Radio & X-ray detections of GX 339–4 in quiescence using MeerKAT and Swift

E. Tremou,1,⋆ S. Corbel,1,2 R.P. Fender,3,4 P.A. Woudt,4 J.C.A. Miller-Jones,5 S.E. Motta,3 I. Heywood,3,6 R. P. Armstrong,3,4,7 P. Groot,4,8,9 A. Horesh,10 A. J. van der Horst,11,12 E. Koerding,9 K. P. Mooley,13,14,15 A. Rowlinson,16,17 and R. A. M. J. Wijers16

1 AIM/CEA Paris-Saclay, Université Paris Diderot, CNRS, F-91191 Gif-sur-Yvette, France
2 Station de Radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS, Univ. Orléans, 18330 Nançay, France
3 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
4 Inter-University Institute for Data-Intensive Astronomy, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
5 International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
6 Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
7 South African Radio Astronomy Observatory, 2 Fir Street, Black River Park, Observatory, Cape Town 7925, South Africa
8 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
9 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
10 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
11 Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052, USA
12 Astronomy, Physics and Statistics Institute of Sciences (APSIS), 725 21st Street NW, Washington, DC 20052, USA
13 Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
14 National Radio Astronomy Observatory, Socorro, NM 87801, USA
15 Caltech, 1200 E. California Blvd. MC 249-17, Pasadena, CA 91125, USA
16 Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam, The Netherlands
17 Netherlands Institute for Radio Astronomy (ASTRON), Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands

ABSTRACT
The radio:X-ray correlation that characterizes accreting black holes at all mass scales - from stellar mass black holes in binary systems to super-massive black holes powering Active Galactic Nuclei - is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows - or jets - in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary GX 339–4 in quiescence using the MeerKAT radio telescope and Swift X-ray Telescope instrument on board the Neil Gehrels Swift Observatory, probing the lower end of the radio:X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system.

Key words: radio continuum: transients – X-rays: binaries

1 INTRODUCTION

X-ray binaries (XRBs) are binary systems comprised of a compact stellar remnant (a black hole or a neutron star) and a companion star with active mass accretion onto the stellar remnant. The presence of the collapsed star is revealed...
by X-ray and radio activity whose (relative and absolute) strength depends on the accretion rate onto the compact object and the state of the accretion disk that forms around the compact object. In low-mass XRBs, the accretion from a low mass donor star occurs through Roche-lobe overflow: matter streams from the companion star to the compact one, forming an accretion disc that redistributes angular momentum and emits copious radiation peaking in the X-rays. The quiescent state is interrupted by occasional outbursts, active phases that can last from weeks to years, during which the source’s X-ray luminosity can reach or even cross the Eddington limit, \(L_{\text{Edd}} \) (King 2000). The accretion rate and luminosity of XRBs, and their X-ray spectral and fast-time-variability properties, change dramatically as they go through the quiescence/outburst cycle (Remillard & McClintock 2006).

While an optically thick, geometrically thin accretion disk (thermal emission) dominates the X-ray emission at high accretion rates, non-thermal radiation from a radiatively inefficient accretion flow located in the inner regions of the accretion disk dominates at lower rates (Yuan & Narayan 2014). The radiatively inefficient accretion flow is believed to be linked to the generation of compact jets, which emit synchrotron radiation, with a peak luminosity in the radio regime (Corbel et al. 2000; Fender 2001). Such jets appear to dominate the energetics of the system at low accretion rates (Fender et al. 2003), and may even be responsible for part of the X-ray emission (Markoff et al. 2003; Markoff & Nowak 2004) during the hard states. As a consequence, the radio and X-ray emission at low accretion rates are tightly correlated (e.g: Hannikainen et al. 1998; Corbel et al. 2000, 2003, 2013; Gallo et al. 2003b, 2012, 2014; Coriat et al. 2011; Tetarenko et al. 2016), and the radio:X-ray correlation is one of the key sources in the radio:X-ray correlation, as it is currently the system featuring the best simultaneous X-ray and radio data-sets covering several outbursts (Corbel et al. 2013). Here we present only the detection in quiescence.

2 OBSERVATIONS

As part of the large survey project ThunderKAT (Fender et al. 2017), we are studying a large number of radio transients, including many XRBs, in the image-domain. The field of the XRB GX 339–4 is observed weekly since September 2018 with the full MeerKAT (Meer Karoo Array Telescope; Jonas 2009) array. A dedicated Neil Gehrels Swift Observatory (hereafter referred to as Swift; Gehrels et al. 2004) monitoring program supports these observations, providing weekly X-ray measurements.

2.1 MeerKAT radio observations

The observations discussed here were taken between April 2018, when the first ThunderKAT data were obtained using the full MeerKAT array, and November 2018, when the quiescent phase of the source ended with an outburst. The MeerKAT radio telescope is located in the Karoo desert in South Africa and comprises 64 antennas, 13.5 meters diameter each, with a maximum baseline of 8 km. Observations were made using the L-band (900-1670 MHz) receiver, split into 4096 frequency channels spanning 856 MHz centered at 1284 MHz. Observations typically alternated between the target and phase calibrator, while a bandpass and flux calibrator was observed at the beginning of the observing block. All observations were obtained in full polarization mode. The data were calibrated following the standard procedures with the Common Astronomy Software Application (CASA; McMullin et al. 2007). Imaging, self-calibration and direction-dependent calibration of the data were carried out with the new wide-band, wide-field imager, DDFacet (Tasse et al. 2018). For details, see section 2, Driessen et al. (2020).

2.2 Swift X-ray observations

With the aim of studying the X-ray and radio correlation, we used available data taken by the Swift XRT instrument (Burrows et al. 2000). For our analysis, we include measurements made from September 2018 through November 2018 where the source was in the quiescent state. We used eight observations from XRT in photon counting (PC) mode that are close in time to our radio observations. The counts range
between 4-17 per observation. Photon pile-up is negligible with such low photon count rates.

We used the output of the standard pipeline processing and we analyzed the data using the XSPEC software package (Arnaud 1996). We fit the energy spectra with a power-law model accounting for interstellar absorption and we applied Cash statistics to obtain the X-ray flux from the combined and the individual spectra. We fixed the column density to \(N_H = 6 \times 10^{21} \text{cm}^{-2} \) (Zdziarski et al. 2004; Cadolle Bel et al. 2011; Corbel et al. 2013) to obtain reliable fit and to constrain the flux and the photon index \(\Gamma \) for the combined spectra. The resulted photon index \(\Gamma = 2.2 \) was additionally fixed for the individual spectra fits. All measurement IDs and the obtained fluxes are presented in Table 1.

3 RESULTS

3.1 Detection in quiescence

We started a weekly monitoring of the black hole XRB GX 339–4 at the end of its 2018 outburst. We obtained in total 13 epochs of the GX 339–4 field with MeerKAT (Table 1). The source was not detected in any of the individual epochs due to its low flux density. We concatenated the individual epochs in the uv-plane and we obtained an image with a rms background noise level of 11 \(\mu \text{Jy beam}^{-1} \). Owing to the MeerKAT sensitivity and the visibility stacking technique, we obtained a solid detection of the source at 62 \(\mu \text{Jy beam}^{-1} \) during its quiescent state by combining 13 epochs, for a total integration time of ~5 hours (Fig. 1).

Figure 1 shows the 3\(\sigma \) upper limits in red of the individual MeerKAT observations while in the blue dashed line, we plot the detection level of the stacked image. In the top panel, we plot the fluxes that were obtained from the quasi-simultaneous observations with the Swift/XRT instrument (3-9 keV). The source was also detected in the (3-9 keV) in-
3.2 Radio:X-ray Correlation

Simultaneous radio and X-ray observations of black hole XRBs in quiescence have successfully detected the targeted sources only for three low mass XRBs, namely V404 Cyg (Gallo et al. 2005; Hynes et al. 2009), A0620-00 (Gallo et al. 2006), and XTE J1118+480 (Gallo et al. 2014). They revealed a ratio of $L_x/L_{Edd} \leq 10^{-8.5}$, while one high-mass XRB, MWC 656 (Ribó et al. 2017) shows a ratio of $L_x/L_{Edd} \sim 10^{-9}$. Past deep ATCA (Australia Telescope Compact Array; Frater et al. 1992) observations revealed only a marginal detection of GX 339–4 at 5 GHz with a flux density of $73 \pm 16 \, \mu$Jy showing a negative spectral index, $\alpha = -0.6$ (Corbel et al. 2013). Our current measurements are consistent with the values from Corbel et al. (2013), denoting the true level in quiescence. Although the radio:X-ray correlation seems to continue even in the quiescent state (Plotkin et al. 2017), some hints of changes in the nature of the X-ray emission have been observed at low luminosities ($L_x/L_{Edd} \leq 10^{-5}$, Gallo et al. 2007; Plotkin et al. 2015). Observations at very low accretion rates are therefore key to determine the properties of the faint jets observed in these regimes, and to constrain the still poorly understood physical processes underlying their generation.

In Figure 2, we place our quasi-simultaneous radio and X-ray measurements from this study on the L_x versus L_R plane. In order to compare our results with the population of the quiescent/hard state black holes we convert the MeerKAT radio flux into radio luminosity at 5 GHz, assuming a distance of 8 kpc and a flat spectral index for consistency with objects at hard state. Assuming the same distance, we used the Swift/XRT spectra fitting to obtain the unabsorbed X-ray flux (1-10 keV) and we converted it into X-ray luminosity (1-10 keV). Our data points (green and purple) probe the lower part of the correlation while the blue and orange points show the previous extensive study of GX 339–4 during its past outburst-quiescence cycles (Corbel et al. 2013). Green arrows show the upper limits obtained by every individual observation reported in this work, while the purple point indicates the level that we obtain from the concatenated image from MeerKAT in radio and Swift/XRT in X-rays. The gray dashed line represents the best fit for black holes with a function $L_R \propto L_X^{0.61\pm0.01}$ (Gallo et al. 2006), which is consistent with the fit from the GX 339–4 data presented in Corbel et al. (2013) using a higher radio frequency (9 GHz) than the one presented in this work (1.28 GHz). However, in the case of a flat radio spectrum the results do not vary.

4 DISCUSSION & CONCLUSIONS

We have presented an X-ray and a radio analysis of the black hole XRB GX 339–4 in quiescence using observations from Swift/XRT and MeerKAT. The source was detected in this state in both X-rays and radio. In order to improve our sensitivity, we concatenated data from several epochs from Swift/XRT and from MeerKAT, and we detected the source at the level of $1.6 \times 10^{13} \, \text{erg cm}^{-2} \, \text{s}^{-1}$ and $62 \, \mu$Jy beam$^{-1}$, respectively.

Sampling the low-luminosity end of the radio:X-ray correlation, we probe low Eddington accretion rates of XRBs at the low X-ray luminosity quiescent level of the order of $10^{33} \, \text{erg s}^{-1}$. The radio:X-ray correlation of $L_x \propto L_x^{0.62\pm0.01}$ in GX 339–4 has been well constrained for the brightest hard states by Corbel et al. (2013) using measurements covering ~ 15 years. Our measurements confirm that the same correlation seems to continue with no break down to low luminosities, where we detect GX 339–4, which is characterized by a soft X-ray spectrum. While the binary system is going towards quiescence from the hard state, the X-ray spectral shape becomes softer until it reaches a constant shape ($\Gamma \sim 2.1$, Corbel et al. 2006; 2008; Plotkin et al. 2013, 2017). Our fitting of the combined Swift/XRT spectrum constrains the photon index Γ value which is consistent with the soft X-ray spectra. The soft X-ray spectra favor a mechanism where in the inner regions of the accretion disk, radiatively inefficient outflows are likely to develop within a geometrically thick and hot area.

The slope of the radio:X-ray correlation for GX 339–4 is similar to that of the well studied binary source V404 Cyg, which has not shown any evidence that a synchrotron-cooled jet could dominate the X-ray emission (Plotkin et al. 2017). On the other hand, synchrotron self-Compton (SSC) processes from a radiatively cooled jet or a hot accretion flow may be responsible for generating the X-ray emission (Poutanen & Vedelina 2014; Malzac 2016). Furthermore, the X-ray emission in quiescence can be driven by a less efficient particle acceleration along the jet axis implying optically thin synchrotron emission by non-thermal particles (Plotkin et al. 2013; Connors et al. 2017).

MeerKAT radio observations show a negative spectral index $\alpha = -0.8\pm0.4$ in the quiescent state favoring an optically thin emission in contrast to the constantly flat spectra ($\alpha \sim 0.35$) that seems to dominate the outburst phase of GX 339–4 (Tremou et al. in prep.). Although, radio emission in quiescence denotes the presence of hard state jets, the wide range of spectral indices that have been previously seen, it is not fully understood (Plotkin et al. 2019) and it may be related with non-canonical jet geometry. Slightly negative spectral index could be seen in the case of a decelerating or a slowly expanding jet, while an inverted spectrum (eg: A0620-00; Dinçer et al. 2018) could be generated due to the fast expanding parts of the jet (outer regions of the jet).

During our ThunderKAT campaign over the next years, we will be able to constrain the spectral evolution during both the outburst and quiescent state, the latter of which has been poorly understood so far.

ACKNOWLEDGEMENTS

ET and SC acknowledge financial support from the UniVersH Labex program of Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). JCAM-J is the recipient of an Australian Research Council Future Fellowship (FT140101082), funded by the Australian Government. PJG acknowledges support from the NRF SARChI program under grant number 111692. PAW acknowledges support from UCT and the NRF. We acknowledge the use of BLAST, Chandra, Chandra X-ray, Fermi, Fermi-LAT, Insight, Kepler, Swift, Swift/XRT and MeerKAT. The source was detected during the Swift/XRT and from MeerKAT, and we detected the source at the level of $1.6 \times 10^{13} \, \text{erg cm}^{-2} \, \text{s}^{-1}$ and $62 \, \mu$Jy beam$^{-1}$, respectively.
Figure 2. The $L_X - L_R$ correlation of quiescent/hard state black holes in grey using the database by Bahramian et al. (2018). GX 339–4 is shown in blue squares (outburst) and blue arrows (upper limits) from Corbel et al. (2013). The individual simultaneous measurements of MeerKAT and Swift/XRT of this study are shown in green arrows and in purple (diamond), we show the detection in the quiescent state. The blue one denotes the quiescence level from the deep study that has been presented in Corbel et al. (2013) while the gray dashed line corresponds to their fit with a function of the form $L_R \propto L_X^{0.61 \pm 0.01}$. Quiescent black holes (A0620-00, V404 Cyg, XTE J1118+480 and MWC 656), that have been detected, are also over-plotted in circles.

scheduling these observations. The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. This work was carried out in part using facilities and data processing pipelines developed at the Inter-University Institute for Data Intensive Astronomy (IDIA). IDIA is a partnership of the Universities of Cape Town, of the Western Cape and of Pretoria. We acknowledge the use of the Nançay Data Center, hosted by the Nançay Radio Observatory (Observatoire de Paris-PSL, CNRS, Université d’Orléans), and also supported by Region Centre-Val de Loire.

REFERENCES

Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, Astronomical Society of the Pacific Conference Series Vol. 101, Astronomical Data Analysis Software and Systems V. p. 17
Bahramian A., et al., 2018, Radio/X-ray correlation database for X-ray binaries, doi:10.5281/zenodo.1252036, https://doi.org/10.5281/zenodo.1252036
Burrows D. N., et al., 2000, in Flanagan K. A., Siegmund O. H., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4140, X-Ray and Gamma-Ray Instrumentation for Astronomy XI. pp 64–75, doi:10.1117/12.409158
Cadolle Bel M., et al., 2011, A&A, 534, A119
Connors R. M. T., et al., 2017, MNRAS, 466, 4121
Corbel S., Fender R. P., Tzioumis A. K., Nowak M., McIntyre V., Durochoux P., Sood R., 2000, A&A, 359, 251
Corbel S., Nowak M. A., Fender R. P., Tzioumis A. K., Markoff S., 2003, A&A, 400, 1007
Corbel S., Tomooka J. A., Kaaret P., 2006, ApJ, 636, 971
Corbel S., Koerding E., Kaaret P., 2008, MNRAS, 389, 1697
Corbel S., Coriat M., Brocksopp C., Tzioumis A. K., Fender R. P., Tomooka J. A., Buxton M. M., Bailyn C. D., 2013, MNRAS, 428, 2500
Coriat M., et al., 2011, MNRAS, 414, 677
Dinçer T., Bailyn C. D., Miller-Jones J. C. A., Buxton M., Macdonald R. K. D., 2018, ApJ, 852, 4
Driessen L. N., et al., 2020, MNRAS, 491, 560
Falcke H., Körding E., Markoff S., 2004, A&A, 414, 895
Fender R. P., 2001, MNRAS, 322, 31
Fender R. P., Gallo E., Jonker P. G., 2003, MNRAS, 343, L99
Fender R. P., Gallo E., Russell D., 2010, MNRAS, 406, 1425
Fender R., et al., 2017, arXiv e-prints, p. arXiv:1711.04132
Frater R. H., Brooks J. W., Whiteoak J. B., 1992, Journal of Electrical and Electronics Engineering Australia, 12, 103
Froning C. S., et al., 2011, ApJ, 743, 26
Gallo E., Fender R., Corbel S., 2003a, The Astronomer’s Telegram, 196, 1
Gallo E., Fender R. P., Pooley G. G., 2003b, MNRAS, 344, 60
Gallo E., Fender R. P., Hynes R. I., 2005, MNRAS, 356, 1017
Gallo E., Fender R. P., Miller-Jones J. C. A., Merlioni A., Jonker P. G., Heinze S., Maccaroni T. J., van der Klis M., 2006, MNRAS, 370, 1351
Gallo E., Migliari S., Markoff S., Tomooka J. A., Bailyn C. D., Berta S., Fender R., Miller-Jones J. C. A., 2007, ApJ, 670, 600
Gallo E., Homan J., Jonker P. G., Tomooka J. A., 2008, ApJ, 683, L51
Gallo E., Miller B. P., Fender R., 2012, MNRAS, 423, 590

MNRAS 600, 1–6 (2020)
This paper has been typeset from a TeX/LaTeX file prepared by the author.