Small hyperbolic 3-manifolds with geodesic boundary

Roberto Frigerio Bruno Martelli Carlo Petronio

August 22, 2018

Abstract

We classify the orientable finite-volume hyperbolic 3-manifolds having non-empty compact totally geodesic boundary and admitting an ideal triangulation with at most four tetrahedra. We also compute the volume of all such manifolds, we describe their canonical Kojima decomposition, and we discuss manifolds having cusps.

The manifolds built from one or two tetrahedra were previously known. There are 151 different manifolds built from three tetrahedra, realizing 18 different volumes. Their Kojima decomposition always consists of tetrahedra (but occasionally requires four of them). And there is a single cusped manifold, that we can show to be a knot complement in a genus-2 handlebody. Concerning manifolds built from four tetrahedra, we show that there are 5033 different ones, with 262 different volumes. The Kojima decomposition consists either of tetrahedra (as many as eight of them in some cases), or of two pyramids, or of a single octahedron. There are 30 manifolds having a single cusp, and one having two cusps.

Our results were obtained with the aid of a computer. The complete list of manifolds (in SnapPea format) and full details on their invariants are available on the world wide web.

MSC (2000): 57M50 (primary), 57M20, 57M27 (secondary).

This paper is devoted to the class of all orientable finite-volume hyperbolic 3-manifolds having non-empty compact totally geodesic boundary and admitting a minimal ideal triangulation with either three or four but no fewer tetrahedra. We describe the theoretical background and experimental results of a computer program that has enabled us to classify all such manifolds. (The case of manifolds obtained from two tetrahedra was previously dealt with in [8]). We also provide an overall discussion of the most important features of all these manifolds, namely of:

• their volumes;
• the shape of their canonical Kojima decomposition;
• the presence of cusps.

These geometric invariants have all been determined by our computer program. The complete list of manifolds in SnapPea format and detailed information on the invariants is available from [19].

1 Preliminaries and statements

We consider in this paper the class \mathcal{H} of orientable 3-manifolds M having compact non-empty boundary ∂M and admitting a complete finite-volume hyperbolic metric with respect to which ∂M is totally geodesic. It is a well-known fact [2] that such an M is the union of a compact portion and some cusps based on tori, so it has a natural compactification obtained by adding some tori. The elements of \mathcal{H} are regarded up to homeomorphism, or equivalently isometry (by Mostow’s rigidity).

Candidate hyperbolic manifolds Let us now introduce the class $\tilde{\mathcal{H}}$ of 3-manifolds M such that:

• M is orientable, compact, boundary-irreducible and acylindrical;
• ∂M consists of some tori (possibly none of them) and at least one surface of negative Euler characteristic.

The basic theory of hyperbolic manifolds implies that, up to identifying a manifold with its natural compactification, the inclusion $\mathcal{H} \subset \tilde{\mathcal{H}}$ holds. We note that, by Thurston’s hyperbolization, an element of $\tilde{\mathcal{H}}$ actually lies in \mathcal{H} if and only if it is atoroidal. However we do not require atoroidality in the definition of $\tilde{\mathcal{H}}$, for a reason that will be mentioned later in this section and explained in detail in Section 2.

Let Δ denote the standard tetrahedron, and let Δ^* be Δ minus open stars of its vertices. Let M be a compact 3-manifold with $\partial M \neq \emptyset$. An ideal triangulation of M is a realization of M as a gluing of a finite number of copies of Δ^*, induced by a simplicial face-pairing of the corresponding Δ’s. We denote by C_n the class of all orientable manifolds admitting an ideal triangulation with n, but no fewer, tetrahedra, and we set:

$$\mathcal{H}_n = \mathcal{H} \cap C_n, \quad \tilde{\mathcal{H}}_n = \tilde{\mathcal{H}} \cap C_n.$$

We can now quickly explain why we did not include atoroidality in the definition of $\tilde{\mathcal{H}}$. The point is that there is a general notion [12] of complexity $c(M)$ for a compact 3-manifold M, and $c(M)$ coincides with the minimal number of tetrahedra in an ideal triangulation precisely when M is boundary-irreducible and acylindrical. This property makes it feasible to enumerate the elements of $\tilde{\mathcal{H}}_n$.

2
To summarize our definitions, we can interpret \mathcal{H}_n as the set of 3-manifolds which have complexity n and are hyperbolic with non-empty compact geodesic boundary, while $\tilde{\mathcal{H}}_n$ is the set of complexity-n manifolds which are only “candidate hyperbolic.”

Enumeration strategy The general strategy of our classification result is then as follows:

- We employ the technology of standard spines [12] (and more particularly o-graphs [1]), together with certain *minimality tests* (see Section 2 below), to produce for $n = 3, 4$ a list of triangulations with n tetrahedra such that every element of $\tilde{\mathcal{H}}_n$ is represented by some triangulation in the list. Note that the same element of $\tilde{\mathcal{H}}_n$ is represented by several distinct triangulations. Moreover, there could *a priori* be in the list triangulations representing manifolds of complexity lower than n, but the result of the classification itself actually shows that our minimality tests are sophisticated enough to ensure this does not happen;

- We write and solve the hyperbolicity equations (see [5] and Section 3 below) for all the triangulations, finding solutions in the vast majority of cases (all of them for $n = 3$);

- We compute the tilts (see [5, 15] and Section 3 again) of each of the geometric triangulations thus found, whence determining whether the triangulation (or maybe a partial assembling of the tetrahedra of the triangulation) gives Kojima’s canonical decomposition; when it does not, we modify the triangulation according to the strategy described in [5], eventually finding the canonical decomposition in all cases;

- We compare the canonical decompositions to each other, thus finding precisely which pairs of triangulations in the list represent identical manifolds; we then build a list of distinct hyperbolic manifolds, which coincides with \mathcal{H}_n because of the next point;

- We prove that when the hyperbolicity equations have no solution then indeed the manifold is not a member of \mathcal{H}_n, because it contains an incompressible torus (this is shown in Section 2).

Even if the next point is not really part of the classification strategy, we single it out as an important one:

- We compute the volume of all the elements of \mathcal{H}_n using the geometric triangulations already found and the formulae from [14].
One-edged triangulations Before turning to the description of our discoveries, we must mention another point. Let us denote by \(\Sigma_g \) the orientable surface of genus \(g \), and by \(\mathcal{K}(M) \) the blocks of the canonical Kojima decomposition of \(M \in \mathcal{H} \). We have introduced in [6] the class \(\mathcal{M}_n \) of orientable manifolds having an ideal triangulation with \(n \) tetrahedra and a single edge, and we have shown that for \(n \geq 2 \) and \(M \in \mathcal{M}_n \):

- \(M \) is hyperbolic with geodesic boundary \(\Sigma_n \);
- \(M \) has a unique ideal triangulation with \(n \) tetrahedra, which coincides with \(\mathcal{K}(M) \); moreover \(c(M) = n \) and \(\mathcal{M}_n = \{ M \in \tilde{\mathcal{H}}_n : \partial M = \Sigma_n \} \);
- the volume of \(M \) depends only on \(n \) and can be computed explicitly.

These facts imply in particular that \(\mathcal{M}_n \) is contained in \(\mathcal{H}_n \).

Results We can now state our main results, recalling first [8] that \(\mathcal{H}_1 = \emptyset \) and \(\mathcal{H}_2 = \mathcal{M}_2 \) has eight elements, and pointing out that all the values of volumes in our statements are approximate, not exact ones. More accurate approximations are available on the web [13]. We also emphasize that our results indeed have an experimental nature, but we have checked by hand a number of cases and always found perfect agreement with the results found by the computer.

Results in complexity 3 We have discovered that:

- \(\mathcal{H}_3 \) coincides with \(\tilde{\mathcal{H}}_3 \) and has 151 elements;
- \(\mathcal{M}_3 \) consists of 74 elements of volume 10.428602;
- all the 77 elements of \(\mathcal{H}_3 \setminus \mathcal{M}_3 \) have boundary \(\Sigma_2 \), and one of them also has one cusp.

Moreover the elements \(M \) of \(\mathcal{H}_3 \setminus \mathcal{M}_3 \) split as follows:

- 73 compact \(M \)'s with \(\mathcal{K}(M) \) consisting of three tetrahedra; vol(\(M \)) attains on them 15 different values, ranges from 7.107592 to 8.513926, and has maximal multiplicity nine, with distribution according to number of manifolds as shown in Table 3 (see the Appendix);
- three compact \(M \)'s with \(\mathcal{K}(M) \) consisting of four tetrahedra; they all have the same volume 7.758268;
- one non-compact \(M \); it has a single toric cusp, \(\mathcal{K}(M) \) consists of three tetrahedra, and vol(\(M \)) = 7.797637.
The cusped element of \mathcal{H}_3 turns out to be a very interesting manifold. In [7] we have analyzed all the Dehn fillings of its toric cusp, improving previously known bounds on the distance between non-hyperbolic fillings. In particular, we have shown that there are fillings giving the genus-2 handlebody, so the manifold in question is a knot complement, as shown in Fig. 1.

Results in complexity 4 We have discovered that:

- \mathcal{H}_4 has 5033 elements, and $\tilde{\mathcal{H}}_4$ and has 6 more;

- 5002 elements of \mathcal{H}_4 are compact; more precisely:
 - 2340 have boundary Σ_4 (i.e. they belong to \mathcal{M}_4);
 - 2034 have boundary Σ_3;
 - 628 have boundary Σ_2;

- 31 elements of \mathcal{H}_4 have cusps; more precisely:
 - 12 have one cusp and boundary Σ_3;
 - 18 have one cusp and boundary Σ_2;
 - one has two cusps and boundary Σ_2.

More detailed information about the volume and the shape of the canonical Kojima decomposition of these manifolds is described in Tables 1 and 2. In these tables each box corresponds to the manifolds M having a prescribed boundary and type of $\mathcal{K}(M)$. The first information we provide (in boldface) within the box is the number of distinct such M's. When all the M's in the box have the same volume, we indicate its value. Otherwise we indicate the minimum, the maximum, the number of different values, and the maximal multiplicity of the values of the volume function,
and we refer to one of the tables in the Appendix where more accurate information can be found. We emphasize here that, just as above, $\mathcal{K}(M)$ only describes the blocks of the Kojima decomposition, not the combinatorics of the gluing.

In addition to what is described in the tables, we have the following extra information on the geometric shape of $\mathcal{K}(M)$ when it is given by an octahedron:

- the group of 56 manifolds in Table 1 is built from an octahedron with all dihedral angles equal to $\pi/6$;
- the group of 14 manifolds in Table 1 is built from an octahedron with all dihedral angles equal to $\pi/3$;

	Σ_1	Σ_3	Σ_2	
4 tetra	2340	1936	555	
$\text{vol} = 14.238170$	$\min(\text{vol}) = 11.113262$	$\max(\text{vol}) = 12.903981$	$\min(\text{vol}) = 7.378628$	$\max(\text{vol}) = 10.292422$
5 tetra	42	41		
$\text{vol} = 11.796442$	$\min(\text{vol}) = 8.511458$	$\max(\text{vol}) = 9.719900$	$\min(\text{vol}) = 8.511458$	$\max(\text{vol}) = 9.719900$
6 tetra		3		
		$\text{vol} = 8.297977$		
8 tetra		3		
		$\text{vol} = 8.572927$		
1 octa		56	14	
(regular)	$\text{vol} = 11.448776$	$\text{vol} = 9.415842$		
1 octa				
(non-reg)				
2 square				
pyramids				

Table 1: Number of compact elements of \mathcal{H}_4, subdivided according to the boundary (columns) and shape of the canonical Kojima decomposition (rows); 'tetra' and 'octa' mean 'tetrahedron' and 'octahedron' respectively, and 'square pyramid' means 'pyramid with square basis.'
• the group of 8 manifolds in Table 1 is built from an octahedron with three dihedral angles $2\pi/3$ along a triple of pairwise disjoint edges, and two more complicated angles (one repeated 3 times, one 6 times).

A careful analysis of the values of volumes found leads to the following consequences:

Corollary 1.1. For $n = 3, 4$, the maximum of the volume on \mathcal{H}_n is attained at the elements of \mathcal{M}_n.

Remark 1.2. With the only exceptions discussed below in Remarks 1.4 and 1.5, if two manifolds in $\mathcal{H}_3 \cup \mathcal{H}_4$ have the same volume then they also have the same complexity, boundary, and number of cusps. Moreover, they typically also have the same geometric shape of the blocks of the Kojima decomposition (but of course not the same combinatorics of gluings).

Remark 1.3. There are 280 distinct values of volume we have found in our census, and the vast majority of them correspond to more than one manifold. As a matter of fact, only 25 values are attained just once: 22 are in Tables 6 and 7, two in Table 9, and one is the volume of the cusped element of \mathcal{H}_3.

Remark 1.4. As stated above, there are three elements of \mathcal{H}_3 with canonical decomposition made of four tetrahedra. The set of geometric shapes of these four tetrahedra is actually the same in all three cases, and it turns out that the same tetrahedra can also be glued to give five different elements of \mathcal{H}_4. This gives the only example we have of elements \mathcal{H}_3 having the same volume as elements of \mathcal{H}_4. The volume in question is 7.758268.

	1 cusp, Σ_3	1 cusp, Σ_2	2 cusps, Σ_2
4 tetra	$\mathbf{12}$	$\mathbf{16}$	1
vol = 11.812681	min(vol) = 8.446655	max(vol) = 9.774939	vol = 9.134475
2 square pyramids		vol = 8.681738	

Table 2: Number of cusped elements of \mathcal{H}_4, subdivided according to cusps and boundary (columns), and the shape of the canonical Kojima decomposition (rows).
Remark 1.5. The double-cusped manifold in H_4 has the same volume 9.134475 as two of the single-cusped ones (see Table 2), and it is probably worth mentioning a heuristic explanation for this fact. Recall first that an ideal triangulation of a manifold induces a triangulation of the basis of the cusps. For 28 of the single-cusped manifolds in H_4 this triangulation involves two triangles, but for two of them it involves four, just as it does with the double-cusped manifold (both tori contain two triangles). In addition, the geometric shapes of the four triangles are the same in all three cases. In other words, one sees here that four Euclidean triangles can be used to build either two “small” Euclidean tori or a single “big” Euclidean torus (in two different ways). So, in some sense, the three manifolds in question have the same “total cuspidal geometry” (even if two manifolds have one cusp and one has two). This phenomenon already occurs in the case of manifolds without boundary [18], and also in this case leads to equality of volumes. In the present case equality is also explained by the fact that the three manifolds in question have Kojima decomposition with the same geometric shape of the blocks. In fact, each of them is the gluing of four isometric partially truncated tetrahedra with three dihedral angles $\pi/3$ and three $\pi/6$.

The next information may also be of some interest:

Remark 1.6. We will show below that the six manifolds in $\tilde{H}_4 \setminus H_4$ split along an incompressible torus into two blocks, one homeomorphic to the twisted interval bundle over the Klein bottle and the other one to the cusped manifold that belongs to H_3. These blocks give the JSJ decomposition of the manifolds involved. We will also show that the manifolds are indeed distinct by analyzing the gluing matrix of the JSJ decomposition.

Remark 1.7. As an ingredient of our arguments, we have completely classified the combinatorially inequivalent ways of building an orientable manifold by gluing together in pairs the faces of an octahedron. This topic was already mentioned in [14] as an example of how difficult classifying 3-manifolds could be (note that there are as many as 8505 gluings to be compared for combinatorial equivalence). For instance, the group of 56 manifolds that appears in Table 4 arises from the gluings of the octahedron such that all the edges get glued together. The groups of 14 and 8 arise similarly, requiring two edges and restrictions on their valence.

Remark 1.8. We have never included information about homology, because this invariant typically gives a much coarser information than the geometric invariants we have computed (only 14 different homology groups arise for our 5184 manifolds). We note however that it occasionally happens that two manifolds having the same complexity, boundary, volume, and geometric blocks of the canonical decomposition...
have different homology. The homology groups we have found are $\mathbb{Z}^2 \oplus \mathbb{Z}/n$ for $n = 1, \ldots, 8$, $\mathbb{Z}^3 \oplus \mathbb{Z}/n$ for $n = 1, 2, 3, 5$, \mathbb{Z}^4, and $\mathbb{Z}^2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$.

Remark 1.9. Even if we have not yet introduced the hyperbolicity equations that we use to find the geometric structures, we point out a remarkable experimental discovery. The equations to be used in the cusped case are qualitatively different (and a lot more complicated) than those to be used in the compact case. However, for all the 32 cusped manifolds of the census, the hyperbolic structure was first found as a limit of approximate solutions of the compact equations.

Remark 1.10. For each M in $\mathcal{H}_3 \cup \mathcal{H}_4$, each of the (often multiple) minimal triangulations of M has been found to be geometric, i.e. the corresponding set of hyperbolicity equations has been proved to have a genuine solution. This strongly supports the conjecture that “minimal implies geometric,” that one could already guess from the cusped case [18].

Remark 1.11. For each M in $\mathcal{H}_3 \cup \mathcal{H}_4$, the Kojima decomposition has been obtained by merging some tetrahedra of a geometric triangulation of M. It follows that the Kojima decomposition of every manifold in $\mathcal{H}_3 \cup \mathcal{H}_4$ admits a subdivision into tetrahedra.

2 Spines and the enumeration method

If M is a compact orientable 3-manifold, let $t(M)$ be the minimal number of tetrahedra in an ideal triangulation of either M, when $\partial M \neq \emptyset$, or M minus any number of balls, when M is closed. The function t thus defined has only one nice property: it is finite-to-one. In [12] Matveev has introduced another function c, which he called *complexity*, having many remarkable properties not satisfied by t. For instance, c is additive on connected sums, and it does not increase when cutting along an incompressible surface. Moreover it was proved in [12, 13] that c equals t on the most interesting 3-manifolds, namely $c(M) = t(M)$ when M is ∂-irreducible and acylindrical, and $c(M) < t(M)$ otherwise. Therefore, if $\chi(M) < 0$, we have $c(M) = t(M)$ if and only if $M \in \tilde{\mathcal{H}}$.

Definition of complexity A compact 2-dimensional polyhedron P is called *simple* if the link of every point in P is contained in the 1-skeleton $\Delta^{(1)}$ of the tetrahedron. A point, a compact graph, a compact surface are thus simple. Three important possible kinds of neighbourhoods of points are shown in Fig. 2. A point having the whole of $\Delta^{(1)}$ as a link is called a *vertex*, and its regular neighbourhood is as shown in Fig. 2(3). The set $V(P)$ of the vertices of P consists of isolated points, so it
is finite. Points, graphs and surfaces of course do not contain vertices. A compact polyhedron P contained in the interior of a compact manifold M with $\partial M \neq \emptyset$ is a spine of M if M collapses onto P, i.e. if $M \setminus P \cong \partial M \times [0,1)$. The complexity $c(M)$ of a 3-manifold M is now defined as the minimal number of vertices of a simple spine of either M, when $\partial M \neq \emptyset$, or M minus some balls, when M is closed.

Since a point is a spine of the ball, a graph is a spine of a handlebody, and a surface is a spine of an interval bundle, and these spines do not contain vertices, the corresponding manifolds have complexity zero. This shows that c is not finite-to-one on manifolds containing essential discs or annuli.

In general, to compute the complexity of a manifold one must look for its minimal spines, i.e. the simple spines with the lowest number of vertices. It turns out [12, 13] that M is ∂-irreducible and acylindrical if and only if it has a minimal spine which is standard. A polyhedron is standard when every point has a neighbourhood of one of the types (1)-(3) shown in Fig. 2, and the sets of such points induce a cellularization of P. That is, defining $S(P)$ as the set of points of type (2) or (3), the components of $P \setminus S(P)$ should be open discs – the faces – and the components of $S(P) \setminus V(P)$ should be open segments – the edges.

The spines we are interested in are therefore standard and minimal. A standard spine is naturally dual to an ideal triangulation of M, as suggested in Fig. 3. Moreover, by definition of $\tilde{\mathcal{H}}$ and the results of Matveev just cited, a manifold M with $\chi(M) < 0$ belongs to $\tilde{\mathcal{H}}$ if and only if it has a standard minimal spine. These two facts imply the assertion already stated that $c = t$ on $\tilde{\mathcal{H}}$ and $c < t$ outside $\tilde{\mathcal{H}}$ on manifolds with negative χ.

Enumeration A naive approach to the classification of all manifolds in $\tilde{\mathcal{H}}_n$ for a fixed n would be as follows:

1. Construct the finite list of all standard polyhedra with n vertices that are spines of some orientable manifold (each such polyhedron is the spine of a unique manifold);
Figure 3: Duality between ideal triangulations and standard spines.

Figure 4: Moves on simple spines.

2. Check which of these spines are minimal, and discard the non-minimal ones;

3. Compare the corresponding manifolds for equality.

Step (1) is feasible (even if the resulting list is very long), but step (2) is not, because there is no general algorithm to tell if a given spine is minimal or not. In our classification of $\tilde{\mathcal{H}}_3$ and $\tilde{\mathcal{H}}_4$ we have only performed some minimality tests, and we have actually used them during the construction of the list, to cut the “dead branches” at their bases and hence get not too huge a list. Our tests are based on the moves shown in Fig. 4, which are easily seen to transform a spine of a manifold into another spine of the same manifold. Namely, we have used the following fact:

- If a spine P of the list transforms into another one with less than n vertices via a combination of the moves of Fig. 4, then P is not minimal so it can be discarded.

Remark 2.1. Starting from a standard spine, move (1) of Fig. 4 always leads to
a simple but non-standard spine, and move (2) also does on some spines, whereas moves (3) and (4) always give standard spines. In particular, only moves (3) and (4) have counterparts at the level of triangulations. This extra flexibility of simple spines compared to triangulations is crucial for the enumeration.

Having obtained a list of candidate minimal spines with n vertices, we conclude the classification of $\tilde{\mathcal{H}}_n$ for $n = 3, 4$ as follows:

- For each spine in the list we write and try to solve numerically the hyperbolicity equations, and if we find a solution we compute the canonical Kojima decomposition, as discussed in Section 3. Solutions are found in all cases for $n = 3$ and in all but 6 cases for $n = 4$. All 6 non-hyperbolic spines contain Klein bottles, so the corresponding manifolds cannot be hyperbolic;

- Comparing the canonical decompositions of the hyperbolic manifolds thus found and making sure they do not belong to \mathcal{H}_m for $m < n$, we classify \mathcal{H}_n. This gives $\tilde{\mathcal{H}}_3 = \mathcal{H}_3$ and $\tilde{\mathcal{H}}_4$;

- We show that the 6 non-hyperbolic spines give distinct manifolds whose complexity cannot be less than 4, proving that $\tilde{\mathcal{H}}_4 \setminus \mathcal{H}_4$ contains 6 manifolds.

The rest of this section is devoted to proving the last step and the assertions of Remark 1.6.

Classification of $\tilde{\mathcal{H}}_4 \setminus \mathcal{H}_4$. To analyze the 6 non-hyperbolic spines with 4 vertices we need more information on the cusped element M of \mathcal{H}_3. Its unique minimal spine P (described in Fig. 5 left) has two faces, one of which, denoted by F, is an open hexagon whose closure in P is a torus T. Since a neighbourhood of T in P is as in Fig. 5 right, $P \setminus F$ is incident to T on one side. Moreover the cusp of M lies on
the other side of T, so T can be viewed as the torus boundary component of the compactification of M.

Let us now consider the polyhedron Q of Fig. 6, that one easily sees to be a spine of the twisted interval bundle $K \times I$ over the Klein bottle. Note also that Q has a natural θ-shaped boundary ∂Q (a graph with two vertices and three edges) that we can assume to lie on $\partial(K \times I)$. Now, if P and F are those of Fig. 6, $P \setminus F$ also has a θ-shaped boundary, and it turns out that all the 6 non-hyperbolic candidate minimal spines with 4 vertices have the form $(P \setminus F) \cup \psi Q$, for some homeomorphism $\psi : \partial Q \to \partial(P \setminus F)$. It easily follows that the associated manifold is $M \cup \Psi(K \times I)$ where $\Psi : \partial(K \times I) \to T$ is the only homeomorphism extending ψ.

Let us now choose a homology basis on $\partial(K \times I)$ so that the three slopes contained in ∂Q are $0, 1, \infty \in \mathbb{Q} \cup \{\infty\}$. Doing the same on T we see that Ψ must map $\{0, 1, \infty\}$ to itself, so its matrix in $\text{GL}_2(\mathbb{Z})$ must be one of the following 12 ones:

\[
\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pm \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \pm \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix},
\]
\[
\pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \pm \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \quad \pm \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.
\]

Moreover the 6 spines in question realize up to sign all these matrices. Now the JSJ decomposition of $M \cup \Psi(K \times I)$ consists of M and $K \times I$, so $M \cup \Psi(K \times I)$ is classified by the equivalence class of Ψ under the action of the automorphisms of M and $K \times I$. But M has no automorphisms, and it is easily seen that the only automorphism of $K \times I$ acts as minus the identity on $\partial(K \times I)$. Therefore the 6 spines represent different manifolds. Moreover they are ∂-irreducible, acylindrical, and non-hyperbolic, so they cannot belong to \widetilde{H}_m for $m<4$, and the classification is complete.
3 Hyperbolicity equations and the tilt formula

In this section we recall how an ideal triangulation can be used to construct a hyperbolic structure with geodesic boundary on a manifold, and how an ideal triangulation can be promoted to become the canonical Kojima decomposition of the manifold.

We first treat the compact case and then sketch the variations needed for the case where also some cusps exist. For all details and proofs (and for some very natural terminology that we use here without giving actual definitions) we address the reader to [5].

Moduli and equations The basic idea for constructing a hyperbolic structure via an ideal triangulation is to realize the tetrahedra as special geometric blocks in \mathbb{H}^3 and then require that the structures match when the blocks are glued together. To describe the blocks to be used we first define a truncated tetrahedron Δ^* as a tetrahedron minus open stars of its vertices. Then we call hyperbolic truncated tetrahedron a realization of Δ^* in \mathbb{H}^3 such that the truncation triangles and the lateral faces of Δ^* are geodesic triangles and hexagons respectively, and the dihedral angle between a triangle and a hexagon is always $\pi/2$. Now one can show that:

- A hyperbolic structure on a combinatorial truncated tetrahedron is determined by the 6-tuple of dihedral angles along the internal edges;
- The only restriction on this 6-tuple of positive reals comes from the fact that the angles of each of the four truncation triangles sum up to less than π;
- The lengths of the internal edges can be computed as explicit functions of the dihedral angles;
- A choice of hyperbolic structures on the tetrahedra of an ideal triangulation of a manifold M gives rise to a hyperbolic structure on M if and only if all matching edges have the same length and the total dihedral angle around each edge of M is 2π.

Given a triangulation of M consisting of n tetrahedra one then has the hyperbolicity equations: a system of $6n$ equations with unknown varying in an open set of \mathbb{R}^{6n}. We have solved these equations using Newton’s method with partial pivoting, after having explicitly written the derivatives of the length function.

Canonical decomposition Epstein and Penner [3] have proved that cusped hyperbolic manifolds without boundary have a canonical decomposition, and Kojima [9, 10] has proved the same for hyperbolic 3-manifolds with non-empty geodesic boundary. This gives the following very powerful tool for recognizing manifolds: M_1 and
are isometric (or, equivalently, homeomorphic) if and only if their canonical decompositions are combinatorially equivalent. We have always checked equality and inequality of the manifolds in our census using this criterion, and we have proved that the cusped element of H_3 has no non-trivial automorphism by showing that its canonical decomposition has no combinatorial automorphism.

Before explaining the lines along which we have found the canonical decomposition of our manifolds, let us spend a few more words on the decomposition itself. In the cusped case its blocks are ideal polyhedra, whereas in the geodesic boundary case they are hyperbolic truncated polyhedra (an obvious generalization of a truncated tetrahedron). In both cases the decomposition is obtained by projecting first to H_3 and then to the manifold M the faces of the convex hull of a certain family P of points in Minkowsky 4-space. In the cusped case these points lie on the light-cone, and they are the duals of the horoballs projecting in M to Margulis neighbourhoods of the cusps. In the geodesic boundary case the points lie on the hyperboloid of equation $\|x\|^2 = +1$, and they are the duals of the hyperplanes giving $\partial \tilde{M}$, where $\tilde{M} \subset H_3$ is a universal cover of M.

Tilts Assume M is a hyperbolic 3-manifold, either cusped without boundary or compact with geodesic boundary, and let a geometric triangulation T of M be given. One natural issue is then to decide if T is the canonical decomposition of M and, if not, to promote T to become canonical. These matters are faced using the tilt formula \[\text{[17, 15]},\] that we now describe.

If σ is a d-simplex in T, the ends of its lifting to H^3 determine (depending on the nature of M) either $d + 1$ Margulis horoballs or $d + 1$ components of $\partial \tilde{M}$, whence $d + 1$ points of P. Now let two tetrahedra Δ_1 and Δ_2 share a 2-face F, and let $\tilde{\Delta}_1$, $\tilde{\Delta}_2$ and \tilde{F} be liftings of Δ_1, Δ_2 and F to H^3 such that $\tilde{\Delta}_1 \cap \tilde{\Delta}_2 = \tilde{F}$. Let \mathcal{F} be the 2-subspace in Minkowsky 4-space that contains the three points of P determined by \tilde{F}. For $i = 1, 2$ let $\Delta_i^{(F)}$ be the half-3-subspace bounded by \mathcal{F} and containing the fourth point of P determined by $\tilde{\Delta}_i$. Then one can show that T is canonical if and only if, whatever F, Δ_1, Δ_2, the convex hull of the half-3-subspaces $\Delta_1^{(F)}$ and $\Delta_2^{(F)}$ does not contain the origin of Minkowsky 4-space, and the half-3-subspaces themselves lie on distinct 3-subspaces. Moreover, if the first condition is met for all triples F, Δ_1, Δ_2, the canonical decomposition is obtained by merging together the tetrahedra along which the second condition is not met.

The tilt formula defines a real number $t(\Delta, F)$ describing the “slope” of $\Delta^{(F)}$. More precisely, one can translate the two conditions of the previous paragraph into the inequalities $t(\Delta_1, F) + t(\Delta_2, F) \leq 0$ and $t(\Delta_1, F) + t(\Delta_2, F) \neq 0$ respectively. Since we can compute tilts explicitly in terms of dihedral angles, this gives a very efficient criterion to determine whether T is canonical or a subdivision of the canon-
ical decomposition. Even more, it suggests where to change T in order to make it more likely to be canonical, namely along 2-faces where the total tilt is positive. This is achieved by 2-to-3 moves along the offending faces, as discussed in \[5\]. We only note here that the evolution of a triangulation toward the canonical decomposition is not quite sure to converge in general, but it always does in practice, and it always did for us. We also mention that our computer program is only able to handle triangulations: whenever some mixed negative and zero tilts were found, the canonical decomposition was later worked out by hand.

Cusped manifolds with boundary When one is willing to accept both compact geodesic boundary and toric cusps (but not annular cusps) the same strategy for constructing the structure and finding the canonical decomposition applies, but many subtleties and variations have to be taken into account. Let us quickly mention which.

Moduli. To parametrize tetrahedra one must consider that if a vertex of some Δ lies in a cusp then the corresponding truncation triangle actually disappears into an ideal vertex (a point of $\partial \mathbb{H}^3$). At the level of moduli this translates into the condition that the triangle be Euclidean, \textit{i.e.} that its angles sum up to precisely π.

Equations. If an internal edge ends in a cusp then its length is infinity, so some of the length equations must be dismissed when there are cusps. On the other hand, when an edge is infinite at both ends, one must make sure that the gluings around the edge do not induce a sliding along the edge. This translates into the condition that the \textit{similarity moduli} of the Euclidean triangles around the edge have product 1. This ensures consistency of the hyperbolic structure, but one still has to impose completeness of cusps. Just as in the case where there are cusps only, this amounts to requiring that the similarity tori on the boundary be Euclidean, which translates into the \textit{holonomy equations} involving the similarity moduli.

Canonical decomposition. When there are cusps, the set of points \mathcal{P} to take the convex hull of consists of the duals of the planes in $\partial \tilde{M}$ and of some points on the light-cone dual to the cusps. The precise discussion on how to choose these extra points is too complicated to be reproduced here (see \[5\]), but the implementation of the choice was actually very easy in the (not many) cusped members of our census.

The computation of tilts and the discussion on how to find the canonical decomposition are basically unaffected by the presence of cusps.
Appendix: Tables of volumes

Table 3: Number of manifolds per value of volume for the compact elements of \(H_3 \) with boundary of genus 2 and canonical decomposition into three tetrahedra.

Table 4: Number of manifolds per value of volume for compact elements of \(H_4 \) with boundary \(\Sigma_3 \) and canonical decomposition into four tetrahedra – first part.
\(c(M) = 4, M \text{ compact, } \partial M = \Sigma_3, \quad \mathcal{K}(M) = 4 \text{ tetrahedra, } \text{vol}(M) > 12.75\)

Table 5: Number of manifolds per value of volume for compact elements of \(\mathcal{H}_4\) with boundary \(\Sigma_3\) and canonical decomposition into four tetrahedra – second part. Note the changes of scale.

\[\begin{array}{c|c|c|c|c|c|c}
\text{vol} & 12.75 & 12.775 & 12.8 & 12.825 & 12.85 & 12.875 & 12.9 \\
\hline
\# & & & & & & & \\
\end{array}\]

\(c(M) = 4, M \text{ compact, } \partial M = \Sigma_2, \quad \mathcal{K}(M) = 4 \text{ tetrahedra, } \text{vol}(M) < 9.9\)

Table 6: Number of manifolds per value of volume for compact elements of \(\mathcal{H}_4\) with boundary \(\Sigma_2\) and canonical decomposition into four tetrahedra – first part.

\[\begin{array}{c|c|c|c|c|c|c|c}
\text{vol} & 7.5 & 8 & 8.5 & 9 & 9.5 & \quad \\
\hline
\# & & & & & & & \\
\end{array}\]
c(M) = 4, M compact, ∂M = Σ₂, K(M) = 4 tetrahedra, vol(M) > 9.9

Table 7: Number of manifolds per value of volume for compact elements of H₄ with boundary Σ₂ and canonical decomposition into four tetrahedra – second part. Note the change of scale on volumes.

c(M) = 4, M compact, ∂M = Σ₂, K(M) = 5 tetrahedra

Table 8: Number of manifolds per value of volume for compact elements of H₄ with boundary Σ₂ and canonical decomposition into five tetrahedra.
\[c(M) = 4, \ M \ \text{one-cusped}, \ \partial M = \Sigma_2, \ K(M) = 4 \ \text{tetrahedra} \]

Table 9: Number of manifolds per value of volume for one-cusped elements of \(H_4 \) with boundary \(\Sigma_2 \) and canonical decomposition into four tetrahedra.

References

[1] R. Benedetti – C. Petronio, *A finite graphic calculus for 3-manifolds*, Manuscripta Math. 88 (1995), 291-310.

[2] P. J. Callahan, M. V. Hildebrandt, J. R. Weeks, *A census of cusped hyperbolic 3-manifolds. With microfiche supplement*, Math. Comp. 68 (1999), 321-332.

[3] D. B. A. Epstein, R. C. Penner, *Euclidean decompositions of noncompact hyperbolic manifolds*, J. Differential Geom. 27 (1988), 67-80.

[4] A. Fomenko – S. V. Matveev, “Algorithmic and Computer Methods for Three-Manifolds,” Mathematics and its Applications, Vol. 425, Kluwer Academic Publishers, Dordrecht, 1997.

[5] R. Frigerio – C. Petronio, *Construction and recognition of hyperbolic 3-manifolds with geodesic boundary*, math.GT/0109012.

[6] R. Frigerio – B. Martelli – C. Petronio, *Complexity and Heegaard genus of an infinite class of hyperbolic 3-manifolds*, math.GT/0206156, to appear in Pacific J. Math.

[7] R. Frigerio – B. Martelli – C. Petronio, *Dehn filling of cusped hyperbolic manifolds with geodesic boundary*, in preparation.

[8] M. Fujii, *Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra*, Tokyo J. Math. 13 (1990), 353-373.
[9] S. KOJIMA, *Polyhedral decomposition of hyperbolic manifolds with boundary*, Proc. Work. Pure Math. 10 (1990), 37-57.

[10] S. KOJIMA, *Polyhedral decomposition of hyperbolic 3-manifolds with totally geodesic boundary*, “Aspects of low-dimensional manifolds, Kinokuniya, Tokyo”, Adv. Stud. Pure Math. 20 (1992), 93-112.

[11] B. MARTELLI – C. PETRONIO, *3-manifolds up to complexity 9*, Experiment. Math. 10 (2001), 207-236.

[12] S. V. MATVEEV, *Complexity theory of three-dimensional manifolds*, Acta Appl. Math. 19 (1990), 101-130.

[13] S. V. MATVEEV, *Computer recognition of three-manifolds*, Experiment. Math. 7 (1998), 153-161.

[14] W. P. THURSTON, “The geometry and topology of 3-manifolds,” Princeton, 1978.

[15] A. USHIJIMA, *The tilt formula for generalized simplices in hyperbolic space*, Discrete Comput. Geom. 28 (2002), 19-27.

[16] A. USHIJIMA, *A volume formula for generalized hyperbolic tetrahedra*, preprint, 2002.

[17] J. R. WEEKS, *Convex hulls and isometries of cusped hyperbolic 3-manifolds*, Topology Appl. 52 (1993), 127-149.

[18] J. R. WEEKS, *SnapPea*, The hyperbolic structures computer program, available from www.northnet.org/weeks.

[19] http://www.dm.unipi.it/~pages/petronio/

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56127 Pisa, Italy frigerio@sns.it

Dipartimento di Matematica, Via F. Buonarroti 2, 56127 Pisa, Italy martelli@mail.dm.unipi.it

Dipartimento di Matematica Applicata, Via Bonanno Pisano 25B, 56126 Pisa, Italy petronio@dm.unipi.it