Antibiotic Resistance Pattern of Bacteroides Fragilis Isolated From Clinical and Gastrointestinal Specimens

Seyedesomaye Jasemi
 Tehran University of Medical Sciences

Mohammad Emaneini
 Tehran University of Medical Sciences

Zahra Ahmadinejad
 Tehran University of Medical Sciences

Mohammad Sadegh Fazeli
 Tehran University of Medical Sciences

Leonardo A. Sechi
 University of Sassari: Universita degli Studi di Sassari

Fatemah Sadeghpour Heravi
 Macquarie University

Mohammad Mehdi Feizabadi (✉ mfeizabadi@tums.ac.ir)
 Tehran University of Medical Sciences

Research

Keywords: Bacteroides fragilis, Antibiotic resistance, Resistance gene, bft gene

DOI: https://doi.org/10.21203/rs.3.rs-209897/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: *Bacteroides fragilis* is a part of the normal gastrointestinal flora and the most prevalent anaerobic bacteria causes’ infection. It is highly resistant to antibiotics and contains abundant antibiotic resistance mechanisms.

Methods: The antibiotic resistance pattern of 78 isolates of *B. fragilis* (56 strains from the gastrointestinal [GI] tract and 22 strains from clinical samples) was investigated using agar dilution method. The gene encoding *Bacteroides fargilis* toxin *bft*, and antibiotic resistance genes were targeted by PCR assay.

Results: The highest rate of resistance was observed for penicillin G (100%) followed by tetracycline (74.4%), clindamycin (41%) and cefoxitin (38.5%). Only a single isolate showed resistance to imipenem which contained *cflA* and *IS1186* genes. All isolates were susceptible to metronidazole. Accordingly, *tetQ* (87.2%), *cepA* (73.1%) and *ermF* (64.1%) were the most abundant antibiotic-resistant genes identified in this study. MIC values for penicillin, cefoxitin and clindamycin were significantly different among isolates with the *cepA*, *cfxA* and *ermF* in compare with those lacking such genes. In addition, 22.7% and 17.8% of clinical and GI tract isolates had the *bft* gene, respectively.

Conclusions: Therefore, it is of utmost importance to determine the antibiotic resistance patterns of *B. fragilis* periodically in different geographical areas to provide a suitable treatment profile for patients and to prevent improper antibiotic prescriptions.

Background

Bacteroides fragilis is an anaerobic, Gram-negative bacteria and a part of the human gastrointestinal microbiota but can cause severe infections in human opportunistically. Genus *Bacteroides* accounted for about 25% of gastrointestinal (GI) tract flora ((1, 2)). Among various species of this genus, *Bacteroides fragilis* (*B. fragilis*) has been also introduced as the most abundant opportunistic anaerobic bacterium isolated from clinical specimens (3). The bacteria form 1–2% of the normal flora of the gastrointestinal tract and, if dislocated into other anatomical sites, develop various infections such as abdominal infections, abscesses, and bacteremia with a mortality rate of about 19% (1, 4).

Relevant studies have further revealed that *B. fragilis* exhibits the highest antibiotic resistance and the most abundant antibiotic resistance mechanisms compared with other anaerobic bacteria in the GI tract (5). This not only makes it difficult to treat infections caused by *B. fragilis*, but also has the potential to act as a reservoir of antibiotic-resistant genes (6), leading to the transfer of resistance genes to other normal bacterial flora through integrated transposons, integrated genetic elements, as well as conjugative plasmids (7). In this respect, different resistance patterns of this bacterium have been so far reported from different parts of the world. There have been reports of increased resistance to carbapenems and beta-lactams among *B. fragilis* isolates worldwide (8–12). Of note, the rate of resistance to metronidazole, as an effective antibiotic against anaerobic bacteria, is about 1%, but some reference
laboratories have reported a resistance rate of up to 7.5% (13–15). Also, the number of multidrug-resistant \textit{B. fragilis} isolates has augmented over the last decade (16–18).

Bacterial virulence factors have important roles in the pathogenicity of \textit{B. fragilis}. Enterotoxigenic \textit{B. fragilis} (ETBF) also produces a 20 kDa metalloprotease toxin, mainly known as \textit{B. fragilis} toxin (BFT) (19, 20). Studies in this line have further established that the ETBF strains are more pathogenic than non-toxigenic ones and they are associated with various diseases such as septicaemia, diarrhoea, irritable bowel syndrome (IBS), and colorectal cancer (CRC) (10, 21).

However, due to the costly and time-consuming process of isolation and identification of \textit{B. fragilis}, antibiotic susceptibility testing is not routinely performed in laboratories (22, 23). Therefore, in this study antibiotic resistance profiles of \textit{B. fragilis} isolated from the GI tract and clinical samples were evaluated using phenotypic and genotypic methods.

Material And Methods

Study population

The current cross-sectional study examined two populations, the patients, and the healthy controls. This study was approved by the Ethics Committee of National Institute for Medical Research development in Iran (NO. 971329). Informed consent was obtained from all individual participants.

The patient population included people suspected of having anaerobic infection hospitalized in different wards of Imam Khomeini Hospital of Tehran, and the healthy population included people with no history of GI disease or antibiotic consumption for the past three months.

In the sampling process from the patients, 130 different clinical samples were collected from hospitalized patients in different wards of Imam Khomeini Hospital during 1 year from August 2018 to August 2019. Sampling, culture and isolation of anaerobic bacteria were performed (24).

In the sampling process from healthy individuals, 40 biopsies of the rectum were collected by a physician during colonoscopy. To isolate \textit{B. fragilis}, the biopsy sample was homogenized by mortar and pestle, and then 2-3 drops were inoculated on a plate containing Bacteroides Bile Esculin Agar (BBE) and Brucella Blood Agar (BBA) containing 5% sheep blood, vitamin K1 (0.5 mg/L) and hemin (5 mg/L) and cultured by isolation method. The cultivated plates were incubated for 48-72 hours at 37°C under anaerobic conditions. The black-colored colonies on the BBE medium and the grown ones on the BBA medium (5-10 colonies) were subcultured on the BBA medium. Ultimately, after observing the obligate anaerobic, gram-negative, bile esculin-positive and catalase-positive coccobacilli, the isolated strains were preserved at 80°C using 5% glycerol (25).

Identification of anaerobic bacteria
The anaerobic bacteria were phenotypically identified based on colony morphology, gram staining, and differential tests such as catalase, indole, bile disc, and finally Vitrek 2 system (Biomerieux, France). Two polymerase chain reactions (PCR) were also performed to amplify the 16S rRNA gene fragment; the first reaction to confirm the \textit{B. fragilis} group and the second reaction to approve the \textit{B. fragilis} species (26, 27). The 16S rRNA gene was sequenced for \textit{B. fragilis} strains and then submitted to the GenBank sequence database.

Antibiotic susceptibility of \textit{B. fragilis} isolates

The antibiotic susceptibility testing of \textit{B. fragilis} isolates was conducted using agar dilution method according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (28). The tested antibiotics included ampicillin/sulbactam, piperacillin/tazobactam, penicillin G, tetracycline, imipenem, meropenem, clindamycin, cefoxitin, and metronidazole. Different concentrations of the antibiotics were also prepared on the BBA medium containing vitamin K1 (0.5 mg/l) and hemin (5 mg/l).

Moreover, 10 µl of microbial suspension with a density of 107 colony-forming unit (CFU) ml-1 was added to the plates containing antibiotics and a negative control plate to achieve a final dilution of 105 CFU per spot. The plates were also incubated for 48 hours at 36ºC under anaerobic conditions. After the incubation period, the Minimum Inhibitory Concentration (MIC) were calculated according to the CLSI guideline.

Identification of resistance genes

The presence of IS1186 and \textit{cflA} genes (associated with resistance to carbapenems), the \textit{cepA} and \textit{cfxA} genes (associated with resistance to beta-lactams), the \textit{ermF}, \textit{ermB}, and \textit{mefA} genes (associated with resistance to clindamycin), the \textit{tetQ} gene (associated with resistance to tetracycline) and the \textit{nim} gene (associated with resistance to metronidazole) were determined by the PCR in \textit{B. fragilis} isolates (29). In order to detect the \textit{bft} gene using PCR, parts of this gene were amplified (30).

Statistical analysis

Data were analysed using the SPSS ver. 18.0 (SPSS Inc., Chicago, IL). The Chi-square test was performed to calculate significant differences between presences of antibiotic resistance genes among resistant strains in comparison to non-resistant strains. Also, Mann-Whitney test was employed to examine significant differences of MIC value for each antibiotic class among isolates with resistance genes in compare with isolates lacking these genes. A \textit{p}-value less than 0.05 was considered as statistically significant.

Results

In this study, 130 clinical samples were collected from 68 cases of abdominal infections (52.3%), 25 cases from ulcers (19.3%), 16 cases from blood (12.3%), 6 cases from surgical infections (4.6%), 5 cases
from pleural effusion (3.8%), 5 cases from joint infection (3.8%) and other infections in the remaining 5 cases (3.8%).

Cultivation results in 28 clinical samples (21.5%) were positive for anaerobic bacteria. The GenBank accession numbers of the 16S rRNA gene for these bacteria were MN982885.1, MN955695.1, MN955694.1, MN955585.1, MN955548.1, MN955546.1, MN94720209.1, MN949555 M55.1, MN955544.1, MN954671.1, MN954561.1, MN954557.1, MN937266.1, MN937239.1, MN933933.1, and MN933926.1. Table 1 shows the frequency of anaerobic bacteria isolated from clinical specimens.

From 40 colorectal tissue biopsies in healthy individuals, 56 *B. fragilis* isolates were identified in 24 specimens (60%). The antibiotic resistance of 78 *B. fragilis* isolates (22 isolates from clinical samples and 56 isolates from the GI tract of healthy individuals) was determined using the agar dilution method. Table 2 shows the antibiotic resistance pattern of *B. fragilis* with the MIC 50 and MIC 90 values (µg/mL). The *B. fragilis* isolates also had the highest resistance to penicillin (100%), tetracycline (74.4 %), clindamycin (41%) and cefoxitin (38.5%).

The tetQ, ermF, ermB, cfiA, cepA, cfxA, mefA, nim genes and the insertion sequence IS1186 were further searched to evaluate antibiotic resistance by the PCR. Absolute and relative frequencies of resistance and insertion sequences genes are presented in Table 3.

In this study, the tetQ (87.2%), cepA (73.1%) and ermF (64.1%) were the most abundant antibiotic-resistant genes. The nim and ermB genes were not detected in any of the isolates. The IS1186 sequence in the upstream region of the cfiA gene was detected in one isolate (1.3%); this isolate was also resistant to imipenem.

The presence of the cfxA and ermF genes were significantly higher in cefoxitin and clindamycin resistant isolates in compare with cefoxitin and clindamycin susceptible isolates (p=0.001, 0.000).

In addition, MIC value of penicillin, cefoxitin and clindamycin were significantly difference among isolate with the cepA, cfxA and ermF genes in compare with isolates lacking these genes (p=0.002, 0.000, 0.001) (Fig. 1).

The bft gene was observed in 22.7% and 17.8% of the clinical and GI isolates, respectively (Table 3).

Discussion

Bacteroidetes as a large community of gut microbiota can be isolated from human clinical specimens and lead to mixed anaerobic bacterial infections (3). Antibiotic-resistant genes also play important roles in the antibiotic resistance of *B. fragilis* and cause unsuccessful antibacterial therapy. In addition, the transmission of resistance genes through horizontal gene transfer, as the most common mean of acquiring resistance genes among bacteria, is another major problem. In this study, we have evaluated the prevalence of resistance genes and antibiotic resistance profile of *B. fragilis* using phenotypic approaches and amplification of genes of interest.
In this study, *B. fragilis* accounted for 57.4% of anaerobic bacteria isolated from clinical samples. The MIC 50 and MIC 90 values for ampicillin/sulbactam, piperacillin/tazobactam, metronidazole and clindamycin in clinical isolates were at least twice higher than GI isolates. One possible reason for this might be the use of antibiotics in these patients.

Although carbapenems have been considered as highly effective antibiotics in the prevention of anaerobic infections, bacterial resistance to these antibiotics has increased (6, 11, 15, 31). In this study, 1.3% of isolates (n = 1) were resistant to imipenem and 1.3% of isolates (n = 1) were resistant to meropenem, these isolates were collected from the GI tract of healthy individuals which could be considered as a serious risk. The emergence of carbapenem resistance has also been reported in different studies. For instance, meropenem resistance was found to be 0.5% in the United States and 2% in Europe (6, 12, 32). In a study conducted by Kohsari et al. in Iran, the resistance of *B. fragilis* to meropenem was 13.9% (33). Discrepancies observed in different studies regarding antibiotic resistance profile of *B. fragilis* may be due to different reasons including geographical features, population study, and differences in laboratory techniques.

Resistance to carbapenems in *B. fragilis* is usually caused by the expression of the class B metallo-beta-lactamase encoded by the *cfiA* gene, located on the chromosome. Accordingly, if an insertion sequence is located in its upstream region, it will be expressed and will cause carbapenem resistance (4, 34). In a study conducted by Soki et al., *B. fragilis* isolates (n = 10) contained the *cfiA* gene, of which seven isolates were resistant to imipenem (35). In the present study, 18.1% and 12.5% of the clinical and GI samples had the *cfiA* gene respectively. Moreover, the imipenem-resistant isolates had the *cfiA* gene and the IS1186 insertion sequence in the upstream region of the gene whereas the meropenem-resistant strain had this gene but lacked the IS1186 insertion sequence. The resistance was possibly due to expression of the silent carbapenemase gene (36), the presence of other insertion sequences in the upstream region of this gene (IS1187, IS1188, IS942) (32), or other resistance mechanisms such as membrane permeability or penicillin-binding protein (PBP) affinity (37). In addition, some isolates had the *cfiA* gene but were phenotypically sensitive to carbapenem which demonstrate the antibiotic resistance gene may not be expressed. In a study performed by Rashidian et al. in Iran, 31.5% and 20% in *B. fragilis* group isolate from the patients and control groups harbored *cfiA* gene, respectively (38).

Penicillins and second-generation cephalosporin resistance have also been observed in *B. fragilis*.

The most important mechanisms contributing to this resistance is the expression of beta-lactamases which are encoded by the *cepA* gene (resistance to penicillin and cephalosporins other than cefoxitin) and *cfxA* gene (resistance to cefoxitin) (39, 40).

In this study, all the isolates (100%) were resistant to penicillin, of which 73.1% had the *cepA* gene. There was also meaningful difference in penicillin MIC value of isolates with *cepA* gene compared to isolates without *cepA* gene indicating the importance of this gene in resistance to penicillin. In addition, 45.5% and 35.7% of the clinical and GI isolates were respectively resistant to cefoxitin, and 22.7% and 26.8% of
these isolates had the \textit{cfxA} gene, respectively. The presence of the \textit{cfxA} gene was significantly higher in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates, which was also statistically significant.

The rate of \textit{B. fragilis} resistance to cefoxitin in recent years has been 6.8–33.3\% in Europe, 12.6\% in Canada, and 23\% in Brazil (6, 41, 42). In a study conducted by Kangaba et al. in Turkey, 28\% of \textit{B. fragilis} isolates and 32\% of isolates from the GI tract had been found to be resistant to cefoxitin. In this study, resistance to ampicillin/sulbactam and piperacillin/tazobactam were 6.4\% and 2.6\%, respectively (10). In another investigation, 5.4\% of \textit{B. fragilis} isolates were resistant to piperacillin/tazobactam which was relatively consistent with the findings reported by Maraki et al. (5.4\%) and Yunoki et al. studies (2.8\%) (15, 43).

The \textit{ermB} and \textit{mefA} genes were also involved in the development of macrolide resistance in \textit{B. fragilis} (44). The prevalence of clindamycin resistance had been further reported by 54.5\% in clinical isolates and 42.9\% in the GI isolates which were mainly associated with the presence of the \textit{ermF} gene (40). Clindamycin resistance among \textit{B. fragilis} have been reported in several countries (8, 45–47).

In the present study, all clindamycin-resistant isolates had the \textit{erm} genes. In addition, five isolates had the \textit{mefA} gene and three of which were clindamycin-resistant strains. The presence of the \textit{erm} gene also was higher in clindamycin-resistant isolates than clindamycin susceptible-isolates respectively, which was statistically significant. None of the isolates in this study had \textit{ermB} gene.

The presence of \textit{tetQ} gene associated with tetracycline resistance has been further reported in clinical isolates (43, 48). In the present study, 81.8\% and 71.4\% of the clinical and GI isolates had tetracycline resistance, and 90.9\% and 85.7\% of these isolates had the \textit{tetQ} genes, respectively.

In a study conducted by Narimani et al., 86\% of the GI isolates were resistant to tetracycline, and the \textit{tetQ} gene was found in 85\% of the isolates (48). In the investigation by Kangaba et al. study, 72\% of clinical isolates and 92\% of GI isolates were resistant to tetracycline, 64\% and 92\% of them had the \textit{tetQ} gene, respectively (10).

The metronidazole resistance rate was found to be 0–3\% in different parts of the world (6, 10, 38, 49). There were no isolates resistant to metronidazole in this study and the \textit{nim} gene was not detected in any isolates.

Based on previous studies, the prevalence of the \textit{bft} gene was reported to be 6.2–20\% in the GI isolates (37, 50–53) and 18.5–38.2\% in clinical isolates (53–55) which was consistent with the findings in the present study.

Although phenotypic findings indicated resistance to some antibiotics in this study, the PCR findings did not confirm the presence of corresponding resistance genes in the isolates. This fact may suggest the role of other resistance mechanisms such as efflux pumps, changes in the cell wall structure, and catalytic enzymes in \textit{B. fragilis} isolates (40, 56).
Conclusion

In conclusion, metronidazole, imipenem and meropenem were the most active agents against \textit{B. fragilis} isolates. It was concluded that continuous monitoring of antibiotic resistance patterns of \textit{B. fragilis} in different geographical areas was vital to provide a suitable treatment profile and to prevent infection more accurately. In other words, with regard to the presence of antibiotic-resistant genes and the high risk of antibiotic-resistant strains in the GI tract of healthy people, proper prescription of antibiotics and avoidance of its arbitrary use can help prevent infection and transmission of resistant isolates.

Abbreviations

\textit{B. fragilis}

\textit{Bacteroides fragilis}; GI tract: gastrointestinal tract; ETBF: Enterotoxigenic \textit{B. fragilis}; BFT: \textit{B. fragilis} toxin; IBS: irritable bowel syndrome; CRC: colorectal cancer; CLSI: Clinical and Laboratory Standards Institute; MIC: Minimum Inhibitory Concentration; CFU: colony-forming unit; BBE: Bacteroides Bile Esculin Agar; BBA: Brucella Blood Agar; PCR: Polymerase Chain Reaction.

Declarations

Acknowledgments: The authors would like to thank the personnel of the infectious unit of Tehran's Imam Khomeini Hospital for their assistance in this project.

Author Contributions: SJ carried out all laboratory experiment, collected data and drafted the manuscript. ZA and MSF are infectious disease specialists and gastroenterologists who provided the specimens from all cases. LS and FH participated in the design of the study. MF and ME supervised all parts of the study. All authors read and approved the final manuscript.

Funding: Committee of National Institute for Medical Research development in Iran (NO. 971329).

Availability of data and materials: All data relevant to the study are included in the article.

Ethics approval and consent to participate: This study was approved by the Ethics Committee of Tehran University of Medical Sciences. Ethics Approval Code: 9421133003.

Consent for publication: Informed consent was obtained in all cases.

Competing interests: All authors declare that they have no conflict of interest.

References

1. Wexler HM. \textit{Bacteroides}: the Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews. 2007; doi:10.1128/cmr.00008-07.
2. Yamamoto T, Ugai H, Nakayama-Imaohji H, Tada A, Elahi M, Houchi H, et al. Characterization of a recombinant *Bacteroides fragilis* sialidase expressed in *Escherichia coli*. Anaerobe. 2018; doi:https://doi.org/10.1016/j.an aerobe.2018.02.003.

3. Jeverica S, Sóki J, Premru MM, Nagy E, Papst L. High prevalence of division II (cfa positive) isolates among blood stream *Bacteroides fragilis* in Slovenia as determined by MALDI-TOF MS. Anaerobe. 2019; doi: https://doi.org/10.1016/j.an aerobe.2019.01.011.

4. Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of *Bacteroides fragilis*. Microbial pathogenesis. 2020; doi:https://doi.org/10.1016/j.micpath.2020.104506.

5. Urbán E, Horváth Z, Sóki J, Lázár G. First Hungarian case of an infection caused by multidrug-resistant *Bacteroides fragilis* strain. Anaerobe. 2015; doi:https://doi.org/10.1016/j.an aerobe.2014.09.019.

6. Sóki J, Wybo I, Hajdú E, Toprak NU, Jeverica S, Stingu CS, et al. A Europe-wide assessment of antibiotic resistance rates in *Bacteroides* and *Parabacteroides* isolates from intestinal microbiota of healthy subjects. Anaerobe. 2020; doi:10.1016/j.an aerobe.2020.102182.

7. Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends in Microbiology. 2004; doi:https://doi.org/10.1016/j.tim.2004.07.004.

8. Nagy E, Urbán E, Nord CE. Antimicrobial susceptibility of *Bacteroides fragilis* group isolates in Europe: 20 years of experience. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2011; doi:10.1111/j.1469-0691.2010.03256.x.

9. Fille M, Mango M, Lechner M, Schaumann R. *Bacteroides fragilis* group: trends in resistance. Current microbiology. 2006; doi:10.1007/s00284-005-0249-x.

10. Kangaba AA, Saglam FY, Tokman HB, Torun M, Torun MM. The prevalence of enterotoxin and antibiotic resistance genes in clinical and intestinal *Bacteroides fragilis* group isolates in Turkey. Anaerobe. 2015; doi:10.1016/j.an aerobe.2015.07.008.

11. Liu CY, Huang YT, Liao CH, Yen LC, Lin HY, Hsueh PR. Increasing trends in antimicrobial resistance among clinically important anaerobes and *Bacteroides fragilis* isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrobial agents and chemotherapy. 2008; doi:10.1128/aac.00355-08.

12. Snydman DR, Jacobus NV, McDermott LA, Ruthazer R, Golan Y, Goldstein EJ, et al. National survey on the susceptibility of *Bacteroides fragilis* group: report and analysis of trends in the United States from 1997 to 2004. Antimicrobial agents and chemotherapy. 2007; doi:10.1128/aac.01435-06.

13. Goldstein EJC, Citron DM, Tyrrell KL. In vitro activity of eravacycline and comparator antimicrobials against 143 recent strains of *Bacteroides* and *Parabacteroides* species. Anaerobe. 2018; doi:10.1016/j.an aerobe.2018.06.016.

14. Treviño M, Areses P, Dolores Peñalver M, Cortizo S, Pardo F, Luisa Pérez del Molino M, et al. Susceptibility trends of *Bacteroides fragilis* group and characterisation of carbapenemase-producing
strains by automated REP-PCR and MALDI TOF. Anaerobe. 2012; doi:https://doi.org/10.1016/j.anaerobe.2011.12.022.

15. Maraki S, Mavromanolaki VE, Stafylaki D, Kasimati A. Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University Hospital. Anaerobe. 2020; oi:10.1016/j.anaerobe.2020.102173.

16. Wang Y, Han Y, Shen H, Lv Y, Zheng W, Wang J. Higher Prevalence of Multi-Antimicrobial Resistant Bacteroides spp. Strains Isolated at a Tertiary Teaching Hospital in China. Infection and drug resistance. 2020; doi:10.2147/idr.s246318.

17. Sárvári KP, Sóki J, Kristóf K, Juhász E, Miszti C, Melegh SZ, et al. Molecular characterisation of multidrug-resistant Bacteroides isolates from Hungarian clinical samples. Journal of global antimicrobial resistance. 2018; doi:10.1016/j.jgar.2017.10.020.

18. Cordovana M, Kostrzewa M, Sóki J, Witt E, Ambretti S, Pranada AB. Bacteroides fragilis: A whole MALDI-based workflow from identification to confirmation of carbapenemase production for routine laboratories. Anaerobe. 2018; doi:10.1016/j.anaerobe.2018.04.004.

19. Franco AA. The Bacteroides fragilis pathogenicity island is contained in a putative novel conjugative transposon. Journal of bacteriology. 2004; doi:10.1128/jb.186.18.6077-6092.2004.

20. Buckwold SL, Shoemaker NB, Sears CL, Franco AA. Identification and characterization of conjugative transposons CTn86 and CTn9343 in Bacteroides fragilis strains. Appl Environ Microbiol. 2007; doi:10.1128/AEM.01669-06.

21. Buckwold SL, Shoemaker NB, Sears CL, Franco AA. Identification and characterization of conjugative transposons CTn86 and CTn9343 in Bacteroides fragilis strains. Applied and environmental microbiology. 2007; doi:10.1128/aem.01669-06.

22. Novak A, Rubic Z, Dogas V, Goic-Barisic I, Radic M, Tonkic M. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013. Anaerobe. 2015; doi:10.1016/j.anaerobe.2014.10.010.

23. Vu Nguyen T, Le Van P, Le Huy C, Weintraub A. Diarrhea caused by enterotoxigenic Bacteroides fragilis in children less than 5 years of age in Hanoi, Vietnam. Anaerobe. 2005; doi:10.1016/j.anaerobe.2004.10.004.

24. Tille P. Bailey & Scott's Diagnostic Microbiology. Mosby:14th Edition, 2016; section 13.

25. Fathi P, Wu S. Isolation, Detection, and Characterization of Enterotoxigenic Bacteroides fragilis in Clinical Samples. The open microbiology journal. 2016; doi:10.2174/1874285801610010057.

26. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Applied and environmental microbiology. 2002; doi:10.1128/aem.68.11.5445-5451.2002.

27. Tong J, Liu C, Summanen P, Xu H, Finegold SM. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe. 2011; doi:10.1016/j.anaerobe.2011.03.004.
28. Performance Standards for Antimicrobial Susceptibility Testing, M100: CLSI, Clinical Laboratory Standards, 30 edition, 2020.

29. Tran CM, Tanaka K, Watanabe K. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2013; doi:10.1007/s10156-012-0532-2.

30. Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO reports. 2016; doi:10.15252/embr.201642282.

31. Fernández-Canigia L, Litterio M, Legaria MC, Castello L, Predari SC, Di Martino A, et al. First national survey of antibiotic susceptibility of the Bacteroides fragilis group: emerging resistance to carbapenems in Argentina. Antimicrobial agents and chemotherapy. 2012; doi:10.1128/aac.05622-11.

32. Sóki J, Edwards R, Hedberg M, Fang H, Nagy E, Nord CE. Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. International journal of antimicrobial agents. 2006; doi:10.1016/j.ijantimicag.2006.07.021.

33. Kouhsari E, Mohammadzadeh N, Kashanizadeh MG, Saghafi MM, Hallajzadeh M, Fattahi A, et al. Antimicrobial resistance, prevalence of resistance genes, and molecular characterization in intestinal Bacteroides fragilis group isolates. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2019; doi:10.1111/apm.12943.

34. Ferløv-Schwensen SA, Sydenham TV, Hansen KCM, Hoegh SV, Justesen US. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973. International journal of antimicrobial agents. 2017; doi:10.1016/j.ijantimicag.2017.05.007.

35. Sóki J, Gonzalez SM, Urbán E, Nagy E, Ayala JA. Molecular analysis of the effector mechanisms of cefoxitin resistance among Bacteroides strains. The Journal of antimicrobial chemotherapy. 2011; doi:10.1093/jac/dkr339.

36. Podglajen I, Breuil J, Bordon F, Gutmann L, Collatz E. A silent carbapenemase gene in strains of Bacteroides fragilis can be expressed after a one-step mutation. FEMS microbiology letters. 1992; doi:10.1016/0378-1097(92)90557-5.

37. Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. The presence of antibiotic resistance genes and bft genes as well as antibiotic susceptibility testing of Bacteroides fragilis strains isolated from inpatients of the Infant Jesus Teaching Hospital, Warsaw during 2007-2012. Anaerobe. 2019; doi:10.1016/j.anaerobe.2019.03.003.

38. Rashidan M, Azimirad M, Alebouyeh M, Ghobakhlou M, Asadzadeh Aghdaei H, Zali MR. Detection of B. fragilis group and diversity of bft enterotoxin and antibiotic resistance markers cepA, cfiA and nim among intestinal Bacteroides fragilis strains in patients with inflammatory bowel disease. Anaerobe. 2018; doi:https://doi.org/10.1016/j.anaerobe.2018.02.005.
39. Rogers MB, Parker AC, Smith CJ. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrobial agents and chemotherapy. 1993; doi:10.1128/aac.37.11.2391.

40. Eitel Z, Sóki J, Urbán E, Nagy E. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe. 2013; doi:10.1016/j.ananaerobe.2013.03.001.

41. Marchand-Austin A, Rawte P, Toye B, Jamieson FB, Farrell DJ, Patel SN. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011. Anaerobe. 2014; doi:10.1016/j.ananaerobe.2014.05.015.

42. Nakano V, Avila-Campos MJ. Virulence markers and antimicrobial susceptibility of bacteria of the Bacteroides fragilis group isolated from stool of children with diarrhea in São Paulo, Brazil. Memorias do Instituto Oswaldo Cruz. 2004; doi:10.1590/s0074-02762004000300012.

43. Yunoki T, Matsumura Y, Yamamoto M, Tanaka M, Hamano K, Nakano S, et al. Genetic identification and antimicrobial susceptibility of clinically isolated anaerobic bacteria: A prospective multicenter surveillance study in Japan. Anaerobe. 2017; doi:10.1016/j.ananaerobe.2017.09.003.

44. Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. In vitro effect of clindamycin against Bacteroides and Parabacteroides isolates in Poland. Journal of global antimicrobial resistance. 2018; doi:10.1016/j.jgar.2017.11.001.

45. Veloo ACM, van Winkelhoff AJ. Antibiotic susceptibility profiles of anaerobic pathogens in The Netherlands. 2015; doi:10.1016/j.ananaerobe.2014.08.011.

46. Sárvári KP, Sóki J, Kristóf K, Juhász E, Miszti C, Latkóczy K, et al. A multicentre survey of the antibiotic susceptibility of clinical Bacteroides species from Hungary. Infectious diseases (London, England). 2018; doi:10.1080/23744235.2017.1418530.

47. Boyanova L, Kolarov R, Mitov I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe. 2015; doi:10.1016/j.ananaerobe.2014.05.004.

48. Narimani T, Douraghi M, Owlia P, Rastegar A, Esghaei M, Nasr B, et al. Heterogeneity in resistant fecal Bacteroides fragilis group collected from healthy people. Microbial pathogenesis. 2016; doi:10.1016/j.micpath.2016.02.017.

49. Dumont Y, Bonzon L, Michon AL, Carriere C, Didelot MN, Laurens C, et al. Epidemiology and microbiological features of anaerobic bacteremia in two French University hospitals. Anaerobe. 2020; doi:10.1016/j.ananaerobe.2020.102207.

50. Ulger Toprak N, Rajendram D, Yagci A, Gharbia S, Shah HN, Gulluoglu BM, et al. The distribution of the bft alleles among enterotoxigenic Bacteroides fragilis strains from stool specimens and extraintestinal sites. Anaerobe. 2006; doi:10.1016/j.ananaerobe.2005.11.001.

51. Łuczak M, Obuch-Woszczatyński P, Pituch H, Leszczyński P, Martirosian G, Patrick S, et al. Search for enterotoxin gene in Bacteroides fragilis strains isolated from clinical specimens in Poland, Great Britain, The Netherlands and France. Medical science monitor : international medical journal of experimental and clinical research. 2001;7(2):222-5.
52. Jasemi S, Emaneini M, Fazeli MS, Ahmadinejad Z, Nomanpour B, Sadeghpour Heravi F, et al. Toxigenic and non-toxigenic patterns I, II and III and biofilm-forming ability in *Bacteroides fragilis* strains isolated from patients diagnosed with colorectal cancer. Gut pathogens. 2020; doi:10.1186/s13099-020-00366-5.

53. Chung GT, Franco AA, Wu S, Rhie GE, Cheng R, Oh HB, et al. Identification of a third metalloprotease toxin gene in extraintestinal isolates of *Bacteroides fragilis*. Infection and immunity. 1999; doi:10.1128/iai.67.9.4945-4949.1999.

54. Szöke I, Dósa E, Nagy E. Enterotoxigenic *Bacteroides fragilis* in Hungary. Anaerobe. 1997; doi:10.1006/anae.1997.0078.

55. Mundy LM, Sears CL. Detection of toxin production by *Bacteroides fragilis*: assay development and screening of extraintestinal clinical isolates. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 1996; doi:10.1093/clinids/23.2.269.

56. Sóki J, Eitel Z, Urbán E, Nagy E. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of *Bacteroides* strains reported in a Europe-wide antibiotic resistance survey. International journal of antimicrobial agents. 2013; doi:10.1016/j.ijantimicag.2012.10.001.

Tables

Table 1 Anaerobic bacteria isolated from clinical specimens
Anaerobic bacteria (Genus)	N (%)
Bacteroides sp.	
Bacteroides fragilis	22 (46.8)
Bacteroides thetaiotaomicron	3 (6.3)
Bacteroides stercoris	2 (4.3)
Clostridium sp.	
Clostridium clostridioforme	2 (4.3)
Clostridium perfringens	2 (4.3)
Clostridium sporogenes	1 (2.1)
Paeniclostridium sordelli	1 (2.1)
Prevotella sp.	
Prevotella bivia	2 (4.3)
Prevotella oralis	1 (2.1)
Fusobacterium mortiferum	1 (2.1)
Veillonella sp.	2 (4.3)
Veillonella parvula	2 (4.3)
Other *Veillonella spp.*	
Gram positive cocci	
Anaerococcus prevotii	1 (2.1)
Finegoldia magna	2 (4.3)
Peptoniphilus asaccharolyticus	1 (2.1)
Peptostreptococcus spp.	1 (2.1)
Parvimonas micra	1 (2.1)
Total	47 (100)

Due to technical limitations, table 2,3 is only available as a download in the Supplemental Files section.
Figures

Figure 1

MIC values of (A): Penicillin, (B): Cefoxitin and (C): Clindamycin with the presence of the cepA gene, cfxA gene and ermF genes in B. fragilis.