Cu$_2$O nanoparticles synthesis by microplasma

ChangMing Du & MuDan Xiao

Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

A simple microplasma method was used to synthesize cuprous oxide (Cu$_2$O) nanoparticles in NaCl–NaOH–NaNO$_3$ electrolytic system. Microplasma was successfully used as the cathode and copper plate was used as the anode. The Cu$_2$O products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results show that the morphology of Cu$_2$O nanocrystals obtained by this technology is mainly dependent on the electrolytic media, stirring, current density and reaction temperature. The uniform and monodisperse sphere Cu$_2$O nanoparticles with the size about 400~600 nm can be easily obtained in H$_2$O–ethylene glycol mix–solvent (volume ratio 1:1) and appropriate current density with stirring at room temperature. In addition, the possible mechanism has been reported in the article. And the average energy consumed in producing 1 g Cu$_2$O nanoparticles is 180 kJ. For the flexibility and effectiveness of this microplasma technology, it will have broad application prospects in the realm of nanoscience, energy and environment.

In this work, a simple microplasma electrochemical technique is reported, where the microplasma takes place at the gas–solution interface as the cathode for the synthesis of cuprous oxide nanoparticles. Therefore, much interest has been focused on exploring the effects of various process parameters such as the type of electrolyte, stirring, pH value, current density and temperature on the growth of Cu$_2$O nanostructures. Moreover, the possible formation mechanism for the cuprous oxide nanoparticles synthesized by the newest plasma–liquid electrochemical technology is discussed.

In recent years particularly, nanoparticles have received considerable attention for its fascinating properties and potential applications. As an important p–type semiconductor with a band gap of 2.17 eV1,2, cuprous oxide (Cu$_2$O) is a promising material which has potential applications in electrode materials3, solar energy conversion4,5, sensors6 and catalysts7,10. In particular, it has potential applications in photon catalytic degradation of organic pollutants under visible light11. Furthermore, major interesting characteristics of Cu$_2$O are inexpensive, low toxicity, readily available and good environmental acceptability12,14.

Up to now, Cu$_2$O nanostructures with various shapes have been synthesized by different methods including hydrothermal method$^{15–18}$, electrochemical rout11,19,20, chemical vapor deposition of precursors21, solution synthesis method22 and sonochemical method23. However, so far, no report has been researched on the synthesis of Cu$_2$O by plasma–liquid electrochemistry technology, needless to say a low energy and microscale microplasma. Microplasma is a special subdivision of electrical discharge formed in electrode geometries where at least one dimension is less than 1 mm24. Microplasmas have attracted enormous interest from the plasma organization due to their characteristics of small physical size, excimer generation$^{25–27}$, atmospheric pressure stability28 and non–equilibrium thermodynamics29,30. These properties make microplasmas suitable for a wide range of applications, including medicine, gas treatment, textiles, surface modification and nanofabrication31.

Experimental Section

Experimental Apparatus and Materials. The experimental apparatus for microplasma electrochemical synthesis of Cu$_2$O nanoparticles is shown in Figure 1. A stainless steel tube (0.7 mm inside diameter, 8 cm length) was positioned 3 cm away from the copper electrode (1 cm width, 3 cm length, immersion area is 1 cm2) with a gap of 2 mm between the tube end and the liquid surface. Argon gas flow was coupled to the tube and controlled by a glass rotameter at 60 ml/min. The stainless steel tube acted as the cathode and the copper sheet as the anode. The reactor was made of common glass, with inner diameter of 5.5 cm and length of 8.5 cm. The copper anode was polished and washed with distilled water, and then immersed into electrolyte containing 150 g/L NaCl, 1 g/L NaOH and 1.3 g/L NaNO$_3$ with the distilled water or H$_2$O–ethylene glycol as the solvent. All chemicals were commercially available in analytical and guaranteed grade. When a high voltage (~2000 V) was applied, the...
microplasma formed at the gas–solution interface and then kept stable by a ballast resistor (R = 50 kΩ) and lowering the voltage to a certain current. During the preparation, the solution was gently stirred with a magnetic stirrer for acquiring the best production. The microplasma-assisted electrolysis was performed at different process conditions for 20 min. At the end of the synthesis, the sediments were centrifuged and washed with deionized water and ethanol for several times. Subsequently, the obtained products were dried in a vacuum oven at 60 °C for 6 h.

Analysis. The crystalline phase of obtained Cu2O nanoparticles was examined by an X-ray diffractometer (D/Max–IIIA, Rigaku). Their morphology, particle size and microstructure were characterized by field emission scanning electron microscope (FESEM, JEOL JSM-6330F) and transmission electron microscope (TEM, FEI Tecnai G2 Spirit, 120 kV).

Results and Discussion

Effects of electrolyte on the morphology of Cu2O nanoparticles. The effects of electrolyte on the results of Cu2O nanoparticles prepared by microplasma electrochemical method were firstly investigated. The XRD patterns of the Cu2O synthesized in different electrolytic media (H2O and H2O–ethylene glycol (volume ratio 1 : 1, the volume fraction of ethylene glycol is 50%)) under the same conditions in the 2θ range of 10–80° were shown in Figure 2. It is clearly show that Figure 2(a) contains five peaks that are in well agreement with those for Cu2O nanocrystals obtained from the International Center of Diffraction Data card (ICDD, formerly JCPDS No. 05–0667). However, according to Figure 2(b), there were a lot of peaks appeared which indicated that the products prepared in a pure water solvent also contained CuO and CuCl. This difference could visually be seen from the color of products that prepared in various electrolytes. As shown in Figure 3, the color of pure nanoparticles synthesized in a mix electrolyte were orange, however, the color of impure one which prepared in pure water was darker.

Figure 4 shows the SEM images of the produced nanoparticles with different solvents (H2O and H2O–ethylene glycol (1 : 1)) as the electrolytic media. It could be observed that varying electrolyte result in different morphology of the obtained products. As can be seen in Figure 4(a), lots of irregular shape structures were synthesized when pure distilled water acted as the solvent. It could be further indicated that other materials may generated in this case. By comparison, in H2O–ethylene glycol (1 : 1) mix solvent, the Cu2O crystals exhibit spherical structure with the diameter size ranging from 0.2 to 2 µm (Figure 4(b)).

The XRD and SEM results mentioned above obviously manifest that the effects of electrolyte on the morphology of Cu2O is enormous. The H2O–ethylene glycol electrolytic media not only can keep off the generation of undesired materials such as CuO and CuCl but also can effectually control the form of Cu2O crystals.

Effects of stirring on the morphology of Cu2O nanoparticles. With H2O–ethylene glycol as the electrolyte, the next work is to research the effects of stirring on the morphology of Cu2O prepared by microplasma technology. It can be found that using stirrer will not lead to the instability of microdischarge. Then the stirrer was used to produce cuprous oxide under the same conditions (14 mA/cm2 of current density, at room temperature, without stirring).

The products prepared with stirring or without stirring were characterized by SEM ((a) and (b)) and TEM ((c) and (d)) respectively. The results are shown in Figure 5. The shape of the Cu2O nanoparticles in two different situations was both in sphere. As can be seen in Figure 5(a) and 5(c), all the nanoparticles are almost uniformly scattered. However, in Figure 5(b), particles with different size tend to...
aggregate into foot-like products, which can be clearly seen in Figure 5(d). Moreover, the size of those aggregates is large to 2 μm. By comparison, the sizes of the Cu$_2$O sphere nanoparticles are around 600 ~ 800 nm in diameter. This result demonstrates that stirring can greatly make the Cu$_2$O nanoparticles grow uniformly and dispersedly and have no influence of microdischarge.

Effects of current density on the morphology of Cu$_2$O nanoparticles. In addition, the influence of current density on the growth of cuprous oxide nanoparticles by microplasma electrochemical method was also researched. Firstly, 7 mA/cm2 was chosen to run the reaction, while no sediments appeared after micro-discharge for 20 min. Then 10, 14 and 20 mA/cm2 was the next consideration value. Finally, it can be found that 20 mA/cm2 of current density was so big that the generated high energy would burn out the discharge tube. Therefore, other two values will bring out the results of current density effect on the morphology of Cu$_2$O. The FESEM and TEM images of the Cu$_2$O nanoparticles synthesized at current density 10 mA/cm2 were shown in Figure 6. In comparison, the average diameter of Cu$_2$O nanoparticles prepared at 10 mA/cm2 was about 400 ~ 600 nm and it is smaller than the above mentioned case at 14 mA/cm2 (Figure 5(a) and 5(c)). Moreover, Cu$_2$O nanoparticles prepared at 10 mA/cm2 was more uniform and regular. This mainly because the formation rate of Cu$_2$O nanoparticles is dependent on the current density. When the current density was higher, a very large amount of particles could generate in a short time and get together soon. Hence, it’s essential to choose a suitable current density.

Effects of reaction temperature on the morphology of Cu$_2$O nanoparticles. As a significant thermodynamic parameter, reaction temperature exhibits a considerable influence on the morphology of nanoparticles. A representative FESEM and TEM micrographs of the cuprous oxide nanocrystals prepared at 80°C for 20 min is shown in Figure 7. It is already known that Cu$_2$O synthesized at room temperature has a sphere shape, as shown in Figure 5(a) and 5(b).
However, with the rising of reaction temperature, morphology of products changed gradually from sphere to octahedron under the same conditions, and the size of nanocrystals was added to 1 μm (Figure 7). Therefore, temperature can not only affect the morphology of Cu2O nanoparticles but also change the dimension of them.

For the above results, the possible microplasma formation mechanism of Cu2O nanoparticles was proposed below. Above all, the measured pH value of the reaction liquid was 12.5 which indicated that this preparation by microplasma is available in strong alkali. Microplasma being the cathode can produce lots of electron to initiate the redox reaction in solution and the microplasma electrochemical reactions are visually depicted in Figure 8 and described as follows\(^5\): cathodic reaction:

\[
2\text{H}_2\text{O} + 2e^- = \text{H}_2 \uparrow + 2\text{OH}^-
\]

(1)

anode reaction:

\[
\text{Cu} + n\text{Cl}^- - e^- = \text{CuCl}^{1-n}_n
\]

(2)

cell reaction:

\[
2\text{CuCl}^{1-n}_n + 2\text{OH}^- = \text{Cu}_2\text{O} \downarrow + \text{H}_2\text{O} + 2n\text{Cl}^-
\]

(3)

Hence, the total reaction equation is summarized as follow:

\[
2\text{Cu} + \text{H}_2\text{O} = \text{H}_2 \uparrow + \text{Cu}_2\text{O}
\]

(4)

Figure 6 | The FESEM (a) and TEM (b) images of the Cu2O nanoparticles prepared at current density 10 mA/cm\(^2\). (at room temperature, with stirring).

Figure 7 | The FESEM (a) and TEM (b) images of the Cu2O nanoparticles prepared at 80°C (10 mA/cm\(^2\) of current density, with stirring).

Figure 8 | A schematic of microplasma electrochemical synthesis of Cu2O nanoparticles.
Then the formation of Cu2O nanoparticles might undergo nucleation, selective adsorption and growth process. Broadly speaking, the morphology of nanoparticles is mainly determined by its inherent structure and process parameters. As is known, the growth rates vary along the different crystallographic directions. The final morphology will be determined by the fast growth plane. In this research, nanocrystals prepared in all conditions except at 80 °C, the presence of ethylene glycol lets the growth rates of all directions of Cu2O nanoparticles keep nearly the same, which ultimately result in the generation of solid nanosphere structures. Moreover, the mix electrolytic media makes the dispersion of nanoparticles more effective. In addition, the use of stirring actually impedes the combination between different nanoparticles and prevents the crystal from further growth, and so do the condition of low current density which is mainly because current density can determine the generation rate of Cu2O nanocrystals. However, when the reaction temperature rises to 80 °C, the surface energy of (111) plane of Cu2O crystals reduces and further result in the growth rate along that crystal orientations being lower. As a consequence, the octahedral shape of Cu2O nanoparticles is generated with the assistance of microplasma. More importantly, cuprous oxide nanoparticles of different morphology are the vital raw materials for the widespread application domain. It is necessary to know that the average energy consumed in producing 1 g Cu2O nanoparticles is 180 kJ. As the flexibility and effectiveness of this microplasma technology, this method can be used in large area such as synthesis of very useful nanomaterials, removal of pollutants, production of hydrogen and so on.

Conclusion

On the basis of the results of present research it can be concluded that we are able to synthesize different possible Cu2O nanoparticles (nanosphere and nanooctahedron) by a very newest and inexpensive method of microplasma electrochemical technology. The microplasma operated at the liquid–gas interface replaces the traditional solid electrode that makes the preparation of cuprous oxide nanoparticles more effective. In particular, our experiment is the first attempt to apply the microplasma into the preparation of Cu2O nanoparticles. However, the theoretical fundamental of this method is not well built. Therefore, more efforts should be undertaken to demonstrate the present results to exploit this microplasma technology. More importantly, the prepared Cu2O nanoparticles have a widely application prospects in environmental governance such as adsorption of organic pollutants.

1. Shen, M. Y., Yokouchi, T., Koyama, S. & Goto, T. Dynamics associated with Bose–Einstein statistics of orthoexcitons generated by resonant excitations in cuprous oxide. Phys Rev B 56, 13066–13072 (1997).
2. Ghijen, J., et al. Electronic structure of Cu2O and CuO. Phys Rev B 38, 11122–11130 (1988).
3. Xu, C., Wang, X., Yang, L. & Wu, Y. Fabrication of a graphene-cuprous oxide composite. J Solid State Chem 182, 2486–2490 (2009).
4. Wang, W., et al. Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route. J Mater Chem 14, 67–69 (2004).
5. Zhao, W., et al. Shape-controlled synthesis of Cu2O microcrystals by electrochemical method. Appl Surf Sci 256, 2269–2275 (2010).
6. Deng, S., et al. Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor. J Am Chem Soc 134, 4905–4912 (2012).
7. E. de Jongh, P., Vannakaelbergh, D. & J. Kelly, J. Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 12, 1069–1070 (1999).
8. White, B., et al. Complete CO2 Oxidation over Cu2O Nanoparticles Supported on Silica Gel. Nano Lett 6, 2095–2108 (2006).
9. Kuo, C.-H. & Huang, M. H. Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. J Phys Chem C 112, 18355–18360 (2008).
10. Kim, J., et al. Cu2O Nanocube-Catalyzed Cross-Coupling of Aryl Halides with Phenols via Ullmann Coupling. Eur J Inorg Chem 28, 4219–4223 (2009).
11. Yuan, G., Zhu, J., Xie, F. & Chang, X. Shape-Controlled Synthesis of Cuprous Oxide Nanocrystals via the Electrochemical Route with H2O-Polyol Mix-Solvent and Their Behaviors of Adsorption. J Nanosci Nanotechno 10, 5258–5264 (2010).
12. Liu, R., et al. Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O Nanotubes on InP(111). Chem Mater 17, 725–729 (2005).
13. Li, J., et al. Patterning of Nanostructured Cuprous Oxide by Surfactant-Assisted Electrochemical Deposition. Cryt Growth Des 8, 2652–2659 (2008).
14. Bao, H., et al. Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. J Phys Chem C 114, 6676–6680 (2010).
15. Xu, J. & Xue, D. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater 55, 2397–2406 (2007).
16. Zhao, X., Bao, Z., Sun, C. & Xue, D. Polymorphism formation of Cu2O: A microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J Cryst Growth 311, 711–715 (2009).
17. Chen, K., Si, Y. & Xue, D. Directing the branching growth of cuprous oxide by OH- ions. Mod Phys Lett B 23, 3753–3760 (2009).
18. Si, Y. & Xue, D. Hydrothermal fabrication of core-shell structured Cu2O microspheres via an intermediate-template route. Mod Phys Lett B 23, 3851–3858 (2009).
19. Kang, S. O., et al. Electrochemical growth and resistive switching of flat-surfaced and (111)-oriented Cu2O films. Appl Phys Lett 95, 092108 (2009).
20. Han, X. F., Han, K. H. & Tao, M. n-Type Cu2O by Electrochemical Doping with Cl. Electrochem Solid St 12, H89–H91 (2009).
21. Medina-Valtierra, J., Calixto, S. & Ruiz, F. Formation of copper oxide films on fiberglass by adsorption and reaction of cuprous ions. Thin Solid Films 460, 58–61 (2004).
22. Guo, S., Xu, J., Zhang, W., Liu, A. & Tang, S. Controlled synthesis of Cu2O nanocrystals by a simple solution route. J Solid State Chem 180, 1390–1396 (2007).
23. Kumar, R. V., Mastai, Y., Diamant, Y. & Gedanken, A. Synochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem 11, 1209–1213 (2001).
24. Crocker, K. H., Schoenbach, K. H. & Edin, J. G. Microparticles and applications. J Phys D: Appl Phys 39, R55 (2006).
25. El-Habachi, A. & Schoenbach, K. H. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Appl Phys Lett 73, 885 (1998).
26. Sankaran, R. M., Giapisi, K. P., Moselhy, M. & Schoenbach, K. H. Argon excimer emission from high-pressure microdischarges in metal capillaries. Appl Phys Lett 83, 4728 (2003).
27. Park, S. J., Edén, J. G., Chen, J. & Liu, C. Microdischarge devices with 10 or 30 μm square silicon cathode cavities: pd scaling and production of the Xe0 excimer. Appl Phys Lett 85, 4869 (2004).
28. Park, S. J. & Eden, J. G. 15–30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures. Appl Phys Lett 81, 4127 (2002).
29. Kuruczenia, P., Abramzonza, N., Figus, M. & Becker, K. Measurement of rotational temperatures in high-pressure microhollow cathode (MHC) and capillary plasma electrode (CPE) discharges. Acta Phys Slovaca 54, 115–124 (2004).
30. Penache, C., et al. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy. Plasma Sources Sci Technol 11, 476–483 (2002).
31. Mariotti, D. & Sankaran, R. M. Perspectives on atmospheric-pressure plasmas for nanotechnology. J Phys D: Appl Phys 44, 174023 (2011).
32. Ji, J. & Cooper, W. C. Electrochemical preparation of cuprous oxide powder: Part I. Basic electrochemistry. J Appl Electrochem 20, 818–825 (1990).
33. Guo, S., Fang, Y., Dong, S. & Wang, E. Templateless, Surfactantless, Electrochemical Route to a Cuprous Oxide Microcrystal: From Octahedra to Monodisperse Colloidal Spheres. Inorg Chem 46, 9537–9539 (2007).