Metronomic Chemotherapy Modulates Clonal Interactions to Prevent Drug Resistance in Non-Small Cell Lung Cancer: Mathematical model and predictions.

Cécile Carrère∗1

1Institut Denis Poisson – Université d’Orléans : UMR7013 – France

Abstract

La résistance aux traitements est une raison majeure d’échec des chimiothérapies contre le cancer. Afin d’étudier les effets de différents protocoles de traitement, l’équipe de M.Carré (1) a réalisé des séries d’expériences in vitro sur des cultures de cellules cancéreuses sensibles ou résistantes à un certain médicament. Ces expériences ont mis en lumière l’intérêt des protocoles métromoniques, c’est à dire de plus faibles doses de médicament données plus fréquemment, par rapport aux protocoles MTD (maximal tolerated dose) classiques. Pour comprendre et améliorer ces résultats, nous proposons avec G.Chapuisat (2) une modélisation de ces expériences, et l’optimisation du traitement par différents outils mathématiques : l’analyse d’un système d’EDO couplées, la théorie du contrôle optimal, et les équations de Hamilton Jacobi Bellman en collaboration avec H.Zidani (3).

Cette présentation sera par ailleurs l’occasion de présenter le parcours d’une collaboration interdisciplinaire, ou comment les rythmes des différents partenaires peuvent être adaptés en cas de contretemps.

(1) Centre de Recherche en Oncologie et Oncopharmacologie, Aix-Marseille Université
(2) Institut de Mathématiques de Marseille, Aix-Marseille Université
(3) Unité de Mathématiques Appliquées, ENSTA

∗Speaker