Research Paper

NADPH oxidase-derived H$_2$O$_2$ mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson’s disease

Liyan Houa,1, Xueying Zhoua,1, Cong Zhangb, Ke Wangc, Xiaofang Liub, Yuning Chee, Fuqiang Suna, Huihua Lib, Qingshan Wangax, Dan Zhangdx, Jau-Shyong Honge

a Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lushan South Road, Dalian 116044, China
b Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 W. Lushan South Road, Dalian 116044, China
c Department of Nutrition, Second Hospital, Dalian Medical University, Dalian 116023, China
d State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
e Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA

ARTICLE INFO

Keywords:
Parkinson’s disease
NADPH oxidase
Microglia
Astrocyte
STATs
H$_2$O$_2$

ABSTRACT

Astrogliosis has long been recognized in Parkinson’s disease (PD), the most common neurodegenerative movement disorder. However, the mechanisms of how astrogliosis become activated remain unclear. Reciprocal interactions between microglia and astroglia play a pivotal role in regulating the activities of astroglia. The purpose of this study is to investigate the mechanism by which microglia regulate astrogliosis by using lipopolysaccharide (LPS) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD models. We found that the activation of microglia preceded astroglia in the substantia nigra of mice treated with either LPS or MPTP. Furthermore, suppression of microglial activation by pharmacological inhibition or genetic deletion of NADPH oxidase (NOX2) in mice attenuated astrogliosis. The important role of NOX2 in microglial regulation of astrogliosis was further mirrored in a mixed-glia culture system. Mechanistically, H$_2$O$_2$, a product of microglial NOX2 activation, serves as a direct signal to regulate astrogliosis. Astrogliosis was induced by H$_2$O$_2$ through a process in which extracellularly generated H$_2$O$_2$ diffused into the cytoplasm and subsequently stimulated activation of transcription factors, STAT1 and STAT3. STAT1/3 activation regulated the immunological functions of H$_2$O$_2$-induced astrogliosis since AG490, an inhibitor of STAT1/3, attenuated the gene expressions of both proinflammatory and neurotrophic factors in H$_2$O$_2$-treated astrocyte. Our findings indicate that microglial NOX2-generated H$_2$O$_2$ is able to regulate the immunological functions of astroglia via a STAT1/3-dependent manner, providing additional evidence for the immune pathogenesis and therapeutic studies of PD.

1. Introduction

Astrocytes, also known as astroglia, are multifunctional cells and are capable of reacting to any kind of injury in the central nervous system (CNS), leading to activation [1]. The process of astroglial activation remains rather enigmatic and results in so-called astrogliosis. Astrogliosis characterized by hypertrophic morphology and upregulation of intermediate filaments composed of nestin, vimentin, and glial fibrillary protein (GFAP) has long been recognized in multiple neurodegenerative diseases, including Parkinson’s disease (PD), the most common neurodegenerative movement disorder [2]. The functions of astrogliosis in PD remain controversial, and both beneficial and detrimental influences on the neural tissues are reported [3]. Despite of this, the cellular and molecular mechanisms leading to astrogliosis remain to be undefined.

In addition to astrogliosis, the activation of microglia, the innate...
immune cells in the CNS, are also detected in the substantia nigra (SN) of PD patients [4] and animal models [5,6]. As the first line of defense in the CNS, microglia are promptly activated and release a variety of cytotoxic factors in response to bacterial infection or CNS injury [7]. Among the factors released from activated microglia, superoxide generated from NADPH oxidase (NOX2) is earliest and plays a special role in neurodegeneration [8]. Multiple evidence revealed that, in contrast to rapid activation of microglia, the astrocyte response is usually delayed [9–11], suggesting that microglia might play a role in astrogliosis. This assumption was supported by the finding that a single pro-inflammatory factor released from activated microglia, such as prostaglandin E2 (PGE2), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα), is capable of inducing astrogial activation [12,13]. Moreover, inflammagen lipopolysaccharides (LPS) fails to induce astrogliosis in primary glia cultures once microglia are depleted by l-leucine-methyl ester (LME) [14]. Furthermore, in animal models of chemically induced neurodegeneration, the reduced microglial activation is associated with a reduced astroglial cell number [15–17]. Recently, using an in vitro inflammatory PD model, we confirmed that microglia are essential in regulating the immunological functions of astrogliosis [14]. Nevertheless, whether microglia can regulate astrogliosis in animal models of PD and the underlying mechanisms are still not completely understood.

The purpose of this study was to investigate whether microglia can regulate astrogliosis in experimental models of PD and underlying mechanisms. In both LPS and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegenerative models, we found that NOX2-derived H2O2 modulates microglia-to-astrocyte communication in PD.

2. Materials and methods

2.1. Animal treatment

A single systemic LPS (Sigma-Aldrich, St. Louis, MO, USA) injection (15×10⁶ EU/kg, i.p.), or repeated MPTP (Sigma-Aldrich, St. Louis, MO, USA) regimen (15 mg/kg, sc. for 6 consecutive days) were administrated to wild-type (WT, C57BL/6 J) or gp91phox−/− mice [18]. Mice in control group received an equal volume of 0.9% saline. At different time points after LPS or MPTP treatment, mice were euthanized and brains were collected. Housing, breeding and experimental use of the animals were performed in strict accordance with the Animal Guideline of Dalian Medical University. All experimental protocols were approved by and in agreement with the Ethical Committee of Dalian Medical University.

2.2. Primary cell cultures

Primary mixed glia, astroglia and microglia cultures were prepared according to a previously published protocol [19].

2.3. Reconstituted cell cultures

Microglia were plated into transwells (24-well multi-well insert systems, 1.0 μm pore size, PET membrane) placed above the astroglia layer in culture plates. Although there was no physical contact between microglia and astroglia, secreted soluble factors could move across the transwell membranes. Transwells with LPS-treated microglia would generated environmental neuroinflammation for astroglia layers, and transwells without microglia were used as negative control.

2.4. Immunohistochemistry and immunocytochemistry

Immunohistochemistry and immunocytochemistry were performed as described previously [18]. Briefly, the free-floating coronal sections or primary cultures were immunohistochemically blocked with 4–10% normal goat serum and then incubated with primary antibody against ionized calcium binding adaptor molecule 1 (Iba1, 1:5000; Wako Chemicals, Richmond, VA, USA) or GFAP (Dako, Santa Clara, CA, USA) for 24 h, respectively, at 4°C. Antibody binding was visualized using a Vectorstain ABC Kit (Vector Laboratories, Inc. Burlingame, CA, USA) and diaminobenzidine substrate. The densities of Iba-1 and GFAP immunostaining were measured using ImageJ version 1.43 software (National Institutes of Health) [20].

2.5. Real-time PCR analysis

Total RNA was extracted with RNeasy Mini kit (Qiagen, Germantown, MD, USA) and reverse transcribed with an oligo dT primer. Real-time PCR amplification was performed using SYBR Premix Ex Taq™ II (Takara Bio Inc. Kusatsu, Shiga, Japan) and Takara Thermal Cycler Dice™ Real Time System according to manufacturer’s protocols. The selected primers are listed in Supplementary Table 1. All the data were normalized with GAPDH.

2.6. Measurement of H2O2

The levels of H2O2 were examined as described previously [21] by using a H2O2 assay kit (Abcam, Cambridge, MA, USA). Briefly, a transwell system in which microglial cells were plated on the upper chamber and astrocytes on the lower chamber was treated with LPS at 37°C for 1 h. To measure the extracellular levels of H2O2 released from activated microglia, the supernatant was collected. To measure the intracellular levels of H2O2 in astrocyte, the culture media and microglial cells were removed after 1 h of LPS stimulation. Astrocytes on the lower chamber were washed with cold PBS and were lysed using the assay buffer provided by the kit. After homogenization, the cell samples were centrifuged at 1000×g for 15 mins and the supernatant was collected. After deproteinization, the working solution containing OxiRed probe and horse radish peroxidase (HRP) was added to both extracellular and intracellular samples according to the manufacturer’s instructions. In the presence of HRP, the OxiRed probe reacts with H2O2 to produce product with color (λmax=570 nm). The absorbance at 570 nm was read with a SpectraMax Plus microplate spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). The amount of H2O2 was calculated and expressed as percentage of vehicle-treated control cultures.

2.7. Western blot analysis

For western blot analysis, equal amounts of protein were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 4% stacking and 10% resolving gel. Following electrophoresis, the proteins were transferred to sodium dodecyl sulfate polyacrylamide gel electrophoresis membranes. The membranes were blocked with 5% non-fat milk and incubated with primary antibodies (1:1000) against Iba-1, GFAP, phospho-STAT1, STAT1, phospho-STAT3, STAT3 (Cell Signaling Technology, Danvers, MA, USA), GAPDH (Abcam, Cambridge, MA, USA) and HRP-linked anti-rabbit or mouse IgG (1:3000) for 2 h. ECL reagents (Biological Industries, Cromwell, CT, USA) were used as detection system.

2.8. Statistical analysis

All values are expressed as the mean ± SEM. Differences among means were analyzed using one- or two-way ANOVA with treatment as the independent factors. When ANOVA showed significant differences, pair-wise comparisons between means were tested by Tukey’s post hoc test.
testing. In all analyses, a value of \(p < 0.05 \) was considered statistically significant.

3. Results

3.1. The activation of microglia in the SN precedes astrogliosis in both LPS and MPTP-injected mice

To investigate whether microglia are capable of regulating astrogliosis in vivo, we initially determined the time sequence of microglial and astrogial activation in both LPS and MPTP-induced dopaminergic neurodegenerative models. We have previously reported that a single systemic injection of inflammmogen LPS generates peripheral inflammation, and some of the circulating proinflammatory factors gain entrance to the brain to initiate proinflammatory response and subsequently lead to the progressive degeneration of nigral dopaminergic neurons [22]. While, in dopaminergic neurotoxin MPTP-induced model, glia also become activated due to response to endogenous factors secreted by damaged neurons, such as \(\mu \)-calpain and \(\alpha \)-synuclein [7]. As shown in Fig. 1A, both microglial and astrogial activation were observed throughout the nigral reticulata area in LPS and MPTP-treated mice by showing hypertrophied morphology and intensified Iba-1 and GFAP staining, respectively. Densitometric analysis of immunohistochemical expressions of Iba-1 and GFAP supported the morphological observation (Fig. 1B). In LPS model, the elevation of Iba1 expression was firstly observed at 3 h, peaked at 24 h after treatment, and then was maintained about 1.5 fold of control level up to 3 months after LPS injection (Fig. 1B). In contrast, the significant increase of GFAP density was not evident by 24 h after LPS injection, indicating that the activation of microglia precedes astrogliosis (Fig. 1B).

A similarly sequential activation of microglia and astrogia was observed in MPTP model. The upregulation of Iba1 and GFAP density in the SN was initially detected 1 and 2 days after MPTP treatment, respectively, and was sustained until the study end-point 27 days (Fig. 1C and D).

3.2. Pharmacological inhibition or genetic deletion of NOX2 attenuates LPS and MPTP-induced astrogliosis

Next, we determined whether inhibition of microglial activation interferes with astrogliosis. We recently demonstrated that inhibition of NOX2 markedly reduced microglial activation in both LPS and MPTP-injected mice [18]. To determine whether inhibition of NOX2-mediated microglial activation is associated with suppression of astrogliosis, mice were treated with apocynin, a widely used NOX2 inhibitor, before LPS injection (Fig. 2A). Interestingly, apocynin significantly reduced activation of microglia, which was associated with suppression of astrogliosis by showing a decreased GFAP expression compared with LPS alone group (Fig. 2B and C).

To determine whether astrogial activation could still be suppressed by targeting microglial NOX2 after onset, an ultra-low dose of DPI that displays potent and specific inhibitory capacity on NOX2 activation [18,23] was used after 3 months of LPS injection, a time point that both microglia and astrogia were activated (Fig. 2D and Fig. 1). Consistent with our previous report [18], DPI effectively reduced LPS-induced activation of microglia (data not shown). Interestingly, astrogia in DPI/LPS-treated mice also displayed normal morphology and a comparable level of GFAP expression with control group, suggesting that astrogial activation is blocked by DPI (Fig. 2E and F). Inhibition of astrogial activation by DPI was not transient but continually observed up to 10 months after LPS injection (Fig. 2E and F).

Consistently, attenuated astrogliosis by DPI was also observed in the SN of MPTP model by showing reduced expression of GFAP in combined DPI and MPTP-treated mice compared with MPTP alone group (Fig. 2G–I).

To further verify the role of microglial NOX2 in regulating astrogliosis, NOX2-deficient mice (gp91phox -/-) were used and were treated with MPTP. We found that genetic deletion of NOX2 markedly decreased MPTP-induced elevation of GFAP expression (Fig. 2G–I), further confirming the essential role of NOX2 in astrogliosis. In agreement, no significant effect of DPI on astrogial activation in MPTP-treated gp91phox -/- mice was observed (Fig. 2H–J).
3.3. NOX2 activation contributes to microglia-mediated astroglial activation in vitro

To investigate the mechanisms of how microglial NOX2 regulates astrogliosis, a mixed-glia culture system that contains ~20% microglia and ~80% astrocyte [24], was used and was treated with LPS. As seen in Fig. 3A, LPS at all the concentrations activated microglia by showing elevated expression of Iba-1. While, increased GFAP expression was only observed in cultures treated with LPS at 10 ng/ml or higher, indicating a threshold exists for astroglial activation. LPS-induced astroglial activation was further verified by immunofluorescence staining using anti-GFAP antibody (Fig. 3B).

To determine the sequence of microglial and astroglial activation, the expressions of Iba-1 and GFAP were determined at different time points after LPS treatment. Consistent with that of in vivo, the activation of microglia preceded astroglia (Fig. 3C). Western blot analysis showed that the increase of Iba-1 expression was evident by 1 day after LPS treatment (Fig. 3C). In contrast, the increase (p < 0.01) of GFAP expression was not observed until 3 days after LPS treatment (Fig. 3C). Deletion of microglia by LME abolished LPS-induced increase of GFAP expression (Fig. 3D), indicating the presence of microglia is required for astrogliosis induced by LPS.

The role of microglial NOX2 in astrogliosis was subsequently examined by using two inhibitors, DPI and apocynin. As shown in Fig. 3E, DPI or apocynin treatment significantly attenuated LPS-induced astroglial activation by showing a decreased level of GFAP compared with LPS alone group. The results of immunofluorescence staining were consistent with Western blot analysis (Fig. 3B).

3.4. NOX2 activation increases extracellular superoxide, which can spontaneously convert to H2O2

NOX2 activation increases extracellular superoxide, which can spontaneously convert to H2O2. Previous reports indicate that redox reactions are capable of stimulating astroglial activation [25]. We therefore hypothesized that H2O2 generated from NOX2 might be a key signal for the regulation of astrogliosis by microglia. The changes in concentrations of extracellular (supernatant) H2O2 were initially measured. We found that LPS dose-dependently increased the levels of H2O2 in the supernatant of LPS-treated mixed glia culture (Fig. 4A).

To determine whether LPS could increase the levels of H2O2 in astrocyte, a trans-well system with enriched microglia on the upper chamber and enriched astroglia on the lower chamber was used. Consistently, LPS stimulation also increased the intracellular levels of H2O2 in astroglia (Fig. 4B).

To determine whether activation of NOX2 contributes to the elevated levels of H2O2 in both supernatant and cytosolic fractions of astrocyte, DPI and apocynin were applied to the trans-well culture.
system before LPS challenge. As seen in Fig. 4B, DPI and apocynin markedly suppressed the elevation of \(\text{H}_2\text{O}_2 \) in both fractions, suggesting that NOX2 is the main source of \(\text{H}_2\text{O}_2 \).

Exogenous \(\text{H}_2\text{O}_2 \) was further used to test its capacity to stimulate activation of astroglia. As shown in Fig. 4C, \(\text{H}_2\text{O}_2 \) at 10, 20, 50 and 100 \(\mu \text{M} \) dose-dependently stimulated astroglial activation as shown by 47.6% (± 16.5%), 60.7% (± 14.1%), 94.8% (± 12.4%) and 92.6% (± 13.6%) increase of GFAP expressions, respectively, in astrocyte culture, compared with vehicle controls. No significant toxicity of \(\text{H}_2\text{O}_2 \) on astrocyte was observed in the current conditions (Fig. 4D). \(\text{H}_2\text{O}_2 \)-induced up-regulation of GFAP expression was further confirmed by immunostaining with anti-GFAP antibody (Fig. 4E). Time course study revealed that a time-dependent increase of GFAP expression was seen till 24 h in \(\text{H}_2\text{O}_2 \)-treated astrocyte culture (Fig. 4F).

3.5. NOX2-generated \(\text{H}_2\text{O}_2 \) interfere with the immunological functions of astrogliosis

To determine whether inhibition of microglial NOX2 alters the functions of astrogliosis, we detected the changes of the mRNA levels of TNF\(\alpha \), iNOS, GDNF and BDNF in astroglia treated with conditioned medium (CM) freshly prepared from LPS-treated microglia with or without NOX2 inhibitor, apocynin. As seen in Fig. 5A, LPS-derived CM significantly elevated the mRNA levels of TNF\(\alpha \), iNOS, GDNF and BDNF in astrocyte, which was significantly reduced in astrocyte treated with LPS/Apocynin-derived CM.

We further assessed the mRNA levels of TNF\(\alpha \), iNOS, GDNF and BDNF in \(\text{H}_2\text{O}_2 \)-treated astrocyte culture to directly reflect the effects of \(\text{H}_2\text{O}_2 \) on the functional changes of astrogliosis. As shown in Fig. 5B, \(\text{H}_2\text{O}_2 \) significant increased the mRNA levels of both proinflammatory factors TNF\(\alpha \), iNOS and neurotropic factors GDNF and BDNF in astrocyte, suggesting that \(\text{H}_2\text{O}_2 \) alone is enough to regulate the immunological functions of astrogliosis.

3.6. \(\text{H}_2\text{O}_2 \) regulates the immunological functions of astrogliosis via a STAT1/3-dependent manner

We subsequently determined the mechanism by which NOX2-generated \(\text{H}_2\text{O}_2 \) regulates astrogliosis. JAK/STAT signaling pathway appeared to be a likely candidate because it is linked to enhanced expression of GFAP, in vitro, in a model of gliogenesis [26]. We therefore analyzed the expression and phosphorylation of STAT1 and
STAT3 in astroglia culture treated with H2O2. Representative immunoblot data for phosphorylated STAT (pSTAT) and total STAT are shown in Fig. 6A. H2O2 dose-dependently caused a significant increase of both STAT1 and STAT3 phosphorylation in astrocyte. Time course study revealed the peak of STAT1 and STAT3 activation at 60 and 30 min after H2O2 stimulation, respectively (Fig. 6B), that precedes the induction of GFAP observed in Fig. 4. Densitometric analysis of band intensities revealed a significant (p<0.01) increase of p-STAT1 at 60 mins (355.3% ± 56.6%) and p-STAT3 at 30 mins (427.5% ± 54.9%) after H2O2 treatment (Fig. 6B). No significant change of total STAT

Fig. 4. H2O2, a product of microglial NOX2 activation, mediates LPS-induced astroglial activation in vitro. (A) Mixed glial cultures were treated with different concentrations of LPS and the levels of H2O2 in the supernatant were determined by using a commercial kit. (B) The levels of H2O2 in the supernatant and in astroglia were determined in a trans-well co-culture system treated with LPS with or without DPI or apocynin. (C) The expressions of GFAP were determined in H2O2-treated astroglia cultures by Western blot and the density of the blot was quantified. (D) The toxicity of H2O2 on astroglia was determined by MTT assay. (E) Astroglia were stained with anti-GFAP antibody after 24 h of H2O2 treatment and the representative images were shown. (F) The expressions of GFAP were determined in 50 μM H2O2-treated astroglia cultures at the indicated time points by Western blot and the density of the blot was quantified. The results are expressed as the percentage of controls from three experiments performed in duplicate. *p<0.05. **p<0.01; Scale bar=50 μm.

Fig. 5. NOX2-generated H2O2 stimulates astroglia to produce proinflammatory and neurotrophic factors. (A) The mRNA levels of TNFa, iNOS, GDNF and BDNF were determined in astrocyte treated with conditioned medium freshly prepared from LPS-treated microglia with or without apocynin pre-treatment. (B) Astrocyte cultures were treated with 50 μM H2O2 and the mRNA levels of TNFa, iNOS, GDNF and BDNF were determined by RT-PCR. The results are expressed as the percentage of controls from three to six experiments. *p<0.05. **p<0.01.
and STAT3 was observed in H$_2$O$_2$-treated cells during the experiments. To characterize the role of STAT1/3 in astrogliosis induced by H$_2$O$_2$, we examined the effects of AG490, an inhibitor of STAT1/3, on H$_2$O$_2$-induced astroglial activation. Pretreatment of AG490 significantly inhibited the expressions of GFAP in H$_2$O$_2$-treated astrocyte, indicating attenuation of astroglial activation (Fig. 6C). Quantitative analysis revealed that H$_2$O$_2$ caused a 192.8% (± 11.1%) increase of GFAP expression that was reduced to 142.9% (± 16.1%) and 118.5% (± 2.3%) in the presence of 50 and 100 μM AG490, respectively (Fig. 6C). Meanwhile, RT-PCR analysis showed that the elevation of TNFα, iNOS, GDNF and BDNF mRNA levels in H$_2$O$_2$-treated cultures was also suppressed by AG490 (Fig. 6D).

4. Discussion

Results from this study provide interesting insights into the mechanisms of how activated microglia regulates immunological functions of astrogliosis in experimental models of PD (Fig. 7). We found that the activation of astroglia was delayed compared with microglia in both LPS and MPTP-treated mice, which could be further suppressed by inhibiting microglia through inactivation of NOX2. For the mechanism of regulation, we discovered that H$_2$O$_2$ released from NOX2 was a key for the immunological regulation of astroglial activation by microglia. Thereby, extracellularly generated H$_2$O$_2$ diffused into the cytoplasm of astrocyte and subsequently stimulated activation of STAT1 and STAT3, resulting in GFAP expression and both proinflammatory and neurotropic factors production.

In response to multiple pathological conditions in the CNS, astrocyte become reactive. Importantly, the response of astroglia is heterogeneous and exhibits different functional states depending on the disease context, which inevitably influences disease progression. Therefore, it is crucial to unravel the signaling cascades controlling the reactivity of astrocyte. The importance of microglia for astrogliosis has been reported previously by using minocycline, an inhibitor of microglial activation. Raghavendra et al. provided experimental evidence in an animal model of neuropathic pain by showing that inhibition of microglial activation by minocycline was associated with suppression of astrogliosis [27]. The inhibitory effect of minocycline on astroglial activation was also observed in an inflammatory mouse PD model, demonstrated by low levels of GFAP expression compared with no minocycline treatment group [28]. However, minocycline fails to interfere with astroglial activation in acute MPTP PD model, although the activation of microglia is markedly mitigated [6]. The inconsistent reports prompted us to further explore the role microglia in the regulation of astrogliosis in PD models. In the present study, we found that microglial activation preceded astrogliosis in two experimental PD models and inhibition of microglial activation was associated with suppressed astrogliosis. Moreover, depletion of microglia by LME abolished astroglial activation induced by LPS-induced inflammation. Our findings favored that microglia are capable of regulating astro-

![Fig. 6. H$_2$O$_2$ regulates the immunological functions of astrogliosis in a STAT1/3-dependent manner.](image-url)
Fig. 7. Proposed mechanism showing how microglial NOX2-derived H2O2 regulates astrogliosis. Microglial activation induced by LPS or MPTP precedes astrogliosis. NOX2, a key superoxide-producing enzyme in microglia, is previously reported to play a pivotal role in the initiation of microglial activation leading to neuroinflammation. Pharmacological inhibition or genetic deletion of NOX2 attenuates microglial activation, which is associated with suppression of astrogliosis. NOX2-derived H2O2 directly activates NOX2, a key superoxide-producing enzyme in microglia, is previously reported to play a pivotal role in the initiation of microglial activation leading to neuroinflammation. Therefore, investigating the role of mitochondrial dysfunction in exacerbating release of proinflammatory factors from activated microglia [31]. Notably, although NOX2 is recognized as the main source of H2O2 in regulating astrogliosis in the current study, we still cannot exclude the possibility that H2O2-generated from other enzymes may also contribute to the stimulation of astrogliosis, especially in vivo conditions. It is well known that mitochondrial dysfunction is involved in the pathogenesis of PD [32]. Impairment of oxidative phosphorylation due to mitochondrial deficits is associated with increased free radical production and the resultant oxidative damage [33]. In MPTP-treated mice, 1-methyl-4-phenylpyridinium (MPP⁺), the active metabolite of MPTP, accumulates within SNpc dopaminergic neurons and subsequently inhibits mitochondrial complex I to stimulate the production of superoxide radical. Superoxide can be changed into H2O2, resulting in elevation of H2O2 in microenvironment. Therefore, investigating the role of mitochondrial dysfunction in mediating astrogliosis should be guaranteed in the future.

The JAK-STAT pathway is the predominant signaling pathway used by certain oxidative stress stimuli and cytokines, and is critical for initiating innate immunity. Although the critical role of JAK-STAT pathway in microglial activation is well documented, it is still remains unclear whether JAK-STAT pathway is involved in H2O2-induced astrogliosis. In this study, we found that H2O2 dose-dependently induced activation of both STAT1 and STAT3 in primary astrocyte cultures. Moreover, AG490 suppressed H2O2-induced elevation of GFAP expression, which was associated with reduction of gene expressions of TNFα, iNOS, BDNF and GDNF. These results suggest that H2O2 regulates astroglial activation through a STAT-dependent manner. In brains of scrapie-infected mice, immunostaining revealed that the activation of STAT1 was mainly localized in astrocyte and strongly associated with reactive astrogliosis [34]. Similarly, the activation of JAK-STAT pathway was also involved in prolactin-induced astrogliosis activation and proinflammatory cytokine TNFα production in cultured astrocyte [35]. In agreement, deletion of Yes-associated protein (YAP), an inducer of the suppressor of cytokine signaling 3, results in hyperactivation of both STAT1 and 3, and reactive astrogliosis in cultured astrocyte and in developing mice brain [36]. The mechanism responsible for JAK-STAT-mediated astroglial activation might be related to enhanced gene expression of gfa gene that encodes GFAP. A potential STAT-binding site (TTCGGAGA) in both the rat and human GFAP promoters was found previously [37,38]. Furthermore, in a model of gliogenesis [26], a mutation in the STAT DNA-binding sequence within GFAP promoter that disrupted the binding of STAT1 and STAT3 blocked completely the ability of ciliary neurotrophic factor to activate GFAP promoter-driven reporter gene expression.

Previous studies reported that beyond controlling activation, different members of STATs are involved in regulating microglial phenotype (M1/M2) [39,40]. It is reported that STAT1 activation induced by IFN-γ leads to an increase in the production of proinflammatory cytokines and, therefore, programs microglia/macrophage to the M1 phenotype. In contrast, activation of STAT3 and STAT6 contributes to release of anti-inflammatory and neurotrophic factors from IL-4, IL-13, and IL-10-treated microglia/macrophage (M2 phenotype) [41]. However, whether the detrimental and beneficial functions of astrogliosis are also governed by different STATs remains unknown. Although our current study does not address this question,
related experiments are designed and undergoing in our lab.

Altogether, our results indicated that H$_2$O$_2$ derived from microglial NOX2 plays an important role in the initiation and maintenance of astrogliosis in experimental models of PD through a STAT1/3-dependent pathway. This study, at least partially, permits us to re-evaluate the immunomodulatory role of microglia-to-astrocyte communication in the pathogenesis and therapeutic studies of PD. Future studies should attempt to enhance the neurotrophic functions of astrogliosis once over-activated microglia were inhibited in attempting to interrupt progressive pathogenic cascade in neurodegenerative diseases.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by “Qizhen” Talent Project of Dalian Medical University (No. 201122) and Liaoning BaiQianWan Talents Program (No. [2017]90).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.redox.2017.02.016.

References

[1] D. Rossi, Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death, Prog. Neurobiol. 130 (2015) 86–129.

[2] H. Phattan, T. Maniatis, Astrocytes in neurodegenerative disease, Cold Spring Harb. Perspect. Biol. 7 (6) (2015).

[3] M. Pekny, M. Pekna, A. Messing, C. Steinhauser, J.M. Lee, V. Parpura, E.M. Hol, M.V. Sofroniew, A. Verkhratsky, Astrocytes: a central element in neurological inflammation, Prog. Neurobiol. 130 (2015) 86–129.

[4] S. Phani, J.D. Loike, S. Przedborski, Neurodegeneration and inflammation, J. Neuroinflamm. 9 (2012) 124–240.

[5] D.C. Wu, V. Jackson-Lewis, M. Vila, K. Tieu, P. Teismann, C. Vadseth, D.K. Choi, M.V. Sofroniew, A. Verkhratsky, Astrocytes: a central element in neurological inflammation, Prog. Neurobiol. 130 (2015) 86–129.

[6] M.L. Block, J.S. Hong, Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase, Methods Mol. Biol. 1041 (2013) 231–240.

[7] B. Robinson, D. Rao, J.S. Hong, Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple sclerosis, Methods Mol. Biol. 1041 (2013) 231–240.

[8] J.S. Hong, Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase, J. Neuroinflamm. 11 (5) (2014) 435–452.

[9] Q. Wang, X. Su, M.L. Block, Y. Liu, G.R. Breeze, J.S. Hong, D.J. Knapp, F.T. Crews, Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration, Glia 55 (5) (2007) 453–462.

[10] L. Hou et al. Redox Biology 12 (2017) 162–170

[11] S.H. Chen, E.A. Oyarzabal, J.S. Hong, Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia, Methods Mol. Biol. 1041 (2013) 231–240.

[12] S. Wang, C.H. Chu, T. Stewart, C. Ginghina, Y. Wang, H. Nie, M. Guo, B. Wilson, J.S. Hong, J. Zhang, alpha-synuclein, a chemokine receptor, directs microglial migration via H2O2-dependent Lyn phosphorylation, Proc. Natl. Acad. Sci. USA 112 (15) (2015) E1926–E1935.

[13] L. Qin, X. Wu, M.L. Block, Y. Liu, G.R. Breeze, J.S. Hong, D.J. Knapp, F.T. Crews, Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration, Glia 55 (5) (2007) 453–462.

[14] Q. Wang, C.H. Chu, E. Oyarzabal, L. Jiang, S.H. Chen, B. Wilson, L. Qian, J.S. Hong, Subpialmic diphlenylenediacid inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases, Glia 62 (12) (2014) 2034–2043.

[15] S.H. Chen, E.A. Oyarzabal, J.S. Hong, Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia, Methods Mol. Biol. 1041 (2013) 231–240.

[16] M.V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci. 32 (12) (2009) 638–647.

[17] A. Bonni, Y. Sun, M. Nadal-Vicens, A. Bhatt, D.A. Frank, I. Rozovsky, N. Stahl, G.D. Yancopoulos, M.E. Greenberg, Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway, Science 278 (5373) (1997) 477–483.

[18] V. Ragahavendra, F. Tanga, J.A. DeLeo, Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy, J. Pharm. Exp. Ther. 306 (3) (2003) 624–638.

[19] M. Tomas-Camardiel, I. Rite, A.J. Herrera, R.M. de Pablos, J. Cano, A. Machado, J.L. Venero, Minocycline reduces the lipopolysaccharide-induced reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system, Neurobiol. Dis. 16 (1) (2004) 190–201.

[20] A. Davery, S.K. Agrawal, Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes, Neuroscience 333 (2016) 92–103.

[21] M.L. Block, J.S. Hong, Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism, Prog. Neurobiol. 76 (3) (2005) 77–98.

[22] L. Qin, Y. Liu, T. Wang, S.J. Wei, M.L. Block, B. Wilson, L. Qian, J.S. Hong, NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia, J. Biol. Chem. 279 (2004) 1415–1421.

[23] A.H. Schapira, J.M. Cooper, D. Dexter, J.B. Clark, P. Jenner, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem. 54 (3) (1990) 823–827.

[24] P.M. Abou-Sleiman, M.M. Muqit, N.W. Wood, Expanding insights of mitochondrial dysfunction, Nat. Rev. Neurosci. 7 (3) (2006) 207–219.

[25] Y.J. Na, J.K. Jin, J.I. Kim, E.K. Choi, R.I. Carp, Y.S. Kim, JAK-STAT signaling pathway mediates astrogliosis in brains of sacrificed mice, J. Neurochem. 103 (2) (2007) 637–649.

[26] W.J. de Vito, S. Stone, Ethanol inhibits prolatin-induced activation of the JAK/ STAT pathway in cultured astrocytes, J. Cell Biochem. 74 (2) (1999) 278–291.

[27] Z. Huang, Y. Wang, G. Hu, J. Zhou, L. Mei, W.C. Xiong, YAP is a critical inducer of SOSC3, preventing reactive astrogliosis, Cereb. Cortex 26 (5) (2016) 2299–2310.

[28] F. Besnard, M. Brenner, Y. Nakatani, R. Chao, H.J. Purohit, E. Preuse, Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glibral fibrillary acidic protein, J. Biol. Chem. 266 (28) (1991) 18877–18883.

[29] D.F. Condorelli, V.G. Nicollotti, V. Barresi, A. Caruso, S. Cinelluci, J. de Velis, A.M. Giuffrida Stella, Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene, J. Neurosci. Res. 39 (6) (1994) 694–707.

[30] P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdtl, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, M. Sattler, J.S. Udawela, N. Volinia, P. Pardesier, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity 41 (1) (2014) 14–20.

[31] L. Tacchini, D. Fusiur-Poli, A. Bernelli-Zazzera, Activation of transcription factors by drugs inducing oxidative stress in rat liver, Biochem. Pharmac. 63 (2) (2002) 139–148.

[32] P.O. Martinez, S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep 6, 2014, p. 13.