A MOLECULAR PHYLOGENY OF *ALPINIA ROXB.* (ZINGIBERACEAE): AN OVERVIEW FOR PHYLOGENY OF VIETNAMESE *ALPINIA*

Le Chí Toan
Ha Noi Pedagogical University 2

ARTICLE INFO

ABSTRACT

The genus *Alpinia* is the largest member of Zingiberaceae, but its phylogeny is still unclear. The studies in Vietnam have been focusing only on new records and new species of *Alpinia* for the Vietnamese flora. Thus, an overview of the phylogeny of Vietnamese *Alpinia* is necessary. This work based on molecular data from *matK* and ITS regions of 149 species confirms that *Alpinia* is supported to be a polyphyletic group with six different clades. 25/37 Vietnamese *Alpinia* species were included in the molecular analyses, results indicated that Vietnamese *Alpinia* formed non-monophyletic group and was placed in clades II, IV and V of *Alpinia*. Most Vietnamese *Alpinia* are placed in clade IV, which also included species from Southern China, and South East Asia. Based on the molecular analyses, Vietnamese *Alpinia* is genetically closely related even though they are distributed in the whole of Vietnam including subtropical and tropical regions and their morphological apomorphies are difficult to find.

KEYWORDS

Molecular phylogeny
Nonmonophyletic
Alpinia
Overview
Vietnam

THÔNG TIN BÀI BÁO

Tóm tắt

Chi Riêng Alpinia, thành viên lớn nhất của Zingiberaceae, có mối quan hệ phát sinh loài chưa rõ ràng. Các nghiên cứu hiện tại ở Việt Nam thường chỉ tập trung vào các ghi nhận loài bò sung và loài mới của *Alpinia* cho hệ thực vật Việt Nam. Vì vậy, cần có một cái nhìn tổng quan về phát sinh loài của *Alpinia* ở Việt Nam. Công trình này đưa ra định liệu phân tử từ các vùng gen *matK* và ITS của 149 loài xác nhận rằng *Alpinia* được ủng hộ là nhóm phát sinh đa ngành với sáu nhóm khác nhau. 25/37 loài *Alpinia* Việt Nam được đưa vào phân tích phân tử, kết quả chỉ ra rằng *Alpinia* Việt Nam không phải nhóm đơn phát sinh và chúng nằm tại các nhóm II, IV và V của *Alpinia*. Hầu hết các loài *Alpinia* Việt Nam tập trung nằm tại nhóm IV gồm ba nhóm từ miền Nam Trung Quốc và Đông Nam Á. Dựa trên các phân tích phân tử, *Alpinia* Việt Nam có mối quan hệ di truyền chặt chẽ với nhau mặc dù chúng phân bố trên toàn lãnh thổ Việt Nam với các vùng khí hậu khác nhau như căn nhiệt đới và nhiệt đới và khói tìm thấy các đặc điểm hình thái đặc trưng chung của chúng.

DOI: https://doi.org/10.34238/tnu-jst.4022

Email: Lechitoan@hpu2.edu.vn

THÔNG TIN BÀI BÁO

Notes:

- **Received:** 23/02/2021
- **Revised:** 19/3/2021
- **Published:** 06/4/2021

THÔNG TIN BÀI BÁO

Notes:

- **Ngày nhận bài:** 23/02/2021
- **Ngày hoàn thiện:** 19/3/2021
- **Ngày đăng:** 06/4/2021

THÔNG TIN BÀI BÁO

Notes:

- **Từ khóa:** Phát sinh loài phân tử
- **Không đồng ngành**
 - *Alpinia*
- **Tổng quan**
- **Việt Nam**

Email: jst@tnu.edu.vn
1. Introduction

Molecular phylogenetics derived from the traditional method for classifying organisms according to their similarities and differences, was first practiced in a comprehensive fashion by Linnaeus in the 18th century. The naturalists of the 18th and early 19th centuries likened this hierarchy to a "tree of life", an analogy that was adopted by Darwin [1] in The Origin of Species as a means of describing the interconnected evolutionary histories of living organisms. The classificatory scheme therefore became reinterpreted as a phylogeny indicating not just the similarities between species but also their evolutionary relationships [2]. The molecular phylogenetic tree can provide many information of phylogenetic relationship and evolutionary history of species.

Alpinia Roxb. is the largest and widely spread member of Zingiberaceae, which includes ca. 250 species and distribute in tropical and subtropical Asia, Australia, and Pacific Islands [3], [4].

Several phylogenetic studies of Alpinia were conducted during the past two decades; however, the phylogenetic relationship between Alpinia is still unclear due to the missing data especially poor sampling. Rangsiruji et al. [5] performed a study of molecular phylogeny for Alpinia based on dataset from nuclear and chloroplast DNA of 47 species. The study recognized nine clades within Alpinia. Additionally, the authors demonstrated significantly statistical support for several monophyletic groups of species of Alpinia, but suggested that the genus may not be monophyletic.

Kress et al. [3], [6] addressed the relationships among genera in the Zingiberaceae. These studies used data from both ITS and matK DNA regions. Results of the studies showed a well-resolved phylogenetic relationship among the genera, and provided a new classification of the Zingiberaceae with four subfamilies and four tribes. Kress et al. [6] recognized four clades of Alpinia, and demonstrated that a number of the larger genera in the family such as Amomum, Alpinia, Etilingera, Boesenbergia, and Curcuma could be nonmonophyletic, and suggested that more extensive sampling is necessary for these genera. Results of Kress et al. [3] recognized that Alpinia is polyphyletic; six clades within Alpinia were recognized based on the molecular data of 72 taxa of Alpinia. A new classification of the tribe Alpinieae was also provided by this study. However, the monophyly and phylogenetic position of a number of Alpinia’s members have not yet been established.

In the most recent phylogenetic research of Alpinia, Vu et al. [4] reconstructed the phylogeny of Alpinia to investigate the phylogenetic position of A. coriandriodora within the genus. Result of this study indicated that Alpinia is not a monophyletic group, and the species A. coriandriodora is closely related to the southern Chinese Alpinia.

In Vietnam, Alpinia was recognized with 37 species [4], [7]-[9]. In recent years, the studies have been focusing on new records and new species of Alpinia for Vietnamese flora. Thus, an overview of the phylogeny of Alpinia is necessary.

Here we focus on phylogenetic analyses using both nuclear and chloroplast DNA regions based on intensive taxon sampling of Alpinia. Our major aims are to reconstruct the phylogeny of Alpinia and discuss molecular phylogenetics of Alpinia in Vietnam.

2. Materials and methods

2.1. Taxon sampling

To fully understand the phylogeny of Alpinia, we sampled all sections present in Alpinia based on the previous phylogenetic results [3], [4], [6]. Approximately 74% of the genus Alpinia were sampled, and all relevant sequences were downloaded from GenBank (last downloaded on 6 August 2020). The combined dataset contained 110 species of Alpinia. In addition, 39 non-Alpinia species of 24 genera following Kress et al. [3], [6] were included for molecular analyses. Two makers matK and ITS were used for molecular analyses. All the sequences were carefully
checked using BLAST, and then aligned in Geneious v.8.0.5 [10]. The combined dataset was partitioned into two subsets corresponding to two gene regions for molecular analyses.

![Summary topology of the molecular tree from maximum likelihood indicating the relationship of clades of Alpinia](image)

Figure 1. Summary topology of the molecular tree from maximum likelihood indicating the relationship of clades of Alpinia

2.2. Molecular phylogenetic analyses

Phylogenetic analyses of *Alpinia* were carried out using maximum likelihood (ML) and Bayesian Inference (BI) methods. ML analyses were conducted in RAxML 8.2.12 [11], applying 1,000 bootstrap replicates with the substitution model selected in jModeltest 2.1.6 [12]. The Bayesian analysis was conducted in MrBayes 3.2.6 [13] as implemented on the CIPRES Science Gateway Portal [14] based on the same models as in the ML analysis. The Markov chain Monte Carlo (MCMC) algorithm was run for 10,000,000 generations with a total of four chains, starting from a random tree, and trees were sampled every 1000 generations. The program Tracer v.1.4 [15] was used to check that effective sample sizes (ESSs) were attained for all relevant parameters assessed (>200). With the first 15% of sampled generations discarded as burn-in, the 50% majority-rule consensus tree and Bayesian posterior probabilities (PP) were obtained using the remaining trees.
3. Results and discussion

The combined dataset of 149 taxa including 3752 pb was used in the analyses and discussion. Our molecular results from ML and BI analyses based on combined dataset of different taxon and character sampling strategies were similar, with differences only in clades that were weakly supported. Thus, we summarized the phylogeny of *Alpinia* under maximum likelihood tree in Figure 1. The molecular relationship in detail of *Alpinia* from the ML and BI analyses was presented under Bayesian tree with BS and PP values and shown in Figure 2.

Our molecular results were congruent with the previous studies [3], [6], *Alpinia* was supported to be polyphyletic group. Six clades were recognized within the phylogeny of *Alpinia* (Figure 1). However, the relationships among these clades are not well resolved and show a similar level of resolution to previous results [3], [4], [6].

Alpinia was placed into two main clades, the first clade includes clade I and clade II of *Alpinia*; while, the second main clade includes clades III, IV, V and VI of *Alpinia*. Clade I of *Alpinia* was strongly supported as close relative to *Renealmia* (Figures 1 and 2), and clade II of *Alpinia* was supported as sister to all the first main clade (Figures 1). The clade VI of *Alpinia* was supported as sister to the all second main clade (Figures 1), while, the remaining clades of *Alpinia* were closely related to * Nicolai a, Eilinger a, A n on um and Hornstedtia* (Figures 1).

![Figure 2. Phylogenetic tree of Alpinia from Bayesian inference of the combined datasets of matK and ITS. ML bootstrap values and posterior probabilities (PP) of the BI analysis are presented above the branches. “…” indicates the support values less than 50%. Vietnamese Alpinia species are highlighted in red. The circumscription of clades follows Kress et al. [3].](image-url)
37 Alpinia species were recognized in Vietnam, our molecular phylogenetic analyses indicated that Vietnamese Alpinia was a non-monophyletic group and they were placed in clades II, IV and V of Alpinia (Figure 2). Clade II includes Alpinia conchigera (Riêng ring) and A. galanga (Riêng nèp), the two species were close relative to A. manii, A. nigra, A. bilamellata and A. aquatica (Figure 2). These species share morphological characteristics such as: bracteoles funnelform, persistent, enclosing flower buds, bracts small, corolla white or pale blue-green, abaxially pubescent; tube equaling calyx [16].

All the remaining Vietnamese Alpinia are placed in clade IV. This clade was weakly supported by molecular data, due to the poorly resolved position of A. oxymitra, which is sister to all remaining species in the clade. The clade IV consists of several polytomies due to the highly conservative of the DNA sequences, this result also meets in Kress et al. [3], [6]. This molecular result is congruent with morphology but very difficult to find morphological apomorphies of the clade IV [3]. Most Alpinia members of the clade IV were distributed in southern China (Guangdong, Guangxi, Hainan and Yunnan), SE Asia (Thailand, Laos, Cambodia, Myanmar, Vietnam, etc.), in which, several species are endemic to Vietnam such as: Alpinia vietnamica, A. newmanii, A. phthoensis, A. calcicola, A. brevilligulata, A. gagnepainii, A. hirsuta, etc. [9], [17]-[20]. Based on the molecular analyses, members of Vietnamese Alpinia are genetic closely related eventhough they are distributed in the whole of Vietnam including subtropical and tropical regions. Furthermore, this result also indicated that Alpinia species of southern China and SE Asia are genetically closely related.

Clade V was strongly supported by molecular data (Figure 2). Members of this clade are distributed in the Philippines, Australia, the Bismarck Archipelago, and the tropical Pacific [3]. In clade V, Alpinia purpurata was closely related to Amomum petaloideum and some other Alpinia (Figure 2). This result is advanced than Kress et al. [3]. Amomum was supported as non-monophyletic group [3], [this study], thus the placement of Amomum petaloideum and the relationship between Amomum petaloideum and Alpinia purpurata are uncertain and that needs to clarify in a study with more samples of the two genera. Similar to clade IV, it is difficult to characterize this clade morphologically.

4. Conclusion

The study based on molecular analyses confirms that Alpinia is supported to be a polyphyletic group with six different clades. 25/37 Vietnamese Alpinia species were included in molecular analyses, results indicated that Vietnamese Alpinia was non-monophyletic group and they were placed in clades II, IV and V of Alpinia. Most of Vietnamese Alpinia are placed in clade IV which included species from southern China, and SE Asia. Based on molecular analyses, Vietnamese Alpinia has close genetic relationship even they are distributed in the whole of Vietnam including subtropical and tropical regions and difficult to find morphological apomorphies of them.

5. Acknowledgment

This study was supported by Ha Noi Pedagogical University 2 under Grant No. C.2020.23. The author is grateful to Do Thi Bich for data collection.

REFERENCES

[1] C. R. Darwin, On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray, 1859.
[2] T. A. Brown, Genomes. Oxford, U.K: BIOS Scientific Publishers, 2002.
[3] W. J. Kress, A. Z. Liu, M. Newman, and Q. J. Li, “The molecular phylogeny of Alpinia (Zingiberaceae): A complex and polyphyletic genus of gingers,” American Journal of Botany, vol. 92, pp. 167-178, 2005.
[4] X. D. Vu, C. T. Le, T. B. Do, P. B. Cao, Q. B. Nguyen, T. C. Vu, T. L. Dang, V. D. Nguyen, and B. Liu, “Phylogeny of Alpinia coriandriodora D. Fang and implications for character evolution and conservation,” Pakistan Journal of Biological Sciences, vol. 24, pp. 1-12, 2021.

[5] A. Rangsiuruji, M. F. Newman, and Q. C. B. Cronk, “A study of the infrageneric classification of Alpinia (Zingiberaceae) based on the ITS region of nuclear rDNA and the trnL-F spacer of chloroplast DNA,” in Monocots-Systematics and evolution, K. L. Wilson and D. A. Morrison, Eds., Collingwood, Australia: CSIRO Publishing, 2000, pp. 728.

[6] W. J. Kress, L. M. Prince, and K. J. Williams, “The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data,” American Journal of Botany, vol. 89, pp. 1682-1696, 2002.

[7] D. T. Nghiem, Q. B. Nguyen, V. O. Tran, P. H. Nguyen, and T. T. Nguyen, “A new record species in the genus Alpinia (Alpinia graminifolia D. Fang & G.Y. Lo) for Vietnam flora,” VNU Journal of Science: Natural Sciences and Technology, vol. 34, pp. 16-20, 2018.

[8] X. D. Vu, Q. B. Nguyen, T. L. Dang, D. T. Nghiem, P. B. Cao, T. C. Vu, X. Ye, and N. H. Xia, “Alpinia coriandriodora D. Fang, a new record for flora of Vietnam,” Journal of Tropical and Subtropical Botany, vol. 27, pp. 99-101, 2019.

[9] H. T. Luu, H. D. Tran, T. L. Nguyen, Q. B. Nguyen, and L. S. Jana, “Alpinia vietnamica (zingiberaceae), a new species from central vietnam,” Annales Botanici Fennici, vol. 56, pp. 221-226, 2019.

[10] M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjes, and A. Drummond, “Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data,” Bioinformatics, vol. 28, pp. 1647-1649, 2012.

[11] A. Stamatakis, “RAxML-VI-HPC, maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, pp. 2688-2690, 2006.

[12] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “jModelTest 2: more models, new heuristics and parallel computing,” Nature Methods, vol. 9, pp. 772, 2012.

[13] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3, Bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, pp. 1572-1574, 2003.

[14] M. A. Miller, W. Pfeiffer, and T Schwartz, “Creating the CIPRES Science Gateway for inference of large phylogenetic trees,” Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, USA: Institute of Electrical and Electronics Engineers (IEEE), 2010, pp. 1-8.

[15] A. Rambaut and A. J. Drummond, “Tracer,” 2007. [Online]. Available: http://tree.bio.ed.ac.uk/software/tracer/. [Accessed Jan 05, 2021].

[16] D. L. Wu and L. Kai, “Zingiberaceae,” in Flora of China (Flagellariaceae through Marantaceae), vol. 24, Z. Y. Wu, P. H. Raven, and D. Y. Hong, Eds., Beijing: Science Press, 2000, pp. 322-377.

[17] H. H. Pham, An Illustrated Flora of Vietnam. Tre Publishing House, Ho Chi Minh city, vol. 3, pp. 432-461, 2000.

[18] Q. B. Nguyen, Zingiberaceae Lindl.- Ho Gung. Checklist of plant species of Vietnam. Publishing House of Agriculture, Hanoi, vol. 3, pp. 487-508, 2005.

[19] Q. B. Nguyen, “Zingiberaceae,” in Flora of Vietnam, vol. 21, Publishing House of Natural Science and Technology, Hanoi, 2017, pp. 9-109.

[20] N. S. Ly, “Alpinia newmanii sp. Nov. (Zingiberaceae) from central Vietnam,” Nordic Journal of Botany, vol. 35, pp. 1-6, 2017.