_0} \Delta_{k_0}$. The desired result follows since $||x_k - \bar{x}|| \leq \Delta_k$.

Case 4: $\theta \in (0, \frac{1}{3})$. In this case, $0 < \frac{2\theta}{1 - \theta} < 1$ and eq. (37) can be asymptotically rewritten as $\Delta_k \leq \frac{C}{\gamma^2(1 - \gamma)^\theta} (\Delta_{k-1} - \Delta_k)^{\frac{2\theta}{1 - \theta}}$. This further implies that

$$\Delta_k^{\frac{1}{1 - \theta}} \leq C(\Delta_{k-1} - \Delta_k)$$

(38)

for some constant $C > 0$. Define $h(t) = t^{-\frac{1}{1 - \theta}}$ and fix $\beta > 1$. Suppose first that $h(\Delta_k) \leq \beta h(\Delta_{k-1})$. Then the above inequality implies that

$$1 \leq C \frac{\Delta_{k-1} - \Delta_k}{\Delta_k^{\frac{1}{1 - \theta}}} = C(\Delta_{k-1} - \Delta_k)h(\Delta_k) \leq C\beta(\Delta_{k-1} - \Delta_k)h(\Delta_{k-1})$$

(39)

$$\leq C\beta \int_{\Delta_k}^{\Delta_{k-1}} h(t)dt = C\beta \frac{2\theta}{3\theta - 1} (\Delta_{k-1}^{\frac{2\theta}{1 - \theta}} - \Delta_k^{\frac{2\theta}{1 - \theta}}).$$

(40)

Set $\mu := \frac{1 - 3\theta}{2\theta(1 - \theta)} > 0$, $\nu := \frac{3\theta - 1}{2\theta} < 0$. Then the above inequality can be rewritten as

$$\Delta_k^{\frac{1}{1 - \theta}} \geq \mu.$$

(41)

Now suppose $h(\Delta_k) > \beta h(\Delta_{k-1})$, which implies that $\Delta_k < q\Delta_{k-1}$ with $q = \beta^{-\frac{2\theta}{1 - \theta}} \in (0, 1)$. Then, we conclude that $\Delta_k^{\nu} \geq q^{\nu} \Delta_k^{\nu - 1}$ and hence $\Delta_k^{\nu} - \Delta_{k-1} \geq (q^{\nu} - 1)\Delta_k^{\nu - 1}$. Since $q^{\nu} - 1 > 0$ and $\Delta_k^{\nu - 1} \to +\infty$, there must exist $\bar{\mu} > 0$ such that $(q^{\nu} - 1)\Delta_k^{\nu - 1} \geq \bar{\mu}$ for all sufficiently large k. Thus, we conclude that $\Delta_k^{\nu} - \Delta_{k-1} \geq \bar{\mu}$. Combining two cases, we obtain that for all sufficiently large k,

$$\Delta_k^{\nu} - \Delta_{k-1}^{\nu} \geq \min\{\mu, \bar{\mu}\}.$$

(42)

Telescoping the above inequality over $k = k_0, \ldots, k$ yields that

$$\Delta_k \leq |\Delta_k^{\nu} + \min\{\mu, \bar{\mu}\}(k - k_0)|^{\frac{1}{\nu}} \leq \left(\frac{C}{k - k_0} \right)^{\frac{2\theta}{1 - \theta}},$$

(43)

where C is a certain positive constant. The desired result then follows from the fact that $||x_k - \bar{x}|| \leq \Delta_k$.

Proof of Proposition

Proposition 1. Denote Ω as the set of second-order stationary points of f. Let Assumption hold and assume that f satisfies the KL property. Then, there exist $\kappa, \varepsilon, \lambda > 0$ such that for all $x \in \{z \in \mathbb{R}^d : \text{dist}_\Omega(z) < \varepsilon, f_1 < f(z) < f_1 + \lambda\}$, the following property holds.

$$(\text{KL-error bound}) \quad \text{dist}_\Omega(x) \leq \kappa ||\nabla f(x)||^{\frac{1}{1 - \theta}}.$$

(8)
Proof. The proof idea follows from that in [Yue et al., 2018]. Consider any \(x \in \Omega \cap \{ x \in \mathbb{R}^d : \dist_{\Omega}(x) < \epsilon, f_{\Omega} < f(x) < f_{\Omega} + \lambda \} \), and consider the following differential equation
\[
 u(0) = x, \quad \dot{u}(t) = -\nabla f(u(t)), \quad \forall t > 0.
\] (44)

As \(\nabla f \) is continuously differentiable, it is Lipschitz on every compact set. Thus, by the Picard-Lindelöf theorem [Hartman, 2002, Theorem II.1.1], there exists \(\nu > 0 \) such that eq. (44) has a unique solution \(u_x(t) \) over the interval \([0, \nu] \). Define \(\Delta(t) := f(u_x(t)) - f_{\Omega} \). Note that \(\Delta(t) > 0 \) for \(t \in [0, \nu] \), as otherwise there exists \(t \in [0, \nu] \) such that \(u_x(t) \in \Omega \) and hence \(u_x \equiv u_x(t) \in \Omega \) is the unique solution to eq. (44). This contradicts the fact that \(u(0) \in \Omega' \).

Using eq. (44) and the chain rule, we obtain that for all \(t \in [0, \nu] \)
\[
 \dot{\Delta}(t) = \langle \nabla f(u_x(t)), \dot{u}_x(t) \rangle = -\| \nabla f(u_x(t)) \| \| \dot{u}_x(t) \|.
\] (45)

Applying the KL property in eq. 3 to the above equation yields that
\[
 \dot{\Delta}(t) \leq - \left(\frac{\Delta(t)}{C} \right)^{1-\theta} \| \dot{u}_x(t) \|
\] (46)

where \(C > 0 \) is a certain universal constant. Since \(\Delta(t) > 0 \), eq. (46) can be rewritten as
\[
 \| \dot{u}_x(t) \| \leq - \frac{C^{1-\theta}}{\theta} (\Delta(t)^\theta)^\prime.
\] (47)

Based on the above inequality, for any \(0 \leq a < b < \nu \) we obtain that
\[
 \| u_x(b) - u_x(a) \| = \left\| \int_a^b \dot{u}_x(t) dt \right\| \leq \int_a^b \| \dot{u}_x(t) \| dt
\]
\[
 \leq - \int_a^b \frac{C^{1-\theta}}{\theta} |\Delta(t)^\theta| dt = \frac{C^{1-\theta}}{\theta} |\Delta(a)^\theta - \Delta(b)^\theta|.
\] (48)

In particular, setting \(a = 0 \) in eq. (48) and noting that \(u_x(0) = x \), we further obtain that
\[
 \| u_x(b) - x \| \leq \frac{C^{1-\theta}}{\theta} (f(x) - f_{\Omega})^\theta.
\] (49)

Next, we show that \(\nu = +\infty \). Suppose \(\nu < +\infty \), then [Hartman, 2002, Corollary II.3.2] shows that \(\| u_x(t) \| \to +\infty \) as \(t \to \nu \). However, eq. (49) implies that
\[
 \| u_x(t) \| \leq \| x \| + \| u_x(t) - x \| \leq \| x \| + \frac{C^{1-\theta}}{\theta} (f(x) - f_{\Omega})^\theta < +\infty,
\]

which leads to a contradiction. Thus, \(\nu = +\infty \).

Since \(\dot{\Delta}(t) \leq 0, \Delta(t) \) is non-increasing. Hence, the nonnegative sequence \(\{ \Delta(t) \} \) has a limit. Then, eq. (48) further implies that \(\{ u_x(t) \} \) is a Cauchy sequence and hence has a limit \(u_x(\infty) \).

Suppose \(\nabla f(u_x(\infty)) \neq 0 \). Then we obtain that \(\lim_{t \to \infty} \Delta(t) = -\| \nabla f(u_x(\infty)) \|^2 < 0 \), which contradicts the fact that \(\lim_{t \to \infty} \Delta(t) \) exists. Thus, \(\nabla f(u_x(\infty)) = 0 \), and this further implies that \(u_x(\infty) \in \Omega, f(u_x(\infty)) = f_{\Omega} \) by the KL property in eq. 3. We then conclude that
\[
 \dist_{\Omega}(x) \leq \| x - u_x(\infty) \| = \lim_{t \to \infty} \| x - u_x(t) \| \leq \frac{C^{1-\theta}}{\theta} (f(x) - f_{\Omega})^\theta.
\] (50)

Combining the above inequality with the KL property in eq. 3, we obtain the desired KL error bound.

\[\Box\]

Proof of Proposition 2

Proposition 2. Denote \(\Omega \) as the set of second-order stationary points of \(f \). Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{ \dist_{\Omega}(x_k) \} \) generated by CR satisfies
1. If \(\theta = 1 \), then \(\text{dist}_{\Omega}(x_k) \to 0 \) within finite number of iterations;
2. If \(\theta \in (\frac{1}{2}, 1) \), then \(\text{dist}_{\Omega}(x_k) \to 0 \) super-linearly as \(\text{dist}_{\Omega}(x_k) \leq \Theta \left(\exp \left(- \frac{2\theta}{1-\theta} k - k_0 \right) \right) \);
3. If \(\theta = \frac{1}{2} \), then \(\text{dist}_{\Omega}(x_k) \to 0 \) linearly as \(\text{dist}_{\Omega}(x_k) \leq \Theta \left(\exp \left(- (k - k_0) \right) \right) \);
4. If \(\theta \in (0, \frac{1}{2}] \), then \(\text{dist}_{\Omega}(x_k) \to 0 \) sub-linearly as \(\text{dist}_{\Omega}(x_k) \leq \Theta \left((k - k_0)^{-\frac{2\theta}{1-\theta}} \right) \).

Proof. We prove the theorem case by case.

Case 1: \(\theta = 1 \).

We have proved in Theorem 4 that \(x_k \to \bar{x} \in \Omega \) within finite number of iterations. Since \(\text{dist}_{\Omega}(x_k) \leq \|x_k - \bar{x}\| \), we conclude that \(\text{dist}_{\Omega}(x_k) \) converges to zero within finite number of iterations.

Case 2: \(\theta \in (\frac{1}{3}, 1) \).

By the KL error bound in Proposition 1 we obtain that
\[
\text{dist}_{\Omega}(x_{k+1}) \leq C\|\nabla f(x_{k+1})\|^{\frac{\theta}{2}} \leq C\|x_{k+1} - x_k\|^{\frac{\theta}{2}},
\]
where the last inequality uses the dynamics of CR in Table 1. On the other hand, [Yue et al., 2018, Lemma 1] shows that
\[
\|x_{k+1} - x_k\| \leq C\text{dist}_{\Omega}(x_k).
\]
Combining eq. (51) and eq. (52) yields that
\[
\text{dist}_{\Omega}(x_{k+1}) \leq C\text{dist}_{\Omega}(x_k)^{\frac{\theta}{2}}.
\]
Note that in this case we have \(\frac{2\theta}{1-\theta} > 1 \). Thus, \(\text{dist}_{\Omega}(x_k) \) converges to zero super-linearly as desired.

Cases 3 & 4: \(\theta \in (0, \frac{1}{2}] \).

Note that \(\text{dist}_{\Omega}(x_k) \leq \|x_k - \bar{x}\| \). The desired results follow from Cases 3 & 4 in Theorem 4.

\(\square \)

Proof of Theorem 1

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KL property associated with parameter \(\theta \in (0, 1] \). Then, there exists a sufficiently large \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \) the sequence \(\{\mu(x_k)\}_{k} \) generated by CR satisfies
1. If \(\theta = 1 \), then \(\mu(x_k) \to 0 \) within finite number of iterations;
2. If \(\theta \in (\frac{1}{2}, 1) \), then \(\mu(x_k) \to 0 \) super-linearly as \(\mu(x_k) \leq \Theta \left(\exp \left(- \frac{2\theta}{1-\theta} k - k_0 \right) \right) \);
3. If \(\theta = \frac{1}{2} \), then \(\mu(x_k) \to 0 \) linearly as \(\mu(x_k) \leq \Theta \left(\exp \left(- (k - k_0) \right) \right) \);
4. If \(\theta \in (0, \frac{1}{2}) \), then \(\mu(x_k) \to 0 \) sub-linearly as \(\mu(x_k) \leq \Theta \left((k - k_0)^{-\frac{2\theta}{1-\theta}} \right) \).

Proof. By the dynamics of CR in Table 1 we obtain that
\[
\|\nabla f(x_{k+1})\| \leq \frac{L + M}{2}\|x_{k+1} - x_k\|^2, \quad (54)
\]
\[
-\lambda_{\min}(\nabla^2 f(x_{k+1})) \leq \frac{2L + M}{2}\|x_{k+1} - x_k\|. \quad (55)
\]
The above two inequalities imply that \(\mu(x_k) \leq \|x_{k+1} - x_k\| \). Also, [Yue et al., 2018, Lemma 1] shows that \(\|x_{k+1} - x_k\| \leq C\text{dist}_{\Omega}(x_k) \). Then, the desired convergence result for \(\mu(x_k) \) follows from Proposition 2.

\(\square \)