Generation of large-scale magnetic fields from inflation in teleparallelism

Kazuharu Bamba,^a,c^ Chao-Qiang Geng^b,c,d^ and Ling-Wei Luo^b,d^

^a^Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Japan
^b^Department of Physics, National Tsing Hua University, Hsinchu, 300, Taiwan
^c^Physics Division, National Center for Theoretical Sciences, Hsinchu, 300, Taiwan
^d^College of Mathematics & Physics, Chongqing University of Posts & Telecommunications, Chongqing, 400065, China

E-mail: bamba@kmi.nagoya-u.ac.jp, geng@phys.nthu.edu.tw, d9622508@oz.nthu.edu.tw

Received August 3, 2012
Revised August 28, 2012
Accepted September 27, 2012
Published October 31, 2012

Abstract. We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1 Mpc scale with its strength of \(\sim 10^{-9} \) G at the present time can be generated.

Keywords: modified gravity, primordial magnetic fields, magnetic fields, inflation
1 Introduction

A number of recent cosmological observations, e.g., Type Ia Supernovae [1], baryon acoustic oscillations [2], large scale structure (LSS) [3], cosmic microwave background (CMB) radiation [4–6], and weak lensing [7], suggest the accelerated expansion of the current universe. To explain the late time cosmic acceleration, there exist two main approaches: One is the introduction of the so-called “dark energy” (for reviews on dark energy, see, e.g., [8–14]) and the other is the modification of gravity such as \(f(R) \) gravity [15–23].

Recently, “teleparallelism” [24] has attracted much attention as it can be considered as an alternative gravity theory to general relativity. Teleparallelism is formulated with the Weitzenböck connection, so that its action consists of the torsion scalar \(T \) instead of the scalar curvature \(R \) in general relativity with the Levi-Civita connection. It has been shown that by introducing a scalar with the non-minimal coupling to gravity in teleparallelism [25], the late time cosmic acceleration can be achieved. Moreover, similar to \(f(R) \) gravity, the non-linear generalization of the torsion scalar \(T \), i.e., \(f(T) \) gravity, can account for inflation [26] in the early universe as well as the cosmic acceleration in the late time [27, 28]. Various aspects on \(f(T) \) gravity have been widely investigated in the literature (see, e.g., [14] and the references therein).

On the other hand, according to astrophysical observations, it is well known that there exist magnetic fields with the strength \(\sim 10^{-6} \) G and the coherence scale 1–10 kpc. Also in clusters of galaxies, large-scale magnetic fields are observed, whose strengths are \(10^{-7}–10^{-6} \) G and the coherence scales are estimated as 10 kpc–1 Mpc. However, the origins of these cosmic magnetic fields, in particular the large-scale magnetic fields in clusters of galaxies have not been well understood yet (for reviews on cosmic magnetic fields, see, e.g., [29]). There are several generation mechanisms of the cosmic magnetic fields, such as those from astrophysical processes based on the plasma instability [30, 31], cosmological phase transitions [32], and matter density perturbations before or at the recombination epoch [33]. Indeed, it is not so easy for these mechanisms to generate the large-scale magnetic fields observed in clusters of galaxies only with the adiabatic compression and without any secondary amplification.
mechanism as the galactic dynamo [34]. Thus, the most natural mechanism to produce the large-scale magnetic fields is considered to be electromagnetic quantum fluctuations during inflation [35], because the scale of the electromagnetic quantum fluctuations can be extended to that larger than the Hubble horizon by inflation.

In Quantum Electrodynamics (QED) in the curved space-time, there can appear a non-minimal coupling of the scalar curvature to the electromagnetic field owing to one-loop vacuum-polarization effects [36], so that the conformal invariance of the electromagnetic field can be broken by this coupling. This can yield the quantum fluctuation of the electromagnetic field during inflation, resulting in the large-scale magnetic field at the present universe [35, 37]. Such a breaking mechanism of the conformal invariance of the electromagnetic field is necessary to generate the quantum fluctuation of the electromagnetic field, because the Maxwell theory is conformally invariant and the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time is conformally flat [38]. Consequently, a lot of breaking mechanisms of the conformal invariance of the electromagnetic field have been explored (for a list of these breaking mechanisms, see, e.g., reviews in [29] and references in [44–52]).

In this paper, motivated by both astrophysical and cosmological observations, we study the generation of large-scale magnetic fields from inflation in teleparallelism. In particular, we introduce a non-minimal gravitational coupling of the torsion scalar T to the electromagnetic field by analogy with such an interaction between gravity and electromagnetism in general relativity. As an illustration, we demonstrate that for the form of the coupling to be a power-law type, the magnetic field with its current strength of $\sim 10^{-9}\text{G}$ on 1Mpc scale can be generated.

It should be remarked that for example, in ref. [44] Ratra has investigated the case that the gauge kinetic term is coupled to the inflaton field. In this work, however, the observation that there can be a spectator field evolving during inflation is used essentially. This possibility has been scrutinized in a number of different works, e.g., refs. [53–55] by Giovannini. In particular, in ref. [53] a scale-invariant spectrum during the conventional inflation has been demonstrated in a specific model where the gauge coupling is not a function of the inflaton (in the latter case the flatness of the potential might be spoiled). We use units of $k_B = c = \hbar = 1$ and denote the gravitational constant $8\pi G$ by $\kappa^2 \equiv 8\pi/M_{Pl}^2$ with the Planck mass of $M_{Pl} = G^{-1/2} = 1.2 \times 10^{19}\text{GeV}$.

The paper is organized as follows. In section II, we explain the fundamental formulations in teleparallelism. In section III, in a non-minimal $I(T)$-Maxwell theory, where $I(T)$ is an arbitrary function of the torsion scalar T, we investigate the generation of large-scale magnetic fields in inflationary cosmology. In section IV, for a concrete model of a power-law type coupling between the torsion scalar and the Maxwell field, we estimate the current strength of the large-scale magnetic field. Finally, conclusions are presented in section V.

2 Teleparallelism

We adopt orthonormal tetrad components $e_A(x^\mu)$ in teleparallelism, where an index A runs over $0, 1, 2, 3$ for the tangent space at each point x^μ of the manifold. The relations between the metric $g^{\mu\nu}$ and orthonormal tetrad components are given by $g_{\mu\nu} = \eta_{AB} e^A_\mu e^B_\nu$, where μ and ν are coordinate indices on the manifold and run over $0, 1, 2, 3$. Hence, e^A_μ form the tangent vec-

\footnote{It should be noted that this is true only for the flat FLRW space-time, but not for the FLRW background with spatial curvature, e.g., an open FLRW universe [39]. In addition, the breaking of the conformal flatness during inflation has also been studied in ref. [40]. Furthermore, there exist arguments in terms of the back reaction effect of the magnetic field generated during inflation [41–43].}
tor of the manifold. We define the torsion and contorsion tensors as \(T^\rho_{\mu\nu} \equiv e^\rho_A (\partial_\mu e^A_\nu - \partial_\nu e^A_\mu) \) and \(K^{\mu\nu\rho} \equiv -(1/2) (T^\nu_{\rho\mu} - T^\mu_{\rho\nu} - T_\rho{}^{\mu\nu}) \), respectively. Using these tensors, we construct the torsion scalar \(T \equiv S_{\rho}{}^{\mu\nu} T^\rho_{\mu\nu} \) with \(S_{\rho}{}^{\mu\nu} \equiv (1/2) (K^{\mu\nu\rho} + \delta_\rho^\mu T^\alpha_{\mu\alpha} - \delta_\rho^\nu T^\alpha_{\nu\alpha}) \). In general relativity, the Einstein-Hilbert action consists of the scalar curvature \(R \). However, in teleparallelism the torsion scalar \(T \) is used to represent the teleparallel Lagrangian density. As a result, the action in teleparallelism is described by

\[
S_{\text{Tel}} = \int d^4x |e| \left(\frac{T}{2\kappa^2} + \mathcal{L}_M \right), \tag{2.1}
\]

where \(|e| = \det (e^A_\mu) = \sqrt{-g}\) and \(\mathcal{L}_M \) is the Lagrangian of matter. The variation of the action \(S_{\text{Tel}} \) with respect to the vierbein vector fields \(e^A_\mu \) leads to the gravitational field equation \[27\], given by \((1/e) \partial_\mu (e S^A_{\mu\nu}) - e^A_T \partial_\mu S^\rho_{\mu\nu} + (1/4) e^\nu_\lambda T = (\kappa^2/2) e^0_T T^{(M)}_{\mu}{}^\nu \), where \(T^{(M)}_{\mu}{}^\nu \) is the energy-momentum tensor of matter.

We take the flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe, whose metric is given by \(ds^2 = dt^2 - a^2(t)d\tau^2 = a^2(\eta) (dt^2 + d\xi^2) \) with \(a \) the scale factor and \(\eta \) the conformal time. In this space-time, \(g_{\mu\nu} = \text{diag}(1, -a^2, -a^2, -a^2) \) and the tetrad components become \(e^A_\mu = (1, a, a, a) \). With these relations, we find that the exact value of the torsion scalar is described by \(T = -6H^2 \), where \(H \equiv \dot{a}/a \) is the Hubble parameter with the dot being the time derivative of \(\partial/\partial t \).

3 Non-minimal \(I(T) \)-Maxwell theory

In this section, we consider a non-minimal \(I(T) \)-Maxwell theory and examine the generation of large-scale magnetic fields in inflationary cosmology.

3.1 Model of the electromagnetic sector

The action describing a non-minimal \(I(T) \)-Maxwell theory is given by

\[
S = \int d^4x |e| \left(-\frac{1}{4} I(T) F_{\mu\nu} F^{\mu\nu} \right), \tag{3.1}
\]

where \(I(T) \) is an arbitrary function of the torsion scalar \(T \) and \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \) with \(A_\mu \) the U(1) gauge field is the electromagnetic field-strength tensor. It follows from the action in eq. (3.1) that the electromagnetic field equation is derived as

\[
- \frac{1}{\sqrt{-g}} \partial_\mu \left[\sqrt{-g} I(T) F^{\mu\nu} \right] = 0. \tag{3.2}
\]

In the FLRW background with the Coulomb gauge \(A_0(t, x) = 0 \) and \(\partial^i A_j(t, x) = 0 \), the equation of motion for the U(1) gauge field is written as

\[
\ddot{A}_i(t, x) + \left(H + \frac{i(T)}{I(T)} \right) \dot{A}_i(t, x) - \frac{1}{a^2} \Delta^{(3)} A_i(t, x) = 0, \tag{3.3}
\]

where \(\Delta^{(3)} \) is the Laplacian in three-dimensional space.

We remark that although the electromagnetic field coupled (preferentially) to the axial vector part of the torsion tensor is more natural, we do not consider it in this study since the
resulting large-scale magnetic field is too small. In addition, we emphasize that the strength of the generated magnetic field is more related to the nature of the coupling I to the gauge kinetic term than to the torsion scalar itself.

It is important to explicitly state that the key element to generate the large-scale magnetic fields in the quasi-de Sitter phase of expansion, i.e., inflation in the early universe, is the scalar coupling between I and the kinetic term of the electromagnetic field, as seen in eq. (3.1). In general, the coupling term $I(\eta)$ may be a function of various scalar degrees of freedom existing in a model, e.g., the inflaton or the dilaton field or a dynamic gauge coupling. As a result, $I(\eta)$ can be a function of a spectator field evolving during the inflationary epoch. In this case, there is no connection between the evolution of I and the gauge coupling. Therefore, the physical features of the various models are different. In other words, in principle I can be an arbitrary function of some non-trivial background fields. On the other hand, in the case of bouncing models some of these ideas are preferentially realized, whereas other models are consistent with the standard inflationary paradigm. In this work, instead of concentrating on a specific mechanism for inflation, we execute a model-independent analysis on the generation of large-scale magnetic fields through the breaking of the conformal invariance of the electromagnetic field due to the coupling of I in $\mathcal{L} = (1/4) F_{\mu\nu} F^{\mu\nu}$ in eq. (3.1).

We also describe the realization of inflation. In this work, we suppose that the generic slow-roll inflation is realized without identifying the specific mechanism to lead to inflation. There are various possibilities to realize inflation. For example, one can introduce the inflaton coupling to the electromagnetic field [44, 48], which can be considered to be the dilaton [46], or both inflaton and dilaton fields [47]. Namely, if the dilaton field is not responsible for inflation, the coupling I can be a function of the inflaton field. Furthermore, in these cases forms of the inflaton potential are assumed to be flat enough to realize the slow-roll inflation, namely, the quasi exponential expansion of the universe. Concrete demonstrations have been investigated in refs. [53–55].

3.2 Quantization

We now execute the quantization of $A_{\mu}(t, \mathbf{x})$. From the action of the electromagnetic fields in eq. (3.1), we find that the canonical momenta conjugate to $A_{\mu}(t, \mathbf{x})$ become $p_0 = 0$, $p_i = ia(t) A_i(t, \mathbf{x})$. The canonical commutation relation between $A_i(t, \mathbf{x})$ and $\pi_j(t, \mathbf{y})$ is given by $[A_i(t, \mathbf{x}), \pi_j(t, \mathbf{y})] = i \int d^3k (2\pi)^{-3} e^{ik \mathbf{x} - \omega} (\delta_{ij} - k_i k_j/k^2)$ with k being the comoving wave number and $k = |\mathbf{k}|$. By imposing this relation, $A_i(t, \mathbf{x})$ is described as $A_i(t, \mathbf{x}) = \int d^3k (2\pi)^{-3/2} \sum_{\sigma=1,2} \left[\hat{b}(\mathbf{k}, \sigma) \epsilon_i(\mathbf{k}, \sigma) A(t, k)e^{ik \mathbf{x}} + \hat{b}^\dagger(\mathbf{k}, \sigma) \epsilon^*_i(\mathbf{k}, \sigma) A^*(t, k)e^{-ik \mathbf{x}} \right]$, where $\epsilon_i(\mathbf{k}, \sigma) (\sigma = 1, 2)$ stand for the two orthonormal transverse polarization vectors, and $\hat{b}^\dagger(\mathbf{k}, \sigma)$ is the annihilation (creation) operator, satisfying the relations $[\hat{b}(\mathbf{k}, \sigma), \hat{b}^\dagger(\mathbf{k}', \sigma')] = \delta_{\sigma, \sigma'} \delta^3(\mathbf{k} - \mathbf{k}')$ and $[\hat{b}(\mathbf{k}, \sigma), \hat{b}^\dagger(\mathbf{k}', \sigma')] = [\hat{b}^\dagger(\mathbf{k}, \sigma), \hat{b}(\mathbf{k}', \sigma')] = 0$. It follows from eq. (3.3) that the Fourier mode $A(k, t)$ obeys $\dot{A}(k, t) + \left(H + \dot{I}/I \right) A(k, t) + (k^2/a^2) A(k, t) = 0$ together with the normalization condition, $A(k, t) A^*(k, t) - \dot{A}(k, t) A^*(k, t) = i/\langle Ia \rangle$. If we use the conformal time η, this equation is rewritten as $A''(k, \eta) + (\dot{I}/I) A'(k, \eta) + k^2 A(k, \eta) = 0$, where the prime denotes the derivative in terms of η as $\partial/\partial \eta$.

3.3 Procedure to obtain analytic solutions

With the WKB approximation on subhorizon scales and the long wavelength approximation on superhorizon scales and matching these solutions at the horizon crossing, it is possible to
acquire an analytic solution for this equation [49] approximately. In this case of the exact de Sitter background, we find $a = 1/(-H\eta)$ with H being the Hubble parameter during the de Sitter expansion, and $-\kappa n = 1$ at the horizon-crossing when $H = k/a$. For subhorizon (superhorizon) scales, we have $k|\eta| \gg 1$ ($k|\eta| \ll 1$). This is considered to be sufficiently well defined also for the general slow-roll inflation, i.e., nearly exponential inflation.

Provided that in the short-wavelength limit of $k/(aH) \gg 1$ the vacuum asymptotically approaches the Minkowski vacuum, the WKB subhorizon solution reads $A_{in}(k, \eta) = \left(1/\sqrt{2k}\right) I^{-1/2} e^{-ik\eta}$.

While, with the long-wavelength expansion in terms of k^2, we can have the solution on superhorizon scales $A_{out}(k, \eta)$. By matching this solution with the above WKB subhorizon solution at the horizon crossing time $\eta = \eta_k \approx 1/k$, we obtain the lowest order approximate solution of $A_{out}(k, \eta)$ [49] as

$$A_{out}(k, \eta) = A_1(k) + A_2(k) \int_{\eta}^{\eta_k} \frac{1}{I(\eta)} d\eta,$$

$$A_1(k) \equiv \frac{1}{\sqrt{2k}} I^{-1/2} \left[1 - \left(\frac{i}{2} I' + ikI \right) \right] \left(1 - \left(\frac{i}{2} I' + ikI \right) \right) I(\eta) d\eta \bigg|_{\eta = \eta_k},$$

$$A_2(k) \equiv \frac{1}{\sqrt{2k}} I^{-1/2} \left(\frac{1}{2} I' + ikI \right) e^{-ik\eta} \bigg|_{\eta = \eta_k}. \quad (3.6)$$

We neglect the decaying mode solution, which is the second term of the right-hand side of eq. (3.4). Equations (3.5) and (3.6) lead to $|A(k, \eta)|^2$ at the late times, given by

$$|A(k, \eta)|^2 = |A_1(k)|^2 = \frac{1}{2k I(\eta_k)} \left| 1 - \left(\frac{i}{2} I' + ikI \right) \right| k \int_{\eta_k}^{\eta_R} \frac{I(\eta)}{I(\eta_k)} d\eta \bigg|_{\eta = \eta_k}^2. \quad (3.7)$$

Here, we have supposed the instantaneous reheating after inflation and therefore, η_R is considered to be the conformal time at the reheating stage. By using the comoving magnetic field $B_i(t, \mathbf{x})$, the proper magnetic field is expressed as $B_{i, \text{proper}}(t, \mathbf{x}) = a^{-1} B_i(t, \mathbf{x}) = a^{-2} \epsilon_{ijk} \partial_j A_k(t, \mathbf{x})$, where ϵ_{ijk} is the totally antisymmetric tensor with $\epsilon_{123} = 1$. Accordingly, we find that the spectrum of the magnetic field is described as $|B_{\text{proper}}(k, \eta)|^2 = 2 \left(k^2/a^4 \right) |A(k, \eta)|^2 = 2 \left(k^2/a^4 \right) |A_1(k)|^2$, where we have taken into account the factor 2 originating from the two degrees of freedom for the polarization. In the Fourier space, the energy density of the magnetic field becomes $\rho_B(k, \eta) = \left(1/2\right) |B_{\text{proper}}(k, \eta)|^2 I(\eta)$. With multiplying this by the phase-space density $4\pi k^3/(2\pi)^3$, we derive the energy density of the generated magnetic field per unit logarithmic interval of k as

$$\rho_B(k, \eta) \equiv \frac{1}{2} 4\pi k^3 |B_{\text{proper}}(k, \eta)|^2 I(\eta) = \frac{k |A_1(k)|^2 k^4}{2\pi^2 a^4} I(\eta). \quad (3.8)$$

Consequently, the density parameter of the magnetic field per unit logarithmic interval of k and its spectral index are given by [49]

$$\Omega_B(k, \eta) = \frac{\rho_B(k, \eta_R)}{\rho_{\gamma}(\eta_R)} \frac{I(\eta)}{I(\eta_R)} = \frac{k^4}{T_\text{R}^4 a_R^4} \frac{15 k |A_1(k)|^2}{N_{\text{eff}} \pi^4} I(\eta),$$

$$n_B \equiv \frac{d \Omega_B(k)}{d \ln k} = 4 + \frac{d \ln |A_1(k)|^2}{d \ln k}, \quad (3.10)$$
respectively, where, \(\rho_r(\eta_R) = N_{\text{eff}} (\pi^2/30) T_R^4 \) \[56\] is the energy density of radiation at the reheating stage with the reheating temperature \(T_R \), \(a_R \) is the scale factor at \(\eta = \eta_R \) and \(N_{\text{eff}} \) is the effective massless degrees of freedom (e.g., for photons, 2) thermalized at the reheating stage.

4 Large-scale magnetic field generated in teleparallelism

4.1 Current strength of the magnetic field

For the purpose of analyzing the strength of the magnetic field quantitatively, we examine the case of the specific form of \(I(\eta) \), given by \[49\]

\[I(\eta) = I_*(\frac{\eta}{\eta_*})^{-\beta}, \] (4.1)

where \(\eta_* \) is some fiducial time at the inflationary stage, \(I_* \) is the value of \(I \) at \(\eta = \eta_* \), and \(\beta (> 0) \) is a positive constant, whose positivity makes \(I \) increase monotonically during inflation. For this form of \(I \), \(|A| \) in eq. (3.7) reads \(k|A|^2 = [1/(2I(\eta_k))][1-(\beta+2i)/2(\beta+1)]^2 \equiv A/(2I(\eta_k)) \), where \(A(=O(1)) \) is a constant of the order of unity. By plugging this relation into eqs. (3.9) and (3.10), the density parameter of the magnetic field at the present time \(\eta_0 \) is expressed as \(\Omega_B(k, \eta_0) = [k^4/(T_R^4a_R^4)] [15A/(2N_{\text{eff}}\pi^4I_*)] (\eta_0/\eta_*)^\beta \) with \(n_B = 4 - \beta \), where we have used \(I(\eta_k) \propto k^\beta \) and \(I(\eta_0) = 1 \). If \(I_* \) is very small and the spectrum is nearly scale-invariant, i.e., \(\beta \sim 4 \), the resultant amplitude of the large-scale magnetic field becomes large. From eq. (3.9), we find that the current density parameter of the magnetic field is described by \[49\]

\[\Omega_B(k, \eta_0) = A \frac{N_{\text{eff}}}{1080} \left(\frac{T_R}{M_{\text{Pl}}} \right)^4 (-k\eta_R)^{4-\beta} \frac{1}{T(\eta_R)} . \] (4.2)

Here, we have used the relation \(a_R^2\eta_R^2 \approx H_R^{-2} \) with \(a_R \) and \(H_R \) being the scale factor and the Hubble parameter at the reheating stage, respectively, and the Friedmann equation \(3H_R^2 = \rho_r(\eta_R)/M_{\text{Pl}}^2 \) at the reheating stage, where \(M_{\text{Pl}} = M_{\text{Pl}}/\sqrt{8\pi} = 1/\kappa \). We can further rewrite the term \((-k\eta_R) \) as \[50\]

\[-k\eta_R = \frac{k}{a_R H_R} \approx \left(\frac{1.88}{h} \right) 10^4 \left(\frac{L}{[\text{Mpc}]} \right) \left(\frac{T_R}{T_0} \right) \left(\frac{H_0}{H_R} \right) \]

\[= 5.1 \times 10^{-25} N_{\text{eff}}^{-1/2} \left(\frac{M_{\text{Pl}}}{T_R} \right) \left(\frac{L}{[\text{Mpc}]} \right)^{-1} . \] (4.4)

In deriving eq. (4.3), we have used \(H_0^{-1} = 3.0 \times 10^3 h^{-1} \text{Mpc} \) and \(T \propto a^{-1} \), which leads to \((a_0/a_R) = (T_R/T_0) \). Moreover, in analyzing eq. (4.4), we have adopted the Friedmann equation \(3H^2 = \rho_r(\eta_R)/M_{\text{Pl}}^2 \) with \(\rho_r(\eta_R) = N_{\text{eff}} (\pi^2/30) T_R^4 \), \(T_0 = 2.73 \text{K} \) and \(H_0 = 2.47h \times 10^{-21} \text{K} \) \[56\] with \(h = 0.7 \) \[6, 57, 58\]. Since the current amplitude of the magnetic field is given by \(|B(\eta_0)|^2 = 2\rho_B(\eta_0) = 2\Omega_B(\eta_0, k) \rho_r(\eta_0) \), with \(\rho_r(\eta_0) \approx 2 \times 10^{-51} \text{GeV}^4 \) and \(1 \text{G} = 1.95 \times 10^{-20} \text{GeV}^2 \) we find \[50\]

\[|B(\eta_0, L)| = 2.7 \left[\frac{7.2}{(5.1)^4} \right]^{\beta/8} \times 10^{-56+5\beta/4} N_{\text{eff}}^{(\beta-4)/8} \sqrt{A I(\eta_0)/I(\eta_R)} \left(\frac{H_R}{M_{\text{Pl}}} \right)^{\beta/4} \left(\frac{L}{[\text{Mpc}]} \right)^{\beta/2-2} \text{G} . \] (4.5)
We note that the reheating temperature T_R is described by using the Hubble parameter at the end of inflation, namely, instantaneous reheating stage, H_R as

$$T_R = \left[\frac{90}{(8\pi^3 N_{\text{eff}})} \right]^{1/4} \sqrt{M_{\text{Pl}}H_R}.$$

Furthermore, there exists the upper limit of H_R from tensor perturbations. With the Wilkinson Microwave Anisotropy Probe (WMAP) five year data in terms of the anisotropy of the CMB radiation [5], we have $H_R < 6.0 \times 10^{14} \text{GeV}$ [59].

4.2 Estimation of the current strength of the large-scale magnetic field

We suppose that power-law inflation occurs, in which the scale factor is given by

$$a = a_0 \left(\frac{t}{t_0} \right)^p,$$ \hspace{1cm} (4.6)

with $p \gg 1$, where a_0 and t_0 are constants. The larger the value of p is, the closer power-law inflation goes to exponential inflation. In this case, with the relation $\eta = \int \left(\frac{1}{a} \right) dt$, we get

$$\frac{t}{t_0} = [a_0 t_0 (p - 1) (-\eta)]^{-1/(p-1)}.$$ \hspace{1cm} (4.7)

We examine the case of a power-law type coupling as

$$I(T) = \left(\frac{T}{T_0} \right)^n,$$ \hspace{1cm} (4.8)

where T_0 is a current value of T and $n(\neq 0)$ is a non-zero constant. In this case, by using $T = -6H^2$, $H = p/t$ and eq. (4.7), we obtain

$$I(\eta) = \left(-\frac{6}{T_0} \right)^n \left(\frac{p}{t_0} \right)^{2n} [a_0 t_0 (p - 1)]^{2n/(p-1)} (-\eta)^{2n/(p-1)}.$$ \hspace{1cm} (4.9)

By comparing this equation with eq. (4.1), we acquire

$$\beta = \frac{-2n}{p - 1}.$$ \hspace{1cm} (4.10)

For $N_{\text{eff}} = 100$, $H_R = 1.0 \times 10^{14} \text{GeV}$ ($T_R = 8.6 \times 10^{15} \text{GeV}$), $L = 1 \text{Mpc}$, $A = 1$, $I(\eta_R) = I(\eta_0)$, and $\beta = 4.2$, which can be realized for $p = 10$ and $n = -18.9$, we have

$$|B(\eta_0, L = 1 \text{Mpc})| = 2.5 \times 10^{-9} \text{G}.$$ \hspace{1cm} (4.11)

Similarly, for the above values except $H_R = 1.0 \times 10^{10} \text{GeV}$ ($T_R = 8.6 \times 10^{13} \text{GeV}$) and $\beta = 4.6$, met for $p = 10$ and $n = -19.7$, we obtain

$$|B(\eta_0, L = 1 \text{Mpc})| = 2.3 \times 10^{-9} \text{G}.$$ \hspace{1cm} (4.12)

Here, it should be mentioned that in order to demonstrate the estimation of the generated magnetic field strength at the present time, we have considered the case in which the non-minimal gravitational coupling of the electromagnetic field $I(T)$ changes in time only during inflation, whereas it does not evolve any more, i.e., $I(\eta_R) = I(\eta_0)$, after the instantaneous reheating stage following inflation.

Finally, we compare our results with the analysis executed in ref. [55]. The parameter of β in our study corresponds to that of ν in ref. [55]. In particular, $\beta = 4.2$ in the present work
correlate with $\nu = 2.6$. Note that the scale-invariant spectrum of the magnetic fields is obtained for $\nu = 5/2$ in ref. [55]. In comparison with the analysis in ref. [55], for $\nu = 2.6$ the resultant strength of the magnetic field is estimated as $5.4 \times 10^{-9} \text{G}$, whereas in the scale-invariant limit the magnetic field would be $1.4410 \times 10^{-11} \text{G}$. These figures may change depending on the assumptions on the reheating stage. Hence, we suppose the sudden (i.e., spontaneous) reheating where all the energy density of the inflaton can safely be assumed to be released into the energy density of the radiation. In this sense, for the case where $H_R = 10^{10} \text{GeV}$ ($T_R = 8.6 \times 10^{13} \text{GeV}$) with the above values such as $\beta = 4.2$ (i.e., $p = 10$ and $n = -18.9$), we find

$$|B(\eta_0, L = 1 \text{Mpc})| = 1.6 \times 10^{-13} \text{G}.$$ (4.13)

Clearly, this strength can satisfy the scale-invariant limit, namely, less than $1.4410 \times 10^{-11} \text{G}$.

5 Conclusions

We have investigated the generation of large-scale magnetic fields in inflationary cosmology in the context of teleparallelism. We have examined a non-minimal gravitational coupling of the torsion scalar to the electromagnetic field, which breaks its conformal invariance and hence, the quantum fluctuations of the electromagnetic field can be produced during inflation. It has explicitly illustrated that if the form of the coupling is a power-law type, the magnetic field with its strength of $\sim 10^{-9} \text{G}$ and the coherence scale of 1Mpc at the present time can be generated. This field strength is enough to account for the large-scale magnetic fields observed in clusters of galaxies only through the adiabatic compression during the construction of the large scale structure of the universe without the dynamo amplification mechanism.

Finally, we remark that the resultant field strength of $\sim 10^{-9} \text{G}$ on 1Mpc scale is compatible with the upper limit of $\sim 2-6 \times 10^{-9} \text{G}$ obtained from the observation of CMB radiation [60, 61] as well as that of being smaller than $4.8 \times 10^{-9} \text{G}$ from CMB radiation on the present strength with scales larger than the present horizon [62]. There also exist constraints on the strength of the large-scale magnetic fields from the matter density fluctuation parameter σ_8 [63], the fifth science (S5) run of laser interferometer gravitational-wave observatory (LIGO) [64], Chandra X-ray galaxy cluster survey and Sunyaev-Zel’dovich (S-Z) survey [65], which are compatible with or weaker than those from CMB. Incidentally, generic features of the spectrum of the large-scale magnetic fields generated at the inflationary stage have been investigated in ref. [66]. Moreover, it is also known that from the Big Bang Nucleosynthesis (BBN), there are limits on the primordial magnetic fields The constraint on the current strength of the magnetic fields on the BBN horizon scale $\sim 9.8 \times 10^{-5} h^{-1} \text{Mpc}$, where $h = 0.7$ [57], is smaller than 10^{-6}G [67]. Furthermore, it is meaningful to note that the large-scale magnetic fields with the strength $\sim 4 \times 10^{-11} - 10^{-10} \text{G}$ at the present time can be observed [68] by various future polarization experiments on CMB radiation, e.g., PLANCK [69, 70], QUIET [71, 72], B-Pol [73] and LiteBIRD [74]. If such large-scale magnetic fields in void regions and/or inter galactic medium are detected, the possibility that those origin is the quantum fluctuations of the electromagnetic field generated at the inflationary stage would become higher. Thus, physics in the early universe including inflation may be understood through the future detection of the large-scale magnetic fields.

Acknowledgments

K.B. would like to sincerely thank the very kind and warm hospitality at National Center for Theoretical Sciences and National Tsing Hua University very much, where this work
was initiated. This work was partially supported by National Center of Theoretical Science and National Science Council (NSC-98-2112-M-007-008-MY3 and NSC-101-2112-M-007-006-MY3) of R.O.C.

References

[1] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, *Astrophys. J.* 517 (1999) 565 [astro-ph/9812133] [SPIRE];
Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, *Astron. J.* 116 (1998) 1009 [astro-ph/9805201] [SPIRE].

[2] SDSS collaboration, M. Tegmark et al., Cosmological parameters from SDSS and WMAP, *Phys. Rev. D* 69 (2004) 103501 [astro-ph/0310723] [SPIRE];
SDSS collaboration, U. Seljak et al., Cosmological parameter analysis including SDSS Ly-α forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass and dark energy, *Phys. Rev. D* 71 (2005) 103515 [astro-ph/0407372] [SPIRE].

[3] SDSS collaboration, D.J. Eisenstein et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, *Astrophys. J.* 633 (2005) 560 [astro-ph/0501171] [SPIRE].

[4] WMAP collaboration, D. Spergel et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, *Astrophys. J. Suppl.* 148 (2003) 175 [astro-ph/0302209] [SPIRE];
WMAP collaboration, D. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, *Astrophys. J. Suppl.* 170 (2007) 377 [astro-ph/0603449] [SPIRE].

[5] WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, *Astrophys. J. Suppl.* 180 (2009) 330 [arXiv:0803.0547] [SPIRE].

[6] WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, *Astrophys. J. Suppl.* 192 (2011) 18 [arXiv:1001.4538] [SPIRE].

[7] B. Jain and A. Taylor, Cross-correlation tomography: measuring dark energy evolution with weak lensing, *Phys. Rev. Lett.* 91 (2003) 141302 [astro-ph/0306046] [SPIRE].

[8] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, *Int. J. Mod. Phys.* D 15 (2006) 1753 [hep-th/0603057] [SPIRE].

[9] R.R. Caldwell and M. Kamionkowski, The physics of cosmic acceleration, *Ann. Rev. Nucl. Part. Sci.* 59 (2009) 397 [arXiv:0903.0866] [SPIRE].

[10] L. Amendola and S. Tsujikawa, *Dark energy*, Cambridge University Press, Cambridge U.K. (2010).

[11] S. Tsujikawa, Dark energy: investigation and modeling, [arXiv:1004.1493] [SPIRE].

[12] M. Li, X.-D. Li, S. Wang and Y. Wang, Dark energy, *Commun. Theor. Phys.* 56 (2011) 525 [arXiv:1103.5870] [SPIRE].

[13] M. Kunz, The phenomenological approach to modeling the dark energy, *Comptes Rendus Physique* 13 (2012) 539 [arXiv:1204.5482] [SPIRE].

[14] K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, *Astrophys. Space Sci.* 342 (2012) 155 [arXiv:1205.3421] [SPIRE].
(2012) 058

[15] S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models, *Phys. Rept.* **505** (2011) 59 [arXiv:1011.0544] [nSPIRE]; Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115] [hep-th/0601213] [nSPIRE].

[16] T.P. Sotiriou and V. Faraoni, $f(R)$ theories of gravity, *Rev. Mod. Phys.* **82** (2010) 451 [arXiv:0805.1726] [nSPIRE].

[17] A. De Felice and S. Tsujikawa, $f(R)$ theories, *Living Rev. Rel.* **13** (2010) 3 [arXiv:1002.4928] [nSPIRE].

[18] S. Capozziello and V. Faraoni, *Beyond Einstein gravity*, Springer, Germany (2010).

[19] S. Tsujikawa, Modified gravity models of dark energy, *Lect. Notes Phys.* **800** (2010) 99 [arXiv:1101.0191] [nSPIRE].

[20] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, *Phys. Rept.* **513** (2012) 1 [arXiv:1106.2476] [nSPIRE].

[21] S. Capozziello and M. De Laurentis, Extended theories of gravity, *Phys. Rept.* **509** (2011) 167 [arXiv:1108.6266] [nSPIRE].

[22] T. Harko and F.S. Lobo, Generalized dark gravity, arXiv:1205.3284 [nSPIRE].

[23] S. Capozziello, M. De Laurentis and S.D. Odintsov, Hamiltonian dynamics and Noether symmetries in extended gravity cosmology, *Eur. Phys. J. C* **72** (2012) 2068 [arXiv:1206.4842] [nSPIRE].

[24] F. Hehl, P. Von Der Heyde, G. Kerlick and J. Nester, General relativity with spin and torsion: foundations and prospects, *Rev. Mod. Phys.* **48** (1976) 393 [nSPIRE]; K. Hayashi and T. Shirafuji, New general relativity, *Phys. Rev. D* **19** (1979) 3524 [Addendum *ibid.* D 24 (1982) 3312] [nSPIRE]; E.E. Flanagan and E. Rosenthal, Can gravity probe B usefully constrain torsion gravity theories?, *Phys. Rev. D* **75** (2007) 124016 [arXiv:0704.1447] [nSPIRE]; J. Garecki, Teleparallel equivalent of general relativity: a critical review, arXiv:1010.2654 [nSPIRE].

[25] C.-Q. Geng, C.-C. Lee, E.N. Saridakis and Y.-P. Wu, ‘Teleparallel’ dark energy, *Phys. Lett. B* **704** (2011) 384 [arXiv:1109.1092] [nSPIRE]; C.-Q. Geng, C.-C. Lee and E.N. Saridakis, Observational constraints on teleparallel dark energy, *JCAP* **01** (2012) 002 [arXiv:1110.0913] [nSPIRE]; H. Wei, Dynamics of teleparallel dark energy, *Phys. Lett. B* **712** (2012) 430 [arXiv:1109.6107] [nSPIRE]; C. Xu, E.N. Saridakis and G. Leon, Phase-space analysis of teleparallel dark energy, *JCAP* **07** (2012) 005 [arXiv:1202.3781] [nSPIRE]; J.-A. Gu, C.-C. Lee and C.-Q. Geng, Tracker teleparallel dark energy with purely non-minimal coupling to gravity, arXiv:1204.4048 [nSPIRE].

[26] R. Ferraro and F. Fiorini, Modified teleparallel gravity: inflation without inflaton, *Phys. Rev. D* **75** (2007) 084031 [gr-qc/0610067] [nSPIRE]; On Born-Infeld gravity in Weitzenbock spacetime, *Phys. Rev. D* **78** (2008) 124019 [arXiv:0812.1981] [nSPIRE].

[27] G.R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, *Phys. Rev. D* **79** (2009) 124019 [arXiv:0812.1205] [nSPIRE].

[28] E.V. Linder, Einstein’s other gravity and the acceleration of the universe, *Phys. Rev. D* **81** (2010) 127301 [Erratum *ibid.* D 82 (2010) 109902] [arXiv:1005.3039] [nSPIRE]; K. Bamba, C.-Q. Geng and C.-C. Lee, Comment on ‘Einstein’s other gravity and the acceleration of the universe, arXiv:1008.4036 [nSPIRE];
P. Wu and H.W. Yu, *f(T) models with phantom divide line crossing*, *Eur. Phys. J. C* **71** (2011) 1552 [arXiv:1008.3669] [SPIRE];
K. Bamba, C.-Q. Geng, C.-C. Lee and L.-W. Luo, *Equation of state for dark energy in f(T) gravity*, *JCAP* **01** (2011) 021 [arXiv:1011.0508] [SPIRE].

[29] P.P. Kronberg, *Extragalactic magnetic fields*, *Rept. Prog. Phys.* **57** (1994) 325 [SPIRE];
D. Grasso and H.R. Rubinstein, *Magnetic fields in the early universe*, *Phys. Rept.* **348** (2001) 163 [astro-ph/0009061] [SPIRE];
C. Carilli and G. Taylor, *Cluster magnetic fields*, *Annu. Rev. Astron. Astrophys.* **40** (2002) 319 [astro-ph/0110655] [SPIRE];
L.M. Widrow, *Origin of galactic and extragalactic magnetic fields*, *Rev. Mod. Phys.* **74** (2002) 775 [astro-ph/0207240] [SPIRE];
M. Giovannini, *The magnetized universe*, *Int. J. Mod. Phys. D* **13** (2004) 391 [astro-ph/0312614] [SPIRE]; *Theoretical tools for the physics of CMB anisotropies*, *Int. J. Mod. Phys. D* **14** (2005) 363 [astro-ph/0412601] [SPIRE]; *Magnetic fields, strings and cosmology*, *Lect. Notes Phys.* **737** (2008) 863 [astro-ph/0612378] [SPIRE];
A. Kandus, K.E. Kunze and C.G. Tsagas, *Primordial magnetogenesis*, *Phys. Rept.* **505** (2011) 1 [arXiv:1007.3891] [SPIRE].

[30] L. Biermann and A. Schlüter, *Cosmic radiation and cosmic magnetic fields. II. Origin of cosmic magnetic fields*, *Phys. Rev.* **82** (1951) 863.

[31] E.S. Weibel, *Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution*, *Phys. Rev. Lett.* **2** (1959) 83 [SPIRE].

[32] J.M. Quashnock, A. Loeb and D.N. Spergel, *Magnetic field generation during the cosmological QCD phase transition*, *Astrophys. J.* **344** (1989) L49 [SPIRE];
G. Baym, D. Bödeker and L.D. McLerran, *Magnetic fields produced by phase transition bubbles in the electroweak phase transition*, *Phys. Rev. D* **53** (1996) 662 [hep-ph/9507429] [SPIRE];
D. Boyanovsky, H.J. de Vega and M. Simionato, *Large scale magnetogenesis from a non-equilibrium phase transition in the radiation dominated era*, *Phys. Rev. D* **67** (2003) 123505 [hep-ph/0211022] [SPIRE];
D. Boyanovsky, M. Simionato and H.J. de Vega, *Magnetic field generation from non-equilibrium phase transitions*, *Phys. Rev. D* **67** (2003) 023502 [hep-ph/0208272] [SPIRE];
R. Durrer and C. Caprini, *Primordial magnetic fields and causality*, *JCAP* **11** (2003) 010 [astro-ph/0305059] [SPIRE];
T. Kahninshvili, A.G. Tsvadze and B. Ratra, *Phase transition generated cosmological magnetic field at large scales*, *Astrophys. J.* **726** (2011) 78 [arXiv:0907.0197] [SPIRE].

[33] Z. Berezhiani and A.D. Dolgov, *Generation of large scale magnetic fields at recombination epoch*, *Astropart. Phys.* **21** (2004) 59 [astro-ph/0305595] [SPIRE];
S. Matarrese, S. Mollerach, A. Notari and A. Riotto, *Large-scale magnetic fields from density perturbations*, *Phys. Rev. D* **71** (2005) 043502 [astro-ph/0410687] [SPIRE];
K. Takahashi, K. Ichiki, H. Ohno and H. Hanayama, *Magnetic field generation from cosmological perturbations*, *Phys. Rev. Lett.* **95** (2005) 121301 [astro-ph/0502283] [SPIRE];
K. Ichiki, K. Takahashi, H. Ohno, H. Hanayama and N. Sugiyama, *Cosmological magnetic field: a fossil of density perturbations in the early universe*, *Science* **311** (2006) 827 [astro-ph/0603631] [SPIRE];
E.R. Siegel and J.N. Fry, *Cosmological structure formation creates large-scale magnetic fields*, *Astrophys. J.* **651** (2006) 627 [astro-ph/0604526] [SPIRE];
T. Kobayashi, R. Maartens, T. Shiromizu and K. Takahashi, *Cosmological magnetic fields from nonlinear effects*, *Phys. Rev. D* **75** (2007) 103501 [astro-ph/0701596] [SPIRE];
K.E. Kunze, *Primordial magnetic fields and nonlinear electrodynamics*, *Phys. Rev. D* **77** (2008) 023530 [arXiv:0710.2435] [SPIRE];
L. Campanelli, P. Cea, G. Fogli and L. Tedesco, *Inflation-produced magnetic fields in nonlinear electrodynamics*, *Phys. Rev. D* **77** (2008) 043001 [arXiv:0710.2993] [SPIRE];
S. Maeda, S. Kitagawa, T. Kobayashi and T. Shiromizu, Primordial magnetic fields from second-order cosmological perturbations: tight coupling approximation, Class. Quant. Grav. 26 (2009) 135014 [arXiv:0805.0169] [inSPIRE];
E. Fenu, C. Pitrou and R. Maartens, The seed magnetic field generated during recombination, Mon. Not. Roy. Astron. Soc. 414 (2011) 2354 [arXiv:1012.2958] [inSPIRE].

[34] E.N. Parker, The generation of magnetic fields in astrophysical bodies. II. The galactic field, Astrophys. J. 163 (1971) 255; Cosmical magnetic fields, Clarendon, Oxford U.K. (1979);
Ya.B. Zel’dovich, A.A. Ruzmaikin and D.D. Sokoloff, Magnetic fields in astrophysics, Gordon and Breach, New York U.S.A. (1983).

[35] M.S. Turner and L.M. Widrow, Inflation produced, large scale magnetic fields, Phys. Rev. D 37 (1988) 2743 [inSPIRE].

[36] I. Drummond and S. Hathrell, QED vacuum polarization in a background gravitational field and its effect on the velocity of photons, Phys. Rev. D 22 (1980) 343 [inSPIRE].

[37] F.D. Mazzitelli and F.M. Spedalieri, Scalar electrodynamics and primordial magnetic fields, Phys. Rev. D 52 (1995) 6694 [astro-ph/9505140] [inSPIRE];
G. Lambiase and A. Prasanna, Gauge invariant wave equations in curved space-times and primordial magnetic fields, Phys. Rev. D 70 (2004) 063502 [gr-qc/0407071] [inSPIRE];
K. Bamba and S.D. Odintsov, Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields, JCAP 04 (2008) 024 [arXiv:0801.0954] [inSPIRE];
K. Bamba, S. Nojiri and S.D. Odintsov, Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity, Phys. Rev. D 77 (2008) 123532 [arXiv:0803.3384] [inSPIRE];
K. Bamba and S. Nojiri, Cosmology in non-minimal Yang-Mills/Maxwell theory, arXiv:0811.0150 [inSPIRE];
L. Campanelli, P. Cea, G. Fogli and L. Tedesco, Inflation-produced magnetic fields in R^nF^2 and IF^2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [inSPIRE];
G. Lambiase, S. Mohanty and G. Scarpetta, Magnetic field amplification in f(R) theories of gravity, JCAP 07 (2008) 019 [inSPIRE];
K.E. Kunze, Large scale magnetic fields from gravitationally coupled electrodynamics, Phys. Rev. D 81 (2010) 043526 [arXiv:0911.1101] [inSPIRE];
J. Beltran Jimenez and A.L. Maroto, Dark energy, non-minimal couplings and the origin of cosmic magnetic fields, JCAP 12 (2010) 025 [arXiv:1010.4513] [inSPIRE].

[38] L. Parker, Particle creation in expanding universes, Phys. Rev. Lett. 21 (1968) 562 [inSPIRE].

[39] C.G. Tsagas, Electromagnetic fields in curved spacetimes, Class. Quant. Grav. 22 (2005) 393 [gr-qc/0407080] [inSPIRE];
C.G. Tsagas and A. Kanduls, Superadiabatic-type magnetic amplification in conventional cosmology, Phys. Rev. D 71 (2005) 123506 [astro-ph/0504089] [inSPIRE];
J.D. Barrow and C.G. Tsagas, Slow decay of magnetic fields in open Friedmann universes, Phys. Rev. D 77 (2008) 107302 [Erratum ibid. D 77 (2008) 109904] [arXiv:0803.0660] [inSPIRE]; Cosmological magnetic field survival, Mon. Not. Roy. Astron. Soc. 414 (2011) 512 [arXiv:1101.2390] [inSPIRE].

[40] A.L. Maroto, Primordial magnetic fields from metric perturbations, Phys. Rev. D 64 (2001) 083006 [hep-ph/0008288] [inSPIRE].

[41] V. De Mozzi, V. Mukhanov and H. Rubinstein, Magnetic fields from inflation?, JCAP 08 (2009) 025 [arXiv:0907.1030] [inSPIRE];
S. Kanno, J. Soda and M.-A. Watanabe, Cosmological magnetic fields from inflation and backreaction, JCAP 12 (2009) 009 [arXiv:0908.3509] [inSPIRE].
[42] T. Suyama and J. Yokoyama, Metric perturbation from inflationary magnetic field and generic bound on inflation models, Phys. Rev. D 86 (2012) 023512 [arXiv:1204.3976] [INSPIRE].

[43] T. Fujita and S. Mukohyama, Universal upper limit on inflation energy scale from cosmic magnetic field, JCAP 10 (2012) 034 [arXiv:1205.6031] [INSPIRE].

[44] B. Ratra, Cosmological ‘seed’ magnetic field from inflation, Astrophys. J. 391 (1992) L1 [INSPIRE].

[45] D. Lemoine and M. Lemoine, Primordial magnetic fields in string cosmology, Phys. Rev. D 52 (1995) 1955 [INSPIRE].

[46] M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology, Phys. Rev. D 52 (1995) 1955 [INSPIRE].

[47] K. Bamba and J. Yokoyama, Large scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev. D 69 (2004) 043507 [astro-ph/0310824] [INSPIRE]; Large-scale magnetic fields from dilaton inflation in noncommutative spacetime, Phys. Rev. D 70 (2004) 083508 [hep-ph/0409237] [INSPIRE].

[48] J. Martin and J. Yokoyama, Generation of large-scale magnetic fields in single-field inflation, JCAP 01 (2008) 025 [arXiv:0711.4307] [INSPIRE].

[49] K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP 02 (2007) 030 [astro-ph/0611701] [INSPIRE]; K. Bamba, The interrelation between the generation of large-scale electric fields and that of large-scale magnetic fields during inflation, JCAP 10 (2007) 015 [arXiv:0710.1906] [INSPIRE].

[50] K. Bamba, M. Ohta and S. Tsujikawa, Generic estimates for magnetic fields generated during inflation including Dirac-Born-Infeld theories, Phys. Rev. D 78 (2008) 043524 [arXiv:0805.3862] [INSPIRE].

[51] K. Bamba, C. Geng and S. Ho, Large-scale magnetic fields from inflation due to Chern-Simons-like effective interaction, JCAP 11 (2008) 013 [arXiv:0806.1856] [INSPIRE].

[52] K. Bamba, C. Geng, S. Ho and W. Kao, Large-scale magnetic fields from inflation due to a CPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields, Eur. Phys. J. C 72 (2012) 1978 [arXiv:1108.0151] [INSPIRE]; S.-H. Ho, W. Kao, K. Bamba and C. Geng, Cosmological birefringence due to CPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields, arXiv:1008.0486 [INSPIRE].

[53] M. Giovannini, On the variation of the gauge couplings during inflation, Phys. Rev. D 64 (2001) 061301 [astro-ph/0104290] [INSPIRE].

[54] M. Giovannini, Magnetogenesis, spectator fields and CMB signatures, Phys. Lett. B 650 (2008) 661 [arXiv:0711.3273] [INSPIRE].

[55] M. Giovannini, Electric-magnetic duality and the conditions of inflationary magnetogenesis, JCAP 04 (2010) 003 [arXiv:0911.0896] [INSPIRE].

[56] E.W. Kolb and M.S. Turner, The early universe, Addison-Wesley, Redwood City U.S.A. (1990).

[57] HST collaboration, W. Freedman et al., Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553 (2001) 47 [astro-ph/0012376] [INSPIRE].

[58] A.G. Riess et al., A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder, Astrophys. J. 699 (2009) 539 [arXiv:0905.0695] [INSPIRE].

[59] V. Rubakov, M. Sazhin and A. Veryaskin, Graviton creation in the inflationary universe and the grand unification scale, Phys. Lett. B 115 (1982) 189 [INSPIRE]; L. Abbott and M.B. Wise, Constraints on generalized inflationary cosmologies, Nucl. Phys. B 244 (1984) 541 [INSPIRE].
[60] K. Subramanian and J.D. Barrow, Microwave background signals from tangled magnetic fields, *Phys. Rev. Lett.* **81** (1998) 3575 [astro-ph/9803261] [inSPIRE];
T.R. Seshadri and K. Subramanian, CMBR polarization signals from tangled magnetic fields, *Phys. Rev. Lett.* **87** (2001) 101301 [astro-ph/0012056] [inSPIRE];
K. Subramanian and J.D. Barrow, Small-scale microwave background anisotropies due to tangled primordial magnetic fields, *Mon. Not. Roy. Astron. Soc.* **335** (2002) L57 [astro-ph/0205312] [inSPIRE];
K. Subramanian, T.R. Seshadri and J.D. Barrow, Small-scale CMB polarization anisotropies due to tangled primordial magnetic fields, *Mon. Not. Roy. Astron. Soc.* **344** (2003) L31 [astro-ph/0303014] [inSPIRE];
H. Tashiro, N. Sugiyama and R. Banerjee, Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies, *Phys. Rev.* **D 73** (2006) 023002 [astro-ph/0509220] [inSPIRE];
D.G. Yamazaki, K. Ichiki, T. Kajino and G.J. Mathews, Effects of a primordial magnetic field on low and high multipoles of the CMB, *Phys. Rev.* **D 77** (2008) 043005 [arXiv:0801.2572] [inSPIRE];
T. Kahniashvili, Y. Maravin and A. Kosowsky, Faraday rotation limits on a primordial magnetic field from Wilkinson Microwave Anisotropy Probe five-year data, *Phys. Rev.* **D 80** (2009) 023009 [arXiv:0806.1876] [inSPIRE];
D.G. Yamazaki, K. Ichiki, T. Kajino and G.J. Mathews, New constraints on the primordial magnetic field, *Phys. Rev.* **D 81** (2010) 023008 [arXiv:1001.2012] [inSPIRE];
J.R. Shaw and A. Lewis, Constraining primordial magnetism, *Phys. Rev.* **D 86** (2012) 043510 [arXiv:1006.4242] [inSPIRE];
P. Trivedi, K. Subramanian and T. Seshadri, Primordial magnetic field limits from cosmic microwave background bispectrum of magnetic passive scalar modes, *Phys. Rev.* **D 82** (2010) 123006 [arXiv:1009.2724] [inSPIRE];
M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki and K. Takahashi, Cosmic microwave background bispectrum of vector modes induced from primordial magnetic fields, *Phys. Rev.* **D 82** (2010) 121302 [Erratum ibid. D 83 (2011) 029901] [arXiv:1009.3632] [inSPIRE].

[61] M. Giovannini and K.E. Kunze, CMB polarization induced by stochastic magnetic fields, arXiv:0804.2238 [inSPIRE].

[62] J.D. Barrow, P.G. Ferreira and J. Silk, Constraints on a primordial magnetic field, *Phys. Rev. Lett.* **78** (1997) 3610 [astro-ph/9701063] [inSPIRE].

[63] D.G. Yamazaki, K. Ichiki, T. Kajino and G.J. Mathews, Constraints on the primordial magnetic field from σ_8, *Phys. Rev. D* **78** (2008) 123001 [arXiv:0811.2221] [inSPIRE];
Constraints on the neutrino mass and the primordial magnetic field from the matter density fluctuation parameter σ_8, *Phys. Rev. D* **81** (2010) 103519 [arXiv:1005.1638] [inSPIRE].

[64] S. Wang, New primordial-magnetic-field limit from the latest LIGO S-5 data, *Phys. Rev. D* **81** (2010) 023002 [arXiv:0810.5620] [inSPIRE].

[65] H. Tashiro, K. Takahashi and K. Ichiki, Primordial magnetic fields with X-ray and S-Z cluster survey, arXiv:1010.4407 [inSPIRE].

[66] K. Bamba, Property of the spectrum of large-scale magnetic fields from inflation, *Phys. Rev. D* **75** (2007) 083516 [astro-ph/0703647] [inSPIRE].

[67] D. Grasso and H.R. Rubinstein, Revisiting nucleosynthesis constraints on primordial magnetic fields, *Phys. Lett. B* **379** (1996) 73 [astro-ph/9602055] [inSPIRE];
B.-L. Cheng, A.V. Olinto, D.N. Schramm and J.W. Truran, Constraints on the strength of primordial magnetic fields from big bang nucleosynthesis revisited, *Phys. Rev. D* **54** (1996) 4714 [astro-ph/9606163] [inSPIRE].
[68] C. Caprini, R. Durrer and T. Kahniashvili, *The cosmic microwave background and helical magnetic fields: the tensor mode*, Phys. Rev. D 69 (2004) 063006 [astro-ph/0304556] [insPIRE];

T. Kahniashvili and B. Ratra, *Effects of cosmological magnetic helicity on the cosmic microwave background*, Phys. Rev. D 71 (2005) 103006 [astro-ph/0503709] [insPIRE];

T. Kahniashvili, *Effects of primordial helicity on CMB*, New Astron. Rev. 50 (2006) 1015 [astro-ph/0605440] [insPIRE];

J.R. Kristiansen and P.G. Ferreira, *Constraining primordial magnetic fields with CMB polarization experiments*, Phys. Rev. D 77 (2008) 123004 [arXiv:0803.3210] [insPIRE].

[69] Planck science team homepage, http://www.sciops.esa.int/index.php?project=PLANCK.

[70] Planck, the scientific programme bluebook, http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf.

[71] QUIET: Q/U Imaging ExperimenT webpage, http://quiet.uchicago.edu/index.php.

[72] QUIET collaboration, D. Samtleben, *Measuring the Cosmic Microwave Background Radiation (CMBR) polarization with QUIET*, Nuovo Cim. B 122 (2007) 1353 [arXiv:0802.2657] [insPIRE].

[73] B-Pol: a B-polarization satellite proposal for detecting primordial gravitational waves from inflation webpage, http://www.b-pol.org/index.php.

[74] LiteBIRD: Lite (light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection webpage, http://cmbpol.kek.jp/litebird/.