A compilation of weak gravitational lensing studies of clusters of galaxies.

Håkon Dahle

hdahle@astro.uio.no, http://folk.uio.no/hdahle
Institute of Theoretical Astrophysics, University of Oslo,
P.O. Box 1029, Blindern, N-0315 Oslo, Norway

ABSTRACT

We present a list of clusters that have had their dark matter content measured using weak gravitational lensing. The list consists of 139 clusters, with weak lensing measurements reported in 64 different publications. Details are provided about the selection criteria and some basic properties of the sample, such as the redshift distribution. An electronic, sortable version of this list with links to public database information on the clusters and publications is provided at http://folk.uio.no/hdahle/WLclusters.html

Subject headings: Cosmology: observations — dark matter — gravitational lensing — large-scale structure of the Universe — galaxies: clusters

1. Introduction

Since the first reported detection of weak gravitational shear produced by a massive cluster of galaxies (Tyson, Valdes, & Wenk 1990), well over a hundred clusters have had their dark matter distribution mapped using this technique. Here, we present a compilation of published studies that have reported such measurements, either in the form of a map of the projected mass distribution in a cluster, or some quantity related to the cluster mass, or both.

2. Selection criteria

The studies are listed by cluster name in Table 1. Papers that combine strong and weak lensing data are also included in this table. The table does not include studies that derive the average mass of large ensembles of objects by measuring the mean gravitational shear produced by these (e.g., Sheldon et al. 2001; Parker et al. 2005), as they do not provide results for individual objects.

Also not included are ~200 “shear-selected” candidate clusters (e.g., Miyazaki et al. 2003; Herterscheidt et al. 2005; Gavazzi & Soucail 2006; Wittman et al. 2006; Schirmer et al. 2006), which have been detected directly from their weak lensing effect. Such cluster samples will contain some fraction of spurious detections, arising both from projections of multiple lesser structures along the line of sight, and from random alignment of background galaxies, resembling a lensing signal from a real cluster (e.g., White, van Waerbeke, & Mackey 2002; Hennawi & Spergel 2005). Hence, as would be expected, the currently reported cluster candidates range from peaks in the reconstructed projected density distribution with no obvious optical and X-ray counterparts, to well-established overdensities in 3D space with measured spectroscopic redshifts and corresponding extended X-ray emission.

The compilation of Table 1 does not include weak gravitational lensing studies based on measurements of magnification bias (Broadhurst, Taylor, & Peacock 1995), since this is a rather different technique than shear-based mass measurements, and has only been applied to a small number of clusters so far.

A few studies of superclusters have been published (Kaiser et al. 1998; Gray et al. 2002; Gavazzi et al. 2004; Dietrich et al. 2005; Jee et al. 2006). For these systems, a separate entry is given in Ta-
ble 1 for each of their constituent clusters.

It should be noted that most of the clusters listed in Table 1 have several alternative designations, and the naming convention adopted may differ between various publications, and also between these and the corresponding entry in databases such as the NASA/IPAC Extragalactic Database (NED). Generally, the naming convention most commonly used in the literature has been adopted, and NED links are provided in the online version of Table 1 to refer the reader to alternative designations.

3. Properties of the sample

The list provided in Table 1 contains a total of 139 clusters, with weak lensing data reported in 64 separate publications. Figure 1 illustrates how these have accumulated over time (with a clear tendency for more clusters per publication in recent years). The majority of these clusters were originally identified in optical cluster surveys (e.g., Abell, Corwin, & Olowin 1989, Gonzalez et al. 2001), while most of the remaining clusters were found by optical followup of X-ray surveys such as the Einstein Medium-Sensitivity Survey (Gioia et al. 1990) or the ROSAT All-Sky Survey (Trümper 1993).

The redshift distribution of the published weak lensing cluster sample is shown in Figure 2. None of the clusters are at $z < 0.05$, where the lensing efficiency is very low, and only five clusters are at $z = 1$ or higher, where weak lensing studies are only feasible using the Hubble Space Telescope (HST). About 75% of the clusters are at $z < 0.5$. The distribution in Figure 2 has a strong peak around $z \sim 0.2 - 0.3$, where clusters will act most efficiently as lenses, given the redshift distribution of background galaxies in typical ground-based imaging data.

The current version of this compilation does not tabulate any cluster mass values provided in the respective publications listed in Table 1. Considerable caution is warranted when combining such data from different publications: Firstly, the angular diameter distances assumed when translating the measured shear into cluster mass depends on the assumed cosmological model, and most studies older than ~ 5 years adopted cosmological parameters that differ significantly from the current “concordance cosmology”. Secondly, our knowledge of the redshift distribution of faint galaxies has improved significantly since the early papers (particularly with the advent of photometric redshift measurements of faint galaxies in deep HST images), and this will again affect the mass values through the source distance estimates. Thirdly, the methodology for measuring gravitational shear has evolved considerably, although the most popular method (“KSB+”; see Kaiser, Squires, & Broadhurst 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998) was developed already in the mid-1990s, and has been shown through simulations to produce results sufficiently accurate for measurements of weak lensing by clusters (e.g., Heymans et al. 2006).

Finally, it should be noted that the reported mass values are often not directly comparable to each other, as some are 2D estimates of the projected mass in a cylinder, e.g., using the “aperture densitometry” estimator (Kaiser et al. 1994), while others report an estimated velocity dispersion, or an estimated cluster mass within a 3D volume. The latter quantities are typically derived by fitting the observed tangential component of the shear as a function of cluster radius to a spherically symmetric theoretical model such as a singular isothermal sphere or an NFW model (Navarro, Frenk, & White 1997). The relation between 2D and 3D masses can be calculated for any of these mass models, but the reliability of the results will be sensitive to sub-clustering and other departures from such simple mass models.

HD acknowledges support from the Research Council of Norway, including a postdoctoral research fellowship. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Abell, G. O., Corwin, H. G., Jr., & Olowin, R. P. 1989, ApJS, 70, 1

Athreya, R. M., Mellier, Y., van Waerbeke, L., Pelló, R., Fort, B., & Danet-Fort, M. 2002, A&A, 384, 743
Bardeau, S., Kneib, J.-P., Czoske, O., Soucail, G., Smail, I., Ebeling, H., & Smith, G. P. 2005, A&A, 434, 433
Benítez, N., Broadhurst, T., Rosati, P., Courbin, F., Squires, G., Lidman, C., & Magain, P. 1999, ApJ, 527, 31
Bonnet, H., Mellier, Y., & Fort, B. 1994, ApJ, 427, L83
Bower, R. G., & Smail, I. 1997, MNRAS, 290, 292
Bradač, M., et al. 2005, A&A, 437, 49
Bradač, M., et al. 2006, ApJ, 652, 937
Broadhurst, T. J., Taylor, A. N., & Peacock, J. A. 1995, ApJ, 438, 49
Broadhurst, T., Takada, M., Umetsu, K., Kong, X., Arimoto, N., Chiba, M., & Futamase, T. 2005, ApJ, 619, L143
Clowe, D., Luppino, G. A., Kaiser, N., & Gioia, I. M. 2000, ApJ, 539, 540
Clowe, D., & Schneider, P. 2001, A&A, 379, 384
Clowe, D., & Schneider, P. 2002, A&A, 395, 385
Clowe, D., Gonzalez, A., & Markevitch, M. 2004, ApJ, 604, 596
Clowe, D., et al. 2006a, A&A, 451, 395
Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. 2006b, ApJ, 648, L109
Clowe, D., Trentham, N., & Tonry, J. 2001, A&A, 369, 16
Cypriano, E. S., Sodré, L. J., Kneib, J.-P., & Campusano, L. E. 2004, ApJ, 613, 95
Cypriano, E. S., Lima Neto, G. B., Sodré, L., Jr., Kneib, J.-P., & Campusano, L. E. 2005, ApJ, 630, 38
Dahle, H., Maddox, S. J., & Lilje, P. B. 1994, ApJ, 435, L79
Dahle, H., Kaiser, N., Irgens, R. J., Lilje, P. B., & Maddox, S. J. 2002, ApJS, 139, 313
Dahle, H., Pedersen, K., Lilje, P. B., Maddox, S. J., & Kaiser, N. 2003, ApJ, 591, 662
Dahle, H. 2006, ApJ, 653, 954
Dietrich, J. P., Schneider, P., Clowe, D., Roman-Díaz, E., & Kerp, J. 2005, A&A, 440, 453
Ebeling, H., Edge, A. C., Allen, S. W., Crawford, C. S., Fabian, A. C., & Huchra, J. P. 2000, MNRAS, 318, 333
Erben, T., van Waerbeke, L., Mellier, Y., Schneider, P., Cuillandre, J.-C., Castander, F. J., & Danet-Fort, M. 2000, A&A, 355, 23
Fahman, G., Kaiser, N., Squires, G., & Woods, D. 1994, ApJ, 437, 56
Fischer, P., & Tyson, J. A. 1997, AJ, 114, 14
Fischer, P., Bernstein, G., Rhee, G., & Tyson, J. A. 1997, AJ, 113, 521
Fort, B., Mellier, Y., Danet-Fort, M., Bonnet, H., & Kneib, J.-P. 1996, A&A, 310, 705
Gavazzi, R., Fort, B., Mellier, Y., Pelló, R., & Danet-Fort, M. 2003, A&A, 403, 11
Gavazzi, R., Mellier, Y., Fort, B., Cuillandre, J.-C., & Danet-Fort, M. 2004, A&A, 422, 407
Gavazzi, R. 2005, A&A, 443, 793
Gavazzi, R., & Soucail, G. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0605591
Gioia, I. M., Maccacaro, T., Schild, R. E., Wolter, A., Stocke, J. T., Morris, S. L., & Henry, J. P. 1990, ApJS, 72, 567
Gonzalez, A. H., Zaritsky, D., Dalcanton, J. J., & Nelson, A. 2001, ApJS, 137, 117
Gray, M. E., Taylor, A. N., Meisenheimer, K., Dye, S., Wolf, C., & Thommes, E. 2002, ApJ, 568, 141
Hetterscheidt, M., Erben, T., Schneider, P., Maoli, R., van Waerbeke, L., & Mellier, Y. 2005, A&A, 442, 43
Heymans, C., et al. 2006, MNRAS, 368, 1323
Hicks, A. K., Ellingson, E., Hoekstra, H., & Yee, H. K. C. 2006, ApJ, 652, 232
Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636
Hoekstra, H., Franx, M., & Kuijken, K. 2000, ApJ, 532, 88
Hoekstra, H., Franx, M., Kuijken, K., & van Dokkum, P. G. 2002, MNRAS, 333, 911
Huo, Z.-Y., Xue, S.-J., Xu, H., Squires, G., & Rosati, P. 2004, AJ, 127, 1263
Irgens, R. J., Lilje, P. B., Dahle, H., & Maddox, S. J. 2002, ApJ, 579, 227
Jee, M. J., White, R. L., Ford, H. C., Blakeslee, J. P., Illingworth, G. D., Coe, D. A., & Tran, K. - H. 2005a, ArXiv Astrophysics e-prints, arXiv:astro-ph/0508044
Jee, M. J., White, R. L., Benítez, N., Ford, H. C., Blakeslee, J. P., Rosati, P., Demarco, R., & Illingworth, G. D. 2005b, ApJ, 618, 46
Jee, M. J., White, R. L., Ford, H. C., Illingworth, G. D., Blakeslee, J. P., Holden, B., & Mei, S. 2006, ApJ, 642, 720
Kaiser, N., Squires, G., Fahlman, G., & Woods, D. 1994, Clusters of Galaxies, XXIXth Rencontres de Moriond, eds. F. Durret et al. (Gif-sur-Yvette: Editions Frontières), 269
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460
Kaiser, N., Wilson, G., Luppino, G., Kofman, L., Gioia, I., Metzger, M., & Dahle, H. 1998, ArXiv Astrophysics e-prints, arXiv:astro-ph/9809268
King, L. J., Clowe, D. I., Lidman, C., Schneider, P., Erben, T., Kneib, J.-P., & Meylan, G. 2002, A&A, 385, L5
Kling, T. P., Dell’Antonio, I., Wittman, D., & Tyson, J. A. 2005, ApJ, 625, 643
Kneib, J.-P., et al. 2003, ApJ, 598, 804
Limousin, M., et al. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0612165
Lombardi, M., Rosati, P., Nonino, M., Girardi, M., Borgani, S., & Squires, G. 2000, A&A, 363, 401
Lombardi, M., et al. 2005, ApJ, 623, 42
Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20
Margoniner, V. E., Lubin, L. M., Wittman, D. M., & Squires, G. K. 2005, AJ, 129, 20
Ménard, B., Erben, T., & Mellier, Y. 2003, Astronomical Society of the Pacific Conference Series, 301, 537
Miyazaki, S., et al. 2003, IAU Symposium, 216
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Parker, L. C., Hudson, M. J., Carlberg, R. G., & Hoekstra, H. 2005, ApJ, 634, 806
Schirmer, M., Erben, T., Hetterscheidt, M., & Schneider, P. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0607022
Seitz, C., Kneib, J.-P., Schneider, P., & Seitz, S. 1996, A&A, 314, 707
Sheldon, E. S., et al. 2001, ApJ, 554, 881
Smail, I., & Dickinson, M. 1995, ApJ, 455, L99
Smail, I., Ellis, R. S., Fitchett, M. J., & Edge, A. C. 1995, MNRAS, 273, 277
Smail, I., Ellis, R. S., Dressler, A., Couch, W. J., Oemler, A. J., Sharples, R. M., & Butcher, H. 1997, ApJ, 479, 70
Squires, G., Kaiser, N., Fahlman, G., Babul, A., & Woods, D. 1996a, ApJ, 469, 73
Squires, G., Kaiser, N., Babul, A., Fahlman, G., Woods, D., Neumann, D. M., & Boehringer, H. 1996b, ApJ, 461, 572
Squires, G., Neumann, D. M., Kaiser, N., Arnaud, M., Babul, A., Boehringer, H., Fahlman, G., & Woods, D. 1997, ApJ, 482, 648
Trümmel, J. 1993, Science, 260, 1769
Tyson, J. A., Wenk, R. A., & Valdes, F. 1990, ApJ, 349, L1
Tyson, J. A., & Fischer, P. 1995, ApJ, 446, L55
Umetsu, K., & Futamase, T. 2000, ApJ, 539, L5
Wittman, D., Tyson, J. A., Margoniner, V. E., Cohen, J. G., & Dell’Antonio, I. P. 2001, ApJ, 557, L89
Wittman, D., Margoniner, V. E., Tyson, J. A., Cohen, J. G., Becker, A. C., & Dell’Antonio, I. P. 2003, ApJ, 597, 218

Wittman, D., Dell’Antonio, I. P., Hughes, J. P., Margoniner, V. E., Tyson, J. A., Cohen, J. G., & Norman, D. 2006, ApJ, 643, 128

Wold, M., Lacy, M., Dahle, H., Lilje, P. B., & Ridgway, S. E. 2002, MNRAS, 335, 1017
Cluster name	Redshift	Publication(s)
1E 0657-558	0.296	Clove et al. 2004
· · ·	· · ·	Bradac et al. 2006
· · ·	· · ·	Clove et al. 2006b
3C 254	0.736	Wold et al. 2002
3C 295	0.460	Smail et al. 1997
· · ·	· · ·	Wold et al. 2002
3C 324	1.206	Smail and Dickinson 1995
3C 334	0.555	Wold et al. 2002
3C 336	0.927	Fort et al. 1996
· · ·	· · ·	Bower and Smail 1997
Abell 0022	0.142	Cypriano et al. 2004
Abell 0068	0.255	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
· · ·	· · ·	Dahle 2006
Abell 0085	0.055	Cypriano et al. 2004
Abell 0115	0.197	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 0141	0.230	Dahle et al. 2002
Abell 0209	0.206	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
Abell 0222	0.213	Dietrich et al. 2005
Abell 0223	0.207	Dietrich et al. 2005
Abell 0267	0.231	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
· · ·	· · ·	Dahle 2006
Abell 0383	0.187	Smith et al. 2005
Abell 0520	0.199	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 0586	0.171	Dahle et al. 2002
· · ·	· · ·	Cypriano et al. 2005
· · ·	· · ·	Dahle 2006
Abell 0611	0.288	Dahle 2006
Abell 0665	0.182	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 0697	0.282	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 0773	0.217	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
· · ·	· · ·	Dahle 2006
Abell 0781	0.298	Dahle 2006
Abell 0851	0.407	Seitz et al. 1996
· · ·	· · ·	Smail et al. 1997
Abell 0901	0.170	Gray et al. 2002
Cluster name	Redshift z^a	Publication(s)
--------------	---------------	----------------
Abell 0902	0.160	Gray et al. 2002
Abell 0914	0.193	Dahle et al. 2002
Abell 0922	0.190	Dahle et al. 2002
Abell 0959	0.286	Dahle et al. 2002
Abell 0963	0.206	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
Abell 1351	0.328	Dahle et al. 2002
Abell 1437	0.135	Cypriano et al. 2004
Abell 1451	0.171	Cypriano et al. 2004
Abell 1553	0.165	Cypriano et al. 2004
Abell 1576	0.299	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 1650	0.084	Cypriano et al. 2004
Abell 1651	0.085	Cypriano et al. 2004
Abell 1664	0.128	Cypriano et al. 2004
Abell 1682	0.234	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 1689	0.183	Tyson, Valdes and Wenk 1990
· · ·	· · ·	Tyson and Fischer 1995
· · ·	· · ·	Clowe and Schneider 2001
· · ·	· · ·	King et al. 2002
· · ·	· · ·	Bardeau et al. 2005
· · ·	· · ·	Broadhurst et al. 2005
· · ·	· · ·	Limousin et al. 2006
Abell 1705	0.297	Dahle et al. 2002
Abell 1722	0.326	Dahle et al. 2002
Abell 1758	0.279	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 1763	0.223	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
· · ·	· · ·	Dahle 2006
Abell 1835	0.253	Clowe and Schneider 2002
· · ·	· · ·	Dahle et al. 2002
· · ·	· · ·	Smith et al. 2005
· · ·	· · ·	Dahle 2006
Abell 1914	0.171	Dahle et al. 2002
· · ·	· · ·	Dahle 2006
Abell 1942	0.224	Erben et al. 2000
Abell 1995	0.321	Dahle et al. 2002
Abell 2029	0.077	Menard, Erben and Mellier 2003
· · ·	· · ·	Cypriano et al. 2004
Abell 2104	0.153	Dahle et al. 2002
Cluster name	Redshift z^{a}	Publication(s)
--------------	-----------------	----------------
· · · · · Abell 2111	0.229	Dahle et al. 2002
· · · · · · · · Dahle 2006		
· · · · · Abell 2163	0.203	Squires et al. 1997
· · · · · · · · Cypriano et al. 2004		
· · · · · Abell 2204	0.152	Clowe and Schneider 2002
· · · · · · · · Dahle et al. 2002		
· · · · · · · · Cypriano et al. 2004		
· · · · · · · · Dahle 2006		
· · · · · Abell 2218	0.176	Squires et al. 1996a
· · · · · · · · Smith et al. 2005		
· · · · · · · · Smith et al. 2005		
· · · · · · · · Dahle 2006		
· · · · · Abell 2261	0.224	Dahle et al. 2002
· · · · · · · · Dahle 2006		
· · · · · Abell 2345	0.177	Dahle et al. 2002
· · · · · · · · Cypriano et al. 2004		
· · · · · Abell 2384	0.094	Cypriano et al. 2004
· · · · · · · · Squires et al. 1996b		
· · · · · · · · Dahle 2006		
· · · · · · · · Hicks et al. 2006		
· · · · · · · · Cypriano et al. 2004		
· · · · · · · · Dahle et al. 2002		
· · · · · · · · Dahle 2006		
· · · · · Abell 2631	0.273	Dahle 2006
· · · · · · · · Smail et al. 1997		
· · · · · Abell 2811	0.108	Cypriano et al. 2004
· · · · · · · · Smail et al. 1997		
· · · · · Abell 3667	0.056	Joffre et al. 2000
· · · · · Abell 3695	0.089	Cypriano et al. 2004
· · · · · Abell 3739	0.165	Cypriano et al. 2004
· · · · · Abell 3856	0.138	Cypriano et al. 2004
· · · · · Abell 3888	0.153	Cypriano et al. 2004
· · · · · Abell 3984	0.181	Cypriano et al. 2004
· · · · · Abell 4010	0.095	Cypriano et al. 2004
· · · · · Abell S910	0.311	Smail et al. 1997
Cl 0016+1609	0.541	Smail et al. 1995
· · · · · · · · Smail et al. 1997		
· · · · · · · · Clowe et al. 2000		
Cluster name	Redshift z^a	Publication(s)
--------------	---------------	-----------------------------------
0024+1654	0.390	Bonnet, Mellier and Fort 1994
0303+1706	0.420	Kaiser et al. 1998
0413-6559	0.510	Smail et al. 1997
0957+561	0.355	Dahle, Maddox and Lilje 1994
1601+4253	0.539	Smail et al. 1997
1604+4304	0.897	Margoniner et al. 2005
1821+643	0.297	Wold et al. 2002
J105511.6-050416	0.680	Wittman et al. 2003
J1312.5+7252	0.550	Dahle et al. 2003
J234624.00+004358.8	0.333	Wittman et al. 2001
LCDCS 057	0.473	Clowe et al. 2006a
LCDCS 110	0.579	Clowe et al. 2006a
LCDCS 130	0.704	Clowe et al. 2006a
LCDCS 172	0.697	Clowe et al. 2006a
LCDCS 173	0.749	Clowe et al. 2006a
LCDCS 188	0.456	Clowe et al. 2006a
LCDCS 198	0.960	Clowe et al. 2006a
LCDCS 252	0.550	Clowe et al. 2006a
LCDCS 275	0.807	Clowe et al. 2006a
LCDCS 340	0.480	Clowe et al. 2006a
LCDCS 430	0.424	Clowe et al. 2006a
LCDCS 504	0.794	Clowe et al. 2006a
LCDCS 531	0.636	Clowe et al. 2006a
LCDCS 541	0.541	Clowe et al. 2006a
LCDCS 567	0.465	Clowe et al. 2006a
LCDCS 634	0.483	Clowe et al. 2006a
LCDCS 849	0.588	Clowe et al. 2006a
LCDCS 853	0.763	Clowe et al. 2006a
LCDCS 925	0.520	Clowe et al. 2006a
LCDCS 952	0.496	Clowe et al. 2006a
MG 2016+112	1.004	Benitez et al. 1999
0302.5+1717	0.425	Kaiser et al. 1998
0302.7+1658	0.424	Kaiser et al. 1998

Clowe, Trentham and Tonry 2001
Cluster name	Redshift \(z^a\)	Publication(s)
MS 0440.5+0204	0.190	Smail et al. 1997
MS 0451.6-0305	0.550	Clowe et al. 2000
MS 0906.5+1110	0.180	Hicks et al. 2006
MS 1008.1-1224	0.301	Lombardi et al. 2000
· · · · · ·	· · ·	Athreya et al. 2002
MS 1054.4-0321	0.823	Luppino and Kaiser 1997
· · · · · ·	· · ·	Clowe et al. 2000
· · · · · ·	· · ·	Hoekstra et al. 2000
· · · · · ·	· · ·	Jee et al. 2005a
MS 1137.5+6624	0.782	Clowe et al. 2000
MS 1224.7+2007	0.327	Fahlman et al. 1994
MS 1358.4+6245	0.328	Hicks et al. 2006
· · · · · ·	· · ·	Hoekstra et al. 1998
MS 1512.4+3647	0.372	Hicks et al. 2006
MS 1621.5+2640	0.426	Hicks et al. 2006
MS 2053.7-0449	0.583	Clowe et al. 2000
· · · · · ·	· · ·	Hoekstra et al. 2002
MS 2137.3-2353	0.313	Gavazzi et al. 2003
· · · · · ·	· · ·	Gavazzi 2005
RDCS 1252.9-2927	1.237	Lombardi et al. 2005
RX J0152.7-1357	0.831	Hu et al. 2004
· · · · · ·	· · ·	Jee et al. 2005b
RX J0437.1+0043	0.285	Dahle 2006
RX J0439.0+0715	0.230	Dahle 2006
RX J0848.6+4453	1.270	Jee et al. 2006
RX J0848.9+4452	1.261	Jee et al. 2006
RX J1157.3+3336	0.214	Dahle et al. 2002
· · · · · ·	· · ·	Dahle 2006
RX J1347.5-1145	0.451	Fischer and Tyson 1997
· · · · · ·	· · ·	Bradac et al. 2005
· · · · · ·	· · ·	Kling et al. 2005
RX J1532.9+3021	0.345	Dahle et al. 2002
RX J1716.4+6708	0.813	Clowe et al. 2000
RX J1720.1+2637	0.164	Dahle et al. 2002
· · · · · ·	· · ·	Dahle 2006
RX J2129.6+0005	0.235	Dahle et al. 2002
· · · · · ·	· · ·	Dahle 2006
Zwicky 2089	0.230	Dahle et al. 2002
· · · · · ·	· · ·	Dahle 2006
Zwicky 3146	0.291	Dahle 2006
Zwicky 5247	0.229	Dahle et al. 2002
· · · · · ·	· · ·	Dahle 2006
Zwicky 5768	0.266	Dahle 2006
Table 1—Continued

Cluster name	Redshift z	Publication(s)
Zwicky 7160b	0.258	Smail et al. 1995
...	...	Dahle et al. 2002
...	...	Dahle 2006
...	...	Hicks et al. 2006
Zwicky 7215	0.290	Dahle 2006

Note.—A sortable electronic version of this table with links to NED and ADS is available at http://folk.uio.no/hdahle/WLclusters.html.

a—Most cluster redshift values are taken from the NASA/IPAC Extragalactic Database (NED), with the exception of redshifts for Abell 914, Abell 1351, Abell 1576, Abell 1722, and Abell 1995, which have tabulated redshift values from Irgens et al. (2002), and Abell 2552, which has a redshift value from Ebeling et al. (2000).

b—Alternative designation: MS 1455.0+2232.

Fig. 1.—The cumulative number of clusters with weak lensing data, and the cumulative count of papers listed in Table I as a function of the year of publication.
Fig. 2.— The redshift distribution of galaxy clusters with weak lensing measurements, in bins of width \(\Delta z = 0.05 \).