Contributions of protein microenvironment in tannase industrial applicability: An in-silico comparative study of pathogenic and non-pathogenic bacterial tannase

Ishita Biswas,1, Debanjan Mitra,1, Amal Kumar Bandyopadhyay,2,*, Pradeep K. Das Mohapatra,1,*

1 Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India
2 Department of Biotechnology, University of Burdwan, Burdwan, 713104, West Bengal, India

ARTICLE INFO
Keywords:
Biochemistry
Bioinformatics
Biotechnology
Microbiology
Molecular biology
Proteins
Tannase
Pathogenic and non-pathogenic bacteria
Salt bridge
Microenvironment
Order and disorder forming residues

ABSTRACT
Tannase is an inducible industrially important enzyme, produced by several microorganisms. A large number of bacteria have reported as tannase producers; however, some of them are pathogenic in nature. Therefore, it is quite uncertain whether the application of these tannase enzymes from such pathogenic bacteria is suitable for industries and human welfare. Till date, there is no clear evidence regarding which group of bacteria (non-pathogenic or pathogenic) is better suited for their application in the edge of industries with particular reference to the food industry. The present study is following the findings of the above queries. In this study, a large number of tannase protein sequences have been retrieved from the databases, including both non-pathogenic and pathogenic bacterial species. Physiochemical and evolutionary properties of those sequences have been evaluated. Results have shown that non-pathogenic bacterial tannase possesses a high number of acidic and basic amino acid residues as compared to their pathogenic counterparts. The acidic and basic amino acid residues of tannase provide unique microenvironment to it. In the other hand, the numbers of disorder forming residues are higher in tannase sequences of pathogenic bacteria. The study of tannase microenvironment leads in the formation of salt bridges, which finally favoring the stability and proper functioning of tannase. This is the first report of such observation on tannase enzyme using in silico approach. Study of the microenvironment concept will be helpful in protein engineering.

1. Introduction
Tannase (tannin acyl hydrolase, EC 3.1.1.20) is an extracellular inducible enzyme that catalyzes the hydrolysis of ester and depside bonds of several substrates such as gallotannins, epigallocatechin-3-gallate, esters of gallic acid, and epicatechin gallate and produces glucose and gallic acid as by-products (Mohapatra et al., 2005; Natarajan and Rajendran, 2012; Jana et al., 2014). The enzyme produced from microbial sources has immense applications in various industries due to its stability (Natarajan and Rajendran, 2012; Jana et al., 2014). Tannase is produced in the presence of tannic acid by different tannase producers including a large number of filamentous fungi such as Aspergillus sp. (Sharma et al., 2007), Penicillium sp. (Batra and Saxena, 2005), a massive number of bacteria (Mondal and Pati, 2000; Mohapatra et al., 2009) and few yeasts such as Aureobasidium sp. (Zhang et al., 2019), Sporidiobolus sp. (Kanpiengjai et al., 2020) and others. There are several reports in the literature on the bacterial origin of tannase. Lewis and Starkey (1969) first reported that Achromobacter sp. able to utilize gallotannin as the energy source for its growth. Deschamps et al. (1980) isolated several bacterial strains that can use tannic acid as the sole carbon source. Mondal and Pati (2000) reported on extracellular tannase production by newly isolated Bacillus licheniformis KBR6. Jana et al. (2013) have characterized thermostable tannase from Bacillus subtilis PAB2. High tannase activity has reported in Lactobacillus Plantarum, a lactic acid bacterium (Jimenez et al., 2014; Matsuda et al., 2016). Characterization of tannase activity in cell-free
extracts of *Lactobacillus plantarum* CECT 748T was performed by Rodriguez et al. (2008). Raghuvanshi et al. (2011) reported about highest tannase producer *Bacillus sphaericus* with potential gallic acid synthesis ability. Ren et al. (2013) first reported the crystal structure of a tannase from the bacterium *L. plantarum*. Comparative study of tannase from three closely related lactobacillus species such as *L. plantarum*, *L. paraplantarum*, and *L. pentosus* was conducted by Ueda et al. (2014). Kapiengjaia et al. (2019) have isolated a new alkaline tannase from *Lactobacillus pentosus*. Jiménez et al. (2014) have reported the results of cloning and expression of the gene encoding TanSg1 tannase in *E. coli* from *Streptococcus galolyticus* UCN34.

Tannase belongs to the enzyme class ‘hydrolase’ and is one of the essential industrial enzymes (Jana et al., 2013). It has immense potential applications in several industrial sectors, including food, beverages, leather, chemical, pharmaceutical, and dye-making (Cavalcanti et al., 2020). It is extensively used for industrial effluent treatment and is also involved in the synthesis of gallic acid, instant tea (Hae-Soo et al., 2020; Urban et al., 2020; Thiyonila et al., 2020), acorn wine and coffee-flavoured soft drinks (Kar and Banerjee, 2000; Mohapatra et al., 2006; Jana et al., 2013). The enzyme also acts as a clarifier in the production of beer, fruit juices and to treat wastewater contaminated with polyphenolic compounds (Mohapatra et al., 2006; Sharma et al., 2007). It also involved in ripening of fruits (Jana et al., 2014) and wine production.

(Mohapatra et al., 2005; Patil et al., 2011). It is also reported to suppress antibiotic drug - trimethoprim and in the production of pyrogallol photographic developer, pharmaceuticals for the synthesis of an antifolic is a phenolic compound used in dye making, leather industry, as a

by hyperglycemia (Kuppan et al., 2010).

activation of proinflammatory and prooxidant gene expression induced by hyperglycemia (Ruppan et al., 2010).

Pyrogallol produced from gallic acid also has several industrial importances, like in coloring of hair, staining of fur, leathers and also in the preparation of anti-tumor and anti-cancer drugs (Jana et al., 2013).

The present study is concerned with the in Silico comparison of both non-pathogenic and pathogenic bacterial tannase and to answer about their safe application at industrial level.

2. Material and methods

2.1. Dataset

A detailed analysis of the sequence and structure of bacterial tannase was performed. A total 309 bacterial tannase sequences were retrieved from the UNIPROT database (UniProt: a hub for protein information, 2015). These sequences were divided in two groups-pathogenic and non-pathogenic bacteria tannase. These pathogenic bacteria were again divided into 4 subgroups - animal pathogens, human pathogen, plant pathogen, and both animal and plant pathogen based on their previous pathogenic reports (Hildebrand, 1971; Centurion-Lara et al., 1997; Podschun and Ullmann, 1998; Pauleta et al., 2001; Qin et al., 2011; Schröttner et al., 2014; Drancourt et al., 1997; Yadav et al., 2018; Kikuchi et al., 2020). Structures of non-pathogenic bacteria (*Lactobacillus plantarum*) were retrieved from the RCSB protein database (PDB) (Berman et al., 2000). Due to the lack of structure of pathogenic bacterial tannase, a model structure was created.

(Lieutaud et al., 2016) called disorder forming residues. Mean relative abundance (MRA) of sequences were calculated from the mean value of nonpathogenic bacterial tannase relative to pathogenic bacterial tannase to compare the data. Evolutionary properties of the sequences were calculated by the help of APBEST (Gupta et al., 2017). The phylogenetic tree was constructed by FigTree (Rambaut, 2014).

2.2. Multiple sequence alignment (MSA)

Multiple sequence alignment (MSA) was performed for all sequences using CLUSTAL Omega (Sievers et al., 2011) and the result was represented by JALVIEW (Clamp et al., 2004).

2.3. Physicochemical and evolutionary properties

Result of MSA was divided into two categories-block and non-block of sequences. Block of the sequence was prepared by BLOCK by using BLOCK MAKER (Henikoff et al., 1995). In BLOCK format all homologous positions are fixed. Each position may contain various kinds of residues. Both non block and block sequences were analysed by PHYSICO2 (Banerjee et al., 2015) for the calculation of physicochemical properties. It gives more than 20 types of residue level analysis and 46 window dependent properties form a protein FASTA file. Physicochemical parameters like amino acid compositions, GRAY (grand average of hydropathy), pl, aliphatic index, disordered forming residues and ordered forming residues etc were calculated by the help of PHYSICO2. Based on the strength of order formation C, F, Y and W are taken as strong order forming residues. On the other hand, disorder regions of proteins were found to have higher content of R, E, G, Q, S, K, P and G. Most disorder residues based on their abundance in these proteins are R, E, S and P.
Pathogenicity	Organism	ACC No.	DFR	OFR	GRAVY	pI	Aliphatic index (Ali Ind)
animal infections	Afipla broomeae	A0A2MRZG7	23.8	11.2	-0.07	9.18	58.62
Alteromonas sp.	A0A3D0T3E3	17.5	15	0.19	5.62	53.62	
human infections	Alteromonas sp.	A0A0N7KYJ3	17.5	8.8	-0.29	4.76	102.38
	Klebsiella sp.	A0A263JYJ0	13.8	11.2	-0.21	6.58	84.12
	Alteromonas sp.	A0A3D0T3E3	17.5	12.5	0.27	6.42	69.62
	Serratia sp.	A0A2V1HI92	18.8	8.8	-0.33	4.66	85.38
	Burkholderia pyrrhocina	A0A3D3FKB1	17.5	12.5	0.27	6.44	80.25
	Treponema sp.	A0A353SAZ4	18.8	8.8	-0.33	4.66	85.38
	Olsenella sp.	A0A367NI18	22.5	11.2	-0.14	6.86	78.12
	Prolixibacteraceae bacteria	A0A3D1L1M7	18.8	8.8	-0.07	4.66	89.00
	Treponema sp.	A0A3D3F0K1	17.5	12.5	0.27	6.44	80.25
	Comamonadaceae bacteria	A0A257MF43	16.2	8.8	-0.09	5.11	94.00
	Paracoccus pantotrophus	A0A495PRV1	21.2	7.5	-0.24	5.57	106.25
	Actinomadura pelletieri	A0A495QG59	25	12.05	-0.08	10.0	79.12
	Burkholderia insecticola	R4WG68	20.00	11.20	-0.3	6.01	96.25
plant pathogen	Acidovorax delafieldii	A0A165LJ6	15.00	10	0.1	5.05	84.38
	Burkholderiales bacteria	A0A257CD03	23.8	12.5	-0.19	5.58	85.25
	Acinetobacter baumannii	A0A257CJ44	17.5	10	0.21	4.99	90.25
	Acinetobacter baumannii	A0A257LE10	18.8	10	0.19	5.69	90.38
	Acinetobacter baumannii	A0A257ISY7	17.5	11.2	0.15	6.7	90.25
	Acinetobacter baumannii	A0A257M4N4	18.8	11.2	0.19	5.87	70.88
	Acinetobacter baumannii	A0A257Q1J1	17.5	8.8	-0.13	7.52	93.88
	Acinetobacter baumannii	A0A257S17	12.5	11.2	-0.15	7.42	79.38
	Acinetobacter baumannii	A0A257T166	18.8	10	0.13	8.47	82.88
	Acidovorax delafieldii	A0A25699K8	15	12.5	-0.2	6.43	80.62
	Acidovorax delafieldii	A0A25685EL6	15	11.2	-0.06	5.77	80.75
	Acidovorax delafieldii	A0A25685I3	15	11.2	-0.29	6.7	79.38
	Acidovorax delafieldii	A0A25698W22	16.2	12.5	-0.18	5.09	72.12
	Acidovorax delafieldii	A0A25698W88	16.2	12.5	-0.18	5.09	72.12
	Acidovorax delafieldii	A0A25698W97	16.2	12.5	-0.18	5.09	72.12
	Acidovorax delafieldii	A0A25698Y64	16.2	11.2	-0.15	5.79	86.75
	Acidovorax delafieldii	A0A25698Y70	13.8	11.2	-0.32	6.41	78.12
	Acidovorax delafieldii	A0A25698Y74	13.8	11.2	-0.27	6.7	78.12
	Acidovorax delafieldii	A0A25698W88	17.5	11.2	-0.2	7.42	63.37
	Acidovorax delafieldii	A0A25698X300	16.2	12.5	-0.2	6.43	81.88
	Acidovorax delafieldii	A0A256X9000	15	11.2	0.3	6.7	78.12
	Acidovorax delafieldii	A0A256HDP5	15	12.5	-0.2	6.43	79.38
	Acidovorax delafieldii	A0A256HJS5	15	11.2	0.3	6.7	78.12
	Acidovorax delafieldii	A0A256HJS1	17.5	11.2	-0.04	5.81	77
	Acidovorax delafieldii	A0A256HDF3	15	11.2	0.3	6.7	78.12
	Acidovorax delafieldii	A0A256HDF4	15	11.2	0.06	5.77	80.75
	Acidovorax delafieldii	A0A256HDF9	15	12.5	-0.2	6.43	80.62
	Acidovorax delafieldii	A0A3282HL3	18.8	10	-0.13	9.02	85.5
	Acidovorax delafieldii	A0A328ILM9	13.8	11.2	-0.29	6.86	72
	Acidovorax delafieldii	A0A328ILM05	13.8	11.2	-0.18	7.42	74.37
	Acidovorax delafieldii	A0A328ILM20	16.2	10	-0.04	5.81	78.25
	Acidovorax delafieldii	A0A328ILM19	16.2	10	-0.04	5.81	78.25
	Acidovorax delafieldii	A0A328ILM5	15	11.2	0.3	6.7	78.12
	Acidovorax delafieldii	A0A328ILV01	15	12.5	0.2	6.43	79.38
	Acidovorax delafieldii	A0A495GX1	15	11.2	-0.28	6.69	78.12
	Acidovorax delafieldii	A0A495HSM5	16.2	10	-0.04	5.81	78.25

(continued on next page)
Pathogenicity	Organism	ACC No.	DFR	OFR	GRAVY	pI	Ali	Ind
plants and animals	Pseudomonas sp.							
		A0A348R1P3	18.8	11.2	-0.14	4.84	80	80.5
		A0A348SKP4	21.2	11.2	-0.21	8.49	90.25	
		A0A350ABK1	26.2	11.2	0.08	5.76	69.62	
		A0A350ABR3	21.2	11.2	-0.22	8.5	90.25	
		A0A350GWW1	26.2	10	0.07	7.63	82	
		A0A350JWB4	21.2	11.2	-0.22	8.5	90.25	
		A0A352G1I3	22.5	11.2	0.06	7.46	69.62	
		A0A352HVP1	21.2	11.2	-0.22	8.5	90.25	
		A0A355LIN0	18.8	11.2	-0.09	5.17	75.62	
		A0A356N026	18.8	10	-0.21	7.59	90.25	
		A0A357P7D1	25	11.2	0.07	5.76	69.62	
		A0A358FT95	27	11.3	0.07	5.54	69.67	
		A0A3885FW3	18.8	11.2	-0.09	5.17	75.62	
		A0A388JBL2	26.2	11.2	0.08	5.76	69.62	
		A0A389B824	26.2	10	0.11	6.87	82	
		A0A389TB99	26.4	10.1	0.12	6.88	80	
		A0A389TL63	26.2	11.2	0.08	5.76	69.62	
		A0A3C0P4C6	21.2	11.2	-0.22	8.5	90.25	
		A0A3C1IRP7	26.2	11.2	0.08	5.76	69.62	
		A0A3C1RML0	21.2	11.2	-0.22	8.5	90.25	
		A0A3D0K9E4	22.5	11.2	-0.22	8.5	90.25	
		A0A3D2CS8	26.2	11.2	0.02	5.75	68.38	
		A0A3D2M686	17.5	11.2	-0.12	4.84	75.62	
		A0A3D2YC8F	21.2	11.2	-0.22	8.5	90.25	
		A0A3D2YC1U	26.2	11.2	0.08	5.76	69.62	
		A0A3D5QXO	26.2	10	0.07	7.63	82	
Average	Pseudomonas sp.							
nonpathogenic	Acidobacteria bacterium							
		A0A1Q6JAT5	15.7	12.9	-0.26	5.08	69.86	
		A0A1Q6JAT7	15.7	12.9	-0.22	5.08	67	
		A0A1Q7CDH1	15.7	12.9	0.3	4.72	69.86	
		A0A1Q7FN8	19.9	12.9	-0.16	6.44	79.57	
		A0A1Q7GJ8	15.3	11.4	-0.04	5.64	71.14	
		A0A1Q7GR3	17	12.9	-0.23	4.66	86.57	
		A0A1Q7NE8	20.7	12.9	-0.18	5.16	83.71	
		A0A1Q7RT7	19.9	12.9	-0.16	6.44	79.57	
		A0A1Q8BB2	18.4	12.9	-0.2	7.42	79.57	
		A0A3D4FST8	15.7	11.4	-0.47	6.69	94.86	
		A0A3D4FV4	20.7	11.4	0.04	6.45	68.29	
		A0A3D4FVS1	15.7	12.9	-0.37	6.85	72.71	
Average	Acidobacteria bacterium							
nonpathogenic	Algoriphagus antarcticus							
		A0A3E0DS9	11.4	17.1	-0.51	6.13	91.86	
		A0A3G9HC6	12.9	11.4	-0.25	5.51	89.29	
Average	Algoriphagus antarcticus							

(continued on next page)
Pathogenicity Organism	ACC No.	DFR	OFR	GRAVY	pI	Ali Ind		
Bacillus megaterium	A0A2A8XE9	18.6	12.9	-0.09	6.71	80.86		
	A0A2AW381	18.6	12.9	-0.09	6.71	80.86		
	A0A2AW3A4	17.1	12.9	-0.07	10.1	71.14		
	A0A2AY08	17.1	12.9	-0.09	10.1	69.71		
	A0A2AY620	18.6	14.3	-0.12	6.44	80.86		
	A0A588Q4C2	17.1	12.9	-0.13	7.56	80.86		
	A0A588QEF4	17.1	12.9	-0.07	10.1	71.14		
Bradyrhizobium huanghuaiense	A0A562B4X4	17.1	10	-0.17	6.69	82.29		
	A0A562B517	15.7	18.6	-0.31	9.54	82.29		
	A0A562B989	15.7	12.9	-0.44	4.41	86.43		
Bradyrhizobium lablabi	A0A2J9V55S	18.4	10	-0.19	5.87	100.43		
	A0A2J9VC52	14.3	12.9	-0.45	4.19	96.29		
	A0A2J9VGU1	18.6	12.9	-0.01	5.68	78.29		
	A0A2J9VHC6	12.9	12.9	-0.57	8.35	106		
Brevundimonas diminuta	A0A246KNG1	18.9	11.4	-0.07	8.5	83.57		
Brevundimonas sp.	A0A2S8WC05	12.9	11.4	-0.23	8.49	76.86		
Bryobacterales bacteria	A0A3D1B235	14.3	14.3	-0.38	5.53	82.57		
Collimonas pratensis	A0A127PZK5	12.9	17.1	-0.36	6.41	88		
	A0A127QSE8	11.4	17.1	-0.35	6.41	85.29		
Cyanobacteria bacteria	A0A350X46	15	14.3	-0.31	7.4	92.14		
Dyadobacter jiangsuensis	A0A2P8GI72	14.3	11.4	-0.19	7.26	75.43		
Edaphobacter aggregans	A0A3R9PWC6	14.3	17.1	-0.4	7.42	81		
Edaphobacter dinghuensis	A0A495B1U9	15.7	12.9	-0.38	7.42	96.14		
Edaphobacter modestus	A0A4J7Y7T20	10	14.3	-0.4	6.42	80.86		
	A0A4J7YX34	12.9	11.4	-0.42	8.54	74		
Geodermatophilus tzadiensis	A0A2T0TQP9	12.9	17.1	-0.35	4.93	80.86		
Granulicella sp.	A0A3R8QIC9	11.4	12.9	-0.42	8.43	74		
Herbaspirillum seropedicae	A0A4R8NQC9	17.1	12.9	-0.13	4.49	75.57		
Hydrogenophaga sp.	A0A350SR60	11.4	12.9	-0.32	9.06	82.43		
	A0A350SZD1	14.3	15.7	-0.46	8.43	87.86		
Hylemonella gracilis	F3KUL5	17.1	12.9	-0.34	5.72	82.29		
Janthinobacterium sp.	A0A2Q7TPQ9	12.9	12.9	-0.05	4.35	72.71		
Kribbella sp.	A0A318PH4	18.6	14.3	-0.4	4.65	76.71		
Komagatanabacter xylinus	A0A2D3HEP9	17.1	14.3	-0.42	4.65	76.71		
Lactobacillus acidophilus	A0A2Q7W28	10	12.9	-0.53	4.32	106		
Lactobacillus alimentarius	A0A4R1WPV4	14.3	12.9	-0.21	4.64	89.14		
Lactobacillus brevis	A0A4R1WQ69	18.6	14.3	-10.3	8.43	87.86		
Lactobacillus curieae	A0A4R2C1W1	15	15.7	-0.17	10.2	75.43		
	A0A4V2F7E5	15	17.1	-0.26	9.48	83.71		
Kutzneria buriramensis	A0A3E0HZ0	8.6	11.4	-0.17	4.88	79.57		
Lactobacillus acidophilus	A0A4R8F3E0	15	11.4	-0.07	9.74	57.43		
Lactobacillus alimentarius	A0A4R9HIQ50	15.7	14.3	-0.31	8.99	75.29		
Lactobacillus brevis	A0A388ETC4	17.1	17.1	-0.34	9.82	87.71		
Lactobacillus casei	A0A0R2BA86	11.4	11.4	-0.21	10.2	58.86		
Lactobacillus casei	A0A161XSA7	11.4	11.4	-0.21	10.2	58.86		
Lactobacillus curvatus	A0A4R2NKR2	11.4	14.3	-0.39	9.27	68.43		
Lactobacillus curvatus	W6T5V7	11.4	14.3	-0.4	9.27	72.57		
Lactobacillus curvatus	A0A1V3Y4K2	15	11.4	-0.07	9.74	74		
Lactobacillus curvatus	A0A0R1V835	18.6	15.7	-0.28	6.42	81.14		
Lactobacillus curvatus	A0A199QAR2	18.6	14.3	-0.3	8.63	75.29		
Lactobacillus curvatus	A0A4G84F30	15	11.4	-0.07	9.74	57.43		
Lactobacillus curvatus	A0A0R1K9A6	17.1	11.4	-0.14	10.7	65.86		
Lactobacillus curvatus	A0A0R1H2G9	17.1	15.7	-0.36	8.67	83.57		
Lactobacillus curvatus	A0A4R1S2M2	11.4	11.4	-0.23	10.2	67.14		
Lactobacillus curvatus	A0A4R1S2M1	15	11.4	-0.11	9.55	57.43		
Lactobacillus curvatus	A0A4R1S2M1	15	11.4	-0.11	9.55	57.43		
Pathogenicity	Organism	ACC No.	DFR	OFR	GRAVY	pI	Ali	Ind
---------------	----------------------------------	---------	-----	-----	-------	-----	-----	-----
	Lactobacillus paucivorans	A0A0R2LXK0	17.1	15.7	-0.36	9.92	80.71	
	Lactobacillus pentosus	A0A2K9HZY9	12.9	15.7	-0.23	4.42	75.14	
		A0A2K9J2I6	15.7	12.9	-0.22	10.4	58.86	
		A0A2P1JP46	15.7	14.3	-0.18	4.5	71	
		A0A2P1JP47	12.9	15.7	-0.24	4.72	71	
		A0A2P1JP53	11.4	15.7	-0.32	4.33	78	
		A0A2P1JP57	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP59	11.4	15.7	-0.3	4.71	72.43	
		A0A2P1JP60	14.3	14.3	-0.19	4.42	72.43	
		A0A2P1JP62	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP63	11.4	15.7	-0.26	4.42	72.43	
		A0A2P1JP64	11.4	15.7	-0.3	4.71	73.86	
		A0A2P1JP65	14.3	12.9	-0.16	4.42	72.43	
		A0A2P1JP66	14.3	14.3	-0.19	4.42	72.43	
		A0A2P1JP67	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP68	11.4	15.7	-0.3	4.71	72.43	
		A0A2P1JP70	14.3	17.1	-0.35	4.33	79.43	
		A0A2P1JP71	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP73	11.4	15.7	-0.3	4.71	72.43	
		A0A2P1JP74	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP75	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP76	14.3	14.3	-0.21	4.42	75.14	
		A0A2P1JP77	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP78	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP79	15.7	12.9	-0.15	4.42	71	
		A0A2P1JP80	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP81	12.9	18.6	-0.3	6.45	73.86	
		A0A2P1JP82	14.3	14.3	-0.19	4.42	72.43	
		A0A2P1JP84	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP85	15.7	14.3	-0.19	4.42	72.43	
		A0A2P1JP87	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP89	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP90	12.9	15.7	-0.25	4.72	72.43	
		A0A2P1JP91	12.9	15.7	-0.25	4.72	72.43	
		A0A2S9YNQ5	15.7	12.9	-0.22	10.4	58.86	
		A0A2S9YVG1	14.3	14.3	-0.18	4.42	68.29	
		A0A2S9YVVX	15.7	12.9	-0.22	10.4	58.86	
		A0A2S9YVVX8	14.3	14.3	-0.23	4.72	72.43	
		A0A2S9YVM2	15.7	12.9	-0.22	10.4	58.86	
		A0A2S9W5G2	15.7	14.3	-0.2	4.5	73.71	
		A0A3M6KL4	15.7	12.9	-0.22	10.4	58.86	
		A0A3M6LU9	12.9	15.7	-0.25	4.72	72.43	
		A0A4S1G2K2	12.9	15.7	-0.25	5.62	71	
		A0A4S1G5S5	15.7	12.9	-0.22	10.4	58.86	
		F6IR14	15.7	12.9	-0.22	10.4	58.86	
		F6IR18	11.4	15.7	-0.3	4.71	72.43	
		G6M044	15.7	12.9	-0.22	10.4	58.86	
		G6M5S6	14.3	14.3	-0.19	4.42	72.43	
		H5KY14	14.3	14.3	-0.23	4.72	71	
		M5AP49	15.7	14.3	-0.2	4.5	73.71	
		T2HN93	12.9	15.7	-0.25	4.72	72.43	
		T2HN96	15.7	14.3	-0.1	4.18	71	
		T2HNG4	15.7	14.3	-0.15	4.31	73.71	

(continued on next page)
Table 1 (continued)

Pathogenicity Organism	ACC No.	DFR	OFR	GRAVY	pI	Ali Ind
Lactobacillus plantarum	A0A0F7GJK2	14.3	12.9	-0.3	8.63	75.29
	A0A0G9GPE8	15.7	12.9	-0.23	10.4	58.86
	A0A199QIQ2	14.3	12.9	-0.19	6.48	79.43
	A0A1E3KV81	15.7	12.9	-0.29	6.86	75.29
	A0A1S0RU34	14.3	12.9	-0.3	8.63	75.29
	A0A1W6NR26	15.7	12.9	-0.22	10.4	58.86
	A0A387DIN7	14.3	12.9	-0.3	8.63	75.29
	A0A3Q9OYE5	14.3	12.9	-0.3	8.63	75.29
	A0A39SKSF6	14.3	12.9	-0.3	8.63	75.29
	A0A39SSF33	14.3	12.9	-0.3	8.63	75.29
	A0A39SKSF4	14.3	12.9	-0.3	8.63	75.29
	A0A495835	14.3	12.9	-0.3	8.63	75.29
	A0A5F0YDB8	15.7	12.9	-0.25	9.27	75.29
Lactobacillus senmaizukei	T2HN98	14.3	12.9	-0.3	8.63	75.29
	T2HNH1	14.3	12.9	-0.3	8.63	75.29
	T2HNZ3	14.3	12.9	-0.3	8.63	75.29
	T2HNZ8	14.3	12.9	-0.3	8.63	75.29
	T2HPES	14.3	12.9	-0.3	8.63	75.29
	T2HQZ7	14.3	12.9	-0.3	8.63	75.29
	T5JWNI	12.9	15.7	-0.25	4.72	71
Lactobacillus sp.	A0A8R2D670	15.7	15.7	-0.57	9.3	87.86
	A0A3R8IJD4	18.6	12.9	-0.12	9.27	83.57
Lactobacillus spicheri	A0A199QIQ2	14.3	12.9	-0.3	8.63	75.29
Lactobacillus suartsaii	A0A4Q0VH3	17.1	11.4	-0.25	10.2	72.86
Lactobacillus sSYMAe	A0A9R1MZ09	14.3	12.9	-0.23	10.4	60.29
Marinobacterium mangrovicola	A0A4R1G7Z5	15.7	8.6	-0.25	5.74	93.57
	A0A4R1G8V6	14.3	11.4	-0.29	5.66	86.43
	A0A4R1G8H8	11.4	11.4	-0.39	4.8	104.57
Massilia flava	A0A862PHV0	14.3	10	-0.15	5.74	78.29
	A0A862Q3C7	10	17.1	-0.49	6.69	75.29
	A0A9R1JE6V1	14.3	14.3	-0.41	6.41	78
	A0A9R1JRC9	14.3	8.6	-0.29	4.94	112.86
	A0A9R1JHD9	12.9	12.9	-0.32	5.66	76.86
Nostoc sp.	A0A318ARQ9	17.1	12.9	-0.26	6.86	94.71
	A0A318BBV5	20.4	15.7	-0.2	9.17	68.57
	A0A318DSP5	17.1	12.9	-0.19	6.43	86.57
	A0A318BPC8	14.3	14.3	-0.25	7.25	71.57
	A0A318B76	18.6	11.4	0.04	7.52	61.57
Novosphingibium taibuenense	A0A562JN73	15.7	12.9	-0.24	6.16	86.57
	A0A562JN15	19.9	14.3	-0.11	6.44	75.29
Paraburkholderia sp	A0A495SPL1	18.4	11.4	-0.3	4.17	78.14
	A0A495G1V4	14.3	10	-0.21	5.74	86.57
	A0A495G633	10	14.3	-0.29	4.56	82.43
MSPH034	A0A495S8F9	18.4	14.3	-0.12	4.15	68.43
MSPH034	A0A495T4J4	17.1	15.7	-0.33	4.94	83.86
MSPH034	A0A495T4W0	18.6	12.9	-0.04	6.16	80.86
MSPH034	A0A495T7R8	15.7	15.7	-0.34	7.42	76.86
MSPH034	A0A495TQA4	15.7	15.7	-0.11	8.42	67

(continued on next page)
of the network salt bridge). NUM is a new concept to calculate those energies of network salt bridges. The identification of salt bridges microenvironment residues and their energies were calculated by an in house automated method (Mitra et al., 2019). PDB2PQR v1.9.0 (Dolinsky et al., 2004) was used to generate the partial atomic charge (Q) and radius (R) with a force field, CHARMM22 (Buck et al., 2006). The Poisson-Boltzmann calculations were performed to determine atomic potentials with the help of APBS (Jurrus et al., 2018). The concept of the microenvironment is new in this field (Nayek et al., 2015).

3. Results and discussion

3.1. Physiochemical and evolutionary analysis

Physiochemical properties of all the bacterial sequences were individually evaluated. Some differences have been identified between pathogenic and non-pathogenic bacterial tannase sequences (Table 1). The number of disorder forming residue (S + E + P + R) and order forming residue (C + F + Y + W) are critical properties for a protein (Lieutaud et al., 2016). GRAVY indicates the hydrophobic and hydrophilic nature of the protein (Kaur and Pati, 2018).

By the analysis of physicochemical properties (Table 1), it showed that the tannase sequences of pathogenic bacteria contain high number of disorder forming residues, which means it can cause some diseases in human or create toxicity in enzymatic reaction (Tretyachenko et al., 2017). On the other hand, tannase sequences of non-pathogenic bacteria contain high number of order forming residue. The present study reveals that the negative value of GRAVY of non-pathogenic bacterial tannase indicates that it is hydrophilic in nature. It could easily mix with any aqueous medium (Schroeder, 2017). Enzymes with less disorder forming residues and highly hydrophilic in nature are highly stable and are could be very helpful and profitable for industries (Rigoldi et al., 2018). The

Table 1 (continued)

Pathogenicity	Organism	ACC No.	DFR	OFR	GRAVY	pI	Ali	Ind
pathogenic	Pseudomonas	A0A495TR06	12.9	14.3	-0.22	4.62	90.57	
non-pathogenic	Pseudomonas	A0A495TUG7	14.3	10	-0.24	6.42	90.86	
pathogenic	Pseudomonas	A0A4R1J326	14.3	14.3	-0.36	5.97	75.14	
non-pathogenic	Pseudomonas	A0A562G7H4	12.9	12.9	-0.2	4.58	74.14	
pathogenic	Pseudomonas	A0A1X0N509	18.6	12.9	-0.27	7.4	93.57	
non-pathogenic	Pseudomonas	A0A2T0SB96	17.1	12.9	-0.3	5.46	72.71	
pathogenic	Pseudomonas	A0A562E413	19.9	12.9	-0.46	4.51	93.57	
non-pathogenic	Roseobacter	A0A562STT3	18.4	10	-0.18	8.36	89.29	
pathogenic	Simplicispora	A0A2U1C866	18.6	15.7	-0.17	5.09	79.71	
non-pathogenic	Ureacoccus	A0A2T0SBY3	19.9	15.7	-0.09	7.3	71.14	
pathogenic	Variospirax	A0A109D427	18.4	15.7	-0.23	8.47	84	
non-pathogenic	Pseudomonas	A0A125NU60	14.3	11.4	-0.29	5.55	81	
pathogenic	A0A2G6NT685	15.7	12.9	-0.27	9.05	100.43		
non-pathogenic	A0A2G6SN6	14.3	20	-0.46	8.99	85		
pathogenic	A0A2G6ST73	12.9	15.7	-0.28	4.88	86.57		
non-pathogenic	A0A2G6TX73	14.3	11.4	-0.28	4.51	95		
pathogenic	A0A2G6X9A91	15.7	8.6	-0.26	5.08	96.43		
non-pathogenic	A0A2G6X5T3	14.3	11.4	-0.28	4.51	95		
pathogenic	A0A2G6X9A91	15.7	8.6	-0.26	5.08	96.43		
non-pathogenic	A0A2G6X9A91	15.7	8.6	-0.26	5.08	96.43		
Average		14.9	13.6	-0.245	6.73	76.42		

Table 2. Evolutionary properties like maximum conserved residue (MCR), Maximum diverse residue (MDR), Dominant hetero pair (DHP), Non conserve and conserve ratio (R) and E value of non-pathogenic bacterial tannase and pathogenic bacterial tannase sequences.

Properties	Non pathogenic	Pathogenic
MCR	A > T > V	A > L > V
MDR	G > A > Y	G > A > D
DHP	AG > DV > EA	ML > SA > AG
R ratio	100.14	85.99
E value	65.98	57.68
Table 3. Type of organism with their site profile name and accession number in relation to tannase.

Type of organism	Site profile name	Acc. No.
Nonpathogenic	Eukaryotic thiol (cysteine) proteases histidine active site	A0A2P8GI72
	Glycoprotein hormones beta chain signature 1	A0A350X46
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2H9V655
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2H9VIF2
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6X5T3
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A125NU60
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A190D437
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6WT85
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6X91
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6X7X3
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A4R1G7Z5
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A495T4W0
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A495G1V4
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A3D4FV49
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A3D4FST8
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A4G9GPE8
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A4G9V8F4
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A1W6R26
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A448F360
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A0R1TM22
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A358K1G1
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A1V3Y4K2
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A0R2BA66
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A161XSA7
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A0R1K9A6
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A0F3H8R38
	Prokaryotic membrane lipoprotein lipid attachment site profile	F6RL4
	Prokaryotic membrane lipoprotein lipid attachment site profile	G0M044
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A494SU8
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2K9I2I6
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A127QSE8
Human pathogen	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A318IM73
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A353SAZ4
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A257FZ4W4
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2V1HH92
	Serine/threonine dehydratases pyridoxal-phosphate attachment site	A0A495SPR1
	Type-1 copper (blue) proteins signature	A0A3D4FWC6
	Twin arginine translocation (Tat) signal profile	A0A2T0TQP9
	Twin arginine translocation (Tat) signal profile	A0A2H9V9G1
	Type-1 copper (blue) proteins signature	A0A3D4FWC6
	Serine/threonine dehydratases pyridoxal-phosphate attachment site	A0A495SPR1
	Twin arginine translocation (Tat) signal profile	A0A3D4FWC6
	Twin arginine translocation (Tat) signal profile	A0A356GSK5
	Twin arginine translocation (Tat) signal profile	A0A356GSK5
	Twin arginine translocation (Tat) signal profile	A0A356GSK5
plant pathogen	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A257LMN4
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A257LS17
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6X2L6
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A257LYY7
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A514E1B9
	Prokaryotic membrane lipoprotein lipid attachment site profile	G0EY7
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A168F6C6
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6EL6
	Prokaryotic membrane lipoprotein lipid attachment site profile	A0A2G6EL6

(continued on next page)
isoelectric point of non-pathogenic sequences is slightly higher than pathogenic bacterial tannase. The result of pI indicates that non-pathogenic bacterial tannase can tolerate a wide range of pH (Kiraga et al., 2007). The aliphatic index of the non-pathogenic and pathogenic bacterial tannase is almost equal. That means the thermal stability of those proteins is nearly the same (Panda and Chandra, 2012).

From the analysis of amino acid composition (Figure 1.) of two groups of bacterial tannase sequences, it is clear that high number of acidic and basic residues (except R) are present in non-pathogenic bacterial tannase. Hydrophobic amino acids showed higher abundance in pathogenic sequences. Kyte Dolittle hydrophobicity scale indicated that those non-pathogenic bacterial tannases are highly hydrophilic in nature (Figure 1b green line). It means it could easily interact with the liquid or aqueous medium which is beneficial for industrial applications (Schröder, 2017). On the other hand, those pathogenic bacterial tannase are hydrophobic in nature (Figure 1b red line).

Analysis of evolutionary properties of both groups of sequences (Table 2) have shown that the maximum conserve residues are almost same in both non-pathogenic and pathogenic bacterial tannases. In the case of the maximum diverse residue (MDR), it also showed almost identical residues except for the third one of pathogenic bacterial tannase. It is neutral polar in non-pathogenic bacterial tannase whereas it is acidic polar in pathogenic bacterial tannase. The R ratio, i.e. non conserve/conserve residue ratio is low in pathogenic bacterial tannase sequences. That means their divergence is strictly restricted (Bandyopadhyay et al., 2019a). E value, i.e. use of

Figure 2. Phylogenetic tree showed relationship between non-pathogenic (green, pink) and pathogenic (red) bacterial tannase. A similar relation clade (blue) also found between them.
The dominant hetero pair is high in non-pathogenic bacterial tannase. That means they used their charged residues rigorously. So, the overall analysis of sequences of both groups indicates that acidic and basic residues have a principal role in non-pathogenic bacterial tannase sequences.

3.2. Conservation more in pathogenic bacterial tannase

The result of MSA showed that a large number of single conserve amino acid positions are present in pathogenic bacterial tannase. Conserved amino acid positions 193(G), 196(G), 231(G), 232(H), 314(Y), 317(G), 322(G), 323(R), 334(P), 362(G), 431(D), 484(C), 485(L), 643(K), 648(G), 652(D), 692(P), 693(G), 740(W), 741(E) were found in all pathogenic bacterial tannase. Most positions are prevalent by neutral non-polar amino acid Glycine. Conserved amino acids position number 196(P), 297(G), 298(Y), 432(G), 433(G), 932(H), 979(W) are found in non-pathogenic bacterial tannase. From the above result, it is found that single conserve amino acid positions are much higher in pathogenic bacterial tannase that support the R ratio value.

3.3. Similarity in site profile

Six types of site profile in non-pathogenic bacterial tannase and four types of site profile in pathogenic bacterial tannase have been identified (Table 3). Both types of bacterial tannase showed a common site profile which is prokaryotic membrane lipoprotein lipid attachment site profile. It was found in 36 sequences of non-pathogenic bacterial tannase and 23 sequences of pathogenic bacterial tannase. Twin arginine translocation

Table 4. Details of the Ramachandran plot of *Lactobacillus plantarum* (4J0K) and *Treponema* sp. (model).

Properties	*Lactobacillus plantarum* (PDB ID-4J0K)	*Treponema* sp. (model)	
Plot area	residues in favored region	89.90%	82.90 %
	residues in allowed region	9.20%	13.40%
	residues in generously region	0.40%	1.50%
	residues in disallowed region	0.50%	2.20%
Residue properties	Max. deviation	19.9	7.7
	Bad contacts	0	0
G-factors	Dihedrals	-0.16	-0.43
	Covalent	-0.02	0.08
	Overall	-0.12	-0.27
(Tat) signal profile was also found in both groups of sequences. In case of non-pathogenic bacterial tannase, 4 types of signature specially found; Glycoprotein hormones beta chain signature 1, Eukaryotic thiol (cysteine) proteases histidine active site, Type-1 copper (blue) proteins signature and Zinc-containing alcohol dehydrogenases. Pathogenic bacterial tannase also possesses some unique sites like Serine/threonine dehydratases pyridoxal-phosphate attachment site, TonB-dependent receptor proteins signature 1.

3.4. Relationship between two groups

Phylogenetic group reveals the relation between non-pathogenic and pathogenic bacterial tannase (Figure 2.). Total 4 clades have been found. All the firmicutes (green) were found to form a big clade at one side of the Phylogenetic tree. This clade contains all species of Lactobacillus. The pink clade contains all non-pathogenic proteobacteria that produce tannase. All pathogenic bacteria has formed a different clade (red) at one side of the phylogenetic tree. The most exciting clade is blue clade which contained both pathogenic and non-pathogenic proteobacteria. It indicates that they had some sequence similarity. The decoration of branching in a phylogenetic tree demonstrates how those groups of tannase producing bacteria evolved from a series of familiar forbears.

3.5. Evaluation of model

After preparation, the model was evaluated by verify3D (Eisenberg et al., 1997) and Procheck (Laskowski et al., 1993) (Figure 3). Global Model Quality Estimation (GMQE) was showed 0.60, which indicated that it got higher reliability. In case of the Ramachandran plot, the model showed 82.90% in favored regions, 13.40 % in additional allowed regions, 1.50% in generously allowed regions (Table 4). It was almost similar to the template structure. The maximum deviation of the model structure was 7.7 and no bad contacts were found. The overall G-factors are negative, which indicates that it was a good model (Maheshwari and Jain, 2019). RMSD of the model with the template was

| Table 5. No. of salt bridges (isolated and network) with desolvation (ΔΔG_{dsvl}), bridge (ΔΔG_{brd}), background (ΔΔG_{bac}), total net energy (ΔΔG_{net}) of structures of Lactobacillus plantarum and model structure of non-pathogenic bacterial tannase. |
|---|-----------------|-----------------|-----------------|-----------------|
| Protein name | No. of isolated salt bridges | ΔΔG_{dsvl} (Kcal/mol) | ΔΔG_{brd} (Kcal/mol) | ΔΔG_{bac} (Kcal/mol) | ΔΔG_{net} (Kcal/mol) |
| 3WA6 | 9 | 99.95 | -117.75 | -25.45 | -43.25 |
| 3WA7 | 9 | 97.57 | -114.76 | -27.13 | -44.32 |
| 4JO0 | 11 | 121.95 | -142.6 | -40.92 | -61.57 |
| 4JO0 | 11 | 121.95 | -142.6 | -40.92 | -61.57 |
| 4JO0 | 8 | 81.82 | -98.93 | -35.21 | -52.32 |
| 4JO0 | 8 | 96.13 | -104.1 | -38.43 | -46.4 |
| 4JO1 | 10 | 121.24 | -123.92 | -49.53 | -52.21 |
| 4JO1 | 10 | 124.53 | -124.16 | -49.29 | -48.92 |
| 4JO1 | 12 | 122.84 | -124.22 | -50.6 | -67.98 |
| 4JO1 | 10 | 119.36 | -125.67 | -45.37 | -61.68 |
| MODEL | 11 | 97.64 | -114.28 | -12.25 | -28.89 |
| Protein name | No. of Network salt bridges | ΔΔG_{dsvl} (Kcal/mol) | ΔΔG_{brd} (Kcal/mol) | ΔΔG_{bac} (Kcal/mol) | ΔΔG_{net} (Kcal/mol) |
| 3WA6 | 3 | 88.62 | -117.46 | -8.66 | -37.5 |
| 3WA7 | 3 | 72.79 | -99.31 | -7.41 | -33.99 |
| 4JO0 | 3 | 95.57 | -133.87 | -0.51 | -38.8 |
| 4JO0 | 3 | 67.11 | -91.91 | -1.24 | -26.04 |
| 4JO0 | 5 | 105.43 | -141.32 | -8.45 | -44.37 |
| 4JO0 | 5 | 93.13 | -130.3 | -12.14 | -49.31 |
| 4JO1 | 4 | 93.39 | -125.08 | -6.23 | -37.93 |
| 4JO1 | 5 | 103.09 | -148.2 | -12.84 | -57.96 |
| 4JO1 | 3 | 59.93 | -79.31 | -7.57 | -26.97 |
| 4JO1 | 4 | 72.39 | -101.29 | -2.54 | -31.46 |
| MODEL | 2 | 40.1 | -54.88 | -3.33 | -18.1 |
3.6. Proof of higher stability

Not only the number of salt bridges but also the energies per salt bridge were analyzed. Both types of salt bridges, i.e. isolated and network salt bridges, were analyzed. In case of isolated salt bridges, structures of non-pathogenic bacterial tannase showed higher number of salt bridges than the pathogenic model structure (Table 5). 4J0K showed highest isolated salt bridge energies. In case of network salt bridges, structures of non-pathogenic bacterial tannase showed higher number of salt bridges than pathogenic bacterial tannase (Table 5). 4J0J showed highest network salt bridge microenvironment energies. It is also found that high number of residue involvement in the microenvironment of non-pathogenic bacterial tannase gives more stability. These residues affect the stability of proteins by contributing favorable or unfavorable environment.

3.7. Effect of intrinsic microenvironment

The microenvironment plays an excellent role in increasing the stability of the protein. The interaction of microenvironment residues and its partner salt bridge is equally likely neutral or favourable or unfavourable depending on the amino acid composition of the proteins.

Table 6 showed that the microenvironment residues of both types of salt bridges contribute high energies to increase the stability of non-pathogenic bacterial tannase than pathogenic bacterial tannase. 4J0K shows highest isolated salt bridge microenvironment energies whereas 4J0J shows highest network salt bridge microenvironment energies. It is also found that high number of residue involvement in the microenvironment of non-pathogenic bacterial tannase gives more stability. Charged residues play the leading role in forming of the microenvironment of salt bridges. Those charged residue does not constitute any salt bridge. The hydrophobic residues showed lower abundance in microenvironment residues. Some microenvironment residues contribute high energies in salt bridge stability. The unfavourable residues of microenvironments provide a clue for site-directed mutagenesis and help in protein engineering (Mitra et al., 2019). By changing a single associated higher energy help the protein to stabilize in an extreme condition such as high temperature (Kumar and Nussinov 1999), high salt (Bandyopadhyay et al., 2019a) and high pH (Gallivan and Dougherty 2000). Salt bridge of protein can remain stable within an increased range of temperature (284–348K) (Belur and Mugeraya 2011). These salt bridges are surrounded by polar, charged and non-polar residues which have identified as microenvironment of salt bridges (Mitra et al., 2019). These residues affect the stability of proteins by contributing favorable or unfavorable environment.
unfavorable microenvironment residue with a favourable one, the more stable structure will be created for industrial applications.

4. Conclusion

In silico study of bacterial tannase of non-pathogenic bacteria in comparison to pathogenic bacteria showed positive MRA of acidic and basic residues which alter the sequence property and not the structure. Due to the low number of disorder forming residues but high order basic residues which alter the sequence property and not the structure.

Stabilization and application of spray-dried tannase from Aspergillus fumigatus CAS21 in the presence of different carriers. J Biotechnol 10, 1-14

Centurion-Lara, A., Arrol, T., Castillo, R., Shaffer, J.M., Castro, C., Van Voorhis, W.C., Lukehart, S.A., 1997. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: antigenic and genomic analyses. Infect. Immun. 65, 1440–1444. PubMed:9119485.

Clamp, M., Cuff, J., Searle, S.M., Barton, G.J., 2004. The jalview java alignment editor. Bioinformatics 20, 426–427.

Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A., 2004. FDBZQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667.

Drancourt, M., Brouqui, P., Raoult, D., 1997. Aflpia clevelandensis antibodies and crossreactivity with Brucella spp. and Yersinia enterocolitica O: 9. Clin. Diagn. Lab. Immunol. 4, 748–752. PubMed:9384302.

Eisenberg, D., Lüthy, R., Bowie, J.U., 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396–404.

Fiser, A., Sali, A., 2003. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491.

Gallivan, J.P., Dougherty, D.A., 2000. A computational study of cation–π interactions vs salt bridges in aquatic media: implications for protein engineering. J. Am. Chem. Soc. 122, 870–874.

Gupta, P.S.S., Nayek, A., Banerjee, S., Seth, P., Das, S., Sur, V.P., Roy, C., Bandyopadhyay, A.K., 2015. SBION2: analyses of salt bridges from multiple structure files, version 2. Bioinformatics 11, 39–42.

Gupta, P.S.S., Banerjee, S., Islam, N.R.U., Sur, V.P., Bandyopadhyay, A.K., 2017. Substitutional analysis of orthologous protein families using BLOCKS. Bioinformatics 13 (1), 1–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405086/

Hae-Soo, K.I.M., Do Yeon, J.E.O.N., JaiHa, H.M.A., Sahar, N.E., Ha-Nul, L.E.E., Seong-Jin, H.O.N.G., Young-Min, K.I.M., 2020. Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzym. Microb. Technol. 135, 109496.

Henikoff, S., Henikoff, J.G., Alford, W.I., Pietroskovski, S., 1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163, GC17-GC26.

Hildebrand, D.C., 1971. Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61.

Hult, N., Boino, A., Bulliard, V., Ceruti, L., De Castro, E., Langendijk-Genevaux, P.S., Pagni, M., Sigrist, C.J., 2006. The PROSITE database. Nucleic Acids Res. 34, D227–D230.

Islam, N.R.U., Mitra, D., Gupta, P.S.S., Banerjee, S., Mondal, B., Bandyopadhyay, A.K., 2018. AUTOMINv1.0: an automation for minimization of Protein Data Bank files and its usage. Bioinformatics 14, 525–529.

Jana, A., Maiti, C., Halder, S.K., Das, A., Pati, B.R., Mondal, K.C., Mohapatra, P.K.D., 2013. Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAR2. Biochem. Eng. J. 77, 161–170.

Jana, A., Halder, S.K., Banerjee, A., Paul, T., Pati, B.R., Mondal, K.C., 2014. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioreour. Technol. 157, 327–340.

Jimenez, N., Barcenailla, J.M., Lopez de Felipe, F., de las Rivas, B., Muiot, R., 2014. Characterization of a bacterial tannase from Streptococcus galactolyticus UCN34 suitable for tannin biodegradation. Appl. Microbiol. Biotechnol. 98, 6329–6337.

Jimenez, N., Esteban-Torres, M., Marcheiro, J.M., de las Rivas, B., Muiot, R., 2014. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Environ. Microbiol. 80 (10), 2991–2997.

Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Lukehart, S.A., 1997. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: antigenic and genomic analyses. Infect. Immun. 65, 1440–1444. PubMed:9119485.

Kiraga, J., Mackiewicz, P., Mackiewicz, D., Kowalczyk, M., Biercz, P., Polak, N., Smolarczyk, K., Dudek, M.R., Cebra, S., 2007. The relationships between the
