Supporting Information

for

Wet-spinning of magneto-responsive helical chitosan microfibers

Dorothea Brüggemann, Johanna Michel, Naiana Suter, Matheus Grande de Aguiar and Michael Maas

Beilstein J. Nanotechnol. **2020**, **11**, 991–999. doi:10.3762/bjnano.11.83

Additional experimental data
Figure S1: Schematic of the custom-built setup for wet-spinning of chitosan solutions blended with IOPs. Viscous feedstock solutions were extruded into an ethanol coagulation bath to facilitate fiber preparation.
Figure S2: Custom-built setup for the wet-spinning process of helical microfibers. A solution of chitosan containing magnetic iron oxide nanoparticles is extruded into an ethanol coagulation bath. The emerging fibers are collected by a teflon-coated rotating needle with a stainless steel core, which simultaneously performs a translatory movement to achieve a helical fiber shape.

Table S1: Magnetic properties of the samples as determined with VSM.

VSM results	iron oxide concentration			
	1 mg·mL⁻¹	4 mg·mL⁻¹	7 mg·mL⁻¹	10 mg·mL⁻¹
saturation magnetization [T]	0.012	0.041	0.041	0.052
remanent magnetization [T]	2.99 × 10⁻⁴	7.69 × 10⁻⁶	7.69 × 10⁻⁶	4.80 × 10⁻³
coercive field [A·m⁻¹]	−150	−231	−231	−211
BH_{max} [MGsOe]	4.65 × 10⁻⁵	3.16 × 10⁻⁴	3.16 × 10⁻⁴	3.15 × 10⁻⁴
Table S2: Dynamic light scattering analysis of IOP dispersions in water.

pH	ZP [mV]	pH	Z-ave [nm]	number mean [nm]
10.9	−50.1	10.9	888	128
6.32	−26.4	6.4	684	103
6.52	−27.8	6.6	445	115
3.14	29.9	3.2	380	95