Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture

Mahmoud A. O. Dawood 1,2,*†, Mohammed F. El Basuini 3,4, Amr I. Zaineldin 5, Sevdan Yilmaz 6, Md. Tawheed Hasan 7, Ehsan Ahmadifar 8, Amel M. El Asely 9, Hany M. R. Abdel-Latif 10, Mahmoud Alagawany 11, Nermeen M. Abu-Elala 12, Hien Van Doan 13,14,15, and Hani Sewilam 2,15,*

Abstract: Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpenes, terpenoids, phenylpropenes, isothiocyanates, and thiocyanates that can synergistically function against bacterial and parasitic cells and cause cell deformities and organelle dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher: MDPI, Basel, Switzerland.
Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.

Keywords: essential oils; parasite; bacteria; aquaculture; immune enhancer; medicinal plants

1. Introduction

Farming of aquatic plants and animals is generally known as aquaculture, and the annual growth of this rapidly expanding food industry is 4.5%, accounting for a value of 243.26 billion USD [1] to meet up the protein demand of ever increasing world population. This important industry is also generating jobs, income, and providing 50% of global fish consumption [2,3]. Due to the increase of consumer demand, aquaculture technique has been shifted from extensive to super-intensive; intensification of aquaculture needs a higher amount of artificial feed supply, water treatment and reuse, and high stocking density resulting in aquatic environmental degradation [4–6]. Mounting of stress and quality deterioration of living environment increases the activity and virulence of infectious and opportunistic microbial pathogens [7], decrease immunity and immune-related gene transcription of aquatic animals [8], and elevate uni and multicellular parasitic infestation [9]; finally, initiate infectious diseases outbreak along with the death of cultured species. Gonzales, et al. [10] reported global aquaculture loss of 1.05 to 9.58 billion USD/year due to infectious diseases and parasitic attacks.

To eliminate diseases and parasitic attacks in the aquaculture industry, different synthetic antibiotics, chemical drugs, vaccines, and chemotherapeutics are being used at high rates from year after year [11,12]. Using of these chemical substances cause mass killing of beneficial aquatic bacteria [13], produce multi-drugs resistant pathogens [14], and leaving residues in fish which can be transmitted to human [15,16]. These problems are the most concerning aquaculture sustainability [17,18], and infectious diseases and parasitic infestation treatment with natural substances/compounds are the demanding sustainable aquaculture features [19].

The use of medicinal plants and their derivatives in aquaculture is increasing day by day all over the world because of having biodegradable properties [20–24], availability and ease to cultivate, and do not accumulate in animal tissues as a residue [25,26]. Essential oils (EOs) are the secondary metabolites of medicinal plants and possess bioactive properties to be used as a phytotherapeutic agent for sustainable aquaculture [27,28]. Terpens, terpenoids, phenylpropenes, and isothiocyanates are the key chemical groups identified in EOs [29]. EOs mainly penetrate and act upon the membrane and cytoplasm of bacteria to inhibit their action mechanisms by altering cell morphology and organelles deformities [30,31]. Generally, Gram-positive bacteria are more sensitive to EOs than Gram-negative due to lipoteichoic acids in cell membranes that might facilitate the penetration of EOs hydrophobic compounds [32]. According to Carson, et al. [33], EO comprises different compounds that have no specific cellular target in parasites. Monoterpens α-pinene and sabinene of EOs have proved mentionable antiprotozoal activity. Moreover, synergistic effects of different compounds in EOs are another key feature that showed a higher mode of action relative to individual compounds. EOs cause leakage of potassium ions and cytoplasmic content of parasitic cells due to hydrophobicity and cell permeability, which cause cell morphology alteration and cessation of parasitic activity [34]. Staining with fluorocromes SYBR-14 and propidium iodide confirmand the plasma membrane damage in *Ichthyophthirius multifiliis* by the action of *Varronia curassavica* derived EOs [35].

Different microbial and parasitic diseases are the major threats to the aquaculture industry. Application of nanoemulsions EOs or other herbal products to combat microbial [36,37] and parasitic [9,25] diseases is considered a new alternative approach for sustainable aquaculture. Extensive research activities were performed for the identification and characterization of EOs effects for the fish and shellfish preservation and shelf life
elongation \[38,39\], modulation of growth, immunity, and infectious disease resistance in commercially cultured fish species \[35,40,41\], against different pathogenic microbial activity \[42,43\] and destruction and retardation of fish parasitic activity \[9,10\]. In the fisheries and aquaculture sector, EOs act as a natural preservative \[44\], stress-reducing agent \[45\], herbal anesthetics \[46\], and oregano herb and medicinal plant as immunomodulators \[26\] and immunostimulants \[47\]. However, no study was conducted to identify EOs antiparasitic and antimicrobial properties for sustainable aquaculture.

Although natural EOs have enough potential for sustainable aquaculture, EOs have high volatility and can be decomposed by exposure to heat, humidity, light, and oxygen to lose effectiveness \[48\]. Application to the EOs in their oil form render it subjected to degradation during processing, storage, and handling \[49\]. The use of nano-encapsulated EOs becomes a promising trend in the field of EOs applications \[50\], especially in the aquaculture sectors \[51\], protecting the volatilization, low stability, low solubility in water, and associated problems of using EOs \[52\]. Nanoemulsion technology is currently solving the effectiveness disruption problems of EOs in aquaculture. This technology also protects EOs from the digestive enzyme’s actions in the intestine.

The main focus of this article is to identify EOs antimicrobial and antiparasitic properties that can be used for sustainable aquaculture practices. Moreover, EOs effects for aquaculture species growth, immunomodulation, and infection resistances were also postulated. In addition, research gaps and tentative future research activities are also mentioned to effectively use EOs in sustainable fish culture.

2. EOs as Growth, Immunity, and Disease Resistance Enhancer

Several studies have been conducted to identify EOs growth and immunity elevation property; however, no specific research was conducted to identify the action mechanism of EOs for the alteration of these properties \[28,53–55\]. Jang, et al. \[56\] mentioned the possible reason for growth and feed utilization parameters modulation by EOs is due to elevation of digestive enzymes in the intestines. Moreover, EOs increased the appetite of aquaculture species \[57\] may be another reason. Antioxidant activity increased due to aromatic rings and the position of hydroxyl ion in EOs \[58\]. Modulation of the intestinal microbiome by EOs can be considered one of the possible reasons for the modulation of immune-related genes \[59\]. Significantly, phenolic compounds like thymol and carvacrol modulate innate immunity through two possible ways i) direct action on host tissue ii) influence on the intestinal microbial community \[60\].

A 60-day experiment was conducted with dietary supplementation with bitter lemon \((C. limon)\) \[61\], and sweet orange peels \((C. sinensis)\) \[62\] originated EOs in Mozambique tilapia \((Oreochromis mossambicus)\). In both cases, EOs elevated innate immune parameters \(NBT, WBCs, lysozyme, and myeloperoxidase activity\) and decreased serum/blood glucose, cholesterol, and triglycerides. \(C. limon\) and \(C. sinensis\) EOs administrated tilapia demonstrated resistance against \(S. iniae\) and \(E. tarda\), respectively. In addition, a similar type of immunomodulation and infection protection of tilapia were also found after \(C. limon\) peel EOs supplementation at \((1, 2, 5, \text{ and } 8\%)\) in \(L. victorianus\) for 28 days \[63\]. However, growth \(\text{WG}\%\) and \(\text{SGR}\) and feed conversion ratio \(\text{FCR}\) modulation in the former study remained unchanged but in the latter two experiments increased significantly (Table 1). The authors claim active compound of EOs \(\text{limonene}\) concentration in the former experiment was 54.4\%, whereas later studies were 94.74 and 81.40, respectively, may be the causal factors of these differences. In Nile tilapia \((O. niloticus)\), lemongrass \((C. citratus)\) and geranium \((P. graveolens)\) \[40\], and Oregano \((O. vulgare)\) \[64\], supplementation increased growth and feed utilization, and resistance against the action of \(A. hydrophila\) and \(V. alginolyticus\), respectively. \(C. citratus\) and \(P. graveolens\) supplemented fishes not only improved immunity but also decreased the concentration levels of intestinal coliforms, \(E. coli\), and \(A. spp.\) Moreover, origanum EOs \((1 \text{ g/kg})\) improved immunity and vibriosis protection in \(T. zilli\) \[65\].
Eight weeks feeding trial with 0.05% of Oregano (O. heracleoticum) originated EOs showed better growth, body indices (VSI, HSI, and CF), and antioxidant property (SOD and CAT) in channel catfish (Ictalurus punctatus) [66]. Carvacrol and thymol are the active substances of oregano EOs; however, in this fish species, O. vulgare originated commercial EOs showed inferior results relative to O. heracleoticum. Silver catfish (Rhamdia quelen) was dietary administrated (2 mL/Kg) with Aloysia triphylla EOs [41] and bath treatment (5 and 10 mg/L) with EOs compound, eugenol [67]. Bath treatment was unable to upregulate hematological and immunological parameters, but dietary administration improved healthy blood cells (leukocyte, lymphocyte, and neutrophil) and protein levels. Most importantly, these two catfish species had increased tolerance against A. hydrophila infection protection after feeding or bath treatment with plant originated EOs.

Eight weeks of feeding with O. vulgare EOs increased both immune and antioxidant properties and resistance against A. hydrophila in Cyprinus carpio [60,64]. EOs increased transcription levels of interleukin (IL)-1β and IL-10 and down-regulated tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β. Moreover, the increment of digestive enzyme activities and enrichment of beneficial bacterial genera in the intestinal microbial community were also found after EOs supplementation (Table 1). Feeding with O. onites instead of O. vulgare, similarly positive immunity and anti-oxidant activity modulation, and infectious disease protection was found in rainbow trout (Oncorhynchus mykiss) [68]. Further, water extract of Ocimum sanctum leaves increased total RBC, WBC, hemoglobin, and other immune and anti-oxidant parameters in L. rohita [69].
Table 1. Effects of herbal essential oils on growth, immunity, and infectious diseases protection in commercial fish species.

Aquatic Species	Essential Oil	Dose and Duration	Influence	References
Mozambique tilapia (Oreochromis mossambicus)	Bitter lemon (Citrus limon)	0.5, 0.75, and 1% for 60 days	- Growth indices and feed utilization (↑)	
- Nitroblue tetrazolium (NBT), white blood cells (WBCs), Blood total protein, lysozyme, and myeloperoxidase activity (↑)
- Serum glucose, cholesterol, and triglycerides (↓)
- Resistance against Edwardsiella tarda (↑) | Baba, et al. [61] |
| O. mossambicus | Sweet orange (C. sinensis) | 0.1, 0.3, and 0.5% for 60 days | - Growth indices and feed utilization (↑)
- Lysozyme and myeloperoxidase activity, hematological and biochemical variables, i.e., hemoglobin (Hb), hematocrit (Htc), erythrocyte indices, total serum protein, albumin, and globulin (↑)
- Blood glucose, cholesterol, and triglyceride (↓)
- Resistance against Streptococcus iniae (↑) | Acar, et al. [62] |
| Labeo victorianus | C. limon | 1, 2, 5, and 8% for 28 days | - Red blood cells (RBC), WBC, Htc, mean cell haemoglobin (MCH), haemoglobin concentration (MCHC), and neutrophils (↑)
- Immunoglobulin (IgM), lysozyme activity, and respiratory burst (↑)
- Resistance against A. hydrophila (↑) | Ngugi, et al. [63] |
| Nile tilapia (O. niloticus) | Lemongrass (Cymbopogon citratus) and Geranium (Pelargonium graveolens) | 200 and 400 mg/kg for 12 weeks | - Growth indices and feed utilization (↑)
- Plasma catalase; catalase (CAT), glutathione content, lysozyme activity, and total immunoglobulins; IgM (↑)
- Malondialdehyde (MDA), total intestinal bacteria, coliforms, Escherichia coli, and Aeromonas spp (↓)
- Resistance against Aeromonas hydrophila (↑) | Al-Sagheer, et al. [40] |
| O. niloticus | Origanum vulgare | 5 and 10% for 8 weeks | - Growth indices and feed utilization (↑)
- Antioxidant activities (↑)
- Resistance against Vibrio alginolyticus (↑) | Abdel-Latif and Khalil [70] |
Table 1. Cont.

Aquatic Species	Essential Oil	Dose and Duration	Influence	References
Tilapia zillii	Origanum	1 g/kg for 15 days	- RBC, WBC, Hb, and differential leukocyte (↑)	Mabrok and Wahdan [65]
			- Plasma proteases, antiproteases, lysozyme, and bactericidal activities (↑)	
			- Resistance against V. anguillarum (↑)	
Channel catfish (Ictalurus punctatus)	O. heracleoticum	0.05% for 8 weeks	- Growth performance, hepatosomatic index, visceralosomatic index, and condition factor (↑)	Zheng, et al. [66]
			- Superoxide dismutase (SOD) and CAT (↑)	
			- Resistance against A. hydrophila (↑)	
Silver catfish (Rhamdia quelen)	Aloysia triphylla	2.0 mL/kg for 21 days	- Total leukocyte, lymphocyte, and neutrophil counts (↑)	dos Santos, et al. [41]
			- Total blood protein and resistance against A. hydrophila (↑)	
R. quelen	Eugenol	Bath (5 and 10 mg/L)	- Hematological and immunological parameters (↑)	Sutili, et al. [67]
			- Resistance against A. hydrophila (↑)	
Common carp (Cyprinus carpio L.)	O. vulgare	0, 5, 10, 15, and 20 g/kg diet for 8 weeks	- SOD, CAT, lysozyme activity, phagocytic activity, and index (↑), and malonaldehyde (MDA) (↓)	Abdel-Latif, et al. [64]
			- Interleukin- (IL)-1β and IL-10 (↑)	
			- Resistance against A. hydrophila (↑)	
Koi carp (C. carpio)	O. vulgare	0, 500, 1500, and 4500 mg/kg for 8 weeks	- Protease, amylase, and lipase (↑)	Zhang, et al. [60]
			- Lysozyme, Complement C3 & C4, SOD, and glutathione peroxidase (↑) and MDA (↓)	
			- Tumor necrosis factor (TNF)-α and Transforming growth factor (TGF)-β (↓)	
			- Vibrio (↓), Propionibacterium, Brevinena, and Corynebacterium_1 (↑)	
			- Resistance against A. hydrophila (↑)	
Aquatic Species	Essential Oil	Dose and Duration	Influence	References
----------------	---------------------	-------------------------	--	-----------------
Rainbow trout	*O. onites*	0.125, 1.5, 2.5, and 3.0 mL/kg for 90 days	- Growth indices and feed utilization (↑)	
- SOD, CAT, and Lysozyme activity (↑)
- Resistance against *Lactococcus garvieae* (↑) | Diler, et al. [68] |
| *O. mossambicus* | *C. limon* | 0.5, 0.75, and 1% for 60 days | - Growth indices and feed utilization (↔)
- Nitroblue tetrazolium (NBT), white blood cells (WBCs), Blood total protein, lysozyme, and myeloperoxidase activity (↑)
- Serum glucose, cholesterol, and triglycerides (↓)
- Resistance against *E. tarda* (↑) | Baba, et al. [61] |
| *C. sinensis* | *O. mossambicus* | 0.1, 0.3, and 0.5% for 60 days | - Growth indices and feed utilization (↑)
- Lysozyme and myeloperoxidase activity, hematological and biochemical variables, i.e., hemoglobin (Hb), hematocrit (Htc), erythrocyte indices, total serum protein, albumin, and globulin (↑)
- Blood glucose, cholesterol, and triglyceride (↓)
- Resistance against *S. iniae* (↑) | Acar, et al. [62] |
| *C. limon* | *L. victorianus* | 1, 2, 5, and 8% for 28 days | - Red blood cells (RBC), WBC, Htc, mean cell haemoglobin (MCH), haemoglobin concentration (MCHC), and neutrophils (↑)
- Immunoglobulin (IgM), lysozyme activity, and respiratory burst (↑)
- Resistance against *A. hydrophila* (↑) | Ngugi, et al. [63] |

Variation in the treated fish compared to controls: (↑), significantly increases; (↓), significantly decreased; (♭), no significant change.
3. Essential Oils as Antiparasitic Agents

3.1. Acanthocephalas

Neoechinorhynchus buttnerae is an acanthocephalan parasite causing significant economic losses in *Colossoma macropomum* fish in the region of Amazon [71,72]. It was reported that *Mentha piperita*, *Lippia alba*, and *Zingiber officinale* [73] and *Piper hispidinervum*, *Piper hispidum*, *Piper marginatum*, and *Piper callosum* [74] essential oils showed 100% anthelmintic effect on *N. buttnerae*. When EO of *piper hispidinervum* was applied on *N. buttnerae* parasite in 0.78 mg/L concentration for 15 min, it gave the most effective result in terms of dose and time [74] (Table 2).

3.2. Monogeneans

3.2.1. *Anacanthorus spathulatus*, *Notozothecium janauachensis*, and *Mymarothecium boegeri*

Anacanthorus spathulatus, *Notozothecium janauachensis*, and *Mymarothecium boegeri* cause significant infections in species belonging to the Serrasalmidae family as *C. macropomum* fish being in the first place [75,76]. Anthelmintic effects of *Cymbopogon citratus*, *Pterodon emarginatus*, *Lippia origanoides*, *Lippia sidoides*, and *Lippia alba* EOs on these three parasites were researched [77]. Among the EOs, the most effective one was *Lippia sidoides*; when applied as 320 mg/L for 10 min, it exhibited 100% efficacy against all three parasites [78] (Table 2).

3.2.2. *Dactylogyrus* spp.

One of the most common parasitic pathogens in cultured freshwater fish is *Dactylogyrus* spp. [79]. Brasil, et al. [9] researched anthelmintic effects of *Lippia alba*, *Lippia origanoides*, and *Lippia sidoides* EOs on *Dactylogyrus minutus* and *Dactylogyrus extensus* parasites; and they detected that when *L. Origanoides* and *L. Sidoides* EOs were applied as 100 mg/L for 5 min, they showed 100% efficacy (Table 2).

3.2.3. *Cichlidogyrus* spp.

Cichlidogyrus is the parasite genus that occurs naturally in cichlid fish and has the most species among gill parasites, with its 131 different species known [80]. *Scutogyrus* species can also be dominant in the winter season among fish belonging to the Cichlidae family [81]. de Oliveira Hashimoto, et al. [82] reported that *Lippia sidoides* EO had 100% efficacy against *Cichlidogyrus* spp. and *Scutogyrus longicornis* when applied as 160 mg/L for 1 min 58 s while *Mentha piperita* EO had 100% efficacy when applied as 320 mg/L for 8 min 11 s (Table 2).

3.2.4. *Dawestrema* spp.

Dawestrema cycloancistrium and *Dawestrema cycloancistrioides* are two of the most significant parasite types causing death and economic losses in *Arapaima gigas* fish, which are cultured in the region of Amazon [83,84]. Application of *M. piperita* EO as 160 and 320 mg/L for 30 min showed 100% efficacy on *D. cycloancistrium* and *D. cycloancistrioides* parasites [85] (Table 2).

3.2.5. *Gyrodactylus* spp.

Gyrodactylus spp. causes economic losses in many cultured fish species. Anthelmintic effects of *Hesperozygis ringens*, *Ocimum gratissimum*, and *Ocimum americanum* [37] and *Ocimum americanum* [86] EOs on *Gyrodactylus* spp. were researched. Only *O. americanum* EO as 50 mg/L for 1 h had the most effective anthelmintic action (98% efficacy) against *Gyrodactylus* spp. [86] (Table 2).
3.3. Trepomonadea

Hexamita inflata

Hexamita inflata is a flagellated anaerobic protozoan and free-living in fresh and seawater. Moon, et al. [87] reported that *L. angustifolia* and *L. intermedia* EOs as 1 and 0.5% for 30 min exhibited 100% efficacy on *H. inflata* (Table 2).

3.4. Clinostomidae

Euclinostomum heterostomum

Euclinostomum heterostomum is parasitic trematodes and very common in Europe, Asia, and Africa [88]. It infects muscular tissues and kidneys of freshwater fish [88,89]. *Verbesina alternifolia* and *Mentha piperita* EOs could act on *E. Heterostomum* in high doses and for a long time [90] (Table 2).

3.5. Oligohymenophorea

Ichthyophthirius multifiliis

Ichthyophthirius multifiliis is the most famous virulent ciliated protozoan ectoparasite that invades the skin, fins, and gills of fish. de Castro Nizio, et al. [35] indicated that *Varronia curassavica* EO showed 100% efficacy against *I. multifiliis* trophont and tomont when applied as 10 mg/L and 50 mg/L for one h, respectively. *Hyptis mutabilis* (10 mg/L for 30 min) [91] and *Melaleuca alternifolia*, *Lavandula angustifolia*, and *Mentha piperita* (455 µL/L for 1 h) [92] EOs applications were also found to be effective on *I. multifiliis* (Table 2).
Table 2. Essential oils as antiparasitic agents.

Parasitic Pathogens	Essential Oil	Concentrations	Elimination Time/Effectiveness	Concentration/Elimination Percentage	References
Neoechinorhynchus buttnerae	*Mentha piperita, Lippia alba, and Zingiber officinale*	360, 540, 720, 1440, and 2880 mg/L	➢ 1 h 20 min–1 h 55 min/540–2880 mg/L of *M. piperita*	100% anthelmintic	Costa, et al. [73]
			➢ 1 h 55 min/2880 mg/L of *L. alba*	100% anthelmintic	
			➢ 2 h 50 min/2880 mg/L of *Z. officinale*	100% anthelmintic	
Neoechinorhynchus buttnerae	*Piper hispidinervum,* *Piper hispidum, Piper marginatum,* and *Piper callosum*	0.19, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, and 50 mg/L	➢ 15 min/0.78 mg/L of *P. hispidinervum*	100% anthelmintic	dos Santos, et al. [74]
			➢ 2 h/50 mg/L of *P. hispidum*	100% anthelmintic	
			➢ 2 h/12.5 mg/L of *P. marginatum*	100% anthelmintic	
			➢ 2 h/25 mg/L of *P. callosum*	100% anthelmintic	
Anacanthorus spathulatus, *Notozothecium janauachensis,* and *Mymarothecium boegeri*	*Cymbopogon citratus*	100, 200, 300, 400, and 500 mg/L	➢ 10 min/400 mg/L/100% anthelmintic	Gonzalez, et al. [10]	
A. spathulatus, *N. janauachensis,* and *M. boegeri*	*Pterodon emarginatus*	0, 50, 100, 200, 400, and 600 mg/L	➢ 15 min/400 and 600 mg/L	100% anthelmintic	Valentim, et al. [25]
A. spathulatus, *N. janauachensis,* and *M. boegeri*	*Lippia origanoides*	10, 20, 40, 80, 160, and 320 mg/L	➢ 30 min/320 and 160 mg/L	100% anthelmintic	Soares, et al. [78]
A. spathulatus, *N. janauachensis,* and *M. boegeri*	*L. alba*	160, 320, 640, 1280, and 2560 mg/L	➢ 20 min/1280 and 2560 mg/L	100% anthelmintic	Soares, et al. [77]
Dactylogyrus minutus and *Dactylogyrus extensus*	*L. alba, L. Origanoides,* and *L. sidoides*	160 and 320 mg/L	➢ 5 min/100 mg/L of *L. origanoides* and *L. sidoides*	100% anthelmintic	Brasil, et al. [9]
Cichlidogyrus tilapiae	*Ocimum gratissimum*	40, 160, and 320 mg/L	➢ 2 h/320 mg/L	100% anthelmintic	Meneses, et al. [95]
Cichlidogyrus tilapiae, *Cichlidogyrus thorsonae,* *Cichlidogyrus hallii,* and *Scutogyrus longicornis*	*L. sidoides* and *Mentha piperita*	160 and 320 mg/L	➢ 1 min and 58 s/160 mg/L of *L. sidoides*	100% anthelmintic	de Oliveira Hashimoto, et al. [82]
Parasitic Pathogens	Essential Oil	Concentrations	Elimination Time/Effectiveness Concentration/Elimination Percentage	References	
---	--------------------------------------	----------------	---	------------	
Dawestrema cycloancistrium and *Dawestrema cycloancistrioides*	*M. piperita*	80, 160, and 320 mg/L	➢ 30 min/160 and 320 mg/L/100% anthelmintic	Malheiros, et al. [85]	
Gyrodactylus sp.	*Hesperozygis ringens* and *Ocimum gratissimum*	20 and 40 mg/L of *H. ringens* and 5 and 10 mg/L of *O. gratissimum*	➢ 1 h/10 mg/L of *O. gratissimum*/50% anthelmintic ➢ 1 h/40 mg/L of *H. ringens*/40% anthelmintic	Bandeira, et al. [37]	
Gyrodactylus sp.	*Ocimum americanum*	10 and 50 mg/L	➢ 1 h/50 mg/L/98% anthelmintic	Sutili, et al. [86]	
Ichthyophthirius multifiliis trophonts and tomonts	*Varronia curassavica* *(VCUR-001 VCUR-202 VCUR-509 VCUR-601)*	10, 25, 50, 75, 100, and 200 mg/L	➢ 1 h/10 mg/L of *V. curassavica*, VCUR-202/100% antiparasitic for *Trophont* ➢ 1 h/50 mg/L of *V. curassavica*, VCUR-202/100% antiparasitic for *Tomont*	de Castro Nizio, et al. [35]	
Ichthyophthirius multifiliis	*Hyptis mutabilis*	10 and 20 mg/L	➢ 30 min/10 mg/L/100% antiparasitic	Da Cunha, et al. [91]	
Ichthyophthirius multifiliis trophonts	*Melaleuca alternifolia*, *Lavandula angustifolia*, and *Mentha piperita*	57, 114, 227, and 455 µL/L	➢ 1 h/455 µL/L/100% antiparasitic	Valladão, et al. [92]	
Euclinostomum heterostomum	*Verbesina alternifolia* and *Mentha piperita*	200 to 1000 mg/L	➢ 24 h/600 mg/L of *V. alternifolia*/100% anthelmintic ➢ 24 h/1000 mg/L of *M. Piperita*/50% anthelmintic	Mahdy, et al. [90]	
Hexamita inflata	*L. angustifolia* and *L. × intermedia Miss Donnington*	1, 0.5, or 0.1%	➢ 30 min/1 and 0.5%/100% antiparasitic	Moon, et al. [87]	
4. Essential Oils as Antibacterial Agents: An In Vitro Perspective

4.1. Aeromonas spp.

Aeromonas salmonicida has been known as the causative agent of furunculosis [94]. *Aeromonas hydrophila, Aeromonas sobria,* and *Aeromonas veronii* are among the most common bacteria that cause motile *Aeromonas septicemia* in fish [94,95]. In addition, it is known that many different *Aeromonas* species cause disease in fish.

The antimicrobial effects of essential oils of some herbs on *Aeromonas salmonicida* subsp. *Salmonicida* has been investigated (Table 3). Hayatgheib, et al. [96] found that MIC and MBC values of essential oils (EOs) of different herbs on different *A. salmonicida* subsp. *Salmonicida* isolates were in the range of 113 to ≥3628 µg/mL, and the most effective (MIC and MBC: ≤520 µg/mL) herb species were *Cinnamomum zeylanicum*/*verum, Origanum vulgare, Origanum compactum,* and *Origanum heracleoticum,* *Eugenia caryophyllata,* and *Thymol rich Thyme vulgaris.*

In a different study, the antimicrobial effects of *Origanum onites, O. vulgare,* and *Thymbra spicata* EOs on 18 different *A. salmonicida* isolates, and it was reported that EOs of these herbs formed 10 to 30 mm zone depending on the disc diffusion test, and they had moderate inhibitory depending on MIC values (800 µg/mL) [97]. Among *Thymus vulgaris, Laurus nobilis, Rosmarinus officinalis,* *Petroselinum crispum,* and *Thymus vulgaris* EOs showed the highest zone diameter with 30 mm on *A. salmonicida* [98], while *Azadirachta indica* nanoemulsion also exhibited similar results [99]. *Cinnamomum cassia* EO was reported to have a very high inhibitory effect on *A. salmonicida* subsp. with a 56 mm zone diameter [100].

Tural, et al. [98] reported that among *T. vulgaris, L. nobilis,* and *R. officinalis,* and *P. crispum* EOs, *T. vulgaris* EO had the highest zone diameter on *Aeromonas sobria* and *Aeromonas veronii* with 31.5 mm and 36 mm, respectively. It was determined that *Origanum acutidens* EO formed a zone diameter of 32.7 mm on *Aeromonas hydrophila* [101].

Cymbopogon nardus [102] and *Syzygium aromaticum* [103] EOs had a strong inhibitory effect on *Aeromonas hydrophila* (ATCC 49140) and *Aeromonas spp.* with MIC values of 0.488–0.977 µg/mL and 0.015–0.031 µg/mL, respectively. It was found that *C. cassia, Cinnamomum aromaticum,* *Cymbopogon citratus,* and *Origanum vulgare* EOs were effective against *Aeromonas spp.,* *Aeromonas salmonicida* subsp. *Salmonicida,* *A. hydrophila,* and *A. veronii* bv. *Sobria* (Mean Percent MBC: 0.02% to 0.65%) [100]. It was reported that *Mentha arvensis* and *Mentha piperita* EOs generally exhibited weak inhibitory effects on 12 different *Aeromonas* spp. Isolates (MIC > 1840 µg/mL) while *M. arvensis* EO shows moderate inhibitory (MIC: 1250 µg/mL) on only one isolate [36].

Majolo, et al. [104] investigated the antimicrobial effects of *Lippia alba, Lippia origanoides,* and *Lippia sidooides* EOs on *Aeromonas hydrophila* and found only the moderate inhibitory (MIC and MBC: 1250 µg/mL) effect of *L. sidooides* EO.

Among *Piper aduncum, Piper callosum,* and *Piper hispidinervum* EOs on 11 different *A. hydrophila* isolates, only *P. marginatum* had a strong inhibitory effect (MIC: 468.8 and 234.4 µg/mL) on three different *A. hydrophila* isolates [43].

Ocimum gratissimum and *Hesperozygis ringens* EOs showed a marked activity (MIC and MBC: 400 µg/mL) on *A. hydrophila,* which is among the pathogens of *Aeromonas hydrophila* and *Aeromonas veronii* (MIC and MBC: 400 µg/mL) while they exhibited a moderate inhibitory (≥800 µg/mL) on *A. veronii* [37].

A strong inhibitory effect of *Hieraca livaria* EO with 3 µL/mL and 9 µL/mL MIC values was reported on *A. hydrophila* and *A. veronii,* respectively [105]. Among nine different herb EOs, *Conoea scopariaeides* and *Lippia origanoides* EOs had remarkable activity against *A. hydrophila* with the low respective MIC and MBC values of 200 µg/mL [106].

It was reported that *Eucalyptus globulus,* *Lavendula angustifolia,* *Origanum vulgare,* and *Melaleuca alternifolia* nanoemulsions were more effective on *A. hydrophila* than their EOs, and among four different herbs, *O. vulgare* essential oil was found as the most effective with 25 µg/mL MIC and MBC, and the nano-emulsion was also found as the most effective with 3.12 µg/mL MIC and 12.5 µg/mL MBC [51]. However, generally moderate and weak inhibitory effects of *Ocimum americanum* [86], *Hesperozygis ringens* and *Ocimum*
gratissimum [107], and Lippia alba [108] EOs on different A. hydrophila isolates were also reported.

4.2. Vibrio spp., Listonella anguillarum, and Photobacterium damselae

Historically, vibriaceae family members are the most severe infectious diseases in marine fish species [109]. The antimicrobial effects of O. vulgare, M. alternifolia, C. citratus, C. verum, and T. vulgaris EOs on Vibrio campbellii, Vibrio harveyi, Vibrio vulnificus, and Vibrio parahaemolyticus have been researched, and it was reported that generally moderate and weak inhibitory effects of these EOs on Vibrio spp [110]. Wei and Wee [102] indicated that Cymbopogon nardus EO showed potent inhibitory effects with 0.244 µg/mL and 0.488 µg/mL MIC values on Vibrio spp. and Vibrio damsela, respectively. Similarly, a strong inhibitory effect of Thymus vulgaris EO was reported, respectively, with 320 µg/mL MIC for Vibrio ordalii and Vibrio anguillarum and 80 µg/mL MIC for Vibrio parahaemolyticus [111]. A marked activity of Syzygium aromaticum EO with 0.015 µg/mL MIC values was reported on six different isolates of Vibrio spp. [103].

O. vulgare subsp. Hirtum, O. onites, and O. marjorana EOs had weak or moderate inhibitory effects on Vibrio splendidus, Vibrio alginolyticus, and Listonella anguillarum with zone diameter of 7.3 to 14.3 mm, 7.8 to 13.6 mm, and 9.1 to 14.1 mm, respectively [112]. It was reported that Argania spinosa EO had marked activity with 62.5 µL/mL MIC value on L. Anguillarum [113].

It was reported that E. globulus, L. angustifolia, O. vulgare, and M. alternifolia nanoemulsions were more effective on Photobacterium damselae than their EOs, and among these herbs, O. vulgare EO and nano-emulsion were found as the most effective [51].

4.3. Pseudomonas fluorescens

Pseudomonas fluorescens is a harmful pathogen in a variety of farmed fish. It was reported that Ocimum basilicum EO exhibited a potent inhibitory with 9 µL/mL MIC value on P. fluorescens [105]. C. Nardus [102] and S. aromaticum [103] EOs showed marked activity on Pseudomonas spp. and P. Aeruginosa. Thymus vulgaris EO had a moderate inhibitory effect on Pseudomonas sp. with 640 µg/mL MIC value [111].

Among T. vulgaris, L. nobilis, R. officinalis, and P. crispum EOs, T. vulgaris EO exhibited the highest zone diameter with 26.5 mm on P. fluorescens [98]. T. vulgaris was also found as the most effective with a 13 mm zone diameter on P. Aeruginosa [114].

4.4. Citrobacter spp.

Citrobacter spp. is an opportunistic fish pathogen affecting farmed fish species. Bandeira, et al. [37] reported that O. gratissimum and H. ringens EOs showed a moderate or weak inhibitory (MIC and MBC: >1600 µg/mL) on Citrobacter freundii. Among Achyrocline satureioides, Aniba parviflora, Aniba rosaeodora, Anthemis nobilis, Conobea scoparioides, Cupressus sempervirens, Illicium verum, Lippia origanoides, and Melaleuca alternifolia EOs on C. freundii, only L. origanoides EO exhibited a moderate inhibitory [43].

It was determined that C. freundii showed susceptibility towards the Argania spinosa EO with a zone diameter of 15 mm [113], and C. nardus EO with a MIC value of 0.244 µg/mL [102].

4.5. Raoultella ornithinolytica

Raoultella ornithinolytica was isolated from kidneys and skin lesions of naturally diseased silver catfish (Rhamdia quelen), and Ocimum gratissimum EO showed a moderate inhibitory effect on this pathogen [37].

4.6. Nocardia seriolae

Nocardia seriolae is the causative agent of nocardiosis in cultured fish species [115]. Ismail and Yoshida [116] reported that MIC values of C. Zeylanicum, Thymus vulgaris, Cymbopogon flexuosus, and Melaleuca alternifolia EOs on 80 Nocardia seriolae isolates were in
the range of 5 to $>5120 \, \mu g/mL$, and the most effective herb species were *C. zeylanicum* and *T. vulgaris* with MICs 5–160 $\mu g/mL$, respectively.

4.7. *Flavobacterium* spp.

Flavobacterium species are widespread in soil habitats and fresh and marine waters and cause economic losses in cultured fish. *T. vulgaris* EO exhibited a potent inhibitory with 320 $\mu g/mL$ MIC value on *F. psychrophilum* [111].

Previous studies have reported that *Flavobacterium* spp. showed high susceptibility towards the *S. aromaticum* EO with a MIC value of 0.031 $\mu g/mL$ [103], and *C. nardus* EO with a MIC value of 0.977 $\mu g/mL$ [102]. *R. officinalis* EO showed a moderate zone diameter with $>18 \, mm$ on *F. psychrophilum* [117]. A remarkable activity of *Allium tuberosum* EO with 20 $\mu g/mL$ to 80 $\mu g/mL$ MIC values was reported on six different isolates of *Flavobacterium columnare* [118].

4.8. *Staphylococcus aureus*

Staphylococcus aureus is an important Gram-positive opportunistic pathogen for aquaculture species. Gulec, et al. [101] reported that *O. acutidens* EO formed a zone diameter of 28 mm on *S. aureus*, *Z. officinale*, *N. Sativa*, *T. Vulgaris*, *S. Aromaticum* and *E. Sativa* EOs had no inhibitory effects on *S. aureus* [114].

4.9. *Streptococcus* spp., *Lactococcus* spp., and *Vagococcus salmoninarum*

Streptococcaceae family species are important Gram-positive pathogens for cultured fish. Among *L. alba*, *L. sidoides*, *M. piperita*, *O. gratissimum*, and *Z. officinale* EOs, strong inhibitory effects of *L. sidoides* EO was reported on *Streptococcus agalactiae* with 312.5 $\mu g/mL$ MIC and 416.7 $\mu g/mL$ MBC values [119]. It was determined that *S. agalactiae* had high susceptibility towards the *O. Basilicum* [105], *M. piperita* [45], *C. Nardus* [102], and *S. Aromaticum* [103] with MIC value of 9 $\mu g/mL$, 0.125 mg/mL, 0.244 $\mu g/mL$, and 0.015 $\mu g/mL$, respectively.

Gholipourkanani, et al. [51] determined that among *E. globulus*, *L. angustifolia*, *O. vulgare*, and *M. alternifolia* nano-emulsions and EOs, *O. vulgare* EO and/or nano-emulsion were found as the most effective on *Streptococcus iniae*. *Oliveria decumbens* EO had a zone of inhibition of 69 mm, and MIC and MBC values of 0.5 mg/mL and 2 mg/mL, respectively, on *S. iniae* [120].

A remarkable activity of *Z. multiflora* and *R. officinalis* EOs were reported, respectively, with 0.06 $\mu L/mL$ and 0.5 $\mu L/mL$ MIC, and 0.12 $\mu L/mL$ and 0.25 $\mu L/mL$ MBC for *S. iniae* [121]. Similarly, *R. officinalis*, *Z. Multiflora*, *A. Graveolens*, and *E. Globulus* EOs exhibited potent inhibitory effects on *S. iniae*, and *R. officinalis* showed the highest inhibition with a zone of 45 mm, and MIC value of 3.9 $\mu g/mL$, and MBC value of 7.8 $\mu g/mL$ [122].

Cinnamomum verum, *Citrus hystrix*, *Cymbopogon citratus*, and *Curcuma longa* EOs had marked activity against *S. iniae* with the low respective MIC values of 40, 160, 320, and 160, respectively [123]. Pirbalouti, et al. [124] determined that *Thymus daenensis* and *Myrtus communis* EOs formed a zone diameter of 19 mm and 15.67 mm, respectively, on *S. iniae*.

It was reported that *Streptococcus* spp. showed high susceptibility towards the *S. aromaticum* EO with a MIC value of 0.062 [103] and *C. nardus* EO with a MIC value of 0.488 [102].

Zataria multiflora, *Thymbra spicata*, *Bunium persicum*, *Satureja bachtiarica*, and *Thymus daenensis* EOs exhibited potent inhibitory effects with MIC and MBC values ranged from 4 $\mu L/mL$ to 16 $\mu L/mL$ against the *L. garvieae* [125]. *Zataria multiflora*, *Cinnamomum zeylanicum*, and *Allium sativum* EOs showed a potent inhibitory (MIC: 0.12 to 0.5 $\mu L/mL$ and MBC: 0.12 to 1 $\mu L/mL$) on *L. Garvieae* [126]. It was determined that *Argania spinosa* EO with a zone diameter of ~11 mm and MIC values of 125 $\mu L/mL$ on *L. Garvieae* [113].

Thymus vulgaris EO had marked activity with a zone diameter of 36.7 mm on *L. Garvieae* [101]. Among *T. vulgaris*, *L. nobilis*, *R. officinalis*, and *P. crispum* EOs, *T. vulgaris* EO exhibited the highest zone diameter with 29.5 mm on *L. Garvieae* [98].
It was found that *T. vulgaris* EO was more effective on *Lactococcus piscium* (MIC: 320 µg/mL) than *Lactococcus lactis* (MIC: 1280) and *Lactococcus lactis* subsp. *lactis* bv. *diacetylactis* (MIC: 1280) [111].

Among *Origanum vulgare, Hypericum perforatum, Rosmarinus officinalis, Zingiber officinalis, Eugenia caryophyllata, Mentha piperita, Lavandula hybrid*, and *Nigella sativa* EOs, *O. vulgare* and *E. caryophyllata* EOs showed remarkable activity against *Vagococcus salmoninarum* with the low respective MIC values of 125 µL/mL and 250 µL/mL, respectively [42].
Table 3. Essential oils as antibacterial agents: an in vitro perspective.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Aeromonas salmonicida subsp. *salmonicida* ATCC 14174	Cinnamomum zeylanicum/verum	61 to 3628 µg/mL	➢ C. zeylanicum/verum MIC and MBC: 245	Hayatgheib, et al. [96]
	Origanum vulgare		➢ O. vulgare MIC and MBC: 226	
	Origanum compactum		➢ O. compactum MIC and MBC: 458	
	Origanum heracleoticum		➢ O. heracleoticum MIC and MBC: 458	
	Eugenia caryophyllata		➢ E. caryophyllata MIC and MBC: 520	
	Geraniol rich Thymus vulgaris			
	Thymol rich Thymus vulgaris			
	Thymus saturoides			
	Thujanol rich *Thymus* vulgaris			
	Melaleuca alternifolia			
	Cinnamomum camphora			
	Linalool rich *Thyme* vulgaris			
	Rosemary officinalis			
	Cinnamomum camphora			
	Linalool rich *Thyme* vulgaris			
	Rosemary officinalis			
	Cinnamomum camphora			
	Linalool rich *Thyme* vulgaris			
	Rosemary officinalis			
	Cinnamomum camphora			
	Linalool rich *Thyme* vulgaris			
	Rosemary officinalis			

A. salmonicida subsp. *salmonicida* CAE 235	C. zeylanicum/verum	61 to 3628 µg/mL	➢ C. zeylanicum/verum MIC and MBC: 245	Hayatgheib, et al. [96]
	O. vulgare		➢ O. vulgare MIC and MBC: 226	
	O. compactum		➢ O. compactum MIC and MBC: 458	
	O. heracleoticum		➢ O. heracleoticum MIC and MBC: 458	
	E. caryophyllata		➢ E. caryophyllata MIC and MBC: 520	
	Geraniol rich *T. vulgaris*			
	Thymol rich *T. vulgaris*			
	T. saturoides			
	Thujanol rich *T. vulgaris*			
	M. alternifolia			
	C. camphora			
	Linalool rich *T. vulgaris*			
	R. officinalis			
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
A. salmonicida subsp. *salmonicida* CAE 452	C. zeylanicum/verum	61 to 3628 µg/mL	C. zeylanicum/verum MIC and MBC: 61	Hayatgheib, et al. [96]
	O. vulgare		O. vulgare MIC and MBC: 113	
	O. compactum		O. compactum MIC and MBC: 229	
	O. heracleoticum		O. heracleoticum MIC and MBC: 458	
	E. caryophyllata		E. caryophyllata MIC and MBC: 520	
	Geraniol rich T. vulgaris		Thymol rich T. vulgaris MIC and MBC: 440	
	T. satureoides		Thujanol rich T. vulgaris	
	M. alternifolia			
	C. camphora			
	Linalool rich T. vulgaris			
	R. officinalis			

A. salmonicida subsp. *salmonicida* CAE 258	C. zeylanicum/verum	61 to 3628 µg/mL	C. zeylanicum/verum MIC and MBC: 490	Hayatgheib, et al. [96]
	O. vulgare		O. vulgare MIC and MBC: 453	
	O. compactum		O. compactum MIC and MBC: 458	
	O. heracleoticum		O. heracleoticum MIC and MBC: 458	
	E. caryophyllata		E. caryophyllata MIC and MBC: 916	
	Geraniol rich T. vulgaris		Thymol rich T. vulgaris MIC and MBC: 440	
	Thymol rich T. vulgaris		T. satureoides	
	T. satureoides		M. alternifolia	
	C. camphora		C. camphora	
	Linalool rich T. vulgaris		Linalool rich T. vulgaris	
	R. officinalis		R. officinalis	
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
--------------------	---------------	----------------	---	------------
Vibrio campbellii	➢ O. vulgare			
➢ M. alternifolia				
➢ C. citratus				
➢ C. verum				
➢ T. vulgaris	50 to 3000 µg/mL	➢ O. vulgare MIC and MBC: 800		
➢ M. alternifolia MIC: 800 and MBC: 900				
➢ C. citratus MIC and MBC: 1500				
➢ C. verum MIC: 1000 and MBC: 1200				
➢ T. vulgaris MIC: 1900 and MBC: 2000	Domínguez-Borbor, et al. [110]			
Vibrio harveyi	➢ O. vulgare			
➢ M. alternifolia				
➢ C. citratus				
➢ Cinnamomum verum				
➢ Thymus vulgaris	50 to 3000 µg/mL	➢ O. vulgare MIC: 700 and MBC: 800		
➢ M. alternifolia MIC and MBC: 800				
➢ C. citratus MIC: 1000 and MBC: 1100				
➢ C. verum MIC and MBC: 900				
➢ T. vulgaris MIC: 2000 and MBC: 2100	Domínguez-Borbor, et al. [110]			
Vibrio vulnificus	➢ O. vulgare			
➢ M. alternifolia				
➢ C. citratus				
➢ C. verum				
➢ T. vulgaris	50 to 3000 µg/mL	➢ O. vulgare MIC: 900 and MBC: 1100		
➢ M. alternifolia MIC: 1000 and MBC: 1200				
➢ C. citratus MIC: 2000 and MBC: 2200				
➢ C. verum MIC: 1000 and MBC: 1100				
➢ T. vulgaris MIC and MBC: 1800	Domínguez-Borbor, et al. [110]			
Vibrio parahaemolyticus	➢ O. vulgare			
➢ M. alternifolia
➢ C. citratus
➢ C. verum
➢ T. vulgaris | 50 to 3000 µg/mL | ➢ O. vulgare MIC: 800 and MBC: 900
➢ M. alternifolia MIC: 600 and MBC: 900
➢ C. citratus MIC: 1400 and MBC: 1500
➢ C. verum MIC: 1500 and MBC: 1600
➢ T. vulgaris MIC and MBC: 1500 | Domínguez-Borbor, et al. [110] |
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Vagococcus salmoninarum	Origanum vulgare	0.195 to 25 final well concentration for agar diffusion assay, 1000–0.01 µL/mL/well and MIC 250	O. vulgare 17 to 20.33 mm/1.56 to 25 µL/mL/well and MIC: 125	Metin and Biçer [42]
	Hypericum perforatum		R. officinalis MIC: 1000	
	Rosmarinus officinalis		Z. officinale MIC: 500	
	Zingiber officinale		E. caryophyllata 17.83–18.66 mm/12.5–25 µL/mL/well and MIC 250	
	Mentha piperita		M. piperita MIC: 500	
	Lavandula hybrida		L. hybrid MIC: 1000	
	Nigella sativa		N. sativa MIC: >1000	
Aeromonas spp. isolates (248, 249, 284, 351, 432, 520, 533, 561, 562, 565, 568 and 570)	Mentha arvensis	312.5 to 40,000 µg/mL	M. arvensis MIC and MBC 1250 (isolate 520)	Chagas, et al. [36]
	Mentha piperita		M. piperita MIC and MBC 2500 (isolate 570)	
	Other isolates		Other isolates MIC: >145	
Aeromonas hydrophila isolates (248, 249, 284, 432, 520, 533, 562, 568, 569 and 570)	Piper aduncum	117.2 to 30,000 µg/mL	P. marginatum MIC: 468.8 for A. hydrophila (248 and 570)	Majolo, et al. [43]
	Piper callosum		P. marginatum MIC: 234.4 for A. hydrophila (569)	
	Piper hispidinervum		Others MIC: >937.5	
	Piper hispidum			
	Piper marginatum			
Streptococcus agalactiae	Lippia alba	312 to 20,000 µg/mL	L. alba MIC and MBC: 1666.7	Majolo, et al. [119]
	Lippia sidoides		L. sidoides MIC: 312.5 and MBC: 416.7	
	Mentha piperita		M. piperita MIC and MBC: 1250	
	Ocimum gratissimum		O. gratissimum MIC and MBC: 2500	
	Zingiber officinale		Z. officinale MIC:625 and MBC: 833.3	
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Aeromonas hydrophila	Lippia alba	625 to 20,000 µg/mL	L. alba MIC and MBC: 5000	Majolo, et al. [104]
	Lippia origanoides		L. origanoides MIC and MBC: 2500	
	Lippia sidoides		L. sidoides MIC and MBC: 1250	
Aeromonas veronii	Ocimum gratissimum	100 to 3200 µg/mL	400 (MIC and MBC) for Rifampicin resistant A. hydrophila and A. veronii	Bandeira, et al. [37]
Aeromonas hydrophila			800 (MIC) and 1600 (MBC) for A. hydrophila and A. veronii	
Citrobacter freundii			1600 (MIC) and MBC for C. freundii	
Raoultella ornithinolytica			3200 (MIC and MBC) for R. ornithinolytica	
	Hesperozygis ringens		800 (MIC and MBC) for A. veronii	
	Achyrocline satureioides		satureioides MIC and MBC: >6400	
	Aniba parviflora		parviflora MIC: 800 and MBC: 1600	
	Aniba rosaeodora		rosaeodora MIC and MBC: 3200	
	Anthemis nobilis		nobilis MIC and MBC: 6400	
	Conobea scoparioides		scoparioides MIC and MBC: 200	
	Cupressus sempervirens		sempervirens MIC and MBC: >6400	
	Illicium verum		verum MIC: 1600 and MBC: 3200	
	Lippia origanoides		L. origanoides MIC and MBC: 200	
	Melaleuca alternifolia		M. alternifolia MIC: 3200 and MBC: 6400	
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
C. freundii	satureioides	12.5 to 6400 µg/mL	satureioides MIC and MBC: >6400	Bandeira Jr, et al. [106]
	parviflora		parviflora MIC: 3200 and MBC: 6400	
	roseaodora		roseaodora MIC and MBC: 3200	
	nobilis		nobilis MIC and MBC: >6400	
	scoparioides		scoparioides MIC and MBC: 3200	
	sempervirens		sempervirens MIC and MBC: >6400	
	verum		verum MIC and MBC: >6400	
	L. origanoides		L. origanoides MIC and MBC: 800	
	M. alternifolia		M. alternifolia MIC and MBC: >6400	
R. ornithinolytica	satureioides	12.5 to 6400 µg/mL	satureioides MIC and MBC: >6400	Bandeira Jr, et al. [106]
	parviflora		parviflora MIC and MBC: 3200	
	roseaodora		roseaodora MIC and MBC: 3200	
	nobilis		nobilis MIC and MBC: >6400	
	scoparioides		scoparioides MIC and MBC: 3200	
	sempervirens		sempervirens MIC and MBC: >6400	
	verum		verum MIC and MBC: >6400	
	L. origanoides		L. origanoides MIC and MBC: 800	
	M. alternifolia		M. alternifolia MIC: 6400 and MBC > 6400	
Aeromonas hydrophila, Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus agalactiae	Ocimum basilicum	3 and 6 µL/disc, 3 to 300 µL/mL MIC	13.5 mm/3 µL/disc and MIC: 3 for Aeromonas hydrophila	El-Ekiaby [105]
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
---------------------------	---------------------	----------------	--	-----------------------------------
Streptococcus agalactiae	*Mentha piperita*	-	➢ MIC: 0.125 mg/mL.	de Souza Silva, et al. [45]
Photobacterium damsela	*Eucalyptus globulus*	-	➢ *E. globulus* MIC: 25 and MBC: 50 ➢ Nano-emulsions from *E. globulus* MIC: 12.5 and MBC: 25 ➢ *L. angustifolia* MIC: 100 and MBC: 50 ➢ Nano-emulsions from *L. angustifolia* MIC: 50 and MBC: 50 ➢ *O. vulgare* MIC: 25 and MBC: 25 ➢ Nano-emulsions from *O. vulgare* MIC: 3.12 and MBC: 12.5 ➢ *M. alternifolia* MIC: 100 and MBC: 100 ➢ Nano-emulsions from *M. alternifolia* MIC: 50 and MBC: 50	Gholipourkanani, et al. [51]
Aeromonas hydrophila	*E. globulus*	-	➢ *E. globulus* MIC: 100 and MBC: 100 ➢ Nano-emulsions from *E. globulus* MIC: 50 and MBC: 50 ➢ *L. angustifolia* MIC: 100 and MBC: 100 ➢ Nano-emulsions from *L. angustifolia* MIC: 50 and MBC: 50 ➢ *O. vulgare* MIC: 25 and MBC: 25 ➢ Nano-emulsions from *O. vulgare* MIC: 3.12 and MBC: 12.5 ➢ *M. alternifolia* MIC: 50 and MBC: 50 ➢ Nano-emulsions from *M. alternifolia* MIC: 12.5 and MBC: 50	Gholipourkanani, et al. [51]
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Streptococcus iniae	E. globulus, L. angustifolia, O. vulgare, M. alternifolia	-	➢ E. globulus MIC: 100 and MBC: 100	
➢ Nano-emulsions from E. globulus MIC: 100 and MBC: 100				
➢ L. angustifolia MIC: 100 and MBC: 100				
➢ Nano-emulsions from L. angustifolia MIC: 100 and MBC: 100				
➢ O. vulgare MIC: 25 and MBC: 25				
➢ Nano-emulsions from O. vulgare MIC: 3.12 and MBC: 12.5				
➢ M. alternifolia MIC: 100 and MBC: 100				
➢ Nano-emulsions from M. alternifolia MIC: 50 and MBC: 50	Gholipourkanani, et al. [51]			
Yersinia ruckeri (2 isolates)	Thymus vulgaris, Laurus nobilis, Rosmarinus officinalis, Petroselinum crispum	15 µL/disc	➢ T. vulgaris 31.50 and 29.5 mm	
➢ L. nobilis 11.5 mm				
➢ R. officinalis 10 mm and 10.5 mm				
➢ P. crispum 7 mm and 0 mm	Tural, et al. [98]			
Lactococcus garvieae	T. vulgaris, L. nobilis, R. officinalis, P. crispum	15 µL/disc	➢ T. vulgaris 29.5 mm	
➢ L. nobilis 18.5 mm				
➢ R. officinalis 13 mm				
➢ P. crispum 6 mm	Tural, et al. [98]			
Pseudomonas fluorescens	T. vulgaris, L. nobilis, R. officinalis, P. crispum	15 µL/disc	➢ T. vulgaris 26.5 mm	
➢ L. nobilis 9.5 mm
➢ R. officinalis 10 mm
➢ P. crispum 6.5 mm | Tural, et al. [98] |
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Aeromonas sobria	➢ T. vulgaris			
➢ L. nobilis				
➢ R. officinalis				
➢ P. crispum	15 µL/disc	➢ T. vulgaris 31.5 mm		
➢ L. nobilis 15 mm				
➢ R. officinalis 17 mm				
➢ P. crispum 7 mm	Tural, et al. [98]			
Aeromonas salmonicida	➢ T. vulgaris			
➢ L. nobilis				
➢ R. officinalis				
➢ P. crispum	15 µL/disc	➢ T. vulgaris 30 mm		
➢ L. nobilis 13 mm				
➢ R. officinalis 14.5 mm				
➢ P. crispum 7.5 mm	Tural, et al. [98]			
Aeromonas veronii	➢ T. vulgaris			
➢ L. nobilis				
➢ R. officinalis				
➢ P. crispum	15 µL/disc	➢ T. vulgaris 36 mm		
➢ L. nobilis 18.5 mm				
➢ R. officinalis 17.5 mm				
➢ P. crispum 7 mm	Tural, et al. [98]			
Streptococcus iniae	➢ *Oliveria decumbens*	15 mg/disc	➢ 69 mm/disc and MIC: 0.5 mg/mL and MBC: 2 mg/mL	Vazirzadeh, et al. [120]
Nocardia seriolae (80 isolates)	➢ *Cinnamomum zeylanicum*			
➢ *Thymus vulgaris*				
➢ *Cymbopogon flexuosus*				
➢ *Melaleuca alternifolia*	5 to 5120 µg/mL	➢ *C. zeylanicum* MIC: 5 to 160		
➢ *T. vulgaris* MIC: 10 to 160				
➢ *C. flexuosus* 20 to 640				
➢ *M. alternifolia* 160 to >5120	Ismail and Yoshida [116]			
Aeromonas hydrophila	➢ *Ocimum americanum*		➢ MIC: 6400	Sutili, et al. [86]
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Yersinia ruckeri, Aeromonas hydrophila, Listonella anguillarum, Edwarsiella tarda, Citrobacter freundii and Lactococcus garvieae	Argania spinosa	0.5%, 1%, 2.5%, 5%, 7.5%, or 10% disc and 0.06 to 500 µL/ml MIC	➤ 13–18.33 mm/7.5–10%/disc and MIC: 31.25 for Y. ruckeri ➤ 14–17 mm/7.5–10%/disc and MIC: 62.5 for A. hydrophila ➤ 12.33–17 mm/7.5–10%/disc and MIC: 62.5 for L. anguillarum ➤ 14–17 mm/7.5–10%/disc and MIC: 125 for E. tarda ➤ 10–9.66 mm/7.5–10%/disc and MIC: 62.5 for C. freundii ➤ 11–11.33 mm/7.5–10%/disc and MIC: 125 for L. garvieae	Öntaş, et al. [113]
Aeromonas salmonicida subsp. salmonicida	Cinnamomum cassia Cinnamomum zeylanicum T. vulgaris Syzygium aromaticum Melaleuca alternifolia Rosemarinus officinalis Ocimum basilicum C. citratus Aniba rosacordora Salvia officinalis Lavendula angustifolia O. vulgare	25 µL of 20% solution/disc	➤ C. cassia 56 mm ➤ C. zeylanicum 27.3 mm ➤ T. vulgaris 42 mm ➤ S. aromaticum 29.3 mm ➤ M. alternifolia 12.7 mm ➤ R. officinalis 10.7 mm ➤ O. basilicum 6.7 mm ➤ C. citratus 44.7 mm ➤ rosacordora 16.7 mm ➤ S. officinalis 12.7 mm ➤ L. angustifolia 12.7 mm ➤ O. vulgare 46 mm	Starliper, et al. [100]
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
---------------------	--------------	----------------	---	------------
Aeromonas salmonicida subsp. *salmonicida* (10 isolate)	C. cassia	Overall mean percent minimum bactericidal concentrations (MBC)	C. cassia (Lotus): 0.02%	Starliper, et al. [100]
Aeromonas hydrophila (5 isolate)	C. aromaticum, Cymbopogon citratus, Origanum vulgare, Thymus vulgaris		C. cassia (Aromaland): 0.04%	
Aeromonas veronii bv. *sobria* (9 isolate)	*C. caviae*		C. citratus (Stony Mountain Botanicals): 0.10%	
Aeromonas popoffii (17 isolate)	*C. veronii* bv. *sobria* (9 isolate)		O. vulgare (Now Foods): 0.14%	
Aeromonas allosaccharophila (3 isolate)	*A. caviae*		O. vulgare (Herbal Authority): 0.16%	
Aeromonas encheleia (9 isolate)	*A. popoffii* (17 isolate)		O. vulgare (Stony Mountain Botanicals): 0.30%	
Aeromonas mulluscorm (4 isolate)	*A. allosaccharophila* (3 isolate)		C. citratus (Now Foods): 0.36%	
Aeromonas hydrophila (14 isolates)	Hesperozygis ringens, Ocimum gratissimum	100 to 3200 µg/mL	H. ringens MIC and MBC: 800 to 3200 µg/mL	Sutili, et al. [107]
Lactococcus garvieae	*Lippia alba*	the initial concentration of 176,100 µg/mL	MIC: 2862	Sutili, et al. [108]
Streptococcus iniae (2 isolates)	Zataria multiflora, Rosmarinus officinalis	1 to 0.0017 µL/mL	Z. multiflora MIC: 0.12 and MBC: 0.12	Soltani, et al. [126]
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
---------------------	---------------	----------------	---	------------
Staphylococcus aureus *Lactococcus garviae* *Yersinia ruckeri* *Aeromonas hydrophila*	➢ *Origanum acutidens*	10 µL/disc	➢ 28 mm for *S. aureus* ➢ 36.7 mm for *L. garviae* ➢ 28.7 mm for *Y. ruckeri* ➢ 32.7 mm for *A. hydrophila*	Gulec, et al. [101]
Aeromonas salmonicida	➢ *Azadirachta indica* (Nano-emulsion)	40 µL/disc	➢ 30 mm	Thomas, et al. [99]
Staphylococcus aureus *Pseudomonas aeruginosa*	➢ *Z. officinale* ➢ *N. sativa* ➢ *T. vulgaris* ➢ *S. aromaticum* ➢ *E. sativa*	10 µL/disc	➢ *S. aromaticum* 4.5 mm for *S. aureus* ➢ *Z. officinale* 6.7 mm, *T. vulgaris* 13 mm, ➢ *S. aromaticum* 2 mm and *E. sativa* 10.3 mm for *P. aeruginosa*	Shehata, et al. [114]
Edwardsiella spp. (2 isolate) *Edwardsiella tarda* (18) *Vibrio* spp. (5 isolate) *Vibrio daniels* *Aeromonas* spp. (2 isolate) *Escherichia coli* (2 isolate) *Flavobacterium* spp. *Pseudomonas* spp. *Streptococcus* spp. *Aeromonas hydrophila* (ATCC 49140) *Citrobacter freundii* (ATCC 8090) *Edwardsiella tarda* (ATCC 15947) *Pseudomonas aeruginosa* (ATCC 35032), *Streptococcus agalactiae* (ATCC 13813)	➢ *Cymbopogon nardus*	-	➢ Overall mean MIC: 0.244 and/or 0.488 µg/mL ➢ *Edwardsiella* spp. (1 isolate), *E. tarda* (1 isolate), *Aeromonas* spp. (1 isolate) and *Flavobacterium* spp. MIC values: 0.977 µg/mL	Wei and Wee [102]
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	
Lactococcus garvieae	Tanacetum parthenium	100 µg/disc and 10 to 1000 µg/mL for MIC	T. parthenium 15 mm/disc and MIC: 824	
	Satureja bachtiarica		S. bachtiarica 25 mm/disc and MIC: 126	
				Fereidouni, et al. [127]
Streptococcus iniae	R. officinalis	2 mg/disc and 7.8 to 1000 µg/mL MIC and MBC	R. officinalis 45 mm/disc, MIC: 3.9 and MBC: 7.8	
	Z. multiflora		Z. multiflora 22 mm/disc, MIC: 62.4 and MBC: 250	
	graveolens		graveolens 32 mm/disc, MIC: 7.8 and MBC: 15.6	
	E. globulus		E. globulus 18 mm/disc, MIC: 250 and MBC: 250	
				Roomiani, et al. [122]
Roomiani, et al.				
Listonella anguillarum	Origanum vulgare subsp. hirtum (7 different collection sample)	2 µL/disc	O. vulgare subsp. hirtum 9.1 to 14.1 mm	
	O. onites (2 different collection sample)		O. onites 9.2 and 13.8 mm	
	O. marjorana		O. marjorana 11.5 mm	
				Stefanakis, et al. [112]
Stefaniak, et al.				
Vibrio splendidus	O. vulgare subsp. hirtum (7 different collection sample)	2 µL/disc	O. vulgare subsp. hirtum 7.3 to 14 mm	
	O. onites (2 different collection sample)		O. onites 12.6 and 14.3 mm	
	O. marjorana		O. marjorana 9.2 mm	
				Stefanakis, et al. [112]
Stefaniak, et al.				
Vibrio alginolyticus	O. vulgare subsp. hirtum (7 different collection sample)	2 µL/disc	O. vulgare subsp. hirtum 7.9 to 11.5 mm	
	O. onites (2 different collection sample)		O. onites 8.6 and 13.6 mm	
	O. marjorana		O. marjorana 7.8 mm	
				Stefanakis, et al. [112]
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
---------------------	---------------	----------------	---	------------
Aeromonas salmonicida (18 isolate)	Origanum onites	20 µL/disc and 10 to 800 µg/mL for MIC	O. onites 14 to 25 mm/disc and MIC: 800	Okmen, et al. [97]
	Origanum vulgare		O. vulgare 12 to 26 mm/disc and MIC: 800	
	Thymbra spicata		T. spicata 10 to 30 mm/disc and MIC: 800	
	Satureja thymbra		S. thymbra 10 to 30 mm/disc and MIC: 800	
Flavobacterium psychrophilum	Rosmarinus officinalis	0.0, 0.1, 0.3, 0.5, 0.7, 0.9 µL rosemary oil/µL	>-18 mm, 0.1–0.9 µL rosemary oil/disc	Ostrand, et al. [117]
L. garvieae	Rosmarinus officinalis	2 mg/disc and 7.8 to 1000 µg/mL MIC and MBC	R. officinalis 24 mm/disc, MIC: 15.6 and MBC: 31.2	Mahmoodi, et al. [128]
	Zataria multiflora Anethum graveolens Eucalyptus globulus		Z. multiflora 32 mm/disc, MIC: 7.8 and MBC: 15.6	
			E. globulus 16 mm/disc, MIC: 250 and MBC: 250	
Streptococcus iniae	Thymus daenensis	100 µg/disc	T. daenensis 19 mm	Pirbalouti, et al. [124]
	Myrtus communis		M. communis 15.67 mm	
L. garvieae	Zataria multiflora		Z. multiflora MIC: 4 and MBC: 8	Goudarzi, et al. [125]
	Thymbra spicata		T. spicata MIC: 8 and MBC: 16	
	Bunium persicum		B. persicum MIC: 8 and MBC: 16	
	Satureja bachtiarica		S. bachtiarica MIC: 8 and MBC: 16	
	Thymus daenensis		T. daenensis MIC: 8 and MBC: 16	
	Myrtus communis		M. communis MIC and MBC: >1000	
Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
---	---------------	--	--	-----------------------------
Lactococcus piscium	Thymus vulgaris	2.5 to 1280 µg/mL for MIC	➢ L. piscium MIC: 320	Navarrete, et al. [111]
Streptococcus phocae			➢ S. phocae MIC: 640	
Flavobacterium psychrophilum			➢ F. psychrophilum MIC: 320	
Vibrio ordalii			➢ V. ordalii MIC: 320	
Vibrio anguillarum			➢ V. anguillarum MIC: 80	
Vibrio parahaemolyticus			➢ V. parahaemolyticus MIC: 320	
Shewanella baltica			➢ S. baltica MIC: 640	
Pseudomonas sp.			➢ Pseudomonas sp. MIC: 640	
Kluyvera intermedia			➢ K. intermedia MIC: 1280	
Citrobacter gillenii			➢ C. gillenii MIC: 1280	
Hafnia alvei			➢ H. alvei MIC: 1280	
Psychrobacter sp.			➢ Psychrobacter sp. MIC: 1280	
Lactococcus lactis			➢ L. lactis MIC: 1280	
Lactococcus lactis subsp. lactis bv.			➢ L. lactis subsp. lactis bv.	
diacetylactis			➢ diacetylactis MIC: 1280	
Arthrobacter sp.			➢ Arthrobacter sp. MIC: 1280	
Lactococcus lactis subsp. diacetylactis			➢ L. lactis subsp. diacetylactis MIC: 1280	
Arthrobacter sp.			➢ Arthrobacter sp. MIC: 1280	
L. lactis subsp. lactis			➢ L. lactis subsp. lactis MIC: 1280	
Streptococcus iniae	Cinnamomum verum	10 to 640 µg/mL	➢ C. verum MIC: 40	Rattanachaikunsopon and
	Citrus hystrix		➢ C. hystrix MIC: 160	Phumkhachorn [123]
	Cymbopogon citratus	10 to 640 µg/mL	➢ C. citratus MIC: 320	
	Curcuma longa		➢ C. longa MIC: 160	
Flavobacterium columnare (6 isolate)	Allium tuberosum	280 µg/mL	➢ C. tuberosum MIC: 20 to 80	Rattanachaikunsopon and
				Phumkhachorn [118]
Table 3. Cont.

Bacterial Pathogens	Essential Oil	Concentrations	Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen	References
Vibrio spp. (6 isolates) *Edwardsiella* spp. (21 isolates) *Aeromonas* spp. (2 isolates) *Escherichia coli* (2 isolates) *Flavobacterium* spp. *Streptococcus* spp. *Citrobacter freundii* (ATCC 8090), *Pseudomonas* spp. *Citrobacter freundii* (ATCC 8090), *Pseudomonas aeruginosa* (ATCC 35032), *Streptococcus agalactiae* (ATCC13813), *Edwardsiella tarda* (ATCC 15947)	*Syzygium aromaticum*	0.015 to 0.062 µg/mL	Overall mean MIC: 0.015 to 0.062	Lee, et al. [103]
5. Research Gaps and Concluding Remarks

Using of herbal compounds in aquaculture is increasing day by day as a means of aquaculture sustainability. Essential oils (EOs) show beneficial effects on growth, immunity, antibacterial and antiparasitic activities in fish culture and are used as anesthetic compounds during fish handling and transportation. The efficiency of EOs depends on plant variables, chemical compositions of bioactive compounds, environmental characteristics of plant origin, and parts of plants from which EOs is extracted. Sometimes plant originated EOs possess a mixture of different compounds, which may produce undesirable side effects on fish and shellfish. Commercial pharmaceutical companies might play significant roles in refining the desirable and undesirable compounds of EOs to achieve better effects in fish culture.

Importantly, EOs molecular mechanisms for fish immunity increment, bacteria, and parasite destruction are also questionable. Future research through cell culture and in vitro identification and characterization of EOs action pathways may solve these questions. In the upcoming days, EOs optimum doses against infectious bacteria and parasites for worldwide commercial fish species should be extensively studied.

Lastly, the synergistic relationship between/among the bioactive compounds of EOs also opens a new research area. Before applying EOs in aquaculture from any new plants, local and international drug regulating agencies (FDA or EU) permission or guidelines should be needed or followed.

Author Contributions: Authors shared equally in this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was partially supported by Chiang Mai University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research work was partially supported by Chiang Mai University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Food and Agricultural Organization (FAO). Fisheries Department, Fishery Information, Data and Statistics Unit. Fishstatj, a Tool for Fishery Statistics Analysis, Release: 3.04.5, Universal Software for Fishery Statistical Time Series. Global Aquaculture Production: Quantity 1950–2016; Value 1950–2016; Global Capture Production: 1950–2016; 2018-03-16. 2018. Available online: http://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 12 December 2020).
2. Shah, B.R.; Mráz, J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquac. 2019, 12, 925–942. [CrossRef]
3. Dawood, M.; Koshio, S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac. 2019, 12, 987–1002. [CrossRef]
4. Hasan, T.; Jang, W.J.; Lee, B.-J.; Kim, K.W.; Hur, S.W.; Lim, S.G.; Bai, S.C.; Kong, I.-S. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish Shellfish. Immunol. 2019, 88, 424–431. [CrossRef]
5. Hasan, T.; Jang, W.J.; Lee, J.M.; Lee, B.-J.; Hur, S.W.; Lim, S.G.; Kim, K.W.; Han, H.-S.; Kong, I.-S. Effects of Immunostimulants, Prebiotics, Probiotics, Synbiotics, and Potentially Immunoreactive Feed Additives on Olive Flounder (Paralichthys olivaceus): A Review. Rev. Fish. Sci. Aquac. 2019, 27, 417–437. [CrossRef]
6. Dawood, M.A.; Metwally, A.E.-S.; El-Sharawy, M.E.; Atta, A.M.; El-Bialy, Z.I.; Abdel-Latif, H.M.; Paray, B.A. The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture 2020, 523, 735205. [CrossRef]
7. Martos-Sitcha, J.A.; Mancera, J.M.; Prunet, F.; Magnoni, L.J. Editorial: Welfare and Stressors in Fish: Challenges Facing Aquaculture. Front. Physiol. 2020, 11, 162. [CrossRef] [PubMed]
8. Dawood, M.; Abo-Al-Ela, H.G.; Hassan, T. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish. Immunol. 2020, 97, 268–282. [CrossRef]
9. Brasil, E.; Figueredo, A.; Cardoso, L.; Santos, M.; Bertaglia, E.; Furtado, W.; Viana, J.; Carmo, I.; Chaves, F.; Mourino, J.; et al. In vitro and in vivo antiparasitic action of essential oils of Lippia spp. in Koi Carp (Cyprinus carpio) fed supplemented diets. Braz. J. Vet. Pathol. 2019, 12, 88–100. [CrossRef]

10. Gonzales, A.P.P.F.; Yoshioka, E.T.O.; Mathews, P.D.; Mertins, O.; Chaves, F.C.M.; Videira, M.N.; Tavares-Dias, M. Anthelmintic efficacy of Cymbopogon citratus essential oil (Poaceae) against monogenean parasites of Colossoma macropomum (Serrasalmidae), and blood and histopathological effects. Aquaculture 2020, 528, 735900. [CrossRef]

11. Paray, B.A.; El-Basuini, M.F.; Shahin, S.A.; Teiba, I.I.; Zaki, M.A.; El-Hais, A.M.; Sewilam, H.; Almeer, R.; Abdelkhalek, N.; Dawood, M.A. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 531, 735862. [CrossRef]

12. Hasen, T.; Jang, W.J.; Lee, S.; Kim, K.W.; Lee, B.-J.; Han, H.-S.; Bai, S.C.; Kong, I.-S. Effect of β-glucosylsaccharides as a new prebiotic for dietary supplementation in olive flounder (Paralichthys olivaceus) aquaculture. Aquac. Res. 2018, 49, 1310–1319. [CrossRef]

13. Dawood, M.; Koshio, S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 2016, 454, 243–251. [CrossRef]

14. Zhao, Y.; Yang, Q.E.; Zhou, X.; Wang, F.-H.; Muurinen, J.; Virta, M.P.; Brandt, K.K.; Zhu, Y. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 2020, 1–38. [CrossRef]

15. Shourbela, R.; Khatab, S.; Hassan, M.; van Doan, H.; Dawood, M. The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Animals 2021, 11, 184. [CrossRef]

16. Dawood, M. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. J. Fish Dis. 2020, 43, 651–664. [CrossRef]

17. Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Esteban, M. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 531, 735862. [CrossRef]

18. Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Esteban, M.; Ringo, E.; van Doan, H. The effects of dietary coenzyme Q10 and vitamin C on the growth rate, hepato-renalf function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture 2020, 736287. [CrossRef]

19. Abdel-Latif, H.M.; Dawood, M.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequence of co-infections in tilapia: A review. J. Fish Dis. 2020, 43, 651–664. [PubMed]

20. Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Jaturasitha, S.; Esteban, M.; Ringo, E.; van Doan, H. The effects of dietary coenzyme Q10 and vitamin C on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture 2020, 736287. [CrossRef]

21. Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Esteban, M.; Ringo, E.; van Doan, H. The effects of dietary coenzyme Q10 and vitamin C on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture 2020, 736287. [CrossRef]

22. Shekarabi, S.P.H.; Omidi, A.H.; Dawood, M.; Adel, M.; Avazeh, A.; Heidari, F. Effect of Black Mulberry (Morus nigra) powder on growth performance, skin mucus, and serum immunity of Nile tilapia (Oreochromis niloticus). Aquac. Rep. 2020, 16, 100239. [CrossRef]

23. Shekarabi, S.P.H.; Omidi, A.H.; Dawood, M.; Adel, M.; Avazeh, A.; Heidari, F. Effect of Black Mulberry (Morus nigra) Powder on Growth Performance, Biochemical Parameters, Blood Carotenoid Concentration, and Fillet Color of Rainbow Trout. Ann. Anim. Sci. 2020, 20, 125–136. [CrossRef]

24. Sarhadi, I.; Alizadeh, E.; Ahmadifar, E.; Adineh, H.; Dawood, M.A. Skin Mucosal, Serum Immunity and Antioxidant Capacity of Common Carp (Cyprinus carpio) Fed Artemisia (Artemisia annua). Ann. Anim. Sci. 2020, 20, 1011–1027. [CrossRef]

25. Sadeghi, F.; Ahmadifar, E.; Moghadam, M.S.; Ghiyasi, M.; Dawood, M.; Yilmaz, S.; Lemon, Citrus aurantiifolia, peel and Bacillus licheniformis protected common carp, Cyprinus carpio, from Aeromonas hydrophila infection by improving the humoral and skin mucosal immunity, and antioxidative responses. J. World Aquac. Soc. 2020. [CrossRef]

26. Valentim, D.S.S.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Carvalho, J.C.T.; Conceição, E.C.; Fernandes, C.P.; Tavares-Dias, M. Nanomulsion from essential oil of Pterodon emarginatus (Fabaceae) shows in vitro efficacy against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J. Fish Dis. 2018, 41, 443–449. [CrossRef] [PubMed]

27. Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Dawood, M.A.; El-Nesr, S.S.; Dhama, K. Curcumin and its different forms: A review on fish nutrition. Aquaculture 2021, 532, 736030. [CrossRef]

28. Coimbra, J.L.; Soares, A.C.F.; Garrido, M.D.S.; Sousa, C.D.S.; Ribeiro, F.L.B. Toxicity of plant extracts to Scutellonema bradys. Pesqui. Agropecuária Bras. 2006, 41, 1209–1211. [CrossRef]

29. Magouz, F.I.; Mahmoud, S.A.; El-Morsy, R.A.; Paray, B.A.; Soliman, A.A.; Zaineldin, A.I.; Dawood, M.A. Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 530, 735944. [CrossRef]

30. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2013, 2, 12. [CrossRef]

31. Nazzaro, F.; Fratianni, F.; de Martino, L.; Coppola, R.; de Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [CrossRef]
32. Zanetti, M.; Ternus, Z.; Dalcanton, F.; de Mello, M.; de Oliveira, D.; Araujo, P.; Riella, H.; Fiori, M. Microbiological characterization of pure geraniol and comparison with bactericidal activity of the cinnamic acid in gram-positive and gram-negative bacteria. J. Microb. Biochem. Technol. 2015, 7, 186–193.

33. Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [CrossRef] [PubMed]

34. Chavan, P.S.; Tupe, S.G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control 2014, 46, 115–120. [CrossRef]

35. Nisar, T.; Yang, X.; Alim, A.; Iqbal, M.; Guo, Y.; Guo, Y. Physicochemical responses and microbiological changes of bream (Megalobrama ambycephala) in pectin based coatings enriched with clove essential oil during refrigeration. Int. J. Biol. Macromol. 2019, 124, 1156–1166. [CrossRef]

36. Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Food Control 2017, 20, 213–216. [CrossRef]

37. Bandeira, G.; Pires, T.S.; Saccal, E.M.; Sutili, F.J.; Rossi, W.; Murari, A.L.; Heinzmann, B.M.; Pavanato, M.A.; de Vargas, A.C.; Silva, L.D.L.; et al. Potential uses of Ocimum gratissimum and Hesperoxygis ringens essential oils in aquaculture. Ind. Crop. Prod. 2017, 97, 484–491. [CrossRef]

38. Al-Sagheer, A.A.; Mahmoud, H.K.; Reda, F.M.; Mahgoub, S.A.; Ayyat, M.S. Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquac. Nutr. 2018, 24, 1006–1014. [CrossRef]

39. Khafaga, A.F.; Naiel, M.A.E.; Dawood, M.A.; Abdel-Latif, H.M.R. Dietary Varronia curassavica accessions have different activity against white spot disease in freshwater fish. Parasitol. Res. 2018, 117, 97–105. [CrossRef] [PubMed]

40. Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 2020, 32, 209–215. [CrossRef]

41. Al-Otaibi, M.; Al-Harbi, A.H.; Al-Hussaini, M.; Al-Askar, S.; Al-Hussaini, A.H.; Al-Fayadh, A. Essential oils of Cymbopogon flexuosus and Ocimum gratissimum inhibit growth and survival of Acanthamoeba castellanii in vitro. J. Microb. Biochem. Technol. 2016, 8, 28–32. [CrossRef]

42. Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int. 2014, 22, 1079–1091. [CrossRef]

43. Zane, C.; Blank, A.F.; Blank, M.D.F. Essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. Food Control 2020, 111, 107773. [CrossRef] [PubMed]

44. Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. Food Control 2020, 111, 107773. [CrossRef] [PubMed]
55. Mohammadi, G.; Rafiee, G.; El-Basuni, M.F.; van Doan, H.; Ahmed, H.A.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Oregano (Origanum vulgare), at John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) in-fected with Aeromonas hydrophila. Aquac. Rep. 2020, 18, 100445.

56. Jang, I.; Ko, Y.; Kang, S.; Lee, C. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed. Sci. Technol. 2007, 134, 304–315. [CrossRef]

57. Abdel-Latif, H.M.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2020, 526, 735432. [CrossRef]

58. Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [CrossRef]

59. Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.F.; Dadar, M.; Yilmaz, S.; Dawood, M.; Abdel-Latif, H.M.R. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2020, 1–34. [CrossRef]

60. Zhang, R.; Wang, X.; Liu, L.; Cao, Y.; Zhu, H. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [CrossRef]

61. Baba, E.; Acar, Ü.; Onçaş, C.; Keskibi, O.S.; Yilmaz, S. Evaluation of citrus limon peels essential oil on growth performance, immune response of Mozambique tilapia Oreochromis mossambicus challenged with Edwardsiella tarda. Aquaculture 2016, 465, 13–18. [CrossRef]

62. Acar, U.; Keskibi, O.S.; Yilmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [CrossRef]

63. Ngugi, C.C.; Oyo-Okoth, E.; Muchiri, M. Effects of dietary levels of essential oil (EO) extract from bitter lemon (Citrus limon) fruit peels on growth, biochemical, haemato-immunological parameters and disease resistance in juvenile Labeo victorianus fingerlings challenged with Aeromonas hydrophila. Aquac. Res. 2017, 48, 2253–2265.

64. Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [CrossRef]

65. Mabrok, M.A.E.; Wahdan, A. The immune modulatory effect of oregano (Origanum vulgare L) essential oil on Tilapia zillii following intraperitoneal infection with Vibrio anguillarum. Aquac. Int. 2018, 26, 1147–1160. [CrossRef]

66. Zheng, Z.L.; Tan, J.Y.W.; Liu, H.Y.; Zhou, X.H.; Xiang, X.; Wang, K.Y. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidative and resistance against Aeromonas hydrophila in channel cat-fish (Ictalurus punctatus). Aquaculture 2009, 292, 214–218. [CrossRef]

67. Sutilli, F.J.; Kreutz, L.C.; Noro, M.; Gressler, L.T.; Heinzmann, B.M.; Vargas, A.C.; Baldisserotto, B. The use of eugenol against Aeromonas hydrophila and its effect on hematological and immunological parameters in silver catfish (Rhamdia quelen). Veter. Immunol. Immunopathol. 2014, 157, 142–148. [CrossRef]

68. Diler, O.; Gormez, O.; Diler, I.; Metin, S. Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidative activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhyncus mykiss (walbaum). Aquac. Nutr. 2017, 23, 844–851. [CrossRef]

69. Das, R.; Raman, R.P.; Saha, H.; Singh, R. Effect of Ocimum sanctum linn.(tulsi) extract on the immunity and sur-vival of Labeo rohita (hamilton) infected with Aeromonas hydrophila. Aquac. Res. 2015, 46, 1111–1211. [CrossRef]

70. Abdel-Latif, H.M.; Khalil, R.H. Evaluation of two phytobiotics, Spirulina platensis and Origanum vulgare extract on growth, serum antioxidative activities and resistance of Nile tilapia (Oreochromis niloticus) to pathogenic Vibrio algoinylicytes. Int. J. Fish Aquat. Stud. 2014, 1, 250–255.

71. Jerónimo, G.T.; Pádua, S.B.D.; Belo, M.A.D.A.; Chagas, E.C.; Taboga, S.R.; Maciel, P.O.; Martins, M.L. Neocich-norhynchus butnerae (acanthocephala) infection in farmed Colosoma macropomum: A pathological approach. Aquaculture 2017, 469, 124–127. [CrossRef]

72. Valladão, G.M.R.; Gallani, S.U.; Jerónimo, G.T.; de Seixas, A.T. Challenges in the control of acanthocephalosis in aquaculture: Special emphasis on Neochinorhynchus butnerae. Rev. Aquac. 2019, 12, 1360–1372. [CrossRef]

73. Costa, C.M.D.S.; da Cruz, M.G.; Lima, T.B.C.; Ferreira, L.C.; Ventura, A.S.; Brandão, F.R.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L.; Jerónimo, G.T. Efficacy of the essential oils of Mentha piperita, Lippia alba and Zingiber officinale to control the acanthophalan Neochinorhynchus butnerae in Colosoma macropomum. Aquac. Rep. 2020, 18, 100414. [CrossRef]

74. dos Santos, W.B.; Majolo, C.; dos Santos, D.S.; Rosa, M.C.; Monteiro, P.C.; Rocha, M.J.S.; de Oliveira, M.I.B.; Chaves, F.C.M.; Chagas, E.C. Eficácia em vitro de óleos essenciais de espécies de piperaceae no controle do acantocéfalo neoechinorhynchus buttnerae. Embrape Amaz. Ocident. Artig. periódico indexado 2018, 12, 460–469.

75. Cohen, S.C.; Kohn, A. A new species of Myanarthecium and new host and geographical records for M. vitatorium (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol. 2005, 52, 307–310. [CrossRef]

76. Silva, R.M.; Tavares-Dias, M.; Dias, M.W.R.; Dias, M.K.R.; Marinho, R.D.G.B. Parasitic fauna in hybrid tambacu from fish farms. Pesqui. Agropecuária Bras. 2013, 48, 1049–1057. [CrossRef]
77. Soares, B.V.; Neves, L.R.; Oliveira, M.S.B.; Chaves, F.C.M.; Dias, M.K.R.; Chagas, E.C.; Tavares-Dias, M. Antiparasitic activity of the essential oil of Lippia alba on ectoparasites of Colossoma macropomum (tambaqui) and its physiological and histopathological effects. *Aquaculture* 2016, 452, 107–114. [CrossRef]

78. Soares, B.V.; Cardoso, A.C.F.; Campos, R.R.; Gonçalves, B.B.; Santos, G.G.; Chaves, F.C.M.; Chagas, E.C.; Tavares-Dias, M. Antiparasitic, physiological and histological effects of the essential oil of Lippia origanoides (verbenaceae) in native freshwater fish Colossoma macropomum. *Aquaculture 2017*, 469, 72–78. [CrossRef]

79. Woo, P.T.; Gregory, D.W.B. *Diseases and Disorders of Finfish in Cage Culture*; CABI: Wallingford, UK, 2014.

80. Geraerts, M.; Muterezi, B.F.; Vanhove, M.P.; Pariselle, A.; Chocho, M.A.; Vreven, E.; Huyse, T.; Artois, T. Six new species of Cichlidogyrus paperna, 1960 (*Platyleptocinclus: Monogenea*) from the gills of cichlids (*Teleostei: Cichliformes*) from the Lomami river basin (drc: Middle congo). *Parasites Vectors* 2020, 13, 1–20. [CrossRef]

81. Lehmann, N.B.; Owatari, M.S.; Furtado, W.E.; Cardoso, L.; Tancredo, K.R.; Jesus, G.F.A.; Lopes, G.R.; Martins, M.L. Parasitological and histopathological diagnosis of a non-native fish (*Oreochromis* sp.) with a noticeable presence in a natural Brazilian river environment. *J. Parasit. Dis.* 2019, 44, 201–212. [CrossRef] [PubMed]

82. de Oliveira, H.G.S.; Neto, F.M.; Ruiz, M.L.; Acchile, M.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L. Essential oils of *Lippia alba* essential oil against the pathogens *Aeromonas salmonicida* and antiparasitic effects on *Aeromonas salmonicida* on *Oreochromis niloticus* and histopathological diagnosis of a non-native fish (*Oreochromis* sp.) with a noticeable presence in a natural Brazilian river environment. *J. Parasit. Dis.* 2019, 44, 201–212. [CrossRef] [PubMed]

83. Mathews, P.D.; Malheiros, A.F.; Vasquez, N.D.; Chavez, M.D. High Infestation by *Dawestrema cycloancistrioides* in Arapaima gigas cultured in the Amazon region, Per. *J. Vener. Med.* 2014, 14, 1–4. [CrossRef]

84. Maciel, P.; Alves, R. Methods for quantifying eggs and oviposition rate of *Dawestrema cycloancistrium* (monogenea: Dactylogyridae), monogenean parasite of *Colossoma gigas* telogee (Osteoglossidae). *J. Helminthol.* 2020, 94, E4. [CrossRef] [PubMed]

85. Malheiros, D.F.; Chaves, F.C.M.; Tavares-Dias, M. Toxicity of the essential oil of *Mentha piperita* in Arapaima gigas (pirarucu) and antiparasitic effects on *Dawestrema spp.* (Monogenea). *Aquaculture 2016*, 455, 81–86. [CrossRef]

86. Sultili, F.J.; Murari, A.L.; Silva, L.L.; Gressler, L.T.; Heinzmann, B.M.; de Vargas, A.C.; Schmidt, D.; Baldisserotto, B. The use of *Ocimum americanum* essential oil against the pathogens *Aeromonas hydrophila* and *gyrodactylus* sp. in silver catfish (*Rhamdia quelen*). *Lett. Appl. Microbiol.* 2016, 63, 82–88. [CrossRef] [PubMed]

87. Moon, T.; Wilkinson, J.M.; Cavanagh, H.M. Antiparasitic activity of two Lavandula essential oils against *Giardia duodenalis, Trichomonas vaginalis* and *Hexamita inflata* Parasitol. Res. 2006, 99, 722–728. [CrossRef] [PubMed]

88. Purivirojkul, W. Histological Change of Aquatic Animals by Parasitic Infection. *Histopathol. Rev. Recent Adv.* 2012, 153–176.

89. Taher, G. Some studies on metacercarial infection in *Oreochromis niloticus* in assiut governorate and their role in transmission of some trematodes to dogs. *Assiut Univ. Bull. Environ. Res.* 2009, 12, 63–79.

90. Mahdy, O.A.; Abdel-Maogood, S.Z.; Mohammed, M.F. Effect of *Verbena Alternifolia* and *Mentha Piperita* Oil Extracts on Newly Excysted Metacercariae of *Euclinostrum Heterostomum* (Rudophli, 1809) (Digenea: *Clinostomatidae*) from Naturally Infected Kidneys of Tilapia Zillii in Egypt. *J. Egypt. Soc. Parasitol.* 2017, 47, 513–521. [CrossRef]

91. da Cunha, J.A.; Sultili, F.J.; Oliveira, A.M.; Gressler, L.T.; Scheeren, C.D.A.; Silva, L.D.L.; Vaucher, R.D.A.; Baldisserotto, B.; Heinzmann, B.M. The Essential Oil of *Hypitis mutabilis* in *Ichthyophthirius multifiliis* Infection and its Effect on Hematological, Biochemical, and Immunological Parameters in Silver Catfish, *Rhamdia quelen*. *J. Parasitol.* 2017, 103, 778–785. [CrossRef] [PubMed]

92. valladã, G.M.R.; Gallani, S.U.; Ikefuti, C.V.; da Cruz, C.; Levy-Pereira, N.; Rodrigues, M.V.; Pilarski, F. Essential oils to control ichthyophthiriasis in pacu, *Piaractus mesopotamicus* (holmberg): Special emphasis on treatment with *Melaleuca alternifolia*. *J. Fish Dis.* 2016, 39, 1143–1152. [CrossRef] [PubMed]

93. Meneses, J.; Couto, M.D.; Sousa, N.; Cunha, F.D.S.; Abe, H.; Ramos, F.M.; Chagas, E.; Chaves, F.; Martins, M.; Maria, A.; et al. Efficacy of *Ocimum gratissimum* essential oil against the monogenean *Cichlidogyrus tilapiae* gill parasite of Nile tilapia. *Arq. Bras. Med. Veterinária Zootech.* 2018, 70, 497–504. [CrossRef] [PubMed]

94. Austin, B.; Austin, D.A.; Austin, B. *A bacterial fish pathogens*; Springer: Berlin/Heidelberg, Germany, 2012; Volume 481.

95. Austin, B.; Austin, D.A. Vibrios. In *Bacterial Fish Pathogens*; Springer: Berlin/Heidelberg, Germany, 2012; Volume 481.

96. Hayatgheib, N.; Fournel, C.; Calvez, S.; Pouliquen, H.; Moreau, E. In vitro antinicrobial effect of various commercial essential oils and their chemical constituents on *Aeromonas salmonicida* subsp. *Salmonicida*. *J. Appl. Microbiol.* 2020, 129, 137–145. [CrossRef] [PubMed]

97. Okmen, G.; Uğur, A.; Sarac, N.; Arslan, T. In vivo and in vitro antibacterial activities of some essential oils of lamiaceae species on *Aeromonas salmonicida* isolates from cultured rainbow trout, *Oncorhynchus mykiss*. *J. Anim. Vet. Adv.* 2012, 11, 2762–2768. [CrossRef]

98. Tural, S.; Durmaz, Y.; Urçar, E.; Turhan, S. Antibacterial Activity of Thyme (*Thymus vulgaris* L.), Laurel (*Lauris nobilis* L.), Rosemary (*Rosmarinus officinalis* L.) and Parsley (*Petroselinum crispum* L.) Essential Oils Against Some Fish Pathogenic Bacteria. *Acta Aquat. Turg.* 2019, 15, 439–446. [CrossRef]

99. Thomas, J.; Jerobin, J.; Seelan, T.S.J.; Thanigaiavel, S.; Vijayakumar, S.; Mukherjee, A.; Chandrasekaran, N. Studies on pathogenicity of *Aeromonas salmonicida* in catfish *Clarias batrachus* and control measures by neem nanoemulsion. *Aquaculture 2013*, 396, 71–75. [CrossRef]
100. Starliper, C.E.; Ketola, H.G.; Noyes, A.D.; Schill, W.B.; Henson, F.G.; Chalupnicki, M.A.; Dittman, D.E. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. J. Adv. Res. 2015, 6, 89–97. [CrossRef]

101. Guilec, A.K.; Ereciev, P.; Yuce, E.; Arslan, A.; Bagci, E.; Kirbag, S. Antimicrobial activity of the methanol extracts and essential oil with the composition of endemic Origanum acutidens (lamiaceae). J. Essent. Oil Bear. Plants 2014, 17, 353–358. [CrossRef]

102. Wei, L.S.; Wee, W. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals. Iran. J. Microbiol. 2013, 5, 147–152.

103. Lee, S.; Najiah, M.; Wendy, W.; Nadirah, M. Chemical composition and antimicrobial activity of the essential oil of Syzygium aromaticum flower bud (Clove) against fish systemic bacteria isolated from aquaculture sites. Front. Agric. China 2009, 3, 332–336. [CrossRef]

104. Majolo, C.; da Rocha, S.I.B.; Chagas, E.C.; Chaves, F.C.M.; Bizzo, H.R. Chemical composition and antimicrobial activity of Lippia alba essential oils. Aquac. Res. 2017, 48, 2380–2387. [CrossRef]

105. El-Ekiaby, W.T. Basil oil nanoemulsion formulation and its antimicrobial activity against fish pathogen and enhance disease resistance against Aeromonas hydrophila in cultured Nile tilapia. Egypt. J. Aquac. 2019, 9, 13–33. [CrossRef]

106. Bandeira, G., Jr.; de Freitas Souza, C.; Baldissera, M.D.; Descovi, S.N.; da Silveira, B.P.; Tasca, C.; Mourao, R.H.V.; de Vargas, A.P.C.; Baldisserotto, B. Plant essential oils against bacteria isolated from fish: An in vitro screening and in vivo efficacy of Lippia origanoides/oleos essenciais de plantas contra bacterias isoladas de peixes: Uma triagem in vitro e eficacia in vivo de Lippia origanoides. Cienc. Rural 2019, 49, e20190064. [CrossRef]

107. Sutili, F.J.; de Lima, S.L.; Gressler, L.T.; Gressler, L.T.; Battisti, E.K.; Heinzmann, B.M.; de Vargas, A.C.; Vazirzadeh, A.; Jalali, S.; Farhadi, A. Antibacterial activity of essential oils against Aeromonas hydrophila. In vitro activity and their use in experimentally infected fish. J. Appl. Microbiol. 2015, 119, 47–54. [CrossRef] [PubMed]

108. Sutili, F.J.; Cunha, M.A.; Ziech, R.E.; Krewer, C.C.; Zeppelin, C.C.; Heldwein, C.G.; Gressler, L.T.; Heinzmann, B.M.; Vargas, A.C.; Baldisserotto, B. Lippia alba essential oil promotes survival of silver catfish (Rhamdia quelen) infected with Aeromonas sp. An. Acad. Bras. Ciênc. 2015, 87, 95–100. [CrossRef]

109. Schieve, M.H.; Trust, T.J.; Crosa, J.H. Vibrio ordalii sp. nov.: A causative agent of vibriosis in fish. Curr. Microbiol. 1981, 6, 343–348. [CrossRef]

110. Domínguez-Borbor, C.; Sánchez-Rodriguez, A.; Sonnenholzner, S.; Rodríguez, J. Essential oils mediated anti-virulence therapy against vibriosis in Panaeus vannamei. Aquaculture 2020, 529, 735639. [CrossRef]

111. Nacarrete, P.; Toledo, I.; Mardones, P.; Opazo, R.; Espejo, R.; Romero, J. Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquac. Res. 2010, 41, e667–e678. [CrossRef]

112. Stefanakis, M.K.; Touloupakis, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Vazirzadeh, A.; Baldisserotto, B. Plant essential oils against bacteria isolated from fish: An in vitro screening and in vivo efficacy of Lippia origanoides/oleos essenciais de plantas contra bacterias isoladas de peixes: Uma triagem in vitro e eficacia in vivo de Lippia origanoides. Cienc. Rural 2019, 49, e20190064. [CrossRef]

113. Öntas, C.; Baba, E.; Kaplaner, E.; Küçükaydın, S.; Öztürk, M.; Erkan, M.D. Antibacterial activity of citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas Universitesi Vet. Fakültesi Derg. 2016, 22, 741–749.

114. Shehata, S.; Mohamed, M.; Abd, E.S.S. Antibacterial activity of essential oils and their effects on Nile tilapia fingerlings performance. J. Med Sci. 2013, 13, 367. [CrossRef]

115. Tanekhy, M.; Matsuda, S.; Itano, T.; Kawakami, H.; Kono, T.; Sakai, M. Expression of cytokine genes in head kidney and spleen cells of Japanese flounder (Paralichthys olivaceus) infected with Nocardia seriola. Vetér. Immunol. Immunopathol. 2010, 134, 178–183. [CrossRef]

116. Ismail, T.; Yoshida, T. In vitro activity of some essential oils alone and in combination against the fish pathogen Nocardia seriola. Pol. J. Vet. Sci. 2017, 20, 559–566. [CrossRef]

117. Ostrand, S.L.; Glenn, R.A.; Gannam, A.L.; Hanson, K.C. Inhibitory Effects of Rosemary Oil on the In Vitro Growth of Six Common Finfish Pathogens. North Am. J. Aquac. 2012, 74, 230–234. [CrossRef]

118. Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of chinese chive oil as a natural antimicrobial for controlling Flavobacterium columnare infection in Nile tilapia Oreochromis niloticus. Fish. Sci. 2009, 75, 1431. [CrossRef]

119. Majolo, C.; Pilarski, F.; Chaves, F.C.M.; Bizzo, H.R.; Chagas, E.C. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J. Essent. Oil Res. 2018, 30, 388–397. [CrossRef]

120. Vazirzadeh, A.; Jalali, S.; Farhadi, A. Antibacterial activity of Oliveira decumbens against Streptococcus iniae in Nile tilapia (Oreochromis niloticus) and its effects on serum and mucosal immunity and antioxidant status. Fish Shellfish. Immunol. 2019, 94, 407–416. [CrossRef]

121. Soltani, M.; Ghodratnama, M.; Ebrahimzadeh-Mosavi, H.A.; Nikbakht-Brugenji, G.; Mohamadian, S.; Ghaseemian, M. Shirazi thyme (Zataria multiflora Boiss) and Rosemary (Rosmarinus officinalis) essential oils repress expression of saga, a streptolysin s-related gene in Streptococcus iniae. Aquaculture 2014, 430, 248–252. [CrossRef]

122. Roomiani, L.; Soltani, M.; Akhondzadeh, B.A.; Mahmodi, A.; Taheri, M.A.; Yadollahi, F. Evaluation of the chemical composition and in vitro antimicrobial activity of Rosmarinus officinalis, Zataria multiflora, Anethum graveolens and Eucalyptus globulus against Streptococcus iniae; the cause of zoonotic disease in farmed fish. Iran. J. Fish. Sci. 2013, 12, 702–716.

123. Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of cinnamon (Cinnamomum verum) oil to control Streptococcus iniae infection in tilapia (Oreochromis niloticus). Fish. Sci. 2010, 76, 287–293. [CrossRef]

124. Pirbalouti, G.; Broujeni, N.; Momeni, M.; Poor, M.; Hamedi, B. Antibacterial activity of Iranian medicinal plants against Streptococcus iniae isolated from rainbow trout (Oncorhynchus mykiss). Arch. Biol. Sci. 2011, 63, 59–66. [CrossRef]
125. Goudarzi, M.; Hamedi, B.; Malekpoor, F.; Abdizadeh, R.; Pirbalouti, A.G.; Raissy, M. Sensitivity of *Lactococcus garvieae* isolated from rainbow trout to some Iranian medicinal herbs. *J. Med. Plants Res.* 2011, 5, 3067–3073.

126. Soltani, M.; Mohamadian, S.; Ebrahimzahe-Mousavi, H.A.; Mirzargar, S.; Taheri-Mirghaed, A.; Rouholahi, S.; Ghodratnama, M. Shirazi thyme (*Zataria multiflora*) essential oil suppresses the expression of the epsd capsule gene in *Lactococcus garvieae*, the cause of Lactococcosis in farmed fish. *Aquaculture* 2014, 433, 143–147. [CrossRef]

127. Fereidouni, M.S.; Akhlaghi, M.; Alhosseini, A.K. Antibacterial effects of medicinal plant extracts against *Lactococcus garvieae*, the etiological agent of rainbow trout Lactococcosis. *Int. J. Aquat. Biol.* 2013, 1, 119–124.

128. Mahmoodi, A.; Roomiani, L.; Soltani, M.; Basti, A.A.; Kamali, A.; Taheri, S. Chemical composition and antibacterial activity of essential oils and extracts from *Rosmarinus officinalis, Zataria multiflora, Anethum graveolens* and *Eucalyptus globulus*. *Glob. Vet.* 2012, 9, 73–79.