ZEROS OF PARTIAL SUMS OF THE DEDEKIND ZETA FUNCTION OF A CYCLOTOMIC FIELD

ANDREW LEDOAN, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Abstract. In this article, we study the zeros of the partial sums of the Dedekind zeta function of a cyclotomic field K defined by the truncated Dirichlet series

$$\zeta_{K,X}(s) = \sum_{\|a\| \leq X} \frac{1}{\|a\|^s},$$

where the sum is to be taken over nonzero integral ideals a of K and $\|a\|$ denotes the absolute norm of a. Specifically, we establish the zero-free regions for $\zeta_{K,X}(s)$ and estimate the number of zeros of $\zeta_{K,X}(s)$ up to height T.

1. Introduction and statement of results

A first generalization of the Riemann zeta-function $\zeta(s)$ is provided by the Dirichlet L-functions. Subsequently, Dedekind studied the zeta function $\zeta_K(s)$ of an arbitrary algebraic number field K, defined for $\text{Re}(s) > 1$ by

$$\zeta_K(s) = \sum_a \frac{1}{\|a\|^s} = \sum_{n=1}^{\infty} \frac{a(n)}{n^s},$$

where the first sum is to be taken over all nonzero integral ideals a of K and where $\|a\|$ denotes the absolute norm of a. In the second sum, $a(n)$ is used to denote the number of integral ideals a with norm $\|a\| = n$.

As in the particular case $K = \mathbb{Q}$, where $\zeta(s) = \zeta_{\mathbb{Q}}(s)$, the function $\zeta_K(s)$ is analytic everywhere except solely for a simple pole at $s = 1$. (See Davenport [4] and Neukrich [12].) The residue of this pole is given by the analytic class number formula

$$\text{Res}_{s=1} \zeta_K(s) = \frac{2^r \pi^{n_0 - r} R_K h_K}{w_K \sqrt{|d_K|}},$$

where $r = r_1 + r_2$ (with r_1 being the number of real embeddings and r_2 being the number of complex conjugate pairs of complex embeddings of K), $n_0 = [K : \mathbb{Q}]$ denotes the degree of K/\mathbb{Q}, R_K denotes the regulator, h_K denotes the class number, w_K denotes the number of roots of unity in K, and d_K denotes the discriminant of K. (See Neukrich [12] page 467.)

For $\zeta(s)$, Hardy and Littlewood [2] provided the approximate functional equation

$$\zeta(s) = \sum_{n \leq X} \frac{1}{n^s} + \pi^{s-1/2} \Gamma\left(\frac{(1-s)/2}{\Gamma(s/2)}\right) \sum_{n \leq Y} \frac{1}{n^{1-s}} + O(X^{-\sigma}) + O(Y^{\sigma-1}|t|^{-\sigma+1/2}),$$

where $s = \sigma + it$, $0 \leq \sigma \leq 1$, $X > H > 0$, $Y > H > 0$, and $2\pi XY = |t|$, with the constant implied by the big-O term depending on H only. Such approximate functional equations motivate the

2010 Mathematics Subject Classification. Primary 11M41; Secondary 11M26.

Key words and phrases. Approximate functional equation; Dedekind zeta function; Dirichlet polynomial; Distribution of zeros; Partial sums; Riemann zeta-function.
study of properties of the partial sums $F_X(s)$ of $\zeta(s)$ defined by

$$F_X(s) := \sum_{n \leq X} \frac{1}{n^s}.$$

Gonek and one of the authors [5] studied the distribution of zeros of the partial sums $F_X(s)$. The authors denote the number of typical zeros $\rho_X = \beta_X + i\gamma_X$ of the partial sums $F_X(s)$ with ordinates $0 \leq \gamma_X \leq T$ by $N_X(T)$. In the case that T is the ordinate of a zero, they define $N_X(T)$ as $\lim_{\epsilon \to 0^+} N_X(T + \epsilon)$. In [5], the authors are concerned with results on $N_X(T)$ as both X and T tends to infinity.

Theorem 1 in [5] collects together a number of known results on the zeros of $F_X(s)$ (see Borwein, Fee, Ferguson and Waal [1], Montgomery [10], and Montgomery and Vaughan [11]), which can be summarized as follows:

The zeros of $F_X(s)$ lie in the strip $\alpha < \sigma < \beta$, where α and β are the unique solutions of the equations $1 + 2^{-\sigma} + \cdots + (X - 1)^{-\sigma} = X^{-\sigma}$ and $2^{-\sigma} + 3^{-\sigma} + \cdots + X^{-\sigma} = 1$, respectively. In particular, $\alpha > -X$ and $\beta < 1.72865$. Furthermore, there exists a number X_0 such that if $X \geq X_0$, then $F_X(s)$ has no zeros in the half-plane

$$\sigma \geq 1 + \left(\frac{4}{\pi} - 1\right) \frac{\log \log X}{\log X}.$$

On the other hand, for any constant C satisfying the inequalities $0 < C < 4/\pi - 1$ there exists a number X_0 depending on C only such that if $X \geq X_0$, then $F_X(s)$ has zeros in the half-plane

$$\sigma > 1 + \frac{C \log \log X}{\log X}.$$

Theorem 2 in [5] (see also Langer [9]) can be summarized as follows:

If X and T are both greater than or equal to 2, then one has

$$\left| N_X(T) - \frac{T}{2\pi} \log |X| \right| < \frac{X}{2}.$$

Here and henceforth, $[X]$ denotes the greatest integer less than or equal to X. Chandrasekharan and Narasimhan [2] gave an approximate functional equation for the Dedekind zeta function

$$(1) \quad \zeta_K(s) = \sum_{n \leq X} \frac{a(n)}{n^s} + B 2^{s-1} A(1-s) \sum_{n \leq Y} \frac{a(n)}{n^{1-s}} + O(X^{1-\sigma-1/n_0} \log X),$$

where $A(s) = \Gamma(s/2)\Gamma'(s), B = 2\pi^s n_0/\sqrt{|d_K|}$, $X > H > 0$, $Y > H > 0$, $XY = |d_K|(|t|/2\pi)^{n_0}$, and $C_1 < X/Y < C_2$ for some constants C_1 and C_2. In the present article, we investigate the distribution of zeros of the partial sums of the function $\zeta_K(s)$ defined by

$$\zeta_{K,X}(s) := \sum_{\|a\| \leq X} \frac{1}{\|a\|^s} = \sum_{n \leq X} \frac{a(n)}{n^s},$$

which appears in the approximate functional equation (1). Our purpose is to determine whether the partial sums $\zeta_{K,X}(s)$ exhibit similar properties. To this end, we denote the number of non-real zeros $\rho_{K,X} = \beta_{K,X} + i\gamma_{K,X}$ of the partial sums $\zeta_{K,X}(s)$ with ordinates $0 \leq \gamma_{K,X} \leq T$ by $N_{K,X}(T)$. If T is the ordinate of a zero, then $N_{K,X}(T)$ is to be defined by $\lim_{\epsilon \to 0^+} N_{K,X}(T + \epsilon)$.

Our first result about the zeros of $\zeta_{K,X}(s)$ is summarized as follows.
Proposition 1. Let K be an arbitrary algebraic number field of degree $n_0 = [K: Q]$ over the field Q of rational numbers, let X be a real number greater than or equal to 2, and denote by s the complex variable $\sigma + it$. Then there exist two real numbers α and β, with α depending on n_0 and X only and with β depending on n_0 only, such that the zeros of the partial sums $\zeta_{K,X}(s)$ all lie within the rectilinear strip of the complex plane given by the inequalities $\alpha < \sigma < \beta$.

Our second theorem provides an approximate formula for $N_{K,X}(T)$, the number of zeros of the partial sums $\zeta_{K,X}(s)$ in the rectangle determined by the inequalities $\alpha < \sigma < \beta$ and $0 < t < T$, where α and β are provided in Proposition 1. Let K be any algebraic number field of degree $n_0 = [K: Q]$ over the field Q of rational numbers. In a similar fashion to the case of Riemann zeta function (see [5] and [9]), it can be shown that

(2) \[|N_{K,X}(T) - \frac{T}{2\pi} \log[X] | \leq \frac{X}{2}, \]

where X and T both go to infinity together. However, if $K = Q(\zeta_q)$ is a cyclotomic field, where $q \geq 2$, we can significantly improve the error term in (2).

Theorem 1. Let $q \geq 2$, let ζ_q be a primitive root of unity of order q, let $K = Q(\zeta_q)$, and let $T, X \geq 3$. Let, further, N be the largest integer less than or equal to X such that $a(N) \neq 0$. We have

(3) \[N_{K,X}(T) = \frac{T}{2\pi} \log N + O_q \left(X \left(\frac{\log \log X}{\log X} \right)^{1-\phi(q)} \right), \]

where ϕ is Euler’s totient function.

2. Preliminary Results

To prove Theorem 1, we will make use of two auxiliary lemmas.

Lemma 1. Fix a positive integer $q \geq 2$. We have

\[\# \{ n \leq y : \mu(n) \neq 0 \text{ and } p \mid n \text{ imply } p \equiv 1 \pmod{q} \} = O_q \left(y \left(\frac{\log \log y}{\log y} \right)^{1-\phi(q)} \right), \]

where μ denotes the M"obius function.

Proof. Fix a positive integer $q \geq 2$ and define

\[B(q,y) := \{ n \leq y : \mu(n) \neq 0 \text{ and } p \mid n \text{ imply } p \equiv 1 \pmod{q} \}. \]

We apply Brun’s pure sieve to estimate the size of the set $B(q,y)$. (See Murty and Cojocaru [3] page 86.) Let A be the set of all positive integers $n \leq y$. Let P be the set of all primes p congruent to 1 modulo q. Let A_p be the set of elements of A which are divisible by p. Let, further, $A_1 := A$ and $A_d := \bigcap_{p \mid d} A_p$, where d is a square-free positive integer composed of a list of prime factors from P. For any positive real number z, we define

\[S(A, P, z) := A \setminus \bigcup_{p \mid P(z)} A_p, \]

where

\[P(z) := \prod_{p \in P} p. \]

We consider the multiplicative function ω defined for all primes p by $\omega(p) := 1$. We have

\[\#A_d = \# \{ n \leq y : n \equiv 0 \pmod{d} \} = \frac{\omega(d)}{d} y + R_d, \]
where
\[|R_d| \leq \omega(d). \]

From Mertens’s estimates, we have
\[\sum_{p \in P, p < z} \frac{\omega(p)}{p} = \frac{\phi(q) - 1}{\phi(q)} \log \log z + O(1). \]

For the sake of brevity, we let
\[W(z) := \prod_{p \mid P(z)} \left(1 - \frac{\omega(p)}{p} \right). \]

By Brun’s pure sieve, we have
\[\#S(A, P, z) = y W(z) \left(1 + O \left(\frac{z}{\log z} \right) \right) + O \left(\frac{1}{\phi(q)} \right), \]
where \(A = \eta \log \eta \) and, for some \(\alpha < 1 \), \(\eta = \frac{\alpha \log y}{\log z \log \log z} \).

Since \(\omega(p) = 1 \), Mertens’s estimates yield
\[W(z) = O \left(\frac{1}{(\log z)^{1-1/\phi(q)}} \right). \]

We now choose \(\log z = c \log y / \log \log y \). Then for a suitable positive and sufficiently small constant \(c \) and from (4) and (5), we have
\[\#S(A, P, z) = O \left(y \left(\frac{\log \log y}{\log y} \right)^{1-1/\phi(q)} \right). \]

Since \(B(q, y) \subseteq S(A, P, z) \), we have \(\#B(q, z) \leq \#S(A, P, z) \). Employing this last inequality together with (6), we complete the proof of Lemma 1. \(\square \)

Lemma 2. Let \(q \geq 2 \) and let \(K = Q(\zeta_q) \). Let, further,
\[\zeta_K(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}. \]

We have
\[\# \{ n \leq x : a(n) \neq 0 \} = O_q \left(x \left(\frac{\log \log x}{\log x} \right)^{1-1/\phi(q)} \right). \]

Proof. Let \(K = Q(\zeta_q) \), where \(\zeta_q \) is a primitive root of unity of order \(q \). We have
\[\zeta_K = \prod_{P \mid q} \left(1 - \frac{1}{P^s} \right)^{-1} F_q(s), \]
where
\[F_q(s) = \prod_{\chi \equiv \mod{q}} L(s, \chi). \]

(See [12 page 468].) For \(\sigma > 1 \), we have
\[F_q(s) = \prod_{\chi \equiv \mod{q}} \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s} \right). \]
Hence, for $\sigma > 1$, we have

$$\log F_q(s) = - \sum_{\chi \equiv \pmod{q}} \sum_{p \text{ prime}} \log \left(1 - \frac{\chi(p)}{p^s}\right)$$

$$= \sum_{\chi \equiv \pmod{q}} \sum_{p \text{ prime}} \sum_{m=1}^{\infty} \frac{\chi(p)}{mp^{ms}}$$

$$= \sum_{p \text{ prime}} \sum_{m=1}^{\infty} \sum_{\chi \equiv \pmod{q}} \chi(p^m),$$

where

$$\sum_{\chi \equiv \pmod{q}} \chi(p^m) = \begin{cases} \phi(q), & \text{if } p^m \equiv 1 \pmod{q}; \\ 0, & \text{otherwise.} \end{cases}$$

It follows that

$$\log F_q(s) = \sum_{p \text{ prime}, m \geq 1 \atop p^m \equiv 1 \pmod{q}} \frac{\phi(q)}{mp^{ms}}.$$

Hence, we have

$$F_q(s) = \exp \left(\sum_{p \text{ prime}, m \geq 1 \atop p^m \equiv 1 \pmod{q}} \frac{\phi(q)}{mp^{ms}} \right).$$

Now, for $\sigma > 1$,

$$F_q(s) = \sum_{n=1}^{\infty} \frac{c(n)}{n^s} = \prod_{p \text{ prime}} \left(1 + \frac{c(p)}{p^s} + \frac{c(p^2)}{p^{2s}} + \ldots \right).$$

Thus, we have

$$\log F_q(s) = \sum_{p \text{ prime}} \log \left(1 + \frac{c(p)}{p^s} + \frac{c(p^2)}{p^{2s}} + \ldots \right)$$

$$= \sum_{p \text{ prime}} \sum_{m=1}^{\infty} (-1)^m \frac{(c(p))^{m}}{m} \left(\frac{c(p^2)}{p^{2s}} + \ldots \right)^m,$$

and hence

$$c(p) = \begin{cases} \phi(q), & \text{if } p \equiv 1 \pmod{q}; \\ 0, & \text{if } p \not\equiv 1 \pmod{q}. \end{cases}$$

For all n such that $c(n) \neq 0$, we have $n = AB$, where A is coprime to B, A is squareful, and B is square-free, that is, $\mu(B) \neq 0$. Furthermore, all the prime factors of B are congruent to 1 modulo q. Letting

$$H(x) := \prod_{p \leq x, p \text{ prime} \atop p \equiv 1 \pmod{q}} p,$$
we have
\[
\#\{n \leq x: c(n) \neq 0\} \leq \#\{(A, B): A \text{ squareful, } \mu(B) \neq 0, AB \leq x, B \mid H(x)\}
\]
\[
= \sum_{A \leq x} \sum_{\substack{B \leq x/A \mid H(x)\ A \text{ squareful}}} 1
\]
\[
= \sum_{A \leq x} B\left(q, \frac{x}{A}\right)
\]
\[
= \sum_{A \leq \sqrt{x} \log x} B\left(q, \frac{x}{A}\right) + \sum_{\sqrt{x} \log x \leq A \leq x} B\left(q, \frac{x}{A}\right).
\]

We examine the sums on the far right-hand side separately.

Using Lemma \[\Pi\], we see that
\[
\sum_{A \leq \sqrt{x} \log x} B\left(q, \frac{x}{A}\right) = O\left(\sum_{A \leq \sqrt{x} \log x} x\left(\log \log \frac{x}{\log x}\right)^{1-1/\phi(q)}\right)
\]
\[
= O\left(x\left(\frac{\log \log x}{\log x}\right)^{1-1/\phi(q)} \sum_{A \leq \sqrt{x} \log x} \frac{1}{A}\right)
\]
\[
= O\left(x\left(\frac{\log \log x}{\log x}\right)^{1-1/\phi(q)} \sum_{a \geq 1, b \geq 1} \frac{1}{a^2 b^3}\right)
\]
\[
= O\left(x\left(\frac{\log \log x}{\log x}\right)^{1-1/\phi(q)}\right).
\]

Furthermore, we have
\[
\sum_{\sqrt{x} \log x \leq A \leq x} B\left(q, \frac{x}{A}\right) \leq \sum_{\sqrt{x} \log x \leq A \leq x} \frac{x}{A}
\]
\[
\leq \sum_{\sqrt{x} \log x \leq A \leq x} \frac{x}{\sqrt{x} \log x}
\]
\[
\leq \frac{x}{\log x} \#\{A \leq x: A \text{ squareful}\}
\]
\[
= O\left(\frac{x}{\log x}\right).
\]

Suppose that \(\mathcal{P}_1, \ldots, \mathcal{P}_r\) are the prime ideals in the ring of integers of \(K\) lying over the prime factors of \(q\) and consider the Dirichlet series
\[
\sum_{n=1}^{\infty} \frac{b(n)}{n^s} = \prod_{\mathcal{P} \mid q} \left(1 - \frac{1}{\|\mathcal{P}\|^s}\right)^{-1}.
\]

For all \(z\), we have
\[
\#\{n \leq z: b(n) \neq 0\} \leq \#\{n \leq z \text{ with all prime factors of } n \text{ in the sets } \mathcal{P}_1, \ldots, \mathcal{P}_r\}.
\]
It is well-known that the right-hand side of (7) is $O_q((\log z)^r)$. Thus, we have
\[
\#\{n \leq z: b(n) \neq 0\} = O_q((\log z)^r).
\]

For brevity’s sake, we let
\[
A = \{n: a(n) \neq 0\}, \quad B = \{m: b(m) \neq 0\}, \quad C = \{k: c(k) \neq 0\},
\]
and denote
\[
A_\omega = A \cap [1, \omega], \quad B_\omega = B \cap [1, \omega], \quad C_\omega = C \cap [1, \omega].
\]
Here, we note that
\[
\#B_\omega = O_r((\log \omega)^r)
\]
and
\[
\#C_\omega = O_q\left(\omega \left(\frac{\log \log \omega}{\log \omega}\right)^{1-1/\phi(q)}\right).
\]
Furthermore, we have
\[
\zeta_K(s) = \sum_{n \in A} a(n) n^s = \sum_{m \in B} b(m) m^s \sum_{k \in C} c(k) k^s.
\]

On noting that $A \subseteq BC$, where $BC = \{bc: b \in B, c \in C\}$, we have $A_x \subseteq (BC)_x$. It follows that
\[
\#A_x \leq \#(BC)_x,
\]
where
\[
(BC)_x = \sum_{b \leq L} \sum_{c \leq x/b} 1 = \sum_{b \leq L} \sum_{c \leq x/b} 1 + \sum_{L < b \leq x} \sum_{c \leq x/b} 1,
\]
with $1 \leq L \leq x$ (to be chosen later). By (8), we have
\[
\sum_{b \leq L} \sum_{c \leq x/b} 1 \leq \sum_{b \leq L} \sum_{c \leq x/b} \#C_{x/b} = O\left(\sum_{b \leq L} \frac{x}{b} \left(\frac{\log \log (x/b)}{\log (x/b)}\right)^{1-1/\phi(q)}\right).
\]

Since $b \leq L$, we have
\[
\left(\frac{\log x}{b}\right)^{1-1/\phi(q)} > \left(\frac{\log x}{L}\right)^{1-1/\phi(q)}.
\]
Hence, we have
\[
\sum_{b \leq L} \sum_{c \leq x/b} 1 = O\left(x \left(\frac{\log \log x}{\log x/L}\right)^{1-1/\phi(q)} \sum_{b \leq L} \frac{1}{b}\right) = O\left(x \left(\frac{\log \log x}{\log (x/L)}\right)^{1-1/\phi(q)}\right),
\]
since
\[
\sum_{b \leq L} \frac{1}{b} < \infty.
\]

Next, we have
\[
\sum_{L < b \leq x} \sum_{c \leq x/b} 1 = \sum_{L < b \leq x} \sum_{c \leq x/b} \#C_{x/b} \leq \sum_{L < b \leq x} \frac{x}{b} \leq \frac{x}{L} \#B_x = O\left(\frac{x(\log x)^r}{L}\right).
\]
In view of (9), we substitute (11) and (12) into (10) to obtain
\[
\#A_x = O \left(\frac{x(\log x)^r}{L} \right) + O \left(x \left(\frac{\log \log x}{\log(x/L)} \right)^{1-1/\phi(q)} \right).
\]
Then choosing \(L = (\log x)^{r+1} \), we obtain
\[
\#A_x = O \left(x \left(\frac{\log \log x}{\log x} \right)^{1-1/\phi(q)} \right).
\]
This finishes the proof of Lemma 2. \(\square \)

3. Proof of Proposition 1

We show separately that \(|\zeta_{K,X}(s)| > 0\) in the right half-plane \(\sigma \geq \beta \) and in the left-half plane \(\sigma \leq \alpha \). More specifically, we want to find a \(\beta \) so that
\[
1 - \sum_{2 \leq n \leq X} \frac{a(n)}{n^\sigma} > 0,
\]
for \(\sigma \geq \beta \). Toward this end, we employ the upper bound \(a(n) \leq d(n)^{n_0-1} \), where \(d(n) \) denotes the number of divisors of \(n \) (see Chandrasekharan and Narasimhan [2], Lemma 9) and satisfies the upper bound \(d(n) \leq C_{\epsilon_0} n^{\epsilon_0} \) for all positive \(\epsilon_0 \) (see Hardy and Wright [6], Chapter XVIII, Theorem 317). Hence, we have \(a(n) \leq C_{\epsilon_0,n_0} n^{\epsilon_0 n_0} \).

It is enough to show that
\[
C_{\epsilon_0,n_0} \sum_{n=2}^{\infty} \frac{1}{n^{\sigma-\epsilon_0 n_0}} < 1.
\]
If we let \(\epsilon_0 < 1/n_0 \), then for \(\sigma \geq \beta \) we have
\[
\sum_{n=2}^{\infty} \frac{1}{n^{\sigma-\epsilon_0 n_0}} \leq \sum_{n=2}^{\infty} \frac{1}{n^{\beta-\epsilon_0 n_0}} \leq \frac{1}{2^\beta D_{\epsilon_0,n_0}},
\]
where
\[
D_{\epsilon_0,n_0} = \sum_{n=2}^{\infty} \frac{4}{n^{2-\epsilon_0 n_0}}.
\]
In order to obtain (13), it is enough to have
\[
\beta > \frac{\log C_{\epsilon_0,n_0} D_{\epsilon_0,n_0}}{\log 2}.
\]
We have
\[
\sum_{n=2}^{\infty} \frac{d(n)^{n_0}}{n^{\beta}} \leq C_{\epsilon_0,n_0} \sum_{n=2}^{\infty} \frac{1}{n^{\beta-\epsilon_0 n_0}} = \frac{1}{2^\beta} C_{\epsilon_0,n_0} D_{\epsilon_0,n_0}.
\]
Then for \(\sigma \geq \beta \), we have
\[
\left| \sum_{2 \leq n \leq X} \frac{a(n)}{n^s} \right| \leq \sum_{2 \leq n \leq X} \frac{d(n)^{n_0}}{n^{\beta}} < 1,
\]
and hence
\[
|\zeta_{K,X}(s)| \geq 1 - \left| \sum_{2 \leq n \leq X} \frac{a(n)}{n^s} \right| > 0.
\]
Therefore, \(\zeta_{K,X}(s) \neq 0 \) on the right-half plane \(\sigma \geq \beta \).
Next, let N be the largest positive integer less than or equal to X for which the coefficient $a(N)$ is nonzero. Since

$$|ζ_K,X(s)| ≥ \frac{a(N)}{N^σ} - \left| \sum_{1 ≤ n ≤ N-1} \frac{a(n)}{n^σ} \right|,$$

it is enough to find an $α$ such that

$$\frac{1}{N^σ} > \sum_{1 ≤ n ≤ N-1} \frac{a(n)}{n^σ},$$

for $σ ≤ α$.

To this end, let us fix $δ_0 > 0$. Then there exist constants $C_{δ_0} > 0$ and $n_{δ_0} ∈ \mathbb{Z}^+$ such that for all $1 ≤ n < n_{δ_0}$, we have

$$d(n) ≤ C_{δ_0}n(δ_0+log 2)/log log n,$$

and that for all $n ≥ n_{δ_0}$, we have

$$d(n) ≤ n^{(δ_0+log 2)/log log n}.$$

(See Wigert [15].)

It suffices to have

$$\frac{1}{N^σ} > C_{δ_0}^{n_{δ_0}} \sum_{1 ≤ n ≤ n_{δ_0} - 1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ} + \sum_{n_{δ_0} ≤ n ≤ N-1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ} = 1 + C_{δ_0}^{n_{δ_0}} S_I(n_{δ_0}, δ_0, n_{δ_0}, σ) + S_{II}(n_{δ_0}, δ_0, σ),$$

for $σ ≤ α$, where

$$S_I(n_{δ_0}, δ_0, n_{δ_0}, σ) = \sum_{2 ≤ n ≤ n_{δ_0} - 1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ}$$

and

$$S_{II}(n_{δ_0}, δ_0, σ) = \sum_{n_{δ_0} ≤ n ≤ N-1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ}.$$

This would follow from the inequality

$$\frac{1}{N^σ} > 1 + C_{δ_0}^{n_{δ_0}} S_I(n_{δ_0}, δ_0, n_{δ_0}, α) + S_{II}(n_{δ_0}, δ_0, α),$$

since, for any $σ ≤ α$,

$$\frac{1}{N^σ} > \frac{1}{N^{σ-α}} \left[1 + C_{δ_0}^{n_{δ_0}} S_I(n_{δ_0}, δ_0, n_{δ_0}, α) + S_{II}(n_{δ_0}, δ_0, α) \right] \frac{1}{N^{σ-α} n^{σ}} + \sum_{n_{δ_0} ≤ n ≤ N-1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ-α} n^{α}$$

$$= 1 + C_{δ_0}^{n_{δ_0}} \sum_{2 ≤ n ≤ n_{δ_0} - 1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ-α} n^{α} + \sum_{n_{δ_0} ≤ n ≤ N-1} n^{(δ_0+log 2)n_{δ_0}/log log n} \sigma n^{σ-α} n^{α}$$

$$= 1 + C_{δ_0}^{n_{δ_0}} S_I(n_{δ_0}, δ_0, n_{δ_0}, σ) + S_{II}(n_{δ_0}, δ_0, σ).$$

Thus, it is enough to find $α$ such that

(15) $$\frac{1}{N^α} > 2 + 2C_{δ_0}^{n_{δ_0}} S_I(n_{δ_0}, δ_0, n_{δ_0}, α)$$

and such that

(16) $$\frac{1}{N^α} > 2S_{II}(n_{δ_0}, δ_0, α).$$
It is enough to have
\begin{equation}
\frac{1}{N^{\alpha}} > 2 + 2C_{\delta_0}^{n_0} \frac{1}{n_{\delta_0}} \sum_{2 \leq n \leq n_{\delta_0} - 1} n^{(\delta_0 + \log 2)n_0/\log \log n},
\end{equation}
since the right-hand side of (17) is greater than the right-hand side of (15).

The inequality in (17) holds for any fixed \(\alpha < 0 \) and for all \(N \) large enough in terms of \(n_0, \delta_0, C_{\delta_0}, \) and \(\alpha \). Therefore, we may take any fixed \(\alpha < 0 \) as a function of \(N, n_0, \) and \(\delta_0 \) for which (16) holds true. For \(n_{\delta_0} \geq 16 \), we see that
\begin{equation}
\sum_{n_{\delta_0} \leq n \leq N - 1} n^{(\delta_0 + \log 2)n_0/\log \log n} \leq \sum_{n_{\delta_0} \leq n \leq N - 1} \frac{N^{(\delta_0 + \log 2)n_0/\log \log N}}{n^{\alpha}} < N^{(\delta_0 + \log 2)n_0/\log \log N} \sum_{n_{\delta_0} \leq n \leq N - 1} \frac{1}{n^{\alpha}}.
\end{equation}

It remains to examine the sum on the far-right hand side of (18).

For \(\alpha < 0 \), we have
\begin{equation}
\sum_{n_{\delta_0} \leq n \leq N - 1} \frac{1}{n^{\alpha}} \leq (N - 1)^{-\alpha} + \int_{n_{\delta_0}}^{N - 1} \frac{dy}{y^{\alpha}} < (N - 1)^{-\alpha} \left(\frac{N - \alpha}{1 - \alpha} \right).
\end{equation}

It follows from (18) that (16) is consequence of
\begin{equation}
N^{-\alpha} > 2N^{(\delta_0 + \log 2)n_0/\log \log N} (N - 1)^{-\alpha} \left(\frac{N - \alpha}{1 - \alpha} \right).
\end{equation}

One sees that an admissible choice of \(\alpha \) is given by
\[\alpha = -3(\delta_0 + \log 2)n_0 \frac{N \log N}{\log \log N}. \]
Then \(\zeta_{K,X}(s) \neq 0 \) in the left-half plane \(\sigma \leq \alpha \). This completes the proof of Proposition 1.

4. Proof of Theorem 1

Assuming for simplicity’s sake that \(T \) does not coincide with the ordinate of any zero, we have
\[N_{K,X}(T) = \frac{1}{2\pi i} \int_R \frac{\zeta'_{K,X}(s)}{\zeta_{K,X}(s)} ds, \]
where \(R \) is the rectangle with vertices at \(\alpha, \beta, \beta + iT, \) and \(\alpha + iT \). Thus, we have
\begin{equation}
2\pi N_{K,X}(T) = \int_R \text{Im} \left(\frac{\zeta'_{K,X}(s)}{\zeta_{K,X}(s)} \right) ds = \Delta_R \text{arg} \zeta_{K,X}(s),
\end{equation}
where \(\Delta_R \) denotes the change in \(\text{arg} \zeta_{K,X}(s) \) as \(s \) traverses \(R \) in the positive sense.

Since \(\zeta_{K,X}(s) \) is real and nonzero on \([\alpha, \beta] \), we have
\begin{equation}
\Delta_{[\alpha,\beta]} \text{arg} \zeta_{K,X}(\sigma) = 0.
\end{equation}

As \(s \) describes the right edge of \(R \), we observe from (14) that
\[|\zeta_{K,X}(s) - 1| < 1. \]
It follows that \(\text{Re} \zeta_{K,X}(\beta + it) > 0 \) for \(0 \leq t \leq T \). Hence, we have
\begin{equation}
\Delta_{[0,T]} \text{arg} \zeta_{K,X}(\beta + it) = O(1).
\end{equation}
Furthermore, along the top edge of R, to estimate the change in $\arg \zeta_{K,X}(s)$ we decompose $\zeta_{K,X}(s)$ into its real part and its imaginary part. We have

$$
\zeta_{K,X}(s) = \sum_{n \leq [X]} a(n) \exp\{-\sigma t \log n\} = \sum_{n \leq [X]} a(n) \frac{\cos(\sigma t \log n) - i \sin(\sigma t \log n)}{n^\sigma}.
$$

so that

$$
\text{Im}(\zeta_{K,X}(\sigma + iT)) = - \sum_{n \leq [X]} a(n) \frac{\sin(T \log n)}{n^\sigma}.
$$

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [13], Part V, Chapter 1, No. 77), the number of real zeros of $\text{Im}(\zeta_{K,X}(\sigma + iT))$ in the interval $\alpha \leq \sigma \leq \beta$ is less than or equal to the number of nonzero coefficients $a(n) \sin(T \log n)$. By Lemma 2 the number of nonzero coefficients $a(n)$ is $O(X(\log \log X/(\log X)^{1-1/\phi(q)})$ at most.

Since the change in argument of $\zeta_{K,X}(\sigma + iT)$ between two consecutive zeros of $\text{Im}(\zeta_{K,X}(\sigma + iT))$ is at most π, it follows that

$$
\triangle_{[\alpha, \beta]} \arg \zeta_{K,X}(\sigma + iT) = O \left(X \left(\frac{\log \log X}{\log X}\right)^{1-1/\phi(q)}\right).
$$

As in the proof of Proposition 1, we let N be the largest integer less than or equal to X so that $a(N) \neq 0$. Along the left edge of R, we have

$$
\zeta_{K,X}(\alpha + it) = \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right] a(N)N^{-\alpha - it}.
$$

Therefore, we have

$$
\triangle_{[0, T]} \arg \zeta_{K,X}(\alpha + it) = \triangle_{[0, T]} \arg \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right]
+ \triangle_{[0, T]} \arg a(N)N^{-\alpha - it}.
$$

In the proof of Proposition 1 we noticed that

$$
\frac{a(N)}{N^\alpha} > \sum_{1 \leq n \leq N-1} \frac{a(n)}{n^\alpha}.
$$

Thus, for any t, we have

$$
\left|1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right| < 1,
$$

and hence

$$
\triangle_{[0, T]} \arg \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right] = O(1).
$$

Finally, we have

$$
\triangle_{[0, T]} \arg a(N)N^{-\alpha - it} = \triangle_{[0, T]} \arg a(N)N^{-\alpha} \exp\{-it \log N\}
= \triangle_{[0, T]} \arg \exp\{-it \log N\}
= -T \log N.
$$

Then substituting (24) and (25) into (23), we obtain

$$
\triangle_{[0, T]} \arg \zeta_{K,X}(\alpha + it) = -T \log N + O(1).
$$

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [13], Part V, Chapter 1, No. 77), the number of real zeros of $\text{Im}(\zeta_{K,X}(\sigma + iT))$ in the interval $\alpha \leq \sigma \leq \beta$ is less than or equal to the number of nonzero coefficients $a(n) \sin(T \log n)$. By Lemma 2 the number of nonzero coefficients $a(n)$ is $O(X(\log \log X/(\log X)^{1-1/\phi(q)})$ at most.

Since the change in argument of $\zeta_{K,X}(\sigma + iT)$ between two consecutive zeros of $\text{Im}(\zeta_{K,X}(\sigma + iT))$ is at most π, it follows that

$$
\triangle_{[\alpha, \beta]} \arg \zeta_{K,X}(\sigma + iT) = O \left(X \left(\frac{\log \log X}{\log X}\right)^{1-1/\phi(q)}\right).
$$

As in the proof of Proposition 1, we let N be the largest integer less than or equal to X so that $a(N) \neq 0$. Along the left edge of R, we have

$$
\zeta_{K,X}(\alpha + it) = \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right] a(N)N^{-\alpha - it}.
$$

Therefore, we have

$$
\triangle_{[0, T]} \arg \zeta_{K,X}(\alpha + it) = \triangle_{[0, T]} \arg \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right]
+ \triangle_{[0, T]} \arg a(N)N^{-\alpha - it}.
$$

In the proof of Proposition 1 we noticed that

$$
\frac{a(N)}{N^\alpha} > \sum_{1 \leq n \leq N-1} \frac{a(n)}{n^\alpha}.
$$

Thus, for any t, we have

$$
\left|1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right| < 1,
$$

and hence

$$
\triangle_{[0, T]} \arg \left[1 + \frac{1 + a(2)2^{-\alpha - it} + \ldots + a(N - 1)(N - 1)^{-\alpha - it}}{a(N)N^{-\alpha - it}}\right] = O(1).
$$

Finally, we have

$$
\triangle_{[0, T]} \arg a(N)N^{-\alpha - it} = \triangle_{[0, T]} \arg a(N)N^{-\alpha} \exp\{-it \log N\}
= \triangle_{[0, T]} \arg \exp\{-it \log N\}
= -T \log N.
$$

Then substituting (24) and (25) into (23), we obtain

$$
\triangle_{[0, T]} \arg \zeta_{K,X}(\alpha + it) = -T \log N + O(1).
$$
Since
\[\Delta_R \arg \zeta_{K,X}(s) = \Delta_{[\alpha, \beta]} \arg \zeta_{K,X}(\sigma) + \Delta_{[0,T]} \arg \zeta_{K,X}(\beta + it) - \Delta_{[\alpha, \beta]} \arg \zeta_{K,X}(\sigma + iT) - \Delta_{[0,T]} \arg \zeta_{K,X}(\alpha + it), \]
we may now substitute (20), (21), (22), (26) into (19) to obtain Theorem 1.

REFERENCES

[1] P. Borwein, G. Fee, R. Ferguson, and A. van der Waall, Zeros of partial sums of the Riemann zeta function, Experiment. Math. 16 (2007), no. 1, 21–40.
[2] K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann. 152 (1963) 30-64.
[3] M. R. Murty and A. C. Cojocaru, An introduction to sieve methods and their applications, London Mathematical Society Student Texts 66, Cambridge University Press, Cambridge, 2006.
[4] H. Davenport, Multiplicative number theory, Graduate Studies in Mathematics 74, Third edition (Edited by H. L. Montgomery), Springer-Verlag, New York, 2000.
[5] S. M. Gonek and A. H. Ledoan, Zeros of partial sums of the Riemann zeta-function, Int. Math. Res. Not. 2010, no. 10, 1775–1791.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Sixth edition (Revised by D. R. Heath-Brown and J. H. Silverman, with a foreword by Andrew Wiles), Oxford University Press, Oxford, 2008.
[7] G. H. Hardy and J. E. Littlewood, The approximate functional equation for \(\zeta(s) \) and \(\zeta^2(s) \), Proc. London Math. Soc. (2) 29, 81–97(1929).
[8] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, De Gruyter Expositions in Mathematics 5 (Translated from the Russian by Neal Koblitz), Walter de Gruyter & Co., Berlin, 1992.
[9] R. E. Langer, On the zeros of exponential sums and integral, Bull. Amer. Math. Soc. 37 (1931), 213–239.
[10] H. L. Montgomery, Zeros of approximations to the zeta function, Studies in Pure Mathematics, 497–506, Birkhäuser, Basel, 1983.
[11] H. L. Montgomery and R. C. Vaughan, Mean values of multiplicative functions, Period. Math. Hungar. 43 (2001), 199–214.
[12] J. Neukirch, Algebraic number theory (Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by G. Harder), Grundlehren der Mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics) 322, Springer-Verlag, Berlin, 1999.
[13] G. Pólya and G. Szegő, Problems and theorems in analysis. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Volume II (Translated from the German by C. E. Billigheimer. Reprint of the 1976 English translation), Classics in Mathematics, Springer-Verlag, Berlin, 1998.
[14] E. C. Titchmarsh, The Theory of the Riemann zeta-function, Second edition (Revised by D. R. Heath-Brown), The Clarendon Press, Oxford University Press, New York, 1986.
[15] S. Wigert, Sur l’ordre de grandeur du nombre des diviseurs d’un entier, Ark. Mat. Astron. Fys. 3 (1906–1907), 1–9.