Identification of Nonlinear Systems From the Knowledge Around Different Operating Conditions: A Feed-Forward Multi-Layer ANN Based Approach

Sayan Saha1, Saptarshi Das2, Anish Acharya1
1. Department of Instrumentation and Electronics Engineering, Jadavpur University, Salt-Lake Campus, LB-8, Sector 3, Kolkata-700098, India.
2. Department of Power Engineering, Jadavpur University, Salt-Lake Campus, LB-8, Sector 3, Kolkata-700098, India.
Email: saptarshi@pe.jusl.ac.in, s.das@soton.ac.uk

Abstract—The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.

Keywords—Artificial Neural Network (ANN); nuclear reactor; AC servo position control; nonlinear system identification

I. INTRODUCTION

Mathematical modeling of real life processes has got great importance for better understanding of the system’s underlying physics and to predict or simulate its dynamical behavior. Modeling of a physical system can be done from the knowledge of system’s excitation and corresponding response which is commonly known as system identification in the control engineering community [1]. It is fact that most of the physical systems are nonlinear though for controller design problems linear model development has been the most popular means. Contemporary researchers have given a brief overview of various nonlinear system identification techniques including neuro-fuzzy approaches [2]-[4]. A system can be identified both on the basis of polynomial based static model approach and regression based dynamic model approach [2]. However, we are interested in deriving the dynamic model instead of the static one (by means of lookup table or curve-fitting techniques) since the dynamic model can be written in terms of difference equation or differential equation in discrete or continuous time respectively. Though for most real systems, the responses are nonlinear functions of the input excitations, such system can be modeled accurately by a linear model in most cases. However, for the cases where the governing equation of the physical phenomenon is inherently nonlinear or the linearized model is not accurate, nonlinear system modeling is preferred. The classical methods used for identifying a dynamic model of a nonlinear system are Nonlinear Auto Regressive (NARX) models and Hammerstein-Wiener models [1]. NARX models use a finite number of previous and present input values and past output values to predict the present output of the system. Hammerstein-Wiener class of models is a series combination of static nonlinear blocks (one on each side of the linear block or only on one side of it), which captures the inherent nonlinearity of the system and a dynamic linear block to capture the system’s dynamics. A more recent approach is to use Adaptive Neuro-Fuzzy Inference System (ANFIS), where the fuzzy inference rules are tuned with a neural network model to fit the given set of input and output data [5]. Another neuro-fuzzy system called Local Linear Model Tree (LOLIMOT) which is a type of Takagi-Sugeno-Kang neuro-fuzzy algorithm, is basically an adaptive network and provides robust learning capabilities. This algorithm divides the input space into local linear models which has a higher performance and needs lower neuron count compared to normal neural networks in terms of learning a mapping of the input space.

One major shortcoming of the methods, considered above is that none of them is capable of modeling the real system based on the information about its operating points. If we have a nonlinear differential equation characterizing a dynamical system and knowledge about different operating points of the system, then a linearized process model of the system can be obtained by expanding the Taylor Series of the governing nonlinear differential equation about each of these operating points. However, the obtained models would differ significantly if different operating points are used for the series expansion. Instead, here the proposed method obtains a single nonlinear dynamical model of the system, which replicates the system accurately, capturing its nonlinearity by incorporating the information around these operating points. An Artificial Neural Network, trained by updating its weights interconnecting different neurons, is used as a single nonlinear model of the original system using available information around different operating points i.e. the local linear behaviors.

To demonstrate the efficacy of the proposed method two inherently nonlinear systems have been considered, the nuclear
Artificial Neural Network, consisting of a number of interconnected artificial neurons with linear or non-linear transfer (activation) functions is a tool that operates by mimicking the neural structure of the human brain. It is capable of capturing and predicting non-linear behavior of a system. ANNs have been widely used in the field of control systems for the purpose of system identification, nonlinear modeling, gain-adaptation etc. [9]-[10]. Other ANN based applications like identification in noisy environment [11], prediction [12] and controller parameter scheduling [13] have also been popular.

II. BASICS OF THE FEED-FORWARD MULTI-LAYER ARTIFICIAL NEURAL NETWORK

In case the neuron j is in the first hidden layer, set $y_j(n) = x_j(n)$, the j^{th} element of the input vector $x(n)$. If the neuron is in the output layer then set $y_j(n) = o_j(n)$, the j^{th} element of the obtained output vector $o(n)$. The error signal $e_j(n)$ is the difference of the desired response and the obtained response. Synaptic weights of the network in layer l are then updated in the backward pass as:

$$w_{ji}(n + 1) = w_{ji}(n) + \alpha [w_{ji}(n - 1)] + \eta \delta_j(n) y_j(n - 1),$$

where, η is the learning rate parameter and α is the momentum constant of the algorithm. After completion of training in this way the weights are fixed and the network can now be used to
predict accurately the output corresponding to any unknown input value provided it is within the range of the input values used to train the network.

For the nuclear reactor power level monitoring system, the inputs to the multilayer feed-forward neural network are the instantaneous position of the control rod (in fraction of the full length), time elapsed (in seconds), initial power (in percentage), and percentage of rod drop (30% or 50%) as in [15] respectively. The output of the system is the instantaneous power of the nuclear reactor. Similarly the inputs to the neural network predicting the behavior of the AC servo motor position control system are the time elapsed (in seconds), acceleration, velocity and output is the instantaneous position.

III. TARGET APPLICATIONS WITH THE PROPOSED NONLINEAR IDENTIFICATION METHODOLOGY

A. Nuclear Reactor Power Level Monitoring System

For nonlinear system identification, a nuclear reactor is visualized as a system with control rod position (fraction of total drop) as input and the global power (in percentage of maximum power produced) as the output. The identification is based on data obtained from operating Indian PHWRs provided by Nuclear Power Corporation of India Ltd. (NPCIL) as also studied in Das et al. [15]. The data at different step-back levels is provided for 14 seconds with 0.1 second of sampling time. Graphical representation of the data is shown in Fig. 2 for 30% and 50% rod drop cases with different initial powers i.e. 100%, 90%, 80% and 70%. The dynamics of nuclear reactors, governed by nonlinear point kinetic equation is thus heavily dependent on the initial value of the state variables (operating reactor power) and the external excitation (negative reactivity or equivalent control rod worth) [16]. Basically, ANN has been employed here to identify the reactor from the 30% and 50% rod-drop data while the reactor is operating at various power levels.

In the servo drive there are three connectors viz. CN1, CN2 and CN3. CN1 is the input/output connector and is used to connect the external controller to the drive. This provides interfacing for analog speed and torque command signal, input pulse and reference voltage signal. CN2 is encoder connector and is used to connect integrated servomotor incremental encoder to drive input/output. CN3 is communication connector and is used to connect host controller via a serial communication cable. The drive used for experiment is comprised of Analog to Digital Converter (ADC), Digital to Analog Converter (DAC), control power, regenerative resistors, and protection circuit and display unit.

The Servo drive also has rectifier, dc link, inverter and Master Control Unit (MCU) that controls the speed, position and torque (current). In servo drive, rectification of ac signal is performed by converter and dc link. The dc link is used to remove the ripple from the converted signal. This rectified signal is then fed to the inverter to give controlled ac signal to drive the motor. Normally the encoder of servomotor provides feedback signal (i.e. position, speed and torque) to the position control, speed control and current control section. These control sections are monitored by MCU and results in the gating signal. This gating signal is used to drive the IGBT switch of the inverter and thus precise motion control of ac servo motor is attained. Advantech PCI-1220 Common Motion Driver has been used to control the servo system in the present case. Visual C++ code has been used for interfacing hardware with the control card to control the position of AC servo motor. The unit used for angular position, speed and acceleration is pulse per unit (ppu), ppu/s and ppu/s2 respectively.

Data was collected for different velocity profiles with given set point i.e. with predefined position command. A customized C++ function was used to interface the PC based data acquisition system with the servo motor and record 5000 samples in 5 seconds. Data was gathered for two different sets of acceleration each associated with nine different velocities. As shown in Fig. 4-5, we get truncated ramp type position

![Figure 2. Power transients and rod drop data used for reactor modeling.](image)

![Figure 3. Experimental set-up of the servo motor position control system.](image)

![Figure 4. Power transients and rod drop data used for reactor modeling.](image)

![Figure 5. Experimental set-up of the servo motor position control system.](image)
curve for an acceleration of 5×10^6 ppu/s2, while for acceleration 1×10^6 ppu/s2 we have an “S”-shaped curve. This change in the nature of position curve is due to fact that for high acceleration, the rate of increase in velocity is 5 times as compared to that at low acceleration. So the motor achieved its final velocity in much less time in case of operating at high acceleration and since integrating speed gives position so we get a truncated ramp in this case.

Similar to the control rod to power model development of nuclear reactor, in this case a feed-forward multilayer ANN needs to be trained that maximally describe the nonlinear behavior of the ac servo position control system for high and low acceleration and different velocities, while producing the position as output. In both the target applications only the value of each sample could have been fed to train the neural networks. Since, dynamics of physical systems can not solely be described by the values at each sampling instant without the knowledge of its sampling time; the time elapsed (sampled) while recording the input-output system data has also been taken as another input to the multi-layer feed-forward ANN for improved identification/prediction performance.

IV. RESULTS AND DISCUSSIONS

Prediction was done by using a number of different neural network architectures differing in number of hidden layers and number of neurons in each layer. For each configuration the prediction was done for 20 independent runs. Tables I-II
describe the root mean square values of errors of those network architectures and their standard deviation in predicting the system responses respectively. To check the consistency of each ANN configurations for capturing the system’s dynamics as an input-output relationship, the RMSE of 20 independent runs has been chosen as the performance measure. This is justified from the fact that often large size multilayer ANN accurately establishes arbitrary nonlinear relation between any input-output data [7]-[8], but they might not show consistency in the mapping for different initial guesses of the Levenberg-Marquardt back-propagation algorithm since it is a gradient based optimization algorithm and thus often gets trapped in local minima. Hence there is always a trade-off between large size of the ANN structure and its average prediction accuracy.

TABLE II. TRAINING PERFORMANCE FOR VARIOUS ANN CONFIGURATIONS FOR THE IDENTIFICATION OF AC SERVO-MOTOR POSITION CONTROL SYSTEM FOR 20 INDEPENDENT RUNS

Number of layers	Number of neurons in each hidden layer	Activation function	Mean of RMSE	Standard Deviation of RMSE
1	5	tansig	0.0218	0.007
		logsig	0.0233	0.0081
	10	tansig	0.0106	0.0044
		logsig	0.0117	0.0044
	15	tansig	0.0089	0.0049
		logsig	0.0068	0.002
	20	tansig	0.0071	0.0026
		logsig	0.0065	0.0021
	25	tansig	0.0056	0.0018
		logsig	0.0056	0.0026

Figure 6. ANN fitting performance for nuclear reactor power level control.

Figure 7. ANN fitting performance for AC servo position control system.

Figures 6-7 shows that the neural networks were able to faithfully predict the system responses of both the nuclear reactor and the AC servo motor around all the operating points. From Figures 8-9 it is quite clear that consistency of neural networks used is better for single hidden layer architecture than two hidden layer for both nuclear reactor and AC servo motor system which is also revealed from the statistical performance measures like mean and standard deviation of the RMSE etc.

From Table I it is evident that the neural network with a single hidden layer consisting of 15 neurons in that layer with hyperbolic tangent as the activation function performs best in predicting the system behavior for the nuclear reactor both in terms of mean and standard deviation of root mean square error for 20 independent runs. For the AC servo motor system (Table II), the neural network with two hidden layers consisting of 15 neurons in each layer with logarithmic sigmoid and hyperbolic sigmoid as the activation functions in the first and second hidden layer respectively predicts the system response most accurately in view of mean of root mean square error. Standard deviation for this particular network architecture is also quite small. Therefore, it can be concluded from the simulation results that for similar nonlinear system identification problems using the local linear behaviors, the optimum configuration of multi-layer feed-forward ANN, representing the system’s original nonlinear dynamical behavior, should be judged using
the average RMSE. Also, the respective optimum configuration depends on system’s complexity and can’t be chosen a priori.

Simulation results indicate that the proposed ANN based system identification for control or signal processing purposes. This provides an insight into designing the best nonlinear systems. Rigorous parametric study has been done to input-output mapping from the local linear data for such system identification methodology can successfully establish nuclear reactor and an AC servo position control system.

Rigorous parametric study has been done to input-output mapping from the local linear data for such system identification methodology can successfully establish nuclear reactor and an AC servo position control system.

Figure 8. Statistical performance analysis of ANN based identification of nuclear reactor under step-back.

Figure 9. Statistical performance analysis of ANN based identification of AC servo position control system.

V. CONCLUSION

A feed-forward neural network based system identification has been carried out from local linear information at different operating points for two practical non-linear systems i.e. a nuclear reactor and an AC servo position control system. Simulation results indicate that the proposed ANN based system identification methodology can successfully establish input-output mapping from the local linear data for such nonlinear systems. Rigorous parametric study has been done to find the best fit ANN architecture for the two target applications. This provides an insight into designing the best neural network architecture for such nonlinear systems and might provide directions to the operators utilizing nonlinear system identification for control or signal processing purposes.

REFERENCES

[1] Lennart Ljung, “System identification: theory for the user,” Prentice-Hall, Upper Saddle River, 1999.

[2] Oliver Nelles, “Nonlinear system identification: from classical approaches to neural networks and fuzzy models”, Springer-Verlag, 2001.

[3] Jonas Sjoberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-Yves Glorennec, Hakan Hjalmarsson and Anatoli Juditsky, “Nonlinear black-box modeling in system identification: a unified overview”, Automatica, vol. 31, no. 12, pp. 1909-1934, 1995.

[4] Anatoli Juditsky, Hakan Hjalmarsson, Albert Benveniste, Bernard Delyon, Lennart Ljung, Jonas Sjoberg and Qinghua Zhang, “Nonlinear black-box models in system identification: mathematical foundations”, Automatica, vol. 31, no. 12, pp. 1725-1750, 1995.

[5] Zhixiang Hou, Quntai Shen, and Heqng Li, “Nonlinear system identification based on ANFIS”, Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, vol. 1, pp. 510-512, Dec. 2003.

[6] Hassan K. Khalil, “Nonlinear systems”, Prentice Hall, Upper Saddle River, 1996.

[7] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Universal approximation of an unknown mapping and its derivatives using feedforward networks”, Neural Networks, vol. 3, no. 5, pp. 551-560, 1990.

[8] Halbert White, “Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings”, Neural Networks, vol. 3, no. 5, pp. 535-549, 1990.

[9] K.S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks”, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27, March 1990.

[10] K.J. Hunt, D. Starbaro, R. Zbikowski, and P.J. Gawthrop, “Neural networks for control systems - a survey”, Automatica, vol. 28, no. 6, pp. 1083-1112, Nov. 1992.

[12] Basudev Majumder, Sayan Saha, Saptarshi Das, Indranil Pan, and Amitava Gupta, “Prediction of power signal in nuclear reactors with neural network based intelligent predictors in presence of 1/F type sensor noise”, Advanced Material Research, vol. 403-408, pp. 4512-4521, 2012.

[13] Saptarshi Das, Sayan Saha, Ayan Mukherjee, Indranil Pan, and Amitava Gupta, “Adaptive gain and order scheduling of optimal fractional order PID controllers with radial basis function neural-network”, Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011, art. no. 5979047, July 2011, Coimbatore.

[14] Venu G. Gadisse and Ganesh K. Venayagamoorthy, “Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks”, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS ’03, pp. 110-117, April 2003.

[15] Saptarshi Das, Shantanu Das, and Amitava Gupta, “Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PTD controller”, IEEE Transactions on Nuclear Science, vol. 58, no. 5, part 2, pp. 2431-2441, Oct. 2011.

[16] Saptarshi Das, Indranil Pan, Basudev Majumder, Shantanu Das, and Amitava Gupta, “Control of nuclear reactor power with thermal-hydraulic effects via fuzzy PTD controllers”, Proceeding of the 2011 International Conference on Communication and Industrial Application, ICCIA 2011, art. no. 6146646, Dec. 2011, Kharagpur.

[17] Saptarshi Das, Abhishek Kumar, Indranil Pan, Anish Acharya, Shantanu Das, and Amitava Gupta, “Least square and instrumental variable system identification of AC servo position control system with fractional Gaussian noise”, Proceeding of the 2011 International Conference on Energy, Automation and Signal, ICEAS - 2011, vol. art. no. 6147165 , pp. 545-550, Dec. 2011, Bhubaneswar.