RESEARCH ARTICLE

A Piezoelectric Immunosensor for Early Cervical Cancer Detection

Li Yang¹,³*, Xianhe Huang¹, Liang Sun²

Abstract

Background: A piezoelectric immunosensor for early cervical cancer detection was developed involving short analysis time and less invasive technique for p16INK4a, a protein that has been linked to cervical cancer. **Materials and Methods:** 5μL of 5.0 mg/mL p16INK4a antibody and then supernatant from different clinical samples from West China Second University Hospital (Sichuan, China) were dripped on the center of the AT-cut crystal through a micro-injector. Absorption of the p16INK4a by antibody caused a shift in the resonant frequency of the immunosensor, and the resonant frequency was correlated to the amount of the p16INK4a in the supernatant. **Results:** The greater severity of lesion grading, the greater the expression level of p16INK4a. **Conclusion:** Degree of cervical cancer lesion development could be determined by detected amount of p16INK4a in different clinical samples.

Keywords: Quartz crystal microbalance - immunosensor - early cervical cancer - detection

Asian Pac J Cancer Prev, 15 (21), 9375-9378

Introduction

The cervical cancer ranks the second for its incidence against women in the global context. (Ferlay et al., 2008) It is also one of the most common cancers in developing Asian countries. Human papilloma virus (HPV) infection is a main pathogeny of cervical cancer (Sahebali et al., 2006; Darragh et al., 2012; Jing et al., 2013; Zhang et al., 2014).

Study shows that, amid most of the cancers, p16INK4a protein is in under-expression while amid the cervical cancer, the p16INK4a is over-expressed, and closely related to HPV infection and cervical cancer development (Ishikawa et al., 2006) In the cases of cervical intraepithelial neoplasia grade I, II, III and cervix squamous carcinoma, Ishikawa found that high risk-HPV (HR-HPV) had infection rates of 69.8%, 97.5%, 91.7% and 100%, respectively, and in the HR-HPV positive cases p16INK4a positive expression rates reached 32.4%, 82.1%, 93.2% and 100%, respectively, and all the HR-HPV specimens showed protein expression, which increased with the lesion progression. Ekalaksananan studied 241 cases of cervical liquid based cytology smears with papanicolaou stain grading, detected HR-HPV with in-situ hybridization (ISH) and p16INK4a with immunohistochemistry, and in all high grade squamous intraepithelial lesions, the HR-HPV was found positive, the p16INK4a was over-expressed; so it is believed that the p16INK4a and HR-HPV detection is appropriate for cervix smear screening (Ekalaksananan et al., 2006). Eleuterioet detected 13 cases of high-grade squamous intraepithelial lesions, 26 cases of low-grade squamous intraepithelial lesions and 57 cases of p16INK4a expression in normal cervical tissues with immunohistochemical method, finding that the positive expression rates reached 92.3%, 15.4% and 0%, respectively; as to high-grade squamous intraepithelial lesions, the diagnostic sensitivity, specificity, positive predictive value and negative predictive value of p16INK4a expression was 92.3%, 100%, 100% and 98.3%, respectively. The correlation coefficient of p16INK4a and HR-HPV with high risk intraepithelial neoplasia was 0.95 and 0.47, respectively. They believed the p16INK4a is more sensitive than HR-HPV for cervical intraepithelial neoplasia diagnosis (Eleuterioet al., 2012).

Previous studies suggested that p16INK4a could be a biomarker to predict the outcomes of cervical lesions, Therefore, we examined p16INK4a expression in cervical cytology specimen.

The quartz crystal microbalance (QCM) has been widely used as highly sensitive sensor which commonly configure with electrodes on both sides of thin disk AT-cut quartz. The crystal can be electrically excited into resonance because of the piezoelectric properties. In the late 1950s, Sauerbrey found the relationship between resonant frequency and mass deposit on surface of quartz in gas phase (Sauerbrey et al., 1956)

\[\Delta f = \frac{2f_0^2}{A (\mu \rho)^{1/2}} \Delta m \]

(1)

In which \(\Delta f \) is the observed frequency change (in

¹Frequency Control Laboratory, School of Automation and Engineering, University of Electronic Science and Technology of China, ²Department of Pathology, West China Second University Hospital, Sichuan University, ³College of Electrical & Information Engineering, Southwest University for Nationalities, Chengdu, Sichuan, China *For correspondence: swan_yangli@163.com

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.21.9375

Asian Pacific Journal of Cancer Prevention, Vol 15, 2014 9375
Materials and Methods

Sample collection

Clinical supernatant were obtained from West China Second University Hospital for cervical cancer screening. Study materials consisted of cervical vaginal cytology specimens that had been selected on the basis of ThinPrep slides. Only specimens that had 2 mL of residual fluid with visible, floating, tissue-like fragments after preparation of ThinPrep slides were included. Cervicovaginal cytology specimens were collected in PreservCyt solution, and ThinPrep slides were prepared, screened, and interpreted using the 2001 Bethesda reporting system. For the purposes of the current study, all slides were reviewed, and diagnoses were confirmed or reassigned based on a consensus reached by two pathologists. ThinPrep Pap test cytologic diagnoses were reported as squamous cancer in 2 specimens, high-grade squamous intraepithelial lesions (HSIL) in 2 specimens, low-grade squamous intraepithelial lesions (LSIL) in 2 specimens, Diagnoses of negativity for intraepithelial lesions or malignancy (NILM) were reported in 2 specimens.

Equipment and reagents

All the PZ crystals were AT-cut which had nearly zero frequency drift with temperature around room temperature. The resonance frequency of crystal is 10MHz. The crystal (diameter: 8 mm) was placed between two gold electrodes, mounted in metal holder. An symmetric electrode pattern was used so that the upper electrode and the lower electrode had same radius (2.5mm). They were purchased from Tongfang Guoxin Electronics co., Ltd (Beijing, China). The quartz crystal was driven at its resonant frequency with a homemade oscillator circuit and frequency measurement was performed with Agilent 531323a, with a precision of 0.1 Hz at a gate time of 0.1 s. Because of the symmetric electrode pattern, the device had high uniform mass sensitivity distribution. (Hillier et al., 1991; Michael et al., 1992; Fabien et al., 1998)

Measurements

Micro-injector (range from 0.2ul to 10ul) was obtained from KeXiao co., Ltd (Hang Zhou, China).

Human p16INK4a full length protein (ab84075) was purchased from Abcam Co. (U.S.A).

Antibodies to p16INK4a (mouse monoclonal antibody, clone 6H12) were purchased from Maixin Co. (Huzhou, China).

Phosphate-buffered saline (PBS) was composed of 137 mM NaOH, 2.7 mM KCL, 8.0 mM Na2HPO4, and 1.5 mM KH2PO4 (pH 7.2).

Results

Stability of the system:

The system was composed of quartz crystal microbalance, home-made oscillator and frequency counter. Stability of this system direct determined whether the system can be used in clinical examination. The stability of the crystal is the most critical factor for system stability. A 10MHz, 3rd overtone AT-cut crystal was choose in this study, and the resonant frequency of one crystal was measured for 5 times with the same method at room temperature . Table 1 showed the result.

Above result indicated that the deviation of the each frequency within 2Hz, so the crystal had high stability in the process of measurement.

The form of the antibody layer

The immobilization of antibody is very important for the cervical cancer detection. In this study, the hydrophilic gold surface was formed, it would help the immobilization of antibody on the surface of crystal. After 6 hours incubated, the resonant frequency (F1) was measured.
the frequency shift caused by absorb of antibody was calculated as equation 1,

$$F_0 - F_2$$

(2)

The average frequency shift of 10 crystals was 303Hz and the relative standard deviation was 0.137. We cloud find that the amount of antibody for all crystals was similar and all crystals obtained the stability antibody layer.

The response for different clinical sample

The supernatant was obtained from different clinical samples, and these clinical samples had different cervical lesion degree (2negative, 2LSIL, 2HSIL, 2cancer). After immobilization of the antibody, the supernatant containing various concentration of $p16^{INK4a}$ was evenly applied on the surface of crystal, then the resonant frequency (F2) were measured. The resonant frequency shift caused by antibody-antigen reaction was calculated with equation 2,

$$F_0 - F_2$$

(3)

Using the equation (1) and equation (3), the amount of $p16^{INK4a}$ in different sample could be calculated. Comparison between the resonant shift and amount of $p16^{INK4a}$ to the biopsy result was showed in Table 3

The resonant frequency of all crystals changed after clinical supernatant covered on the surface of crystals. Two patients which diagnosed by histologically as negative had lower amount of $p16^{INK4a}$ range from 33ng to 43ng. Two patients which diagnosed by histologically as low-grade squamous intraepithelial lesions (LSIL) had amount of $p16^{INK4a}$ range from 239ng to 258ng. The amount of $p16^{INK4a}$ in two patients which diagnosed by histologically as HSIL rangefrom 513ng to 573ng. Two patients which diagnosed by histologically as cancer had higher amount of $p16^{INK4a}$ range from 881ng to 898ng. So, it is obviously to see that this detection system is able to detect $p16^{INK4a}$ at the level of nanogram. The amount of $p16^{INK4a}$ was related to the cervical lesion degree. The greater severity of lesion grading, the greater the expression level of $p16^{INK4a}$. Furthermore, the amount of $p16^{INK4a}$ in different lesion degree had no overlapping. So, the detection system which proposed in this paper could make judgment of cervical cancer degree from detected amount of $p16^{INK4a}$.

Discussion

The 5-years survival rate for cervical cancer patients in 2002-2007 was reported to be 95.1% in the screened group and 83.4% in the non-screened in Korea (Eun et al., 2013). It is obviously that the feasible inspection means could increase cervical cancer survival rates. The other feasible inspection method for early cervical cancer detection is Pap smear, this method only could determine whether the analyte presence or absence and interpreting slides is a labor-intensive, time consuming, and subjective process. Compare with other methods, the method proposed in this study is more objective, faster, and less reliant on technical expertise.

The result of this experiment is very important. It proved the feasibility and simplicity of the quartz crystal microbalance in detecting $p16^{INK4a}$ which associated with cervical lesion degree in the gas phase. From detection the amount of $p16^{INK4a}$ in different clinical samples, we could better separated those women who had no risk develop into cervical cancer and those women who had risk develop into cervical cancer. Cervical cancer incidence and mortality could reduce by this method. But it is necessary investigate further to increase the stability and precision.

Acknowledgements

This work was supported by the central college basic business expenses special funds of Southwest university for nationalities in 2013 (Young teachers fund projects), project number: 13NZYQN06

References

Darragh TM, Colgan TJ, Cox JT (2012). The lower anogenital squamous terminology standardization project for hpv-associated lesions: background and consensus recommendations from the college of american pathologists and the American society for colposcopy and cervical pathology. Arch Pathol Lab Med, 10, 1266-97
Ekalaksananan T, Pientong C, Sriamporn S, et al (2006). Usefulness of combining testing for p16 protein and human papillomavirus (HPV) in cervical carcinoma screening, Gynecol Oncol, 103, 62-6.

Eleuterioet J, Giraldo PC, Cavalcante DL (2009). Papillary squamous cell carcinoma of the uterine cervix, high-risk human papilloma virus infection and p16 (INK4a) expression: a case report, Acta Cytol, 53, 188-90.

Ferlay J, Shin HR, Bray F (2008). Estimates of worldwide burden of cancer in 2008: GLOBOCAN, Int J Cancer, 127, 2893-917.

Hillier AC, Ward MD (1992). Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal Chem, 64, 2539-54.

Ishikawa M, Fujii T, Saito M, et al (2006). Overexpression of p16INK4a as an indicator for human papillomavirus oncogenic activity in cervical squamous neoplasia, Gynecol Cancer, 16, 347-53.

Josse F, Lee Y (1998). Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal. Anal Chem, 70, 237-47.

Jing L, Rong H, Johannes E, You L (2013). Epidemiological features of human papillomavirus (HPV) infection among women living in mainland China, Asian Pac J Cancer Prev, 14, 4015-24.

Michael D, Edward J (1991). Radial mass sensitivity of the quartz crystal microbalance in liquid media anal. Chem, 63, 886-90.

Sahebali S, Depuydt CE, Boulet GAV (2006). Immunocytochemistry in liquid-based cervical cytology: analysis of clinical use following a cross-sectional study. Int J Cancer, 118, 1254-60.

Sauerbrey G (1958). Use of quartz vibrator for weighting thin film on a microbalance. Z.phys, 155, 206-12.

Zhang L, Lin Y, Li JK (2014). Concordance in cervical HPV detection between Hybrid Capture 2 and HPV GenoArray tests. Asian Pac J Cancer Prev, 15, 4465-6.