Review of enhanced power quality using unified power flow control system in electrical network

Divya Shende¹, Prashant Jagtap² and Rutuja Hiware³
¹Research Scholar, Department of Electrical Engineering G H Raisoni College of Engineering, Nagpur, India
²Professor, Department of Electrical Engineering G H Raisoni College of Engineering, Nagpur, India
³Asst. Professor, Department of Electrical Engineering G H Raisoni College of Engineering, Nagpur, India
E-mail: divyashende70@gmail.com

Abstract. Flexible FACTS system of AC transmission. FACTS Devices can regulate electricity flow, develop the transmission capacity for power management. UPFC is a multipurpose fact controller carried on design of the constant voltage source. As an electrical device UPFC for rapid reactive power adjustment on high voltage electricity transport grid. Unified power flow control (UPFC). The latest FACTS gadget is UPFC. This combines series and shunting compensator characteristics and enables Power reactive and response to be controlled. UPFC utilization reduces difficulties in power quality including voltage sink and voltage surge. This article addresses UPFC and also several novel topologies for FACTS controllers.

1. Introduction
In contemporary years, turbulent impacts of power quality are largely a problem Electricity quality is the major concern nowadays for contemporary, industrial, and private uses in the power system. The voltage problem is usually taken into account from the situation to the current caused by the short circuit. UPFC does all the job in compensation, including voltage, phase point and impedance, changing the line reaction and managing intensity progression on the transmission and appropriate lines. UPFC consists of 2— the Shunt and the Converter are two volts. The converters must converge with a standard dc interface. The transmission line is linked to the converters by shunt-and-arrangement transformers. The UPFC [1-3] is the FACTS regulator that was previously most adaptive. However, the STATCOM, TCSC and the stage point controller cannot just play elements and provide further flexibility to strengthen a part of the parts of the regulators listed above. Intensity stream control capabilities and power transmission system voltage security.

Power Quality issue is as per the following-
Sink: voltage sink is inuction in RMS voltage of 10%.
Surge: Raise in voltage between 1.1pu to 1.8pu the significant reason for surge is load decline utility exchanging.

2. UPFC Literature Review
In (2015) Prof. Prabhodh Khampariya “Unified Power Flow Control” for Improvement of energy grade. The_Unified_Power_Flow_Control (UPFC) energy quality inspection utilized for monitoring the electricity Transmission system flux to enhance its performance. This study focuses on the

Content from this work may be used under the terms of the CreativeCommons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
digital modelling of conventional IEEE 14-bus power systems implementing UPFC, enhancing actual and reactive current regulation via a transmission line to UPFC using a computer simulation. [5].

In (2010), Nirmal Kumar the Unified Power Flow Control Concept (UPFC) was introduced and UPFC simulation and test results utilized to improve energy quality were compared [6].

In (2000) Narain G. Hingorani and Laszlo Gyugyi, describe the concept of FACTS “FACTS grasp: “Flexible AC transmission systems concepts and technology” This study provides an opportunity to increase control, strength, and strength-movement capability of AC transmission frameworks with the Flexible AC Transmission System (FACTS), another power device technology. FACTS and global driving specialists in applications for power devices the previous book on FACTS Innovation was presented to you by Narain G. Hingorani and Laszlo Gyugyi. Hingorani and Gyugyi provide a convenient solution to FACTS, which empowers electric experts in the force industry [8].

In (2015) Ramandeep Kaur, Improvement of power quality the suggested conduction architecture should be secured against voltage dips utilizing various voltage sink and surge controllers which might negatively influence the severity and flexibility for the end of the utilities. These difficulties may be managed with a bespoke power device, the Dynamic Voltage Restore, with voltage infusion technology (DVR). In this study we propose to enhance energy quality using the Dynamic Voltage Recovery (DVR). [10].

A review of many UPFC documents on improving power quality is presented and this study will allow for comparative comparison.

3. UNIFIED POWER FLOW CONTROL

The UPFCs which are able to simultaneously regulate each of the three-line power stream borders of such a "new" FACTS device Two 'vintage' FACTS devices together consolidate the emphasis SSSC & STATCOM.

A UPFC is an electrical device that allows rapid payment of reactive, high-voltage power transmission (power etc) companies to be rewarding. It is used to provide the current in a transmitting line (power and so forth) using an order transformer in 2 of the three stages-controlled bridges. Dynamic and receptive fluxes can be controlled by the regulator on a transfer line. [4,7,9,11,12,13] The UPFC can use solid state equipment, which provides practical mobility, which cannot be reached by standard frameworks with thyristor control. UPFC is a mix of STATCOM and Stable Coordinated Compensation for Setup (SSSC) combined by DC voltage link .

![Figure 1. diagram of UPFC](image)

Design of a UPFC displayed in the figure between the V-end and the less than desired purpose. The converters have a shared DC connection. Shunt controller provides the executive re-active power function and it even supplies power to the combination convertors while series-based series converters clean the phase-angle & magnitude of voltage. The UPFC essentially implements voltage with the line in series.

Improve the power quality utilizing UPFC:
It includes one shunt and the connecting configuration of two voltage source converters (VSC). Two converter DC condensers are equally related. UPFC association with various FACTS devices.

3.1. TCSC
TCSC designs incorporate controlled reactors in the regions of a condenser bank, in correspondence with those of the TCSC (thyristor controlled arrangement condensers). The combination allows the main recurring capacitive responses across a broad reach to be controlled smoothly. Each stage is placed atop a condenser bank to provide complete ground protection. The valve of the thyristor has a row of thyristor of a high force.

![Figure 2. TCSC circuit](image)

There are three activity techniques by TCSC based on the end point of beats which the thyristor has taken care of Blocked mode of thyristor, Bypassed mode of the thyristor, Vernier mode of operation

3.2. SVC
A FACTS device used to hold shunt pay in order to maintain the voltage of transportation is the static var trim (SVC). SVC commands the voltage to pay back the difference in the stacking of receptive strength.

![Figure 3. SVC: TCR, TSC, FC and Resistor activated mechanically](image)

TCR and TSR consist of a shunt-connected vessel with 2 parallel, reverse-connected thyristor-driven reactions TCR is rotated to perform unbroken processes with the proper angle of fire input, whereas TSR is rotated without the angle control which changes reactance step 1. TSC shares the same number as TSR, but the reactive vessel is replaced with a condenser 2.

3.3. STATCOM
A STATCOM is a power source controlled. It offers the optimal reactive force age and full absorption using the electrical voltage and current waveform preparation process in a voltage-source converter (VSC).

![Figure 4. STACOM equivalent circuit](image)
As may be observed from the value shown above, beginning point V1 is the electrical output power of the STATCOM. For example, STATCOM increases the reactive power request in the power system by adding the electric power output V1 while supporting the phases between V1 and V2 to number 0. (it shall be noted here that there will always have existence small stage angle between V1 and V2 to support for the loss impedance drop 2 in the making connections with each other electric apparatus for changing current). Liquid-like power moves from STATCOM to the power system as V1 >V2 re-active 1 power. STATCOM thus delivers 1 reactive power and serves as a 1 reactive power machine.

FACTS controllers can be classified as, Controllers linked to Shunt, series and Controllers of combined series, Controllers Combined Shunt Series.

4. Conclusion
The UPFC explains in this article can enhance electrical network power quality. UPFC also has the ability to maintain an exact voltage w. r. t. Can offer actual and receptive power stream control simultaneously. The goal of this research is to explore and to analyse UPFC’s potential to enhance the grades of electricity in the System of Electricity. This article presents different novel topologies for FACTS controllers. It thereby improved the quality of total power.

References
[1] L. Gyugyi, “Unified power-flow control concept for flexible ac transmis- sion systems,” Proc. Inst. Elect. Eng., vol. 139, pt. C, pp. 323–331, July 1992.
[2] S. Muthukrishnan and Dr. A. Nirmal Kumar (2010),” Comparison of Simulation and Experimental Results of UPFC used for Power Quality Improvement”, International Journal of Computer and Electrical Engineering, Vol. 2, pp.555-559.
[3] S. Rigby and R. G. Harley, “An improved control scheme for a series ca- pacitive reactance compensator based on a voltage source inverter,” in IEEE/IAS Annu. Meeting, 1996, pp.870–877.
[4] Farvej khan and Himmat Singh (2012), “Power Flow Control in a Trans- mission Line through UPFC”, International Journal of Emerging Technology and Advanced Engineering. Vol.8, pp.676-680.
[5] Prof. Prabhodh Khampariya (2015), “Unified Power Flow Controller for Power Quality Improvement” International Journal of Engineering studies and Technical Approach, Vol. 01, pp.34-42.
[6] Nirmal Kumar (2010),” Comparison of Simulation and Experimental Re- sults of UPFC utilized for Power Quality Improvement”, International Journal of Computer and Electrical Engineering. Vol. 2, pp.555-559.
[7] Nabavi-Niaki, A.; Iravani, M.R. (2018-12-18). "Steady-state and dynamic models of unified power flow controller (UPFC) for power system stud- ies". IEEE Transactions on PowerSystems.
[8] Narain G. Hingorani and Laszlo Gyugyi, “Understanding FACTS: Con- cepts and Technology of Flexible AC Transmission Systems”, ISBN 0-7803- 3455-8, New York: IEEE Press,2000.
[9] Sen, K.K.; Stacey, E.J. (2018-12-18). “UPFC-unified power flow control- ler: theory, modeling, and applications”. IEEE Transactions on Power Delivery, 13 (4):1453–1460.
[10] Ramandeep Kaur Power Quality Improvement by using Various Voltage Sink and Surge Controller M.Tech. Student, Department of Electrical Engineering, BBSBEC/PTU, India, AERA-2015.
[11] NK Sharma, PP Jagtap (2010),“ Modelling and application of unified power flow controller (UPFC)”, 3rd IEEE International on Emerging Trends in Engineering and Technology Vol. p.350-355.
[12] Rutuja S. Hiware,J.G. Chaudhari, “Indirect Field Oriented Control for Induction Motor Drive using Space Vector Modulation Technique,” International Journal of Electrical and Computer Engineering,ISSN 0974-2190 Volume 3, Number 1 (2011), pp. 47-56,2011.
[13] R.S.Hiware, “Review on Power System Security of Grid connected Hybrid Power System,” Solid State Technology,Volume: 63 Issue: 2s,2020,ISSN:0038-111X.