Rapid Differentiation of Candida dubliniensis from Candida albicans by Early D-Xylose Assimilation

A.N.B. Ellepolaa Z.U. Khanb

aDepartment of Bioclinical Sciences, Faculty of Dentistry, and bDepartment of Microbiology, Faculty of Medicine, Health Sciences Center, Kuwait University, Jabriya, Kuwait

Key Words

D-Xylose • Candida albicans • Candida dubliniensis

Abstract

Objective: To determine if D-xylose (XYL) and/or α-methyl-D-glucoside (MDG) assimilation can be used reliably as a rapid test to differentiate Candida dubliniensis from Candida albicans at an earlier time point such as 2 h after inoculation.

Materials and Methods: Thirty isolates of C. albicans and C. dubliniensis recovered from anatomical sites and clinical specimens were used. Isolates were inoculated into the API 20C AUX yeast identification system, and incubated at 30°C. XYL and MDG assimilations were read at 2-hour intervals beginning 2 h after the initial inoculation and up to 24 h of incubation; thereafter, results were read after 48 and 72 h.

Results: Twenty-nine (97%) C. albicans isolates had assimilated XYL at 16 h and, by 24 h, all isolates were positive for XYL assimilation. None of the C. dubliniensis isolates assimilated XYL. The MDG assimilation revealed that 24, 40, 92 and 100% of C. albicans isolates became positive after 16, 24, 48 and 72 h of incubation, respectively, whereas only 3% of C. dubliniensis isolates assimilated MDG after 72 h.

Conclusions: The findings showed that it is possible to rapidly differentiate C. albicans from C. dubliniensis isolates using the API 20C AUX carbohydrate assimilation kits after 16 h of incubation at 30°C based on the XYL assimilation.

Copyright © 2012 S. Karger AG, Basel

Introduction

Candida dubliniensis is now well recognized as an opportunistic pathogen associated with recurrent oral candidiasis in AIDS patients as well as other compromised patient groups [1–4]. Resistance as well as diminished susceptibility to fluconazole has also been observed in C. dubliniensis isolates obtained from HIV-infected patients [5, 6]. Recently a breakthrough in C. dubliniensis fungemia occurred in a patient during prolonged exposure to voriconazole [7], and it was revealed that C. dubliniensis isolates from HIV-infected patients may acquire itraconazole resistance, even in the absence of prior azole therapy [8]. Development of such resistance may have important implications for antifungal therapy and indicate a need for a method to distinguish C. dubliniensis from Candida albicans as well as from other Candida species.

C. dubliniensis is closely related to C. albicans, sharing its properties of commensalism and opportunistic infection. For instance, 96% of genes are \geq 60% homologous between these species, with the vast majority of genes being approximately 90% homologous [9]. Given this genetic similarity, it is not surprising that these species share many phenotypic traits which present difficulties in accurately discriminating between C. albicans and C. dubliniensis.
Several assays based on phenotypic characteristics have been used in an attempt to distinguish *C. dubliniensis* from *C. albicans*, including characteristic chlamydospore formation, growth at elevated temperatures, carbohydrate assimilation patterns, colony color on CHROMagar Candida medium, and β-glucoside production. However, in multiple publications variable success using each of these methods has been reported because of the phenotypic similarities shared by these two species [10–13]. To circumvent these difficulties, molecular methods have been developed [14, 15]. Latex agglutination tests, fluorescent in situ hybridization with peptic nucleic acid probes and immunochromatographic assays have also been used for this purpose [16–18]. However, most of these procedures have not been widely used or are not well-suited to the routine clinical microbiology laboratory.

Whereas molecular identification is the most specific method to differentiate these species, an easy-to-perform phenotypic test, if reliable, would be a valuable tool for this purpose. Perhaps the most convenient and common method for *Candida* species identification consist of strips or plates containing substrates for carbohydrate assimilation and/or enzyme detection. These phenotypic tests are commercially available in a variety of formats. One such phenotypic test is the API 20C AUX yeast identification system [10–13]. This system uses an increase in turbidity in each of a series of wells containing different substrates to produce a biochemical profile. The biochemical profile produced is then translated into a numerical code that is deciphered using the manufacturer’s reference manual.

D-xylose (XYL) is one of the substrates present in the API 20C AUX yeast identification system. Assimilation of XYL has been reported to be a reproducible and reliable test for the differentiation of *C. dubliniensis* from *C. albicans* [10–13]. In addition assimilation of α-methyl-D-glucoside (α-MDG) has also been somewhat helpful for the differentiation of these two species [11]. These findings were based upon the use of API 20C AUX test strips that were incubated for 72 h at 30 °C as recommended by the manufacturer [10, 12, 13]. It was of interest, therefore, to determine if XYL and/or α-MDG assimilation could be used to rapidly differentiate *C. dubliniensis* from *C. albicans* at an earlier time point, rather than waiting for 72 h to determine the outcome. Hence, the main aim of this study was to determine the time course of XYL and α-MDG assimilation beginning as early as 2 h after inoculation of *C. dubliniensis* and *C. albicans* isolates into API 20C AUX yeast identification test strips in an attempt to determine the utility of such a test system for the early differentiation of these two species.

Materials and Methods

Microorganisms

Thirty isolates each of *C. albicans* and *C. dubliniensis* recovered from various anatomical sites and clinical specimens were used for this study. All *C. albicans* and 23 *C. dubliniensis* isolates were oral isolates obtained from patients attending the Kuwait University Dental Clinic. The remaining *C. dubliniensis* isolates were from blood (n = 1) and urine samples (n = 6). All yeast isolates were tested for germ tube formation as previously described [19]. Thereafter a presumptive identification of *Candida* isolates was performed on the basis of the characteristics of colony color on CHROMagar Candida medium (Becton Dickinson Co., Sparks, USA). All isolates produced green colonies. All the isolates were further identified based on their carbohydrate assimilation pattern by API 20C AUX yeast identification system (bioMérieux, France). The identity of *C. dubliniensis* was confirmed by production of rough colonies with hyphal fringes and chlamydospores on simplified sunflower seed agar and by using seminested PCR amplification of internal transcribed spacer (ITS)-2 region of rDNA followed by direct DNA sequencing of the ITS region of rDNA as described previously [20].

Carbohydrate Assimilation

For each isolate two sets of API 20C AUX yeast identification kits were used. The carbohydrate assimilation pattern of all of the isolates was examined after growth in the API 20C AUX yeast identification system at 30 °C for 72 h as recommended by the manufacturer (bioMérieux Vitek, Inc., Hazelwood, Mo., USA). Before inoculation into the API 20C AUX yeast identification kits, all isolates were subcultured on Sabouraud dextrose agar Emerson plates (BBL, Becton Dickinson Microbiology Systems, Cockeysville, Md., USA) and incubated at 36 °C for 24 h. Single colonies were used for the preparation of each inoculum as suggested by the manufacturer. The API 20C AUX yeast identification strips were filled with inoculated medium and incubated for 72 h at 30 °C. In the same time, to determine the earliest time point at which *C. albicans* and *C. dubliniensis* isolates might be differentiated based on XYL and/or α-MDG assimilation, the patterns were observed at 2-hour intervals beginning at 2 h after initial inoculation up to 24 h; thereafter, strips were observed at 48 and 72 h. Results were read independently by two laboratory staff members. Cupules demonstrating significant turbidity relative to the negative control were considered to be positive and there was no discrepancy in the readings reported by the two laboratory staff members.

Results

Of the 30 *C. albicans* isolates, 29 (97%) had assimilated XYL at 16 h and, by 24 h, all *C. albicans* isolates were positive for XYL assimilation. Although all wells containing *C. albicans* isolates began to develop some turbidity by 8–12 h after incubation, positive turbidity, as defined by the manufacturer, was observed at as early as 16 h for 29 of 30 isolates (97%) and at 24 h for the remain-
ing 1 isolate. None of the C. dubliniensis isolates were positive for XYL assimilation at any time point studied (table 1). C. albicans progressively became positive for α-MDG assimilation, at 16 h of incubation (table 1). In contrast, only 1 of 30 (3%) C. dubliniensis isolates assimilated α-MDG after 72 h of incubation (table 1).

Discussion

In this study, XYL assimilation was positive for most of the C. albicans isolates after 16 h of incubation at 30°C and was negative for all C. dubliniensis isolates. Previous studies [10, 12, 13] had shown that characteristic assimilation patterns for XYL could be useful for the differentiation of C. albicans from C. dubliniensis after 72 h of incubation in the API 20C AUX carbohydrate assimilation test system [10, 12, 13]. However, our data showed that XYL assimilation could be used to differentiate 96% of all C. albicans isolates from C. dubliniensis isolates at as early as 16 h.

In the current study, while all C. albicans isolates assimilated α-MDG, 97% C. dubliniensis isolates did not assimilate α-MDG even after 72 h of incubation at 30°C (table 1). Assimilation of α-MDG has also been suggested to be a useful method for the differentiation of C. albicans from C. dubliniensis after 72 h of incubation at 30°C in the API 20C AUX system [10, 12, 13]. Our study confirmed that of Sancak et al. [10], who did not find any C. dubliniensis isolates capable of assimilating α-MDG whereas 99% of C. albicans isolates assimilated α-MDG. However, results for α-MDG assimilation were somewhat more equivocal in studies by Pincus et al. [13] and Gales et al. [12]. Pincus et al. [13] showed that 85% of C. albicans assimilated α-MDG whereas C. dubliniensis isolates did not. Gales et al. [12] reported that only 54% of the C. albicans isolates assimilated α-MDG while C. dubliniensis isolates did not assimilate α-MDG. Because of these discordant findings on C. albicans, α-MDG assimilation may not be a reliable method for differentiating these two species.

Hence these findings indicate that it is possible to differentiate a large majority of (97%) C. albicans from C. dubliniensis isolates as early as 16 h by comparing their XYL assimilation patterns. Comparing this method with other phenotypic identification methods such as incubation at different temperatures and growth in different culture media as done previously in our laboratory [21, 22] as well as other laboratories [23] will also help to determine the best possible easy-to-perform, early identification method to differentiate these two Candida species.

Early identification may be particularly useful in the management of C. albicans and C. dubliniensis infections in immunocompromised individuals because C. dubliniensis has been associated with invasive diseases in such hosts [24]. Although neither C. albicans nor C. dubliniensis has high rates of antifungal drug resistance among isolates derived from blood or other body sites, the rate of azole resistance among oral isolates of C. dubliniensis from HIV-infected patients is much greater [5–8]. Easy to use, rapid assimilation methods have been developed for the differentiation of Candida glabrata from other Candida species, for instance, the GLABRATA RTT test [25] (Fumouze Diagnostics, France) and the rapid-assimilation-of-trehalose test [26]. Hence, it would be of much interest if investigators could try to develop a similar rapid assimilation method using XYL. In fact, as cupules inoculated with C. albicans isolates elicited turbidity with XYL as early as 8 h after incubation (table 1), development of a colorimetric assay to determine XYL assimilation, similar to that of the GLABRATA RTT test, would be a valuable tool for early differentiation between C. dubliniensis from C. albicans.

Conclusions

Our findings showed that C. albicans can be rapidly differentiated from C. dubliniensis isolates using the API 20C AUX carbohydrate assimilation kits after as little as

Table 1. Number (%) of C. albicans (CA) and C. dubliniensis (CD) isolates assimilating XYL and α-MDG at 30°C after progressive incubation intervals

Incubation time, h	XYL α-MDG	α-MDG		
	CA	CD	CA	CD
2–6*	0	0	0	0
8	*	0	*	0
12	*	0	*	0
16	29 (97)	0	7 (24)	0
24	30 (100)	0	12 (40)	0
48	30 (100)	0	28 (92)	0
72	30 (100)	0	30 (100)	1 (3)

*a None of the isolates showed any turbidity or growth at these time points (2–6 h).

*All isolates which eventually became positive for the assimilation of this carbohydrate demonstrated very mild turbidity at this time point and this turbidity progressed over time.

D-Xylose Assimilation by C. albicans and C. dubliniensis

Med Princ Pract 2012;21:375–378 377
16 h of incubation at 30°C based on XYL assimilation. This method, however, will be more reliable in germ-tube-positive Candida producing green colonies in CHROMagar Candida medium, and it is advisable to confirm the identification with molecular testing.

Acknowledgments

The technical support from Ms. Rachel Chandy, Mycology Laboratory, Faculty of Medicine, Kuwait University is appreciated and thankfully acknowledged.

References

1 Manfredi M, McCullough MJ, Al-Karaawi ZM, Hurel SJ, Porter SR: The isolation, identification and molecular analysis of Candida spp. isolated from the oral cavities of patients with diabetes mellitus. Oral Microbiol Immunol 2002;17:181–185.

2 Peltschoch-Llacsañahanga H, Dohmen H, Haase G: Recovery of Candida dubliniensis from sputum of cystic fibrosis patients. Mycoses 2002;45:15–18.

3 Polacheck I, Strahilevitz J, Sullivan DJ, Donnelly SM, Salkin IF, Coleman DC: Recovery of Candida dubliniensis from non-human immunodeficiency virus-infected patients in Israel. J Clin Microbiol 2000;38:170–174.

4 Gottlieb GS, Limaye AP, Chen YC, Van Voorhis WC: Candida dubliniensis fungemia in a solid organ transplant patient: case report and review of the literature. Med Mycol 2001;39:483–485.

5 Moran GP, Sullivan DJ, Henman MC, McCready CE, Harrington BJ, Shanley DB, Coleman DC: Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob Agents Chemother 1997;41:617–623.

6 Nadagir SD, Chunchanur SK, Hales LH, Yasmek K, Chandrasekhar MR, Patil BS: Significance of isolation and drug susceptibility testing of non-Candida albicans species causing oropharyngeal candidiasis in HIV patients. Southeast Asian J Trop Med Public Health 2008;39:492–495.

7 Fanci R: Breakthrough Candida dubliniensis fungemia in an acute myeloid leukemia patient during voriconazole therapy successfully treated with caspofungin. J Chemother 2009;21:105–107.

8 Palkar S, Pasligh J, Moran G, Ruhnke M: Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution, and the emergence of itraconazole resistance. J Clin Microbiol 2010;48:1643–1650.

9 Moran G, Stokes C, Thewes S, Hube B, Coleman DC, Sullivan D: Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 2004;150:3363–3382.

10 Sancak B, Rex JH, Paetznick V, Chen E, Rodriguez J: Evaluation of a method for identification of Candida dubliniensis bloodstream isolates. J Clin Microbiol 2003;41:489–491.

11 Ellepola AN, Hurst SF, Elie CM, Morrison CJ: Rapid and unequivocal differentiation of Candida dubliniensis from other Candida species using species-specific DNA probes: comparison with phenotypic identification methods. Oral Microbiol Immunol 2003;18:379–388.

12 Gales AC, Pfaller MA, Houston AK, Joly S, Sullivan DJ, Coleman DC, Soll DR: Identification of Candida dubliniensis based on temperature and utilization of xylose and methyl-D-glucoside as determined with API 20C AUX and Vitek YBC systems. J Clin Microbiol 1999;37:3804–3808.

13 Pincus DH, Coleman DC, Pruitt WR, Padhye AA, Salkin IF, Geimer M, Bassel A, Sullivan DJ, Clarke M, Hearn V: Rapid identification of Candida dubliniensis with commercial yeast identification systems. J Clin Microbiol 1999;37:3533–3539.

14 Luciardi G, Di Onofrio V, Lucareiello A, Gallé F, Signoriello G, Colella G, D’Amora M, Rosano F: Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification. Oral Microbiol Immunol 2009;24:76–78.

15 Chen SC, Halliday CL, Meyer W: A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Med Mycol 2002;40:333–357.

16 Marot-Leblond A, Grimaud L, David S, Sullivan DJ, Coleman DC, Ponton J, Robert R: Evaluation of a rapid immunochromatographic assay for identification of Candida albicans and Candida dubliniensis. J Clin Microbiol 2004;42:4956–4960.

17 Oliveira K, Haase G, Kurtzman C, Hyldig-Nielsen JJ, Stender H: Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 2001;39:4138–4141.

18 Chrysanthou E, Fernandez V, Petrini B: Performance of commercial latex agglutination tests for the differentiation of Candida dubliniensis and Candida albicans in routine diagnostics. APMIS 2007;115:1281–1284.

19 Ellepola ANB, Joseph BJ, Khan ZU: Effects of subtherapeutic concentrations of chlorhexidine gluconate on germ tube formation of oral Candida. Med Princ Pract 2012;21:120–124.

20 Ahmad S, Mokaddas E, Al-Sweih N, Khan ZU: Phenotypic and molecular characterization of Candida dubliniensis isolates from clinical specimens in Kuwait. Med Princ Pract 2005;14:177–183.

21 Khan ZU, Ahmad S, Mokaddas E, Al-Sweih N, Chandry R: Sunflower seed husk agar: a new medium for the differentiation of Candida dubliniensis from Candida albicans. Indian J Med Microbiol 2005;23:182–185.

22 Khan ZU, Ahmad S, Mokaddas E, Chandry R: Tobacco agar, a new medium for differentiating Candida dubliniensis from Candida albicans. J Clin Microbiol 2004;42:4796–4798.

23 Pasligh J, Radecke C, Fleischhacker M, Ruhnke M: Comparison of phenotypic methods for the identification of Candida dubliniensis. J Microbiol Immunol Infect 2010;43:147–154.

24 Chan-Tack KM: Fatal Candida dubliniensis septicemia in a patients with AIDS. Clin Infect Dis 2005;40:1209–1210.

25 Freydier AM, Perry JD, Faure O, Willinger B, Tortorano AM, Nicholson A, Peman J, Verweij PE: Routine use of a commercial test, GLABRATA RTT, for rapid identification of Candida glabrata in six laboratories. J Clin Microbiol 2004;42:4870–4872.

26 Murray MP, Zinchuk R, Larone DH: CHROMagar Candida as the sole primary medium for isolation of yeasts and as a source medium for the rapid-assimilation-of-trehalose test. J Clin Microbiol 2005;43:1210–1212.

Ellepola/Khan