An Evidence Map of Research Linking Dietary Sugars to Potentially Related Health Outcomes

David J Tybor,1 Andrew R Beauchesne,1,2 Ruijia Niu,1 Marissa M Shams-White,1,3 and Mei Chung1

1Department of Public Health and Community Medicine; 2Tufts University School of Medicine, Boston, MA; and 3Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA

Abstract

Background: Evidence mapping is an emerging tool used to systematically identify, organize, and summarize the quantity, distribution, and characteristics of published studies with the goal of identifying knowledge gaps and future research needs.

Objective: The aim of the study was to present an evidence-map database of all published studies that investigated dietary sugars and to select health outcomes for explicating research trends and gaps.

Methods: To update an evidence-map database previously published in 2013, we performed a literature search in MEDLINE to identify English-language, peer-reviewed human intervention and prospective cohort studies published from January 2013 to December 2016. Abstracts and full-text articles were dual screened on the basis of predefined eligibility criteria. We classified outcomes into 7 health outcome categories that are potentially affected by dietary sugar. Data from the updated evidence-map database were merged with those from the previous database for analysis and charting.

Results: There were 918 sugar and control intervention arms from a total of 298 intervention studies from 1966 to December 2016. A variety of sugar interventions were investigated across the included intervention studies, and it appears that the research interest across all outcome categories (cardiovascular disease risks, diabetes risks, body weight, body composition, appetite, dietary intake, and liver health–related outcomes) sharply increased from 2006. Bubble plots showed research gaps in long-term intervention studies and in intervention studies in patients with diabetes. In contrast, all 25 included cohort studies had long-term follow-up durations and much larger sample sizes than did intervention studies. None of the cohort studies evaluated dietary intake outcomes, and only one cohort study each examined appetite- and liver health–related outcomes.

Conclusions: The research trends and research gaps have not changed since 2013 when the original evidence-map database was updated. With continuous updating, evidence mapping can facilitate the process of knowledge translation and possibly reduce research waste. Curr Dev Nutr 2018;2:nzy059.

Introduction

The term sugars, or simple carbohydrates, chemically refers to a group of compounds comprising carbon, hydrogen, and oxygen atoms that are classified as either monosaccharides or disaccharides (1). Three common monosaccharides are glucose, fructose, and galactose. Common disaccharides include maltose (2 linked glucose molecules), lactose (glucose linked to galactose), and sucrose (glucose linked to fructose). Sugars occur naturally in some foods, including fruits and dairy products, and are frequently added to foods during processing. The latter are called added sugars, a term often used in the scientific literature but lacking a universal definition (2). Recently, the US FDA defined added sugars as “sugars that are either added during the processing...
of foods, or are packaged as such, and include sugars (free, mono-
and disaccharides), sugars from syrups and honey, and sugars from
concentrated fruit or vegetable juices that are in excess of what would
be expected from the same volume of 100% fruit or vegetable juice of
the same type” (3). The WHO defined free sugars as “all monosac-
charaides and disaccharides added to foods by the manufacturer,
cook, or consumer, plus sugars naturally present in honey, syrups,
and fruit juices” (4). Two major sources of added sugars include
sucrose and high-fructose corn syrup (HFCS), which are used for
sweetening foods and beverages. Dietary sucrose is hydrolyzed by
sucrase in the small intestine to equimolar amounts of glucose and
fructose. HFCS contains varying amounts of unbound glucose and
fructose (5).

Evidence mapping is an emerging rapid review method that involves a
systematic search and characterization of extant research on a topic
of interest, aiming to identify gaps in knowledge and future research
needs (6). Although there are currently no methodologic standards,
evidence mapping typically includes a systematic process to create a
searchable evidence-map database; this permits descriptive analyses
or visuals of the database, such as bubble plots, to identify research
gaps (7). Study characteristics can be summarized using the data to
inform future study designs or to identify gaps in research. Conversely,
evidence mapping can also help identify areas rich in studies, for
which systematic reviews and meta-analyses can be conducted. Unlike
systematic reviews, evidence mapping does not assess the quality (or
risk-of-bias) of the included studies nor does it synthesize the study
results.

Several organizations have relied on evidence maps to make
evidence-informed decisions and to prioritize strategic research
(8–10). Keeping databases up to date is crucial to best leverage
this method and to facilitate translation of scientific knowledge into
policy or practice (6). In 2013, an open evidence-map database of
all published studies on dietary sugars and select health outcomes
was created (herein referred to as "the 2013 evidence-map database"; available from http://srdr.ahrq.gov/projects/136) as an integral part of a
research prioritization project by a multidisciplinary stakeholder panel
(11). Given the recent proliferation of research on dietary sugars, the
increasing interest in their potential health effects, and the importance
of this public health topic, the World Sugars Research Organization
commissioned an update of the 2013 evidence-map database (11), with
a goal of explicating research trends and gaps.

Methods

Literature search and selection

We conducted an electronic search strategy in MEDLINE
(gateway.ovid.com) using both medical subject headings and text
words for specific dietary sugar terms. No restrictions were set with
regard to outcome terms. Search results were limited to English-
language, peer-reviewed human intervention studies and prospective
cohort (PC) studies published from January 2013 to December 2016
(Supplemental Table 1). This was the same search strategy and study
eligibility criteria utilized in creating the 2013 evidence-map database
(11). We did not search for or include any unpublished studies, clinical trial registries, or gray literature such as government or organization reports.

To assess study eligibility, we used inclusion and exclusion criteria
that included specific sugar exposures, study designs, and human
subjects (Table 1). Two independent reviewers screened all titles and
abstracts using a low threshold to exclude irrelevant abstracts, such as
aminal studies, in vitro studies, or studies with no interventions or
exposures of interest. We then retrieved full-text articles of potentially
relevant abstracts and double-screened them. Any discrepancies during
either screening phase were resolved via group consensus. Included
studies must have examined ≥1 quantifiable dietary sugar; we excluded
studies examining sugar-sweetened beverages without adequate quan-
tification of sugar amount (e.g., information only on serving sizes or
frequency of intake). We also excluded studies with intravenous sugar
administration or studies that exclusively examined dental caries, pain,
cancer, athletic performance, or cognition outcomes.

Data extraction

Data were recorded in a customized extraction form shared via
Google Drive to facilitate collaboration among research team members
and to allow for simultaneous data entry of relevant study details:
publication date, study design, intervention duration and follow-
up time, population characteristics (e.g., baseline health status, age,
and anthropometric measures), reported outcomes (i.e., all study
endpoints listed in the full text), and funding source. For intervention
studies, we also extracted the characteristics of the dietary sugar
intervention and control groups, including type of sugar, dose, and
form of administration. For PC studies, we extracted relevant dietary
assessment methods and definitions of total or added sugars. All
data were extracted by one reviewer and randomly checked by a
second reviewer. All extracted data, including the database codebook,
are included in the supplemental data files (Supplemental Datasets
1 and 2).

Data analysis and charting

For this study, we merged data from the updated evidence-map database
with those from the previous database (studies published before 2013)
for analysis. We treated multiple studies reported in one publication as
separate studies in the analysis. Moreover, we did not check
whether multiple publications reported results from the same study
population. We extracted the names of all health outcomes reported
in each individual study. To allow meaningful descriptive analyses
and identification of research gaps, outcomes were classified into the
following outcome categories that are potentially affected by dietary
sugar: diabetes risks, cardiovascular disease risks, body weight, body
composition, appetite, dietary intake, and liver health. It is important to
note that the specific outcomes that comprise each outcome category
were heterogeneous. For example, the dietary intake outcome category
includes various dietary pattern scores and intakes of macronutrients,
micronutrients, or food groups, and the liver health outcome category
includes various liver health indexes (e.g., liver enzymes, bilirubin, and
liver fat) and diagnosis of nonalcoholic fatty liver disease. We classified
any outcome that did not fit into 1 of these 7 categories as other outcome
category.

We conducted descriptive analyses to summarize characteristics
of the included studies, including study sample size, study duration,
There were 918 sugar and control intervention arms from a total of 212 studies (201 intervention studies and 11 PC studies) were included in the relevant and included them in full-text screening. A total of 111 studies (97 intervention studies and 14 PC studies) were included in the update evidence-map database. Figure 1 shows a summary of the literature search and study selection flow used in the update. We merged the updated database with the 2013 evidence-map database, which contained a total of 212 studies (201 intervention studies and 11 PC studies), for analyses. Intervention studies were analyzed separately from the PC studies.

Intervention studies

There were 918 sugar and control intervention arms from a total of 298 studies (Table 2). Of the 298 studies, 50% were crossover design trials, 28% were parallel-arm trials, 11% were nonrandomized trials, 7% were single-arm trials, and the remaining 4% were another type of intervention design. Most of the recent studies were acute, studying effects of <24 h. Only a small number of studies (5%) were >1 y in duration. The majority of studies were conducted in adults aged ≥18 y. Most interventions were tested in healthy subjects; 12% of studies were in subjects with obesity and 15% in subjects with diabetes (type 1 or type 2). Most studies (81%) did not provide details on study power calculations.

A variety of sugar interventions were investigated in the included studies: sucrose, fructose, and glucose in 18%, 15%, and 8% of interventions, respectively, and HFCS, honey, and lactose interventions in <2% of interventions. Thirty percent of sugar interventions did not specify the type of sugar used (Table 3).

Many intervention studies investigated the effects of dietary sugars on multiple outcome categories (Table 2). Figure 2 shows the cumulative frequency of studies, published from 1966 to 2016, or the cumulative publication growth over time (excluding the other outcome category). The plot showed that there was a steady increasing trend in the number of publications reporting cardiovascular disease (CVD) risk and diabetes risk outcomes from 1966 to 2016. The research published in all outcome categories sharply increased from 2006.

Using bubble plots to identify research gaps

The first bubble plot shows that none of the studies that investigated liver health had intervention durations ≥6 mo (Figure 3). None of the studies that investigated dietary intake and body-composition outcomes had intervention durations >1 y. Only a few studies examined effects of long-term (>1 y) sugar interventions on appetite, body weight, CVD risks, and diabetes risks. The second bubble plot shows that very few studies among patients with diabetes investigated the effects of sugar interventions on body composition, dietary intake, and liver health outcomes; and none investigated appetite outcomes (Figure 4).

PC studies

A total of 14 PC studies were identified from 2013 through 2016 and were merged with the 11 studies from the previous evidence-map database for the analyses (Table 4). Of the 25 included studies, all had follow-up durations >1 y and 14 (56%) had a follow-up duration >5 y. One study (4%) did not report the follow-up duration. The sample size of the PC studies ranged from 630 to 353,751 participants, with a mean of 44,124 participants. Most of the PC studies were conducted in generally healthy populations (68%) and the majority (76%) were conducted in adults.
Unlike the intervention studies, most of the PC studies (76%) investigated a single outcome category, and only 1 study each examined appetite and liver health outcomes. Diabetes risks, CVD risks, body weight, and body-composition outcomes were examined in 24%, 20%, 24%, and 16% of the studies, respectively. Other outcomes were examined in 40% of the PC studies, including serum HDL concentration, psychological outcomes, urinary system diseases, and age at menarche.

Sugar intake was measured by an FFQ or its combination with other dietary assessment methods in 64% of the PC studies, whereas 12% and 20% of the studies used diet records and 24-h recall, respectively. Approximately half of the PC studies quantified total sugar intake. Added sugar intake was investigated in 8 of the PC studies (32%), with slight differences in their definitions (Table 5).

Funding sources and their association with study characteristics

Approximately 80% of intervention studies reported their funding sources. Government funding was the most common (44% of studies), and 22% of studies exclusively received government funding. Approximately 17% of studies were funded only by nonprofit sources and 16% of the included studies were exclusively funded by industry sources.

Intervention studies with industry-only funding had significantly larger sample sizes compared with studies funded by government only, nonprofit only, mixed sources, or those studies that did not report funding source ($P = 0.0001$). The funding sources were associated with whether the study was randomized ($P = 0.02$). There were no significant associations across the studies between different funding sources and categories of study durations, study design, or whether studies reported power calculations (Table 6).

Last, there was a significant relation between funding sources and whether an intervention study investigated the effects of HFCS or fructose. Twenty-five percent of studies with government-only funding included a study arm of fructose or HFCS, compared with 19% of studies with mixed funding, 18% of studies with exclusive nonprofit funding, 11% of studies funded by industry, and 10% of studies that did not report funding source ($P < 0.0001$, Fisher’s exact test).

Among the 25 PC studies, only 1 study was exclusively funded by industry. Other studies ($n = 24$) were funded by government (52%), nonprofit research foundations (11%), or a mix of both (33%) (Table 4). Funding sources were not significantly associated with sample sizes or categories of study duration among PC studies (Table 7).
TABLE 2 Summary of study design and population characteristics of included intervention studies in updated, original, and combined data sets

	Studies published from 2013 to 2016 (n = 97)	Original evidence map (n = 201)	Combined (n = 298)
Design, n (%)			
Randomized (parallel)	27 (28)	45 (22)	72 (24)
Randomized (crossover)	58 (60)	91 (45)	149 (50)
Nonrandomized (with control)	3 (3)	29 (14)	32 (11)
Single-arm	7 (7)	25 (12)	32 (11)
Other	2 (2)	11 (5)	13 (4)
Study duration, n (%)			
<1 d	41 (43)	84 (42)	125 (42)
1–14 d	24 (25)	45 (23)	69 (23)
15 d to 1 mo	14 (14)	26 (13)	40 (13)
>1 to 6 mo	16 (16)	41 (20)	57 (19)
>6 mo to 1 y	1 (1)	2 (1)	3 (1)
>1 to 2 y	1 (1)	10 (5)	14 (5)
>2 y	0 (0)	1 (1)	1 (0.3)
Sample size, n			
	22 (6–465)	18 (5–2026)	19 (5–2026)
Published power calculation, n (%)			
	32 (33)	24 (12)	56 (19)
Age, y	29.8 (1.5–77.7)	35.4 (5–72)	33.7 (1.5–77.7)
Study population, n (%)			
Adults	75 (77)	180 (90)	255 (86)
Children	12 (12)	11 (5)	23 (8)
Adolescents	8 (8)	3 (1)	11 (4)
Mixed	0 (0)	7 (3)	7 (2)
Baseline health status, n (%)			
Healthy	47 (48)	108 (54)	155 (52)
Overweight/obese	19 (20)	18 (9)	37 (12)
Diabetes	4 (4)	42 (21)	46 (15)
Mixed healthy and nonhealthy	1 (1)	16 (8)	17 (6)
Other	12 (12)	16 (8)	28 (9)
Not specified	14 (14)	1 (1)	15 (5)
Funding source, n (%)			
Government	26 (27)	39 (19)	65 (22)
Industry	23 (24)	24 (12)	47 (16)
Nonprofit	21 (22)	31 (15)	52 (17)
Government and industry	5 (5)	23 (11%)	28 (9)
Government and nonprofit	7 (7)	24 (12)	31 (10)
Nonprofit and industry	1 (1)	6 (3)	7 (2)
Government, industry, and nonprofit	0 (0)	8 (4)	8 (3)
No data given	14 (14)	46 (23)	60 (20)
Outcome categories, n (%)			
Diabetes risks	54 (56)	147 (73)	201 (67)
Cardiovascular disease risks	38 (39)	109 (54)	147 (49)
Body weight	22 (23)	52 (26)	74 (25)
Body composition	19 (20)	18 (9)	37 (12)
Appetite	28 (29)	31 (15)	59 (20)
Dietary intake	13 (13)	32 (16)	45 (15)
Liver health	9 (9)	15 (7)	24 (8)
Other outcomes	45 (46)	111 (55)	156 (52)

1Values are n (%) or means (minimum–maximum). The unit of analysis is 1 study, with the exception of Sample size and Age.

2Other designs include quasi-experimental design or unclear intervention designs.

3Fifteen studies did not report mean or median age so were not included in the calculation. Minimum and maximum mean ages are shown in parentheses.

4Because some studies examined multiple outcomes across multiple categories, percentages sum to >100%.
TABLE 3 Summary of sugar intervention arms in the updated, original, and combined data sets, by study intervention arm

Intervention arms of studies published from 2013–2016 (n = 225)	Intervention arms of studies in original evidence map (n = 470)	Combined (n = 695)
Fructose 48 (15)	81 (14)	129 (15)
Glucose 34 (11)	39 (7)	73 (8)
Sucrose 62 (20)	97 (17)	159 (18)
High-fructose corn syrup	16 (5)	6 (1)
Honey 6 (2)	12 (2)	18 (2)
Mixed sugars 26 (8)	0 (0)	26 (8)
Lactose 2 (1)	0 (0)	2 (1)
Unspecified sugar (type of sugar not specified)	31 (10)	235 (41)

1Values are n (%). The unit of analysis is one intervention arm.

Discussion

In this article, we updated and analyzed a literature database of published intervention studies and PC studies that examined the relations between dietary sugar intakes and select health outcomes. A variety of sugar interventions were investigated across the included intervention studies, and it appears that the research interest across all outcome categories (CVD risks, diabetes risks, body weight, body composition, appetite, dietary intake, and liver health–related outcomes) sharply increased from 2006. Bubble plots showed research gaps in long-term intervention studies and in intervention studies in patients with diabetes. In contrast, all included PC studies had long-term follow-up durations and much larger sample sizes than did intervention studies. None of the PC studies evaluated dietary intake outcomes and only one PC study each examined appetite- and liver health–related outcomes. On the basis of these results, we concluded that the research trends and research gaps have not changed since 2013, when the evidence-map database was updated. Therefore, the 14 prioritized research questions (research needs) in the broad field of dietary sugars and health outcomes remain valid (Supplemental Table 2) (11). These 14 high-priority research questions were identified by a multidisciplinary stakeholder panel following a structured approach that integrated evidence mapping with expertise or viewpoints from the panel.

Our exploratory analyses showed some interesting findings. We found that industry funding sources were associated with some, but not all, good study design features for intervention studies, such as randomization and larger sample sizes. Government funding sources were associated with whether an intervention study investigated the effects of HFCS or fructose. However, these exploratory analysis results should be interpreted with caution because the classification of funding sources was not always clear.

FIGURE 3 Bubble plot of intervention studies by outcome categories and by study duration. Each bubble in the figure represents 1 study, and the size of the bubble is proportional to the study sample size. CVD, cardiovascular disease.

FIGURE 4 Bubble plot of intervention studies by outcome categories and by baseline population health status. Each bubble in the figure represents 1 study, and the size of the bubble is proportional to the study sample size. CVD, cardiovascular disease; Mixed, mixed healthy and nonhealthy conditions; Other, other disease conditions.
source categories may be inaccurate and the mixed funding category is ambiguously defined. Moreover, we did not assess the quality or risk-of-bias of the included studies in the evidence-map database. Study design alone is insufficient for judging the quality of the studies. There have been several systematic reviews investigating the effects of fructose-containing sugars on cardiometabolic risk factors (20–26), body weight (26–28), and nonalcoholic fatty liver disease or liver fat (29–31). These systematic reviews reported that a large portion of research had small sample sizes, were short-term trials, and were rated as high risk-of-bias. Our descriptive analyses of the evidence-map database support these findings, although we did not assess the risk-of-bias of the included studies. In addition, most of the studies in the evidence-map database focused on healthy adults, with a dearth of studies in children, adolescents, or adults with other health conditions. A large proportion (42%) of the intervention studies in the evidence-map database were acute (<1 d) mechanistic studies of a single dose of sugar ingestion. The results from mechanistic studies have little applicability to longer-term health outcomes because individual sugars are rarely ingested alone in the real world. On the other hand, well-controlled mechanistic studies can build a foundation for causal inference because they can elucidate the biological mechanisms of the postulated effects.

TABLE 4 Summary of study design and population characteristics of included prospective cohort studies in updated, original, and combined databases

Study duration, n (%)	Updated (n = 14)	Original (n = 11)	Combined (n = 25)
1–2 y	4 (29)	0 (0)	4 (16)
>2–5 y	3 (21)	3 (27)	6 (24)
>5–10 y	3 (21)	6 (55)	9 (36)
>10–20 y	2 (14)	2 (18)	4 (16)
>20 y	1 (7)	0 (0)	1 (4)
Not reported	1 (7)	0 (0)	1 (4)
Sample size, n	37,609 (630–353,751)	35,738 (1064–223,230)	44,124 (630–353,751)
Age, y	23 (6.1–50.6)	53 (48–57.4)	36 (6.1–57.4)
Study duration, n (%)			
Adults	8 (57)	11 (100)	19 (76)
Children	6 (43)	0 (0)	6 (24)
Baseline health status, n (%)			
Healthy	9 (64)	8 (73)	17 (68)
Pregnant	2 (14)	1 (9)	3 (12)
Other	2 (14)	2 (18)	4 (16)
Not specified	1 (7)	0 (0)	1 (4)
Funding source, n (%)			
Government	6 (43)	7 (64)	13 (52)
Industry	1 (7)	0 (0)	1 (4)
Nonprofit	1 (7)	1 (9)	2 (8)
Government and industry	0 (0)	0 (0)	0 (0)
Government and nonprofit	6 (43)	3 (27)	9 (36)
Nonprofit and industry	0 (0)	0 (0)	0 (0)
Government, industry, and nonprofit	0 (0)	0 (0)	0 (0)
No data given	0 (0)	0 (0)	0 (0)
Outcome categories, n (%)			
Diabetes risks	3 (21)	3 (27)	6 (24)
Cardiovascular disease risks	1 (7)	4 (36)	5 (20)
Body weight	5 (36)	1 (9)	6 (24)
Body composition	3 (21)	1 (9)	4 (16)
Appetite	1 (7)	0 (0)	1 (4)
Dietary intake	0 (0)	0 (0)	0 (0)
Liver health	1 (7)	0 (0)	1 (4)
Other outcomes	7 (50)	3 (27)	10 (40)
1Values are n (%) or means (minimum–maximum). The unit of analysis is 1 study, with the exception of Sample size and Age. 2Fourteen studies did not report mean or median age so were not included in the calculation. Number represents the mean of mean ages of studies. Minimum and maximum mean ages are shown in parentheses. 3Because some studies examined multiple outcomes across multiple categories, percentages sum to >100%.			
TABLE 5 Definitions of added sugar used in prospective cohort studies

First author, year (reference)	Definition
Borgen et al., 2012 (12)	The Norwegian Food Composition Table (available online at http://www.matportalen.no/Matvaretabellen; 2006) lists the concentrations of added sugar: “Added sugar comprises refined and industrial processed sugars such as glucose, sucrose, fructose and glucose syrup.”
Chortatos et al., 2013 (13)	Not reported
Gangwisch et al., 2015 (14)	“Added sugars were assessed according to the MyPyramid Equivalents 2.0 and included all sugars used as ingredients in processed and prepared foods such as breads, cakes, sodas, jellies, chocolates, and ice cream and sugars consumed separately or added to foods at the table.”
Lee et al., 2014 (15)	“Sugars added during the processing or preparation of foods and beverages”
Suadicani et al., 1996 (16)	“Sugar used in hot beverages”
Tasevska et al., 2014 (17)	“Sugars added at the table or used as ingredients in processed or prepared foods and drinks”
Vorster et al., 2014 (18)	“Added sugars were defined as all monosaccharides and disaccharides added to foods and beverages during processing, cooking, and at the table; these sugars included honey and jams as well as sugar added to beverages.”
Wang et al., 2014 (19)	“The USDA Database for the Added Sugars Content of Selected Foods was used for estimating added sugars.”

1 n = 8 studies.

TABLE 6 Associations between funding sources and study characteristics for intervention studies

Study funding source	Mixed (n = 74)	Government only (n = 65)	Industry only (n = 47)	Nonprofit only (n = 52)	Not reported (n = 60)	p2
Median sample size, n	18	18	33	17.5	17	0.0001*
Duration, n (%)						
<1 d	24 (32)	25 (38)	21 (45)	24 (46)	31 (52)	0.14
1–14 d	23 (31)	20 (31)	9 (19)	12 (23)	5 (8)	
15–31 d	12 (16)	7 (11)	2 (4)	9 (17)	10 (17)	
>1 to 6 mo	13 (18)	12 (18)	9 (19)	7 (13)	12 (20)	
>6 to 1 y	1 (1)	1 (2)	1 (2)	0 (0)	0 (0)	
>1 to 2 y	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
>2 y	1 (1)	0 (0)	0 (0)	0 (0)	0 (0)	
Study design, n (%)						0.06
Randomized (parallel)	16 (22)	13 (20)	15 (32)	18 (35)	10 (17)	
Randomized (crossover)	29 (39)	39 (60)	25 (53)	22 (42)	34 (57)	
Nonrandomized	14 (19)	5 (8)	2 (4)	3 (6)	8 (13)	
Single-arm	11 (15)	4 (6)	3 (6)	6 (12)	8 (13)	
Other	4 (5)	4 (6)	2 (4)	3 (6)	0 (0)	
Included power calculation, n (%)	2 (15)	11 (42)	8 (36)	8 (38)	3 (21)	0.40
Study is randomized, n (%)	11 (85)	15 (58)	14 (64)	13 (62)	11 (79)	0.02*
Outcome categories, n (%)	45 (61)	52 (80)	40 (85)	40 (77)	44 (73)	

1 Mixed indicates studies funded by >1 funding source category; Government only indicates studies exclusively funded by a government source.
2 P values were derived by chi-square test, with the exception of Sample size (Kruskal-Wallis test). *Significant, α = 0.05.
3 The median sample size in each category.
Our evidence-map database included only 25 PC studies, primarily because many cohort studies investigating the relation between sugar-sweetened beverage intake (without quantifying sugar amount) and health outcomes were excluded. All 25 included PC studies measured dietary sugar intake with the use of self-report dietary assessment methods. Limitations of self-report dietary assessment methods have been widely discussed and recognized. Both random errors and systematic bias in self-report intake estimates can invalidate nutritional observational study findings. Currently, there are no established sugar intake biomarkers. Furthermore, the lack of a universal definition of added sugars hampers the ability to easily compare study findings. Of note, added sugars cannot be analytically determined. They must be calculated with the use of a nutrient database, which uses different equations to calculate the amount of added sugars, thus resulting in a range of values (2).

Evidence mapping requires less time and effort than a systematic review to achieve an understanding of the distribution of evidence and often includes a much broader research landscape than a systematic review. However, it has several limitations. Only the MEDLINE database was searched, so many studies may have been missed. Because evidence mapping does not access the quality (or risk-of-bias) of the included studies, it also cannot identify research gaps in which high volumes of poor-quality studies exist (therefore, there is still a research need) or in which high volumes of high-quality studies show consistent results (therefore, there is no need for further research). Moreover, it should be noted that research gaps identified by the bubble plots do not necessarily equate to research needs. The determination of research needs requires consideration of the importance, desirability, feasibility, and potential impact of research gaps, highlighting the importance of stakeholder engagement in this process.

We systematically collected and organized a literature database of research linking dietary sugars to potentially related health outcomes. Research funders, researchers (including systematic reviewers), and practitioners can query and analyze this database to acquire information necessary for decision making, such as directions for future research, and to formulate systematic review research plans to anticipate potential challenges (e.g., heterogeneity). By continuously updating the evidence-map database, evidence mapping can facilitate the process of knowledge translation from scientific findings into health practice or policy recommendations, and possibly reduce research waste.

Acknowledgments

The authors’ responsibilities were as follows—MC: designed the research and had primary responsibility for final content; ARB, RN, and MMS-W: conducted the original research and data collection; DJT, ARB, and RN: performed statistical analysis; DJT and MC: wrote the manuscript; DJT, RN, MMS-W, and MC: interpreted study results; and all authors: read and approved the final manuscript.

References

1. Sigman-Grant M, Morita J. Defining and interpreting intakes of sugars. Am J Clin Nutr 2003;78(Suppl):815S–26S.
2. Erickson J, Slavin J. Total, added, and free sugars: are restrictive guidelines science-based or achievable? Nutrients 2015;7(4):2866–78.
3. US FDA. Industry resources on the changes to the Nutrition Facts label. 2018. (cited 2018 Jun 18). Available from: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm513734.htm#AddedSugars.
4. WHO. Guideline: sugars intake for adults and children. Geneva (Switzerland): WHO; 2015.
5. USDA. USDA food composition databases. 2016. (cited 2018 Jun 18). Available from: https://ndb.nal.usda.gov/ndb/search/list?home=true.
6. Mlake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev 2016;5:28.
7. Wang DD, Shams-White M, Bright OJ, Parrott JS, Chung M. Creating a literature database of low-calorie sweeteners and health studies: evidence mapping. BMC Med Res Methodol 2016;16:1.
8. Coeptaux RR, McDuffie J, Goode A, Cassel S, Porter WD, Sharma P, Meleth S, Minnella H, Nagi A, Williams JW Jr. Evidence map of yoga for high-impact conditions affecting veterans. Department of Veterans Affairs. Washington, D.C.; 2014.
9. Sightsavers. Home page (cited 2018 Jun 18). Available from: https://research.sightsavers.net.
10. Snilstveit B, Bhatia R, Rankin K, Leach B. 3ie Evidence gap maps: a starting point for strategic evidence production and use, 3ie Working Paper 28. New Delhi (India): International Initiative for Impact Evaluation (3ie); 2017.
11. Chung M, Wang DD, Archer E, Higgins J, Kim S, Laughlin M, Qi L, Raatz S, Siegel RD, Slavin J et al. Research needs and prioritizations for studies...
linking dietary sugars and potentially related health outcomes. BMC Nutr 2016;2(1):66.

12. Borgen I, Aamodt G, Harsem N, Haugen M, Meltzer HM, Brantsaeter AL. Maternal sugar consumption and risk of preeclampsia in nulliparous Norwegian women. Eur J Clin Nutr 2012;66(8):920–5.

13. Chortatos A, Haugen M, Iversen PO, Vikanes A, Magnus P, Veierod MB. Nausea and vomiting in pregnancy: associations with maternal gestational diet and lifestyle factors in the Norwegian Mother and Child Cohort Study. BJOG 2013;120(13):1642–53.

14. Gangwisch JE, Hale L, Garcia L, Malaspina D, Opler MG, Payne ME, Rossom RC, Lane D. High glycemic index diet as a risk factor for depression: analyses from the Women’s Health Initiative. Am J Clin Nutr 2015;102(2):454–63.

15. Lee AK, Binongo JN, Chowdhury R, Stein AD, Gazmararian JA, Yos MB, Welch JA. Consumption of less than 10% of total energy from added sugars is associated with increasing HDL in females during adolescence: a longitudinal analysis. J Am Heart Assoc 2014;3(1):e000615.

16. Suadicani P, Hein HO, Gyntelberg F. Adverse effect on risk of ischaemic heart disease of adding sugar to hot beverages in hypertensives using diuretics: a six year follow-up in the Copenhagen Male Study. Blood Press 1996;5(2):91–7.

17. Tasevska N, Park Y, Jiao L, Hollenbeck A, Subar AF, Potischman N. Sugars and risk of mortality in the NIH-AARP Diet and Health Study. Am J Clin Nutr 2014;99(5):1077–88.

18. Vorster HH, Kruger A, Wentzel-Viljoen E, Kruger HS, Margetts BM. Added sugar intake in South Africa: findings from the adult Prospective Urban and Rural Epidemiology cohort study. Am J Clin Nutr 2014;99(6):1479–86.

19. Wang J, Light K, Henderson M, O’Loughlin J, Mathieu ME, Paradis G, Gray-Donald K. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity. J Nutr 2014;144(1):81–6.

20. Chiavaroli L, de Souza RJ, Ha V, Cozma AI, Mirrahimi A, Wang DD, Yu M, Carleton AJ, Di Buono M, Jenkins AL, et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc 2015;4(9):e001700.

21. Gibson S, Gunn P, Wittekind A, Cottrell R. The effects of sucrose on metabolic health: a systematic review of human intervention studies in healthy adults. Crit Rev Food Sci Nutr 2013;53(6):591–614.

22. Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, DiBuono M, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012;59(4):787–95.

23. Jayalath VH, Sievenpiper JL, de Souza RJ, Ha V, Mirrahimi A, Santaren ID, Blanco Mejia S, Di Buono M, Jenkins AL, Leiter LA, et al. Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. J Am Coll Nutr 2014;33(4):328–39.

24. Sievenpiper JL, Chiavaroli L, de Souza RJ, Mirrahimi A, Cozma AI, Ha V, Wang DD, Yu ME, Carleton AJ, Beyene J, et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr 2012;108(3):418–23.

25. Zhang YH, An T, Zhang RC, Zhou Q, Huang Y, Zhang J. Very high fructose intake increases serum LDL-cholesterol and total cholesterol: a meta-analysis of controlled feeding trials. J Nutr 2013;143(9):1391–8.

26. Wiebe N, Padwal R, Field C, Marks S, Jacobs R, Tonelli M. A systematic review on the effect of sweeteners on glycaemic response and clinically relevant outcomes. BMC Med 2011;9:123.

27. Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J, Chiavaroli L, Di Buono M, Jenkins AL, Leiter LA, et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012;156(4):291–304.

28. Te Morenga L, Ballard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012;346:e7492.

29. Chiu S, Sievenpiper JL, de Souza RJ, Cozma AI, Mirrahimi A, Carleton AJ, Ha V, Di Buono M, Jenkins AL, Leiter LA, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2014;68(4):416–23.

30. Chung M, Ma J, Patel K, Berger S, Lau J, Lichtenstein AH. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014;100(3):833–49.

31. Ma J, Karlsen MC, Chung M, Jacques PF, Saltzman E, Smith CE, Fox CS, McKeown NM. Potential link between excess added sugar intake and ectopic fat: a systematic review of randomized controlled trials. Nutr Rev 2016;74(1):18–32.