STOCHASTIC FIXED POINTS AND NONLINEAR PERRON-FRÖBENIUS THEOREM

E. BABAEI, I. V. EVSTIGNEEV, AND S. A. PIROGOV

ABSTRACT. We provide conditions for the existence of measurable solutions to the equation \(\xi(T\omega) = f(\omega, \xi(\omega)) \), where \(T : \Omega \to \Omega \) is an automorphism of the probability space \(\Omega \) and \(f(\omega, \cdot) \) is a strictly non-expansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Fröbenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping \(D(\omega) \) of a random closed cone \(K(\omega) \) in a finite-dimensional linear space into the cone \(K(T\omega) \). Under assumptions of monotonicity and homogeneity of \(D(\omega) \), we prove the existence of scalar and vector measurable functions \(\alpha(\omega) > 0 \) and \(x(\omega) \in K(\omega) \) satisfying the equation \(\alpha(\omega)x(T\omega) = D(\omega)x(\omega) \) almost surely.

1. INTRODUCTION

Let \(V = \mathbb{R}^n \) be a finite-dimensional real vector space with some norm \(\| \cdot \| \). A subset \(K \) of \(V \) is called a cone if it contains with any vectors \(x \) and \(y \) any non-negative linear combination \(\alpha x + \beta y \) of these vectors. A cone is called proper if \(K \cap (-K) = \{0\} \).

Let \(K \subseteq V \) be a closed proper cone in \(V \) with non-empty interior \(K^\circ \); we will call such cones solid. The cone \(K \) induces the partial ordering \(\leq_K \) in the space \(V \) defined as follows: \(x \leq_K y \) if and only if \(y - x \in K \). We shall write \(x \prec_K y \) if \(x \leq_K y \), \(x \neq y \), and \(x <_K y \) if \(y - x \in K^\circ \).

Let \(L \) be another solid cone in \(V \). A mapping \(D : K \to L \) is called monotone if \(D(x) \leq_L D(y) \) for any vectors \(x, y \in K \) satisfying \(x \leq_K y \). It is called completely monotone if each of the relations \(x \leq_K y \) implies the corresponding relation \(D(x) \leq_L D(y) \), \(D(x) <_L D(y) \) or \(D(x) <_L D(y) \) between the vectors \(D(x), D(y) \in L \). A mapping \(D \) is termed strictly monotone if the relation \(x \prec_K y \) implies \(D(x) <_L D(y) \).

Denote by \(V^* \) the dual to the space \(V \). Elements of \(V^* \) are linear functionals \(\phi(x) = \langle \phi, x \rangle \) on \(V \). For any cone \(K \), denote by

\[K^* = \{ \phi \in V^* : \phi(x) \geq 0 \text{ for all } x \in K \} \]

the cone dual to \(K \). If \(K \) is a solid cone, then so is \(K^* \) (see [29], Lemma 1.2.4). Every functional in the interior of \(K^* \) is strictly positive, i.e., \(\phi(x) > 0 \) for all \(0 \neq x \in K \).

2010 Mathematics Subject Classification. Primary: 37H10, 37H15; Secondary: 37H05, 37H99.

Key words and phrases. Random dynamical systems, contraction mappings, Perron-Fröbenius theory, nonlinear cocycles, stochastic equations, random monotone mappings, Hilbert-Birkhoff metric.

©2016 American Mathematical Society
For any linear functional ϕ in the interior of K^*, put
\[\Sigma^K_\phi = \{ x \in K : \phi(x) = 1 \}. \]
The set Σ^K_ϕ is non-empty, compact and convex (ibid).

Let (Ω, \mathcal{F}, P) be a complete probability space and $T : \Omega \to \Omega$ its automorphism, i.e., a one-to-one mapping such that T and T^{-1} are measurable and preserve the measure P. Let $\ldots \subseteq \mathcal{F}_- \subseteq \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots$ be a filtration on Ω such that each σ-algebra \mathcal{F}_i is completed by \mathcal{F}-measurable sets of measure 0. Assume this filtration is invariant with respect to T, i.e., $\mathcal{F}_{i+1} = T^{-1}\mathcal{F}_i$ for each t. Suppose that for every $\omega \in \Omega$, a solid cone $K(\omega) \subseteq V$ depending \mathcal{F}_0-measurably\(^1\) on ω is given. Put $K_i(\omega) = K(T^i\omega)$, $t = 0, \pm 1, \pm 2, \ldots$. Let $D(\omega, x)$ be a mapping of the cone $K_0(\omega)$ into the cone $K_1(\omega)$. Define
\[D_t(\omega, x) = D(T^{-1}t\omega, x), \quad t = 0, \pm 1, \pm 2, \ldots \]
For shortness, we will write $D(\omega)$ in place of $D(\omega, x)$ and $D_t(\omega)$ in place of $D_t(\omega, x)$. Put
\[C(t, \omega) = D_t(\omega)D_{t-1}(\omega)\ldots D_1(\omega), \quad t = 1, 2, \ldots, \]
where the product means the composition of maps, and $C(0, \omega) = Id$ (the identity map). We have
\[C(t, T^s\omega)C(s, \omega) = C(t + s, \omega), \quad t, s \geq 0, \]
i.e., the mapping $C(t, \omega)$ is a cocycle over the dynamical system $(\Omega, \mathcal{F}, P, T)$ (see Arnold [1]). The mapping $C(t, \omega)$ transforms elements of the cone $K_0(\omega)$ into elements of the cone $K_1(\omega)$.

It can be shown that the interior of the dual cone $K^*(\omega)$ depends \mathcal{F}_0-measurably on ω, and so there exists an \mathcal{F}_0-measurable linear functional $\phi(\omega)$ such that $\phi(\omega)$ belongs to the interior of $K^*(\omega)$ for each ω (this follows from [5], Theorems III.22 and III.30). We fix the functional $\phi(\omega)$ and define $\hat{K}(\omega) = \Sigma^K_{\phi(\omega)}$. The set $\hat{K}(\omega)$ is non-empty, compact and convex.

Let us extend the mapping $D(\omega, x)$ to all $x \in V$ by setting $\bar{D}(\omega, x) = D(\omega, x)$ if $x \in K(\omega)$ and $\bar{D}(\omega, x) = \infty$ for $x \notin K(\omega)$, where "\$\infty\$" stands for a one-point compactification of V. We will impose the following conditions:

(D1) $D(\omega, x)$ is continuous in $x \in K(\omega)$ and $D(\omega, x)$ is $\mathcal{F}_1 \times V$-measurable in $(\omega, x) \in \Omega \times V$, where V is the Borel σ-algebra on V.

(D2) $D(\omega, x)$ is positively homogeneous (of degree one) in $x \in K(\omega)$:
\[D(\omega, \lambda x) = \lambda D(\omega, x) \quad \text{for any } \lambda > 0, \ x \in K(\omega). \]

(D3) $D(\omega, x)$ is a completely monotone mapping from $K_0(\omega)$ into $K_1(\omega)$.

Furthermore, we will assume that the cocycle $C(t, \omega)$ satisfies the following condition.

(C) For almost all $\omega \in \Omega$ there is a natural number l_ω such that the mapping $C(l_\omega, \omega)$ is strictly monotone.

The main result of this paper is as follows.

Theorem 1. (a) There exist an \mathcal{F}_0-measurable vector function $x(\omega)$ and an \mathcal{F}_1-measurable scalar function $\alpha(\omega)$ such that
\[\alpha(\omega) > 0, \ x(\omega) \in K^0(\omega), \ (\phi(\omega), x(\omega)) = 1 \]

\(^1\)We say that the set-valued mapping $\omega \mapsto K(\omega) \subseteq V$ is \mathcal{F}_0-measurable (or the set $K(\omega)$ depends \mathcal{F}_0-measurably on ω) if its graph $\{(\omega, x) : x \in K(\omega)\}$ belongs to $\mathcal{F}_0 \times V$, where V is the Borel σ-algebra on V.
for all ω and

\begin{equation}
\alpha(\omega)x(T\omega) = D(\omega)x(\omega) \quad \text{(a.s.)},
\end{equation}

(b) The pair of functions $(\alpha(\omega), x(\omega))$, where $\alpha(\omega) \geq 0$, $x(\omega) \in K(\omega)$ and $
\langle \phi(\omega), x(\omega) \rangle = 1$, satisfying (1.1) is determined uniquely up to the equivalence with respect to the measure P.

(c) If $t \to \infty$, then

\begin{equation}
\|C(t, T^{-t}\omega)a - x(\omega)\| \to 0 \quad \text{(a.s.)},
\end{equation}

where convergence is uniform in $0 \neq a \in K_{-1}(\omega)$.

This result may be regarded as a stochastic nonlinear generalization of the Perron-Frobenius theorem: $x(\cdot)$ and $\alpha(\cdot)$ play the roles of an “eigenvector” and an “eigenvalue” of the random mapping $D(\omega)$ with respect to the dynamical system $T : \Omega \to \Omega$. The original versions of this classical theorem were discovered at the beginning of the 20th century by Perron [37, 38], who investigated eigenvalues and eigenvectors of matrices with strictly positive entries, and by Frobenius [15, 16, 17], who extended Perron’s results to irreducible nonnegative matrices. Extensions of the Perron-Frobenius results to nonlinear mappings were obtained by H. Nikaido [33], M. Morishima [30], T. Fujimoto [18], Y. Oshime [34, 35, 36] and others. Those extensions were motivated by applications in mathematical economics, in particular, to the so-called nonlinear Leontief model [39]. For reviews of nonlinear versions of the Perron-Frobenius theory, we refer the reader to the monographs by Nussbaum [31, 32] and the papers by Kohlberg [23] and Gaubert and Gunawardena [19].

The first result on stochastic generalizations of the Perron-Frobenius theorem for linear maps $D(\omega)$ (non-negative random matrices), was obtained in [10]. The result was extended and applied to mathematical models in statistical physics and evolutionary biology by Arnold et al. [2]. Recently, an important progress has been made in a series of papers by Mierczyński and Shen [26, 27, 28], who established stochastic versions of the Krein-Rutman theorem (generalizing the Perron-Frobenius theorem to infinite-dimensional Banach spaces). Under some general conditions, it was shown that a positive linear random dynamical system in an ordered Banach space admits a family of generalized principal Floquet subspaces, a generalized principal Lyapunov exponent, and a generalized exponential separation. These results extend to the stochastic case the classical Krein-Rutman theorem for strongly positive and compact operators in strongly ordered Banach spaces. In the paper [25] by Lian and Wang, a stochastic Krein-Rutman theory for general k-cones was developed, extending the classical results both from the deterministic to the stochastic case and from $k = 1$ to $k > 1$.

The first stochastic nonlinear analogue of the Perron-Frobenius was obtained in the paper by Evstigneev and Pirogov [12]. In that paper, $D(\omega)$ was a mapping of the set \mathbb{R}_n^+ of non-negative n-dimensional vectors into itself. Now we generalize this result to more general random cones $K(\omega) \subseteq V$.

Problems related to stochastic (linear and nonlinear) Perron-Frobenius theorems arise in various areas of pure and applied mathematics, in particular, in statistical physics, ergodic theory, mathematical biology and mathematical finance, see, e.g., Arnold et al. [2], Kifer [21, 22], and Dempster et al. [7]. Extensions of this theory
to set-valued mappings $D(\omega, x)$ (von Neumann-Gale dynamical systems [3], [13])
have important applications in mathematical economics [14] and finance [8].

Several comments about the assumptions imposed are in order. Let K and L
be solid cones in V. Consider a concave mapping $D : K \to L$, i.e. a mapping
satisfying

$$D(\theta x + (1 - \theta)y) \succeq_L \theta D(x) + (1 - \theta)D(y)$$

for all $x, y \in K$ and $\theta \in [0, 1]$. Clearly, if D is homogeneous, then D
is concave if and only if it is superadditive:

$$D(x + y) \succeq_L D(x) + D(y).$$

For a superadditive mapping $D : K \to L$, the relation $x \prec_K y$ between two
vectors $x, y \in K$ implies the corresponding relation $D(x) \prec_L D(y)$ between the
vectors $D(x), D(y) \in L$ if and only if

(M1) $D(h) >_L 0$ for all $h \succ_K 0$.

The relation $x \prec_K y$ implies the corresponding relation $D(x) <_L D(y)$ if and
only if

(M2) $D(h) >_L 0$ for all $h \succ_K 0$.

The mapping $D(x)$ is strictly monotone if and only if

(M3) $D(h) >_L 0$ for all $h \succ_K 0$.

We can also see from (1.4) that any superadditive mapping is monotone. By using
this, we obtain that if D is concave and homogeneous, then (M2) is equivalent to

(M4) $D(h_*) >_L 0$ for some $h_* \succeq_K 0$.

Clearly, (M4) follows from (M2). Conversely, (M4) implies (M2) because for
any $h \succ_K 0$ we have $h \succeq_K \lambda h_*$, where $\lambda > 0$ which yields $D(h) \succeq_L \lambda D(h_*) >_L 0$.
Thus, for a concave homogeneous mapping, its complete monotonicity is equivalent
to the validity of (M1) and (M2) (or (M1) and (M4)), and its strict monotonicity
is equivalent to (M3).

The remainder of the paper is organized as follows. In Section 2, some general
facts regarding the Hilbert-Birkhoff metric are given. In Section 3, a stochastic
version of the fixed point principle, which plays a key role in the proof of Theorem
1, is formulated. Sections 4 and 5 provide proofs of the main results.

2. Hilbert-Birkhoff metric

Given a solid cone K and a strictly positive linear functional ϕ, the Hilbert-
Birkhoff ([20], [4]) metric on the set $Y := \Sigma^K_\phi \cap K^\circ$ is defined as follows. For any
$x, y \in Y$ put

$$M(x/y) = \inf \{ \beta > 0 : x \leq_K \beta y \}, \ m(x/y) = \sup \{ \alpha > 0 : \alpha y \leq_K x \}$$

and

$$d(x, y) = \log \left[\frac{M(x/y)}{m(x/y)} \right] .$$

It can be shown (see [29], Propositions 2.1.1 and 2.5.4) that the function $d(x, y)$ is
a complete separable metric on Y, and the topology generated by it on Y coincides
with the Euclidean topology on Y. Furthermore, there exists a constant $M > 0$ such that

\[\|x - y\| \leq M(e^{d(x,y)} - 1), \]

for all $x, y \in Y$ (see [29], formula (2.2)).

Remark. An important example of K is the cone \mathbb{R}^n_+ consisting of all non-negative vectors in $V = \mathbb{R}^n$. Suppose $\phi(x) = \sum_{i=1}^n x_i$ for $x = (x_1, ..., x_n)$. Then we have

\[\Sigma^K = \{ x \geq 0 : \sum_{i=1}^n x_i = 1 \}, \quad Y = \{ x > 0 : \sum_{i=1}^n x_i = 1 \}, \]

\[M(x/y) = \max(i/y_i), \quad m(x/y) = \min(j/y_j), \]

\[d(x, y) = \log \left(\max(i/y_i) \cdot \max(j/y_j) \right). \]

Here, the inequalities $x \geq 0$ and $x > 0$ are understood coordinate-wise.

Hilbert-Birkhoff metric is a particularly useful tool in the study of monotone homogeneous maps on cones. A mapping $f : X \to Y$ from a metric space (X, d_X) into a metric space (Y, d_Y) is called non-expansive if $d_Y(f(x), f(y)) \leq d_X(x, y)$ for all $x, y \in X$. It is called strictly non-expansive if the inequality in the above formula is strict for all $x \neq y$ in X. The usefulness of Hilbert-Birkhoff metric lies in the fact that linear, and some nonlinear, mappings of cones are non-expansive with respect to this metric.

Let K and L be solid cones in V and $\phi_1 \in (K^*)^\circ$, $\phi_2 \in (L^*)^\circ$. Put $Y_1 = \Sigma^K \cap K^\circ$, $Y_2 = \Sigma^L \cap L^\circ$ and suppose $d_i(x, y)$ is Hilbert-Birkhoff metric on Y_i, $i = 1, 2$.

Theorem 2. If $f : K \to L$ is a monotone and homogeneous (of degree 1) mapping such that $f(x) \succ_L 0$ for all $x \succ_K 0$, then the mapping $g : Y_1 \to Y_2$ given by $g(x) = f(x)/\langle \phi_2, f(x) \rangle$ is non-expansive with respect to the metric $d_1(x, y)$ on Y_1 and the metric $d_2(x, y)$ on Y_2. Moreover, if f is strictly monotone and homogeneous, then g is strictly non-expansive.

Proof. Let $x, y \in Y_1$ and write $\alpha = m(x/y)$, $\beta = M(x/y)$. Since K is a closed cone, we have $\alpha y \leq_K x \leq_K \beta y$ and so $\alpha f(y) \leq_L f(x) \leq_L \beta f(y)$ because f is monotone and homogeneous. Thus,

\[\alpha \langle \phi_2, f(y) \rangle \leq_L g(x) \leq_L \beta \langle \phi_2, f(y) \rangle, \]

which implies

\[d_2(g(x), g(y)) \leq \log(\beta/\alpha) = d_1(x, y). \]

Let f be strictly monotone. If $x, y \in Y_1$ and $x \neq y$, we have $x \neq \lambda y$ for all $\lambda > 0$ (otherwise if $x = \lambda y$ for some $\lambda > 0$, then $1 = \phi_1(y) = \phi_1(x) = \lambda \phi_1(y)$, which yields $\lambda = 1$ and $x = y$). Then $\alpha y \prec_K x \prec_K \beta y$, and so $\alpha f(y) \prec_L f(x) \prec_L \beta f(y)$. Hence there exist $\mu > \alpha$ and $\tau < \beta$ such that $\mu f(y) \leq_L f(x) \leq_L \tau f(y)$. So that

\[d_2(g(x), g(y)) \leq \log(\tau/\mu) < \log(\beta/\alpha) = d_1(x, y). \]

The proof is complete.
3. Stochastic fixed-point principle

In the proof of Theorem 1, we will use a stochastic generalization of the following well-known result regarding strictly non-expansive mappings (see, e.g., [9], [23]). Let f be a strictly non-expansive mapping from a compact space X into itself. Then f has a unique fixed point \bar{x}, and $f^k(x) \to \bar{x}$ as $k \to \infty$ for each $x \in X$. (We denote by $f^k(x)$ the kth iterate of the mapping f). A stochastic version of the above contraction principle was obtained in the paper by Evstigneev and Pirogov [11]. Here we establish a more general version of this result. Let us formulate it.

As before, let (Ω, \mathcal{F}, P) be a complete probability space, $T : \Omega \to \Omega$ its automorphism, and $... \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_0 \subseteq \mathcal{F}$... a filtration such that each \mathcal{F}_i contains all sets in \mathcal{F} of measure 0. Let (V, \mathcal{V}) be a standard\(^2\) measurable space and let $X(\omega) \subseteq V$ be a non-empty set depending \mathcal{F}_0-measurably on $\omega \in \Omega$. Let $f(\omega, x)$ be a mapping assigning to every $\omega \in \Omega$ and every $x \in X(\omega)$ an element $f(\omega, x) \in X(T\omega)$. Our main goal in this section is to provide conditions under which the equation

\begin{equation}
\xi(T\omega) = f(\omega, \xi(\omega)) \text{ (a.s.)}
\end{equation}

has a solution in the class of measurable mappings $\xi : \Omega \to V$ such that $\xi(\omega) \in X(\omega)$ for all ω. We also will be interested in the uniqueness of this solution and properties of its stability. Equations of the type (3.1) arise in connection with various questions of the theory of random dynamical systems (Arnold [1]). Our study of such equations is motivated by their applications in the stochastic Perron-Frobenius theory.

Let us extend $f(\omega, x)$ to the whole space V by setting $\bar{f}(\omega, x) = f(\omega, x)$ if $x \in X(\omega)$ and $\bar{f}(\omega, x) = \infty$ if $x \notin X(\omega)$, where the symbol "∞" denotes a point added to V.

Assume that the following conditions hold.

(A1) The mapping $\bar{f}(\omega, x)$ ($\omega \in \Omega$, $x \in V$) is $\mathcal{F}_1 \times \mathcal{V}$-measurable.

For each ω, let $Y(\omega)$ be a non-empty subset of $X(\omega)$ equipped with a separable metric $\rho(\omega, x, y)$, $x, y \in Y(\omega)$. Let us introduce the following assumptions.

(A2) (a) The set-valued mapping $\omega \mapsto Y(\omega)$ is \mathcal{F}_0-measurable.

(b) The function

$$\bar{\rho}(\omega, x, y) := \begin{cases}
\rho(\omega, x, y), & \text{if } x, y \in Y(\omega), \\
\infty, & \text{otherwise},
\end{cases}$$

is $\mathcal{F}_0 \times \mathcal{V} \times \mathcal{V}$-measurable.

(c) For each ω, the Borel measurable structure on $Y(\omega)$ induced by the metric $\rho(\omega, x, y)$ coincides with the measurable structure induced on $Y(\omega)$ by the σ-algebra \mathcal{V}.

(d) For each $\omega \in \Omega$ and $x \in Y(\omega)$, we have $f(\omega, x) \in Y(T\omega)$, and the mapping $f(\omega, \cdot) : Y(\omega) \to Y(T\omega)$ is continuous with respect to the metric $\rho(\omega, x, y)$ on $Y(\omega)$ and the metric $\rho(T\omega, x, y)$ on $Y(T\omega)$.

Note that $Y(\omega) \in \mathcal{V}$ for each ω by virtue of (a).

For every $k = 0, \pm 1, \pm 2, ...$ define

\begin{equation}
X_k(\omega) = X(T^k,\omega), \quad Y_k(\omega) = Y(T^k,\omega), \quad \rho_k(\omega, x, y) = \rho(T^k,\omega, x, y),
\end{equation}

\begin{equation}
f_k(\omega, x) = f(T^{k-1},\omega, x) \text{ [if } x \in X_{k-1}(\omega)].
\end{equation}

\(^2\)A measurable space is called standard if it is isomorphic to a Borel subset of a complete separable metric space.
For each \(m = 0, 1, 2, \ldots \) put

\[
(3.3) \quad f^{(m)}(\omega, x) = f_0(\omega) f_{-1}(\omega) \cdots f_{-m}(\omega)(x) \quad [x \in X_{-m-1}(\omega)],
\]

\[
X^{(m)}(\omega) = f^{(m)}(\omega, X_{-m-1}(\omega)).
\]

The product \(f^{(m)}(\omega, x) = f_0(\omega) f_{-1}(\omega) \cdots f_{-m}(\omega) \) means the composition of the mappings. Note that for each \(m = 0, 1, \ldots \) the map \(f_{-m}(\omega, x) \) acts from \(\Omega \times X_{-m-1}(\omega) \) into \(X_{-m}(\omega) \), and so \(f^{(m)}(\omega, x) \) acts from \(\Omega \times X_{-m-1}(\omega) \) into \(X_0(\omega) \). The extended mappings \(\tilde{f}_{-m}(\omega, x) \) and \(\tilde{f}^{(m)}(\omega, x) \) are \(F_m \times \mathcal{V} \)-measurable and \(F_0 \times \mathcal{V} \)-measurable, respectively. The functions \(\rho_{-m}(\omega, x, y) \) are measurable with respect to \(F_m \times \mathcal{V} \times \mathcal{V} \subseteq F_0 \times \mathcal{V} \times \mathcal{V} \).

(A3) There is a sequence of \(F_0 \)-measurable sets \(\Omega_0 \subseteq \Omega_1 \subseteq \cdots \subseteq \Omega \) such that \(P(\Omega_m) \to 1 \) and for each \(m = 0, 1, \ldots \) and \(\omega \in \Omega_m \) the following conditions are satisfied:

(a) the set \(X^{(m)}(\omega) \) is contained in \(Y(\omega) \) and is compact with respect to the metric \(\rho(\omega, x, y) \);

(b) for all \(x, y \in Y_{-m-1}(\omega) \) with \(x \neq y \), we have

\[
(3.4) \quad \rho(\omega, f^{(m)}(\omega, x), f^{(m)}(\omega, y)) < \rho_{-m}(\omega, x, y).
\]

Since the sequence of sets \(\Omega_m \) is non-decreasing, there exists an \(F_0 \)-measurable function \(m(\omega) \) with non-negative integer values such that for each \(\omega \in \Omega := \Omega_1 \cup \Omega_2 \cup \cdots \) (and hence for almost all \(\omega \)), we have \(\omega \in \Omega_m \), \(m \geq m(\omega) \). We can define \(m(\omega) = \min\{ i : \omega \in \Omega_i \} \) if \(\omega \in \Omega \) and \(m(\omega) = 0 \), otherwise.

Theorem 3. (i) There exists an \(F_0 \)-measurable mapping \(\xi : \Omega \to V \) such that \(\xi(\omega) \in Y(\omega) \) and equation (3.1) holds, and

\[
(3.5) \quad \lim_{m(\omega) \leq m \to \infty} \sup_{x \in X_{-m-1}(\omega)} \rho(\omega, \xi(\omega), f_0(\omega) \cdots f_{-m}(\omega)(x)) = 0 \quad (a.s.).
\]

(ii) If \(\eta : \Omega \to V \) is any (not necessarily measurable) mapping for which \(\eta(\omega) \in X(\omega) \) and equation (3.1) holds, then \(\eta = \xi \) with probability one.

According to (3.5), the sequence \(f_0 \cdots f_{-m}(x) \) converges to \(\xi(\omega) \) in the metric \(\rho(\omega, x, y) \) uniformly in \(x \in X_{-m-1}(\omega) \) with probability one. Note that the distance \(\rho(\omega, \cdot, \cdot) \) between \(f_0 \cdots f_{-m}(x) \) and \(\xi(\omega) \) involved in (3.5) is defined only if \(f_0 \cdots f_{-m}(x) \in Y(\omega) \). By virtue of condition (a) in (A3), this inclusion holds for almost all \(\omega \), all \(m \geq m(\omega) \) and \(x \in X_{-m-1}(\omega) \), therefore the limit in (3.5) is taken over \(m \geq m(\omega) \).

4. Proof of the Stochastic Fixed Point Principle

Proof of Theorem 3. 1st step. Observe that \(X^{(0)}(\omega) \supseteq X^{(1)}(\omega) \supseteq X^{(2)}(\omega) \supseteq \cdots \) and \(X^{(m)}(\omega) \neq \emptyset \) for each \(m \) and \(\omega \). Consider the sets \(\Omega_m \) \((m = 0, 1, \ldots) \) described in (A3) and their union \(\Omega \). According to (A3), \(P(\Omega) = 1 \) and each \(\omega \in \Omega \) belongs to all \(\Omega_n \), \(m \geq m(\omega) \). For \(\omega \in \Omega \), all the sets \(X^{(m)}(\omega) \), \(m \geq m(\omega) \), are contained in \(Y(\omega) \) and compact, and so the set \(X^\infty(\omega) := \bigcap_{m=0}^\infty X^{(m)}(\omega) \subseteq Y(\omega) \) is non-empty and compact as an intersection of a nested sequence of non-empty compacta \(X^{(m)}(\omega) \), \(m \geq m(\omega) \).

2nd step. Define \(\Omega^* = \cap_{k=-\infty}^\infty (T^k \Omega) \). The set \(\Omega^* \) is invariant and \(P(\Omega^*) = 1 \). Let us show that

\[
(4.1) \quad X^\infty(T\omega) = f(\omega, X^\infty(\omega)), \quad \omega \in \Omega^*.
\]
Equality (4.1) is equivalent to
\[(4.2) \quad X^\infty(\omega) = f(T^{-1}\omega, X^\infty(T^{-1}\omega)), \quad \omega \in \Omega^*, \]
because \(\omega \in \Omega^*\) if and only if \(T^{-1}\omega \in \Omega^*\). To prove (4.2) let us observe that
\[(4.3) \quad f(T^{-1}\omega, \bigcap_{m=0}^{\infty} X^{(m)}(T^{-1}\omega)) = \bigcap_{m=0}^{\infty} f(T^{-1}\omega, X^{(m)}(T^{-1}\omega)), \quad \omega \in \Omega^*. \]
The inclusion "\(\subset\)" in (4.3) holds always. The opposite inclusion follows from the continuity of \(f(T^{-1}\omega, \cdot)\) on \(Y(T^{-1}\omega)\) and the fact that \(X^{(m)}(T^{-1}\omega)\) are nested and compact in \(Y(T^{-1}\omega)\) for all \(m\) large enough. By using (4.3), we obtain
\[
f(T^{-1}\omega, X^\infty(T^{-1}\omega)) = f(T^{-1}\omega, \bigcap_{m=0}^{\infty} X^{(m)}(T^{-1}\omega))
\]
\[
= \bigcap_{m=0}^{\infty} f(T^{-1}\omega, X^{(m)}(T^{-1}\omega)) = \bigcap_{m=0}^{\infty} f_0(\omega, X^{(m)}(T^{-1}\omega))
\]
\[
= \bigcap_{m=0}^{\infty} X^{(m+1)}(\omega) = X^\infty(\omega), \quad \omega \in \Omega^*. \]
The fourth equality in this chain of relations holds because
\[
X^{(m)}(T^{-1}\omega) = f_0(T^{-1}\omega) f_{-1}(T^{-1}\omega) \cdots f_{-m}(T^{-1}\omega)(X_{m-1}(T^{-1}\omega))
\]
and so
\[
f_0(\omega)(X^{(m)}(T^{-1}\omega)) = f_0(\omega) f_{-1}(\omega) \cdots f_{-m-1}(\omega)(X_{m-2}(\omega)) = X^{(m)}(\omega). \]

3rd step. For \(\omega \in \Omega^*\), denote the diameter in the metric \(\rho(\omega, x, y)\) of the compact set \(X^\infty(\omega) \subseteq Y(\omega)\) by \(\rho(\omega)\) and put \(\rho(\omega) = +\infty\) if \(\omega \in \Omega \setminus \Omega^*\). For \(m = 0, 1, 2, \ldots\), put \(\Omega^*_{m} := \Omega^* \cap \Omega_m\) and for \(\omega \in \Omega\) define
\[(4.4) \quad \rho^{(m)}(\omega) = \begin{cases} \text{diam } X^{(m)}(\omega), & \text{if } \omega \in \Omega_{m}^*, \\ +\infty, & \text{otherwise}. \end{cases} \]
Recall that, for \(\omega \in \Omega_m\) and hence for \(\omega \in \Omega_{m}^*\), the set \(X^{(m)}(\omega)\) is contained in \(Y(\omega)\) and is compact, so that its diameter \(\text{diam } X^{(m)}(\omega)\) in the metric \(\rho(\omega, x, y)\) is well-defined and finite. We claim that \(\rho^{(m)}(\omega)\) is an \(\mathcal{F}_0\)-measurable function of \(\omega \in \Omega\).
To prove this assertion we observe that for \(\omega \in \Omega_{m}^*\), we have \(\text{diam } X^{(m)}(\omega) = \text{diam } f^{(m)}(\omega, X_{m-1}(\omega))\), where
\[
f^{(m)}(\omega, x) = f_0(\omega) f_{-1}(\omega) \cdots f_{-m}(\omega)(x), \quad x \in X_{m-1}(\omega). \]
Consequently, for each real \(a\), the set \(\Omega_{m}^* \cap \text{diam } X^{(m)}(\omega) > a\) is the projection on \(\Omega_{m}^*\) of the set
\[
\{(\omega, x, y) \in \Omega_{m} \times X_{m-1}(\omega) \times X_{m-1}(\omega) : \rho(\omega, f^{(m)}(\omega, x), f^{(m)}(\omega, y)) > a \},
\]
which is an \(\mathcal{F}_0 \times \mathcal{V} \times \mathcal{V}\)-measurable subset in \(\Omega_{m} \times \mathcal{V} \times \mathcal{V}\) by virtue of assumptions (A1) and (A2). Since \(\mathcal{V}\) and hence \(\mathcal{V} \times \mathcal{V}\) is standard and \((\Omega, \mathcal{F}_0, P)\) is a complete probability space, \(\Omega_{m}^*\) is \(\mathcal{F}_0\)-measurable (see, e.g., [6], Theorem III.33). This implies that \(\rho^{(m)}(\omega)\) is \(\mathcal{F}_0\)-measurable because \(\rho^{(m)}(\omega) = +\infty\) outside \(\Omega_{m}^*\). Finally, \(\rho(\omega)\) is \(\mathcal{F}_0\)-measurable because
\[(4.6) \quad \rho(\omega) = \lim_{m \to \infty} \rho^{(m)}(\omega) \quad \text{for } \omega \in \Omega^*, \]
which follows the fact that $X^{(m)}(\omega)$ are nested and compact in $Y(\omega)$ for all $\omega \in \Omega^*$ and $m \geq m(\omega)$.

4th step. Let us show that $\rho(\omega) = 0$ (a.s.). Observe that equality (4.1) implies

\[X^\infty(\omega) = f(T^{-1}\omega, X^\infty(T^{-1}\omega)) = f(T^{-1}\omega)(X^\infty(T^{-1}\omega)) \]

\[= f(T^{-1}\omega)f(T^{-2}\omega)(X^\infty(T^{-2}\omega)) = \ldots = f(T^{-1}\omega)f(T^{-m-1}\omega)(X^\infty(T^{-m-1}\omega)) \]

(4.7) \[= f_0(\omega)\ldots f_{-m}(\omega)(X^\infty(T^{-m-1}\omega)) = f^{(m)}(\omega, X^\infty(T^{-m-1}\omega)), \quad \omega \in \Omega^*. \]

By virtue of (4.7) and condition (b) in (A3), for $\omega \in \Omega_m^*$, we have

(4.8) \[\rho(\omega) = \rho(\omega, X^\infty(\omega)) \leq \rho(T^{-m-1}\omega, X^\infty(T^{-m-1}\omega)) = \rho(T^{-m-1}\omega) \]

and

(4.9) \[\text{if } \rho(\omega) > 0, \text{ then } \rho(\omega) < \rho(T^{-m-1}\omega). \]

(We also use here the fact that $X^\infty(\omega)$ is compact.) Since $P(\Omega_m^*) = P(\Omega^* \cap \Omega_m) \to 1$, inequality (4.8) yields

(4.10) \[\lim_{m \to \infty} P\{\rho(\omega) \leq \rho(T^{-m}\omega)\} \to 1. \]

We claim that (4.10) implies

(4.11) \[\rho(\omega) = \rho(T^{-m}\omega) \text{ a.s. for all } m. \]

To deduce (4.11) from (4.10) we may assume that $\rho(\omega)$ is bounded by some constant C (we can always replace $\rho(\omega)$ by arctan $\rho(\omega)$). By setting $\Delta_m := \{\omega : \rho(\omega) \leq \rho(T^{-m}\omega)\}$, we write

\[E|\rho(\omega) - \rho(T^{-m}\omega)| \leq E(\rho(T^{-m}\omega) - \rho(\omega))\chi_{\Delta_m} + CP(\Omega \setminus \Delta_m), \]

where χ_{Δ_m} is the indicator function of Δ_m. Further, since $E\rho(T^{-m}\omega) = E\rho(\omega)$, we have

\[E(\rho(T^{-m}\omega) - \rho(\omega))\chi_{\Delta_m} = E(\rho(T^{-m}\omega) - \rho(\omega))\chi_{\Delta_m} - E(\rho(T^{-m}\omega) - \rho(\omega)) \]

\[= -E(\rho(T^{-m}\omega) - \rho(\omega))\chi_{\Omega \setminus \Delta_m} \leq CP(\Omega \setminus \Delta_m). \]

Consequently, $E|\rho(\omega) - \rho(T^{-m}\omega)| \leq 2CP(\Omega \setminus \Delta_m) \to 0$, which implies (4.11).

Suppose $\rho(\omega) > 0$ with strictly positive probability. Then there exists a number m and a set $\Gamma \in \mathcal{F}_0$ contained in Ω_m^* such that $P(\Gamma) > 0$ and $\rho(\omega) > 0$ on Γ. By virtue of (4.9), we have $\rho(\omega) < \rho(T^{-m-1}\omega)$ for $\omega \in \Gamma$. On the other hand, we proved that $\rho(\omega) = \rho(T^{-m-1}\omega)$ for almost all ω. A contradiction.

5th step. Since the \mathcal{F}_0-measurable function $\rho(\omega)$ is zero a.s., there is a set $\tilde{\Omega} \in \mathcal{F}_0$ of full measure such that

(4.12) \[\tilde{\Omega} \subseteq \Omega^* \text{ and } \rho(\omega) = 0 \text{ for each } \omega \in \tilde{\Omega}. \]

This means that for $\omega \in \tilde{\Omega}$, the set $X^\infty(\omega)$ consists of exactly one point, $\xi(\omega)$.

Replacing $\tilde{\Omega}$ by $\cap_{k=-\infty}^+ (T^k\tilde{\Omega})$, we may assume that $\tilde{\Omega}$ is invariant.

For every ω, fix any point $y(\omega)$ in the non-empty set $Y(\omega)$ and put $\xi(\omega) = \xi(\omega)$ for $\omega \in \tilde{\Omega}$ and $\xi(\omega) = \xi(\omega)$ for $\omega \in \Omega \setminus \tilde{\Omega}$. Then for any $\omega \in \tilde{\Omega} \subseteq \Omega^*$ we have $T\omega \in \tilde{\Omega} \subseteq \Omega^*$, and so

\[\{\xi(T\omega)\} = \{\xi^\infty(T\omega)\} = X^\infty(T\omega) = f(\omega, X^\infty(\omega)) \]

\[= f(\omega, \{\xi^\infty(\omega)\}) = f(\omega, \{\xi(\omega)\}) \]
by virtue of (4.1). Consequently, \(\xi(\omega) \) satisfies (3.1) for all \(\omega \) in the set \(\Omega \subseteq \Omega^* \subseteq \bar{\Omega} \) of measure one.

Consider the functions \(\rho^{(m)}(\omega) \) defined by (4.4). For each \(\omega \in \bar{\Omega} \) and \(m \geq m(\omega) \) we have \(\omega \in \Omega_m \), and so

\[
\sup_{x \in X_{m-1}(\omega)} \rho(\omega, \xi(\omega), f_0 \ldots f_{-m}(x)) \leq \operatorname{diam} X^{(m)}(\omega) = \rho^{(m)}(\omega)
\]

because \(\{\xi(\omega)\} = X^\infty(\omega) \subseteq X^{(m)}(\omega) \). This implies (3.5) since \(\lim \rho^{(m)}(\omega) = \rho(\omega) = 0 \) on the set \(\bar{\Omega} \) of full measure.

6th step. To complete the proof of (i) it is sufficient to show that the mapping \(\xi \) constructed above coincides a.s. with some \(F_0 \)-measurable mapping \(\zeta \). Then \(\zeta \) will be the sought-for solution to (3.1) possessing the properties listed in (i).

Consider some \(F_0 \)-measurable mappings \(y_0(\omega), x_{-m-1}(\omega), m = 0, 1, \ldots \), with values in \(V \) such that \(y_0(\omega) \in Y(\omega), x_{-m-1}(\omega) \in X_{-m-1}(\omega) \) for all \(\omega \). The existence of these mappings follows from the measurable selection theorem (see) because the graphs of the set-valued mappings \(\omega \mapsto Y(\omega) \) and \(X_{-m-1}(\omega) \) are measurable with respect to \(F_0 \times V \) and \(F_{-m-1} \times V \subseteq F_0 \times V \), respectively. Define the mappings \(\zeta^m(\omega) \) of \(\omega \) into \(V \) (\(m = 0, 1, \ldots \)) by the formula

\[
\zeta^m(\omega) = \begin{cases} f_0(\omega) \ldots f_{-m}(\omega)(x_{-m-1}(\omega)) & \text{if } \omega \in \Omega_m, \\ y_0(\omega), & \text{otherwise.} \end{cases}
\]

Clearly \(\zeta^m(\omega) \in Y(\omega) \) for all \(\omega \). The mappings \(\zeta^m(\omega) \) are \(F_0 \)-measurable because \(\Omega_m \in F_0 \) and the mappings \(f_{-m}(\omega, x) \) are measurable with respect to \(F_{-m-1} \times V \subseteq F_0 \times V \). For each \(\omega \in \bar{\Omega} \) and \(m \geq m(\omega) \), we have \(\omega \in \Omega_m \) and

\[
\rho(\omega, \xi(\omega), \zeta^m(\omega)) = \rho(\omega, \xi(\omega), f_0(\omega) \ldots f_{-m}(\omega)(x_{-m-1}(\omega))) \leq \rho^{(m)}(\omega)
\]

where \(\rho^{(m)}(\omega) \to 0 \) as \(m \to \infty \) (see (4.6), (4.12) and (4.13)). Thus \(\zeta^m(\omega) \to \xi(\omega) \) on a set \(\bar{\Omega} \in F_0 \), where \(P(\bar{\Omega}) = 1 \). Thus \(\xi(\omega) \) is an a.s. limit of \(F_0 \)-measurable functions, and consequently, it is \(F_0 \)-measurable since \(F_0 \) is complete.

We know that \(\xi(T\omega) = f(\omega, \xi(\omega)) \) (a.s.) and since \(\xi(\omega) \) coincides a.s. with some \(F_0 \)-measurable mapping \(\xi'(\omega) \), we obtain

\[
\xi'(T\omega) = \xi(T\omega) = f(\omega, \xi(\omega)) = f(\omega, \xi'(\omega)) \text{ (a.s.)},
\]

where the first equality is valid because the transformation \(T \) preserves the measure \(P \).

7th step. It remains to prove (ii). If \(\eta : \Omega \to V \) is a mapping for which \(\eta(\omega) \in X(\omega) \) and equation (3.1) holds, then

\[
\eta(\omega) = f(T^{-1}\omega, \eta(T^{-1}\omega)) = f(T^{-1}\omega)(\eta(T^{-1}\omega)) = \ldots = f(T^{-1}\omega) \ldots f(T^{-m-1}\omega)(\eta(T^{-m-1}\omega)) \text{ (a.s.)},
\]

which yields

\[
\eta(\omega) = f_0(\omega)f_{-1}(\omega) \ldots f_{-m}(\omega)(\eta(T^{-m-1}\omega)) \text{ (a.s.)}.
\]

By combining (4.14) and (3.5), we get

\[
\rho(\omega, \xi(\omega), \eta(\omega)) \leq \sup_{x \in X_{-m-1}(\omega)} \rho(\omega, \xi(\omega), f_0(\omega) \ldots f_{-m}(\omega)(x)) \to 0 \text{ (a.s.)},
\]

and so \(\xi(\omega) = \eta(\omega) \) (a.s.). The proof is complete.
5. Nonlinear Perron-Frobenius Theorem: Proof

In this section we prove Theorem 1. The proof is based on a lemma.

Lemma 1. There exists a sequence of \mathcal{F}_0-measurable sets $\Gamma_1 \subseteq \Gamma_2 \subseteq \ldots \subseteq \Omega$ such that $P(\Gamma_m) \to 1$ and for each $m = 1, 2, \ldots$ and $\omega \in \Gamma_m$, the mapping $C(m, T^{-m})$ from the cone $K_{-m}(\omega)$ to the cone $K_0(\omega)$ is strictly monotone.

Proof. For each $m \geq 1$, consider the set Δ_m of those ω for which the mapping $C(m, \omega, x) = C(m, \omega) x$ of the cone $K_0(\omega)$ into the cone $K_m(\omega)$ is strictly monotone in x. Let us show that $\Delta_m \in \mathcal{F}_m$. Denote by $H_m(\omega)$ the closed set $V \setminus K^\circ_m(\omega)$ and by $\delta(z, H_m(\omega))$ the distance (defined in terms of the norm $\|\cdot\|$) between the point $z \in V$ and $H_m(\omega)$. Clearly, $z \in K^\circ_m(\omega)$ if and only if $\delta(z, H_m(\omega)) > 0$.

For each $i, j = 1, 2, \ldots$ denote by $\Lambda_{ij}(\omega)$ the set of those $(x, y) \in K_0(\omega) \times K_0(\omega)$ for which

$\Delta_m = \bigcup_{i,j=1}^\infty \{ \omega : \inf_l \{\delta(C(m, \omega, y^l_{ij}(\omega)) - C(m, \omega, x^l_{ij}(\omega)), H_m(\omega))\} > 0 \}.$

Since the set-valued mapping $\omega \mapsto H_m(\omega)$ is \mathcal{F}_m-measurable, the set Δ_m is a union of a countable family of \mathcal{F}_m-measurable sets and is thus \mathcal{F}_m-measurable.

If $\omega \in \Delta_m$ and $y >_{K_0(\omega)} x$, we have $C(m, \omega) y >_{K_0(\omega)} C(m, \omega) x$. Furthermore, $D(T^m)\omega$ is a completely monotone mapping from $K_0(T^m) \omega = K_m(\omega)$ into $K_1(T^m) \omega = K_{m+1}(\omega)$. Therefore

$C(m + 1, \omega) y = D(T^m)\omega C(m, \omega) y >_{K_{m+1}(\omega)} D(T^m)\omega C(m, \omega) x = C(m + 1, \omega) x$

and so $\omega \in \Delta_{m+1}$. Consequently, $\Delta_m \subseteq \Delta_{m+1}$. By virtue of assumption (C), we have $P(\bigcup_{m=1}^\infty \Delta_m) = 1$. By virtue of the inclusion $\Delta_m \subseteq \Delta_{m+1}$, this implies $P(\Delta_m) \to 1$. Define $\Gamma_m = T^m \Delta_m$. Then $\omega \in \Gamma_m$ if and only if the mapping $C(m, T^{-m})$ of the cone $K_0(T^{-m}) = K_{-m}(\omega)$ into the cone $K_m(T^{-m}) = K_0(\omega)$ is strictly monotone. Furthermore, $\Gamma_m \in \mathcal{F}_0$ for every m because $T^m \Delta_m \in \mathcal{F}_0$ if and only if $\Delta_m \in \mathcal{F}_m$. If $\omega \in \Gamma_m$, then $\omega \in \Gamma_{m+1}$ because the mapping

$C(m + 1, T^{-m-1}) = C(m, T^{-m}) D(T^{-m-1})$

of $K_{-m-1}(\omega)$ into $K_0(\omega)$ is strictly monotone as the product of two mappings one of which is completely monotone (from $K_{-m-1}(\omega)$ to $K_{-m}(\omega)$) and the other strictly monotone (from $K_{-m}(\omega)$ to $K_0(\omega)$). Thus, $\Gamma_1 \subseteq \Gamma_2 \subseteq \ldots$, where $P(\Gamma_m) = P(\Delta_m) \to 1$, which completes the proof.

Proof of Theorem 1. Let

$X(\omega) = \hat{K}(\omega), \phi(t) = \phi(T^t)\omega, \hat{K}(\omega) = \hat{K}(T^t)\omega, \chi_t(\omega) = X(T^t)\omega$

for any $t = 0, \pm 1, \pm 2, \ldots$. We will apply Theorem 3 to the mapping

$f(\omega, x) = \frac{D(\omega, x)}{\phi(\omega), D(\omega, x)}$, $x \in X_0(\omega)$.

The mapping $f(\omega, x)$ is well-defined because $D(\omega, x)$ is a completely monotone mapping from $K_0(\omega)$ into $K_1(\omega)$. This implies that $\langle \phi(\omega), D(\omega, x) \rangle > 0$ because...
Let us prove by induction with respect to m every $D_1 \in E$. BABAEI, I. V. EVSTIGNEEV, AND S. A. PIROGOV

Theorem 3 for the mappings $V \rightarrow X(\omega)$ and $f(\omega, x) : X_0(\omega) \rightarrow X_1(\omega)$.

We have

$$\{(\omega, x) : x \in X(\omega)\} = \{(\omega, x) : x \in K(\omega), \{\phi(\omega), x\} = 1\} \in \mathcal{F}_0 \times \mathcal{V}$$

because $\phi(\omega)$ and $\omega \rightarrow K(\omega)$ are \mathcal{F}_0-measurable.

To check (A1) we need to show that the mapping $\bar{f}(\omega, x)$, which is equal to

$f(\omega, x)$ if $x \in X_0(\omega)$ and ∞ otherwise, is $\mathcal{F}_1 \times \mathcal{V}$-measurable. This follows from the fact that the set $\Gamma := \{(\omega, x) : \omega \in \Omega, x \in K_0(\omega), \{\phi(\omega), x\} = 1\}$ is $\mathcal{F}_0 \times \mathcal{V}$-measurable and the mapping $f(\omega, x)$ (see (5.2)) restricted to Γ is $\mathcal{F}_1 \times \mathcal{V}$-measurable by virtue of (D1) and \mathcal{F}_1-measurability of $\phi(\omega)$.

For each ω, we define $Y(\omega)$ as $K_0(\omega) \cap K_0(\omega)$ (which corresponds to our previous notation) and consider the Hilbert-Birkhoff metric $d(\omega) = d(\omega, x, y)$ on $Y(\omega)$. For every $k = 0, \pm 1, \pm 2, \ldots$ define

$$Y_k(\omega) = Y(T^k\omega), \quad d_k(\omega) = d_k(\omega, x, y) = d(T^k\omega, x, y).$$

Let us verify the assumptions in (A2). To check (a) observe that the set-valued mapping $\omega \mapsto Y(\omega)$ is \mathcal{F}_0-measurable because its graph is the intersection of the

$\mathcal{F}_0 \times \mathcal{V}$-measurable sets $\{(\omega, x) : \{\phi(\omega), x\} = 1\}$ and $\{(\omega, x) : x \in K_0(\omega)\}$ (as regards the second set, its measurability can be proved by using Theorems III.22 and III.30 in [5]).

To verify (b) consider a real number r and the set

$$Q = \{(\omega, x, y) : x, y \in Y(\omega), d(\omega, x, y) > r\}.$$

We have to show that $Q \in \mathcal{F}_0 \times \mathcal{V} \times \mathcal{V}$. To this end observe that $d(\omega, x, y) > r$ if and only if

$$\inf_j \{\beta_j : x \leq K(\omega) \beta_j y\} > e^r \sup_j \{\alpha_j : \alpha_j y \leq K(\omega) x\},$$

where $\alpha_j > 0$ and $\beta_j > 0$ are rational numbers. By combining this observation with the fact that $\{(\omega, x, y) : x \leq K(\omega) y\} \in \mathcal{F}_0 \times \mathcal{V} \times \mathcal{V}$ (following from the \mathcal{F}_0-measurability of $\omega \mapsto K(\omega)$) we obtain (b).

As we have noticed in Section 2, $(Y(\omega), d(\omega))$ is a complete separable metric space and the topology generated by the metric $d(\omega)$ on $Y(\omega)$ coincides with the

Euclidean topology on $Y(\omega)$. From the fact that $D(\omega, x)$ is completely monotone, it follows that the map $f(\omega, x)$ transforms $Y(\omega)$ into $Y_1(\omega)$. Furthermore, $f(\omega, \cdot)$ is continuous in the Euclidean topology and hence with respect to the metric $d(\omega)$ on $Y(\omega)$ and the metric $d_1(\omega)$ on $Y_1(\omega)$. Therefore, conditions (c) and (d) hold.

Consider the \mathcal{F}_0-measurable sets $\Gamma_1 \subseteq \Gamma_2 \subseteq \ldots \subseteq \Omega$ constructed in Lemma 1. Let $\Omega_m = \Gamma_{m+1}$, $(m = 0, 1, \ldots)$. We will show that the sets $\Omega_0 \subseteq \Omega_1 \subseteq \ldots \subseteq \Omega$ possess the properties listed in (A3). Consider the mappings $f_m(\omega, x)$ and $f^{(m)}(\omega, x)$ defined by (3.2) and (3.3), respectively. By virtue of (3.2) and (5.2), we get

$$f_m(\omega, x) = f(T^{m-1}\omega, x) = \frac{D(T^{m-1}\omega, x)}{\langle \phi_m(\omega), D(T^{m-1}\omega, x) \rangle}, \quad x \in X_{m-1}(\omega).$$

Let us prove by induction with respect to $m = 0, 1, 2, \ldots$ the following formula for every $x \in X_{m-1}(\omega)$:
\begin{equation}
\tag{5.3} f^{(m)}(\omega, x) = f_0(\omega)f_{-1}(\omega)\ldots f_{-m}(\omega)x = \frac{C(m + 1, T^{-m-1}\omega)x}{\langle \phi(\omega), C(m + 1, T^{-m-1}\omega)x \rangle}.
\end{equation}

If \(m = 0 \), then
\[f_0(\omega, x) = f(T^{-1}\omega, x) = \frac{D(T^{-1}\omega, x)}{\langle \phi(\omega), D(T^{-1}\omega, x) \rangle} = \frac{C(1, T^{-1}\omega)x}{\langle \phi(\omega), C(1, T^{-1}\omega)x \rangle}, \quad x \in X_{-1}(\omega). \]

Suppose equation (5.3) holds for \(m - 1 \). To verify it for \(m \) we take \(x \in X_{-m-1}(\omega) \), put
\[z = \frac{D(T^{-m-1}\omega)x}{\langle \phi_{-m}(\omega), D(T^{-m-1}\omega)x \rangle} \]
and write
\[\frac{C(m + 1, T^{-m-1}\omega)x}{\langle \phi(\omega), C(m + 1, T^{-m-1}\omega)x \rangle} = \frac{C(m, T^{-m}\omega)D(T^{-m-1}\omega)x}{\langle \phi(\omega), C(m, T^{-m}\omega)D(T^{-m-1}\omega)x \rangle} \]
\[= \frac{C(m, T^{-m}\omega)z}{\langle \phi(\omega), C(m, T^{-m}\omega)z \rangle} = f_0(\omega)f_{-1}(\omega)\ldots f_{-m}(\omega)z \]
\[= f_0(\omega)f_{-1}(\omega)\ldots f_{-m}(\omega)\frac{D(T^{-m-1}\omega)x}{\langle \phi_{-m}(\omega), D(T^{-m-1}\omega)x \rangle} \]
\[= f_0(\omega)f_{-1}(\omega)\ldots f_{-m}(\omega)f_{-m+1}(\omega)x. \]

In this chain of equalities, the first one follows from (5.1), the second from the definition of \(z \) and homogeneity of the mappings under consideration, the third from the assumption of induction, the fourth from the definition of \(z \) and the last from the definition of \(f_{-m} \).

Let \(m \) be any nonnegative integer and let \(\omega \in \Omega_m = \Gamma_{m+1} \). Then, according to Lemma 1, the mapping \(C(m + 1, T^{-m-1}\omega) \) is strictly monotone. Consequently (see (5.3)), \(f^{(m)}(\omega, x) \in K^\circ(\omega) \) for all \(x \in X_{-m-1}(\omega) \), and so \(f^{(m)}(\omega, X_{-m-1}(\omega)) \) is a subset in \(Y(\omega) \). Moreover, \(f^{(m)}(\omega, X_{-m-1}(\omega)) \) is a compact set in \(Y(\omega) \), as a continuous image of the set \(X_{-m-1}(\omega) \) which is compact in the Euclidean topology, and hence \(f^{(m)}(\omega, X_{-m-1}(\omega)) \) is compact with respect to the metric \(d(\omega) \). By virtue of Theorem 2, \(f^{(m)}(\omega, x) : Y_{-m-1}(\omega) \to Y(\omega) \) is strictly non-expansive mapping with respect to the metric \(d_{-m-1}(\omega) \) on \(Y_{-m-1}(\omega) \) and \(d(\omega) \) on \(Y(\omega) \). Consequently, condition (A3) holds. Thus, all the conditions sufficient for the validity of Theorem 3 are verified.

By virtue of assertion (i) of Theorem 3, there exists an \(F_0 \)-measurable mapping \(\xi(\omega) \in Y(\omega) \) for which the equation \(\xi(T\omega) = f(\omega, \xi(\omega)) \) (a.s.) holds, i.e. we have
\[\xi(T\omega) = \frac{D(\omega, \xi(\omega))}{\langle \phi_1(\omega), D(\omega, \xi(\omega)) \rangle} \quad (a.s.). \]

Let \(x(\omega) = \xi(\omega) \) and \(\alpha(\omega) = \langle \phi_1(\omega), D(\omega, \xi(\omega)) \rangle \). Then \(\alpha(\omega)x(T\omega) = D(\omega)x(\omega) \) (a.s.) and since \(x(\omega) \in Y(\omega) \), we have \(x(\omega) \in K^\circ(\omega), \langle \phi(\omega), x(\omega) \rangle = 1 \) and \(\alpha(\omega) > 0 \). Furthermore, \(x(\omega) \) is \(F_0 \)-measurable and \(\alpha(\omega) \) is \(F_1 \)-measurable, which proves assertion (a).

To prove (b), take any \((\alpha'(\omega), x'(\omega)) \), where \(\alpha'(\omega) \geq 0, x'(\omega) \in K(\omega), \langle \phi(\omega), x'(\omega) \rangle = 1 \), satisfying \(\alpha'(\omega)x'(T\omega) = D(\omega)x'(\omega) \) (a.s.). Then
\[\alpha'(\omega) = \alpha'(\omega)\langle \phi_1(\omega), x'(T\omega) \rangle = \langle \phi_1(\omega), D(\omega)x'(\omega) \rangle > 0, \]
and so
\[x'(T\omega) = \frac{D(\omega)x'(\omega)}{\alpha'(\omega)} = \frac{D(\omega)x'(\omega)}{\langle \phi(\omega), D(\omega)x'(\omega) \rangle} = f(\omega, x'(\omega)) \text{ (a.s.)}. \]

By virtue of assertion (ii) of Theorem 3, we have \(x'(\omega) = x(\omega) \) (a.s.), and consequently, \(\alpha'(\omega) = \alpha(\omega) \) (a.s.), which proves (b).

To prove (c) we observe that \(x := a/\langle \phi_{m-1}(\omega), a \rangle \in X_{m-1}(\omega) \) for any \(0 \neq a \in K_{m-1}(\omega) \), and by virtue of (5.3), the following equations hold:
\[\frac{C(m+1, T^{-m-1}a)}{\langle \phi(\omega), C(m+1, T^{-m-1}a) \rangle} = \frac{C(m+1, T^{-m-1}x)}{\langle \phi(\omega), C(m+1, T^{-m-1}x) \rangle} = f^{(m)}(\omega, x). \]

By using (3.5), we get
\[\lim_{m(\omega) \leq m \to \infty} \sup_{0 \neq a \in K_{m-1}(\omega)} d(\omega, \xi(\omega), \frac{C(m+1, T^{-m-1}a)}{\langle \phi(\omega), C(m+1, T^{-m-1}a) \rangle}) = \lim_{m(\omega) \leq m \to \infty} \sup_{x \in X_{m-1}(\omega)} d(\omega, \xi(\omega), f^{(m)}(\omega, x)) = 0 \text{ (a.s.)}. \]

In view of (2.2), we can replace here the Hilbert-Birkhoff metric \(d(\omega, x, y) \) by the norm \(\| x - y \| \), which yields (1.2). This completes the proof.

Acknowledgement. The authors are grateful to B. M. Gurevich, V. I. Oseledets, and K. R. Schenck-Hoppé for helpful comments and fruitful discussions.

References

[1] L. Arnold. Random dynamical systems. Springer, 1998.
[2] L. Arnold, V. M. Gundlach and L. Demetrius. Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab. 4 (1994), 859-901.
[3] L. Arnold, I. V. Evstigneev and V. M. Gundlach. Convex-valued random dynamical systems: A variational principle for equilibrium states. Random Oper. Stoc. Eqs. 7 (1999), 23-38.
[4] G. Birkhoff. Extensions of Jentzsch’s theorem. Trans. Amer. Math. Soc. 84 (1957), 219-227.
[5] C. Castaing and M. Valadier. Convex analysis and measurable Multifunctions. Lecture Notes in Mathematics, No 580, Springer, 1977.
[6] C. Dellacherie and P.-A. Meyer. Probabilities and Potential. North Holland, 1978.
[7] M. A. H. Dempster, I. V. Evstigneev and K. R. Schenck-Hoppé. Exponential growth of fixed-mix strategies in stationary asset markets. Finance Stoc. 7 (2003), 263-276.
[8] M. A. H. Dempster, I. V. Evstigneev and M. I. Taksar. Asset pricing and hedging in financial markets with transaction costs: An approach based on the von Neumann-Gale model. Annals of Finance 2 (2006), 327-355.
[9] G. Eisenack and C. Fenske. Fixpunktktheorie. BI-Wissenschaftsverlag, 1978.
[10] I. V. Evstigneev. Positive matrix-valued cocycles over dynamical systems. Uspekhi Matem. Nauk (Russian Mathematical Surveys) 29 (1974), 219-220 (in Russian).
[11] I. V. Evstigneev and S. A. Pirogov. A stochastic contraction principle. Random Oper. Stoc. Eqs. 15 (2007), 155-162.
[12] I. V. Evstigneev and S. A. Pirogov. Stochastic nonlinear Perron-Frobenius theorem. Positivity 14 (2010), 43-57.
[13] I. V. Evstigneev and K. R. Schenck-Hoppé. Stochastic equilibria in von Neumann-Gale dynamical systems. Trans. Am. Math. Soc. 360 (2008), 3345-3364.
[14] I. V. Evstigneev and K. R. Schenck-Hoppé. The von Neumann-Gale growth model and its stochastic generalization. In: R.-A. Dana, C. Le Van, T. Mitra, and K. Nishimura (eds.), Handbook on Optimal Growth, Vol I, Chapter 2, Springer, 2006, pp. 337-383.
[15] G. Frobenius. Über Matrizen aus positiven Elementen. S.-B. Preuss. Akad. Wiss (Berlin), 1908, pp. 471-476.
[16] G. Frobenius. Über Matrizen aus positiven Elementen. II. S.-B. Preuss. Akad. Wiss (Berlin), 1909, pp. 514-518.
[17] G. Frobenius. Über Matrizen aus nicht negativen Elementen. S.-B. Preuss. Akad. Wiss (Berlin), 1912, pp. 456-77.
[18] T. Fujimoto. A generalization of the Perron-Frobenius theorem to nonlinear positive operators in a Banach space. The Kagawa Univ. Econ. Rev. 59 (1986), 141-150.
[19] S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans. Am. Math. Soc. 356 (2004), 4931-4950.
[20] D. Hilbert. Über die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Ann. 46 (1895), 91-96.
[21] Yu. Kifer. Perron-Frobenius theorem, large deviations, and random perturbations in random environments. Math. Z. 222 (1996), 677-698.
[22] Yu. Kifer. Thermodynamic formalism for random transformations revisited. Stoc. Dyn. 8 (2008), 77-102.
[23] E. Kohlberg. The Perron-Frobenius theorem without additivity. J. Math. Econ. 10 (1982), 299-303.
[24] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of Functions and Functional Analysis. Graylock, 1957.
[25] B. Lemmens and R. Nussbaum. Nonlinear Perron-Frobenius theory. Cambridge Tracts in Mathematics 189, Cambridge Univ. Press, 2012.
[26] Z. Lian and Y. Wang. On random linear dynamical systems in a Banach space. I. Multiplicative ergodic theorem and Krein-Rutman type theorems. Adv. Math. 312 (2017), 374-424.
[27] J. Mierczyński and W. Shen. Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. I. General theory. Trans. Amer. Math. Soc. 365 (2013), 5329-5365.
[28] J. Mierczyński and W. Shen. Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems. J. Math. Anal. Appl. 404 (2013), 438-458.
[29] J. Mierczyński and W. Shen. Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. III. Parabolic equations and delay systems. J. Dynam. Differential Equations 28 (2016), 1039-1079.
[30] M. Morishima. Equilibrium, stability and growth. Clarendon Press, 1964.
[31] R. D. Nussbaum. Hilbert’s projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 75 (391), 1988.
[32] R. D. Nussbaum. Iterated nonlinear maps and Hilbert’s projective metric II. Mem. Amer. Math. Soc. 79 (401), 1989.
[33] H. Nikaido. Convex structures and economic theory. Academic Press, 1968.
[34] Y. Oshime. Perron-Frobenius problem for weakly sublinear maps in a Euclidean positive orthant. Japan J. Indust. Appl. Math. 9 (1992), 313-350.
[35] Y. Oshime. An extension of Morishima’s nonlinear Perron-Frobenius theorem. J. Math. Kyoto Univ. 23 (1983), 803-830.
[36] Y. Oshime. Non-linear Perron-Frobenius problem for weakly contractive transformations. Math. Japon. 29 (1984), 681-704.
[37] O. Perron. Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64 (1907), 1-76.
[38] O. Perron. Zur Theorie der Matrices. Math. Ann. 64 (1907), 248-263.
[39] R. M. Solow and P. A. Samuelson. Balanced growth under constant returns to scale. Econometrica 21 (1953), 412-424.

E. BABAEI, Economics Department, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
E-mail address: esmaeil.babaeikhezerloo@postgrad.manchester.ac.uk

I. V. EVSTIGNEEV, Economics Department, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
E-mail address: igor.evstigneev@manchester.ac.uk

S. A. PIROGOV, Moscow University and the Institute for Information Transmission Problems, Academy of Sciences of Russia, Bolshoy Karetny 19-1, Moscow, 127051, Russia
E-mail address: s.a.pirogov@bk.ru