Cardiorespiratory Fitness and Insulin Sensitivity in Overweight or Obese Subjects May Be Linked Through Intrahepatic Lipid Content

Sven Haufe,1 Stefan Engeli,2 Petra Budziarek,1 Wolfgang Utz,3 Jeanette Schulz-Menger,3 Mario Hermosdorf,1 Susanne Wiesner,1 Christoph Otto,1 Verena Haas,1 Armin de Greiff,4 Friedrich C. Luft,1 Michael Boschmann,1 and Jens Jordan2

OBJECTIVE—Low cardiorespiratory fitness (CRF) predisposes one to cardiovascular disease and type 2 diabetes in part independently of body weight. Given the close relationship between intrahepatic lipid content (IHL) and insulin sensitivity, we hypothesized that the direct relationship between fitness and insulin sensitivity may be explained by IHL.

RESEARCH DESIGN AND METHODS—We included 138 overweight to obese, otherwise healthy subjects (aged 43.6 ± 8.9 years, BMI 33.8 ± 4 kg/m²). Body composition was estimated by bioimpedance analyses. Abdominal fat distribution, intramyocellular, and IHL were assessed by magnetic resonance spectroscopy and tomography. Incremental exercise testing was performed to estimate an individual’s CRF. Insulin sensitivity was determined during an oral glucose tolerance test.

RESULTS—For all subjects, CRF was related to insulin sensitivity ($r = 0.32$, $P < 0.05$), IHL ($r = -0.27$, $P < 0.05$), and visceral ($r = -0.25$, $P < 0.05$) and total fat mass ($r = -0.32$, $P < 0.05$), but not to intramyocellular lipids ($r = -0.08$, NS). Insulin sensitivity correlated significantly with all fat deposits. In multivariate regression analyses, independent predictors of insulin sensitivity were IHL, visceral fat, and fitness ($r^2 = -0.43$, $P < 0.01$, $r^2 = -0.34$, and $r^2 = 0.29$, $P < 0.05$, respectively). However, the positive correlation between fitness and insulin sensitivity was abolished after adjustment for IHL ($r = 0.16$, NS), whereas it remained significant when adjusted for visceral or total body fat. Further, when subjects were grouped into high versus low IHL, insulin sensitivity was higher in those subjects with low IHL, irrespective of fitness levels.

CONCLUSIONS—Our study suggests that the positive effect of increased CRF on insulin sensitivity in overweight to obese subjects may be mediated indirectly through IHL reduction. Diabetes 59:1640–1647, 2010

Low cardiorespiratory fitness (CRF) predisposes one to metabolic disease and increases cardiovascular morbidity and mortality in women and men (1–3). Insulin resistance, an early event in the pathogenesis of both type 2 diabetes and cardiovascular disease, is more pronounced in people with reduced CRF (4). CRF is also reduced in type 2 diabetic patients compared with healthy subjects (5). Insulin resistance is more prevalent in individuals with excess body fat than in normal-weight people (6,7). Yet, fit individuals have lower rates of cardiometabolic diseases than their unfit counterparts, regardless of total body fat (3,8). Thus, “fitness” and “fatness” affect metabolic and cardiovascular risk in part independently. The mechanisms mediating the adiposity-independent effect of CRF on metabolic disease are not fully understood. Direct influences on peripheral insulin sensitivity through improved muscular oxidative metabolism (9) and fat redistribution may be involved. The latter mechanism may be important because visceral adipose tissue (VAT) accumulation and increased muscular and hepatic intracellular fat deposition contribute to insulin resistance (10–13). However, intrahepatic lipid accumulation (IHL) appears to be particularly important in this regard (14,15). Furthermore, hepatic fat accumulation increases circulating triglyceride-rich lipoproteins (16,17). Hypertriglyceridemia is common in obesity and responds to physical exercise (18). Although IHL is intimately related to insulin resistance and dyslipidemia, previous studies on the interaction between CRF and metabolism did not assess intrahepatic fat. We applied magnetic resonance spectroscopy to test the hypothesis that in obesity the beneficial effect of CRF on metabolism is related to intrahepatic fat. Given the strong sex effect on metabolic and cardiovascular regulation (19–21), we analyzed women and men separately.

RESEARCH DESIGN AND METHODS

We investigated 138 overweight/obese but otherwise healthy volunteers (107 women and 31 men) in our study. All subjects completed a comprehensive medical evaluation including a dietary record for 7 consecutive days before study participation. Volunteers reported <2 h of physical activity per week and were not taking medications that could affect metabolism or liver function. Subjects consuming >20 g/day of alcohol, with diagnosis of type 2 diabetes, with acute or chronic infections, with any diseases that required treatment, or with known drug abuse were excluded. Our institutional review board approved the study, and written informed consent was obtained before entry. Volunteers were advised to continue their current physical activity level and lifestyle throughout the study.

Volunteers visited the laboratory on 2 separate days for anthropometric, metabolic, and cardiovascular evaluations and exercise testing. After a 10- to
12 h overnight fast, we measured body weight, height, and waist circumference in a standardized fashion. After a resting period of at least 5 min in the seated position, we determined blood pressure and heart rate with an automated blood pressure cuff (Dinamap; Critikon, Tampa, FL). During an oral glucose load (75 g glucose/500 ml), we obtained blood samples at baseline and 15, 30, 45, 60, 90, and 120 min after glucose ingestion and measurements of insulin and insulin. We assessed lean body mass and fat mass by bioimpedance analysis (BIA 5 series; Denner, Feldmeilen, Switzerland). Glucose, insulin, and blood lipids were measured by standard laboratory procedures in a certified clinical chemistry laboratory. During the second visit, we quantified visceral and subcutaneous abdominal fat mass and IHL and intramyocellular lipid (IMCL) content by magnetic resonance tomography and spectroscopy. CRF was determined during an exhaustive incremental exercise test on a cycle ergometer. We estimated nutrition including the kind and amount of alcohol consumption using standardized protocols over a 7-day period. On the basis of these records, we estimated the average amount of alcohol consumption in grams per day.

Magnetic resonance imaging and spectroscopy. Abdominal fat imaging and fat spectroscopy of the lower leg musculature were performed on a 1.5-tesla magnetic resonance scanner (Magnetom Avanto and Sonata; Siemens Medical Solutions, Erlangen, Germany). An axial T1-weighted and water-suppressed gradient echo technique (TR 80, TE 6.11, FA 80, FOV 500 mm) was applied for abdominal imaging. During repetitive breath-holds, consecutive datasets were acquired, covering the abdomen from the diaphragm to the symphysis. Respiratory and heart motion artifacts were removed, and abdominal fat mass and IHL were calculated by semiautomated image segmentation software that employs a contour-following algorithm (Vitom, University Duisburg-Essen, Germany). Total abdominal adipose tissue was calculated as the sum of VAT and SAT. IHL was assessed by 1H magnetic resonance spectroscopy of a single voxel located in segment 7 of the liver (TR 7,000, TE 30, voxel size 30 × 30 × 20 mm, number of averages 24, acquisition during repetitive breath-holds). A fat-to-water ratio was calculated after postprocessing of the spectra including a standard line-fitting procedure and integration of the hepatic triglycerides from 0.5 to 2.8 ppm. The unit of measurement is the ratio of the signal from fat (F) to total signal from fat (F) and water (W) ([F]/[F + W]). Furthermore, IMCL content was quantified by 1H single-voxel spectroscopy of the tibialis anterior muscle. High-resolution T1-weighted spin-echo images of the calf allowed identification of an appropriate voxel position in the tibialis anterior, thereby minimizing spectral contamination from extramyocellular lipids from adipose tissue attached to the muscular fasciae. A spin-echo single-voxel spectroscopy sequence (TR 3,000, TE 30, voxel size 11 × 11 × 20 mm, number of averages 64) with frequency-selective water suppression was applied. After baseline and constant phase correction, a standard line-fitting procedure using prior knowledge about the resonance peaks was performed for quantification. IMCL values were calculated as the area under the curve of the IMCL methylene line normalized to the creatine–CH₃ signal and corrected for differences in T1 and T2, resulting in a dimensionless value.

Incremental exercise test. Subjects underwent a stepwise incremental exercise test on a bicycle ergometer (Viasprint 150P; Ergoline, Bitz, Germany) until volitional exhaustion. Exercise was performed in a temperature-controlled room (21–22°C) 2 h after a standardized breakfast (containing ~520 kcal: 24% fat, 68% carbohydrate, and 8% protein). Alcohol and caffeine were not permitted 48 h before the exercise test. After 3 min in the seated position, resting measurements were recorded. Exercise was then started at a workload of 25 W. Workload was increased every 2 min by 25 W until the subjects could not maintain the requested 60 rpm pedal frequency. We monitored gas exchange continuously during the test to assess oxygen uptake and power output. Using an open spirometric system (Vmax Spectra model 229D analyzer; SensorMedics, Yorba Linda, CA), the time course of oxygen uptake and carbon dioxide production was recorded breath-by-breath and averaged in 10-s intervals. Heart rate was recorded by an electrocardiogram (GE Medical Systems, Waukesha, WI) throughout the exercise test. We assumed that subjects had reached maximal oxygen uptake (VO₂max) when at least two of the following criteria were met: I) respiratory exchange ratio > 1.10, 2) VO₂ leveling off despite increase in power output, and 3) heart rate within 10 beats × min⁻¹ of the predicted maximum heart rate. To consider the individual differences in body weight, oxygen uptake was expressed as kilogram of body weight (VO₂: ml·min⁻¹·kg⁻¹).

Biochemical measurements and calculations. Glucose (millimoles per liter), insulin (micromolars per milliliter), and alanine aminotransferase (units per liter) were determined by standard methods in a certified clinical chemistry laboratory. Serum hs-CRP levels were determined by enzyme-linked immunosorbent assay with the following characteristics: hs-CRP (RD61CRP01HR; BioVendor, Heidelberg, Germany), intra-assay coefficient of variation 3.8% and interassay coefficient of variation 5.2%; adiponectin (47-ADPHU-E01; ALPCO Immunoassays, Salem, NH), intra-assay coefficient of variation between 5.1 and 9.8% for the different interassay coefficient of variation between 4.8 and 6.5%; fetuin-A (RD101037100; BioVend), intra-assay coefficient of variation 4.9% and interassay coefficient of variation 5.7%; and RBPP4 (AG-45A-0911EK-K101; Adipogen, Seoul, Korea), intraassay coefficient of variation 3.9% and interassay coefficient of variation 8.1%.

Statistical analysis. Data were first tested for normal distribution and variance homogeneity with Kolmogorov-Smirnov test and the Levene test, respectively. Pearson correlation coefficients were used to determine the relationship between CRF and insulin sensitivity. Partial correlations were used to control for total body fat mass, VAT, SAT, and intrahepatic lipid content. To specify the effect of CRF on insulin sensitivity, anthropometric and metabolic risk marker subjects were categorized into CRF tertiles (VO₂max). Then a one-way ANOVA was performed to examine differences in subject characteristics across fitness levels. When the ANOVA result was significant, a Tukey post hoc comparison test was used to identify specific differences between CRF tertiles and insulin sensitivity. Partial correlations were used to control for total body fat mass, IHL, and intramyocellular lipid content. To further analyze influence of fat redistribution, we subgrouped subjects among CRF tertiles on the basis of sex-specific VAT levels (<29.2 or ≥29.2 kg for men and <1.5 or ≥1.5 kg for women), IHL content (<7.4 or ≥7.4 kg for men and <4.0 or ≥4.0 kg for women), and total body fat mass (<29.8 or ≥29.8 kg for men and <33.6 or ≥33.6 kg for women). Finally, a stepwise multivariate regression analysis was performed to identify predictors of insulin sensitivity. All statistical analyses were performed with SPSS 16 (SPSS, Chicago, IL). Significance was accepted at P < 0.05. Values are given as means ± SD.

RESULTS

Of 213 screened subjects, 172 subjects met the inclusion criteria of our study. Fourteen women and 2 men smoked regularly between 5 and 20 cigarettes per day. Nineteen women and 2 men did not meet the criteria for valid VO₂max estimation. MR studies were unsuccessful in 11 subjects due to claustrophobia (n = 7), equipment failure (n = 1), and waist circumference exceeding the magnetic resonance scanner limits (n = 1), and poor magnetic resonance image quality (n = 2). Two subjects dropped out for personal reasons. Anthropometric and metabolic characteristics of the remaining 138 overweight and obese women and men, classified into CRF tertiles, are given in Table 1. VO₂max was 25.4 ± 4.1 ml/min/kg in men and 21.1 ± 3.5 ml/min/kg in women (P < 0.05). Furthermore, VAT mass and IHL content were greater in men (VAT 3.49 ± 1.06 vs. 1.63 ± 0.79 kg, P < 0.01; IHL 11.63 ± 4.7 vs. 7.9 ± 3.06, P < 0.05), whereas insulin sensitivity was lower than in women (C- ISI 4.8 ± 2.7 vs. 6.1 ± 2.4, P < 0.05; HOMA 2.1 ± 1.1 vs. 1.6 ± 1.2, P = 0.69). Alanine aminotransferase was higher in men (21.7 ± 8.1 vs. 36.1 ± 12.2 units/l, P > 0.05). Average alcohol consumption was 6.6 ± 4.8 g/day in women and 9.5 ± 5.2 g/day in men.

Table 2 shows Pearson correlation coefficients between CRF and selected cardiometabolic risk markers for women and for men before and after adjustment for either VAT or IHL. CRF correlated significantly negatively with BMI, percent body fat, systolic blood pressure, subcutaneous fat mass, and total abdominal fat mass. Diastolic blood pressure correlated significantly negatively to CRF in
TABLE 1
Anthropometric and metabolic characteristics of subjects classified into tertiles based on CRF

Variable	Women	Men				
	Low tertile	Middle tertile	High tertile	Low tertile	Middle tertile	High tertile
	n	107	31	n	107	31
\(V_{2\text{max}} \) (ml/min/kg)	15.6 ± 2.5	20.7 ± 1.3*	26.3 ± 2.9†	18.8 ± 1.5	25.4 ± 1.7*	30.8 ± 2.7†
Age (years)	45.7 ± 8.1	42.9 ± 9.6	42.1 ± 9.1	47.8 ± 6.4	43.9 ± 10.1	45.1 ± 9.2
BMI (kg/m²)	34.7 ± 4.1	34.1 ± 3.8	31.2 ± 3.6†	38.3 ± 4.8	36.1 ± 3.6	32.9 ± 4.7*
Body fat mass (%)	38.7 ± 3.6	37.9 ± 5	32.5 ± 5.9†	34.8 ± 5.3	27.1 ± 9.1	26.9 ± 7.1*
Systolic blood pressure (mm/Hg)	127.9 ± 11.7	122.2 ± 12.1	116.5 ± 9.9*	139.2 ± 13.8	129.6 ± 8.1	132.6 ± 8.1
Diastolic blood pressure (mm/Hg)	75.7 ± 6.3	71.9 ± 6.4	69.4 ± 5.3*	79.4 ± 10.5	74.1 ± 8.3	75.2 ± 9.9
Cholesterol (mmol/l)	4.98 ± 0.71	5.08 ± 0.87	4.38 ± 0.63†	4.98 ± 0.71	5.08 ± 0.87	4.38 ± 0.63†
LDL	1.39 ± 0.31	1.45 ± 0.65	1.44 ± 0.75	1.06 ± 0.31	1.19 ± 0.12	1.29 ± 0.34
Triglycerides	3.18 ± 0.69	2.93 ± 0.73	2.83 ± 0.78	3.25 ± 0.71	3.06 ± 0.64	2.61 ± 0.61
Adipose tissue mass (kg)	1.18 ± 0.41	1.11 ± 0.55	1.09 ± 0.51	1.45 ± 0.64	1.51 ± 0.77	1.02 ± 0.29
Total cholesterol (mmol/l)	8.6 ± 4.4	8.9 ± 8.3	6.9 ± 5.3	10.9 ± 3.8	10.1 ± 4.7	7.2 ± 1.6†
AUC glucose (mmol/l × min)	1.048 ± 180	1.010 ± 176	1.011 ± 146	1.151 ± 96	1.042 ± 154	0.985 ± 160
AUC insulin (µU/ml × min)	6.781 ± 2.410	6.541 ± 3.290	6.097 ± 2.565	12.305 ± 6.102	6.386 ± 3.221*	6.477 ± 4.150*
HOMA (insulin resistance)	1.51 ± 0.6	1.49 ± 1.14	1.26 ± 0.71	4.32 ± 2.91	2.03 ± 0.53	1.47 ± 1.28*
C-ISI	5.79 ± 2.1	5.98 ± 1.99	6.95 ± 3.41	2.45 ± 1.16	4.78 ± 2.41	6.98 ± 2.96*

Data are means ± SD. CRF is given as maximum oxygen uptake \((V_{2\text{max}}) \) expressed per kg body wt. \((\text{ml} \times \text{min}^{-1} \times \text{kg}^{-1}) \). *Significantly different from low tertile. †Significantly different from middle tertile.

For all subjects, alanine aminotransferase was related to BMI \((r = 0.27, P < 0.01) \), IHL \((r = 0.47, P < 0.001) \), VAT \((r = 0.36, P < 0.01) \), fetuin-A \((r = 0.20, P < 0.05) \), and C-ISI \((r = -0.32, P < 0.001) \) and tended to do so for CRF \((r = -0.17, P = 0.076) \). Critical serum parameters (fetuin-A, adiponectin, hs-CRP, and RBP4) and their relation to adiposity and fat distribution are given in Table 4. Insulin sensitivity was positively related to total \((r = 0.36, P < 0.01) \) and high-molecular-weight adiponectin \((r = 0.37, P < 0.01) \) and negatively related to fetuin-A \((r = -0.19, P < 0.05) \) and hs-CRP \((r = -0.20, P < 0.05) \) but not to RBP4 \((r = 0.04) \). \(V_{2\text{max}} \) showed a correlation to hs-CRP

TABLE 2
Pearson correlation coefficients (r values) between CRF with anthropometric and metabolic variables before and after adjustment with either VAT and IHL

Variables	Women	Men				
	Unadjusted	Adjusted for VAT	Adjusted for IHL	Unadjusted	Adjusted for VAT	Adjusted for IHL
C-ISI	0.18†	0.09	0.01	0.51*	0.37*	0.19
HOMA	-0.17*	-0.10	-0.03	-0.54*	-0.32*	-0.18
BMI (kg/m²)	-0.34*	-0.17	-0.28	-0.36*	-0.34*	-0.18
Body fat (%)	-0.37*	-0.29*	-0.35*	-0.37*	-0.47*	-0.52*
Systolic blood pressure (mm/Hg)	-0.35**	-0.32*	-0.39*	-0.36*	-0.23	-0.11
Diastolic blood pressure (mm/Hg)	-0.28*	-0.28*	-0.36*	-0.14	-0.09	-0.10
Cholesterol (mmol/l)	-0.11	-0.14	-0.15	-0.21	-0.08	0.04
LDL	0.09	0.05	0.06	0.12	0.05	0.05
Triglycerides	-0.08	-0.07	-0.08	-0.22	-0.06	0.07
Adipose tissue mass (kg)	-0.11	-0.07	-0.01	-0.20	-0.14	0.08
Total abdominal	-0.33*	-0.15	-0.27	-0.45*	-0.47*	-0.40*
Visceral	-0.22†	-0.23*	-0.27†	-0.47*	-0.52**	-0.42**
Subcutaneous	-0.29*	-0.15	-0.26	-0.19	-0.17	-0.18
IMCL	-0.09	0.02	0.04	-0.43*	-0.44*	-0.44*

†P < 0.10 and >0.05; *P < 0.05; **P < 0.01.
(r = −0.23, P < 0.05) but not to fetuin-A, adiponectin multimers, or RBP4. Alcohol consumption (inclusion criteria 20 g/day) showed no significant relation to IHL content (r = −0.05) or measures of liver function (alanine aminotransferase r = 0.12).

In partial correlation analysis for both sexes, we observed that the direct, sex-independent relationship between CRF and insulin sensitivity (r = 0.32, P < 0.05) was abolished after controlling for IHL (r = 0.14, NS), shown in Fig. 1, whereas for the adjustment of percent body fat (r = 0.28, P < 0.01), VAT (r = 0.25, P < 0.05), and SAT (r = 0.29, P < 0.01), the correlation between CRF and insulin

TABLE 3
Multivariate regression analyses with insulin sensitivity as dependent variable

Independent variable	Women	Men							
	β-Coefficient	P value	Model r²	Model	β-Coefficient	P value	Model r²	Model	
Model 1									
VAT	−0.38	<0.05	0.33	0.04	−0.34	<0.05	0.39	0.02	
IHL	−0.41	<0.01			−0.48	<0.01			
CRF	0.15	0.08			0.45	<0.01			
Model 2									
% body fat	0.14	0.11	0.36	0.02	−0.23	0.11	0.41	<0.01	
VAT	−0.34	<0.05			−0.36	<0.05			
IHL	−0.38	<0.01			−0.43	<0.01			
CRF	0.14	0.09			0.44	<0.01			
Model 3									
% body fat	−0.13	0.11	0.38	0.02	−0.22	0.13	0.42	<0.01	
VAT	−0.31	<0.05			−0.33	<0.05			
SAT	−0.14	0.26			−0.18	0.19			
IHL	−0.38	<0.01			−0.43	<0.01			
CRF	0.15	0.07			0.42	<0.01			
Model 4									
BMI	−0.09	0.37	0.41	<0.01	0.12	0.65	0.44	<0.01	
% body fat	−0.17	0.09			−0.23	0.10			
VAT	−0.31	<0.05			−0.33	<0.05			
SAT	−0.13	0.24			−0.15	0.20			
IHL	−0.42	<0.01			−0.46	<0.01			
CRF	0.23	0.05			0.43	<0.01			
Model 5									
Age	−0.04	0.63	0.41	<0.01	0.01	0.73	0.45	<0.01	
BMI	−0.07	0.38			−0.09	0.64			
% body fat	−0.16	0.09			−0.29	0.12			
VAT	−0.36	<0.01			−0.31	<0.05			
SAT	−0.11	0.27			−0.11	0.37			
Triglycerides	−0.08	0.38			−0.12	0.21			
IHL	−0.41	<0.01			−0.46	<0.01			
CRF	0.21	<0.05			0.37	<0.01			

CRF is given as maximum oxygen uptake (VO₂max) expressed per kg body wt. (ml × min⁻¹ × kg⁻¹).

FIG. 1. Correlation between C-ISI and VO₂max before (A: r = 0.32, P < 0.05) and after adjustment for intrahepatic lipid content (B: r = 0.14, NS); ■, women; O, men. *P < 0.05; †P < 0.1 and >0.05.
HEPATIC FAT, FITNESS, AND INSULIN SENSITIVITY

sensitivity was attenuated but remained significant. Adjustment for alanine aminotransferase \((r = 0.19, \text{NS}) \) and hs-CRP \((r = 0.17, \text{NS}) \) also abolished the direct correlation between CRF and insulin sensitivity.

Figure 2 presents C-ISI values in women and in men classified into sex-specific tertiles of CRF and then further subdivided into groups with high versus low VAT mass, IHL content, and body fat mass based on the sex-specific median for each measurement. For VAT levels, there was a significant difference in the lowest and moderate CRF tertile, with lower insulin sensitivity among subjects with high levels of VAT. However, in the high CRF tertile, there was no difference between the high versus low VAT subgroup. We observed a similar pattern between subgroups classified on the basis of total body fat mass. Whereas in the low and moderate CRF tertiles insulin sensitivity was lower among men and women in the subgroup with high body fat, there was no influence of body fat on the relationship between CRF and insulin sensitivity in the highest fitness tertile. The influence of VAT and body fat on insulin sensitivity across fitness levels was unchanged when we excluded men from the analysis. However, in subjects with high IHL content, insulin sensitivity was lower compared with that in subjects with low IHL content, irrespective of fitness level. The relationship remained significant when men were excluded from the analysis \((P < 0.05) \).

The correlation of insulin sensitivity with percent body fat, VAT and SAT mass, and IHL content were similar between men and women (% body fat: women \(r = -0.19, \text{NS}, \text{men } r = -0.16, \text{NS}; \text{VAT: women } r = -0.46, P < 0.05, \text{men } r = -0.51, P < 0.05; \text{SAT: women } r = -0.21, \text{NS}, \text{men } r = -0.25, \text{NS}; \text{IHL: women } r = -0.44, P < 0.01, \text{men } r = -0.58, P < 0.01) \), whereas a correlation between C-ISI and IMCL was observed in women only \((r = -0.20, P < 0.05) \).

To assess determinants of insulin sensitivity in more detail, we conducted a multivariate regression analysis with insulin sensitivity as the dependent variable. In women, the significant direct correlation for insulin sensitivity with visceral fat mass and IHL persisted even after inclusion of age, BMI, percent body fat, subcutaneous fat mass, triglycerides, and \(V_{O2\text{max}} \) as covariables (Table 3). Also, \(V_{O2\text{max}} \) (CRF) became a weak but significant predictive variable. The model that included age, BMI, percent body fat, visceral and subcutaneous fat mass, triglycerides, IHL, and \(V_{O2\text{max}} \) as independent variables explained 41% of the variation in insulin sensitivity. In men, multivariate regression with the same variables included (Table 3) revealed IHL, visceral fat mass, and \(V_{O2\text{max}} \) as significant predictors of insulin sensitivity and explained 45% of the variation in insulin sensitivity. When men and women were analyzed together, IHL \((r^2 = -0.43, P < 0.01) \), VAT \((r^2 = -0.34, P < 0.01) \), and CRF \((r^2 = 0.29, P < 0.05) \) were observed as independent predictors of insulin sensitivity. IHL, VAT, and CRF explained 33 and 39% of the variation in insulin sensitivity in women and men, respectively (Table 3, model 1). When we excluded IHL from the multivariate regression model 5 (Table 3), the predictive power of CRF on insulin sensitivity was stronger, both in women \((r = 0.21, P < 0.05 \text{ to } r = 0.34, P < 0.01) \) and in men \((r = 0.37, P < 0.01 \text{ to } r = 0.43, P < 0.001) \).

DISCUSSION

The novel finding of our study is that the positive relationship between CRF and insulin sensitivity in overweight and obese subjects was no longer present after controlling for intrahepatic fat content. In contrast, the relationship between CRF and insulin sensitivity was largely unaffected after adjustment for total body, abdominal subcutaneous, abdominal visceral, and intramyocellular fat. Thus, our study suggests that the positive effect of increased CRF in overweight on insulin sensitivity to obese subjects may be mediated indirectly through IHL reduction. Moreover, high CRF is “protective” in patients with excessive visceral fat but does not negate the metabolic effect of increased IHL.

We obtained multislice whole-abdomen images providing an accurate estimate of visceral and subcutaneous fat.
In previous studies, abdominal fat area was measured from a single-slice computed tomography scan at the level of the fourth or fifth vertebra (8,10,11,24,25) or the umbilicus (26). Moreover, we measured both IHL and IMCL in the same subjects. Thus, we were able to assess the individual contribution of fat distribution and organ fat on glucose metabolism in obese subjects.

Increased intrahepatic and intramyocellular lipids are associated with hyperinsulinemia, impaired glucose tolerance, and hepatic insulin resistance in diabetic and non-diabetic subjects (9,13,14). Recent studies reported that intrahepatic fat has a stronger impact on insulin sensitivity than VAT (27–29). Furthermore, the detrimental influence of intrahepatic lipid accumulation on metabolic function appears to be independent of VAT mass (27). In stepwise regression analysis, IHL content was a stronger predictor of insulin sensitivity than visceral fat mass or IMCL content, independent of sex, age, or BMI, underscoring the central role of the liver in the pathogenesis of obesity-associated metabolic disease. Furthermore, the finding suggests IHL as a prime candidate for explaining the relationship between CRF and glucose metabolism.

In our study, individuals with high CRF were more insulin sensitive than less fit individuals. Similarly, previous studies identified low CRF as a strong and independent predictor of incident metabolic syndrome. Moderate to high CRF lowered the risk of all-cause and cardiovascular mortality independent of BMI (1,2,30). These studies focused on VAT accumulation when evaluating the relationship between CRF levels and metabolic risk markers. Some investigators observed an influence of VAT on the association of CRF with metabolic risk (10,25). We and others failed to show such a relationship (8). Differences in adiposity and sex distribution among studies could contribute to the discrepancy. Men in the latter study were older, and the prevalence of obesity was higher than that for men in the study byArsenault et al. (10). Only one study quantified VAT in overweight and obese women to assess mechanistic links between CRF and metabolism (25). Yet, obese women are prone to develop metabolic disease (20,31). Given the discrepancy among studies, we suggest that VAT may not be the crucial factor linking CRF and metabolism.

The positive relationship between CRF and insulin sensitivity in our study was no longer significant after controlling for intrahepatic fat content or alanine aminotransferase, as an indicator of liver function (32). This finding suggests that the relationship between insulin sensitivity and CRF in overweight to obese subjects is mediated by IHL content rather than total body, abdominal, or intramyocellular fat accumulation. Moreover, in subjects in the highest CRF tertile, insulin sensitivity was unaffected by VAT mass or total body fat. In contrast, insulin sensitivity was consistently impaired in subjects with increased IHL regardless of physical fitness. Therefore, the beneficial effect of high CRF on insulin sensitivity appears to be limited to individuals with low intrahepatic fat content.

Potential mechanisms linking CRF and IHL include factors regulating hepatic lipid oxidation (33–36). Substrate oxidation is tightly coupled to mitochondrial oxidative capacity (37,38). Mitochondria occupy ~18% of the liver cell volume (39). Mitochondrial function, a strong determinant of fitness, (40) could conceivably affect hepatic lipid oxidation. In fact, variation in the genes encoding peroxisome proliferator–activated receptor (PPAR) δ, PPAR coactivator 1α, and PPARy affects mitochondrial function, responsiveness to physical training (33), and liver fat content (41). Very recent experiments in rats showed that low aerobic fitness causes reduced hepatic mitochondrial oxidative capacity, which increased susceptibility to hepatic steatosis and liver injury (42). Plasma biomarker analysis revealed that hs-CRP could also contribute, at least partly, to the observed association between CRF, insulin sensitivity, and IHL accumulation. hs-CRP is elevated in liver disease and predicts the incidence of type 2 diabetes in humans (43,44). Our findings underscore the importance of IHL in obesity-associated insulin resistance and type 2 diabetes (12,45).

The strength of the relationship between fat distribution, CRF, and insulin sensitivity differs between men and women. The sex difference may be explained in part by relatively low CRF (46) and IHL content in our women.

In conclusion, our study suggests mechanisms through which CRF improves cardiovascular and metabolic risk factors independently of body weight. The interaction between CRF and insulin sensitivity seems to be mediated by hepatic lipid content rather than the amount of total, visceral, subcutaneous, or intramyocellular fat. Regular physical activity improves whole-body and abdominal fat mass as well as IHL accumulation and insulin sensitivity (47–49). Physical fitness noticeably improves metabolic risk and contributes independently to metabolic health even without body fat reduction (8,47,50). Optimization of nutritional, exercise, and pharmacological interventions such that lipid mobilization from the liver is maximized may be particularly beneficial in terms of metabolic risk.
reduction. Our study provides a strong impetus to test this hypothesis in prospective studies.

ACKNOWLEDGMENTS

This study was part of a joint project between metanomics (Berlin, Germany) and Charité University Medical School that was supported by the Federal Ministry of Education and Research (BMBF-0313868) and in part by the Commission of the European Communities (Collaborative Project ADAPT, contract HEALTH-F2-2008-201100) and the German Obesity Network of Competence (Collaborative Project ADIPOSETARGET, 01 G0830 to S.E., and J.J.). No potential conflicts of interest relevant to this article were reported.

We thank Gritt Stoffels, Anke Strauss, and Elke Nickel-Szczecc for expert technical help with patient recruitment and study procedures. Furthermore, we thank Andreas Busjahn for statistical advice.

REFERENCES

1. Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996;276:205–210
2. Katmarzyk PT, Church TS, Blair SN. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med 2004;164:1092–1097
3. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 1999;130:89–96
4. Gerson LS, Braun B. Effect of high cardiorespiratory fitness and high body fat on insulin resistance. Med Sci Sports Exerc 2006;38:1700–1715
5. Eriksson KF, Lindgärde F. Poor physical fitness, and impaired early insulin response but late hyperinsulinaemia, as predictors of NIDDM in middle-aged Swedish men. Diabetologia 1996;39:573–579
6. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415–1428
7. Farrell SW, Braun L, Barlow CE, Cheng YJ, Blair SN. The relation of body mass index, cardiometabolic risk, and all-cause mortality in women. Obes Res 2002;10:417–423
8. Lee S, Kuk JL, Katmarzyk PT, Blair SN, Church TS, Ross R. Cardiorespiratory fitness attenuates metabolic risk independent of abdominal subcutaneous and visceral fat in men. Diabetes Care 2005;28:895–901
9. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307:384–387
10. Arsenault BJ, Lachance D, Lemieux I, Alméras N, Tremblay A, Bouchard C, Chagnon YA, Vézina J, Prud’homme S, Mathieu C, Després JP. Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increased future insulin resistance in Japanese Americans. Diabetes 2008;57:1295–1279
11. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese women. JAMA 1996;276:1090–1096
12. Messier S, Malita FM, Rabasa-Lhoret R, Brochu M, Karelis AD. Association of cardiorespiratory fitness with insulin sensitivity in overweight and obese postmenopausal women: a Montreal Ottawa New Emerging Team study. Metabolism 2008;57:1233–1238
13. Yatsahi T, Boyko EJ, McNeely DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with defects in insulin suppression of glucose production in vivo. J Clin Endocrinol Metab 2008;93:2122–2128
14. Bonadonna RC. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2009;94:1218–1223
15. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462–1470
16. Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, Bonadonna RC. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2009;94:1218–1223
17. Hayashi T, Boyko EJ, McNeely DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with defects in insulin suppression of glucose production in vivo. JAMA 1996;276:1090–1096
18. Yatsahi T, Boyko EJ, McNeely DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with defects in insulin suppression of glucose production in vivo. JAMA 1996;276:1090–1096
19. Boschmann M, Jordan J, Schmidt S, Adams F, Luft FC, Koenig W, Herder C. Sex differences in the prediction of type 2 diabetes by inflammatory markers: results from the MONICA/KORA Augsburg case-cohort study. 1994–2002. Diabetes Care 2007;30:854–860
20. Vistisen B, Hellgren LI, Vaittens T, Scheede-Bergdahl C, Holge JW, Delf A, Stallknecht B. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol 2008;158:61–88
21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
22. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462–1470
23. Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, Bonadonna RC. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2009;94:1218–1223
24. Messier S, Malita FM, Rabasa-Lhoret R, Brochu M, Karelis AD. Association of cardiorespiratory fitness with insulin sensitivity in overweight and obese postmenopausal women: a Montreal Ottawa New Emerging Team study. Metabolism 2008;57:1233–1238
25. Hayashi T, Boyko EJ, McNeely DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with defects in insulin suppression of glucose production in vivo. JAMA 1996;276:1090–1096
26. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462–1470
27. Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, Bonadonna RC. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2009;94:1218–1223
28. Messier S, Malita FM, Rabasa-Lhoret R, Brochu M, Karelis AD. Association of cardiorespiratory fitness with insulin sensitivity in overweight and obese postmenopausal women: a Montreal Ottawa New Emerging Team study. Metabolism 2008;57:1233–1238
29. Hayashi T, Boyko EJ, McNeely DL, Kahn SE, Fujimoto WY. Visceral adiposity, not abdominal subcutaneous fat area, is associated with defects in insulin suppression of glucose production in vivo. JAMA 1996;276:1090–1096
30. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462–1470
31. Maffeis C, Manfredi R, Trombetta M, Sordelli S, Storti M, Benuzzi T, Bonadonna RC. Insulin sensitivity is correlated with subcutaneous but not visceral body fat in overweight and obese prepubertal children. J Clin Endocrinol Metab 2009;94:1218–1223
41. Thamer C, Machann J, Stefan N, Schäfer SA, Machicaco F, Staiger H, Laakso M, Böttcher M, Clausen C, Schick F, Fritsche A, Haring HU. Variations in PPARD determine the change in body composition during lifestyle intervention: a whole-body magnetic resonance study. J Clin Endocrinol Metab 2008;93:1497–1500
42. Thyfault JP, Rector RS, Upptergrove GM, Borengasser SJ, Morris EM, Wei Y, Laye MJ, Burant CF, Qi NR, Ridehour SE, Koch LG, Britton SL, Ibdah JA. Eats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J Physiol 2009;587:1805–1816
43. Bertoni AG, Burke GL, Owusu JA, Carnethon MR, Vaidya D, Barr RG, Jenny NS, Ouyang P, Rotter JI. Inflammation and the incidence of type 2 diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2010;33:804–810
44. Yoneda M, Mawatari H, Fujita K, Iida H, Yonenitsu K, Kato S, Takahashi H, Kirikoshi H, Inamori M, Nozaki Y, Abe Y, Kubota K, Saito I, Iwasaki T, Terasuchi Y, Togo S, Maeyama S, Nakajima A. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol 2008;42:573–582
45. Koska J, Stefan N, Permana PA, Weyer C, Sonoda M, Bogardus C, Smith SR, Joannis DE, Funahashi T, Krakoff J, Bunt JC. Increased fat accumulation in liver may link insulin resistance with subcutaneous abdominal adipocyte enlargement, visceral adiposity, and hypoadiponectinemia in obese individuals. Am J Clin Nutr 2008;87:295–302
46. Kantartzis K, Thamer C, Peter A, Machann J, Schick F, Schraml J, Königsrainer A, Königsrainer I, Krober S, Niess A, Fritsche A, Haring HU, Stefan N. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 2009;58:1281–1288
47. Balkau B, Mhamdi L, Oppert JM, Nolan J, Golay A, Porcellati F, Laakso M, Ferrannini E. RISC-RB Study Group. Physical activity and insulin sensitivity: the RISC study. Diabetes 2008;57:2613–2618
48. McTernan P, Sorensen B, Irwin ML, Morgan A, Yasui Y, Rudolph RE, Surawicz C, Lampe JW, Lampe PD, Ayub K, Potter JD. Exercise effect on weight and body fat in men and women. Obesity 2007;15:1490–1512
49. Holt HB, Wild SH, Wareham N, Ekelund U, Umpleby M, Shojaee-Moradie F, Ferrannini E, EGIR-RISC Study Group. Physical activity and insulin sensitivity: the RISC study. Diabetes 2008;57:2613–2618
50. Krotkiewski M, Lönnroth P, Mandroukas K, Wroblewski Z, Rebuffé-Scrive M, Holm G, Smith U, Bjorntorp P. The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1985;28:881–890