Biosorbents prepared from pomelo peel by hydrothermal technique and its adsorption properties for congo red

Heng Zheng1, Qinye Sun1, Yanhui Li2 and Qiuju Du2
1 College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
2 State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, People’s Republic of China
Heng Zheng and Qinye Sun contributed equally to this work.
E-mail: liyanhui537@163.com

Keywords: water treatment, adsorption, biosorbents, dye, activated carbon

Abstract
A new kind of biosorbent was prepared from pomelo peel by using potassium hydroxide as activating agent and hydrothermal treatment method. The characteristics of materials were analyzed by SEM, BET and FTIR. Increasing the adsorbent dosage (from 2.5 to 17.5 g l\(^{-1}\)) and contents of congo red in solution (from 20 to 50 mg l\(^{-1}\)) cause the increment of removal rate of congo red. On the other side, the removal rate is decrement with rising of temperature and pH. The maximum adsorption quantity of biosorbent was 144.93 mg g\(^{-1}\) at 303 K, which calculated by Langmuir model. The pseudo-first-order kinetic model, pseudo-second-order kinetic model and intra-particle diffusion model were used to explain adsorption process. The value of Gibbs free energy (\(\Delta G\)) is \(-7.63\) (kJ/mol) at 303 K and the enthalpy change (\(\Delta H\)) is \(-31.43\) (kJ/mol), meaning that adsorption behavior for congo red is spontaneous.

1. Introduction

Dyes are generally made by artificial synthesis and contain a variety of chemicals, which is widely used in industry. The use of a large number of dyes causes serious water pollution [1]. As one of the dyes, congo red has wider applications in textile, paper, leather, plastics and related industries [2]. Congo red wastewater brought serious problems because of its toxicity, which poses a major threat to people’s health and living environment [3]. Therefore, seeking an efficient way to remove congo red from the wastewater has received more and more attention.

At present, the water treatment methods commonly used in the world are reverse osmosis [4], biological oxidation [5], ion exchange [6], adsorption [7] and membrane filtration [8]. As one of the treatment methods, adsorption is widely used because of its high efficiency, sustainability and convenience [9]. Various adsorbents are used for sewage treatment, such as activated carbon [10], zeolite [11], carbon nanotubes [12], grapheme [13] and agricultural waste peels [14]. In recent years, various biosorbents have been investigated intensively for adsorption of wastewater due to its low cost, easy access and eco-friendly [15]. Orange peel [16], garlic peel [17], banana peel [18], potato peel [19] and pomelo peel were researched as biosorbents to adsorb different containments from wastewaters.

Pomelo trees are cultivated in all tropical and subtropical regions of the world [20]. A large amount of pomelo is consumed in people’s daily life and its peel is often thrown away as a waste [21]. The accumulation and decay of pomelo peel will cause environmental pollution and waste of resource. Up to now, the progress is slow for waster utilization of pomelo peel [22]. Pomelo peel has a porous structure. The components of cellulose and hemicellulose endow its various and abundant functional groups [20], which makes it a promising biosorbent in wastewater treatment. However, the finite adsorption capacity and removal efficiency of primitive pomelo limit its practical applications.
Activation and carbonation of pomelo peel to prepare activated carbon is an effective way to improve its adsorption capability. The chemical and physical methods commonly used to prepare activated carbon. The physical activation is to oxidize precursor using oxidizing gases such as O₂ [23], CO₂ [24] and H₂O [25]. The chemical activation is to treat the precursor using chemical reagents such as H₃PO₄ [26], H₂SO₄ [27], KOH [28], ZnCl₂ [29], and K₂CO₃ [30]. Both physical and chemical activation methods usually need high temperature (400 °C–1000 °C) to oxidize or etch the precursor to form multi-porous structure. The high temperature increases production cycle and cost.

In this work, pomelo peel was chemically modified with potassium hydroxide agent and then activated by a hydrothermal technique. Hydrothermal technique is widely used to dispose and transform organic solid waste into valuable resources [31]. Compared to conventional activation method, low temperature (200 °C) of hydrothermal processing not only decreases production cycle and cost, but also does not produce waste gases such as CO₂, NO, SO₂. The adsorption properties of hydrothermal treated pomelo peel for congo red were obtained by batch experiments. The physical properties of hydrothermal treated pomelo peel were researched by FTIR, SEM and BET.

2. Materials and methods

2.1. Materials
Congo red (C₃₂H₂₂N₆Na₂O₆S₂, >99% in purity) was supplied by Tianjing Dengke Chemical Reagent Co., Ltd. Potassium hydroxide agent was supplied by Sinopharm Chemical Reagent Co., Ltd. The solution preparation all uses the deionized water. The other reagents were analytical grade.

2.2. Preparation of biosorbents
The pomelo peel was obtained in the local fruit market. The inner soft structure of pomelo peel was separated and dried in the air. 1 g air-dried primitive pomelo peel was put into the potassium hydroxide solution (20%wt). The mixture was subsequently transferred and sealed in a Teflon-lined stainless steel autoclave. Then put it into the oven for 2 h at 200 °C. After heating, the mixture was put into a beaker and washed to neutral. For the purpose of study the effect of different drying methods for adsorption of congo red, part of hydrothermal treated pomelo peel was naturally dried in the air and the other was dried by the vacuum freeze dryer (FD-1-50, Boyikang Laboratory Apparatus Co., Ltd., China).

2.3. Characterization of the biosorbents
The surface morphologies of the air-dried peel and two kinds of modified peel were studied by SEM (TM3000, HITACHI, Japan). Functional groups were detected by FTIR (Nicolet iS10, Thermo Scientific, USA). The specific surface area of the air-dried pomelo peel and freeze-dried modified pomelo peel were studied by BET (ASAP 2460, Micromeritics, USA).

2.4. Batch adsorption experiments
All adsorption experiments were placing 10 mg of freeze-dried modified pomelo peel and 20 ml of congo red solution in a conical flask. Then put the conical flask in the constant temperature gas bath shaker (SHZ-82A) for 48 h at 160 rpm to reach adsorption equilibrium. The UV-visible spectrophotometer was used to detect equilibrium concentration of congo red. The adsorption quantity of freeze-dried modified pomelo peel was obtained by the equation (1):

\[q_e = \left(\frac{C_0 - C_e}{m} \right) \times V \]

where \(C_0 \) (mg/l) is the initial concentration and \(C_e \) (mg/l) is the equilibrium concentration of congo red solution.

The effect of solution pH was researched by putting freeze-dried modified pomelo peel into the 20 ml congo red solution of 50 mg l⁻¹. And the pH value of congo red solution ranges from 4 to 10. The effect of adsorbent dosage was researched by putting varying dosage of adsorbent (5–35 mg) into the congo red solution of 50 mg l⁻¹, respectively.

The influence of temperature was investigated by putting adsorbent into the varying concentration (20–50 mg l⁻¹) of congo red solution, which adsorption process was proceeded at different temperature. The relationship between adsorption time and change of solution concentration was measured by the way that put the adsorbent (10 mg) into the dye solution of 50 mg l⁻¹. The adsorption ability \(q_t \) (mg/g) might be able to calculate with the equation (2):

\[q_t = \left(\frac{C_0 - C_t}{m} \right) \times V \]
contains a peak at 1735 cm$^{-1}$. The FTIR was analyzed for pomelo peel and shown in Figure 1. To compare the difference of functional groups between air-dried primitive peel and freeze-dried modified peel, 3.1 Characterization of adsorbent

The FTIR spectrum of primitive peel (Figure 1(a)) contains a peak at 1735 cm$^{-1}$. It is because stretch of carboxylic acid groups of hemicellulose (C=O) [32]. After the modification (Figure 1(b)), this peak is disappeared due to the decomposition of hemicellulose around 453 K [33]. Additionally, the peak at 1414 cm$^{-1}$(C=C) also disappeared. It can be attributed to the effect of KOH activation. At around 3346 cm$^{-1}$ and 2918 cm$^{-1}$ for peaks are represented O–H groups stretching of cellulose and asymmetric C–H vibration, respectively. The peak at 1642 cm$^{-1}$ of modified peel may indicate the stretching of carboxylic groups (−COOH). The peak near 1371 cm$^{-1}$ of modified peel may refer the stretching vibration of −COO$^{-}$ of pectin [32]. And at around 1156 cm$^{-1}$ can be assigned C–O–C stretching vibration of cellulose [34]. At around 1060 cm$^{-1}$ reflects stretching vibration of C–OH [20].

After the adsorption process (Figure 1(c)), losing of some peaks or decreasing of transmittance (T %) could be thought as possible interaction of dye molecules and functional groups at these bands [35]. The peak of −COOH stretching at 1642 cm$^{-1}$ (Figure 1(b)) shifts to 1640 cm$^{-1}$ (Figure 1(c)) with decrement of intensity. This decrement may be due to the influence of dye molecules at this peak. The peaks of O–H (3346 cm$^{-1}$) and C–H (2918 cm$^{-1}$) have the similar change. These functional groups may play an important role in the adsorption process.

Figure 2 shows SEM images of the pomelo peel. The air-dried pomelo peel (Figure 2(a)) has the continuous and unbroken morphologies. After being modified by potassium hydroxide, both the air-dried (Figure 2(b)) and freeze-dried (Figure 2(c)) pomelo peel forms more folds and slits, which can increase total surface of pomelo peel.

Adsorption capacity of three kinds of pomelo peels was represented in Figure 3. The air-dried primitive pomelo peel is only 13.68 mg g$^{-1}$. After modification, it increases to 73.34 mg g$^{-1}$ for the air-dried modified pomelo peel and 85.41 mg g$^{-1}$ for the freeze-dried modified pomelo peel. It may be because the functional groups were introduced by potassium hydroxide treatment.

Nitrogen adsorption and desorption isotherm was shown in Figure 4(a). The specific surface area is only 1.3003 m2 g$^{-1}$ for the primitive pomelo peel. After the modification, it increased to 4.0845 m2 g$^{-1}$. The improvement of the specific surface area is attributed to the hydrothermal treatment and special drying method. Freeze drying method can form porous structure through subliming water molecules at the circumstance of vacuum and low temperature [36]. The BJH pore volume distribution curve (Figure 4(b)) shows that the number of pores of the freeze-dried modified peel is larger than that of the primitive pomelo peel. The larger specific surface area and pores provide more active sites in the adsorption process of congo red.

\[q_t = \left(\frac{c_0 - c_t}{W} \right) \times V \]

where c_t (mg/g) is the concentration of congo red at time t.

3. Results and discussion

3.1. Characterization of adsorbent

To compare the difference of functional groups between air-dried primitive peel and freeze-dried modified peel, the FTIR was analyzed for pomelo peel and shown in Figure 1. The FTIR spectrum of primitive peel (Figure 1(a)) contains a peak at 1735 cm$^{-1}$. It is because stretch of carboxylic acid groups of hemicellulose (C=O) [32]. After the modification (Figure 1(b)), this peak is disappeared due to the decomposition of hemicellulose around 453 K [33]. Additionally, the peak at 1414 cm$^{-1}$(C=C) also disappeared. It can be attributed to the effect of KOH activation. At around 3346 cm$^{-1}$ and 2918 cm$^{-1}$ for peaks are represented O–H groups stretching of cellulose and asymmetric C–H vibration, respectively. The peak at 1642 cm$^{-1}$ of modified peel may indicate the stretching of carboxylic groups (−COOH). The peak near 1371 cm$^{-1}$ of modified peel may refer the stretching vibration of −COO$^{-}$ of pectin [32]. And at around 1156 cm$^{-1}$ can be assigned C–O–C stretching vibration of cellulose [34]. At around 1060 cm$^{-1}$ reflects stretching vibration of C–OH [20].

After the adsorption process (Figure 1(c)), losing of some peaks or decreasing of transmittance (T %) could be thought as possible interaction of dye molecules and functional groups at these bands [35]. The peak of −COOH stretching at 1642 cm$^{-1}$ (Figure 1(b)) shifts to 1640 cm$^{-1}$ (Figure 1(c)) with decrement of intensity. This decrement may be due to the influence of dye molecules at this peak. The peaks of O–H (3346 cm$^{-1}$) and C–H (2918 cm$^{-1}$) have the similar change. These functional groups may play an important role in the adsorption process.

Figure 2 shows SEM images of the pomelo peel. The air-dried pomelo peel (Figure 2(a)) has the continuous and unbroken morphologies. After being modified by potassium hydroxide, both the air-dried (Figure 2(b)) and freeze-dried (Figure 2(c)) pomelo peel forms more folds and slits, which can increase total surface of pomelo peel.

Adsorption capacity of three kinds of pomelo peels was represented in Figure 3. The air-dried primitive pomelo peel is only 13.68 mg g$^{-1}$. After modification, it increases to 73.34 mg g$^{-1}$ for the air-dried modified pomelo peel and 85.41 mg g$^{-1}$ for the freeze-dried modified pomelo peel. It may be because the functional groups were introduced by potassium hydroxide treatment.

Nitrogen adsorption and desorption isotherm was shown in Figure 4(a). The specific surface area is only 1.3003 m2 g$^{-1}$ for the primitive pomelo peel. After the modification, it increased to 4.0845 m2 g$^{-1}$. The improvement of the specific surface area is attributed to the hydrothermal treatment and special drying method. Freeze drying method can form porous structure through subliming water molecules at the circumstance of vacuum and low temperature [36]. The BJH pore volume distribution curve (Figure 4(b)) shows that the number of pores of the freeze-dried modified peel is larger than that of the primitive pomelo peel. The larger specific surface area and pores provide more active sites in the adsorption process of congo red.
3.2. Effect of temperature

Figure 5(a) shows the relationship of adsorption ability with temperature. At 303 K, the adsorption ability is 85 mg g^{-1}. At 323 K, it decreases to 64 mg g^{-1}. The lower adsorption capacity at higher temperature may be due to restrain hydrogen bonding of functional groups with dye molecules [37].

3.3. Effect of dosage

As the freeze-dried modified peel dosage rises, the removal rate gradually increases from 51% to 94% (figure 5(b)). It can be attributed to the increase of a great quantity of adsorption sites [38]. On the other side, the adsorption capacity ($q_e \text{ mg g}^{-1}$) decreases from 102 mg g$^{-1}$ to 26 mg g$^{-1}$ with rise dosage of adsorbent. This is because the quantity of dye which adsorbed by per unit weight of the adsorbent is reduced causing the decline of utilization rate of the active sites [39].
3.4. Effect of time

The impact of adsorption time for congo red onto the freeze-dried modified pomelo peel was shown in figure 5(c). It is obvious that the former 300 min of adsorption process is faster. It can be attributed any amount of activation sites on the adsorbents that can easily bind with dye molecules [40]. After then, adsorption process tends to be slow until the adsorption equilibrium has reached. This can be explained by the process that the adsorption of dye molecules shifts from surface area toward into the inner pores of the adsorbent [41]. The long adsorption equilibrium time is the consequence of long-range diffusion of congo red enter the inner porous of adsorbent.
3.5. Effect of pH
The process of congo red onto the freeze-dried modified pomelo peel is affected by pH of solution, which result was shown in figure 5(d). At pH = 4, removal percentage of congo red is 85.83%. However, at pH = 10, removal percentage of congo red reduces to 75.11%. This can be explained by the process that carboxyl groups of adsorbent bind with congo red molecules at acidic pH. Oxygen-containing functional groups have an important effect during the adsorption process [42]. At acidic pH, congo red molecules are cationic form, which can attach with carboxyl groups of the adsorbents. At basic pH, congo red molecules are anionic form and the carboxyl groups of adsorbent also become an anion (−COO−), which is not suitable for dye molecules binding with the adsorbents [38]. Therefore, at acidic pH, adsorbent has higher removal rate for congo red than at basic pH.

The dissolved organic matter such as fulvic acid (FA) and humic acid (HA) will affect the oxygen-containing functional groups of the adsorbents and affect the adsorption capacity [43]. Previous studies have shown that FA and HA were negatively charged in the pH range of 3.0–10.0 [44, 45]. At low pH values, the FA and HA easily bind to the surface of the adsorbents, providing more oxygen-containing functional groups to form complexes with cationic adsorbates, so the adsorption capacity is increased. At high pH values, the binding of FA and HA to the adsorbents becomes difficult due to electrostatic repulsion, and thereby change the adsorption capacity of adsorbents [46, 47]. On the other hand, the organic matter also competes with the dye molecules for adsorption sites, which also affects the adsorption capacity [48].

3.6. Adsorption mechanisms
Based on the study of pH and FTIR, the possible adsorption mechanism was discussed. After the adsorption process, The peaks of –COOH (1642 cm⁻¹) and O–H (3346 cm⁻¹) have changed with the decrease of intensity. This may indicate that these oxygen-containing functional groups play a role in the adsorption process. Through the study of pH, we can further analyze and discuss the adsorption mechanism. Congo red molecules are positively charged (CR⁺) under acidic conditions and negatively charged (CR⁻) under alkaline conditions [49]. With the increase of pH, oxygen-containing functional groups (−COOH) will be negatively charged due to deprotonation (−COO⁻) [50]. Therefore, we can conclude that there is electrostatic attraction between the congo red molecules and the carboxyl groups of the adsorbent at acidic pH, and electrostatic repulsion at basic pH. This conclusion is also consistent with the experimental results of pH. Electrostatic interaction has an important influence on the adsorption process. Figure 6 shows the possible adsorption mechanism of congo red adsorption onto adsorbent at acidic pH.

3.7. Effect of other co-ions
The adsorption of dyes is generally accomplished by hydrogen bonding, functional group interactions and electrostatic interaction with the adsorbent. They are affected by the ionic strength and pH in the aqueous solution [51]. The metal cations such as Na⁺, Cu²⁺ and Ca²⁺ may be combined with the active sites on the surface of the adsorbent and compete with the dye molecules, which will affect the adsorption efficiency of the adsorbent for dye molecules [52]. Previous studies have shown that pomelo peel has adsorption capacity for
Cd$^{2+}$ [53] and Cu$^{2+}$ [54], so the presence of some ions in the solution may reduce the adsorption capacity of pomelo peel for Congo red. In addition to the competitive effect of ions, the ionic strength also affects the electrostatic interaction. The electrostatic attraction can promote the adsorption of dye molecules by adsorbents. Some authors have found that the addition of NaCl solution can inhibit the electrostatic attraction and reduce the adsorption capacity of the adsorbent [55, 56]. This is mainly because Na$^+$ ions and Cl$^-$ ions can shield the charged sites of the adsorbent. And ionic strength may also affect the hydrophobic interactions. Therefore, the influence of ionic strength on the adsorption process is complicated.

3.8. Kinetic studies

In order to evaluate the adsorption kinetics, the pseudo-first-order model, pseudo-second-order model and intraparticle diffusion model were used to fit the experimental data. The degree of data fitting is represented by R^2 and sum squares errors (SSE).

The pseudo-first-order kinetic model is expressed as: [57]

$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$$

Where k_1 is the adsorption constant, q_e represents adsorption ability of adsorbent at equilibrium concentration and q_t indicates specific concentration at time t. The q_t and q_i obtain by fitting $\log(q_e - q_t)$ with t (figure 7(a)). The accurate values were shown in table 1. The q_t (59.17 mg g$^{-1}$) is lower than the 85.41 (mg/g) of experimental date. The value of R^2 is only 0.8667. The value of sum squares errors (SSE) is 0.56446.

The pseudo-second-order kinetic model is expressed as: [58]

$$\frac{t}{q_t} = \frac{1}{2k_2q_e^2} + \frac{t}{q_e}$$

Table 1. The kinetic constants of adsorption of congo red on adsorbent.

Kinetic model	Parameters	Values
Pseudo-first-order	k_1 (min$^{-1}$)	2.95 × 10$^{-3}$
	q_e (mg/g)	59.17
	R^2	0.8667
	SSE	0.56446
Pseudo-second-order	k_2 (g/mg min)	1.37 × 10$^{-4}$
	q_e (mg/g)	89.37
	R^2	0.9968
	SSE	0.47052
Intraparticle diffusion model	k_{ad1} (mg/g min$^{1/2}$)	4.50
	C_1 (mg/g)	-3.46
	R^1_2	0.9923
	k_{ad2} (mg/g min$^{1/2}$)	0.41
	C_2 (mg/g)	68.66
	R^2_2	0.6840

Figure 7. Adsorption kinetics of congo red onto adsorbent: (a) pseudo-first-order kinetic model, (b) pseudo-second-order kinetic model and (c) intraparticle diffusion model.
where k_2 (g/mg min) is the adsorption constant, which obtained by fitting t/q_t with t (figure 7(b)). And the values of k_2 and q_e were shown in table 1. The value of R^2 (0.9968) is higher than the R^2 (0.8667) of the pseudo-first-order kinetic model. The value of sum squares errors (0.47502) is lower than the pseudo-first-order kinetic model. The experimental date of q_e is 85.41 mg g$^{-1}$, which is closer to the fitting data of Pseudo-second-order (89.37 mg g$^{-1}$). These indicate that the pseudo-second-order kinetic model is more suitable adsorption process of congo red onto the freeze-dried modified pomelo peel.

The intraparticle diffusion model is expressed as:

$$q_t = k_{id}t^{1/2} + C_i$$

where k_{id} (mg/g min$^{1/2}$) is the intraparticle diffusion constant and C_i is the parameter related to the boundary layer of molecules. The k_{id} and C_i were obtained by fitting q_t with $t^{1/2}$ (figure 7(c)). And the values of k_{id} and C_i were shown in table 1. It is clearly evident that the adsorption by freeze-dried modified pomelo peel has two stages. Consequently, internal diffusion is only one of the conditions affecting the adsorption rate. It is a complicated process [39]. In the first stage of adsorption, the faster removal rate can attribute to sufficiently combine the dye molecules with surface area of adsorbent. Subsequently, the adsorption rate slows down as the concentration of dye molecules decreasing.

3.9. Equilibrium modeling

The experimental data was fitted by Langmuir and Freundlich models. The Langmuir model considers that the adsorption process can be evenly distributed throughout the surface of adsorbent. The Langmuir model is expressed as: [60]

$$\frac{c_e}{q_e} = \frac{c_e}{q_{max}} + \frac{1}{q_{max}k_L}$$

where k_L is the Langmuir parameter, q_{max} is the maximum adsorption capacity and the q_e represents adsorption ability of adsorbent at equilibrium concentration. The k_L and q_{max} can be acquired by fitting c_e/q_e with c_e (figure 8(a)). The table 2 was represented the values of k_L and q_{max}. Comparing maximum adsorption capacity of modified pomelo peel and other adsorbents (table 3) illustrates that modified pomelo peel is the excellent adsorbent in wastewater treatment. The values of R^2 and sum squares errors were shown in table 2.

The Langmuir model also can express as:

$$R_L = \frac{1}{1 + c_0k_L}$$

where c_0 is the initial concentration of congo red solution. The R_L can be calculated by c_0 and K_L. The figures of K_L are all less than 1, which indicates that modified pomelo peel is the appropriate adsorbent in the process of removing dye.

The Freundlich model considers that adsorption is the heterogeneous distribution on surface of adsorbent. The Freundlich model is expressed as:

$$q_e = k_{fmax}c_e^{1/n}$$

where k_{fmax} is the Freundlich constant, q_e is the equilibrium adsorption capacity, and c_e is the equilibrium concentration of congo red solution. The Freundlich model is expressed as: [60]

$$\ln q_e = \frac{1}{n} \ln c_e + \ln k_f$$

where k_f is the Freundlich constant, and n is the adsorption intensity parameter. The Freundlich model is expressed as:

$$c_e = \frac{q_{max}}{k_{fmax}} n^{1/n} c_e^{1/n}$$

where c_e and q_{max} are the equilibrium concentration of congo red solution and the maximum adsorption capacity, respectively. The q_{max} can be acquired by fitting q_e/c_e with c_e (figure 8(b)). The table 2 was represented the values of k_{fmax} and n. Comparing maximum adsorption capacity of modified pomelo peel and other adsorbents (table 3) illustrates that modified pomelo peel is the excellent adsorbent in wastewater treatment. The values of R^2 and sum squares errors were shown in table 2.

The Freundlich model also can express as:

$$R_f = \frac{1}{1 + c_0k_f}$$

where c_0 is the initial concentration of congo red solution. The R_f can be calculated by c_0 and K_f. The figures of K_f are all less than 1, which indicates that modified pomelo peel is the appropriate adsorbent in the process of removing dye.
where \(k_F \) and \(n \) are Freundlich equilibrium constant and adsorption intensity, respectively. The values can be obtained by plotting \(q_l \) versus \(c_l \) (figure 8(b)). The table 2 was illustrated the specific values of \(n \). Compared with Freundlich model, Langmuir model has higher values of \(R^2 \) and lower values of sum squares errors. It can evidence that experimental data is more appropriate the Langmuir model and adsorption process of the dyes molecules onto the freeze-dried modified pomelo peel is monolayer adsorption process.

3.10. Thermodynamic study

The temperature has the obvious effect for the congo red molecules onto the freeze-dried modified pomelo peel. The parameters (\(\Delta G, \Delta H, \Delta S \)) can be calculated by following the equation at different temperature: [67]

\[
\ln q_e = \ln k_F + \frac{1}{n} \ln c_e
\]

\[
\ln \left(\frac{q_e}{c_e} \right) = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \quad \text{(8)}
\]

\[
\Delta G = \Delta H - T \Delta S \quad \text{(9)}
\]

where \(k_F \) and \(n \) are Freundlich equilibrium constant and adsorption intensity, respectively. The values can be obtained by plotting \(\ln q_e \) versus \(\ln c_e \) (figure 8(b)). The table 2 was illustrated the specific values of \(n \). Compared with Freundlich model, Langmuir model has higher values of \(R^2 \) and lower values of sum squares errors. It can evidence that experimental data is more appropriate the Langmuir model and adsorption process of the dyes molecules onto the freeze-dried modified pomelo peel is monolayer adsorption process.

3.10. Thermodynamic study

The temperature has the obvious effect for the congo red molecules onto the freeze-dried modified pomelo peel. The parameters (\(\Delta G, \Delta H, \Delta S \)) can be calculated by following the equation at different temperature: [67]

\[
\ln \left(\frac{q_e}{c_e} \right) = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \quad \text{(8)}
\]

\[
\Delta G = \Delta H - T \Delta S \quad \text{(9)}
\]

where \(K \) is the absolute temperature and the \(R \) is the universal gas constant (8.314 J mol\(^{-1}\) K). The \(\Delta H \) and \(\Delta S \) can be obtained by fitting \(\ln \left(\frac{q_e}{c_e} \right) \) with \(1/T \). The table 4 was indicated the specific figures of \(\Delta G, \Delta H \) and \(\Delta S \).

The specific figures of \(\Delta G (-7.63, -6.85 \text{ and } -6.06 \text{ kJ mol}^{-1}) \) represent that adsorption process is the spontaneous reaction and not require external energy. At 303 K and 323 K, the values \(\Delta G \) are \(-7.63 \text{ (kJ/mol)}\) and \(-6.06 \text{ (kJ/mol)}\), respectively, suggesting that lower temperature is more favorable for congo red onto freeze-dried modified pomelo peel. The value of \(\Delta H (-31.43 \text{ kJ mol}^{-1}) \) represents process that congo red molecules onto the freeze-dried modified pomelo peel is an exothermal reaction. The value of \(\Delta S (-78.48 \text{ J mol}^{-1} \text{ K}) \) indicates that randomness of adsorption onto freeze-dried modified pomelo peel is reduced at the solid-solution interface [68].
4. Conclusions

In this work, a new kind of biosorbent was prepared from pomelo peel by hydrothermal treatment method. The surface morphology, functional groups and specific surface area of the adsorbent were studied by SEM, FTIR and BET methods, respectively. The influences of temperature, pH, adsorbent dosage and time for adsorption were researched by batch experiments. The maximum adsorption capacity (144.93 mg g\(^{-1}\)) was calculated by Langmuir model at 303 K, which illustrates that pomelo peel is the excellent adsorbent in wastewater treatment. The kinetic studies indicate that the adsorption process is more suitable for pseudo-second-order kinetic model. The research of thermodynamics evidences that adsorption process is an exothermal and spontaneous reaction. Results of this study show that modified pomelo peel has the bright prospect to adsorb congo red.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51672140), National Science Foundation of Shandong Province (ZR2015EM038), Taishan Scholar Program of Shandong Province (201511029).

ORCID iDs

Heng Zheng

https://orcid.org/0000-0003-1031-8090

References

[1] Ding F, Gao M, Shen T, Zeng H and Xiang Y 2018 Comparative study of organo-vermiculite, organo-montmorillonite and organo-silica nanosheets functionalized by an ether-spacer-containing Gemini surfactant: congo red adsorption and wettability Chem. Eng. J. 349 388–96
[2] Mall D, Srivastava V C, Agarwal N K and Mishra I M 2005 Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses Chemosphere, 61 492–501
[3] Li Y, Sun J, Du Q, Zhang L, Yang X, Wu S, Xia Y, Wang Z, Xia L and Cao A 2014 Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning Carbohydr Polym 102 755–61
[4] Chen C C, Liao H J, Cheng C Y, Yen C Y and Chung Y C 2007 Biodegradation of crystal violet by Pseudomonas putida Biotechnol. Lett 29 391–6
[5] Manenti D R, Mødenes A N, Soares P A, Espinoza-Quírones F R, Boaventura R A R, Bergamasco R and Vilar V J P 2014 Assessment of a multistage system based on electrodialysis, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment Chem. Eng. J. 252 120–30
[6] Labanda J, Sabate J and Llorens J 2011 Experimental and modeling study of the adsorption of single and binary dye solutions with an ion-exchange membrane adsorber Chem. Eng. J. 166 536–43
[7] Zhao T, Yao Y, Li D, Wu F, Zhang C and Gao B 2018 Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II) Sci. Total Environ. 640–641 73–8
[8] Ellouze E, Tahri N and Ammar R B 2012 Enhancement of textile wastewater treatment process using Nanofiltration Desalination 286 16–23
[9] Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y and Xia L 2013 Methylene blue adsorption on graphene oxide/calcium alginate composites Carbohydr Polym 95 501–7
[10] Namasiyam C and Kavitha D 2002 Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste Dyes & Pigments 54 47–58
[11] Shaban M, Abuikhdara M R, Shahien M G and Ibrahim S S 2017 Novel bentonite/zelite-Na\(^+\) composite efficiently removes methylene blue and Congo red dyes. Environ. Chem. Lett. 16 275–80
[12] Li Y H, Liu P Q, Xia B, Du Q, Zhang P, Wang D C, Wang Z H and Xia Y Z 2010 Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites J. Hazard. Mater. 177 876–80
[13] Liu T et al 2012 Adsorption of methylene blue from aqueous solution by graphene Colloids Surf B Biointerfaces 90 197–203
[14] Bhatnagar A, Sillanpää M and Witek-Krowiak A 2015 Agricultural waste peels as versatile biomass for water purification—a review Chem. Eng. J. 270 244–71
[15] Anastopoulos I and Kyzas G Z 2014 Agricultural peels for dye adsorption: a review of recent literature J. Mol. Liq. 200 381–9
[16] Feng N, Guo X and Liang S 2009 Adsorption study of copper (II) by chemically modified orange peel J. Hazard. Mater. 164 1286–92
[17] Hameed B H and Ahmad A A 2009 Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass J. Hazard. Mater. 164 870–5
[18] Anwar J, Shafique U, Wahed uz Z, Salman M, Dar A and Anwar S 2010 Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana Bioresour. Technol. 101 1752–5
[19] Kyzas G Z and Deliannii E A 2015 Modified activated carbons from potato peels as green environmentally adsorbents for the treatment of pharmaceutical effluents Chem. Eng. Res. Des. 97 135–44
[20] Saeed A, Sharif M and Ijub M 2010 Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption J. Hazard. Mater. 179 564–72
[21] Hameed B H, Mahmoud D K and Ahmad A L 2008 Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system Colloids Surf. A 316 78–84
[22] Foo K Y and Hameed B H 2011 Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes Chem. Eng. J. 173 385–90
[23] Klasson K T, Wartelle I L, Rodgers J E and Lima I M 2009 Copper(II) adsorption by activated carbons from pecan shell: effect of oxygen level during activation J. Colloid Prod 30 72–7

[24] Teng H S, Ho J A, Hsu Y F and Hsieh C T 1996 Preparation of activated carbons from bituminous coals with CO2 activation. 1. Effects of oxygen content in raw coals Ind. Eng. Chem. Res. 35 4043–9

[25] Li D N, Ma X J, Liu X Y and Yu L L 2014 Preparation and characterization of Nano–TiO2 loaded bamboo-based activated carbon fibers by H2OActivation Bioresources, 9 602–12

[26] Kan Y J, Yue Y Q, Liu S Q and Gao B Y 2018 Effects of Cu and CuO on the preparation of activated carbon from waste circuit boards by H2OPO4 activation Chem. Eng. J. 331 95–101

[27] Mashhadí S, Sobrál R, Javadíán H, Ghasemí M, Tyagi I, Agarwál S and Gupta V K 2016 Rapid removal of Hg(II) from aqueous solution by rice straw activated carbon prepared by microwave-assisted H2SO4 activation: Kinetic, isotherm and thermodynamic studies J. Mol. Liq. 215 144–53

[28] Ma C, Chen X Y, Long D H, Wang J T, Qiao W M and Ling L C 2017 High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapcitor Carbon 118 699–708

[29] Li Y H, Du Q J, Wang X D, Zhang P, Wang D C, Wang Z H and Xia Y Z 2010 Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation J. Hazard. Mater. 183 583–9

[30] Yue L M, Xia Q Z, Wang L W, Wang L L, Da Costa H, Yang J and Hu X 2018 CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of area–modified coconut shell J Colloid Inter Sci. 511 259–67

[31] Munir M T, Mansouri S S, Udoguama I A, Baroutian S, Gennaey K V and Young B R 2018 Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges Renew Sust Energ Rev. 96 64–75

[32] Farinella N V, Matos G D and Arruda M A 2007 Grape bagasse as a potential biosorbent of metals in effluent treatments Bioresour. Technol. 98 1940–6

[33] Reza M T, Uddín M H, Lynam J G, Hoekman S K and Coronella C J 2014 Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance Biomass Conversion & Biorefinery 4 311–21

[34] Nikolayev N A, Budun D K, Sushko N I and Zhbankov R G 2015 In situ Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra desorption Bio polymers, 57 237–62

[35] Semercioz A S, Gökşen S, Çağlar D and Boburt H 2017 Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu(II). J. Clean. Prod. 165 599–610

[36] Li Q, Li Y H, Ma X M, Du Q J, Sui J Y, Wang D C, Wang C P, Li H L and Xia Y Z 2017 Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water Chem. Eng. J. 316 623–30

[37] Yan X, Zhang X and Li Q 2018 Preparation and characterization of CS/beta–CD/Nano-ZnO composite porous membrane optimized by Box-Behnken for the adsorption of Congo red Environ. Sci. Pollut. Res. Int. 25 22244–58

[38] Purkait M K, Maiti A, DasGupta S and De S 2007 Removal of Congo red using activated carbon and its regeneration J. Hazard. Mater. 145 287–95

[39] Sada’s and Bhatti H N 2014 Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk J. Taiwan Inst. Chem. Eng. 45 541–53

[40] Du Q, Sun J, Li Y, Yang X, Wang X, Wang Z and Xia I 2014 Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles Chem. Eng. J. 245 99–106

[41] Hassan A F, Abdel-Mohsen A M and Fouda M M 2015 Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption Carbohydrate Polym. 102 192–8

[42] Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y and Yang Z. Application of biochar for the removal of pollutants from aqueous solutions Chemosphere. 125 70–85

[43] Wang Y, Li Y, Zhang Y and Wei W 2019 Effects of macromolecular humic/sulfuric acid on Cd(II) adsorption onto reed-derived biochar as compared with tannic acid Int. J. Biol. Macromol. 134 43–53

[44] O’Wijea M, Adamczyk Z. and Morga M Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements J. Colloid Interface Sci. 438 249–58

[45] Li Y, Tan W F, Koopal L K, Wang M X, Liu F and Norde. W Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease Environmental Science & Technology 47 5050–6

[46] Zhao D, Xin Y, Hui Z, Chen C and Wang X Effect of environmental conditions on Pb(II) adsorption on β-MnO2 Chem. Eng. J. 164 49–55

[47] Sheng G, Li J, Shao D, Hu J, Chen C, Chen Y and Wang X Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids J. Hazard. Mater. 178 333–40

[48] Murray A and Rmeci B Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers Journal of Environmental Sciences. 6. 513–320.

[49] Purkait M K, Maiti A, DasGupta S and De S 2007 Removal of congo red using activated carbon and its regeneration J. Hazard. Mater. 145 287–95

[50] Lafi R, Montasser I L, Hatfane A, Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration Adsorpt. Sci. Technol. 37 160–81

[51] Wu Z, Ioo H and Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel Chem. Eng. J. 112 227–36

[52] Maurya N S, Mittal A K, Cornell P and Rother E Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH Bioresour. Technol. 97 512–9

[53] Torab–Mostaedi M, Asadollahzadeh M, Hemmati A and Khorasavi Equilibrium A Kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel J. Taiwan Inst. Chem. Eng. 44 295–302

[54] Semercioz A S, Gok G, Celebi A and Budurt H Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu(II). J. Clean. Prod. 165 599–610

[55] Hu Y, Li K, Li Y, Liu H, Guo M, Ye X, Wu Z and Lee K 2019 Dyes Adsorption onto Fe3O4-Bis (trimethoxysilylpropyl) amine Composite Particles: Effects of pH and Ionic Strength on Electrostatic Interactions ChemistrySelect. 4 617–22

[56] Hu Y, Guo T, Ye X, Li Q, Guo M, Liu H and Wu Z Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions Chem. Eng. J. 228 392–7

[57] Dogan M, Alkan M, Demirbas O, Ozdemir Y and Ozmetin C 2006 Adsorption kinetics of maxilon blue GRL onto sepilite from aqueous solutions Chem. Eng. J. 124 89–101

[58] Yeddou N and Benmessahel A 2005 Kinetic models for the sorption of dye from aqueous solution by clay–wood sawdust mixture Desalination 185 499–508
[59] Chen N, Zhang Z, Feng C, Zhu D, Yang Y and Sugiura N 2011 Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution J. Hazard. Mater. 186 863–8
[60] Ho Y S and Mckay G 1998 Sorption of dye from aqueous solution by peat Chem. Eng. J. 70 115–24
[61] Tor A and Cengeloglu Y 2006 Removal of congo red from aqueous solution by adsorption onto acid activated red mud J. Hazard. Mater. 138 409–15
[62] Bhattacharyya K G and Sharma A 2004 Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions J. Environ. Manage. 71 217–29
[63] Annadurai G, Juang R S and Lee D J 2002 Use of cellulose-based wastes for adsorption of dyes from aqueous solutions J. Hazard. Mater. 92 263–74
[64] Zhang R, Zhang J, Zhang X, Dou C and Han R 2014 Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study J. Taiwan Inst. Chem. Eng. 45 2578–83
[65] Lafi R, Montasser I and Hafiane A 2019 Adsorption of Congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration Adsorption Science & Technology 37 160–81
[66] Vimonses V, Lei S, Jin B, Chow C W K and Saint C 2009 Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials Chem. Eng. J. 148 354–64
[67] Zhou J, Wu P, Dang Z, Zhu N, Li P, Wu J and Wang X 2010 Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions Chem. Eng. J. 162 1035–44
[68] Chiou M S and Li H Y 2003 Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads Chemosphere. 50 1095–105