DECOMPOSITION OF STOCHASTIC FLOWS GENERATED BY STRATONOVICH SDES WITH JUMPS

ALISON M. MELO
LEANDRO B. MORGADO AND PAULO R. RUFFINO*

Department of Mathematics
University of Campinas - UNICAMP
Campinas, 13083-859, Brazil

Abstract. Consider a manifold M endowed locally with a pair of complementary distributions $\Delta^H \oplus \Delta^V = TM$ and let $\text{Diff}(\Delta^H, M)$ and $\text{Diff}(\Delta^V, M)$ be the corresponding Lie subgroups generated by vector fields in the corresponding distributions. We decompose a stochastic flow with jumps, up to a stopping time, as $\phi_t = \xi_t \circ \psi_t$, where $\xi_t \in \text{Diff}(\Delta^H, M)$ and $\psi_t \in \text{Diff}(\Delta^V, M)$. Our main result provides Stratonovich stochastic differential equations with jumps for each of these two components in the corresponding infinite dimensional Lie groups. We present an extension of the Itô-Ventzel-Kunita formula for stochastic flows with jumps generated by classical Marcus equation (as in Kurtz, Pardoux and Protter [11]). The results here correspond to an extension of Catuogno, da Silva and Ruffino [4], where this decomposition was studied for the continuous case.

1. Introduction. Let M be a compact differentiable manifold, with $\text{Diff}(M)$ the corresponding infinite dimensional Lie group of diffeomorphisms of M generated by the Lie algebra of smooth vector fields. Consider a stochastic flow φ_t of local diffeomorphisms in M, generated by a Stratonovich SDE driven by a semimartingale Z_t with jumps. The question we address in this paper is the possibility of decomposing φ_t in components that belong to specific subgroups of $\text{Diff}(M)$, which provide dynamical or geometrical information of the system. In the continuous case, decompositions of this kind for stochastic flows has been studied in the literature, with many distinct frameworks and with different aimed subgroups. Among others see Bismut [2], Kunita [8], [9], Ming Liao [12] and some of our previous work [3], [6], [17]. In the last few papers mentioned, for example, geometrical conditions on a Riemannian manifold have been stated to guarantee the existence of the decomposition where the first component lies in the subgroups of isometries or affine transformations.

Our geometrical framework here is the following: consider a manifold M equipped with a pair of complementary distributions Δ^H and Δ^V (horizontal and vertical, respectively) in the sense of differentiable sections in Grassmanian bundles of M.

2010 Mathematics Subject Classification. Primary: 60H10, 58J65; Secondary: 58D05.

Key words and phrases. Semimartingales with jumps, stochastic flows, smooth distributions, decomposition of flows, group of diffeomorphisms, Marcus equation.

The first author was supported by CNPq 142084/2012-3. The second author was supported by FAPESP 11/14797-2, and the third author was partially supported by FAPESP 12/18780-0, 11/50151-0, 15/07278-0 and CNPq 477861/2013-0.

* Corresponding author.
For each smooth vector field X in M, denote by $\exp\{tX\} \in \text{Diff}(M)$ the associated flow. Given a distribution Δ in M, we shall denote by $\text{Diff}(\Delta, M)$ the closure of the subgroup of diffeomorphisms generated by exponentials of vector fields in Δ, precisely:

$$\text{Diff}(\Delta, M) = \text{cl}\left\{ \exp\{t_1X_1\} \circ \ldots \circ \exp\{t_nX_n\} \text{, with } X_i \in \Delta, t_i \in \mathbb{R}, \text{ for all } n \in \mathbb{N} \right\}.$$

The differentiable structure of infinite dimensional Lie group of diffeomorphisms of a compact manifold M is classically given by maps in the locally convex space of smooth vector fields in M, more precisely, maps in an ILB-space, see Omori [15], Milnor [13] and more recently Neeb [14]. So that the closure above is taken with respect to this topology. Existence and uniqueness of solution of an ODE in an ILB-spaces with smooth vector fields has being guaranteed by [15, Thm 7.2, Chap.1]. Hence, solutions of Stratonovich differential equations in these spaces can be obtained via support theorem if the noise is finite dimensional, see e.g. Twardowska [19]. Note that, considering the limits, by Baker-Campbell-Hausdorff formula, this subgroup includes flows of diffeomorphisms associated to $\text{Lie}(\Delta)$, the Lie algebra generated by Δ. Precisely, we have that

$$\text{Diff}(\Delta, M) = \text{Diff}(\text{Lie}(\Delta), M).$$

Using this notation, the stochastic flow φ_t belongs to $\text{Diff}(TM, M)$, which is a connected subgroup of $\text{Diff}(M)$. Again, $\text{Diff}(TM, M)$ contains the Lie subgroups $\text{Diff}(\Delta^H, M)$ and $\text{Diff}(\Delta^V, M)$ if both distributions $\text{Diff}(\Delta^H, M)$ and $\text{Diff}(\Delta^V, M)$ are involutive, locally the intersection of these two subgroups is the identity, and the elements of each of these subgroups send leaves of the corresponding foliation into themselves.

In this article we want to decompose a stochastic flow, up to a stopping time, as $\varphi_t = \xi_t \circ \psi_t$, where $\xi_t \in \text{Diff}(\Delta^H, M)$ and $\psi_t \in \text{Diff}(\Delta^V, M)$. Our main result provides Stratonovich stochastic differential equations with jumps for each of these two components in the corresponding infinite dimensional Lie groups (Theorem 4.4). One of the key points on obtaining the equations for each component ξ_t and ψ_t is an extension of the classical Itô-Ventzel-Kunita formula for discontinuous cdlg processes, which are also generated by SDEs with jumps (Theorem 3.2); here, we generalize the definition of the integration with respect to a change of variables in Kurtz, Pardoux and Protter [11].

A motivation for this decomposition appears in many dynamical systems. For instance, in a foliated space (say, assuming that the horizontal distribution is integrable) the decomposition measures how far the trajectories are from being foliation-preserving: namely, the closer the second component ψ_t is to the identity, closer the system is to be (horizontal) foliation-preserving. Vice-versa, changing the order of the vertical and horizontal distributions and the order of the components in the decomposition, the same interpretation holds if the vertical component is integrable. For example: a principal bundle with a connection is a natural state space with this feature, where the vertical distribution is determined by the fibres and the horizontal distribution is given by the geometry. The dynamics in averaging principles for transversal perturbation in foliated systems also illustrates the relevance of this decomposition, see e.g. the Liouville torus in Hamiltonian systems in Li [10], or in a general compact foliation in Gargate and Ruffino [7].

In this paper, we consider the Stratonovich SDEs driven by semimartingales with jumps Z_t, in the sense of the so called Marcus equation (see e.g. [11]). This means,
among other aspects (recalled in Section 2), that the jumps of the solution occur in the direction of the deterministic flow generated by the corresponding vector fields. This property guarantees that if the manifold M is embedded in an Euclidean space and the vector fields are in TM then, after the jumps, the solution flow remains in M. Also, we assume that the number of jumps in Z_t is finite in a bounded interval of time a.s.. Hence, it includes as a possible integrator the so called Lévy–jump diffusion (see Applebaum [1]), but not Lévy process in general. This idea of finite jumps in bounded intervals has parallel in the theory of chain control sets, see Colonius and Kliemann [5], Patrício and San Martin [18], and references therein.

The paper is organized as follows: In Section 2, we describe some basic properties and definitions of Stratonovich SDE driven by a semimartingale with jumps, in the sense of Marcus equation. In Section 3, our extension of the Itô-Ventzel-Kunita formula is presented, for two stochastic flows generated by Marcus equations with respect to the same semimartingale with jumps. Finally, in section 4, we deal with the decomposition of the stochastic flow $\varphi_t = \xi_t \circ \psi_t$, obtaining the corresponding SDEs for each component. The results here correspond to an extension of the article Catuogno, da Silva and Ruffino [4], where the same decomposition is studied for continuous flows.

2. Stratonovich SDEs with jumps. For reader’s convenience, we recall the definition of a Stratonovich SDE driven by a semimartingale with jumps in \mathbb{R}^d, in the sense of Marcus equation (for more details, see e.g. Kurtz, Pardoux e Protter [11]):

$$dx_t = \sum_{i=0}^{m}X^i(x_t) \cdot dZ^i_t,$$

with initial condition $x(0) = x_0$. The solution, in its integral form is:

$$x_t = x_0 + \sum_{i=0}^{m} \int_{0}^{t} X^i(X_s) \cdot dZ^i_s =: x_0 + \int_{0}^{t} X(x_s) \cdot dZ_s,$$

where x_t is an adapted stochastic process taking values in \mathbb{R}^d, the integrator $\{Z^i_s : s \geq 0\}$ is a semimartingale with jumps and X^i are vector fields in \mathbb{R}^d for all $i \in \{0,1, \ldots, m\}$. For sake of simplicity we use the matricial notation $X = (X^1, \ldots, X^m)$ and $Z = (Z^1, \ldots, Z^m)$. The solution is interpreted as a stochastic process that satisfies the equation:

$$x_t = x_0 + \int_{0}^{t} X(x_s) \cdot dZ_s + \frac{1}{2} \int_{0}^{t} X'(X_s) \cdot d[Z,Z]_s^c + \sum_{0<s\leq t} \{ \phi(X\Delta Z_s, x_{s-}) - x_{s-} - X(x_{s-})\Delta Z_s \},$$

in the following sense: the first term on the right hand side of (3) is a standard Itô integral of the predictable process $X(x_{t-})$ with respect to the semimartingale Z_t. The second term is a Stieltjes integral with respect to the continuous part of the quadratic variation of Z_t. In the third term: $\phi(X\Delta Z_s, x_{s-})$ indicates the solution at time one of the ODE generated by the vector field $X\Delta Z_s$ and initial condition x_{s-}. Thus, the jumps of this equation occurs in deterministic directions. Regularity conditions on vector fields X implies that there exists a unique stochastic flow of diffeomorphisms φ_t. Conditions on the derivatives of the vector fields guarantee that there exists a stochastic flow of local diffeomorphisms. Moreover, for an embedded
submanifold M in an Euclidean space, if the vector fields of the equation (1) are in TM then, for each initial condition on M, the solution stays in M a.s., see [11].

Let Y be smooth vector fields in \mathbb{R}^d, and consider G_t a d-dimensional process given by $dG_t = Y(G_t) \circ dZ_t$. If $H \in C^1(\mathbb{R}^d; \mathbb{R}^m)$ we recall the definition of the Stratonovich integral of $H(G_t)$ with respect to Z_t (Definition 4.1 in [11]):

$$
\int_0^t H(G_s) \circ dZ_s := \int_0^t H(G_{s-})dZ_s + \frac{1}{2} \text{Tr} \int_0^t H'(G_s)d[Z,G]_s Y(G_s)^t + \sum_{0<s\leq t} \left(\int_0^1 [H(\phi(Y\Delta Z_s,G_{s-},u)) - H(G_{s-})]\,du \right) \Delta Z_s,
$$

(4)

where $\phi(Y\Delta Z_s,G_{s-},u)$ has the same interpretation as before: it is the solution of the ODE generated by the vector field $Y\Delta Z_s$, and initial condition G_{s-}, for time $t = u$. More specifically, given $t_0 > 0$, the jump of the integral on the left hand side of equation (4) is given by:

$$
\Delta \left(\int_0^t H(G_s) \circ dZ_s \right)_{t_0} = \left(\int_0^1 H(\phi(Y\Delta Z,t_0,G_{t_0-},u))\,du \right) \Delta Z_{t_0}.
$$

The dynamical interpretation of the expression above is that, after opening a unit interval with a ‘fictitious curve’ which connects G_{t_0-} and G_{t_0}, the jump of the integral is given by the mean of H along this curve multiplied by the jump of the semimartingale Z_t, see [11].

We consider that the number of jumps in the integrator process Z_t is finite in bounded intervals a.s.. For example, this hypothesis includes the so called Levy-jump diffusion $Z^i_t = B^i_t + \sum_{k=0}^{N^i_t} J^i_k$, where B^i_t is a Brownian motion, N^i_t is a Poisson process and the random variables (J^i_k) are i.i.d. (see e.g. Applebaum [1]).

3. An extension of Itô-Ventzel-Kunita formula. In the continuous case, we have the well known Itô-Ventzel-Kunita formula: Let φ_t be a stochastic flow of (local) diffeomorphisms, which is solution of the following Stratonovich SDE

$$
dx_t = \sum_{i=0}^m X^i(x_t) \circ dN^i_t,
$$

where N^i_t are continuous semimartingales, and X^i are smooth vector fields in \mathbb{R}^d, for $i \in \{0,1,...,m\}$. Let $U_t = (U^i_t,...,U^d_t)$ be a continuous semimartingale. Then:

Theorem 3.1. (Itô-Ventzel-Kunita formula for continuous case)

$$
\varphi_t(U_t) = \varphi_0(U_0) + \sum_{i=0}^m \int_0^t X^i(\varphi_s(U_s)) \circ dN^i_s + \sum_{i=1}^d \int_0^t \nabla_{X^i} \varphi_s(U_s) \circ dU^i_s.
$$

(5)

For a proof, see e.g. Kunita [9, Thm 8.3]). A direct corollary of this result is a Leibniz formula for the composition of stochastic flows of diffeomorphisms in the continuous case, that is, $d(\varphi \circ F)_t = d\varphi_t \circ F_t + (\varphi_t)_* \circ dF_t$, where the differential form is considered in the Stratonovich sense.

In the proof of the main result of the next section, one needs an extension of this Leibniz formula for flows generated by Stratonovich SDE driven by semimartingales with jumps. Precisely, let ψ_t and ξ_t be flows of diffeomorphisms generated by Marcus equations with respect to the same semimartingale with jumps Z_t:

$$
\circ d\psi_t = X(\psi_t) \circ dZ_t \quad \text{and} \quad \circ d\xi_t = Y(\xi_t) \circ dZ_t.
$$
where \(X, Y \) are smooth vector fields. We assume that \(Z_t \) has the property of finite jumps, as described in the previous section. We define the following integral which generalizes the classical Marcus integral (3), (i.e. [11, Eq. 2.2]):

\[
\int_0^t \psi_{s_+} Y(\xi_s) \circ dZ_s := \int_0^t \psi_{s_+} Y(\xi_{s-}) dZ_s + \frac{1}{2} \int_0^t \left(X' (Y(\xi_s)) + \psi_{s_+} (Y' Y) \right) d [Z, Z]^c_s \\
+ \sum_{0 \leq s \leq t} \left\{ - \psi_{s-} (Y(\xi_{s-})) \Delta Z_s - \phi (X \Delta Z_{t_0}, \psi_{t_0} (\xi_{t_0}^-)) \right. \\
+ \left. \phi (X \Delta Z_s, \psi_{s-} (\phi (Y \Delta Z_s, \xi_{s-}))) \right\},
\]

The first term on the right hand side of (6) is the standard Itô integral of the predictable process \(\psi_{s_+} (Y(\xi_{s-})) \). The second term corresponds to the finite variation, such that the continuous part of the expression satisfies the classical Itô-Ventzel-Kunita formula. In the summation, we use the notation \(\phi (X, \xi_0, u) \) for the solution of ordinary differential equation with respect to the vector field \(X \), and initial condition \(\xi_0 \) at time \(u \) (if omitted, it means that \(u = 1 \)). Note that if \(\psi_s \) is the identity for all \(s \in [0, t] \), one recovers equation (3).

With the same notation as before, our extension of Itô-Ventzel-Kunita formula is given by

Theorem 3.2. (Itô-Ventzel-Kunita for Stratonovich SDE with jumps) Suppose that the stochastic flows \(\psi_t \) and \(\xi_t \) are defined in the interval \([0, a]\). Then, for all \(t \in [0, a] \):

\[
\psi_t (\xi_t) = \psi_0 (\xi_0) + \int_0^t X (\psi_s (\xi_s)) \circ dZ_s + \int_0^t \psi_{s_+} (Y(\xi_s)) \circ dZ_s.
\]

Proof. Consider \(t_0 = \sup \{ s \in [0, a] \text{ such that the formula holds in } [0, s]\} \). We want to prove that \(t_0 = a \). The proof follows by contradiction considering two cases: when the driven process \(Z_t \) is continuous at \(t_0 \), or when it jumps at \(t_0 \). In the first case, if \(t_0 < a \), there exists a.s. an \(\varepsilon > 0 \) such that the process \(Z_t \) is continuous in \([t_0, t_0 + \varepsilon]\). So, by Itô-Ventzel formula for the continuous case (Thm. 3.1), the relation is valid up to time \(t_0 + \varepsilon \), hence we have a contradiction.

On the other hand, if the process \(Z_t \) jumps at \(t_0 \), and \(t_0 < a \), we prove that the relation is also valid for \(t_0 + \varepsilon \), for a positive \(\varepsilon \). In fact, concatenating the jump of \(\xi_{t_0} \) and the jump of \(\psi_{t_0} \) we have that:

\[
\psi_{t_0} (\xi_{t_0}) = \psi_{t_0} (\xi_{t_0}^-) + \phi (X \Delta Z_{t_0}, \psi_{t_0}^- (\phi (Y \Delta Z_{t_0}, (\xi_{t_0}^-))) - \psi_{t_0}^- (\xi_{t_0}^-)).
\]

Initially use that

\[
\psi_{t_0}^- (\xi_{t_0}^-) = \psi_0 (\xi_0) + \int_0^{t_0} X (\psi_s (\xi_s)) \circ dZ_s + \int_0^{t_0} \psi_{s_+} (Y(\xi_s)) \circ dZ_s.
\]

By definition,

\[
\int_0^{t_0} X (\psi_s (\xi_s)) \circ dZ_s = \int_0^{t_0} X (\psi_s (\xi_s)) \circ dZ_s + \phi (X \Delta Z_{t_0}, \psi_{t_0}^- (\xi_{t_0}^-)) - \psi_{t_0}^- (\xi_{t_0}^-)
\]

The proof follows by induction.
and
\[\int_0^t \psi_s(Y(\xi_s)) \circ dZ_s = \int_0^t \psi_s(Y(\xi_s)) \circ dZ_s - \phi(X \Delta Z_{t_0}, \psi_{t_0}^{-1}(\xi_{t_0}^-)) + \phi(X \Delta Z_{t_0}, \psi_{t_0}^{-1}(\phi(Y \Delta Z_{t_0}, (\xi_{t_0}^-)))). \]

Hence, equation (8) yields
\[\psi_{t_0}(\xi_{t_0}) = \psi_0(\xi_0) + \int_0^{t_0} X(\psi_s(\xi_s)) \circ dZ_s + \int_0^{t_0} \psi_s(\phi(Y \Delta Z_s, (\xi_s^-))) \circ dZ_s. \]

So, the formula also holds for \(t = t_0 \). By assumption, there exists a.s. an \(\varepsilon > 0 \) such that \(Z_t \) is continuous in \((t_0, t_0 + \varepsilon)\). Applying again the classical Itô-Ventzel-Kunita formula, we have a contradiction. Hence \(t_0 = a \). \(\square \)

Next corollary contains the Leibniz formula which we are going to use in order to obtain the SDEs for the components of our decomposition in each corresponding Lie subgroup. Its proof follows straightforward from Theorem 3.2.

Corollary 1. Let \(\psi_t \) and \(\xi_t \) be flows generated by Marcus equations with respect to the same semimartingale \(Z_t \), with the property of finite jumps. Therefore:
\[\circ d(\psi \circ \xi_t) = \circ d\psi_t \circ \xi_t + (\psi_t)_\circ \circ d\xi_t. \] (9)

4. Decomposition of stochastic flows with jumps.

In this section, following the framework of [11], we assume that the manifold \(M \) is embedded in an Euclidean space. Hence, smooth vector fields in \(M \) can be extended to smooth vector fields in a tubular neighbourhood of \(M \). Let \(\varphi_t \) be a stochastic flow of (local) diffeomorphisms in \(M \) generated by a Stratonovich SDE in the sense of Marcus equation, where the integrator has the property of finite jumps, as described in the previous section.

Assume that the manifold \(M \) has (locally) a pair of differentiable distributions, that we call horizontal and vertical. We denote the first one by \(\Delta^H : U \subseteq M \to Gr_k(M) \) and the second by \(\Delta^V : U \subseteq M \to Gr_{n-k}(M) \). Also, we assume that the horizontal and vertical distributions are complementary, that is, for each \(x \in U \), \(\Delta^H(x) \oplus \Delta^V(x) = T_xM \).

Consider the set of smooth vector fields in the distribution \(\Delta^H \), which are elements of \(\text{Lie algebra of } \text{Diff}(M) \). So, one can consider the subgroup of \(\text{Diff}(M) \) generated by the exponential of these vector fields, that we call \(\text{Diff}(\Delta^H, M) \). Analogously, we denote \(\text{Diff}(\Delta^V, M) \) for the Lie subgroup of \(\text{Diff}(M) \) generated by the exponential of smooth vector fields in the distribution \(\Delta^V \).

4.1. Existence of the decomposition.

We are interested in decomposing the stochastic flow as \(\varphi_t = \xi_t \circ \psi_t \), where the components \(\xi_t \in \text{Diff}(\Delta^H, M) \) and \(\psi_t \in \text{Diff}(\Delta^V, M) \). Initially, consider the following definitions:

Definition 4.1 (Adjoint distribution). Let \(\Delta : U \subseteq M \to Gr_p(M) \) be a differential distribution in \(M \), and take \(\xi \in \text{Diff}(M) \). The distribution \(\text{Ad}(\xi)\Delta : U \subseteq M \to Gr_p(M) \) is given by:
\[\text{Ad}(\xi)\Delta(x) = \xi_\ast \Delta(\xi^{-1}(x)). \]

Definition 4.2. Let \(\Delta^H \) and \(\Delta^V \) be a pair of locally complementary distributions in \(M \). We say that \(\Delta^H \) and \(\Delta^V \) preserve transversality along \(\text{Diff}(\Delta^H, M) \) if, for each \(\xi \in \text{Diff}(\Delta^H, M) \), the distributions \(\Delta^H \) and \(\text{Ad}(\xi)\Delta^V \) are locally complementary.
Assuming the condition of transversality in the distributions, we have a result on the decomposition of a continuous stochastic flow φ_t generated by a canonical Stratonovich SDE [4, Thm 2.2]:

Theorem 4.3. Let Δ^H and Δ^V be two complementary distributions in M which preserve transversality along $\text{Diff}(\Delta^H, M)$. Given a continuous stochastic flow φ_t then, up to a stopping time, there exists a factorization $\varphi_t = \xi_t \circ \psi_t$, where ξ_t is a continuous diffusion in $\text{Diff}(\Delta^H, M)$ and ψ_t is a continuous process in $\text{Diff}(\Delta^V, M)$.

A straightforward extension of this result holds for a stochastic flow φ_t generated by a Stratonovich SDE with respect to a semimartingale Z_t with jumps:

Proposition 1. Suppose that the distributions Δ^V and Δ^H preserves transversality along $\text{Diff}(\Delta^H, M)$. Given a stochastic flow φ_t generated by a Stratonovich SDE with jumps, then, up to a stopping time τ, there exists a factorization $\varphi_t = \xi_t \circ \psi_t$, where ξ_t is a diffusion in $\text{Diff}(\Delta^H, M)$ and ψ_t is a process in $\text{Diff}(\Delta^V, M)$.

Moreover, if t_0 is a point of discontinuity of Z_t, $t_0 \leq \tau$ and the decomposition holds for φ_{t_0}, then $t_0 < \tau$, a.s.

Proof. By assumption, the first discontinuity of the integrator Z_t happens at a stopping time $t_1 > 0$ a.s.. Hence, Theorem 4.3 guarantees the existence of the decomposition at least up to t_1. For the last statement, take $\delta > 0$ such that the integrator Z_t is continuous in $(t_0, t_0 + \delta)$ and apply again Theorem 4.3. \qed

In the last statement of the Proposition above, the hypothesis on the decomposition of the diffeomorphism φ_{t_0} cannot be removed: In fact, it may happen that the decomposition holds up to the time t_0^*, and the process jumps to a non decomposable diffeomorphism φ_{t_0}. As a basic example to illustrate this fact, consider the canonical horizontal and vertical foliations in R^2. Take the pure rotation system $dx_t = Ax_t \circ dZ_t$, where Z_t is a semimartingale such that $Z_t \notin \{ \pi/2 + k\pi, k \in Z \}$ for $t < t_0$. The corresponding flow and its decomposition for $t < t_0$ is given by

$$
\varphi_t = \begin{pmatrix}
\cos Z_t & -\sin Z_t \\
\sin Z_t & \cos Z_t
\end{pmatrix} = \begin{pmatrix}
\sec Z_t & -\tan Z_t \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
\sin Z_t & \cos Z_t
\end{pmatrix}.
$$

If at time t_0 the process jumps to $Z_{t_0} \in \{ \pi/2 + k\pi, k \in Z \}$, then φ_{t_0} is not decomposable. On the other hand, if the stochastic flow jumps to a decomposable diffeomorphism φ_{t_0}, then the decomposition holds at least an additional $\delta > 0$ longer than t_0. In Morgado and Ruffino [16], we have used this fact to construct a stochastic flow $\tilde{\varphi}_t$ generated by a Stratonovich SDE with controlled jumps that approximates arbitrarily a stochastic flow φ_t generated by a continuous Stratonovich SDE, with the property that $\tilde{\varphi}_t$ can be decomposable for all $t > 0$.

4.2. Stratonovich SDEs with jumps for the components

Using the extension of Itô-Ventzel-Kunita formula for Stratonovich SDE with jumps, one can obtain the correspondent SDEs (in the sense of Marcus equation) for the components ξ_t and ψ_t in the decomposition above. Initially, we have that φ_t satisfies the following right invariant equation in the Lie group terminology:

$$
d\varphi_t = \sum_{i=0}^m R_{\varphi_t} X^i \circ dZ_t^i,
$$

where R_{φ_t} is the derivative of the right translation of φ_t in the identity of $\text{Diff}(M)$. In fact, for all $i \in \{0, 1, \ldots, m\}$, it holds that $R_{\varphi_t} X^i = X^i(\varphi_t)$, since if γ is a curve
in \(\text{Diff}(M) \) such that \(\gamma(0) = Id \) and \(\gamma'(0) = X^i \), we have:

\[
R_{\varphi_t} (X^i) = \frac{d}{ds} \left(\gamma(s) \circ \varphi_t \right)_{s=0} = X^i(\varphi_t).
\]

By assumption in Proposition 1, we consider that \(\Delta^H \) and \(\Delta^V \) preserves transversality along \(\text{Diff}(\Delta^H, M) \). So, for each \(\xi \in \text{Diff}(\Delta^H, M) \), the distributions \(\Delta^H \) and \(\text{Ad}(\xi) \Delta^V \) are complementary. For each \(x \in U \), we have a unique decomposition of \(X^i(x) \) in the corresponding subspaces, given by:

\[
X_i(x) = \tilde{X}_i(x) + v_i(\xi, x),
\]

where \(\tilde{X}_i(x) \in \Delta^H(x) \) and \(v_i(\xi, x) \in \text{Ad}(\xi) \Delta^V(x) \). Now, consider the autonomous Stratonovich SDE in the subgroup \(\text{Diff}(\Delta^H, M) \), given by:

\[
\frac{dx_t}{dt} = \sum_{i=1}^{m} \tilde{X}_i(x_t) \circ d\tilde{Z}^i_t,
\]

with initial condition \(x_0 = Id \). We define \(\xi_t \) as the solution of this equation. So, in the Lie group terminology, the stochastic flow \(\xi_t \) satisfies:

\[
d\xi_t = \sum_{i=1}^{m} \tilde{R}_{\varphi_t} \tilde{X}_i \circ d\tilde{Z}^i_t. \tag{10}
\]

Note that this equation is not right invariant in the Lie group since \(\tilde{X}_i \) depends on \(\xi_t \). By support theorem, it follows that \(\xi_t \in \text{Diff}(\Delta^H, M) \). Finally, define \(\psi_t = \xi_t^{-1} \circ \varphi_t \).

Using the Corollary 1, we can write the following equation for \(d\xi_t^{-1} \):

\[
d\xi_t^{-1} = \sum_{i=1}^{m} -L_{\xi_t^{-1}} \tilde{X}_i \circ d\tilde{Z}^i_t, \tag{11}
\]

where \(L_{\xi_t^{-1}} \) is the derivative of the left translation of \(\xi_t^{-1} \) at the identity of the Lie group \(\text{Diff}(\Delta^H, M) \). In fact, just take the derivative on time of \(\xi_t \circ \xi_t^{-1} = Id \).

Therefore, using again the Corollary 1, one can obtain an expression for \(d\psi_t \), given by:

\[
d\psi_t = \sum_{i=1}^{m} \left(\xi_t^{-1} \xi_t \psi_t - \xi_t^{-1} \tilde{X}_i \xi_t \psi_t \right) \circ d\tilde{Z}^i_t = \\
= \sum_{i=1}^{m} \text{Ad}(\xi_t^{-1}) \left(X_i - \tilde{X}_i \right) \psi_t \circ d\tilde{Z}^i_t = \\
= \sum_{i=1}^{m} \text{Ad}(\xi_t^{-1}) v_i(\xi_t) \psi_t \circ d\tilde{Z}^i_t. \tag{12}
\]

Note that, by construction, we have that \(v_i(\xi_t, x) \in \text{Ad}(\xi_t) \Delta^V(x) \). In this sense, \(\text{Ad}(\xi_t^{-1}) v_i(\xi_t, x) \in \Delta^V(x) \) for all \(x \in U \), and using support theorem again, one conclude that \(\psi_t \in \text{Diff}(\Delta^V, M) \). So, with the same notation as before, we have proved the following result:

Theorem 4.4. The components \(\xi_t \) and \(\psi_t \) in the decomposition above can be described, respectively, as the solutions of the following Stratonovich SDE’s with jumps:

\[
\frac{dx_t}{dt} = \sum_{i=1}^{m} \tilde{X}_i(x_t) \circ d\tilde{Z}^i_t \quad \frac{dy_t}{dt} = \sum_{i=1}^{m} \text{Ad}(\xi_t^{-1}) v_i(\xi_t) (y_t) \circ d\tilde{Z}^i_t.
\]
4.3. Compatibility of the vector fields and the pair of distributions. In some geometrical structures where we have a sort of compatibility of the vector fields with the pair of complementary distributions, it is possible to guarantee that the decomposition holds for all positive time $t \geq 0$.

Given an initial condition $x_0 \in M$, consider a local coordinate system $\alpha_0 : U_0 \subset M \to \mathbb{R}^p \times \mathbb{R}^{n-p}$, with U_0 an open set of M containing x_0 and such that $\alpha_0(\Delta^V(x_0)) = \{0\} \times \mathbb{R}^{n-p}$. Analogously, at each time $t \geq 0$, consider $\alpha_t : U_t \subset M \to \mathbb{R}^p \times \mathbb{R}^{n-p}$, with U_t an open set of M containing $\varphi_t(x_0)$ such that $\alpha_{ts}(\Delta^V(\varphi_t(x_0))) = \{0\} \times \mathbb{R}^{n-p}$. With respect to these coordinate systems one writes the original flow as $\varphi_t = (\varphi^1_t(x,y), \varphi^2_t(x,y))$.

Proposition 2. Suppose that the decomposition $\varphi_t = \xi_t \circ \psi_t$ holds up to the stopping time τ in a neighbourhood of the initial condition x_0. Writing in coordinates,

$$\tau = \sup\{t > 0; \text{det } \frac{\partial \varphi^2_t(x,y)}{\partial y} \neq 0 \text{ for all } 0 \leq s \leq t\}.$$

Proof. Straightforward by the inverse function theorem: The local decomposition exists if and only if the $(n-p) \times (n-p)$ matrix $\frac{\partial \varphi^2_t(x,y)}{\partial y}$ is invertible. That is, $\varphi = (\xi_1^1(x,y), I_d_2) \circ (I_d_1, \varphi^2(x,y))$, where I_d_1 and I_d_2 are the identities in \mathbb{R}^p and in \mathbb{R}^{n-p}, respectively. \hfill \square

The proposition above says that the hypothesis for the decomposition can be weakened to conditions only on the original flow φ_t instead of using the transversality preserving property (Definition 4.2).

Corollary 2. Suppose that the vertical distribution is integrable (a foliation). If the original flow φ_t sends each vertical leaf into a vertical leaf, then the decomposition $\varphi_t = \xi_t \circ \Psi_t$ holds for all time $t \geq 0$.

Proof. Straightforward from the proposition above since, for all $t \geq 0$,

$$\varphi^1_{ts} = \begin{pmatrix} \frac{\partial \varphi^1_{t}(x,y)}{\partial x} & \frac{\partial \varphi^1_{t}(x,y)}{\partial y} \\ 0 & \frac{\partial \varphi^2_{t}(x,y)}{\partial y} \end{pmatrix},$$

hence $\text{det } \frac{\partial \varphi^2_{t}(x,y)}{\partial y} \neq 0$ for all $t \geq 0$. \hfill \square

Example 1. Consider in $\mathbb{R}^n \setminus \{0\}$ the distribution Δ^H given by the spherical foliation and the distribution Δ^V given by the radial foliation. Then, for this pair of distribution, any linear system φ_t has the decomposition $\varphi_t = \xi_t \circ \psi_t$ for all $t \geq 0$ since each radial line is sent to a radial line.

Example 2. Most of relevant dynamics in fibre bundles send fibre into another fibre. The fibres generate the vertical distributions, the horizontal distributions are given by connections. Hence the decomposition for these flows with respect to these pairs of distributions exists for all $t \geq 0$. A standard example in this context is the linearized flow $\varphi_{ts} : T_{x_0}M \to T_{\varphi_t(x_0)}$ in the linear frame bundle $\pi : BM \to M$. By the Corollary above, the decomposition $\varphi_{ts} = \xi_t \circ \psi_t$ holds for all $t \geq 0$ since φ_{ts} is an isomorphism between the fibres $\pi^{-1}(x_0)$ and $\pi^{-1}((\varphi_t(x_0))$.

REFERENCES

[1] D. Applebaum, *Lévy Processes and Stochastic Calculus*, Cambridge University Press, 2004.

[2] J. M. Bismut, *Mécanique Aléatoire*, Lecture Notes in Math., 866. Springer-Verlag, Berlin-New York, 1981.
3218 ALISON MELO, LEANDRO MORGADO AND PAULO R. RUFFINO

[3] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows with automorphism of subbundles component, Stochastics and Dynamics, 12 (2012), 1150013, 15 pp.

[4] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows in manifolds with complementary distributions, Stochastics and Dynamics, 13 (2013), 1350009, 12 pp.

[5] F. Colonius and W. Kliemann, The Dynamics of Control, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA, 2000.

[6] F. Colonius and P. R. Ruffino, Nonlinear Iwasawa decomposition of control flows, Discrete Continuous Dyn. Systems, (Serie A) 18 (2007), 339–354.

[7] I. G. Gargate and P. R. Ruffino, An averaging principle for diffusions in foliated spaces, The Annals of Probab., 44 (2016), 567–588.

[8] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: École d’Eté de Probabilités de Saint-Flour XII - 1982, ed. P.L. Hennequin, Lecture Notes on Maths., Springer, 1097 (1984), 143–303.

[9] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1997.

[10] X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21 (2008), 803–822.

[11] T. Kurtz, E. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Annales de l’I.H.P., section B, 31 (1995), 351–377.

[12] M. Liao, Decomposition of stochastic flows and Lyapunov exponents, Probab. Theory Rel. Fields, 117 (2000), 589–607.

[13] J. Milnor, Remarks on infinite dimensional lie groups, In: Relativity, Groups and Topology II, Les Houches Session XL, 1983, North Holland, Amsterdam, 1984, 1007–1057.

[14] K.-H. Neeb, Infinite Dimensional Lie Groups, Monastir Summer Schoool, 2009. Available from hal.archives-ouvertes.fr/docs/00/39/.../CoursKarl-HermannNeeb.pdf.

[15] H. Omori, Infinite Dimensional Lie Groups, Translations of Math Monographs 158, AMS, 1997.

[16] L. Morgado and P. Ruffino, Extension of time for decomposition of stochastic flows in spaces with complementary foliations, Electron. Comm. Probab., 20 (2015), 9pp.

[17] P. Ruffino, Decomposition of stochastic flow and rotation matrix, Stochastics and Dynamics, 2 (2002), 93–108.

[18] M. Patrão and L. A. B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dynam. Differential Equations 19 (2007), 155–180.

[19] K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., (Rozprawy Mat.) 325 (1993), 54 pp.

Received October 2015; revised March 2016.

E-mail address: alison.melo@univasf.edu.br
E-mail address: leandro.morgado@ufsc.br
E-mail address: ruffino@ime.unicamp.br