Role of redundant nerve roots in clinical manifestations of lumbar spine stenosis

Karim Rizwan Nathani1, Komal Naeem1, Hamid Hussain Rai1, Muhammad Danish Barakzai2, Haissan Iftikhar3, Saad Akhtar Khan1, Fatima Mubarak2, S. Ather Enam1

Departments of 1Neurosurgery, 2Radiology, 3ENT, Aga Khan University, Karachi, Sindh, Pakistan.
E-mail: *Karim Rizwan Nathani - karim.rizwan.n@gmail.com, Komal Naeem - komalnaeemjabbar@gmail.com, Hamid Hussain Rai - hamidhussainrai@hotmail.com, Muhammad Danish Barakzai - danish.barakzai@hotmail.com, Haissan Iftikhar - haissaniftikhar@gmail.com, Saad Akhtar Khan - drsaadkhan84@gmail.com, Fatima Mubarak - fatima.mubarak@aku.edu, S. Ather Enam - ather.enam@aku.edu

*Corresponding author:
Saad Akhtar Khan,
Department of Neurosurgery,
Aga Khan University, Karachi,
Sindh, Pakistan.
drsaadkhan84@gmail.com

INTRODUCTION

Redundant nerve root (RNR) of the cauda equina is a radiological observation characterized by elongated, enlarged, tortuous nerve roots in patients with lumbar spinal canal stenosis (LSCS).\[2\]

Myelography remains the gold standard for diagnosing RNR.\[3,6-9\]

Although the management of LSCS remains the same for patients with/without RNR, some consider RNR a poor prognostic factor.\[8,10,11\]

Here, we reviewed data regarding the impact of RNR on clinical presentation, prognosis, and long-term outcomes in LSCS patients.
MATERIALS AND METHODS

Patient selection

A total of 55 patients were over the age of 18 and averaged 57.1 ± 12.1 years of age. Thirty-two (58.2%) females and 23 (41.8%) males were enrolled in the study. This was a retrospective cohort study in neurosurgery. Patients had MR documented LSCS, and all had undergone surgical decompressive procedures (2015). Patients were diagnosed with/without RNR based on preoperative sagittal magnetic resonance imaging (MRI) studies as shown in Figure 1, reviewed by a radiologist blinded to the study design.

Patients in both groups exhibited similar preoperative modified total Japanese Orthopaedic Association (JOA) score (7.4 ± 2.3 vs. 7.3 ± 2.9; P > 0.05) [Figures 2 and 3].

Medical record review included an assessment of patients’ clinical, radiographic, and outcome data; low back pain (i.e., all had low back pain), neurogenic claudication/neurological deficits (i.e., motor, sensory, and sphincteric-urinary incontinence), and outcome analysis (i.e., based on JOA score) [Tables 1-3].

All individual preoperative JOA scores, except straight leg raise (SLR) test and urinary bladder function, were observed to be higher in the non-RNR group with none being statistically significant. Unforeseen, mean SLR test and bladder function scores were higher in the RNR group, 1.5 ± 0.7 and 5.4 ± 1.6, respectively, compared to non-RNR group, 1.2 ± 0.6 and 4.9 ± 1.8, respectively, but the differences were not significant (P > 0.05).

The follow-up ranged from 0 to 23.1 months (average 4.0 ± 4.5 months).

Statistical analysis

Continuous data were presented as mean, standard deviation for normally distributed variables or shown as frequency/percentages. Linear regression was used to assess difference in means between continuous data, and Pearson Chi-square test was used to assess difference between categorical data. Logistic regression was used to assess differences between categorical and continuous variables.

Table 1: Patient characteristics in RNR and non-RNR groups.

Patient characteristics	RNR group (n=22)	Non-RNR group (n=33)	P-value
Age (mean years)	62.2±8.9	53.7±12.9	0.015*
Gender	11:11	21:12	0.315
(female: male)			
Diabetes mellitus	12	11	0.118
Hypertension	14	13	0.078
Stay at hospital (mean days)	6.23±5.61	5.45±3.91	0.547
Duration of symptoms (mean years)	3.37±3.76	5.63±6.84	0.176

*The difference is statistically significant, RNR: Redundant nerve root

Figure 1: Sagittal magnetic resonance imaging of an enrolled patient with lumbar spinal canal stenosis. A serpentine redundant nerve root can be observed extending from L2 to S1.

Figure 2: Comparison of preoperative Japanese Orthopaedic Association scores for each group.

Figure 3: Comparison of modified total Japanese Orthopaedic Association score for each group. ‘Only applicable for this study. The score was designed with respect to the available data from the retrospective review of patient records.
RESULTS
Preoperative MR documentation of RNR
RNR was present on preoperative lumbar MRI studies in 22 (40.0%) patients (RNR group) and absent in the remaining 33 (60.0%) patients (non-RNR group).

Clinical features of RNR patients
Patients with RNR were older, averaging 62.2 ± 8.9 years of age versus non-RNR group patients averaging 53.7 ± 12.9 years old (P = 0.015).

The differences in symptoms present at discharge and at last follow-up were not statistically significant for either group (P > 0.05) (i.e., sensory disturbances and urinary incontinence at discharge were less common in the RNR group, but they exhibited more motor deficits all of which did not achieve “significance”) [Tables 2 and 3].

Intraoperative dural tears occurred in five patients with and five patients without RNR, but this difference was not significant (P > 0.05).

DISCUSSION
This study assessed the clinical presentation and functional outcomes of patients with LSCS with/without RNR. We found that RNR was present in 40.0% (22 of 55) of cases, consistent with the prior literature (range 33.8–42.3%).[1,4,5,11,14] Although some have argued that RNR is a poor prognostic factor; we found no significant differences in outcomes in this study in patients with/without RNR.[1,5,6,10-13] The only significant difference observed was the older average age at presentation for patients with RNR, a finding corroborated by Min et al.[5]

Although greater motor deficits and urinary dysfunction were found in patients with RNR at the time of preoperative assessment and discharge, along with a higher incidence of intraoperative dural tears, these findings were not statistically significant.

CONCLUSION
The present study demonstrated that 40% of MR studies document RNR in patients with LSCS on preoperative MR studies. Nevertheless, this finding does not appear to have any significant impact on the clinical presentation and neurological outcomes for these patients.
Declaration of patient consent

Patient's consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Chen J, Wang J, Wang B, Xu H, Lin S, Zhang H. Post-surgical functional recovery, lumbar lordosis, and range of motion associated with MR-detectable redundant nerve roots in lumbar spinal stenosis. Clin Neurol Neurosurg 2016;140:79-84.
2. Duncan AW, Kido DK. Serpentine cauda equina nerve roots. Radiology 1981;139:109-11.
3. Hakan T, Celikoğlu E, Aydoseli A, Demir K. The redundant nerve root syndrome of the Cauda equina. Turk Neurosurg 2008;18:204-6.
4. Hur JW, Hur JK, Kwon TH, Park YK, Chung HS, Kim JH. Radiological significance of ligamentum flavum hypertrophy in the occurrence of redundant nerve roots of central lumbar spinal stenosis. J Korean Neurosurg Soc 2012;52:215-20.
5. Min JH, Jang JS, Lee SH. Clinical significance of redundant nerve roots of the cauda equina in lumbar spinal stenosis. Clin Neurol Neurosurg 2008;110:14-8.
6. Ono A, Suetsumu F, Irie T, Yokoyama T, Numasawa T, Wada K, et al. Clinical significance of the redundant nerve roots of the cauda equina documented on magnetic resonance imaging. J Neurosurg Spine 2007;7:27-32.
7. Ozturk AK, Gokaslan ZL. Clinical significance of redundant nerve roots of the cauda equina. World Neurosurg 2014;82:e717-8.
8. Pouriea M, Daghichi MH, Effekhari P, Bookani KR, Foujadi DF. Redundant nerve roots of the cauda equina in lumbar spinal canal stenosis, an MR study on 500 cases. Eur Spine J 2015;24:2315-20.
9. Steurer J, Roner S, Gnannt R, Hodler J. Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: A systematic literature review. BMC Musculoskeletal Disord 2011;12:175.
10. Suzuki K, Ishida Y, Ohmori K, Sakai H, Hashizume Y. Redundant nerve roots of the cauda equina: Clinical aspects and consideration of pathogenesis. Neurosurgery 1989;24:521-8.
11. Suzuki K, Takatsu T, Inoue H, Teramoto T, Ishida Y, Ohmori K. Redundant nerve roots of the cauda equina caused by lumbar spinal canal stenosis. Spine (Phil Pa 1976) 1992;17:1337-42.
12. Tsuji H, Tamaki T, Itoh T, Yamada H, Motoe T, Tatezaki S, et al. Redundant nerve roots in patients with degenerative lumbar spinal stenosis. Spine (Phil Pa 1976) 1985;10:72-82.
13. Yokoyama K, Kawanishi M, Yamada M, Tanaka H, Ito Y, Hirano M, et al. Clinical significance of postoperative changes in redundant nerve roots after decompressive laminectomy for lumbar spinal canal stenosis. World Neurosurg 2014;82:e825-30.
14. Zheng F, Farmer JC, Sandhu HS, O'Leary PF. A novel method for the quantitative evaluation of lumbar spinal stenosis. HSS J 2006;2:136-40.

How to cite this article: Nathani KR, Naeem K, Rai HH, Barakzai MD, Iftikhar H, Khan SA, et al. Role of redundant nerve roots in clinical manifestations of lumbar spine stenosis. Surg Neurol Int 2021;12:218.