Influence of Silar Cycle on The Energy Bandgap of Iron Copper Sulphide (FeCuS) Thin Films Deposited on SLG Substrate

Qasim Abolanle Adeniji*, Kola Odunaike, Temitope Olasile Fowodu and Adetoro Temitope Talabi

Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Abstract

This study aims to investigate the influence of SILAR cycle on the energy bandgap of Iron Copper Sulphide (FeCuS) thin films deposited on soda-lime glass substrate (SLG). A Successive Ionic Layer Adsorption and Reaction (SILAR) method is one of the chemical methods for making uniform and large area thin films, which is based on immersion of substrates into separately placed cationic and anionic precursors. The technological importance of chemically deposited iron copper sulphide (FeCuS) using SILAR technique vis-à-vis the effect of SILAR cycle on the energy band gap of the deposited thin films has not been unraveled. Thin films of Iron Copper Sulphide were grown on soda-lime glass substrate (SLG) by a simple solution based Successive Ionic Layer Adsorption and Reaction (SILAR) technique at room temperature (300 K) with EDTA, TEA and NH₄OH as complexing agents at different SILAR cycles (20, 30 and 40 cycles) of deposition. The thin films grown were characterized using Avantes UV-VIS spectrophotometer (Avalight-DH-S-BAL) in the wavelength range 200-1000nm and Four Point Probe machine (Keithley 4ZA4 2400 Sourcemeter, manufactured by Tektronix Company). The optical properties considered revealed high absorbance and reflectance but low transmittance in the UV region; low values of absorbance and reflectance accompanied with high transmittance in the VIS region. Moreover, the resistivity of the grown thin film varied from 9.480 x 10⁶ Ωm to 4.366 x 10⁷ Ωm in order of increasing SILAR cycle, direct band gap of 3.76eV, 3.51eV and 3.42eV were obtained. These properties suggest that the films are suitable for solar cell and optoelectronic applications.

Key Words

SILAR cycle, Iron copper sulphide (FeCuS), Energy band gap, SLG substrate, Thin films

Introduction

Photovoltaic came into existence as a rapidly growing field because of the global search for an alternative source of power generation. It is a direct means for detection and conversion of solar radiations into electrical energy. The solar energy is a free gift of nature to humankind, which is pollution-free, can be sensed, controlled and used to produce power using solar cell modules. Woodford [1] predicted that the sun has enough fuel onboard to drive our Solar System for another five billion years and solar panels can turn this energy into an endless and convenient supply of electricity.

Many researchers have succeeded in depositing iron copper sulphide (FeCuS) thin films using chemical bath deposition (CBD) [2, 3] and solution growth technique (SGT) [4]. A successive ionic layer adsorption and reaction
Experimental Details

Stoichiometric quantities of analytical grade reagents of ferrous nitrate, cuprous chloride and thiourea served as precursors, ethylene diamine tetraacetate (EDTA) and triethanolamine (TEA) were used as complexing agents with deionized water and ammonia solution.

The deposition method adopted in this study is Successive Ionic Layer Adsorption and Reaction (SILAR). FeCuS thin films were deposited on glass (SLG) substrates (76.2 mm x 2.5 mm x 1.2 mm) when immersed into the precursors and is carried out using four beakers system (Beakers I, II, III and IV) at room temperature. In order to remove the organic and inorganic impurities, the glass substrates were first degreased vertically in each beaker at every immersion to prevent it from sticking or falling in the beaker. The deposition was done at room temperature for 80 seconds dip time per cycle.

After the deposition, the substrates were removed and allowed to dry in Laboratory open air. The samples deposited at 20, 30 and 40 cycles were labeled FeCuS-20(0.4 M), FeCuS-30(0.4 M) and FeCuS-40(0.4 M) respectively.

The optical analyses data of the thin films were obtained from Avantes UV-VIS spectrophotometer (Avalight-DH-S-BAL) in the wavelength range 200-1000 nm and the electrical characterization was examined with the aid of Four Point Probe machine (Keithley 4ZA4 2400 Source meter, manufactured by Tektronix Company) for measurement of current (I) and voltage (V).

Results and Discussion

Figure 1 shows that the samples have reflectance values which are less than 15% and 33% (with the sample deposited at 40 cycles having the least and highest values of 3.7% and 32.5%) for both at the UV and NIR regions respectively. Results from reflectance spectra showed that these properties mostly decrease and at another time increase with SILAR cycle. This provides wide latitude for the applications of the thin film. Average reflectance was found to be below 30% for all films.
and 40 cycles both have high transmittance above 80% while the sample deposited at 30 cycles has the least transmittance of 60%. The transmittance varies most times as SILAR cycle and at another time inversely proportional. In all the films below 450 nm there was a sharp fall in the percentage transmittance of the films which indicates a strong increase in photon absorption [6]. It denotes that some states have been created in the Fermi-level between the conduction and valence band. This can also be attributed to the increase in fundamental absorption as photon striking increases with increase in carrier concentration [7]. As shown on the graph, average transmittance at wavelength (λ) = 800 nm was found to be between 80% and 90%. These values of fairly low and high transmittances in UV and VIS-NIR regions respectively are in agreement with previous researchers [2, 4, 8]. The results further revealed the utilization of the materials in solar cell. The optical absorption spectra of the thin films shown in figure 3 it was observed that all the deposited samples exhibit high absorbance in the UV region of the electromagnetic spectrum between wavelengths of 200 nm and 300 nm which decreased with increasing wavelength of solar radiation. However, the absorbance of the thin film is between 2.5 and 4.7. The increase in absorption occurs when the photon energy reaches the value of the energy gap where electronic transfers occur between the valence band and conduction band. The film shows relatively low absorbance in the NIR regions of the spectrum (less than 1.0). This is in consonance with the reports of [2, 4, 8] as they also observed high absorbance in the UV region and low absorbance in the VIS-NIR region.

In order of increasing SILAR cycle, direct band gap of 3.76e V, 3.51e V and 3.42e V were obtained from the graph of (ahv)2 as a function of the photon energy (hv) plotted for direct allowed transition (Figure 4), through the intercept on energy axis after extrapolation of the straight-line section in the high-energy region of the plot. It is observed that the band gap values decreased as the SILAR cycle increased. There is an obvious contrast between the range of these direct band gap values and the results of previous researchers [2, 4, 8]. The values obtained were found to be higher than previous researchers which could be attributed to the variation in the molar concentrations of the precursors used, the deposition time, and impurities from the environment where the research was conducted. The band-gap of the window layer should be high and the layer be thin as possible to maintain low series resistance [10, 12]. This is to ensure that the window layer does not absorb any of the incident light and to allow maximum photon energy to reach the absorber layer where it is needed for generation of electrons.

The resistivity of the grown thin film varied from $9.480 \times 10^6 \ \Omega m$ to $4.366 \times 10^7 \ \Omega m$ as shown in table 1. This enhances the electrical property of the film and makes it a good material for solar applications. Resistivity should not be too high or low due to the inevitable defects in solar cells during the actual production process [11]. The results of the films deposited showed that the resistivity decreases as SILAR cycle increases.
Influence of Silar Cycle on The Energy Bandgap of Iron Copper Sulphide (FeCuS) Thin Films Deposited on SLG Substrate

Adeniji et al.

Conclusion
The deposition and characterization of FeCuS thin films have been successfully achieved. The results showed that the energy band gap values of the thin films decreased as the SILAR cycle increased. Other solid-state properties of the materials were influenced as the SILAR cycles increased. This provides wide latitude for applications of the thin films in the following: solar cell fabrication, screening off UV radiation, low transmittance and low reflectance in UV region, coating of poultry buildings, eye glasses coating, solar thermal conversion, solar control, anti-reflection coating and window layers in solar cells. Anticipation is that the growing of the thin film with required specific cycle will lead to more applications of the ternary compound semiconductor.

Recommendations
It is recommended that other types of substrates such as Si wafer, and titanium foil should be used in the deposition of FeCuS thin films using SILAR technique. Other methods of thin film deposition such as electrodeposition, chemical vapour deposition etc. be used and results compared with that of this work. All other characterization such as Energy Dispersive X-ray analysis (EDX), X-Ray Diffraction (XRD), etc. should also be considered. Scaling up of the applications of the result in this work is also recommended.

Conflict of Interest
No conflict of interest among authors.

Table 1: Electrical results of the thin films.

Thin film Samples	Voltage (V)	Current (A)	Sheet resistance, \(R_s\) (Ωm\(^{-2}\))	Resistivity (Ωm)
FeCuS-20 (0.4M)	4.370 × 10\(^{-1}\)	9.075 × 10\(^{-4}\)	2.183 × 10\(^{7}\)	4.366 × 10\(^{7}\)
FeCuS-30 (0.4M)	4.685 × 10\(^{-1}\)	3.223 × 10\(^{-4}\)	6.590 × 10\(^{7}\)	1.318 × 10\(^{7}\)
FeCuS-40 (0.4M)	3.107 × 10\(^{-1}\)	2.972 × 10\(^{-4}\)	4.740 × 10\(^{7}\)	9.480 × 10\(^{6}\)

Funding
This article is not funded by any organization or institution.

References
1. Woodford C. 2016. Solar cells.
2. Ezenwa EI, Okoli LN. 2015. Synthesis and characterization of chemically deposited iron copper sulphide (FeCuS) thin films. Asia Pac J Res 1(21): 14-21.
3. Obasi BI, Osuwa JC, Odu DA. 2016. Effects of varying copper (Cu) ion concentrations of ternary compound of copper iron sulfide (CuFeS) thin films. International Journal of Science and Technology 5(8): 369-373.
4. Uhuegbu CC. 2010. Solution growth technique for iron copper sulphide ternary thin film and its optical characteristics. Am J Sci Ind Res 1(3): 392-396. https://www.doi.org/10.5251/ajsiar.2010.1.3.392.396
5. Sankapal BR, Lokhande CD. 2002. Effect of annealing on chemically deposited Bi\(_2\)Se\(_3\)-Sb\(_2\)Se\(_3\) composite thin films. Mater Chem Phys 74(2): 126-133. https://doi.org/10.1016/S0254-0584(01)00414-X
6. Kim H, Auyeung RCY, Piqé A. 2008. Transparent conducting F-doped SnO\(_2\) thin films grown by pulsed laser deposition. Thin Solid Films 516(15): 5052-5056. https://doi.org/10.1016/j.tsf.2007.11.079
7. Kumar T, Sankaranarayanan S. 2009. Growth and characterisation of CdZnS thin films by short duration microwave assisted chemical bath deposition technique. Chalcogenide Letters 6(10): 555-562.
8. Okoli NL, Udachukwu IE, Okpaneje OT. 2016. Effect of deposition time on optical and solid state properties of chemically deposited iron copper sulphide (FeCuS) ternary thin films. African Journal of Education, Science and Technology 3(1): 71-80.
9. Wanjala KS, Njoroge WK, Nguruki JM. 2016. Optical and electrical characterization of ZnS:Sn thin films for solar cell application. Int J Energy Eng 6(1): 1-7. https://www.doi.org/10.5923/j.ije.20160601.01
10. Banerjee A, Chopra KL. 1985. Surface analytical studies of optically selective oxide films. Proc Indian Natn Sci Acad 51(3): 57-75.
11. Ikihioya IL. 2015. Optical and electrical properties of ZnTe thin films using electrodeposition technique. International Journal of Innovation and Applied Studies 12(2): 369-373.
12. Ezema FL. 2004. Effect of some parametric variations on the optical properties of chemical bath deposited BiClO thin films. Journal of University of Chemical Technology and Metallurgy 39: 225-238.