Comparison of sinus tarsi approach and extensile lateral approach for calcaneal fractures: A systematic review of overlapping meta-analyses

Tao Yu¹, Yuan Xiong², Alex Kang³, Haichao Zhou¹, Wenbao He¹, Hui Zhu¹ and Yunfeng Yang¹

Abstract
Purpose: Accumulated literature has reported the comparative efficacy of the sinus tarsi approach (STA) and the extensile lateral approach (ELA) for the treatment of calcaneal fractures (CFs). However, the best alternative treatment for CF is still inconsistent. Herein, the present systematic review of overlapping meta-analyses aims to achieve an evident conclusion by performing a comprehensive reanalysis of previous meta-analyses regarding the comparison of the STA and the ELA.

Methods: We searched several databases, including Pubmed, Medline, Embase, the Cochrane Library, SpringerLink, Clinical Trials.gov, OVID, and CNKI for the meta-analyses comparing the STA and the ELA for the treatment of CF. All related meta-analyses of randomized controlled trials and cohort studies were included. Two researchers independently assessed the quality of the articles and extracted the data. The Jadad decision algorithm was used to evaluate the evidence of the articles. Results: Ultimately, five meta-analyses were included in the present study. The Assessment of Multiple Systematic Reviews scores of these articles ranged from 5 to 9 with a median of 7. The analysis of best quality, Bai 2018, was selected based on the Jadad algorithm. In this article, the significant differences were found in wound complications and operating time, recovery of Bohler’s angle, the American Orthopaedic Foot and Ankle Society scores, and the visual analog scale.

Conclusion The clinical relevance of the present study is that both the STA and the ELA are effective in alleviating pain and improving functionality in the treatment of CF. However, due to a shorter operation duration and lower complication rates, the STA was indicated to be a superior alternative for CF treatment.

Keywords calcaneal fractures, extensile lateral approach, overlapping meta-analyses, sinus tarsi approach

Date received: 14 January 2020; Received revised 5 March 2020; accepted: 5 March 2020

Introduction
Calcaneal fracture (CF) is one of the most common fractures of the tarsal, accounting for approximately 60% of all tarsal fractures and 2% of all adult fractures.¹ ² In all CFs, displaced intra-articular fractures represent about 60–75%.³ Falling injuries represent the most common cause for CFs.⁴ CFs, especially intra-articular CFs, can cause severe loss of function. Although medical technology has developed rapidly in recent years, treatment for CFs still remains challenging for orthopedic surgeons.

¹ Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
² Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
³ Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA

Corresponding authors:
Yunfeng Yang and Hui Zhu, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai 200065, China.
Emails: yangyunfeng1051@126.com; zhuhui895@sina.com
For CF of Sanders types II and III, open reduction and internal fixation (ORIF) is becoming more prevalent. Currently, the most popular incision is the extensile lateral approach (ELA), which seems to be the gold standard.\(^5\)–\(^7\) It allows us to access the posterior articular surface directly as well as the lateral wall, and at the same time, avoid damage in the sural nerve. Although this incision can supply adequate exposure, it can also cause severe swelling and pain.\(^8\) Furthermore, the necrosis rate of the incision edge can be as high as 14\%\(^9\). Therefore, some surgeons advocate limited incisions, of which the alternative is the STA. This incision limits the exposure of the posterior articular surface of the calcaneus, and theoretically, the possibility of postoperative complications and swelling can be reduced due to its minimally invasive features.\(^10\)–\(^14\)

To compare the advantages and disadvantages of the two methods, some researchers have conducted many clinical studies including randomized clinical trials (RCTs) and cohort studies (CSs). Subsequently, meta-analyses were written to summarize and analyze these studies. However, the conclusions are not consistent. For example, Zhang et al.\(^15\) concluded that STA shows a significant superiority in the visual analog scale (VAS) pain scale but Bai et al.\(^16\) concluded otherwise. Therefore, surgeons can be confused by these inconsistent conclusions when creating their surgical plans.

To extract accurate and effective information from the literature, systematic reviews of overlapping meta-analyses are becoming more and more necessary. Thus, we performed this systematic review of overlapping meta-analyses to provide a better, more accurate form of evidence for clinical surgeons.

Materials and methods

The study was performed under the instruction of the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement,\(^17\) and the design of this study was based on published articles.\(^18\)–\(^22\)

Literature search

We searched Pubmed, Medline, Embase, the Cochrane Library, SpringerLink, Clinical Trials.gov, OVID, and CNKI by October 25, 2019. The keywords for the search were calcaneal fracture, calcaneus fracture, os calcis fracture, sinus tarsi approach, extensile lateral approach, minimally invasive, surgical, open reduction and internal fixation, systematic review, meta-analysis. Searches did not limit the publication status but limited the language as English. Titles and abstracts were reviewed for preliminary screening and then full texts of selected articles were reviewed to obtain more information as needed.

Inclusion and exclusion criteria

Inclusion criteria: (1) Meta-analysis of the comparison of STA and ELA, (2) at least one meta-analysis result, and (3) the studies included in the literature were RCTs or CSs. Exclusion criteria: (1) The literature which included a series of case reports, (2) meeting abstracts, and (3) systematic reviews without any meta-analysis.

Data extraction

Two authors read the included literature thoroughly and extracted the following information: first author, publication time, journal name, impact factor, date of last literature search, number of RCTs and CSs, restriction of publication language, restriction of publication status, searching database, methodological information, and meta-analysis result.

Quality assessment

The Assessment of Multiple Systematic Reviews (AMSTAR) instrument was used to evaluate the quality of the literature, which was also used to assess other meta-analyses successfully in other studies.\(^18\)–\(^23\) The entire process was completed independently by two authors, including literature search, data extraction, and quality assessment.

Application of Jadad decision algorithm

Jadad decision algorithm is a method to interpret discordance in quantitative systematic reviews by classification analysis.\(^24\) It was conducted by three researchers independently and then, the article providing the best evidence was used.

Results

Literature search

The flowchart of the literature search is shown in Figure 1. A total of 100 articles were found and were finalized to include five articles in the study.\(^15,16,25,26\) These five meta-analyses were published in 2017 and 2018. The characteristics of the included literature are presented in Table 1. The characteristics of the original studies in the literature are presented in Table 2.

Search methodology

While one article was limited to their searching publications to only English, the other four articles mentioned in our study were able to expand their search methodology to multiple languages. Three articles limited the searching publication status to be published, but the publication status was not mentioned in the other two articles (Table 3).
Table 1. The characteristics of the included meta-analyses.

First author	Date of publication	Journal	Impact factor	Date of last literature search	No. of included RCTs	No. of included CSs
Yao	2017	Journal of Orthopaedic Surgery and Research	1.907	December 2016	2	5
Zhang	2017	ANZ Journal of Surgery	1.605	November 2015	2	6
Bai	2018	Orthopaedics & Traumatology: Surgery & Research	1.572	December 2016	4	3
Mehta	2018	Journal of Orthopaedic Surgery and Research	1.907	December 2016	4	7
Nosewicz	2018	Foot Ankle Surgery	1.363	September 2017	2	7

Table 2. Primary studies included in meta-analyses.

First author (year)	RCTs	CSs																						
	Chen 2011	Shi 2013	Zhu 2014	Kumar 2014	Xia 2014	Basile 2016	Li 2016	Jin 2017	Khurana 2017	Peng 2017	Tan 2017	Weber 2008	Moon 2009	Wu 2012	Kline 2013	Dai 2014	Xu 2015	Yeo 2015	Wang 2015	Takasaki 2016	DeWall 2016	Zhou 2017	Scheper 2017	
Yao (2017)	+	-	+	+	-	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	+	-	+	+
Zhang (2017)	+	+	-	-	+	+	-	-	-	-	-	-	+	-	-	-	+	-	-	-	-	+	+	-
Bai (2018)	+	+	+	+	+	+	-	-	-	-	-	-	+	-	-	-	+	-	-	-	-	+	+	-
Mehta (2018)	+	+	+	+	+	+	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-
Nosewicz (2018)	+	+	+	+	+	+	-	-	-	-	-	-	+	-	-	-	+	-	-	-	-	-	-	-

RCT: randomized control trial; CS: cohort study.
Methodological quality

All five articles included both RCT studies and CS studies. They were graded at level III according to Oxford Levels of Evidence. Four meta-analyses were completed by RevMan software and one was done using Stata. Grade was conducted in one article (Table 4). 16 AMSTAR scores range from 5 to 9 with a median of 7 (Table 5). Finally, the study performed by Bai et al. was determined to be the article with the highest quality. 16

Heterogeneity assessment

The heterogeneity of the studies was estimated by I^2 statistic value. Three articles did the sensitivity analyses or subgroup analysis according to methodological quality, whereas the other two did not (Table 6).

Results of Jadad decision algorithm

We used the Jadad decision algorithm24 to determine which study represented the highest amount of evidence. The analysis results of the five articles included in the study are shown in Figure 2. Due to the inconsistency of the selection criteria and study design, we evaluated the evidence according to the rigor of the study design, the comprehensiveness of the literature search, the scientific nature of the data analysis, and the rationality of the conclusion discussion. Using these criteria for evaluation, Bai et al.’s study

First author (year)	Design of included studies	Level of evidence	Software	Grade use	Sensitivity analysis
Yao (2017)	RCT+CS	Level III	RevMan	No	Yes
Zhang (2017)	RCT+CS	Level III	Stata	No	Yes
Bai (2018)	RCT+CS	Level III	RevMan	Yes	Yes
Mehta (2018)	RCT+CS	Level III	RevMan	No	No
Nosewicz (2018)	RCT+CS	Level III	RevMan	No	No

RCT: randomized control trial; CS: cohort study.

Table 5. AMSTAR scores for the included studies.

Items	Yao (2017)	Zhang (2017)	Bai (2018)	Mehta (2018)	Nosewicz (2018)
1. Was an a priori design provided?	0	0	0	0	0
2. Was there duplicate study selection and data extraction?	1	1	1	1	1
3. Was a comprehensive literature search performed?	1	1	1	1	1
4. Was the status of publication (i.e. grey literature) used as an inclusion criterion?	0	0	1	0	1
5. Was a list of studies (included and excluded) provided?	1	0	1	0	1
6. Were the characteristics of the included studies provided?	1	1	1	1	1
7. Was the scientific quality of the included studies assessed and documented?	1	1	0	1	1
8. Was the scientific quality of the included studies used appropriately in formulating conclusions?	0	0	1	1	1
9. Were the methods used to combine the findings of studies appropriate?	1	1	1	1	1
10. Was the likelihood of publication bias assessed?	0	0	0	0	0
11. Was the conflict of interest stated?	1	0	1	1	0
Total scores	6	5	9	7	7

AMSTAR: Assessment of Multiple Systematic Review.
Table 6. Heterogeneity or subgroup analysis of primary studies.

Items	Yao (2017)	Zhang (2017)	Bai (2018)	Mehta (2018)	Nosewicz (2018)
Complications	+	–	+	–	–
Wound complications	–	+	+	–	–
Nerve injury complications	–	–	–	–	–
Excellent and good rate	+	+	–	–	–
Böhler’s angle	+	+	–	–	–
Gissane angle	+	+	–	–	–
Secondary surgeries	+	–	–	–	–
Calcanear width	–	–	–	–	–
Calcanear length	–	–	–	–	–
Calcanear height	–	–	–	–	–
AOFAS scores	+	+	–	–	–
VAS pain scale	–	–	–	–	–
Operation time	+	–	–	–	–
Time from injury to surgery	+	–	–	–	–
Secondary surgeries	+	–	–	–	–
Postoperative articular	–	–	–	–	–
displacement					
Length of hospital stay					

AOFAS: American Orthopaedic Foot and Ankle Society; VAS: visual analog scale.

*A plus sign indicates formal sensitivity or subgroup analysis was performed, and a minus sign indicates formal sensitivity or subgroup analysis was not performed.

was found to have the highest level of evidence (Figure 3). This study concluded that the STA technique could be superior to ELA because it had the shorter operation time and the lower complication rate, however, their anatomical and functional recovery seemed similar.16

Discussion

This study can help orthopedic doctors obtain the best evidence for the comparison between STA and ELA. Through a comprehensive literature search, a total of five articles were included in this study. All the five meta-analyses were published in 2017 and 2018, but they did not use the same method and trials and did not provide consistent results for the treatment of Sanders types II and III fractures. According to the Jadad decision algorithm, Bai 2018 was the best article for this topic.16 The present systematic review of overlapping meta-analyses shows that the STA approach can reduce the complication rate and operative time while not reducing the functional score and anatomical recovery. This is the first systematic overview between the overlapping analyses of STA and ELA comparisons.

Our study found that the results of the existing meta-analyses regarding the comparison of STA and ELA were not consistent. For example, Yao et al. concluded that the second surgery rate was lower in STA group than in ELA.25 However, the analysis results of Mehta et al. suggested that there was no significant difference between the two methods.26 It was concluded by Zhang et al. that STA was lower than ELA in regard to the VAS pain scale,15 but Bai et al.’s findings supported that there was no significant difference between the two groups.16 Nosewicz et al. concluded that the time from injury to surgery was shorter in STA groups than ELAs,27 while Mehta et al. found that there was no significant difference.26 The inconsistency of these results may be due to variable cited literature, clinical questions, data extraction, and statistical methods. So, this systematic review of overlapping meta-analyses used the Jadad decision algorithm to determine which of these studies could provide the highest level of evidence.

Ultimately, the study performed by Bai et al. was considered to be the highest level of evidence. It was concluded by this study that for Böhler’s angle recovery, AOFAS scores and VAS pain scores were similar between STA and ELA. However, the incidence of wound complications and operation time was better in the STA group.16 Although the height of the calcaneus is important to evaluate the surgery, there was only one RCT and one retrospective study mentioned in the study. Thus, there was not enough medical data to make a meta-analysis.

Some factors may have influenced the findings of Bai et al. First, the literature search is not comprehensive enough so that some RCT studies are not included in Bai et al.’s meta-analysis. Second, new technology cannot be
analyzed and discussed in the study due to the inconsistency of the included studies’ design. For example, the article “Clinical Comparison of Extensile Lateral Approach and Sinus Tarsi Approach Combined with Medial Distraction Technique for Intra-Articular Calcaneal Fractures” in *Orthopaedic Surgery* in 2017 incorporates the technique of medial distraction, which is not included and discussed in Bai et al.’s study. Lastly, some results are analyzed and concluded only by the results of only two or three included studies.

The five meta-analyses included in this study were published in four orthopedic professional journals and one professional surgery journal. The article with the highest level of evidence, Bai et al.’s study, was published in *Orthopaedics & Traumatology: Surgery & Research*, which ranks fourth of the five journals regarding impact factor. Therefore, it is not true that “the higher the impact factor, the higher the level of evidence.” Impact factor and level of evidence are not positively correlated.

The limitations of this study are as follows: (1) To obtain more data, the clinical trials included in the meta-analyses contained both RCTs and CSs. Furthermore, the evidence level of all meta-analyses included in this study was level III. (2) Subgroup analyses of Sanders types II and III fractures were not performed, so separate results could not be provided. Therefore, we cannot conclude that there is a difference between the two types. (3) The language of the included studies was limited to English, which made the data in this study somewhat limited.

Conclusion

The clinical relevance of the present study is that both the STA and the ELA are effective in alleviating pain and improving functionality in the treatment of CF. In conclusion, due to the shorter operation duration and lower complication rate, the STA was indicated to be a superior alternative for CF.

Authors’ note

TY and YX contributed equally to this study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Science Foundation of China [Nos. 81472144 and 31600754].

ORCID iD

Yunfeng Yang https://orcid.org/0000-0002-5474-6735

References

1. Hollawell S. Wound closure technique for lateral extensile approach to intra-articular calcaneal fractures. *J Am Pediatr Med Assoc* 2008; 98(5): 422–425.
2. Molloy AP and Lipscombe SJ. Hindfoot arthrodesis for management of bone loss following calcaneal fractures and non-union. *Foot Ankle Clin* 2011; 16(1): 165–179.

3. Dhillon MS, Bali K, and Prabhakar S. Controversies in calcaneal fracture management: a systematic review of the literature. *Musculoskelet Surg* 2011; 95(3): 171–181.

4. Faik T, Ismail HK, Cem S, et al. Calcaneal fractures, treatments and problems. *Clin Res Foot Ankle* 2014; 2(3): 1–6.

5. Kolođziejski P, Czarnocki Ł, Wojdasiewicz P, et al. Intra-articular fractures of calcaneus - current concepts of treatment. *Pol Orthop Traumatol* 2014; 79: 102–111.

6. Makki D, Alnajjar HM, Walkay S, et al. Osteosynthesis of displaced intra-articular fractures of the calcaneum: a long-term review of 47 cases. *J Bone Joint Surg Br* 2010; 92(5): 693–700.

7. Ibrahim T, Rowsell M, Rennie W, et al. Displaced intra-articular calcaneal fractures: 15-year follow-up of a randomised controlled trial of conservative versus operative treatment. *Injury* 2007; 38(7): 848–855.

8. Zhou HC, Yu T, Ren HY, et al. Clinical comparison of extensile lateral approach and sinus tarsi approach combined with medial distraction technique for intra-articular calcaneal fractures. *Orthop Surg* 2017; 9(1): 77–85.

9. Maskill JD, Bohay DR, and Anderson JG. Calcaneal fractures: a review article. *Foot Ankle Clin* 2005; 10(3): 463–489, vi.

10. Meraj A, Zahid M, and Ahmad S. Management of intraarticular calcaneal fractures by minimally invasive sinus tarsi approach-early results. *Malays Orthop J* 2012; 6(1): 13–17.

11. Kline AJ, Anderson RB, Davis WH, et al. Minimally invasive technique versus an extensile lateral approach for intra-articular calcaneal fractures. *Foot Ankle Int* 2013; 34(6): 773–780.

12. Nosewicz T, Knupp M, Barg A, et al. Mini-open sinus tarsi approach with percutaneous screw fixation of displaced calcaneal fractures: a prospective computed tomography-based study. *Foot Ankle Int* 2012; 33(11): 925–933.

13. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: a systematic review. *Int Orthop* 2011; 35(5): 697–703.

14. Abdelgawad AA and Kanlic E. Minimally invasive (sinus tarsi) approach for open reduction and internal fixation of intra-articular calcaneal fractures in children: surgical technique and case report of two patients. *J Foot Ankle Surg* 2015; 54(1): 135–139.

15. Zhang F, Tian H, Li S, et al. Meta-analysis of two surgical approaches for calcaneal fractures: sinus tarsi versus extensile lateral approach. *ANZ J Surg* 2017; 87(3): 126–131.

16. Bai L, Hou YL, Lin GH, et al. Sinus tarsi approach (STA) versus extensile lateral approach (ELA) for treatment of closed displaced intra-articular calcaneal fractures (DIACF): a meta-analysis. *Orthop Traumatol Surg Res* 2018; 104(2): 239–244.

17. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med* 2009; 6(7): e1000100.

18. Mascarenhas R, Cvetanovich GL, Sayegh ET, et al. Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. *Arthroscopy* 2015; 31(6): 1185–1196.

19. Zhao JG, Wang J, Wang C, et al. Intramedullary nail versus plate fixation for humeral shaft fractures: a systematic review of overlapping meta-analyses. *Medicine (Baltimore)* 2015; 94(11): e599.

20. Mascarenhas R, Chalmers PN, Sayegh ET, et al. Is double-row rotator cuff repair clinically superior to single-row rotator cuff repair: a systematic review of overlapping meta-analyses. *Arthroscopy* 2014; 30(9): 1156–1165.

21. Zhao JG, Wang J, and Long L. Surgical versus conservative treatments for displaced midshaft clavicular fractures: a systematic review of overlapping meta-analyses. *Medicine (Baltimore)* 2015; 94(26): e1057.

22. Ding F, Jia Z, Zhao Z, et al. Total disc replacement versus fusion for lumbar degenerative disc disease: a systematic review of overlapping meta-analyses. *Eur Spine J* 2017; 26(3): 806–815.

23. Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. *BMC Med Res Methodol* 2007; 7: 10.

24. Jadad AR, Cook DJ, and Browman GP. A guide to interpreting discordant systematic reviews. *CMAJ* 1997; 156(10): 1411–1416.

25. Yao H, Liang T, Xu Y, et al. Sinus tarsi approach versus extensile lateral approach for displaced intra-articular calcaneal fracture: a meta-analysis of current evidence base. *J Orthop Surg Res* 2017; 12(1): 43.

26. Mehta CR, An VVG, Phan K, et al. Extensile lateral versus sinus tarsi approach for displaced, intra-articular calcaneal fractures: a meta-analysis. *J Orthop Surg Res* 2018; 13(1): 243.

27. Nosewicz TL, Dingemans SA, Backes M, et al. A systematic review and meta-analysis of the sinus tarsi and extended lateral approach in the operative treatment of displaced intra-articular calcaneal fractures. *Foot Ankle Surg* 2019; 25(5): 580–588.