PREDICTORS OF GOOD GLYCEMIC CONTROL AMONG TYPE II DIABETES PATIENTS IN PALESTINE

RAMI SALEM MOSLEH1*, NOORIZAN ABD. AZIZ2, Salmiah Mohd Ali1, Mohamed Mansor Manan1, Sa’ed Zyoud1, Ismail Mohd Shah1, Yazun Bashir Jarrar2

1Department of Pharmacy Practice, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), UiTM Puncak Alam, 43600 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia. 2College of Pharmacy, Al-Zaytoonah University, Amman, Jordan. Email: rami_mosleh123@hotmail.com

Received: 28 April 2017, Revised and Accepted: 06 June 2017

ABSTRACT

Objectives: The aim of this study is to assess glycemic control and its relationship with patient characteristics, health-care system factors, and self-care management in type II diabetes patients.

Methods: A retrospective cross-sectional study was conducted among 330 type II diabetes patients who met the inclusion criteria and whose medical records covered a period of 1 year. Data concerning patient characteristics, health-care system factors, self-care management, and available last reading of hemoglobin A1c (HbA1c) were collected through personal interviews and a medical records' review using structured questionnaires and data collection forms. Good glycemic control was defined as HbA1c ≤7%. To assess the results, the Statistical Package for Social Sciences (version 16) was used to undertake descriptive, univariate, and multivariate analyses.

Results: The mean±standard deviation age was 60±9.7 years. More than half of the participants were male (51.2%), and the majority had additional chronic diseases (88.5%). Of the total 271 participants whose HbA1c levels have been monitored, 16.7% had good glycemic control. Multivariate analysis showed that unemployment was significantly related to a decreased odds of good glycemic control (odds ratio=0.34; 95% confidence interval=0.12-0.98; p<0.05).

Conclusion: The study noted that the proportion of patients with good glycemic control was low, a result comparable to studies from many countries. Further investigation and improvement of inappropriate health-care system factors and self-care management together with educational programs that emphasize the importance of self-care management and the health-care providers' role would be of great benefit in glycemic control.

Keywords: Hemoglobin A1c, Glycemic control, Type II diabetes, Palestine.

INTRODUCTION

The health-care resources limitations and availability in troubled countries such as Palestine, in addition to the need for efficient scarce resources use, have led to the diabetes prevalence which is high in Palestine and expected to increase further in future [1] as demand for clinical management, treatment, and comprehensive care rises. Diabetes is a costly disease to treat, especially in Palestine where its control and prevention resources are limited. Thus, there is a need for Palestinian authorities and organizations to track not only the disease but also the consequent economic burden placed on their society. The high diabetes incidence in Palestine is affecting the most productive age groups and is associated with significant morbidity, mortality, and economic consequences. To address this, the Palestinian ministry of health has, since 1998, developed strategies to enhance the management and treatment of diabetes in its centers and hospitals [2]. Persistent hyperglycemia is the main feature of diabetes [3]. Patients with diabetes are prone to consequences in both short-term and long-term diabetic complications. This makes diabetes health-care service more complicated and difficult to evaluate than any other diseases because the condition needs long-term assessment and evaluation to guarantee an appropriate health-care service. Thus, the main aim of management and treatment of type II diabetes is to lower fasting blood glucose to near normal levels, to prevent or at least delay the occurrence of diabetic complications. This can reduce the enormous economic costs, but in order to do so, it is very important for those in charge of diabetes primary health-care centers to ensure early diagnosis of diabetes and take into account patient education and regular follow-up through a well-organized surveillance system [4]. To achieve this, they need to adopt a conceptual model for examining health-care services such as Donabedian’s framework [5].

Three categories of Donabedian’s framework, namely, structure, process, and outcomes of care can draw information about health-care services. Structure describes how well a program is designed, including hospital buildings, scientific disciplines for health-care professionals, financing, and equipment. The process of care describes how well a program is implemented and the interaction between patients and health-care providers throughout the health-care delivery. Outcomes describe how well the program is evaluated and it refers to the health-care effects [5]. These criteria are closely interrelated and must be taken into account as a single unit, together with components that are interconnected and related to each other. Diabetes control relies heavily on patient self-care management that influences almost all facets of their day-to-day activities. This study, therefore, assesses glycemic control and its relationship to patient characteristics, health-care system factors, and self-care management among type II diabetes patients.

METHODS

Study design
This study was retrospective cross-sectional. Data collection consisted of personal interview and medical records’ review for the past 1 year. Glycemic control was determined as an outcome (good versus poor glycemic control) while using sociodemographic, clinical characteristics, health-care system factors, and self-care management as independent
variables. The study instruments have been previously used by other studies [6-16].

study setting
Ramallah is administrative and political capital of the Palestinian government and is more developed than other Palestinian cities in economic, health, and urban terms. The study was carried out at the National Center for Chronic Diseases and Dermatology in Ramallah, the first Palestinian governmental tertiary health-care center that has a section specializing in providing diabetes care for diabetic patients with governmental health insurance in that city. During the study period, the researcher visited the center daily to recruit potential participants, interview them personally, and review their medical records.

participants
This study was undertaken with a sample of outpatients recruited using a convenient sampling method from a medical records’ list of type II diabetes patients, who visited the study setting regularly and continuously during the past 1 year. Every patient who met the inclusion criteria was asked if he/she would be willing for study participation. The information sheet was used to inform patients about the study aim, and the researcher asked them to read it carefully and sign a consent form to participate in it. Subsequently, the inclusion criteria for this study were: Patients diagnosed with type II diabetes for 1 year or more, with available medical file, currently being under medical care for type II diabetes with at least two outpatient visits during the past 1 year, and those willing for study participation. The main exclusion criteria were those suffering from Type I diabetes or gestational diabetes and those with physical and mental conditions that could interfere with their ability to understand and/or complete data collection requirements.

sample size
There are no previous publications about glycemic control among Palestinian diabetic patients and the assumption of the maximum rate of good glycemic control in Palestine to be 50%. The study required an adequate sample size from a target population of 1200 type II diabetes patients. The outcome is dichotomous (good vs. poor glycemic control), and the level of confidence was presented with a 95% confidence interval (CI) with the significance level at 5% (two-tailed) [17]. Calculations estimated that a sample of 292 type II diabetes patients was needed upon using the Daniel formula. However, since the total target population is <10,000, an adjusted sample size of 235 patients was decided [17-19]. To minimize erroneous results and increase the study reliability, the researcher recruited a minimum sample size of 247 type II diabetes patients [20,21].

ethical approval
This study was approved by the Palestinian Ministry of Health and Research Management Institute at Universiti Teknologi MARA. The researcher provided each participant with an information sheet copy which included a brief explanation about the study and its purposes, along with the consent form which identifies the requirements and condition of study accession, and participant’s rights. The researcher also gave an individual oral explanation to participant about the study importance and their rights before asking them to sign the consent form once they agreed to join the study.

Recruitment procedure
The potential participants who met the sampling criteria were screened from the medical records. Each patient in the center’s waiting area who met the sampling criteria was asked if he/she was willing to participate in the study. If the patient agreed to talk for possible participation, then a consent form was read to the patient and an approval signature obtained. Following this, the study instruments were presented and explained during the interview, and all participants completed the questionnaires and forms in a center’s private area. These were later compared with their medical records. The forms and questionnaires for data collection were: Sociodemographic and health questionnaire, Patient Perception of Diabetes Care Quality Questionnaire (PPDCQ), diabetes professional performance checklist, diabetes self-care management scale, and medical records’ checklist.

Instruments
Sociodemographic and health questionnaire
This questionnaire section was designed to collect data about patient characteristics. It included sociodemographic data information concerning age, gender, marital status, household monthly income, educational level, place of residence, occupation, working days and hours, and health insurance. The other part covered patient clinical characteristics data including medical history: type II diabetes duration, body mass index, smoking status, and any medications. The medical history question was presented to the participant as a list of illnesses with a dichotomous (yes/no) response [67]. All participants were asked to state their current anti diabetic treatment to investigate the anti diabetic therapy type as well as insulin treatment during the past 1 year. Data concerning the number of medications taken on a daily basis were collected from the medical records.

Patient Perception of Diabetes Care Quality Questionnaire
The attending physician’s specialty, details of preventive education, and feedback on patient perception of patient-professional interaction together with satisfaction with this interaction were obtained and measured using a PPDCQ [8,9]. The physician’s specialty was categorized as diabetologist or non-diabetologist. If a participant could not identify the specialty, the researcher asked the physicians personally. Because there is no specific Palestinian system for diabetes care institute accreditation, criteria developed by Taiwanese Association of Diabetes Educators were used in the study after it was found best suited for assessment [22,23].

The preventive education evaluation consists of five dimensions, namely, diet education, exercise education, foot care instructions, self-blood glucose monitoring, and smoking status. The score for each dimension is 10. Therefore, the diabetes preventive education maximum total score is 50. The cumulative preventive education percentage is the mean total score as opposed to the maximum total score. Preventive education was considered inappropriate when the mean total score was lower than the average score (the cumulative percentage is <50%) and appropriate if greater or equal the average score (cumulative percentage ≥50%).

Patient satisfaction with professional scale is the foundation part of the PPDCQ that includes five dimensions referring to physician and four each for nurse and dietician, respectively. Two additional items asked patients if they received education and care from a nurse and/or dietician. Subsequently, the subscales of nurse and dietician were given if the participant did not get any such care and education. Potential rating categories range from never (one) to always (five). Thus, scores for subscales ranged from physician (6-30), nurse (0-25), to dietician (0-25). Consequently, the total patient satisfaction with professional scale score ranged from 6 to 80. The higher the score means, the higher the patient satisfaction with health-care professionals. The mean total patient satisfaction with professional scale score was calculated as opposed to the maximum total score to calculate the cumulative percentage. Appropriate patient-professional relationship refers to a mean total patient satisfaction with professional scale score greater or equal to the average score (cumulative percentage ≥50%) and inappropriate when the total score is lower than the average score (cumulative percentage <50%).

Diabetes professional performance checklist
The quality of follow-up is a health-care system factor represented as a measurement of diabetic complications’ risk factors. Data about quality of follow-up were collected from a medical records’ review and personal interviews using the diabetes professional performance checklist and the PPDCQ which included blood test evaluation for hemoglobin A1c (HbA1c), fasting blood glucose, lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein), blood pressure
checkup frequency, nephropathy assessment (serum creatinine, urine analysis, and microalbumin), feet and fungus examination, and ophthalmoscope examination [10]. The maximum score for each dimension is 10, a total of 70; the maximum quality of follow-up total score. Table 1 shows the quality of follow-up measure. The cumulative percentage is the mean quality of follow-up total score as opposed to the maximum total score. The quality of follow-up was considered inappropriate when the mean total score was lower than the average score (cumulative percentage \(<50\%\)) and appropriate when greater or equal the average score (cumulative percentage \(\geq50\%\)).

Self-care management scale

Diabetes self-care management were measured using a questionnaire consisting of four dimensions related to diet, physical exercise, and self-blood glucose monitoring identified the degree of following a diabetic meal plan, a frequency of 30 minutes of daily physical exercise and the number of glucose testing per week [11,24], and the eight-item Morisky Medication Adherence Scale (MMAS-8) that consists of 8 items related to medication adherence [25]. The first seven items were yes/no questions while the eighth item was answered on a 5-point Likert scale. Scores can range from zero to eight, with one score given for each “No” answer except for item number five where one score was given for a “Yes” answer, and the eighth item with zero given for “all the time” and one score for “never/rarely” [6,7,12,13,26].

In the category of self-care management, follow a diabetic meal plan for 3 days or more in the previous 7 days, meant that the participants followed a diabetic meal plan as recommend by the dietician. In addition, participants who reported that they walked 3 days or more in the previous 7 days were classified as non-adherent if their total score was less than six and medication adherence score ranged from zero to eight. Participants were city residents (168; 50.9%), and a higher proportion and held school certificates (220; 66.7%). Approximately half of the participants were male (169, 51.2%). 253 participants (76.7%) were participants was 60±9.7 (range=28-85) years. More than half of the participants were male (169, 51.2%), 253 participants (76.7%) were married. The majority were low-income participants (228; 69.1%) and held school certificates (220; 66.7%). Approximately half of the participants were city residents (168; 50.9%), and a higher proportion was housewives (130; 39.4%). The means±SD daily working hours

Medical records’ checklist

The medical records’ checklist was the basic instrument used by the researcher to collect data concerning prescribed medications, therapy-related factors, and quality indicators of diabetes control from medical records’ review [14,16]. A review of these using the checklist was an effective technique in examining the accuracy of participant follow-up by checking the number of recorded visits number. Therapy-related factors consist of the medication profile of type II diabetes patients. Therefore, prescribed medications for type II diabetes, antihypertensive medications, statins, and aspirin were included in the prescribed medications list studied. In addition, the antidiabetic treatment regimen was the main variable used for assessing drug treatment.

Table 1 shows the quality indicators of diabetes control. They were inclusive of HbA1c, fasting blood glucose, cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, and blood pressure. The glycemic control status was categorized as good if HbA1c values were \(\leq7\%\) and poor if HbA1c values were \(>7\%\) [29]. Hypertriglyceridemia refers to a triglyceride level \(\geq150 \text{mg/dl}\). High-density lipoprotein is considered low when the level is \(<35 \text{mg/dl}\) and excellent when the level is \(\geq100 \text{mg/dl}\). Low-density lipoprotein is considered high when the level is \(\geq100 \text{mg/dl}\). Total cholesterol and triglycerides levels were divided into four categories: \(<200 \text{mg/dl}\); \(200-239 \text{mg/dl}\); \(240-450 \text{mg/dl}\); \(>450 \text{mg/dl}\). Total cholesterol is considered high when the level is \(\geq240 \text{mg/dl}\) and excellent when the level is \(<200 \text{mg/dl}\). LDL cholesterol is considered high when the level is \(\geq160 \text{mg/dl}\) and excellent when the level is \(<100 \text{mg/dl}\). Fasting blood glucose level is considered normal when the level is \(<100 \text{mg/dl}\); \(100-125 \text{mg/dl}\) is considered prediabetes; \(\geq126 \text{mg/dl}\) is diagnosed as diabetes. Blood pressure level is considered normal when the systolic pressure is \(<120 \text{mmHg}\) and diastolic pressure is \(<80 \text{mmHg}\); \(120-139 \text{mmHg}\); \(80-89 \text{mmHg}\); \(\geq140 \text{mmHg}\); \(\geq90 \text{mmHg}\).

Statistical analysis

The Statistical Package for the Social Sciences (version 16) was used to carry out statistical analysis. Data were described as means±standard deviation (SD) and median (interquartile range: Q1-Q3) for continuous variables and proportions for categorical variables. Binary logistic regression was used to assess statistical significance of the difference in the good glycemic control according to independent variables. Multiple logistic regression was used to assess statistical significance of the difference in the good glycemic control according to independent variables. Multiple logistic regression was carried out using variables that showed significance in binary logistic regression to identify factors related to good glycemic control. p<0.05 was considered statistically significant.

RESULT

Participants’ characteristics

A total of 330 patients were recruited. The means±SD age of the participants was 60±9.7 (range=28-85) years. More than half of the participants were male (169, 51.2%), 253 participants (76.7%) were married. The majority were low-income participants (228; 69.1%) and held school certificates (220; 66.7%). Approximately half of the participants were city residents (168; 50.9%), and a higher proportion was housewives (130; 39.4%). The means±SD daily working hours

Table 1: Description of quality of follow-up

Item	Frequency	Data source	Item score	Total score
HbA1c	1 time/year	Medical records	2.5	10
	2 times/year		5	
	3 times/year		7.5	
	4 times/year		10	
Fasting blood glucose	1 time/year	Medical records	2.5	10
	2 times/year		5	
	3 times/year		7.5	
	4 times/year		10	
Lipid profile	1 time/year	Medical records	2.5	10
Total cholesterol				
Triglycerides				
High-density lipoprotein				
Low-density lipoprotein				
Blood pressure measurement	At least 2,	Medical records	5	10
	3-4 times/year			
Nephropathy assessment	1 time/year	Medical records		10
Serum creatinine				
Urine analysis				
Microalbumin (with or without above)				
Feet and fungus examination	Yes/No	Medical records+ PPDCQ	-	10
Ophthalmoscope examination	1 time/year	Medical records+PPDCQ	10	10
Total score			70	70

HbA1c: Hemoglobin A1c, PPDCQ: Patient Perception of Diabetes Care Quality Questionnaire
and weekly working days were 7.4±2.5 and 5.5±0.9, respectively. The overwhelming majority of participants were covered by governmental health insurance only (306; 92.7%).

Participants reported an average of 1.9±1.7 additional diabetic complications (median=2; Q1-Q3: 0-3) and 1.8±1.6 additional non-diabetic comorbidities (median=2; Q1-Q3: 1-2), respectively. Tuberculosis (265; 80.3%) and hypertension (208; 63.0%) were the most frequently reported additional chronic diseases among the participants. 38 participants (11.5%) reported that they did not suffer from additional chronic diseases while approximately half of the participants reported four or more additional chronic diseases (166; 50.3%). Obesity (body mass index ≥ 30 kg/m²) was the most frequently reported (152; 46.1%), and more than half of the participants reported that they were non-smokers (209; 63.3%) while 207 (62.7%) had been diagnosed with type II diabetes for more than 10 years. Participants reported an average of 6.4±2.8 (median=6; Q1-Q3: 5-8) different medications taken on daily basis.

Reported health-care system factors

The majority of the participants reported that the physicians were diabetologists (327; 99.0%). More than half of the participants reported taking a combination treatment of oral hypoglycemic drugs and insulin (181; 54.8%). 74 participants (22.4%) were on insulin only and 74 (22.4%) others received only oral hypoglycemic drugs. Aspirin and statins were prescribed for 188 participants (57%) and 203 participants (61.5%), respectively. In addition, angiotensin-converting enzyme inhibitors were taken by more than half the participants (186; 56.4%) compared to the other prescribed therapies for hypertension taken by the other 53.6%.

The mean±SD quality of follow-up total score was 38.8±13.2 (median=40; Q1-Q3: 32.5-47.5), which was higher than the average score (cumulative percentage=55.4%). The highest quality of follow-up score was for blood pressure measurement (mean±SD=8.8±3), and HbA1c was found to have the lowest score (mean±SD = 3.8±2.7). The mean±SD preventive education total score was higher than the average score (33.1±6.1; cumulative percentage=66.2%), and the median was 40 (Q1-Q3: 20-50). The mean±SD patient satisfaction with professional scale total score was 38.5±15.9, which was lower than the average score (cumulative percentage=48.1%), and the median was 30 (Q1-Q3: 28-52). 81 participants (24.6%) reported that they received diabetes education from nurses, and 91 (27.6%) received diabetes education from dietitians. The mean±SD patient total score was 27.2±4 (median=29; Q1-Q3: 23-60). The mean±SD nurse and dietician total scores were 22.3±2.6 (median=23; Q1-Q3: 20.5-24) and 21±5.1 (median=24; Q1-Q3: 20-25), respectively.

Reported self-care management

The proportion of participants with HbA1c levels ≤7% was lower than that of the studies done in France and Spain [31,32]. In terms of comparison of the study results with that of the Al-Rawais’ study of type II diabetes patients conducted in the Kingdom of Saudi Arabia [33], the percentage of participants who obtained acceptable HbA1c levels (6-8%) was almost the same. About 66.7% of the study population in Kuwait had poor glycemic control (HbA1c >7%) and more than half of patients in Pakistan had HbA1c level >7.5% (46.7%) [25]. Glycemic control in Palestine indicates a need for more research and

Table 2: Quality indicators of diabetes control
Item
HbA1c
Fasting blood glucose
Cholesterol
Triglycerides
High-density lipoprotein
Low-density lipoprotein
Blood pressure

HbA1c: Hemoglobin A1c
improvement. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service. Blood lipid examination was done with each component separately. The fasting blood glucose level for more than half of the participants indicates a need for intensive treatment and a diet regimen. This sheds light to review diabetes care infrastructure and policies to develop awareness of issues concerning diabetes health-care service.
The finding of the univariate analysis of factors relating to good glycemic control is inconsistent with what is reported by other studies [39,40], but consistent with others [39,41] which noted that a progressive impairment of insulin secretion results from pancreatic β-cell failure, worsening type II diabetes over time, may lead to a negative impact on patient response to diet alone and/or oral hypoglycemic drugs and the need for a combination treatment of oral hypoglycemic drugs and insulin, higher doses, and/or additional medication which increases over time. However, an interrupted insulin supply in some cases and high insulin prices outside the governmental centers and the discomfort of insulin usage compared to oral hypoglycemic drugs could be a causal factor in poor glycemic control due to the insulin supply delay for more progressive type II diabetes patients.

The result of multivariate analysis as with previous studies is attributed to lower income and lack of family support, depression and poor mental health due to the living difficulties, and the lack of minimum basic needs. These or a combination of them have resulted in patient reluctance to visit the clinic regularly, possibly due in part to feeling uncomfortable when asked questions [42-46]. The lack of a significant relationship between self-care management and glycemic control in the study is inconsistent with almost all of the previous studies [27,47-49]. This finding reflects a limited participant’s credibility in answering self-care management items. Continuous education is recommended for motivating patients to overcome this and encourage them to tell the truth. This study was the first conducted in Palestine to examine the diabetes health-care services through identifying possible significant predictors for good glycemic control using binary and multiple logistic regression procedures. However, this study is cross-sectional and cannot establish causal and sequential relationships. This study may also be limited by sample and recall bias because its findings concerning self-care management were not congruent with the multiple studies’ findings.

CONCLUSION

The quality of follow-up and preventive education was appropriate, but apparently, patient-professional relationship was inappropriate. These findings need further investigation because of the marked disparity of the issues, at which HbA1c levels were tested among the participants. However, the study is a preliminary indication that diabetes health-care service in Palestine has a great deal of room for research and improvement. A clear health policy is needed in the diabetes management, and it is vital for health-care professionals to focus on unemployed patients with a long diabetes duration, inappropriate health-care system factors, and prescription patterns compatible with a non-interrupted insulin supply which constitutes the most prominent challenge to health-care providers and patients alike. An important initiative that needs to be adopted is the provision of a base for continuous prescription audit in the primary care setting.

The lack of a significant relationship between health-care system factors, self-care management, and good glycemic control is significant indicators of the need for an educational program that emphasizes lifestyle modification and the self-care management importance. The health-care provider’s role is also an essential factor in glycemic control. Longitudinal research with multivariate causal models is recommended, as are other factors such as diabetes-related knowledge, belief in medication, and social support, for further investigation.

ACKNOWLEDGMENT

We would like to take this opportunity to express our thanks and gratitude to the faculty of pharmacy, and Institute of Research Management and Innovation (Academic and Research Assimilation Project Code 600-IRMI/DANA 5/3/ARAS (0116/2016)), UiTM, and the Palestinian Ministry of Health for all of the facilities and support have been given throughout the period of data collection in the National Center for Chronic Diseases and Dermatology.

REFERENCES

1. World Health Assembly. Health Conditions in the Occupied Palestinian Territory, Including East Jerusalem, and in the Occupied Syrian Golan-J0 November 2013. Available from: http://wwwapps.who.int/iris/handle/10665/80047.

2. World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a Who Consultation - 13 August; 2014. Available from: http://www.who.int/diabetes/publications/diagnosis_diabetes2011/en.

3. Vijan S, Hayward RA. Treatment of hypertension in Type 2 diabetes mellitus: Blood pressure goals, choice of agents, and setting priorities in diabetes care. Ann Intern Med 2003;138(7):593-602.

4. World Health Organization. Management of Diabetes Mellitus Standards of Care and Clinical Practice Guidelines - 13 June; 2012. Available from: http://wwwapps.who.int/iris/bitstream/10665/116245/1/dsa509.pdf.

5. Krentz AJ, Bailey CJ. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 2005;65(3):385-411.

6. Ashur ST, Shah SA, Bossen S, Fah TS, Shamsuddin K. Glycaemic control status among Type 2 diabetic patients and the role of their diabetes coping behaviours: A clinic-based study in Tripoli, Libya. Libyan J Med 2016;11(1):31086.

7. Ziyoud SH, Al-Jabi SW, Sweileh WM, Morisky DE. Relationship of treatment satisfaction to medication adherence: Findings from a cross-sectional survey among hypertensive patients in Palestine. Health Qual Life Outcomes 2013;11:191.

8. de Bruin SR, van Oostrom SH, Drewes HW, de Jong-van Til JT, Baan CA, Struijs JN. Quality of diabetes care in Dutch care groups: No differences between diabetes patients with and without comorbidity.
Antipsychotic drugs may worsen metabolic control in type 2 diabetes. Nau DP, Paccholski AM. Impact of pharmacy care services on patients’ perceptions of health care quality for diabetes. J Am Pharm Assoc 2007;47(5):58-61.

NCQA/ADA Diabetes. NCQA/ADA Diabetes Physician Recognition Program - 30 August; 2012. Available from: http://www.ncqa.org/programs/recognition/clinicians/diabetes-recognition-program-drp.

Albikawi ZF, Abudus M. Diabetes self-care management behaviours among Jordanian type 2 diabetes patients. Am Int J Contemp Res 2015;5(3):87-95.

Sweileh WM, Zyoud SH, Abu Naba’RJ, Deleq MI, Enaia MI, Nassar SM, et al. Influence of patients’ disease knowledge and beliefs about medicines on medication adherence: Findings from a cross-sectional survey among patients with type 2 diabetes mellitus in Palestine. BMC Public Health 2014;14:94.

Jamous RM, Sweileh WM, Abu-Taha AS, Sawalha AF, Zyoud SH, Morisky DE. Adherence and satisfaction with oral hypoglycemic medications: A pilot study in Palestine. Int J Clin Pharm 2011;33:342-2.

Aday LA. Evaluating the Healthcare System: Effectiveness, Efficiency, Equity. Chicago: Health Administration Press; 2004.

Akel M, Hamadeh G. Quality of diabetes care in a university health center in Lebanon. Int J Qual Health Care 1999;11(6):517-21.

Aiken LH, Sochalski J, Lake ET. Studying outcomes of organizational change in health services. Med Care 1997;35 11 Suppl: NS6-18.

Naing L, Winn T, Rusli BN. Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci 2006;1:9-14.

Daniel WW. Biostatistics: A Foundation for Analysis in the Health Sciences. 7th ed. New York: John Wiley & Sons; 1999.

Singh AS, Masaku MB. Sampling techniques and determination of sample size in applied statistics research: An overview. Int J Econ Commer Manag 2014;2:1-22.

Daniel WW. Biostatistics: Basic concepts and methodology for the health sciences. New Jersey: John Wiley & Sons; 2010.

Palestinian Ministry of Health. Annual Health Report Palestine - 20 February; 2013. Available from: http://www.moh.ps/Content/Books/nbgbg16bzxmosdUxKtbaawjxq81wQ5N9Y1X138fwsjS62ZB9w9mQ0LQ_5cyrnmv82fpoXVAZ7MqQOlbhFPeaAM4bpSsVsvyLVEIRyXZfBE8.pdf.

Bureau of Health Promotion DoH. Overview of Health Promotion in Taiwan - 4 June; 2013. Available from: http://www.pitt.edu/~super7/49011-50001/49111-49121.pdf.

DOH Taiwan. Community Volunteer and Diabetes Health Education Trial - 11 April; 2012. Available from: http://www.bhp.doh.gov.tw/snew/doc.

Toobert DJ, Glasgow RE. Assessing diabetes self-management: The summary of diabetes self-care activities questionnaire. Handbook of Psychology and Diabetes. Switzerland: Harwood Academic; 1994. p. 351-75.

Morisky DE, Ang A, Krousel-Wood M, Ward HJ. Predictive validity of a medication adherence measure in an outpatient setting. J Clin Hypertens (Greenwich) 2000;8(5):348-54.

Sweileh WM, Ilbesheh MS, Jarar IS, Sawalha AF, Abu Taha AS, Zyoud SH, et al. Differences in medication adherence, satisfaction and clinical symptoms in schizophrenic outpatients taking different antipsychotic regimens. Curr Drug Saf 2011;6(5):285-90.

Khattab M, Khader YS, Al-Khawaldeh A, Ajlouni K. Factors associated with poor glycemic control among patients with type 2 diabetes. J Diabetes Complications 2010;24(2):84-9.

Rahmstorf I, Shrivastava PS, Bradlow HL. The role of self-care in management of diabetes mellitus. J Diabetes Metab Disord 2013;12(1):14.

World Health Organization. Technical Discussion on Medicine Prices and Access to Medicines in the Eastern Mediterranean Region - 3 November; 2014. Available from: http://wwwapplications.who.int/docs/EM_RC54_Tech_Disc_1_en.pdf?ua=1.

Haffner SM; American Diabetes Association. Dyslipidemia management in adults with diabetes. Diabetes Care 2004;27 Suppl 1:S68-71.

Alonso-Fernández M, Mancera-Romero J, Mediavilla-Bravo JJ, Correas-Samper JM, López-Simarro F, Pérez-Uñanúa MP, et al. Glycemic control and use of A1c in primary care patients with type 2 diabetes mellitus. Prim Care Diabetes 2015;9(5):385-91.

Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr 2014;100(3):765-77.

Al-Rawais NA. Glycemic control in diabetic patients in King Khalid University Hospital (KKUH)-Riyadh-Saudi Arabia. Saudi Pharm J 2014;22(3):203-6.

Al-Sultan FA, Al-Zanki N. Clinical epidemiology of Type 2 diabetes mellitus in Kuwait. Kuwait Med J 2005;37(2):98-104.

Habib SS, Aslam M. Risk factors, knowledge and health status in diabetic patients. Saudi Med J 2003;24(11):1219-24.

Arafat M, Salam A, Arafat O. The association of Type 2 diabetes with obesity and other factors: In multinational community. Int J Pharm Sci 2014;6(9):257-60.

Soubra L, Nureddin H, Omar AG, Saleh M. Factors associated with hypertension prevalence and control among lebanese Type 2 diabetic patients. Int J Pharm Pharm Sci 2016;9(10):153-9.

Delavari A, Alikhani S, Niili S, Birjandi RH, Birjandi F. Quality of care of diabetes mellitus type II patients in Iran. Arch Iran Med 2009;12(5):492-5.

Valle T, Kovisto VA, Reunanen A, Kangas T, Rissanen A. Glycemic control in patients with diabetes in Finland. Diabetes Care 1999;22(4):575-9.

Verma M, Paneri S, Badi P, Ramgan PG. Effect of increasing duration of diabetes mellitus type 2 on glycated hemoglobin and insulin sensitivity. Indian J Clin Biochem 2006;21(1):142-6.

Sopolla LA, Stolk RP, Cohen D, Klungel OH, Erkens JA, Leufkens HG, et al. Antipsychotic drugs may worsen metabolic control in type 2 diabetes mellitus. J Clin Psychiatry 2004;65(5):674-8.

Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: A meta-analysis. Diabetes Care 2001;24:1069-78.

Chlebowy DO, Garvin BJ. Social support, self-efficacy, and outcome expectations: Impact on self-care behaviors and glycemic control in Caucasian and African American adults with type 2 diabetes. Diabetes Educ 2006;32(5):777-86.

Kaholokulu JK, Haynes SN, Grandinetti A, Chang HK. Biological, psychosocial, and sociodemographic variables associated with depressive symptoms in persons with type 2 diabetes. J Behav Med 2003;26(5):435-58.

Rubin RR. Adherence to pharmacologic therapy in patients with type 2 diabetes mellitus. Am J Med 2005;118 Suppl 5A:27S-34.

Vijan S, Stuart NS, Fitzgerald JT, Ronis DL, Hayward RA, Slater S, et al. Barriers to following dietary recommendations in type 2 diabetes. Diabet Med 2005;22(1):32-9.

El-Kebbaj IM, Cook CB, Ziemer DC, Miller CD, Gallina DL, Phillips LS. Association of younger age with poor glycemic control and obesity in Urban African Americans with type 2 diabetes. Arch Intern Med 2003;163(1):69-75.

Nichols GA, Hillier TA, Javor K, Brown JB. Predictors of glycemic control in insulin-using adults with type 2 diabetes. Diabetes Care 2000;23(3):273-7.

Rothenbacher D, Rütter G, Saam S, Brenner H. Younger patients with type 2 diabetes need better glycemic control: Results of a community-based study describing factors associated with a high HbA1c value. Br J Gen Pract 2003;53(490):389-91.

emro.who.int/docs/EM_RC54_Tech_Disc_1_en.pdf?ua=1.

Asian J Pharm Clin Res, Vol 10, Issue 9, 2017, 341-347