An Open-Label Phase II Trial of Bevacizumab plus Docetaxel and Gemcitabine in Advanced, Previously Untreated Nonsquamous Non-Small Cell Lung Cancer

PRADNYA DINKAR PATIL, a MARC SHAPIRO, a NOOSHIN HASHEMI SADRAEI, b NATHAN A. PENNELL a

aDepartment of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA; bAmgen, Thousand Oaks, California, USA

TRIAL INFORMATION

- ClinicalTrials.gov Identifier: NCT00970684
- Sponsor(s): Genentech, Inc.
- Principal Investigator: Nathan A. Pennell
- IRB Approved: Yes

LESSONS LEARNED

- The combination of bevacizumab with docetaxel-gemcitabine resulted in unacceptable toxicity, particularly a high rate of pulmonary toxicity (30%).
- Despite promising efficacy, excessive toxicity of this regimen does not support its use in patients with advanced nonsquamous non-small cell lung cancer.

ABSTRACT

Background. Prior to immunotherapy, standard treatment for advanced non-small cell lung cancer (NSCLC) was platinum doublet chemotherapy. In a previous phase II study, docetaxel-gemcitabine demonstrated comparable efficacy and tolerability to platinum doublets. In this phase II trial, we evaluated the efficacy and tolerability of adding bevacizumab to docetaxel-gemcitabine in patients with advanced nonsquamous NSCLC.

Methods. Patients with untreated advanced nonsquamous NSCLC were treated with up to six cycles of docetaxel-gemcitabine-bevacizumab, followed by bevacizumab until progression. The primary endpoint for this study was 1-year progression-free survival (PFS); secondary endpoints were safety, overall response rate (ORR) and overall survival (OS). The planned sample size was 46 patients.

Results. A total of 13 patients were enrolled and received a median of six cycles of chemotherapy and four cycles of bevacizumab. The treatment was poorly tolerated, with five patients requiring dose reduction and four discontinuing treatment for toxicity. Grade 3–5 nonhematologic toxicity was seen in 10 patients, and 4 (30%) were hospitalized with pulmonary toxicity possibly related to study drugs. At this point, enrollment was halted for safety concerns. The 12-month PFS was 8%. In 11 evaluable patients, ORR was 72%, median PFS 6 months, and median OS was 11 months.

Conclusion. Docetaxel, gemcitabine, and bevacizumab at this dose and schedule resulted in excessive toxicity. Despite promising efficacy, in light of efficacious and safe alternative therapies, this regimen should not be used to treat advanced NSCLC. The Oncologist 2019;24:457–e126

DISCUSSION

When this trial was conceived, the standard of care for advanced NSCLC was combination chemotherapy and most patients were treated with platinum doublets. Emerging evidence at the time suggested that certain patients may have inherently platinum-resistant disease due to high levels of expression of excision repair cross-complementation group 1 and DNA mismatch repair protein MSH2, which are heavily involved in the repair of platinum-DNA adducts [1, 2]. In a randomized multicenter trial of patients with advanced NSCLC who were assigned treatment based on their ERCC1 expression level (docetaxel-gemcitabine in ERCC1-high and
docetaxel-cisplatin in ERCC1-low patients), the ORR in the docetaxel-gemcitabine arm was 44%, compared with 37% with platinum doublet chemotherapy [3]. The superior efficacy and safety of docetaxel-gemcitabine over cisplatin-docetaxel in patients with advanced NSCLC was also documented in a randomized European multicenter trial [4]. These studies provided a rationale for exploring the role of non-platinum-containing regimens in the treatment of advanced NSCLC.

In preclinical models, addition of antiangiogenic agents to chemotherapy resulted in synergistic effects, likely due to vessel normalization and reduced vessel density and permeability [5, 6]. Addition of the vascular endothelial growth factor antibody bevacizumab to platinum chemotherapy has been associated with improved outcomes [7]; however, its safety and efficacy in combination with non-platinum doublets was poorly understood. In a previously conducted phase IB study of docetaxel-gemcitabine-bevacizumab in 38 patients with soft tissue sarcoma, this combination was safe and efficacious [8]. We therefore sought to study the safety and efficacy of bevacizumab-docetaxel-gemcitabine in patients with previously untreated, advanced nonsquamous NSCLC. Because patients with squamous histology had a greater incidence of major hemoptysis in early trials of bevacizumab with chemotherapy, patients with squamous histology were excluded [9].

In this study, conducted over a decade ago, a sizeable proportion of patients either had dose reduction (38%) or discontinued treatment for toxicity (31%). In addition, three patients (23%) had to discontinue bevacizumab before progression (two for tumor cavitation and one for hemoptysis). In this study, conducted over a decade ago, a sizeable proportion of patients either had dose reduction (38%) or discontinued treatment for toxicity (31%). In addition, three patients (23%) had to discontinue bevacizumab before progression (two for tumor cavitation and one for hemoptysis).

Sixty-nine percent of patients developed grade 3–5 nonhematologic toxicity, and all patients developed hematologic toxicities (92% grade 3–4 neutropenia; Table 1). An alarmingly high rate of pulmonary toxicity was observed in four patients (30%), thought to be possibly related to study drugs. Although this combination was well tolerated in patients with sarcoma, it is likely that the higher rate of pulmonary toxicity is reflective of the underlying compromised pulmonary function in patients with NSCLC.

Compared with alternative regimens available at the time, this combination showed promising efficacy with an ORR of 72%. However, the trial was terminated because of unacceptable toxicity of the regimen. Since this trial was conducted, many alternative therapies including immunotherapy have emerged as safe and efficacious options. Therefore, further investigation into clinical applications of this regimen is not warranted.

Event	Grade 1/2	Grade 3	Grade 4	Overall
Neutropenia	1 (8%)	7 (54%)	5 (38%)	13 (100%)
Leukopenia	1 (8%)	6 (46%)	4 (31%)	11 (85%)
Lymphopenia	3 (23%)	6 (46%)	0	9 (69%)
Anemia	9 (69%)	1 (8%)	0	10 (77%)
Thrombocytopenia	6 (46%)	1 (8%)	0	7 (54%)
Pneumonitis	0	1 (8%)	1 (8%)	2 (15%)
Pneumonia	0	2 (15%)	0	2 (15%)
Fatigue	7 (54%)	2 (15%)	0	9 (69%)
Bleeding	8 (62%)	0	0	8 (62%)
Nausea/Vomiting	8 (62%)	0	0	8 (62%)
Taste alterations	8 (62%)	0	0	8 (62%)
Anorexia	7 (54%)	0	0	7 (54%)
Arthralgias/myalgias	7 (54%)	0	0	7 (54%)
Mucositis	7 (54%)	0	0	7 (54%)
Skin reactions	7 (54%)	0	0	7 (54%)

© AlphaMed Press 2019
Additional Details of Endpoints or Study Design

The historical control for the trial was the Eastern Cooperative Oncology Group (ECOG) 4599 study with a 12-month PFS of 14% and time to progression of 6.4 months. Based on this experience, a 12-month PFS of greater than 28% was deemed as being sufficiently important to warrant further study. Enrolling 46 patients on the study would have allowed us to detect this difference using a 5% level of significance with 80% power.

| Investigator’s Analysis | Poorly tolerated/not feasible |

Drug Information

Drug 1
- **Generic/Working Name**: Bevacizumab
- **Trade Name**: Avastin
- **Company Name**: Genentech
- **Drug Type**: Antibody
- **Drug Class**: Angiogenesis – VEGF
- **Dose**: 15 mg/kg
- **Route**: IV

Schedule of Administration

Drug 2
- **Generic/Working Name**: Docetaxel
- **Trade Name**: Taxotere
- **Company Name**: Other
- **Drug Type**: Microtubule-targeting agent
- **Dose**: 75 mg/m²
- **Route**: IV

Schedule of Administration

Drug 3
- **Generic/Working Name**: Gemcitabine
- **Trade Name**: Gemzar
- **Company Name**: Other
- **Drug Type**: Antimetabolite
- **Dose**: 900 mg/m²
- **Route**: IV

Schedule of Administration

Patient Characteristics

Number of Patients, Male	11
Number of Patients, Female	2
Stage	IIIIB (with malignant effusion) or IV by American Joint Committee on Cancer 6th edition
Age	Median (range): 63
Number of Prior Systemic Therapies	None
Performance Status: ECOG	0 — 5
	1 — 8
	2 —
	3 —
	Unknown —
We excluded patients with hemoptysis, tumor cavitation, underlying bleeding diathesis, uncontrolled hypertension, history of myocardial infarction or stroke within 6 months, metastasis to the gastrointestinal tract, history of diverticulitis, fistula, and intra-abdominal abscess or surgery within 3 months to reduce the risk of bleeding with bevacizumab.

Cancer Types or Histologic Subtypes

- Nonsquamous non-small cell lung cancer, 13

PRIMARY ASSESSMENT METHOD

Title	New assessment
Number of Patients Screened	16
Number of Patients Enrolled	13
Number of Patients Evaluable for Toxicity	13
Number of Patients Evaluated for Efficacy	11
Evaluation Method	RECIST 1.0
Response Assessment CR	\(n = 0 \) (0%)
Response Assessment PR	\(n = 8 \) (72.7%)
Response Assessment SD	\(n = 2 \) (18.1%)
Response Assessment PD	\(n = 1 \) (9.09%)
Response Assessment OTHER	\(n = 0 \) (0%)

(Median) Duration Assessments PFS 6 months

(Median) Duration Assessments TTP 7.5 months

(Median) Duration Assessments OS 11 months

(Median) Duration Assessments Response Duration 4–37 months

KAPLAN-MEIER PLOT

Time of scheduled assessment and/or time of event, months\(^a\)	No. progressed (or deaths)	No. censored	Percentage at start of evaluation period	Kaplan-Meier %	No. at next evaluation/No. at risk
0	0	0	100.00	100.00	11
2	1	0	100.00	90.91	10
4	1	0	90.91	81.82	9
7	1	0	81.82	72.73	8
8	1	0	72.73	63.64	7
9	1	0	63.64	54.55	6
11	1	0	54.55	45.45	5
15	1	0	45.45	36.36	4
16	1	0	36.36	27.27	3
24	1	0	27.27	18.18	2
35	1	0	18.18	9.09	1
48	1	0	9.09	0.00	0

\(^a \)Months from start of study treatment. Progression-free survival.
Adverse Events

Event	Grade 1/2	Grade 3	Grade 4	Overall
Neutropenia	1 (8%)	7 (54%)	5 (38%)	13 (100%)
Leukopenia	1 (8%)	6 (46%)	4 (31%)	11 (85%)
Lymphopenia	3 (23%)	6 (46%)	0	9 (69%)
Anemia	9 (69%)	1 (8%)	0	10 (77%)
Thrombocytopenia	6 (46%)	1 (8%)	0	7 (54%)
Pneumonitis	0	1 (8%)	1 (8%)	2 (15%)
Pneumonia	0	2 (15%)	0	2 (15%)
Fatigue	7 (54%)	2 (15%)	0	9 (69%)
Bleeding	8 (62%)	0	0	8 (62%)
Nausea/vomiting	8 (62%)	0	0	8 (62%)
Taste alterations	8 (62%)	0	0	8 (62%)
Anorexia	7 (54%)	0	0	7 (54%)
Arthralgias/myalgias	7 (54%)	0	0	7 (54%)
Mucositis	7 (54%)	0	0	7 (54%)
Skin reactions	7 (54%)	0	0	7 (54%)

Serious Adverse Events

Event	Grade	Attribution
Atrial fibrillation	3	Unrelated
Thrombosis	2	Possible
Pleural effusion	5	Unrelated
Fever	1	Unrelated
Pneumonia	3	Probable
Aspiration pneumonia	3	Unrelated
Lung cancer continues to be the leading cause of cancer-related mortality despite the many advances in the field over the last decade. In the U.S., the estimated incidence of new cases in 2018 is 234,000, with an estimated 154,000 deaths annually [10]. Prior to the immunotherapy and targeted therapy era, 5-year survival rates for patients with advanced non-small cell lung cancer (NSCLC) had reached a plateau with chemotherapy alone [11]. Although the safety and efficacy of this combination in patients with advanced nonsquamous NSCLC had not been studied previously, this regimen appeared to be well tolerated in early-phase trials in patients with sarcoma. We excluded patients who were at a higher risk of complications from bevacizumab such as those with squamous histology, hemoptysis, tumor cavitation, underlying bleeding diathesis, uncontrolled hypertension, history of myocardial infarction or stroke within 6 months, metastases to the gastrointestinal tract, history of diverticulitis, and intra-abdominal surgeries or abscess within 3 months. In addition to minimize the risk of hematologic toxicity noted with docetaxel-gemcitabine combination in previous studies, all patients received growth factor support.

This was a single-institution phase II study of docetaxel-gemcitabine-bevacizumab that was conducted from October 2009 to April 2011 in patients with previously untreated advanced nonsquamous NSCLC. Eligible patients had to have an Eastern Cooperative Oncology Group (ECOG) performance status of 0–1, life expectancy of greater than 3 months, adequate organ function, and measurable disease. Key exclusion criteria included those listed above in addition to untreated brain metastases.

Unfortunately, the study regimen in the dose and schedule that was administered in the trial resulted in unacceptable toxicity. Although previous studies of docetaxel-gemcitabine did not report excessive pulmonary above what would be expected with each agent alone, the combination of docetaxel-gemcitabine and bevacizumab in our study resulted in grade 3–4 pulmonary toxicity in four (30%) of the patients. Of these, two patients developed pneumonitis thought to be related to the study drugs and two developed a pneumonia secondary to the immunosuppression associated with chemotherapy. In addition, two patients had to discontinue bevacizumab prior to progression due to tumor cavitation. Despite the growth factor

Assessment, Analysis, and Discussion

Terminated Reason	Investigator’s Assessment	Study terminated before completion
Toxicity	Poorly tolerated/not feasible	Study terminated before completion

Depressed level of consciousness
- 5 Unrelated

Aspiration pneumonia
- 3 Probable

Anemia and thrombocytopenia
- 3 Unrelated

Pneumonitis
- 4 Possible

Thromboembolism
- 3 Possible

Pneumonitis
- 3 Possible

Pneumonia and atrial fibrillation
- 3 Possible

Viral respiratory infection
- 2 Unrelated
support, 92% of the enrolled patients developed grade 3–4 neutropenia. Because of safety concerns, this trial was terminated early. Although 72.7% of the evaluable patients had objective response to therapy, the 1-year PFS was 8% (in comparison with 14% 1-year PFS noted in the ECOG 4599 study of carboplatin, paclitaxel, and bevacizumab in patients with advanced NSCLC).

When this clinical trial was conducted, the armamentarium of therapeutic options for advanced NSCLC was quite limited. Particularly for patients with inherently resistant disease to platinum-based chemotherapy, which was considered the standard of care at the time, there were no well-defined treatment strategies. Although the regimen studied in this trial appeared to be well tolerated in patients with sarcoma, it is plausible that the higher rates of pulmonary toxicity observed in the trial were a reflection of underlying pulmonary compromise in patients with advanced non-small cell lung cancer. The cases of pneumonitis were sporadic, and no other precipitating or predisposing risk factors were identified for any of the patients.

Since this trial was conducted a decade ago, many alternative therapies included molecular targeted agents and immunotherapy have revolutionized the management of advanced nonsquamous NSCLC. Not only are these newer agents more efficacious, they are less toxic than the toxicity profile noted in this trial. It is therefore unlikely that studying this regimen further would alter current clinical practice.

DISCLOSURES

Nooshin Hashemi Sadraei: Amgen (E); Marc Shapiro: AIM Specialty Health (C/A); Nathan A. Pennell: AstraZeneca, Eli Lilly & Co., Regeneron (C/A), Genentech, AstraZeneca, Cellgene, Merck, Bristol-Meyers Squibb, Incyte, Heat Biologics, Altor, Pfizer (RF).

Pradnya Dinkar Patil indicated no financial relationships.

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (ET) Expert testimony; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/inventor/patent holder; (SAB) Scientific advisory board

REFERENCES

1. Olausson KA, Dunant A, Fouret P et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355:983–991.

2. Liao WY, Ho CC, Tsai TH et al. Combined effect of ERCC1 and ERCC2 polymorphisms on overall survival in non-squamous non-small-cell lung cancer patients treated with first-line pemetrexed/platinum. Lung Cancer 2018;118:90–96.

3. Cobo M, Isla D, Massuti B et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: A phase III trial in non-small-cell lung cancer. J Clin Oncol 2007;25:2747–2754.

4. Rubio JC, Vázquez S, Vázquez F et al. A phase II randomized trial of gemcitabine-docetaxel versus gemcitabine-cisplatin in patients with advanced non-small cell lung carcinoma. Cancer Chemother Pharmacol 2009;64:379–384.

5. Herbst RS, Takeuchi H, Teicher BA. Paclitaxel/carboplatin administration along with antiangiogenic therapy in non-small-cell lung and breast carcinoma models. Cancer Chemother Pharmacol 1998;41:497–504.

6. Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542–2550.

7. Verschraegen CF, Arias-Pulido H, Lee SJ et al. Phase IB study of the combination of docetaxel, gemcitabine, and bevacizumab in patients with advanced or recurrent soft tissue sarcoma: The Axtell regimen. Ann Oncol 2012;23:785–790.

8. Kalmadi S, McNeill G, Davis M et al. Phase II trial of weekly docetaxel and gemcitabine as first-line therapy for patients with advanced non-small cell lung cancer. Med Oncol 2006;23:507–513.

9. Johnson DH, Fehrenbacher L, Novotny WF et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004;22:2184–2191.

10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30.

11. Ellis LM, Eckhardt SG. Integrating molecular oncology into clinical practice: Antiangiogenic therapy. J Clin Oncol 2005;23:937–938.