Galaxy interactions II: High density environments

Sol Alonso1,2, Valeria Mesa1,2, Nelson Padilla3, and Diego G. Lambas1,4

1 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
2 ICATE, Universidad Nacional de San Juan, Argentina
3 Pontificia Universidad Católica, Departamento de Astronomía y Astrofísica & Centro de Astroingeniería, Chile
4 IATE, OAC, Universidad Nacional de Córdoba, Laprida 854, X5000BGR, Córdoba, Argentina

1. Introduction

Galaxy properties (morphology, color, star formation, gas content, etc.) have a strong dependence on the local environment where galaxies reside. Several works found evidence that galaxies in high density local environment such as groups and clusters, show different properties than their isolated counterparts (e.g. Dressler 1980; Balogh et al. 2004; Baldry et al. 2006; Skibba & Sheth 2009). Groups and clusters are dominated by spheroidal and gas poor galaxies, because when spiral galaxies traverse the dense local environments of clusters, stripping removes their interstellar gas making them loose their ability to form new stars (e.g. Gunn & Gott 1972; Dressler 1980).

In addition, recent observational and theoretical works support the idea that galaxy properties also depend on the global environment.

Regarding this topic, some authors (e.g. Balogh et al. 2004; Ceccarelli et al. 2008; Park & Choi 2009, Padilla et al. 2010) showed that the star formation rate and colors depend on the large-scale structure. Using a semi-analytic model of galaxy formation, Gonzalez & Padilla (2009) revealed important global effects; the fraction of red galaxies diminishes in equal local density environments, when farther away from clusters and closer to voids. More recently, Cooper et al. (2010), helped improve the picture of these environmental dependences of galaxy properties by relating it to the assembly history of the galaxy hosts. They found that for galaxies of equal age and mass, those characterized by younger ages (later assembly, and bluer colors) were preferentially located in low density environments. Lacerna & Padilla (2011) explained this result showing that the young stellar populations in galaxies in low density environments are a result of the uninterrupted growth of their host halo, which is not the case for galaxies of equal mass in higher density environments, where the infall of material can be diverted to larger neighbors.

On the other hand, observations show that mergers and galaxy interactions are powerful mechanisms that induce star formation (Kennicutt 1998), that may affect several properties of galaxies and their morphology. These effects are strongly dependent on the local environment and epoch in which galaxy interactions occur. Cosmological N-body simulations show that galaxies in close pairs are preferentially located in group environments (Barton et al. 2007). In the same direction, McIntosh et al. (2008) found that massive mergers are more likely to occur in large galaxy groups than in massive clusters. Heiderman et al. (2009) found a low merger rate that only contributes a
small fraction of the total star formation rate (SFR) density of the A901/902 superclusters. The predicted merger rates have uncertainties grow at the lowest masses and high redshifts (Hopkins et al. 2009; 2010), and different assumptions in the modeling of galaxy mergers can also result in significant differences in the timings of mergers, with consequences for the formation and evolution of galaxies (De Lucia et al. 2010). Padilla et al. (2011) inferred the number of mergers during the evolution of early-type galaxies from $z = 1$ to the present-day, finding a descendant at $z = 0$ of lower number density than their progenitors, implying the need for mergers to decrease their number density by today.

Several observational previous works have analyzed the role of the local density environment on galaxy interactions. Lambas et al. (2003) showed that pair galaxies (with projected distance, $r_p < 25$ kpc h^{-1}, and relative radial velocity, $\Delta V < 100$ km s$^{-1}$) in the field have a higher star formation activity than isolated galaxies in the same environment, with similar luminosity and redshift distributions. Alonso et al. (2004), performed a study of galaxy pairs in high-density regions corresponding to groups and clusters. The results of this study indicate that galaxy pairs in groups are systematically redder and have less star formation activity than other galaxy group members with no nearby companions, except for pairs with separations of $r_p < 15$ kpc h^{-1}, which show a significantly higher activity of star formation. Alonso et al. (2006) obtained two galaxy pair catalogs from the 2-degree field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001) and from the second data release of the Sloan Digital Sky Survey (SDSS-DR2, Abazajian et al. 2004), finding that the star formation birth rate parameter is a strong function of the local environment, r_p and ΔV. Robaina et al. (2009) analyzed the enhancement in SFR as a function of projected galaxy separation in major mergers between massive galaxies. They find, on average, a mild enhancement in the SFR in pairs separated by projected distances $r_p < 40$ kpc h^{-1}. Their work shows that galaxy interactions are more effective at triggering important star formation activity in low and moderate density environments with respect to the control sample of galaxies without a close companion. Although close pairs have a larger fraction of actively star-forming galaxies and blue colors, there is a fraction of galaxy interactions that exhibit red colors with respect to those systems without a close companion.

Recently, Perez et al. (2009) found that in low and high local density environments, the colors and shapes of pairs of nearby galaxies are very similar to those of isolated galaxies; however, at intermediate densities they found significant differences, indicating that close pairs may have experienced a more rapid transition to the red sequence than isolated galaxies. Also, they suggest that at intermediate-density environments galaxies are pre-processed efficiently by close encounters and mergers before entering groups and clusters. Using spectroscopic data from the Prism Multi-Object Survey (PRIMUS), Wong et al. (2011) studied isolated close galaxy pairs and compared these to a control sample in the redshift range $0.25 < z < 0.75$. They found that pair galaxies have bluer colors on average than isolated galaxies with similar redshift and r-band luminosity distributions, suggesting an enhancement in SFR.

More recently, Ellison et al. (2010) used a sample of close galaxy pairs selected from the Sloan Digital Sky Survey Data Release 4 (SDSS-DR4) to investigate the effect of the environment on interactions. They found that in high density environments, mergers still occur but mainly without star formation; they also found that the bulge fraction is an increasing function of the nearest neighbor separation out to at least 400 kpc h^{-1}.

Previous works (Alonso et al. 2007; Michel-Dansac et al. 2008; Lambas et al. 2011 in preparation, hereafter L11) have also shown the importance of analyzing different classes of galaxy pair interactions. These studies show that merging pairs with strong signs of interaction show different properties (star formation rate, metallicity, color, etc.) with respect to pairs that show no evidence of distorted morphologies.

Motivated by these findings, in this paper we analyze the effect of high density environments on different classes of galaxy-galaxy interactions and the role played by the global environment of the group on the properties of its number pairs. We will study galaxy interactions within groups and clusters with the aim of assessing whether they play a significant role in modifying the properties of galaxies in pair systems, such as luminosities, colors, star formation rates, etc. For this purpose, using data from the seventh release of the Sloan Digital Sky Survey (SDSS-DR7), we will obtain a large sample of pair galaxies within groups and clusters (from Zapata et al. 2009) and we will classify the interacting pairs according to the intensity of interaction as seen in the morphological appearance of the optical images (Alonso et al. 2007, L11). We will study the spatial distribution of pair galaxy colors, stellar population and color-magnitude relations for different classes of galaxy-galaxy interactions within groups/clusters and compare them to those of group members without close galaxy companions, with the aim to provide further clues on the interplay between the high density environment and merger properties. Finally, we will analyze the effect of the group global environment, obtained from the distance to neighboring groups to try and understand the influence of the large-scale structure on the galaxy formation processes.

This paper is structured as follows. Section 2 describes the procedure used to construct the catalog of group galaxy pairs from SDSS-DR7. Section 3 analyses the luminosity galaxy ranking and the pair distribution in groups/clusters. In Section 4 we discuss the distribution of galaxy pairs in groups and we study the colors and stellar population with respect to both group central distance and host group luminosity. In section 5, we analyze the effect of the group global environment, and in Section 6 we summarize our main conclusions.

2. Construction of a group galaxy pair catalog from SDSS-DR7

The Sloan Digital Sky Survey (SDSS, York et al. 2000) is a photometric and spectroscopic survey that covers approximately one-quarter of the celestial sphere. The imaging portion of the seventh release of the SDSS (DR7, Abazajian et al. 2009) comprises 11663 square degrees of sky imaged in five wave-bands (u, g, r, i, and z) containing photometric parameters of 357 million objects. The main galaxy sample is essentially a smaller, magnitude limited spectroscopic sample (Petrosian magnitude) with 929555 galaxies of $r_{lim} < 17.77$. These galaxies span a redshift range $0 < z < 0.25$ with a median redshift of 0.1 (Strauss et al. 2002).

We have calculated K-corrections using the publicly available code described in Blanton & Roweis (2007) as a calibration for our K-corrected magnitudes. In our previous work (Alonso et al. 2007), we performed a suitable photometric analysis to assess the reliability of the SDSS magnitude debending procedure in merging pairs, finding negligible systematic effects. As a spectral indicator of the mean stellar population age, we will use the strength of the 4000 Å break, $D_n(4000)$, defined as the ratio of the average flux densities in the narrow continuum bands (3850-
3950 Å and 4000-4100 Å, Balogh et al. 1999). This spectral discontinuity arises by an accumulation of spectral lines in a narrow region of the spectrum, an effect that is important in the spectra of old stars. In the following analysis, we also use the star formation rate normalized to the total mass in stars, \(SFR/M^* \), taken from Brinchmann et al. (2004).

In our previous work (L11) on the SDSS-DR7, we built a Galaxy Pair Catalog (GPC) selecting pairs with relative projected separations, \(r_p < 25 \text{kpc h}^{-1} \), relative radial velocities, \(\Delta V < 350 \text{ km s}^{-1} \) and redshifts \(z < 0.1 \). In previous works by the team, we found that these limits are adequate to define galaxy pairs with enhanced star formation activity (Lambas et al. 2003, Alonso et al. 2006). We excluded AGNs and we also removed false identifications (mostly parts of the same galaxy and objects with large magnitude uncertainties). With these restrictions, the pair catalog in the SDSS-DR7 comprises 1959 reliably close galaxy pairs with \(z < 0.1 \). In the galaxy pair catalog obtained from the SDSS, the effects of incompleteness or aperture do not introduce important biases (e.g. see also Balogh et al. 2004; Alonso et al. 2006).

In order to analyze in detail the properties of galaxy interactions in high density environments, we identified the pairs that live in groups by cross-correlating the total galaxy pair catalog with the SDSS-DR7 group catalog constructed by Zapata et al. (2009). These authors identified groups using a friends-of-friends algorithm with the same parameters corresponding to the values found by Merchan & Zandivarez (2005) to produce a reasonably complete sample (95%) with low contamination (< 8%).

The identification procedure consists of an improved version of the Huchra & Geller (1982) friends-of-friends algorithm, with variable linking lengths of \(D_{12} = D_{0} R \) and \(V_{12} = V_{0} R \), in the direction perpendicular and parallel to the line-of-sight, respectively, where \(D_{0} = 0.24 h^{-1} \text{Mpc} \) and \(V_{0} = 450 \text{ km s}^{-1} \). \(R \) is a spatial scaling that takes into account the variation of the space density of galaxies in a flux limited catalog, and is calculated from the ratio of the density of galaxies brighter than the minimum required to enter the catalog at the mean distance of the galaxies being linked, and a characteristic survey depth (Merchan & Zandivarez, 2005, for full details of the group catalog construction method).

In this work we will use the group luminosity as a proxy for the group mass, since it has been shown that the virial mass is prone to large uncertainties below \(M_{Vir} = 3 \times 10^{12} \text{h}^{-1} M_\odot \) (e.g., Padilla et al., 2004). Our estimator is also a proxy for the group total luminosity since our group luminosity consists of the addition of the luminosities of the four brightest galaxy members. The other important group property for this work is the group center, which we calculate by making a luminosity weighted average of the positions of the member galaxies. The group catalog has 122,962 galaxies within 12,630 groups with a minimum number of 4 members and \(z < 0.1 \).

This catalog is constructed in a similar way to those of Berlind et al. (2006) and Yang et al. (2007), and is composed of groups of similar quality as is evident from comparing the completeness and contamination from these works and in Merchan & Zandivarez (2005), while at the same time it gives us the added advantage of allowing to perform the measurements of the group properties that we need.

As a result of this cross-correlation, we obtain a sample of 660 galaxy pairs in 615 groups, with \(z < 0.1 \). We find 40 groups with 2 galaxy pairs, 3 groups with 3 galaxy pairs and 2 groups with 4 galaxy pairs. Fig. 1 shows an extraordinary and unusual example of a multiple galaxy interaction between five group members in the local Universe. The host galaxy group has 27 members with \(M_{Vir} = 2.12 \times 10^{13} M_\odot \).

![Fig. 1. Image of an extraordinary multiple interaction within a SDSS galaxy group. The host group has 27 members with \(M_{Vir} = 2.12 \times 10^{13} M_\odot \).](image)

Classification	Number of pairs	Percentages
Merging	58	8.8%
Tidal	221	33.5%
Non Disturbed	381	57.6%

Table 1. Percentages of pairs classified as merging, tidal and non disturbed, in SDSS groups

In order to analyze in detail the properties of galaxy interactions in high density environments, we identified the pairs that live in groups by cross-correlating the total galaxy pair catalog with the SDSS-DR7 group catalog constructed by Zapata et al. (2009). These authors identified groups using a friends-of-friends algorithm with the same parameters corresponding to the values found by Merchan & Zandivarez (2005) to produce a reasonably complete sample (95%) with low contamination (< 8%).

The other important group property for this work is the group center, which we calculate by making a luminosity weighted average of the positions of the member galaxies. The group catalog has 122,962 galaxies within 12,630 groups with a minimum number of 4 members and \(z < 0.1 \).

This catalog is constructed in a similar way to those of Berlind et al. (2006) and Yang et al. (2007), and is composed of groups of similar quality as is evident from comparing the completeness and contamination from these works and in Merchan & Zandivarez (2005), while at the same time it gives us the added advantage of allowing to perform the measurements of the group properties that we need.

As a result of this cross-correlation, we obtain a sample of 660 galaxy pairs in 615 groups, with \(z < 0.1 \). We find 40 groups with 2 galaxy pairs, 3 groups with 3 galaxy pairs and 2 groups with 4 galaxy pairs. Fig. 1 shows an extraordinary and unusual example of a multiple galaxy interaction between five group members in the local Universe. The host galaxy group has 27 members with \(M_{Vir} = 2.12 \times 10^{13} M_\odot \).

Pair galaxies in the L11 Catalog are classified as Disturbed and Non disturbed pairs. The first class is further sub-classified as merging (M), corresponding to pairs with evidence of an ongoing merging process, and tidal (T), pairs with signs of tidal interactions but not necessarily merging. Non disturbed (N) pairs show no evidence of distorted morphologies. For the group pair catalog we calculate the percentage of these three categories defined above (see Table 1) and find that about 9% of galaxy pairs are classified as M, 33% as T and 58% as N.

Our samples can include spurious pairs. Mann (1986; 1987) found that spurious pairs are expected to be more frequent in high density regions. Our choice of limiting values for the projected separation and radial velocity help to reduce this problem. We expect the M and T pairs to be mostly free of contamination due to their distorted morphologies, but the N pairs are prone to this problem. In order to estimate the fraction of spurious pairs in our galaxy groups, we ran several Monte-Carlo simulations of groups/clusters with more than 20 galaxies in \(r_p < 1 h^{-1} \text{Mpc} \). Our test shows that 98.2% of M and T pairs and 86.5% of N pairs are real systems. From these estimates, we conclude that although spurious pairs are present in N systems within dense regions, actual binary galaxies clearly dominate the statistics.

We focus our attention on the effects of interactions in groups by comparing with a suitable control sample which differs from the group pair catalog only in the fact that galaxies in groups in the control sample have no close companions. Using a Monte Carlo algorithm for each group galaxy pair, we select two members of the group catalog. Therefore, in this paper, the control sample contains 1320 galaxies in groups and clusters which do not have a companion within \(r_p < 100 h^{-1} \text{ kpc} \) and \(\Delta V < 350 \text{ km s}^{-1} \). This comparison sample of galaxies in groups shares similar environment conditions, range of redshift, \(M_r \), and group...
luminosity distributions as the sample of galaxy pairs in groups (see Fig. 2).

3. Luminosity galaxy ranking and pair distribution in groups

The core of a cluster is a hostile region with an extreme environment that favors the formation of less common galaxy types (Zwicky & Humason, M. L., 1960). The best evidence of merger processes within clusters is the presence of a giant cD galaxy in the centers of clusters (Morgan et al. 1975) which have extraordinary luminosities and masses, well above those of ordinary galaxies. The theory commonly accepted is that cD galaxies have cannibalized neighboring galaxies, accreting companions that stray into their domain. In addition, both observation and theory suggest that this process was more efficient in the past, when clusters were formed from smaller groups of galaxies with lower relative velocities.

More recently, von der Linden et al. (2007) found that the brightest group and cluster galaxies (BCGs) are larger and have higher velocity dispersions than non-BCGs of the same stellar mass, suggesting that BCGs contain a larger fraction of dark matter. In addition, the peculiar velocity of the BCG is independent of cluster richness and only slightly dependent on the Bautz-Morgan type (Coziol et al. 2009). Zibetti et al. (2005) found that the surface brightness of the intracluster light (ICL) correlates both with the BCG and the cluster richness, while the fraction of total light in the ICL is almost independent of these quantities. Also, the ICL is a ubiquitous feature for clusters with a single, dominant BCG, demonstrating that it dominates the combined luminosity of the BCG+ICL components (Gonzalez et al. 2005). More recently, Skibba et al. (2011) have shown that frequently (25%-40%), the brightest galaxies in groups or clusters are not the central galaxies of the systems.

In this section, we analyze the distribution of projected radial distance for pairs and for all group galaxy members without near companions with respect to group centers. In all samples, we have considered groups with a minimum number of 10 members. The resulting distributions are shown in Fig. 3. It can be appreciated that galaxy pairs (M, T and N) are more concentrated towards the group center with respect to the other group members. We have also calculated the normalized group-centric distance d_{CG}/R_{Virial}, finding same tendencies (see the inset). Similar results were found by Ellison et al. (2010), who analyzed the dependence of interactions on cluster-centric distance, finding that for close pairs the fraction of asymmetric galaxies (associated with tidal disruptions) is highest in the cluster centers. Moreover, Lin et al. (2010) show that the galaxy pair fraction increases with density.

We also study the luminosity galaxy ranking in pairs within groups (Fig. 4). The luminous galaxy in the group is ranked 1st, and so on for the second, third, etc, most luminous galaxies. It can be appreciated that disturbed pairs (M and T) have a preference to contain the brightest group galaxy (45% and 38% respectively, in all groups; 63% and 32% in groups with $L_{\text{Group}} > 10^{10.6} L_\odot$) with respect to non disturbed pairs and other group galaxy members without near neighbors (see Table 2). These behaviors indicate that morphologically disturbed galaxy pairs are more concentrated in the central regions of the groups/clusters and contain preferentially the brightest object in the group. These results are in agreement with the current paradigm of galaxy formation which assumes that the structures form hierarchically, such that smaller halos merge to form larger and more
massive halos via, mostly, minor mergers. Consistent with the latter, the central galaxy is generally the most luminous, most massive galaxy in a dark matter halo and it resides at the center of the potential well of the halo; and is also expected to cannibalize neighbor satellites.

4. Colors and stellar population

Different authors (Baldry et al. 2004, Balogh et al. 2004) showed that the distribution of galaxy colors could be well fit by a double Gaussian with blue and red peaks over a wide range of absolute magnitudes and local environments.

Fig 5 shows color-magnitude diagrams for different classes of pairs, M, T and N (upper, middle and lower panels, respectively) and for galaxies in the control sample (black contours in the three panels; hereafter we show the control sample results in all figures). As expected, galaxies in the control sample show a bimodal distribution, with a high concentration in the red population. This behavior is indicating that galaxies in high density environments, such as groups and clusters, are preferentially red objects. Merging galaxies show a remarkable difference in the color-magnitude relation with respect to galaxies without near companions in the control sample where, for the same magnitude, they show a more scattered distribution, spreading toward blue and red populations. Tidal and non disturbed pairs show a similar color-magnitude distribution to that of galaxies in the control sample (middle and lower panels, respectively).

To complement the previous analysis, Fig 6 shows the stellar age indicator, $D_{0}(4000)$, as a function of M_{*} for different pair classes (M, T and N; upper, middle and lower panels, respectively) and for the control sample (black solid contours). The group members without near neighbors in the control sample show two clear stellar populations, young and old. However, it can be appreciated that galaxy pairs show a clear excess in the young stellar population sequence for the same galaxy magnitude, with respect to the control sample. This tendency is more significant in merging systems.

In Fig 7 we show the distributions of the $u - r$ color (left panels), $log(SFR/M_{*})$ (medium panels) and the stellar age indicator $D_{0}(4000)$ (right panels) for galaxy pairs and their isolated counterparts (galaxies in the control sample). We find that T and N systems (middle and lower panels, respectively), show a more similar color distribution to those of the control sample than M galaxy pairs. Interestingly, the color distribution of merging galaxy pairs and the control sample (upper panel), exhibit significant differences, with pairs having a larger fraction of red and blue members. This behavior could suggest that strong galaxy interactions are a powerful mechanism, responsible for the fast and efficient transformation from blue to red colors in dense environments, compared to the less efficient interactions of isolated galaxies in the same density regions. In addition, the natural interpretation of the blue excess shown in pairs in groups is associated with the star formation activity triggered by galaxy-galaxy interactions (e.g. Alonso et al. 2004; Perez et al. 2009).

The red excess in galaxy pairs has been reported by different authors (e.g. Alonso et al. 2006; Perez et al. 2009; Darg et al. 2010) but has no obvious interpretation. The red galaxy pairs could be accounted for by dusty, obscured star-forming systems. In this case, the slight spread at the red end might be due to increased extinction by the extra dust of the perturbing neighbor. To test this hypothesis we studied color-color diagrams ($[(u-r).vs.(i-z)]$) for pairs (M, T and N) and isolated galaxies in the control sample. For the analysis we selected edge-on ($b/a < 0.4$) and bright galaxies ($M_{g} < -20.0$), at $z < 0.1$, and for both samples we obtained diagrams with no appreciable differences. In a further analysis we divided the samples in ranges of b/a and we compared their color-color diagrams for each range. Unfortunately with the available data it is not possible to confirm if the dust is the responsible for the red and old tails in disturbed pairs. Another possibility for the red excess is outlined by Patton et al. (2011). They computed galaxy colors using the Galaxy Image 2D (GIM2D, Simard et al. 2002), finding no significant excess ($<1\%$) of extremely red galaxies in close pairs. The authors suggest that this is due to improved photometry, given that they do find an excess of extremely red close pair members if they replace the GIM2D colors with those from the SDSS database; they also find that the new photometry does not affect the fractions of extremely blue galaxies in pairs. On the other hand, different authors (e.g. Kauffmann et al. 2004; Baldry et al. 2006; Cooper et al. 2006; Skibba et al. 2009; Lin et al. 2010; Patton et al. 2011) show that paired galaxies are found in higher density environments than their control sample and that interacting galaxies are redder before the interaction starts, due to the older stellar population present in higher density environments. However, pairs and isolated galaxies in our samples are selected to the equal density environments; i.e. groups and clusters. There
is another plausible alternative to explain this result. Red galaxies in pairs within groups and clusters have been stripped of their gas reservoir and show old stellar populations so that the interactions are now unable to trigger further star formation activity. However, isolated galaxies in the control sample could include merger remnants as a consequence of the recently triggered star formation event, reflecting bluer colors, as is discussed by Perez et al. (2009).

The medium and right panels of Fig. 7 show a significantly higher star formation activity and younger stellar population in the three classes of interacting pairs with respect to isolated galaxies in the control sample. The correlation between colors, star formation rate and stellar population indicates that the physical mechanism responsible for the color transformation also operates by changing the star formation activity and stellar populations in galaxies.

With the aim to understand the behavior of the colors and stellar populations in galaxy pairs within high density environments, we measured the blue and young stellar population fractions with respect to the group centric distance. In Fig. 8 we show the fraction of star forming galaxies with $D_n(4000) < 1.5$ (upper panel) and $u-r < 2.0$ (lower panel) as a function of group-centric distance for different classes of pairs and for the control sample. As can be seen the fraction of star forming galaxies decreases toward the group center. Similarly, van den Bosch et al. (2008) found that redder satellite galaxies are somewhat more concentrated. Also, Blanton & Berlind (2007) showed that generally, the red galaxies are more clustered on small scales ($\sim 100-300$ kpc h^{-1}). As is well known, the central regions of the groups and clusters of galaxies are mainly populated by spherical objects, without gas, and truncated SFRs. It can be also appreciated that galaxy pairs show a higher star formation activity (low $D_n(4000)$ and blue colors) than galaxies without a close companion in the control sample. This tendency is more significant in merging
pairs. This fact could indicate that merging pairs in high density regions are still subject to a powerful mechanism that triggers star formation activity. On the other hand, we can appreciate a higher fraction of T pairs with redder colors and old stellar populations. These results clearly show the longer timescale of morphological disturbances with respect to that of tidally induced star formation. Thus, these pairs may have old (reddened) stellar populations and still show strong signs of a past interaction. Also, the strong tidal features can be associated to disruptive effects present in some tidal interactions which would lead to lower gas densities and therefore lower star formation rates in these systems.

Fig. 8 shows the fraction of star forming and blue galaxies, \(D_n(4000) < 1.5 \) (upper panel) and \((u-r) < 2.0 \) (lower panel) as a function of the group-centric distance, for pairs classified as M, T and N (solid, dotted and dot-dashed lines, respectively) and the control sample (dashed lines).

5. The effect of the group global environment

In this section we analyze the effect of the group global environment on galaxy pairs in groups. For this purpose, we calculate the group global environment parameter, \(\Sigma_{GR} = 5/\pi * (d_{GR}^5)^2 \), where \(d_{GR}^5 \) is the distance to the 5th nearest group neighbor, which is calculated between the centers of groups. Group neighbors have been chosen to have luminosities above a certain
threshold \((L_{\text{Group}} > 10^{10.6} L_{\odot})\) and with a radial velocity difference lesser than 3000 km \(s^{-1}\).

The influence of the group global environment on the different classes of pairs can be seen in Fig.10 in the histograms of \(\log(\Sigma_{GR})\) for \(M\), \(T\) and \(N\) pairs (upper, medium and lower panels respectively), and galaxies in the control sample (full surface). We also define the low and high environment classes by selecting two ranges of \(\Sigma_{GR}\) values in order to have equal number of galaxies in these two classes in the control sample. This density threshold is \(\log(\Sigma_{GR})=-1.2\) (represented by the dotted vertical line in Fig.10). From this figure it can be appreciated that galaxy pairs show an excess of low group global environments with respect to the control sample. This behavior is more significant in \(M\) pairs than in \(T\) and \(N\) systems (65±7\%, 48±6\% and 55±5\% respectively).

We explored the stability of the results show in this figure, depending on the particular choice of global density estimator. We obtained \(\Sigma_{GR}\) using \(d_{GR}\) with two different group luminosity thresholds: \(L_{\text{Group}} > 10^{10.5} L_{\odot}\) and \(L_{\text{Group}} > 10^{10.3} L_{\odot}\). We also tested the results \(\Sigma_{GR}\) using the distance to the 4th group neighbor instead to the \(5th\) group neighbor. Taking into account the similarity of the results of these tests within 10\%, we conclude that our conclusions are robust against the particular definition of global group density environment.

In order to analyze the behavior of colors and stellar populations in pair systems and in galaxies in the control sample in groups and clusters with respect to the global density environment, we calculated the blue and young stellar population fractions \((u-r < 2.0 \text{ and } D_{n}(4000) < 1.5, \text{ respectively})\) as a function of \(\Sigma_{GR}\). As can be seen (Fig.11), in both samples (pair and control), the fraction of star forming galaxies decreases towards higher density global environments. It can also be appreciated that galaxy pairs show a higher star formation activity, more efficient in \(M\) systems (low \(D_{n}(4000)\) and bluer colors), than galaxies without a close companion in the control sample. These results may indicate that young/old groups and clusters are associated with regions of low/high global overdensity. In this context it is interesting to note that galaxy pairs play a fundamental role driving this relationship. In the same direction, Cooper et al. (2010) using samples drawn from the SDSS, studied the relationship between density and galaxy properties on the red sequence, finding that galaxies with older stellar populations favor regions of higher overdensity relative to galaxies of similar color and luminosity. In the study by Wang et al. (2007), they find that old, low mass halos at \(z=0\) are associated to higher overdensities. More recently, Lacerna & Padilla (2011) also find a population of halos that include nearby low mass halos in their original density peak, particularly for old objects. Our results confirm these previous findings in observational data.

6. Summary and Conclusions

We have analyzed the properties of galaxy pairs in high density environments corresponding to groups and clusters of galaxies. We summarize the following main conclusions.

(i) We constructed the group galaxy pair catalog and we classified the pair systems in three different categories, \(M\), pairs with evidence of an ongoing merger process, \(T\), pairs with signs of tidal interactions, and \(N\), pairs showing no evidence of distorted morphologies. By using a Monte Carlo simulation we estimate the contamination by spurious pairs in groups and clusters, finding that the statistics are clearly dominated by real pairs. We find that about 9\% of galaxy pairs are classified as \(M\), 33\% as \(T\) and 61\% as \(N\). Some of these trends are confirmed in our study and in the literature, supporting our methodology.

(ii) We find that galaxy pairs show a higher star formation activity, more efficient in \(M\) systems (low \(D_{n}(4000)\) and bluer colors), than galaxies without a close companion in the control sample. These results may indicate that young/old groups and clusters are associated with regions of low/high global overdensity. In this context it is interesting to note that galaxy pairs play a fundamental role driving this relationship. In the same direction, Cooper et al. (2010) using samples drawn from the SDSS, studied the relationship between density and galaxy properties on the red sequence, finding that galaxies with older stellar populations favor regions of higher overdensity relative to galaxies of similar color and luminosity. In the study by Wang et al. (2007), they find that old, low mass halos at \(z=0\) are associated to higher overdensities. More recently, Lacerna & Padilla (2011) also find a population of halos that include nearby low mass halos in their original density peak, particularly for old objects. Our results confirm these previous findings in observational data.
and 58% as N. This suggests that mergers are more likely to occur in less-dense groups, where the relative velocities of member galaxies are lower than in more rich groups/clusters (~ 1000 km s⁻¹; Toomre & Toomre 1972, Dressler 1980).

(ii) We find that galaxy pairs classified as M, T, and N are more concentrated towards the group centers with respect to the other group galaxy members. We have also analyzed the luminosity ranking, finding that disturbed pairs (M and T) have a preference to be the brightest galaxy in groups/clusters with respect to non disturbed galaxy pairs and to all group members.

(iii) We examined the color-magnitude relation for different classes of pairs (M, T and N) and for the control sample, in high density environments. Galaxies in the control sample show a high red fraction, as expected for galaxies within groups and clusters. N pairs show a similar color-magnitude distribution. An interesting effect is found for M galaxy pairs, where their color distribution exhibits significant differences detected in both tails, with a clear excess of extremely blue and red objects. This tendency could indicate that merging systems within groups and clusters could have experienced a more rapid transition from blue to red colors, while isolated galaxies in the control sample and non disturbed pairs undergo a more inefficient transformation.

(iv) Consistent with our analysis on colors, the distribution of star formation rate and stellar populations of M, T and N galaxy pairs show a clear excess of higher star formation activity and young galaxies with respect to galaxies in the control sample. This behavior is more noticeable in merging systems. The correlation found between bluer colors higher star formation rate and younger stellar populations in disturbed pairs suggests that strong interactions produce an important effect in modifying galaxy properties in dense environments.

(v) We also studied the fraction of star forming galaxies (blue colors and younger stellar population) as a function of the group-centric distance in different pair classes and in the control sample. We find that the number of star forming galaxies decreases toward the group center as expected, but galaxy pairs show a higher star formation activity than galaxies without a close companion within groups/clusters and that this is more significant in merging pairs. We speculate that this effect could indicate that in high density regions, strong galaxy-galaxy interactions are a powerful mechanism that triggers star formation activity.

(vi) We have detected a significant correlation between the fraction of star forming galaxies and the host group luminosity, where the number of star forming objects increases towards low luminosity groups. Also, M galaxy pairs have a systematically higher fraction of younger stellar populations and bluer colors than the other pair categories and galaxies in the control sample.

(vii) We also found that galaxy pairs prefer to be within groups in low density global environments, with respect to galaxies of the corresponding control sample. This behavior is more significant in M pairs (65 ± 7%) with respect to T and N systems (48 ± 6% and 55 ± 5%, respectively).

We have also analyzed the relation between star forming galaxies and the group global environment for pairs and galaxies in the control sample. From this study we conclude that, in particular, interacting galaxies with a dominant blue, young stellar population are preferentially in groups within low density global environments. Since young groups and clusters are associated with low global environments we find that this is in agreement with the assembly bias effect as this ensures a continuous supply of infalling material, which in turn favors star formation activity.

In this context the history of galaxy interactions play a fundamental physical role in driving this behavior.

Acknowledgements. This work was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas and the Secretaría de Ciencia y Técnica de la Universidad Nacional de San Juan. Nelson Padilla is supported by Centro de Astrofísica FONDAP, BASAL-CATA and Fondecyt Regular 1110328. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

We thank Laura Balmain for her useful advice with IDL codes. We thank Ramin Skibba for a detailed revision that helped to improve this paper.

References

Abazajian K., Adelman J., Agueros M., et al. 2004, AJ, 128, 502.
Abazajian K. N., Adelman-McCarthy J. K., Agiéros M. A., Allam S. S., Allende Prieto C., An D., Anderson K. S. J., Anderson S. F., et al. 2009, ApJS, 182, 543.
Alonso M. S., Tissera P. B., Coldwell G. D., 2004, MNRAS, 352, 1088.
Alonso M. S., Lambas D. G., Tissera P. and Coldwell G., 2006, MNRAS 367, 1029.
Alonso M. S., Lambas D. G., Tissera P. and Coldwell G., 2007, MNRAS, 375, 1015.
Balogh M., Morris S. L., Yee H. K. C., Carlberg R. G., Ellington E., 1999, ApJ, 527, 54.
Balogh M. & Berlind A., ApJ, 2007, 664, 791.
Balogh M. et al., 2004, MNRAS 348, 1355.
Baldry I. K., Coldwell G. D., 2004, ApJ 600, 681.
Balogh M. & Berlind A., ApJ, 2007, 664, 791.
Baldry I. K., Coldwell G., 2004, MNRAS 348, 1355.
Baldry I. K., Coldwell G. D., Bower R. G., Glazebrook K., Nichol R. G. et al., 2006, MNRAS 373, 469.
Barton E., et al., 2007, ApJ, 671,1538.
Berlind A., et al., 2006, ApJS, 167, 1.
Blanton M. R. & Roweis S., 2007, AJ, 133,734.
Brinchmann, J., et al., 2004, MNRAS, 351, 1151B.
Cecarelli L., Padilla N., Lambas, D.G, 2008, MNRAS, 390, L9.
Colless M. M., et al., (the 2dFGRS Team), 2001, MNRAS, 328, 1039.
Cooper M. C., Gallazzi A., Newman J. A., Yan R., 2010, MNRAS, 402, 1942.
Coziol, R., et al., 2009, AJ, 137, 4795.
Darg D. W., et al., 2010, MNRAS 401, 1552.
De Lucia, G, et al., 2010, MNRAS, 406, 1533.
Dressler A., et al., 1980, ApJ, 241, 351.
Ellison S. L., Patton D. R., Simon L., Ceccarelli L., Padilla N., Lambas, D.G, 2008, MNRAS, 390, L9.
González R. E., Padilla N., 2009, MNRAS, 397, 1498.
Gunn J. E., Gott J. R., 1972, ApJ, 176, 1.
Heiderman, A., et al., 2009, ASPC, 419,257.
Hopkins, P., et al., 2009, MNRAS, 397, 802.
Hopkins, P., et al., 2010, ApJ, 724, 915.
Huchra, J. P.; Geller, M. J., 1982, ApJ, 257, 423.
Kennicutt R., 1989, ARA&A, 17, 101.
Kaufrmann, G., et al., 2004, MNRAS, 353, 713K.
Lacerda I., Padilla N., 2011, MNRAS, 412, 1283.
Lambas D.G., Tissera P.B., Alonso M.S. & Coldwell G., 2003, MNRAS 346, 1163.
Lambas D.G., Alonso M. S., Mesa V. & O’Mill A.L., 2011, A&A in preparation.
Lin L., et al., 2010, ApJ, 718, 1158.
Mamon G. A., 1986, ApJ, 307, 426.
Mamon G. A., 1987, ApJ, 321, 622.
McIntosh D., et al., 2008, MNRAS, 388, 1537.
Merchán M., Zandivarez A., 2005, ApJ, 630, 759.
Michel-Dansac L., Lambas D.G., Alonso M.S., & Tissera P., 2008, MNRAS, 386, L82.
Morgan W. W., Kayser S., White R. A., 1975, ApJ, 199, 545.
Padilla N., et al. (The 2dFGRS Team), 2004, MNRAS, 352, 211.
Padilla N., Lambas D. G., González R., 2010, MNRAS 409, 936.
Padilla N., et al., 2011, A&A, 531A, 142.
Park, Changbom, Choi, Yun-Young, 2009, ApJ, 691,1828.
Patton D. R., Ellison S. L., Simard L., McConnachie A. W., Mendel J. T., 2011, MNRAS, 412, 591.
Perez J., Tissera P., Padilla N, Alonso M S, Lambas D G, 2009, MNRAS, 399, 1157.
Robaina, A..et al., 2009, ApJ, 704, 324.
Simard, L., et al. 2002, ApJS, 142, 1.
Strauss et al. 2002, AJ, 124, 1810.
Skibba R. A., Sheth R. K., 2009, MNRAS, 392, 1080.
Skibba R. A., van den Bosch F. C., Yang X., More S., Mo H., Fontanot F., 2011, MNRAS, 410, 417.
Toomre A. & Toomre J., 1972, ApJ 178, 623
van den Bosch, Frank C., et al., 2008, arXiv0805.0002V.
von der Linden A., et al., 2007, MNRAS, 379, 867.
Wang H. Y., Mo H. J., Jing Y. P., 2007, MNRAS 375, 633.
Wong, K., et al., 2011, 2011, ApJ, 728, 119.
Yang X., Mo H.J., van den Bosch F., Pasquali A., Li C., Barden M., 2007, ApJ, 671, 153.
York D. G., Adelman J., Anderson J. E. Jr., Anderson S. F., Annis J., Bahcall N. A., Bakken J. A., Barkhouser R., et al., 2000, AJ, 120, 1579.
Zapata T., Pérez J., Padilla N., Tissera P., 2009, MNRAS 394, 2229.
Zibetti, S., et al., 2005, ApJ, 631L, 105Z.
Zwicky F. & Humason, M. L., 1960, ApJ 132, 627Z.