Learning about Programming and Epistemic Emotions: A Gendered Analysis

Beatriz-Eugenia Grass; Mayela Coto; César-Alberto Collazos-Ordoñez; Patricia Paderewski

Citation: B.-E. Grass, M. Coto, C.-A. Collazos-Ordoñez, P. Paderewski, “Learning about Programming and Epistemic Emotions: A Gendered Analysis,” Revista Facultad de Ingeniería, vol. 29 (54), e12034, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.12034

Received: Agosto 18, 2020; Accepted: Noviembre 3, 2020; Published: Noviembre 4, 2020

Derechos de reproducción: Este es un artículo en acceso abierto distribuido bajo la licencia CC BY

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.
Learning about Programming and Epistemic Emotions: A Gendered Analysis

Beatriz-Eugenia Grass
Mayela Coto
César-Alberto Collazos-Ordoñez
Patricia Paderewski

Abstract
Programming courses often turn into courses with high percentage of desertion and, sometimes, result in a factor that drives students to abandon their careers, even when they are subjects highly relevant in the training of engineers in the areas of computer science, IT, and related careers. These courses demand high cognitive processes, which generate several emotions learning-related that, when taken into account and evaluated, could be used in favor of learning. Programming courses generate negative emotions in female students in a higher proportion than men, which may even lead them to abandon the career, widening the gender gap. In recent years, there has been a growing interest in the role of emotions in academic environments at university level, as well as for knowing the reason for the low participation of women, despite the importance of their role and skills, in computing areas. However, the interest in analyzing the emotions that emerge from students as they learn to program is quite recent. There is not an important number of studies around the emotions of women while they learn to program. The objective of this study is to analyze the behavior -at an emotional level- of students towards different
teaching activities, establishing gender level comparisons, and considering the incorporation of elements of collaboration and gamification to identify differences in the emotions originated by these activities.

Keywords: academic emotions; CS1; emotions; epistemic emotions; programming.

Aprendizaje de la programación y emociones epistémicas: un análisis con perspectiva de género

Resumen

Los cursos de programación se convierten, de manera recurrente, en cursos de alto porcentaje de deserción y, en ocasiones, resultan en un factor que impulsa a los estudiantes a abandonar sus carreras, aun cuando son materias de alta relevancia en la formación de ingenieros en áreas de computación, informática y carreras afines. Estos cursos son, por naturaleza, demandantes de altos procesos cognitivos, por esta razón, generan una variedad de emociones que, tenidas en cuenta y evaluadas, podrían usarse a favor del aprendizaje. Los cursos de programación generan emociones negativas en mayor proporción en estudiantes mujeres que en hombres, incluso, las conducen a abandonar la carrera, lo que hace más amplia la brecha de género. En los últimos años, ha habido un creciente interés en el papel de las emociones en los entornos académicos a nivel universitario; además, se busca conocer la razón de la baja participación de las mujeres (a pesar de la importancia de su rol y habilidades) en áreas de computación. Sin embargo, el interés en analizar las emociones que emergen de los estudiantes mientras aprenden a programar es bastante reciente. No se cuenta con un número importante de estudios respecto a las emociones de las mujeres mientras aprenden a programar. El objetivo de este estudio es analizar el comportamiento -a nivel emocional- de los estudiantes, a partir de diferentes actividades de enseñanza, estableciendo comparaciones a nivel de género, y considerando la incorporación de elementos de colaboración y gamificación para encontrar diferencias en las emociones generadas por estas actividades.

Palabras clave: CS1; emociones; emociones académicas; emociones epistémicas; programación.
Aprendizagem de programação e emoções epistêmicas: uma análise com perspectiva de gênero

Resumo
Os cursos de programação tornam-se, de forma recorrente, cursos com alto índice de evasão e, por vezes, resultam em um fator que leva os alunos ao abandono da carreira, mesmo quando são temas de grande relevância na formação de engenheiros. áreas de computação, informática e carreiras relacionadas. Estes cursos são, por natureza, exigentes de elevados processos cognitivos, por isso geram uma variedade de emoções que, tidas em consideração e avaliadas, podem ser utilizadas a favor da aprendizagem. Os cursos de programação geram emoções negativas em maior proporção nas alunas do que nos homens, podendo inclusive levá-las ao abandono do curso, o que amplia a lacuna de gênero. Nos últimos anos, tem havido um interesse crescente pelo papel das emoções em ambientes acadêmicos de nível universitário; Além disso, busca conhecer o motivo da baixa participação das mulheres (apesar da importância de seu papel e competências) nas áreas de informática. No entanto, o interesse em analisar as emoções que emergem dos alunos ao aprender a programar é bastante recente. Não há um número significativo de estudos sobre as emoções das mulheres ao aprender a programar. O objetivo deste estudo é analisar o comportamento -a nível emocional- dos alunos, a partir de diferentes atividades de ensino, estabelecendo comparações a nível de gênero, e considerando a incorporação de elementos de colaboração e gamificação para encontrar diferenças nas emoções geradas para essas atividades.

Palavras chave: CS1; emoções; emoções acadêmicas; emoções epistêmicas; programação.
I. INTRODUCCIÓN
Los cursos introductorios de programación son incorporados en los planes de estudio de las carreras de informática, computación y afines, desde que estas profesiones aparecieron en la oferta de las Universidades. Estos cursos, son considerados de alta relevancia, pues proporcionan al estudiante el cimiento en la formación y garantizan el ejercicio profesional en tareas de programación [1]. La relevancia de este curso en los planes de estudio, se hace evidente, al evaluar la cantidad de investigaciones relacionadas con la enseñanza de la programación, y que ha sido abordada desde diferentes disciplinas [2-4].

Una de las razones identificadas como causante de los bajos niveles de aprobación de estos cursos, es la complejidad en el contenido de estos cursos, que requiere de los estudiantes unas habilidades fuertes de abstracción y lógica, que en muchas ocasiones no se han desarrollado en la época escolar [5]. Las metodologías y actividades puestas en marcha para la enseñanza de la programación, también son considerados factores que repercuten en el éxito o fracaso en estos cursos [2].

La motivación del estudiante, en muchas ocasiones no se identifica como un elemento que repercute en el éxito o fracaso de un estudiante, sin embargo, algunos estudios han demostrado que un estudiante motivado, encontrará los mecanismos necesarios para culminar su curso de programación con éxito [6]. Un estudiante motivado, con una experiencia emocional positiva, influye de manera directa en la continuidad en estos programas [10-11].

Las emociones que experimentan los estudiantes se identifican como un elemento relevante en el aprendizaje de la programación, pero son un aspecto que no ha sido abordado ampliamente entre los factores que inciden en el éxito de este tipo de cursos [12-13]. Hay un número limitado de estudios que abordan la respuesta emocional de los estudiantes cuando aprenden a programar [14-17]. De un grupo de 29 estudios analizados, únicamente uno de ellos [13], abordó la problemática desde la perspectiva de género, de tal manera que esta variable es un aspecto poco considerado en los diferentes trabajos presentados en la literatura.

En muchas publicaciones, se identifica a las emociones como un elemento protagónico en la decisión de continuidad en los programas de informática,
computación y afines [14]. Esta experiencia emocional, también se considera y cobra mayor relevancia al analizar la participación de las mujeres en las carreras mencionadas [20-21], ya que al género femenino es considerado de baja participación en el sector de computación, informática y afines por los grandes desafíos que genera para las mujeres [17].

Las preguntas de investigación formuladas en este artículo son similares a algunas preguntas de investigación propuestas en otro estudio⁵, pero en este caso las contextualizamos en una universidad colombiana:

1. ¿Cuáles emociones son las que se detectan con mayor frecuencia en los estudiantes de las carreras afines a la computación, mientras aprenden a programar?
2. ¿Qué características tienen las actividades de aprendizaje que generan en mayor medida emociones positivas?, cuáles de ellas generan negativas?
3. ¿Qué diferencias hay en las emociones que reportan mujeres y hombres mientras realizan diferentes actividades de aprendizaje de la programación?

La estructura de este documento está organizada de la siguiente manera: en esta sección se presentan los elementos teóricos tenidos en cuenta para el estudio realizado, la sección II, presenta de manera sucinta el método empleado, posteriormente en la sección III se presentan y analizan los resultados para finalizar con una sección de discusiones del estudio en la sección IV.

A. Emociones

Una emoción se define como un episodio corto e intenso en respuesta a un referente particular [18]. Una emoción se percibe en cada persona de manera específica y es subjetiva [19]. Una emoción adicionalmente está asociada a otros cambios físicos en las personas.

Las emociones que se originan en entornos académicos se conocen como emociones académicas. Pekrun [19] clasifica estas emociones en cuatro grupos: (1) las emociones sociales que se generan a partir de la relación profesor/alumno y el

⁵ Coto, M; Mora S; Quirós D. (forthcoming). The emotional experience of students while learning to program and its effect on their academic performance
aprendizaje en grupo, como la simpatía o la envidia; (2) las emociones temáticas asociadas a diferentes temas del curso; (3) las emociones de logro relacionadas con las actividades que provocan logros o fracasos, tales como la vergüenza cuando no logra hacer una actividad, o el compromiso cuando el aprendizaje se alcanza; y (4) las emociones epistémicas generadas por procesos cognitivos, como la sorpresa hacia un nuevo concepto o la confusión y la frustración ocasionadas por las dificultades.

Las "emociones epistémicas" son un subconjunto de las académicas que se perciben, en la realización de tareas que generan procesos cognitivos [20], estas emociones son: sorpresa, la curiosidad, la excitación, la confusión, la ansiedad, la frustración y el aburrimiento. Para este estudio, se han elegido las emociones epistémicas, al estar estrechamente relacionadas con el aprendizaje de los estudiantes [21].

B. Actividades de aprendizaje de la programación

Las actividades de aprendizaje son aquellas que se llevan a cabo en un aula de clase, para orientar los diferentes temas de un curso. Se llevan cabo actividades tales como, laboratorios de programación, proyectos de aula, exámenes, clases magistrales, entre otras. Algunas de estas actividades han sido diseñadas con componentes novedosos que buscan mejorar la motivación de los estudiantes, tales como elementos de juego [22] y elementos colaborativos, en contextos educativos evidencian resultados positivos para el estudiante. A lo largo de la investigación, se determinó a través de encuestas, que profesores que enseñan los cursos de programación introductorio, realizan actividades semejantes, con el fin de fomentar el aprendizaje en los estudiantes [23].

Para la enseñanza de la programación se identifican actividades como: Laboratorios de programación, proyectos de aula, quices, exámenes, clases magistrales, algunas de ellas con variaciones relacionadas con elementos de gamificación y/o colaboración incorporados [24].
Los profesores coinciden que se enfrentan al desafío de mantener a los estudiantes concentrados y motivados, porque cada vez se pierden la atención más pronto en cada clase, lo que los ha llevado a pensar en nuevas actividades, más innovadoras.

C. Aprendizaje de la programación

Cuando un estudiante toma la decisión de estudiar carreras de informática, computación o similares, la motivación varía de acuerdo a las dificultades con las que se enfrenta y logra solucionar [25]. Algunos investigadores han investigado sobre cómo los estados de ánimo y la motivación afectan en los procesos de aprendizaje de la programación. Algunos autores sostienen que los comportamientos y los estados de ánimo influyen en el aprendizaje de la programación [32-33]. Cuando los estudiantes experimentan fracasos, pérdidas de esta asignatura, desencadenan multitud de reacciones, que afectan su estado emocional de manera negativa [2, 33].

La programación es una actividad altamente cognitiva que exige a los estudiantes el desarrollo de habilidades [28], y de procesos cognitivos de alto nivel [34-35]. Debido a esto, las emociones epistémicas se consideran como las emociones que tienen un mayor impacto en el aprendizaje de la programación, tal y como lo demuestran los estudios realizados en esta área que identifican a la confusión, la frustración, el aburrimiento y el entusiasmo como aquellas que prevalecen [15, 36-38].

D. Género

La brecha de género en las carreras de informática genera preocupación en el ámbito industrial, social y académico. Se dice que la participación de los hombres en la industria del software está por encima del 85% [33]. Por ejemplo, en Colombia, una de cada 40 empresas de software tiene como Director Ejecutivo a una mujer, eso se traduce en un 2,5% en este tipo de roles. Se han investigado muchos factores relacionados con la brecha de género, incluyendo la falta de modelos de roles femeninos, las diferencias en la experiencia previa de programación, la cultura hostil y las tasas de deserción [40-41]. Estos autores han argumentado que aspectos de
la cultura, como el carácter a menudo competitivo de la evaluación en las clases de informática, el fomento de un enfoque obsesivo y socialmente aislado al realizar el trabajo, y el pequeño número de modelos de conducta femeninos, hacen que las estudiantes femeninas se sientan aisladas, lo que puede llevar a tasas de desgaste importantes [35].

Los resultados mostraron que la diferencia de género puede no entrar en juego en absoluto cuando se trata de programación informática. Sin embargo, otros factores como las emociones o las actitudes pueden ser responsables [36]. Si claramente las habilidades para la programación entre hombres y mujeres son muy similares, estudiar las emociones, se constituye un elemento que puede ser tenido en cuenta para promover el éxito de las mujeres en estos roles [37].

Una de las razones de esta brecha está relacionada con las experiencias afectivas de los estudiantes, se ha comprobado que los factores afectivos que influyen en el éxito pueden diferir entre hombres y mujeres [36].

E. Mecanismos para identificar las emociones

Se han identificado mecanismos diferentes para percibir o identificar las emociones [38], estos mecanismos se clasifican desde la perspectiva de participación del usuario evaluado o desde la observación de un tercero, para analizar sus emociones:
- Mediciones de reacciones fisiológicas: Este es un mecanismo que involucra al usuario como fuente primaria, pero la información es proporcionada por un dispositivo que arroja unos valores en relación con las emociones consideradas para el análisis. Esta forma de medir emociones corresponde por ejemplo a las mediciones a partir de diademas para medir la actividad cerebral, dispositivos para medir presión sanguínea, frecuencia cardiaca, entre otros. Son importantes porque arrojan resultados que el usuario no controla, pues son captadas sobre reacciones físicas reales; pero no son muy aceptadas por los usuarios porque los consideran intrusivos y se sienten intimidados con su uso.
- Autoinforme: Es en un formulario, encuesta [20] o entrevista, donde el usuario asigna unos valores relacionados con las emociones que experimentan. En el caso
del formulario, el usuario describe sus emociones en una escala cualitativa o numérica, para no solo tener claridad en que la emoción es experimentada, sino también en qué intensidad se experimenta. Se constituye el mecanismo más usado para reportar las emociones [39], debido a su facilidad de uso, porque los usuarios se sienten menos invadidos en su privacidad, porque son económicos de implementar y de procesar la información a partir de estos.

- Mediciones a partir de la observación de comportamientos: Es un mecanismo, en el que la fuente primaria es un tercero que observa las reacciones emocionales y comportamentales del individuo. Incluyen la observación del comportamiento (por ejemplo, la posición del cuerpo), se observan sus gestos (por ejemplo, las cejas, los labios, la nariz, la boca). Este mecanismo ofrece la ventaja de que los usuarios no saben el momento en que están siendo observados.

II. MÉTODO

Para este estudio, se utilizó el instrumento Epistemically-Related Emotion Scales (EES) [20], del estilo de autoinforme que involucra siete emociones epistémicas (aburrimiento, ansiedad, confusión, excitación, frustración, sorpresa y curiosidad). Es seleccionado porque involucra el conjunto de emociones epistémicas, que son las emociones para este estudio consideradas, al involucrarse en procesos cognitivos de alto nivel, como son considerados los procesos de aprendizaje de la programación. Estas emociones se miden en una escala del 1 al 5, apoyado en una escala de Likert donde 1 se selecciona cuando la emoción no se percibe y 5 cuando se percibe en su más alta valoración.

Se decidió utilizar el mecanismo de auto-informe ya que se buscaba identificar de manera sencilla las emociones que percibían los estudiantes y no generar en el estudiante la percepción de sentirse invadido por otros dispositivos. Los estudiantes reportaron las emociones justo después de realizada la actividad de aprendizaje seleccionada. En total, se realizaron 6 tomas de datos para tres actividades de aprendizaje diferentes (dos proyectos de aula, dos laboratorios de programación y dos laboratorios de programación gamificados), que se explicarán más adelante. El instrumento EES se distribuyó a los estudiantes a través de un formulario de Google...
para los laboratorios de programación, exámenes y proyectos de programación. Para esta investigación, se seleccionaron actividades de diferente naturaleza (Tabla 1), con el fin de evaluar las emociones experimentadas por los estudiantes.

Tabla 1. Actividades de Aprendizaje analizadas

Nombre	Descripción	Lugar Actividad	Calificación	Tiempo de clase	Individual o Grupal
Laboratorio de Programación	Ejercicio para resolver en un laboratorio de computación. Los estudiantes interactúan directamente con el Entorno de Desarrollo	Salón de Clase	SI	En el horario de clase (2 horas)	Individual
Proyecto de Aula	Ejercicio de programación que involucra una mayor complejidad por el alcance del programa.	Casa	SI	Tiempo autónomo de los estudiantes Dos semanas	Grupal (2 estudiantes)
Laboratorio de Programación Gamificado	Ejercicio para resolver en un laboratorio de programación que incorpora elementos de gamificación [40] (tipos de jugador, asignación de puntos y otras recompensas según tipo de jugador).	Salón de Clase	SI	En el horario de clase (2 horas)	Dependiendo del tipo de jugador seleccionado por cada estudiante, clasificación individual o de forma colaborativa

Este estudio investigó las reacciones emocionales epistémicas de los estudiantes a las tareas de programación a partir de una muestra de estudiantes inscritos en un curso de introducción a la programación durante el año 2020 en la Universidad de San Buenaventura Cali-Colombia. La Tabla 2 muestra los participantes en cada semestre, 2019-2 se corresponde con el segundo semestre que va de julio a diciembre de 2019, y el 2020-1 corresponde con el primer semestre que se imparte de enero a junio de 2020. Al ser estudiantes de primer año de las carreras de informática y afines, sus rangos de edad oscilan entre los 17 y los 19 años.

Tabla 2. Participantes en el experimento realizado.

Periodo académico	Total de Estudiantes	Número de Registros
2020-1	48 (11 mujeres, 37 hombres)	96 (22 mujeres, 74 hombres)
2020-2	39 (8 mujeres, 31 hombres)	39 (8 mujeres, 31 hombres)
Total	87 (19 mujeres, 68 hombres)	135 (30 mujeres, 105 hombres)
Para iniciar la toma de los datos, los estudiantes tuvieron que diligenciar un primer formulario que permitía registrar su identificación o código asignado como identificador único en su universidad, su género y a partir de una descripción de los diferentes tipos de jugador, sin hacer alusión a que se clasificarían en un grupo de jugadores, de acuerdo a las categorías establecidas por Bartle, cada estudiante seleccionó la categoría con la que se identificaban de mayor manera.

En total, en ambos períodos, 87 estudiantes distribuidos en dos grupos de programación respondieron a 3 actividades de aprendizaje diferentes (2 laboratorios de programación gamificados, 2 proyectos de aula, 2 laboratorios de programación).

RESULTADOS

En esta sección se presenta un análisis de los datos relacionados con las emociones epistémicas que experimentan los estudiantes en las diferentes actividades de aprendizaje de la programación. La tabla 3 presenta los datos obtenidos para cada tipo de actividad de aprendizaje y los promedios de acuerdo con la escala percibida.

Emociones	Laboratorio de Programación	Proyecto de Aula	Laboratorio de Programación Gamificado
Confusión	3,4	4,3	3,6
Ansiedad	3,1	3,8	3,3
Frustración	3,5	4,0	3,1
Aburrimiento	1,5	2,2	1,6
Sorpresa	3,0	2,9	3,2
Curiosidad	3,5	3,7	4,0
Entusiasmo	3,2	3,3	3,3

En la Tabla 4 se analiza el comportamiento a nivel de emociones, teniendo en cuenta la variable de género. Estas emociones fueron reportadas de manera individual en cada una de las actividades de aprendizaje reportadas.
Tabla 4. Emociones por género y actividad de aprendizaje.

Emociones	Laboratorio de Programación	Proyecto de Aula	Laboratorio de Programación Gamificado			
	Hombres	Mujeres	Hombres	Mujeres	Hombres	Mujeres
Confusión	3,5	3,5	3,7	4,6	3,5	4,5
Ansiedad	3,3	3,7	3,3	4,2	3,2	3,9
Frustración	3,5	4,1	3,4	4,5	3,0	3,7
Aburrimiento	1,7	1,9	1,9	1,5	1,4	1,7
Sorpresa	3,4	2,5	3,6	1,9	3,5	1,9
Curiosidad	3,5	2,7	4,0	3,3	4,0	4,3
Entusiasmo	3,0	2,9	3,8	3,0	3,5	3,1

Se identifican diferencias en las emociones entre hombres y mujeres, por ejemplo, en emociones como la ansiedad. En todas las actividades las mujeres sintieron niveles altos de ansiedad, pero también sintieron mayor curiosidad en todas las actividades.

En general, se debe resaltar que la emoción de aburrimiento fue una emoción que, en términos generales, perciben en rangos negativos (No la sienten o la sienten poco). Las emociones negativas, principalmente para mujeres, se muestran en valores altos (Fuerte y Muy Fuerte).

IV. CONCLUSIONES Y RECOMENDACIONES

Respecto a las preguntas planteadas se logró identificar:

- ¿Cuáles emociones epistémicas son las que se detectan con mayor frecuencia en los estudiantes mientras aprenden a programar?

De forma general las emociones mayormente percibidas en las tres actividades realizadas en este experimento son la ansiedad, frustración, confusión y curiosidad. Tres emociones negativas, una sola emoción positiva.

La confusión es una emoción que se repite en hombres y mujeres en las tres actividades evaluadas. Al analizar los datos totales obtenidos, existen emociones que generan altos valores en la experimentación de la emoción, este es el caso de la confusión. Esta emoción tanto en hombres como en mujeres presenta las tasas más altas, con los valores 4 y 5 experimentados por los estudiantes.
- ¿Qué características tienen las actividades de aprendizaje que generan en mayor medida, emociones epistémicas positivas?

Evidentemente, la actividad que incorpora elementos gamificados, provoca en los estudiantes mayor cantidad de emociones positivas. Las emociones negativas disminuyen su promedio, en relación con las actividades no gamificadas. La actividad gamificada mejoró la valoración de las emociones de curiosidad, sorpresa y entusiasmo. Las actividades involucran retos para los estudiantes, pues obtienen insignias, puntos adicionales, compiten entre ellos; además de generar momentos de colaboración entre los estudiantes, para los casos en los que los estudiantes socializers (categoría de jugador) construyen una solución común y aportan al logro del resultado final: su programa terminado y funcionando.

Las actividades llevadas a cabo que generaron mayores emociones epistémicas negativas, el laboratorio de programación tradicional. Pero también el proyecto de aula, en su momento de sustentación, propició en las estudiantes de género femenino, en su totalidad emociones negativas, mientras que en los hombres una emoción negativa (confusión). Se debe hacer énfasis en que todas las actividades analizadas tienen asociada una calificación para los estudiantes, lo cual, generalmente, trae mayores niveles de ansiedad en los estudiantes.

La confusión, se considera una emoción epistémica negativa que se percibe por hombres y mujeres en sus más altos niveles. Sin embargo, en el proyecto de aula, es percibida en unos niveles superiores, en relación con las otras dos actividades.

El aburrimiento, casi nunca presenta niveles altos de percepción, eso permite analizar que las actividades generan en los estudiantes atención en la realización de estas.

Adicionalmente, la frustración es percibida en el proyecto de aula de uno de los dos grupos analizados mucho más alta que el segundo grupo. Se puede intuir que el abordaje que realiza el profesor en la sustentación puede hacer...
sentir al grupo en general, más frustrado al responder a las preguntas, en relación con el grupo orientado por el otro profesor.

¿Qué diferencias hay en las emociones epistémicas que reportan mujeres y hombres mientras aprenden a programar?

Existen emociones que se perciben de manera diferente entre hombres y mujeres, y que llaman la atención porque el promedio entre el grupo de estudiantes masculinos y femeninos varía entre uno y otro: la ansiedad. La ansiedad es percibida en todas las actividades analizadas en mayor proporción en mujeres, respecto a la emoción percibida en los hombres. La frustración en todas las actividades es más alta para las mujeres en comparación con los resultados para los hombres. Las diferencias entre los promedios de hombres y mujeres son considerables, llegando en casos a superar una unidad de diferencia.

Así mismo, la curiosidad es una emoción altamente percibida, pero en el caso específico del laboratorio de programación gamificado, las mujeres sintieron unos niveles muy altos de esta emoción, permitiendo suponer que estos elementos de gamificación y de colaboración, permiten a las estudiantes sentir emociones positivas para el desarrollo de sus aprendizajes de la programación.

Es importante complementar el presente estudio a partir de la realización de otro tipo de actividades, como por ejemplo los exámenes o pruebas, que según diversos investigadores reportan como actividades generadoras de emociones epistémicas, para poder analizar el comportamiento a nivel emocional de hombres y mujeres.

CONTRIBUCIÓN DE LOS AUTORES

Beatriz-Eugenia Grass: Análisis formal, Investigación, Conceptualización, Escritura–borrador original, Escritura–revisión y edición.

Mayela Coto: Análisis formal, Investigación, Conceptualización, Escritura–borrador original, Escritura–revisión y edición.
César-Alberto Collazos-Ordoñez: Investigación, Escritura–borrador original, Escritura–revisión y edición.

Patricia Paderewski: Investigación, Escritura–borrador original, Escritura–revisión y edición.

REFERENCES

[1] A. Balanskat, K. Engelhardt, *Computing our future Computer programming and coding - Priorities, school curricula and initiatives across Europe*, 2014.

[2] T. Jenkins, J. Davy, “Diversity and motivation in introductory programming,” *Innovation in Teaching and Learning in Information and Computer Sciences*, vol. 1 (1), pp. 1-9, 2015. https://doi.org/10.11120/ital.2002.01010003

[3] S. Wiedenbeck, D. LaBelle, V. Kain, “Factors affecting course outcomes in introductory programming,” in *Proceedings 16th Annual Psychology Programming Interest Group Conference*, 2004.

[4] S. Bergin, R. Reilly, “Programming: factors that influence success,” *ACM SIGCSE Bulletin*, vol. 37 (1), pp. 411-416, 2005. http://doi.acm.org/10.1145/1047124.1047480

[5] Simon, S. Fincher, A. V. Robins, B. Baker, I. Box, Q. Cutts, M. de Raadt, P. Haden, J. Hamer, M. H. Hamilton, R. Lister, M. Petre, K. Sutton, D. Tolhurst, J. Tutty, “Predictors of success in a first programming course,” in *Proceedings of the 8th Australasian Conference on Computing Education*, 2006, pp. 189-196.

[6] L. J. Burton, *Higher education in a changing world*, 2005.

[7] J. Good, J. Rimmer, E. Harris, M. Balaam, “Self-Reporting Emotional Experiences in Computing Lab Sessions: An Emotional Regulation Perspective,” in *Proceedings 23rd Annual Psychology Programming Interest Group Conference*, 2011.

[8] R. Pekrun, T. Goetz, W. Titz, R. P. Perry, “Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research,” *Educational Psychologist*, vol. 37 (2), pp. 91-105, 2002. https://doi.org/10.1207/s15326985ep3702_4

[9] J. W. You, M. Kang, “The role of academic emotions in the relationship between perceived academic control and self-regulated learning in online learning,” *Computers & Education*, vol. 77, pp. 125-133, 2014. https://doi.org/10.1016/j.compedu.2014.04.018

[10] N. Bosch, S. D’Mello, R. Baker, J. Ocumpaugh, V. Shute, M. Ventura, L. Wang, W. Zhao, “Automatic Detection of Learning-Centered Affective States in the Wild,” in *Proceedings of the 20th International Conference on Intelligent User Interfaces*, 2015, pp. 379-388. https://doi.org/10.1145/2678025.2701397

[11] N. Bosch, S. D’Mello, R. Baker, J. Ocumpaugh, V. Shute, M. Ventura, L. Wang, W. Zhao, “Detecting student emotions in computer-enabled classrooms,” in *International Joint Conference on Artificial Intelligence*, 2016, pp. 4125-4529.

[12] N. Bosch, S. D’Mello, “Programming with Your Heart on Your Sleeve: Analyzing the Affective States of Computer Programming Students,” in *International Conference on Artificial Intelligence in Education*, 2013, pp. 908-911. https://doi.org/10.1007/978-3-642-39112-5_143

[13] M. Rodrigo, R. Baker, “Coarse-grained detection of student frustration in an introductory programming course,” in *Proceedings of the fifth international workshop on Computing education research workshop*, 2009, pp. 75-80. https://doi.org/10.1145/1584322.1584332
Learning about Programming and Epistemic Emotions: A Gendered Analysis

[14] A. Lishinski, A. Yadav, R. Enbody, “Students’ emotional reactions to programming projects in introduction to programming: Measurement approach and influence on learning outcomes,” in Proceedings of the ACM Conference on International Computing Education Research, 2017, pp. 30-38.
https://doi.org/10.1145/3105726.3106187

[15] N. Bosch, S. D’Mello, “Sequential Patterns of Affective States of Novice Programmers,” in AIED Workshops, 2013.

[16] S. Katz, D. Allbritton, J. Aronis, C. Wilson, M. Lou Soffa, “Gender, Achievement, and Persistence in an Undergraduate Computer Science Program,” Data base, vol. 37 (4), pp. 42-57.
https://doi.org/10.1111/1185335.1185344

[17] B. D. Jones, C. Ruff, M. C. Paretti, “The impact of engineering identification and stereotypes on undergraduate women’s achievement and persistence in engineering,” Social Psychology of Education, vol. 16, pp. 471-493, 2013.
https://doi.org/10.1007/s11218-013-9222-x

[18] S. Rosas, “The Achievement Emotions Questionnaire-Argentine (AEQ-AR): internal and external validity, reliability, gender differences and norm-referenced interpretation of test scores,” Revista Evaluar, vol. 15 (1), pp. 41-74, 2015.

[19] E. A. Linnenbrink, “Emotion research in education: Theoretical and methodological perspectives on the integration of affect, motivation, and cognition,” Educational Psychology Review, vol. 18 (4), pp. 307-314, 2006.
https://doi.org/10.1007/s10648-006-9028-x

[20] R. Pekrun, Emotions and learning, International Bureau of Education-UNESCO, 2014.

[21] R. Pekrun, E. Vogl, K. R. Muis, G. M. Sinatra, “Measuring emotions during epistemic activities: the Epistemically-Related Emotion Scales,” Cognition and Emotion, vol. 31 (6), pp. 1268-1276, 2017.
https://doi.org/10.1080/02699931.2016.1204989

[22] S. D’Mello, A. Graesser, “Dynamics of Affective States during Complex Learning,” Learning and Instruction, vol. 22 (2), pp. 145-157, 2012.
https://doi.org/10.1016/j.learninstruc.2011.10.001

[23] T. J. Tiam-Lee, K. Sumi, “Adaptive feedback based on student emotion in a system for programming practice,” in International Conference on Intelligent Tutoring Systems, 2018, pp. 243-255.
https://doi.org/10.1007/978-3-319-91464-0_24

[24] F. Díaz Barriga, “Cognición situada y estrategias para el aprendizaje significativo,” Revista Electrónica de Educación Investigativa, vol. 5 (2), pp. 1-13, 2003.

[25] C. Martin, J. Hughes, J. Richards, “Learning Experiences in Programming: The Motivating Effect of a Physical Interface,” in Proceedings of the 9th International Conference on Computer Supported Education, 2017, pp. 162-172.
https://doi.org/10.5220/0006375801620172

[26] J. Chetty, D. Van Der Westhuizen, “’I hate programming’ and Other Oscillating Emotions Experienced by Novice Students Learning Computer Programming,” in World Conference on Educational Media and Technology, 2013, pp. 1889-1894.

[27] A. Goold, R. Rimmer, “Factors affecting performance in first-year computing,” ACM SIGCSE Bulletin, vol. 32 (2), pp. 39-43, 2000.
https://doi.org/10.1145/355354.355369

[28] P. Kinnunen, L. Malmi, “Problems in Problem-Based Learning-Experiences, Analysis and Lessons Learned on an Introductory Programming Course,” Informatics in Education, vol. 4 (2), pp. 193-214, 2005.
https://doi.org/10.15388/infedu.2005.11

[29] Y. Bosse, M. A. Gerosa, “Why is programming so difficult to learn?,” in ACM SIGSOFT Software Engineering Notes, 2017.
https://doi.org/10.1145/3011286.3011301
[30] I. Milne, G. Rowe, “Difficulties in learning and teaching programming - Views of students and tutors,” *Education and Information Technologies*, vol 7, pp. 55-66, 2002. https://doi.org/10.1023/A:1015362608943

[31] P. P. Kinnunen, B. Simon, “Experiencing programming assignments in CS1: The emotional toll,” in *Proceedings of the Sixth international workshop on Computing education research*, 2010, pp. 77-86. https://doi.org/10.1145/1839594.1839609

[32] S. Hyrynsalmi, S. Hyrynsalmi, “What motivates adult age women to make a career change to the software industry?,” in *Proceedings IEEE International Conference on Engineering, Technology and Innovation*, 2019, pp. 1-8. https://doi.org/10.1109/ICE.2019.8792630

[33] S. Beyer, “Why are women underrepresented in Computer Science? Gender differences in stereotypes, self-efficacy, values, and interests and predictors of future CS course-taking and grades,” *Computer Science Education*, vol. 24 (2-3), pp. 153-192, 2014. https://doi.org/10.1080/08993408.2014.963363

[34] B. C. Wilson, “A Study of Factors Promoting Success in Computer Science Including Gender Differences,” *Computer Science Education*, vol. 12 (1-2), pp. 141-164, 2003. https://doi.org/10.1076/csed.12.1.141.8211

[35] S. Olalekan, “Computer Programming Skill and Gender Difference: An Empirical Study,” *American Journal Scientific and Industrial Research*, vol. 7 (1), pp. 1-6, 2015.

[36] D. Stoilescu, G. Egodawatte, “Gender differences in the use of computers, programming, and peer interactions in computer science classrooms,” *Computer Science Education*, vol. 20 (4), pp. 283-300, 2010. https://doi.org/10.1080/08993408.2010.527691

[37] U. Kaplan, T. Tivnan, “Multiplicity of Emotions in Moral Judgment and Motivation,” *Ethics & Behavior*, vol. 24 (6), pp. 421-433, 2014. https://doi.org/10.1080/10508422.2014.888517

[38] C. A. Staley, C. Ford, C. Andrew Staley, C. Ford, “Analyzing student coding practices using fine-grained edits,” in *ASEE Annual Conference & Exposition*, 2015. https://doi.org/10.18260/p.23556

[39] R. Z. Cabada, M. L. B. Estrada, F. G. Hernandez, R. O. Bustillos, “An affective learning environment for Java,” in *IEEE 16th International Conference on Advanced Learning Technologies (ICALT)*, 2016, pp. 363-365. https://doi.org/10.1109/ICALT.2016.74

[40] R. A. Bartle, *Players Who Suit MUDs*, 1999. https://mud.co.uk/richard/hcds.htm