New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis

Anna Bagnato* and Laura Rosanò*

Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy

Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.

Keywords: cancer, β-arrestin, G protein-coupled receptors, cytoskeleton, motility

INTRODUCTION

G protein-coupled receptors (GPCRs) constitute the largest family among the membrane proteins, playing an important role not only in mediating physiological function but also controlling the recruitment and activation of intracellular molecules associated with human diseases, including cancer (Lagerstrom and Schioth, 2008; Hauser et al., 2017; Insel et al., 2018). Agonist-activated GPCRs couple to heterotrimeric G proteins, thus facilitating exchange of GDP by GTP in the Gα subunits followed by dissociation from the βγ dimers and transiently interacting with specific effectors to trigger canonical signal transduction cascades. The phosphorylation of GPCRs by G protein-coupled receptor kinases (GRKs), a subfamily of AGC (protein kinase A/G/C-like) kinases originally identified as inhibitors of GPCR signaling, promotes the recruitment to the phosphorylated receptor of the cytosolic proteins β-arrestins (β-arrs), leading to GPCR desensitization (Gurevich et al., 2012).

In the classical view, GPCR signaling is mediated by G proteins, while β-arr recruitment is associated with signaling desensitization of GPCR. In this old view, the competition between G proteins...
and β-arra, β-arra1 or β-arra2, for an activated GPCR determines the signal termination, hampering further G protein signaling (Luttrell and Lefkowitz, 2002; Sente et al., 2018). Also, β-arra promote clathrin-dependent-endocytosis of activated GPCR (Luttrell and Lefkowitz, 2002; Sente et al., 2018). One of the most important breakthroughs in GPCR field during the past decades was that the signal transduction of GPCRs is also strictly linked to β-arra. Beyond their known roles in GPCR desensitization/internalization, β-arra have been implicated in the control of multiple outcomes, acting as multifunctional scaffold proteins and signaling transducers, crucial for intracellular signal propagation and amplification, and governing different cellular effects (Miller and Lefkowitz, 2001; DeFea, 2008; Shukla et al., 2011; Peterson and Luttrell, 2017). Almost two decades after the first evidence, GPCR field now encompasses an extensive knowledge that β-arra integrate signals arising from GPCR with intrinsic cellular pathways in human disease, initiating waves of intracellular signaling in a G protein-independent manner and allowing the discovery of new therapies targeting selectively β-arra-mediated circuits, known as biased arrestin-biased agonism (Smith et al., 2018). Moreover, since β-arra-biased signaling requires phosphorylation of GPCRs by GRKs to promote high-affinity binding of β-arra to GPCRs and GRK subtypes might have preferential phosphorylation and trigger unique conformational changes in GPCRs, studies of β-arra-biased signaling might consider also the involvement of GRKs in cancer-related signaling pathways (Heitzler et al., 2012). In this regard, different isoforms of GRKs are able to modulate the response to many GPCRs involved in tumor signaling via its direct interaction with other components of transduction cascades, as well outlined in a recent review (Nogués et al., 2018). Therefore, GRKs would also be considered critical to control the fate of β-arra-dependent signaling of GPCRs and as potential therapeutic targets in cancer.

Recent pharmacological studies on the paradigm of biased agonists, where a particular biased ligand can generate a GPCR conformation able to lead to a distinct functional outcome, usually either G-protein or β-arra-dependent signaling but not both, suggest that current GPCR-based therapeutics could be improved by increasing anticancer efficacy (Smith et al., 2018). Moreover, computational and atomic level dynamic simulation approaches provided new details linking phosphorylation of GPCR, β-arra interactions, and β-arra-dependent signaling, supporting the “barcode hypothesis”, in which distinct patterns of GPCR phosphorylation trigger specific conformational states of β-arra with specific functional outcomes (Srivastava et al., 2015). In addition, remarkable advances in the GPCR structural biology field deeply demonstrated that specific ligands, by stabilizing particular sets of conformations and permitting the interaction with specific effectors, might achieve specific efficacies for selected signaling pathway (Rosenbaum et al., 2009). Recently, this conceptual framework has been refined, whereby the activated GPCR might lead the formation of a “supercomplex,” where GPCR and β-arra form a unique signaling module with G-protein (Marshall, 2016; Thomsen et al., 2016). These findings support the hypothesis of a new way to signal, by concomitant binding of G proteins and β-arra to activated receptors, further providing an additional paradigm in GPCR-driven signaling transduction.

![Image](https://via.placeholder.com/150)

β-ARRESTINS AS SCAFFOLD PROTEINS IN GPCR SIGNALING

In cancer cells and in a cell context- and cancer type-dependent manner, the pools of β-arra-dependent multiprotein complexes can be found localized to different intracellular compartments, as bound to the cytoskeleton, as endocytic adapters acting on specific signalosomes in endosomes and interacting with signaling proteins involved in gene transcription, protein ubiquitination, and cytoskeletal remodeling, among others (Ma and Pei, 2007; Sobolesky and Moussa, 2013; McGovern and DeFea, 2014; Black et al., 2016; Jean-Charles et al., 2016; Rosanò and Bagnato, 2016; Chaturvedi et al., 2018; Eichel and von Zastrow, 2018; Song et al., 2018). β-arra-dependent multiprotein complexes, transducing the GPCR signals, regulate the functionality of different tyrosine kinase receptor family members and directly control cytosolic, cytoskeletal remodeling or nuclear signaling components of pathways relevant for tumor growth, invasiveness, and metastatic progression (Figure 1). Through these functions, both β-arra foster a plethora of signaling pathways, including members of the mitogen-activated protein kinase (MAPK), AKT, PI3K, Wnt, Hedgehog, E3 ubiquitin ligases, PTEN, nuclear factor-kB, and regulators of small GTPase activity. To expand the intracellular communication, agonists of GPCRs can activate tyrosine kinase receptors (RTK), through a signal cross talk. This can occur via a mechanism by a GPCR-mediated activation of proteases operating the ectodomain shedding of a membrane bound pro-ligand, such as heparin-binding epidermal growth factor (Hb-EGF), or by the intercellular activity of GPCR-activated tyrosine kinase, completely independent of ligand binding (Rosanò and Bagnato, 2016; Cruden et al., 2018). Moreover, accumulating evidence recognizes that the transactivation of RTKs by GPCRs is not unidirectional, as the cross talk between RTKs and GPCRs is reciprocal, GPCRs can be activated by RTKs, and β-arra can be used by RTKs, as in the case of insulin-like growth factor type 1 receptor (Girnita et al., 2005, 2007; Zheng et al., 2012; Cruden et al., 2018) or platelet-derived growth factor receptors (Pyne and Pyne, 2017). In both mechanisms, it is well known that some GPCRs use β-arra to execute and transduce this cross talk between GPCRs and RTKs, governing multiple cellular processes in cancer invasion and metastasis. Proteomic studies in cancer cells demonstrated a very impressive diversity of signaling cascade molecules, which can be engaged by β-arra for a positive or negative signaling regulation (Xiao et al., 2007; Parisi et al., 2013; Xiao and Sun, 2018), underscoring the importance of GPCR-driven β-arra in shaping and fine-tuning signaling in cancer progression.

β-arra are expressed in human tumors and mediate multiprotein signaling complexes, in which β-arra acts as membrane, cytosolic, or nuclear scaffold and signal transducer, culminating in multifaceted signaling processes, such as cell growth and proliferation, drug resistance, cell migration, invasion, and metastasis (Ma and Pei, 2007; Sobolesky and Moussa, 2013; Black et al., 2016; Jean-Charles et al., 2016; Rosanò and Bagnato, 2016; Chaturvedi et al., 2018; Song et al., 2018) (Table 1). In this review, we summarize new specific routes
FIGURE 1 | Model of GPCR/β-arrestin-dependent signal pathways controlling cell survival, cytoskeleton remodeling, and gene expression, leading to enhanced cell growth, invasion and metastasis. In different cancer cells, the binding of ligands to cognate GPCRs leads to the recruitment of β-arrestin (β-arrestin), which might activate diverse signal-transduction pathways, including Bcl2 and downstream caspase 8. The crosstalk with receptor tyrosine kinases (RTKs), through the recruitment and activation of Src, results in downstream pathway activation, such as members of the Ras/Raf/MEK/ERK family and β-catenin/TCF4. Moreover, GPCR stimulation activates PI3K, leading to AKT/integrin-linked kinase (ILK) signaling and mTOR inhibition. Beyond the cytosolic functions, β-arrestin might regulate hypoxia-inducible factor 1α (HIF1α) at the levels of transcription, leading to nuclear entry and binding to hypoxia-response elements and the gene transcription. Similarly, β-arrestin might activate nuclear factor-κB (NF-κB) signaling via inhibition of NF-κB inhibitor (IkB), resulting in the dissociation and subsequent nuclear localization of active NF-κB. At the same time, the interaction of β-arrestin with actin regulators, such as Filamin-A and LIMK, and ser/thr phosphatases, such as SSH and QIN, leads to enhanced cortical actin in actin cytoskeleton effects. In addition, GPCR activation might promote the interaction between β-arrestin and either RHO guanine nucleotide exchange factors (RHO-GEFs), such as p115RhoGEF or PDZ-RhoGEF, or Rho GTPase-activating proteins (RhoGAPs), such as ARF-GAP2, to activate RhoA GTPase and regulate actin remodeling. β-arrestin can also bind RalGDS to activate RalA GTPase in cytoskeletal reorganization. Moreover, the interaction of β-arrestin with PDZ-RhoGEF and members of ENA/VASP family, hMENA, might lead to RhoC GTPase activation, causing LIMK-dependent cofilin inhibition and cortactin activation, enhancing invasive behavior. At the same time, β-arrestin might bind IQGAP1 and RacGAP1, leading to the suppression of Rac1 activity and favoring activation of RhoC and invadopodia functions. The inhibition of β-arrestin-dependent RASGRP2 activates Rac1 promoting actin polymerization through cortillin activity. β-arrestin acts as hub regulating several cellular processes related to cancer progression via its interaction with different components of transduction cascades.

TABLE 1 | β-arrestins in cancer.

Tumor	β-arrestin	Role in tumor progression and metastasis	References
Ovarian cancer	β-arrestin1/β-arrestin2	Chemoresistance, angiogenesis, invadopodia, invasion, EMT, metastasis	Rosanò et al., 2009, 2012, 2014; Cianfrocca et al., 2010, 2014, 2016; Semprucci et al., 2016; Chellini et al., 2018; Bagnato and Rosanò GPCR-Induced β-Arrestin Signaling in Cancer, 2018
Lung cancer	β-arrestin1/β-arrestin2	EMT, invasion, chemoresistance	Wang et al., 2018; Tsai et al., 2019
Prostate cancer	β-arrestin1/β-arrestin2	Cell growth, migration, invasion, EMT, angiogenesis, metastasis	Ma et al., 2014; Zecchin et al., 2014; Purayil et al., 2015; Qiu et al., 2014; Liu et al., 2017; Ferrandino et al., 2018
Acute lymphoblastic leukemia	β-arrestin1	Cell propagation and senescence	Qiu et al., 2014; Qin et al., 2014
Chronic myeloid leukaemia	β-arrestin1/β-arrestin2	Cell proliferation, apoptosis, chemoresistance, migration, invasion and metastasis	Buchanan et al., 2006; Jin et al., 2013; Cianfrocca et al., 2017; Ren et al., 2018
Colorectal cancer	β-arrestin1/β-arrestin2	Cell proliferation, apoptosis, chemoresistance, migration, invasion and metastasis	Alvarez et al., 2009
Gastric cancer	β-arrestin1	Cell proliferation	Zheng et al., 2012; Zhang et al., 2014
Osteosarcoma/Ewing's sarcoma	β-arrestin1	Cell sensitivity, proliferation and invasion	Sun et al., 2002; Ge et al., 2004; Li et al., 2009; Zhao et al., 2009; Zajac et al., 2011; Shenoy et al., 2012; Alemayehu et al., 2013; Jing et al., 2015; Goertzen et al., 2016
Breast cancer	β-arrestin1/β-arrestin2	Cell proliferation, apoptosis, chemotaxis, invasion, invadopodia, metastasis, angiogenesis, multidrug resistance	Miele et al., 2017; Infante et al., 2018
Medulloblastoma	β-arrestin1/β-arrestin2	Cancer stem cells self-renewal	Masamatsu et al., 2018
Renal cancer	β-arrestin2	Cell growth, metastasis	Spinella et al., 2013
Melanoma	β-arrestin1	Cell migration, vasculogenic mimicry	Heinrich et al., 2012
Pancreatic cancer	β-arrestin2	Cell proliferation and invasion	Huang et al., 2014
of β-arr-mediated signaling of GPCR in cancer, focusing on invasive behavior, sustained by complex machinery that includes physical interaction with adaptor proteins.

β-ARR1 AS SCAFFOLD FOR CYTOSKELETON REMODELING IN TUMOR CELL MOTILITY

Cell motility is a complex process in which cells change shape following activation of signaling pathways that control cytoskeleton dynamics and the turnover of cell-matrix and cell-cell junctions (Friedl and Alexander, 2011; Lambert et al., 2017). The primary driving force guiding cell motility is linked to actin assembly/disassembly within cells, in which different proteins might regulate the major steps in actin remodeling, as activation of proteins breaking the existing filaments into smaller fragments to create free barbed ends and protein nucleators facilitating association of actin monomers into filaments and membrane protrusions. Some of these processes depend on environmental cues, including ligand-dependent activation of GPCR, and their spatial/temporal regulation is mediated by proteins interacting directly or indirectly with the actin and microtubule cytoskeleton elements, in proximity with signaling proteins. During tumor cell migration, chemotaxis, and metastasis, β-arRs mediate GPCR-driven effects on actin cytoskeleton remodeling by orchestrating activation and localization of selected proteins at the leading edge and generating the necessary forces for movement (Zoudiilova et al., 2007, 2010; Min and Defea, 2011; Ma et al., 2014). Although the first evidence showed that β-arr-MAPK complexes control actin cytoskeletal reorganization at the leading edge during cell migration (Sun et al., 2002; Ge et al., 2004; Décaillot et al., 2011), many other studies highlighted that β-arRs function as master signaling scaffold for specific cytoskeleton-related signaling molecules, including c-Src, filamin, cofilin, and small monomeric GTPases, to connect GPCRs to the cytoskeleton and cell shape changes (Bhattacharya et al., 2002; Barnes et al., 2005; Hunton et al., 2005; Buchanan et al., 2006; Scott et al., 2006; Zoudiilova et al., 2007, 2010; Li et al., 2009; Rosanò et al., 2009; Godin et al., 2010; Min and Defea, 2011; Ma et al., 2012; Semprucci et al., 2016; Shishkin et al., 2016; Tocci et al., 2016). Cofilin is considered as one of the primary actin filament severing proteins, operating a rapidly disassembling of existing filaments and promoting generation of actin filament extension and the formation of the leading edge during chemotaxis (Shishkin et al., 2016). The function of β-arR, by interacting with cofilin and phosphatases/proteases or by mediating the activity of small GTPases, is a prerequisite for controlling phosphorylation/inactivation-dependent cofilin activity (Zoudiilova et al., 2007, 2010; Min and Defea, 2011). Growing evidence demonstrated that β-arR regulates the activity of RhoA, in the family of Rho GTPases, by interacting with guanine nucleotide exchange factors (GEFs), such as p115RhoGEF and PDZ-RhoGEF, or GTPase activating protein (GAPs), such as ARFGAP21, in regulating stress fiber assembly/disassembly, or with Ras-GDS to regulate RasA for controlling membrane ruffling and cell migration, as observed for activation of cognate receptors for angiotensin AT1A (ATIIA), beta-2 adrenergic (β2AR), formyl-Met-Leu-Phe, lysophosphatidic acid (LPA), or endothelin-1 (ET-1) (Bhattacharya et al., 2002; Barnes et al., 2005; Hunton et al., 2005; Li et al., 2009; Godin et al., 2010; Ma et al., 2012; Semprucci et al., 2016; Tocci et al., 2016). Other studies showed that GPCR-dependent cytoskeletal rearrangement and membrane protrusion formation might depend on the interaction of β-arR with the actin-binding protein filamin A (Scott et al., 2006).

The dissemination of cancer cells from primary tumors and their seeding in the metastatic niche often involves the local movement of tumor cells and their penetration into surrounding tissue, which require dramatic reorganization of the cell cytoskeleton and remodeling of extracellular matrix (ECM) (Friedl and Alexander, 2011; Eddy et al., 2017; Lambert et al., 2017; Mrkonjic et al., 2017; Paterson and Courtneidge, 2018). Therefore, invading cells adopt mesenchymal, elongated morphology with focalized proteolytic activities toward ECM, by forming invadopodia (Eddy et al., 2017; Mrkonjic et al., 2017; Paterson and Courtneidge, 2018). In this context, it has been demonstrated that β-arR-related molecular complexes might govern invasive and metastatic behavior by promoting invadopodia formation. The activation of GPCRs, such as ET-1R, initiates downstream signaling cascade and formation of protein complexes mediating actin rearrangement leading to invadopodia formation and ECM degradation, where β-arR1 regulates the spatial distribution of actin cytoskeleton and actin regulators (Bagnato and Rosanò, 2016; Semprucci et al., 2016). This cascade, starting with the interaction of β-arR1 with PDZ-RhoGEF, controlling the spatial distribution of RhoC GTPase and cofilin pathway, represents a critical route by which the tumor cells form active invadopodia, and acquires maximally proinvasive capabilities (Semprucci et al., 2016). Following studies demonstrated that β-arR1-associated molecular complexes during invasive protrusions involve members of the ENA/VASP family, known to regulate the actin-based motility of various cell types, and in particular, hMENA and the invasive isoform hMENAΔv6 (Krause et al., 2003; Gertler and Condeelis, 2011; Di Modugno et al., 2012, 2018). Inputs derived from ET-1R promote the formation of a signaling platform containing β-arR1-hMENA/hMENAΔv6/PDZ-RhoGEF converging on RhoC pathway, favoring pericellular matrix degradation, and conferring also a fitness advantage to tumor cells to breach the endothelial barrier and start the transendothelial migration process (Di Modugno et al., 2018). More recently, a deep understanding of how protein complexes are assembled into a functional unit to enhance specific signaling pathways revealed a new mechanistic link between β-arR1 and the integrin-related protein IQ-domain GTPase-activating protein 1 (IQGAP1), downstream of ET-1R signaling, in shaping cytoskeleton remodeling and invadopodia-dependent ECM degradation (Chellini et al., 2018). Specifically, IQGAP1/β-arR1 acts as small GTPase scaffolding platform, as RacGAP1, to promote Rac1 inhibition and concomitant RhoA,C activation, suggesting that ET-1R-guided β-arR1 interactions determine the convergence and activation/inhibition of specific signals for invadopodia, such as Rho GTPases, where IQGAP1 helps to define the discrete locations and/or time (Chellini et al., 2018). In line with these
findings, the activation of the GPCR kisspeptin receptor promotes invadopodia formation in human breast cancer cells via β-arr2/ERK (Goertzen et al., 2016). Concordantly, new findings demonstrated a functional link between the tumor suppressor PTEN, scaffolding function of β-arr1, ARHGAP21 and cytoskeletal rearrangements, in driving evolution of 3D morphology phenotypes mimicking colorectal cancer in early step of metastatization (Jagan et al., 2013; Javadi et al., 2017). These new findings disclose so far an unexpected role of β-arr capable to rewire the GPCR signaling networks and activate specific machinery for changing shape, generating invasive protrusions, and remodeling ECM in invasive and metastatic cancer cells, and update the signaling paradigm that targeting GPCR/β-arr1 pathways can represent a possible route of therapeutic intervention (Rosanò et al., 2013; Bagnato and Rosanò, 2016; Goertzen et al., 2016; Semprucci et al., 2016; Chellini et al., 2018; Di Modugno et al., 2018).

NUCLEAR FUNCTION OF β-ARR1 IN CANCER

Among the non-canonical functions of β-arr, many studies demonstrated that nuclear β-arr1 might generate coordinated transcriptional responses to environmental changes, uncovering additional functions of β-arr1 in tumor progression (Kang et al., 2005; Shi et al., 2007; Hoeppner et al., 2012; Yang et al., 2015). To dissect a genomic landscape of β-arr1 in cancer and find direct transcriptional targets, an integrated whole-genome ChIP-Seq analysis and gene expression profiling have been performed in prostate cancer cells exposed to pseudohypoxia, a condition that mimics hypoxia that is frequently encountered within solid tumors. The results of this study revealed a partial overlap between β-arr1 and p300 acetyltransferase-binding sites in the same gene-proximal regions and the presence of non-overlapping sites, suggesting a double-hedged sword of β-arr1 in modulating gene, dependent or independently of p300 (Zecchini et al., 2014). A functional analysis of β-arr1 transcriptome also revealed an enrichment of genes involved in cellular metabolism and the cell cycle, with an overlap with the hypoxia-induced factor-1α (HIF-1α) transcriptome, including known HIF1α target genes involved in angiogenesis and aerobic glycolysis (Shenoy et al., 2012; Zecchini et al., 2014). Concordantly, in ovarian cancer, the activation of ET-1R, by mimicking hypoxia, promotes the interaction between β-arr1/p300 and HIF-1α, enhancing the transcription of genes, such as ET-1 and VEGF, required for tumor cell invasion and proangiogenic effects, operating a self-amplifying HIF-1α-mediated transcription of genes that sustain metastatic process (Cianfrocca et al., 2016). The findings further supporting the nuclear role of β-arr1/p300 in maintaining a more aggressive phenotype demonstrated the interplay with Wnt/β-catenin signaling (Chen et al., 2001; Bryja et al., 2007; Bonnans et al., 2012; Rosanò et al., 2013, 2014; Duan et al., 2016). Downstream of ET-1R activation, β-arr1/p300/β-arrestin pathway, also represents a novel bypass mechanism through which this receptor is linked to chemoresistance, cancer stem cells like phenotype, and metastatic behavior (Rosanò et al., 2014). In both androgen-dependent and castration-resistant prostate cancer cells, β-arr1 enhances the binding of androgen receptor (AR) to androgen response elements, favoring cell proliferation, growth, and invasion, as well as in vivo tumor formation, local invasion, and distant metastasis (Purayil et al., 2015). Moreover, nuclear β-arr1 suppresses RasGRF2 gene expression through promoter hypermethylation, with consequent controlling of Rac1/cofilin pathways (Ma et al., 2014). An important interplay between nuclear β-arr1 and E2F transcription factor has been demonstrated in non-small cell lung cancers, contributing to the growth and progression of this tumor (Dasgupta et al., 2011; Perumal et al., 2014; Pillai et al., 2015). In myeloid leukemia where β-arr mediates the initiation and maintenance of tumor cells (Fereshteh et al., 2012; Kotula et al., 2014), the interaction of β-arr1 with the DNA-binding Enhancer of Zeste Homologue 2 (EZH2) protein mediates BCR/ABL histone acetylation during tumor progression (Qin et al., 2014). In addition, it has been proved that the self-renewal ability of the leukemia initiating cell-enriched subpopulation is linked to the ability of β-arr1 to promote the activity of the DNA methyltransferase 1 on PTEN promoter region, thus reducing the expression of PTEN (Shu et al., 2015). At the same time, nuclear β-arr1 represses the senescence of leukemic cells by interaction with hTERT, thus enhancing telomerase activity and telomere length (Liu et al., 2017), providing novel insights into the β-arr1-mediated regulation of leukemic cells. In Sonic Hedgehog medulloblastoma, where aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of tumor initiation and progression, β-arr1 promotes p300-mediated acetylation of Gli1 inhibiting its function, acting as negative regulators of self-renewal (Miele et al., 2017). All these findings, and in particular the specific contributions of β-arr1 for acetylation/methylation mechanisms or interactions with transcriptional factors or regulators, establish a new paradigm in multimodality of β-arr1 in controlling gene expression in cancer. However, their integration will have to be complemented with other studies in specific tumors and cell types, occurring during tumor development and metastasis. Future research will need to address whether similar mechanisms might occur for other GPCRs and open new ways to understand new nuclear interactions of β-arr1 in cancer and to obtain the effective knowledge of how β-arr1 is complicit in the epigenetic control of cancer progression.

ROLE OF β-ARR2 IN CANCER PROGRESSION

Although β-arr1 and β-arr2 show high degree of sequence and structural similarity and functional overlap (Srividastava et al., 2015), emerging evidences establish an involvement of β-arr2 in cancer growth and progression, with contradictory results. Previous studies demonstrated that β-arr2 depletion promoted tumor growth and angiogenesis in a murine model of lung cancer (Raghuvanshi et al., 2008) and that low expression of β-arr2 is significantly associated with aggressive pathologic features and is predictive of poor patient prognosis, as observed in lung and hepatocellular carcinoma (Sun et al.,
In prostate cancer, β-arr2 inhibits cell viability and proliferation by downregulation of FOXO1 and represses AR signaling, and AR expression/activity negatively correlates with β-arr2 expression (Lakshmikanthan et al., 2009; Duan et al., 2015). By contrast, other results are consistent with the idea that β-arr2 action provides a supportive role in the development of human tumors, and β-arr2 is overexpressed in different human tumors, including breast and renal cell carcinoma, correlating with advanced stage and decreased patient survival, and mediates different tumor-promoting effects, such as cell migration and invasion (Sun et al., 2002; Ge et al., 2004; Alemayehu et al., 2013; Masanat et al., 2018). In both myeloid leukemia and ovarian cancer cells, the cross-signaling between β-arr2 and Wnt controls cell proliferation and metastasis through the interaction with c-Src followed by EGFR transactivation (Luttrell et al., 1999; Rosanò et al., 2009). The interaction of β-arr2 with c-Src is also implicated in regulating cell cycle progression and metastatic tumor growth in mice and further expanding the role of β-arr2 (Zhang et al., 2011). Very recently, a new role of β-arr2 has been linked to Hh signaling and medulloblastoma tumorigenesis, controlling SuFu-Gli3 complex, as a major control node in Hh signaling. In particular, it has been demonstrated that in the absence of Hh signaling the interaction of β-arr2 with the E3 ligase Itch and Suppressor of Fusion (SuFu), a tumour suppressor gene, promotes the processing of Gli3 transcription factor into a cleaved repressor form, GLI3R, unveiling a new role of β-arr2 in controlling the immunosuppressive function of SuFu and maintaining the signaling off in the absence of ligand (Infante et al., 2018). These results further point out that function specialization of β-arr isoforms might exist in cancer, implying that different roles of β-arr2 function may be cell context- and cancer type-dependent, and that many other studies are needed to fully understand the mechanisms underlying the role of β-arr2 in cancer.

CONCLUSIONS

Recent technological advancements in structural and cell biology have provided crucial insights into the molecular mechanisms of GPCR signaling mediated by both β-arRs and G-proteins, shedding additional light on the dynamic assembly and disassembly of GPCR signaling complexes (Alvarez-Curto et al., 2016; O’Hayre et al., 2017; Eichel et al., 2018; Grundmann et al., 2018; Gurevich and Gurevich, 2018; Gutkind and Kostenis, 2018; Latorraca et al., 2018; Luttrell et al., 2018). In these new advancements, studies limited to ERK signaling by using genome editing to modulate G protein or β-arr expression and/or function suggest that β-arRs, rather than being active GPCR transducers, are critical initiator of G-protein-mediating signaling cascade, acting as “rheostat” (Gutkind and Kostenis, 2018), uncovering new role of β-arr as dictating factors of G-protein-dependent signaling activation.

Although aspects of the GPCR/β-arr signaling network had been established previously, the novelty of the recent studies highlighted in this review is the ability of β-arr to orchestrate a complex signaling network that specifically controls in a fine-tuning manner, the time, intensity, and space of GPCR-mediated signaling flow to regulate distinct steps of tumor invasion, extravasation, and metastatic spread. Looking forward, a better understanding of how the different types of GPCRs contribute to β-arr-driven signaling activation in tumor cells and by tumor microenvironment and their interaction with other surface receptors is needed. These studies should consider the role of mechanical forces imposed by the ECM and tissue microenvironment in GPCR/β-arr-mediated actin cytoskeleton remodeling and should attempt to delineate the specific contributions of different effectors (such as Rho GTPase family members) to promote cytoskeleton effects related to cell motility and invasiveness in the context of GPCR/β-arr signaling (Figure 1). However, remains to be learned both about how β-arr-1 mediates gene expression changes to execute the GPCR-induced pro-metastatic effects in tumor cells and about how β-arr-1/-2 and G-protein-mediated effects may differ in...
this regard. The possibility that cytoplasmic and nuclear β-arrestins are regulated by several cues and contribute to unexplored relevant aspects of tumor progression should also be considered. The impact of this work is likely to be substantial, given the intense interest in targeting GPCR/β-arrestin signaling as a therapeutic approach to inhibiting metastatic progression in cancer patients and highlighting the need for translation of preclinical insights into clinical applications. Considering the role of GPCR/β-arrestin-driven signaling in cancer progression and many efforts in using GPCR antagonists to dampen specifically β-arrestin-dependent signaling, other studies are needed not only to rewire the complexities of β-arrestin signaling networks and the functional effects in cancer but also to strongly improve therapeutic targeting of GPCR in cancer. In this regard, additional studies using adequate patient-derived models to further analyze the blockade of potential β-arrestin-dependent signaling machinery are needed to instruct treatment options in the clinic.

REFERENCES

Alemayehu, M., Dragan, M., Pape, C., Siddiqui, I., Sacks, D. B., Di Guglielmo, G. M., et al. (2013). β-arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 8:e56174. doi: 10.1371/journal.pone.0056174

Alvarez, C. J., Iodeierto, M., Theodoropoulou, M., Camiña, J. P., Casanueva, F. E., and Pazos, Y. (2009). Obestatin stimulates Akt signalling in gastric cancer cells through beta-arrestin-mediated epidermal growth factor receptor transactivation. Endocr. Relat. Cancer 16, 599–611. doi: 10.1077/ERC-08-0192

Alvarez-Curto, E., Ionuse, A., Jenkins, L., Raihan, S. Z., Prihandoko, R., Tobin, A. B., et al. (2016). Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signalling. J. Biol. Chem. 291, 27147–27159. doi: 10.1074/jbc.M116.754887

Bagnato, A., and Rosanò, L. (2016). Endothelin-1 receptor drives invadopodia: exploiting how β-arrestin-1 guides the way. Small GTPases 3, 1–5. doi: 10.1080/21541248.2016.1235526

Barnes, W. G., Reiter, E., Violin, J. D., Ren, X. R., Milligan, G., and Lefkowitz, R. J. (2005). Beta-arrestin 1 and galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J. Biol. Chem. 280, 8041–8050. doi: 10.1074/jbc.M412924200

Bhattacharya, M., Anborgh, P. H., Babwah, A. V., Dale, L. B., Dobransky, T., Benovic, J. L., et al. (2002). Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat. Cell Biol. 4, 547–555. doi: 10.1038/ncb821

Black, J. B., Premont, R. T., and Daaka, Y. (2016). Feedback regulation of G protein-coupled receptor signalling by GRKs and arrestins. Semin. Cell Dev. Biol. 50, 95–104. doi: 10.1016/j.semdemb.2015.12.015

Bonnans, C., Placelère, M., Grillet, F., Dantec, C., Desvignes, J. P., Pannequin, J., et al. (2012). Essential requirement for β-arrestin2 in mouse intestinal tumors with elevated Wnt signalling. Proc. Natl. Acad. Sci. U. S. A. 109, 3047–3052. doi: 10.1073/pnas.1109457109

Bryja, V., Gradić, D., Schambony, A., Arenas, E., Schulte, G., Fereshteh, M., et al. (2007). Beta-arrestin is a necessary component of Wnt/beta-catenin signalling in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 104, 6690–6695. doi: 10.1073/pnas.0611356104

Buchanan, F. G., Gorden, D. L., Matta, P., Shi, Q., Matrisian, L. M., and DuBois, R. N. (2006). Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc. Natl. Acad. Sci. U. S. A. 103, 1492–1497. doi: 10.1073/pnas.0510562103

Chaturvedi, M., Schilling, I., Beautrait, A., Bouvier, M., Benovic, J. L., and Shukla, A. K. (2018). Emerging paradigm of intracellular targeting of G protein-coupled receptors. Trends Biochem. Sci. 43, 533–546. doi: 10.1016/j.tibs.2018.04.003

Chellini, L., Caprara, V., Spadaro, F., Sestito, R., Bagnato, A., and Rosanò, L. (2018). Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer. Matrix Biol. 59/60, 30303-2. doi: 10.1016/j.matbio.2018.10.005

Chen, W., Hu, L. A., Semenov, M. V., Yanagawa, S., Kikuchi, A., Lefkowitz, R. J., et al. (2001). beta-arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc. Natl. Acad. Sci. U. S. A. 98, 14889–14894. doi: 10.1073/pnas.211572798

Cianfrocca, R., Rosanò, L., Spinella, F., Di Castro, V., Natali, P. G., and Bagnato, A. (2010). Beta-arrestin-1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Can. J. Physiol. Pharmacol. 88, 796–801. doi: 10.1139/Y10-052

Cianfrocca, R., Tocci, P., Semprucci, E., Spinella, F., Di Castro, V., Bagnato, A., et al. (2014). beta-arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells. Life Sci. 118, 179–184. doi: 10.1016/j.lfs.2014.01.078

Cianfrocca, R., Tocci, P., Rosanò, L., Caprara, V., Sestito, R., Di Castro, V., et al. (2016). Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signalling in endothelin-1-induced ovarian tumor progression. Oncotarget 7, 17790–17804. doi: 10.18632/oncotarget.746

Cianfrocca, R., Rosanò, L., Tocci, P., Sestito, R., Caprara, V., Di Castro, V., et al. (2017). Blocking endothelin-1 receptor/beta-catenin circuit sensitizes to chemotherapy in colorectal cancer. Cell Death Differ. 24, 1811–1820. doi: 10.1038/cdd.2017.121

Cong, L., Qiu, Z., Zhao, Y., Wang, W. B., Wang, C. X., Shen, H. C., et al. (2017). Loss of β-arrestin-2 and activation of CXCR2 correlate with lymph node metastasis in non-small cell lung cancer. J. Cancer 8, 2785–2792. doi: 10.7150/jca.19631

Crudden, C., Shibano, T., Song, D., Suleymanova, N., Girmita, A., and Girmita, L. (2018). Blurring boundaries: receptor tyrosine kinases as functional G protein-coupled receptors. Int. Rev. Cell Mol. Biol. 339, 1–40. doi: 10.1016/bs.ircmb.2018.02.006

Dasgupta, P., Rizwani, W., Pillai, S., Davis, R., Banerjee, S., Hug, K., et al. (2011). ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J. Natl. Cancer Inst. 103, 317–333. doi: 10.1093/jnci/djq541

Décaillot, F. M., Kazmi, M. A., Lin, Y., Ray-Saha, S., Sakmar, T. P., and Lefkowitz, R. J. (2005). Beta-arrestin 1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Endocr. Relat. Cancer 12, 533–546. doi: 10.1677/ERC-05-0192

Décailot, F. M., Kazmi, M. A., Lin, Y., Ray-Saha, S., Sakmar, T. P., and Lefkowitz, R. J. (2005). Beta-arrestin 1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Endocr. Relat. Cancer 12, 533–546. doi: 10.1677/ERC-05-0192

Defea, K. (2008). Emerging paradigm of intracellular targeting of G protein-coupled receptors. Trends Biochem. Sci. 43, 533–546. doi: 10.1016/j.tibs.2018.04.003

AUTHOR CONTRIBUTIONS

Both authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC) to AB (AIRC IG 18382) and LR (AIRC IG 21372).

ACKNOWLEDGMENTS

We gratefully acknowledge all members of the laboratory for their constant support and enthusiasm, and Maria Vincenza Sarcone for secretarial assistance.
Li, T. T., Alemayehu, M., Aziziye, A. I., Pape, C., Pampillo, M., Postovit, L. M., et al. (2009). Beta-arrestin1/β-arrestin2 signalling regulates lysosphosphatic acido- mediated migration and invasion of human breast tumor cells. Mol. Cancer Res. 7, 104–117. doi: 10.1158/1541-7786.MCR-08-0578

Liu, S., Liu, H., Qin, R., Shi, Y., Liu, Z., Zhang, P., et al. (2017). The cellular senescence of lymphocytes-initiating cells from acute lymphoblastic leukemia is postponed by β-Arrestin1 binding with P300-Sp1 to regulate iIF1T transcription. Cell Death Dis. 8:e2756. doi: 10.1038/cddis.2017.11

Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., et al. (1999). Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661. doi: 10.1126/science.283.5402.655

Luttrell, L. M., and Lefkowitz, R. J. (2002). The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Biol. 155, 455–465.

Luttrell, L. M., Wang, J., Plouffe, B., Smith, J. S., Yamani, L., Kaur, S., et al. (2018). Manifold roles of β-arrestins in GPCR signalling elucidated with siRNA and CRISPR/Cas9. Sci. Signal. 11:eaat7650. doi: 10.1126/scisignal.aat7650

Ma, L., and Pei, G. (2007). Beta-arrestin signalling and regulation of transcription. J. Cell Sci. 120, 213–218. doi: 10.1242/jcs.03338

Ma, X., Espana-Serrano, L., Kim, W., Thayele Purayil, H., Nie, Z., and Daaka, Y. (2014). β-Arrestin1 regulates the guanine nucleotide exchange factor RapGFR2 expression and the small GTPase Rap-mediated formation of membrane protrusions and cell motility. J. Biol. Chem. 289, 13638–13650. doi: 10.1074/jbc.M113.511360

Ma, X., Zhao, Y., Daaka, Y., and Nie, Z. (2012). Acute activation of β2-adrenergic receptor regulates focal adhesions through β-Arrestin2- and p115RhoGEF protein-mediated activation of RhoA. J. Biol. Chem. 287, 18925–18936. doi: 10.1074/jbc.M112.352260

Marshall, F. H. (2016). Visualizing GPCR ‘megaplexes’ which enable sustained intracellular signalling. Trends Biochem. Sci. 41, 985–986. doi: 10.1016/j.tibs.2016.10.006

Massanat, J., Purayil, H. T., Zhang, Y., Russin, M., Mahmoud, I., Kim, W., et al. (2018). β-Arrestin2 mediates renal cell carcinoma tumor growth. Sci. Rep. 8, 4879. doi: 10.1038/s41598-018-23212-w

McGovern, K. W., and DeFea, K. A. (2014). Molecular mechanisms underlying beta-arrestin-dependent chemotaxis and actin-cytoskeletal reorganization. Handb. Exp. Pharmacol. 219, 341–359. doi: 10.1007/978-3-642-41199-1_17

Miele, E., Po, A., Begalli, F., Antonucci, L., Mastranduzi, A., Marras, C. E., et al. (2017). β-arrestin-1-mediated actylation of Gli1 regulates Hedgehog/Gli signalling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer 17:488. doi: 10.1186/s12885-017-3477-0

Miller, W. E., and Lefkowitz, R. J. (2000). Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signalling and trafficking. Curr. Opin. Cell Biol. 13, 139–145. doi: 10.1016/S0955-0656(00)01190-3

Min, J., and Defea, K. (2011). β-arrestin-dependent actin reorganization: bringing the right players together at the leading edge. Mol. Pharmacol. 80, 760–768. doi: 10.1124/mol.111.072470

Mrkonjic, S., Destaing, O., and Albigues-Rizo, C. (2017). Mechanotransduction pulls the strings of matrix degradation at invadopodes. Matrix Biol. 57–58, 190–203. doi: 10.1016/j.matbio.2016.06.007

Noguez, L., Reglero, C., Rivas, V., Neves, M., Penela, P., and Mayor, F. J. (2017). G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol. Pharmacol. 91, 220–228. doi: 10.1124/mol.116.107185

Noguez, L., Palacios-Garcia, I., Reglero, C., Rivas, V., Neves, M., Ribas, C., et al. (2018). G-protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signalling hubs. Semin. Cancer Biol. 48, 78–90. doi: 10.1016/j.semb.2017.04.013

O’Hayre, M., Eichel, K., Avino, S., Zhao, X., Steffen, D. J., Feng, X., et al. (2017). Genetic evidence that β-arrestins are dispensable for the initiation of β2-arrestin-receptor signalling to ERK. Sci. Signal. 10:eaal3395. doi: 10.1126/scisignal.aal3395

Parisio, N., Metodieva, G., and Metodieva, M. V. (2013). Pseudopodial and β-arrestin-interacting protromes from migrating breast cancer cells upon PAR2 activation. J. Proteome Res. 80, 91–106. doi: 10.1016/j.jprot.2012.12.024

Paterson, E. K., and Courtneidge, S. A. (2018). Invadopodes are coming: new insights into function and disease relevance. FEBS J. 285, 8–27. doi: 10.1111/febs.14123
Shu, Y., Zhou, X., Qi, X., Liu, S., Li, K., Tan, J., et al. (2015). β-Arrestin1 promotes the self-renewal of the leukemia-initiating cell enriched subpopulation in β-lineage acute lymphoblastic leukemia related to DNMT1 activity. Cancer Lett. 357, 170–178. doi: 10.1016/j.canlet.2014.11.025

Shukla, A. K., Xiao, K., and Lefkowitz, R. J. (2011). Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signalling. Trends Biochem. Sci. 36, 457–469. doi: 10.1016/j.tibs.2011.06.003

Smith, J. S., Lefkowitz, R. J., and Rajagopal, S. (2018). Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 26–64. doi: 10.1038/nrd.2017.229

Sobolesky, P. M., and Moussa, O. (2013). The role of β-arrestins in cancer. Prog. Mol. Biol. Transl. Sci. 118, 395–411. doi: 10.1016/B978-0-12-394440-5.00015-2

Song, Q., Ji, Q., and Li, Q. (2018). The role and mechanism of β-arrestins in cancer invasion and metastasis. Int. J. Mol. Med. 41, 631–639. doi: 10.3892/ijmm.2017.3288

Spinella, E., Caprara, V., Di Castro, V., Rosanò, L., Cianfrocca, R., Natali, P. G., et al. (2013). Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasogenic mimicry in melanoma cells. J. Mol. Med. 91, 395–405. doi: 10.1007/s00109-012-0956-2

Srivastava, A., Gupta, B., Gupta, C., and Shukla, A. K. (2015). Emerging functional divergence of β-arrestin isoforms in GPCR function. Trends Endocrinol. Metab. 26, 628–642. doi: 10.1016/j.tem.2015.09.001

Sun, Y., Cheng, Z., Ma, L., and Pei, G. (2002). Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J. Biol. Chem. 277, 49212–49219. doi: 10.1074/jbc.M207294200

Sun, Y. H., Wu, S. S., Wu, J. I., Huang, Q. M., Ma, Y. W., and Wang, Q. T., et al. (2016). Down-regulation of β-arrestin2 promotes tumor invasion and indicates poor prognosis of hepatocellular carcinoma. Sci. Rep. 6:35609. doi: 10.1038/srep35609

Thomsen, A. R. B., Plouffe, B., Cahill, T. J., Shukla, A. K., Tarrasch, J. T., Dosey, A. M., et al. (2016). GPCR-G protein-β-arrestin super-complex mediates sustained G protein signalling. Cell 166, 907–919. doi: 10.1016/j.cell.2016.07.004

Tocci, P., Caprara, V., Cianfrocca, R., Sestito, R., Di Castro, V., Bagnato, A., et al. (2016). Endothelin-1/endothelin A receptor axis activates RhoA GTPase in epithelial ovarian cancer. Life Sci. 159, 49–54. doi: 10.1016/j.lfs.2016.01.008

Tsai, C. C., Chou, Y. T., and Fu, H. W. (2019). Protease-activated receptor 2 induces migration and promotes Slug-mediated epithelial-mesenchymal transition in lung adenocarcinoma cells. Biochim. Biophys. Acta, Mol. Cell Res. 1866, 486–503. doi: 10.1016/j.bbamcr.2018.10.011

Wang, W., Han, T., Tong, W., Zhao, J., and Qiu, X. (2018). Overexpression of GPR35 confers drug resistance in NSCLC cells by β-arrestin/Akt signalling. Oncotargets Ther. 11, 6249–6257. doi: 10.2147/OTT.S175606

Xiao, K., McClatchy, D. B., Shukla, A. K., Zhao, Y., Chen, M., Shenoy, S. K., et al. (2007). Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 12011–12016. doi: 10.1073/pnas.0704849104

Xiao, K., and Sun, J. (2018). Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. Cell. Signal. 41, 56–64. doi: 10.1016/j.cellsig.2017.09.013

Yang, Y., Guo, Y., Tan, S., Ke, B., Tao, J., Liu, H., et al. (2015). β-Arrestin1 enhances hepatocellular carcinogenesis through inflammation-mediated Akt signalling. Nat. Commun. 6, 7369. doi: 10.1038/ncomms8369

Zajac, M., Law, J., Cvetkovic, D. D., Pampillo, M., McColl, L., Pape, C., et al. (2011). GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 6:e21599. doi: 10.1371/journal.pone.0021599

Zecchini, V., Madhu, B., Russell, R., Pértega-Gomes, N., Warren, A., Gaude, E., et al. (2014). Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J. 33, 1365–1382. doi: 10.1002/embj.201386874

Zhang, P., He, X., Tan, J., Zhou, X., and Zou, L. (2011). β-arrestin2 mediates β-2 adrenergic receptor signalling inducing prostate cancer cell progression. Oncol. Rep. 26, 1471–1477. doi: 10.3892/or.2011.1417

Zhang, Y., Yang, C. Q., Gao, Y., Wang, C., Zhang, C. L., and Zhou, X. H. (2014). Knockdown of CXCR7 inhibits proliferation and invasion of osteosarcoma cells through inhibition of the PI3K/Akt and β-arrestin pathways. Oncol. Rep. 32, 965–972. doi: 10.3892/or.2014.3290

Zhao, M., Zhou, G., Zhang, Y., Chen, T., Sun, X., Sturt, C., et al. (2009). Beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasia 11, 108–113. doi: 10.4149/neop_2009_02_108

Zheng, H., Shen, H., Oprea, I., Worrall, C., Stefanescu, R., Giriñita, A., et al. (2012). β-Arrestin-biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor-targeting antibodies in Ewing's sarcoma. Proc. Natl. Acad. Sci. U. S. A. 109, 20620–20625. doi: 10.1073/pnas.1216348110

Zoudivola, M., Kumar, P., Ge, L., Wang, P., Bokoch, G. M., and DeFea, K. A. (2007). β-arrestin-dependent regulation of the Cofilin pathway downstream of protease-activated receptor-2. J. Biol. Chem. 282, 20634–20646. doi: 10.1074/jbc.M701391200

Zoudivola, M., Min, J., Richards, H. L., Carter, D., Huang, T., and DeFea, K. A. (2010). β-arrestins scaffold cofilin with chromophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J. Biol. Chem. 285, 14318–14329. doi: 10.1074/jbc.M109.053806

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.