E-cordial and product e-cordial labeling for the extended duplicate graph of splitting graph of path

R. Avudainayaki, B. Selvam, P.P. Ulaganathan
Department of Mathematics, Sri Sairam Institute of Technology, Chennai - 600 044, India
Department of Mathematics, S.I.V.E.T College, Gowrivakkam, Chennai - 600 073, India
Email: avuramesh2004@gmail.com, kbmselvam@gmail.com, ppulaganathan@gmail.com

Abstract. Based on the works of Yilmaz and Cahit on E-cordial labeling, we prove the existence of E-cordial labeling, total E-cordial labeling, product E-cordial labeling and total product E-cordial labeling for the extended duplicate graph of splitting graph of path \(P_m \).

1. Introduction
One of the most famous and productive labeling of graph theory is cordial labeling. This labeling was introduced by Cahit in the year 1987. For an extensive survey on graph labeling, we refer to Gallian [5]. E.Samphthkumar [3,4] introduced the concept of duplicate graph and splitting graph. In 1997, Yilmaz and Cahit have introduced a weaker version of edge-graceful called E-cordial[8]. B.Selvam, K.Thirusangu, and P.P. Ulaganathan have introduced the idea of extended duplicate graph of twig graphs and they proved that the EDG of twig graphs is E-cordial and product E-cordial [1,9]. E.Bala and K.Thirusangu have studied on E-Cordial labeling for Competition graph[2]. R.Avudainayaki, et.al., have proved that the Prime Cordial and Signed Product Cordial Labeling for the Extended Duplicate Graph of Arrow Graph [7]. Vaidya and Barasara proposed edge product cordial labeling [10]. P. Lawrence Rozario Raj and S. Koilraj have proved that cordial labeling for the splitting graph of some standard graphs [6].

2. Preliminaries
First, we will give brief summary of definitions which are useful for the present investigations.

Definition 1: each vertex \(v \) of a graph \(G \), take a new vertex \(v' \). Join \(v' \) to all the vertices of \(G \) adjacent to \(v \). The graph \(\text{Spl}(G) \) thus obtained is called splitting graph of \(G \).

Definition 2: Let \(G (V,E) \) be a graph. A duplicate graph of \(G \) is \(DG(V_1, E_1) \) where the vertex set \(V_1 = V \cup V' \) and \(V \cap V' = \phi \) and \(f : V \rightarrow V' \) is bijective and the edge set \(E_1 \) of \(DG \) is defined as the edge \(ab \) is in \(E \) if and only if both \(ab' \) and \(a'b \) are edges in \(E_1 \).
Definition 3: Extended duplicate graph of splitting graph of path is obtained by adding the edge \(v_2 v_2'\) to the duplicate graph. It is denoted by \(EDG(Spl(P_m))\) and it has 4m vertices and 6m-5 edges, where \(m \geq 2\) is the number of length.

Illustration 1: EDG of Splitting graph of Path \(P_6\)

Definition 4: Let \(G\) be a graph and \(f : E \rightarrow \{0,1\}\). The induced function \(f^*\) on \(V\) by defining \(f^*(v) = \{\sum f(v_j)\} \mod 2\) where \(v, v_j \in E\). Let \(m_i(f) = \{e \in E / f(e) = i\}\) and \(n_i(f) = \{v \in V / f^*(v) = i\}\). The function \(f\) is called an \(E\)-cordial labeling of \(G\) if \(|m_i(f) - m_j(f)| \leq 1\) and \(|n_i(f) - n_j(f)| \leq 1\), \((i \neq j)\).

Definition 5: An \(E\)-cordial labeling \(f\) is called total \(E\)-cordial labeling of \(G\) if \(|\{m_i(f) + n_i(f)\} - \{m_j(f) + n_j(f)\}| \leq 1\).

Definition 6: Let \(G\) be a graph and \(f : E \rightarrow \{0,1\}\). The induced function \(f^*\) on \(V\) by defining \(f^*(v) = \{\sum f(v_j)\} \mod 2\) where \(v, v_j \in E\). Let \(m_i(f) = \{e \in E / f(e) = i\}\) and \(n_i(f) = \{v \in V / f^*(v) = i\}\). The function \(f\) is called an Product \(E\)-cordial labeling of \(G\) if \(|m_i(f) - m_j(f)| \leq 1\) and \(|n_i(f) - n_j(f)| \leq 1\), \((i \neq j)\).

Definition 7: An \(E\)-cordial labeling \(f\) is called total product \(E\)-cordial labeling of \(G\) if \(|\{m_i(f) + n_i(f)\} - \{m_j(f) + n_j(f)\}| \leq 1\).

3. Main Results

3.1. E- cordial labeling

Here, we prove the existence of \(E\)-cordial and total \(E\)-cordial for \(EDG(Spl(P_m))\), \(m \geq 2\).

Theorem 1: For \(m \geq 2\), \(EDG(Spl(P_m))\) is \(E\)-cordial for \(m\) is even.

Proof: Let \(Spl(P_m)\), \(m \geq 2\) be a splitting path graph. Let \(EDG(Spl(P_m))\), \(m \geq 2\) be an extended duplicate graph of splitting path graph. To label the edges \(f : E \rightarrow \{0,1\}\) as given algorithm 1.

- The edges \(e_1, e_2, e_3, e_1', e_2', e_3\) and \(e_{3m+2}\) receive label ‘0’, ‘1’, ‘0’, ‘1’, ‘0’ and ‘1’ respectively;
- The edges \(e_{4+6i+j}\) receive label ‘0’ for \(0 \leq i \leq [(m-3)/2]\) and \(0 \leq j \leq 2\);
- The edges \(e_{7+6i+j}\) receive label ‘1’ for \(0 \leq i \leq [(m-4)/2]\) and \(0 \leq j \leq 2\);
- The edges \(e_3', e_{6+i}\) receive label ‘1’ for \(0 \leq i \leq [(m-2)/2]\);
- The edges \(e'_{6+i}\) receive label ‘0’ for \(0 \leq i \leq [(m-3)/2]\);
The edges e'_{4+6i+j} receive label ‘1’ for $0 \leq i \leq \lfloor (m-3)/2 \rfloor$ and $0 \leq j \leq 1$;
The edges e'_{7+6i+j} receive label ‘0’ for $0 \leq i \leq \lfloor (m-4)/2 \rfloor$ and $0 \leq j \leq 1$.
When m is odd, 3m-2 edges receive label ‘0’ and 3m-3 edges receive label ‘1’ and when m is even, 3m-2 edges receive label ‘1’ and 3m-3 edges receive label ‘0’.
In both the cases differ by at most one and satisfies the required condition.
Thus the entire 6m-5 edges are labeled.
The induced function f^* on V defined by
$$f^*(v) = \{ \sum f(u,v) \mid uv \in E \} \pmod{2}.$$
The vertices are labeled as follows:
The vertices v_1, v_2, v_1' and v_2' receive label ‘1’ and the vertices v_2', v_3 and v_3' receive label ‘0’;
When m is even, the vertices v_4,v_6,\ldots,v_{2m} receive label ‘0’, the vertices v_5,v_7,\ldots,v_{2m-1} receive label ‘1’,
the vertices v_6,v_8,\ldots,v_{2m}’ receive label ‘1’, the vertices $v_5',v_7',\ldots,v_{2m-1}'$ receive label ‘0’.
When m is odd, the vertices v_4,v_6,\ldots,v_{2m-2} receive label ‘0’; the vertices v_5,v_7,\ldots,v_{2m-1} receive label ‘1’;
the vertices v_2,v_4,\ldots,v_{2m-2} receive label ‘1’; the vertices v_3,v_5,\ldots,v_{2m-1}' receive label ‘0’ and the vertices v_{2m-1}' receive label ‘0’.
The entire 4m vertices are labeled such that 2m vertices receive label ‘1’ and 2m vertices receive label ‘0’ differ by at most one and satisfies the required condition. Thus EDG(Spl(P,m)), $m \geq 2$ admits E- cordial labeling for m is even.

Theorem 2: For $m \geq 2$, EDG(Spl(P,m)) is total E- cordial for m is even.

Proof: In theorem 1, 2m vertices are allotted ‘0’ and 2m vertices are allotted the label ‘1’. When m is odd, 3m-2 edges labeled with ‘0’ and 3m-3 edges labeled with ‘1’ and when m is even, 3m-2 edges labeled with ‘1’ and 3m-3 edges labeled with ‘0’. In both cases, we see that the number of vertices and edges labeled with ‘1’ is $2m + 3m-3 = 5m-3$ and the number of vertices and edges labeled with ‘0’ is $2m+3m-2 = 5m-2$ differ by one and satisfies the required condition. Thus EDG (Spl(P,m)), $m \geq 2$ admits total E- cordial labeling for m is even.

Illustration 2: E-CORDIAL LABELING FOR EDG OF SPLITTING GRAPH OF PATH
3.2. Product e-cordial

Here, we prove the existence of product E-cordial and total product E-cordial for \(EDG(\text{Spl}(P_m)) \), \(m \geq 2 \).

Theorem 3: For \(m \geq 2 \), \(EDG(\text{Spl}(P_m)) \) is product E-cordial.

Proof: Let \(\text{Spl}(P_m) \), \(m \geq 2 \) be a splitting path graph. Let \(EDG(\text{Spl}(P_m)) \), \(m \geq 2 \) be a extended duplicate graph of splitting path graph. To label the edges \(f : E \rightarrow \{0,1\} \) as given algorithm 2.

- The edge \(e = 3m-2 \) receive label ‘1’;
- The edges \(e_{1+6i+j} \) receive label ‘1’ and the edges \(e'_{1+6i+j} \) receive label ‘0’ for \(0 \leq i \leq [(m-2)/2] \) and \(0 \leq j \leq 2 \);
- The edges \(e_{4+6i+j} \) receive label ‘0’ and the edges \(e'_{4+6i+j} \) receive label ‘1’ for \(0 \leq i \leq [(m-3)/2] \) and \(0 \leq j \leq 2 \).

When \(m \) is odd, \(3m-2 \) edges receive label ‘0’ and \(3m-3 \) edges receive label ‘1’ which differ by at most one and when \(m \) is even, \(3m-2 \) edges receive label ‘1’ and \(3m-3 \) edges receive label ‘0’.

In both the cases which differ by at most one and satisfies the required condition. Thus the entire 6m-5 edges are labeled.

The induced function \(f^* \) on \(V \) defined by

\[
f^*(v) = \{ \prod f(u,v) \mid uv \in E \} \pmod{2}.
\]

The vertices are labeled as follows:

- When \(m \) is even, the vertices \(v_3, v_7, v_{11}, \ldots, v_{2m-1} \) and \(v_4, v_8, v_{12}, \ldots, v_{2m} \) receive label ‘0’; the vertices \(v_1, v_5, v_9, \ldots, v_{2m-3} \) and the vertices \(v_2, v_6, v_{10}, \ldots, v_{2m-2} \) receive label ‘1’.
- When \(m \) is odd, the vertices \(v_4, v_6, \ldots, v_{2m-2} \) receive label ‘0’; the vertices \(v_5, v_7, \ldots, v_{2m-1} \) receive label ‘1’; the vertices \(v_4', v_6', \ldots, v_{2m-2}' \) receive label ‘1’; the vertices \(v_5', v_7', \ldots, v_{2m-1}' \) receive label ‘0’; the vertices \(v_2m \) receive label ‘1’.

Thus the entire 4m vertices are labeled such that 2m vertices receive label ‘1’ and 2m vertices receive label ‘0’ differ by at most one and satisfies the required condition.

Hence \(EDG(\text{Spl}(P_m)) \), \(m \geq 2 \) admits product E-cordial labeling.
Illustration 3 : PRODUCT E-CORDIAL LABELING FOR EDG OF SPLITTING GRAPH OF PATH

Theorem 4 : For m ≥ 2 , EDG(Spl(P_m)), m ≥ 2 is total product E-cordial.

Proof : In theorem 3, 2m vertices are allotted ‘0’ and 2m vertices are allotted ‘1’. When m is odd, number of edges labeled with ‘0’ is 3m-2 and number of edges labeled with ‘1’ is 3m-3. When m is even, number of edges labeled with ‘1’ is 3m-2 and number of edges labeled with ‘0’ is 3m-3. In both cases, we see that the number of vertices and edges labeled with ‘1’ is 2m + 3m-3 = 5m-3 and the number of vertices and edges labeled with ‘0’ is 2m+(3m-2) = 5m-2, differ by one and satisfies the required condition. Thus EDG (Spl(P_m)), m ≥ 2 admits total product E-cordial labeling.

4. Conclusion
We have shown that EDG (Spl(P_m)) , m ≥ 2 is E-cordial, total E-cordial, product E-cordial and total product E-cordial. In future it would be interesting to extend the different type of graphs and its possible labeling for EDG (Spl(P_m)).

References
[1] Selvam B, Thirusangu K and Gnanaraj Thomas D 2012 On E-cordial and Product E– cordial labeling for a New class of graphs, Proceedings of the International conference on Mathematics in Engineering and Business Management at Stella Maris college, Chennai, India I 45–49
[2] Bala E and Thirusangu K 2013 E-Cordial Labeling for Competition graph International Journal of Computing Algorithm 02 243–247
[3] Sampathkumar E and Walikar H B 1980-81 On splitting graph of a graph J. Karnatak Univ. Sci. 25 and 26 (Combined) 13-16
[4] Sampath kumar E 1973 On duplicate graphs *Journal of the Indian Math. Soc.* 37 285–293
[5] Gallian J A 2014 A Dynamic Survey of graph labeling *The Electronic Journal of combinatories* 19 # DS6
[6] Lawrence Rozario Raj P and Koilraj S 2011 Cordial labeling for the splitting graph of some standard graphs *International Journal of Mathematics and Soft Computing* 1(1) 105–114
[7] Avudainayaki R, Selvam B and Ulaganathan P P 2011 Prime Cordial and Signed Product Cordial Labeling for the Extended Duplicate Graph of Arrow Graph *International Journal of Pure and Applied Mathematics* 113(10) 74–82
[8] Yilmaz R, and Cahit I 1997 E-cordial graphs *Ars Combin.* 46 251–266
[9] Thirusangu K, Selvam B and Ulaganathan P P 2010 Cordial labelings in extended duplicate twig graphs *International Journal of computer, mathematical sciences and applications* 4(3-4) 319–328
[10] Vaidya S K and Barasara C M 2012 Edge product cordial labeling of graphs *J. Math. Comput. Sci.* 2(5) 1436–1450