Deciding trigonality of algebraic curves (extended abstract)

Josef Schicho and David Sevilla*
RICAM, Austrian Academy of Sciences

Let C be an algebraic curve of genus $g \geq 3$. Let us assume that C is not hyperelliptic, so that it is isomorphic to its image by the canonical map $\varphi : C \to \mathbb{P}^{g-1}$. Enriques proved in [1] that $\varphi(C)$ is the intersection of the quadrics that contain it, except when C is trigonal (that is, it has a g_1^3) or C is isomorphic to a plane quintic ($g = 6$). The proof was completed by Babbage [2], and later Petri proved [3] that in those two cases the ideal is generated by the quadrics and cubics that contain the canonical curve. In this context, we present an implementation in Magma of a method to decide whether a given algebraic curve is trigonal, and in the affirmative case to compute a map $C : 3:1 \to \mathbb{P}^1$ whose fibers cut out a g_1^3. Our algorithm is part of a larger effort to determine whether a given algebraic curve admits a radical parametrization.

1 Classical results on trigonality

The following theorem [4, p. 535] classifies canonical curves according to the intersection of the quadric hypersurfaces that contain them.

Theorem 1. For $C \subset \mathbb{P}^n$ any canonical curve, either

(i) C is entirely cut out by quadric hypersurfaces; or

(ii) C is trigonal, in which case the intersection of all quadrics containing C is the rational normal scroll swept out by the trichords of C; or

(iii) C is a plane quintic, in which case the intersection of the quadrics containing C is the Veronese surface in \mathbb{P}^5, swept out by the conic curves through five coplanar points of C.

We can use this to sketch an algorithm to detect trigonality.

*Partially supported by Research Project MTM2007-67088 of the Spanish Ministry of Education and Science.
Algorithm 1: Sketch of algorithm to detect trigonality

Input: a non-hyperelliptic curve C of genus $g \geq 3$

Output: true if C is trigonal, false otherwise

Compute the canonical map $\varphi : C \to \mathbb{P}^{g-1}$ and its image $\varphi(C)$;
Compute the intersection D of all the quadrics that contain $\varphi(C)$;
if $D = C$ then
 return false;
else
 Determine which type of surface is D;
 if $D = \mathbb{P}^2$ then
 return true // $g = 3$;
 else if D is a rational normal scroll then
 return true;
 else
 return false // Veronese;
end
end

For the computation of the canonical map and the computation of the space of forms of fixed degree containing the image of a polynomial curve, there exist efficient implementations in Magma.

For the identification of the surface D, we use the Lie algebra method, which has been introduced in [6] (see also [5]) for parametrizing certain classes of Del Pezzo surfaces.

2 The Lie algebra method

The Lie algebra of a projective variety is an algebraic invariant which is relatively easy to calculate (it is often cheaper than a Gröbner basis of the defining ideal, if only generators are given).

Let $X \subset \mathbb{P}^n$ be an embedded projective variety. Let $\text{PGL}_{n+1}(X)$ be the group of all projective transformations that map X to itself (this is always an algebraic group). The Lie algebra $L(X)$ of X is defined as the tangent space of $\text{PGL}_{n+1}(X)$ at the identity, together with its natural Lie product. It is a subalgebra of \mathfrak{sl}_{n+1}, the Lie algebra of \mathbb{P}^n.

For varieties of general type (in particular curves of genus at least 2), the group $\text{PGL}_{n+1}(X)$ is finite and therefore the Lie algebra is zero. On the other hand, the Veronese surface and the rational scrolls have a Lie algebra of positive dimension. This allows us to reduce the recognition problem for Veronese surfaces/rational scrolls to the computations with Lie algebras and their representations.

If S is a rational normal scroll which is not isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, then $L(S)$ has a Levi subalgebra isomorphic to \mathfrak{sl}_2. By decomposing the Lie module given
by the representation $\mathfrak{sl}_2 \hookrightarrow \mathfrak{gl}_{n+1}$, we can construct a $2 \times (n-1)$ matrix A, such that the 2×2 minors of A generate the ideal of S. The ratio of the two entries of any column defines a map $\rho : S \to \mathbb{P}^1$ whose fibers are lines. Then the map $C \to \mathbb{P}^1$ is constructed as

$$C \xrightarrow{\phi} \varphi(C) \xrightarrow{i} S \xrightarrow{\rho} \mathbb{P}^1. \quad (2.1)$$

If S is a Veronese surface, then we can construct by similar methods an isomorphism of C with a planar quintic.

3 Trigonality algorithm

We describe in more detail the algorithm to detect and compute the trigonality of a curve. In particular, we explain now the computation of a threefold map from C to \mathbb{P}^1. Let S be the surface intersection of quadrics containing $\varphi(C)$ and $S \to \mathbb{P}^2$ the parametrization obtained with the Lie algebra method. In all cases we will obtain a threefold map from $\varphi(C)$ to \mathbb{P}^1 which can be pulled back to C.

- If $g = 3$, the canonical curve is a smooth quartic in \mathbb{P}^2. In this case, one can easily compute a g_1^3 on $\varphi(C)$, at least in theory: it suffices to take a point p on it and consider the pencil of lines through it, since each one intersects $\varphi(C)$ in p and three more points. In practice, finding a point with coefficients in the base field is problematic, unless one accepts working on algebraic extensions.

- If S is a rational normal scroll not isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, we can compute the map in (2.1) explicitly.

- If S is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, we compute a map $\rho : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ and form the composition

 $$C \xrightarrow{\phi} \varphi(C) \xrightarrow{i} S \xrightarrow{\rho} \mathbb{P}^1 \times \mathbb{P}^1 \rho \mathbb{P}^1.$$

- If C is a plane quintic, it is not trigonal.

4 Computational experiences

We have tested our Magma V2.14-7 [7] implementation against many examples of trigonal curves. The computer used is a 64 Bit, Dual AMD Opteron Processor 250 (2.4 GHZ) with 8 GB RAM. We have generated trigonal curves in the following two ways:

(i) Let $C : f(x, y, z) = 0$ with $\deg_y f = 3$. Then the projection $(x : y : z) \mapsto (x : z)$ is a $3 : 1$ map to \mathbb{P}^1. The genus of a polynomial of degree 3 in y and degree d in x is $2(d-1)$ generically. The size of the coefficients is controlled directly.
(ii) Let C be defined by the affine equation $\text{Resultant}_u(F, G) = 0$ where
\[
0 = x^3 - a_1(u)x - a_2(u) =: F,
0 = y - a_3(u) - a_4(u)x - a_5(u)x^2 =: G
\]
for some polynomials a_1, \ldots, a_5. This clearly gives a field extension of degree 3, thus there is a $3:1$ map from C to the affine line. The degree and coefficient size for a given genus are significantly larger than for the previous construction.

These are our timed results\(^1\) for samples of ten random polynomials of different degrees, genera and coefficient sizes.

deg	bit height	genus	deg	seconds
3	5	4	6	0.5 – 0.65
3	50	4	6	2.09 – 2.27
6	5	10	9	14 – 17
6	50	10	9	54 – 61
10	5	18	13	271 – 342
10	50	18	13	1059 – 1193
15	5	28	18	3477 – 5317

For the second method, we choose a_1, \ldots, a_5 randomly of degree d and maximum coefficient size e. These are the time results\(^1\) for samples of ten random polynomials, for different values of d, e.

(d, e)	genus	deg	bit height	seconds
(4, 2)	4	15	20 – 24	18 – 62
(4, 10)	4	20	26 – 35	87 – 191
(5, 2)	4 – 6	20	25 – 17	162 – 2353
(5, 10)	4 – 6	23	25 – 17	1334 – 7940
(6, 2)	6 – 7	25	30 – 24	2992 – 22650

Our Magma implementation can be obtained by contacting us directly: josef.schicho@oeaw.ac.at and david.sevilla@oeaw.ac.at.

References

[1] F. Enriques, *Sulle curve canoniche di genere p dello spazio a p-1 dimensioni.* Rend. dell’Acc. delle Scienze di Bologna 23 (1919), 80–82.

[2] D.W. Babbage, A note on the quadrics through a canonical curve. J. London Math Soc. 14 (1939), 310–315.

[3] K. Petri, Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen [in German]. Math. Ann. 88 (1923), no. 3-4, 242–289.

\(^{1}\)Last minute improvements in our implementation have reduced the running times by a factor of about 5, for many of the entries in the tables.
[4] P. Griffiths and J. Harris, *Principles of algebraic geometry*. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1978. ISBN: 0-471-32792-1.

[5] W. A. de Graaf, J. Příniková and J. Schicho, *Parametrizing Del Pezzo surfaces of degree 8 using Lie algebras*. J. Symb. Comp. 44 (2009) no. 1, 1–14.

[6] W. A. de Graaf, M. Harrison, J. Příniková and J. Schicho, *A Lie algebra method for the parametrization of Severi-Brauer surfaces*. J. Algebra 303 (2006) no.2, 514–529.

[7] W. Bosma, J. Cannon and C. Playoust, *The Magma algebra system. I. The user language*. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265.