ON CERTAIN SUMS OF NUMBER THEORY

OLIVIER BORDELLÈS

Abstract. We study sums of the shape \(\sum_{n \leq x} f(\lfloor x/n \rfloor) \) where \(f \) is either the von Mangoldt function or the Dirichlet-Piltz divisor functions. We improve previous estimates when \(f = \Lambda \) and \(f = \sigma \), and provide new results when \(f = \sigma_r \) with \(r \geq 3 \), breaking the \(\frac{1}{2} \)-barrier in each case. The functions \(f = \mu^2 \) and \(f = 2^\omega \) are also investigated.

1. Introduction and results

Recently, there has been a great deal of interest in estimating sums of the form

\[
\sum_{n \leq x} f(\lfloor x/n \rfloor)
\]

where \(\lfloor x \rfloor \) is the integer part of \(x \in \mathbb{R} \), and \(f \) is an arithmetic function. Historically, the first one goes back to Dirichlet in the middle of the 19th century when he proved that

\[
\sum_{n \leq x} \lfloor x/n \rfloor = x \log x + x(2\gamma - 1) + O(\sqrt{x}).
\]

Subsequently, the exponent in the error term has been improved, the best result to date being \(x^{517/1648 + \varepsilon} \), which is due to Bourgain & Watt [4]. In [2], the authors established a quite general result involving arithmetic functions \(f \) which are not too large. More precisely, if \(f \) satisfies

\[
\sum_{n \leq x} |f(n)|^2 \ll x^\alpha
\]

for some \(\alpha \in (0, 2) \), then it is proved that

\[
\sum_{n \leq x} f(\lfloor x/n \rfloor) = x \sum_{n=1}^\infty \frac{f(n)}{n(n+1)} + O \left(x^{\frac{1}{2}(\alpha+1)}(\log x)^{\frac{1}{2}(\alpha+1)+o(1)} \right).
\]

This estimate was then improved independently by Wu [13, Theorem 1.2] and Zhai [14, Theorem 1] who proved that

\[
\sum_{n \leq x} f(\lfloor x/n \rfloor) = x \sum_{n=1}^\infty \frac{f(n)}{n(n+1)} + O \left(x^{\frac{1}{2}(\alpha+1)}(\log x)^{\theta} \right)
\]

provided that \(f(n) \ll n^\alpha (\log n)^\theta \) for some \(\alpha \in [0, 1) \) and \(\theta > 0 \). For arithmetic functions \(f \) satisfying the Ramanujan hypothesis \(f(n) \ll n^\varepsilon \), this implies

\[
\sum_{n \leq x} f(\lfloor x/n \rfloor) = x \sum_{n=1}^\infty \frac{f(n)}{n(n+1)} + O \left(x^\frac{1}{2} + x^\varepsilon \right).
\]

2020 Mathematics Subject Classification. 11N37, 11L07.
Key words and phrases. Dirichlet hyperbola principle, Exponential sums of type I and II, Vaughan’s identity, exponent pairs.
The question of breaking the \(\frac{1}{2} \)-barrier for specific arithmetic functions \(f \) then arises naturally. Using Vaughan’s identity and the exponent pair \((\frac{1}{6}, \frac{2}{3}) \), Ma and Wu \[9\] showed that

\[
\sum_{n \leq x} \Lambda \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n(n+1)} + O \left(x^{\frac{35}{71} + \varepsilon} \right).
\]

In a similar but simpler way, Ma and Sun \[8\] proved that

\[
\sum_{n \leq x} \tau \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\tau(n)}{n(n+1)} + O \left(x^{\frac{11}{23} + \varepsilon} \right).
\]

Note that \(\frac{35}{71} \approx 0.4929\ldots \) and \(\frac{11}{23} \approx 0.4782\ldots \). The aim of this work is to improve these results when \(f = \Lambda \) and \(f = \tau \), to extend them to the case \(f = \tau_r \) for some fixed integer \(r \geq 2 \), and also to study the cases \(f = \mu^2 \) and \(f = 2^\omega \).

Theorem 1.1. Let \((k, \ell)\) be an exponent pair satisfying \(k \leq \frac{1}{6}, \) \(3k + 4\ell \geq 1 \) and \(\ell^2 + \ell + 3 - k(5 - \ell) - 9k^2 > 0 \). For any \(\varepsilon > 0 \) and \(x \) sufficiently large, we have

\[
\sum_{n \leq x} \Lambda \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n(n+1)} + O_{\varepsilon} \left(x^{\frac{14(k+1)}{29k - r + 30} + \varepsilon} \right).
\]

Theorem 1.2. Let \(r \geq 2 \) be any fixed integer and \((k, \ell)\) be an exponent pair satisfying

\[
1 - \ell > k(r - 1).
\]

For any \(\varepsilon > 0 \) and \(x \) sufficiently large, we have

\[
\sum_{n \leq x} \tau_r \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\tau_r(n)}{n(n+1)} + O_{\varepsilon,r} \left(x^{\frac{k(r-1) + (\ell + r - 1)}{k(r-1) + (\ell + r - 1) - 1} + \varepsilon} \right).
\]

It is proved in \[3\], Theorem 6] that \((\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon) \) is an exponent pair. We use this result in the cases \(f = \Lambda \) and \(f = \tau \), and the exponent pair \(A \left(\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon \right) = (\frac{13}{104} + \varepsilon, \frac{76}{97} + \varepsilon) \) when \(f = \tau_3 \). For \(r \geq 4 \), the condition \[4\] requires having \(k \) very small. Recently, some improvements in exponential sums have appeared in the literature. As an application, Heath-Brown \[7\], Theorem 2] proved that, for all \(m \in \mathbb{Z}_{\geq 3} \)

\[
(k, \ell) = \left(\frac{2}{(m - 1)^2(m + 2)}, 1 - \frac{3m - 2}{m(m - 1)(m + 2)} + \varepsilon \right)
\]

is an exponent pair. For the function \(\tau_r \) with \(r \geq 4 \), we use this result with \(m = 2r - 1 \). Putting altogether, we derive the next estimates.
Corollary 1.3. Let $r \geq 4$ be any fixed integer. For any $\varepsilon > 0$ and $x \geq e$ sufficiently large, we have

$$
\sum_{n \leq x} \Lambda \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n(n+1)} + O\left(x^{\frac{97}{202} + \varepsilon} \right);
$$

$$
\sum_{n \leq x} \tau \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\tau(n)}{n(n+1)} + O\left(x^{\frac{19}{42} + \varepsilon} \right);
$$

$$
\sum_{n \leq x} \tau_3 \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\tau_3(n)}{n(n+1)} + O\left(x^{\frac{97}{202} + \varepsilon} \right);
$$

$$
\sum_{n \leq x} \tau_r \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\tau_r(n)}{n(n+1)} + O\left(x^{\frac{19}{42} + \varepsilon} \right).
$$

Note that $\frac{97}{202} \approx 0.4778$, $\frac{19}{42} = 0.475$, $\frac{283}{574} \approx 0.493$ and

r	4	5	6
$\frac{1}{2} - \frac{1}{2(4r^3-1)}$	0.498	0.499	0.4994

For the functions $\mu_2 = \mu^2$ and 2^ω, we have the following estimates.

Theorem 1.4. For any $\varepsilon > 0$ and $x \geq e$ sufficiently large, we have

$$
\sum_{n \leq x} \mu_2 \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{\mu_2(n)}{n(n+1)} + O\left(x^{\frac{1919}{2028} + \varepsilon} \right).
$$

Theorem 1.5. Let (k, ℓ) be an exponent pair such that $k + \ell < 1$. For any $\varepsilon > 0$ and $x \geq e$ sufficiently large, we have

$$
\sum_{n \leq x} 2^\omega \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{2^\omega(n)}{n(n+1)} + O\left(x^{\frac{2(k+1)}{2k+1} + \varepsilon} \right).
$$

In particular

$$
\sum_{n \leq x} 2^\omega \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^{\infty} \frac{2^\omega(n)}{n(n+1)} + O\left(x^{\frac{97}{202} + \varepsilon} \right).
$$

Note that $\frac{1919}{2028} \approx 0.4496$ and $\frac{97}{202} \approx 0.4802$.

2. Notation

If f and g are any arithmetic functions, $f \ast g$ is the Dirichlet convolution product defined by

$$(f \ast g)(n) = \sum_{d \mid n} f(d)g(n/d).$$

Let μ be the Möbius function, $\Lambda = \mu \ast \log$ is the von Mangoldt function, and $\mu_2 = \mu^2$ is the characteristic function of the set of squarefree numbers. As usual, $\omega(n)$ is the number of distinct prime factors of n with the convention $\omega(1) = 0$, so that $2^\omega(n)$ counts the number of unitary divisors of n. If $r \geq 1$ is any fixed positive integer, the Dirichlet-Piltz divisor function τ_r is inductively defined by $\tau_1 = 1$ and, for $r \geq 2$, $\tau_r = \tau_{r-1} \ast 1$, and it is customary to set $\tau = \tau_2$. Finally, for any $x \in \mathbb{R}$, $e(x) = e^{2\pi i x}$ and $\psi(x) = x - \lfloor x \rfloor - \frac{1}{2}$ is the 1st Bernoulli function.
The next result relates our problem to estimating certain exponential sums.

Proposition 3.1. Let $x \geq e$ large, $f : \mathbb{Z}_{\geq 1} \rightarrow \mathbb{C}$ satisfying $f(n) \ll n^\varepsilon$ and let $x^{1/3} \leq N < x^{1/2}$ be a parameter. Then, for all $H \in \mathbb{Z}_{\geq 1}$

$$
\sum_{n \leq x} f \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{n=1}^\infty \frac{f(n)}{n(n+1)}
$$

$$
\quad + O \left\{ N x^\varepsilon + x^\varepsilon \max_{N \leq D \leq x/N} \left(\frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \sum_{a=0}^1 \left| \sum_{D < d \leq 2D} f(d) e \left(\frac{hx}{d+a} \right) \right| \right) \right\}.
$$

Proof. Note first that the series in the main term above converges absolutely. Following [8, 9], we split the sum into two subsums

$$
\sum_{n \leq x} f \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = \left(\sum_{n \leq N} + \sum_{N < n \leq x} \right) f \left(\left\lfloor \frac{x}{n} \right\rfloor \right) := S_1 + S_2.
$$

where $x^{1/3} \leq N < x^{1/2}$ is a parameter at our disposal. Trivially

$$
S_1 \ll x^\varepsilon \sum_{n \leq N} \frac{1}{n^\varepsilon} \ll N x^\varepsilon.
$$

Next

$$
S_2 = \sum_{d \leq x/N} f(d) \left(\left\lfloor \frac{x}{d} \right\rfloor - \left\lfloor \frac{x}{d+1} \right\rfloor \right) + O \left\{ x^\varepsilon \left(1 + x N^{-2} \right) \right\}
$$

$$
= \sum_{d \leq x/N} f(d) \left(\frac{x}{d(d+1)} - \psi \left(\frac{x}{d} \right) + \psi \left(\frac{x}{d+1} \right) \right) + O \left(x^{1+\varepsilon} N^{-2} \right)
$$

$$
= x \sum_{d=1}^\infty \frac{f(d)}{d(d+1)} - x \sum_{d>x/N} \frac{f(d)}{d(d+1)} + \sum_{d \leq N} f(d) \left(\psi \left(\frac{x}{d+1} \right) - \psi \left(\frac{x}{d} \right) \right)
$$

$$
+ \sum_{N < d \leq x/N} f(d) \left(\psi \left(\frac{x}{d} \right) - \psi \left(\frac{x}{d+1} \right) \right) + O \left(x^{1+\varepsilon} N^{-2} \right).
$$

Now the condition $f(n) \ll n^\varepsilon$ entails that

$$
\left| \sum_{d \leq N} f(d) \left(\psi \left(\frac{x}{d+1} \right) - \psi \left(\frac{x}{d} \right) \right) \right| \ll \sum_{d \leq N} |f(d)| \ll N^{1+\varepsilon}
$$

and, by partial summation

$$
\sum_{d>x/N} \frac{f(d)}{d(d+1)} \ll \left(\frac{x}{N} \right)^{\varepsilon-1}.
$$

Therefore

$$
S_2 = x \sum_{d=1}^\infty \frac{f(d)}{d(d+1)} + \sum_{N < d \leq x/N} f(d) \left(\psi \left(\frac{x}{d+1} \right) - \psi \left(\frac{x}{d} \right) \right) + O \left(N x^\varepsilon + x^{1+\varepsilon} N^{-2} \right)
$$
and note that \(xN^{-2} \leq N \) since \(N \geq x^{1/3} \). Hence

\[
\sum_{n \leq x} f \left(\left\lfloor \frac{x}{n} \right\rfloor \right) = x \sum_{d=1}^{\infty} \frac{f(d)}{d(d+1)} + \sum_{N < d \leq x/N} f(d) \left(\psi \left(\frac{x}{d} \right) - \psi \left(\frac{x}{d+1} \right) \right) + O(Nx^\varepsilon).
\]

We complete the proof with the usual Vaaler’s approximation of the function \(\psi \) by trigonometric polynomials \([11]\), implying the asserted result. \(\square \)

4. **Useful decompositions**

The next result is Vaughan’s identity \([12]\) or \([5, \text{Chapter 24}]\). We use the functions

\[
1_U^-(n) = \begin{cases} 1, & \text{if } n \leq U; \\ 0, & \text{otherwise}; \end{cases} \quad \text{and} \quad 1_U^+(n) = \begin{cases} 1, & \text{if } n > U; \\ 0, & \text{otherwise}. \end{cases}
\]

Proposition 4.1. Let \(F : [1, \infty) \to [0, \infty) \) be any map. For all \(1 \leq U \leq R^{1/2} \)

\[
\sum_{R < n \leq 2R} \Lambda(n) e(F(n)) = \sum_{n \leq U} \mu(n) \sum_{\frac{R}{n} < m \leq \frac{2R}{n}} e(F(mn)) \log m - \sum_{n \leq U^2} a_n \sum_{\frac{R}{n} < m \leq \frac{2R}{n}} e(F(mn)) - \sum_{U < n \leq \frac{2R}{n}} \Lambda(n) \sum_{\frac{R}{n} < m \leq \frac{2R}{n}} b_m e(F(mn))
\]

with

\[a_n := (\mu 1_U^- \ast \Lambda 1_U^-)(n) \quad \text{and} \quad b_n := (\mu 1_U^- \ast 1)(m). \]

A similar result holds for the Möbius function.

Proposition 4.2. Let \(1 < R < R_1 \leq 2R \) and let \(F : [1, \infty) \to [0, \infty) \) be any map. For all \(1 \leq U \leq R^{1/2} \)

\[
\sum_{R < n \leq R_1} \mu(n) e(F(n)) = -\sum_{n \leq U} a_n \sum_{\frac{R}{n} < m \leq \frac{R_1}{n}} e(F(mn)) \log m - \sum_{U < n \leq \frac{R_1}{n}} \sum_{\frac{max(U, R)}{n} < m \leq \frac{R_1}{n}} \mu(m) e(F(mn))
\]

with

\[a_n := (\mu 1_U^- \ast \mu 1_U^-)(n) \quad \text{and} \quad b_n := (\mu 1_U^- \ast 1)(n). \]

The usual Dirichlet hyperbola principle, a proof of which can be found for instance in \([10, \text{Theorem 2.4.1}]\), can be slightly extended to the following form. The proof is well-known.

Lemma 4.3 (Dirichlet hyperbola principle). Let \(f, g : \mathbb{Z}_{\geq 1} \to \mathbb{C} \) be two arithmetic functions and \(h : [1, \infty) \to \mathbb{C} \) be any map. For all \(1 \leq U \leq x \)

\[
\sum_{n \leq x} (f \ast g)(n)h(n) = \sum_{n \leq U} f(n) \sum_{m \leq x/n} g(m)h(mn) + \sum_{n \leq U} g(n) \sum_{m \leq x/n} f(m)h(mn) - \sum_{n \leq U} \sum_{m \leq x/U} f(n)g(m)h(mn).
\]

Specifying \(h(n) = e(F(n)) \) where \(F : [1, \infty) \to [0, \infty) \) is any function, we immediately derive the next tool.
Corollary 4.4. Let $f, g : \mathbb{Z}_{\geq 1} \to \mathbb{C}$ be two arithmetic functions and $F : [1, \infty) \to [0, \infty)$ be any map. For all $R < R_1 \in \mathbb{Z}_{\geq 1}$ and $1 \leq U \leq R$

$$\sum_{R < n \leq R_1} (f \ast g)(n) e(F(n)) = \sum_{n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

$$+ \sum_{n \leq U} g(n) \sum_{R n < m \leq R_1 n} f(m) e(F(mn)) - \sum_{U < n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn)).$$

Proof. By Lemma [3] we first derive

$$\sum_{R < n \leq R_1} (f \ast g)(n) e(F(n)) = \sum_{n \leq U} f(n) \sum_{R n < m \leq R_1 n} g(m) e(F(mn)) + \sum_{n \leq U} g(n) \sum_{R n \leq m \leq R_1 n} f(m) e(F(mn))$$

$$+ \sum_{R n < m \leq R_1 n} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

$$= S_1 + S_2 + S_3 - S_4.$$

For S_3, interchanging the sums and then the indices yields

$$S_3 = \sum_{n \leq U} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

$$= \sum_{n \leq U} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn)) + \sum_{U \leq n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

$$= S_4 + \sum_{U \leq n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

and, in the 2nd sum, since $U < n \leq UR_1 \over R$, we have $R_n < R \leq R_1 n$, so that

$$S_3 - S_4 = \sum_{U \leq n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn)) - \sum_{U \leq n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

$$= \sum_{n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn)) - S_1 - \sum_{U \leq n \leq UR_1 \over R} f(n) \sum_{R n \leq m \leq R_1 n} g(m) e(F(mn))$$

implying the asserted result.

5. The von Mangoldt function

The following result relates certain exponential sums of primes with the sum of Theorem [11].

Proposition 5.1. Assume there exist real numbers $\alpha, \beta > 0$, $0 \leq \gamma < 1$ such that $2\alpha + \beta < 1$, $\alpha(\gamma - 3) \leq \beta - \gamma$, $\alpha(\gamma + 1) + \gamma(\beta - 2) + 1 \geq 0$, and, for all $z \geq 1$ and all integers $R \leq z^{2/3}$, we have for all $\varepsilon \in \left(0, \frac{1}{2}\right)$

$$z^{-\varepsilon} \sum_{R \leq n \leq 2R} \Lambda(n) e\left(\frac{\overline{z}}{n}\right) \ll z^\alpha R^\beta + R^\gamma.$$

Then, for $x \geq e$ large

$$\sum_{n \leq x} \Lambda\left(\left\lfloor \frac{x}{n}\right\rfloor\right) = x \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n(n+1)} + O\left(x^{3/5 + \varepsilon}\right).$$
Proof. By Proposition 3.1 it suffices to estimate
\[\sum_{D < d \leq 2D} \Lambda(d) e \left(\frac{hx}{d + a} \right) \]
where \(a \in \{0, 1\} \) and for all \(x^{1/3} \leq N < x^{1/2} \), \(N < D \leq xN^{-1} \), \(H \in \mathbb{Z}_{\geq 1} \) and \(1 \leq h \leq H \). Note that \(\frac{x}{d+1} = \frac{x}{d} - \frac{x}{d(d+1)} \), so that, by Abel summation, we get
\[\sum_{D < d \leq 2D} \Lambda(d) e \left(\frac{hx}{d + 1} \right) = \sum_{D < d \leq 2D} \Lambda(d) e \left(\frac{hx}{d} \right) e \left(-\frac{hx}{d(d+1)} \right) \]
\[\ll \left(1 + \frac{hx}{D^2} \right) \max_{D \leq D_i \leq 2D} \left| \sum_{D < d \leq D_i} \Lambda(d) e \left(\frac{hx}{d} \right) \right| \]
\[\ll (hx)^\varepsilon \left\{ (hx)^{1+\alpha} D^{\beta-2} + (hx)^\alpha D^\beta + hxD^{\gamma-2} + D^\gamma \right\} \]
where we used (6) assuming also \(D \leq x^{2/3} \), and therefore
\[(Hx)^{-\varepsilon} \left\{ \frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \sum_{a=0}^{1} \left| \sum_{D < d \leq 2D} \Lambda(d) e \left(\frac{hx}{d + a} \right) \right| \right\} \]
\[\ll \frac{D}{H} + (Hx)^{1+\alpha} D^{\beta-2} + (Hx)^\alpha D^\beta + hxD^{\gamma-2} + D^\gamma \]
provided that \(H \geq 1 \) and \(N < D \leq \min \left(xN^{-1}, x^{2/3} \right) = xN^{-1} \), since \(N \geq x^{1/3} \). Using Srinivasan optimization lemma on the parameter \(H \), we derive
\[x^{-\varepsilon} \left(\frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \sum_{a=0}^{1} \left| \sum_{D < d \leq 2D} \Lambda(d) e \left(\frac{hx}{d + a} \right) \right| \right) \ll (x^{1+\alpha} D^{\alpha+\beta-1})^{\frac{1}{\alpha+\beta}} + x^{1+\alpha} D^{\beta-2} \]
\[+ (x^\alpha D^{\alpha+\beta})^{\frac{1}{\alpha+\beta}} + x^\alpha D^\beta + x^{1/2} D^{\gamma+1} + xD^{\gamma-2} + D^\gamma. \]
Hence the error term of Proposition 3.1 is, for all \(x^{1/3} \leq N < x^{1/2} \) and up to \(x^\varepsilon \)
\[\ll N + (x^{1+\alpha} N^{\alpha+\beta-1})^{\frac{1}{\alpha+\beta}} + x^{1+\alpha} N^{\beta-2} \]
\[+ (x^{2\alpha+\beta} N^{-\alpha-\beta})^{\frac{1}{\alpha+\beta}} + x^{\alpha+\beta} N^{-\beta} + x^{1/2} N^{\gamma+1} + xN^{\gamma-2} + \left(\frac{x}{N} \right)^\gamma. \]
Now choose \(N = \frac{x^{1+\alpha}}{2^{\alpha+\beta}} \). Note that the condition \(2\alpha + \beta < 1 \) entails that \(\frac{1+\alpha}{\alpha+\beta} < \frac{1}{2} \), and clearly \(\frac{1+\alpha}{2-\beta} > \frac{1}{3} \). We obtain that the error term is, up to \(x^\varepsilon \)
\[\ll \frac{1+\alpha}{3-\beta} + x^{\frac{\alpha^2+\beta(3\beta-2)(3\beta-4)}{(1-\alpha)(3-\beta)}} + x^{\frac{(\alpha+1)(1-\beta)(3\beta-2)}{4-\beta}} + x^{\frac{2(\alpha+2)(3-\beta)}{2(\alpha+2)(3-\beta)}} + x^{\frac{2(\alpha+2)(3-\beta)}{2(\alpha+2)(3-\beta)}} + x^{\frac{\alpha(1+\beta-\gamma)}{1+\beta-\gamma}} \]
and note that the conditions \(2\alpha + \beta < 1 \), \(\alpha(\gamma-3) \leq \beta - \gamma \) and \(\alpha(\gamma+1) + \gamma(\beta-2) + 1 \geq 0 \) imply that the 1st term dominates the other terms, completing the proof.

Bounds for the sum (6) do already exist in the literature. For instance, in [6, Theorem 9], the authors proved that
\[\sum_{R < n \leq 2R} \Lambda(n) e \left(\frac{z}{n} \right) \ll z^{1/12} R^{19/24} (\log R)^{11/4} \]
provided that $1 \leq R \leq \frac{1}{5} x^{3/5}$, so that Proposition 5.1 used with $(\alpha, \beta, \gamma) = \left(\frac{1}{12} : \frac{19}{24}, 0\right)$ yields

\[
\sum_{n \leq x} \Lambda \left(\frac{x}{n}\right) = x \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n(n+1)} + O_{\varepsilon} \left(x^{26/53 + \varepsilon}\right)
\]

which is slightly better than (2). The next result is a consequence of Proposition 4.1

Proposition 5.2. Let $R \geq 1$ be a large integer and $F : [1, \infty) \to [0, \infty)$ be any map. Assume there exist $A, B > 0$ such that, for all integers $M, N \geq 1$

\[
\sum_{N < n \leq 2N} \max_{\frac{D}{n} < M \leq \frac{2R}{n}} \left| \sum_{\frac{R}{m} < m \leq M} e(F(mn)) \right| \leq A \quad \text{for } N \leq R^{1/3}
\]

\[
\max_{M \geq 1} \max_{N \geq R} \left| \sum_{N < n \leq 2N} \alpha_n \sum_{M < m \leq 2M} \beta_m e(F(mn)) \right| \leq B \quad \text{for } R^{1/2} \leq N \leq 2R^{2/3}
\]

uniformly for all complex-valued sequences (α_n) and (β_m) satisfying $|\alpha_n| \leq 1$ and $|\beta_m| \leq 1$. Then

\[
\sum_{R < n \leq 2R} \Lambda(n) e(F(n)) \ll (A + B) R^\varepsilon.
\]

Proof. Set S_1, S_2, and S_3 the three sums of Proposition 4.1, where we choose $U = R^{1/3}$ and we used the normalized coefficients $\alpha_n := \alpha_n / \log R$ and $\beta_m := b_m 2^{-\omega(m)}$, so that $|\alpha_n| \leq 1$ and $|\beta_m| \leq 1$. Using partial summation and (7), we derive

\[
S_1 \ll \max_{N \leq R^{1/3}} \sum_{N < n \leq 2N} \max_{\frac{D}{n} < M \leq \frac{2R}{n}} \left| \sum_{\frac{R}{m} < m \leq M} e(F(mn)) \right| (\log R)^2 \ll A(\log R)^2.
\]

We split S_2 into three subsums, namely

\[
(\log R)^{-1} S_2 = \left(\sum_{n \leq R^{1/3}} + \sum_{R^{1/3} < n \leq R^{1/2}} + \sum_{R^{1/2} < n \leq R^{2/3}}\right) \alpha_n \sum_{\frac{R}{m} < m \leq \frac{2R}{n}} e(F(mn)) := S_{21} + S_{22} + S_{23}.
\]

As for S_1, we immediately derive $S_{21} \ll A(\log R)^2$. Inverting the summations in S_{22} and using (8) yields

\[
S_{22} = \sum_{R^{1/2} < n \leq 2R^{2/3}} \max_{\frac{R}{m} < m \leq \min\left(\frac{R^{1/2} 2R}{n}\right)} \alpha_m e(F(mn)) \log R
\]

\[
\ll \max_{R^{1/2} < N \leq 2R^{2/3}} \max_{M \geq 1} \max_{M N \geq R} \left| \sum_{N < n \leq 2N} \sum_{M < m \leq 2M} \alpha_m e(F(mn)) \right| (\log R)^3
\]

\[
\ll \max_{R^{1/2} < N \leq 2R^{2/3}} \max_{M \geq 1} \max_{M N \geq R} \left| \sum_{N < n \leq 2N} \sum_{M < m \leq 2M} \alpha_m e(F(mn)) \right| (\log R)^4 \ll B(\log R)^4
\]
where I_n is any subinterval of $(\frac{R}{n}, \frac{2R}{n}]$. Also,

$$S_{23} \ll \max_{R^{1/3} < N \leq R^{2/3}} \max_{M \geq 1 \atop MN > R} \left| \sum_{N < n \leq 2N} \sum_{M < m \leq 2M} e(F(mn)) \right|(\log R)^3$$

$$\leq \max_{R^{1/3} < N \leq R^{2/3}} \max_{M \geq 1 \atop MN > R} \left| \sum_{N < n \leq 2N} \sum_{M < m \leq 2M} e(F(mn)) \right|(\log R)^4 \ll B(\log R)^4.$$

Finally, the sum S_3 is split into two subsums, namely

$$S_3 = \left(\sum_{R^{1/3} < n \leq R^{1/2}} + \sum_{R^{1/2} < n \leq R^{2/3}} \right) \Lambda(n) \sum_{\frac{n}{R} < m \leq \frac{4R}{n}} b_m e(F(mn))$$

and each of these subsums are treated similarly as for S_{22} and S_{23}. The proof is complete. \(\square\)

Proposition 5.3 (Baker). Let $X > 0$, $1 < R < R_1 \leq 2R$, $M, N \geq 1$ such that $MN \asymp R$, $M \ll N$ and $M \ll X$, $(a_n), (b_m) \in \mathbb{C}$ such that $|a_n|, |b_m| \leq 1$, $\alpha, \beta \in \mathbb{R}$ such that $\alpha \neq 1$, $\beta < 0$ and $\alpha + \beta < 2$. Set $L := \log(RX + 2)$. If (k, ℓ) is an exponent pair, then

$$L^{-2} \sum_{N < n \leq 2N} a_n \sum_{M < m \leq 2M} b_m e\left(X \left(\frac{m}{M} \right)^{\alpha} \left(\frac{n}{N} \right)^{\beta} \right) \ll X^{1/6} \left(R^{5k+4}M^{\ell-k} \right)^{\frac{1}{12k+1}} + R \left(M^{-1/2} + N^{-1/4} \right).$$

Taking an integer $r \geq 1$, and applying Proposition 5.3 with $\alpha = \beta = -1$ and $X = z(MN)^{-r}$, we derive the next estimate.

Corollary 5.4. Let $z \geq 1$, $r \in \mathbb{Z}_{\geq 1}$, $1 < R < R_1 \leq 2R$ such that $R \leq z^\frac{1}{2r}$, $M, N \geq 1$ such that $MN \asymp R$ and $R^{1/2} \ll N \ll R^{2/3}$, and let $(a_n), (b_m) \in \mathbb{C}$ such that $|a_n|, |b_m| \leq 1$. If (k, ℓ) is an exponent pair and $L := \log(z + 2)$, then

$$L^{-2} \sum_{N < n \leq 2N} a_n \sum_{M < m \leq 2M} b_m e\left(\frac{z}{(mn)^r} \right) \ll z^{1/6} R \left(R^{(4r-1)(k(0-2r)+4r)} + R^{7/8}. \right.$$

Proof. Let S_{II} be the sum of the left-hand side. First note that the condition $N \gg R^{1/2}$ entails that $N^2 \gg R \asymp MN$, and hence $M \ll N$. Furthermore, since $R \leq z^\frac{1}{2r}$ and $N \gg R^{1/2}$, we get

$$M^{r+1}N^{r} \asymp R^{r+1}N^{-1} \ll R^{r+1/2} \ll z$$

and therefore $M \ll z(MN)^{-r}$. Proposition 5.3 may be applied with $X = z(MN)^{-r}$, yielding

$$L^{-2} S_{II} \ll z^{1/6} \left(R^{(k(5-r)+4r)} M^{(-\ell-k)} \right)^{\frac{1}{12k+1}} + RM^{-1/2} + RN^{-1/4}$$

with $R^{k(5-r)+4r}M^{\ell-k} \ll R^{\ell+(k+1)(4r)}N^{k-\ell} \ll R^\frac{1}{2} (2(4r-1)+k(9-2r)+\ell)$, $RM^{-1/2} \ll (RN)^{1/2} \ll R^{5/6}$ and $RN^{-1/4} \ll R^{7/8}$, and hence

$$L^{-2} S_{II} \ll z^{1/6} R^{\frac{(2(4r-1)+k(9-2r)+\ell)}{12(k+1)}} + R^{7/8} \quad \text{Note that Baker's results in [1] are stated with an extra multiplicative condition $R < mn \leq R_1$, but the author removes it at the start of the proof at the cost of a factor log R.}$$
completing the proof. □

We are now in a position to establish the main estimate of this section.

Proposition 5.5. Let \(R, z \geq 8 \) large such that \(R \leq z^{2/3} \). If \((k, \ell)\) is an exponent pair satisfying \(k \leq \frac{1}{6} \) and \(20k^2 + k(23 - 8\ell) + 2 - 7\ell > 0 \), then, for all \(\varepsilon \in (0, \frac{1}{2}) \)

\[
z^{-\varepsilon} \sum_{R < n \leq 2R} \Lambda(n) e \left(\frac{z}{n} \right) \ll z^{1/6} R^{2k + \ell + 6} + R^{7/8}.
\]

Proof. The sums (8) are treated with Proposition 5.4 with \(r = 1 \). It remains to estimate the sums (7), for which we apply the exponent pair (8), yielding

\[
\max_{N \in R^{1/3}} \left\| \sum_{N < n \leq 2N} \max_{\frac{R}{n} < m \leq 2R} \sum_{\frac{R}{m} < \ell < M} e \left(\frac{z}{mn} \right) \right\| \ll \max_{N \in R^{1/3}} \left\| \sum_{N < n \leq 2N} \left\{ \left(\frac{z}{R} \right)^k \left(\frac{R}{n} \right)^{t-k} + \frac{R^2}{n z} \right\} \right\|
\]

\[
\ll \max_{N \in R^{1/3}} \left(z^k R^{\ell - 2k} N^{1-\ell + k} + R^2 z^{-1} \right)
\]

\[
\ll z^k R^{1 + 2k - 3\beta} + R^2 z^{-1}.
\]

and note that \(R^2 z^{-1} \leq R^{7/8} \) and \(z^k R^{1 + 2k - 3\beta} \leq z^{1/6} R^{2k + 6} \) since \(k \leq \frac{1}{6} \) and \(20k^2 + k(23 - 8\ell) + 2 - 7\ell > 0 \). The proof is complete. □

Proof of Theorem 1.1. The proof consists of a simple verification of the hypotheses of Proposition 5.1 with

\[
(\alpha, \beta, \gamma) = \left(\frac{1}{6}, \frac{7k + \ell + 6}{12(k+1)}, \frac{7}{8} \right).
\]

The condition \(3k + 4\ell \geq 1 \) ensures that \(\alpha(\gamma - 3) \leq \beta - \gamma \).

□

6. The Dirichlet-Piltz divisor functions

We first derive the analog of Proposition 5.1 for the function \(\tau_r \).

Proposition 6.1. Let \(r \in \mathbb{Z}_{\geq 1} \) fixed, and assume there exist real numbers \(\alpha, \beta > 0 \) such that \(2\alpha + \beta < 1 \) and \(4\alpha + 2\beta > 1 \) and, for all \(z \geq 1 \) and all integers \(1 \leq R \leq z \), we have for all \(\varepsilon \in (0, \frac{1}{2}] \)

\[
z^{-\varepsilon} \left\{ \left| \sum_{R < n \leq 2R} \tau_r(n) e \left(\frac{z}{n} \right) \right| + \left| \sum_{R < n \leq 2R} \tau_r(n) e \left(\frac{z}{n + 1} \right) \right| \right\} \ll z^\alpha R^\beta + R^2 z^{-1}.
\]

Then, for \(x \geq e \) large

\[
\sum_{n \leq x} \tau_r \left(\left[\frac{x}{n} \right] \right) = x \sum_{n=1}^\infty \tau_r(n) \frac{n}{n(n+1)} + O_{\varepsilon} \left(x^{2\alpha + \beta + 1 + \varepsilon} \right).
\]

Proof. Let \(x^{1/3} \leq N < x^{1/2} \). Using (8), we derive

\[
(Hx)^{-\varepsilon} \left\{ \frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \sum_{a=0}^{1} \sum_{D < d \leq 2D} \tau_r(d) e \left(\frac{hx}{d + a} \right) \right\} \ll \frac{D}{H} + (Hx)^\alpha D^\beta + D^2 x^{-1}
\]

for all \(H \in \mathbb{Z}_{\geq 1} \) and all \(N < D \leq L \leq x/N \). Using Srinivasan optimization lemma on \(H \), we get

\[
x^{-\varepsilon} \left(\frac{D}{H} + \sum_{h \leq H} \frac{1}{H} \sum_{a=0}^{1} \sum_{D < d \leq 2D} \tau_r(d) e \left(\frac{hx}{d + a} \right) \right) \ll (x^\alpha D^{\alpha + \beta})^{1/\alpha + 1} + x^\alpha D^\beta + D^2 x^{-1}
\]
and hence the error term does of Proposition 3.1 not exceed, up to a factor x^ε

$$\ll N + \left(x^{2\alpha+\beta}N^{-\alpha-\beta}\right)^{\frac{1}{2n+\beta+1}} + x^{a+\beta}N^{-\beta} + xN^{-2}.$$

Now choosing $N = \frac{x^{2\alpha+\beta}}{2n+\beta+1}$ yields the asserted result plus the extra terms

$$\frac{x^{2\alpha^2+\alpha(\beta+1)+\beta}}{2n+\beta+1} + \frac{1}{x^{2n+\beta+1}}$$

which are absorbed by the term $x^{2n+\beta+1}$ whenever $2\alpha + \beta < 1$ and $4\alpha + 2\beta > 1$. Also note that these two conditions ensure that $x^{1/3} \leq N < x^{1/2}$, as required. The proof is complete.

The treatment of the sum (9) rests on the next result which can be seen as an extension of the definition of the exponent pairs.

Proposition 6.2. Let $R, r \in \mathbb{Z}_{\geq 1}$ and $F \in C^\infty [R, 2R]$, positive-valued, and such that there exists $T > 0$ such that, for all $j \in \mathbb{Z}_{\geq 0}$ and all $x \in [R, 2R]$, we have $|F^{(j)}(x)| \asymp TR^{-j}$. If (k, ℓ) is an exponent pair, then

$$\sum_{R < n \leq 2R} \tau_r(n) e(F(n)) \ll T^{k}R^{\frac{\ell-k}{r}+1+\frac{1}{r}}(\log R)^r + RT^{-1}(\log R)^{r+1}.$$

Proof. We use induction on r, the case $r = 1$ being the definition of the exponent pairs. Assume the result is true for some $r \geq 1$. Using Corollary 4.4 with $f = \tau_r$, $g = 1$ and $U = R^{\frac{1}{r+1}}$, we derive

$$\sum_{R < n \leq 2R} \tau_{r+1}(n) e(F(n)) \ll \sum_{n \leq 2R^{\frac{1}{r+1}}} \tau_r(n) \left| \sum_{\frac{R}{n} < m \leq 2R} e\left(\frac{F(mn)}{m}\right) \right|$$

$$+ \sum_{n \leq R^{\frac{1}{r+1}}} \left| \sum_{\frac{R}{n} < m \leq 2R} \tau_r(m) e\left(\frac{F(mn)}{m}\right) \right| + \sum_{R^{\frac{1}{r+1}} < n \leq 2R^{\frac{1}{r+1}}} \tau_r(n) \left| \sum_{\frac{R}{n} < m \leq R^{\frac{1}{r+1}}} e\left(\frac{F(mn)}{m}\right) \right|$$

and the induction hypothesis entails that

$$\sum_{R < n \leq 2R} \tau_{r+1}(n) e(F(n)) \ll \sum_{n \leq 2R^{\frac{1}{r+1}}} \tau_r(n) \left(T^k R^{\ell-k} n^{k-\ell} + \frac{R}{nT} \right)$$

$$+ \sum_{n \leq R^{\frac{1}{r+1}}} \left(T^k R^{\ell-k} + \frac{1}{r} n \left(\frac{2R^{\frac{1}{r+1}}}{R^{\frac{1}{r+1}}} - 1 \right) (\log R)^r + \frac{R}{nT} (\log R)^{r+1} \right)$$

$$+ \sum_{R^{\frac{1}{r+1}} < n \leq 2R^{\frac{1}{r+1}}} \tau_r(n) \left(T^k R^{\ell-k} n^{k-\ell} + \frac{R}{nT} \right)$$

where we used in the 3rd sum the fact that $\left(\frac{R}{n}, R^{\frac{1}{r+1}} \right) \subset \left(\frac{R}{n}, \frac{2R}{n} \right)$. The bound

$$\sum_{n \leq z} \frac{\tau_r(n)}{n^\alpha} \ll z^{1-\alpha} (\log z)^r \quad (0 \leq \alpha \leq 1)$$

enables us to derive

$$\sum_{R < n \leq 2R} \tau_{r+1}(n) e(F(n)) \ll T^k R^{\ell-k} + \frac{1}{r} (\log R)^{r+1} + RT^{-1}(\log R)^{r+2}$$

completing the proof. □
Proof of Theorem 1.2. By Proposition 6.2, we obtain
\[z^{-\varepsilon} \left\{ \sum_{R < n \leq 2R} \tau_1(n) e \left(\frac{z}{n^2} \right) + \sum_{R < n \leq 2R} \tau_2(n) e \left(\frac{z}{n + 1} \right) \right\} \ll z^k R^{\ell - k - \frac{1}{r} - k} + R^2 z^{-1}. \]
and the condition \(1 - \ell > k(r - 1) \) ensures that \(2\alpha + \beta < 1 \) and \(4\alpha + 2\beta > 1 \) when \(\alpha = k \) and \(\beta = \frac{\ell - k}{r} + 1 - \frac{1}{r} - k. \) Now the result follows by applying Proposition 6.1 with these values of \(\alpha \) and \(\beta. \)

\[\Box \]

7. The functions \(\mu_2 \) and \(2^\varepsilon \)

In this section, we will make use of the function \(\chi_2 \) defined by
\[\chi_2(n) := \begin{cases} \mu(m), & \text{if } n = m^2 \\ 0, & \text{otherwise.} \end{cases} \]
We first need the following lemma.

Lemma 7.1. Let \(1 < R < R_1 \leq 2R, \ z \geq 1 \) and assume \(R \leq z^{2/5} \). If \((k, \ell) \) is an exponent pair, then, for all \(\varepsilon > 0 \)
\[R^{-\varepsilon} \sum_{R < n \leq R_1} \mu(n) e \left(\frac{z}{n^2} \right) \ll z^{1/6} R^{5k/2(\ell+3)} + z^k R^{2k + 1 - 8k} + R^{7/8}. \]
In particular
\[R^{-\varepsilon} \sum_{R < n \leq R_1} \mu(n) e \left(\frac{z}{n^2} \right) \ll z^{1/6} R^{5k/97} + R^{7/8}. \]

Proof. The proof is similar to that of Proposition 5.2 so that we only sketch the main details. Let \(S_1, S_2 \) and \(S_3 \) be the sums of Proposition 4.2 used with \(U = R^{1/3} \). By partial summation and using the exponent pair \((k, \ell)\), we get
\[R^{-\varepsilon} S_1 \ll z^k R^{k - 3k} \sum_{n \in R_1} \frac{1}{n^{k - 1}} + R^3 z^{-1} \ll z^k R^{2k + 1 - 4k} + R^3 z^{-1}. \]
Splitting \(S_2 \) into two subsums
\[S_2 = \left(\sum_{R^{1/3} < n \leq R^{1/2}} + \sum_{R^{1/2} < n \leq R^{2/3}} \right) a_n \sum_{\frac{R}{n} < m \leq R_1} \log m e \left(\frac{z}{(mn)^2} \right) := S_{21} + S_{22} \]
we interchange the summations in \(S_{21} \), so that
\[S_{21} = \sum_{R^{1/2} < n \leq R_1} \log n \sum_{\max \left(R^{1/3}, \frac{R}{n} \right) < m \leq \min \left(R^{1/2}, \frac{R_1}{n} \right)} a_m e \left(\frac{z}{(mn)^2} \right) \]
so that Corollary 5.3 with \(r = 2 \) yields
\[R^{-\varepsilon} S_{21} \ll \max_{R^{1/2} < N \leq R^{2/3}} \max_{M \geq 1} \left| \sum_{N < n \leq 2N} \sum_{M < m \leq 2M} a_m e \left(\frac{z}{(mn)^2} \right) \right| \ll z^{1/6} R^{5k/2(\ell+3)} + R^{7/8}. \]
where $\alpha_n := a_n 2^{-\omega(n)}$ and $l_m = \log m / \log R$, and similarly

$$R^{-\varepsilon} S_{22} \ll \max_{R^{1/2} < N < R^{2/3}} \max_{M \geq 1} \sum_{M \leq n \leq R^{4/3}} \sum_{M \leq m \leq n} \alpha_n l_m e \left(\frac{z}{(mn)^2} \right) \ll z^{1/6} R^{\frac{55}{194} + 40/355} + R^{7/8}.$$

The argument is similar for S_3, splitting the sum in two

$$S_3 = \left(\sum_{R^{1/3} < n < R^{1/2}} + \sum_{R^{1/2} < n < R^{1-1/3}} \right) b_n \sum_{\frac{n}{m} < \frac{R}{n}} \sum_{\frac{R}{n} < m \leq \frac{R}{n}} \mu(m) \left(\frac{z}{(mn)^2} \right) := S_{31} + S_{32}$$

and estimating S_{31} and S_{32} as S_{21} and S_{22}. Also note that $R^3 z^{-1} \leq R^{7/8}$. The last part of the proposition follows with the use of Bourgain’s exponent pair $(\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon)$, yielding the asserted estimate with an extra term $z^{1/84} R^{5/14}$, which is absorbed by the first one. □

Proposition 7.2. Let $z, R \geq 1$ such that $R \leq z^{7/10}$. Then, for all $\varepsilon > 0$

$$R^{-\varepsilon} \sum_{R < n \leq 2R} \mu_2(n) e \left(\frac{z}{n} \right) \ll z^{\frac{497}{14337}} R^{\frac{15}{16}}.$$

Proof. If $R < z^{\frac{68}{488}}$, then trivially

$$\sum_{R < n \leq 2R} \mu_2(n) e \left(\frac{z}{n} \right) \ll R \ll z^{\frac{68}{488}} \ll z^{\frac{497}{14337}} R^{\frac{15}{16}},$$

so that we may assume $R \geq z^{\frac{68}{488}}$. Using Corollary 4.4 with $f = \chi_2$ and $g = 1$, we derive for all $1 \leq U \leq R$

$$\sum_{R < n \leq 2R} \mu_2(n) e \left(\frac{z}{n} \right) = \sum_{n \leq \sqrt{U}} \mu(n) \sum_{\frac{R}{n} < m \leq \frac{R}{n}} e \left(\frac{z}{mn^2} \right) + \sum_{n \geq \sqrt{U}} \sum_{\sqrt{U} < m \leq \sqrt{2U}} \mu(m) e \left(\frac{z}{m^2 n} \right) - \sum_{\sqrt{U} < n \leq \sqrt{2U}} \mu(n) \sum_{\frac{R}{n} < m \leq \frac{R}{n}} e \left(\frac{z}{mn^2} \right).$$

For S_1 and S_3, we apply the exponent pair (k, ℓ) yielding

$$|S_1| \leq \sum_{n \leq \sqrt{2U}} \left| \sum_{\frac{R}{n} < m \leq \frac{R}{n}} e \left(\frac{z}{mn^2} \right) \right| \ll \sum_{n \leq \sqrt{2U}} \left\{ \left(\frac{z}{R} \right) \left(\frac{R}{n^2} \right)^{\ell-k} + \frac{R^2}{n^2 z} \right\} \ll z^k R^{\ell-2k} \sum_{n \leq \sqrt{2U}} \frac{1}{n^{2(\ell-k)}} + R^2 z^{-1}$$

and similarly for S_3. Choosing $(k, \ell) = BA \left(\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon \right) = \left(\frac{55}{194} + \varepsilon, \frac{55}{97} + \varepsilon \right)$, we derive

$$R^{-\varepsilon} (S_1 + S_3) \ll z^{\frac{55}{194}} \sum_{n \leq \sqrt{2U}} \frac{1}{n^{55/97}} + R^2 z^{-1} \ll z^{\frac{55}{194} U^{21/97}} + R^2 z^{-1}.$$
Now noticing that the condition $R \leq z^{7/10}$ entails that $\sqrt{R/n} \leq (z/n)^{2/5}$ for all $n \in \mathbb{Z}_{\geq 1}$, we use (10) for the sum S_2, which gives

$$R^{-\varepsilon} |S_2| \leq \sum_{n \leq x} \sqrt{\frac{x}{n}} \sum_{m \leq \sqrt{\frac{x}{n}}} \mu(m) e \left(\frac{z}{m^2 n} \right) \ll \sum_{n \leq x} \left\{ \left(\frac{z}{n} \right)^{1/6} \left(\frac{R}{n} \right)^{19/97} + \left(\frac{R}{n} \right)^{7/16} \right\} \ll z^{1/6} R^{5/6} U^{-371/582} + RU^{-9/16}.$$

We choose $U = (z^{-68} R^{485})^{1/497}$. Note that the condition $R \geq z^{68/485}$ ensures that $1 \leq U \leq R$, and this choice of U yields the asserted result with the extra terms $z^{153/774} R^{487} + R^{2} z^{-1}$, which are both easily seen to be dominated by the term $z^{1/497/13774} R^{15/71}$ via the hypothesis $R \leq z^{7/10}$.

Proof of Theorem 1.4. By Proposition 3.1 we derive

$$\sum_{n \leq x} \mu_2 \left(\left| \frac{x}{n} \right| \right) = x \sum_{n=1}^{\infty} \frac{\mu_2(n)}{n(n+1)} + R(x)$$

with, for all $x^{1/3} \leq N < x^{1/2}$ and all $H \geq 1$

$$x^{-\varepsilon} R(x) \ll N + \max_{N < D \leq x / N} \left\{ \frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \left(\sum_{D < d \leq 2D} \mu_2(d) e \left(\frac{hx}{d} \right) \right) \right\} \ll N + \max_{N < D \leq x / N} \left\{ \frac{D}{H} + \sum_{h \leq H} \left(1 + \frac{hx}{D^2} \right) \left(Hx \right)^{3497/1144} D^{15/1144} \right\} \ll N + \max_{N < D \leq x / N} \left\{ (x^{17271} D^{-7.367})^{1/31345} + x^{17271} D^{-1.47} + (x^{1.3497} D^6 407)^{1/17271} + x^{3497/1144} D^{15/1144} \right\}$$

where we used Srinivasan optimization lemma in the last line, and the fact that $\min \left(\frac{x}{N}, x^{7/10} \right) = \frac{x}{N}$. Therefore

$$x^{-\varepsilon} R(x) \ll N + (x^{17271} N^{-7.367})^{1/31345} + x^{17271} N^{-1.47} + (x^{9.904} N^{-6.407})^{1/17271} + x^{6.407/1144} N^{-1.47}$$

and choosing $N = x^{1.479/2368}$ yields the asserted bound.

The next result is the analog of Proposition 7.2 for the function 2^ω. The proof is much simpler.

Proposition 7.3. Let $z, R \geq 1$, (k, ℓ) be an exponent pair and assume $R \leq z^{2(k+1)/3(k+1) - \varepsilon}$. Then, for all $\varepsilon > 0$

$$R^{-\varepsilon} \sum_{R < n \leq 2R} 2^{\omega(n)} e \left(\frac{z x}{n} \right) \ll z^k R^{1 + \varepsilon/2}.$$
ON CERTAIN SUMS OF NUMBER THEORY

PROOF. Using Corollary 4.4 with \(f = \chi_2, \ g = \tau \) and \(U = R \), we derive

\[
\sum_{R < n \leq 2R} 2^{\omega(n)} e \left(\frac{z}{n} \right) = \sum_{n \leq \sqrt{2R}} \mu(n) \sum_{\frac{n}{R} < m \leq \frac{2R}{n}} \tau(m) e \left(\frac{z}{mn^2} \right)
\]

and Proposition 6.2 with \(r = 2 \) yields

\[
R^{-\varepsilon} \sum_{R < n \leq 2R} 2^{\omega(n)} e \left(\frac{z}{n} \right) \ll \sum_{n \leq \sqrt{2R}} \left\{ \left(\frac{z}{R} \right)^k \left(\frac{R}{n^2} \right)^{\frac{1+\ell-k}{2}} + \frac{R^2}{n^2 z} \right\}
\]

\[
\ll z^k R^{1+\ell-k} \sum_{n \leq \sqrt{2R}} \frac{1}{n^{1+\ell-k}} + R^2 z^{-1} \ll z^k R^{1+\ell-k}
\]

since \(1 + \ell - k \geq 1 \) and the term \(R^2 z^{-1} \) is absorbed by the term \(z^k R^{1+\ell-k} \) with the help of the hypothesis \(R \leq z^{2(k+1)\varepsilon} \). \(\square \)

Proof of Theorem 1.5. First note that, if \(x^{1/3} \leq N < x^{1/2} \) and if \((k, \ell) \) is an exponent pair, then

\[
x^{-\frac{2(k+1)\varepsilon}{2}} \geq x^{2/3} \geq \frac{x}{N}.
\]

Now we proceed as in the proof of Theorem 1.4 above, using Propositions 3.1 and 7.3 to derive

\[
\sum_{n \leq x} 2^{\omega([x/n])} = x \sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n(n+1)} + R(x)
\]

with, for all \(x^{1/3} \leq N < x^{1/2} \) and all \(H \geq 1 \)

\[
x^{-\varepsilon} R(x) \ll N + \max_{N < D \leq x/N} \left\{ \frac{D}{H} + \sum_{h \in H} \frac{1}{h} \left(\left| \sum_{D < d \leq 2D} 2^{\omega(d)} e \left(\frac{hx}{d} \right) \right| + \left| \sum_{D < d \leq 2D} 2^{\omega(d)} e \left(\frac{hx}{d+1} \right) \right| \right) \right\}
\]

\[
\ll N + \max_{N < D \leq \min \left\{ x/N, x^{3(2k+1)-(k+1)\varepsilon} \right\}} \left\{ \frac{D}{H} + \sum_{h \in H} \frac{1}{h} \left(1 + \frac{Hx}{D^2} \right) (hx)^k D^{1+\ell-3k} \right\}
\]

\[
\ll N + \max_{N < D \leq \min \left\{ x/N, x^{3(2k+1)-(k+1)\varepsilon} \right\}} \left\{ \frac{D}{H} + (Hx)^{1+k} D^{-\frac{3+3k-\ell}{2}} + (Hx)^k D^{1+\ell-3k} \right\}
\]

\[
\ll N + \max_{N < D \leq \min \left\{ x/N, x^{3(2k+1)-(k+1)\varepsilon} \right\}} \left(x^{\frac{1+k}{2}} D^{-\frac{1+k-\ell}{2(k+1)}} + x^{1+k} D^{-\frac{3+3k-\ell}{2}} + x^{1+k} D^{1+\ell-3k} \right)
\]

where we used Srinivasan optimization lemma again, and hence

\[
x^{-\varepsilon} R(x) \ll N + x^{\frac{1+k}{2}} N^{-\frac{1+k-\ell}{2(k+1)}} + x^{1+k} N^{-\frac{3+3k-\ell}{2}} + x^{1+k} N^{-\frac{1+k}{2(k+1)}} + x^{1+k} N^{-\frac{1+k-3k}{2}}
\]

Choose \(N = x^{\frac{2(k+1)}{2k+1}} \). Note that the condition \(k + \ell < 1 \) ensures that \(x^{1/3} \leq N < x^{1/2} \). We then get the asserted result with the following two extra terms

\[
x^{\frac{5k^2+3k+3\ell-(1+\ell)}{2(k+1)(3k-\ell)+6}} + x^{\frac{3k^2+(3+2k-\ell)(1+\ell)}{2(3k-\ell)+6}}
\]

which are absorbed by the first term via the condition \(k + \ell < 1 \). The last part of the Theorem is derived with the exponent pair \((k, \ell) = (\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon) \). \(\square \)
References

[1] R. C. Baker, Sums of two relatively prime cubes, *Acta Arith.* **129** (2007), 103–146.
[2] O. Bordellès, L. Dai, R. Heyman, H. Pan & I. E. Shparlinski, On a sum involving the Euler function, *J. Number Theory* **202** (2019), 278–297.
[3] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, *J. Amer. Math. Soc.* **30** (2017), 205–224.
[4] J. Bourgain & N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, https://arxiv.org/abs/1709.04340, 2017, Preprint 23 pp.
[5] H. Davenport, *Multiplicative Number Theory*, Springer, 3rd Ed., Revised by H. L. Montgomery, 2000.
[6] A. Granville & O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, *Mathematika*
[7] D. R. Heath-Brown, A new k-th derivative estimate for exponential sums via Vinogradov’s mean value, *Tr. Mat. Inst. Steklova* **296** (2017), 95–110.
[8] J. Ma & H. Sun, On a sum involving the divisor function, *Period. Math. Hung*, to appear.
[9] J. Ma & J. Wu, On a sum involving the Mangoldt function, *Period. Math. Hung*, to appear.
[10] M. Ram Murty, *Problems in analytic Number Theory*, GTM 206, Springer, 2001.
[11] J. D. Vaaler, Some extremal functions in Fourier analysis, *Bull. Am. Math. Soc., New Ser.* **12** (1985), 183–216.
[12] R. C. Vaughan, An elementary method in prime number theory, *Acta Arith.* **37** (1980), 111–115.
[13] J. Wu, Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski, *Periodica Math. Hungarica* **80** (2020), 95–102.
[14] W. Zhai, On a sum involving the Euler function, *J. Number Theory* **211** (2020), 199–219.

2 allée de la combe, 43000 Aiguilhe, France

E-mail address: borde43@wanadoo.fr