Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Fibrinolytic therapy for refractory COVID-19 acute respiratory distress syndrome: Scientific rationale and review

Christopher D. Barrett MD1,2 | Hunter B. Moore MD3 | Ernest E. Moore MD, PhD3,4 | Robert C. McIntyre MD3 | Peter K. Moore MD5 | John Burke PhD6 | Fei Hua PhD6 | Joshua Apgar PhD6 | Daniel S. Talmor MD, MPH7 | Angela Saueria MD, PhD3 | Deborah R. Liptzin MD8 | Livia A. Veress MD8 | Michael B. Yaffe MD, PhD1,2

1Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
2Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
3Colorado School of Public Health and Department of Surgery, University of Colorado Denver, Denver, CO, USA
4Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, Denver, CO, USA
5Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, USA
6Applied BioMath, LLC, Concord, MA, USA
7Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
8Department of Pediatrics, Pulmonary Medicine, University of Colorado Denver, Aurora, CO, USA

Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused respiratory failure and associated mortality in numbers that have overwhelmed global health systems. Thrombotic coagulopathy is present in nearly three quarters of patients with COVID-19 admitted to the intensive care unit, and both the clinical picture and pathologic findings are consistent with microvascular occlusive phenomena being a major contributor to their unique form of respiratory failure. Numerous studies are ongoing focusing on anticytokine therapies, antibiotics, and antiviral agents, but none to date have focused on treating the underlying thrombotic coagulopathy in an effort to improve respiratory failure in COVID-19. There are animal data and a previous human trial demonstrating a survival advantage with fibrinolytic therapy to treat acute respiratory distress syndrome. Here, we review the extant and emerging literature on the relationship between thrombotic coagulopathy and pulmonary failure in the context of COVID-19 and present the scientific rationale for consideration of targeting the coagulation and fibrinolytic systems to improve pulmonary function in these patients.
1 | INTRODUCTION

As the coronavirus disease 2019 (COVID-19) pandemic accelerates, cases have grown exponentially around the world. Other countries’ experience suggests that 5%-16% of in-patients with COVID-19 will undergo prolonged intensive care,1–3 with 50%-70% needing mechanical ventilation (MV),3–5 threatening to overwhelm hospital capacity.6

While COVID-19 overall mortality likely ranges from 1% to 5%, this is much higher in patients with COVID-19–induced acute respiratory distress syndrome (ARDS) (22%-64%).3,4,7 There are currently few proven ARDS therapies other than low-tidal-volume ventilation and prone-positioning.9 MV. Most current trials on clinicaltrials.gov for COVID-19–induced ARDS aim at modulating the inflammatory response. Sarilumab and tocilizumab, which block interleukin-6 effects, are being tested in randomized controlled trials for patients hospitalized with severe COVID-19 (NCT04317092). The World Health Organization international trial SOLIDARITY will test remdesivir, chloroquine plus hydroxychloroquine, lopinavir plus ritonavir, and lopinavir plus ritonavir and interferon-β. However, studies targeting the coagulation system, which is intrinsically intertwined with the inflammatory response, are lacking.10–14

2 | FIBRINOLYSIS, ARDS, AND THE POSSIBLE ROLE OF FIBRINOLYTIC THERAPY IN COVID-19

Our group has shown that low fibrinolysis is associated with ARDS,15–19 and patients with COVID-19 in the intensive care unit (ICU) have now been shown on thromboelastography to universally have lower levels of fibrinolysis than the reference population.20 Over the past decades, studies have demonstrated the systemic and local effects of dysfunctional coagulation, specifically related to fibrin, in ARDS.11,13,14,21,22 ARDS, regardless of cause, is associated with fibrin deposition in air spaces and fibrin-platelet microthrombi in the pulmonary vasculature,23–25 which is also consistently observed in the lung microvasculature of patients with COVID-19.26–28 This pathologic fibrin deposition reflects a dysfunctional clotting system, with enhanced clot formation and propagation as well as fibrinolysis suppression,29–31 largely due to tissue factor produced by alveolar epithelial cells and macrophages,32 and high levels of plasminogen activator inhibitor-1 (PAI-1) produced by endothelial cells or activated platelets.33,34 Consistent with this, prothrombin time prolongation, elevated D-dimer and fibrin degradation products, and uniquely elevated fibrinogen levels have been reported in severely ill patients with COVID-19, particularly in nonsurvivors.3,4,20,35–38 Similar findings have been observed in sepsis,29,39 endotoxemia,40 and extensive tissue disruption,18 in which early activation of coagulation and fibrinolysis is followed by late fibrinolytic shutdown and endothelial dysfunction. It is also consistent with an initial viral infection of airway epithelial cells, with later spread to endothelial cells, which has now been shown to occur in COVID-19,41 both of which express the receptor protein for the virus, angiotensin-converting-enzyme-2 (ACE2).42 Furthermore, it has now also been shown that critically ill patients with COVID-19 universally demonstrate hypercoagulable findings on viscoelastic assays relative to the reference population, with shortened reaction time, increased α-angle, increased maximal amplitude, and in virtually all cases a reduced level of fibrinolysis on thromboelastography.20

Targeting the coagulation and fibrinolytic systems to improve ARDS and associated pulmonary clot formation syndromes has been described24,43–47 and tested in animal models,48–51 and in light of the mounting findings in COVID-19, as described above, may also have a role in the management of COVID-19 respiratory failure. In 2001, Hardaway and colleagues described a small, noncontrolled human trial in severe ARDS, showing that uro/streptokinase led to remarkable improvement in oxygen requirements without bleeding events.52 Tissue-type plasminogen activator (t-PA) is a more modern fibrinolytic approach with higher clot lysis efficacy without increased bleeding risk. A meta-analysis of acute lung injury in animals showed that, compared to controls, t-PA improved survival, arterial pO2 and pCO2 better than either urokinase plasminogen activator or plasmin, although none of the studies included viral-induced ARDS.50 In other studies, intra-airway delivered t-PA improved survival and morbidity associated with acute plastic bronchitis crisis, in which intra-airway clotting occurs.46,53–59 Both nebulized and direct instillation of t-PA into the airways via bronchoscopy have been used off-label to treat fibrin airway casts.60 In a lethal animal model of both severe pulmonary microvascular thrombi and severe bronchial...
fibrin casts, treatment with airway t-PA resulted in improved survival, dissolved airway casts, and normalized \(\text{pO}_2 \) and \(\text{pCO}_2 \). However, the mounting evidence specific to COVID-19 that shows pulmonary microvascular thrombosis as a predominant finding combined with normal lung compliance and high alveolar-arterial oxygen gradients suggests intravascular delivery may be the more appropriate delivery route, with concern that intra-airway delivery via intratracheal instillation or nebulized solutions may increase the risk to health care workers by exposing them to infectious airway secretions.

Taken together, the extant data on fibrinolytic therapy in ARDS combined with the thrombotic coagulopathy and clinical findings consistent with pulmonary vascular thrombo-occlusive disease in COVID-19 suggest that manipulation of the fibrinolytic system through administration of t-PA may have a role in the therapy of severe, medically refractory COVID-19–induced ARDS. Importantly, such an approach is nonexclusive and could be used in patients who have been treated with other experimental agents, including anti–interleukin-6 receptor blockers and other immune modulators, antibiotics, and antiviral agents.

3 | RISK CONSIDERATIONS FOR FIBRINOLYTIC THERAPY IN COVID-19 ARDS

The main risk if fibrinolytic therapy were considered for treatment of severe, medically refractory hypoxemia in COVID-19 respiratory failure is bleeding. The bleeding risk can be estimated from its use in myocardial infarction (MI) and submassive pulmonary embolism.

In the largest available prospectively collected data set of intravenous alteplase for non–stroke indication (GUSTO [Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries] trial; MI), the risk of hemorrhagic stroke was 0.7% and severe/life-threatening bleeding was 0.4% in the group that received 50 mg of alteplase over 90 minutes followed immediately by a 5000 U bolus of intravenous unfractionated heparin and a therapeutic heparin drip (\(n = 10,396 \) patients). In a trial of high-dose alteplase (100 mg over 2 hours) given concomitant with therapeutic systemic heparinization for submassive pulmonary embolism, the rate of major bleeding was 0.8%, and none of the 118 patients in the alteplase arm of the trial developed a hemorrhagic stroke. These 2 patient groups are expected to be relatively similar to those with severe COVID-19 illness regarding comorbidities and the absence of active stroke, which increases the risk of hemorrhagic conversion. There are multiple studies that quote higher risks of “major bleeding,” with a commonly referenced meta-analysis by Chatterjee et al quoting a major bleeding risk with t-PA in pulmonary embolism as being 9.24% relative to 3.42% for anticoagulation alone. The majority of the patients in this meta-analysis came from a single study (the PEITHO [Pulmonary Embolism International Thrombolysis] study) that used tenecteplase, which is resistant to PAI-1 inhibition. Additionally, many of the included studies had no prespecified definition of a major bleeding event, several included studies considered any blood transfusion as a major bleed, and none used hemodynamic parameters or massive transfusion protocol activation as criteria.

4 | PRACTICAL CONSIDERATIONS IF FIBRINOLYTIC THERAPY WERE CONSIDERED IN COVID-19 ARDS

In the absence of effective therapies for medically refractory COVID-19 hypoxic respiratory failure where critical care physicians have exhausted all available treatment options in a dying patient, patients with prothrombotic presentations, normal lung compliance on the ventilator, and high alveolar-arterial oxygen gradients could potentially be considered for fibrinolytic therapy; as such, a clinical presentation is suggestive of vascular occlusive disease as a primary cause of hypoxemia. It should be noted that in a disease entity only several
months old, such an approach has no pre-existing controlled trial data and must be considered with extreme caution, although there are now a handful of case reports that so far have demonstrated temporal associations with alteplase administration and improvement of the respiratory status of critically ill patients with COVID-19 (emphasis: a causal relationship in uncontrolled case reports cannot be inferred)\(^76\) (Poor et al, in review; Barrett et al, in review). The large experience using intravenous t-PA for strokes, myocardial infarctions, and pulmonary emboli\(^66,77,78\) may provide a useful guide for its use in COVID-19 respiratory failure in the absence of prior controlled trial data. Our suggestion in such a situation is to consider an initial intravenous bolus dose of 50 or 100 mg of alteplase over 2 hours, concomitant with, or immediately followed by, systemic anticoagulation with heparin. Multiple sites across the United States have already taken this approach (fibrinolytic therapy) in severe, medically refractory COVID-19 hypoxemic respiratory failure, and the specifics around the use of heparin vary from fully therapeutic heparin drips (partial thromboplastin time goal 60-80 seconds) while t-PA is infusing, to 500 U/h heparin while t-PA is infusing, followed by full anticoagulation after tPA is finished, to starting therapeutic heparin right after t-PA finishes infusing with no heparin during the actual tPA administration period. As a rationale for dosing with respect to t-PA (alteplase), we performed pharmacokinetic simulations on 2 test subjects (75 and 60 kg), and found that the 50- and 100-mg bolus dose regimens would quickly achieve t-PA plasma concentrations above median PAI-1 levels in injured patients (200 ng/mL, 4.7 nmol/L) (Moore et al, unpublished; Cardenas et al\(^79\)) (Figure 1). Importantly, this pharmacokinetic model also supports a redosing strategy at 12 hours or later in transient responders (eg, those that may have rethrombosed due to inadequate anticoagulation, as suspected in the case series observations by Wang et al\(^76\)), since by this time the plasma levels of t-PA from the first bolus have fallen below the level of circulating t-PA in normal patients.\(^80\) A phase II clinical trial will be required to confirm these estimates and is now planned (discussed below). While we believe that intravascular delivery of t-PA is likely a more appropriate route of administration in COVID-19 respiratory failure if fibrinolytic therapy were considered, if intra-airway t-PA delivery were to be pursued, we suggest 50 mg (or 0.7 mg/kg) of t-PA instilled into the airways, preferentially by bronchoscopy, followed by repeat dosing every 4-8 hours as needed for sustained improvement of oxygen requirements. This regimen is based on empiric guidelines for treatment of plastic bronchitis patients at the Children’s Hospital of Colorado, as well as multiple case reports and animal studies.\(^51,54,56,61\) The same exclusion criteria for MI treatment with tPA should apply, with patients maintained on a heparin infusion after t-PA treatment completion to prevent reaccumulation of fibrin clot in the lung microvasculature. A possible algorithm for consideration of fibrinolytic therapy in severe, medically refractory COVID-19 respiratory failure is shown in Figure 2, with the key points being: (1) in the absence of controlled trial data such an approach should be considered only in patients with persistent, refractory hypoxemic respiratory failure despite maximal management strategies; (2) have evidence of a hypercoagulable state; and (3) have normal lung compliance with high alveolar-arterial oxygen gradients that suggest the patient’s hypoxemia likely has a vascular occlusive component. While this scenario of a hypercoagulable
state, normal lung compliance, and high alveolar-arterial oxygen gradients is seen in the majority of patients with COVID-19 respiratory failure and microvascular thrombosis is present in the majority of autopsies, the possibility of macrovascular pulmonary embolism is not insignificant and similarly may improve after fibrinolytic therapy. As discussed above, such an approach involves risk, but such risk in carefully selected patients is likely outweighed by certainty of death in the proposed population and justifies consideration of salvage t-PA therapy when all other therapeutic options are exhausted. We would encourage all those who are inclined to treat critically ill patients with COVID-19 with t-PA for refractory respiratory failure to track the success or failure of this approach and report their clinical outcomes.

5 | SUMMARY AND CONCLUSIONS

In the present COVID-19 crisis, facing a disease entity that has existed only for several months, physicians (particularly critical care physicians) are faced with large numbers of patients in profound, medically refractory hypoxic respiratory failure with multiple clinical clues and autopsy reports that suggest a significant pulmonary microvascular thrombotic component. Level 1 evidence from randomized controlled trials for managing COVID-19 and its associated severe, refractory hypoxic respiratory failure is months, if not years, away. As such, clinicians facing life-and-death situations in critically ill patients with COVID-19 must treat them using clinical reasoning based on observation of the patient’s physiology, as the standard protocols and best practice “pathways” that modern medicine has become dependent on simply do not exist yet in this emerging and lethal disease. If t-PA fibrinolytic therapy were used in decompensating patients with no options for escalation of care, and shown to be effective with a greater risk of benefit than harm, such an approach could be rapidly broadened globally due to t-PA’s availability at most medical centers. While we cannot specifically advocate for its use in a systematic way at this time, and caution against broad implementation of this approach in the absence of controlled trial data, such an approach should at least be known to clinicians treating critically ill patients with COVID-19 in the event that they have an imminently dying patient meeting the criteria outlined above and in Figure 2, and have exhausted all other options. Formal study of this potential therapy is urgently needed. A phase IIa multicenter randomized controlled trial of alteplase therapy in severe, medically refractory hypoxic respiratory failure in COVID-19 is now underway (ClinicalTrials.gov, NCT 04357730).

RELATIONSHIP DISCLOSURE

CDB, HBM, EEM, and MBY have patents pending related to both coagulation/fibrinolysis diagnostics and therapeutic fibrinolytics, and are passive cofounders and hold stock options in Thrombo Therapeutics, Inc. HBM and EEM have received grant support from Haemonetics and Instrumentation Laboratories. EEM holds a grant from Genentech. MBY has previously received a gift of alteplase (t-PA) from Genentech and owns stock options as a cofounder of

FIGURE 2 Possible algorithm for consideration of fibrinolytic therapy in severe, medically refractory COVID-19 respiratory failure. COVID-19, coronavirus disease 2019; MI, myocardial infarction; t-PA, tissue-type plasminogen activator inhibitor-1

Mech. Ventilated and COVID-19 diagnosed or strongly suspected?	NO	YES
Persistent, refractory hypoxemia despite maximal therapy?	NO	YES
NO IPA, proceed with standard of care for other disease process	NO IPA, continue standard of care, lung protective ventilation, and consider therapeutic anticoagulation versus prophylaxis (if no contraindication)	NO IPA, continue standard of care, lung protective ventilation, and consider therapeutic anticoagulation versus prophylaxis (if no contraindication)
1) Fibrinogen >500 mg/dL (or peaked >500 mg/dL and currently >300 mg/dL)?	NO	YES
2) D-dimer >2x Upper-Limit Normal?	NO	YES
3) Platelets >100 k/µL?	NO	YES
4) Viscoelastic assay tracing with low or normal fibrinolysis measurement?	NO	YES
5) No evidence of bleeding?	NO	YES
NO IPA, continue standard of care, lung protective ventilation, and consider therapeutic anticoagulation versus prophylaxis (if no contraindication)	NO IPA, continue standard of care, lung protective ventilation, and consider therapeutic anticoagulation versus prophylaxis (if no contraindication)	Consider systemic fibrinolytic therapy with t-PA and concomitant intravenous heparin anticoagulation
Normal lung compliance and high alveolar-arterial oxygen gradient?	NO	YES

Possible algorithm for consideration of fibrinolytic therapy in severe, medically refractory COVID-19 respiratory failure. COVID-19, coronavirus disease 2019; MI, myocardial infarction; t-PA, tissue-type plasminogen activator inhibitor-1.
REFERENCES

1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy. JAMA. 2020;323(16):1545.
2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.
3. Yang X, Yu Y, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(9):475–81.
4. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.
5. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020;323(16):1612–4.
6. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman MA, et al. Fair allocation of scarce medical resources in the time of COVID-19. N Engl J Med. 2020;382(21):2049–55.
7. Moore HB, Moore EE, Liu H, Xia SY, Liu Z, Zhang J, et al. Acute respiratory distress syndrome and acute lung injury in COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14850
8. Moore EE, Yu Y, Hu Y, Liang WH, Ou CQ, He JX, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020;323(16):1612–4.
9. Moore HB, Moore EE, Liu H, Xia SY. Vascular endothelial injuries and changes of clotting cascade in the continuum of sepsis and acute lung injury. Semin Respir Crit Care Med. 2000;21(4):337–49.
10. Moore HB, Moore EE, Huebner BR, Dzieciatkowska M, Stettler GR, Nunns GR, et al. Fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7.
11. Hofstra JJ, Haitsma JJ, Juffermans NP, Levi M, Schultz MJ. The role of bronchoalveolar hemostasis in the pathogenesis of acute lung injury. Semin Respir Crit Care Med. 2000;21(4):337–49.
12. Moore HB, Moore EE, Huebner BR, Dzieciatkowska M, Stettler GR, Nunns GR, et al. Fibrinolysis shutdown is associated with a five-fold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg. 2017;83(6):1014–22.
13. Moore HB, Moore EE, Liu H, Xia SY, Liu Z, Zhang J, et al. Acute respiratory distress syndrome after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.
14. Moore HB, Walsh M, Kwaan HC, Medcalf RL. The complexity of trauma-induced coagulopathy. Semin Thromb Hemost. 2020;46(2):114–5.
15. Moore HB, Moore EE. Temporal changes in fibrinolysis following injury. Semin Thromb Hemost. 2020;46(2):189–98.
16. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7.
17. Moore HB, Moore EE, Huebner BR, Dzieciatkowska M, Stettler GR, Nunns GR, et al. Fibrinolysis shutdown is associated with a five-fold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg. 2017;83(6):1014–22.
18. Moore HB, Moore EE, Liu H, Xia SY, Liu Z, Zhang J, et al. Acute respiratory distress syndrome after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.
19. Moore HB, Walsh M, Kwaan HC, Medcalf RL. The complexity of trauma-induced coagulopathy. Semin Thromb Hemost. 2020;46(2):114–5.
33. Grau GE, de Moerloose P, Bulla O, Lou J, Lei Z, Reber G, et al. Haemostatic properties of human pulmonary and cerebral microvascular endothelial cells. Thromb Haemost. 1997;77(3):585–90.

34. MacLaren R, Stringer KA. Emerging role of anticoagulants and fibrinolitics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. 2007;27(6):860–73.

35. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020. https://doi.org/10.1515/ccim-2020-0188

36. Wu C, Chen X, Cai Y, Ja X, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020. https://doi.org/10.1001/jamainternmed.2020.0994

37. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–7.

38. Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14860

39. Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536–45.

40. Ostrowski SR, Berg RM, Windelov NA, Meyer MA, Plovsing RR, Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Management of chronic obstructive pulmonary disease exacerbations: a systematic review and meta-analysis. Thorax. 2014;69(1):23–30.

41. MacLaren R, Stringer KA. Emerging role of anticoagulants and fibrinolitics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. 2007;27(6):860–73.

42. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Management of chronic obstructive pulmonary disease exacerbations: a systematic review and meta-analysis. Thorax. 2014;69(1):23–30.

43. Laterre PF, Wittebole X, Dhainaut J, Anticoagulant therapy in the treatment of chronic obstructive pulmonary disease exacerbations: a systematic review and meta-analysis. Thorax. 2014;69(1):23–30.

44. Ware LB, Camerer E, Welty-Wolf K, Schultz MJ, Matthay MA. Bench experiments: a rare pediatric disease. Pharmacotherapy. 2013;40(1):18.

45. Brooks K, Caruthers RL, Schumacher KR, Stringer KA. Pharmacotherapy challenges of fontan-associated chronic bronchi- tis: a rare pediatric disease. Pharmacotherapy. 2013;33(9):922–34.

46. Racz J, Mane G, Ford M, Schmidt L, Myers J, Standiford TJ, et al. Immunophenotyping and protein profiling of Fontan-associated chronic bronchitis airway casts. Am J Respir Crit Care Med. 2010;182(5):560–7.

47. Lubcke NL, Nussbaum VM, Schroth M. Use of aerosolized tissue plasminogen activator in the treatment of chronic obstructive pulmonary disease. Ann Pharmacother. 2013;47(3):e13.

48. Singhal NR, Da Cruz EM, Nicolarsen J, Schwartz LI, Merritt GR, Barrett C, et al. Perioperative management of shock in twofont patients with plastic bronchitis. Semin Cardiothorac Vasc Anesth. 2013;17(1):55–60.

49. Gibb E, Blount R, Lewis N, Nielsen D, Church G, Jones K, et al. Management of chronic obstructive pulmonary disease exacerbations: a systematic review and meta-analysis. Thorax. 2014;69(1):23–30.

50. Davami F, Sardari S, Majidzadeh-A K, Hemayatkar M, Barkhordari FM, Treatment of chronic obstructive pulmonary disease exacerbations: a systematic review and meta-analysis. Thorax. 2014;69(1):23–30.

51. Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W, Management S, et al. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med. 2002;347(15):1143–50.

52. Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA. 2014;311(23):2414–21.

53. Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014;370(15):1402–11.

54. Davami F, Sardari S, Majidzadeh-A K, Hemayatkar M, Barkhordari FM, Enayati S, et al. A novel variant of t-PA resistant to plasminogen activator inhibitor-1; expression in CHO cells based on in silico experiments. BMB Rep. 2011;44(1):34–9.

55. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–6.

56. Klok FA, Kruip M, van der Meer N, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill...
ICU patients with COVID-19. Thromb Res. 2020. https://doi.org/10.1016/j.thromres.2020.04.013

72. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80.

73. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.

74. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8.

75. Hervio LS, Coombs GS, Bergstrom RC, Trivedi K, Corey DR, Madison EL. Negative selectivity and the evolution of protease cascades: the specificity of plasmin for peptide and protein substrates. Chem Biol. 2000;7(6):443–53.

76. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14828

77. Kaufman C, Kinney T, Quencer K. Practice trends of fibrinogen monitoring in thrombolysis. J Clin Med. 2018;7(5):111.

78. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014(7):CD000213.

79. Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA, Wade CE. Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41(6):514–21.

80. Whitton C, Rigsby P, Longstaff C. A Proposed 1st WHO International Standard for the Measurement of Tissue Plasminogen Activator (tPA) Antigen in Plasma 94/730. https://www.who.int/biologicals/expert_committee/BS%2020168%20tissue%20plasminogen%20.pdf Accessed on May 15, 2020; 2007.

81. Rotzinger DC, Beigelman-Aubry C, von Garnier C, Qanadli SD. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res. 2020;190:58–9.

82. Cohen A. Pharmacokinetics of the recombinant thrombolytic agents. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene. Therapy. 1999;11(2):115–23.

How to cite this article: Barrett CD, Moore HB, Moore EE, et al. Fibrinolytic therapy for refractory COVID-19 acute respiratory distress syndrome: Scientific rationale and review. Res Pract Thromb Haemost. 2020;4:524–531. https://doi.org/10.1002/rth2.12357