Calculation of cluster decays half-lives for nuclei between $56 < Z_p < 120$ by using temperature dependent proximity model

V. Zanganeh1\,*

1Department of Physics, Sciences Faculty, Golestan University, P. O. Box 49138-15759, Gorgan, Iran

submitted at: Chinese Physics C

Abstract

Cluster decays half-lives of elements with proton numbers between $56 < Z_p < 120$ are calculated by applying temperature dependent proximity potential approach. For showing the influence of temperature on cluster decays, we compared the results among temperature dependent and independent case with experimental values. The obtained results of the present investigation reveal that we have more accurate results for temperature dependent proximity potential in comparison to ignoring one. In the present work, we find that results provided with temperature dependent proximity model are reasonable estimates for cluster decays half-lives and provide reliable predictions for other super heavies cluster decays.

Key words: Cluster decays, half-lives, temperature dependent, proximity model.

PACS: 23.70.+j

*Electronic address: zanganeh_yahid@yahoo.com ; v.zanganeh@gu.ac.ir
I. INTRODUCTION

Spontaneous cluster decays, heavier than alpha particles but lighter than a fission fragment, of super heavy nuclei is one of most dominant decay chains which happens before spontaneous fission. However, the cluster decays and half-lives of the super heavy nuclei gives us information about the island of stability regions and hence help us to understand the nuclear structure of the daughter as well as parents nuclei[1, 2]. experimentally and theoretically, emitted clusters from heavy nuclei has greatly attracted researchers attention which theoretical mechanism of cluster decay is regarded as quantum mechanical tunneling through the potential barrier between cluster emitter and the residual daughter nucleus. At this study, calculation of potential barrier is critical part. At present, many theoretical approaches have been used to describe the cluster-decay, such as the macroscopic-microscopic model[3], Density-dependent cluster model[4–6] relativistic mean field theory [7, 8]. in these models, various nuclear potential is used for calculation of half-lives and spectroscopic properties. The liquid drop model , double-folding model and proximity are example of most potential that are applied recently [9–16]. One of the successful and applicable models is by using the proximity potential which is a function of separation between the surfaces of the two nuclei. Many versions of proximity potential are proposed by different groups in order to improve the model [17–22]. Interestingly, the temperature dependence of proximity model has been modified by some authors to study fusion reactions and barrier characteristic[22].

At previous work, we studied the influence of the temperature of the parent nucleus on the alpha-decay process by applying the temperature dependence of the proximity potential and transfer matrix approach to calculate the penetration probability[23]. In this work, we attempt to study the cluster-decay half-lives of parent nuclei by considering the temperature dependence of the proximity potential and using WKB approach for calculating the penetration probability across the potential barrier. The structure of this paper is as follows: In sec. II, modified proximity model with temperature dependence is briefly introduced. In sec. III, half-lives of emitted 14C, 18O, 23F, 22,24,25,26Ne, 28,30Mg and 34Si cluster are compared with existing experimental values. In addition, half-lives of heavy nuclei are calculated theoretically and compared with analytical relation based on the ASAF model [2]. Finally the conclusion is given in Sec. IV.
II. MODEL

In the cluster model the parent nucleus is assumed to be the interaction between the cluster particle an daughter nucleus where the total potential is equal to the sum of the nuclear potential, the coulomb potential and centrifugal barrier. Thus,

\[V(R) = V_N(R) + V_C(R) + \frac{\hbar^2 l(l+1)}{2\mu R^2} \]

(1)

Where \(\mu \) is the reduced mass and \(V_c(R) \), the Coulomb interaction potential is given by,

\[V_c(R) = \begin{cases}
\frac{Z_e Z_d e^2}{R} & \text{for } R \geq R_c \\
\left(\frac{Z_e Z_d e^2}{2R}(3 - \left(R/R_c\right)^2)\right) & \text{for } R \leq R_c
\end{cases} \]

(2)

in above equation, \(R_c \) is expressed by, \(R_c = 1.24(R_e + R_d) \), \(R_e \) and \(R_d \) are respectively the radii of emitted cluster and daughter nuclei. However, \(Z_e \) and \(Z_d \) represents the charge number of emitted cluster and daughter nuclei respectively.

Using the proximity theorem we can obtain a simple formula for nuclear potential between emitted clusters and residual daughter nuclei as a function of the separation distance between the surfaces of them [17].

\[V_N(r) = 4\pi \gamma b \overline{R} \Phi(\xi) \text{ MeV.} \]

(3)

Here \(\overline{R} \) is the reduced radius and is written as:

\[\overline{R} = \frac{C_1 C_2}{C_1 + C_2} \]

(4)

and

\[C_i = R_i[1 - (\frac{b}{R_i})^2 + ...]. \]

(5)

where \(b \) is the surface width and \(R_i \) is the effective sharp radius, and given by:

\[R_i = 1.28 A_i^{1/3} - 0.76 + 0.8 A_i^{-1/3} \text{ fm} \quad (i = 1, 2). \]

(6)

In Eq. (1), \(\Phi(\xi) \) is the universal function which has been derived by several authors in different forms [20, 21] and in original proximity version was defined as:

\[\Phi(\xi) = \begin{cases}
-\frac{1}{2}(\xi - 2.54)^2 - 0.0852(\xi - 2.54)^3 & \xi \leq 1.2511 \\
-3.437e^{-\xi/0.75} & \xi > 1.2511
\end{cases} \]

(7)
and the surface energy coefficient defines as a function of the neutron/proton excess as:

\[\gamma = \gamma_0 [1 - k_s A_s^2] \] (8)

where \(A_s = \left(\frac{N - Z}{N + Z} \right) \) and \(\gamma_0 \) and \(K_s \) are the surface energy and surface asymmetry constants respectively. These constants have different values in different proximity potential versions and they revised to \(K_s = 4 \) and \(\gamma_0 = 1.460734 \text{MeV/fm}^2 \) for to the proximity-2010 [21] that we used in this work. In order to achieve an exact form of proximity potential where be able to reproduce the experimental data more accurately, many researches have been done which led to different versions for proximity potentials [24–26]. In one of these attempts, proximity-2010 is modified with a temperature dependence of surface energy coefficient and it has been successful in expecting the fusion barrier data and the experimental fusion cross section [22].

\[\gamma(T) = \gamma(T = 0)[1 - \frac{T - T_B}{T_B}]^{3/2} \] (9)

where \(T_B \) is the temperature associated with the energies near the Coulomb barrier.

Temperature dependency, also followed in some other parts of the proximity potential as:

\[R_i(T) = R_i(T = 0)[1 + 0.0005T^2] \text{fm}(i = 1, 2) \] (10)

and,

\[b(T) = b(T = 0)[1 + 0.009T^2] \] (11)

The temperature \(T \) in Eqs. (9-11) can be expressed as [27, 28],

\[E_{CN}^* = E_{c.m.} + Q_{in} = \frac{1}{9}AT^2 - T. \] (12)

Here, \(E_{CN}^* \) denotes the excitation energy of parent nucleus with mass number \(A \). \(Q_{in} \) denote the entrance channel Q-value of the system and \(E_{c.m.} \) is the center-of-mass incident energy which according to Refs. [22, 29], one can use the following definition

\[E_{c.m.} = \frac{e^2Z_cZ_d}{R_1 + R_2 + 2} \] (13)

where the radius \(R_{1,2} \) is obtained by Eq. (6). In order to explore the temperature effects of parents nucleus in this study, we have employed all three above relations simultaneously in proximity-2010 potential, and we have calculated the interaction potential in this way. With the shape of total cluster-nucleus potential, one can calculate the penetration probability
as well as half-life $T_{1/2}$ of the parent nucleus. According to the WKB approximation the
penetration probability is calculated by,

$$P = \exp \left[-\frac{2}{\hbar} \int_{R_{\text{in}}}^{R_{\text{out}}} \sqrt{2\mu(R)[V(R) - Q]} \, dR \right]$$

(14)

Where $\mu(R)$ is the effective mass of the cluster particle and the daughter nucleus which is
set as the reduced mass. Q is released energy for which experimental values are used in the
present calculations. R_{in} and R_{out} denote the classical turning points inside and outside of
the barrier which are determined from the equation $V(R_{\text{in}}) = V(R_{\text{out}}) = Q$.

The cluster-decay half-life $T_{1/2}$ is then calculated with the penetration probability [30],

$$T_{1/2} = \frac{\hbar \ln 2}{2E_{\nu}P}.$$

(15)

Where E_{ν} denotes the zero point the empirical vibration energy is given by [31],

$$E_{\nu} = Q[0.056 + 0.039e^{\frac{4-A_{e}}{2.5}}]$$

(16)

where A_{e} is the mass number of emitted cluster nuclei

III. RESULTS

In this section at first we test our calculation for the existing measured values of half-lives.
after investigate the role of temperature dependence on cluster decay half-lives, then we will
apply this formalism for calculation of cluster decay half-lives.

III-A. compare to experimental data

In order to test the precision of our calculation, we compare the calculated results with the
existing experimental data[32] of the half-lives. We gets the 28 parents nuclei which cluster
decays includes ^{14}C, $^{18,20}\text{O}$, ^{23}F, $^{22,24,25,26}\text{Ne}$, $^{28,30}\text{Mg}$ and ^{34}Si. It is relevant to mention here
that the selected cluster nuclei were discovered from the experiments[33, 34]. In Table-I, we compared measured experimental data and the calculated half-lives of cluster decay
with including the temperature effect of parent nucleus(TD.) and without the temperature
effect(IND.). also the minimum angular momentum l_{min} carried away by the emitted cluster
is determined by the principle of spin-parity conservation when the nuclei are decayed and
the values are from [35]. In order to give some indication of the quality of the results, the last line of table-I also shows the relative error,

\[\chi^2_R = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{Y_{Exp.} - Y^{Th.}}{Y_{Exp.} + Y^{Th.}} \right)^2, \]

(17)

where Y=log_{10}T_{1/2}. This quantity show the deviation of the calculated half-lives from the experimental values. It is clear that corresponding values of \(\chi^2_R \) for temperature dependent is less than ignoring the temperature effects one.

In order to show better the ability of our method on calculations of cluster decay half-lives, we define hindrance factor as follow:

\[HF = \frac{T_{1/2}^{Exp.}}{T_{1/2}^{Cal}} \]

(18)

Figure-1 depicts the comparison of HF between temperature dependence of proximity potential (TD.) and temperature independent (IND.). as the definition of HF clear that closer to unity is more accurate results we have. This figure reveals that TD. results are motivating. therefore it seems we can apply this method for calculation of cluster decay for heavy nuclei.

III-B. Calculation of cluster decay for heavy nuclei

In Table-II we list the theoretical cluster decay half-lives of temperature dependent proximity potential and prediction of ASAF model [2] ones for nuclei with Z parent between 56 and 120. The first column of Table-II denotes nuclide. The experimental Q cluster-decay energy (\(Q_c \)) is given in column 2. When the \(Q_c \) is not known, we use a theoretical value from ref. [36]. The logarithmic cluster decay half-lives with TD. and ASAF model [2] ones are listed in columns 3 and 4, respectively. The last column is the reference the error between calculation of our work and ASAF model. It is seen from Table-II that TD. half-lives are reasonable estimates.
IV. CONCLUSION

By using the temperature dependent proximity potential, we calculated cluster decay half-lives of parent nuclei whose proton numbers are from $Z_p = 56$ to $Z_p = 120$. Before the calculation, we test the accuracy of the our calculation for some nuclei in compare with experimental data. The results of present calculation made with T.D. model are in good agreement with experimental data (see Table-I and Figure-1). at next, T.D. model calculation are provided in Table-II for cluster decay half-lives of heavy nuclei and compared with the values based on the ASAF model \[2\] estimation using the same Q – values. this formalism has been found to be quit reliable.

ACKNOWLEDGMENTS

The authors would like to give special thanks to Dr. F. Zanganeh for helpful discussions.
and encouragements.

[1] S. Kumar, Phys. Rev. C 85, 024320 (2012).
[2] D. N. Poenaru and et al. Phys. Rev. C 65, 054308 (2002).
[3] M. Mirea, A. Sandulescu and D. S. Delion, Nucl. Phys. A 870, 23 (2011).
[4] D. Ni and Z. Ren, Phys. Rev. C 83, 014310 (2011).
[5] D. Ni and Z. Ren, Phys. Rev. C 81, 024315 (2010).
[6] F. R. Xu and J. C. Pei, nucl-th/0603064 (2006).
[7] M. Bhuyan, S. K. Patra and R. K. Gupta, Phys. Rev. C 84, 014317 (2011).
[8] P. Roy. Choudhury, G. Gangopadhyay and A. Bhattacharyya, Phys. Rev. C 83, 027601 (2011).
[9] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C 45, 2247 (1992).
[10] B. Buck, A. C. Merchant and S. M. Perez, Data Nucl. Data Tables 54, 53 (1993).
[11] C. Xu and Z. Ren, Phys. Rev. C 69, 024614 (2004).
[12] P. Mohr Phys. Rev. C 61, 045802 (2000).
[13] U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer and G. Staudt, Phys. Rev. C 53, 1336 (1996).
[14] C. Xu and Z. Ren, Nucl. Phys. A 760, 303 (2005).
[15] Z. Ren, C. Xu and Z. Wang, Phys. Rev. C 70, 034304 (2004).
[16] P. R. Chowdhury, C. Samanta and D. N. Basu, Phys. Rev. C 73, 014612 (2006).
[17] J. Blocki, J. Randrup, W. J. Swiastecki, and C.F.Tsang, Ann. Phys. (NY) 105, 427 (1977).
[18] G. Royer and J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992).
[19] S. Shlomo and J. B. Natowitz, Phys. Rev. C 44, 2878 (1991).
[20] W. D. Myers, Phys. Rev. C 62, 17 (2000).
[21] I. Dutt and R. K. Puri, Phys. Rev. C 81, 047601 (2010).
[22] M. Salehi and O. N. Ghodsi, Chin. Phys. Lett. 30, No.4, 042502 (2013).
[23] V. Zanganeh and N. Wang, Nucl. Phys. A 929, 94 (2014).
[24] A. Winther, Nucl. Phys. A 594,203 (1995).
[25] H. Ngo and C. Ngo, Nucl. Phys. A 348, 140 (1980).
[26] V. Y. Denisov, Phys. Lett. B 526, 315 (2002).
[27] R. K. Puri and R. K. Gupta, J. Phys. G: Nucl. Part. Phys. 18, 903 (1992).
[28] R. K. Gupta, S. Singh, R. K. Puri, A. Sandulescu, W. Greiner and W. Scheid, J. Phys. G: Nucl.
[29] M. Golshanian, O. N. Ghodsi, and R. Gharaei, Mod. Phys. Lett. A, vol. 28, no. 36, pp. 113, (2013).

[30] S. A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987).

[31] D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. C 32, 572 (1985).

[32] G. Royer, R. Moustabchir, Nucl. Phys. A 683, 182 (2001).

[33] H. J. Rose, G. A. Jones, Nature 307, 245 (1984).

[34] D. V. Aleksandrov, et al., JETP. Lett. 40, 909 (1984).

[35] D. N. Basu, Phys. Lett. B 566, 90 (2003).

[36] G. Audi and et al., Chin. Phys. C 36, 1157 (2012).
Table-I: Comparison of logarithmic half-lives of cluster decays between temperature independent proximity (IND.), temperature dependent proximity (TD.) and experiment data

Cluster Decay	l_{min}	$Q_{\text{exp.}}$	IND.	TD.	Exp.	$\Delta^{\text{IND.}}$	$\Delta^{\text{TD.}}$
221Fr $\rightarrow ^{14}$C	3	31.29	15.86	14.94	14.5	-1.36	-0.44
221Ra $\rightarrow ^{14}$C	3	32.40	14.56	13.66	13.4	-1.16	-0.26
222Ra $\rightarrow ^{14}$C	0	33.05	13.15	12.28	11.0	-2.15	-1.28
223Ra $\rightarrow ^{14}$C	4	31.83	15.75	14.82	15.2	-0.55	0.37
224Ra $\rightarrow ^{14}$C	0	30.54	18.19	17.22	15.7	-2.49	-1.52
226Ra $\rightarrow ^{14}$C	0	28.19	23.61	22.51	21.2	-2.41	-1.31
225Ac $\rightarrow ^{14}$C	4	30.47	19.52	18.52	17.2	-2.32	-1.32
226Th $\rightarrow ^{14}$C	0	30.55	20.04	19.04	15.3	-4.74	-3.74
226Th $\rightarrow ^{18}$O	0	45.73	20.50	19.05	16.8	-3.70	-2.25
224Th $\rightarrow ^{14}$C	0	32.93	15.11	14.20	15.7	0.58	1.49
228Th $\rightarrow ^{20}$O	0	44.73	23.97	22.53	20.7	-3.27	-1.83
231Pa $\rightarrow ^{23}$F	1	51.85	26.90	25.16	26.0	-0.90	0.83
230U $\rightarrow ^{22}$Ne	0	61.39	23.27	21.11	19.6	-3.67	-1.51
230Th $\rightarrow ^{24}$Ne	0	57.76	27.92	25.72	24.6	-3.32	-1.12
233Pa $\rightarrow ^{24}$Ne	1	60.41	24.71	22.73	22.9	-1.81	0.16
230U $\rightarrow ^{24}$Ne	0	61.35	24.51	22.56	18.2	-6.31	-4.36
232U $\rightarrow ^{24}$Ne	0	62.31	22.94	21.05	20.4	-2.54	-0.65
233U $\rightarrow ^{24}$Ne	2	60.49	25.97	23.89	24.8	-1.17	0.90
234U $\rightarrow ^{24}$Ne	0	58.83	28.91	26.55	26.0	-2.91	-0.55
233U $\rightarrow ^{25}$Ne	2	60.73	26.17	24.19	24.8	-1.37	0.60
232Th $\rightarrow ^{26}$Ne	0	55.97	32.56	30.32	29.0	-3.56	-1.32
234U $\rightarrow ^{26}$Ne	0	59.47	28.94	26.91	26.0	-2.94	-0.91
236U $\rightarrow ^{26}$Ne	0	56.75	34.10	31.67	26.0	-8.10	-5.67
cluster decay	lmin	Q_{exp}	$IND.$	$TD.$	Exp.	$\Delta^{IND.}$	$\Delta^{TD.}$
---------------	------	----------	--------	-------	-----	----------------	----------------
$^{236}\text{Pu} \rightarrow ^{28}\text{Mg}$	0	79.67	23.55	21.10	21.7	-1.85	0.59
$^{237}\text{Np} \rightarrow ^{30}\text{Mg}$	2	74.79	30.53	27.74	27.6	-2.93	-0.14
$^{238}\text{Pu} \rightarrow ^{30}\text{Mg}$	0	76.80	28.81	26.19	25.7	-3.11	-0.49
$^{241}\text{Am} \rightarrow ^{34}\text{Si}$	3	93.93	28.13	24.97	25.3	-2.83	0.32
$^{242}\text{Cm} \rightarrow ^{34}\text{Si}$	0	96.52	26.13	23.17	23.2	-2.93	0.02
$\chi^2_R \times 10^{-3}$	——	——	4.96	1.91	——	——	——
Table-II: Comparison of the calculated logarithmic half-lives between temperature dependent proximity (TD.) with results based on ASAF model [2].

cluster decay	ASAF	TD.	Δ	cluster decay	ASAF	TD.	Δ
114Ba $\rightarrow ^{12}$C	10.760	10.714	-0.046	232Pa $\rightarrow ^{23}$F	27.041	28.081	1.040
117Ba $\rightarrow ^{12}$C	21.159	21.623	0.464	232U $\rightarrow ^{26}$Ne	28.735	29.535	0.800
119Ba $\rightarrow ^{12}$C	24.044	24.624	0.580	232Pu $\rightarrow ^{22}$Ne	21.116	22.124	1.008
120La $\rightarrow ^{12}$C	23.668	24.256	0.587	233U $\rightarrow ^{25}$Ne	23.707	24.162	0.455
121La $\rightarrow ^{12}$C	27.208	27.940	0.732	233U $\rightarrow ^{28}$Mg	25.106	25.918	0.813
122Ce $\rightarrow ^{12}$C	26.027	26.741	0.714	233Np $\rightarrow ^{24}$Ne	22.049	22.519	0.470
124Ce $\rightarrow ^{12}$C	34.286	35.304	1.018	233Pu $\rightarrow ^{22}$Ne	23.483	24.967	1.484
215At $\rightarrow ^{8}$Be	15.358	16.694	1.336	234U $\rightarrow ^{24}$Ne	25.367	26.550	1.183
218Ra $\rightarrow ^{12}$C	14.007	15.194	1.186	234U $\rightarrow ^{28}$Mg	25.176	26.074	0.898
222Ac $\rightarrow ^{12}$C	12.934	14.093	1.159	234Np $\rightarrow ^{28}$Mg	22.795	23.059	0.264
223Th $\rightarrow ^{15}$N	16.878	17.940	1.062	234Pu $\rightarrow ^{28}$Mg	21.889	21.856	-0.033
225Np $\rightarrow ^{12}$C	9.911	10.645	0.734	235U $\rightarrow ^{25}$Ne	27.945	29.198	1.254
225U $\rightarrow ^{15}$N	16.845	17.857	1.012	235U $\rightarrow ^{28}$Mg	27.560	29.050	1.490
227Th $\rightarrow ^{22}$Ne	25.220	27.049	1.829	235Np $\rightarrow ^{28}$Mg	22.879	23.228	0.349
228Pu $\rightarrow ^{15}$N	18.105	19.258	1.152	235Pu $\rightarrow ^{25}$Ne	26.781	27.633	0.852
228Th $\rightarrow ^{24}$Ne	25.307	26.338	1.031	235Pu $\rightarrow ^{29}$Mg	25.538	25.911	0.373
229Ac $\rightarrow ^{22}$O	26.916	27.595	0.679	236U $\rightarrow ^{26}$Ne	30.376	31.677	1.301
229Th $\rightarrow ^{24}$Ne	24.642	25.623	0.981	114Ba $\rightarrow ^{16}$O	15.192	14.988	-0.204
229Pa $\rightarrow ^{23}$F	27.024	27.898	0.875	117Ba $\rightarrow ^{16}$O	24.113	24.468	0.355
229Pa $\rightarrow ^{24}$Ne	23.278	23.935	0.656	119Ba $\rightarrow ^{16}$O	27.517	28.064	0.548
230Th $\rightarrow ^{23}$F	28.734	29.995	1.261	120Ce $\rightarrow ^{16}$O	17.415	17.388	-0.027
230Pa $\rightarrow ^{23}$F	25.436	26.150	0.714	121Ce $\rightarrow ^{16}$O	19.671	19.799	0.129
230Pa $\rightarrow ^{22}$Ne	25.066	26.958	1.892	123Ce $\rightarrow ^{16}$O	24.949	25.413	0.464
230U $\rightarrow ^{24}$Ne	22.139	22.566	0.428	124Pr $\rightarrow ^{16}$O	24.196	24.645	0.449
231U $\rightarrow ^{22}$Ne	22.688	24.111	1.423	218Fr $\rightarrow ^{8}$Be	10.856	11.924	1.067
221Pa $\rightarrow ^{8}$Be	8.441	9.279	0.838				
Reaction	ASAF	TD.	Δ	Reaction	ASAF	TD.	Δ
--------------------------	------	------	------	--------------------------	------	------	------
$^{231}\text{Th} \rightarrow ^{25}\text{Ne}$	26.970	28.056	1.086	$^{222}\text{Ac} \rightarrow ^{15}\text{N}$	14.665	15.497	0.832
$^{231}\text{Pa} \rightarrow ^{23}\text{F}$	24.509	25.152	0.643	$^{233}\text{Th} \rightarrow ^{17}\text{O}$	19.915	21.289	1.374
$^{231}\text{Np} \rightarrow ^{22}\text{Ne}$	20.605	21.555	0.950	$^{225}\text{Pa} \rightarrow ^{15}\text{N}$	14.445	15.235	0.789
$^{227}\text{U} \rightarrow ^{17}\text{O}$	18.959	20.233	1.274	$^{235}\text{U} \rightarrow ^{29}\text{Mg}$	27.959	29.076	1.117
$^{227}\text{Pa} \rightarrow ^{22}\text{Ne}$	22.813	24.119	1.306	$^{235}\text{Np} \rightarrow ^{29}\text{Mg}$	27.498	28.386	0.887
$^{228}\text{Th} \rightarrow ^{22}\text{Ne}$	25.723	27.714	1.991	$^{235}\text{Pu} \rightarrow ^{28}\text{Mg}$	21.263	21.151	-0.112
$^{228}\text{Ac} \rightarrow ^{23}\text{F}$	28.811	30.074	1.263	$^{236}\text{U} \rightarrow ^{24}\text{Ne}$	29.604	31.640	2.036
$^{228}\text{U} \rightarrow ^{22}\text{Ne}$	20.768	21.681	0.912	$^{236}\text{U} \rightarrow ^{30}\text{Mg}$	29.083	30.084	1.001
$^{229}\text{Ac} \rightarrow ^{23}\text{F}$	27.984	29.195	1.211	$^{236}\text{Np} \rightarrow ^{28}\text{Mg}$	25.100	25.992	0.891
$^{229}\text{U} \rightarrow ^{22}\text{Ne}$	19.874	20.682	0.809	$^{236}\text{Np} \rightarrow ^{30}\text{Mg}$	27.581	28.140	0.559
$^{229}\text{Pa} \rightarrow ^{22}\text{Ne}$	22.306	23.642	1.336	$^{236}\text{Pu} \rightarrow ^{29}\text{Mg}$	26.214	26.785	0.572
$^{230}\text{Th} \rightarrow ^{22}\text{O}$	26.388	26.962	0.575	$^{237}\text{Np} \rightarrow ^{30}\text{Mg}$	27.163	27.708	0.545
$^{230}\text{Th} \rightarrow ^{24}\text{Ne}$	24.674	25.724	1.050	$^{237}\text{Pu} \rightarrow ^{29}\text{Mg}$	24.362	24.614	0.252
$^{230}\text{Pa} \rightarrow ^{24}\text{Ne}$	22.249	22.793	0.544	$^{237}\text{Pu} \rightarrow ^{32}\text{Si}$	25.273	25.624	0.351
$^{230}\text{U} \rightarrow ^{20}\text{O}$	25.653	26.672	1.019	$^{237}\text{Am} \rightarrow ^{29}\text{Mg}$	27.384	28.142	0.758
$^{231}\text{Pa} \rightarrow ^{22}\text{O}$	29.269	30.111	0.842	$^{238}\text{Pu} \rightarrow ^{28}\text{Mg}$	25.341	26.288	0.947
$^{231}\text{Th} \rightarrow ^{24}\text{Ne}$	27.253	28.795	1.542	$^{238}\text{Pu} \rightarrow ^{30}\text{Mg}$	25.954	26.195	0.240
$^{231}\text{U} \rightarrow ^{22}\text{O}$	33.553	34.746	1.193	$^{238}\text{Pu} \rightarrow ^{33}\text{Si}$	28.717	29.571	0.854
$^{231}\text{Pa} \rightarrow ^{24}\text{Ne}$	22.144	22.722	0.579	$^{238}\text{Am} \rightarrow ^{29}\text{Mg}$	25.778	26.267	0.490
$^{232}\text{Th} \rightarrow ^{26}\text{Ne}$	29.211	30.325	1.114	$^{238}\text{Am} \rightarrow ^{32}\text{Si}$	23.191	22.941	-0.250
$^{232}\text{U} \rightarrow ^{24}\text{Ne}$	20.755	21.050	0.295	$^{238}\text{Cm} \rightarrow ^{28}\text{Mg}$	22.733	22.893	0.159
$^{232}\text{U} \rightarrow ^{28}\text{Mg}$	25.065	25.804	0.739	$^{239}\text{Pu} \rightarrow ^{30}\text{Mg}$	27.997	28.712	0.715
$^{233}\text{U} \rightarrow ^{24}\text{Ne}$	23.106	23.847	0.741	$^{239}\text{Pu} \rightarrow ^{34}\text{Si}$	27.318	27.455	0.137
$^{233}\text{U} \rightarrow ^{26}\text{Ne}$	27.197	27.825	0.628	$^{239}\text{Am} \rightarrow ^{32}\text{Si}$	23.367	23.227	-0.140
$^{233}\text{Np} \rightarrow ^{22}\text{Ne}$	26.062	28.111	2.049	$^{239}\text{Am} \rightarrow ^{34}\text{Si}$	26.224	25.957	-0.267
$^{233}\text{Np} \rightarrow ^{25}\text{Ne}$	27.596	28.557	0.961	$^{240}\text{Pu} \rightarrow ^{34}\text{Si}$	27.029	27.170	0.141
$^{233}\text{Pu} \rightarrow ^{24}\text{Ne}$	22.945	23.473	0.527	$^{240}\text{Am} \rightarrow ^{34}\text{Si}$	25.576	25.215	-0.361
$^{234}\text{U} \rightarrow ^{26}\text{Ne}$	26.359	26.914	0.555	$^{240}\text{Cm} \rightarrow ^{32}\text{Si}$	21.634	20.979	-0.655
$^{234}\text{Np} \rightarrow ^{25}\text{Ne}$	25.498	26.186	0.688	$^{241}\text{Am} \rightarrow ^{33}\text{Si}$	28.547	29.451	0.904
$^{234}\text{Pu} \rightarrow ^{24}\text{Ne}$	23.037	23.629	0.592	$^{241}\text{Cm} \rightarrow ^{32}\text{Si}$	23.649	23.592	-0.058
Cluster Decay	ASAF	TD.	Δ	Cluster Decay	ASAF	TD.	Δ
---------------	------	-----	------	---------------	------	-----	------
235U \rightarrow 24Ne	27.478	29.079	1.601	242Cm \rightarrow 34Si	23.938	23.174	-0.764
235U \rightarrow 26Ne	28.323	29.244	0.921	242Cf \rightarrow 33Si	26.205	26.179	-0.026
242Cf \rightarrow 36S	24.037	23.064	-0.973	237Am \rightarrow 28Mg	22.160	22.243	0.083
244Cm \rightarrow 34Si	27.261	27.461	0.200	237Am \rightarrow 32Si	23.567	23.352	-0.215
244Cf \rightarrow 36S	23.781	22.852	-0.929	238Pu \rightarrow 29Mg	28.028	29.105	1.077
249No \rightarrow 42S	31.708	30.886	-0.822	238Pu \rightarrow 32Si	25.484	25.966	0.482
249No \rightarrow 48Ca	27.237	23.322	-3.915	238Am \rightarrow 28Mg	23.892	24.410	0.518
250No \rightarrow 48Ca	26.894	22.916	-3.979	238Am \rightarrow 30Mg	28.052	28.592	0.540
251No \rightarrow 48Ca	26.646	22.633	-4.013	238Am \rightarrow 33Si	26.006	26.035	0.029
252Cf \rightarrow 50Ca	32.209	30.055	-2.154	238Cm \rightarrow 32Si	22.065	21.411	-0.655
252No \rightarrow 48Ca	26.321	22.250	-4.071	239Pu \rightarrow 33Si	27.436	27.461	0.029
253Fm \rightarrow 48Ca	27.932	24.796	-3.137	239Am \rightarrow 33Si	26.563	26.798	0.236
254No \rightarrow 46Ca	26.810	23.880	-2.930	239Cm \rightarrow 32Si	21.546	20.818	-0.728
254No \rightarrow 50Ca	29.401	25.731	-3.670	240Am \rightarrow 33Si	25.545	25.602	0.056
255No \rightarrow 50Ca	28.718	24.871	-3.846	240Cm \rightarrow 30Mg	28.773	29.466	0.693
256No \rightarrow 50Ca	27.896	23.813	-4.083	240Cm \rightarrow 34Si	25.142	24.544	-0.598
257No \rightarrow 50Ca	27.034	22.714	-4.320	241Am \rightarrow 34Si	25.285	24.923	-0.362
258No \rightarrow 48Ca	27.071	23.640	-3.431	242Cm \rightarrow 32Si	25.389	25.858	0.469
258Rf \rightarrow 48Ca	25.519	21.218	-4.301	242Cf \rightarrow 32Si	22.321	21.737	-0.584
258Rf \rightarrow 50Ca	28.953	25.076	-3.876	242Cf \rightarrow 34Si	26.373	25.969	-0.404
258Rf \rightarrow 51Ti	27.699	23.286	-4.413	243Cm \rightarrow 34Si	25.638	25.360	-0.278
258Rf \rightarrow 53Ti	29.963	25.593	-4.370	244Cf \rightarrow 34Si	25.575	25.095	-0.480
259No \rightarrow 48Ca	28.184	25.229	-2.955	246Cf \rightarrow 38S	26.050	25.058	-0.991
260No \rightarrow 48Ca	29.194	26.700	-2.493	249Cf \rightarrow 46Ar	31.476	29.809	-1.668
261No \rightarrow 50Ca	29.409	26.204	-3.205	249Cf \rightarrow 50Ca	33.768	31.906	-1.862
236Np \rightarrow 29Mg	26.044	26.701	0.657	251Cf \rightarrow 46Ar	30.023	28.044	-1.979
236Pu \rightarrow 28Mg	21.180	21.107	-0.073	252Cf \rightarrow 46Ar	29.450	27.371	-2.079
236Pu \rightarrow 30Mg	27.608	28.051	0.444	252Md \rightarrow 46Ca	28.135	25.713	-2.422
Cluster Decay	ASAF	TD.	Δ	Cluster Decay	ASAF	TD.	Δ
---------------	------	------	------	---------------	------	------	------
237Np → 33Si	27.691	28.824	1.133	290Lv → 28Mg	28.151	31.051	2.900
237Pu → 30Mg	26.473	26.752	0.279	294118 → 50Ca	30.932	28.049	-2.883
254Md → 48Ca	26.229	22.387	-3.843	252No → 50Ca	30.370	26.912	-3.458
254No → 48Ca	25.771	21.616	-4.155	253No → 50Ca	29.953	26.411	-3.542
255No → 48Ca	25.129	20.802	-4.328	294118 → 48Ca	28.298	25.294	-3.004
256No → 48Ca	24.856	20.481	-4.374	294118 → 34Si	28.340	29.541	1.202
257Md → 50Ca	25.982	22.075	-3.907	294118 → 28Mg	26.362	28.647	2.285
258No → 50Ca	28.580	25.039	-3.540	296120 → 50Ca	29.703	26.144	-3.559
258Rf → 49Ca	27.898	24.045	-3.854	296120 → 48Ca	26.588	22.688	-3.900
258Rf → 52Ti	26.451	21.964	-4.488	296120 → 34Si	26.225	26.588	0.362
258Rf → 54Ti	27.570	22.681	-4.889	296120 → 28Mg	23.811	25.164	1.353
259No → 50Ca	30.359	25.722	-4.636	296120 → 22Ne	21.380	23.695	2.315
261No → 48Ca	27.544	23.526	-4.019	271Sg → 50Ca	35.508	34.739	-0.769
262No → 50Ca	30.204	28.182	-2.022	271Sg → 48Ca	35.301	35.561	0.260
271Sg → 50Ca	34.793	33.712	-1.081	275Hs → 50Ca	33.969	33.627	-0.342
275Hs → 48Ca	32.585	35.222	2.637	275Hs → 34Si	26.760	30.290	-3.541
272Ds → 50Ca	30.114	27.558	-2.556	272Ds → 28Mg	26.238	29.287	3.049
272Ds → 22Ne	30.079	29.703	-2.375	290Lv → 50Ca	29.710	27.344	-2.367
290Lv → 48Ca	29.450	31.000	1.550	290Lv → 34Si	29.450	31.000	1.550