The Effect of Short–Term Nanocurcumin Supplementation on the Anthropometric Indices, Lipid Profile and C-Reactive Protein of Overweight Girls

Fatemeh Fakhri1, Somaye Fakhri1, *Saeed Shakeryan1, Aliakbar Alizadeh1

1. Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Objective

Studies have shown that the use of herbal medicines can be effective in prevention and treatment of obesity/overweight and its related disorders. The purpose of the present study was to investigate the effect of nanocurcumin supplementation on anthropometric characteristics, lipid profile and C-reactive Protein (CRP) in overweight girls.

Method

This is a quasi-experimental study with pretest/posttest design. The subjects were 24 overweight students with a mean age of 22.48±1.64 years and body mass index (BMI) of 27.53±3.29 kg/m². After receiving written consent from the subjects, they were randomly divided into two groups of supplement (n=12) and placebo (n=12). Supplement group consumed 80 mg nanocurcumin capsule daily for 6 weeks. Anthropometric indicators (weight, BMI and waist-to-hip ratio) were measured before and after the intervention and blood samples were collected to measure lipid profile parameters (low-density lipoprotein, total cholesterol, triglyceride, and high-density lipoprotein) and CRP level. Data were analyzed by dependent and independent t-tests. The significance level of the tests was set at P≤0.05.

Result

Nanocurcumin supplementation for 6 weeks did not significantly affect the anthropometric indicators, lipid profile parameters and CRP level (P>0.05).

Conclusion

It seems that the short-term nanocurcumin supplementation cannot significantly affect anthropometric characteristics, lipid profile, and CRP level in overweight girls. Therefore, long-term use and different doses of this supplement are recommended.

Extended Abstract

1. Introduction

Overweight and obesity are growing metabolic diseases [1]. Studies have shown that being overweight and obese is associated with impairment in serum lipids and lipoproteins, such as Low-Density Lipoprotein (LDL), Very Low-Density Lipoprotein (VLDL), Total Cholesterol (TC), Triglycerides (TG) and High-Density Lipoprotein (HDL) [4, 5] which are the risk factors for cardiovascular diseases. Obesity has also been shown to release pre-inflammatory cytokines such as IL-6 from adipose tissue. High serum IL-6 levels increase the hepatic synthesis of C-reactive protein (CRP) [6]. CRP has been shown to be a non-specific biomarker of inflammation, independent of other traditional risk factors, predicting cardiovascular diseases, especially in women, and has been shown that blood CRP levels in obese people are higher
than in normal weight people, and have a positive relationship with Body Mass Index (BMI) [7].

Recent evidence suggests that certain food components, such as spices, may play a key role in preventing or treating obesity and related metabolic disorders [6]. Curcumin, the active ingredient in turmeric, has low toxicity and has a wide range of pharmacological functions, including antioxidant, anti-inflammatory, antimicrobial and anti-cancer effects [8,9]. It has a positive effect on lipid profile by reducing inflammation, regulating cholesterol homeostasis, reducing LDL, lipid peroxidation, and increasing HDL [10,11].

However, studies such as Baum et al. have also shown that taking curcumin has no significant effect on serum cholesterol and TG concentrations [14]. Moreover, several studies have reported conflicting effects of curcumin on anthropometric indicators (body weight, BMI and waist-to-hip ratio). Some studies have shown a significant effect of curcumin consumption on body composition in addition to its anthropometric characteristics [15,16]. In contrast, some studies have not reported its any significant effect [17-19].

Since weight management strategies are important for improving the mental and physical health of obese and overweight people, and reviewing the previous studies showed that their findings are highly ambiguous, more research is needed. In this regard, this study aimed to investigate the effect of 6 weeks of nanocurcumin supplementation on lipid profile, CRP level and anthropometric characteristics of overweight girls.

2. Materials and Methods

This is a quasi-experimental study with pretest/posttest design. The subjects were 24 overweight students with a mean age of 22.48±1.64 years and BMI of 27.53±3.29 kg/m². After receiving written consent from the subjects, they were randomly divided into two groups of supplement (n=12) and placebo (n=12). Supplement group consumed 80 mg nano-curcumin capsule daily for 6 weeks, while placebo group received a capsule containing starch daily. Anthropometric indicators including body weight, BMI and Waist-To-Hip Ratio (WHR) were measured before and after the intervention and blood samples were collected to measure components of lipid profile (LDL, TC, TG, and HDL) and CRP level. Data were analyzed by dependent and independent t-tests. The significance level was set at P≤0.05.

3. Results

The statistical results related to anthropometric characteristics in pretest and posttest phases are presented in Table 1. No significant between-group and within-group differences were observed in terms of anthropometric characteristics as well as in lipid profile and CRP level (P>0.05) (Table 2).

| Variable     | Group     | Mean±SD  | P       |
|--------------|-----------|----------|---------|
|              |           | Pre-test | Post-test | Within-group | Between-group |
| Age (y)      | Supplement| 22.64±0.88 | - | - | - |
|              | Placebo   | 32.22±2.4 | - | - | - |
| Height (cm)  | Supplement| 25.16±1.04 | - | - | - |
|              | Placebo   | 157.66±1.45 | - | - | - |
| Weight (kg)  | Supplement| 7.1±2.9 | 70.12±3.15 | 0.17 | 0.26 |
|              | Placebo   | 67.93±4.48 | 67.93±5 | 1 | 1 |
| BMI (kg/m²)  | Supplement| 27.73±2.72 | 27±1.82 | 0.11 | 0.15 |
|              | Placebo   | 27.33±3.86 | 27.33±3.74 | 0.98 | 0.98 |
| WHR          | Supplement| 0.85±0.01 | 0.85±0.01 | 0.39 | 0.9 |
|              | Placebo   | 0.86±0.01 | 0.86±0.03 | 1 | 1 |
4. Discussion

The results of the present study showed that 6 weeks of nano-curcumin supplementation had no significant effect on lipid profile, CRP level, and anthropometric indicators (weight, BMI and WHR) in overweight girls. This is consistent with the results of Mohammadi et al. [17], but is against the results of Di Pierro et al. [22]. One of the reasons for this discrepancy is that although the subjects in both studies were overweight, the samples in Di Pierro et al.’s study had metabolic syndrome, and during the 30-day supplementation period and 30 days before it, there were interventions in the lifestyle of the subjects such as 500 kcal of calorie restriction per day and 210 minutes of physical activity per week, while in the present study, subjects had no caloric restriction and regular physical activity.

The exact mechanism by which curcumin may affect body weight and BMI is not yet known; however, it has been reported that curcumin regulates the Janus Kinase (JNK), which has been shown to play a key role in the pathogenesis of obesity [8, 25]. Curcumin may also inhibit the 11βHSD1 enzyme, which activates cortisol [26]. Higher concentrations of cortisol in fat cells cause central obesity [27]. Curcumin also reduces obesity by inhibiting fat differentiation in the early stages by suppressing the Peroxisome proliferator-activated receptor c (PPAR-c) and by increasing the protein kinase activated by monophosphate following lipolysis [26]. Moreover, previous studies have shown that curcumin supplementation may reduce energy expenditure [8, 28].

Other results from the present study showed improvements in lipid profile (decreased TC, TG, LDL and increased HDL) after 6 weeks of nanocurcumin supplementation, although these changes were not significant. This is consistent with the results of Sohaei et al. [30]. Studies have shown that curcumin prevents the formation of oxygen free radicals and is effective in reducing the progression and complications of inflammation and hyperlipidemia. Curcumin also inhibits the activity of Fatty Acid Synthase (FAS) and enhances the oxidation of β-fatty acids, thus leading to an effective reduction in fat reserves, and using this mechanism, curcumin can regulate lipid metabolism [35].

The present study showed an improvement in serum CRP levels after 6 weeks of nanocurcumin supplementation; however, the changes were not significant. This is consistent with the results of Sohaei et al. [30], but is against the results of Shadkam et al. [3], and Holt et al. [36]. The reasons for the inconsistency of the results are probably the duration of study, type and dose of curcumin supplementation. Concentrations, conditions, and cell types, as well as
the uptake and distribution of curcumin in tissues, are also important for its biological activity [35, 38].

5. Conclusion

The short-term use of nanocurcumin supplementation did not lead to significant changes in the anthropometric characteristics, lipid profile, and CRP level in overweight girls. Therefore, long-term use and different doses of this supplement are recommended.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of Shahid Chamran University of Ahvaz (Code: EE.96.24.3.85899.scu.ac.ir) and is a clinical trial registered by Iranian Registry of Clinical Trials (Code: IRCT2018092704150N1).

Funding

The present paper was extracted from the MSc thesis of the first author Fatemeh Fakhri, Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz.

Authors' contributions

Conceptualization, methodology and sampling: Fatemeh Fakhri; Data analysis: Fatemeh Fakhri and Somayyeh Fakhri; Writing and review: Fatemeh Fakhri, Saeid Shakeryan, and Ali Akbar Alizadeh; Supervision and project administration: Somayyeh Fakhri.

Conflicts of interest

The authors declare no conflict of interest.
This Page Intentionally Left Blank
اثر یک دوره کوتاهمدت مکمل‌دهی نانوکورکومین بر شاخص‌های آنتروپومتریک، نیمرخ لیپیدی و پروتئین‌ها و اکتشاف اثرات اضافه‌ای

فصل نخست

در پژوهش، تعدادی از نوجوانان به‌عنوان گروه تحقیق استفاده گردیدند. در این مطالعه، النامکمل‌دهی نانوکورکومین به مدت 6 هفته، روزانه یک کپسول مصرف شد. این کپسول شامل نانوکورکومین با قواعد تولید ساخته شده توسط شرکت علوم گیاهی (اصفهان) می‌باشد. نتنها سه گروه در این پژوهش شرکت کردند: گروه کنترل، گروه مکمل‌دهی نانوکورکومین و گروه کنترل دیگر.

نتیجه‌گیری

نتایج نشان دادند که مصرف نانوکورکومین باعث افزایش سنتز کبدی پروتئین و افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.

مقدمه

از افزایش افراد دارای اضافه وزن به عنوان یک عامل خطرزای بیماری‌های قلبی عروقی نمونه‌گیری شد. افزایش وزن و اضافه وزن باعث افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.

مقدمه

از افزایش افراد دارای اضافه وزن به عنوان یک عامل خطرزای بیماری‌های قلبی عروقی نمونه‌گیری شد. افزایش وزن و اضافه وزن باعث افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.

مقدمه

از افزایش افراد دارای اضافه وزن به عنوان یک عامل خطرزای بیماری‌های قلبی عروقی نمونه‌گیری شد. افزایش وزن و اضافه وزن باعث افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.

مقدمه

از افزایش افراد دارای اضافه وزن به عنوان یک عامل خطرزای بیماری‌های قلبی عروقی نمونه‌گیری شد. افزایش وزن و اضافه وزن باعث افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.

مقدمه

از افزایش افراد دارای اضافه وزن به عنوان یک عامل خطرزای بیماری‌های قلبی عروقی نمونه‌گیری شد. افزایش وزن و اضافه وزن باعث افزایش سطح CRP و افزایش وزن کبود شد. این نتایج با نتایج پژوهش‌های دیگر به یکسان است. بنابراین، مصرف مکمل نانوکورکومین به مدت 6 هفته می‌تواند برای کاهش وزن و افزایش سطح CRP و افزایش سطح پروتئین‌ها مفید باشد.
محققان طبق مکمل

شاخه‌ی خوشنویسی سالمندی، تعمیر و سازماندهی برنامه‌های مشترکی در پاسخگویی به موضوعاتی مطرح شده که نیازمند حل قرار گرفته‌اند، نسبت به شرایط محلی و مکانی که در آنها کار می‌شود، با در نظر گرفتن شاخص‌های آنتروپومتریک و نیم‌نخی لیپیدی و پروتئین واکنشگر، مطالعه‌ای بر شرایط فیزیکی و شایعات بدنی می‌باشند که نیازمند حل قرار گرفته‌اند. در این مطالعه، به‌منظور تعیین تأثیر استفاده از مکمل نانوکورکومین بر شاخص‌های آنتروپومتریک، نیم‌نخی لیپیدی و پروتئین واکنشگر، بر همکاران دانشگاه شهید چمران اهواز، مطالعه‌ای نیمه‌تجربی و اجرایی با طرح پیش‌آزمون در صورتی انجام گرفت که در آن نیز افراد مورد مطالعه شامل دانشجویان دختر و دانشجویان مرد دانشگاه شهید چمران اهواز بودند که از دو گروه کنترل و آزمایش در نظر گرفته شدند. همچنین به‌منظور تعیین تأثیر این مکمل بر شاخص‌های آنتروپومتریک، نیم‌نخی لیپیدی و پروتئین واکنشگر، با استفاده از شاخص‌های آنتروپومتریک (قد و وزن و شاخص توده اضافی)، به‌منظور تعیین تأثیر مصرف این مکمل بر شاخص‌های آنتروپومتریک، نیم‌نخی لیپیدی و پروتئین واکنشگر، با استفاده از شاخص‌های آنتروپومتریک (قد و وزن و شاخص توده اضافی) مورد بررسی قرار گرفت. در این مطالعه، به‌منظور تعیین تأثیر مصرف این مکمل بر شاخص‌های آنتروپومتریک، نیم‌نخی لیپیدی و پروتئین واکنشگر، با استفاده از شاخص‌های آنتروپومتریک (قد و وزن و شاخص توده اضافی) مورد بررسی قرار گرفت.
نتایج آماری مربوط به تغییرات آنتروپومتریک و ترکیب دهن در پیش و پس از مصرف نانوکورکومین نشان داد که این تغییرات مانند تغییرات واردات میزان قلب و عصبی در زنان، هفته دارد، اما این تغییرات بین دو گروه (میلی گرم در روز) و دارونما کاهش توده بدنی در افراد دارای کبد چرب غیرالکلی به طور معنی‌داری واردات میزان قلب و عصبی در زنان و مردان و دارونما وجود نداشت. همچنین آنهالو ژن‌هایی نشان داد که در تحقیق حاضر مصرف مکمل کورکومین و شیمی‌های رابطه‌ای میزان قلب و عصبی، به طور معنی‌داری کاهش یافته است. در زنان مصرف مکمل کورکومین هزار میلی گرم در روز در یک دوره سه ماهه تحقیق بود، در حالی که میزان قلب و عصبی روز قبل از آزمون، نهایتاً به مدت ۳۰ روز بعد از آزمون، میزان قلب و عصبی در دو گروه مکمل و دارونما وجود نداشت.

پژوهش
نتایج پژوهش حاضر نشان داد که سطح فشار خون در افراد دارای کبد چرب غیرالکلی به طور معنی‌داری کاهش یافته است. این تغییرات بین دو گروه مکمل و دارونما میانگین BMI (کیلوگرم بر مترمربع) معنایی که در هر دو گروه (میلی گرم در روز) و دارونما وجود نداشت. همچنین آنهالو ژن‌هایی نشان داد که در تحقیق حاضر مصرف مکمل کورکومین و شیمی‌های رابطه‌ای میزان قلب و عصبی، به طور معنی‌داری کاهش یافته است. در زنان مصرف مکمل کورکومین هزار میلی گرم در روز در یک دوره سه ماهه تحقیق بود، در حالی که میزان قلب و عصبی روز قبل از آزمون، نهایتاً به مدت ۳۰ روز بعد از آزمون، میزان قلب و عصبی در دو گروه مکمل و دارونما وجود نداشت.

جدول ۱. خاصیت‌های تن سنجی و آنتروپومتریک نانوکورکومین‌های عصبی (به‌عنوان فرمول‌های میلی‌گرمی) در دو گروه مکمل و دارونما

| شاخص | مکمل | دارونما |
|-------|------|--------|
| BMI (کیلوگرم بر مترمربع) | 28.74 | 28.81 |
| WHR (مانگیا) | 0.8 | 0.9 |

نتایج آماری مربوط به تغییرات آنتروپومتریک و ترکیب دهن در پیش و پس از مصرف نانوکورکومین نشان داد که این تغییرات مانند تغییرات واردات میزان قلب و عصبی در زنان، هفته دارد، اما این تغییرات بین دو گروه (میلی گرم در روز) و دارونما کاهش توده بدنی در افراد دارای کبد چرب غیرالکلی به طور معنی‌داری واردات میزان قلب و عصبی در زنان و مردان و دارونما وجود نداشت. همچنین آنهالو ژن‌هایی نشان داد که در تحقیق حاضر مصرف مکمل کورکومین و شیمی‌های رابطه‌ای میزان قلب و عصبی، به طور معنی‌داری کاهش یافته است. در زنان مصرف مکمل کورکومین هزار میلی گرم در روز در یک دوره سه ماهه تحقیق بود، در حالی که میزان قلب و عصبی روز قبل از آزمون، نهایتاً به مدت ۳۰ روز بعد از آزمون، میزان قلب و عصبی در دو گروه مکمل و دارونما وجود نداشت.
کاهش وزن و شاخص BMI تأثیر معنی‌داری نداشت که مصرف یک دوره شش هفته‌ای مکمل کورکومین بر از گلوکز و اکسیداسیون اسیدهای چرب شود که به نوبه خود، می‌تواند باعث افزایش استفاده انرژی را تعدیل کند. از طرف دیگر، تولید بیش از حد هورمون آدیپونکتین را افزایش دهد، از این طریق اشتها و هومئوستاز دادند که مصرف کورکومین می‌تواند لپتین را کاهش و سطح با تأثیر آن بر هورمون‌ها ارتباط دارد. مطالعات قبلی هم‌سود بود. هم‌راستا با نتایج تحقیق به سندرم تخمدان پلی‌کیستیک مورد بررسی قرار گرفتند. هرچند که این از دیگر نتایج تحقیق حاضر بوام و همکاران نیز نشان داد که مصرف شش ماه مکمل CRP بین گروهی (CRP) و دختران دارای اضافه وزن نداشت.

راه‌حل‌های طبی مکمل‌های کورکومین بر شاخص‌های BMI، PPAR-α، PPAR-γ و PPAR-δ، که مکمل CRP بین گروهی (CRP) و دختران دارای اضافه وزن نداشت.
کورکومین در نیمرخ لیپیدی افراد سالمند تغییرات معنی‌داری ایجاد نمی‌کند. همچنین یک مطالعه سیستمیک و متفاوت‌گرایی تغییر معنی‌داری از اثر مصرف مکمل کورکومین بر سطوح نیمرخ لیپیدی مشاهده نشد [31].

با این حال برخی تحقیقات تأثیرات مکمل کورکومین را بر نیمرخ لیپیدی گزارش کرده‌اند. یک مطالعه سیستمیک و کورکومین یافتند [32] که هیچ تغییر معنی‌داری از تأثیر مصرف مکمل کورکومین بر سطوح نیمرخ لیپیدی مشاهده نکردند [33]. همچنین مصرف روزانه یک گرم زردچوبه منجر به کاهش معنی‌دار سطح پلی گلیسرید را در افراد چاق گزارش داد، در حالی که برخی تحقیقات تأثیرات مکمل کورکومین را بر سطوح نیمرخ لیپیدی گزارش کرده‌اند [34].

در پژوهشی دیگر تبریزی و همکاران نشان دادند مصرف مکمل کورکومین منجر به کاهش معنی‌دار تری گلیسیرید و کلسترول تام، ولی بر سطوح سایر اجزای نیمرخ لیپیدی تغییری مشاهده نشد. همچنین کورکومین مانع از تشکیل رادیکال‌های آزاد می‌شود و اثرات آنتی‌اکسیدانی آن ممکن است در کاهش پیشرفت و عوارض التهاب و هایپرلیپیدمی مؤثر باشد. همچنین کورکومین را مهار می‌کند و باعث تقویت FAS (فعالیت اسیدهای چرب سنتاز) تولید اسیدهای چرب می‌شود؛ در نتیجه می‌تواند منجر به کاهش مؤثر ذخایر چربی شود و با استفاده از این مکانیسم، کورکومین می‌تواند متابولیسم لیپیدها را تنظیم کند.

CRP از دیگر نتایج تحقیق حاضر می‌توان به بهبود سطوح CRP پس از شش هفته مصرف مکمل نانوکورکومین اشاره کرد، با این حال تغییرات معنی‌دار نبود که با تحقیق سهایی و همکاران که نشان دادند [35]، موش‌های CRP ناهمسوست. همچنین موش‌های کورکومین را نشان دادند [36] که کورکومین می‌تواند متابولیسم لیپیدها را تنظیم کند.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این طرح با کوده‌پذیری تحت شرایط اخلاقی کنونی انجام گرفته و کد اخلاقی کلینیک و کد بالینی IRCT20180927041150N1 ثبت شده است.

از کمبود‌ها و محدودیت‌های پژوهش

از کمبود‌ها و محدودیت‌های پژوهش

پیش‌بینی انتشار تحقیق حاضر

پیش‌بینی انتشار تحقیق حاضر

با توجه به اینکه هر کشور چهار دسته تصویبی که گروهی از گروه‌های شناخته شده، این مقاله حاصل طرح تحقیقاتی است که در دانشگاه شهید چمران اهواز به تصویب رسیده است و کلیه هزینه‌ها را معاونت پژوهشی دانشگاه شهید چمران اهواز تأمین کرده است.

مشارکت نویسندگان

مشارکت نویسندگان

مفهوم سازی، روش‌نامه و نمونه‌گیری: سمیه فخری؛ تحلیل داده‌ها: فاطمه فخری و سمیه فخری؛ نگارش متن و بازبینی: فاطمه فخری و سمیه فخری.

مشارکت‌کنندگان

مشارکت‌کنندگان

مهوشسرای، روش پژوهش و نمونه‌گیری: سمیه فخری، شناخته شده دوره یک‌ساله و کلیه پژوهشی را ملاحظه کرده است.

عملکرد منافع

عملکرد منافع

توضیح مطالعه

توضیح مطالعه

موارد کلینیک

مواد کلینیک

موارد کلینیک

در مقاله ضامن اطلاعات می‌دارند هنگام تارم نظرات منطقی در مقاله.
References

[1] Panzhinsky E, Bashir R, Bagchi D, Nair S. Effect of curcumin and α-lipoic acid in attenuating weight gain and adiposity. Journal of the American College of Nutrition. 2019; 38(6):493-8. [DOI:10.1080/07315724.2018.1557572] [PMID]

[2] Lira FS, Yamashita AS, Uchida MC, Zanchi NE, Gualano B, Martins Jr E, et al. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetes & Metabolic Syndrome. 2010; 2:31. [DOI:10.1186/1758-5996-2-31] [PMID] [PMCID]

[3] Shadkam T, Nazarali P, Bijeh N. The effect of aerobic exercises combined with curcuma longa supplementation on cardiovascular inflammatory indexes and body composition in sedentary women (Persian). Journal of Sport Biosciences. 2016; 8(2):193-206. [DOI:10.22059/jsb.2016.59095]

[4] Kheirandish R, Ranjbar R, Veisi A. The response of Irisin serum and insulin resistance to acute Pilates training sessions Pilates training in obese sedentary women (Persian). Journal of Fasa University of Medical Sciences. 2018; 9(4):1056-67. http://journal.fums.ac.ir/article-1-1634-en.html

[5] Gotto JR AM. High-density lipoprotein cholesterol and triglycerides as therapeutic targets for preventing and treating coronary artery disease. American Heart Journal. 2002; 144(6 Suppl):S33-542. [DOI:10.1067/ ahr.2002.143001] [PMID]

[6] Alapatt L, Awad AB. Curcumin and obesity: Evidence and mechanisms. Nutrition Reviews. 2010; 68(12):729-38. [DOI:10.1111/j.1753-4887.2010.00341.x] [PMID]

[7] Atashak S. The effect of eight weeks of Pilates training on C-reactive protein, insulin resistance, and body composition in middle-aged obese women (Persian). Journal of Rafsanjan University of Medical Sciences. 2018; 17(5):421-34. http://journal.rums.ac.ir/article-1-3997-en.html

[8] Mousavi SM, Milajerdi AR, Kord Varkaneh H, Gorjipour MM, Esmaillza H, Alappat L, Awad AB. Curcumin and obesity: Evidence and mechanisms of curcumin: A short review. Life Sciences. 2006; 78(18):2081-7.

[9] Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: A short review. Life Sciences. 2006; 78(18):2081-7. [DOI:10.1016/j.lfs.2005.12.007] [PMID]

[10] El-Wakf AM, El-Habibi ESM, Mogalli A. Curcumin acts as cardio-protective agent in improving chronic kidney disease. Avicenna Journal of Phytomedicine. 2016; 6(5):497-500. [PMID] [PMCID]

[11] Kapakos G, Youreva V, Srivastava AK. Cardiovascular protection by curcumin: Molecular aspects. Indian Journal of Biochemistry & Biophysics. 2012; 49(5):306-15. [PMID]

[12] Adab Z, Eghtesad Sh, Vafa MR, Heydari L, Shojaei A, Haqqani H, et al. Effect of turmeric on body measurement indices, glycemic condition, and lipid profile in hyperlipidemic patients with type 2 diabetes. Iranian Journal of Nutrition Sciences & Food Technology. 2013; 8(3):217-27. http://nsft.dbu.ac.ir/article-1-1440-en.html

[13] Akazawa N, Choi Y, Miyaki A, Tanabe Y, Sugawara J, Ajioka A, et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutrition Research. 2012; 32(10):795-9. [DOI:10.1016/j.nutres.2012.09.002] [PMID]

[14] Baum L, Cheung SKK, Mok VCT, Lam LCW, Leung VPY, Hui E, et al. Curcumin effects on blood lipid profile in a 6-month human study. Pharmacological Research. 2007; 56(5):509-14. [DOI:10.1016/j.phrs.2007.09.013] [PMID]

[15] Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous Kh, Ghayour Mobarhan M, et al. The effect of Nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna Journal of Phytomedicine. 2016; 6(5):567-77. [PMID] [PMCID]

[16] Panahi Y, Khaliil N, Sahibi E, Namazi S, Saberi Karimian M, Majeed M, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology. 2017; 25(1):25-31. [DOI:10.1007/s10787-016-0301-4] [PMID]

[17] Mohammadi A, Sahebkar AH, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial. Phytotherapy Research. 2013; 27(3):374-9. [DOI:10.1002/ptr.4715] [PMID]

[18] Yang YS, Yu YF, Yang HW, Lee YH, Chou JJ, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Phytotherapy Research. 2014; 28(12):1770-7. [DOI:10.1002/ptr.5197] [PMID]

[19] Campbell MS, Berrones AJ, Krishnakumar IM, Charnigo RJ, Westgate PM, Fleenor BS. Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness. Journal of Functional Foods. 2017; 29:154-60. [DOI:10.1016/j.jff.2016.12.013] [PMID]

[20] Amirkhani Z, Azarbajayani MA, Matin Homaei H, Peerli M. Effect of combining resistance training and curcumin supplementation on liver enzyme in inactive obese and overweight females. Iranian Journal of Diabeties and Obesity. 2016; 8(3):107-14. http://jido.ssu.ac.ir/article-1-305-en.html

[21] Mohammadi A, Sadeghnia HR, Saberi-Karimian M, Safarian H, Ferns GA, Ghayour-Mobarhan M, et al. Effects of curcumin on serum vitamin E concentrations in individuals with metabolic syndrome. Phytotherapy Research. 2017; 31(4):657-62. [DOI:10.1002/ptr.5779] [PMID]

[22] Di Pierro F, Bressan A, Ranaldi D, Rapaccioli G, Giacomelli L, Bertuccioi A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. European Review for Medical and Pharmacological Sciences. 2015; 19(21):4195-202. [PMID]

[23] Saadat S, Hatami B, Yari Z, Shahrbafl MA, Eghtesad S, Mansour A, et al. The effects of curcumin supplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patients with non-alcoholic fatty liver disease. European Journal of Clinical Nutrition. 2019; 73(3):441-9. [DOI:10.1038/s41430-018-0382-9] [PMID]

[24] Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist: Hip ratio as predictors of cardiovascular risk-a review of the literature. European Journal of Clinical Nutrition. 2010; 64(1):16-22. [DOI:10.1038/ejcn.2009.68] [PMID]

[25] Wang SL, Li Y, Wen Y, Chen YF, Na LX, Li ST, et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomedical and Environmental Sciences. 2009; 22(1):32-9. [DOI:10.1016/S0895-9062(09)60019-2] [PMID]

[26] Hu GX, Lin H, Lian QQ, Zhou SH, Guo J, Zhou HY, et al. Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 1: Improving lipid profiles in high-fat-diet-treated rats. PLoS One. 2013; 8(3):e59976. [DOI:10.1371/journal.pone.0049976] [PMID] [PMCID]
[27] Kumari M, Chandola T, Brunner E, Kivimaki M. A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. The Journal of Clinical Endocrinology & Metabolism. 2010; 95(9):4415-23. [DOI:10.1210/jc.2009-2105] [PMID] [PMCID]

[28] Bradford PG. Curcumin and obesity. BioFactors. 2013; 39(1):78-87. [DOI:10.1002/biof.1074] [PMID]

[29] Jafarirad S, Mansoori A, Adineh A, Panahi Y, Hadi A, Goodarzi R. Does turmeric/curcumin supplementation change anthropometric indices in patients with non-alcoholic fatty liver disease? A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition Research. 2019; 8(3):196-208. [DOI:10.7762/cnrr.2019.8.3.196] [PMID] [PMCID]

[30] Sohail S, Amani R, Tarahi MJ, Ghasemi-Tehrani H. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine. 2019; 47:102201. [DOI:10.1016/j.ctim.2019.102201] [PMID]

[31] Kocher A, Bohnert L, Schiborr C, Frank J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Molecular Nutrition & Food Research. 2016; 60(7):1555-63. [DOI:10.1002/mnfr.201501034] [PMID]

[32] Ramírez-Boscá A, Soler A, Carrón MA, Díaz-Alper J, Bernd A, Quintanilla C, et al. An hydroalcoholic extract of Curcuma longa lowers the apo B/apo A ratio: implications for atherogenesis prevention. Mechanisms of Ageing and Development. 2000; 119(1-2):41-7. [DOI:10.1016/S0047-6374(00)00169-X]

[33] Tabrizi R, Vakili S, Lankarani KB, Akbari M, Mirhosseini N, Ghayour-Mobarhan M, et al. The effects of curcumin on glycemic control and lipid profiles among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Current Pharmaceutical Design. 2018; 24(27):3184-99. [DOI:10.2174/1381612824666180228162053] [PMID]

[34] Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. BioFactors. 2013; 39(1):101-21. [DOI:10.1002/biof.1072] [PMID]

[35] Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: A pilot study. Digestive Diseases and Sciences. 2005; 50(11):2191-3. [DOI:10.1007/s10620-005-3032-8] [PMID]

[36] Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Alternative Medicine Review. 2009; 14(2):141-53. [PMID]

[37] Sahebkar AH. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clinical Nutrition. 2014; 33(3):406-14. [DOI:10.1016/j.clnu.2013.09.012] [PMID]

[38] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics. 2007; 4(6):807-18. [DOI:10.1021/mp700113r] [PMID]