Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases

Taishin Akiyama1*, Miho Shinzawa1, Junwen Qin1,2 and Nobuko Akiyama1

1 Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
2 Key Laboratory for Regenerative Medicine, Department of Developmental and Regenerative Biology, Ministry of Education and International Base of Collaboration for Science and Technology, the Ministry of Science and Technology and Guangdong Province, Jinan University, Guangzhou, China

INTRODUCTION

The thymus contributes to self-tolerance of T cells by eliminating potentially self-reactive T cells and generating immunosuppressive T cells, which are essential for preventing the onset of autoimmune disease. Epithelial cells localized in the thymic medulla [medullary thymic epithelial cells (mTECs)] are non-hematopoietic in origin and play non-redundant roles in the elimination of self-reactive T cells (1–3). Recent studies have revealed that mTECs also contribute to the selection and survival of immunosuppressive Foxp3-positive regulatory T cells (Tregs) (4–8).

Medullary thymic epithelial cells express several functional molecules required for the selection of self-tolerant T cells and Tregs (9). Mature types of mTECs express MHC molecules and co-stimulatory molecules essential for antigen presentation to developing T cells. In addition, mTECs secrete several types of chemokines (e.g., CCL19, CCL21, and CCL22) that attract T cells or dendritic cells in the medulla (2, 9). Moreover, a recent study has shown that the expression of CD70 in mTECs enhances the development and survival of Tregs via an interaction with its receptor, CD27, which is expressed on thymic T cells (5).

A key feature of mTECs is their ability to express hundreds of self-antigens that are normally expressed in a tissue-specific manner (TSAs) (6, 10). TSAs are processed and directly presented by mTECs or indirectly presented by thymic DCs receiving TSAs from mTECs (4, 7, 11–13). T cells that recognize TSAs with high avidity undergo apoptosis (so-called negative selection) or survive as regulatory T cells (4, 14). Many studies have suggested significant roles of mTEC-dependent self-tolerance in preventing the onset of some autoimmune diseases in humans. Expression of some TSAs requires a nuclear protein autoimmune regulator (AIRE), the dysfunctional mutations of which are responsible for an inherited human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (15, 16). Whereas the expression of AIRE mRNA is detected in different cell types, AIRE expression at the protein level is remarkably high in mTECs (17). A previous study using AIRE-deficient mice provided evidence that autoimmune, provoked by dysfunction of AIRE, is thymic stroma-dependent (18). In addition to APECED, recent studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the AIRE gene are associated with rheumatoid arthritis (19, 20). In addition to mutations in the AIRE gene, reduced expression of the muscle acetyl choline receptor (CHRNA1) was shown to be associated with the onset of myasthenia gravis (21). Moreover, impairment of the mTEC-dependent tolerance might explain the relationship between myocarditis and autoimmunity (22). These findings also imply that the onsets of various human autoimmune diseases could be related to dysregulation of mTEC-dependent tolerance. Interestingly, in addition to relationships with autoimmune diseases, recent studies have uncovered roles for mTEC-dependent T-cell tolerance in tumor tolerance (8, 23, 24).

Because expression of AIRE and TSAs is characteristic of mTEC, mTECs should harbor specific mechanisms to direct AIRE and TSA expression. Expression of TSAs appears to be correlated...
with the differentiation of mTECs. In this mini-review, we spe-
cially focus on molecular mechanisms regulating the expression
of AIRE and TSAs and the process of mTEC differen-
tiation.

DEVELOPMENT OF mTECs

Thymic epithelial cells are classified into mTECs and cortical
thymic epithelial cells (cTECs) (2). Several lines of evidence
indicate the existence of a bi-potent TEC progenitor capable
of differentiating into mTECs and cTECs in the fetal and adult
thymus (25–29). The bi-potent TEC progenitor seems to give rise
to each progenitor of mTECs and cTECs in the next stage (30,
31). Recent studies revealed that mTECs differentiate from prog-
enitors expressing cTEC-markers (32, 33). These data imply that
mechanisms determining the mTEC commitment suppress the
cTEC-driving program. However, master molecules that decide
the fate of the bi-potent TEC progenitor expressing cTEC-markers
to the mTEC lineage have not been determined yet.

Currently, mTECs are classified based on the expression of
MHC II, CD80, AIRE, and involucrin (Figure 1). mTECs (typ-
ically defined as CD45− EpCAM+ Ly51− and UEA-1+ by flow
cytometric analysis) in adult mice are divided into two sub-
populations, according to the expression levels of MHC II and
CD80 (34). mTECs expressing high levels of MHC II and CD80
(mTEC hi) express a more diverse set of TSAs than mTECs expressing
lower levels of MHC II and CD80 (mTEC lo) do (35). Moreover,
precursor-product relationship analysis has suggested that the
mTEC hi fraction can differentiate into mTEC lo (36, 37). There-
fore, the mTEC hi fraction would be the more mature type of mTEC
than mTEC lo.

The mTEC hi fraction is further separated on the basis of AIRE
expression (36, 38). Because previous studies have indi-
cated that the AIRE-expressing mTEC hi (AIRE+ mTEC hi) are
postmitotic and susceptible to apoptosis (36), AIRE+ mTEC hi
are postulated to be the more differentiated cell types than
AIRE-negative mTEC hi. mTECs expressing involucrin, a marker
of terminally differentiated keratinocytes, are considered to be
terminally differentiated mTECs that may be derived from
AIRE+ mTEC hi (39, 40).

REGULATION OF AIRE mRNA EXPRESSION

Molecular mechanisms regulating the expression of AIRE, which
are likely critical for preventing autoimmunity, remain unclear.
In the fetal thymus, expression of AIRE starts at embryonic day
14.5 (41). Consistently, mature mTECs emerge around this embry-
onic day (42). Thus, AIRE expression seems to be closely linked
to mTEC differentiation. However, because mTEC hi is separated
into AIRE+ and AIRE− fractions, the mTEC differentiation me-
chanism might be necessary but is not entirely sufficient for AIRE
expression.

A study using a luciferase reporter assay identified a plausi-
ble minimal promoter region of the AIRE gene (43). This region
contains binding sequences for Sp1, AP-1, NF-Y, and ETS fam-
ily of transcription factors. Indeed, luciferase reporter analysis
suggested regulation of the AIRE gene promoter by ETS family
proteins (44). However, in vivo genetic studies are necessary to
prove that these sequence-specific transcription factors are critical
for the regulation of AIRE expression.

The promoter region of AIRE contains a high ratio of CpG sites
(43). These CpG sites are hypomethylated in established cell lines
defective in the AIRE expression. A subsequent study showed that
these CpG sites are hypomethylated in isolated mTECs compared
to thymocytes (45). These findings suggest that DNA demethyla-
tion might be prerequisite for AIRE expression. However, interest-
ingly, hypomethylation was also observed in cTECs and thymoma
with defective AIRE expression (45). Hence, DNA hypomethyla-
tion appears to be required but not sufficient for inducing AIRE
expression.

Overall, AIRE expression seems to be regulated by combi-
nations of chromatin modification and sequence-specific tran-
scription factors. However, precise mechanisms and regulatory
molecules remain to be determined.

REGULATION OF TSA mRNA EXPRESSION

TSA expression appears to be regulated by complicated mecha-
nisms. Single-cell PCR analyses revealed a stochastic nature of TSA
expression in mTECs (38, 46). Each TSA is expressed in a subset of
mTECs (38, 46). The frequency of mTECs expressing a particular
TSA was different, depending on the TSA (38, 46). Interestingly,
various combinations of TSAs are expressed in individual mTECs
(38, 46). These studies suggest that regulatory mechanisms of TSA
expression in mTECs are different from those used in inherent
tissues.

Several studies suggest that TSA expressions are epigenetically
controlled. A comprehensive mRNA expression study revealed
that TSA gene loci tend to co-localize in chromosomal clusters
(35, 47). Moreover, genomic imprinting of the Igf2 gene, a
TSA, was lost in mTECs (35), implicating the involvement of
a DNA demethylation mechanism in TSA expression. Interestingly, another imprinted gene, Cdkn1c, was not affected. These data imply the existence of mTEC-specific mechanisms for demethylation of DNA.

Control of TSA gene expression by AIRE has been extensively studied (48–50). Several studies have revealed a function of AIRE as a transcription factor that directly promotes TSA expression (51, 52). Furthermore, AIRE binds to hypomethylated Histone 3 Lys 4 (H3K4) through its plant homology domain (53, 54). This finding suggests that AIRE modifies the chromatin structure in the TSA genes. AIRE also binds to DNA-PK (55–57), which functions in the repair of DNA-double strand breakage. A study using an mTEC cell line suggested that interactions of AIRE with H3K4 and DNA-PK are critical in recruiting AIRE to TSA gene loci and promoting TSA expression (57). Additionally, it was reported that AIRE interacts with P-TEFb, a component of the super elongation complex (58). It is generally accepted that transcription elongation, via the release of “paused” RNA polymerase II, is critical for the regulation of many genes (58, 59). AIRE may recruit P-TEFb to the TSA gene locus and promote elongation of the arrested TSA transcripts by releasing RNA polymerase II from the proximal promoter (60). Recent comprehensive analysis of mRNA transcripts in mTECs supports this mechanism (61). In addition to the TSA expression, the AIRE-dependent expression of some microRNAs (miRNAs) was recently revealed (62, 63). Consistently, genetic studies revealed important roles played by miRNA expressions in functions and maintenance of mTECs (63–65).

Compared to the mechanisms underlying Aire-dependent TSA expression, molecular mechanisms underlying Aire-independent TSA expression are less understood. As described above, whereas epigenetic regulations of TSA genes would be critical, mechanisms underlying epigenetic changes specific for mature mTECs remain unclear. Moreover, unidentified transcription factors may be involved in the promotion of Aire-independent TSA expressions.

EXTRACELLULAR SIGNALING TO PROMOTE DIFFERENTIATION OF mTECs EXPRESSING AIRE AND TSAs

Differentiation of TECs is well known to be correlated to differentiation of T cells in the thymus (so-called thymic cross-talk) (3). mTEC maturation was reported to be abolished in severe combined immunodeficiency (SCID) patients (66). This finding supports the idea that failure of the thymic cross-talk results in the onset of autoimmunity manifesting through inhibition of mTEC function. Interestingly, a recent study showed that administration of anti-CD3ε antibody ameliorated autoimmunity in leaky SCID model mice possibly through improvement of the thymic cross-talk (67).

Molecular basis of the thymic cross-talk in mTEC development has been reported. Several lines of evidence revealed that TNF family cytokines expressed in thymocytes and other cells of hematopoietic origin (2) and their receptors expressed in mTEC are critical for the thymic cross-talk. Briefly, signaling of TNF receptor family members, RANK, CD40, and lymphotixin-β receptor (LbR), play essential roles in the development of mTECs expressing Aire and TSAs. This topic has been summarized in a recent review (1).

DOWNSTREAM OF TNF RECEPTOR FAMILY SIGNALING

TNF receptor family signaling induces the activation of NF-κB and MAPK pathways (68). To date, the involvement of the MAPK pathway in the development of mTEC remains to be addressed. However, several lines of evidence have indicated that the NF-κB family plays a critical role in the development of mTECs expressing AIRE and TSAs.

NF-κB members are sequestered in the cytoplasm in an inactive state by the binding of the inhibitory protein IκB in resting cells (69–71). Lignations of receptors induce phosphorylation and subsequent degradation of IκB proteins, thereby leading to nuclear localization of NF-κB to activate transcription. Two distinct NF-κB activation pathways, the classical pathway and the non-classical pathway, are currently known (70–72) (Figure 2). The classical pathway is required in inflammatory responses and lymphocyte activation (71). On the other hand, the non-classical pathway mainly promotes development and architecture formation of lymphoid organs, including the thymus. In the non-classical pathway, receptor ligation induces accumulation of the NF-κB-inducing kinase (NIK), which is normally degraded by the ubiquitin-dependent proteasome in resting cells. Subsequently, accumulated NIK phosphorylates and activates IKKα, which induces partial degradation of p100 to p52. p100 preferentially binds to and sequesters RelB in the cytoplasm, and the partial degradation of p100 to p52 induces translocation of RelB and p52 as a heterodimer into the nucleus.

The requirement for NF-κB activation in the development of mTEC was initially identified by the analysis of RelB-deficient mice (73, 74). RelB-deficient mice showed severe reduction in medulla size, accompanied by a lack of UEA-1-positive mTECs. Consistently, the expression of AIRE was abolished in the RelB-deficient thymus (6, 41, 75). As expected, RelB-deficient mice showed severe autoimmune diseases. A recent study demonstrated that autoimmunity of RelB mice was due to the defect in thymic stroma function (6). Mice carrying a dysfunctional mutation, NIK (aly/aly), also showed a similar defect in mTEC development and autoimmune phenotypes (76–78). Whereas IKKδ-deficient mice die shortly after birth, neonatal IKKα-deficient mice and transplantation of IKKα-deficient thymic stroma indicates a requirement of IKKα in the development of mTECs (79, 80). mTEC development in p100-deficient mice is partially defective (81, 82), but this appears to be due to a partial rescue of p100 function by p105 (or its processed product, p50) because the double deficiencies of p100 and p105 resulted in severe defects in mTEC development, similar to the RelB- and NIK-mutant mice (83). Overall, these results support the idea that activation of the non-classical NF-κB pathway is essential for the development of mTECs.

TRAF6 is a signal transducer that mediates signaling from TNF receptor family members (84, 85). TRAF6-deficient mice exhibit severe autoimmune disease (86, 87). Additionally, recent studies suggest possible associations between SNPs of the TRAF6 gene with rheumatoid arthritis and systemic lupus erythematosus in humans (88, 89). Previous studies showed that TRAF6 promotes the development of mTECs expressing AIRE and TSAs, thereby suppressing autoimmunity (86). Moreover, RANK-mediated differentiation of mTECs requires TRAF6 in in vitro organ culture.
Imply a role for TRAF6-mediated activation of the classical NF-κB pathway in mTEC differentiation. Notably, TRAF6 is a signal transducer and activator of transcription (STAT) family member, which is involved in the NF-κB signaling cascade. This pathway mediates the expression of cytokines and chemokines that promote T cell differentiation and survival. In the context of mTECs, TRAF6 activation is critical for the expression of AIRE and TSAs, which are important for central tolerance and the establishment of regulatory T cells (Tregs).

CONCLUDING REMARKS

Whereas significant roles for NF-κB in signal activation of mTECs have been established, recent findings suggest that other signaling pathways, such as the JAK/STAT and PI3K/AKT pathways, also play crucial roles in mTEC development and function. The interplay between these pathways is complex and requires further investigation to fully understand the molecular mechanisms underlying mTEC differentiation.

ACKNOWLEDGMENTS

This work was supported by a grant from the Japanese Society for the Promotion of Science (Taishin Akiyama). Additional funding was provided by the Promotion of Science (Taishin Akiyama). The authors thank the reviewers for their valuable comments and suggestions.

REFERENCES

1. Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of regulatory T cells. Nat Immunol (2012) 3: 278-278. doi:10.1038/jimmunol.2012.00278

2. Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol (2012) 33:256-263. doi:10.1016/j.it.2012.03.005

3. Gill J, Malin M, Sutherland J, Gray D, Hollander G, Boyd R. Thymic generation and regeneration. Immunol Rev (2003) 195: 28-50. doi:10.1034/j.1600-065X.2003.00077.x

4. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol (2006) 24:571-606. doi:10.1146/annurev.immunol.23.021704.115601

5. Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, Xiao Y, et al. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med (2013) 210:715-28. doi:10.1084/jem.20121061

6. Cowan JE, Parnell SM, Nakamura K, Camaano JH, Lane PJ, Jenkinson EJ, et al. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J Exp Med (2013) 210:675-81. doi:10.1084/jem.20122070

7. Hinterberger M, Aichinger M, da Costa O, Voehringer D, Hofmann R, Klein L. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat Immunol (2010) 11:512-9. doi:10.1038/ni.1874

8. Malchow S, Leventhal D, Nishi S, Fischer BI, Shen L, Paner GP, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science (2013) 339:1219-24. doi:10.1126/science.1233913

9. Takahama Y. Journey through the thymus: stromal guides for T cell development and selection. Nat Rev Immunol (2006) 6:127-35. doi:10.1038/nri1781

10. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol (2001) 2:1032-9. doi:10.1038/nri721

11. Derbinski J, Kyewski B. How thymic antigen presenting cells sample the body’s self-antigens. Curr Opin Immunol (2010) 22:592-600. doi:10.1016/j.coi.2010.08.003

12. Guerder S, Viret C, Luche H, Arduin L, Malissen B. Differential processing of self-antigens by subsets of thymic stromal cells. Curr Opin Immunol (2012) 24: 99-104. doi:10.1016/j.coi.2012.01.008
13. Klein L, Hinterberger M, Wünscherberber M, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol (2009) 9:833–44. doi:10.1038/nri2669

14. Xiong Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol (2012) 4. doi:10.1101/chsperspect.a006957

15. Consortium 5-GA. An autoimmunne disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet (1997) 17:399–403. doi:10.1038/ng.1279

16. Nagamine K, Peterson P, Scott H, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet (1997) 17:393–8. doi:10.1038/ng.1277

17. Hubert FX, Kinkel SA, Webster KE, Cannon P, Creswell PE, Proietto AI, et al. A specific anti-Aire antibody reveals Aire expression is restricted to medullary thymic epithelial cells and not expressed in periphery. J Immunol (2008) 180:3824–32.

18. Anderson M, Venanzi E, Klein L, Chen Z, Berzins S, Turley S, et al. Projection of an immunologi- cal self shadow within the thymus by the Aire protein. Science (2002) 298:1395–401. doi:10.1126/science.1075958

19. Garcia-Lozano JR, Torres-Agrela B, Montes-Cano MA, Ortiz-Fernández L, Conde-Jaldón M, Teruel M, et al. Association of the AIRE gene with susceptibility to rheumatoid arthritis in a European population: a case control study. Arthritis Res Ther (2013) 15:R11. doi:10.1186/ar4141

20. Terao C, Yamada R, Ohmura K, Takahashi M, Kawaguchi T, Kochi Y, et al. Medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A (2008) 105:657–62. doi:10.1073/pnas.0707486105

21. Giraud M, Taubert R, Vandiedonck J, Sierro S, Djordjevic G, Seich N, Ueno T, Milton MK, Liston A, Lew AM, et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood (2006) 108:3777–85. doi:10.1182/blood-2006-02-004531

22. Zhai ML, Nagavalli A, Su MA. Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res (2013) 73:2104–16. doi:10.1158/0008-5472.CAN-12-3781

23. Trager U, Sierro S, Djordjevic G, Bouzo B, Khandwala S, Meloni A, et al. The immune response to melanoma is limited by thymic selection of self-antigens. PLoS ONE (2012) 7:e35005. doi:10.1371/journal.pone.0035005

24. Zhai ML, Nagavalli A, Su MA. Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res (2013) 73:2104–16. doi:10.1158/0008-5472.CAN-12-3781

25. Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC. Medullary thymic epithelial cells. An IRF8-binding promoter in thymic epithelial compartments is restricted to medullary thymic epithelial cells. J Exp Med (2005) 202:33–45. doi:10.1084/jem.20055671

26. Bleul CC, Corbeaux T, Reuter A, Fisch P, Montigas JS, Boehm T. Formation of a functional thymus initiated by a postnatal thymop-rogenitor cell. Nature (2006) 441:992–6. doi:10.1038/nature04850

27. Gill J, Malin M, Hollandar GA, Boyd R. Generation of a complete thymic microenvironment by MTSS2(+)- thymic epithelial cells. Nat Immunol (2002) 3:635–42. doi:10.1038/nmi812

28. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ, Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature (2006) 441:988–91. doi:10.1038/nature04813

29. Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell (2007) 129:523–36. doi:10.1016/j.cell.2007.02.045

30. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsutomo M, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol (2007) 8:304–11. doi:10.1038/nili458

31. Rodewald HR, Paul S, Haller C, Bortfeld R, Piperno-Neumann A, Kyewski B. Promiscuous gene expression in thymic epithelial cells. BMC Immunol (2012) 13:58. doi:10.1186/1471-2474-13-58

32. Wu G, Hirabayashi K, Sato S, Akiyama N, Akiyama T, Shiotaki K, et al. DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells. BMC Immunol (2012) 13:58. doi:10.1186/1471-2474-13-58

33. Zumer K, Saksela K, Peterlin BM, Wang J, Petersen P. The mechanism of tissue-restricted antigen gene expression by AIRE, the autoimmune regulator. Biochim Biophys Acta (2013) 1830:2479–82. doi:10.1016/j.bbamcr.2013.01.004

34. Ruan QG, Tung K, Eisenman D, TRA-1-81 and its coactivator mediate Aire-dependent thymic epithelial cell differentiation. J Biol Chem (2003) 278:19784–90. doi:10.1074/jbc.M204372000

35. Murumagi A, Svennvenn O, Peterson P. Ets transcription factors regulate AIRE gene promoter. Biochem Biophys Res Comm (2006) 348:768–74. doi:10.1016/j.bbrc.2006.07.135

36. Hofmann S, Yamanaka H, Ishii K, Yamanaka T, Aratani S, Jensen GB, et al. DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells. J Biol Chem (2003) 278:19784–90. doi:10.1074/jbc.M204372000

37. Murumagi A, Svennvenn O, Peterson P. Ets transcription factors regulate AIRE gene promoter. Biochem Biophys Res Comm (2006) 348:768–74. doi:10.1016/j.bbrc.2006.07.135

38. Kato T, Murumagi A, Kyewski B. Aire-mediating autoimmunity directs thymic epithelial cells to the heart in mice and humans. J Clin Investig (2011) 121:1561–73. doi:10.1172/JCI44583
with organ-specific autoimmunity. Proc Natl Acad Sci U S A (2008) 105:15587–83. doi:10.1073/pnas.0808470105

54. Org T, Chignola F, Hetényi C, Gae- tani M, Liiv I, Maran U. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep (2008) 9:379–86. doi:10.1038/embor.2008.11

55. Abramson J, Giraud M, Benoist C, Mathis D. Aire’s partners in the molecular control of immunological tolerance. Cell (2010) 140: 123–35. doi:10.1016/j.cell.2009.12.030

56. Liiv I, Rebane A, Org T, Kasani K, et al. DNA-PK contributes to the phosphoryla- tion of AIRE: importance in transcrip- tional activity. Biochim Bio-phys Acta (2008) 1783:74–83. doi:10.1016/j.bbamcr.2007.09.003

57. Zümer K, Low AK, Jiang H, Sak- sela K, Peterlin BM. Unmodified histone H3K4 and DNA-dependent protein kinase catalytic subunit autoregulate transcription of the murine autoimmune regulator gene in target cells. Mol Cell Biol (2012) 32:1354–62. doi:10.1128/MCB.00359-11

58. Luo Z, Lin C, Shaltiétard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol (2012) 13:543–7. doi:10.1038/nrm3417

59. Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell (2011) 145:502–11. doi:10.1016/j.cell.2011.04.021

60. Oven I, Bédicková N, Hohout J, Vauptová T, Naráz M, Peterlin BM. AIRE recruits P-TEFb for transcrip- tional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol (2007) 27:8815–23. doi:10.1128/MCB.01085-07

61. Giraud M, Yoshida H, Abramson I, Rahl PB, Young RA, Mathis D, et al. Aire unleashes stalled RNA polymerase II to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A (2010) 107:535–40. doi:10.1073/pnas.1113951109

62. Macedo C, Evangelista AF, Marques MM, Octacílio-Silva S, Donadi EA, Sakamoto-Hocio ET, et al. Autoim- mune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology (2013) 218:554–60. doi:10.1016/j.imbio.2012.06.013

63. Ucar O, Tykokinski LO, Dooley J, Liston A, Kyewski B. An evolution- arily conserved mutual interdepen- dence between Aire and microRNAs in promiscuous gene expression.
92. Alexandropoulos K, Danzl NM. Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. *Immunol Res* (2012) 54:177–90. doi:10.1007/s12026-012-8301-y

93. Alexandropoulos K, Baltimore D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. *Genes Dev* (1996) 10:1341–55. doi:10.1101/gad.10.11.1341

94. Ishino M, Ohba T, Sasaki H, Sasaki T. Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. *Oncogene* (1995) 11:2331–8.

95. Chin RK, Lo JC, Kim O, Blink SE, Christiansen PA, Peterson P, et al. Lymphotoxin pathway directs thymic Aire expression. *Nat Immunol* (2003) 4:1121–7. doi:10.1038/ni982

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 June 2013; paper pending published: 24 June 2013; accepted: 09 August 2013; published online: 26 August 2013.

Citation: Akiyama T, Shinzawa M, Qin J and Akiyama N (2013) Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. *Front. Immunol.* 4:249. doi: 10.3389/fimmu.2013.00249

This article was submitted to T Cell Biology, a section of the journal *Frontiers in Immunology*. Copyright © 2013 Akiyama, Shinzawa, Qin and Akiyama. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.