Abstract

Latent Semantic Analysis (LSA) is based on the Singular Value Decomposition (SVD) of a term-by-document matrix for identifying relationships among terms and documents from co-occurrence patterns. Among the multiple ways of computing the SVD of a rectangular matrix X, one approach is to compute the eigenvalue decomposition (EVD) of a square \(2 \times 2 \) composite matrix consisting of four blocks with X and \(X^T \) in the off-diagonal blocks and zero matrices in the diagonal blocks. We point out that significant value can be added to LSA by filling in some of the values in the diagonal blocks (corresponding to explicit term-to-term or document-to-document associations) and computing a term-by-concept matrix from the EVD. For the case of multilingual LSA, we incorporate information on cross-language term alignments of the same sort used in Statistical Machine Translation (SMT). Since all elements of the proposed EVD-based approach can rely entirely on lexical statistics, hardly any price is paid for the improved empirical results. In particular, the approach, like LSA or SMT, can still be generalized to virtually any language(s); computation of the EVD takes similar resources to that of the SVD since all the blocks are sparse; and the results of EVD are just as economical as those of SVD.

1 Introduction

It is close to two decades now since Deerwester et al. (1990) first proposed the application of the Singular Value Decomposition (SVD) to term-by-document arrays as a statistics-based way of representing how terms and documents fit together within a semantic space. Since the approach was supposed to ‘get beyond’ the terms themselves to their underlying semantics, the approach became known as Latent Semantic Analysis (LSA).

Soon after this application of SVD was widely publicized, it was suggested by Berry et al. (1994) that, with a parallel corpus, the approach could be extended to pairs of languages to allow cross-language information retrieval (IR). It has since been confirmed that LSA can be applied not just to pairs of languages, but also simultaneously to groups of languages, again given the existence of a multi-parallel corpus (Chew and Abdelali 2007).

In this paper, we return to the basics of LSA by examining its relationship with SVD, and, in turn, the mathematical relationship of SVD to the eigenvalue decomposition (EVD). These details are discussed in section 2. It has previously been suggested (for example, in Hendrickson 2007) that IR results could be improved by filling in information beyond that available directly in the term-by-document matrix, and replacing SVD with the more general EVD. To our knowledge, however, these suggestions have not been publicized outside the mathematics community, nor have they been empirically tested in IR applications. With multilingual information retrieval as a use case, we consider alternatives in section 3 for implementation of this idea. One of these re-
lies on no extraneous information beyond what is already available in the multi-parallel corpus, and is based entirely on the statistics of cross-language term alignments. ‘Regular’ LSA has been shown to work best when a weighting scheme such as log-entropy is applied to the elements in the term-by-document array (Dumais 1991), and in section 3 we also consider various possibilities for how the term alignments should best be weighted. Section 4 recapitulates on a framework that allows EVD with term alignments to be compared with a number of related approaches (including LSA without term alignments). This is a recapitulation, because the same testing framework has been used previously (for other linear-algebra based approaches) by Chew and Abdelali (2007) and Chew et al. (2007). The results of our comparison are presented and discussed in section 5, and we conclude upon these results and suggest further avenues for research in section 6.

2 The relationship of SVD to EVD, and its application to information retrieval

In the standard LSA framework (Deerwester et al. 1990) the (sparse) term-by-document matrix \(X \) is factorized by the singular value decomposition (SVD),

\[
X = U S V^T
\]

where \(U \) is an orthonormal matrix of left singular vectors, \(S \) is a diagonal matrix of singular values, and \(V \) is an orthonormal matrix of right singular vectors (Golub and van Loan 1996).

Typically for LSA, a truncated SVD is computed such that equality in (1) no longer holds and that the best rank-R least-squares approximation to matrix \(X \) is formed by keeping the R largest singular values in \(S \) and discarding the rest. This also means that the first \(R \) vectors of \(U \) and \(V \) are retained, where \(R \) indicates the number of concept dimensions in LSA. Each column vector in \(U \) maps the terms to a single arbitrary concept, such that terms which are semantically related (as determined by patterns of co-occurrence) will tend to be grouped together with large values in columns of \(U \).

There are many ways to compute the SVD of a sparse matrix. One expedient way is to compute the eigenvalue decomposition (EVD) of either \(X^T X \) or \(XX^T \), depending on the largest dimension of \(X \), to obtain \(U \) or \(V \), respectively. With \(U \) or \(V \), one may compute the rest of the SVD by a simple matrix-matrix multiplication and renormalization.

Another way to compute the SVD is to compute the eigenvalue decomposition of the 2-by-2 block matrix

\[
B = \begin{bmatrix} 0 & X \\ X^T & 0 \end{bmatrix}
\]

The eigenvalues of \(B \) are the singular values of \(X \), replicated as both positive and negative, plus a number of zeroes if \(X \) is not square. The left and right singular vectors are contained within the eigenvectors of this composite matrix \(B \). Assume that \(X \) is of size \(m \times n \) and that \(m \geq n \), with left singular vectors \(U = [U_n \ U_{m-n}] \), where \(U_n \) corresponds to the \(n \) positive singular values and \(U_{m-n} \) corresponds to the remaining \(m-n \) zero singular values. Let \(Q \) denote the orthogonal matrix of eigenvectors corresponding to the nonnegative eigenvalues of \(B \), then the matrices of left and right singular vectors are stacked on top of each other, \(U \) on top of \(V \), as follows:

\[
Q = \frac{1}{\sqrt{2}} \begin{bmatrix} U_n & \sqrt{2} \times U_{m-n} \\ V & 0 \end{bmatrix}
\]

Hence, one may compute the truncated SVD of \(X \) by computing only the eigenvectors corresponding to the largest \(R \) eigenvalues and then extracting and rescaling the \(U \) and \(V \) matrices from \(Q \).
rescaling the columns of U by the inverse length and multiplying the eigenvalues by these lengths for our S matrix. We call this approach ‘Tucker1’ because the result is identical to creating a U and S matrix for each language from the general Tucker1 model found by three-way analysis of the terms-by-documents-by-language array (Tucker 1966).

For applications in information retrieval, we usually want to compute a measure of similarity between documents. Once we have U and S, we can estimate similarities by computing the cosine of the angle between the document vectors in the smaller ‘semantic space’ of the R concepts found by LSA. New documents in different languages can be projected into this common semantic space by multiplying their document vectors (formed in exactly the same way as the columns for X) by the product US⁻¹, to yield a document-by-concept vector.

3 From SVD to term-alignment-based EVD

If we compute just the SVD of a term-document matrix X, then the technique we use to accomplish this (whether computing the EVD of the block matrix B or otherwise) is immaterial from a computational linguist’s point of view: there is no advantage in one technique over another. However, the technique of EVD allows one to augment the LSA framework with additional information beyond just the term-document matrix. In Figure 1, the two diagonal blocks contain only zeroes, but we envision augmenting B with term alignment information such that the upper diagonal block captures any term-to-term similarities. Additional term-term alignment information serves to enhance the term-by-concept vectors in U by providing explicit, external knowledge so that LSA can learn more refined concepts. While not explored in this paper, we also envision incorporating any document-to-document similarities into the lower diagonal block.

Let D₁ and D₂ denote symmetric matrices. We augment the block matrix B and redefine it as a more general symmetric matrix,

\[
B = \begin{bmatrix}
D₁ & X \\
X^T & D₂
\end{bmatrix}.
\]

If both D₁ and D₂ are equal to the identity matrix, then the eigenvalues of B are shifted by one, but the eigenvectors are not affected.

Since our use case here is multilingual information retrieval, imagine for the moment that an oracle provides dictionary information that matches up words in each of our language pairs (Arabic-English, Arabic-French, etc.) by meaning. Thus, for example, we might have a pairing between English house and French maison. This information may be encoded in the diagonal block D₁ by replacing zeroes in the cells for (house, maison) and its symmetric entry with some nonzero value indicating the strength of association for the two terms. Completing all relevant entries in D₁ in this fashion serves to strengthen the co-occurrence information in the parallel corpus that LSA normally finds via the SVD.

In the simplest approach, if the oracle indicates a match between two terms i and j, then a one could be inserted in D₁ at positions (i,i) and (j,j). If D₁ were filled with such term alignment information, the matrix B would still be sparse. Without any document-document information, then D₂ could be either the identity matrix or the zero matrix. Our experience has shown that D₂ = 0 works slightly better in practice. Figure 2 shows a block matrix augmented with term alignments in this fashion.

![Figure 2. Augmented block matrix with term alignments](image)

The eigenvalue decomposition of B now incorporates this extra term information provided in D₁, and the eigenvectors show stronger correspondence between those terms indicated. However, with each term aligned with one or more other terms, the row and column norms of D₁ are unequal, which means that some terms may be biased to appear more heavily in the eigenvectors. In addition, the magnitude or ‘weight’ of D₁ relative to X needs to be considered, otherwise the explicit alignments in D₁ and the co-
occurrence information in X may be out of balance with one another. Properly normalizing and scaling D_1 may mitigate both of these risks.

There are several possibilities for normalizing the matrix D_1. Sinkhorn balancing (Sinkhorn 1964) is a popular technique for creating a doubly stochastic matrix (rows and columns all sum to 1) from a square matrix of nonnegative elements. Sinkhorn balancing is an iterative algorithm in which, at each step, the row and column sums are computed and then subsequently used to rescale the matrix. For balancing the matrix A, each iteration consists of two updates:

$$ A \leftarrow W_R A $$

$$ A \leftarrow A W_C $$

where W_R is a diagonal matrix containing the inverse of row sums of A, and W_C is a diagonal matrix containing the inverse of column sums of A. This algorithm exhibits linear convergence, so many iterations may be needed. The algorithm may be adapted for normalizing the row and column vectors according to any norm. Our experience has shown that normalizing D_1 with respect to the Euclidean norm works well in practice.

In terms of scaling D_1 relative to X, we simply multiply D_1 by a positive scalar value, which we denote with the variable β. The optimal value of β appears to be problem dependent.

Let us return for the moment to the question of how we populate D_1 in the first place, and what each entry in that block represents. In the simple case described above, the existence of a 1 at position (i,j) indicates that an alignment exists between terms i and j, and a zero indicates that no alignment exists. But in reality, a binary encoding like this may be too simplistic. In this respect, it is instructive to consider how we populate D_1 in the light of the weighting scheme used for X, since the latter is discussed in Dumais (1991) and is by now quite well understood.

In the simplest case, an entry of 1 in X at position (i,j) can denote that term i occurs in document j, just as in our simple case with D_1. A slightly more refined alternative is to replace 1 with f_{ij}, where f_{ij} denotes the raw frequency of term i within document j. But, as Dumais (1991) shows, it is significantly better in practice to use a ‘log-entropy’ weighting scheme. This adjusts f_{ij} first by ‘dampening’ high-frequency terms (using the log of the frequency), and secondly by giving a lower weight to terms which occur in many documents. The former adjustment is related to an insight from Zipf’s law, which is that the dampened term frequency will be in proportion to the log of the term’s rank in frequency. The latter adjustment is based on information theory; a term which is scattered across many documents (such as ‘and’ in English) has a high entropy, and therefore lower intrinsic information content.

Suppose, therefore, that our ‘dictionary’ oracle could not only indicate the existence of an alignment, but also provide some numerical value for the strength of association between two aligned terms. (In practice, this is probably more than one could hope for even from the best published bilingual dictionaries.) This information could then replace the ones in D_1 prior to Sinkhorn balancing and matrix weighting.

While one cannot expect to obtain this information from published dictionaries, there is in fact a statistical approach to gathering the necessary information, which we borrow from SMT (Brown et al. 1994). All that is required is the existence of a parallel corpus, which we already have in place for multilingual LSA.

Here, an entry f_{ij} in D_1 is based on the mutual information of term I and term J, or $I(J;I)$ (capital letters are used to indicate that the terms are treated here as random variables). It is an axiom that:

$$ I(I;J) = H(I) + H(J) - H(I,J) \quad (2) $$

where $H(I)$ and $H(J)$ are the marginal entropies of I and J respectively, and $H(I,J)$ is the joint entropy of I and J. Properties of $H(I,J)$ include the following:

$$ H(I,J) \geq H(I) \geq 0 $$

$$ H(I,J) \geq H(J) \geq 0 $$

$$ H(I,J) \leq H(I) + H(J) \quad (3) $$

Considering (2) and (3) together, it should be clear that $I(I;J)$ will range between 0 and the maximum value for $H(I)$ or $H(J)$.

For the purposes of populating D_1, we compute the entropy of a term i by considering the number of documents where i occurs, and the number of documents where i does not occur, and express these as probabilities. For the joint entropy $H(I,J)$, we need to compute four probabilities based on all the possibilities: documents where both terms occur, those where I occurs without J, those where J occurs without I, and

Selecting $\alpha = 1$ can, in practice, yield better results in the applications we have tested.
those where neither occur. The result of this is
that a numerical value is attached to each align-
ment: higher values indicate that terms are
strongly correlated, and lower values indicate
that one term predicts little about the other. For
each pair of words \((i,j)\) which co-occur in any
text chunk in the parallel corpus, we can say that
an alignment exists if, among all the possibilities,
mutual information for \(i\) is maximized by select-
ing \(j\), and vice versa. (Since the maximization of
mutual information is not necessarily reciprocal,
the effect of this is to be conservative in postulat-
ing alignments.) The weight of this alignment is
its mutual information (equivalent to the ‘global
weight’ of log-entropy) multiplied by the log of
one plus the number of text chunks in which that
alignment appears (equivalent to the ‘local
weight’ of log-entropy).

Some examples of English-French pairs at ei-
ther end of this spectrum (where mutual informa-
tion is non-zero) are given in Table 1.

\(I(J,J)\)	Alignment weight	\(I\)	\(J\)
0.000176	0.000176	hearing	écouteit
0.000217	0.000217	misery	misérable
0.270212	2.884297	house	maison
0.321754	3.506663	king	roi
0.415702	6.025456	and	et
0.472925	5.798080	1	je

Table 1. Term alignment and mutual information

We believe that this approach, which weights
alignments based on mutual information, fits
very well with the log-entropy scheme used for
X, since both are solidly based on the same
foundation of information theory.

All together, we call this particular process
LSATA, which stands for LSA with term align-
ments.

4 Testing framework

Since the inception of the Cross-Language
Evaluation Forum (CLEF) in 2000, there has
been growing interest in cross-language IR, and a
number of parallel corpora have become avail-
able (for example through the Linguistic Data
Consortium). Widely used examples include the
Canadian Hansard parliament proceedings (in
French and English). Harder to obtain are multi-
parallel corpora – those where the same text is
translated into more than two parallel languages.

One such corpus which has not yet gained
wide acceptance, perhaps owing to the percep-
tion that it has less relevance to real-world appli-
cations than other parallel corpora, is the Bible.
Yet the range of languages covered is unargua-
ably unmatched elsewhere, and one might contend
that its relevance is in some ways greater than,
say, Hansard’s, as its impact on Western culture
has been broader than that of Canadian govern-
ment debates. Similarly, the Quran, while not
translated into as many languages as the Bible,
has had a significant impact on another large
segment of the world’s population.

But the relevance or otherwise of the Bible
and/or Quran, and the extent to which they have
been accepted by the computational linguistics
community at large as parallel corpora, are some-
what beside the point for us here. Our interest is
in developing theory and applications which
have universal applicability to as many lan-
guages as possible, regardless of the subject mat-
ter or whether the languages are ancient or
modern. One might compare this approach to
Chomsky’s quest for Universal Grammar
(Chomsky 1965), except that the theory in our
case is based on lexical statistics and linear alge-
bra rather than rule-based generative grammar.

The Bible and Quran have in fact previously
been used for experiments similar to ours (e.g.,
Chew et al. 2007). By using these texts as paral-
lel corpora, therefore, we facilitate direct com-
parison of our results with previous ones. But
besides this, the Bible has some especially attrac-
tive properties for our current purposes. First, the
carefulness of the translations means that we are
relatively unlikely to encounter situations where
cross-language term alignments are impossible
because some text is missing in one of the tran-
slations. Secondly, the relatively small size of the
parallel text chunks (by and large, each chunk is
a verse, most of which are about a sentence in
length) greatly facilitates the process of statistical
term alignment. (This is based on the combina-
torics: the number of possible term-to-term align-
ments increases approximately quadratically
with the number of terms per text chunk.)

Thus, our framework is as follows. In our
term-by-document matrix \(X\), the documents are
verses, and the terms are distinct wordforms in
any of the five languages used in the test data in
Chew et al. (2007): Arabic (AR), English (EN),
French (FR), Russian (RU) and Spanish (ES). As
in Chew et al. (2007), too, our test data consists
of the text of the Quran in the same 5 languages.
In this case, the ‘documents’ are the 114 parallel
suras (or chapters) of the Quran. We obtained all
translations of the Bible and Quran from openly-
available websites such as that of Biola University (2005-2006) and http://www.kuran.gen.tr.

As already mentioned, SVD of a term-by-document matrix is equivalent to EVD of a block matrix in which two of the blocks (the non-diagonal ones) are X and Xᵀ. As described in section 3, we fill in some of the values of D₁ with nonzeroes (from term alignments derived from the Bible). In all cases (both SVD and EVD), we performed a truncated decomposition in either 60, 240, or 300 dimensions.

SVD/EVD dimensions	Type of decomposition	Include term alignments? / weighting type	Term alignment settings	Global weight \(\alpha^* \)	Average \(P_1 \)	Average \(MP_5 \)
60	SVD	N/A	1.8	0.7116	0.5702	
	Tucker1	N/A	1.8	0.7170	0.5770	
	PARAFAC2	yes (binary)	1.8	0.7420	0.6580	
		no	1.8	0.7000	0.5691	
		yes	1.8	0.7611	0.6474	
		yes (log-MI)	1.8	0.7716	0.5972	
		no	1.8	0.7979	0.6467	
		yes	1.8	0.6481	0.3804	
		yes (binary)	1.8	0.7393	0.5972	
		yes (log-MI)	1.8	0.8088	0.6972	
		no	1.8	0.7488	0.5789	
		yes	1.8	0.7933	0.6586	
240	SVD	N/A	1.8	0.8761	0.6554	
	PARAFAC2	N/A	1.8	0.8975	0.7853	
		yes (binary)	1.8	0.8796	0.6575	
		yes (log-MI)	1.8	0.8928	0.7695	
		yes	1.8	0.9421	0.8067	
		no	1.8	0.7982	0.8000	
		yes	1.8	0.9182	0.8067	

*See footnote 2.

Table 2. Results with various linear algebraic decomposition methods and weighting schemes.

To evaluate the different methods against one another, we use similar measures of precision as were used with the same dataset by Chew et al. (2007): precision at 1 document (\(P_1 \)) (the average proportion of cases where the translation of a document ranked highest among all retrieved documents of the same language) and multilingual precision at 5 documents (\(MP_5 \)) (the average proportion of the top 5 ranked documents which were translations of the query document into any of the 5 languages, among all retrieved documents of any language). By definition, \(MP_5 \) is always less than or equal to \(P_1 \); \(MP_5 \) measures success in multilingual clustering, while \(P_1 \) measures success in retrieving documents when the source and target languages are pre-specified.

5 Results and Discussion

Table 2 above presents a summary of our results. The main point to note is that the addition of information on term alignments is clearly beneficial. An approach based on the Tucker1 decomposition algorithm, without any information on term alignments, achieves \(P_1 \) of 0.7170 and \(MP_5 \) of 0.5770. With scaled term alignment information, the results improve to 0.7611 and 0.6474, respectively. Using a chi-squared test, we tested the significance of the increase in \(P_1 \) and found it to be highly significant (\(p \approx 1.7 \times 10^{-7} \)).

The results also show, however, that one needs to be careful about how the word-alignment information is added. Without some form of balancing and scaling of \(D_1 \), there is little improvement (and often significant deterioration) in the results when alignment information is included.

In addition to comparing a block EVD approach with term alignments to one without, we also compared against another decomposition method, PARAFAC2, which has been found to be more effective than SVD in cross-language IR (Chew et al. 2007). Here, the results are more equivocal. \(P_1 \) is slightly higher under the LSATA approach (with binary values in \(D_1 \)) than

54
under PARAFAC2, while the reverse is true for MP5. The difference for P1 is significant at \(p < 0.05 \) but not at \(p < 0.01 \). In any case, there are risks in making a comparison between PARAFAC2 and LSATA. For one thing, PARAFAC2, as implemented here, includes no mechanism for incorporating term-alignment information. It is not clear to us yet whether such a mechanism could (mathematically or practically) be incorporated into PARAFAC2. Secondly, we are not yet confident that we have found the optimal weighting scheme for the \(D_1 \) block under the LSATA model. Our experiments with different weighting and normalization schemes for the \(D_1 \) block are still in relatively initial stages, though it can also be seen from Table 2 that by selecting certain settings under LSATA (replacing binary weighting in \(D_1 \) with mutual-information-based weighting, and applying scaling with \(\beta = 12.0 \)), we were able to improve upon PARAFAC2 under both measures.

Although we have not tested all settings, Table 2 also shows our best results to date with this dataset, which have come from applying EVD to the block matrix that includes \(D_1 \). The precise optimal settings for EVD appear to depend on whether the objective is to maximize P1 or MP5. For P1, our best results (0.9421) were obtained with binary weighting, global term \(\alpha = 1.6 \), and \(\beta = 4.0 \). For MP5, the best results (0.8067) were obtained with mutual-information based weighting, \(\alpha = 1.8 \), and \(\beta = 12.0 \). It appears in all cases that \(D_1 \) needs to be balanced if it contains term alignment information.

The evidence, then, appears to be strongly in favor of incorporating information beyond term-to-document associations within an IR approach based on linear algebra. It happens that LSATA offers an obvious way to do this, while other methods such as PARAFAC2 may or may not. Here, we have examined just one form of information besides term-to-document statistics: term-to-term statistics. However, there is no reason to suppose that the results might not be improved still further by incorporating information on document-to-document associations, or for that matter associations between terms or documents and other linguistic, grammatical, or contextual objects.

6 Conclusion

In this paper, we have discussed the mathematical relationship between SVD and EVD, and specifically the fact that SVD is a special case of EVD. For information retrieval, the significance of this is that SVD allows for explicit encoding of associations between terms and documents, but not between terms and terms, or between documents and documents.

By moving from the special case of SVD to the general case of EVD, however, we open up the possibility that additional information can be encoded prior to decomposition. We have examined a particular use case for SVD: multilingual information retrieval. This use case presents an interesting example of additional information which could be encoded on the term-by-term diagonal block: cross-language pairings of equivalent terms (such as *houselmaison*). Such pairs can be obtained from bilingual dictionaries, but we can save ourselves the trouble of obtaining and using these. Multilingual LSA requires that a parallel corpus have already been obtained, and well-understood statistical term alignment procedures can be applied to obtain cross-language term-to-term associations. Moreover, if the corpus is *multi*-parallel, we can ensure that the statistical basis for alignment is the same across all language pairs.

Our results show that by including term-to-term alignment information, then performing EVD, we can improve the results of cross-language IR quite significantly.

It should be pointed out that while we have successfully used statistics-based information in the term-by-term diagonal block, there is no reason to suppose that similar or better results might not be achieved by manually filling in nonzeroes in either diagonal block. The additional information encoded by these nonzeroes could include associations known a priori between documents (e.g., they were written by the same author) or terms (e.g., they occur together in a thesaurus), or both. While in these examples the additional information required might not be available from the training corpus, and its encoding could involve moving away from an entirely statistics-based model, the additional effort could be justified depending upon the intended application.

In future work, we would like to examine in particular whether still further statistically-derivable (or readily available) data could be incorporated into the model. For example, one can conceive of a block EVD involving ‘levels’ beyond the ‘term level’ and the ‘document level’. In a 3×3 block EVD, for example, one might include n-grams, terms, and documents: this approach should also be extensible to essentially all languages. Might the addition of further informa-
tion lead to even higher precision? Avenues for research such as this raise their own questions, such as the type of weighting scheme which would have to be applied in a 3×3 block matrix.

In summary, however, our results give us some confidence that there can be significant benefit in making more linguistic and/or statistical information available to linear algebraic IR approaches such as EVD. Cross-language term alignments are just one example of the type of additional information which could be included; we believe that future research will uncover many more similar examples.

Acknowledgement

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

Michael W. Berry, Susan T. Dumais, and G. W. O’Brien. 1994. Using Linear Algebra for Intelligent Information Retrieval. SIAM: Review 37, 573-595.

Biola University. 2005-2006. The Unbound Bible. Accessed at http://www.unboundbible.org/ on Jan. 29, 2008.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. 1994. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2), 263-311.

Peter A. Chew and Ahmed Abdelali. 2007. Benefits of the ‘Massively Parallel Rosetta Stone’: Cross-Language Information Retrieval with over 30 Languages. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, ACL 2007. Prague, Czech Republic, June 23–30, 2007. pp. 872-879.

Noam Chomsky. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. 1990. Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41:6, 391-407.

Susan Dumais. 1991. Improving the Retrieval of Information from External Sources. Behavior Research Methods, Instruments, and Computers 23(2):229-236.

Gene H. Golub and Charles F. van Loan. 1996. Matrix Computations, 3rd edition. The Johns Hopkins University Press: London.

R. A. Harshman. 1972. PARAFAC2: Mathematical and Technical Notes. UCLA Working Papers in Phonetics 22, 30-47.

Bruce Hendrickson. 2007. Latent Semantic Analysis and Fiedler Retrieval. Linear Algebra and its Applications 421 (2-3), 345-355.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical Phrase-Based Translation. Proceedings of the Joint Conference on Human Language Technologies and the Annual Meeting of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), 48-54.

P. Koehn. 2002. Europarl: a Multilingual Corpus for Evaluation of Machine Translation. Unpublished, accessed on Jan. 29, 2008 at http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/europarl.pdf.

Philip Resnik, Mari Broman Olsen, and Mona Diab. 1999. The Bible as a Parallel Corpus: Annotating the "Book of 2000 Tongues". Computers and the Humanities, 33: 129-153.

R. Sinkhorn. 1964. A Relation between Arbitrary Positive Matrices and Doubly Stochastic Matrices. Annals of Mathematical Statistics 35 (2), 876-879.

Ledyard R. Tucker. 1966. Some Mathematical Notes on Three-mode Factor Analysis, Psychometrika 31, 279-311.

Ding Zhou, Sergey A. Orshanskiy, Hongyuan Zha, and C. Lee Giles. 2007. Co-Ranking Authors and Documents in a Heterogeneous Network. Seventh IEEE International Conference on Data Mining, 739-744.